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Abstract

Over the Pleistocene Period, which covers the time interval [2.588, 0.0117] million years ago,
the dominant period of glacial-interglacial cycles changed from 41 000 years to 100 000 years.
According to Milankovitch’s Theory the variations of Earth’s orbital parameters eccentric-
ity, obliquity and precession are driving the growth and melting of glaciers. Despite being
generally accepted, Milankovitch’s Theory is still being challenged by some scientists largely
because of lack of models that are driven by the orbital parameters, which can adequately
reproduce climate proxy variables.

In this context, the aim of this thesis was to study the link between Earth’s orbital
parameters and climate proxy data and more specifically the role of orbital forcing in the
shift of dominant oscillation cycle during the Pleistocene and the origins of the 100 000 years
cycle.

In this work, nonlinear system identification tools were used to model oxygen isotope
ratios time-series extracted from the Western Pacific Drilling Site 806B. By analysing the
resulting models in the time and frequency domain, using Generalized Frequency Response
Functions and Output Frequency Responses, it was possible to determine which frequencies
and combinations of frequencies from the spectrum of the orbital parameters contribute most
significantly in the output spectrum, with focus on the frequency corresponding to the 100
000 years cycle.

More specifically, two new polynomial models, each dealing with one of the two Pleistocene
time periods dominated by a different cycle, were developed, analysed and compared. The
estimated models predict very well the oxygen isotope ratio time-series extracted from Site
806B.

The identified models not only predict well the oxygen isotope ratios, but also capture



the dynamics of the underlying processes before and after the Pleistocene dominant cycle
shift. The models reproduce well the critical points in the data which correspond to climatic
events, such as switching between a glacial and interglacial period. The models were used
to compare the variability in the palaeoclimate data over the two time periods and analyse
possible causes behind the observed change in period of oscillation.

By mapping the models into the frequency domain it was possible to characterize the
linear and nonlinear coupling between the individual orbital parameters and the climate
proxy variable of interest and to characterize the role of nonlinear interactions over different
glacial and interglacial periods.

The results presented in this thesis arguably provide the most compelling quantitative

evidence in support of Milankovitch’s Theory.
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Chapter 1

Introduction

1.1 Background and Motivation

The Quaternary era is the most recent geological era of the Earth and spans over the past 2.6
million years. Part of the Quaternary is the Pleistocene epoch, which covers the time interval
[2.6, 0.0117] million years. Over this time, the global climate was characterized by succeeding
cold and warm periods, which caused the glaciers and ice-sheets to grow and retreat. The
glacial and interglacial periods alternation varies periodically. The period of each cycle
changed though around 0.9 — 0.8 million years ago. This change is called the Mid-Pleistocene
Transition (MPT), and brought a shift in the glacial-interglacial variation cycle from 41
000 years before MPT to 100 000 years after MPT. Although the effects of the change
occurred at the MPT are known, it is still not clear what triggered this modification. Many
authors have investigated the shift during the MPT and the possible origins of the 100 kyr
cycle, but a unified theory could not be widely accepted. Among the possible explanations,
scientists referred to: the influence of orbital parameters (Rial and Anaclerio, 2000, Berger,
1988, Berger and Loutre, 1997a, Berger et al., 1999, Imbrie et al., 1993), internal feedbacks
caused by: ice sheets (Berger, 1988), C'O, concentration (Ganopolski and Calov, 2011), ice
albedo (Maslin and Ridgwell, 2005) or dust (Ganopolski and Calov, 2011), or external forcing
cause by orbital inclination (Muller and MacDonald, 2005).

Given the alternation of glacial and interglacial periods are quasi-periodical, scientists

tried to explain this by referring to the periodic variations in Earth’s orbit around the Sun
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(Rapp, 2008, Crucifix et al., 2009). This is called the Milankovitch theory (McGuffie and
Henderson-Sellers, 2005), after the serbian scientist that studied the Earth’s movements,
calculated the changes in Earth’s orbit and the temperature values at different points on
Earth’s surface. This allowed him to propose the theory that the ice ages are sustained by
cold summers which prevent the winter snow from melting. This dismissed James Croll’s
theory (1875), that proposed that very severe winters counteracted the effects of short and
hot summers (Finnegan, 2011). The astronomical theory developed by Milankovitch predicts
the climate variability at the geological time scale (100 000 years), which allows the study
of the relationship between orbital variations and seasonal, decadal and long to very long
climate changes (Berger, 1988). It is thought that the orbital forcing acts as trigger and is
not the sole factor of the extreme climatic changes (Berger and Loutre, 2002, Imbrie and
Imbrie, 1980, Macdougall, 2004).

The orbital parameters eccentricity, obliquity and precession influence Earth’s existence
and length of seasons, orbit orientation and the distance between the planet and the Sun. By
this influence, the amount of sunlight received at each latitude (insolation) is affected, and
so the orbital parameters affect the Earth’s climate. Each of the orbital parameters varies
periodically with cycles between tens and hundreds of thousands of years, with the main
period in eccentricity being 100 000 years, in obliquity 41 000 years and in precession 26 000
years.

Berger (1978a) and Berger(1978b) was able to prove, through tables of calculated values
for the insolation, the link between the periods of the orbital elements and the evolution
of climate (Imbrie and Imbrie, 1980). This link between climate change and insolation is
nonlinear (Crucifix et al., 2009).

The orbital parameters cycles have also been associated with periods found through spec-
tral analysis in deep-sea proxy records for the Pleistocene epoch (Crucifix et al., 2009). The
Ocean Drilling Program (ODP), between the years 1983-2003 while it was operating, con-
ducted 110 expeditions with 2000 drilled holes covering vast areas from the Arctic Ocean
to the Weddell Sea, and was an international effort of exploring the Earth’s subsea floors
and their composition and structure. Through the recovery and analysis of sediment fossils

that accumulated slowly on the ocean’s bottom over geologic time, it was possible to gain a
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better understanding into Earth’s past, but also it’s future. The fossils chemistry represents
proxies for the ocean conditions of the time when the microorganisms lived. Because the
deep ocean sediments are insulated from seasonal or other short-term noise, they give the
cleanest overview of long-term global temperature changes on Earth.

The modelling efforts that use palaeoclimatic data aim to explain a number of intriguing
climate events and features of the palaeoclimate, such as the appearance of a 100 000 years
cycle, or to predict the evolution of the global ice volume, the global sea-surface temperature
or the positions of the ice sheets at different times. The models developed in the past
could reproduce the appearance of the 100 000 years cycles to some extent. However, none
of the previous models could predict reasonably well the response of the proxy variables
to orbital parameters (Oerlemans, 1982, Ghil and Tavantzis, 1983, Saltzman and Sutera,
1987, Saltzman and Maasch, 1990). Some models could also reproduce the MPT period
shift (Le Treut et al., 1988). The most successful palacoclimate models, which were able to
also provide an explanation for the appearance of the 100 000 years cycles, were developed
by: Rial and Anaclerio (2000), Imbrie et al. (1992), Berger et al. (1999) and Pollard (1983).
However, these models still have some faults, such as: Rial’s model (2000) can only reproduce
the main periodicities in the data and not its subtle variabilities, Imbrie’s model (1992) does
not distinguish between two intermediary states (initial and preglacial) out of the four defined
ones. Berger et al. (199) only models the time after MPT, and for one third of the data,
which corresponds to the interval ~ [600 000, 400 000] years Before Present (BP), the model
simulation goes out of phase. Milankovitch (1941) mathematically proved the connection

between irradiation and temperature.

1.2 Aims and Objectives

The aim of this research was to use nonlinear system identification techniques to develop
models that describe the relationship between the orbital parameters and the ODP proxy
data throughout the Pleistocene, which allow to elucidate the orbital parameters influence
on the global climate variability, to explain the origin of the 100 000 cycle and characterize

rigorously the dynamical changes that took place during the MPT.
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System identification is a method inferring a mathematical model of a dynamical system
from experimental measurements of the inputs and outputs (Billings, 2013). Therefore, by
using system identification, a mathematical model describing the relationship between the
orbital parameters and proxy data can be developed. System identification has been success-
fully applied in many fields, such as engineering, biology, medicine, finance, social sciences etc
(Billings, 2013). The great advantage of system identification is that it requires no knowledge
of the system, and only uses experimental measurements. A well established identification
framework for nonlinear dynamic systems is the NARMAX methodology (Leontaritis and
Billings, 1985). The aim is to use the identified NARMAX polynomial model to understand
the relationship between the orbital forcing and climate variations. Using the NARMAX
methodology to model environmental time-series provides a novel and powerful approach to
characterize quantitatively the relationship between the orbital forcing parameters and the
proxy variables. Furthermore by computing Generalized and Output Frequency Response
Functions, the identified nonlinear NARMAX model can be mapped into the frequency do-
main and analysed in order to establish the nonlinear mechanisms by which the orbital
parameters generate the 100 000 years cycle.

More specifically the main objectives of this work can be summarized as follows:

e Apply nonlinear system identification based on the NARMAX methodology to identify
models corresponding to the time periods before and after MPT. These models
can help to understand the influence of the orbital parameters by comparison of their
contribution to each model. Furthermore, given the orbital parameters values (Berger,
1978a), the models can be used to predict how the climate will change in the future

and understand the underlying causes of the variations.

e Derive the Generalized Frequency Response Functions (GFRFs) and the Output Fre-
quency Responses (OFRs) for the identified models. These frequency domain functions
are very useful because, although many different time domain NARMAX model struc-
tures can describe the same system, their frequency domain functions will provide
unique results. Frequency domain analysis can provide great insight into a system’s

characteristics, especially in the case where the time-domain model cannot yields any
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straightforward relation to the underlying physical processes. By analysing the GFRFs
it is possible to investigate the effect of different model terms to the output spectrum.
This can be related back, through the model terms, to the contribution of the orbital
parameters to the output spectrum. Also, the GFRFs are a powerful tool for investi-
gating the energy transfer phenomena. The OFRs offer the advantage that, compared
to the GFRFs, are one-dimensional functions of frequency, so they are easier to anal-
yse and interpret. They can help in establishing the contribution of each input to the
output spectrum. The OFRs are also used in analysing specific frequencies of interest

and how the magnitude peaks at these frequencies are composed.

e Use the models to analyse the change that occurred during the MPT. The intriguing
aspect of the MPT is the shift from a dominant period of 41 000 years (before MPT)
to one of 100 000 years (after MPT), so it is important to obtain two NARMAX

models that can also reproduce this shift.

e Use the frequency domain analysis tools described above to analyse individual output
frequencies and which of the input frequencies contribute to their magnitude peaks.
These methods can be used to investigate the “100 000 years Problem”, which refers to
the appearance of the dominant 100 000 years cycles after MPT, the origin of which
is still debated.

e Use the OFR to decompose the time domain response of the model into contributions
associated to individual kernels of the Volterra series expansion. This allows quantifying

the contribution of each order of nonlinearity to the model output.
e Compare the performance of the identified NARMAX models with existing models.

e Determine, compare and characterize the equilibrium points of the system before and

after MPT.

e Model, analyse and compare the oxygen isotope time-series from two different ODP
Sites. This can help understand why data-sets from adjacent drilling holes are slightly

different and identify a model structure that can explain the observed differences.



Chapter 1 1.3. Overview of the Thesis

1.3 Overview of the Thesis

The work presented in this thesis is structured into 9 chapters. The remaining chapters are

organized as follows.

e Chapter 2 provides an overview of the paleoclimate data. This includes a description
of the changes that happened during the Mid-Pleistocene Transition, equations and
description of the three orbital parameters eccentricity, obliquity and longitude of per-
thelion and their influence on the Earth, details on the proxy data and how this is
recovered and dated. The chapter also reviews the previously developed models that

attempt to model the MPT and/or to reproduce the 100 kyr cycle.

e Chapter 8 introduces the NARMAX methodology. This chapter provides a detailed
description of all the major steps of the system identification methodology, namely:
model structure detection, parameter estimation and model validation techniques, with
particular emphasis on the polynomial NARMAX representation. The methodology
presented in this chapter provides the basis for the subsequent development of the

mathematical models based on palaeoclimatic records.

e Chapter 4 introduces the theoretical concepts of Generalized Frequency Response Func-
tions and Output Frequency Responses. Firstly the multi-tone inputs and the contribu-
tion given by each type of model term are defined in order to compute the GFRFs. This
chapter presents the derivations of the expressions of both the GFRFs and OFRs. In
order to help with the implementation of the higher-order frequency response functions

simple examples are provided.

e Chapter 5 describes for the first time the identification directly from temperature proxy
measurements of two NARMAX models that can describe the relationship between the
three orbital parameters (eccentricity, obliquity and longitude of perihelion) and the
oxygen isotope ratios time-series. This chapter starts by presenting the palaeoclimatic
proxy data used and the orbital parameters time-series. The modelling procedure
involves rigorous selection of the best model structure and parameter estimation. The

resulting models are validated using correlation tests and coherence analysis. This
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methodology is applied separately for the data corresponding to each of the two time
periods: before and after MPT, and two models describing each period are obtained.
The results demonstrate that the identified models can describe the dynamic response

of the climate proxy variable to orbital forcing with unprecedented accuracy.

e Chapter 6 presents the results of mapping the NARMAX models developed in Chapter
5 in the frequency domain through the GFRFs and OFRs. The computation of GFRFs
involves two preliminary model transformation procedures. This chapter provides the
analytical expressions of the GFRFs and OFRs associated with the identified models.
The chapter also presents a comparative analysis of the simulation results for before
and after MPT of the GFRF and OFR expressions. This analysis is targeted at find-
ing differences and similarities between the results that can explain why the observed
MPT change occurred. Moreover, the OFR results are used to quantify the contribu-
tion of each function and the observed changes at the frequency corresponding to the

100 kyr period.

o Chapter 7 investigates the time domain properties of the models developed in Chap-
ter 5. This involves comparing the model predicted output, calculating the predicted
equilibrium points of the system and assessing their stability. An additional analysis is
carried out to determine the contribution to the output of the first, second and third
order terms in the Volterra series expansion by mapping the OFRs back into the time
domain. This chapter also presents a comparison of the identified model results and the
simulated results of Rial’s model (2000), which clearly proves the improved accuracy

that NARMAX modelling offers.

e Chapter 8 presents a model which relates the variations of the proxy variables obtained
from ocean sediments extracted at two adjacent ODP Sites of Leg 130: Site 806B and
805C. In the first instance, the two sites are compared with regards to their location
and physical properties and the chemical gradients in the interstitial waters. An im-
portant contribution of this chapter is the identification of the casual link between the
measurements recorded at the two sites, i.e. measurements at Site 806B provide the

input and the measurements at Site 805C provide the output of the system.
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e Chapter 9 provides general conclusions on the thesis and offers suggestions for further

developing this work.



Chapter 2

Orbital Parameters and Their Impact on

Palaeoclimate Proxies

2.1 Introduction

A key point in understanding Earth’s climate and being able to predict what it will be
like in the future is to analyze the past climate and the periodic changes that it has gone
through. Earth’s climate has gone through a series of changes, over different time scales: long
term (hundreds of millions of years), medium term (one million years), short term (approx-
imately 160,000 years) and modern period (hundreds of years, which includes the human
influence) (Pomerol, 1982). Intensive studies have been aimed towards understanding the
origins and mechanisms behind these changes, and scientists have pointed towards modifi-
cations in palaeogeography, greenhouses gas concentrations, astronomically forced insolation
and inter-regional heat transfer as the main causes of alteration (Loutre and Berger, 2000).

When studying the medium to long time periods, the planet has gone through a series of
periods of glaciations, when the scene was dominated by ice sheets, and periods of warmer
temperature, characterized by risen ocean levels. The Pleistocene time period presents great
interest because of a change that happened around 900-800 kyr (lkyr = 1000 years) BP.
After this time the interglacial periods have occurred approximately every 100 kyr, whereas
before this time the dominant period in the ice volume variations was that of 41 kyr (Imbrie

et al., 1993, Ruddiman, 2006, Mudelsee and Schulz, 1997). The observed shift in periods
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around 900-800 kyr BP is known as the Mid-Pleistocene Transition (MPT).
Palaeoclimatology is the study of the geological past of Earth using climate proxies such
as sea (lake, ocean) sediments, ice sheets and ice cores, tree rings, corals, shells and mi-
crofossils (Bridgman, 2006). By analysing climate proxies it is possible to extract proxy
variables (stable isotope ratios, sedimentation rates, growth indicators etc) for water and
air temperature, atmospheric gasses (methane, CO;). Proxy data is commonly used when
actual measurements of the processes are not available due to the extremely long span of
the measured climate period. By studying the long climate evolution and major revolution
events scientists can identify past climatic trends, better understand the current climate and

predict easier the future one and its implications.

Period Epoch Age Million years
Holocene
0.0117
Upper - Taratian
0.126
Middle - lonian
2 0781
£
Pleistocene Calabrian
1.806
Lower
Gelaslan
g
3 Pliocene
Z 5332

Figure 2.1: Earth’s Geological Eras covering [2.588 , 0] Ma. Image made using materials
from Trenberth (2006) and Ericson and Wollin (1964).

The palaeoclimate changes do not happen instantaneous, but over a long period of time.
For this reason the scientists (Berger and Loutre, 2002, Imbrie and Imbrie, 1980, Macdougall,
2004), in order to characterize the changes in Earth’s palacoclimate, have investigated the link
between insolation and orbital parameters (Crucifix et al., 2007, Rapp, 2008). Three orbital

parameters (eccentricity, obliquity and precession) have been identified to have periodicities

10
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greater than a few thousand years. This is why the variations of Earth’s orbit are associated
with climatic changes. The Earth’s orbital parameters can be calculated using the equations
by Berger (1978) over a period of 3 Myr (million years). This period is suitable for finding a
model to describe The Quaternary era, which includes the Pleistocene period.

The quantity of solar radiation received on a given surface area at a given location on
Earth is called insolation. Insolation is a function of the Sun-Earth distance thus it will
depend on the Earth-orbit and the angle between solar rays and the normal to the Earth’s
surface. In turn, these parameters depend of the Earth’s orbit and thus insolation will be
a function of the orbital parameters. The greater the angle of the solar rays is, the larger
the surface temperatures are. However, because insolation or temperature measurements are
rare earlier than 1850 AD (Bridgman, 2006), it is necessary to assess past climates indirectly,
through the means of proxies. The proxies do not give direct values of temperature, but
indicators of how they changed (Bridgman, 2006).

This chapter is organized as follows. Section 2.2 provides an overview of the general cli-
mate features of the Quaternary era and, in more depth, of the Pleistocene time period. The
Mid-Pleistocene Transition and the changes it brought to the climate scene are reviewed.
Section 2.2 also gives a description of the “100 kyr Problem” and the different theories pro-
posed by various authors to resolve it. Section 2.3 introduces the Earth’s orbital parameters
and details on how they influence the insolation. Section 2.4 describes the proxy data repre-
sented by foraminifera and explains how the data is obtained, what are the oxygen isotope
ratios and what information it can provide for climate modelling. Also, the oxygen isotope
ratios data-set extracted from the Western Pacific Ocean Drilling Programme Site 806B is
described in this section. Section 2.5 gives an overview on the previously developed palaeo-
climate models, with emphasis on the ones that use orbital forcing, can reproduce the orbital

frequencies, and have been used to explain the appearance of the ~ 100 kyr cycle.

2.2 The Mid - Pleistocene Transition

The Quaternary is the most recent geological era that spanned over the last 2.588 Myr and it
includes the epochs Holocene and Pleistocene (Gradstein et al., 2005, Trenberth, 2006). It is

11
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commonly known as an era of extremes due to its glacial (glacial advances) and interglacial
(glacial retreats) intervals. The Earth is currently in an interglacial, and the last glacial
period ended about 10,000 years ago (Jouzel et al., 1993, Crucifix et al., 2007). The sequence
of glacial — interglacial cycles has received much attention from researchers. Although they
do not offer a theory that can cover all angles of the problem, it does seem that this phe-
nomenon was favoured by a series of simultaneous events, such as: the astronomical cycles
and the incoming solar irradiation (insolation), atmospheric composition (trends in atmo-
spheric CO,), plate tectonics and ocean currents (movement and position of the continents),
and other global and local phenomenon episodes (ice albedo, loess accumulation, deposits of
ice debris, uplift of the Himalayas) (Gradstein et al., 2005). Scientists are still working on
determining if some of the above mentioned incidents are causes or effects of the ice ages.

From the study of proxy data it has been shown that the first part of the Quaternary,
known as the early Pleistocene, was dominated by an approximately 41 kyr signal, whereas
the last part of it, also known as the late Pleistocene, was dominated by an approximately
100 kyr signal. Milankovitch (1941) was the first scientist to link the glacial cycles to the
variations in Earth’s orbital parameters, represented by eccentricity, obliquity and precession.
His hypothesis has long been discussed and is widely accepted due to the long periods of the
orbital elements, roughly 100, 41 and 26 kyr, and the similarity of the results with those from
the more recent Deep-Sea Drilling Programmes ones (Berger et al., 1991a, Rial and Anaclerio,
2000, Berger et al., 2005, Paillard, 2001). Milankovitch’s idea was that the orbital parameters
influence the amount and seasonal distribution of sunlight that reached the Earth’s surface
and this in turn favours the forming of the glacial — interglacial cycles and the change from the
41 kyr to 100 kyr dominant signal. At the same time the theory is thought to be insufficient
to explain the glacial — interglacial cycles, due to a mismatch in the timing of the glacial
terminations from the terrestrial records (Maslin and Ridgwell, 2005). An explanation for
this could be additional feedbacks (Berger, 1988, Ganopolski and Calov, 2011), but the cause
and nature for these has not yet been satisfactory explained.

From a first investigation over the oxygen isotope record time series for the Quaternary
Period extracted from Site 806B, it can be seen that the data can be split into three parts
(marked on Figure 2.13 with dotted red line) that differ from each other both in amplitude
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of the signal but also in the frequency of oscillation. The times of these modifications are
approximately 0.85-0.9 Myr BP and 1.3-1.4 Myr BP. Hence, because the orbital parameters
don’t change their nature during this era, it is obvious now that the way in which the climate

system responds to them changes at the given intervals.

2.2.1 The Mid-Pleistocene Features

The Pleistocene Epoch follows the Pliocene Epoch and is followed by the Holocene Epoch in
the Quaternary Era sequence (Gradstein et al., 2005) (Figure 2.1).

The climate modification at the 0.85 - 0.9 Myr BP is widely known as the Mid-Pleistocene
Transition or Revolution (Berger et al., 1994, Berger and Loutre, 1994). What happened at
this point in Earth history is very interesting to unveil especially because there are many
theories but not one unanimously accepted by palaecoclimate scientists. What it is known
are the effects: a shift from a time with warmer temperature, less intensive glaciations and
oscillations with a frequency of 41 kyr (found in the obliquity bands) to one with colder
climate and oscillations characterized by a frequency of 100 kyr (Maasch, 1988, Berger et al.,
1994, Paillard, 1998, Raymo and Nisancioglu, 2003).

There are two types of transitions identified throughout the geological past of Earth: aber-
rations and quasiperiodical oscillations (Zachos et al., 2001). Aberrations are characterized
as abrupt changes due to exceeding of climatic thresholds. These happen fast (less than a few
thousands of years) and can have extreme effects. The quasi-period variations are thought
to be driven and paced by Earth’s orbit which through their effect on daily insolation can
inflict the periods of tens and hundreds of years found in the proxy data.

Spectral analysis for the oxygen isotope records have shown frequencies correspondent
to the period of 41 kyr, associated with obliquity’s period, and 21 kyr, associated with
precession’s period. Peaks were also found at the frequencies correspondent to the period
of 413 kyr and the lower period of 100 kyr. It is known (Pisias and Moore Jr., 1981) that
eccentricity varies with periods of 95, 125 and 413 kyr, so this factor seems to influence the

oxygen isotope variations. The forcing or internal parameter behind the 100 kyr frequency
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though could not be explained so far.

2.2.2 The “100 kyr Problem”

Through power spectra analysis on the oxygen isotope data scientists were able to confirm
that orbital frequencies are present in the data, and that the dominant peak in the past 900
- 800 kyr is that corresponding to the 100 kyr one. Obliquity and precession frequency peaks
were also found to be important climatic proxy data peaks. Even with these advances there
are many still unanswered questions with regards to eccentricity’s connection to the ~ 100

kyr period and the Mid-Pleistocene Transition, such as:

1. Why did the 100 kyr power increase so dramatically around 0.8 Ma, despite no apparent
change in the orbital forcing (Lisiecki, 2010).

2. The nonlinear mechanisms behind the 100 kyr periods are yet to be explained. It has
been recognized in literature that the 100 kyr cannot be explained as a linear (direct)
response to eccentricity (Berger et al., 2005, Raymo and Nisancioglu, 2003, Lisiecki,
2010), and it has been suggested that this can be the result of bundling of either 4 or 5
precession cycles (Raymo, 1997) or 2 or 3 obliquity cycles (Huybers and Wunsch, 2005)
that resulted in an average 100 kyr periodicity.

3. The oxygen isotope curves have revealed a nearly 300 kyr long stage of transition from a
predominant 41 kyr to 100 kyr periodicity. Therefore, the “Mid-Pleistocene Revolution”
should be considered as a process of transition rather than an abrupt change (Wang

et al., 2001).

2.2.3 Potential Origins and Explanations for the “100 kyr Problem”

Extensive analysis has been conducted by many authors in order to obtain an explanation

to the “100 kyr Problem”. Most agree that because the nature of the orbital forcing does not
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change in different times, it must be the way the climate system evolves and responses to
external forcing, especially a nonlinear response to precession, that sets the amplitude and
phase for the 100 kyr oscillation.

The main explanations from literature for what drives the 100 kyr oscillation cycles are:

e External forcing in the form of orbital inclination, which can be thought of as a
possible forth orbital parameter. It has the desired period of 100 kyr, which matches the
one in palaeoclimatic records. This orbital element represents the variation in the angle
of the Earth’s plane of orbit compared to the average orbit of the solar system (Farley
and Patterson, 1995, Muller and MacDonald, 1997). However, due to the fact that
inclination changes are too small compared to seasonal extremum, it is not plausible
that this parameter can have such a big impact as to induce the 100 kyr periodicity
in ice ages (Mudelsee and Schulz, 1997, Kortenkamp and Dermott, 1998, Berger et al.,
1999). A second approach to external forcing is the argument that the total amount of
radiation received on Earth’s surface is influenced by the fact that Earth’s orbit passes
through an outer space cloud of dust (Interplanetary Dust Particles). Some researchers
have hypothesized that this could induce glacial-interglacial alternations with the 100
kyr period.

e Internal feedbacks due to a number of factors:

— Ice sheets have played, according to Berger (1988), an important role in modulat-
ing the 100 kyr cycle. DeBlonde and Peltier (1991) on the other hand talk about

a feedback effect between the lithosphere and ice sheets.

— COs concentration, which accounts for the radiative forcing of three major green-
house gases: carbon dioxide, methane and nitrous oxide (Ganopolski and Calov,
2011). The global climate state is dependent on the atmospheric concentration
of many atmospheric components, like CO,, C'H, or water, and changes in these
can drive the global climate towards cooling or warming. A very important role
is played by the greenhouse gases, that absorb outgoing infrared radiations (e.g.
Berger, 1988, Maasch, 1988, Maasch and Saltzman, 1990, Saltzman and Maasch,
1991, Saltzman and Verbitsky, 1993, Berger and Loutre, 1992, Li et al., 1998).
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The scientists are torn between the hypothesis that climate sensitivity to the COq
concentrations variations is high enough to favour the presence of the 100 kyr
cycle or that the changes in the C'Oy are merely an effect of the glacial-interglacial

transitions.

Ice albedo feedback (Maslin and Ridgwell, 2005) - as snow and ice accumulate due
to initial changes in insolation regime, the ambient environment is modified and
a repetitive climatic effect is produced. Firstly, an increase in albedo, will trigger
more reflection of the solar radiation. Because this means a reduction in solar
radiation absorbtions, the local climate will change with regards to temperature.
This will in turn support the accumulation of more snow and ice and another mod-
ification of the local environment. Although ice albedo effects can be considerable,

they are not global but latitudinal dependent.

Dust feedback is thought by Ganopolski and Calov (2011) to be the required
strong nonlinear feedback mechanisms that can explain glacial terminations. This
feedback is activated after the ice sheets spread well into the area covered by thick
terrestrial sediments. Large dust deposits over the ice sheets can reduce their
albedo and in turn favour the ablation and the ice sheet’s response to insolation.
This mechanism is thought to give a possible explanation to the changes from the

41 kyr to the 100 kyr world.

Saltzman and Verbitsky (1994) suggest an internal instability, which is generated
by feedbacks among temperature, CO, and ice volume, that generates an internal

oscillation with a 100 kyr period.

e Frequency modulation theories:

Rial and Anaclerio (2000) say that frequency modulation is a nonlinear phase-
and frequency-locking process that transfers energy from one frequency band into
another, and can create new frequencies (called sidebands) as combination tones
of the carrier and the modulating frequencies. In this case the modulator and the

sidebands will present strong phase coherence. Rial’s theory suggests that:
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x The 75 and 123 kyr peaks coincide with the predicted sidebands of a 95 kyr

carrier frequency modulated by a 413 kyr signal, as in % = 91—5 + 4—13 and

1 1 1

123 = 95~ 413"

*x The 85, 107 and 143 kyr peaks coincide with the predicted sidebands of a 95
kyr carrier frequency modulated by an 826 kyr subharmonic of the 413 kyr
. o1 1 11 _ 1 1 11 3
signal, as in gz = o= + 536> 707 — o5 — 5260 A T3 = 55 — 55

« Frequency modulation is a nonlinear process described by the equation (Chown-

ing, 1977):

e = Asin(2n f.t + Isin(27 f,,,t))

where e is the instantaneous amplitude of the modulated carrier, f. is the carrier
frequency in Hz, f,, is the modulating frequency in Hz and I is the modula-
tion index. Hence, if the role of the 413 kyr eccentricity component is indeed to
frequency-modulate the higher frequency components, we can expect to find sig-
nal power at 413 kyr in all the §'¥0 records, though not in the form of a spectral
peak, but rather as the interval between sidebands (Rial, 2004a). So the fact that
in the proxy data there is no substantial power at 413 kyr is entirely consistent

with FM theory.

— Clemens and Tiedemann (1997) put forward the theory that eccentricity modu-
lates the amplitude of precession. The eccentricity peaks in the oxygen isotope
ratios (6'®0) spectrum suggests that the pre 1.2 Myr climate system transfers
variance from the upper envelope of precession-dominated insolation into the 404,
124 and 95 kyr eccentricity bands. This suggestion is supported by the observa-
tion that the amplitudes of the 404, 124 and 95 kyr 6**O cycles are approximately
equal to the amplitude of the 23 kyr §*¥0O cycle, each accounting for 0.1% of the
total 0.6% amplitude. The remaining 0.2% is accounted for by the amplitude of
the 41 kyr cycle.

— Berger and Loutre (1997a) also suggest that the 100 kyr power can be generated by

transmission of 19 kyr and 23 kyr periods through a nonlinear system producing
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substantial power in both harmonics and subharmonics.

— Berger et al. (1999) claim that a general problem for most of the simulations is
that they can hardly reproduce a ~ 100 kyr period without the ~ 400 kyr one
(e.g. Imbrie and Imbrie, 1980, Kukla et al., 1981) due to the nonlinear origin of the
100 kyr period which comes from the combination tone between the frequencies
of the first and third terms in the precession trigonometrical expansion, whereas
the 400 kyr period comes from the combination tone between the first and second

precessional frequencies Berger (1988).
e Coupled response between the orbital forcing and an internal nonlinear amplification:

— Berger’s investigations (1988) show that the 100 kyr cycle seems in phase with the
eccentricity cycle, although the exceptional strength of this cycle needs a nonlinear

amplification.

— Imbrie et al. (1993) suggest that larger Northern Hemisphere ice sheets are an es-
sential condition for the development of feedbacks to drive the 100 kyr ice volume
cycle. In low latitudes however, large 100 kyr cycles can be developed indepen-
dently of large ice sheets. In this view, the 100 kyr cycle is a response to the
Milankovitch forcing in which the coupled air - sea - ice system acts as a nonlinear

amplifier.

Other unexplained features of this era are:

1. The notable absence in the §'80 data of significant spectral amplitude at the 413 kyr in
the last 1.2 million years, in spite of being the largest component of eccentricity forcing

(Crucifix et al., 2007, Loutre et al., 1992, Berger and Loutre, 1992).

2. By which nonlinear mechanism can the spectral peaks at frequencies other than those
in the insolation forcing be explained? Most researchers agree that these extra peaks
are either harmonics or combination tones of the orbital forcing (Rial and Anaclerio,

2000).
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2.3 Earth’s Insolation and Orbital Parameters

Earth’s orbit is influenced by the gravitational attraction of all the other planets in the Solar
system, the Moon, the Sun and our planet’s distance to them. She solution to the orbital
system is very complex, and many scientists have worked on theories regarding this, such
as: Johannes Kepler (1571-1630), Sir Isaac Newton (1643-1727), Lagrance, Pontecoulant and
Louis Agassiz.

Due to their long periods (tens and even hundreds of thousands of years) the orbital
parameters are the perfect candidates to explain the long-term variability observed in the cli-
matic proxies. The three orbital parameters that are considered the most important (Berger,
1978a, Berger, 1978b, Saltzman and Sutera, 1987, Imbrie and Imbrie, 1980) for palaeoclimate
study are: eccentricity (e), obliquity (&) and precession (p). These influence: the appearance,
shifts and effects of the seasons, the changes in Earth’s orbit orientation, the closest and

farthest points in the Earth’s orbit with regards to the Sun (Figure 2.2).

Figure 2.2: Earth’s orbital parameters: e (eccentricity), e (obliquity), w (longitude of perihe-
lion) and p (precession). Figure adapted from Jansen et al. (2007).

2.3.1 Eccentricity

Earth’s orbit is described by an ellipse shape, which can be seen in Figure 2.3. The value of

an orbit’s eccentricity is given by the equation (Berger and Loutre, 1994):
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Nz

a

e =

where e is the eccentricity, and a and b are the semi-major and semi-minor axes of the
elliptical orbit.

An eccentricity value of 0 corresponds to a circle (Figure 2.3). The meaning of the orbital
eccentricity is the amount by which the orbit of a planet deviates from a perfect circle. This
happens mostly due to the gravitational fields of the planets Jupiter and Saturn (Beer et al.,
2006). The eccentricity, given is a ratio, is unitless. Figure 2.3 shows examples of various

orbit shapes and their eccentricities.

e=05
<

Figure 2.3: a. Defining elements in eccentricity’s definition and b. examples of different
orbit’s eccentricities and their values. Images adapted from
“http:/ /earth-www.larc.nasa.gov/ceresweb /TWG /glossary /e.html”.

Earth’s eccentricity values are very small, varying periodically over hundreds of millions of
years between 0.000567 (near circular) and 0.053511. The current value of Earth’s eccentricity
is 0.0167 and this might have trigger an observed increase in July to January insolation of
approximately 6.4% (Berger and Loutre, 2002). The mean value of eccentricity for the period
[1400 , 0] kyr is 0.028. For the past 15 Myr, the three most important periods in the series
expansion for eccentricity are about 413, 125 and 95 kyr.

Eccentricity has influence on the planet’s seasons. Provided that the semi-major axes

remain constant, when the eccentricity is bigger the seasons on the far side of the orbit can
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get longer. Contrary, when the eccentricity takes smaller values, the Earth is closer to the
Sun, thus summers will be warmer and winters less severe (Thomas, 2002).

For the considered time period 1400 - 0 kyr BP, the eccentricity values are presented in
Figure 2.4.
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Figure 2.4: Eccentricity for the time period [1400 , 0] kyr BP.

2.3.2 Obliquity

Obliquity, or the Earth’s tilt, represents the angle between the perpendicular to Earth’s
elliptical orbit plane and its axis of rotation (Figures 2.2 and 2.8). Because of this for half
an orbit one pole will be directed towards the Sun and the second half away from it. This is
what causes the planet’s seasons and is known to be an important factor in climate change
(McGuffie and Henderson-Sellers, 2005).

In the past million years, obliquity has varied with a period of 41 kyr between 22°02’
and 24°30’. The current value of this parameter is 23°30" (McGuffie and Henderson-Sellers,
2005). Obliquity not only is responsible for the seasons, but also has a small influence in the
annual mean insolation.

When obliquity is small the winters are milder and summers are cooler. This is a phe-
nomena that can favour the appearance of ice ages, due to the fact that the summers are not
warm enough to melt the ice sheets and can help in the expansion of continental ice (Berger
et al., 1999, Raymo and Nisancioglu, 2003).

When obliquity gets larger values, the planet receives an increase in insolation, so the
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winters are colder and summers warmer. Due to the fact that this phenomena is not equal
in both hemispheres the mid-summer insolation in the Northern Hemisphere is considered to
be critical to favouring ice ages (during periods of low obliquity) and melting the ice sheets
(when high obliquity occurs) (Raymo et al., 2006).

The obliquity series for the time period 1400 - 0 kyr BP is presented in Figure 2.5.
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Figure 2.5: Obliquity for the time period {1400 , 0] kyr BP.

2.3.3 Climatic Precession (Precessional Index)

The climatic precession represents changes in the orientation of Earth’s axis of rotation. This
can be due to two possible causes: a wobble in the Earth’s axis (Figure 2.2) and a turning
around of the elliptical orbit itself (Thomas, 2002). The cause that makes more sense in
terms of palaeoclimate studies and insolation changes is the first one, because it relates the
location of the perihelion and aphelion to seasons in each hemisphere. As shown in Figure
2.2, the perihelion represents the point on the orbit closest to the Sun, and the aphelion is
the farthest point on the orbit related to the Sun.

Precession varies between -0.05 and 0.05 and can induce changes in insolation greater
than 20W/m? at all the latitudes. This parameter usually varies with periods of 21 and 26
kyr (Berger and Loutre, 1994, McGuffie and Henderson-Sellers, 2005).

In palaeoclimate the usual variable used is called climatic precession index, which is
proportional to eccentricity and can be determined by using the formula p = esinw, where

w is the approximation of the longitude of perihelion (Berger and Loutre, 1994).
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2.3.4 Longitude of Perihelion

The longitude of perihelion w is the angle between the point of Earth’s perihelion (the point
on Earth’s orbit when the planet is the closest to the Sun) and its ascending node (Berger,
1978a) (Figure 2.2). This measurement is taken in the direction of motion. This parameter is
also a measurement of the Earth-Sun distance. The timing of perihelion is usually measured
as the angle of orbital displacement, and is measured in degrees and not in classical time
measuring unit (days, hours).

The current value of this orbital parameter is 283.067° and it varies with periods between
19 and 23 kyr, but can go to the lower periods of 12 - 14 kyr as well.

For the time interval [1400, 0] kyr BP the longitude of perihelion time series are plotted
in Figure 2.6.
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Figure 2.6: Longitude of perihelion for the time period [1400 , 0] kyr BP.

2.3.5 Insolation

Milankovitch (1941) was the first one to show how the insolation effects vary with regards to
its distribution and angle. This is due to the fact that at higher latitudes the rays will cover
larger areas but will be less concentrated, whereas at lower latitudes the angle of arrival is
smaller, so the impact surface will be smaller and the rays more concentrated (Figure 2.7).
There are two types of insolation: the mean annual insolation at the surface of the Earth

and the daily (or monthly) insolation at any given point on the Earth.

23



Chapter 2 2.3. Earth’s Insolation and Orbital Parameters

Earth

Figure 2.7: Insolation at different latitudes. Image adapted using the source at
“http:/ /www.manogaublys.lt/home.26,p.0,e.5,1.1t".

The mean annual insolation can be calculated by knowing the eccentricity value e and
the solar constant Sy using the formula:
So

Wam = m (2.1)

Although the solar constant value varies with regards to the number of sunspots from

1.321kW/m? to 1.412kW/m?, the approximate average value used in calculations is 1.361kW /m?.

As it can be seen from formula (2.1), the mean annual insolation varies with the eccen-
tricity square, so the maximum can be reaches with the largest eccentricity values. Given the
changes induced in W,,, are very small, they cannot solely account for the abrupt changes

observed in the Pleistocene time-series.

The insolation for any time of the year can be calculated using the three orbital pa-
rameters (eccentricity, obliquity and precession) and is depended on the latitude for which
it is calculated. According to Milankovitch’s theory it is important to calculate the values
for insolation at any given point on the Earth’s surface, because summer insolation at high
latitudes played an important role in expanding or melting of the ice sheets. If summer inso-
lation at high latitudes was small than this could prevent the ice sheet from melting during

the warm season and would favour ice accumulation.
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Berger and Loutre (1997a) calculated that the insolation W received on a horizontal

surface at latitude ¢, at a given time H during the course of the year X is given by:

W(p,\,H) = s (%)20082 (2.2)

where r represents the distance to the Sun and z is the zenith distance (angle). This can
be observed on Figure 2.8 as the angle between the zenith point and the position S of the
Sun seen in the sky. The observer O is considered on a plane perpendicular to the zenith
direction and right underneath the zenith point. The zenith distance varies from 0 to 180°.

The hour angle H can be calculated as the angle between the meridian through the points
Py and Ps and the meridian through the point S and the zenith and nadir (Figure 2.8). H
varies from 0 at solar noon to 24h. Due to these definitions the following relationship can be

extracted:

cosz = singsind + cosgcosdcos H (2.3)

where ¢ is called declination and represents the angle between the equator and the second
great circle of latitude going through S. The declination ¢ is the angular distance of point S
measured from the Equator on the secondary great circle (Figure 2.8). § can be calculated
using the obliquity € and the true longitude of the Earth A using sind = sinAsine. Over a one
year period A varies from 0 and 360° and § between —e and +e.

The Earth-Sun distance r used in equation equation (2.2) is given by the ellipse formula:

B a(l —€?)

r =
1 + ecosv

(2.4)

where v represents the true anomaly and can be related to the true longitude A and the

longitude of perihelion w with
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By substituting equations (2.3) - (2.5) into equation equation (2.2) the insolation can be

written as:

(1 + ecos(A — @))?

W (A H) = Sy T

singsinAsine + cosgcosdcos H (2.6)

In the above equation (2.6) the orbital parameters values e, ¢ and @ are assumed to be
constant over one year, and the values for A and § are assumed constant over a given day
period.

The long-term behaviour of each factor in equation (2.6) is thus governed by a different
orbital parameter. The obliquity e drives cosz, the precession p = esinw drives (1 + ecos(A —
©))? and the eccentricity e drives (1 —e?)72 . It is important to observe that the eccentricity

appears here as (1 — ¢?)™2 while in the mean annual insolation equation (2.1) it appears as

(1—e2)l/2,

P

Figure 2.8: Planetary elements used in defining the insolation. Image adapted from Crucifix
et al. (2007).
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2.4 Paleoceanographic Proxies

One of the most important climate proxies used to study the MPT is the oxygen isotope
ratios time-series. In order to reconstruct the ocean surface or ambient temperatures, proxy
data is obtained from the shells of a number of microorganisms called foraminifera (Arnold
et al., 2002). The proxy data can give indications of the climate scene of the particular area
and at the time correspondent to the depth it was recovered from. Section 2.4.2 presents the

proxy data recovered from the Western Pacific Site 806B.

2.4.1 Foraminifera

Figure 2.9: Marine sediment extraction point.
Image source: “http://www-odp.tamu.edu/public/life/index.html!”

There are two types of forams (foraminifera): benthic, which is the most common one, and
planktic (or planktonic) that incorporates about 40-50 morphospecies (Arnold et al., 2002).
These two categories differ with regards to their living conditions and also their shell struc-
tures. Past water temperatures influence the chemistry composition of the shells of the
forams. As their shells get buried on the bottom of the ocean the information is preserved
for thousands of years. Once retrieved from the extraction point (Figure 2.9), due to their
different living conditions and environments, the shells of forams can be used to reconstruct
a broad time and area map of water temperature values variations.

Benthic foraminifera live on the ocean floor and abyssal plains or in the ocean sediments

(Arnold et al., 2002). They are usually used to get information about the ocean depth and
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the biostratigraphy of the ocean.

Planktic foraminifera live floating in the middle and upper zone of the ocean and have a
calcium-carbonate shell (Arnold et al., 2002). Once dead, they settle on the bottom of the
ocean and in time are buried in sediments. When recovered, they give indication of the ocean
currents and upper ocean water temperatures and climates changes.

Foraminifera incorporate in their shells water temperature and stratification information
through the oxygen isotope ratio values (Arnold et al., 2002). When the micro-organisms die
and lay on the bottom of the ocean (and similarly in ice cores) they preserve the environmental
records that can help reconstruct the climate changes of a particular past era (Arnold et al.,
2002). This is possible by using the stable oxygen isotope composition to measure the ratio
between the lighter °0O and the heavier *O, which is a function of the environment (water
temperature, salinity) where the foraminifera lived (Shackleton and Opdyke, 1973).

The formula (Shackleton and Opdyke, 1973) for the oxygen isotope ratio is:

(180/16O)sample

518 —
O(%O) (180/16O)standard

— 1] %1000

Low values of 60 stand for a decrease in heavier '¥0, whereas high values occur when
waters are rich in O (Shackleton and Opdyke, 1973), as can be seen in Figure 2.10.
The present day spatial isotope/surface temperature relationship is described (Dansgaard,

1964) by:

880 = aT, + b

where the isotope/temperature slope a = % depends on the region the isotope is ex-

tracted from.
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Figure 2.10: 680 dependence on temperature. Source: NASA Earth Observatory website
http://earthobservatory.nasa.gov/Features/Paleoclimatology OxygenBalance/, graph
adapted from Jouzel et al. (1993).

The water molecules that contain the 'O evaporate faster than the ones rich in *O.
Cold ocean waters enable the °O to evaporate quicker and the waters become less depleted
in 180 and thus have low values. Higher values would be an indication of warmer ocean
waters which are more depleted in 20.

Once the §'80 time-series is reconstructed, it needs to have attached an age representing
the period of time covered by the data. This is called dating of data, and can be relative
or absolute (Shackleton et al., 1977). The absolute type gives a chronological age and is not
usually extremely accurate especially for proxies going far back in time. The relative dating
relates the given set to other fossils found in similar (and usually adjacent) sites. Dating
accuracy depends on the time period that it covers and on the data type and it decays the
further back in time the record goes (Jansen et al., 2007).

Many authors (Emiliani, 1955, Emiliani, 1966, Hays et al., 1976, Chappell and Shackleton,
1986), have studied and linked the changes in the oxygen isotope ratios in oceans and ice
cores (and up to a certain level in terrestrial series) to the Milankovitch orbital forcing.

It is known that it is difficult for any Site to have constant sedimentation rates that are
not influenced by the global and local climate and of course observational noise and dating
accuracy (Shackleton et al., 1977). This is why most scientists turn to tuning of data, which

can be of two types: orbital tuning or depth tuning.
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Depth tuning refers to adjusting the time scale by using mean sedimentation rates (Shaw,
1964). This was mostly used in the past (Shackleton and Opdyke, 1973, Hays et al., 1976,
Williams et al., 1988, Martinson et al., 1987, Raymo, 1997) and now most authors prefer
using orbital tuning as a more accurate method.

Orbital tuning refers to the process of adjusting a proxy time scale to match Earth’s or-
bital cycles in the Milankovitch theory. This method involves dating of paleoclimate records
through correlation with insolation or the orbital parameters (Lisiecki, 2010, Cronin, 2013).
Hays et al. (1976) were the first to confirm the presence of orbital periodicities in the §'*0
data. Although using orbital tuning increases dramatically the accuracy of the dating meth-
ods, care must be taken when performing this, because over tuning will introduce frequencies
not native to the dataset (Muller and MacDonald, 1997, Rial, 1999). Because of this it
is common practice to tune at frequencies other than those needed for analysis or to use

data-sets which do not require orbital tuning (Muller and MacDonald, 1997).

2.4.2 Dataset from Hole 806B

Figure 2.11: Ocean Drilling Programme Sites in the Pacific Ocean. Image source: Jonathan
LaRiviere/Ocean Data View.

The dataset used in this thesis is from the Ocean Drilling Site 806B from the Western Pacific

(0°19°N,159°21"E) , near the equator (Figure 2.11) . Site 806B shows remarkably constant
sedimentation rate (Berger et al., 1991c), which allows the analysis without the need for

orbital tuning, which can introduce the complications mentioned before. The time-series of
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oxygen isotopes are from the fossil planktic foraminifera Globigerinoides Sacculifer (Berger
et al., 1993) and is shown in Figure 2.12). The data, which is published on ODP sites and has
been documented in Berger et al. (1993) is plotted in Figure 2.13. The vertical red dotted
line at around ~ 850 kyr BP emphasizes the time when the MPT occurred.

H 840pm

Figure 2.1: Planktic foraminifera Globigerinoides Sacculifer morphology. Images sources:
Hesemann, M., 2013: Globigerinoides sacculifer (Brady, 1877), in: Foraminifera.eu Project
Database. Accessed at

http://www.foraminifera.eu/single.php?no=1004618&aktion=suche and
http://www.foraminifera.eu/single.php?no=1004295&aktion=suche.
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Figure 2.2: Oxygen isotope ratio data from Site 806B.

2.4.3 Spectral Peaks Discovered in the Oxygen Isotope Ratio Proxy
Data from Hole 806B

Many authors (Berger et al. 2005, Rial and Anaclerio, 2000, Schmidt and Hertzberg, 2011,
Mayer, 1993, Paillard, 2001) have performed spectral analysis on oxygen isotope time-series

from deep-sea sediment extraction cores. Of course the results of these depend very much
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on the method applied for obtaining the spectrum or spectral power, the window length
used, the length of the available data (e.g. if the dataset is too short, a period of 413 kyr
might not be emphasised in the results) and of course the location of the core. There are
two types of periods considered: some authors (Berger et al. 2005, Schmidt and Hertzberg,
2011, Mayer, 1993) work using approximate periods (~ 100 kyr, ~ 40 kyr), whereas others
(Rial and Anaclerio, 2000, Paillard, 2001) use the actual frequencies found when performing
spectrum analysis. The most important frequency components in the frequency spectrum of
the §'80 data set from Site 806B, which were analyzed by different authors, are summarized

in Table 2.1.

Author 580 period
Berger et al. (2005) ~ 100 kyr
Rial and Anaclerio (2000) 413 , 143, 123, 107, 95, 75 kyr

Schmidt and Hertzberg (2011) ~ 100, 31, 23 kyr
Mayer (1993) ~ 100, ~ 40 kyr
Paillard (2001) 97.5, 41, 23,7, 19, 11.7 kyr

Table 2.1: The main frequency components in the spectrum of the §'%0 data from Site
806B.
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The main frequencies in the frequency spectrum of the orbital parameters, which were

studied by different authors in relation to the §'**O data set from Site 806B are summarized

in Table 2.2.

Author Eccentricity | Obliquity Precession
Rial (2004) 95 kyr - -

Loutre ot al. (1092) 404.178,94.782, - 93.716, 22.428,
123.818,98.715, 18.976, 19.155

130.615,2379.077kyr kyr
Berger et al. (1991) 117.7 kyr 43.6 kyr 24.9, 19.3 kyr
Paillard (2001) 9Myr, 412, 131, gg.g,kzly? 93.7, 22.4, 19

123, 99, 95 kyr ' kyr
Maslin and Ridgwell (2005) ~ 100 kyr ~ 41 kyr | ~ 21, ~ 19 kyr
Muller and MacDonald (1997) | ~ 125, ~ 100 | ~ 41 kyr | ~ 21, ~ 19 kyr

kyr

Table 2.2: The main frequency components in the spectra of Earth’s orbital parameters.
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2.5 Previously Developed Models

This section summarizes the previous palaeoclimate models that have been developed to
explain the impact of the orbital forcing in relation to the observed changes in sea surface
temperature, ice volume and/or their proxies. Because each of them may be using different
input parameters or may analyze different time periods, a classification of the models will
be given. The climate models represent a simplification of the real life system and are used
to capture and understand the dynamics and processes that sustain the climate system and
produce climatic events. Understanding the underlying causes of change lies with analyzing
both the climatic sensibility to external forcing and also the internal dynamics of the planet,
such as coupled interactions of the Earth’s subsystems (atmosphere, oceans, ice sheets and
biosphere), as the climate shifts between glacial and interglacial states.

Most of the efforts in modelling the climate evolution of the geological record for the
Pleistocene period have followed Milankovitch’s theory about orbital forcing and its effect
over the succession of glacial and interglacial periods. Because the 100 kyr frequency could
not be definitely linked to the eccentricity, the inputs commonly used in the models are
obliquity and precession. The response is seen as the global ice volume, this being influenced
by the growth or decrease in ice-sheets. The climate system is represented by a nonlinear
process.

Scientists have tried to develop several models in order to reconstruct parts of or even the
whole climate system. These models have different complexities, varying from zero to three
dimensional ones (Park and Maasch. 1993).

Climate models are usually classified (Berger et al., 1990, McGuffie and Henderson-Sellers,
2005, Petoukhov et al., 2005, Trenberth, 2006) in three categories: energy balance models
(EBM), intermediate complexity models (EMIC) and global climate models (GCM,
also known as global coupled circulation models).

The energy balance models are the simplest kind, usually zero- or one- dimensional
models, but at the same time they are a very valuable tool that provide information on the
surface temperature as a function of the energy balance of the Earth, changes in ice-sheet

growth and decay or increase in greenhouse gases. They are based on the balance of
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incoming and outgoing radiant energy and try to explain what happens when the balance is
disturbed. The usual parameters for the zero-dimensional models are: the solar constant, the
planetary albedo, the globally averaged surface temperature and a climate sensitivity factor
A. The one-dimensional model focuses on the processes on the vertical and also involves an
atmospheric heat transfer parameter, vegetation and reflection of solar radiation. Next some
main contributions to the energy balance models are given.

One attempt to explain the Pleistocene glacial cycles with a Northern Hemisphere ice
sheets model was done by Oerlemans (1982). The model manages to successfully generate
the 100 kyr cycles, but the reproducing of the ice-volume record is small.

Ghil and Tavantzis (1983) have developed a model of two coupled autonomous ordinary
differential equations:

dr

croe = Ri(T,L) = Ro(t) = R(T. L) (2.7)

dL
— =F(T, L 2.8
cL (T, L) (2.8)

where T is the globally and annually averaged temperature, L is the latitudinal extent
of the continental ice cover, with T and L positive, R; denotes the short-wave radiation
absorbed, Ry is the long-wave radiation emitted by the system, F' is a nonlinear func-
tion describing the continental ice-sheet dynamics, ¢ represents the heat capacity of the
atmosphere-hydrosphere system and ¢y, governs the dynamic relaxation time of the continen-
tal ice sheets.

The absorbed incoming short-wave radiations is dependent on the insolation ) and on

the albedo « as follows:

Ri(Ta L) = Q{l - (Valand(L> + (1 - fY)aocean(T))}

where 7 is the fraction of the Earth covered by continents.
The authors conclude that this fairly simple model has a periodic solution, and that
the periods are those of the orbital parameters obliquity and precession. This shows that

the system responds to orbital forcing and also to combination tones between them. The
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frequency domain results match some of the peaks in the spectra of proxy records.
Variations of this one-dimension energy balance model have been developed in the works
of Ghil (1976), Bhattacharya and Ghil (1978) and Ghil and Bhattacharya (1979).
Saltzman and Sutera’s model (1987) is build around the theory that since orbital
forcing had the same character for the entire Quaternary, the cause of change could be some
modifications of internal dynamics that control the way the system responses to the forcing.

The model equations are:

dI' : :
i —agl —ap (2.9)
d ' ’ ’ ’
dfli = bl,u + b59 — b60’2u (210)
do’ / /
E = CO[ - 029 (211)

where [ represents the snow-derived ice mass, —u represents the atmospheric carbon
dioxide and 6 is the bulk deep ocean temperature.

The facts that the model does not allow rapid deglaciations and it is sensitive to initial
conditions count as the disadvantages of this model. Given that proportional changes in
the ice mass should match those in the §'80 records, when comparing with the data from
the Caribbean Core 502B, the model predictions for ice mass follow the main trend, but the
response is slower than the measurements and with lower amplitude before MPT and higher
after. Additional parameters representing the orbital forcing, parameters which account for
the rapid deglaciations and the solar constant can be added to the model to make it more
accurate.

Saltzman’s later models (Saltzman and Maasch, 1990, Saltzman and Maasch, 1991)
were able to reproduce, with some success, both the 100 kyr cycle and the transition from
dominant 41 kyr ice volume fluctuations prior to ~ 900 kyr BP to the dominant 100 kyr ice
volume fluctuations after ~ 900 kyr BP. The latter transition may also reflect the existence
of “multiple equilibrium” states, whereby slowly changing boundary conditions can cause an

abrupt transition in the climate state. Saltzman’s explanation from a physical viewpoint is
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that the decrease in carbon dioxide brings the climate system to a cooler state where positive
feedbacks involving ice formation (Maasch, 1988) are activated, leading to the instability that
can drive a long-term (~ 100 kyr period) oscillation.

The climate model developed by DeBlonde and Peltier (1991) tries to account for the

“sea-level” temperature T(7,t) and its equation is:

0(?)%?’5) ¥ (D@)VAT(7 1) + A+ BT(7,1) =

| O

a(7)S(z, t) (2.12)

where 7 = (0, ¢) is a position vector on the Earth’s surface, with ¥ being the latitude
(and z = sinf) and ¢ being the longitude, the term A + BT(?,t) represents the infrared
intensity emitted to space, the term %a(?)S (x,t) is the short-wave energy intensity absorbed
by the earth-atmosphere system, () is the solar constant, D(%)?hT(?, t) represents the heat
flux, with D(z) a smooth diffusion coefficient, C'(7) is the effective heat capacity.

The above climate equation (14) is considered to be in equilibrium at all times with the

ice sheets model described by:

O — V,(D;Vih) + G

w0 (0 (2.13)

ot T peT

where D; represents a highly nonlinear diffusion coefficient, G is the net mass-balance
function, hz) represents the present topography, p. is the density of the bedrock, and A" =
H—h.

The purpose of this coupled paleoclimate model is to simulate and study the position of
the ice sheets at the last glacial maximum. The results show the temperature variations and
the dominant influential orbital parameter, which appears as obliquity. Another interesting
conclusion is that the European ice sheet, due to the higher continentality of Eurasia, is
much more sensitive to solar forcing than the North American ice sheet. Compared to the
real climate system the model has low sensitivity to the orbital forcing.

Tarasov and Peltier (1997) developed a coupled model of an energy-balance one and

one of the ice-sheet. This accounts for changes in the surface temperature dependent on the
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ablation, precipitation and rain/snow. This model also considers the atmospheric COy con-
centration as a function of time. The results bring significant improvement to understanding
the relationship between climate forcing and mass-balance response.

The model proposed by Rial and Anaclerio (2000) is based on the hypothesis that the
frequencies present in the spectra of §'%0 time series arise through nonlinear interactions

(frequency modulation in this case) of the orbital forcing frequencies.

2t 2t ' mt 2nt 2mt 2t 2mt

o o ee2mt . 2wt . mt . 2nt 2wt o 2mt 2wt
ru(t) = asin| 95 +5 8111(413)—1—5 s1n(413)]+b51n[100+6 sm(413)]+csm[125 +ﬁsm(413)]
(2.14)

where @y represents the simulated frequency-modulated eccentricity signal, t is the
time in kilo-years, a, b, ¢ are constants and are adjustable, 3" is the modulating index for the
subharmonic. It was determined that 8 ~ 1 and ' ~ 2.

In equation (16) the carrier frequencies are assumed to have periods of 95, 100, and 125
kyr whilst the modulating signals are the subharmonics with periods of 413 and 826 kyr.
Equation (16) is used by the authors to construct synthetic time series in order to simulate
the 6'%0 time series from the ODP Site 806.

A similar model, representing the simulated frequency-modulated eccentricity and tilt
signal, is proposed in order to explain the power spectra of the deuterium (proxy of temper-
ature), sodium (marine aerosol) and greenhouse gases (CO, and C'H,) time series obtained
from the Vostok ice core (Petit et al., 1999):

2wt 2wt Admt . 8wt

Iry(t) = sin[ﬂ + asin(m) + bsin(—=) + csin(—) (2.15)

The parameters a, b, ¢ represent the intensity of modulation and by adjusting them the
amplitude of the four mentioned time-series can be modeled. It is shown that the power
spectra of the synthetic time series generated using equation (17), using the corresponding
set of optimized parameters a, b, ¢, closely resemble the spectra of each experimental time
series. In particular, the synthetic signal reproduces the structure of the carrier frequency at
41 kyr modulated by the 413 kyr frequency and its main harmonics, which suggest that the

climate system responds nonlinearly to obliquity (with a spectral peak at 41 kyr) as well as
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eccentricity (with a spectral peak at 413 kyr). The model catches well the periodicity of the
data and its main dynamics, but cannot emphasize well the subtle changes that occur.

Rial’s simple model shows the concept of frequency modulation of the 100 kyr eccentricity
cycle by the 413 kyr one. Spectra of the model are consistent with the classic Milankovitch
theory of insolation (making redundant the theories about orbital inclination and dust accre-
tion). Rial reasons that the switch in the eccentricity period between 80 and 120 kyr every
413 kyr is an argument sustaining frequency-modulation. Also the spectrum does not contain
the modulating signal as a peak, but as a separation interval between the sidebands. From
the model, the 95 and 123 kyr are the predicted sidebands of the ~ 100 kyr eccentricity com-
ponent frequency modulated by the 413 kyr one. In the same manner, the 85 , 107, and 143
kyr peaks coincide with the predicted sidebands of a 95 kyr carrier frequency modulated by
the 826 kyr sub-harmonic of the 413 kyr signal. Using the frequency modulation explanation,
the absence of the 413 kyr peak from the 680 data is no longer a problem.

Another model developed by Rial (2004b) is the logistic-delayed differential equation
(LODE) model

dfiit) — L(t = 7)1 — L(;(&)T)] (2.16)
odfh(f) — Q[ - a(L)] - [A+ BT()] (2.17)

where L(t) represents the ice volume, y is the ice sheet’s time equilibration constant, K (t)

is the temperature-dependent carrying capacity of the system, defined by

K(t)=1+eOT() (2.18)

T(t) is the global temperature and £(¢) is the forcing function which amplitude-modulates
T'(t), and is given by (t) = 60{1+Zi]\;1 a;cos(w;t+¢;) }+@(t). The sum involves the frequency
components of any known or assumed astronomical forcing, g is a small quantity (g9 < 0.1),
and the term ®(¢) accounts for any other internal or external forcing signals that might not
have been considered.

An important feature of LODE is that it transforms amplitude modulation of the global
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temperature 7'(t) into frequency modulation of the ice volume L(t), through the amplitude-
modulating input £(¢). Rial uses frequency modulation to explain the way the new peaks in
the data appear. Although this model replicates the saw-tooth characteristic of the data, it
has the disadvantage that it can only offer results for certain periods of time of the Pleistocene.
Nonetheless LODE captures some essential physics and dynamics of the climate system, but
is not able to fully explain the fast warming and slow cooling sequences.

The intermediate complexity models, although involve some simplifications of the
Earth’s geography, are usually two- or three- dimensional models and can provide more than
average information over the whole system or subsystems. Being more complex, the param-
eters of EMICs have more degrees of freedom. Some examples of EMICs are: CLIMBER-2
(Ganopolski et al., 2010), trying to model the last glacial maximum, ECBILT (Opsteegh
et al., 1998), which takes into account the Holocene orbital variability in insolation, McGill
Paleoclimate Model (developed at the McGill University by Stocker et al. (1992)), which tries
to explain the nonlinearities of cold climates and the mechanisms of glaciations, and MoBidic
(Crucifix et al., 2002), which takes into account the Milankovitch forcing, fresh water inputs
to ocean, the Holocene volcanic and solar variability. Next some main contributions to the
EMICs category are given.

A first noticeable model was the one developed by James Croll (1875), which still helps
as a starting point for many current works. A very interesting hypothesis raised by Croll is
the one that the initial point of glacial epochs is the Northern Hemisphere, due to insolation
and obliquity. All three orbital parameters (eccentricity, obliquity and precession) are taken
into account as inputs to the system.

Milankovitch’s theory (1941) accounts for the Ice Ages by means of the astronom-
ical forcing variables simultaneously affecting the Earth’s insolation (Berger, 1988). Mi-
lankovitch’s equations for the summer and winter insolation for caloric half-years (two equally
long real half-years, one of each containing all those days of the year during which the irra-
diation at a specific latitude is stronger than on any day of the other half-year), AQ, and

AQ,, respectively, which for a certain year are:

AQs = AW,Ae — mA(esinll,) (2.19)
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AQ,, = AW, Ae + mA(esinll,) (2.20)

where Ace represents the change in orbital obliquity from the present value, e is the
eccentricity, 11, represents the perihelion related to the vernal equinoctial point, AW, and
AW, are the changes in irradiation at a certain latitude for summer and winter.

The given equations are for latitudes in the Northern Hemisphere. The equations for
Southern Hemisphere are similar, but with opposite signs.

Milankovitch’s comprehensive calculations and application of physical laws (227 equa-
tions) were able to mathematically prove the connection between the irradiation and tem-
perature. Milankovitch’s theory provides a prediction of the observed periodicity of the
temperature variations, and does not focus on the actual temperature magnitude.

Le Treut (1988) modelled internally generated glacial-interglacial fluctuations which,
when orbitally forced, produce characteristic Milankovitch periods, including their harmonics
(e.g., 10 kyr) and subharmonics (e.g., 100 kyr).

Imbrie’s model (1992) derives the conclusion that the ice-volume fluctuations are pri-
marily driven by orbital forcing, and that the ice volume responds linearly to orbital forcing
for the periods of 23 kyr and 41 kyr and nonlinearly to the 100 kyr period. The author
agrees that the 100 kyr power can be generated by transmission of 19 kyr and 23 kyr pe-
riods through nonlinear mechanisms (Wigley, 1976) producing substantial power in both
harmonics and subharmonics.

The Louvain-la-Neuve climate model, known as the LLN 2D, was developed by Berger
and Gallee (1990), and it only considers the Northern Hemisphere (NH). This model takes
into consideration the coupling between the atmosphere and the surface, and is an altitude-
latitude one. Carbon dioxide cycles are not considered though and need to be accounted for
externally. The model simulates well the general circulation and seasonal cycles of oceanic
mixed layer, sea ice and snow cover. Most studies performed using these models try to
simulate and explain the last glacial or interglacial period.

Another model proposed by Gallee et al. (1992) is the MoBidic model, and is an
extension of the LLN 2D NH one. It represents a coupling between a quasi-geostrophic at-

mospheric one and three-basin ocean-sea ice subsystems. This model is designed for catching
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the long term variations in climate and can simulate accurately the temperature, precipita-
tion and ocean circulation. The parts where the model has slight failures are the atmospheric
dynamics and the ocean salinity distributions.

Berger and Gallee (1992) used the LLN 2D model in order to reproduce the saw-
toothed shape of the ice volume curve and confirm the hypothesis that the variations in the
Earth’s insolation are sufficient to induce feedbacks in the climate system which amplify the
direct radiative impact and generate large climatic changes. On the same note, the second
conclusion derived was that the C'O, variations are not absolutely required to be taken into
account to generate a rough 100 kyr cycle, which confirms the Hays et al. (1976)’s idea that
the orbital forcing acts as a pacemaker of the ice ages.

Berger (1999) constructs his analysis using the LLN 2D model as well, but the model is
forced by the astronomically-derived insolation and by different COs concentration scenarios.
The analysis reached the conclusion that before 1 Myr BP, under the influence of relatively
high atmospheric CO, concentration, the insolation maxima could prevent the Northern
Hemisphere ice-sheets from growing. After ~ 1 Myr BP, because of lower C'Oy concentra-
tions, larger ice sheets appeared and only at times of maximum insolation (occurring under
high eccentricity, high obliquity and Northern Hemisphere summer at perihelion -minimum
climatic precession - values) significant meltings of the ice sheets took place. This is how the
interglacial period appeared making the ~ 100 kyr periodicity the most remarkable feature
of climate over the time interval from 1 Myr BP to present.

The CLIMBER-2 ice-sheet model was introduced by Ganopolski et al. (2010) and
divides the Earth surface into horizontal grids containing fractions of both sea and land.
The model also has vertical grids that account gradually for the atmospheric components:
temperature, humidity, wind, transport of energy and water. CLIMBER-2 is developed for
processes of large time scales, up to millennia, but has low spatial resolution and can only be
used for continents. Validation of the model is done by comparing its features with empirical
data. Tests were also done to verify CLIMBER'’s sensitivity to COs concentrations, solar
insolation and vegetation cover.

The global climate models are the most ‘complete’ models and are in fact a collection

of models of the atmosphere, land, sea ice and ocean that look into the climate system as
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a whole and that are connected by a separate coupler module. These types of models are
three-dimensional ones and use discrete equations. Although some interactions are straight
forward, others like the very important coupling between atmosphere and ocean models are
not easy to achieve because of different parameter ranges in both space and time. So it is
crucial to interface correctly all the subsystems.

Pollard (1983) modelled the nonlinear interactions between ice-sheet accumulation and
ablation, ice-sheet flow, elastic lithosphere and viscoelastic mantle. The results show that
the observed 100 kyr cycle is driven by external orbital forcing together with the internal
forcing.

Out of all the theories proposed so far, the Milankovitch’s orbital forcing theory seems to
be the only one that is strongly supported by physical evidence.

Table 2.4 summarizes the conclusions of these studies with the focus on the explanations

given for the appearance of the 100 kyr cycles and on relating it to the orbital forcing.
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2.6. Discussion

Study

Achievements on answering the question
regarding the origin of the 100 kyr cycle

Pollard (1983)

100 kyr cycles driven by orbital forcing together
with internal forcing

Le Treut et al. (1988)

the model produced Milankovitch periods,
harmonics and subharmonics of them

Saltzman and Maasch (1990)

replicated the 100 kyr cycles, and the MPT
transition from dominant 41 kyr to 100 kyr

Berger et al. (1998)

reproduced the saw tooth shape of ice volume curve

the CO2 variations are not required to generate
a rough 100 kyr cycle

confirms the idea (Hays et al., 1976) that orbital
forcing acts as a pacemaker of the ice ages

Imbrie et al. (1992)

concluded that ice-volume fluctuations are
primarily driven by orbital forcing

ice-volume responds linearly to forcing of the
periods 23 and 41 kyr and nonlinearly to 100 kyr

the 100 kyr power can be generated by
transmission of 19 and 23 kyr periods
through nonlinear mechanisms

Rial (1999), Rial and Anaclerio (2000)

shows through a simple model the frequency
modulation of the 100 kyr cycle by the 413 kyr

model spectra are consistent with classical
Milankovitch theory ones

Rial (2004)

the model fits the saw tooth shape
of ice volume data

reproduces the switch from 41 to 100 kyr cycles

explains the appearance of new peaks in the spectra
using frequency modulation

Table 2.4: Summary of the results of the presented studies with the focus on the 100 kyr

cycle.

2.6 Discussion

In order to analyse Earth’s palacoclimate, due to lack of long term (million years) insolation

measurements, scientists (Maslin and Ridgwell, 2005) have looked at proxy data for ice

volume or sea surface temperature (SST) (Lisiecki, 2010). A widely used proxy data for the

SST is the high-resolution time series of planktonic foraminifera oxygen isotope ratios data

from deep ocean cores. It has been proven firstly by Hays et al. (1976) that the frequencies
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in the oxygen isotope ratios data match those in Milankovitch’s astronomical theory (Rial
and Anaclerio, 2000).This indicates that Earth’s orbital parameters, eccentricity, obliquity
and precession (longitude of perihelion), control the variations in insolation (Lisiecki, 2010,
Imbrie et al., 1993). The peaks found in the Pleistocene 680 spectrum correspond to periods
of eccentricity (95 - 122 kyr, 428 kyr), obliquity (41 kyr), longitude of perihelion (23 kyr, 19
kyr) but also there are frequencies not corresponding to periods of the orbital parameters
(e.g. 71 kyr).

The Mid — Pleistocene Transition is a term used to describe a very unique and intensely
studied climatic event that took place approximately 900 - 800 ka (kilo-years ago), when a
switch from a time (Early Pleistocene) driven by the 41 kyr obliquity period characterized
by low amplitude and high frequency to a time (later Pleistocene) dominated by a lower
frequency corresponding to a period of 100 kyr (Maslin and Ridgwell, 2005, Berger and
Loutre, 2010, Head et al., 2008) occurred. This brought also an amplitude increase in the
SST proxy data. The spectrum shows a dramatic intensification in the power at the frequency
corresponding to the ~ 100 kyr cycle, but no noticeable change in the 41 kyr peak.

The MPT change happened without a corresponding change in the orbital parameters,
which raised different theories that could explain this: a climate system internal change
(Clark et al., 2006), nonlinear amplification and modulation of the orbital parameters or
some nonlinear internal feedbacks in the climate system that could induce the change (Head
et al., 2008). The nonlinear response of the climate system due to internal feedback can be
supported by the non-orbital frequencies found in the insolation proxies (Rial and Anaclerio,
2000).

The numerous hypothesis that have been proposed to explain the MPT can be split
into four categories: (i) external forcing — orbital inclination (Farley and Patterson, 1995,
Muller and MacDonald, 2005), (ii) internal feedbacks — Northern Hemisphere ice sheets
(Berger et al., 1999, DeBlonde and Peltier, 1991), CO, concentrations (Ganopolski and Calov,
2011, Berger and Loutre, 1997b, Saltzman and Sutera, 1987, Loutre and Berger, 2000, Li
et al., 1998), dust feedback (Ganopolski and Calov, 2011), ice albedo, ocean circulation,
uplift of mountains and an internal instability generated by all the previously mentioned

feedbacks (Satzman and Verbitsky, 1992), (iii) frequency modulation of orbital parameters
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carrier signals 23, 41 and 95 kyr (Berger et al., 2005, Clemens and Tiedemann, 1997, Rial
and Anaclerio, 2000), (iv) a coupled response between the orbital forcing and an internal
nonlinear amplification (Berger et al., 1990, Imbrie and Imbrie, 1980).

Several studies have linked the shift observed at the MPT to changes in insolation induced
by the variability of Earth’s orbital parameters (Hays et al., 1976, Imbrie et al., 1992, Raymo
et al., 2006) but the underlying mechanisms behind this are still not fully understood. It
is widely accepted that the climate system responds nonlinearly to orbital forcing. One
explanation is that the climate sensitivity shifted from obliquity to precession/eccentricity
(Liu et al., 2008), and that through frequency modulation the system can transfer energy
from one frequency band into another (Li and Billings, 2005). Another theory says that
eccentricity alone has very little influence on insolation, therefore a nonlinear amplification
is needed to generate the observed periodicity in the Pleistocene time series (Clark et al.,
2006).

The “100 kyr Problem” refers to the lack of a satisfactory explanation for the dramatic
appearance of the 100 kyr cycle after MPT because it comes without a corresponding
change in the orbital forcing. The 100 kyr cycle has been mainly linked to the eccentricity
signal, but it cannot be a linear response because eccentricity has little influence on insolation,
as shown in sub-section 2.3.5 of this chapter. A theory that will be explored in a following
chapter is that eccentricity modulates the amplitude of precession and that the peak near 100
kyr could be generated by transmission of power from the longitude of perihelion (precession)

frequency bands (Berger et al., 2005, Clemens and Tiedemann, 1997).
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Chapter 3

Nonlinear System Identification using

NARMAX Models

3.1 Introduction

Mathematical models are required in order to analyse, predict and control the behaviour of
real-world dynamical systems. There are two main approaches used to derive a mathematical
model for a dynamical system: physical modelling and system identification techniques. The
physical modelling approach involves deriving a model based on the physical principles. This
approach (also known as a white box modelling) assumes that all the information required to
derive such a model, i.e. mathematical equations describing the behaviour of each component
of the system, is available ’a priori’. Modelling very complex systems using this approach
can be extremely challenging (Ljung, 1999, Billings, 2013).

An alternative approach is to use system identification methods to derive a mathematical
model representing a system’s behaviour (Billings, 2013). The advantage of the system iden-
tification approach is that a model can be obtained solely based on experimental input-output
data without making any assumptions about the system’s properties. However, a priori in-
formation can be incorporated if available. According to the available amount of a priori
knowledge relating the system’s inputs and outputs, the models obtained by system identifi-
cation are classified as: grey-box models, which assume that certain underlying mechanisms

of the system that do not fully describe the system under study, are known beforehand, and
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black-box models which are derived solely based on experimental data. The black-box model
provides a mathematical representation for the underlying dynamics but does not necessarily
provide a straightforward physical interpretation (Billings, 2013).

Identifying an input-output mathematical relationship based only on input-output mea-
surements depends on the choice of model class (e.g. linear, nonlinear, hybrid, parametric,
non-parametric, discrete, continuous, time-variant, time-invariant, deterministic or stochas-
tic etc (Ljung, 1999, Pearson, 1995, Billings, 2013). Linear models present the advantages
of simplicity and of the large amount of literature available (Soderstrom and Stoica, 1989).
Very often however the systems of interest are complex and nonlinear and thus cannot be
described by simple linear relationships. In this case nonlinear models have to be used as
linear models can only provide local approximations. Nonlinearity can lead the systems to
complex and difficult to predict behaviour, such as that exhibited by the climate system.

According to the number of inputs and outputs, the systems can be classified into: Single-
Input Single-Output (SISO), Multi-Input Multi-Output (MIMO), Single-Input Multi-Output
(SIMO) and Multi-Input Single-Output (MISO) systems.

There are several methods to estimate dynamical models only from experimental measure-
ments. The most comprehensive and powerful nonlinear system identification methodology
available to date is based on a general discrete-time representation of a nonlinear dynami-
cal system, known as the NARMAX model (Billings and Leontaritis, 1980, Leontaritis and
Billings, 1985, Chen and Billings, 1989b, Billings, 2013).

The NARMAX methodology has been successfully applied to fields such as engineering,
physics, finance, medicine, biology but it is quite a novel approach to modelling environmental
time-series. A small selection of the real systems that have been modeled using NARMAX
include: fly photoreceptor dynamics (Friederich, 2011), financial volatility (Zhao, 2010), eddy
current braking process (Simeu and Georges, 1996), dynamic loudspeaker (Dobrucki and
Pruchnicki, 1999), experimental human ankle dynamics (Kukreja et al., 2003), aircraft gas
turbine (Chiras et al., 2001), plasma turbulence dynamics (Boynton et al., 2013). In this work,
the NARMAX methodology will be used for the first time to model and analyse paleoclimatic
data.

Current available climate models are usually simplified versions of the climate system
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or sub-systems (used for general analysis purposes) or combinations of models that can re-
produce global or local climate systems (atmosphere, hydrosphere, geosphere, cryosphere
and biosphere). Modelling environmental time-series using the NARMAX methodology pro-
vides a powerful approach to characterize quantitatively the relationship between the orbital
forcing parameters and the proxy variables representing various aspects of climate response.
Although it can be more difficult to give physical meaning to the developed models, the
analysis of the models in the time and frequency domain can provide great insight into the
mechanisms behind abrupt climate changes and the system’s dynamics.

This chapter provides a detailed overview of the NARMAX methodology which addresses
the whole spectrum of system identification tasks including input design, model structure
detection, parameter estimation and model validation. The chapter is organized as follows.
Section 3.2 presents the general NARMAX model formulation and the polynomial NAR-
MAX expansion. Section 3.3 presents the Orthogonal Least Squares and its extension the
Orthogonal Forward Regression algorithms. Section 3.4 details on the common NARMAX
model validation methods, namely prediction error results, coherence analysis results and

correlation tests.

3.2 The NARMAX System Identification Methodology

The NARMAX model, originally proposed by Leontaritis and Billings (1985), has been in-
tensely studied by many authors (Billings et al., 1989, Chen and Billings, 1989b, Aguirre
and Billings, 1995, Hong and Harris, 2001, Guo and Billings, 2007, Chen et al., 1990a,
Farina and Piroddi, 2010). The NARMAX model forms the basis for an entire nonlinear
system identification and analysis methodology that has been developed over the past 30
years (Billings, 2013). The NARMAX methodology provides an unified solution to finding
an input-output relationship when the underlying system is not known in advance and only
the variable measurements are available. In particular, the NARMAX model can be used
to analytically derive Generalized Frequency Response Functions associated with the system
of interest, which provide a basis for studying the system’s output frequency response and

analysis of different frequency domain phenomena (Diaz and Desrochers, 1988, Peyton-Jones
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and Billings, 1989, Billings and Tsang, 1989a, Zhao and Marmarelis, 1998, Peyton Jones,
2007).

The NARMAX representation can be used to describe a wide range of nonlinear dynamical
systems. In this context, the Volterra, Wiener and Hammerstein models can be considered
as special cases of the NARMAX model (Billings and Coca, 2001).

The NARMAX model (Leontaritis and Billings, 1985) can be written as:

y(t) = fly(t = 1), .yt —ny),u(t — 1), .,ult —ny),e(t — 1), ...,e(t —ne)) +e(t) (3.1

(1) u (1) ex(t)
where y(t) = : ,u(t) = : ,e(t) = : are the system’s output,

Ym (1) u,(t) em(t)
input and noise respectively; n,, n, and n. are the maximum lags for the output, input and

noise; e(t) is assumed to be a white sequence; f(-) is some vector-valued nonlinear function.

3.2.1 The Polynomial NARMAX Model

The NARMAX model structure is rarely known a priori, so in practice the identification
procedure assumes that the underlying system can be approximated using functions belonging
to a certain class. The choice of functions used to implement the model is very important,
because it will determine what type of nonlinear systems can be approximated with desired
accuracy and the number of parameters needed to achieve this desired accuracy. Not all
model representations are guaranteed to converge to an arbitrary function, and moreover the
choice of representation will often determine what model selection and parameter estimation
algorithms can be used. The NARMAX representations commonly used in practice include:
polynomial (Chen and Billings, 1989a, Mendes, 1995), rational (Chen et al., 1990a, Billings
and Zhu, 1994), radial basis functions (Chen et al., 1990b, Chen et al., 1990a) and wavelets
(Coca and Billings, 2001). All these nonlinear representations provide general mathematical
model structures that, although have far greater flexibility compared to the linear ones,

involve an enormous number of terms.
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The polynomial NARMAX model is widely used in practice because it leads to rel-
atively simple linear-in-the-parameters models which can be estimated efficiently using the
Orthogonal Forward Regression (OFR) for structure detection and parameter estimation
(Billings and Coca, 2001). In addition, efficient algorithms have been developed to derive
analytically the higher order (or Generalized) frequency response functions for polynomial
NARMAX models, by using recursive harmonic probing (Zhang and Billings, 1993, Liu et al.,
2006). The NARMAX polynomial expansion of a system with 7 inputs and one output is
defined (Billings and Leontaritis, 1980) as:

y(t) = fpol(x(t)) = 0o + Z 92'131'2'1 (t) + Z Z eil,izxil (t)xlé (t)

i1=1 i1=1142=11

ir=1 1=t _1
where x(t) = [z1(¢), ..., 2,(t)] denotes the vector of dimension n = n, + rn, + n. consisting

of lagged variables in the outputs y, inputs u; and noise terms e, ¢;  are the unknown scalar

i)
parameters to be estimated; L defines the model’s nonlinear dimension.

According to the fundamental Weierstrass theorem (Soderstrom and Stoica, 1989), poly-
nomials can uniformly approximate as closely as desired any continuous function defined
over a closed interval. The polynomial NARMAX expansion could involve huge number of
terms for large values of n. In practice however, only a small subset of polynomial terms are
needed to approximate a given function. Finding the minimal set of relevant terms is known
as the model structure selection problem. For linear-in-the-parameters models, such as the
polynomial NARMAX models, Billings et al. (1989) proposed an efficient Forward Orthogo-
nal Regression method which has been extensively used to successfully derive parsimonious
models for a wide array of real-world systems from experimental input-output measurements
(Chen et al., 1990b, Zhu and Billings, 1992, Billings and Coca, 2001, Boaghe et al., 2002).

The approximation capabilities of the polynomial NARMAX representation, the avail-
ability of fast and efficient algorithms for model structure selection, parameter estimation

and for analysing the system’s dynamics in the frequency domain motivate the use of this
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representation for modelling and analysis of the paleoclimatic data.
The NARMAX methodology includes a number of steps (Billings and Coca, 2001, Billings,

2013), which are summarized below:

Step 1: Input design, data acquisition and pre-processing

This involves the design of an appropriate input for the NARMAX model used to persistently
excite the dynamical system under study over the entire frequency and operating amplitude
range. This ensures that the model captures the full dynamical behaviour of the underlying
system. Methods for input design for nonlinear system identification using the NARMAX
methodology are given in Leontaritis and Billings (1987), Aguirre and Billings (1995) and
Billings and Zhu (1995).

For some real systems it is not possible to manipulate the input, so the modelling has to
be performed on the available input measurements. This happens when the input data-set
is obtained by simulations of physical equations, as is the case of the orbital parameters, or
when the experiment that generated the data cannot be repeated in order to collect more

measurements.

Data preparation refers to pre-processing procedures, such as normalization, interpolation,

dimensionality reduction or discretization.

Step 2: Model structure detection and parameter estimation

Given the structure of the model is not known at the beginning, equation (3.1) presents the
full model, with all the possible terms. In practice, the number of candidate terms that can be
included in a model can be huge but only a small subset of these, usually 15-20 terms, is really
needed to describe the systems’s dynamics. It is easy to see that for a MISO system with few
inputs, even a polynomial model of a relatively low order (three or four) can easily involve
thousands of candidate model terms. Fitting a full-size model is impractical, leads to over-
parametrization of the system and to numerical ill-conditioning and dynamical instability.
The NARMAX system identification methodology includes very robust term selection and
parameter estimation algorithms. The algorithm, which will be presented in Section 3.3,

determines which are the relevant terms to include in the final model and which terms to
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discard. Removing of terms must be done very carefully as not to lose significant ones and

as an effect to change the behaviour of the system.

Step 3: Model validation

This step of the methodology involves testing that the model truly follows the behaviour of
the system. Many types of validation tests have been studied and developed (Billings and
Zhu, 1994, Aguirre and Billings, 1995, Billings and Zhu, 1994, Billings and Coca, 2001) and
will be detailed in Section 3.4.

3.3 The Orthogonal Forward Regression for Model Struc-
ture Detection and Parameter Estimation

The estimation of NARMAX polynomial models can be formulated as a linear regression

problem:

y(t) = Z 0;p;(t) + e(t) (3-3)

where p;(t) denote the possible polynomial terms (monomials) that can be included in
the model with degrees ranging from 0 (constant term) to L, each consisting of products of
delayed outputs, inputs and/or noise terms, §; are unknown parameters to be estimated and

e(t) describes modelling error. The total number of terms is given by M = EJL:O n;, with
i1 [ny+netShoy nuy, +i—1]
J

ng = 1 and n; = , j=1,...,L, where n, represents the maximum
lag for the output, n,, represents the maximum lag for the &' input and n, is the maximum
lag for the noise terms.

Given input and output time-series of lengths N, equation (3.3) can be written in matrix

form as:

Y =PO+2 (3.4)
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y(1) 0 e(1)

where YV = : ,P:[p1 pM},@: : , = = : and
y(N) Onr e(N)

T
pi=| @) ... ) ]

In equation (3.4), Y is commonly referred to as the dependent variable and P are the
regressors or predictors.

In order to present the regressors associated with the process and noise models, equation

(3.3) is re-written as:

y(t) = Z 0,y (1) + | D Byuetyue(t) + Oee ()] + e(t) (3.5)

where z,,(t) are functions of y(¢) and u(t), z..(t) are functions of cross-products between
e(t) and y(t) and/or u(t), z.(t) are functions of e(t), Oy, Oyue and 6, are the unknown
coefficients, M), is the number of process terms, M is the total number of terms.

This can be written in matrix form, similarly to equation (3.4), as:

Y = Pyugyu + Pyuegyue + Pe('—)e += (36)

where Py, = [pyu, -- 'pyuMp]v [Pyue Pe] = [prEMPH <+ Pyuenr, Perryy - Perr]s

6y7t6Mp+1
H?Jm
. T . Gyue 62/7L€1\/Ik
with p; = [pi(z(1)) ... pi(x(N))]", Oy = : , o =
Byuns, ' e
961\{

In equation (3.6), P,, are the regressors associated with the pr_ocess model and [Pyuc Pe]

are the regressors associated with the noise model.
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3.3.1 Orthogonal Least Squares

The orthogonal least squares (OLS) algorithm works by replacing the original set of regressors
P in equation (3.4) with a set of orthogonal vectors (Liu, 1998, Chen and Billings, 1989b).
The structure detection and coefficients estimation problem becomes one of selecting out
of all the possible model terms M, a minimal set of m < M terms that approximate the

unknown system with a desired accuracy p. The coefficients ©,,, can be calculated by solving

the linear optimisation problem given by:

0,, = argmin||Y — P,,0,,|? (3.7)
©

such that ||[Y — PO|| < p, where || - || represents the commonly used Euclidean norm.
Assume that the regression matrix P is full rank in columns and can be orthogonally

decomposed as:

P=WA (3.8)

The derivation of equation (3.8) can be done by using the Classical Gram-Schmidt (CGS)
or the Modified Gram-Schmidt (MGS) methods (Chen and Billings, 1989b).
In equation (3.8) A is an M x M unit upper triangular matrix with ones on the diagonal

and zeros below the diagonal as:

1 Q19 Q13 ... (058
0 1 Qo3 ... Qg wl(l) wM(l)
A=10 0 1 ... : and W = : : is an N x M orthog-
AN 1M wl(N) U)]w(N)
0o ... ... ... 1

onal matrix such that:
WIW = (PA"Y)T(PA™Y) = D = diag | r  wi(t), ..., SN wi,(1)].
This is true because w;(t), i = 1,..., M are constructed to be orthogonal over the data
record of length N such that S™N  w;(H)wpi(t) =0for j=1,...,kand k=1,..., M — 1.
The space spanned by the orthogonal set wy, ..., wys is the same as that spanned by the

original set py,...,p, (Chen and Billings, 1989b).
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By writing equation (3.8) as Y = PA™'A©+= and substituting W = PA™! and G = A©,

the regression model in equation (3.4) can be written as:

Y=WG+= (3.9)
91
92 . .
where G = . is a vector of auxiliary parameters.
9M

In equation (_3.9) the output is expressed as a sum of the explained variance given by WG
and the unexplained variance represented by =.

The auxiliary regressors w;, @ = 1, ..., M are uncoupled and as a result the corresponding
parameters g; are uncoupled as well. This allows to evaluate independently the contribution
from each w; to minimising the cost function given in equation (3.7).

T

The solution of the OLS algorithm can be calculated as G = D'WTY or § = %~

T,
w; w;

with 1 <i < M.
The last step involved is the calculation of the original set of parameters @, which can be

done by solving the triangular system A© = G.

3.3.2 The Orthogonal Forward Regression

The model given in equation (3.3) is overparametrized and the powerful and efficient Forward
Orthogonal Regression algorithm (Billings et al., 1989, Korenberg et al., 1988, Chen and
Billings, 1989b) needs to be used for structure selection in order to only keep the relevant
terms that describe the system’s dynamics.

The OFR involves starting with no model terms in the model and then adding terms
to the model in a stepwise manner until the desired accuracy or other stopping criterion is
satisfied. At each step all the candidate model terms, not included already in the model,
are evaluated and the model term which improves the most the model accuracy is selected.
This technique simplifies significantly the estimation process and also provides an effective

way of assessing the contribution of the most significant terms to the final model as it is
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constructed step by step. The criterion that is used to compare and rank the relevance of
each model term is called the error reduction ratio (err) and it represents the significance
of each orthogonal regressor w; with regards to the output signal variance. The err values
provide a simple and effective way of making a quantitative judgment on each regressor’s

contribution. The err formula is:

2, T,
lerr]; = Jiti (3.10)

y'y
An important feature of the OFR is that it allows for separate estimation of the process
and noise model. The process model is estimated first, and then using the predicted residuals,
e(k) = y(k) — y(k), the noise model is obtained.

The estimation of the process model involves the following steps:

Step 1.

All the process terms py,,, @ = 1,..., M, in the regression model in equation (3.4) form the
initial candidate model set. To select the first and most significant model term, for each

process term compute:

wp = Pyu;

g = ()
P @)l

G) (g(i))Q(w(i))Tw(i)

[err]y” = =4 —"

The err due to w; represents the proportion of the dependent variable y explained by w;.
The term selected as the first one in the model will be the one with the largest [err] 5“ say
[err}gj) = mam{[err}gi),l < 4 < M}. The term corresponding to the extracted index j
becomes the first selected model term as wy = w%j ) = Dyu;-

Step 2.

All the py,,, i =1,...,M,, i # j are considered as possible candidates for the second term

in the model, and calculate:
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(l) = Pyu; — agiz)wl

() _ (wS)Ty)
9o —())7T?{>

1O — (@82 (W) Twl?

lerr o

. T

w. .

where a%) = Ll
w] w1

Find the maximum [err]é) say [err]ék) = ma:v{[err](;), 1 <i< M, i+#j}. Itfollows that

the second term in the model will be selected as wy = wék) = Dyuy, — agg)wl.

The procedures terminates when:

i. there are no more terms in the set of possible process terms.

ii. a predefined number of process terms has been selected.

iii. a desired tolerance p is obtained as 1 —Zf\ipl lerr]; < p, M, < M. The value of p indirectly
determines the number of terms included in the final model and so its complexity as well.

The estimation of the noise model involves the following steps:

Step 1.

Set the number of selected noise terms as M, = 0 and calculate the initial residuals as

Mp+M,
E=Y— Z g qruy.

Step 2.

At each step & > M, in the noise estimation procedure calculate:

(Z) U) pyuel 1 < j < k

Jk wa

(1 _ ()
= Pyue; — Q3 Wy

() _ (w)Ty)
9y = (W)@
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() _ (g2 w
lerr]), = g

(@)

As for process model term selection, the largest [err],” is selected as [err]éh’“)

= max{[err],(f), 1<
i < M,, i%# hi,...,i # hg_1}. So, the selected noise term will be the one corresponding to

the index h; and given by w;, = w,(ch"') = Dyues, — aé.zk)wj.

Step 3.

Repeat the procedure iteratively until:

i. there are no more noise terms in the set of possible terms.

ii. a fixed number of pre-defined noise terms has been selected.

ili. when a chosen threshold for the noise is reached at the step M,+M,, as 1—25.\/[:?1+M” lerr]; <
3

The resultant model will contain a total of M, + M, significant terms. Usually for noise

model estimation only 3-5 iterations are necessary.

Once the orthogonalization and the estimation of parameters g; in equation (3.9) is finished,

the initial unknown parameters 6; from equation (3.3) can be calculated as:

O, = gu,

M.
0i = gi — > ;=1 b,

where i = M,_1, M,;_o,...,1 and M, < M.

3.4 Model Validation Methods

Model validation is the final step of system identification and is a very important one because
it does checking that the model provides an accurate representation of the observed dynamical
system of interest. There are two main classes of model validation methods. One class is

the statistical validation methods, which includes methods that involve performing residual
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analysis and goodness-of-fit tests (Ljung, 1999), as are the tests discussed in this section.
The second class includes validation methods based on qualitative analysis techniques for
nonlinear dynamical systems which compare the dynamical invariants, such as equilibrium
points, Lyapunov exponents, bifurcation diagrams, Poincare sections (Mendes, 1995, Aguirre,
1996). The easiest way to evaluate the performance of a model is to compute the one step
ahead model predicted output (osa) and the model predicted output (mpo).

The osa which is calculated at each step using the model and measured inputs and outputs

is defined as:

Josa(t) = f(y(t = 1), ...yt —ny),ult —1),...,u(t —ny),e(t —1,6),... e(t —ne,0) (3.11)

where f is the estimated model and &(t, é) represent the residuals given by (¢, 0) = y(t)—g(t).
The mpo is computed recursively using the model, the measured input and only the first

few output measurements needed to initialize the model, and is defined as:

Umpo(t) = f(yj(t —1),...,9(t —ny),u(t—1),...,u(t —n,),0,...,0) (3.12)

As in practice we are interested in the behaviour of the deterministic part of the model,
the noise model is usually discarded in simulation.

The model predicted output can be used to assess to what extent the model has captured
the dynamics of the system. In contrast, the one-step-ahead prediction shows only how well
the model approximated the output measurements. It is more accurate to use the model
predicted output when assessing the model’s prediction power rather than one-step ahead
prediction, due to the fact that the osa does not take into consideration the accumulation
of prediction error. Because of this, when considering the osa prediction, even a poor model
can produce good results. If the tests fail then the model’s structure and/or coefficients need

to be re-estimated.
e Model Prediction Error

The model prediction error £(t) is given by

60



Chapter 3 3.4. Model Validation Methods

e(t) = y(t) — 4(1)

where y(t) represents the measured output data and g(t) represents the model predicted
output.
A common measure of model performance is the normalized root mean squared error,

defined as:

SN () —5(2)?
NRMSE = N

Oy(t)

where 0,y denotes the standard deviation of the measured output signal y(t).
e Cross-Validation

Cross-validation is a method of assessing how well a model can perform on “unseen” data.
This is called generalisation. An overview on cross-validation methods and their application
on regression modelling can be found in Browne (2000).

The cross-validation technique used in this work is known as hold-out cross-validation
(Gutierrez-Osuna, 2005, Refaeilzadeh et al., 2008). This involves splitting the original data-
set into two non-overlapping sets, one used for estimation (modelling) and the other for
validation. Depending on the length of the available samples, the data-set can be split in
two equal parts or, as in this work, 66.6% for estimation and 33.3% for validation. The first
part of the data is used alone to perform model selection and parameter estimation, while
the second one is used afterwards alone to test the selected model on new data points. A
disadvantage of this method is the fact that because it does not use all of the available data,
it is dependent on the choice for the modelling data.

Plotting the modelling error against the prediction error would show that the first one will
decrease, while the latter will decrease and then increase again, marking the point of over-
fitting for the model. Because the method works with unseen data, for certain combinations
of values, the model might become unstable. The optimal value is given by the point on the
graph where the prediction error for the validation data reaches the minimum point. The

same method can be used to determine other hyper-parameters associated with the model
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such as the number of process and noise to include in the model. Figure 3.1 shows the
typical evolution of the prediction error with respect to the number of process terms over the
estimation and validation data set. The number of process terms selected corresponds to a
certain number of noise terms k.

Cross-validation for number of noise terms =k
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Figure 3.1: Example of using cross-validation for choosing the optimum number of process
and noise terms in structure detection: blue is the modelling error, red is the prediction error,
and the vertical dotted line is the optimum number of terms.

e Correlation Tests

A common approach to validate NARMAX models involves computing a set of five correla-
tion tests (Billings and Voon, 1985, Chen and Billings, 1989b), which involve the residuals
(estimation error) and the input-output data used in estimation. The identified model is con-
sidered to be adequate if the residuals are unpredictable from (uncorrelated with) all linear
and nonlinear combinations of past inputs and outputs (Billings and Voon, 1985, Billings and
Zhu, 1994). There are two types of correlation tests: auto-correlation function of the resid-
uals and cross-correlation function between the residuals and the input. For the nonlinear

SISO case these are:
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[ 6ue(2) = B(1), 70
Gue(t) = 0,V
Pe(en) (1) = 0,720 (3.13)
¢y (1) = 0,1
G2 (1) = 0,V1

’ _ [

where u? (t) = u?(t) — u2(t) and u2(t) represents the mean value of 4?(t). In order for a
model to be considered adequate, the correlation tests must be within the confidence interval
(95% of the points), defined by +1.96/v/N, where N is the number of data samples.

The correlation tests are usually inspected visually. The correlation tests for the SISO
(equations (3.13)) case can be extended for a MIMO model, as will be shown in the modelling
Chapter 5. Recently a new set of omni-directional (cross- and auto-) correlation tests were
developed (Zhu et al., 2007) which represent concise and more effective testing methodologies

for nonlinear higher order models.
e Coherence Function Analysis

Coherence function analysis is a statistical analysis used to investigate the correlation in
frequency, at certain frequencies or frequency intervals of interest, between the measured
data and the model predicted output.

The coherence function is defined by the formula:

(3.14)

where G; is the cross-spectral density between y (measurement) and y (mpo), and G,
and Gy are the auto-spectral density of y and g respectively.

The coherence takes values in the interval [0, 1], so if two signals are perfectly corre-
lated their coherence value is equal to 1, while two signals completely uncorrelated have the

coherence value 0.
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3.5 Discussion

This chapter introduced the NARMAX system identification methodology that will be used to
subsequently derive two models that relate the orbital parameters to the oxygen isotope ratios
proxy data for before and after MPT. The procedure involves model structure detection,
parameter estimation and model validation. It was shown that due to its versatility, the
method is extremely useful and can provide great insight into system’s dynamics and comes
with meaningful analysis methods. NARMAX is a very powerful tool because it can overcome
many difficulties arising from working with real data, such as: noisy data, random fluctuations
in the data, short datasets, MIMO systems, higher nonlinearity orders, severe nonlinearities.
The main advantages of the NARMAX methodology can be summarised as follows:

e The NARMAX representation can describe a wide range of nonlinear dynamical systems.
In this context, many other representations such as the Volterra and Wiener series can be
considered as special cases of the NARMAX model (Leontaritis and Billings, 1985, Billings
et al., 1989).

e The NARMAX methodology ensures that only the relevant model terms are included
in the model thus avoiding over-fitting.

e The methodology allows the separate approximation of the process and noise model.

e The NARMAX model can be easily mapped into the frequency domain by computing
analytically the Generalized and Output Frequency Response Functions (Peyton-Jones and

Billings, 1989, Peyton Jones, 2007), which will be defined in later chapters.
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Chapter 4

Frequency Domain Analysis of Nonlinear
Systems Using Generalized and Output

Frequency Response Functions

4.1 Introduction

Nonlinear dynamical systems can be analysed in both the time and frequency domain. Fre-
quency domain analysis has been widely applied for investigating systems behaviours in
many fields of engineering, such as: control, electronics, communications, mechanical and
civil engineering (Lang et al., 2007). These methods often provide a physical interpretation
to NARMAX models derived using system identification (Lang et al., 2007). A discrete-time
NARMAX model is not necessarily unique and several quite different time domain models
can represent the same system dynamics. This can make it difficult to characterize and
compare the underlying dynamics of two or more dynamical systems. In the frequency do-
main however, the dynamics of the system can be characterized uniquely using Generalized
Frequency Response Functions (GFRFs). In other words, two alternative time-domain NAR-
MAX representations of one system will have the same frequency domain representation.
Frequency domain analysis for linear systems has been very successful due to the simple
analytical expression of the output frequency response, given by Y (jw) = H(jw)U(jw),

where H (jw) represents the system’s frequency function that relates the spectrum of the

65



Chapter 4 4.1. Introduction

input U(jw) to the spectrum of the output Y (jw) (Lang and Billings, 2005).

Nonlinear systems can exhibit certain types of phenomena, such as the generation of
harmonics, inter-modulation, desensitisation and gain compression/expansion, which are not
encountered when working with linear systems (Billings and Tsang, 1989b, Yue et al., 2005,
Lang and Billings, 2005, Peng et al., 2007).

These phenomena are summarized as follows:

1. Harmonics are frequency components equal to multiples of the fundamental input

frequency. So if the input frequency is w, the harmonics will be: 2w, 3w, . ...

2. Desensitisation represents, for nonlinear systems, the interference caused in the si-
nusoidal response at frequency w; by the application of a second sinusoidal signal at
the frequency ws. In this case, the gain at frequency w; depends nonlinearly on the

magnitude of the disturbing signal at the frequency ws.

3. Gain compression/expansion refers to the changes an increase in the input ampli-
tude induces to the system’s gain. For nonlinear systems, the system’s gain is a function
of the input magnitude. Gain compression refers to the effect where the system gain is
reduced to a level that causes a nonlinear increase in the output power. Gain expansion

represents the opposite phenomena of an increase in gain.

4. Inter-modulation is the process of nonlinear coupling between two or more input
frequency components in order to produce new output components. Inter-modulation
usually refers to the frequency mixes which cannot be included in the above categories

(but are not restricted to this), for example: (w; — wa).

For the studied nonlinear system the phenomena of harmonics and inter-modulation are
observed and analyzed in Chapter 6.

These nonlinear phenomena represent different mechanisms by which, in a nonlinear sys-
tem, the output spectrum can be enriched compared to the input spectrum or that allow
energy to be transferred from one frequency band to another (Lang and Billings, 2005). This

is presented in Figure 4.1, where the input frequencies are considered to be w; and ws. The
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figure shows that for the output frequency domain there are frequencies that are passed un-
altered to the output, (the green coloured lines) but also that new frequencies are formed

through harmonics (the blue coloured lines) and inter-modulation (the red coloured lines).

= harmonics
-W; W W W = inter-modulation
= unaltered frequencies
input frequency domain | | 0 | |
N
L4
output frequency domain | | | W
-y W W
-20), -204 20, 2w,

Figure 4.1: Input frequencies components for system with two fundamental frequencies w,
and wy and the types of linear and nonlinear phenomena that generate the output frequency
spectrum.

When studying nonlinear systems the output spectrum is often much richer than the
input spectrum i.e. there are output frequency components that are not present in the input
spectrum (Billings and Tsang, 1989b, Billings and Peyton Jones, 1990, Lang and Billings,
1997). Peyton-Jones and Billings (1989), Billings and Tsang (1989a), Billings and Tsang
(1989b), Zhang and Billings (1993) studied and introduced the frequency response functions
for nonlinear systems and developed algorithms for mapping the nonlinear NARMAX models
into the frequency domain.

The study of nonlinear systems in the frequency domain is based on the extension of
the concept of linear frequency response function (FRF) for nonlinear systems that have
a Volterra series representation. The GFRFs are multi-dimensional functions of frequency
(Lang et al., 2007, Peng et al., 2007) and can be determined from the system model (Billings
and Tsang, 1989a, Peyton-Jones and Billings, 1989, Billings and Peyton Jones, 1990). The
GFRFs are a powerful tool for representing a system in the frequency domain and explain-
ing nonlinear energy transfer phenomena (Billings and Yusof, 1996, Boaghe, 2000, Boaghe
et al., 2002). Although the multi-dimensional characteristic can make the GFRFs difficult to
visualize and interpret, they are still a very useful way of relating the system behaviours and

model terms to the time domain properties and give the analysis a physical interpretation
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(Li and Billings, 2005, Peng et al., 2007).

More recently, GFRFs have been complemented by a new concept, the Output Frequency
Response Functions, which characterize directly the relationship between the input and the
output spectra of a nonlinear system. The OFRFs were introduced by Lang and Billings
(2005) and are one-dimensional functions of frequency, which makes them easier to interpret
and visualize. This is a great advantage, because a similar analysis to the linear case can be
performed. At the same time, it can provide insight into how and which input frequencies
contribute to the output frequency spectrum and in the end can offer an explanation to the
system’s nonlinear behaviour (Peng et al., 2007, Lang and Billings, 2005).

This chapter introduces the concepts of Generalized and Output Frequency Response
Functions, which are nonlinear frequency analysis methods, and the method for computing
them for polynomial NARMAX models. The chapter is organized as follows. In Section 4.2,
the method of mapping the Volterra series in the frequency domain is introduced followed
by theoretical derivations of the GFRFs and OFRFs. Section 4.3 starts with theoretical
considerations on the harmonic probing technique for multi-tone split inputs. This section
also presents types of terms and GFRF results that are encountered in practical examples
and methods for data and model pre-processing, which are used in order to normalize the
data and in order to prepare the model for the GFRF algorithm. Section 4.4 is concerned
with the computation of the Output Frequency Responses (OFRs).

4.2 Generalized and Output Frequency Response Func-
tions for Nonlinear MISO Systems

For a linear dynamical system, the time domain system response is given by:

y(t) = /_ T hrult — )dr (41)

oo
where h(7) is the impulse response of the system and u(¢) is the system input.
In the frequency domain, the relationship between the input and the output spectrum is

given by:
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Y (jw) = H(jw)U(jw) (4.2)

where Y (jw) and U(jw) are the spectrum of the output and input signals respectively
and H (jw) is the system frequency response function (FRF).
The output of a nonlinear system can be written as a Volterra series truncated to N

number of terms as (Sandberg, 1983):

t)=> y") (4.3)

where 3™ (t) is the n'* order component of the output y(t) and each 3™ (¢) is homogeneous
of degree n. Written as in equation (4.3), the output of a nonlinear system is represented as
the sum of the responses of all the orders of nonlinearity parallel systems that it is formed
of (Swain and Billings, 2001).

For a MISO system with m inputs u(t), . .., u,(t), y™(t) is given by as:

o= / / B (T ) (4.4)

XUy ) (T1y -, Tp)dTy LTy,
where
u(nl...nm)(Tla PN Tn) = Ul(t — Tl) . ul(t — Tnl) X Ug(t — Tn1+1) .. Ug(t — Tnﬁ-ng) X
- X Um(t — Tn1+...+nm71+1) . um(t - Tn)
and hEZi —nyy) TEDrESENtS the n'" order Volterra kernel or n'" order impulse response associated
with the output and n!* input u;(t), n¥* input us(t), ..., nt input u,,(t).

The total number of kernels for a system with r inputs is given by T]{(T) = Zf\il N k‘(f)

where the number of i order kernels is calculated recursively using the formula N k(:)) =

Nk y T Nk(z 1 -+ Nk:(l 1 Nk‘( r) ) represents the total number of first order kernels of

(i—
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the system and is equal to the number of inputs to the model. For example, a system with

r =2 and N = 3 will have 9 unique kernels. These are:
e first order kernels: hi(-), hi(*)
e second order kernels: h?(+), hi,(-), h3,(")
e third order kernels: h3,,(+), h315(+), higs(+), hden(+)

The kernels are called self-kernels if all the subscripts (nq,...,n,,) are equal, as is the case
of the kernels: h2,(+), h3,(+), h3;,(+), .... If not all the subscripts are equal, the kernels are
of the form h2,(+), h3,5(+), h3y(+) and are referred to as cross-kernels. As it can be seen from
equation (4.4), the self-kernels are convoluted with one input only, whereas the cross-kernels
are convoluted with at least two different inputs.
Writing equation (4.3) in the frequency domain gives:
Y(jw) =3 Y (jw) (45)
n=1
where Y (jw) is the output spectrum and Y™ (jw) represents the n'" order frequency
response of the system.

This can be written as (Lang and Billings, 1997):

Y™ (jw) = ST Z /w H((m) .... nm)(jo)l...jcon)HUl(jwi) (4.6)

nyten,=n Y Q1 TOR=0 i=1

ni+Ns m
H U2(j®i) e H Um(j(’oi)dan
in1+1 ny+Anm—1+1

and is a natural extension of equation (4.2).

H(")(jwl, cey Jwn) = / . / R (11, ... ,Tn)e_(“171+"'+w”")jd71 e Th (4.7)

represents the n'* order Generalized Frequency Response Function or n'* order transfer
(n)

function and fwl oton—o Himn )

H(")
(n1

(jor...joy) [T, U(jw;)dr,, denotes the integration of
)(jo)l - Jon) [T, U(jwi)dTn., over the n-dimensional hyper-plane w; +- - - +w,, = w.

~~~~~ Nom
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Compared to the linear case where only one transfer function describes a system in the
frequency domain, for a nonlinear system the relationship between the input and output
spectrum is described by an infinite number of frequency response functions. In practice
however, the response can be approximated using a finite number of terms in the Volterra
series, depending on the degree of nonlinearity. It follows that in practice only a finite number
of GFRFs are significant and need to be considered (Zhang and Billings, 1993).

Define ng = 0, then

n)(: 1 n . .
Y (jo) = = 3 / HY L (jor .. jon)
ni+-+nm=n O]+ F R =0
m no+--+mn;
[T II vGe)de (4.8)

j=li=no+--+nj_1+1

Define

m o mototn

. . 1 _
U((nl),,nm)(](k)) = o1 /‘O H H Uj(,]('oi)d.tnco

IFHOn=0 G i=not-4n;_1+1

Then it follows that

n . . m no+-+n; .
fw1+---+wn:w(H((n1),. L m) (]wla s 7.]0‘)71) X Hj:l Hi:OnOJr. . .J+nj,1+1U]' (jwi))dTﬂw

+...+n; .
fwl_;,_‘.._;,_wn:wl_[;n:ll_‘[?:ono-i-. . .n—i-njfl-‘rlUj (]wi)dan)

1 m no+...+n; .
% n—1 H i H Uj (]wi)dan
2 w1t Fwn=w j=1 i=no+...+nj_1+1

n . . m no+--+n; .
(n) (jw) = fw]+---+OJn:w(H((n1),.‘.,nm)(]wl’ ces Jwn) X Hj:lHi:OnoJr...J+n]~_1+1Uj(]wi))dan

N1 yeeeyTim, m no+...+n; .
( ' ) fw1+»--+wn:ij:1Hiin0+...in]‘,1+lUj(']wi))dan
(4.9)
YOUwy = Y Gl G Gw)
ni+-+nm=n
GEZi nm)( jw) will be referred to as the Nonlinear Output Frequency Response Function

for multi-input nonlinear Volterra systems.
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Using the equations derived above, equation (4.5) can be written in polynomial form as

ZG( (Jw)[Ug, (jw)] + Z Z G X [Ug, (jw) Uy, (jw)] + - .. (4.10)

ki=1 k1=1 ko=

+Z Z G () Uk (o) . .- Uy, ()],

k=1  kn=kn_1

where

withni+no+---+n,=nandn=1,..., N and

U s (w) = [Ui(w). . Ui (jw)Ua(jw). .. Ua(jw) . . Un(jw). .. Un(jw)
Y(w) =Y G GeUe L Gw) (4.11)

In equation (4.11), Y (jw) is defined in a similar manner to the description of the Output
Frequency Response for linear systems given in equation (4.2).
The first, second and third order OFRs for nonlinear systems with three inputs and one

output are as follows:
e First order ORFs: YV (jw) = HY (jw)UD (jw), with UV (jw) = U;(jw)
o Second order ORFs: Y,*) (jw) = LHY (jw, jun)U® (juw), with U (juw) = Us(jwr)Uj (jwe)
e Third order ORFs: zak (jw) H( )(]wl,](,ug,ng)U(3 (jw), with

U® (jw) = U;(jwr)U; (jw2) Uk (jws).
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In this example 4, j, k = 1,2,3 and H}(jw) represent the first order GFRFs, H?] (Jwr, jws)
are the second order GFRFs (self-kernel if i = j and cross-kernel if i # j) and Hfjk(jwhng,jw;;)
are the third order GFRFs (self-kernel if i = j = k and cross-kernel otherwise).

The OFRs derivation rule and also the difference between the linear and nonlinear model

cases is presented in Figure 4.2.

@ U(t))- U(J'(-O)) H(w)=G"(jw) |Y(jgz

Figure 4.2: System output frequency representation using the OFRFs, for: a. linear systems,
b. nonlinear systems, where FT represents the frequency transform used.

4.3 Computation of the Generalized Frequency Response
Functions using the Harmonic Probing Method

There are two methods for generating the GFRFs. The first refers to identifying the GFRFs
from the input-output data (Kim and Powers, 1988, Tseng and Linebarger, 1991, Tseng and
Powers, 1995). The disadvantage of this approach is that a considerable amount of data is
required in order to accurately compute GFRFs of order higher than two even for a SISO
system (Lang and Billings, 2000).

A better approach to obtaining the GFRFs, known as the harmonic probing method,
allows deriving analytic expressions of GFRFs for parametric NARX models (Billings and
Tsang, 1989a, Billings and Peyton Jones, 1990, Zhang and Billings, 1993, Swain et al., 2006).
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4.3.1 Multi-tone inputs

In order to be able to apply the harmonic probing technique, the inputs of the system

need to be re-written as n-tone inputs. It is assumed that all inputs have zero mean and

that for v = 0 and y = 0 an asymptotically stable equilibrium for the system is reached.
For the multi-input Volterra series case with r inputs, the inputs are written as n-tone

ones as (Liu et al., 2006) as:

up(t) = edrt .. 4 efmt
ug(t) = @ttt 4 4 efenant
2(1) (4.12)
ur(t) — e]'w1+'71+..-+"/(T,1)t 4+ + ejwnt

For example, for a system with 2 inputs (r = 2), in order to calculate the 3"¢ order GFRFs

(n = 3), the inputs can be written in four ways, such as:

a. u(t) =0 and uy(t) = e?@rrert@s)t which will give Hiyy(jwi, jws, jws)

b. uy(t) = e and uy(t) = /@2t which will give H3,y(jwr, jws, jws)

c. uy(t) = ?@1+2)t and uy(t) = e/t which will give H?,(jwi, jws, jws)

d. uy(t) = e?@rreates)t and uy(t) = 0, which will give H},, (jw1, jws, jws)

4.3.2 Symmetric and Averaged Generalized Transforms

In the case of SISO systems and MIMO systems self-kernel transforms, the GFRFs are
computed by taking the average over all frequency arguments possible for each frequency
combination of the asymmetric GFRFs.

For any given system, both H™(-) and h"(-) may not be unique since changing the order of
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argument may give different function but will still yield the same output y™(¢). These func-
tions are called symmetric functions and they have the property that H™ (—jw, ..., —jw,) =
HO*(jwy, ..., jw,). H™* is called the complex conjugate transfer function (Zhang and
Billings, 1993).

The common practice is to symmetrize the functions by summing all the asymmetric

functions over all the permutations of the arguments and dividing by their number. That is

1
(Meyrm (7 o) = & () :
Hwm (jwrs o jwn) = > H™ (jwr, ..., jw,)

" all permutation of wi,...,wn
For example, the asymmetric GFRFs corresponding to the symmetric third order self-

kernel transfer function H}|,(jwy, jws, jws) are:

H%ll(jwbjw%jwl?)a H?ll(jw%jwbjwii)? Hf11<jw37jwlvjw2)7
Hi}’l Hiq'l H1311(jw37]'w27jw1)~

1(jW1,jW3,jW2), 1(jw2,jw3,jw1),

For MIMO systems cross-kernel transformations however, the averaged generalized kernel
transform needs to be computed (Billings and Swain, 2000), due to the fact that cross-kernels
do not have the symmetry property. This can be obtained by taking [w, 5] permutations
of the asymmetric kernel. For example for the second order cross-kernel, this means that
thBQ (jwi, jws) may not be equal to ng,ﬁl (Jwa, jw1) (Swain and Billings, 2001). So, under-
standing the [w, 5] permutation is very important for deriving the averaged generalized kernel
transforms. In the case of MIMO systems, the n-tone inputs are not applied at a single in-
put point, but is split at various input points. In order to correctly obtain the GFRFs it is
therefore fundamental to carefully identify in the n-tone defined input in equation (4.12), the
frequencies {w1,...,w,, } as belonging to the input point fi, wits,,...,Wy 44, as belonging

to the input point Sy and so on (Billings and Swain, 2000).

4.3.3 The [w, ] permutation

The averaged GFRF is computed by permuting w and /3 together so that if the frequency wj,
belonging to the input point j3;, is permutated to say wy, 3; must change to (3 such that e/“!

belongs to the input point §;. This means that for i = 1 and k = 2, when w; is permutated to
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wy, the subscripts of the transfer function will also change from HZ,(jwi,ws) to Ha, (jwa, wy).
This shows that the arguments of the cross-kernel functions are not independent of the
subscripts of the kernels and that they depend on the [w, 5] permutation. This allows the

generalized transform to be defined as

1
H e W1y .y JWn) = — H™ Wy JWn
Borr B B )TV o) S D HG ) (8 (BT
N—— —— At,—/ allpermutations|w,B) h,—/ At,—/ Ht,—/
'Y] times FY2tZ7TLES Fyd rmes ’Yl rmes ’Y2 rmes ’Yd rmes

where d = number of distinct inputs that take part in the n-dimensional convolution,

~ = number of times wug, (t) takes part in the n-dimensional convolution, and ;= number
of times wug, (t) takes part in the n-dimensional convolution.

The procedure for the |w, 3] permutation, given the explanation above, involves the fol-

lowing steps (Billings and Swain, 2000):

1. Define 8 and w as 8 = [01,02,...,0,), w = [wi,wa,...,w,| so that the frequencies
wi, @ =1,...,n of the input u(t) are associated with the corresponding input points d;, i =
1....,n.

2. Consider the pair (w;, ;) as a single entity so that the GFRF contains n such pairs

[(wiy 0i)y - vy (Wny On)].

3. Compute the permutations over (w;,d;), ¢ = 1,...,n, and average to give the averaged
GFRF as:

LT D SR
all permutations of [w,B] M~ S——
itimes ~ygtimes  ~ygtimes

= % > H" 5 (jwr,- .., jwn)

" all permutations of (w1,81),...,(wn,0n)

When n = 2 the averaged transfer function is:

w1 +w2)t

Q!Hfgvg (jwlajw2> = [H122(jW1>jW2) + H221(jw2>jwl)]ej(
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This procedure is illustrated with an example of a model with 3 inputs w;(t), u;(t) and
uy(t) for which the GFRFs up to the order n = 3 are calculated. The GFRFs identified in this
example are the ones derived for the palaeoclimate NARMAX models obtained in Chapter
5.

e for the first order GFRFs H}(jw,), the inputs are u;(t) = e/, u;(t) = 0 and ug(t) = 0
with 4,0,k =1,...,3,i # | # k and the output is y(t) = H}(jw,)es“".

o for the second order self-kernels GFRFs HZ(jwi,jws), the inputs are w;(t) =
elrrea)t () = 0 and ug(t) = 0 with i,[,k = 1,...,3,4 # [ # k and the output
is

y(t) = B Gun)et + B (jun)e ™! + 2H2 (o, jup)elr -2

e for the second order cross-kernels GFRFs H3(jwi, jws), the inputs are u;(t) = et

w(t) = e/t and uy(t) =0, with 4,1,k =1,...,3,i # | # k and the output is
y(t) = H} (jw)e’" + H}' (jws)e!? + 2!Hi21““9 (jwr, jws el @12t
e for the third order self-kernels GFRFs H3,(jwi, jws, jws), the inputs are u;(t) =

elwitwatws)t (1) = 0 and uy(t) = 0, with 4,1,k = 1,...,3,i # | # k and the output is

y(t) = H}(jw)e™" + H} (jwz)e™?" + H} (jws)e’"
+ 2!Hi2i(jw1,ng)ej(“1+w2)t + 2!Hi2i(jw17jw3)ej(“1+“3)t + 2!Hfi(jw2,jw3)ej(w2+w3)t

+ B!Hi?;'i(jwlijz, jw3)6j(wl+w2+w3)t.

e the third order cross-kernels are of two types, where the inputs are

— u(t) = edrteRlt (1) = e/t (t) = 0, with 4,0,k = 1,...,3,i # [ # k. In this

case the GFRFs to be estimated are H. (jwi, jws, jws) and the output is

il

y(t) = Hil(jwl)eju)lt + Hz‘l(jWQ)ejw2t + Hll(jW3)€jw3t

2!H3i(jw1,jw2)ej(“1+w2)t + 2!Hi2[(jw1,jw3)ej(‘“1+“’3)t + 2!H5(jw2,jw3)ej(“2+w3)t

+

31H ;" (jewr, jwa, juws)ed (1 Teztes)t

il

+
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— u(t) = et uy(t) = e ug(t) = /3t with 4,1,k =1,...,3,i # | # k. In this

case the GFRFs to be estimated are HS‘;”“’ (Jwi, jwe, jws) and output is

y(t) Hi (jun)e”™ + Hj (jwa) e’ + H,(juws)e’

N H2 (jwr, jws)e? @192t LoV 2 (juy, juws)e? @)t L OIH2 (G, jug)ed @2wslt
BIH 2 (o, juws, jus)el @itentws)t

The procedure for recursively computing the n'* order GFRFs starts by writing the n-tone
inputs as in equation (4.12). Next, the inputs and output for each type of computed GFRFs
are replaced into the NARMAX model equations given by y(¢), as explained in the example
above. Finally, the coefficients of e(©1++on)t are extracted.

Next an explanation of the contribution to the GFRF results of each type of terms in
NARMAX polynomial models is given (Swain and Billings, 2001). For each category a de-
scription of the term, its contribution to the transfer functions and a brief clarifying example
is given. The three possible terms that can appear in a polynomial model are: pure input,

pure output and input-output product terms. Tables explaining the contribution of every kind

of term in the third order NARMAX model are given in Appendix B.

4.3.4 Pure Input Terms
The pure input type terms for a MISO model are of the form

qr

q1
Cogrongy by ) [Jualt = ko) -+ [ welt = Ray)
i=1

i=rp_1+1
The relevant contribution of this type of terms to the n'* order GFRFs results is given

by the expression (Swain et al., 2006):

E e*j(w1k11+“'+wnkln)

all permutation of wi,...,wn,
The condition for this to be true is that ¢; +- - - +¢, = n. If this condition is not satisfied,

the contribution of the term is 0.

78



4.3. Computation of the Generalized Frequency Response Functions using the Harmonic
Chapter 4 Probing Method

For example if the term in the model is coo(k1ko)u(t — k1)u(t — ko), its contribution to the
2" order GFRF expression will be given by

602(12)[e*j(w1k1+w2k2) _|_efj(w1k2+w2k;l)]

4.3.5 Pure Output Terms
Pure output terms are written as
P

CP0~~~0<kl17 ) klp) H y(t - klz)

i=1

In this case the contribution to the GFRF results is estimated recursively as

n—p+1
4 y y n—i(; - —j(w1+-~~+wi)k
E : Hn—p—i—l(]wla st 7jwi)Hp—1 (]wi+17 s 7]wn)e '»
i=1

with p < n.
The recursive procedure finishes with p = 1 and H™Y(jwy, ..., jw,) has the property
H®™D = H™ (juwy, ..., ju,)e d@ttenhy

For example for a term having the form co_o(k1k2)y(t —k1)y(t — k2), assuming the system
has a single input split as a 2-tone signal u(t) = e/*'* + 72!, the relevant contribution to
the 2"¢ order GFRF is given by

can.o(12) [} (o H (o) 9020 4 o) ) (=420
It can be easily seen from this expression how the higher order GFRFs are recursively

computed.

4.3.6 Input - Output Cross Terms

The terms in this class can be expressed as:
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qr

p q1
Cpqi...qr (kll s klp+q1+~-+qr) Hy(t - ll;) H Uy (t - klb) to H ur(t - klb)

i=1 i=p+1 i=gr_1+1
The contribution of this kind of terms to the n'* order GFRF, under the condition that
p+q+ -+ g <n,is given by the expression:
n—1 L

—j(Wn—gt1kippr1t+twnky ) rpn—q( ; ;
g e J\Wn—ar1fldpt "ot HIE(jwr, . jWnog)

q=1 ll,...,l+p+q:0
For an example term given by c1y(kiks)y(t — k1)u(t — ko), the contribution to a 2"¢ order

GFRF, when the single input is split as a 2-tone u(t) = /1! 4 /2! results from:

Cll(kle)[Hll(jwl)e—j(wlkl+w2k2) + Hll(jMQ)e—j(wlk2+w2k'l)}

Again the recursive nature of the higher-order transfer function is well emphasized by this

example.

4.3.7 Data and Model Pre-Processing

The recursive probing algorithm presented in the sub-sections above is defined for a NAR-
MAX models with zero mean inputs and without an internal constant. In practice however,
the estimated model using the input-output data-set usually does not meet this criteria, and
this is why further model processing techniques need to be applied.

When working with a set of inputs that have very different ranges, it is common practice
to remove the mean of each input signal in order to bring all variables in proportion to each
other. So removing the mean basically means centring the data. When the data is not
corrected in this manner, the effects of each of the inputs on the system output are more
difficult to interpret. This is clearly the case of the three orbital parameters inputs to the
estimated NARMAX model, which have the means w; = 0.03, 7, = 23.34 and w3 = 181.96.

Unlike the linear systems, where usually DC terms can be discarded without influencing
the system behaviour (Astrom, 1980, Isermann, 1980), for nonlinear systems the DC term
can be coupled within the recursive response of the system, and given the superposition

principle is not applicable, simply discarding the term is not possible (Peyton-Jones and
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Billings, 1993). A DC component usually appears due to a non-zero equilibrium state of the
model.

A DC term present in the model brings various disadvantages to a recursively generated
model. The behaviour of the system is affected by the increased number of additional terms
and recursions (Peyton Jones and Choudharya, 2012). Early NARMAX algorithms did not
consider systems with DC terms or just discarded them, but the extensions by Zhang and
Billings (1993) and Peyton-Jones and Billings (1993) address this problem. The presence of
an internal system constant also affects the frequency domain response and will give biased
results in the analysis.

This subsection presents techniques used for working with zero mean inputs and for

removing the internal constant for a NARX model defined as:

y(t) = foly(t—1),...,y(t—Ny), w1 (t—1),...,u1(t—Ny,), ..., u-(t—1),...,u-(Ny,)) (4.13)

The NARMAX model is written in an alternative form by introducing the auxiliary input
variables w;(t) as w;(t) = wu;(t) — u;, where u; represents the mean value of w;(t), which for a
data-set of NV points is given by u; = % ijl wij(t).

Substituting u;(t) = u;(t)+u;in equation (4.13), gives the following equivalent description:

y(t) = folyt—1),....y(t — Ny),w(t —1)+u,...,u1(t — Ny, ) + T, (4.14)

(= 1) 4+ Ty, T (E— Ny, ) + )

Usually, the DC component is considered to be an additive term to the model, as: y(t) =
y(t) + yo, where yo represents the system’s internal constant (Peyton Jones and Choudharya,

2012). In order to remove the internal constant, at this stage ¢ o9 ¢ , equation (4.13) is
——

(r41) times

re-written by making the variable substitution y(t) = y(t) — vo, as:
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yt) —yo = folyt—1) —vo,...,y(t — Ny) —yo,ur(t — 1), ..., u1(t — Ny, ),
o (t=1), . ue(t — Ny,)) (4.15)

In this case as well, the model’s terms need to be rearranged and the coefficients recal-
culated. This procedure will also introduce new terms, but these will not change the system
behaviour and model’s response, but only its structure.

The value of the internal constant is found as the solution to ¢*, |, =0, where ¢,

—— ——
(r41) times (r41) times
is the newly calculated value for the constant term.

Ezxample

Next an example illustrating the two model changes explained above is given. The second

degree of nonlinearity model with two inputs is considered as:

y(t) =2yt — 1) + ui(t — Dug(t — 2) + 3y(t — 2)uy (t — 2) + 2ua(t — 1) — 5 (4.16)

For this example consider: @; = 3 and uy = 2. The identified model coefficients according

to (4.16) are:

C100(1) =2 0001(1) =
Co11(12) =1 Cooo = —9
6110(22) = 3

Stepl - zero mean inputs

As detailed in Section 4.3.7 in order to have a model with zero mean inputs, the model
needs to go through the variable changes: w;(t) = @ (t) + u; and us(t) = Us(t) + uz. The

model in example (4.16) becomes:
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y(t) = 2yt —1) +u(t — Due(t — 2) + urua(t — 2) + uuy (t — 1) (4.17)

+3y(t — 2)uy(t — 2) + 3uwy(t — 2) + 2ue(t — 1) + wUs + 2Us — 5

By rearranging the terms and recalculating the coefficients after substituting in the values

of the input signals means, equation (4.17) becomes:

y(t) = 2yt —1)4+9y(t —2) 4+ 3y(t —2)a(t — 2) + a1 (t — 1)a(t — 2) (4.18)

1200 (t — 1) + 2ip(t — 1) + 3dia(t — 2) + 5

The new recalculated coefficients are:

Cioo(l) =2 0311(12) =1 0301(2) =3
Croo(2) =9 or0(1) = 2 Cooo = O
0110(22) =3 5301(1) =2

Three new coefficients, corresponding to three new terms, appear in the expansion in
equation (4.18) as: ¢jy0(2), ¢510(1) and ¢y, (2). The coefficient ¢op has changed its value and

was reassigned as cf-
Step 2 - removing the internal constant

The model needs to be re-written with the variable change y(t) = §(t) — yo as explained
in sub-section 4.3.7. In this case, the model equation (4.18) after the substitution and terms

rearrangement, becomes:

Gt) = 2§(t— 1)+ 95(t — 2) + 35(t — 2wt — 2) + W (t — Daa(t —2)  (4.19)
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Yo is calculated from ciyy = 0, so —10yy +5 = 0. This gives the value yo = 0.5. By
substituting this into the output model in equation (4.19) gives

Gt = 25(t —1) +95(t — 2) + 35(t — )T (t — 2) + @y (t — 1)a(t — 2)

420y (t — 1) — 15Uy (t — 2) + 2ua(t — 1) + 3Ta(t — 2)

The new coeflicients are:

C’f(’;o(l) =2 CST1(12) =1 0861(1) =2
ioo(2) =9 hio(1) =2 c(2) =3
110(22) =3 o10(2) = —1.5 oo =0

It can be seen that compared to equation (4.18), one extra term is also introduced by this

procedure.

4.4 Computation of the n'* Output Frequency Responses

Because of their dimensionality the GFRFs of order higher than three are difficult to visualise
and interpret (Yue et al., 2005). In practice however, the first, second and third order transfer
functions are often sufficient to characterize the system in the frequency domain (Zhang and
Billings, 1993). Given the GFRFs are multi-dimensional functions they are difficult to inter-
pret. In contrast, the OFRs, which are functions of a single complex variable, characterize
completely the contribution made by the input to the output spectrum, through a particular
GFRF. The evaluation of the OFRs requires knowledge of the GFRFs H™ (jw, . .., jw,) and
the input spectrum U;(jw;), j =1,...,r.

In order to obtain the nonlinear OFRs, the product of GFRFs and input spectrum needs
to be integrated over the hyper-plane wy + - - - + w,, = w, as shown by equation (4.8). This is
computed for each output frequency w of the output spectrum Y (jw). The way each of the
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input frequencies contribute to the OFR value at each output frequency for the second order
function is illustrated in Figure 4.3 and explained in what follows.
In practice, the integration is replaced by a summation because the discrete Fourier

Transform is computed. This means that equation (4.8) is replaced by:

Vo) -t XS H . Gede) G
ni+ - +nNm=n wi++0p=0
m  motetn

II II Ule)due

7j=1 i:n0+---+n]',1+1

For a third order system the output spectrum in equation (4.5) is written as:

Y (jw) = Y'(jw) + Y2 (jw) + Y?(jw) (4.21)

By writing equation (4.20) for a third order nonlinear system with three inputs, each of

the output frequency responses Y™ (jw) in equation (4.21) is written as:
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Yi(jw) = > Hi(ju)Ui(jwr) + 35 Hy(jwi)Us(jwr) + >0 Hz(jwr)Us(jwr)

w1=w w1=w w1=w

YV2(jw) =5 > Hi(jwr, jw)Ur(jwi)Ui(jwe) +5 > H3(jws, jwa)Us(jwi)Us(jws)

w1 tw2=w w1 tw2=w

5 2 Hi(jwn, jwa)Us(jwn)Us(jwe) + 5 30 Hiy,, (jwr, jwo)Us(jwr)Us(jws)

w1 twr=w w1 two=w

+% > H123avg(jwlvjWQ)UI(jWI)US(jWQ)+% > H223av_q(jwlajw2)U2(jW1>U3(jW2)

w1 twer=w w1 twa=w

V3jw)=1 > H}(jwi, jws, jws)Ur(jwr)Ur(jws)Ur (jws)

w1 tw2tw3z=w

+1 > Hi(jwi, jws, jws)Us(jwr ) Us(jws)Us(jws)

w1 tw2twz=w

+1 Y Hi(jwi, jwa, jws)Us(jwi)Us(jws)Us(jws)

w1 tw2twz=w

Jri > H1312avg(jw1,jw2ajw3)U1(jw1)U1(jW2)U2(jw3)

w1 twotwz=w

"‘i Z H%QQQUg(jwlvjwmjw:s)Ul(jwl)U2(jW2)U2(jw3)

w1 tw2twz=w

iy My, (Jwr, jws, jws)Us (jwn) Ur (jws) Us(jws)

w1 twa2tw3z=w

iy Hiy, (i, jws, jws)Us (jwr)Us(jws) Us(jws)

w1 twatwz=w

i X Hiy,, (jwi, jwa, jws)Us(jwn)Us(jwa)Us(jws)

w1 tw2tw3=w

i Hiy,, (jwi, jwa, jws)Us(jwn)Us(jwa)Us(jws)

w1 twetws=w

Jr% > ngggaug (Jwn, jws, jws)Uy (w1 )Us(jwa)Us(jws)

\ w1 twetwz=w

(4.22)

Equation (4.22) is written in compact form as:
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W, 4 Point | Term in summation Yz(jm|°m)= Result
P ﬂr D HA(wqjw,)U(w,)U(w,)
* - 41 Wy+H0,= Wjout
P | G- DUGEHUG-D
na P4
2 P2 | HXGLJO)UGU(O)
oo 2w Ty Ty e T 2
P3 | H(jF.z)VUU(7) Y (jwsout)
i+ 3 4 T 3 T
a_ .4 o
A M——— >W; P4 | HAOHUGOUGD
- -4l My P5 | HAG-FiEMu0-HugEH
P8 Q'b,,\ 2
.. 3 * P6 | H(j0-2M)U(jo)u(-3H
P7 2. m; T n P
P7 | H(j-2J-2)U(-3)U(j-3) )
3ng ¢ 2 Y (jws out)
4 [ps % Pe | HA(-3-PUG-DUG-F
+ input frequencies ‘\"3
Po | H3(j-2Mjo)ud-EMu(jo)

Figure 4.3: Combinations of frequencies w; + wy = wigys contributing to Y2(jwiout)-

YV(jw) = Y (jw) + Y5 (jw) + Y3 (jw)
YV2(jw) = Y (jw) + Y5 (jw) + Y3 (jw) + Y3 (jw) + Yi3(jw) + Y (jw)

V3 (jw) = Y7 (jw) + Y5 (jw) + Y3 (jw) + Y (jw) 4+ Yid (jw) + Y3 (jw) + Yiis(jw)
+Y3h3(Jw) + Vs (jw) + Yids (jw)

(4.23)
In order to calculate the value of each Output Frequency Response Y(EZ)__nm)(jw) with
ny+---+n,, =n, all the frequency wy, ..., w, contributing to each of the output frequencies

w=uwi+ -+ w, need to be determined. .
The procedure is illustrated in Figure 4.3 for a second order response Y2, (jw) and for a

nin2

two-tone input given by the sum u(t) = e™'* + /2! w5y = {=2F — 2 -2 0,2, 2 3} For
the given input, the output spectrum will be evaluated for all the frequencies w;,,,, = wy +ws.

The full methodology for deriving the GFRFs and OFRs of a nonlinear dynamical system

can be summarized as follows:

1. Identify a polynomial NARMAX model from data.
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2. Compute the discrete Fourier Transforms U;(jw) and Y (jw) of the input and outputs,

respectively.
3. Compute the GFRFs H™ (jw,, ..., jw,) using the probing approach.
4. Compute the OFRs of different orders Y (™ (juwy).

5. Compute the combined OFR Y (jw) corresponding to the GFRFs evaluated in step 3.

The time domain model estimation and frequency domain analysis of the NARMAX model

is summarized in Figure 4.4.

uq(t)
"1 NARMAX "
u) — |  estimation

- Time domain

Frequenc;domaln

U1(jw) — . )
109l Z[H ™ (jwy,...jw) Yoo
Urje) ——|  YUwi)--U(jwn)

Figure 4.4: Diagram presenting the model analysis procedure.

4.5 Conclusions

This chapter introduced the concepts of Generalized Frequency Response Functions and
Output Frequency Responses of nonlinear dynamical systems as well as methods to compute
these functions for a general polynomial NARX model. The frequency domain methods
presented in this chapter are powerful tools that allow the analysis of the underlying nonlinear
mechanisms which contribute to the observed output spectrum (Zhang and Billings, 1993,
Boaghe, 2000).

These methods will be used to analyse and compare the models estimated using the
NARMAX methodology described in the previous chapter and the paleoclimate data-set.

The application of the analysis tools presented in this chapter will be used to provide for
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the first time a rigorous characterization of the nonlinear relationship between orbital forcing
parameters and the paleoclimate proxy data. Also, it will be possible for the first time to char-
acterize in the frequency domain how this dynamic relationship changed during and following
the Mid-Pleistocene Transition by comparing the functions and graphical representations of
the GFRFs and OFRs for the time periods before and after MPT.

The higher-order OFRs allow identifying which frequencies and combinations of frequen-
cies contribute most significantly in the output spectrum such as the peak corresponding to
the ~ 1/100 cycles/kyr frequency. An important advantage of the frequency domain ap-
proach is that the GFRFs allow to uniquely characterize the dynamics of the system. There-
fore GFRFs provide an effective way to compare the dynamical properties of the studied

system before and after MPT.
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Chapter 5

Palaeoclimate Data Modelling Using the
NARMAX Methodology

5.1 Introduction

The objective of this chapter is to apply the nonlinear system identification methods presented
in Chapter 3 to infer NARMAX models which capture the dynamic relationship between the
oxygen isotope measurements taken from deep-sea cores (model output) and the three orbital
parameters eccentricity, obliquity and longitude of perihelion (model inputs) before and after
MPT. Specifically, the proxy data consists of measurements of oxygen isotope ratio taken
from deep-sea sediment cores drilled at Site 806B. This is the first time such an approach has
been used to model and analyse the relationship between palaecoclimate proxies and orbital
forcing.

Although the resulting NARMAX models cannot be mapped directly on known phys-
ical processes, such models can reveal the nonlinear mechanisms by which orbital forcing
modulated the paleoclimate before and after MPT.

This chapter is organized as follows. Section 5.2 presents the data sets used to estimate
and validate the models. The identification of the two NARMAX models based on paleocli-
mate proxy data before and after MPT is presented in Section 5.3. Section 5.4 presents

model validation results. Conclusions are presented in Section 5.5.
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5.2 Palaeoclimatic Proxy Data

The data used in this work is available from the National Climatic Data Center website
(http://www.ncde.noaa.gov). The output data set chosen for this study consists of Ny, =
536 samples of the §'80 time-series, which covers the time interval between the present time
(year 0 is considered year 1950) and 5 Myr before present. The input data set consist of
Ni,, = 2140 samples of eccentricity, obliquity and longitude of perihelion covering the interval
between year 0 and 2.14 Myr BP. The inputs and output data sets have been discussed in
more detail in Chapter 2 Sections 2.3 and 2.4, and are shown in Figures 2.4 - 2.6 and 2.13.
Out of the entire data set available, in order to study the MPT, only the data corresponding
to the Pleistocene time period was extracted.

The 680 time-series stored in the NCDC repository was obtained by first interpolating
the raw isotope data and then resampling it (Berger et al., 1993a). The sampling period
of the data is 4 kyr. The time series of orbital parameters were calculated following the

equations (Berger and Loutre, 1992):

esinw = Y, Psin(a;t + 1;)
e=€e"+ >, Acos(vit + G)
e=e"+ >, E;cos(\t+ ¢;)
where e is the eccentricity, esinw is the climatic precession, € is the obliquity and the
amplitudes (P;, A;, E;), frequencies (o, 7;, A;) and phases (n;, (;, ¢;) are given in Berger and
Loutre (1992) Tablel.
The orbital parameters data was initially sampled at 1 kyr and, in this work, it was
resampled at 4 kyr to match the sampling time of the §'80 data set.
As the MPT was identified by most authors (Imbrie et al., 1992, Pisias and Moore Jr.,
1981) around 900 — 850 kyr BP, the data available was split into two data subsets D; and

Dy, shown in Figure 5.1, as:

e D; marks the time period before MPT given by the time interval [1400 — 852] kyr
BP and consists of 138 data points in total.

e D, marks the time period after MPT given by the time interval [852 — 0] kyr BP and
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consists of 214 data points in total.

©
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Figure 5.1: Inputs time-series: a. eccentricity, b. obliquity, c. longitude of perihelion; the
vertical red dotted line represents the MPT time separating the subsets D, (before MPT)
and Dy (after MPT).

The system output is the time-series of oxygen isotope ratio §**O (hereafter referred to
as y) and the system inputs are eccentricity (uy), obliquity (ug) and longitude of perihelion
(ug). The input is written in vector form as u = [uy ug usg).

For modelling purposes the inputs and output were split into an estimation (training)

data set and a validation data set. These data sets were as:

e D)y is the estimation data set for the time interval [1126, 852] kyr BP before MPT.
e Dy is the validation data set for the time interval [1400, 1126] kyr BP before MPT.
e D,y is the estimation data set for the time interval [568, 0] kyr BP after MPT.

e D,y is the validation data set for the time interval [852, 568] kyr BP after MPT.
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5.3 Model Structure Selection and Parameter Estimation

In this section, the NARMAX methodology is used to develop polynomial models which relate
the proxy for insolation, which is the output of the system, to the three orbital parameters
eccentricity, obliquity and longitude of perihelion, which represent the inputs for the system,
in the cases before and after MPT. The methodology presented here is applied similarly
to the two separate sets of data.

In order to find the best model structure and parameters to fit the available data for each
of the two time periods, the model degrees were varied ranging from 1 to 4. The lags values
were set as: for first and second order models N, = 8, N,, = 8,7 = 1,2,3 and N, = §,
for third order models N, = 4, N,, = 8,7 = 1,2,3 and N, = 4 and for forth order models
N,=3,N,, =4,1=1,2,3 and N, = 3.

The full polynomial model structures include very large number of terms. For example,
using the above lag values, the full models using all three inputs have 41 terms for the first
order model, 861 terms for the second order model, 6545 terms for the cubic model and
7315 terms for the fourth order model. Given usually 15-20 terms are needed to fit the data
accurately (Billings and Leontaritis, 1980), the strategy for reducing the number of terms
using cross-validation is presented next. Also, the procedure establishes which of the three
inputs or combinations of them are necessary to accurately fit the output data. To this end,
for each model order 1 to 4, models with one input only (either u;, us or ugz), combinations
of two ([ug ug], [ug us] or [ugug]) or all three inputs ([u; ug us]) were estimated.

For the structure detection procedure, the number of noise terms n,, were varied from 1
to 10 and the number of iterations of the noise model ranged from 5 to 25. For each value
of n,, and noise iteration, the number of process terms n,, was varied through from 1 to 30.
Using the OFR procedure 30 polynomial models were obtained for each combination of n,,
and iteration values. Using cross-validation it is possible to obtain the optimum number of
nypr, out of the total 30 considered, by plotting the estimation errors superimposed on the

prediction errors (Figures 5.4a and 5.5a).
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Model degree d=1 d=2
Input(s) Before MPT | After MPT | Before MPT | After MPT
Uy 23.06% 18.83% 17.65% 19.51%
Us 53.87% 20.63% 17.31% 16.19%
Us 17.35% 21.43% 18.40% 22.82%
[uq us] 38.67% 17.34% 14.50% 16.73%
[ug ug] 16.46% 17.90% 18.18% 19.87%
[ug ug] 15.29% 19.39% 17% 20.82%
[uq ug ug] 17.95% 16.10% 14.91% 16.38%
Model degree d=3 d=14
Input(s) Before MPT ‘ After MPT | Before MPT ‘ After MPT
Uy 17.84% 19.49% 26.92% 19.16%
Uz 15.60% 19.81% 22.10% 29.96%
Us 19.80% 21.43% 31.21% 22.21%
[ ug) 18.70% 18.41% 24.95% 17.75%
[ug ug] 25.95% 19.31% 26.80% 19.07%
[ug us) 15.02% 21.75% 29.43% 20.94%
[u1 ug ug] 13.93% 16% 25.86% 18.40%

Table 5.1: NRMSE values for the best models for each degree of nonlinearity (d) and combi-
nation of input terms to the model. The emphasized values represent the smallest NRMSFE
for each order model.

Table 5.1 shows the normalized root mean squared errors for linear, quadratic, cubic and
quartic polynomials models with one, two and three inputs fitted before and after MPT.
The values in Table 5.1 are normalized root mean squared errors calculated for the mpo on
the entire time period used (D; or D), whereas the values used in cross-validation are mean
squared error values calculated on the estimation and validation data sets (Dig, D1y, Dap,
Dyy) corresponding to each time period. The characteristics of the best model obtained for

each model order for both time periods are summarized in Table 5.2.

Before MPT After MPT
Model type No of tgrms ‘ Input No of tﬁms ‘ Input
Linear 9 [ug us] 22 [uy usg usg]
Quadratic 17 [uq ug] 24 Ug
Cubic 21 [Ul U9 Ug] 20 [Ul (5] Ug}
Quartic 9 Us 11 [uq us]

Table 5.2: Number of terms and inputs used for the best linear, quadratic, cubic and quartic
models before and after MPT.
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The simulation results of the best models for each order are shown for before MPT in

Figure 5.2 and for after MPT in Figure 5.3. It is observed from the NRMSE values in

Table 5.1 that for both time periods the overall best models are the third order ones which

have all three orbital parameters as inputs. The model predicted output § corresponding to

these two models is shown in Figures 5.2¢ and 5.3c. On the plots in Figures 5.2a, 5.2b, 5.2d

and 5.3a, 5.3b, 5.3d it is emphasized where the first, second and fourth order models are

outperformed by the third order models in Figures 5.2¢ and 5.3c, respectively.
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Figure 5.2: Best a. linear, b. quadratic, c. cubic and d. quartic model predicted output (red)
superimposed on the §'%0 time-series (blue) before MPT. The grey areas mark where the
third order model outperforms the first, second and fourth order models.
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Figure 5.3: Best a. linear, b. quadratic, c. cubic and d. quartic model predicted output (red)
superimposed on the 480 time-series (blue) after MPT. The grey areas mark where the
third order model outperforms the first, second and fourth order models.

Figures 5.4a and 5.5a present the cross-validation procedure results as it was explained
above. These figures show the validation error (green) and the estimation error (black). The
point marked with a red star represents the minimum value for the validation error. Before
MPT (Figure 5.4a), for n,, = 10 the minimum estimation error is found for n,, = 11. The
best model before MPT has therefore a total of 21 terms. For the model after MPT, the
graphic shown in Figure 5.5a is for n,, = 9 and the minimum validation error is given by

npr = 11. The best model after MPT has a total of 20 terms.
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Figure 5.4: Before MPT a. cross-validation mse values for noise iteration 4 and n,, = 10
for estimation data set (black) and validation data set (green), b. model with n,,. = 16 and
nno = 5 (red) superimposed on 6*®*Op, (blue), c. spectrum of the model with n,, = 11 and
nno = 10 terms (red) superimposed on the spectrum of §'®Op, (blue) and d. spectrum of
model with n,, = 16 and n,, = 5 (red) superimposed on spectrum of §"*Op, (blue).

The dotted red lines in Figures 5.4a and 5.5a define an arbitrary interval in which the
validation error vary insignificantly. Before MPT the validation error value for the best
model is 0.038 and the arbitrary interval is considered [~ 0.03, ~ 0.05] with the maximum
validation error value 0.16. After MPT the validation error value for the best model is
~ 0.1, the largest validation error value is 1.45 and the arbitrary interval was chosen as
[0.07, 0.2]. These intervals will provide alternative values for n,, and thus alternative model

structures which will retain small error values.
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Figure 5.5: After MPT a. cross-validation mse values for noise iteration 9 and n,, = 9
for estimation data set (black) and validation data set (green), b. final selected model with
32 terms (red) superimposed on §'¥Op, (blue), c. spectrum of the selected model with 20
terms (red) superimposed on the spectrum of §'80p, (blue) and d. spectrum of model with
32 terms (red) superimposed on the spectrum of 6'*0p, (blue).

This study shows that all three orbital parameters (eccentricity, obliquity and longitude
of the perihelion) and a cubic polynomial model structure are needed to best fit the data.
This supports the theory that the climatic response is influenced by the three parameters
simultaneously. This is accepted by most scientists (Pisias and Moore Jr., 1981, Clemens
and Tiedemann, 1997, Muller and MacDonald, 2005) and, although some argue that orbital
parameters may not represent the main drive for climate change (Muller and MacDonald,
1997, Imbrie et al., 1993, Ganopolski and Calov, 2011), it is widely accepted that all three
parameters have a significant influence on the long term climate variations (Crucifix et al.,

2007).

It is important for fitting accuracy to ensure that the model simulations fit the data in
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time domain but also in the frequency domain. This is essential in the studied case when
the main interest is to analyse two specific frequencies in the output spectrum. This means
comparing the spectrum of the mpo with the spectrum of the output signal, the 680 time-
series. Figures 5.4c and 5.5¢ show the spectrum of the output (blue) superimposed on the
spectrum of the mpo (red). It can be seen that for both time periods the spectrum of the
mpo reproduces well the frequency at 0.0244 cycles/kyr corresponding to the 41 kyr period,
but it fails in both cases to reach the peak at the frequency corresponding to the ~ 100 kyr
period.

The analysis done so far proves that the modelling procedure needs to incorporate spec-
trum validation as well. This was done by starting from the cross-validation results for the
third order models with three inputs and selecting models that provide close validation errors
to the model that was firstly selected, shown between the dotted red lines in Figures 5.4a
and 5.5a. For each model structure, the spectrum of the model response is compared with
the spectrum of the §'80 in order to obtain good magnitude match at the frequencies of
interest. This procedure involves cross-validation structure detection, but also provides good
frequency domain fitting of the data spectrum.

The model before MPT obtained using this combined procedure has 16 process terms
and 5 noise terms. The mean squared error value in this case is mse = 0.0159, which is
smaller than the best model obtained by cross-validation alone, which had mse = 0.0239.
The magnitude spectrum difference at the frequency corresponding to the period of ~ 100
kyr improves from 0.0465 to 0.0101, as seen in Figures 5.4c and 5.4d. The mpo for the model
with 21 terms selected through the cross-validation and spectrum fitting combined procedure
is shown in Figure 5.4b.

A similar analysis is done after MPT and presented in Figure 5.5. In this case, the
cross-validation method returns the best model with n,, = 11 and n,, = 9. The magnitude
spectrum comparison in Figure 5.5¢ shows a difference of 0.048 between the §'*0O and mpo at
the frequency corresponding to the ~ 100 kyr period. Using the combined cross-validation
and spectrum comparison procedure, a model with n,, = 25 and n,, = 7 is found to give a
magnitude spectrum difference of 0.0241. This value is half of the one given by the model

obtained using cross-validation alone. The mean squared error value for the model obtain by
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cross-validation alone is mse = 0.0623, and the one obtained using the combined procedure
is mse = 0.0531. As it can be seen from these values and Figures 5.5b, 5.5¢ and 5.5d the
final selected model brings a big improvement in fitting accuracy. The selected model after
MPT has 32 terms.

For both models, before and after MPT, the increase in the magnitude spectrum peak

fitting accuracy is important and at no fitting loss to the time domain signal.

Figure 5.6 shows the two final selected models, with 21 terms before MPT and 32 terms
after MPT, simulated on the corresponding time periods. On the same figure are shown the
estimation and validation errors obtained by using cross-validation. These simulated results

provide us with visual confirmation on how well the models fit the data.
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Figure 5.6: Model predicted output (green) superimposed on 6**O (blue) and the estimation
and prediction errors for the estimation and validation dataset for: a. before MPT, b.
after MPT.

Figure 5.7 shows the simulations of the identified models on the entire studied Pleistocene
time period [1400 — 0] kyr BP and that the models are stable outside the estimation data
range. This analysis shows how well the models are able to predict the validation data.

The normalized root mean squared error when the model before MPT is used to simulate
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on the entire time period is NRMSE;, = 16.05%, and when the model after MPT is
used to simulate on the entire time period is NRMSFE\q,, = 16.95%. The normalized root
mean squared errors in the case of each models for the data that was not used for estimation
or validation is for the model before MPT (the time period considered is [852 — 0] kyr
BP) mseunseeny; = 19.51% and for the model after MPT (the time period considered is
[1400 — 852] kyr BP) mseunseen, = 27.44%.
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Figure 5.7: Model predicted output (green) superimposed on §'¥0 (blue) for the time period
[1400 — 0] kyr BP using the estimated models: a. before MPT and b. after MPT.

This analysis confirms that the mpo remains stable on the entire studied Pleistocene time
period. However, Figure 5.7 and the NRMSFEs show that the models fitted for each time
period predict better on the data set used for estimation than they do on the entire time
period. This shows that two different models are needed for each time period. The two
different models facilitate the study of the difference observed in the simulations in Figure
5.7 and what triggers it.

Figure 5.8 shows the residuals calculated as é(t) = y(t) — §(t), where y(t) is the model
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predicted output, calculated as in equation (3.12), for the entire studied Pleistocene time
period [1400 — 0] kyr BP. The horizontal green dotted lines represent the points of the
minimum and maximum residual values for the data set used in the estimation procedure.
In both cases, the residuals for the unseen data are, as expected, larger in value as the
ones calculated on the data used for estimation. The difference is more noticeable for the

simulation using the model before MPT.
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Figure 5.8: Residuals for the entire studied Pleistocene time period [1400 — 0] kyr BP using
the estimated model a. before MPT and b. after MPT. The dotted red lines represent
the MPT point and the dotted green lines represent the minimum and maximum residual
values for the time period used for the estimation of each model.

The simulation results and analysis performed in this chapter confirm that there was
a dramatic change to the nonlinear dynamic relationship between orbital parameters and

climate proxies during MPT. This is supported by the following:

e Two different models were fitted for each period and, although both models gave stable

simulations they did not perform as well on the entire Pleistocene time period.
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e The models reproduce the dramatic frequency shift, by accurately fitting the data

spectrum.

e Both models require all three inputs to give accurate results, but the model before

MPT has 21 terms, whereas the model after MPT has 32 terms.

e The maximum lags required for each model terms were N, =4, [N,, Ny, N,,| =

before MPT and N, =4, [Ny, Ny, Ny =

Tables 5.3 and 5.4 give the coefficients and terms for the selected models for the two studied

time periods.

[7 8 8] after MPT.

‘ Before MPT
Count Coefficient Coefficient symbol Term

1 0.001795 0,(1) y(t — Dua(t — 8)?
2 —0.000125 0,(2) us(t —1)°
3 0.000117 05(3) ug(t — Dug(t — 3)ua(t — 8)
4 0.000130 0,(4) ul(t — 8)ug(t — 1us(t — 4)
5 —0.000086 05(5) uy(t — 6)ug(t — Dug(t — 4)
6 0.000233 0,(6) y(t —2)%us(t — 4)
7 0.000124 0,(7) y(t — 3)ua(t — 4)us(t — 4)
8 0.000000025 0,(8) ug(t — 2)ug(t — 3)ug(t — 5)
9 —0.000327 0,(9) y(t —4)%us(t —2)
10 —0.000694 0,(10) uy(t — Dug(t — 3)ug(t — 5)
11 —0.009606 0,(11) y(t — Duy(t — Lus(t — 6)
12 —0.000000025 0,(12) uz(t — 2)%us(t — 6)
18 0.000000233 0,(13) ug(t — Dug(t — 2)us(t — 6)
14 0.001595 0,(14) y(t — Dy(t — 3)ug(t —4)
15 —0.0000446 0,(15) y(t — Dug(t — )ug(t — 4)
16 0.0000102 0,(16) y(t — Dug(t — 3)us(t — 4)
17 —0.022436 0,(17) us(t — 5)e(t — 3)*
18 0.001097 0,(18) y(t — Duz(t — 5)e(t — 4)
19 0.009699 0,(19) us(t — 2)e(t — 3)*
20 0.000023 Qb(20) ug(t — Dug(t — 6)e(t — 3)
21 —0.000023 0,(21) ug(t — 2)ug(t — 6)e(t — 3)

Table 5.3: Model coefficients and terms for the time period before MPT.
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| After MPT
Count Coefficient Coefficient symbol Term

1 0.001384 0.(1) y(t — 1ug(t — 8)?
2 0.023525 0.(2) y(t — 2)us(t — Tus(t — 1)
3 —0.000087 0.(3) us(t —1)°
4 0.0000067 0,(4) y(t — 2)us(t — 3)us(t — 8)
5 0.020046 0.(5) y(t —1)%y(t — 3)
6 0.000445 0,(6) y(t — 2)us(t — 3)?
7 0.002059 0.(7) ur(t — Tua(t — Dug(t — 1)
8 —0.411117 0,(8) y(t —2)%y(t — 3)
9 —0.005230 0.(9) y(t — 2)uz(t — 2)us(t — 7)
10 —0.010973 0,(10) up (t — Duy(t — 8)?
11 0.369465 0,(11) y(t — Dyt — duy(t — 2)
12 —0.020101 0,(12) y(t — Dug(t — Dus(t — 7)
13 —0.0000000144 0,(13) us(t — 1)%usz(t — 8)
14 0.0000000216 0,(14) ug(t — Dug(t — 2)ug(t — 4)
15 —0.000164 0,(15) ur(t — Dug(t — 2)ug(t — 4)
16 —0.000101 0,(16) uy(t — Dug(t — 4)ug(t —7)
17 0.001057 0,(17) ur(t — 3)ua(t — Tug(t — 4)
18 —0.053157 0,(18) y(t — 2)%us(t — 3
19 —0.027060 0,(19) y(t — 2)y(t — 3)ua(t — 5)
20 —0.000164 6,(20) us(t — 8)°
21 0.0000891 0,(21) ur(t — 2)ug(t — 2)ug(t — 3)
22 0.000133 0,(22) us(t — 3)us(t — 8)?
23 —0.0000063 0,(23) y(t — Duz(t — 3)uz(t — 8)
24 —0.0000966 0,(24) y(t — 2)us(t — 5)us(t — 8)
25 0.0000734 0,(25) y(t — Dug(t — 3)usz(t — 8)
26 0.0000100 0,(26) ug(t — H)ug(t — 6)e(t — 1)
27 —513.1434 0,(27) ur(t — 2)ug(t — H)e(t —2)
28 —0.040774 0,(28) ur(t — Dug(t — 2)e(t — 1)
29 0.1681874 0,(29) ug(t — 7)e(t — 4)*
30 —114.6774 6,(30) up(t — 4)e(t — 4)*
31 0.0591374 0,(31) ur(t — Dug(t — H)e(t —2)
32 13.417572 0.(32) e(t —1)%e(t — 3)

Table 5.4: Model coeflicients and terms for the time period after MPT.

5.4 Model Validation

This section presents the model validation results for the identified models, based on tech-

niques presented in Chapter 3 Section 3.4.
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5.4.1 Coherence Analysis

The coherence function results were obtained using 30-points Hanning windows with 20 points
overlap. For the FFT the number of data points used were 142 before MPT and 214 after
MPT.

The results in Figure 5.9 show that the 680 time-series and mpo correspond well to one
another at the frequencies of interest, as the values in Table 5.5 also prove. As explained in
Chapter 3 Section 3.4, the closer the coherence function values are to 1 the closer the predicted
output is to the real output. For the first frequency of interest (sometimes associated to
the ~ 100 kyr eccentricity period (Berger, 1988)) Figure 5.9 and Table 5.5 show that the
coherence between the two signals is above 90%, which is a highly satisfying fit. For the
frequency associated to the 41 kyr obliquity period, the fit of ~ 80% is still a good fit for the

complex and highly nonlinear system under investigation.
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Figure 5.9: Coherence analysis between the model predicted output and the §'80 time-series
a. before MPT,b. after MPT.

Coherence value
f &~ 1/100 cycles/kyr ‘ f =1/41cycles/kyr
Before MPT 99.35% 79.28%
After MPT 91.10% 84.36%

Time period

Table 5.5: Coherence values before and after MPT at the two frequencies of interest.
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5.4.2 Correlation Tests
The estimated models are also validated using the MIMO correlation tests developed using
the SISO correlation tests detailed in Chapter 3 Section 3.4. The following correlation tests

were computed for the fitted models having all three orbital parameters as inputs:

D p2(7)
Oy, p(T) Dy, () Dy, p(T)
Py g2 (7) Py, p2(T) g2 (T)
(I)UfE(T) @UgE(T) ‘I’UgE(T)
Pp2p2 (1) Pyzpe (1) (I)U32E2 (1)
Puope(T)  Puue(t)  Puue(T)

(7)) Puip2(T)  Puyuse(T)
where E =& — ¢ and E? = £2(t) — 2, U; = w;(t) — w5, U? = u2(t) — u2, with i = 1,2, 3.
Figures 5.10 and 5.11 show the results of the correlation functions for lag 7 ranging
from —5 to 5. All correlation tests, apart from ®p,p2(7) and ®yzg2(7) before MPT and
O, 52(7) after MPT, are with the 95% confidence intervals defined by +1.96v/N, where

N is the total number of data points. The correlation tests demonstrate that the residual

error sequence is unpredictable from all linear and nonlinear combinations of past inputs and

outputs (Billings and Zhu, 1994).
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Figure 5.10: MIMO correlation tests for the model before MPT: a. ®p2(7), b. Oy, g(7),
c. Pp,p(7), d. Pyyp(7), e Pyyp2(7), £ Puyp2(7), 8 Puype(7), ho Pp2p(7), i Pyzp(T), ).
Puzp(T), ke Puap(7), L Puzpe(7), m. Pyzpe(7), 1. Puynp(7), 00 Puyye(7), P Puyuyr(7),
q- Py (1), t Puyusp2(T), 8. Puyusm2(T).

107



5.4. Model Validation

______ (\F-] e a—
w w
S of—— | R
e __ __] e |
-0.2 -0.2
0 5 -5 0 5
O, : -
0.2 0.2
N ——— — N —— —
9_0'2-______ e-o.z ______
-5 0 5 -5 0 5
® : :
0.2 0.2
N"u ______ NIIHN ______
= o____\ 5 o}—
e | ] e | __ _ ]
-0.2 " -0.2
0 5 -5 0 5
T T
® o2
a N
w w
. 0/ o O/\
) )
© b= ———1 © p2E————1
-5 0 5 -5 0 5
T T
wo02[C —————] w02 ]
I S
N e 5 b —
e ————- e |-——4
-0.2 -0.2 :
0 5 -5 0 5
T T
@N 0.2 o« 0.2
W e e w — — — |
o (2]
3 o_/ = o\/\j\
& &
Y| E—— -] E—
0.2 o 5 -5 0 5
T T
o 0.2
I.Hm ______
! o\-/\/—-/\
: ——————
© 0.2
-5 0 5
T

Figure 5.11: MIMO correlation tests for the model after MPT: a. ®g:(7), b. oy, p(7),
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5.5 Discussion

In this chapter the NARMAX methodology introduced in Chapter 3 was applied to identify
models relating the three orbital parameters eccentricity, obliquity and longitude of perihelion
to the oxygen isotope §'¥0 time-series from the Pacific Site 806B, which is a proxy for Earth’s
insolation. A search over the space of polynomial model structures of different orders, with
one, two and three inputs revealed that cubic models with three inputs performed best both
before and after MPT.

This chapter demonstrated for the first time that there is a direct causal link between
the orbital forcing and oxygen isotope time-series. In contrast to previous attempts (Berger
and Loutre, 1992, Imbrie et al., 1992, Rial and Anaclerio, 2000), the model derived in this
chapter is the first model that can predict with such level of accuracy the evolution of the
oxygen isotope time-series and that can reproduce the climate shift observed at the MPT
point using only orbital parameters as inputs. Whilst there are clearly other factors that
influence the response, the accuracy of the model predictions suggest that orbital parameters
were by far the biggest drivers of the climate over the period covered by the studied data set.

The results of the study have confirmed that the underlying mechanism by which the
orbital parameters affect the climate is nonlinear. This study also confirms that all three
orbital parameters are needed to adequately model the data. Furthermore, simulations of
the models over the entire analyzed period (before and after MPT) show clearly that
the MPT represents a sudden change of nonlinear behaviour as the prediction of both mod-
els deteriorates when the models are simulated on the time period that was not used for
estimation.

The models derived here will be subjected to further analysis in subsequent chapters in
order to characterize and contrast the nonlinear interactions between orbital parameters and
the oxygen isotope time-series before and after MPT.

From the results presented in this section the above methodology proves to be very suited
for modelling and prediction of this type of time-series. The models obtained in this chapter
can be further used for frequency domain study. Although the models reproduce very well

the time-domain signals, they do not offer great explanation for the changes occurred at
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the MPT. Frequency domain mapping and analysis of these will offer a totally different

perspective on the differences between the two estimated models.
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Chapter 6

Higher-Order Frequency Domain
Analysis of the Mid-Pleistocene
Transition and the “100 kyr Problem”

6.1 Introduction

Frequency domain analysis provides an alternative analysis approach to the time domain
methods. This chapter deals with the implementation and analysis of the GFRFs and of the
OFRs, derived for the NARMAX models described in Chapter 5, which were estimated for
each of the two time periods studied, namely before and after MPT.

These frequency domain tools can help to investigate how energy is transferred between
certain frequency bands of the inputs to frequency bands of in the output. The analysis
explains the nonlinear mechanisms that gave rise to all frequencies in the output spectrum.
Of particular interest is the frequency ~ 1/100 cycles/kyr associated with the so called "100
kyr Problem" described in Chapter 2.

Section 6.2 of this chapter starts with the model transformations which are required for the
GFRF implementation. These involve converting the model into an equivalent representation
that assumes zero mean inputs and has no internal constant. This section also deals with
the computation of the GFRFs and OFRs and the analytical expressions derived using the
theoretical concepts defined in Chapter 4. The GFRFs (Peyton-Jones and Billings, 1989,
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Billings and Peyton Jones, 1990) are computed using the recursive probing algorithm (Li
and Billings, 2005). The higher order OFRs (Output Frequency Responses) correspond
to individual Volterra kernels of different orders which show explicitly the contributions of
different inputs and nonlinear mechanisms to the overall frequency content of the output
(Lang and Billings, 2005, Peng et al., 2011).

Section 6.3 presents a spectral analysis and comparison of the inputs, outputs and mpos
for the two time periods. The GFRFs and OFRs are used to analyse and compare the
properties of the two models obtained for the two time periods. A detailed analysis of the
OFRs which contribute significantly to the ~ 1/100 cycles/kyr frequency is carried out. The

analysis provides a rigorous characterization of the magnitude changes observed after MPT.

6.2 Derivation of the Generalized Frequency Response

Functions for the multi-input NARX model

6.2.1 Model transformations

The two models estimated using the NARMAX methodology in Chapter 5 Section 3.4 for
each of the time periods before and after MPT, were transformed using the two proce-
dures detailed in Chapter 4 sub-section 4.3.7. The NARX model transformation procedures
firstly involve writing the model as an equivalent one that works with zero mean inputs, and
secondly removing the model’s internal constant. The internal constants for each time pe-
riod, corresponding to the fixed points of the models, are calculated as: yo,,;,,.rpr = 0.9533

and yo = 0.9404. It can be seen that both models operate within the neighborhoods

o fter MPT
of the same stable equilibrium point.

The model estimated and validated in Chapter 5 Section 3.4 for before MPT (Table
5.2), has 16 process terms and 5 noise terms and is a cubic model and will be denoted model
B. The best model for after MPT is a model of third order nonlinearity degree (Table 5.3)
with 25 pure process terms and 7 noise terms and will be denoted model A. After applying

the model transformations, models that have equivalent response but different structure as

the original ones were obtained. These have 73 terms in the case of model B and 95 terms
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for model A.

The models with zero mean inputs and without the internal constant, obtained by trans-
forming the estimated models before and after MPT are listed in Tables A.1 and A.2 in
Appendix A.

The procedures used to convert the model in the equivalent representations is illustrated
on the 10 term of the model B, Table A.2 in Appendix A, which is 0,(10)u; (¢t — 1)ug(t —
3)us(t — 5), where 6,(10) is the model coefficient, u;(t) denotes eccentricity, us(t) obliquity
and u3(t) longitude of perihelion.

In order to have a model with zero mean inputs the following substitution is made:

where @; represents the mean value of u;(t), which for a data-set of N points is given by

_ N
Ui = % ijl uij(1).

When processing this term using the variable change w;(t) = u;(t) +w;, with @y = 0.0331,
Uy = 23.3348 and uz = 183.1418, the resulting term becomes:

0, (10)Ty (£ — 1)Ta(t — 3)ts(t — 5) + 0,(10)u T (¢ — 3)&s(t — 5) + 0,(10)w 0, (¢ — 1)us(t — 5)
+0,(10)uzu; (t — 1)ua(t — 3) + 0,(10)uruzus(t — 5) + 0,(10)uruzus(t — 3)

+6,(10)uguzu (t — 1) + 6,(10)uruguz
(6.1)

6.2.2 Computation of the Generalized Frequency Response Func-

tions

The NARMAX model is mapped into the frequency domain by using the probing algorithm
to compute the Generalized Frequency Response Functions (Peyton-Jones and Billings, 1989,
Billings and Peyton Jones, 1990).

The output of a model with three inputs that includes kernels up to order of nonlinearity

three can be written, as detailed in Chapter 4 Section 4.2, as:
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yt) = Z/ h“ (11)u;(t — m)dm + Z/ / 71,72 Yui(t — 71)u(t — 72)dr, dro
+ Z Z / / ij 7—177—2 +h (7—177—2)]ui(t_7—1)uj(t—Tg)dTl,dTg
i=1 j=1+1" "
+ Z Z / / / 2hu] 7'1,7'2,7'5)+2h§ﬂ(7'177'2,’7'5)+2hj“(7'177'277'3)}ui(t—7'1)
i=1 j=i+1
ui(t — m2)u;(t — 73)dr1, d72, dT3
+ / / / [thj)(’ﬁ, T2, ’7'3) + 2h§§])(7'1, T2, 7'3) + 2h§§2(7’1, T2, ’7'3)]
— 7)u;(t — Tg)uj(t — 13)dT1, dT2, dT3]
+ / / / Zzzhwk Ty, Ty, T3) Uy (t — 71)us(t — T2)us(t — 73)d7y, dro, dT3

i=1 j=1k=1
j#i kF#d.i

Given that the GFRF definition is:

H™ (Jwi,y ..y jwn) = / . / h(”)(n, . ,Tn)efj(wm*"‘w”")dﬁ ... dTy,

and that for any NARX model with one output and three inputs, the GFRFs have the

(m)
Hy

general form: N with n being the order of the computed
us

. .Nuy,Nu, ... Ny N, - ..

ny n3
GFRF and ny + n» + n3 = n, the GFRFs to be computed are:
1. First order GFRFs: Hi (jw:), Hj (jwi) and H3 (jw:).
2. Second order GFRFs:

H}(jwi, jws)

2

(
H3 (juwr, jwa)
5(

T

jwlajWQ)

H]?2avg (]wl ? ]WQ) =
H123Mg (jw1, jwa) =

H223,wg (jwhij) =

%[H%Z(jwla.ju&) + H221(jw27.jw1)]
s His(jwr, jws) + H3, (jwa, jon )]
%[HQQS(jwlajWQ) + H%Q(j(*}?ajwl)]
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3. Third order GFRFs:
H}(jwr, jwa, jws)
H3(juw, jwa, jws)
H3(jwr, jwa, jws)

HllQavg (jw1, jwa, jws) = %[2H1212(jwhjw2;jws) + 2H1221(jw1,ij,jw3) + 2H211(]w1,jw2,jw3
H;} 122409 (jwi, jwa, jws) = %[2H1222<jwlvjw27jw3) + 2H3, (jwr, jws, jws) + 2H3,, (jwi, jws, jws
Husavg (Jwr, Jws, jws) = %[2H1213(jw17jw2,jw3) + 2H1231(jw1,jW2,jw3) + 2H311(jw1,jw2,jw3
H133avg(]‘”17jw27jwd) = %[2H1233(jw1,jw2,jw3) + 2H§13(jw1,jw2,jw5) + 2H331(jw1,jw2,jw3
H. 25avg(]w17jw27jw3) = %[2H2223(jw17jw2,jw3) + 2H3 (jwr, jwa, jws) + 2Hz (jwr, jws, jws

233avg(JW1ajw2ajW3) = é[QH 53 (Jwi, Jwa, jws) + 2H§23(jw1,jw2,jW3) + 2H332(jw1,]w2,]w3

H?23avg<jwlajw2ajw3) = %[Hfzs(jwlajwmjw?a) + Hig(jwr, jwa, jws) + His(jwr, jws, jws)

+Hy, (jwn, jwa, jws) 4 Hipo(jwr, jwa, jws) + Hiy (jwr, jwa, jws)]

For the estimated NARX models, the following transfer functions were computed: first order
(H{(jw), H}(jw), H(jw)), second order self-kernel ( H?(jwy, jws), H2 (jwi, jwa), H3(jwi, jws)),
second order cross-kernel (HZ,(jwy, jws), His(jwi, jws), Hi(jwi, jws)) and third order self-
kernel ones
(H} (jw, jwa, jws), Hs(jwr, jwa, jws), H3(jwi, jws, jws)). In addition, only for model B the
third order cross-kernel functions (H? o (jw1, jwa, jws), Hisy(jwi, jwe, jws), Hiis(jwr, jws, jws),
Higs(jwi, jwa, jws),
H3,a(jwr, jwa, jws), Hass(jwi, jwa, jws), Hiys(jwr, jws, jws)) were also computed, for reasons
presented in the analysis section.

The following cases describe the inputs used for the probing algorithm and the resulting

GFRFS for different values of n < 3 and 30_ nj, = n:

e Setting n = 1, the first order transfer functions are computed by defining the inputs as
single tone ones. By setting each of the inputs at a time to ux(t) = /" and the rest
to zero, as shown in Table 6.1, the first order transfer functions H} (jw;) are calculated

by expressing the output of the system as:

y(t) = Hy(jwi)e™"!
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H{(jw,) | e?*rt 0 0
Hy(jwy) | 0 | et | 0
H; (jw:) 0 0 elwit

Table 6.1: Single-tone inputs used to compute the first order GFRFs H} (jw;), k = 1,2, 3.

By substituting the equations for the output and of each of the inputs at a time in the
NARX model, the expressions for the first order transfer functions, H{(jw;), Ha(jw;) and
H;(jw;) are obtained.

The resulting symbolical expressions for the first order GFRFs for model B (denoted by

a subscript letter B) are:

2.9]le 81 1 1 e~ lw1 _ 4 368w

0 (jw,) = — A A . A
18J91) = 508 2m — 0,680 71 — 0.25¢ % 4 0080w 11

(0.19e79 — 0.06e=4"1 — 0.06e=%"1 + 0.02~ 4" 4+ 0.008¢ %)

Hl . — _ - - o :
25(jw1) (0.08e=2w1 — (0.68e=7w1 — 0.25¢=37w1 4 0.08¢~4w1 4 1)

0.0008¢737%1 4+ (0.0005e %1 + 0.0003e %1 4 0.0003¢ %1 — 0.0001e~2/*1 — 0.00008¢ 471

1oy
Hyp(jen) = 0.08¢271 — 0.68¢—7"1 — 0.25¢~31 + 0.08e~ 4" + 1
The analytical expressions for the first order GFRFs for model A (denoted by a subscript

letter A) are:

4.69e~ W1 4 4.46e737w — 11.23e7 MW 324 HM

HL, (jwy) = . 4 . :
1al09) = R 3o 0786 — 02505 4 0.009¢- 5% F 1.0

0.006e 37wt — 0.12e~ 71 + 0.007e "1 4 (0.133¢ 77wt — 0.115e~ 2% 4 (0.197¢ 81

o (i) = — . . . 4
24(j1) 0.48¢-27w1 — 0.79¢—3%1 — 0.25¢-3"1 + 0.009¢— 41 + 1
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0.000017e~ %1 + 0.00036e~%7** + 0.00046e 7"
0.48¢=2/w1 — ().78¢—7wr — (.25e 311 4 (0.009e 41 4 1
0.00034e~2"1 4 0.00008¢ 471 — (0.00003¢ 871
0.48e=2/w1 — (.78¢7w1 — 0.25e=37w1 4 0.009e~4w1 + 1

H?}A(jwl)

e Setting n = 2 and n, = n provides the second order self-kernel transfer functions
H?(jwi,jws). These are calculated by defining each input at a time as a two-tone
input as ug(t) = /1 + /2! and setting the rest of the inputs to zero, as in Table 6.2.

The output is written as:

y(t) = H,i(jwl)ejwlt + H,i(ng)ejwzt + 2!H,f(jw1,jw2)ej(““+”2)t

| GFRF | w() [ w®) | w() |
H(jwy, jun) | ed@rte2t 0 0
H%(jwl,ng) 0 ed(witwa)t 0
H3(jwr, jws) 0 0 oI Fw)E

Table 6.2: Two-tone inputs used to compute the second order self-kernel GFRFs H?(jwy, jws)
,k=1,2,3.

By substituting y(¢) and ux(t) into the NARX model, the expressions for the second
order self-kernel functions, H?(jws, jws), Ha(jwr, jws) and Hz(jwi, jws), are obtained. The
higher-order frequency response functions expressions for both models are listed in Appendix
C. Direct interpretation of these functions is difficult and the relationship between the input

and output spectra can be fully characterized by computing the OFRs.

e Setting n = 2, with n, = 1 and n; = 1, the second order cross-kernel averaged transfer
functions H7(jwy, jws) are calculated. This is done by probing the NARX model with
two single-tone inputs, uy(t) = e/“1* and u;(t) = /2!, at a time and setting the rest of

the inputs to zero, as in Table 6.3. In this case the output is written as:

(O) = HE(Gen)e?" + H] (o) + 2LHE (o, on) 2
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| GFRF [ ui(t) | ua(t) [ us(t) |

H122 (jwl) edwit [ pjwat 0
HZ(jw) | et 0 ejwat
H22 (jw1) 0 elwit | pjwat

Table 6.3: Single-tone inputs used to compute the second order cross-kernels HZ (jwi, jws),
k,l=1,2,3 and k # .

By substituting the output and inputs expression into the NARX models the second
order cross-kernel averaged transfer functions, H%(jwi, jws), Hi(jwr, jwa), Has(jwi, jws)

are obtained.

e Setting n = 3 and n; = n, the third order self-kernel transfer functions H3 (jwy, jws, jws)
are calculated. This is done by defining each input as a three-tone input as wu(t) =

elrt ezt 1 eiwst and setting the rest to zero, as in Table 6.4.

[ GFRF [ w() | w® | w) |
Hf(jwhjw%j(,%) ed(Witwatws)t 0 0
H3(jwy, jwa, jws) 0 eI @i twatws)t 0
Hg(jwla Jwa, ]WS) 0 0 eJ(Witwetws)t

Table 6.4: Three-tone inputs used to compute the third order self-kernel GFRFs
ng(jwlajw%jwi%)v k = 17273'

In this case the output is written as:
y(t) = Hy(jw)e’" + Hy(jwz) e + Hy (jwy)e’ + 2L} (jeon, juog)ed @)
T+ AHR (o, o) U (o, juog)e 4 B (o, o, Juog)el et

By substituting the output and input expressions into the NARX model, the third order self-

kernel transforms H3 (jwy, jws, jws), Hi(jwi, jws, jws) and H3(jwy, jws, jws) are obtained.
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e Setting n = 3 and ny = 2 and n; = 1 the third order cross-kernel averaged transfer
functions Hp,,(jwi, jws, jws) are calculated. This is done by using one two-tone input
ug(t) = e/t + €92t and one single-tone input u;(t) = e/*3* and setting all the other

inputs to zero, as in Table 6.5.

| GFRF [ w@) | w®) | uws®) |
H? o (jwr, jwa, jws) | el@itwe)t st 0
Hy 2(]W1,jw2,jw3) elwit od (w2 Fws)t 0
H} 5 (jwr, jws, jws) | el 0 oJwst
fg(]whjw%ng) elwrt 0 odWatws)t
3(Jw1,jwz,jw3) 0 T [ et
(]wlvjw27jw3) 0 eJwit ej(w2+w3)t

Table 6.5: Single- and two-tone inputs used to compute the third order cross-kernel GFRFs
HE(jwr, jwa, jws), k0l =1,2,3 and k # 1.

In this case the output is written as

y(t) = Hi(jon)e’" + Hy(jwn)e’= + Hif (jwy)e’" + 2UH (jwr, jug)e? 1"

+ Q!H,fl(jwl,ng)ej(‘“1+“3)t + 2!H§l(jw2,jw3)ej(“2+w3)t + 3!H,§kl(jw1,ng,ng)ej(“l+“2+w3)t

The transfer functions computed in this case are H3j,(jwy, jwa, jws), Hiy(jwi, jwa, jws),
Hys(jwn, jws, jws), Hisz(jwn, jws, jws), Haps(jwr, jwa, jws), Higs(jwr, jws, jws).
e Setting n = 3 and n; = 1, no = 1 and n3 = 1 the third order cross-kernel averaged

transfer function, H7ys(jwy, jws, jws), is calculated by probing the NARX model with

three single-tone inputs: u;(t) = /', uy(t) = /2" and ug(t) = e/«

In this case the output is written as

y(t) = Hi(jw))e'™t + Hi(jwo)e™? + Hi(jws)e?st + 20HZ, (jwy, juwg)ed@itw2)t

+ 2!‘I¥1213(.7.(“)17j("}3)ej((‘dl—~_wz 2'H23(]w27jw3)€j(w2+w3)t 3!Hfgg(j&)1,jbd2,j&)3)
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6.2.3 Computation of the Output Frequency Responses

This section deals with the evaluation and analysis of the Output Frequency Responses. The
OFRs are one-dimensional complex functions of frequency, which makes them easily analysed
and plotted. The OFRs are easier to analyse and interpret when compared to the multi-
dimensional GFRFs. As it was shown in Section 6.2.2, the second or higher order GFRFs are
difficult to interpret and analyse. The OFRs, due to their one-dimensional property, facilitate
the analysis of the contributions of different input combinations to the output frequency. The
OFRs are computed based on the GFRFs H™ (jw; ... jw,) and the given frequency spectra
Ui(jw) corresponding to the inputs w;(t) with i = 1,2, 3.

The output spectrum for a nonlinear system is written as:

Y (jw) = Y'(jw) + Y?(jw) + Y3 (jw) + higher order (6.2)

Each OFR Y™ (jw) can be written as (Lang and Billings, 1997):

Y (jw) = on—1 Z Z H(P1 =N1,.; Pr= Nm)(le - Jwn) (6.3)
N1+ 4Np=n w1+ twp=w
m No+-++N;

H H ) Uj (jwi)dTne,

j=1i=No+-+N;_1+1

Writing equation (6.3) for n = 1 yields the first order OFRs sum as:

Yi(j Z H{ (jw)U;(jw1) Z Hy (jw:)Us(jw1) Z Hj (jw1)Us(jwr) (6.4)

w1 =w w1 =w w1 =w

From (6.4) it follows that:

Y'(jw) = Yy (jw) + Y5 (jw) + Y5 (jw)

When substituting n = 2 in equation (6.3), the second order OFRs sum is computed
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, 1 1
V(jw) = B Z Hi (jwr, jw2) Ui (jwi)Us (jws) +3 Z H3 (jwr, jw2)Us(jwi)Us(jws)
w1 two=w w1 twor=w
1 1
T3 Z H (jwr, jw2)Us(jwr)Us(jws) T3 Z Hiy(jer, jwz)Un (e Us (£6:)
w1 twa=w w1 twr=w
1 1
+ ) Z Hs(jwr, jw2)Us (jer)Us(jwz) 5 Z Hyy(jwr, jwa)Us(jun) Us (jws)

w1 twa=w w1 twa=w

Equation (6.5) is then written as:

V2 (jw) = Y7 (jw) + Y3 (jw) + Y (jw) + Y3 (jw) + Y3 (jw) + Y (jw)

The third order OFRs sum is obtained by substituting n = 3 in equation (6.3), as
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. 1
Yijw) = 1 > Hi(jwr, jwa, jws)Ur(jwn) Ui (jws) Us (jws)
w1tw2twz=w
1 . . | .
T Z Hy (jwy, jwa, jws)Us(jwr)Us(jws)Ua(jws)
w1 twetwz=w
1
T Z H3 (juwr, jw, jws)Us(jwr)Us (jwz) Us(jes)
w1 twetwz=w
1 .
+ 7 > Hip(jwr, jws, jws) Ui (jwn) Ui (jws) Us(jes)
w1 tw2twz=w
1 3 : . .
T Z Hiyy (jwr, jwa, jws)Un (jw1)Us(jwa) Uz (jws)
w1 twetwz=w
1
T Z Hiys(jwn, jwa, jws)Us (jwn)Us (jwa)Us (jws)
w1 twetwz=w
1 .
+ 2 Z HYgy(jwr, jwa, jws)Us (jwn)Us (jws) Us(jws)
w1 w2 twz=w
1 3 : . .
T Z Hos(jwr, jwa, jws)Us(jw1)Us(jwa)Us(jws)
w1 twetwz=w
1
+ 7 > Hig(jwn, jws, jws)Us(jwr)Us(jwa) Us(jews)
w1tw2twz=w
1 3 . : . .
+ D Higl(jwr, jws, jws)Us (jwn)Us(jws)Us(jes) (6.6)

w1tw2twz=w

Equation (6.6) can be written in compact form as:

YVijw) = Y{(jw)+ Y3 (jw) + Y5 (jw) + Vi, (jw) + Yib (jw) + Yiis(jw) + Yids(jw)

+ Yhs(jw) + Yais(jw) + Yids(jw)

6.3 Analysis of the GFRF and OFR Results

In this section the GFRFs expressions derived in Section 6.2.2 are used to plot the functions
response. This is useful in order to generally compare the results of the GFRFs for the two

time periods. Also, the planes f; + fo = f, where f is in turns the frequency corresponding
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to the period of interest ~ 100 and 41 kyr, are extracted. This is presented in order to see
the magnitude spectrum and phase functions that can contribute to the output spectrum at
the frequency f.

The OFR results analysis can tell which of the individual OFRs contribute significantly
to the output spectrum. By knowing this it is then possible to know if a certain output
frequency is a result of amplifying or dampening one or more input frequencies through the
first order OFRs or if energy was transferred between frequency bands through the higher
order OFRs.

6.3.1 Spectral Analysis of the Data

Many authors (Rial and Anaclerio, 2000, Lisiecki, 2010, Berger and Loutre, 1997a, Imbrie
et al., 1993, Raymo, 1997) have explained the MPT dominant period shift from 41 kyr before
MPT to ~ 100 kyr after MPT and also the appearance of the ~ 100 kyr period after
MPT by coupling between frequencies associated to orbital parameters and energy transfer
from some input frequency bands to other output frequency bands. It is therefore necessary
for the analysis performed on the GFRFs and OFRs results that the input and output dataset
spectrum be detailed first.

In order to compute and analyse the spectra of the input and output dataset, it is nec-
essary to firstly define the frequency range used to compute the frequency response. For the
time period before MPT, a 142 points FF'T was computed to evaluate the input and output
spectrum. This gives the normalized frequency interval wg and a frequency sampling step of
0 = 0.0442. Given that fp = (g—;)wlg, with fs = 0.25 cycles/kyr, the corresponding actual

frequency range is

B =1-0.1232, 0.1232] cycles/kyr

In the case of the dataset for the time period after MPT, a 214 points FFT was computed
for the available data. The frequency sampling step for the normalized frequency interval w4
was 0 = 0.0294. Following the same procedure as before, the corresponding actual frequency

range is:
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fa =[-0.1238, 0.1238] cycles/kyr
For clarity, in this study, when referring to particular frequencies of interest the following
notation is used:

fr= (6.7)

1
T
where T is the period in kyr.

For example, for the period 95 kyr the corresponding frequency is 0.0105 cycles/kyr and
the frequency notation will be fos.

Figure 6.1 shows the magnitude spectrum of the three inputs (eccentricity, obliquity and
longitude of perihelion) for each of the two studied time periods. For the input eccentricity
(u1) in Figures 6.1a and 6.1b, it can be seen that before MPT the dominant frequency is
fos, and the corresponding magnitude value of 0.0069. In the eccentricity spectrum after
MPT there is also a significant peak located at fg;, but the magnitude value is 0.0038, which
is almost half of the corresponding one before MPT. Two other peaks with high magnitude
values are found in the spectrum after MPT at the frequencies: fi25 and the magnitude
value of 0.0056 and fi22 and the magnitude value of 0.0036.

Figures 6.1c and 6.1d show the spectrum of the input obliquity (us) before and after
MPT, respectively. From these plots it can clearly be seen that the spectrum of the signal
does not change between the two time periods. The main peak in both signals is at f;; and
the magnitude value is 0.32 for before MPT and 0.38 for after MPT.

The spectra of the longitude of perihelion (us) before and after MPT, illustrated in
Figures 6.1e and 6.1f, show that the main peaks of the spectrum for both time periods are
around the frequencies fo3 and fi9. The magnitude value corresponding to the frequency
~ fo3 is 33.61 before MPT and 33.7 after MPT. It can be observed that the magnitude
value at this frequency does not change during and after the MPT. The magnitude values
corresponding to ~ figis 31.51 before MPT and 22.31 after MPT, which shows a decrease
in the magnitude value this frequency. The magnitude spectrum after MPT also shows a

third high peak at t fi2, which has the respective magnitude value of 17.65.
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Figure 6.1: Spectrum of the orbital parameters: a., b. eccentricity, c., d. obliquity, e., f.
longitude of perihelion for the time period: a., c., e. before MPT and b., d., f. after

MPT.

It can be seen from Figure 6.1 that the energy of these signals is concentrated in the same
frequency bands for both time periods, which for eccentricity is [fi22, fos], for obliquity the

dominant frequency is fi; and for longitude of perihelion the interval is [fas, fio].
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Figure 6.2: Spectrum of the 'O (blue) and mpo (green) a. before MPT (using 71 points
to compute the positive FFT) and b. after MPT (using 107 points to compute the positive
FFT).

Figure 6.2 shows for each of the time periods the magnitude spectrum of the oxygen
isotope ratios data 0'%0, denoted by Z(jw) , superimposed on the spectrum of the model
predicted output calculated using the fitted NARX models. As it can be seen the magnitude
spectra of the mpo matches closely the spectra of the two isotope ratio data sets. The
dominant magnitude peak in the spectrum before MPT is clearly at the frequency fy;.
After MPT the dominant magnitude peaks are located in the frequency band [fi20, fos]
band. Before MPT the exact magnitude peaks locations are at fi13 (~ fio0) and f41, and
after MPT at fo5 (~ fio0) and fy;.

It can be seen that the spectrum of the mpo reproduces well the change from a dominant
output frequency f41 before MPT, which also dominates the obliquity spectrum, to the
frequency fo5 after MPT, which features strongly in the eccentricity spectrum. Also, from
Figure 6.2 it can be seen that the magnitude of the spectrum of the mpo at the frequency
fa1 does not change significantly, from 0.0716 (0.0772 for |Zp(jw|) to 0.0848 (0.0817 for
|Za(jw)|). At ~ figo the observed change in the mpo spectrum is more dramatic, to almost

twice the magnitude value, from 0.0541 (0.0634 for | Zg(jw)|) to 0.0948 (0.1188 for |Z4(jw)]).
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Other frequencies observed in the §'*0 spectrum (Figure 6.2) are either clearly harmonics
of the orbital parameters frequencies, such as f71 = 6fi28 and fi4o = 3fi2s, or are their
subharmonics, such as fogq4 = ’2—5

The main frequency of interest will be referred to as ~ fi90 and the frequency functions in-
formation (magnitude and phase function values) necessary for the analysis will be extracted

from f113 before MPT and fo; after MPT.

6.3.2 Analysis and Comparison of the Generalized Frequency Re-
sponse Functions Results

Using the expressions of the GFRFs derived in Section 6.2.2 and the frequencies w defined in
Section 6.3.1, the magnitude and phase functions for each GFRF are calculated and plotted.
Figures 6.3 and 6.4 show the plots of the magnitude and phase functions, respectively,

for the first order GFRFs.
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Figure 6.3: Magnitude functions for the first order GFRFs: a. |H{(jwi)|, b. |Hi(jw:)| and
c. |Hi(jw:)| before MPT (blue) and after MPT (green).
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Figure 6.4: Phase functions for the first order GFRFs: a. ZH;{(jwi), b. ZH;(jw;) and c.
ZHj(jw,) for before MPT (blue) and after MPT. (green)

Figure 6.3a shows Hl(jw) for models B (blue) and A (green). It can be seen that
|H{,(jw)| > |Hig(jw)|. Also the location of the magnitude peaks changes. Frequencies cor-
responding to the magnitude peaks change as following: before MPT the two main peaks,
located at the frequencies fgs5 and fi9 have the magnitudes of 9.48 and 7.62. After MPT,
the three main magnitude peaks are located at the frequencies fi7, fs7 and fip and have the
magnitudes of 28.83, 21.01 and 7.83, respectively. Given H;(jw) has the largest magnitude
values of all the first order transfer functions, it is reasonable to assume that, through this
linear FRF, the eccentricity contributes the most to the output spectrum, especially after
MPT.

Figure 6.3b, which shows Hj (jw) for the two time periods, reveals that before MPT the
major magnitude peaks are located at the frequencies fog4 and fi4 with the corresponding
magnitudes of 0.43 and 0.53. After MPT the main magnitude peaks are located at the
frequencies f34, fig and fio and have the magnitudes 0.32, 0.53 and 0.25, respectively.

When analysing | H3 (jw)| shown in Figure 6.3c, it can be seen that both magnitude curves

have maximum values less than 1073, which implies that the contribution of Hj(jw) to the
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output spectrum will be small for both time periods.

The phase of the frequency transfer function was analyzed in a small interval of frequencies
around the frequencies of interest, namely ~ fioo and f4;. These intervals are marked with
grey in Figure 6.4. For the interval [f1, f2] providing the frequencies around ~ fiq9, the most
significant difference between the two time periods is in the phase functions corresponding to
H{(jw), shown in Figure 6.4a, which are 162.71° before MPT and —149.35° after MPT.

Around f4; both H}(jw), shown in Figure 6.4b, and H}(jw), shown in Figure 6.4c, show
v