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Abstract

Over the Pleistocene Period, which covers the time interval [2.588, 0.0117] million years ago,

the dominant period of glacial-interglacial cycles changed from 41 000 years to 100 000 years.

According to Milankovitch’s Theory the variations of Earth’s orbital parameters eccentric-

ity, obliquity and precession are driving the growth and melting of glaciers. Despite being

generally accepted, Milankovitch’s Theory is still being challenged by some scientists largely

because of lack of models that are driven by the orbital parameters, which can adequately

reproduce climate proxy variables.

In this context, the aim of this thesis was to study the link between Earth’s orbital

parameters and climate proxy data and more specifically the role of orbital forcing in the

shift of dominant oscillation cycle during the Pleistocene and the origins of the 100 000 years

cycle.

In this work, nonlinear system identification tools were used to model oxygen isotope

ratios time-series extracted from the Western Pacific Drilling Site 806B. By analysing the

resulting models in the time and frequency domain, using Generalized Frequency Response

Functions and Output Frequency Responses, it was possible to determine which frequencies

and combinations of frequencies from the spectrum of the orbital parameters contribute most

significantly in the output spectrum, with focus on the frequency corresponding to the 100

000 years cycle.

More specifically, two new polynomial models, each dealing with one of the two Pleistocene

time periods dominated by a different cycle, were developed, analysed and compared. The

estimated models predict very well the oxygen isotope ratio time-series extracted from Site

806B.

The identified models not only predict well the oxygen isotope ratios, but also capture

i



the dynamics of the underlying processes before and after the Pleistocene dominant cycle

shift. The models reproduce well the critical points in the data which correspond to climatic

events, such as switching between a glacial and interglacial period. The models were used

to compare the variability in the palaeoclimate data over the two time periods and analyse

possible causes behind the observed change in period of oscillation.

By mapping the models into the frequency domain it was possible to characterize the

linear and nonlinear coupling between the individual orbital parameters and the climate

proxy variable of interest and to characterize the role of nonlinear interactions over different

glacial and interglacial periods.

The results presented in this thesis arguably provide the most compelling quantitative

evidence in support of Milankovitch’s Theory.
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Chapter 1

Introduction

1.1 Background and Motivation

The Quaternary era is the most recent geological era of the Earth and spans over the past 2.6

million years. Part of the Quaternary is the Pleistocene epoch, which covers the time interval

[2.6, 0.0117] million years. Over this time, the global climate was characterized by succeeding

cold and warm periods, which caused the glaciers and ice-sheets to grow and retreat. The

glacial and interglacial periods alternation varies periodically. The period of each cycle

changed though around 0.9�0.8 million years ago. This change is called the Mid-Pleistocene

Transition (MPT), and brought a shift in the glacial-interglacial variation cycle from 41

000 years before MPT to 100 000 years after MPT . Although the effects of the change

occurred at the MPT are known, it is still not clear what triggered this modification. Many

authors have investigated the shift during the MPT and the possible origins of the 100 kyr

cycle, but a unified theory could not be widely accepted. Among the possible explanations,

scientists referred to: the influence of orbital parameters (Rial and Anaclerio, 2000, Berger,

1988, Berger and Loutre, 1997a, Berger et al., 1999, Imbrie et al., 1993), internal feedbacks

caused by: ice sheets (Berger, 1988), CO2 concentration (Ganopolski and Calov, 2011), ice

albedo (Maslin and Ridgwell, 2005) or dust (Ganopolski and Calov, 2011), or external forcing

cause by orbital inclination (Muller and MacDonald, 2005).

Given the alternation of glacial and interglacial periods are quasi-periodical, scientists

tried to explain this by referring to the periodic variations in Earth’s orbit around the Sun
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(Rapp, 2008, Crucifix et al., 2009). This is called the Milankovitch theory (McGuffie and

Henderson-Sellers, 2005), after the serbian scientist that studied the Earth’s movements,

calculated the changes in Earth’s orbit and the temperature values at different points on

Earth’s surface. This allowed him to propose the theory that the ice ages are sustained by

cold summers which prevent the winter snow from melting. This dismissed James Croll’s

theory (1875), that proposed that very severe winters counteracted the effects of short and

hot summers (Finnegan, 2011). The astronomical theory developed by Milankovitch predicts

the climate variability at the geological time scale (100 000 years), which allows the study

of the relationship between orbital variations and seasonal, decadal and long to very long

climate changes (Berger, 1988). It is thought that the orbital forcing acts as trigger and is

not the sole factor of the extreme climatic changes (Berger and Loutre, 2002, Imbrie and

Imbrie, 1980, Macdougall, 2004).

The orbital parameters eccentricity, obliquity and precession influence Earth’s existence

and length of seasons, orbit orientation and the distance between the planet and the Sun. By

this influence, the amount of sunlight received at each latitude (insolation) is affected, and

so the orbital parameters affect the Earth’s climate. Each of the orbital parameters varies

periodically with cycles between tens and hundreds of thousands of years, with the main

period in eccentricity being 100 000 years, in obliquity 41 000 years and in precession 26 000

years.

Berger (1978a) and Berger(1978b) was able to prove, through tables of calculated values

for the insolation, the link between the periods of the orbital elements and the evolution

of climate (Imbrie and Imbrie, 1980). This link between climate change and insolation is

nonlinear (Crucifix et al., 2009).

The orbital parameters cycles have also been associated with periods found through spec-

tral analysis in deep-sea proxy records for the Pleistocene epoch (Crucifix et al., 2009). The

Ocean Drilling Program (ODP), between the years 1983-2003 while it was operating, con-

ducted 110 expeditions with 2000 drilled holes covering vast areas from the Arctic Ocean

to the Weddell Sea, and was an international effort of exploring the Earth’s subsea floors

and their composition and structure. Through the recovery and analysis of sediment fossils

that accumulated slowly on the ocean’s bottom over geologic time, it was possible to gain a
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better understanding into Earth’s past, but also it’s future. The fossils chemistry represents

proxies for the ocean conditions of the time when the microorganisms lived. Because the

deep ocean sediments are insulated from seasonal or other short-term noise, they give the

cleanest overview of long-term global temperature changes on Earth.

The modelling efforts that use palaeoclimatic data aim to explain a number of intriguing

climate events and features of the palaeoclimate, such as the appearance of a 100 000 years

cycle, or to predict the evolution of the global ice volume, the global sea-surface temperature

or the positions of the ice sheets at different times. The models developed in the past

could reproduce the appearance of the 100 000 years cycles to some extent. However, none

of the previous models could predict reasonably well the response of the proxy variables

to orbital parameters (Oerlemans, 1982, Ghil and Tavantzis, 1983, Saltzman and Sutera,

1987, Saltzman and Maasch, 1990). Some models could also reproduce the MPT period

shift (Le Treut et al., 1988). The most successful palaeoclimate models, which were able to

also provide an explanation for the appearance of the 100 000 years cycles, were developed

by: Rial and Anaclerio (2000), Imbrie et al. (1992), Berger et al. (1999) and Pollard (1983).

However, these models still have some faults, such as: Rial’s model (2000) can only reproduce

the main periodicities in the data and not its subtle variabilities, Imbrie’s model (1992) does

not distinguish between two intermediary states (initial and preglacial) out of the four defined

ones. Berger et al. (199) only models the time after MPT , and for one third of the data,

which corresponds to the interval ⇠ [600 000 , 400 000] years Before Present (BP), the model

simulation goes out of phase. Milankovitch (1941) mathematically proved the connection

between irradiation and temperature.

1.2 Aims and Objectives

The aim of this research was to use nonlinear system identification techniques to develop

models that describe the relationship between the orbital parameters and the ODP proxy

data throughout the Pleistocene, which allow to elucidate the orbital parameters influence

on the global climate variability, to explain the origin of the 100 000 cycle and characterize

rigorously the dynamical changes that took place during the MPT.

3



Chapter 1 1.2. Aims and Objectives

System identification is a method inferring a mathematical model of a dynamical system

from experimental measurements of the inputs and outputs (Billings, 2013). Therefore, by

using system identification, a mathematical model describing the relationship between the

orbital parameters and proxy data can be developed. System identification has been success-

fully applied in many fields, such as engineering, biology, medicine, finance, social sciences etc

(Billings, 2013). The great advantage of system identification is that it requires no knowledge

of the system, and only uses experimental measurements. A well established identification

framework for nonlinear dynamic systems is the NARMAX methodology (Leontaritis and

Billings, 1985). The aim is to use the identified NARMAX polynomial model to understand

the relationship between the orbital forcing and climate variations. Using the NARMAX

methodology to model environmental time-series provides a novel and powerful approach to

characterize quantitatively the relationship between the orbital forcing parameters and the

proxy variables. Furthermore by computing Generalized and Output Frequency Response

Functions, the identified nonlinear NARMAX model can be mapped into the frequency do-

main and analysed in order to establish the nonlinear mechanisms by which the orbital

parameters generate the 100 000 years cycle.

More specifically the main objectives of this work can be summarized as follows:

• Apply nonlinear system identification based on the NARMAX methodology to identify

models corresponding to the time periods before and after MPT . These models

can help to understand the influence of the orbital parameters by comparison of their

contribution to each model. Furthermore, given the orbital parameters values (Berger,

1978a), the models can be used to predict how the climate will change in the future

and understand the underlying causes of the variations.

• Derive the Generalized Frequency Response Functions (GFRFs) and the Output Fre-

quency Responses (OFRs) for the identified models. These frequency domain functions

are very useful because, although many different time domain NARMAX model struc-

tures can describe the same system, their frequency domain functions will provide

unique results. Frequency domain analysis can provide great insight into a system’s

characteristics, especially in the case where the time-domain model cannot yields any
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straightforward relation to the underlying physical processes. By analysing the GFRFs

it is possible to investigate the effect of different model terms to the output spectrum.

This can be related back, through the model terms, to the contribution of the orbital

parameters to the output spectrum. Also, the GFRFs are a powerful tool for investi-

gating the energy transfer phenomena. The OFRs offer the advantage that, compared

to the GFRFs, are one-dimensional functions of frequency, so they are easier to anal-

yse and interpret. They can help in establishing the contribution of each input to the

output spectrum. The OFRs are also used in analysing specific frequencies of interest

and how the magnitude peaks at these frequencies are composed.

• Use the models to analyse the change that occurred during the MPT. The intriguing

aspect of the MPT is the shift from a dominant period of 41 000 years (before MPT )

to one of 100 000 years (after MPT ), so it is important to obtain two NARMAX

models that can also reproduce this shift.

• Use the frequency domain analysis tools described above to analyse individual output

frequencies and which of the input frequencies contribute to their magnitude peaks.

These methods can be used to investigate the “100 000 years Problem”, which refers to

the appearance of the dominant 100 000 years cycles after MPT , the origin of which

is still debated.

• Use the OFR to decompose the time domain response of the model into contributions

associated to individual kernels of the Volterra series expansion. This allows quantifying

the contribution of each order of nonlinearity to the model output.

• Compare the performance of the identified NARMAX models with existing models.

• Determine, compare and characterize the equilibrium points of the system before and

after MPT .

• Model, analyse and compare the oxygen isotope time-series from two different ODP

Sites. This can help understand why data-sets from adjacent drilling holes are slightly

different and identify a model structure that can explain the observed differences.
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1.3 Overview of the Thesis

The work presented in this thesis is structured into 9 chapters. The remaining chapters are

organized as follows.

• Chapter 2 provides an overview of the paleoclimate data. This includes a description

of the changes that happened during the Mid-Pleistocene Transition, equations and

description of the three orbital parameters eccentricity, obliquity and longitude of per-

ihelion and their influence on the Earth, details on the proxy data and how this is

recovered and dated. The chapter also reviews the previously developed models that

attempt to model the MPT and/or to reproduce the 100 kyr cycle.

• Chapter 3 introduces the NARMAX methodology. This chapter provides a detailed

description of all the major steps of the system identification methodology, namely:

model structure detection, parameter estimation and model validation techniques, with

particular emphasis on the polynomial NARMAX representation. The methodology

presented in this chapter provides the basis for the subsequent development of the

mathematical models based on palaeoclimatic records.

• Chapter 4 introduces the theoretical concepts of Generalized Frequency Response Func-

tions and Output Frequency Responses. Firstly the multi-tone inputs and the contribu-

tion given by each type of model term are defined in order to compute the GFRFs. This

chapter presents the derivations of the expressions of both the GFRFs and OFRs. In

order to help with the implementation of the higher-order frequency response functions

simple examples are provided.

• Chapter 5 describes for the first time the identification directly from temperature proxy

measurements of two NARMAX models that can describe the relationship between the

three orbital parameters (eccentricity , obliquity and longitude of perihelion) and the

oxygen isotope ratios time-series. This chapter starts by presenting the palaeoclimatic

proxy data used and the orbital parameters time-series. The modelling procedure

involves rigorous selection of the best model structure and parameter estimation. The

resulting models are validated using correlation tests and coherence analysis. This
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methodology is applied separately for the data corresponding to each of the two time

periods: before and after MPT , and two models describing each period are obtained.

The results demonstrate that the identified models can describe the dynamic response

of the climate proxy variable to orbital forcing with unprecedented accuracy.

• Chapter 6 presents the results of mapping the NARMAX models developed in Chapter

5 in the frequency domain through the GFRFs and OFRs. The computation of GFRFs

involves two preliminary model transformation procedures. This chapter provides the

analytical expressions of the GFRFs and OFRs associated with the identified models.

The chapter also presents a comparative analysis of the simulation results for before

and after MPT of the GFRF and OFR expressions. This analysis is targeted at find-

ing differences and similarities between the results that can explain why the observed

MPT change occurred. Moreover, the OFR results are used to quantify the contribu-

tion of each function and the observed changes at the frequency corresponding to the

100 kyr period.

• Chapter 7 investigates the time domain properties of the models developed in Chap-

ter 5. This involves comparing the model predicted output, calculating the predicted

equilibrium points of the system and assessing their stability. An additional analysis is

carried out to determine the contribution to the output of the first, second and third

order terms in the Volterra series expansion by mapping the OFRs back into the time

domain. This chapter also presents a comparison of the identified model results and the

simulated results of Rial’s model (2000), which clearly proves the improved accuracy

that NARMAX modelling offers.

• Chapter 8 presents a model which relates the variations of the proxy variables obtained

from ocean sediments extracted at two adjacent ODP Sites of Leg 130: Site 806B and

805C. In the first instance, the two sites are compared with regards to their location

and physical properties and the chemical gradients in the interstitial waters. An im-

portant contribution of this chapter is the identification of the casual link between the

measurements recorded at the two sites, i.e. measurements at Site 806B provide the

input and the measurements at Site 805C provide the output of the system.
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• Chapter 9 provides general conclusions on the thesis and offers suggestions for further

developing this work.
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Chapter 2

Orbital Parameters and Their Impact on

Palaeoclimate Proxies

2.1 Introduction

A key point in understanding Earth’s climate and being able to predict what it will be

like in the future is to analyze the past climate and the periodic changes that it has gone

through. Earth’s climate has gone through a series of changes, over different time scales: long

term (hundreds of millions of years), medium term (one million years), short term (approx-

imately 160,000 years) and modern period (hundreds of years, which includes the human

influence) (Pomerol, 1982). Intensive studies have been aimed towards understanding the

origins and mechanisms behind these changes, and scientists have pointed towards modifi-

cations in palaeogeography, greenhouses gas concentrations, astronomically forced insolation

and inter-regional heat transfer as the main causes of alteration (Loutre and Berger, 2000).

When studying the medium to long time periods, the planet has gone through a series of

periods of glaciations, when the scene was dominated by ice sheets, and periods of warmer

temperature, characterized by risen ocean levels. The Pleistocene time period presents great

interest because of a change that happened around 900-800 kyr (1kyr = 1000 years) BP.

After this time the interglacial periods have occurred approximately every 100 kyr, whereas

before this time the dominant period in the ice volume variations was that of 41 kyr (Imbrie

et al., 1993, Ruddiman, 2006, Mudelsee and Schulz, 1997). The observed shift in periods
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around 900-800 kyr BP is known as the Mid-Pleistocene Transition (MPT).

Palaeoclimatology is the study of the geological past of Earth using climate proxies such

as sea (lake, ocean) sediments, ice sheets and ice cores, tree rings, corals, shells and mi-

crofossils (Bridgman, 2006). By analysing climate proxies it is possible to extract proxy

variables (stable isotope ratios, sedimentation rates, growth indicators etc) for water and

air temperature, atmospheric gasses (methane, CO2). Proxy data is commonly used when

actual measurements of the processes are not available due to the extremely long span of

the measured climate period. By studying the long climate evolution and major revolution

events scientists can identify past climatic trends, better understand the current climate and

predict easier the future one and its implications.

Figure 2.1: Earth’s Geological Eras covering [2.588 , 0] Ma. Image made using materials
from Trenberth (2006) and Ericson and Wollin (1964).

The palaeoclimate changes do not happen instantaneous, but over a long period of time.

For this reason the scientists (Berger and Loutre, 2002, Imbrie and Imbrie, 1980, Macdougall,

2004), in order to characterize the changes in Earth’s palaeoclimate, have investigated the link

between insolation and orbital parameters (Crucifix et al., 2007, Rapp, 2008). Three orbital

parameters (eccentricity, obliquity and precession) have been identified to have periodicities
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greater than a few thousand years. This is why the variations of Earth’s orbit are associated

with climatic changes. The Earth’s orbital parameters can be calculated using the equations

by Berger (1978) over a period of 3 Myr (million years). This period is suitable for finding a

model to describe The Quaternary era, which includes the Pleistocene period.

The quantity of solar radiation received on a given surface area at a given location on

Earth is called insolation. Insolation is a function of the Sun-Earth distance thus it will

depend on the Earth-orbit and the angle between solar rays and the normal to the Earth’s

surface. In turn, these parameters depend of the Earth’s orbit and thus insolation will be

a function of the orbital parameters. The greater the angle of the solar rays is, the larger

the surface temperatures are. However, because insolation or temperature measurements are

rare earlier than 1850 AD (Bridgman, 2006), it is necessary to assess past climates indirectly,

through the means of proxies. The proxies do not give direct values of temperature, but

indicators of how they changed (Bridgman, 2006).

This chapter is organized as follows. Section 2.2 provides an overview of the general cli-

mate features of the Quaternary era and, in more depth, of the Pleistocene time period. The

Mid-Pleistocene Transition and the changes it brought to the climate scene are reviewed.

Section 2.2 also gives a description of the “100 kyr Problem” and the different theories pro-

posed by various authors to resolve it. Section 2.3 introduces the Earth’s orbital parameters

and details on how they influence the insolation. Section 2.4 describes the proxy data repre-

sented by foraminifera and explains how the data is obtained, what are the oxygen isotope

ratios and what information it can provide for climate modelling. Also, the oxygen isotope

ratios data-set extracted from the Western Pacific Ocean Drilling Programme Site 806B is

described in this section. Section 2.5 gives an overview on the previously developed palaeo-

climate models, with emphasis on the ones that use orbital forcing, can reproduce the orbital

frequencies, and have been used to explain the appearance of the ⇠ 100 kyr cycle.

2.2 The Mid - Pleistocene Transition

The Quaternary is the most recent geological era that spanned over the last 2.588 Myr and it

includes the epochs Holocene and Pleistocene (Gradstein et al., 2005, Trenberth, 2006). It is
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commonly known as an era of extremes due to its glacial (glacial advances) and interglacial

(glacial retreats) intervals. The Earth is currently in an interglacial, and the last glacial

period ended about 10,000 years ago (Jouzel et al., 1993, Crucifix et al., 2007). The sequence

of glacial – interglacial cycles has received much attention from researchers. Although they

do not offer a theory that can cover all angles of the problem, it does seem that this phe-

nomenon was favoured by a series of simultaneous events, such as: the astronomical cycles

and the incoming solar irradiation (insolation), atmospheric composition (trends in atmo-

spheric CO2), plate tectonics and ocean currents (movement and position of the continents),

and other global and local phenomenon episodes (ice albedo, loess accumulation, deposits of

ice debris, uplift of the Himalayas) (Gradstein et al., 2005). Scientists are still working on

determining if some of the above mentioned incidents are causes or effects of the ice ages.

From the study of proxy data it has been shown that the first part of the Quaternary,

known as the early Pleistocene, was dominated by an approximately 41 kyr signal, whereas

the last part of it, also known as the late Pleistocene, was dominated by an approximately

100 kyr signal. Milankovitch (1941) was the first scientist to link the glacial cycles to the

variations in Earth’s orbital parameters, represented by eccentricity , obliquity and precession.

His hypothesis has long been discussed and is widely accepted due to the long periods of the

orbital elements, roughly 100, 41 and 26 kyr, and the similarity of the results with those from

the more recent Deep-Sea Drilling Programmes ones (Berger et al., 1991a, Rial and Anaclerio,

2000, Berger et al., 2005, Paillard, 2001). Milankovitch’s idea was that the orbital parameters

influence the amount and seasonal distribution of sunlight that reached the Earth’s surface

and this in turn favours the forming of the glacial – interglacial cycles and the change from the

41 kyr to 100 kyr dominant signal. At the same time the theory is thought to be insufficient

to explain the glacial – interglacial cycles, due to a mismatch in the timing of the glacial

terminations from the terrestrial records (Maslin and Ridgwell, 2005). An explanation for

this could be additional feedbacks (Berger, 1988, Ganopolski and Calov, 2011), but the cause

and nature for these has not yet been satisfactory explained.

From a first investigation over the oxygen isotope record time series for the Quaternary

Period extracted from Site 806B, it can be seen that the data can be split into three parts

(marked on Figure 2.13 with dotted red line) that differ from each other both in amplitude
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of the signal but also in the frequency of oscillation. The times of these modifications are

approximately 0.85-0.9 Myr BP and 1.3-1.4 Myr BP. Hence, because the orbital parameters

don’t change their nature during this era, it is obvious now that the way in which the climate

system responds to them changes at the given intervals.

2.2.1 The Mid-Pleistocene Features

The Pleistocene Epoch follows the Pliocene Epoch and is followed by the Holocene Epoch in

the Quaternary Era sequence (Gradstein et al., 2005) (Figure 2.1).

The climate modification at the 0.85 - 0.9 Myr BP is widely known as the Mid-Pleistocene

Transition or Revolution (Berger et al., 1994, Berger and Loutre, 1994). What happened at

this point in Earth history is very interesting to unveil especially because there are many

theories but not one unanimously accepted by palaeoclimate scientists. What it is known

are the effects: a shift from a time with warmer temperature, less intensive glaciations and

oscillations with a frequency of 41 kyr (found in the obliquity bands) to one with colder

climate and oscillations characterized by a frequency of 100 kyr (Maasch, 1988, Berger et al.,

1994, Paillard, 1998, Raymo and Nisancioglu, 2003).

There are two types of transitions identified throughout the geological past of Earth: aber-

rations and quasiperiodical oscillations (Zachos et al., 2001). Aberrations are characterized

as abrupt changes due to exceeding of climatic thresholds. These happen fast (less than a few

thousands of years) and can have extreme effects. The quasi-period variations are thought

to be driven and paced by Earth’s orbit which through their effect on daily insolation can

inflict the periods of tens and hundreds of years found in the proxy data.

Spectral analysis for the oxygen isotope records have shown frequencies correspondent

to the period of 41 kyr, associated with obliquity ’s period, and 21 kyr, associated with

precession’s period. Peaks were also found at the frequencies correspondent to the period

of 413 kyr and the lower period of 100 kyr. It is known (Pisias and Moore Jr., 1981) that

eccentricity varies with periods of 95, 125 and 413 kyr, so this factor seems to influence the

oxygen isotope variations. The forcing or internal parameter behind the 100 kyr frequency
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though could not be explained so far.

2.2.2 The “100 kyr Problem”

Through power spectra analysis on the oxygen isotope data scientists were able to confirm

that orbital frequencies are present in the data, and that the dominant peak in the past 900

- 800 kyr is that corresponding to the 100 kyr one. Obliquity and precession frequency peaks

were also found to be important climatic proxy data peaks. Even with these advances there

are many still unanswered questions with regards to eccentricity ’s connection to the ⇠ 100

kyr period and the Mid-Pleistocene Transition, such as:

1. Why did the 100 kyr power increase so dramatically around 0.8 Ma, despite no apparent

change in the orbital forcing (Lisiecki, 2010).

2. The nonlinear mechanisms behind the 100 kyr periods are yet to be explained. It has

been recognized in literature that the 100 kyr cannot be explained as a linear (direct)

response to eccentricity (Berger et al., 2005, Raymo and Nisancioglu, 2003, Lisiecki,

2010), and it has been suggested that this can be the result of bundling of either 4 or 5

precession cycles (Raymo, 1997) or 2 or 3 obliquity cycles (Huybers and Wunsch, 2005)

that resulted in an average 100 kyr periodicity.

3. The oxygen isotope curves have revealed a nearly 300 kyr long stage of transition from a

predominant 41 kyr to 100 kyr periodicity. Therefore, the “Mid-Pleistocene Revolution”

should be considered as a process of transition rather than an abrupt change (Wang

et al., 2001).

2.2.3 Potential Origins and Explanations for the “100 kyr Problem”

Extensive analysis has been conducted by many authors in order to obtain an explanation

to the “100 kyr Problem”. Most agree that because the nature of the orbital forcing does not
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change in different times, it must be the way the climate system evolves and responses to

external forcing, especially a nonlinear response to precession, that sets the amplitude and

phase for the 100 kyr oscillation.

The main explanations from literature for what drives the 100 kyr oscillation cycles are:

• External forcing in the form of orbital inclination, which can be thought of as a

possible forth orbital parameter. It has the desired period of 100 kyr, which matches the

one in palaeoclimatic records. This orbital element represents the variation in the angle

of the Earth’s plane of orbit compared to the average orbit of the solar system (Farley

and Patterson, 1995, Muller and MacDonald, 1997). However, due to the fact that

inclination changes are too small compared to seasonal extremum, it is not plausible

that this parameter can have such a big impact as to induce the 100 kyr periodicity

in ice ages (Mudelsee and Schulz, 1997, Kortenkamp and Dermott, 1998, Berger et al.,

1999). A second approach to external forcing is the argument that the total amount of

radiation received on Earth’s surface is influenced by the fact that Earth’s orbit passes

through an outer space cloud of dust (Interplanetary Dust Particles). Some researchers

have hypothesized that this could induce glacial-interglacial alternations with the 100

kyr period.

• Internal feedbacks due to a number of factors:

– Ice sheets have played, according to Berger (1988), an important role in modulat-

ing the 100 kyr cycle. DeBlonde and Peltier (1991) on the other hand talk about

a feedback effect between the lithosphere and ice sheets.

– CO2 concentration, which accounts for the radiative forcing of three major green-

house gases : carbon dioxide, methane and nitrous oxide (Ganopolski and Calov,

2011). The global climate state is dependent on the atmospheric concentration

of many atmospheric components, like CO2, CH4 or water, and changes in these

can drive the global climate towards cooling or warming. A very important role

is played by the greenhouse gases, that absorb outgoing infrared radiations (e.g.

Berger, 1988, Maasch, 1988, Maasch and Saltzman, 1990, Saltzman and Maasch,

1991, Saltzman and Verbitsky, 1993, Berger and Loutre, 1992, Li et al., 1998).
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The scientists are torn between the hypothesis that climate sensitivity to the CO2

concentrations variations is high enough to favour the presence of the 100 kyr

cycle or that the changes in the CO2 are merely an effect of the glacial-interglacial

transitions.

– Ice albedo feedback (Maslin and Ridgwell, 2005) - as snow and ice accumulate due

to initial changes in insolation regime, the ambient environment is modified and

a repetitive climatic effect is produced. Firstly, an increase in albedo, will trigger

more reflection of the solar radiation. Because this means a reduction in solar

radiation absorbtions, the local climate will change with regards to temperature.

This will in turn support the accumulation of more snow and ice and another mod-

ification of the local environment. Although ice albedo effects can be considerable,

they are not global but latitudinal dependent.

– Dust feedback is thought by Ganopolski and Calov (2011) to be the required

strong nonlinear feedback mechanisms that can explain glacial terminations. This

feedback is activated after the ice sheets spread well into the area covered by thick

terrestrial sediments. Large dust deposits over the ice sheets can reduce their

albedo and in turn favour the ablation and the ice sheet’s response to insolation.

This mechanism is thought to give a possible explanation to the changes from the

41 kyr to the 100 kyr world.

– Saltzman and Verbitsky (1994) suggest an internal instability, which is generated

by feedbacks among temperature, CO2 and ice volume, that generates an internal

oscillation with a 100 kyr period.

• Frequency modulation theories:

– Rial and Anaclerio (2000) say that frequency modulation is a nonlinear phase-

and frequency-locking process that transfers energy from one frequency band into

another, and can create new frequencies (called sidebands) as combination tones

of the carrier and the modulating frequencies. In this case the modulator and the

sidebands will present strong phase coherence. Rial’s theory suggests that:
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∗ The 75 and 123 kyr peaks coincide with the predicted sidebands of a 95 kyr

carrier frequency modulated by a 413 kyr signal, as in 1
75 = 1

95 + 1
413 and

1
123 = 1

95 �
1

413 .

∗ The 85, 107 and 143 kyr peaks coincide with the predicted sidebands of a 95

kyr carrier frequency modulated by an 826 kyr subharmonic of the 413 kyr

signal, as in 1
85 = 1

95 +
1

826 ,
1

107 = 1
95 �

1
826 , and 1

143 = 1
95 �

3
826 .

∗ Frequency modulation is a nonlinear process described by the equation (Chown-

ing, 1977):

e = A sin(2⇡fct+ I sin(2⇡fmt))

where e is the instantaneous amplitude of the modulated carrier, fc is the carrier

frequency in Hz, fm is the modulating frequency in Hz and I is the modula-

tion index. Hence, if the role of the 413 kyr eccentricity component is indeed to

frequency-modulate the higher frequency components, we can expect to find sig-

nal power at 413 kyr in all the �18O records, though not in the form of a spectral

peak, but rather as the interval between sidebands (Rial, 2004a). So the fact that

in the proxy data there is no substantial power at 413 kyr is entirely consistent

with FM theory.

– Clemens and Tiedemann (1997) put forward the theory that eccentricity modu-

lates the amplitude of precession. The eccentricity peaks in the oxygen isotope

ratios (�18O) spectrum suggests that the pre 1.2 Myr climate system transfers

variance from the upper envelope of precession-dominated insolation into the 404,

124 and 95 kyr eccentricity bands. This suggestion is supported by the observa-

tion that the amplitudes of the 404, 124 and 95 kyr �18O cycles are approximately

equal to the amplitude of the 23 kyr �18O cycle, each accounting for 0.1% of the

total 0.6% amplitude. The remaining 0.2% is accounted for by the amplitude of

the 41 kyr cycle.

– Berger and Loutre (1997a) also suggest that the 100 kyr power can be generated by

transmission of 19 kyr and 23 kyr periods through a nonlinear system producing
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substantial power in both harmonics and subharmonics.

– Berger et al. (1999) claim that a general problem for most of the simulations is

that they can hardly reproduce a ⇠ 100 kyr period without the ⇠ 400 kyr one

(e.g. Imbrie and Imbrie, 1980, Kukla et al., 1981) due to the nonlinear origin of the

100 kyr period which comes from the combination tone between the frequencies

of the first and third terms in the precession trigonometrical expansion, whereas

the 400 kyr period comes from the combination tone between the first and second

precessional frequencies Berger (1988).

• Coupled response between the orbital forcing and an internal nonlinear amplification:

– Berger’s investigations (1988) show that the 100 kyr cycle seems in phase with the

eccentricity cycle, although the exceptional strength of this cycle needs a nonlinear

amplification.

– Imbrie et al. (1993) suggest that larger Northern Hemisphere ice sheets are an es-

sential condition for the development of feedbacks to drive the 100 kyr ice volume

cycle. In low latitudes however, large 100 kyr cycles can be developed indepen-

dently of large ice sheets. In this view, the 100 kyr cycle is a response to the

Milankovitch forcing in which the coupled air - sea - ice system acts as a nonlinear

amplifier.

Other unexplained features of this era are:

1. The notable absence in the �18O data of significant spectral amplitude at the 413 kyr in

the last 1.2 million years, in spite of being the largest component of eccentricity forcing

(Crucifix et al., 2007, Loutre et al., 1992, Berger and Loutre, 1992).

2. By which nonlinear mechanism can the spectral peaks at frequencies other than those

in the insolation forcing be explained? Most researchers agree that these extra peaks

are either harmonics or combination tones of the orbital forcing (Rial and Anaclerio,

2000).
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2.3 Earth’s Insolation and Orbital Parameters

Earth’s orbit is influenced by the gravitational attraction of all the other planets in the Solar

system, the Moon, the Sun and our planet’s distance to them. She solution to the orbital

system is very complex, and many scientists have worked on theories regarding this, such

as: Johannes Kepler (1571-1630), Sir Isaac Newton (1643-1727), Lagrance, Pontecoulant and

Louis Agassiz.

Due to their long periods (tens and even hundreds of thousands of years) the orbital

parameters are the perfect candidates to explain the long-term variability observed in the cli-

matic proxies. The three orbital parameters that are considered the most important (Berger,

1978a, Berger, 1978b, Saltzman and Sutera, 1987, Imbrie and Imbrie, 1980) for palaeoclimate

study are: eccentricity (e), obliquity (") and precession (p). These influence: the appearance,

shifts and effects of the seasons, the changes in Earth’s orbit orientation, the closest and

farthest points in the Earth’s orbit with regards to the Sun (Figure 2.2).

Figure 2.2: Earth’s orbital parameters: e (eccentricity), " (obliquity), ! (longitude of perihe-
lion) and p (precession). Figure adapted from Jansen et al. (2007).

2.3.1 Eccentricity

Earth’s orbit is described by an ellipse shape, which can be seen in Figure 2.3. The value of

an orbit’s eccentricity is given by the equation (Berger and Loutre, 1994):
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e =

p
a2 � b2

a

where e is the eccentricity, and a and b are the semi-major and semi-minor axes of the

elliptical orbit.

An eccentricity value of 0 corresponds to a circle (Figure 2.3). The meaning of the orbital

eccentricity is the amount by which the orbit of a planet deviates from a perfect circle. This

happens mostly due to the gravitational fields of the planets Jupiter and Saturn (Beer et al.,

2006). The eccentricity, given is a ratio, is unitless. Figure 2.3 shows examples of various

orbit shapes and their eccentricities.

Figure 2.3: a. Defining elements in eccentricity ’s definition and b. examples of different
orbit’s eccentricities and their values. Images adapted from
“http://earth-www.larc.nasa.gov/ceresweb/IWG/glossary/e.html”.

Earth’s eccentricity values are very small, varying periodically over hundreds of millions of

years between 0.000567 (near circular) and 0.053511. The current value of Earth’s eccentricity

is 0.0167 and this might have trigger an observed increase in July to January insolation of

approximately 6.4% (Berger and Loutre, 2002). The mean value of eccentricity for the period

[1400 , 0] kyr is 0.028. For the past 15 Myr, the three most important periods in the series

expansion for eccentricity are about 413, 125 and 95 kyr.

Eccentricity has influence on the planet’s seasons. Provided that the semi-major axes

remain constant, when the eccentricity is bigger the seasons on the far side of the orbit can

20



Chapter 2 2.3. Earth’s Insolation and Orbital Parameters

get longer. Contrary, when the eccentricity takes smaller values, the Earth is closer to the

Sun, thus summers will be warmer and winters less severe (Thomas, 2002).

For the considered time period 1400 - 0 kyr BP, the eccentricity values are presented in

Figure 2.4.

Figure 2.4: Eccentricity for the time period [1400 , 0] kyr BP.

2.3.2 Obliquity

Obliquity, or the Earth’s tilt, represents the angle between the perpendicular to Earth’s

elliptical orbit plane and its axis of rotation (Figures 2.2 and 2.8). Because of this for half

an orbit one pole will be directed towards the Sun and the second half away from it. This is

what causes the planet’s seasons and is known to be an important factor in climate change

(McGuffie and Henderson-Sellers, 2005).

In the past million years, obliquity has varied with a period of 41 kyr between 22�020

and 24�300. The current value of this parameter is 23�300 (McGuffie and Henderson-Sellers,

2005). Obliquity not only is responsible for the seasons, but also has a small influence in the

annual mean insolation.

When obliquity is small the winters are milder and summers are cooler. This is a phe-

nomena that can favour the appearance of ice ages, due to the fact that the summers are not

warm enough to melt the ice sheets and can help in the expansion of continental ice (Berger

et al., 1999, Raymo and Nisancioglu, 2003).

When obliquity gets larger values, the planet receives an increase in insolation, so the
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winters are colder and summers warmer. Due to the fact that this phenomena is not equal

in both hemispheres the mid-summer insolation in the Northern Hemisphere is considered to

be critical to favouring ice ages (during periods of low obliquity) and melting the ice sheets

(when high obliquity occurs) (Raymo et al., 2006).

The obliquity series for the time period 1400 - 0 kyr BP is presented in Figure 2.5.

Figure 2.5: Obliquity for the time period [1400 , 0] kyr BP.

2.3.3 Climatic Precession (Precessional Index)

The climatic precession represents changes in the orientation of Earth’s axis of rotation. This

can be due to two possible causes: a wobble in the Earth’s axis (Figure 2.2) and a turning

around of the elliptical orbit itself (Thomas, 2002). The cause that makes more sense in

terms of palaeoclimate studies and insolation changes is the first one, because it relates the

location of the perihelion and aphelion to seasons in each hemisphere. As shown in Figure

2.2, the perihelion represents the point on the orbit closest to the Sun, and the aphelion is

the farthest point on the orbit related to the Sun.

Precession varies between -0.05 and 0.05 and can induce changes in insolation greater

than 20W/m2 at all the latitudes. This parameter usually varies with periods of 21 and 26

kyr (Berger and Loutre, 1994, McGuffie and Henderson-Sellers, 2005).

In palaeoclimate the usual variable used is called climatic precession index , which is

proportional to eccentricity and can be determined by using the formula p = e sin!, where

! is the approximation of the longitude of perihelion (Berger and Loutre, 1994).
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2.3.4 Longitude of Perihelion

The longitude of perihelion ! is the angle between the point of Earth’s perihelion (the point

on Earth’s orbit when the planet is the closest to the Sun) and its ascending node (Berger,

1978a) (Figure 2.2). This measurement is taken in the direction of motion. This parameter is

also a measurement of the Earth-Sun distance. The timing of perihelion is usually measured

as the angle of orbital displacement, and is measured in degrees and not in classical time

measuring unit (days, hours).

The current value of this orbital parameter is 283.067� and it varies with periods between

19 and 23 kyr, but can go to the lower periods of 12 - 14 kyr as well.

For the time interval [1400, 0] kyr BP the longitude of perihelion time series are plotted

in Figure 2.6.

Figure 2.6: Longitude of perihelion for the time period [1400 , 0] kyr BP.

2.3.5 Insolation

Milankovitch (1941) was the first one to show how the insolation effects vary with regards to

its distribution and angle. This is due to the fact that at higher latitudes the rays will cover

larger areas but will be less concentrated, whereas at lower latitudes the angle of arrival is

smaller, so the impact surface will be smaller and the rays more concentrated (Figure 2.7).

There are two types of insolation: the mean annual insolation at the surface of the Earth

and the daily (or monthly) insolation at any given point on the Earth.
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Figure 2.7: Insolation at different latitudes. Image adapted using the source at
“http://www.manogaublys.lt/home.26,p.0,e.5,l.lt”.

The mean annual insolation can be calculated by knowing the eccentricity value e and

the solar constant S0 using the formula:

Wam =
S0

4
p
(1� e2)

(2.1)

Although the solar constant value varies with regards to the number of sunspots from

1.321kW/m2 to 1.412kW/m2, the approximate average value used in calculations is 1.361kW/m2.

As it can be seen from formula (2.1), the mean annual insolation varies with the eccen-

tricity square, so the maximum can be reaches with the largest eccentricity values. Given the

changes induced in Wam are very small, they cannot solely account for the abrupt changes

observed in the Pleistocene time-series.

The insolation for any time of the year can be calculated using the three orbital pa-

rameters (eccentricity , obliquity and precession) and is depended on the latitude for which

it is calculated. According to Milankovitch’s theory it is important to calculate the values

for insolation at any given point on the Earth’s surface, because summer insolation at high

latitudes played an important role in expanding or melting of the ice sheets. If summer inso-

lation at high latitudes was small than this could prevent the ice sheet from melting during

the warm season and would favour ice accumulation.
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Berger and Loutre (1997a) calculated that the insolation W received on a horizontal

surface at latitude �, at a given time H during the course of the year � is given by:

W (�,�, H) = s0
⇣a
r

⌘2

cosz (2.2)

where r represents the distance to the Sun and z is the zenith distance (angle). This can

be observed on Figure 2.8 as the angle between the zenith point and the position S of the

Sun seen in the sky. The observer O is considered on a plane perpendicular to the zenith

direction and right underneath the zenith point. The zenith distance varies from 0 to 180�.

The hour angle H can be calculated as the angle between the meridian through the points

PN and PS and the meridian through the point S and the zenith and nadir (Figure 2.8). H

varies from 0 at solar noon to 24h. Due to these definitions the following relationship can be

extracted:

cosz = sin�sin� + cos�cos�cosH (2.3)

where � is called declination and represents the angle between the equator and the second

great circle of latitude going through S. The declination � is the angular distance of point S

measured from the Equator on the secondary great circle (Figure 2.8). � can be calculated

using the obliquity ✏ and the true longitude of the Earth � using sin� = sin�sin✏. Over a one

year period � varies from 0 and 360� and � between �✏ and +✏.

The Earth–Sun distance r used in equation equation (2.2) is given by the ellipse formula:

r =
a(1� e2)

1 + ecosv
(2.4)

where v represents the true anomaly and can be related to the true longitude � and the

longitude of perihelion ! with

v = �� !̄ (2.5)
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By substituting equations (2.3) - (2.5) into equation equation (2.2) the insolation can be

written as:

W (�,�, H) = S0
(1 + ecos(�� !̄))2

(1� e2)2
sin�sin�sin✏+ cos�cos�cosH (2.6)

In the above equation (2.6) the orbital parameters values e, ✏ and ! are assumed to be

constant over one year, and the values for � and � are assumed constant over a given day

period.

The long-term behaviour of each factor in equation (2.6) is thus governed by a different

orbital parameter. The obliquity " drives cosz, the precession p = esin! drives (1+ ecos(��

!̄))2 and the eccentricity e drives (1� e2)�2 . It is important to observe that the eccentricity

appears here as (1 � e2)�2 while in the mean annual insolation equation (2.1) it appears as

(1� e2)1/2 .

Figure 2.8: Planetary elements used in defining the insolation. Image adapted from Crucifix
et al. (2007).
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2.4 Paleoceanographic Proxies

One of the most important climate proxies used to study the MPT is the oxygen isotope

ratios time-series. In order to reconstruct the ocean surface or ambient temperatures, proxy

data is obtained from the shells of a number of microorganisms called foraminifera (Arnold

et al., 2002). The proxy data can give indications of the climate scene of the particular area

and at the time correspondent to the depth it was recovered from. Section 2.4.2 presents the

proxy data recovered from the Western Pacific Site 806B.

2.4.1 Foraminifera

Figure 2.9: Marine sediment extraction point.
Image source: “http://www-odp.tamu.edu/public/life/index.html”

There are two types of forams (foraminifera): benthic, which is the most common one, and

planktic (or planktonic) that incorporates about 40-50 morphospecies (Arnold et al., 2002).

These two categories differ with regards to their living conditions and also their shell struc-

tures. Past water temperatures influence the chemistry composition of the shells of the

forams. As their shells get buried on the bottom of the ocean the information is preserved

for thousands of years. Once retrieved from the extraction point (Figure 2.9), due to their

different living conditions and environments, the shells of forams can be used to reconstruct

a broad time and area map of water temperature values variations.

Benthic foraminifera live on the ocean floor and abyssal plains or in the ocean sediments

(Arnold et al., 2002). They are usually used to get information about the ocean depth and
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the biostratigraphy of the ocean.

Planktic foraminifera live floating in the middle and upper zone of the ocean and have a

calcium-carbonate shell (Arnold et al., 2002). Once dead, they settle on the bottom of the

ocean and in time are buried in sediments. When recovered, they give indication of the ocean

currents and upper ocean water temperatures and climates changes.

Foraminifera incorporate in their shells water temperature and stratification information

through the oxygen isotope ratio values (Arnold et al., 2002). When the micro-organisms die

and lay on the bottom of the ocean (and similarly in ice cores) they preserve the environmental

records that can help reconstruct the climate changes of a particular past era (Arnold et al.,

2002). This is possible by using the stable oxygen isotope composition to measure the ratio

between the lighter 16O and the heavier 18O, which is a function of the environment (water

temperature, salinity) where the foraminifera lived (Shackleton and Opdyke, 1973).

The formula (Shackleton and Opdyke, 1973) for the oxygen isotope ratio is:

�18O(h) =


(18O/16O)sample

(18O/16O)standard
� 1

�
⇤ 1000

Low values of �18O stand for a decrease in heavier 18O, whereas high values occur when

waters are rich in 18O (Shackleton and Opdyke, 1973), as can be seen in Figure 2.10.

The present day spatial isotope/surface temperature relationship is described (Dansgaard,

1964) by:

�18O = aTs + b

where the isotope/temperature slope a = d�
dT

s

depends on the region the isotope is ex-

tracted from.
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Figure 2.10: �18O dependence on temperature. Source: NASA Earth Observatory website
http://earthobservatory.nasa.gov/Features/Paleoclimatology_OxygenBalance/, graph
adapted from Jouzel et al. (1993).

The water molecules that contain the 16O evaporate faster than the ones rich in 18O.

Cold ocean waters enable the 16O to evaporate quicker and the waters become less depleted

in 18O and thus have low values. Higher values would be an indication of warmer ocean

waters which are more depleted in 18O.

Once the �18O time-series is reconstructed, it needs to have attached an age representing

the period of time covered by the data. This is called dating of data, and can be relative

or absolute (Shackleton et al., 1977). The absolute type gives a chronological age and is not

usually extremely accurate especially for proxies going far back in time. The relative dating

relates the given set to other fossils found in similar (and usually adjacent) sites. Dating

accuracy depends on the time period that it covers and on the data type and it decays the

further back in time the record goes (Jansen et al., 2007).

Many authors (Emiliani, 1955, Emiliani, 1966, Hays et al., 1976, Chappell and Shackleton,

1986), have studied and linked the changes in the oxygen isotope ratios in oceans and ice

cores (and up to a certain level in terrestrial series) to the Milankovitch orbital forcing.

It is known that it is difficult for any Site to have constant sedimentation rates that are

not influenced by the global and local climate and of course observational noise and dating

accuracy (Shackleton et al., 1977). This is why most scientists turn to tuning of data, which

can be of two types: orbital tuning or depth tuning .
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Depth tuning refers to adjusting the time scale by using mean sedimentation rates (Shaw,

1964). This was mostly used in the past (Shackleton and Opdyke, 1973, Hays et al., 1976,

Williams et al., 1988, Martinson et al., 1987, Raymo, 1997) and now most authors prefer

using orbital tuning as a more accurate method.

Orbital tuning refers to the process of adjusting a proxy time scale to match Earth’s or-

bital cycles in the Milankovitch theory. This method involves dating of paleoclimate records

through correlation with insolation or the orbital parameters (Lisiecki, 2010, Cronin, 2013).

Hays et al. (1976) were the first to confirm the presence of orbital periodicities in the �18O

data. Although using orbital tuning increases dramatically the accuracy of the dating meth-

ods, care must be taken when performing this, because over tuning will introduce frequencies

not native to the dataset (Muller and MacDonald, 1997, Rial, 1999). Because of this it

is common practice to tune at frequencies other than those needed for analysis or to use

data-sets which do not require orbital tuning (Muller and MacDonald, 1997).

2.4.2 Dataset from Hole 806B

Figure 2.11: Ocean Drilling Programme Sites in the Pacific Ocean. Image source: Jonathan
LaRiviere/Ocean Data View.

The dataset used in this thesis is from the Ocean Drilling Site 806B from the Western Pacific

(0°19�N, 159°21�E) , near the equator (Figure 2.11) . Site 806B shows remarkably constant

sedimentation rate (Berger et al., 1991c), which allows the analysis without the need for

orbital tuning, which can introduce the complications mentioned before. The time-series of
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oxygen isotopes are from the fossil planktic foraminifera Globigerinoides Sacculifer (Berger

et al., 1993) and is shown in Figure 2.12). The data, which is published on ODP sites and has

been documented in Berger et al. (1993) is plotted in Figure 2.13. The vertical red dotted

line at around ⇠ 850 kyr BP emphasizes the time when the MPT occurred.

Figure 2.1: Planktic foraminifera Globigerinoides Sacculifer morphology. Images sources:
Hesemann, M., 2013: Globigerinoides sacculifer (Brady, 1877), in: Foraminifera.eu Project
Database. Accessed at
http://www.foraminifera.eu/single.php?no=1004618&aktion=suche and
http://www.foraminifera.eu/single.php?no=1004295&aktion=suche.

Figure 2.2: Oxygen isotope ratio data from Site 806B.

2.4.3 Spectral Peaks Discovered in the Oxygen Isotope Ratio Proxy

Data from Hole 806B

Many authors (Berger et al. 2005, Rial and Anaclerio, 2000, Schmidt and Hertzberg, 2011,

Mayer, 1993, Paillard, 2001) have performed spectral analysis on oxygen isotope time-series

from deep-sea sediment extraction cores. Of course the results of these depend very much
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on the method applied for obtaining the spectrum or spectral power, the window length

used, the length of the available data (e.g. if the dataset is too short, a period of 413 kyr

might not be emphasised in the results) and of course the location of the core. There are

two types of periods considered: some authors (Berger et al. 2005, Schmidt and Hertzberg,

2011, Mayer, 1993) work using approximate periods (⇠ 100 kyr, ⇠ 40 kyr), whereas others

(Rial and Anaclerio, 2000, Paillard, 2001) use the actual frequencies found when performing

spectrum analysis. The most important frequency components in the frequency spectrum of

the �18O data set from Site 806B, which were analyzed by different authors, are summarized

in Table 2.1.

Author �18O period
Berger et al. (2005) ⇠ 100 kyr

Rial and Anaclerio (2000) 413 , 143, 123, 107, 95, 75 kyr
Schmidt and Hertzberg (2011) ⇠ 100, 31, 23 kyr

Mayer (1993) ⇠ 100, ⇠ 40 kyr
Paillard (2001) 97.5, 41, 23,7, 19, 11.7 kyr

Table 2.1: The main frequency components in the spectrum of the �18O data from Site
806B.
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The main frequencies in the frequency spectrum of the orbital parameters, which were

studied by different authors in relation to the �18O data set from Site 806B are summarized

in Table 2.2.

Author Eccentricity Obliquity Precession
Rial (2004) 95 kyr - -

Loutre et al. (1992) 404.178,94.782,
123.818,98.715,
130.615,2379.077kyr

- 23.716, 22.428,
18.976, 19.155

kyr
Berger et al. (1991) 117.7 kyr 43.6 kyr 24.9, 19.3 kyr

Paillard (2001) 2Myr, 412, 131,
123, 99, 95 kyr

53.7, 41,
39.6 kyr 23.7, 22.4, 19

kyr
Maslin and Ridgwell (2005) ⇠ 100 kyr ⇠ 41 kyr ⇠ 21, ⇠ 19 kyr

Muller and MacDonald (1997) ⇠ 125, ⇠ 100
kyr

⇠ 41 kyr ⇠ 21, ⇠ 19 kyr

Table 2.2: The main frequency components in the spectra of Earth’s orbital parameters.
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2.5 Previously Developed Models

This section summarizes the previous palaeoclimate models that have been developed to

explain the impact of the orbital forcing in relation to the observed changes in sea surface

temperature, ice volume and/or their proxies. Because each of them may be using different

input parameters or may analyze different time periods, a classification of the models will

be given. The climate models represent a simplification of the real life system and are used

to capture and understand the dynamics and processes that sustain the climate system and

produce climatic events. Understanding the underlying causes of change lies with analyzing

both the climatic sensibility to external forcing and also the internal dynamics of the planet,

such as coupled interactions of the Earth’s subsystems (atmosphere, oceans, ice sheets and

biosphere), as the climate shifts between glacial and interglacial states.

Most of the efforts in modelling the climate evolution of the geological record for the

Pleistocene period have followed Milankovitch’s theory about orbital forcing and its effect

over the succession of glacial and interglacial periods. Because the 100 kyr frequency could

not be definitely linked to the eccentricity, the inputs commonly used in the models are

obliquity and precession. The response is seen as the global ice volume, this being influenced

by the growth or decrease in ice-sheets. The climate system is represented by a nonlinear

process.

Scientists have tried to develop several models in order to reconstruct parts of or even the

whole climate system. These models have different complexities, varying from zero to three

dimensional ones (Park and Maasch. 1993).

Climate models are usually classified (Berger et al., 1990, McGuffie and Henderson-Sellers,

2005, Petoukhov et al., 2005, Trenberth, 2006) in three categories: energy balance models

(EBM), intermediate complexity models (EMIC) and global climate models (GCM,

also known as global coupled circulation models).

The energy balance models are the simplest kind, usually zero- or one- dimensional

models, but at the same time they are a very valuable tool that provide information on the

surface temperature as a function of the energy balance of the Earth, changes in ice-sheet

growth and decay or increase in greenhouse gases. They are based on the balance of
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incoming and outgoing radiant energy and try to explain what happens when the balance is

disturbed. The usual parameters for the zero-dimensional models are: the solar constant, the

planetary albedo, the globally averaged surface temperature and a climate sensitivity factor

l. The one-dimensional model focuses on the processes on the vertical and also involves an

atmospheric heat transfer parameter, vegetation and reflection of solar radiation. Next some

main contributions to the energy balance models are given.

One attempt to explain the Pleistocene glacial cycles with a Northern Hemisphere ice

sheets model was done by Oerlemans (1982). The model manages to successfully generate

the 100 kyr cycles, but the reproducing of the ice-volume record is small.

Ghil and Tavantzis (1983) have developed a model of two coupled autonomous ordinary

differential equations:

cT
dT

dt
= Ri(T, L) = R0(t) = R(T, L) (2.7)

cL
dL

dt
= F (T, L) (2.8)

where T is the globally and annually averaged temperature, L is the latitudinal extent

of the continental ice cover, with T and L positive, Ri denotes the short-wave radiation

absorbed, R0 is the long-wave radiation emitted by the system, F is a nonlinear func-

tion describing the continental ice-sheet dynamics, cT represents the heat capacity of the

atmosphere-hydrosphere system and cL governs the dynamic relaxation time of the continen-

tal ice sheets.

The absorbed incoming short-wave radiations is dependent on the insolation Q and on

the albedo ↵ as follows:

Ri(T, L) = Q{1� (�↵land(L) + (1� �)↵ocean(T ))}

where � is the fraction of the Earth covered by continents.

The authors conclude that this fairly simple model has a periodic solution, and that

the periods are those of the orbital parameters obliquity and precession. This shows that

the system responds to orbital forcing and also to combination tones between them. The
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frequency domain results match some of the peaks in the spectra of proxy records.

Variations of this one-dimension energy balance model have been developed in the works

of Ghil (1976), Bhattacharya and Ghil (1978) and Ghil and Bhattacharya (1979).

Saltzman and Sutera ’s model (1987) is build around the theory that since orbital

forcing had the same character for the entire Quaternary, the cause of change could be some

modifications of internal dynamics that control the way the system responses to the forcing.

The model equations are:

dI
0

dt
= �a0I

0 � a1µ
0 (2.9)

dµ
0

dt
= b1µ

0
+ b5✓

0 � b6✓
02µ

0 (2.10)

d✓
0

dt
= c0I

0 � c2✓
0 (2.11)

where I represents the snow-derived ice mass, �µ represents the atmospheric carbon

dioxide and ✓ is the bulk deep ocean temperature.

The facts that the model does not allow rapid deglaciations and it is sensitive to initial

conditions count as the disadvantages of this model. Given that proportional changes in

the ice mass should match those in the �18O records, when comparing with the data from

the Caribbean Core 502B, the model predictions for ice mass follow the main trend, but the

response is slower than the measurements and with lower amplitude before MPT and higher

after . Additional parameters representing the orbital forcing, parameters which account for

the rapid deglaciations and the solar constant can be added to the model to make it more

accurate.

Saltzman ’s later models (Saltzman and Maasch, 1990, Saltzman and Maasch, 1991)

were able to reproduce, with some success, both the 100 kyr cycle and the transition from

dominant 41 kyr ice volume fluctuations prior to ⇠ 900 kyr BP to the dominant 100 kyr ice

volume fluctuations after ⇠ 900 kyr BP. The latter transition may also reflect the existence

of “multiple equilibrium” states, whereby slowly changing boundary conditions can cause an

abrupt transition in the climate state. Saltzman’s explanation from a physical viewpoint is
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that the decrease in carbon dioxide brings the climate system to a cooler state where positive

feedbacks involving ice formation (Maasch, 1988) are activated, leading to the instability that

can drive a long-term (⇠ 100 kyr period) oscillation.

The climate model developed by DeBlonde and Peltier (1991) tries to account for the

“sea-level” temperature T (�!r , t) and its equation is:

C(�!r )@T (
�!r , t)
@t

��!rh ⇧ (D(x)
�!rhT (

�!r , t)) + A+BT (�!r , t) = Q

4
a(�!r )S(x, t) (2.12)

where �!r = (✓,�) is a position vector on the Earth’s surface, with j being the latitude

(and x = sin✓) and � being the longitude, the term A + BT (�!r , t) represents the infrared

intensity emitted to space, the term Q
4 a(

�!r )S(x, t) is the short-wave energy intensity absorbed

by the earth-atmosphere system, Q is the solar constant, D(x)
�!r hT (

�!r , t) represents the heat

flux, with D(x) a smooth diffusion coefficient, C(�!r ) is the effective heat capacity.

The above climate equation (14) is considered to be in equilibrium at all times with the

ice sheets model described by:

@H
@t = rh(Dirhh) +G

@h
0

@t = (h
0�h

0
0)

⌧ +
⇣

⇢
i

⇢
e

⌧

⌘
H

(2.13)

where Di represents a highly nonlinear diffusion coefficient, G is the net mass-balance

function, h0
0 represents the present topography, ⇢e is the density of the bedrock, and h

0
=

H � h.

The purpose of this coupled paleoclimate model is to simulate and study the position of

the ice sheets at the last glacial maximum. The results show the temperature variations and

the dominant influential orbital parameter, which appears as obliquity. Another interesting

conclusion is that the European ice sheet, due to the higher continentality of Eurasia, is

much more sensitive to solar forcing than the North American ice sheet. Compared to the

real climate system the model has low sensitivity to the orbital forcing.

Tarasov and Peltier (1997) developed a coupled model of an energy-balance one and

one of the ice-sheet. This accounts for changes in the surface temperature dependent on the
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ablation, precipitation and rain/snow. This model also considers the atmospheric CO2 con-

centration as a function of time. The results bring significant improvement to understanding

the relationship between climate forcing and mass-balance response.

The model proposed by Rial and Anaclerio (2000) is based on the hypothesis that the

frequencies present in the spectra of �18O time series arise through nonlinear interactions

(frequency modulation in this case) of the orbital forcing frequencies.

FFM(t) = a sin[
2pt
95

+� sin(
2⇡t

413
)+�

0sin(
⇡t

413
)]+b sin[

2pt
100

+� sin(
2⇡t

413
)]+c sin[

2⇡t

125
+b sin(

2⇡t

413
)]

(2.14)

where FFM represents the simulated frequency-modulated eccentricity signal, t is the

time in kilo-years, a, b, c are constants and are adjustable, � 0 is the modulating index for the

subharmonic. It was determined that � ⇠ 1 and �0 ⇠ 2.

In equation (16) the carrier frequencies are assumed to have periods of 95, 100, and 125

kyr whilst the modulating signals are the subharmonics with periods of 413 and 826 kyr.

Equation (16) is used by the authors to construct synthetic time series in order to simulate

the �18O time series from the ODP Site 806.

A similar model, representing the simulated frequency-modulated eccentricity and tilt

signal, is proposed in order to explain the power spectra of the deuterium (proxy of temper-

ature), sodium (marine aerosol) and greenhouse gases (CO2 and CH4) time series obtained

from the Vostok ice core (Petit et al., 1999):

IFM(t) = sin[
2⇡t

41
+ a sin(

2⇡t

413
) + b sin(

4⇡t

413
) + c sin(

8⇡t

413
) (2.15)

The parameters a, b, c represent the intensity of modulation and by adjusting them the

amplitude of the four mentioned time-series can be modeled. It is shown that the power

spectra of the synthetic time series generated using equation (17), using the corresponding

set of optimized parameters a, b, c, closely resemble the spectra of each experimental time

series. In particular, the synthetic signal reproduces the structure of the carrier frequency at

41 kyr modulated by the 413 kyr frequency and its main harmonics, which suggest that the

climate system responds nonlinearly to obliquity (with a spectral peak at 41 kyr) as well as
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eccentricity (with a spectral peak at 413 kyr). The model catches well the periodicity of the

data and its main dynamics, but cannot emphasize well the subtle changes that occur.

Rial’s simple model shows the concept of frequency modulation of the 100 kyr eccentricity

cycle by the 413 kyr one. Spectra of the model are consistent with the classic Milankovitch

theory of insolation (making redundant the theories about orbital inclination and dust accre-

tion). Rial reasons that the switch in the eccentricity period between 80 and 120 kyr every

413 kyr is an argument sustaining frequency-modulation. Also the spectrum does not contain

the modulating signal as a peak, but as a separation interval between the sidebands. From

the model, the 95 and 123 kyr are the predicted sidebands of the ⇠ 100 kyr eccentricity com-

ponent frequency modulated by the 413 kyr one. In the same manner, the 85 , 107, and 143

kyr peaks coincide with the predicted sidebands of a 95 kyr carrier frequency modulated by

the 826 kyr sub-harmonic of the 413 kyr signal. Using the frequency modulation explanation,

the absence of the 413 kyr peak from the �18O data is no longer a problem.

Another model developed by Rial (2004b) is the logistic-delayed differential equation

(LODE) model

dL(t)

dt
= µL(t� ⌧)[1� L(t� ⌧)

K(t)
] (2.16)

C
dT (t)

dt
= Q[1� ↵(L)]� [A+BT (t)] (2.17)

where L(t) represents the ice volume, µ is the ice sheet’s time equilibration constant, K(t)

is the temperature-dependent carrying capacity of the system, defined by

K(t) = 1 + "(t)T (t) (2.18)

T (t) is the global temperature and "(t) is the forcing function which amplitude-modulates

T (t), and is given by "(t) = "0{1+
PN

i=1 aicos(wit+�i)}+�(t). The sum involves the frequency

components of any known or assumed astronomical forcing, "0 is a small quantity ("0 < 0.1),

and the term �(t) accounts for any other internal or external forcing signals that might not

have been considered.

An important feature of LODE is that it transforms amplitude modulation of the global
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temperature T (t) into frequency modulation of the ice volume L(t), through the amplitude-

modulating input "(t). Rial uses frequency modulation to explain the way the new peaks in

the data appear. Although this model replicates the saw-tooth characteristic of the data, it

has the disadvantage that it can only offer results for certain periods of time of the Pleistocene.

Nonetheless LODE captures some essential physics and dynamics of the climate system, but

is not able to fully explain the fast warming and slow cooling sequences.

The intermediate complexity models , although involve some simplifications of the

Earth’s geography, are usually two- or three- dimensional models and can provide more than

average information over the whole system or subsystems. Being more complex, the param-

eters of EMICs have more degrees of freedom. Some examples of EMICs are: CLIMBER-2

(Ganopolski et al., 2010), trying to model the last glacial maximum, ECBILT (Opsteegh

et al., 1998), which takes into account the Holocene orbital variability in insolation, McGill

Paleoclimate Model (developed at the McGill University by Stocker et al. (1992)), which tries

to explain the nonlinearities of cold climates and the mechanisms of glaciations, and MoBidic

(Crucifix et al., 2002), which takes into account the Milankovitch forcing, fresh water inputs

to ocean, the Holocene volcanic and solar variability. Next some main contributions to the

EMICs category are given.

A first noticeable model was the one developed by James Croll (1875), which still helps

as a starting point for many current works. A very interesting hypothesis raised by Croll is

the one that the initial point of glacial epochs is the Northern Hemisphere, due to insolation

and obliquity. All three orbital parameters (eccentricity, obliquity and precession) are taken

into account as inputs to the system.

Milankovitch ’s theory (1941) accounts for the Ice Ages by means of the astronom-

ical forcing variables simultaneously affecting the Earth’s insolation (Berger, 1988). Mi-

lankovitch’s equations for the summer and winter insolation for caloric half-years (two equally

long real half-years, one of each containing all those days of the year during which the irra-

diation at a specific latitude is stronger than on any day of the other half-year), �Qs and

�Qw, respectively, which for a certain year are:

�Qs = �Ws�"�m�(esin⇧�) (2.19)

40



Chapter 2 2.5. Previously Developed Models

�Qw = �Ww�"+m�(esin⇧�) (2.20)

where �" represents the change in orbital obliquity from the present value, e is the

eccentricity, ⇧� represents the perihelion related to the vernal equinoctial point, �Ws and

�Ww are the changes in irradiation at a certain latitude for summer and winter.

The given equations are for latitudes in the Northern Hemisphere. The equations for

Southern Hemisphere are similar, but with opposite signs.

Milankovitch’s comprehensive calculations and application of physical laws (227 equa-

tions) were able to mathematically prove the connection between the irradiation and tem-

perature. Milankovitch’s theory provides a prediction of the observed periodicity of the

temperature variations, and does not focus on the actual temperature magnitude.

Le Treut (1988) modelled internally generated glacial-interglacial fluctuations which,

when orbitally forced, produce characteristic Milankovitch periods, including their harmonics

(e.g., 10 kyr) and subharmonics (e.g., 100 kyr).

Imbrie ’s model (1992) derives the conclusion that the ice-volume fluctuations are pri-

marily driven by orbital forcing, and that the ice volume responds linearly to orbital forcing

for the periods of 23 kyr and 41 kyr and nonlinearly to the 100 kyr period. The author

agrees that the 100 kyr power can be generated by transmission of 19 kyr and 23 kyr pe-

riods through nonlinear mechanisms (Wigley, 1976) producing substantial power in both

harmonics and subharmonics.

The Louvain-la-Neuve climate model, known as the LLN 2D, was developed by Berger

and Gallee (1990), and it only considers the Northern Hemisphere (NH). This model takes

into consideration the coupling between the atmosphere and the surface, and is an altitude-

latitude one. Carbon dioxide cycles are not considered though and need to be accounted for

externally. The model simulates well the general circulation and seasonal cycles of oceanic

mixed layer, sea ice and snow cover. Most studies performed using these models try to

simulate and explain the last glacial or interglacial period.

Another model proposed by Gallee et al. (1992) is the MoBidic model, and is an

extension of the LLN 2D NH one. It represents a coupling between a quasi-geostrophic at-

mospheric one and three-basin ocean-sea ice subsystems. This model is designed for catching
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the long term variations in climate and can simulate accurately the temperature, precipita-

tion and ocean circulation. The parts where the model has slight failures are the atmospheric

dynamics and the ocean salinity distributions.

Berger and Gallee (1992) used the LLN 2D model in order to reproduce the saw-

toothed shape of the ice volume curve and confirm the hypothesis that the variations in the

Earth’s insolation are sufficient to induce feedbacks in the climate system which amplify the

direct radiative impact and generate large climatic changes. On the same note, the second

conclusion derived was that the CO2 variations are not absolutely required to be taken into

account to generate a rough 100 kyr cycle, which confirms the Hays et al. (1976)’s idea that

the orbital forcing acts as a pacemaker of the ice ages.

Berger (1999) constructs his analysis using the LLN 2D model as well, but the model is

forced by the astronomically-derived insolation and by different CO2 concentration scenarios.

The analysis reached the conclusion that before 1 Myr BP, under the influence of relatively

high atmospheric CO2 concentration, the insolation maxima could prevent the Northern

Hemisphere ice-sheets from growing. After ⇠ 1 Myr BP, because of lower CO2 concentra-

tions, larger ice sheets appeared and only at times of maximum insolation (occurring under

high eccentricity, high obliquity and Northern Hemisphere summer at perihelion -minimum

climatic precession - values) significant meltings of the ice sheets took place. This is how the

interglacial period appeared making the ⇠ 100 kyr periodicity the most remarkable feature

of climate over the time interval from 1 Myr BP to present.

The CLIMBER-2 ice-sheet model was introduced by Ganopolski et al. (2010) and

divides the Earth surface into horizontal grids containing fractions of both sea and land.

The model also has vertical grids that account gradually for the atmospheric components:

temperature, humidity, wind, transport of energy and water. CLIMBER-2 is developed for

processes of large time scales, up to millennia, but has low spatial resolution and can only be

used for continents. Validation of the model is done by comparing its features with empirical

data. Tests were also done to verify CLIMBER’s sensitivity to CO2 concentrations, solar

insolation and vegetation cover.

The global climate models are the most ‘complete’ models and are in fact a collection

of models of the atmosphere, land, sea ice and ocean that look into the climate system as
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a whole and that are connected by a separate coupler module. These types of models are

three-dimensional ones and use discrete equations. Although some interactions are straight

forward, others like the very important coupling between atmosphere and ocean models are

not easy to achieve because of different parameter ranges in both space and time. So it is

crucial to interface correctly all the subsystems.

Pollard (1983) modelled the nonlinear interactions between ice-sheet accumulation and

ablation, ice-sheet flow, elastic lithosphere and viscoelastic mantle. The results show that

the observed 100 kyr cycle is driven by external orbital forcing together with the internal

forcing.

Out of all the theories proposed so far, the Milankovitch’s orbital forcing theory seems to

be the only one that is strongly supported by physical evidence.

Table 2.4 summarizes the conclusions of these studies with the focus on the explanations

given for the appearance of the 100 kyr cycles and on relating it to the orbital forcing.
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Study Achievements on answering the question
regarding the origin of the 100 kyr cycle

Pollard (1983) 100 kyr cycles driven by orbital forcing together
with internal forcing

Le Treut et al. (1988) the model produced Milankovitch periods,
harmonics and subharmonics of them

Saltzman and Maasch (1990) replicated the 100 kyr cycles, and the MPT
transition from dominant 41 kyr to 100 kyr

Berger et al. (1998)

reproduced the saw tooth shape of ice volume curve
the CO2 variations are not required to generate
a rough 100 kyr cycle
confirms the idea (Hays et al., 1976) that orbital
forcing acts as a pacemaker of the ice ages

Imbrie et al. (1992)

concluded that ice-volume fluctuations are
primarily driven by orbital forcing
ice-volume responds linearly to forcing of the
periods 23 and 41 kyr and nonlinearly to 100 kyr
the 100 kyr power can be generated by
transmission of 19 and 23 kyr periods
through nonlinear mechanisms

Rial (1999), Rial and Anaclerio (2000)

shows through a simple model the frequency
modulation of the 100 kyr cycle by the 413 kyr
model spectra are consistent with classical
Milankovitch theory ones

Rial (2004)

the model fits the saw tooth shape
of ice volume data
reproduces the switch from 41 to 100 kyr cycles
explains the appearance of new peaks in the spectra
using frequency modulation

Table 2.4: Summary of the results of the presented studies with the focus on the 100 kyr
cycle.

2.6 Discussion

In order to analyse Earth’s palaeoclimate, due to lack of long term (million years) insolation

measurements, scientists (Maslin and Ridgwell, 2005) have looked at proxy data for ice

volume or sea surface temperature (SST) (Lisiecki, 2010). A widely used proxy data for the

SST is the high-resolution time series of planktonic foraminifera oxygen isotope ratios data

from deep ocean cores. It has been proven firstly by Hays et al. (1976) that the frequencies
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in the oxygen isotope ratios data match those in Milankovitch’s astronomical theory (Rial

and Anaclerio, 2000).This indicates that Earth’s orbital parameters, eccentricity, obliquity

and precession (longitude of perihelion), control the variations in insolation (Lisiecki, 2010,

Imbrie et al., 1993). The peaks found in the Pleistocene �18O spectrum correspond to periods

of eccentricity (95 - 122 kyr, 428 kyr), obliquity (41 kyr), longitude of perihelion (23 kyr, 19

kyr) but also there are frequencies not corresponding to periods of the orbital parameters

(e.g. 71 kyr).

The Mid – Pleistocene Transition is a term used to describe a very unique and intensely

studied climatic event that took place approximately 900 - 800 ka (kilo-years ago), when a

switch from a time (Early Pleistocene) driven by the 41 kyr obliquity period characterized

by low amplitude and high frequency to a time (later Pleistocene) dominated by a lower

frequency corresponding to a period of 100 kyr (Maslin and Ridgwell, 2005, Berger and

Loutre, 2010, Head et al., 2008) occurred. This brought also an amplitude increase in the

SST proxy data. The spectrum shows a dramatic intensification in the power at the frequency

corresponding to the ⇠ 100 kyr cycle, but no noticeable change in the 41 kyr peak.

The MPT change happened without a corresponding change in the orbital parameters,

which raised different theories that could explain this: a climate system internal change

(Clark et al., 2006), nonlinear amplification and modulation of the orbital parameters or

some nonlinear internal feedbacks in the climate system that could induce the change (Head

et al., 2008). The nonlinear response of the climate system due to internal feedback can be

supported by the non-orbital frequencies found in the insolation proxies (Rial and Anaclerio,

2000).

The numerous hypothesis that have been proposed to explain the MPT can be split

into four categories: (i) external forcing – orbital inclination (Farley and Patterson, 1995,

Muller and MacDonald, 2005), (ii) internal feedbacks – Northern Hemisphere ice sheets

(Berger et al., 1999, DeBlonde and Peltier, 1991), CO2 concentrations (Ganopolski and Calov,

2011, Berger and Loutre, 1997b, Saltzman and Sutera, 1987, Loutre and Berger, 2000, Li

et al., 1998), dust feedback (Ganopolski and Calov, 2011), ice albedo, ocean circulation,

uplift of mountains and an internal instability generated by all the previously mentioned

feedbacks (Satzman and Verbitsky, 1992), (iii) frequency modulation of orbital parameters
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carrier signals 23, 41 and 95 kyr (Berger et al., 2005, Clemens and Tiedemann, 1997, Rial

and Anaclerio, 2000), (iv) a coupled response between the orbital forcing and an internal

nonlinear amplification (Berger et al., 1990, Imbrie and Imbrie, 1980).

Several studies have linked the shift observed at the MPT to changes in insolation induced

by the variability of Earth’s orbital parameters (Hays et al., 1976, Imbrie et al., 1992, Raymo

et al., 2006) but the underlying mechanisms behind this are still not fully understood. It

is widely accepted that the climate system responds nonlinearly to orbital forcing. One

explanation is that the climate sensitivity shifted from obliquity to precession/eccentricity

(Liu et al., 2008), and that through frequency modulation the system can transfer energy

from one frequency band into another (Li and Billings, 2005). Another theory says that

eccentricity alone has very little influence on insolation, therefore a nonlinear amplification

is needed to generate the observed periodicity in the Pleistocene time series (Clark et al.,

2006).

The “100 kyr Problem” refers to the lack of a satisfactory explanation for the dramatic

appearance of the 100 kyr cycle after MPT because it comes without a corresponding

change in the orbital forcing. The 100 kyr cycle has been mainly linked to the eccentricity

signal, but it cannot be a linear response because eccentricity has little influence on insolation,

as shown in sub-section 2.3.5 of this chapter. A theory that will be explored in a following

chapter is that eccentricity modulates the amplitude of precession and that the peak near 100

kyr could be generated by transmission of power from the longitude of perihelion (precession)

frequency bands (Berger et al., 2005, Clemens and Tiedemann, 1997).
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Chapter 3

Nonlinear System Identification using

NARMAX Models

3.1 Introduction

Mathematical models are required in order to analyse, predict and control the behaviour of

real-world dynamical systems. There are two main approaches used to derive a mathematical

model for a dynamical system: physical modelling and system identification techniques. The

physical modelling approach involves deriving a model based on the physical principles. This

approach (also known as a white box modelling) assumes that all the information required to

derive such a model, i.e. mathematical equations describing the behaviour of each component

of the system, is available ’a priori’. Modelling very complex systems using this approach

can be extremely challenging (Ljung, 1999, Billings, 2013).

An alternative approach is to use system identification methods to derive a mathematical

model representing a system’s behaviour (Billings, 2013). The advantage of the system iden-

tification approach is that a model can be obtained solely based on experimental input-output

data without making any assumptions about the system’s properties. However, a priori in-

formation can be incorporated if available. According to the available amount of a priori

knowledge relating the system’s inputs and outputs, the models obtained by system identifi-

cation are classified as: grey-box models , which assume that certain underlying mechanisms

of the system that do not fully describe the system under study, are known beforehand, and
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black-box models which are derived solely based on experimental data. The black-box model

provides a mathematical representation for the underlying dynamics but does not necessarily

provide a straightforward physical interpretation (Billings, 2013).

Identifying an input-output mathematical relationship based only on input-output mea-

surements depends on the choice of model class (e.g. linear, nonlinear, hybrid, parametric,

non-parametric, discrete, continuous, time-variant, time-invariant, deterministic or stochas-

tic etc (Ljung, 1999, Pearson, 1995, Billings, 2013). Linear models present the advantages

of simplicity and of the large amount of literature available (Soderstrom and Stoica, 1989).

Very often however the systems of interest are complex and nonlinear and thus cannot be

described by simple linear relationships. In this case nonlinear models have to be used as

linear models can only provide local approximations. Nonlinearity can lead the systems to

complex and difficult to predict behaviour, such as that exhibited by the climate system.

According to the number of inputs and outputs, the systems can be classified into: Single-

Input Single-Output (SISO), Multi-Input Multi-Output (MIMO), Single-Input Multi-Output

(SIMO) and Multi-Input Single-Output (MISO) systems.

There are several methods to estimate dynamical models only from experimental measure-

ments. The most comprehensive and powerful nonlinear system identification methodology

available to date is based on a general discrete-time representation of a nonlinear dynami-

cal system, known as the NARMAX model (Billings and Leontaritis, 1980, Leontaritis and

Billings, 1985, Chen and Billings, 1989b, Billings, 2013).

The NARMAX methodology has been successfully applied to fields such as engineering,

physics, finance, medicine, biology but it is quite a novel approach to modelling environmental

time-series. A small selection of the real systems that have been modeled using NARMAX

include: fly photoreceptor dynamics (Friederich, 2011), financial volatility (Zhao, 2010), eddy

current braking process (Simeu and Georges, 1996), dynamic loudspeaker (Dobrucki and

Pruchnicki, 1999), experimental human ankle dynamics (Kukreja et al., 2003), aircraft gas

turbine (Chiras et al., 2001), plasma turbulence dynamics (Boynton et al., 2013). In this work,

the NARMAX methodology will be used for the first time to model and analyse paleoclimatic

data.

Current available climate models are usually simplified versions of the climate system
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or sub-systems (used for general analysis purposes) or combinations of models that can re-

produce global or local climate systems (atmosphere, hydrosphere, geosphere, cryosphere

and biosphere). Modelling environmental time-series using the NARMAX methodology pro-

vides a powerful approach to characterize quantitatively the relationship between the orbital

forcing parameters and the proxy variables representing various aspects of climate response.

Although it can be more difficult to give physical meaning to the developed models, the

analysis of the models in the time and frequency domain can provide great insight into the

mechanisms behind abrupt climate changes and the system’s dynamics.

This chapter provides a detailed overview of the NARMAX methodology which addresses

the whole spectrum of system identification tasks including input design, model structure

detection, parameter estimation and model validation. The chapter is organized as follows.

Section 3.2 presents the general NARMAX model formulation and the polynomial NAR-

MAX expansion. Section 3.3 presents the Orthogonal Least Squares and its extension the

Orthogonal Forward Regression algorithms. Section 3.4 details on the common NARMAX

model validation methods, namely prediction error results, coherence analysis results and

correlation tests.

3.2 The NARMAX System Identification Methodology

The NARMAX model, originally proposed by Leontaritis and Billings (1985), has been in-

tensely studied by many authors (Billings et al., 1989, Chen and Billings, 1989b, Aguirre

and Billings, 1995, Hong and Harris, 2001, Guo and Billings, 2007, Chen et al., 1990a,

Farina and Piroddi, 2010). The NARMAX model forms the basis for an entire nonlinear

system identification and analysis methodology that has been developed over the past 30

years (Billings, 2013). The NARMAX methodology provides an unified solution to finding

an input-output relationship when the underlying system is not known in advance and only

the variable measurements are available. In particular, the NARMAX model can be used

to analytically derive Generalized Frequency Response Functions associated with the system

of interest, which provide a basis for studying the system’s output frequency response and

analysis of different frequency domain phenomena (Diaz and Desrochers, 1988, Peyton-Jones
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and Billings, 1989, Billings and Tsang, 1989a, Zhao and Marmarelis, 1998, Peyton Jones,

2007).

The NARMAX representation can be used to describe a wide range of nonlinear dynamical

systems. In this context, the Volterra, Wiener and Hammerstein models can be considered

as special cases of the NARMAX model (Billings and Coca, 2001).

The NARMAX model (Leontaritis and Billings, 1985) can be written as:

y(t) = f(y(t� 1), ..., y(t� ny), u(t� 1), ..., u(t� nu), e(t� 1), ..., e(t� ne)) + e(t) (3.1)

where y(t) =

2

6664

y1(t)
...

ym(t)

3

7775
, u(t) =

2

6664

u1(t)
...

ur(t)

3

7775
, e(t) =

2

6664

e1(t)
...

em(t)

3

7775
are the system’s output,

input and noise respectively; ny, nu and ne are the maximum lags for the output, input and

noise; e(t) is assumed to be a white sequence; f(·) is some vector-valued nonlinear function.

3.2.1 The Polynomial NARMAX Model

The NARMAX model structure is rarely known a priori, so in practice the identification

procedure assumes that the underlying system can be approximated using functions belonging

to a certain class. The choice of functions used to implement the model is very important,

because it will determine what type of nonlinear systems can be approximated with desired

accuracy and the number of parameters needed to achieve this desired accuracy. Not all

model representations are guaranteed to converge to an arbitrary function, and moreover the

choice of representation will often determine what model selection and parameter estimation

algorithms can be used. The NARMAX representations commonly used in practice include:

polynomial (Chen and Billings, 1989a, Mendes, 1995), rational (Chen et al., 1990a, Billings

and Zhu, 1994), radial basis functions (Chen et al., 1990b, Chen et al., 1990a) and wavelets

(Coca and Billings, 2001). All these nonlinear representations provide general mathematical

model structures that, although have far greater flexibility compared to the linear ones,

involve an enormous number of terms.
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The polynomial NARMAX model is widely used in practice because it leads to rel-

atively simple linear-in-the-parameters models which can be estimated efficiently using the

Orthogonal Forward Regression (OFR) for structure detection and parameter estimation

(Billings and Coca, 2001). In addition, efficient algorithms have been developed to derive

analytically the higher order (or Generalized) frequency response functions for polynomial

NARMAX models, by using recursive harmonic probing (Zhang and Billings, 1993, Liu et al.,

2006). The NARMAX polynomial expansion of a system with r inputs and one output is

defined (Billings and Leontaritis, 1980) as:

y(t) = fpol(x(t)) = ✓0 +
nX

i1=1

✓i1xi1(t) +
nX

i1=1

nX

i2=i1

✓i1,i2xi1(t)xi2(t)

+ · · ·+
nX

i
L

=1

· · ·
nX

i
L

=i
L�1

✓i1,...,i
l

xi1(t) . . . xi
l

(t) + ei(t) (3.2)

where x(t) = [x1(t), . . . , xn(t)] denotes the vector of dimension n = ny + rnu + ne consisting

of lagged variables in the outputs y, inputs uj and noise terms e, ✓i(·) are the unknown scalar

parameters to be estimated; L defines the model’s nonlinear dimension.

According to the fundamental Weierstrass theorem (Soderstrom and Stoica, 1989), poly-

nomials can uniformly approximate as closely as desired any continuous function defined

over a closed interval. The polynomial NARMAX expansion could involve huge number of

terms for large values of n. In practice however, only a small subset of polynomial terms are

needed to approximate a given function. Finding the minimal set of relevant terms is known

as the model structure selection problem. For linear-in-the-parameters models, such as the

polynomial NARMAX models, Billings et al. (1989) proposed an efficient Forward Orthogo-

nal Regression method which has been extensively used to successfully derive parsimonious

models for a wide array of real-world systems from experimental input-output measurements

(Chen et al., 1990b, Zhu and Billings, 1992, Billings and Coca, 2001, Boaghe et al., 2002).

The approximation capabilities of the polynomial NARMAX representation, the avail-

ability of fast and efficient algorithms for model structure selection, parameter estimation

and for analysing the system’s dynamics in the frequency domain motivate the use of this
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representation for modelling and analysis of the paleoclimatic data.

The NARMAX methodology includes a number of steps (Billings and Coca, 2001, Billings,

2013), which are summarized below:

Step 1: Input design, data acquisition and pre-processing

This involves the design of an appropriate input for the NARMAX model used to persistently

excite the dynamical system under study over the entire frequency and operating amplitude

range. This ensures that the model captures the full dynamical behaviour of the underlying

system. Methods for input design for nonlinear system identification using the NARMAX

methodology are given in Leontaritis and Billings (1987), Aguirre and Billings (1995) and

Billings and Zhu (1995).

For some real systems it is not possible to manipulate the input, so the modelling has to

be performed on the available input measurements. This happens when the input data-set

is obtained by simulations of physical equations, as is the case of the orbital parameters, or

when the experiment that generated the data cannot be repeated in order to collect more

measurements.

Data preparation refers to pre-processing procedures, such as normalization, interpolation,

dimensionality reduction or discretization.

Step 2: Model structure detection and parameter estimation

Given the structure of the model is not known at the beginning, equation (3.1) presents the

full model, with all the possible terms. In practice, the number of candidate terms that can be

included in a model can be huge but only a small subset of these, usually 15-20 terms, is really

needed to describe the systems’s dynamics. It is easy to see that for a MISO system with few

inputs, even a polynomial model of a relatively low order (three or four) can easily involve

thousands of candidate model terms. Fitting a full-size model is impractical, leads to over-

parametrization of the system and to numerical ill-conditioning and dynamical instability.

The NARMAX system identification methodology includes very robust term selection and

parameter estimation algorithms. The algorithm, which will be presented in Section 3.3,

determines which are the relevant terms to include in the final model and which terms to
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discard. Removing of terms must be done very carefully as not to lose significant ones and

as an effect to change the behaviour of the system.

Step 3: Model validation

This step of the methodology involves testing that the model truly follows the behaviour of

the system. Many types of validation tests have been studied and developed (Billings and

Zhu, 1994, Aguirre and Billings, 1995, Billings and Zhu, 1994, Billings and Coca, 2001) and

will be detailed in Section 3.4.

3.3 The Orthogonal Forward Regression for Model Struc-

ture Detection and Parameter Estimation

The estimation of NARMAX polynomial models can be formulated as a linear regression

problem:

y(t) =
MX

j=1

✓jpj(t) + e(t) (3.3)

where pj(t) denote the possible polynomial terms (monomials) that can be included in

the model with degrees ranging from 0 (constant term) to L, each consisting of products of

delayed outputs, inputs and/or noise terms, ✓j are unknown parameters to be estimated and

e(t) describes modelling error. The total number of terms is given by M =
PL

j=0 nj, with

n0 = 1 and nj =
n
j�1[ny

+n
e

+
P

r

k=1 nu

k

+j�1]
j , j = 1, . . . , L, where ny represents the maximum

lag for the output, nu
k

represents the maximum lag for the kth input and ne is the maximum

lag for the noise terms.

Given input and output time-series of lengths N , equation (3.3) can be written in matrix

form as:

Y = P⇥+ ⌅ (3.4)
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where Y =

2

6664

y(1)
...

y(N)

3

7775
, P =

h
p1 . . . pM

i
, ⇥ =

2

6664

✓1
...

✓M

3

7775
, ⌅ =

2

6664

e(1)
...

e(N)

3

7775
and

pi =
h
pi(x(1)) . . . pi(x(N))

iT
.

In equation (3.4), Y is commonly referred to as the dependent variable and P are the

regressors or predictors.

In order to present the regressors associated with the process and noise models, equation

(3.3) is re-written as:

y(t) =

M
pX

j=1

✓yuxyu(t) +
MX

j=M
p

+1

[✓yuexyue(t) + ✓exe(t)] + e(t) (3.5)

where xyu(t) are functions of y(t) and u(t), xyue(t) are functions of cross-products between

e(t) and y(t) and/or u(t), xe(t) are functions of e(t), ✓yu, ✓yue and ✓e are the unknown

coefficients, Mp is the number of process terms, M is the total number of terms.

This can be written in matrix form, similarly to equation (3.4), as:

Y = Pyu⇥yu + Pyue⇥yue + Pe⇥e + ⌅ (3.6)

where Pyu = [pyu1 . . . pyu
M

p

], [Pyue Pe] = [pyue
M

p

+1 . . . pyueM
k

pe
M

k+1
. . . pe

M

],

with pi = [pi(x(1)) . . . pi(x(N))]T , ⇥yu =

2

6664

✓yu1

...

✓yu
M

p

3

7775
,

2

4 ⇥yue

⇥e

3

5 =

2

6666666666664

✓yue
M

p

+1

...

✓yue
M

k

✓e
M

k+1

...

✓e
M

3

7777777777775

.

In equation (3.6), Pyu are the regressors associated with the process model and [Pyue Pe]

are the regressors associated with the noise model.
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3.3.1 Orthogonal Least Squares

The orthogonal least squares (OLS) algorithm works by replacing the original set of regressors

P in equation (3.4) with a set of orthogonal vectors (Liu, 1998, Chen and Billings, 1989b).

The structure detection and coefficients estimation problem becomes one of selecting out

of all the possible model terms M , a minimal set of m ⌧ M terms that approximate the

unknown system with a desired accuracy ⇢. The coefficients ⇥̂m can be calculated by solving

the linear optimisation problem given by:

⇥̂m = argmin
⇥

||Y � Pm⇥m||22 (3.7)

such that ||Y � P ⇥̂||  ⇢, where || · || represents the commonly used Euclidean norm.

Assume that the regression matrix P is full rank in columns and can be orthogonally

decomposed as:

P = WA (3.8)

The derivation of equation (3.8) can be done by using the Classical Gram-Schmidt (CGS)

or the Modified Gram-Schmidt (MGS) methods (Chen and Billings, 1989b).

In equation (3.8) A is an M ⇥M unit upper triangular matrix with ones on the diagonal

and zeros below the diagonal as:

A =

2

6666666664

1 ↵12 ↵13 . . . ↵1M

0 1 ↵23 . . . ↵2M

0 0 1 . . .
...

...
...

...
... ↵M�1M

0 . . . . . . . . . 1

3

7777777775

and W =

2

6664

w1(1) . . . wM(1)
...

...

w1(N) . . . wM(N)

3

7775
is an N ⇥M orthog-

onal matrix such that:

W TW = (PA�1)T (PA�1) = D = diag
hPN

t=1 w
2
1(t), . . . ,

PN
t=1 w

2
M(t)

i
.

This is true because wi(t), i = 1, . . . ,M are constructed to be orthogonal over the data

record of length N such that
PN

t=1 wj(t)wk+1(t) = 0 for j = 1, . . . , k and k = 1, . . . ,M � 1.

The space spanned by the orthogonal set w1, . . . , wM is the same as that spanned by the

original set p1, . . . , pm (Chen and Billings, 1989b).
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By writing equation (3.8) as Y = PA�1A⇥+⌅ and substituting W = PA�1 and G = A⇥,

the regression model in equation (3.4) can be written as:

Y = WG+ ⌅ (3.9)

where G =

2

6666664

g1

g2
...

gM

3

7777775
is a vector of auxiliary parameters.

In equation (3.9) the output is expressed as a sum of the explained variance given by WG

and the unexplained variance represented by ⌅.

The auxiliary regressors wi, i = 1, . . . ,M are uncoupled and as a result the corresponding

parameters gi are uncoupled as well. This allows to evaluate independently the contribution

from each wi to minimising the cost function given in equation (3.7).

The solution of the OLS algorithm can be calculated as Ĝ = D�1W TY or ĝ = wT

i

y

wT

i

w
i

,

with 1  i  M .

The last step involved is the calculation of the original set of parameters ⇥̂, which can be

done by solving the triangular system A⇥̂ = Ĝ.

3.3.2 The Orthogonal Forward Regression

The model given in equation (3.3) is overparametrized and the powerful and efficient Forward

Orthogonal Regression algorithm (Billings et al., 1989, Korenberg et al., 1988, Chen and

Billings, 1989b) needs to be used for structure selection in order to only keep the relevant

terms that describe the system’s dynamics.

The OFR involves starting with no model terms in the model and then adding terms

to the model in a stepwise manner until the desired accuracy or other stopping criterion is

satisfied. At each step all the candidate model terms, not included already in the model,

are evaluated and the model term which improves the most the model accuracy is selected.

This technique simplifies significantly the estimation process and also provides an effective

way of assessing the contribution of the most significant terms to the final model as it is
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constructed step by step. The criterion that is used to compare and rank the relevance of

each model term is called the error reduction ratio (err) and it represents the significance

of each orthogonal regressor wi with regards to the output signal variance. The err values

provide a simple and effective way of making a quantitative judgment on each regressor’s

contribution. The err formula is:

[err]i =
g2iw

T
i wi

yTy
(3.10)

An important feature of the OFR is that it allows for separate estimation of the process

and noise model. The process model is estimated first, and then using the predicted residuals,

"(k) = y(k)� ŷ(k), the noise model is obtained.

The estimation of the process model involves the following steps:

Step 1.

All the process terms pyu
i

, i = 1, . . . ,Mp in the regression model in equation (3.4) form the

initial candidate model set. To select the first and most significant model term, for each

process term compute:

w(i)
1 = pyu

i

g(i)1 = ((w
(i)
1 )T y)

(w
(i)
1 )Tw

(i)
1

[err](i)1 = (g
(i)
1 )2(w

(i)
1 )Tw

(i)
1

yT y

The err due to wi represents the proportion of the dependent variable y explained by wi.

The term selected as the first one in the model will be the one with the largest [err](i)1 say

[err](j)1 = max{[err](i)1 , 1  i  M}. The term corresponding to the extracted index j

becomes the first selected model term as w1 = w(j)
1 = pyu

j

.

Step 2.

All the pyu
i

, i = 1, . . . ,Mp, i 6= j are considered as possible candidates for the second term

in the model, and calculate:
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w(i)
2 = pyu

i

� ↵(i)
12w1

g(i)2 = ((w
(i)
2 )T y)

(w
(i)
2 )Tw

(i)
2

[err](i)2 = (g
(i)
2 )2(w

(i)
2 )Tw

(i)
2

yT y

where ↵(i)
12 =

wT

1 p
yu

i

wT

1 w1
.

Find the maximum [err](i)2 say [err](k)2 = max{[err](i)2 , 1  i  Mp, i 6= j}. It follows that

the second term in the model will be selected as w2 = w(k)
2 = pyu

k

� ↵(k)
12 w1.

The procedures terminates when:

i. there are no more terms in the set of possible process terms.

ii. a predefined number of process terms has been selected.

iii. a desired tolerance ⇢ is obtained as 1�
PM

p

i=1[err]i < ⇢, Mp < M . The value of ⇢ indirectly

determines the number of terms included in the final model and so its complexity as well.

The estimation of the noise model involves the following steps:

Step 1.

Set the number of selected noise terms as Mn = 0 and calculate the initial residuals as

" = y �
PM

p

+M
n

l=1 glwl.

Step 2.

At each step k > Mp in the noise estimation procedure calculate:

↵(i)
jk =

wT

j

p
yue

i

wT

j

w
j

, 1  j < k

w(i)
k = pyue

i

� ↵(i)
jkwj

g(i)k =
((w

(i)
k

)T y)

(w
(i)
k

)Tw
(i)
k
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[err](i)k =
(g

(i)
k

)2(w
(i)
k

)Tw
(i)
k

yT y

As for process model term selection, the largest [err](i)k is selected as [err](hk

)
k = max{[err](i)k , 1 

i  Mn, i 6= h1, . . . , i 6= hk�1}. So, the selected noise term will be the one corresponding to

the index hk and given by wk = w(h
k

)
k = pyue

ik

� ↵(h
k

)
jk wj.

Step 3.

Repeat the procedure iteratively until:

i. there are no more noise terms in the set of possible terms.

ii. a fixed number of pre-defined noise terms has been selected.

iii. when a chosen threshold for the noise is reached at the step Mp+Mn as 1�
PM

p

+M
n

j=1 [err]j <

⇢⇠.

The resultant model will contain a total of Mp + Mn significant terms. Usually for noise

model estimation only 3-5 iterations are necessary.

Once the orthogonalization and the estimation of parameters gi in equation (3.9) is finished,

the initial unknown parameters ✓i from equation (3.3) can be calculated as:

✓M
s

= gM
s

✓i = gi �
PM

s

j=i+1 ↵ij✓j

where i = Ms�1,Ms�2, . . . , 1 and Ms < M .

3.4 Model Validation Methods

Model validation is the final step of system identification and is a very important one because

it does checking that the model provides an accurate representation of the observed dynamical

system of interest. There are two main classes of model validation methods. One class is

the statistical validation methods, which includes methods that involve performing residual
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analysis and goodness-of-fit tests (Ljung, 1999), as are the tests discussed in this section.

The second class includes validation methods based on qualitative analysis techniques for

nonlinear dynamical systems which compare the dynamical invariants, such as equilibrium

points, Lyapunov exponents, bifurcation diagrams, Poincare sections (Mendes, 1995, Aguirre,

1996). The easiest way to evaluate the performance of a model is to compute the one step

ahead model predicted output (osa) and the model predicted output (mpo).

The osa which is calculated at each step using the model and measured inputs and outputs

is defined as:

ŷosa(t) = f̂(y(t� 1), . . . , y(t� ny), u(t� 1), . . . , u(t� nu), "(t� 1, ✓̂), . . . , "(t� ne, ✓̂) (3.11)

where f̂ is the estimated model and "(t, ✓̂) represent the residuals given by "(t, ✓̂) = y(t)�ŷ(t).

The mpo is computed recursively using the model, the measured input and only the first

few output measurements needed to initialize the model, and is defined as:

ŷmpo(t) = f̂(ŷ(t� 1), . . . , ŷ(t� ny), u(t� 1), . . . , u(t� nu), 0, . . . , 0) (3.12)

As in practice we are interested in the behaviour of the deterministic part of the model,

the noise model is usually discarded in simulation.

The model predicted output can be used to assess to what extent the model has captured

the dynamics of the system. In contrast, the one-step-ahead prediction shows only how well

the model approximated the output measurements. It is more accurate to use the model

predicted output when assessing the model’s prediction power rather than one-step ahead

prediction, due to the fact that the osa does not take into consideration the accumulation

of prediction error. Because of this, when considering the osa prediction, even a poor model

can produce good results. If the tests fail then the model’s structure and/or coefficients need

to be re-estimated.

• Model Prediction Error

The model prediction error "(t) is given by
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"(t) = y(t)� ŷ(t)

where y(t) represents the measured output data and ŷ(t) represents the model predicted

output.

A common measure of model performance is the normalized root mean squared error,

defined as:

NRMSE =

qP
N

i=1(y(i)�ŷ(i))2

N

�y(t)

where �y(t) denotes the standard deviation of the measured output signal y(t).

• Cross-Validation

Cross-validation is a method of assessing how well a model can perform on “unseen” data.

This is called generalisation. An overview on cross-validation methods and their application

on regression modelling can be found in Browne (2000).

The cross-validation technique used in this work is known as hold-out cross-validation

(Gutierrez-Osuna, 2005, Refaeilzadeh et al., 2008). This involves splitting the original data-

set into two non-overlapping sets, one used for estimation (modelling) and the other for

validation. Depending on the length of the available samples, the data-set can be split in

two equal parts or, as in this work, 66.6% for estimation and 33.3% for validation. The first

part of the data is used alone to perform model selection and parameter estimation, while

the second one is used afterwards alone to test the selected model on new data points. A

disadvantage of this method is the fact that because it does not use all of the available data,

it is dependent on the choice for the modelling data.

Plotting the modelling error against the prediction error would show that the first one will

decrease, while the latter will decrease and then increase again, marking the point of over-

fitting for the model. Because the method works with unseen data, for certain combinations

of values, the model might become unstable. The optimal value is given by the point on the

graph where the prediction error for the validation data reaches the minimum point. The

same method can be used to determine other hyper-parameters associated with the model
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such as the number of process and noise to include in the model. Figure 3.1 shows the

typical evolution of the prediction error with respect to the number of process terms over the

estimation and validation data set. The number of process terms selected corresponds to a

certain number of noise terms k.

Figure 3.1: Example of using cross-validation for choosing the optimum number of process
and noise terms in structure detection: blue is the modelling error, red is the prediction error,
and the vertical dotted line is the optimum number of terms.

• Correlation Tests

A common approach to validate NARMAX models involves computing a set of five correla-

tion tests (Billings and Voon, 1985, Chen and Billings, 1989b), which involve the residuals

(estimation error) and the input-output data used in estimation. The identified model is con-

sidered to be adequate if the residuals are unpredictable from (uncorrelated with) all linear

and nonlinear combinations of past inputs and outputs (Billings and Voon, 1985, Billings and

Zhu, 1994). There are two types of correlation tests: auto-correlation function of the resid-

uals and cross-correlation function between the residuals and the input. For the nonlinear

SISO case these are:
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8
>>>>>>>>><

>>>>>>>>>:

�ee(t) = d(t), t6=0

�ue(t) = 0, 8t

�e(eu)(t) = 0, t�0

�
u2

0
e
(t) = 0, 8t

�
u2

0
e^2

(t) = 0, 8t

(3.13)

where u2
0
(t) = u2(t) � u2(t) and u2(t) represents the mean value of u2(t). In order for a

model to be considered adequate, the correlation tests must be within the confidence interval

(95% of the points), defined by ±1.96/
p
N , where N is the number of data samples.

The correlation tests are usually inspected visually. The correlation tests for the SISO

(equations (3.13)) case can be extended for a MIMO model, as will be shown in the modelling

Chapter 5. Recently a new set of omni-directional (cross- and auto-) correlation tests were

developed (Zhu et al., 2007) which represent concise and more effective testing methodologies

for nonlinear higher order models.

• Coherence Function Analysis

Coherence function analysis is a statistical analysis used to investigate the correlation in

frequency, at certain frequencies or frequency intervals of interest, between the measured

data and the model predicted output.

The coherence function is defined by the formula:

Cyŷ =
|Gyŷ|2

GyyGŷŷ
(3.14)

where Gyŷ is the cross-spectral density between y (measurement) and ŷ (mpo), and Gyy

and Gŷŷ are the auto-spectral density of y and ŷ respectively.

The coherence takes values in the interval [0, 1], so if two signals are perfectly corre-

lated their coherence value is equal to 1, while two signals completely uncorrelated have the

coherence value 0.
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3.5 Discussion

This chapter introduced the NARMAX system identification methodology that will be used to

subsequently derive two models that relate the orbital parameters to the oxygen isotope ratios

proxy data for before and after MPT . The procedure involves model structure detection,

parameter estimation and model validation. It was shown that due to its versatility, the

method is extremely useful and can provide great insight into system’s dynamics and comes

with meaningful analysis methods. NARMAX is a very powerful tool because it can overcome

many difficulties arising from working with real data, such as: noisy data, random fluctuations

in the data, short datasets, MIMO systems, higher nonlinearity orders, severe nonlinearities.

The main advantages of the NARMAX methodology can be summarised as follows:

• The NARMAX representation can describe a wide range of nonlinear dynamical systems.

In this context, many other representations such as the Volterra and Wiener series can be

considered as special cases of the NARMAX model (Leontaritis and Billings, 1985, Billings

et al., 1989).

• The NARMAX methodology ensures that only the relevant model terms are included

in the model thus avoiding over-fitting.

• The methodology allows the separate approximation of the process and noise model.

• The NARMAX model can be easily mapped into the frequency domain by computing

analytically the Generalized and Output Frequency Response Functions (Peyton-Jones and

Billings, 1989, Peyton Jones, 2007), which will be defined in later chapters.
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Frequency Domain Analysis of Nonlinear

Systems Using Generalized and Output

Frequency Response Functions

4.1 Introduction

Nonlinear dynamical systems can be analysed in both the time and frequency domain. Fre-

quency domain analysis has been widely applied for investigating systems behaviours in

many fields of engineering, such as: control, electronics, communications, mechanical and

civil engineering (Lang et al., 2007). These methods often provide a physical interpretation

to NARMAX models derived using system identification (Lang et al., 2007). A discrete-time

NARMAX model is not necessarily unique and several quite different time domain models

can represent the same system dynamics. This can make it difficult to characterize and

compare the underlying dynamics of two or more dynamical systems. In the frequency do-

main however, the dynamics of the system can be characterized uniquely using Generalized

Frequency Response Functions (GFRFs). In other words, two alternative time-domain NAR-

MAX representations of one system will have the same frequency domain representation.

Frequency domain analysis for linear systems has been very successful due to the simple

analytical expression of the output frequency response, given by Y (j!) = H(j!)U(j!),

where H(j!) represents the system’s frequency function that relates the spectrum of the
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input U(j!) to the spectrum of the output Y (j!) (Lang and Billings, 2005).

Nonlinear systems can exhibit certain types of phenomena, such as the generation of

harmonics, inter-modulation, desensitisation and gain compression/expansion, which are not

encountered when working with linear systems (Billings and Tsang, 1989b, Yue et al., 2005,

Lang and Billings, 2005, Peng et al., 2007).

These phenomena are summarized as follows:

1. Harmonics are frequency components equal to multiples of the fundamental input

frequency. So if the input frequency is !, the harmonics will be: 2!, 3!, . . . .

2. Desensitisation represents, for nonlinear systems, the interference caused in the si-

nusoidal response at frequency !1 by the application of a second sinusoidal signal at

the frequency !2. In this case, the gain at frequency !1 depends nonlinearly on the

magnitude of the disturbing signal at the frequency !2.

3. Gain compression/expansion refers to the changes an increase in the input ampli-

tude induces to the system’s gain. For nonlinear systems, the system’s gain is a function

of the input magnitude. Gain compression refers to the effect where the system gain is

reduced to a level that causes a nonlinear increase in the output power. Gain expansion

represents the opposite phenomena of an increase in gain.

4. Inter-modulation is the process of nonlinear coupling between two or more input

frequency components in order to produce new output components. Inter-modulation

usually refers to the frequency mixes which cannot be included in the above categories

(but are not restricted to this), for example: (!1 � !2).

For the studied nonlinear system the phenomena of harmonics and inter-modulation are

observed and analyzed in Chapter 6.

These nonlinear phenomena represent different mechanisms by which, in a nonlinear sys-

tem, the output spectrum can be enriched compared to the input spectrum or that allow

energy to be transferred from one frequency band to another (Lang and Billings, 2005). This

is presented in Figure 4.1, where the input frequencies are considered to be !1 and !2. The
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figure shows that for the output frequency domain there are frequencies that are passed un-

altered to the output, (the green coloured lines) but also that new frequencies are formed

through harmonics (the blue coloured lines) and inter-modulation (the red coloured lines).

Figure 4.1: Input frequencies components for system with two fundamental frequencies !1

and !2 and the types of linear and nonlinear phenomena that generate the output frequency
spectrum.

When studying nonlinear systems the output spectrum is often much richer than the

input spectrum i.e. there are output frequency components that are not present in the input

spectrum (Billings and Tsang, 1989b, Billings and Peyton Jones, 1990, Lang and Billings,

1997). Peyton-Jones and Billings (1989), Billings and Tsang (1989a), Billings and Tsang

(1989b), Zhang and Billings (1993) studied and introduced the frequency response functions

for nonlinear systems and developed algorithms for mapping the nonlinear NARMAX models

into the frequency domain.

The study of nonlinear systems in the frequency domain is based on the extension of

the concept of linear frequency response function (FRF) for nonlinear systems that have

a Volterra series representation. The GFRFs are multi-dimensional functions of frequency

(Lang et al., 2007, Peng et al., 2007) and can be determined from the system model (Billings

and Tsang, 1989a, Peyton-Jones and Billings, 1989, Billings and Peyton Jones, 1990). The

GFRFs are a powerful tool for representing a system in the frequency domain and explain-

ing nonlinear energy transfer phenomena (Billings and Yusof, 1996, Boaghe, 2000, Boaghe

et al., 2002). Although the multi-dimensional characteristic can make the GFRFs difficult to

visualize and interpret, they are still a very useful way of relating the system behaviours and

model terms to the time domain properties and give the analysis a physical interpretation
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(Li and Billings, 2005, Peng et al., 2007).

More recently, GFRFs have been complemented by a new concept, the Output Frequency

Response Functions, which characterize directly the relationship between the input and the

output spectra of a nonlinear system. The OFRFs were introduced by Lang and Billings

(2005) and are one-dimensional functions of frequency, which makes them easier to interpret

and visualize. This is a great advantage, because a similar analysis to the linear case can be

performed. At the same time, it can provide insight into how and which input frequencies

contribute to the output frequency spectrum and in the end can offer an explanation to the

system’s nonlinear behaviour (Peng et al., 2007, Lang and Billings, 2005).

This chapter introduces the concepts of Generalized and Output Frequency Response

Functions, which are nonlinear frequency analysis methods, and the method for computing

them for polynomial NARMAX models. The chapter is organized as follows. In Section 4.2,

the method of mapping the Volterra series in the frequency domain is introduced followed

by theoretical derivations of the GFRFs and OFRFs. Section 4.3 starts with theoretical

considerations on the harmonic probing technique for multi-tone split inputs. This section

also presents types of terms and GFRF results that are encountered in practical examples

and methods for data and model pre-processing, which are used in order to normalize the

data and in order to prepare the model for the GFRF algorithm. Section 4.4 is concerned

with the computation of the Output Frequency Responses (OFRs).

4.2 Generalized and Output Frequency Response Func-

tions for Nonlinear MISO Systems

For a linear dynamical system, the time domain system response is given by:

y(t) =

ˆ 1

�1
h(⌧)u(t� ⌧)d⌧ (4.1)

where h(⌧) is the impulse response of the system and u(t) is the system input.

In the frequency domain, the relationship between the input and the output spectrum is

given by:
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Y (j!) = H(j!)U(j!) (4.2)

where Y (j!) and U(j!) are the spectrum of the output and input signals respectively

and H(j!) is the system frequency response function (FRF).

The output of a nonlinear system can be written as a Volterra series truncated to N

number of terms as (Sandberg, 1983):

y(t) =
NX

n=1

y(n)(t) (4.3)

where y(n)(t) is the nth order component of the output y(t) and each y(n)(t) is homogeneous

of degree n. Written as in equation (4.3), the output of a nonlinear system is represented as

the sum of the responses of all the orders of nonlinearity parallel systems that it is formed

of (Swain and Billings, 2001).

For a MISO system with m inputs u1(t), . . . , um(t), y(n)(t) is given by as:

y(n)(t) =
X

n1+. . .+n
m

=n

ˆ 1

�1
. . .

ˆ 1

�1
h(n)
(n1,. . . ,nm

)(⌧1, . . . , ⌧n) (4.4)

⇥u(n1. . . nm

)(⌧1, . . . , ⌧n)d⌧1 . . . d⌧n,

where

u(n1...nm

)(⌧1, . . . , ⌧n) = u1(t� ⌧1) . . . u1(t� ⌧n1)⇥ u2(t� ⌧n1+1) . . . u2(t� ⌧n1+n2)⇥

· · ·⇥ um(t� ⌧n1+···+n
m�1+1) . . . um(t� ⌧n)

and h(n)
(n1,...,nm

) represents the nth order Volterra kernel or nth order impulse response associated

with the output and nth
1 input u1(t), nth

2 input u2(t), . . . , nth
m input um(t).

The total number of kernels for a system with r inputs is given by Tk(r)
(N) =

PN
i=1 Nk(r)

(i) ,

where the number of ith order kernels is calculated recursively using the formula Nk(r)
(i) =

Nk(r)
(i�1) +Nk(r�1)

(i�1) + · · ·+Nk(1)
(i�1). Nk(r)

(1) represents the total number of first order kernels of
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the system and is equal to the number of inputs to the model. For example, a system with

r = 2 and N = 3 will have 9 unique kernels. These are:

• first order kernels: h1
1(·), h1

2(·)

• second order kernels: h2
11(·), h2

12(·), h2
22(·)

• third order kernels: h3
111(·), h3

112(·), h3
122(·), h3

222(·)

The kernels are called self-kernels if all the subscripts (n1, . . . , nm) are equal, as is the case

of the kernels: h2
11(·), h2

22(·), h3
111(·), . . . . If not all the subscripts are equal, the kernels are

of the form h2
12(·), h3

112(·), h3
122(·) and are referred to as cross-kernels. As it can be seen from

equation (4.4), the self-kernels are convoluted with one input only, whereas the cross-kernels

are convoluted with at least two different inputs.

Writing equation (4.3) in the frequency domain gives:

Y (j!) =
XN

n=1
Y (n)(j!) (4.5)

where Y (j!) is the output spectrum and Y (n)(j!) represents the nth order frequency

response of the system.

This can be written as (Lang and Billings, 1997):

Y (n)(jw) =
1

2n�1

X

n1+···+n
m

=n

ˆ
w1+···+w

n

=w
H(n)

(n1,...,nm

)(jw1 . . . jwn)
n1Y

i=1

U1(jwi) (4.6)

n1+N2Y

in1+1

U2(jwi) · · ·
mY

in1+···+n
m�1+1

Um(jwi)d⌧nw

and is a natural extension of equation (4.2).

H(n)(j!1, . . . , j!n) =

ˆ 1

�1
. . .

ˆ 1

�1
h(n)(⌧1, . . . , ⌧n)e

�(!1⌧1+···+!
n

⌧
n

)jd⌧1 . . . ⌧n (4.7)

represents the nth order Generalized Frequency Response Function or nth order transfer

function and
´
w1+···+w

n

=wH
(n)
(n1,...,nm

)(jw1 . . . jwn)
Qn

i=1 U(jwi)d⌧n! denotes the integration of

H(n)
(n1,...,nm

)(jw1 . . . jwn)
Qn

i=1 U(jwi)d⌧n! over the n-dimensional hyper-plane !1+· · ·+!n = !.
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Compared to the linear case where only one transfer function describes a system in the

frequency domain, for a nonlinear system the relationship between the input and output

spectrum is described by an infinite number of frequency response functions. In practice

however, the response can be approximated using a finite number of terms in the Volterra

series, depending on the degree of nonlinearity. It follows that in practice only a finite number

of GFRFs are significant and need to be considered (Zhang and Billings, 1993).

Define n0 = 0, then

Y (n)(jw) =
1

2n�1

X

n1+···+n
m

=n

ˆ
w1+···+w

n

=w
H(n)

(n1,...,nm

)(jw1 . . . jwn)

mY

j=1

n0+···+n
jY

i=n0+···+n
j�1+1

)Uj(jwi)dtnw (4.8)

Define

U (n)
(n1,...,nm

)(jw) =
1

2n�1

ˆ
w1+···+w

n

=w

mY

j=1

n0+···+n
jY

i=n0+···+n
j�1+1

Uj(jwi)dtnw

Then it follows that

Y (n)
(n1,...,nm

)(j!) =

´
!1+···+!

n

=!(H
(n)
(n1,. . . ,nm

)(j!1, . . . , j!n)⇥
Qm

j=1

Qn0+···+n
j

i=n0+. . .+n
j�1+1Uj(j!i))d⌧n!´

!1+···+!
n

=!

Qm
j=1

Qn0+. . .+n
j

i=n0+. . .+n
j�1+1Uj(j!i)d⌧n!)

⇥ 1

2n�1

ˆ
!1+···+!

n

=!

Ym

j=1

Yn0+. . .+n
j

i=n0+. . .+n
j�1+1

Uj(j!i)d⌧n!

G(n)
(n1,...,nm

)(j!) =

´
!1+···+!

n

=!(H
(n)
(n1,. . . ,nm

)(j!1, . . . , j!n)⇥
Qm

j=1

Qn0+···+n
j

i=n0+. . .+n
j�1+1Uj(j!i))d⌧n!´

!1+···+!
n

=!

Q
m

j=1

Qn0+. . .+n
j

i=n0+. . .+n
j�1+1Uj(j!i))d⌧n!

(4.9)

Y (n)(j!) =
X

n1+···+n
m

=n

G(n)
(n1,...,nm

)(j!)U
(n)
(n1,...,nm

)(j!)

G(n)
(n1,...,nm

)(j!) will be referred to as the Nonlinear Output Frequency Response Function

for multi-input nonlinear Volterra systems.
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Using the equations derived above, equation (4.5) can be written in polynomial form as

Y (j!) =
mX

k1=1

G(1)
k1
(j!)[Uk1(j!)] +

mX

k1=1

mX

k2=k1

G(2)
k1k2

(j!)⇥ [Uk1(j!)Uk2(j!)] + . . . (4.10)

+
mX

k1=1

· · ·
mX

k
N

=k
N�1

G(N)
k1...k

N

(j!)[Uk1(j!) . . . Uk
N

(j!)],

where

G(n)
(n1,...,nm

)(j!) = G(1. . . 1)| {z }
n1

(2. . . 2)| {z }
n2

...(m. . .m)| {z }
n

m

(j!)

with n1 + n2 + · · ·+ nm = n and n = 1, . . . , N and

U (n)
(n1,...,nm

)(j!) =

"
U1(j!). . . U1(j!)| {z }

n1

U2(j!). . . U2(j!)| {z }
n2

. . . Um(j!). . . Um(j!)| {z }
n
m

#

Y (j!) =
XN

n=1
G(n)

(n1,...,nm

)(j!)U
(n)
(n1,...,nm

)(j!) (4.11)

In equation (4.11), Y (j!) is defined in a similar manner to the description of the Output

Frequency Response for linear systems given in equation (4.2).

The first, second and third order OFRs for nonlinear systems with three inputs and one

output are as follows:

• First order ORFs: Y (1)
i (j!) = H(1)

i (j!)U (1)(j!), with U (1)(j!) = Ui(j!)

• Second order ORFs: Y (2)
ij (j!) = 1

2H
(2)
ij (j!1, j!2)U (2)(j!), with U (2)(j!) = Ui(j!1)Uj(j!2)

• Third order ORFs: Y (3)
ijk (j!) =

1
4H

(3)
ijk(j!1, j!2, j!3)U (3)(j!), with

U (3)(j!) = Ui(j!1)Uj(j!2)Uk(j!3).
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In this example i, j, k = 1, 2, 3 and H1
i (j!) represent the first order GFRFs, H2

ij(j!1, j!2)

are the second order GFRFs (self-kernel if i = j and cross-kernel if i 6= j) and H3
ijk(j!1, j!2, j!3)

are the third order GFRFs (self-kernel if i = j = k and cross-kernel otherwise).

The OFRs derivation rule and also the difference between the linear and nonlinear model

cases is presented in Figure 4.2.

Figure 4.2: System output frequency representation using the OFRFs, for: a. linear systems,
b. nonlinear systems, where FT represents the frequency transform used.

4.3 Computation of the Generalized Frequency Response

Functions using the Harmonic Probing Method

There are two methods for generating the GFRFs. The first refers to identifying the GFRFs

from the input-output data (Kim and Powers, 1988, Tseng and Linebarger, 1991, Tseng and

Powers, 1995). The disadvantage of this approach is that a considerable amount of data is

required in order to accurately compute GFRFs of order higher than two even for a SISO

system (Lang and Billings, 2000).

A better approach to obtaining the GFRFs, known as the harmonic probing method,

allows deriving analytic expressions of GFRFs for parametric NARX models (Billings and

Tsang, 1989a, Billings and Peyton Jones, 1990, Zhang and Billings, 1993, Swain et al., 2006).
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4.3.1 Multi-tone inputs

In order to be able to apply the harmonic probing technique, the inputs of the system

need to be re-written as n-tone inputs. It is assumed that all inputs have zero mean and

that for u = 0 and y = 0 an asymptotically stable equilibrium for the system is reached.

For the multi-input Volterra series case with r inputs, the inputs are written as n-tone

ones as (Liu et al., 2006) as:

8
>>>>>><

>>>>>>:

u
1

(t) = ej!1t + . . . + ej!�1 t

u2(t) = ej!1+�1 t + . . . + ej!�1+�2 t

...

ur(t) = ej!1+�1+. . .+�(r�1)
t + . . . + ej!n

t

(4.12)

For example, for a system with 2 inputs (r = 2), in order to calculate the 3rd order GFRFs

(n = 3), the inputs can be written in four ways, such as:

a. u1(t) = 0 and u2(t) = ej(!1+!2+!3)t, which will give H3
222(j!1, j!2, j!3)

b. u2(t) = ej!1t and u2(t) = ej(!1+!2)t, which will give H3
122(j!1, j!2, j!3)

c. u1(t) = ej(!1+!2)t and u2(t) = ej!3t, which will give H3
112(j!1, j!2, j!3)

d. u1(t) = ej(!1+!2+!3)t and u2(t) = 0, which will give H3
111(j!1, j!2, j!3)

4.3.2 Symmetric and Averaged Generalized Transforms

In the case of SISO systems and MIMO systems self-kernel transforms, the GFRFs are

computed by taking the average over all frequency arguments possible for each frequency

combination of the asymmetric GFRFs.

For any given system, both H(n)(·) and hn(·) may not be unique since changing the order of
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argument may give different function but will still yield the same output y(n)(t). These func-

tions are called symmetric functions and they have the property that H(n)(�j!1, . . . ,�j!n) =

H(n)⇤(j!1, . . . , j!n). H(n)⇤ is called the complex conjugate transfer function (Zhang and

Billings, 1993).

The common practice is to symmetrize the functions by summing all the asymmetric

functions over all the permutations of the arguments and dividing by their number. That is

H(n)
sym(j!1, . . . , j!n) =

1

n!

X

all permutation of !1,...,!n

H(n)(j!1, . . . , j!n)

For example, the asymmetric GFRFs corresponding to the symmetric third order self-

kernel transfer function H3
111(j!1, j!2, j!3) are:

H3
111(j!1, j!2, j!3),

H3
111(j!1, j!3, j!2),

H3
111(j!2, j!1, j!3),

H3
111(j!2, j!3, j!1),

H3
111(j!3, j!1, j!2),

H3
111(j!3, j!2, j!1).

For MIMO systems cross-kernel transformations however, the averaged generalized kernel

transform needs to be computed (Billings and Swain, 2000), due to the fact that cross-kernels

do not have the symmetry property. This can be obtained by taking [!, �] permutations

of the asymmetric kernel. For example for the second order cross-kernel, this means that

H2
�1,�2

(j!1, j!2) may not be equal to H2
�2,�1

(j!2, j!1) (Swain and Billings, 2001). So, under-

standing the [!, �] permutation is very important for deriving the averaged generalized kernel

transforms . In the case of MIMO systems, the n-tone inputs are not applied at a single in-

put point, but is split at various input points. In order to correctly obtain the GFRFs it is

therefore fundamental to carefully identify in the n-tone defined input in equation (4.12), the

frequencies {!1, . . . ,!�1} as belonging to the input point �1, !1+�1 , . . . ,!�1+�2 as belonging

to the input point �2 and so on (Billings and Swain, 2000).

4.3.3 The [!, �] permutation

The averaged GFRF is computed by permuting ! and � together so that if the frequency !i,

belonging to the input point �i, is permutated to say !k, �i must change to �k such that ej!k

t

belongs to the input point �k. This means that for i = 1 and k = 2, when !1 is permutated to
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!2, the subscripts of the transfer function will also change from H2
12(j!1,!2) to H2

21(j!2,!1).

This shows that the arguments of the cross-kernel functions are not independent of the

subscripts of the kernels and that they depend on the [!, �] permutation. This allows the

generalized transform to be defined as

H(n)
avg

(�1, . . . )| {z }
�1times

,(�2, . . . )| {z }
�2times

,(�d, . . . )| {z }
�

d

times

(j!1, . . . , j!n) =
1

n!

X

allpermutations[w,b]

H(n)

(�1, . . . )| {z }
�1times

,(�2, . . . )| {z }
�2times

,(�d, . . . )| {z }
�

d

times

(j!1 , . . . , j!n)

where d = number of distinct inputs that take part in the n-dimensional convolution,

�1= number of times u�1(t) takes part in the n-dimensional convolution, and �d= number

of times u�
d

(t) takes part in the n-dimensional convolution.

The procedure for the [!, �] permutation, given the explanation above, involves the fol-

lowing steps (Billings and Swain, 2000):

1. Define � and ! as � = [�1, �2, . . . , �n], ! = [!1,!2, . . . ,!n] so that the frequencies

!i, i = 1, . . . , n of the input u(t) are associated with the corresponding input points �i, i =

1. . . . , n.

2. Consider the pair (!i, �i) as a single entity so that the GFRF contains n such pairs

[(!i, �i), . . . , (!n, �n)].

3. Compute the permutations over (!i, �i), i = 1, . . . , n, and average to give the averaged

GFRF as:

H(n)
avg

� (j!) =
1

n!

X

all permutations of [!,�]

H(n)

�1, . . .| {z }
�1times

,�2, . . .| {z }
�2times

,...,�d, . . . )| {z }
�

d

times

=
1

n!

X

all permutations of (!1,�1),...,(!n

,�
n

)

H(n)
�1,...,�n

(j!1, . . . , j!n)

When n = 2 the averaged transfer function is:

2!H2
avg

12 (j!1, j!2) = [H2
12(j!1, j!2) +H2

21(j!2, j!1)]e
j(!1+!2)t
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This procedure is illustrated with an example of a model with 3 inputs ui(t), ul(t) and

uk(t) for which the GFRFs up to the order n = 3 are calculated. The GFRFs identified in this

example are the ones derived for the palaeoclimate NARMAX models obtained in Chapter

5.

• for the first order GFRFs H1
i (j!1), the inputs are ui(t) = ej!1t, ul(t) = 0 and uk(t) = 0

with i, l, k = 1, . . . , 3, i 6= l 6= k and the output is y(t) = H1
i (j!1)ej!1t.

• for the second order self-kernels GFRFs H2
ii(j!1, j!2), the inputs are ui(t) =

ej(!1+!2)t, ul(t) = 0 and uk(t) = 0 with i, l, k = 1, . . . , 3, i 6= l 6= k and the output

is

y(t) = H1
i (j!1)e

j!1t +H1
i (j!2)e

j!2t + 2H2
ii(j!1, j!2)e

j(!1+!2)t

• for the second order cross-kernels GFRFs H2
il(j!1, j!2), the inputs are ui(t) = ej!1t,

ul(t) = ej!2t and uk(t) = 0, with i, l, k = 1, . . . , 3, i 6= l 6= k and the output is

y(t) = H1
i (j!1)e

j!1t +H1
l (j!2)e

j!2t + 2!H2
avg

il (j!1, j!2)e
j(!1+!2)t

• for the third order self-kernels GFRFs H3
iii(j!1, j!2, j!3), the inputs are ui(t) =

ej(!1+!2+!3)t, ul(t) = 0 and uk(t) = 0, with i, l, k = 1, . . . , 3, i 6= l 6= k and the output is

y(t) = H1
i (j!1)e

j!1t +H1
i (j!2)e

j!2t +H1
i (j!3)e

j!3t

+ 2!H2
ii(j!1, j!2)e

j(!1+!2)t + 2!H2
ii(j!1, j!3)e

j(!1+!3)t + 2!H2
ii(j!2, j!3)e

j(!2+!3)t

+ 3!H3
iii(j!1, j!2, j!3)e

j(!1+!2+!3)t.

• the third order cross-kernels are of two types, where the inputs are

– ui(t) = ej(!1+!2)t, ul(t) = ej!3t, uk(t) = 0, with i, l, k = 1, . . . , 3, i 6= l 6= k. In this

case the GFRFs to be estimated are H3
avg

iil (j!1, j!2, j!3) and the output is

y(t) = H1
i (j!1)e

j!1t +H1
i (j!2)e

j!2t +H1
l (j!3)e

j!3t

+ 2!H2
ii(j!1, j!2)e

j(!1+!2)t + 2!H2
il(j!1, j!3)e

j(!1+!3)t + 2!H2
il(j!2, j!3)e

j(!2+!3)t

+ 3!H3
avg

iil (j!1, j!2, j!3)e
j(!1+!2+!3)t
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– ui(t) = ej!1t, ul(t) = ej!2t, uk(t) = ej!3t, with i, l, k = 1, . . . , 3, i 6= l 6= k. In this

case the GFRFs to be estimated are H3
avg

ilk (j!1, j!2, j!3) and output is

y(t) = H1
i (j!1)e

j!1t +H1
l (j!2)e

j!2t +H1
k(j!3)e

j!3t

+ 2!H2
il(j!1, j!2)e

j(!1+!2)t + 2!H2
ik(j!1, j!3)e

j(!1+!3)t + 2!H2
lk(j!2, j!3)e

j(!2+!3)t

+ 3!H3
avg

ilk (j!1, j!2, j!3)e
j(!1+!2+!3)t

The procedure for recursively computing the nth order GFRFs starts by writing the n-tone

inputs as in equation (4.12). Next, the inputs and output for each type of computed GFRFs

are replaced into the NARMAX model equations given by y(t), as explained in the example

above. Finally, the coefficients of ej(w1+···+w
n

)t are extracted.

Next an explanation of the contribution to the GFRF results of each type of terms in

NARMAX polynomial models is given (Swain and Billings, 2001). For each category a de-

scription of the term, its contribution to the transfer functions and a brief clarifying example

is given. The three possible terms that can appear in a polynomial model are: pure input ,

pure output and input-output product terms. Tables explaining the contribution of every kind

of term in the third order NARMAX model are given in Appendix B.

4.3.4 Pure Input Terms

The pure input type terms for a MISO model are of the form

c0q1...qr(kl1 , . . . , klr)
q1Y

i=1

u1(t� kl
i

) · · ·
q
rY

i=r
r�1+1

ur(t� kl
i

)

The relevant contribution of this type of terms to the nth order GFRFs results is given

by the expression (Swain et al., 2006):

X

all permutation of !1,...,!n

e�j(!1k
l1
+···+!

n

k
l

n

)

The condition for this to be true is that q1+ · · ·+ qr = n. If this condition is not satisfied,

the contribution of the term is 0.
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For example if the term in the model is c02(k1k2)u(t�k1)u(t�k2), its contribution to the

2nd order GFRF expression will be given by

c02(12)[e
�j(!1k1+!2k2) + e�j(!1k2+!2k1)]

4.3.5 Pure Output Terms

Pure output terms are written as

cp0...0(kl1 , . . . , klp)
pY

i=1

y(t� kl
i

)

In this case the contribution to the GFRF results is estimated recursively as

n�p+1X

i=1

H i
n�p+1(j!1, . . . , j!i)H

n�i
p�1(j!i+1, . . . , j!n)e

�j(!1+···+!
i

)k
l

p

with p < n.

The recursive procedure finishes with p = 1 and H(n,1)(j!1, . . . , j!n) has the property

H(n,1) = H(n)(j!1, . . . , j!n)e
�j(!1+···+!

n

)k
l1

For example for a term having the form c20...0(k1k2)y(t�k1)y(t�k2), assuming the system

has a single input split as a 2 -tone signal u(t) = ej!1t + ej!2t, the relevant contribution to

the 2nd order GFRF is given by

c20...0(12)[H
1
1 (j!1)H

1
1 (j!2)e

�j(!1k1+!2k2) +H1
1 (j!2)H

1
1 (j!1)e

j�(!1k2+!2k1)]

It can be easily seen from this expression how the higher order GFRFs are recursively

computed.

4.3.6 Input - Output Cross Terms

The terms in this class can be expressed as:
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cpq1...qr(kl1 . . . klp+q1+···+q

r

)
pY

i=1

y(t� ll
i

)
q1Y

i=p+1

u1(t� kl
i

) · · ·
q
rY

i=q
r�1+1

ur(t� kl
i

)

The contribution of this kind of terms to the nth order GFRF, under the condition that

p+ q1 + · · ·+ qr  n, is given by the expression:

n�1X

q=1

LX

l1,...,l+p+q

=0

e�j(!
n�q+1k

l+p+1+···+!
n

k
l

p+q

)Hn�q
p (j!1, . . . , j!n�q)

For an example term given by c11(k1k2)y(t� k1)u(t� k2), the contribution to a 2nd order

GFRF, when the single input is split as a 2 -tone u(t) = ej!1t + ej!2t, results from:

c11(k1k2)[H
1
1 (j!1)e

�j(!1k1+!2k2) +H1
1 (j!2)e

�j(!1k2+!2k1)]

Again the recursive nature of the higher-order transfer function is well emphasized by this

example.

4.3.7 Data and Model Pre-Processing

The recursive probing algorithm presented in the sub-sections above is defined for a NAR-

MAX models with zero mean inputs and without an internal constant. In practice however,

the estimated model using the input-output data-set usually does not meet this criteria, and

this is why further model processing techniques need to be applied.

When working with a set of inputs that have very different ranges, it is common practice

to remove the mean of each input signal in order to bring all variables in proportion to each

other. So removing the mean basically means centring the data. When the data is not

corrected in this manner, the effects of each of the inputs on the system output are more

difficult to interpret. This is clearly the case of the three orbital parameters inputs to the

estimated NARMAX model, which have the means u1 = 0.03, u2 = 23.34 and u3 = 181.96.

Unlike the linear systems, where usually DC terms can be discarded without influencing

the system behaviour (Astrom, 1980, Isermann, 1980), for nonlinear systems the DC term

can be coupled within the recursive response of the system, and given the superposition

principle is not applicable, simply discarding the term is not possible (Peyton-Jones and
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Billings, 1993). A DC component usually appears due to a non-zero equilibrium state of the

model.

A DC term present in the model brings various disadvantages to a recursively generated

model. The behaviour of the system is affected by the increased number of additional terms

and recursions (Peyton Jones and Choudharya, 2012). Early NARMAX algorithms did not

consider systems with DC terms or just discarded them, but the extensions by Zhang and

Billings (1993) and Peyton-Jones and Billings (1993) address this problem. The presence of

an internal system constant also affects the frequency domain response and will give biased

results in the analysis.

This subsection presents techniques used for working with zero mean inputs and for

removing the internal constant for a NARX model defined as:

y(t) = f0(y(t�1), . . . , y(t�Ny), u1(t�1), . . . , u1(t�Nu1), . . . , ur(t�1), . . . , ur(Nu
r

)) (4.13)

The NARMAX model is written in an alternative form by introducing the auxiliary input

variables eui(t) as eui(t) = ui(t)� ui, where ui represents the mean value of ui(t), which for a

data-set of N points is given by ui =
1
N

PN
j=1 uij(t).

Substituting ui(t) = eui(t)+uiin equation (4.13), gives the following equivalent description:

y(t) = f0(y(t� 1), . . . , y(t�Ny), eu1(t� 1) + u1, . . . , eu1(t�Nu1) + u1, (4.14)

. . . eur(t� 1) + ur, . . . , eur(t�Nu
r

) + ur)

Usually, the DC component is considered to be an additive term to the model, as: ey(t) =

y(t)+ y0, where y0 represents the system’s internal constant (Peyton Jones and Choudharya,

2012). In order to remove the internal constant, at this stage C 00 . . . 0| {z }
(r+1) times

, equation (4.13) is

re-written by making the variable substitution y(t) = ey(t)� y0, as:
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y(t)� y0 = f0(y(t� 1)� y0, . . . , y(t�Ny)� y0, u1(t� 1), . . . , u1(t�Nu1),

. . . , ur(t� 1), . . . , ur(t�Nu
r

)) (4.15)

In this case as well, the model’s terms need to be rearranged and the coefficients recal-

culated. This procedure will also introduce new terms, but these will not change the system

behaviour and model’s response, but only its structure.

The value of the internal constant is found as the solution to C
⇤

00 . . . 0| {z }
(r+1) times

= 0, where C
⇤

00 . . . 0| {z }
(r+1) times

is the newly calculated value for the constant term.

Example

Next an example illustrating the two model changes explained above is given. The second

degree of nonlinearity model with two inputs is considered as:

y(t) = 2y(t� 1) + u1(t� 1)u2(t� 2) + 3y(t� 2)u1(t� 2) + 2u2(t� 1)� 5 (4.16)

For this example consider: u1 = 3 and u2 = 2. The identified model coefficients according

to (4.16) are:

c100(1) = 2

c011(12) = 1

c110(22) = 3

c001(1) = 2

c000 = �5

Step1 - zero mean inputs

As detailed in Section 4.3.7 in order to have a model with zero mean inputs, the model

needs to go through the variable changes: u1(t) = eu1(t) + u1 and u2(t) = eu2(t) + u2. The

model in example (4.16) becomes:
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y(t) = 2y(t� 1) + eu1(t� 1)eu2(t� 2) + u1eu2(t� 2) + u2eu1(t� 1) (4.17)

+3y(t� 2)eu1(t� 2) + 3u1y(t� 2) + 2eu2(t� 1) + u1u2 + 2u2 � 5

By rearranging the terms and recalculating the coefficients after substituting in the values

of the input signals means, equation (4.17) becomes:

y(t) = 2y(t� 1) + 9y(t� 2) + 3y(t� 2)ũ1(t� 2) + ũ1(t� 1)ũ2(t� 2) (4.18)

+2ũ1(t� 1) + 2ũ2(t� 1) + 3ũ2(t� 2) + 5

The new recalculated coefficients are:

c⇤100(1) = 2

c⇤100(2) = 9

c⇤110(22) = 3

c⇤011(12) = 1

c⇤010(1) = 2

c⇤001(1) = 2

c⇤001(2) = 3

c⇤000 = 5

Three new coefficients, corresponding to three new terms, appear in the expansion in

equation (4.18) as: c⇤100(2), c⇤010(1) and c⇤001(2). The coefficient c000 has changed its value and

was reassigned as c⇤000.

Step 2 - removing the internal constant

The model needs to be re-written with the variable change y(t) = ỹ(t)� y0 as explained

in sub-section 4.3.7. In this case, the model equation (4.18) after the substitution and terms

rearrangement, becomes:

ỹ(t) = 2ỹ(t� 1) + 9ỹ(t� 2) + 3ỹ(t� 2)eu1(t� 2) + eu1(t� 1)eu2(t� 2) (4.19)

+2eu1(t� 1)� 3y0eu1(t� 2) + 2eu2(t� 1) + 3eu2(t� 2)� 10y0 + 5
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y0 is calculated from c⇤⇤000 = 0, so �10y0 + 5 = 0. This gives the value y0 = 0.5. By

substituting this into the output model in equation (4.19) gives

ỹ(t) = 2ỹ(t� 1) + 9ỹ(t� 2) + 3ỹ(t� 2)eu1(t� 2) + eu1(t� 1)eu2(t� 2)

+2eu1(t� 1)� 1.5eu1(t� 2) + 2eu2(t� 1) + 3eu2(t� 2)

The new coefficients are:

c⇤⇤100(1) = 2

c⇤⇤100(2) = 9

c⇤⇤110(22) = 3

c⇤⇤011(12) = 1

c⇤⇤010(1) = 2

c⇤⇤010(2) = �1.5

c⇤⇤001(1) = 2

c⇤⇤001(2) = 3

c⇤⇤000 = 0

It can be seen that compared to equation (4.18), one extra term is also introduced by this

procedure.

4.4 Computation of the nth Output Frequency Responses

Because of their dimensionality the GFRFs of order higher than three are difficult to visualise

and interpret (Yue et al., 2005). In practice however, the first, second and third order transfer

functions are often sufficient to characterize the system in the frequency domain (Zhang and

Billings, 1993). Given the GFRFs are multi-dimensional functions they are difficult to inter-

pret. In contrast, the OFRs, which are functions of a single complex variable, characterize

completely the contribution made by the input to the output spectrum, through a particular

GFRF. The evaluation of the OFRs requires knowledge of the GFRFs H(n)(j!1, . . . , j!n) and

the input spectrum Uj(j!i), j = 1, . . . , r.

In order to obtain the nonlinear OFRs, the product of GFRFs and input spectrum needs

to be integrated over the hyper-plane !1 + · · ·+ !n = !, as shown by equation (4.8). This is

computed for each output frequency ! of the output spectrum Y (j!). The way each of the
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input frequencies contribute to the OFR value at each output frequency for the second order

function is illustrated in Figure 4.3 and explained in what follows.

In practice, the integration is replaced by a summation because the discrete Fourier

Transform is computed. This means that equation (4.8) is replaced by:

Y (n)(jw) =
1

2n�1

X

n1+···+n
m

=n

X

w1+···+w
n

=w

H(n)
(n1,...,nm

)(jw1 . . . jwn) (4.20)

mY

j=1

n0+···+n
jY

i=n0+···+n
j�1+1

Uj(jwi)dtnw

For a third order system the output spectrum in equation (4.5) is written as:

Y (j!) = Y 1(j!) + Y 2(j!) + Y 3(j!) (4.21)

By writing equation (4.20) for a third order nonlinear system with three inputs, each of

the output frequency responses Y (n)(j!) in equation (4.21) is written as:
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8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Y 1(j!) =
P

!1=!
H1

1 (j!1)U1(j!1) +
P

!1=!
H1

2 (j!1)U2(j!1) +
P

!1=!
H1

3 (j!1)U3(j!1)

Y 2(j!) = 1
2

P
!1+!2=!

H2
1 (j!1, j!2)U1(j!1)U1(j!2) +

1
2

P
!1+!2=!

H2
2 (j!1, j!2)U2(j!1)U2(j!2)

+1
2

P
!1+!2=!

H2
3 (j!1, j!2)U3(j!1)U3(j!2) +

1
2

P
!1+!2=!

H2
12

avg

(j!1, j!2)U1(j!1)U2(j!2)

+1
2

P
!1+!2=!

H2
13

avg

(j!1, j!2)U1(j!1)U3(j!2) +
1
2

P
!1+!2=!

H2
23

avg

(j!1, j!2)U2(j!1)U3(j!2)

Y 3(j!) = 1
4

P
!1+!2+!3=!

H3
1 (j!1, j!2, j!3)U1(j!1)U1(j!2)U1(j!3)

+1
4

P
!1+!2+!3=!

H3
2 (j!1, j!2, j!3)U2(j!1)U2(j!2)U2(j!3)

+1
4

P
!1+!2+!3=!

H3
3 (j!1, j!2, j!3)U3(j!1)U3(j!2)U3(j!3)

+1
4

P
!1+!2+!3=!

H3
112

avg

(j!1, j!2, j!3)U1(j!1)U1(j!2)U2(j!3)

+1
4

P
!1+!2+!3=!

H3
122

avg

(j!1, j!2, j!3)U1(j!1)U2(j!2)U2(j!3)

+1
4

P
!1+!2+!3=!

H3
113

avg

(j!1, j!2, j!3)U1(j!1)U1(j!2)U3(j!3)

+1
4

P
!1+!2+!3=!

H3
133

avg

(j!1, j!2, j!3)U1(j!1)U3(j!2)U3(j!3)

+1
4

P
!1+!2+!3=!

H3
223

avg

(j!1, j!2, j!3)U2(j!1)U2(j!2)U3(j!3)

+1
4

P
!1+!2+!3=!

H3
233

avg

(j!1, j!2, j!3)U2(j!1)U3(j!2)U3(j!3)

+1
4

P
!1+!2+!3=!

H3
123

avg

(j!1, j!2, j!3)U1(j!1)U2(j!2)U3(j!3)

(4.22)

Equation (4.22) is written in compact form as:
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Figure 4.3: Combinations of frequencies !1 + !2 = !iout contributing to Y 2(j!iout).

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Y 1(j!) = Y 1
1 (j!) + Y 1

2 (j!) + Y 1
3 (j!)

Y 2(j!) = Y 2
1 (j!) + Y 2

2 (j!) + Y 2
3 (j!) + Y 2

12(j!) + Y 2
13(j!) + Y 2

23(j!)

Y 3(j!) = Y 3
1 (j!) + Y 3

2 (j!) + Y 3
3 (j!) + Y 3

112(j!) + Y 3
122(j!) + Y 3

113(j!) + Y 3
133(j!)

+Y 3
223(j!) + Y 3

233(j!) + Y 3
123(j!)

(4.23)

In order to calculate the value of each Output Frequency Response Y (n)
(n1...nm

)(j!) with

n1+ · · ·+nm = n, all the frequency !1, . . . ,!n contributing to each of the output frequencies

! = !1 + · · ·+ !n need to be determined. .

The procedure is illustrated in Figure 4.3 for a second order response Y 2
n1n2

(j!) and for a

two-tone input given by the sum u(t) = ej!1t + ej!2t, !1,2 = {�3⇡
4 � ⇡

2 ,�
⇡
4 , 0,

⇡
4 ,

⇡
2 ,

3⇡
4 }. For

the given input, the output spectrum will be evaluated for all the frequencies !i
out

= !1+!2.

The full methodology for deriving the GFRFs and OFRs of a nonlinear dynamical system

can be summarized as follows:

1. Identify a polynomial NARMAX model from data.

87



Chapter 4 4.5. Conclusions

2. Compute the discrete Fourier Transforms Ui(j!) and Y (j!) of the input and outputs,

respectively.

3. Compute the GFRFs H(n)(j!1, . . . , j!n) using the probing approach.

4. Compute the OFRs of different orders Y (n)(j!k).

5. Compute the combined OFR Y (j!) corresponding to the GFRFs evaluated in step 3.

The time domain model estimation and frequency domain analysis of the NARMAX model

is summarized in Figure 4.4.

Figure 4.4: Diagram presenting the model analysis procedure.

4.5 Conclusions

This chapter introduced the concepts of Generalized Frequency Response Functions and

Output Frequency Responses of nonlinear dynamical systems as well as methods to compute

these functions for a general polynomial NARX model. The frequency domain methods

presented in this chapter are powerful tools that allow the analysis of the underlying nonlinear

mechanisms which contribute to the observed output spectrum (Zhang and Billings, 1993,

Boaghe, 2000).

These methods will be used to analyse and compare the models estimated using the

NARMAX methodology described in the previous chapter and the paleoclimate data-set.

The application of the analysis tools presented in this chapter will be used to provide for
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the first time a rigorous characterization of the nonlinear relationship between orbital forcing

parameters and the paleoclimate proxy data. Also, it will be possible for the first time to char-

acterize in the frequency domain how this dynamic relationship changed during and following

the Mid-Pleistocene Transition by comparing the functions and graphical representations of

the GFRFs and OFRs for the time periods before and after MPT .

The higher-order OFRs allow identifying which frequencies and combinations of frequen-

cies contribute most significantly in the output spectrum such as the peak corresponding to

the ⇠ 1/100 cycles/kyr frequency. An important advantage of the frequency domain ap-

proach is that the GFRFs allow to uniquely characterize the dynamics of the system. There-

fore GFRFs provide an effective way to compare the dynamical properties of the studied

system before and after MPT .
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Chapter 5

Palaeoclimate Data Modelling Using the

NARMAX Methodology

5.1 Introduction

The objective of this chapter is to apply the nonlinear system identification methods presented

in Chapter 3 to infer NARMAX models which capture the dynamic relationship between the

oxygen isotope measurements taken from deep-sea cores (model output) and the three orbital

parameters eccentricity, obliquity and longitude of perihelion (model inputs) before and after

MPT . Specifically, the proxy data consists of measurements of oxygen isotope ratio taken

from deep-sea sediment cores drilled at Site 806B. This is the first time such an approach has

been used to model and analyse the relationship between palaeoclimate proxies and orbital

forcing.

Although the resulting NARMAX models cannot be mapped directly on known phys-

ical processes, such models can reveal the nonlinear mechanisms by which orbital forcing

modulated the paleoclimate before and after MPT .

This chapter is organized as follows. Section 5.2 presents the data sets used to estimate

and validate the models. The identification of the two NARMAX models based on paleocli-

mate proxy data before and after MPT is presented in Section 5.3. Section 5.4 presents

model validation results. Conclusions are presented in Section 5.5.
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5.2 Palaeoclimatic Proxy Data

The data used in this work is available from the National Climatic Data Center website

(http://www.ncdc.noaa.gov). The output data set chosen for this study consists of Nout =

536 samples of the �18O time-series , which covers the time interval between the present time

(year 0 is considered year 1950) and 5 Myr before present. The input data set consist of

Nin = 2140 samples of eccentricity , obliquity and longitude of perihelion covering the interval

between year 0 and 2.14 Myr BP. The inputs and output data sets have been discussed in

more detail in Chapter 2 Sections 2.3 and 2.4, and are shown in Figures 2.4 - 2.6 and 2.13.

Out of the entire data set available, in order to study the MPT, only the data corresponding

to the Pleistocene time period was extracted.

The �18O time-series stored in the NCDC repository was obtained by first interpolating

the raw isotope data and then resampling it (Berger et al., 1993a). The sampling period

of the data is 4 kyr. The time series of orbital parameters were calculated following the

equations (Berger and Loutre, 1992):

e sin! =
P

i Pi sin(↵it+ ⌘i)

✏ = ✏⇤ +
P

i Ai cos(�it+ ⇣i)

e = e⇤ +
P

i Ei cos(�it+ �i)

where e is the eccentricity, e sin! is the climatic precession, ✏ is the obliquity and the

amplitudes (Pi, Ai, Ei), frequencies (↵i, �i, �i) and phases (⌘i, ⇣i,�i) are given in Berger and

Loutre (1992) Table1.

The orbital parameters data was initially sampled at 1 kyr and, in this work, it was

resampled at 4 kyr to match the sampling time of the �18O data set.

As the MPT was identified by most authors (Imbrie et al., 1992, Pisias and Moore Jr.,

1981) around 900 � 850 kyr BP, the data available was split into two data subsets D1 and

D2, shown in Figure 5.1, as:

• D1 marks the time period before MPT given by the time interval [1400 � 852] kyr

BP and consists of 138 data points in total.

• D2 marks the time period after MPT given by the time interval [852�0] kyr BP and
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consists of 214 data points in total.

Figure 5.1: Inputs time-series: a. eccentricity, b. obliquity, c. longitude of perihelion; the
vertical red dotted line represents the MPT time separating the subsets D1 (before MPT )
and D2 (after MPT ).

The system output is the time-series of oxygen isotope ratio �18O (hereafter referred to

as y) and the system inputs are eccentricity (u1), obliquity (u2) and longitude of perihelion

(u3). The input is written in vector form as u = [u1 u2 u3].

For modelling purposes the inputs and output were split into an estimation (training)

data set and a validation data set. These data sets were as:

• D1E is the estimation data set for the time interval [1126, 852] kyr BP before MPT .

• D1V is the validation data set for the time interval [1400, 1126] kyr BP before MPT .

• D2E is the estimation data set for the time interval [568, 0] kyr BP after MPT .

• D2V is the validation data set for the time interval [852, 568] kyr BP after MPT .
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5.3 Model Structure Selection and Parameter Estimation

In this section, the NARMAX methodology is used to develop polynomial models which relate

the proxy for insolation, which is the output of the system, to the three orbital parameters

eccentricity , obliquity and longitude of perihelion, which represent the inputs for the system,

in the cases before and after MPT . The methodology presented here is applied similarly

to the two separate sets of data.

In order to find the best model structure and parameters to fit the available data for each

of the two time periods, the model degrees were varied ranging from 1 to 4. The lags values

were set as: for first and second order models Ny = 8, Nu
i

= 8, i = 1, 2, 3 and Ne = 8,

for third order models Ny = 4, Nu
i

= 8, i = 1, 2, 3 and Ne = 4 and for forth order models

Ny = 3, Nu
i

= 4, i = 1, 2, 3 and Ne = 3.

The full polynomial model structures include very large number of terms. For example,

using the above lag values, the full models using all three inputs have 41 terms for the first

order model, 861 terms for the second order model, 6545 terms for the cubic model and

7315 terms for the fourth order model. Given usually 15-20 terms are needed to fit the data

accurately (Billings and Leontaritis, 1980), the strategy for reducing the number of terms

using cross-validation is presented next. Also, the procedure establishes which of the three

inputs or combinations of them are necessary to accurately fit the output data. To this end,

for each model order 1 to 4, models with one input only (either u1, u2 or u3), combinations

of two ([u1 u2], [u1 u3] or [u2 u3]) or all three inputs ([u1 u2 u3]) were estimated.

For the structure detection procedure, the number of noise terms nno were varied from 1

to 10 and the number of iterations of the noise model ranged from 5 to 25. For each value

of nno and noise iteration, the number of process terms npr was varied through from 1 to 30.

Using the OFR procedure 30 polynomial models were obtained for each combination of nno

and iteration values. Using cross-validation it is possible to obtain the optimum number of

npr, out of the total 30 considered, by plotting the estimation errors superimposed on the

prediction errors (Figures 5.4a and 5.5a).
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Model degree d = 1 d = 2
Input(s) Before MPT After MPT Before MPT After MPT

u1 23.06% 18.83% 17.65% 19.51%
u2 53.87% 20.63% 17.31% 16.19%
u3 17.35% 21.43% 18.40% 22.82%

[u1 u2] 38.67% 17.34% 14.50% 16.73%
[u1 u3] 16.46% 17.90% 18.18% 19.87%
[u2 u3] 15.29% 19.39% 17% 20.82%

[u1 u2 u3] 17.95% 16.10% 14.91% 16.38%

Model degree d = 3 d = 4
Input(s) Before MPT After MPT Before MPT After MPT

u1 17.84% 19.49% 26.92% 19.16%
u2 15.60% 19.81% 22.10% 29.96%
u3 19.80% 21.43% 31.21% 22.21%

[u1 u2] 18.70% 18.41% 24.95% 17.75%
[u1 u3] 25.95% 19.31% 26.80% 19.07%
[u2 u3] 15.02% 21.75% 29.43% 20.94%

[u1 u2 u3] 13.93% 16% 25.86% 18.40%

Table 5.1: NRMSE values for the best models for each degree of nonlinearity (d) and combi-
nation of input terms to the model. The emphasized values represent the smallest NRMSE
for each order model.

Table 5.1 shows the normalized root mean squared errors for linear, quadratic, cubic and

quartic polynomials models with one, two and three inputs fitted before and after MPT .

The values in Table 5.1 are normalized root mean squared errors calculated for the mpo on

the entire time period used (D1 or D2), whereas the values used in cross-validation are mean

squared error values calculated on the estimation and validation data sets (D1E, D1V , D2E,

D2V ) corresponding to each time period. The characteristics of the best model obtained for

each model order for both time periods are summarized in Table 5.2.

Model type Before MPT After MPT
No of terms Input No of terms Input

Linear 9 [u2 u3] 22 [u1 u2 u3]
Quadratic 17 [u1 u2] 24 u2

Cubic 21 [u1 u2 u3] 20 [u1 u2 u3]
Quartic 9 u2 11 [u1 u2]

Table 5.2: Number of terms and inputs used for the best linear, quadratic, cubic and quartic
models before and after MPT.
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The simulation results of the best models for each order are shown for before MPT in

Figure 5.2 and for after MPT in Figure 5.3. It is observed from the NRMSE values in

Table 5.1 that for both time periods the overall best models are the third order ones which

have all three orbital parameters as inputs. The model predicted output ŷ corresponding to

these two models is shown in Figures 5.2c and 5.3c. On the plots in Figures 5.2a, 5.2b, 5.2d

and 5.3a, 5.3b, 5.3d it is emphasized where the first, second and fourth order models are

outperformed by the third order models in Figures 5.2c and 5.3c, respectively.

Figure 5.2: Best a. linear, b. quadratic, c. cubic and d. quartic model predicted output (red)
superimposed on the �18O time-series (blue) before MPT . The grey areas mark where the
third order model outperforms the first, second and fourth order models.
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Figure 5.3: Best a. linear, b. quadratic, c. cubic and d. quartic model predicted output (red)
superimposed on the �18O time-series (blue) after MPT . The grey areas mark where the
third order model outperforms the first, second and fourth order models.

Figures 5.4a and 5.5a present the cross-validation procedure results as it was explained

above. These figures show the validation error (green) and the estimation error (black). The

point marked with a red star represents the minimum value for the validation error. Before

MPT (Figure 5.4a), for nno = 10 the minimum estimation error is found for npr = 11. The

best model before MPT has therefore a total of 21 terms. For the model after MPT , the

graphic shown in Figure 5.5a is for nno = 9 and the minimum validation error is given by

npr = 11. The best model after MPT has a total of 20 terms.
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Figure 5.4: Before MPT a. cross-validation mse values for noise iteration 4 and nno = 10
for estimation data set (black) and validation data set (green), b. model with npr = 16 and
nno = 5 (red) superimposed on �18OD1 (blue), c. spectrum of the model with npr = 11 and
nno = 10 terms (red) superimposed on the spectrum of �18OD1 (blue) and d. spectrum of
model with npr = 16 and nno = 5 (red) superimposed on spectrum of �18OD1 (blue).

The dotted red lines in Figures 5.4a and 5.5a define an arbitrary interval in which the

validation error vary insignificantly. Before MPT the validation error value for the best

model is 0.038 and the arbitrary interval is considered [⇠ 0.03, ⇠ 0.05] with the maximum

validation error value 0.16. After MPT the validation error value for the best model is

⇠ 0.1, the largest validation error value is 1.45 and the arbitrary interval was chosen as

[0.07, 0.2]. These intervals will provide alternative values for npr and thus alternative model

structures which will retain small error values.
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Figure 5.5: After MPT a. cross-validation mse values for noise iteration 9 and nno = 9
for estimation data set (black) and validation data set (green), b. final selected model with
32 terms (red) superimposed on �18OD2 (blue), c. spectrum of the selected model with 20
terms (red) superimposed on the spectrum of �18OD2 (blue) and d. spectrum of model with
32 terms (red) superimposed on the spectrum of �18OD2 (blue).

This study shows that all three orbital parameters (eccentricity , obliquity and longitude

of the perihelion) and a cubic polynomial model structure are needed to best fit the data.

This supports the theory that the climatic response is influenced by the three parameters

simultaneously. This is accepted by most scientists (Pisias and Moore Jr., 1981, Clemens

and Tiedemann, 1997, Muller and MacDonald, 2005) and, although some argue that orbital

parameters may not represent the main drive for climate change (Muller and MacDonald,

1997, Imbrie et al., 1993, Ganopolski and Calov, 2011), it is widely accepted that all three

parameters have a significant influence on the long term climate variations (Crucifix et al.,

2007).

It is important for fitting accuracy to ensure that the model simulations fit the data in
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time domain but also in the frequency domain. This is essential in the studied case when

the main interest is to analyse two specific frequencies in the output spectrum. This means

comparing the spectrum of the mpo with the spectrum of the output signal, the �18O time-

series. Figures 5.4c and 5.5c show the spectrum of the output (blue) superimposed on the

spectrum of the mpo (red). It can be seen that for both time periods the spectrum of the

mpo reproduces well the frequency at 0.0244 cycles/kyr corresponding to the 41 kyr period,

but it fails in both cases to reach the peak at the frequency corresponding to the ⇠ 100 kyr

period.

The analysis done so far proves that the modelling procedure needs to incorporate spec-

trum validation as well. This was done by starting from the cross-validation results for the

third order models with three inputs and selecting models that provide close validation errors

to the model that was firstly selected, shown between the dotted red lines in Figures 5.4a

and 5.5a. For each model structure, the spectrum of the model response is compared with

the spectrum of the �18O in order to obtain good magnitude match at the frequencies of

interest. This procedure involves cross-validation structure detection, but also provides good

frequency domain fitting of the data spectrum.

The model before MPT obtained using this combined procedure has 16 process terms

and 5 noise terms. The mean squared error value in this case is mse = 0.0159, which is

smaller than the best model obtained by cross-validation alone, which had mse = 0.0239.

The magnitude spectrum difference at the frequency corresponding to the period of ⇠ 100

kyr improves from 0.0465 to 0.0101, as seen in Figures 5.4c and 5.4d. The mpo for the model

with 21 terms selected through the cross-validation and spectrum fitting combined procedure

is shown in Figure 5.4b.

A similar analysis is done after MPT and presented in Figure 5.5. In this case, the

cross-validation method returns the best model with npr = 11 and nno = 9. The magnitude

spectrum comparison in Figure 5.5c shows a difference of 0.048 between the �18O and mpo at

the frequency corresponding to the ⇠ 100 kyr period. Using the combined cross-validation

and spectrum comparison procedure, a model with npr = 25 and nno = 7 is found to give a

magnitude spectrum difference of 0.0241. This value is half of the one given by the model

obtained using cross-validation alone. The mean squared error value for the model obtain by
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cross-validation alone is mse = 0.0623, and the one obtained using the combined procedure

is mse = 0.0531. As it can be seen from these values and Figures 5.5b, 5.5c and 5.5d the

final selected model brings a big improvement in fitting accuracy. The selected model after

MPT has 32 terms.

For both models, before and after MPT , the increase in the magnitude spectrum peak

fitting accuracy is important and at no fitting loss to the time domain signal.
Figure 5.6 shows the two final selected models, with 21 terms before MPT and 32 terms

after MPT , simulated on the corresponding time periods. On the same figure are shown the
estimation and validation errors obtained by using cross-validation. These simulated results
provide us with visual confirmation on how well the models fit the data.

Figure 5.6: Model predicted output (green) superimposed on �18O (blue) and the estimation
and prediction errors for the estimation and validation dataset for: a. before MPT , b.
after MPT .

Figure 5.7 shows the simulations of the identified models on the entire studied Pleistocene

time period [1400 � 0] kyr BP and that the models are stable outside the estimation data

range. This analysis shows how well the models are able to predict the validation data.

The normalized root mean squared error when the model before MPT is used to simulate
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on the entire time period is NRMSEtotal
B

= 16.05%, and when the model after MPT is

used to simulate on the entire time period is NRMSEtotal
A

= 16.95%. The normalized root

mean squared errors in the case of each models for the data that was not used for estimation

or validation is for the model before MPT (the time period considered is [852 � 0] kyr

BP) mseunseen
B

= 19.51% and for the model after MPT (the time period considered is

[1400� 852] kyr BP) mseunseen
A

= 27.44%.

Figure 5.7: Model predicted output (green) superimposed on �18O (blue) for the time period
[1400� 0] kyr BP using the estimated models: a. before MPT and b. after MPT.

This analysis confirms that the mpo remains stable on the entire studied Pleistocene time

period. However, Figure 5.7 and the NRMSEs show that the models fitted for each time

period predict better on the data set used for estimation than they do on the entire time

period. This shows that two different models are needed for each time period. The two

different models facilitate the study of the difference observed in the simulations in Figure

5.7 and what triggers it.

Figure 5.8 shows the residuals calculated as "̂(t) = y(t) � ŷ(t), where ŷ(t) is the model
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predicted output, calculated as in equation (3.12), for the entire studied Pleistocene time

period [1400 � 0] kyr BP. The horizontal green dotted lines represent the points of the

minimum and maximum residual values for the data set used in the estimation procedure.

In both cases, the residuals for the unseen data are, as expected, larger in value as the

ones calculated on the data used for estimation. The difference is more noticeable for the

simulation using the model before MPT .

Figure 5.8: Residuals for the entire studied Pleistocene time period [1400� 0] kyr BP using
the estimated model a. before MPT and b. after MPT . The dotted red lines represent
the MPT point and the dotted green lines represent the minimum and maximum residual
values for the time period used for the estimation of each model.

The simulation results and analysis performed in this chapter confirm that there was

a dramatic change to the nonlinear dynamic relationship between orbital parameters and

climate proxies during MPT. This is supported by the following:

• Two different models were fitted for each period and, although both models gave stable

simulations they did not perform as well on the entire Pleistocene time period.
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• The models reproduce the dramatic frequency shift, by accurately fitting the data

spectrum.

• Both models require all three inputs to give accurate results, but the model before

MPT has 21 terms, whereas the model after MPT has 32 terms.

• The maximum lags required for each model terms were Ny = 4, [Nu1 Nu2 Nu3 ] = [8 8 6]

before MPT and Ny = 4, [Nu1 Nu2 Nu3 ] = [7 8 8] after MPT .

Tables 5.3 and 5.4 give the coefficients and terms for the selected models for the two studied

time periods.

Before MPT
Count Coefficient Coefficient symbol Term

1 0.001795 ✓b(1) y(t� 1)u2(t� 8)2

2 �0.000125 ✓b(2) u2(t� 1)3

3 0.000117 ✓b(3) u2(t� 1)u2(t� 3)u2(t� 8)
4 0.000130 ✓b(4) u1(t� 8)u3(t� 1)u3(t� 4)
5 �0.000086 ✓b(5) u1(t� 6)u3(t� 1)u3(t� 4)
6 0.000233 ✓b(6) y(t� 2)2u3(t� 4)
7 0.000124 ✓b(7) y(t� 3)u2(t� 4)u3(t� 4)
8 0.000000025 ✓b(8) u3(t� 2)u3(t� 3)u3(t� 5)
9 �0.000327 ✓b(9) y(t� 4)2u3(t� 2)
10 �0.000694 ✓b(10) u1(t� 1)u2(t� 3)u3(t� 5)
11 �0.009606 ✓b(11) y(t� 1)u1(t� 1)u3(t� 6)
12 �0.000000025 ✓b(12) u3(t� 2)2u3(t� 6)
13 0.000000233 ✓b(13) u2(t� 1)u3(t� 2)u3(t� 6)
14 0.001595 ✓b(14) y(t� 1)y(t� 3)u3(t� 4)
15 �0.0000446 ✓b(15) y(t� 4)u2(t� 8)u3(t� 4)
16 0.0000102 ✓b(16) y(t� 1)u2(t� 3)u3(t� 4)
17 �0.022436 ✓b(17) u3(t� 5)e(t� 3)2

18 0.001097 ✓b(18) y(t� 1)u3(t� 5)e(t� 4)
19 0.009699 ✓b(19) u3(t� 2)e(t� 3)2

20 0.000023 ✓b(20) u3(t� 1)u3(t� 6)e(t� 3)
21 �0.000023 ✓b(21) u3(t� 2)u3(t� 6)e(t� 3)

Table 5.3: Model coefficients and terms for the time period before MPT.
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After MPT
Count Coefficient Coefficient symbol Term

1 0.001384 ✓a(1) y(t� 1)u2(t� 8)2

2 0.023525 ✓a(2) y(t� 2)u1(t� 7)u3(t� 1)
3 �0.000087 ✓a(3) u2(t� 1)3

4 0.0000067 ✓a(4) y(t� 2)u3(t� 3)u3(t� 8)
5 0.020046 ✓a(5) y(t� 1)2y(t� 3)
6 0.000445 ✓a(6) y(t� 2)u2(t� 3)2

7 0.002059 ✓a(7) u1(t� 7)u2(t� 1)u3(t� 1)
8 �0.411117 ✓a(8) y(t� 2)2y(t� 3)
9 �0.005230 ✓a(9) y(t� 2)u2(t� 2)u2(t� 7)
10 �0.010973 ✓a(10) u1(t� 1)u2(t� 8)2

11 0.369465 ✓a(11) y(t� 1)y(t� 4)u1(t� 2)
12 �0.020101 ✓a(12) y(t� 1)u1(t� 1)u3(t� 7)
13 �0.0000000144 ✓a(13) u3(t� 1)2u3(t� 8)
14 0.0000000216 ✓a(14) u3(t� 1)u3(t� 2)u3(t� 4)
15 �0.000164 ✓a(15) u1(t� 1)u3(t� 2)u3(t� 4)
16 �0.000101 ✓a(16) u1(t� 1)u3(t� 4)u3(t� 7)
17 0.001057 ✓a(17) u1(t� 3)u2(t� 7)u3(t� 4)
18 �0.053157 ✓a(18) y(t� 2)2u2(t� 3)
19 �0.027060 ✓a(19) y(t� 2)y(t� 3)u2(t� 5)
20 �0.000164 ✓a(20) u2(t� 8)3

21 0.0000891 ✓a(21) u1(t� 2)u3(t� 2)u3(t� 3)
22 0.000133 ✓a(22) u2(t� 3)u2(t� 8)2

23 �0.0000063 ✓a(23) y(t� 1)u3(t� 3)u3(t� 8)
24 �0.0000966 ✓a(24) y(t� 2)u2(t� 5)u3(t� 8)
25 0.0000734 ✓a(25) y(t� 1)u2(t� 3)u3(t� 8)
26 0.0000100 ✓a(26) u3(t� 5)u3(t� 6)e(t� 1)
27 �513.1434 ✓a(27) u1(t� 2)u1(t� 5)e(t� 2)
28 �0.040774 ✓a(28) u1(t� 1)u3(t� 2)e(t� 1)
29 0.1681874 ✓a(29) u2(t� 7)e(t� 4)2

30 �114.6774 ✓a(30) u1(t� 4)e(t� 4)2

31 0.0591374 ✓a(31) u1(t� 1)u3(t� 5)e(t� 2)
32 13.417572 ✓a(32) e(t� 1)2e(t� 3)

Table 5.4: Model coefficients and terms for the time period after MPT.

5.4 Model Validation

This section presents the model validation results for the identified models, based on tech-

niques presented in Chapter 3 Section 3.4.
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5.4.1 Coherence Analysis

The coherence function results were obtained using 30-points Hanning windows with 20 points

overlap. For the FFT the number of data points used were 142 before MPT and 214 after

MPT .

The results in Figure 5.9 show that the �18O time-series and mpo correspond well to one

another at the frequencies of interest, as the values in Table 5.5 also prove. As explained in

Chapter 3 Section 3.4, the closer the coherence function values are to 1 the closer the predicted

output is to the real output. For the first frequency of interest (sometimes associated to

the ⇠ 100 kyr eccentricity period (Berger, 1988)) Figure 5.9 and Table 5.5 show that the

coherence between the two signals is above 90%, which is a highly satisfying fit. For the

frequency associated to the 41 kyr obliquity period, the fit of ⇠ 80% is still a good fit for the

complex and highly nonlinear system under investigation.

Figure 5.9: Coherence analysis between the model predicted output and the �18O time-series
a. before MPT , b. after MPT.

Time period Coherence value
f ⇡ 1/100 cycles/kyr f = 1/41cycles/kyr

Before MPT 99.35% 79.28%
After MPT 91.10% 84.36%

Table 5.5: Coherence values before and after MPT at the two frequencies of interest.
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5.4.2 Correlation Tests

The estimated models are also validated using the MIMO correlation tests developed using

the SISO correlation tests detailed in Chapter 3 Section 3.4. The following correlation tests

were computed for the fitted models having all three orbital parameters as inputs:

�E2(⌧)

�U1E(⌧) �U2E(⌧) �U3E(⌧)

�U1E2(⌧) �U2E2(⌧) �U3E2(⌧)

�U2
1E

(⌧) �U2
2E

(⌧) �U2
3E

(⌧)

�U2
1E

2(⌧) �U2
2E

2(⌧) �U2
3E

2(⌧)

�U1U2E(⌧) �U1U3E(⌧) �U2U3E(⌧)

�U1U2E2(⌧) �U1U3E2(⌧) �U2U3E2(⌧)

where E = "̂� "̂ and E2 = "̂2(t)� "̂2, Ui = ui(t)� ui, U2
i = u2

i (t)� u2
i , with i = 1, 2, 3.

Figures 5.10 and 5.11 show the results of the correlation functions for lag ⌧ ranging

from �5 to 5. All correlation tests, apart from �U2E2(⌧) and �U2
2E

2(⌧) before MPT and

�U1U3E2(⌧) after MPT , are with the 95% confidence intervals defined by ±1.96
p
N , where

N is the total number of data points. The correlation tests demonstrate that the residual

error sequence is unpredictable from all linear and nonlinear combinations of past inputs and

outputs (Billings and Zhu, 1994).
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Figure 5.10: MIMO correlation tests for the model before MPT : a. �E2(⌧), b. �U1E(⌧),
c. �U2E(⌧), d. �U3E(⌧), e. �U1E2(⌧), f. �U2E2(⌧), g. �U3E2(⌧), h. �U2

1E
(⌧), i. �U2

2E
(⌧), j.

�U2
3E

(⌧), k. �U2
1E

2(⌧), l. �U2
2E

2(⌧), m. �U2
3E

2(⌧), n. �U1U2E(⌧), o. �U1U3E(⌧), p. �U2U3E(⌧),
q. �U1U2E2(⌧), r. �U1U3E2(⌧), s. �U2U3E2(⌧).
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Figure 5.11: MIMO correlation tests for the model after MPT : a. �E2(⌧), b. �U1E(⌧),
c. �U2E(⌧), d. �U3E(⌧), e. �U1E2(⌧), f. �U2E2(⌧), g. �U3E2(⌧), h. �U2

1E
(⌧), i. �U2

2E
(⌧), j.

�U2
3E

(⌧), k. �U2
1E

2(⌧), l. �U2
2E

2(⌧), m. �U2
3E

2(⌧), n. �U1U2E(⌧), o. �U1U3E(⌧), p. �U2U3E(⌧),
q. �U1U2E2(⌧), r. �U1U3E2(⌧), s. �U2U3E2(⌧).
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5.5 Discussion

In this chapter the NARMAX methodology introduced in Chapter 3 was applied to identify

models relating the three orbital parameters eccentricity, obliquity and longitude of perihelion

to the oxygen isotope �18O time-series from the Pacific Site 806B, which is a proxy for Earth’s

insolation. A search over the space of polynomial model structures of different orders, with

one, two and three inputs revealed that cubic models with three inputs performed best both

before and after MPT .

This chapter demonstrated for the first time that there is a direct causal link between

the orbital forcing and oxygen isotope time-series. In contrast to previous attempts (Berger

and Loutre, 1992, Imbrie et al., 1992, Rial and Anaclerio, 2000), the model derived in this

chapter is the first model that can predict with such level of accuracy the evolution of the

oxygen isotope time-series and that can reproduce the climate shift observed at the MPT

point using only orbital parameters as inputs. Whilst there are clearly other factors that

influence the response, the accuracy of the model predictions suggest that orbital parameters

were by far the biggest drivers of the climate over the period covered by the studied data set.

The results of the study have confirmed that the underlying mechanism by which the

orbital parameters affect the climate is nonlinear. This study also confirms that all three

orbital parameters are needed to adequately model the data. Furthermore, simulations of

the models over the entire analyzed period (before and after MPT ) show clearly that

the MPT represents a sudden change of nonlinear behaviour as the prediction of both mod-

els deteriorates when the models are simulated on the time period that was not used for

estimation.

The models derived here will be subjected to further analysis in subsequent chapters in

order to characterize and contrast the nonlinear interactions between orbital parameters and

the oxygen isotope time-series before and after MPT .

From the results presented in this section the above methodology proves to be very suited

for modelling and prediction of this type of time-series. The models obtained in this chapter

can be further used for frequency domain study. Although the models reproduce very well

the time-domain signals, they do not offer great explanation for the changes occurred at
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the MPT. Frequency domain mapping and analysis of these will offer a totally different

perspective on the differences between the two estimated models.
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Higher-Order Frequency Domain

Analysis of the Mid-Pleistocene

Transition and the “100 kyr Problem”

6.1 Introduction

Frequency domain analysis provides an alternative analysis approach to the time domain

methods. This chapter deals with the implementation and analysis of the GFRFs and of the

OFRs, derived for the NARMAX models described in Chapter 5, which were estimated for

each of the two time periods studied, namely before and after MPT .

These frequency domain tools can help to investigate how energy is transferred between

certain frequency bands of the inputs to frequency bands of in the output. The analysis

explains the nonlinear mechanisms that gave rise to all frequencies in the output spectrum.

Of particular interest is the frequency ⇠ 1/100 cycles/kyr associated with the so called "100

kyr Problem" described in Chapter 2.

Section 6.2 of this chapter starts with the model transformations which are required for the

GFRF implementation. These involve converting the model into an equivalent representation

that assumes zero mean inputs and has no internal constant. This section also deals with

the computation of the GFRFs and OFRs and the analytical expressions derived using the

theoretical concepts defined in Chapter 4. The GFRFs (Peyton-Jones and Billings, 1989,

111



Chapter 6
6.2. Derivation of the Generalized Frequency Response Functions for the multi-input

NARX model

Billings and Peyton Jones, 1990) are computed using the recursive probing algorithm (Li

and Billings, 2005). The higher order OFRs (Output Frequency Responses) correspond

to individual Volterra kernels of different orders which show explicitly the contributions of

different inputs and nonlinear mechanisms to the overall frequency content of the output

(Lang and Billings, 2005, Peng et al., 2011).

Section 6.3 presents a spectral analysis and comparison of the inputs, outputs and mpos

for the two time periods. The GFRFs and OFRs are used to analyse and compare the

properties of the two models obtained for the two time periods. A detailed analysis of the

OFRs which contribute significantly to the ⇠ 1/100 cycles/kyr frequency is carried out. The

analysis provides a rigorous characterization of the magnitude changes observed after MPT .

6.2 Derivation of the Generalized Frequency Response

Functions for the multi-input NARX model

6.2.1 Model transformations

The two models estimated using the NARMAX methodology in Chapter 5 Section 3.4 for

each of the time periods before and after MPT , were transformed using the two proce-

dures detailed in Chapter 4 sub-section 4.3.7. The NARX model transformation procedures

firstly involve writing the model as an equivalent one that works with zero mean inputs, and

secondly removing the model’s internal constant. The internal constants for each time pe-

riod, corresponding to the fixed points of the models, are calculated as: y0
beforeMPT

= 0.9533

and y0
afterMPT

= 0.9404. It can be seen that both models operate within the neighborhoods

of the same stable equilibrium point.

The model estimated and validated in Chapter 5 Section 3.4 for before MPT (Table

5.2), has 16 process terms and 5 noise terms and is a cubic model and will be denoted model

B . The best model for after MPT is a model of third order nonlinearity degree (Table 5.3)

with 25 pure process terms and 7 noise terms and will be denoted model A. After applying

the model transformations, models that have equivalent response but different structure as

the original ones were obtained. These have 73 terms in the case of model B and 95 terms
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for model A.

The models with zero mean inputs and without the internal constant, obtained by trans-

forming the estimated models before and after MPT are listed in Tables A.1 and A.2 in

Appendix A.

The procedures used to convert the model in the equivalent representations is illustrated

on the 10th term of the model B, Table A.2 in Appendix A, which is ✓b(10)u1(t� 1)u2(t�

3)u3(t � 5), where ✓b(10) is the model coefficient, u1(t) denotes eccentricity , u2(t) obliquity

and u3(t) longitude of perihelion.

In order to have a model with zero mean inputs the following substitution is made:

eui(t) = ui(t)� ui

where ui represents the mean value of ui(t), which for a data-set of N points is given by

ui =
1
N

PN
j=1 uij(t).

When processing this term using the variable change ui(t) = eui(t)+ui, with u1 = 0.0331,

u2 = 23.3348 and u3 = 183.1418, the resulting term becomes:

✓b(10)eu1(t� 1)eu2(t� 3)eu3(t� 5) + ✓b(10)u1eu2(t� 3)eu3(t� 5) + ✓b(10)u2eu1(t� 1)eu3(t� 5)

+✓b(10)u3eu1(t� 1)eu2(t� 3) + ✓b(10)u1u2eu3(t� 5) + ✓b(10)u1u3eu2(t� 3)

+✓b(10)u2u3eu1(t� 1) + ✓b(10)u1u2u3

(6.1)

6.2.2 Computation of the Generalized Frequency Response Func-

tions

The NARMAX model is mapped into the frequency domain by using the probing algorithm

to compute the Generalized Frequency Response Functions (Peyton-Jones and Billings, 1989,

Billings and Peyton Jones, 1990).

The output of a model with three inputs that includes kernels up to order of nonlinearity

three can be written, as detailed in Chapter 4 Section 4.2, as:

113



Chapter 6
6.2. Derivation of the Generalized Frequency Response Functions for the multi-input

NARX model

y(t) =
3X

i=1

ˆ 1

�1
h(1)
i (⌧1)ui(t� ⌧1)d⌧1 +

3X

i=1

ˆ 1

�1

ˆ 1

�1
h(2)
i (⌧1, ⌧2)ui(t� ⌧1)ui(t� ⌧2)d⌧1, d⌧2

+
3X

i=1

3X

j=i+1

ˆ 1

�1

ˆ 1

�1
[h(2)

ij (⌧1, ⌧2) + h(2)
ji (⌧1, ⌧2)]ui(t� ⌧1)uj(t� ⌧2)d⌧1, d⌧2

+
3X

i=1

3X

j=i+1

[

ˆ 1

�1

ˆ 1

�1

ˆ 1

�1
[2h(3)

iij (⌧1, ⌧2, ⌧3) + 2h(3)
iji (⌧1, ⌧2, ⌧3) + 2h(3)

jii (⌧1, ⌧2, ⌧3)]ui(t� ⌧1)

ui(t� ⌧2)uj(t� ⌧3)d⌧1, d⌧2, d⌧3

+

ˆ 1

�1

ˆ 1

�1

ˆ 1

�1
[2h(3)

ijj(⌧1, ⌧2, ⌧3) + 2h(3)
jij(⌧1, ⌧2, ⌧3) + 2h(3)

jji(⌧1, ⌧2, ⌧3)]

ui(t� ⌧1)uj(t� ⌧2)uj(t� ⌧3)d⌧1, d⌧2, d⌧3]

+

ˆ 1

�1

ˆ 1

�1

ˆ 1

�1

3X

i=1

3X

j=1

j 6=i

3X

k=1
k 6=j,i

h(3)
ijk(⌧1, ⌧2, ⌧3) u1(t� ⌧1)u2(t� ⌧2)u3(t� ⌧3)d⌧1, d⌧2, d⌧3

Given that the GFRF definition is:

H(n)(j!1, . . . , j!n) =

ˆ 1

�1
. . .

ˆ 1

�1
h(n)(⌧1, . . . , ⌧n)e

�j(!1⌧1+···+!
n

⌧
n

)d⌧1 . . . d⌧n

and that for any NARX model with one output and three inputs, the GFRFs have the

general form: H(n)

Nu1 . . . Nu1| {z }
n1

Nu2 . . . Nu2| {z }
n2

Nu3 . . . Nu3| {z }
n3

with n being the order of the computed

GFRF and n1 + n2 + n3 = n, the GFRFs to be computed are:

1. First order GFRFs: H1
1 (j!1), H1

2 (j!1) and H1
3 (j!1).

2. Second order GFRFs:

H2
1 (j!1, j!2)

H2
2 (j!1, j!2)

H2
3 (j!1, j!2)

H2
12

avg

(j!1, j!2) =
1
2 [H

2
12(j!1, j!2) +H2

21(j!2, j!1)]

H2
13

avg

(j!1, j!2) =
1
2 [H

2
13(j!1, j!2) +H2

31(j!2, j!1)]

H2
23

avg

(j!1, j!2) =
1
2 [H

2
23(j!1, j!2) +H2

32(j!2, j!1)]

114



Chapter 6
6.2. Derivation of the Generalized Frequency Response Functions for the multi-input

NARX model

3. Third order GFRFs:
H3

1 (j!1, j!2, j!3)

H3
2 (j!1, j!2, j!3)

H3
3 (j!1, j!2, j!3)

H3
112

avg

(j!1, j!2, j!3) =
1
6 [2H

2
112(j!1, j!2, j!3) + 2H2

121(j!1, j!2, j!3) + 2H2
211(j!1, j!2, j!3)]

H3
122

avg

(j!1, j!2, j!3) =
1
6 [2H

2
122(j!1, j!2, j!3) + 2H2

212(j!1, j!2, j!3) + 2H2
221(j!1, j!2, j!3)]

H3
113

avg

(j!1, j!2, j!3) =
1
6 [2H

2
113(j!1, j!2, j!3) + 2H2

131(j!1, j!2, j!3) + 2H2
311(j!1, j!2, j!3)]

H3
133

avg

(j!1, j!2, j!3) =
1
6 [2H

2
133(j!1, j!2, j!3) + 2H2

313(j!1, j!2, j!3) + 2H2
331(j!1, j!2, j!3)]

H3
223

avg

(j!1, j!2, j!3) =
1
6 [2H

2
223(j!1, j!2, j!3) + 2H2

232(j!1, j!2, j!3) + 2H2
322(j!1, j!2, j!3)]

H3
233

avg

(j!1, j!2, j!3) =
1
6 [2H

2
233(j!1, j!2, j!3) + 2H2

323(j!1, j!2, j!3) + 2H2
332(j!1, j!2, j!3)]

H3
123

avg

(j!1, j!2, j!3) =
1
6 [H

2
123(j!1, j!2, j!3) +H2

132(j!1, j!2, j!3) +H2
213(j!1, j!2, j!3)

+H2
231(j!1, j!2, j!3) +H2

312(j!1, j!2, j!3) +H2
321(j!1, j!2, j!3)]

For the estimated NARX models, the following transfer functions were computed: first order

(H1
1 (j!), H1

2 (j!), H1
3 (j!)), second order self-kernel (H2

1 (j!1, j!2), H2
2 (j!1, j!2), H2

3 (j!1, j!2)),

second order cross-kernel (H2
12(j!1, j!2), H2

13(j!1, j!2), H2
23(j!1, j!2)) and third order self-

kernel ones

(H3
1 (j!1, j!2, j!3), H3

2 (j!1, j!2, j!3), H3
3 (j!1, j!2, j!3)). In addition, only for model B the

third order cross-kernel functions (H3
112(j!1, j!2, j!3), H3

122(j!1, j!2, j!3), H3
113(j!1, j!2, j!3),

H3
133(j!1, j!2, j!3),

H3
223(j!1, j!2, j!3), H3

233(j!1, j!2, j!3), H3
123(j!1, j!2, j!3)) were also computed, for reasons

presented in the analysis section.

The following cases describe the inputs used for the probing algorithm and the resulting

GFRFS for different values of n  3 and
P3

k=1 nk = n:

• Setting n = 1, the first order transfer functions are computed by defining the inputs as

single tone ones. By setting each of the inputs at a time to uk(t) = ej!1t and the rest

to zero, as shown in Table 6.1, the first order transfer functions H1
k(j!1) are calculated

by expressing the output of the system as:

y(t) = H1
k(j!1)e

j!1t
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GFRF u1(t) u2(t) u3(t)

H1
1 (j!1) ej!1t 0 0

H1
2 (j!1) 0 ej!1t 0

H1
3 (j!1) 0 0 ej!1t

Table 6.1: Single-tone inputs used to compute the first order GFRFs H1
k(j!1), k = 1, 2, 3.

By substituting the equations for the output and of each of the inputs at a time in the

NARX model, the expressions for the first order transfer functions, H1
1 (j!1), H1

2 (j!1) and

H1
3 (j!1) are obtained.

The resulting symbolical expressions for the first order GFRFs for model B (denoted by

a subscript letter B) are:

H1
1B(j!1) = � 2.91e�6jw1 + 1.2e�1jw1 � 4.36e�8jw1

0.08e�2jw1 � 0.68e�jw1 � 0.25e�3jw1 + 0.08e�4jw1 + 1

H1
2B(j!1) = �(0.19e�jw1 � 0.06e�3jw1 � 0.06e�2jw1 + 0.02e�4jw1 + 0.008e�8jw1)

(0.08e�2jw1 � 0.68e�jw1 � 0.25e�3jw1 + 0.08e�4jw1 + 1)

H1
3B(j!1) =

0.0008e�3jw1 + 0.0005e�6jw1 + 0.0003e�5jw1 + 0.0003e�jw1 � 0.0001e�2jw1 � 0.00008e�4jw1

0.08e�2jw1 � 0.68e�jw1 � 0.25e�3jw1 + 0.08e�4jw1 + 1

The analytical expressions for the first order GFRFs for model A (denoted by a subscript

letter A) are:

H1
1A(j!1) =

4.69e�7jw1 + 4.46e�3jw1 � 11.23e�1jw1 + 3.24e�2jw1

0.48e�2jw1 � 0.78e�1jw1 � 0.25e�3jw1 + 0.009e�4jw1 + 1.0

H1
2A(j!1) = �0.006e�3jw1 � 0.12e�7jw1 + 0.007e�5jw1 + 0.133e�jw1 � 0.115e�2jw1 + 0.197e�8jw1

0.48e�2jw1 � 0.79e�jw1 � 0.25e�3jw1 + 0.009e�4jw1 + 1
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H1
3A(j!1) =

0.000017e�7jw1 + 0.00036e�3jw1 + 0.00046e�jw1

0.48e�2jw1 � 0.78e�jw1 � 0.25e�3jw1 + 0.009e�4jw1 + 1

+
0.00034e�2jw1 + 0.00008e�4jw1 � 0.00003e�8jw1

0.48e�2jw1 � 0.78e�jw1 � 0.25e�3jw1 + 0.009e�4jw1 + 1

• Setting n = 2 and nk = n provides the second order self-kernel transfer functions

H2
k(j!1, j!2). These are calculated by defining each input at a time as a two-tone

input as uk(t) = ej!1t + ej!2t and setting the rest of the inputs to zero, as in Table 6.2.

The output is written as:

y(t) = H1
k(j!1)e

j!1t +H1
k(j!2)e

j!2t + 2!H2
k(j!1, j!2)e

j(!1+!2)t

GFRF u1(t) u2(t) u3(t)

H2
1 (j!1, j!2) ej(!1+!2)t 0 0

H2
2 (j!1, j!2) 0 ej(!1+!2)t 0

H2
3 (j!1, j!2) 0 0 ej(!1+!2)t

Table 6.2: Two-tone inputs used to compute the second order self-kernel GFRFs H2
k(j!1, j!2)

, k = 1, 2, 3.

By substituting y(t) and uk(t) into the NARX model, the expressions for the second

order self-kernel functions, H2
1 (j!1, j!2), H2

2 (j!1, j!2) and H2
3 (j!1, j!2), are obtained. The

higher-order frequency response functions expressions for both models are listed in Appendix

C. Direct interpretation of these functions is difficult and the relationship between the input

and output spectra can be fully characterized by computing the OFRs.

• Setting n = 2, with nk = 1 and nl = 1, the second order cross-kernel averaged transfer

functions H2
kl(j!1, j!2) are calculated. This is done by probing the NARX model with

two single-tone inputs, uk(t) = ej!1t and ul(t) = ej!2t, at a time and setting the rest of

the inputs to zero, as in Table 6.3. In this case the output is written as:

y(t) = H1
k(j!1)e

j!1t +H1
l (j!2)e

j!2t + 2!H2
kl(j!1, j!2)e

j(!1+!2)t
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GFRF u1(t) u2(t) u3(t)

H2
12(j!1) ej!1t ej!2t 0

H2
13(j!1) ej!1t 0 ej!2t

H2
23(j!1) 0 ej!1t ej!2t

Table 6.3: Single-tone inputs used to compute the second order cross-kernels H2
kl(j!1, j!2),

k, l = 1, 2, 3 and k 6= l.

By substituting the output and inputs expression into the NARX models the second

order cross-kernel averaged transfer functions, H2
12(j!1, j!2), H2

13(j!1, j!2), H2
23(j!1, j!2)

are obtained.

• Setting n = 3 and nk = n, the third order self-kernel transfer functions H3
k(j!1, j!2, j!3)

are calculated. This is done by defining each input as a three-tone input as uk(t) =

ej!1t + ej!2t + ej!3t and setting the rest to zero, as in Table 6.4.

GFRF u1(t) u2(t) u3(t)

H3
1 (j!1, j!2, j!3) ej(!1+!2+!3)t 0 0

H3
2 (j!1, j!2, j!3) 0 ej(!1+!2+!3)t 0

H3
3 (j!1, j!2, j!3) 0 0 ej(!1+!2+!3)t

Table 6.4: Three-tone inputs used to compute the third order self-kernel GFRFs
H3

k(j!1, j!2, j!3), k = 1, 2, 3.

In this case the output is written as:

y(t) = H1
k(j!1)e

j!1t +H1
k(j!2)e

j!2t +H1
k(j!3)e

j!3t + 2!H2
k(j!1, j!2)e

j(!1+!2)t

+ 2!H2
k(j!1, j!3)e

j(!1+!3)t + 2!H2
k(j!2, j!3)e

j(!2+!3)t + 3!H3
k(j!1, j!2, j!3)e

j(!1+!2+!3)t

By substituting the output and input expressions into the NARX model, the third order self-

kernel transforms H3
1 (j!1, j!2, j!3), H3

2 (j!1, j!2, j!3) and H3
3 (j!1, j!2, j!3) are obtained.
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• Setting n = 3 and nk = 2 and nl = 1 the third order cross-kernel averaged transfer

functions H3
kkl(j!1, j!2, j!3) are calculated. This is done by using one two-tone input

uk(t) = ej!1t + ej!2t and one single-tone input ul(t) = ej!3t and setting all the other

inputs to zero, as in Table 6.5.

GFRF u1(t) u2(t) u3(t)

H3
112(j!1, j!2, j!3) ej(!1+!2)t ej!3t 0

H3
122(j!1, j!2, j!3) ej!1t ej(!2+!3)t 0

H3
113(j!1, j!2, j!3) ej(!1+!2)t 0 ej!3t

H3
133(j!1, j!2, j!3) ej!1t 0 ej(!2+!3)t

H3
223(j!1, j!2, j!3) 0 ej(!1+!2)t ej!3t

H3
233(j!1, j!2, j!3) 0 ej!1t ej(!2+!3)t

Table 6.5: Single- and two-tone inputs used to compute the third order cross-kernel GFRFs
H2

kkl(j!1, j!2, j!3), k, l = 1, 2, 3 and k 6= l.

In this case the output is written as

y(t) = H1
k(j!1)e

j!1t +H1
k(j!2)e

j!2t +H1
l (j!3)e

j!3t + 2!H2
k(j!1, j!2)e

j(!1+!2)t

+ 2!H2
kl(j!1, j!3)e

j(!1+!3)t + 2!H2
kl(j!2, j!3)e

j(!2+!3)t + 3!H3
kkl(j!1, j!2, j!3)e

j(!1+!2+!3)t

The transfer functions computed in this case are H3
112(j!1, j!2, j!3), H3

122(j!1, j!2, j!3),

H3
113(j!1, j!2, j!3), H3

133(j!1, j!2, j!3), H3
223(j!1, j!2, j!3), H3

233(j!1, j!2, j!3).

• Setting n = 3 and n1 = 1, n2 = 1 and n3 = 1 the third order cross-kernel averaged

transfer function, H3
123(j!1, j!2, j!3), is calculated by probing the NARX model with

three single-tone inputs: u1(t) = ej!1t, u2(t) = ej!2t and u3(t) = ej!3t.

In this case the output is written as

y(t) = H1
1 (j!1)e

j!1t +H1
2 (j!2)e

j!2t +H1
3 (j!3)e

j!3t + 2!H2
12(j!1, j!2)e

j(!1+!2)t

+ 2!H2
13(j!1, j!3)e

j(!1+!3)t + 2!H2
23(j!2, j!3)e

j(!2+!3)t + 3!H3
123(j!1, j!2, j!3)e

j(!1+!2+!3)t
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6.2.3 Computation of the Output Frequency Responses

This section deals with the evaluation and analysis of the Output Frequency Responses. The

OFRs are one-dimensional complex functions of frequency, which makes them easily analysed

and plotted. The OFRs are easier to analyse and interpret when compared to the multi-

dimensional GFRFs. As it was shown in Section 6.2.2, the second or higher order GFRFs are

difficult to interpret and analyse. The OFRs, due to their one-dimensional property, facilitate

the analysis of the contributions of different input combinations to the output frequency. The

OFRs are computed based on the GFRFs H(n)(j!1 . . . j!n) and the given frequency spectra

Ui(j!) corresponding to the inputs ui(t) with i = 1, 2, 3.

The output spectrum for a nonlinear system is written as:

Y (j!) = Y 1(j!) + Y 2(j!) + Y 3(j!) + higher order (6.2)

Each OFR Y (n)(j!) can be written as (Lang and Billings, 1997):

Y (n)(j!) =
1

2n�1

X

N1+···+N
m

=n

X

!1+···+!
n

=!

H(n)
(P1=N1,...,Pm

=N
m

)(j!1 . . . j!n) (6.3)

mY

j=1

N0+···+N
jY

i=N0+···+N
j�1+1

)Uj(j!i)d⌧n!

Writing equation (6.3) for n = 1 yields the first order OFRs sum as:

Y 1(j!) =
X

!1=!

H1
1 (j!1)U1(j!1) +

X

!1=!

H1
2 (j!1)U2(j!1) +

X

!1=!

H1
3 (j!1)U3(j!1) (6.4)

From (6.4) it follows that:

Y 1(j!) = Y 1
1 (j!) + Y 1

2 (j!) + Y 1
3 (j!)

When substituting n = 2 in equation (6.3), the second order OFRs sum is computed
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as:

Y 2(j!) =
1

2

X

!1+!2=!

H2
1 (j!1, j!2)U1(j!1)U1(j!2) +

1

2

X

!1+!2=!

H2
2 (j!1, j!2)U2(j!1)U2(j!2)

+
1

2

X

!1+!2=!

H2
3 (j!1, j!2)U3(j!1)U3(j!2) +

1

2

X

!1+!2=!

H2
12(j!1, j!2)U1(j!1)U2(j!2)(6.5)

+
1

2

X

!1+!2=!

H2
13(j!1, j!2)U1(j!1)U3(j!2) +

1

2

X

!1+!2=!

H2
23(j!1, j!2)U2(j!1)U3(j!2)

Equation (6.5) is then written as:

Y 2(j!) = Y 2
1 (j!) + Y 2

2 (j!) + Y 2
3 (j!) + Y 2

12(j!) + Y 2
13(j!) + Y 2

23(j!)

The third order OFRs sum is obtained by substituting n = 3 in equation (6.3), as:
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Y 3(j!) =
1

4

X

!1+!2+!3=!

H3
1 (j!1, j!2, j!3)U1(j!1)U1(j!2)U1(j!3)

+
1

4

X

!1+!2+!3=!

H3
2 (j!1, j!2, j!3)U2(j!1)U2(j!2)U2(j!3)

+
1

4

X

!1+!2+!3=!

H3
3 (j!1, j!2, j!3)U3(j!1)U3(j!2)U3(j!3)

+
1

4

X

!1+!2+!3=!

H3
112(j!1, j!2, j!3)U1(j!1)U1(j!2)U2(j!3)

+
1

4

X

!1+!2+!3=!

H3
122(j!1, j!2, j!3)U1(j!1)U2(j!2)U2(j!3)

+
1

4

X

!1+!2+!3=!

H3
113(j!1, j!2, j!3)U1(j!1)U1(j!2)U3(j!3)

+
1

4

X

!1+!2+!3=!

H3
133(j!1, j!2, j!3)U1(j!1)U3(j!2)U3(j!3)

+
1

4

X

!1+!2+!3=!

H3
223(j!1, j!2, j!3)U2(j!1)U2(j!2)U3(j!3)

+
1

4

X

!1+!2+!3=!

H3
233(j!1, j!2, j!3)U2(j!1)U3(j!2)U3(j!3)

+
1

4

X

!1+!2+!3=!

H3
123(j!1, j!2, j!3)U1(j!1)U2(j!2)U3(j!3) (6.6)

Equation (6.6) can be written in compact form as:

Y 3(j!) = Y 3
1 (j!) + Y 3

2 (j!) + Y 3
3 (j!) + Y 3

112(j!) + Y 3
122(j!) + Y 3

113(j!) + Y 3
133(j!)

+ Y 3
223(j!) + Y 3

233(j!) + Y 3
123(j!)

6.3 Analysis of the GFRF and OFR Results

In this section the GFRFs expressions derived in Section 6.2.2 are used to plot the functions

response. This is useful in order to generally compare the results of the GFRFs for the two

time periods. Also, the planes f1 + f2 = f , where f is in turns the frequency corresponding
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to the period of interest ⇠ 100 and 41 kyr, are extracted. This is presented in order to see

the magnitude spectrum and phase functions that can contribute to the output spectrum at

the frequency f .

The OFR results analysis can tell which of the individual OFRs contribute significantly

to the output spectrum. By knowing this it is then possible to know if a certain output

frequency is a result of amplifying or dampening one or more input frequencies through the

first order OFRs or if energy was transferred between frequency bands through the higher

order OFRs.

6.3.1 Spectral Analysis of the Data

Many authors (Rial and Anaclerio, 2000, Lisiecki, 2010, Berger and Loutre, 1997a, Imbrie

et al., 1993, Raymo, 1997) have explained the MPT dominant period shift from 41 kyr before

MPT to ⇠ 100 kyr after MPT and also the appearance of the ⇠ 100 kyr period after

MPT by coupling between frequencies associated to orbital parameters and energy transfer

from some input frequency bands to other output frequency bands. It is therefore necessary

for the analysis performed on the GFRFs and OFRs results that the input and output dataset

spectrum be detailed first.

In order to compute and analyse the spectra of the input and output dataset, it is nec-

essary to firstly define the frequency range used to compute the frequency response. For the

time period before MPT , a 142 points FFT was computed to evaluate the input and output

spectrum. This gives the normalized frequency interval !B and a frequency sampling step of

� = 0.0442. Given that fB = ( fs2⇡ )!B, with fs = 0.25 cycles/kyr, the corresponding actual

frequency range is

fB = [�0.1232, 0.1232] cycles/kyr

In the case of the dataset for the time period after MPT , a 214 points FFT was computed

for the available data. The frequency sampling step for the normalized frequency interval !A

was � = 0.0294. Following the same procedure as before, the corresponding actual frequency

range is:
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fA = [�0.1238, 0.1238] cycles/kyr

For clarity, in this study, when referring to particular frequencies of interest the following

notation is used:

fT =
1

T
(6.7)

where T is the period in kyr.

For example, for the period 95 kyr the corresponding frequency is 0.0105 cycles/kyr and

the frequency notation will be f95.

Figure 6.1 shows the magnitude spectrum of the three inputs (eccentricity, obliquity and

longitude of perihelion) for each of the two studied time periods. For the input eccentricity

(u1) in Figures 6.1a and 6.1b, it can be seen that before MPT the dominant frequency is

f95, and the corresponding magnitude value of 0.0069. In the eccentricity spectrum after

MPT there is also a significant peak located at f95, but the magnitude value is 0.0038, which

is almost half of the corresponding one before MPT . Two other peaks with high magnitude

values are found in the spectrum after MPT at the frequencies: f428 and the magnitude

value of 0.0056 and f122 and the magnitude value of 0.0036.

Figures 6.1c and 6.1d show the spectrum of the input obliquity (u2) before and after

MPT , respectively. From these plots it can clearly be seen that the spectrum of the signal

does not change between the two time periods. The main peak in both signals is at f41 and

the magnitude value is 0.32 for before MPT and 0.38 for after MPT .

The spectra of the longitude of perihelion (u3) before and after MPT , illustrated in

Figures 6.1e and 6.1f, show that the main peaks of the spectrum for both time periods are

around the frequencies f23 and f19. The magnitude value corresponding to the frequency

⇠ f23 is 33.61 before MPT and 33.7 after MPT . It can be observed that the magnitude

value at this frequency does not change during and after the MPT. The magnitude values

corresponding to ⇠ f19 is 31.51 before MPT and 22.31 after MPT , which shows a decrease

in the magnitude value this frequency. The magnitude spectrum after MPT also shows a

third high peak at tf12, which has the respective magnitude value of 17.65.
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Figure 6.1: Spectrum of the orbital parameters: a., b. eccentricity, c., d. obliquity, e., f.
longitude of perihelion for the time period: a., c., e. before MPT and b., d., f. after
MPT .

It can be seen from Figure 6.1 that the energy of these signals is concentrated in the same

frequency bands for both time periods, which for eccentricity is [f122, f95], for obliquity the

dominant frequency is f41 and for longitude of perihelion the interval is [f24, f19].
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Figure 6.2: Spectrum of the �18O (blue) and mpo (green) a. before MPT (using 71 points
to compute the positive FFT) and b. after MPT (using 107 points to compute the positive
FFT).

Figure 6.2 shows for each of the time periods the magnitude spectrum of the oxygen

isotope ratios data �18O, denoted by Z(j!) , superimposed on the spectrum of the model

predicted output calculated using the fitted NARX models. As it can be seen the magnitude

spectra of the mpo matches closely the spectra of the two isotope ratio data sets. The

dominant magnitude peak in the spectrum before MPT is clearly at the frequency f41.

After MPT the dominant magnitude peaks are located in the frequency band [f120, f93]

band. Before MPT the exact magnitude peaks locations are at f113 (⇠ f100) and f41, and

after MPT at f95 (⇠ f100) and f41.

It can be seen that the spectrum of the mpo reproduces well the change from a dominant

output frequency f41 before MPT , which also dominates the obliquity spectrum, to the

frequency f95 after MPT , which features strongly in the eccentricity spectrum. Also, from

Figure 6.2 it can be seen that the magnitude of the spectrum of the mpo at the frequency

f41 does not change significantly, from 0.0716 (0.0772 for |ZB(j!|) to 0.0848 (0.0817 for

|ZA(j!)|). At ⇠ f100 the observed change in the mpo spectrum is more dramatic, to almost

twice the magnitude value, from 0.0541 (0.0634 for |ZB(j!)|) to 0.0948 (0.1188 for |ZA(j!)|).
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Other frequencies observed in the �18O spectrum (Figure 6.2) are either clearly harmonics

of the orbital parameters frequencies, such as f71 = 6f428 and f142 = 3f428, or are their

subharmonics, such as f284 =
f95
3 .

The main frequency of interest will be referred to as ⇠ f100 and the frequency functions in-

formation (magnitude and phase function values) necessary for the analysis will be extracted

from f113 before MPT and f95 after MPT .

6.3.2 Analysis and Comparison of the Generalized Frequency Re-

sponse Functions Results

Using the expressions of the GFRFs derived in Section 6.2.2 and the frequencies ! defined in

Section 6.3.1, the magnitude and phase functions for each GFRF are calculated and plotted.

Figures 6.3 and 6.4 show the plots of the magnitude and phase functions, respectively,

for the first order GFRFs.

Figure 6.3: Magnitude functions for the first order GFRFs: a. |H1
1 (j!1)|, b. |H1

2 (j!1)| and
c. |H1

3 (j!1)| before MPT (blue) and after MPT (green).
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Figure 6.4: Phase functions for the first order GFRFs: a. \H1
1 (j!1), b. \H1

2 (j!1) and c.
\H1

3 (j!1) for before MPT (blue) and after MPT. (green)

Figure 6.3a shows H1
1 (j!) for models B (blue) and A (green). It can be seen that

|H1
1A(j!)| > |H1

1B(j!)|. Also the location of the magnitude peaks changes. Frequencies cor-

responding to the magnitude peaks change as following: before MPT the two main peaks,

located at the frequencies f95 and f19 have the magnitudes of 9.48 and 7.62. After MPT ,

the three main magnitude peaks are located at the frequencies f17, f57 and f10 and have the

magnitudes of 28.83, 21.01 and 7.83, respectively. Given H1
1 (j!) has the largest magnitude

values of all the first order transfer functions, it is reasonable to assume that, through this

linear FRF, the eccentricity contributes the most to the output spectrum, especially after

MPT .

Figure 6.3b, which shows H1
2 (j!) for the two time periods, reveals that before MPT the

major magnitude peaks are located at the frequencies f284 and f14 with the corresponding

magnitudes of 0.43 and 0.53. After MPT the main magnitude peaks are located at the

frequencies f34, f16 and f10 and have the magnitudes 0.32, 0.53 and 0.25, respectively.

When analysing |H1
3 (j!)| shown in Figure 6.3c, it can be seen that both magnitude curves

have maximum values less than 10�3, which implies that the contribution of H1
3 (j!) to the
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output spectrum will be small for both time periods.

The phase of the frequency transfer function was analyzed in a small interval of frequencies

around the frequencies of interest, namely ⇠ f100 and f41. These intervals are marked with

grey in Figure 6.4. For the interval [f1, f2] providing the frequencies around ⇠ f100, the most

significant difference between the two time periods is in the phase functions corresponding to

H1
1 (j!), shown in Figure 6.4a, which are 162.71� before MPT and �149.35� after MPT .

Around f41 both H1
2 (j!), shown in Figure 6.4b, and H1

3 (j!), shown in Figure 6.4c, show

very dramatic difference between the phase functions. It is interesting to notice that in this

interval of frequencies, H1
2A(j!) presents a large difference between the phase functions, from

131.59� before MPT to �166.75� after MPT . A large difference also appears in the phase

of H1
3B(j!) at f41, with the phase functions value changing from 170.69� before MPT to

�94.89� after MPT . The fact that these differences appear in the interval of frequencies

around f41 cycles/kyr could also contribute to the shift in frequencies of oscillation observed

during the Mid-Pleistocene Transition.

Tables 6.6 and 6.7 summarize the magnitudes and phase values for the first order GFRFs

before and after MPT at the frequencies of interest ⇠ f100 and f41, respectively.

i |H1
iB(j!)| |H1

iA(j!)| \H1
iB(j!) \H1

iA(j!) Phase difference
1 9.2223 17.6665 162.71� �149.35� 312.05�

2 0.3022 0.1063 137.55� 37.04� 100.52�

3 0.0046 0.0024 �89.70� �45.63� �44.07�

Table 6.6: Magnitude and phase functions values at the frequency ⇠ f100 for the first order
GFRFs.

i |H1
iB(j!)| |H1

iA(j!)| \H1
iB(j!) \H1

iA(j!) Phase difference
1 5.9351 18.6693 7.24� 140.63� �133.39�

2 0.1988 0.2954 131.59� �166.75� 298.46�

3 0.0012 0.0017 170.69� �94.89� 265.59�

Table 6.7: Magnitude and phase functions values at the frequency ⇠ f41 for the first order
GFRFs.

Figures 6.5, 6.7, 6.9, 6.11, 6.13 and 6.15 show the magnitudes for each of the second

order GFRFs H2
1 (j!1, j!2), H2

2 (j!1, j!2), H2
3 (j!1, j!2), H2

12(j!1, j!2), H2
13(j!1, j!2) and
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H2
23(j!1, j!2) before and after MPT . The figures also show sections through the mag-

nitude functions along the lines f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green).

Figures 6.6, 6.8, 6.10, 6.12, 6.14 and 6.16 show the phase functions of each of the GFRFs

H2
1 (j!1, j!2), H2

2 (j!1, j!2), H2
3 (j!1, j!2), H2

12(j!1, j!2), H2
13(j!1, j!2) and H2

23(j!1, j!2),

respectively, before and after MPT and also the corresponding phase of the section along

f1 + f2 =⇠ f100 and f1 + f2 = f41.

Figure 6.5: Magnitude functions for the second order self-kernel GFRFs: a. |H2
1B(j!1)| c.

|H2
1A(j!1)|, and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before MPT

and d. after MPT.
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Figure 6.6: Phase functions for the second order self-kernel GFRFs: a. \H2
1B(j!1, j!2), c.

\H2
1A(j!1, j!2), and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before

MPT and d. after MPT .

Figure 6.7: Magnitude functions for the second order self-kernel GFRFs: a. |H2
2B(j!1)|, c.

|H2
2A(j!1)|, and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before MPT

and d. after MPT .
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Figure 6.8: Phase functions for the second order self-kernel GFRFs: a. \H2
2B(j!1, j!2), c.

\H2
2A(j!1, j!2), and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before

MPT and d. after MPT .

Figure 6.9: Magnitude functions for the second order self-kernel GFRFs: a. |H2
3B(j!1)|, c.

|H2
3A(j!1)|, and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before MPT

and d. after MPT .
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Figure 6.10: Phase functions for the second order self-kernel GFRFs: a. \H2
3B(j!1, j!2), c.

\H2
3A(j!1, j!2), and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before

MPT and d. after MPT .

Figure 6.11: Magnitude functions for the second order self-kernel GFRFs: a. |H2
12B(j!1)|, c.

|H2
12A(j!1)|, and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before MPT

and d. after MPT
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Figure 6.12: Phase functions for the second order self-kernel GFRFs: a. \H2
12B(j!1, j!2), c.

\H2
12A(j!1, j!2), and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before

MPT and d. after MPT .

Figure 6.13: Magnitude functions for the second order self-kernel GFRFs: a. |H2
13B(j!1)|, c.

|H2
13A(j!1)|, and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before MPT

and d. after MPT .
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Figure 6.14: Phase functions for the second order self-kernel GFRFs: a. \H2
13B(j!1, j!2), c.

\H2
13A(j!1, j!2), and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before

MPT and d. after MPT .

Figure 6.15: Magnitude functions for the second order self-kernel GFRFs: a. |H2
23B(j!1)|, c.

|H2
23A(j!1)|, and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before MPT

and d. after MPT .
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Figure 6.16: Phase functions for the second order self-kernel GFRFs: a. \H2
23B(j!1, j!2), c.

\H2
23A(j!1, j!2), and the planes f1 + f2 =⇠ f100 (red) and f1 + f2 = f41 (green) b. before

MPT and d. after MPT .

Figure 6.17: a., c. Magnitudes |H3
123B(j!1, j!2, j!3)| for f3 = f � f1 � f2 and b., d. the

planes f1 + f2 + f3 = f with f3 = f100 (red) and f3 = f41(green) for a, b. f = f100, c,d.
f = f41 for before MPT.
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Figure 6.18: a., c. Phase functions \H3
123b(j!1, j!2, j!3), for f3 = f � f1 � f2 and b., d. the

phase planes f1 + f2 + f3 = f with f3 = f100 (red) and f3 = f41(green) for a, b. f = f100, c,
d. f = f41 for before MPT.

The most significant magnitude peaks in the second order GFRFs are given in Table 6.8

and shown on the contour maps for each GFRF in Figures 6.19 and 6.20.
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GFRF Peaks (f1, f2) Located on
H2

1B(j!1, j!2) (f95,�f95), (�f95, f95), (f17,�f17), (�f17, f17) f1 + f2 = 0

H2
1A(j!1, j!2)

(f17,�f17), (�f17, f17) f1 + f2 = 0
(f61,�f17), (�f17, f61), (f17,�f61), (�f61, f17)

H2
2B(j!1, j!2) (f12,�f12), (�f12, f12), (f23,�f23), (f23,�f23), f1 + f2 = 0

(f10,�f10), (�f10, f10)

H2
2A(j!1, j!2)

(f16,�f16), (�f16, f16), (f31,�f31), f1 + f2 = 0
(f16,�f10), (f10,�f16) and (�f16, f10), (�f10, f16) f1 � f2 = ±1

6
(f31,�f16), (f16,�f31) and (�f31, f16), (�f16, f31) f1 � f2 = ±f10

H2
3B(j!1, j!2)

(f17,�f17), (�f17, f17), (f8,�f8), (f8,�f8), f1 + f2 = 0
(f555,�f555), (�f555, f555)

(f8, f8), (�f8,�f8) f1 � f2 = 0

H2
3A(j!1, j!2)

(f9,�f9), (�f9, f9) f1 + f2 = 0
(f9, f9), (�f9,�f9), (f48, f48), (�f48,�f48) f1 � f2 = 0

H2
12B(j!1, j!2) (f142,�f555), (�f142, f555), (f17,�f23), (�f17, f23), f1 + f2 ' 0

(f16,�f16), (�f16, f16)
H2

12A(j!1, j!2) f1 is in the interval ±[f17, f16] and
f2 has the values: f2 = {⌥f16,⌥f31,⌥f10}

H2
13B(j!1, j!2)

(f12,�f12), (�f12, f12), (f10,�f10), (�f10, f10), f1 + f2 = 0
(f17,�f16), (�f17, f16)

(f142,�f284), (�f142, f284) f1 + f2 ' 0
H2

13A(j!1, j!2) (f17,�f113), (�f17, f113), (f16,�f16), (�f16, f16)
H2

23B(j!1, j!2) (f13,�f13), (�f13, f13), (f555,�f555), (�f555, f555) f1 + f2 = 0

H2
23A(j!1, j!2)

(f16,�f16), (�f16, f16), (f856,�f428), (�f856, f428) f1 + f2 = 0
(�f57, f16), (f57,�f16), (f50,�f31), (�f50, f31),
(f8,�f16), (�f8, f16), (f8, f16), (�f8,�f16)

Table 6.8: Location of the main peaks in the second order GFRFs.
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Figure 6.19: Contour maps showing the significant peaks locations for the second order self-
kernel GFRFs: a. H2

1B(j!1, j!2), b. H2
1A(j!1, j!2), c. H2

2B(j!1, j!2), d. H2
2A(j!1, j!2),

the green lines represent the planes f1 � f2 = ±f10 and the red lines represent the planes
f1�f2 = ±f6, e. H2

3B(j!1, j!2), the red line represents the plane f1�f2 = 0, f. H2
3A(j!1, j!2),

the red line represents the plane f1 � f2 = 0. In all plots diagonal black line represents the
plane f1 + f2 = 0 and all the significant peaks locations (f1, f2) are listed in Table 6.8.
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Figure 6.20: Contour maps showing the significant peaks locations for the second order cross-
kernel GFRFs: a. H2

12B(j!1, j!2), b. H2
12A(j!1, j!2), c. H2

13B(j!1, j!2), d. H2
13A(j!1, j!2),

e. H2
23B(j!1, j!2), f. H2

23A(j!1, j!2). Where present, the diagonal black line represents the
plane f1 + f2 = 0 all the significant peaks locations (f1, f2) are listed in Table 6.8.

The third order GFRFs cannot be plotted in full so in order to visualise the results

slices through H3(!1,!2,!T � !1 � !2) were computed by setting !3 + !2 + !1 = !T , where

!T = 2⇡fT corresponds to a frequency of interest. Figure 6.17 presents for comparison the

results of plotting the third order GFRF H3
123(j!1, j!2, j!3) for f taking in turns the values

of the frequencies of interest fT = f100 and fT = f41.
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6.3.3 Analysis and Comparison of the Output Frequency Responses

Results

Using the expressions of the OFRs as derived in Section 6.2.3, the magnitude and phase

functions for each OFR are calculated and plotted for the frequency range given by !.

Figures 6.21, 6.22 and 6.23 show the magnitudes and phase functions of each of the first

order OFRs Y 1
1 (j!), Y 1

2 (j!) and Y 1
3 (j!), respectively.

Figure 6.21: a. Magnitude |Y 1
1 (j!)| and b. Phase functions \Y 1

1 (j!) of Y 1
1 (j!) before

MPT (blue) and after MPT (green).

Figure 6.21a shows that the maximum value of |Y 1
1 (j!)| has the same value of 0.068 and

corresponds to the same frequency f95 for both periods. |Y 1
1A(j!)| also has significant peaks

located at the frequencies f122 and f428.
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Figure 6.22: a. Magnitude |Y 1
2 (j!)| and b. Phase functions \Y 1

2 (j!) of Y 1
2 (j!) for before

MPT (blue) and after MPT (green).

Figure 6.22a shows that the largest magnitudes of the OFRs |Y 2
1B(j!)| and |Y 2

1A(j!)| are

located at the frequency f41. There is an almost 100% increase in the magnitude of Y 2
1 (j!)

at f41 from a value of 0.066 before MPT to 0.11 after MPT .

Figure 6.23: a. Magnitude |Y 1
3 (j!)| and b. Phase functions \Y 1

3 (j!) of Y 1
3 (j!) before

MPT (blue) and after MPT (green).

Figure 6.23a shows that the largest magnitude of |Y 1
3B(j!)| is 0.025 and is located at

the frequency f142, and the largest magnitude for |Y 1
3A(j!)| is 0.032 and is located at the
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frequency f23. The magnitude values of Y 1
3B(j!) in the interval of frequencies [f115, f93]

are roughly twice compared to the magnitude values of Y 1
3A(j!), so a drastic decrease in

magnitude is observed at the frequency ⇠ f100.

Figures 6.24, 6.25 and 6.26 show the magnitude and phase functions of the second order

self-kernel OFRs Y 2
1 (j!), Y 2

2 (j!) and Y 2
3 (j!), respectively.

Figure 6.24: a. Magnitude |Y 2
1 (j!)| and b. Phase functions \Y 2

1 (j!) of Y 2
1 (j!) before

MPT (blue) and after MPT (green).

The maximum |Y 2
1B(j!)| is 0.0066 and is located at the frequency f189 and the largest

|Y 2
1A(j!)| is 0.0059 and is located at the frequency f95. This latest value is considerably larger

than the value 0.0027 of |Y 2
1B(j!)| at the frequency ⇠ f100. This shows that Y 2

1 (j!) at the

frequency ⇠ f100 has doubled after MPT .
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Figure 6.25: a. Magnitude |Y 2
2 (j!)| and b. Phase functions \Y 2

2 (j!) of Y 2
2 (j!) before

MPT (blue) and after MPT (green).

The plot for Y 2
2 (j!) shows that for both of the time periods the highest peaks are at f21.

The magnitudes of Y 2
2B(j!) and Y 2

2A(j!) at this frequency are 0.0030 and 0.0187 respectively.

Overall |Y 2
2A(j!)| > |Y 2

2B(j!)|. At the frequency f100 a major magnitude increase is observed

from 0.0006 in Y 2
2B(j!) to 0.0070 in Y 2

2A(j!).

Figure 6.26: a. Magnitude |Y 2
3 (j!)| and b. Phase functions \Y 2

3 (j!) of Y 2
3 (j!) before

MPT (blue) and after MPT (green).

Y 2
3 (j!) does not show significant differences between the magnitude values of the sig-
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nals corresponding to the two time periods, and this hold for the two intervals of interest

emphasized in Figure 6.26a.

Figures 6.27, 6.28 and 6.29 show the magnitudes and phase functions of the second order

cross-kernel OFRs Y 2
12(j!), Y 2

13(j!) and Y 2
23(j!), respectively.

Figure 6.27: a. Magnitude |Y 2
12(j!)| and b. Phase functions \Y 2

12(j!) of Y 2
12(j!) before

MPT (blue) and after MPT (green).

For Y 2
12(j!), in both cases, the largest magnitude is located at the frequency f71, with

|Y 2
12B(j!)| = 0.0045 and |Y 2

12A(j!)| = 0.0095. Overall, although the location of the main

peaks are at similar frequencies in both spectra, |Y 2
12A(j!)| shows significantly increased

values compared to |Y 2
12B(j!)| .
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Figure 6.28: a. Magnitude |Y 2
13(j!)| and b. Phase functions \Y 2

13(j!) of Y 2
13(j!) before

MPT (blue) and after MPT (green).

When looking at the magnitude plot of Y 2
13(j!) in Figure 6.28a, it can be seen that the

main peaks are found at higher frequencies, starting at or after ⇠ f27. The spectrum does

not show a significant change at the frequency f41. The change however is noticeable when

analysing the interval [f115 � f93]. Here the magnitude after MPT decreases to half the

value of the magnitude before MPT .

Figure 6.29: a. Magnitude |Y 2
23(j!)| and b. Phase functions \Y 2

23(j!) of Y 2
23(j!) before

MPT (blue) and after MPT (green).
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Figure 6.29a shows that overall |Y 2
23B(j!)| < |Y 2

23A(j!)|. The largest magnitude of

Y 2
23B(j!) is 0.0014 and the one for Y 2

23A(j!) is 0.0069. Both these values are located at

the frequency f57, which can be a subharmonic of f19, a frequency found in the spectrum of

u3(t), and can be written as f57 =
1
3f19.

Figure 6.30: Magnitude a. |Y 3
1 (j!)|, b. |Y 3

2 (j!)|, c. |Y 3
3 (j!)| and Phase functions d.

\Y 3
1 (j!), e. \Y 3

2 (j!), f. \Y 3
3 (j!) before MPT (blue) and after MPT (green).

Figure 6.30 shows the magnitudes and phase functions for the third order self-kernel

OFRs Y 3
1 (j!), Y 3

2 (j!) and Y 3
3 (j!) before and after MPT . Figure 6.30a shows that the

maximum of both |Y 3
1B(j!)| and |Y 3

1A(j!)| is located at the frequency f95, frequency found

in the spectrum of u1(t). The values of the largest magnitudes are 0.0042 for |Y 3
1B(j!)| and

0.0032 for |Y 3
1A(j!)|. As it can be observed, the values are very close. The second largest

value for |Y 3
1B(j!)| is 0.0033 and is located at the frequency f142 and for |Y 3

1A(j!)| is 0.0029

and is located at the frequency f122.

Figure 6.30b reveals that |Y 3
2B(j!)| ⌧ |Y 3

2A(j!)|. The largest |Y 3
1B(j!)| is 0.00029 and

the largest |Y 3
2A(j!)| is 0.018 and are both located at the frequency f41.

Figure 6.30c shows that for |Y 3
3B(j!)| the four largest values are 0.032, 0.026, 0.024 and

0.018 and are located at the frequencies f284, f19, f23 and f113, respectively. For |Y 3
3A(j!)| the
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largest values are 0.013, 0.012 and 0.006 and are located at the frequencies f23, f22 and f107,

respectively. The phase functions for both Y 3
3B(j!) and Y 3

3A(j!) in the interval of frequency

[f115, f93] has similar values (⇠ �160�).

Figure 6.31: Magnitudes of the third order cross-kernel OFRs: a. |Y 3
112B(j!)|, b. |Y 3

122B(j!)|,
c. |Y 3

113B(j!)|, d. |Y 3
133B(j!)|, e. |Y 3

223B(j!)|, f. |Y 3
233B(j!)|, g. |Y 3

123B(j!)| before MPT .

The third order cross-kernel OFRs Y 3
112B(j!), Y 3

122B(j!), Y 3
113B(j!), Y 3

133B(j!), Y 3
223B(j!),

Y 3
233B(j!) and Y 3

123B(j!) were computed for the time period before MPT only. They are

shown in Figure 6.31 and the details of the major peaks are given in Table 6.9.
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OFR Peak 1 Peak 2 (if significant)
Magnitude Frequency (cycles/kyr) Magnitude Frequency (cycles/kyr)

Y 3
112B(j!) 0.00084 f41 -

Y 3
122B(j!) 0.00027 f95 0.00022 f26

Y 3
113B(j!) 0.0015 f284 0.0015 f113

Y 3
133B(j!) 0.018 f95 0.011 f142

Y 3
223B(j!) 0.00027 f284 -

Y 3
233B(j!) 0.011 f41 -

Y 3
123B(j!) 0.00028 f95 0.00028 f189

Table 6.9: Magnitudes and location of the significant peaks in the third order cross-kernel
OFRs before MPT .

6.3.4 Analysis of the Changes Occurred During the MPT at ⇠ f100

cycles/kyr Using the OFRs Results

As given in equation (6.2.3) the output spectrum Y (j!) is the sum of the output frequency

responses corresponding to all the GFRFs. For the time period before MPT , YB(j!) is

approximated well, as seen in Figure 6.32a, by the sum:

eYB(j!) =
3X

i=1

Y 1
iB(j!) +

3X

i=1

Y 2
iB(j!) + Y 2

12B(j!) + Y 2
13B(j!) + Y 2

23B(j!) +
3X

i=1

Y 3
iB(j!)

For the time period after MPT the third order cross-kernel OFRs Y 3
112(j!), Y 3

122(j!),

Y 3
113(j!), Y 3

133(j!), Y 3
223(j!),Y 3

233(j!) and Y 3
123(j!) had to be calculated additionally in order

to approximate YA(j!) by the OFR sum eYA(j!).

The results can be seen overlapped in Figure 6.32. Figure 6.32a shows that, at the

frequency f113, |ỸB(j!)| reproduces 92% of the magnitude spectrum of |YB(j!)|. At this

frequency, the value of |YB(j!)| is 0.059 and the value for |ỸB(j!)| is 0.054. At the frequency

f41, the magnitude values of |YB(j!)| and |ỸB(j!)| are 0.0716 and 0.0739 which corresponds

to an approximation error of 3.2%.

The results are also confirmed by the polar plots in Figure 6.33, which shows that the

angle and magnitude of Ỹ (j!) at ⇠ f100 correspond very well with those of Y (j!) and the

oxygen isotope spectrum for both before and after MPT .
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Figure 6.32: Spectra of the model predicted output Y (j!) (blue) superimposed on eY (j!)
(green) a. before MPT and b. after MPT .

Figure 6.33: Polar plot at ⇠ f100 of: a. ZB(j!) (blue), YB(j!) (green) and eYB(j!) (red), b.
ZA(j!) (blue), YA(j!) (green) and eYA(j!) (red).

Figure 6.32b shows that, at the frequency f95, |ỸA(j!)| is 0.084, which represents 88%

out of the 0.095 value of |YA(j!)|. At the frequency f41 the magnitude of |YA(j!)| is 0.085,

whilst the magnitude of ỸA(j!) is 0.105. This gives an approximation error of 23.8%. This

error could be improved further with the computation of many more higher order GFRFs,

but this is not practical or required at this stage.
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The contribution to the output spectrum of Y (j!) at each frequency of interest is illus-

trated in Figure 6.34, which shows the magnitude spectrum of Y (j!) superimposed on each

Y i(j!), i = 1, 2, 3. The functions Y i(j!) were defined in Section 6.2.3. For the time interval

[f113, f95] the magnitude values and phase functions for Y (j!) and each Y i(j!) are given in

Table 6.10.

Before MPT , at the frequency f113, the OFR Y 1
B(j!) exceeds the magnitude spectrum

value of YB(j!) by 1.46%. The OFRs Y 2
B(j!) and Y 3

B(j! account for 18.73% and 28.06% out

of the magnitude value of Y (j!) at this frequency.

After MPT , at the frequency f95, Y 1
A(j!) represents 71.84% out of the total magnitude

value of YA(j!), and the second and third order OFRs Y 2
A(j!) and Y 3

A(j!) represent 13.15%

and 6.95%, respectively.

From here it is seen that, at the frequency ⇠ f100, the magnitude of the linear OFRs

Y 1(j!) explains most of the output spectrum Y (j!) before and after MPT . For the

higher order OFRs however it is observed that the second largest contribution comes before

MPT from Y 3(j!) and after MPT from Y 2(j!).

Before MPT (f113) After MPT (f95)
|YB(j!)| \YB(j!) |YA(j!)| \YA(j!)

Y (j!) 0.05328 -139.69 0.09478 -54.60
Y 1(j!) 0.05406 -158.54 0.06809 -50.63
Y 2(j!) 0.00998 -158.91 0.01246 -50.26
Y 3(j!) 0.01495 -41.52 0.00659 -113.66

Table 6.10: Magnitude and phase functions for the spectrum of the model predicted output
Y (j!) and each OFR Y i(j!), i = 1, 2, 3 for both time periods.
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Figure 6.34: Magnitude of Y (j!) (blue) superimposed on Y 1(j!) (green), Y 2(j!) (red) and
Y 3(j!) (black) a. Before MPT and b. After MPT .

Table 6.11 summarizes the magnitude and phase changes at the frequency of interest

around ⇠ f100.
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Function

Before MPT After MPT

|YB(j!)| \YB(j!) |YA(j!)| \YA(j!)
Y (j!) 0.0541 -151 0.0948 -69

eY (j!) 0.0589 -140 0.0837 -55

Y 1
1 (j!) 0.0272 -159 0.0679 -53

Y 1
2 (j!) 0.0023 -117 0.0003 40

Y 1
3 (j!) 0.0243 -162 0.0026 33

Y 2
1 (j!) 0.0015 -11 0.0059 -3

Y 2
2 (j!) 0.0006 155 0.0070 -118

Y 2
3 (j!) 0.0101 -154 0.0056 5

Y 2
12(j!) 0.0014 -6 0.0022 -76

Y 2
13(j!) 0.0031 165 0.0011 -168

Y 2
23(j!) 0.0005 19 0.0013 -72

Y 3
1 (j!) 0.0026 148 0.0032 -131

Y 3
2 (j!) 0.0000 29 0.0003 -58

Y 3
3 (j!) 0.0175 -43 0.0034 -102

Y 3
113(j!) 0.0015 156

Y 3
133(j!) 0.0066 -30

Y 3
112(j!) 0.0001 -13

Y 3
122(j!) 0.0002 158

Y 3
223(j!) 0.0002 113

Y 3
233(j!) 0.0008 -50

Y 3
123(j!) 0.0001 -0.6

Table 6.11: Magnitudes and angles of each OFR at the frequency ⇠ f100.

Figure 6.35 shows the magnitudes of the individual OFRs which contribute the most to

the output spectrum. Before MPT these are Y 1
1B(j!), Y 1

3B(j!), Y 2
3B(j!) and Y 3

3B(j!) and

after MPT these are Y 1
1A(j!), Y 2

1A(j!), Y 2
2A(j!) and Y 2

3A(j!). Figure 6.36 shows the main

contributing frequency functions evaluated at the frequency ⇠ f100 in polar coordinates.

Before MPT , the major contributions (Figures 6.35a and 6.36a) to the magnitude

spectrum of the sum of OFRs ỸB(j!) at the frequency f113 are from: Y 1
1B(j!), representing

45.3%, Y 1
3B(j!), representing 39.5%, Y 2

3B(j!), representing 17.1% and Y 3
3B(j!), representing

3.6%. The percentages of each contribution were calculated using the projections of each

vector on eYB(j!) seen in Figure 6.37a.

After MPT the main contributions (Figures 6.35b and 6.36b) to the magnitude spec-

trum of eYA(j!) at the frequency f95 are from the OFRs: Y 1
1A(j!), representing 81%, Y 2

1A(j!),

representing 4.3%, Y 2
2A(j!), representing 3.7% and Y 2

3A(j!), representing 3.4%. The percent-
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ages of each contribution were calculated using the projections of each vector on eYA(j!) seen

in Figure 6.37b.

Figure 6.35: a. |YB(j!)| (blue) superimposed on |Y 1
1B(j!)| (green), |Y 1

3B(j!)| (red), |Y 2
3B(j!)|

(black) and |Y 3
3B(j!)| (brown), and b. |eYA(j!)| (blue) superimposed on |Y 1

1A(j!)| (green),
|Y 2

1A(j!)| (red), |Y 2
2A(j!)| (black) and |Y 2

3A(j!)| (brown).
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Figure 6.36: Polar plots at ⇠ f100 of: a. eYB(j!) (blue) superimposed on Y 1
1B(j!) (green),

Y 1
3B(j!) (red), Y 2

3B(j!) (black) and Y 3
3B(j!) (brown), b. eYA(j!) (blue) against Y 1

1A(j!)
(green), Y 2

1A(j!) (red), Y 2
2A(j!) (black) and Y 2

3A(j!) (brown).
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Figure 6.37: Polar plots at ⇠ f100 of: a. Projections of the main contributions Y 1
1B(j!)

(green), Y 1
3B(j!) (red), Y 2

3B(j!) (black) and Y 3
3B(j!) (brown) on the vector eYB(j!) (blue), b.

Projections of the main contributions Y 1
1A(j!) (green), Y 2

1A(j!) (red), Y 2
2A(j!) (black) and

Y 2
3A(j!) (brown) on the sum vector eYA(j!) of all calculated OFRs (blue).

This analysis shows that the most significant contributions to the output spectrum Y (j!)

at ⇠ f100 before MPT are made by Y 1
1B(j!), Y 1

3B(j!) and Y 2
3B(j!), whereas for after MPT

the overwhelming contribution comes from the first order OFR Y 1
1A(j!).

When analysing the first order functions, it can be observed from the Table 6.11 that the

most dramatic change at the frequency ⇠ f100 is in Y 1
1 (j!), from a magnitude of 0.0272 prior

to the MPT to 0.0679 after MPT . Given the first order OFRs are defined as H(j!)U(j!)

and that the input spectrum value of eccentricity (Figure 6.1) does not change significantly

(the value is 0.0035), the change must therefore come from the transfer function H1
1 (j!)

(Figure 6.38). The value of this magnitude increase is from 9.22 to 17.67, so the shift can

be explained as a change in the system’s linear response to eccentricity as observed in the

transfer function. When looking at the GFRFs expression, we can see an increase of almost

10 times in the numerator term u1(t� 1), which has lag 1 (4kyr).

156



Chapter 6 6.3. Analysis of the GFRF and OFR Results

Figure 6.38: a. H1
1B(j!)| (blue) superimposed on |H1

1A(j!)| (green), b. |Y 1
1B(j!)| (blue)

superimposed on |Y 1
1A(j!)| (green).

The second largest magnitude value for an OFR before MPT at the frequency f113 is the

one given by Y 1
3B(j!). In this case H1

3B(j!) has the magnitude value 0.0046 at this frequency

and the input spectrum U3B(j!) has the large magnitude value 5.256.

When analysing the higher order OFRs, it is necessary to examine which pairs (!1,!2)

give the largest contributions for each ! of interest to:

1

2

X

!1+!2=!

H2(j!1, j!2)U(j!1)U(j!2) (6.8)

For Y 2
3B(j!) the magnitude value at the frequency f113 is 0.0101 and the f1+f2 = f from equa-

tion (6.8) that give the largest magnitude values are (f1, f2) = {(�f25, f20), (�f20, f17), (�f9, f8)}.

The magnitude values of H2
3B(!1,!2) for each pair (!1,!2) has the value in the order 10�5,

which is extremely small. From this it can be concluded that the value of the sum is mainly
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given by the input spectrum values U3B(j!1) and U3B(j!2) in the interval of frequencies

[f25, f8] (Figure 6.1).

For the time period after MPT , the major magnitude values in the summation in

equation (6.8) for Y 2
1A(j!) at the frequency f95 are given by the combinations (f1, f2) =

{(f107, f51), (f95, f48),

(f214, f171)}. The magnitude values of the input spectrum U1(j!) in each of the found

!1 and !2 values are very small, in the orders 10�4 and 10�5. The magnitude of the GFRFs

H2
1A(j!1, j!2) for the given (f1, f2) = {(�f107, f51), (�f95, f48), (�f95, f48)} pairs are signif-

icantly higher and have the corresponding values: |H2
1A(j!1, j!2)| = {349, 366, 119}. The

extracted plane f1 + f2 =⇠ f100 from the GFRF H2
1A(j!1, j!2) can be seen in Figure 6.5b

with red line.

For Y 2
2A(j!) the largest magnitude values that contribute to the summation given by (6.8)

at the frequency f95 are those corresponding to the frequency pairs (f1, f2) = {(�f41, f29),

(�f57, f36)}. In this case, the largest contribution is given, for the first pair, by |H2
2A(j!1, j!2)| =

0.25 and |U2a(j!1)| = 0.38.

In the case of Y 2
3A(j!) the following combinations (f1, f2) = {(�f10, f9), (�f29, f23),

(�f23, f19)} are the largest contributions to the sum in equation (6.8) at the frequency f95.

The magnitude values of the GFRFs H2
3A(j!1, j!2) corresponding to the identified pairs are

very small, in the orders of 10�5 and 10�6. The largest contribution is |U3A(j!)| = 33.70,

peak shown in Figure 6.1c as corresponding to the frequency f23.
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Figure 6.39: Before MPT : a. Polar plot at ⇠ f100 for each term in the summationP
!1+!2+!3=! H

3
3B(j!1, j!2, j!3)U3(!1)U3(!2)U3(!3) (blue and red) and the resulting Y 3

3B(j!)
(green), and b. Zoom on the plot (a) showing in red the most significant terms contributing
to Y 3

3B(j!).

For Y 3
3B(j!) the frequency combinations of interest (!1,!2,!3) at ! corresponding to the

frequency f113 are those given by the terms in the summation:

1

4

X

!1+!2+!3=!

H3(j!1, j!2, j!3)U(j!1)U(j!2)U(j!3) (6.9)

Each term that takes part in the summation in equation (6.9) is represented by one

vector in Figure 6.39. The most significant ones, which are the ones having the largest mag-

nitude values, are marked in Figure 6.39 with red colour and are found at the frequencies

(f1, f2, f3) = {(�f11, f22, f18), (�f12, f22, f22), (�f18, f24, f10)}. Each of the three red vec-

tors represents 6 overlapped vectors each given by the 6 unique combinations given by each

(f1, f2, f3). All of these frequencies are present in the longitude of perihelion spectrum (Fig-

ure 6.1). The magnitude values of the GFRF H3
3B(j!1, j!2, j!3) for each of the frequencies

combinations (!1,!2,!3) are very small, in the order of 10�8. The largest magnitudes of

input spectrum that contribute to the summation in equation (6.9) are given by |U3b(j!)| =

{9.60, 11.02, 18.64}, with ! corresponding to the real frequencies f = {f11, f22,�f18}, respec-

tively.

Before MPT , the ⇠ f100 cycles/kyr peak if obtained from the linear functions Y 1
1B(j!)

and Y 1
3B(j!), so the influences are clearly eccentricity (u1(t)) and the longitude of the per-
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ihelion (u3(t)), but also from the second and third order self-kernel functions based on the

longitude of the perihelion, which are Y 2
3B(j!) and Y 3

3B(j!). The combinations of frequencies

contributing are those from the spectrum U3(j!), as shown in the analysis.

After MPT , the main contributions change dramatically. The main contributions come

from the eccentricity functions, although all three inputs appear to be needed. We can see

from the results that the frequencies contributing to the ⇠ f100 peak are from:

• longitude of the perihelion contribution given by f1 + f2 = �f23 + f19 and found in

Y 2
3A(j!).

• eccentricity with f1 + f2 = f214 + f171 and f1 + f2 = �f95 + f48 and found in Y 2
1A(j!).

• obliquity (u2) with one combination: f1 + f2 = �f41 + f29 and found in Y 2
2A(j!).

As the analysis shows, the frequencies found contributing to the second and third order

functions are either frequencies found in the spectrum of the inputs or frequencies that can

be interpreted as harmonics or subharmonics of them, such as: f214 = 1
4f53.5, f48 = 2f95,

f214 =
1
3f71, f24 =

1
2f12.

6.4 Discussion

This chapter provided a detailed frequency domain analysis of the NARMAX models esti-

mated in Chapter 5 Section 5.3. This was possible by computing the Generalized Frequency

Response Functions and their associated Output Frequency Responses.

By decomposing the Output Frequency Response into individual contributions due to

different GFRFs it was possible to determine the nonlinear mechanisms by which variations

in the orbital parameters influence the output spectrum of the �18O time-series and also to

study and identify the major changes in these mechanisms that occurred during MPT. This

was done by comparing the results of each OFR and analyzing which functions and input

spectrum frequencies or combination of frequencies changed from before to after MPT .

The focus of the study was on the frequency ⇠ f100.

The frequency domain analysis demonstrated that most of the variability in the �18O

records can be explained by the linear frequency responses generated by the eccentricity and
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the longitude of perihelion inputs. There are also noticeable combinations of frequencies from

the second and third order functions including frequencies found in the eccentricity and the

longitude of perihelion bands but also frequencies that can be interpreted as their harmonics.
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Chapter 7

Time Domain Analysis of the Identified

Palaeoclimate Models

7.1 Introduction

This chapter presents a time domain analysis of the NARMAX models developed in Chapter

5 for each of the two periods of time studied. The aim is to characterize the performance of

the models over different glacial and interglacial periods as well as study the stability of the

equilibrium points of the system (fixed points of the two models).

The Chapter is organized as follows. Section 7.2 presents a detailed stability analysis

of the two identified models which involves calculating the fixed points and the eigenvalues

associated with the linearized systems around the fixed points. In Section 7.3, the model

predicted outputs are compared with the �18O time-series in order to determine how well

the models can reproduce dramatic climatic variability. Section 7.3.2 also provides a time

domain decomposition of the responses of each model by mapping the individual Output

Frequency Responses corresponding to different Generalized Frequency Response Functions

back into the time domain. This allows to characterize the contribution of different linear and

nonlinear mechanisms of energy transfer between the inputs and the output over different

climatic periods, and mostly the effect of the nonlinear parts on the model response.
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7.2 Stability Analysis of the Palaeoclimate Models

The fixed points of the NARX model representation

y(t) = f(y(t�1), . . . , y(t�Ny), u1(t�1), . . . , u1(t�Nu1), . . . , ur(t�1), . . . , ur(t�Nu
r

)) (7.1)

are defined as the points which satisfy

y0 = y(t) = y(t+ i), i 2 Z (7.2)

In (7.2) the input is redefined as uj(t � i) = uj, i = 0, 1, . . . Nu
j

, j = 1, . . . , r, where uj

is the mean of the input uj(t) (Guckenheimer and Holmes, 1983, Wiggins, 1990, Mendes,

1995). Taking this into consideration, the NARX model in equation (7.1) is written as:

fg(y(t� 1), . . . , y(t�Ny)) = f(y(t� 1), . . . , y(t�Ny), u1, . . . , u1, . . . , ur, . . . , ur) (7.3)

It follows that substituting equations (7.2) and (7.3) into equation (7.1) the following

autonomous equation is obtained:

y0 = fg(y0, . . . , y0) (7.4)

Solving equation (7.4) gives the locations of the fixed points y0 of the model.

In order to write the NARX model in equation (7.1) into a state space representation,

the state variables are defined as:

2

6666666664

x1(k)

x2(k)
...

xN
y

�1(k)

xN
y

(k)

3

7777777775

=

2

6666666664

y(k �Ny)

y(k �Ny + 1)
...

y(k � 2)

y(k � 1)

3

7777777775

(7.5)
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where X(k) =
h
x1(k) x2(k) . . . xN

y

�1(k) xN
y

(k)
i0

represents the states vector.

Using the states given by X(k) in equation (7.5), the input-output NARX representation

can now be written as a state space model as:

x1(k + 1) = x2(k)
...

xN
y

(k + 1) = f(x1(k), . . . , xN
y

(k))

(7.6)

To determine the behaviour of the model near a fixed point, the model has to be linearized

around the fixed point. This can be done by using the Taylor expansion (and neglecting all

terms of order higher than 1) as:

fg(y(k � 1), . . . , y(k �Ny)) = fg(y0, . . . , y0) +
@fg(y(k � 1), . . . , y(k �Ny))

y(k � 1)
(y(k � 1)� y0)(7.7)

+ · · ·+ @fg(y(k � 1), . . . , y(k �Ny))

y(k �Ny)
(y(k �Ny)� y0)

Equation (7.7) can now be written with regards to the states vector and the state space

model derivates with regards to each state xi(k), i = 1, . . . , Ny as:

2

6666666664

x1(k + 1)

x2(k + 1)

. . .

xN
y

�1(k + 1)

xN
y

(k + 1)

3

7777777775

=

2

6666666664

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1
@f

g

(y0,...,y0)
@y(k�N

y

)
@f

g

(y0,...,y0)
@y(k�N

y

�1)
@f

g

(y0,...,y0)
@y(k�2) . . . @f

g

(y0,...,y0)
@y(k�1)

3

7777777775

2

6666666664

x1(k)

x2(k)
...

xN
y

�1(k)

xN
y

(k)

3

7777777775

(7.8)

+

2

6666666664

0

0
...

0

y0

3

7777777775
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The linearized model around the fixed point can be written in a concise way as:

X(k + 1) = A(y0)X(k) + �(y0) (7.9)

where X(k + 1) and X(k) represent the state vectors and A(y0) is the Jacobian matrix.

Let � be the eigenvalues, which are calculated by substituting each of the fixed points

values as states values in equation (7.8).

The local stability of the fixed point of the nonlinear system in equation (7.1) can be

decided in some cases by analysing the eigenvalues of the linearized system. This approach

is known as Lyapunov’s indirect (or first) method (Haddad and Chellaboina, 2011). An

equilibrium of a dynamical system is said to be Lyapunov (locally) stable if all the solutions

in its vicinity remain in some neighborhood of the equilibrium in the course of time (equation

(7.2)). For asymptotic stability, the solutions are required, additionally, to converge to the

equilibrium as time tends to infinity. The first (indirect) method of Lyapunov reduces the

study of asymptotic stability of an autonomous system to the problem of location in the unit

circle (for discrete-time systems) of the eigenvalues of the linearized system.

The equilibrium point y0 for the nonlinear system is:

• locally asymptotically stable if all the eigenvalues of A(y0) are strictly inside the unit

circle.

• unstable if at least one eigenvalue of A(y0) is strictly outside the unit circle.

The models used to compute the fixed points (Tables 7.1 and 7.2), were obtained by making

the substitution ui = ui, i = 1, 2, 3 in the NARX models in Tables A.1 and A.2 in Appendix

A.

Term no Term Coefficients ✓B Model B terms
1 0.9634 y(t� 1) 0
2 0.0404 0 0
3 0.0428 y(t� 2) y(t� 2)
4 0.5320 y(t� 3) 0
5 �0.0599 y(t� 4) y(t� 4)
6 0.2921 y(t� 1) y(t� 3)
7 �0.1908 y(t� 4) 0

Table 7.1: Model used to determine the fixed points before MPT.
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Term no Term Coefficients ✓A Model A terms
1 0.7596 y(t� 1) 0 0
2 �2.6803 y(t� 2) 0 0
3 �1.4248 0 0 0
4 0.0200 y(t� 1) y(t� 1) y(t� 3)
5 �0.4111 y(t� 2) y(t� 2) y(t� 3)
6 0.0099 y(t� 1) y(t� 4) 0
7 �1.2407 y(t� 2) y(t� 2) 0
8 �0.6316 y(t� 2) y(t� 3) 0

Table 7.2: Model used to determine the fixed points after MPT.

The fixed points for models B and A were obtained by solving the following polynomial

equations:

yB = 0.2750y2B + 0.3046yB + 0.0404 (7.10)

yA = �0.3911y3A � 1.8624y2A � 2.9207yA � 1.4248 (7.11)

Model B has two fixed points which have the values y01B = �0.1542, which is outside

of the range of the data and appears to be a repeller, and y02B = �0.9533. Model A has

only one fixed point at y01A = �0.9404. The other two solutions of the polynomial equation

(7.11) are the complex conjugate values y02A,03A = �1.9109± 0.4717i.

Given that the maximum output lag for both models is 4, the state space variables are

as follows:

2

6666664

x1(k)

x2(k)

x3(k)

x4(k)

3

7777775
=

2

6666664

y(k � 4)

y(k � 3)

y(k � 2)

y(k � 1)

3

7777775
(7.12)

The stability of model B is considered first. Substituting the states (7.12) into the model

in Table 7.1 results in:
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fg,B(k) = ✓B(1)x4(k) + ✓B(2)x3(k) + ✓B(3) + ✓B(4)x
2
4(k)x2(k) + ✓B(5)x

2
3(k)x2(k)(7.13)

+ ✓B(6)x4(k)x1(k) + ✓B(7)x
2
3(k) + ✓B(8)x3(k)x2(k)

For the fixed point y01B = �0.1542, the Jacobian matrix AB(y01B) is given by

AB(y01B)

2

6666664

0 1 0 0

0 0 1 0

0 0 0 1

�0.1724 0.4869 �0.0132 0.9184

3

7777775

The absolute values of the eigenvalues corresponding to AB(y01B) are |�01B| =
h
1.1588 0.6847 0.6847 0.3173

i0

Because not all the absolute values of the eigenvalues are inside the unit circle, the fixed

point y01B = �0.1542 is unstable.

For the fixed point y02B = �0.9533, the Jacobian matrix AB(y02B) is given by

AB(y02B) =

2

6666664

0 1 0 0

0 0 1 0

0 0 0 1

�0.0767 0.2535 �0.0815 0.6850

3

7777775

The absolute values of the eigenvalues corresponding to AB(y02B) are |�02B| =
h
0.8227 0.5656 0.5656 0.2915

i0

and because all are inside the unit circle, the fixed point y02B is locally asymptotically stable.

Substituting the states (7.12) into the model A in Table 7.1 results in:

fg,A(k) = ✓A(1)x4(k)+✓A(2)+✓A(3)x
2
3(k)+✓A(4)x2(k)+✓A(5)x

2
1(k)+✓A(6)x4(k)x2(k)+✓A(7)x1(k)

(7.14)

For model A the fixed point is y01A = �0.9404 and the Jacobian matrix AA(y01A) is

given by
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AA(y01A) =

2

6666664

0 1 0 0

0 0 1 0

0 0 0 1

�0.0093 0.2481 �0.4800 0.8059

3

7777775

The absolute values of the eigenvalues corresponding to AA(y01A) are |�01A| =
h
0.6312 0.6036 0.6036 0.0403

i0

.

Because all absolute values of the eigenvalues are inside the unit circle the fixed point y01A

is locally asymptotically stable.

It follows that for model B the fixed point in �0.9533 is locally asymptotically stable,

whilst the fixed point �0.1542 is unstable. In contrast, model A has a single stable fixed

point at �0.9404.

The fact that the maximum eigenvalue for the stable fixed point of model B is closer to

the unit circle than the maximum eigenvalue of model A and the existence of an unstable

fixed point suggests that the climate system was less robust before MPT . Interestingly the

MPT has resulted in the disappearance of an unstable equilibrium of the climate system

whilst the position of the stable one has changed little. Such changes in the structural

stability (number, position and type of equilibrium points) are associated with bifurcation

phenomena resulting from changes in the system parameters.

7.3 Analysis and Comparison of the Model Responses

with Palaeoclimatic Data

In order to place the data-set within the geological and climate timeline, a few concepts need

to be defined. Traditionally, the terrestrial sediments sequences are divided, with respect

to their type, into: glacial and non-glacial deposits. This will give corresponding periods

called glacial (cold) and interglacial (temperate) stages , respectively (Gradstein et al., 2005).

According to the American Commission (1961), a glaciation is a climatic episode during which

extensive glaciers developed, attained a maximum extent, and then receded. An interglacial

represents an episode during which the climate was incompatible with the wide extent of
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glaciers that characterize the glaciation. In Europe, the interglacial represents a time period

with a climate at least as warm as the present interglacial (the Holocene). Dividing the

palaeoclimate into glacial and interglacial periods is mainly applied to the Middle and Late

Pleistocene periods.

A second method of dividing the palaeoclimate is by using the �16O/�18O ratios (Johnsen

et al., 1972, Dansgaard, 1993). The stages resulting from using the marine isotope record

are called Marine Isotope Stages (MIS). These are numbered starting from the present day

(MIS1) backwards in time. The cold climate (glacial) is assigned even numbers and the warm

climate (interglacial) is usually given odd numbers (Gradstein et al., 2005). The boundaries

of the Marine Isotope Stages should show a major climate change, and are usually placed

between temperature maxima and minima.

The beginning and the end time of geological periods and of MIS do not necessarily

coincide, largely due to the fact that the ocean sediments give a global record whereas the

terrestrial ones mostly account for the local climate events (Gradstein et al., 2005). This is

why both dating methods are simultaneously needed.

7.3.1 Analysis of overall model responses

Figure 7.1 shows the model predicted output (green) superimposed on the �18O time-series

(blue) for both time periods. The models are able to reproduce remarkably well the trends

and periodicities of the data. The range of the model response before MPT is [�1.66, �0.24]

and after MPT is [�1.80, �0.60].

On Figure 7.1 the MIS and the geological eras are identified for the studied time periods

and also a temperature equivalent scale for the �18O values is given on the left of the �18O

axis in both cases (Gradstein et al., 2005).

The values of the NRMSE are NRMSEB = 7.2% before MPT and it is NMSEA =

15.5% after MPT .

Chapter 6 sub-section 6.3.1 showed that both models B and A are able to reproduce

very well the peaks at the frequencies of interest f41 and ⇠ f100 and the overall change in

dominant frequency from f41 to ⇠ f100. Moreover, Figure 7.1 shows that the models are also

able to follow remarkably the abrupt changes happening between each Marine Isotope Stage
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(MIS), and is able to capture the peaks of the interglacials and the valleys of the glacial

periods. The model outputs were compared with the �18O time-series for both time periods

to analyse which peaks and MIS were matched and which were not. Results of this are shown

in Tables 7.3, 7.4, 7.5 and 7.6. The error values were calculated as the percentage that ŷ(t)

does not explain of �18O(t) for each considered peak corresponding to the time t.

Peaks matched
Peak location (kyr) Error (%)

-1340 (MIS42) 14.25%
-1296 (MIS40) -6.3%
-1260 (MIS38) 7.9%

-1208 (MIS37-36) 3.58%
-1172 (MIS35) 6.5%
-1100 (MIS32) -3.7%

-1056 (MIS31-30 transition) -7.9%
interval [-976, -864] 4.76%

(MIS26-21) (average over the interval)

Table 7.3: The location of the peaks reproduced well by the model output ŷB(t) and the
fitting accuracy.

Peaks not matched
Peak location (kyr) Error (%)

-1316 (MIS42-41 transition) 21.17%
-1288 (MIS40-39 transition) 14.4%

-1196 (MIS36) 27.4%
-1128 (MIS34) 16.3%
-1080 (MIS31) 15.25%

interval [-1016, -1000] 15.85%
(MIS28) (average over the interval)

Table 7.4: The location of the peaks that the model output ŷB(t) did not reach and the
fitting accuracy.
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Peaks matched
Peak location (kyr) Error (%)

[-824,-776] 4.32%
(MIS21-20 transition) (average over the interval)
the interval [-728, -684] 10.31%

(MIS17) (average over the interval)
the interval [-660, -608] 11.88%

(MIS16) (average over the interval)
-276 (MIS8) -9.75%
-232 (MIS7) 4.4%
-184 (MIS6) 4.9%
-144 (MIS6) 16.18%

the interval [-52, -12] 6.95%
(MIS3 and MIS2) (average over the interval)

Table 7.5: The location of the peaks reproduced well by the model output ŷA(t) and the
fitting accuracy.

Peaks not matched
Peak location (kyr) Error (%)

-764 (MIS19) 32.52%
-748 (MIS19-18 transition) 36.5%

[-684, -668] 19.13%
(MIS17) (average over the interval)

[-572, -520] 25.38%
(MIS14) (average over the interval)

[-468, -436] 37.5%
(MIS12) (average over the interval)

[-420, -388] 26.15%
(MIS11) (average over the interval)

[-128, -72] 26.5%
(MIS5 and MIS4) (average over the interval)

Table 7.6: The location of the peaks that the model output ŷA(t) did not reach and the
fitting accuracy.

Before MPT the mean of the absolute value of the residuals is 0.0918, with the minimum

being 0 and the maximum value of 0.3622. 60.15% of all the 138 absolute values of residuals

are below the mean value.

After MPT the largest value of the absolute residuals value is 0.7186, the minimum is

0 and the mean value is 0.1734. The percentage of absolute values of residuals, out of 214
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data points, below the mean value in this case is 57.94%.

It can be seen from the analysis above and Figure 7.1 that the models capture very well

a rough cycle of 40 � 44 kyr before MPT and a cycle of 80 � 120 kyr after MPT . This

confirms the results of the spectrum analysis in Chapter 6 Section 6.3.1. Also, the same

figure shows that both models are able to reproduce very well the succession of glacial and

interglacial stages of the geological eras and the Marine Isotope Stages identified by many

authors (Gradstein et al., 2005, Dawson, 1994, Pomerol, 1982). The succession of warm and

cold periods indicated by the high and low concentrations of the �18O time-series have a

characteristic saw-tooth shape (Rial, 2004a).

7.3.2 Time Domain Response Decomposition using Output

Frequency Response

The Output Frequency Functions computed in Chapter 6 sub-section 6.2.3 explain the contri-

bution, frequency coupling and energy transfer between the orbital parameters and temper-

ature proxy data. Mapping the OFR corresponding to different GFRF’s back into the time

domain gives a time-domain decomposition of the model responses into individual compo-

nents that correspond to different linear and nonlinear mechanisms of energy transfer between

the inputs and the output.

Specifically, the output spectrum Y (j!) is given by

Y (j!) =
nX

k=1

Y k(j!)

where Y k(j!) are the kth order OFR sums.

By applying the inverse Fourier Transform, the above equation can be mapped back into

the time-domain such that

ŷ(t) =
nX

k=0

y(k)(t)

where ŷ(t) is the mpo and y(k)(t) denotes the kth order output component, characterized

by an kth order kernel in the Volterra expansion, which is obtained by applying the inverse
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Fourier Transform to Y k(j!) and y(0) is the mean value of ŷ(t).

Figures 7.2 and 7.3 show the linear, quadratic and cubic components of the response

before and after MPT , respectively. This shows that the main contribution to the model

response is made in both cases by the first order component y(1)(t) of the output which

correspond to the linear OFR Y 1(j!). However, the second and third order components of

the response are also needed.

Figure 7.2: ŷB(t) (blue) superimposed on the y(1)B (t) (green), y(2)B (t) (red) and y(3)B (t) (cyan),
corresponding to model B.

Figure 7.3: ŷA(t) (blue) superimposed on the y(1)A (t) (green), y(2)A (t) (red) and y(3)A (t) (cyan),
corresponding to model A.

Figures 7.4a and 7.5a show ŷ(t) superimposed on y(1)(t) before and after MPT . It can

be seen that the first order response y(1)(t) largely contributes in both cases to the production

of interglacial maxima and glacial minima in the data and once more that the linear response

is imperative in obtaining a good fit for the �18O data before and after MPT .

Figures 7.4b and 7.5b show the ŷ(t) � y(1)(t) superimposed on y(2)(t) before and after

MPT . This analysis is useful because the overwhelming contribution of y(1)(t) to ŷ(t) can
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mask the nonlinear contributions. The figures show that after MPT y(2)(t) and ŷ(t) �

y(1)(t) almost overlap, which indicates that y(2)(t) contributes almost entirely to ŷ(t)�y(1)(t).

Compared to the contribution of y(1)(t), in both cases y(2)(t) has lower impact on the residuals

ŷ(t) � y(1)(t), which could indicate that y(2)(t) just aids y(1)(t) in reaching the interglacial

maxima and glacial minima, but does not have a dramatic contribution itself.

Figure 7.4: Time-series of: a. ŷB(t) (blue) and y(1)B (t) (green), b. ŷB(t) � y(1)B (t) (blue) and
y(2)B (t) (green), c. ŷB(t)� y(1)B (t)� y(2)B (t) (blue) and y(3)B (t) (green) before MPT.

Figures 7.4c and 7.5c show the ŷ(t) � y(1)(t) � y(2)(t) superimposed on y(3)(t) before

and after MPT . Figure 7.5c shows more differences in the two signals after MPT when

compared to before MPT , when ŷ(t) � y(1)(t) � y(2)(t) and y(3)(t) almost overlap. This

proves that before MPT the third order response y(3)(t) has a greater contribution to the

model output and that the impact of this contribution changes after MPT .

The first, second and third order components explain 94.45% and 96.55% of the models

B and A responses, respectively. As seen in Figure 7.6, the combined contribution from the

components of orders n � 4, given by ŷ(t)� y(1)(t)� y(2)(t)� y(3)(t), is relatively small. This

was obtained by extracting from the mpo the sum of the first three order functions. It can
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Figure 7.5: Time-series of: a. ŷA(t) (blue) and y(1)A (t) (green), b. ŷA(t) � y(1)A (t) (blue) and
y(2)A (t) (green), c. ŷA(t)� y(1)A (t)� y(2)A (t) (blue) and y(3)A (t) (green) after MPT .
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Figure 7.6: Time-series of ŷ(t) (blue) and y(n�4)(t) (green) a. Before MPT and b. After
MPT .

be seen from the plot that compared to the range of the signal and the contribution of the

first three order signals, the forth and higher order time domain contribution is small.

The results provided by the analysis in this section confirm the frequency domain analysis

in Chapter 6, that the largest output contribution is given by the first order component. In

the frequency domain analysis, the largest contribution was also given by Y 1(j!), and more

specifically by the eccentricity based OFR Y 1
1 (j!), for both time periods.

7.4 Comparison of the NARMAX and Frequency Modu-

lation Model Results

Comparing modelling results with other climatic models developed is not an easy task. This

is due to different studied time periods, different data-sets used, different variables involved

in the models, different error measurements or a lack of a mathematical model that can be

simulated. In this section however, the NARMAX modelling results analysed in this chapter
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are compared with Rial’s model (2000) from the paper “Understanding nonlinear responses

of the climate system to orbital”. Rial uses a simple frequency modulation model described

by the equation:

FFM(t) = a sin[
2pt
95

+� sin(
2⇡t

413
)+�

0sin(
⇡t

413
)]+b sin[

2pt
100

+� sin(
2⇡t

413
)]+c sin[

2⇡t

125
+b sin(

2⇡t

413
)]

(7.15)

where t is the time in kilo-years, and the constants a through c are adjustable parameters,

with a typically three times greater than b or c. By matching spectra, Rial observed that

� ⇠ 1 and �0 ⇠ 2.

Rial’s simulation of this equation is presented in Figure 7.7c and denoted yFM(t) (grey).

The image is reproduced with permission from the paper. As stated in the paper, in order

to maximize data fit, the simulated time series was shifted in phase.

By performing simulations of the model in equation (7.15), the following values were

chosen for the constant parameters: a = �0.5, b = �0.15, c = 0.09 and � = 0.8, �0 = �1.8.

The model simulation ŷFM(t) showed that the range of the output was not corresponding to

the range of the �18O data because of an offset of c = 1.2. In order to correct this, equation

(7.15) was written as:

�FM1(t) = �FM(t)� c (7.16)

Even with the corrected offset, the model simulation output ŷFM1(t) of equation (7.16)

is out of phase with the �18O time-series. This is shown in Figure 7.7a. As in Rial and

Anaclerio (2000), the model output was shifted in order to maximize the fit. The shift was

done by t = 92 kyr . The shifted model output of equation (7.16) is ŷFM2 and shown with

grey colour in Figure 7.7b.

The NARMAX model output (blue) shown in Figure 7.7b represents the concatenated

output given by the NARMAX models B and A.
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Figure 7.7: Time-series of: a. �18O (black) superimposed on ŷFM1(t) (grey), b. �18O (black)
superimposed on ŷFM2(t) (grey) and NARMAX models outputs (blue) and c. �18O (black)
superimposed on yFM(t) (grey). Figure 7.7c is taken from Rial and Anaclerio (2000).

Figure 7.7 shows that, although simple, Rial’s model captures the periodicity of the data.

However, it is not able to reproduce the subtle variability of the �18O data. This is reflected

in the explained variance of just 48.07% given by the model output, measured on �FM2(t).

In order to be able to compare the model performance, Table 7.7 gives explained vari-

ance of �18O for the two analysed models before and after MPT . Rial’s �FM2(t) model

simulation is clearly outperformed, by 41% before MPT and 39.21% after MPT , by the

NARMAX models.

Before MPT After MPT
�FM2(t) 51.80% 45.29%
ŷ(t) 92.8% 84.5%

Table 7.7: Explained variance (%) for �FM2(t) and ŷ(t).
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7.5 Conclusions

This chapter provides for the first time a stability analysis of the climate system before and

after MPT .

The first part of the chapter covered theory and computation of the fixed points of each

of the models. By calculating the fixed points location and their associated eigenvalues,

the asymptotically stable fixed points were determined. It is shown that before MPT the

climate system had two equilibrium points of which only one was stable and that following

MPT the unstable equilibrium point has disappeared. After MPT the eigenvalues associ-

ated with the linearized system around the equilibrium point suggest that the system appears

to be more robust. The interesting fact arising from this analysis is that both models have

very similar (located closely to each other) fixed points.

In the second part of the chapter, model predictions were compared with the available

paleoclimatic data by taking into account the important climatic periods and events during

the Pleistocene and Quaternary eras.

The third part of the analysis used results of the frequency domain methods implemented

in previous chapters in order to decompose the model predicted response into the linear,

quadratic, cubic and higher order responses, which correspond to different kernels of the

Volterra series expansion.

To further show the accurate fit that the NARMAX models developed in Chapter 5

provide for the �18O, one other climatic model that uses frequency modulation was simulated.

This showed the improved performance of the NARMAX models and how they can capture

the subtle changes in the �18O time-series, which the frequency modulation model does not.

The time domain decomposition of the responses allowed identifying the time periods over

which the contribution from second and third order kernels was significant, thus allowing to

characterize the role of nonlinear interactions over different glacial and interglacial periods.

The analysis presented in this chapter provide further evidence that the two identified

models not only predict well the oxygen isotope ratios, but also capture the dynamics of

the underlying processes before and after MPT . The models reproduce well the critical

points in the data which correspond to climatic events, such as switching between a glacial
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and interglacial period.
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Chapter 8

Comparison, Modelling and Analysis on

the Data-sets from Sites 806B and 805C

8.1 Introduction

Sites 806B and 805C are two extraction points part of Leg 130 in the ODP Ontong Java

Plateau in the Western Pacific, as shown in Figure 8.1. The two Sites are located closely

to each other and are well suited for comparison because they offer a continuous sediment

record for the last 25 Myr (Berger et al., 1991c). Such a comparison can provide insight

into the common features as well as the observed differences. This helps in validating the

results of the dating performed on either of them and on the recorded sedimentation rate.

The sedimentation rate of any Site is influenced by: the productivity of the forams, the rate

of sinking of the biogenous sediments, solubility of the biogenous sediments in seawater or

the bottom sea/ocean currents (Berger, 1969).

This chapter is aimed at describing the relationship between the oxygen isotope ratios

of Sites 806B and 805C by using a NARMAX model. The model has one of the time-series

as input and the other as output and uses only lagged terms in the input, so no lagged

terms in the output are involved. Although the Sites are closely located to one another

some differences are identified between the �18O time-series, as seen in Figure 8.2, and it is

interesting to be able to account for these differences using a model.

Section 8.2 gives details with regards to the location of the two investigated Sites and
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also some of their general characteristics. These refer to stratigraphy subdivisions and the

composition of the foraminifera extracted from each Site. Section 8.3 presents an in depth

comparison of the Sites aimed to find similarities and differences between them with regards

to the chemical gradients of the interstitial waters and other sediments properties. This

is useful because the benthic foraminifera may be sensitive to habitat, sediment, and water

quality long-term and short-term changes (Berger, 1969). Section 8.4 deals with the strategies

used to obtain a model relating the �18O data from the two Sites. Also in this section analysis

of the model results and simulation is performed.

8.2 Location and General Comparison of the Sites

The distance between Site 806B and Site 805C is 164.6076km. The two Sites are part of

Leg 130 in the Western Pacific, and their location within the leg and with respect to the

Equator can be seen in Figure 8.1. Sites 803 to 805 are drilled in deeper water. The Site

805 represents the intermediate-to-deep member whilst Site 806 represents the shallow end

member, in which sediments have experienced much less dissolution (Berger et al., 1993a).

Figure 8.1: Map of the Sites of the ODP Leg 130 in Western Pacific, displaying the two Sites
of interest 806 and 805 (Berger et al., 1991b).

Leg 130 Hole 806B is positioned at the coordinates 0�19.110 N , 159�21.690 E. The water

depth until the sea floor is 2519.9 metres and the penetration using the drill is of 743.10

metres. The core recovery is of 89% (Kroenke et al., 1991b). The core is divided into two
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subunits: Subunit IA, between 0 - 339 mbsf (metres below seafloor), which covers Pleistocene

to upper middle Miocene and consists of foraminifer nannofossil ooze to nannofossil ooze

with foraminifers, and Subunit IB, between 339 - 776 mbsf, which covers the eras lower upper

Miocene to upper Oligocene and consists of foraminifer nannofossil chalk to nannofossil chalk

with foraminifers, with a few intervals of nannofossil chalk.

Leg 130 Hole 805C is positioned at the coordinates 1�13.690 N , 160�31.770 E. The water

depth until the sea floor is 3187.7 metres and the penetration using the drill is of 611 metres.

Site 805 is positioned within a gently sloping valley about 3.5 km wide and flanked by low

ridges along either side. The core recovery is of 81% (Kroenke et al., 1991a). The core is

divided into two subunits: Subunit IA, between 0 - 293.7 mbsf, which covers Pleistocene to

middle Miocene and consists of nannofossil ooze with foraminifers, and foraminifer nanno-

fossil ooze, and Subunit IB, between 293.7 - 611 mbsf, which covers the middle Miocene to

upper Oligocene and consists of nannofossil chalk, nannofossil chalk with foraminifers, and

foraminifer nannofossil chalk.

The coarser grains (fine sand and coarse silt) at these Sites are foraminifers, so that fluc-

tuations in the mean grain size are a good indicator of the relative abundances of foraminifers

and nannofossils.

The sedimentation rates for the two Sites considered in this study are relatively high,

with 12 - 13 m/m.y. (metres/million years) at Hole 805C and between 20 and 30 m/m.y.

at Hole 806B (Berger et al., 1993a), and this permits the generation of high-resolution �18O

and �13C records from the Western Equatorial Pacific Plateau back in time through to the

middle Miocene. The sedimentation rates show a similar shape of the age/rate curve for all

sites from Leg 130, however Site 806 averages a factor of 1.44 higher sedimentation rate than

Site 805.

Sites 805 and 806 are similar with respect to their seismic records, except that the Site

805 record is compressed on average by a factor of 0.73 (Berger et al., 1993c).

184



Chapter 8 8.3. Organic and Chemical Properties at the Sites

8.3 Organic and Chemical Properties at the Sites

Chemical gradients of the interstitial waters at Site 806 tend to be slightly stronger when

compared to Site 805, probably due to the higher supply of organic matter at the Site,

because of its shallower depth (Berger et al., 1993b). Next a comparison between the two

Sites with regards to the organic and chemical components will be presented. This comparison

represents a brief summary of the extensive descriptions, analysis and comparison presented

by W.H. Berger in the “Volume 130 Initial Reports” (Berger et al., 1993b, Berger et al.,

1993a, Berger et al., 1993c, Kroenke et al., 1991a, Kroenke et al., 1991b).

• Foraminifera content for Subunit 1A for Site 806 is 15-30% and rarely below 10%,

which is significantly higher than Site 805.

• Foraminifera content (Subunit 1B) for Site 806 varies between 10% and 50% and is

relative higher compared to that of equivalent intervals at Site 805.

• Sediment colour (Subunit 1A) for Site 806 on uppermost several meters is brown, and

grades rapidly to light gray then to white. Color banding for Site 806 appears to be

less frequent, fainter, and more diffuse than at Site 805.

• Lithification at Site 806 shows the transition is at 340mbsf (lower upper Miocene),

which is deeper and younger than the ooze-chalk transition at Site 805.

• Sodium (Na) concentrations at Site 806 below 300mbsf are higher than those at Site

805.

• Alkalinity maximum is deeper and broader with higher concentrations at Site 806 than

Site 805, suggesting a larger supply of organic matter for oxidation at this fairly shallow

site, the closest to the equator of those drilled on the Ontong Java Plateau.

• Sulfate concentrations show that the depletion at Site 806 is nearly a factor of 2 larger

than at Site 805, and it is due to the influence of organic matter (Berger et al., 1993b).

• Ammonia concentrations at Site 806 are twice those at Site 805.
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• Strontium (Sr) concentrations are, at the maximum, higher at Site 806 than at Site

805.

• Lithium (Li) minimum concentrations at Site 806 are lower and are persisting to some-

what greater depths than those at Site 805.

• Potassium (K) concentrations at Site 806 are smaller than those observed at Site 805.

• Calcium concentrations are smaller at Site 806 than those observed at Site 805. The

differences between Site 806 and the first three Sites (803-805) drilled are that the

magnitudes of Ca increases with depth and K and Rubidium (Rb) decreases with

depth. This suggests that there must be differences in the history of basalt alteration

at Site 806 compared with the others (Berger et al., 1993b).

Given there are dissimilarities between the two analysed Sites, as the synthesis done in this

section shows, it is possible that these cause the difference in the oxygen isotope ratios values

despite the fact that the two Sites are located very close to each other. These differences are

shown in Figure 8.2.

In summary, there is good correlation between Sites 805 and 806, and good agreement

in biostratigraphic dates for equivalent reflectors or reflector groups, regardless of the overall

difference in sedimentation rates. The observed differences may be cause by palaeoceano-

graphic events, that are of global significance and are reflected over a wide depth range,

and/or by minor regional events (Kroenke et al., 1991a, Kroenke et al., 1991b).

8.4 Modelling Strategies and Results

Figure 8.2a shows that the two data-sets have very similar trends and share the same range

of values. The difference between the data-sets with regards to the mean squared error is

NRMSE = 18.38%. In order to put this into perspective, it is useful to look at the amplitude

ranges for the two data-sets, which are: [�1.99, �0.43] for �18O (806) and [�1.87, �0.15] for

�18O (805). It is reasonable to expect similarities between the data, because the excavation

Sites 806B and 805C are so closely located to one another. However, Figure 8.2a, shows

that the two data-sets present a few differences outside of the main followed trend. These
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variations could be explained by the differences, both due to location, organic material distri-

bution and quantity and chemical gradients of the interstitial waters of the two Sites, detailed

in Sections 8.2 and 8.3 of this chapter.

In order to inspect the similarities and differences in the frequencies of interest, ⇠ f100

and f41, it is also crucial to check the agreement of the two data-sets in the frequency domain.

Figure 8.2b shows that most of the magnitude spectrum is very similar, except for the peaks

at f254 and the ⇠ f41, which is considerably higher for the �18O (806) data. Figure 8.2c

shows the phase spectrum of the data from the two Sites. This shows that the two signals

are in high agreement for the low frequencies, until ⇠ f61. For the interval [f61, f41] and the

frequencies f28.5 and f21.5 the phase of the two signals does not correspond well, with the

phase \�18O(805C) having larger angle values in the interval [f61, f41]. The phase spectrum

of the two signals has again similar values after f21.5.

The modelling and analysis presented next is targeted at establishing a relationship be-

tween the �18O data-sets from the two Sites, by fitting a NARMAX model. The NARMAX

model has one input and no lagged terms in the output. The first problem encountered was

which of the data to use as input to the model and which one as output. Figure 8.2a, shows

a slight delay in the superimposed plots of the two data-sets, in the sense that generally the

data-set from the Site 806 is “ahead” compared to the data-set from Site 805. On this figure,

the red dots identify the delay between the two signals.
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Figure 8.2: a. �18O(806) (green) and �18O(805) (blue), where the red dots mark the observed
the delay between the signals b. Magnitude and c. Phase functions of �18O (806) (green) and
�18O (805) (blue).

To further study this problem, six models were fitted. They correspond to the first three

degrees of nonlinearity models for each of the two possible combinations of input-output.

The maximum lag allowed for input and noise terms was eight. The normalized root mean

squared errors for each of the possible full models is given in Table 8.1, and the model results
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can be viewed in Figure 8.3.

Figure 8.3: Modelling results and errors for: a, b, c. input �18O(805) and output �18O(806)
and d, e, f. input �18O(806) and output �18O(805), for the following model degrees of
nonlinearity: a, d. first order (d = 1); b, e. second order (d = 2) and c, f. third order
(d = 3).
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Case degree = 1 degree = 2 degree = 3
in = �18O (805), out = �18O (806) 16.91% 15.95% 16.57%
in = �18O (806), out = �18O (805) 14.65% 14.73% 13.22%

Table 8.1: NRMSE values for the input-output studied cases.

This analysis revealed that the case with �18O(805) as input produced very poor model

predicted outputs, as shown in Figures 8.3a, 8.3b and 8.3c. The smallest NRMSE value was

for �18O(806) as input. For this case the model has the degree of nonlinearity three and its

error value NRMSE = 13.22%. Cross-validation was used to obtain the model structure

giving the best fit.

The preliminary analysis suggested using the dataset from site 806 as input and the one

from site 805 as output. The best model has 17 process terms and 10 noise terms. The

model written for zero mean input is shown in Table 8.2. The mpo y(t) superimposed on

the output data �18O(805) is presented in Figure 8.4a. This shows that the mpo reproduces

very well the time-series of the measured �18O (805). Furthermore, in the frequency domain

the spectrum of the mpo fits well on the spectrum of the �18O (805) with the exception of

the peak at ⇠ f254 cycles/kyr. The correlations tests in Figure 8.5 also show that the fitted

model performs well within acceptable limits.
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Model coefficients Model terms
1 0.1227 u(t-1) 0 0
2 -0.0805 u(t-3) 0 0
3 0.2511 u(t-3) u(t-3) u(t-8)
4 0.1967 u(t-4) u(t-8) 0
5 -1.0972 0 0 0
6 1.0284 u(t-1) u(t-3) 0
7 0.2003 u(t-1) u(t-2) u(t-2)
8 -0.3075 u(t-1) u(t-2) 0
9 -0.6319 u(t-1) u(t-3) u(t-8)
10 0.2442 u(t-4) 0 0
11 1.0719 u(t-3) u(t-4) 0
12 0.7121 u(t-3) u(t-3) u(t-4)
13 0.1621 u(t-1) u(t-2) u(t-8)
14 0.1340 u(t-1) u(t-8) 0
15 0.0588 u(t-4) u(t-4) u(t-8)
16 0.4317 u(t-1) u(t-3) u(t-3)
17 -0.2654 u(t-3) u(t-3) u(t-3)
18 -0.7294 u(t-3) u(t-3) 0
19 0.1579 u(t-3) 0 u(t-8)
20 -0.1175 0 0 u(t-8)
21 -0.2439 0 u(t-2) u(t-2)
22 0.3745 0 0 u(t-2)
23 -0.1974 0 u(t-2) u(t-8)
24 -0.0716 u(t-4) u(t-4) 0

Table 8.2: Model terms and coefficients describing the relationship between �18O (806) and
�18O (805).
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Figure 8.4: a. �18O(805) (blue) superimposed on the mpo y(t) (red) b. Magnitude spectrum
of �18O (805) (blue) and of y(t) (red).

Figure 8.5: Correlation tests: a. �E2 , b. �UE, c. �UE2 , d. �U2E and e. �U2E2 for the fitted
model with input �18O(806) and output �18O(805).

After the model was fitted and validated, the next step was to obtain the Output Fre-

quency Responses (OFRs) by using the model’s Generalized Frequency Response Func-

192



Chapter 8 8.4. Modelling Strategies and Results

Figure 8.6: a. First and b. Second order Generalized Frequency Response Functions corre-
sponding to the model in Table 8.2.

tions (GFRFs) and the input spectrum. Given the model is a third order SISO model,

compared to the three inputs MIMO model studied in the previous chapters, it is eas-

ier to calculate the OFRs, because all of the functions are self-kernel functions. So the

mpo spectrum can be defined as: Y (j!) =
Pn

j=1 Y
j(j!), where n is the model nonlinear-

ity order. So for the SISO model under investigation, the output spectrum is given by:

Y (j!) = Y 1(j!) + Y 2(j!) + Y 3(j!).

H1(j!1) = 0.1227e�j!1 + 0.3745e�2j!1 � 0.0805e�3j!1 + 0.2442e�4j!1 � 0.1175e�8j!1

H2(j!1, j!2) = �0.1538[e�j(!1+2!2) + e�j(2!1+!2) + 0.5142[e�j(!1+3!2) + e�j(3!1+!2)]

�0.2439e�j(2!1+2!2) � 0.7294e�j(3!1+3!2) + 0.5360[e�j(3!1+4!2) + e�j(4!1+3!2)]

�0.0716e�j(4!1+4!2) + 0.0670[e�j(!1+8!2) + e�j(8!1+!2)]

�0.0987[e�j(2!1+8!2) + e�j(8!1+2!2)] + 0.0790[e�j(3!1+8!2) + e�j(8!1+3!2)]

+0.0983[e�j(4!1+8!2) + e�j(8!1+4!2)]

The results of the OFR calculation is shown in Figure 8.7. This shows that the sum of the

first three order functions perfectly fits on the output spectrum Y (j!). Figure 8.7b presents

separately each of the three functions Y 1(j!) (blue), Y 2(j!) (green) and Y 3(j!) (red) in

order to identify the main contributions to their sum.
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Figure 8.7: a. Y (j!) (blue) superimposed on the sum of the first three order OFRs Y 1(j!)+
Y 2(j!) + Y 3(j!) (green); b. Y 1(j!) (blue) superimposed on Y 2(j!) (green) and Y 3(j!)
(red).

Figure 8.7 shows that the overwhelming contribution at the high magnitude peaks comes

from Y 1(j!). This is also confirmed by performing the inverse Fourier Transform frequency

of the three calculated OFRs to obtain ŷ(1)(t), ŷ(2)(t) and ŷ(3)(t). The three signals add up

to describe the mpo y(t), as shown in Figure 8.8a.

Because the model was built without any lagged terms in the output, each order model

part can be separated directly from the NARMAX model. The linear model is shown in bold

font in Table 8.2 and its response y(1)(t) shown in Figure 8.8b. The model is:

y(1)(t) = 0.1227 u(t� 1) + 0.3745 u(t� 2)� 0.0805 u(t� 3)� 0.1175 u(t� 8) + 0.2442 u(t� 4)

By analysing the response of y(1)(t) the terms that mostly contribute to the mpo were
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identified as y(1)s as:

y(1)s (t) = 0.3745 u(t� 2) + 0.2442 u(t� 4)

The terms in the linear model y(1)s (t) are u(t � 2), which involves a time delay of 8 kyr

and u(t � 4), with a smaller term coefficient, which involves a time delay of 16 kyr. These

terms can explain the small delay observed in the data-sets from the two Sites, which were

identified in Figure 8.2a and discussed at the beginning of this section.

Figure 8.8: y(t) (blue) superimposed on ŷ(t), the time signal corresponding to the OFR sum
Y (j!) = Y 1(j!) + Y 2(j!) + Y 3(j!) (green); b. y(t) (blue) superimposed on the time signal
ŷ(1)(t) corresponding to the first order OFR Y (1)(j!) (green) and the model response y(1)s (t)
of the reduced first order model (red).

This confirms the frequency domain analysis from Figure 8.7b, which revealed that the

linear model is enough to reproduce the model response.

The normalized root mean squared error Table 8.9 between the model response y(t) and
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�18O(805) is NRMSE�18O(805),y = 13.22% and the normalized root mean squared error be-

tween y(1)(t) and the mpo y(t) is NRMSEy,y(1) = 6.27%. This means NRMSEy,y(1) is

small (50%) compared to NRMSE�18O(805),y. The reduced linear model part y(1)s (t) has a

slightly larger NRMSE
y,y

(1)
s

= 7.71% compared to y(t), which represents 58% of the over-

all NRMSE�18O(805),y. By choosing the reduced linear model y(1)s (t), only two model terms

can represent the relationship between �18O(805) and �18O(806) and this brings only small

increase in the error.

NRMSE relating �18O(805) y(t) y(1)(t) y(1)s (t)

y(t) 13.22%
y(1)(t) 16.38% 6.27%

y(1)s (t) 14.49% 7.71% 2.63%
ŷ(1)(t) 14.07% 6.8% 4.7% 6.09%

Figure 8.9: NRMSE values relating each of the time-series: output �18O(805), mpo y(t),
linear model part y(1)(t), reduced size linear model part y(1)s (t) and the linear model part
corresponding to the first order Volterra kernel ŷ(1)(t).

8.5 Discussion

Sites 806B and 805C are two extraction points from Leg 130 in the ODP Ontong Java Plateau

in the Western Pacific, that although are located closely to each other show differences in the

�18O time-series. The slight differences are observed in the time-series and also in the spectra

of the data. This is what triggered the investigation of the time-series and the similarities

and differences that appear in the Sites conditions, sedimentation rates, types of foraminifera,

geological and chemical gradients of the interstitial waters of the Sites. This analysis was

taken further by using the NARMAX methodology to obtain a model of the relationship

between the �18O time-series from the two Sites. The first step was to identify which of the

time-series to use as the model input and which as the output. The �18O of Site 806B was

used as the model inputs and �18O of Site 805C as model output.

The fitted NARMAX model was a third order of nonlinearity one with 24 terms.

Using the Output Frequency Responses the contribution of each order frequency response

can be evaluated. This analysis revealed that the first order response explains most of the

196



Chapter 8 8.5. Discussion

model response. Given the model only has lagged terms in the input, the linear model

can be separated directly from the time domain NARMAX model. This helped in finding

which of the linear model terms have the largest influence on the model output. The largest

coefficient was given by the term with lag 2, which involves a delay of 8 kyr between the

data-sets. This means that the cause of the variability observed in the two data-sets could

be a local Western Pacific parameter occurring on periods that are less than the orbital

parameters. This parameter could be the influence of closure to the Equator (Hagelberg

et al., 1995), deep water circulation (Hagelberg et al., 1995), gas exchanges processes at the

surface (Bickert et al., 1995) or organic matter production (Bickert et al., 1995).

In this chapter NARMAX was used not only to establish a relationship between the

orbital parameters and the �18O, as in previous Chapters, but also to fit a mathematical

relationship between two �18O time-series.
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Chapter 9

Conclusions

9.1 Discussion

This thesis introduced a new methodology for studying long term climate data using nonlinear

system identification techniques and time and frequency domain analysis approaches.

The main focus of the thesis is the study of the Mid-Pleistocene Transition, which was

placed by many authors (Imbrie et al., 1992, Pisias and Moore Jr., 1981) around 900 � 850

kyr BP. This point in palaeoclimate history brought a shift in the main period of oscillation of

the oxygen isotope ratios time-series, which represents a proxy for insolation. The observed

change was from the so called “41 kyr world”, where the main cycle was of 41 kyr driven

by obliquity, to the “100 kyr world”. Many authors (Rial and Anaclerio, 2000, Rial, 2004b,

Berger and Loutre, 1997a, Berger et al., 1998, Imbrie et al., 1993, Ganopolski et al., 2010,

Muller and MacDonald, 2005, Pollard, 1983) analysed the possible cause that triggered the

shift to the dominant 100 kyr cycle, but a unified theory could not be put forward. Some

of the explanations for the appearance of the 100 kyr cycle include: external forcing

through orbital inclination (Muller and MacDonald, 2005), internal feedbacks : Northern

Hemisphere ice sheets (Berger et al., 1999, DeBlonde and Peltier, 1991), CO2 concentrations

(Ganopolski and Calov, 2011, Berger and Loutre, 1997b, Loutre and Berger, 2000), dust

feedback (Ganopolski and Calov, 2011), frequency modulation of the orbital parameters

(Berger et al., 2005, Clemens and Tiedemann, 1997, Rial and Anaclerio, 2000) and a coupled

response between the orbital forcing and an internal nonlinear amplification (Berger, 1988,
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Imbrie et al., 1993).

The input - output data that was used are the three orbital parameters and the oxygen

isotope ratios proxy data. The Earth’s orbital parameters were linked to long term climatic

changes by many authors (Hays et al., 1976, Imbrie et al., 1992, Raymo, 1997) because their

main periods of oscillation are large enough (tens or hundreds of thousands of years) to be

associated with the main shift observed at the MPT. Main theories proposing explanations

for the appearance of the dominant 100 kyr cycle include: the climate sensitivity shifted

from obliquity to precession/eccentricity (Liu et al., 2008), power is transferred from one

frequency band into another through frequency modulation (Berger et al., 2005, Clemens and

Tiedemann, 1997), a nonlinear amplification of eccentricity generates the observed periodicity

after MPT (Clark et al., 2006).

In order to analyse the shift observed at the MPT, the NARMAX methodology was

first used to derive two polynomial models, corresponding to the time periods before and

after MPT . The NARMAX methodology involves structure detection, parameter estimation

and model validation. The structure detection and parameter estimation was done using

the Orthogonal Forward Regression algorithm. The optimal number of process and noise

terms were selected using cross-validation. The NARMAX models have the great advantages

that they are versatile, can provide insight into the system’s dynamics and they can be

easily mapped in the frequency domain by computing the Generalized Frequency Response

Functions.

For the modelling procedure a very large number of linear and nonlinear model structures

of different orders and input combinations were considered as candidates. The identified best

model structures for both time periods were third order polynomials using all three orbital

parameters as inputs. The models were validated using coherence analysis results and cor-

relation tests. The models are able to predict accurately the �18O time-series corresponding

to the modeled time period. Given that the model gives such good prediction only using the

three orbital parameters as inputs suggests that indeed the orbital forcing had a considerable

impact on the studied Pleistocene time period. An important result of the NARMAX models

simulations is the fact that two distinct models are required for each time period. When the

models are used to predict the �18O data for the time period not used in modelling, the
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prediction error increases considerably.

The stability analysis performed on the two identified NARMAX models involved cal-

culating the location of the fixed points. By determining the associated eigenvalues, the

asymptotically stable fixed points were determined. Each of the models had one stable equi-

librium point, and the model before MPT also had one unstable equilibrium point. The

location of the stable fixed points were found to be close to each other.

Although the time domain models predict with great accuracy the �18O time-series, the

MPT cannot be easily analysed in the time domain. For this reason, the concepts of General-

ized and Output Frequency Response Functions were used to map the estimated NARMAX

models in the frequency domain (Billings and Tsang, 1989a, Billings and Tsang, 1989b) and

to analyse their properties. Given the frequency domain representation of a system is unique,

compared to the time domain one, the use of the GFRFs and OFRs provided a rigorous rep-

resentation that was instrumental in analysing and comparing the models before and after

MPT . By analysing the results before and after MPT , two problems that received great

attention were tackled: what are the origins of the ⇠ 100 kyr cycle and what changed during

the MPT that can explain the frequency shift from a 41 kyr cycle before MPT to ⇠ 100

kyr cycle after MPT . This was done by analysing the contribution, with regards to both

magnitude and phase spectrum, of each OFR at the frequency corresponding to ⇠ 100 kyr.

This showed how each contribution changed from before to after MPT , and also which of

them has the largest influence on the magnitude peak at this frequency of interest.

The frequency domain analysis showed that most of the variability observed in the output

spectrum of the model predicted output comes before MPT from the linear OFR generated

by eccentricity and longitude of perihelion and that after MPT the overwhelming contri-

bution is given by the linear OFR generated by eccentricity alone.

Performing a frequency to time transform of the OFRs, it was also possible to decompose

the model response into its linear, quadratic, cubic and higher order responses. This gave

a different way of characterizing the role of the linear and nonlinear responses, and showed

that the largest contribution before and after MPT is given by the linear model response.

The NARMAX models not only provide a novel approach to palaeoclimate data modelling,

but they are also a very powerful tool for data fitting. This was proven by the comparison of
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the NARMAX model prediction with a model proposed by Rial and Anaclerio (2000) that

uses frequency modulation of the 95 kyr eccentricity signal to generate the saw-tooth shape

of the �18O data-set from Site 806B. Even though this model is capable of reproducing the

main periodicity of the data, it is not able to capture the subtle changes of the time-series.

The NARMAX models perform better than Rial’s model, as the simulations and analysis in

Chapter 7 showed.

The NARMAX methodology was further used to fit a model based on the �18O time-series

from two different drilling Sites in the Western Pacific, Site 806B and Site 805C. This analysis

was triggered by the slight differences observed in the data-sets, even though the drilling Sites

are located closely to one another. A preliminary analysis which showed a slight delay in the

�18O time-series from Site 805C encouraged to choose it as model output. The NARMAX

model structure detection showed that a third order model structure was the best suited to

describe the relationship between the two data-sets. However, using the OFR analysis, it

was proven that a linear model is sufficient to give good fitting results without a considerable

increase in the prediction error.

9.2 Future Work

The analysis of the �18O spectrum before and after MPT showed that the MPT was a

shift in the dominant frequency of oscillation from a 41 kyr cycle to a ⇠ 100 kyr cycle.

Although at the frequency corresponding to the ⇠ 100 kyr period a dramatic increase in the

magnitude spectrum is clearly observed, the change in the magnitude peak at the frequency

corresponding to the 41 kyr period is not significant. The same methodology of analysis using

the GFRFs and OFRs can also be used to analyse the individual contribution of each function

to the frequency corresponding to the 41 kyr period. This can reveal if the magnitude and

phase spectrum contributions remain the same or if they change. If the contributions change,

it would be interesting to observe how they compare to the changes observed before and

after MPT at the ⇠ 100 kyr.

The computed GFRFs and OFRs for the two estimated NARMAX models can also be

used to provide an explanation for the origin of the non-orbital frequencies observed in the
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spectra of the oxygen isotope ratios data.

Cell-to-cell mapping is a method proposed by Hsu (1980), Hsu and Guttalu (1980), Hsu

(1981), Hsu et al. (1982) and Hsu (1982), that analyzes the global behaviour of strongly

nonlinear systems, by dividing the state space into a large number of cells. There are two

types of cell mapping methods: simple cell-to-cell mapping (Hsu, 1980, Hsu and Guttalu,

1980), for which each cell has only one image cell, and generalized cell-to-cell mapping (Hsu,

1981, Hsu et al., 1982), case in which each cell can be mapped onto multiples cells, with

different probabilities. The cell mapping technique can be used on the NARMAX models

estimated before and after MPT in order to obtain for each of them the domains of

attraction for asymptotically stable solutions and the periodic cells. This can provide an

additional analysis tool that can aid in comparing the two studied time periods.

The NARMAX methodology can be further applied to estimate models that incorporate

other inputs as well as the three orbital parameters eccentricity, obliquity and longitude

of perihelion. This type of model can assess the impact of the orbital parameters when

compared to the other inputs by looking at the model coefficients. Other parameters that

could be considered, and are used in other studies (Berger et al., 1998, Gallee et al., 1992,

Petoukhov et al., 2005, Saltzman and Maasch, 1991, Maslin and Ridgwell, 2005, Ghil and

Tavantzis, 1983) as inputs, are the atmospheric CO2 concentrations and the planetary albedo.

In a similar matter to the previous suggestion, the NARMAX methodology can be used

to model the Vostok ice core data (or data recovered from other Sites than the Pacific Ocean

ones) using the orbital parameters as inputs. This can give insight into the influence of

orbital parameters on a palaeoclimate proxy data set recovered from an ice core and also, by

using the GFRF and OFRs, further information on the MPT can be obtained.

The model developed in Chapter 8 can be re-estimated by using lagged terms in the

output as well. This can help in distinguishing the effect these terms have on the simulated

model response, and compare with the model only using lagged terms in the input. This

analysis can maybe narrow down the possible causes of the slight differences observed in the

proxy data extracted from Sites 806B and 805C.

An interesting prospect can be the analysis of the data from the Sites 806B/805C and

the Vostok ice core in a similar manner to the analysis for the two Sites from ODP Leg 130
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performed in Chapter 8. This can show if any relationship between these two data sets can

be modeled and analyzed, given the two Sites are located at a great distance.

The NARMAX methodology can also be applied to a different time period than the

Pleistocene one. This can prove once more the versatility and power of the NARMAX

methodology. Also the impact of the orbital parameters on other time periods can be assessed

and compared with the Pleistocene results.

Concluding Remark

The introduction of this thesis presented the aim of describing and explaining the relationship

between orbital parameters and palaeoclimate proxy data using NARMAX models. This

work targets a very controversial and intriguing question in the field of palaeoclimate, and

system identification provided a novel approach on this subject. The modeling, prediction

and analysis results presented in this thesis are superior compared to models previously

presented in literature and show great promise for future development in understanding the

long term environmental changes.
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Appendix A

Term number Model coefficients Model terms

1 0.00179 yB(t� 1) u2B(t� 8) u2B(t� 8)

2 -0.000125 u2B(t� 1) u2B(t� 1) u2B(t� 1)

3 0.0001177 u2B(t� 2) u2B(t� 3) u2B(t� 8)

4 0.000130 u1B(t� 8) u3B(t� 1) u3B(t� 4)

5 -0.0000867 u1B(t� 6) u3B(t� 1) u3B(t� 4)

6 0.000234 yB(t� 2) yB(t� 2) u3B(t� 4)

7 0.0001245 yB(t� 3) u2B(t� 4) u3B(t� 4)

8 0.0000000249 u3B(t� 2) u3B(t� 3) u3B(t� 5)

9 -0.0003268 yB(t� 4) yB(t� 4) u3B(t� 2)

10 -0.0006939 u1B(t� 1) u2B(t� 3) u3B(t� 5)

11 -0.0009606 yB(t� 1) u1B(t� 1) u3B(t� 6)

12 -0.0000000249 u3B(t� 2) u3B(t� 2) u3B(t� 6)

13 0.00000023 u2B(t� 1) u3B(t� 2) u3B(t� 6)

14 0.001595 yB(t� 1) yB(t� 3) u3B(t� 4)

15 -4.465258e-005 yB(t� 4) u2B(t� 8) u3B(t� 4)

16 1.023898e-005 yB(t� 1) u2B(t� 3) u3B(t� 4)

17 0.08381 yB(t� 1) u2B(t� 8)

18 -0.00874 u2B(t� 1) u2B(t� 1)

19 0.002745 u2B(t� 2) u2B(t� 3)

20 0.002745 u2B(t� 2) u2B(t� 8)

21 0.002745 u2B(t� 3) u2B(t� 8)
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22 0.02382 u1B(t� 8) u3B(t� 1)

23 0.02382 u1B(t� 8) u3B(t� 4)

24 0.00000143 u3B(t� 1) u3B(t� 4)

25 -0.01588 u1B(t� 6) u3B(t� 1)

26 -0.01588 u1B(t� 6) u3B(t� 4)

27 0.04276 yB(t� 2) yB(t� 2)

28 0.001384 yB(t� 3) u3B(t� 4)

29 0.022797 yB(t� 3) u2B(t� 4)

30 0.00000457 u3B(t� 2) u3B(t� 3)

31 0.00000457 u3B(t� 2) u3B(t� 5)

32 0.00000457 u3B(t� 3) u3B(t� 5)

33 -0.05985 yB(t� 4) yB(t� 4)

34 -0.127098 u1B(t� 1) u2B(t� 3)

35 -0.016194 u1B(t� 1) u3B(t� 5)

36 -0.00002295 u2B(t� 3) u3B(t� 5)

37 -0.0003176 yB(t� 1) u3B(t� 6)

38 -1.759253 yB(t� 1) u1B(t� 1)

39 -0.000004565 u3B(t� 2) u3B(t� 2)

40 -0.000003691 u3B(t� 2) u3B(t� 6)

41 0.00004269 u2B(t� 1) u3B(t� 2)

42 0.00004269 u2B(t� 1) u3B(t� 6)

43 0.29209 yB(t� 1) yB(t� 3)

44 -0.001042 yB(t� 4) u3B(t� 4)

45 -0.008178 yB(t� 4) u2B(t� 8)

46 -0.0012815 yB(t� 1) u3B(t� 4)

47 0.001875 yB(t� 1) u2B(t� 3)

48 -0.001712 u2B(t� 8) u2B(t� 8)

49 -0.0004452 yB(t� 2) u3B(t� 4)

50 -0.0001187 u2B(t� 4) u3B(t� 4)
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51 0.0006231 yB(t� 4) u3B(t� 2)
52 0.0091572 u1B(t� 1) u3B(t� 6)
53 0.00004257 u2B(t� 8) u3B(t� 4)
54 -0.000009761 u2B(t� 3) u3B(t� 4)
55 0.68498 yB(t� 1)
56 -0.19623 u2B(t� 1)
57 -0.0080304 u2B(t� 8)
58 0.058078 u2B(t� 3)
59 0.064068 u2B(t� 2)
60 -0.000079245 u3B(t� 4)
61 0.0002626 u3B(t� 1)
62 4.362359 u1B(t� 8)
63 -2.907630 u1B(t� 6)
64 0.2535 yB(t� 3)
65 0.0003011 u3B(t� 5)
66 0.0008365 u3B(t� 3)
67 -0.0001365 u3B(t� 2)
68 -1.288751 u1B(t� 1)
69 0.0004629 u3B(t� 6)
70 -0.076715 yB(t� 4)
71 -0.08153 yB(t� 2)
72 -0.02173 u2B(t� 4)
73 1.110223e-016

Table A.1: Model B with zero mean input and internal constant removed
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Term number Model coefficients Model terms

1 0.001384 yA(t� 1) u2A(t� 8) u2A(t� 8)

2 0.02355 yA(t� 2) u1A(t� 7) u3A(t� 1)

3 -0.00008768 u2A(t� 1) u2A(t� 1) u2A(t� 1)

4 0.00000678 yA(t� 2) u3A(t� 3) u3A(t� 8)

5 0.020046 yA(t� 1) yA(t� 1) yA(t� 3)

6 0.0004457 yA(t� 2) u2A(t� 3) u2A(t� 3)

7 0.0020592 u1A(t� 7) u2A(t� 1) u3A(t� 1)

8 -0.411117 yA(t� 2) yA(t� 2) yA(t� 3)

9 -0.005230 yA(t� 2) u2A(t� 2) u2A(t� 7)

10 -0.01097 u1A(t� 1) u2A(t� 8) u2A(t� 8)

11 0.369466 yA(t� 1) yA(t� 4) u1A(t� 2)

12 -0.020104 yA(t� 1) u1A(t� 1) u3A(t� 7)

13 -0.0000000144 u3A(t� 1) u3A(t� 1) u3A(t� 8)

14 0.0000000216 u3A(t� 1) u3A(t� 2) u3A(t� 4)

15 -0.0001644 u1A(t� 1) u3A(t� 2) u3A(t� 4)

16 -0.00010092 u1A(t� 1) u3A(t� 4) u3A(t� 7)

17 0.0010573 u1A(t� 3) u2A(t� 7) u3A(t� 4)

18 -0.053157 yA(t� 2) yA(t� 2) u2A(t� 3)

19 -0.02706 yA(t� 2) yA(t� 3) u2A(t� 5)

20 -0.00016383 u2A(t� 8) u2A(t� 8) u2A(t� 8)

21 0.00008908 u1A(t� 2) u3A(t� 2) u3A(t� 3)

22 0.0001331 u2A(t� 3) u2A(t� 8) u2A(t� 8)

23 -0.00000633 yA(t� 1) u3A(t� 3) u3A(t� 8)

24 -0.00009667 yA(t� 2) u2A(t� 5) u3A(t� 8)

25 0.00007341 yA(t� 1) u2A(t� 3) u3A(t� 8)

26 0.064598 yA(t� 1) u2A(t� 8)

27 0.0006278 yA(t� 2) u3A(t� 1)

28 4.253094 yA(t� 2) u1A(t� 7)
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29 -0.006139 u2A(t� 1) u2A(t� 1)

30 -0.0010365 yA(t� 2) u3A(t� 8)

31 0.0012199 yA(t� 2) u3A(t� 3)

32 0.12078 yA(t� 2) u2A(t� 3)

33 0.372267 u1A(t� 7) u2A(t� 1)

34 0.025937 u1A(t� 7) u3A(t� 1)

35 0.00005495 u2A(t� 1) u3A(t� 1)

36 -0.12208 yA(t� 2) u2A(t� 7)

37 -0.12208 yA(t� 2) u2A(t� 2)

38 -0.51223 u1A(t� 1) u2A(t� 8)

39 -0.009958 u2A(t� 8) u2A(t� 8)

40 0.0098601 yA(t� 1) yA(t� 4)

41 -0.00053644 yA(t� 1) u3A(t� 7)

42 -3.633911 yA(t� 1) u1A(t� 1)

43 -0.0000026 u3A(t� 1) u3A(t� 1)

44 -0.0000052 u3A(t� 1) u3A(t� 8)

45 0.00000391 u3A(t� 1) u3A(t� 2)

46 0.00000391 u3A(t� 1) u3A(t� 4)

47 -0.00000048 u3A(t� 2) u3A(t� 4)

48 -0.0297 u1A(t� 1) u3A(t� 2)

49 -0.04797 u1A(t� 1) u3A(t� 4)

50 0.0006593 u1A(t� 1) u3A(t� 7)

51 -0.00000269 u3A(t� 4) u3A(t� 7)

52 0.19114 u1A(t� 3) u2A(t� 7)

53 0.02468 u1A(t� 3) u3A(t� 4)

54 0.00002822 u2A(t� 7) u3A(t� 4)

55 -0.85405 yA(t� 2) yA(t� 2)

56 0.14167 yA(t� 2) yA(t� 3)

57 0.01611 u1A(t� 2) u3A(t� 2)
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58 0.01611 u1A(t� 2) u3A(t� 3)

59 0.00000238 u3A(t� 2) u3A(t� 3)

60 0.006214 u2A(t� 3) u2A(t� 8)

61 0.0005685 yA(t� 1) u3A(t� 8)

62 -0.001145 yA(t� 1) u3A(t� 3)

63 0.007971 yA(t� 2) u2A(t� 5)

64 0.01327 yA(t� 1) u2A(t� 3)

65 -0.00000039 u3A(t� 3) u3A(t� 8)

66 -0.018852 yA(t� 1) yA(t� 1)

67 -0.037704 yA(t� 1) yA(t� 3)

68 -0.0004191 u2A(t� 3) u2A(t� 3)

69 0.0049188 u2A(t� 2) u2A(t� 7)

70 -0.34745 yA(t� 4) u1A(t� 2)

71 -0.34745 yA(t� 1) u1A(t� 2)

72 0.025448 yA(t� 3) u2A(t� 5)

73 0.0000909 u2A(t� 5) u3A(t� 8)

74 -0.000069041 u2A(t� 3) u3A(t� 8)

75 0.78583 yA(t� 1)

76 -0.480025 yA(t� 2)

77 -0.133354 u2A(t� 1)

78 0.00045796 u3A(t� 1)

79 4.688946 u1A(t� 7)

80 -0.19712 u2A(t� 8)

81 -11.2316 u1A(t� 1)

82 -0.000030359 u3A(t� 8)

83 0.00008521 u3A(t� 4)

84 0.000343 u3A(t� 2)

85 0.000017595 u3A(t� 7)

86 0.11990 u2A(t� 7)
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87 4.461101 u1A(t� 3)
88 0.0003594 u3A(t� 3)
89 3.238296 u1A(t� 2)
90 -0.00654 u2A(t� 3)
91 0.248089 yA(t� 3)
92 -0.007496 u2A(t� 5)
93 0.1148 u2A(t� 2)
94 -0.009273 yA(t� 4)
95 -2.220446e-016

Table A.2: Model A with zero mean input and internal constant removed
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Term Contribution to GFRF
cy(t� a) ce�ia!

cuk(t� b) ce�ia!

Table B.1: Model terms and their contribution to the first order GFRF H1
k(j!).

Term Contribution to GFRF
cy(t� a) ce�ia(!1+!2)

cy(t� a)y(t� b) cH1
k(j!1)H1

k(j!2)[e�i(a!1+b!2) + e�i(b!1+a!2)]
cy(t� a)uk(t� b) c[H1

k(j!1)e�i(a!1+b!2) +H1
k(j!2)e�i(b!1+a!2)]

cuk(t� a)uk(t� b) c[e�i(a!1+b!2) + e�i(b!1+a!2)]

Table B.2: Model terms and their contribution to the second order self-kernel GFRF
H2

k(j!1, j!2).

Term Contribution to GFRF
cy(t� a) ce�ia(!1+!2)

cy(t� a)y(t� b) cH1
k(j!1)H1

j (j!2)[e�i(a!1+b!2) + e�i(b!1+a!2)]
cy(t� a)uj(t� b) cH1

k(j!2)e�i(b!1+a!2)

cy(t� a)uk(t� b) cH1
j (j!1)e�i(a!1+b!2)

cuk(t� a)uj(t� b) ce�i(a!1+b!2)

Table B.3: Model terms and their contribution to the second order cross-kernel GFRF
H2

kj(j!1, j!2).
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FRF H3
k(j!1, j!2, j!3)

dy(t� a) de�ia(!1+!2+!3)

dy(t� a)y(t� b)
d[2H1

k(j!1)H2
k(j!2, j!3)[e�i(a!1+b!2+b!3) + e�i(b!1+a!2+a!3)]

+2H1
k(j!2)H2

k(j!1, j!3)[e�i(b!1+a!2+b!3) + e�i(a!1+b!2+a!3)]
+2H1

k(j!3)H2
k(j!1, j!2)[e�i(b!1+b!2+a!3) + e�i(a!1+a!2+b!3)]]

dy(t� a)y(t� b)y(t� c)
dH1

k(j!1)H1
k(j!2)H1

k(j!3)[e�i(a!1+b!2+c!3) + e�i(a!1+c!2+b!3)

+e�i(b!1+a!2+c!3)e�i(c!1+a!2+b!3) + e�i(b!1+c!2+a!3) + e�i(c!1+b!2+a!3)]

dy(t� a)y(t� b)uk(t� c)
d[H1

k(j!1)H1
k(j!2)[e�i(a!1+b!2+c!3) + e�i(b!1+a!2+c!3)]

+H1
k(j!1)H1

k(j!3)[e�i(a!1+c!2+b!3) + e�i(b!1+c!2+a!3)]
+H1

k(j!2)H1
k(j!3)[e�i(c!1+a!2+b!3) + e�i(c!1+b!2+a!3)]]

dy(t� a)uk(t� b)uk(t� c)
d[H1

k(j!1)[e�i(a!1+b!2+c!3) + e�i(a!1+c!2+b!3)]
+[H1

k(j!2)[e�i(b!1+a!2+c!3) + e�i(c!1+a!2+b!3)]
+[H1

k(j!3)[e�i(b!1+c!2+a!3) + e�i(c!1+b!2+a!3)]

duk(t� a)uk(t� b)uk(t� c)
d[e�i(a!1+b!2+c!3) + e�i(a!1+c!2+b!3)

+e�i(b!1+a!1+c!3) + e�i(c!1+a!2+b!3)

+e�i(b!1+c!2+a!3) + e�i(c!1+b!2+a!3)]

dy(t� a)uk(t� b)
d[2H2

k(j!1, j!2)e�i(a!1+a!2+b!3) + 2H2
k(j!1, j!3)e�i(a!1+b!2+a!3)

+2H2
k(j!2, j!3)e�i(a!1+b!2+b!3)]

Table B.4: Model terms and their contribution to the third order self-kernel GFRF
H3

k(j!1, j!2, j!3).
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H2
1B(j!1, j!2) =

�1.76H1
1B(!1)e�(i!1+i!2) + 1.76H1

1B(!2)e�(i!1+i!2) � 0.08H1
1B(!1)H1

1B(!2)e�(2i!1+2i!2)

(0.16e�(2i!1+2i!2) � 1.37e�(i!1+i!2) � 0.51e�(3i!1+3i!2) + 0.15e�(4i!1+4i!2) + 2)

+
�0.29H1

1B(!1)H1
1B(!2)(e�(3i!1+i!2) + e�(i!1+3i!2)) + 0.12H1

1B(!1)H1
1B(!2)e�(4i!1+4i!2)

(0.16e�(2i!1+2i!2) � 1.37e�(i!1+i!2) � 0.51e�(3i!1+3i!2) + 0.15e�(4i!1+4i!2) + 2)

H2
2B(j!1, j!2) =

1

2

(0.003e�(3i!1+2i!2) + 0.003e�(2i!1+3i!2) + 0.003e�(3i!1+8i!2) + 0.003e�(8i!1+3i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)

+
�0.017e�(i!1+i!2) + 0.003e�(2i!1+8i!2) + 0.003e�(8i!++2i!2) � 0.0034e�(8i!1+8i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)

+
+0.002H1

2B(!1)e�(i!1+3i!2)0.023H1
2B(!1)e�(3i!1+4i!2) + 0.002H1

2B(!2)e�(3i!1+i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)

+
+0.023H1

2B(!2)e�(4i!1+3i!2) + 0.084H1
2B(!1)e�(i!1+8i!2) � 0.008H1

2B(!1)e�(4i!1+8i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)

+
+0.084H1

2B(!2)e�(8i!1+i!2) � 0.008H1
2B(!2)e�(8i!1+4i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)

+
+0.29H1

2B(!1)H1
2B(!2)(e�(3i!1+i!2) + e�(i!1+3i!2)) + 0.086H1

2B(!1)H1
2B(!2)e�(2i!1+2i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)

+
�0.12H1

2B(!1)H1
2B(!2)e�(4i!1+4i!2))

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1)
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H2
3B(j!1, j!2) =

1

2

(
0.0000045e�(3i!1+5i!2) + 0.0000045e�(5i!1+3i!2) + 0.0000045e�(3i!1+2i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+
+0.0000045e�(2i!1+3i!2) � 0.0000037e�(6i!1+2i!2) � 0.0000037e�(2i!1+6i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+
+0.0000045e�(5i!1+2i!2) + 0.0000045e�(2i!1+5i!2)0.0000014e�(i!1+4i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+
�0.000009e�(2i!1+2i!2) + 0.0000014e�(4i!1+i!2) � 0.0003H1

3B(!1)e�(i!1+6i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+
+0.0014H1

3B(!1)e�(3i!1+4i!2) � 0.0003H1
3B(!2)e�(6i!1+i!2) + 0.0014H1

3B(!2)e�(4i!1+3i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+
�0.0013H1

3B(!1)e�(i!1+4i!2) � 0.00044H1
3B(!1)e�(2i!1+4i!2) + 0.0006H1

3B(!1)e�(4i!1+2i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+
�0.001H1

3B(!1)e�(4i!1+4i!2) � 0.0013H1
3B(!2)e�(4i!1+1i!2) + 0.0006H1

3B(!2)e�(2i!1+4i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)
)

�0.00044H1
3B(!2)e�(4i!1+2i!2) � 0.001H1

3B(!2)e�(4i!1+4i!2) � 0.12H1
3B(!1)H1

3B(!2)e�(4i!1+4i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

+0.29H1
3B(!1)H1

3B(!2)(e�(3i!1+i!2) + e�(i!1+3i!2)) + 0.08H1
3B(!1)H1

3B(!2)e�(2i!1+2i!2)

(0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0)

H2
12B(j!1, j!2) =

0.00094H1
1B(!1)e�(i!1+3i!2) � 0.064e�(i!1+3i!2) + 0.011H1

1B(!1)e�(3i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
+0.04H1

1B(!1)e�(i!1+8i!2) � 0.0041H1
1B(!1)e�(4i!1+8i!2) � 0.88H1

2B(!2)e�(i!1+i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
+0.15H1

1B(!1)H1
2B(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
+0.04H1

1B(!1)H1
2B(!2)e�(2i!1+2i!2) � 0.06H1

1B(!1)H1
2B(!2)e�(4i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+i!2) + 0.077e�(4i!1+4i!2) + 1.0
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H2
13B(j!1, j!2) =

�0.0079e�(6i!1+i!2) � 0.0046e�(i!1+6i!2) + 0.0079e�(6i!1+4i!2) + 0.0081e�(i!1+5i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

� �0.012e�(8i!1+i!2) � 0.012e�(8i!1+4i!2) + 0.00016H1
1B(!1)e�(i!1+6i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

� �0.0007H1
1B(!1)e�(3i!1+4i!2) + 0.00064H1

1B(!1)e�(i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

� +0.0002H1
1B(!1)e�(2i!1+4i!2) + 0.0003H1

1B(!1)e�(4i!1+2i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

� +0.0005H1
1B(!1)e�(4i!1+4i!2) � 0.88H1

3B(!2)e�(i!1+i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

��0.15H1
1B(!1)H1

3B(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))� 0.04H1
1B(!1)H1

3B(!2)e�(2i!1+2i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

� +0.06H1
1B(!1)H1

3B(!2)e�(4i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

H2
23B(j!1, j!2) =

0.000021e�(i!1+6i!2) � 0.000011e�(3i!1+5i!2) � 0.000005e�(3i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
+0.00002e�(i!1+2i!2) � 0.00006e�(4i!1+4i!2) + 0.00002e�(8i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0
�0.00016H1

2B(!1)e�(i!1+6i!2) + 0.0007H1
2B(!1)e�(3i!1+4i!2) + 0.0009H1

3B(!2)e�(3i!1+i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
+0.011H1

3B(!2)e�(4i!1+3i!2) � 0.0006H1
2B(!1)e�(i!1+4i!2) � 0.0002H1

2B(!1)e�(2i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0
+0.0003H1

2B(!1)e�(4i!1+2i!2) � 0.0005H1
2B(!1)e�(4i!1+4i!2) + 0.04H1

3B(!2)e�(8i!1+i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
�0.0041H1

3B(!2)e�(8i!1+4i!2) + 0.043H1
2B(!1)H1

3B(!2)e�(2i!1+2i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0

+
+0.15H1

2B(!1)H1
3B(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))� 0.06H1

2B(!1)H1
3B(!2)e�(4i!1+4i!2)

0.08e�(2i!1+2i!2) � 0.68e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.077e�(4i!1+4i!2) + 1.0
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Appendix C

H2
1A(j!1, j!2) =

�3.63H1
1A(!1)e�(i!1+i!2) � 4.25H1

1A(!2)e�(7i!1+2i!2) � 4.25H1
1A(!1)e�(2i!1+7i!2)

0.96e�(2i!1+2i!2) � 1.57e�(i!1+i!2) � 0.5e�(3i!1+3i!2) + 0.019e�(4i!1+4i!2) + 2.0

�+0.35H1
1A(!1)e�(i!1+2i!2) + 0.35H1

1A(!1)e�(4i!1+2i!2) + 3.63H1
1A(!2)e�(i!1+i!2)

0.96e�(2i!1+2i!2) � 1.57e�(i!1+i!2) � 0.5e�(3i!1+3i!2) + 0.019e�(4i!1+4i!2) + 2.0

� +0.35H1
1A(!2)e�(2i!1+i!2) + 0.35H1

1A(!2)e�(2i!1+4i!2)

0.96e�(2i!1+2i!2) � 1.57e�(i!1+i!2) � 0.5e�(3i!1+3i!2) + 0.019e�(4i!1+4i!2) + 2.0

� +0.038H1
1A(!1)H1

1A(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.96e�(2i!1+2i!2) � 1.57e�(i!1+i!2) � 0.5e�(3i!1+3i!2) + 0.019e�(4i!1+4i!2) + 2.0

��0.14H1
1A(!1)H1

1A(!2)(e�(3i!1+2i!2) + e�(2i!1+3i!2)) + 0.038H1
1A(!1)H1

1A(!2)e�(i!1+i!2)

0.96e�(2i!1+2i!2) � 1.57e�(i!1+i!2) � 0.5e�(3i!1+3i!2) + 0.019e�(4i!1+4i!2) + 2.0

�+1.71H1
1A(!1)H1

1A(!2)e�(2i!1+2i!2) � 0.01H1
1A(!1)H1

1A(!2)(e�(i!1+4i!2) + e�(i!1+i!2))

0.96e�(2i!1+2i!2) � 1.57e�(i!1+i!2) � 0.5e�(3i!1+3i!2) + 0.019e�(4i!1+4i!2) + 2.0

H2
2A(j!1, j!2) =

1

2

(
0.005e�(7i!1+2i!2) � 0.00084e�(3i!1+3i!2) + 0.005e�(2i!1+7i!2) + 0.006e�(3i!1+8i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
+0.006e�(8i!1+3i!2) � 0.012e�(i!1+i!2) � 0.02e�(8i!1+8i!2) + 0.025H1

2A(!1)e�(3i!1+5i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
�0.12H1

2A(!1)e�(2i!1+7i!2) � 0.12H1
2A(!2)e�(7i!1+2i!2) + 0.025H1

2A(!2)e�(5i!1+3i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
+0.12H1

2A(!1)e�(2i!1+3i!2) + 0.013H1
2A(!2)e�1(3i!1+i!2) + 0.12H1

2A(!2)e�(3i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
+0.008H1

2A(!1)e�(2i!1+5i!2) + 0.008H1
2A(!2)e�(5i!1+2i!2) � 0.12H1

2A(!1)e�(2i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
+0.065H1

2A(!1)e�(i!1+8i!2) � 0.12H1
2A(!2)e�(2i!1+2i!2) + 0.065H1

2A(!2)e�(8i!1+i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
�0.038H1

2A(!1)H1
2A(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
+0.14H1

2A(!1)H1
2A(!2)(e�(3i!1+2i!2) + e�(2i!1+3i!2))� 0.038H1

2A(!1)H1
2A(!2)e�(i!1+i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
�1.71H1

2A(!1)H1
2A(!2)e�(2i!1+2i!2) + 0.01H1

2A(!1)H1
2A(!2)(e�(i!1+4i!2) + e�(4i!1+i!2))

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0

+
+0.013H1

2A(!1)e�(i!1+3i!2))

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1.0
)
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Appendix C

H2
3A(j!1, j!2) = �1

2

(
0.0000027e�(7i!1+4i!2) + 0.0000027e�(4i!1+7i!2) � 0.0000024e�(3i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
�0.0000024e�(2i!1+3i!2) + 0.0000004e�(3i!1+8i!2) + 0.0000004e�(8i!1+3i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
+0.000005e�(i!1+i!2) � 0.000004e�(i!1+2i!2) � 0.000004e�(2i!1+i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
�0.000004e�(i!1+4i!2) � 0.000004e�(4i!1+i!2) + 0.000005e�(i!1+8i!2)+

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
0.00000048e�(2i!1+4i!2) + 0.00000048e�(4i!1+2i!2) + 0.000005e�(8i!1+i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
+0.0005H1

3A(!1)e�(i!1+7i!2) + 0.0005H1
3A(!2)e�(7i!1+i!2) + 0.001H1

3A(!1)e�(i!1+3i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
�0.001H1

3A(!1)e�(2i!1+3i!2) + 0.001H1
3A(!2))e�(3i!1+i!2) � 0.001H1

3A(!2)e�(3i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
�0.0006H1

3A(!1)e�(2i!1+i!2) � 0.00057H1
3A(!1)e�(i!1+8i!2) + 0.001H1

3A(!1)e�(2i!1+8i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
�0.00063H1

3A(!2)e�(i!1+2i!2) � 0.00057H1
3A(!2)e�(8i!1+i!2) + 0.001H1

3A(!2)e�(8i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
+0.038H1

3A(!1)H1
3A(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
�0.14H1

3A(!1)H1
3A(!2)(e�(3i!1+2i!2) + e�(2i!1+3i!2)) + 0.038H1

3A(!1)H1
3A(!2)e�(i!1+i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0

+
+1.71H1

3A(!1)H1
3A(!2)e�(2i!1+2i!2) � 0.01H1

3A(!1)H1
3A(!2)(e�(i!1+4i!2) + e�(4i!1+i!2))

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1.0
)
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Appendix C

H2
12A(j!1, j!2) =

0.1e�(3i!1+7i!2) + 0.19e�(7i!1+i!2) � 0.26e�(i!1+8i!2) + 0.013H1
1A(!1)e�(3i!1+5i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
�0.06H1

1A(!1)e�(2i!1+7i!2) + 2.13H1
2A(!2)e�(7i!1+2i!2) + 0.0067H1

1A(!1)e�(i!1+3i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
+0.06H1

1A(!1)e�(2i!1+3i!2) + 0.004H1
1A(!1)e�(2i!1+5i!2) � 0.06H1

1A(!1)e�(2i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
+0.03H1

1A(!1)e�(i!1+8i!2) � 1.82H1
2A(!2)e�(i!1+i!2) � 0.17H1

2A(!2)e�(2i!1+i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
�0.17H1

2A(!2)e�(2i!1+4i!2) � 0.019H1
1A(!1)H1

2A(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
+0.071H1

1A(!1)H1
2A(!2)(e�(3i!1+2i!2) + e�(2i!1+3i!2))

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
�0.019H1

1A(!1)H1
2A(!2)e�(i!1+i!2) � 0.85H1

1A(!1)H1
2A(!2)e�(2i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1

+
+0.005H1

1A(!1)H1
2A(!2)(e�(i!1+4i!2) + e�(4i!1+i!2))

0.48e�(2i!1+2i!2) � 0.79e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.01e�(4i!1+4i!2) + 1
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Appendix C

H2
13A(j!1, j!2) =

0.011e�(7i!1+i!2) + 0.0003e�(i!1+7i!2) + 0.0081e�(2i!1+3i!2) + 0.012e�(3i!1+4i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.015e�(i!1+2i!2) � 0.024e�(i!1+4i!2) + 0.008e�(2i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.0003H1

1A(!1)e�(i!1+7i!2) + 2.13H1
3A(!2)e�(7i!1+2i!2) � 0.0006H1

1A(!1)e�(i!1+3i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.019H1

1A(!1)H1
3A(!2)e�(i!1+i!2) + 0.0003H1

1A(!1)e�(2i!1+i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.0003H1

1A(!1)e�(i!1+8i!2) � 0.0005H1
1A(!1)e�(2i!1+8i!2) � 1.8H1

3A(!2)e�(i!1+i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.17H1

3A(!2)e�(2i!1+i!2) + 0.005H1
1A(!1)H1

3A(!2)(e�(i!1+4i!2) + e�(4i!1+i!2))

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.02H1

1A(!1)H1
3A(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.071H1

1A(!1)H1
3A(!2)(e�(3i!1+2i!2) + e�(2i!1+3i!2)) + 0.00061H1

1A(!1)e�(2i!1+3i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.17H1

3A(!2)e�(2i!1+4i!2) � 0.85H1
1A(!1)H1

3A(!2)e�(2i!1+2i!2)

0.48e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1
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Appendix C

H2
23A(j!1, j!2) =

0.000014e�(7i!1+4i!2) � 0.000035e�(3i!1+8i!2) + 0.000045e�(5i!1+8i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.000027e�(i!1+i!2) � 0.00027H1

2A(!1)e�(i!1+7i!2) � 0.06H1
3A(!2)e�(7i!1+2i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.013H1

3A(!2)e�(5i!1+3i!2) � 0.0006H1
2A(!1)e�(i!1+3i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.00061H1

2A(!1)e�(2i!1+3i!2) + 0.0066H1
3A(!2)e�(3i!1+i!2) + 0.06H1

3A(!2)e�(3i!1+2i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.004H1

3A(!2)e�(5i!1+2i!2) + 0.0003H1
2A(!1)e�(2i!1+i!2) + 0.0003H1

2A(!1)e�(i!1+8i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.0005H1

2A(!1)e�(2i!1+8i!2) � 0.06H1
3A(!2)e�(2i!1+2i!2) + 0.03H1

3A(!2)e�(8i!1+i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.02H1

2A(!1)H1
3A(!2)(e�(3i!1+i!2) + e�(i!1+3i!2))

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
+0.071H1

2A(!1)H1
3A(!2)(e�(3i!1+2i!2) +e�(2i!1+3i!2))� 0.02H1

2A(!1)H1
3A(!2)e�(i!1+i!2)

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1

+
�0.85H1

2A(!1)H1
3A(!2)e�(2i!1+2i!2) + 0.005H1

2A(!1)H1
3A(!2)(e�(i!1+4i!2) + e�(4i!1+i!2))

0.5e�(2i!1+2i!2) � 0.78e�(i!1+i!2) � 0.25e�(3i!1+3i!2) + 0.009e�(4i!1+4i!2) + 1
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Appendix C

H3
1B(j!1, j!2, j!3) =

� 3.52H2
1B(!1,!2)e�(i!1+i!2+i!3)

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� +3.52H2
1B(!1,!3)e�(i!1+i!2+i!3)

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� +3.5H2
1B(!2,!3)e�(i!1+i!2+i!3) � 0.17H1

1B(!2)H2
1B(!1,!3)

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� �0.58H1
1B(!1)H2

1B(!2,!3)(e�(i!1+3i!2+3i!3) + e�(3i!1+i!2+i!3))

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� �0.58H1
1B(!3)H2

1B(!1,!2)(e�(3i!1+3i!2+i!3) + e�(i!1+i!2+3i!3))

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� �0.17H1
1B(!1)H2

1B(!2,!3)e�(2i!1+2i!2+2i!3) � 0.17H1
1B(!3)H2

1B(!1,!2)e�(2i!1+2i!2+2i!3)

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� +0.24H1
1B(!1)H2

1B(!2,!3)e�(4i!1+4i!2+4i!3) + 0.24H1
1B(!2)H2

1B(!1,!3)e�(4i!1+4i!2+4i!3)

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� +0.24H1
1B(!3)H2

1B(!1,!2)e�(4i!1+4i!2+4i!3)

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6

� �0.58H1
1B(!2)H2

1B(!1,!3)(e�(3i!1+i!2+3i!3) + e�(i!1+3i!2+i!3))

0.49e�(2i!1+2i!2+2i!3) � 4.11e�(i!1+i!2+i!3) � 1.52e�(3i!1+3i!2+3i!3) + 0.46e�(4i!1+4i!2+4i!3) + 6
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Appendix C

H3
2B(j!1, j!2, j!3) = 0.17

(
0.00012e�(3i!1+2i!2+8i!3) + 0.00012e�(3i!1+8i!2+2i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.00012e�(i!1+3i!2+8i!3) + 0.00012e�(2i!1+8i!2+3i!3) + 0.00012e�(8i!1+3i!2+2i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.00012e�(8i!1+2i!2+3i!3) � 0.00075e�(i!1+i!2+i!3) + 0.05H2

2B(!1,!2)e�(3i!1+3i!2+4i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.05H2

2B(!1,!3)e�(3i!1+4i!2+3i!3) + 0.05H2
2B(!2,!3)e�(4i!1+3i!2+3i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.004H2

2B(!1,!2)e�(i!1+i!2+3i!3) + 0.004H2
2B(!1,!3)e�(i!1+3i!2+i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.004H2

2B(!2,!3)e�(i!1+i!2+i!3) + 0.0036H1
2B(!1)e�(1.0i!1+8i!2+8i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.0034H1

2B(!2)e�(8i!1+i!2+8i!3) + 0.0036H1
2B(!3)e�(8i!1+8i!2+i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.17H2

2B(!1,!2)e�(i!1+i!2+i!3) � 0.016H2
2B(!1,!2)e�(4i!1+4i!2+8i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.17H2

2B(!1,!3)e�(i!1+8i!2+i!3) � 0.016H2
2B(!1,!3)e�(4i!1+8i!2+4i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.17H2

2B(!2,!3)e�(8i!1+i!2+i!3) � 0.016H2
2B(!2,!3)e�(8i!1+4i!2+4i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.58H1

2B(!1)H2
2B(!2,!3)(e�(i!1+3i!2+3i!3) + e�(3i!1+i!2+i!3))

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.58H1

2B(!2)H2
2B(!1,!3)(e�(3i!1+i!2+3i!3) + e�(i!1+3i!2+i!3))

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
�0.24H1

2B(!3)H2
2B(!1,!2)e�(4i!1+4i!2+4i!3) + 0.17H1

2B(!1)H2
2B(!2,!3)e�(2i!1+2i!2+2i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.58H1

2B(!3)H2
2B(!1,!2)(e�(3i!1+3i!2+i!3) + e�(i!1+i!2+3i!3))

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
+0.17H1

2B(!3)H2
2B(!1,!2)e�(2i!1+2i!2+2i!3) � 0.24H1

2B(!1)H2
2B(!2,!3)e�(4i!1+4i!2+4i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1

+
�0.24H1

2B(!2)H2
2B(!1,!3)e�(4i!1+4i!2+4i!3) + 0.17H1

2B(!2)H2
2B(!1,!3)e�(2i!1+2i!2+2i!3)

0.08e�(2i!1+2i!2+2i!3) � 0.68e�(i!1+i!2+i!3) � 0.25e�(3i!1+3i!2+3i!3) + 0.077e�(4i!1+4i!2+4i!3) + 1
)
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Appendix C

H3
3B(j!1, j!2, j!3) = 0.17/

(1.0� 0.68e�(�i!1�i!2�i!3) + 0.08e�(�2!1�2!2�2!3) + 0.077e�(�4!1�6!2�4!3)

�0.25e�(�3!1�3!2�3!3))(0.000000025e�(�3!1�5!2�2!3)

+0.000000025e�(�3!1�2!2�5!3) + 0.000000025e�(�5!1�3!2�2!3)

+0.000000025e�(�5!1�2!2�3!3) + 0.000000025e�(�2!1�3!2�5!3)

+0.000000025e�(�2!1�5!2�3!3) � 0.00000005e�(�6!1�2!2�2!3)

�0.00000005e�(�2!1�6!2�2!3) � 0.00000005e�(�2!1�2!2�6!3)

�0.00064H2
3B(!1,!2)e

�(�!1�!2�6!3) � 0.00064H2
3B(!1,!3)e

�(�!1�6!2�!3)

�0.00064H2
3B(!2,!3)e

�(�6!1�!2�!3) � 0.0026H2
3B(!1,!2)e

�(�!1�!2�4!3)

�0.00089H2
3B(!1,!2)e

�(�2!1�2!2�4!3) + 0.0012H2
3B(!1,!2)e

�(�4!1�4!2�2!3)

�0.0021H2
3B(!1,!2)e

�(�4!1�4!2�4!3) � 0.0026H2
3B(!1,!3)e

�(�!1�4!2�!3)

�0.00089H2
3B(!1,!3)e

�(�2!1�4!2�2!3) + 0.0012H2
3B(!1,!3)e

�(�4!1�2!2�4!3)

�0.0021H2
3B(!1,!3)e

�(�4!1�4!2�4!3) � 0.0026H2
3B(!2,!3)e

�(�4!1�!2�!3)

�0.00089H2
3B(!2,!3)e

�(�4!1�2!2�2!3) + 0.0012H2
3B(!2,!3)e

�(�2!1�4!2�4!3)

�0.0021H2
3B(!2,!3)e

�(�4!1�4!2�4!3) + 0.0028H2
3B(!1,!2)e

�(�3!1�3!2�4!3)

+0.0028H2
3B(!1,!3)e

�(�3!1�4!2�3!3) + 0.0028H2
3B(!2,!3)e

�(�4!1�3!2�3!3)

+0.0016H1
3B(!1)H

1
3B(!2)(e

�(�3!1�!2�4!3) + e�(�!1�3!2�4!3))

+0.0016H1
3B(!1)H

1
3B(!3)(e

�(�3!1�4!2�!3) + e�(�!1�4!2�3!3))

+0.0016H1
3B(!2)H

1
3B(!3)(e

�(�4!1�3!2�!3) + e�(�4!1�!2�3!3))

+0.00047H1
3B(!1)H

1
3B(!2)e

�(�2!1�2!2�4!3) � 0.00065H1
3B(!1)H

1
3B(!2)e

�(�4!1�4!2�2!3)

+0.00047H1
3B(!1)H

1
3B(!3)e

�(�2!1�4!2�2!3) � 0.00065H1
3B(!1)H

1
3B(!3)e

�(�4!1�2!2�4!3)

+0.00047H1
3B(!2)H

1
3B(!3)e

�(�4!1�2!2�2!3) � 0.00065H1
3B(!2)H

1
3B(!3)e

�(�2!1�4!2�4!3)

+0.17H1
3B(!1)H

2
3B(!2,!3)e

�(�2!1�2!2�2!3) + 0.17H1
3B(!2)H

2
3B(!1,!3)e

�(�2!1�2!2�2!3)

+0.17H1
3B(!3)H

2
3B(!1,!2)e

�(�2!1�2!2�2!3) � 0.24H1
3B(!1)H

2
3B(!2,!3)e

�(�4!1�4!2�4!3)

�0.24H1
3B(!2)H

2
3B(!1,!3)e

�(�4!1�4!2�4!3) � 0.24H1
3B(!3)H

2
3B(!1,!2)e

�(�4!1�4!2�4!3)
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+0.58H1
3B(!1)H

2
3B(!2,!3)(e

�(�!1�3!2�3!3) + e�(�3!1�!2�!3))

+0.58H1
3B(!2)H

2
3B(!1,!3)(e

�(�3!1�!2�3!3) + e�(�!1�3!2�!3))

+0.58H1
3B(!3)H

2
3B(!1,!2)(e

�(�3!1�3!2�!3) + e�(�!1�!2�3!3)))
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Appendix C

H3
1A(j!1, j!2, j!3) = �0.17(

0.69H2
1A(!1,!2)e�(�4!1�4!2�2!3) + 7.27H2

1A(!1,!3)e�(�!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.69H2

1A(!1,!3)e�(�!1�2!2�!3) + 0.69H2
1A(!1,!3)e�(�4!1�2!2�4!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.69H2

1A(!2,!3)e�(�2!1�4!2�4!3) � 8.51H2
1A(!1,!2)e�(�2!1�2!2�7!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�8.51H2

1A(!1,!3)e�(�2!1�7!2�2!3) + 7.27H2
1A(!2,!3)e�(�!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.69H2

1A(!2,!3)e�(�2!1�!2�!3) � 8.51H2
1A(!2,!3)e�(�7!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2�!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.37H1

1A(!1)H1
1A(!2)(e�(�!1�4!2�2!3) + e�(�4!1�!2�2!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.02H1

1A(!1)H2
1A(!2,!3)(e�(�4!1�!2�!3) + e�(�!1�4!2�4!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.37H1

1A(!1)H1
1A(!3)(e�(�!1�2!2�4!3)+e�(�4!1�2!2�!3)) + 0.69H2

1A(!1,!2)e�(�!1�!2�2!3)

+
�0.37H1

1A(!2)H1
1A(!3)(e�(�2!1�!2�4!3) + e�(�2!1�4!2�!3)) + 7.27H2

1A(!1,!2)e�(�!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.02H1

1A(!2)H2
1A(!1,!3)(e�(�!1�4!2�!3) + e�(�4!1�!2�4!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.02H1

1A(!3)H2
1A(!1,!2)(e�(�!1�!2�4!3) + e�(�4!1�4!2�!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.075H1

1A(!1)H2
1A(!2,!3)e�(�!1�!2�!3) + 0.075H1

1A(!2)H2
1A(!1,!3)e�(�!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.075H1

1A(!3)H2
1A(!1,!2)e�(�!1�!2�!3) + 3.42H1

1A(!1)H2
1A(!2,!3)e�(�2!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+3.42H1

1A(!2)H2
1A(!1,!3)e�(�2!1�2!2�2!3) + 3.42H1

1A(!3)H2
1A(!1,!2)e�(�2!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.075H1

1A(!1)H2
1A(!2,!3)(e�(�!1�3!2�3!3) + e�(�3!1�!2�!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.075H1

1A(!2)H2
1A(!1,!3)(e�(�3!1�!2�3!3) + e�(�!1�3!2�!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.075H1

1A(!3)H2
1A(!1,!2)(e�(�3!1�3!2�!3) + e�(�!1�!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.28H1

1A(!1)H2
1A(!2,!3)(e�(�2!1�3!2�3!3) + e�(�3!1�2!2�2!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.28H1

1A(!2)H2
1A(!1,!3)(e�(�3!1�2!2�3!3) + e�(�2!1�3!2�2!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.28H1

1A(!3)H2
1A(!1,!2)(e�(�3!1�3!2�2!3) + e�(�2!1�2!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.02H1

1A(!1)H1
1A(!2)H1

1A(!3)(2e�(�3!1�!2�!3) + 2e�(�!�3!2�!3) + 2e�(�!1�!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.41H1

1A(!1)H1
1A(!2)H1

1A(!3)(2e�(�3!1�2!2�2!3) + 2e�(�2!1�3!2�2!3) + 2e�(�2!1�2!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)
)
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H3
2A(j!1, j!2, j!3) = 0.17

(
0.00027e�(�3!1�8!2�8!3) + 0.00027e�(�8!1�3!2�8!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.00027e�(�8!1�8!2�3!3) � 0.00053e�(�!1�!2�!3) � 0.00098e�(�8!1�8!2�8!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.027H2

2A(!1,!2)e�(�!1�!2�3!3) + 0.24H2
2A(!1,!2)e�(�2!1�2!2�3!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.027H2

2A(!1,!3)e�(�!1�3!2�!3) + 0.24H2
2A(!1,!3)e�(�2!1�3!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.027H2

2A(!2,!3)e�(�3!1�!2�!3) + 0.24H2
2A(!2,!3)e�(3�!�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.016H2

2A(!1,!2)e�(�2!1�2!2�5!3) + 0.016H2
2A(!1,!3)e�(�2!1�5!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.016H2

2A(!2,!3)e�(�5!1�2!2�2!3) + 0.0028H1
2A(!1)e�(�!1�8!2�8!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.0028H1

2A(!2)e�(�8!1�!2�8!3) + 0.0028H1
2A(!3)e�(�8!1�8!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.13H2

2A(!1,!2)e�(�!1�!2�8!3) �+0.24H2
2A(!1,!2)e�(�2!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.13H2

2A(!1,!3)e�(�!1�8!2�!3) � 0.24H2
2A(!1,!3)e�(�2!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.24H2

2A(!2,!3)e�(�2!1�2!2�2!3) + 0.13H2
2A(!2,!3)e�(8!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.0052H1

2A(!1)(e�(�2!1�7!2�2!3) + e�(�2!1�2!2�7!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.0052H1

2A(!2)(e�(�7!1�2!2�2!3) + e�(�2!1�2!2�7!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.0052H1

2A(!3)(e�(�7!1�2!2�2!3) + e�(�2!1�7!2�2!3)) + 0.051H2
2A(!1,!2)e�(�3!1�3!2�5!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.051H2

2A(!1,!3)e�(�3!1�5!2�3!3) + 0.051H2
2A(!2,!3)e�(�5!1�3!2�3!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.00089H1

2A(!1)e�(�2!1�3!2�3!3) + 0.00089H1
2A(!2)e�(�3!1�2!2�3!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.00089H1

2A(!3)e�(�3!1�3!2�2!3) � 0.24H2
2A(!1,!2)e�(�2!1�2!2�7!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.24H2

2A(!1,!3)e�(�2!1�7!2�2!3) � 0.24H2
2A(!2,!3)e�(�7!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.11H1

2A(!1)H1
2A(!2)e�(�2!1�2!2�3!3) � 0.11H1

2A(!1)H1
2A(!3)e�(�2!1�3!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.11H1

2A(!2)H1
2A(!3)e�(�3!1�2!2�2!3) � 0.075H1

2A(!1)H2
2A(!2,!3)e�(�!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.02H1

2A(!1)H2
2A(!2,!3)(e�(�4!1�!2�!3) + e�(�!1�4!2�4!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.02H1

2A(!2)H2
2A(!1,!3)(e�(�!1�4!2�!3) + e�(�4!1�!2�4!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.02H1

2A(!3)H2
2A(!1,!2)(e�(�!1�!2�4!3) + e�(�4!1�4!��!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.075H1

2A(!2)H2
2A(!1,!3)e�(�!1�!2�!3) � 0.075H1

2A(!3)H2
2A(!1,!2)e�(�!1�!2�!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)
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+
�3.42H1

2A(!1)H2
2A(!2,!3)e�(�2!1�2!2�2!3) � 3.42H1

2A(!2)H2
2A(!1,!3)e�(�2!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�3.42H1

2A(!3)H2
2A(!1,!2)e�(�2!1�2!2�2!3)

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.027H1

2A(!1)H1
2A(!2)(e�(�3!1�2!2�5!3) + e�(�2!��3!2�5!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.027H1

2A(!1)H1
2A(!3)(e�(�3!1�5!2�2!3) + e�(�2!1�5!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.027H1

2A(!2)H1
2A(!3)(e�(�5!1�3!2�2!3) + e�(�5!1�2!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.075H1

2A(!1)H2
2A(!2,!3)(e�(�!1�3!2�3!3) + e�(�3!1�!2�!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.075H1

2A(!2)H2
2A(!1,!3)(e�(�3!1�!2�3!3) + e�(�!1�3!2�!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.075H1

2A(!3)H2
2A(!1,!2)(e�(�3!1�3!2�!3) + e�(�!1�!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.28H1

2A(!1)H2
2A(!2,!3)(e�(�2!1�3!2�3!3) + e�(�3!��2!2�2!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.28H1

2A(!2)H2
2A(!1,!3)(e�(�3!1�2!2�3!3) + e�(�2!1�3!2�2!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.28H1

2A(!3)H2
2A(!1,!2)(e�(�3!1�3!2�2!3) + e�(�2!1�2!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
+0.02H1

2A(!1)H1
2A(!2)H1

2A(!3)(2e�(�3!1�!2�!3) + 2e�(�!1�3!2�!3) + 2e�(�!1�!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)

+
�0.41H1

2A(!1)H1
2A(!2)H1

2A(!3)(2e�(�3!1�2!2�2!3) + 2e�(�2!1�3!2�2!3) + 2e�(�2!1�2!2�3!3))

1.0� 0.79e�(�!1�!2�!3) + 0.48e�(�2!1�2!2�2!3) + 0.0093e�(�4!1�4!2�4!3) � 0.25e�(�3!1�3!2�3!3)
)
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