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Abstract 

This thesis aimed to investigate the clinical problem of the initial management of febrile 

neutropenia (FN) in children and young people undergoing treatment for malignant disease, 

to thoroughly evaluate the existing research, and to collect and synthesise this to quantify 

the risk of adverse clinical outcomes, through development of develop a new risk prediction 

model, using individual participant data (IPD). A further aim was to develop methodological 

approaches to IPD analysis in the development of predictive models, including the graphical 

display and communication of such information.  

 

The research helped create a global collaboration of 19 research groups (PICNICC) which has 

shared data on over 5000 episodes of FN. This individual patient data was synthesised using 

hierarchical logistic regression meta-analysis to develop a new predictive model for MDI, 

which is robust to internal validation techniques (bootstrapping and leave-one-out cross-

validation). The multivariable predictive model derived has six components: Tumour type, 

temperature, clinical description of being “severely unwell”, and measurements of three 

elements of the full blood count: haemoglobin concentration, total white cell count and 

absolute monocyte count. It showed good overall fit (Brier[scaled] 4.5% discordancy), 

moderate discrimination (AU-ROC 0.736) and good calibration between predicted and actual 

estimates of the risk of MDI (calibration slope 0.95). A basic implementation of the 

predictive model has been made ‘live’ at: http://tinyurl.com/PICNICC1 

 

The content of this thesis has directly generated five systematic reviews published in 

academic journals [1-5], along with a further six peer reviewed papers [6-11]. Further papers 

are in preparation. This has influenced national [12] and international guidelines [13] on the 

management of FN in children and young people. We have demonstrated that such a data 

sharing project is feasible across many different jurisdictions and eras of study; we now need 

to undertake a series of further projects to evaluate the model and improve the 

management of paediatric FN worldwide. 
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Chapter 1: Introduction to the problem of fever in the

immunocompromised host

The treatment of childhood cancer is one of the great success stories of healthcare in the

late 20th century.[1] In Europe, children with a malignant disease have an excellent chance of

survival, with overall survival rates approaching 75%.[2] Of those who do not survive, the

cause of death is most often directly related to the malignancy, but one in twenty-five

children with cancer will die due to complications of therapy: one in six of all deaths.[3-4]

One important cause of death is infection, frequently presenting as the occurrence of fever

with neutropenia.[5-6]

Clinical background

In the mid-1960s, it was noted that adults with a severe reduction in numbers of neutrophils

(neutropenia) following chemotherapy were at very high risk of serious infection, and that

early aggressive treatment with broad spectrum antibiotics could save lives.[7-8] The clinical

phenomenon of neutropenia with fever is known by a variety of synonymous phrases, but

frequently as ‘febrile neutropenia’ or ‘neutropenic sepsis’.

The pathophysiology of infection in a child following the administration of chemotherapy or

radiotherapy is complex. Deficiencies occur in innate and adaptive immunity, with changes

in cellular and non-cellular elements of the defences against infection. There are also

marked differences between individuals [9-10] in their response to infection.

Anatomical defences are compromised by the effects of chemotherapy and radiotherapy

disrupting the mucous membranes of the gut and integrity of the skin; side effects are

experienced as mucositis and dermatitis. This enables colonisation and invasion of bacteria

into the blood stream or local infection of the tissue. Foreign bodies such as central venous

catheters are frequently inserted, which provide a potential site for bacterial colonisation.

The use of cytotoxic agents alters the host intestinal flora, and chemical barriers (such as

gastric acidity) can be reduced by supportive care medications.

The production of inflammatory and antimicrobial proteins can be reduced by anti-cancer

treatments [9], dampening any coordinated antibacterial response of the complement

cascade and inflammatory pathway. Cellular components of the innate phagocytic system
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are reduced in number and may be impaired in function. These include the identifiable levels

of circulating neutrophils in peripheral blood and the less visible tissue macrophages and

natural killer cells.

Chemotherapy also affects adaptive, acquired B- and T-cell mediated immunity. The

proliferation rate of these cells is reduced by chemotherapy, depleting circulating cells and

humoral antibody levels. Some malignancies (leukaemia and lymphoma) are of white cell

origin, and while the absolute numbers of cells may be high, they are functionally

incompetent and this increases the risk of infection.[11]

Clinically based risk stratification

The identification of recipients of chemotherapy at high risk of infection, and definition of

the entity of febrile neutropenia, led to the rapid use of early assessment and aggressive

treatment with broad spectrum intravenous antibiotics until the neutrophil count had

recovered. Though no randomised trials evaluated this, the dramatic fall in mortality rates

(from 30% to around 1% in Western Europe) was convincing.[5] The next logical step was to

explore whether the duration of antibiotics could be safely shortened, and antibiotics

discontinued despite neutropenia. This was shown to be possible.[12] From here, the next

milestone in refining therapy is to define a subset of patients at low risk of infection, to

reduce the intensity of treatment in that group, and facilitate rational intensification of anti-

infective treatment in the high-risk group.

In adult oncology practice, a large international prospective study of 1,139 patients was

undertaken and produced a scoring system to identify patients at low risk of serious medical

complications during febrile neutropenia.[13] The factors included: an outpatient

presentation; a solid (compared with haematological) malignancy; “young age” (defined in

this setting as <60 years); no chronic obstructive airways disease; mild or absent symptoms

of infection; normal blood pressure; and absence of dehydration. This system supported

earlier work which identified many of the factors as important predictors and has been used

as the basis for outpatient management of fever in low-risk neutropenic adult patients.[14]

Despite this, there is evidence of minimal uptake of this approach in routine adult practice in

the UK.[15]
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The adult system did not include children in its derivation, and is of very limited applicability

in this group: age is not a discriminator, and chronic airways disease is extremely rare. It is

frequently said in paediatric medicine that “Children are not little adults”; when it relates to

the use of this scoring system, it appears to be very relevant. [16]

Assessing the risk of adverse outcome of each episode of febrile neutropenia has been

undertaken by different groups, with many creating a clinical decision rule (CDR) which

purports to allow clinicians to accurately judge risk and treat appropriately. A clinical

decision rule is a clinical tool designed to be used at the bedside to assist clinical decision

making [17]; the methods used in creating and assessing such rules are explored further

later in this chapter.

The existing CDRs in paediatric oncology patients have proposed varied criteria for risk

stratification, involving various combinations of bone marrow suppression indicators [18-

22], maximum body temperature[18-19], cancer type[23] and the presence of clinically

severe illness.[11, 19, 21, 24-25] However, the currently published models differ in

describing different numbers of important predictor variables (e.g. Baorto [12] identified

one, Klaassen [26] described two, Ammann [19] used five), and different specific variables

(bone marrow suppression may be indicated by monocyte count [12], leukocyte count [19]

or platelet count [22]).

Biomarker based approaches

Another element of initial risk stratification of significant interest is the use of serum

markers of inflammation and infection derived from blood tests taken on admission to

predict similar outcomes.

Studies have been undertaken which explore the predictive ability of specific serum markers,

for example C-reactive protein (CRP), procalcitonin (PCT), Interleukin-6 (IL6) or Interleukin-8

(IL8).[27-30] These markers have been demonstrated to have some discriminatory ability in

other fields of paediatrics (e.g. CRP has been used in septic arthritis, PCT in neonatal sepsis

and IL6 in meningitis). In paediatric febrile neutropenia (FNP), the reports have had few

patients, episodes and definite outcomes. Drawing these reports together, and synthesising

their results, could add greatly to our understanding of their potential clinical usefulness,

indicating which markers may be pertinent to examine in newly developed clinical decision

rules.
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C-reactive protein (CRP) is a substance that was initially discovered in the 1930s by Tillett

and Francis [31], its name arising from the observation of a reaction between an

unidentified protein and the C-polysaccharide from Streptococcus pneumoniae. It was soon

discovered to be endogenously generated from within the liver, and its ubiquity in

inflammatory conditions recognised soon after. CRP is generated with other acute-phase

reactants between four and six hours following tissue damage, and seems to reach a peak

around one to three days following injury.[32] Routine measurement of CRP within one hour

of admission is possible in most technologically advanced countries, and in some places

near-patient testing (for example, in a primary care centre) is possible.

The more recently discovered procalcitonin (PCT) is a pro-hormone of calcitonin, a hormone

associated with calcium homeostasis. Pathophysiological studies have shown PCT has a rapid

rise in new-onset sepsis, and falls rapidly with the administration of antibiotics and mirrors

the clinical course of critically ill patients. Commercial assays are available in many hospitals,

and can produce results within two hours.

Interleukin 6 (IL6) is one of a series of cytokines which are released by immune system cells

and drive the active and organised process of inflammation. IL6 is released from

macrophages and monocyte-lineage cells, and can be measured in the blood rapidly after

tissue damage. Interleukin 8 (IL8) is a related protein, first identified in the early 1980s as a

neutrophil chemoattractant. It too is produced by a wide range of inflammatory cells, and is

rapidly produced following tissue damage.

Although all these markers have a sensible pathophysiological basis for their ability to

distinguish between people who do and do not have an incipient severe infection, many

other factors are involved with their production. Some factors may reduce the production of

these markers. In malignancy, the generative potential of the liver may be compromised, the

immune system is suppressed and functions inadequately, potentially reducing the number

of cells which could produce cytokines. In contrast, the tissue damage of malignant

infiltration may produce an inflammatory response, triggering release of the marker

proteins. The toxic effects of chemotherapy may reduce the ability of the kidneys and liver

to clear metabolites including these markers. Therefore, just detecting the presence of an

inflammatory response, for example to a mild rhinovirus (common cold) infection, does not

equate with severe septic shock. The effect of how these elements alter with age, and how

the range of different malignancies that affect children as compared with adults vary also

need to be taken into account.
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Reduced intensity treatment

Based on the identification of a low-risk group, small randomized controlled trials (RCTs) [33-

37] of the use of reduced intensity and/or duration of antibiotic therapy have been

undertaken in children. The intention is to improve quality of life by reducing hospitalisation,

and reducing unnecessary health care costs. These trials have been too small to produce

definitive conclusions about the efficacy or safety of the approaches undertaken. The

underlying assumption (that parents would prefer an outpatient or home-based approach)

has also been called into question.[38]

Preventing febrile neutropenia

Reducing unnecessary hospitalisation, exposure to antibiotics and costs associated with

febrile neutropenia has been one approach to improving the management of children who

present with infectious complications during cancer therapy. Another strand of research has

been attempting to reduce the risk of febrile neutropenia occurring.

An ideal approach to reducing the risk of adverse outcomes of febrile neutropenia would be

to prevent neutropenia secondary to chemotherapy and/or to prevent infection in

neutropenic patients. Colony-stimulating factors (CSFs) were introduced into clinical trials 20

years ago and are now used widely in both adults and children. They expand the pool of

circulating neutrophils by stimulating proliferation and hastening maturation of myeloid

progenitor cells in bone marrow, and are used successfully in the treatment of chronic and

cyclical neutropenia.[39] Clinical experience suggests that the prescription of granulocyte-

CSF (G-CSF) in the oncology setting does not have the same dramatic benefits. An extensive

systematic review of 148 RCTs (19 were exclusively in paediatric populations and 12 included

both adults and children) with a total of 16,839 cycles of treatment assessed the effects of

G-CSF.[40] The synthesis demonstrated no effect of G-CSF on mortality (relative risk 0.95,

95% CI 0.84 to 1.08). There was a small reduction in the number of episodes of febrile

neutropenia (relative risk 0.71 95% CI 0.63 to 0.80) and a small effect of duration of

hospitalisation (mean difference -2.4 days, 95% CI -3.3 to -1.1) and use of parenteral

antibiotics (mean difference -1.8 days, 95% CI -2.5 to -1.1). Subgroup and meta-regression

analyses, and the use of Baysian approaches incorporating further data [41] showed these

results to be consistent regardless of the type of malignancy or age of patients. If CSFs were

oral, cheap and had no side effects then these moderate benefits might be considered
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useful: unfortunately, none of these attributes are true for CSFs and their use is not

routinely recommended.

An alternative approach to prevention would be to use antibiotic prophylaxis. While this has

been losing favour in a number of areas (e.g. urinary tract infection [42], recurrent tonsillitis

[43], dental procedures in those with cardiac defects [44]) there is convincing evidence for

their use in preventing surgical site infections. [45] A systematic review published in 2005

[46] examined 109 RCTs that evaluated the use of prophylactic antibacterial drugs in cancer

patients. This showed that across a broad spectrum of ages, malignancies and methods of

administration, prophylactic antibacterials given through periods of neutropenia conferred a

survival advantage. The use of quinolone antibiotics reduced overall mortality with a relative

risk 0.66 (95% CI 0.55 to 0.81).[46] However, direct clinical application of these data is

hindered by substantial variation in the protocols for administration of prophylaxis, making

selection of a particular approach difficult.

There is a significant concern that the widespread use of antibiotics may engender

resistance, but data from these trials do not suggest the emergence of this problem.[47-48]

Cohort studies of the routine use of prophylaxis do suggest an increase in rates of resistance

of colonising organisms, and that these rates fall with discontinuing prophylaxis. However,

these same data show higher mortality rates in patients when prophylactic antibiotics are

not used, despite that fact that there are lower rates of ‘resistant’ organisms cultured. The

balance of community resistance against individual protection is clearly difficult, but seems

to favour the use of prophylaxis. These factors probably account for the caution about

current widespread use of prophylactic antibiotics: the ongoing challenge is to support their

judicious introduction, perhaps in selected patient groups, with close microbiological

surveillance.

Vaccination is the most effective anti-infective prophylaxis that is used in the world today

[49] and high levels of herd immunity against vaccine-preventable diseases are the best

protection for children with cancer. In the setting of acute treatment for malignancy, there is

limited evidence for the use of vaccination since most of the serious infections that occur are

not vaccine-preventable. Influenza vaccination while on low-intensity therapy (e.g.

maintenance treatment for acute lymphoblastic leukaemia)[50] is probably effective, and

conjugate Haemophilus influenzae type B (Hib) and pneumococcal vaccines may reduce the

risk of invasive infection.[51] Live vaccines remain potentially lethal if given during

immunosuppressive therapy, but the use of attenuated varicella vaccine has been
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extensively studied during Acute Lymphoblastic Leukemia (ALL) maintenance therapy by

groups in Japan and the USA with few adverse events and apparent protective responses.

[52]

Environmental prevention, for example the use of face masks and gowns, ‘clean’ diets and

water supplies, and excluding patients from large public gatherings (such as football

matches, shopping centres and cinemas) had very limited evidence for efficacy.

Conclusion

Despite the generally good success in treating children with cancer, with overall survival

rates approaching 75% [2], one in twenty-five children with cancer will die due to the

complications of therapy: this is one in six of all deaths.[3-4] One important cause of death

remains infection, frequently presenting as the occurrence of fever with neutropenia.[5-6]

The traditional approach to such patients is to admit them to hospital and treat with

prolonged courses of intravenous antibiotics until both fever and neutropenia have resolved.

Current practice in paediatric oncology with respect to the risk stratified approaches in

febrile neutropenia is variable, both nationally [53] and internationally.[51, 54-55] Some

centres use a risk-stratified, reduced intensity approach, others treat all children with

aggressive antibiotic therapy Calls for collaborative trials have been made [56-58] but little

progress made. The essential problems with research in this area are common in much of

paediatric practice, rare conditions with small numbers of cases, and limited collaboration in

primary studies. This clinical decision problem is the classic area where systematic review,

with meta-analysis, may be able to draw together numerous studies and reach more

powerful conclusions than any single study could. The output of clear risk stratification

product of this work will inform practice and future therapeutic RCTs.
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Chapter 2: Introduction to the methodologies employed in

prognostic and diagnostic predictions in medical decision

making

Background

Clinical decision rules (CDR) are clinical tools designed to be used at the bedside to assist

decision making [17] and are generally either diagnostic or prognostic. Well known examples

from adult medicine include the Ottawa ankle rules [59] and Wells DVT rule [60], both using

clinical features to predict in particular the absence of an ankle fracture (and so avoid the

need for radiography) or the absence of a DVT (and so avoid unnecessary anticoagulation).

In paediatrics, such rules have been developed for the prediction of good outcomes from

septic arthritis in the limping child [61], the identification of infants at low risk of serious

bacterial infection [62], meningitis [63] or radiographic pneumonia [64], but are not

generally or widely used.

Clinical decision rules are developed by an initial derivation study that creates the rule. This

should be followed by further studies determining their discriminatory validity (do they

actually tell the difference between the groups of affected and unaffected) and predictive

accuracy (do they predict at the same sorts of proportions of individuals as they were

created to do). Such validations can occur at different times, but within the same institution

(temporal validation), in different physical locations but with similar clinical settings

(geographical validation) and across different clinical settings (domain validation), for

example in both tertiary specialised paediatric oncology centres and secondary care

hospitals [65]. The final step should be to demonstrate their efficacy in routine practice with

multi-site randomised controlled trials [66].

An ideal CDR for the management of febrile neutropenia would predict the risk of adverse

outcomes from data collected at or soon after presentation. To this extent, it is ‘prognostic’

as a prediction of the course of disease [67]. However, this data may well be practically used

in two different ways: to decide if the risk was ‘low enough’ to allow outpatient

management, and at the opposite end of the risk scale, to consider the need for increasingly

close observation and more aggressive management. The ‘low risk’ decision collapses into a

dichotomy that can be considered ‘diagnostic’ (“is this a low-risk episode or not?”) and such

patients discharged for out-patient therapy. The patients at higher risk do not have such a

clear difference in potential management options. There are no effective truly prophylactic
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measures to prevent septic shock in this group, so the degree of risk generates a heightened

degree of concern and observation, but does not require a dichotomous decision to be

made. This ‘high risk’ information is not clearly a ‘decision problem’ and continuous,

‘prognostic’ information may be more useful. Such hypotheses about the nature and use of

the information are ripe for testing.

It is worth noting that the description and decision of what constitutes ‘low risk’ is a matter

of debate. It reflects both a desire to know if a patient has a significant infection which

needs a specific therapy, and an understanding of the likelihood of a fatal or near-fatal

outcome. In some settings this may collapse into the same information: the diagnosis of a

systemic fungal infection is associated with an extremely high chance of death [68], and the

diagnosis needs little further by way of prognostic information. With other infections, for

example infection with coagulase-negative Staphylococci [69], serious adverse outcomes are

rare. The setting of this threshold of ‘low enough’ risk appears to vary between healthcare

professionals and families, and between healthcare professionals themselves [38] , and

requires further study.

Taking all of these factors into account, the clinical use of a rule can only be countenanced if

it is valid (truthful) and accurate (meaningful). In the setting of managing febrile

neutropenia, the ideal output for a CDR is to use data available at the start of the episode to

diagnose the patient as either seriously infected or not, and accurately predict their

subsequent chance of important morbidity.

CDR and other predictive models - Derivation

A study of risk prediction, including the derivation and validation of clinical decision rules as

a subset of risk prediction, requires that precise, accurate and unbiased information is

collected so that any relationships discovered between predictors and outcomes are likely to

be valid.

The prototype of a study that aims to create a clinical decision rules is one which

prospectively collects information about a cohort of patients that present with a given

problem (for example, fever in the neutropenic child). This cohort should be from

consecutive patients, or a random sample of everyone who had been affected with the
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condition. To collect patients by a different method may introduce a significant bias

between those collected and those excluded. For example, if only patients who present

‘during office hours’ are included, this group could be more generally more ‘well’ than those

who are sufficiently unwell to be taken for assessment in the middle of the night [70]. Using

all patients obviously avoids this problem. Random selection is less intuitive, but derived

from the principle that a truly random selection will accurately reflect the total population

sampled.

The information collected for each patient should be the same. Gathering information

prospectively appears to improve the likelihood of complete data capture and reduce biases

arising from outcome reporting. For example, avoiding cases with a negative outcome (such

as death) being more accurately captured and recorded than those with a better outcome

[71]. The way that missing data is handled could reduce the efficiency of a study if it doesn’t

use as much information as it could, leading to unnecessarily wide confidence intervals, or

could introduce biases and so incorrect predictive estimates if handled inappropriately.

A further consideration is that patients involved in the study need to be similar to the

patients that the studies’ results will be applied to. This is necessary because different

groups may have different outcomes. For example, patients treated in tertiary clinics at

super-specialised hospitals may have different outcomes than those from local hospitals,

general practice or the community [72-73]. These differences should not be interpreted as

meaning one sample location is ‘wrong’; they indicate that the truth varies according to the

population or case-mix under consideration, and needs to be made specific for the question

asked.

In addition to the test data being collected in the same way for each patient, the outcomes

should be assessed similarly, regardless of how the patient has presented (rather than

patients who have been assessed at high risk of a problem undergoing a different outcome

assessment than those at low risk). An example might be to only undertake chest X-rays

(CXR) on children who have crackles or reduced air entry on physical examination when

developing CDR for the detection of pneumonia. In this way, the study will tautologically

prove the absence of these signs is perfect at ruling-out CXR positive pneumonia as they will

never have been diagnostically tested. Such “differential verification” procedures have been

shown quantitatively to overestimate the ability of the test to accurately diagnose a disease

[74]. Another variation in this theme is a contamination of the reference standard with the

test result: if the definition of pneumonia is “radiographic findings of pneumonia with an
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appropriate clinical pattern”, then children without classic signs or symptoms of pneumonia

can’t have the diagnosis, and therefore signs and symptoms of pneumonia cannot have

anything less than near-perfect sensitivity.

The need for outcomes to be assessed blind to (without knowledge of) prognostic or

diagnostic data is theoretically important, as there may be a tendency among clinicians to

attribute different outcomes on the basis of ‘clinical likelihood’. The exaggeration of effect

has been demonstrated in studies of therapeutics [75], but has not been clearly

demonstrated in studies of diagnosis [74] and prognosis [76]. This may reflect a true

difference, or merely that there are fewer data available from prognostic and diagnostic

studies.

Any good CDR should be based on outcomes which are important to patients and clinicians,

and studies should be of sufficient duration for the outcome to become apparent. Some

studies report outcomes too early; if new events are still likely to occur, this poorly reflects

the true predictive value of a potential marker[77]

Data analysis presents a further series of challenges. There are various approaches to

creating a CDR including the use of regression models, classification and regression trees

(CART), neural networks and Bayesian networks. No clear superiority for one technique has

been demonstrated [78], but it has been shown that different approaches can produce

different results from the same data set [79]. This highlights an acknowledged difficulty with

model building – that differing techniques may reach different conclusions from the same

information.

The assumptions underlying these models are that the data collected is a true

representation of the population of interest, that data have been collected accurately and

that the various predictors can be combined simply, with different weightings of different

elements.

The functional form of the predictors needs to be accurately assessed. For most model

building techniques, the initial assumption is that the predictors and outcome have a linear

relationship. If this is not the case, a transformation or non-linear form should be used. For

example, temperature in the prediction of serious bacterial infection (SBI) in neonates is a

‘U’ shape, with both very low and very high temperatures being associated with SBI [62].

Other relationships have different forms, with ‘floor and ceiling effects’ such as the S-shaped
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curve of oxygen dissociation from haemoglobin, or the J-shaped associations of body-mass

index and mortality. If these are modelled by assuming only a linear relationship can exist,

the variable may be discounted (e.g. U-shaped), over predicted at low values and under

predicted at high ones (S-shape) or a complex failure of accurate estimation found in the

lower portion of a J-shaped curve.

Related issues include multicollinearity, where variables are highly related, will lead to

unstable models and inaccurate predictions. An example of co-linearity may be total white

cell count and neutrophil counts in the setting of chemotherapy-induced marrow

suppression. When faced with this situation, the most clinically sensible variable of the co-

linear group should be chosen. A further assumption in simple models is that the

observations are independent of one another. One relevant situation when the observations

are not independent is when multiple ‘cases’ actually reflect multiple admissions from the

same individual; this ‘relatedness’ needs to be built into the data analysis method.

Continuous variables (age, blood pressure, absolute neutrophil count) will have their

maximum predictive accuracy in a model if used as their actual value, rather than

categorised in bands of values. Clinicians seem to find the use of continuous variables in this

setting unhelpful, and prefer to use categories. To build the most clinically effective CDR, a

sensible approach would be to combine these approaches, exploring the association with a

continuous value and making a clinically usable CDR with a categorical one. Undertaking this

adds further challenges. Repeated studies examining prognostic model building have shown

that the collapsing of continuous variables into ordinal (ordered) categories or dichotomies

is often undertaken using methods which are highly likely to give spurious results [78, 80].

The problem arises from analyses where a particular set of data is examined to find the cut-

point at which the greatest differentiation between the diagnostic or prognostic categories

is achieved. In doing so, effectively multiple tests are being undertaken and the reported p-

value associated with the final choice is likely to be a gross exaggeration of the true

‘significance’ of the value. Approaches using clinically or pathophysiologically meaningful

values, or ones previously described in the literature, reduce these problems.

Selection of explanatory variables for a short and usable CDR is a further area of potential

problems. The best approaches are to think carefully about what relationships are expected

to exist in advance of data analysis. This approach will reduce the chance of spurious, data-

driven associations slipping into a CDR. More apparently ‘rigorous’ and ‘statistical’

techniques can be undertaken. Such selections can be performed by taking all possible
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explanatory variables, and excluding those which are not statistically significant (backwards

elimination), or by taking in the most statistically significant individual factors (forwards

selection) or a combination of the two, adding and removing to build the statistically best

fitting model (stepwise). These techniques, when driven by a ‘p-value’ are seriously at risk of

choosing variable with chance relationships and making unstable models [81]. These

techniques will also exclude variables that confound each other from entering a

multivariable analysis [82]. In essence, selecting variables only by looking at how significantly

they are associated with outcomes in the dataset being examined produces highly effective

descriptions of that dataset; it doesn’t improve the ability of the model to describe the real

population from which those data were drawn [83].

Building stable predictive models requires a minimum of 10 to 20 events per variable

considered [84], with more being better. Small numbers of events increase the possibility of

finding spurious associations that existing only in that dataset, and not in the general

population [83]. There are a range of techniques that have been developed to try to reduce

the chance of such problems occurring, described as ways of ‘shrinking’ the overinflated

estimates from the model, or ‘penalising’ the model as it tries to build in too many overly

optimistic variables [85]. Such modifications may lead to models where the predictive values

are retained in future studies [86].

To make things usable in a clinical environment, it is often far more sensible to present

clinicians with a simple table of signs and symptoms with a numerical score than a complex

equation. Remarkably, the use of very simple versions of the weights from regression

equations often work in practice as well as the mathematically precise numbers [87], and it

may even be worth ignoring weights all together and just calling each ‘one point’ [88].

CDR and other predictive models - Validation

Given the issues off over optimism and generalisability described above, a newly developed

CDR should be validated before use. In this context, validation means that the CDR has been

shown to accurately discriminate between those with and without disease, or accurately

estimate the proportion of patients with the disease. This is analogous to the clinical trial

testing of a drug which has shown positive results in cell cultures or mice; inaccurate

predictive information both as false positive [89] or false negative test results [90] can be as

harmful as an untested therapy.
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As previously noted, various levels of validation are described, including temporal validation

(the rule is tested again by the same clinical team), geographical validation (testing the rule

in a different location, but similar clinical setting) and domain validation (testing the rule in

an alternative clinical setting, such as secondary rather than tertiary care). This last stage

may be irrelevant if it is to be applied in the same setting as rule development occurred. The

use of these various steps is important to demonstrate there is a practical ability of the rule

to be used widely and effectively.

The final step should be to demonstrate the efficacy of a CDR in routine practice with multi-

site randomised controlled trials [66]. The trial doesn’t seek to examine if the CDR is

accurate, but instead to randomise between application of the CDR and no application

measuring key patient-important, or health-system- important outcome such as length of

hospital stay, invasive testing, or improved quality of life. This stage is rarely undertaken, but

can be a very powerful way of demonstrating improved care through the use of a diagnostic

intervention [91].

CDR and other predictive models - Implementation

Understanding how clinicians use a clinical decision rule, or any diagnostic information,

involves understanding how medical professionals ‘think’. A number of researchers from a

range of backgrounds have examined the diagnostic practices of physicians. There is a

wealth of research that demonstrates the common clinical myth of diagnosis following the

doctors actions of ‘take a history and do a physical examination’ is inaccurate [92-93], and

that instead health professionals apply an array of mental shortcuts (heuristics) [93-94]

which both speed up working practice and at the same time can lead to dangerously wrong

conclusions. In fitting a CDR into the practice of managing a clinical problem, it can be useful

to take a straightforward model as to how doctors make a diagnosis and move on to treat

the disease.

The diagnostic process can be thought of in three stages: initiation, refinement and

conclusion [95]. The initiation stage is where a differential diagnosis begins to be considered.

The refinement is a working through of these differentials, and the conclusion is a point

where a decision to act has been made.
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In some situations, such as seeing a toddler with Down’s syndrome, initiation is the only

step. While this is clear to many lay people, there is research to suggest that the more expert

a physician is in a particular area, the more rapidly they come to a diagnosis, and that this in

part is because of pattern recognition or fitting new cases to a mental ‘categorisation’ [94].

For most situations, initiation is truly the first idea that undergoes a process of refinement. It

is in this process that CDR can help guide clinicians, and lead to a diagnostic conclusion.

Other approaches include a formal Bayesian analysis, pattern fitting, or a stepwise rule-out

of significant serious diagnoses.

The conclusion part of the process may be an actual pathological diagnosis (e.g. pneumonia),

or a rule-out (e.g. no evidence of bacterial meningitis) or an admission of remaining

diagnostic uncertainty.

The CDR should help in refinement by providing good quality guidance to avoid diagnostic

errors and minimise unnecessary tests. Commonly diagnostic errors occur because of both

systems and cognitive errors [96-97]. Such errors can include: a failure to syntheses

diagnostic information correctly and come to a premature diagnostic conclusion; a lack of

appreciation of the value of a sign or symptom in making a diagnosis; or exaggeration of the

accuracy of a test finding. Other reasons for misdiagnosis would not be helped by the use of

CDRs, such as the true diagnosis being rare, or failure in the technical skill of the individual

doctor, for example in reading an x-ray or eliciting a physical sign.

However, there remains an almost emotional difficulty in turning to a CDR when instead

clinicians should be like House [98], Holmes [99] or Thorndyke [100] in making diagnoses

from skill and knowledge. This is despite the widely publicised data which suggest that in

many cases a CDR performs better than ‘expert opinions’ [101-104]. Why healthcare

professionals do not follow where the best evidence should steer is a matter of ongoing

debate and research.

The most effective uses of CDR seem to have been where the rule has a clear clinical utility,

has been championed by well-respected local clinicians, and clearly improves outcomes for

patients and clinicians [105-106]. Implementation of any well-derived and validated rule will

require skilled advice and a multi-factorial approach to maximise real clinical gains. This

should highlight that CDR are potentially a way of making predictions more accurate, and/or

quicker and less unpleasant to achieve. They don’t necessarily do this [107] and so each rule

requires clear sighted critical appraisal before implementation.
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Systematic reviews of CDRs

In exactly the same way that therapeutic studies should be viewed and reviewed within the

context of all the unbiased information, preferably in the form of a systematic review with

meta-analysis, CDR and prognostic studies should be seen within the same context. The

rationale behind these studies is identical to that which drives therapeutic reviews: by

pooling information chance associations can be minimised and a more precise and accurate

estimate of effect can be obtained. The nature of the numerical outputs from these studies

is explored in the next sections.

It is notable that reviews of predictive studies, in keeping with reviews of therapeutic

interventions, can sometimes produce useful new results [60]. They can also confirm the

inadequacy of the current studies to derive a clinically applicable result [108], or highlight

the poor quality of underlying studies and the need for higher quality primary research [109-

110]. Even more prevalent in predictive studies than in therapeutics are the difficulties

produced by the poor quality of reporting of studies [111], and marked publication bias [78].

In many areas, these lead to the need to undertake research which pools the raw individual

patient data (IPD) from high quality studies. Undertaking an IPD meta-analysis would

increase the number of events studied, which allows more confidence to be placed in the

estimates of association between predictive variables and outcome and allow for more

consistent handling continuous outcome data, which may well have been categorized

differently in differing datasets. It would also permit the independent assessment of

episodes (e.g. using only the first episode for each patient) and then analyze the degree to

which episodes, patients and outcomes are interdependent.

Simple numerical descriptions of test accuracy

In order to describe accuracy of a test result is it is usually necessary to produce a numerical

estimation. Many tests give results as continuous values (for example biomarkers ), yet for

simplicity these are reported as being positive (e.g. above a certain value) or negative (below

the cutoff value). The group under study, in this case children presenting with febrile

neutropenia, can be thought of as coming from two populations: those with the ‘disease’,

for example pneumonia, and those without it. The values of “lung injury protein” (LIP) are

distributed differently in the two groups. (See Figure 1, over)
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Figure 1: “Lung injury protein” diagnostic test distribution

The threshold then has part of both populations on each side; the proportion of people with

pneumonia who have a positive test is the sensitivity. The proportion of people without

pneumonia who have a negative test is the specificity. Shifting where the threshold is drawn

alters both these proportions. As Figure 2 shows, pushing the line for ‘positivity’ upwards

makes the test more specific (captures fewer people without the disease in the definition)

but becomes less sensitive (fails to diagnose a greater number with the disease). The reverse

is true when the level for positive results is reduced.

Figure 2: “Lung injury protein” diagnostic test: different cutoffs
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Meta-analysis of diagnostic test accuracy

Meta-analysis is the statistical combination of results frommore than one study. In the

setting of a systematic review, this process should produce the most precise values which

represent the sensitivity and specificity for a diagnostic test and explore the limits of our

certainty.

When such a meta-analysis is undertaken, there are three elements in combining the test

results that may vary. The first is that the group under study are a (random) selection of the

‘true’ population of children with and without pneumonia. Any single estimate of test

effectiveness is only an estimate of the ‘true’ test accuracy, and each study reports this

chance uncertainty be providing estimates of the variance of sensitivity and specificity.

The next aspect of variation is that the ‘true’ population from which the sample was drawn

may actually be a mixture of slightly different populations. For example, it may be that

slightly different LIP values are present in Scottish children who have higher normal values

than children in London, through genetic polymorphisms, or less variation between them

(see Figure 3). This aspect of variation can be evaluated by the use of a random effects

meta-analysis procedure. This examines variability between study populations and provides

an estimate of the ‘average’ sensitivity and specificity in an ‘average’ population, and also

provides a numerical range in which the truly different values may lie in different

populations.

Figure 3: “Lung injury protein” diagnostic test: different mean and SD

The third aspect of variability may be that a different threshold is used between studies. In

studies that report ‘hard’ laboratory findings, this should be easily assessed (although

different assay techniques mean this is not necessarily the case). In those using clinical

criteria, for example “looked clinically unwell”, this is much more difficult to judge. One way
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capped lines display the 95% confidence intervals associated with the sensitivity or

specificity values.

This same graphical display can be used to show the relationship between the varying

threshold of a continuous or multiple-layer diagnostic test as a curved line (see Figure 5,

example of a single study).

Figure 5: ROC plot showing the results of one continuous scale diagnostic test to determine the presence or

absence of disease.

Using test accuracy estimates in clinical practice

For clinical application, the important values are generally not the proportion of people with

a disease (e.g. pneumonia) who have a positive test (sensitivity) and proportion of people

without pneumonia who have a negative test (specificity) but rather the proportion of

people with a negative test result who truly didn’t have disease (negative predictive value,

NPV) and the converse, the proportion of people with a positive test who did have

pneumonia (positive predictive value, PPV). These values are the compilation of both the

diagnostic accuracy and prevalence of the disease in the population.

A clear illustration of this comes from an analysis of the different NPV and PPV of testing for

Clostridium difficile infection with commercially available stool toxin test kits [112]. As Figure

6 demonstrates, the ‘truth’ of a positive result varies from 50% correct to 92% correct,

depending on how prevalent C. difficile is in the population under study. (This Figure shows
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a theoretical Clostridium difficile toxin assay with a sensitivity of 92% and a specificity of

97%. NPV=negative predictive value. PPV=positive predictive value. [112])

Figure 6: Effect of varying prevalence on the PPV and NPV

The practical implication of this is that the direct translation of sensitivity and specificity

values from a single study or meta-analysis into practically meaningful PPV and NPV can only

be undertaken if the prevalence of the condition is known, or can reasonably be estimated.

An alternative expression of the sensitivity and specificity of a test is the use of likelihood

ratios (LR). These values compare the proportion of patients with the disease and without

the disease for a given test result. In the LIP example (Figure 1, specificity 74.8% and

sensitivity 72.0%) these values would be LR+ (likelihood ratio for a positive test) = sensitivity

/ (100% - specificity) = 74.8/28.0=2.67 and the LR- = (100% - sensitivity) / specificity = 0.35.

Such values can be calculated for each level of a test result, and so are useful for multi-level

as well as dichotomous tests (compare Tables 1 and 2 for LIP).

Table 1: Sensitivity & specificity for Lung injury protein values to detect pneumonia

Test cutoff Sensitivity Specificity

73 98.8 15.9

93 72.0 74.8

109 22.7 97.7
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Table 2: Likelihood ratios for Lung injury protein values to detect pneumonia

Test cutoff LR+ LR-

73 1.17 0.11

93 2.99 0.38

109 9.87 0.79

These likelihood ratios can then be used in formal Bayesian analysis converting pre-test odds

of disease into post test-odds of disease, or informally interpreted as how far the diagnostic

pendulum is pushed towards a disease (e.g. LIP value of 110 makes it about 10-times more

likely the child has pneumonia, and LIP of 70 makes it about one-tenth as likely).

Conclusion

Defining a subset of patients as low risk of infection reduces the intensity of treatment in

that group, and facilitates rational intensification of anti-infective treatment in the high-risk

group. To make this decision rational and repeatable, a logical approach is to use a clinical

decision rule. This rule needs to be developed in a robust manner, to reduce the effects of

chance, confounding and bias obscuring the true relationships between proposed predictor

variables and the outcome of each episode of febrile neutropenia. Furthermore, a rule

needs to be tested, to make sure it works effectively and is practically useful.
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Chapter 3: Methods of Systematic reviews of Clinical Decision

Rules and Serum Biomarkers

Two linked systematic reviews [113-114] were undertaken of existing rules and the value of

serum biomarkers, in order to determine whether an IPD meta-analysis was necessary; to

identify suitable data sets; and to guide such a study in collecting appropriate variables

between 2008 and 2010. These reviews were later updated [115-116], and as a by-product a

further review related to a specific aspect of early assessment was also produced: do all

children presenting with fever and neutropenia require a chest radiograph to exclude

pneumonia [117]? These reviews provided the evidence on which to propose the key

predictor variables to be used in the following IPD analysis.

This chapter described the methods generic to both groups of reviews; the clinical decision

rule studies [113, 115] and the biomarkers papers [114, 116]. The results of the reviews are

then described in Chapter 4, and a discussion and conclusions to the extensive background

work for this thesis are presented in Chapter 5.

Methods

The reviews were conducted in accordance with “Systematic reviews: CRD's guidance for

undertaking reviews in health care” [118] Protocols were written for each review and in

advance of starting the review were registered with the HTA Registry of systematic reviews,

CRD32009100453 and CRD42011001684.

Search & retrieval strategy

Electronic search strategies (See Appendix 1 and Appendix 2) were developed which

examined the following databases: MEDLINE, MEDLINE(R) In-Process & Other Non-Indexed

Citations, EMBASE, CINAHL, Cochrane Database of Systematic Reviews (CDSR), Database of

Abstracts of Reviews of Effects (DARE), Health Technology Assessment Database (HTA),

Cochrane Central Register of Controlled Trials (CENTRAL), Conference Proceedings Citation

Index - Science (CPCI-S), Literatura Latinoamericana y del Caribe en Ciencias de la Salud

(LILACS)

Reference lists of relevant systematic reviews and included articles were reviewed for

further relevant articles. Published and unpublished studies were sought and no language
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restrictions applied. Non-English language studies were translated. Searches were

conducted on date for the initial review published in 2008 and on for the update published

in 2012.

Inclusion and exclusion criteria

Studies were included in the review if they met the following criteria.

Methodology Studies which aimed to derive or validate a CDR in either all or a defined

subset of patients were included. Both prospective and retrospective cohorts were included,

but those using a case-control (“two-gate”) approach were excluded as these have been

previously shown to exaggerate diagnostic accuracy estimates [119].

Population Children or young people (aged 0 – 18y) who were receiving treatment for cancer

or leukaemia (including extra-cranial and intra-cranial tumours) presenting with febrile

neutropenia. Studies which examined children and adults were included if the paediatric

data were available separately.

Predictor variables for CDR reviews Clinical decision rules (CDR) using clinical and

haematological or biochemical variables used to predict outcome for the particular episode

of febrile neutropenia

Predictor variables for Biomarkers reviews Serum inflammatory/infectious markers (for

example including, but not limited to, C-reactive protein (CRP), procalcitonin or interleukin

levels) measured within the first 12 hours where timing of samples was reported.

Outcomes (At least one of) Survival, need for intensive care, need for high-dependency care,

single organ impairment (oxygen requirement, renal impairment, hepatic impairment),

invasive bacterial or fungal infection, any documented infection (including radiologically

confirmed pneumonia), duration of admission.

Study selection

Two reviewers independently screened the title and abstract of studies for inclusion, and

then the full text of retrieved articles. Disagreements were resolved by consensus.
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Validity assessment

The validity of each study was assessed using 11 of the 14 questions from the QUADAS

assessment tool for diagnostic accuracy studies [120]. The QUADAS tool was adapted

specifically for the review, as suggested by “Systematic reviews: CRD's guidance for

undertaking reviews in health care” [121], omitting questions on “time between index and

reference test”, “intermediate results” and “explanation of withdrawals”. (See Appendix 3.)

The CDR and reference tests are necessarily related, and the design of a CDR and the

reporting of the biomarkers studies meant that “intermediate” results are included in any

analysis. The issue of incomplete data was addressed in the analysis of the method of

derivation or validation, and as such was not included as a quality criterion.

Data extraction

Data were extracted by one researcher using a standardised data extraction form and

checked by a second. The data extracted included participant demographic details such as

age and sex, geographical location of the study, the participant inclusion/exclusion criteria,

antibiotics used, and the performance of the CDR as a 2*k table (where k refers to the

number of strata described). Information was extracted on the methods used to derive the

CDR (where applicable), including the variables considered, methods of statistical analysis,

and methods of dealing with multiple episodes in individual patients and missing data. An

example of the form used for the biomarkers review is given in Appendix 4. Authors were

not contacted for clarification in the event of ‘unclear’ risk of bias assessments or to seek

additional information.

Methods of data synthesis

The studies were reviewed using both narrative and quantitative synthesis.

Quantitative synthesis was undertaken for studies which tested the same CDR or biomarker,

and investigated for sources for heterogeneity.

For dichotomous test data in this review, where possible analyses used a bivariate model

(using the ‘metandi’ command for STATA10 [122]). The bivariate approach, when possible,

accounts for the paired nature of dichotomous test characteristics as described in chapter 2.

For tests that included very small numbers of studies (n≤ 4) fitting a bivariate model is
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problematic as the procedure frequently fails to converge. In these cases, a univariate

approach was used (pooling sensitivity and specificity separately).

For tests where three-level (low, mid- and high-risk) results were produced, an innovative

approach adapted from a previous method used to pool three-level results for the diagnosis

of deep venous thrombosis was developed in [60]. The initial method used random-effects

meta-analysis was undertaken using WinBUGS 1.4.3 [123] to estimate the proportions of

individuals classified as low, medium or high risk in the ‘diseased’ (e.g. bacteraemic) and

non-diseased groups. The extension developed to this method allowed multivariate random

effects were applied to the calculation of each cutoff value. Data from studies which used a

similar rule but provided only two of the risk categories were also included in this analysis

[124]. These proportions were used to calculate likelihood ratios for each risk category and

corresponding 95% credible intervals. In such cases, where cutoff thresholds are fixed

between studies, not using a multinomial approach which accounts for variability of

threshold is less likely to introduce biases.

Two main types of analysis were used for the biomarkers meta-analysis, one using classical

statistical methods and one based upon Bayesian analysis. For the maximum likelihood

estimate approach, the data were pooled from studies reporting the same marker and

similar outcomes using a single cutoff from each study using the STATA routines metandi

and midas for analyses of HSROC curves and bivariate analyses with >3 studies, for those

with <4 studies a random effects linear regression was fitted using xmelogit. Where possible,

the most common cutoff value was chosen for greatest precision of estimate.

Analysis using out innovative Bayesian multinomial random effects method was undertaken

to derive proportions of the population with/without the outcome at each cut-off level of

the serum markers using monte-carlo markov chain modelling via WinBUGS 1.4.3 [123] with

non-informative priors. These results were then used to derive likelihood ratios for each

level with corresponding 95% credible intervals.

Where data for continuous variables were presented as mean and standard deviation, rather

than 2*2 tables, conversion was undertaken using the assumption of Normality (or log-

Normal in the case of serum proteins) and deriving the assumed 2*2 table for cutoffs

reported by other studies [Anzures, Cochrane Colloquium Freiburg 2008].

Heterogeneity between study results was explored through consideration of study

populations, study design, predictor variables assessed and outcomes chosen. Sensitivity
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analysis was undertaken by comparing results with the original (derivation) data set

included and excluded. The sparse nature of the data rendered statistical approaches such

as consideration of the I2 statistic inappropriate.

Where quantitative synthesis was not possible, a hypothesis generating narrative approach

was used. The narrative synthesis was undertaken according to the framework described in

“Systematic reviews: CRD's guidance for undertaking reviews in health care” [125]. This

proposes an iterative approach to developing a theory underpinning the data, using this to

structure a preliminary synthesis of the findings of the included studies, and exploring how

relationships within and between studies support or refute the hypothesis, with an

assessment of the robustness of the synthesis.

Methods of data display

Results of dichotomous meta-analyses are displayed using ‘cross-hairs’ plots. We developed

this innovative graphical augmentation of ROC space plotting to assist disseminating the

concepts of diagnostic meta-analysis to clinicians, and published this in a descriptive

methodological article [126].

Traditional approaches to displaying information from diagnostic meta-analysis have been to

use side-by-side forest plots of sensitivity and specificity, which allow the reader to view the

univariate heterogeneity of sensitivity and specificity, but are difficult to appreciate a

biaviate relationship. An alternative has been to open circles of the point estimate of each

study in ROC space, with a larger marker indicating a larger study. While this shows the

bivariate relationship, physically this plotting inverts the relationship most clinical readers

are familiar with from forest plots.

The cross-hairs plot combines the clinically familiar idea of a forest plot, with box of point

estimate and whiskers of individual study 95% confidence intervals, with the enabling the

bivariate relationship of sensitivity and specificity to be assessed easily and maintaining the

relationship between size-of-arms and uncertainty.

The basic plot uses a single colour or tone to identify the individual studies, with an

identified marker icon, and a distinct icon and colour/tone to display the meta-analytic

summary. This can be displayed as paired univariate meta-analyses (see Figure 7), or as a
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example, the rainbow sequence) by demonstrating how different thresholds affect the

sensitivity and specificity of a test (see Figure 9).

Figure 9: Multicolour cross-hair plot with explicit different test thresholds

Code is available for STATA in Appendix 5, and for users of the R statistical environment, the

package mada [127] has been adapted to include this display format after discussion with

the author.
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Chapter 4: Results of Systematic reviews of Clinical Decision

Rules and Serum Biomarkers

This chapter presents the results of the systematic review of clinical decision rules and

serum biomarkers in the prediction of adverse outcomes from episodes of febrile

neutropenia. They were undertaken in 2008-2010, prior to the IPD analysis explored in the

later chapters, and updated during the collection phase of the IPD study; 2010-2012. The

updates were, in part, triggered by undertaking the role of Clinical Lead on the National

Institute of Health and Clinical Effectiveness commissioned guideline on the Prevention and

Management of Neutropenic Sepsis [128] and the international Guideline on the

Management of Paediatric Febrile Neutropenia [129].

Clinical decision rules

This section of the Chapter deals with rules based primarily upon clinical assessments at the

point of admission or recognition of an episode of FNP, and addresses how they have been

derived and validated in predicting risks of infectious complications.

Study inclusion and exclusion

Figure 10 and Figure 11 describe the flow of candidate and eligible articles though the

review process. In the initial review, 2057 articles were identified from electronic searches

undertaken in Febuary 2009 and 3 further articles were identified from examining the

bibliographies of systematic reviews and included studies. From this, 89 articles were

identified for detailed examination, of which 25 articles reporting on 24 studies were eligible

for inclusion in the review. The update of the review (searches undertaken in September

2011) added a further 9 articles reporting on 8 studies. A total of 10,431 patients were

included in these reviews.
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Potentially relevant articles identified

from databases

Excluded articles; n=1971

Not cancer = 109

Not FNP = 1027

Potentially relevant articles assessed

in detail: n = 86

Excluded articles; n=64

Not FNP = 2; Not children = 4;

Children not extractable = 13;

Not CDR = 24; No appropriate outcomes

= 2; Not testing discriminating ability of a

CDR = 4; Original article not available = 5

Data extraction undertaken

n = 25 articles; 24 studies

Quantitative data available

n = 21

Included in quantitative synthesis

n = 12

No quantitative data available;

=3

Identified

from

reference

lists: n = 3

Figure 10: Flow diagram of study selection process; original CDR review
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Of the studies 29 deal with general infectious complications and ‘routine CDRs’ [5, 11-12, 22,

24-26, 69, 79, 130-148]and four address the specific issue of the detection of pneumonia

[149-152]. As described in the previous chapter, these studies address a distinct and

separate question than the use of a model of assessment of risk of complications of febrile

neutropenia. The review has been published [117] and its recommendation (to only

undertake chest radiography in the setting of signs or symptoms of lower respiratory tract

disease, or in patients with other comorbities which increase their risk of pneumonia) has

been incorporated into FNP guidelines [128-129]

Evaluation of Clinical decision rules

The 29 studies which examined general infectious complications included 15 which aimed to

derive a CDR [5, 11-12, 22, 24-26, 69, 79, 131-147]. Five studies did not describe a CDR [5,

69, 130, 142-143] as the data collected did not produce statistically significant predictors. A

total of 21 CDR were described. 6 studies sought primarily to validate a model’s

discriminatory ability [11-12, 22, 24, 130, 136], three also recalibrated a rule [12, 136, 144]

(see Table 3).

Four studies used a split sample to validate their rule [12, 26, 137, 141], and one study

provided data to test an alternative rule [69]. Six CDR have been subject to validation in

separate data sets from the derivation set [22, 134, 137, 141, 144, 153]. Bootstrap analysis

has been used in four cases [79, 140, 144, 147]. The remaining CDR were only explored in a

single dataset. Thirteen individual outcomes (Table 3) were predicted, these can be

summarised in five clusters: death, critical care requirement, serious medical complication,

significant bacterial infection, and bacteraemia.

Table 3: Clinical decision rules and outcomes under study

Citation Clinical prediction rule* Outcome #1 Outcome #2 Outcome

#3

Derivation Studies

Adcock 1999 High risk = hypotension/septic

shock, inflamed central line site,

recent high dose Ara-C

Gram positive bacteremia
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Alexander 2002 Low risk = Not

AML/Burkitts/Induction

ALL/Progressive-relapsed with

marrow involvement

(“Anticipated neutropenia

<7days”) and no significant

comorbidity (defined as

hypotension,

tachypnea/hypoxia <94%, new

CXR changes, altered mental

status, severe mucositis,

vomiting or abdominal pain,

focal infection, other clinical

reason for in-patient

treatment).

Bacteraemia Serious

medical

complicatio

n

Death

Ammann, 2003 Final decision tree model: 4

covariates were used to classify

low risk; bone marrow

involvement, leukocyte count

>0.5 x 10
9
/L, with clinical signs

of a viral infection, and aged up

to 6 years at presentation. For

those with a leukocyte count

≤0.5 x 10
9
/L, they were further

classified according to CRP level

(≤ or >50mg/L).

Severe bacterial infection,

(death from bacterial

infection, a positive culture

of normally sterile body

fluids, radiologically proven

pneumonia, clinically

unequivocal diagnosis of a

bacterial infection, or

CRP>150 mg/L)

(model #2) Low risk ≤3 factors. Risk factors

= bone marrow involvement,

absence of clinical signs of viral

infection, high serum CRP level,

low leukocyte count, presence

of a central venous catheter,

high haemoglobin level, and

Pre-B-cell leukaemia.

Severe bacterial infection

(death from bacterial

infection, a positive culture

of normally sterile body

fluids, radiologically proven

pneumonia, clinically

unequivocal diagnosis of a

bacterial infection, or

CRP>150 mg/L)

(model #3) Low risk ≤4 factors. Risk factors

= bone marrow involvement,

absence of clinical signs of viral

infection, high serum CRP level,

low leukocyte count, presence

of a central venous catheter,

high haemoglobin level, and

Pre-B-cell leukaemia.

Severe bacterial infection

(death from bacterial

infection, a positive culture

of normally sterile body

fluids, radiologically proven

pneumonia, clinically

unequivocal diagnosis of a

bacterial infection, or

CRP>150 mg/L)

Ammann, 2004

(same

population as

Ammann 2003)

Low risk = all of: maximum temp

≤39.7C, no comorbidity

requiring hospitalisation,

leukocyte count >0.5 x 10
9
/L,

and in partial or complete

remission

Bacteraemia

Amman 2010 Applied after 24 hours: 4 points

for chemotherapy more

Significant adverse

outcome; Severe bacterial
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intensive than ALL

maintenance,5 points for

hemoglobin > 90 g/L, 3 points

each for white blood cell count

<0.3 x10
9
/L, platelet < 50 x10

9
/L,

any adverse event occurred in

preceding 24h. Scores ≤9 are

low risk.

infection, admission to

HDU/ICU for organ support,

severe sepsis or septic

shock, potentially life-

threatening event. death

Ageyman 2011

(Same

population as

Amman 2010)

Applied after 24 hours: shaking

chills ever observed,

haemoglobin > 90 g/L, platelet

< 50 x10
9
/L, any other need for

IP treatment. No risk factors =

low risk

Bacteraemia after 24h

Badiei 2011 Platelets <20 x10
9
/L,

temperature ≥39°C, ANC

<100/mm
3
, mucositis, abnormal

CXR on presentation. Risk of

infection greater with more risk

factors: no single threshold

applied

Life threatening infection

Delebarre 2010

[abstract only]

1 point for hematological

malignancy, chemotherapy at

high-risk of prolonged

neutropenia, 1 point for clinical

signs of local infection, fever

>39°C, white cell count

<500/mm
3
or monocytes

<100/mm
3
and procalcitonin

>0.3ng/ml. TWO points for

severe sepsis. High risk >1 point.

Severe infection

Hakim 2008 Score from cancer diagnosis:

AML = 20, ALL/lymphoma = 7,

Solids = 0 Clinical presentation

of serious unwell or toxic = 14,

fever at presentation: ≥39°C =

11, ANC <100/mm
3
= 10 points,

Total score <24 = low risk of

serious infection or sepsis

Serious infection or sepsis

(complications

rule)

Score from cancer diagnosis:

AML = 11, others = 0. Relapsed

disease = 11. Non-white patient

= 8, Clinical presentation of

serious unwell or toxic = 20.

Total score <20 = low risk of any

medical complication

Any medical complication

Hann 1997 No rule described.

Individual features = disease

type, IV line, shock, duration of

granulocytopenia and admission

Bacteraemia
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temperature.

Jones 1996 Low risk = ANC ≥200/mm
3
,

outpatient at onset, in remission

Bacteraemia Clinical

infection

Klaassen, 2000 Low risk = AMC >100/mm
3
; Mid-

risk= AMC <100/mm
3
, and temp

≤39°C; High-risk =

AMC<100/mm
3
, but temp >39°C

Bacteraemia Significant

bacterial

infection

(defined as

any blood or

urine

culture

positive for

bacteria,

interstitial

or lobar

consolidatio

n on CXR, or

unexpected

death from

infection

before ANC

recovery

(>0.5 x

10
9
/L))

(validation set) As original

Lucas, 1996 Low risk = no chills,

hypotension, or a requirement

for fluid resuscitation at

admission

Positive blood culture ICU Septic

death

Mian 2010

[abstract only]

No clear rule – includes blood

culture and CRP results

Admission to critical care

Paganini 2007 Low risk <4. Mid-risk = 4. High

risk = >4. Advanced stage of

disease = 3 points, Comorbidity

= 2 points, Bacteraemia = 1

point

Death

(validation set)

Rackoff, 1996 Low risk = AMC >100/mm
3
; Mid-

risk= AMC <100/mm
3
, and temp

≤39°C; High-risk =

AMC<100/mm
3
, but temp >39°C

Bacteraemia Clinical

reason for

admission

(validation set) Low risk = AMC >100/mm
3
.

Riikonen 1993 No rule described.

No variables emerged as

Bacteraemia Suspected

sepsis/Fever

of Unknown

Focal

infection
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significant. Origin

Rojo, 2008 No rule described.

No variables emerged as

significant.

‘Unfavourable outcome’ -

Compound of:

haemodynamic instability,

new focus if bacterial

infection, 72h persistent

fever, unresponsive CRP, or

continuing +ve blood

cultures 72 hours after

treatment

Rondinelli, 2006 Low risk = 2.5 to 5 points:

Intermediate risk = 5.5 to 9

points: High risk = Greater than

9 points. 4.5 points for: clinical

site of infection; 2.5 points for:

no URTI; 2 points for: CVC; 1

point for: aged ≤5y, fever

>38.5°C, Hb ≤7g/dL

‘Serious infectious

complication’ – sepsis,

shock, +ve blood cultures,

infection-related death

Santolaya, 2001 Low risk = 0 factors or isolated

low plts or <7 days from

chemotherapy. High risk = >1

risk factor, or isolated high CRP,

hypotension or relapsed

leukaemia. Risk factors: CRP

≥90mg/L, hypotension, relapsed

leukaemia, plts ≤50 x10
9
/L,

chemotherapy within 7 days

Invasive bacterial infection

(positive blood culture – 2

for CoNS, positive bacterial

culture from usually sterile

site, or sepsis syndrome

and/or focal organ

involvement and

haemodynamic instability

and severe malaise)

Death

Tezcan 2006 No rule described.

Significant association between

hypotension, uncontrolled

cancer and mortality. Duration

of fever only independent risk

factor for microbiologically

documented infection.

Death Clinically

suspected

infection

Microbiol

ogically

document

ed

infection

West, 2004

(internally

validated using

bootstrap)

Very high risk = temp >39.5°C

and CRT >3s; High risk = temp

>39.5°C or CRT >3s; Low risk =

neither

Requirement for critical

care within 24 hours of

presentation (fluid boluses

≥60ml/kg, inotropes or

ventilation)

Validation Studies

Amman 2010 Klassen, Amman 2003,

Santolaya, Alexander and

Rondellini rules

Bacteraemia Serious

medical

complicatio

n

Invasive

bacterial

infection

Baorto, 2001 Low risk = AMC >100/mm
3
. Bacteraemia ICU/Death

related to

bacteraemia

within 72

hours of
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admission

for FN

Recalibration Low risk = AMC >155/mm
3
.

Dommett, 2009 Low risk = Not

AML/Burkitts/Induction

ALL/Progressive-relapsed with

marrow involvement

(“Anticipated neutropenia

<7days”) and no significant

comorbidity (defined as

hypotension,

tachypnea/hypoxia <94%, new

CXR changes, altered mental

status, severe mucositis,

vomiting or abdominal pain,

focal infection, other clinical

reason for in-patient treatment)

and fever responding at 48h

Bacteraemia

Gala-Peralta,

2005

Low risk ≤2 of: <1yr, poor bone

marrow response (plt <75, ANC

<100/mm
3
.),uncontrolled solid

tumour or relapsed leukaemia,

chemotherapy <10d earlier,

rapid neutropenia, cardiac &

renal dysfunction

Positive blood culture

Macher, 2009 Klassen, Amman 2003,

Santolaya, and Rondellini rules

Bacteraemia Serious

medical

complicatio

n

Invasive

bacterial

infection

Madsen, 2002 Low risk = AMC >100/mm
3
; Mid-

risk= AMC <100/mm
3
, and temp

≤39°C; High-risk =

AMC<100/mm
3
, but temp >39°C

Positive blood culture

Recalibration Low risk = AMC >10/mm
3
; Mid-

risk= AMC <10/mm
3
, and temp

≤39.5°C; High-risk =

AMC<10/mm
3
, but temp

>39.5°C

Positive blood culture

Meidema, 2010 Amman 2010 (SPOG rule) Serious medical

complication

Petrelli, 1991 Low Risk: patients with solid

tumors and lymphomas stage I-

II.High Risk: patients with

leukemias and lymphomas stage

III-IV

Positive blood culture

Santolaya, 2002 Low risk = 0 factors or isolated

low plts or <7 days from

Invasive bacterial infection

(positive blood culture – 2
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chemotherapy. High risk = >1

risk factor, or isolated high CRP,

hypotension or relapsed

leukaemia. Risk factors: CRP

≥90mg/L, hypotension, relapsed

leukaemia, plts ≤50x10
9
,

chemotherapy within 7 days

for CoNS, positive bacterial

culture from usually sterile

site, or sepsis syndrome

and/or focal organ

involvement and

haemodynamic instability

and severe malaise)

Tezcan, 2006

validation

Low risk = AMC >100/mm
3

Death Clinically

suspected

infection

Microbiol

ogically

document

ed

infection

* unless stated, the rule dichotomises into low and high risk groups

ALL = acute lymphoblastic leukaemia. AML = acute myeloid leukaemia. AMC = absolute monocyte

count. CoNS = Coagulase-negative Staphylococcus CRP = C-reactive protein. CRT = capillary refill time.

CXR = chest X-ray. Hb = haemoglobin. Plt = platelets.

QUADAS criteria

There was variation in the quality and applicability of the studies with respect to population

under study (QUADAS questions “Was the spectrum of patients representative of the

patients who will receive the test in practice?” and “Were the same clinical data available

when test results were interpreted as would be available when the test is used in

practice?”). Thirteen definitions of febrile neutropenia were used, with twelve definitions of

fever and four of neutropenia. However, all definitions are clinically similar, with any

variation at the ‘lowest risk’ part of the spectrum of classification. In brief, most of the

studies allowed patients who presented with febrile neutropenia following standard

chemotherapy to be included. Some variations were found: eight studies excluded any

inpatients, and examined only new episodes in outpatients. Ten studies excluded patients

following stem cell transplants, and a further study stated no bone marrow transplant

patients were included. One study examined only ‘lower risk’ patients, to further

discriminate in this group [143]. The inclusion and exclusion criteria of the studies can be

seen in detailed form in
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Table 4: Participant characteristics by study, assessing applicability

Citation Study

location

Study

years

Inclusion criteria Exclusion criteria Total

number

of

patients

Total

number

of

episodes

Age of

patients

Adcock

1999

North

Carolina, USA

1995 -

1996

ANC <1000cells/

mm
3
, temperature

≥38°C, HIV-ve

33 88 Median 5y

(range 1y to

18y)

Alexander

2002

Boston, USA 1994 -

1995

ANC ≤500/ mm
3
,

temperature

>38.5°C.

Outpatient status.

Post stem cell

transplant

104 188 Mean 8.9y

(SD 5.7y)

Ammann

2004

Berne,

Switzerland

1993 -

2001

ANC ≤500cells/

mm
3
or

≤1000cells/ mm
3

and falling,

axilliary

temperature

≥38.5°C for ≥2h, or

once ≥39°C

Patients with FN

due to malignant

bone marrow

suppression, or

following

myeloablative

therapy.

132 364 Not reported

(Amman

2004,

subset

used)

As above As above Patients with

established severe

bacterial infection.

111 285 Median 6.3y

(interquartile

range 3.2y to

12.1y)

Amman

2010

Multiple

Swiss and

German

centres

2004-

2007

ANC ≤500cells/

mm
3
, temperature

≥38.5°C for ≥2h

Post stem cell

transplant, aged

<1y or >18y

206 423 Median 6.9y

(interquartile

range 3.8y to

11.6y)

Agyman

2011

Same as

Amman 2010

Badiei

2011

Iran, Asia 2008-

2009

ANC <500cells/

mm
3
, oral

temperature

≥38.0°C ≥11h, or

once >38.5°C

Inpatients, post

stem cell

transplant, newly

diagnosed with

malignancy

68 120 Mean 6.5 in

“life-

threatening

infection”

group, 5.6y

in non~

group

Baorto

2001

St Louis,

Dallas &

Houston, USA

1990 -

1996

ANC <500cells/

mm
3
, temperature

≥38°C, 12m or

older

History of BMT 558 1171 Mean 8.0y

(range 1y to

23y)

Delebarre

2010

France,

Europe

2007-

2009

Unclear Unclear; abstract

only

146 316 Mean 8y,

(range:0.5y –

17.5y)

Dommett

2009

South-East

England, UK

2004-

2005

ANC ≤1000cells/

mm
3
, temperature

≥38.0°C twice in

<12h, or once

None 368 762 Median age

5 years 7

months

(range 1

month to 17
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≥38.5°C years 6

months).

Gala-

Peralta

2005

Barcelona,

Spain

2002 ANC ≤500/ mm
3
,

'fever'

(temperature not

defined)

30 62 Mean 8.7y

(range 1.2y

to 14.7y)

Hakim

2008

Boston, USA 2004-

2005

Outpatient, ANC

<500cells/ mm
3
,

oral temperature

≥38.0°C ≥11h, or

once >38.3°C

Inpatients, stem cell

transplant

recipients

332 332 Median 6y

(range 2.4

months –

21.6 years)

Hann 1997 Multiple

centres

across

Western

Europe

1986 -

1994

ANC ≤1000cells/

mm
3
, temperature

≥38.0°C twice in

<12h, or once

≥38.5°C, in an

EORTC trial

759 759 Median 8y

Jones 1996 North

Carolina, USA

1987 -

1993

ANC <500cells/

mm
3
, oral

temperature

≥38.0°C ≥12h, or

once >38.5°C

None reported, but

‘none of the

children were

undergoing BMT’

127 276 Mean 8y

(range 2m to

21y)

Klaassen

2000

Toronto,

Canada

1996 -

1998

ANC <500cells/

mm
3
or

≤1000cells/ mm
3

and falling.

Temperature

>38.0°C ≥2

occasions in ≥12h,

or once >38.5°C,

or localised

infection

New malignant

diagnosis; bone

marrow or stem-

cell transplantation

in preceding 6

months. Another

medical condition

that independently

required inpatient

observation.

Interstitial infiltrate

or lobar

consolidation on

chest x-ray

140 227 Median 6.8y

(range 6m to

17y:

derivation

set)

(validation

set)

Unclear Unclear 136 Median 7.6y

(range 1y to

18y:

validation

set)

Lucas 1996 New York,

USA

1990 -

1992

ANC <500cells/

mm
3
or

<1000cells/ mm
3

and falling,

temperature

≥38.0°C ≥2

occasions in ≥12h,

or once ≥38.5°C.

Outpatient status

Received blood

product

transfusions within

6 hours or cytosine

arabinoside within

2 days of

presentation

161 509 Mean 9.2y

(range 1y to

18y)
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Madsen

2002

Indianapolis,

USA

1997 New admissions

‘coded’ as 'fever of

unknown origin'

and ANC

<500cells/ mm
3

History of BMT.

AML. In-patient

status

76 157 Mean 8y

(range 2m to

18y)

Mian 2010 Arkansas,

USA

Unclear Unclear Unclear 29 51 Rrange:1y –

21y)

Paganini

2007

Multiple

centres

across

Argentina

(derived 1

institution,

validated in 7

further ones)

2000 -

2004

ANC <500cells/

mm
3
or

<1000cells/ mm
3

and falling,

temperature

>38.0°C ≥2

occasions in 24h,

or once >38.5°C

History of BMT 458 714 Mean 7y

(range 1m to

17.9y:

derivation

set)

(Paganini

2007

validation

set)

523 806 Mean 7.1y

(range 1m to

17.5y:

validation

set)

Petrelli

1991

Camargo,

Brazil

1988 -

1989

ANC ≤500cells/

mm
3
, temperature

≥37.5°C ≥3

occasions in ≥24h,

or once ≥38.0°C.

Outpatient status

Fever associated

with blood product

transfusions or

drugs

146 240 Mean 7.3y

Rackoff

1996

Indianapolis,

USA

1994 -

1995

ANC <500cells/

mm
3
, temperature

>38.0°C ≥3

occasions in ≥24h,

or once >38.5°C.

Outpatient status

72 115 Range 9m to

18y:

derivation

set

(validation

set)

1993 57 Validation

set not

reported

Riikonen

1993

Helsinki,

Finland

1989 -

1990

ANC <200cells/

mm
3
, temperature

>38.0°C ≥2

occasions in ≥4h,

or once >39.0°C

Antibiotics

(excluding Septrin)

in the preceding 3

weeks

46 91 Range 1y to

16y

Rojo 2008 Santiago,

Chile

2003 -

2006

Episode of febrile

neutropenia which

was ‘low risk’

according to the

PINDA criteria

33 47 Median 5.8y

(1.1y to

15.7y)

Rondinelli

2006

San Paulo,

Brazil

2000 -

2003

ANC <500cells/

mm
3
or

≤1000cells/ mm
3

and falling,

temperature

≥37.8°C ≥3

Second or

subsequent

episode. Episodes in

progressive disease

(<6m from between

completing therapy

283 283 Mean 5.2y
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occasions in ≥24h,

or once >38.0°C.

First episode per

patient (new or

relapsed disease)

and relapse).

History of BMT

Santolaya

2001

5 centres in

Santiago,

Chile

1996 -

1997

ANC ≤500cells/

mm
3
, axilliary

temperature

≥38.0°C ≥2

occasions 1h

apart, or once

≥38.5°C

Not reported 257 447 Mean 7y

(range 6m to

18y)

Santolaya

2002

6 centres in

Santiago,

Chile

1999 -

2000

ANC ≤500cells/

mm
3
, axilliary

temperature

≥38.0°C ≥2

occasions 1h

apart, or once

≥38.5°C

Not reported 170 263 Mean 7y

(range 7m to

17y)

Tezcan

2006

Antalya,

Turkey

1996 -

2004

ANC <500cells/

mm
3
or

<1000cells/ mm
3

and falling,

axilliary

temperature

≥38.0°C ≥2

occasions at 4h

intervals, or once

>38.3°C

Fever that occurred

following

transfusion of blood

and blood products

or administration of

G-CSF

240 621 Median 6y

(range 1m to

17y)

West 2004 California,

USA

1994 -

1998

ANC <500cells/

mm
3
or

<1000cells/ mm
3

and falling,

axilliary

temperature

≥38.0°C ≥3

occasions in 24h,

or once ≥38.5°C,

within 21d of

chemotherapy

Induction, relapse

and refractory

disease. Collapse

within 1h of

admission

143 303 Mean 7.6y

(SD 4.6y)

Age: y = years, m = months. ANC = absolute neutrophil count. HIV = human immunodeficiency virus.

BMT = bone marrow transplant.

Other QUADAS criteria

Biases due to threats to independent outcome assessment were present in some studies

(see Table 5). Note the three studies which used aspects of the outcome assessment in the

decision rule [19, 23, 132, 153]. In Alexander [23] the outcome of ‘significant medical
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complication’ included ‘hypotension and severe mucositis’, as did the rule describing high-

risk, making these features tautolgous and artificially inflating the sensitivity of the

‘predictive’ rule. Hypotension was found in 55% (5/9) patients and severe mucositis in 12%

(1/9) patients with a ‘significant medical complication’. In Ammann’s studies [19, 153], the

outcome of severe bacterial infections included episodes where CRP > 150 mg/dL without

other microbiological confirmation, and the rule included CRP ≤50 mg/dL. CRP > 150 mg/dL

was found in 50% (53/106) of episodes, but is unclear how many of these individuals had a

further reason to be classified as suffering ‘severe bacterial infection’. The study of

Delebarre [132] is only an abstract and the degree of incorporation bias cannot be

accurately assessed.

Table 5: Further informative QUADAS measures; CDR reveiw

Citation Study design Verification procedure biases Interpretation biases

Partial

verification

Differential

verification

Incorporation

bias

Review bias Review bias

Prospective or

retrospective?

Did the whole

sample or a

random

selection of

the sample,

receive

adequate

outcome

assessment?

Did patients

receive the

same

outcome

assessment

regardless of

the CDR

result?

Was the

outcome

assessment

independent of

the CDR?

Were the

CDR results

interpreted

without

knowledge

of the

results of

the

outcome

assessment?

Were the

outcome

assessment

results

interpreted

without

knowledge of

the results of

the CDR?

Adcock

1999

Retrospective Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Unclear –

not blinded

Unclear - not

stated

Alexander

2002

Retrospective Not stated Not stated No – serious

medical

complication

included

hypotension &

mucositis (which

are part of the

CDR)

Yes Yes

Ammann,

2003 &

2004

Retrospective Yes Yes, although

some tests

were

undertaken if

No – one

variable from

CDR was in

outcome

Unclear -

not blinded

Unclear - not

blinded
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clinically

indicated

assessment (C-

reactive protein

level, although

cutpoint

differed; 50mg/L

in CDR vs

150mg/L in

outcome

assessment).

Amman

2010 and

Agyman

2011

Prospective Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Yes Yes

Badei

2011

Prospective Yes Yes Yes Yes Yes

Baorto,

2001

Retrospective Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Yes Unclear - not

blinded

Delebarre

2010

Prospective No. Signs of

local infection

or severe

sepsis were in

rule &

outcome.

Unclear Yes Unclear -

not stated

Unclear - not

stated

Dommett

2009

Prospective No. Signs of

local infection

or severe

sepsis were in

rule &

outcome.

Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Yes Unclear – not

blinded

Gala-

Peralta,

2005

Retrospective Yes Yes Yes Unclear –

not blinded

Unclear - not

blinded

Hann

1997

Retrospective

(RCT trial

data)

Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Yes Unclear - not

blinded

Jones

1996

Prospective Yes Yes, although

some tests

were

undertaken if

clinically

Yes Yes Unclear - not

stated
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indicated

Klaassen,

2000

Prospective Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Yes Yes - blinded

Lucas,

1996

Retrospective Yes Yes Yes Yes Unclear - not

blinded

Madsen,

2002

Retrospective

electronic

record

Yes Yes Yes Yes Unclear.

Review was

blinded, but

of unblinded

case notes

Macher

2011

Retrospective Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Unclear -

not stated

Unclear - not

stated

Mian

2010

Prospective Unclear Unclear Unclear Unclear -

not stated

Unclear - not

stated

Paganini

2007

Prospective Yes Yes Yes Yes No - but

mortality

Petrelli,

1991

Prospective Unclear Yes Yes Yes No

Rackoff,

1996

Prospective

(Derive) and

Retrospective

(Validate)

Yes Yes Yes Yes (Derive)

and

Unclear –

not blinded

(Validate)

Unclear - not

blinded

Riikonen

1993

Prospective Yes Yes Yes Yes No

Rojo,

2008

Retrospective Yes Yes Yes Unclear -

not blinded

Unclear - not

blinded

Rondinelli,

2006

Retrospective Unclear Yes Yes Yes Yes

Santolaya,

2001

Prospective Yes Yes, although

some tests

were

undertaken if

clinically

indicated

Yes Yes Yes - blinded

Santolaya, Prospective Yes Yes, although

some tests

Yes Yes Yes - blinded
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2002 were

undertaken if

clinically

indicated

Tezcan

2006

Retrospective Yes Yes Yes Yes Unclear - not

stated

West,

2004

Retrospective Yes Yes Yes Unclear -

not blinded

Unclear - not

blinded

Quality of CDR derivation

The 22 reports of attempts to derive a CDR varied in population, outcomes chosen and the

number of those outcomes as discussed above. They also varied in the variables assessed,

model-building technique, the way that missing data were reported and handled, the way

that multiple-episode data were used and in the use and categorisation of continuous and

categorical variables. All of these features may have influenced the CDRs produced and

provide some explanation of the differences between them.

The number of events per variable considered is generally important in producing replicable

studies. Most studies building a CDR used a large number of variables (median 16, range 2 to

39) and had a small number of events (median 41, range 4 to 179) with 76% (16/21) studies

having less than ten events per variable under consideration. No study had more than 14

events per variable (see Appendix 6).

The technique used to build the model also varied. Almost all were built using multivariable

regression (see Appendix 7 for details). Five models from four publications used alternative

approaches. Two models did not use multivariable analysis [23, 133], two used CART

(classification and regression tree) techniques [131]. One model [79] was offered alongside a

logistic regression, and came to different conclusions from the same dataset. No model

building study clearly assessed if relationships between the outcome and the explanatory

variables could hold non-linear functional forms, and with the exception of one study [144,

147], nor did they clearly examine co-linearity (the issue of multiple variables being highly

correlated as described in chapter 3).
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Continuous variables, such as age, blood pressure and absolute monocyte count, were used

in the model derivation by seven studies as continuous data and they went on separately to

create categories (three by recursive partitioning [141, 144, 147], two by ROC analysis[139,

146],and unstated in the remaining two which were reported as abstracts only [132, 145]).

Five studies used some variables in continuous form and making others ordinal [5, 69, 137,

140, 142] In these studies, four did not state clearly how the cutpoints had been

determined, one stated ‘clinical judgment’ was used [5]. A further eight used only

categorised variables. Only one of these described clearly a literature-based choice of

cutpoints [26]. Of the derivation studies, three did not use purely categorical variables [137,

141-142], 15 did not clearly state the reasons for defining their cutpoints, 3 used ‘clinical

judgement’ [5, 26, 146] and one study stated they had used ‘trend to significance’ from

bivariable analysis [133] (see Appendix 7).

Multiple episodes in individual patients were treated primarily as if they came from

unconnected individuals in twelve studies (see Appendix 7). A further three studies

performed a secondary analysis which looked at only the ‘first included case’ and found ‘no

significant differences’ [79, 139, 153]. The first case approach is not necessarily the patient’s

first-ever presentation with a febrile neutropenic episode, but is the first recorded during

the study in question. Other approaches to address the issue of multiple episodes included

the use of only first episode data (four studies) [5, 134, 138, 146] and extended modelling

techniques that try to account for the clustering; a generalised estimating equation (four

studies) [25, 141, 144, 147] or generalised linear mixed models (two studies) [26, 140].

The issue of missing data was described in only eight of the derivation studies [26, 79, 134,

141, 144, 146-147, 153], six of them used a form of complete case analysis (after exclusion

of potential variables where <90% of cases had collected the information in two linked

studies) and two linked studies used imputation [144, 147]. No study details an assessment

of the type of missingness of the data, although seven of the eight who commented on

missing data analysis also described the extent of the problem. The remaining studies

neither clearly defined the quantity of missing data nor how it was addressed (details in

Appendix 7).
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Clinical Decision Rule performance

The CDRs designed to predict general infectious complications have diverse test

performance. This heterogeneity has largely been explored using a narrative structure, as

pooling across all the studies was not possible due to the varied rules, outcomes and

populations studied. Initial hypotheses to explain the differences included: the design of the

study (derivative better than validating), the population (both geographical, where

developing-world studies would be different than developed-world, and case-mix, where

less success was predicted from populations where higher-risk cases had been systematically

removed), the complexity of the rule (more complex rules would be better) and outcomes

chosen (the rules differing between outcomes, without a clear a priori hypothesis of which

outcomes may be easier to detect). These were examined by analysis of the tabulated CDR

performance data (Appendix 8) and graphically with plots of sensitivity and specificity

(Figure 12, Figure 13, Figure 14, Figure 15, Figure 16)

Examining potential reasons for the differences found that the derivation studies as

expected, had better accuracy than validation studies. For example, for the outcome

“serious/invasive infection” the median LR- = 0.06 (range 0 to 0.33) in derivation studies

compared with median LR- = 0.35 (range 0.11 to 2.28) for validation studies. This was less

marked but similar for “bacteraemia”, the median LR- = 0.21 (range 0 to 0.72) in derivation

studies compared with median LR- = 0.33 (range 0 to 0.74). The results of a pooled analysis

of the ‘Rackoff’ and ‘Alexander’ rules (see later for details) supported this previously noted

overestimation of the rule performance. The choice of outcome also appears to alter the

rule performance, but the different number of studies and the heterogeneity of rules and

populations make this difficult to examine clearly.

Those CDRs developed in a population where the highest risk patients were excluded (e.g.

bone marrow transplant recipients) did not seem to be particularly better or worse than the

rules developed without these exclusions. The few rules derived in South America appeared

to be from higher quality studies [22] but not significantly different in terms of performance

in their original setting than other rules, but did not show geographical transportability (see

Figure 14 and Figure 16, explored below). The issue of geographical and temporal replication

has been infrequently examined in these studies.
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Examination of the detailed content of all the proposed rules shows they address four major

domains (Appendix 9. Individual factors used in clinical prediction rules). The first can be

considered stable patient-related factors, including age and the underlying disease. The

second group reflects treatment; the presence of a central venous catheter and the type of

or duration since last chemotherapy. The third group reflects episode specific clinical

features, such as maximum temperature, the patient’s blood pressure or clinical features of

infection. The final group contains episode specific laboratory test values. These are various

markers of bone marrow function where, excepting [24], each rule uses a single item which

reflects one of the three major cellular components: haemoglobin, platelets, total white cells

or subset of neutrophils or monocytes, and serum inflammatory markers (C-reactive

protein). The results of the detailed systematic review of the predictive value of such serum

inflammatory markers follows in the later part of this chapter.

The complexity of the rule e.g the Rackoff rule of AMC > 100 cells/mm3 compared with the

five items of the PINDA rule does not seem to have importantly improved their predictive

value, though this is difficult to judge effectively as the rules have not been subject to the

most extensive validation to enable such comparisons to be undertaken.

When addressing the nature of individual factors found to be significantly associated with

adverse outcomes there are many similarities (Appendix 10, tables a-c, subdivided by

outcome class). In predicting bacteramia, the disease state (induction/remission or bone

marrow involvement) appears important. Age does not appear a strong linear predictive

factor. The presence of a central line and use of higher-intensity chemotherapies may be.

Episode related factors of importance include outpatient status, other co-morbidities, the

presence of respiratory distress (including proven pneumonia), hypotension or shock,

mucositis and maximum temperature. A clinical site of infection is probably not a predictive

factor. Blood tests with importance include platelet and absolute monocyte count, and

potentially higher levels of haemoglobin; neutrophil count appears unimportant.
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To predict significant infection (rather than bacteramia alone), various other factors are

added. The age of the patient achieves a significant linear prediction ability and a clinical site

of infection is important. Outpatient status has not been assessed in this setting, so

comment is not possible. Low haemoglobin is also associated with adverse outcomes in

some studies [137], and the opposite in others, and once again neutrophil counts are not

important.

The few studies that address ICU and death find that the age and disease state remain

important, as do clinical assessments of circulatory and respiratory compromise. Higher

temperatures remain highly predictive, and neutrophil counts appear unrelated to these

outcomes, where monocyte and platelet counts retain some value.

Quantitative meta-analysis

The results of combining studies which used identical clinical decision rules was undertaken

in three cases in the original review and supplemented with a further four in the update

review. The three-level Rackoff rule [141] to examine bacteraemia (a total of 7 data sets:

[12, 26, 69, 136, 141] was not updated, nor was Paganini’s rule to predict mortality [137]

(with one derivation and one validation set). There was sufficient data to update a meta-

analysis of the Santolaya (PINDA) rule for serious infectious complications [139] and

additional data to undertake a meta-analysis of the validity of the Alexander, Amman 2004,

SPOG and Klaassen rules.

The results of the Rackoff rule combined analysis show a moderate ability to discriminate

between three groups of individuals at low, moderate and high risk of bacteraemia.

Exclusion of an outlier ([69]; see Figure 2) led to a more Normal distribution of the posterior

probability plots, in keeping with it being qualitatively different than the other studies. A

further sensitivity analysis excluding the initial rule derivation study demonstrated reduced

discriminatory ability (see Table 6.)

The most accurate estimate of predictive accuracy is likely to come from the analysis of 5

data sets (excluding the derivation and outlier); LR [low] = 0.26 (95% CrI 0.08 to 0.72) , LR
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[medium] = 0.72 (95% CrI 0.14 to 2.15), LR [high] = 3.11 (95% CrI 1.25 to 8.01). (See Figure

3.)

Table 6: Combined analysis of Rackoff rule data with alternative exclusions

LR[High] LR[Middle] LR[Low]

All Included

3.03

(95% CrI 1.28 to 6.5)

0.81

(95% CrI 0.14 to 2.15)

0.27

(95% CrI 0.06 to 0.79)

Excluding Tezcan
3.2

(95% CrI 1.49 to 6.88)

0.76

(95% CrI 0.3 to 1.73)

0.22

(95% CrI 0.06 to 0.6)

Excluding Derivation
2.9

(95% CrI 1 to 7.2)

0.77

(95% CrI -0.08 to 2.82)

0.32

(95% CrI 0.08 to 0.93)

Excluding Derivation

and Tezcan

3.11

(95% CrI 1.25 to 8.01)

0.72

(95% CrI 0.14 to 2.15)

0.26

(95% CrI 0.08 to 0.72)

Figure 12: Pooled and individual results of the ‘Rackoff’ model studies

Key for Figure 12

O & blue = low vs. medium-high studies

X & grey = low/medium vs. high studies

Dark blue = MCMC summary estimates

LR [low] = 0.20 (95% CrI 0.052 to 1.54)

LR [medium] = 0.83 (95% CrI 0.31 to 1.29)

LR [high] = 3.28 (95% CrI 0.40 to 7.32)

Grey dotted = Bivariate summary estimates

LR [low] = 0.30 (95% CI 0.14 to 0.63)

LR [medium] = not estimable

LR [high] = 3.01 (95% CI 2.26 to 4.00)
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If the meta-analysis is restricted to studies in Chile (as with the original review), the PINDA

group (Santolaya) model shows a similar ability to differentiate between low- and high- risks

groups when considering a wider definition of ‘serious infection’, (LR [low] = 0.17 (95% CI

0.12 to 0.23) LR [high] = 2.87 (95% CI 2.43 to 3.38) ). The Paganini model demonstrates an

ability to quite accurately predict mortality LR [low] = 0.11 (95% CI 0.04 to 0.30), LR

[medium] = not estimable, LR [high] = 11.0 (95% CI 8.08 to 15.0). However, in undertaking

this geographically restricted analysis, the results may be falsely reassuring.

Figure 13: Pooled and individual results of the ‘Rackoff’ model studies

excluding derivation and Tezcan

Figure 14: Pooled and individual results of the ‘PINDA' model

studies from South America

Key for Figure 13

Dark blue = MCMC summary estimates

LR [low] = 0.26 (95% CrI 0.08 to 0.72)

LR [medium] = 0.72 (95% CrI 0.14 to 2.15),

LR [high] = 3.11 (95% CrI 1.25 to 8.01)

Key for Figure 14

Random effects model summary estimates

LR [low] = 0.17 (95% CI 0.12 to 0.23)

LR [high] = 2.87 (95% CI 2.43 to 3.38)
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When the PINDA rule is used in datasets from Europe, there is a marked inconsistency and

lack of repeatability in the results (see Figure 16) . This apparent lack of geographical

transportability is highly important when deciding to practically use a decision rule.

Figure 16: Pooled and individual results of the ‘PINDA' model studies from Europe and South America
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Figure 15: Pooled and individual results of the ‘Paganini’ model

studies

Amman

2010

Macher

2010

Key for Figure 15

O & blue = low vs. medium-high studies:

X & grey = low/medium vs high studies

Grey = Random effects model summary estimates

LR [low] = 0.11 (95% CI 0.04 to 0.30)

LR [medium] = not estimable

LR [high] = 11.0 (95% CI 8.08 to 15.0)
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As no further studies allow evaluation of the Paganini rule, no further comment can be

made.

The update review allowed for the analysis of five further rules: Klaassen, Amman 2003 (in

which meta-analysis was undertaken), and the Rondellini, SPOG and Alexander rules (where

data were not suitable for meta-analysis).

The “Klaassen” rule is based on a single feature: an absolute monocyte count of greater than

100/mm3 to predict patients less likely to have significant infection. Data were pooled from

four studies from the original review [12, 26, 136, 141] and two new sources [130, 144]. The

results of this analysis give a pooled average sensitivity of 88% (95% CI 84 to 91%) and

specificity of 36% (95% CI 27 to 45%), see Figure 17.

Figure 17: Pooled and individual results

of the ‘Klaassen’ model studies

The “Ammann” rule was assessed in the three studies providing data to test this rule to

detect serious consequences of FNP [79, 130, 144]. The combined average sensitivity was

98% (95%CI 91 to 99%) but pooled average specificity only 13% (95% CI 8% to 21%), see

Figure 18.
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Key for Figure 17

Random effects model summary estimates

LR [low] = 0.33 (95% CI 0.20 to 0.59)

LR [high] = 1.38 (95% CI 1.15 to 1.65)
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The “Alexander” rule again examined adverse clinical consequences. This rule was assessed

by three studies [134, 144, 154]. There was marked heterogeneity in the results of these

three studies (see Figure 19). When used at reassessment after 48hrs of hospitalisation,

there was marked improvement in the discriminatory ability of the rule [154] (sensitivity =

100%, specificity = 39%). The derivation was undertaken in North America, the evaluations in

Europe.
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Figure 18: Pooled and individual results of the 'Amman' model studies

Figure 19: Individual results of the 'Alexander' model studies

Key for Figure 18

Random effects model summary estimates

LR [low] = 0.15 (95% CI 0.04 to 1.12)

LR [high] = 1.12 (95% CI 0.98 to 1.25)
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The rule of Rondellini [138] describes a low-risk group for adverse clinical consequences, and

was assessed in two validation datasets. These demonstrated a sensitivity of 84%[144] and

62%[130] and both estimated specificity at 43%.

The SPOG2003 was only evaluated in one study and varies from the other systems in that it

is applied after 8-24 hours of hospitalisation. This model was shown to have a sensitivity 92%

and specificity of 45%[144]. A validation of this model demonstrated poorer sensitivity (82%)

and slightly better specificity (57%) [155], using data from a similar region (both European)

but in countries using slightly different primary treatment regimes.
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Biomarkers studies

This section of the Chapter addresses studies which have examined the role of serum

biomarkers in the prediction of infectious complications. The assessment of such biomarkers

would be ideally undertaken as additional to previously gathered clinical data, but the

studies undertaken did not commonly appear to have this design. Accordingly, a decision

was made to review them separately, and update that review independently.

Study inclusion and exclusion

Figure 20 describes the flow of candidate and eligible articles though the original review

process. 368 articles were identified from electronic searches, of which 72 articles were

identified for detailed examination. Seven further articles were identified from examining

systematic reviews and the bibliographies of included studies. From this, 27 articles

reporting on 25 studies were eligible for inclusion in the review, with 26 articles providing

outcome data. Of these, 13 could be included in the quantitative synthesis.

The update review found 13 further studies, of which quantitative data were included from

12 studies (Figure 21).

In total 38 studies were included in the review, of which 37 provided quantitative data and

22 studies were included in the meta-analyses.
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Potentially relevant articles identified from

databases; n = 368

Excluded articles; n = 296

 Not cancer = 20

 Not FNP = 105

 Not children = 19

 Not marker = 117

 No appropriate outcomes = 2

 Not testing marker = 31

 Two gate design = 2

Potentially relevant articles assessed in

detail; n = 72

Excluded articles; n = 52

 Not FNP = 9

 Not children = 7

 Children not extractable = 18

 Not marker = 2

 No appropriate outcomes = 3

 Data not extractable = 1

 Not testing marker = 10

 Duplicate publication = 1

 Original article not available = 1

Data extraction undertaken

n = 27

Studies with quantitative data available

n = 25

Included in quantitative synthesis

n = 13

‘Duplicate’ publication, n= 2

(One erratum for previous article & one

study published over 2 articles)

Identified from

reference lists;

n = 7

Figure 20: Flow diagram of study selection process; original biomarkers review
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Potentially relevant update articles

identified from databases

n = 74

Excluded articles; n = 42

Potentially relevant articles assessed in

detail

n = 32

Excluded articles; n = 19

Not FN / not extractable FN, n = 1

Not children, n = 4

Children not extractable, n = 1

Not marker, n = 0

No appropriate outcomes, n = 1

Data not extractable, n = 3

Not testing marker, n = 0

Duplicate publication, n = 5

Original article not available, n = 0

Non-English, n = 3

Included in previous review, n = 1

Data extraction undertaken

n = 13

Studies with quantitative data available

n = 12

Data not extractable, n = 1

Identified from

reference lists

n = 0

Figure 21: Flow diagram of study selection process; update biomarkers review
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Evaluation of Biomarkers studies

The studies included a total of 3071 patients (each included between 19 and 278 individuals,

median 56) and over 5169 episodes (between26 and 566, median 94, where stated). Twenty

four different markers of inflammation or infection were assessed (see Table 7). The mean

age of children ranged from 5.7 to 10 years (where age stated). The studies were undertaken

between 1989 and 2009 (where stated) in Europe, North America, South America, North

Africa and Asia and Australasia.

Table 7: Summary of biomarkers studied.

Marker Total studies

CRP 29

IL6 16

IL8 15

PCT 14

IL10 2

TNF-alpha 2

IL1 2

IL5 2

IL2-R 2

IL12 1

IL10 1

MCP 1

ESR 1

tADA 1

SAA 1

IFN-gamma 1

T-reg 1

sTNFRII 1

sTREM 1

Derivative of rO2 metabolites 1

Biological antioxidant potential 1

LDH 1

Glucose 1

Blood urea nitrogen 1
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Outcomes examined

The studies reported diverse outcomes including bacteraemia, fungal infection, gram

negative and gram positive bacteraemia, significant/documented bacterial infection,

systemic inflammatory response syndrome (SIRS), sepsis, intensive care unit (ICU) admission,

death, and prolonged (>5days) hospital stay ( Table 8 ).

Table 8: Markers and endpoints in each included biomarkers study.

Citation Markers

assessed

Endpoint #1 Endpoint #2 Endpoint #3 Comments on endpoints

Asturias

2010

CRP Fever Bacteraemia

Ammann

2003

CRP Significant

bacterial

infection

Defined as death from bacterial

infection, a positive culture of

normally sterile body fluids,

radiologically proven pneumonia,

clinically unequivocal diagnosis of a

bacterial infection, or a serum C-

reactive protein level (CRP) above 150

mg/L as an indirect sign suggesting

severe bacterial infection

Avbratha

2009

CRP Bacteraemia

or clinically

documented

infection

Barnes 2002 PCT Length of stay Stay of <5d or ≥5d

de Bont 1999 CRP, IL6,

IL8

Bacteraemia

Cost 2011 IL8, IL5 Bacteremia &

clinical sepsis

Delebarre

2011

PCT Severe

infection

Defined by bacteraemia, severe

bacterial infection, invasive fungal

infection or probable infection

Diepold 2008 IL6, IL8,

CRP

Bacteraemia Fever lasting

≥5d but

culture -ve

Dylewska

2005 a & b

PCT, CRP Bacteraemia Clinically

defined

infections

(UTI,

neurological,

GI or

respiratory)

Microbiologic

ally defined

other

infection

FUO was the default category
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El-Maghraby

2007

CRP, IL8,

MCP

Bacteraemia

or clinically

documented

infection

Hatzistiliano

u 2007

PCT, CRP Microbiologic

al or clinically

documented

infection

(excludes

viral)

Hatzistiliano

u 2010

PCT,

CRP,

TNF-

alpha,

IL8, IL1b,

sTNFRII

Bacterial

infection

Viral infection

or PUO

Heney 1992 CRP, IL6 Bacteraemia

Hitoglou-

Hatzi 2005

CRP,

PCT,

tADA

Significant

bacterial

infection

Hodge 2006 IL5, IL8,

IL12,

CRP

Positive blood

culture

Hodge 2011 IL2, TNF-

alpha,

TNF-

gamma,

T-reg

cells

Positive blood

culture

Katz 1992 CRP Clinically or

bacteriologica

lly

documented

infection

Septicemia

(+ve blood

cultures &

unwell clinical

appearance)

Kharaya

2010

IL6, PCT Bacteraemia

Kitanovski

2006

CRP,

PCT, IL6

Bacteremia &

clinical sepsis

Clinically or

microbiologica

lly

documented

local infection

Lehrnbecher

1999

CRP, IL8,

IL6

Clinically

documented

infection

Fungal

infection

Bacteraemia

(gram-type)

FUO was the default category

Lehrnbecher

2004

IL6, IL8 Significant

bacterial

infection

Defined as bacteraemia, localised

infection or pneumonia
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Lodhal 2011 PCT, CRP Bacteraemia Split into gram-positive and gram-

negative infections

Mian 2009 CRP, IL6,

IL2, IL10,

IL8, TNF-

alpha

Intensive care

admission

Miedema

2011

CRP, IL8,

PCT,

sTREM

Proven or

suspected

bacterial

infection

Defined as documented bacteria from

sterile site or clinically documented

infection or clinical sepsis

Nishikwa

2010

dROM,

Biologica

l

antioxid

ant

potentia

l, CRP

Systemic

inflammatory

response

syndrome

Reitman

2010

PCT Bacteraemia

Richardson

2009

CRP Bacteraemia

Riikonen

1992

IL1, IL6,

TNF-

alpha,

SAA

Bacteraemia suspected

sepsis

Focal

infection

"No infection" was the default

category

Riikonen

1993

CRP Bacteraemia suspected

sepsis

Focal

infection

"No infection" was the default

category

CRP Documented

bacterial

infection

Probable

bacterial

infection

Viral infection Documented bacterial infection

defined as bacteraemia (two sets

positive for commensals) or sterile

site infection; Probable bacterial

infection defined as cultures negative

but severe medical course e.g.

purulent gingivostomatitis, CXR+; FUO

was the default category

Santolaya

2001

CRP Invasive

bacterial

infection

Defined as positive blood cultures – 2

for CoNS, positive bacterial culture

from usually sterile site, or sepsis

syndrome and/or focal organ

involvement and haemodynamic

instability and severe malaise

Santolaya

2002

CRP Invasive

bacterial

infection

Defined as positive blood cultures – 2

for CoNS, positive bacterial culture

from usually sterile site, or sepsis

syndrome and/or focal organ

involvement and haemodynamic

instability and severe malaise
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Santolaya

2007

CRP Death

Santolaya

2008

CRP, IL8,

PCT,

Glucose,

Blood

Urea

Nitrogen

Severe sepsis Defined as sepsis + respiratory or

cardiac compromise, or + 2 other-

organ compromise) not apparent

during the first 24h of admission

Secmeer

2007

CRP,

PCT, ESR

Bacteraemia Documented

bacterial

infection

(microbiologic

ally or

clinically)

Duration of

fever

Soker 2001 IL2-R,

IL6, IL8,

TNF-

alpha,

IL1

Bacteraemia

Spasova

2005

CRP, IL6,

IL8, IL10

Bacteraemia Microbiologica

lly or clinically

proven local

infections

without

bacteraemia

Stryjewski

2005

PCT, IL6,

IL8

Sepsis Septic shock Sepsis (positive culture - two

consecutive +ve if CoNS, fever,

tachycardia, or tachypnoea); septic

shock defined as sepsis plus need for

inotropes/vasopressors

QUADAS criteria

Analysis of the study quality according to modified QUADAS criteria revealed few

informative items. The quality was on the whole good (Appendix 11). The worst identified

flaw was in Amman study where there was potential contamination of the reference

standard with the diagnostic test (the outcome included CRP >150 mg/dl while the

predictive test included CRP). One short report did not detail the exact outcome used [156].

The major deficiencies in most studies were failure to report whether the marker test and

outcomes were interpreted blind to each other; only three of the studies by Santolaya

clearly documented that this was the case. Detailed analysis of the criteria presented in the

published abstracts from conferences in which results were reported was very difficult.

Applicability to a general clinical population was fair for those studies that presented

information about the included population (Table 9,) although most studies failed to clearly
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describe their selection criteria. The Santolaya 2008 [157] study was specifically designed to

examine only the high-risk (by CDR) group, and their data may be considered as belonging to

an importantly clinically distinct population.

Table 9: Participant characteristics by biomarkers study

Citation Study

location

Study years Inclusion criteria Exclusion

criteria

Number

of

patients

Number

of

episode

s

Average age

of patients

Ammann

2003

Bern,

Switzerlan

d

1993 to

2001

ANC ≤500cells/

mm
3
or

≤1000cells/ mm
3

and falling,

axillary

temperature

≥38.5°C for ≥2h,

or once ≥39°C

Established

severe

bacterial

infection at

presentation,

or episodes of

FN due to

bone marrow

involvement

by the disease

itself, i.e. at

the time of

diagnosis or

following a

myeloablative

therapy.

111 285 Median age

at first

episode =

6.3y

(interquartile

range 3.2y to

12.1y)

Asturias

2010

Guatemal

City,

Guatemal

a

April 8 to

October 15

2008

Children with

cancer, age

<18ys and

hospitalised with

fever and

neutropenia

Hospitalisation

<48hrs,

antibiotic

therapy 7 days

before

admission,

prior bone

marrow

transplant

88 102 Mean age:

6.5 yrs; SD:

+/- 4.4 yrs;

range: 8

months to 18

yrs

Avabratha

2009

Mangalor

e, India

Not stated Children aged 1-

15yrs with

malignancy and

febrile

neutropenia

Liver disease 33 50 Mean age 6.9

y

Barnes

2002

Melbourn

e,

Australia

Not stated "Febrile

neutropenia"

not further

specified

Not stated 37 39 Not stated

Cost 2011 Dallas,

Texas,

United

States

March 2010

to Dec 2010

Paediatric

oncology

patients

hospitalised with

Not stated 120 120 Not stated
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febrile

neutropenia

de Bont

1999

Groningen

, The

Netherlan

ds

1998 Chemotherapy

related

neutropenia

(granulocytes

<500cells/ mm
3

or leucocytes

<1000cells/

mm
3
) and

≥38.0°C for 6h,

or once ≥38.5°C

On antibiotics

or post

BMT/stem cell

transplant

19 72 Not stated ,

all <16y

Diepold

2008

Freiburg,

Germany

Not stated ANC ≤500cells/

mm
3
,

temperature

≥38.0°C for >1h,

or once >38.5°C

Not stated 69 123 Median 7y

8m (range

1m to 20y)

Dylewska

2005 a & b

Bydgoszcz

, Poland

Not stated ANC ≤1000cells/

mm
3
,

temperature

≥38.0°C (once,

axilliary)

Not stated 66 108 Mean 9.6y

(Range 2y to

20y)

El-

Maghraby

2007

Cairo,

Egypt

2004-2005 ANC ≤500cells/

mm
3
,

temperature

≥38.0°C twice in

<6h, or once

≥38.5°C

Systemic

antibiotics

(except

Septrin) wihin

previous week

76 85 Mean 7.1y

(range 1.5y

to 18y)

Hatzistilian

ou 2007

Not stated Not stated ALL patients

only. ANC

≤500cells/ mm
3

or leukocytes

≤1000cells/

mm
3
,

temperature

≥38.0°C for 6h,

or once ≥38.5°C

Not stated 29 94 Mean 5.8y

(SD 2.9y)

range 1y to

14y

Hatzistilian

ou 2010

Greece/Eu

rope

Not stated Children with

acute leukemia

and febrile

neutropenia

Study also

looked at febrile

non-neutropenic

and afebrile non-

neutropenic

children

Not stated 0 0 Group A -

mean 5.8;

range 1-14y;

Group B - not

stated

Heney

1992

Leeds, UK Not stated Temperature

≥38.0°C twice in

<24h, or once

Not stated 33 47 Mean 7y

(range 7m to

15y)
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≥38.5°C

Hitoglou-

Hatzi 2005

Thessaloni

ki, Greece

Not stated ANC ≤500cells/

mm
3
or

leukocytes

≤1000cells/

mm
3
,

temperature

≥38.0°C for 6h,

or once ≥38.5°C

Not stated 67 Not

stated

Mean 6.4y

(range 1y to

14y)

Hodge

2006

North

Adelaide,

Australia

Unclear ANC ≤1000cells/

mm
3
,

temperature

≥38.0°C

(sustained) or

once ≥38.5°C

Not stated 31 31 Not stated

Hodge

2011

Australia Not stated Paediatric

oncology

patients with

febrile

neutropenia

Not stated 27 26 Not stated

Kharya

2010

Dehli/Indi

a

Not stated Children with

febrile

neutropenia

Not stated * 129 Not stated

Katz 1992 Dallas,

USA

November

1989 to

June 1990

Outpatients

only. ANC

≤500cells/ mm
3
,

temperature

≥38.0°C for 6h,

or once ≥38.5°C

Already on

antibiotics

(except

Septrin)

74 122 Mean 6.3y

(range 2m to

17y)

Kitanovski

2006

Ljubljana,

Slovenia

Not stated ANC

≤500cells/mm3

or

≤1000cells/mm3

and

falling,tympanic

temperature

≥38.0°C for 6h,

or once ≥38.5°C

Not stated 32 68 Median 7.6y

(range 1y to

18y)

Lehrnbech

er 1999

Wurzberg,

Germany

Unclear ANC ≤500cells/

mm
3
or within

72hrs of

chemotherapy

and falling,

temperature

≥38.0°C twice in

<4h, or once

≥38.5°C

Febrile >24h

before

admission and

antibiotics

(except

Septrin) within

previous 72h

56 121 mean 8y

(range 3m to

20y)

Lehrnbech

er 2004

Bonn,

Frankfurt

&

Not stated ANC ≤500cells/

mm
3
,

temperature

Fever >24h

before

146 311 Mean 9y

(range 0.5y
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Wurzburg,

Germany

≥38.5°C presentation to 28y)

Lodahl

2011

Denmark/

Europe

25

September

2000 to 28

June 2001

Children (<16 y)

admitted to

hospital with

febrile

neutropenia

Not stated 85 230 Median 5.7 y;

rang 4 month

to 15 years

Mian 2009 USA/Nort

h America

Not stated Febrile

neutropenia

Not stated 29 51 Range 1-29

Miedema

2011

The

Netherlan

ds

April 1999

to August

2002

Children with

malignancy and

febrile

neutropenia

None 29 43 Median age

8y in both

groups and

range 6-13y

(bacterial

infection)

and 6-12y (no

bacterial

infection)

Nishikawa

2010

Japan Feb 2008 to

June 2009

Patients with

lymphoma or

leukaemia in

remission

Not stated 27 36 Mean 10y

(range 1-19)

Reitman

2010

United

States of

America

11 month

period (year

not stated)

Fever (>38

degrees celcius)

and severe

neutropenia (not

defined)

Not stated 89 89 Not stated

Richardson

2009

United

States of

America

Jan 2006 to

April 2008

Children with

cancer or

aplastic

anaemia, fever

and neutropenia

Not stated 48 142 Mean ages in

2 groups

were 8.4y (SD

5.6) and 8.5y

(SD 5.1)

Riikonen

1992

Helsinki,

Finland

Not stated ANC ≤1000cells/

mm
3
,

temperature

≥38.0°C twice in

4h, or once

≥39°C, or

clinically 'poor

condition'

Antibiotics in

previous 3

weeks (except

Septrin)

46 105 Not stated

Riikonen

1993

Helsinki,

Finland

1989-1990 ANC ≤200cells/

mm
3
,

temperature

≥38.0°C twice in

4h, or once

≥39°C

Antibiotics in

previous 3

weeks (except

Septrin)

46 91 Not stated

Santolaya

1994

Santiago,

Chile

1991-1992 ANC ≤500cells/

mm
3
,

temperature

Antibiotics in

previous 72h

or surgery

75 85 Not stated
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≥38.0°C twice in

<24h

within 5d

Santolaya

2007

6

hospitals

in

Santiago,

Chile

2004 to

2005

PINDA 'High Risk'

only. ANC

≤500cells/ mm
3
,

temperature

≥38.0°C ≥2

occasions ≥1h

apart, or once

>38.5°C

Low risk

episodes and

BMT patients

219 373 Not stated

Santolaya

2008

6 centres

in

Santiago,

Chile

2004-2006 ANC ≤500cells/

mm
3
and 'fever'

Low risk

episodes. Early

onset (<24h)

severe sepsis

278 566 Mean 7.75y

Secmeer

2007

Ankara,

Turkey

January

2004 to

January

2005

‘Neutropenia'

with

temperature

≥38.0°C for ≥1h,

or once ≥38.3°C

Not stated 49 60 Median age

7.7y (range

2y to 16y) in

patients

without

documented

infection and

7.2y (range

2.5y-18y) in

patients with

documented

infection.

Soker 2001 Diyarbakir

, Turkey

Not stated ANC ≤500cells/

mm
3
,

temperature

≥38.0°C twice in

<4h, or once

≥38.5°C

Antibiotics

within 72h

(except

Septrin)

23 48 Mean 7y

(range 2y to

14y)

Spasova

2005

Plovdiv,

Bulgaria

January

2003 to

June 2004

ANC ≤500cells/

mm
3
, axilliary

temperature

≥38.0°C ≥2

occasions ≥1h

apart, or once

>38.3°C

Not stated 24 41 Average not

stated.

Range 2m to

19y

Stryjewski

2005

Washingt

on, DC,

USA

Not stated ANC ≤500cells/

mm
3
, axilliary

temperature

≥37.5°C or

oral/rectal

temperature

≥38.0°C

Fever >24h

before

admission or

antibiotics

(except

Septrin) within

previous 72h

56 Not

stated

Mean 6.7y

(range 5m to

17y)

Santolaya

2001

5 centres

in

Santiago,

Chile

1996-1997 ANC ≤500cells/

mm
3
,

temperature

≥38.0°C ≥2

occasions ≥1h

apart, or once

None stated,

but no BMT

patients

257 447 Mean 7y

(range 6m to

18y)
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>38.5°C

Santolaya

2002

6 centres

in

Santiago,

Chile

1999-2000 ANC ≤500cells/

mm
3
,

temperature

≥38.0°C ≥2

occasions ≥1h

apart, or once

>38.5°C

None stated,

but no BMT

patients

170 263 Mean 7y

(range 7m to

17y)

Data handling

Nine studies used a statistical technique to investigate if the predictive value of the serum

marker was affected by other measured factors [30, 79, 139, 145, 158-162]. In five of these

[79, 139, 145, 158, 161] an adjusted estimate was produced, using linear multivariable

approaches. In these studies, the number of primary adverse events per predictive variable

assessed ranged from 2.4 [79], to 11.6 [161] with one study having too little information to

be able to assess this [145]. The other four studies [30, 159-160, 162] concluded the other

measured variables did not affect the marker’s diagnostic value. There was a lack of clarity in

reporting the statistical approaches they used.

Assessment of the effect of multiple episodes per patient was undertaken in four studies; de

Bont [158] used patients as a random-effect in their regression analysis, the other three

studies [79, 160-161] undertook ‘first-vs. last’ episode comparison and found ‘no significant

difference’. Three papers describe no adjustment [139, 163-164], and the other studies

make no mention of adjustments for clustered episodes. In three papers, only one episode

per patient is used [165-167]

Thirty three of the 38 studies did not comment upon missing data. The five studies that did

consider this issue used a complete-case analysis (with one study excluding potential

variables with >10% missing values [79]). No studies clearly examined the nature of the

missing data [79, 168-169].

Twenty five of the 38 included studies used a cut-point for marker test results, in 12 of the

studies this was determined by the dataset being examined (eg by ‘ROC analysis’ or by

maximising the sensitivity of the test)[30, 139, 158, 161, 163, 168, 170-175]. In six studies
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the cut-point chosen was based on previous literature or alternative datasets [27, 156, 176-

178], and in eight studies the choice was not explained[79, 142, 159-160, 169, 179-180].

Four studies did not go on to undertake an analysis with a dichotomised result [164, 166-

167, 174, 181-187].

Six studies examined categorical variables as potential modifiers of the predictive ability of

serum markers. Five of these used a grouping schema which was not explicitly justified [79,

139, 159, 172, 179] and one study [158] appeared to use ungrouped categorical data

(malignancy). (See Appendix 12 for more detail.) As no study concluded these had any

effect, no positive bias can have been introduced. However, given the lack of justification of

the groupings, important interactions may have been missed.

Predictive performance of biomarkers

For the original review, quantitative data were pooled by three meta-analysis techniques, to

explore the strengths and weaknesses of a variety of approaches. The review publication

focussed on exploring both the methodological and clinical findings from the review [114].

The studies used in this were eleven studies providing data on CRP [27, 79, 159-160, 169,

172-173, 176, 179, 184], four studies also provided data on PCT [163, 173, 179, 184] and

four provided data on the use of IL6 [163, 168-169, 171].

Analyses were originally possible for CRP (microbiologically or clinically documented

infection), PCT (microbiologically or clinically documented infection) and IL6

(microbiologically or clinically documented infection, and gram –ve bacteraemia). Individual

results for the four most frequently reported markers (CRP, PCT, IL6 and IL8) and outcomes

are given in Table 10. These data have been used below to illustrate the advantages and

challenges of conventional approaches to meta-analysis of diagnostic test data.
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Table 10: Individual biomarkers study results used in pooled analyses presented by marker, outcome and

cutoff.

Citation Cutpoint Sensitivity (95% CI) Specificity (95% CI) Method of derivation

CRP: Bacteraemia

Spasova 2005 20 1 (95% CI 0.78 to 1)

0.04 (95% CI 0.01 to

0.18) mean/sd

Spasova 2005 50

0.21 (95% CI 0.08 to

0.48) 1 (95% CI 0.88 to 1) mean/sd

Spasova 2005 90 0 (95% CI 0 to 0.22) 1 (95% CI 0.88 to 1) mean/sd

Riikonen 1993 20

0.65 (95% CI 0.41 to

0.83)

0.3 (95% CI 0.21 to

0.41)

2*2 extracted from

text/graph

Riikonen 1993 50

0.18 (95% CI 0.06 to

0.41)

0.73 (95% CI 0.62 to

0.82)

2*2 extracted from

text/graph

CRP: Documented & Clinical Infection

Spasova 2005 20 1 (95% CI 0.87 to 1)

0.06 (95% CI 0.01 to

0.28) mean/sd

Spasova 2005 50

0.92 (95% CI 0.75 to

0.98) 1 (95% CI 0.81 to 1) mean/sd

Spasova 2005 90

0.44 (95% CI 0.27 to

0.63) 1 (95% CI 0.81 to 1) mean/sd

Secmeer 2007 50

0.68 (95% CI 0.48 to

0.83)

0.46 (95% CI 0.3 to

0.62)

sensitivity/specificity

reported

Katz 1992 20

0.71 (95% CI 0.59 to

0.81)

0.32 (95% CI 0.22 to

0.44)

sensitivity/specificity

reported

Katz 1992 50

0.46 (95% CI 0.34 to

0.58)

0.75 (95% CI 0.63 to

0.84)

sensitivity/specificity

reported

Katz 1992 100

0.22 (95% CI 0.13 to

0.34)

0.94 (95% CI 0.85 to

0.98)

sensitivity/specificity

reported

Riikonen 1993 20

0.62 (95% CI 0.43 to

0.78)

0.28 (95% CI 0.18 to

0.4)

2*2 extracted from

text/graph

Riikonen 1993 50

0.15 (95% CI 0.06 to

0.34)

0.71 (95% CI 0.59 to

0.8)

2*2 extracted from

text/graph

El-Maghraby

2007 90

0.69 (95% CI 0.57 to

0.8)

0.73 (95% CI 0.54 to

0.86)

2*2 extracted from

text/graph

Ammann 2003 5

0.97 (95% CI 0.91 to

0.99)

0.12 (95% CI 0.08 to

0.18)

sensitivity/specificity

reported

Ammann 2003 50

0.48 (95% CI 0.38 to

0.58)

0.7 (95% CI 0.62 to

0.77)

sensitivity/specificity

reported
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Santolaya 1994 40

0.95 (95% CI 0.85 to

0.98)

0.77 (95% CI 0.59 to

0.88)

2*2 extracted from

text/graph

Kitanovski 2006 60

0.63 (95% CI 0.39 to

0.82)

0.69 (95% CI 0.56 to

0.8)

sensitivity/specificity

reported

Hitoglou-Hatzi

2005 20

0.9 (95% CI 0.74 to

0.96)

0.21 (95% CI 0.11 to

0.36) mean/sd

Hitoglou-Hatzi

2005 50

0.76 (95% CI 0.58 to

0.88)

0.74 (95% CI 0.58 to

0.85)

2*2 extracted from

text/graph

Hitoglou-Hatzi

2005 90

0.66 (95% CI 0.47 to

0.8)

0.87 (95% CI 0.73 to

0.94) mean/sd

Santolaya 2001 90

0.75 (95% CI 0.69 to

0.81)

0.8 (95% CI 0.75 to

0.84)

sensitivity/specificity

reported

Hatzistilianou

2007 50

0.9 (95% CI 0.8 to

0.95)

0.79 (95% CI 0.63 to

0.9)

sensitivity/specificity

reported

CRP: Gram-ve Bacteramia

Lehrnbecher

1999 20

0.88 (95% CI 0.53 to

0.98)

0.34 (95% CI 0.26 to

0.43)

sensitivity/specificity

reported

Lehrnbecher

1999 50

0.88 (95% CI 0.53 to

0.98)

0.5 (95% CI 0.41 to

0.59)

sensitivity/specificity

reported

Lehrnbecher

1999 100

0.88 (95% CI 0.53 to

0.98)

0.78 (95% CI 0.69 to

0.85)

sensitivity/specificity

reported

CRP: Death

Santolaya 2007 90

0.79 (95% CI 0.52 to

0.92)

0.61 (95% CI 0.56 to

0.66)

2*2 extracted from

text/graph

CRP: Sepsis

Katz 1992 20 1 (95% CI 0.65 to 1)

0.32 (95% CI 0.24 to

0.41)

sensitivity/specificity

reported

Katz 1992 50

0.71 (95% CI 0.36 to

0.92)

0.67 (95% CI 0.58 to

0.75)

sensitivity/specificity

reported

Katz 1992 100

0.71 (95% CI 0.36 to

0.92)

0.71 (95% CI 0.62 to

0.79)

sensitivity/specificity

reported

Santolaya 2008 90

0.54 (95% CI 0.45 to

0.63)

0.63 (95% CI 0.59 to

0.67)

2*2 extracted from

text/graph

PCT: Documented & Clinical Infection

Secmeer 2007 0.1

0.2 (95% CI 0.09 to

0.39)

0.74 (95% CI 0.58 to

0.86)

sensitivity/specificity

reported

Secmeer 2007 0.2

0.12 (95% CI 0.04 to

0.29)

0.89 (95% CI 0.74 to

0.95)

sensitivity/specificity

reported
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Secmeer 2007 0.3

0.11 (95% CI 0.04 to

0.28)

0.94 (95% CI 0.81 to

0.98)

sensitivity/specificity

reported

Secmeer 2007 0.4

0.07 (95% CI 0.02 to

0.23)

0.94 (95% CI 0.81 to

0.98)

sensitivity/specificity

reported

Hitoglou-Hatzi

2005 0.55

0.97 (95% CI 0.83 to

0.99)

0.58 (95% CI 0.42 to

0.72) mean/sd

Hitoglou-Hatzi

2005 0.1

0.97 (95% CI 0.83 to

0.99)

0.47 (95% CI 0.32 to

0.63) mean/sd

Hitoglou-Hatzi

2005 0.2

0.97 (95% CI 0.83 to

0.99)

0.5 (95% CI 0.35 to

0.65) mean/sd

Hitoglou-Hatzi

2005 0.3

0.97 (95% CI 0.83 to

0.99)

0.5 (95% CI 0.35 to

0.65) mean/sd

Hitoglou-Hatzi

2005 0.4

0.97 (95% CI 0.83 to

0.99)

0.53 (95% CI 0.37 to

0.68) mean/sd

Hatzistilianou

2007 0.2

0.97 (95% CI 0.89 to

0.99)

0.97 (95% CI 0.85 to

0.99)

sensitivity/specificity

reported

Kitanovski 2006 0.55

0.94 (95% CI 0.72 to

0.99)

0.71 (95% CI 0.58 to

0.82)

sensitivity/specificity

reported

PCT: Sepsis

Santolaya 2008 2

0.57 (95% CI 0.48 to

0.66)

0.46 (95% CI 0.41 to

0.5) mean/sd

PCT: Bacteraemia

Kitanovski 2006 0.1

0.33 (95% CI 0.1 to

0.7)

0.78 (95% CI 0.65 to

0.87)

sensitivity/specificity

reported

Kitanovski 2006 0.2

0.33 (95% CI 0.1 to

0.7)

0.89 (95% CI 0.79 to

0.95)

sensitivity/specificity

reported

Kitanovski 2006 0.3

0.33 (95% CI 0.1 to

0.7)

0.93 (95% CI 0.83 to

0.97)

sensitivity/specificity

reported

Kitanovski 2006 0.4

0.33 (95% CI 0.1 to

0.7)

0.95 (95% CI 0.86 to

0.98)

sensitivity/specificity

reported

IL6: Gram-ve bacteraemia

Lehrnbecher

1999 235 1 (95% CI 0.82 to 1)

0.63 (95% CI 0.53 to

0.72)

sensitivity/specificity

reported

Lehrnbecher

2000 1000

0.74 (95% CI 0.51 to

0.88)

0.96 (95% CI 0.9 to

0.98)

sensitivity/specificity

reported

IL6: Documented & Clinical Infection

Kitanovski 2006 235

0.88 (95% CI 0.64 to

0.97)

0.87 (95% CI 0.75 to

0.93)

sensitivity/specificity

reported
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Riikonen 1992 235

0.1 (95% CI 0.03 to

0.3)

0.98 (95% CI 0.91 to

1)

2*2 extracted from

text/graph

Riikonen 1992 1000 0 (95% CI 0 to 0.16) 1 (95% CI 0.94 to 1)

2*2 extracted from

text/graph

Lehrnbecher

2004 235

0.89 (95% CI 0.82 to

0.94)

0.91 (95% CI 0.86 to

0.94)

sensitivity/specificity

reported

Lehrnbecher

2004 1000

0.11 (95% CI 0.06 to

0.18)

0.99 (95% CI 0.97 to

1)

sensitivity/specificity

reported

Diepold 2008 42

0.9 (95% CI 0.81 to

0.94)

0.86 (95% CI 0.69 to

0.94)

sensitivity/specificity

reported

IL6: Bacteraemia

Diepold 2008 240

0.64 (95% CI 0.39 to

0.84)

0.75 (95% CI 0.65 to

0.82)

sensitivity/specificity

reported

IL8: Sepsis / Prolonged illness

Santolaya 2008 200

0.49 (95% CI 0.4 to

0.58)

0.71 (95% CI 0.67 to

0.75)

2*2 extracted from

text/graph

Diepold 2008 30

0.87 (95% CI 0.78 to

0.93)

0.61 (95% CI 0.42 to

0.76)

sensitivity/specificity

reported

IL8: Bacterial infection

Diepold 2008 90

0.64 (95% CI 0.39 to

0.84)

0.62 (95% CI 0.52 to

0.71)

sensitivity/specificity

reported

IL8: Documented & Clinical Infection

El-Maghraby

2007 62

0.71 (95% CI 0.59 to

0.81)

0.77 (95% CI 0.58 to

0.89)

2*2 extracted from

text/graph

Lehrnbecher

2004 320

0.56 (95% CI 0.46 to

0.65)

0.79 (95% CI 0.73 to

0.84)

sensitivity/specificity

reported

Lehrnbecher

2004 500

0.44 (95% CI 0.35 to

0.54)

0.89 (95% CI 0.84 to

0.93)

sensitivity/specificity

reported

To illustrate the methods and associated challenges, syntheses were undertaken using both

classical and Bayesian approaches.
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Method 1 Classical statistical analyses

Data were combined using a single cut-off from each study using the STATA routines

metandi and midas for analyses of 3 studies and over. For analyses of four or more

studies, a random effects linear regression using xmelogit was fitted for bivariate

estimates.

The HSROC curve (Figure 22a) derived from 11 studies [27, 79, 139, 159-160, 163, 169, 173,

176, 179, 184] demonstrates moderate diagnostic ability for CRP to detect ‘documented

infection’ (Area under the ROC curve 0.78 (95% CI 0.74 to 0.81)). This assumes that a higher

cut-off produces a lower sensitivity and higher specificity. However, the plot demonstrating

each study’s cut-off (in mg/dl) shows that the assumption of threshold variation is not

adhered to (Figure 22b): rather than the threshold value steadily falling from high cutoff

values in the bottom left through middle values in the mid-point of the curve, to low values

in the upper right, we see values of 50 and 60 preceding 90. This should raise doubts about

the validity of the summary ROC curve produced. As demonstrably different thresholds are

used in creating this pooled analysis, the production of a single bivariate estimate of the

‘test effect’ is clearly meaningless.

a) Circles weighted according to study precision b) Marker points showing threshold (mg/dl)

Figure 22:HSROC curve plots of CRP for the diagnosis of ‘documented infection’
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Analysis of PCT[163, 173, 179, 184] suggest a better discriminatory ability (Area under the

ROC curve 0.93 (95% CI 0.90 to 0.95)). Though based on only two different cut-offs, the

threshold findings are replicated in the PCT data (Figure 23).

While this finding represents only a pair of markers across one outcome, this should raise

doubts about the validity of the technique of HSROC determination, which assumes

threshold values will follow an expected path, when data about the actual threshold are

available and could be used more effectively by an alternative meta-analysis technique.

a) Circles weighted according to study precision b) Marker points showing threshold (mg/ml)

Figure 23: HSROC curve plots of PCT for the diagnosis of ‘documented infection’

For studies with similar outcomes and cut-off values, meta-analysis was undertaken using a

random effects bivariate approach. Data were sufficient to undertake this in two outcome

groups over three markers (see Table 11: Bivariate estimates of diagnostic precision of

various markers and outcomes and Figure 24).
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Table 11: Bivariate estimates of diagnostic precision of various markers and outcomes

Marker Outcome Cut-off Sensitivity

(95% CI)

Specificity

(95% CI)

CRP

(7 studies)

Documented

infection

>50 mg/dl 0.65 (0.41 to

0.84)

0.73 (0.63 to

0.82)

PCT

(3 studies)

Documented

infection

>0.2 mg/ml 0.96 (0.05 to

0.99)

0.85 (0.53 to

0.97)

IL6

(3 studies)

Documented

infection

>235 pg/ml 0.68 (0.15 to

0.96)

0.94 (0.84 to

0.98)

IL6

(2 studies)

Gram –ve

bacteraemia

>1000 pg/ml 0.78 (0.57 to

0.91)

0.96 (0.92 to

0.99)

Figure 24: Bivariate pooled estimates of sensitivity and specificity for CRP, PCT & IL6
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There is considerable heterogeneity in these results; sensitivity being the most

heterogeneous in all markers, and specificity being most heterogeneous in PCT and CRP.

Method 2. Prediction within a Bayesian framework

Meta-analysis of data for IL6, PCT and CRP was attempted for documented infections using a

similar approach to that used in the clinical decision rules review.

The analysis of data from the IL6 studies to predict documented infection demonstrated a

very wide range of average estimates of diagnostic accuracy. In particular, the uncertainty

around the proportion of individuals with disease/non-disease in the groups 235-1000pg/ml

and >1000pg/ml led to the median estimates reversing the ‘sensible’ order of results,

implying that higher levels of IL6 were less likely to be associated with disease. (LR

<235pg/ml 0.35 (95% CrI 0.02 to 0.96), LR 235-1000pg/ml 9.54 (95% CrI 0.02 to infinite) and

LR >1000pg/ml 8.0 (95% CrI 0.05 to 9.8). The heterogeneity between individual study

estimates is extreme, particularly for sensitivity, where one of the three available data

points for 235pg/ml overlies the cut-offs at 1000pg/ml. Meta-analysis is therefore

inappropriate (see Figure 25).

Figure 25: IL6 for documented infection
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Analysis of the four PCT studies and eleven CRP studies proved impossible using this

analytical technique.

The data from the four PCT studies show extreme heterogeneity in sensitivity and specificity

(see Figure 26). In order to reduce the variables under consideration, the cut-offs analysed

were limited to 0.2pg/ml and 0.55pg/ml, but this still require six data points (vs. seven in the

IL6 example) to provide information on seven independent variables (a total of three

proportions in diseased and undiseased populations, and four variance-covariance

estimates). Assessments based on such limited data tend to be very unstable.

Figure 26: PCT for documented infection
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effects model did not succeed, probably as some simulation instances require the

(nonsensical) reversal of the arrangement of proportions of individuals in the ordered

categories and occasionally ‘negative’ proportions.

Similar problems were encountered when attempting to fit the model to the eleven studies

with CRP values for documented infection (see Figure 27). Here reduction to three cut-offs

was undertaken (20, 40-60, 90-100) along with univariate and fixed effects approaches. The

model produced extremely uncertain results, particularly estimating the proportion of

individuals with disease/nondisease whose CRP ranged from 40 – 100 (between cutoff 2 and

3) where the 95% “credible” interval ranged from -3% to +39%.

Figure 27: CRP for documented infection
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156, 163, 169, 174]) and additionally five interleukin-8 (IL-8) studies [156, 166, 168, 176,

185] in their ability to detect significant infection.

The pooled estimates remain clinically and statistically heterogenous, with the most

appropriate and advanced synthesis technique (multiple threshold approaches using a

Bayesian multinomial framework) producing clinically uninterpretable results (see Table 12

and Figure 28).

Table 12: Multivariate meta-analysis of biomarkers to detect significant infection (clinically or microbiologically

documented infection)

Threshold Likelihood ratio 95% credible interval*

CRP

CRP <20 mg/dL 0.25 0.07 to 1.14

CRP 20-50 mg/dL -0.44 -8.81 to 8.27

CRP 50-90 mg/dL 0.39 -1.04 to 2.77

CRP >90 mg/dL 2.41 0.87 to 16.74

PCT

PCT <0.2 ng/mL 0.42 0.009 to 2.1

PCT 0.2-0.5 ng/mL -0.11 -22 to 23

PCT >0.5 ng/mL 3.1 0.9 to 8.8

IL-6

IL-6 <235 pg/ml 0.353 0.005 to 1.052

IL-6 235-1000 pg/ml 7.981 -1.669 to 65.45

IL-6 >1000 pg/ml 7.05 0 to 1699

IL-8

IL-8 <60 pg/ml 0.3 0.12 to 0.59

IL-8 60-320 pg/ml -0.95 -14.55 to 7.34

IL-8 320-500 pg/ml 0.31 0.06 to 3.89

IL-8 >500 pg/ml 9423 0.02 to 1.19E+10
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Additional studies provided information that could not be incorporated into the meta-

analysis, the details of which are given in Appendix 13. PCT was further examined and shown

to have moderate sensitivity (66%) and specificity (85%) with a very high study-defined cut-

off of 3.3 ng/ml in patients with bacteraemia [174], had different median values between

septic and non-septic patients (0.5 vs 0.24 ng/ml)[30], or baldly stated to be associated with

significant infectious complications in a multivariate analysis [190] (but all had insufficient

data to produce variance estimates). An early study examined the values of PCT levels in

patients with short (<5 day) and prolonged admissions and demonstrated a difference in

means[170]. The other study to report PCT values [161] did so in only the high-risk group of

patients, and failed to find a difference in mean values at admission or 24 hours.

CRP was also reported in studies that could not be added to the meta-analysis because of

they provided insufficient data to calculate variances [22, 158, 172, 177, 183, 186-187, 191].

These studies also produced a range of point estimates, generally indicating a small increase

in average values in those patients with adverse infectious outcomes, compared to those

without. Where entered into multivariable models [22] CRP did not have any independent

predictive value.

IL6 and IL8 were examined in a small number of additional studies. An analysis of all-age

patients demonstrated an independent predictive value for IL8 and IL6 [158] against a

limited range of clinical variables, and both were shown to be significantly higher in patients

requiring ICU admission [145]. A study examining multiple cytokines found a higher median

IL8 value in bacteraemic patients (0.3 vs 0.02 ng/ml) and showed this varied by the type of

organism isolated (gram negative bacteria

0.91 vs gram positive 0.13 ng/ml) [164]. A similar finding was reported by Strewjeski [30]

showing 0.45 ng/ml vs. 0.15 ng/ml IL8 median values when using a broader definition of

bacteraemia and culture negative sepsis. Santolaya’s group also examined IL8 values [161] in

the high-risk group of patients, and failed to find a difference in mean values at admission or

24 hours. IL6 was examined in distinguishing bacteraemia and was reported as showing

around 65% sensitivity and 70% specificity with a data derived cut-off of 137 pg/ml. [174]
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One study (reported as an abstract) showed a combined result for IL5 and IL8 of “sensitivity

0.88, specificity 0.48” but no cut-offs were given [165], and when compared with an earlier

report of 100% sensitivity and 88% specificity [177], this in keeping with the general trend of

decreasing accuracy with repeat assessments of tests.

There are a range of other novel biomarkers under limited investigation that have been

revealed by these reviews. These data are reported in detail in Appendix 13. These are very

sparse, based on one or two studies, and clinical conclusions cannot be reasonably drawn

from them.

Trajectory of biomarkers

Six studies explored the role of serial biomarkers to detect documented infection or

sepsis.[173, 180] [157, 189, 192-194] There were insufficient data available for meta-

analysis. In one study, the difference between mean CPR, PCT and IL-8 at 24 hours in

children with and without sepsis was more pronounced than at presentation.[157] Similarly,

the sensitivity of PCT in predicting bacterial infection was higher at 24 to 48 hours compared

with presentation in another study.[194] These finding are in keeping with the results of the

clinical decision rules where a 24h+ assessment has been performed.[144, 154] In the study

by Hatzistilianou et al the seven-day trend of PCT and CRP was depicted graphically and PCT

showed a more rapid decline in patients treated for bacterial infection as compared to

CRP.[192]

Four studies provided direct comparisons of the discriminatory power of admission values of

PCT and CRP.[157, 192-193, 195] Three of these studies reported area under the receiver

operator curve (ROC) estimations.[192-193, 195] In these three, the data showed PCT

consistently had a better discriminatory estimate than CRP with AUC range of 0.66 to 0.869

compared with 0.43 to 0.728. The fourth study reported no significant benefit of PCT over

CRP.[157] Procalcitonin also had higher discriminatory power than IL-6 in one study[195] and

Il-8 in another,[192] which was not confirmed in a further study.[157] Meta-analysis of these
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direct comparisons of diagnostic accuracy assessments was not possible from the data

available.

Conclusions

This series of systematic reviews of clinical decision rules studied patients with a wide range

of malignancies and including between 29 and 759 patients (median 132) per study and with

between 47 and 1117 episodes of febrile neutropenia per study (median 240). The

biomarkers reviews included 4689 episodes of FN, investigating 24 different makers of

inflammation or infection (14 biomarkers from original review; additional 10 updated

review). The following Chapter explores the implications of these data and identifies where

they point to the development of an IPD meta-analysis.
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Chapter 5: Discussion of the results of systematic reviews of Clinical

Decision Rules and Serum Biomarkers

A robust risk stratification model that reliably predicts which children are at very low or very high

risk of having a significant infection could have important implications for clinical care. Those at very

low risk could be treated with reduced intensity antibiotic therapy and spend a shorter period in

hospital. Those at high risk of complications could be targeted for more aggressive management.

While the systematic reviews were being conducted for this thesis, there was clear evidence of many

differing policies for the management of FNP in practice [51, 53] with lack of agreement about how

risk stratification, if any, was used.

The previous chapters presented the methods and results of a series of systematic reviews with

updates assessing and summarising existing research evidence. These studied clinical examination to

identify infectious complications; and the value and added value of specific serum biomarkers in this

regard.

Studies were reviewed for their ability, as diagnostic tests, to accurately differentiate groups of

patients who did and did not have the condition of interest. Appraisal was undertaken using the

QUADAS criteria for quality. Synthesis of these data were undertaken, where possible, to provide the

most accurate estimates of predictive accuracy available. Poor quality of execution and design of

studies may produce problems which introduce bias (systematic difference) or significant variation

that limits the generalisability of a study’s findings. In studies of a diagnostic test, these may be

categorised as: those which arise from the population studied; the technology used in undertaking

the testing; the outcome assessments made; and the nature of the test interpretation [74]. Although

clinical examination in the rules described here did not raise issues around the technologies used, it

does raise a potential issue with studies of multiple individual investigators undertaking a ‘physical

skill’. Some physicians are likely to have better auditory or tactile discrimination, and there will be

differences between them in the accuracy of their measurements (for example, the reproducibility

of precise auditory findings in chest examination is poor [196]). Technical issues about the

reproducibility of measurements of biomarkers were raised in the third group of reviews, though the
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use of similar quality-assured techniques for the common and commercially available tests

constrains these problems.

Studies using clinical features to predict infectious complications

The development and verification of clinical decision rules to predict significant infectious

complications were studied in a systematic review that was updated during the development of

national[128] and international guidelines [129]. The review was updated specifically in response to

the international guideline, as part of my role as Chair of the risk stratification section of the

guideline.

The studies examining clinical decision rules to predict infectious complications produced 21 models,

and contained eleven datasets used to validate previously derived models. They studied a variety of

outcomes, with individual differences in definitions, but covered five main categories: death, critical

care requirement, serious medical complication, significant bacterial infection, and bacteraemia.

The validity assessment undertaken suggests that the biases in study design were relatively minor.

The most common was a potential for clinical review bias, where clinical information may lead to

one final outcome being favoured unfairly over another, which occurred in 19 of the 26 studies.

However, the potential effect of this is mitigated by the largely objective nature of the outcomes, for

example: microbiologically positive blood culture results, severe sepsis and death. Evidence for the

theoretical reduced influence of study design on objective outcomes is present for therapeutic

studies [75], but not for those of diagnostic accuracy [74]. Partial verification bias may technically be

a threat to studies in which certain ‘outcome assessment tests’, for example swabs of lesions were

undertaken only when clinically indicated, but these are clinically reasonable variations and unlikely

to lead to a strong bias. If a lesion is not present to be swabbed, it cannot be the unidentified source

of an infection.

Two potential problems are in the use of aspects of the outcome assessment in the decision rule [19,

23, 153]. This was most marked in the Alexander study [23] where the outcome of ‘significant

medical complication’ included ‘hypotension and severe mucositis’, as did the rule describing high-
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risk. This incorporation bias leads to diagnostic tautology, theoretically improving the accuracy of a

‘test’ [74]. The results from this study are likely to be overly optimistic.

The studies which set out to derive a CDR varied in their populations, the number and type of

outcomes studied, variables assessed, model-building technique, reporting and handling of missing

and multiple-episode data and in the use and categorisation of continuous and categorical variables.

All of these features may have influenced the CDRs produced and provide some explanation of the

differences between them.

Building stable predictive models requires between 10 – 20 events per variable considered [84] and

while some argument has been made to relax this value [197] these simulation studies have only

examined single predictors rather than the multiple predictors used here. We found that 76% of the

CDR derivation studies had less than ten events per variable under consideration, and no study had

more than 14 events per variable. The small sample size makes models more likely to be overfitted

to their original dataset and disappointing in clinical practice [83]. Only one study [140] modified

model parameters to account for the small sample size and low number of events per variable.

The technique used to build the model is also extremely important. There are a number of families

of techniques, including multivariable regression, neural networks and classification and regression

trees (CART models). No clear superiority for one technique has been demonstrated [78]. Of the

studies that derived CDRs in this review, almost all were built using multivariable regression. One

model used CART techniques [79] alongside a logistic regression and came to different conclusions

from the same dataset. This highlights an acknowledged difficulty with model building (that differing

techniques may reach different conclusions from the same information without it being clear which

is the ‘most correct’.

The models all assumed linear relationships between the outcome and the explanatory variables,

but for some variables relationships have different forms. A classic example of a non-linear

relationship is the S-shaped curve of oxygen dissociation from haemoglobin, or the J-shaped

associations of body-mass index and mortality. It is not clear in these studies if this assumption of

linearity of the variables was assessed, but failing to do so may misjudge a predictor as unimportant
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[198]. There are plausible reasons to assume that patient age may have a non-linear ‘U’-shaped

relationship with infection and outcome [199], as should time-from-chemotherapy. Bone marrow

suppression may have a more complex influence upon likelihood of infection than a simple linear

relationship (for example of non-linear relationships, see Figure 29a & b).

Figure 29: Examples of non-linear relationships

a) y = 1-x
2

b) y = –ln(x)

The relationships shown in Figure 29 are inventions, and extreme, in that they proposes that the risk

of infection (y axis) is always present with ‘zero’ neutrophils (x axis). Figure 29a supposes that the

risk is at a very high level, a near plateau, when the count is below around 0.175. This could be

justified by a hypothesis which requires a certain number of circulating cells to be present for

adequate infection surveillance. Figure 29b supposes that there is a log-linear inverse relationship,

with the risk relating not to a straight line of the neutrophil count but to the natural log of the count.

This could well be possible if the neutrophil count was log-normally distributed.

The selection of variables for the final model is crucial. Selections can be performed by taking all

possible explanatory variables, and excluding those which are not statistically significant (backwards

elimination), or by adding, one-by-one, the most statistically significant individual factors (forwards

selection), or a combination of the two, adding and removing variables to build the statistically best

fitting model (stepwise). These techniques, when selection is driven by a ‘p-value’ are seriously at

risk of choosing variables with chance relationships and resulting in unstable models [81]. These

techniques will also exclude variables that confound each other from entering a multivariable

analysis [82]. This happens if two variables which measure very highly related parameters (for

example, the concentration of haemoglobin in the blood – which is carried within red blood cells,

y

x
x
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and the red cell count) are both related to the risk of infection, any model which uses one of these

will show the variable to be significant and important. If the model uses both, the ‘strength’ of each

will be mopped up as the model attempts to account for the other variable, making both appear

‘insignificant’. In essence, although selecting variables only by looking at how significantly they are

associated with outcomes in the dataset being examined produces highly effective descriptions of

that data, it doesn’t improve the ability of the model to describe the real population from which

those data were drawn [83]. Only one of the models clearly examined co-linearity; the issue of

multiple variables being highly correlated which may account for the differing ‘marrow suppression’

markers being used in different CDRs.

When moving beyond the very first stages of exploration in a new area, variables should be selected

on the basis of clinical evidence or physiological reasoning [85]. In these studies, this was stated to

be the case in seven of the studies, and although unstated in the others, the selection of similar

variables implies congruent thinking. This could ameliorate the potential inflation of results.

Continuous variables, such as age, blood pressure and absolute monocyte count, will have their

most accurate predictive value in a model if used as their actual value. Clinicians seem to find the

use of continuous variables in this setting uncomfortable, and prefer to use categorised values.

Repeated studies examining prognostic model building have shown that the collapsing of continuous

variables into ordinal categories or dichotomies is often undertaken using methods which are highly

likely to give spurious results. [78, 80] The problem comes from analyses where a particular set of

data is examined, by looking at the ROC curve or recursive partitioning analysis, to find the cut-point

that achieves greatest differentiation between the diagnostic or prognostic categories. In doing this,

effectively multiple tests are being undertaken and the reported p-value associated with the final

choice is likely to be a gross exaggeration of the true ‘significance’ of the value. Approaches using

clinically or pathophysiologically meaningful values, or ones previously described, avoid these

problems. The choice of how to group categorical variables may give rise to similar problems. In the

studies where an explanation is given are evaluated, the decisions seem to have been made with a

combination of data-driven ‘optimal’ cut-points then modulated to give clinically sensible numbers

(e.g. Rackoff [141] and the use of 100 cells/mm3 as a cut-off for absolute monocyte count).
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A further issue is the assumption of independence that underlies most of the techniques used. In 12

studies, multiple episodes in individual patients are treated as if they come from unconnected

individuals. Underlying this needs to be the chance of the first, second, third etc. episodes having the

same outcome: this clearly cannot be the case if one of the outcomes under consideration is death.

In studies that undertook a further analysis which looked at only the ‘first case’ and found ‘no

significant differences’ between the approaches, they used this as justification for assuming

independence, but this is likely to be underpowered for the rarer outcomes of death and severe

infectious complications. Other approaches to address this problem include the use of only first

episode data. This has the disadvantage of decreased numbers of episodes analysed and consequent

decreased power and efficiency. Four studies reported the use of extended modelling techniques

that assessed and accounted for clustering to try to avoid such problems. No study reported the

degree of interpersonal and intrapersonal variability to quantitatively estimate the degree of bias

introduced by undertaking the simplistic approaches, and so it becomes difficult to assess the

potential error introduced.

The way that missing data are handled can also introduce bias and reduce efficacy. Data can be lost

or go missing in ways that introduce bias, or in ways that do not introduce bias but reduce the

efficacy of the study. Non-biased data loss, for example by the bad luck of a power failure in the lab

meaning a blood test can’t be analysed, is described as “missing completely at random” (MCAR). The

data are missing for no reason but random chance. Potentially biased missing data comes in two

sub-categories: the first is where the missing element is intimately linked to something known and

recorded, for example the patient’s condition meaning arterial blood gas measurements are

available on only the sickest children in a cohort. These missing values, which are related to other

known and measured factors, are confusingly called “missing at random” (MAR). These missing data

are potentially imputable from the data that exists. The second sub-category of bias-inducing data

loss is where there is no possibility of linking the missing data to known items. For example, it may

be that patients presenting during the first few weeks of a new physician joining a hospital team are

less likely to have all the correct blood tests done as the admitting doctor is not familiar with the

study protocol. There will be a systematic difference between those with missing data and those

without (new doctor versus experienced doctor) but the reason why the data were missing is not

linked to anything the researchers can know (assuming no-one tells them the doctors changed jobs).

This type of bias-inducing missingness is called “missing not at random” (MNAR).
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The CDR derivation studies described how missing data were handled in only eight of the 21 studies.

In six of these a form of complete case analysis was used. No study details an assessment of the type

of missingness of the data. While MCAR cases can be ignored, using a ‘complete case’ or ‘available

case’ analysis, it reduces the number of episodes, but doesn’t introduce bias. However, undertaking

this type of ‘available case’ analysis when there is a MNAR or MAR problem introduces a form of

selection bias. The development of imputation techniques, where the missing elements are

replaced by one of a number of reasoned methods, provides a way of increasing the efficiency of a

study without introducing bias when data are MAR.[200] No study used such techniques, though it

should be acknowledged that these approaches are not without problems. [201]

The CDR to predict infectious complications had diverse test performance across diverse outcomes.

Initial hypotheses to explain the differences included: the design of the study, the population (both

geographical and case-mix), the complexity of the rule and outcomes chosen. Tabular and graphical

analysis, supplemented by minimal quantitative data, supported the following assertions: validation

studies produced estimates of lower test accuracy and rule complexity, case-mix did not clearly

explain differences between test performance, and geography appears very important. Differences

related to the outcome of interest may be present, with rules to predict infectious complications

being more sensitive and less specific, rules to predict death/ICU admission being more specific but

less sensitive, and rules predicting bacteraemia spanning a range of results, although this was

difficult to separate from the other proposed factors.

Where the aim was to define a group of patients who would not develop adverse outcomes from

their episode, high sensitivity (capturing all the diseased individuals within the high-risk category)

was of primary importance. This would enable those in the low-risk group to be treated with

reduced intensity, without concern of ‘missing’ patients who would develop problems. There

remains a need to trade off sensitivity against specificity (as discussed earlier): the most sensitive

rule would be to call all patients ‘high risk’. This would result in no missed adverse outcomes, but

would over-treat a large proportion of patients.

The performance of the AMC/Temperature criteria proposed by Rackoff [141] to exclude

bacteraemia was assessed across multiple datasets. This model, being tested by different groups

across time and in different centres, has the greatest strength of evidence. The most appropriate
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pooled estimate of the rule’s effectiveness comes from a random effects model assuming no

threshold variability, and excluding both the derivation sample and an outlying study using a

different outcome definition. This led to estimates of moderate discriminatory ability LR [low] = 0.26

(95% CrI 0.08 to 0.72) , LR [medium] =0.72 (95% CrI 0.14 to 2.15), and LR [high] = 3.11 (95% CrI 1.25

to 8.01); a low-risk result led to the odds of infection being roughly one quarter of the overall

prevalence, a medium risk result was associated with a marginally reduced chance, and a high-risk

result approximately three times the odds of an infection being diagnosed.

The exclusion of the derivation sample is justified as this data produced the rule, and would always

improve accuracy (this was also demonstrated in reviewing the test performance of individual

studies). The single non-US study excluded showed a strikingly lower utility for the rule; this differs in

geographical area and reports the wider outcome of ‘documented microbiological infection’ rather

than a narrow bacteraemia diagnosis. As explored above, resolving the reasons for this

heterogeneity is very difficult within this group of studies.

The technique used to summarise the data from the data sets used a Markov-chain Monte Carlo

approach to estimate the proportions of bacteraemic and non-bacteraemic patients in each risk

group. Data from studies which used a similar rule but provided only low versus medium/high risk

categories [12, 69] were also included in this analysis. These proportions were used to calculate

likelihood ratios for each risk category and corresponding 95% credible intervals were derived from

the posterior probability distributions. This analysis technique accounts for heterogeneity due to the

sampling variation within populations, and variation of sampling from different populations.

Multivariate models were investigated to assess how well they ‘fit’ the data under investigation.

Compared to the simple assumption of a random effect variation between studies independently in

affected (outcome positive) and non-affected individuals, two layers of multivariate model were

tested. The first proposes a bivariate relationship between the cut-offs within each study: that is,

that the population of ‘low’, ‘middle’ and ‘high’ risk individuals may vary differently in each study

and is best estimated by two random-effect variables. The second attempts to model a further layer

of heterogeneity: connections between the differences in the affected and unaffected populations

across the studies. This is usually explained as different cut-off thresholds for the tests actually

applied in different studies. In the analysis undertaken here, the test cut-offs are explicit and
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objective (AMC >100, or AMC <100 with maximum temperature measured as either under or over

39°C), with minimal room for intra-study variability in how the rule is applied, and so there is

minimal or no threshold variation. The data produced by these three models showed that there was

a benefit from multivariate modelling within the affected/unaffected populations, as measured by

the Deviance Information Criterion (DIC). The DIC is a value representing how poorly the data fit the

statistical model, with lower numbers indicating a better fit. It has no direct, absolute,

interpretation; rather should be interpreted to inform the choice of models that produce the lowest

DIC. In this case, the multivariate modelling technique reduced the DIC from 180 to 105. Adding

further complexity to the procedure did not reduce the DIC any further, and a combination of the

statistical and theoretical advantages of the second technique led to this being the favoured

approach.

The study of one other model is worth noting particularly. The Santolaya model showed a good

ability to differentiate between low- and high- risk groups when considering a wider definition of

‘serious infection’ where it was developed and tested in Chile; LR [low] = 0.17 (95% CI 0.12 to 0.23),

LR [high] =2.87 (95% CI 2.43 to 3.38). However, when the rule was applied to data collected in

Europe it showed very poor discriminatory ability, well outside of that expected by chance variation.

This highlights the need for models to be evaluated within different geographical settings, as

undetermined factors may vary the diagnostic utility.

Unlike the first review, which focussed fully upon CDR at the point of presentation with FN, the

update review also examined CDR with applied criteria to information applied beyond this. These

showed that re-evaluation at eight to 16 hours [144] or 48 hours [154] was more efficient that initial

examination, probably explained by the declaration of initially occult infections within the first few

hours of admission.

Studies using biomarkers to predict general infectious complications

The predictive value of serum markers of inflammation and infection in children presenting with

febrile neutropenia was studied in an updated systematic review that included a total of 38 studies,

examining 24 biomarkers. Of these, 37 provided quantitative data and 22 studies could be included

in the meta-analyses.
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Figure 30: ‘Inch -deep, mile-wide' approach to biomarker investigation

The studies presented similar methodological challenges to the decision rules review and had

problems of reporting and analysis.

It was seldom reported if the test was interpreted ‘blind’ to the results of the outcome analysis, and

vice-versa. Most studies failed to assess if the marker had any supplementary value over and above

the simple admission data or clinical decision rules. In itself this does not undermine the

interpretation of the predictive value of the marker; it merely reduces the ability of the healthcare

practitioner to understand how to value this information when combined with the clinical

knowledge they already possess.

As with the clinical decision rules, analysis of the data was frequently undertaken at the level of

independent episodes, taking no account of the potential of multiple admissions for the same

patient being present. When undertaken, the comparisons used appeared underpowered to detect
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small but meaningful differences. Missing data were not examined for the nature of their absence,

and no attempt at imputation was reported.

The studies frequently used different test cut-off values to report their findings, and these were

largely driven by the dataset from which they were then applied. In these cases, the estimates

produced are likely to be significant overestimations of accuracy, as data driven choices best

describe the dataset they are derived from rather than estimate the data structure of the wider

population. The use of previously defined cut-off values (in six studies) probably provides more

trustworthy estimates. Unlike the CDR reviews, there were moderate event-per-variable ratios and

few assessments of multiple outcomes within these studies as generally a limited number of

potential predictors were under investigation.

Quantitative pooling of the results of the studies presented challenges of sparse data in specific and

different subgroups, producing great uncertainty in pooled estimates.

In the included studies, a series of cut-off levels are reported to predict selected outcomes with the

marker in question. Pooling these different levels into a single estimate of ‘test effect’ is

meaningless: the estimated sensitivity and specificity do not have a clear relationship to a

measurable cut-off value. One approach would be to only use a single cut-off value, but with so few

data points this ‘wasteful’ approach is extremely unhelpful. A more useful approach is to create a

hierarchical summary receiver operator curve (HSROC) which describes the average ROC curve

derived from the individual curves produced from each study. In this way, it describes the ‘average’

relationship between a continuous cut-off value and discriminatory ability in the ‘average’

population. This is unlike the setting of artificial scores generated in a clinical decision rule, where

the ordinal cut-offs do not reflect a continuous variable. A reasonable alternative to the HSROC

approach would be to undertake a series of summaries at the variously reported cut-offs, making

sure the data are only used once for each study by creating a series of 2*k tables, where (k-1) is the

number of cut-offs.

The functions used to create the HSROC take the data points from different studies as reflecting a

series of individual ROC curves that vary between studies because of sampling, population and
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threshold variation: the key elements of multivariate meta-analysis. The summary drawn from this

maximises the fit of a curve combining the individual curves: a ‘hierarchical’ summary ROC. The

function does not take into account the actual value of the thresholds. This is frequently reasonable,

as it is impossible to quantify the thresholds used by different operators to call an X-ray ‘positive’ for

pneumonia or a vessel ‘compressible’ on ultrasound examination and so demonstrating blood flow

and ruling out thrombosis. In cases where the values are known though, an ordered relationship

should be possible to determine.

A technique to undertake this ordered pooling was undertaken with the same meta-analysis

technique developed on the systematic review of clinical decision rules for risk prediction in febrile

neutropenia. It estimated the true proportion of diseased or non-diseased individuals in each

category, constraining each cut-off to be generated from data specific to the reported value of the

serum marker, and linking each cut-off with a multivariate normal distribution to reflect different

population samples.

This approach failed to produce meaningful results for the ability of IL6, IL8, PCT or CRP to

distinguish patients who developed a documented infection from those who did not. This is likely to

be due to the massive heterogeneity of the data and the small number of data points available to

estimate a large number of model parameters.

In two studies [79, 139] where adjustments were undertaken for other elements of clinical

information, CRP added to the predictive ability of simple decision rules. Given this, and the

unconfirmed impression of better predictive ability of the other serum markers, it is reasonable to

hypothesise that these will add even greater benefit to clinical decision rules.

Direct comparisons of the different biomarkers were very limited, and unsuitable for meta-analytic

pooling. They suggested that PCT or IL8 may be better than CRP, and that CRP may have a small

additional value above clinical examination. Data for the other markers were too sparse to

reasonably interpret. These conclusions should be read with the understanding that these are

uncertain and unstable, and only small amounts of new data may substantially alter the findings.
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Studies to detect radiographic pneumonia

As a by-product of the initial systematic review of clinical decision rules [113], four studies [149-152]

were identified that examined the role of clinical examination in excluding pneumonia. They were

undertaken in similar clinical populations which allowed meta-analysis of results and pooling of the

higher quality studies using a classical binomial random effects model produced imprecise estimates

of sensitivity 75% (95% CI 56.4% to 93.6%) and specificity 67.9% (95% CI 55.9% to 79.9%).

The implications of these results are that for populations with a similar prevalence of pneumonia

(~5%), the absence of signs or symptoms of infection on clinical examination produces a post-test

probability of pneumonia of about 1.5%. Given low level of risk, this can justify the routine

withholding of chest radiographs to children who do not have signs or symptoms of lower

respiratory tract infection. This will reduce the cost, resource demand and exposure of the child to

radiation. However, the clinician must remember that a number of children will have an occult

pneumonia and chest X-rays undertaken in a patient with an unresolving fever may be fruitful

despite an absence of signs.

The conclusions we reached in a published review [117] were incorporated into national [202] and

international [129] guidelines for the management of FN, which recommend only undertaking chest

radiography in the setting of specific clinical indications.

Conclusions

The reviews undertaken and updated for this project demonstrated that a wide range of CDR for the

prediction of poor outcomes during episodes of febrile neutropenia in children had been derived,

and that there was potential for additional value to be gained from the incorporation of serum

biomarkers. None of the rules identified had been subject to the extensive geographical and

temporal discriminatory validity assessments that mark the highest quality CDR, and many potential

difficulties with different outcomes, variable selection and model building were identified. Many of

these issues arose from the challenges of combining the aggregate information presented in printed

reports of the studies undertaken.
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To maximise the value of the information already collected by these and other cohorts of children

with FN, an individual-patient-data (IPD) meta-analysis was justified. This was required to develop

and test new and existing prediction models; enable the construction of ‘true’ ROC curves based on

the original data; allow comparison and alignment of different clinical outcomes; and accurately

assess the effect of within-patient clustering of episodes. The effective added-value of markers to

clinical rules could also be measured more comprehensively. The next sections of this thesis explore

in detail the theoretical and practical methods used in forming the collaborative and undertaking the

IPD analysis, and report the results of the main analyses in detail.

This intention of this endeavour is to provide a firmer basis for stratified treatment, either in the

context of randomised trials of reducing intensity and duration of therapy for those at low risk of

severe infectious complications, or of novel methods of early support for those at highest risk. Only

in the collation of large quantities of data can we seek to address such questions in this common and

occasionally fatal complication of therapy.
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Chapter 6: Methods for the Individual Participant Data meta-analysis

Previous chapters identified a wide range of rules that have that been developed to predict poor

outcomes during episodes of febrile neutropenia in children who have been treated for cancer.

None of these has been subject to the extensive geographical and temporal discriminatory validity

assessments that mark the highest quality CDR. The systematic review of these existing CDRs

identified many potential difficulties with different outcomes, variable selection and model building

and consequently was unable to reach any firm conclusions. A complementary systematic review of

studies of serum markers used similarly to predict outcome found similar problems of extremely

heterogeneous data and only tentative conclusions could be drawn.

The problems identified are inherent to meta-analysis of aggregate data. Limitations of reporting in

published studies mean that we do not have access to the exact distributions of data, or the full

range of univariable estimates of predictive power. These issues could have been partially addressed

by collecting more detailed summary data from the authors of the original studies. However, this

would not allow cross-study validation of different rules or alternative rule building. To meet these

challenges, and to maximise the value of the information already collected by these groups and in

other cohorts of children with febrile neutropenia, we initiated an international collaborative

systematic review and individual participant data meta-analysis. This was intended to enable us to

develop and test new prediction models in order to provide a firmer basis for risk stratification,

including deriving a simple clinical decision rule, and to test existing rules. Subsequent to this

formulation, treatment trials in this common and occasionally fatal complication of therapy could be

undertaken.

Rationale for individual patient data meta-analysis in risk stratification in

febrile neutropenia

Individual patient data meta-analysis in therapeutic studies has been developed over two decades to

improve the precision and reliability of answers to questions of treatment.[203-204] More recently,

the approach has been promoted for the synthesis of diagnostic[205] and prognostic[206] studies to
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improve the quality of answers to important prognostic questions [111] and matters of diagnostic

accuracy.[207] These techniques have been applied to real world clinical datasets [208-209] where

they have clarified existing understanding of particular prognostic variables and enhanced an

understanding of how different diagnostic tests can be used.[210]

Failure to approach meta-analysis and prediction model building in a coherent and technically sound

way does not just lead to mathematical or statistical problems. Failure to address the problems of

statistical interpretation has clear and real clinical implications.[211] Systematic review and use of

summary prognostic data may be unreliable as the published data may be incomplete (missing vital

information for meaningful meta-analysis)[78], and appear very susceptible to significant publication

bias (with prognostic markers showing ‘highly significant’ responses being more likely to be

published).[212] It has been suggested that the use of IPD in predictive settings may be even more

valuable than in therapeutic reviews.[78]

It has been shown that smaller published studies are much more likely to demonstrate powerful

relationships [71, 109] and nearly all studies of prognostic markers in cancer are ‘positive’.[76] These

problems are compounded by widespread over-citing of articles with high and unrepresentative

predictive values[213] and the selective reporting of specific outcomes with ‘significant’

associations[76].

These problems suggest that the classical systematic review approach will have the potential to

introduce greater problems that it solves, and any approach to such analysis should clearly account

for these potential difficulties. One method is to use a clearly defined and ‘complete’ population of

studies (e.g. the EORTC breast cancer marker studies[214]) another is the use of only large published

studies (e.g. the Fibrinogen Studies Collaboration[215]), both aiming to avoid publication/selective

reporting biases.

In the realm of therapeutic assessments, there is clear empirical research demonstrating that study

design affects outcome.[216] The issues of study design and the introduction of bias have also been

assessed by empirical research in predictive studies, but with less conclusive results. Kyzas has

examined a series of 20 meta-analyses and evaluated how they assessed potential sources of bias,
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and the effect they had on the overall conclusion.[76] This failed to show a significant effect of any

of the study design measures they examined (blinding, prospective/retrospective, outcomes, time

period, assay description or reference). This finding leads to the conclusion that there is no clear

reason to exclude studies purely on the basis of their study design.

Equally important are the harmonisation of study data sets. This will allow the standardisation of

endpoints, where the reports in papers show inconsistent reporting of ostensibly similar outcomes,

or differing assay methods for proposed markers.[78] In a similar way, these benefits apply to issues

of diagnostic accuracy.[210]

A further challenge avoided in the use of IPD is the un-categorisation of continuous outcome

variables, the categorisations of which themselves may have be biased[80], driven by ‘significance’

based testing.

This is allied to the frequent use in primary studies of multiple data-driven analyses. The method

used in the IPD analysis is based on firmly pre-specified potential predictor variables, built upon the

clinical experience of the collaborative group and the systematic reviews explored in the preceding

chapters. This guards against purely data-driven analyses which have a tendency to over-estimate

any predictive value.[111]

In the reviews, we found the studies building a CDR used a large number of variables (median 13,

range 2 to 39) and had a small number of events (median 36, range 4 to 178) with 76% studies

having fewer than ten events per variable under consideration, and no study having more than 14

events per variable. These low event-per-variable ratios make predictive conclusions drawn from

them to be unstable, and estimates of predictive power to be over-optimistic.[83] A collaborative

IPD approach allowed us to consolidate the information and greatly increase the number of events

studied from the same number of predictive variables.

The raw data also allowed a detailed analysis of the clustering of events (multiple episodes per

patient) and variation at the level of the individual patient. This issue is significant when assessing
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the problems identified in the aggregate data reviews. Multiple episodes in individual patients were

treated primarily as if they came from unconnected individuals in most of the CDR and serum

marker studies, which may have been inappropriate.

The functional form of the data, examining a priori non-linear/fractional polynomial relationships,

can be assessed in detail in a large IPD analysis. No study assessed in the systematic reviews

attempted to fit non-linear forms to the data. This was unsurprising, as the development of practical

techniques to undertake this was very recent.[198]

Finally, IPD allowed us to not only test existing rules and combine data which have attempted to

examine the rules, but potentially develop a more robust rule for future use worldwide.

In summary, the key benefits of prognostic IPD analysis generally are that:

 Analyses are not restricted to those of the published results or subgroups

 Analysis techniques, inclusion criteria and outcomes definitions can be standardised across

studies

 Larger numbers of data points allow more powerful statistical conclusions to be drawn,

including checking modelling assumptions

 The detailed data allows assessments to be made to account for missing data at the

individual-level

 IPD can model data more appropriately, for example analysing continuous variables on their

continuous scale (unlike in many prognostic studies, where such variables are reported

categorised)

 Analysis can account for clustering (e.g. of patients within studies) and correlated

information (e.g. multiple events per individual)

 Multivariate models can be created across differing health care settings

 Individual data sets can be reviewed for completeness and accuracy

 The analysis can provide extensive internal cross-validation to guard against data-driven

exaggerations of predictive power
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Forming the Collaborative Group

The “Predicting Infectious ComplicatioNs In Children with Cancer” (PICNICC) collaboration was

formed around a nucleus of an international group of clinical experts who I had met and discussed

potential collaboration as part of the development of the MRC fellowship proposal with. The

systematic reviews described in the preceding chapters identified further key studies and

researchers who were then invited to join the collaborative group.

Oral presentations on the problem of risk stratification in febrile neutropenia at separate

conferences for the Royal College of Paediatrics and Child Health (2009) and the International

Society of Paediatric Oncology (SIOP, 2008) also identified further studies and partners. Parallel to

these approaches to clinicians and researchers, there was an integrated move to include

parents/carers in the Collaboration (see next section). These presentations led to further interested

groups contacting the Secretariat.

Following the SIOP presentation, the slides were placed on the international, though developing-

world focussed, paediatric oncology website "Oncopedia". From this, I was approached by three

more groups and located another group working on FNP stratification and through a mutual

colleague, approached the main author, who also agreed to join the collaborative. The Centre for

Reviews and Dissemination (CRD) website hosted the project page, which drew in one further group.

Ethical approval was obtained from University of York Health Services Research Ethics and Research

Governance Committee, and from York NHS Research Ethics Committee after considerable input

into assessing the ethical implications of IPD projects like PICNICC (see subsequent section for

detail).

A full draft protocol was presented at SIOP in 2010. Following the presentation and distribution of

copies of the IPD protocol, letters of invitation were sent by email and paper to principle authors (of

the studies identified in the systematic reviews) and those not already engaged. This generated

further contacts from follow-up emails to this group and their contacts and then included. A complex
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series of approaches and telephone conferences also led to the inclusion of data from 4 EORTC trials.

The flowchart of how study groups were contacted and their involvement requested is detailed in

Appendix 14, and examples of the nature of the documentation in Appendix 15.

An important element in confirming the nature of the relationships between the data and the

collaborative group was to set a clear publication policy. It was agreed that the main results of the

meta-analysis would be published and presented in the PICNICC name, comprising groups supplying

data for analysis and the Advisory group. Any subsequent technical papers which describe

innovations in the methodologies used in the meta-analysis would acknowledge the Collaborative as

the source of the data.

Rationale for parent/carer involvement

The development of shared research initiatives between patient/clinician/researchers has been a

notable change in the practice of clinical research over the last decade.[217] It remains shocking to

many researchers, clinicians and patients to learn that their views are often strikingly different than

each other.[218] A systematic review of studies which describe the process of research planning and

priority setting undertaken by the James Lind Alliance [219] demonstrated that the involvement of

patients and parent/carers was extremely infrequent.

The PICNICC group has sought to involve parent representation from early in the process.

Experiences of other researchers who had engaged patients in IPD collaborative were sought. Clare

Vale, MRC Trials Unit, had worked with women in a cervical cancer IPD collaboration [220] and

found the patient experiences redirected the focus of the IPD group onto many patient important

elements. The benefit of lay involvement in improving the clarity of presentation of information and

structure of investigation has also been suggested.[221]

Initial approaches were made to the Chair of the Patient Advocacy Committee (PAC) at the

Children’s Cancer and Leukaemia Group (CCLG: a charity networking parents, clinicians and allied

health professionals in the UK and Ireland who treat childhood cancer) and to the Manager of



Page 125 of 410

Candlelighters (the Yorkshire Children’s Cancer charity) to seek their advice and suggestions for

volunteers. From these meetings, a lay summary of the project evolved, written in a ‘journalistic’

style and commented upon by the CCLG PAC and Play Leaders at the Leeds children’s cancer unit

(see Appendix 16).

The project request for volunteers was highlighted by the CCLG PAC team and a short article printed

in the Candlelighters monthly magazine, and a web page made available from the CRD site

(http://www.york.ac.uk/inst/crd/projects/risk_stratification_febrile_neutropenia.htm). This led to

the involvement of two parents, one of whom had experienced the death of her child, one whose

child had been free from disease for over four years.

The involvement of these individuals led to a discussion about the nature and parent/family view on

the understanding of risk in the setting of febrile neutropenia. After involvement in the initial

refinement of the protocol, one volunteer withdrew, but the second continued and inputted

through the process including attending and taking part in the Collaborators meeting. It was clear

that the representatives involved had not wished to be actively involved in the process of systematic

reviewing, data extraction or analysis, but added opinions to discussions about the nature of the

adverse effects of FNP and provided their own professional (non-medical) expertise in advancing the

project, particularly in respect of ethical issues and dissemination of data.

Ethical and regulatory considerations

It has been suggested that the re-use of individual participant data from randomised trials within

meta-analyses that address the same clinical questions should be exempt from further ethical

review requirements. This is because the data are from studies which have already obtained

individual consent and ethical approval.[215, 222] The use of data that had been obtained outside

specific research studies, or where the meta-analysis has different aims, remains unclear. A

consultation exercise undertaken in 2008 by the National Cancer Research Institute (NCRI) found

that the belief of most respondents was that material and data collected from cancer patients

should be used, without identifiable information, as broadly as possible and that retrospectively

seeking consent was inappropriate.[223] The European Treaty on Biomedical Ethics permits the use

of data without specific consent [224] (15.2.i/ii) where there is minimal risk and potential benefit to

similar persons
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Within the UK, legislation controls the use of patient data for the purposes of research, most

recently the National Health Service (NHS) Act 2006. This has been interpreted by the UK Medical

Research Council (MRC) and summarised in a guidance document. These guidelines state that where

possible, data should be released under specific consent. Where this is impractical, anonymised data

should be used, and if this is impossible then an application to the Ethics and Confidentiality

Committee of the National Information Governance Board for Health and Social Care is required to

obtain access.[225] Wherever data is used that has not had specific consent, consent should be

sought from an appropriate Research Ethics Committee (REC).[226]

The data sought for the “Predicting Infectious ComplicatioNs In Children with Cancer” (PICNICC)

Collaborative IPD review was anonymous (i.e. the Collaboration could not identify the patient from

their data) and unlinked (i.e. their data could not be mapped onto a subsequent dataset, with the

potential for breaking anonymity). The project Advisory group could not conceive of any harm that

may have been occasioned by the use of such anonymous, unlinked data, and that there was a

considerable benefit of an improved risk stratification system for episodes of febrile neutropenia for

children and young people with cancer. This view was also supported by the parent representatives

in the collaboration. Data were sought from formal randomised controlled trials and prospective

observational studies, and also informal studies of data routinely collected in clinical practice or as

part of quality improvement projects. The transfer of the information from the original researchers

to the Collaborative was requested by secure, encrypted electronic methods.

Within the UK, it was considered the project would require NHS REC approval for the use of patient

data that had been recorded without specific research consent. Similar processes were discovered to

apply in Australia [227], New Zealand[228], and Canada.[229] In other locations (such as Germany or

the United States of America [230]) such data are exempt from the need for formal REC approval,

but researchers are advised to have such protocols reviews by ethics boards to assure quality and

ease publication.[224] In respect of this, we applied for and received approval for the PICNICC IPD

protocol from the University of York Health Services Research Ethics and Research Governance

Committee, and from the York NHS REC, both of whom determined that a full application was not

required and gave consent from the Chair.
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Methods

The full protocol of the PICNICC IPD analysis is provided in Appendix 17. It was developed,

registered and published prior to commencement of the analysis.[231] The remainder of this

chapter outlines the key methods and most important aspects of approach and analyses, paying

particular relevance to the part of the PICNICC project undertaken for this PhD submission.

Aims

The primary clinical aim of this IPD analysis was to quantify the risk of adverse clinical outcomes

according to clinical variables in children and young people undergoing treatment for malignant

disease who present with an episode of febrile neutropenia; i.e. to identify which variables are

prognostic, and which have the most independent prognostic importance. This was planned to lead

to the development of a new risk prediction model containing multiple prognostic factors in

combination, and permit this to be validated.

A further aim was to develop and explore practical and methodological issues around the use of

pooled IPD analysis in the development of prediction models, and in the graphical display and

communication of such information.

Inclusion and Exclusion Criteria

Studies were considered for inclusion in the IPD meta-analysis if they were:

 cohort studies of children and young people

 presenting with febrile neutropenia

 with either prospective or retrospective data collection, including randomised trial data

 provided data for all essential predictive variables in >50% of included episodes

 provided two or more study-defined-outcomes in >90% of each individual episodes of FNP

These criteria were selected to efficiently gather information which would inform the better

understanding of the predictive ability of a range of pre-specified factors, chosen from the

systematic reviews conducted to underpin this investigation.



Page 128 of 410

Studies were excluded if they:

 Were case-series (for example, of only ‘gram negative bacteraemia’)

 Did not record data on all ‘essential’ predictive variables or could not provide sufficient

outcome data

These exclusions were intentionally minimal, and produced to remove datasets which could not be

informative about the outcomes of their patients or contained so few of the predictive variables that

they would not be able to be used in developing a prediction model.

Studies were included which focus on collection of data from children and young people (between 0

and 24 years old). The inclusion of young people up to the age of 24 years is to address a paucity of

research on individuals in the ‘young adult’ age range.[232] Data from individual patients aged 25

years and older were excluded from this analysis. The median age of inclusion in the children’s

cohorts examined in the systematic reviews reported in the previous chapters was around seven

years old (ranging from one month to 23 years), and the adult study from the MASCC group [13] has

a median age of 52 years (ranging from 16 to 91 years old).

Mapping Procedures

In order to harmonise outcomes and maximise the usefulness of the data to be collected, a series of

a priorimapping procedures were planned, in consultation between two clinical experts (RSP and

Julia Chisholm). These procedures were verified by the collaborators' meeting.

The procedures undertaken included microbial infection types/sources and classification in to

severe/non-severe, summarising the “intensity of chemotherapy”, addressing issues with different

approaches to reporting “vital signs” and clarifying the value of continuous variables when they fall

below the limits of assay detection.

Mapping of microbial sources to outcomes

The principle of this process was to create an a priori list of microbiological infections/sources which

can be used to classify infections as ‘severe’ or ‘non-severe’, as detailed in Appendix 18. While this

will never be a perfect system – for example some patients with Pseudomonas pneumonia may not
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be significantly unwell, where some children with rhinovirus infection may be severely unwell –

examples which cross these boundaries will be rare. In some cases the information on the

microbiological outcome was supplemented by clinical site information in the dataset, in others it

was not.

The rationale for this mapping was to create a homogenous and unconfounded outcome; one

unaffected by any therapeutic manoeuvre, for use in model building and verification.

Mapping of chemotherapy Intensity

A range of treatment intensity approaches have been previously described, including variations of

the “intensity of treatment rating scale”.[233] The data delivered to the PICNICC collaboration

contained a range of information, from the highly specific sub-elements of treatment courses (e.g.

BFM acute lymphoblastic leukaemia (ALL) Induction Phase Ib) to the general (e.g. “More intense

than ALL maintenance treatment”).

In view of this, a three-intensity plan was undertaken to homogenise the information and maximise

the quality which was included:

 Equal to or less intensive than ALL maintenance

 Standard chemotherapy more intensive than ALL maintenance

 Stem cell transplant procedures

Mapping of Respiratory & Circulatory results

A number of studies provided continuous variables (heart rate, respiratory rate, blood pressure)

where a number of other data sets provided statements of respiratory or circulatory compromise.

Where a description of respiratory or circulatory compromise has been given – for example, by

explicit statement of use of supplemental oxygen – this has been used. For those where continuous

variables alone were given, a mapping exercise was undertaken.

Normal children have been extensively studied for the variation and distribution of respiratory and

circulatory parameters, with the development of centile charts for such variables. In view of the

extreme nature of compromise in respiratory rate (where tachypnoea alone is not always associated

with a failure of gas exchange or the need for other support) those greater than the 99th percentile

[234] have been mapped to “compromised”. For blood pressure, the lower 5th percentile has been
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used (in keeping with the definition of systemic inflammatory response syndrome[235]), calculated

as age(yrs)*2 + 65 mmHg.[236] The latter approach assumes a 50th percentile height of patient.

Mapping of biomarkers and age

A number of studies provided age as months; other studies provided the information in days. To

convert to a common metric, the months data was multiplied by (m/12 * 365.25). Rounding is

assumed to have happened both up and down, so that a 10.6m old would have been recorded as

11m, as would a 11.4m old, making the ‘round’ month the mid-point.

Inflammatory marker continuous variables (e.g. CRP, interleukins, PCT) have a log-normal

distribution.[156, 237] For values below assay detection limits, the mean of the log-normal of the

distribution of the ‘counted’ values was taken as the true mean, and the proportion of patients

below the limit of detection calculated, with the median ‘unmeasured’ value imputed for all those

below the cutoff.

Core dataset and variables

The predictor variables and adverse outcomes sought from studies were based on our systematic

reviews of aggregate data and clinical experience.

Predictor variables requested were divided into ‘essential’ and ‘desirable’ items and categorised as

patient-related, episode-related-clinical and episode-related-laboratory variables.

Patient-related variables

 Age

 Underlying tumour type

 Marrow involvement/remission status

 Chemotherapy type and time elapsed since last cycle

 Presence of central venous line
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Episode-related clinical variables

 In-patient or out-patient at onset of episode

 Maximum temperature

 Antibiotic therapy used

 Respiratory rate (or compromise)

 Circulatory (or compromise)

 Severe mucositis

 Global assessment of illness severity

Episode-related-laboratory variables

 Haemoglobin

 Platelet count

 White cell count

 Neutrophil count

 Monocyte count

 C-reactive protein

 Procalcitonin

 Interleukin-6

 Interleukin-8

The outcomes of primary interest from each episode were:

 Death

 Intensive care admission

 Need for moderate organ support (fluid bolus, oxygen)

 Clinically documented infections

 Microbiologically documented infections

To be eligible for inclusion, studies had to be able to provide two or more of these outcome

measures for at least 90% of episodes.
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If available, data were also requested on:

 Duration of fever

 Duration of admission

The adequacy of data sources was assessed with an initial survey of data available from

collaborators is provided in Appendix 19.

Providing Data

Anonymised de-identified data

Datasets were requested in anonymised format with all directly identifiable material such as name,

address, postcode, medical number removed. A patient identification number was requested to

facilitate communication and data queries. For the purposes of the analyses planned, the age of the

patient (an indirect identifier) was considered essential, and requested to be provided [238] despite

some concerns that in small population this could provide a potential patient-level identifier.

Data format

The data were accepted in any electronic formats, but the ideal was a ‘flat’ spreadsheet format (such

as Excel), with one episode per row and variables in columns. To make the cleaning and checking of

the data as straightforward as possible guidance on data provision was provided, such as “Each

patient should have an in-cohort unique identifier (such as a simple number 1,2...n) to highlight

repeated episodes in the same patient”. Suggested coding was also provided (Appendix 20) along

with an example flat file. Data were re-coded on receipt to ensure consistency.

Transfer of data

Data were transferred using a secure password-protected web server (Dropbox.com) or via PGP-

encrypted email. This permitted a secure and identifiable connection to the University of York

servers and minimised the possibility of data loss.
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The raw files were named according to a specified convention and archived as an unmodified record

of the original provided data. Copies of the received files were made and used in the subsequent

cleaning and analysis work (see Appendix 21; Data manipulation SOPs).

Data checking

Simple checks of data integrity were undertaken prior to analysis:

The first review was to confirm that the supplied coding sheet and data file corresponded, and to log

any initial uncertainties. Data columns were reordered in line with the PICNICC master data file

structure, and the presence of the essential variables and outcomes verified at the ‘column’ level.

This was followed by recoding and examination for missing data.

Further data checks were undertaken in Excel:

 age checking (not negative or zero and not older than 9,125 days (25 years); consistency of

patient DOBs, and sensible diagnosis & age relationships)

 episodic checking ordering by age and DOB and then by admission date and looking for

odd/inconsistent elements (>6m in between FNP episodes)

 time-since-chemotherapy (not negative or >42 days), and looking for consistency with other

episodes

 white cell indices (not ‘zero’, and components e.g. ANC and AMC are not greater than the

total WCC)

Subsequent queries and their resolutions were recorded, and when finalised, the data source was

locked. Any problems or inconsistencies flagged during these procedures were discussed with the

individual responsible for each study and amended as appropriate by consensus.
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Plan of investigation

Method of analysis

The key elements in the development of a good clinical decision rule are: high quality rule-building

with unbiased data, sensible validation and assessment of generalisability, and finally

implementation in a real-world clinical setting. The building of a rule requires the data to be

collected without systematic errors, subsequent construction of an accurate prediction model, and

the development, using clinical criteria, of an appropriately usable decision rule.

The construction of a prediction model could be accomplished using one of a series of different

models. These different analysis techniques include: multivariable regression analysis, classification

and regression tree (CART) models, and neural nets. There is no clear evidence that one method is

superior to any other.[109] The chosen primary method of analysis for the PICNICC study was logistic

regression as this has the widest clinical understanding and applicability.

Logistic regressionmodelling

This technique seeks to quantify the relationships between predictor variables and the chance of a

specified outcome by estimating the relative likelihood of the outcome occurring with increasing

values of the predictor.

The equation produced at the simplest level takes the form:

[1] Logit(p ik) = β0

Logit(pik) is the log-odds (natural logarithm of pik / (1- pik)) of an outcome, for example, bacteraemia

in the k'th patient of the i'th study.

β0 is the intercept of the slope described by the equation – the expected log-odds of bacteraemia.
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This equation is clinically meaningful only if each patient in each study has the same risk of

bacteraemia, which cannot be predicted by any other factor. This is obviously not the case.

Adding another level of complexity is to try to explain some of the variation:

[2] Logit(p ik) = β0 + β1 tik

tik is the value of a covariate, a candidate of a predictor variable (potential prognostic factor, for

example maximum temperature) in the k'th patient of the i'th study.

β1 is the co-efficient, alternatively understood as the ‘weight’, ‘slope’ or ‘multiplication factor’ for

that explanatory variable. The value exp(β1) gives the odds ratio of the candidate predictor; it

compares the odds of the outcome for two episodes that vary by one unit of tik . This value, along

with a 95% confidence interval, can be used to summarise the predictive effect of tik .

Categorical variables can also be used in these equations by the use of ‘dummy’ or coding variables.

This formula assumes that the risk of bacteraemia can, to some extent, be predicted from the

maximum temperature prior to admission. The equation also presumes that the risk is the same in

each study, and that the change in risk (per degree of temperature) is also the same – essentially

treating the whole dataset as if it were one large study. This may well be untrue, with altering rates

of bacteraemia across studies. To incorporate this, we need to add:

[3] Logit(p ik) = β0i + β1 tik

β0i is a parameter for each study, which can be thought of as allowing different intercepts , which are

the baseline risks of bacteraemia, to account for differences in populations. This keeps the same

slope of the temperature-bacteraemia line (‘fixed effect’ covariate).



Page 136 of 410

If we suggest that there may be a real difference in the relationship between temperature and

bacteraemia in different studies which is beyond that expect by chance sampling, then we must also

allow the β1 to vary in from study to study (‘random effect’ covariate):

[4] Logit(p ik) = β0i + β1i tk

1i ~ N(β1, τ
2
β1)

This introduces a second assessment of between-study variability related this time to the

temperature covariate. τ is the between-study standard deviation in the 1 values. If τ is zero, then 1

is the same (fixed) in each study, and this equation becomes the same as [3]. In either case, 1 is the

effect of a degree-change in temperature on the risk of bacteramia, on average, across all the

various studies.

In straightforward terms, estimating a fixed effect covariate assumes the same effect is present

across each study, and any differences are due to chance sampling. A random effect covariate

assumes that the estimates are drawn themselves from a normal distribution of true effects; that

the estimates are both different by sampling, and that real differences may also be present between

studies. The clinical interpretation of this can be difficult, if the heterogeneity in this estimate is

large, as it means it becomes difficult to predict what the value of a one-degree temperature change

is in any given setting. An exception to this is in settings where a study has contributed to the

analysis; in these areas a reasonable estimate of the specific value of the covariate can be made

more accurately using ‘shrunken’ estimates.

When multiple predictors are considered the equation stays very much the same, but adds in further

covariates. In adding further covariates we move from assessing univariate models to multivariable

ones:

[5] Logit(p ik) = β0i + β1 tik + β2 mik + β3 yk
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Each further covariate (e.g. m = monocyte count) has a different corresponding co-efficient. Again,

these may be fixed effects (as above) or allowed to have a random-effects estimate. It also allows

some covariates to be entered at study-level only, for example the study ‘year’ may be entered as a

potential explanation: β3 yi (note the lack of ‘k’ in the subscript).

Combining these approaches allows random effects for some aspects of the model, for example,

differences in the intercept and some covariates, and for other covariates assume the same slope

across studies (fixed effects).

In clinical terms the multi-level model can describe how baselines rates of an outcome (e.g.

proportion of bacteraemia) vary between studies – this is the intercept component. It can also

explore which predictive factors have different strengths of influence in different studies – the

‘slope’ or coefficient. If a predictive factor is found to have strikingly different (heterogeneous)

coefficients across different studies the potential explanation for this needs to be explored. If no

consistent pattern emerges then the practical implication is that it is impossible to use this in a

model which will be generalisable in future as the power of the predictor will be impossible to judge.

The alternative situation, where slopes are similar between studies, strengthens the confidence in it

being predictive in future practice.

Advanced issues [optional]

Further layers of clinically reasonable complexity can be added to this situation. The first is that

there may be situations where the explanatory factor has qualitatively different effects in different

settings. For example, it may be that platelet counts have little predictive value in areas of the world

where transfusions are simple, cheap and safe, and have strong predictive value in areas where

platelet transfusions are difficult to give. In this setting, the basic equation is similar, but the values

of β1 vary between studies where transfusions are common (c) and uncommon (u):

[6] Logit(p ik) = β0i + β1Cipk + β1Uipk

1Ci ~ N(B1C, τ
2
B1)

1Ui ~ N(B1U, τ
2
B1)
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The logical extension to this variant is that τ21 may also differ between groups, allowing more or less

variability in the platelet-bacteraemia relationship in high versus low transfusions settings. These are

‘group random effect’ models.

A further factor which may need consideration is the how predictions may differ between studies

because of unidentified biases. For example, temperature may seem valuable, yet this is only a

reflection of different studies having different mean values of maximum temperature (ecological

bias).[239]

This can be assessed by looking at how the covariates of the ‘study mean’ temperature (β1A for

‘across study’ and ‘ť for mean-temperature) differ from those of the individual patient temperature

(β1W for within-study). Technically, the individual element component is ‘centred’ to make it more

comparable by subtracting it from the mean study temperature. The equation becomes:

[7] Logit(p ik) = β0i + β1A ťi + β1W tik-ťi

This then allows a statistical test of the difference in β1A andβ1W to be undertaken, with the null

hypothesis that there will be no difference (i.e. there is no ‘ecological bias’).

There may also be situation where a candidate predictor variable (e.g study year ‘y’) may not by

itself have any predictive value, but it alters how effectively monocyte count ‘m’ predicts

bacteraemia. This can be estimated by looking at the ‘interaction’ term of yk* mik

[8] Logit(y k) = β0i + β1 tik + β2 mik + β3 yk + β4 yk* mik



Page 139 of 410

Assessment of study and data quality

At the time the PICNICC protocol was produced there was very little advice in the literature for

assessing the quality of prognostic studies. Altman and Lyman have presented suitable criteria that

those initiating a primary prognostic study should consider [240], and they suggest that every effort

should be made to limit potential biases and to emulate the design standards of a clinical trial.

Ideally the data should be collected prospectively, with little missing data for predictors or

outcomes, and with pre-defined hypothesizes. We chose to use the format of QUADAS, as used in

the systematic review, to help inform the assessment of the quality of the IPD obtained. The

influence of any studies considered problematic (e.g. those with large missing data, or lots of

incomplete follow-up) in the prediction model was also considered in the later analyses. Since the

protocol was developed, there have been further publications exploring the assessment of bias in

prognostic studies [241-242], and these issues have also been considered.

Model development

The protocol [231] for model development set out that after data checking for consistency, model

building would initially incorporate the simplest predictor variables (malignant diagnosis, age, time

since chemotherapy, and maximum recorded temperature) before standard additional variables

(such as clinical assessments of compromise, in/out-patient status, white cell counts or other

haematological parameters) were added. Further specialist tests (e.g. CRP and IL6 levels) were finally

to be added. The type of antibiotic therapy used was always incorporated into model as a categorical

variable in a sensitivity analysis.

Potential sources of heterogeneity (e.g. in effects of particular variables across studies, or by

individual-level variation) were incorporated as random-effects when appropriate and the effect

assessed. The models were assessed for improvement in fit using an Akaike’s Information Criterion,

with a p-value of < 0.15 used for inclusion; we use a 15% level rather than a 5% as we felt this was

more conservative and would avoid missing important covariates. However, at the stage of

determining our final model, we checked that the model’s predictive accuracy (discriminatory

ability) would be improved by the inclusion of variables whose significance was between 5% and

15%. If predictive accuracy was not improved then these variables would be removed.
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This approach (of adding specialist tests only after considering the simpler tests) maximizes the

utility of a model by ensuring that if extra tests with additional costs are required, they are shown to

add considerable predictive power to existing simpler variables.[80] We used bootstrapping and

shrinkage to adjust for potential over-optimism (bias) in parameter estimates.

The bootstrap procedure creates a series of ‘new’ datasets which are compiled from rows re-

sampled from the original dataset at random, with replacement, i.e. allowing any individual patient-

episode to enter the new bootstrapped dataset multiple times.[85] This is based on the principle of

random sampling reflecting the true value of a studied item within a population, and simulates the

expected random variations that will appear in when a prediction model would be used in clinical

practice. These new datasets are then subject to the analyses which are under consideration. The

results of these bootstrap analyses are examined and an average value, along with observed or

calculated confidence intervals for each of the chosen parameters, can be drawn. For the analyses in

this thesis, the bootstrap procedures were undertaken using R.

Shrinkage [243] is process of producing a reduction in the predictive estimates of a regression

equation because there is an empirically proven expectation that prediction models generally

perform less well in validation datasets than derivation ones. By applying a ‘calculated pessimism’ to

the estimates this may be avoided. The approach used here follows the shrinkage after estimation

approach using a heuristic uniform shrinkage factor s, calculated as

[1] s = (model 2 – p) / model 2

model 2 = likelihood ratio of the fitted model

AIC = model 2 – 2p

where p = number of fitted predictors in the final model, taken from the formulae of [243] Chapter

13 (p233 and p235).
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Continuous candidate variables were assessed using the best fitting functional form considering

appropriate transformations or fractional polynomials (also assessed using an Information Criterion)

as suggested by previous evidence.

An analysis comparing the new model that we develop with other validated models, for example

that of Santolaya [22] was also planned a priori to exclude data sets used to derive any of the

models. This provided an opportunity to test these rules against data from other geographies and

eras, particularly in light of the demonstration of lack of geographical transportability.[115]

The protocol acknowledged there would be unforeseen challenges caused by the variations in the

data formats and completeness of studies, and acknowledged establishing the definitive analysis

plan will be an iterative process and could even require novel methodological developments.

Assessing model performance

An important use of a prediction model is to classify patients into risk groups. The developed model

will produce a risk score for each individual, based on their own predictor values. The calibration of

the prediction model was assessed by placing children into deciles ordered by predicted risk and

considering the agreement between the mean predicted risk and the observed events in each decile;

the slope of this line should be one if the model and reality agree.

To produce a clinical decision rule (CDR) a cut-off value was required. In order to do this, the

collaborators, including patient representation, discussed the value below which it would be

considered acceptable to be termed “low risk” of bacteraemia at the congress. Through expert

opinion, and in keeping with the previous publications of the SPOG group, a “5% risk of

bacteraemia” was agreed. Further issues with this decision and approach are explored in Chapter 10.

The decision rule derived from this was simply to classify the output of the prediction model as being

“low risk” if it was less than 5%, and “high risk” if 5% or higher. This was cross-validated by

comparing the classification of each patient with their actual outcome, allowing an estimate of the

sensitivity and specificity of the prediction model. Then, by varying the chosen cut-off level, a
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receiver operating characteristic (ROC) curve summarising the sensitivity and specificity of the

prediction rule across the range of cut-offs was produced by the R package pROC, along with an

evaluation of the overall discriminatory ability summarised as the Area Under Receiver Operating

Characteristic curve (AUC ROC) with 95% confidence interval.

The prediction model was tested by checking performance against the data from all, bar one, of the

studies in turn (cross validation of intrinsic prognostic performance)[209] and using the bootstrap

procedure.[81] This approach is intended to adjust for over-optimism in the estimation of model

performance due to validation in the same dataset that was used to develop the model itself. The

cross-validation approach (leave one study out at a time) has been referred to as internal-external

validation, and is a way of maximising the data toward the prediction model development whilst also

externally examining model performance. It tests the systematic biasing of the data in order to

assess robustness to variations in study-level variation, for example population, geography and era.

Both methods are limited in the reliance in re-using the dataset which derived the rule, but are as

robust a method as possible in internally testing the rule.

The improvement in model performance by adding prognostic factors when deciding between more

complex model sets was assessed by net reclassification improvement (NRI) [244]. This is a measure

of the overall ‘benefit’ of a new classification model. It is calculated by taking patients with, and

without, the outcome separately. Patients who are correctly classified with the new score, but were

incorrect in the old one, are given a score of +1, and those who are reclassified incorrectly are scored

-1. The unchanged are scored zero. The totals are summed, and divided by the number of patients in

that outcome group. For patients with the outcome, this value is the improvement in sensitivity, for

those without it is the improvement in specificity. These two values are then added together to give

the net reclassification improvement. A larger value indicates a greater improvement.

Validation and future implications

A comparison of the predicted and observed event rates to assess calibration (as described above)

and the area under the ROC curve to assess discriminatory ability in new data was proposed as a test

bed for the newly generated model. However, such an analysis was outside the initial scope of this

project.
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These steps should produce the most precise and accurate prediction model that can be created

from the IPD data set. The next step is to take these estimates to derive a clinical prediction rule

from which management decisions may be made. This requires clinically informed decisions to be

about where alternative strategies should be undertaken. For example, what risk of an emerging

clinically documented infection would be acceptable before patients could be considered suitable

for out-patient therapy? The setting of these thresholds can inform the rational derivation of a rule,

along the lines suggested by Vickers.[245] Such decision will require more involved engagement

from a wider panel of parents and young people, and should be subject to further detailed study.
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Chapter 7: Description of the Individual Participant Data

Introduction

Preceding chapters have described the issues in managing febrile neutropenia, focussing on the

possibility a risk stratified approach to initial management, to improve quality of life and not

increase any infectious complications of anti-cancer treatment. An extensive analysis of the existing

research evidence has been undertaken, including systematic reviews undertaken in 2008/9 and

updates done in 2011/12. These led to the clear decision to progress to an IPD analysis to develop

these ideas further and attempt to make best use and maximise the utility of the existing data sets.

This thesis reports the primary results of the IPD analysis, describing the development of the

collaborative group, a description of the datasets demographics, and the results of analyses for the

main outcome of “microbiologically documented infection”.

The Collaboration

For this project we established the Predicting Infectious ComplicatioNs In Children and young people

with Cancer” (PICNICC) Collaborative, the formation of which is described in Chapter 6. This consists

of 22 different study groups from fifteen countries.

Figure 31: Map of the World indicating the location of Collaborators.

The PICNICC collaboration comprises those who have contributed data and/or for significantly

developed the project. It includes paediatric oncologists & haematologists, infectious disease
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specialists, statisticians and methodologists and parent/carer representatives. Each brings a different

and important element to the discussions and direction of the Collaboration.

Current members are: Roland A Ammann, Thomas Kuehne , Felix Niggli, David Nadal (Switzerland),

Ian Hann (Ireland), Lillian Sung, Robert Klaassen, Sarah Alexander (Canada), Thomas Lehrnbecher,

Arne Simon (Germany), Karin Meidema,Wim JE Tissing (Netherlands), Neil Ranasinghe, Sally Amos,

Susan Hay, Lesley Stewart, Bob Phillips, Daniel Yeomanson, Alex J Sutton, Richard Riley, Julia

Chisholm, Rachel Dommett (GB), Elio Castagnola (Italy), Pamela Silva, Juan Tordecilla (Chile), Maria

Spassova (Bulgaria), Hana Hakim, Glen Stryjewski (USA), Gulsun Tezcan (Turkey), Lidija Kitanovski

(Slovenia), Ajay Gupta (India), Gabrielle Haeusler (Australia), Tiene Bauters, Geneviève Laureys

(Belgium), Marianne Paesmann, Peter Donnelly (EORTC).

Ethical and Regulatory Barriers

We undertook an auxiliary investigation into the ethical and regulatory considerations involved in

sharing IPD for risk stratification work, based on the ethical and regulatory principles and

information collected and presented in Chapter 6. All 36 groups that were initially approached

(including collaborators and those who expressed an interest but did not provide data) were

surveyed about their experiences of the process. These results are summarised in the Table 13 and

have been published elsewhere [246]. In some European countries and USA, specific applications

were made and consent obtained to share the information. Other groups were able to share their

data from previous investigations without further formal approval. To our knowledge, no potential

collaborative group had their request to share such data declined.
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Table 13: Consent sought to collaborate in an IPD analysis of predictive features

Country Study type(s) Ethics review board

approached/answer

Belgium Prospective study Yes, from both University Hospital

review board, agreed

Bulgaria Prospective study No, prior consent to primary study

Canada Prospective study No, prior consent to primary

studies

Canada Prospective study Yes, from Institutional Review

Board, agreed

Chile Prospective study No, prior consent to primary

studies

Germany Prospective study No, prior consent to primary

studies

Italy Prospective study No, prior consent to primary

studies

Netherlands Prospective study No, prior consent to primary

studies

Slovenia Prospective study Yes, from National Medical Ethics

Committee, agreed

Switzerland Prospective and retrospective

studies

Yes, from University Hospital

review board, agreed

Turkey Audit No, not required

UK Audit Yes, from NHS Research Ethics

Committee, agreed

USA Retrospective notes review Yes, from Institutional Review

Board, agreed

USA Prospective studies No, prior consent to primary

studies

Unobtained data

We were unable to obtain data from 30 studies identified in our systematic reviews (see Table 14 for

details; this is 58% of all identified studies and 51% of all identified episodes). Explanations were

provided by the authors of three studies. In two cases (Riikonen, Heney), data were from studies

conducted over 20 years ago and were no longer retrievable. In another case (Hodge), data were not

provided by the group despite follow-up emails and a confirmation of interest in the project. The

authors of the other 28 studies did not respond to our invitations.
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Table 14: Studies where IPD was sought but not obtained

Study Number

of

episodes

Adcock 1999 33

Baorto 2001 558

Barnes 2002 39

Diepold 2008 123

Dylewska 2005 a & b 108

El-Maghraby 2007 85

Gala-Peralta 2005 30

Hatzistilianou 2007 94

Heney 1992 47

Hitoglou-Hatzi 2005 67

Hodge 2006 31

Jones 1996 127

Katz 1992 122

Lucas 1996 161

Madsen 2002 76

Paganini 2007 981

Petrelli 1991 146

Rackoff 1996 72

Riikonen 1992 105

Riikonen 1993 91

Rojo 2008 33

Rondinelli 2006 283

Santolaya 1994 85

Santolaya 2001 447

Santolaya 2002 263

Santolaya 2007 373

Santolaya 2008 566

Secmeer 2007 60

Soker 2001 48

West 2004 143
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The PICNCC project was focused primarily on the development and evaluation of a new CDR, and the

aggregate data from these studies was not sufficient to be included in the analysis, for example, by

utilising a two-stage approach to meta-analysis of parameter estimates. Apart from date of

publication, where older studies were less likely to be included, there was no clear evidence of

systematic variation between the studies included in PICNICC and studies from which data could not

be obtained in terms of number of participants (p=0.66), number of episodes (p=0.93), number of

events (p=0.67), direction of data collection (p=0.13) or geographical region (p=0.25). An IPD analysis

of predictive factors differs importantly from a systematic review of treatments because the issues

of within-study bias and publication bias appear much more troublesome in prognostics than in

therapeutic trials. Also, it is less clear that all available evidence is required to be collected to

produce the most accurate estimate of the chosen effect; rather a comprehensive and unbiased

collection of information is preferred so that the IPD studies are a representative sample of the

populations to which the CDR is to be applicable.

Quality assessment of the included studies

Quality assessment in prognostic/predictive studies is an area of ongoing methodological

refinement. At the time that this protocol was devised there was no published guideline , although

Hayden [242] has recently suggested a framework for such assessments. In keeping with the

systematic reviews undertaken, the assessment of quality followed the QUADAS approach (see

Appendix 22, Table 43). These are very similar to the assessments undertaken for the studies

included in the published systematic review, as few extra studies were included (notably the EORTC

trials).

There appear to be very few differences between the included datasets in the design features

proposed to place studies at increased risk of bias (adequate population sampling, adequate

reference standards and unbiased collection of prognostic information; see approach (Appendix 22,

Table 43,

Table 5: Further informative QUADAS measures and Appendix 11. Full list of QUADAS criteria for

included biomarkers studies). This is reassuring and to be expected in the clear and simple study

structure of the collection of a cohort of patients presenting to hospital with a well-recognised

cluster of symptoms such as FNP.
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Overview of the data collected

Data collected prior to the cut-off in November 2011 for analysis in this thesis (the derivation

dataset) included 22 datasets from 16 collaborative groups. These contained information from 5,127

episodes of FNP in 3,504 patients (see Table 15). The PICNICC collaboration aims to collect further

datasets to undertake independent analyses of the CDR produced.

Table 15: Location and patient numbers per dataset

Study Group Origin Patients Episodes

Alexander Boston, USA 103 187

BaselSPOG Basel, Switzerland 6 9

BernSPOG Bern, Switzerland 69 171

BonnSPOG Bonn, Germany 35 44

EORTC-XIV Pan-European 149 149

EORTC-IX Pan-European 315 315

EORTC-XI Pan-European 301 301

EORTC-XII Pan-European 21 21

Genoa Genoa, Italy 259 703

Hakim Memphis, USA 332 332

Kitanovski Ljubljana, Slovenia 32 68

Klaassen Ottowa, Canada 226 431

Lehrnbecher Frankfurt, Germany 146 311

PINE South-East England, UK 762 812

RetroBern Bern, Switzerland 132 364

Silva Santiago, Chile 30 52

Spassova Plovdiv, Bulgaria 80 199

Styjewski Washington, USA 56 56

Sung Toronto, Canada 75 75

Tezcan Antalya, Turkey 57 145

Tissing Groningen , The Netherlands 114 258

ZurichSPOG Zurich, Switzerland 72 154

TOTAL 3504 5127
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Missing data

The issue of missing data was more significant than originally envisaged. This is almost entirely at the

level of study whereby predictor or outcome variables were not recorded by the studies (see Figure

32). The proportion of partially present, partially missing, data was small.

Figure 32: Per study proportion of missing predictors

The graphical representation of multi-dimensional information is a challenge. During this thesis, a

variety of approaches have been used, and the most successful seems to be a variant of the

“heatmap” approach (see Figure 32 and Figure 33) which have not been used widely in health care

research outside of molecular biology, but do have a long tradition in social sciences [247]. This

allows the pattern of response in the same variable to be assessed, or the pattern of information

delivery by the same study. A colour-coded key displays the information semi-quantitatively, in this

case the proportion of missing data, where the ‘cool’ paler yellows indicate very small quantities of

missing data, the orange regions are approximately 50% missing, and the reds indicate high degrees

of missingness.
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A similar pattern of data absence and missingness is found in the outcome variables (see Figure 33).

Figure 33: Per study proportion of missing outcomes (heatmap)

The visual impression of the data can be altered by changing the colour gradient, in this case (Figure

34) using a traffic light approach making all combinations of study/variable with more than 50%

missing information red and those with less than 10%missing a shade of green.

Figure 34: Per study proportion of missing outcomes (‘traffic light’ colour scheme)
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The issue of missingness can also be considered per-episode-per-variable, ignoring the study-level

element (Table 16). The missing data ranged from 4 out of 5,127 individual features (tumour type

not recorded) to 5,034 out of 5,127 episodes (procalcitonin not reported), that is data being largely

absent.

Table 16: Missing data (episodes in whole dataset)

Item N

missing

Proportion

missing

Item N

missing

Proportion

missing

sex 516 0.1 mucositis 3084 0.6

age in days 5 0.00097 severe mucositis 2228 0.43

date 1772 0.34 haemoglobin 2499 0.48

tumour 4 0.00078 platelets 2411 0.47

marrow

involvement

4097 0.79 white cell count 2020 0.39

remission 3225 0.63 absolute

neutrophil count

650 0.13

relapse disease 2750 0.53 absolute

monocyte count

3468 0.67

chemotherapy

intensity

2302 0.45 C-reactive protein 3551 0.69

time since

chemotherapy

3111 0.6 procalcitonin 5034 0.98

central venous line

(CVL)

2007 0.39 interleukin 6 4701 0.91

CVL type 3711 0.72 interleukin 8 4672 0.91

out-patient at

onset

1971 0.38 death 317 0.061

temperature 2336 0.45 ICU duration 2484 0.48

respiratory rate 4933 0.96 need for organ

support

4302 0.83

respiratory

compromise

3093 0.6 severe infection 685 0.13

pulse rate 4787 0.93 clinically

documented

infection

955 0.19

shock 2508 0.49 microbiologically

documented

infection

375 0.073

systolic blood

pressure

4555 0.88 bloodstream

infection

23 0.0045

diastolic blood

pressure

4557 0.88 duration of fever 3748 0.73

severe unwell 1940 0.38 duration of

admission

2206 0.43
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The patterns of missing data have importantly affected the analyses conducted, as will be explored

in detail in subsequent chapters.

Demographics

Age

The overall distribution of ages in the PICNICC dataset is shown in Figure 35;

Figure 35: Age distribution of PICNICC dataset

The median age at first episode recorded was 6.5y (mean 8.4y, range 50 days to 25 years, IQR 3.4y to

12.8y). This wide age variation is to be expected from groups undertaking the care of children with

cancer, some of whom are born with malignant disease or develop it soon after birth. Twenty-four

children aged six months old or younger presented with FN in this dataset; most patients had acute

leukaemia; either infant ALL (4) or AML (8).

The age distributions varied in the different datasets (see Figure 36 and more detail in
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Appendix 22. Further detailed information on the IPD data, Table 44).

Figure 36: Age distributions of patients per study

The figure demonstrates that the EORTC studies (XIV, XI and XII) have an older population than the

other, predominantly paediatric, datasets. This reflects the organisation of health care and the

centre-based approach to most of these studies. In most locations (with the exception of the

multicentre, all-age EORTC studies), care is delivered to patients who are classified as children (with

an upper age limit varying between units; some definitions include <16 years, others <18 years,

others <19 years and in full-time education) and these studies were undertaken in paediatric units,

rather than across cancer services generally.

Tumour types

A wide variety of malignancies were represented in the included studies, in keeping with the

disparate nature of rare and very rare diagnoses treated in paediatric oncology/haematology units

(see Figure 37, and per-study data in Figure 57).
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The data include for two non-cancer groups (the “non-malignant” category and LCH: Langerhans Cell

Histiocytosis). In both these categories, the underlying disease types had been treated with

chemotherapy; primarily for stem cell transplantation of haemoglobinopathies or

immunodeficiencies in the non-malignant group, and relatively low-dose cytotoxic treatments for

multi-system or organ-at-risk LCH. The inclusion of this group of non-cancer patients (36 episodes in

19 patients) can be justified on the grounds that they are treated, for all practical purposes, the

same way as the patients with malignant disease; the chemotherapy they are exposed to brings

similar risks of immunosupression and life threatening infection. Furthermore, the inclusion of such

a small number, even if they were to have different predictors of outcome, would be very unlikely to

alter any conclusions drawn from the excess of 5,000 episodes in the IPD analysis.
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Figure 37: Counts of episodes of FN by tumour type
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The distribution of age and disease type generally follows the expected pattern of incidence (see

Appendix 22, Figure 58). Some examples include how ALL is a disease of younger children (with a

further peak in the mid-50s, which is beyond the range of this study), along with retinoblastoma,

neuroblastoma (NBL) and Wilm’s tumour. This is unlike AML which has a relatively consistent

incidence across ages, and osteosarcoma or Ewing’s sarcoma which peak in the teenage years.

Gender distribution

There were slightly more males in most of the studies, with 56% male patient-episodes (see

Appendix 22, Table 45). Two data sets (EORTC-XIV and Hakim) did not provide gender data on their

patients.

This slight male preponderance is in keeping with the male preponderance of cancer in children as

recorded by population registries (54.1%) [248]. There is no suggestion in any of the dataset that

patient gender prevented access to healthcare.

Multiple episodes

The study designs led to notable differences in the distribution of numbers of episodes of FNP per

patient, as illustrated in Figure 38. The design of the EORTC studies, the Hakim and Styjewski and the

Sung trial allowed each patient to be included only once.
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Figure 38: Number of episodes per patient per study

For studies with multiple episodes, there were a median of two (mean 2.4, range 2-14, IQR 1-3)

episodes reported per patient (Appendix 22, Table 46). In most of these studies, the counts followed

a Poisson distribution, but the Genoa and PINE datasets in particular have an excess of one-episode

patients. This may be due to the high number of HSCT patients in the Genoa dataset (who may have

a single, prolonged episode but are treated once, usually at the culmination of their therapy). The

PINE dataset was gathered across 47 sites over a 12 month period, and there may have been a

greater chance of failure to accurately capture linked episodes in this more dispersed study.

A small number of patients (58) had six or more episodes of FN. These did not differ from the less-

frequently included patients in gender, date of episode, age, or tumour type (p=1 by 2 or Wilcoxon

rank-sum tests as appropriate).

Outcomes reported

For each of the IPD studies individual outcome data were requested per episode for: death,

intensive care admission (ICU: occurrence or duration), need for moderate organ support (e.g. fluid

bolus, oxygen supplementation), any clinically documented infections (CDI) and any

microbiologically documented infections (MDI). Where possible, MDI were defined as bloodstream

or “other site”. Data were requested on the durations of fever and admission.
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Each dataset reported on quite different sets of outcomes. The outcomes most frequently reported

by the studies were microbiologically documented infection (MDI), death, bloodstream infection and

the a priori composite measure “severe infection”. The proportion of episodes where data was

available for the outcomes is shown in Table 17. The variation is almost entirely at the level of the

study, with near-complete outcome assessment for individual elements within the study.

Table 17: Percentage of episodes with known outcomes

Death ICU Organ

support

Severe

infection

CDI MDI Bloodstream

infection

Duration

of fever

Duration

admission

Alexander 100 0 100 100 0 100 99.5 100 100

BaselSPOG 100 100 0 100 0 100 100 100 100

BernSPOG 100 100 0 0 0 100 100 0 100

BonnSPOG 100 100 0 0 0 100 100 100 100

EORCT-XIV 100 0 0 100 100 100 100 96 0

EORTC-IX 100 0 0 100 100 100 100 0 0

EORTC-XI 100 0 0 100 100 100 100 0 0

EORTC-XII 100 0 0 100 100 100 100 100 0

Genoa 99.6 0 0 100 100 100 100 0 0

Hakim 100 100 100 100 100 100 100 93.7 100

Kitanovski 100 100 100 100 100 100 95.6 97.1 85.3

Klaassen 100 100 0 100 100 100 100 0 72.6

Lehrnbecher 0 0 0 100 100 100 100 0 0

PINE 99.9 100 0 83.1 99.9 100 99.3 0 99.9

RetroBern 100 0 0 100 100 0 100 0 100

Silva 100 100 100 100 100 100 100 100 100

Spassova 100 100 0 100 100 100 100 0 100

Styjewski 100 0 0 100 0 100 100 0 0

Sung 100 0 0 0 0 100 100 100 98.7

Tezcan 98.6 98.6 0 100 100 100 100 90.3 0

Tissing 100 100 83.7 0 0 95.7 95 84.1 70.9

ZurichSPOG 100 100 0 100 0 100 100 99.4 100



Page 159 of 410

The proportions of microbiologically documented infection (MDI), death, blood stream infection and

calculated “severe infection” differ markedly between studies (see detail in Appendix 22, Table 47).

Figure 39: Proportion MDI (per study)

The range of proportions of MDI varied from 12% of episodes in the Sung dataset to 53% in the

Tezcan dataset (see Figure 39). The potential reasons for this variation according to the individual’s

presenting features are explored in the later part of this chapter (where univariate predictors are

examined) and in the next chapter. Study-level differences are difficult to ascertain from study level

features: the fever definitions and trial date are not explanatory, nor is retrospective/prospective

data collection. Geography, regionalised as Western Europe, Central Europe, North America and

South America has some explanatory power; with Central European studies (Kitanovski, Tezcan and

Spassova) being significantly associated with greater rates of occurrence of MDI, bloodstream

infection and severe infections.
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The outcomes of severe infection and bloodstream infection are highly correlated with MDI

(Pearson’s =0.89 and =0.82 respectively, p<0.001) and show, similar patterns of variability.

Mortality rates in the PICNICC dataset are very small, around 1% in most series. This is compatible

with recent experience and reports given the aggressive nature of the antibiotic and resuscitation

regimes in use. The datasets with larger point estimates of mortality rates (still 5% or smaller) have

confidence intervals in keeping with the overall pattern.

Table 18: Summary statistics for continuous outcomes

Admission duration (days) Fever duration (days)

Mean Median Min Max Mean Median Min Max

Alexander 6.8 5.0 1.0 37.0 2.3 2.0 1.0 10.0

BaselSPOG 7.9 7.0 3.0 14.0 2.8 0.0 0.0 6.0

BernSPOG 7.9 5.0 1.0 60.0 NA NA NA NA

BonnSPOG 5.6 5.0 1.0 19.0 2.0 1.0 0.0 10.0

EORCT-XIV NA NA NA NA 5.1 3.0 0.0 31.0

EORTC-IX NA NA NA NA NA NA NA NA

EORTC-XI NA NA NA NA NA NA NA NA

EORTC-XII NA NA NA NA 2.8 2.0 1.0 10.0

Genoa NA NA NA NA NA NA NA NA

Hakim 6.2 4.0 0.0 146.0 2.9 1.1 0.0 73.4

Kitanovski 10.0 8.0 4.0 40.0 4.6 4.0 1.0 21.0

Klaassen 5.1 3.0 0.0 93.0 NA NA NA NA

Lehrnbecher NA NA NA NA NA NA NA NA

PINE 7.4 5.0 0.0 105.0 NA NA NA NA

RetroBern 6.1 5.0 0.0 58.0 NA NA NA NA

Silva 6.0 4.0 1.0 26.0 12.2 2.0 0.0 24.0

Spassova 4.5 3.0 0.0 23.0 NA NA NA NA

Styjewski NA NA NA NA NA NA NA NA

Sung 6.4 4.0 2.0 49.0 1.7 1.0 0.0 14.0

Tezcan NA NA NA NA 5.3 3.0 1.0 28.0

Tissing 3.1 2.0 1.0 13.0 10.7 8.0 2.0 37.0

ZurichSPOG 7.7 7.0 1.0 28.0 3.4 2.0 0.0 23.0
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Data for duration of admission and duration of fever are reported less often, only 12 datasets

provided information on duration of fever, and 14 on duration of admission (see Table 18, and

Appendix 22, Figure 59 & Figure 60). The duration of admission seems to relate mainly to the policy

of patient discharge in each unit, with median durations of 5 days (a “traditional” approach). The

duration of fever is more consistent across studies, with a median of around two days. No study

level characteristics were found to influence these durations.

Description of the predictors

Predictor variables for microbiologically documented infection have been split into patient-specific

background features, the demographics of the patients, as noted in the preceding section; episode-

specific background factors, such as the intensity of preceding chemotherapy, and the presence of a

central venous line; episode-specific clinical features such as maximum temperature and heart rate;

and episode-specific laboratory features including biomarkers of inflammation and elements of the

full blood count.

The data are addressed in each section below.

Episode-specific background factors

These features are elements of the treatment that the patient is undergoing at the time of the

episode of FN. These are not fixed (like age, and malignant diagnosis), but neither are they clinical

impressions of the child or young person’s physiological response to FN. They include the intensity of

chemotherapy, the time since chemotherapy was delivered, the status of the cancer (in remission,

relapsed or not), and the presence of a central venous line.

Remission

The meaning of remission is sometimes interpreted differently in different malignant diseases, and

even between different groups examining the same disease. For example, in leukaemia there is a

clear and consistent definition of remission (fewer than 5% of the marrow involved by leukaemic

cells), but there is a range of alternative interpretations of how a solid malignancy is described as
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being in remission. Some definitions may be based on an on-treatment scan showing a good

response (defined as >33% reduction in primary tumour volume, or >50% by some groups) or clear

scans showing no evidence of disease by physical or metabolic criteria. The definitions used in each

dataset were not able to be provided.

Time-since-chemotherapy

Time-since-chemotherapy is also confusing, as the treatment of many malignancies varies, and so

the effect of this variable upon immunosuppression may differ between different tumour types, and

between the same malignancy at different stages of therapy. The classic approach to treating solid

malignancies is to give cycles of chemotherapy, waiting for clinical and bone marrow recovery before

commencing a further cycle. The expected nadir in marrow function is between day 10 and 14 of

commencing chemotherapy. In contrast, in some protocols for acute leukaemia there is a

maintenance phase of treatment where chemotherapy is given as an oral medication on a daily basis

with dose titrated against toxicity. In other parts of acute leukaemia treatment, chemotherapy is

given intermittently over 10-21 days. Details of which phase of therapy was undertaken prior to each

episode were not requested, so the uncertainty of interpreting this variable has meant that the IPD

analysis has not used this information.

Central venous lines

Central venous lines (CVL) are used to deliver chemotherapy directly into major veins (usually the

superior vena cava in the upper part of the chest) and allow blood to be taken for regular tests while

minimising trauma to the child. They vary by number of lumens (separate tubes within the line),

usually having between one and three. They also differ in that they may be tunnelled (with the tube

exiting the major vein and passing under the skin for a distance before the access point) or

untunnelled. There are two major types of tunnelled lines which have different types of access for

administration of products or taking of blood tests. If the end of the line emerges out of the skin

they are known as Hickman-style lines, and if it ends beneath the skin with a palpable metal/plastic

port which can be easily accessed with a short needle, known as a Port-a-cath. The different types of

lines are used in different ages of patients and sometimes for different types of chemotherapy.
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Table 19: Presence of CVL (per study)

Percentage

with CVL

Number

of

episodes

with CVL

Number of

episodes

without

CVL

Line type if given NA

Port Hickman Untunnelled

BaselSPOG 100% 9 0 0

BernSPOG 76% 130 41 0

BonnSPOG 93% 41 3 0

Genoa 94% 664 39 0

Hakim 95% 317 15 27% 69% 4% 0

Kitanovski 63% 43 25 13% 0% 0% 0

Klaassen 84% 364 67 81% 33% 0% 0

Lehrnbecher 97% 301 8 2

RetroBern 50% 183 181 51% 6% 0% 0

Silva 98% 51 1 9% 6% 1% 0

Spassova 100% 199 0 0% 4% 0% 0

Styjewski 100% 56 0 0

Tissing 100% 258 0 0

ZurichSPOG 83% 128 26 0

Table 19 shows the proportion of patients with a central line, and the type of line in use. For most

studies, each patient has a CVL of some type, but with marked variation in the type of line used.

Chemotherapy intensity

Chemotherapy intensity was collapsed into one of three categories for the IPD analysis (as described

in detail in Chapter 6) consisting of: low intensity (at or less than the ongoing maintenance

treatment used for acute leukaemia); HSCT, haemopoietic stem cell transplantation, very intensive

chemotherapy which requires rescue with haemopoietic stem cells, commonly known as a ‘bone

marrow transplant’; and standard intensity, which covers all of the middle ground between these

extremes.

Eleven datasets gave information directly, or indirectly, on the chemotherapy used per patient and

so could define the level of intensity (see Table 20). In one very small dataset, only standard-
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intensity chemotherapy had been used (BaselSPOG) and only two datasets (PINE and Genoa)

included patients that had undergone HSCT. In all other studies, patients who had received HSCT

were excluded from the data collection.

Table 20: Number of patients receiving each level of chemotherapy intensity (by study)

Low Standard HSCT NA

BaselSPOG 0 9 0 0

BernSPOG 26 145 0 0

BonnSPOG 4 40 0 0

Genoa 23 504 176 0

Kitanovski 1 65 0 2

PINE 218 577 17 0

RetroBern 32 332 0 0

Silva 1 51 0 0

Spassova 4 194 0 1

Sung 1 74 0 0

Tissing 14 193 0 51

ZurichSPOG 17 137 0 0

Episode-specific clinical features

Features in this grouping relate to the individual as they present with each episode, and are may be

more varied between individuals and between different episodes for the same individual than those

classified as “background” features. They tend to be assessed by simple clinical examination on

presentation by the first-contact healthcare providers.

Maximum temperature

There were generally similar maximum temperatures in the study groups represented; some

differences in inclusion were introduced by either strict adherence to a minimum fever, or including

patients who were being treated for suspected infection, regardless of temperature or neutrophil

count (see Figure 40, giving a box and whisker plot of the distribution per study, and
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Appendix 22. Further detailed information on the IPD data, Table 22). For information, a

normal body temperature is considered to be between 36.5ºC and 37.2ºC, depending upon

method of measurement.

Figure 40: Box-and-whisker plot of distribution of temperature (by study)

Mucositis

Mucositis is the inflammation and ulceration of the gastrointestinal mucosa associated with

many chemotherapy treatments and radiotherapy. It can affect all parts of the

gastrointestinal tract, from mouth through oesophagus, stomach, small and large bowel to

sigmoid colon. Estimates of mucositis in the datasets were provided as measures of severity,

or by a dichotomised approach describing the presence/absence of severe mucositis.

Sometimes extensive free text comments on the state of patient at admission were present

allowing recoding of mucositis into the commonly used 0-IV grading of the CTC (Common

Toxicity Criteria) grading structure, or the information was provided as a three-level

assessment (where none, mild and severe were coded as zero, I and III respectively). This

approach led to a bimodal pattern in some study groups (as shown in Table 21) but the

information was generally consistent.
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Table 21: Mucositis (graded)

Grade 0 Grade I Grade II Grade III Grade IV Severe Non-

severe

NA

Alexander 0 0 0 0 0 0 0 187

BaselSPOG 7 1 1 0 0 1 8 0

BernSPOG 113 22 12 18 6 24 147 0

BonnSPOG 29 7 7 1 0 1 43 0

EORCT-XIV 0 0 0 0 0 0 0 149

EORTC-IX 0 0 0 0 0 0 0 315

EORTC-XI 0 0 0 0 0 0 0 301

EORTC-XII 0 0 0 0 0 0 0 21

Genoa 0 0 0 0 0 0 0 703

Hakim 288 26 0 18 0 18 314 0

Kitanovski 41 13 0 10 0 14 54 4

Klaassen 395 10 5 16 4 21 410 1

Lehrnbecher 229 10 36 23 12 35 275 1

PINE 0 0 0 0 0 53 759 812

RetroBern 278 0 0 26 0 78 246 60

Silva 0 0 0 0 0 0 0 52

Spassova 132 18 0 49 0 49 150 0

Styjewski 0 0 0 0 0 0 0 56

Sung 40 6 5 3 2 19 56 19

Tezcan 0 0 0 0 0 0 0 145

Tissing 0 0 0 0 0 0 0 258

ZurichSPOG 79 20 32 12 11 23 131 0

Out-patient status

The proportion of out-patient episodes varied according to study design, with some studies

only examining patients presenting from outside hospital. Other studies did not provide data

on the in-patient status of the patient at each episode (see Table 22). Of those studies where

all-episodes, regardless of admission status of the patient, were recorded, there was

considerable variability in the proportion of episode of FN originating in in-patients and out-

patients.
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Table 22: Percentage of out-patient, unwell and cardiovascular/respiratory compromise episodes for

informative studies

Study ID % Out-patient % “Unwell”

patients

% Cardiovascular

compromise

% Respiratory

compromise

Alexander 100% 22%

BaselSPOG 11% 100% 0% 67%

BernSPOG 82% 14% 6% 42%

BonnSPOG 84% 5% 5% 5%

EORCT-XIV 15%

EORTC-IX 35%

EORTC-XI 37%

EORTC-XII 67%

Hakim 100% 25% 2% 5%

Kitanovski 65% 4% 1% 0%

Klaassen 100% 27% 4% 2%

Lehrnbecher 5%

PINE 14% 8% 9%

RetroBern 73% 2% 7%

Silva 96% 0%

Spassova 26% 24% 9% 14%

Styjewski 100% 20%

Sung 97% 41% 7%

Tezcan 5%

Tissing 100%

ZurichSPOG 79% 31% 5% 35%

Clinical impression of significantly unwell patient

The usefulness of the clinical impression of a child/young person presenting being “severely

unwell” has been debated[249], but in practice has been held as a firm and important factor.

A variable accounting for this gestalt impression was present in 15 of the 22 datasets. The

presence of such a feature was again quite variable, but was between 20% and 30% in most
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studies (see Table 22). The very small dataset of BaselSPOG is somewhat of an outlier in this

group, with all patients having “severe illness”, but this is a very small group of patients.

Vital signs

It is relevant to note again that the expected values for respiratory rate, pulse and blood

pressure vary with age, and that the simple values delivered are unhelpful. For example, a

one year old breathing at 30 breaths/minute is perfectly normal whereas an adult breathing

at the same rate would be panting. Transformations which can address this include z-score

(“centile”) modifications or dichotomising values into abnormal/normal, as in the case of

shock/respiratory compromise (as noted in Methods chapter 6). As data were provided in

raw form by relatively few studies, analysis was limited to the dichotomised versions of

cardiac or respiratory compromise.

Respiratory compromise was proposed as a practical way of combining datasets where this

dichotomised assessment of respiratory function had been supplied, and those few datasets

where respiratory rates had been supplied. The process of mapping from respiratory rate to

compromise was undertaken for the SPOG group datasets, and produced markedly higher

rates of respiratory compromise (see Appendix 22, Table 22) which makes the interpretation

of this “mapped” variable difficult to believe.

A similar mapping exercise was undertaken for blood pressure and cardiovascular

compromise. In this instance, a difference between mapped and directly reported data was

not noted (see Table 22), and around 1 in 20 episodes presented with cardiovascular

compromise.

Episode-specific laboratory factors

The use of laboratory-measured features to predict outcome is considered to be more

objective and consequently robust than subjective clinical assessments of mucositis,

respiratory compromise or gestalt “unwellness”. The features examined have focussed on

the cellular elements of the full blood count (haemoglobin, a reflection of red cell count,

platelets, total white cell count and particular sub-types, neutrophils and monocytes) and



Page 169 of 410

inflammatory biomarkers (particularly C-reactive protein, CRP; procalcitonin, PCT; and

interleukins 6 and 8, IL-6 and IL-8) measured in serum.

Full blood count

Of these features, all except for haemoglobin showed a log-normal distribution, and were

used after natural log transformation (see Figure 41).

Figure 41: Density of distribution of FBC parameters, by study, transformed where appropriate

Haemoglobin red, Platelets purple, White Cell Count green, Absolute Neutrophil Count blue, Absolute

Monocyte Count black

The study groups showed similarity across the range of haemoglobin values, which are to be

expected from clinical practice (for greater detail see

D
e
n
s
it
y

Alexander BaselSPOG BernSPOG BonnSPOG EORCT-XIV EORTC-IX EORTC-XI EORTC-XII

Genoa Hakim Kitanovski Klaassen Lehrnbecher PINE RetroBern Silva

S assova St ewski Sun Tezcan Tissin ZurichSPOG

D
e
n
s
it
y

Alexander BaselSPOG BernSPOG BonnSPOG EORCT-XIV EORTC-IX EORTC-XI EORTC-XII

Genoa Hakim Kitanovski Klaassen Lehrnbecher PINE RetroBern Silva

S assova St ewski Sun Tezcan Tissin ZurichSPOG

D
e
n
s
it
y

Alexander BaselSPOG BernSPOG BonnSPOG EORCT-XIV EORTC-IX EORTC-XI EORTC-XII

Genoa Hakim Kitanovski Klaassen Lehrnbecher PINE RetroBern Silva

S assova St ewski Sun Tezcan Tissin ZurichSPOG

D
e
n
s
it
y

Alexander BaselSPOG BernSPOG BonnSPOG EORCT-XIV EORTC-IX EORTC-XI EORTC-XII

Genoa Hakim Kitanovski Klaassen Lehrnbecher PINE RetroBern Silva

S assova St ewski Sun Tezcan Tissin ZurichSPOG

D
e
n
s
it
y

Alexander BaselSPOG BernSPOG BonnSPOG EORCT-XIV EORTC-IX EORTC-XI EORTC-XII

Genoa Hakim Kitanovski Klaassen Lehrnbecher PINE RetroBern Silva

S assova St ewski Sun Tezcan Tissin ZurichSPOG



Page 170 of 410

Table 50).

Other parameters of the blood count were also as expected (for greater detail see Appenidx

22, Table 51- Table 54). The occasional very high values of white cells recorded are to be

sometimes found in patients presenting with a strong marrow response, often in the setting

of severe infection or occasionally as a complication of therapy, for example corticosteroids

or GCSF.

Different studies provided different elements of the blood count (as noted in earlier in the

chapter). The elements were only moderately correlated (calculated where pairs existed; see

Table 23).

Table 23: Spearman rank correlation coefficients

ln(white cell

count)

ln(absolute

neutrophil

count)

ln(absolute

monocyte

count)

ln(platelets) haemoglobin

ln(white cell count) 1

ln(absolute neutrophil

count)

0.468 1

ln(absolute monocyte

count)

0.43 0.369 1

ln(platelets) 0.33 0.271 0.408 1

haemoglobin 0.147 (*) 0.035 0.124 0.22 1

All p<0.001 except * (p=0.0357)

Biomarkers
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The serum biomarkers were far less frequently available. The number of studies providing

information is grossly variable; eleven with CRP, five with IL-8, four with IL-6 and only two

studies reporting on PCT (see Figure 42 and Appendix 22, Table 55 and Table 56).

Figure 42: Density plots of ln(biomarkers) per study

Blue – CRP, Red PCT, Green IL-6, Black IL-8

Examining these data for correlations between biomarkers values between studies are

suggestive of some inconsistency (see Table 24). For instance, whereas IL-6 and IL-8 are

strongly positively correlated, IL-8 is moderately correlated with PCT and IL-6 is

(insignificantly) negatively correlated with PCT. One of these three relationships appears

incongruent which may be in part due to different datasets providing information (IL-6/8:

Spassova, Styjewski, Lehrnbecher, IL-8/PCT: Styjewski, IL-6/PCT: Styjewski and Kitanovski)

Table 24: Correlation of ln(biomarkers)

ln(CRP) ln(PCT) ln(IL-6) ln(IL-8)

ln(CRP) 1

ln(biomarkers), by study
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ln(PCT) 0.302 1

ln(IL-6) 0.123 -0.12 1

ln(IL-8) 0.026 0.429 0.715 1

Normal: p>0.05, Bold: p 0.01 to 0.05, Bold Italic: p<0.01

Summary

The PICNICC collaboration collected data prior to the cut-off of November 2011 for

derivation in 22 datasets from 16 collaborative groups. These contained information from

5,127 episodes of FNP in 3,504 patients. The median age at first episode recorded was 6.5y

(mean 8.4y, range 50 days to 25 years, IQR 3.4y to 12.8y), and has a slight male

preponderance (56% male). A wide variety of malignancies were represented, in keeping

with the nature of diagnoses treated in paediatric oncology/haematology units.

A wide range of outcomes and potential predictor variables were provided in the PICNCC

dataset, all of which show marked differences in completeness and consistency. The issue of

missing data was more significant than originally envisaged. This was almost entirely at the

level of study, whereby predictor or outcome variables were “not recorded” rather than

“missing” for some patients or episodes. Some data items, such as the presence or absence

of shock, could be recoded to minimise inconsistencies. Others are inconsistent as reflected

in their original study designs (e.g. proportion of episodes commencing as out-patients).

Some variables (such as remission and time-from-chemotherapy) have been found to be

unusable in the analysis. The distribution of continuous variables followed a Normal or Log-

Normal pattern, as expected.

The assessment of these data for consistency and quality is an important first step in

preparing to undertake univariate analyses, which are important to clinicians who would

ideally wish a single feature to be powerfully predictive of the presence or absence of

adverse outcomes, and multivariable analyses from which the decision rule will be built in

subsequent chapters.



Page 173 of 410

Chapter 8: Results of the univariate analyses

In the examination of candidate predictors of outcome, a useful first step is a univariate

assessment of the association between each predictor and outcome. The term 'univariate'

means that each predictor is considered separately and so each association is not adjusted

for other variables. Multivariable analyses (which do adjust) are conducted in subsequent

chapters.

In this chapter univariate analyses are undertaken to create a list of potential predictors for

use in the multivariable analysis, and to inform clinicians of the association between single

factors and the risk of infection in their patients. Univariate associations are important to

obtain an initial overview of the associations and whether they appear consistent with

clinical expectations. Additionally, if a univariate association is extremely strong, it may

remove the need for any more complex examination of the data as a clinically effective

decision can be made from that one piece of information.

To assess the consistency of these features across the different component studies, the

univariate model has been fitted directly to each dataset. This chapter illustrates the general

approach using particular examples, both as exemplars and to illustrate specific problems.

Additionally, the data on inflammatory biomarkers, which were present in very few datasets

and could contribute little to the multivariable analyses, are also explored in depth.

Outcome examined

This thesis considers the outcome of microbiologically documented infection (MDI). This was

selected from the wider range of outcomes included in the initial protocol for the PICNICC

analysis because it is the most completely reported, is the most frequently concerning to

clinicians in paediatric FN, and has an uncomplicated definition.

Models fitted

Three logistic regression models were fitted to explore univariate associations for each of

the candidate predictors of microbiologically documented infection. The models were fitted
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using maximum likelihood estimation within the package lme4 in R (see Appendix 23 for

code).

These models are presented using the same notation as Chapter 5, briefly :

p – the probability of an outcome (in this case microbiologically defined infection,

MDI)

()i - i refers to the ‘i-th’ dataset

()k - k refers to the ‘k-th’ patient

()ik - ik refers to the ‘k-th’ patient of the ‘i-th’ study

beta0 (β0) – the estimate of the ‘intercept’, that is, the log-odds of MDI when all the other

features have ‘zero’ value

t - the predictive feature under investigation (e.g. temperature)

beta1 (β1t) – the estimate of the log odds ratio of the probability of MDI in individuals who

vary by one unit of ‘t’

The first models is the “full hierarchical with individual effect” which fitted a hierarchical

model estimating independent intercepts by study, with random effect on predictor within

study (to allow for a separate predictor effect in each study), and random effect on

individuals (to allow for a separate intercept for individuals with multiple records within a

study),

[1] Logit(p ik) = β0i + β1i tik + β2k

1i ~ N(β1, τ
2
β1)

β2k ~ N(β2, 
2
β2)
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This model, additionally, has

beta2 (β2) – the estimate of the log odds ratio of the probability of MDI in individuals who

vary by study

tau (τ) - an estimate of the variation of the predictive feature under investigation between

studies

sigma () - an estimate of the variation of the predictive feature under investigation

between individuals

The following model was the “reduced hierarchical with study effect” estimating

independent intercepts by study, with random effect on predictor within study alone,

[2] Logit(p ik) = β0i + β1i tki

1i ~ N(β1, τ
2
β1)

Finally, a “fixed effect model” allowing intercept to vary by study, with fixed effect on

predictor within study, was used

[3] Logit(p ik) = β0i + β1 tik

The previously described difficulties interpreting data on remission, time since

chemotherapy, pulse, blood pressure, respiratory rate and respiratory compromise meant

they were excluded from meaningful analysis (see Chapter 7). The effect of tumour type

could be examined using a fixed effects model only because the fitting of 528 random effect

estimates (22 studies * 24 tumour-types) was not feasible.
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Results of model comparisons

Full hierarchical model

Full hierarchical analyses with individual effects were undertaken with (a) all patient data

and (b) in the subset of patient data where multiple episodes were permitted. The latter

approach provides a fairer approximation of the effect of variation attributable to the

individual patient

The full comparison is provided in Appendix 24. In brief, estimates of the predictive value of

the candidate variables were largely unchanged when approached with either information

from every patient-episode, or only those patient-episodes from studies where multiple

episodes per patient were permitted, for example in temperature (beta-estimates of 0.81

will all data, 0.77 with multiple-entry-studies only data). Estimates of the individual variation

were also largely similar, with the ‘temperature’ data having individual level standard

deviation estimates of 1.1 for all data and 1.4 for multiple-entry-studies . Features where

differences in parameter estimates were shown included patient age (which had a very small

absolute change in the predictive estimate), chemotherapy intensity (where the estimate of

the predictive value of Haemopoetic Stem Cell Transplant, HSCT, varied markedly; see later

for discussion) and absolute neutrophil count. Differences in patient-related variability were

seen in central line type (where the use of multi-patient data to estimate the individual

effect showed reduced variation), out-patient status, and the presenting features of

temperature, shock, severe mucositis and clinical “unwellness” which demonstrated greater

variability when estimated from multi-episode samples.

Reduced hierarchical model

Comparing the reduced model (see equation [2] above) to the full model led to very little

difference in the association estimates for each candidate predictor. The differences

introduced by assessing multiple episodes within patients were assessed by comparing the

predictor estimates from the dataset with every patient-episode and a subset with just one

episode per patient (full data in Appendix 5). This showed only meaningful difference when

all episodes (examined as independent events) were compared with one-episode-per-

patient; IL-6 was significantly less predictive of MDI when only one episode per patient was

included.
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Fixed effects model

Given the limited benefits demonstrated from the full multilevel model, a further

assessment of the differences between the hierarchical and simple fixed effects model was

undertaken. This demonstrated no significant difference in predictive estimates for the

univariate predictors of MDI. (The results of this are shown in 26.)

Between-study consistency

As between-study consistency was considered important, an analysis of the predictors was

undertaken per-study to assess this.

Univariate predictors of MDI

The fixed effect model was used to examine twenty-six different candidate predictors of

MDI. Of these, twelve were significant at p<0.05, and six between p=0.05 to 0.15. The values

of the strength of association are considered in order of statistical significance (see Table

25). The assessment of the effect of tumour type relative to acute lymphoblastic leukaemia

(the most common diagnostic group) is shown in Figure 43.

Figure 43: Odds ratio of MDI by tumour type relative to ALL
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Table 25: Fixed-effect predictors arranged by order of statistical significance

Predictor name OR 95% CI p-value

% of episodes

with missing

data

Temperature 1.9 1.61 to 2.24 2.60E-14 72%

Log (white cell count) 0.72 0.66 to 0.78 1.40E-13 72%

Severely unwell 2.2 1.78 to 2.73 2.20E-13 72%

Log (IL-6) 2.1 1.71 to 2.63 4.40E-12 72%

Log (absolute monocyte

count) 0.8 0.75 to 0.86 4.50E-11 49%

Log (IL-8) 1.8 1.48 to 2.28 1.70E-08 38%

Log (platelets) 0.8 0.74 to 0.87 2.10E-08 45%

Log (absolute neutrophil

count) 0.92 0.9 to 0.95 1.20E-07 45%

Chemo.intensity - Low 1 45%

Chemo.intensity - Standard 2.2 1.56 to 3.04 4.00E-06 91%

Chemo.intensity - HSCT 1 0.83 to 1.22 0.96 45%

Shock 2.4 1.69 to 3.43 1.60E-06 98%

Log (PCT) 1.9 1.35 to 2.73 0.00033 91%

Out.patient 0.7 0.53 to 0.92 0.0078 79%

Cvl.type - None 1 53%

Cvl.type - Port 1.1 0.66 to 1.7 0.8 39%

Cvl.type - Hickman 1.4 0.87 to 2.32 0.17 69%

Cvl.type - Untunnelled 3.1 0.95 to 9.55 0.054 0%

Relapse 1.4 1.08 to 1.87 0.012 88%

Mucositis 0.89 0.8 to 1 0.052 48%

Severe.mucositis 0.76 0.55 to 1.03 0.078 10%

Marrow 1.5 0.92 to 2.46 0.095 10%

Haemoglobin 1 0.99 to 1.1 0.11 88%

Log (CRP) 1.1 0.96 to 1.19 0.25 63%

Age.days 1 1 to 1 0.38 13%

Central venous line 1.2 0.82 to 1.65 0.4 60%

Diastolic BP 0.99 0.97 to 1.02 0.47 47%

Sex - F 1 1 to 1 67%

Sex - M 0.96 0.84 to 1.1 0.56 43%

Remission 0.98 0.74 to 1.29 0.87 39%

Systolic BP 1 1 to 1 0.92 38%
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These results suggest the following clinically suspected covariates may be associated with

MDI: the presence of an untunnelled central line, the clinical appearance of significant

unwellness, of documented cardiovascular compromise (shock), a high temperature, raised

serum biomarkers, low white cell counts and platelets, a diagnosis of AML, and undergoing

treatment for relapsed disease. The following potential associations are more clinically

surprising; osteosarcoma/Ewings sarcoma patients, and patients with more severe

mucositis, are associated with a decreased risk of MDI.

Patient age has been shown to be associated with the risk of death from FN [250] with

teenagers at greater risk of dying. The reasons for this are unclear, and may relate to an

increased risk of MDI, delayed presentation to hospital, or a reduced physical reserve than in

younger children. Infants too (those less than 12 months old) are felt to be at greater risk,

potentially through a natural lack of immunity to disease or the subtlety of clinical signs of

severe illness. However, data from the IPD analysis suggest that there is no clear relationship

between age and rate of MDI (also see Appendix ).

The consistency of these features across studies can be examined graphically and by fitting

the model direct to each. The general approach is illustrated using temperature (showing

the approach to linearity and consistency), elements of the full blood count (where study-

level variation was hypothesised to be important), and the challenges of presenting large

amounts of data in the different tumour types. The issue of chemotherapy intensity is also

examined in detail, exploring the inconsistencies found. Finally, the data on inflammatory

biomarkers, which were present in very few datasets and could contribute little to the

multivariable analyses, are explored in depth.

Temperature

Figure 44 shows the association between probability of infection and temperature assessed

in each individual study. The dataset of Spassova shows a negative relation between

temperature and risk of MDI. This outlier may be partly explained by the inclusion of a

hypothermic (rather than febrile) patient with maximummeasured temperature of 35oC.
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Figure 44: Relation of MDI and temperature by study. Data points indicated by rug plot.

This is demonstrated even more clearly by combining each study estimate onto a single

graph Figure 45, and in further analyses, removing the hypothermic outlier reduced the

inconsistency importantly.
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Figure 45: Relation of MDI and temperature by study

An alternative explanation for this finding is that temperature has a non-linear relationship

with the probability of infection, with both very low and very high readings being linked to

increased risk of MDI. Such a relationship was assessed by using fractional polynomials with

common transformations of [-2, -1, -0.5, log, 0.5, 1 or 2]. These did not improve AIC values.

A centralised transformation of the temperature covariate (taking 37oC, normal body

temperature, away from each reading) was then used to comparing the linear model fit

using quadratics. This led to statistically insignificant decrease in residual deviance and a

small decrease in AIC (2832 vs. 2827).

Using splines with df= 2 , 3 or 4 led to one transformation of the formula which showed a

statistically significant improvement in fit (placing a single knot at 38.3oC; improved residual

deviance p=0.008) but this benefit was of marginal benefit when assessed by AIC (2832 vs.

2828).
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A major challenge in assessing the possibility of non-linear associations between the

probability of infection and temperature comes from the inclusion criteria of the datasets.

Only a very few datasets have selected patients without fever (or with hypothermia) and

infection. As the data are sparse, the best fit can really only be based on when fever,

measured as >37.5oC in most of these data, is present.

Full blood count

Examining the relationships between the various subcomponents of the common blood test

“full blood count” is instructive in assessing the potential utility of this extremely simple and

widely available test, and examining for between-study effects. This test assesses aspects of

the bone marrow’s formation of the cellular components of blood, so may reflect the

amount of bone marrow suppression induced by treatment, or in the case of cancer

involving the bone marrow, disease.

There is evidence of the expected association (OR 0.8, 95% CI 0.75 to 0.86) between a lower

absolute monocyte count (AMC) and risk of MDI is consistent across all studies that report

this variable (see Figure 46). This is also seen – though less strongly (OR 0.92, 95% CI 0.9 to

0.95) with the absolute neutrophil count (ANC, Figure 62). This is of clinical importance as

the currently “valued” element of the differential white cell count is the ANC, rather than

the AMC.
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Figure 46: Relation of MDI and ln(AMC) by study.

Haemoglobin (Hb) and platelets are importantly distinct from differential white cell counts,

in that low levels may be supplemented by transfusion of blood components. As policies to

undertake such transfusions vary between clinical centres and have varied across time, it is

important to examine for study-level variation in the predictive power of these variables,

before accepting the overall estimate of association to be correct.

The relationship between Hb and risk of MDI appears less consistent than the white cell

subsets (see Table 26) with some datasets estimating a positive relationship between

increasing Hb values and risk of MDI, and the remainder a small negative relationship. No

individual dataset has a “conventionally statistically significant” estimate of association, and

no dataset has an estimate incompatible with the overall IPD estimate. The potential

explanation of transfusion policies varying does not seem to apply in this group; while there

is variation, it is generally in the trigger-level at which to transfuse, and aims to raise Hb to
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approximately 12 g/dL. If this was a strong effect we should see both a bimodal distribution

of Hb values and clear clustering of MDI cases around this value. The distributions of Hb

shown in the previous chapter do not support this, nor do the distribution of MDI cases. As

such, the most plausible explanation of these findings is chance variation.

Table 26: Per study estimates of haemoglobin (g/dL) in predicting MDI

Study OR 95% CI p-value

BaselSPOG 0.92 0.71 to 1.19 0.49

BernSPOG 3.6 0.53 to 25.53 0.2

BonnSPOG 1.1 0.9 to 1.27 0.48

EORCT-XIV 0.79 0.49 to 1.26 0.32

EORTC-IX 1.2 0.98 to 1.52 0.06

EORTC-XI 0.98 0.87 to 1.12 0.81

EORTC-XII 0.85 0.72 to 1.01 0.06

Hakim 0.88 0.48 to 1.62 0.68

Kitanovski 1.1 0.95 to 1.36 0.16

Klaassen 1.1 0.77 to 1.45 0.72

Sung 1.1 0.99 to 1.28 0.07

Tissing 1.2 0.8 to 1.75 0.39

ZurichSPOG 1.1 0.96 to 1.3 0.16

IPD Model 1 0.99 to 1.11 0.11

When examining the association between MDI and platelet levels, there is cross-study

consistency and the expected increased likelihood of MDI with low levels. This may be a

response to infection (with platelet consumption being a common finding in bacterial sepsis)

or part of the increased susceptibility one expects with marrow suppression.
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Tumour type

The strength of this IPD meta-analysis becomes apparent when the variable “tumour type”

was examined as an individual-study level predictor (see Figure 43).

Graphically demonstrating the strength of association in such large and complex datasets is

challenging. A traditional systematic review approach of forest plots would need to show 23

different plots. An alternative would be to display a heat map of the data points (see Figure

47). This can demonstrate that, for most tumour types, the point estimates (which are very

imprecise – see Appendix 27, Tumour type

Table 57) tend in the same direction (shaded greens indicating an association with reduced

risk of MDI, or orange/reds indicating an association with an increased risk). Blue represents

an estimate of about unity, and white an area with no data.

Figure 47: Heatmap of strength of association (OR) between tumour type and MDI
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While this graphical display does show concisely a great deal of information from varied

sources, it fails to illustrate the uncertainty around each odds ratio displayed, providing only

the point estimate, and should be an aid to interpretation alongside the numerical data.

Although the finding of an increased risk of MDI in AML is widely acknowledged, the

unexpected finding of an association between a reduced chance of infection in patients with

bone sarcomas and febrile neutropenia requires further examination in a multivariable

model, as it may affect the views of clinicians on implementing a reduced intensity therapy

for low-risk patients.

Chemotherapy intensity

As discussed in Chapter 6, the intensity of chemotherapy refers to a concept encompassing

the likely duration and severity of complications attributable to the cytotoxic agents used to

treat cancer. For the purposes of the PICNICC analysis, a three-level ordered categorical

approach was used: Low, Standard and HSCT; (commonly referred to as “bone marrow

transplant”), but only two studies provided data on HSCT.

Table 27: IPD analysis for chemotherapy intensity

Predictor name OR 95% CI p-value

chemo.intensity - Low 1

chemo.intensity - Standard 2.2 1.56 to 3.04 0.000004

chemo.intensity - HSCT 1.0 0.83 to 1.22 0.96

The IPD analysis (Table 27 ) contradicts the clinical experience that HSCT patients, who have

undergone an extremely intense and immunosuppressive treatment, have a higher rate of

documented MDI, than those undergoing standard or low-intensity therapy. This “expected”

view is supported by the Genoa dataset (
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Table 28 )
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Table 28: Observed association of chemotherapy intensity including HSCT from informative studies

Chemo intensity n Patients OR 95% CI p-value

Genoa Low 23 1

Standard 504 1.1 0.52 to 2.29 0.82

HSCT 176 1.5 0.96 to 2.46 0.08

PINE Low 218 1

Standard 577 2.5 1.21 to 4.98 0.01

HSCT 17 1.0 0.66 to 1.56 0.96

The Genoa dataset included patients currently undergoing HSCT treatment, and in the

immediate period after this, unlike the PINE data where the HSCT patients largely consists of

those who had recovered from the intensively treated phase and were recuperating with a

greatly improved immune response and fewer other toxicities. As such, the HSCT data from

the two groups appear to reflect different clinical phenotypes, and the clinical interpretation

is challenging.

The relationship between standard intensity and chemotherapy is less contradictory (Figure

48), although quite heterogeneous between groups:

Figure 48: Association of standard intensity vs. low intensity chemotherapy and MDI

The variation in estimates of increased risk of MDI with chemotherapy intensity may be due

to chance, to the changes in intensity of therapies across eras, or to different definitions of

intensity. There is little to support the latter two explanations in these datasets.
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Other clinical predictors

Many of the findings from the univariate analysis are as expected, and show consistency

across the datasets (for further details, see Appendix 27). These findings include the

associations of relapsed disease, out-patient status, severe cardiovascular compromise, the

gestalt appearance of a patient being unwell, and central line type or presence. The absence

of an association with patient age, gender and marrow involvement is also consistent.

The relatively surprising association suggested with increasingly severe mucositis decreasing

the risk of MDI was consistent across studies, though no single study would have detected

this association, and using the grossly categorical approach of “severe” vs. “non-severe” also

dilutes this association (see Table 29).

Table 29: Study level associations of mucositis with MDI

Predictor name OR 95% CI p-value

BaselSPOG Mucositis (per grade) 0 0 to infinite 1

Severe mucositis 0 0 to infinite 1

BernSPOG Mucositis (per grade) 0.78 0.57 to 1.07 0.1

Severe mucositis 0.51 0.18 to 1.45 0.21

BonnSPOG Mucositis (per grade) 0.66 0.19 to 2.3 0.51

Severe mucositis 0 0 to infinite 1

Hakim Mucositis (per grade) 1.1 0.78 to 1.51 0.66

Severe mucositis 1.3 0.45 to 3.74 0.64

Kitanovski Mucositis (per grade) 0.99 0.59 to 1.65 0.98

Severe mucositis 0.71 1.88 to 1.88 0.63

Klaassen Mucositis (per grade) 0.91 0.67 to 1.25 0.57

Severe mucositis 0.78 0.28 to 2.16 0.64

Lehrnbecher Mucositis (per grade) 0.75 0.55 to 1.02 0.07

Severe mucositis 0.41 0.12 to 1.38 0.15

Spassova Mucositis (per grade) 1 0.85 to 1.3 0.69

Severe mucositis 1.1 0.59 to 2.15 0.72

Sung Mucositis (per grade) 0.73 0.26 to 2.05 0.55

Severe mucositis 4.6 1.05 to 19.11 0.04

ZurichSPOG Mucositis (per grade) 0.8 0.54 to 1.19 0.26

Severe mucositis 0.5 0.11 to 2.29 0.37

PINE Severe mucositis 0.54 0.29 to 1.02 0.05

IPD

estimate

Mucositis (per grade) 0.89 0.80 to 1.00 0.05

Severe mucositis 0.76 0.55 to 1.03 0.16

Shaded row shows single dataset with only dichotomous mucositis
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Biomarkers

The datasets providing information on the four biomarkers studied in the PICNICC

collaboration (CRP, IL-8, IL-6 and PCT) were much smaller than for many of the other

potential predictor variables (1606 episodes with CRP, 485 with IL-8, 456 with IL-6, and 123

with PCT) and represents a smaller subgroup of the biomarkers studies. As explored

extensively in the systematic reviews (with update) the desire to find effective early serum

markers of infection is strong and an extension of the PICNICC project with further data

collection and synthesis may well be warranted.

CRP was assessed in the greatest number of datasets, and showed a repeatedly statistically

non-significant association with risk of MDI.

Table 30: Association of ln(CRP) with risk of MDI

Predictor

name

OR 95% CI p-value

BaselSPOG ln(CRP) 2.1 0.55 to 7.87 0.28

BernSPOG ln(CRP) 0.95 0.7 to 1.3 0.73

BonnSPOG ln(CRP) 1.2 0.44 to 3.25 0.72

Kitanovski ln(CRP) 1.9 0.99 to 3.77 0.05

Lehrnbecher ln(CRP) 0.91 0.74 to 1.13 0.42

Silva ln(CRP) 0.77 0.38 to 1.56 0.47

Spassova ln(CRP) 1.2 0.95 to 1.51 0.13

Tezcan ln(CRP) 1.1 0.8 to 1.44 0.66

Tissing ln(CRP) 0.94 0.72 to 1.24 0.67

ZurichSPOG ln(CRP) 1.5 0.99 to 2.25 0.06

IPD

estimate 1.1 0.95 to 1.18 0.25
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Figure 49: Studies with superimposed IPD estimate (black)

The data for IL-6 are more suggestive of a discriminatory value, with varying but consistent

associations. IL-6 values appear to be most strongly associated with gram-negative bacterial

infections; if a larger proportion of the 18 cases of MDI in the Kitanovski study were of this

type, it may explain the very strong association seen here. Removing this study led to a

smaller, but still significant, OR of 1.88 (95% CI 1.52 to 2.33).

Table 31: Association between ln(IL-6) and MDI

Predictor name OR 95% CI p-value

Kitanovski ln(IL-6) 7.1 2.61 to 20.88 0.00

Lehrnbecher ln(IL-6) 2.3 1.73 to 2.99 0.00

Spassova ln(IL-6) 1.4 0.65 to 3.23 0.37

Styjewski ln(IL-6) 1.1 0.74 to 1.75 0.54

IPD

estimate 2.10 1.71 to 2.61 4.4 x10
-12

IL-8 has been used in the definition of a group of individuals who have received no antibiotic

despite being febrile and neutropenic. In this IPD analysis, IL-8 was confirmed as being a
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which are of particular interest, giving the estimated proportion of MDI in patients with

undetectable IL-8 (see Table 32).

Table 32: Association between ln(IL-8) and risk of MDI

Predictor

name

OR 95% CI p-value Estimated

intercept

(proportion

MDI)

95% CI

BonnSPOG ln(IL-8) 3.6 0.71 to 19.04 0.12 0 0 to 0.51

Lehrnbecher ln(IL-8) 1.8 1.37 to 2.37 0.00 0.01 0 to 0.04

Spassova ln(IL-8) 1.7 0.96 to 3.12 0.06 0.07 0 to 0.51

Styjewski ln(IL-8) 1.9 1.1 to 3.28 0.02 0.04 0.01 to 0.22

Tissing ln(IL-8) 1.9 0.94 to 4 0.08 0.01 0 to 0.27

IPD estimate 1.8 1.48 to 2.28 1.7E-08

Figure 50: Association of ln(IL-8) with risk of MDI

The paucity of overall data limits the more extensive exploration of this biomarker.
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Procalcitonin had the fewest data of the biomarkers studied, despite being used widely in

adult respiratory medicine and critical care to help define when to refrain from commencing

or discontinuing antibiotics in patients with suspected significant infections. Data were only

available from two studies.

Predictor name OR 95% CI p-value

Kitanovski ln(PCT) 4.7 1.79 to 13.72 0.00

Styjewski ln(PCT) 1.6 1.12 to 2.28 0.01

IPD Estimate 1.9 1.34 to 2.72 0.00033

While these are both strongly suggestive that PCT is an effective marker of infection, there

are far fewer data on which to base this conclusion.

Conclusion

Analysis of the univariate relationships between the patient-specific background features,

episode-specific background factors, episode-specific clinical features and episode-specific

laboratory features has confirmed many of the previously suspected associations. It also

revealed some novel and challenging findings, which may be explained by confounding as

these are univariate associations. It has not revealed any single feature as being compellingly

associated with either the absence of, or presence of, microbiologically documented

infection. The proposed use of models assessing individual clustering through hierarchical

random effects assessments, although statistically appealing and theoretically advantageous

was not shown to meaningfully affect the association estimates for each predictor, and was

therefore not pursued as a technique.

The IPD analysis confirms existing beliefs that gender is unimportant in predicting the risk of

MDI, and suggested there is not an association between age and risk of MDI. Tumour type is,

as expected, related to the risk of MDI, but this very large data set has shown an unexpected

but consistent relationship between reduced risk of MDI and a bone tumour (Ewings /

osteosarcoma) diagnosis.

Examination of the episode-specific background factors of the type of CVL, and intensity of

chemotherapy highlighted challenging aspects of the dataset. The CVL data, providing both

dichotomised and type-specific data, has shown that granular categorical data is more

informative than lumped data where there are important differences between the
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categories. It has also shown that selective inclusion criteria when creating the datasets can

lead to paradoxical results, as demonstrated in the chemotherapy intensity variable.

Although patchy in coverage between datasets, there were sufficient numbers and broad

enough coverage of out-patient status at onset of the episode to suggest a small decrease in

the risk of MDI in patients presenting from home. The clinical impression of a severely

unwell child or young person was strongly associated with the risk of MDI, as was an

increasing maximum recorded temperature. Again, the power of such large numbers

suggests an unexpected negative association between the grade and severity of mucositis,

and risk of MDI.

The objective measures of blood tests for marrow function and inflammatory biomarkers

showed evidence of the increased risk of MDI with lower platelets and white cell subsets,

particularly AMC rather than ANC. Of the serum biomarkers, there were convincing data of

the poor discriminatory value of CRP and a suggestion that IL-8 may be a very effective

marker. PCT was insufficiently studied to be as convincing in value as the other markers.

The univariate associations described in this chapter are clinically interesting, in showing

which features may be key discriminators and which we should not rely too strongly on in

practice. If one, or more, predictors had shown very high odds ratios to “rule in” MDI, or

alternatively, had extremely low intercept values, where the absence of the feature could

“rule out” MDI, and that this feature was consistent and reproducible across data sets, then

there would be no need to develop this analysis further.

In the absence of such a feature, the exploration of ideas of how the variables are related to

each other, and where one variable provides information above and beyond that provided

by others, is needed for an efficient CDR to be produced. Multivariable approaches provide

this next step, and are described in the next chapter.
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Chapter 9: Results of the multivariable analyses

Introduction

The primary clinical aim of the IPD analysis was to quantify the risk of adverse clinical

outcomes; primarily microbiologically documented infection in children and young people

undergoing treatment for malignant disease presenting with febrile neutropenia.

To recap briefly, the previous chapter showed how univariable analysis did not indicate any

single feature was extremely strongly associated with MDI, or its absence, in this population.

A new multivariable risk prediction model was therefore required, and this chapter details

how the model was built and evaluated. The methods are fully discussed in Chapter 6.

Data selection

Data selection was very challenging, as there were a high proportion of studies with

uncollected variables which considerably reduced the number of patients, episodes and

studies available for a complete case analysis. Therefore, a decision was made to work with

a dataset containing 1,000 episodes, estimated to contain 200 events of MDI and produce a

20:1 ratio for the analysis of 10 separate predictor variables. The method used to derive this

dataset was based on taking the univariate predictors with greatest statistical significance

and removing incomplete cases until the limit of fewer than 1,000 episodes was reached.

The steps undertaken to reach this dataset are demonstrated in Table 33.

Table 33: Data available for complete case analysis

Constituents Episodes Patients Studies Proportion

of episodes

with MDI

Temp 2461 1798 15 28%

Temp + Severe Unwell 1486 925 10 27%

Temp + Severe Unwell + ANC 1348 849 9 27%

Temp + Severe Unwell + ANC + plts 1148 768 8 24%

Temp + Severe Unwell + ANC + plts + wcc 1101 742 7 24%

Temp + Severe Unwell + ANC + plts + wcc + tumour 1101 742 7 24%

Temp + Severe Unwell + ANC + plts + wcc + tumour + OP 1101 742 7 24%

Temp + Severe Unwell + ANC + plts + wcc + tumour + severe

mucositis

965 616 7 25%

Temp = temperature, ANC = absolute neutrophil count, plts= platelets, wcc = white cell count, tumour

= tumour type, OP = out-patient status
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Model selection

The model finally selected to produce the most accurate prediction of the risk of MDI

proceeded following the pre-specified method (See Chapter 6). This was by forward

selection including variables with p<0.15, commencing with the demographic details and

assessing model improvements using Akaike’s Information Criterion (AIC; a measure of the

goodness of fit of a model to the data). On the basis of this, variables were incorporated or

rejected as shown in Table 2.

Table 34: Selection of model prediction terms

Variable p-value for

parameter

Model

AIC

NRI (95% CI) AUC ROC Included or

rejected

Base case 1069 0.646

Age in days 0.689 1070 NA 0.645 Rejected

Tumour type 0.003 1076 0.012 (0.004 to 0.02) 0.644 Included

CVL 0.625 1076 0.001 (-0.001 to 0.004) 0.645 Rejected

Out patient 0.668 1076 0.008 (0.002 to 0.015) 0.644 Rejected

Temperature 0.00002 1058 0.015 (0.006 to 0.024) 0.671 Included

Shock 0.392 1032 NA 0.670 Rejected

Mucositis 0.295 1031 NA 0.672 Rejected

Severely unwell 0.000005 1039 0.01 (0.001 to 0.018) 0.697 Included

Haemoglobin 0.012 1035 NA 0.701 Included

log(Platelets) 0.028 1029 NA 0.703 Included

initially,

rejected when

WCC included

log(WCC) 0.00003 1021 0.018 (0.007 to 0.028) 0.723 Included,

Rejected plt

log(ANC) 0.585 1012 NA 0.723 Rejected

log(AMC) 0.0002 999 NA 0.736 Included

Antibiotics

(sensitivity)

0.989 1017 NA (Essentially

unchanged)

CVL – central venous line; WCC – white cell count; ANC – absolute neutrophil count; AMC - absolute

monocyte count. NRI – net reclassification improvement on previous model, in classification of low

risk (<5% MDI)



Page 197 of 410

The final model

The final model included:

Tumour type + Temperature + Severely unwell + Hb + log(WCC) + log (AMC)

Logit(pMDI ik) =  + β0k + β1 tumour typei + β2 temperaturei + β3 unwelli + β4 Hbi + β5 loge

(white cell count)i + β6 loge(absolute monocyte count)i

The value of the model can be assessed by comparing it to simpler versions to evaluate if the

increase complexity can produce meaningful benefits. When the full model was compared

with the simplest model possible, using only study-ID to predict the risk of MDI, this

produced a net reclassification improvement (NRI; a measure of the clinically relevant

improvement of identifying children correctly as infected or non-infected) of 0.079, and AUC

ROC improved from 0.646 to 0.736. Using clinical variables only (tumour type, temperature,

severely unwell) gave an AUC ROC of 0.697. The addition of the simple full blood count

variables (haemoglobin, white count and monocyte count) improved the prediction further

with an NRI of 0.042, and AUC ROC improved to 0.736.

The predictive estimates of the variables were then revised using bootstrapping, as

described in Chapter 6, re-sampling 5,000 iterations with replacement. For most predictive

estimates, there appeared to be little bias (see Table 35). For those data items with sparse

data, for example, the tumour type GCT (n=7) the bootstrapped estimates were not

normally distributed and the median estimate is markedly different than that initially

derived (see Appendix 28. Detailed estimates from final multivariate model).
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Table 35: Selected parameter estimates and bootstrap values

AML GCT

Osteo-

sarcoma RMS

Temp-

erature

Severely

unwell

Haem-

oglobin log(WCC) log(AMC)

Original

estimates 0.655 -0.069 -1.193 -0.244 0.566 0.786 0.180 -0.299 -0.209

Bootstrap

Median 0.661 -0.148 -1.229 -0.253 0.588 0.809 0.182 -0.309 -0.215

Lower limit

95%ile 0.128 -16.046 -2.889 -0.952 0.296 0.400 0.081 -0.516 -0.332

Upper limit

95%ile 1.158 1.832 -0.288 0.393 0.905 1.203 0.292 -0.103 -0.099

Difference 0.006 -0.078 -0.036 -0.008 0.022 0.023 0.002 -0.010 -0.005

% variation 1% 113% 3% 3% 4% 3% 1% 3% 3%

The shrinkage estimate for the model [243] was calculated to be 0.97, in keeping with the

very small differences produced by the bootstrap values.

Validation

The new model was tested by assessing the calibration (comparing the actual proportions of

MDI in patients with the predicted proportion of MDI) and by assessing it’s discriminatory

value in classifying patients at very low risk (<5%) of MDI

Calibration

In order to test the model’s calibration, we extracted the predicted risk of MDI using the

derivation dataset, but using a generalised intercept based on a meta-analysis of the study-

variable intercepts from the model, rather than the study-specific intercept of the individual

patient, in an attempt to produce a result more likely to be applicable in future clinical

practice (as intercepts for each practice are unlikely to be available in reality). These were

then shown graphically by plotting the predicted result against actual outcomes, grouped by

either deciles of predicted risk (i.e. the predicted probability from those with <10%, 10% to
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<20%, etc.) or by deciles of population (i.e. the predicted probability from the first 10%, 20%,

etc.)

Figure 51 shows the actual average % of MDI per predicted MDI decile (0-10%, 10-20%, etc.),

comparing the actual rate of MDI in these patients with the value calculated from the model.

It also shows, on the categorical axis, the percentage of patients who fall into the risk

grouping.

Figure 51: Discriminatory performance of the new model

An alternative visualisation is to plot the grouped observations against each other, see

Figure 52.
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Figure 52: Calibration plot of the new model

This Figure shows the distribution of predicted probabilities as a rug plot, with the height of

the line showing the frequency of the predicted probability. The group estimates are shown

in deciles of the population, rather than deciles of the predicted values, as triangles. The

dashed line of “perfect fit” at 45o shows where predicted and actual probabilities would

perfectly intersect; the dotted line is a Lowess smoothed curve of the predictive versus

actual values.

These figures show that the predictive value of the model is very close to the actual

probability of MDI across the range of predictions, showing no major systematic bias, though

there is a slight underprediction of risk between approximately 0.2 and 0.4.

The use of bootstrapped median parameter estimates made no effective difference to the

model’s predictive ability (see Appendix 28. Detail, Figure 65).
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Discrimination

Assessments of discriminatory validity were based on a categorising the results to lower

than 5% chance of MDI or greater. This value was chosen as discussed in Chapter 6 by an

expert consensus with parent/carer involvement to reflect a very conservative estimate of

acceptable risk of MDI. This was the same cut-off as the NRI calculation for model derivation.

The results are shown in ROC space in Figure 53, demonstrating an AUC (also known as C-

index) of 0.723 (95% CI by bootstrapping 0.685 to 0.785).

Figure 53: Model discrimination at in ROC space

An alternative approach to this is to examine how many patients fall in the correct category,

and to how many this rule would apply. This is shown in Table 36 where the model places 57

patients (6% of the total) into a low risk category, of whom 2 (~4%) were misclassified and

have an MDI. This type of dichotomous “rule” use of the model can also be described by its

sensitivity (99.2%) and specificity (7.5%).

Table 36: Discrimination matrix (2x2 table) for 5% risk of MDI
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High risk 234 676

Low risk 2 55
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Cross validation

Validation was undertaken by comparing the results of the initial analyses against the data

from all bar one of the studies in turn (cross validation of intrinsic prognostic performance),

without significant differences in calibration (see Appendix 28. Detail) or discrimination (see

Table 37).

Table 37: Calibration and discrimination values of all-bar-one analysis

Study removed AUC ROC Sensitivity Specificity Proportion in

LR group

Misclassified

BaselSPOG 0.724 99.2% 7.6% 5.9% 3.5%

BernSPOG 0.718 99.0% 8.1% 6.4% 3.8%

BonnSPOG 0.723 99.1% 7.9% 6.1% 3.5%

Hakim 0.710 100.0% 3.9% 2.9% 0.0%

Kitanovski 0.712 99.1% 7.2% 5.7% 3.9%

Klaassen 0.766 98.2% 11.7% 9.6% 3.8%

ZurichSPOG 0.720 99.1% 7.3% 5.7% 4.0%

The discrimination qualities were also tested by bootstrapping (2,000 samples, with

replacement, comparing predicted risk of MDI against actual risk) reporting the sensitivity,

specificity, percentage of patients classed as low risk and percentage of patients

“misclassified” – with an MDI in the low risk group.

Table 38: Bootstrapped estimates of discrimination

Median

Lower 95%

confidence

limit

Upper 95%

confidence

limit

Sensitivity 99.2% 97.8% 100.0%

Specificity 7.6% 5.6% 9.7%

Proportion in LR group 5.9% 4.3% 7.4%

Misclassified 3.2% 0.0% 8.4%
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Sensitivity analyses

The PICNICC model for the prediction of probability of MDI was robust to cross validation of

intrinsic prognostic performance and bootstrapping, and the heuristic estimate of uniform

shrinkage was also low (0.97), all congruent with a prediction model which was not

overfitted or overoptimistic.

A sensitivity analysis adding antibiotic type to the model was planned in the protocol. This

did not change the predictive value of the model (see Table 34). This is to be expected as a

standard set of antibiotics tends to be given in each hospital, without reference to any

variable which may be predictive of MDI.

A series of further sensitivity analyses were undertaken addressing other potential

challenges to validity. Examining the model for evidence of study-level variation is important

as only seven of the 22 datasets could contribute sufficient variables to provide information

for the model. If these studies were importantly different than those which could not be

included, the validation procedures undertaken could fail to give an accurate estimate of

how useful the model may be in practice.

This potential problem was addressed by undertaking a sensitivity analysis, where an

average value for each of the missing variables was used where it had been unrecorded. This

is a simple initial step in addressing missing data through imputation, and further research

could consider multiple imputation techniques. To fit this “average imputed” model, the

mean values of each continuous variable drawn from the entire dataset was placed where

an NA was recorded. The “severely unwell” variable was coded at 0.17; the proportion of

episodes where severely unwell had been recognised. The tumour type was coded as “ALL”;

this was the most common diagnosis, and also the reference diagnosis for tumour type.

Using these values, the model showed much worse discrimination, with an AUC ROC of

0.619 (see Figure 54), as expected with the insertion of large quantities (~50%) of

undiscriminating data.
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Figure 54: ROC curve for “average imputed” sensitivity model

The test accuracy values were similarly reduced (see Table 39) for a cut-off of 5% chance of

MDI for low-risk.

Table 39: Discrimination values for “average imputed” sensitivity model
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Specificity 7.6% 4.0%

Proportion in LR group 5.9% 3.4%

Misclassified 3.2% 15.6%
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~20% range. The plot demonstrates that this sensitivity analysis data typically

underestimates probabilities, but follows a reasonably similar slope for most of the curve.

Again, this is highly likely to be due to the very large amount of non-discriminatory data.

Figure 55: Calibration plot for sensitivity analysis

Examining the parameter estimates obtained by fitting the model to this “average imputed”

data shows the predictive values of clinically recognised “unwellness”; temperature, WCC

and AMC remain similar. The point estimates of the predictive values of some tumour types
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Table 40).
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Table 40: Parameter estimates in model fitted to original and sensitivity analysis data

Original dataset

OR (95% CI)

Sensitivity analysis

OR (95% CI)

AML 1.92 1.17 to 3.17 1.15 0.91 to 1.45

Brain 0.63 0.3 to 1.35 1.39 0.79 to 2.43

Carcinoma NA NA 0.39 0.05 to 3.11

Ewings 0.53 0.14 to 1.93 0.50 0.3 to 0.83

GCT 0.93 0.17 to 5.2 0.91 0.3 to 2.76

Hepatoblastoma 1.61 0.53 to 4.91 0.13 0.02 to 0.98

High grade Brain 0.71 0.29 to 1.75 0.78 0.49 to 1.23

Hodgkins 0.67 0.17 to 2.63 0.97 0.55 to 1.73

HR-NBL 2.51 0.69 to 9.17 0.39 0.23 to 0.67

LCH NA NA 1.33 0.41 to 4.37

LGBrain NA NA 0.83 0.31 to 2.25

LR-NBL NA NA 0.41 0.09 to 1.93

Lymphoma NA NA 0.67 0.37 to 1.21

NBL 1.6 0.61 to 4.23 1.52 0.96 to 2.42

NHL 0.62 0.34 to 1.16 0.70 0.5 to 0.96

Nonmalignant NA NA 1.02 0.33 to 3.17

Osteosarcoma 0.30 0.1 to 0.92 0.36 0.21 to 0.6

Other 2.22 0.49 to 9.99 0.42 0.18 to 1

Retinoblastoma 1.73 0.32 to 9.26 0.17 0.02 to 1.4

RMS 0.78 0.42 to 1.46 0.76 0.5 to 1.17

Sarcoma 1.21 0.24 to 6.03 0.96 0.48 to 1.92

Solid NA NA 0.43 0.27 to 0.69

Wilms 0.61 0.17 to 2.24 0.78 0.47 to 1.29

Temperature 1.76 1.33 to 2.34 2.03 1.61 to 2.56

Severe unwell 2.20 1.5 to 3.21 2.20 1.63 to 2.98

Haemoglobin 1.20 1.09 to 1.32 1.06 0.99 to 1.15

ln(WCC) 0.74 0.61 to 0.9 0.75 0.67 to 0.84

ln(AMC) 0.81 0.72 to 0.91 0.87 0.79 to 0.96

In both models only the osteosarcoma has statistical significance as a predictor, AML losing

significance in the sensitivity analysis. Some of the tumour types reverse their direction of

association: brain, high-risk neuroblastoma, hepatoblastoma and retinoblastoma.
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Modified model

On the basis of the complexity of the tumour type classification and the huge uncertainty

associated with many of the subtypes, a pragmatic decision was made to simplify the values

with only AML (OR 1.5), Ewings sarcoma (OR 0.5) and Osteosarcoma (OR 0.3) being different

to ALL (OR 1, reference value). These were chosen because they were consistent in the data

sets (the sarcomas) and clinically recognised as being having a serious concern about

repeated severe infection (AML).

This model, when applied to the original derivation dataset, produced a marginally less

effective discrimination (ROC 0.709 cf 0.723) mainly through a loss in specificity (see Table

41). When used in the “average imputed” sensitivity analysis dataset it showed smoother

discrimination and calibration characteristics (ROC 0.629 cf 0.619), though remained far

worse than the original dataset (see Table 41 and Appendix 28. Detail).

Table 41: Discrimination characteristics of simplified model

Original Tumour simplified

model

Sensitivity analysis

dataset

Simplified model

in sensitivity

analysis

Sensitivity 99.2% 99.2% 98.1% 99.2%

Specificity 7.6% 5.3% 4.0% 2.6%

Proportion in LR group 5.9% 4.2% 3.4% 2.1%

Misclassified 3.2% 4.9% 15.6% 10.5%

Comparison

The new PICNICC model was compared against previously proposed and evaluated risk

stratification rules identified in the systematic reviews. The rules were selected because they

had previously shown excellent properties (Santolya [22]), had been suggested in national or

international guidelines (Alexander [134]), were very recently published (Swiss Paediatric

Oncology Group, SPOG [144]) or were extremely simple (Rackoff [141]) (see Table 42). The
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rules were all designed to stratify the risk groups into low risk and high risk and so were

assessed for their discrimination rather than calibration, and were undertaken in the

PICNICC dataset when studies which had been used to derive the rules had been excluded.

Table 42: Previous Rules for comparison

The analyses show that the previous rules have worse discrimination as the rule derived

from the PICNICC model, as measured by the AUC ROC, and one rule (Santolaya) included a

greater proportion of patients with MDI in the low risk than the high risk group.

This illustrates the dilemma that is faced when choosing a rule to use, and which has been

explored initially in Chapter 1 and will be discussed at greater length in Chapter 10. Rules

Elements Rackoff Alexander Santolaya SPOG

Patient and

disease related

factors

None AML, Burkitt lymphoma,

induction ALL, progressive

disease, relapsed with

marrow involvement

Relapsed leukemia,

chemotherapy within 7

days of episode

4 points for

chemotherapy more

intensive than ALL

maintenance

Episode specific

factors

Absolute

monocyte count

Hypotension,

tachypnea/hypoxia <94%,

new CXR changes, altered

mental status, severe

mucositis, vomiting or

abdominal pain, focal

infection, other clinical

reason for in-patient

treatment

CRP ≥90 mg/L,

hypotension, platelets

≤50,000/uL

5 points for

hemoglobin > 9 g/dL, 3

points each for white

blood cell count

<300/uL, platelet <

50,000/uL

Rule formulation Absolute

monocyte count

> 100/uL= low-

risk of

bacteremia

Absence of any risk factor =

low-risk of serious medical

complication

Zero risk factors or only

low platelets or only <7

days from

chemotherapy = low-

risk of invasive

bacterial infection

Total score <9 = low-

risk of adverse FN

outcome
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which have a high sensitivity have a low specificity, and while very “safe” apply to very few

patients. If “safety” was the greatest concern then the Rackoff rule may be considered

better than the PICNICC rule because the misclassification rate is 0% (but applies only to 3%

of episodes). If a greater misclassification rate is acceptable, with lower sensitivity but

greater specificity, then the SPOG rule could be considered a better rule as it applies to a

much greater proportion of patients (43% cf. 6%) but at the “cost” of an increased

misclassification rate (10% vs. 3.5%).

Conclusions

The PICNICC dataset allowed the development of a new clinical prediction rule to determine

the risk of microbiologically documented infection consisting of a combination of three

clinical features (tumour type, maximum temperature and the clinical appearance of being

significantly unwell) and three elements of the full blood count (haemoglobin, white cell

count and absolute monocyte count). This model was developed without including

biomarkers due to limited quantities of data. This clinical model had moderate

discrimination and calibration, with fair agreement between the predicted probabilities and

actual rates of MDI. These results were then dichotomised at a predicted value of 5% or less

to produce a low risk group. This produced a highly sensitive, through poorly specific, rule

which applied to ~6% of the population.

The model and resultant rule appeared to be robust to internal validation techniques, but

exploratory sensitivity analyses examining the model performance across the non-included

studies offer a suggestion that the inclusion of haemoglobin may not prove to be efficient

when the model is used in future populations, and that a simpler approach to tumour type

inclusion may be warranted.
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Chapter 10: Discussion

Introduction

Children with cancer in Europe now have an 80% chance of cure[2]; this has been possible

through meticulous attention to treatments directed at their cancer and supporting them

through the side effects of these therapies. The cost of this cure, in terms of intensity of

therapy and recurrent admissions with toxic effects, is considerable and a burden upon

children, young people and their families [58]. One such toxicity, fever with neutropenia

(FN), also known as “febrile neutropenia” or “neutropenic sepsis”, has been the focus of this

thesis, which has addressed the issues of balancing risks and personalising care in FN by

undertaking risk stratification at each episode to differentiate who was at higher or lower

risk of significant infection, and who was potentially eligible for alternative treatment

approaches.

What was already known

Cancer in children is curable in an increasingly large proportion of cases

Emergency readmission in patients with fever and neutropenia (FN) is the second

largest reason for hospitalisation (after chemotherapy delivery)

Risk stratification had been proposed using a number of different approaches

What this thesis adds

The range and heterogeneity of studies exploring risk prediction in paediatric FN was

captured in five systematic reviews

The reviews influenced national and international guidelines in FN

An international collaboration of 22 groups over 15 countries formed to share

information from previously undertaken studies and explore clinical and

methodological problems

A robust prediction rule was developed to predict the risk of microbiologically

documented infection

Methodological and graphical refinements of the approaches undertaken were

developed and disseminated
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Background

At the onset of this programme of study, it was clear that current practice in managing

febrile neutropenia in paediatric oncology was variable, both nationally [53] and

internationally[51, 54-55]. Some centres used a risk-stratified, reduced intensity approach,

directed by clinical decision rules (CDR) whereas others treated all children with aggressive

antibiotic therapy.

An ideal system for FN management would predict the risk of adverse outcomes, classically

the occurrence of a microbiologically documented infection, using clinical data collected at

or soon after presentation. These data can be clinically derived from the simple act of

reviewing and examining a patient, performing basic bedside tests, such as measuring pulse

rate or blood pressure. They can also be obtained from routine laboratory investigations

such as the measurement of full blood count, or from more specialised tests, including the

measurement of serum biomarkers of inflammation.

Information from these data sources would then be used in a simple system (a predictive

model) to determine the risk of a microbiologically documented infection for each episode.

The output of such a predictive model could then be used in two different ways: to decide if

the risk was low enough to allow out-patient management; and at the opposite end of the

risk scale, to consider the need for increasingly close observation and more aggressive

management. Developing predictive models needs to be done in a robust manner to reduce

the effects of chance, confounding and bias obscuring the true relationships between

proposed predictor variables and the outcome of each episode of febrile neutropenia.

Furthermore, a rule needs to be tested, to make sure it works effectively and is practically

useful.

Building a robust and reliable model required obtaining large numbers of well-collected data

from FN episodes that had occurred in different places and at different times. As with much

paediatric research, it was noted that essential problems of research in this area were linked

to the condition’s rarity and small numbers of cases, and limited collaboration in primary

studies.

The first step in addressing this issue was to systematically review existing studies to assess

published CDR and the value of serum biomarkers in performing risk stratification, to

determine whether an individual patient data (IPD) meta-analysis was necessary; to identify

suitable data sets; and to guide the development of such a study. These reviews were
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subsequently updated [115-116] to inform the development of national [128] and

international [129] guidelines in this area.

The results of the systematic reviews of CDR in the prediction of adverse outcomes from

episodes of FN included a total of 10,431 patients from thirty-four studies developing

twenty-one different CDR. Four of these rules stood out for their simplicity (using just

temperature and absolute monocyte count: Rackoff[141] rule), their predictive ability

(Santolaya [22] and SPOG [144] rules) or their current use in some areas of the UK

(Alexander [154] rule). The serum biomarkers reviews included over 5,100 episodes

assessing twenty-four different markers of inflammation or infection. Those markers with

fewer studies appeared to have better characteristics but much greater uncertainties.

Taken together, these reviews suggested a CDR for the prediction of poor outcomes during

episodes of febrile neutropenia could be effective, and that there was potential additional

value from the incorporation of serum biomarkers. None of the rules had been subject to

extensive geographical and temporal discriminatory validity assessments, and many

potential difficulties with the studies were identified.

To maximise the value of the information already collected by these and other cohorts of

children with febrile neutropenia, an international collaboration was established to facilitate

an individual-patient-data (IPD) meta-analysis to develop and test a new prediction

model[231].

Collaboration

The “Predicting Infectious ComplicatioNs In Children with Cancer” (PICNICC) collaboration

was formed by engaging international clinical and methodological experts, authors of studies

identified in the systematic reviews, parent representatives and healthcare researchers. The

PICNICC collaboration consists of twenty-two different study groups from fifteen countries.

Although PICNICC was created via (and provided the data and drive for) this PhD, the

collaboration will continue to develop and progress research into infection in children and

young people with cancer beyond this thesis.
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Aims and Data collected

A protocol for the PICNICC IPD study was developed, registered and published prior to

commencement of the analysis.[231]

The primary aim of the IPD analysis was to quantify the risk of adverse clinical outcomes

according to clinical variables in children and young people undergoing treatment for

malignant disease who present with an episode of febrile neutropenia; and to develop a new

risk prediction model. A further aim was to develop methodological approaches to IPD

analysis in the development of predictive models, including the graphical display and

communication of such information. This thesis focused on the outcome of microbiologically

documented infection (MDI) because it was the most completely reported and most

objective and frequently occurring significant complication of paediatric FN.

IPD information from 5,127 episodes of FN in 3,504 patients was provided for analysis. A

wide variety of malignancies were represented, in keeping with the disparate nature of

diagnoses treated in paediatric oncology/haematology units. The median age of the patients

was 6.8 years, with a range of 50 days to 25 years old; 56% of the patients were male.

Assessment of the IPD collected showed a wide range of outcomes and potential predictor

variables demonstrating marked differences in completeness, interpretation and

consistency. No dataset completely reported every item. Tumour type was the most fully

collected data item, with only four episodes having missing data; procalcitonin was only

reported in 93 episodes, and missing in 5,034 Data were largely absent because individual

studies did not record variables. The nature of the unrecorded data effectively reduced the

dataset available to undertake multivariate analysis to around 1,000 episodes in 600

patients over seven studies, still greater than the previous largest study of 447 episodes in

227 patients. [139]

The small quantity of information available on biomarkers in comparison to the clinical data

meant that they were assessed only in their univariate relationship with MDI and not as part

of a multivariable model.

Results - Associations with microbiologically documented infection

The results of univariate analyses showed expected associations between potentially

predictive covariates and MDI including the presence of an untunnelled central line, the
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clinical appearance of significant unwellness, of documented cardiovascular compromise

(shock), a high temperature, raised serum biomarkers, low white cell counts and platelets, a

diagnosis of AML, and undergoing treatment for relapsed disease. There was no clear

relationship demonstrated between age and risk of MDI. Two surprising potential

associations were found: osteosarcoma/Ewings sarcoma patients and patients with more

severe mucositis were associated with a decreased risk of MDI.

The biomarkers studied were C-reactive protein, procalcitonin, interleukins 6 and 8. Of note,

CRP was not significantly associated with MDI, and while only studied in five datasets, IL-8

was interesting in both the strength of association (OR 1.8, 95% CI 1.48 to 2.28) and very low

intercept implying that very low levels were potentially able to rule out MDI.

Mucositis was reported differently in the different study sets. More data were present on

the presence/absence of severe mucositis than a graded response. Contrary to popular

belief, the presence of increasingly severe mucositis was associated in univariate analysis

with a decreased risk of MDI, and the relationship was consistent across studies. No single

study would have detected this association. However, when subject to multivariable

analysis, mucositis no longer provided any information above the tumour type and

maximum temperature. This may be explained by the strong association between mucositis

and type of chemotherapy delivered, and the malignant diagnosis of the patient.

Multivariable model building

The multivariable predictive model derived had six components: Tumour type, temperature,

clinical description of being “severely unwell”, and the results of measurements of

haemoglobin concentration, total white cell count and absolute monocyte count. The model

is:

Logit(p(MDI) ik) =  + β0k + β1 tumour typeik + β2 temperatureik + β3 unwellik + β4 Hbik + β5 loge

(white cell count) ik + β6 loge(absolute monocyte count) ik

(where the subscript i refers to the i’th patient, and k the k’th data set )

This predictive model showed moderate discrimination (AUC ROC 0.736) and good

calibration between predicted and actual estimates of the risk of MDI when assessed across

the range of predictive values. The rule was robust to bootstrap and cross-validation

sensitivity analyses.
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This model produced predicted probabilities of MDI. A clinically useful dichotomy was then

introduced by creating a ‘rule’ stating episodes with a predicted risk of MDI <5% were ‘low

risk’ episodes and all others ‘not-low-risk’ episodes.

This clinical decision rule was highly sensitive, which means that those patients classified as

low risk are extremely unlikely to have a microbiologically documented infection (~3%).

However, the rule was very poorly specific, which means that many of the patients classed

as “high risk” do not have a documented infection, and also that the rule only classified a

very small proportion (between 4% and 7%) of the episodes of patients presenting with FN

as low risk.

Comparison with other low risk rules

The full PICNICC prediction model had better discrimination (based on the AUC ROC) than

the other four published models selected for comparison (Rackoff[141] rule, Santolaya [22],

SPOG [144] and Alexander [154] rule).

When the PICNICC model was converted into a dichotomous rule by using a threshold of 5%

predicted risk of MDI, the PICNICC model had equivalent sensitivity (99.2% vs. 100%) to the

Rackoff rule but better specificity (7.5% vs. 3.7%). It was more sensitive than the SPOG rule

(99.2% vs. 80.8%) but at the expense of specificity (7.5% vs. 50%), which led to a much

smaller proportion of the population being classified as low risk (6% vs. 43%). The Santolaya

and Alexander rules performed poorly.

The appropriate choice of a low risk rule to use in clinical practice requires a discussion of:

the acceptable threshold value, which influences the proportion of patients who are

classified as low risk and the proportion who will have a microbiologically documented

infection in this group; the ease of implementation; and the reproducibility and reliability of

the rule across different locations.

Threshold choice

The threshold of 5% was based on a consensus of the collaborating members who met at

the Congress held to discuss the initial analyses and report the IPD findings. This included a

series of clinically active research physicians, a parent whose child had undergone treatment

for malignancy and who had experienced FN, and statisticians. If this very strict definition of
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low risk is used to decide who may be eligible for out-patient antibiotic therapy, then there

will be limited chance to markedly decrease the proportion of patients who are hospitalised

for treatment of FN. However, if the threshold value had been set at a 10% risk of MDI, the

derived rule would have applied to approximately 20% of patients, which would have an

important impact on the application of the rule.

The clinical implications of a choice of threshold are extremely important. “Too low” a

threshold will be exceptionally safe. It will not risk sending a child or young person out of

hospital that may have a microbiologically documented infection developing. However, it

will severely limit the size of the group for whom out-patient therapy will be judged possible,

and will result in a large number of children and young adults being hospitalised

unnecessarily. A higher threshold may increase the number of patients who will need to be

readmitted after an MDI is identified, but will allow a greater number of patients to receive

out-patient care. Identifying how this threshold should be set requires a balance of the

costs, risks, and benefits of the different thresholds. Such an investigation requires a specific

research project to identify the key factors involved and assess the opinions of the various

stakeholders: children and young people; parents or carers; and health professionals.

Clinical implementation

The clinical implementation of prediction model or rule will require it to be believed by the

clinical teams, based on sound data, and easily usable in practice. The full PICNICC model has

complexity (with the series of different predictors for tumour type, and the use of log-

transformed data) which makes it likely to be unwieldy unless made easily applicable.

A basic implementation of the predictive model has been made ‘live’ on a shared google-

drive spreadsheet: http://tinyurl.com/PICNICC1. This could be easily adapted to work off a

standard (or smartphone) web page or ‘app’. An alternative formulation for a dichotomous

‘rule’ based on the model could be created as a nomogram.

Limitations of this study

The lack of commonly agreed clear definitions has restricted what can sensibly be analysed

to generate a predictive model for microbiologically defined infection. A further analysis

could be undertaken using a definition of “significant adverse outcome” concluded upon by
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the Thesis Advisory Panel, or a group of the PICNICC collaborators. This would have some

benefits; it would produce a further model, and allow investigations as to the similarities and

differences between the models and CDRs produced. The disadvantage of producing a

further CDR which would again use an outcome without wide agreement of its utility by

clinicians and the families to whom it would be applied, and this may importantly reduce its

chance of being taken up and used in practice, and this is felt to outweigh any potential

benefits.

The issue of missing data was more significant than originally envisaged, as data were found

to be missing almost entirely at the level of study, whereby predictor or outcome variables

were “not recorded” rather than “missing”. This has led to a much smaller dataset being

available for the development of the multivariable analyses, and so reduced precision. In

particular, the pattern of data collected has meant that the recipients of bone marrow

transplant/autologous stem-cell rescue chemotherapy are not adequately represented in

the dataset.

Strengths

Robust systematic reviews of published studies underpinned the development of

the IPD analysis

Geographically and temporally varied datasets included in the IPD data

Clinically sensible analyses conducted to derive a meaningful prediction model

Robust to most sensitivity analyses

Limitations

Missing data a larger and more comprehensive problem then initially foreseen

Heterogeneity of definitions for some clinically important outcomes limited analyses

to be undertaken

Lack of collaboration with groups collecting quantities of biomarkers data limited

the analyses addressing their predictive ability

The related issue of limited biomarker data also restricted analyses. It is not known exactly

why some groups did, and others did not agree to collaborate in this project, despite

requesting feedback, and so considerations of why this is the case are tentative. It appears
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that fewer infectious disease led groups who have explored biomarkers have taken part

compared to the oncology led groups. It may be that those groups, working primarily on the

laboratory evaluation of such markers may not have collected sufficient patient-level clinical

information to be eligible for inclusion. It may be that an oncology-led group failed to

generate sufficient peer-recognition to encourage the clinicians to become involved. The

lack of sufficient data provides an opportunity to develop this research further.

The prediction model developed contained five items which were relatively consistent

across the different study groups (tumour type, temperature, unwellness, absolute

monocyte count and total white cell count) and one item (Hb) which was heterogeneous

across studies when assessed in univariate analyses. The limitations in the unreported data

meant it was not possible to tell accurately if the heterogeneity found in the univariate

analysis would also be present when assessed in a multivariable model. Therefore, it is

difficult to tell if the inclusion of haemoglobin would be applicable in alternative datasets

and subsequently in clinical practice.

Further research

This thesis has completed an analysis of the PICNICC dataset focusing on the prediction of

microbiologically documented infection. There remain a number of research opportunities

available from the current PICNICC dataset, and also developments which the Collaboration

will drive further.

Further research opportunities

 International collaborative to harmonise endpoint definitions and define a core

dataset

 Develop prediction model based on this harmonised endpoint definition, potentially

using advanced approaches to missing data handling

 Evaluate model performance on new datasets

 Continue to build the PICNICC group and incorporate more information on

biomarkers

 Work with children, young people, their families and clinicians to define a ‘low

enough’ level of risk to make decisions about therapeutic management

 Undertake a RCT of risk adapted management of FN
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The multiple definitions of “adverse events” from FN episodes led to complications in

synthesising data in the systematic reviews. The problem of inconsistency in trial definitions

has become prominent recently with the formation of the international Core Outcome

Measures in Effectiveness Trials (COMET) initiative. Through the development of agreed

core outcome measures, this initiative aims to promote awareness of the problems of

inconsistent data collection and enhance the collection of identical core outcomes for

specific clinical questions.[251] In achieving this goal, it will allow greater comparability and

synthesis of data to maximise the value of both individual studies and meta-analysis and

allow these to influence practice more strongly. Such an approach, though not strictly

relevant as these are not “effectiveness trials”, is required in this area of research and it

would be sensible to build on the PICNICC Collaboration to achieve a committed consensus.

Following on from such a consensus, further analysis of the PICNICC dataset to produce a

CDR addressing the prediction of ‘any adverse event’ will be necessary. This may well be

subtly different than the CDR predicting microbiologically documented infection, as has

been shown in the systematic reviews of previous CDR.

Developments in the handling of missing data using simulation have produced guidelines

using imputation techniques to maximise the value of the IPD data collected[252-254]. The

application of such methods in the particular situation of large quantities of unreported data

has yet to be fully explored, and provides an opportunity for further study exploiting the

PICNICC dataset further.

The model produced as part of this thesis and its consequent CDR, and any future predictive

models and CDR addressing a consensus definition of “adverse event”, will require

evaluation in clinical practice from alternative datasets collected in different geographical

locations. The PICNICC Collaboration will undertake this by continuing the collection of

existing datasets in which to evaluate the rules, but the collection of new data from other

areas will also be necessary. Such investigations will provide both specifically collected

information to analyse, and allow the uptake of a risk stratified approach to treating FN and

dissemination of the PICNICC CDR in settings where this has not previously been undertaken.

The small amount of data reporting on the value of serum biomarkers, particularly when

taken with the systematic reviews on this subject, suggest that more information and

different analyses of the data are required. We need to collect greater quantities of
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information on the additional benefit of particular biomarkers and good quality data on their

comparative efficacy in initial risk stratification. Moving beyond the initial treatment of FN,

and focusing on how we should treat patients with either a defined MDI or those without a

clear cause, the patterns of how biomarkers change over time which reflect response to

treatment will require evaluation, and also how these patterns may vary both between

individuals and within individuals after different elements of their cancer treatment.

Undertaking such research will move closer to an ideal of ‘personalised medicine’, and is

part of the continued efforts of the PICNICC team to undertake and combine such studies.

It is clear that the description and decision of what constitutes a ‘low enough’ risk to draw a

threshold at remains a matter of debate. The choice of threshold reflects both a need to

predict if a patient has a significant infection requiring specific therapy to avert a poor

outcome, and an understanding of the likelihood of a fatal or near-fatal outcome given the

particular infection and physiological response to it. The setting of this threshold of ‘low

enough’ risk appears to vary between healthcare professionals and families, and between

healthcare professionals themselves [38] , and requires further study. Such a project is under

development, with a PhD candidate at the University of York preparing a Thesis including

these stakeholders and supported by a local Children’s Cancer charity. With this information,

combined with solid evaluations of an effective CDR, a randomised non-inferiority trial of

discharge of children and young people with low-risk FN within 24 hours of presentation to

hospital should be achievable to prove or disprove the utility of this approach to

management[255].

Innovations and Impact

The work undertaken during the completion of this thesis has extended methods of

undertaking diagnostic meta-analysis (multinomial approaches to multi-level diagnostic

tests[113]), and promoted alternative graphical methods of presenting diagnostic test

information (cross-hairs plots[126]) which have already been incorporated into computer

software for undertaking such analyses (the ‘mada’ package in R[256]). It has also adapted

display techniques from other areas, such as the ‘heat maps’ of social science research, to

display the rich information found in IPD datasets in an accessible way. The practical and

ethical framework for sharing such information has been delineated and a better

understanding of the different barriers involved has been achieved [246].
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The systematic reviews [113-116, 257] forming the basis of the IPD have been cited in

national [128] and international guidelines [129] on the management of FN and have been

key in forming some of their recommendations. These have influenced changes in clinical

practice and as such instituted improvements for people with cancer presenting with FN

[246].

Finally, the formation of the PICNICC collaborative has brought together an international

core of researchers who remain committed to improving the management of FN and

advancing our understanding of how treatments for infection in children and young people

with cancer should be trialled and implemented.

Conclusions

The aim of this thesis was to describe the clinical problem of the initial management of

febrile neutropenia in children and young people undergoing treatment for malignant

disease, to thoroughly examine the existing research, and to seek to synthesise this to

quantify the risk of adverse clinical outcomes and develop a new risk prediction model. This

was undertaken to inform everyday clinical decisions and future research. A further aim was

to develop methodological approaches to IPD analysis in the development of predictive

models, including the graphical display and communication of such information. This thesis

focused on the outcome of microbiologically documented infection (MDI) because it was the

most completely reported and most objective, and frequently occurring, significant

complication of paediatric FN.

The work undertaken has formed a global collaboration which has shared thousands of

items of data, developed a new predictive model for MDI, and from this derived a CDR which

is robust to internal validation techniques. We have demonstrated that such a project is

feasible across many different jurisdictions and eras of study, and should provide the

impetus for a series of projects which will evaluate and improve the management of FN

across the world.
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Appendices
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Appendix 1. CDR Search Strategy

Example based on OVID-Medline: (this was adapted for other databases)

FNP identification

1 Neutropenia/

2 (neutropenia or neutropenic).ti,ab.

3 1 or 2

4 Fever/

5 (fever$ or febril$).ti,ab.

6 4 or 5

7 3 and 6

Child identification

8 adolescent/ or child/ or child, preschool/ or infant/ or infant, newborn/ or Puberty/

9 schools/ or schools, nursery/

10 (infan$ or newborn$ or new born$ or baby$ or babies or neonat$ or neonat$ or child$

or schoolchild$ or kid or kids or toddler$ or adoles$ or teen$ or boy$ or girl$ or minor$ or

underage$ or under age$ or juvenil$ or youth$ or kindergar$ or nursery or puber$ or

prepuber$ or pre puber$ or pubescen$ or prepubescen$ or pre pubescen$ or pediatric$ or

paediatric$ or peadiatric$ or school or schools or preschool$ or pre school$ or

schoolage$).ti,ab.

11 8 or 9 or 10
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Cancer identification

12 exp Neoplasms/

13 (cancer$ or neoplas$ or oncolog$ or malignan$ or tumo?r$ or sarcoma$

or leukaemi$ or leukemi$ or chemotherap$).ti,ab.

14 12 or 13

Consolidation

15 11 and 14

16 7 and 15

CDR Hedge

17 (predict$ or clinical$ or outcome$ or risk$).mp.

Final search

18 16 and 17
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Appendix 2. Biomarkers Search Strategy

Example based on OVID-Medline: was adapted for other databases

FNP identification

1 Neutropenia/

2 (neutropenia or neutropenic).ti,ab.

3 1 or 2

4 Fever/

5 (fever$ or febril$).ti,ab.

6 4 or 5

7 3 and 6

Child identification

8 adolescent/ or child/ or child, preschool/ or infant/ or infant, newborn/ or Puberty/

9 schools/ or schools, nursery/

10 (infan$ or newborn$ or new born$ or baby$ or babies or neonat$ or neonat$ or child$

or schoolchild$ or kid or kids or toddler$ or adoles$ or teen$ or boy$ or girl$ or minor$ or

underage$ or under age$ or juvenil$ or youth$ or kindergar$ or nursery or puber$ or

prepuber$ or pre puber$ or pubescen$ or prepubescen$ or pre pubescen$ or pediatric$ or

paediatric$ or peadiatric$ or school or schools or preschool$ or pre school$ or

schoolage$).ti,ab.

11 8 or 9 or 10
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Cancer identification

12 exp Neoplasms/

13 (cancer$ or neoplas$ or oncolog$ or malignan$ or tumo?r$ or sarcoma$

or leukaemi$ or leukemi$ or chemotherap$).ti,ab.

14 12 or 13

15 14 and 11 and 7

Markers identification

16. Biological Markers/

17. (marker$ or serum).ti,ab.

18. (biomarker$ or bio-marker$).ti,ab.

19. or/18-20

20. Cytokines/

21. cytokine$.ti,ab.

22. 22 or 23

23. Interleukin-1/

24. (interleukin-1 or interleukin-i or il-1 or il1).ti,ab.

25. t-helper factor.ti,ab.

26. lymphocyte-activating factor.ti,ab.

27. macrophage cell factor.ti,ab.

28. epidermal cell derived thymocyte-activating factor.ti,ab.

29. or/25-30
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30. Interleukin-5/

31. (interleukin-5 or il-5 or il5).ti,ab.

32. eosinophil differentiation factor.ti,ab.

33. t-cell replacing factor.ti,ab.

34. (b-cell growth factor-ii or b-cell growth factor-2).ti,ab.

35. (bcgf-ii or bcgfii or bcgf-2 or bcgf2).ti,ab.

36. or/32-37

37. Interleukin-6/

38. (interleukin-6 or il-6 or il6).ti,ab.

39. plasmacytoma growth factor.ti,ab.

40. b-cell differentiation factor.ti,ab.

41. (b-cell stimulat$ factor-2 or b-cell stimulat$ factor-ii).ti,ab.

42. (bsf-2 or bsf2 or bsf-ii or bsfii).ti,ab.

43. hepatocyte-stimulating factor.ti,ab.

44. hybridoma growth factor.ti,ab.

45. (interferon beta 2 or interferon beta2 or ifn-beta 2 or ifn-beta2).ti,ab.

46. mgi-2.ti,ab.

47. myeloid differentiation-inducing protein.ti,ab.

48. or/39-49

49. Interleukin-8/

50. (interleukin-8 or il-8 or il8).ti,ab.

51. monocyte-derived neutrophil chemotactic factor.ti,ab.

52. neutrophil activation factor.ti,ab.



Page 229 of 410

53. lymphocyte-derived neutrophil-activating peptide.ti,ab.

54. monocyte-derived neutrophil-activating peptide.ti,ab.

55. (alveolar macrophage chemotactic factor-i or amcf-i).ti,ab.

56. anionic neutrophil-activating peptide.ti,ab.

57. cxcl8.ti,ab.

58. macrophage-derived chemotactic factor.ti,ab.

59. neutrophil chemotactic factor.ti,ab.

60. or/51-61

61. Interleukin-10/

62. (interleukin-10 or il-10 or il10).ti,ab.

63. csif-10.ti,ab.

64. or/63-65

65. Interferon-gamma/

66. (interferon-gamma or gamma-interferon or IFN-gamma or IFNgamma).ti,ab.

67. (interferon ii or interferon 2).ti,ab.

68. (type ii interferon or interferon type ii).ti,ab.

69. immune interferon.ti,ab.

70. or/67-71

71. Interferon-beta/

72. (interferon-beta or beta-interferon or IFN-beta or IFNbeta).ti,ab.

73. fibroblast interferon.ti,ab.

74. (interferon-beta1 or beta1 interferon or beta-1 interferon or IFN-beta1 or

IFNbeta1).ti,ab.

75. Fiblaferon.ti,ab.
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76. or/73-77

77. transforming growth factor beta/

78. (beta transforming growth factor or transforming growth factor beta or tgf-beta or

tgfbeta).ti,ab.

79. milk growth factor.ti,ab.

80. platelet transforming growth factor.ti,ab.

81. bone-derived transforming growth factor.ti,ab.

82. or/79-83

83. Antigens, CD70/

84. (CD70 or cd27l or cd27 ligand).ti,ab.

85. 85 or 86

86. Tumor Necrosis Factor-alpha/

87. (tumour necrosis factor or tumor necrosis factor).ti,ab.

88. (tnf or tnfalpha).ti,ab.

89. Cachectin.ti,ab.

90. or/88-91

91. Receptors, Tumor Necrosis Factor, Type II/

92. (tnfrii or tnfr-ii or tnfr2 or tnfr-2).ti,ab.

93. (stnf-ii or stnfrii or stnfr2 or stnfr-2).ti,ab.

94. (tnfr p75 or tnfr p80 or tnf-sr75).ti,ab.

95. (cd-120b or cd120b).ti,ab.

96. tnfrsf1b receptor$.ti,ab.

97. or/93-98

98. C-Reactive Protein/
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99. (c-reactive protein or Creactive protein or c-reaction protein or Creaction

protein).ti,ab.

100. 100 or 101

101. Receptors, Interleukin-2/

102. (interleukin-2 receptor$ or interleukin-ii receptor$).ti,ab.

103. (il-2 receptor$ or il-ii receptor$ or il2 receptor$).ti,ab.

104. (sil-2 or sil-2r or sil2 or sil-ii or sil-iir).ti,ab.

105. (t-cell growth factor receptor$ or tcgf receptor$).ti,ab.

106. or/103-107

107. (procalcitonin or pro-calcitonin).ti,ab.

108. calcitonin precursor.ti,ab.

109. 109 or 110

110. Receptors, IgG/

111. igg receptor$.ti,ab.

112. (gamma fc receptor$ or fc gamma receptor$).ti,ab.

113. immunoglobulin g receptor.ti,ab.

114. (leu-11 or leu11).ti,ab.

115. (cdw32 or cd-32 or cd32 or cd-64 or cd64 or cd-16 or cd16).ti,ab.

116. (fc gamma ri or fc gammari or fc gamma rii or fc gammarii or fc gamma riii or fc

gammariii).ti,ab.

117. (sfc gamma riii or sfc gammariii).ti,ab.

118. or/112-119

119. Adenosine Deaminase/

120. adenosine deaminase.ti,ab.
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121. (ada-1 or ada1 or ada-2 or ada2).ti,ab.

122. (adenosine aminohydrolase or adenosine amino hydrolase).ti,ab.

123. or/121-124

124. Blood Sedimentation/

125. ((erythrocyte or blood) adj sedimentation).ti,ab.

126. 126 or 127

127. Serum Amyloid A Protein/

128. (serum amyloid A or serum amyloid protein a).ti,ab.

129. serum a related protein.ti,ab.

130. amyloid serum protein saa.ti,ab.

131. amyloid-related serum protein.ti,ab.

132. (amyloid a adj (precursor or protein)).ti,ab.

133. (amyloid protein adj (saa or aa)).ti,ab.

134. amyloid fibril protein aa.ti,ab.

135. or/129-136

136. Chemokine CCL2/

137. (monocyte chemotactic protein-1 or monocyte chemoattractant protein-1 or mcp-

1).ti,ab.

138. ccl2.ti,ab.

139. or/138-140

140. Neopterin/

141. (neopterin or neopterine).ti,ab.

142. (umanopterin or monapterin).ti,ab.

143. or/142-144
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144. lipopolysaccharide-binding protein.ti,ab.

145. lps binding protein.ti,ab.

146. 146 or 147

147. 21 or 24 or 31 or 38 or 50 or 62 or 66 or 72 or 78 or 84 or 87 or 92 or 99 or 102 or

108 or 111 or 120 or 125 or 128 or 137 or 141 or 145 or 148

148. 15 and 147
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Appendix 3. Modified QUADAS Criteria for Quality Assessment

Item Yes No Unclear

1. Was the spectrum of patients representative of

the patients who will receive the test in

practice?

( ) ( ) ( )

2. Were selection criteria clearly described? ( ) ( ) ( )

3. Is the reference standard likely to correctly

classify the target condition?

( ) ( ) ( )

4. Is the time period between reference standard

and index test short enough to be reasonably

sure that the target condition did not change

between the two tests?

( ) ( ) ( )

5. Did the whole sample or a random selection of

the sample, receive verification using a

reference standard of diagnosis?

( ) ( ) ( )

6. Did patients receive the same reference

standard regardless of the index test result?

( ) ( ) ( )

7. Was the reference standard independent of

the index test (i.e. the index test did not form

part of the reference standard)?

( ) ( ) ( )

8. Was the execution of the index test described

in sufficient detail to permit replication of the

test?

( ) ( ) ( )

9. Was the execution of the reference standard

described in sufficient detail to permit its

replication?

( ) ( ) ( )

10. Were the index test results interpreted without ( ) ( ) ( )
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knowledge of the results of the reference

standard?

11. Were the reference standard results

interpreted without knowledge of the results

of the index test?

( ) ( ) ( )

12. Were the same clinical data available when test

results were interpreted as would be available

when the test is used in practice?

( ) ( ) ( )

13. Were uninterpretable/ intermediate test

results reported?

( ) ( ) ( )

14. Were withdrawals from the study explained? ( ) ( ) ( )

QUADAS criteria which are struck through were not used in the assessment
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Appendix 4. Key Data Extraction Fields

Quality of the study

 Was the study retrospective or prospective?

 Were selection criteria clearly described?

o No

o Yes – Consecutive

o Yes – Random

o Yes – Other

 Was the study population appropriate to clinical practice?

 Did the whole sample or a random selection of the sample, receive adequate

outcome assessment?

 Did patients receive the same outcome assessment regardless of the serum marker

test result?

 Was the outcome assessment independent of the serum marker test (i.e. the serum

marker test did not form part of the outcome assessment)?

 Was the execution of the serum marker test described in sufficient detail to permit

replication of the test?

 Was the execution of the outcome assessment described in sufficient detail to

permit its replication?

 Were the serummarker test results interpreted without knowledge of the results of

the outcome assessment?

 Were the outcome assessment results interpreted without knowledge of the results

of the serum marker test?

 Were the same clinical data available when the serum marker test was interpreted

as would be available when the serum marker test is used in practice?

Comments

Study & Patient Background

 Where did the study take place (country/continent)?

 What years were the patients studied in?

 What are the inclusion criteria?

 What are the exclusion criteria?

 What number of patients were included?

 What number of episodes were included?
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 What was the average age (& range or SD) of the patients?

 What number of the patients/episodes were male?

 What number of the patients/episodes had missing values?

Comments

Results

 Serum marker test assessed:

o Marker #1

o Marker #2

o Marker #3

 List all clinical end points (outcomes) examined.

o Death

o Intensive care admission

o Medical complications (eg need for O2, renal failure)

o Bacteraemia

o Significant bacterial infection

o Absence of adverse sequelae

o Other

Marker #1 Cutpoint used: Cutpoint used: Cutpoint used:

No. true positive

No. false positive

No. true negative

No. false negative

Marker #2 Cutpoint used: Cutpoint used: Cutpoint used:

No. true positive

No. false positive

No. true negative

No. false negative

Marker #3 Cutpoint used: Cutpoint used: Cutpoint used:

No. true positive

No. false positive

No. true negative

No. false negative

 Other indicator #1 (e.g. correlation or HR) with SE or CI

o Marker #1

o Marker #2

o Marker #3

 Other indicator #2 (e.g. correlation or HR)

o Marker #1

o Marker #2

o Marker #3
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 How were continuous variables handled in the analyses?

o As continuous values

o Made ordinal (e.g. high/mid/low)

 If relevant, describe methods used for cutpoint determination?

 How were categorical variables handled in the analyses?

o Grouped (e.g. high/mid/low)

o Other

 If relevant, describe methods used for cutpoint determination?

 How was missing data handled?

o Not applicable

o Not specified

o Completed data only used

o Imputation method

 How were multiple episodes in individual patients handled?

o No discrimination

o First-last comparison

o Generalised equivalence equation (GEE)

o Other

Comments
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Appendix 5. Example ‘Stata’ Code for Cross-Hairs Plots

/* Using cxr2.dta for CROSS-HAIRS*/

/* uses llsn = lower limit of sn for individual study (and similar) with other 5 params */

/* uses exbisn = lower limit of sn for summary estimate study ... etc ... */

set scheme s2color

twoway (rcap llsn ulsn sp, msize(large) lwidth(medthin) lcol(eltblue)) (rcap llsp ulsp sn, hor

msize(large) lcol(eltblue) lwidth(medthin)) (sc sn sp [w=d+nd] , msize(*.6) msymbol(oh)

mcol(eltblue) yscale(range(1 0)) ylabel(1(0.2)0, format(%03.1f)) ytitle("Sensitivity")

xscale(rev range(1 0)) xlabel(1(0.2)0 , format(%03.1f)) xtitle("Specificity") aspectratio(1)

legend(off)) (rcap exbisnll exbisnul exbisp, msize(large) lcol(navy)) (rcap exbispll exbispul

exbisn, hor msize(large) lcol(navy)) (sc exbisn exbisp, msymbol(O) mcol(navy))

/* USING SM-CRP.DTA: cross-hairs with weighted marker sizes, >50mg only */

twoway (rcap snll snul sp if marker==1 & group==2 & val==50, msize(large) lwidth(medthin)

lcol(eltblue)) /*

*/ (rcap spll spul sn if marker==1 & group==2 & val==50, hor msize(large) lcol(eltblue)

lwidth(medthin)) /*

*/ (sc sn sp [w=d+nd] if marker==1 & group==2 & val==50, msize(*.4) msymbol(oh)

mcol(eltblue) yscale(range(1 0)) ylabel(1(0.2)0, format(%03.1f) angle(360)) /*

*/ ytitle("Sensitivity") xscale(rev range(1 0)) xlabel(1(0.2)0 , format(%03.1f) alt)

xtitle("Specificity") aspectratio(1) /*

*/ legend(off))
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/* USING SM-CRP.DTA: cross-hairs with weighted marker sizes, any CRP results */

twoway (rcap snll snul sp if marker==1 & group==2 , msize(large) lwidth(medthin)

lcol(eltblue) lp(solid)) /*

*/ (rcap spll spul sn if marker==1 & group==2 , hor msize(large) lcol(eltblue) lwidth(medthin)

lp(solid)) /*

*/ (sc sn sp [w=d+nd] if marker==1 & group==2 , msize(*.4) msymbol(oh) mcol(eltblue)

yscale(range(1 0)) ylabel(1(0.2)0, format(%03.1f) angle(360)) /*

*/ ytitle("Sensitivity") xscale(rev range(1 0)) xlabel(1(0.2)0 , format(%03.1f) alt)

xtitle("Specificity") aspectratio(1) /*

*/ legend(off))

/* USING SM-CRP.DTA: cross-hairs with weighted marker sizes split across two graphs, any

CRP results */

twoway (rcap snll snul sp if marker==1 & group==2 , msize(large) lwidth(medthin)

lcol(eltblue) lp(solid)) /*

*/ (sc sn sp [w=d+nd] if marker==1 & group==2 , msize(*.4) msymbol(oh) mcol(eltblue)

yscale(range(1 0)) ylabel(1(0.2)0, format(%03.1f) angle(360)) /*

*/ ytitle("Sensitivity") xscale(rev range(1 0)) xlabel(1(0.2)0 , format(%03.1f) alt)

xtitle("Specificity") aspectratio(1) /*

*/ saving(CRPsn, replace) legend(off))

twoway (rcap spll spul sn if marker==1 & group==2 , hor msize(large) lcol(eltblue)

lwidth(medthin) lp(solid)) /*

*/ (sc sn sp [w=d+nd] if marker==1 & group==2 , msize(*.4) msymbol(oh) mcol(eltblue)

yscale(range(1 0)) ylabel(1(0.2)0, format(%03.1f) angle(360)) /*

*/ ytitle("Sensitivity") xscale(rev range(1 0)) xlabel(1(0.2)0 , format(%03.1f) alt)

xtitle("Specificity") aspectratio(1) /*
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*/ saving(CRPsp, replace) legend(off))

graph combine CRPsn.gph CRPsp.gph

/* USING CROSS HAIRS WITH BIVARIATE OVERALL SUMMARY */

/* Cheating, sort of, by running this after a 'metandi' command */

/* code for the dotty elipse of the summary confidence interval taken directly from it */

tempname covmuAB sAB rconfAB sepredA sepredB rpredAB

matrix V = e(V)

scalar `covmuAB' = V[1,2]

scalar `sAB' = _b[sAB]

/* derived params */

scalar `rconfAB' = `covmuAB'/(_se[muA]*_se[muB])

scalar `sepredA' = sqrt(_b[s2A]+_se[muA]^2)

scalar `sepredB' = sqrt(_b[s2B]+_se[muB]^2)

scalar `rpredAB' = (`sAB'+`covmuAB')/(`sepredA'*`sepredB')

tempname croot phi confB confA confspec confsens

scalar `croot' = sqrt(2*invF(2,e(N)-2,95/100))

range `phi' 0 `=2*c(pi)' 500

gen `confB' = _b[muB] + _se[muB] * `croot' * cos(`phi')

gen `confA' = _b[muA] + _se[muA] * `croot' * cos(`phi' +

acos(`rconfAB'))
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gen `confsens' = invlogit(`confA')

gen `confspec' = invlogit(`confB')

twoway (rcap llsn ulsn sp, msize(large) lwidth(medthin) lcol(eltblue)) (rcap llsp ulsp sn, hor

msize(large) lcol(eltblue) lwidth(medthin)) (sc sn sp, msymbol(oh) mcol(eltblue)

yscale(range(1 0)) ylabel(1(0.2)0, format(%03.1f)) ytitle("Sensitivity") xscale(rev range(1 0))

xlabel(1(0.2)0 , format(%03.1f)) xtitle("Specificity") aspectratio(1) legend(off) title("Summary

ROC plot" "for all studies")) (rcap exbisnll exbisnul exbisp, msize(large) lcol(navy)) (rcap

exbispll exbispul exbisn, hor msize(large) lcol(navy)) (sc exbisn exbisp, msymbol(O)

mcol(navy)) (line `confsens' `confspec',clpatt(dash))
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Appendix 6. Numerical aspects of derivation studies

Citation n

patient

s

n

episodes

n

events of

1
0

outcome

n

variables

examined

events

per var

All candidate variables initially examined How were

candidate

variables

selected?

Adcock, 1999 33 88 16 14 1.14 Demographics, primary diagnosis, history of present illness,

vital signs, and physical examination. Recent chemotherapy

regimen, prophylactic (antibiotic) therapy, leukocyte count

and ANC, maximum daily temperature, age, and condition of

central line

Not stated

Alexander,

2002

104 104 13 2 6.5 Anticipated neutropenia <7 days, no significant comorbidity

at presentation (defined later).

Literature review

Ammann,

2003

111 285 90 39 2.31 39 variables: age, gender, pre-B-cell leukaemia or other

diagnosis, first or later malignancy, relapsed or unrelapsed

malignancy, history of episodes of FN without significant

Covariates with

possible relevance

to severe bacterial
(models #1 -
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#3) bacterial infection, history of episodes of FN with significant

bacterial infection, history of episodes of FN with

bacteraemia, remission status of malignancy, bone marrow

involvement, maintenance therapy or more intensive

chemotherapy, delay since last chemotherapy, time since

diagnosis, year of previous episode(s) of FN, season of

previous episode(s) of FN, preventive application of G-CSF,

central venous catheter present, hospitalisation history

before FN, presence of comorbidity requiring hospitalisation,

iatrogenic reason for fever, fever rule (≥38.5°C persisting for

at least two hours or once ≥39°C), weight loss since last

chemotherapy, BMI, maximal fever at presentation, general

appearance, presence of chills at presentation, lowest

systolic BP, lowest diastolic BP, presence of oral mucositis,

presence of clinical signs of viral infection, haemoglobin

level, leukocyte count, neutrophil count, monocyte count,

phagocyte count, thrombocyte count, serum CRP level,

serum creatinine level, and serum ASAT level.

infections and

accessible to the

treating physicians

within the first

two hours after

fulfilment of the

criteria of FN

Ammann,

2004

132 364 85 39 2.18

Amman, 2010 206 423 62 33 1.88 Age, gender, past-FN, past-bacteraemia, relapse, AML, any

haematological, BM involvement, CR, >1y since diagnosis,

Not stated
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interval from chemo <7d, intensiveness of therapy, GCSF,

inpatient status, ‘unwell’, mucositis (oral & any), CVL, URTI,

temp >39.5, raised HR, RR, low BP or sats, Hb, WCC, ANC,

AMC, APC, plts, CRP … plus at reassessment: low, Bp or sats,

chills, T-max, CXR needed, focal infection, other need for IP

care

Ayegman,

2011

206 423 67 33 2.03 Age, gender, past-FN, past-bacteramia, relapse, AML, any

haematological, BM involvement, CR, >1y since diagnosis,

interval from chemo <7d, intensiveness of therapy, GCSF,

inpatient status, ‘unwell’, mucositis (oral & any), CVL, URTI,

temp >39.5, raised HR, RR, low BP or sats, Hb, WCC, ANC,

AMC, APC, plts, CRP … plus at reassessment: low, Bp or sats,

chills, T-max, CXR needed, focal infection, other need for IP

care

Not stated

Badeiei, 2011 68 120 35 18 1.94 At least Sex, Age, tumour type (solid vs non-solid), relapse,

time from chemo (grouped), temp (grouped), duration of

fever before admission, URTI symptoms, mucositis, WBC

(grouped), ANC(grouped), Hb(grouped), Plt(grouped), CXR

finding

Not stated
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Delebarre,

2010

146 316 70 N/A N/A Not stated Not stated

Hann, 1997 759 759 165 13 12.69 Gender, underlying disease (AML, ALL, BMT, HD/NHL, CML-

aplasia-blast-crisis-other, Solid tumour), disease status

(induction, relapse, maintenance), IV line in situ, defined site

of infection, shock, granulocyte count, period of

granulocytopenia, antifungal prophylaxis, antibacterial

prophylaxis, age, temperature, (log) creatinine

Not stated

Hakim, 2010 332 332 41 22 1.86 Age, gender, race, cancer diagnosis, Prior relapse, time-

since-relapse, CVL, steroid use, GCSF use, recent antifungal

therapy, colonisation (VRE, MRSA, pseudo), tmax>39, clinical

appearance, comorbidity at presentation, URI symptoms,

Hb, ANC, Plts, anticipated neutropenia <7d, antifungal

prophylaxis, time-since-chemo, duration of preceding

neutropenia

Literature review

and medical

expertise

Jones, 1996 127 276 68 5 13.6 Underlying disease and status (i.e. induction therapy,

remission or relapse). Age at time of fever episode. ANC at

time of onset of fever. Inpatient versus outpatient status

Not stated
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Klaassen, 2000 140 227 28 13 2.15 13 variables assessed: age, presence of bone marrow

disease, central venous catheter type, general appearance

on initial examination, previous granulocyte colony-

stimulating factor (G-CSF) therapy, initial ANC, initial

lymphocyte count, initial monocyte count, initial platelet

count, presence of localized bacterial infection on initial

examination, peak temperature, tumour type, and sex.

Systematic review

to identify risk

factors for

significant

bacterial infection

and expert

opinion.

Lucas, 1996 161 509 82 8 10.25 Chills, hypotension, poor perfusion, the need for fluid

resuscitation, time from cytotoxic chemotherapy, diagnosis,

disease status, and the presence of a focus of infection

Not stated

Mian, 2010 29 51 8 N/A N/A Not stated Not stated

Paganini, 2007 458 714 18 17 1.06 Age, days since chemotherapy, ‘advanced stage of disease’

(= bone marrow involvement, relapse, second tumour, high-

dose therapy, genetic disease), previous antibiotic or CSF

use, ANC <100, clinical infection, pneumonia, mucositis,

bacteraemia <24h, comorbidity (=incoercible bleeding,

refractory hypoglycaemia and hypocalcaemia, hypotension,

altered mental status, renal insufficiency, hepatic

dysfunction, and respiratory failure). They also state that the

Unclear
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following variables were collected and registered for

analysis: facial, anal, oral or catheter-associated cellulitis,

sepsis, necrotising gingivitis, sex, underlying disease and

staging, predicted period of neutropenia, presence of

intravenous device.

Rackoff, 1996 72 115 24 9 2.67 State of disease (remission vs. not), degree of mucositis, ill

appearance, presence of GI symptoms, cellulitis, use of GCSF,

admission ANC, admission AMC, maximum admission

temperature

Unclear

Rackoff, 1996

revised model

102

(see

note)

57 10 7 1.43 AMC, Temperature (39.5C cutoff), ANC, APC, Platelets, age,

WBC

By reference to

previously

published

literature

Riikonen 1993 46 91 17 16 0.94 Duration of fever, duration of neutropenia, central line

present, prophylaxis with Septrin, general clinical

examination, HR, signs of bleeding, BP, temperature, chills,

Hb, Plt, prolonged PTT, sodium & potassium ESR, CRP

Unclear

Rojo, 2008 33 47 4 6 0.67 Sex, age, type of malignancy (leukaemia vs. solid), focus of Unclear
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infection, duration of hospitalisation, microbiologically

proven infection

Rondinelli,

2006

283 283 93 17 5.47 Significantly on univariate: Age, gender, disease type (AML,

ALL, Others), disease status (remission/other), CVC,

temperature, Hb, WCC, AGC, Plt, AMC, URTI, time from

chemotherapy, pneumonia, clinical site of infection,

mucositis plus others not reported

Unclear

Santolaya,

2001

257 447 179 17 10.5 (1) demographic variables, i.e., age, sex, and maternal

educational level; (2) cancer-related variables, i.e., cancer

type, intensity of chemotherapy, use of granulocyte colony-

stimulating factors since last administration of

chemotherapy, and use of an indwelling catheter; (3)

variables related to the febrile episode, i.e., hours of fever

before admission, days since last administration of

chemotherapy, and use of prophylactic antimicrobial agents;

(4) admission clinical and laboratory variables, i.e., axillary

temperature, blood pressure, ANC, AMC, quantitative serum

CRP level, haemoglobin level, and platelet count

Not stated
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Tezcan, 2006 240 621 143 11 13 Age, sex, ANC, AMC, CRP, duration of neutropenia, duration

of fever, presence of previous FN, presence of hypotension,

uncontrolled malignancy, cancer type.

Unclear

West, 2004 143 303 36 18 2 Age, type of cancer, chills, temperature, HR, RR, SBP, DBP,

mucositis, Hb, Plts, WCC, differential WCC, ANC, AMC,

monocytes <10%, perirectal abscess, capillary refill time >3s.

Review of

literature +

medical opinion

Note: 102 minus participants excluded for meeting exclusion criteria
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Appendix 7. Variable and missing data handling techniques in derivation studies

Citation Statistical

technique to build

the model

Management

of multiple

episodes.

Management of

continuous

variables…

… and cutpoint

determination

Management

of categorical

variables.

and cutpoint

determinatio

n

n patients

or episodes

with

missing

values

Management

of missing

data.

Adcock,

1999

Univariate analysis No

discrimination

Made ordinal (BP

described as

‘hypotension’ or

not)

Not stated Grouped (Ara-C

vs. Other

chemotherapy)

Based on

“trend to

significance”

from

univariate

analysis

Not stated Not stated

Alexander

, 2002

Univariate analysis First episode

only used

Made ordinal

(hypotension and

hypoxia)

Not stated Grouped

(‘anticipated

neutropenia’

group by

cancer type –

AML/Burkitts/I

nduction

Not stated Two

patients

excluded

due to

missing

data

Completed

data only

used



Page 252 of 410

ALL/Progressiv

e-relapsed with

marrow

involvement vs

not)

Ammann,

2003

Decision tree,

regression type

First-last

comparison

Made ordinal, with

up to three

categories

Not stated Grouped Not stated One patient

(two

episodes)

excluded

due to

missing

data

exclusion of

41 episodes

where

>10% of

covariates

were

missing

Completed

data only

used.

Covariates

with more

than 10%

missing

values were

discarded

from the

prediction

model

Ammann, Stepwise First-last Made ordinal, with

up to three

Not stated Grouped Not stated One patient

(two

Completed

data only
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2004 backward comparison categories episodes)

excluded

due to

missing

data.

exclusion of

16 episodes

where

>10%

covariates

were

missing

used.

Covariates

with more

than 10%

missing

values were

discarded

from the

prediction

model

Amman,

2010 (and

Ayegman,

2011)

Forwards stepwise

logistic regression,

with random

effect per patient,

and with 100-fold

cross-validation to

protect against

overfitting

Generalised

equivalence

equation (GEE)

Made ordinal (e.g.

high/mid/low)

Split using

recursive

partitioning

before

introduction as

dichotomous

variables.

Grouped (e.g.

high/mid/low)

Not stated Unclear Imputation

method
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Badeiei,

2011

C4.5 decision tree

system in SPSS

No

discrimination

As continuous

values or as

categorical

variables

Not stated Grouped (e.g.

high/mid/low)

Not stated Not stated Not stated

Delebarre,

2010

Univariate and

multivariable

analysis – no

further detail

Not specified Some continuous,

some as ordinals

Not stated Not stated Not stated Not stated

(multivariat

e analysis

was based

on 678

children.

For one of

the

included

trials data

were

available

for 145/220

children)

Not stated

Hann,

1997

Stepwise

backward

First episode

only used

As continuous

values, or if skewed

distribution,

According to

clinical

Grouped According to

clinical

Not stated

(multivariat

e analysis

Not stated
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categorised

according to

clinical judgement

judgement judgement was based

on 678

children.

For one of

the

included

trials data

were

available

for 145/220

children)

Hakim,

2010

Stepwise multiple

logistic regression

with

bootstrapping

Only one

episode per

patient

selected

As continuous

values then Made

ordinal (e.g.

high/mid/low)

ROC-based

efficiency

methods:

Minimising

sn/sp

differences,

more efficient

ROC placement

and maximising

distance from

chance. All

Grouped (e.g.

high/mid/low)

According to

clinical

judgement

43% of

episodes

had missing

data for

absolute

monocyte

and

lymphocyte

counts

Completed

data only

used
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methods agreed

Jones,

1996

Logistic regression

- unclear

No

discrimination

Made ordinal (e.g.

age <2, 2-5, 6-12,

13+, ANC <200,

≥200).

Not stated Grouped (e.g.

solid tumour,

leukaemia,

other).

Not stated. Not stated Not stated

Klaassen,

2000

Forward logistic

regression

Generalized

linear mixed

model

All continuous

variables except

age were

dichotomised.

Using

predefined

thresholds

taken from the

literature, or

recursive

partitioning for

monocyte count

and peak

temperature

Dichotomised

(tumour type –

AML/NHL

versus others).

According to

clinical

judgement

Derivative

set – 1.

When

monocyte

count was not

available the

patient was

excluded

(n=1), for

other

variables it

was unclear

(all 13

variables

were

prospectively

collected in

98% of the
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episodes).

Lucas,

1996

Logistic regression

- unclear

GEE Made ordinal (time

from chemo:

><10d, ANC

><100/mm)

Not stated. Grouped Not stated Unclear Not specified

Mian,

2010

Stepwise

multivariable

logistic regression,

cut-off p<0.05

Not specified As continuous

values or as

categorical

variables

Based on

published

‘normal

range’cut-offs

(HR & Sys BP)

Not stated N/A Not stated Not stated

Paganini,

2007

Forward logistic

regression

No

discrimination

Made ordinal (e.g.

ANC <100) or used

as continuous (e.g.

age & days since

chemo)

Not stated. Not used Not stated Not stated

Rackoff,

1996

Backwards logistic

regression

GEE Initially continuous, then recursive

partitioning

analysis

Grouped –

disease state

into remission

vs.

relapse/progres

Not stated D: One

patient had

missing diff

WBC for

one

Completed

data only
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sive episode –

excluded

leaving 115

episodes

Rackoff,

1996

revised

model

Logistic regression

- unclear

No

discrimination

Made ordinal

(dichotomous)

The AMC, APC

and ANC cut-off

values of

250/mm3 and

temperature of

39.5C were

selected

arbitrarily. AMC

cut off of

100/mm3 was

used due to

previous study

findings

(Rackoff, 1996).

Serial NLR

determined at

intervals of 5

units/mm3

Not applicable Validation

set – 82

(60%)

episodes

Not stated
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across the range

of AMC, ANC

and APC values.

Platelet count

values

>25,000/mm3

were tested at

intervals of

25,000/mm3

Riikonen,

1993

Univariable

analysis

No

discrimination

Made ordinal: Hb

<100g/l, Plts <10,

10-30, 30-100), PT

‘prolonged’, Na &

K: less than normal

limits. Kept

continuous: ESR &

CRP

Not stated Not applicable Unclear Not stated

Rojo, 2008 Univariable

analysis

No

discrimination

Not applicable Grouping (solid

vs.

haematological

Not stated Not stated Not stated
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malignancy)

Rondinelli

, 2006

Forward logistic

regression

First episode

only used

Made ordinal Not stated, but

use previously

defined cut-offs

Grouped Not stated Not stated Completed

data only

Santolaya,

2001

Forward logistic

regression

Secondary

analysis

undertaken

with first

episode only

As continuous

values initially

Then cutpoints

determined

with ROC (for

CRP and

platelets)

Grouped (ALL,

AML,

lymphoma,

sarcoma,

relapsed

leukaemia,

other solid)

Not stated Not stated Not stated

Tezcan,

2006

Logistic regression

- unclear

No

discrimination

Some kept

continuous (e.g.

age, CRP, duration

of fever, duration

of neutropenia),

some made ordinal

(e.g. ANC <100,

AMC <100).

Not stated Grouped (e.g.

cancer type:

leukaemia and

lymphoma vs.

solid tumours

Not stated Not stated

– different

outcome

categories

have

different

total values

Not stated
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West,

2004

Stepwise

backward &

bootstrapping

Multivariate

analysis

"adjusted for

clustering at

patient level"

Some continuous

(temp, age, heart

rate z-score) some

categorised (BP

dichotomised to -

2SD, monocytes

<10% and ANC=0)

Not clearly

described

Categorised:

type of cancer

–

leukaemia/lym

phoma,

sarcoma/neuro

blastoma,

other

Not stated Not stated Not stated
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Appendix 8. Performance of CDR

Citation Clinical prediction rule Number

of

episodes

Outcome Number

with

Outcome

Predictive accuracy

% Low LR Low LR High

Models with one supporting data set

Adcock, 1999 High risk = hypotension/septic shock, inflamed central line

site, recent high dose Ara-C

88 Gram positive bacteraemia 26 Refers

to G+ve

Data

not

given
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Ammann,

2003

Final decision tree model: four covariates were used to

classify low risk; bone marrow involvement, leukocyte

count >0.5 x 109/L, with clinical signs of a viral infection,

and aged up to six years at presentation. For those with a

leukocyte count ≤0.5 x 109/L, they were further classified

according to CRP level (≤ or >50mg/L).

111 Severe bacterial infection,

(death from bacterial

infection, a positive culture

of normally sterile body

fluids, radiologically proven

pneumonia, clinically

unequivocal diagnosis of a

bacterial infection, or

CRP>150 mg/L)

90 10% 0 1.18
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(model #1:

bootstrapped)

(model #3) Low risk ≤4 factors. Risk factors = bone marrow

involvement, absence of clinical signs of viral infection,

high serum CRP level, low leukocyte count, presence of a

central venous catheter, high haemoglobin level, and Pre-

B-cell leukaemia.

-111 As above -90 20% 0.07 1.39

Agyman 2011

(Same

population as

Amman 2010)

Applied after 24 hours: shaking chills ever observed,

haemoglobin >90 g/L, platelet <50 G/L, any other need

for IP treatment. No risk factors = low risk

423 Late bacteraemia 67 36% 0.17 1.58

Badiei 11,

Threshold

value:

Platelets <20 g/dL, temperature ≥39ºC, ANC <100/mm3,

mucositis, abnormal CXR on presentation. Risk of

infection greater with more risk factors: for 0 factors:

120 Life threatening infection 35 29.20% 0.07 1.62

For 1 risk factor 64% 0.36 3.37

For 2 risk factors 75% 0.41 6.69
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For 3 risk factors 85% 0.63 8.51

For 4 risk factors 98% 0.94 Infinite

Gala-Peralta,

2005

Low risk ≤2 of: <1yr, poor bone marrow response (plt <75,

ANC <100),uncontrolled solid tumour or relapsed

leukaemia, chemotherapy <10d earlier, rapid

neutropenia, cardiac & renal dysfunction

60 Positive blood culture 16 27% 0.18 1.44
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Hakim 8 Score from cancer diagnosis: AML = 20, ALL/lymphoma =

7, Solids = 0 Clinical presentation of serious unwell or

toxic = 14, fever at presentation: ≥39ºC = 11, ANC

<100/mm3 = 10 points, Total score <24 = low risk of

serious infection or sepsis

332 Serious infection or sepsis 47 69% 0.33 3.16
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Score from cancer diagnosis: AML = 11, others = 0.

Relapsed disease = 11. Non-white patient = 8, Clinical

presentation of serious unwell or toxic = 20. Total score

<20 = low risk of any medical complication

332 Medical complications 40 63.00% 0.32 2.54

Jones 1996 Low risk = ANC ≥200, outpatient at onset, in remission 127 Bacteraemia 68 17% 0.71 1.07

Lucas, 1996 Low risk = no chills, hypotension, or a requirement for

fluid resuscitation at admission

509 Positive blood culture 82 87% 0.72 4.05

Petrelli, 1991 Low Risk: patients with solid tumors and lymphomas

stage I-II.High Risk: patients with leukemias and

lymphomas stage III-IV,

146 Positive blood culture 35 45% 0.58 1.42
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Rondinelli,

2006

Low risk = 2.5 to 5 points: Intermediate risk = 5.5 to 9

points: High risk = Greater than 9 points. 4.5 points for:

clinical site of infection; 2.5 points for: no URTI; 2 points

for: CVC; 1 point for: aged ≤5y, fever >38.5°C, Hb ≤7g/dL

283 ‘Serious infectious

complication’ – sepsis, shock,

+ve blood cultures, infection-

related death

93 Odds

ratio

only:

Low 1.0

Mid 13

High 50

West, 2004

(bootstrapped)

High risk = temp >39.5C and CRT >3s; Mid risk = temp

>39.5C or CRT >3s; Low risk = neither

143 Requirement for critical care

within 24 hours of

presentation (fluid boluses

≥60ml/kg, inotropes or

ventilation)

36 Low

89%

0.73 Infinite

Mid

10%

2.7
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ALL = acute lymphoblastic leukaemia. AML = acute myeloid leukaemia. AMC = absolute monocyte count. CoNS = Coagulase-negative Staphylococcus CRP =

C-reactive protein. CRT = capillary refill time. CXR = chest X-ray. Hb = haemoglobin. Plt = platelets.
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Performance of CDR with more than one supportive data set

Clinical

prediction rule

Number

of

episodes

Outcome Number

with

Outcome

% Low LR Low LR High

Santolaya,

2001

Low risk = 0

factors or

isolated low

plts or <7 days

from

chemotherapy.

High risk = >1

risk factor, or

isolated high

CRP,

hypotension or

relapsed

leukaemia.

Risk factors:

CRP ≥90,

hypotension,

relapsed

leukaemia, plts

≤50,

chemotherapy

within seven

days

407 Invasive

bacterial

infection =

positive blood

culture (2 for

Coagulase-

negative

Staphylococcus

spp), positive

bacterial

culture from

usually sterile

site, or sepsis

syndrome

and/or focal

organ

involvement

and

haemodynamic

instability and

severe malaise

178 42% 0.22 2.41

Santolaya, As above 263 As above 140 40% 0.11 3.91
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2002

Amman,

2010

As above 423 As above 122 15% 0.35 1.15

Macher,

2010

As above 249 As above 46% 0.8 1.1

Clinical

prediction

rule

Number

of

episodes

Outcome Number

with

Outcome

% Low LR Low LR High

Rackoff,

1996

Low risk =

AMC

>100;

High-risk

=

AMC<100

57 Bacteraemia 10 23% 0 1.45

(proposed

from

validation

set)
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Baorto,

2001

As above 1171 Bacteraemia 189 21% 0.45 1.45

Madsen 16 As above 157 Microbiologically documented

infection

12 39% 0.21 1.55

Klassen As above 227 Significant bacterial infection 43 37% 0.30 1.48

Amman 13 As above 423 Serious adverse medical outcome 67 38% 0.26 1.72

Macher 14 As above 377 Significant bacterial infection 70 40% 0.46 1.44

Tezcan,

2006

As above 621 Microbiological documented

infection

225 60% 0.74 1.59

Clinical

prediction

rule

Number

in study

Outcome Number

with

Outcome

% Low

% Mid

LR Low LR Mid LR High

Paganini, Low risk <4. 714 Death 18 82% 0 2.38 12
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2007 Mid-risk = 4.

High risk =

>4.

Advanced

stage of

disease = 3

points,

Comorbidity

= 2 points,

Bacteraemia

= 1 point

10%

(validation

set)

As above 806 Death 19 82% 0.12 2.76 9.86

12%

Clinical

prediction

rule

Number

in study

Outcome Number

with

Outcome

% Low

% Mid

LR Low LR Mid LR High
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Rackoff,

1996

Low risk =

AMC

>100;

Mid-risk=

AMC

<100, and

temp <39;

High-risk

=

AMC<100,

but temp

≥39

115 Bacteraemia 24 17% 0 0.87 3.44

(derivation

set)

65%

(validation

set)

As above 57 Bacteraemia 10 23% 0 0.21 3.52

40%

Klaassen,

2000

As above 227 Bacteraemia 28 37% 0.35 0.75 2.57

37%

Significant 43 0.39 0.94 2.29
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bacterial

infection

(validation

set)

As above 136 Bacteraemia 19 42% 0.21 3.93 2.8

24%

Significant

bacterial

infection

27 0.59 1.59 1.22

Madsen,

2002

As above 157 Positive

blood

culture

12 25% 0.31 0.91 3.72

64%
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Clinical

prediction

rule

Number

of

episodes

Outcome Number

with

Outcome

% Low LR Low LR High

Amman,

2004

Low risk ≤3

factors. Risk

factors =

bone

marrow

involvement,

absence of

clinical signs

of viral

infection,

high serum

CRP level,

low

leukocyte

count,

presence of

a central

venous

catheter,

high

haemoglobin

level, and

Pre-B-cell

leukaemia.

364 Severe

bacterial

infection

(death from

bacterial

infection, a

positive

culture of

normally

sterile body

fluids,

radiologically

proven

pneumonia,

clinically

unequivocal

diagnosis of

a bacterial

infection, or

CRP>150

mg/L)

132 14% 0.00 1.29

Amman, As above 423 122 10% 0.27 1.10
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2010

Macher,

2010

As above 377 122 8% 2.29 0.97

Clinical prediction rule Number

of

episodes

Outcome Number

with

Outcome

% Low LR Low LR High

Alexander,

2002

Low risk = Not

AML/Burkitts/Induction

ALL/Progressive-

relapsed with marrow

involvement and no

significant comorbidity

104 Bacteraemia 13 58% 0.24 2.39
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Amman,

2010

304 Bacteraemia 122 8% 0.66 1.03

Domment,

2009

762 Bacteraemia 122 53% 0.72 1.38

Clinical

prediction rule

Number

of

episodes

Outcome Number

with

Outcome

% Low LR Low LR High

Amman,

2010

Applied after

24 hours: 4

points for

chemotherapy

more

intensive than

ALL

423 Serious adverse medical

outcome

122 35% 0.18 1.67
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maintenance,5

points for

hemoglobin

>90 g/L, 3

points each

for white

blood cell

count <0.3

G/L, platelet

<50 G/L, any

adverse event

occurred in

preceding 24h.

Scores ≤9 are

low risk.

Miedema,

2011

210 57 50% 0.31 1.55



Page 280 of 410

Appendix 9. Individual factors used in clinical prediction rules

Overview

Variable Citations

Pt related

Age

<6yr Amman

2003

(Madsen) (Tezcan)

<5yr Rondinelli

<4, 4-8, >8yr (Amman

2010)

Disease

AML/Burkitts/Induction

ALL/Relapse-

progressive/BM

involvement

Alexander
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AML or ALL/Lymph or

Other

Hakim Amman 2010

Leuk/Lymph or BMT vs

Other

Hann (Lucas) (Badei) Delabarre

BM involved Amman

2003

Amman 2004 (Klassen) (Amman

2010)

Pre-B Leukemia Amman

2003

In PR/CR Amman

2004

(Rondinelli) (Tezcan) (Amman

2010)

Induction/relapse vs.

remission

Jones (Amman 2010)

Advanced disease Paganini

Relapsed leuk Santolaya Hakim

Rx related
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Type of Rx

Ara-C <7d Adcock

Low intensity

(anticptaed neutropenia

<7d)

Alexander Amman 2010 (Hakim) Delabarre

Chemo <7d Santolaya (Amman 2010) (Badei)

Others

CVC present Amman

2003

Hann Rondinelli (Amman

2010)

Episode related

Airway/Breathing

Tachypnoea/hypoxia Alexander (Amman 2010)

Circulation

Tachycardia (Mian) (Amman 2010)
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Hypotension Adcock Santolaya (Tezcan) (Mian) (Amman

2010)

Chills/hypotension/fluid

bolus composite

Lucas

Shock/Severe sepsis Hann Delabarre

CRT >3 West

Neurology

Altered mental status Alexander

Source

Inflammed CVC site Adcock

CXR +ve / pneumonia Alexander Badei (Rondinelli)

Mucositis Alexander (Rondinelli) (Amman

2010)

(Badei)
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Vomiting/diarrhoea Alexander

Viral infection Amman

2003

Rondinelli (no

URTI)

Clincally unwell (Amman

2010)

Hakim

Known bactermia Paganini Amman 2010 Mian

Clincal site Rondinelli Delabarre (Madsen)

Temperature

Cont variable Hann Rackoff Madsen West

<38.5 Rondinelli (Badei)

<39.7 C Amman

2004

<39 (also 39.5 used) Klassen Hakim Delabarre Badei (Mian) (Amman

2010)

(Santollaya)
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Others

Other comorbidity Alexander Amman 2004 Paganini (Amman

2010)

Abdominal pain Alexander

OP at start Jones

Blood work

FBC

WCC >0.5 Amman

2003

Amman 2004 Amman 2010 Delabarre (Madsen) (Rondinelli)

Hb <7 Rondinelli Amman 2003 (Badei)

Han >10 Amman

2010

Granulocytopenia >15d Hann

ANC Jones Hakim (Rackoff) (Lucas) (Madsen) (Tezcan) (West) (Amman
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2010)

AMC Klassen Rackoff (Paganini Madsen Delabarre (Santolaya) (Baorto) (Tezcan) (Amman

2010)

Plts Santolaya Amman 2010 Badei (Madsen) (Rondinelli) (Hakim)

Biochemistry

PCT >0.3 Delabarre

CRP (continuous) Mian

CRP >50 Amman

2003

CRP >90 Santolaya

CRP >150 Amman

2010

Study citations in (brackets) refer to those assessed but not included in models.
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Appendix 10. Factors predictive of adverse outcome, by study

Table a – Assessments of individual factors predicting bacteraemia

Variabl

e

Citati

on

Univariate

p-value or

OR 95% CI

Adjusted p-

value or

95% CI

Citati

on

Univariate

p-value or

OR 95% CI

Adjusted

p-value or

95% CI

Cit

ati

on

Univariate

p-value or

OR 95% CI

Adjusted p-

value or 95%

CI

Cit

ati

on

Univariate

p-value or

OR 95% CI

Adjusted

p-value or

95% CI

Pt

relate

d

Age

<6yr (Mad

sen

0.447 (cont n/s)

Diseas

e

AML/Burkitts/Induction

ALL/Relapse-

progressive/BM

involvement

Alex

ande

r
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Leuk/Lymph or BMT vs

Other

Hann n/a p<0.0001

(0.23 to

0.77)

(Luca

s

0.041 n/a)

BM involved Amm

an

2004

1.3 to 1.46 n/a Agye

man

n/a 1.2 to 8.6 (Kl

ass

en

0.002, 0.008 on fixed

and 0.014 on

random)

AML Agye

man

n/a 1.3 to 5.1 Haki

m

2.77 to

17.24

2.76 to

20.14

ALL/Lymphoma vs. solid Haki

m

0.83 to 4.51 0.84 to

5.02

In PR/CR Amm

an

2004

n/a n/a

Induction/relapse vs.

remission

Jone

s

1.23 to

10.95

n/a (Haki

m

0.9 to 3.74 n/a)

Rx

relate

d

Type
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of Rx

Low intensity (anticptaed

neutropenia <7d)

Alex

ande

r

(Haki

m

0.23 to 0.83 n/a)

Others

CVC present Hann n/a 0.03 (1.06

to 3.31)

Episod

e

relate

d

Airway

/Breat

hing

Tachypnoea/hypoxia Alex

ande

r

Circula

tion
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Chills/hypotension/fluid

bolus composite

Luca

s

<0.0001 n/a

Shock Hann n/a 0.003 (1.80

to 17.3)

Neurol

ogy

Altered mental status Alex

ande

r

Source

Inflammed CVC site Adco

ck

p>0.05 n/a

CXR +ve / pneumonia Alex

ande

r

Mucositis Alex

ande

r
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Vomiting/diarrhoea Alex

ande

r

Clincal site (Mad

sen

0.044 (cont) n/s)

Tempe

rature

Cont variable Hann n/a <0.0001 Rack

off

0.002 n/a Ma

dse

n

0.012 0.031

<38.5

<39.7 C Amm

an

2004

1.5 to 7.1 n/a

<39 (also 39.5 used) Klass

en

0.023 0.033

(Fixed)

0.049

(Random)

Agye

man

n/a 1.2 to 7.2 Ha

ki

m

1.0 to 2.4 1.3 to 6.5

Others
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Other comorbidity Alex

ande

r

Amm

an

2004

1.3 to 4.2 n/a

Abdominal pain Alex

ande

r

OP at start Jone

s

1.36 to 5.71 n/a

Blood

work

FBC

WCC >0.5 Amm

an

2004

1.4 to 4.1 n/a (Mad

sen

0.321 (cont) n/s)

WCC <0.3 Agye

man

n/a 2.3 to 7.0

Hb <7

Granulocytopenia >15d Hann n/a 0.01 (1.5 to
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37.9)

ANC >200 Jone

s

0.63 to 2.43 n/a (Rac

koff

>0.5 n/a, as

cont var)

(Lu

cas

>0.05 n/a, for >100) (M

ads

en

0.227 (cont) n/s)

ANC <100 Agye

man

n/a 2.9 to 17.4 Haki

m

1.4 to 5.7 1.2 to 5.7

AMC (<100, 10 or 115) Klass

en

0.002 0.031

(Fixed)

0.046

(Random)

Rack

off

0.08 (by

partitonin

g)

(Ba

ort

o

0.28 to 0.72 n/a) Ma

dse

n

0.004 (cont) 0.016

(cont)

Plts <50 Agye

man

n/a 1.1 to 4.3 Haki

m

1.25 to 4.34 n/a (M

ads

en

0.036 (cont) n/s)
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Table b – Assessments of individual factors predicting significant/documented infection and/or complications

Variable Citation Univariate

p-value or

OR 95% CI

Adjusted

p-value or

95% CI

Citation Univariate

p-value or

OR 95% CI

Adjusted

p-value or

95% CI

Citation Univariate

p-value or

OR 95% CI

Adjusted

p-value or

95% CI

Citation Univariate

p-value or

OR 95% CI

Adjusted

p-value or

95% CI

Pt related

Age

<6yr Amman

2003

0.67 to

3.41 (to

12) or 0.60

to 3.05

(older than

12y)

(Tezcan 0.01 n/s)

<5yr Rondinelli 1.37 to

3.37,

<0.001

1.0 to 3.4,

0.049

<4, 4-8, >8yr (Amman

2010)

0.9 to 2.8

(middle

group)

n/a

Disease
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AML Amman

2010

1.7 to 6.1 1.5 to 6.3

Leuk/Lymph or

BMT vs Other

Delabarre n/a n/a

BM involved Amman

2003

1.47 to

8.87

n/a (Amman

2010

0.7 to 6.2 n/s)

Pre-B Leukemia Amman

2003

0.38 to

1.54

n/a

In PR/CR (Rondinelli 1.3 to 4.0,

0.001

n/s) (Tezcan

docum inf

n/s n/s) (Amman

2010

0.9 to 2.5 n/s)

Relapsed leuk Santolaya n/a 1.7 to 2.3

Rx related

Type of Rx

Low intensity

(anticptaed

neutropenia <7d)

Amman

2010

1.1 to 7.1 n/s

Chemo <7d Santolaya n/a 1.1 to 1.6 Delabarre n/a n/a (Amman

2010

0.4 to 1.6 n/s)
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Others

CVC present Amman

2003

0.79 to

2.98

Rondinelli 2.0 to 6.3,

0.001

1.5 to 5.5,

0.001

(Amman

2010

0.3 to 1.1 n/s)

Episode

related

Circulation

Hypotension Santolaya n/a 2.3 to 3.2 (Tezcan n/s n/s)

Severe sepsis Delabarre n/a n/a

Source

Inflammed CVC

site

CXR +ve /

pneumonia

Badei n/a n/a (Rondinelli 2.3 to 9.9,

0.001

n/s)

Mucositis (Rondinelli 1.8 to 5.4,

0.001

n/s) (Amman

2010

0.4 to 1.0 n/s)

Viral infection Amman

2003

0.96 to

4.57

n/a Rondinelli

(no URTI)

2.2 to 5.5,

p=0.045

1.7 to 15.1,

p=0.001

Badei (no

URTI)

n/a n/a
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Clincal site Rondinelli 1.2 to 21,

0.001

7.0 to 39.5,

0.001

Delabarre n/a n/a

Temperature

Cont variable

<38.5 Rondinelli 1.0 to 3.6,

p 0.033

1.0 to 3.6,

p 0.033

<39 (also 39.5

used)

Badei n/a n/a Delabarre n/a n/a (Santollaya 0.19 n/a)

Blood work

FBC

WCC >0.5 Amman

2003

1.20 to

7.14 (cf >1)

(Rondinelli 0.97 to 2.7,

0.053

n/s)

WCC <0.3 Amman

2010

0.4 to 2.1 2.5 to 6.8

Hb <7 Rondinelli 1.1 to 3.5,

0.021

1.2 to 3.6,

0.021

Amman

2003

0.26 to

2.04

n/a

Hb >9 Amman 1.1 to 1.8 1.5 to 4.3
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2010

ANC <500 Delabarre n/a n/a

ANC >200 (Tezcan

<100

n/s n/s)

AMC (<100, 10

or 115)

(Santolaya 0.04 0.236) (Tezcan 0.01 n/s)

Plts <50 Santolaya n/a 1.4 to 2.2 Badei n/a n/a Delabarre n/a n/a (Amman

2010

1.2 to 3.2 n/s)

Biochemistry

CRP >50 Amman

2003

1.21 to

62.9

n/a

CRP >90 Santolaya n/a 3.6 to 4.8

PCT >0.3 Delabarre n/a n/a

Table c – Assessments of individual factors predicting outcomes including ICU & death
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Variable Citation Univariate

p-value or

OR 95% CI

Adjusted

p-value

or 95%

CI

Citation Univariate

p-value or

OR 95% CI

Adjusted

p-value

or 95%

CI

Pt related

Age

<5yr Rondinelli 1.37 to

3.37,

<0.001

1.0 to

3.4,

0.049

Disease

In PR/CR (Rondinelli 1.3 to 4.0,

0.001

n/s)

Advanced disease Paganini 0.01 (1.02

to 1.06)

0.001

Rx related
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CVC present Rondinelli 2.0 to 6.3,

0.001

1.5 to

5.5,

0.001

Episode

related

Circulation

Tachycardia (Mian p=0.27 n/s)

Hypotension (Mian p=0.34 n/s)

CRT >3 West 0.01 1.88 to

16.84,

0.002

Source

CXR +ve / pneumonia (Rondinelli 2.3 to 9.9,

0.001

n/s)

Mucositis (Rondinelli 1.8 to 5.4, n/s)
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0.001

Viral infection Rondinelli

(no URTI)

2.2 to 5.5,

p=0.045

1.7 to

15.1,

p=0.001

Known bacteraemia Paganini <0.0001

(5.2 to 39)

0.001 Mian 0.031 1.8 to

240,

p=0.015

Clinical site Rondinelli 1.2 to 21,

0.001

7.0 to

39.5,

0.001

Temperature

Cont variable West 0.002

(cont)

1.25 to

2.43.

p0.001

<38.5 Rondinelli 1.0 to 3.6,

p 0.033

1.0 to

3.6, p
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0.033

>39 (Mian p=0.21 n/s)

Others

Other comorbidity Paganini 0.001

(10.5 to

102)

0.0001

Blood work

FBC

WCC >0.5 (Rondinelli 0.97 to

2.7, 0.053

n/s)

Hb <7 Rondinelli 1.1 to 3.5,

0.021

1.2 to

3.6,

0.021

ANC >200 (West 0.69 n/s)

AMC (<100, 10 or 115) (Paganini 0.03 (0.9 n/a)
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to 12)

Plts <50 (Rondinelli

<20

1.2 to 3.9,

0.007

n/s)

Plts <20 (Mian p=0.05 n/s)

Biochem

CRP Mian 0.029 1.0 to

1.03,

p=0.021
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Appendix 11. Full list of QUADAS criteria for included biomarkers studies

Author 1 2 3 4 5 6 7 8 9 10 11

Ammann, 2003 Yes Yes Yes Yes No Yes Yes Unclear Unclear Yes Yes

Asturias, 2010 Yes Yes Yes Yes Unclear No No Unclear Unclear Yes Yes

Avabratha, 2009 Yes Yes Yes Yes Unclear Yes No Unclear Unclear Yes Yes

Barnes, 2002 Yes No Yes Yes Yes Yes Yes Unclear Unclear No Yes

Cost, 2011 Yes Yes Unclear Unclear Unclear No No Unclear Unclear Unclear Yes

de Bont, 1999 Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Diepold, 2008 Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Dylewska, 2005 a&b Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

El-Maghraby, 2007 Unclear Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Hatzistilianou, 2007 Unclear No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Hatzistilianou, 2010 Yes No Yes Unclear Unclear Yes Yes Unclear Unclear Yes Yes

Heney, 1992 Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes
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Hitoglou-Hatzi, 2005 Unclear No Yes Yes Yes Yes Yes Unclear Unclear Unclear Yes

Hodge, 2006 Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Hodge, 2011 Yes No Yes Yes Yes Yes No Unclear Unclear Unclear Yes

Kharya, 2010 Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Katz, 1992 Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Kitanovski, 2006 Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Lehrnbecher, 1999 Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Unclear

Lehrnbecher, 2004 Yes No Yes Yes Yes Yes No Unclear Unclear Yes Yes

Lodahl, 2011 Yes Yes Yes Unclear Yes Yes No Unclear Unclear Yes Yes

Mian, 2009 Yes No Yes Yes Unclear No No Unclear Unclear Unclear Yes

Miedema, 2011 Yes Yes Yes Unclear Unclear Yes Yes Unclear Unclear Yes Yes

Nishikawa, 2010 Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Reitman, 2010 Yes No Unclear Unclear Yes No No Unclear Unclear Unclear Yes

Richardson, 2009 Yes Yes Yes Yes Yes Yes No Unclear Unclear Yes Yes
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Riikonen, 1992 Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Riikonen, 1993 Unclear No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Santolaya, 1994 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Santolaya, 2007 Yes Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes

Santolaya, 2008 Yes Yes Yes Yes Yes Yes Yes Unclear Yes Yes Yes

Secmeer, 2007 Unclear No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Soker, 2001 Unclear No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Spasova, 2005 Yes No Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Stryjewski, 2005 Yes Yes Yes Yes Yes Yes Yes Unclear Unclear Yes Yes

Santolaya, 2001 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Santolaya, 2002 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

1 = representative patients, 2 = clearly described selection criteria, 3 = whole sample, or a random selection of sample, received reference standard, 4 = all patients

received same reference standard, 5 = index test not part of reference standard, 6 = index test described adequately, 7 = reference standard described adequately, 8 =

blinded interpretation of index test results, 9 = blinded interpretation of reference standard results, 10 = same clinical data available as in clinical practice, 11 = adequate

reference standard
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Appendix 12. Handling continuous and categorical variables in biomarkers studies.

Citation How were continuous

variables handled in the

analyses?

If relevant, describe methods used for

cutpoint determination

How were categorical variables

handled in the analyses?

If relevant, describe

methods used for cutpoint

determination

Ammann, 2003 Made ordinal, with up

to three categories

Not stated Grouped Not stated

Asturias, 2010 Grouped Not described

Avabratha,

2009

Grouped Not described

Barnes, 2002 Continuous and

dichotomised

Not stated. Appears to be maximal diagnostic

efficiency (based on study Figure)

Cost, 2011 Continuous

de Bont, 1999 Continuous (markers),

grouped (age)

Age split into <16, 16-50, and >50. Implied

that a level was chosen 'that identified 28%

patients as low risk with 100% sensitivity'

Sex and type of malignancy

used ungrouped
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Diepold, 2008 Continuous and

dichotomised

Based on ROC curve to maximise diagnostic

utility

Dylewska, 2005

a & b

Continuous

El-Maghraby,

2007

Continuous and

dichotomised

Taken from (CRP) literature or cytokines local

control upper limit of normal

Hatzistilianou,

2007

Continuous and

dichotomised

Not stated. Appears to be based on ROC

analysis.

Hatzistilianou,

2010

Continuous

Heney, 1992 Continuous

Hitoglou-Hatzi,

2005

Continuous

Hodge, 2006 Continuous and

dichotomised

Upper limit of normal defined as Mean + 2SD

in control population
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Hodge, 2011 Continuous

Kharya, 2010 Continuous then

grouped

ROC curves

Katz, 1992 Continuous and

dichotomised

Not stated. Appear arbitrary. Dichotomised Haematological vs. solid

tumours

Kitanovski,

2006

Continuous and

dichotomised

'Best predictive value' by ROC analysis

Lehrnbecher,

1999

Continuous and

explored with cutoffs

IL6 & 8 cut at two levels: to maximise

sensitivity and median values.

Lehrnbecher,

2004

Continuous and

dichotomised

Based on previous threshold values (not this

dataset)

Lodahl, 2011 Continuous and

grouped (alternative

models)

Grouped: PCT - PCT cut-off levels from

literature, CRP- cutoff levels chosen to give

identical sensitivities

Mian, 2009 Continuous
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Miedema, 2011 Continuous

Nishikawa,

2010

Continuous

Reitman, 2010 Continuous

Richardson,

2009

Grouped Results from another study suggesting that

CRP >/=4 was predictive of bacteraemia

Riikonen, 1992 Continuous and

explored with cutoffs

Not stated Unclear

Riikonen, 1993 Continuous and

explored with cutoffs

Not stated. Appears to be based on previously

defined values

Santolaya, 1994 Continous and

dichotomised

From literature reflecting CRP in non-

immunosuppressed patients

Santolaya, 2001 Continuous and

dichotomised

By ROC analysis Grouped Not stated

Santolaya, 2002 Continuous and States cutoffs were determined using ROC
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dichotomised analysis

Santolaya, 2007 Continuous and

dichotomised

States cutoffs were determined using ROC

analysis

Grouped Not stated

Santolaya, 2008 Continuous and

dichotomised

"best discriminative cutoff value"

Secmeer, 2007 Continuous and

dichotomised

Not stated. Appears to be based on previously

defined values

Grouped (e.g. duration of

neutropenia was defined as

prolonged if more than 72

hours)

Not stated

Soker, 2001 Continuous

Spasova, 2005 Continuous and

dichotomised

Not stated

Stryjewski,

2005

Continuous and

dichotomised

Data derived (maximal efficiency, and to

ensure 100% Sn)
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Appendix 13. Further data on infrequently or partially reported markers

and outcomes

Citation

Marker and

Cutpoint

Outcome Sensitivity

(95% CI)

Or measure in

‘infected’

Specificity (95%

CI)

Or measure in

‘non-infected’ Method of derivation

De Bont, 1999 CRP Bacteraemia Not significantly associated

De Bont, 1999 IL6

Bacteraemia Beta value ln(IL6) = 0.658 (se

0.31)

De Bont, 1999 IL8

Bacteraemia Beta value ln(IL8) = 0.551 (se

0.28)

Delebarre,

2010

PCT

0.3ng/ml

Significant

infection
‘Significantly associated in

multivariate analysis’

El-Maghraby,

2007

MCP

350

Documented

infection
0.644 (95% CI

0.517 to 0.754)

0.923 (95% CI

0.759 to 0.979)

2*2 extracted from

text/graph

Hitoglou-

Hatzi, 2005

tADA

35U/l

Significant

bacterial

infection

1 (95% CI

0.883 to 1)

1 (95% CI 0.908

to 1)

2*2 extracted from

text/graph

Cost, 2011

IL8 and IL5

(no cutoff)

Bacteraemia

or clinical

sepsis 0.88 0.48

Kharaya, 2010

PCT

3.3ng/ml Bacteraemia

Sn 66%

(derivation),

80%

(validation)

Sp 85%

(derivation),

80% (validation

No absolute numbers of

bacteraemia to use in

calculating appropriate

CI

Kharaya, 2010 IL6 Bacteraemia
Sn 67% Sp 75% No absolute numbers of
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137pg/ml (derivation),

60%

(validation)

(derivation),

77% (validation

bacteraemia to use in

calculating appropriate

CI

Riikonen,

1992

TNF

40

Bacteraemia

or focal

infection

1 (95% CI

0.879 to 1)

0.065 (95% CI

0.025 to 0.154)

2*2 extracted from

text/graph

Hodge, 2006

IL5

17

Positive

blood culture

0.5 (95% CI

0.215 to 0.785)

Could not

calculate

2*2 extracted from

text/graph

Hodge, 2006

IL5 & 8

combined

>17 and >220

Positive

blood culture
1 (95% CI

0.676 to 1)

0.87 (95% CI

0.679 to 0.955)

2*2 extracted from

text/graph

Riikonen,

1992

IL1

SAA

Bacteraemia

or focal

infection

Could not

calculate

Could not

calculate

Soker, 2001 IL2R

Bacteraemia Median

(range)

5230U/mL

(1120 to 7600)

1190 (724 to

5400)

Medians/range only

reported

Soker, 2001 TNF-alpha

Bacteraemia 8.4 (4.0 to

68.2) 7.8 (3.0 to 37.2)

Medians/range only

reported

Soker, 2001 IL1

Bacteraemia Could not

calculate

Could not

calculate

Soker, 2001 IL8

Bacteraemia 305pg/ml (16

to 4838)

23pg/ml (5 to

184)

Medians/range only

reported

Santolaya,

2008 PCT (ng/ml)

Severe

infectious

complications

Mean (+/-

reported SD)

Admission

Mean (+/-

reported SD)

Admission 6 5.5

Only in patients in the

non-low risk group.

Clearly non-Normal

data reported as
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13.6 +/- 63.6

24h 14.5 +/-

54.5

+/-30.7

24hrs 8.8 +/-

40.2

mean/SD.

Santolaya,

2008 IL8 (ng/ml)

Severe

infectious

complications Mean (+/-

reported SD)

444.9 (623)

Mean (+/-

reported SD)

232.9 (445.6)

Only in patients in the

non-low risk group.

Clearly non-Normal

data reported as

mean/SD.

Secmeer,

2007 ESR

Bacteraemia “not statistically significantly

different between patients with

and without documented

infection” Figures not shown

Stryjewski,

2005 PCT

Sepsis or

septic shock

502pg/ml (39

to 54774)

201pg/ml (47 to

9862)

Median values (range)

for admission

comparing non-septic

with septic

Stryjewski,

2005 IL6

Sepsis or

septic shock

10pg/ml (0 to

597)

11pg/ml (0 to

105)

Median values (range)

for admission

comparing non-septic

with septic

Stryjewski,

2005 IL8

Sepsis or

septic shock

45pg/ml (7 to

278)

15.5pg/ml (0 to

219)

Median values (range)

for admission

comparing non-septic

with septic

Mian, 2011 IL6

Admission to

PICU 5594(+/-4337) 981 (+/-2252) Mean +/- SD

Mian, 2011 IL8

Admission to

PICU 2465 (+/-2504) 419 (+/-921) Mean +/- SD

Mian, 2011 IL10 Admission to
3971

322 (+/11819) Mean +/- SD
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PICU (+/15251)

Mian, 2011 TNF-alpha

Admission to

PICU 61 (+/-56) 11 (+/-22)

Mean +/- SD

Mian, 2011 CRP

Admission to

PICU 243 (+/-112) 130 (+/-91)

Mean +/- SD

IL6 cutoff 137pg/ml - 67% sensitive and 75% specific in predicting bacteraemia in test group IL6

cutoff 137pg/ml - 60% sensitive and 77% specific in predicting bacteraemia in validation group

Figure 56: Diagnostic value of exploratory biomarkers for documented infection
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Appendix 14. Study inclusion flow diagram

Study groups identified through

database searching in SRs

n = 28

Additional groups identified

through other sources

n = 9

Total study groups approached

(n = 36)

Responses received

(n = 19: 53%)

Groups not interested

(n = 2)

Groups with studies

assessed for eligibility

n = 17

Full-data studies excluded,

with reasons

(n = 4; never returned

data)

Studies included in

qualitative synthesis

(n = 22)

Studies included in

quantitative synthesis

(meta-analysis)

(n = 22)

Groups returning extra

studies

(n = 4)



Page 317 of 410

ppendix 15. The PICNI

The PICNICC (Predicting Infectio

Children with Cancer) Collabora

Optimizing risk predictive strate
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Dr. Michaela Semeraro

Department of Paediatric Oncol

39 Rue Camille Desmoulins

94805 Villejuif

France

3 December 2010

Dr Bob Phillips

PICNICC Collaborative

Centre for Reviews and Dissemi

Alcuin College

University of York

York

UK

YO10 5DD
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We would like to invite you to become a collaborator: to be involved in the refinement of the

protocol, and provide your dataset for the central collaborative. The collaborative already includes

clinicians from the UK, USA, Switzerland, Germany, Mexico, India and Italy, and we would greatly

value the input of your group. We intend the results of this review be submitted to a peer-reviewed

journal regardless of its findings, under the collaborative group name, of which you would be a

member.

To be a member of the PICNICC collaborative, you would need to supply individual patient data from

cohort studies of in children and young people, including randomised trial data, who presented with

febrile neutropenia. This could be with either prospective or retrospective data collection, but needs

to provide data for all ‘essential’ predictive variables in >50% of included episodes and two or more

of the study defined outcomes for >90% of the included episodes of FNP. We will exclude studies

which are case-series (for example, of only ‘gram negative bacteraemias’).

The ‘essential’ predictive variables are proposed to be age, underlying tumour type, and remission

status; chemotherapy type and time elapsed since last cycle; in-patient or out-patient at onset of

episode; maximum temperature; antibiotic therapy used; white cell count; neutrophil count and at

least one of the following four assessments: respiratory rate (or compromise), circulatory status (or

compromise), presence of severe mucositis, or a global assessment of illness severity. The core

outcome variables are: death; intensive care admission; need for moderate organ support (fluid

bolus, oxygen); clinically documented infections and microbiologically documented infections. These

are subject to discussion in the refinement of the study protocol.

We would be delighted hear from you, and happy to answer any questions that you may have about

becoming involved in this project.

Dr Bob Phillips

MRC Research Fellow, Centre for Reviews and Dissemination, University of York and Consultant in

Paediatric Oncology, Leeds Teaching Hospitals Trust, Leeds

Prof Alex Sutton, Professor of Medical Statistics, University of Leicester

Dr Richard Riley, Senior Lecturer in Medical Statistics, University of Birmingham

Dr Julia Chisholm, Consultant in Paediatric Oncology, Royal Marsden NHS Foundation Trust, Surrey

Dr Susan Picton, Consultant Paediatric Oncologist, Leeds Teaching Hospitals Trust, Leeds

Prof Lesley Stewart, Director, Centre for Reviews and Dissemination, University of York

e: crd-picnicc@york.ac.uk

t: +44 1904 321099

f: +44 1904 321041

w: http://bit.ly/PICNICC
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Appendix 16. Parental Advisory Request

The PICNICC (Predicting Infectious Complications of Neutropenic sepsis In

Children with Cancer) Study

Optimizing risk predictive strategies in febrile neutropenic episodes in children

and young people undergoing treatment for malignant disease

This project will use an individual patient data meta-analysis approach to develop and

evaluate a risk stratification model to predict which children and young people have a

low risk of adverse outcomes during an episode of febrile neutropenia. This will define a

group of individuals who may be treated with reduced intensity or duration of antibiotic

therapy, and so reduce the inconvenience and cost of these episodes. The project will

also explore specific issues around adapting established techniques of IPD meta-analysis

of interventions for use the method of prognostic evidence synthesis and predictive

modeling.

Febrile neutropenia (FNP) is a complication of cancer therapy. It is the occurrence of a

fever in the context of immunosuppression which may lead to death from overwhelming

sepsis. It is the second commonest reason for hospital admission among children &

young adults with cancer, with approximately 4000 episodes of FNP occurring annually in

the UK. In adopting a policy of aggressive in-patient intravenous antibiotic use in such

episodes, the mortality rate related to these episodes has improved dramatically (from

30% in the 1970s to 1% in the late 1990’s). However, there remain many episodes of

FNP, possibly two-thirds or more, in whom no significant infection is identified, and in

whom this aggressive management strategy is likely to be excessive.

The National Institute for Clinical Excellence (NICE) guidance document “Improving

outcomes with children and young people with cancer” called for "the development of

robust methods of risk stratification in the management of FNP". At present there are

many differing policies for the management of FNP in the UK with lack of agreement

about how risk stratification, if any, is used. Such models of risk stratification are based

on small data sets with relatively few events.

Individual patient data pooled analysis for the synthesis of prognostic information has

only recently been begun to be applied to real world clinical data sets where they have

clarified existing understanding of particular prognostic variables. It has been suggested

that the use of IPD will provide a more accurate and robust assessment of the value of

potential risk factors. Systematic review and use of summary prognostic data may be

unreliable as the published data may be incomplete (missing vital information for

meaningful meta-analysis), often relies on categorization of continuous outcome

variables (which themselves may be biased), are susceptible to significant publication

bias (with prognostic markers showing ‘highly significant’ responses being more likely to

be published) and may have many simple methodological flaws (such as inconsistent

reporting of ostensibly similar outcomes).

Methodological exploration, development and adaptation to the prognostic setting of the

techniques of IPD pooled analysis will also be undertaken (the exact analyses will be

subject to the data sets obtained). The analyses may address issues regarding the

development of clinical decision rules in a meta-analytic setting, the analysis of missing

data using different imputation models, the relative merits of prospective and

retrospectively collected information, the comparison between episodic and patient-

centred analyses and the use of categorical outcome variables.

It is for these reasons that this project was conceived, and awarded funding as part of

an MRC Research Training Fellowship. The Fellowship will be undertaken in the Centre

for Reviews and Dissemination (University of York) under the supervision of Prof Lesley

Stewart, Dr Alex Sutton and Dr Dawn Dowding. The Fellowship has been awarded on a

part-time basis, to complement a part-time post as Consultant in Paediatric Oncology in

St James’s Hospital, Leeds. The two aspects will complement and support both the

project and clinical practice, while being separated by being undertaken on different sites

on different days in the week.

PICNICC
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The PICNICC (Predicting Infectious Complications of Neutropenic sepsis In

Children with Cancer) Study Clinical Advisory Group

This group will be include clinicians and methodologists and will provide advice

throughout the project. This group will help:

ground decisions on data in clinical practice

explore the opportunities for family/patient centered analyses

advise on methodological issues

provide advice as to likely clinical uptake and implementation

encourage networking and data sharing for success of the project

Members of the group will ideally attend the international collaborative group meetings,

when this is formed.

The currently proposed structure of this group is:

Lesley Stewart, CRD, York (expert in IPD methodologies & reviews)

Sue Picton, Paediatric Oncology, Leeds (interest in FNP, great experience in field)

Julia Chisholm, Paediatric Oncology, London (interest in FNP, Chair of CCLG supportive

care group)

Alex Sutton, Medical Statistics, Leicester (expert in meta-analytic techniques, including

Baysian approaches)

This group may be usefully strengthened by the addition of two patient or family

representative members, and a statistician with expertise in prognostic models and/or

clinical decision rule building.

The group is expected to meet between one and two times per year, with occasional

contact by telephone call or email in between the meetings. Such meetings would be

unlikely to be more than half-a-day in length. The offer of pre-meeting and post-

discussions with one of the PICNICC team would be offered to patient or family

representative members in order to discuss any issues that arise during the meetings.

Expenses to cover travel and associated expenses have been awarded.

(1st draft)
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and the use of categorical rather than dichotomous outcome variables (for example

“Needed ICU”, “Needed oxygen”, “Identified infection” and “Well - no complications”

compared with “Well” vs. “Not well”).

It is to develop a clinically useful decision rule and to advance our understanding of the

statistical techniques used that this project was conceived, and awarded funding as part

of a Medical Research Council (MRC) Research Training Fellowship. The Fellowship will be

undertaken in the Centre for Reviews and Dissemination (University of York) under the

supervision of Prof Lesley Stewart, Dr Alex Sutton and Dr Dawn Dowding. The Fellowship

has been awarded on a part-time basis, to complement a part-time post as Consultant in

Paediatric Oncology in St James’s Hospital, Leeds. The two aspects will complement and

support both the project and clinical practice.

The PICNICC (Predicting Infectious Complications of Neutropenic sepsis In

Children with Cancer) Study Clinical Advisory Group

This group will provide advice throughout the project. This group will help:

ground decisions on data in clinical practice

explore the opportunities for family/patient centered analyses

advise on methodological issues

provide advice as to likely clinical uptake and implementation

encourage networking and data sharing for success of the project

This group will benefit from the involvement of two patient or family representative

members, and a statistician with expertise in prognostic models and/or clinical decision

rule building.

The group is expected to meet between one and two times per year, with occasional

contact by telephone call or email in between the meetings. Such meetings would be

unlikely to be more than half-a-day in length. Pre-meeting and post- discussions with

one of the PICNICC team will be offered to patient or family representative members in

order to discuss any issues that arise during the meetings. Expenses to cover travel and

associated expenses have been awarded. Members of the group will ideally attend the

international collaborative group meetings, when this is formed. These may occur only 2-

3 times over 5 years.

The currently proposed structure of this group is:

Prof. Lesley Stewart, CRD, York (Expert in IPD methodologies & reviews)

Dr. Sue Picton, Paediatric Oncology, Leeds (Extensive experience in FNP)

Dr. Julia Chisholm, Paediatric Oncology, London (Chair of CCLG supportive care group)

Dr. Alex Sutton, Medical Statistics, Leicester (Expert in meta-analytic techniques)

Should you wish to find out more to consider becoming involved, please contact Dr Bob

Phillips at picnicc@gmail.com or phone (10904) 321099.
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Appendix 17. Protocol



PROTOCOL Open Access

Predicting infectious complications in
neutropenic children and young people with
cancer (IPD protocol)
Robert S Phillips1,5*, Alex J Sutton2, Richard D Riley3, Julia C Chisholm4, Susan V Picton5 and Lesley A Stewart1, for
the PICNICC Collaboration

Abstract

Background: A common and potentially life-threatening complication of the treatment of childhood cancer is
infection, which frequently presents as fever with neutropenia. The standard management of such episodes is the
extensive use of intravenous antibiotics, and though it produces excellent survival rates of over 95%, it greatly
inconveniences the three-fourths of patients who do not require such aggressive treatment. There have been a
number of studies which have aimed to develop risk prediction models to stratify treatment. Individual participant
data (IPD) meta-analysis in therapeutic studies has been developed to improve the precision and reliability of
answers to questions of treatment effect and recently have been suggested to be used to answer questions
regarding prognosis and diagnosis to gain greater power from the frequently small individual studies.

Design: In the IPD protocol, we will collect and synthesise IPD from multiple studies and examine the outcomes
of episodes of febrile neutropenia as a consequence of their treatment for malignant disease. We will develop and
evaluate a risk stratification model using hierarchical regression models to stratify patients by their risk of
experiencing adverse outcomes during an episode. We will also explore specific practical and methodological
issues regarding adaptation of established techniques of IPD meta-analysis of interventions for use in synthesising
evidence derived from IPD from multiple studies for use in predictive modelling contexts.

Discussion: Our aim in using this model is to define a group of individuals at low risk for febrile neutropenia who
might be treated with reduced intensity or duration of antibiotic therapy and so reduce the inconvenience and
cost of these episodes, as well as to define a group of patients at very high risk of complications who could be
subject to more intensive therapies. The project will also help develop methods of IPD predictive modelling for use
in future studies of risk prediction.

Keywords: individual participant data meta-analysis, predictive modelling, paediatric oncology, febrile neutropenia,
collaborative studies

Background
Children undergoing treatment for malignancy have an
excellent chance of survival, with overall rates approach-
ing 75% [1]. In most cases, children who die following
treatment for cancer do so as a result of their disease,
but despite huge improvements in supportive care,
around 16% of deaths within 5 years of diagnosis are

due to the complications of therapy [2,3]. One such life-
threatening complication in immunocompromised chil-
dren remains infection, which frequently manifests as
the occurrence of fever with neutropenia [4].
In adopting a policy of aggressive inpatient intravenous

antibiotic use in such episodes, the mortality rate related
to these episodes has improved dramatically (from 30%
in the 1970s to 1% in the late 1990s) [4]. Intensive care
management is required in less than 5% of cases [5-7],
although a substantial proportion of children have com-
plications which require specialised care [7]. There

* Correspondence: bob.phillips@york.ac.uk
1Centre for Reviews and Dissemination, Alcuin College, University of York,
York, YO10 5DD, UK
Full list of author information is available at the end of the article
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remain many episodes of febrile neutropenia (FNP), pos-
sibly two-thirds or more, among patients in whom no
significant infection is identified and in whom this
aggressive management strategy is likely to be excessive
[7].
To better inform the clinical management of children

with cancer and FNP, there is increasing interest in
using risk prediction models (also known as ‘prognostic
models’) and clinical decision rules (CDRs) [8-10]. Risk
prediction models utilise multiple prognostic factors in
combination to predict the risk of a future health out-
come for an individual on the basis of their set of prog-
nostic factor values. A CDR recommends a particular
clinical action (or inaction) for an individual on the
basis of the prediction (for example, the predicted prob-
ability, or ‘risk score’) derived from the model.
A robust risk prediction model which identifies those

children at very low risk of having a significant infection
could result in reduced intensity and/or duration of anti-
biotic therapy in the hospital. It could also form the basis
of a randomised controlled trial (RCT) of alternative
management approaches (for example, ambulatory oral
antibiotics vs inpatient intravenous antibiotics) and
would be the ideal way of informing the sample size
required by reliably predicting the proportion of events
expected in a low-risk group. This would lead to reduced
costs for the healthcare system and the patient and family
[11], as well as potentially a better quality of life for all
affected. At present, there are many differing policies for
the management of FNP in practice [12,13] but a lack of
agreement about how and which CDRs, if any, are used.
Assessment of the risk of adverse outcome of each epi-

sode of FNP has been undertaken by many different
groups, with many of them creating a CDR which aims to
allow clinicians to accurately judge risk and treat patients
appropriately. However, none of these analyses have
resulted in a widely used risk stratification model, and cur-
rent practice is variable, both in the United Kingdom [12]
and internationally [13-15]. Some centres use a risk-strati-
fied, reduced-intensity approach, and others treat all chil-
dren aggressively. The essential problems with research in
this area are common across much of paediatric practice:
those of rare conditions with small numbers of cases and
limited collaboration in primary studies. The modelling
studies that have been done have incorporated different
clinical features and outcomes and have used different
methodologies, and it is therefore difficult to draw mean-
ingful conclusions from this body of evidence. Calls for
collaborative trials [16-18] have led to little progress.
This setting provides an ideal opportunity to under-

take a collaborative, pooled analysis of the existing data
sets in the form of an individual participant data (IPD)
meta-analysis. In this effort, we will collect and reanalyse
the original study data, which will permit reanalysis of

the same clinical features across studies using a consis-
tent approach and provide sufficient numbers to draw
more robust and reliable conclusions. The findings of
this work should therefore more robustly inform prac-
tice and future therapeutic RCTs. The analysis can be
approached from three methodological directions: test-
ing existing CDRs for their ability to ‘diagnose’ adverse
outcomes, assessing the added value of individual prog-
nostic factors and building a more accurate predictive
rule containing a parsimonious set of prognostic factors.

Systematic reviews of existing knowledge
In preparation for this project, two systematic reviews
were undertaken to assess the prior knowledge of the
discriminatory ability of CDRs [19] and inflammatory
serum markers (R Phillips, R Wade, T Lehrnbecher, LS
Stewart, A Sutton) in children and young people with
FNP. The systematic review of CDRs initially identified
2,057 potential studies and finally included 24, of which
21 had data in a usable format. It showed that two
groups of studies have been undertaken to risk-stratify
children who present with FNP. Researchers in the first
group of studies examined the use of clinical examina-
tions to predict radiographic pneumonia (4 studies) [20],
and investigators in the second group examined more
general infectious complications (20 studies) [19].
Among the studies in which general infectious compli-

cations were examined, 16 separate models were pro-
duced and contained 9 data sets used to validate
previously derived models. The researchers studied a
variety of outcomes with individual differences in defini-
tions, but covered five main categories: death, critical
care requirement, serious medical complications, signifi-
cant bacterial infections and bacteraemia.
Only one rule could reasonably be assessed across

multiple data sets: that of absolute monocyte count and
temperature criteria proposed by Rackoff et al. [21] to
exclude bacteraemia. The most appropriate meta-analy-
sis of the rule’s effectiveness led to estimates of moder-
ate discriminatory ability, with the average probability of
bacteraemia in the groups being low risk = 6% (95% CrI
= 1% to 34%), middle-level risk = 18% (CrI = 3% to
37%) and high risk = 49% (95% CrI = 6 to 84%).
Of the other rules, the model of Santolaya et al. [22]

showed a good ability to differentiate between low- and
high-risk groups when a wider definition of ‘serious
infection’ was used, with average predictive ability esti-
mated as low risk = 13% (95% CI = 9% to 18%) and
high risk = 72% (95% CI = 68% to 75%). The rule has
been developed and tested in Chile and may be of lim-
ited applicability in Western Europe and North America
[23]. Other rules show promise and have clinical physio-
logical similarities, but have not undergone extensive
testing.
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The systematic review of the predictive value of serum
markers of inflammation and infection in children pre-
senting with FNP included 27 studies reporting over 13
different markers derived from an initial screen of 375
studies. The studies included had similar methodological
challenges as well as problems with reporting and analy-
sis. Many failed to assess whether the marker had any
supplementary value over and above the simple admis-
sion data collected by the clinicians at every encounter:
age, malignancy, temperature, age-corrected vital statis-
tics and blood count.
To interpret the information on serum markers in a

clinically meaningful way, we had to allow for the
marked heterogeneity of the results. The quantitative
pooling and a qualitative summary of the results sug-
gested that procalcitonin might be a better discrimina-
tory marker than C-reactive protein (CRP) and that IL-6
had a very good ability to predict documented infection.
Overall the findings were uncertain and unstable, and
only small amounts of new data may alter them sub-
stantially. Data for the other markers were too sparse to
reasonably be interpreted, although IL-8 had significant
potential value.
These reviews have a wide range of rules for the pre-

diction of poor outcomes during episodes of FNP in
children and the use of a variety of individual serum
markers to predict outcome. None of the rules found
has yet been subjected to the extensive geographical and
temporal discriminatory validity assessments that mark
the highest quality CDR. Many potential difficulties with
different outcomes, variable selection and model-build-
ing have been identified. The data on serum markers
were extremely heterogeneous, and only tentative con-
clusions could be drawn.
The problems identified are inherent in the attempt to

undertake meta-analyses of aggregate data. The limita-
tions of the reporting in published studies mean we do
not have access to the exact data distribution or the full
range of univariable estimates of predictive power.
These issues could be addressed by attempting to collect
more detailed summary data from the authors of the
original studies, but this would not allow cross-study
validation of different rules or attempts at alternative
rule-building. To meet these challenges and to maximise
the value of the information already collected by these
groups and in other cohorts of children with FNP, an
IPD meta-analysis will enable us to develop and test
new and existing prediction models. This will provide a
firmer basis for stratified treatment trials in this com-
mon and occasionally fatal complication of therapy.

Rationale for an individual participant data analysis
Individual patient data pooled analysis in therapeutic
studies have been developed for two decades to improve

the precision and reliability of answers to questions
regarding treatment [24,25]. It has more recently been
promoted for the synthesis of diagnostic data [26] and
prognostic information [27] to improve the quality of
answers to important prognostic questions [28] and
matters of diagnostic accuracy [29]. These techniques
have been applied to real-world clinical data sets
[30,31], in which they have clarified existing understand-
ing of particular prognostic variables and enhanced
understanding of how different diagnostic tests can be
used [32].
The key benefits of prognostic IPD analysis generally

can be summarised as follows: (1) Analyses are not
restricted to those of the published results or subgroups;
(2) analytical techniques, inclusion criteria and outcome
definitions can be standardised across studies; (3) larger
numbers of data points allow more powerful statistical
conclusions to be drawn, including checking modelling
assumptions and accounting for missing data at the
individual level; (4) IPD can model data more appropri-
ately, such as by analysing continuous variables on con-
tinuous scales (unlike in many prognostic studies in
which data are reported as categorical variables); (5)
analysis can account for clustering (for example, of
patients within studies) and correlated information (for
example, multiple events per individual); (6) multivariate
models can be created across different healthcare set-
tings; (7) data can be reviewed for completeness and
accuracy; and (8) the analysis can provide extensive
internal cross-validation to guard against data-driven
exaggerations of predictive power.
In the Predicting Infectious Complications of Neutro-

penic sepsis In Children with Cancer (PICNICC) study,
the collection and analysis of IPD will provide specific
benefits that overcome many of the problems found in
the aggregate data meta-analysis. Many of the benefits
of IPD analysis are technical, being related to the statis-
tical methods underlying the meta-analysis and the
building of predictive models. Although at first sight the
failure to address the problems inherent in statistical
interpretation may seem to be clinically irrelevant, it has
clear and real clinical implications [33]. Other benefits
are more obviously clinical; for example, the collection
of the different data sets will enable us to clarify and
harmonise the different outcomes collected.
One of the primary ‘statistical’ benefits will be the use

of firmly prespecified potential predictor variables built
upon the experience of the PICNICC Collaborative and
the systematic reviews. This will guard against the devel-
opment of purely data-driven analyses, which have a
tendency to overestimate any predictive value [28].
In the reviews, we found the studies designed to build

a CDR used a large number of variables (median = 13,
range = 2 to 39) and had a small number of events
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(median = 36, range = 4 to 178) with 70% (12 of 16)
studies having fewer than 10 events per variable under
consideration and no study having more than 14 events
per variable. These low event-per-variable ratios render
predictive conclusions drawn from the studies unstable
and estimates of predictive power overly optimistic [34].
IPD will allow us to consolidate the information and
increase greatly the number of events studied from the
same number of predictive variables.
The raw data will also allow a detailed analysis of the

clustering of events (multiple episodes per patient) and
variation at the level of the individual patient. This issue
is significant when assessing the problems identified in
the aggregate data reviews. Multiple episodes in indivi-
dual patients were treated primarily as if they came
from dissimilar individuals in the 20 CDR and 24 serum
marker studies. Four papers explicitly described no
adjustment [22,35-37], with 12 undertaking some
attempt at assessment. Secondary analysis was per-
formed to assess ‘first included case’ versus ‘all episodes’
and ‘no significant differences’ in three studies
[22,38,39] and in nine others in which more advanced
statistical modelling was used [6,21,40-46]. In 28 studies,
the assessment was unclear.
The functional form of the data regarding a priori

nonlinear fractional polynomial relationships can be
assessed in detail. In no study assessed were clear
attempts made to fit nonlinear forms to the data. This is
unsurprising, as the development of practical techniques
to undertake this effort is very recent [47].
Modern statistical developments in the handling of

missing data may enhance the information already
acquired. Again, very little information on the assess-
ment and management of missing data was available
from the reviews (five CDR studies [21,38,39,42,44] and
two serum marker studies [48,49]). Very recent publica-
tions of studies in which simulation [50] and surveying
practice [51] were used produced workable guidelines
for the use of imputation techniques to maximise the
value of the data collected. IPD will allow us not only to
test existing rules and combine data derived from
attempts to examine the rules but also, potentially, to
develop a more robust rule for future use worldwide.

Parent and/or caregiver involvement
The development of shared research initiatives involving
patients, clinicians and researchers has been a notable
change in the practice of clinical research over the past
decade [52]. It remains surprising to many researchers,
clinicians and patients when they learn that their views
are often strikingly different from each others’ [53]. A
systematic review of studies of the process of research
planning and priority setting undertaken by the James
Lind Alliance [52] demonstrated that the involvement of

patients and parents as well as other caregivers was
extremely infrequent.
The PICNICC group has sought to involve parents

early in the treatment process. Discussions of the nature
of their engagement in the process have so far high-
lighted that the representatives involved have not wished
to be actively involved in the process of reviewing, but
to be included in discussions about the nature of, the
adverse effects of FNP and that they have been willing
to provide their own nonmedical expertise in advancing
the project.
The discussion of the nature and extent of patient and

caregiver involvement in the PICNICC group will con-
tinue as the project develops. Possible opportunities for
further involvement include writing commentaries on
the study for patients and their families, providing
alterative views on ethical questions, making choices
regarding risk thresholds and considering how uncer-
tainty and imprecision should be managed.

Methods
Aims
Primary
A primary aim of the project is to undertake an IPD
pooled analysis to quantify the risk of adverse clinical
outcomes according to clinical variables in children and
young people undergoing treatment for malignant dis-
ease who present with an episode of FNP; that is, to
identify which variables are prognostic and which have
the most independent prognostic importance. Another
primary aim is to develop and validate a new risk pre-
diction model containing multiple prognostic factors in
combination.
Secondary
The secondary aim of this project is to develop and
explore practical and methodological issues surrounding
the use of pooled IPD analysis in the development of
predictive models.
Inclusion and exclusion criteria
Studies will be considered for inclusion in the IPD
meta-analysis if they are cohort studies of children and
young people presenting with FNP and/or with either
prospective or retrospective data collection, including
RCT data; if they provide data for all ‘essential’ predic-
tive variables in more than 50% of included episodes
(see ‘Core data set and variables’ section); and if they
provide details of two or more study-defined outcomes
in more than 90% of individual episodes of FNP.
Studies will be excluded if they are case series (for

example, studies of only ‘Gram-negative bacteraemias’)
and if they did not record data on all ‘essential’ predic-
tive variables or cannot provide sufficient outcome data.
Studies will be included if they focus on the collection

of data from children and young people (between 0 and
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24 years old). The purpose of the inclusion criterion of
studies of young people up to the age of 24 years is to
address a paucity of research on individuals in the
‘young adult’ age range [54]. Data from individual
patients ages 25 years and older will be excluded from
this analysis. The median age of inclusion in the ‘chil-
dren’s’ cohorts examined in our reviews was about 7
years old (ranging from 1 month to 23 years), and the
‘adult’ study from the Multinational Association for Sup-
portive Care in Cancer group [55,56] has a median age
of 52 years (range, 16 to 91 years old).

Identification of potential studies
The initial identification of studies has been through
extensive literature searches undertaken as part of the
systematic reviews reported briefly in the Additional
material at the end of the protocol (see Appendix 1 in
Additional file 1 for a list of studies).
The following databases were searched by two inde-

pendent reviewers to identify potential collaborators:
MEDLINE, MEDLINE in-process and other nonindexed
citations, Embase, Cumulative Index to Nursing and
Allied Health Literature, Cochrane Database of Systema-
tic Reviews, Database of Abstracts of Reviews of Effects,
Health Technology Assessment Database, Cochrane
Central Register of Controlled Trials, Thomson Reuters
Conference Proceedings Citation Index-Science and Lit-
eratura Latinoamericana y del Caribe en Ciencias de la
Salud. The reference lists of relevant systematic reviews
and included articles were reviewed for further relevant
studies. Published and unpublished studies were sought,
and no language restrictions were applied. Non-English-
language studies were translated into English. (See
Appendix 2 in Additional file 2 for a sample search that
we conducted.)
Further analysis of the initial literature searches will be

undertaken to identify any published cohorts of FNP
patients that may have been excluded from the reviews
because a CDR or serum marker was not tested, yet
could provide the information essential to being
included in the IPD study. In addition to this, open calls
for participation have been made via the International
Society for Paediatric Oncology Supportive Care Group,
the University of York Centre for Reviews and Dissemi-
nation website (http://www.york.ac.uk/inst/crd/projects/
picnicc_patient.htm), presentations at relevant UK and
international conferences, and via the Oncopedia web
community of paediatric oncologists (https://www.cur-
e4kids.org/ums/home/index.php?location=%2Fums%
2Foncopedia%2F).

Core data set and variables
This IPD meta-analysis will develop a risk stratification
model to predict which children and young people have

a low risk of adverse outcomes during an episode of
FNP. The predictor variables and adverse outcomes
sought have been based on our systematic reviews of
aggregate data, in which exploratory analysis showed
that age, malignant disease state, clinical assessment of
circulatory and respiratory compromise, higher body
temperatures and bone marrow suppression had expla-
natory value and reflected clinical experience of the pae-
diatric oncologists.
The following predictor variables are divided into

‘essential’ and ‘desirable’ items and can be categorised as
(1) patient-related, episode-related clinical variables and
(2) patient-related, episode-related laboratory variables:
1. Age
2. Underlying tumour type
3. Marrow involvement and/or remission status
4. Chemotherapy type and time elapsed since last

cycle
5. Presence of central venous line
6. Inpatient or outpatient at onset of episode
7. Maximum temperature
8. Antibiotic therapy used
9. Respiratory rate (or compromise)
10. Circulatory parameters (or compromise)
11. Severe mucositis
12. Global assessment of illness severity
13. Haemoglobin
14. Platelet count
15. White blood cell count
16. Neutrophil count
17. Monocyte count
18. CRP
19. Procalcitonin
20. IL-6
21. IL-8
The following are outcomes of primary interest from

each episode:
1. Death
2. ICU admission
3. Need for moderate organ support (fluid bolus,

oxygen)
4. Clinically documented infections
5. Microbiologically documented infections
Two or more of these outcome measures should be

provided for more than 90% of episodes.
If available, we will also collect data on the following:
1. Duration of fever
2. Duration of admission
An example of the initial survey of data available from

collaborators is provided in Appendix 3 in Additional
file 3. An a priori mapping schema linking microbiologi-
cal and clinical outcome variables into a unified descrip-
tion of ‘severe’ and ‘nonsevere’ infections has been
developed to assist with unifying outcome definitions.
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Providing data
Anonymised deidentified data
Data sets should be anonymised (that is, have all directly
identifiable material removed, such as name, address,
postal code, record number). A patient identification
number should be provided to facilitate communication
and data queries. For the purposes of this report, the
age of the patient (an indirect identifier) is essential and
should be provided [57].
Data format
The data will be accepted by the PICNICC Collaborative
in any electronic format, but ideally a ‘flat’ spreadsheet
format (such as Microsoft Excel; Microsoft Corp, Red-
mond, WA, USA) will be most useful, with one episode
per row and variables listed in columns. Each patient
should be assigned an in-cohort unique identifier (such
as a simple number 1, 2 ... n) to highlight repeated epi-
sodes in the same patient. A suggestion for coding the
variables is provided in Appendix 4 in Additional file 4
and a sample flat file is available on request.
Transfer of data
The data should be transferred to a secure password-
protected web server or by pretty good privacy-
encrypted email. This permits a secure and identifiable
connection to the University of York servers and mini-
mises the possibility of data loss.
Data checking
Simple checks of data integrity will be undertaken prior
to analysis. These checks will include sense checking of
data (for example, impossibly low presenting tempera-
tures, such as less than 30°C or for second episodes of
FNP where the outcome of the first was death), clarify-
ing missing data (that is, ensuring missing data is
recorded as ‘missing’ rather than ‘zero’) and calculating
simple descriptive statistics of ‘essential’ elements to
assess for ‘outlier’ studies (for example, age, sex, number
of episodes per person). Any problems or inconsisten-
cies flagged during these procedures will be discussed
with the individual responsible for each study and
amended as appropriate by consensus.

Ethical and regulatory considerations
This IPD protocol has been approved in the United
Kingdom by the University of York Health Services
Research Ethics and Research Governance Committee.
Each clinician member of the PICNICC Collaborative is
advised to seek country-specific advice regarding the
regulations which apply to data shared in this study.

Plan of investigation
Method of analysis
The primary method of analysis for the PICNICC study
will be the use of multivariable logistic regression mod-
elling. There are a series of different analytical

techniques that can be used to produce rules, including
multivariable regression analysis, classification and
regression tree (CART) models, discriminant analysis
and neural networks. There is no clear evidence that
one method is superior to any other [58], and, as multi-
variable logistic models have the widest clinical under-
standing and applicability, this method has been
selected.
In the primary analysis, data used will be from the

first recorded episode for each patient to predict an
absence of adverse outcomes due to the individual epi-
sode (that is, death, intensive care requirement, medical
complication, bacteraemia or other significant bacterial
infection). Following the primary analysis, outcome data
and predictor variables from subsequent episodes will be
analysed to assess the independence or otherwise of
these data, and this information will also be included
using an appropriate model.
Prospective and retrospective cohorts will be consid-

ered separately in the initial analyses on the basis of the
hypothesis that there will be a clinically important dif-
ference between the two types of studies. If no differ-
ence is found, then the data set will be examined as a
whole. The prognostic importance of individual vari-
ables, both unadjusted and adjusted for other variables
(the latter to summarise independent prognostic value),
will be summarised for each study.

Assessment of study and data quality
There is very little advice in the literature for assessing
the quality of prognostic studies. Altman and Lyman
presented suitable criteria that those initiating a primary
prognostic study should consider [59], and they sug-
gested that every effort should be made to limit poten-
tial biases and to emulate the design standards of a
clinical trial. Ideally, the data should be collected pro-
spectively, with little missing data for predictors or out-
comes and with predefined hypothesises. We will use
these guidelines and those published by Hayden et al.
[60] to help inform the quality of the IPD obtained. For
example, an assessment will be made of the proportion
of missing data and the completeness of follow-up. The
influence of any studies considered problematic (for
example, those with large amounts of missing data or a
great deal of incomplete follow-up) on the prediction
model will then be considered, resulting in either their
exclusion or in sensitivity analyses comparing model
estimates when they are included or excluded.

Model development
The model will initially incorporate the simplest predic-
tor variables (malignant diagnosis, age, time since che-
motherapy, and maximum recorded temperature) before
standard additional variables (such as clinical
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assessments of compromise, inpatient or outpatient sta-
tus, white blood cell counts or other haematological
parameters) are added. Further specialist tests (for
example, CRP and IL-6 levels) will be added. The type
of antibiotic therapy used will always be incorporated
into the model as a categorical variable. Potential
sources of heterogeneity (for example, in effects of parti-
cular variables across studies) will be incorporated as
random effects as appropriate. The models will be
assessed for improvement in fit by using an information
criterion (for example, Akaike’s information criterion)
with a P-value of < 0.15 used for inclusion. We will use
a 15% rather than a 5% level, as we feel this is more
conservative and will limit the chance of missing impor-
tant covariates. At the stage of deciding our final model,
however, we will check that the model’s predictive accu-
racy (discriminatory ability) is improved by the inclusion
of variables whose significance is between 5% and 15%.
If predictive accuracy is not improved, then these vari-
ables will be removed.
This approach (of adding specialist tests only after

considering the simpler tests) maximises the utility of a
model by ensuring that, if extra tests with their addi-
tional costs are required, they will add considerable pre-
dictive power to existing simpler variables [61]. We will
use bootstrapping and shrinkage to adjust for potential
overoptimism (bias) in parametric estimates and trends.
Continuous candidate variables will be assessed using

the best fitting functional form considering appropriate
transformations or fractional polynomials (also assessed
using an information criterion) as suggested by previous
evidence. Missing data will be examined to define the
nature of the ‘missingness’. If they are missing at ran-
dom, then multiple imputation techniques will be used
to address these gaps utilising all the other available
data [50,51]. The results of these analyses will be com-
pared with a complete case analysis. We will conduct an
analysis comparing the new model that we develop with
other validated models, for example, that of Santolaya et
al. [62]. This will provide an opportunity to test these
CDRs against data from other geographical areas.
We acknowledge that there may be unforeseen chal-

lenges caused by the variations in the data formats avail-
able from the different studies. Therefore, we
acknowledge that establishing the definitive analysis
plan will be an iterative process and may even demand
novel methodological developments (see ‘Further
research opportunities arising from PICNICC’ section).

Assessing model performance
An important goal of a prediction model is to classify
patients into risk groups. The developed model will pro-
duce a risk score for each individual that is based on
the patient’s own predictor values. We will then use a

cutoff value to decide when a risk score is high (such
that we predict an adverse outcome) and when it is low
(such that we predict a good outcome); this will be our
CDR. The calibration of the model will be assessed by
classifying children into deciles ordered by predicted
risk and considering the agreement between the mean
predicted risk and the observed events in each decile.
The derived CDR will be cross-validated by comparing
the classification of each patient with his or her actual
outcome, thus allowing an estimate of the sensitivity
and specificity of the prediction model. Next, by varying
the chosen cutoff level, we will be able to produce a
receiver operating characteristic curve (ROC) summaris-
ing the sensitivity and specificity of the predictive rule
across the range of cutoffs. The overall discriminatory
ability will be summarised as the area under the ROC
(AUC ROC) with the 95% confidence interval. The most
suitable cutoff level can then also be detected.
Each predictive model will be tested by checking how

it performs against the data from all but one of the stu-
dies in turn (cross-validation of intrinsic prognostic per-
formance) [63] and by using the bootstrap procedure
[64]. This will adjust for overoptimism in the estimation
of model performance due to validation in the same
data set that was used to develop the model itself.
The improvement in model performance by adding

prognostic factors will be assessed by net reclassification
improvement. By analysing the difference among the
prognostic factors, a shrinkage factor will be calculated
and the model will be corrected by this shrinkage factor.
Note also that clustering of patients within studies will
be accounted for in the model framework.

Validation in new data
We will compare the predicted and observed event rates
to assess calibration (as described above) and the AUC
ROC to assess discriminatory ability. If new data
become available after the formation of the PICNICC
Collaborative, they will provide an excellent test bed for
the newly proposed model. Such an analysis is outside
the initial scope of this project. We will update the
model if it shows poor performance to adjust it to the
new situation by recalibration or revision methods,
depending on discrimination performance. Simple diag-
nostic test accuracy measures (such as positive and
negative predictive values) will be computed for a
hypothetical population (with its particular incidence
rates) to aid clinical interpretation of the study results
that define a low-risk group.

Assessment of publication bias
We do not believe that publication bias will affect the
data we obtain. We have sought to retrieve full data
from the studies and so have sidestepped many of the
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problems of reporting bias. There may remain issues of
different outcome collection and different outcome
assessment methods, but these will not have been biased
by collection and analysis of the predictive data. We
have tried to avoid publication bias by making open
calls for data which has been collected but not yet pub-
lished, and we have probably secured three such data
sets for analysis. This may be too few to undertake a
formal assessment of the difference between the pub-
lished and unpublished sources. We are also using the
data for a purpose different from that used by the origi-
nal data collectors. We are developing a prediction
model, whereas the original researchers are interested
only in the prognostic effect of particular variables.
Furthermore, by obtaining the IPD, we have obtained
outcomes and variables not reported by the original
data collectors in any publication. However, to check
whether our collection of studies may be affected by
publication bias, we will display a funnel plot for each of
the variables included in the final model to see whether
there is asymmetry (that is, potential publication bias).
We will use guidelines for assessing asymmetry recently
published in BMJ [65].

Publication policy
The main results of the meta-analysis will be published
and presented under the PICNICC name, with PIC-
NICC comprising groups supplying data for analysis as
well as its advisory group. Any subsequent technical
papers which describe innovations in the methodologies
used in the meta-analysis will acknowledge the PIC-
NICC Collaborative as the source of the data. The PIC-
NICC Collaborative will disseminate the findings of its
research widely at academic conferences and in journal
publications, on the University of York website and in
lay summaries of the research.

Discussion
Status of the project
Currently, the PICNICC Collaborative has completed
study identification and invitation and has collected data
derived from 23 data sets from 12 countries, including
the Europe-wide European Organisation for Research
and Treatment of Cancer studies. No data analyses have
yet been undertaken. The opportunity to include data
sets for the derivation of a new PICNICC CDR have
now closed, but approaches may be made to the authors
for consideration of inclusion of further data sets in sub-
sequent validation testing or further refinements of the
initiative.

Further research opportunities arising from PICNICC
It is hoped that collaborations developed through the
PICNICC project may also lead to a series of

international studies to improve patients’ experiences
and outcomes with regard to infectious complications in
cancer. One obvious follow-up study might be the use
of the newly derived model in a RCT of alternative
management approaches (for example, ambulatory oral
antibiotics vs inpatient intravenous antibiotics). Other
studies may include the investigation of genetic poly-
morphisms in determining the outcomes of infectious
episodes; the prediction of specific infections which may
require different management approaches, such as anti-
biotic-resistant bacteraemia; or the prediction of the risk
of an episode of FNP.
The PICNICC Collaborative will provide data that will

prove invaluable in the development of the methodology
of IPD meta-analysis for risk prediction. This develop-
mental work, which will be essential to developing the
best possible model in PICNICC, is outside the core
clinical questions set for the PICNICC Collaborative and
will be undertaken as a series of linked projects. The
problems to be addressed in developing the methodolo-
gies will depend on the nature of the data sets obtained.
They may address issues regarding the analysis of miss-
ing data, the use of different imputation models, the
modelling of multiple-episode data, the relative merits
of prospective and retrospectively collected information,
the use of alternative modelling techniques (such as
CART, structured equation modelling, Bayesian techni-
ques or neural networks), the comparison of episodic
and patient-centred analyses and the use of categorical
outcome variables. A short methodological protocol will
be developed for each methodological investigation prior
to commencement.

Additional material

Additional file 1: Appendix 1: Potential IPD Datasets.

Additional file 2: Appendix 2: Search Strategy.

Additional file 3: Data collection survey.

Additional file 4: Suggested coding structure.
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data; RCT: randomised controlled trial.
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Appendix 18. Mapping for severe infection

Severe infections:

 Isolation in the blood of any gram-negative organism

 Isolation in the blood of selected gram-positive infections (eg Staph. Aureus, Strep viridans)

 Any significant bacterial isolate from CSF

 Any significant bacterial isolate from lower respiratory tract secretions

 Probable / proven invasive fungal infection according to EORTC definitions Isolation of

bacteria from a deep soft-tissue or bone infection

 Mycobacteria

 Malarial parasites

 Serum isolation of significant quantities of adenovirus,VZV, HSV or CMV (as determined by

PCR copy number)

 Respiratory virus isolation in the setting of stem cell procedures

 Additionally, clinical site information without definite microbiological confirmation may also

indicate:

 Cellulitis or CVC tunnel infection

 Bone / deep soft tissue infection

 Finally, any admission to a critical care facility is considered to be related to severe infection,

unless designated clearly as for an alternative cause.

Non-severe infections:

 Isolation of most gram-positive organisms, for example coagulase negative staphylococci, or

diptheroids

 Isolated bacterial growth in urine, or scanty yeast

 Respiratory viruses from respiratory secretions without hypoxia

 Superficial skin infections (eg exit site infection without significant cellulitis)

 Viral gastroenteritis

 Additionally, clinical site information without definite microbiological confirmation may also

indicate:

 Otitis media

 Tonsillitis

 Superficial skin infection
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ppendix 19. Collectabl
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Principle clinician

Contact for data

queries (if known)

Please tick (√) each item as to if your database could or could not provide the informaƟon.

Item

Predictors

Age

Underlying tumour type

Marrow involvement/remis

Chemotherapy type and da

cycle

Presence of central venous l

In-patient or out-patient at

episode

Maximum temperature

Respiratory rate (or compro

Circulatory (or compromise)

Severe mucositis

Global assessment of illness

Antibiotic therapy used

data screening questionnaire
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ate ies in febrile neutropenic episodes in

nder oin treatment for mali nant disease

for the PICNICC study
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nset of
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severity

√) each item as to if your database could or could not provide the informaƟon.

Unsure
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Item Can provide Cannot provide Unsure

Haemoglobin

Platelet count

White cell count

Neutrophil count

Monocyte count

CRP

PCT

IL6

IL8

Outcome

Death

Duration of intensive care admission

Need for moderate organ support

(fluid bolus, oxygen)

Clinically documented infections

Microbiologically documented

infections

Duration of fever

Duration of admission

Other

Date of episode of FNP

Age at episode of FNP

Please return completed form to crd-picnicc@york.ac.uk
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ppendix 20. Coding str

Age

Actual age at start of episode, i

999 = unknown

Tumour type

(Diagnosis under treatment, co

Acute lymphoblastic leukaemia

Acute myeloid leukaemia

Other leukaemia

Hodgkins lymphoma

Non-Hodgkins lymphoma

Low-grade brain tumour (I-II)

High-grade brain tumour (III-IV)

‘High risk’ neuroblastoma

Other neuroblastoma

Retinoblastoma

Wilm’s tumour

Other renal tumour

Hepatoblastoma

Other liver tumor

Osteosarcoma

Ewing’s sarcoma

Rhabdomyosarcoma

Other sarcoma

Germ cell/gonadal neoplasm

Carcinoma/melanoma

LCH

Other Please provide separate

99 Unknown

Relapsed/progressive disease

Is this a relapsed/progressive m

0 = no

1 = yes

9 = unknown

Marrow involvement

Bone marrow involvement at di

0 = no

1 = yes

9 = unknown

cture.

months

ed as:)

details of any ‘other’ diagnoses

lignancy:

gnosis:
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Remission status

In remission (leukaemia only) or on-treatment or post-treatment (solid tumours)

0 = no

1 = yes

9 = unknown

Chemotherapy type

Specify the most recent chemotherapy cycle (in words/by acronym or explicit numerical coding)

This will require a description of each chemotherapy protocol included from each study.

Specify ‘Unknown’ if unknown

Time from last chemotherapy cycle

Time (in days) since the start of most recent cycle of chemotherapy. For maintenance/prolonged

chemotherapy courses, code as ‘ongoing’ even if temporarily discontinued.

0 = ongoing

1 ….k = time in days

999 = unknown

Presence of central venous line

0 = no

1 = fully implanted (e.g. Port-a-cath)

2 = external tunnelled (e.g. Hickman)

3 = non-tunnelled line (e.g. PICC line or Vascath)

4 = line present, type unknown

9 = unknown if line present or not

In-patient or out-patient at onset of episode

0 = in-patient

1 = out-patient

9 = unknown

Maximum temperature

Maximum recorded temperature at admission. May be parent-reported or clinician-measured.

To be recorded as an absolute value in 0C to one decimal place.

99.9 = unknown

Respiratory assessment

At initial assessment. To be recorded as an absolute value in breaths/min where given.

1 ….k = respiratory rate (breaths/min)

If data are only available on the presence/absence of respiratory compromise:
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777 = no compromise

888 = compromised

999 = unknown

Circulatory assessment - HR

At initial assessment. To be recorded as an absolute value of heart rate in beats/min.

1 ….k = pulse rate (beats/min)

999 = unknown/not recorded

Circulatory assessment – BP systolic

At initial assessment. To be recorded as an absolute value mmHg.

1 ….k = systolic blood pressure (mmHg)

999 = unknown/not recorded

Circulatory assessment – BP diastolic

At initial assessment. To be recorded as an absolute value mmHg.

1 ….k = diastolic blood pressure (mmHg)

If data are only available on the presence/absence of circulatory compromise, code here:

777 = no compromise

888 = compromised

999 = unknown

Mucositis

At initial assessment. To be recorded as

0 = none

1 = mild

2 = severe

9 = unknown

Global assessment of illness severity

At initial assessment. To be recorded as

0 = well

1 = mildly unwell

2 = severely unwell

9 = unknown

(If an alternative study-specific system is available, please report and specify coding separately.)
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Initial antibiotic therapy

The initial antibiotic therapy used should be reported. This can be done by specify the treatment

used (in words/by acronym).

(Will require a description of each chemotherapy protocol included from each study)

Specify ‘Unknown’ if unknown

The PICNICC Secretariat will recode such information as below:

Initial antibiotic therapy coded as the PRODUCT of individual codes

0 = none

2 = oral antibiotics; quinilone

3 = oral antibiotics; penicillin

5 = oral antibiotics; macrolide

7 = IV antibiotics; cephalosporin

11 = IV antibiotics; carbapenem

13 = IV antibiotics; aminoglycoside

17 = IV antibiotics; piperacillin/tazobactam

19 = IV antibiotics; glycopeptide

(as a series of prime numbers, any number which is coded from them will be unique)

Modification of antibiotic therapy

Modification of antibiotic therapy required

0 = no

1 = yes

9 = unknown

Haemoglobin

At initial assessment. In mg/dL

9999 = unknown

Platelet count

At initial assessment. As count *109

9999 = unknown

White cell count

At initial assessment. As count *106

9999 = unknown

Neutrophil count

At initial assessment. As count *106

9999 = unknown
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Monocyte count

At initial assessment. As count *106

9999 = unknown

CRP

At initial assessment. In mg/dL

9999 = unknown

PCT

At initial assessment. In mg/mL

9999 = unknown

IL6

At initial assessment. In pg/mL

9999 = unknown

IL8

At initial assessment. In pg/mL

9999 = unknown
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Appendix 21. Data manipulation SOPs

Data collection & file naming convention

Individuals responsible for the storage of data will send the files in electronic format to the

University of York via ‘Dropbox’.

This is a secure, personalised web-based system where documents can be shared with specific

individuals via any web browser (www.dropbox.com).

Each contact will be emailed a ‘share’ request to use for this data-drop

Files will be removed from the ‘Dropbox’ when received

The data file when retrieved will be stored in the \\projectfs\CRDdata\PICNICC\received filestore

For those persons having difficulty with the Dropbox.com system, a secure email service (using PGP

key) is also offered.

The file will be converted to a flat spreadsheet format and renamed according to the convention

“GroupAcronym-raw” (e.g. SPROG-raw)

Should two different data sources be supplied by the group, they will be suffixed according to the

starting year of the data (e.g. SPROG1999-raw and SPROG2008-raw)

This file will be stored in the \\projectfs\CRDdata\PICNICC\raw filestore

The working copy of the file will be named “GroupAcronym-working-yyy-mm-dd” while being

cleaned, recoded and tidied up to fit into the standard format

The final version of the data will be named “GroupAcronym-final”

This file will be stored in the \\projectfs\CRDdata\PICNICC\final filestore
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The data will be incorporated into the master data file, named “PICNICC-yyyy-mm-dd”

Log files should be named “GroupAcronym-log”

R-logs should be named “GroupAcronym-Rlog-yyy-mm-dd”

This file will be stored in the \\projectfs\CRDdata\PICNICC\logs filestore

Nature of the data supplied

The files containing data should have:

One row of data per episode

One variable per column, first row a header

Linked with a patient identification number, but anonymised (i.e. have all directly identifiable

material removed, such as name, address, postcode, medical number).

A coding sheet, detailing the different columns and codes used in the data file should be provided

Any uncertainties will be resolved, in the first instance, by email communication.

Logging interventions upon data supplied

Log files – plain text record of actions – should be opened and retained for each received data file.

It should record any actions (such as renaming) in the following structure, with the oldest records at

the top (head) of the document

DATE: Action
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e.g. 14-02-2011: Copy saved ‘Valentine-raw’

14-02-2011: Copy saved ‘Valentine-working-2011-02-14’

14-02-2011: Understood code sheet and data file

It should include emails & phone calls sent & received in order to clarify any data queries.

Any actions within the ‘R’ programme will be recorded in its own log, so all that needs to be

recorded is that R was used, and a brief note of what was done (for ease of finding again)

Sense checking and resolution of queries

The first action on opening the raw data file should be to rename the file and save as ‘raw’,

according to the naming convention.

A copy should then be opened and renamed ‘working’

The first review should be to confirm that the supplied coding sheet and data file correspond, and

that any uncertainties are logged.

If uncertainties exist, then a contact (email) should be undertaken with the data supplier clarifying

the nature of the problem and requesting a response to the uncertainty.

This should be undertaken by using a common identifier and pointing out clearly the area of

uncertainty

A copy of the isolated lines of queried data may be placed as an XLS worksheet in the ‘dropbox’ if

further clarification is needed: this should have the initial datafile’s row/column identified, and the

queried calls should be highlighted

The columns should be reordered in line with the PICNICC master data file structure
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Presence of the essential variables and outcomes should be verified at the ‘column’ level

The variable names should be altered according to the conventions of the PICNICC master data file

structure

The file should be examined for missing data and recoded as NA (in accordance with R data

structures)

When any uncertainties at this level are resolved, it should be still saved as a ‘working copy’

The data checks which are simplest to be undertaken in Excel (as it’s prettier) seem to be

age checking (negative, zero and not older than 9125 days (25yr), consistency of patient DOBs, and

sensible diagnosis & age relationships)

episodic checking – listing by age and DOB and then admission date and looking for odd/inconsistent

elements (>6m in between FNP episodes)

time-since-chemo checking (negative and >42 days), and looking for consistency with other episodes

white cell indices (making sure not ‘zero’, and that components eg ANC and AMC are not greater

than the total WCC)

The data should be imported into R and the data checking procedures run upon the data as an

independent data file, unconnected to the rest of the PICNICC dataset. See section ‘R-data-checking’

Subsequent queries and their resolutions should be recorded in the ‘flat’ & updated working copy

file
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When all queries have been adequately resolved, the data should be saved as a final form. This is the

data which will be imported into the master R data file.

R data checking

All actions in R should be logged and the file saved according to the convention on a sessional basis

As data manipulation in R is difficult, data have been exported as CSV files and undergone checking

as per non-R files
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Appendix 22. Further detailed information on the IPD data

Table 43: Summary of relevant QUADAS criteria for included studies

Author Data

collection

1 2 3 4 6 7 8 9 11

Alexander [134] Retrospective Yes Yes Yes Yes No Yes Yes Yes Yes

EORTC Studies[5] Prospective Yes Yes Yes Yes Yes Yes Yes Unclear Yes

Genoa[258] Prospective Yes Yes Yes Yes Yes Yes No No Yes

Hakim [129] Retrospective Yes Yes Yes Yes Yes Yes No Yes Yes

Kitanovski [163] Prospective Yes No Yes Yes Yes Yes Unclear Unclear Yes

Klaassen [26] Prospective Yes Yes Yes Yes Yes Yes Yes Yes Yes

Lehrnbecher [259] Prospective Yes No Yes Yes Yes Yes No No Yes

PINE [154] Prospective Yes Yes Yes Yes Yes Yes Yes No Yes

RetroBern [79] Retrospective Yes Yes Yes Yes Yes Yes No No Yes

Silva[260] Prospective Yes Yes Yes Yes Yes Yes Yes Yes Unclear

Spasova [160, 261] Prospective Yes No Yes Yes Yes Yes Unclear Unclear Yes



Page 348 of 410

SPOG groups [144] Prospective Yes Yes Yes Yes Yes Yes No No Yes

Stryjewski [262] Prospective Yes Yes Yes Yes Yes Yes Unclear Unclear Yes

Sung [263] Prospective Yes Yes Yes Yes Yes Yes No No Yes

Tezcan [69] Retrospective Yes No Yes Yes Yes Yes Yes Unclear Unclear

Tissing [148, 158] Prospective Yes Yes Yes Unclear Yes Yes Unclear Unclear Yes

1 = representative patients, 2 = clearly described selection criteria, 3 = whole sample, or a random selection of sample, received reference standard,

4 = all patients received same reference standard, 6 = index test described adequately, 7 = reference standard described adequately, 8 = blinded

interpretation of index test results, 9 = blinded interpretation of reference standard results, 11 = adequate reference standard.

(5 = index test not part of reference standard: omitted as data permitted unpicking of these, 10 = same clinical data available as in clinical practice:

omitted as all data selected were available in clinical practice)
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Table 44: Age distribution (in years) across derivation studies

Study ID Min Median Mean Max

Alexander 1.4 7.3 8.8 25

BaselSPOG 4.1 5.4 6 9.7

BernSPOG 1 6.8 7.6 16

BonnSPOG 1.3 8.1 8.6 18

EORCT-XIV 2.1 19 18 25

EORTC-IX 1 8 9.9 24

EORTC-XI 0.65 13 13 25

EORTC-XII 5.2 21 19 25

Genoa 0.14 5.7 7 20

Hakim 0.2 6 7.8 22

Kitanovski 0.92 6.7 8.5 18

Klaassen 0.48 6.4 7.4 18

Lehrnbecher 0.36 7.5 9 29

PINE 0.15 5.5 6.7 18

RetroBern 0.63 6.8 8 17

Silva 1.2 7.5 7.6 29

Spassova 0.2 7.8 8.5 19

Styjewski 0.42 5 6.8 17

Sung 0.81 6.2 7.9 18

Tezcan 0.25 4.57 6.7 17.65

Tissing 0.52 5.9 7.2 19

ZurichSPOG 1.2 6.8 7.9 17
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Figure 57: Proportions of diagnoses per episode per study

Proportion

Alexander
BaselSPOG
BernSPOG
BonnSPOG
EORCT-XIV
EORTC-IX
EORTC-XI
EORTC-XII

Genoa
Hakim

Kitanovski
Klaassen

Lehrnbecher
PINE

RetroBern
Silva

Spassova
Styjewski

Sung
Tezcan
Tissing

ZurichSPOG

0.0 0.2 0.4 0.6 0.8 1.0

ALL

AML

Brain

Carcinoma

Ewings

GCT

Hepato

HGBrain

Hodgkins

HR.NBL

LCH

LGBrain

LR.NBL

Lymphoma

NBL

NHL

Nonmalignant

Osteo

Other

Retino

RMS

Sarcoma

Solid

Wilms



Page 351 of 410

Figure 58: Distribution of tumour type by age

Table 45: Gender distribution per study

Study Female Male NA.s Proportion

Male

M:F

Ratio

Alexander 90 97 0 0.52 1.08

BaselSPOG 3 6 0 0.67 2

BernSPOG 100 71 0 0.42 0.71

BonnSPOG 18 26 0 0.59 1.44

EORTC-IX 136 179 0 0.57 1.32

EORTC-XI 127 174 0 0.58 1.37

EORTC-XII 10 11 0 0.52 1.1

Genoa 271 432 0 0.61 1.59

Kitanovski 25 43 0 0.63 1.72

Klaassen 198 233 0 0.54 1.18

Lehrnbecher 124 186 1 0.6 1.5

PINE 374 438 0 0.54 1.17

RetroBern 143 221 0 0.61 1.55
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Silva 26 26 0 0.5 1

Spassova 82 117 0 0.59 1.43

Styjewski 27 29 0 0.52 1.07

Sung 29 46 0 0.61 1.59

Tezcan 68 77 0 0.53 1.13

Tissing 127 123 8 0.49 0.97

ZurichSPOG 63 91 0 0.59 1.44

Table 46: Episodes per patient in non-unique-entry studies

Study ID Min Median Mean Max

Alexander 1 2 2.3 8

BaselSPOG 1 1.5 1.5 2

BernSPOG 1 2 2.7 10

BonnSPOG 1 2 1.9 4

Genoa 1 1 1.6 7

Kitanovski 1 2 2.6 6

Klaassen 1 2 2.4 9

Lehrnbecher 1 2 2.4 10

PINE 1 1 1.5 2

RetroBern 1 2 2.8 12

Silva 1 2 2.5 6

Spassova 1 2 2.5 7

Tezcan 1 2 2.6 10

Tissing 1 2 2.6 14

ZurichSPOG 1 2 2.1 6
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Table 47: Proportion of patients who experienced the dichotomous outcomes

Death ICU

admission

Organ

support

Severe

infection

Clinically

documented

infection

Microbiologically

documented

infection

Blood

stream

infection

Alexander 1.1% NA 8.0% 16.6% NA 14.4% 8.6%

BaselSPOG 0.0% 0.0% NA 44.4% NA 44.4% 44.4%

BernSPOG 1.2% 51.5% NA NA NA 32.2% 19.9%

BonnSPOG 0.0% 0.0% NA NA NA 13.6% 13.6%

EORCT-XIV 0.0% NA NA 36.9% 10.1% 26.8% 22.1%

EORTC-IX 1.9% NA NA 46.7% 16.8% 29.8% 24.4%

EORTC-XI 1.3% NA NA 45.8% 19.3% 26.6% 20.6%

EORTC-XII 0.0% NA NA 42.9% 23.8% 19.0% 19.0%

Genoa 2.4% NA NA 21.5% 6.4% 17.4% 11.2%

Hakim 1.5% 35.7% 11.7% 35.5% 21.4% 23.2% 12.3%

Kitanovski 0.0% 39.7% 11.8% 44.1% 32.4% 26.5% 24.6%

Klaassen 0.7% 6.0% NA 23.4% 28.3% 28.3% 12.5%

Lehrnbecher NA NA NA 33.1% 22.5% 17.4% 10.6%

PINE 0.4% 19.0% NA 33.3% 12.1% 39.2% 32.8%

RetroBern 0.5% NA NA 50.3% 41.2% NA 23.9%

Silva 0.0% 9.9% 1.9% 17.3% 67.3% 17.3% 11.5%

Spassova 3.5% 15.6% NA 56.3% 0.0% 42.7% 42.7%

Styjewski 5.4% NA NA 30.4% NA 28.6% 19.6%

Sung 0.0% NA NA NA NA 12.0% 9.3%

Tezcan 2.1% 7.2% NA 63.4% 40.0% 53.1% 39.3%

Tissing 0.8% 32.0% 8.8% NA NA 34.4% 23.7%

ZurichSPOG 0.6% 7.1% NA 17.5% NA 14.9% 11.7%
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Figure 59: Duration of admission (per study)
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Figure 60: Duration of fever (per study)

Duration of fever, by study

Days

C
o
u
n
t

0

100

200

300

400

500

10 2030 40

lexander BaselSPO

10 2030 40

BernSPOGBonnSPOG

10 20 3040

EORCT-XIV EORTC-IX

10 20 30 40

EORTC-XI EORTC-XII

Genoa Hakim Kitanovski Klaassen ehrnbeche PINE RetroBern

0

100

200

300

400

500
Silva

0

100

200

300

400

500
S assova

10 20 30 40

St ewski Sun

1020 30 40

Tezcan Tissin

10 2030 40

urichSPO



Page 356 of 410

Table 48: Days since chemotherapy (by study)

Study ID Min Median Mean Max

BaselSPOG 12 16 20 40

BernSPOG 2 11 13 66

BonnSPOG 3 14 16 44

Hakim 0 5.1 7.3 510

Kitanovski 1 11 10 24

Lehrnbecher 1 6.9 8 77

RetroBern 2 11 12 44

Silva 0 8 7.3 23

Spassova 1 17 30 310

Sung 2 6.9 14 360

Tezcan 1 1 1.4 3

Tissing 0 5.8 6.6 40

ZurichSPOG 1 12 25 310

Table 49: Temperature (
o
C) per study

Study ID Min Median Mean Max

BaselSPOG 37.9 39 38.76 39.4

BernSPOG 36.3 39 38.88 40.6

BonnSPOG 38.1 38.8 38.85 39.8

EORCT-XIV 38 38.6 38.66 40

EORTC-IX 38 38.6 38.71 40.9

EORTC-XI 38 38.6 38.73 40.5

EORTC-XII 38 38.7 38.82 39.5

Hakim 36.1 38.4 38.5 41

Kitanovski 38 38.8 38.8 41

Klaassen 37.9 39 39.07 41.8

RetroBern 36.3 39.1 39.03 41.3

Silva 38 38.5 38.63 40

Spassova 35 38.4 38.5 40.4

Styjewski 37.2 38.3 38.51 40.2

Tissing 37.8 39.5 39.48 41

ZurichSPOG 37 38.6 38.62 40.5
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Table 50: Distribution of Hb (g/dL) by study

Study ID Min Median Mean Max

BaselSPOG 5 6.2 6.3 8.1

BernSPOG 4.4 9.5 9.4 15

BonnSPOG 6.6 10 10 15

EORCT-XIV 4.3 8.7 8.9 15

EORTC-IX 3.5 9.4 9.5 17

EORTC-XI 5.6 9.6 9.7 16

EORTC-XII 4.7 9.1 8.9 13

Hakim 5 8.8 8.9 13

Kitanovski 5.6 9.3 9.3 14

Klaassen 4.6 8.6 8.6 15

RetroBern 3.4 8.8 8.9 14

Sung 5.4 8.9 9 14

Tissing 3.9 8.3 8.4 17

ZurichSPOG 4.7 7.6 7.9 13

Table 51: Distribution of platelet count (x10
9
) per study

Study ID Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

BaselSPOG 1.792 2.996 3.324 5.112 6 20 49.22 166

BernSPOG 0 3.296 3.261 5.927 1 27 56.19 375

BonnSPOG 0 3.433 3.589 5.561 1 31 60 260

EORCT-XIV 0 3.258 3.263 6.073 1 26 40.91 434

EORTC-IX 0 3.466 3.474 6.021 1 32 51.12 412

EORTC-XI 0.6931 3.511 3.526 6.461 2 33.5 57.83 640

EORTC-XII 2.303 4.137 4.202 5.905 10 63 107.8 367

Hakim 0 4.016 4.022 6.422 1 55.5 98.19 615

Kitanovski 0 3.636 3.464 6.215 1 38 74.99 500

Klaassen 0 4.111 3.93 6.477 1 61 93.79 650

RetroBern 0 2.89 3.032 6.447 1 18 56.1 631

Silva 0.6931 4.483 4.376 5.875 2 88.5 120.3 356

Styjewski 0.6931 4.007 3.877 6.438 2 55 91.22 625
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Sung 1.099 4.443 4.246 6.227 3 85 117 506

Tissing 0 3.761 3.375 6.709 1 43 66.97 820

ZurichSPOG 0 3.892 3.796 6.524 1 49 76.05 681

Table 52: Distribution of white cell counts (WCC x10
6
) per study

Study ID Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

Alexander -2.813 -0.6162 -0.5945 2.917 0.06 0.54 0.9297 18.48

BaselSPOG -2.12 -1.238 -0.9462 0.1398 0.12 0.29 0.5022 1.15

BernSPOG -3.507 -0.9163 -1.077 1.308 0.03 0.4 0.5411 3.7

BonnSPOG -2.303 -0.1054 -0.2515 1.03 0.1 0.9 0.937 2.8

EORCT-XIV -4.605 -1.204 -1.073 5.226 0.01 0.3 2.581 186

EORTC-IX -2.303 -0.9163 -0.8323 3.493 0.1 0.4 1.023 32.9

EORTC-XI -2.303 -0.6931 -0.8024 3.699 0.1 0.5 1.163 40.4

EORTC-XII -2.303 -0.734 -0.6643 0.7885 0.1 0.48 0.8038 2.2

Hakim -2.303 -0.5108 -0.6391 2.617 0.1 0.6 0.8421 13.7

Kitanovski -2.303 -0.5108 -0.5823 2.14 0.1 0.6 0.9912 8.5

Klaassen -2.303 -0.5108 -0.581 2.639 0.1 0.6 0.8494 14

Lehrnbecher -3.219 -0.1054 -0.32 2.934 0.04 0.9 1.22 18.8

RetroBern -2.303 -0.6931 -0.7393 1.482 0.1 0.5 0.7344 4.4

Silva -1.609 -0.0526 -0.1379 1.335 0.2 0.95 1.076 3.8

Tissing -2.996 -0.9163 -1.197 1.065 0.05 0.4 0.5677 2.9

ZurichSPOG -4.605 -1.036 -1.011 1.411 0.01 0.355 0.5777 4.1

Table 53: Distribution of absolute neutrophil counts (ANC; cells/cubic mm), by study

Study ID Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

Alexander 0 3.689 3.195 6.209 1 40 95.78 497

BaselSPOG 4.382 4.382 4.811 5.67 80 80 150 290

BernSPOG 0 2.303 2.363 6.215 1 10 82.68 500

BonnSPOG 0 3.589 3.343 3.912 1 36.2 33.46 50

EORCT-XIV 0 2.996 2.723 6.685 1 20 81.46 800

EORTC-IX 0 0 1.776 6.888 1 1 87.79 980

EORTC-XI 0 3.401 2.821 6.894 1 30 114.6 986

EORTC-XII 0 3.916 3.364 6.729 1 51.5 187.6 836
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Genoa 0 3.912 3.264 8.716 1 50 172.4 6100

Hakim 0 0 2.256 6.215 1 1 85.33 500

Kitanovski 0 1.589 1.993 6.867 1 5 69.6 960

Klaassen 0 3.689 3.108 6.856 1 40 119.9 950

Lehrnbecher 0 5.58 5.053 9.035 1 265 497.9 8390

PINE 0 4.605 4.083 9.036 1 100 326.4 8400

RetroBern 0 4.094 3.553 6.824 1 60 178 920

Silva 0 2.996 2.782 7.601 1 20 184.9 2000

Spassova 0 4.605 3.659 6.908 1 100 161.1 1000

Sung 0 4.552 4.194 6.856 1 95 203 950

Tezcan 0 4.277 4.419 6.908 1 72 222.9 1000

Tissing 0 4.605 4.891 10.31 1 100 489.6 30000

ZurichSPOG 0 1.151 2.327 6.215 1 5.5 83.61 500

Table 54: Distribution of absolute monocyte count (AMC; cells / cubic mm) per study

Study ID Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

Alexander 0 3.718 3.477 7.652 1 41.2 125.2 2105

BaselSPOG 0 1.099 1.134 2.303 1 3 4.667 10

BernSPOG 0 0.6931 1.042 4.394 1 2 7.223 81

BonnSPOG 0 1.609 1.702 3.912 1 5 9.608 50

Hakim 0 4.357 3.568 7.473 1 78 141 1760

Kitanovski 0 1.946 2.286 7.153 1 7 98.28 1278

Klaassen 0 1.386 1.58 5.517 1 4 15.92 249

RetroBern 0 2.079 1.976 5.159 1 8 20.63 174

Spassova 0 2.303 2.26 5.704 1 10 53.34 300

Styjewski 0 3.515 2.786 6.109 1 33.6 67.04 450

Tezcan 0 3.219 3.361 8.208 1 25 179 3672

ZurichSPOG 0 0 1.146 5.635 1 1 13.52 280
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Table 55: C-reactive protein (CRP) values (mg/dL) per study

Study ID Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

BaselSPOG 1.099 2.835 2.884 5.081 3 19.5 38.63 161

BernSPOG 1.099 3.829 3.744 5.849 3 46 66.05 347

BonnSPOG 0.6931 3.497 3.408 5.124 2 33 42.36 168

Kitanovski 1.856 3.892 3.783 5.568 6.4 49 64.06 262

Lehrnbecher 0 3.198 2.972 5.659 1 24.5 42.84 287

RetroBern 0 3.871 3.617 5.771 1 48 64.04 321

Silva 0 3.02 2.87 4.394 1 20.5 25.77 81

Spassova 0 3.258 3.139 5.932 1 26 46.54 377

Tezcan 0 3.848 3.797 6.064 1 46.9 80.15 430

Tissing 0.8329 3.807 3.646 6.023 2.3 45 63.42 413

ZurichSPOG 1.386 3.638 3.553 6.246 4 38 61.97 516

Table 56: Further biomarker distributions

PCT (ng/ml) Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

Kitanovski -1.273 -0.5978 -0.3852 2.351 0.28 0.55 1.036 10.5

Styjewski -0.9416 0.9126 1.437 6.306 0.39 2.495 32.93 547.7

IL-6 (pg/ml) Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

Kitanovski 1.504 4.508 4.511 5.991 4.5 90.75 167.4 400

Lehrnbecher 0 3.978 4.059 9.418 1 53.4 216.1 12310

Spassova 1.131 3.761 3.676 4.605 3.1 43 55.98 100

Styjewski 0 2.35 2.372 6.392 1 10.5 40.68 597

IL-8 (pg/ml) Log-Min Log-

Median

Log-

Mean

Log-Max Natural

min

Natural

median

Natural

mean

Natural

max

BonnSPOG 2.175 4.58 4.435 6.418 8.8 97.55 110.1 613



Page 361 of 410

Lehrnbecher -1.386 5.178 4.87 8.567 0.25 177.4 306.5 5256

Spassova 2.398 4.035 4.324 6.892 11 56.65 184.9 984.5

Styjewski 0 2.944 2.925 5.628 1 19 46.61 278

Tissing 2.197 4.525 4.59 7.703 9 92.5 212.9 2214
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Appendix 23. R-code for IPD models

Full hierarchical model

glmer(data[,outcome] ~ factor(study.id) + data[,predictor] + (data[,predictor]-1|study.id) +

(1|picnicc.id), data=data, na.action(na.exclude), family=binomial)

Reduced hierarchical model

glmer(data[,outcome] ~ factor(study.id) + data[,predictor] + (data[,predictor]-1|study.id), data=data,

na.action(na.exclude), family=binomial)

Fixed effects model

glm(data[,outcome] ~ factor(study.id) + data[,predictor], data=data, na.action(na.exclude),

family=binomial)
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Appendix 24. Hierarchical model comparing estimates with all vs. multi-episode data

All episodes with clustering Multi-episodes only with clustering Variation

Predictor name OR beta SE-beta

Individual-

level SD

Study-

level SD

p-value

(beta) OR beta SE-beta

Individual-

level SD

Study-

level SD

p-value

(beta)

beta

variation

relative

to s.err

p-

value

for

beta

diff *

ind SD

variation

glass'

effect

size

sex - F 1 0 1 0 0

sex - M 0.98 -0.022 0.084 0.87 1.70E-05 0.8 0.92 -0.08 0.15 1 0 0.59 0.058 0.690 0.490 - -0.130 -0.149 -

age.days 1 2.60E-05 2.00E-05 0.85 0 0.19 1 -5.90E-05 4.00E-05 0.99 0 0.14 0.000085 4.250 0.000 * -0.140 -0.165 -

marrow 1.4 0.34 0.38 2.1 0 0.37 1.1 0.14 0.42 2.1 5.60E-07 0.75 0.2 0.526 0.599 - 0.000 0.000 -

relapse 1.5 0.39 0.19 1.2 0 0.038 1.8 0.59 0.24 1.2 0 0.015 -0.2 1.053 0.293 - 0.000 0.000 -

chemo.intensity - Low 1 0 1 0 0 0

chemo.intensity - Standard 2.5 0.93 0.2 1.1 0 3.30E-06 3.5 1.3 0.63 1.3 0.05 0.045 -0.37 1.850 0.064 -0.200 -0.182 -

chemo.intensity - HSCT 0.99 -0.0062 0.12 1.1 0 0.96 0.72 -0.33 0.37 1.3 0.043 0.37 0.3238 2.698 0.007 * -0.200 -0.182 -

cvl 1.4 0.37 0.28 1.1 0.027 0.19 1.1 0.06 0.29 1.1 2.60E-06 0.83 0.31 1.107 0.268 - 0.000 0.000 -

cvl.type - None 1 0 1 0 0 0

cvl.type - Port 0.98 -0.021 0.85 4.7 0.26 0.98 0.96 -0.04 0.49 2 0.00012 0.94 0.019 0.022 0.982 - 2.700 0.574 +

cvl.type - Hickman 1.8 0.6 0.76 4.7 0.061 0.43 1.9 0.63 0.52 2 6.60E-06 0.23 -0.03 0.039 0.969 2.700 0.574 +
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cvl.type - Untunnelled 12 2.5 1.9 4.7 0.68 0.2 14 2.6 2.7 2 8.10E-06 0.33 -0.1 0.053 0.958 - 2.700 0.574 +

out.patient 0.62 -0.48 0.16 1.1 2.00E-07 0.0028 1.1 0.11 0.3 1.2 0 0.71 -0.59 3.688 0.000 * -0.100 -0.091 -

temp 2.2 0.81 0.098 1.1 0 2.50E-16 2.2 0.77 0.15 1.4 0 2.00E-07 0.04 0.408 0.683 - -0.300 -0.273 +

shock 3.5 1.2 0.37 1 0.77 0.00093 2.7 1 0.69 1.4 1.5 0.15 0.2 0.541 0.589 - -0.400 -0.400 +

sys 1 -0.0013 0.011 0.25 0 0.91 1 0.0018 0.012 0.21 0 0.89 -0.0031 0.282 0.778 - 0.040 0.160 -

dia 0.99 -0.0095 0.013 0.28 0 0.46 0.99 -0.0078 0.014 0.26 0 0.58 -0.0017 0.131 0.896 - 0.020 0.071 -

mucositis 0.83 -0.18 0.076 1.3 0 0.017 0.81 -0.21 0.089 1.4 2.80E-07 0.018 0.03 0.395 0.693 - -0.100 -0.077 -

severe.mucositis 0.68 -0.38 0.19 1.1 2.60E-05 0.045 0.62 -0.48 0.28 1.4 3.20E-06 0.085 0.1 0.526 0.599 - -0.300 -0.273 +

severe.unwell 2.5 0.91 0.12 1 0 1.50E-13 1.9 0.65 0.2 1.3 0 0.0012 0.26 2.167 0.030 * -0.300 -0.300 +

hb 1 0.047 0.029 0.45 0 0.1 1.1 0.061 0.047 0.5 0 0.2 -0.014 0.483 0.629 - -0.050 -0.111 -

ln.plt 0.82 -0.19 0.038 0.41 0 3.00E-07 0.82 -0.2 0.06 0.45 0 0.00091 0.01 0.263 0.792 - -0.040 -0.098 -

ln.wcc 0.76 -0.27 0.076 0.51 0.22 0.00032 0.7 -0.36 0.11 0.6 0.22 0.00067 0.09 1.184 0.236 - -0.090 -0.176 -

ln.anc 0.97 -0.033 0.0054 0.92 0 1.40E-09 0.95 -0.048 0.011 1.1 0.013 4.50E-06 0.015 2.778 0.005 * -0.180 -0.196 -

ln.amc 0.95 -0.053 0.0097 1.3 0.01 4.60E-08 0.95 -0.053 0.012 1.3 0.0097 1.00E-05 0 0.000 1.000 - 0.000 0.000 -

ln.crp 1 0.024 0.034 1.3 0 0.48 1.1 0.07 0.048 1.3 0 0.14 -0.046 1.353 0.176 - 0.000 0.000 -

ln.pct 1.9 0.65 0.18 6.20E-06 0 0.00033

ln.IL-6 2.4 0.87 0.12 1.1 0 2.80E-12 2.9 1.1 0.18 1.1 0 1.10E-09 -0.23 1.917 0.055 - 0.000 0.000 -
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ln.IL-8 2 0.7 0.13 1 0 2.50E-08 2 0.67 0.16 1 0 1.60E-05 0.03 0.231 0.817 - 0.000 0.000 -
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Appendix 25. Reduced hierarchical model comparing all vs. single-episode estimates

All episodes, no clustering 1 episode per patient Variation

Predictor name OR beta SE-beta

Study-

level SD p-value OR beta SE-beta

Study-level

SD p-value

beta

variation

relative to

s.error p-value

sex - F 1 0 1 0 0

sex - M 0.97 -0.029 0.071 0 0.68 0.95 -0.05 8.30E-02 7.70E-07 0.54 0.021 0.296 0.767 -

age.days 1 2.20E-05 1.70E-05 1.20E-13 0.21 1 2.50E-05 1.90E-05 0 0.19 -3E-06 0.176 0.860 -

marrow 1.5 0.41 0.25 4.70E-06 0.095 1.1 0.11 3.40E-01 4.90E-06 0.73 0.3 1.200 0.230 -

relapse 1.4 0.36 0.18 0.27 0.042 1.3 0.27 1.90E-01 3.50E-08 0.15 0.09 0.500 0.617 -

chemo.intensity - Low 1 0 1 0 0

chemo.intensity - Standard 2 0.7 0.23 0.033 0.002 1.5 0.43 0.27 0.058 0.12 0.27 1.174 0.240 -

chemo.intensity - HSCT 1.1 0.059 0.14 0.021 0.67 1.3 0.27 0.17 0.028 0.11 -0.211 1.507 0.132 -

cvl 1.3 0.28 0.24 0.021 0.25 1.3 0.23 2.30E-01 2.70E-08 0.32 0.05 0.208 0.835 -

cvl.type - None 1 0 1 0 0

cvl.type - Port 1.1 0.061 0.24 0 0.8 1.6 0.46 0.35 0 0.19 -0.399 1.663 0.096 -

cvl.type - Hickman 1.4 0.35 0.25 0 0.17 2.2 0.77 0.37 0 0.037 -0.42 1.680 0.093 -

cvl.type - Untunnelled 3.1 1.1 0.59 0 0.054 5.1 1.6 0.65 0 0.013 -0.5 0.847 0.397 -
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out.patient 0.7 -0.36 0.14 9.10E-08 0.0078 0.62 -0.48 1.60E-01 3.20E-08 0.0024 0.12 0.857 0.391 -

temp 1.9 0.64 0.084 0 2.60E-14 2 0.7 0.1 0.00E+00 3.70E-12 -0.06 0.714 0.475 -

shock 2.8 1 0.32 0.63 0.0013 1.9 0.63 0.34 0.47 0.066 0.37 1.156 0.248 -

sys 1 -0.0011 0.011 0 0.92 1 0.019 0.016 0 0.24 -0.0201 1.827 0.068 -

dia 0.99 -0.0092 0.013 0 0.47 1 0.012 0.018 0 0.5 -0.0212 1.631 0.103 -

mucositis 0.89 -0.11 0.058 0 0.052 0.85 -0.17 8.80E-02 6.60E-07 0.057 0.06 1.034 0.301 -

severe.mucositis 0.76 -0.28 0.16 3.50E-07 0.078 0.71 -0.35 2.00E-01 1.30E-06 0.091 0.07 0.438 0.662 -

severe.unwell 2.2 0.79 0.11 0 2.20E-13 2.3 0.84 0.13 0.00E+00 4.00E-11 -0.05 0.455 0.649 -

hb 1 0.044 0.028 0 0.11 1 0.047 0.033 0 0.15 -0.003 0.107 0.915 -

ln.plt 0.83 -0.19 0.037 0 3.00E-07 0.81 -0.21 0.045 0.00E+00 4.50E-06 0.02 0.541 0.589 -

ln.wcc 0.78 -0.25 0.072 0.21 0.00041 0.84 -0.17 0.053 0.12 0.001 -0.08 1.111 0.267 -

ln.anc 0.97 -0.027 0.0048 4.10E-07 9.90E-09 0.97 -0.027 0.0055 0.00E+00 6.60E-07 0

ln.amc 0.96 -0.045 0.0098 0.018 4.40E-06 0.96 -0.046 9.30E-03 2.20E-07 8.60E-07 0.001 0.102 0.919 -

ln.crp 1 0.017 0.028 0 0.54 1 0.00016 0.038 0 1 0.01684 0.601 0.548 -

ln.pct 1.9 0.65 0.18 0 0.00033 1.8 0.58 0.18 0 0.0017 0.07 0.389 0.697 -

ln.IL-6 2.1 0.75 0.11 0 4.40E-12 1.7 0.51 0.13 0 0.00011 0.24 2.182 0.029 *

ln.IL-8 1.8 0.61 0.11 0 1.70E-08 1.7 0.54 0.14 0 0.00018 0.07 0.636 0.525 -
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Appendix 26. Comparing full hierarchical model vs. fixed effects model estimates

Full heirarchical Fixed effect Full vs Fixed

Predictor name beta SE-beta beta SE-beta diff beta as prop se diff p-val p<0.05

sex - F 0 0

sex - M -0.022 0.084 -0.041 0.07 0.019 0.22619 0.821 -

age.days 0.000026 0.00002 0.000015 0.000017 0.000011 0.55 0.582 -

marrow 0.34 0.38 0.41 0.25 -0.07 0.184211 0.854 -

remission 0.086 0.25 -0.023 0.14 0.109 0.436 0.663 -

relapse 0.39 0.19 0.35 0.14 0.04 0.210526 0.833 -

chemo.intensity - Low 0 0 0 -

chemo.intensity - Standard 0.93 0.2 0.78 0.17 0.15 0.75 0.453 -

chemo.intensity - HSCT -0.0062 0.12 0.0055 0.1 -0.0117 0.0975 0.922 -

chemo.time -0.0035 0.0039 -0.0019 0.0029 -0.0016 0.410256 0.682 -

cvl 0.37 0.28 0.15 0.18 0.22 0.785714 0.432 -

cvl.type - None 0 0 0 -

cvl.type - Port -0.021 0.85 0.061 0.24 -0.082 0.096471 0.923 -
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cvl.type - Hickman 0.6 0.76 0.35 0.25 0.25 0.328947 0.742 -

cvl.type - Untunnelled 2.5 1.9 1.1 0.59 1.4 0.736842 0.461 -

out.patient -0.48 0.16 -0.36 0.14 -0.12 0.75 0.453 -

temp 0.81 0.098 0.64 0.084 0.17 1.734694 0.083 -

resp.rate -0.038 0.026 -0.031 0.022 -0.007 0.269231 0.788 -

resp.compromise 0.22 0.32 0.028 0.17 0.192 0.6 0.549 -

pulse.rate 0.002 0.0055 0.0015 0.0054 0.0005 0.090909 0.928 -

shock 1.2 0.37 0.88 0.18 0.32 0.864865 0.387 -

sys -0.0013 0.011 -0.0011 0.011 -0.0002 0.018182 0.985 -

dia -0.0095 0.013 -0.0092 0.013 -0.0003 0.023077 0.982 -

mucositis -0.18 0.076 -0.11 0.058 -0.07 0.921053 0.357 -

severe.mucositis -0.38 0.19 -0.28 0.16 -0.1 0.526316 0.599 -

severe.unwell 0.91 0.12 0.79 0.11 0.12 1 0.317 -

hb 0.047 0.029 0.044 0.028 0.003 0.103448 0.918 -

ln.plt -0.22 0.04 -0.22 0.039 0 -

ln.wcc -0.37 0.057 -0.33 0.044 -0.04 0.701754 0.483 -

ln.anc -0.095 0.017 -0.08 0.015 -0.015 0.882353 0.378 -
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ln.amc -0.28 0.042 -0.22 0.034 -0.06 1.428571 0.153 -

ln.crp 0.064 0.067 0.063 0.055 0.001 0.014925 0.988 -

ln.pct 0.65 0.18 0.65 0.18 0 -

ln.IL-6 0.87 0.12 0.75 0.11 0.12 1 0.317 -

ln.IL-8 0.7 0.13 0.61 0.11 0.09 0.692308 0.489 -
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Appendix 27. Further within and between study results for univariate

predictors

Gender

Predictor

name

OR beta SE-beta p-value

Alexander Male 0.84 -0.17 0.42 0.68

BaselSPOG Male 2 0.69 1.5 0.64

BernSPOG Male 1.6 0.46 0.33 0.17

BonnSPOG Male 0.1 -2.3 1.1 0.049

EORTC-IX Male 0.92 -0.087 0.25 0.72

EORTC-XI Male 1.9 0.63 0.28 0.022

EORTC-XII Male 0.89 -0.12 1.1 0.92

Genoa Male 0.75 -0.29 0.2 0.15

Kitanovski Male 0.64 -0.44 0.56 0.43

Klaassen Male 1.2 0.14 0.22 0.51

Lehrnbecher Male 0.96 -0.037 0.3 0.9

PINE Male 0.95 -0.053 0.14 0.71

Silva Male 2.3 0.83 0.77 0.28

Spassova Male 0.78 -0.25 0.29 0.39

Styjewski Male 0.9 -0.1 0.59 0.87

Sung Male 0.76 -0.27 0.72 0.7

Tezcan Male 0.91 -0.099 0.33 0.77

Tissing Male 0.72 -0.33 0.27 0.22

ZurichSPOG Male 0.88 -0.12 0.46 0.79

IPD estimate Male 0.96 -0.041 0.07 0.56

Marrow involvement

Predictor name OR beta SE-beta p-value

BaselSPOG Marrow

Involved

2.40E-08 -18 4000 1

BernSPOG Marrow

Involved

2 0.7 0.52 0.17

Kitanovski Marrow

Involved

2.3 0.85 0.57 0.14

Spassova Marrow

Involved

1.5 0.37 0.35 0.28

ZurichSPOG Marrow

Involved

1.20E-07 -16 1400 0.99

IPD

estimate

Marrow

Involved 1.5 0.41 0.25 0.095
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Out patient status

Predictor name OR beta SE-beta p-value

BaselSPOG Out-patient 71000000.00 18 4000 1

BernSPOG Out-patient 0.43 -0.85 0.41 0.036

BonnSPOG Out-patient 22000000.00 17 2500 0.99

EORCT-XIV Out-patient 0.10 -2.3 1 0.028

EORTC-IX Out-patient 0.45 -0.79 0.28 0.0046

EORTC-XI Out-patient 0.71 -0.34 0.28 0.22

EORTC-XII Out-patient 0.42 -0.88 1.1 0.44

Kitanovski Out-patient 2.3 0.85 0.64 0.18

Silva Out-patient 0.19 -1.7 1.5 0.26

Spassova Out-patient 1.30 0.24 0.33 0.47

Sung Out-patient 2200000 15 1700 0.99

ZurichSPOG Out-patient 1.4 0.3 0.59 0.61

IPD estimate

0.7 (0.53 to

0.91) -0.36 0.14 0.0078
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Figure 61: Association between probability of MDI and ln(WCC) by study
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Figure 62: Association between probability of MDI and ln(ANC) by study
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Tumour type

Table 57: Individual study p-values for parameter estimates of tumour type

Genoa

Alex

ander

Basel

SPOG

Bern

SPOG

Bonn

SPOG

EORTC

XIV

EORTC

XI

EORTC

IX

EORTC

XII Hakim

Kitan

ovski

Klaas

sen

Lehrn

becher PINE Silva

Spass

ova

Styjew

ski Sung

Tez

can

Tiss

ing

Zurich

SPOG

ALL

(referent) . . . . . . . . . . . . . . . . . . . . .

AML 0.57 0.0056 1 0.034 0.31 0.83 0.41 0.026 . 0.00096 0.11 0.93 0.09 0.037 . 0.019 1 1 0.98 0.99 0.049

Brain 0.28 0.88 . . . . . . . . . 0.42 0.64 . . 0.99 . . 0.035 . .

Carcinoma 0.23 . . . . . . . . . . . . . . . . . . . 0.18

Ewings 0.99 0.55 . 0.55 1 . . . . 0.82 1 . 0.028 0.43 0.99 0.2 1 1 0.9 0.99 0.99

GCT 1 . . . . . . . 1 . . 1 0.62 0.73 . . . . . . .

Hepato 0.99 . . . . . . . . 0.36 1 0.57 0.99 0.98 1 . . . . 0.85 .

HGBrain 0.014 . . 0.63 0.21 . . . 1 0.99 0.2 . 0.81 0.046 . . 1 1 . 0.31 0.88

Hodgkins 0.051 0.99 . . . 0.93 . . 1 0.8 . 0.39 0.62 0.2 . 0.99 . . . . 1

HR-NBL 0.00011 . . . . . . . . 0.91 0.88 . . . 1 0.99 . 1 . 0.99 .

LCH 0.92 . . . . . . . . 1 1 . 1 0.99 . . . . . 1 .
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LGBrain . . . 0.99 . . . . . 0.99 . . 0.86 0.98 . . . 1 . . .

LR-NBL 0.99 . . . . . . . . . . . . . . 0.99 . . . . .

NBL . 0.72 1 0.6 1 . . . . . . 0.69 0.68 0.038 . . 0.51 0.77 0.078 . 0.6

NHL 0.0081 0.2 1 0.71 1 0.99 . . 1 0.82 0.43 0.95 0.19 0.65 1 0.092 . 0.7 0.2 0.27 1

Nonmalig.nt 0.66 . . . . . . . . . . . . . 1 . . . . . .

Osteo 0.0018 0.87 . 0.089 1 . . . 1 0.66 . 0.35 0.99 0.31 . 0.084 0.98 . . 0.23 1

Other 0.87 0.8 . . . 0.99 0.99 0.56 . 0.4 . 0.37 . 0.49 . . . 1 0.23 . .

Retino . . . 0.6 . . . . . 1 . 0.85 . 0.17 . . . 1 . . 1

RMS 0.08 0.34 . 0.46 0.31 . . . 1 0.62 0.99 0.55 0.81 0.14 0.9 . . 0.88 0.36 0.39 0.32

Solid . . . . . 0.45 0.37 0.37 . . . . . . . . . . . . .

Sarcoma 0.37 . . . . . . . . 0.36 . 0.88 1 0.11 1 0.28 1 1 . 0.73 0.32

Wilms 0.4 0.99 . 0.99 . . . . 1 0.99 1 0.58 0.99 0.48 . 0.99 1 . 0.79 0.23 0.26

Highlighted cells are significant (p<0.05)
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Relapsed disease

Table 58: Association between probability of MDI and relapsed disease

Predictor

name

OR beta SE-beta p-value

BaselSPOG Relapse 5.00E-01 -0.69 1.5 0.64

BernSPOG Relapse 0.94 -0.066 0.37 0.86

BonnSPOG Relapse 1.40E-07 -16 2800 1

Genoa Relapse 1.4 0.3 0.23 0.18

Kitanovski Relapse 2.50E+00 0.91 0.6 0.13

Lehrnbecher Relapse 4.3 1.5 0.38 0.00012

Spassova Relapse 1.6 0.48 0.58 0.4

Sung Relapse 0.7 -0.36 1.1 0.75

Tissing Relapse 0.91 -0.098 0.34 0.77

ZurichSPOG Relapse 1.6 0.49 0.56 0.38

IPD

estimate Relapse

1.4

(1.07 to 1.86) 0.35 0.14 0.012

Cardiovascular compromise

Table 59: Association of shock with MDI

Predictor

name

OR beta SE-beta p-value

BernSPOG Shock 1.40 0.36 0.76 0.63

BonnSPOG Shock 0.00 -16 2800 1

Hakim Shock 3.50 1.2 0.83 0.13

Kitanovski Shock 1.70E+07 17 1500 0.99

Klaassen Shock 0.84 -0.18 0.59 0.77

PINE Shock 2.4 0.88 0.26 0.00074

Spassova Shock 1.8 0.57 0.5 0.25

Sung Shock 6 1.8 1 0.072

Tezcan Shock 4.5 1.5 1.1 0.18

IPD

estimate

2.4

(1.69 to 3.43) 0.88 0.18 1.6E-06
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Outpatient status

Presenting from outside the hospital was associated with a reduced chance on MDI in the IPD

analysis, with an estimated OR 0.7 (95% CI 0.53 to 0.91).

Figure 63: OR of MDI by hospitalisation status

Clinical recognition of ‘severely unwell’

Table 60: Association of 'severely unwell' appearance with MDI

Predictor name OR beta SE-beta p-value Prevalence

of ‘unwell’

Alexander Severely unwell 1.60 0.48 0.46 0.3 0.22

BernSPOG Severely unwell 2.40 0.87 0.45 0.051 0.14

BonnSPOG Severely unwell 7.40 2 1.5 0.18 0.05

Hakim Severely unwell 1.90 0.65 0.28 0.022 0.25

Kitanovski Severely unwell 52000000.00 18 1400 0.99 0.04

Klaassen Severely unwell 2 0.71 0.23 0.0022 0.27

Lehrnbecher Severely unwell 4.1 1.4 0.53 0.0079 0.05

PINE Severely unwell 1.8 0.6 0.2 0.0033 0.14

Spassova Severely unwell 2.5 0.9 0.34 0.0084 0.23

Styjewski Severely unwell 2500000000.00 22 3200 0.99 0.20

Sung Severely unwell 1.2 0.14 0.72 0.84 0.41

ZurichSPOG Severely unwell 1.6 0.45 0.47 0.33 0.30

IPD estimate

2.2

(1.77 to 2.33) 0.79 0.11 2.2E-13 0.16

0.1 0.5 2.0 10.0

OR of MDI in out-patients compared with in-patients

ZurichSPOG
Spassova
Silva
Kitanovski
EORTC-XII
EORTC-XI
EORTC-IX
EORCT-XIV
BernSPOG

1.3 [ 0.4 , 4.3 ]
1.3 [ 0.7 , 2.4 ]
0.2 [ 0.0 , 3.5 ]
2.3 [ 0.7 , 8.2 ]
0.4 [ 0.0 , 3.6 ]
0.7 [ 0.4 , 1.2 ]
0.5 [ 0.3 , 0.8 ]
0.1 [ 0.0 , 0.7 ]
0.4 [ 0.2 , 1.0 ]

0.70 [ 0.53 , 0.91 ]IPD estimate
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Age

Figure 64: Age (years) and probability of MDI, relationships superimposed

Table 61: Age (in years) and risk of MDI

Predictor

name

OR 95% CI Beta

(age.days)

SE-beta p-value

Alexander Age

(years)

1.02 0.95 to

1.09

0.000045 0.0001 0.66

BaselSPOG Age

(years)

0.65 0.27 to

1.52

-0.0012 0.0012 0.29

BernSPOG Age

(years)

1.00 0.94 to

1.07

5.4E-06 0.000095 0.95

BonnSPOG Age

(years)

0.91 0.75 to

1.12

-0.00025 0.00028 0.38

EORCT-XIV Age

(years)

1.02 0.96 to

1.09

0.00006 0.000085 0.48

EORTC-IX Age

(years)

1.02 0.99 to

1.06

0.000059 0.000045 0.19

EORTC-XI Age

(years)

1.02 0.99 to

1.06

0.000057 0.000049 0.25

age.days

P
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m
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EORTC-XII Age

(years)

1.05 0.85 to 1.3 0.00013 0.0003 0.67

Genoa Age

(years)

1.03 0.99 to

1.07

0.000086 0.000054 0.11

Hakim Age

(years)

0.99 0.94 to

1.03

-3.2E-05 0.000064 0.62

Kitanovski Age

(years)

1.10 0.98 to

1.22

0.00025 0.00015 0.087

Klaassen Age

(years)

1.01 0.96 to

1.05

0.000018 0.000063 0.77

Lehrnbecher Age

(years)

1.01 0.97 to

1.06

0.00003 0.000064 0.64

PINE Age

(years)

0.99 0.96 to

1.02

-2.9E-05 0.000045 0.52

Silva Age

(years)

1.07 0.96 to

1.19

0.00018 0.00015 0.24

Spassova Age

(years)

0.93 0.88 to

0.99

-0.00019 0.000076 0.014

Styjewski Age

(years)

1.11 0.99 to

1.24

0.00028 0.00016 0.088

Sung Age

(years)

0.99 0.86 to

1.13

-0.00004 0.00019 0.83

Tezcan Age

(years)

0.92 0.86 to

0.99

-0.00023 0.0001 0.024

Tissing Age

(years)

0.99 0.94 to

1.04

-3.4E-05 0.000075 0.65

ZurichSPOG Age

(years)

1.03 0.94 to

1.13

0.000089 0.00013 0.51

IPD

estimate 1.01

0.99 to

1.02 0.000015 0.000017 0.38

As with temperature, an analysis was undertaken to compare the common Box-Tidwell

transformations of [-2, -1, -0.5, log, 0.5, 1 and 2]. These worsened the AIC values. Splines with

df=2,3,4 were also assessed. A single knot (at 6.8yrs) produced a statistically significant (p=0.0018)
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small decrease in AIC (5449 cf 5442), two knots at 4.4y and 10.8y had borderline significance

(p=0.05) and a very small further decrease in AIC (5440).

Mucositis

Table 62: Study level association of graded mucositis with MDI

Predictor name OR beta SE-beta p-value

BaselSPOG Mucositis (per grade) 0.00 -18.00 5200.00 1.00

BernSPOG Mucositis (per grade) 0.78 -0.25 0.16 0.10

BonnSPOG Mucositis (per grade) 0.66 -0.42 0.64 0.51

Hakim Mucositis (per grade) 1.10 0.08 0.17 0.66

Kitanovski Mucositis (per grade) 0.99 -0.01 0.26 0.98

Klaassen Mucositis (per grade) 0.91 -0.09 0.16 0.57

Lehrnbecher Mucositis (per grade) 0.75 -0.29 0.16 0.07

Spassova Mucositis (per grade) 1.00 0.05 0.11 0.69

Sung Mucositis (per grade) 0.73 -0.32 0.53 0.55

ZurichSPOG Mucositis (per grade) 0.80 -0.22 0.20 0.26

IPD estimate

0.89

(0.80 to 1.00) -0.11 0.058 0.052

Table 63: Study level associations of severe mucositis with MDI

Predictor name OR beta SE-beta p-value

BaselSPOG Severe mucositis 0.00 -18.00 4000.00 1.00

BernSPOG Severe mucositis 0.51 -0.67 0.53 0.21

BonnSPOG Severe mucositis 0.00 -15.00 2400.00 1.00

Hakim Severe mucositis 1.30 0.26 0.54 0.64

Kitanovski Severe mucositis 0.71 -0.34 0.72 0.63

Klaassen Severe mucositis 0.78 -0.25 0.52 0.64

Lehrnbecher Severe mucositis 0.41 -0.89 0.62 0.15

Spassova Severe mucositis 1.10 0.12 0.33 0.72

Sung Severe mucositis 4.60 1.50 0.74 0.04

ZurichSPOG Severe mucositis 0.50 -0.70 0.78 0.37

PINE Severe mucositis 0.54 -0.61 0.32 0.05

IPD estimate

0.76

(0.55 to 1.03) -0.28 0.16 0.078

Shaded row shows single added dataset beyond Table 62
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Appendix 28. Detail of final multivariate model

Final model beta-estimates and standard errors

Item Estimate Std.

Error

(Intercept) -3.996 816.492

tumourAM 0.655 0.255

tumourBrain -0.457 0.385

tumourCarcinoma 16.668 1455.398

tumourEwings -0.642 0.662

tumourGCT -0.069 0.876

tumourHepato 0.475 0.57

tumourHGBrain -0.345 0.462

tumourHodgkins -0.408 0.701

tumourHR-NB 0.921 0.661

tumourLCH -14.096 1025.44

tumourLGBrain -14.157 677.944

tumourNB 0.472 0.495

tumourNH -0.471 0.317

tumourOsteo -1.193 0.566

tumourOther 0.797 0.768

tumourRetino 0.547 0.856

tumourRMS -0.244 0.319

tumourSarcoma 0.188 0.821

tumourWilms -0.491 0.663

ctemp (temperature - 37°C) 0.566 0.144

severe.unwell (TRUE) 0.786 0.193

hb (g/dL) 0.18 0.05

ln (wcc x10
6
) -0.299 0.101

ln (amc /mm
3
) -0.209 0.057
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QQ quantile plots for selected bootstrap estimates
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Bootstrapped calibration plot

Figure 65: Calibration plot using bootstrapped estimates
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QQ quantile plots for discrimination bootstrap
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Leave on out calibration plots
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Comparison of included and excluded studies univariate estimates

Figure 66: Comparison of included and excluded studies univariate estimates of tumour-type predictive value
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Table 64: Comparison of included and excluded studies estimates of predictive value of Hb

Study OR (Hb) 95% CI p-value

BaselSPOG 0.92 0.71 to 1.19 0.49

BernSPOG 3.6 0.53 to 25.53 0.2

BonnSPOG 1.1 0.9 to 1.27 0.48

Hakim 0.88 0.48 to 1.62 0.68

Kitanovski 1.1 0.95 to 1.36 0.16

Klaassen 1.1 0.77 to 1.45 0.72

ZurichSPOG 1.1 0.96 to 1.3 0.16

EORCT-XIV 0.79 0.49 to 1.26 0.32

EORTC-IX 1.2 0.98 to 1.52 0.06

EORTC-XI 0.98 0.87 to 1.12 0.81

EORTC-XII 0.85 0.72 to 1.01 0.06

Sung 1.1 0.99 to 1.28 0.07

Tissing 1.2 0.8 to 1.75 0.39
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Calibration and discrimination plots for tumour simplified model
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Glossary

Adverse event

Detrimental change in health, or side effect, occurring in a patient receiving the

treatment.

Afebrile No fever, normal body temperature.

Aggregate data

Data collected relating to the average values of episodes or events in clinical research

studies, sometimes arranged in subgroups, but not referring to individual participants

Anti microbial

Therapy

Treatment of infectious disease using agents that either kill microbes or otherwise

interfere with microbial growth

Antibiotic

resistance

Resistance of a microorganism to an antimicrobial medicine to which it was previously

sensitive.

Bacterial

infection

Occurs when harmful bacteria enters the body and multiply, causing unpleasant

symptoms and/or an adverse event.

Bias Deviation from the truth

Biomarkers In this setting, serum (blood-derived) markers of inflammation and infection

Bivariate Using two variables (cf multivariate)

Bootstrapping

A mathematical technique where a repeated set of analyses are performed on a new

collection of data, which have been created by radomly choosing items of the original

data, including the posibilty of selecting one item more than once. An internal

validation technique.

Calibration

The extent to which the numerical risk predictions from a model agree with the

observed (actual) outcomes

Cart

Classification and regression tree - a different approach to discriminatory reasoning

than regression analysis

Clinical decision

rule (CDR) A clinical tool designed to be used at the bedside to assist clinical decision making

Clinically

documented

infection

An infection which has been diagnosed by the use of careful observation and physical

examination of a patient.

Clinically

relevant

An outcome or event which has a direct relevance to a patient’s health status, or which

is important in modifying which treatment is received or how it is delivered.

Clostridium

difficile

A type of bacteria that lives within the gut which can produce toxins (poisons), which

cause illness such as diarrhoea and fever

Co-efficient The amount of predictive power a covariate has in a predictive model

Covariate

A variable in a prediction model which may be useful in making a prediction more

accurate

Crd Centre for Reviews and Dissemination

C-reactive

protein (crp)

A protein that is produced by the liver and found in the blood. May be raised by a

variety of problems, including infection.

Critical care

Facilities within a hospital to look after patients whose conditions are life-threatening

and need constant close monitoring and support from equipment and medication to

keep normal body functions.

Ctc

Common Toxicity Criteria - well documented grading system for adverse effects used in

many cancer studies

Discrimination

The ability of a predictive model to separate patients at lower and higher risk of an

outcome

Documented

infection

An infection which has been diagnosed by clinical examination, or by the detection of

pathogenic organisms.

Domain

validation

Checking the CDR works when undertaken in a different location, but different clinical

setting such as secondary rather than tertiary care
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Eortc European Organisation for Research and Treatment in Cancer

Extrapolation

In data analysis, predicting the value of a parameter outside the range of observed

values.

False negative A result that appears negative but should have been positive, i.e. A test failure

False positive A result that appears positive but should have been negative, i.e. A test failure.

Febrile

neutropenia (fn)

The development of fever, often with other signs of infection, in a patient with

neutropenia,

Fever A raise in body temperature above normal range.

Fixed effect

covariate

The same effect is present across each study, and any differences are due to chance

sampling

Geographical

validation

Checking the CDR works when undertaken in a different location, but similar clinical

setting

Granulocyte

colony

stimulating

factor

A type of protein that stimulates the bone marrow to make white blood cells

(granulocytes).

Granulocyte

macrophage

colony

stimulating

factor

A type of protein that stimulates the bone marrow to make white blood cells

(granulocytes and monocytes)

Heterogeneity A term used to describe the amount of difference of results or effects.

Heuristics

Shortcuts or rules-of-thumb, applied in a variety of situations, for example diagnostic

thinking or in shrinkage techniques in statistics

Hierarchical

logistic

regression

A type of logistic regression technique where the structure of the data (for example,

episodes occuring in patients in studies) is explicitly considered to assess if the

'structure' (for example, patient or study) affects how effective the predictor is

Hierarchical

summary

receiver

operator curve

(HSROC)

The average ROC curve derived from the individual curves produced from multiple

studies in a diagnostic meta-analysis

Homogeneity A term used to describe the amount of similarity of results or effects

Imputation

Mathematical approach to use values which have been derived from some other source

(e.g. Group averages)

Individual

participant data

(IPD).

Data collected relating to individual episodes or events in clinical research studies (cf.

Aggregate data)

Infection The growth of a pathological organism within the body.

Inflammatory

markers

Proteins or other molecules which are raised by inflammatory processes in the body

and can be measured, usually by blood tests

Information

criterion

A value representing how poorly the data fit a statistical model, with lower numbers

indicating a better fit, e.g. Deviance Information Criterion (DIC) or Akaike’s Information

Criterion (AIC)

Internal

validation

techniques

Mathematical techniques to test for the likely truth of models (e.g. Predictive models)

using the same set of data

Leave-one-out

cross-validation

A mathematical technique where a repeated set of analyses are performed on a new

collection of data, created by using teh original data set but removing the items

contributed by each of the studies in turn, to assess if the results are similar across each

grouping. An interval validation technique.
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Life threatening

infection An infection which may cause death.

Linear

relationship.

(Within regression) The relationship between predictor and outcome variable is a

staight line; doubling one quantity doubles the other

Logistic

regression A type of regression techique where the outcome is binary (yes/no)

Low risk To be safe or without problems.

Meta-analysis

A method of summarising previous research by reviewing and combining the results of

a number of different clinical studies

Microbiologically

documented

infection (mdi) An infection which has been diagnosed by the detection of pathogenic organisms.

Missing at

random (MAR) Data are missing but related to other known and measured factors

Missing

completely at

random (MCAR) Data are missing for no reason but random chance

Missing not at

random (MNAR) Data are missing but related to unknown and unmeasured factors

Monocyte count The amount of monocytes in blood. Monocytes are a type of white blood cell

Morbidity A diseased condition or state.

Mortality Death

Multicollinearity

A mathematical description of the close relationship between quantities which may

lead to inaccurate conclusions if not accounted for

Multivariable Using more than one predictive variable (cf multivariate), usually more than two

Mutivariate Predicting more than one outcome variable (cf multivariable)

Negative

predictive value Proportion of people with a negative test result who truly didn’t have disease

Net

reclassification

improvement

(NRI) Measure of the overall ‘benefit’ of a new classification model

Neutropenia

An abnormally low number of neutrophils, the most important type of white blood cell

to fight off bacterial infections.

Neutropenic

sepsis

An abnormal decrease in the number of neutrophils in the blood together with

infection.

Neutrophil A type of white blood cell, important in fighting off particularly bacterial infections.

Neutrophil

count

This test measures the number of neutrophils in blood. Neutrophils are a type of white

blood cell

Non-linear form

(Within regression) The relationship between predictor and outcome variable is not

staight line; doubling one quantity does not double the other

Odds ratio

A measure of treatment effectiveness. The odds of an event happening in the

intervention group, divided by the odds of it happening in the control group. The ‘odds’

is the ratio of non-events to events.

Outcome An end result; a consequence.

PGP-encrypted Electronic communication using a highly secure shared-passkey encryption

Picnicc Predicting Infectious complications In Children with Cancer

Positive

predictive value Proportion of people with a postive test result who did have disease

Predictive Mathematical models using data to estaime a probability (chance) of a specific outcome
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models or outcomes

Primary

prophylaxis A preventative intervention administered in all cycles of chemotherapy.

Prognostic study

A study that examines selected predictive variables, or risk factors, and assesses their

influence on the outcome of a disease.

Prospective

study

A study in which people are entered into research and then followed up over a period

of time with future events recorded as they happen.

Publication bias

Also known as reporting bias. A bias caused by only a subset of all the relevant data

being available. The publication of research can depend on the nature and direction of

the study results. Studies in which an intervention is not found to be effective are

sometimes not published. Because of this, systematic reviews that fail to include

unpublished studies may overestimate the true effect of an intervention. In addition, a

published report might present a biased set of results (e.g. Only outcomes or sub-

groups where a statistically significant difference was found.

Qualitative study

A study used to explore and understand peoples' beliefs, experiences, attitudes,

behaviour and interactions.

Quality adjusted

life years (qalys)

A measure of health outcome which looks at both length of life and quality of life.

QALYS are calculated by estimating the years of life remaining for a patient following a

particular care pathway and weighting each year with a quality of life score (on a 0 to 1

scale). One QALY is equal to 1 year of life in perfect health, or 2 years at 50% health,

and so on

Quality of life An overall appraisal of well being.

Radiotherapy A treatment for cancer that uses high energy ionising radiation to kill cells.

Random effect

covariate

The effects come from a normal distribution of true effects; the estimates are both

different by chance and real differences in true effect between studies

Randomised

controlled trials

(rcts)

A clinical trial in which subjects are randomised to different groups for the purpose of

studying the effect of a new intervention, for example a drug or other therapy.

Rcpch Royal College of Paediatrics and Child Health

Receiver

operator curve

(ROC) A curve describing the relationship between the sensitivity and specificity of a test

Regression

A mathematical technique which relates one (or more) measured variables to an

outcome variable

Relative risk

(also known as

risk ratio)

The ratio of risk in the intervention group to the risk in the control group. The risk

(proportion, probability or rate) is the ratio of people with an event in a group to the

total in the group. A relative risk (RR) of 1 indicates no difference between comparison

groups. For undesirable outcomes, an RR that is less than 1 indicates that the

intervention was effective in reducing the risk of that outcome

Retrospective

data Data that deals with the present/past and does not involve studying future events.

Risk The chance of an adverse outcome happening.

Risk assessment

tool

A tool, usually a score from pieces of information given by patients, blood tests and

examination finding, which is used to assess a patient's risk of a particular outcome.

Risk

stratification

The process of grouping people into categories with different probabilities of a specific,

usually adverse, outcome

Sensitivity The proportion of individuals who have disease correctly identified by the study test

Sepsis The body's response to an infection

Septic shock

Septic shock is a medical emergency caused by decreased tissue perfusion and oxygen

delivery as a result of severe infection and sepsis,

Serious bacterial A bacterial infection with a high chance of causing siginifcant morbidity or death
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infection

Severe sepsis A life-threatening form of sepsis

Short-term

mortality Death within a short period of time, for instance 30 days from onset of fever.

Shrinkage

A mathematical technique used to improve the chances of a predictive model being

accurate in practice, related to internal validation techniques

Siop International Society of Paediatric Oncology

Specificity

The proportion of individuals who do not have a disease and who are correctly

identified by the study test.

Statistical

significance A mathematical concept, to be understood as 'unlikely to be due to chance'

Stem cell

transplant

A procedure that replaces the cells in a patient which make blood. (Haemopoietic stem

cell transplant.)

Step down Decrease or reduction in treatment or medication.

Systematic

review

A review of the literature done to answer a defined question often using quantitative

methods to summarise the results.

Temporal

validation Checking the CDR works when undertaken at a different point in time

Transformation

A mathematical technique of consistently modifiying varaibels, for example taking the

logarithm or square-root of a quantity

Treatment

failure Unsuccessful results or consequences of treatments used in combating disease.

True negative

When testing for a condition or disease, this result confirms the absence of the

condition in an individual who genuinely does not have the condition in question.

(Contrast with false negative (see above) where the test may incorrectly indicate that

the individual is free from the condition being investigated. The condition is present

but not detected by the test.).

True positive

When testing for a condition or disease, this result confirms the presence of the

condition in question in individuals who have it. (Compare with false positive where

the test may incorrectly indicate that the individual has a condition, but in fact they do

not.)

Tunnel infection

A device-related infection seen in central venous access devices, related to the tube as

it passes beneath the skin.
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