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Abstract

An efficient numerical method with a general equation of state has been developed to
study multiphase and multi-component flows.

The simulation of multiphase flows, which can be found in a wide range of natural
phenomena and engineering applications, is a very challenging task. Such flows are char-
acterised by interfaces that separate the flow materials. A quest to properly resolve these
interfaces in a wide range of flow problems has generated an enormous amount of research
in recent decades.

This work focuses on compressible flows with interfaces where flow phases or components
could be governed by various equations of state. The present research also includes the
physical problems characterised by discontinuities between materials under shock waves.

The potential applications of the developed numerical tools may include: simulation
of air bubbles in water, cooling systems of nuclear reactors with water under pressure or
detonation of high energetic explosive materials. It is critical to handle such flows with the
properly chosen equation of state, which will not only account for the physical phenomena
under consideration but will also facilitate the usage of the adopted numerical techniques.

To this end a new numerical method has been proposed to enable simulation of a wide
range of multiphase problems, that may comprise gases, liquids or solids as flow constituents,
with a general equation of state. The developed numerical approach was constructed for a
fully non-equilibrium (referred as the seven-equation model in one-dimension) and partially
equilibrium (referred as the six-equation model in one-dimension) models. The utilised
mathematical models are suitable for fluid mixtures as well as for pure fluids separated by
distinct interfaces.

The studied numerical techniques enable the treatment of the governing equations which
cannot be written in a conservative form. The capabilities of the numerical algorithms also
extend from strictly to non-strictly hyperbolic problems. For the fully non-equilibrium
model each phase has its own velocity and pressure. This requires instantaneous velocity
and pressure relaxation procedures to be implemented in the numerical solution. In case of
the partially equilibrium model the velocity relaxation is not needed.

The developed methodology is described in one and two-dimensions. The specific math-
ematical model allowing numerical calculations of axisymmetrical multiphase flow is also
proposed. The model is equipped with a source term that accounts for area variation al-
lowing an efficient simulation of problems occurring in many practical applications such as
for example multiphase flows through convergent-divergent nozzles.

All numerical algorithms are programmed using C++ language in the framework of
finite volume methods. Three different approximate Riemann solvers, i.e. the HLL, HLLC
and VFRoe, are successively implemented with various equations of state written in the
general form of Mie-Grneisen equation of state. The activation of the required equation of
state does not affect the model and numerical algorithm. The MUSCL scheme is used to
achieve second order accuracy.

The effectiveness and efficiency of the developed numerical code are demonstrated using

a selection of flow problems which include the interfaces between fluids (contact disconti-

nuity) and shock waves. The verification checks are performed using exact or fine grid

solutions of various shock tube tests with the ideal gas, van der Waals, Tait, stiffened

gas, Cochran-Chan and Jones-Wilkins-Lee equations of state that govern gases, liquids and

solids. The resolution of the Richtmyer-Meshkov instabilities has demonstrated the capabil-

ities of the numerical tools in two dimensions. The validation tests are conducted using the

one-dimensional mixture Hugoniot and two-dimensional experimental data representing the

interaction of a planar shock wave with R22 and helium bubbles as well as the underwater

explosion near a free surface. Finally the conclusions from the comparison studies between

different models and numerical solvers are derived.
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Chapter 1

Introduction

1.1 Background

Fluid flows of more than one phase (solid, liquid or vapour state of matter) or

component can be characterised as multiphase flows, in which phases or components

are separated by interfaces. Such flows occur in our everyday life, for example rain,

snow, dust and pollen in air and sediment in water and so on. In addition, biomedical

flows can also be considered as multiphase flows such as blood flow, kidney stones

flow and nasal cavity flow and so on. Moreover, many engineering processes and

systems, in order to be investigated efficiently should be treated as multiphase flows,

for example oil and natural gas flows, water used to cool the nuclear reactor core,

spray cooling towers and cavitations which may take place on pump impeller or

turbine blades or marine propellers, etc.

Multiphase flows can be classified according to either phase materials or interfa-

cial structures of the phases into various types. The first classification is according

to phase materials, Brennen (2005) has divided multiphase flows into three types:

1. Gas-liquid flows such as separated flows, bubbly flows, gas-droplet flows, etc.

2. Liquid-solid flows such as slurry flows, sediment transport, fluidized beds, etc.

3. Gas-solid flows such as gas-particle flows, dust collectors, cosmic dust, etc.

The second classification is according to interfacial structures of the phases, Ishii

(1975) has divided multiphase flows into the following types:

1. Separated flows, in which the two flowing fluids are continues and separated

by an interface.

2. Dispersed flows, which occur when the main stream is a liquid or gas phase.

In the former case the particulate phase may contain finite solid particles

or bubbles. In the latter case the particulate phase may contain finite solid

particles or liquid droplets.
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3. Transitional flows, which are characterised by the presence of both dispersed

and separated flows and occur when the interfacial structure changes gradually.

To explore any of the above mentioned types of multiphase flows, this is also true

for other phenomena and designs, one may study the case of interest either ex-

perimentally, theoretically or computationally. Experimental studies have played a

significant role in validating and exploring the limitations of theoretical approxi-

mations to the governing equations and their analytical and numerical solutions.

Moreover, testing of a prototype presents a cost-effective alternative to full-scale

simulations of a real flow. However, in many occasions, where rigorous information

are required, experimental studies encounter some difficulties related to inability

to test a full-scale system or lack of measurement facilities. Theoretical studies

also provide a verification tool to computational simulations. Though, it has to be

remembered that in most practical applications an exact or analytical solution is

difficult or cannot be obtained.

On the other hand, based on the improvement in computing facilities, com-

putational studies (known as Computational Fluid Dynamics CFD) complement

experimental and theoretical fluid dynamics by offering an alternative cost-effective

way of simulating real flows. Moreover, CFD provides a wide range of flow simula-

tions for conditions unavailable experimentally. In addition, it could provide more

comprehensive information about the case study of interest and in a shorter time as

compared with a physical experiment (Fletcher, 1991).

Indeed all types of multiphase flows mentioned above are governed by basically

the same fundamental conservation flow equations (mass, momentum and energy),

including the interaction terms for exchange of mass, momentum and energy be-

tween the phases. To solve these equations more information about the nature of

the material in question is often needed in the form of an equation of state (EOS).

Usually, EOS expresses pressure in terms of density and internal energy. In addi-

tion, a volume fraction evolution equation is needed to link the phases together.

Mathematical and numerical treatments of these equations for multiphase flow are

significantly more difficult than those for single-phase flow (Ishii and Hibiki, 2006).

These difficulties arise from creation and evolution of the interfaces separating flow

components and the discontinuities that may exist in flow properties across these

interfaces.

1.2 Aims and objectives

This thesis is concerned with numerical simulations of compressible multiphase flow

problems. These problems are described by hyperbolic non-conservative flow models.

The numerical approximation of these models is realised by means of finite volume
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methods based on Godunov-type scheme. The scheme is implemented with three

different approximate Riemann solvers.

The study focuses on the seven-equation model which is a full non-equilibrium

model and its first reduced form (i.e. the six-equation model which is a partial

equilibrium model). The second reduced form of the seven-equation model (i.e. the

five-equation) is not considered owing to the difficulties mentioned in Chapter 5.

These difficulties are not present in the seven and six-equation models. Therefore,

these models are used as a platform for investigating a wide range of test problems

(i.e. which consider non-equilibrium two-phase flows as well as interfaces separating

compressible flow components) with a general equation of state EOS. These prob-

lems may include: cooling of a nuclear reactor core using water with high pressure,

interactions between flow components in supersonic combustions in scramjet en-

gines, interactions between explosion products with solid materials, impact of two

solid materials, interactions between two different gases in presence shock waves.

Moreover, studying of single and two-phase flows in convergent-divergent nozzles

can be addressed using the seven-equation model by including a source term to ac-

count for area variations. Several challenges arise in mathematical and numerical

treatment of the deforming and moving interfaces separating flow components that

coexist in the computational cell.

The task of formulation and consistent numerical implementation of an arbitrary

EOS to work with these models has also to be addressed. The numerical implemen-

tation usually requires some changes within the numerical application to deal with

different EOSs. The thesis will consider this problem to avoid the need to modify

the numerical code each time when a different EOS is used. This is in contrast to

the work, for example, of Petitpas et al. (2007) who need to make several modifi-

cations to their numerical application to account for complex EOSs. Building such

application will enable dealing with a wide range of compressible multiphase flows,

e.g. gas-gas, gas-liquid, gas-solid, explosives and detonation product interactions,

etc.

Therefore, the main aim of the present thesis is to construct a model and nu-

merical application capable of handling interfaces separating various fluids and at

the same time having the ability to work with different EOSs.

To achieve the above mentioned aims the specific objectives are identified:

1. Determination of the mathematical structure of the six and seven-equation

compressible multiphase flow models in one space dimension.

2. Numerical implementations of both models to be able to deal with the general

EOS.

3. Application of a high resolution scheme to solve the above models to obtain a

second order accuracy in both space and time.
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4. Derivation of the formulae to calculate the speed of sound for various EOSs

which are casted in the general form of Mie-Grüneisen EOS.

5. Verification of the numerical results of the six and seven-equation models in

one space dimension.

6. Comparison between solvers, EOSs and models in terms of L2 error norm,

number of time steps and CPU run time. The examination of convergence

and mesh-sensitivity of solutions of both compressible multiphase flow models

is included in this task.

7. Validation of the numerical results of the six and seven-equation models in

one space dimension using available experimental results. This requires deter-

mination of the stiffened gas EOS parameters for the chosen materials which

will be used to validate the results.

8. Verification of the numerical results of the six and seven-equation models in

two space dimensions using available exact or published results.

9. Validation of the numerical results of the six and seven-equation models in

two space dimensions using available experimental results.

1.3 Outline

The rest of this thesis is organized as follows: Chapter 2 presents an overview of

multiphase flow models and numerical methods of previous works depending on the

treatment of the interface.

In Chapter 3 some basic facts on the hyperbolic conservation laws are briefly

summarised. Hyperbolicity, weak solution and uniqueness of the solution to these

laws are discussed. The Riemann problem and characteristic fields are introduced.

Non-conservative hyperbolic systems have been defined and their weak solutions

are given. A short review of Godunov’s method and related approximate Riemann

solvers that are implemented in the method is introduced. Then the possible bound-

ary conditions that are imposed to the fictitious cells are explained.

In Chapter 4 the fully non-equilibrium model which is known as the seven-

equation model of Saurel and Abgrall (1999a) is described. Closure relations are

then discussed. Various EOSs are given and casted in the form of Mie-Grüneisen

EOS. The stiffened gas EOS parameters for chosen compressible materials are de-

termined. Then the source term that accounts for area variation is coupled to the

multiphase flow model. This is followed by the mathematical structure of this model.

The numerical method which is implemented with various Riemann solvers to solve

the seven-equation model is presented. Then numerical results are verified using

4



Chapter 1. Introduction

different EOSs. Then comparisons between solvers and EOSs are carried out in

terms of number of time steps, CPU time and the L2 error norm.

In Chapter 5 the partially equilibrium model which is known as the six-equation

model of Kapila, Menikoff and Stewart (2001) is described. The closure relations are

given. The mathematical structure of this model is determined. This is followed by

the numerical method which is implemented with various Riemann solvers to solve

the six-equation model. The numerical results are verified using different EOSs.

Then numerical results are verified using different EOSs. Further, the numerical

results of both models are validated against experimental results. Finally, compar-

isons between the results of the six and seven-equation models in terms of number

of time steps, CPU time and the L2 error norm are accomplished.

In Chapter 6 the six and seven-equation models are extended to two space dimen-

sions. The mathematical structures for both models are determined. The numerical

method used to solve both models is described. Then numerical results of both

models in two space dimensions are verified against exact or available published

data. Finally the results are validated against available experimental data.

Finally Chapter 7 is devoted to the conclusions drawn from this work and some

suggestions for future work are also outlined.
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Chapter 2

Overview of multiphase flows

models and numerical methods

2.1 Background

Compressible multiphase flows can be found when flowing fluids have different phys-

ical properties. A typical example is the behaviour of the interface separating two

gases under a shock wave. Since multiphase flows play an essential role in many in-

dustrial processes and other disciplines, their modeling and computing have become

a vital research area. Whitaker (1973) presented a derivation of the volume-averaged

form of the transport equations for incompressible multiphase flow, and its results

have been used to study many processes such as liquid-liquid extraction, gas-liquid

mass transfer and dispersion in multiphase systems. Gray (1975) improved the

previous derivation done by Whitaker (1973).

Using various averaging techniques the mathematical models of the compressible

multiphase flows have been produced from single flow models as described in Ishii

(1975); Drew (1983); Stewart and Wendroff (1984); Gray and Hassanizadeh (1989);

Drew and Passman (1998). The process of averaging in a control volume which

includes the interacting phases leads to non-conservative terms in the flow equations

and the introduction of the equation of volume fraction evolution. This process

eliminates the interfacial details related to transfer processes and needs introduction

of closure relations which are often postulated.

2.2 Models for compressible multiphase flows

Essentially, there are two classes of models based on averaging technique. The first

class is known as two-fluid models, which can be divided into three categories. The

first is the seven-equation model, which consists of flow equations (mass, momentum

and energy) for each phase, complemented by additional equation volume fraction

evolution. In this model, each phase has its own different velocity and pressure.
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The model first proposed by Baer and Nunziato (1986) to study the combustion

and the associated process of the deflagration-to-detonation transition (DDT) in

gas-permeable and reactive granular explosives. This model was modified by Saurel

and Abgrall (1999a) to study a wide range of applications, which was achieved by in-

cluding instantaneous relaxation procedures. The second is the six-equation model,

which is as the previous model; however, it is without the additional equation for

the volume fraction. The system is closed by assuming that the liquid density is

constant (incompressible), while gas density is given by EOS. This model is char-

acterised by one pressure and two velocities (Stewart and Wendroff, 1984; Toumi

and Raymond, 1995). Another different version of the six-equation model consists

of mass and energy equations for each phase and one momentum equation supple-

mented by an additional equation for the volume fraction equation. This model

is derived by Kapila, Menikoff and Stewart (2001), it is characterised by a single

velocity and two pressures. The last is the five-equation model, which consists of a

mass equation for each phase, and momentum and energy equations for both phases,

supplemented by a topological equation. This is characterised by single pressure and

single velocity; such models have been proposed by Allaire, Clerc and Kokh (2000);

Kapila, Menikoff and Stewart (2001); Murrone and Guillard (2005).

The second class is known as the mixture models, which consist of the Euler

equations for the mixture and are supplemented by an additional equation to ac-

count for the concentration changes. These concentration changes are traced either

by a mass fraction equation or specific heat ratio (γ) of the gas. These models are

considered when the relative velocity of the two phases is small. However, such mix-

ture models are inefficient when the kinematic disequilibrium becomes considerable

(Cortes, Debussche and Toumi, 1998). Models mentioned above belong to averaging

models; a brief description is given in Larreteguy (2002) about other models such

as interface tracking models, entity tracking models, and microscopic models.

2.3 Numerical methods for multiphase compress-

ible flows

Many researchers have considered interface problems and compressible multiphase

flows using several numerical methods based on the Euler equations, augmented by

one or more topological equations. Their main difficulty is the treatment of material

interfaces. Some of these methods treat the interface as a sharp discontinuous zone,

while others allow it to smear or to diffuse over a narrow band (Hu and Khoo,

2004; Perigaud and Saurel, 2005). At the interfaces, often the equation of state has

a limited range of validity, especially for solids and liquids. For example, negative

pressure results when the computed thermodynamic variables are slightly outside the

range of validity. Therefore, a careful numerical treatment of interfaces is required

7



Chapter 2. Overview of multiphase flows models and numerical methods

when studying fluids separated by interfaces (Saurel and Abgrall, 1999a).

2.3.1 Sharp Interfaces Methods (SIM)

These numerical methods eliminate the numerical diffusion at the interfaces; they

consist of five main families:

1. Lagrangian Methods (LM)

In these methods the interfaces are moving with the local flow velocity and

they are characterised by specific locations. The interface will be sharp if the

artificial viscosity is not used in the method. The mesh moves with the mate-

rial interface. The large deformation in the interface and the large distortions

in the mesh are responsible for errors in the solution. Therefore, periodically

updating the mesh is necessary which adds difficulties to these methods. Addi-

tional drawbacks are due to sliding lines that causes further complexity (Saurel

and Le Métayer, 2001). More details are given in Benson (1992).

2. Arbitrary Lagrangian-Eulerian Methods (ALEM)

The ALEM was originally formulated by Hirt, Amsden and Cook (1974) in

which the best features of Lagrangian and Eulerian methods are combined.

In Lagrangian methods the mesh moves with the local flow velocity. They

preserve good resolution for interfaces separating multiphase flows and dur-

ing large scale compressions and expansions. However, Lagrangian methods

cannot simulate multi-dimensional problems with large deformations due to

vorticity and shear. In Eulerian methods such drawback does not exist, but

the solutions are subject to be diffusive (Margolin, 1997). These methods

use the Lagrangian approach at the interfaces and Eulerian schemes with a

moving grid away from the interfaces. They are unlike Lagrangian methods,

where larger distortions are allowed; however, their usage is limited. Farhat

and Roux (1991) have developed powerful ALE methods using dynamic mesh

management which reduces mesh distortions.

3. Front Tracking Methods (FTM)

In these methods the interface is tracked as a moving boundary, in which more

than one flow solver are used with fixed mesh. They use Eulerian schemes away

from the interface and a specific solver close to the interface. The management

of several solvers has been done easily in one dimension by many researchers

(Harten and Hyman, 1983; Mao, 1993; LeVeque and Shyue, 1996; Cocchi and

Saurel, 1997). Although the methods are difficult in solving hard problems,

two-dimensional problems have been carried out by Glimm et al. (1985); Grove

(1994). Their results motivated Glimm et al. (1998) to investigate Rayleigh
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Taylor instability in three dimensions, the method gave impressive results.

The method used by Sousa et al. (2004) to simulate unsteady, incompressible,

immiscible, Newtonian and multi-fluid flows with free surfaces in three dimen-

sions. Saurel and Massoni (1998) have proposed a shock tracking method to

simulate detonation problems in one dimension with complex EOSs to govern

real gases. The method is efficient and robust but difficult to be extended to

multi-dimensions.

Terashima and Tryggvason (2009) have combined the FTM with the Ghost

Fluid Method (GFM) to study interactions of a planar shock with a helium

bubble, the Rayleigh-Taylor instability, the Richtmyer-Meshkov instability, the

breakup of a water drop in air and the collapse of an air bubble in water. The

same combined method was modified by Bo et al. (2011) who used it to sim-

ulate air bubble-shock interaction and Rayleigh instability in two dimensions.

Moreover, they simulated a turbulent liquid jet breakup in three dimensions.

4. Interface Reconstruction Methods (IRM)

These methods use the concept of a fractional Volume Of Fluid (VOF) (Hirt

and Nichols, 1981) and the reconstruction methods (Youngs, 1982). The in-

terfaces are not tracked but reconstructed with the help of phase volume frac-

tions. These methods are not conservative; however, they are efficient and

widely used in hydrocodes (Saurel and Le Métayer, 2001).

5. Level Set Methods (LSM)

These methods are simpler than front tracking, where the interface is consid-

ered as inner boundaries and the level set function is used to capture the front

movement. Using the knowledge of the interface location with extrapolation

procedures the flow variables are computed at the interface. Despite them not

being conservative; their results are efficient in interface simulations. Level

set methods have become widely used with the Ghost Fluid Method (GFM)

which was originally developed for compressible two-phase flow by Fedkiw et al.

(1999). These methods use the concept of a fractional volume of fluid method

of Hirt and Nichols (1981) and the reconstruction methods of Youngs (1982).

The interfaces are not tracked but reconstructed with the help of phase volume

fractions (Saurel and Le Métayer, 2001). Using the GFM, level set methods

have been extended to simulate interactions between materials (Hu and Khoo,

2004; Losasso, Shinar and Selle, 2006).

Nourgaliev, Dinh and Theofanous (2006) have used the level set method

with an adaptive mesh refinement technique to simulate a wide set of two-

dimensional test problems where the fluids are governed by the stiffened gas
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(SG) EOS. Adaptive solution techniques are proposed by Kadioglu and Suss-

man (2008) where an interface solver based on the coupled level set and

volume-of-fluid method is used for simulating underwater explosions and im-

plosions. In their work the water is assumed to be compressible and governed

by the Tait’s EOS and gas governed by the Jones-Wilkins-Lee (JWL) EOS. A

semi-implicit time discretisation for the Euler equations is used which removes

the constraint on the time step contrary to the explicit discretisation (see for

example, Cocchi and Saurel, 1997; Fedkiw et al., 2002).

The main advantages of these methods are that they allow an easy tracking of the

interfaces between materials and maintain sharp interface. On the other hand, they

possess some drawbacks which include complexity, expensive and they need prior

knowledge of the interfaces locations which makes them unable to simulate problems

with dynamical creation of interfaces (Saurel, Petitpas and Berry, 2009).

2.3.2 Diffuse Interface Methods (DIM)

These methods allow numerical diffusion at the interfaces, which is necessary for

interface capturing and is considered as a drawback; however, its effect can be re-

duced by grid refinement and using high order methods. They use a single numerical

scheme for all computational cells with fixed mesh to study interface problems (Peri-

gaud and Saurel, 2005). Moreover, they have the ability to simulate the dynamical

creation and the evolution of interfaces. These methods can also deal with inflow

and outflow boundary conditions.

The simplicity of the Diffuse Interface Methods (DIM) to deal with coalescence or

breakup among different phases or fluids has led many researchers to consider this

approach. In early developments, to simulate material interfaces in compressible

multi-fluids the mixture model has been used. This model consists of the Euler

equations for a mixture and is complemented with an additional equation for the

variable φ. Various choices for this variable have been suggested. It was used to

represent the mass fraction (see for example, Abgrall, 1988), the specific heat ratio

of the fluid γ (see for example, Roe, 1982) and the level set function (see for example,

Mulder, Osher and Sethian, 1992).

However, they suffered from unphysical oscillations in the mass fraction and

pressure at material interfaces. These oscillations are not present in the solution of

the single flow model. In Larrouturou (1991) the mass fraction model was used in

which a numerical flux modification was introduced, it guarantees the positivity of

mass fraction but produces pressure oscillations. In Karni (1994) the gamma model

based on a non-conservative scheme was used to avoid pressure oscillations. This

guarantees the mass fraction positivity but it cannot handle strong shock waves.
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The scheme was extended using a second-order non-conservative scheme with

a sophisticated adaptive mesh refinement technique (Quirk and Karni, 1996). By

which they have investigated the interactions of weak planar shock waves in air

with different cylindrical gas bubbles. The investigation was carried out in two

space dimensions and the results were validated against the experimental results

of Haas and Sturtevant (1987). Despite the results were very good, the method is

limited to ideal gases and weak shock flows only.

1. Methods based on Euler equations

Using a different approach (Karni, 1996) presented a hybrid scheme to over-

come oscillations and inaccuracies near material interfaces separating multi-

components. This was the first efficient method based on the mixture Euler

equations augmented by the pressure evolution equation. The method was

established using a non-conservative formulation of the equations and a level

set function to trace the interface location. The pressure at the interface is

calculated using the primitive variable formulation (non-conservative) of the

Euler equations and away from the interface is calculated using the ideal gas

EOS. The method has proven efficiency for capturing strong shock waves and

simulating interfaces separating ideal gases. But the simulations of real gases

and reacting flows using this method were unclear. The major drawbacks of

this method are due to conservation errors, which produce inaccurate inter-

nal energy and temperature at the interface. Moreover, they are not easy

to be applied with various equations of state (Saurel and Le Métayer, 2001).

Furthermore, this method uses the mixture EOS which relies on unphysical

assumptions such as density or temperature equilibrium between flow compo-

nents.

In Abgrall (1996) a quasi-conservative method based on the mass fraction

model, i.e. Euler equations for mixture augmented by the mass fraction equa-

tion, was used to prevent spurious oscillations in pressure through the contact

discontinuities. The conservative equations are solved using the extended Roe

scheme for multi-components, to update γ an additional transport equation

for 1/(γ − 1) is used. The method has the ability to handle strong shock

waves and can maintain mass fraction positivity. This was achieved by the

basic proposed idea that the pressure and velocity of a two-phase flow must

remain constant during its time evolution. The method was used to simulate

interfaces between two flowing non-reacting gases with different specific heat

ratios governed by the ideal gas EOS in one dimension.

Shyue (1998) has derived a γ-based model to extend the work of Abgrall

(1996). This enables considering problems with materials, i.e. gases and liq-

uids, that obey the stiffened gas EOS and to simulate problems in multiple
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space dimensions. The algorithm is based on a mixture type model which is

combined from the Euler equations for mixture and additional two equations

for the material-dependent variables for the stiffened gas EOS. The quasi-

conservative formulation of the Euler equations presented by Abgrall (1996)

was used to ensure an accurate approximation of the energy equation near con-

tact discontinuities. However, the number of equations of this model increases

depending on the EOS parameters which complicates the solution method.

Shyue (1999) extended his work (Shyue, 1998) to include real gases using the

van der Waals EOS. He proposed the general van der Waals EOS which can

be used to consider problems with materials that obey the stiffened gas and

van der Waals EOSs. The algorithm is also based on a mixture type model

which is combined from the Euler equations for mixture and additional five

equations for the material-dependent quantities for the van der Waals EOS.

The method used to simulate compressible flows with two different phases, i.e.

liquid and gas. The results were verified in one and two space dimensions.

However, the number of equations of the model is increased more than when

using the stiffened gas EOS which adds further complications to the solution

method.

Based on the idea of Abgrall (1996), a simple Godunov-type scheme to solve

a set of conservative and non-conservative equations was presented in Saurel

and Abgrall (1999b). A second order accuracy was achieved by the MUSCL-

Hancock method (Quirk, 1994). In their study the flow governing equations

are the Euler equations (conservative) and additional two transport equations

(non-conservative) for the stiffened gas EOS parameters γ and π. In their

work the Rusanov numerical flux is used and extensions to other schemes are

presented for the HLL, Roe and exact Riemann solvers. The method showed

its ability to simulate problems with breakup and coalescence. The method is

also able to solve problems with very high density ratios and pressures which

generate strong shock waves. Many examples of compressible multi-fluid flows

have been examined in one, two and three space dimensions. However, the

method is restricted to the stiffened gas EOS.

A further extension to a more general case was presented in Shyue (2001),

it enables examinations of two-phase flows of real materials modelled by the

Mie-Grüneisen EOS. The algorithm is also based on a mixture type model

which is combined from the Euler equations for mixture and additional four

equations. These additional equations are related to the material-dependent

quantities for the Mie-Grüneisen EOS. The Roe Riemann solver was used to

solve one and two-dimensional problems and the obtained results demonstrate

the efficiency of the algorithm.
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A good review of mixture model versions is presented in Abgrall and Karni

(2001). They described the numerical difficulties that are encountered in dis-

cretisition of such models and different approaches to overcome those difficul-

ties. A simple algorithm was proposed to circumvent those difficulties at the

material interface, by considering that the mixture evolves as a single-phase.

Two different flux functions are computed across the interface to update the

different fluids on both sides.

2. Methods based on multiphase flows equations

This method was proposed by Saurel and Abgrall (1999a), based on the seven-

equation model for compressible multiphase flow derived by Baer and Nunziato

(1986). The method uses a single algorithm in solving the system at each grid.

Moreover, it can handle strong shock waves and it has the ability to deal with

the general equations of state (EOS) to simulate real materials interactions

test problems. In addition, it gives correct temperatures and internal energies

at the interface.

Gonthier and Powers (2000) presented a conservative upwind numerical method

based on Godunov’s methodology and uses a new approximate solution for the

two-phase Riemann problem for arbitrary EOSs. The non-conservative terms

have been neglected for two reasons, the system still satisfies the second law of

thermodynamics and these terms do not play an important role in the process

of deflagration-to-detonation transition (DDT) which was the case study. The

method can capture strong shocks with minimal smearing or spurious oscil-

lations. This has been demonstrated by comparing its results with the exact

solution of some known tests such as two-phase shock tube and two-phase

detonation wave in energetic material results from piston impact.

Allaire, Clerc and Kokh (2000) proposed a compressible two-phase flow model

based on assumptions that there is no mass and heat transfer across the inter-

face between flow components, also they assumed that both phases have the

same velocity and pressure. Moreover, all diffusive terms and source terms are

neglected. The obtained model consists of two mass equations (one equation

for each phase), one momentum equation (for mixture), one energy equation

(for mixture) and the model is completed by a volume fraction equation. The

model is hyperbolic but non-conservative due to the last equation. An isobaric

closure is used to close the model with arbitrary EOS.

Saurel and Le Métayer (2001) showed the ability of the seven-equation mul-

tiphase model of Saurel and Abgrall (1999a) to solve different applications

(interface problems, physics of detonation, shock waves in multiphase, cavi-

tating flows etc.) using the same formulation without the need for mixture
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EOS (which relies on unphysical postulations such as equality of temperature

and density between phases) at the interfaces. The discretisation method ex-

tended to second order in multi-dimensional problems under the assumption

of uniformity of pressure and velocity proposed by Abgrall (1996).

Kapila, Menikoff and Stewart (2001) derived two reduced models from the

seven-equation (BN) model, one with a single velocity (six-equation) and the

other with both a single velocity and a single pressure (five-equation). Both

models are hyperbolic and non-conservative; however, they provided ways to

fully specify the jump conditions across shock waves.

Allaire, Clerc and Kokh (2002) have proposed a diffuse interface method to

solve the model of Allaire, Clerc and Kokh (2000) with a general EOS. This

is done to avoid the complexity of the proposed approach of Shyue (1998);

Saurel and Abgrall (1999b). The method is based on a Godunov-type scheme

with the Roe-type Riemann solver. It is used for simulation of interfaces

separating compressible flow components. In this study, they investigated

the isobaric and isothermal closures to close the model. The investigation

showed that to maintain the stability of the interfaces the isobaric closure is

preferable. Numerical results have been presented in one-dimension where the

flow components are governed by the Mie-Grüneisen EOS. A simulation of the

bubble-shock interaction test is conducted in two space dimensions where the

air is governed by the van der Waals EOS and the water is governed by the

stiffened EOS.

Andrianov, Saurel and Warnecke (2003) developed a numerical Godunov-type

scheme based on a characteristic decomposition for the multiphase model pro-

posed by Baer and Nunziato (1986). The model is non-conservative and non-

strictly hyperbolic. The discretisations of the non-conservative terms in one-

dimension have been presented at the volume fraction discontinuity in the

absence of pressure and velocity jumps. They showed that unphysical solu-

tions may result due to neglecting non-conservative terms when simulating

interface problems between pure materials. Moreover, they showed that the

existence of the non-conservative terms is essential to preserve the conditions

of velocity and pressure uniformity. A good agreement was obtained by the

comparison of results with the exact solutions.

Niu (2005) proposed the HLLC Riemann solver based on the two-phase mix-

ture model. The Tammanns (stiffened) EOS was used in the study. An air-

liquid shock tube test has been done under very high density ratios up to

10000. The obtained results show the ability of the solver to capture the in-

terface under strong shocks. Moreover, to assess the solver, a two-dimensional
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square bubble problem was examined.

Perigaud and Saurel (2005) developed a quasi-conservative formulation based

on the five equation model of Kapila, Menikoff and Stewart (2001) to study

the effect of surface tension and viscosity on compressible multiphase flows.

Various test problems involving break-up and coalescence were considered to

ensure that the method was able to deal with dynamic appearance and disap-

pearance of the interfaces.

Murrone and Guillard (2005) proposed an Eulerian diffuse interface model

which could be used for simulation of compressible multi-component and two-

phase flow problems. The model was derived from the seven-equation model

of Baer and Nunziato (1986) using an asymptotic limit of zero pressure and

velocity relaxation times. The model is similar to the five equation model of

Allaire, Clerc and Kokh (2000); Kapila, Menikoff and Stewart (2001). They

studied the mathematical structure of this reduced model and proposed two

different approximation schemes for its numerical solution. They examined the

model in one and two space dimensional problems with fluids that are governed

by the stiffened EOS and the results show that the numerical methods were

efficient and robust.

Lallemand, Chinnayya and Le Métayer (2005) have considered the seven-

equation model of Saurel and Abgrall (1999a) to simulate compressible mul-

tiphase flows. They presented new pressure relaxation procedures for such

models which are hyperbolic and compared them with existing ones on the

bases of accuracy and performance. An exact procedure was recommended

to be used for fluids governed by the stiffened EOS, and other approximate

procedures were suggested to be used for fluids governed by the general EOS.

These approximate procedures seem to be more suitable for cases with large

pressure differences between two phases. The comparison was done using some

known test problems.

Schwendeman, Wahle and Kapila (2006) considered the Riemann problem for

the Baer and Nunziato (1986) model. The study focused on the effect of

non-conservative terms and neglected mass, momentum and energy exchange

terms. The solution of the Riemann problem that represents the wave struc-

ture and the intermediate states has been obtained by an iterative method.

The accuracy of the method was extended to second order using the slope

limiter method and the results was compared with different methods available

in the literature.

Saurel et al. (2007) proposed a new scheme for the Euler equations to cal-

culate the thermodynamic variables during the computations. This is done
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by replacing the conventional Godunov method with a relaxation-projection

method. Mechanical relaxation processes were established between different

sub-volumes that exist in the computational cell. A new numerical EOS was

derived and used to prevent pressure oscillations which occur at the interface

for fluids governed by real gas EOS. The method extended to use different

EOSs to study interfaces separating liquid and gas. The results show that

the method is accurate, free of oscillations and conservative. This method

has been extended in Petitpas et al. (2007) to the non-conservative hyperbolic

multiphase flow model of Kapila, Menikoff and Stewart (2001). They have

proposed two Lagrangian schemes based on internal energy equations and on

artificial heat exchanges to circumvent the difficulty of conventional Godunov

schemes to converge to the exact solution in presence of strong shocks. How-

ever, they need to make several modifications in their algorithm in order to

deal with complex EOSs such as the Mie-Grüneisen EOS.

Ghangir et al. (2008) investigated the performance of the HLL and HLLC

using the seven-equation model of Saurel and Abgrall (1999a) and the five-

equation model of Allaire, Clerc and Kokh (2000) models. In this study they

examined only the air-water shock tube test problem in one space dimension.

Both flow constituents were governed by the stiffened EOS. According to their

investigation they pointed out that the seven-equation model produces better

results than the five-equation model. They also concluded that the HLLC

solver generates better results than the HLL solver. The seven-equation model

again with the stiffened EOS was extended to study two-dimensional problems

in Ghangir and Nowakowski (2012). The discretisation of the non-conservative

terms in two-dimension was derived for the HLLC scheme using the idea of

Abgrall (1996).

Zheng, Shu and Chew (2008) used the five-equation model of Allaire, Clerc and

Kokh (2000) with the stiffened gas EOSs to study different compressible two-

fluid test problems. In this study an unstructured quadrilateral-mesh based

solution adaptive method has been proposed based on the diffuse interface

method presented in Shyue (1998); Abgrall and Karni (2001). The HLLC

approximate Riemann solver was implemented with second order accuracy

which was achieved using the MUSCL scheme. The results were presented

for different test problems in one and two space dimensions. No oscillations

were observed across the interface in the results of the velocity and pressure

distributions.

Saurel, Petitpas and Berry (2009) examined the reduced five-equation model

of Kapila, Menikoff and Stewart (2001). The ability of this model for numer-

ical resolution of the interfaces and wave propagation in compressible fluids
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and mixtures respectively was considered in Murrone and Guillard (2005);

Abgrall and Perrier (2006); Petitpas et al. (2007). However, there are some

drawbacks, such as inaccuracy in waves transmission across interfaces, diffi-

culty of maintaining the positivity of the volume fraction in the existence of

shocks or strong expansion waves and computations of shock using this non-

conservative model. To overcome these drawbacks, they used the six-equation

model of Kapila, Menikoff and Stewart (2001) which was the first time this

model was used. In this study they validated the model against the experi-

mental results of a planar shock interaction with a helium bubble in air which

was conducted by Layes and Le Métayer (2007). The numerical solution was

achieved using the same strategy given in Saurel and Abgrall (1999a).

Zein, Hantke and Warnecke (2010) modified the seven-equation model of Saurel

and Abgrall (1999a) to include the mass and heat transfer. New terms for ther-

mal relaxation were modeled and the stiffened gas EOS was used to close the

model. Mechanical and thermal relaxation processes were performed instan-

taneously to achieve mechanical and thermal equilibrium. The results were

similar to that obtained by Saurel, Petitpas and Berry (2009) using the five-

equation model. The same work has been carried out using the six-equation

model of Kapila, Menikoff and Stewart (2001) and its results were compared

with the results of the seven-equation model in one dimension and it was con-

cluded that they gave almost the same results, but the six-equation model is

less expensive.

Banks (2010) investigated the poor behaviour of a classical conservative scheme

when applied to a single-phase flow governed by a nonlinear EOS. In such cases,

unphysical oscillations arise at the contact discontinuities. Banks included

a non-conservative energy correction source term to the quasi-conservative

scheme of Banks et al. (2007) and used a switching mechanism to activate the

source term whenever the flow field does not have an acoustic characteristic.

This modification was used to overcome the unphysical oscillations in a single-

phase flow governed by the Jones-Wilkins-Lee (JWL) EOS.

Zheng et al. (2011) extended the study conducted in Zheng, Shu and Chew

(2008) to include the general EOS. Various types of EOS were written in a

unified form where the so called to-be-determined functions were given for

each EOS. In this study, different compressible two-fluid test problems where

conducted in one and two space dimensions to examine the performance of the

solver. Also no oscillations were observed across the interface in the results of

both velocity and pressure.

Dumbser and Toro (2011) proposed a simple extension of Osher and Solomon
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(1982) approximate Riemann solver for hyperbolic systems in a non-conservative

form. The numerical viscosity is defined in terms of a simple path-integral.

The proposed Osher-type scheme is applied to the non-conservative shallow

water equations using the first order version and to the non-conservative Baer-

Nunziato model of compressible multi-phase flow using the higher-order multi-

dimensional version.

Lee et al. (2013) developed an adaptive Osher-type scheme in a primitive-

conservative framework for the Euler equations. This scheme was proposed

to overcome the numerical difficulties which arose at the contact discontinu-

ities when complex EOSs, usually written in the form of the Mie-Grüneisen

EOS, are used. Where spurious solutions are observed when simulating single-

phase as well as multiphase flows using conservative schemes with the Euler

equations. Using the MUSCL-Hancock method the scheme is extended to

obtain the second order accuracy. The results are presented in one and two-

dimensional space to demonstrate the verification of the developed scheme.
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Chapter 3

Mathematical and numerical

description of the hyperbolic

conservation laws

In this chapter, some basic facts on the hyperbolic conservation laws are briefly

summarised. Hyperbolicity, weak solution and uniqueness of the solution to these

laws are discussed. The Riemann problem and characteristic fields are introduced.

Non-conservative hyperbolic systems have been defined and their weak solutions

are given. A short review of Godunov’s method and related approximate Riemann

solvers that are implemented in the method is given.

3.1 Some mathematical aspects for the hyperbolic

conservation laws

Conservation laws are usually described by a time-dependent system of partial dif-

ferential equations of mass, momentum and energy written in a divergence form.

Wave propagation problems experienced in many areas of physics and engineering

are described mathematically by these laws. To solve these laws numerically us-

ing conventional methods for solving hyperbolic systems, one has to determine the

hyperbolicity of the system being solved.

3.1.1 Hyperbolicity of the conservation laws

Consider the following conservation laws which may be written in one space dimen-

sion as follows:

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0, (3.1)

where q : R × R → Rm is an m-dimensional vector of conserved quantities of the
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state variables qi, i.e.,
∫∞
−∞ qi(x, t)dx should remain constant with respect to time t.

The spatial distribution of the state variables qi changes as time evolves. Knowing

the value of the state variable qi(x, t) of the ith component allows to determine the

rate of the flux function fi(q(x, t)) at a given point and time.

The equation (3.1) may be written in a compact form as:

qt + f(q)x = 0. (3.2)

This equation with the following initial conditions constitutes an initial value prob-

lem known as the Cauchy problem:

q(x, 0) = q0(x). (3.3)

The system (3.2) can be written in a quasi-linear form as follows:

qt + A(q)qx = 0, (3.4)

where A(q) = f ′(q) is the m × m Jacobian matrix of the flux function f(q). The

system (3.2) is said to be a non-strictly hyperbolic system if the Jacobian matrix

A(q) has m real eigenvalues are not distinct:

λ1(q) ≤ λ2(q) ≤ · · · ≤ λm(q),

and is said to be strictly hyperbolic if the eigenvalues are distinct:

λ1(q) < λ2(q) < · · · < λm(q),

with a corresponding set of m linearly independent eigenvectors (LeVeque, 1992,

2004; Toro, 2009):

K1(q),K2(q), · · · ,Km(q).

3.1.2 Weak solution

The solution to the Cauchy problem (3.2) may become discontinuous, i.e. containing

shocks or contact discontinuity, after some finite time interval even with smooth

initial data. Consequently, the differential form equation (3.2) may have a not

differentiable solution which poses a mathematical difficulty, this leads to define a

weak solution to this form by the appeal to the integral form. Consider the integral

form of (3.2) as: ∫ ∞
0

∫ ∞
−∞

[qt + f(q)x]dx dt = 0. (3.5)
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Multiplying (3.5) by any smooth function φ(x, t) that vanishes at infinity and inte-

grating one obtains:∫ ∞
0

∫ ∞
−∞

[qφt + f(q)φx]dx dt+

∫ ∞
−∞

q(x, 0) φ(x, 0)dx = 0. (3.6)

The advantage of (3.6) is that the derivatives are on φ and not on q and f(q). Hence,

the equation (3.6) continues to hold even q is discontinuous. Thus, the function

q(x, t) is called a weak solution of the Cauchy problem (3.2) if (3.6) continues to

hold for all test functions φ ∈ C1
0(R × [0,∞))m, where C1

0(R × [0,∞))m is the

space of C1 that are continuously differentiable and have compact support which

is identically zero outside of some bounded region of the x-t plane (Smoller, 1983;

LeVeque, 1992, 2004).

Another mathematical difficulty is encountered in solving the equation (3.2).

This is because the weak solution q to equation (3.2) can have a discontinuity. It is

known that not every discontinuity is admissible. Therefore, the following Rankine-

Hugoniot conditions should be satisfied across the discontinuity:

Si(qR − qL) = f(qR)− f(qL), (3.7)

where S is the propagation speed of the discontinuity, i.e. shock wave or contact

discontinuity (see for example, Smoller, 1983).

In addition to that difficulties, the solution to the equation (3.2) and (3.4) can

have more than one weak solution even with the same initial data. Only one of

these solutions would be physically relevant. LeVeque (1992) provided an example

of a non-uniqueness of the weak solution. Therefore, more conditions are required

to identify the correct solution among all weak solutions. These conditions are

called entropy conditions, which state that the entropy of a system increases across

a physically admissible shock:

λ(qL) > S > λ(qR),

where λ is an eigenvalue, qL and qR are the states to the left and right of the

shock, respectively. More details about admissibility conditions may be found in

Lax (1972); Dafermos (1973); Liu (1976); Smoller (1983); LeVeque (1992).

3.1.3 Non-conservative hyperbolic systems

Non-conservative hyperbolic systems have great role in various areas, especially

in studying of compressible multi-phase and multi-component flows which may be

found in several applications. Non-conservative terms usually appear in a system of

equations due to modelling simplification and assumption or a closure hypothesis.

The system (3.4) is said to be a conservative system if A(q) is the Jacobian of the
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flux function f(q) and can be written (3.4) in the divergence form. But it is called

a non-conservative system if it does not have such flux function. Then it is not

possible to write the system in the divergence form. Unfortunately, this is the case

for most two-phase flow models studied in the literature. Consequently, the above

introduced definitions of the weak solution and the Rankine-Hugoniot conditions

for the conservation laws cannot be applied to the non-conservative systems. This

is one of the major difficulties encountered in dealing with the non-conservative

systems. Many authors have considered research on the theory of non-conservative

systems (see for example, LeFloch, 1989; Dal Maso, LeFloch and Murat, 1995).

Later developments in numerical schemes for non-conservative systems were done

by implementing the Dal Maso, LeFloch and Murat (DLM) theory introduced for

such systems in Dal Maso, LeFloch and Murat (1995).

A proposed notion of the non-conservative product A(q)qx is used to define a

weak solution to a general non-conservative system which is introduced in Dal Maso,

LeFloch and Murat (1995). Also they considered the non-conservative product

across a discontinuity to be defined along paths connecting the left and right states.

This definition is also applied to the two-phase flow models (Chalmers and Lorin,

2010).

Consider a family of Lipschitz continuous paths, ϕ : [0, 1]×Rm×Rm → Rm that

satisfy the following properties:

1. For any qL, qR ∈ Rm,

ϕ(0; qL, qR) = qL, ϕ(1; qL, qR) = qR.

2. For any q ∈ Rm and every τ ∈ [0, 1],

ϕ(τ ; q, q) = q.

3. For any qL, qR ∈ Rm, for some k > 0 and every τ ∈ [0, 1],∣∣∣∣∂ϕ∂τ (τ ; qL, qR)

∣∣∣∣ ≤ k|qL − qR|.

4. For any qL, qR, VL, VR ∈ ξ, τ ∈ [0, 1] and for k > 0 such that∣∣∣∣∂ϕ∂τ (τ ; qL, qR)− ∂ϕ
∂τ

(τ ;VL, VR)

∣∣∣∣ ≤ k|(qL − VL)− (qR − VR)|,

for every bounded set ξ ⊂ Rm.

Let the non-conservative product A(q)qx be defined as a bounded Borel measure

[A(q)qx]ϕ, when q is smooth on a Borel set B. This measure is defined by:

[A(q)qx]ϕ(B) =

∫
B

A(q)qxdx,

and when q is piecewise differentiable and contains a jump discontinuity between

the left and right states qL and qR, respectively. This measure is defined by:
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[A(q)qx]ϕ(x0, t0) =

∫ 1

0

A(ϕ(τ ; qL, qR))
∂ϕ

∂τ
(τ ; qL, qR)dτ.

Employing the above properties and definitions the generalized Rankine-Hugoniot

conditions across a discontinuity, which depends on the chosen path ϕ, is defined

as:

S(qL − qR) =

∫ 1

0

A(ϕ(τ ; qL, qR))
∂ϕ

∂τ
(τ ; qL, qR)dτ, (3.8)

where S is the speed of the discontinuity. The above relation (3.8) reduces to the

classical Rankine-Hugoniot conditions (3.7) when the matrix A(q) is a Jacobian

matrix of the flux function f(q), i.e. conservative system. The function q is defined

as a weak solution for the non-conservative systems (see for example, Chalmers and

Lorin, 2010) if and only if:∫ ∞
0

∫ ∞
−∞

[qφt + [A(q)qx]ϕφ]dx dt = 0,

for all test functions φ ∈ C1
0(R× [0,∞)).

3.1.4 The Riemann problem and characteristic fields

Consider the conservation law:

qt + A(q)qx = 0, (3.9)

together with the left qL and right qR piecewise constant initial data having a single

jump discontinuity at some point, say x = 0:

q(x, 0) = q0(x) =

{
qL if x ≤ 0,

qR if x > 0,
(3.10)

 

Rq  

Lq  

oxx   
x 

)(0 xq  

Figure 3.1: Initial data for the Riemann problem separated by a discontinuity

is known as the Riemann problem, as shown schematically in Figure 3.1. It is
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known as a shock tube problem for the Euler equations. The solution of the Riemann

problem plays a major role in developing numerical methods for solving hyperbolic

problems, in particular the Godunov-type schemes. The solution to the Riemann

problem for hyperbolic systems is a self-similar solution that is a function of x/t

alone. For a system with m ×m Jacobian matrix A(q) the solution consists of m

waves emanate from the origin as shown in Figure 3.2.

 

Shock  Rarefaction 

wave 

Contact 

q*R q*L 

qR q L 

t 

x = x0 
x 

Figure 3.2: Solution of the Riemann problem for the Euler equations

The figure shows the solution to the Riemann problem for Euler equations in the

x-t plane. It consists of three different waves corresponding to the eigenvalues or

characteristic speeds λi(q), i.e., shock, contact and rarefaction waves. These waves

divide the fields of characteristic into m+1 constant states, the i -th eigenvalue λi(q)

determines the corresponding characteristic field, the λi-field. There are two types

of characteristic fields as follows:

1. Genuinely nonlinear:

An i -th characteristic field is called a genuinely nonlinear field, if the λi-

characteristic field satisfies:

∇λi(q) ·Ki(q) 6= 0, for all q ∈ Rm, (3.11)

where

∇λi(q) =

(
∂

∂q1
λi,

∂

∂q2
λi, · · · ,

∂

∂qm
λi

)T
,

is the gradient of λi(q). In this characteristic field the left and right states are

connected by either a single jump discontinuity, i.e., a shock wave in which all

flow variables are discontinuous, or a smooth transition, i.e., a rarefaction wave

in which all flow variables are continuous. These waves are formed depending

on other conditions that must be fulfilled for their formation (for more details

see for example Toro, 2009).
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2. Linearly degenerate:

An i -th characteristic field is called a Linearly degenerate field, if the λi-

characteristic field satisfies:

∇λi(q) ·Ki(q) = 0, for all q ∈ Rm. (3.12)

In this characteristic field the left and right states are connected by a contact

discontinuity (density discontinuous, pressure and velocity are constant) that

is formed depending on other conditions that must be fulfilled for its formation

(for more details see for example Toro, 2009).

3.2 Numerical approach to the hyperbolic sys-

tems

In order to solve hyperbolic systems of conservation laws, many numerical efforts

have been made. Among them the Godunov method which is proposed in Godunov

(1959). The method is basically developed to solve numerically the non-linear Euler

equations for compressible flows by utilizing the solution of local Riemann problems

on finite volumes. By which the Godunov method gives better results for discontin-

uous solutions than classical finite difference methods.

3.2.1 Godunov method

Consider the following hyperbolic systems of conservation laws:

qt + f(q)x = 0, (3.13)

with the initial data:

q(x, 0) = q0(x) =

{
qni if x ≤ xi+1/2,

qni+1 if x > xi+1/2.
(3.14)

This is a local Riemann problem at intercell boundary xi+1/2 with the given initial

data at a given time level n. The solution of the global problem is found at a later

time level n + 1 by solving two local Riemann problems for each cell i. Take an

integral average of the combined solutions of these two local problems in this cell

and assign the value to un+1. Assuming that the computational domain is discretised

in space and time on the x-t plane using a regular mesh size of ∆x and time step

of ∆t. Consider a numerical solution Qn
i ∈ Rm that is related to the point (xi, t

n)

where:

xi = i∆x, i ∈ Z,
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tn = n∆t, n ∈ N0.

The Godunov method assumes a piecewise constant data q̃(xi, t
n) to be defined by

the approximation Qn
i as follows:

Qn
i =

1

∆x

∫ xi+1/2

xi−1/2

q̃(x, tn)dx, (3.15)

which produces the required piecewise constant distribution on the grid cell i at

time tn:

Qn
i = q̃(x, tn), xi−1/2 ≤ x < xi+1/2, (3.16)

where xi±1/2 = (i±1/2)∆x. Consider the above initial data (3.16) with the following

conservation law:

q̃t + f(q̃)x = 0, (3.17)

assuming that q̃(x, t) is an exact solution to (3.17). The integration over the rect-

angle [xi−1/2, xi+1/2]× [tn, tn+1] gives:

∫ xi+1/2

xi−1/2

q̃(x, tn+1)dx =

∫ xi+1/2

xi−1/2

q̃(x, tn)dx

+

∫ tn+1

tn
f(q̃(xi−1/2, t)dt−

∫ tn+1

tn
f(q̃(xi+1/2, t)dt. (3.18)

Dividing by ∆x and setting the approximate solution Qn+1
i at time tn+1:

Qn+1
i =

1

∆x

∫ xi+1/2

xi−1/2

q̃(x, tn+1)dx,

the left intercell numerical flux function is:

F (Qn
i−1, Q

n
i ) =

1

∆t

∫ tn+1

tn
f(q̃(xi−1/2, t))dt,

and the right intercell numerical flux function is:

F (Qn
i , Q

n
i+1) =

1

∆t

∫ tn+1

tn
f(q̃(xi+1/2, t))dt.

Then the following scheme is obtained:

Qn+1
i = Qn

i −
∆t

∆x
[F (Qn

i , Q
n
i+1)− F (Qn

i−1, Q
n
i )]. (3.19)

The right intercell numerical flux F (Qn
i , Q

n
i+1) is computed at the cell boundary

xi+1/2 by solving the first Riemann problem defined by (3.17) with the following

initial data:
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q̃(x, tn) =

{
Qn
i if x ≤ xi+1/2,

Qn
i+1 if x > xi+1/2.

(3.20)

It is clear that the exact solution of the Riemann problem at this boundary depends

only on the data Qn
i and Qn

i+1. If we refer to this value by q∗(Qn
i , Q

n
i+1), then the

right flux may be written as:

F (Qn
i , Q

n
i+1) = f(q∗(Qn

i , Q
n
i+1)).

Similarly for the left intercell numerical flux F (Qn
i−1, Q

n
i ) is computed at the cell

boundary xi−1/2 by solving the second Riemann problem defined by (3.17) with the

following initial data:

q̃(x, tn) =

{
Qn
i−1 if x ≤ xi−1/2,

Qn
i if x > xi−1/2.

(3.21)

Then the Godunov scheme may be written in a conservative form as:

Qn+1
i = Qn

i −
∆t

∆x
[f(q∗(Qn

i , Q
n
i+1))− f(q∗(Qn

i−1, Q
n
i ))]. (3.22)

The solution of the Riemann problem at each cell interface i ± 1/2 is self-similar.

In order to insure that the solution preserves the self-similar character, the solution

of the first Riemann problem must not be influenced by the solution of the second

Riemann problem by satisfying the following condition:∣∣∣∣∆t∆x
λp(Q

n
i )

∣∣∣∣ ≤ 1, (3.23)

where λp(Q
n
i ) = max(λ1(Q

n
i ), · · · , λm(Qn

i )) are the eigenvalues of the Jacobian ma-

trix of the system (3.17). This condition (3.23) is very important to insure stability

of the method and called the Courant number or CFL number.

The original Godunov scheme (3.22) requires only determining the exact solution

f(q∗(Qn
L, Q

n
R)) to the Riemann problem at cell boundary based on Riemann data

QL and QR. To find out where q∗ lies in state space, the full wave structure and

wave speeds must be determined. Computing the exact solution of the Riemann

problem is often quite expensive, even though very little information from solving

the Riemann problem are used in defining the flux. This has led researchers to

develop a wide variety of approximate Riemann solvers that can be employed more

cheaply than the exact Riemann solver and yet the obtained results in many cases

are equally good when implemented in the Godunov-type or high resolution methods

(LeVeque, 2004; Toro, 2009). In this work, the HLL, HLLC and VFRoe approximate

Riemann solvers have been extended to solve the seven and six equation two-phase

flow models.
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3.2.2 The HLL approximate Riemann solver

A simple approximate Riemann solver proposed by Harten Lax and van Leer (HLL).

This solver which is presented in Harten, Lax and van Leer (1983) is based on a

minimum S− and maximum S+ wave speeds arising in the Riemann solution. The

solver uses a single intermediate state (∗) enclosed between these two waves. Hence

these waves will divide the characteristic fields into three different states as follows:

Qi±1/2 =


QL if 0 ≤ S−i±1/2,

Qhll if S−i±1/2 ≤ 0 ≤ S+
i±1/2,

QR if 0 ≥ S+
i±1/2.

, (3.24)

where:

Qhll =
S+
i±1/2QR − S−i±1/2QL + FL − FR

S+
i±1/2 − S

−
i±1/2

, (3.25)

and the corresponding HLL fluxes along the cell boundaries are given by:

F hll
i±1/2 =


FL if 0 ≤ S−i±1/2,

F hll if S−i±1/2 ≤ 0 ≤ S+
i±1/2,

FR if 0 ≥ S+
i±1/2.

, (3.26)

where:

F hll =
S+
i±1/2FL − S

−
i±1/2FR + S−i±1/2S

+
i±1/2(QR −QL)

S+
i±1/2 − S

−
i±1/2

. (3.27)

The flux of the intermediate state (3.27) is obtained from combining results of ap-

plying Rankine-Hugoniot conditions across the left S−i±1/2 and right S+
i±1/2 waves,

respectively. One can note that, see Figure 3.2 which shows the general case for

the Euler equations, the HLL solver ignores all intermediate waves separating other

intermediate states and lump them into a single state Qhll known as a Star Region.

This is considered as a shortcoming of the HLL solver as it ignores contact disconti-

nuities and material interfaces especially when the solution of the Riemann problem

contains more than two waves (Toro, 2009).

3.2.3 The HLLC approximate Riemann solver

This solver is introduced by Toro, Spruce and Speares (1994) as an improvement to

the HLL approximate Riemann solver to restore the missing waves at the star region.

The restored wave is the contact wave which divides the star region into two regions.

This solver known as the HLLC approximate Riemann solver where C stands for the

restored contact wave. By restoring the missing wave at the star region this solver

should be more accurate than the HLL Riemann solver. The HLLC flux along the
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cell boundaries are given by:

F hllc
i±1/2 =



FL if 0 ≤ S−i±1/2,

F∗L = FL + S−i±1/2(Q∗L −QL) if S−i±1/2 ≤ 0 ≤ S∗,

F∗R = FR + S+
i±1/2(Q∗R −QR) if S∗ ≤ 0 ≤ S+

i±1/2,

FR if 0 ≥ S+
i±1/2,

, (3.28)

where Q∗R and Q∗L at the star region are obtained as:

Q∗K = ρK

(
SK − uK
SK − S∗

)
1

S∗(
EK
ρK

+ (S∗ − uK)
[
S∗ + pK

ρK(SK−uK)

])
 , (3.29)

where the speed of the middle wave in the star region can be written as:

S∗ =
pR − pL + ρLuL(S− − uL)− ρRuR(S+ − uR)

ρL(S− − uL)− ρR(S+ − uR)
. (3.30)

3.2.4 The VFRoe approximate Riemann solver

This approach was introduced by Gallouët and Masella (1996). Consider the Rie-

mann problem of a hyperbolic system written in terms of primitive variables w as

follows:
∂w

∂t
+ A(w)

∂w

∂x
= 0,

with the following initial data:

w(x, 0) =

wL x ≤ 0,

wR x > 0.
(3.31)

where A(w) is the Jacobian matrix m×m calculated in the average state:

w̄ =
wL + wR

2
. (3.32)

The intermediate state in the solution of the Riemann problem is:

w∗ = wL +
∑
λi<0

aiKi, (3.33)

where λi and Ki are the eigenvalues and the corresponding eigenvectors of the

matrix A(w̄), respectively. The coefficients ai are the coefficients of eigenvector

decomposition of wR −wL and are determined by:

wR −wL =
m∑
i=1

aiKi. (3.34)
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3.2.5 Boundary conditions

As mentioned earlier, the solutions of the Riemann problem at boundaries of the cell

i depend on the neighbouring cell state values wn
i−1 and wn

i+1, which are required to

compute the fluxes F n
i−1/2 and F n

i+1/2. Consequently, in order to solve the Riemann

problem and corresponding fluxes at the left and right boundaries of the compu-

tational domain wn
1 and wn

N , respectively, it is required to specify the inflow and

outflow boundary conditions at each time step. This is done by adding fictitious

cells wn
0 and wn

N+1 at both boundaries. Various types of boundary conditions are

given in LeVeque (2004); Toro (2009). Here, only three types are considered that

are the reflective, extrapolated and periodic boundary conditions and they are as

follows:

1. Reflective boundary conditions:

This type of boundary conditions is applied when the boundary is a fixed

impermeable wall. Consider the boundary at the leftmost of the domain x = 0,

the fictitious state wn
0 . The Riemann problem will be solved between wn

0 and

wn
1 . The state wn

0 is defined from the known state wn
1 inside the computational

domain as follows:

wn
0 = wn

1 , (3.35)

except for the velocity which is given as un0 = −un1 . For the rightmost boundary

of the domain at x = L, the fictitious state wn
N+1 is defined as:

wn
N+1 = wn

N (3.36)

except for the velocity which is given as unN+1 = −unN .

2. Extrapolated boundary conditions:

This type of boundary condition is known as transmissive or transparent or

far field or non-reflecting boundary condition which can be applied when the

boundary of the computational domain is an open end. There are two types

of this boundary conditions which can be applied to obtain the state in the

fictitious cells:

(a) Zero-order extrapolation:

Consider the leftmost boundary at x = 0, the states in the fictitious cell

are given by:

wn
0 = wn

1 , (3.37)

and at the rightmost boundary are given by:

wn
N+1 = wn

N . (3.38)
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(b) First-order extrapolation:

Consider the leftmost boundary at x = 0, the states in the fictitious cell

are given by:

wn
0 = 2wn

1 −wn
2 , (3.39)

and at the rightmost boundary are given by:

wn
N+1 = 2wn

N −wn
N−1. (3.40)

3. Periodic boundary conditions:

This type of boundary conditions is applied when it is required to simulate a

large system or a system with a repeated manner. A small part of the system

is used with imposing these boundary conditions. The states in the fictitious

cell at the leftmost boundary x = 0 are given by:

wn
0 = wn

N , (3.41)

and at the rightmost boundary x = L are given by:

wn
N+1 = wn

1 . (3.42)
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Chapter 4

The seven-equation compressible

multiphase flow model

In order to study multiphase or multi-component flows governing mathematical

models are needed. Usually, they are in the form of mass, momentum and energy

equations. Several approaches and models have been proposed to predict the detailed

complex behaviour of such flows. Nevertheless, there are significant differences in

the application of these models to various types of multiphase or multi-component

flows. In this chapter the seven-equation model of Saurel and Abgrall (1999a) is

described, closure relations and various EOSs casted in the form of Mie-Grüneisen

EOS are given. The mathematical structure of this model is determined, the nu-

merical method which is implemented with various Riemann solvers to solve the

seven-equation model is presented. The numerical results are verified using different

EOSs, comparisons between solvers are carried out and finally comparisons between

EOSs are accomplished.

4.1 Mathematical formulation

The local instant formulation based on the single-phase equations encounters math-

ematical and numerical difficulties for most two-phase flow problems with moving

interfaces. Therefore, it is not a reasonable or practical approach. This has made

it essential to use a macroscopic formulation based on a suitable averaging method

which eliminates the interfacial discontinuities and gives a two-phase flow a con-

tinuum formulation (Ishii and Hibiki, 2006). There are many types of averaging

procedures which can be found in the literature, for example, time averaging, vol-

ume averaging and ensemble averaging (Drew and Passman, 1998; Ishii and Hibiki,

2006). The most commonly used procedures among them are the time and volume

averaging. In some situations, the above mentioned procedures are special cases of

the ensemble average (Drew and Passman, 1998). However, they lead to averaged
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equations with essentially the same structure.

Starting from the Navier-Stokes equations for single-phase a compressible two-

phase flow model can be obtained by applying the averaging method of Drew (1983)

and neglecting all dissipative terms everywhere except at the interfaces. Using this

approach Saurel and Abgrall (1999a) developed a two-phase flow model to simulate

multiphase mixtures and interface problems between pure fluids. This model was

inspired by the model of Baer and Nunziato (1986) which is proposed to investigate

the deflagration-to-detonation transition in solid energetic materials. Saurel and

Abgrall (1999a) modified the Baer and Nunziato model by introducing a different

treatment of interfacial variables and relaxation parameters. These modifications

extended the range of applications of the original Baer and Nunziato model. The

obtained multiphase flow equations in one dimension have the following compact

form:

∂αkρk
∂t

+
∂αkρkuk
∂x

= ±ṁk, (4.1a)

∂αkρkuk
∂t

+
∂(αkρku

2
k + αkpk)

∂x
=

± pint
∂αk
∂x
± ṁkuint ± Fdk ± αkρkg, (4.1b)

∂αkρkEk
∂t

+
∂(αkρkEkuk + αkukpk)

∂x
=

± pintuint
∂αk
∂x
±Qkint ± ṁkEkint ± uintFdk,

± µpint(pk − pk′)± αkρkguk. (4.1c)

The average conditions for the interface are:

∑
k

ṁk = 0, (4.2a)

∑
k

pint
∂αk
∂x

+ ṁkuint + Fdk + αkρkg = 0, (4.2b)

∑
k

pintuint
∂αk
∂x

+Qkint + ṁkEkint+

uintFdk + αkρkguk − µpint(pk − pk′) = 0, (4.2c)

where: αk, ρk, uk, pk, Ek, are the volume fraction, the density, the velocity, the

pressure and the total energy for the phase k, respectively; k′ is the other phase; pint,

uint are the interfacial pressure and velocity, respectively; g is the gravitational force.

The interaction terms are written in the form of mass transfer ṁk, drag force Fdk,

heat transfer Qkint and the non-conservative terms pint
∂αk
∂x

and pintuint
∂αk
∂x

. These

are coupling terms and therefore if it has a plus sign, the same term has a minus
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sign for the other phase. The total energy Ek is represented by:

Ek = ek +
1

2
v2
k, (4.3)

where ek is the specific internal energy of the phase k and:

1

2
v2
k =

1

2
(u2k + v2k + w2

k). (4.4)

The non-conservative terms which appear on the right hand side of the momentum

and energy equations of the model (4.1) result from the averaging process. These

terms prevent the model from being written in the divergence form, i.e. conservative

form. Consequently, the model (4.1) is a non-conservative model, hence, the weak

solution and the Rankine-Hugoniot conditions (3.7) for conservation laws are not

applicable (Andrianov, Saurel and Warnecke, 2003).

As a remedy for the non-conservative character of the governing equations it is

important to consider the Abgrall’s idea (Abgrall, 1996). It states that if the flow

is initially uniform in terms of pressure and velocity fields, its time evolution should

preserve a contact discontinuity. It was shown by Andrianov, Saurel and Warnecke

(2003) that the contact discontinuity is preserved only when the right hand side

non-conservative terms are present in the system. These terms may cause some

difficulty when dealing with mass transfer problems in the presence of shock waves

(Saurel and Le Métayer, 2001).

The last term on the right hand side of the momentum (4.1b) and energy (4.1c)

equations is related to the gravitational force. The effect of the gravitational force

is not taken into account in the shock tube test but its effect is considered in the

water faucet test. These tests are studied in this thesis.

The model (4.1) is not closed. In other words the number of unknowns are more

than the number of equations. Therefore, in order to solve the model (4.1) more

closure relations or some other assumptions are needed.

4.1.1 Closure relations

Extra terms appear in the model (4.1) due to the averaging process used in its

derivation. These terms represent the transfer processes that may take place at

the interface and they are unknown. Moreover, new variables which are known

as void or volume fraction for each constituent appear in the model (4.1). These

variables indicate the presence of each phase within the computational cell. The

two-phase flow model (4.1) consists of two mass equations (4.1a), two momentum

equations (4.1b) and two energy equations (4.1c). These are six equations which are

less than the number of the unknown variables which are twelve. Thus, to close the

system (4.1) the following closure relations are considered:
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1. Adding an evolutionary equation for the volume fraction for one of the phases

which is proposed by Ishii (1975) and considered by other researchers (see for

example, Baer and Nunziato, 1986). This equation may be written as:

∂αa
∂t

+ ua
∂αa
∂x

= fa(Sa, Sb) (4.5)

where: ua is the velocity of the phase a (in Baer and Nunziato (1986) phases

a, b are considered to be the solid and gas phases, respectively) and fa(Sa, Sb)

is the source term.

2. The volume fraction constraint which indicates the saturation of the phases

within the computational cell. It may be written as:

∑
k

αk = 1. (4.6)

3. Equations of state are used to couple the thermodynamic variables within

each phase. The ability of this model to deal with different EOSs is a great

advantage of this model. Various equations of state have been considered in

this work and they are given in section 4.2.

4. The interfacial pressure relation. This has been considered in different forms:

(a) The interfacial pressure (see for example, Stewart and Wendroff, 1984) is

assumed to be in equilibrium with the pressure of both phases as follows:

pint = p1 = p2.

This closure leads to an ill-posed model and thus numerical difficulty due

to the complex characteristics which results in numerical instabilities in

the solution. Moreover, the pressure wave propagation is not described

correctly. Many attempts have been made to circumvent numerical insta-

bilities resulting from this approach, either by adding numerical viscosity

to reduce instabilities or by adding some correction terms to eliminate

the complex characteristics (see for example, Toumi and Raymond, 1995;

Tiselj and Petelin, 1997). However, adding large numerical viscosity pro-

duces unrealistic solutions (Saurel and Le Métayer, 2001).

(b) The interfacial pressure (see for example, Baer and Nunziato, 1986) is

assumed to be equal to the pressure of the gas phase:

pint = p1.
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(c) Another closure for the interfacial pressure is given in Saurel, Gavrilyuk

and Renaud (2003) and may be written as follows:

pint =
Z1p2 + Z2p1
Z1 + Z2

+
Z1Z2

Z1 + Z2

∇α1

|∇α1|
· (u2 − u1),

where Zk is the acoustic impedance is given by:

Zk = ρkck, k = 1, 2.

where ck is the speed of sound for the phase k which is defined in Saurel

and Abgrall (1999a) as:

c2k =

pk
ρ2k
− ∂ek
∂ρk

∣∣∣∣
pk

∂ek
∂pk

∣∣∣∣
ρk

. (4.7)

(d) The interfacial pressure is assumed to be equal to the mixture pressure

(Saurel and Abgrall, 1999a). This assumption is adopted in this thesis,

as follows:

pint =
∑
k

pkαk. (4.8)

5. The interfacial velocity relation. This has been considered in different forms:

(a) The interfacial velocity is assumed to be equal to the velocity of the solid

phase as chosen by Baer and Nunziato (1986):

uint = u1.

(b) The interfacial velocity is also derived by Saurel, Gavrilyuk and Renaud

(2003) and may be written as follows:

uint =
Z1u1 + Z2u2
Z1 + Z2

+
p2 − p1
Z1 + Z2

∇α1

|∇α1|
.

(c) The mixture velocity at the interface in this thesis is adopted as in Saurel

and Abgrall (1999a) which is given by:

uint =

∑
k αkρkuk∑
k αkρk

. (4.9)
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4.1.2 Fully non-equilibrium two-phase flow mathematical

model

The fully non-equilibrium two-phase flow model which is known as the Saurel and

Abgrall (1999a) model. The model is obtained by adding the volume fraction evo-

lutionary equation (4.5) to the system (4.1). All dissipative terms, i.e. the viscosity,

the surface tension, the heat and mass transfer, etc., are neglected everywhere ex-

cept at the interfaces. This model, in each pure fluid zone, takes the form of time-

dependent Euler equations which are a set of non-linear hyperbolic conservation

laws that describe the compressible multiphase flows (Saurel and Abgrall, 1999a).

This model, which is considered in this work, for one-dimensional flows with the

relaxation and source terms takes the following form:

∂α1

∂t
+ uint

∂α1

∂x
= µ(p1 − p2), (4.10a)

∂α1ρ1
∂t

+
∂α1ρ1u1
∂x

= 0, (4.10b)

∂α1ρ1u1
∂t

+
∂(α1ρ1u

2
1 + α1p1)

∂x
= pint

∂α1

∂x
+ λ(u2 − u1) + α1ρ1g, (4.10c)

∂α1ρ1E1

∂t
+
∂(α1ρ1E1u1 + α1u1p1)

∂x
= pintuint

∂α1

∂x
+

uintλ(u2 − u1) + pintµ(p1 − p2) + α1ρ1gu1, (4.10d)

∂α2ρ2
∂t

+
∂α2ρ2u2
∂x

= 0, (4.10e)

∂α2ρ2u2
∂t

+
∂(α2ρ2u

2
2 + α2p2)

∂x
= −pint

∂α1

∂x
− λ(u2 − u1) + α2ρ2g, (4.10f)

∂α2ρ2E2

∂t
+
∂(α2ρ2E2u2 + α2u2p2)

∂x
= −pintuint

∂α1

∂x
−

uintλ(u2 − u1)− pintµ(p1 − p2) + α2ρ2gu2. (4.10g)

In addition to the closure relations mentioned in section 4.1.1. It is necessary to

restore the boundary conditions at the interface. To achieve this goal the pressures

p1 and p2 and velocities v1 and v2 are relaxed to the common values at the interface.

The relaxation process is restricted to the right hand side terms of the model (4.10).

These terms are called pressure relaxation and velocity relaxation terms.

Pressure relaxation terms

Pressure relaxation terms in the volume fraction evolution equation (4.10a) and in

the energy equations (4.10d) and (4.10g) in the system (4.10) are given by µ(p1−p2)
and µpint(p1−p2), respectively. The former term expresses the expansion rate of the

volume fraction which drives the pressure to equilibrium. The latter term expresses

the pressure work done by the phases to achieve the pressure equilibrium. This rate
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is controlled by the variable µ. This variable depends on the compressibility of each

phase, and on the mixture topology. It has finite value in two-phase regions, and

grows to be infinite at the interface to enable the pressure relaxation process to take

place faster (Saurel and Abgrall, 1999a).

Velocity relaxation terms

The term λ(u2−u1) in equations (4.1b) and (4.1c) represents the velocity relaxation

term. The velocity relaxation terms are responsible for bringing the relaxed velocity

of both fluids to a common value that fulfil the interfacial velocity conditions between

fluids. The parameter λ controls the rate at which the velocities of both fluids reach

the equilibrium state. More details are given in Saurel and Abgrall (1999a) and

Saurel and Le Métayer (2001).

The simultaneous pressure and velocity relaxation processes have made the par-

ent model applicable for a wide range of applications, for instance, simulations of

interfaces separating phases, cavitating flows, detonation and so on.

4.1.3 The model with area variation source term

The equations (4.10) only apply to one dimensional problems. This section shows

that the present model (4.10) can be easily extended to problems in regular two-

dimensional geometries characterised by the symmetry line. These problems can

be studied using axisymmetric approach to simplify the problem and to reduce the

numerical simulation time. Therefore, the numerical simulations of compressible

flow through converging-diverging nozzles with varying cross-sectional area A can

be conducted by considering a quasi-linear one-dimensional model. The model

∂α1

∂t
+ uint

∂α1

∂x
= µ(p1 − p2), (4.11a)

∂α1ρ1
∂t

+
∂α1ρ1u1
∂x

= − 1

A

∂A

∂x
α1ρ1u1, (4.11b)

∂α1ρ1u1
∂t

+
∂(α1ρ1u

2
1 + α1p1)

∂x
= pint

∂α1

∂x
+ λ(u2 − u1)−

1

A

∂A

∂x
α1ρ1u

2
1, (4.11c)

∂α1ρ1E1

∂t
+
∂(α1ρ1E1u1 + α1u1p1)

∂x
= pintuint

∂α1

∂x
+ uintλ(u2 − u1)+

pintµ(p1 − p2)−
1

A

∂A

∂x
α1u1(ρ1E1 + p1), (4.11d)

∂α2ρ2
∂t

+
∂α2ρ2u2
∂x

= − 1

A

∂A

∂x
α2ρ2u2, (4.11e)

∂α2ρ2u2
∂t

+
∂(α2ρ2u

2
2 + α2p2)

∂x
= −pint

∂α1

∂x
− λ(u2 − u1)−

1

A

∂A

∂x
α2ρ2u

2
2, (4.11f)

∂α2ρ2E2

∂t
+
∂(α2ρ2E2u2 + α2u2p2)

∂x
= −pintuint

∂α1

∂x
− uintλ(u2 − u1)−

pintµ(p1 − p2)−
1

A

∂A

∂x
α2u2(ρ2E2 + p2), (4.11g)
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takes a different form from the original one by including an additional source term

in the governing equations (4.10) to represent the area variation, which was used in

a context of studying a reactor venting problems in Nowakowski, Librovich and Lue

(2004). As a result the multiphase flow model with the area variation source and

relaxation terms but without mass, heat transfer and gravitational terms takes the

above form (4.11).

4.2 Equation of state (EOS)

An equation of state for each phase is needed to relate the pressure with the density

and the internal energy i.e. p = p(ρ, e) or e = e(ρ, p). The seven-equation model is

flexible and it can deal with different equations of state (EOSs) for each phase. In

order to deal with problems with different types of EOSs, various EOSs are written

in the general form of the Mie-Grüneisen EOS as follows:

p(ρ, e) = ρΓH(ρ)[e− eH(ρ)] + pH(ρ). (4.12)

Where ΓH(ρ) is the Grüneisen function, eH(ρ) is the reference internal energy and

pH(ρ) is the reference pressure, they are material dependent functions which are

obtained at a reference state (Fortov and Lomonosov, 2010). For some materials

the Grüneisen function is a power law of density:

ΓH(ρ) = Γ

(
ρ0
ρ

)θ
, (4.13)

where Γ is the Grüneisen coefficient at reference density ρ0, θ is a coefficient which

depends on the material (for most materials θ = 0). The Grüneisen coefficient may

be written as Γ = γ−1, where γ is the adiabatic specific heat ratio depending on the

material under consideration, γ = cp/cv. The parameters cp and cv are the specific

heats at constant pressure and volume, respectively.

The reference curve for (eH, pH) may be taken along an isentropic locus or a

Hugoniot locus. When the flow is considered without presence of viscosity, heat

transfer and shock waves the reference curve may be chosen as an isentrope (Menikoff

and Plohr, 1989). The reference functions for various EOSs, defined in the following

subsections from 4.2.1 to 4.2.7, are listed in Table 4.2. Zheng et al. (2011) attempted

to construct a common framework for the general EOS although their approach was

different.

Using the reference functions that are listed in Table 4.2 it is now possible to

simulate a wide range of applications with various EOSs without the need to modify

the algorithm. For example Petitpas et al. (2007) pointed out that in order to deal

with complex EOSs they need to make several modifications in their algorithm.
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4.2.1 Ideal gas (IG) EOS

In the caloric ideal gas EOS, the pressure has the form:

p = (γ − 1)ρe. (4.14)

By writing the ideal gas EOS (4.14) in the form of Mie-Grüneisen EOS (4.12), the

reference material dependent functions are as given in Table 4.2. The adiabatic

specific heat ratio for an ideal gas could also be calculated by the relation:

γ =
m+ 2

m
,

where m states the degrees of freedom of a molecule. It takes the value m = 3 for

monatomic gases and m = 5 for diatomic gases.

To derive the local speed of sound for gases governed by the ideal gas EOS (4.14),

the derivatives of the internal energy with respect to the density and pressure are

obtained and then substituted into (4.7). Finally, the local speed of sound can be

written as:

c2 =

√
γp

ρ
. (4.15)

These derivatives are also substituted into the following formula (Saurel and Abgrall,

1999a):

c2kint =

pint
ρ2k
− ∂ek
∂ρk
|pk

∂ek
∂pk
|ρk

, (4.16)

to obtain the sound speed at the interface which may be written as follows:

c2int =
pint(γ − 1) + p

ρ
. (4.17)

4.2.2 Shock wave (SW) EOS

This equation of state consists of the Mie-Grneisen EOS (4.12) and:

Us = c0 + sUp, (4.18)

which is a linear fit for the shock velocity Us as a function of the particle velocity

Up, c0 is the speed of sound in the material under consideration at atmospheric

conditions and s is a dimensionless parameter. Experimental data for high pressure

values are available for many materials in Marsh (1980). Often the reference curve

for (pH, eH) is chosen to fit the experimental data. This curve is a single shock

Hugoniot locus and starts from an initial state at standard pressure and temperature

or internal energy (p0, e0). Using the Hugoniot jump conditions the shock state can
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be determined by calculating (pH, eH) given in Table 4.2. For the shock wave EOS

the local speed of sound is derived, as given in the Appendix A.1, to be as follows:

c2 =

(
p

ρ2
−
− ρ2oc

2
o

ρ2η2
− 2ρ2oc

2
osψ

ρ2η3

ζ
−
(
p− ρoc2oψ

η2

)
θ

ζρ
+
p− ρoc2oψ

η2

ζρ

−ρoc
2
oψ

η2ρ2
− ρoc

2
osψ

2

η3ρ2

)
ζ, (4.19)

where η = 1 − sψ, ψ = 1 − ρo
ρ

and ζ = ρΓ
(
ρo
ρ

)θ
, and the speed of sound at the

interface is found to be:

c2int =

(
pint
ρ2
−
− ρ2oc

2
o

ρ2η2
− 2ρ2oc

2
osψ

ρ2η3

ζ
−
(
p− ρoc2oψ

η2

)
θ

ζρ
+
p− ρoc2oψ

η2

ζρ

−ρoc
2
oψ

η2ρ2
− ρoc

2
osψ

2

η3ρ2

)
ζ. (4.20)

4.2.3 Stiffened gas (SG) EOS

The stiffened gas EOS (Menikoff and Plohr, 1989) can be used to obtain the be-

haviour of gases, liquids and compressible solids. The pressure has the form:

p = (γ − 1)ρe− γπ, (4.21)

where the parameters γ and π are constants that depend on the particular material

under consideration. These parameters can be determined following the procedure

given in Cocchi, Saurel and Loraud (1996) for various materials using the experimen-

tal data given in Marsh (1980) for example. It can be noticed that if the pressure

constant π = 0, the SG EOS reduces to the ideal gas EOS. By writing the SG

EOS (4.21) in the form of the Mie-Grüneisen EOS (4.12), the reference material

dependent functions are as given in Table 4.2. The speed of sound in the pure phase

and at the interface for materials governed by the SG EOS are obtaind as discribed

in subsection 4.2.1. The speed of sound in the pure phase may be written as:

c2 =
γ(p+ π)

ρ
, (4.22)

and at the interface is as follows:

c2int =
pint(γ − 1) + p+ γπ

ρ
. (4.23)

Determination of SG EOS parameter

The SG EOS (4.21) parameters are determined using experimental results. The fol-

lowing relation which relates shock velocity Us with material velocity Up is obtained

from Hugoniot relations and the SG EOS (Cocchi, Saurel and Loraud, 1996):
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Us =

√
c20 +

(
γ + 1

4
Up

)2

+
γ + 1

4
Up, (4.24)

where c0 is the speed of sound in the material under consideration. The above

relation is used to determine the parameter γ, the following relation is used to

determine the value of π for liquids and solids:

π =
ρ0c

2
0

γ
− p0, (4.25)

where ρ0 is the material initial density and p0 is the ambient pressure. The deter-

mined SG EOS parameters for some selected materials are given Table 4.1. These

values are used to validate the six and seven-equation models in subsection 5.5.1.

Table 4.1: SG EOS parameters for selected materials.

ρ0 c0 s γ π

Material [kg/m3] [m/s] [Pa]

Iron 7873 3742.4 1.594 3.657 3.02 · 1010

Nickel 8875 4590 1.44 3.98 4.7 · 1010

Copper 8924 3910 1.51 4.016 3.4 · 1010

S. steel 304 7890 4564.6 1.496 4.167 3.95 · 1010

4.2.4 Tait’s EOS

This EOS is used to govern liquids. It is particularly used for water and it can be

written in the following form:

pk = A

(
ρ

ρo

)γ
−B, (4.26)

where A,B and γ are constant parameters depending on the fluid under considera-

tion. For water these parameters are A ≈ B = 3.31× 108 Pa, γ = 7.15.

Its analogue as given in Ivings, Causon and Toro (1998) and Zheng et al. (2011)

is written as follows:

pk = (γ − 1)ρe− γB. (4.27)

By writing Tait’s EOS (4.27) in the form of the Mie-Grüneisen EOS (4.12) the

reference material dependent functions are as given in Table 4.2. The speed of

sound in the pure phase and at the interface for materials governed by the Tait EOS

are obtaind as discribed in Subsection 4.2.1. The speed of sound at the pure phase

may be written as:

c2 =
γ(p+B)

ρ
, (4.28)
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and at the interface is as follows:

c2int =
pint(γ − 1) + p+ γB

ρ
. (4.29)

4.2.5 van der Waals gas (vdW) EOS

The van der Waals gas EOS is used to govern real gases and can be written in the

following form:

p =

(
γ − 1

1− bρ

)
(ρe+ aρ2)− aρ2, (4.30)

where γ, a and b are constants that depend on the particular gas under consideration.

Van der Waals EOS (4.30) may be rewritten in the form of the Mie-Grüneisen

EOS (4.12). The reference material dependent functions are as given in Table 4.2.

From (4.30) the internal energy can be written as:

e =

(
p

ρ
+ aρ

)(
1− bρ
γ − 1

)
− aρ, (4.31)

The local speed of sound is derived, as given in the Appendix A.2, to be as follows:

c2 =
γ(p+ aρ2)

ρ(1− bρ)
− 2aρ, (4.32)

and at the interface is as follows:

c2int =
pint(γ − 1) + p+ aρ2γ

ρ(1− bρ)
− 2aρ. (4.33)

4.2.6 Cochran-Chan (CC) EOS

This EOS is widely used to describe solids under a high-pressure shock wave. It is

more accurate than the SG EOS in such conditions (Saurel and Abgrall, 1999a). The

Cochran-Chan EOS may be rewritten in the form of the Mie-Grüneisen EOS (4.12)

as follows:

p = ρ(γ − 1)

{
e+

A1

ρo(1− E1)

[(
ρo
ρ

)1−E1

−1

]
− A2

ρo(1− E2)

[(
ρo
ρ

)1−E2

−1

]
+CvTo

}
+ A1

(
ρo
ρ

)−E1

−A2

(
ρo
ρ

)−E2

, (4.34)

where γ,A1, E1, A2, E2, ρo, Cv and To are parameters that depend on the real material

under consideration. The reference material dependent functions for the Cochran-

Chan EOS are given in Table 4.2. For the Cochran-Chan EOS (4.34) the local speed

of sound is derived, as given in the Appendix A.3, to be as follows:
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c2 =
pγ

ρ
+
A1

ρ
e(−R1

ρo
ρ
)

(
R1ρo
ρ
− γ
)

+
A2

ρ
e(−R2

ρo
ρ
)

(
R2ρo
ρ
− γ
)
, (4.35)

and at the interface is as follows:

c2int =
pint
ρ

(γ − 1) +
p

ρ
+
A1

ρ
e(−R1

ρo
ρ
)

(
R1ρo
ρ
− γ
)

+
A2

ρ
e(−R2

ρo
ρ
)

(
R2ρo
ρ
− γ
)
. (4.36)

c2 =
pγ

ρ
+
A1

ρ

(
ρo
ρ

)−E1
[
E1 − γ

]
− A2

ρ

(
ρo
ρ

)−E2
[
E2 − γ

]
, (4.37)

and at the interface is as follows:

c2int =
pint
ρ

(γ − 1) +
p

ρ
+
A1

ρ

(
ρo
ρ

)−E1
[
E1 − γ

]
− A2

ρ

(
ρo
ρ

)−E2
[
E2 − γ

]
. (4.38)

4.2.7 Jones-Wilkins-Lee (JWL) EOS

This EOS is used to govern detonation products. The JWL EOS (4.39) may be

rewritten in the form of the Mie-Grüneisen EOS (4.12) as follows:

p = ρ(γ − 1)

(
e− A1

ρoR1

e(−R1
ρo
ρ
) − A2

ρoR2

e(−R2
ρo
ρ
) − Cek

)
+ A1 e(−R1

ρo
ρ
) + A2 e(−R2

ρo
ρ
), (4.39)

where γ,A1, R1, A2, R2 and Cek are constants that depend on the real material under

consideration. The reference material dependent functions for the JWL EOS are

given in Table 4.2. For the JWL EOS the local speed of sound is derived, as given

in the Appendix A.4, to be as follows:
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4.3 Mathematical structure of the seven-equation

model

Determination of the mathematical structure of a system of PDE is an essential step

in order to construct a numerical scheme for its solution. The system (4.10) without

relaxation and source terms can be written in a compact form as follows:

∂α1

∂t
+ uint

∂α1

∂x
= 0, (4.40a)

∂Q

∂t
+
∂F (Q)

∂x
= H(Q)

∂α1

∂x
, (4.40b)

where Q , F (Q) and H(Q) are the vectors of conserved variables, fluxes and non-

conservative variables, respectively. These vectors are defined as follows:

Q =



α1ρ1

α1ρ1u1

α1ρ1E1

α2ρ2

α2ρ2u2

α2ρlE2


, F (Q) =



α1ρ1u1

α1ρ1u
2
1 + α1p1

u1(α1ρ1E1 + α1p1)

α2ρ2u2

α2ρ2u
2
2 + α2p2

u2(α2ρ2E2 + α2p2)


, H(Q) =



0

pint

pintuint

0

−pint
−pintuint


.

The system (4.40) may also be rewritten in a quasi-linear form by applying the chain

rule to the flux vector term F (Q)x of the system (4.40):

∂F (Q)

∂x
=
∂F

∂Q

∂Q

∂x
.

The Jacobian matrix A(w) can be obtained from the flux vector as follows:

A(w) =
∂F

∂Q
,

thus, the system (4.40) can be written in a quasi-linear form as follows:

∂w

∂t
+ A(w)

∂w

∂x
= 0, (4.41)

where w is the vector of primitive variables which is given by:

w =
[
α1 ρ1 u1 p1 ρ2 u2 p2

]T
, (4.42)
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and the Jacobian matrix A(w), is given by:

A(w) =



uint 0 0 0 0 0 0
ρ1(u1 − uint)

α1

u1 ρ1 0 0 0 0

(p1 − pint)
α1ρ1

0 u1
1

ρ1
0 0 0

ρ1c
2
1int(u1 − uint)

α1

0 ρ1c
2
1 u1 0 0 0

−ρ2(u2 − uint)
α2

0 0 0 u2 ρ2 0

−(p2 − pint)
α2ρ2

0 0 0 0 u2
1

ρ2
−ρ2c22int(u2 − uint)

α2

0 0 0 0 ρ2c
2
2 u2,



(4.43)

where c2k and c2kint are the square local and at the interface speed of sound for phase

k, respectively. They are very important to ensure the stability of the numerical

solution. The local speed of sound for phase k is given by (4.7) and at the interface is

given by (4.16). It is important to emphasise that the choice of the closure relations

for the interfacial pressure and velocity will affect the hyperbolicity of the model.

The system (4.40) is said to be strictly hyperbolic if the Jacobian matrix A(w) has

m distinct real eigenvalues:

λ1 < λ2 < · · · < λm.

If the eigenvalues are not distinct:

λ1 ≤ λ2 ≤ · · · ≤ λm,

then the system is said to be non-strictly hyperbolic (LeVeque, 1992; Toro, 2009).

For the Jacobian matrix (4.43) there are seven real and distinct eigenvalues:

λ1 = uint,

λ2 = u1 − c1, λ3 = u1, λ4 = u1 + c1, (4.44)

λ5 = u2 − c2, λ6 = u2, λ7 = u2 + c2.

These eigenvalues represent the waves speed that are shown in Figure 4.1 which il-

lustrates the solution of the Riemann problem. The corresponding right eigenvectors
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are:

K1 =



α1α2σ1σ2

−α2σ2(ρ1(−c21int + σ1)− pint + p1)

α2σ2(−u1 + uint)(c
2
1iρ1 + pint − p1)

ρ1

α2σ2(c
2
1(pint − p1) + c21intρ1(u1 − uint)2)

−α1σ1(ρ2(c
2
2int − σ2) + pint − p2)

α1σ1(u2 − uint)(c22intρ2 + pint − p2)
ρ2

−α1σ1(c
2
2(pint − p2) + ρ2c

2
2int(u2 − uint)2)



,

K2 =



0

ρ1

−c1
ρ1c

2
1

0

0

0


, K3 =



0

1

0

0

0

0

0


, K4 =



0

ρ1

c1

ρ1c
2
1

0

0

0


, (4.45)

K5 =



0

0

0

0

ρ2

−c2
ρ2c

2
2


, K6 =



0

0

0

0

1

0

0


, K7 =



0

0

0

0

ρ2

c2

ρ2c
2
2


,

where σ1 = c21 − (u1 − uint)2 and σ2 = c22 − (u2 − uint)2.
Thus, the system (4.40) is strictly hyperbolic except when some of the eigenvalues

of the phases coincide. If any one of the eigenvectors become linearly dependent the

model loses its hyperbolicity which may occur when one of the phases disappears,

i.e. α1 or α2, or the value of σ1 or σ2 becomes zero. In this work the assumption of

existence of both phases holds true everywhere in the domain.

4.4 Numerical method

Numerical methods to solve systems of partial differential equations frequently use

finite difference technique in the solution process. A significant drawback of such

approach is that they can give acceptable results only when the solution is smooth.
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Figure 4.1: Solution of the Riemann problem for the seven-equation model λm are
given by (4.44).

It is known that in many applications the studied models can admit discontinuous

solutions even for smooth initial data. Consequently, the finite volume approach

based on Godunov’s method is adopted to solve the current system of governing

equations. In order to build a numerical scheme to solve such systems it is essential

to determine their mathematical structure that is given in the previous section 4.3.

4.4.1 Numerical solution of the seven-equation model

The numerical solution of the two-phase flow model (4.10) is very difficult due to the

existence of the non-conservative equation of the volume fraction evolution equation

(4.10a) and the non-conservative terms existing on the right hand side of the mo-

mentum equations (4.10c, 4.10d) and energy equations (4.10f, 4.10g). Moreover, the

existence of the source terms as well as the velocity and pressure relaxation terms

that appear on the right hand side of the equations pose some complexity in the

solution process. The possible treatment of these equations is to split the model into

a hyperbolic part and a source and relaxation part and solving them in succession

following the Strang (1968) splitting technique, which can be written as follows:

Qn+1
i = L4th L4ts Qn

i , (4.46)

where L4th is the hyperbolic part operator including the non-conservative terms,

L4ts represent the relaxation processes and source term operator. The vectors of

conserved variables are Qn
i and Qn+1

i for the node i at times t = n and t = n + 1,

respectively. The splitting technique has been used by many authors (see for exam-

ple, (Saurel and Abgrall, 1999a; Lallemand and Saurel, 2000; Lallemand, Chinnayya

and Le Métayer, 2005)).
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4.4.2 The hyperbolic operator

The solution of the hyperbolic part of the two-phase flow model (4.10) is not di-

rect as for the Euler equations due to the non-conservative equations. Consider the

hyperbolic system (4.40). The solution of this system can be obtained by imple-

menting the Godunov-type scheme which takes into account the discretisation of

the non-conservative part of the system (4.40). The second equation of the system

(4.40) may be discretised as:

Qn+1
i = Qn

i −
∆t

∆x

[
f(q∗(Qn

i , Q
n
i+1))− f(q∗(Qn

i−1, Q
n
i ))
]

+ ∆tH(Qn
i )∆i, (4.47)

where ∆i is the discretisation of the non-conservative term ∂α1

∂x
in space which de-

pends on the approximate Riemann solver used, q∗(Qn
L, Q

n
R) represents the exact or

approximate solution along the cell boundary x = xi+1/2. This is used to compute

the intercell flux (by solving the Riemann problem) with the states Qn
L, Q

n
R and

H(Qn
i ) is the vector of non-conservative terms.

The mass, momentum and energy equations of the system (4.47) for phase (1)

are written without the subscript (1) for simplicity as follows:

(αρ)n+1
i = (αρ)ni +

∆t

∆x

[
(αρu)∗i+1/2 − (αρu)∗i−1/2

]
, (4.48a)

(αρu)n+1
i = (αρu)ni +

∆t

∆x

[
(αρu2 + αp)∗i+1/2 − (αρu2 + αp)∗i−1/2

]
+ ∆t(pint)

n
i ∆i, (4.48b)

(αρE)n+1
i = (αρE)ni +

∆t

∆x

[
(αρuE + αpu)∗i+1/2 − (αρuE + αpu)∗i−1/2

]
+ ∆t(pint)

n
i (uint)

n
i ∆i. (4.48c)

According to the criterion proposed by Abgrall (1996) that the pressure and velocity

of a two-phase flow must remain constant during its time evolution, which enables

preservation of a contact discontinuity between the phases, then we have:

pni = pn+1
i = (pint)

n
i = p∗i±1/2 = p,

uni = un+1
i = (uint)

n
i = u∗i±1/2 = u.

(4.49)

To obtain an expression for ∆i the equation (4.48a) is multiplied by u, subtracted

from (4.48b) and using the pressure uniformity (4.49), then the discretisation for 4i

may be written as:

∆i =
1

∆x

(
α∗
i+ 1

2
− α∗

i− 1
2

)
. (4.50)

To obtain a discretisation for the volume fraction equation (4.40a), utilising the

definition of E and (4.50) in (4.48c), combining with (4.48a) and using the criteria

(4.49), the internal energy equation may be written as:

50



Chapter 4. The seven-equation compressible multiphase flow model

(αρe)n+1
i = (αρe)ni + u

∆t

∆x

[
(αρe)∗i+1/2 − (αρe)∗i−1/2

]
. (4.51)

The equation of state, which relates the internal energy with pressure, is used with

the criterion of pressure uniformity. This implies that ρe = constant. Finally, one

obtains the following equation for the volume fraction:

αn+1
i = αni + u

∆t

∆x

[
(α)∗i+1/2 − (α)∗i−1/2

]
. (4.52)

This equation can be used as a discretisation for the first equation of the sys-

tem (4.40). Then the Godunov-type scheme discretisation for the non-conservative

system (4.40) may be written as follows:

αn+1
i = αni − uint

∆t

∆x

[
(α)∗i+1/2 − (α)∗i−1/2

]
, (4.53a)

Qn+1
i = Qn

i −
∆t

∆x

[
f(q∗(Qn

i , Q
n
i+1))− f(q∗(Qn

i−1, Q
n
i ))
]

+ ∆tH(Qn
i )∆i. (4.53b)

Note that the values of α∗ and q∗ are either exact or approximate solutions obtained

by solving the Riemann problem. The computations of the exact Riemann solution

are very expensive and in particular for the system (4.53) are complicated. There-

fore, approximate Riemann solvers are generally used. A wide variety of approxi-

mate Riemann solvers have been developed to obtain the solution of the Riemann

problem by computing the intercell fluxes, which require computing the interme-

diate states (∗) in the Riemann solution. These states usually connect QL to QR

by a sequence of shocks or rarefactions. In this work, the HLL, HLLC and VFRoe

approximate Riemann solvers have been used to solve the system (4.53).

Extension to the second order accuracy

To achieve a second order accuracy in both time and space for the hyperbolic system

(4.53), the MUSCL approach has been used. The name of this approach (MUSCL)

stands for Monotone Upstream-centred Scheme for Conservation Laws. In this ap-

proach the second order accuracy is obtained by performing the following three steps

(Toro, 2009):

1. Extrapolation:

This step is applied using the primitive variables to guarantee that a uniform

solution of pressure and velocity is preserved (Saurel and Abgrall, 1999a). This

is a reconstruction step where the primitive variables can be obtained at the

boundaries by replacing the piecewise constant data wn
i by piecewise linear

functions as follows:

w+
i−1/2 = wn

i −
1

2
∆̄i, w−i+1/2 = wn

i +
1

2
∆̄i, (4.54)
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where ∆̄i is the limited slopes, they are defined as:

∆̄i =

{
max[0,min(β∆i−1/2,∆i+1/2),min(∆i−1/2, β∆i+1/2)] if ∆i+1/2 > 0,

min[0,max(β∆i−1/2,∆i+1/2),max(∆i−1/1, β∆i+1/2)] if ∆i+1/2 < 0,

where β = 1 in the minmod limiter and β = 2 in the superbee limiter and

∆i±1/2 are defined as follows:

∆i−1/2 = wn
i −wn

i−1, ∆i+1/2 = wn
i+1 −wn

i . (4.55)

Note that the primitive variables for the seven-equation model are given by

the vector (4.42).

2. Evolution:

The values of the boundary extrapolated primitive variables W∓
i±1/2 are evolved

by a half time step tn+1/2 as follows:

w+
i−1/2 = w+

i−1/2−
∆t

2∆x
A(wi)(w

−
i+1/2 −w+

i−1/2),

w−i+1/2 = w−i+1/2−
∆t

2∆x
A(wi)(w

−
i+1/2 −w+

i−1/2).

(4.56)

where A(W ) is the Jacobian matrix given by (4.43).

3. Solution of Riemann problem:

The computed primitive variables (W
n

i ,W
n

i+1) at each cell boundary are used

to determine the conservative variables at time t = n + 1/2 which are used

to solve the Riemann problem with the piecewise constant data (Q
−
i+ 1

2
, Q

+

i+ 1
2
)

using a suitable Riemann solver. The second order discretisation for the sys-

tem (4.53) according to the Godunov-type scheme in time and space can be

written as:

αn+1
i = αni − uint

∆t

∆x

[
α∗(α−

i+ 1
2

, α+
i+ 1

2

)− α∗(α−
i− 1

2

, α+
i− 1

2

)
]
, (4.57a)

Qn+1
i = Qn

i −
∆t

∆x

[
f(q∗(Q

−
i+ 1

2
, Q

+

i+ 1
2
))

− f(q∗(Q
−
i− 1

2
, Q

+

i− 1
2
))

]
+ ∆tH(Qn

i )4i. (4.57b)

where f(q∗) is the numerical flux vector calculated at the intercell boundaries

xi±1/2 betweenQ
±
i+1/2 and Q

±
i−1/2, ∆i is the discretisation of the volume fraction

∂αg
∂x

which depends on the approximate Riemann solver andH(Qn
i ) is the vector

of non-conservative terms. The time step is calculated from:

∆t =
CFL ∆x

Smax

, (4.58)
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where, CFL is the Courant number; for stability it has to be less than one, ∆x

is the cell size and Smax is the maximum wave speed. The left and right wave

speeds at the boundaries S−
i± 1

2

and S+
i± 1

2

can be estimated respectively by:

S−
i± 1

2

= min
(
u+
k,i± 1

2

− c+
k,i± 1

2

, u−
k,i± 1

2

− c−
k,i± 1

2

)
, (4.59a)

S+
i± 1

2

= max
(
c+
k,i± 1

2

+ u+
k,i± 1

2

, c−
k,i± 1

2

+ u−
k,i± 1

2

)
, (4.59b)

where k represents the components or phases 1 and 2.

(a) The HLL approximate Riemann solver

This solver is given in subsection 3.2.2 in its simple form for single-phase

flows. The discretisation of the volume fraction (4.57a) in time and space

according to the HLL is given as follows:

αn+1
i = αni

−∆t

∆x

[un+ 1
2

i

(
S+
i+ 1

2

α
n+ 1

2

i+ 1
2
,− − S

−
i+ 1

2

α
n+ 1

2

i+ 1
2
,+

)
+ S+

i+ 1
2

S−
i+ 1

2

(
α
n+ 1

2

i+ 1
2
,+
− αn+

1
2

i+ 1
2
,−

)
S+
i+ 1

2

− S−
i+ 1

2

−
u
n+ 1

2
i

(
S+
i− 1

2

α
n+ 1

2

i− 1
2
,− − S

−
i− 1

2

α
n+ 1

2

i− 1
2
,+

)
− S+

i− 1
2

S−
i− 1

2

(
α
n+ 1

2

i− 1
2
,+
− αn+

1
2

i− 1
2
,−

)
S+
i− 1

2

− S−
i− 1

2

]
.

(4.60)

and in space ∆i in equation (4.57b) is as follows:

∆i =
1

∆x

S+
i+ 1

2

α
n+ 1

2

i+ 1
2
,− − S

−
i+ 1

2

α
n+ 1

2

i+ 1
2
,+

S+
i+ 1

2

− S−
i+ 1

2

−
S+
i− 1

2

α
n+ 1

2

i− 1
2
,− − S

−
i− 1

2

α
n+ 1

2

i− 1
2
,+

S+
i− 1

2

− S−
i− 1

2

 .
(4.61)

(b) The HLLC approximate Riemann solver

This solver is given in subsection 3.2.3. Here more details are given for

computing the star region values for the seven-equation model. The wave

speed is computed as follows:

S∗ =
pR − pL + ρLuL(S− − uL)− ρRuR(S+ − uR)

ρL(S− − uL)− ρR(S+ − uR)
. (4.62)
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where:

pK = αK1 p
K
1 + αK2 p

K
2 ,

ρK = αK1 ρ
K
1 + αK2 ρ

K
2 , (4.63)

uK =
αK1 ρ

K
1 u

K
1 + αK2 ρ

K
2 u

K
2

ρK
.

The conservative vector given by equation (4.64) can be written for com-

ponents 1 and 2 as follows:

Q∗K =



αK1 ρ
K
1

(
SK−uK1
SK−S∗

)
αK1 ρ

K
1

(
SK−uK1
SK−S∗

)
S∗

αK1 ρ
K
1

(
SK−uK1
SK−S∗

)(
EK1
ρK1

+ (S∗ − uK1 )
[
S∗ +

pK1
ρK1 (SK−uK1 )

])
αK2 ρ

K
2

(
SK−uK2
SK−S∗

)
αK2 ρ

K
2

(
SK−uK2
SK−S∗

)
S∗

αK2 ρ
K
2

(
SK−uK2
SK−S∗

)(
EK2
ρK2

+ (S∗ − uK2 )
[
S∗ +

pK2
ρK2 (SK−uK2 )

])



,

(4.64)

where K represents left L or right R values.

The discretisation of the volume fraction in space ∆i in equation (4.57b)

according to the HLLC approximate Riemann solver can be obtained

by applying the uniformity of pressure and velocity criterion of Abgrall

(1996) as follows:

∆i =
1

∆x

(
α∗
i+ 1

2
− α∗

i− 1
2

)
. (4.65)

The values of α∗(ᾱ−
i± 1

2

, ᾱ+
i± 1

2

) in the discretisation equation of the volume

fraction in space and time (4.57a) and in the discretisation in space ∆i

(4.65), which is substituted in (4.57b), according to the HLLC approxi-

mate Riemann solver by applying the Abgrall criterion (Ghangir et al.,

2008) is as follows:

α∗
i± 1

2
=



α−
i± 1

2

if 0 ≤ S−
i± 1

2

,

α−
i± 1

2

if S−
i± 1

2

≤ 0 ≤ S∗
i± 1

2

,

α+
i± 1

2

if S∗
i± 1

2

≤ 0 ≤ S+
i± 1

2

,

α+
i± 1

2

if 0 ≥ S+
i± 1

2

.

(c) The VFRoe approximate Riemann solver

This approach was introduced by Gallouët and Masella (1996) and de-

scribed in detail by Andrianov, Saurel and Warnecke (2003) for the seven-
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equation model in one dimension. Consider the Riemann problem of the

hyperbolic system (4.57) in terms of primitive variables given by:

∂w

∂t
+ A(w)

∂w

∂x
= 0, (4.66)

where w, the vector of primitive variables for the seven-equation model is

given by (4.42) and A(w) is the Jacobian matrix given by (4.43). Consider

this Riemann problem with the following initial data:

w(x, 0) =

wL x ≤ 0,

wR x > 0.
(4.67)

The Jacobian matrix A(w) is computed in the average state using equa-

tion (4.67):

w̄ =
wL + wR

2
. (4.68)

The intermediate state in the solution of the Riemann problem (4.67)

and (4.66) is given by:

w∗ = wL +
∑
λi<0

aiKi, (4.69)

where the eigenvalues λi and the corresponding eigenvectors Ki of the

matrix A(w̄) are given by (4.44) and (4.45) and ai are the coefficients of

eigenvectors decomposition of wR −wL and are determined by:

wR −wL =
7∑
i=1

aiKi. (4.70)

For the Jacobian matrix A(w) these coefficients are given by the following

expressions:

a1 = δ1/K11,

a2 =
δ3ρ1c1 + δ4 − a1(K13ρ1c1 + K14)

2ρ1c21
,

a3 =
−δ3ρ1c1 + δ4 + a1(K13ρ1c1 −K14)

2ρ1c21
,

a4 = δ2 − a1K12 − ρ1(a2 + a3), (4.71)

a5 =
δ6ρ2c2 + δ7 − a1(K16ρ2c2 + K17)

2ρ2c22
,

a3 =
−δ6ρ2c2 + δ7 + a1(K16ρ2c2 −K17)

2ρ2c22
,

a4 = δ5 − a1K15 − ρ2(a5 + a6).
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where K11 are the components of K1 and δk is the kth component of:

wR −wL = (δ1, . . . , δ7)
T .

The discretisation of the volume fraction in time and space for the equa-

tion (4.57a) is written as follows:

αn+1
i = αni − uint

∆t

∆x

(
α∗
i+ 1

2
− α∗

i− 1
2

)
, (4.72)

and in space in the equation (4.57b) according to VFRoe is written as

follows:

∆i =
1

∆x

(
α∗
i+ 1

2
− α∗

i− 1
2

)
. (4.73)

After solving the hyperbolic part of the model, following the Strang tech-

nique (4.46), the solution of the velocity and pressure relaxations is car-

ried out to restore the velocities and pressures at the interface. Finally

the source term is solved to consider the area variation.

4.4.3 Relaxation and source terms operator

The second step following the Strang splitting (4.46) is to solve the relaxation and

source terms operator (Saurel and Abgrall, 1999a). The velocity and pressure re-

laxation processes are assumed to be instantaneous. They are important steps in

the numerical solution to fulfill the boundary conditions at the interface that sepa-

rates two fluids. The complete solution is obtained by solving the following ordinary

differential equations (ODE):

dQ

dt
= DV +DP +DS, (4.74)

where Q is defined as:

Q = [α1, α1ρ1, α1ρ1u1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2E2]
T , (4.75)

and DV , DP and DS are the velocity relaxation term, pressure relaxation term and

area variation source term, respectively. They are given by:

DV =



0

0

λ(u2 − u1)
uintλ(u2 − u1)

0

−λ(u2 − u1)
−uintλ(u2 − u1)


, DP =



µ(p1 − p2)
0

0

pintµ(p1 − p2)
0

0

−pintµ(p1 − p2)


, (4.76)
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and DS =



0

− 1

A

∂A

∂x
α1ρ1u1

− 1

A

∂A

∂x
α1ρ1u

2
1

− 1

A

∂A

∂x
α1u1(ρ1E1 + p1)

− 1

A

∂A

∂x
α2ρ2u2

− 1

A

∂A

∂x
α2ρ2u

2
2

− 1

A

∂A

∂x
α2u2(ρ2E2 + p2)



. (4.77)

Equation (4.77) is considered in the solution only when area variation is examined.

Solution of the ODE (4.74) is obtained by solving the three integration operators

associated with the corresponding vectors (4.76) and (4.77) in succession. Then the

solution of (4.74) is given by:

Qn+1
i = L4tV L4tP L4tS Qn

i . (4.78)

Velocity relaxation

In order to enable the velocity relaxation process to take place instantaneously, the

velocity relaxation parameter λ has to be infinite value. Consider the ODE:

dQ

dt
= DV . (4.79)

The mass and momentum equations for each phase in the above system (4.79) are

combined to give a resultant equation. Integration of the resultant equation yields

the following relation for the velocity relaxation:

u∗1 = u∗2 = u∗int =
α0
1ρ

0
1u

0
1 + α0

2ρ
0
2u

0
2

α0
1ρ

0
1 + α0

2ρ
0
2

, (4.80)

where the variables with (∗) and (0) represent the states after and before the re-

laxation process, respectively. Since velocity relaxation terms are present in the

energy equation of the system (4.79), update of the internal energy for both phases

is necessary after the velocity relaxation process, for more details see (Saurel and

Abgrall, 1999a; Saurel and Le Métayer, 2001), using the following relations:

e∗1 = e01 +
1

2

(
u∗1 − u01

)2
, (4.81a)

e∗2 = e02 +
1

2

(
u∗2 − u02

)2
. (4.81b)
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Pressure relaxation

The pressure relaxation process has to take place instantaneously as it happens for

the velocity relaxation process. Consequently, the pressure relaxation parameter µ

has to be infinite. Consider the following ODE for phase 1:

dQ

dt
= DP . (4.82)

Combining the mass, momentum and energy equations one obtains:

∂e1
∂t

= − pint
α1ρ1

∂α1

∂t
. (4.83)

Its integration yields:

e∗1 = e01 −
pint
α1ρ1

(α∗1 − α0
1). (4.84)

A similar equation for the second phase can be obtained. The pressures for both

phases are obtained from their respective EOS and the iterative procedure (proce-

dure 4) given in Lallemand and Saurel (2000) is used to achieve the equilibrium

pressure.

Area variation source term

This source term accounts for variations in flow variables as the cross-section of the

tube is changing as a function of its length. The effect of a variable cross-sectional

area on the flow variables is determined with the help of the EOS at each time step

by solving the following ODE:

dQ

dt
= DS. (4.85)

This source term is enabled only when considering flows through tubes with varying

cross-sectional areas.

4.5 Numerical results - Verification of the method-

ology

In this section the presented test problems are selected to assess the numerical per-

formance of the developed code dealing with either single or two-phase compressible

flow test problems, where the cross-section of the tube is considered either constant

or varying. In the first four test cases the cross-section is constant. Among them,

the first two cases are single-phase problems, i.e. gas-gas and solid-solid; the third

and fourth are two-phase problems. The last two test cases in this section are a

single-phase and a two-phase problem through a tube with a varying cross-sectional

area, i.e. convergent-divergent nozzle.
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In this section various EOSs have been employed in one-dimension to show the

generality and the oscillation-free feature of the current method. These EOSs are the

ideal gas (4.14), shock wave (4.18), stiffened gas (4.21), Cochran-Chan (4.34) and

Jones-Wilkins-Lee (4.39). The code is built to work with three different approximate

Riemann solvers, i.e. the HLL, HLLC and VFRoe, with the second order accuracy

MUSCL scheme, employing the minmod slope limiter (Toro, 2009).

 

 

Figure 4.2: Shock tube illustration

The common assumption in all the conducted test problems, which in fact is

numerically necessary for all the two-component diffuse interface methods, is the

presence of a negligible volume fraction ε = 10−8 of the other fluid in the fluid

considered as a pure fluid, as shown in Figure 4.2. All test problems are simulated

either using the same type of EOS or different type of EOS governing each phase.

The simulations have been carried out using the CFL = 0.9 unless otherwise men-

tioned. For the presented simulations the results were compared with either the

exact solution or a fine grid solution, especially for those cases which don’t have an

exact solution. It can be noticed that no spurious pressure oscillations appeared at

the material interface for all the test problems that have been conducted.

4.5.1 Gas-gas test

This test considers a single-phase air-air shock tube which was proposed by Lax

(1954). The gas is governed by the ideal gas (IG) EOS (4.14). This test was chosen

to check the correctness of the developed two-phase code in a single-phase regime

and the outcome of this test will be compared with published single-phase results.

Therefore, the left and right sides of the tube are filled with the same constituent:

air, γ = 1.4, at different initial states, which are given in Table 4.3. The separating

interface, i.e. the discontinuity, is located at x = 0.5 m. The air on the left side is

given an initial velocity to the right.

As the interface separating the two parts of the tube is instantaneously removed

at t = 0 s, three different waves are generated due to the difference in pressure.
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Table 4.3: Initial data for gas-gas test 4.5.1

State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 0.445 0.7 3.53 1− ε 0.5 0.7 3.53 ε

Right 0.445 0 0.575 ε 0.5 0 0.575 1− ε
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Figure 4.3: Gas-gas test example 4.5.1: Numerical and exact solutions: Current
(left) and Kurganov and Tadmor (2000) (right) results are at t = 0.16 s for: (a)
pressure, (b) velocity and (c) mixture density.

These waves represent the solution of this Riemann problem, two of which are right

going, i.e. shock and contact waves, and a left going rarefaction wave. The flow

domain is divided into four different state regions by these three waves as shown in

Figure 4.3 at t = 0.16 s. The first region is on the far left which is enclosed between
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the rarefaction wave and the beginning of the tube. In this region the pressure, den-

sity and velocity have not changed at this instant (remain at their initial values).

The second region is enclosed between the rarefaction wave (across which all flow

properties change continuously) and contact discontinuity (across which the pres-

sure and velocity remain constant but the density changes discontinuously). The

first region is on the leftmost side which is enclosed between the rarefaction wave

and the beginning of the tube. In this region the pressure, density and velocity have

not changed at this instant (remaining at their initial values). The second region

is enclosed between the rarefaction wave (across which all flow properties change

continuously) and contact discontinuity (across which the pressure and velocity re-

main constant but the density changes discontinuously). In this region the pressure

and density have decreased whereas the velocity has increased. The third region

is enclosed between the contact discontinuity and shock wave. In this region the

pressure and velocity have the same value of the second region whereas the density

has decreased. The fourth region which is at the far right of the tube, downstream

from the shock wave. In this region the pressure, density and velocity are at their

initial values as the flow properties have not changed.

The current results are shown in Figure 4.3 (left column) using the HLLC approx-

imate Riemann solver with CFL = 0.6. The current results are in good agreement

when compared with the exact solution taken from Kurganov and Tadmor (2000).

The results are also in good agreement with the results presented in the same ref-

erence, see Figure 4.3 (right column), using a fully discrete central scheme for a

single-phase flow with the same mesh, 200 cells.

The developed numerical application is originally constructed to deal with two-

phase compressible flows. Here the volume fractions α1 and α2 (α1 + α2 = 1) allow

to trace the interface between the zones of different thermodynamic properties as

shown in Figure 4.4.
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Figure 4.4: Gas-gas test example 4.5.1: Numerical and exact solutions results are
at t = 0.16 s for: (d) volume fraction.
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4.5.2 Solid-solid test

This test is a single-phase solid-solid test problem that is concerned with an impact of

an aluminium slab, travelling from right to left with a high speed, with a stationary

aluminium slab (Shyue, 2001). This test was conducted here to show that the

developed code is able to simulate single solid phase problems governed by the

shock wave EOS (4.18). The initial states of the left and right aluminium slabs are

given in Table 4.4. The computational domain is 1 m long and the initial interface

between them is located at x = 0.5 m. The shock wave EOS (4.18) is used to model

the thermodynamic behaviour of both slabs. The shock wave EOS parameters for

aluminium are ρ0 = 2785 kg/m3, c0 = 5328 m/s, s = 1.338, γ = 2 and q = 1.

Table 4.4: Initial data for solid-solid test 4.5.2
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 4000 0 7.93× 109 1− ε 2785 0 7.93× 109 ε

Right 4000 −2000 1× 105 ε 2785 −2000 1× 105 1− ε
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Figure 4.5: Solid-solid test example 4.5.2: Comparison between current numerical
solution and fine grid solution at t = 50µs for: (a) pressure, (b) velocity, (c) mixture
density and (d) volume fraction.

The solution of this Riemann problem consists of a left going shock wave propagating

through the stationary slab, another right going shock wave propagating through
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the moving slab and a contact wave moving to the left. The results of the numerical

solution using the HLL approximate Riemann solver are obtained at t = 50µs. The

results of the pressure (a), velocity (b), mixture density (c) and the volume fraction

of the right moving slab (d) are shown in Figure 4.5, these results are computed using

400 cells. As the test does not have an exact solution, the results are compared with

a fine grid solution. The results are in good agreement with the reference results.

4.5.3 Interface advection test

This is a multiphase test problem presented in Petitpas et al. (2007), where two

different gases are considered. It is examined to demonstrate the capability of the

code to preserve a contact discontinuity moving with uniform velocity and pressure

profiles. The ability to deal with various EOSs, written in the general form of the

Mie-Grüneisen EOS (4.12), is also examined. The initial conditions are given in

Table 4.5. The test is conducted in a computational domain of 1 m long. This

Table 4.5: Initial data for advection test 4.5.3
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [GPa] [kg/m3] [m/s] [GPa]

Left 2182 1000 20 1− ε 100 1000 20 ε

Right 2182 1000 20 ε 100 1000 20 1− ε

domain is divided into two equal chambers, the left chamber is filled with a real gas

governed by the JWL EOS (4.39) and the right chamber is filled with air governed

by the SG EOS (4.21). The JWL EOS parameters for the real gas are as follows:

ρo = 1590 kg/m3, A1 = 353.91× 109 Pa, R1 = 4.15, A2 = 3.45× 109 Pa, R2 = 0.9,

Cv = 815 J/(kg· K), γ = 1.35 and Cek = 0 and the air is considered as an ideal gas

whose γ = 1.4 and π = 0.

The results for the advection test representing pressure (a), velocity (b) and

mixture density (c) are shown in Figure 4.6. They are obtained at time t = 270 µs

using the VFRoe Riemann solver. The results show that the method preserves

the contact discontinuity (interface) between two different gases, each of them is

governed with a different EOS, as the flow evolves at a uniform velocity and pressure.

A good agreement is achieved compared to the exact solution taken from Petitpas

et al. (2007). The test is also conducted by employing other EOSs and no pressure

and velocity oscillations are noticed in the results of all EOSs.

4.5.4 Copper-explosive impact test

This test problem considers an impact of a copper plate with a solid inert explo-

sive. This test has been examined by many researchers (see for example, Saurel

and Abgrall, 1999a; Shyue, 2001). In this test both materials are governed by the
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Figure 4.6: Advection test example 4.5.3: VFRoe solver results (circles) compared
with exact (line) from Petitpas et al. (2007) at t = 270 µs for: (a) pressure, (b)
velocity, (c) mixture density and (d) volume fraction.

Cochran-Chan (CC) EOS (4.34). Both materials are at atmospheric pressure with

the initial densities and EOS parameters given in Table 4.6. The problem is con-

ducted in a computational domain of 1 m length and the material interface initially

is located at x = 0.5 m. The copper plate which has an initial velocity of 1500 m/s

to the right is put on the left hand side and the explosive material which is at rest

is put on the right hand side of the computational domain.

Table 4.6: Materials properties for the Cochran-Chan EOS.

parameter Copper Explosive

ρ0, [kg/m3] 8900 1840

Cv, [J/kg· K] 393 1087

A1, [Pa] 1.45667× 1011 1.2871× 1010

A2, [Pa] 1.47751× 1011 1.34253× 1010

E1 2.994 4.1

E2 1.994 3.1

T0 300 300

γ 3 1.93

The solution of this problem comprises of two shock waves and a contact discon-
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Figure 4.7: Copper-explosive test example 4.5.4: Comparison between current nu-
merical results and exact solution from Saurel and Abgrall (1999a) at t = 85 µs for:
(a) pressure, (b) velocity, (c) mixture density and (d) temperature.

tinuity wave. The first shock wave is propagating to the right in the inert explosive,

and the second is propagating to the left in the copper as shown in Figure 4.7. It

can be observed, from the same figure, that the contact discontinuity moves to the

right. Figure 4.7 shows the results of the HLL solver for pressure (a), velocity (b)

and mixture density (c) using 200 cells. The results are compared with the exact

solution at time t = 85 µs. A good agreement was achieved compared with the

results of Saurel and Abgrall (1999a) and Shyue (2001).

4.5.5 Single-phase flow through C-D nozzle

All previous test problems were concerned with flows through a tube of a con-

stant cross-sectional area. In this test problem a compressible flow of a single-phase

through a convergent-divergent nozzle is considered, such a flow has a well know

behaviour of flow properties. This test is conducted here as a verification test to as-

sess the model (4.11) which is equipped with the source term that accounts for area

variation. It is expected that using the two-phase flow model with the additional

relaxation and source terms in the case of the same constituents, should produce

exactly the same behaviour for flow parameters as a single-phase flow model does.

This test considers a flow of pure air as a working fluid, the air is governed by the

IG EOS (4.14). The air enters the nozzle shown in Figure 4.8 at a pressure of a

fixed value (upstream reservoir pressure) and exits with different values of pressure
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(back pressure) at each run. The test is performed to compare the distribution of

pressure and Mach number along the nozzle with theoretical data for such flows (see

for example, Anderson, 1990). The nozzle area profile is governed by the following

equation:

y = 0.7 + 0.3 cos(2πx). (4.86)

Where the throat is designed to be at x = 0.5 m as shown in Figure 4.8.

The initial data for the air entering and exiting the nozzle are presented in

Table 4.7. The selection of variable exit pressures: 1 × 109, 9.995 × 108, 8.5 × 108

and 4× 107 Pa have been considered in the computations.

Table 4.7: Initial and boundary conditions for a single-phase flow through the C-D
nozzle.

Physical properties Air in Air out

Density, [kg/m3] 50 50

Velocity, [m/s] 0.0 0.0

Pressure, [Pa] 109 variable

The results of the VFRoe Riemann solver for both pressure and Mach number

distributions through the convergent-divergent nozzle using 1000 cells are presented

in Figure 4.9. It is observed that when the exit (back) pressure is set equal to

1 × 109 Pa, which is equal to the reservoir pressure, the values for pressure and

velocity remain unchanged; no flow through the nozzle. By reducing the back pres-

sure to 9.995× 108 Pa the air starts to flow downstream, the flow in this condition

is a subsonic flow (M<1) as shown in the right hand side of Figure 4.9. It is ob-

served that the minimum pressure at the throat is above the critical pressure value

(0.528) which is indicated by the horizontal green dashed line on the left hand side

of Figure 4.9. When the back pressure is reduced further, for example 9.5 × 108 Pa,
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Figure 4.9: Single-phase flow through a convergent-divergent nozzle at variable exit
pressure. Results for: pressure (left) and Mach number (right).

the flow at the throat becomes sonic (M = 1) with the critical pressure value. The

flow downstream the throat becomes supersonic (M>1) and the pressure falls below

the critical value where a shock wave is formed at about x = 0.593 m. The flow

downstream the shock returns to the subsonic flow where the pressure builds up to

the exit pressure value. The position of the shock moves downstream as the back

pressure is reduced further. For example, when the back pressure is reduced to

8.5× 108 Pa the position of the shock moves to x = 0.654 m. This movement of the

shock position continues downstream as the back pressure is reduced continuously.

When exit pressure is equal to 4 × 107 Pa the shock formed outside the exit plane

of the nozzle and any further reduction of the exit pressure will have no effect on

the flow through the nozzle.

The results shown in Figure 4.9 are in good agreement with the reference data. It

can be noticed that the values of Mach number equal unity at the throat x = 0.5 m

for all supersonic flows and the corresponding values for the pressure equal to the

critical value 0.528, which are exactly the same as the theoretical values reported in

many gasdynamics textbooks.

4.5.6 Two-phase flows through C-D nozzle

This is a two-component flow problem that considers flows of an air-water mixture

through the convergent-divergent nozzle shown in Figure 4.8 with various air-water

ratios. While the air is governed by the IG EOS (4.14) the water is governed by

the SG EOS (4.21) and is treated as a compressible fluid at high pressure; the SG

EOS parameters for water are γ = 4.4 and π = 6× 108 Pa. This test is designed to

investigate the behaviour of the two-component flow parameters through the C-D

nozzle. Two numerical experiments have been performed using the same Riemann

solver and number of cells as in the previous test with a reservoir pressure of 109 Pa:

The first experiment considers a flow of air-water mixture with fixed ratio of
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50% air and 50% water. The initial data are given in Table 4.8. The selection of

variable back pressures: 1×109, 8.5×108 and 1×108 Pa have been examined in the

computations. The steady state results for pressure, Mach number, mixture density

and velocity for this test are presented in Figure 4.10. It is known that for the case

of isentropic compressible gas flow through a convergent-divergent nozzle, the sonic

flow occurs at the minimum cross-sectional area, i.e. the throat. As shown in the

Figure 4.10, the two-component flow behaves qualitatively like the single-phase flow

as described in the previous test, however, larger quantitative differences appear

for the air-water mixture of 50% air with respect to the sonic flow parameters,

i.e. critical pressure and Mach number. The position of the sonic flow moved

downstream from the throat into the divergent part of the nozzle.
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Figure 4.10: Air-water mixture (50% air) flow through convergent-divergent nozzle
at variable exit pressure. Results for: (a) pressure, (b) Mach number, (c) mixture
density and (d) velocity.

Table 4.8: Initial and boundary conditions for mixture flow through the C-D nozzle.
Physical properties Water Air

Density, [kg/m3] 1000 50
Velocity, [m/s] 0.0 0.0
Pressure, [Pa] 109 variable
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The second experiment involves a flow of air-water mixture with various air

ratios of 25%, 50% and 75% at a fixed exit pressure of 8.5× 108 Pa. The results for

the distribution of pressure, Mach number, mixture density and velocity along the

nozzle are presented in Figure 4.11. It can be observed that the distribution of the

flow parameters is again qualitatively like the single-phase flow for all investigated

air-water ratios. However, a quantitative variation can be noticed in the values of

the flow parameters. Moreover, the location of the sonic flow moved downstream

from the throat as the liquid content is increased.
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Figure 4.11: Air-water mixture flow through convergent-divergent nozzle with vari-
able air-water ratios at pexit = 8.5 × 108 Pa. Results for: (a) pressure, (b) Mach
number, (c) mixture density and (d) velocity.

4.6 Numerical results - Comparison between solvers

In this section comparisons between the HLL, HLLC and VFRoe approximate Rie-

mann solvers have been investigated using various test problems. The first test is

a single-phase liquid-liquid test where the SG EOS is employed to govern water.

The second test is a two-phase helium-air test where the IG EOS is employed to

govern both phases. The last test in this section is a standard water-air test problem

where water is governed by the SG EOS and air is governed by the IG EOS. The

comparisons are done in terms of L2 error norm, time steps and CPU time required
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to obtain the solution.

4.6.1 Liquid-liquid test

This test is a single-phase water-water shock tube problem considered in Gallouët,

Hérard and Seguin (2002). This test was chosen to assess the developed code when

dealing with single-phase problems governed by SG EOS (4.21). The test consists of

a tube 1 m long divided into two parts separated by an interface located at x = 0.5 m.

The initial conditions, i.e. density, velocity, pressure and volume fraction, of the left

and right states are given in Table 4.9. The only difference between the left and right

states was, that the left hand side had a higher pressure. The SG EOS parameters

for water are γ = 4.4 and π = 6× 108 Pa.

Table 4.9: Initial data for liquid-liquid test 4.6.1

State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 1× 103 2000 5× 108 1− ε 1× 103 2000 5× 108 ε

Right 1× 103 2000 1× 106 ε 1× 103 2000 1× 106 1− ε

As the interface separating the two parts of the tube is instantaneously removed

at t = 0 s, three different waves are generated due to the high difference in pressure.

These waves represent the solution of this Riemann problem, two of which are right

going, i.e. shock and contact waves, and a left going rarefaction wave. The flow

domain is divided into four different state regions by these three waves as shown

in Figure 4.12 at t = 80 µs. These regions are as described in the gas-gas test,

subsection 4.5.1.

Table 4.10: The number of time steps and the CPU time for liquid-liquid test using
SG EOS

Mesh HLL HLLC VFRoe

cells Time step CPU (s) Time step CPU (s) Time step CPU (s)

100 42 0.01 42 0.01 42 0.02

1000 378 0.94 378 1.10 378 1.65

5000 1871 23.20 1871 27.41 1871 40.76

10000 3738 92.25 3738 108.61 3738 162.30

25000 9338 623.95 9338 719.24 9338 1064.85

50000 18671 2637.61 18671 3172.63 18671 4514.25

The results for this test are obtained using the HLL, HLLC and VFRoe approxi-

mate Riemann solvers with the SG EOS. Figure 4.12 shows the results at the instant

t = 80 µs for pressure (a), velocity (b), mixture density (c) and volume fraction (d)
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Figure 4.12: Liquid-liquid test example 4.6.1: Numerical and exact solutions using
SG EOS are at t = 80 µs for: (a) pressure, (b) velocity, (c) mixture density and (d)
volume fraction.

using the three solvers. It can be seen that all three solvers gave almost the same

results which are in good agreement with the exact solution using a relatively low

resolution of 200 cells.

The number of time steps (n) and the CPU time needed by the code to obtain
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Figure 4.13: Liquid-liquid test example 4.6.1: Scaling order for the HLL, HLLC and
VFRoe algorithms.
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the solution for different mesh resolutions are given in Table 4.10. All solvers with

the SG EOS need the same number of time steps to obtain the solution for this test

problem. However, it can be observed that the cheapest solver is the HLL solver,

whereas the most expensive solver is the VFRoe for all mesh resolutions, where the

HLLC needs 14.74 % more CPU time than the HLL solver and the VFRoe needs

78.16 % more CPU time than the HLL solver. The scaling order for the HLL, HLLC

and VFRoe algorithms for this test are 1.0156, 1.0403 and 1.0033, respectively, as

shown in Figure 4.13.

1e-05 0.0001 0.001 0.01

Cell size, m

1e+05

1e+06

1e+07

1e+08

L
2
 e

rr
o
r 

n
o
rm

, 
p
re

ss
u
re

, 
P

a

HLL SG-SG EOSs

HLLC SG-SG EOSs

VFRoe SG-SG EOSs

a)

1e-05 0.0001 0.001 0.01

Cell size, m

0.1

1

10

L
2
 e

rr
o
r 

n
o
rm

, 
v
el

o
ci

ty
, 
m

/s

HLL-SG-SG EOSs

HLLC-SG-SG EOSs

VFRoe-SG-SG EOSs

b)

1e-05 0.0001 0.001 0.01

Cell size, m

0.1

1

10

L
2
 n

o
rm

, 
m

ix
tu

re
 d

en
si

ty
, 
k
g
/m

3

HLL-SG-SG EOSs

HLLC-SG-SG EOSs

VFRoe-SG-SG EOSs

c)

1e-05 0.0001 0.001 0.01

Cell size, m

0.001

0.01

0.1

L
2
 n

o
rm

, 
v
o
id

 f
ra

c
ti

o
n
s

HLL-SG-SG EOSs

HLLC-SG-SG EOSs

VFRoe-SG-SG EOSs

d)

Figure 4.14: Liquid-liquid test example 4.6.1: L2 error norm spatial convergence for:
(a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

The results have been used to calculate and to compare the accuracy of the

three solvers by calculating the error norm (L2) for these solvers using the following

formula:

L2 =

√∑N
i (xi,ex − xi,num)2

N
. (4.87)

Where N is the number of cells used in the computations, the subscript ex represents

the values of the exact solution of the property x (could be pressure, velocity, etc.)

and num represents the values of the same property obtained from the numerical

solution. The error norm L2 is drawn against the cell size for the HLL, HLLC and

VFRoe solvers using the SG EOS. The results of spatial convergence are obtained

using a very small time step of 2.38×10−8 s for various cell sizes with the grid

refinement factor (r=5) (r = ∆xk+1/∆xk = ∆xk+2/∆xk+1 = ∆xk+3/∆xk+2 = · · · ).
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The spatial convergence for this test is shown in Figure 4.14 for the pressure, velocity,

mixture density and volume fraction. The precision of these solvers increases when

the number of mesh cells increases.

The order of accuracy can be calculated using the following equation (de Vahl Davis,

1983):

P =

ln

(
L2(k+1)

L2(k)

)
ln(r)

(4.88)

The order of accuracy of the HLL, HLLC and VFRoe algorithms for the results

of the liquid-liquid test using the SG EOS are given in Tables 4.11-4.13. It can

be observed that the order of accuracy is less than 2 due to the presence of the

discontinuities in the solution. The algorithms used in this work are second order

accurate in smooth solutions as pointed in LeVeque (1992, 2004).

Table 4.11: Order of accuracy of the HLL for liquid-liquid test using SG EOS

Mesh L2 Order

cells p ρ p ρ

200 15243362.84 8.139966

1000 7159231.25 4.607308 0.46957 0.35363

5000 2148989.67 1.88168 0.74772 0.55639

25000 646537.29 0.474995 0.74630 0.85534

Table 4.12: Order of accuracy of the HLLC for liquid-liquid test using SG EOS

Mesh L2 Order

cells p ρ p ρ

200 15222668.74 8.100902

1000 7154702.837 4.600686 0.46912 0.35153

5000 2147424.75 1.88054 0.74778 0.55588

25000 646095.74 0.474834 0.74627 0.85517

Table 4.13: Order of accuracy of the VFRoe for liquid-liquid test using SG EOS

Mesh L2 Order

cells p ρ p ρ

200 15222666.60 8.10102

1000 7154702.14 4.6007 0.46912 0.35154

5000 2147423.85 1.88047 0.74778 0.55590

25000 646096.00 0.47481 0.74627 0.85518
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Figure 4.15: Liquid-liquid test example 4.6.1: Temporal convergence for the HLL,
HLLC and VFRoe algorithms.

The temporal convergence is obtained using a fine mesh resolution of 12800 cells

and various time steps. The order of temporal convergence for the HLL, HLLC and

VFRoe solvers are 1.1401, 1.1783 and 1.1757 as shown in Figure 4.15, respectively.

4.6.2 Helium-air test

This is a two-phase test problem, where two different gases are considered. Helium

is filled in the left chamber at a higher pressure than the air, which occupies the

right chamber. Both gases are separated by an interface located at x = 0.2 m. In

this test the SG EOS (4.21) is employed to govern air. This EOS reduces to the IG

EOS (4.14) when the parameter π equals to zero. The EOS parameters for helium

γ = 1.667, π = 0 Pa and for air γ = 1.4, π = 0 Pa. The initial conditions are given

in Table 4.14.

Table 4.14: Initial data for helium-air test 4.6.2
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 3.984 27.355 1000 1− ε 0.01 27.355 1000 ε

Right 3.984 0 1 ε 0.01 0 1 1− ε

At the instant t = 0 s the helium was given an initial velocity to the right, this

velocity is increased due to the high pressure and density difference and at the mean

time the pressure and mixture density are decreased as shown in Figure 4.16. Three

waves are generated during the time of evolution. These waves which represent the

solution of the Riemann problem are right going shock and contact discontinuity

waves and a left going rarefaction wave.
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Figure 4.16: Helium-air test example 4.6.2: Comparion between HLL, HLLC and
VFRoe solvers at t = 0.01 s for: (a) pressure, (b) velocity, (c) mixture density and
(d) volume fraction.

The results for the helium-air test at time t = 0.01 s using the HLL, HLLC and

VFRoe approximate Riemann solvers are shown in Figure 4.16. The figure shows a

comparison between these solvers using 400 cells. It can be noted in Figure 4.16(b)

and (c) that the positions of the shock and that of the contact discontinuity predicted

by the HLLC and VFRoe are identical and are slightly different from that predicted

by the HLL solver. But they have almost the same offset, using 400 cells, from those

positions obtained from the exact solution. This offset is diminished as the mesh is

refined.

Table 4.15: The number of time steps and the CPU time for helium-air test using
IG EOS

Mesh HLL HLLC VFRoe

cells Time step CPU (s) Time step CPU (s) Time step CPU (s)

100 445 0.13 453 0.16 453 0.23

200 897 0.51 899 0.61 900 0.92

1000 4466 12.85 4468 15.46 4470 22.7

5000 22311 346.33 22313 417.02 22315 856.82

10000 44618 1442.83 44620 1705.5 44622 2410.92

25000 111538 9058.37 111540 10717.54 111542 15032.27
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The number of time steps and the CPU time needed by the code to obtain the

solution for the helium-air test using the SG EOS with different mesh resolutions

are given in Table 4.15. The number of time steps required for all solvers are almost

the same for all mesh resolutions. However, it can be seen that the cheapest solver

is the HLL solver. In order to obtain the solution the HLLC Riemann solver needs

20.06 % more CPU time than the HLL solver, whereas the VFRoe solver needs

71.21 % more CPU time than the HLL solver.
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Figure 4.17: Helium-air test example 4.6.2: Scaling order for the HLL, HLLC and
VFRoe algorithms.

The scaling order for the HLL, HLLC and VFRoe solvers for this test are 1.0231,

1.0231 and 1.0106, respectively, as shown Figure 4.17

A comparison of the L2 error norm is carried out for the three solvers for the

helium-air test. The results of the spatial convergence of the three solvers are shown

in Figure 4.18 for the pressure (a), velocity (b), mixture density (c) and volume

fraction (d). It can be observed that the VFRoe solver produced results with lower

error than the HLL and HLLC solvers which gave almost the same error for pressure

and mixture density fields as shown in Figure 4.18(a) and (c), respectively. The HLL

solver generates a higher error than the HLLC and VFRoe solvers at a mesh with

less than 300 cells for velocity as shown in Figure 4.18(b). The accuracy of the HLL

solver becomes almost as precise as that of the HLLC solver at about 200 mesh cells

for pressure and mixture density results. The HLL solver produced results with

lower values of L2 error norm for the volume fraction than that predicted by the

HLLC and VFRoe solvers as can be seen in Figure 4.18(d).

The order of accuracy of the HLL, HLLC and VFRoe algorithms for the results

of the helium-air test using the IG EOS are given in Tables 4.16-4.18. It can also

be observed that the order of accuracy is less than 2 due to the presence of the

discontinuities in the solution as mentioned in the previous test.
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Figure 4.18: Helium-air test example 4.6.2: L2 error norm spatial convergence for:
(a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

Table 4.16: Order of accuracy of the HLL for helium-air test using IG EOS

Mesh L2 Order

cells u ρ u ρ

200 6.84593 0.061796

1000 2.820868 0.023489 0.55088 0.60102

5000 0.906073 0.009419 0.70564 0.56778

25000 0.20995 0.002178 0.90855 0.90983

Table 4.17: Order of accuracy of the HLLC for helium-air test using IG EOS

Mesh L2 Order

cells u ρ u ρ

200 6.136048 0.060009

1000 2.739687 0.023251 0.50101 0.58912

5000 1.37312 0.009634 0.42919 0.54743

25000 0.433457 0.002256 0.71643 0.90200

The temporal convergence is obtained using a fine mesh resolution of 12800 cells

and various time steps. The order of temporal convergence for the HLL, HLLC and

VFRoe solvers are 0.9991, 1.104 and 1.3662, respectively, as shown in Figure 4.19.
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Table 4.18: Order of accuracy of the VFRoe for helium-air test using IG EOS

Mesh L2 Order

cells u ρ u ρ

200 5.503139 0.046535

1000 2.292497 0.02037 0.54409 0.51331

5000 0.933792 0.009108 0.55805 0.50012

25000 0.281199 0.002191 0.74572 0.88528
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Figure 4.19: Helium-air test example 4.6.2: Temporal convergence for the HLL,
HLLC and VFRoe algorithms.

4.6.3 Water-air test

This is a standard water-air shock tube which has been considered by many re-

searchers (see for example, Saurel and Abgrall, 1999a; Saurel and Le Métayer, 2001).

In this test the tube is 1 m long and is divided into two chambers. Liquid water is

filled in the left hand chamber at a higher pressure and air is filled in the right hand

chamber at atmospheric pressure. The interface separating water and air is located

at x = 0.7 m. Air is governed by the IG EOS (4.14), γ = 1.4 and water is governed

by the SG EOS (4.21), γ = 4.4 and π = 6 × 108. The initial data are provided in

Table 4.19.

Initially both fluids are at rest, however, as soon as the membrane separating

Table 4.19: Initial data for water-air test 4.6.3
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 1000 0 109 1− ε 50 0 109 ε

Right 1000 0 105 ε 50 0 105 1− ε
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Figure 4.20: Water-air test example 4.6.3: Numerical and exact solutions are at
t = 229µs for: (a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

the two fluids is removed, the water starts to move to the right due to the high

pressure and density differences. Consequently, right going strong shock and contact

discontinuity waves and a left going rarefaction wave are generated. The results for

the water-air shock tube test problem at time t = 229 µs are obtained from the

HLL, HLLC and VFRoe approximate Riemann solvers with 200 cells. It can be

noted from Figure 4.20 that the HLLC and VFRoe solvers gave almost the same

results which are better than that obtained from the HLL solver. At this resolution

the position for waves, i.e. shock and contact discontinuity, are away from the exact

position, these positions become closer as the mesh is refined. Figure 4.21 shows

the surface plots for the results of evolution of pressure (a), velocity (b), mixture

density (c) and volume fraction (d).

The number of time steps and the CPU times needed by the three solvers to

obtain the solution for different mesh resolutions are given in Table 4.20 using the

SG EOS. All solvers with this EOS need the same number of time steps to obtain

the solution for this test problem. However, it can be observed that the cheapest

solver is the HLL solver. The HLLC Riemann solver needs 29.47 % more CPU time

than the HLL solver to obtain the results, whereas the VFRoe solver needs 92.67 %

more CPU time than the HLL solver. The scaling order for the HLL, HLLC and

VFRoe solvers for the water-air test are 1.0343, 0.9976 and 1.0106, respectively, as

shown Figure 4.22
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Figure 4.21: Water-air test example 4.6.3: Two-dimensional surface plot for time
evolution for: (a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

The spatial convergence for the three solvers is demonstrated in Figure 4.23. As

the mesh is refined, the L2 error norm for the flow variables predicted by the three

solvers is decreased as shown in Figure 4.23. A comparison between the three solvers

is carried out in terms of pressure (a), velocity (b), mixture density (c) and volume

fraction (d) for the water-air test. It is apparent that the VFRoe solver gave better

results for pressure than the other solvers as shown in Figure 4.23(a). The results

from the HLLC solver for pressure becomes closer to that obtained from the VFRoe

solver at about 1000 cells. It can be seen from Figure 4.23(b), (c) and (d) that the

HLLC solver produced results for the velocity, mixture density and volume fraction

with lower L2 norm than the other solvers. For resolutions more than 400 cells

both the HLLC and VFRoe solvers have almost identical L2 norms for the velocity,

Table 4.20: The number of time steps and CPU time for water-air test using SG
EOS

Mesh HLL HLLC VFRoe

cells Time step CPU (s) Time step CPU (s) Time step CPU (s)

200 274 0.14 276 0.19 277 0.29

1000 1351 3.47 1354 4.74 1354 6.90

5000 6737 89.06 6739 126.35 6739 177.74

10000 13469 377.62 13471 507.94 13471 712.68

25000 33665 2309.82 33667 2632.61 33667 3959.52

50000 67325 9888.74 67327 11286.99 67327 18819.12
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Figure 4.22: Water-air test example 4.6.3: Scaling order for the HLL, HLLC and
VFRoe algorithms.

mixture density and volume fraction.
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Figure 4.23: Water-air test example 4.6.3: L2 error norm spatial convergence for:
(a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

The order of accuracy of the HLL, HLLC and VFRoe algorithms for the results

of the water-air test are given in Tables 4.21-4.23. It can also be observed that the

order of accuracy is less than 2 due to the presence of the discontinuities in the

solution as mentioned previously.
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Table 4.21: Order of accuracy of the HLL for water-air test using SG EOS

Mesh L2 Order

cells p α p α

200 15989621.1 0.06264

1000 4429353.16 0.033874 0.79760 0.38197

5000 1100104.052 0.015855 0.86543 0.47169

25000 210110.271 0.003845 1.02863 0.88025

Table 4.22: Order of accuracy of the HLLC for water-air test using SG EOS

Mesh L2 Order

cells p α p α

200 11234224.68 0.045806

1000 2612823.108 0.02882 0.90624 0.28789

5000 582268.5232 0.012944 0.93278 0.49734

25000 76257.27703 0.00313 1.26306 0.88205

Table 4.23: Order of accuracy of the VFRoe for water-air test using SG EOS

Mesh L2 Order

cells p α p α

200 8445342.897 0.048507

1000 2143944.264 0.029296 0.85183 0.31331

5000 537371.1865 0.013049 0.85975 0.50250

25000 91124.781 0.003145 1.10253 0.88410
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Figure 4.24: Water-air test example 4.6.3: Temporal convergence for the HLL, HLLC
and VFRoe algorithms.
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The temporal convergence is obtained using a fine mesh resolution of 10000 cells

and various time steps. The order of temporal convergence for the HLL, HLLC and

VFRoe solvers are 0.634, 0.7136 and 0.7476, respectively, as shown in Figure 4.24.

4.7 Numerical results - Comparison between EOSs

In this section comparisons between various EOSs are carried out using the three

solvers. The first test is a single-phase liquid-liquid test which is used to compare

the SG and Tait EOSs that are employed to govern water. The second test is a

two-phase helium-air test which is used to compare the IG and vdW EOSs that are

employed to govern air in case of gas-gas test. The third test is also a two-phase

water-air test which is used to compare the IG and vdW EOSs that are employed

to govern air in the case of the liquid-gas test. The last test is a water faucet test

which is used to compare the SG and Tait EOSs that govern water and IG and vdw

EOSs that govern air. The comparisons are done in terms of L2 error norm, number

of time steps and the CPU time required to obtain the solution.

4.7.1 Liquid-liquid test

The description of this test is given in subsection 4.6.1. The test is conducted here to

compare the SG (4.21) and Tait (4.27) EOSs using the HLLC approximate Riemann

solver. The initial conditions are given in Table 4.9. The parameters for the SG

EOS are γ = 4.4 and π = 6×108 Pa, whereas for the Tait EOS are given as γ = 7.15

and B = 3.31× 108 Pa.

Figure 4.25 shows a comparison between the SG and Tait EOSs for the liquid-

liquid test. The comparison is carried out at instant t = 80 µs using the HLLC

approximate Riemann solver with 25000 cells to show the difference between these

EOSs. The exact solution of the Riemann problem depends on the EOS governing

the fluids under consideration. It can be observed that both EOSs gave the same

behaviour. However, the SG EOS gave 4.65% and 0.075% more values than the Tait

EOS for the pressure and velocity, respectively. Whereas the Tait EOS gave 0.36%

more values than the SG EOS for the mixture density. Moreover, there is a slight

difference in the position of the shock wave, i.e. shock positions predicted by the

SG and Tait EOSs are 0.80492 m and 0.80018 m, respectively. In addition, a slight

difference can be noticed in the expansion rarefaction wave. However, no difference

can be observed in the position of the contact discontinuity, x = 0.6703 m, which

can be identified in Figures 4.25(c) and 4.25(d) for the mixture density and volume

fractions, respectively. These differences appear in the solution because the exact

solution depends on the EOS used to govern the flow components.

The number of time steps and CPU times needed by the HLLC solver to obtain

the solution for different mesh resolutions are given in Table 4.24 using the SG and
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Figure 4.25: Liquid-liquid test example 4.7.1: Comparison between the SG and Tait
EOSs using HLLC Riemann solver with 25000 cells at t = 80 µs for: (a) pressure,
(b) velocity, (c) mixture density and (d) volume fraction.

Table 4.24: The number of time steps and CPU time for liquid-liquid test using
HLLC.

Mesh SG EOS Tait EOS

cells Time step CPU (s) Time step CPU (s)

200 79 0.04 83 0.05

1000 378 1.10 395 1.15

5000 1871 27.41 1956 28.59

10000 3738 108.61 3908 113.48

25000 9338 719.24 9764 782.50

50000 18671 3172.63 19523 3252.63

Tait EOSs. There are slight differences between the two EOSs in the number of

time steps and CPU times required by this solver to obtain the solution for this

test problem, where the SG EOS needs 4.38 % number of time steps and 7.22 %

CPU time less than the Tait EOS. The scaling order for the HLLC solver using the

SG and Tait EOSs for the liquid-liquid test are 1.0403 and 1.0341, respectively, as

shown Figure 4.26.

The spatial convergence for the HLLC solver when water is either governed by

the Tait or SG EOSs is shown in Figure 4.27. The order of accuracy of the HLLC
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Figure 4.26: Liquid-liquid test example 4.7.1: Scaling order for the HLLC algorithm
using the SG and Tait EOSs.
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Figure 4.27: Liquid-liquid test example 4.7.1, L2 error norm spatial convergence for:
(a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

algorithm for the liquid-liquid test when water is either governed by the Tait or SG

EOSs are given in Tables 4.25 and 4.26. It can also be observed that the order of

accuracy is less than 2 due to the presence of the discontinuities in the solution as

mentioned previously.

The temporal convergence is obtained using a fine mesh resolution of 10000 cells

and various time steps. The order of temporal convergence for the HLLC solver when
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water is either governed by the SG or Tait EOSs are 1.1783 and 1.157, respectively,

as shown in Figure 4.28.

Table 4.25: Order of accuracy of the HLLC for liquid-liquid test using SG EOS

Mesh L2 Order

cells p ρ p ρ

200 15222668.74 8.100902

1000 7154702.837 4.600686 0.46912 0.35153

5000 2147424.75 1.88054 0.74778 0.55588

25000 646095.74 0.474834 0.74627 0.85517

Table 4.26: Order of accuracy of the HLLC for liquid-liquid test using Tait EOS

Mesh L2 Order

cells p ρ p ρ

200 11655835.9 7.793681

1000 4606985.564 4.186563 0.57674 0.38612

5000 2172355.456 1.903025 0.46710 0.48988

25000 601424.499 0.475616 0.79796 0.86154
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Figure 4.28: Liquid-liquid test example 4.7.1: Temporal convergence for the HLLC
algorithms using the SG and Tait EOS.

4.7.2 Helium-air test

This test is described in subsection 4.6.2. Two simulations were conducted, in the

first simulation air is governed by the IG EOS (4.14) and in the second simulation
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air is governed by the vdW EOS (4.30). The vdW EOS constant parameters are

γ = 1.4, a = 5 Pa m6/kg and b = 10−3 m3/kg. The initial conditions are given in

Table 4.14.
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Figure 4.29: Helium-air test example 4.7.2: Comparison between IG and vdW EOSs
at t = 0.01 s for: (a) pressure, (b) velocity, (c) mixture density and (d) volume
fraction.

A comparison between the IG (4.14) and vdW (4.30) EOSs is shown in Fig-

ure 4.29 using the VFRoe solver for pressure (a), velocity (b), mixture density (c)

and volume fraction (d). It is clear from this figure that both EOSs predict the same

position of the shock, contact discontinuity and rarefaction waves.

The number of time steps and the CPU time needed by the VFRoe solver to

obtain the solution for helium-air test using the IG (4.14) and vdW (4.30) EOSs

with different mesh resolutions are given in Table 4.27. It can be seen that the IG

EOS needs 2.58 % less CPU time than that required by the vdW EOS to obtain

the solution. The required number of time steps for both EOSs are almost the same

for all mesh resolutions. The scaling order for the VFRoe solver for the helium-

air test when air is governd by either the IG or vdW EOS are 1.0106 and 1.0135,

respectively, as shown Figure 4.30

A comparison of the L2 error norm is carried out for the IG (4.14) and vdW

(4.30) EOSs using the VFRoe solver. The results of spatial convergence are shown

in Figure 4.31 for pressure (a), velocity (b), mixture density (c) and volume fraction

(d). It can be seen that both EOSs have the same error L2 for the pressure (a),

velocity (b), mixture density (c) and volume fraction (d) for all mesh resolutions
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Table 4.27: The number of time steps and the CPU time for helium-air test using
VFRore

Mesh IG EOS vdW EOS

cells Time step CPU (s) Time step CPU (s)

100 453 0.23 453 0.23

200 900 0.92 900 0.95

1000 4470 22.70 4470 23.41

5000 22315 586.82 22313 609.76

10000 44622 2410.92 44620 2459.60

25000 111542 15032.27 111540 15581.51
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Figure 4.30: Helium-air test example 4.7.2: Scaling order for the VFRoe algorithm
using the IG and vdW EOSs.

as shown in Figure 4.31. The order of accuracy of the VFRoe algorithm for the

helium-air test when air is either governed by the IG or vdW EOSs are given in

Tables 4.28 and 4.29. It can also be observed that the order of accuracy is less than

2 due to the presence of the discontinuities in the solution as mentioned previously.

Table 4.28: Order of accuracy of the VFRoe for helium-air test using IG EOS

Mesh L2 Order

cells u α u α

200 5.503139 0.089501

1000 2.292497 0.041263 0.54409 0.48109

5000 0.933792 0.018097 0.55805 0.51212

25000 0.281199 0.00424 0.74572 0.90167
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Figure 4.31: Helium-air test example 4.7.2: L2 error norm spatial convergence for:
(a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.

Table 4.29: Order of accuracy of the VFRoe for helium-air test using vdW EOS

Mesh L2 Order

cells u α u α

200 5.502491 0.08953

1000 2.283164 0.041265 0.54655 0.48126

5000 0.886921 0.018111 0.58751 0.51167

25000 0.314617 0.004258 0.64395 0.89952

4.7.3 Water-air test

This test is described in subsection 4.6.3. Two different simulations were conducted

by employing the IG and vdW EOSs using different mesh resolutions. Air is governed

by the IG EOS (4.14) in the first simulation where γ = 1.4 and governed by the vdW

EOS (4.30) in the second one where γ = 1.4, a = 5 Pa m6/kg and b = 10−3 m3/kg.

Water is governed by the SG EOS (4.21) in both simulation where γ = 4.4 and

π = 6× 108 Pa. Initial data are given in Table 4.19.

Figure 4.32 shows the results of the VFRoe solver for pressure, velocity, mixture

density and volume fraction using a fine mesh resolution, in which the IG and vdW

EOSs are employed. It can be seen that all values for pressure, velocity, mixture

density and volume fraction obtained from both EOSs are the same. Moreover, the

positions for the rarefaction and contact discontinuity are identical but the position
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Figure 4.32: Water-air test example 4.7.3: Comparison between IG and vdW EOSs
at t = 229 µs for: (a) pressure, (b) velocity, (c) mixture density and (d) volume
fraction.

of the shock wave was not identical, the positions predicted by the IG and vdW

EOSs are x = 0.83378 m and x = 0.84112 m, respectively.

The number of time steps and the CPU time required by the VFRoe solver to

obtain the solution for the water-air test using different mesh resolutions for the IG

and vdW EOSs are given in Table 4.30. It can be seen that the vdW EOS needs

2.51% more number of time steps than the IG EOS and 6.51% more CPU time than

the IG EOS for this test problem. The scaling order for the VFRoe solver for the

Table 4.30: The number of time steps and the CPU time for water-air test using
VFRoe.

Mesh IG EOS vdW EOS

cells Time step CPU (s) Time step CPU (s)

200 277 0.29 144 0.30

1000 1354 6.90 1388 7.33

5000 6739 177.74 6913 187.63

10000 13471 712.68 13820 772.44

25000 33667 3959.52 34540 4879.39

50000 67327 18819.12 69075 17353.15
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water-air test when air is governd by either the IG or vdW EOS are 1.0075 and

1.0117, respectively, as shown Figure 4.30
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Figure 4.33: Water-air test example 4.7.3: Scaling order for the VFRoe algorithm
using the IG and vdW EOSs.

Figure 4.34 shows the L2 error norm for the water-air test, in which a comparison

between both EOSs is carried out for the results of pressure (a), velocity (b), mixture

density (c) and volume fraction (d). It can be observed that the solution converges
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Figure 4.34: Water-air test example 4.7.3: L2 error norm spatial convergence for:
(a) pressure, (b) velocity, (c) mixture density and (d) volume fraction.
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to the correct solution as the mesh is refined. The order of accuracy of the VFRoe

algorithm for the water-air test when air is either governed by the IG or vdW EOSs

are given in Tables 4.31 and 4.32. It can also be observed that the order of accuracy

is less than 2 due to the presence of the discontinuities in the solution as mentioned

previously.

Table 4.31: Order of accuracy of the VFRoe for water-air test using SG EOS

Mesh L2 Order

cells u α u α

200 41.43568 0.048507

1000 17.44702 0.029296 0.53744 0.31331

5000 7.286069 0.013049 0.54255 0.50250

25000 1.66605 0.003145 0.91679 0.8841

Table 4.32: Order of accuracy of the VFRoe for water-air test using vdW EOS

Mesh L2 Order

cells u α u α

200 30.8431 0.047177

1000 12.79782 0.029089 0.54655 0.30044

5000 6.223663 0.013092 0.44793 0.49605

25000 1.388419 0.003138 0.93212 0.88752

4.7.4 Water faucet test

This test is concerned with an incompressible two-phase flow. The test was proposed

by Ransom (1987) where both phases behave as incompressible, but here they are

treated with the current model (4.10) as fluids with a compressible behaviour. This

test has been used to demonstrate the ability of the seven-equation compressible

flow model (4.10) to solve incompressible flows. The test consists of a flow of water

column surrounded by still air in a vertical tube with open ends. The water leaves

the faucet and enters the tube, which is 12 m long, at a constant velocity u02 = 10 m/s

and volume fraction α0
2 = 0.8 and the air volume fraction is α0

1 = 0.2. The outflow

boundary conditions set constant at atmospheric pressure. Due to the effect of

gravity, the water accelerates and narrows as it moves down to maintain a constant

flow rate as shown in Figure 4.35. The initial conditions are as given in Table 4.33.

This test has become a benchmark test problem used to assess developed numerical

codes. Moreover, the problem has an analytical solution that could be derived by

assuming that the liquid is incompressible and neglecting the pressure variation in
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Table 4.33: Initial data for water faucet test 4.7.4
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

1 0 105 0.2 1000 10 105 0.8

liquid and interfacial drag between phases. The analytical solutions for the evolution

of the air volume fraction and water velocity are as follows:

α1(x, t) =

 1− α0
2u

0
2√

2gx+ (u02)
2

if x ≤ u02t+ 1
2
gt2,

α0
1 otherwise,

(4.89a)

u2(x, t) =

{ √
(u02)

2 + 2gx if x ≤ u02t+ 1
2
gt2,

u02 + gt otherwise,
(4.89b)

where, g is the gravity acceleration and t is the time.

      Initial state             Intermediate state             Steady state 

Figure 4.35: Water faucet test 4.7.4.

The constant parameters for water used for the Tait EOS (4.27) are γ =7.15,

B = 3.31 × 106 Pa and for the SG EOSs are γ = 4.4, π = 6 × 106 Pa as given

in Andrianov (2003). The constant parameters for the air used for the IG (4.14)

and vdW (4.30) EOSs are as given in the water-air test subsection 4.6.3. The grav-

itational effect is considered in the calculations for this test. However, the velocity

relaxation process is suppressed during the solution of this problem because each

fluid has a different velocity direction. Four different simulations are conducted for

this test using various EOSs to govern water and air. EOSs used in these simulations

are as given in Table 4.34. All results for this test are obtained at t = 0.4 s.

To show convergence of the results for this test, the same computations are

performed using various mesh resolutions as shown in Figure 4.36. The results are

shown for air volume fraction and water velocity for the first simulation, where the

SG EOS (4.21) is employed to govern water and the IG EOS (4.14) to govern air.
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Table 4.34: EOSs used to govern water and air for water faucet test 4.7.4.

Simulation Water Air

I SG EOS IG EOS

II SG EOS vdW EOS

III Tait EOS IG EOS

IV Tait EOS vdW EOS
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Figure 4.36: Water faucet test 4.7.4: Results using different mesh resolutions at
t = 0.4 s. EOSs are for simulation (I) see Table 4.34: (a) air volume fraction and
(b) water velocity.
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Figure 4.37: Water faucet test 4.7.4: Comparison between EOSs using 1500 cells
for: (a) Air volume fraction (b) Water velocity. Curve (I) water is governed by SG
EOS and air is governed by IG EOS. Curve (II) water is governed by SG EOS and
air is governed by van der Waals EOS. Curve (III) water is governed by Tait’s EOS
and air is governed by IG EOS. Curve (IV) water is governed by Tait’s EOS and air
is governed by van der Waals EOS.

The results of the HLL approximate Riemann solver are compared to the exact

solution. It can be noticed that a mesh of 100 cells gives a very diffusive solution,

by increasing the number of cells the solution is improved.

Increasing the resolution more than 1500 cells would not improve much the

results as an overshot starts to grow as shown in Figure 4.37, which shows the
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results for air volume fraction and water velocity for the four simulations using 1500

cells compared to the exact solution. The overshot appears in the results of air

volume fraction at 1500 cells, however, it does not appear in the results of the water

velocity. An overshot appears in the results of water velocity as the resolution is

increased more than 1500 cells but with less amplitude than that in the results of

the air volume fraction.

To compare the accuracy of the EOSs implemented in the four simulations, the

error norm (L2) is calculated using the equation (4.87). The results are shown in

Figure 4.38 for the air volume fraction (a) and water velocity (b). It can be noticed

that the error decreases as the number of cells increases. One can observe that the

results of all EOSs are exactly the same for mesh resolutions of 1000 cells or less,

however, when the number of cells is increased to 1500 cells the SG EOS governing

water have less air volume fraction error norm (L2) than that produced when water

is governed by the Tait EOS as shown in Figure 4.38(a). Moreover, one can notice

that the results obtained when air is governed by either the IG EOS or vdW EOS

are identical in this test.
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Figure 4.38: Water faucet test 4.7.4: L2 error norm spatial convergence for: (a)
Air volume fraction (b) Water velocity. Curve (I) water is governed by SG EOS
and air is governed by IG EOS. Curve (II) water is governed by SG EOS and air is
governed by van der Waals EOS. Curve (III) water is governed by Tait’s EOS and
air is governed by IG EOS. Curve (IV) water is governed by Tait’s EOS and air is
governed by van der Waals EOS.

The number of time steps and the CPU time for the first two simulations (I, II)

are given in Table 4.35 where water is governed by the SG EOS and air is either

governed by the IG EOS or the vdW EOS. It can be noticed that at relatively

low mesh cells both the IG and vdW EOSs need almost the same number of time

steps and CPU time to obtain the results. However, at higher mesh resolutions the

vdW EOS needs more number of time steps and CPU time to obtain the results.

The number of time steps and the CPU time for the last two simulations (III, IV)

are given in Table 4.36 where water is governed by the Tait EOS and air is either

governed by the IG EOS or the vdW EOS. One can observe the same notice for the
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Table 4.35: The number of time steps and the CPU run time for water faucet: (I)
water is governed by SG EOS and air is governed by IG EOS. (II) water is governed
by SG EOS and air is governed by van der Waals EOS.

Mesh I II

cells Time step CPU time (s) Time step CPU time (s)

100 2130 0.49 2133 0.55

200 4257 1.94 4263 2.19

400 8511 7.79 8637 8.82

800 17021 30.92 17589 35.98

1600 34042 123.78 35752 145.66

Table 4.36: The number of time steps and the CPU run time for water faucet:
(III) water is governed by Tait’s EOS and air is governed by IG EOS. (IV) water is
governed by Tait’s EOS and air is governed by van der Waals EOS.

Mesh III IV

cells Time step CPU time (s) Time step CPU time (s)

100 2130 0.49 2133 0.55

200 4257 1.94 4263 2.19

400 8511 7.74 8641 8.83

800 17020 30.92 17600 35.90

1500 34039 123.84 35783 146.40

first two simulations that at relatively low mesh cells both the IG and vdW EOSs

need almost the same number of time steps and CPU time to obtain the results.

However, once again at higher mesh resolutions the vdW EOS needs more number

of time steps and CPU time to obtain the results. Referring to the Tables 4.35 and

4.36, it can be observed that the SG and Tait’s EOS for water with either the IG or

vdW EOSs for air need the same number of time steps and CPU time to obtain the

solution for the water faucet test problem. The scaling order for the HLL solver for

the water faucet test when air is governd by either the IG or vdW EOS and water is

governd by the SG or Tait EOS are 1.0007, 0.9927, 1.0005, and 0.9927, respectively,

as shown Figure 4.39.

The order of accuracy of the HLL algorithm for the results of the water faucet

test when air is governd by either the IG or vdW EOS and water is governd by the

SG or Tait EOS are given in Tables 4.37-4.40. It can also be observed that the order

of accuracy is less than 2 due to the presence of the discontinuities in the solution

as mentioned previously.
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Figure 4.39: Water faucet test example 4.7.4: Scaling order for the HLL algorithm
using the IG and vdW EOSs for air (up) and the SG and Tait EOSs for water
(bottom).

Table 4.37: Order of accuracy of the HLL for water faucet test using IG-SG EOSs

Mesh L2 Order

cells u α u α

100 0.208358 0.039915605

200 0.112785 0.030388151 0.88549 0.39344

400 0.058858 0.023329027 0.93826 0.38138

800 0.030487 0.017742144 0.94904 0.39495

1600 0.020939 0.01264222 0.54200 0.48893
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Table 4.38: Order of accuracy of the HLL for water faucet test using vdW-SG EOSs

Mesh L2 Order

cells u α u α

100 0.206434 0.0398740

200 0.112399 0.0303946 0.87705 0.39163

400 0.058666 0.0233271 0.93803 0.3818

800 0.030246 0.0176981 0.95578 0.39841

1600 0.021131 0.0125256 0.51738 0.49872

Table 4.39: Order of accuracy of the HLL for water faucet test using IG-Tait EOSs

Mesh L2 Order

cells u α u α

00 0.20317553 0.039153354

200 0.109149204 0.029597803 0.89643 0.40365

400 0.05661945 0.0227722 0.94693 0.37822

800 0.029263268 0.017589967 0.95221 0.37252

1600 0.020962643 0.013809866 0.48127 0.34905

Table 4.40: Order of accuracy of the HLL for water faucet test using vdW-Tait
EOSs

Mesh L2 Order

cells u α u α

100 0.201416325 0.039124334

200 0.108803894 0.029613733 0.88845 0.4018

400 0.056409279 0.022777004 0.94773 0.37869

800 0.029175376 0.017547306 0.95118 0.37633

1600 0.021284288 0.013681942 0.45496 0.35898
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Chapter 5

The six-equation compressible

two-phase flow model

The two-phase flow model studied in the previous chapter, i.e. the seven-equation

model, is a full non-equilibrium model. In this model each fluid has its own thermo-

dynamic variables and is described by its own pressure and velocity. The proposed

instantaneous relaxation methods for the pressure and velocity within the model

have enabled a study of a wide range of applications (Saurel and Abgrall, 1999a).

However, the large number of waves that exist in its solution are considered as a

disadvantage (Zein, Hantke and Warnecke, 2010).

Many authors have studied a two-phase flow model which has less equations.

This model is known as a reduced model or a five-equation model (Kapila, Menikoff

and Stewart, 2001; Murrone and Guillard, 2005; Petitpas et al., 2007; Saurel, Pe-

titpas and Abgrall, 2008). This model is derived by Kapila, Menikoff and Stewart

(2001) from the seven-equation model of Baer and Nunziato (1986) by using an

asymptotic limit of zero velocity and pressure relaxation times. The model consists

of mass equation for each fluid, a mixture momentum equation and a mixture energy

equation. These equations are written in conservative forms. The model is comple-

mented with the non-conservative equation for the volume fraction evolution. This

model has shown its ability to compute interface problems between compressible ma-

terials accurately as well as wave propagation in compressible two-phase mixtures

for problems concerning strong shocks (Murrone and Guillard, 2005).

However, the existence of the non-conservative equation poses some significant

numerical difficulties. These difficulties are related to shock computations due to

the non-conservative model. Moreover, the non-monotonic behaviour of the mixture

sound speed with respect to the volume fraction is shown in Figure 5.1 which results

in inaccuracies in waves transmission across interfaces as shown in Figure 5.2. The

five-equation model uses the Wood equation (5.1) to obtain the speed of sound for

a mixture of two fluids:
1

ρc2
=

α1

ρ1c21
+

α2

ρ2c22
. (5.1)
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Figure 5.1: Speed of sound of the 5-equation model versus air volume fraction
for water-air mixture. The densities and speeds of sound for water and air are:
ρwater = 1000 kg/m3, cwater = 1568 m/s, ρair = 1 kg/m3 and cair = 374 m/s.

In addition, there are difficulties in maintaining positivity of the volume fraction

due to the difficulties in the approximation of the velocity divergence term in the

volume fraction equation. Furthermore, the assumption of pressure equilibrium

causes the major difficulty in the numerical solution of the five-equation model of

Kapila, Menikoff and Stewart (2001).

To overcome these difficulties is to use the other reduced model of Kapila,

Menikoff and Stewart (2001) which was also derived from the generic seven-equation

model of Baer and Nunziato (1986). This model was obtained in the asymptotic

limit of zero velocity relaxation time. It consists of two mass balance equations,

a mixture momentum equation, two energy equations and is complemented by the

 
Water Diffusion zone Air t 

x 

u + cwater 

u + cair 

u + ceq Numerical path 

Real path 

τ 

Figure 5.2: Wave transmission time delay τ through the numerical diffusion zone of
an interface (Saurel, Petitpas and Berry, 2009).

100



Chapter 5. The six-equation compressible two-phase flow model

volume fraction evolution equation of one of the phases. This model is called the

six-equation model which differs from that used by Stewart and Wendroff (1984)

and Toumi and Raymond (1995). This model was validated by Saurel, Petitpas

and Berry (2009), who also showed that the main difficulties for the five-equation

model can be circumvented. This is realised by restoring the effects of pressure

non-equilibrium in the equation of the volume fraction evolution by using two pres-

sures and associated pressure relaxation terms. The numerical simulations using the

framework of the six-equation model were conducted in Saurel, Petitpas and Berry

(2009) and Zein, Hantke and Warnecke (2010). It was shown in Saurel, Petitpas and

Berry (2009) that the Abgrall’s criterion (Abgrall, 1996) related to the uniformity of

pressure and velocity is naturally satisfied and the applied numerical approximation

preserves mechanical equilibrium conditions at the interface.

5.1 Partially equilibrium two-phase flow mathe-

matical model

The six-equation compressible two-phase flow model is a partially equilibrium model.

In this model, both fluids have the same velocity but each fluid has its own pressure.

The model consists of the evolution equation for the volume fraction of one of the

phases, the mass equations for each phase, a mixture momentum equation and the

energy equations for each phase. The non-conservative hyperbolic model in one

dimension without heat and mass transfer can be written in the following form:

∂α1

∂t
+ u

∂α1

∂x
= µ(p1 − p2), (5.2a)

∂α1ρ1
∂t

+
∂α1ρ1u

∂x
= 0, (5.2b)

∂α2ρ2
∂t

+
∂α2ρ2u

∂x
= 0, (5.2c)

∂ρu

∂t
+
∂(ρu2 + α1p1 + α2p2)

∂x
= 0, (5.2d)

∂α1ρ1e1
∂t

+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
= −µpint(p1 − p2), (5.2e)

∂α2ρ2e2
∂t

+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
= µpint(p1 − p2), (5.2f)

where αk, ρk, pk and ek are the volume fraction, the density, the pressure and the

specific internal energy of phase k. The subscript k refers to the subscripts 1 and 2

that denote phases 1 and 2, respectively, pint is the interfacial pressure, u is the x-

component of the mixture velocity and ρ is the mixture density.

In the presence of shocks, inaccuracies in the thermodynamic state are expected

because of the approximation of the two non-conservative internal energy equations.

To correct these inaccuracies, an additional conservative total mixture energy equa-

101



Chapter 5. The six-equation compressible two-phase flow model

tion was proposed in Saurel, Petitpas and Berry (2009). This equation is obtained

by summing up the two internal energy equations with the mass and momentum

equations:
∂(ρe+ 1

2
ρu2)

∂t
+
∂u(ρe+ 1

2
ρu2 + α1p1 + α2p2)

∂x
= 0, (5.3)

where ρe is the mixture internal energy which is defined as ρe = α1ρ1e1 + α2ρ2e2.

5.1.1 Pressure relaxation terms

The term µ(p1 − p2) appearing on the right hand side of the volume fraction equa-

tion (5.2a) expresses the expansion rate of the volume fraction that drives the pres-

sures of the two phases towards an equilibrium state. This is augmented by the

pressure work done by the phases to achieve the pressure equilibrium expressed by

the term µpint(p1− p2) written on the right hand side of the energy equations (5.2e)

and (5.2f), respectively. The parameter µ controls the rate at which the pressures of

both fluids reach the equilibrium state. More details are given in Saurel and Abgrall

(1999a). The existence of these terms, usually known as pressure relaxation terms,

enables the model to deal with two different phases. These phases admit different

pressures at every point in the flow domain. This has made it necessary to use

some relaxation mechanism to drive the non-equilibrium pressure of the phases to

an equilibrium state.

5.1.2 Closure relations

The six-equation two-phase flow model (5.2) can be obtained by an ensemble aver-

aging the single phase conservation laws for each phase with the assumption that

both phases have the same velocity. The averaging process results in additional

terms in the energy equations that describe the interaction between the phases.

In addition, the assumption of single velocity results in the reduction of the two

momentum equations into one shared momentum equation (5.2d). Ishii (1975) pro-

posed equation (5.2a) to link the phases together. The set of equations (5.2) remains

incomplete as it contains more variables than equations. Consequently, one needs

additional relations to close the model.

One of these relations is the volume fraction saturation constraint, which may

be written as follows:

α1 + α2 = 1. (5.4)

The other relations are the equation of state for each phase which are written in the

general form of the Mie-Grüneisen EOS is as follows:

p(ρ, e) = ρΓH(ρ)[e− eH(ρ)] + pH(ρ), (5.5)

where ΓH(ρ), eH(ρ) and pH(ρ) are material dependent functions given in Table 4.2
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for various types of EOSs as discussed in section 4.2.

The interfacial pressure is taken to be equal to the mixture pressure:

pint = p = α1p1 + α2p2. (5.6)

An alternative way of calculating the interfacial pressure is given in the subsection

4.1.1, point (c). Since each fluid has its own pressure, the pressure relaxation process

is needed to achieve the equilibrium state at every grid point and time step.

The mixture velocity is calculated from the mass-weighted average of the con-

stituent velocities, which can be written as follows:

u =
α1ρ1u1 + α2ρ2u2

ρ
, (5.7)

where ρ = α1ρ1 + α2ρ2.

5.2 Mathematical structure of the six-equation

model

Considering the left hand side of the equations of system (5.2) and writing them in

a quasi-linear form in terms of primitive variables, we get:

∂w

∂t
+ A(w)

∂w

∂x
= 0, (5.8)

where w is the primitive variables vector and is defined as:

w =
[
α1 ρ1 ρ2 u p1 p2

]T
, (5.9)

and A(w) is the primitive variables Jacobian matrix and is defined as:

A(w) =



u 0 0 0 0 0

0 u 0 ρ1 0 0

0 0 u ρ2 0 0
p1 − p2
ρ

0 0 u
α1

ρ

1− α1

ρ
0 0 0 ρ1c1

2 u 0

0 0 0 ρ2c2
2 0 u


. (5.10)

The phases speed of sound c1 and c2 are defined as:

ck
2 =

pk
ρ2k
−
(
∂ek
∂ρk

)
pk(

∂ek
∂pk

)
ρk

, k = 1, 2. (5.11)
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Using the definition of the speed of sound given by equation (5.11) and the EOSs

governing the fluids, the speeds of sound can be obtained for various EOSs as given

in the section 4.2.

The Jacobian matrix A(w) has six real eigenvalues which are:

λ1 = λ2 = λ3 = λ4 = u,

λ5 = u+ c, (5.12)

λ6 = u− c.

These eigenvalues represent the waves speed that are shown in Figure 5.3 which

illustrates the solution of the Riemann problem. The mixture speed of sound c is

expressed as:

c2 =
2∑

k=1

Ykc
2
k, (5.13)

where Yk is the mass fraction, defined as Yk =
αkρk
ρ

.

The eigenvalues of the system (5.2) are real but they are not distinct. Therefore,

the model (5.2) is hyperbolic but non-strictly hyperbolic. The corresponding right

eigenvectors are:

K1 =



0

0

0

0

−α2

α1

1


,K2 =



0

0

1

0

0

0


,K3 =



0

1

0

0

0

0


, (5.14a)

K4 =



1

0

0

0
p2 − p1
α1

0


,K5 =



0

1
ρ2
ρ1c

α1

c21
c22α2

α1


,K6 =



0

1
ρ2
ρ1
− c

α1

c21
c22α2

α1


. (5.14b)

5.3 Numerical method

Solutions to systems of partial differential equations may contain discontinuities

which cannot be solved by classical finite difference methods. These solutions can

be achieved accurately by finite volume methods based on the Godunov’s method
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Figure 5.3: Solution of the Riemann problem for the six-equation model λm are
given by (5.12).

(Godunov, 1959) which is used to solve a series of Riemann problems.

5.3.1 Numerical solution of the six-equation model

The numerical solution of the considered six-equation compressible multiphase flow

model is complicated. This is due to the presence of the non-conservative equation of

volume fraction evolution, the non-conservative terms and the relaxation and source

terms in the model. Thus, the numerical solution of the model can be achieved by

splitting the model into a hyperbolic part and a source and relaxation part. These

different parts are solved in succession using the Strang splitting approach, which

can symbolically be written in second order as follows:

Qn+1
i = L4t/2s L4th L4t/2s Qn

i . (5.15)

The symbol L
4t/2
s represents the relaxation and source terms integration operator

over a half of the time interval. L4th is the numerical solution operator of the

hyperbolic part. Qn
i and Qn+1

i are the conservative vectors at the time level n and

n + 1, respectively. The components of the numerical method are presented in the

next subsection.

5.3.2 The hyperbolic operator

In order to overcome the inaccuracies in the thermodynamic state predicted by the

internal energy equations in the presence of shocks, the model (5.2) is extended to

include the total mixture energy equation (5.3) proposed in Saurel, Petitpas and
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Berry (2009). The hyperbolic part of the system (5.2) can be written as follows:

∂α1

∂t
+ u

∂α1

∂x
= 0, (5.16a)

∂α1ρ1e1
∂t

+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
= 0, (5.16b)

∂α2ρ2e2
∂t

+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
= 0, (5.16c)

∂Q

∂t
+
∂F (Q)

∂x
= 0, (5.16d)

where Q is the conservative vector and F (Q) is the numerical flux vector. These

vectors are defined as:

Q =


α1ρ1

α2ρ2

ρu

ρE

 , F (Q) =


α1ρ1u

α2ρ2u

ρu2 + p

u(ρE + p)

 .

The last row in the above vectors corresponds to the additional equation of the

total mixture energy (5.3), where E is the total specific energy and is defined as

E = e+ 1
2
u2. The numerical solution of the system (5.16) represents the hyperbolic

operator in equation (5.15).

Godunov-type scheme

The Godunov scheme is designed for conservation laws to capture shock waves cor-

rectly. This scheme enables solving Riemann problems to determine the local wave

structure. It was extended to take into account the non-conservative terms to con-

sider multiphase flow problems. In Saurel and Abgrall (1999a) the discretisations

of the non-conservative terms were done based on the idea of Abgrall (1996), which

considers the pressure and velocity to remain uniform during the time evolution.

Based on the conventional Godunov first-order upwind scheme the discretisation of

the conservative form (5.16d) of the hyperbolic part (5.16) can be written as:

Qn+1
i = Qn

i −
∆t

∆x

[
F ∗(Qn

i , Q
n
i+1)− F ∗(Qn

i−1, Q
n
i )
]
. (5.17)

where ∆x is the space increment and ∆t is the time step defined as:

∆t =
CFL ∆x

Smax
. (5.18)
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where CFL is the Courant number and Smax is the maximum wave speed. The

non-conservative equation for the volume fraction (5.16a) is discretised as follows:

αn+1
1i

= αn1i −
∆t

∆x

[
(uα1)

∗
i+ 1

2
− (uα1)

∗
i− 1

2
− αn1i(u

∗
i+ 1

2
− u∗

i− 1
2
)
]
. (5.19)

This scheme guarantees the volume fraction positivity during the resolution of the

hyperbolic operator. The non-conservative energy equations (5.16b) and (5.16c)

cannot be approximated accurately in the presence of shocks. Therefore, the prod-

uct (αp)nki,j is assumed to be constant during the time step by using the simplest

approximation of the corresponding equations (Saurel, Petitpas and Berry, 2009) as

follows:

(αρe)n+1
ki

= (αρe)nki−
∆t

∆x

[
(αρeu)∗k

i+1
2

− (αρeu)∗k
i− 1

2

+ (αp)nki(u
∗
i+ 1

2
− u∗

i− 1
2
)

]
, (5.20)

where k = 1, 2. To achieve a second-order accuracy the MUSCL scheme is used

which is detailed in Toro (2009) for a single phase.

The HLL approximate Riemann solver

This approach was introduced by Harten, Lax and van Leer (1983) to obtain the

intercell numerical flux vector. Two waves left and right of speed S− and S+ are

assumed to separate three constant states in the solution of the Riemann problem.

The intercell flux for the left boundary is given according to the relations given

below:

F hll
i− 1

2
=



F+
i−1 if 0 ≤ S−

i− 1
2

,

S+
i− 1

2

F+
i−1 − S−i− 1

2

F−i + S−
i− 1

2

S+
i− 1

2

(Q−i −Q+
i−1)

S+
i− 1

2

− S−
i− 1

2

if S−
i− 1

2

≤ 0 ≤ S+
i− 1

2

,

F−i if 0 ≥ S+
i− 1

2

.

(5.21)

The maximum and minimum wave speeds of the left and right waves for the left

boundary can be computed according to the formulae introduced in Davis (1988)

which are as follows:

S+
i− 1

2

= max(0, u−
i− 1

2

+ c−
i− 1

2

, u+
i− 1

2

+ c+
i− 1

2

),

S−
i− 1

2

= min(0, u−
i− 1

2

− c−
i− 1

2

, u+
i− 1

2

− c+
i− 1

2

).
(5.22)

The sound speed obeys relation (5.13), u±
i− 1

2

and c±
i− 1

2

represent the right and left

velocities and sound speeds at the left boundary, respectively.

For the determination of the volume fraction (5.19), the conservative variables

ρu, α1ρ1 and α2ρ2 of the mass and momentum equations, respectively, are calculated
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through the following equation given in Toro (2009) for a single phase:

Qhll
i− 1

2
=



Q+
i−1 if 0 ≤ S−

i− 1
2

,

S+
i− 1

2

Q−i − S−i− 1
2

Q+
i−1 + (F+

i−1 − F−i )

S+
i− 1

2

− S−
i− 1

2

if S−
i− 1

2

≤ 0 ≤ S+
i− 1

2

,

Q−i if 0 ≥ S+
i− 1

2

,

(5.23)

then the velocity at the left boundary u∗
i− 1

2

is calculated as follows:

u∗
i− 1

2
=


u+i−1 if 0 ≤ S−

i− 1
2

,

ρu

α1ρ1 + α2ρ2
if S−

i− 1
2

≤ 0 ≤ S+
i− 1

2

,

u−i if 0 ≥ S+
i− 1

2

,

(5.24)

and the flux (uα1)
∗
i− 1

2

is calculated from (5.21).

The HLLC approximate Riemann solver

This solver basically is given in subsection 3.2.3 and more details are given in sub-

section 4.4.2 for the seven-equation model. The wave speed is computed as given in

subsection 4.4.2. The conservative variables at the star region for the six-equation

model are computed as follows:

Q∗K =



αK1 ρ
K
1

(
SK−uK
SK−S∗

)
αK2 ρ

K
2

(
SK−uK
SK−S∗

)
ρK
(
SK−uK
SK−S∗

)
S∗

αK1 ρ
K
1

(
SK−uK
SK−S∗

)(
e1 + (S∗ − uK)

[
S∗ +

pK1
ρK1 (SK−uK)

])
αK2 ρ

K
2

(
SK−uK
SK−S∗

)(
e2 + (S∗ − uK)

[
S∗ +

pK2
ρK2 (SK−uK)

])
ρK
(
SK−uK2
SK−S∗

)(
EK + (S∗ − uK)

[
S∗ + pK

ρK(SK−uK)

])


, (5.25)

where K represents left L and right R values.

The values of α∗(α−
i± 1

2

, α+
i± 1

2

) in the discretisation equation of the volume fraction

in space and time (5.19) is computed as given in subsection 4.4.2.

The VFRoe approximate Riemann solver

This solver is given in Zein, Hantke and Warnecke (2010) for the six-equation model.

It is described in subsection 3.2.4 and given in section 4.4.2 for the seven-equation

model. After obtaining the average state using (3.32) with the primitive variables
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given by (5.9), the intermediate state is determined as follows:

w∗ = wL +
∑
λi<0

aiKi, (5.26)

where the eigenvalues λi and the corresponding eigenvectors Ki of the matrix A(w̄)

are given by (5.12) and (5.14) and ai are the coefficients of eigenvector decomposition

of wR −wL and are determined by:

wR −wL =
6∑
i=1

aiKi. (5.27)

For the Jacobian matrix A(w) these coefficients are given by the following expres-

sions:

a4 = δ1,

a1 =

δ6c
2
1 −

δ5ρ2c
2
2

ρ1
+
δ1ρ2c

2
2(p2 − p1)
α1ρ1

α2ρ2
α1ρ1

c22 + c21
,

a5 =
δ4ρ1ρ2c2 + δ6ρ1c− ρ1ca1

2ρ2c22c
,

a6 = a5 −
δ4ρ1
c
, (5.28)

a2 = δ3 −
ρ2
ρ1

(a5 + a6),

a3 = δ2 − a5 − a6,

where δk is the kth component of:

wR −wL = [δ1, . . . , δ6]
T .

After solving the hyperbolic part of the model, following the Strang technique (5.15),

the solution of the pressure relaxations is carried out to restore the pressures at the

interface.

5.3.3 The pressure relaxation operator

The second step in the numerical solution of the model (5.2) is to solve the pressure

relaxation operator according to the Strang splitting approach (5.15). The pressure

relaxation process is a crucial step in the numerical solution as it is necessary for

the boundary condition at the interface to be fulfilled. This is done by solving the

following system of the ODE:
∂Q

∂t
= DP , (5.29)
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where Q and Dp are defined as follows:

Q =



α1

α1ρ1

α2ρ2

ρu

α1ρ1e1

α2ρ2e2

ρE


, DP =



µ(p1 − p2)
0

0

0

µpI(p2 − p1)
−µpI(p2 − p1)

0


.

Various methods are available for solving (5.29). The iterative procedure 4 that is

proposed in Lallemand and Saurel (2000) has been implemented in this work. After

computing the relaxed pressure, the gas volume fraction is calculated, which enables

the determination of the gas density from the quantity α1ρ1, which remains constant

during the relaxation process. Then the relaxed pressure is corrected to be consistent

with the mixture EOS (5.30) which is written in terms of the Mie-Grüneisen EOS

functions given for each EOS in Table 4.2 as follows:

p(ρe, α1, α2) =

ρe−
∑2

k

(
αk(ρkΓk(ρk)ek(ρk)− pk(ρk))

Γk(ρk)

)
∑2

k

(
αk

Γk(ρk)

) , (5.30)

The value of ρe is calculated according to the correction criterion of Saurel, Petitpas

and Berry (2009) from the conservative equation of total mixture energy (5.3). The

mixture pressure for both fluids with two different types of EOSs is then calculated

from the mixture EOS (5.30) with the help of the volume fractions. The obtained

value of the mixture pressure is used to reset the values of the internal energies using

the corresponding EOSs.

5.4 Numerical results - Verification of the method-

ology

To assess the numerical performance of the developed code to solve the six-equation

model to simulate two-component problems, various compressible two-phase flow

problems have been studied with either the same type of EOS or different type of

EOS applied to each phase. In the examined test problems the ideal gas (IG) (4.14),

shock wave (SW) (4.18), stiffened gas (SG) (4.21), Tait’s (4.27), van der Waals

(vdW) (4.30), Cochran-Chan (CC) (4.34) and Jones-Wilkins-Lee (JWL) (4.39) EOSs

are employed in one dimension. All these types of EOSs are used in these problems

to show the generality and the oscillation-free feature of the current method. A
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comparison between the six and seven-equation models has been presented using

single and two-phase test problems in section 5.6.

As mention in the previous chapter, in all test cases a common assumption is

made, that is a presence of a negligible volume fraction ε = 10−8 of the other fluid

in the fluid considered as a pure fluid, as shown in Figure 4.2. The numerical results

have been obtained from various approximate Riemann solvers, i.e., HLL, HLLC

and VFRoe, using the CFL = 0.9 unless otherwise mentioned. For the presented

simulations the results were compared with either the exact solution or a fine grid

solution, especially for those cases which don’t have an exact solution. No spurious

pressure oscillations are observed at the material interface for all conducted test

problems.

5.4.1 TNT product gases interaction test

This is a single phase test studied by Rider (1999); Shyue (2001). The test considers a

Riemann problem in a shock tube where the two chambers are filled with the product

gases of the TNT explosive at different initial states. The diaphragm separating the

two chambers is set at x = 0.5 m. The test is examined to show the ability of

the developed code to deal with gases that are governed by the Jones-Wilkins-Lee

(JWL) EOS (4.39). The initial states are given in Table 5.1.

Table 5.1: Initial data for TNT product gases interaction test 5.4.1

State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 1700 0 1012 1− ε 1000 0 1012 ε

Right 1700 0 5× 1010 ε 1000 0 5× 1010 1− ε

The detonation product gases constant parameters are taken as ρo = 1840 kg/m3,

A1 = 8.545 × 1011 Pa, R1 = 4.6, A2 = 2.05 × 1010 Pa, R2 = 1.35, Cv = 815 J/(kg·
K), γ = 1.25 and Cek = 0 (Dobrtaz, 1972).

As the diaphragm is instantaneously removed at t = 0 s, three different waves,

i.e. shock, contact and rarefaction, are formed due to the differences in pressure

and density between the left and right states. These waves depict the solution of

this Riemann problem. While the shock and contact waves propagate to the right

the rarefaction wave propagates to the left. The three waves divide the flow domain

into four different state regions as shown in Figure 5.4 at t = 12 µs. These regions

are as described in the gas-gas test, subsection 4.5.1.

The numerical results are obtained using the HLL approximate Riemann solver

with a mesh of 200 cells and are compared with the fine grid solution using a mesh

of 5000 cells. It can be observed that the resolution of the rarefaction wave agrees

perfectly with that obtained from the fine grid and the method captures the shock
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Figure 5.4: TNT product gases interaction test 5.4.1. Results for: (a) pressure, (b)
velocity, (c) mixture density and (d) right component’s volume fraction. Numerical
solution from 6-eqn. model compared to the fine grid solution at t = 12 µs.

wave within a less number of cells, as shown in Figure 5.4(a, b, c), than it does for

capturing the contact discontinuity as shown in Figure 5.4(c, d). In addition, the

results are in good agreement with the results of Shyue (2001) which obtained from

a different model and numerical method.

5.4.2 Interface advection test

This is a two-phase test problem presented in Allaire, Clerc and Kokh (2002). It

is conducted to show the capability of the code to preserve a contact discontinuity

moving in uniform velocity and pressure profiles and the ability to deal with vari-

ous EOSs written in the general form of the Mie-Grüneisen EOS (4.12). The test

is carried out in a computational domain of 1 m long, which is divided into two

equal chambers, where the copper is considered on the left side and the explosive

material on the right side. The two different materials are governed by the Cochran-

Chan EOS (4.34) and their constant parameters are given in Table 4.6. The initial

conditions are given in table 5.2.

Figure 5.5 displays the numerical results for the solution of this Riemann problem

which consists of a single contact discontinuity only. The results for pressure (a),

velocity (b), mixture density (c) and explosive volume fraction (d) are obtained from

the six-equation model at time t = 270 µs using the VFRoe approximate Riemann
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Table 5.2: Initial data for interface advection test 5.4.2
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 9000 1500 105 1− ε 2000 1500 105 ε

Right 9000 1500 105 ε 2000 1500 105 1− ε

solver with 1000 cells. The results show that the method preserves the contact

discontinuity (interface) between two different gases, governed with the same EOS,

as the flow evolves at a uniform velocity and pressure. A good agreement is observed

comparing to the exact solution taken from Allaire, Clerc and Kokh (2002). The test

is also examined by employing other EOSs and no pressure and velocity oscillations

are noticed in the results of all EOSs.

5.4.3 Modified Sod test

This test is modified from the well known single phase Sod test problem (Fedkiw

et al., 1999). The test which uses two different gases as a working fluid is conducted

to verify that the developed code is able to simulate multi-component problems

governed by the IG EOS (4.14). The shock tube is 1 m long, initially the diaphragm
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Figure 5.5: Interface advection test 5.4.2: Results for: (a) pressure, (b) velocity, (c)
mixture density and (d) air volume fraction. Numerical solution (circles) and exact
solution (line) Allaire, Clerc and Kokh (2002) at t = 2.79 ms.
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Table 5.3: Initial data for modified Sod test 5.4.3
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 1 0 105 1− ε 0.125 0 105 ε

Right 1 0 104 ε 0.125 0 104 1− ε
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Figure 5.6: Modified Sod test 5.4.3: (a) Pressure. (b) Velocity. (c) Mixture density.
(d) Air volume fraction. Numerical solution using the HLLC solver compared to the
exact solution at t = 0.0007 s.

separating the left and right chambers is set at x = 0.5 m. The IG EOS parameters

for the left and right gases are γ1 = 1.4 and γ2 = 1.2, respectively. The gas filled

in the left chambers is at higher pressure and density, the initial states are given in

Table 5.3.

As the diaphragm is instantaneously removed at t = 0 s. Three different waves

are emerged and propagated in the same manner as explained in subsection 5.4.1.

Moreover, they divide the flow domain into four regions as mentioned in the same

subsection 5.4.1 as well. Figure 5.6 displays the numerical results for the modified

Sod test obtained from the HLLC approximate Riemann solver with 200 cells. The

results for pressure (a), velocity (b), mixture density (c) and volume fraction (d) are

presented at time t = 0.0007 s. The results are in good agreement with the exact

solution (Fedkiw et al., 1999) using a relatively low resolution of 200 cells.
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5.4.4 Water-air test

This test is studied by Shyue (1999), it is similar to the second simulation of the

standard water-air shock tube conducted using the seven-equation model and pre-

sented in the subsection 4.6.3, where the water is governed by the SG EOS (4.21)

and air is governed by the van der Waals EOS (4.30). The constant parameters for

water are γ = 4.4 and π = 6 × 108 and for air are γ = 1.4, a = 5 Pa m6/kg and

b = 10−3 m3/kg. The initial conditions are given in Table 4.19

In this test a strong shock wave with a pressure ratio of 10,000 and density

ratio of 20 propagates to the right from the high density fluid to the low density

fluid and a rarefaction wave propagates to the left. Figure 5.7 shows the results for

the pressure (a), velocity (b), mixture density (c) and air volume fraction (d). The

results are obtained at time t = 240µs using the HLLC approximate Riemann solver

with 500 cells. A good agreement is also achieved between the numerical solution

(circles) and the exact solution (line) taken from Shyue (1999).
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Figure 5.7: Water-air test 5.4.4: Results for: (a) pressure, (b) velocity, (c) mixture
density and (d) air volume fraction. Numerical solution (circles) and exact solution
(line) at t = 229 µs.

5.4.5 Water-air mixture test

This test considers a mixture of water-air (Murrone and Guillard, 2005), which is

similar to the previous test and the standard water-air shock tube examined using

the seven-equation model in the subsection 4.6.3. In this test the volume fraction is

constant (α1 = α2 = 0.5) everywhere in the tube, the density of the air is 1 kg/m3
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and the initial discontinuity which separates liquid and gas is located at x = 0.5 m.

The water is governed by the SG EOS (4.21) and its constant parameters are γ = 4.4

and π = 6 × 108, whereas air is governed by the IG EOS (4.14) and its constant

parameter is γ = 1.4. The initial conditions are given in Table 5.4:

Table 5.4: Initial data for water-air mixture test 5.4.5
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 1000 0 109 0.5 1 0 109 0.5

Right 1000 0 105 0.5 1 0 105 0.5

In this test a strong shock wave with a pressure ratio of 10,000 and a density

ratio of 1000 propagates to the right from the high density fluid to the low density

fluid, a rarefaction wave also propagates to the left and a contact discontinuity also

propagates to the right as described in the subsection 5.4. Figure 5.8 shows the

results of the: pressure (a), velocity (b), mixture density (c), air volume fraction

(d), water density (e) and air density (f). The results are obtained from the VFRoe

approximate Riemann solver at time t = 200µs using various resolutions to show the

convergence of the solution as the mesh is refined. A good agreement is observed

between the numerical solution and the exact solution taken from Murrone and

Guillard (2005).

5.4.6 Molybdenum-MORB interaction test

This test problem involves the interaction of a shock wave in molybdenum and an

encapsulated MORB (Mid-Ocean Ridge Basalt) liquid (Shyue, 2001). The setup

and the initial conditions for the test are displayed in Figure 5.9. The initial in-

terface separating the stationary molybdenum and the MORB liquid is located at

x = 0.6 m, they are at atmospheric pressure p = 105 Pa. A right going shock

wave travels in molybdenum is located at x = 0.4 m, the post-shock molybdenum

is at a higher pressure p = 3 × 1010 Pa. Both components are modeled by the

shock wave EOS (4.18). The shock wave EOS parameters for the molybdenum are

ρ0 = 9961 kg/m3, c0 = 4770 m/s, s = 1.43, γ = 3.56, θ = 1, p0 = 0 and e0 = 0 and

for the MORB are ρ0 = 2660 kg/m3, c0 = 2100 m/s, s = 1.68, γ = 2.18, θ = 1, p0 = 0

and e0 = 0

The right going shock wave coming from the higher pressure and density fluid to

the lower pressure and density fluid accelerated the interface separating the molyb-

denum and the MORB. As time evolves, the resulting wave structure would consist

of, an interface, a transmitted shock wave and a reflected rarefaction wave. Figure

5.18 shows the numerical results for the molybdenum-MORB interaction test prob-

lem at t = 120 s. It can be seen that the method captures the shock wave within a
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Figure 5.8: Water-air mixture test 5.4.5. Numerical solution at t = 229 µs for: (a)
pressure, (b) velocity, (c) mixture density, (d) air volume fraction, (e) water density
and (f) air density.

 

Figure 5.9: Setup and initial conditions for molybdenum-MORB interaction test
5.4.6
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Figure 5.10: Molybdenum-MORB interaction test 5.4.6. Numerical solution at t =
120 µs for: (a) pressure, (b) velocity, (c) mixture density and (d) MORB volume
fraction.

less number of cells than it does to capture the contact discontinuity. The results for

the pressure (a), velocity (b), mixture density (c) and MORB volume fraction (d)

are obtained from the HLL approximate Riemann solver using 200 cells with the

CFL = 0.6. They are in good agreement with the fine mesh solution.

5.5 Numerical results - Validation of the results

In this section validations of the results of the seven and six-equation models in

one space dimension are demonstrated. It is concerned with computations involv-

ing strong shock waves in two-phase mixtures. The shock speed can be computed

from the Rankine-Hugoniot conditions of the mixture Euler equations closed by the

mixture equation of state as done in Saurel and Abgrall (1999a). The two-phase

flow models do not admit the classical Rankine-Hugoniot conditions because of the

presence of the non-conservative and relaxation terms in the equations. Therefore,

the shock speed cannot be found analytically. The shock speed in various pure

materials, i.e., liquids and solids, as well as mixtures have been determined exper-

imentally (see for example, Marsh, 1980; Trunin et al., 1991). These results could

be used as reference solutions. Indeed, for many materials the relation between the

shock velocity and the impact velocity is determined experimentally and found to

be linear:
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Us = c0 + sUp, (5.31)

where Us is the shock speed, c0 is the speed of sound in the material under consid-

eration at atmospheric conditions and initially at rest, s is a dimensionless constant

and Up is the impact velocity. This equation is called the shock wave equation of

state (Shyue, 2001). It can be used to determine the SG EOS parameters γ and π

using the relations (4.24) and (4.25) given in subsection 4.2.3. These experimental

relations are known for many pure materials and alloys. Metal alloys under strong

shock waves may be considered as two-component mixtures and can be treated as

compressible materials.

5.5.1 Mixture Hugoniot test

In this test different alloys have been considered, i.e., iron-nickel, nickel-copper and

stainless steel 304. The numerical results obtained from the six and seven-equation

models have been compared to the experimental results of Marsh (1980) and Trunin

et al. (1991). The test is conducted in a domain which was 1 m long, containing a

mixture of two components at atmospheric pressure and initially at rest. The impact

or particle velocity is set equals to the inlet flow velocity boundary condition. Several

unsteady impact problems have been examined by varying the particle velocity which

is kept in the same range of the experimental ones. Using 2000 cells and the CFL

equals to 0.9, the three approximate Riemann solvers gave almost the same results.

The shock speed is calculated from the ratio of the displacement of the biggest

pressure gradient over the time interval. Consider the initial data for the iron-nickel

and nickel-copper mixtures as given in Table 5.5 and for the stainless steel 304 alloy

which is modelled as a single phase as given in Table 5.6.

Table 5.5: Initial data for iron-nickel and nickel-copper mixtures shock impact 5.6.2

State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Iron-nickel 7873 0 105 0.821 8875 0 105 0.179

Nickel-copper 8875 0 105 0.5 8930 0 105 0.5

Table 5.6: Initial data for stainless steel 304 alloy shock impact 5.6.2

State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

S. steel 304 7890 0 105 1− ε 7890 0 105 ε

The results for the iron-nickel and nickel-copper mixtures impact tests are com-

pared to the experimental results of Marsh (1980) and Trunin et al. (1991). They
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are displayed in Figures 5.11 and 5.12, respectively, for the particle velocity against

shock velocity (a), pressure (b) and mixture density (c) and the relation between the

specific volume and pressure (d). It can be seen that the numerical results obtained

from the six and seven-equation models confirmingly agree with the experimental

results.
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Figure 5.11: Mixture Hugoniot test 5.5.1: Iron-Nickel alloy experimental data (sym-
bols) results from 6 and 7-Eqn. models (lines) obtained using 2000 cells.

Figure 5.13 shows the results of the shock wave propagation through the stainless

steel alloy which is considered as a single phase by varying the particle velocity, shock

velocity (a), pressure (b), mixture density (c) and the relation between the specific

volume and pressure (d). It can also be seen that the numerical results obtained from

the six and seven-equation models are in very good agreement with the experimental

results of Marsh (1980).

5.6 Numerical results - Comparison between the

six and seven-equation models

In this section a comparison between the six and seven-equation models is carried

out using some test problems that both models could be used for their simulations.

These test problems include single phase problems, i.e., Sod test, and two-phase

problems, i.e., detonation products-copper interaction test. It is known that the

seven-equation model is able to simulate some test problems that the six-equation
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Figure 5.12: Mixture Hugoniot test 5.5.1: Nickel-Copper alloy experimental data
(symbols) results from 6 and 7-Eqn. models (lines) obtained using 2000 cells.

model cannot solve, problems that consider two-phase flows with different phases
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Figure 5.13: Mixture Hugoniot test 5.5.1: Stainless steel alloy experimental data
(symbols) results from 6 and 7-Eqn. models (lines) obtained using 2000 cells.
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velocity directions such as water faucet test 4.7.4 and sedimentation test (Abgrall

and Saurel, 2003). The results are compared to the exact and fine grid solutions.

The comparison is carried out in terms of L2 error norm, the number of time steps

and CPU time required to obtain the solution. Various mesh resolutions have been

used to accomplish the comparison.

5.6.1 Sod test

This is a well known single phase shock tube test problem. The test which uses

air as a working fluid is conducted to verify that the developed code is able to

simulate single phase problems governed by the IG EOS (4.14), γ = 1.4. The test is

examined also to compare between the six and seven-equation models. The shock

tube is 1 m long, initially the diaphragm separating the left and right chambers is

set at x = 0.5 m. The air at the left chambers is at higher pressure and density, the

initial states are given in Table 5.7.

Table 5.7: Initial data for Sod test 5.6.1
State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 1 0 1 1− ε 0.125 0 1 ε

Right 1 0 0.1 ε 0.125 0 0.1 1− ε

As the diaphragm is instantaneously removed at t = 0 s. Three different waves are

emerged and propagated in the same manner as explained previously, which divide

the flow domain into four regions as mentioned earlier.

The results for this test are obtained using the HLLC approximate Riemann

solver with a mesh of 200 cells. Figure 5.14 shows the results of the pressure (a),

velocity (b), mixture density (c) and volume fraction (d) at instant t = 0.25 s using

the six and seven-equation models compared with the exact solution (Toro, 2009).

Both models gave almost the same results which are in good agreement with the

exact solution using a relatively low resolution of 200 cells.

Figure 5.15 shows the error norm (L2) spatial convergence comparison between

the six and seven-equation models for the Sod test using the IG EOS. The results

are shown for pressure (a), velocity (b), mixture density (c) and volume fraction (d)

using different resolutions. It can be seen that as the number of cells increases the

error norm decreases. Figure 5.15(a) shows that the pressure error norm for both

models are almost identical except at 400 cells where the six-equation model has

less value. Figure 5.15(b) shows that the six-equation model has more velocity error

norm than the seven-equation model except at 400 cells and at relatively higher

mesh resolutions. Figure 5.15(c, d) shows that the mixture density and volume

fraction error norms are almost identical for both models for all mesh resolutions.
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Figure 5.14: Sod test 5.6.1. Results for: (a) pressure, (b) velocity, (c) mixture
density and (d) right component’s volume fraction. Numerical solution from 6 and
7-eqn. models using the HLLC 200 cells compared to the exact solution at t = 0.25 s.
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Figure 5.15: Sod test 5.6.1. L2 error norm spatial convergence for: (a) pressure, (b)
velocity, (c) mixture density and (d) volume fraction.
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The order of accuracy of the HLLC algorithms for six and seven-equation models

using the Sod test are given in Tables 5.8-5.9. It can also be observed that the order

of accuracy is less than 2 due to the presence of the discontinuities in the solution

as mentioned in subsection 4.6.1.

Table 5.8: Order of accuracy of the HLLC for the 6-Eqn. model for Sod test using
IG EOS

Mesh L2 Order

cells u ρ u ρ

200 0.0462983 0.011561

1000 0.0169414 0.0053234 0.62466 0.48186

5000 0.0084255 0.0025156 0.434 0.46575

25000 0.002705 0.000669 0.70594 0.82295

Table 5.9: Order of accuracy of the HLLC for the 7-Eqn. model for Sod test using
IG EOS

Mesh L2 Order

cells u ρ u ρ

200 0.0337017 0.01228114

1000 0.01068 0.005388 0.71402 0.51191

5000 0.005165 0.0024196 0.45138 0.49742

25000 0.0011387 0.0005672 0.93947 0.90134

Table 5.10: The number of time steps and CPU time for the Sod test

Mesh Six-equation model Seven-equation model

cells Time step CPU (s) Time step CPU (s)

200 128 0.07 214 0.12

400 252 0.31 422 0.50

1000 625 1.93 1047 3.05

5000 3108 47.88 5213 77.68

10000 6211 190.31 10420 307.46

25000 15522 1229.16 26043 2119.18

The number of time steps and CPU time needed by the six and seven-equation

models to obtain the solution using different mesh resolutions are given in Table

5.10. The average percentage of the number of time steps and CPU time required

by the six-equation model are 40.32 % and 39.14 % less than that required by the

seven-equation model to obtain the results for this test problem, respectively. The
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Figure 5.16: Sod test example 5.6.1: Scaling order for the HLLC algorithm for the
6-Eqn. and 7-Eqn. models.
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Figure 5.17: Sod test 5.6.1: Temporal convergence for the HLL algorithm for the
6-Eqn. and 7-Eqn. models.

scaling order of the HLLC algorithm for the six and seven-equation models are

1.0132 and 1.023, respectively, as shown Figure 5.16 using the Sod test.

The temporal convergence is obtained using a fine mesh resolution of 10000 cells

and various time steps. The order of temporal convergence for the HLLC solver for

the six and seven-equation models are 0.7448 and 1.2175, respectively, as shown in

Figure 5.17.

5.6.2 Detonation products-copper interaction test

This two-phase problem considers an interaction of detonation products with the

solid copper. This test has been considered by many researchers (see for example,
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Chapter 5. The six-equation compressible two-phase flow model

Saurel and Abgrall, 1999a; Shyue, 2001; Zheng et al., 2011). Also it has been chosen

here to show the ability of the developed code to deal with materials governed by

a more complex EOS, i.e., the JWL EOS (4.39). This EOS is used to govern the

detonation products and the Cochran-Chan (CC) EOS (4.34) is used to govern the

copper. The computational domain used to model this problem is 1 m long. The

interface separating the two materials is initially located at x = 0.5 m. While the

detonation products of PBX-9404-3 explosive are put on the left hand side, the

copper is put on the right hand side. The CC EOS parameters for copper are

the same as those given in subsection 4.5.4, but those for the detonation products

governed by the JWL EOS are ρo = 1840 kg/m3, A1 = 8.545 × 1011 Pa, R1 = 4.6,

A2 = 2.05×1010 Pa, R2 = 1.35, Cv = 815 J/(kg· K), γ = 1.25 and Cek = 0 (Dobrtaz,

1972). The initial conditions are given in Table 5.11:

Table 5.11: Initial data for detonation products-copper interaction test 5.6.2

State ρ1 u1 p1 α1 ρ2 u2 p2 α2

[kg/m3] [m/s] [Pa] [kg/m3] [m/s] [Pa]

Left 2485.37 0 3.7× 1010 1− ε 8900 0 3.7× 1010 ε

Right 2485.37 0 105 ε 8900 0 105 1− ε
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Figure 5.18: Detonation products-copper interaction test example 5.6.2. Results
for: (a) pressure, (b) velocity, (c) mixture density and (d) temperature. Numerical
solution compared to fine grid at t = 73 µs.

As in the previous example a comparison between the six and seven-equation models
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Chapter 5. The six-equation compressible two-phase flow model

is performed, but here the HLL solver is used. While the detonation products are

governed by the JWL EOS, the copper plate is governed by the CC EOS. The solu-

tion of this test problem consists of three different waves. The first is a shock wave

propagating to the right in the copper, the second is a rarefaction wave propagating

to the left in the inert explosive and the third wave is a contact discontinuity moving

to the right.

Figure 5.18 shows the results for pressure (a), velocity (b), mixture density (c)

and temperature (d). The results are displayed using 200 cells at time t = 73 µs

and the CFL number equal to 0.6. As the test doesn’t have an exact solution, the

results are compared with a fine grid solution. It can be noticed that the shock wave

is spread over a less number of cells than the contact discontinuity wave as shown in

Figure 5.18(c). A good agreement was obtained compared with the reference data.
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Figure 5.19: Detonation products-copper interaction test 5.6.2. L2 error norm spa-
tial convergence for: (a) pressure, (b) velocity, (c) mixture density and (d) temper-
ature.

Figure 5.19 shows the error norm (L2) spatial convergence comparison between

the six and seven-equation models for the detonation products-copper interaction

test. The results are shown for pressure (a), velocity (b), mixture density (c) and

temperature (d) using different resolutions. It can be seen that as the number of

cells increases the error norm decreases. The results are almost identical except

for Figures 5.19(a) and (b) where the pressure and velocity error norms for the

six-equation model at 200 cells has less value error norms but at 400 cells has

more error norm. The order of accuracy of the HLL algorithms for six and seven-
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equation models using the detonation products-copper interaction test are given in

Tables 5.12-5.13. It can also be observed that the order of accuracy is less than 2

due to the presence of the discontinuities in the solution as mentioned in subsection

4.6.1.

Table 5.12: Order of accuracy of the HLLC for the 6-Eqn. model for Sod test using
IG EOS

Mesh L2 Order

cells p ρ p ρ

200 993223446.7 452.8293961

1000 421601872 268.036043 0.53242 0.32582

5000 225439426.4 124.0956918 0.38896 0.47847

25000 63066098.1 27.81183584 0.7915 0.92926

Table 5.13: Order of accuracy of the HLLC for the 7-Eqn. model for Sod test using
IG EOS

Mesh L2 Order

cells p ρ p ρ

200 1172096546 464.344588

1000 470875212 274.685549 0.56663 0.3262

5000 233545846.6 129.0332814 0.43569 0.46945

25000 56573185.8 31.2388661 0.88096 0.88131

Table 5.14: The number of time steps and CPU time for detonation products-copper
test

Mesh Six-equation model Seven-equation model

cells Time step CPU (s) Time step CPU (s)

200 176 0.73 183 1.30

400 348 2.87 362 5.09

1000 864 17.67 899 31.35

5000 4293 440.44 4482 770.72

10000 8581 1754.13 8960 3052.47

25000 21445 10983.49 22395 19326.11

The number of time steps and CPU time needed by the six and seven-equation

models to obtain the solution using different mesh resolutions are given in Table 5.14.

The average percentage of the number of time steps and CPU time required by the

six-equation model are 4.05 % and 43.28 % less than that required by the seven-

equation model to obtain the results for detonation products-copper interaction test
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problem. The scaling order of the HLLC algorithm for the six and seven-equation

models are 1.0011 and 0.993, respectively, as shown Figure 5.21 using the detonation

products-copper interaction test.
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Figure 5.20: Detonation products-copper interaction test 5.6.2: Scaling order for the
HLL algorithm for the 6-Eqn. and 7-Eqn. models for detonation products-copper
interaction test.
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Figure 5.21: Detonation products-copper interaction test 5.6.2: Temporal conver-
gence for the HLL algorithm for the 6-Eqn. and 7-Eqn. models.

The temporal convergence is obtained using a fine mesh resolution of 5000 cells

and various time steps. The order of temporal convergence for the HLL solver for

the six and seven-equation models are 1.7023 and 1.2867, respectively, as shown in

Figure 5.21 using the detonation products-copper interaction test.
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Chapter 6

Verification and validation of the

two-phase flow models in two

dimensions

The six and seven-equation models considered in the previous chapters are extended

in this chapter to examine two-dimensional problems. The extended governing equa-

tions are discretised following finite volume approach, where the equations are solved

numerically by the Godunov-type method in Cartesian coordinate. In this chapter

both models have been written in two space dimensions and their mathematical

structures and hyperbolicity are studied. The numerical method for solving the hy-

perbolic and relaxation parts of the models is presented and finally the numerical

results are verified and validated using exact or available published results. The

verification and validation of the results of the two-phase flow models in two dimen-

sions are demonstrated using various test problems to include different equations of

state. These EOSs are the IG (4.14), SG (4.21), vdW (4.30) and Tait’s EOS (4.27).

The obtained results illustrate that the results are in good agreement with reference

data.

6.1 Extension of the seven-equation compressible

multiphase flow model to two dimensions

The seven-equation compressible multiphase flow model in two-dimensional space

consists of nine partial differential equations. Those are the volume fraction evolu-

tion equation for one of the phases, mass equation for each phase, two momentum

equations for each phase and energy equation for each phase. The system with re-

laxation terms but without mass and heat transfer terms that may take place across

the interface and without gravitational force terms can be written as follows:
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∂α1

∂t
+ uint

∂α1

∂x
+ vint

∂α1

∂y
= µ(p1 − p2), (6.1a)

∂α1ρ1
∂t

+
∂α1ρ1u1
∂x

+
∂α1ρ1v1
∂y

= 0, (6.1b)

∂α1ρ1u1
∂t

+
∂(α1ρ1u

2
1 + α1p1)

∂x
+
∂α1ρ1u1v1

∂y
= pint

∂α1

∂x
+ λ(u2 − u1), (6.1c)

∂α1ρ1v1
∂t

+
∂α1ρ1u1v1

∂x
+
∂(α1ρ1v

2
1 + α1p1)

∂y
= pint

∂α1

∂y
+ λ(v2 − v1), (6.1d)

∂α1ρ1E1

∂t
+
∂(α1ρ1E1u1 + α1u1p1)

∂x
+
∂(α1ρ1E1v1 + α1v1p1)

∂y
=

pintuint
∂α1

∂x
+ pintvint

∂α1

∂y
+ uintλ(u2 − u1) + vintλ(v2 − v1) + pintµ(p1 − p2), (6.1e)

∂α2ρ2
∂t

+
∂α2ρ2u2
∂x

+
∂α2ρ2v2
∂y

= 0, (6.1f)

∂α2ρ2u2
∂t

+
∂(α2ρ2u

2
2 + α2p2)

∂x
+
∂α2ρ2u2v2

∂y
= −pint

∂α1

∂x
− λ(u2 − u1), (6.1g)

∂α2ρ2v2
∂t

+
∂α2ρ2u2v2

∂x
+
∂(α2ρ2v

2
2 + α2p2)

∂y
= −pint

∂α1

∂y
− λ(v2 − v1), (6.1h)

∂α2ρ2E2

∂t
+
∂(α2ρ2E2u2 + α2u2p2)

∂x
+
∂(α2ρ2E2v2 + α2v2p2)

∂y
=

− pintuint
∂α1

∂x
− pintvint

∂α1

∂y
− uintλ(u2 − u1) + vintλ(v2 − v1)− pintµ(p1 − p2),

(6.1i)

where E is the total specific energy, E = e + 1
2
u2 + 1

2
v2 and vk is the velocity in

y-direction for each phase vint is the velocity in y-direction at the interface. The

interfacial velocity in x-direction is as given in subsection 4.1.1 and in y-direction is

given by:

vint =

∑
k αkρkvk∑
k αkρk

. (6.2)

The above relations (6.2) with the closure relations mentioned in subsection 4.1.1

are used to close the model in two dimensions.

6.1.1 Mathematical structure of the seven-equation model

in two dimensions

The design of a numerical scheme to find the solution of the Riemann problem for

the seven-equation two-dimensional flow model (6.1), requires the evaluation of the

eigenvalues of the Jacobian matrices as well as their corresponding eigenvectors. In

order to determine the eigenstructure of the model (6.1), the model is written in a

quasilinear form without relaxation terms in terms of primitive variables as follows:
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∂w

∂t
+ A(w)

∂w

∂x
+B(w)

∂w

∂y
= 0, (6.3)

where w is the primitive variables vector, A(w) and B(w) are the Jacobian matrices

in x and y directions. They are defined respectively as follows:

w =
[
α1 ρ1 u1 v1 p1 ρ2 u2 v2 p2

]T
, (6.4)

A(w) =



uint 0 0 0 0 0 0 0 0
ρg(u1 − uint)

α1

u1 ρ1 0 0 0 0 0 0

(p1 − pint)
α1ρ1

0 u1
1

ρ1
0 0 0 0 0

0 0 0 u1 0 0 0 0 0
ρ1c

2
1int(u1 − uint)

α1

0 ρ1c
2
1 0 u1 0 0 0 0

−ρ2(u2 − uint)
α2

0 0 0 0 u2 ρ2 0 0

−(p2 − pint)
α2ρ2

0 0 0 0 0 u2 0
1

ρ2
0 0 0 0 0 0 0 u2 0

−ρ2c22int(u2 − uint)
α2

0 0 0 0 0 ρ2c
2
2 0 u2



, (6.5)

B(w) =



vint 0 0 0 0 0 0 0 0
ρ1(v1 − vint)

α1

v1 0 ρ1 0 0 0 0 0

0 0 v1 0 0 0 0 0 0
(p1 − pint)
α1ρ1

0 0 v1
1

ρ1
0 0 0 0

ρ1c
2
1int(v1 − vint)

α1

0 0 ρ1c
2
1 v1 0 0 0 0

−ρ2(v2 − vint)
α2

0 0 0 0 v2 0 ρ2 0

0 0 0 0 0 0 v2 0 0
−(p2 − pint)

α2ρ2
0 0 0 0 0 0 v2

1

ρ2
−ρ2c22int(v2 − vint)

α2

0 0 0 0 0 0 ρ2c
2
2 v2



. (6.6)

The eigenvalues of the Jacobian matrix A(w) are as follows:
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λx1 = uint, λx2 = λx3 = λx4 = λx5 = u1,

λx6 = λx7 = u2, (6.7)

λx8 = u2 + c2, λx9 = u2 − c2.

The corresponding right eigenvectors for the Jacobian matrix A(w) are:

Kx1 =



−(−u1 + uint)α1ρ1
−(p1 − pint)

ρ1[ρ1(u1 − uint)2 + pint − p1]
(p1 − pint)(u1 − uint)

1

0
ρ1[c

2
1(pint − p1) + ρ1c

2
1int(u1 − uint)2]

(p1 − pint)(u1 − uint)
−α1ρ1(u1 − uint)[ρ2(c22int − σ2) + pint − p2]

−α2(p1 − pint)σ2
α1ρ1(u1 − uint)(u2 − uint)[pint − p2 + ρ2c

2
2int]

−α2ρ2(p1 − pint)σ2
0

α1ρ1(uint − u1)[c22(pint − p2) + ρ2c
2
2int(u2 − uint)2]

−α2(p1 − pint)σ2



,

Kx2 = Kx3 =



0

0

0

0

1

0

0

0

0


, Kx4 = Kx5 =



0

1

0

0

0

0

0

0

0


, Kx6 =



0

0

0

0

0

0

0

1

0


, (6.8)

Kx7 =



0

0

0

0

0

1

0

0

0


, Kx8 =



0

0

0

0

0

1
c2
ρ2
0

c22



, Kx9 =



0

0

0

0

0

1

− c2
ρ2
0

c22



,
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where σ2 = c22 − (u2 − uint)2.
and the eigenvalues of the Jacobian matrix B(w) are as follows:

λy1 = vint,

λy2 = v2 + c2, λy3 = v2 − c2, λy4 = v1 + c1, λy5 = v1 − c1, (6.9)

λy6 = λy7 = v1, λy8 = λy9 = v2.

The corresponding right eigenvectors for the Jacobian matrix B(w) are:

Ky1 =



1

−−ρ1[(v1 − vint)
2 − (c21 − c2int)] + (p1 − pint)
−α1ζ1

0

−(−v1 − vint)(ρ1c22int + pint − p1]
−α1ρ1ζ1

c21(pint − p1)− ρ1c21int(v1 − vint)2

−α1ζ1
ρ2[(v1 − vint) + (c22 − c22int)] + pint − p2]

−α2ζ2
0

(−v2 − vint)(ρ2c22int + pint − p2)
−α2ρ2ζ2

c22(pint − p2)− ρ2c22int(v2 − vint)2

−α2ζ2



,

Ky2 =



0

0
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0

0

1

0
c2
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c22
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,Ky3 =



0

0

0

0

0

1

0

− c2
ρ2
c22



,Ky4 =



0

1

0
c1
ρ1
c21

0

0

0

0



,Ky5 =



0

1

0

− c1
ρ1
c21

0

0

0

0



, (6.10)

Ky6 =



0

0

1

0

0

0

0

0

0


,Ky7 =



0

1

0

0

0

0

0

0

0


,Ky8 =



0

0

0

0

0

0

1

0

0


,Ky9 =



0

0

0

0

0

1

0

0

0


,
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where ζ1 = c21 − (v1 − vint)2 and ζ2 = c22 − (v2 − vint)2.
It can be observed that the eigenvalues (6.7) and (6.9) of the Jacobian matrices

A(w) and B(w) are real but not distinct. Therefore, the model (6.23) is hyperbolic

but non-strictly hyperbolic. The model may lose its hyperbolicity if any of the above

eigenvectors (6.8) and (6.10) become linearly dependent. This occurs when any of

the following conditions holds:

σ2 = 0, ζ1 = 0, ζ2 = 0, α1 = 0, α2 = 0.

To avoid disappearance of both phases everywhere in the domain, it is necessary to

assume that a small amount ε = 10−8 of the other phase exist in the main phase.

6.2 Extension of the six-equation compressible mul-

tiphase flow model to two dimensions

The six-equation compressible multiphase flow model is extended to two space di-

mensions. The system of governing equations including the derived conservative

mixture energy equation takes the following form:

∂α1

∂t
+ u

∂α1

∂x
+ v

∂α1

∂y
= µ(p1 − p2), (6.11a)

∂α1ρ1
∂t

+
∂α1ρ1u

∂x
+
∂α1ρ1v

∂y
= 0, (6.11b)

∂α2ρ2
∂t

+
∂α2ρ2u

∂x
+
∂α2ρ2v

∂y
= 0, (6.11c)

∂ρu

∂t
+
∂(ρu2 + p)

∂x
+
∂ρuv

∂y
= 0, (6.11d)

∂ρv

∂t
+
∂ρuv

∂x
+
∂(ρv2 + p)

∂y
= 0, (6.11e)

∂α1ρ1e1
∂t

+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
+
∂α1ρ1e1v

∂y
+ α1p1

∂v

∂y
= µpint(p2 − p1), (6.11f)

∂α2ρ2e2
∂t

+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
+
∂α2ρ2e2v

∂y
+ α2p2

∂v

∂y
= −µpint(p2 − p1), (6.11g)

∂ρE

∂t
+
∂u(ρE + p)

∂x
+
∂v(ρE + p)

∂y
= 0. (6.11h)

where E is the total specific energy is defined as E = e + 1
2
u2 + 1

2
v2, v is the y-

component of mixture velocity, p is the mixture pressure and pint is the interfacial

pressure. Both p and pint are defined as p = pint = α1p1 + α2p2.

In addition to the closure relations introduced in section 5.1.2, the mixture ve-
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locity in y-direction v is given as follows:

v =
α1ρ1v1 + α2ρ2v2

ρ
. (6.12)

6.2.1 Mathematical structure of the six-equation model in

two dimensions

To explore the mathematical structure of the six-equation two-dimensional flow

model (6.11), the eigenvalues and the corresponding eigenvectors are determined.

Consider the model (6.11) without the additional relaxation terms written in a

quasi-linear form in terms of primitive variables as follows:

∂w

∂t
+ A(w)

∂w

∂x
+B(w)

∂w

∂y
= 0. (6.13)

The vector of primitive variables w is defined by:

w =
[
α1 ρ1 ρ2 u v p1 p2

]T
. (6.14)

The primitive variables Jacobian matrices A(w) and B(w) are defined as follows:

A(w) =



u 0 0 0 0 0 0

0 u 0 ρ1 0 0 0

0 0 u ρ2 0 0 0
p1 − p2
ρ

0 0 u 0
α1

ρ

1− α1

ρ
0 0 0 0 u 0 0

0 0 0 ρ1c1
2 0 u 0

0 0 0 ρ2c2
2 0 0 u


, (6.15)

B(w) =



v 0 0 0 0 0 0

0 v 0 0 ρ1 0 0

0 0 v 0 ρ2 0 0

0 0 0 v 0 0 0
p1 − p2
ρ

0 0 0 v
α1

ρ

1− α1

ρ
0 0 0 0 ρ1c1

2 v 0

0 0 0 0 ρ2c2
2 0 v


. (6.16)

The phases sound speeds c1 and c2 appearing in the above matrices are defined as:

ck
2 =

pk
ρ2k
−
(
∂ek
∂ρk

)
pk(

∂ek
∂pk

)
ρk

, k = 1, 2. (6.17)
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Using the definition of speed of sound given by equation (6.17) and any of the EOSs

written in the form of the Mie-Grüneisen EOS (4.12), the phase sound speed can be

derived for various EOSs as given in section 4.2.

The system of governing equations is said to be strictly hyperbolic if the eigen-

values of the Jacobian matrices A(w) and B(w) are real and distinct. The Jacobian

matrix A(w) has seven real eigenvalues which were determined to be:

λx1 = λx2 = λx3 = λx4 = λx5 = u,

λx6 = u+ c, (6.18)

λx7 = u− c.

The mixture sound speed c is expressed as:

c2 =
2∑

k=1

Ykc
2
k, (6.19)

where Yk =
αkρk
ρ

. The right eigenvectors corresponding to the seven eigenvalues for

the Jacobian matrix A(w) were determined to be:

Kx1 =



0

0

0

0

0
α1 − 1

α1

1


, Kx2 =



0

0

0

0

1

0

0


, Kx3 =



0

0

1

0

0

0

0


, Kx4 =



0

1

0

0

0

0

0


,

Kx5 =



1

0

0

0

0
p2 − p1
α1

0


, Kx6 =



0

1
ρ2
ρ1c

ρ1
0

c21
ρ2c

2
2

ρ1


, Kx7 =



0

1
ρ2
ρ1
− c

ρ1
0

c21
ρ2c

2
2

ρ1


. (6.20)

The Jacobian matrix B(w) has seven real eigenvalues which were determined to be:
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λy1 = λy2 = λy3 = λy4 = λy5 = v,

λy6 = v + c, (6.21)

λy7 = v − c.

Their corresponding right eigenvectors are as follows:

Ky1 =



0

0

0

0

0
α1 − 1

α1

1


, Ky2 =



0

0

0

1

0

0

0


, Ky3 =



0

0

1

0

0

0

0


, Ky4 =



0

1

0

0

0

0

0


,

Ky5 =



1

0

0

0

0
p2 − p1
α1

0


, Ky6 =



0

1
ρ2
ρ1
0
c

ρ1
c21
ρ2c

2
2

ρ1


, Ky7 =



0

1
ρ2
ρ1
0

− c

ρ1
c21
ρ2c

2
2

ρ1


. (6.22)

One can observe that the eigenvalues (6.18) and (6.21) of the Jacobian matrices

A(w) and B(w) are real but not distinct. Therefore, the model (6.11) is hyperbolic

but non-strictly hyperbolic.

6.3 Numerical method for the two-dimensional

seven-equation model

The seven-equation compressible multiphase flow model (6.1) mentioned in sec-

tion 6.1 consists of a system of hyperbolic partial differential equations. The system

cannot be written in the divergence form and hence the standard numerical methods

developed for conservation laws are not applicable directly. In order to solve this

system, a numerical scheme is constructed which decomposes this system of govern-

ing equations into hyperbolic and non-hyperbolic parts as mentioned previously in

subsections 4.4.1 and 5.3.1.
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6.3.1 The hyperbolic operator of the two-dimensional seven-

equation model

Consider the hyperbolic part of the system (6.1) including the non-conservative

equation (6.1a) and the non-conservative terms that exist in the momentum and

energy equations. This part can be written without the additional relaxation terms

in the following form:

∂α1

∂t
+ uint

∂α1

∂x
+ vint

∂α1

∂y
= 0, (6.23a)

∂Q

∂t
+
∂F (Q)

∂x
+
∂G(Q)

∂y
= H1(Q)

∂α1

∂x
+H2(Q)

∂α1

∂y
, (6.23b)

where Q, F (Q), G(Q), H1(Q) and H2(Q) are the vectors of conserved variables,

fluxes in x-direction, fluxes in y-direction, non-conservative in x-direction and non-

conservative in y-direction, respectively. These vectors are defined as follows:

Q =



α1ρ1

α1ρ1u1

α1ρ1v1

α1ρ1E1

α2ρ2

α2ρ2u2

α2ρ2v2

α2ρ2E2


, F (Q) =



α1ρ1u1

α1ρ1u
2
1 + α1p1

α1ρ1u1v1

u1(α1ρ1E1 + α1p1)

α2ρ2u2

α2ρ2u
2
2 + α2p2

α2ρ2u2v2

u2(α2ρ2E2 + α2p2)


,

and

G(Q) =



α1ρ1v1

α1ρ1u1v1

α1ρ1v
2
1 + α1p1

v1(α1ρ1E1 + α1p1)

α2ρ2v2

α2ρ2u2v2

α2ρ2v
2
2 + α2p2

v2(α2ρ2E2 + α2p2)


, H1(Q) =



0

pint

0

pintuint

0

−pint
0

−pintuint


, H2(Q) =



0

0

pint

pintvint

0

0

−pint
−pintvint


.

To solve the hyperbolic part (6.23), Godunov’s method utilising exact or approxi-

mate Riemann solvers is used in implementing numerical schemes. These schemes,
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which are developed for conservation laws, have the ability to capture shock discon-

tinuities correctly whereas the non-conservative schemes are not able to capture the

exact position of the discontinuity (LeVeque, 2004; Toro, 2009). According to the

Godunov method the non-conservative equation for the volume fraction (6.23a) is

discretised as follows:

αn+1
i,j = αni,j −

∆t

∆x

[
α∗(αni,j, α

n
i+1,j)− α∗(αni−1,j, αni,j)

]
− ∆t

∆y

[
α∗(αni,j, α

n
i,j+1)− α∗(αni,j−1, αni,j)

]
, (6.24)

and the equation (6.23b) is discretised as follows:

Qn+1
i,j = Qn

i,j −
∆t

∆x

[
F ∗(Qn

i,j, Q
n
i+1,j)− F ∗(Qn

i−1,j, Q
n
i,j)
]

− ∆t

∆y

[
G∗(Qn

i,j, Q
n
i,j+1)−G∗(Qn

i,j−1, Q
n
i,j)
]

+ ∆tH1(Q
n
i,j)∆x + ∆tH2(Q

n
i,j)∆y, (6.25)

where ∆x and ∆y are space increments and ∆t is the time step defined as:

∆t = CFL min

(
∆x

Sx
,
∆y

Sy

)
. (6.26)

CFL is the Courant number, while Sx and Sy are the maximum wave speeds in x and

y directions at time level n, respectively. To obtain a second order accuracy in both

space and time for the solution of the hyperbolic operator, the MUSCL-Hancock

high resolution scheme described in Toro (2009) is used.

6.3.2 The velocity and pressure relaxation operator

The second step in the numerical solution of the seven-equation model (6.1) is to

solve the velocity and pressure relaxation operator following the Strang splitting

method (??). The seven-equation model is a full non-equilibrium model which can

deal with fluid and mixtures that have different velocity, pressure and so on. The

velocity and pressure relaxation processes are assumed to take place instantaneously.

To fulfill the boundary conditions at the interface that separates two fluids they are

performed in the numerical solution at each time step. The complete solution is

obtained by solving the following ordinary differential equations (ODE):

dQ

dt
= DV +DP , (6.27)

where Q is defined as:
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Q = [α1, α1ρ1, α1ρ1u1, α1ρ1v1, α1ρ1E1, α2ρ2, α2ρ2u2, α2ρ2v2, α2ρ2E2]
T , (6.28)

The velocity relaxation term is DV and DP is the pressure relaxation term. They

are given by:

DV =



0

0

λ(u2 − u1)
λ(v2 − v1)

uintλ(u2 − u1) + vintλ(v2 − v1)
0

−λ(u2 − u1)
−λ(v2 − v1)

−uintλ(u2 − u1)− vintλ(v2 − v1)


, DP =



µ(p1 − p2)
0

0

0

pintµ(p1 − p2)
0

0

0

−pintµ(p1 − p2)


. (6.29)

Solution of the ODE (6.27) is obtained by solving the two integration operators

associated with the corresponding vectors (6.29) in succession.

Velocity relaxation

In order to enable the velocity relaxation process to drive both phases to equilibrium

in a very short time, the velocity relaxation parameter λ has to be infinite. Consider

the ODE:

dQ

dt
= DV . (6.30)

Combining the mass and momentum equations for each phase and integrating the

resultant equation yields the following relation for the velocity relaxation in x di-

rection:

u∗1 = u∗2 = u∗int =
α0
1ρ

0
1u

0
1 + α0

2ρ
0
2u

0
2

α0
1ρ

0
1 + α0

2ρ
0
2

, (6.31)

similarly for the velocity in y direction:

v∗1 = v∗2 = v∗int =
α0
1ρ

0
1v

0
1 + α0

2ρ
0
2v

0
2

α0
1ρ

0
1 + α0

2ρ
0
2

, (6.32)

where the variables with (∗) and (0) represent the states after and before the re-

laxation process, respectively. Since velocity relaxation terms are present in the

energy equation of the system (6.30), update of the internal energy for both phases

is necessary after the velocity relaxation process using the following relations:
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e∗1 = e01 +
1

2

(
u∗1 − u01

)2
+

1

2

(
v∗1 − v01

)2
, (6.33a)

e∗2 = e02 +
1

2

(
u∗2 − u02

)2
+

1

2

(
v∗2 − v02

)2
. (6.33b)

Pressure relaxation

Similar to the velocity relaxation process, the pressure relaxation process has to take

place instantaneously to reach the state of equilibriumfor both phases. To this end,

the pressure relaxation parameter µ has to be infinite. Consider the following ODE:

dQ

dt
= DP . (6.34)

Combining the mass, momentum and energy equations for phase 1. One obtains:

∂e1
∂t

= − pint
α1ρ1

∂α1

∂t
. (6.35)

Its integration yields:

e∗1 = e01 −
pint
α1ρ1

(α∗1 − α0
1). (6.36)

A similar equation for the second phase can be obtained. The pressures for both

phases are obtained from their EOS and the iterative procedure (procedure 4) given

in Lallemand and Saurel (2000) is used to achieve the equilibrium pressure.

6.3.3 The MUSCL-Hancock scheme

The second order accuracy in both space and time for the solution of the hyperbolic

part (6.24) and (6.25) is achieved by the high resolution MUSCL-Hancock approach

which consists of the following three steps:

(1) Extrapolation:

It is reported in Jenny, Müller and H. (1997) that it is important to implement

this step using primitive variables instead of using conserved ones to avoid wrong

values of pressure. The primitive variables wn
i,j in the cell Ii,j are used to obtain the

extrapolated primitive variables at the boundaries of the cell Ii,j in both directions

x and y as follows:

w∓
i± 1

2
,j

= wn
i,j ± 1

2
σ̄i, w∓

i,j± 1
2

= wn
i,j ± 1

2
σ̄j, (6.37)

where σ̄i and σ̄j are the slope limiters which are used to eliminate numerical oscil-

lations; they take the following values, respectively:
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σ̄i =

{
max[0,min(β∆i− 1

2
,j,∆i+ 1

2
,j),min(∆i− 1

2
,j, β∆i+ 1

2
,j)] if ∆i+ 1

2
,j > 0,

min[0,max(β∆i− 1
2
,j,∆i+ 1

2
,j),max(∆i− 1

2
,j, β∆i+ 1

2
,j)] if ∆i+ 1

2
,j < 0,

where:

∆i− 1
2
,j = wn

i,j −wn
i−1,j, ∆i+ 1

2
,j = wn

i+1,j −wn
i,j, (6.38)

and:

σ̄j =

{
max[0,min(β∆i,j− 1

2
,∆i,j+ 1

2
),min(∆i,j− 1

2
, β∆i,j+ 1

2
)] if ∆i,j+ 1

2
> 0,

min[0,max(β∆i,j− 1
2
,∆i,j+ 1

2
),max(∆i,j− 1

2
, β∆i,j+ 1

2
)] if ∆i,j+ 1

2
< 0,

where

∆i,j− 1
2

= wn
i,j −wn

i,j−1, ∆i,j+ 1
2

= wn
i,j+1 −wn

i,j. (6.39)

The parameter β equals 1 for minmod limiter and β equals 2 for superbee limiter.

(2) Evolution:

The extrapolated primitive variables are updated at time n+ 1
2

using the following

equations:

w∓
i± 1

2
,j

= w∓
i± 1

2
,j

+
∆t

2∆x
A(wi,j)(w

+
i− 1

2
,j
−w−

i+ 1
2
,j

)

+
∆t

2∆y
B(wi,j)(w

+
i,j− 1

2

−w−
i,j+ 1

2

), (6.40a)

w∓
i,j± 1

2

= w∓
i,j± 1

2

+
∆t

2∆x
A(wi,j)(w

+
i− 1

2
,j
−w−

i+ 1
2
,j

)

+
∆t

2∆y
B(wi,j)(w

+
i,j− 1

2

−w−
i,j+ 1

2

). (6.40b)

Substituting (6.37) in (6.40), the equations reduce to the following equations:

w∓
i± 1

2
,j

= w∓
i± 1

2
,j
− ∆t

2∆x
A(wi,j)σi −

∆t

2∆y
B(wi,j)σj, (6.41a)

w∓
i,j± 1

2

= w∓
i,j± 1

2

− ∆t

2∆x
A(wi,j)σi −

∆t

2∆y
B(wi,j)σj, (6.41b)

where the matrices A(w) and B(w) are given by (6.15) and (6.16), respectively.
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(3) Solution of the Riemann problem:

Solution of the Riemann problem can be obtained by utilising exact Riemann solver

in the Godunov’s method. However, using exact Riemann solvers tends to be very

expensive and hence approximate Riemann solvers are used. The primitive variables

obtained from the evolution step are used to compute the conservative variables and

the intercell fluxes in the Godunov-type scheme. The discretised equations (6.24)

and (6.25) can be written respectively according to the second-order discretisation

as follows:

αn+1
i,j = αni,j −

∆t

∆x

[
α∗(α−

i+ 1
2
,j
, α+

i+ 1
2
,j

)− α∗(α−
i− 1

2
,j
, α+

i− 1
2
,j

)
]

− ∆t

∆y

[
α∗(α−

i,j+ 1
2

, α+
i,j+ 1

2

)− α∗(α−
i,j− 1

2

, α+
i,j− 1

2

)
]
, (6.42)

and:

Qn+1
i = Qn

i −
4t
4x

[
F
(
Q∗(Q

−
i+ 1

2
,j, Q

+

i+ 1
2
,j)
)
− F

(
Q∗(Q

−
i− 1

2
,j, Q

+

i− 1
2
,j)
)]

− 4t
4y

[
G
(
Q∗(Q

−
i,j+ 1

2
, Q

+

i,j+ 1
2
)
)
−G

(
Q∗(Q

−
i,j− 1

2
, Q

+

i,j− 1
2
)
)]

+ ∆tH1(Q
n
i,j)∆x + ∆tH2(Q

n
i,j)∆y. (6.43)

The value of α∗ in the equation (6.42) and the intercell numerical fluxes F and G

in the equation (6.43) are computed using the HLL approximate Riemann solver as

given below.

The HLL approximate Riemann solver:

This approach was presented by Harten, Lax and van Leer (1983) to obtain the

intercell numerical flux vector. Two waves left and right of speed S− and S+ are

assumed to separate three constant states in the solution of the Riemann problem.

The intercell fluxes for the right boundary of the cell (i, j) are given as follows:

F hll
i+ 1

2
,j

=


F+
i,j if 0 ≤ S−

i+ 1
2
,j
,

F hll if S−
i+ 1

2
,j
≤ 0 ≤ S+

i+ 1
2
,j
,

F−i+1,j if 0 ≥ S+
i+ 1

2
,j
,

(6.44)

where:

F hll =
S+
i+ 1

2
,j
F+
i,j − S−i+ 1

2
,j
F−i+1,j + S−

i+ 1
2
,j
S+
i+ 1

2
,j

(Q−i+1,j −Q+
i,j)

S+
i+ 1

2
,j
− S−

i+ 1
2
,j

and for the upper boundary of the cell (i, j) are given by:
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Ghll
i,j+ 1

2
=


G+
i,j if 0 ≤ S−

i,j+ 1
2

,

Ghll if S−
i,j+ 1

2

≤ 0 ≤ S+
i,j+ 1

2

,

G−i,j+1 if 0 ≥ S+
i,j+ 1

2

.

(6.45)

where:

Ghll =
S+
i,j+ 1

2

G+
i,j − S−i,j+ 1

2

G−i,j+1 + S−
i,j+ 1

2

S+
i,j+ 1

2

(Q−i,j+1 −Q+
i,j)

S+
i,j+ 1

2

− S−
i,j+ 1

2

.

Similarly, the intercell fluxes for the left and lower boundaries can be obtained by

applying (6.44) and (6.45), respectively, using their corresponding left and right or

up and down data. The maximum and minimum wave speeds of the left and right

waves can be computed according to the formulae introduced in Davis (1988). For

the x-direction the wave speeds are:

S+
i± 1

2
,j

= max(u−
i± 1

2
,j

+ c−
i± 1

2
,j
, u+

i± 1
2
,j

+ c+
i± 1

2
,j

),

S−
i± 1

2
,j

= min(u−
i± 1

2
,j
− c−

i± 1
2
,j
, u+

i± 1
2
,j
− c+

i± 1
2
,j

),
(6.46)

and, for the y-direction the wave speeds are:

S+
i,j± 1

2

= max(v−
i,j± 1

2

+ c−
i,j± 1

2

, v+
i,j± 1

2

+ c+
i,j± 1

2

),

S−
i,j± 1

2

= min(v−
i,j± 1

2

− c−
i,j± 1

2

, v+
i,j± 1

2

− c+
i,j± 1

2

),
(6.47)

where the sound speed obeys relation (6.19), u±
i± 1

2
,j
, u±

i,j± 1
2

, v±
i± 1

2
,j

, v±
i,j± 1

2

, c±
i± 1

2
,j

and

c±
i,j± 1

2

represent the velocities and wave speeds, respectively, at the right, left, upper

and lower boundaries.

6.4 Numerical method for the two-dimensional

six-equation model

The numerical solution to the six-equation multiphase flow model is similar to that

explained in section 6.3 for solving the seven-equation model. The solution is ob-

tained using the Strang method (??). However, the solution to the six-equation

model comprises only the hyperbolic and pressure relaxation operators.
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6.4.1 The hyperbolic operator of the two-dimensional six-

equation model

Consider the hyperbolic equations of the two-dimensional six-equation model written

as follows:

∂α1

∂t
+ u

∂α1

∂x
+ v

∂α1

∂y
= 0, (6.48a)

∂α1ρ1e1
∂t

+
∂α1ρ1e1u

∂x
+ α1p1

∂u

∂x
+
∂α1ρ1e1v

∂y
+ α1p1

∂v

∂y
= 0, (6.48b)

∂α2ρ2e2
∂t

+
∂α2ρ2e2u

∂x
+ α2p2

∂u

∂x
+
∂α2ρ2e2v

∂y
+ α2p2

∂v

∂y
= 0, (6.48c)

∂Q

∂t
+
∂F (Q)

∂x
+
∂G(Q)

∂y
= 0, (6.48d)

where Q is the conservative vector, F (Q) and G(Q) are the numerical flux vectors

in x and y directions, respectively. These vectors are defined as:

Q =


α1ρ1

α2ρ2

ρu

ρv

ρE

 , F (Q) =


α1ρ1u

α2ρ2u

ρu2 + p

ρuv

u(ρE + p)

 , G(Q) =


α1ρ1v

α2ρ2v

ρuv

ρv2 + p

v(ρE + p)

 .

Note that, the last row in the above vectors corresponds to the additional equation

(6.11h). To obtain the numerical solution of the hyperbolic part (6.48) with the

second order accuracy in both space and time, the high resolution MUSCL approach

described in section 6.3.3 is used. Based on the Godunov second-order upwind

scheme, the non-conservative equation for the volume fraction (6.48a) is discretised

as follows:

αn+1
1i,j

= αn1i,j −
∆t

∆x

[
(uα1)

∗
(

(uα1)
−
i+ 1

2
,j
, (uα1)

+
i+ 1

2
,j

)
− (uα1)

∗
(

(uα1)
−
i− 1

2
,j
, (uα1)

+
i− 1

2
,j

)
− αn1i,j

(
u∗(u−

i+ 1
2
,j
, u+

i+ 1
2
,j

)− u∗(u−
i− 1

2
,j
, u+

i− 1
2
,j

)
)]

− ∆t

∆y

[
(vα1)

∗
(

(vα1)
−
i,j+ 1

2

, (vα1)
+
i,j+ 1

2

)
− (vα1)

∗
(

(vα1)
−
i,j− 1

2

, (vα1)
+
i,j− 1

2

)
− αn1i,j

(
v∗(v−

i,j+ 1
2

, v+
i,j+ 1

2

)− v∗(v−
i,j− 1

2

, v+
i,j− 1

2

)
)]
. (6.49)
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In the presence of shocks, the non-conservative energy equations (6.48b) and (6.48c)

cannot be approximated accurately. Therefore, it is necessary to assume that the

product (αp)nki,j is constant during the time step. This is done by using the simplest

approximation of the corresponding equations (Saurel, Petitpas and Berry, 2009) as

follows:

(αρe)n+1
ki,j

= (αρe)nki,j −
∆t

∆x

[
(αρeu)∗k

(
(αρeu)−

i+ 1
2
,j
, (αρeu)+

i+ 1
2
,j

)
− (αρeu)∗k

(
(αρeu)−

i− 1
2
,j
, (αρeu)+

i− 1
2
,j

)
+ (αp)nki,j

(
u∗k(u

−
i+ 1

2
,j
, u+

i+ 1
2
,j

)− u∗k(u−i− 1
2
,j
, u+

i− 1
2
,j

)
)]

− ∆t

∆y

[
(αρev)∗k

(
(αρev)−

i,j+ 1
2

, (αρev)+
i,j+ 1

2

)
− (αρev)∗k

(
(αρev)−

i,j− 1
2

, (αρev)+
i,j− 1

2

)
+ (αp)nki,j

(
v∗k(v

−
i,j+ 1

2

, v+
i,j+ 1

2

)− v∗k(v−i,j− 1
2

, v+
i,j− 1

2

)
)]
, k = 1, 2.

(6.50)

The conservative equation (6.48d) can be written as the second-order accurate

scheme as follows:

Qn+1
i = Qn

i −
4t
4x

[
F
(
Q∗(Q

−
i+ 1

2
,j, Q

+

i+ 1
2
,j)
)
− F

(
Q∗(Q

−
i− 1

2
,j, Q

+

i− 1
2
,j)
)]

− 4t
4y

[
G
(
Q∗(Q

−
i,j+ 1

2
, Q

+

i,j+ 1
2
)
)
−G

(
Q∗(Q

−
i,j− 1

2
, Q

+

i,j− 1
2
)
)]
.(6.51)

6.4.2 The pressure relaxation operator

The solution procedure for the hyperbolic operator is presented in the previous

sections without including the relaxation source term. The solution of the relaxation

operator is crucial since it accounts for the boundary conditions at the interface.

This is achieved by solving the ODE given by:

dQ

dt
= DP , (6.52)

where Q is defined as:

Q = [α1, α1ρ1, α2ρ2, αu, αv, α1ρ1e1, α2ρ2e2, E]T , (6.53)

and DP is the pressure relaxation term. It is given by:
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DP =



µ(p1 − p2)
0

0

0

0

pintµ(p1 − p2)
−pintµ(p1 − p2)

0


. (6.54)

Lallemand and Saurel (2000) proposed the iterative procedure to solve the relaxation

part for the seven-equation model of Saurel and Abgrall (1999a). This procedure

was implemented to solve equations (6.52) together with the criterion of Saurel,

Petitpas and Berry (2009) to correct the relaxed pressure in order to satisfy the

mixture EOS at every time step. The value of ρe is calculated from the conservative

equation of the total mixture energy (6.11h). Then the mixture pressure for fluids is

calculated from the mixture EOS (6.55) with the help of the volume fraction. This

mixture EOS is written in terms of the Mie-Grüneisen EOS functions given for each

EOS in Table 4.2 as follows:

p(ρe, α1, α2) =

ρe−
∑2

k

(
αk(ρkΓk(ρk)ek(ρk)− pk(ρk))

Γk(ρk)

)
∑2

k

(
αk

Γk(ρk)

) , (6.55)

Then the internal energies for both phases are updated using the corresponding

EOSs. Such approach enables the interface conditions to be fulfilled at any time.

6.5 Numerical results - Verification test problems

In this section several test problems are conducted to verify the accuracy of the

developed code to simulate two-dimensional test problems. These test problems

include simulations of a single phase test problem and various two-phase test prob-

lems. Verifications of the six and seven-equation models have been demonstrated

in two-dimensions using the ideal gas, van der Waals, stiffened gas and Tait EOSs.

The usual assumption of presence of a negligible volume fraction ε = 10−8 of the

other fluid in the fluid considered as a pure fluid is used in all test problems. The

numerical results of all presented test problems are compared with either the exact

solution or others published results. It can be seen that good results have been

achieved for all examined test problems using various EOSs.
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6.5.1 Air bubble explosion test

This is a single phase test problem where an air bubble with a higher density and

pressure explodes in air. This test is usually used to verify the correctness of numer-

ical solutions of implemented numerical methods in two dimensions (Toro, 2009).

The test contains of a circular bubble with a radius of 0.4 m which is located at the

centre of a square domain of 2 m × 2 m. The fluid inside and outside the bubble is

air and its initial states are given in Table 6.1. The ideal gas EOS (4.14) is used to

govern the air inside and outside the bubble γ = 1.4. Periodic boundary conditions

are imposed to all sides of the computational domain.

Table 6.1: Initial data for air bubble explosion test 6.5.1

Zone [kg/m3] [m/s] [m/s] [Pa]

Bubble ρ1 = 1 u1 = 0 v1 = 0 p1 = 1 α1 = 1− ε
ρ2 = 0.125 u2 = 0 v2 = 0 p2 = 1 α2 = ε

Zone [kg/m3] [m/s] [m/s] [Pa]

Surrounding ρ1 = 1 u1 = 0 v1 = 0 p1 = 0.1 α1 = ε

ρ2 = 0.125 u2 = 0 v2 = 0 p2 = 0.1 α2 = 1− ε

Figure 6.1: Air bubble explosion test 6.5.1: Surface and contour plots for pressure
(top) and mixture density (bottom) at t = 0.25 s using the seven-equation model.
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Figure 6.2: Air bubble explosion test 6.5.1: Cross-section plot at y = 1 m for the
pressure (a), mixture density (b) and velocity (c) at t = 0.25 s. Comparison between
six and seven-equation models with exact from Toro (2009).

The solution of this test problem comprises outward going shock and contact waves

and an inward going rarefaction wave. The results for the air bubble explosion test

are displayed in Figure 6.1. The figure shows surface and contour plots for pressure

(top) and mixture density (bottom) at t = 0.25 s using the seven-equation model

with 600 × 600 cells.

Since the results are symmetric about the vertical axis at the centre of the domain

(1 m, 1 m), the results of the right half are shown in Figure 6.2. The figure shows

cross-section plots for the results of pressure (a), mixture density (b) and velocity (c)

at y = 1 m and t = 0.25 s. The results are obtained from the six and seven-equation

models using a mesh of 600 × 600 cells with the CFL = 0.6. It can be observed that

the method captures the shock more accurate than it does to capture the contact

discontinuity. These results are compared with the exact solution taken from Toro

(2009). It can be seen that these results are in good agreement with the exact

solution.

The number of time steps (n) and CPU time needed by the six and seven-

equation models to obtain the solution using different mesh resolutions are given

in Table 6.2. The average percentage of the number of time steps and CPU time

required by the six-equation model are 35.13 % and 46.41 % less than that required

by the seven-equation model to obtain the results for the air bubble explosion test

problem. The scaling order of the two-dimensional HLL algorithms for the six and

seven-equation models are 1.1054 and 1.1331, respectively, as shown Figure 6.3.

Figure 6.4 shows the error norm (L2) spatial convergence comparison between

the six and seven-equation models for the air bubble explosion test. The results are
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Table 6.2: The number of time steps and CPU time for air bubble explosion test

Mesh Six-equation model Seven-equation model

cells Time step CPU (s) Time step CPU (s)

100 × 100 91 5.44 143 9.86

200 × 200 179 45.40 285 84.92

400 × 400 355 400.50 586 889.57

800 × 800 708 4293.74 1208 9581.70

1000 × 1000 884 9740.86 1520 21143.55
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Figure 6.3: Air bubble explosion test 6.5.1: Scaling order for the HLL algorithm.

shown for pressure (a) and velocity (b) using different resolutions. It can be seen

that as the number of cells increases the error norm decreases. The order of accuracy

of the two-dimensional HLL algorithms for six and seven-equation models using the

air bubble explosion test are given in Tables 6.3-6.4. It can also be observed that

the order of accuracy is less than 2 due to the presence of the discontinuities in the

solution as mentioned in subsection 4.6.1.
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Figure 6.4: Air bubble explosion test example: L2 error norm spatial convergence
for: (a) pressure and (b) velocity.
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Table 6.3: Order of accuracy of the HLL for 6-eqn. model for air bubble explosion
test.

Mesh L2 Order

cells u p u p

100 × 100 0.095270998 0.041331477

200 × 200 0.065838611 0.022502692 0.26655 0.43857

400 × 400 0.042660716 0.011668186 0.31301 0.47376

800 × 800 0.010367620 0.004186070 1.02041 0.73946

Table 6.4: Order of accuracy of the HLL for 7-eqn. model for air bubble explosion
test.

Mesh L2 Order

cells u p u p

100 × 100 0.09668216 0.04766043

200 × 200 0.05968657 0.0251008 0.34792 0.46253

400 × 400 0.02180695 0.01209312 0.72630 0.52677

800 × 800 0.00714383 0.00515438 0.80501 0.61516

6.5.2 Interface translation test

To verify the correctness of the numerical method developed for the two-dimensional

two-phase flow problems. The code is subjected to the so called interface translation

test which was demonstrated by Shyue (1998) and Zheng et al. (2011). They used

different physical models and different numerical methods. The test comprises of

two different gases, the first is filled in a circle and the second is surrounding this

circle. The circle which has a radius of 0.16 m is located at (0.25 m, 0.25 m) in

a square domain of 1 m × 1 m as illustrated in Figure 6.5. Both gases inside and

outside the circle are governed by the IG EOS. The constant parameters for the gases

inside and outside the bubble are γ = 1.4 and γ = 1.6, respectively. The boundary

conditions are set to be periodic for all sides of the computational domain. The

initial conditions are given in Table 6.5.

Table 6.5: Initial data for interface translation test 6.5.2
Zone [kg/m3] [m/s] [m/s] [Pa]

Bubble ρ1 = 1 u1 = 1 v1 = 1 p1 = 1 α1 = 1− ε
ρ2 = 0.1 u2 = 1 v2 = 1 p2 = 1 α2 = ε

Zone [kg/m3] [m/s] [m/s] [Pa]

Surrounding ρ1 = 1 u1 = 1 v1 = 1 p1 = 1 α1 = ε

ρ2 = 0.1 u2 = 1 v2 = 1 p2 = 1 α2 = 1− ε
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Figure 6.5: Interface translation test at t = 0 s.

Figure 6.6: Interface translation test 6.5.2: Surface and contour plots for the mixture
density distributions at t = 0 s (top) and t = 0.36 s (bottom) using the six-equation
model.

These initial conditions will force the bubble to evolve with a constant velocity

along the diagonal direction. The results are obtained using the six and seven-

equation models with the CFL number being equal to 0.3. Figure 6.6 shows the

surface and contour plots for the mixture density distributions at t = 0 s (top) and

t = 0.36 s (bottom) with a mesh resolution of 300 × 300 cells. It can be seen

that during the evolution of the two phases the method can preserve the sharpness

of the contact discontinuity separating the two components with a relatively small
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Figure 6.7: Interface translation test 6.5.2: Cross-section plot of the mixture density
results at y = 0.61 m and t = 0.36 s: a) Different mesh resolutions using the six-
equation model. b), c) and d) Comparisons between six and seven-equation models
for mixture density, pressure and velocity.

numerical diffusion. The position of the bubble is verified at the given time as

compared to the theoretical solution. Figure 6.7 shows cross-sectional plots of the

mixture density (a, b), pressure (c) and velocity (d). Figure 6.7(a) shows cross-

sectional plots of the mixture density with different resolutions obtained from the six-

equation model to show the convergence of the numerical solution to the analytical

solution. A comparisons between the six and seven-equation models is shown in

Figure 6.7(a) in terms of the mixture density (b), pressure(c) and velocity (d) using

600 × 600 cells. It can be seen that both models gave almost the same results.

However, the six-equation model is cheaper than the seven-equation model by about

10% in this test problem.

A cross-section plot for the right half of the air bubble is drawn in Figure 6.8 at

different instants. The figure shows the effect of the time evolution on the interface

sharpness where a mesh of 600 × 600 cells is used. It can be seen that there is a

very slight increase in the interface diffusion.

6.5.3 Gas bubble underwater explosion test

The gas bubble underwater explosion test is also a verification test examined by

Shyue (1999). In this test an explosion of a circular gas bubble at a high pressure

takes place under water in a square domain of 1 m × 1 m. The gas bubble which
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Figure 6.8: Interface translation test 6.5.2: Cross-section plot (right intrface of the
bubble only) of the mixture density results at times 0.09, 0.18, 0.27 and 0.36 s.

has a radius of ro = 0.2 m is located at the centre of the computational domain.

While the top and bottom boundaries of the domain are set to be periodic boundary

conditions, the left and right boundaries of the domain are set to be extrapolation

boundary conditions. The water is governed by the SG EOS (4.21) and its constant

parameters are γ = 4.4, π = 6 × 108, whereas the gas is governed by the van der

Waals EOS (4.30) and its constant parameters are γ = 1.4, a = 1, b = 10−4. The

initial conditions are as given in Table 6.6.

Table 6.6: Initial data for gas bubble underwater explosion test 6.5.2

Zone [kg/m3] [m/s] [m/s] [Pa]

Bubble ρ1 = 1250 u1 = 0 v1 = 0 p1 = 109 α1 = 1− ε
ρ2 = 1000 u2 = 0 v2 = 0 p2 = 109 α2 = ε

Zone [kg/m3] [m/s] [m/s] [Pa]

Surrounding ρ1 = 1250 u1 = 0 v1 = 0 p1 = 105 α1 = ε

ρ2 = 1000 u2 = 0 v2 = 0 p2 = 105 α2 = 1− ε

When the explosion of the gas bubble starts, an outward strong shock wave is

transmitted to the surrounding water, an inward rarefaction wave propagates in the

gas and a contact discontinuity continues to separate the gas and water. Figure 6.9

shows surface and contour plots for the pressure (top) and mixture density (bottom)

at time t = 120 µs using the six-equation model with a CFL number equals 0.3 with

600 × 600 cells. Figure 6.10 shows cross-section plots for the pressure (a), mixture

density (b) and velocity (c) at the same instant t = 120 µs using various resolutions

to show the convergence of the numerical solution to the exact solution.

The number of time steps (n) and CPU time needed by the six-equation mode

to obtain the solution using different mesh resolutions are given in Table 6.7. The
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Figure 6.9: Gas bubble underwater explosion test 6.5.3: Surface and contour plots
for pressure (top) and mixture density (bottom) at t = 120 µs.
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Figure 6.10: Gas bubble underwater explosion test 6.5.3: Cross-section plot at
y = 0.5 m for the pressure (a), mixture density (b) and velocity (c) at t = 120 µs.
Current results from the six-equation model with different resolutions, exact from
Shyue (2001).
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scaling order of the two-dimensional HLL algorithms for the six model is 1.1113 as

shown Figure 6.11.

Table 6.7: The number of time steps and CPU time for gas bubble underwater
explosion test.

Mesh HLL

cells Time step CPU (s)

100 × 100 99 6.50

200 × 200 195 54.81

400 × 400 390 465.61

800 × 800 778 4748.13

1000 × 1000 972 10986.95

1000 10000 1e+05 1e+06 1e+07

Number of cells

0.01

0.1

1

10

100

C
P

U
/n

y = 2.2  10
-6

x
1.1113.

Figure 6.11: Gas bubble underwater explosion test 6.5.3: Scaling order for the HLL
algorithm.

Table 6.8: Order of accuracy of the HLL for gas bubble underwater explosion test.

Mesh L2 Order

cells p ρ p ρ

100 × 100 45261155.64 42.015082

200 × 200 20873600.79 22.821439 0.55829 0.44026

400 × 400 7849182.45 10.007023 0.70553 0.59469

800 × 800 1228954.90 1.7750521 1.33756 1.24754

Figure 6.12 shows the error norm (L2) spatial convergence for the six-equation

model for the air bubble underwater explosion test. The results are shown for pres-

sure (a) and mixture density (b) using different resolutions. The order of accuracy

of the two-dimensional HLL algorithms for six-equation model using the air bubble
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Figure 6.12: Gas bubble underwater explosion test 6.5.3: L2 error norm spatial
convergence for: (a) pressure and (b) mixture density.

underwater explosion test are given in Table 6.8. It can be seen that the order of

accuracy is less than 2 because of the presence of the discontinuity in the solution.

6.5.4 Shock-bubble interaction

The shock-bubble interaction problem was examined to record the process of a

planar shock wave interaction with an air bubble in water. The investigation of the

shock-bubble interaction with a high density ratio (1000) and pressure ratio (10,000)

between the water and air has been carried out by many researchers (see for example,

Allaire, Clerc and Kokh, 2002; Zheng, Shu and Chew, 2008; Zheng et al., 2012). The

geometry of this problem is schematically presented in Figure 6.13. The rectangular

domain of size 1.2 m by 1.0 m contains the air bubble with a radius of 0.2 m which

is initially located at the position (0.7 m, 0.5 m) in water. A shock wave initially at

0.95 m moves to the left with a Mach number of 1.422 and hits the bubble. While

the reflective boundary conditions are imposed at the upper and lower boundaries,

the extrapolation boundary conditions are imposed at the left and right boundaries.

The initial conditions are given in Table 6.9 and the constant SG EOS parameters

for air are γ = 1.4 and π = 0 Pa and for water are γ = 4.4 and π = 6× 108 Pa.

The simulation is performed on a mesh of 1440 × 1200 cells and a CFL equals

0.3. The results are obtained from the six-equation model and displayed using an

idealised Schlieren function described in Quirk and Karni (1996) which may be

written for mixture density ρ as follows:

φ = exp

(
−k(ψ)

|∇ρ|
|∇ρ|max

)
(6.56)

where

k(ψ) =

{
20 if ψ ≤ 0.25,

100 if ψ > 0.25,
(6.57)
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Table 6.9: Initial data for shock-bubble interaction 6.5.4
Zone [kg/m3] [m/s] [m/s] [Pa]

Bubble ρ1 = 1.2 u1 = 0 v1 = 0 p1 = 105 α1 = 1− ε
ρ2 = 1000 u2 = 0 v2 = 0 p2 = 105 α2 = ε

Zone [kg/m3] [m/s] [m/s] [Pa]

Pre-shock ρ1 = 1.2 u1 = 0 v1 = 0 p1 = 105 α1 = ε

ρ2 = 1000 u2 = 0 v2 = 0 p2 = 105 α2 = 1− ε
Zone [kg/m3] [m/s] [m/s] [Pa]

Post-shock ρ1 = 1230 u1 = −432.69 v1 = 0 p1 = 109 α1 = 1− ε
ρ2 = 1000 u2 = −432.69 v2 = 0 p2 = 109 α2 = ε
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Figure 6.13: Setup for the shock bubble interaction test 6.5.4.

ψ is the mass fraction of air and

|∇ρ| =
[(

∂ρ

∂x

)2

+

(
∂ρ

∂y

)2]1/2
Figure 6.14 shows the current results of idealised schlieren mixture density (left

column) compared to the results of Zheng, Shu and Chew (2008) which are obtained

from the reduced model with the implementation of an adaptive mesh refinement

technique (right column).

This figure illustrates the interaction of the planar shock wave with the air bubble

as they evolve at different times t = (1, 2, 3, 4)×10−4 s from top to bottom using the

idealised schlieren mixture density. The shock wave propagates from right to left in

water and hits the air bubble. The air bubble starts to deform due to the interaction

with the shock wave as shown in Figure 6.14 at t = 1 × 10−4 s where a circular

rarefaction wave is reflected to the right in water. It was observed that the shock

159



Chapter 6. Verification and validation of the two-phase flow models in two
dimensions

Figure 6.14: Shock-bubble interaction 6.5.4 results at t = (1, 2, 3, 4)×10−4 s from top
to bottom. Idealised schlieren mixture density current result using the six-equation
model (left) and results from Zheng, Shu and Chew (2008) (right).
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Figure 6.15: Shock-bubble interaction 6.5.4 results at t = (1, 2, 3, 4)×10−4 s from top
to bottom. Idealised schlieren volume fraction current result using the six-equation
model (left) and results from Zheng, Shu and Chew (2008) (right).
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Figure 6.16: Shock-bubble interaction 6.5.4. Mixture density distribution across line
of symmetry at t = (1, 2, 3, 4) × 10−4 s from top to bottom. Current results using
the six-equation model (left) and results from Zheng, Shu and Chew (2008) (right).
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Figure 6.17: Shock-bubble interaction 6.5.4. Pressure distribution across line of
symmetry at t = (1, 2, 3, 4)× 10−4 s from top to bottom. Current results using the
six-equation model (left) and results from Zheng, Shu and Chew (2008) (right).
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wave propagates in water faster than in the air bubble. Moreover, the unchanged

interface of the bubble downstream is due to the fact that the air compressibility is

larger than that of water. The deformation of the bubble takes a kidney shape at

t = 2 × 10−4 s where the rarefaction wave reaches the upper and lower boundaries

and starts to reflect away from these boundaries this is demonstrated in Figure

6.14 at t = 3 × 10−4 s. Then the bubble takes a crescent shape (not shown) and

then a water jet is generated at the axis of symmetry. This jet continues to deform

the bubble until it splits into two separate bubbles. The various stages of the

deformation are shown in Figure 6.14 at times t = (1, 2, 3) × 10−4 s. Thereafter,

the jet collides with the still water behind the bubble and generates a shock wave

which propagates radially as can be seen in Figure 6.14 at times t = (3, 4) × 10−4

s. Figure 6.15 shows the current results of idealised schlieren volume fraction (left

column) compared to the results of Zheng, Shu and Chew (2008) (rigt column) at

the same instants. Mixture density distribution plots across the line of symmetry

at times t = (1, 2, 3, 4) × 10−4 s are displayed in Figure 6.16 from top to bottom.

The current results (left column) are compared to the results of Zheng, Shu and

Chew (2008) (rigt column). Pressure distribution plots across the line of symmetry

at times t = (1, 2, 3, 4) × 10−4 s are displayed in Figure 6.17 from top to bottom.

The current results (left column) are compared to the results of Zheng, Shu and

Chew (2008) (rigt column).

The results are in good agreement with those obtained by Allaire, Clerc and

Kokh (2002) and Zheng, Shu and Chew (2008). This demonstrates the capability of

the current code to capture the material interfaces as well as strong shock waves due

to large pressure and density jump without the sophisticated refinement technique

used in Zheng, Shu and Chew (2008).

6.5.5 Richtmyer-Meshkov instability

This test has been demonstrated by many researchers (see for example, Shyue, 1998;

Nourgaliev, Dinh and Theofanous, 2006; Terashima and Tryggvason, 2009) to verify

numerical methods. The test was chosen to verify the computed solutions for prac-

tical problems in two space dimensions converge to the correct weak solution. The

Richtmyer-Meshkov instability considers a study of evolution of an unstable inter-

face separating two fluids with different densities when a shock wave passes over this

interface. In such cases the amplitude of the initially perturbed interface is growing

as the time evolves regardless of the side of the heavy or light fluid that the shock is

passing upon. This phenomenon differs from the Rayleigh-Taylor instability (RTI)

in which the instability of the interface is induced by gravity only when a heavy

fluid lies over a light fluid.

This test was carried out in a rectangular domain of 4 m × 1 m. The initial setup

of this test is shown in Figure 6.18(top left), where a planar shock wave is located
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at x = 3.3 m and the unperturbed edge of a perturbed interface separating two

different gases is located at x = 2.9 m. This interface is governed by the following

relation:

x = 2.9− 0.1sin(2π(y + 0.25)), 0 < y < 1.

While the heavier gas which is sulphur-hexafluoride (SF6) is put on the left side of

the perturbed interface (bubble), the lighter gas (air) is put on the right side of the

perturbed interface. The planar shock wave is moving left ward with a Mach of

1.24. Both gases are governed by the IG EOS 4.14 and the EOS parameters for the

SF6 and air are γ = 1.093 and γ = 1.4, respectively. Both gases which are left to

the shock are initially at rest as given in Table 6.10 which provides the initial data

for this test. While the extrapolation boundary conditions are imposed to the left

and right boundaries, the periodic boundary conditions are imposed to the upper

and lower boundaries of the computational domain.

Table 6.10: Initial data Richtmyer-Meshkov instability 6.5.5

Zone [kg/m3] [km/s] [km/s] [bar]

Bubble ρ1 = 5.04 u1 = 0 v1 = 0 p1 = 1 α1 = 1− ε
ρ2 = 1 u2 = 0 v2 = 0 p2 = 1 α2 = ε

Pre-shock ρ1 = 5.04 u1 = 0 v1 = 0 p1 = 1 α1 = ε

ρ2 = 1 u2 = 0 v2 = 0 p2 = 1 α2 = 1− ε
Post-shock ρ1 = 1.411 u1 = −0.39 v1 = 0 p1 = 1.628 α1 = 1− ε

ρ2 = 1 u2 = −0.39 v2 = 0 p2 = 1.628 α2 = ε

The results of this test are obtained from the seven-equation model using 2000 × 500

cells and a CFL equals 0.3. These results are presented in Figures 6.18-6.19 at

eight different instants. Figure 6.18 (top left column) shows the first instant at

t = 0 s where the planar shock wave approaches a single mode perturbed interface.

This figure shows the mixture density (a), idealised schlieren mixture density (b),

idealised schlieren pressure (c), mixture density across line of symmetry (d) and

pressure across line of symmetry (e). When the shock wave hits the perturbed

interface, a transmitted shock wave propagates to the left through the SF6 and

a reflected shock wave propagates to the right through the air as illustrated in

Figure 6.18 (bottom left column). One can notice that the interface is accelerated

from the light fluid to heavy fluid and the amplitude grows as the time evolves. This

acceleration is caused by the interaction of the shock wave, coming from the light

fluid to the heavy fluid region, with the perturbed interface as illustrated in Figures

6.18 (bottom right column) and 6.19 (top columns). These figures also show the

complicated interaction of the waves.

As the time evolves the instability grows to form a horn shape (roll-ups) as shown
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Figure 6.18: Richtmyer-Meshkov instability 6.5.5. Results from 7-equation model for
(a) mixture density, (b) idealised schlieren mixture density, (c) idealised schlieren
pressure, (d) mixture density plot across line of symmetry and (e) pressure plot
across line of symmetry at t = 0 s (top left column), t = 0.177 (top right column),
t = 0.714 s (bottom left column) and t = 1.6 s (bottom right column).
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Figure 6.19: Continued. Richtmyer-Meshkov instability 6.5.5. Results from 7-
equation model for (a) mixture density, (b) idealised schlieren mixture density, (c)
idealised schlieren pressure, (d) mixture density plot across line of symmetry and
(e) pressure plot across line of symmetry at t = 2.31 s (top left column), t = 4.62
s (top right column), t = 6.93 s (bottom left column) and t = 9.24 s (bottom right
column).
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Figure 6.20: Richtmyer-Meshkov instability 6.5.5. Comparison of spike and bubble
positions and mixing zone thickness as functions of time with results of Nourgaliev,
Dinh and Theofanous (2006); Terashima and Tryggvason (2009).

in Figures 6.19 (bottom columns). These interface roll-ups are produced because of

the vorticity generated by the passage of the shock wave. The misalignments of the

pressure gradient of the shock and the local density gradient across the interface due

to the curvature of the interface are the main sources of vorticity generation. The

pressure and density gradients misalignments (∇ρ×∇p) are known as the baroclinic

effect, the vorticity is represented by the following equation:

Dω

Dt
= −ω(∇ · V ) +

1

ρ2
(∇ρ×∇p), (6.58)

where ω is the vorticity and V is the velocity field. The first term on the right hand

side of the above equation has no effect on vorticity generation at initial time (zero

velocity at t = 0 s), the main source is the baroclinic effect which is represented by

the second term on the right hand side of the above equation. The effect of the first

term increases the vorticity generation as soon as the shock passes over the interface

separating the flow components.

Figure 6.20 shows a comparison of the spike and bubble positions and mixing

zone thickness as functions of time with results of Nourgaliev, Dinh and Theofanous

(2006); Terashima and Tryggvason (2009). The current results are in good agreement

with the results of Nourgaliev, Dinh and Theofanous (2006) who used an adaptive

mesh refinement techniques in their computations, and with the results of Terashima

and Tryggvason (2009) who used a front tracking-ghost fluid method in their studies.

6.6 Numerical results - Validation test problems

In this section, shock-R22 bubble, helium-bubble interactions and underwater ex-

plosion near free surface test problems are examined in two space dimensions to
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Figure 6.21: Initial configuration for air shock interactions with R22 and Helium
bubbles.

validate the results obtained from the developed codes. Validations of the six and

seven-equation models have been demonstrated in two-dimensions using the ideal

gas, van der Waals, stiffened gas and Tait EOSs. The usual assumption of presence

of a negligible volume fraction ε = 10−8 of the other fluid in the fluid considered as

a pure fluid is used in all test problems. The numerical results of all presented test

problems are compared with experimental results. It can be seen that good results

have been achieved for these test problems using various EOSs.

In order to determine the flow field properties for shock bubble interaction test

problems, the following subscripts 1, 2 and 3 have been used to represent pre-shocked

zone, bubble and post-shocked zone, respectively. Assuming that the bubble is in

thermal and mechanical equilibrium with the surrounding air, i.e. p1 = p2 and

T1 = T2. The bubble density ρ2 can then be calculated as follows:

ρ2 = ρ1
R1

R2

. (6.59)

The pressure, density and velocity of the post-shocked zone can be determined

according to Toro (2009) as:

p3 = p1
2γ1(M1 −M3)

2 − (γ1 − 1)

(γ1 + 1)
. (6.60)

ρ3 = ρ1
(γ1 + 1)(M1 −M3)

2

(γ1 − 1)(M1 −M3)2 + 2
. (6.61)

The speed of sound in air according to the IG EOS is expressed by:

c =

√
γ1p1
ρ1

. (6.62)

Using the Mach number, the shock wave speed S can be determined as follows:

S = M3c. (6.63)
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The velocity of air in the post-shocked zone can be calculated as follows:

u3 =
(
1− ρ1

ρ3

)
S + u1

ρ1
ρ3
. (6.64)

Properties of the gases which are used for the simulations conducted in the subsec-

tions 6.6.1 and 6.6.2 are given in Table 6.11.

6.6.1 R22 bubble-air shock interaction

The R22 bubble-air shock interaction is conducted to validate the numerical results

obtained from the developed numerical application. This test was studied experi-

mentally by Haas and Sturtevant (1987) and similar investigations using different

gases were carried out by Layes and Le Métayer (2007). This test was also examined

numerically by many authors (see for example, Quirk and Karni, 1996; Qamar and

Warnecke, 2004) to assess the performance of numerical methods.

The test was carried out in a rectangular domain of 0.3 m × 0.089 m. The

initial setup of the computational domain is illustrated in Figure 6.21. While the

extrapolation boundary conditions are imposed on the left and right boundaries,

the reflective boundary conditions are imposed on the upper and lower boundaries.

A left ward travelling planar shock wave is moving in air at M = 1.22. This shock

is located on the right side of the R22 cylindrical bubble. The bubble and the sur-

rounding air are assumed to be in thermal and mechanical equilibrium. The bubble

and the surrounding air (pre-shock air) are also assumed to be at atmospheric pres-

sure and temperature (101325 Pa and 25 ℃). In this test the air is either governed

by the IG or vdW EOSs. The IG EOS parameters for air and R22 are given in

Table 6.11. The vdW EOS parameters for air are γ = 1.4, a = 5 Pa·m6/kg and

b = 10−3 m3/kg. The initial conditions of the flow field are determined as detailed

in section 6.6. They are given in Table 6.12.

The numerical results are obtained from the six-equation model using a mesh size

of 2700 × 801 cells and a CFL number equal to 0.3. The results for the R22

bubble-air shock interaction and the surrounding air using an idealised Schlieren

function for mixture density are shown on the left column of the Figures 6.22-6.23.

The results are compared to the experimental shadowgraph results of Haas and

Table 6.11: Gases properties used for the shock-bubble interactions.

Gas γ R Cv
J/kg· K J/kg· K

Air 1.4 0.287 0.72
R22 1.249 0.091 0.365
He + 28 % air 1.648 1.578 2.44
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Table 6.12: Initial conditions for the R22 bubble test 6.6.1.

Physical Air R22 Air
property pre-shock bubble post-shock

Density, kg/m3 1.1839 3.734 1.6295
velocity u, m/s 0 0 -115.478
velocity v, m/s 0 0 0
Pressure, Pa 101325 101325 159060

Sturtevant (1987) which are shown on the right column of the Figures 6.22-6.23 at

times 55, 115, 135, 187, 247, 318, 342, 417 and 1020 µs. A brief description of the

interaction process of the planar shock wave with the R22 cylindrical bubble is given

below, for detailed descriptions (see for example, Haas and Sturtevant, 1987; Quirk

and Karni, 1996).

Table 6.13: A comparison of the computed velocities for the R22 bubble case with
experimental results of (Haas and Sturtevant, 1987) and numerical results of (Quirk
and Karni, 1996); for key, see Figure 6.24

Velocity Vs VR VT Vu Vd

Experiment (Haas and Sturtevant, 1987) 415 240 540 73 78

Qurik and Karni (Quirk and Karni, 1996) 420 254 560 70 82
% Error +1.2 +5.8 +3.7 -4.1 +5.1

Current 414.32 235.37 536.13 71.6 78.45
% Error -0.16 -1.9 -0.7 -1.9 +0.57

Figure 6.22 (a) shows the R22 bubble at the instant t = 55 µs after the bubble

was hit by the incident shock wave coming from the right side. It can be seen that

the bubble has undergone a slight deformation. Remaining portions of the incident

shock wave are shown as two short vertical lines at the top and bottom of the bubble.

These portions are joined by a curved refracted shock wave which appears inside

the bubble. The figure also shows the reflected wave which propagates to the right.

It can be observed that the refracted shock lags behind the incident shock wave due

to the lower speed of sound inside the bubble than that outside the bubble.

As the time evolves, the lag of the refracted shock wave becomes more obvious

and at the instant t = 115 µs this wave has folded at its top and bottom. It

can be observed that the two portions of the incident shock wave have started to

diffract around the downstream half of the bubble. It can also be noticed that the

reflected wave having hit the upper and lower boundaries of the domain (solid walls)

reflected again and propagated towards the bubble and is hardly visible as shown

at the bottom of Figure 6.22 (b).
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At the instant t = 135 µs each side of the folded refracted shock is nearly hori-

zontal. The reflected waves that have hit the upper and lower walls of the tube are

now more visible and are approaching the bubble as shown in Figure 6.22 (c). It

can be noticed that the size of the bubble continues to decrease substantially due

to the shock compression.

By t = 187 µs the refracted shock is almost focused down to a point as shown

Figure 6.22: Mixture density idealised Schlieren images for R22 bubble-air shock
interaction at times: (a) 55 µs, (b)115 µs, (c) 135 µs, (d) 187 µs. Current results
(left) and Haas and Sturtevant (1987) results (right).
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Figure 6.23: Continued. Mixture density idealised Schlieren images for R22 bubble-
air shock interaction at times: (e) 247 µs, (f) 318 µs, (g) 342 µs, (h) 417 µs and (i)
1020 µs. Current results (left) and Haas and Sturtevant (1987) results (right).
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Figure 6.24: x-t diagram for R22 bubbles (left), key points (right): Vs incident shock;
VR refracted shock; VT transmitted shock; Vu upstream edge; Vd downstream edge;.

in Figure 6.22 (d). This causes the pressure increase as illustrated in the pressure

plot shown in Figure 6.25 (d). At this moment, the diffracted incident shock wave

portions intersect each other. The middle portions of the reflected waves from the

top and bottom walls propagate through the bubble and are hardly discernible as

shown in Figure 6.22 (d). Once again these shocks lag behind their counterparts

outside the bubble because of the difference in the speeds of sound inside and outside

the bubble.

When the refracted shock passed through the downstream interface of the bubble,

it became a transmitted wave as shown in Figure 6.23 (e) which is more obvious

at time t = 247 µs. The remaining portions of the reflected shocks from the walls

continue to propagate inside the bubble and they intersect each other. A small jet

is about to be formed at the downstream interface of the bubble, this jet is initiated

by focusing of the refracted wave. The transmitted wave is trying to catch up the

two portions of the diffracted incident shock wave in this stage as shown in Figure

6.23 (f).

A shock wave continues to propagate backward inside the bubble as shown in

Figure 6.23 (g) at the instant t = 342 µs. This wave was initiated from the internal

reflection of the refracted shock from the downstream interface. In the lower part of

this image one can observe that the transmitted wave has reflected from the upper

and lower walls of the shock tube. This causes a generation of vorticity along the

interface due to the misalignment of the gradients in pressure and density (Haas

and Sturtevant, 1987).

Figure 6.23 (h) shows the reflected waves from the walls which pass through the
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bubble at the instant t = 417µs which results in a corrugated surface of the bubble.

As the time moves on, the bubble takes a crescent shape and continues to elongate

as shown in Figure 6.23 (i).

The x-t diagram shown in Figure 6.24 depicts the position history of the up-

stream and downstream edges of the R22 bubble. Moreover, it presents the position

history of the incident, refracted and transmitted shock waves. The schematic di-

agram on the right part of Figure 6.24 illustrates the points used to construct the

x-t diagram. All positions are considered at the axis of symmetry except for the

incident shock wave which is considered either at the bottom or top boundaries of

the domain. Since the used numerical method is diffusive the points were measured

at mean thickness of the interface. The computed mean velocities compared to the

experimental results of Haas and Sturtevant (1987) and Quirk and Karni (1996) are

presented in Table 6.13. These results are in good agreement with the references

results with a maximum estimated error of -1.9% compared to the experimental

results.

The same test was carried out considering air as a real gas governed by the vdW

EOS. To calculate the compressibility factor Z, the reduced temperature TR and

reduced pressure PR are calculated for air as follows:

TR =
T

Tc
(6.65)

PR =
P

Pc
(6.66)

where T, P, Tc and Pc are the temperature and pressure at atmospheric and critical

conditions, respectively. The atmospheric condition assumed to be T = 293.15

K and P = 101325 Pa and the critical condition for air is Tc = 132.65 K, Pc =

37.71× 105 Pa. The reduced temperature and pressure are calculated to be 2.2 and

0.2687, respectively.

Using the values of the reduced temperature, pressure and the compressibility

char (see for example, Çengel and Boles, 2007) the value of Z is found to be very

close to 1. Consequently, air could be considered as an ideal gas at this condition.

The numerical results obtained from the van der Waals EOS are very close to that

obtained from the ideal gas EOS. This can be realised from the results for mixture

density and pressure obtained from both EOSs as shown in Figure 6.25.

6.6.2 Helium bubble-air shock interaction

The helium bubble-air shock interaction test is also conducted to validate the nu-

merical results obtained from the six and seven-equation models. The test was

investigated experimentally in Haas and Sturtevant (1987); Layes and Le Métayer

(2007). This test was also examined numerically to check the accuracy and capa-
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Figure 6.25: Comparison between results of the IG and vdW EOSs for mixture
density (left) and pressure (right) plots at axis of symmetry for R22 bubble-air
shock interaction at times: (a) 55 µs, (b)115 µs, (d) 187 µs (e) 247 µs, (f) 318 µs,
(g) 342 µs, (h) 417 µs and (i) 1020 µs.
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bility of numerical methods (see for example, Quirk and Karni, 1996; Fedkiw et al.,

1999; Marquina and Mulet, 2003; Giordano and Burtschell, 2006; Terashima and

Tryggvason, 2009).

Table 6.14: Initial conditions for helium bubble-air shock test 6.6.2.

Physical Air He+28% air Air
property pre-shock bubble post-shock

Density, [kg/m3] 1.1839 0.2153 1.6295
velocity u, [m/s] 0 0 -115.478
velocity v, [m/s] 0 0 0
Pressure, [Pa] 101325 101325 159060

The configuration of the computational domain and the boundary conditions are

similar to the previous test as shown in Figure 6.21. The cylindrical helium bubble

is contaminated with 28% of air to increase its density. Similar to the previous

test initially the bubble and the surrounding air are assumed to be in thermal and

mechanical equilibrium. In this test both gases are governed by the IG EOS and

their EOS parameters are given in Table 6.11. The initial conditions for the bubble

and post-shock zone were calculated as described in section 6.6 and are given in

Table 6.14.

The numerical results for the idealised Schlieren mixture density for the helium

bubble and the surrounding air are shown in Figures 6.26-6.27 at times 22, 44,

56, 72, 82, 102, 245, 427, 674 and 983 µs. Note that only the first three times are

different from that obtained from the experimental shadowgraph results of Haas and

Sturtevant (1987). The reason behind that might be that only one shadowgraph shot

could be taken during each run, and so the whole record was established by repeating

the experiment with various delay times. The current results are obtained using a

mesh size of 2700×801 cells and a CFL number is equal to 0.3. A brief description of

the interaction process of the planar shock wave with the helium cylindrical bubble

is given below (for more details see for example Haas and Sturtevant, 1987; Quirk

and Karni, 1996).

Figure 6.26 (a) shows the helium bubble at the instant t = 22 µs (in experiment

was t = 32µs, the reason mentioned above) after the bubble was hit by the incident

shock wave coming from the right side. The middle portion of the incident shock

refracted inside the bubble and the remaining portions are seen as vertical lines

at the top and bottom of the bubble. The refracted shock takes a curved shape

which joins the two portions of the incident shock. It can be observed that the

refracted shock propagates faster than the incident shock which propagates in air

due to the fact that the sound speed in the helium bubble is higher than in the

surrounding air. At this moment the bubble has undergone a slight deformation.

A reflected wave is formed and propagated in a curved shape to the right in air.
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Figure 6.26: Mixture density: Current numerical Schlieren images (left) and ex-
perimental (Haas and Sturtevant, 1987) (right) for He + %28 air bubble-air shock
interaction at times: (a) 22 µs (32 µs) , (b) 44 µs (52 µs), (c) 56 µs (62 µs) , (d) 72 µs,
(e) 82 µs. Times between parentheses are corresponding times in the experiments
which are different from numerical times.
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Figure 6.27: Continued : Mixture density: Current numerical Schlieren images (left)
and experimental (Haas and Sturtevant, 1987) (right) for He + %28 air bubble-air
shock interaction at times: (f) 102 µs, (g) 245 µs, (h) 427 µs (i) 674µs and (j) 983
µs.

179



Chapter 6. Verification and validation of the two-phase flow models in two
dimensions

Figure 6.28: x-t diagram for He + 28% air bubbles (left), key points (right): Vs

incident shock; VR refracted shock; VT transmitted shock; Vu upstream edge; Vd

downstream edge and Vj air jet head.

Indeed, the cross-section plots 6.29 (a - f) for the pressure and mixture density field

confirm that the reflected wave is an expectation wave as pointed out in Quirk and

Karni (1996). Figure 6.26 (b) shows that the difference in speeds of sound between

the gases inside and outside the bubble becomes more obvious by t = 44 µs (in

experiment was t = 52µs) where the refracted shock has advanced well ahead of the

incident wave.

At the instant t = 56 µs (in experiment was t = 62 µs) the refracted shock

coincides with the downstream interface of the bubble as shown in Figure 6.26 (c).

Then this wave emerges from this interface to become a transmitted wave as shown

in Figure 6.26 (d) at time t = 72 µs. At this instant internally reflected waves are

hardly visible which intersect each other at the axis of symmetry by t = 82 µs as

shown in Figure 6.26 (e). The bubble size continues to decrease due to the shock

compression as shown in Figure 6.26 (f) at t = 102 µs. The original reflected wave

which propagated to the right has hit the walls of the tube and reflected again as

shown at this instant at the bottom of Figure 6.26 (f).

As time moves on, the bubble continues to deform which takes a kidney shape

at t = 245 µs as shown in Figure 6.26 (g). The figure also shows a complex view of

intersected waves produced by the original reflected and transmitted waves reflected

from the walls which passed through the bubble. These waves have the major role

in the bubble deformation which is induced by vorticity produced at the edge of the

bubble due to the passage of the shock. As the time evolves, a jet of air is induced

along the axis of symmetry as shown in Figure 6.26 (h) at t = 427 µs. This jet

tries to split the bubble as shown in Figure 6.26 (i) at t = 674 µs and elongates the

bubble laterally as shown in Figure 6.26 (j) at t = 983 µs.

These results are in good agreement with these experimental results and the other
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Table 6.15: A comparison of the computed velocities for the He+28% air bubble
case with experimental results of Haas and Sturtevant (1987), and numerical results
of Quirk and Karni (1996) (Numerical (A)) and of Marquina and Mulet (2003)
(Numerical (B)); for key, see Figure 6.28

Velocity Vs VR VT Vu Vd Vj

Experimental 410 900 393 170 145 230

Numerical (A) 422 943 377 178 146 227
% Error +2.9 +4.8 +4.1 +4.7 +0.7 -1.3

Numerical (B) 414 943 373 176 153 229
% Error +1 +4.8 -5.4 +3.4 +5.2 -0.4

Current 407.4 904.64 377.68 166.23 144 223.58
% Error +0.63 +0.52 -3.9 -2.2 -0.69 -2.8

numerical results of Quirk and Karni (1996); Fedkiw et al. (1999); Marquina and

Mulet (2003); Giordano and Burtschell (2006); Terashima and Tryggvason (2009).

The x-t diagram which illustrates the position history of the interaction between

the Helium bubble and the incident shock is shown in Figure 6.28. The figure

indicates the x positions of the upstream and downstream edges of the cylindrical

helium bubble as well as the incident, refracted and transmitted shock waves. The

schematic diagram on the right part of the Figure 6.28 illustrates the points used

to construct the x-t diagram. All positions are measured at the axis of symmetry

except for the upstream edge and the incident shock wave, i.e. the upstream edge

is measured at 0.0214 above the axis of symmetry and the incident shock wave is

measured either at the top or bottom boundaries of the domain. Since our numerical

method is diffusive, the points were measured at mean thickness of the interface.

The computed mean velocities compared to the experimental results of Haas and

Sturtevant (1987) and numerical results of Quirk and Karni (1996); Marquina and

Mulet (2003) are given in Table 6.15. It can be observed that these results are in

very good agreement with the experimental results with a maximum estimated error

of -3.9%.

The numerical results obtained from the six-equation model are compared to

that obtained from the seven-equation model in terms of the mixture density and

pressure distributions across the line of symmetry as depicted in Figure 6.29. These

results are obtained when both gases were governed by the IG EOS. One can observe

that both models gave almost the same results using a mesh size of 1500×445 cells.

6.6.3 Underwater explosion near a free surface test

While the previous validation test problems focused on the interaction of a planar

shock wave with a curved interface, the present test investigates the interaction of

181



Chapter 6. Verification and validation of the two-phase flow models in two
dimensions

Figure 6.29: Comparison between results of the six and seven-equation models for
mixture density (left) and pressure (right) plots at axis of symmetry for helium
bubble-air shock interaction at times: (a) 28 µs, (b)44 µs, (c) 56 µs, (d) 72 µs, (f)
102 µs, (g) 245 µs, (h) 427 µs and (i) 674 µs (j) 983 µs.
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Figure 6.30: Underwater explosion test 6.6.3.

a curved shock wave with a planar interface. The test was conducted numerically

by many researchers (see for example, Liu, Khoo and Yeo, 2001; Zheng et al., 2011)

and investigated experimentally by Kleine et al. (2009).

The test is carried out in a square computational domain of size 1.2 m × 1.2 m.

A highly pressurised air cylinder is initially located at the centre of the compu-

tational domain (0.6 m, 0.6 m) as shown in Figure 6.30. The air cylinder which

is surrounded by water has a radius of 0.1 m. A free surface which separates at-

mospheric air and water is located at a height of 0.9 m as shown in Figure 6.30.

The zero extrapolation boundary conditions are imposed to the top, left and right

boundaries of the domain. Two different situations were studied for dealing with

the bottom boundary. The first situation at which the bottom boundary is treated

as a solid wall where the reflective boundary conditions are imposed. The second

situation at which the bottom boundary is treated as an open far field where the

zero extrapolation boundary conditions are imposed. Also two scenarios were ex-

amined where two different EOSs are used to govern the water, i.e. the SG and Tait

EOSs. For water, the SG EOS parameters are γ = 4.4, π = 6 × 108 Pa and Tait

EOS parameters are γ = 7.15, B = 3.31 × 108 Pa. The air is governed by the IG

EOS γ = 1.4. The initial conditions are given in Table 6.16:

The numerical results for the underwater explosion near a free surface test are ob-

tained from the six-equation model by employing the SG and Tait EOSs. The results

for the mixture density using the idealised Schlieren function, mixture density and

pressure are shown in the Figures 6.31 and 6.32. These results are compared at times

0.0175, 0.035, 0.07, 0.147, 0.225 and 0.3 ms. The same results are obtained from

the seven-equation model and are compared to those obtained from the six-equation
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Table 6.16: Initial conditions for the underwater explosion near a free surface test
6.6.3.

Physical Air Water Air
property cylinder above free surface

Density, [kg/m3] 1270 1000 1.0
velocity u, [m/s] 0 0 0
velocity v, [m/s] 0 0 0
Pressure, [Pa] 9.21× 108 1.1× 105 1.1× 105

model at the same instants as illustrated in Figures 6.33 and 6.34.

As the explosion is initiated at the pressurised air cylinder, a strong shock wave

propagates radially outward through the surrounding water and a strong rarefaction

wave propagates inward through the air cylinder as illustrated in Figure 6.31 (a).

While these waves are represented respectively by the outer and inner circles, the

material interface is represented by the middle circle. It can be observed that the

shock wave moves faster than the rarefaction wave as shown in Figure 6.31 (b) due

to the fact that the speed of sound in water is higher than that in air. One can

notice from Figure 6.31 (b) that there is a difference between the position of the

shock wave predicted by the SG EOS than that predicted by the Tait EOS. This

agrees with what has been observed by Nourgaliev, Dinh and Theofanous (2006)

when they obtained different results using the SG EOS from those obtained by Ball

et al. (2000) using the Tait EOS for a strong shock interactions with an air bubble

in water simulation. This difference becomes clearer as the time evolves as shown

in Figures 6.31 (c) - 6.31 (f). This difference is not clear in the position of the

rarefaction due to the previous reason. One can also notice that the positions of the

material interfaces predicted by both EOSs are the same.

As the time evolves, the shock wave continues to propagate outward till it hits

the free surface which causes the free surface to move upward. A small part of

the shock wave is transmitted into the air and the rest is reflected downward into

the water as shown in Figure 6.31 (d). Indeed, the reflected wave into water is a

strong rarefaction wave which can be observed in the plots of mixture density and

pressure Figure 6.31 (d). Once again, one can notice that there is a difference in the

position of this strong rarefaction wave predicted by both EOSs. This rarefaction

wave continues to propagate downward until it reaches the top of the expanding

cylinder. The interaction of the rarefaction wave with the expanding air cylinder

generates a compression wave which moves upward as shown in Figure 6.31 (e). This

causes the upper interface of the air cylinder to be accelerated upward. Therefore,

the air cylinder starts to take an oval shape.

At the centre of the air cylinder, a second shock wave is generated which propa-

gates outward as shown in Figure 6.31 (e) and its related plots for mixture density
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and pressure. From this figure one can notice that the first outgoing shock is about

to reach the left, right and bottom boundaries of the domain.
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Figure 6.31: Underwater explosion near a free surface test 6.6.3. Comparison be-
tween the SG and Tait EOSs: Idealised Schlieren images of mixture density (left)
and plots of mixture density (kg/m3) (middle) and pressure (Pa) (right) at line of
symmetry at times: (a) 0.0175 ms, (b) 0.035 ms, (c) 0.07 ms.
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While the first outgoing shock has disappeared when it reached the left and

right boundaries, it has reflected when it reached the bottom boundary as shown
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Figure 6.32: Continued. Underwater explosion near a free surface test 6.6.3. Com-
parison between the SG and Tait EOSs: Idealised Schlieren images of mixture den-
sity (left) and plots of mixture density (kg/m3) (middle) and pressure (Pa) (right)
at line of symmetry at times: (d) 0.147 ms, (e) 0.225 ms, (f) 0.3 ms.
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in Figure 6.31 (f). This is due to the extrapolation boundary conditions imposed

on the left and right boundaries which represent the far field and the reflective
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Figure 6.33: Underwater explosion near a free surface test 6.6.3. Comparison be-
tween the six and seven-equation models: Idealised Schlieren images of mixture den-
sity (left) and plots of mixture density (kg/m3) (middle) and pressure (Pa) (right)
at line of symmetry at times: (a) 0.0175 ms, (b) 0.035 ms, (c) 0.07 ms.
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boundary conditions imposed on the bottom boundary which represents the solid

wall. In the meantime the inner shock wave continues to expand outward inside
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Figure 6.34: Continued. Underwater explosion near a free surface test 6.6.3. Com-
parison between the six and seven-equation models: Idealised Schlieren images of
mixture density (left) and plots of mixture density (kg/m3) (middle) and pressure
(Pa) (right) at line of symmetry at times: (d) 0.147 ms, (e) 0.225 ms, (f) 0.3 ms.
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Figure 6.35: Underwater explosion near a free surface test 6.6.3. Comparison
between the SG and Tait EOSs, bottom wall with extrapolation BCs: Idealised
Schlieren images of mixture density (left) and plots of mixture density (kg/m3)
(middle) and pressure (Pa) (right) at line of symmetry at time 0.3 ms.

the air cylinder and the compression wave continues to propagate upward, until it

has hit the free surface separating water and air. When the bottom boundary of

the computational domain is a far field, the extrapolation boundary conditions are

imposed and the results are shown in Figure 6.35 for the idealised schlieren mixture

density (left), mixture density plot at line of symmetry (middle) and pressure plot

at line of symmetry (right) at time t = 0.3 ms.

The conducted simulations are performed using the HLL Riemann solver with

a CFL number equal to 0.4 and the resolution of 1000 × 1000 cells. The same

features were also observed in the experimental results of Kleine et al. (2009) and in

the numerical results reported by Liu, Khoo and Yeo (2001) and Zheng et al. (2011)

who used different mathematical models and numerical methods.
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Figure 6.36: Underwater explosion near a free surface test 6.6.3. Volume fraction
and mixture density at times: (a) 0.0175 ms, (b) 0.035 ms, (c) 0.07 ms, (d) 0.147
ms, (e) 0.225 ms, (f) 0.3 ms.
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Conclusions and future work

7.1 Conclusions

The work accomplished in this PhD study successfully addressed the specified objec-

tives listed in the thesis introduction (section 1.2). A computer application has been

developed to conduct numerical flow simulations based on the fully non-equilibrium

(seven-equation) and partially equilibrium (six-equation) compressible multiphase

flow models. These models are able to resolve interfaces separating fluids. The

product of this work is a C-code equipped with a general formulation to enable

easy switching between different EOSs. Meanwhile, some researchers need to add

advection equations to their models depending on EOS parameters and others need

to change their code in order to use different EOS. Such approach was proposed

for the first time in this thesis. Each phase or component is either governed by the

same EOS (e.g. helium and air are governed by the IG EOS) or different EOSs (e.g.

explosive material is governed by the CC EOS and detonation products are gov-

erned by the JWL EOS). The interface which separates flow components is treated

as a diffused zone. The formulations of the equations have been written and imple-

mented with the second order accuracy in both space and time. This was possible

by using the MUSCL scheme. The numerical results were obtained using the HLL,

HLLC and VFRoe Riemann solvers. These results were verified or validated where

possible in one and two space dimensions against available reference data. This

chapter summarises the concluding remarks and provides possible suggestions for

future work.

1. No pressure oscillations at the interface were observed in all results of the six

and seven-equation models.

2. The numerical approach revealed that complicated flow patterns containing

interfaces could be simulated with fixed grid mesh without using additional

reconstruction or adaptive mesh refinement techniques.
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3. The seven-equation model needs more CPU time than the six-equation model

to obtain the solution. This is because the developed code for solving the

seven-equation model uses an additional step, i.e. velocity relaxation process.

The results show that both models gave almost the same results, however the

six-equation model is cheaper than the seven-equation model in the examined

tests by about 38 - 40 %.

4. Although the velocity relaxation process used in the solution of the seven-

equation model slows down the simulation it allows to simulate a wider range

of two-phase flow problems than the six-equation model, see for example water-

faucet test problem 4.7.4.

5. The following tests proved that the model and its numerical representation

could be used for the pseudo two-dimensional (axisymmetric) problems with

area variation. Such an extension requires only a source term to be added to

the governing equations, which makes this approach attractive for engineering

applications. The specific conclusions from the test problems confirming area

variation applicability are:

(a) The single phase flow through a convergent-divergent nozzle test per-

formed in subsection 4.5.5 in which the IG EOS is used to govern air.

The obtained results from the VFRoe solver for pressure and Mach num-

ber distributions through the C-D nozzle are qualitatively and quantita-

tively in good agreement with the theoretical reference results as shown

in Figure 4.9. It can be observed that the position of the shock moves

downstream as the back pressure is reduced.

(b) The two-phase flows through the C-D nozzle test investigated in subsec-

tion 4.5.6 in which the flow components are governed by the IG and SG

EOSs and flows of mixtures of various air-water ratios are investigated at

a fixed exit pressure of 8.5× 108 Pa.

The results show that the distributions of the flow parameters are again

qualitatively similar to that of single phase flow for all investigated air-

water ratios. However, quantitative variations can be observed in the

values of the flow parameters as shown in Figure 4.11. Moreover, the

location of the sonic flow moved downstream of the throat as the liquid

content is increased.

6. The two multiphase flow models automatically reduce to the classical Euler

equations for the single-phase flow. This is manifested in the following test

problems:

(a) The gas-gas test examined in subsection 4.5.1 in which the IG EOS is used

to govern air. The obtained results from the HLLC solver are in good
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agreement with the exact solutions and the results of Kurganov and Tad-

mor (2000) who used different mathematical and numerical techniques

for the single-phase.

(b) The solid-solid test conducted in subsection 4.5.2 in which the shock wave

EOS is used to govern aluminium. The obtained results from the HLL

solver are in good agreement with the fine grid solution and the results

of Shyue (2001) who used the Euler equations as a mathematical model.

(c) The liquid-liquid test demonstrated in subsections 4.6.1 and 4.7.1 in which

the SG or Tait EOSs are employed. The obtained results agree very well

with the exact solution.

7. Two-phase test problems which are conducted by employing the same or dif-

ferent EOS to govern the flow components. These tests are as follows:

(a) The interface advection test demonstrated in subsection 4.5.3 in which the

flow components are governed by the SG and JWL EOSs. The obtained

results show that no pressure or velocity oscillations can be observed at

the interface as illustrated in Figure 5.4.2. The obtained results from the

VFRoe solver are in good agreement with the exact solutions and the

results of Petitpas et al. (2007).

(b) The copper-explosive impact interaction test performed in subsection 4.5.4

in which the flow components are governed by the CC EOS. The results

obtained from the HLL solver are in good agreement with the exact so-

lutions and the results of Shyue (2001).

8. Comparisons between the HLL, HLLC and VFRoe approximate Riemann

solvers are conducted in section 4.6. It can be observed from Tabels 4.10, 4.15

and 4.20 that the three solvers need almost the same number of time steps

to obtain the solution. However, the HLL and VFRoe solvers need the least

and the most CPU run time to obtain the solutions, respectively. The CPU

run time required by the solvers depends on the stiffness of the problem. For

example for the conducted tests the HLLC and VFRoe need 14.74 %-29.47 %

and 71.21 %-92.67 % more than the HLL solver, respectively.

9. It can be observed that the order of accuracy, spatial convergence and tem-

poral convergence of the solvers are less than expected due to the presence of

discontinuities in the solutions of the conducted test problems.

10. Comparisons between the SG and Tait EOSs which are used to govern water

and between the IG and vdW EOSs which are used to govern air revealed that

the results are qualitatively are the same but quantitavely may have slight

diferences in the position of shocks or the values of flow parametes which can
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be obeserved from the results of the conducted one and two-dimensional test

problems.

7.2 Future work

The possible topics that could be addressed for further work are listed as follows:

1. Extension of the HLLC and VFRoe approximate Riemann solvers used in this

thesis to simulate two and three-dimensional problems.

2. Using adaptive mesh strategy to reduce the computational time.

3. Application of the area variation source term to the other two-fluid models.

4. Study of the Rayleigh-Taylor instabilities resulting from gravity effect on the

interface seperating two fluids with different densities.
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Appendix A

Derivations of speed of sound for

various EOSs

Derivation of the speed of sound at the pure fluid and at the interface for the shock

wave, van der Waals, Cochran-Chan (CC), and Jones-Wilkins-Lee (JWL) EOSs are

as given in the following sections. The local speed of sound is defined as:

c2 =

p

ρ2
− ∂e

∂ρ

∣∣∣∣
p

∂e

∂p

∣∣∣∣
ρ

. (A-1)

The speed of sound at the interface is given by:

c2int =

pint
ρ2
− ∂e

∂ρ

∣∣∣∣
p

∂e

∂p

∣∣∣∣
ρ

. (A-2)

A.1 Speed of sound for the shock wave EOS

The Mie-Grüneisen EOS (4.12) may be rewritten as follows:

e =
p− pH(ρ)

ρΓH(ρ)
+ eH(ρ). (A-3)

where pH(ρ), eH(ρ) and ΓH(ρ) for the shock wave EOS are given as follows:

pH(ρ) =

ρoC
2
o

(
1− ρo

ρ

)
[
1− s

(
1− ρo

ρ

)]2 , eH(ρ) =

C2
o

(
1− ρo

ρ

)2

2

[
1− s

(
1− ρo

ρ

)]2 and ΓH(ρ) = Γ

(
ρ0
ρ

)θ

where Γ is defined as Γ = γ − 1. Differentiating the above equation (A-3) with
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respect to the density and setting η = 1− sψ, ψ = 1− ρo
ρ

and ζ = ρΓ
(ρo
ρ

)θ
yields:

∂e

∂ρ

∣∣∣∣
p

=

−ρ
2
oc

2
o

ρ2η2
− 2ρ2oc

2
osψ

ρ2η3

ζ
+

(
p− ρoc

2
oψ

η2
)
θ

ζρ
−
p− ρoc

2
oψ

η2

ζρ
+
ρoc

2
oψ

η2ρ2
+
ρoc

2
osψ

2

η3ρ2
, (A-4)

and with respect to the pressure yields:

∂e

∂p

∣∣∣∣
ρ

=
1

ζ
. (A-5)

The equations (A-4) and (A-5) are substituted into equation (A-1). The resulting

form is simplified and finally the speed of sound for the shock wave EOS materials

can be written as:

c2 =

(
p

ρ2
−
−ρ

2
oc

2
o

ρ2η2
− 2ρ2oc

2
osψ

ρ2η3

ζ
−

(
p− ρoc

2
oψ

η2
)
θ

ζρ
+

p− ρoc
2
oψ

η2

ζρ

−ρoc
2
oψ

η2ρ2
− ρoc

2
osψ

2

η3ρ2

)
ζ (A-6)

Similarly, the speed of sound at the interface can be obtained by substituting the

equations (A-4) and (A-5) into equation (A-2) and the simplified form can be written

as follows:

c2int =

(
pint
ρ2
−
−ρ

2
oc

2
o

ρ2η2
− 2ρ2oc

2
osψ

ρ2η3

ζ
−

(
p− ρoc

2
oψ

η2
)
θ

ζρ
+

p− ρoc
2
oψ

η2

ζρ

−ρoc
2
oψ

η2ρ2
− ρoc

2
osψ

2

η3ρ2

)
ζ (A-7)

A.2 Speed of sound for the van der Waals EOS

The van der Waals EOS (4.30) may be rewritten as follows:

e =

(
p

ρ
+ aρ

)(
1− bρ
γ − 1

)
− aρ. (A-8)

Differentiating the above equation (A-8) with respect to the density yields:

∂e

∂ρ

∣∣∣∣
p

= − p

ρ2(γ − 1)
+

a

γ − 1
− 2abρ

γ − 1
− a, (A-9)
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and with respect to the pressure yields:

∂e

∂p

∣∣∣∣
ρ

= − 1− bρ
ρ(γ − 1)

. (A-10)

The equations (A-9) and (A-10) are substituted into equation (A-1). The resulting

form is simplified and finally the speed of sound can be written as:

c =

√
γ(p+ aρ2)

ρ(1− bρ)
− 2aρ. (A-11)

Similarly, the speed of sound at the interface can be obtained by substituting the

equations (A-9) and (A-10) into equation (A-2) and the simplified form can be

written as follows:

c2int =
pint(γ − 1) + p+ aρ2γ

ρ(1− bρ)
− 2aρ. (A-12)

A.3 Speed of sound for the Cochran-Chan EOS

The Cochran-Chan EOS (4.34) may be rewritten as follows:

e =

p−
[
A1

(
ρo
ρ

)1−E1

−A2

(
ρo
ρ

)1−E2
]

ρ(γ − 1)
− A1

ρo(1− E1)

[(
ρo
ρ

)1−E1

−1

]
+

A2

ρo(1− E2)

[(
ρo
ρ

)1−E2

−1

]
−CvT. (A-13)

Differentiating the above equation with respect to the density yields:

∂e

∂ρ

∣∣∣∣
p

=

−
A1

(
ρo
ρ

)−E1

E1

ρ
+

A2

(
ρo
ρ

)−E2

E2

ρ

ρ(γ − 1)
−
p− A1

(
ρo
ρ

)−E1

+A2

(
ρo
ρ

)−E2

ρ2(γ − 1)

+

A1

(
ρo
ρ

)1−E1

−A2

(
ρo
ρ

)1−E2

ρoρ
, (A-14)

and with respect to the pressure yields:

∂e

∂p

∣∣∣∣
ρ

=
1

ρ(γ − 1)
. (A-15)

The equations (A-14) and (A-15) are substituted into equation (A-1). The resulting

form of sound speed for the Cochran-Chan EOS materials is simplified and it can
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be written as follows:

c2 =
pγ

ρ
+
A1

ρ

(
ρo
ρ

)−E1
[
E1 − γ

]
− A2

ρ

(
ρo
ρ

)−E2
[
E2 − γ

]
. (A-16)

Similarly, the speed of sound at the interface can be obtained by substituting the

equations (A-14) and (A-15) into equation (A-2) and the simplified form can be

written as follows:

c2int =
pint
ρ

(γ − 1) +
p

ρ
+
A1

ρ

(
ρo
ρ

)−E1
[
E1 − γ

]
− A2

ρ

(
ρo
ρ

)−E2
[
E2 − γ

]
. (A-17)

A.4 Speed of sound for the Jones-Wilkins-Lee (JWL)

EOS

The Jones-Wilkins-Lee (JWL) EOS (4.39) may be rewritten as follows:

e =
p− A1 e(−R1

ρo
ρ
) − A2 e(−R2

ρo
ρ
)

(γ − 1)ρ
+
A1 e(−R1

ρo
ρ
)

ρoR1

+
A2 e(−R2

ρo
ρ
)

ρoR2

− Cek. (A-18)

Differentiating the above equation (A-18) with respect to the density yields:

∂e

∂ρ

∣∣∣∣
p

=

−A1R1ρo e(−R1
ρo
ρ
)

ρ2
− A2R2ρo e(−R2

ρo
ρ
)

ρ2

(γ − 1)ρ
− p− A1 e(−R1

ρo
ρ
) − A2 e(−R2

ρo
ρ
)

(γ − 1)ρ2

+
A1 e(−R1

ρo
ρ
) + A2 e(−R2

ρo
ρ
)

ρ2
, (A-19)

and with respect to the pressure yields:

∂e

∂p

∣∣∣∣
ρ

=
1

ρ(γ − 1)
. (A-20)

The equations (A-19) and (A-20) are substituted into equation (A-1). The resulting

form of sound speed for the Jones-Wilkins-Lee (JWL) EOS materials is simplified

and finally it can be written as follows:

c2 =
pγ

ρ
+
A1

ρ
e(−R1

ρo
ρ
)

(
R1ρo
ρ
− γ
)

+
A2

ρ
e(−R2

ρo
ρ
)

(
R2ρo
ρ
− γ
)
. (A-21)
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Similarly, the speed of sound at the interface can be obtained by substituting the

equations (A-19) and (A-20) into equation (A-2) and the simplified form can be

written as follows:

c2int =
pint
ρ

(γ − 1) +
p

ρ
+
A1

ρ
e(−R1

ρo
ρ
)

(
R1ρo
ρ
− γ
)

+
A2

ρ
e(−R2

ρo
ρ
)

(
R2ρo
ρ
− γ
)
. (A-22)
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Publications

B.1 On Equations of State for Simulations of Mul-

tiphase Flows

Proceedings of the World Congress on Engineering 2012 Vol III WCE 2012, July 4 -

6, 2012, London, U.K.

Jolgam et al. (2012a)

Abstract

An efficient Eulerian numerical method is considered for simulating multiphase

flows governed by general equation of state (EOS). The method allows interfaces be-

tween phases to diffuse in a transitional region over a small number of computational

cells. The seven-equation model of Saurel and Abgrall [Saurel, R. and Abgrall, R.,

A multiphase Godunov method for compressible multifluid and multiphase flows,

J. Comput. Phys. 150 (1999), 425 - 467] is employed to describe the compressible

multiphase flows. For one dimensional flow the model which is strictly hyperbolic

consists of seven equations. These equations are the volume fraction evolution equa-

tion and the conservation equations (mass, momentum and energy) for each phase.

The solution of the hyperbolic equations is obtained using HLL Riemann solver.

In the present work various equations of state (EOSs) have been discussed. Error

analysis, number of time steps and CPU time comparisons between EOSs have been

presented. Well known test cases are examined to simulate compressible as well as

incompressible multiphase flows.

Keywords : Compressible multiphase flow, hyperbolic PDEs, Riemann problem,

Godunov methods, shock waves, HLL Riemann solver.
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B.2 Simulations of Compressible Multiphase Flows

Through a Tube of Varying Cross-section

Proceedings of ASME 2012 11th Biennial Conference on Engineering Systems Design

and Analysis, ESDA 2012, July 2 - 4, 2012, Nantes, France

Jolgam et al. (2012b)

Abstract

The simulation of multiphase compressible flows through high pressure nozzles

is presented. The study uses the developed numerical approach. There are many

important engineering applications which are concerned with multiphase flows and

convergent-divergent nozzles. This work presents the developed extension of the

model and numerical algorithm based on the so called parent model earlier intro-

duced by Saurel and Abgrall [Saurel, R. and Abgrall, R., A Multiphase Godunov

Method for Compressible Multifluid and Multiphase Flows, J. Comput. Phys. 150

(1999), 425 - 467]. This model which consists of conservation laws for each phase

complemented with the volume fraction evolution equation is modified by adding

a source term to simulate area variation. The model is strictly hyperbolic and

non-conservative due to the existence of non-conservative terms. The model is able

to deal with compressible and incompressible flows. Moreover, it can deal with

mixtures and pure fluids, where each fluid has its own pressure and velocity. The

presence of velocity and pressure relaxation terms in the governing equations has

made the velocity and pressure relaxation processes essential to tackle the bound-

ary conditions at the interface. The interface separating phases is considered as a

numerical diffusion zone in this method. The model is solved using an efficient Eu-

lerian numerical method. A second order Godunov-type scheme with approximate

Riemann solver is used to enable capturing of a physical interface by the resolu-

tion of the Riemann problem. The solution is obtained by splitting the hyperbolic

part and source terms parts in the numerical algorithm. The source terms, includ-

ing relaxation parts of the model, are tackled in succession using Strang splitting

technique. The governing equations are solved at each computational cell using the

same numerical algorithm for the whole domain including the interface. The main

aim of this work has been to study different flow regimes with respect to pressure

boundary conditions through the numerical solutions of single and multiphase flows.

The performance of the programme has been verified via well established benchmark

test problems for multiphase flows.
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B.3 Simulation of Multiphase Flows with Strong

Shocks and Density Variations

Proceedings in Applied Mathematics and Mechanics, 20 June 2011

Nowakowski et al. (2011)

Abstract

The system of extended Euler type hyperbolic equations is considered to describe

a two-phase compressible flow. A numerical scheme for computing multi-component

flows is then examined. The numerical approach is based on the mathematical model

that considers interfaces between fluids as numerically diffused zones. The hyper-

bolic problem is tackled using a high resolution HLLC scheme on a fixed Eulerian

mesh. The global set of conservative equations (mass, momentum and energy) for

each phase is closed with a general two parameters equation of state for each con-

stituent. The performance of various variants of a diffuse interface method is care-

fully verified against a comprehensive suite of numerical benchmark test cases in one

and two space dimensions. The studied benchmark cases are divided into two cate-

gories: idealized tests for which exact solutions can be generated and tests for which

the equivalent numerical results could be obtained using different approaches. The

ability to simulate the Richtmyer-Meshkov instabilities, which are generated when

a shock wave impacts an interface between two different fluids, is considered as a

major challenge for the present numerical techniques. The study presents the effect

of density ratio of constituent fluids on the resolution of an interface and the ability

to simulate Richtmyer-Meshkov instabilities by various variants of diffuse interface

methods.
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B.4 Capturing of Interface Evolution Using Dif-

fuse Interface Method

XX Polish Fluid Mechanics Conference, Gliwice, 17 - 20 September 2012

Nowakowski et al. (2012)

Abstract

In the present contribution the diffuse interface method is used to track the in-

terface evolution in multi-component flow systems. A numerical framework is devel-

oped to solve a hyperbolic Eulerian type model with a general stiffened gas equation

of state. The model consists of six equations with two pressures and single veloc-

ity. The extended finite volume method is developed using a second order Godunov

approach which is implemented with HLL and HLLC Riemann solvers in one and

two space dimensions. The numerical scheme considers both the non-conservative

equations and non-conservative terms that exist in the model to fulfill the interface

condition. A verification procedure starts with a successful computation of a se-

lection of numerical benchmark problems. Further, a numerically challenging shock

bubble interaction problem is conducted and compared with published experimental

data.
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B.5 The Application of a Multi-component Eule-

rian Model for the Resolution of Interfaces

Interacting with Shock Waves in Two-phase

Flows

8th International Conference on Multiphase Flow, ICMF 2013, Jeju, Korea, May 26

- 31, 2013

Nowakowski et al. (2013)

Abstract

The numerical method which considers interfaces represented by contact discon-

tinuities as numerically diffused zones, has been applied to simulate compressible

two-phase flows. The approach takes advantage of the inherent numerical diffusion

which is usually present in numerical solutions of compressible flows with shock

waves. The mathematical formulation of the presented method was obtained after

an averaging process of the single phase Navier-Stokes equations. The resulting

equations are encapsulated into the six equation or seven equation Eularian frame-

works for the case of 1D compressible two-phase flow problems. The Euler-type

equations representing the computational model were discretizied and solved using a

high-resolution Godunov method which was developed and implemented with HLL,

HLLC and Roe type Riemann solvers in one and two space dimensions. The nu-

merical scheme considers both the non-conservative equations and non-conservative

terms that exist in the model to fulfill the interface condition. A verification pro-

cedure starts with a successful computation of a selection of numerical benchmark

problems. Further, a numerically challenging shock bubble interaction problem is

conducted and compared with published experimental data.

Keywords : Numerical simulations, compressible multi-component flow, inter-

face evolution, shock waves, Riemann solver
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