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Abstract

This study constructs two different model structures called projective and injective

model on the category of differential graded modules over a differential graded ring

and also provides an explicit description of fibrant and cofibrant objects for these

models. The constructions are based on the concept and properties of semi-projective

and semi-injective modules and other kinds of projectivity and injectivity in the

category of differential graded modules.

Also an analysis of behavior of functors; restriction, extension and co-extension of

scalars is given. Furthermore, some conditions under which an adjunction becomes

a Quillen pair and a Quillen pair becomes a Quillen equivalence are described. Addi-

tionally, a relationship between restriction and co-extension for compact Lie groups

is discovered.
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Introduction

The ideas of topological homotopy theory occur in different parts of mathematics

such as chain complexes, simplicial sets and groupoids. An abstract approach toward

studying geometric objects and concepts such as cylinders, path space structures and

deformation enables us to develop and unify more examples as well as discovering

logical interdependence of these ideas.

The abstract approach to find a common structure in different settings can be

considered as abstract homotopy theory. There were various attempts, to find a

axiomatic structure, among which Quillen model structure is the most widespread

one and has often been considered as the basic abstract homotopy theory. To study

more about abstract homotopy theory [7] can be considered as a start point but [31]

provides a useful note.

By definition a model category is a category with three classes of morphisms

called weak equivalence, fibration and cofibration satisfying some simple axioms

which provide a machinery of homotopy theory. However, checking these axioms in

different settings is more likely to be not an easy task.

For the category of non-negative chain complexes over a ring K, Ch(K)≥0 a

model structure has been given in [9]. In addition, Hovey in [19] developed two

model structures on the category of chain complexes over a ring K and showed that

there are two model structures on Ch(K) known as the projective and the injective

model. The number of results from [19] are summarized in the following table.

v
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Model Weak equivalences Fibration Cofibration
Cofibrantly

Generated

Projective
quasi-

isomorphism
surjections

sub-class of

injections
yes

Injective
quasi-

isomorphism

sub-class of

surjections
injections yes

In fact for the projective model, a map is a cofibration if and only if it is a

dimensionwise split injection with cofibrant cokernel and for the injective model, a

map is a fibration if and only if it is a dimensionwise split surjection with fibrant

kernel.

Now a question may rise about how a similar table could be filled for DGM(R)

when R is a differential graded algebra and DGM(R) denotes the category of differ-

ential graded R−modules. Schwede and Shipley in [34] stated the following theorem

which may be employed to fill some parts of the table for DGM(R)

Theorem. [34, 4.1] Let C be a cofibrantly generated, monoidal model category. As-

sume further that every object in C is small related to the whole category and that C

satisfies the monoid axiom.

1. Let R be a monoid in C. Then the category of left R−modules is a cofibrantly

generated model category.

2. Let R be a commutative monoid in C. Then the category of left R−modules is

a cofibrantly generated monoidal model category satisfying the monoid axiom.

Looking at the DGA R as a monoid in the category of chain complexes over the

ring of degree zero elements of R, denoting by Ch(R0), and having the previous

theorem in hand, the above table shows that DGM(R) is a model category and

there is a model structure on it corresponding to the projective model structure on

Ch(R0). However regarding the injective model on the category of chain complexes,

there are some obstructions because it is not a monoidal model structure.

Moreover, one can employ the next theorem, in which A is a DG-category and

C(A) is the category of chain complexes of A, to define two model structures on
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DGM(R).

Theorem. [24, 3.2] The category C(A) admits two structures of Quillen model cat-

egory whose weak equivalences are the quasi-isomorphisms:

i. The projective structure, whose fibrations are the epimorphisms. For this struc-

ture, each object is fibrant and an object is cofibrant if and only if it is a cofibrant

DG-module.

ii. The injective structure, whose cofibrations are the monomorphisms. For this

structure, each object is cofibrant and an object is fibrant if and only if it is a

fibrant DG-module.

Note that a direct proof for the previous theorem is not provided in [24] rather it

refers to [19, 2.3] as a source of techniques whereas they may not be working in the

case of differential graded modules over a DGA and some necessary and not obvious

modifications may be inevitable. However a proof for a similar statement to part (i)

is provided in Theorem [5, 3.3]. Nonetheless, [24, 3.2] and [34, 4.1] do not present

the fibrant and cofibrant objects explicitly.

This study aims to define two model structures on DGM(R) and provide an

explicit expression for fibrations and cofibration as well as fibrant and cofibrant

objects in the case of the projective and the injective structures. Moreover, analyzing

the relation between two model categories is another scope of this study.

Outline of the Thesis The structure of my thesis is as follows.

Chapter 1 is an intensive review of the theory of Quillen model categories and

contains all relevant material especially cofibrantly generated model categories and

the small object argument.

A lucid exposition of the category of differential modules over a DGA is provided

in chapter 2. The first four sections mostly prepare essential notations and definitions

as well as some well known results. In the rest of this chapter, some important objects

such as semi-free, semi-projective and semi-injective modules, playing a vital role in

the rest of the thesis, are introduced and the properties of these objects are explained.
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It is worth mentioning that most material for the last five sections of chapter 2 is

taken from [4] and slight modifications are done in the line of this research.

Most of the main results of this study are given in chapter 3. In fact, the following

theorem is proved in this chapter. For the definition of semi-projective and semi-

injective modules see 2.50 and 2.63.

Theorem. The category DGM(R) admits two structures of Quillen model category

whose weak equivalences are the quasi-isomorphisms:

i. The cofibrantly generated projective structure, whose fibrations are the surjec-

tions. For this structure, every object is fibrant and an object is cofibrant if

and only if it is a semi-projective DG-module . In addition, cofibrations are the

injections with semi-projective cokernel.

ii. The injective structure, whose cofibrations are the injections. For this structure,

every object is cofibrant and an object is fibrant if and only if it is a semi-injective

DG-module. In addition, fibrations are the surjections with semi-injective kernel.

Moreover, in section 3.4 a criterion for determining semi-injective modules will

be given. Section 3.6 deals with both constructive and non-constructive methods to

find a semi-projective and semi-injective resolution for a DG-module. Furthermore,

the last section of this chapter shows how to apply the cotorsion theory for defining

the projective and the injective models.

Chapter 4 investigates the behavior of restriction, extension and co-extension of

scalars functors between two model categories and finds the relation among these

functors and two other functors which will be introduced at the beginning of this

chapter. Additionally, some necessary and sufficient conditions to govern the behav-

ior of these functors at the derived level are determined. In fact, these conditions

explain when an adjunction is a Quillen pair and when a Quillen pair is a Quillen

equivalences. Moreover, in section 4.4 we introduce a slightly modified definition

of Gorenstein rings and provide varieties of examples and finally the last section

of chapter 4 deals with the relationship between restriction and co-extension for a

compact Lie groups.
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Model Categories

The idea of inverting a certain class of morphisms or objects happens quite often in

mathematics. For a given category and a class of morphisms one may like to consider

this class of morphisms as isomorphisms. It is possible to build a new category with

the objects remaining the same and formally invert the class of morphisms. This

process is called localization. However, this kind of localization sometimes is not a

locally small category [23, 7.1].

The model categories, first introduce by Quillen [32], are categories with necessary

structures to build a locally small category, called homotopy category, such that the

homotopy category is equivalent to its localization.

In this chapter, an overview of model categories will be given and most of the material

can be found in [19], [9], [18] and [15].

1.1 Pre-requirements and General Definitions

Definition 1.1. Let C be a category and Obj(C) and Mor(C) denote the class of

objects and morphisms in C respectively.

i. For f, g ∈ Mor(C), f is retract of g if and only if there exists a commutative

diagram

A //

f
��

A′ //

g
��

A

f
��

B // B′ // B

such that the composition of the horizontal maps are the identity on A and B.

1
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ii. Let α, β be functors Mor(C) //Mor(C) . Then the pair (α, β) is a functorial

factorization, if f = β(f) ◦ α(f) for all f ∈Mor(C).

iii. Suppose f, g, i, p ∈Mor(C), a lift for the commutative diagram

A
f //

i
��

C

p
��

B g
// D

is a morphism h : B // C such that the diagram

A
f //

i
��

C

p
��

B g
//

h

>>

D

commutes. i is said to have left lifting property (LLP) with respect to p and p

is said to have right lifting property (RLP) with respect to i.

Definition 1.2. [18] A model category is a category M with three closed sub-

classes of morphisms that include identities: weak equivalences ( ' // ) , fibrations

( // // ) , and cofibrations ( �
� // ) . These subclasses must also satisfy axioms

MC1-MC5.

A trivial fibration (cofibration) is a morphism which is a fibration (cofibration) and

a weak equivalence.

MC1 M is complete and cocomplete, i.e. limits and colimits exist in M.

MC2 If f, g ∈ Mor(M) such that g ◦ f ∈ Mor(M) and two of the three maps are

weak equivalences, then so is the third. This is called two of three property.

MC3 If f is a retract of g and g is a weak equivalence, fibration or cofibration then

so is f , respectively.

MC4 If f, g, i, p ∈Mor(M) such that the diagram

A
f //

i
��

C

p
��

B g
// D
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commutes, and i is a cofibration (trivial cofibration) and p is a trivial fibration

(fibration), then there exists a lift h : B // C .

MC5 If f ∈Mor(M) then there are functorial factorizations (α, β) and (γ, δ) such

that α(f) is a cofibration, β(f) is a trivial fibration, γ(f) is a trivial cofibration

and δ(f) is a fibration.

Remark 1.3. A model category was originally called a closed model category to em-

phasize that it has enough structures to guarantee that any two classes of morphisms

determine the third one. Note that some definitions require only the finite limits and

colimits in MC1 and the functoriality in MC5 is not a mandatory condition.

Remark 1.4. MC1 guarantees that a unique initial object ∅ and a unique terminal

object ∗ exist in M.

Definition 1.5. For X ∈ Obj(M), if the unique map ∅ // X is a cofibration

then X is a cofibrant object and if the unique map X // ∗ is a fibration then X

is a fibrant object.

Proposition 1.6. [19] Suppose M is a model category.

i. The fibrations (trivial fibrations) in M are the maps which have the right lifting

property with respect to trivial cofibrations (cofibrations).

ii. The cofibrations (trivial cofibrations) in M are the maps which have the left

lifting property with respect to trivial fibrations (fibrations).

iii. The fibrations (trivial fibrations) are stable under pullback and the cofibrations

(trivial cofibrations) are stable under pushout.

1.2 Homotopy Category

To construct the homotopy category of a model category, some new tools are needed.

These tools are in fact the generalization of the classical definitions in the category

of topological spaces and chain complexes.
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Constructive method Let M be a model category.

Definition 1.7. [9] In the category M

i. A path object of Y , is any object PY such that there is a commutative diagram

PY
p

##
Y ∆ //

i
>>

Y u Y

where ∆ is the diagonal map and i is a weak equivalence. A path object PY

is a good path object if p is a fibration and is a very good path object if p is a

fibration and i is a cofibration.

ii. The maps f, g : X // Y are right homotopic, f ∼r g, if for some path object

PY of Y , there exists a map H : X // PY such that the diagram

PY

p

��
X

fug
//

H

77

Y u Y

commutes. The map H is called a right homotopy from f to g. Also, if PY is a

(very) good path object then H is a (very) good right homotopy.

iii. A cylinder object of X is any object CX such that there is a commutative

diagram

CX
p

!!
X tX O

//

i
::

X

where O is the folding map and p is a weak equivalence. A cylinder object CX

is a good cylinder object if i is a cofibration and is a very good cylinder object

if i is a cofibration and p is a fibration.

iv. The maps f, g : X // Y are left homotopic, f ∼l g, if for some cylinder object

CX of X, there exists a map H : CX // Y such that the diagram

X tX ftg //

i
��

Y

CX

H

77
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commutes. The map H, is called a left homotopy from f to g. Also, if CX is a

(very) good cylinder object then H is a (very) good left homotopy.

v. The maps f, g : X // Y are homotopic f ∼ g, if they are both left and right

homotopic.

vi. The map f : X // Y is a homotopy equivalence if there exists a map g : Y // X

such that fg ∼ 1Y and gf ∼ 1X .

Lemma 1.8. [9] Suppose M(X, Y ) is the set of morphisms from X to Y in M and

f, g ∈M.

i. The relation ∼r is an equivalence relation on M(X, Y ) if Y is a fibrant object.

ii. The relation ∼l is an equivalence relation onM(X, Y ) if X is a cofibrant object.

iii. If Y is a fibrant object and f ∼r g, then f ∼l g.

iv. If X is a cofibrant object and f ∼l g, then f ∼r g.

Theorem 1.9. Given a map f : X // Y in M such that X and Y are fibrant-

cofibrant objects then, f is a weak equivalence if and only if it is a homotopy equiv-

alence.

Definition 1.10. For every object X inM a fibrant replacement of X is an object

RX in the commutative diagram below which always exists due to MC5.

X � p
'

!!

// ∗

RX

== ==

Similarly, a cofibrant replacement of X is an object QX in the diagram

∅ � p

  

// X

QX

'
== ==

Lemma 1.11. For every map f : X // Y there exists f ∗ : QRX // QRY such

that f is a weak equivalence if and only if f ∗ is a weak equivalence. The map f ∗ is

unique up to homotopy.
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Let Mcf be the category of all objects from M which are both fibrant and

cofibrant and with the morphisms same as M. In addition, suppose M/ ∼ denotes

the category with the same objects as Mcf but let the morphisms be the quotient

of the morphisms in M by homotopy.

Theorem 1.12. [9] The fibrant-cofibrant replacement map QR :M //Mcf/ ∼

defined by X � // QRX for every X ∈M and f � // [f ∗] for every f ∈M(X, Y )

is a functor.

Definition 1.13. The homotopy category of M is the category Ho(M) where

Obj(Ho(M)) = Obj(M)

and

Ho(M)(X, Y ) =M(QRX,QRX)/ ∼

Theorem 1.14. Let HM :M // Ho(M) be defined by X � // X for all X ∈M

and f � // [QR(f) ] for all f ∈ Mor(M). Then HM is a functor. Furthermore,

HM(f) is an isomorphism if and only if f is a weak equivalence.

Non-constructive method The previous statements in this section give us a

constructive approach towards defining a homotopy category. Now, by defining a

localization of a category, a non-constructive approach will be introduced and we will

see that the homotopy category constructed from a model category is isomorphic to

the localization of the model category with respect to the class of weak equivalences.

Let C be a category and W be a class of morphisms of C.

Definition 1.15. [23, 7.1.1] A localization of C with respect to W is the data of a

large category W−1C and a functor F : C //W−1C satisfying

i. F (w) is an isomorphism for all w ∈ W

ii. For any large category D and any functor G : C // D such that G(w) is an

isomorphism for all w ∈ W , there exists a functor U :W−1C // D such that

the diagram

C G //

F
��

D

W−1C
U

;;
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commutes

iii. If U1, U2 are two objects of DW−1C then the natural map

DW−1C(U1, U2) // DC(U1 ◦ F,U2 ◦ F )

is bijective.

Theorem 1.16. [9] The functor HM is a localization of M with respect to the class

of weak equivalences.

Hence, by universal property of localization, Ho(M) ∼= W−1M where W is the

class of weak equivalences.

1.3 Derived Functors and Quillen Functors

For a model category M, define Ho(M) to be its homotopy category and

HM :M // Ho(M)

to be the homotopy functor and 1HM to be the identity natural transformation on

HM.

Definition 1.17. Let F :M // D be a functor from a model category to a

category. Then a left derived functor of F is a pair of a functor and a natural

transformation (LF, l) such that the diagram

M F //

HM $$

D

Ho(M)
LF

;;

l

KS

commutes and if (G, l′) is any other such pair, there exists a natural transformation

t : G // LF such that l ◦ (t ◦ 1HM) = l′.

Similarly, a right derived functor of F is a pair (RF, r) such that the diagram

M F //

HM $$

D

Ho(M)
RF

;;

��
r

commutes and if (G, r′) is any other such pair, there exists a natural transformation

t : RF // G such that (t ◦ 1HM) ◦ r = r′.
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Remark 1.18. As a result of the universal property, a left or right derived functor is

unique up to a unique isomorphism. Hence we refer just to the left or right derived

functor. Note that [18, 8.4.1] describes the left derived functor as the closest functor

to F on the left and right derived functor as the closest functor to F on the right.

Definition 1.19. Let F :M //M′ be a functor between two model categories.

Then the total left derived functor (LF, l) is the left derived functor of composition

HM′ ◦ F :M // Ho(M′) . Similarly, the total right derived functor (RF, r) is the

right derived functor of HM′ ◦ F .

One can think of the total derived functor as a good extension of a functor

between model categories to their homotopy category. However, this good extension

sometimes doesn’t exist. The next theorem gives some sufficient conditions under

which the total derived functor exists.

Theorem 1.20. [18] Let F :M // D be a functor from a model category to a

category.

i. If F sends trivial cofibrations between cofibrant objects to isomorphisms in D,

then the left derived functor of F , (LF, l) exists and for a cofibrant object X, the

natural map lX is an isomorphism.

ii. If F sends trivial fibrations between fibrant objects to isomorphisms in D, then

the right derived functor of F , (RF, r) exists and for a fibrant object Y , the

natural map rY is an isomorphism.

Theorem 1.21. [9] Let M and M′ be model categories and

M F //oo
G

M′

be an adjoint pair where F is a left adjoint to G. If F preserves cofibrations and G

preserves fibrations, then

Ho(M)
LF //oo
RG

Ho(M′)

are adjoint. In addition, if for every cofibrant object X ∈M and every fibrant object

Y ∈ M′, F (X) // Y is a weak equivalence if and only if its adjoint morphism

X // G(Y ) is a weak equivalence, then LF and RG are equivalences of categories.
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Theorems 1.20 and 1.21 describe the behavior of an adjunction between two

model categories and show that the structure of a model category will be preserved

under some conditions which lead us to the following definition.

Definition 1.22. Let M and M′ be model categories and

M F //oo
G

M′

be an adjoint pair where F is a left adjoint to G and φ is the natural isomorphism

of adjunction.

i. F is a left Quillen functor if it preserves cofibrations and trivial cofibrations.

ii. G is a right Quillen functor if it preserves fibrations and trivial fibrations.

iii. (F,G, φ) is a Quillen adjunction if F is a left Quillen functor. The pair (F,G)

is called Quillen pair.

Remark 1.23. Ken Brown’s lemma [19, 1.1.12] implies that every left Quillen func-

tor preserves weak equivalences between cofibrant objects and similarly, every right

Quillen functor preserves weak equivalences between fibrant objects. Moreover by

Lemma [19, 1.3.4], (F,G, φ) is a Quillen adjunction if and only if G is a right Quillen

functor.

Theorem 1.24. [18] Let M and M′ be model categories and

M F //oo
G

M′

be a Quillen pair. If X is a cofibrant object of M and Y is a fibrant object of M′,

then the isomorphism

M′(F (X), Y ) ∼=M(X,G(Y ))

induces an isomorphism

M′(F (X), Y )/ ∼∼=M(X,G(Y ))/ ∼ .

Now, we give the definition of functors which look like isomorphisms between two

model categories.
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Definition 1.25. A Quillen adjunction (F,G, φ) :M //M′ is called a Quillen

equivalence if and only if for all cofibrant objects X ∈ M and fibrant objects Y ∈

M′, a map f : F (X) // Y is a weak equivalence in M′ if and only if its adjoint

morphism φ(f) : X // G(Y ) is weak equivalence in M.

Combining Theorem 1.21 and Definition 1.25 results in the following proposition.

Proposition 1.26. A Quillen adjunction (F,G, φ) :M //M′ is a Quillen equiv-

alence if and only if

Ho(M)
LF //oo
RG

Ho(M′)

is an adjoint equivalence of categories.

The next Lemma is very useful to check if a given Quillen adjunction is a Quillen

equivalence. Recall that a functor reflects a property of morphisms if, given a mor-

phism f , if F (f) has the property so does f .

Lemma 1.27. [19] Suppose (F,G, φ) :M //M′ is a Quillen adjunction. The

following are equivalent:

i. (F,G, φ) is a Quillen equivalence.

ii. F reflects weak equivalence between cofibrant objects and, for every fibrant object

Y , the map FQG(Y ) // Y is a weak equivalence.

iii. G reflects weak equivalence between fibrant objects and, for every cofibrant object

X, the map X // GRF (X) is a weak equivalence.

1.4 Cofibrantly Generated Model Categories

Most often it is a quite difficult task to show that a category admits a model category

structure. In this section, the number of topics, helping us to minimize things to

check, are introduced based on the material of [19, 2.1].

Definition 1.28. Let C be a category with all small colimits and I be a collection

of morphisms in C. In addition, suppose κ is a cardinal and λ is an ordinal.



11

i. The ordinal λ is κ−filtered if it is a limit ordinal and if A ⊆ λ and |A| ≤ κ then

SupA < λ

ii. A λ−sequence in C is a colimit-preserving functor X : λ // C commonly writ-

ten as

X0
// X1

// X2
// . . . // Xβ

// . . .

Since X preserves colimits, for all limit ordinals γ < λ, the induced map

lim−→β<γ
Xβ

// Xγ

is an isomorphism. We refer to the map X0
// lim−→β<λ

Xβ as the composition

of the λ−sequence. If every map Xβ
// Xβ+1 for β + 1 < λ is in I the

composition X0
// lim−→β<λ

Xβ is called a transfinite composition of maps of

I.

iii. An object P in C is κ−small relative to I if, for all κ−filtered ordinals λ and all

λ−sequences of maps of I, the canonical map

lim−→β<λ
C(P,Xβ) // C(P, lim−→β<λ

Xβ)

is an isomorphism. Moreover, P is small (finite) relative to I if it is κ−small

relative to I for some (finite) κ. We say P is (finite) small if it is (finite) small

relative to C itself.

Example 1.29. Suppose R is a ring then the finitely presented R−modules are

finite.

Definition 1.30. Let I be a class of maps in a category C

i. A map is I−injective if it has the right lifting property with respect to every

map in I. The class of I−injective maps is denoted by I−inj.

ii. A map is I−projective if it has the left lifting property with respect to every

map in I. The class of I−projective maps is denoted by I−proj.
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iii. A map is an I−fibration if it has the right lifting property with respect to every

map in I−proj. The class of I−fibrations is the class of (I−proj)−inj and is

denoted by I−fib.

iv. A map is an I−cofibration if it has the left lifting property with respect to every

map in I−inj. The class of I−cofibrations is the class of (I−inj)−proj and is

denoted by I−cof .

If M is a model category and, I is the class of cofibrations, then I−inj is the

class of trivial fibrations and, I−cof = I. Dually, if I is the class of fibrations, then

I−proj is the class of trivial cofibrations and, I−fib = I.

Note that in any category, I ⊆ I−cof and I ⊆ I−fib. Also, (I−cof)−inj = I−inj

and (I−fib)−proj = I−proj. Furthermore, if I ⊆ J then I−inj ⊇ J−inj and

I−proj ⊇ J−proj. Hence, I−cof ⊆ J−cof and I−fib ⊆ J−fib.

Definition 1.31. Let I be a set of maps in a category C containing all small colimits.

A relative I-cell complex is a transfinite composition of pushouts of elements of I.

The collection of I-cell complexes is denoted by I−cell.

Lemma 1.32. Let I be a set of maps in a category C containing all small colimits,

then

i. I−cell ⊆ I−cof .

ii. I−cell is closed under transfinite compositions.

iii. Any pushout of coproducts of maps of I is in I−cell

Theorem 1.33 (Small object argument). Suppose I is a set of maps in a category

C, containing all small colimits, such that the domains of the maps of I are small

relative to I−cell. Then there is a functorial factorization (α, β) on C such that for

all morphisms f in C, the map α(f) is in I−cell and the map β(f) is in I−inj.

The small object argument gives us a strong tool to construct model categories.

Now we define a cofibrantly generated model category and show how to construct

cofibrantly generated model categories.
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Definition 1.34. Suppose M is a model category. We say that M is cofibrantly

generated if there are sets I and J of maps such that,

i. The domain of the maps of I and J are small relative to I−cell and J−cell

respectively.

ii. The class of fibrations is J−inj and the class of trivial fibrations is I−inj.

Proposition 1.35. Suppose M is a cofibrantly generated model category, with gen-

erating cofibration I and generating trivial cofibrations J . Then

i. The cofibrations form the class I−cof .

ii. Every cofibration is a retract of a member of I−cell.

iii. The domains of I are small relative to cofibrations.

iv. The trivial cofibrations form the class J−cof .

v. Every trivial cofibration is a retract of a member of J−cell.

vi. The domains of J are small relative to the trivial cofibrations.

The next theorem plays an important role in defining the projective model on the

category of differential graded modules. In fact, it provides an alternative definition

for a cofibrantly generated model category.

Theorem 1.36. Suppose C is a category with all small limits and colimits. Suppose

W is a subcategory of C, and I and J are sets of maps of C. Then there exists a

cofibrantly generated model structure on C with I as the set of generating cofibrations,

J as the set of generating trivial cofibrations, and W as the subcategory of weak

equivalences if and only if following conditions are satisfied.

i. The subcategory W has the two of three property and is closed under retract.

ii. The domains of I are small relative to I−cell.

iii. The domains of J are small relative to J−cell.

iv. J−cell⊆ W∩I−cof .

v. I−inj⊆ W∩J−inj.
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vi. Either W∩I−cof⊆J−cofor W∩J−inj⊆I−inj.

There are some advantages to know that a model category is cofibrantly gener-

ated. For instance, the next lemma provides necessary and sufficient conditions for

Quillen adjunctions in case of the cofibrantly generated model.

Lemma 1.37. Suppose (F,G, φ) :M //M′ is an adjunction between model cat-

egories andM is cofibrantly generated, with generating cofibrations I and generating

trivial cofibrations J . Then (F,G, φ) is a Quillen adjunction if and only if F (f) is

a cofibration for f ∈ I and F (f) is a trivial cofibration for all f ∈ J .



2
Differential Graded Modules

Differential graded algebras (DGAs) and differential graded modules over a DGA

(DG modules) arise in different branches of mathematics particularly in algebra and

topology. For example, singular chain and cochain algebras of topological spaces,

Koszul complexes, and cohomology rings of topological spaces all are DGAs.

This chapter is an introduction to the category of differential graded modules.

The number of definitions and results can be found in [14] and an intensive review

has been given in [26]. Considering the category of DG-modules as a triangulated

category Pauksztello has provided an accessible summary of [28] in his thesis [30].

However we will mainly follow the exposition given in [4] and [12].

2.1 Basic Definitions

Definition 2.1. Let K be a commutative ring

i. A complex of K−modules is a sequence of K−linear maps

M : · · · //Mi+1

∂Mi+1 //Mi

∂Mi //Mi−1
// · · ·

such that ∂i∂i+1 = 0 for all i ∈ Z. The morphism ∂Mi is called ith boundary

map.

ii. A graded K−module is a complex in which all boundary maps are equal to 0.

Thus, every complex M has an underlying graded module, denoted by M \, and

therefore the complex can be described as a pair (M \, ∂M).

15
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iii. A chain map is a homomorphism β : M // N of complexes such that

∂N ◦ β = (−1)|β|β ◦ ∂M

where |β| is the degree of β.

iv. A morphism of complexes is a chain map of degree 0. The set of all morphisms

from M to N is denoted by MorK(M,N).

v. Given a complex M , for each s ∈ Z we define ΣsM by

(ΣsM)i = Mi−s

∂ΣsM
i = (−1)s∂Mi−s

and call it sth shift or suspension of M .

The category of complexes of K−modules DGM(K), is a category whose objects

are complexes of K−modules and morphisms are the morphisms between complexes.

Furthermore the category of graded K−modules is denoted by GM(K).

Example 2.2. Suppose M and N are complexes of K−modules.

i. HomK(M,N) is a complex of K−modules with

(HomK(M,N))d =
∏
i∈Z

HomK(Mi, Ni+d)

and the boundary map ∂HomK(M,N) acts on β ∈ HomK(M,N) by

∂HomK(M,N)(β) = ∂N ◦ β − (−1)|β|β ◦ ∂M .

ii. The tensor product N ⊗K M is a complex of K−modules with

(N ⊗K M)d =
∐
i+j=d

Ni ⊗K Mj

and the boundary map ∂N⊗KM acts on m⊗ n by

∂N⊗KM(n⊗m) = ∂N(n)⊗m+ (−1)|n|n⊗ ∂M(m).
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Definition 2.3. A differential graded algebra R (DG algebra) is a pair, (R\, ∂R)

consisting of a graded K−module R\ and a boundary map ∂R satisfying the Leibniz

rule

∂R(rr′) = ∂R(r)r′ + (−1)|r|r∂R(r′)

for all r and r′ in R. A DG algebra R is commutative if

rr′ = (−1)|r||r|
′
r′r ∀r, r′ ∈ R.

A morphism of DG algebras φ : R // S is a morphism of their underlying com-

plexes R\ and S\ such that φ(rr′) = φ(r)φ(r′) and φ(1R) = 1S.

Definition 2.4. A differential graded module (DG module) M over a DG algebra

R is a pair (M \, ∂M) where M \ is a R\ module and the boundary map ∂M satisfies

the Leibniz rule

∂M(rm) = ∂R(r)m+ (−1)|r|r∂M(m) ∀r ∈ R, ∀m ∈M

If M and N are DG R−modules, then a map β : M // N is a morphism of DG

modules if it is a morphism of underlying complexes and

β(rm) = rβ(m) ∀r ∈ R, ∀m ∈M.

Additionally, DGM(R) denotes the category of DG R−modules. If M and N

are DG modules, then MorR(M,N) denotes the set of morphisms from M to N .

Example 2.5. Consider a family (Nu)u∈U of DG R−modules. The direct product∏
u∈U N

u is a DG module with ith component equal to
∏

u∈U(Nu
i ), with the action

of R and the differential given by

r((nu)u∈U) = (rnu)u∈U ∂((nu)u∈U) = (∂(nu))u∈U .

For each v ∈ U , the canonical projection

πv :
∏

u∈U N
u // N v

πv((nu)u∈U) = nv

is a morphism of DG R−modules.
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Example 2.6. Consider a family (Mu)u∈U of DG R−modules. The direct sum∐
u∈U M

u (sometimes denoted by
⊕

u∈U M
u) is a subset of

∏
u∈U M

u, consisting of

those (mu)u∈U with mu = 0 for all but finitely many u ∈ U . It is a DG submodule

of the direct product, and for each v ∈ U , the canonical injection

iv : M v //
∐

u∈U M
u

(iv(mv))u =

m
u if v = u,

0 if v 6= u.

is a morphism of DG R−modules.

2.2 Homology and Homotopy

Homology When M is a chain complex, the graded K−modules

Z(M) = {m ∈M |∂(M) = 0} = Ker∂

B(M) = {∂(m) ∈M |m ∈M} = Im∂

C(M) = M/B(M)

are known respectively as the module of cycles, the module of boundaries and the

module of coboundaries of M . Note that Z(R) is a graded subalgebra of R\ because

if r, r′ ∈ Z(M) then by Leibnitz rule ∂(rr′) = 0 and also ∂(1) = 0. Furthermore,

Z(M) is a graded Z(R)−submodule of M \.

The relation ∂2 = 0 means that B(M) ⊆ Z(M), and the graded K−module

H(M) = Z(M)/B(M)

is called the homology of M . The ith component of H(M) is denoted by Hi(M)

rather than (H(M))i and we apply similar convention for Z(M) and B(M). The

image of z ∈ Z(M) in H(M) is shown by cls(z) or [z] and is called the homology

class of z.

The proof of following statement is quite straightforward.
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Proposition 2.7. The homology defines a functor

H : DGM(R) // GM(H(R))

which commutes with the suspension.

Definition 2.8. A morphism β : M // N in DGM(R) is a quasi-isomorphism if

H(β) is an isomorphism. The symbol ' indicates quasi-isomorphisms.

Proposition 2.9. If β : M // N is a quasi-isomorphism of complexes of K−modules,

then the following hold.

i. β is surjective if and only if Z(β) is surjective.

ii. β is injective if and only if B(β) is injective.

Proof. We prove just the first statement but the second one can be proved similarly.

First of all a direct computation shows that the sequences

0 // B(M) // Z(M) // H(M) // 0

0 // Z(M) //M // ΣB(M) // 0

m � // ∂M(m)

are exact. Consider the two commutative diagrams

0 // B(M) //

B(β)

��

Z(M) //

Z(β)

��

H(M)

H(β)

��

// 0

0 // B(N) // Z(N) // H(N) // 0

0 // Z(M) //

Z(β)

��

M //

β

��

ΣB(M)

ΣB(β)

��

// 0

0 // Z(N) // N // ΣB(N) // 0

The Snake lemma [36, 1.3.2] says that if β is surjective, then the lower diagram

implies B(β) is surjective, and then the upper diagram shows that Z(β) is surjec-

tive. Conversely, if Z(B) is surjective then the upper diagram implies that B(β) is

surjective. The surjectivity of both Z(β) and B(β) in the lower diagram shows that

β is surjective.
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The next theorem shows how the homology functor behaves on an exact sequence.

In fact, this is the most important property of the homology functor. For a full

description of connecting homomorphism and following theorem see [35, 4.2].

Theorem 2.10. For every exact sequence of DG R−modules

E : 0 // L
α //M

β // N // 0

the connecting homomorphism ∂E appears in an exact sequence

H(L)
H(α) // H(M)

H(β) // H(N) ∂E // ΣH(L)
ΣH(α) // ΣH(M)

of morphisms of graded H(R)−modules.

Homotopy

Definition 2.11. Let M and N be DG R−modules.

i. A homomorphism of DG R−modules α : M // N is said to be null homotopic

if there exists a homomorphism of R−modules ξ : M // N , such that

α = ∂N ◦ ξ + (−1)|α|ξ ◦ ∂M

A map ξ as above is called null homotopy for α, if |ξ| = |α|+ 1.

ii. Let β, β′ : M // N be homomorphisms of DG R−modules. β is said to be

homotopic to β′, denoted by β ∼ β′, if β′ − β is null homotopic, that is, if

β′ = β + ∂N ◦ ξ + (−1)|β|ξ ◦ ∂M

for some R−linear map ξ : M // N .

The next statement provides useful ways to factor general morphisms of DG

R−modules.

Proposition 2.12. [4, 6.2.7] Let β : M // N be a morphism of DG R−modules.
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i. There exists a diagram of DG modules

M ′

β′

����

πM

    
M
. �

ιM

>>

β
// N M

β
oo

with β′ surjective, β′ιM = β, βπM ∼ β′, πM ιM = 1M , and ιMπM ∼ 1M ′.

ii. There exists a diagram of DG modules

N � p

ιN

  

M
βoo β //� _

β′

��

N

N ′

πN

>> >>

with β′ injective,β′ ∼ ιNβ, πNβ′ = β, πN ιN = 1N , and ιNπN ∼ 1N ′.

In either case, β′ is a quasi-isomorphism if and only if β is one.

2.3 Functors

Definition 2.13. Suppose M and N are DG R−modules. A homomorphism of DG

modules over R or an R−linear map is a morphism β : M // N of the underlying

complexes of K−modules, such that

β(rm) = (−1)|β||r|rβ(m) ∀r ∈ R, ∀m ∈M

The set of all homomorphisms is denoted by HomR(M,N).

Remark 2.14. HomR(M,N) is a DG K−module and the boundary map ∂HomR(M,N)

acts on β ∈ HomR(M,N) by

∂HomR(M,N)(β) = ∂N ◦ β − (−1)|β|β ◦ ∂M .

Therefore the set of the cycles of degree zero is set of all degree zero homomorphisms

β such that ∂N ◦ β=β ◦ ∂M in other words

Z0(HomR(M,N)) = MorR(M,N).
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Moreover, looking at a homomorphism β : M // N as an element of the complex

HomR(M,N), it is a chain map if and only if it is a cycle, and is null homotopic if

and only if it is a boundary in HomR(M,N) and therefore

Hi(HomR(M,N)) = Zi(HomR(M,N))/ ∼

for each i ∈ Z.

Proposition 2.15. [4, 3.1.4] For any DG R−module M and N the set HomR(M,N)

is a subcomplex of HomK(M,N). Moreover the map

HomR(−,−) : DGM(R)op ×DGM(R) // DGM(K)

is a functor which commutes with the forgetful functor

HomR(M,N)\ = HomR\(M
\, N \)

Remark 2.16. The functors HomR(M,−) and HomR(−,M) are respectively left and

right exact. In addition, the property of being linearly split is preserved by these

functors.

Lemma 2.17. If M and N are DG R−modules then, the following hold.

i. HomR(M,ΣsN) = ΣsHomR(M,N)

ii. HomR(Σ−sM,N) ∼= ΣsHomR(M,N)

iii. MorR(M,Σ−sN) = ZsHomR(M,N) ∼= MorR(ΣsM,N)

Proof. (i) For a given integer s, suppose σs is a natural transformation of the identity

functor into Σs. The composition of chain maps of complexes of K−modules

ΣsHomR(M,N) σ−s // HomR(M,N)
HomR(M,σs) // HomR(M,ΣsN)

has degree 0 and therefore it is a morphism of complexes. In addition, for each n ∈ Z

the following equalities of K−modules exists.

(ΣsHomR(M,N))n =
∏
i∈Z

HomK(Mi, Ni+n−s) = HomR(M,ΣsN)n.
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Hence, the composition is the identity morphism in each degree and therefore it is

the identity map of complexes of K−modules in the first statement.

(ii) Consider the composition of the chain maps

HomR(Σ−sM,N)
HomR(σ−s,N) // HomR(M,N) σs // ΣsHomR(M,N)

which leads to a natural morphism of complexes of K−modules

β � // (−1)s|β|σs(β ◦ σ−s)

that is in fact an isomorphism.

(iii) Finally, the first and the second statements yield the last statement.

Lemma 2.18. For a DG module M and a family (Nu)u∈U of DG R−modules,

HomR(M,
∏
u∈U

Nu) ∼=
∏
u∈U

HomR(M,Nu) (2.3.1)

MorR(M,
∏
u∈U

Nu) ∼=
∏
u∈U

MorR(M,Nu) (2.3.2)

Furthermore, for a family (Mu)u∈U of DG R−modules and a DG R−module N ,

HomR(
∐
u∈U

Mu, N) ∼=
∏
u∈U

HomR(Mu, N) (2.3.3)

MorR(
∐
u∈U

Mu, N) ∼=
∏
u∈U

MorR(Mu, N) (2.3.4)

Proof. The maps β � // (πuβ)u∈U and (l 7→ (βu(l))u∈U) (βu)u∈U
�oo define the

desired isomorphism for 2.3.1 and 2.3.2. In addition, the maps µ � // (µiu)u∈U and

((mu)u∈U 7→
∑

u∈U µ
u(mu)) (µu)u∈U

�oo define the desired isomorphism for 2.3.3

and 2.3.4.

Definition 2.19. Let M be a DG R−module and L be a DG Ro−module. The

actions of Ro and R on L and M define a morphism

δRLM : R⊗K L⊗K M // L⊗K M

r ⊗ l ⊗m � // (−1)|r||l|((lr)⊗m− l ⊗ (rm))

of complexes of K−modules. In this case we define, the tensor product of DG

modules by

L⊗RM = Coker δRLM .
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Proposition 2.20. [4, 3.2.4] For any DG R−module M and DG Ro−module L,

L⊗RM is a quotient of R⊗K L⊗K M . Moreover the map

(−⊗R −) : DGM(Ro)×DGM(R) // DGM(K)

is a functor which commutes with the forgetful functor

(L⊗RM)\ = L\ ⊗R\ M \

Remark 2.21. The tensor product of DG modules commutes with the suspension

and the coproduct, i.e,

(ΣsL)⊗RM = Σs(L⊗RM)

L⊗R ΣsM ∼= Σs(L⊗RM)

L⊗R (
∐
u∈U

Mu) ∼=
∐
u∈U

(L⊗RMu)

Several fundamental isomorphisms of DG bimodules are just restated in the rest

of this section. However more details can be found in [4, 3.3]. For the rest of this

section, suppose Q, R, S and T are DG algebras.

Proposition 2.22. Let R be a DG bimodule over R and Ro, L be a DG bimodule

over Q and Ro, M be a DG bimodule over R and S. The evaluation morphisms

HomRo(R,L) // L

α � // α(1)

HomR(R,M) //M

β � // β(1)

(r 7→ (−1)|m||r|rm) m�oo

are isomorphisms of DG bimodules over Q and Ro, and R and S, respectively.

Proposition 2.23. Let L be a DG bimodule over Q and R, M be a DG bimodule

over S and T , and N be a DG bimodule over R and S. The swap morphism

HomR(L,HomS(M,N)) // HomS(M,HomR(L,N))

α � // (m 7→ (l 7→ (−1)|l||m|α(l)(m)))

(l 7→ (m 7→ (−1)|l||m|β(m)(l))) β�oo

is an isomorphism of DG bimodules over Qo and T o.
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Proposition 2.24. Let L be a DG bimodule over Q and Ro, M be a DG bimodule

over R and S, and N be a DG bimodule over S and T . The adjointness morphism

HomS(L⊗RM,N) // HomRo(L,HomS(M,N))

β � // (l 7→ (m 7→ β(l ⊗m)))

(l ⊗m 7→ γ(l)(m)) γ�oo

is an isomorphism of DG bimodules over Qo and T . Moreover, the transposition

morphism

L⊗RM //M ⊗Ro L

l ⊗m oo // (−1)|l||m|m⊗ l

is an isomorphism of DG bimodules over Q and S.

2.4 Constructions of DG Modules

Pullback and Pushout

Proposition 2.25. Let M
β // N N ′

γoo be morphisms in DGM(R)

i. The pullback of the pair (β, γ) is the DG module

M ×N N ′ = Ker

(
(β,−γ) : M ⊕N ′ // N

)
which appears in a commutative pullback diagram

0 // Ker β′ //

γ

��

M ×N N ′
β′ //

γ′

��

N ′

γ

��
0 // Ker β //M

β
// N

where γ′(m,n′) = m, β′(m,n′) = n′, and γ is the restriction of γ′.

ii. γ is an isomorphism.

iii. If β is surjective, then so is β′.

iv. If β is surjective-quasi-isomorphism, then so is β′.
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Proof. The first and second statements can be verified by straightforward computa-

tions. If β is a surjective quasi-isomorphism, then the homology exact sequence of

the bottom row shows that H(Ker β) = 0. Hence, H(Ker β′) = 0; showing H(β′)

is a bijection by using the properties of homology long exact sequence.

A dual argument of 2.25, which results in the next proposition, can be conducted.

Proposition 2.26. Let M ′ oo α M
β // N be morphisms in DGM(R)

i. The pushout of the pair (α, β) is the DG module

M ′ ⊕M N = Coker

( (−α
β

)
: M //M ′ ⊕N

)
Setting L = Im

(−α
β

)
, then we have the following pushout commutative diagram

M
β //

α

��

N

α′

��

// Coker(β) //

ᾱ
��

0

M ′ β′//M ′ ⊕M N // Cokerβ′ // 0

where β(m′) = (m′, 0) + L, α′(n) = (0, n) + L, ᾱ(n+ Im(β)) = α′(n) + Im(β′).

ii. ᾱ is an isomorphism.

iii. If β is injective, β′ is injective.

iv. If β in injective quasi-isomorphism, so is β′.

Limits and colimits At this stage, limits and colimits will be constructed in

DGM(R) and several results about them and their relations with homology will be

provided. Let U be a partially ordered set, and let

∇(U) = {(u, v) ∈ U × U |u ≤ v}

be the superdiagonal. Along with a family (Nu)u∈U we consider the family

(Nuv|Nuv = Nu)(u,v)∈∇(U).

Definition 2.27. An inverse system of morphisms in DGM(R) is a family

N = (νuv : N v → Nu)(u,v)∈∇(U) such that

νtuνuv = νtv for t ≤ u ≤ v and νuu = idN
u

for all u.
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The inverse limit, lim←−N = lim←−uN
u is defined by the exactness of the sequence

0 // lim←−uN
u ζN //

∏
u∈U N

u θN //
∏

(u,v)∈∇(U) N
uv

(nu)u∈U
� θ // (nu − νuv(nv))(u,v)∈∇(U)

(2.4.1)

It is a DG module. For each u the composition of ζ with the canonical map πu yields

a morphism νu : lim←−uN
u // Nu with νu = νuvνv for all (u, v) ∈ ∇(U).

If M = (µuv : M v →Mu)(u,v)∈∇(U) is an inverse system over U , then a morphism

β : M // N is a family ( βu : Mu // Nu )u∈U of morphisms of DG R−modules

such that βuµuv = νuvβv for all (u, v) ∈ ∇(U). The map

lim←− β : lim←−M // lim←−N

(mu)u∈U
� // (βu(mu))u∈U

is a morphism in DGM(R), called the limit of β.

Remark 2.28. A sequence L α //M β // N of morphisms of inverse systems is ex-

act if each sequence of DG R−modules Lu
αu //Mu βu // Nu is exact. Construct-

ing inverse limits of a sequence by using (2.4.1) and considering the Snake Lemma

shows that limit is left exact which means that an exact sequence of inverse systems

0 // L α //M β // N induces an exact sequence of DG R−modules

0 // lim←−L
lim←−α

// lim←−M
lim←−β

// lim←−N

Proposition 2.29. For every DG R−module M the functors HomR(M,−) and

MorR(M,−) commute with limits. In other words, if N is an inverse system

HomR(M, lim←−N) ∼= lim←−HomR(M,N) (2.4.2)

MorR(M, lim←−N) ∼= lim←−MorR(M,N) (2.4.3)

Proof. Notice that HomR(M,N) is an inverse system of complexes of K−modules.

Consider the commutative diagram

0 // HomR(M, lim←−N) // HomR(M,
∏

uN
u) Θ′ //

∼=
��

HomR(M,
∏

u≤vN
uv)

∼=
��

0 // lim←−HomR(M,N) //
∏

uHomR(M,Nu)
Θ′′
//
∏

u≤vHomR(M,Nuv)
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in which Θ′ = ΘHomR(M,N), Θ′′ = HomR(M,ΘN) and rows are exact. As the vertical

maps are isomorphisms the five lemma proves (2.4.2). Hence the induced isomor-

phism of groups of cycles of degree zero yields (2.4.3).

Definition 2.30. Along with a family (Mu)u∈U consider the family

(Muv|Muv = Mu)(u,v)∈∇(U)

A direct system of morphisms in DGM(R) is a family

M = (µvu : Mu →M v)(u,v)∈∇(U) such that

µvuµut = µvt for t ≤ u ≤ v and µuu = idM
u

for all u

The direct limit, lim−→M = lim−→u
Mu, is defined by the exactness of the sequence

∐
(u,v)∈∇(U) M

uv γ //
∐

u∈U M
u ε // lim−→u

Mu // 0∑
(u,v)∈∇(U) i

uv(muv) � γ //
∑

(u,v)∈∇(U)(i
u(muv)− ivµuv(muv))

It is a DG module. For each u the composition of the map iu with ε is the morphism

µu : Mu // lim−→u
Mu with µv = µwµwv for all (u,w) ∈ ∇(U).

If N = (νuv : Nu → N v)(u,v)∈∇(U) is a direct system over U , then a morphism

β : M // N is a family ( βu : Mu // Nu )u∈U of morphisms of DG R−modules

such that βvνvu = µvuβu for all u ≤ v. The map

lim−→ β : lim−→M // lim−→N

εM(
∑

u∈U i
u(mu)) � //

∑
u∈U µ

uβu(mu)

is a morphism in DGM(R), called the direct limit of β.

Remark 2.31. A sequence L α //M β // N of morphisms of direct systems is exact

if each sequence of DG R−module Lu αu //Mu βu // Nu is exact. Direct limits are

right exact which means that an exact sequence of direct systems L α //M β // N // 0

induces an exact sequence of DG R−module

lim−→L
lim−→α

// lim−→M
lim−→β

// lim−→N // 0
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By conducting a dual argument for 2.29 with some extra modifications, the fol-

lowing proposition is obtained.

Proposition 2.32. [4, 4.6.3.1] For every DG R−module N the functors HomR(−, N)

and MorR(−.N) change direct limit to inverse limit. In other words, if M is a direct

system

HomR(lim−→M, N) ∼= lim←−HomR(M, N)

MorR(lim−→M, N) ∼= lim←−MorR(M, N)

If the set U has some property, the direct limit behaves more nicely. We start

analyzing these behaviors by the next definition.

Definition 2.33. An ordered set U is said to be filtered if for each pair of elements

u, v ∈ U there exists a w ∈ U such that u ≤ w and v ≤ w.

Lemma 2.34. Let U be a filtered ordered set.

i. For each m ∈ lim−→M there exists mu ∈Mu such that m = µu(mu).

ii. For mu ∈Mu if µu(mu) = 0 then µwu(mu) = 0 for some w ∈ U with u ≤ w.

iii. For mu ∈ Mu and mv ∈ M v if µu(mu) = µv(mv) then µwu(mu) = µwv(mv) for

some w ∈ U with u, v ≤ w.

Proof. (i) By construction, m can be written in the form m =
∑

t∈U µ
t(mt). Choos-

ing u ∈ U such that u ≥ t for all the ts, we get

m =
∑
t∈U

µuµut(mt) = µu(
∑
t∈U

µut(mt)).

(ii) If µu(mu) = 0, then iu(mu) =
∑

(t,v)∈∇(U)(i
t(mtv) − ivµvt(mtv)). Choose w ∈ U

with w ≥ u and w ≥ v for all vs appearing in the sum, and set

γw :
∐

t∈U M
t //Mw γw(

∑
t∈U

it(mt)) =
∑
t≤w

µwt(mt)
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Applying the morphism γw to the expression for iu(mu) we get

µwu(mu) =
∑

(t,v)∈∇(U)

(µwt(mtv)− µwvµvt(mtv)) = 0.

(iii) Choose t ≥ u, v. As µt(µtu(mu) − µtv(mv)) = 0 by (ii) there is a w ≥ t with

µwt(µtu(mu)− µtv(mv)), which is µwu(mu)− µwv(mv) = 0.

Proposition 2.35. If 0 // L α //M β // N // 0 is an exact sequence of direct

systems and the set U is filtered, then the induced sequence

0 // lim−→L
lim−→α

// lim−→M
lim−→β

// lim−→N // 0

of DG R−modules is exact.

Proof. It suffices to prove that ᾱ = lim−→α is injective. For l ∈ Ker ᾱ choose u ∈ U

and lu ∈ Lu such that l = λu(lu) where λs belong to the direct system L. Then

µuαu(lu) = ᾱλu(lu) = ᾱ(l) = 0 where µs belong to the direct system M. By using

Lemma 2.34 we can find w ≥ u with 0 = µwuαu(lu) = αwλwu(lu). The injectivity of

αw implies that λwu(lu) = 0, and hence l = λwλwu(lu) = 0.

Every direct system M of DG modules defines a direct system

H(M) = (H(µvu) : H(Mu) −→ H(M v))(u,v)∈∇(U)

of morphisms of gradedH(R)−modules. The maps H(µvu) : H(Mu) // H(lim−→M)

induce a canonical morphism of graded H(R)−modules lim−→H(M) // H(lim−→M) .

The next theorem often is summarized as: Filtered colimits commute with homology.

Theorem 2.36. If the ordered set U is filtered, then the canonical morphism

lim−→H(M) // H(lim−→M)

is bijective.

Proof. The direct system M induces direct system of complexes of K−modules B(M)

and Z(M). The four direct systems are linked by exact sequences

0 // Z(M)
ζ //M ω // ΣB(M) // 0

0 // B(M)
β // Z(M) π // H(M) // 0
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Proposition 2.35 results in exact sequences of complexes

0 // lim−→Z(M)
ζ // lim−→M ω // Σ lim−→B(M) // 0

0 // lim−→B(M)
β // lim−→Z(M) π // lim−→H(M) // 0

Define a map χ : lim−→H(M) // H(lim−→M) as follow; for h ∈ lim−→H(M) choose

z ∈ lim−→Z(M) with π(z) = h and set χ(h) = cls(ζ(z)). Using the exact sequences

above one checks that χ is bijective. We must show that χ is the desired canonical

map induced by the family H(µu). Choose u ∈ U and zu ∈ Z(Mu) such that z =

µu(zu) ∈ lim−→Z(M) we have ζ(z) = µu(zu) ∈ lim−→M. and hence χ(h) = cls(ζ(z)) =

cls(µu(zu)) = H(µu)cls(zu) which shows χ is the desired isomorphism.

Mapping Cone Another important construction of DG modules is the mapping

cone which plays a fundamental role in analyzing morphisms of DG modules, by

providing tools to recast properties of morphisms as properties of DG modules. For

example, a morphism is a quasi-isomorphism if its mapping cone is quasi-trivial (has

trivial homology groups).

Definition 2.37. Let β : M // N be a morphism in DGM(R). The mapping

cone of β is the DG module

Cone β = ((ΣM)\ ⊕N \, ∂C)

∂Ci (m,n) = (−∂Mi−1(m), βi−1(m) + ∂Ni (n)) for (m,n) ∈ (ΣM)\i ⊕N
\
i

∂C has the matrix form  ∂ΣM 0

Σβ ∂N


Remark 2.38. Mapping cones are natural in the sense that for every commutative

diagram of DG R−modules

M
β //

µ

��

N

ν

��
M ′

β′
// N ′
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the map Cone β // Cone β′ given by (m,n) 7→ (µ(m), ν(n)) is a morphism of

DG R−modules and it is an isomorphism if ν and µ are. In addition, the mapping

cone sequence of β

C(β) : 0 // N i // Cone β π // ΣM // 0

n � // (0, n)

(m,n) � //m

is a linearly split sequence of DG R−modules. Linearly split means split as graded

R\−modules.

Lemma 2.39. A morphism β : M // N is a quasi-isomorphism if and only if

Cone β is quasi-trivial.

Proof. A direct computation shows the connecting homomorphism of C(β) satisfies

∂C(β) = H(Σβ) = ΣH(β).

Thus, there is an exact sequence of morphisms of graded H(R)−modules

Σ−1H(Cone β) // H(M)
H(β) // H(N) // H(Cone β)

which shows the result immediately.

Now we describe the behavior of the cone construction under the homomorphism

and tensor functors.

Proposition 2.40. [4, 5.2.3] Let β : M // N be a morphism in DGM(R) and

let Cone β be its mapping cone. For any DG R−module P and every DG module L

over Ro there are natural isomorphisms of complexes

HomR(P,Cone β) ∼= Cone HomR(P, β) (2.4.4)

HomR(Cone β, P ) ∼= Cone HomR(Σβ, P ) (2.4.5)

L⊗R (Cone β) ∼= Cone L⊗R β (2.4.6)



33

2.5 Freeness

Free objects on any graded set can be constructed in the category DGM(R). The

results from Lemma 2.49 show such DG modules are always contractible therefore

they carry no information of the differential structure of DGM(R). However, there

exists a class of objects called semi-free modules carrying enough information on

the structure of DGM(R) and behaving similarly to free objects on the categories

of ordinary modules and CW-complexes in category of topological spaces. In this

section, these two classes of objects and their properties are introduced.

Definition 2.41. Let R be DGA, L be a DG R−module and X be a graded

set.

i. [26] A DG R−module is called DG-free, if it is isomorphic to a direct sum of

suspensions of R. We denote R(X) as the DG-free module∐
x∈X

Rex where |ex| = |x| and ∂(ex) = 0

In fact R(X) is free on a basis of cycles.

ii. A subset E of L is called a semi-basis if it is a basis of L\ over R\ and has a

decomposition E =
⊔
u≥0E

u as a union of disjoint graded sets Eu such that

∂(Eu) ⊂ R(
⊔
i<u

Ei) for all u ∈ Z

A DG module which has some semi-basis is said to be semi-free.

iii. A semi-free filtration of L is a sequence of DG submodules

L = {· · · ⊆ Lu−1 ⊆ Lu ⊆ Lu+1 ⊆ · · · }

with L =
⋃
u∈Z L

u, L−1 = 0, and Lu/Lu−1 DG free for all u ∈ Z.

The next proposition gives a better explanation of semi-free modules and makes

it easier to deal with them.

Proposition 2.42. [4, 8.2,2] For a DG module L the following are equivalent.
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i. L is semi-free.

ii. L has a semi-free filtration.

iii. L has a well ordered basis E, such that for every e ∈ E

∂(e) ∈ RE<e where E<e = {e′ ∈ E|e′ < e}.

Proof. (i)⇒ (ii). If E =
⊔
u≥0E

u is a semi-basis, then Lu = R(
⊔
i≤uE

i) is a DG

submodule of L, and the inclusions Lu−1 ⊆ Lu define a semi-free filtration.

(ii)⇒ (iii). If L is a semi-free filtration, then for each u ≥ 0 choose first for

(Lu/Lu−1)\ a basis of cycles, then lift this basis to a set Eu ⊆ Lu. Obviously,

E =
⊔
u≥0E

u is a basis of the graded R\−module L\. Define each element of Eu′

to be smaller than any element of Eu if u′ ≤ u and then well ordering each Eu

by applying Zermelo’s theorem of well-ordering, now the desired ordering can be

imposed on E.

(iii)⇒ (i). Let E be a well ordered basis with ∂(E) ⊆ RE<e. Set E−1 = ∅ and

L−1 = 0. Define recursively, Eu = {e ∈ E|∂(e) ∈ Lu−1} and Lu = REu. Since Lu is

a DG submodule of L, and {e + Lu−1|e ∈ Eu} is a basis for (Lu/Lu−1)\ consisting

of cycles, the set E ′ =
⋃
u≥0E

u generates a semi-free submodule of L. We claim

E ′ = E. Suppose E ′ 6= E, let e be the initial element of E \E ′, by assumption, ∂(e)

is a linear combination of elements e′ ∈ E with e′ < e, so e′ ∈ E ′ by the choice of e.

Therefore, there exists u ≥ such that ∂(e) ∈ Eu which shows that e ∈ Eu+1. This is

a contradiction.

Remark 2.43. The minimal elements of the well ordered basis E must be cycles.

The next example shows that complexes of free modules over an ordinary ring

need not be semi-free DG modules.

Example 2.44. Let R = Z/(4) and M be the DG module

... // Rej+1

∂j+1 // Rej
∂j // Rej−1

// ...

where Rej is a free R−module with basis {ej} and ∂(ej) = 2ej−1 for all j ∈ Z. If

M were semi-free then by 2.42 M \ has a well ordered basis whose minimal elements
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are cycles. This is impossible, as every basis of M \ has the form {±ej}j∈Z and such

a set contains no cycles.

Definition 2.45. A semi-free resolution of an R−module M is a quasi-isomorphism

ε : L //M from a semi-free DG module L; such a resolution is strict if the map

ε is surjective.

Semi-free resolutions play a quite similar role to CW-complexes in the category

of topological spaces. The next theorem, which has been proved in [14, 6.6] and

Section 3.6, is analogous to the CW approximation theorem for topological spaces.

Note that, we omit the word “strict” if there is no confusion.

Theorem 2.46. Every DG module has a strict semi-free resolution.

Categorically free DG module A definition of freeness in DGM(R) based on

the terminology introduced in [4, 8.4.1] is provided here.

Definition 2.47. A subset Y of a DG R−module L is said to be categorically free if

for each DG module M over R and every homogeneous map κ : Y //M of degree

0 there exists a unique R−linear morphism κ̃ : L //M with κ̃(y) = κ(y) for all

y ∈ Y . The DG module L is categorically free over R if it contains a categorically

free subset.

Lemma 2.48. [4, 8.4.4] For each DG R−module M there exists a surjective mor-

phism L //M , where L is a categorically free DG module.

Lemma 2.49. [4, 8.4.5] If L is a categorically free DG module then L is semi-free

and contractible.

2.6 Projectivity

Recall that for an ordinary ring S, an S−module P is projective if the functor

HomS(P,−) is exact. However the situation for DG modules is different since the

category of DG modules over R can be enriched in DGM(K). In this section we
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try to investigate more properties of the category DGM(R) by studying varieties of

projectivities defined by the Hom(P,−) functor.

Through the rest of this section A and R denote a graded algebra and a DG

algebra respectively.

Definition 2.50. A DG R−module P is said to be

• linearly projective if HomR(P,−) preserves surjective morphisms.

• homotopically projective if HomR(P,−) preserves quasi-isomorphisms.

• semi-projective if HomR(P,−) preserves surjective quasi-isomorphisms.

These definitions are generalizations of the first definition of [3] for the category

of DG modules.

Remark 2.51. For P in DGM(R) the following hold.

i. P is respectively, linearly projective, homotopically projective and semi-projective

over R if ΣiP has the corresponding property for some i ∈ Z, if and only if ΣiP

has that property for all i ∈ Z.

ii. If P =
∐

u∈U P
u then P is respectively, linearly projective, homotopically projec-

tive and semi-projective over R if and only if P u has the corresponding property

for every u ∈ U .

Definition 2.52. Let P be a graded A−module. P is projective if the functor

HomA(P,−) : GM(A) // GM(K)

preserves surjective morphisms.

The following proposition is analogous to the properties of projective modules in

the ordinary sense and therefore the proof is omitted. Recall that a morphism is a

homomorphism of degree 0 by 2.14.

Proposition 2.53. For a graded A−module P the following are equivalent.

i. P is projective.
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ii. HomA(P,−) preserves exact sequences.

iii. If α : P // N is a homomorphism and β : M // N is a surjective mor-

phisms then there is a homomorphism γ : P //M such that α = βγ which

means the diagram below commutes.

M

β
��

P α
//

γ
>>

N

iv. If ρ : M // P is a surjective morphism, then there is a morphism σ : P //M

such that ρσ = 1P .

v. P is a direct summand of some graded free A−module L.

Proposition 2.54. Let ( ιu,u−1 : P u−1 // P u )u∈Z be a direct system of monomor-

phisms of graded A−modules with P u = 0 for u � 0. If Cu = Coker ιu,u−1 is

projective for all u ∈ Z, then P = lim−→u
P u is projective and P ∼=

∐
u∈ZC

u.

Proof. As the direct limit is left exact, the canonical morphisms ιu : P u // P are

injective and P =
⋃
u∈Z Im(iu), so for the rest of the proof we identify P u with its

image in P . If ρu : P u // Cu is the canonical surjection for all u ∈ Z there is a

morphism σu : Cu // P u such that ρuσu = 1Cu . Set Q =
∐

u∈ZC
u, write y ∈ Q

in the form y = (· · · , yu, · · · ) with yu ∈ Cu, and define a map σ : Q // P by

σ(y) =
∑
u∈Z

σu(yu).

We claim that σ is an isomorphism which shows that P is projective by 2.51. If

y 6= 0, then v = Sup{u|yu 6= 0} is finite and σ(y) ∈ P v. Thus ρvσ(y) = yv which

is not zero, therefore σ is injective. To show P u ⊆ Im(σ) for all u ∈ Z we apply

induction on u. For u � 0, P u = 0 so P u ⊆ Im(σ). Suppose P v−1 ⊆ Im(σ) for

some v ∈ Z. For each x ∈ P v we have

ρv(x− σvρv(x)) = ρv(x)− ρvσvρv(x)

= 0 as ρuσu = 1Cu
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hence x−σvρv(x) is in Ker (ρv) = P v−1, and therefore there exists a y′ ∈ Q such that

x− σvρv = σ(y′). Set y such that yu = 0 for u 6= v and yv = ρv(x) so x = σ(y′ + y)

which is in Im(σ).

Lemma 2.55. Let Q be a DG R−module.

i. Q is homotopically projective if and only if the functor HomR(Q,−) preserves

quasi-triviality.

ii. If Q =
⋃
u∈ZQ

u for a sequence of DG submodules Qu−1 ⊆ Qu such that Qu = 0

for u � 0, Cu = Qu/Qu−1 is homotopically projective for all u, and (Cu)\

is projective over R\ for all u, then Q is homotopically projective and Q\ is

projective over R\.

Proof. (i) Suppose Q is a homotopically projective and E is a quasi-trivial DG

module. As the map Q // 0 is a quasi-isomorphism the map HomR(Q,E) // 0

is also a quasi-isomorphism.

Next suppose, HomR(Q,−) preserves quasi-triviality. If β : M // N is a quasi-

isomorphism then Cone β is a quasi-trivial module, and therefore Cone HomR(Q, β),

which is isomorphic to HomR(Q,Cone β), is quasi-trivial. Hence HomR(Q, β) is a

quasi-isomorphism.

(ii) Proposition 2.54 shows that Q\ is projective over R\ so by (i) it suffices to

prove that if E is quasi-trivial then H(HomR(Q,E)) = 0. For each u ∈ Z the exact

sequence 0 // Qu−1 // Qu // Qu/Qu−1 // 0 of DG modules is linearly split,

so it induces an exact sequence of complexes

0 // HomR(Qu/Qu−1, E) // HomR(Qu, E) // HomR(Qu−1, E) // 0 .

Because Qu = 0 for u� 0, we may assume by induction on u that HomR(Qu−1, E) is

quasi-trivial. By hypothesis H(HomR(Qu/Qu−1, E)) = 0 and therefore by the long

exact sequence of homology groups H(HomR(Qu, E) = 0). As Q = lim−→u
Qu we get

H(HomR(Q,E)) = H(HomR(lim−→
u

Qu, E)) ∼= H(lim←−HomR(Qu, E)) = 0

meaning Q is homotopically projective.
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Corollary 2.56. A semi-free DG R−module L is homotopically projective, and the

graded R\−module L\ is projective.

Proof. If · · · ⊆ Lu−1 ⊆ Lu ⊆ Lu+1 ⊆ · · · is a semi-free filtration of L, then Lu/Lu−1

is isomorphic to a direct sum of copies of ΣsR for various s ∈ Z. Any such module is

clearly homotopically projective and therefore Lu/Lu−1 is homotopically projective.

Using Lemma 2.55 shows the results.

Lemma 2.57. Let Q be a semi-projective DG module, and α : Q // N be a mor-

phism of DG modules, and let β : M // N be a quasi-isomorphism of DG modules.

i. If β is surjective, then there exists a morphism γ : Q //M with α = βγ.

ii. There exists a morphism γ : Q //M such that α ∼ βγ.

Proof. (i) By hypothesis the map HomR(Q, β) is a surjective quasi-isomorphism so

Z0HomR(Q, β) = MorR(Q, β) : MorR(Q,M) //MorR(Q,N) is a surjection by

2.9. Hence there exists a morphism γ : Q //M such that α = βγ.

(ii) By using proposition 2.12 the diagram

M ′ πM //

β′

��

M

β

��
Q

γ′

>>

α
// N

1N
// N

can be constructed in which the square commutes up to homotopy and β′ is surjective

quasi-isomorphism. By the first part there exists a morphism γ′ such that α = βγ′.

Thus, for γ = πMγ′ we have βγ = βπMγ′ ∼ β′γ′ = α.

Linearly projective DG module The next theorem provides a relation among

different properties of a linearly projective DG module.

Theorem 2.58. [4, 9.4.1] For a DG R−module P the following are equivalent.

i. P is linearly projective.

i′. MorR\(P
\,−) preserves exact sequences.
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i′′. HomR(P,−) preserves exact sequences.

ii. If α : P // N is a chain map and β : M // N is a surjective morphism,

then there is a homomorphism γ : P \ //M \ in GM(R\) with α = βγ.

ii′. If α : P // N is a morphism and β : M // N is a surjective morphism,

then there is a morphism γ : P \ //M \ in GM(R\) with α = βγ.

iii. If ρ : M // P is a surjective morphism then there exists a morphism σ : P \ //M \

in GM(R\) such that ρσ = 1P .

iv. P is a DG submodule of a free DG module L over R, with P \ a direct summand

of L\ in GM(R\).

v. P \ is a projective graded R\−module.

Proof. (i)⇔ (i′′), (i)⇔ (ii) and (i′)⇔ (i′′) hold by definition.

(ii)⇔ (ii′) as ZiHomR(P,−) = MorR(p,Σ−i(−)) by 2.17.

(ii′)⇒ (iii). Apply the hypothesis to α = 1P and β = ρ and set σ = γ.

(iii) ⇒ (iv). By Lemma 2.48 there is an epimorphism ρ : L // P with L a free

DG module and an R\−linear map σ : p\ // l\ with ρσ = 1P by hypothesis.

(iv)⇒ (v)⇒ (i) hold by 2.53.

Homotopically projective DG module The properties of homotopically pro-

jective DG modules are summarized in the next theorem.

Theorem 2.59. [4, 9.5.1] For a DG R−module P the following are equivalent.

i. P is homotopically projective.

i′. HomR(P,−) transforms surjective quasi-isomorphisms into quasi-isomorphisms.

i′′. HomR(P,−) preserves quasi-trivial modules.

ii. If α : P // N is a chain map and β : M // N is a quasi-isomorphism,

then there is a chain map γ : P //M such that α ∼ βγ. Moreover, if

γ′ : P //M is a chain map with α ∼ βγ′ then γ′ ∼ γ.

ii′. If α : P // N is a morphism and β : M // N is a quasi-isomorphism,

then there is a morphism γ : P //M such that α ∼ βγ.
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iii. If ρ : M // P is a quasi-isomorphism, then there is a morphism σ : P //M

such that ρσ ∼ 1P .

iv. There exists a semi-projective DG module Q and morphisms P
σ // Q

ρ // P

such that ρσ ∼ 1P .

v. P is homotopy equivalent to a semi-projective DG module Q.

Proof. (i)⇒ (i′) is obvious.

(i′) ⇒ (i′′). If H(E) = 0 then the surjective quasi-isomorphism E // 0 yields a

quasi-isomorphism HomR(P,E) // 0 , and therefore H(HomR(P,E)) = 0.

(i′′)⇒ (i) has been proved in 2.55.

(i) ⇒ (ii). Without loss of the generality we can assume that |α| = 0. The surjec-

tivity of

H0(HomR(P, β)) : H0(HomR(P,M)) // H0(HomR(P,N))

shows that there exists a morphism γ : P //M with H0(β)[γ] = [α], so βγ =

α+∂(ξ) for some ξ ∈ HomR(P,N)1 which means βγ ∼ α. If α ∼ βγ′, the injectivity

of H0(β) shows [γ′] = [γ]. Hence xg′ = γ+ ∂(ξ) for some ξ ∈ HomR(P,M)1, that is,

γ′ ∼ γ.

(ii)⇒ (iii). Apply the hypothesis to β = ρ and α = 1P .

(iii)⇒ (v). Let ρ : Q // P be a semi-projective resolution and let σ : P // Q

be a morphism with ρσ ∼ 1P . As H(ρ)H(σ) = 1H(P ), σ is a quasi-isomorphism. By

Lemma 2.57 there is a morphism ρ′ : Q // P with σρ′ ∼ 1Q and therefore σ is a

homotopy equivalence.

(v)⇒ (iv) is obvious.

(iv) ⇒ (ii′). Since Q is semi-projective we can apply Lemma 2.57 to the quasi-

isomorphism β : M // N and the morphism αρ : Q // N . Hence there is a

morphism γ′ : Q //M such that the square in the diagram

Q
γ′ //

ρ

��

M

β

��
P

σ

??

1P
// P α

// N
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commutes up to homotopy. Thus, γ = γ′σ satisfies βγ = βγ′σ ∼ αρσ ∼ α.

(ii′)⇒ (i′′). Let E be a DG module withH(E) = 0. An element α ∈ Zi(HomR(P,E))

is a morphism α : P // Σ−iE . For the quasi-isomorphism β : 0 // Σ−iE there

is a morphism γ : P // 0 with α ∼ βγ by hypothesis, and therefore α ∼ 0. This

means α ∈ Bi(HomR(P,E)), so we get Hi(HomR(P,E)) = 0.

Semi-projective DG module

Theorem 2.60. [4, 9.6.1] For a DG R−module P the following are equivalent.

i. P is semi-projective.

i′. MorR(P,−) transforms surjective quasi-isomorphisms into surjections.

ii. If α : P // N is a chain map and β : M // N is a surjective quasi-

isomorphism, then there is a chain map γ : P //M such that α = βγ.

Moreover, if γ′ : P //M is a chain map with α ∼ βγ′ then γ′ ∼ γ.

ii′. If α : P // N is a morphism and β : M // N is a surjective quasi-isomorphism,

then there is a morphism γ : P //M such that α = βγ.

iii. Each surjective quasi-isomorphism ρ : M // P has a right inverse.

iv. P is a direct summand of some semi-free DG R−module L.

v. P is homotopically projective and linearly projective.

v′. P is homotopically projective and the graded R\−module P \ is projective.

Proof. (i)⇒ (ii′) has been proved in 2.57.

(ii′)⇒ (iii). Any lifting σ of 1P over ρ is a right inverse of ρ.

(iii)⇒ (iv). Suppose ρ : L // P is the semi-free resolution of P . By assumption

ρ has a right inverse, so P is isomorphic to direct summand of L.

(iv)⇒ (v′). A semi-free DG module L is homotopically projective by 2.56 and this

property passes to its summand by 2.51. Moreover, the graded R\−module L\ is

free, so its direct summand P \ is projective.

(v′)⇒ (v) is clear.
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(v)⇒ (i) follows from the definition.

(ii′, v) ⇒ (ii). Without loss of the generality we can assume that |α| = 0 because

Zi(HomR(P, β)) ∼= MorR(P,Σ−iβ). Hence there is a chain map γ : P //M with

α = βγ. Since P is homotopically projective the by (v),γ is unique up to homotopy

by 2.59.

(ii)⇒ (ii′) is obvious.

(ii′)⇒ (i′) by definition.

Categorically projective DG module We describe the projectivity inDGM(R).

Definition 2.61. A DG module P ∈ DGM(R) is projective (categorically projec-

tive) if the functor

MorR(P,−) : DGM(R) //M(K)

transforms surjective morphisms into surjections.

Theorem 2.62. For a DG R−module P the following are equivalent.

i. P is projective.

i′. HomR(P,−) transforms surjective morphisms into surjective quasi-isomorphisms.

ii. If α : P // N is a chain map and β : M // N is a surjective morphism,

then there is a chain map γ : P //M such that α = βγ.

ii′. If α : P // N is a morphism and β : M // N is a surjective morphism,

then there is a morphism γ : P //M such that α = βγ.

iii. Each surjective morphism ρ : M // P has a right inverse.

iv. P is a direct summand of some free DG R−module L.

v. P is linearly projective and contractible.

v′. P is semi-projective and quasi-trivial.

Proof. (i′) ⇒ (i). If β : M // N is a surjective morphism in DGM(R) then by

hypothesis the induced map

HomR(P, β) : HomR(P,M) // HomR(P,N)
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is a surjective quasi-isomorphism and therefore by 2.9 the map

Z0(HomR(P, β)) : Z0(HomR(P,M)) // Z0(HomR(P,N))

is a surjection.

(i)⇒ (ii′) by definition of the functor MorR(P,−).

(ii′)⇔ (ii) as Zi(HomR(P,−)) = MorR(P,Σ−i,−).

(ii′)⇒ (iii). Any lifting γ : P //M of 1P over ρ satisfies ργ = 1P .

(iii)⇒ (iv). Assume π : L // P is the free resolution of P . By hypothesis there

exists a morphism σ : P // L with πσ = 1P . Thus, P is isomorphic to a direct

summand of L.

(iv) ⇒ (v′). By 2.51 it suffices to show that L is semi-projective and quasi-trivial

which is immediate.

(v′)⇒ (v). As P is semi-projective Theorem 2.60 shows that it is linearly projective

and homotopically projective. Thus, HomR(P,−) preserves quasi-triviality by 2.55,

especially by assumption we have

H0(HomR(P, P )) = 0

which means that 1p ∈ MorR(P, P )=Z0(HomR(P, P )) is homotopic to zero by 2.14

and therefore P is contractible.

(v)⇒ (i). Theorem 2.58 and contractibility of P show the result.

2.7 Injectivity

In the previous section, the concept of projectivity in DGM(R) was analyzed and it

was seen how different the situation is in comparison to ordinary modules. Now, it is

quite reasonable if one expects that a dual argument also could be conducted. In the

current section, injectivity conditions in DGM(R) are described. Note that to prove

the main theorems of this section a dual argument of their projective counterpart is

almost valid and therefore some arguments are omitted.

Definition 2.63. A DG R−module I is said to be
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• linearly injective if HomR(−, I) sends injective morphisms into surjections.

• homotopically injective if HomR(−, I) preserves quasi-isomorphisms.

• semi-injective if HomR(−, I) transforms injective quasi-isomorphisms into sur-

jective quasi-isomorphisms.

Remark 2.64. For I in DGM(R) the following hold.

i. I is respectively, linearly injective, homotopically injective and semi-injective

over R if ΣiP has the corresponding property for some i ∈ Z, if and only if ΣiP

has that property for all i ∈ Z.

ii. If I =
∏

u∈U I
u then I is respectively, linearly injective, homotopically injective

and semi-injective over R if and only if Iu has the corresponding property for

every u ∈ U .

Recall that aK−moduleW is faithfully injective if it is injective andHomK(N,W ) 6=

0 for all K−modules N 6= 0.

Definition 2.65. For a fixed faithfully injective module I (e.g. HomZ(K,Q/Z))

and for an arbitrary complex M of K−modules the complex

M∨I = HomK(M, I)

of K−modules is called the complex of characters of M . If no confusion will arise

we denote it just by M∨. Clearly the assignment M 7→M∨ defines a functor

∨ : DGM(K)op // DGM(K)

which is called character functor.

Lemma 2.66. There exist natural isomorphisms

HomRo(L,M
∨) ∼= HomR(M,L∨) ∼= (L⊗RM)∨

of functors DGM(Ro)op ×DGM(R)op // GM(K) , and a natural isomorphism

MorRo(L,M
∨) ∼= MorR(M,L∨)

of functors DGM(Ro)op ×DGM(R)op //M(K) .
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Proof. The first isomorphism is given by 2.23 and the second one by adjointness

2.24. Additionally, for the K−module of 0−cycles we have the isomorphism

Z0(HomRo(L,M
∨)) ∼= Z0(HomR(M,L∨))

which shows the last isomorphism.

Character functor is a very useful tool in analyzing injectivity. The next propo-

sition is our start point for discovering properties of injective DG modules.

Proposition 2.67. Let P be a graded Ao−module or a DG Ro−module. If P is

projective over Ao (respectively linearly projective, homotopically projective, semi-

projective over Ro), then its character module P∨ is injective over A (respectively

linearly injective, homotopically injective, semi-injective over Ro).

Proof. By Lemma 2.66 there exists an isomorphism of functors

HomR(−, P∨) ∼= HomRo(P, (−)∨)

It is not hard to see that if β is injective then β∨ is surjective and if it is quasi-

isomorphism then β∨ is a quasi-isomorphism as well. Now a simple comparison

between various definitions of projectivity and injectivity yields the result.

Definition 2.68. Let I be a graded A−module. I is injective if the functor

HomA(−, I) : GM(A) // GM(K)

transforms injective morphisms into surjections.

Proposition 2.69. For a graded A−module I the following are equivalent.

i. I is injective.

ii. HomA(−, I) preserves exact sequences.

iii. If α : M // I is a homomorphism and β : M // N is a injective mor-

phisms then there is a homomorphism γ : N // I such that γβ = α which

means the diagram below commutes.

M

β
��

α // I

N

γ

??
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iv. If σ : I // N is an injective morphism, then there is a morphism ρ : N // I

such that ρσ = 1I .

v. I is a direct summand of L∨ for some free graded Ao−module L.

Proof. (i′)⇔ (i′′) holds because HomR(−, I) is left exact.

(i)⇔ (ii′) and (i′)⇔ (ii) is almost clear.

(ii′)⇔ (ii) as HomA(M, I)i = MorA(ΣiM, I) for i ∈ Z.

(ii′)⇒ (iii). By assumption, for α = 1I and β = σ there is a morphism ρ : N // I

such that ρσ = 1I .

(iii) ⇒ (iv). By dualizing a free resolution of I∨ it is easy to see that there is an

injective morphism σ : I // L∨ , where L is a free graded module over Ao. By

hypothesis there is a morphism ρ : L∨ // I such that ρσ = 1I , so I is isomorphic

to a direct summand of L∨.

(iv)⇒ (i). Remark 2.64 and 2.67 yield the result.

Proposition 2.70. Let ( πu,u−1 : Iu // Iu−1 )u∈Z be an inverse system of epimor-

phisms of graded A−modules with Iu = 0 for u� 0. If Ku = Ker(πu,u−1) is injective

for all u ∈ Z, then I = lim←−u I
u is injective and I ∼=

∏
u∈ZK

u.

Proof. Set J =
∏

u∈ZK
u, and consider I as a submodule of

∏
u∈Z I

u. By Propo-

sition 2.69 we can choose for each u an A−linear map σu−1 : Iu−1 // Iu with

πu,u−1σu−1 = 1Iu−1 . Then for (· · · , xu, · · · ) ∈ I we have the equality

πu,u−1(xu − σu−1(xu−1)) = πu,u−1(xu)− xu−1 = 0

Thus the assignment

(· · · , xu, · · · ) 7→ (· · · , xu − σu−1(xu−1), · · · )

defines a map I 7→ J .

If y = (· · · , yu, · · · ) is a non-zero element of J , then the number v = inf{u|yu 6= 0}

is finite, and therefore

τu(y) = yu + (σu−1(yu−1)) + · · ·+ (σu−1 · · ·σv+1σv(yv))
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is a well defined element of Iu. We set τu(0) = 0 and note that πu(yu) = 0 implies

πuτu(y) = τu−1(y) for all u ∈ Z. Hence, the assignment

(· · · , yu, · · · ) 7→ (· · · , τu(yu), · · · )

defines a maps J 7→ I. It is easy to see that the two maps defined above are inverse

isomorphisms and therefore I is injective.

Although the argument for proving the next lemma is exactly the dual of the

argument for 2.55, a proof to show how to deal with the other statements of this

section is provided here.

Lemma 2.71. Let J be a DG module over R.

i. J is homotopically injective if and only if HomR(−, J) preserves quasi-triviality.

ii. If J = lim←−u J
u for an inverse system ( πu,u−1 : Ju // Ju−1 )u∈Z of epimor-

phisms of DG R−modules with Ju = 0 for u � 0, Ku = Ker(πu,u−1) is homo-

topically injective for all u ∈ Z, and (Ku)\ is injective over R\ for all u, then J

is homotopically injective and J \ is injective over R\.

Proof. (i) Assume first J is homotopy injective. If E is a quasi-trivial DG module,

then 0 // E is a quasi-isomorphism, hence so is HomR(E, J) // 0 .

Assume next HomR(−, J) preserves quasi-triviality. If β : M // N is a quasi-

isomorphism, then the mapping cone C = Cone β is quasi-trivial. Therefore

HomR(C, J), isomorphic to Σ−1Cone β′ where β′ = HomR(β, J), is quasi-trivial

which means β′ is a quasi-isomorphism.

(ii) Proposition 2.70 shows that J \ is injective over R\, so by (i) it suffices to prove

that if H(E) = 0, then H(HomR(E, J)) = 0. For each u ∈ Z the sequence

0 // Ku // Ju // Ju−1 // 0

of DG modules is linearly split, so the induced sequence of complexes

0 // HomR(E,Ku) // HomR(E, Ju) // HomR(E, Ju−1) // 0
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is exact. As Ju = 0 for u� 0, by induction on u, we may assume H(HomR(E, Ju−1))

is quasi-trivial. By hypothesis Ku is homotopically injective, so H(HomR(E,Ku)) =

0 by (i). Thus, H(HomR(E, Ju)) = 0 and therefore

H(HomR(E, J)) = H(HomR(E, lim←−
u

Ju)) ∼= H(lim←−HomR(E, Ju)) = 0

which leads to the desired result.

Lemma 2.72. Let J be a semi-injective DG module, α : M // J be a morphism

of DG modules, and β : M // N be a quasi-isomorphism of DG modules.

i. If β is injective, then there exists a morphism γ : N // J with γβ = α.

ii. There exists a morphism γ : N // J such that γβ ∼ α.

Proof. By hypothesis HomR(β, J) is a surjective quasi-isomorphism, so

MorR(β, J) = Z0HomR(β, J) : MorR(N, J) //MorR(M,J)

is surjective by 2.9, hence there is a morphism γ : N // J with γβ = α. For (ii)

a dual of the argument for part (ii) of 2.57 leads to the result, considering the fact

that we need to apply the last part of 2.12.

Linearly injective DG module

Theorem 2.73. [4, 10.4.1] For a DG R−module I the following are equivalent.

i. I is linearly injective.

i′. MorR\(−, I\) preserves exact sequences.

i′′. HomR(−, I) preserves exact sequences.

ii. If α : M // I is a chain map and β : M // N is an injective morphism,

then there is a homomorphism γ : N \ // I\ in GM(R\) with γβ = α.

ii′. If α : M // I is a morphism and β : M // N is an injective morphism,

then there is a morphism γ : N \ // I\ in GM(R\) with γβ = α.

iii. If σ : I // N is an injective morphism then there exists a morphism ρ : N \ // I\

in GM(R\) such that ρσ = 1I .
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iv. I is a DG submodule of L∨ for some free DG module L over Ro, with I\ a

direct summand of (L∨)\ in GM(R\).

v. I\ is an injective graded R\−module.

Proof. A dual of the argument for 2.58 works for all parts except (iii) ⇔ (iv).

Let π : L // I∨ be the free resolution of I∨ over Ro, also let σ : I // L∨ be

the composition of π∨ and the natural map f : I // I∨∨ . As σ is injective then

by hypothesis there is a morphism ρ : (L\)∨ // I\ of graded R\−modules with

σρ = 1I .

(iv)⇔ (v)⇔ (i) hold by 2.69.

Homotopically injective DG module A dual of the argument for 2.59 proves

the following theorem.

Theorem 2.74. [4, 10.5.1] For a DG R−module I the following are equivalent.

i. I is homotopically injective.

i′. HomR(−, I) transforms injective quasi-isomorphisms into quasi-isomorphisms.

i′′. HomR(−, I) preserves quasi-trivial modules.

ii. If α : M // I is a chain map and β : M // N is a quasi-isomorphism,

then there is a chain map γ : N // I such that γβ ∼ α. Moreover, if

γ′ : N // I is a chain map with γ′β ∼ α then γ′ ∼ γ.

ii′. If α : M // I is a morphism and β : M // N is a quasi-isomorphism,

then there is a morphism γ : N // I such that γβ ∼ α.

iii. If σ : I // N is a quasi-isomorphism, then there is a morphism ρ : N // I

such that ρσ ∼ 1I .

iv. There exists a semi-injective DG module J and morphisms I σ // J
ρ // I

such that ρσ ∼ 1I .

v. I is homotopy equivalent to a semi-injective DG module J .
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Semi-injective DG module

Theorem 2.75. [4, 10.6.1] For a DG R−module I the following are equivalent.

i. I is semi-injective.

i′. MorR(−, I) transforms injective quasi-isomorphisms into surjections.

ii. If α : M // I is a chain map and β : M // N is an injective quasi-

isomorphism, then there is a chain map γ : N // I such that γβ = α.

Moreover, if γ′ : N // I is a chain map with γ′β ∼ α then γ′ ∼ γ.

ii′. If α : M // I is a morphism and β : M // N is an injective quasi-isomorphism,

then there is a morphism γ : N // I such that γβ = α.

iii. Each injective quasi-isomorphism σ : I //M has a left inverse.

iv. I is homotopically injective and linearly injective.

iv′. I is homotopically injective and the graded R\−module I\ is injective.

It is true that a dual argument of the 2.60 can be conducted almost for all parts of

this theorem but we need the concept of semi-injective resolution which will be given

after defining an injective model on DGM(R). However it is possible to talk about

semi-injective resolution directly, in fact, it is possible to construct a semi-injective

resolution for a DG module; c.f 3.37.

Categorically injective DG module We describe the injectivity in DGM(R).

Definition 2.76. A DG module I ∈ DGM(R) is injective (categorically injective)

if the functor

MorR(−, I) : DGM(R)op //M(K)

transforms injective morphisms into surjections.

The next theorem is dual of theorem 2.62 and its proof is dual of the argument

for 2.62 which is omitted here.

Theorem 2.77. For a DG R−module I the following are equivalent.

i. I is injective.
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i′. HomR(−, I) transforms injective morphisms into surjective quasi-isomorphisms.

ii. If α : M // I is a chain map and β : M // N is an injective morphism,

then there is a chain map γ : N // I such that γβ = α.

ii′. If α : M // I is a morphism and β : M // N is an injective morphism,

then there is a morphism γ : N // I such that γβ = α.

iii. Each injective morphism σ : I // N has a left inverse.

iv. I is a direct summand of L∨ for some free DG module L over Ro.

v. I is linearly injective and contractible.

v′. I is semi-injective and quasi-trivial.

2.8 Flatness

Definition 2.78. A DG R−module F is said to be

• linearly flat if (F ⊗R −) preserves injective morphisms.

• homotopically flat if (F ⊗R −) preserves quasi-isomorphisms.

• semi-flat if (F ⊗R −) preserves injective quasi-isomorphisms.

• flat if (F⊗R−) transforms injective morphisms into injective quasi-isomorphism.

Remark 2.79. For F in DGM(R) the following hold.

i. F is respectively, linearly flat, homotopically flat and semi-flat over R if ΣiF has

the corresponding property for some i ∈ Z, and if only if ΣiF has that property

for all i ∈ Z.

ii. If F =
∐

u∈U F
u, then F is respectively, linearly flat, homotopically flat and

semi-flat over R if and only if F u has the corresponding property for every

u ∈ U .

Definition 2.80. Let F be a graded A−module. F is flat if the functor

(F ⊗A −) : GM(A) // GM(K)

preserves injective morphisms.
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The next proposition says that, under colimits, flatness behaves better than pro-

jectivity.

Proposition 2.81. If F is a filtered direct system of flat graded Ao−modules, then

the graded Ao−module F = lim−→F is flat.

If F is a filtered direct system of linearly flat (respectively, homotopically flat, semi-

flat, flat) DG modules over Ro, then the DG module F = lim−→F has the corresponding

property.

Proof. The isomorphism

lim−→(F⊗RM) ∼= (lim−→F)⊗RM

along with 2.35 and 2.36 show the result.

A convenient way to find properties of flatness for DG modules is to deduce them

from available properties of injectivity, using the next proposition.

Proposition 2.82. A graded Ao−module F is flat if and only if for some (equiva-

lently, every) character functor ∨ the graded A−module F∨ is injective.

A DG module F over Ro is linearly flat (respectively, homotopically flat, semi-flat,

flat) if and only if for some (equivalently, every) character functor ∨ the DG module

F∨ over R is linearly injective (respectively, homotopically injective, semi-injective,

injective).

Proof. Recall that a morphism β in GM(A) or in DGM(R) is injective if and only if

β∨ is surjective, and is a quasi-isomorphism if and only if β∨ is a quasi-isomorphism.

The adjointness isomorphisms 2.24 yields isomorphism of functors

(F ⊗A −) ∼= HomA(−, F∨) : GM(A)op // GM(K)

(F ⊗R −) ∼= HomR(−, F∨) : DGM(R)op // DGM(K)

Now a series of comparisons between flatness and injectivity lead to the desired

results.

Combining proposition 2.67 and 2.82 gives us the next proposition.
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Proposition 2.83. Every linearly projective (respectively, homotopically projective,

semi-projective, projective) DG module over Ro is linearly flat (respectively, homo-

topically flat, semi-flat, flat).

Theorem 2.84. [4, 11.2.1] Let F be a DG module over Ro.

i. F is linearly flat if and only if the graded Ro\−module F \ is flat.

ii. F is homotopically flat if and only if (F ⊗R −) preserves quasi-triviality.

iii. F is homotopically flat if it is homotopically equivalent to a semi-flat DG module.

iv. F is semi-flat if and only if it is linearly flat and homotopically flat.

v. F is flat if and only if it is semi-flat and quasi-trivial.

Proof. (i) and (iv) are consequence of Proposition 2.82 and the corresponding part

of Theorems 2.73 and 2.75.

(ii) and (v) result from Proposition 2.82 and the corresponding part of Theorems

2.74 and 2.77.

(iii). If F is homotopy equivalent to a semi-flat DG module F ′, then complexes F⊗R
E and F ′ ⊗R E are homotopy equivalent for every DG R−module E, in particular

H(F ⊗R E) ∼= H(F ′ ⊗R E). By (iv), F ′ is homotopically flat so if H(E) = 0, then

H(F ′ ⊗R E) = 0. Hence H(F ⊗R E) = 0 which means F is homotopically flat by

(ii).

2.9 Finiteness

In this section, a language which describes finiteness properties for DG objects will

be developed. Note that if M is in DGM(R), then finiteness hypotheses may appear

either as properties of the underlying graded module M \ over the graded algebra

R\, or as properties of the graded homology module H(M) over the graded algebra

H(R).
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Finiteness for graded modules Finiteness conditions on modules are usually

imposed in terms of number of generators. There are two ways to implement such

an approach for DG objects. One is to do it separately in each degree, regarding Mn

as a module over R0. The other one is to impose the conditions globally on M .

Definition 2.85. Let M be a graded A−module.

• M is degreewise finite if it admits a set of generators X, with Xi finite for each

i ∈ Z, where Xi is the set of elements of degree i in X.

• M is finite if it admits a set of generators X, with X finite.

• M is noetherian if each graded submodule of M is finite.

• The graded algebra A is left (respectively, right) noetherian if the graded

A−module (respectively Ao−module) A has the corresponding property.

• M is finitely presented if the functor HomA(M,−) preserves direct limits.

Remark 2.86. Comparing the definitions of finitely presented and κ−small object

shows that finitely presented modules are ℵ0−small.

In the above definition, the distribution of non-zero components in a graded

object has important consequences for its finiteness.

Definition 2.87. Let M be a graded module, We set

inf M = inf{i ∈ Z|Mi 6= 0} (2.9.1)

sup M = sup{i ∈ Z|Mi 6= 0} (2.9.2)

• M is bounded below if inf M > −∞.

• M is bounded above if sup M <∞.

• M is bounded if it is bounded both below and above.

• The graded algebra A with Ai = 0 for all i < 0 is said to be non-negatively

graded.
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Proposition 2.88. Let M be a graded module over a graded algebra A.

i. If M is finite and A is left noetherian, then M is noetherian.

ii. If M is degreewise finite over A0 and A0 is left noetherian, then Mi is noetherian

over A0 for each i ∈ Z.

Proposition 2.89. Let M be a graded module over a graded algebra A and A is

non-negatively graded, the following hold.

i. If M is finite, then it is bounded below.

ii. If M is non-trivial, bounded below, and degreewise finite over A, then for j ∈ N

the A0-module Mj is finite.

iii. If M is bounded below and degreewise finite over A, and A is degreewise finite

over A0, then M is degreewise finite over A0.

iv. If M is noetherian, then Mi is noetherian over A0 for each i ∈ Z.

Proof. Let X be a set of generators of M . First of all, note that there is a surjective

morphism
∐

x∈X Aex
//M with |ex| = |x| for all x ∈ X.

(i) If X is finite for h < inf{|x| : x ∈ X} we have Mh = 0.

(ii) If j = inf M then Mj = A0Xj and therefore the A0-module Mj is finite because

Xj is finite.

(iii) Choose X with Xi finite for each i ∈ Z and empty for i < j where j =

inf M . For each h ∈ Z the A0-module Mh is a homomorphic image of the A0-

module
∐

j≤|ex|≤hAh−|ex| which is finite by hypothesis.

(iv) As A is non-negatively graded, theK−submoduleM≥i is a graded A−submodule

of M for each i ∈ Z. Because A is noetherian, M≥i is finite over A, and therefore so is

M≥i/M≥i+1. Now, A≥1 annihilates M≥i/M≥i+1, so M≥i/M≥i+1, which is isomorphic

to Mi, is finite over A/A≥1
∼= A0.

Homological finiteness
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Definition 2.90. Let R be a DG algebra andM be a DG module. If R\ (respectively,

M \) has one of the finiteness properties of Definition 2.85 or 2.87, then we say

R (respectively, M) has the corresponding properties. Furthermore, we say M is

homotopically finitely presented if it has a semi-projective resolution M̂ such that

M̂ is finitely presented.

We provide one of the main results regarding finiteness condition in Theorem

2.94. But to prove it some lemmas and definitions are needed which are given first.

Definition 2.91. For a DG module M over a non-negatively DG algebra R, set

τ≥j(M) = · · · //Mj+s

∂j+2 //Mj+1
// Zj(M) // 0 // 0 // · · ·

τ≤j(M) = · · · // 0 // 0 //Mj/Bj(M) //Mj−1

∂j−1 //Mj−2
// · · ·

These DG modules are called truncations of M at level j. We also call truncations

the canonical morphisms

τ≥j : τ≥j(M) //M and τ≤j : M // τ≤j(M) (2.9.3)

which are injective and surjective, respectively.

Remark 2.92. For each DG module M over a non-negatively graded DG algebra R

the canonical maps

lim−→j
(τ≥j) : lim−→j

(τ≥j(M)) //M

lim←−j(τ≤j) : M // lim←−j(τ≤j(M))

τ≥j : Hi(τ≥j(M)) // Hi(M) for all i ≥ j

τ≤j : Hi(M) // Hi(τ≤j(M)) for all i ≤ j

are bijective. Hence, the truncations give good bounded approximations of the mod-

ule structure while their homology approximates H(M) at the same time.

A quasi-trivial DG module E is elementary if sup E = inf E + 1.

Lemma 2.93. Each elementary quasi-trivial DG module E over a non-negatively

graded DG algebra R is contractible.
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Proof. Suppose E = : · · · // 0 // Ei+1
∂i+1 // Ei // 0 // · · · for some i. Since

E is quasi-trivial ∂i+1 is an isomorphism of K−modules. In fact it is an isomor-

phism of R0−module and R0−linear as well, because R is non-negatively graded and

∂(R0) = 0. Now, the degree 1 map ξ : E // E , defined by ξi = ∂−1
i+1 and ξn = 0

for n 6= i, is a contracting homotopy.

Theorem 2.94. [4, 12.3.5] Let R be a non-negatively graded DG algebra. For a DG

R−module M the following hold.

i. If M \ is free over R\ and M is bounded below, then M is semi-free.

ii. If M \ is projective over R\ and M is bounded below, then M is semi-projective.

iii. If M \ is injective over R\ and M is bounded above, then M is semi-injective.

iv. If M \ is flat over R\ and M is bounded below, then M is semi-flat.

Proof. (i) Let M be a bounded below DG module such that the graded R\−module

M \ is free. Choose a basis E of M \. For each e′ ∈ E, the canonical decomposition

∂(e′) =
∑

e∈E ree with re ∈ R has re = 0 whenever |e| ≥ |e′|, due to the fact that R

is a non-negatively graded. Therefore, the sets Eu = {e ∈ E : |e| ≤ u + inf M}

where u ∈ Z provide a semi-basis E = tu∈ZEu of M .

(ii) Let M be a bounded below DG module with M \ projective over R\. By Theorem

2.60 it suffices to prove that M is homotopically projective which is equal to show

that for each quasi-trivial DG R−module E, H(HomR(M,E)) = 0 by Theorem 2.59.

First, we prove this when E is bounded above. To do this, we fix an integer u and

prove Hu(HomR(M,E)) = 0 by induction on sup E. This is clear when sup E <

u + inf M , because in that case HomR(M,u)u = 0. Hence, we may assume that

Hu(HomR(M,E)) = 0 whenever sup E ≤ i for some i ∈ Z. Let E ′ be a quasi-trivial

DG module with sup E ′ = i+ 1. The exact sequence of DG modules

0 // E ′′ // E ′
τ≤i // τ≤i(E

′) // 0

defines a DG module E ′′ which is quasi-trivial with

sup E ′′ = i+ 1 and inf E ′′ = i
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Since M is linearly projective we get an exact sequence of complexes

0 // HomR(M,E ′′) // HomR(M,E ′)
τ≤i // HomR(M, τ≤i(E

′)) // 0

and hence an exact sequence of homology K−modules

HuHomR(M,E ′′) // HuHomR(M,E ′) // HuHomR(M, τ≤i(E
′))

In the homology exact sequence the first term vanishes because E ′′ is a contractible

elementary module and therefore Lemma 2.93 can be used. The last term vanishes

by induction hypothesis. Thus HuHomR(M,E ′) = 0 as desired. Since u was cho-

sen arbitrarily then we have HuHomR(M,E) = 0 whenever E is quasi-trivial and

bounded above.

Next, we consider any quasi-trivial DG module E. Combining 2.92 and 2.29 yields

the isomorphisms of complexes

HomR(M,E) ∼= HomR(M, lim←−
j

τ≤j(E)) ∼= lim←−
j

HomR(M, τ≤j(E))

where the first limit is over the surjective morphism τ≤j+1(E) // τ≤j(E) . As M

is linearly projective the morphisms HomR(M, τ≤j+1(E)) // HomR(M, τ≤j(E)) ,

defining the second limit, are surjective. Each τ≤j(E) is bounded above so we know

that HHomR(M, τ≤j(E)) = 0. Because HomR(M, τ≤j(E)) form a quasi-trivial tower

of surjective morphisms their limit is quasi-trivial as well.

(iii) A dual argument of (ii) can be applied just note that a descending induction

on inf E should be considered.

(iv) If M is a bounded below DG module which is linearly flat, then the character

module M∨\ is injective over R\. Thus M∨ in injective by (iii) so M is semi-flat.

We finish this chapter by the next definition which is highly employed in chapter

4.

Definition 2.95. The semi-free filtration L of the DG module L is finite if Lu = 0 for

u� 0 and the basis of Lu/Lu−1 is a finite set. In this case, L is called a small semi-

free DG module. In addition, a semi-projective module P is small semi-projective if

it is retract of a small semi-free module.

Remark 2.96. Every small semi-projective module is finite.
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Model Category and DG-Modules

The main aim of this chapter is to define model structures on the category of DG

modules. Through this chapter R is DG algebra and DGM(R) denotes the category

of DG modules over R.

3.1 More on DG-Modules

In this section, we prove more properties of differential graded modules which are

used in arguments regarding model structures.

Lemma 3.1. In DGM(R), the transfinite composition of injective maps is injective

and the transfinite composition of quasi-isomorphisms is a quasi-isomorphisms.

Proof. Injections We claim that the transfinite composition of injections is injective

by induction on ordinals. The composition of finitely many injective maps is

an injection, so for finite ordinals, the transfinite composition of a λ−sequence

with finite λ is injective.

For an arbitrary ordinal λ and λ−sequence Xβ consider a transfinite composi-

tion π0 : X0
// lim−→β<λ

(Xβ) . Now, if π0(x) = 0 for some x, then there is a

α < λ such that πα0 (x) = 0. By induction hypothesis πα0 is an injective map

hence x = 0 and therefore π0 is an injection.

Quasi-isomorphism For an ordinal λ, consider a λ−sequence of quasi-isomorphisms

as below in which β < λ and πβs are equivalent to µβ in Definition 2.30.

60
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X0
i0 //

π0

$$

X1
i1 //

π1

��

X2
i2 //

π2

��

. . . // Xβ

iβ //

πβ

zz

. . .

lim−→β<λ
(Xβ)

Applying H∗ yields the diagram

H∗(X0)
H∗(i0)//

π?0

''

H∗(π0)

  

H∗(X1)
H∗(i1) //

π?1

""

H∗(π1)

��

H∗(X2)
H∗(i2) //

π?2

��

. . . // H∗(Xβ)
H∗(iβ)

//

π?β

xx

H∗(πβ)

��

. . .

lim−→β<λ
H∗(Xβ)

u

��
H∗(lim−→β<λ

(Xβ))

(3.1.1)

in which π?s are equivalent to µβ in Definition 2.30. In diagram 3.1.1 H∗(iβ)s

are isomorphisms and therefore π?s are isomorphisms as well. In addition,

2.36 shows u is bijective. Hence H∗(π0) is an isomorphism and therefore

π0 is a quasi-isomorphism showing that the transfinite composition of quasi-

isomorphisms is also a quasi-isomorphism.

Lemma 3.2. In an abelian category, a morphism g : A // B has the right lifting

property with respect to all injective maps if and only if g is surjective with injective

kernel. In fact, g has a right inverse.

Proof. Surjection As g has the right lifting property with respect to all injective

maps, the diagram
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0 0 //� _

0

��

A??

h
g

��
B

1B
// B

commutes. As gh = 1B therefore g has a right inverse and is surjective.

Ker Since g has a right inverse the exact sequence 0 �
� // Kerg

i // A
g // B // 0

splits. Hence A ∼= B ⊕Kerg and i has a left inverse called i′.

The diagram

X α //� _

f
��

Kerg

Y

(3.1.2)

in which f is an injective morphism and α is an arbitrary morphism, can be extended

to the diagram

X α //� _

f

��

Kerg �
� i // A

g

��
Y //

h

::

h̄

DD

0 // B

(3.1.3)

In the diagram 3.1.3, h exists due to the lifting property of g and h̄ = i′h, which

is a solution to the diagram 3.1.2.

Lifting Suppose g : A // B is a surjective map with injective kernel. As the

kernel is an injective object then A ∼= B ⊕ Kerg. Consider i : X // Y as

an arbitrary injective map, and consider the commutative diagram below

X
α=(α1,α2) //

i

��

Kerf ⊕B

π2

��
Y

β
//

h=(h1,β)

;;

B
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h1 exists because Kerf is injective and we have h1i = α1. Also α2 = π2α = βi and

hi = h1i + βi = α. In addition, π2h = β which shows the diagram commutes and

therefore h is a lift.

Lemma 3.3. In an abelian category, if a map f : X // Y has the right lifting

property with respect to the map i : A // B then any pullback of f has the lifting

property as well, specially 0 : kerf // 0 has the lifting property.

Proof. Consider a pullback diagram for f as below

X ×Y Y ′ α′ //

f ′

��

X

f

��
Y ′

β′
// Y

For a given lifting problem for f ′ with respect to i, it can be extended to the

following diagram

A α //

i

��

X ×Y Y ′ α′ //

f ′

��

X

f

��
B

h
))

u

EE

β
// Y ′

β′
// Y

in which h is a lift for f and u is the unique map in pullback diagram. Because of

universal property of pullback, f ′u = β. In addition, α′ui = hi = α′α which shows

both maps A
α // X ×Y Y ′ and A

i // B
u // X ×Y Y ′ fit into the same pullback

diagram. Therefore, the universal property of pullback shows ui = α. Hence u is a

solution for the original lifting problem.

Lemma 3.4. If f and g are maps in DGM(R) such that gf is defined and if two

of three maps f, g and gf are quasi-isomorphisms, then so is the third one.

Proof. As H∗(gf) = H∗(g)H∗(f), if two of three of these maps are isomorphisms,

then so is the third one.
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Lemma 3.5. Let R be a differential graded ring and Sn be nth suspension of R. In

addition suppose, Dn denotes the mapping cone of the identity map of Sn−1. If X is

a DG-module, then the following hold.

i. MorR(Sn−1, X) ∼= Zn−1X.

ii. MorR(Dn, X) ∼= Xn.

iii. The sequence 0 //MorR(Sn, X) //MorR(Dn, X) //MorR(Sn−1, X) // 0

is short exact, if H∗(X)=0.

Proof. (i)By 2.17 we have

MorR(Sn−1, X) ∼= Zn−1HomR(R,X) ∼= Zn−1X

(ii) Combining 2.17 and 2.40 yields

MorR(Dn, X) ∼= Z0Hom(Dn, X) ∼= Z0cone(1ΣnX) ∼= Kerd0

where d0 =

 −dXn−1 0

1Xn−1 dXn

 : Xn−1 ⊕Xn
// Xn−2 ⊕Xn−1 and hence Kerd0

∼=

Xn.

(iii) Finally, the short exact sequence 0 // Sn−1 // Dn // Sn // 0 splits

linearly therefore after applying the functor HomR(−, X) the resulting sequence is

short exact as well. In addition, H∗(X) ∼= 0 and also Sn−1 and Dn are semi-projective

modules. Thus,

HomR(Sn−1, X) ' HomR(Dn, X) ' 0

meaning that the composition of the functors Z(−) and HomR(−, X) is exact here,

follows from 2.9.

Lemma 3.6. A map f : X // Y in DGM(R) is surjective if and only if it has

the right lifting property with respect to i : 0 // Dn for all n ∈ Z.



65

Proof. First suppose f has the lifting property. For an arbitrary y ∈ Y , there is a

n ∈ Z such that y ∈ Yn. As a result of the lifting property, there exists the diagram

0 0 //

i

��

X>>

h
f

��
Dn

ỹ
// Y

where ỹ

(
1

0

)
= y, ỹ

(
0

1

)
= dy and fh = ỹ. Hence, f(h

(
1

0

)
) = ỹ

(
1

0

)
= y which

shows f is surjective. Conversely, by considering that Dn is a projective object, a

lift always exists as f is a surjection.

3.2 Projective Model on DG-Modules

In [19], it has been shown that the category of complexes over a ring is a cofibrantly

generated model category. In the following section, we prove a similar result in

DGM(R) and the strategy is almost analogous to [19] but some modifications are

needed. To be more precise, we employ Theorem 1.36 rather than verifying the

axioms directly. However finding the sets of generators is the challenging part.

Definition 3.7. Let I and J be sets of the maps I = { Sn−1 // Dn } and J =

{ 0 // Dn } where n ∈ Z. Define a map to be a fibration if it is in J−inj and to be

a cofibration if it is in I−cof . In addition, consider the class of quasi-isomorphisms

as the class of weak equivalences and denote it by W .

Proposition 3.8. A map p : X // Y in DGM(R) is a fibration if and only if it

is surjective.

Proof. It is a rephrasing of 3.6.

The following proposition is analogous to [19] and we apply the same idea but

results from the second chapter play prominent roles.

Proposition 3.9. A map p : X // Y in DGM(R) is a trivial fibration if and

only if it is a member of I−inj; i.e I−inj =W ∩ J−inj.
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Proof. By 3.5, the set of commutative diagrams below

Sn−1 f //

i

��

X

p

��
Dn g // Y

is in one to one correspondence with T = {(y, x) ∈ Yn⊕Zn−1X|p(x) = δn(y)} where

δ is the module differential and Zn−1X is cycles of Xn−1. Additionally, a lift is z ∈ Xn

such that δ(z) = x and p(z) = y.

Suppose p ∈ I−inj, we claim that p is a surjective quasi-isomorphism. First of all

Zn(p) : Zn(X) // Zn(Y ) is surjective, because if y ∈ Zn(Y ) then the pair (y, 0)

belongs to the set T . Due to existence of the lift, there is z ∈ Xn such that p(z) = y

and δ(z) = 0 so z ∈ Zn(X) and therefore Zn(p) is surjective. Furthermore, it shows

that Hn(p) : Hn(X) // Hn(Y ) is a surjective map.

In this stage, we try to show that Hn(p) : Hn(X) // Hn(Y ) is injective. Let

x ∈ Zn(X), x̄ be its homology class and Hn(p)(x̄) = 0 so p(x) ∈ BnY . Hence,

p(x) = δ(y) for some y ∈ Yn+1 and therefore (y, x) belongs to the set T so there is

a z ∈ Xn+1 such that δz = x. Thus, x̄ = 0 and therefore Hn(p) is injective and

therefore p is a quasi-isomorphism and as a result by 2.9 p is surjective.

Conversely, suppose p is a trivial fibration (surjective quasi-isomorphism) and K

denotes the kernel of p. Applying the functors MorR(Dn,−) and MorR(Sn−1,−) on

the exact sequence 0 // K
j // X

p // Y // 0 yields the commutative diagram

0 //Mor(Dn, K)
jD //

iK

��

Mor(Dn, X)
pD //

iX

��

Mor(Dn, Y ) //

iY

��

0

0 //Mor(Sn−1, K)
jS //Mor(Sn−1, X)

pS //Mor(Sn−1, Y ) // 0

in which i, j and p induce their related maps and rows are exact, because H∗(K)=0

and both Dn and Sn−1 are semi-projective objects. Moreover, iK is surjective by 3.5

and by assumption pS(f)=iY (g). For g ∈Mor(Dn, Y ) there exists h0 ∈Mor(Dn, X)
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such that pD(h0)=g. Now, by diagram chase, we build h such that pD(h)=g and

iX(h)=f .

By assumptions, iX(h0) − f ∈ KerpS=Img(jS) which means there exists h1 ∈

Mor(Sn−1, K) such that jS(h1)=iX(h0)− f . As iK is a surjection there exists h2 ∈

Mor(Dn, K) such that iK(h2)=h1. Define h := h0 − jD(h2), then

pD(h)=pD(h0)− pD(jD(h2))

=g as pDjD=0.

Furthermore, iX(h)=iX(h0)− jSiK(h2)=f . Thus, h is a lift for the first diagram.

Proposition 3.10. With the above notations, J−cell ⊆ W ∩ I−cof .

Proof. By Lemma 1.32 J−cell ⊆ J−cof . Combining 3.2 and 3.10 shows that I−inj ⊆

J−inj and therefore J−cof ⊆ I−cof . Thus, J−cell ⊆ I−cof .

Now, it suffices to show that J−cell ⊆ W . Let L be the class of all injective quasi-

isomorphisms so J ⊆ L. By 3.1 and 2.26 L is closed under pushout and transfinite

composition. Hence J−cell ⊆ L ⊆ W .

Lemma 3.11. Every trivial cofibration is an injective map with a projective cokernel.

Proof. Let f : A // B be a quasi-isomorphism in I−cof = (I−inj)−proj. Thus,

it has the left lifting property with respect to all surjective quasi-isomorphisms then

by dual of 3.3 Cokerf has the left lifting property with respect to all surjective

quasi-isomorphisms and therefore it is a semi-projective module.

In next step, we claim that f is injective and therefore as it is a quasi-isomorphism

we can conclude that H∗(Cokerf)=0. Because cokernel of f is both quasi-trivial

and semi-projective it follows from 2.62 that it is a projective object.

Let D(A) be the mapping cone of the identity map of A. Then, there is a natural

injective map i : A // D(A) . Additionally, 0 : D(A) // 0 is a surjective quasi-

isomorphism. Hence there is the commutative diagram below in which the map h is
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a lift.

A
i //

f

��

D(A)
==

h
0

��
B

0
// 0

For a given x ∈ Kerf then 0 = hf(x) = i(x) and because i is injective, x = 0 and

therefore f is injective.

Proposition 3.12. The class of trivial cofibrations is a subclass of J−cof . In other

words, W ∩ I−cof ⊆ J−cof .

Proof. Let f : A // B be a trivial cofibration with cokernel C and p : X // Y

be an arbitrary member of J−inj. Then, any lifting problem can be considered as

A
α //

i2

��

X

p

��
C ⊕ A β=(β1,β2) //

h=(h1,h2)

<<

Y

First of all, as C is projective object and p is a surjection there exists a map h1

such that ph1=β1 in addition, define h2 := α. In the diagram h is a lift, because

hi2=h2=α and ph=(ph1, pα)=(β1, β2). Therefore f has the left lifting property with

respect to J−inj and hence it is a member of J−cof .

Theorem 3.13. The category DGM(R) is a model category by letting J−inj be the

class of fibrations, I−cof be the class of cofibrations and the quasi-isomorphisms be

the class of weak equivalences.

Proof. We verify the conditions of Theorem 1.36. First of all small limits and colimits

exist in DGM(R) because arbitrary products and coproducts as well as pullbacks

and pushouts exist in DGM(R). For condition (i) it is clear thatW is a subcategory

and has the two of three property by 3.4. To show the condition (ii) and (iii) note
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that DGM(R) is a Grothendieck category and therefore by [20, 1.2] every object is

small. The proposition 3.10 is a proof for condition (iv) and finally, 3.2 and 3.12

verify the remaining conditions.

3.3 More on Cofibration in The Projective Model

Lemma 3.11 describes the class of trivial cofibrations for the projective model struc-

ture but does not provide necessary and sufficient conditions. However an explicit

description of cofibrations is given in the rest of this section.

Lemma 3.14. Let K be an element of DGM(R) and H∗(K) = 0, if P is a semi-

projective module in DGM(R) then every map f : P // K is null homotopic.

Proof. It follows from [4, 9.6.1] that H∗(Hom(P,K)) = 0 if H∗(K) = 0. Considering

the fact that H0(HomR(P,K)) = MorR(P,K)/ ∼ (modulo homotopy) the map f

becomes homotopic to zero.

Although the idea of the following theorem is analogous to [19, 2.3.9], applying

the idea of the mapping cone plays the main role.

Theorem 3.15. Suppose the projective model structure has been defined on DGM(R),

then a map i : A // B is a cofibration if and only if it is injective with semi-

projective cokernel and linearly split.

Proof. Let i : A // B be a cofibration so it has the left lifting property with

respect to all trivial fibrations. In the diagram

A
j //� _

i

��

Cone(1A)
<<

h
∼=

����
B

0
// 0

the lift h exists. Because j is an injective map and hi = j so i is an injective map. In

addition any pushout of i is a cofibration hence 0 : 0 // Coker(i) is a cofibration

which means that Coker(i) is a semi-projective module. Furthermore, considering
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the fact that Coker(i) is a linearly projective module the following exact sequence

splits linearly.

0 // A i // B // Coker(i) // 0

Suppose i : A // B is an injective map with semi-projective cokernel and C

denotes the Coker(i). A given lifting problem can be considered as the diagram

K

j
��

A α //� _

i

��

X

p'

����
B ≈ A⊕ C

β
//

��

Y

C

(3.3.1)

where B is linearly isomorphic to A ⊕ C, p is a trivial fibration, K=Ker(p) and

H∗(K)=0. In addition dB(a, c) = (dAa + τc, dCc) where τ : C // ΣA is a map

such that dAτ + τdC = 0. The map β : (A⊕ C, dB) // Y must be defined such

that β(a, c) = β(a, 0) + β(0, c) = βia + σc = pαa + σc where σ : C // Y is a

map such that dY σ = pατ + σdC due to the fact that β is a chain map. In the

above diagram, a lift is equal to a map h = (h1, h2) such that h1 = α and h2 = ν

where pν = σ and dXν = ατ + νdC and therefore a lift is equivalent to the map

ν : C // X with mentioned properties.

Considering that C is a semi-projective module, there is a chain map G : C // X

such that pG = σ but dXG = ατ +GdC is not always true. Let

r = dXG−GdC − ατ : C // ΣX

be a map of graded modules then

dXr = (dX)2G− dXGdC − dXατ = −dXGdC − αdAτ = −dXGdC + ατdC = −rdC

Hence rdC = dΣAr meaning that r is a morphism of DG modules.
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Due to the fact that 0 = pr = pdXG − σdC − dY σ + σdC we can factor r via

Ker(p) and we have C
s // ΣK

j // ΣX additionally by 3.14

s = dΣKD +DdC = −dKD +DdC

Now, let ν = G + jD then firstly, pν = PG + PjD = σ and secondly, dXν =

dXG+ j(−s+DdC) = r +GdC + ατ − r + jDdC = ατ + (G+ jD)dC = ατ + νdC ,

hence h = (α,G+ jD) is our desired lift.

3.4 More on Semi-injective DG-Modules

Recall that for an ordinary ring K, a module is injective if it has the right lifting

property with respect to all injective maps. It is quite difficult to verify this condition

with respect to the whole class of injective maps which is even not a set. However

Baer’s criterion provides a useful tool for checking whether a module is injective. In

fact, the criterion states that checking the lifting problem for the set of all inclusion

from ideals of K is enough. For all sorts of injectivity [1] and [33] may be good

resources to start.

The main aim of this section is to find a certain set of morphisms in DGM(R)

such that to verify semi-injectivity of a module, considering just this certain set

instead of the whole class of injective quasi-isomorphisms would be sufficient. For

the rest of this section, |C| denotes the cardinality of the set C.

Lemma 3.16. Suppose i : A // B is an injective quasi-isomorphism in DGM(R).

For every submodule C of B in DGM(R) with |C| ≤ γ where γ=ℵ0 + |R|, there is a

submodule D of B in DGM(R) containing C such that |D| ≤ γ and i : A ∩D // D

is a weak equivalence.

Proof. Suppose i : A ∩ C // C is not a weak equivalence then H∗(C/A∩C) 6= 0.

For every α ∈ H∗(C/A∩C) choose zα ∈ C such that the homology class of its quotient

class is equal to α. Since H∗(B/A) = 0, there is bα ∈ B such that δ(bα) − zα ∈ A.

Let C1 be the smallest DG submodule of B which contains C and

L={zα, bα|α ∈ H∗(C/A ∩ C)}.
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Hence the induced map in homology H∗(C/A ∩ C) // H∗(C1/A ∩ C1) is a zero

map and |C1| ≤ |L||R| ≤ γ. Iterating this construction forms a sequence Cn of

modules. Let D be the colimit of the sequence Cn with the inclusion as the map

between its elements. For the cardinality of D we have |D| ≤ ℵ0|Cn| ≤ γ. Consider

the direct family of exact sequences,

0 // Cn ∩ A // Cn // Cn/Cn ∩ A // 0

then we have lim−→(Cn/Cn ∩ A) ∼= D/D ∩ A and therefore

H∗(D/A ∩D) = lim−→H∗(Cn/Cn ∩ A) ∼= 0.

Because the direct limits preserve exact sequences by Proposition 2.35 and commute

with homology by Theorem 2.36. Therefore i : D ∩ A // D is an injective weak

equivalence.

An analogy to the above lemma has been proved for the category of chain com-

plexes for a Grothendieck category; cf. [20, 2.10].

Lemma 3.17. Suppose J is a set containing a map for each isomorphism class of

injective quasi-isomorphisms j : M �
� // N with |N | ≤ γ for γ=ℵ0+|R|. For a given

injective quasi-isomorphism i : A �
� // B the object B has a filtration {Bα}, such

that the map iα : A �
� // Bα is an injective quasi-isomorphism and the embedding

jα,α+1 : Bα
� � // Bα+1 is the pushout along a member of J .

Proof. We construct the filtration. Let B1 := i(A) and suppose ζ is an ordinal with

associated cardinal equal to |B| and assume for an ordinal α < ζ, Bα has been

constructed. Let xα+1 ∈ B \ Bα then by using Lemma 3.16 for jα : Bα
� � // B ,

there exists an object Dα+1 containing xα+1 such that jxα+1 : Bα ∩Dα+1
� � // Dα+1

is a member of J . By considering the pushout diagram

Bα ∩Dα+1
� � //

� _

jxα+1

��

Bα

jα,α+1

��
Dα+1

// Bα +Dα+1
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define Bα+1 := Bα + Dα+1 and jα+1 := jα,α+1 ◦ jα. Furthermore, as jα,α+1 is the

pushout of an injective quasi-isomorphism, it is also an injective quasi-isomorphism.

For the limit ordinal β < ζ define Bβ := lim−→α<β
(Bα). As the map iβ : A �

� // Bβ

is the transfinite composition of injective quasi-isomorphisms, then it is an injective

quasi-isomorphism. Finally by construction B=lim−→α
(Bα).

Remark 3.18. Every quasi-trivial object B is the colimit of a direct family Bα such

that Bα
// Bα+1 is an embedding and H∗(Bα)=0 for all α and |Bα| ≤ γ for α ≤ ω

where ω is the first limit ordinal.

Proposition 3.19. An object I ∈ DGM(R) is semi-injective if and only if it is a

member of J−inj.

Proof. The necessity of the proposition is obvious. For sufficiency of the proposition,

assume i : A // B is an arbitrary injective quasi-isomorphism and f : A // I

is an arbitrary map. By using the introduced filtration in Lemma 3.17 we build our

desired morphism. Suppose there exists a map uα : Bα
// I such that f=uαiα. In

the diagram

A
f //

iα

��

I

Bα ∩Dα+1
//

jx

��

Bα

uα

>>

iα,α+1

��
Dα+1

hα+1

FF

// Bα+1

uα+1

KK

the map iα,α+1 is the pushout of jx and hα+1 exists because jx belongs to J . Addi-

tionally, uα+1 exists due to the uniqueness of pushout and uα+1iα+1=uαiα=f where

iα+1=iα,α+1iα. Now u : lim−→Bα

lim−→uα
// I is a map such that ui=f so it is our

desired lift.
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3.5 Injective Model on DG-Modules

The main aim of this section is to define a model structure on DGM(R) by consider-

ing injective maps as the class of cofibrations. Through this section we try to prove

Theorem 3.22 with a strategy based on showing that all the axioms of the definition

1.2 hold.

Definition 3.20. Define a map f ∈ DGM(R) to be a weak equivalence if it is a

quasi-isomorphism and let W be the class of all weak equivalences. Define a map to

be a cofibration if it is an injective map and define a map to be a fibration if it has

right lifting property with respect to all injective quasi-isomorphisms.

Remark 3.21. Recall that a map is a trivial cofibration if it is a cofibration and weak

equivalence and a map is a trivial fibration if it is a fibration and weak equivalence.

Theorem 3.22. Definition 3.20 gives a model structure on DGM(R) called the

injective model.

In the rest of this section, we provide a proof for Theorem 3.22.

Lemma 3.23. The classes of weak equivalences, cofibrations and fibrations are closed

under composition and contain identity maps.

Proof. Weak equivalence For maps f and g, we have H∗(gf) = H∗(g)H∗(f) and

therefore the composition of weak equivalences is a quasi-isomorphism. Hence

the class of weak equivalences is closed under composition. In addition, identity

maps are weak equivalences.

Cofibration Let f and g be injective maps. Then gf is injective so the class

of cofibration is closed under composition. Furthermore, identity maps are

injective and therefore belong to the class of cofibrations.

Fibration Suppose f : X // Y and g : Y // Z are two maps which have the

right lifting property with respect to all trivial cofibrations. Consider the

following arbitrary commutative diagram such that i : A // B is a trivial

cofibration.
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A
α //� _

i

��

X

gf

��
B

β
// Z

(3.5.1)

Breaking the diagram 3.5.1 yields the diagram 3.5.2 in which h exists due to the

lifting property of g.

A
α //� _

i

��

X
f //

FF

h′

Y==

h
g

��
B

β
// Z

(3.5.2)

By considering the upper triangle of the diagram 3.5.2 we have the commutative

diagram

A
α //� _

i

��

X??

h′
f

��
B

h
// Y

where h′ exists because of lifting property of f . Additionally, fh′ = h, h′i = α and

therefore gfh′ = gh = β. Hence, h′ is a lift for diagram 3.5.1.

Corollary 3.24. The first and second axiom of model categories (MC1 and MC2)

hold in DGM(R).

Proposition 3.25. Let f be retract of g then

i. If g is a fibration then so is f .

ii. If g is a cofibration then so is f .

iii. If g is a weak equivalence then so is f .

Proof. Fibration Since g is a fibration it has right lifting property with respect to

all trivial cofibrations. Consider an arbitrary commutative diagram
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x
α //

i

��

A

f

��
Y

β
// B

(3.5.3)

when i is a trivial fibration. We must show there is a lift in the above diagram. Since

f is retract of g we can extend the diagram to following diagram

X
α //

j

��

A
i //

f

��

A′
r //

g

��

A

f

��
Y

β
//

h

77

B
i′

// B′
r′

// B

because g is a fibration there is a map h : Y // A′ such that jh = iα and gh = i′β.

The map rh : Y // A is a lift for the diagram 3.5.3 and rhj = riα = α also

frh = r′gh = r′i′β = β

Cofibration Let g be a cofibration, consider the first left square of the retract

diagram as below

A
i //

f

��

A′

g

��
B

i′
// B′

then

f(x1) = f(x2) =⇒ i′f(x1) = i′f(x2) =⇒ gi(x1) = gi(x2)

=⇒ i(x1) = i(x2) =⇒ ri(x1) = ri(x2) =⇒ x1 = x2

Weak equivalence Let g be a weak equivalence. Consider the homology of the

retract diagram
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H∗(A)
H∗(i) //

H∗(f)

��

H∗(A
′)

H∗(r) //

H∗(g)

��

H∗(A)

H∗(f)

��
H∗(B)

H∗(i′)
// H∗(B

′)
H∗(r′)

// H∗(B).

As H∗(g) is an isomorphism, it is both surjective and injective. The left square

shows H∗(f) is injective, because H∗(g) is injective (same calculation as cofibration

part). Moreover, right square shows H∗(f) is surjective due to the fact that H∗(g) is a

surjection. Hence H∗(f) is an isomorphism and therefore f is a weak equivalence.

Corollary 3.26. The retract axiom (MC3) holds in DGM(R).

Proposition 3.27. Every fibration p : X // Y is a surjection with fibrant, i.e,semi-

injective kernel. In addition, every trivial fibration is surjective with injective kernel

and has a right inverse.

Proof. Fibration Since a fibration has the left lifting property with respect to all

injective and quasi-isomorphism maps, in particular it has left lifting property

with respect to { f : 0 // Dn|n ∈ Z } therefore by 3.6 it is surjective. As

0 : kerp // 0 is a pullback of p then by 3.3 it has the left lifting property

with respect to all trivial cofibrations so kerp is a fibrant object and by 2.75

it is a semi-injective module.

Trivial fibration For a fibration p the exact sequence

0 // Kerp // X
p // Y // 0

exists. If p is a trivial fibration, H∗(Kerp) = 0 and therefore Kerp is a quasi-

trivial semi-injective module. Thus, by 2.77 it is an injective object.

Proposition 3.28. Trivial fibrations have the right lifting property with respect to

all cofibrations (injections).
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Proof. A trivial fibration is surjective with injective kernel by the previous propo-

sition. In addition, by 3.2 any surjection with injective kernel has the right lifting

property with respect to all injections. Hence a trivial fibration has the right lifting

property with respect to all cofibrations.

Corollary 3.29. The lifting axiom (MC4) holds in DGM(R).

Proof. Consider a commutative diagram

A
α //� _

i

��

X

p

����
B

β
// Y

If i is a trivial cofibration and p is a fibration then by definition a lift exists. If i is

a cofibration and p is a trivial fibration then by Proposition 3.28 a lift exists.

Remark 3.30. Let I be the class of injective maps, I ′ be the class injective quasi-

isomorphisms and W be the class of weak equivalences. Then I ′−inj is the class of

fibrations and the following holds.

i. W ∩ I ′−inj ⊆ {Surjective maps with injective kernel} (By 3.27)

ii. I ′ ⊆ I =⇒ I−inj ⊆ I ′−inj

iii. {Surjective maps with injective kernel } ⊆ W (Injective objects are acyclic by

2.77)

iv. {Surjective maps with injective kernel } ⊆ I−inj ⊆ I ′−inj (By 3.2)

v. {Surjective maps with injective kernel } ⊆ I ′−inj ∩W (iii, iv)

vi. {Surjective maps with injective kernel } = I ′−inj ∩W ={Trivial fibration} (i,v)

Proposition 3.31. A map p : X // Y in DGM(R) is a fibration if and only if

it is a surjection with semi-injective kernel.

Proof. The necessary condition has been proved earlier. For the sufficient condi-

tion suppose we have an arbitrary commutative square below in which i is a trivial
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cofibration (injective quasi-isomorphism).

A
α //� _

i

��

X

p

��
B

β
// Y

If K denotes the semi-injective kernel of p then there is a linearly split short exact se-

quence 0 // K // X
p // Y // 0 . Hence (X, dX) ∼= (K]⊕Y ],

 dK τ

0 dY

)

such that τ : Y // ΣK is a map with property that dKτ + τdK = 0. In addition

α =

(
α1

βi

)
and as it is a chain map then α1d

A = dKα1 + τβi.

In the diagram a lift h is equal to

(
h1

β

)
where h1 : B // K, and h1i = α1 and

h1d
B = dKh1 + τβ because h is a chain map and commutes with dX . To find h1 we

use different properties of a semi-injective modules. Considering that K is a semi-

injective module then there is a map g : B] // K] such that gi = α1. The map

g1=gd
B − dKg − τβ : B // ΣK is in fact a chain map of Mor(B,ΣK). As ΣK

is semi-injective and H∗(B/A)=0, applying the functor Mor(−,ΣK) on the exact

sequence

0 // A
i // B

q // B/A // 0

yields the exact sequence

0 //Mor(B/A,ΣK)
q̄ //Mor(B,ΣK) ī //Mor(A,ΣK) // 0 .

Additionally, we have

ī(g1)=gdBi− dKgi− τβi

=α1d
A − dKα1 − τβi=0

which means g1 ∈ Ker ī and therefore there is a g2 such that q̄(g2) = g1. Since ΣK

is a semi-injective module and B/A is a quasi-trivial, every map in Mor(B/A,ΣK)

is null homotopic. Hence, there is a homotopy H : B/A // K such that

HdB/A + dΣKH=g2 = HdB/A − dKH.
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Now we can define h1, in fact h1 := g − q̄(H), we claim h1 has the desired properties.

First of all, ī(h1)=gi = α1 and also

(g − q̄(H))dB=dK(g − q̄(H)) + τβ ↔ gdB − dkg − τβ=HqdB − dKHq

↔ gdB − dkg − τβ=HdB/Aq − dKHq

↔ gdB − dkg − τβ=q̄(g2)=g1.

In the rest of this section, a proof for the factorization axiom is provided. The

next proposition gives a generalization of Baer’s criterion in a Grothendieck category

and its proof can be found in [23, 8.4.7].

Proposition 3.32. Let C denote a Grothendieck category and let {Gi}i∈I be a system

of generators. Then an object z ∈ C is injective if and only if for any i ∈ I and any

subobject w ⊂ Gi, the natural map Mor(Gi, z) //Mor(w, z) is surjective.

Proposition 3.33. Every morphism f : X // Y in DGM(R) can be factored to

f = pi such that i is a cofibration and p is a trivial fibration.

Proof. Let L = { j : w �
� // Dn } with w a submodule of Dn and n ∈ Z. By small

object argument we can factor f as f = pi such that i ∈ L−cell and p ∈ L−inj. We

will show that i is injective and p is a surjective quasi-isomorphism with injective

kernel. At first we discuss the properties of p.

surjection As p has the left lifting property with respect to all elements of L so by

3.6 it is surjective.

injective ker Because p has left lifting property with respect to L then by 3.3 Kerp

has lifting property as well so by Proposition 3.33 it is an injective object.

quasi-iso In addition KerP would be acyclic because it is injective hence p would

be a quasi-isomorphism.

Regarding i, let I be the class of all injective maps then L ⊂ I and therefore L−cell ⊂

I. Because, by 3.1 and 2.26 I is closed under pushout and transfinite compositions.
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The proof of the next proposition is an adaptation of [19, 2.3.5].

Proposition 3.34. In category DGM(R), consider the set

J = { i : X // Y | |Y | ≤ γ}

in which γ=ℵ0 + |R| and containing just one element of each isomorphism class of

injective quasi-isomorphisms. Then the class of injective quasi-isomorphisms I ′ is a

subclass of J−cof ; I ′ ⊆ J−cof .

Proof. Suppose i : A // B is an injective quasi-isomorphism and p : X // Y

is an arbitrary member of J−inj. We claim that i has the left lifting property with

respect to p. Consider a commutative diagram as below.

A
f //

i

��

X

p

��
B g

// Y

(3.5.4)

Let T be the set of all partial lifts (C, h) such that i′ : A // C is an injective quasi-

isomorphism and i′A ⊆ C ⊆ B and h : C // X is a partial lift for the diagram.

The pair (iA, fi−1) belongs to T and so it is not empty. Additionally, T is partially

ordered and has a upper bound so by Zorn’s Lemma a maximal element of T , (M,h)

exists. If M is not all of B, choose x ∈ B \M and denote its generated module by

〈x〉 then |〈x〉| ≤ γ. By Lemma 3.16 there is a submodule D of B containing x with

|D| ≤ γ such that the inclusion D ∩ A � � // D is a member of J . In the diagram

D ∩ A � � //� _

��

M

i2

��
D // N

i2 is a pushout of an element of J , therefore i2 ∈ J−cof . By considering the diagram

A
f //

i

��

B

p

��
M

i2
//

h

77

N

h1

??

g
// Y

(3.5.5)



82

we can form a square by the triangle lower than the diagonal of the rectangle, in this

square a lift h1 exists because i2 ∈ J−cof . Now the pair (N, h1) is a member of T and

it is in contradiction with maximality of (M,h). Hence, M = B and i ∈ J−cof.

Corollary 3.35. Every morphism f : X // Y in DGM(R) can be factored out

to f = pi such that i is a trivial cofibration and p is a fibration; i.e the axiom (MC5)

holds in DGM(R).

Proof. First Argument Recall that I ′ is the class of injective quasi-isomorphisms.

First of all, I ′−cof = J−cof . Because J ⊆ I ′ yields the relation J−cof ⊆ I ′−cof

and also by the previous proposition I ′−cof ⊆ (J−cof)−cof . In addition we can

conclude that I ′−inj = J−inj because we have (S−cof)−inj=S−inj for every class S.

By the small object argument morphism f : X // Y in DGM(R) can be fac-

tored out to f = pi such that i ∈ J−cell and p ∈ J−inj so p is in I ′−inj and therefore

by definition it is a fibration. Furthermore i ∈ J−cell ⊆ I ′ and therefore it is an

injective quasi-isomorphism or equivalently a trivial cofibration.

Second Argument

If i ∈ J−cell then i is injective quasi-isomorphism or equivalently a trivial cofi-

bration. If p ∈ J−inj therefore the map Ker p // 0 is also in J−inj. Hence by

3.19 Ker p is a semi-injective module and therefore by 3.31 it suffices to show that

p is a surjective map. Due to the fact that the isomorphic class of maps 0 // Dn

with n ∈ Z belong to J Lemma 3.6 yields the desired result.

3.6 Projective and Injective Resolution

Definition 3.36. Let M be a module in DGM(R).

i. A map π : P //M is called projective resolution of M if π is a surjective map

with P a projective DG module.

ii. A map π : P //M is called semi-projective resolution of M if π is a surjective

quasi-isomorphism with P a semi-projective DG module.
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iii. A map i : M // I is called injective resolution of M if i is an injective map

with I an injective DG module.

iv. A map i : M // I is called semi-injective resolution of M if i is an injective

quasi-isomorphism with I a semi-injective DG module.

Sometimes the condition of surjectivity or injectivity of the maps are not required

but in their presence the word strict resolution is used. In the rest of this section,

in order to obtain the resolutions for a DG module, both constructive and non-

constructive approaches are provided.

Theorem 3.37. Let M be a module in DGM(R).

i. M has a semi-projective resolution.

ii. M has a semi-injective resolution.

Remark 3.38. A constructive proof of first part can be found in [4, 8.3.3] and [14,

6.5] and for the second part a constructive proof is provided in [4, 10.3.5].

Non-constructive proof 3.37 (i) Suppose the projective model structure is de-

fined on DGM(R). The map 0 : 0 //M can be factored into 0 = pi so there

exists a module M̂ such that i : 0 // M̂ is a cofibration and p : M̂ //M is a

trivial fibration and therefore Coker i = M̂ is a semi-projective object and p is a

surjective quasi-isomorphism which means p is a semi-projective resolution.

(ii) Suppose the injective model structure is defined on DGM(R). The map

0 : M // 0 can be factored into 0 = pi so there exists a module M̆ such that

i : M // M̆ is a trivial cofibration and p : M̆ // 0 is a fibration and therefore

Ker p = M̌ is a semi-injective object and i is an injective quasi-isomorphism which

means i is a semi-injective resolution.

The non-constructive approach relies on the small object argument and the model

structures. However, by considering the constructive approach, we can prove the

existence of the resolutions directly. This approach is also useful for computational

purposes and is based on results from [4] and [14].
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Constructive proof 3.37 i. As every semi-free module is semi-projective we con-

struct a semi-free resolution of M and do it by induction on u ≥ 0 sequences of

inclusion of DG modules Lu−1 ⊆ Lu and of morphisms εu : Lu //M of DG mod-

ules with εu|Lu−1 = εu−1.

If u = 0, then choose a set of cycles Z0 in M such that cls(Z0) generates the

graded H(R)−module H(M), and let

E0 = {ez : |ez| = |z|}z∈Z0

be a linearly independent set over R\. Direct computations show that the formula

(L0)\ = R\E0 and ∂(
∑
z∈Z0

rzez) =
∑
z∈Z0

∂(rz)ez

defines a DG module L0 over R, and that

ε0(
∑
z∈Z0

rzez) =
∑
z∈Z0

rzz

defines a morphism ε0 : L0 //M in DGM(R).

If u ≥ 0 and a DG module Lu and a morphism εu : Lu //M has been defined,

then choose a set of cycles Zu+1 of Lu such that cls(Zu+1) generates the graded

H(R)−module Ker(H(εu)), and let

Eu+1 = {ez : |ez| = |z|+ 1}z∈Zu+1

be a linearly independent set over R\. Direct computations show that

(Lu+1)\ = R\Eu
⊕

(Lu)\

∂(
∑

z∈Zu+1

rzez + x) =
∑

z∈Zu+1

∂(rz)ez +
∑

z∈Zu+1

(−1)|rz |rzz + ∂(x)

defines a DG module Lu+1 over R, and that Lu, identified with its canonical image,

is a DG submodule of Lu+1. By construction, for each z ∈ Zu+1 there exists an

element yz ∈M such that εu(z) = ∂(yz). By a computation one can verify that

εu+1(
∑

z∈Zu+1

rzez + x) =
∑

z∈Zu+1

rzyz + εu(x)

defines a morphism εu+1 : Lu+1 //M of DG modules, such that εu+1|Lu = εu.
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We set L = ∪u≥0L
u and note that E = tu≥0E

u is a semi-basis of L and

ε = lim−→ εu : L //M is a morphism of DG modules. Now we show that ε is a

quasi-isomorphism and it is surjective map if and only if Z0 generates the graded

Z(R)−module Z(M). For each u ≥ 0 we have a commutative diagram

H(L0) //

H(ε0)

##

H(Lu) //

H(εu)

��

H(L)

H(ε)

{{
H(M)

By construction, H(ε0) is surjective and therefore H(εu) is surjective as well, hence

H(ε) is surjective. To show it is injective, consider a cycle x ∈ L with H(ε)(cls(x)) =

0. Considering the fact that H(ε) = H(lim−→u
εu) = lim−→u

H(εu) there exists a u such

that x ∈ Lu and cls(x) ∈ Ker(H(εu)). By the choice of Zu+1, we have

x =
m∑

z∈Zu+1

azz + ∂(y) ∈ Lu

for appropriate cycles az ∈ Z(R), almost all equal to 0, and for some y ∈ Lu. By

construction, for each z ∈ Zu+1 there is an ez ∈ Lu+1 with z = ∂(ez), hence

x = ∂(
∑
z∈Zu

(−1)|az |azez + y) ∈ Lu+1 ⊆ L.

Thus, x is a boundary as well so cls(x) = 0 inH(L) therefore ε is a quasi-isomorphism.

By 2.9 the quasi-isomorphism ε is surjective if and only if it is surjective on cycles and

by construction, this happens if and only if Z0 generates the graded Z(R)−module

Z(M).

Constructive proof 3.37 ii. Before starting the main arguments some prepara-

tions are needed so we start by describing the concept of totaling.

Totaling Fix a complex of DG modules over R

X = · · · // Xu−1 δu−1
// Xu δu // Xu+1 // · · ·
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Lemma 3.39. Let X be the DG module
∏

u∈Z Σ−u(Xu) where elements of Xare the

families (xu)u∈Z ∈ X with xu ∈ Σ−uXu, and the formulas

r((xu)u∈Z) = ((−1)|r|urxu)u∈Z

∂X((xu)u∈Z) = ((−1)|u|∂X
u

(xu))u∈Z

describe its module structure and differential.Then the formula

δ((xu)u∈Z) = (δu−1(xu−1))u∈Z

defines an R−linear chain map δ : X // X of degree −1 such that δ2 = 0.

We define the totaling of the complex X to be the DG module

Tot(X) = (X\, ∂X + δ)

Construction For u ≤ −1 define a morphism δu−1 : Iu−1 // Iu by setting

Iu = 0 for all u ≤ −2 and I−1 = M . If v is a non-negative integer, then assume by in-

duction that morphisms δu−1 have been chosen for u < v, and set M v = Coker(δv−2).

Choose a surjective quasi-isomorphism εv : Lv // (M v)∨ of DG modules over Ro

with Lv semi-free. Set Iv = (Lv)∨, define δv−1 to be the composition

Iv−1 πv−1
//M v ζ // (M v)∨∨

(εv)∨ // (Lv)∨ = Iv

where ζ is the natural evaluation and πv−1 is the canonical projection. Now form

the sequences of DG modules

I = · · · // 0 // 0 // I0 δ0 // · · · // Iu
δu // Iu+1 // · · ·

Let I = Tot(I) be the totaling and define a map

η : M 7→ I by η(m) = (xu)u∈Z where xu =

 δ−1(m) for u = 0;

0 for u 6= 0.

It is clear from the formula that η is a morphism in DGM(R). One can show that

the DG module I is homotopically injective and the graded R\−module I\ is injective

and therefore I is semi-injective. By putting more effort one may see that η is an

injective quasi-isomorphism.
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Comparing semi-projective resolution and ordinary projective resolution

Let A be a commutative ring and M be an A−module. A can be seen as a DGA

concentrated in degree zero and also M can be seen as a DG module concentrated

in degree zero.

Suppose

F : · · · // Fn
dn // Fn−1

dn−1 // · · · // F0
d0 //M // 0

is a projective resolution of M . Define the DG module (P, δ) such that Pi = Fi where

i ≥ 0 and Fi = 0 for i < 0 and δi = di where i > 0 and δi = 0 for i ≤ 0. Now, define

the map π : P //M such that π0 = d0 and πi = 0 for i 6= 0. It can be seen that

π is a map of DG modules and it is a quasi-isomorphism and P is a semi-projective

resolution of M as a DG module.

Remark 3.40. The above discussion lets us talk about semi-projective resolution and

projective resolution interchangeably.

3.7 Cotorsion Theory and Model Categories

In this section, the notation of cotorsion theory is introduced based on the definitions

and results of [13]. In addition we give an alternative proof for 3.22 by using cotorsion

theory and its related results for model categories from [21].

Definition 3.41. In an abelian category A, for a given class of object C let ⊥C

denote the class of objects F such that ExtA(F,C)=0 for all C ∈ C and let C⊥

denote the class of objects G such that ExtA(C,G)=0 for all C ∈ C. ⊥C and C⊥ are

called orthogonal classes of C.

Definition 3.42. A pair (F , C) of objects in A is called a cotorsion theory if F⊥=C

and ⊥C=F . A class D is said to generate the cotorsion theory if ⊥D=F (and so

D ⊂ C) and a class G is said to cogenerate the cotorsion theory if G⊥=C (and so

G ⊂ F).

Example 3.43. In the category of modules over a ring K, (M, I) and (P ,M) are

cotorsion theories where M denotes the class of all modules, I and P denote the

class of injective and projective modules respectively.
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Definition 3.44. A cotorsion theory (F , C) is said to have enough injectives if for

every object X there is an exact sequence 0 // X
i // C

q // F // 0 with

C ∈ C and F ∈ F . Also we say it has enough projectives if for every X there is an

exact sequence 0 // C i // F
q // X // 0 with C ∈ C and F ∈ F . Moreover,

if a cotorsion theory has enough injective and projective objects we call it a complete

cotorsion theory.

Remark 3.45. If (F , C) is a cotorsion theory, then F and C are both closed under

extensions and summands and F contains all projective objects while C contains all

injective objects. Also F is closed under arbitrary coproduct if so is A and C is

closed under arbitrary product if so is A.

Definition 3.46. A nonempty subcategory of an abelian category is called thick if

it is closed under retract, and whenever two out of three entries in a short exact

sequence are in the thick subcategory, so is the third.

Definition 3.47. An abelian model category is a complete and cocomplete abelian

category A equipped with a model structure such that

i. A map is a cofibration if and only if it is a monomorphism with cofibrant cokernel.

ii. A map is a fibration if and only if it is an epimorphism with fibrant kernel.

The next theorem is the main result of [21].

Theorem 3.48. Suppose C, F and W are three classes of objects in a complete and

cocomplete abelian category A, such that

• W is thick.

• (C,F ∩W) and (C ∩W ,F) are complete cotorsion theories.

Then there exists a unique abelian model structure on A such that C is the class

of cofibrant objects, F is the class of fibrant objects and W is the class of acyclic

objects.
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In the rest of this section, an alternative proof for 3.22 is given. We start with

the next lemma which plays a central role. To be consistent, note that while using

Theorem 3.37 regarding the semi-injective resolutions, the constructive proof must

be taken into account otherwise the strange loop

Theorem 3.22

��
Theorem 3.50

/7

Theorem 3.37dl

will happen.

Lemma 3.49. In DGM(R), the pair (W ,F) is a complete cotorsion theory where

W denotes the class of all quasi-trivial objects and F is the class of all semi-injective

objects.

Proof. The pair (W ,F) is a cotorsion theory if and only if (a) I ∈ F ⇔ ExtA(w, I)=0

for all w ∈ W and (b) w ∈ W ⇔ ExtA(w, I)=0 for all I ∈ F .

b ⇒) Let w ∈ W , for a given I ∈ F consider the arbitrary short exact sequence

0 // I i // X π // w // 0 where X ∈ DGM(R). As H(w) = 0 then i

must be an injective quasi-isomorphism hence by 2.75 it has a left inverse

which means ExtA(w, I)=0

b ⇐) Suppose w ∈ DGM(R) and ExtA(w, I)=0 for all I ∈ F . By Theorem 3.37

we can assume that β : w // w̌ is a semi-injective resolution for w where

w̌ ∈ F . Since ExtA(w,Σ−1w̌)=0, the short exact sequence of the mapping

cone of β will split and hence ConeΣ−1β ∼= Σ−1w̌⊕w. In addition ConeΣ−1β

is a quasi-trivial object because β is a quasi-isomorphism which shows w is a

quasi-trivial object and belongs to W .

a ⇒) Let I ∈ F for a given w ∈ W . Follow the argument for the first part of (b).

a ⇐) Let I ∈ DGM(R), for a given injective quasi-isomorphism i : I //M we

can see that M/I ∈ W so by assumption ExtA(M/I, I)=0 which means i has

a left inverse and therefore I ∈ F by 2.75.
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For a given object X, let β : X �
� ' // X̌ be its semi-injective resolution. Then the

short exact sequence 0 // X
β // X̌ // X̌/X // 0 shows that the theory has

enough injectives while 0 // Σ−1X̌ // ConeΣ−1β // X // 0 shows enough

projectives exist.

Theorem 3.50. In DGM(R), suppose C, F and W are classes of all objects, semi-

injective objects and quasi-trivial objects, respectively. Then there exists a unique

abelian model structure on DGM(R) such that C is the class of cofibrant objects, F

is the class of fibrant objects and W is the class of acyclic objects.

Proof. It is clear that W is thick and F ∩ W is the class of all injective objects.

Therefore C is the class of all objects so (C,F ∩W) is a complete cotorsion theory.

Additionally, (C ∩ W ,F) is a complete cotorsion theory by Lemma 3.49. Hence by

3.48 we have a unique abelian model structure on DGM(R).
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Functors between DGM(R) and DGM(S)

In chapter 3, we have defined two model structures on the category of differential

graded modules so one can talk about the derived category of differential graded

modules. One way of understanding a new derived category is to compare it with a

known one. Firstly in this chapter, we introduce the functors extension, restriction

and co-extension of scalars between two categories of differential graded modules. It

is worth noting that these functors are widely used in commutative algebra and stable

equivariant homotopy theory while analyzing algebraic models of change of groups

(a usage of these functors can be found in [16, Sect 9]). Then abstract properties

of these functors, considered as functors between two model categories, are provided

and an application in the case of change of ring maps is given.

4.1 Introducing Functors between DGM(R) and

DGM(S)

For a given morphism of DGAs Θ : R // S the following series of functors can be

defined.

91
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DGM(R)
Θ∗ --

Θ!

88

Θδ!

BB
DGM(S)

Θ∗
mm

Θ!
δ

VV

Θ∗(NS)=NR

Θ∗(MR)= SS R ⊗RMR

Θ!(MR)=HomR( SS R ,MR)

Θδ
! (MR) = δS R ⊗RMR

Θ!
δ(NS) = HomS( δS R , NS)

where δ is an R−S DG-bimodule. Note that the map Θ makes the ring S into a

R−module and as a result HomR(S,R) becomes an R−S DG-bimodule and will

be used to determine more properties of δ. The above diagram and equations are

our conventions for the rest of this chapter and we also assume that R and S are

commutative DGAs over K.

The next proposition is a generalization of standard theorems regarding exten-

sion, restriction and co-extension of scalars for which proofs can be found in [8].

Although the proof of next proposition is standard, we include the proof since we

use some details especially the diagrams later to verify Quillen equivalence criteria.

Proposition 4.1. The following pairs of functors are adjoint.

i. Θ∗ is left adjoint to Θ∗.

ii. Θ∗ is left adjoint to Θ!.

iii. Θδ
! is left adjoint to Θ!

δ.

Proof. Suppose M is an arbitrary R−module and N is an arbitrary S−module.

(i) To prove the first statement it is needed to show that

HomS(S ⊗RM,N) ∼= HomR(M,N)
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which is equal to say that for a given R−module map f : M // N there is a unique

S−module map g : S ⊗S M // N such that the following diagram commutes.

M //

f

��

R⊗RM
Θ⊗1M // S ⊗RM

g

ww
N

(4.1.1)

If the map g exists it must satisfy

g(s⊗m) = g(s.R1R ⊗m) = g(s.S1S ⊗m) = sg(Θ(1R)⊗m) = sf(m)

where 1R and 1S denote the unities in R and S, and .R and .S denote the multi-

plications in R and S. The above relation shows how to define g and why it is

unique. Θ∗ is called extension of scalars and Θ∗ is called restriction of scalars func-

tor. In addition, if M = N and f = 1N then there is a canonical S−module map,

g : S ⊗R N // N such that g(s⊗ n) = sn. The diagram 4.1.1 shows this map is

a surjection and it has a right inverse as a map of R−modules.

(ii) To prove the second statement it is needed to show that

HomS(N,HomR(S,M)) ∼= HomR(N,M)

which is equivalent to saying that for a given R−module map f : N //M there is

a unique S−module map g : N // HomR(S,M) such that the following diagram

commutes.

HomR(S,M)

HomR(Θ,M)
��

HomR(R,M)

ev(1)
��

N
f

//

g

<<

M

(4.1.2)

First of all the DG moduleHomR(S,M) has the structure of S−module by (s′f)(s) =

f(s′s) for f ∈ HomR(S,M) and s′, s ∈ S. For simplicity define

Θ̂ := ev ◦HomR(Θ,M)
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therefore for any h ∈ HomR(S,M) Θ̂(h) = h(Θ(1R)). If g exists it must satisfy

sg(n) = g(sn) as it is a S−module map and the following relation must hold.

g(n)(s) = sg(n)(Θ(1)) = g(sn)(Θ(1)) = Θ̂(g(sn)) = f(sn).

The above relation shows how to define g and why it is unique. Θ! is called co-

extension of scalars. In addition, if M = N and f = 1N then there is a canonical

S−module map, g : N // HomR(S,N) such that g(n)(s) = sn. The diagram

4.1.2 shows this map is an injection and as R−module map it has a left inverse.

(iii) To prove the last statement it is needed to show that

HomS(M ⊗R δ,N) ∼= HomR(M,HomS(δ,N))

which has been proved in 2.24.

4.2 Quillen Pairs and Quillen Equivalence between

DGM(R) and DGM(S)

In this section, we introduce necessary and sufficient conditions under which an

adjunction turns out to be a Quillen pair or Quillen equivalence. However some

preparations are essential during our main arguments.

Proposition 4.2. For each DG module M over R the following hold.

i. For a quasi-isomorphism, α : P // P ′ , of homotopically projective DG mod-

ules, the maps HomR(M,α) and HomR(α,M) are homotopy equivalences.

ii. For a quasi-isomorphism, β : I // I ′ , of homotopically injective DG modules,

the maps HomR(M,β) and HomR(β,M) are homotopy equivalences.

iii. For a quasi-isomorphism, γ : F // F ′ , of homotopically flat DG modules, the

map γ ⊗RM is a quasi-isomorphism.

Proof. (i) First suppose P and P ′ are semi-projective and consider the projective

model on DGM(R). As semi-projective modules are fibrant-cofibrant objects α is a
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homotopy equivalence by 1.9. If P and P ′ are homotopically projective then they

are homotopic to semi-projective modules P̂ and P̂ ′ and therefore we can build the

commutative diagram

P̂

πp

��

α̂ // P̂ ′

πp′

��
P α

// P ′

where α̂ exists because πP ′ is a surjective quasi-isomorphism and P̂ ′ is semi-projective.

Considering the fact that α̂ is a quasi-isomorphism between semi-projective modules

we can conclude that it is a homotopy equivalence. Hence, α is a homotopy equiva-

lence because all the rest of three maps in the commutative diagram are homotopy

equivalences. Thus, the maps HomR(M,α) and HomR(α,M) are homotopy equiv-

alences.

(ii) A dual argument for (i) leads to the desired result.

(iii) By (ii) the map γ∨ : F ′∨ // F∨ is a homotopy equivalence of homotopi-

cally injective modules. Hence, HomR(M,γ∨) is a quasi-isomorphism. Because we

have an isomorphism of functors between HomR(M,γ∨) and (γ⊗RM)∨, (γ⊗RM)∨

is a quasi-isomorphism and therefore (γ ⊗RM) is a quasi-isomorphism.

Quillen Pair

Theorem 4.3. Let AS R be a R−S DG-bimodule and consider the projective model

on DGM(R) and DGM(S), then the left adjoint

AS R ⊗− : DGM(R) // DGM(S)

is a left Quillen functor if and only if AS R is a semi-projective S−module.

Proof. Let AS R⊗− be a left Quillen functor, then it preserves all (trivial)cofibrations.

Considering i : R // Cone(1R) as a cofibration in DGM(R) its image is a cofibra-

tion in DGM(S) as well. Hence the natural map AS R
// Cone(1 AS R

) is an injec-

tion with semi-projective cokernel and therefore Σ AS R and AS R are semi-projective

S−modules.
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Let AS R be a DG R−module which is also a semi-projective S−module. Since

DGM(R) is a cofibrantly generated model category we just need to show that the

image of elements I = { Sn−1 // Dn } and J = { 0 // Dn } for all n ∈ Z are

cofibrations and trivial cofibrations respectively. For a given in ∈ I there is a linearly

split short exact sequence of DG R−module, 0 // Sn−1 in // Dn // Sn // 0

so applying the functor AS R ⊗− yields a linearly split short exact sequence of DG

S−modules and its isomorphic sequence are as below by 2.40.

0 // AS R ⊗ Sn−1 1⊗i //

��

AS R ⊗Dn //

��

AS R ⊗ Sn //

��

0

0 // Σn AS R
1⊗i // Cone(1Σn AS R

) // Σn+1 AS R
// 0.

Due to the exactness of the second row, 1⊗ i is an injective map with Σn+1 AS R

as its cokernel, which is a semi-projective DG module by assumption. Hence 1 ⊗ i

is a cofibration (an injection with semi-projective cokernel). For a given map in J ,

since AS R ⊗ Dn ∼= Cone(1Σn AS R
) is contractible, 0 // Cone(1Σn AS R

) is a trivial

cofibration.

Corollary 4.4. Consider the projective model structure on DGM(R) and DGM(S);

the pair (Θ∗,Θ
∗) is a Quillen pair. In addition, the pair (Θδ

! ,Θ
!
δ) is a Quillen pair if

and only if δ is a semi-projective S−module.

Remark 4.5. By the classical definition, the derived functor of HomR(A,−) is equal

to HomR(Â,−) where Â is the projective resolution of A. By considering the pro-

jective model structure and the new definition of derived functor talking about the

derived functor of the functor HomR(A,−) is meaningful if A already is a cofibrant

object so the classical definition and the new definition are compatible.

Proposition 4.6. Let AS R be a R−S DG-bimodule, then for the left adjoint

AS R ⊗− : DGM(R) // DGM(S)

between the categories of DG R−modules and DG S−modules with the injective model

structure on both, the functor AS R ⊗ − is a left Quillen functor if and only if AS R

is a semi-flat R−module.
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Proof. The functor A⊗R− is a left Quillen functor if and only if it sends all injective

maps to injective maps and preserves all injective quasi-isomorphism which means

that AS R is a semi-flat DG R−module.

Corollary 4.7. Consider the injective model structure on both DGM(R) and DGM(S),

then the pair (Θ∗,Θ!) is a Quillen pair. In addition, the pair (Θδ
! ,Θ

!
δ) is a Quillen

pair if and only if δ is a semi-flat R−module.

Quillen Equivalence In the rest of this section, we analyze the conditions under

which a Quillen pair turns out to be a Quillen equivalence.

Proposition 4.8. Consider the projective model structure on both DGM(R) and

DGM(S); the Quillen adjunction (Θ∗,Θ
∗, φ) is a Quillen equivalence if and only if

Θ is a quasi-isomorphism.

Proof. Suppose Θ : R // S is a quasi-isomorphism. For a given morphism f ∈

HomR(Θ∗(M), N) where M ∈ DGM(R) and N ∈ DGM(S) the diagram

S ⊗M f // N

1N

��
R⊗M

φ(f)
//

Θ⊗1M

OO

N

commutes. If M is a semi-projective DG module (cofibrant object), by 2.83 and 4.2

the map Θ⊗ 1M is a quasi-isomorphism. Thus, the map f is a quasi-isomorphism if

and only if φ(f) is a quasi-isomorphism.

Suppose (Θ∗,Θ
∗, φ) is a Quillen equivalence. For the cofibrant object R the map

S ⊗R R 1 // S is a quasi-isomorphism and therefore the map, Θ = φ(1) : R // S ,

is a quasi-isomorphism as well.

Proposition 4.9. Consider the injective model structure on both DGM(R) and

DGM(S); the Quillen adjunction (Θ∗,Θ!, φ) is a Quillen equivalence if and only if

Θ is a quasi-isomorphism.
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Proof. Suppose Θ : R // S is a quasi-isomorphism. For a given morphism f ∈

HomR(Θ∗(N),M) where M ∈ DGM(R) and N ∈ DGM(S) the following diagram

commutes.

N
f //

1N

��

HomR(R,M)

N
φ(f)

// HomR(S,M)

HomR(Θ,M)

OO
(4.2.1)

If M is a semi-injective DG module (fibrant object), by 2.74 and 2.75 the map

HomR(Θ,M) is a quasi-isomorphism. Hence the map f is a quasi-isomorphism if

and only if φ(f) is a quasi-isomorphism.

Suppose (Θ∗,Θ!, φ) is a Quillen equivalence and the maps i : R // Ř and

j : S // S̆ are semi-injective resolutions (fibrant replacement) of R and S in the

DGM(R). By assumption, the diagram 4.2.1 shows that the following homomor-

phisms are quasi-isomorphisms. In fact, the right vertical map is a quasi-isomorphism

for every fibrant object I by Lemma 1.27.

HomR(S, R̆)
HomR(Θ,R̆) // HomR(R, R̆) (4.2.2)

HomR(S, S̆)
HomR(Θ,S̆) // HomR(R, S̆) (4.2.3)

Furthermore, as i is an injective quasi-isomorphism and S̆ is semi-injective the map

Θ̆ exists and the square in the diagram below commutes

R

i

��

Θ // S

j

��

h

��
R̆

Θ̆

// S̆

(4.2.4)

The quasi-isomorphism 4.2.2 shows that there exists a unique morphism h up to

homotopy such that hΘ ∼ i showing H(Θ) is an injective map. The upper triangle

commutes up to homotopy so Θ̆i ∼ Θ̆hΘ ∼ jΘ, additionally the quasi-isomorphism

4.2.3 shows that Θ̆h ∼ j. Hence H(Θ̆) is a surjection which means H(Θ) is a

surjection as well.
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For the two next propositions, an extra condition is imposed. In fact we assume

that S is a semi-projective R−module. Note that this extra condition has no effect on

results at the derived level as long as S has a semi-free resolution with an R−algebra

structure [12].

Proposition 4.10. Suppose S is a semi-projective R−module and δ = HomR(S,R),

with the injective model structure on both DGM(R) and DGM(S), the Quillen ad-

junction (Θδ
! ,Θ

!
δ, φ) is a Quillen equivalence if Θ is a quasi-isomorphism.

Proof. By assumption Θ is a quasi-isomorphism of semi-projective modules and

therefore it is a homotopy equivalence by 4.2. Assume HomR(Θ, R) = Θ̄ : δ // R

is the induced quasi-isomorphism. First of all, as (Θδ
! ,Θ

!
δ, φ) is a Quillen adjunc-

tion, the DG module δ must be a semi-flat R−module and therefore Θ̄ is a quasi-

isomorphism of semi-flat R−modules. Hence, by 4.2 for every R−module M the

following map is a quasi-isomorphism.

1M ⊗R Θ̄ : M ⊗R δ //M ⊗R R (4.2.5)

Furthermore, for every semi-injective S−module N and the composition quasi-

isomorphism Θ ◦ Θ̄ = Θ : δ // S , the following map is a quasi-isomorphism by

2.74.

HomS(Θ, N) : HomS(S,N) // HomS(δ,N) (4.2.6)

The diagram below, 4.2.5 and 4.2.6 show that for a semi-injective S−module (fibrant)

N and an arbitrary R−module M , the map β is a quasi-isomorphism if and only if

φ(β) is a quasi-isomorphism.

M ⊗R δ
β //

1M⊗RΘ̄

��

HomS(S,N)

HomS(Θ,N)

��
M ⊗R R

φ(β) // HomS(δ,N)

(4.2.7)

Proposition 4.11. Suppose S is a semi-projective R−module and δ = HomR(S,R),

with the projective model structure on both DGM(R) and DGM(S), the Quillen

adjunction (Θδ
! ,Θ

!
δ, φ) is a Quillen equivalence if Θ is a quasi-isomorphism.
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Proof. Suppose Θ : δ // S is the introduced quasi-isomorphism in 4.10. Since

(Θδ
! ,Θ

!
δ, φ) is a Quillen adjunction, the DG module δ must be a semi-projective

S−module. Therefore by 4.2 for every S−module N the following map is a quasi-

isomorphism.

HomS(Θ, N) : HomS(S,N) // HomS(δ,N) (4.2.8)

Furthermore, for every semi-projective R−module M and the induced quasi-

isomorphism Θ̄ : δ // R , the following map is a quasi-isomorphism by 2.83 and

2.84.

1M ⊗R Θ̄ : M ⊗R δ //M ⊗R R. (4.2.9)

The diagram 4.2.7 and the quasi-isomorphisms 4.2.8 and 4.2.9 show that for a semi-

projective R−module (cofibrant) M and an arbitrary S−module N , the map β is a

quasi-isomorphism if and only if φ(β) is a quasi-isomorphism.

4.3 Relation between Θ! and Θδ
!

The next Lemma is a special case of [2, Theorem 2]. Note that, although some

results from [2] have been used to define the morphism, the employed techniques are

different. Additionally, the finiteness conditions, introduced in Section 2.9, are used.

Furthermore, this Lemma can be proved by using the results about the triangulated

categories.

Lemma 4.12. For a given small semi-free DG module, L and an arbitrary DG

module M in DGM(R), the morphism.

µL : HomR(L,R)
⊗

RM
// HomR(L,M)

f ⊗m // φf,m : (l→ (−1)|m||l|f(l).m)

is a natural isomorphism. Furthermore, for any retract P of L, the map µP is an

isomorphism. Conversely, if for a given P the map, µP is an isomorphism for every

M then P is linearly projective and P is finitely presented.
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Proof. The proof consists of three steps. First of all, if L is a finite direct sum of

suspensions of R, L =
⊕n

i=1 ΣniR, it is clear that µL is an isomorphism.

Secondly, we claim that for a linearly split short exact sequence,

0 // L0
// L1

// L2
// 0 (4.3.1)

if µL0 and µL2 are isomorphisms then µL1 is an isomorphism as well. By applying

functors HomR(−, R)
⊗

RM and HomR(−,M) on the 4.3.1 the following commu-

tative diagram is achieved in which rows are exact because 4.3.1 is linearly split.

0 // HomR(L0, R)
⊗

RM
//

µL0

��

HomR(L1, R)
⊗

RM
//

µL1

��

HomR(L2, R)
⊗

RM
//

µL2

��

0

0 // HomR(L0,M) // HomR(L1,M) // HomR(L2,M) // 0

By assumption µL0 and µL2 are isomorphisms and therefore the five lemma shows

that µL1 is an isomorphism.

In the general case, suppose that 0 ⊆ L0 ⊆ L1 ⊆ ... ⊆ Ln is the finite filtration

for L such that Li/Li+1 is a finite direct sum of suspensions of R. Employing the

two previous steps and induction leads to the desired result, as long as we know that

0 // Li // Li+1
// Li/Li+1

// 0

is a linearly split exact sequence.

For a given map g : M //M ′ , consider the diagram

HomR(L,R)
⊗

RM
µL //

1⊗g

��

HomR(L,M)

g̃

��
HomR(L,R)

⊗
RM

′
µL

// HomR(L,M ′).

(4.3.2)

For an element of HomR(L,R)
⊗

RM , we have

f ⊗m µL // φf,m
g̃ // g ◦ φf,m : (t→ g(f(t).m))

also

f ⊗m 1⊗g // f ⊗ g(m)
µL // φf,g(m)
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which shows that the diagram 4.3.2 is commutative due to the fact that φf,g(m) =

g ◦ φf,m. Therefore the map µL is a natural map. To show that for the retract P

of L the map µP is an isomorphism, apply two functors HomR(−, R)
⊗

RM and

HomR(−,M) on the retract diagram, then the naturality of µL and µP yield the

commutative diagram

HomR(P,R)
⊗

RM
µP //

1

��

i1

**

HomR(P,M)
i2

((

��

HomR(L,R)
⊗

RM

π1tt

µL // HomR(L,M)

π2vv
HomR(P,R)

⊗
RM µP

// HomR(P,M)

(4.3.3)

As µL is an isomorphism, we have i1 = µL
−1i2µP and π2 = µPπ1µL

−1 and therefore

π1µL
−1i2 is a left and π1µL

−1i2 is a right inverse for µP .

To prove the converse part, suppose µP is an isomorphism then it shows that

the functor HomR(P,−) is an right exact functor because HomR(P,R)
⊗

R− is an

right exact functor. In addition, for a given directed family {Mi}i∈I , the following

sequence of isomorphisms exists

HomR(P, lim−→Mi) ∼= HomR(P,R)
⊗
R

lim−→Mi

∼= lim−→HomR(P,R)
⊗
R

Mi

∼= lim−→HomR(P,Mi)

which means that P is finitely presented and therefore it is a finite DG module.

Corollary 4.13. Suppose R is a non-negative DG algebra, for a given module P the

map µP is an isomorphism if and only if P is a finite semi-projective DG R−module.

Proof. Suppose µP is an isomorphism, then 4.12 shows that P is a finite linearly

projective DG R−module and therefore P is bounded below by 2.89. Since P \ is

projective over R\ and P is bounded below, Theorem 2.94 shows that it is a semi-

projective module.
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Combining Lemma 4.12 and Corollary 4.13 yields the next theorem.

Theorem 4.14. There is a natural transformation µ∗ : Θδ
!

// Θ! if and only if

there is a R−S−bimodule map µ : δ // HomR(S,R) . Furthermore if µ is an

isomorphism and S is a small semi-projective R−module then µ∗ is an isomorphism

and the converse is true if R is a non-negative DG algebra.

Corollary 4.15. Suppose S and δ are small semi-projective R−modules. If µ is a

quasi-isomorphism then µ∗M : Θδ
! (M) // Θ!(M) is a homotopy equivalence.

Proof. By assumption and Lemma 4.18 HomR(S,R) is a semi-projective R−module

and therefore µ : δ // HomR(S,R) is a homotopy equivalence. Hence in the dia-

gram

δ ⊗M µ⊗M // HomR(S,R)⊗M µS // HomR(S,M)

the map µ⊗M is a homotopy equivalence and µS is an isomorphism and therefore

the composition is a homotopy equivalence.

4.4 Relation between Θ∗ and Θ!
δ

In this section, an analysis of the relation between Θ∗ and Θ!
δ is given. But before

starting the main argument we bring [2, Theorem 1] here as 4.16 and some other

lemmas.

Theorem 4.16. Let L be a DG R−module, M a DG R−S−bimodule and N a DG

S−module. Then there is a canonical morphism

ω : L⊗R HomS(M,N) // HomS(HomR(L,M), N) (4.4.1)

given by ω(l ⊗ λ)(γ) = (−1)|l|(|λ|+|γ|)λ(γ(l)).

It is an isomorphism if L is a small semi-free DG module.

Corollary 4.17. In Theorem 4.16 the map ω is an isomorphism if L is a small

semi-projective module.

Proof. By forming a retract diagram like 4.3.3 for the map ω and a similar argument

the result may be achieved.
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Lemma 4.18. If P is a small semi-projective DG R−module then

HomR(HomR(P,R), R) ∼= P

and HomR(P,R) is also a semi-projective module.

Proof. Substituting L = P , M = N = R and R = S in Theorem 4.16 leads to the

desired isomorphism. Moreover, the sequence of isomorphisms, deriving from 4.16,

HomR(HomR(P,R),−) ∼= P ⊗R HomR(R,−) ∼= P ⊗R −

and the fact that every semi-projective module is semi-flat show that HomR(P,R)

is semi-projective.

Theorem 4.19. Suppose δ is a small semi-projective S−module, then there is a

natural transformation µ∗ : Θ!
δ

// Σ−nΘ∗ if and only if there is a R−S−bimodule

map µ : ΣnS // δ . Furthermore µ is an isomorphism if and only if µ∗ is an

isomorphism.

Note that the condition of semi-projectivity of δ is quite reasonable because of

4.4.

Proof. Suppose µ∗ : Θi
δ

// Σ−nΘ∗ is a natural isomorphism between the two func-

tors. By applying these two functors on the object S, the canonical map

HomS(δ, S) // Σ−nS

is obtained. Dualizing this map and Lemma 4.18 yields the map ΣnS // δ .

Conversely, by applying the functor HomS(−, S) on the map ΣnS // δ we

obtain the map HomS(δ, S) // Σ−nS and applying the functor −⊗SN yields the

morphism HomS(δ, S)⊗S N // Σ−nN . Combining the last morphism and the

results from 4.12 yields the morphism HomS(δ,N) // Σ−nN .

Remark 4.20. If µ is a quasi-isomorphism then

HomS(δ, S)
HomS(µ,S) // Σ−nS

is a homotopy equivalence. Therefore conducting a similar argument to the previous

proof leads to the fact that HomS(δ,N)
HomS(µ,N) // Σ−nN is a homotopy equivalence.
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Definition 4.21. Let R and S be DGAs over K and Θ : R // S be a ring ho-

momorphism, then Θ is a Gorenstein morphism if there exists n ∈ Z such that

Θ̂∗(S) ∼ HomR(Θ̂∗(S),ΣnR)

where Θ̂∗(S) denotes a semi-projective resolution of Θ∗(S) as an R−module.

Remark 4.22. A number of results from [25] can be adopted by employing Definition

4.21.

In the following examples, the concept of semi-projective, semi-free and projective

resolution are used interchangeably. See Remark 3.40.

Example 4.23. Suppose K[x] is the polynomial ring over K and the degree of x,

is a positive integer. The canonical projection map π : K[x] // K makes K into

a K[x] module. To find a semi-free resolution K̂ of K we employ the constructive

method; described in 3.37. In this case E0 = {e1||e1| = 0} and L0 ∼= K[x]. In

the next step E1 = {ex||ex| = |x| + 1} and L1 = exK[x] ⊕ K[x] where d(ex) = x.

A straightforward calculation shows that H(ε1) = K and Ker(H(ε1)) = 0, and

therefore K̂ ∼= Σ|x|+1K[x]⊕K[x] where ⊕ is the modules direct sum but not a sum

as DG modules. We also have

HomK[x](K̂,K[x]) ∼= K[x]⊕ Σ−|x|−1K[x] ∼= ̂Σ−|x|−1K

The next example shows that Definition 4.21 is not valid for all DG modules.

Example 4.24. Suppose R = K[x, y] is the polynomial ring over K where |x| =

|y| = 1 and S = K[x, y]/(x2, y2, xy). The canonical projection π : R // S makes

S into a K[x, y] module. In this case for the semi-free resolution of S we have

Ŝ ∼ R⊕ Σ2R⊕3 ⊕ Σ3R⊕2

Example 4.25. Suppose R = K[x, y, z] is the polynomial ring over K where |x| =

|y| = |z| = 1 and S = K[x, y, z]/(yz, x). The canonical projection π : R // S

makes S into a K[x, y, z] module. The free resolution of S is in form of

Ŝ : · · · // 0 // Σ3R
d2 // ΣR⊕ Σ2R

d1 // R
d0 // 0 // · · ·
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where the matrix representations of the differential maps are

d1 =
(
x yz

)
d2 =

 −yz
x


and therefore in the language of differential graded modules

Ŝ ∼ R⊕ Σ3R⊕ Σ2R⊕ Σ5R

and the differential map is

D =


0 x yz 0

0 0 0 −yz

0 0 0 x

0 0 0 0


For the dual of Ŝ as a chain complex we have

HomR(Ŝ, R) : · · · // 0 // R
d0 // Σ−1R⊕ Σ−2R

d−1 // Σ−3R
d−2 // 0 // · · ·

where the matrix representations of the differential maps are

d−1 =
(
yz −x

)
d0 =

 x

yz


and as modules

HomR(Ŝ, R) ∼ Σ−5R⊕ Σ−2R⊕ Σ−3R⊕R

and one may check differentials to see that

HomR(Ŝ, R) ∼ Σ−5Ŝ

In Example 4.25, (yz, x) is a regular sequence and therefore its semi-free resolution

is a Koszul complex. The next proposition is some sort of generalization of this

example.



107

Proposition 4.26. Fix a sequence x = (x1, · · · , xn), where R is a commutative ring

concentrated in degree zero. Let K(x) be the Koszul complex of x and Θ : R // K(x)

be the canonical embedding of DGAs, then HomR(K(x), R) ∼= ΣnK(x).

Proof. If Ki=K(x)i then it is a free R−module with rank

(
n

i

)
and the basis

{ej1 ∧ · · · ∧ eji |1 ≤ j1 ≤ · · · ≤ ji ≤ n}

The map Kn−i ⊗Ki
// R given by u⊗v 7→ u∧v describes a perfect pairing which

induces an isomorphism

σi : Kn−i // HomR(Ki, R) = HomR(K(x), R)−i

which can be described as

ej1 ∧ · · · ∧ ejn−i // ±ek1 ∧ · · · ∧ eki

where {j1, · · · , jn−i} t {k1, · · · , ki} = {1, · · · , n} and the sign (±) is the sign of

permutation  1 · · · n− i n− i+ 1 · · · n

j1 · · · jn−i k1 · · · ki


Therefore the diagram

· · · // Kn−i //

��

Kn−i−1
//

��

· · ·

· · · // HomR(Ki, R) // HomR(Ki+1, R) // · · ·

commutes meaning that σ = (σi) is a chain isomorphism.

Example 4.27. Suppose R = K[x, y, z] is the polynomial ring over K where |x| =

|y| = |z| = 1 and S = K[x, y, z]/(x2 − z2, x2 − y2, xy, yz, xz). The canonical projec-

tion π : R // S makes S into a K[x, y, z] module. In this case for the semi-free

resolution of S we have

Ŝ ∼ R⊕ Σ2R⊕5 ⊕ Σ3R⊕5 ⊕ Σ5R

and one may justify

HomR(Ŝ, R) ∼ Σ−5R⊕ Σ−3R⊕5Σ−2R⊕5 ⊕R ∼ Σ−5Ŝ
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The next example is some sort of generalization for 4.27 and the proof is similar

to the proof of [22, 3.2]

Example 4.28. Suppose Θ : R // S is a map between commutative rings such

that ExtiR(S,R) = 0 where i 6= d and ExtdR(S,R) ∼= S. We may then suppose the

semi-free resolution of S has the form

0 // R // Fd−1
// Fd−2

// · · · // F0
// S // 0 (4.4.2)

Because Fjs are free and the above sequence is exact and also ExtiR(S,R) = 0 where

i 6= d the sequence

0 // HomR(F0, R) // · · · // HomR(Fd−1, R) // R (4.4.3)

is exact and therefore it is a semi-free resolution of ExtdR(S,R) ∼= S. Due to the fact

that 4.4.2 and 4.4.3 are both semi-free resolutions of S they are homotopic and in

fact HomR(Ŝ, R) ∼ ΣdŜ.

The special case of this example happens when R is a regular local ring and S is

a Gorenstein homomorphic image of R and Θ is the canonical projection [22, 3.2].

4.5 Dual of the Classifying Space of a Lie Sub-

group

Analyzing the induced map between classifying spaces of the inclusion of a compact

subgroup of a Lie group is the main subject of this section. Moreover, some results

of this section provide a class of examples for Theorem 4.19 and Definition 4.21.

During this section, all cohomology rings are over the rational field Q.

Background Let H be a closed subgroup of G where G is a compact Lie group.

One can show that the canonical projection G // G/H is a fibration with fibre

H (see [27, 4.3]). Therefore the sequence

H // G // G/H
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is a fibration. Additionally, the following diagram

H //

ι

��

H ι //

��

G

��
G //

��

EH //

��

EG

��
G/H // BH Bι // BG

in which EH and EG are total spaces of groups H and G and BH and BG are

classifying spaces of groups H and G, commutes and one can deduce that

G/H // BH Bι // BG

is a fibration (see [27, 6.3]).

Example 4.29. Suppose U(3) denotes the unitary group of 3×3 matrices and T (3)

denotes its maximal torus. Therefore we have the fibration

U(3)/T (3) // BT (3) Bι // BU(3)

in which BU(3) and BT (3) denote the related classifying spaces. It is known

from [17, 3.22] and [10] that

H∗(BT (3)) ∼= Q[t1, t2, t3]

H∗(BU(3)) ∼= Q[σ1, σ2, σ3]

and the ring morphism Bι∗ : H∗(BU(3)) // H∗(BT (3)) maps the elements of

H∗(BU(3)) as follows

σ1
� // t1 + t2 + t3

σ2
� // t1t2 + t1t3 + t2t3

σ3
� // t1t2t3.

For simplicity we denote H∗(BU(3)) and H∗(BT (3)) by R and S respectively. As

an R−module S is a free module (regarding our terminology it is a module free on

a basis of cycles). A bit of calculation shows that

S ∼=R R⊕ Σ2R⊕2 ⊕ Σ4R⊕2 ⊕ Σ6R
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and therefore

HomR(S,R) ∼= Σ−6S

where 6 = dim(U(3))− dim(T (3)) = 32 − 3.

Example 4.30. Suppose Tm and T n are m and n dimensional tori and n > m.

Then by [17, 3.13]

H∗(BT n) ∼= Q[x1, · · · , xn]

H∗(BTm) ∼= Q[x1, · · · , xm].

If ι : Tm // T n is an inclusion then the induced map of cohomology of classifying

spaces Bι∗ is the projection and therefore

H∗(BTm) ∼= Q[x1, · · · , xn]/〈xi1 , · · · , xin−m〉.

Considering the fact that {xi1 , · · · , xin−m} is a regular sequence, the projective

resolution of H∗(BTm) as H∗(BT n)−module is a Koszul complex by [11, 2.A2].

Hence

HomH∗(BTn)( ̂H∗(BTm), H∗(BT n)) ∼ Σd ̂H∗(BTm)

where ̂H∗(BTm) denotes the semi-projective resolution of H∗(BTm) and

d = |xi1|+ · · ·+ |xin−m|+ n−m = −dim(T n/Tm).

Note that |xj| = −2.

Theorem 4.31. Let G be a compact connected Lie group and H be a closed subgroup

such that G/H is an orientable manifold. Then there exists d ∈ Z such that

RHomH∗(BG)(H
∗(BH), H∗(BG)) ∼=D ΣdH∗(BH)

where ∼=D denotes the isomorphism in the derived category and coefficients are in Q.

A proof based on equivariant homology is provided in [6, 6.8] at the chain complex

level. However, as long as we know that if H∗(X) is a polynomial then H∗(X) ∼=

C∗(X) we can conclude the result. In the rest of this section, an algebraic proof for

this theorem is given while extra conditions are imposed. Before starting the main

discussion, some known results are restated here. A proof for the next theorem can

be found in [27, Theorem 8.3] and [10, Sec. 5].
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Theorem 4.32. Let G be a compact connected Lie group, H be a closed subgroup

and rankG=rankH. Then H∗(BH) is a free and finitely generated H∗(BG)−module

and

H∗(BH) ∼= H∗(BG)⊗Q H
∗(G/H).

Theorem 4.33. [29, Sec. 13 Theorem 2] If G is a connected compact Lie group

and H is a connected compact subgroup, then the Euler characteristic χ(G/H) ≥ 0.

Moreover χ(G/H) > 0 if and only if the rank of G equals the rank of H.

Lemma 4.34. Suppose R, S and T are DGAs and maps R
f // S

g // T are

maps of DGAs such that f makes S into a semi-free R−module and for some n ∈ Z,

HomR(S,R) ∼= ΣnS. In addition suppose, there exists m ∈ Z such that for the

semi-projective resolution of T as a S−module T̂ , HomS(T̂ , S) ∼ ΣmT̂ . Then for

the semi-projective resolution of T as an R−module,
ˆ̂
T , we have

HomR(
ˆ̂
T,R) ∼ Σn+m ˆ̂

T.

Proof. First of all, as S is semi-free over R then every semi-projective S−module is a

semi-projective R−module as well. Hence T̂ can be considered as the semi-projective

resolution of T as an R−module as well and therefore
ˆ̂
T ∼ T̂ . The following series

of homotopy equivalences and isomorphisms lead to the desired result.

HomR(
ˆ̂
T,R) ∼ HomR(T̂ , R)

∼= HomR(T̂ ⊗s S,R)

∼= HomS(T̂ , HomR(S,R))

∼= HomS(T̂ ,ΣnS) ∼ Σn+mT̂

Proposition 4.35. Let G be a compact connected Lie group, H be a closed subgroup

and G/H be an orientable manifold.

i. If rankG = rankH then

HomH∗(BG)(H
∗(BH), H∗(BG)) ∼= Σ−dim(G/H)H∗(BH).
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ii. If H is any torus inside G then

HomH∗(BG)( ̂H∗(BH), H∗(BG)) ∼ Σd ̂H∗(BH).

Proof. (i) By 4.32 we have

H∗(BH) ∼= H∗(BG)⊗Q H
∗(G/H)

and asH∗(BH) is a free finitely generated module its Betti table asH∗(BG)−module

is exactly like the Betti table of H∗(G/H). Since G/H is an orientable manifold its

Betti table is symmetric and therefore (i) holds.

(ii) Suppose TG is the maximal torus of G and consider the following sequence

of DGAs maps

H∗(BG) // H∗(BTG) // H∗(BH)

induced by inclusions

H // TG // G .

Since rankG = rankTG then (i), Lemma 4.34 and Example 4.30 yield the result. To

be more precise d = −dim(G/TG)− dim(TG/H).
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