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Abstract

The purpose of this thesis is to study the option pricing and hedg-

ing in an illiquid market. In order to decide the optimal strategy, we

choose the maximisation of expected utility of terminal wealth as the

identification tool. We design an efficient algorithm via the dynamic

programming principle to compute the value function for European

options, and calculate the optimal strategy numerically in the bino-

mial market. Based on the numerical solution, we prove that the

hedging strategy and the option prices would be distinctly identified

by market parameters in the illiquid market. The study of option

pricing as the function of initial number of shares allows us to observe

a new phenomenon: curves of option price in the illiquid markets

are intersected by the horizontal replicating price without transaction

cost. And those intersections are very close to each other. That phe-

nomenon implies that the price for selling call option can be lower

than the replicating price under some conditions. We further observe

the smile effect in the implied volatility and explain that the deeply

smile of implied volatility in short-expiration options can be caused

by the illiquidity effect in the market. Finally, we compare the im-

plied volatilities which are given by the convex liquidity cost and the

proportional transaction cost and prove that the convexity of liquidity

cost can amplify the effect of transaction cost. We compare implied

volatilities from the model to the real market quotes (S&P 500 index)

and analyse how the market parameters affect on the implied volatil-

ity in the illiquid market. This comparison reveals an estimation of

the level of liquidity in the real market.

Key Words: liquidity cost; hedging; option pricing; optimal strategy;

dynamic programming; implied volatility;
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Chapter 1

Introduction

This chapter presents the motivation, the relevant research background of this

thesis, the description of research problems, and the outline of the thesis.

1.1 Motivation and Research Background

How the liquidity in the market takes effect on the movement of price pro-

cesses has become a popular discussion recently. There is no consensus for the

definition of liquidity yet. We assume that the meaning of liquidity invokes the

ease with which underlying assets can be purchased, or describes the ability to

trade without causing changes of underlying prices. The literature of liquidity

issue is inadequate to the combination of optimal portfolio choice problem and

the option pricing in the binomial market with liquidity costs. The current pop-

ular direction on this liquidity issue is to model the illiquidity effect into the

limit order book (LOB). When large orders come into the market, in order to

trade smoothly and immediately, the bid-side price in LOB would go deeply and

investors placing large orders have to purchase a price higher than the market

1



1.1 Motivation and Research Background

price. Cetin & Rogers (2007) only solve the maximisation of expected utility

of terminal wealth in discrete-time binomial model. Malo & Pennanen (2012)

deal with the liquidation about the modelling assumptions. We are interested in

classifying this problem as option pricing. Because of the gap between the op-

timal portfolio problem and the option pricing in the illiquid market, our thesis

aims to incorporate the option pricing with the hedging of options to measure

the illiquidity levels.

The study of liquidity concentrates on measuring the level of liquidity in

the market. Until now, most papers in this field do not discuss the liquidity

effect in combination of option pricing and hedging. This study has two main

directions due to different assumption on whether trading amounts change the

price of underlying asset. The first direction is the temporary impact model. The

paper written by Cetin & Rogers (2007) describes a temporary impact model to

solve the optimal portfolio choice problem. Besides the temporary impact model,

another direction on the study of illiquidity models is the feedback effect model.

The price in the feedback effect model immediately responds to the big trading

amount and the effect of changed price will be constant until other large orders

put into the market. The price in the temporary impact model is not affected

by trading orders but the illiquidity in the market. Our thesis only considers the

illiquidity effect in the temporary impact model. This kind of model was first

introduced by Cetin et al. (2004). Cetin et al. (2004) prove that the martingale

measure is unique in that model and any European claim approximately tends

to its classical value. The liquidity costs in the temporary impact model of Cetin

et al. (2004) can be avoided in trading strategies since every trade can be divided

into many small trades. Cetin et al. (2006) provide some empirical evidence

2



1.2 Research Problems

to show that the liquidity cost affects the option price in the illiquid market.

Cetin et al. (2010) further figure out that the liquidity cost is the difference

between the superreplicating value and the Black-Scholes value of the claim in

the continuous-time superreplication model. Cetin & Rogers (2007) deal with

the utility maximization problem of terminal wealth in a discrete-time model

and prove the existence of optimal strategy. Based on the result of Cetin et al.

(2004), Rogers & Singh (2010) show that the liquidity cost cannot be avoided

in the pricing of European option hedging in an incomplete market. The recent

research direction on the illiquidity is intended to model the bid-ask spread by

the temporary impact model. Malo & Pennanen (2012) propose a new liquidity

cost function into the above model to specialise the bid-ask spread in double

auction market and prove that the liquidity cost retains the monotonicity as well

as positivity of marginal prices of market orders.

1.2 Research Problems

In this section, we discuss four research problems for achieving the motivation

of this thesis. These four problems are extended by the existing assumptions of

Cetin & Rogers (2007). Based on these research problems, we address the gap

between pricing of options and modelling of liquidity impact in the market.

Numerical implementation Papers concerning the liquidity impact in the

temporary price impact model describe the assumptions of the model and math-

ematical analytical solution. However, it is very difficult to obtain the analytical

solution in the liquidity research issue. We have to provide an efficient algorithm

3



1.2 Research Problems

for computation and verification of numerical solution. In this thesis, we need to

implement the model which is introduced by Cetin & Rogers (2007) efficiently.

The challenging aspect of implementation is how to devise the computation of

value function in dynamic programming approach. The normal implementation

of dynamic programming approach is to construct a fixed-size matrix for storing

the binomial model, which has a high requirement of memory. The purpose of

this thesis is to provide an efficient algorithm which constructs an array for stor-

ing the binomial tree. How to identify the period number and the node position

of the binomial tree in one array is the key challenge of the implementation.

Pricing of options in an illiquid market Studying pricing of options is

important for examining the liquidity cost in the temporary impact model. As

previous studies on this class of liquidity model shown, the illiquidity effect in the

market can not be directly illustrated in the price of the underlying. However,

the liquidity issue in the market definitely takes influence on option pricing. We

can use the price of options to discuss the impact of liquidity. As so far, it is

inadequate for studying the option price in the market with liquidity costs. The

main research direction of liquidity issue is still the liquidation about assumptions

both in discrete-time and continuous-time models. That stimulates our thesis to

investigate the hedge strategy and option prices in the market with liquidity costs.

Hedging of options in an illiquid market Besides the research of option

prices in the illiquid market, another way to measure the impact of liquidity in

options is the hedging of options. A hedge in the financial market is used to

reduce or eliminate some losses or gains. We know that there are different ways

4



1.2 Research Problems

to define a hedge. Normally, a hedge is decided by taking offsetting position in the

relevant security. A lot of attention in this thesis has been given to various hedging

strategies according to different liquidity costs and other market parameters. We

ensure that the liquidity cost would make the hedging strategy different. Hence,

we can analyse the value of the hedge to quantity the liquidity cost. For the

hedging of options, the popular research problems are what the reservation price

(utility-indifference pricing) is and when we should use this approach to identify

the liquidity cost in the market.

Application of implied volatility in an illiquid market In the research of

option price, the implied volatility is a way to display the relative price of option.

Investors, especially the informed traders, often quote option in terms of volatility.

The related implied volatilities can be derived from actual transaction data. This

causes a diversified research on the implied volatility. One popular direction of

the implied volatility research concentrates on how jumps in the underlying asset

price affect the smile effect of the implied volatility. Gatheral (2006) shows that

jumps in the price of the underlying have greater effect on the curve of implied

volatility for short-expiration options than for longer-dated options. That makes

us wonder whether the deeply smiling can also be caused by the liquidity cost in

the trading. Our thesis will extend the research on the implied volatility in the

market with liquidity costs on Section 5.6.

5



1.3 Outline of the Thesis

1.3 Outline of the Thesis

This thesis contains six chapters. Chapter 1 is introduction. Chapter 2 reviews

the relevant literature on liquidity issues in financial markets from economical and

mathematical perspective. It presents the optimal portfolio decision problem and

the pricing of options under different market frictions and relevant numerical

methods. Chapter 3 introduces a paper written by Cetin & Rogers (2007) that

pioneered a model with convex transaction cost (regarded as the liquidity cost)

and provides some preliminary results as comparison between Cetin & Rogers

(2007) and this thesis. Chapter 4 discusses a numerical approach taken in this

thesis to solve the portfolio optimisation problem with liquidity costs. Chapter

5 makes an analysis of our numerical results. When market parameters change,

option pricing and hedging in the model with liquidity cost are investigated. We

find that in the market with liquidity cost, sellers of call option would be willing

to offer option cheaper than in the liquid market. The last section examines

the implied volatility smile resulting from reservation pricing of options under

liquidity costs and investigates the comparison of implied volatility between in

the real market quotes and in the model quotes. Chapter 6 summaries main

findings of this thesis and introduces some further directions of research.

6



Chapter 2

Literature Review

This chapter provides an introduction of the relevant literature for the problem

of optimal portfolio selection and pricing and hedging of options when the market

is not perfectly liquid.

In Section 2.1, we survey some models of illiquidity that have an effect on

the price of the underlying asset. The price impact is mainly divided into two

groups: temporary impact on demand and supply, permanent impact on placing

large orders. In short, if the price is only affected by the current trade, that is

the temporary impact; if past trading decisions can take influence on the price,

then it is the permanent impact. Besides discussing the illiquidity models, we

introduce some popular applications caused by illiquidity models, i.e. the bid-ask

spread, the price manipulation strategy and the optimal execution problem.

Section 2.2 reviews papers on the portfolio management without market fric-

tions and with the transaction cost or liquidity constraints. The objective of

portfolio optimisation studied in this thesis is to maximize the expected utility

of terminal wealth. We separately survey papers on trading in the incomplete

7



2.1 Models of Illiquidity

model with linear transaction cost and convex liquidity cost.

We introduce option pricing in the theoretical model and utility-based pricing

in the illiquid market. Section 2.3 presents the process of option pricing in the

Black-Scholes model and its approximation binomial model; also discusses a pop-

ular approach and the utility indifference pricing, to show pricing and hedging in

the optimization model with liquidity cost.

The last Section 2.4 introduces representative numerical approaches for the

optimization model with frictions since we do not know the analytical solution

for them. Those numerical methods provide advice on generating algorithms

to deal with the optimization problem in practice. The binomial model is for

approximating Cetin & Rogers (2007) optimization model of stock price; the

dynamic programming principle is the main tool for producing value function and

corresponding optimal strategy of our numerical analysis; Monte Carlo simulation

is to verify our implementation and to investigate the comparative analysis with

different market parameters.

2.1 Models of Illiquidity

How liquidity influences price processes is one of major discussion in financial

theory; and yet the study of liquidity is far less advanced. First of all, we need

to understand what the liquidity is. It is not consensus on the definition of liq-

uidity and how it is to be measured. Roughly speaking, the liquidity represents

everything related to willingness of trading. In Rogers & Singh (2010), liquidity

is thought of as a non-linear transaction cost incurred as rate of change of asset

holding. Gokay et al. (2012) defined the liquidity as added costs per transac-
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tion associated to trading large quantities of the asset. The liquidity is usually

measured by the liquidity risk which originates from asymmetric information and

market structure. We survey two main models of illiquidity that exist a price

impact on the underlying asset. The price impact in these models of illiquidity

may be caused by a temporary imbalance between the demand and supply, or due

to large orders which substantially affect the price of underlying asset. We call

the former group as temporary impact models and the latter one as permanent

impact models. We also introduce some applications based on the above illiqudity

models, i.e. bid-ask spread and price manipulation strategy.

2.1.1 Liquidity

The liquidity is one of main arguments in market frictions. Although many

definitions of liquidity exist but no one as the most precise standard, we denote the

definition of liquidity as everything relating to willingness of trading. The most

prevailing classification is to divide liquidity into market liquidity and funding

liquidity. Market liquidity is the ease of trading an asset and funding liquidity

is the ease of funds availability. These liquidities are mutually dependent, while

traders provide market liquidity and their availability of funding is a determinant.

On the other hand, traders funding negotiation ability is also linked to market

liquidity. The relationship between these two liquidities is discussed in the paper

by Brunnermeier & Pedersen (2009). The survey of liquidity models is based on

the market liquidity in my thesis.

Concerning the funding liquidity, Drehmann & Nikolaou (2009) define that

it mainly expresses the ability to operate funding obligations with immediacy.
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Funding liquidity is mainly associated with the role of a bank. A bank is unable

to afford the obligation of exchanging money if it lacks the funding liquidity.

Another relating term funding liquidity risk is usually mentioned with the funding

liquidity. Drehmann & Nikolaou (2009) also gave the definition of the funding

liquidity risk, which represents the possibility that the bank cannot afford its

obligations during a specific time period in the future. There exist two important

distinctions to differ the funding liquidity and its risk. On one hand, funding

liquidity expresses only two possibilities to the ability of affording obligations:

can or cannot; however, funding liquidity risk indicates infinite possibilities as it

refers to the future ability of funding. On the other hand, funding liquidity only

relates to the funding at one moment; nonetheless, based on the definition of its

risk, it is easy to understand the funding liquidity risk refers to one period of

future time. In general, higher funding liquidity risk exists, less liquidity in the

market which would cause wider range of the bid-ask spread as the expression of

lack of liquidity.

Concerning the market liquidity, the lower market liquidity denotes the higher

transaction costs and the higher expectation of return. Briefly speaking, the

market liquidity has a negative correlation with costs of trading. The effect of

market liquidity is regarded as a difficulty on immediacy cost when investors trade

big volumes of the capital asset in small time periods. Then liquidity effects relate

to the execution price of trading actions in financial markets. We assume that

the liquidity cost is the difference between the actual execution price and the

price under the perfectly liquid condition. Amihud & Mendelson (1991) divide

the market liquidity costs into three categories: the market impact, the bid-ask

spread and the cost for delay and search.
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After the brief descriptions of funding and market liquidity, we discuss two

categories of price impact models in the market liquidity (abbreviated as liquidity

in the following).

2.1.2 Temporary Impact Models

First of all, we know that participants in the market are mainly divided into

large traders and small traders. Large traders refer to price makers placing sub-

stantially large orders and their past trading decisions have a lasting impact on

the price. We assume this price impact is permanent and the related models

are called as feedback effect models. Smaller traders refer to price takers whose

trading decisions and trading amount do not change the price. Their trades in

current moment would affect the price as a shadow cost. We assume this price

is temporary and call those models as temporary impact models. This subsection

discusses the former category of models.

In order to understand the temporary impact model, we first interpret the

role of small traders. Small traders in this thesis mean traders who invest a large

volume and request more liquidities than the market liquidity to trade quickly.

The existing market liquidity cannot cover the effect of their amount. However,

trading amount from those small traders cannot change the price. Cetin et al.

(2004) start the study of temporary impact model (they call supply curve model).

They define the supply curve as the price per share in a function of transaction

size. Cetin et al. (2004) focus on incorporating the liquidity effect into the option

pricing theory and applied the liquidity risk into the arbitrary-free pricing theory,

while the reaction function depends on the size of order from small traders but
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no lasting effect on the price process of the asset. Cetin et al. (2006) provide

some empirical evidences to show that the liquidity cost affects the option price

and it leads to changes of implied volatility. Recently, Cetin et al. (2010) further

consider the super-replication model with the temporary price impact but under

some constraints on the portfolio. They find a liquidity premium that is the

difference between the super-replicating value and the Black-Scholes value of the

claim. The paper by Cetin & Rogers (2007) and the paper by Rogers & Singh

(2010) respectively proposed the temporary price impact model in discrete-time

and continuous- time framework, respectively. Cetin & Rogers (2007) mainly

survey the utility maximization problem of terminal wealth in a discrete-time

market with liquidity cost. We will describe construction of Cetin-Rogers model

(C-R model) in details in Chapter 3. Rogers & Singh (2010) investigated the

temporary price impact model with large trades and explored consequences for

European option hedging. This paper eliminates the feedback effect in the price

and assumes no price impact on large orders. It reveals that incomplete market

leads to no perfect replication, no unique replication price and related super-

replication. Rogers & Singh (2010) chooses a more challenging portfolio setting

that requires investors to achieve a random terminal wealth than the zero terminal

wealth in Cetin & Rogers (2007).

Attention should be paid on the convexity of liquidity cost function in these

temporary impact models. Cetin & Rogers (2007) consider the illiquidity in the

market is a cost but it does not take effect on the price of underlying asset. It

mentioned that the illiquidity effect is like a transaction cost but no one which is

proportional to the amount traded. Malo & Pennanen (2012) also consider the

total cost of a market order in the bid-ask spread as a convex increasing function
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of the order size. The convexity is an essential feature in the optimization of

trading strategies. It leads to many important implications for risk management

as well as for pricing and hedging, i.e. Edirisinghe et al. (1993), Huberman &

Stanzl (2005), Alfonsi et al. (2010) and Alfonsi et al. (2012).

2.1.3 Feedback Effect Models

Permanent effect models refer to large traders who trade large enough amount

that can affect the prices. This effect will persist a while until another big order

comes into the market. Large traders are also called as price makers. Before

surveying the permanent impact models, we discuss the characteristics of large

traders first. The most important feature of a large trader is that his/her trading

volume is large enough to change the price. Moreover, the large trader is different

from the informed trader who has the advantage of asymmetric information. That

is to say that large traders do no have more advantage on information than small

traders. Recent papers on the liquidity effect from large traders modelled the

permanent impact as the feedback effect.

The principle of the feedback effects model is that the current price of the asset

immediately corresponds to the trading amount by the large size trader and the

effect of changed price will be constant until another large order putting into the

market. Due to the existence of different viewpoints of liquidity effects, there are

different modelling approaches to explain the relationship between the asset price

and the large size traders trading strategy in the asset. Jarrow (1992) introduced

the discrete-time framework where large size traders manipulate the asset price

and earn profit at no risk and he further studied the standard option pricing
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theory with the feedback effect in the derivative security market by Jarrow (1994).

The paper by Bank & Baum (2004) accessing Jarrow (1992)s model and proposed

the continuous-time framework of the feedback effects model. Frey & Stremme

(1997) derives a reaction process for the permanent price impact process and

investigates the price impact of dynamic hedging in discrete-time economy. This

paper demonstrates that the feedback effect of those hedging strategies cannot

replicate the payoff of claims. Schonbucher & Wilmott (2000) analysed, in a

continuous-time model, the price dynamics under feedback effect in an illiquid

financial market. Vath et al. (2007) solve a maximisation of expected utility in a

continuous-time feedback effect model. Roch (2011) investigates the limit-order

book models with permanent price impact. The limit-order book (LOB) is an

important application of illiquidity models.

There exists several phenomenons in the market when the price is manipu-

lated by some speculators. That is called price manipulation which is illegal.

Price manipulation describes collusions among competitors to manipulate prices

of the capital assets, for example these competitors negotiate agreements to sell

one good at the same price or do not lower the price without notifying other

collaborator. It is to be noted that price manipulation phenomenons are only

incurred by large traders. The normal example for price manipulation is that

the large trader can corner the market. Cornering the market means that large

traders purchase enough amount of specified financial assets in order to manip-

ulate the price. Due to the price manipulation, the most direct operation is to

purchase a high percentage of one good in the spot market and store it secretly; at

the same time, large traders take a significant long position in the future market.

When the expiry date arrives, those traders who signed the short future contract
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may not find sufficient amount of the good, then it will result in the inflated price

of that good and large traders can profit by the above described operations. More

examples about the price manipulation and more details about different manipu-

lation strategies can be found in Jarrow (1992). Jarrow (1992) provided different

trading strategies to prove the existence of price manipulation. He explicitly indi-

cated that given no arbitrage condition the price manipulation strategy exists in

the execution of price makers; conversely, the manipulation strategy cannot exist

by price takers due to the absence of market power. Following Jarrow (1992) and

Jarrow (1994), Huberman & Stanzl (2004) generates the feedback effect model

for price manipulation.

2.1.4 Applications of Illiquidity Models

In practice there exists some applications for illiqudity models. One of fa-

mous studies on the applications of illiquidity models is on the optimal execution

problem. The optimal execution problem allocates large orders of risky assets

with the aim of minimizing the expected liquidity costs. Many papers investigate

the limit-order book (LOB), in particular the bid-ask spread, to present different

optimal strategies between the temporary price impact and the feedback effect

models.

The bid-ask spread occurs at different securities, such as stock, option or

currency markets. Demsetz (1968) was the first researcher who formalized the

bid-ask spread as transaction costs for measuring liquidity. From the prevail-

ing thought perspective, the bid-ask spread is defined as the difference of prices

quoted between an immediate buying and an immediate selling. Based on the
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definition by Harris (2003), the bid-ask spread is the price investors paying for liq-

uidity. In particular, bid-ask spreads measure the liquidity costs from temporary

price impact. Discussions on how the bid-ask spread affects the liquidity dominate

the academic papers which analyse liquidity effects by small traders. The spread

affects several aspects of trading. From individual investors perspective, when

the spread is wide, providing liquidity is expensive, the market order strategy is

costly and investors tend to submit limit orders; when the spread is narrow, pro-

viding liquidity is relative cheap and the market order attracts investors. From

agents perspective, wide spreads make agents (large traders) profitable and at-

tract more people to enter the market; narrow spreads may make agents no profit

or not cover their expenses then they quit market.

Modelling the bid-ask spread by the temporary impact model is a popular

research direction recently. Malo & Pennanen (2012) specialise the bid-ask spread

in double auction market and propose a new liquidity model which additionally

considers the market price and the ask or bid-side liquidity. Comparing to Cetin

& Rogers (2007), the model in Malo & Pennanen (2012) retains the monotonicity

as well as positivity of marginal prices of market orders. It also interprets the

crowding out effect in illiquidity models.

Besides applications of illiquidity models in the stock and option markets,

there exists some applications to present the liquidity cost in other underlying

assets. In the bond market, some empirical evidence show the existence of liq-

uidity cost. For example, comparing the treasury bills to the treasury bonds,

Damodaran (2005) confirmed that the yield on the less liquid treasury bond is

higher than the yield on the more liquid treasury bill. That difference between

them is regarded as the measurement of illiquidity. Another application in bonds
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market to measure the liquidity is the corporate bond. Dick-Nielsen et al. (2012)

compared corporate bonds spreads during 2005− 2009 and got a conclusion that

less liquid bonds had much higher yield spreads than other liquid bonds. Papers

on studying liquidity in bonds market found that liquidity takes influence on all

bonds but it matters more with risky bonds than with less risky bonds. In the

equity market, some papers test the turnover ratio to analyse the liquidity cost.

For example, Haugen & Baker (1996) concludes that liquidity takes a signifi-

cant impact on the returns, while less liquid equities have higher annual returns

than more liquid equities. Pennanen & Penner (2010) studied option hedging of

contingent claims of temporary impact models in currency market.

2.2 Portfolio Management under Market Fric-

tions

When people trade in the financial market, the first note is to disperse their

risks of expected return. Different assets obtain different levels of expected return

risk. Possible combination of multi-asset investment may get a lower expected

return risk than any individual assets. That fact promotes the development of

portfolio management theory. A portfolio refers to a collection of investment

assets. The primary motivation of portfolio selection theory (also called portfolio

management) is trying to maximize the portfolio expected return given a specific

amount of risk or minimize the portfolio risk given a specific expected return. The

literature of portfolio management examines the optimal portfolio choice problem

in two categories: the mean-variance analysis of Markowitz and the expected
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utility study of Merton. The objective of this thesis is to aim of maximizing

expected utility.

2.2.1 Portfolio Selection without Frictions

The pioneering work of portfolio management was done by Markowitz (1952),

who built a famous mean-variance model in one-period, and use the standard

deviation of expected return as the proxy of risk. That paper considered both the

expected return and the risk to get an efficient frontier without a risk-free asset.

Any portfolio lying on that efficient frontier represents the best possible expected

return in a given risk level. Based on the market equilibrium function, Sharpe

(1964) extended the portfolio theory and established the capital asset pricing

model (CAPM). Merton (1969) first studied the portfolio selection problem in

continuous-time and figured out the explicit solution of optimal consumption

strategy in the constant coefficient model. Many research works in 1980s have

applied the martingale technique instead of the stochastic control theory to solve

the optimal portfolio strategies problem, for example, Harrison & Pliska (1981),

Cox & Huang (1989), Pliska (1986). The paper by Harrison & Pliska (1981) gave

insight into the martingale measure technology, who assume that the price process

exists an unique, equivalent martingale measure and can calculate the option

pricing in complete market under this assumption. Cox & Huang (1989) adopted

the martingale technique, which does not require the differentiable condition of

utility function, and calculated one linear partial differential equation to get the

optimal portfolio policy. The reason for developing the martingale approach is its

easier computation than the dynamic programming in stochastic control theory.
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However, when the market is not perfect or frictionless, the dynamic programming

approach is more suitable than the martingale approach. The implementation of

the model from Cetin & Rogers (2007) is based on the dynamic programming

approach. We discuss this approach in Section 2.4.2 and Section 4.2.

The portfolio management concentrates on the Consumption Problem and

the Wealth Problem. The consumption problem is aim to maximize the expected

utility of consumption and the wealth problem is aim to maximize the expected

utility of terminal wealth. Merton (1969) and Merton (1971) separately survey

these two kinds of optimization problems. A large number of papers expanse this

issue to many research directions. The current academic research focus on how

to identify key aspects of real-world portfolio choice problems and to understand

both qualitatively and quantitatively their roles in the optimal portfolio decisions

of small and large traders (followed by Brandt (2009)).

Merton (1969) discusses the classical Merton utility maximization model.

That model allows investors to observe dynamics of all state variables related

to those portfolio decisions. Merton (1969) surveys an analytical solution for

the optimal portfolio choice problem which combines both the consumption and

wealth problems. Merton extended his portfolio problem in Merton (1971) and

the portfolio problem can be applied to more general utility functions such as

HARA utility function and the price process of assets is not necessary to follow

the Brownian Motion movement. He worked out the explicit solution in the util-

ity function which is one of HARA family and got a remarkable conclusion that

the portion selection model. Merton (1969) and Merton (1971) provide a reliable

benchmark in different utility functions for further study (e.g. Muthuraman &

Kumar (2006), Liu & Yong (2005)). In Chapter 5, we compares the numerical
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solution of optimization model in the perfectly liquid market to solutions pro-

vided by Merton (1971) as the verification of correctness. Karatzas et al. (1986)

further extended Merton’s result which got the closed-form solution of general

utility functions.

Nevertheless, the portfolio selection without frictions cannot be applied in the

real market. For instance, on the assumption of portfolio selection in absence of

transaction costs, the trading strategy with the fixed proportions of wealth could

trade continuously. Followed the portfolio strategy by Merton (1971), the trade

in the real market will rapidly bankrupt due to vast transaction costs. That

limitation in the portfolio selection has inspired researchers to study the portfolio

selection with transaction costs.

2.2.2 Portfolio Selection with Transaction Costs

Although Merton (1971)’s portfolio strategy is remarkable, this portfolio strat-

egy will be useless when applied to the real market. In recent years, people have

been interested in the study of portfolio management in imperfect market. An

imperfect market includes any one or all imperfections as follows: restrictions on

short selling of stock and borrowing of cash, existence of transaction costs, in-

complete market, different lending rate and saving rate. The portfolio selection in

absence of transaction costs predicts that investors can continually trade. How-

ever, investors in real markets usually reduce their trading frequencies and seek

more available information to make their future trading decisions since investors’

portfolio with transaction costs produces substantial utility loss.

The terminology transaction cost was created by Coase (1937). Based on this
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famous paper, the concept of transaction costs is regarded as the cost using the

price mechanism. Magill & Constantinides (1976) start the investigation of the

portfolio selection with transaction cost constraint, which specially stated that

the no-transaction region is a wedge shape. In order to model the transaction

costs more precisely, many papers studied the optimal portfolio decision with

different kinds of transaction costs. For example, transaction costs are usually

divided into either proportional component to changes in the total assets or fixed

fraction of portfolio value. Davis & Norman (1990) used mathematical models to

implement the structure among sell region, no-transaction region and buy region

and figured out an explicit solution on how proportional transaction costs affect

the portfolio selection. Morton & Pliska (1995) worked out one single return in

the space which the optimal strategy with fixed transaction costs is to no trade.

The optimal portfolio decision problem divides into two categories, the con-

sumption problem and the wealth problem. This thesis focuses on the wealth

problem of maximizing expected utility of terminal wealth, so this subsection

only discusses literature on the wealth problem. Sass (2005) examines the op-

timisation wealth problem with different utility functions based on a binomial

model; Irle & Sass (2006) further investigate this problem both in fixed and pro-

portional transaction costs. Atkinson & Quek (2012) discuss the optimal portfolio

problem with large and small proportional transaction costs in discrete time.

The study of the optimal portfolio decision problem with transaction costs

attracts the economical interesting but challenges the mathematical solution. The

dynamic programming approach is a general numerical approach to deal with it.

The difficulty in the implementation of dynamic programming is to reduce the

dimensionality of the above problem. The CARA utility function can reduce
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one dimension of the optimization problem since the optimal portfolio in CARA

utility function does not depend on the wealth invested in the risk-less asset (e.g.

Cetin & Rogers (2007), Rogers & Singh (2010)).

2.2.3 Portfolio Selection under Liquidity Constraints

The previous section describes the portfolio selection with transaction cost,

while investors act as price takers and the transaction cost constraint represents

the explicit cost for transactions. Meanwhile, in real market the large size traders

invest large volume to affect the price process; the medium size traders cannot

change the price process but their immediate execution requirement requests the

liquidity effect as the implicit cost of transactions. Hence, there has some papers

considering the liquidity effects as market frictions into the portfolio selection

theory. In general, the key idea of liquidity effect applied into the portfolio

selection assumes the effect as the implicit cost in transactions. In the objective

of portfolio selection, model the liquidity constraint as a proportional component

of transaction costs.

The studies on portfolio selection with liquidity constraints have been ex-

tended as many research directions due to the different understanding of liquidity

constraints. Longstaff (2001) has established a pioneering work on the valuation

of illiquid assets in the optimal portfolio problem. He adopted the definition of

liquidity effect as the thin-trading interpretation. The thin-trading describes a

condition in which the trading activities are not enough active because of the

lack of orders to raise the volume and usually happens at holidays. The main

idea of Longstaff (2001) is the comparison the derived utility of wealth functions

22



2.2 Portfolio Management under Market Frictions

between optimal portfolio strategy without liquidity constraint and with liquidity

constraint, while the liquidity constraint is specified as the borrowing and short-

selling restrictions. In order to understand the optimal portfolio strategy with

liquidity constraint better, we build a simple two-asset securities market following

Longstaff (2001):

First of all, we denote one risky asset S(t) in stock market and one unchanged

risk-free asset B(t) in bond market which assumes the interest rate equals to zero

in bond and B(t) = 1. The wealth function W (t) is formulated as W (t) =

X(t) · S(t) + Y (t) · B(t) = X(t) · S(t) + Y (t), where X(t) and Y (t) represent

the number of shares and bonds , respectively. We denote the logarithm form

of wealth function to replace the wealth. Because of ln(0) = −∞, the wealth

function must be restricted W (t) > 0 for all t ∈ [0, T ]. Moreover, due to the

unchanged price in risk-free asset, the wealth on the risky asset makes influence

on the derived utility function; hence, we denote w(t) = X(t)·S(t)
W (t)

as the portfolio

weight in the risky asset. Then the objective is to maximize the derived utility

of wealth function given by J(W, t) = maxw(t) E[lnW (T )].

The following step is to apply the liquidity constraint into the above wealth

function. The liquidity constraint only affect on the risky securities, therefore we

model this restriction into the dynamics of number of shares as dX(t) = γ(t)dt.

γ(t) ∈ [−α, α] represents the upper and lower bounds on the number of shares.

The number limitation α > 0 indicates the immediacy execution in large volume.

The new derived utility of wealth function with liquidity constraint depends on

not only W (t) and t but also X(t) and S(t), which is characterized as:

J(W,X, S, t) = max
w(t),γ(t)

E[lnW (T )].
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Longstaff (2001) solved this equation and obtained a key result that the optimal

portfolio strategy with liquidity constraint should consider more on the portfolio

weight w(t) on the risky asset rather than the expected return of portfolio.

Kalin & Zagst (2004) also discussed a brief argument on optimal portfolio

with liquidity restrictions. Their objective of model is to maximize the expected

return of portfolio for a given risk. Considering the transaction cost as explicit

cost and the liquidity constraint as implicit cost, they set up the objective function

which is the optimal portfolio with maximized explicit and implicit costs for a

given risk level and solved the unperturbed price which is the quote price prior

to the execution. Vath et al. (2007) have built up the portfolio selection with

liquidity effect model and obtained the explicit solution, while the liquidity effect

in their paper is formalized as both long-term price impact and short-term price

impact. Their objective function is the maximization of expected utility from

the terminal wealth over finite time horizons. They firstly tried to implement

the model with quasi-variational Hamilton-Jacobi-Bellman (HJB) inequality but

adopted the viscosity solution to deal with because of none of smooth solution in

quasi-variational HJB equation. HJB equation is one expression of standard finite

difference method via dynamic programming methodology. Ang et al. (2011)

investigate the illiquidity effect on the portfolio choice problem and find that the

illiquidity takes a substantial influence on the optimal strategy and welfare.

2.3 Option Pricing

In finance theory, option is a derivative financial instrument. According to

the definition of option by Hull (2003), an option establishes a contract between
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the buying and selling sides of an asset at a verified price during a specified time

period. Until over the expiration date, the buyer of the option has the right not

the obligation to purchase the financial securities or commodities at the verified

price and the seller has the obligation to fulfil the transactions requested by

the buyer. Because the seller of an option stands at the more severe position

than the buyer, the seller usually adopts some hedging strategies to reduce the

risk of option execution. The replication is the pricing and hedging derivative

securities. The aim of hedging strategies makes the sellers wealth during the

execution period of option pricing equal to the option value, which recoups the

risk of selling options after the price of options increases. Besides the option

execution and the hedging strategy, how to determine the fair price of the option

is an important aspect of option theory, which is also called the option pricing.

2.3.1 Option Pricing without Frictions

Black & Scholes (1973) and Merton (1973) published a famous model, Black-

Scholes model, to price options. The Black-Scholes Model figured out the repli-

cating strategy of European call option, and demonstrated the initial wealth in

the replicating strategy as the fair price of European call option. They indi-

cated that the fair price of an option is independent of investors risk tolerance

level. Another prevailing influence of the Black-Scholes model is an easy pricing

of European call option represented.

Recently, main developments extend the Black-Scholes Model in two direc-

tions: Firstly, consider the option pricing mixing jump diffusions in the un-

derlying asset processes and get the jump-diffusion model. Merton (1976) did
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the pioneering work which incorporated the jump diffusion processes into the

option valuation and derived one option pricing formula with non- systematic

jump risk. In the valuation theory, the non-systematic risk can be eliminated

but the systematic cannot. Ahn (1992) extended Mertons jump-diffusion option

pricing model with the systematic jump risk. Amin (1993) built an American

option valuation model in discrete time to the case that underlying assets follow

a systematic jump-diffusion process. Secondly, consider the option pricing with

random volatility and get the stochastic volatility model. Hull & White (1987)

allowed a stochastic volatility into the option pricing model and demonstrated

the European call option prices are undervalued by Black-Scholes option price

at the money options. Melino & Turnbull (1990) examined the option pricing

model with stochastic volatility successful applying into the spot foreign cur-

rency options. Heston (1993) continued to study the option pricing model in

bond and spot currency securities and worked out a new approach to derive the

option pricing with random volatilities. That approach, square-root stochastic

volatility model, informed almost option pricing biases to the dynamic of option

prices and expected returns. Eraker et al. (2003) combined studies between the

stochastic volatility and the jump-diffusion process applied in the Black-Scholes

pricing model, and indicated that models without jump diffusions in the market

volatility are unspecified.

In Chapter 5, we compare our hedging strategy (or call replicating strategy in

other papers) in the perfectly liquid market to theoretical replicating strategy of

C-R model and delta hedge strategy in Black-Scholes model. We characteristic

the Black-Scholes option pricing model in here. The fundamental idea of Black-

Scholes model is that based on the arbitrage-free assumption, investors adopt the
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delta hedge strategy to go into the risk-neutral world where all risky assets have

the same expected return rate and the same risk-free interest rate.

The whole implementation and numerical analysis in this paper are based on

the binomial option pricing model in discrete time. We use the binomial model

to approximate the Black-Scholes model in continuous time. The arbitrage-free

principle is the essential assumption of the binomial option pricing model. During

the whole trading period t ∈ [0, T ], a portfolio strategy is called a self-financing

strategy if there is no new money added or withdrawn from the portfolio. In

order to understand the arbitrage-free principle, we define what arbitrage is first.

Definition 1 An arbitrage opportunity exists in a self-financing portfolio

strategy if it satisfies the following conditions: the initial wealth at time t0 in the

portfolio equals to 0 and the terminal wealth at time tT in the portfolio is larger

than 0, and the probability of the positive terminal wealth WtT (Φ) is greater than

0. The expressions of these conditions are given by:

Wt0(Φ) = 0;

WtT (Φ) ≥ 0;

P{WtT (Φ)} > 0.

Then a market is called arbitrage-free when any self-financing consumption-

portfolio strategy Φ does not have arbitrage opportunity at any time interval

[t1, t2] ⊆ [t0, tT ].

We explain one simplest example in the binomial model, which is one-period

and two-state model. It assumes that the market has two kind of assets: one
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risky asset S in stock and one risk-free asset B in bond market. The one-period

indicates transactions happen at the initial time t0 and the terminal time tT and

the two-state denotes the initial price of the risky asset S0 has two possible prices

at time tT : upward price SuT or downward price SdT . Due to the uncertainty of

price movements in the risky asset, if a trader takes the short position in stock,

he/she needs to keep a long position in call option to hedge the strategy. The

usual hedging operation is to invest appropriate shares and options in different

direction, and how to figure out the appropriate portion of shares is called the

delta hedge strategy. We describe the definition and formula of delta hedge

strategy with details in Section 5.2.5, thus do not need to describe the delta

hedging in here.

Another prevailing hedging strategy is to construct a portfolio which can

completely replicate the option. Given the above market which consists in risky

assets and risk-free assets, a formal replicating strategy is characterized as:

Lemma 1 In a market with risky asset S and risk-free asset B, there exists a

portfolio Φ = ∆ · S + β ·B where ∆ is the number of shares and β is the interest

component while the value of this portfolio Φ at time tT equals to the value of

option C, which means

Φ = ∆ · StT + β ·BtT = CtT .

Then the portfolio Φ is the replication of the option C.

Applying the replicating strategy into the portfolio makes the expected return

in the risky asset equalling to the return in the risk-free asset. We denote the

market achieved the replication as a risk-neutral world.
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Now we divide the trading period [0, T ] of the option into N + 1 smaller time

intervals, while 0 = t0 < t1 < ... < tN = T . The above Binomial option pricing

model in one-period is extended into a complex binomial model in multi-period.

We implement the binomial model as the approximation of the Black-Scholes

model to generate the optimal strategy of C-R model.

A quite important improvement of option pricing in last century is the devel-

opment of Black- Scholes option pricing model. The basic assumption of Black-

Scholes model is to suppose the underlying assets moving as geometric Brownian

motion. That implies the dynamic of risky asset, i.e. stock, is a random move-

ment. In order to compute the implied volatility, we implement the Black-Scholes

model in discrete-time and analyse the difference of implied volatility between the

liquidity cost case and the linear transaction cost case in Section 5.6.

2.3.2 Utility Indifference Pricing

Real markets are imperfect and frictional. The market frictions (such as

liquidity cost, portfolio constraints and differential borrowing and lending rate)

make replication of the option impossible by Black-Scholes model. In other words,

the replication price of an option cannot be computed by the Black-Scholes model.

In practice, the lowest price which the seller may accept is always slightly higher

than the highest price which the buyer would provide. The fair price of the

option exists at the range between the ask price and the bid price and the range

of bid-ask price is arbitrage-free. Besides the replication, another implication

of option pricing is the utility maximization. Considering the option pricing in

real markets, the utility-based pricing is one popular approach which is taken
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in an incomplete market. The principle of the utility-based pricing is a dynamic

extension of the static certainty equivalence concept from economic consideration.

Hodges & Neuberger (1989) started the pioneering work on the option pricing

and hedging based on the utility-based pricing theory. In particular, the utility-

based pricing is the most successful approach to model the arbitrage-free option

pricing with the transaction costs. Considering the portfolio constraints (or called

leverage constraints), the super-replication approach is adopted to work out the

option pricing and hedging. An option is super-replicated when minimum hedging

value of portfolio can guarantee over the payoff of the option. Broadie et al.

(1998) investigated a hedging portfolio with convex constraints in continuous-

time framework and demonstrated that the optimal cost of super-replication in

such model equals to the option price without portfolio constraints.

Utility-based pricing model has been applied into many literature discussions

in incomplete markets, which has been well implemented in the context of trans-

action costs and non-traded assets. For example, Henderson (2002) investigated

the option pricing in the non-traded underlying assets, Hobson (2003) studied

the utility-based pricing applied into the real options, Moller (2003) extended the

utility-based pricing into a new field, the insurance contract. The relationship

between the super-replication pricing and the utility-based pricing was worked

out by Cheridito & Summer (2006). Kloppel & Schweizer (2007) represented the

dynamic utility-based pricing for conditional convex risk measures, while the con-

vex risk is originated from non-linear and monotonic properties of utility-based

pricing. More recently, Ankirchner et al. (2010) are concentrating on the mathe-

matical modelling of utility-based pricing, which obtained a conclusion that the

partial replicated optimal hedging strategy of options can be represented as the
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product the price gradient multiplied the correlation coefficient. Their optimal

replication strategy is derived from the forward-backward stochastic differential

equation, the stochastic calculus of variations and Malliavin calculus.

Henderson & Hobson (2009) clearly interpreted the fundamental of utility-

based pricing about the emerging field of utility-based pricing for option valuation

in incomplete markets. We follow the key concept of Chapter 2 in Henderson &

Hobson (2009) to explain the utility-based pricing model.

The beginning of utility-based pricing is to understand what the utility func-

tion is. The utility function is the mathematical expression applied into the

economic justification, while different utility functions represent different con-

sumptions by orders of preference. In the utility-based pricing, utility functions

are usually defined as twice continuously differentiable, strictly increasing and

strictly concave. The strictly increasing property of utility function interprets in-

vestors higher preference on wealth than lower. The concavity property assumes

investors are risk averse. The utility indifference prices consist with the utility

indifference buy and sell price (or call reservation buy and sell prices). We define

them separately in Section 3.3. In short, the utility indifference buy price is the

highest price a buyer will purchase an asset and the corresponding sell price is

the lowest price a seller will sell his asset. Considering the key term indifference

into the definition of utility indifference prices, the utility indifference price is the

price at which the expected utility under optimal portfolio strategy is indifference

between the condition an investor does not buy the option and the condition the

investor pay the price of option and exercise the option at the expiry date.

The utility-based pricing has been extended many implications in financial

theory. As mentioned before, market frictions such as liquidity costs, non-traded
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assets have been applied into this approach of option pricing in incomplete market.

Portfolio constraints are divided into many detailed frictions to apply into the

utility-based pricing. We concentrate on option pricing with liquidity constraints.

In summary, the utility-based pricing can be regarded as the most successful

option pricing approach applied into the incomplete market. From the microeco-

nomics perspective, the utility-based pricing incorporates investors risk aversion

level with the quantities of supply and demand. From the mathematical perspec-

tive, this approach can solve the non-linear pricing in the incomplete market and

show explicit optimal hedging strategy based on the utility indifference prices. It

is complex to get explicit solution so recent studies usually select the exponential

utility functions to compute the optimal strategy in practice.

2.4 Numerical Methods

When Black & Scholes (1973) and Merton (1973) built up the Black-Scholes-

Merton option pricing model, the most significant fruition is the calculation of

payoff of European options. They used the analytic approach to obtain the ex-

plicit solution of European call option. However, due to non-existence of expiry

date restriction in American options, the Black-Scholes model cannot provide

analytic expressions for pricing of some complex options, e.g. American option,

compound option or chooser option. The calculation complexity in option pric-

ing with frictions is higher than in option pricing in the complete market. In

incomplete market, the numerical approaches for option pricing have significant

advantages on the calculation ability and operation speed over the analytic ap-

proaches over the analytic approaches.
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The numerical approaches are mainly divided into discrete-time methods and

continuous-time methods. Compared to continuous-time methods, discrete-time

methods have easier programming operation and lower computation complexity

that applies broadly in practice. Nonetheless, the accuracy of computation is the

key limitation of discrete-time methods. The study of the continuous-time option

pricing methods has difficulties on the convergence, boundary limit problem and

the computation stability in theory. Empirically, some financial agencies are apt

to use the prevailing and easy discrete-time option pricing methods. I generate

the optimization model using the discrete-time methods in Chapter 4.

2.4.1 Binomial Model

There has several numerical approaches in discrete-time such as binomial-

tree modelling, finite difference approach, Monte Carlo simulation, finite element

method, domain decomposition method and so on. We choose the binomial-

tree modelling as the generation of the optimization model in illiquid market

and Monte Carlo simulation as the verification of dynamic programming in value

function and boundaries of number of shares.

Generally speaking, the principle of binomial model approach is summarized

as using large amounts of discrete binary motions of small amplitude to simulate

continuous movements of underlying assets. The primary process of this approach

has two main steps: the first step is to obtain the expected return of cash amount

after exercise the option under the risk-neutral assumption and the second step is

to calculate the discounted price of options. The binomial model in Chapter 4 is

a CRR Binomial model which was developed by Ross et al. (1979). The primary
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classification of CRR binomial models are single-period pricing model and multi-

periods pricing model. The single-period model is proposed on the arbitrage-free

assumption to get the risk-neutral pricing of option. The multi-periods model

partitions the whole trading period t ∈ [0, T ] into many smaller time intervals δt.

Both of single-period and multi-period binomial tree models, the fundamental is

the price process of underlying assets.

We define a risky asset in stock market to illustrate the structure of binomial

tree. The non-recombining tree can be applied into either path-independent op-

tions or path-dependent options. Conversely, the recombining tree can only be

used to price path-independent options and American options. However, when

we price a path-independent option, it is no doubt to choose the recombining tree

model because the recombining one is significantly better on the computational

complexity than the non-recombining one.

In summary, the binomial tree model assumes that the price movements of

risky assets consist of binary motions in small amplitude and adopt discrete ran-

dom model to simulate the stochastic price processes of underlying assets. When

the time interval δt→ 0, the binomial tree model convergences to the geometric

Brownian motion, which is one approximation of Black-Scholes model.

2.4.2 Dynamic Programming

In the financial mathematics, we deal with the optimal portfolio choice prob-

lem by two approaches: the martingale approach and the dynamic programming

approach. The reason for developing the martingale approach is its easier com-

putation than the dynamic programming in stochastic control theory. However,

34



2.4 Numerical Methods

when the market is not perfect or frictionless, the dynamic programming ap-

proach is more suitable than the martingale approach. This thesis investigates

the optimal portfolio problem in the temporary impact model with liquidity cost.

That means the market is not frictionless, hence our main tool is the dynamic

programming method in the binomial tree setting.

The terminology ”dynamic programming” was originally introduced in the

1940s by Richard Bellman. Bellman (1957) and Bertsekas (1976) started the

mathematical theory of dynamic programming as a method for solving the dy-

namic optimisation problems. In short, dynamic programming breaks a complex

problem down into simpler sub-problems. It solves every sub-problem exactly

once, and therefore is more efficient in those cases where the sub-problems are

not independent. The general schema of a dynamic programming solution in-

cludes four steps: structure, recursion, backward computation and construction

of optimal solution. The first step, structure, is to characterise the structure of an

optimal solution that the solution can be divided into optimal sub-problems. The

second step, recursive computation, is to define the maximal or minimal value

of that optimal solution in terms of optimal sub-problems. The third step is to

compute the value of the optimisation in a backward table structure. The last

step is to construct that optimal solution based on previous computed informa-

tion. The step one to three describe the key features of a dynamic programming

solution to an optimisation problem.
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2.4.3 Monte Carlo

Monte Carlo simulation is a widely used computational algorithm that re-

lies on repeated random sampling to obtain numerical results (summarized from

Chapter 5, Hull (2003)). It is often dealt with problems of financial economics,

e.g. optimization, numerical integration and generation of samples from a prob-

ability distribution. We describe an introduction to Monte Carlo simulation and

the corresponding applications in financial area in this section.

In short, Monte Carlo methods are used to value and analyze instruments,

portfolios and investments by simulating the various sources of uncertainty af-

fecting their value, and then determining their average value over the range of

resultant outcomes. Monte Carlo simulation generates a sequence, Xi, i = 1, 2, ...,

of independent identically distributed random variables with expected value µ

and variance σ2. We take the sample mean Yi over i random draws, shown as:

Yi = X1+X2+...+Xi
i

.

Monte Carlo simulation is a flexible method of estimating quantities that is

applied to financial applications. There are three main applications for Monte

Carlo method to finance: the first application is to determine the optimal strategy,

which contains the computation of expectations (e.g. Detemple et al. (2003)); the

second one is path-dependent option pricing, especially pricing American-style

derivatives (e.g. Hull (2003)); the last popular application is that Monte Carlo

simulation as a numerical tool to analyse optimal strategies and we employ this

application in this research.
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Chapter 3

Cetin & Rogers (2007) Model

This chapter describes a model of optimal portfolio choice. It mainly discusses

the model developed by Cetin & Rogers (2007). In the Cetin & Rogers model (C-

R model), an investor allocates the capital to a risk-less asset and a risky asset.

The price of the risky asset follows a binomial model. When the investor changes

his portfolio, he has to pay the stock price plus liquidity cost. The objective of

C-R optimization model is to achieve the maximal expected utility of terminal

wealth. Solving the optimization model requires determining the value function

and the associated optimal portfolio strategy. We extend the optimization model

without option hedging to the model with option hedging in the illiquid market.

We choose the reservation price to measure the hedging of options.

3.1 Model Specification

Cetin & Rogers (2007) model is a two-asset model with multi periods. The

multi-period model is obtained by the concatenation of many single period mod-
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els. The trading period of single period model is the time between the beginning

of trading ti and the end of trading ti+1, where the subscript of trading period rep-

resents the related date of the period. At the beginning ti of the trading period,

prices of the underlying assets are recorded and the investor chooses a portfolio

and determines his investment; at the end of the period ti+1, those prices of fi-

nancial assets are recorded again and the investor gains a payoff corresponding

to the value of the portfolio.

In the multi-period model trade takes place at dates ti where i ∈ {0, 1, 2, ..., n}.

During the whole period of trading dates, agents can observe prices of financial

assets and gather information to adjust investments. These public information is

represented mathematically by the concepts of σ-algebra and filtration.

Agents begin their trades at the initial date t0 and end them at the terminal

date tN . We denote a probability space by (Ω,F,P).

• N+1 trading dates: t0, t1, ..., tN , while the whole period [0, T ] is discretized

by δt = ti+1 − ti = T
N

.

• Ω is a finite state space with k <∞ elements: Ω = {w1, w2, ..., wk}, where

a simple wi displays a possible state in the market.

• Fti is a σ-algebra of subsets of Ω. Set F = {Fti}i=0,...,N a filtration in which

Fti ∈ F for each ti and t1 ≤ t2 ⇒ Ft1 ⊂ Ft2 .

• P is a probability measure on F and P(wi) > 0 for all wi ∈ Ω.
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3.1.1 Representation of the Model

In the probability space (Ω,F,P), we consider a two-asset model: agents

allocate capitals to one risky stock and one risk free money market account. The

money market account process is Btj = Btj−1
· er·δt, j = 1, 2, ..., N and r ≥ 0 is a

positive constant interest rate. Hence,

Btn = Bt0 · er·δt·n, 1 ≤ n ≤ N.

The price of stock process (Sti)0≤i≤N follows a binomial model. We only denote

two possibilities of the price movement corresponding to the previous price Sti :

Sti,u = Sti · u is the price going up with the probability p and Sti,d = Sti · d is the

price going down with the probability (1 − p), where d < 1 + r < u. The price

Stj at time tj is determined by its previous price Stj−1
and the probability of the

price movement u or d.

The stock price process (Sti)0≤i≤N is a Markov process.

Definition 2 A stochastic process (Stn)tn≥t0 with a filtration F = {Fti}i=0,...,N

in a finite space Ω is a Markov process, if for each N ≥ n ≥ m ≥ 0 and any

x ∈ R

P(Stn = x | Ftm) = P(Stn = x | Stm).

A Markov process is a stochastic process for which conditional on the present

state, its future is independent of its past history. In other words, in order to

predict what happens at time tn+1, we only need to consider the state at time tn,
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and states at time before tn do not affect the state at tn+1.

In the C-R model, the investor chooses a portfolio from a stock and a money

market account. We describe a portfolio via the number of shares held and the

amount of cash invested in the money market account. The number of shares

before transaction is different from the number of shares after transaction at the

same trading date. X−n and X+
n represent the numbers of shares before and after

trading at the time tn, respectively. We introduce a new variable, the change of

number of shares at time tn, ∆Xn = X+
n − X−n which is the transaction made

at time tn. In the money market account, the change of cash amount at time

tn includes two components: interest on the remaining cash from time tn−1 to

time tn and cash flows due to shares transaction at time tn. We list Y −n and

Y +
n to represent the cash holding before and after trading at time tn. Then,

Y +
n = Y −n − Stn · ∆Xn = Y +

n−1 · erδt − Stn · ∆Xn. Similarly, the cash holding

Y +
n−1 at time tn−1 can be showed as Y +

n−1 = Y +
n−2 · erδt − Stn−1 ·∆Xn−1. It can be

concluded that if the change of number of shares ∆Xn at time tn is known, it is

possible to figure out the total amount of shares and the cash holding at time tn.

We call (∆Xn)0≤n≤N a trading strategy for an agent in the multi-period model

if ∆Xn is Ftn-adapted for each n.

We extend the above description to self-financing strategies to a market with

transaction costs. A self-financing strategy is financially self-contained, i.e. any

change in the value process is due to price movements and transaction costs paid.

This implies ∆Yn = Y +
n −Y −n is negative for buying stock and positive for selling

stock. Therefore, the cash at time tn after trading actions, Y +
n , is equal to the

cash at time tn before trading actions Y −n plus the total cost in the share trading.
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We propose that the total cost function S(∆, Stn) is of the form

S(∆, Stn) = φ(∆Xn) · Stn , (3.1)

where ∆Xn is the change of number of shares at time tn, Stn is the stock price at

time tn and φ : R→ R is a convex function such that φ(0) = 0. The convexity of

the total cost function S(∆, Stn) is interpreted as modelling the increased difficulty

of trading large number of shares.

Definition 3 An illiquidity effect function φ : R → R is a convex, increasing

function that vanishes at the origin.

Cetin & Rogers (2007) proposed the following illiquidity effect function:

φ(∆Xn) =
eα∆Xn − 1

α
, (3.2)

where the parameter α > 0 represents the degree of illquidity in the market. The

larger the value of α, the less liquid the market. A perfectly liquid market can

be achieved in the limit when α converges to 0. Recently, the similar liquidity

cost functions in limit order market were proposed by Cont et al. (2010), Malo

& Pennanen (2012).

Section 2.1 describes two principal illiquidity models and our viewpoint of

illiquidity belongs to the temporary impact model. We assume that the illiquidity

generates costs, but transaction amounts do not affect the price of the underlying

asset. It affects the price at which an agent will trade the asset that reflects the

depth of the limit order book. The faster an agent wants to buy/sell the asset, the

deeper into the limit order book, and higher/lower will be the price for the later
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units of the asset bought/sold. Once a rapid transaction completes, we suppose

that the limit order book will quickly fill up again and the transaction has no

lasting effect on the price of underlying asset.

We now focus on the formula Y +
n = Y −n + ∆Yn and incorporate the liquidity

cost:

Y +
n = Y −n − φ(∆Xn) · Stn . (3.3)

We use some examples to specify the liquidity cost in different illiquidity degrees.

The simplest example is to regard the liquidity cost as zero which means in a

perfectly liquid market. In this case, the liquidity cost φ(∆Xn) is equal to ∆Xn

as lim
α→0

eα∆X − 1

α
= ∆X. A more realistic example is to model the transaction

cost as a linear one, that is to say the transaction cost is proportional to the

amount traded:

φl(∆Xn) =

 (1 + α) ·∆Xn for ∆Xn ≥ 0 buy shares;

(1− α) ·∆Xn for ∆Xn ≤ 0 sell shares.

where α indicates the cost rate. Hence, with the proportional transaction cost,

Equation 3.3 can be formulated as: Y +
n = Y −n − φl(∆Xn) · Stn . This formula

indicates that transaction costs are proportional to the value of stock holdings.

The type of transaction costs would affect the utility maximisation problem.

Early studies of transaction costs concentrate on the optimisation problems with

transaction costs providing understanding of the trading strategy in a market with

transaction costs. Kamin (1975) examines the maximisation of expected utility

of terminal wealth of a trader who trades in a two-asset model. Constantinides
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(1976) extends this model to more general utility functions. We discuss the utility

maximisation problem in details in the next subsection.

In the C-R model, the liquidity cost function is defined as a convex function

( see Definition 3), in particular, this function covers the example of no transac-

tion cost above. However, the linear transaction cost case does not satisfy the

condition of the liquidity cost function.

We introduce a transaction cost function φ̃(|∆Xn|) here. Many papers define

the transaction cost function φ̃(|∆Xn|) as a strictly concave and differentiable

function. The liquidity cost function is proposed as a convex function, that we

cannot regard the liquidity cost as a normal transaction cost. The transaction

cost is a concave function of the traded volume of the risky asset. In order to

relate common notation to the notation of the liquidity cost function, the liquidity

cost function φ(∆Xn) also can be regarded as ∆Xn − φ̃(|∆Xn|). Equation (3.3)

is extended as

Y +
n = Y −n −∆Xn · Stn + φ̃(|∆Xn|) · Stn . (3.4)

In Equation (3.4) the term ∆Xn · Stn expresses the value from the stock account

into the bond account and the term φ̃(|∆Xn|)·Stn represents the transaction costs

paid for trading. In real world situation, the transaction costs φ̃(|∆Xn|) · Stn is

concave. As a result of this phenomenon, when the trading amount increases, the

average cost per unit (φ̃(|∆Xn|) · Stn)/∆Xn will decrease.

The dynamics in our model is defined by three processes: Xn, Yn and Stn .

Self-financing condition allows us to reduce it to the initial position X−0 , Y −0 ,

trades in shares (∆Xn)0≤n≤N and (Stn). The change of cash variable is decided
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by φ(∆Xn). According to the above conditions, the portfolio just relates to the

change of numbers of shares, and we can say a self-financing strategy is only

given by ∆Xn. In other words, choosing different changes of number of shares

from the present time to the terminal tN can decide different portfolio processes.

Considering X−n+1 = X+
n and Y −n+1 = Y +

n · erδt into Formula (3.3), we get a

general shares and cash holding formula respectively at time tk and use a lemma

to represent:

Lemma 2 In a market with one risky stock and one money market account if a

trading strategy (∆Xn)0≤n≤N is self-financing then for k ≥ n

X+
k = X−n +

k∑
j=n

∆Xj (3.5)

Y +
k = Y −n · er·δt·(k−n) −

k∑
j=n

φ(∆Xj) · Stj · er·δt·(k−n) (3.6)
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Proof 1

X+
k = X−k + ∆Xk

= X+
k−1 + ∆Xk

= X−k−1 + ∆Xk−1 + ∆Xk

= X+
k−2 + ∆Xk−1 + ∆Xk

= X−k−2 + ∆Xk−2 + ∆Xk−1 + ∆Xk

= ...

= X−n + ∆Xn + ∆Xn+1 + ...+ ∆Xk

= X−n +
k∑
j=n

∆Xj,
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Y +
k = Y −k − φ(∆Xk) · Stk

= Y +
k−1 · e

r·δt − φ(∆Xk) · Stk

= (Y −k−1 − φ(∆Xk−1) · Stk−1
)er·δt − φ(∆Xk) · Stk

= Y −k−1 · e
r·δt − φ(∆Xk−1) · Stk−1

· er·δt − φ(∆Xk) · Stk

= Y +
k−2 · e

2r·δt − φ(∆Xk−1) · Stk−1
· er·δt − φ(∆Xk) · Stk

= (Y −k−2 − φ(∆Xk−2) · Stk−2
) · e2r·δt

−φ(∆Xk−1) · Stk−1
· er·δt − φ(∆Xk) · Stk

= Y −k−2 · e
2r·δt − φ(∆Xk−2) · Stk−2

· e2r·δt

−φ(∆Xk−1) · Stk−1
· er·δt − φ(∆Xk) · Stk

= ...

= Y −n · er·δt·(k−n) − φ(∆Xn) · Stn · er·δt·(k−n)

−...− φ(∆Xk−1) · Stk−1
· er·δt − φ(∆Xk) · Stk

= Y −n · er·δt·(k−n) −
k∑
j=n

φ(∆Xj) · Stj · er·δt·(k−j).

We consider the multi-period model in a perfectly liquid market as the bench-

mark case. The wealth dynamics of the trading strategy (∆Xn)0≤n≤N at any

time tn would not pay any transaction cost and the portfolio value only transfers

between the stock and the money market account. The wealth process describes

the total value of the portfolio at any time tn. Denote by W−
n and W+

n the wealth

(book value) before and after trading at the same trading date tn. In the case

of no liquidity cost, the wealth process W+
n equals to W−

n based on the choice of

the trading strategy (∆Xn)0≤n≤N . In what follows, we will call W+
n the wealth

process and denote it by Wn(∆Xn):
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Definition 4 The wealth process of strategy (∆Xn) is given by

Wn(∆Xn) = X+
n · Stn + Y +

n . (3.7)

Lemma 3 In a perfectly liquid market, the wealth process corresponding to the

trading strategy ∆X = (∆Xn)0≤n≤N is given by

Wn(∆Xn) = (c−∆X0 · St0) · er·δt·n −
n∑
i=1

∆Xi · Sti · er·δt·(n−i)

+(x+
n∑
i=0

∆Xi) · Stn , n = 0, ..., N. (3.8)

In the perfectly liquid market, an agent invests money into the strategy at time

t0, in the following moments he only rebalances his portfolio, neither withdrawing

any money out of the market, nor investing new money into the market. The

value of the portfolio immediately before transaction at time tn equals to the

value of the portfolio immediately after transaction at time tn.

Applying the liquidity cost into the above market model, the dynamics of

stock holdings and money market account would be different from the original

ones in the benchmark case. The wealth difference between the benchmark case

and the illiquid case depends on not only the liquidity cost φ(·) but also on the

trading strategy (∆Xn).

We start from the money market account to explain how liquidity cost impacts

on the wealth process. When the agent comes into the market before he starts
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3.1 Model Specification

transaction, the number of shares X̃−0 = x and Ỹ −0 = c; then the agent trades

∆X0 shares there X̃+
0 = x + ∆X0 and Ỹ +

0 = c − φ(∆X0) · St0 . It is easy to see

the difference between Y +
0 = c − ∆X0 · St0 in the benchmark case and Ỹ +

0 =

c − φ(∆X0) · St0 in the illiquid case. The agent obtains (x + ∆X0) · St0 book

value in his stock account after the transaction at time t0. The sum of the money

market account and the stock equals to c− φ(∆X0) · St0 + (x+ ∆X0) · St0 at the

time t0 after the transaction. The agent would release all share holdings at the

terminal date tN .

Lemma 4 In a market with liquidity cost φ(∆X), the wealth process correspond-

ing to the trading strategy ∆X = (∆Xn)0≤n≤N is given by

W̃n(∆Xn) = (c− φ(∆X0) · St0) · er·δt·n −
n∑
i=1

φ(∆Xi) · Sti · er·δt·(n−i)

+(x+
n∑
i=0

∆Xi) · Stn , n = 0, ..., N. (3.9)

For the numerical analysis, we assume that the liquidity cost is applied into

all time periods except the terminal time period tN . This is a common thing to

not consider liquidity cost into the terminal time in the numerical research. We

fully discuss the influence of liquidity cost applied or not into the terminal time

period in Section 5.2.1.

3.1.2 Utility Maximization Problem

The investor manages a portfolio which consists of the risk-less asset (money

market account) and the risky asset (stock) to achieve the maximal expected
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utility of terminal wealth. To solve the optimization model we need to determine

the value function and the optimal portfolio strategy. Hence, the optimal portfolio

problem is transferred to choose the best trading strategy in the value function

from the initial time t0 to the terminal time tN . This problem needs a measure

of performance to compute the best trading strategy. The maximization of the

expected utility of terminal wealth is to represent the performance of the trading

strategy (e.g. Rogers (2001)).

In order to find what kind of the trading strategy can be regarded as the

optimal strategy, we measure the performance of a trading strategy in the follow-

ing three factors: the quantitative amount of payoffs, the average performance

of payoffs in different states and the consideration of the risk tolerance level in

different traders.

The quantity standard is a direct way to perform the trading strategy. Every

trader prefers a higher payoff than a lower one in real market. When a trading

strategy has different payoffs in different states of the world, the method of purely

comparing quantity of payoffs is not correct. In view of comparing the trading

strategy with different payoffs in different states, the average performance is cal-

culated through the expectation computation. The expectation corresponds to

the expected value for the optimal portfolio problem. Nevertheless, this charac-

teristic ignores traders’ financial background and risk tolerance level. However,

only computing the expectation of the terminal wealth may let the investor choose

more risky strategy and result in a big loss. The flaw of using the expectation is

that it does not consider the risk. In real market, the risk aversion of trades tends

to increase corresponding to the increasing amount of money. In particular, it is

significantly observed when the amount of money can affect traders’ life if lose
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them. It is suitable to use a concave utility function to model the risk tolerance

level. The concept of risk aversion is extensive used in economics and finance,

which represents the tolerance level of wealth uncertainty.

Definition 5 A function U : R→ R is called a utility function if it is strictly

increasing and strictly concave.

The concavity of utility function means that

U(λx+ (1− λ)y) > λU(x) + (1− λ)U(y),

where λ ∈ [0, 1]. Below we list a few common utility functions:

• Logarithmic utility:U(x) = log(x)

• Exponential utility:U(x) = 1− e−λx, λ > 0

• Power utility:U(x) = 1
γ
xγ, γ ∈ [0, 1]

In the numerical analysis, we choose the exponential utility to analyse the

optimal portfolio selection problem. It is because the form of the exponential

utility allows us to eliminate one variable in the value function. Other utility

functions such as the logarithmic or power utility functions do not benefit from

dimensionality reduction, which increases the computational complexity consid-

erably (from linear to quadratic). In Chapter 6, we discuss briefly how to deal

with the CRRA utility functions.

Combining the three factors on performance of trading strategy, we translate

the optimal portfolio problem into maximizing the expected utility of the wealth

at tN .
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We know the key objective of the optimal portfolio problem is how to choose

the best trading strategy (∆Xj)0≤j≤N . Suppose the share position has to be

liquidated at the terminal moment tN . This means X+
N = 0 and Y +

N represents

all wealth at time tN . Based on general formula (3.5) and (3.6), amounts of share

and cash holdings at terminal time tN are as follows:

X+
N = 0,

Y +
N = Y −n · er·δt·(N−n) −

N−1∑
j=n

φ(∆Xj) · Stj · er·δt·(N−j)

−φ(−X−n −
N−1∑
j=n

∆Xj) · StN .

Hence, the terminal wealth W̃N is given by

W̃N = Y −n · er·δt·(N−n) −
N−1∑
j=n

φ(∆Xj) · Stj · er·δt·(N−j)

−φ(−X−n −
N−1∑
j=n

∆Xj) · StN (3.10)

The utility maximization problem translates into finding a trading strategy

∆Xn s.t. E(U(W̃N)) achieves a maximal value. Put formula (3.10) into the utility

function, and define Φtn(·) as below:

Φtn(x, y, s, (∆Xj)) = E
[
U

(
y · er·δt·(N−n) −

N−1∑
j=n

φ(∆Xj) · Stj · er·δt·(N−j)

−φ(−x−
N−1∑
j=n

∆Xj) · StN
)
| X−n = x, Y −n = y, Stn = s

]
. (3.11)

Definition 6 A trading strategy (∆X∗j ) is called a solution for the optimal port-
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3.2 Solution to Optimal Portfolio Problem

folio problem with utility function U, if

Φtn(x, y, s, (∆X∗j )) ≥ Φtn(x, y, s, (∆Xj)n≤j≤N−1). (3.12)

for any trading strategy (∆Xj)n≤j≤N−1.

Following Definition 6 the solution for utility maximization problem at time

tn is based on choosing (∆Xj)
N−1
j=n . At every time moment tn, we define the value

function vtn by

vtn(x, y, s) = max
(∆Xn)

Φtn

(
x, y, s, (∆Xj)

)
, (3.13)

where variables x, y, s represent the number of shares, the wealth of cash holding

and the stock price at time tn.

3.2 Solution to Optimal Portfolio Problem

The utility maximization problem is usually solved by two analytical ap-

proaches: the stochastic dynamic programming approach and the martingale

method. We choose the dynamic programming approach to deal with the opti-

mization problem in the C-R model.

3.2.1 Dynamic Programming Equation

Combining the formula (3.12) and the value function (3.13) shows a fact, that

the optimal strategy at time tn is based on all its future optimal trades from

time tn+1 to tN−1. For the computation of vtn we use the dynamic programming
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3.2 Solution to Optimal Portfolio Problem

method to solve the optimal portfolio problem. Now the dynamic programming

framework is described as follows:

Denote vtn(x, y, s) as the optimal value of the expected utility of terminal wealth,

in which y is the cash wealth at time tn, x is the number of shares at time tn and

s is the stock price:

vtn(x, y, s) = max
∆X

E
[
U(Y −N − φ(−XN)StN ) | X−n = x, Y −n = y, Stn = s

]
. (3.14)

With the self-financing condition, shown in formulae (3.5) and (3.6), the cash

Y +
n+1 at time tn+1 induced by an illiquidity term φ(∆Xn) corresponding to the

cash Y +
n at time tn is given by

Y +
n+1 = Y +

n · er·δt − φ(∆Xn+1) · Stn+1 . (3.15)

Recall formula (3.11) and (3.15), the value function (3.14) is extended to the

following form:

vtn(x, y, s) = max
∆X

E
[
U

(
Y +
n+1e

r·δt·(N−n−1) −
N−1∑
j=n+2

φ(∆Xj)Stje
r·δt·(N−j)

−φ(−X+
n+1 −

N−1∑
j=n+2

∆Xj)StN

)
| X−n = x, Y −n = y, Stn = s

]
. (3.16)

The expression of utility function in formula (3.16) shows how to calculate

the terminal wealth when we know the stock holding, the cash holding and the

corresponding stock price at any time tn. In order to solve the value function

at time tn, we choose the dynamic programming principle to deal with the value

function at time tn+1. The dynamic programming method is a backward algo-
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3.2 Solution to Optimal Portfolio Problem

rithm that the current value function is based on all its future value functions.

Considering the information on time tn+1, X−n+1 = X−n + ∆x = x + ∆x and

Y −n+1 = Y +
n · er·δt = (Y −n − φ(∆x) · Stn) · er·δt = y · er·δt − φ(∆x) · Stn · er·δt, we

obtain:

vtn(x, y, s) = max
∆x

E
[
vtn+1(x+ ∆x, y · er·δt − φ(∆x) · Stn · er·δt, Stn+1)

| X−n = x, Y −n = y, Stn = s

]
. (3.17)

Equation (3.17) shows that each transaction of the optimal strategy at time

tn can be derived from their next time period transaction at time tn+1.

3.2.2 Value Function with Negative Exponential Utility

We implement an exponential utility function into the C-R model to inves-

tigate the optimal investment under the illiquidity constraints. In the money

market account the interest rate r is constant. In the risky asset the stock price

is denoted by Stn at time tn. Due to the Markov property of the stock price pro-

cesses, the price Stn+1 at time tn+1 is decided by the price Stn at time tn. With the

probability p ∈ (0, 1) the price is equal to Stn+1 = uStn , or with the probability

1 − p ∈ (0, 1) the price turns out Stn+1 = dStn , where d < u. Different utility

functions lead to different value payoffs. We choose a negative exponential utility

function U(W̃N) = − exp(−γW̃N), where γ denotes the risk aversion parameter.

The risk aversion −U ′′(·)/U ′(·) equals γ, so it is independent of the wealth. The

bigger value of risk aversion parameter is, the more prudent trading strategies

the trader selects.
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3.2 Solution to Optimal Portfolio Problem

In this specific setting, the dynamic programming equation (3.17) reads as

follows:

vtn(x, y, s) = sup
∆x

{
p · vtn+1

(
x+ ∆x, y · erδt − φ(∆x)s · erδt, us

)
+(1− p) · vtn+1

(
x+ ∆x, y · erδt − φ(∆x)s · erδt, ds

)}
.(3.18)

For the negative exponential utility U(W̃N) = − exp(−γW̃N), it can be sim-

plified, i.e. we can eliminate one argument of vtn(x, y, s).

Start from the terminal time tN :

vtN (x, y, s) = U(W̃N)

= −e−γ(y−φ(−x)·s)

= −e−γy · eγφ(−x)s

= e−γy · v̂tN (x, s),

where v̂tN (x, s) = −eγφ(−x)s.
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3.2 Solution to Optimal Portfolio Problem

Then, based on the formula (3.18) we can get:

vtN−1
(x, y, s) = sup

∆x

{
p · vtN

(
x+ ∆x, y · erδt − φ(∆x) · s · erδt, us

)
+(1− p) · vtN

(
x+ ∆x, y · erδt − φ(∆x) · s · erδt, ds

)}
= sup

∆x

{
p

(
e−γ(yerδt−φ(∆x)s)erδt

)
· v̂tN (x+ ∆x, us)

+(1− p)
(
e−γ(yerδt−φ(∆x)s)erδt

)
· v̂tN (x+ ∆x, ds)

}
= sup

∆x

{
p · e−γye2rδt · eγerδtφ(∆x)s · v̂tN (x+ ∆x, us)

+(1− p) · e−γye2rδt · eγerδtφ(∆x)s · v̂tN (x+ ∆x, ds)

}
= e−γye

2rδt

sup
∆x

{
eγe

rδtφ(∆x)s

[
pv̂tN (x+ ∆x, us) + (1− p)v̂tN (x+ ∆x, ds)

]}
= e−γye

2rδt · v̂tN−1
(x, s),

where

v̂tN−1
(x, s) = sup

∆x

{
eγe

rδtφ(∆x)s

[
pv̂tN (x+ ∆x, us) + (1− p)v̂tN (x+ ∆x, ds)

]}

Therefore, we define

v̂tk(x, s) = sup
∆x

{
eγφ(∆x)ser·δt·(N−k)

[
pv̂tk+1

(x+ ∆x, us)

+(1− p)v̂tk+1
(x+ ∆x, ds)

]}
. (3.19)
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Iteratively, we get

vtk(x, y, s) = e−γye
rδt(N−k)

sup
∆x

{
eγφ(∆x)serδt(N−k)

[
pv̂tk+1

(x+ ∆x, us) + (1− p)v̂tk+1
(x+ ∆x, ds)

]}
(3.20)

Attention should be paid to the general equation (3.20), it is clear that all

v̂tk(x, y, s) are based on choosing the best ∆x which is the optimal trading strat-

egy and v̂tk(x, y, s) only relates to two arguments Xk and Stk . Eliminating one

argument Yk can significantly simplify the computation complexity.

3.3 Reservation Pricing of Options

In the academic literature, reservation pricing of options is an important ap-

proach for the option pricing. The reservation pricing of options, also called the

utility indifference pricing. The utility based valuation was pioneered by Hodges

& Neuberger (1989) and further developed by Davis et al. (1993) in the opti-

mization model with the finite time horizons. Damgaard (2003) and Damgaard

(2006) discussed the problem of finding the reservation prices of European and

American contingent claims in the model with transaction costs.

Generally speaking, the reservation price is the minimal (maximal) amount

added to an option trader’s initial wealth which allows him to attain the same

utility that he would have attained without selling (buying) the option. Reserva-

tion prices consist of the reservation buy price and the reservation sell price. The

reservation buy price is the price at which the agent is indifferent between buying

and not buying the option. More precisely, the reservation buy price is defined
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as the price that the agent is indifferent between if he buys the option and holds

to the expiry date of option in a portfolio maximization problem and if he only

holds portfolios from the above portfolio maximization problem. We obtain the

similar explanation for the reservation sell price, which is the price at which the

agent is indifferent between selling and not selling options.

Let a function C : R → R determine the payoff of a path-independent Eu-

ropean option, i.e. the option pays off C(StN ) at time tN . Generally speaking,

the reservation price (also called utility-indifference price) is the price that the

agent ensures the price per option results in no loss of utility compared with the

alternative strategy of not writing or purchasing any option.

In order to define the reservation prices, we define the value function with

shorting option at time t0 by vCt0 and the value function with buying option at

time t0 by v−Ct0 .

Definition 7 Consider an agent who only trades in the money market account

and the stock with the initial wealth condition (x, c). The reservation buy price

of an European option is the value pb ∈ R that satisfies

v−Ct0 (x, c− pb, s) = vt0(x, c, s), (3.21)

Definition 8 Consider an agent who only trades in the money market account

and the stock with the initial wealth condition (x, c). The reservation sell price

of an European option is the value ps ∈ R that satisfies

vCt0(x, c+ ps, s) = vt0(x, c, s), (3.22)
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Therefore, depending on the formulas (3.21) and (3.22), we can compute a

reservation price with respect to solve two portfolio maximization problems: one

of problems is about a portfolio without option and the other one is about port-

folio with options. The reservation pricing of options concerns the evaluation

and hedging of contingent claims, when the liquidity cost or any transaction cost

happens in the trading of underlying assets. The derivation of reservation price

formula in the negative exponential utility is discussed in the following:

v−Ct0 (x, y − pb, s) = sup
∆X

E
(
U(W̃N + C(StN ))

)
= e−γye

r·δt·N · ˆv−Ct0 (x, s), (3.23)

and

vt0(x, y, s) = sup
∆X

E(U(W̃N))

= e−γye
r·δt·N · v̂t0(x, s), (3.24)

where

v̂tN (x, s) = −eγ·φ(−x)·s,

ˆv−CtN (x, s) = eγ·−C(s)v̂tN (x, s),

v̂tn(x, s) = sup
∆X

{
eγφ(∆x)ser·δt·N [pv̂tn+1(x+ ∆X, us) + (1− p)v̂tn+1(x+ ∆X, ds)]

}
.

Notice that the derivative process of formula ˆv−Ctn (x, s) is identical as for v̂tn(x, s)
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in the previous subsection.

Substitute the formula (3.23) and (3.24) into the formula (3.21), we can obtain

the equation of the reservation buy price:

pb = − 1

γer·δt·N
log

v−Ct0 (x, y, s)

vt0(x, y, s)
= − 1

γer·δt·N
log

ˆv−Ct0 (x, s)

v̂t0(x, s)
(3.25)

Similarly, the reservation sell price of the contingent claim C satisfies the

Equation (3.22):

vCt0(x, y + ps, s) = vt0(x, y, s).

Based on the dynamic programming equation (3.20) in the exponential utility

function, the detailed derivation process of reservation sell price ps can be shown

as:

vCt0(x, y + ps, s) = sup
∆X

E
(
U(W̃N − C(StN ))

)
= e−γye

r·δt·N · e−γpser·δt·N · v̂Ct0(x, s), (3.26)

and

vt0(x, y, s) = sup
∆X

E(U(W̃N))

= e−γye
r·δt·N · v̂t0(x, s), (3.27)
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where

v̂tN (x, s) = −eγ·φ(−x)·s,

ˆvCtN (x, s) = eγ·C(s)v̂tN (x, s),

v̂tn(x, s) = sup
∆X

{
eγφ(∆x)ser·δt·N [pv̂tn+1(x+ ∆X, us) + (1− p)v̂tn+1(x+ ∆X, ds)]

}

Notice that the derivative process of formula v̂Ctn(x, s) is identical as for v̂tn(x, s)

in the previous subsection.

Substitute the formula (3.26) and (3.27) into the formula (3.22), we can obtain

the expression of the reservation sell price:

ps =
1

γer·δt·N
log

vCt0(x, y, s)

vt0(x, y, s)
=

1

γer·δt·N
log

v̂Ct0(x, s)

v̂t0(x, s)
(3.28)

3.4 Comparison with Cetin-Rogers Numerical

Study

Our optimization model originates from Cetin & Rogers (2007)’s model. Be-

fore discussing the dynamics of the optimal strategy choice model, we firstly

review Cetin and Rogers model (2007). Roughly speaking, the C-R model is a

kind of the two-asset model with liquidity cost. We denote a probability space

by (Ω,F,P) and there have N + 1 trading dates t0, t1, ..., tN ; the period [0, T ] is

discretized by δt = ti+1 − ti = T
N

. In this two-asset model, an investor allocates

his principal to a risk-less asset (a money cash account with a constant interest

rate) and a risky asset (a stock). We approximate this two-asset model in an

illiquid market. Zakamouline (2005) pointed out that the simplest Markov chain
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approximation consists of a discrete time equation for the amount of wealth in the

money cash account and a binomial tree model of the stock price in the optimal

portfolio problem. We formulate the money cash account process as:

Bti = er·(ti−t0) ·Bt0 , 0 ≤ i ≤ N

where r is the constant interest rate. Using an appropriate binomial tree model

(CRR binomial tree), we approximate the dynamics of the stock price process as:

Sti+1
= Sti · ω(i), 0 ≤ i ≤ N

where St0 is a given constant and (ω(i))i=0,1,...,N is a sequence of i.i.d random

variables on the probability space (Ω,F,P), taking two real values u and d with

probability p and 1− p, respectively.

ω(i) =

 u with probability p,

d with probability 1− p.

The three parameters u, d and p can determine the binomial tree model. We

specify the choice of u, d and p under CRR binomial model setting (page 211 in

Hull (2003))

u = eσ
√
δt, d = e−σ

√
δt, p =

eµδt − d
u− d

,

where µ, σ are the growth rate of the stock price and the volatility, respectively.

Cetin & Rogers (2007) directly set u, d and p as constants e0.1, e−0.1 and 0.7 in
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their numerical study, respectively. We use the same constant parameters in this

subsection for the comparison to Cetin and Rogers’ numerical results.

To solve the utility maximization problem numerically, we assume that the

investors have the negative exponential utility function U(∆x) = −e−γ∆x. For-

mula (3.19) in Section 3.2 is the dynamic programming equation with negative

exponential utility function.

Cetin & Rogers (2007) lists optimal strategies for utility maximisation with

one written vanilla put option with the strike price K. Table 3.1 represents the

default values of parameters in computation of optimal portfolio strategy. Table

3.2 lists various values in the strike price K and the risk aversion parameter γ.

We compare the optimal strategy and the price of option between the C-R model

and our algorithm, where Table 3.1 and 3.2 show the setting of the optimization

model under the illiquidity constraint.

Table 3.1: Parameters with values in the optimal strategy comparison between C-R
Model and our algorithm.

Parameters Meaning Value

T Time Horizon 1 year
r Interest Rate 0.05
S0 Initial Stock Price 1.0
x Initial Stock Holding 0
c Initial Cash Holding 0
n Number of Options 1

Table 3.2: Cases for optimal strategy comparison.

Parameters Values

Case 1 Case 2 Case 3
K 1 1 1.1
γ 1 5 1
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3.4.1 Expected Utility

We adopt the dynamic programming equation (3.19) to compute the optimal

portfolio given by same parameters values in Cetin & Rogers (2007). Table 3.3

and 3.4 show the optimal strategy comparison between Cetin & Rogers (2007)

and our implementation without or with liquidity cost, respectively. In short,

the optimal strategy from our implementation has less fluctuation from any time

tn to its following time tn+1. The values in the grey background of Table 3.3

and 3.4 give distinct evidence for proof of big fluctuation in the optimal strategy

presented in Cetin & Rogers (2007).

In order to find the better ’optimal’ strategy from the three conditions in Table

3.2, we investigate the optimal strategy in a three-period model for a trader

who writes one European put option and holds zero initial positions both in

the stock and the money market at time period t0. The numerical algorithm

provides the value of expected utility of terminal wealth which are compared to

numerical results provided by Cetin & Rogers (2007). Table 3.3 and Table 3.4

give the optimal trading strategy (∆Xn)∗0≤n≤N with respect to different parameter

conditions and show values of expected utility of terminal wealth in the last

column. Notice that Table 3.3 corresponds to the optimal strategy in a perfectly

liquid market (α = 0), in this market the liquidity cost function φ(∆X) = ∆X.

Values of strategy in Table 3.4 represent the existence of liquidity costs forces

the trader to trade cautiously and less, in absolute quantities, compared to the

perfectly liquid market. This behaviour even does not change when the risk

aversion parameter γ significantly increases. Paying attention to values covered

by the grey background in Table 3.3, unexpectedly large absolute quantities of
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3.4 Comparison with Cetin-Rogers Numerical Study

trading amounts in the last period make us doubt the correctness of optimal

strategy in the perfectly liquid market, which is provided in Cetin & Rogers

(2007).

Table 3.3: Expected utility of terminal wealth and values of the optimal strategy
with short one European put option under α = 0 (the perfectly liquid market) in
three-period model, while in each condition, the top row values of optimal strategy is
collected from Cetin & Rogers (2007) and the bottom row values of optimal strategy
is collected from our numerical data.

St0 St1,u St1,d St2,uu St2,ud St2,du St2,dd EU
Case 1 -0.75 -0.60 -1.24 -8.86 -9.86 -9.90 -11.10 -1.31458

-0.77 -0.63 -1.23 -0.49 -1.07 -1.07 -1.73 -1.01685

Case 2 -0.23 -0.11 -0.63 -2.96 -4.12 -4.12 -5.40 -2.13910
-0.34 -0.22 -0.73 0. 10 -0.59 -0.59 -1.15 -1.01641

Case 3 -0.89 -0.64 -1.72 -8.9 -9.94 -9.94 -11.09 -1.33089
-0.95 -0.75 -1.61 -0.49 -1.57 -1.57 -1.73 -1.03590

Table 3.3 clearly shows that our numerical results for number of shares are

different to results provided by Cetin & Rogers (2007) in those three cases. In

order to identify the difference between those two data sources, we pay attention

to Case 1 firstly. It is reasonable that the investor would hold more shares if the

current stock price has increased from the price at the previous time period; and

vice versa. The numerical data from our numerical model is in accord with this

phenomenon. However, the numerical data from that paper describes another

story, especially at time t2: the investor would sell a large quantity of shares

no matter if the price moves to higher or lower. The huge fluctuations in stock

holdings at time t2 let us doubt the correctness of the data from that paper. In

order to know which ’OPTIMAL’ strategy is better, we compute the expected

utility of terminal wealth. It is because that the optimal portfolio choice problem
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3.4 Comparison with Cetin-Rogers Numerical Study

in the model provided by Cetin & Rogers (2007) is based on the maximisation

of expected utility of terminal wealth. The last columns in Table 3.3 and Table

3.4 both show that the strategy from our numerical data generates larger values

in expected utility of terminal wealth. It reveals that the strategies provided by

Cetin & Rogers (2007) are not true. We provide optimal strategies with higher

values in expected utility of terminal wealth.

Table 3.4: Expected utility of terminal wealth and values of the optimal strategy
with short one European put option under α = 0.05 in three-period model, while in
each condition, the top row values of optimal strategy is collected from Cetin & Rogers
(2007) and the bottom row values of optimal strategy is collected from our numerical
data.

St0 St1,u St1,d St2,uu St2,ud St2,du St2,dd EU
Case 1 -0.32 -0.1 -0.62 -0.30 -0.34 -0.82 -0.86 -1.04279

-0.16 -0.19 -0.26 -0.13 -0.17 -0.2 -0.23 -1.02466

Case 2 -0.24 -0.33 -0.57 -0.50 -0.64 -0.73 -0.87 -3.29088
-0.20 -0.19 -0.41 -0.10 -0.24 -0.32 -0.45 -1.13891

Case 3 -0.36 -0.59 -0.70 -0.76 -0.84 -0.89 -0.89 -1.06730
-0.20 -0.23 -0.33 -0.15 -0.22 -0.27 -0.26 -1.04878

3.4.2 Option Price

In Section 3.4.1, we discuss the comparison of strategies from Cetin & Rogers

(2007) and the numerical data. The next analysis is to investigate the price of

options in Cetin and Rogers model. We propose that a trader short one European

put option and with zero initial number of shares and zero cash at time t0. We

define the reservation prices (utility-indifference prices) and the corresponding

equations in Section 3.3. The price of options is calculated by the reservation

prices with different initial number of shares.
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3.4 Comparison with Cetin-Rogers Numerical Study

Figure 3.1: Price of put option in the function of the initial number of shares on the
illiquid market with α = 0.05. The strike price K = 1. The top panel corresponds to
γ = 1 while the bottom panel corresponds to γ = 5.

Figure 3.1 and 3.2 present the reservation sell price as the function of initial

number of shares (assuming no initial cash holding) with written one European
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3.4 Comparison with Cetin-Rogers Numerical Study

Figure 3.2: Price of put option in the function of the initial number of shares on the
illiquid market with γ = 1. The top panel corresponds to the strike price K = 1.1 and
α = 0.05 while the bottom panel corresponds to K = 1 and α = 0.00005.

put option. These two figures change strike price K, liquidity cost parameter α

and risk aversion parameter γ to display the corresponding prices of put option.
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3.5 Summary

As the liquidity parameter gets smaller, the change of price of option during the

whole range of number of shares converges to zero, that the right plot in Figure

3.2 verifies this behaviour when α is close to zero (the perfectly liquid market).

Given the exponential utility function, Cetin and Rogers found the equation

for reservation sell price as:

p′ =
1

γ
log

vCt0(x, y, s)

vt0(x, y, s)
(3.29)

3.5 Summary

In this chapter, we described the optimization problem of maximizing the

expected utility of terminal wealth in the C-R model. First, we studied the

model specification in the utility maximization problem. Second, we determine

the dynamic programming approach as the solution of the utility maximization

problem. Moreover, in order to solve the optimization model with liquidity cost,

we determined the value function and the corresponding optimal portfolio strat-

egy. Third, we investigated the reservation buy/sell price in the C-R model. We

also compared the numerical result of the three-period model between Cetin &

Rogers (2007) and our related implementation.
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Chapter 4

Implementation

We have illustrated the optimal portfolio selection problem under illiquidity

constraints introduced by Cetin & Rogers (2007) in Chapter 3. Due to no analyt-

ical solution of the value function in Cetin & Rogers (2007), we design an efficient

algorithm to compute the value function numerically in an illiquid binomial mar-

ket. A popular method to solve the portfolio optimisation problem numerically is

dynamic programming method in discrete time. We apply dynamic programming

method into the implementation of value function and optimal strategy. Before

computing value function, we need to approximate the C-R model in the illiquid

binomial market firstly.

This chapter is mainly divided into three parts: first, we design an efficient

algorithm to compute the value function in binomial model via the dynamic

programming principle; second, based on the optimisation problem in dynamic

programming method, we compute the optimal strategy and verify whether the

current range of stock holdings is sufficient; third, we discuss other numerical

procedures which are Monte Carlo simulation as the verification of binomial model
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4.1 Binomial Model and the Choice of Parameters

and the computation of implied volatility.

4.1 Binomial Model and the Choice of Parame-

ters

This section focuses on selection of binomial model. We review some typical

models and focus on how to construct the binomial model and the relevant choice

of formula.

In an illiquid market, we have to solve the problem of optimal portfolio selec-

tion numerically by discrete time dynamic programming approach. It is a good

way to employ a binomial model to approximate the dynamics of the stock price.

The binomial appproximation has advantage on sampling a discrete time state

space.

In order to deal with the optimal portfolio selection problem numerically,

we need to discretize dynamics of stock state. It has two main steps in the

discretization progress: the first step is to construct a binomial approximation of

the stock price in the market; the second step is to set up the discrete vector of

number of share holdings in each node of binomial model. We will introduce a

binomial tree model to approximate the dynamics of the stock state.

First of all, we discretize the whole trading period [0, T ] by the step size δt =

T
N

, where N is the number of time steps. In the implementation of optimization

model, we consider the number of periods m in the binomial tree model as the

number of time steps. Thus, the smaller δt the more accurate the model since

it has more time periods squeezed into the time period [0, T ]. Denote by ti the
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4.1 Binomial Model and the Choice of Parameters

discretized time variable, which makes the time sequence in t0, t1, ..., tN . In the

money market account, the equation for the bond price process is

Bti = Bt0exp(r · i · δt), 0 ≤ i ≤ N

where r is the constant interest rate.

The focus of discretization method is only on how to discretize the stock price

and the stock holdings in the case of negative exponential utility function since

the optimal strategy does not depend on the cash holdings in the money market

account (risk-less asset). We explained why the optimal strategy is independent

of the cash holdings and list the derivation process in Section 3.2.2.

The approximation of stock price process in risky asset is followed as:

Sti+1
= Sti · ω(i), 0 ≤ i ≤ N

where St0 is a constant and (ω(i))i=0,1,...,N is a sequence of i.i.d random variables

taking two real values u and d with probability p and 1−p, respectively. Ross et al.

(1979) proposed the formulas for evaluating the probability of an up movement

p∗, the parameters u and d as:

u = eσ
√
δt, d =

1

u
, p∗ =

erδt − d
u− d

.

Notice that p∗ and (1− p∗) are called risk neutral probabilities for u and d. That

implies that expected rate of return on the stock under these probabilities is the

risk-free rate r. Moreover, investors are risk-neutral and do not require any risk

premium for holding risky assets in such a risk-neutral world.
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4.1 Binomial Model and the Choice of Parameters

Besides the CRR model, another kind of binomial tree model is the He model

developed by He (1990). The corresponding formulae for the He model are:

uH = e(µ− 1
2
σ2)δt+σ

√
δt, dH = e(µ− 1

2
σ2)δt−σ

√
δt, pH =

1

2
.

We choose an appropriate CRR model to measure the dynamics of the under-

lying price.

u = eσ
√
δt, d =

1

u
, p =

eµδt − d
u− d

, (4.1)

where µ is a known and constant drift of the stock price in the implementation.

Comparing to the risk neutral probability p∗, the probability p in Equation (4.1)

means that the expected rate of return on the stock is the drift of the stock

price. Notice that parameters u depends on the step size δt. Hence, u, d and

p would change by different number of period models. This treatment implies

that we characterize the uncertainty about the dynamics of stock price by a bi-

nomial model with a dependable probability of an up movement. This binomial

tree model is recombinant that makes the practical computation feasible, i.e. if

the stock price moves up and then down, the price will be the same as if it had

moved down and then up. Such two paths merge or recombine. This property

reduced the number of nodes in the tree and the generation of the stock price in

the recombining model leads to n nodes at the nth period. In reality, the order of

magnitude of the widely used step length is from O(10−1) to O(10−3). We apply

the higher order of magnitude O(10−2) in this implementation to get higher accu-

racy and balance the computational complexity. The computational complexity
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4.1 Binomial Model and the Choice of Parameters

describes how the amount of resources required by the algorithm grows with the

size of the problem. Two main types of resources are the memory and the running

time of the program. In this subsection, the computational complexity refers to

the number of periods in the binomial model. The property of recombination

of nodes allows us to accelerate the running time of the implementation. The

recombining property also makes that the value of the stock at each node can be

calculated directly via formula of value function and does not require that the

tree be built first. It significantly reduces the memory for dealing with huge data.

The second step of the discretization scheme is to allocate a discrete vector for

storing the discretization of stock holdings that is measured in terms of physical

units of stocks. We denote the value function vector by V. There are n + 1

elements in the V. The symbol n equals to the range of stock holdings divided

by the discretization step size. Denote by k the index of element of the V-vector,

where k = 0, 1, ...,n. The distance between the two adjacent elements is the

discretization step size. We assume that the step size is a fixed value. Notice

that in the traditional discretization method the V-vector in each binomial tree

node is identical. However, in our implementation the V-vector in the first node

arranges a different range of stock holdings besides others in the tree. We propose

no initial stock holdings in the benchmark case of numerical analysis, that results

the range of stock holdings including zero in the first node. We adopt a fixed

narrowed range of stock holdings for other nodes, while the sufficient range of

stock holdings are verified by Monte Carlo simulation. Why adopt a different

range only in the first node will be shown and explained in an example in Section

5.2.2.

We implement the discretization of stock holdings in a matrix, Jij for i =
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Figure 4.1: Two-periods recombining binomial model that shows the sequence order
of array to store all nodes

0, 1, ..., n−1 and j = 0, 1, ...,n. The index i is the number of node in the binomial

tree and j is the number of discretization of stock holdings. n elements in the

representation of row index i are decided by the period number m in the binomial

tree, that has n = (m+1)(m+2)
2

. The discretization number n is formulated as the

range of stock holdings divided by the step size δt.

Notice that the left/right limit in the range of stock holdings is proposed as

the lower/upper boundary, respectively. We sequence all nodes in the binomial

tree from the last period to the former periods. The order of nodes in each

period is from the smallest stock price node to the biggest stock price node. For

instance, the first column of the matrix Jij, where i = 0 and j = 0, 1, ...,n, stores

all discretizations for node Sd,...,d. Sd,...,d is the node having the smallest stock

price in the whole binomial tree. Figure 4.1 illustrates how Ji· order the tree.

Section 4.2 will explain the computation of value function in the binomial tree of

the stock price.
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4.2 Computation of the Value Function

4.2 Computation of the Value Function

Considering the computation of value functions and optimal portfolios, there

are three main approaches (see Pliska (1997)): the conventional approach, the

dynamic programming approach and the risk neutral computational approach.

The first approach, a traditional way, refers to the differentiability of the utility

function. This approach may be impractical when the number of variates in par-

tial derivatives and equations in the simultaneous system are significantly large.

The third approach involves the risk neutral probability measure. The principle

of this approach is as follows: the key observation is that the trading strategy

decides the objective, which is maximizing the expected utility function; compose

the observation to obtain the set of the attainable wealth and then compute the

optimal trading strategy with respect to the attainable wealth. The risk neutral

computational approach can solve most of examples but the complicate solution

as the disadvantage. We choose the dynamic programming approach to deal with

the computation of value function.

The principle of dynamic programming can be concluded that knowing the

value function at time tn can determine the value function at time tn−1. What

the dynamic programming indeed does is substitute solving a sequence of single-

period optimal decision problems for solving a multi-period decision problem.

Davis et al. (1993) pioneered the numerical solution for the utility maximization

problem with transaction costs.

Equation (3.17) expressed the general dynamic programming equation of com-

putation of value function for the optimization model in the illiquid market (e.g.

Cetin & Rogers (2007), Rogers & Singh (2010)). We derived the dynamic pro-
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4.2 Computation of the Value Function

gramming equation for the model with the negative exponential utility function

in Section 3.2.2 and shown in equation (3.19). Equation (3.19) is implemented

by a backward recursion algorithm that assumes knowing the value function for

all states at the next time period. Using the backward recursion algorithm, we

use an array G[i] to store the binomial tree of stock prices and V to store value

function, where i = 0, 1, ..., (m+1)(m+2)
2

− 1.

The construction of stock prices computation will be described in the following

3 steps:

1. Detect whether the current node is belong to the terminal period;

2. Compute the current stock price Stj = S0u
jdm−j when the number of node

j ∈ [0,m] and store it into the array G[j];

3. Use two for loops to detect the current period number represented by the

index L and the position of node represented by the index k for other nodes

except the terminal period, compute the current stock price Stk = S0u
kdL−k

and then store into the array G[k];

The array G[i] store the information of each node about the current period

number L and the current node number k, that corresponds to the computation

of value functions V-vector. Equation (3.19) determines the value function v̂tk(s)

by computing the maximum of value functions in the binomial tree, given by

choosing the trading strategy. We translate equation (3.19) into a numerical

solution by

V(i, j) = sup
∆x
{Z[pV(i′, j) + (1− p)V(i∗, j)]} (4.2)
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4.2 Computation of the Value Function

where Z is one factor in the dependence of cash amount at the current node

and the indices i′ and i∗ represent the successive nodes of the current one in the

binomial tree. We use the matrix Jij to replace V and explain the construction

of value functions as below:

1. Gather information about the current period number L and the current

node number k;

2. Apply no liquidity cost into the computation of illiquid effect function when

the current period is the terminal period L = m and then compute value

functions V(k, j) where k ∈ [0,m];

3. Apply liquidity cost into the computation of illiquid effect function for nodes

of other periods, detect the successive down node (i∗, j) by the relation

i∗ = (L+1)L
2

+ k + L + 1 and the successive up node (i′, j) by the relation

i′ = i∗ + 1 and then compute the corresponding value functions;

Notice that we assume applying liquidity cost into all time periods except

the terminal time period tT . From the mathematical perspective, we has noticed

that there is a substantial effect on the strategy if we apply liquidity costs at the

terminal time and illustrate this effect in Section 5.2.1. This effect is caused by

the fact that liquidation of the whole portfolio is costly and spread over time. A

lot of financial literatures in transaction costs assume that there is no cost at the

terminal time (e.g. recent literatures Cetin et al. (2010) and Gokay et al. (2012)

specify and explain the substantial effect). From the financial perspective, in

real markets, financial institutions usually do not liquidate their whole portfolios

due to they need to provide option payoffs or determine the total value of their
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portfolios. Section 5.2.1 illustrates how liquidity costs affect the strategy over

time if applying the liquidity issues into the terminal time period.

4.3 Determination of the Optimal Strategy

Most of papers on determining optimal strategy measure stock holdings in

terms of physical unit as our algorithm does. Zakamouline (2005) and Malo &

Pennanen (2012) measured stock holdings in terms of monetary unit. In C-R

model, the computation of optimal strategy is based on the maximal expected

utility of terminal wealth. Equation (4.2) provides the numerical method of deter-

mining the optimal strategy. Notice that the method of solving the optimization

model does not follow the recombining binomial tree since the existence of liquid-

ity cost makes different value of optimal strategy at the same stock price node.

The stock price that goes up at first and then goes down equals to the price that

goes down at first and then goes up. However, the existence of liquidity costs in

every trade, except transactions in the terminal time, makes the optimal strategy

for the stock price going up and going down differ to the optimal strategy for the

stock price going down and going up. We design an iteration algorithm to trace

optimal strategies for all nodes in such a model that leads to 2n nodes at the

nth step. The non-recombining construction of binomial model limits the itera-

tion algorithm to deal with cases with large number of periods. For example, the

model with number of periods m = 50 need to build
50∑
i=0

2i nodes that is impossible

to be implement by the computer. The following issue needed to consider in the

method of determining the optimal strategy is how to produce optimal strategy in

cases with large period number of periods binomial models. Generally speaking,
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we produce a random stock price path and search the corresponding transaction

path which get a maximal expected utility of terminal wealth.

The method for searching optimal strategy is divided into the iteration algo-

rithm for cases with small number of periods and the random path of optimal

strategy for cases with large number of periods. We have stored all values of

value function in matrix Jij which contains information of optimal strategy along

a selected stock price path.

• For cases with small number of periods:

1. Build up an array P[k] that contains
n∑
k=0

2k elements and will store

values of optimal strategy into P[k];

2. Search the entry point of the iteration algorithm in the position of

array G[i], where i is decided by the difference between the initial

stock holdings and the minimal value in the range of stock holding;

notice that the step size δt decides the computation precision of the

position i;

3. Collect the corresponding value of value functions matrix Jij where

the index j is decided by the position of array G[i] from step 2;

4. Calculate the positions of next successive nodes and recursively repeat

step 2 until the last period;

• For cases with large number of periods:

1. Generate a random number θ ∈ (0, 1) in every period to decide the

corresponding path of stock prices; if θ is smaller than the probability
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of stock price going-up, stock price goes up and other values of θ makes

the stock price going down;

2. Select the corresponding transaction value from Jij based on the cur-

rent stock price Si;

We propose the numerical solutions of the optimization model without liquid-

ity costs as benchmarks. The first important reason is that we can test the current

program by comparing our numerical solutions under full parameters known in

the perfect liquid market with the analytical solution derived in Merton (1971).

Section 5.2.4 shows the previous comparison in details. The second reason why

list models without liquidity costs as benchmarks is that we can quantify the

liquidity cost on the reservation price by comparing the option price with liquid-

ity costs with that without liquidity cost and by comparing the corresponding

hedging strategy (the definition will be introduced in Chapter 5) with different

liquidity costs.

The cases with very small number of time steps can not simulate the opti-

mization model with real market conditions. However, we list the comparative

analysis of parameters both in models with small number and large number of

time steps and compare how parameters affect the optimal strategy and the reser-

vation price with different time horizons in Section 5.4.

The method of generating the optimal strategy by the corresponding stock

price path only shows one trajectory in one time running of programme. That

is impractical for applications. We design a Monte Carlo simulation to deal

with large number of samples (e.g. 10, 000 samples) to present a large sample of

optimal strategies.
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4.4 Selection of the Range of Stock Holdings

When running the existing algorithm of binomial tree modelling, we do not

provide a function to check whether the range of stock holdings is large enough.

The sufficient range of stock holdings can decide the correctness of the optimal

strategy. Because the binomial model produces all values of value function for

all nodes, and some particular nodes have extreme values of stock prices which

cause overflow or underflow of the range of stock holdings V. In the existing

algorithm, the factor of the value functions V always times by the related stock

price S to correspond the maximization of expected utility of terminal wealth

and the optimal strategy, while the dynamic programming equation (3.19) shows

it. Due to extreme values of the stock prices, the computation of value functions

or optimal strategy V ·S causes overflow or underflow the range of stock holdings.

For instance, the large range of stock holdings contains either large positive values

in the stock price path with many go-up movements or small negative values in

the stock price path with many go-down movements. This drawback is that

we select non-sufficient (or narrow) range of stock holdings to compute value

function. We design a Monte Carlo simulation to determine the range of stock

holdings. Besides the determination of the range of stock holdings, the Monte

Carlo simulation is produced as the verification of the existing binomial model.

Comparing to the determination of range of stock holdings in binomial model,

we depict a method to exam the corresponding minimal and maximal values of

stock holdings at each trajectory in Monte Carlo simulation. After running out

all trajectories, we will get the number of trajectories which are hitting current

range of stock holdings and the related minimal and maximal number of shares for
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those trajectories which did not hit current range. We check whether the range of

stock holdings is sufficient at each node of trajectories. Hence, the construction of

determining ranges starts after step 2 of Monte Carlo procedure in the previous

subsection. In short, we construct a for loop to run all trajectories and check

the range of stock holdings at each node of one trajectory. The procedure of

determining range of stock holdings in one trajectory is as follows:

1. For the initial node, set the number of shares as the temporary minimal

and maximal number of shares;

2. For other nodes except the terminal node, replace current number of shares

to temporary minimal (maximal) number of shares if it is smaller (bigger)

than the value in temporary variable; while the hitting boundary time would

plus one time;

3. For the terminal node, only plus hitting times into the value which records

the paths hitting time if current number of shares is smaller (bigger) than

the temporary minimal (maximal) number of shares.

4.5 Other Numerical Procedures

After the description of designing the optimal strategy in binomial model, we

develop other numerical procedures. The first procedure, the Monte Carlo, is

a verification of binomial model for measuring the expected utility of terminal

wealth. Another procedure is to compute the implied volatility in the illiquid

binomial model.
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4.5.1 Verification by Monte Carlo

The technique of Monte Carlo was first used by Boyle (1977) but it was

computational inefficient. Boyle et al. (1997) further enhance the computation

efficiency of the Monte Carlo method, meanwhile discuss its main advantages

rather than other numerical methods and describe its applications in finance.

Glasserman (2004) provides the implementation of Monte Carlo simulation in

details. Cvitanic et al. (2003) develops an approximation computation of the

optimal portfolio in the complete maket, that is computed by the covariation

between optimal wealth and the uncertainty of shares. Detemple et al. (2003)

also detects the optimal portfolio strategy but adopts different way that involves

computing expectations.

The generation of optimal strategy in C-R model is based on the maximal

expected utility of terminal wealth. The algorithm of binomial model shows the

computation of maximization of expected utility and the method for choosing

optimal strategy. We select the Monte Carlo simulation as the verification of the

binomial model.

We characterize the procedure of Monte Carlo that simulates the computation

of expected utility of terminal wealth to verify the Binomial model. In short,

the Monte Carlo simulation generates the corresponding expectation value of

terminal wealth based on each random trajectory and combine all samples with

probabilities to obtain the estimation of expected utility of terminal wealth. We

also construct 95% confidence interval to measure the accuracy of the estimation.

The procedure of Monte Carlo simulation is as follows:

1. Construct a matrix Mil to store values of optimal strategy for all trajecto-
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ries, where i refers to the number of period and l refers to the number of

trajectories;

2. Generate an independent uniform (0, 1) random variate U as a random

number generator in each trajectory (·, l);

3. Based on random number from the generator at each node, the stock price

in the successive node is decided;

4. Call value function matrix Jij which was implemented in binomial model

and select the corresponding transaction value from Jij;

5. Compute the estimation of expectation of terminal wealth EUl;

6. Repeat steps 2-5 with corresponding modifications to obtain another tra-

jectory (·, l + 1);

7. Compute the average expectation of terminal wealth for all trajectories,

that equals to EU∗l = 1
l

∑l
k=1EUl;

8. Construct a 95% confidence interval to assess the qualify of the computa-

tion, that formula of confidence interval is given by

[
EU∗l −

1.96EUd

√
l

, EU∗l +
1.96EUd

√
l

]
,

where EUd represents the standard deviation of the difference between each

estimation EUl and the average estimation EU∗l .

Notice that we can use confidence intervals with other confidence levels. Then

we have different number instead of 1.96 in the example 95%.
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4.5.2 Computation of Implied Volatility

In practice, the Black-Scholes model is one of the most widely used mathe-

matical formulas to help investors find a fair price of an option. However, the

Black-Scholes model is not a perfect tool to price options, especially for long-term

maturities. In the Black-Scholes pricing model, the factor of transaction cost is

disregarded to consider. Besides that, the Black-Scholes model cannot compute

trading in continuous-time precisely. These problems make the mispricing of

Black-Scholes model. Although this model has some drawbacks, we still use the

Black-Scholes model to compute the price of an option. The implied volatility

is used to represent the price of an option contract in the Black-Scholes model.

The implied volatility of an option is that the volatility value of the underlying

instrument which, when input in an option pricing model will return a theoretical

value equal to the current market price of the option. The reason of using implied

volatility to represent option price is that the range of option prices with different

strike price is quite large. That makes hardly display all prices of options with

different strike prices and maturities. Hence, the real market provides investors

with both implied volatility percentages and the Black-Scholes price estimations

of an option contract to show option prices.

In order to analyse the option price, we compute the implied volatility as one

measurement to display the price with different maturities or strike prices. The

implied volatility curve usually is represented as the volatility smile. It exhibits

the volatility skew for call options. The skew property of implied volatility reveals

that call options when deep-in-the-money have higher volatility than deep-out-

of-the-money. In Section 5.6, we provide an analysis of how implied volatility is
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affected by market parameters in our model of the illiquid market. This subsection

displays how to compute implied volatility for a given option price in the Black-

Scholes model. In our further studies, we will use this algorithm to analyse

reservation prices obtained from our model.

Consider a call option with strike price K and time to maturity T . Given

r and S0 the current stock price, the implied volatility σi is the value of the

volatility parameter that the Black-Scholes price matches a given price Cm of the

option:

CBS(r, S0, T,K, σi) = Cm, (4.3)

where CBS(r, S0, T,K, σi) is the Black-Scholes pricing formula. The Black-Scholes

formulae for the prices at t0 of a European call option and a European put option

are:

CcBS(r, S0, T,K, σi) = S0Φ(d1)−Ke−rTΦ(d2)

and

C
p
BS(r, S0, T,K, σi) = Ke−rTΦ(−d2)− S0Φ(−d1)Ke−rTΦ(d2),

where

d1 =
ln(S0/K) + (r + σ2/2)T

σ
√
T

d2 =
ln(S0/K) + (r − σ2/2)T

σ
√
T

= d1 − σ
√
T .
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The function Φ(·) represents the cumulative probability distribution function for a

standard normal distribution; other parameters in the above formulae are defined

before.

Since the Black-Scholes price is be calculated by a known function of constant

volatility, the equation above can be inverted to find the implied volatility σi.

There does not exist the closed-form solution for Equation (4.3), thus we solve

it numerically by using Newton-Raphson method. The Newton-Raphson method

is easily used for European options since it requires to know vega. Vega is the

derivative of the option value with respect to the volatility of the underlying

asset, that measures sensitivity to volatility. For American options, since the

option may be exercised in prior to the maturity, it does not require to know

vega. Hence, the bisection method is used as the solution of finding volatility in

American options.

We choose an iterative algorithm to implement the solution of implied volatil-

ity. The procedure of generation of implied volatility is as follows:

1. Initial a guess for the volatility: firstly, set up the guess σ0 as
Cm/St0

0.398·
√
T

(followed by Odegaard (2007)); checking if the guess value is smaller than

0.3, if so a replacement of 0.3 value;

2. Iteratively, find a σi+1 that satisfies

σi+1 = σi +
Cm − CBS(r, S0, T,K, σi)

ν(r, S0, T,K, σi)
,

where ν(r, S0, T,K, σi) = 1√
2π
· S0 exp(−rT ) · exp(−0.5d2

1) ·
√
T is the vega,
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4.6 Summary of Implementation of the Model

until the required accuracy is reached:

|Cm − CBS(r, S0, T,K, σi+1)| ≤ ε

where ε is the acceptable error, set as 10−7 in the implementation.

In particular, the accuracy is quite important for computation precision. The

accuracy in the current implementation is small enough for computation. Besides

the accuracy, the iteration times also affect the precision of computation. We set

up 100 times for this iteration algorithm; however in practice only 10− 20 times

iteration can obtain the sufficient value of implied volatility since the volatility

converges quickly.

4.6 Summary of Implementation of the Model

In this chapter, we design an efficient algorithm for computation of binomial

model. That binomial model implementation shows the value function via the

dynamic programming principle and the production of optimal strategy for all

nodes in cases of small number of periods models. Another compulsory numer-

ical procedure is the algorithm for Monte Carlo simulation. The Monte Carlo

simulation can not only verify the correctness of the optimal strategy but also

measure whether the range of stock holdings is sufficient for computing. A proce-

dure of implied volatility in the illiquid binomial model is produced for resulting

from reservation pricing of options under liquidity costs. We provide the relevant

pseudo codes for different numerical procedure separately.
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Chapter 5

Numerical Analysis

This chapter investigates the optimal hedging strategies of option traders

under liquidity costs. It also examines the impact of reservation price by varying

market parameters. This chapter consists of five parts. Firstly, we construct a

benchmark case without option in the perfectly liquid market. Then we examine

the dynamics of hedging strategies based on two particular multi-period models.

Next we carry out an analysis of hedging strategies and reservation prices by five

varying important market parameters in the market with liquidity cost. Besides

we observe Price Transition Points. They are the intersections of the Black-

Scholes price and the line of option price in the illiquid market. If investors’ initial

share holdings are greater than the Price Transition Point, they are willing to

sell call options in lower price than the replicating price without transaction cost

and take benefit from the written call option. Finally, we explore the implied

volatility of call option under liquidity cost and compare the convex liquidity

cost to the linear transaction cost when market prices between the liquidity cost

and the transaction cost are matching at the price of at-the-money call option.
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We compare the data of implied volatility from model quotes to the real market

quotes. That comparison reveals the level of liquidity in the real market.

5.1 Parameters and Default Values

We simulate the model of optimal strategy with liquidity costs according to

market parameters and discretization parameters. Table 5.1 lists the interpreta-

tion of these parameters and default values used in our numerical analysis. We

carry out comparative analysis of the optimal strategy model with liquidity costs

by simulating the model by varying parameter values. The corresponding values

of these market parameters are expressed in Table 5.2.

Table 5.1: Interpretation of parameters and corresponding default values

Parameters Meaning Value

α Illiquidity Effect 0.05
γ Risk Aversion Parameter 1
µ Growth Rate in Stock Price 0.15
σ Stock Volatility 0.3
T Time Horizon 1 year
r Interest Rate 0.05
S0 Initial Stock Price 1.0
x Initial Stock Holding 0
c Initial Cash Holding 0
n Number of Options 1
K Strike Price 1

Npath Number of Random Stock Paths 10,000
m Number of Time Periods 100
δt Step Length 0.01
δr Discretization Length 0.002

We assume that the zero initial number of shares and zero cash wealth in

the C-R model with the negative exponential utility function. As discussed in
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Table 5.2: Variation in parameters values in comparative analysis

Parameters Values

x 0 2 4
γ 1 2 4
K 1.2 1.3 1.4
T 0.5 1 5
n 1 2 5

Chapter 3, a particular property of the exponential utility function is that the

optimal strategy for the risky asset is independent of the cash wealth. Therefore,

we only consider the risky asset in this chapter.

5.2 Benchmark Cases in Perfectly Liquid Mar-

kets

Cetin & Rogers (2007) conducts a numerical analysis of a three-period model

with writing European put options. In Section 3.4, using the same setting of

market parameters, we compared corresponding numerical results with the results

in Cetin & Rogers (2007). Based on that comparison, we compared the optimal

strategies and the maximal expected utility of terminal wealth in a three-period

model. In this section, we increase the number of periods m from 3 to 100.

This shows more sensible strategy. However, it is too complicated to show all

trajectories of the 100−period model by the binomial model. As proved in Section

4.5, Monte Carlo simulation is regarded as the correctness of the binomial model.

For different situations, we display numerical data with the binomial model or

Monte Carlo simulation in this section.
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5.2.1 Illustration of Optimal Strategies

We assume that it is no option hedging and no liquidity cost in a frictionless

market. In order to determine the influences of option hedging and liquidity, we

analyse three kinds of benchmark cases: the case of the frictionless market, the

case with option in the perfectly liquid market (n = 1 and α = 0), and the case

without option in the illiquid market (n = 0 and α > 0). We randomly choose

200 samples to illustrate optimal strategies. Each sample indicates the optimal

strategy, in terms of number of shares, according to the corresponding stock price

trajectory. Figure 5.1 - 5.3 illustrate these three numerical cases.

Figure 5.1: 200 trajectories of optimal strategy presented that the trader does not
exercise any option in the perfectly liquid market (the liquidity parameter α = 0).
Other parameters are given in Table 5.1.

Figure 5.1 shows the optimal strategy changing over time in the perfectly

liquid market without option. This figure expresses two properties of the range

of stock holdings. First, for each period, there exists a small but sufficient range
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of stock holdings. We define that a sufficient range of stock holdings is the range

which is small but sufficient for computing the correct the optimal strategy. It is

apparent from this graph that almost all samples are located at the range [0.4, 2.4]

of stock holdings and only few samples are out of this range that we name them

’outliers’. We can enhance the computational efficiency and save the execution

time by selecting a small but sufficient range of stock holdings. Whether the

range of stock holdings is sufficient decides the correctness of optimal strategy.

Our current numerical solution has implemented a way to measure the sufficient

range. Second, the sufficient range fluctuates over time. The majority of those

samples approximately displays a band with increasing width over time. That

shape illustrates the minimal (or maximal) boundary of stock holdings at the

current time (node) is close to the boundaries at its successive times (nodes). We

will represent the histogram of boundaries of the stock holdings range in Section

5.2.2. Table 5.4 shows the minor difference of the expected utility of terminal

wealth according to a sufficient range and a narrow range.

Figure 5.2 shows 200 samples of optimal strategy in the benchmark case with

short one European call option and without liquidity cost. Comparing to Fig

5.1, this plot has two clear differences in the shape of samples on the optimal

strategy. The shape on Figure 5.2 is approximately symmetric with respect to

the horizontal line at the level of 1.68 shares. Another difference is a narrower

range of stock holdings in the benchmark case with writing call option (Figure

5.2) than the benchmark case without option (Figure 5.1). The smaller band of

the stock holdings is caused by the option impact. The reason is that investors

who write call option are willing to trade fewer shares. We also test the optimal

strategies in the benchmark case with short one European put option. The shape

94



5.2 Benchmark Cases in Perfectly Liquid Markets

Figure 5.2: 200 trajectories of optimal strategy presented that the trader writes 1 call
option in the perfectly liquid market (the liquidity parameter α = 0). Other parameters
are given in Table 5.1.

of put option of the range of stock holdings is similar to the shape of call option

in Figure 5.2. The only difference between the model with call option (shown in

Fig 5.2) and with put option is the range of stock holdings: for call option case,

the sufficient range is [1.0, 2.2]; while for put option case, the sufficient range is

from 0 to 1.2. The range difference between call and put option depends on the

value of the strike price K. We only concentrate on the numerical analysis of

written call option.

Figure 5.3 displays the optimal strategy samples in the benchmark case with-

out option in the illiquid market: the top panel shows that the liquidity cost is

applied into all periods except the terminal period of the model; the bottom panel

shows that the liquidity cost is applied into all periods of the binomial model. In

the numerical algorithm, we assume that the liquidity cost is applied into all time

periods except the terminal time period tT . We can explain this setting from two
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Figure 5.3: 200 trajectories of optimal strategy presented that the trader writes 1
put option in an illiquid market (the liquidity parameter α = 0.05): no liquidity cost
applied into the terminal time t100 in the top panel and liquidity cost applied into all
time periods in the bottom panel. Other parameters are given in Table 5.1.

perspectives. From the mathematical perspective, there is a substantial effect on

the strategy if we apply the liquidity cost into the terminal time (shown in the
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bottom panel of Fig 5.3). This effect is caused by the fact that the liquidation

of the whole portfolio is costly and spread over time. Several financial papers on

transaction costs assume that there is no cost at the terminal time (e.g. recent

papers Cetin et al. (2010) and Gokay et al. (2012) specify and explain the substan-

tial liquidity effect for the optimal strategy). From the financial perspective, in

real markets, financial institutions usually do not liquidate their whole portfolios

because they need to provide option payoff or determine the total value of their

portfolios. A method called Mark-to-Market (MTM) is used to value positions

and determine profits and losses based on the market price without taking into

account the liquidity cost issues.

5.2.2 Choice of the Range of Stock Holdings

In the previous subsection, we chose 200 random trajectories to illustrate

properties of optimal strategy in the multi-period model. However, those 200 se-

lected trajectories cannot represent all properties of trajectories in the 100−period

model. The increasing simulation times in Monte Carlo computation can improve

the estimation precision of the quantities. With some comparisons, we show that

10, 000 simulation times used in Monte Carlo algorithm is large enough to provide

acceptable expected utility of terminal wealth. We also display the boundaries

of stock holdings in histograms. Moreover, we choose a narrow range of stock

holdings and compare the value of expected utility of terminal wealth and corre-

sponding optimal strategies between the sufficient range and narrow range.
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Expected Utility

Under the default parameters setting in Table 5.1, we use the binomial model

to compute the expected utility of terminal wealth which equals to −0.945837.

This value is adopted as the benchmark of computation precision. We use the

Monte Carlo simulation to confirm the correctness of the binomial model. After

running the Monte Carlo simulation with Npath = 5, 000, 10, 000 and 20, 000 sep-

arately, the estimate of expected utility (EU) and corresponding 95% confidence

interval are shown in Table 5.3. From this table, for all of these three simulation

times, the benchmark value from binomial model is contained in the 95% confi-

dence intervals. This reveals the expected utility of terminal wealth in binomial

model is correct. With consideration for both the computation precision and the

computation complexity, Npath = 10, 000 is a better choice: when Npath = 5, 000,

the 95% CI is too wide; while when Npath = 20, 000, the execution time would be

doubled of Npath = 10, 000. Therefore, we select Npath = 10, 000 as the default

times of Monte Carlo simulation.

Table 5.3: Testing on Monte Carlo simulation times Npath

Estimate of EU 95% Confidence Interval

Npath = 5,000 -0.947754 [-0.956917, -0.938591]
Npath = 10,000 -0.946602 [-0.952994, -0.94021]
Npath = 20,000 -0.946478 [-0.952982, -0.9449741]

The true EU in the binomial model is −0.945837.

As discussed in Section 5.2.1, besides a small number of outliers, most tra-

jectories are located in a range narrower than the sufficient range. It might be

possible to narrow the sufficient range besides little change in the expected utility

of terminal wealth. We discuss the choice of the range of stock holdings in the
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following part.

Figure 5.4 and 5.5 in histograms show all lower/upper boundaries of 100-

periods C-R model with no option and no liquidity impact. The left plot in Fig.5.4

indicates frequency of minimal number of shares occurred in 10,000 trajectories.

We can see the range of lower boundary in all Monte Carlo runs is from 0.3 to 1.1.

The right plot in Fig.5.4 represents cumulative frequency of lower boundary and

shows the result of minimal number of shares (the value of horizontal axis) versus

cumulative frequency (vertical ordinate). The cumulative frequency reveals the

percentage of trajectories with minimal shares smaller or equal to the value of

minimal number of shares on horizontal axis. The peak range of lower boundary

is around [0.6, 1.1] which covers more than 95% of all trajectories.

Figure 5.4: The frequency and cumulative frequency of lower boundary on the mini-
mal number of shares in C-R model without option and no liquidity cost.

The left plot of Figure 5.5 shows the frequency of maximal number of shares

occurred in 10,000 trajectories. From this plot, we can see the frequency reduces

with the increasing maximal number of shares. Almost maximal number of shares

in 10,000 trajectories happened at the range [1.04, 2.76]. There only exists 2

trajectories over this range. The right graph in Figure 5.5 represents the result of
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maximal number of shares (on horizontal axis) versus cumulative frequency (on

vertical ordinate). The cumulative frequency shows the percentage of trajectories

with maximal shares greater or equal to the value of maximal number of shares

on horizontal ordinate. The frequency of trajectories with maximal shares no

smaller than 1.88 is smaller than 5%. Based on Figures 5.4 and 5.5, approximate

90% trajectories are covered in the range of [0.6, 1.8].

Figure 5.5: The frequency and cumulative frequency of upper boundary on the max-
imal number of shares in C-R model without option and no liquidity cost.

Table 5.4: Expected utility approximation versus the range of stock holdings

Range of Stock Holdings EUBM Percentage Change

[0.2, 3.1]S -0.945837 -
[0.6, 3.1]N -0.945842 0.00053%
[0.2, 1.8]N -0.945849 0.00127%
[0.6, 1.8]N -0.946025 0.01988%

S Sufficient Range of Stock Holdings.
N Narrow Range of Stock Holdings.

Table 5.4 represents the expected utility of terminal wealth produced by bi-

nomial model under the benchmark case without option and no liquidity cost.

This table includes the EUBM of a sufficient range and three narrow ranges; the
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percentage change between the narrow ranges and the sufficient range are also

displayed in last row. Based on the percentage changes, we find that shorten the

range of stock holdings takes insignificant impact on the expected utility of ter-

minal wealth. For example, the narrow range [0.6, 1.8]N covers 90% trajectories

while the corresponding percentage change is less than 0.02%. We state that this

is a good approximation compared to the sufficient range.

With the analysis above, we found that in the benchmark case without option,

the narrow range takes little loss on the expected utility of terminal wealth. In

order to figure out the change of reservation price on a narrow range, we further

study the benchmark case with option. Table 5.5 lists values of EUBM and

reservation prices with written one call/put option separately. The narrow ranges

in this table cover 90% trajectories in the sufficient range. The Black-Scholes

prices are the verification of reservation prices. For the call option case, both of

EUBM and reservation prices are not changed when the range changes from [−1, 4]

to [1.1, 2, 2]. The percentage change between the Black-Scholes call price and

the reservation call price in the sufficient range approximately equals to 0.4055%.

While for the put option case, when the range is narrowed from [−1, 4] to [0.1, 1.2],

the EUBM is not changed but the reservation put price decreases 0.423%. The

percentage change between the Black-Scholes put price and the reservation put

price increases from 0.5852% to 1.0056% when the range of stock holdings is

narrowed. Based on the above results, for both cases, with consideration of

numerical errors, these reservation prices are acceptable. However, we suggest

that for the put option case, it is better to use a sufficient range to obtain the

reservation put price.
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Table 5.5: Values of expected utility of terminal wealth and reservation prices in
various ranges of stock holdings.

Option Range of Shares EUBM Reservation Price Percentage Change

Call [−1, 4]S -1.0977 0.141723 0.4055%
[1.1, 2.2]N -1.0977 0.141723 0.4055%

Put [−1, 4]S -1.04284 0.0929528 0.5852%
[0.1, 1.2]N -1.04284 0.0925598 1.0056%

S Sufficient Range of Stock Holdings.
N Narrow Range of Stock Holdings.

The Black-Scholes call price is 0.1423 and the Black-Scholes put price is 0.0935.

Optimal Strategy

The following part is to discuss the optimal strategies for several particular

stock price paths. We investigate the optimal strategies according to two typical

stock price trajectories. We stimulate these stock price trajectories by a real-

ization of the drift µ = 0.15. Stock price path A is a trajectory of finishing

out-of-money and stock price path B is a trajectory of finishing in-the-money.

According to Table 5.5, when an investor trades with written one call option, the

narrow range [1.1, 2.2]N obtains the identical expected utility of terminal wealth

and identical reservation call prices. Therefore, we choose this shorten range of

stock holdings to test the optimal strategies given by stock price path A and B.

However, these optimal strategies by the shorten range of stock holdings are iden-

tical in this two examples. Therefore, it is meaningless to test the particular stock

path trajectory since the sufficient range in particular trajectories is smaller than

the narrow range for all trajectories in a very high probability. We only measure

the choice of range of stock holdings in the expected utility of terminal wealth.
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Figure 5.6: Stock Path A under the default parameters setting of Table 5.1.

Figure 5.7: Stock Path B under the default parameters setting of Table 5.1.

5.2.3 Effect of the Number of Periods

The number of periods m will affect the C-R model in two factors: the size of

the binomial model and the value of expected utility of terminal wealth. For the

size of binomial model, the C-R model would be unrealistic if m is too small; while

it will be quite time-consuming when m is too large. For the value of expected

utility, with a larger number of periods, the C-R model would obtain a better

performance on the expected utility of terminal wealth. With consideration both

of these two factors, we need to find a suitable number of periods in this analysis.
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We have simulated three models with different number of periods (m = 50,

m = 100 and m = 150). This subsection shows the comparison of terminal

wealth of these three models.

Histograms are traditionally used for density estimation. Using histograms al-

lows us to provide the high quality of probability density estimation, specially in

the case with long sequences. Figure 5.8 displays the histogram of terminal wealth

in 10, 000 trajectories. The 100− period model and 150−period model generate

the approximate histogram rather than the 50−period model. We provide the

kernel estimator of the density function of the terminal wealth in Figure 5.9. The

kernel estimators for 50−period and 80−period are clearly different. They have a

tendency to move towards to estimators for 100−period and 150−period. Those

densities both in the 100−period and the 150−period models are fitted very well.

We conclude that choosing the 100−period model as the default model in the nu-

merical analysis rebalances the computation precision and the time consumption.

5.2.4 Comparison to Merton’s Solution

After we fixed the default values of the model, the next step is to verify the

correctness of the model. If we remove the liquidity cost from the C-R model, the

wealth amount invested in shares would approximately equal to the solution from

Merton (1969). This subsection explains the model of Merton (1969) without

transaction cost and lists the comparison between wealth amount invested in

shares from numerical solution and Merton’s solution.

In the paper of Merton (1969), the dynamics of stock price follows a geo-

metric Brownian motion. The drift µ and the volatility σ in Mertons model
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Figure 5.8: The frequency histograms for the terminal wealth in the 50−period,
100−period and 150−period models.
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Figure 5.9: The density function for the terminal wealth (measured by the kernel
estimator) in the 50−period, 80−period, 100−period and 150−period models.

which has full information are two constant parameters that characterize the dy-

namics of stock price. Merton’s portfolio problem deals with an investor who

must choose how to allocate his wealth between stocks and a risk-free asset in

order to maximize the expected utility of the terminal wealth. When utility is

given by U(x) = − 1
γ
exp(−γx), Henderson (2005) provides the explicit solution

to the optimal portfolio (expressed in units of cash) for Merton (1969) problem is

θMt = µ−r
γσ2 ·exp(−r(T −t)). We choose γ = 1 as the benchmark value in this chap-

ter, hence the above solution can deal for our example utility U(x) = −exp(−γx).

Figure 5.10 shows the comparison of stock wealth between the numerical so-

lution and Mertons solution, given by a particular stock path A (shown in Figure

5.6). We choose the default discretization step δr = 0.002 in the calculation of

value functions that obtain a precise comparison. We apply the stock path A

as the particular stock prices trajectory and generate the corresponding optimal
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Figure 5.10: Comparison between wealth amount invested in shares over time (shown
in dash line) and Merton’s solution (shown in solid line) by stock price path A.

strategy by the Binomial Model algorithm. The wealth amount invested in shares

over times (the dash line in Figure 5.10) is the product of the stock price A and

the corresponding strategy values. From this plot, the difference between our nu-

merical wealth and Merton’s solution is quite minor. We provide the root mean

squared (RMS) relative error ε as the error measure of the comparison of wealth

amount. This RMS is calculated by Equation 5.1. The RMS relative error ε

characterizes the computational error between the numerical solution (displayed

in dash line in Figure 5.10) and Mertons solution to the optimal stock holdings

(displayed in solid line in Figure 5.10).

The formula for RMS relative error follows as:

ε =

√√√√ 1

m

m−1∑
i=0

(
W̃i − θMi
θMi

)2, (5.1)
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where the symbol W̃i is the wealth invested in shares over time ti from the nu-

merical results and θMi represents the analytical result from Merton’s solution in

1969. With this formula the RMS relative error for the average wealth amount

invested in shares number is 6.8819× 10−4. This RMS value indicates that our

numerical result is good enough as the approximation of Merton’s solution in the

perfectly liquid market.

In short, in this section we demonstrate the following points: first, there exists

a sufficient range of stock holdings; second, shorten the sufficient range of stock

holdings can decrease the expected utility of terminal wealth but enhance the

computation efficiency; third, we also confirm the reasonable parameters in the

default model; finally, we prove the correctness of the C-R model with comparing

to Merton (1969).

5.2.5 Hedging Strategy

This section is concerned with computing the hedging strategy in the perfectly

liquid market and compare it to the discrete delta hedge strategy. Hedging is a

strategy designed to minimize exposure to the risk of the underlying asset. We

define that in this paper a hedging strategy is the difference between the optimal

strategy with and without an option. In order to compute the optimal strategy

or the hedging strategy at a node of the binomial tree, we need to know the

initial position in the risky asset before coming to that node. Intuitively, if

investors know the initial number of shares at a node, they would know which

path is followed up to that node. The delta hedge strategy in discrete version is

the comparison of the hedging strategy. The key idea behind the Black-Scholes
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delta hedge strategy is to hedge perfectly the option by buying and selling the

underlying asset and consequently eliminate risk in the continuous-time Black-

Scholes model. In our case, the Black-Scholes strategy is considered as a strategy

with European option on a non-dividend-paying stock. The formula of Black-

Scholes strategy with call option is: ∆c = Φ(d1(t)), where symbol Φ represents

the cumulative distribution function and d1(t) is defined as the following equation:

d1(t) =
log(St/K) + (r + σ2/2)(T − t)

σ
√
T − t

.

The formula of Black-Scholes strategy with put option is set as: ∆p = Φ(d1(t))−

1. The range of Black-Scholes strategy with call is (0, 1), while the range of

Black-Scholes strategy with put is (−1, 0). The Black-Scholes strategy is path-

independent strategy: this strategy depends on the node of the binomial grid but

not the path followed up to that node.

We select two particular stock price paths to produce the hedging strategy

and the Black-Scholes delta hedge strategy. Stock price path A finishes out-of-

money (shown in Fig.5.6) and stock price path B finishes in-the-money (shown in

Fig.5.7). Figure 5.11 depicts the comparison between the hedging strategies with-

out liquidity cost and the delta hedge strategy in discrete-time in these two paths.

Both large panels display that the hedging strategy in the perfectly liquid mar-

ket is very close to the Black-Scholes delta strategy. Regardless of the numerical

error, we propose the hedging strategy in the perfectly liquid market is approx-

imately identical to the Black-Scholes delta strategy. The corresponding small

panels show the difference between the hedging strategy and the Black-Scholes

strategy. Gokay et al. (2012) depict a different liquidity effect model (feedback
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Figure 5.11: The top/bottom large panels are the comparison between hedging strat-
egy without liquidity cost based on stock price path A or B (solid line) and Black-Scholes
delta strategy (dash line). The small panels display the difference between the hedging
strategy and the Black-Scholes strategy.
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effect model) in a binomial structure and compare their optimal strategy to the

Black-Scholes strategy as well. In this thesis, their optimal strategy also matches

the Black-Scholes strategy well.

After demonstrate minor difference between the hedging strategy in the per-

fectly liquid market and the Black-Scholes delta strategy, we will discuss how the

liquidity cost affects the hedging strategy by varying number of options in the

next section.

5.3 Effect of Illiquidity on Hedging Strategies

In this section, we concentrate on comparing the hedging strategies with dif-

ferent liquidity costs in illiquid markets. The numerical analyses are illustrated

by both of a three-period model and a 100−period model in illiquid markets.

The small model allows us to show all trajectories and how the illiquidity effect

impacts them.

5.3.1 Three-Period Model

We discuss a three-period model followed by a non-recombining binomial tree

in this subsection. This small number of period model is not enough to simulate

changes of optimal strategy according to stock prices. However, it allows us to

show all trajectories of optimal strategies and clearly illustrates how the liquidity

cost affects the hedging strategy.

Figure 5.12 shows the non-recombining binomial tree of this three-period

model. Subscripts in the stock price of each node mean the current period num-

ber and the price path: u indicates the price going-up and d indicates the price
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St0
0.615
0.34
0.27
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0.32
0.345
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St2,dd
0
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St2,du
0.545
0.415
0.355
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(1− p)

p

Figure 5.12: Three-period non-recombining binomial model shows all trajectories of
hedging strategy: below the stock price of each node, the first value presents value of
hedging strategy for α = 0, the second one is the corresponding value for α = 0.05 and
the last value is the one for α = 0.1.
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going-down. Numbers below the stock price are the values of hedging strategy

under the condition α = 0, α = 0.05 and α = 0.1, respectively. We assume that

investors liquidate their stock holdings at the terminal time. Hence, the path of

optimal strategy would not be affected the stock price in the terminal period.

We only concentrate on values of hedging strategy in the former 7 nodes ( from

period 0 to period 2 in Fig. 5.12). Based on Figure 5.12, we observe following

phenomenons: first, values of hedging strategy at every node are not the same

since the liquidity cost makes different strategies; second, no matter how much

the liquidity cost in the market is, if the current stock price is bigger (smaller)

than its successive nodes, the value of hedging strategy at the current node is

bigger (smaller) than the value of its successive nodes; last, for nodes St2,ud and

St2,du which have the identical stock price, they have same transactions in the

perfectly liquid market but different transactions in the illiquid markets.

Table 5.6: Comparison of hedging strategies with short one European call option
under α = 0 (perfectly liquid market), α = 0.05 (market with insignificant illiquidity
effect) and α = 0.1 (market with distinct illiquidity Effect) in three-period model.

St0 St1,u St1,d St2,uu St2,ud St2,du St2,dd
α = 0

Strategy with Option 1.73 1.77 1.67 1.815 1.7 1.7 1.635
Strategy 1.115 0.955 1.35 0.815 1.155 1.155 1.635

Hedging Strategy 0.615 0.815 0.32 1 0.545 0.545 0
α = 0.05

Strategy with Option 0.915 1.355 1.265 1.5 1.485 1.425 1.375
Strategy 0.575 0.77 0.92 0.79 0.915 1.01 1.13

Hedging Strategy 0.34 0.585 0.345 0.71 0.57 0.415 0.245
α = 0.1

Strategy with Option 0.7 1.115 1.01 1.32 1.25 1.165 1.12
Strategy 0.43 0.625 0.71 0.68 0.745 0.81 0.87

Hedging Strategy 0.27 0.49 0.3 0.64 0.505 0.355 0.25
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Table 5.6 lists the optimal strategy without option (named as ’Strategy’ in

table), the optimal strategy with option and the hedging strategy for all trajecto-

ries. We focus on two nodes St2,ud and St2,du which are identical on the stock price

in Table 5.6. Focusing on the case in the perfectly liquid market α = 0, those

three types of strategies have the identical value between these two nodes. But

values all change once applying the illiquidity effect into the model between these

two particular nodes: the larger illiquidity effect α the more distinct change in

values of strategies. The reason of the difference is that the values of strategies are

decided by the stock price and the liquidity cost. In the perfectly liquid market,

there is no liquidity cost, thus the strategy is controlled by the stock price only;

in the illiquid market, both stock price and liquidity cost impact the strategy,

hence the value of strategies in the identical stock price would be different from

each other. For each node, the value of hedging strategy is decreased with the

increasing liquidity cost. This is because the bigger liquidity cost raises the cost

of each share. The data in the case of α = 0.1 are all less than the corresponding

values at the same node but with smaller liquidity costs. Those data in α = 0.1

reveal that the illiquidity effect in the market reduces the share holdings at every

trading moment and the change is not proportional. In a fixed wealth amount,

the increased share cost means reduced transactions. That refers to lower values

of hedging strategy.

The part above investigates the three-period model with shorting a single

option. When the number of periods m and the number of option n change, the

corresponding hedging strategies have to change. In the following subsection we

will increase m and n to give a more practical model.
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5.3.2 100 Period Model

Figure 5.13: The stock holdings v.s. time (displayed in periods): the bottom panel
shows hedging strategies with various liquidity costs based on the top panel stock price
B

In this part we discuss changes of hedging strategies with different liquidity

costs by stock price path B in a 100−period model. We produce corresponding

hedging strategies based on different illiquidity effect parameter α. Figure 5.13

displays the stock price path B in the top panel and hedging strategies with
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various illiquidity effects in the bottom panel. The solid line in the bottom

panel shows the difference of stock holdings between with and without option in

perfectly liquid market, while fluctuations in the line response the ups and downs

of the stock price B in the majority of the whole time, except the last periods.

After the time period t80, values of hedging strategy approximately stay at the

upper limit 1 since the value of a option does not change more quickly than the

value of the stock. The other cases (dash lines) of Figure 5.13 exhibit three levels

of illiquidity effect into the original case. It illustrates that when we apply the

liquidity cost into the model, the corresponding hedging (or optimal) strategy

shows less fluctuations given by the same stock price changes and the lines are

more smooth with larger value in α.

We check three parts which are drew in the rectangles in Figure 5.13 to char-

acterise influences of liquidity costs into the hedging strategy. Part 1© emphasises

on the different initial stock holdings with various illiquidity effects. Applying

the liquidity effect into the default model makes the initial stock holdings sharply

decrease. The difference of the initial stock holdings between the case α = 0 and

α = 0.005 illustrates the small liquidity effect is not trivial for the initial stock

holdings rather than other periods of time. With respect to other bigger liquidity

effect cases, the initial stock holdings keep reducing with diminished deceasing

amount. This phenomenon shows the importance of the initial stock holdings

in the market with illiquidity effect. Part 2© depicts that the value of hedging

strategy with larger liquidity cost is less than the value of hedging strategy with

smaller liquidity cost. There are two reasons for this phenomenon: first, the liq-

uidity cost makes the purchase less than the amount in perfectly liquid market

since investors have to pay extra cost as the illiquidity effect; second, compar-
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ing to other markets, a market with larger α value shows a more significant lag

of response of stock price movements. Referring to a fixed stock holdings, this

market will need longer response time. Shown in Figure 5.13, the curve with

larger α value stays at the lower position. Part 3© implies that the value of hedg-

ing strategy tends towards stability in the tail of the whole periods no matter

how much the liquidity cost is. When increasing in the liquidity cost, the initial

stock holdings are going close to zero and transactions in other periods are going

to smooth over time. Figure 5.13 illustrates less stock holdings and transaction

amount when the investor goes into a less liquid market.

We discuss the influence of the option on the hedging strategy in the multi-

period model. We analyse how the number of options affects the hedging strategy

given by the same liquidity cost consideration. Figure 5.14 displays the difference

of hedging strategy between more options case and 1 option case under the liq-

uidity effect α = 0.005 and α = 0.05, respectively. The number of call option in

Figure 5.14, for instance 2 calls, denotes taking a short position of 2 calls in the

hedging strategy. From the theoretical perspective, different number of options

applying into the hedge would lead to different optimal strategies. It inspires us

to check the hedging strategies with various number of options. In particular,

hedging strategies with various number of options means that there are n > 1

options written in the hedging strategy and the responding hedging strategy is

the difference of hedging strategy value, between value with n options and value

with 1 option, divided by the number of options n. We use a terminology ”n op-

tions solved” to represent the hedging strategies with various number of options.

However, the hedging strategy per one option depending on 2 option solved and

5 options solved are quite close to each other that we cannot identify clearly. In
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Figure 5.14: Differences of hedging strategies for various number of options: the
annotation in the right top corner (e.g. 2 calls - 1 call) means the difference between the
hedging strategy per one option depending on 2 options solved and the one depending
on 1 option solved, other annotations follow the previous rule. The top panel shows
examples in the case of α = 0.005 and the bottom top shows the case of α = 0.05.

order to display this difference, in Figure 5.14 we show the difference of hedging

strategy per one option depending on positive options solved and the one depend-

ing on 1 option solved. The amplitudes (representations of the difference above)

118



5.4 Analysis of Hedging Strategies and Reservation Prices

keep changing over time in both panels of Figure 5.14. The maximal value of

amplitude in the top panel is around 0.005. This implies changing the number

of options takes little influence on the hedging strategy in the market with small

liquidity effect α = 0.005. The bottom panel shows a comparison with same

parameters setting but the illiquidity effect α expanding 10 times. Due to the

increase of illiquidity effect, the bottom panel clearly displays that the amplitude

of hedging strategies is much larger than the comparison in the top panel. We

continue to check the difference of hedging strategy with larger illiquidity effect

parameter, and we found that the amplitude would be larger for larger α. It illus-

trates that changing the number of options obvious affects the hedging strategy

in an illiquid market, while in a liquid market such an impact is insignificant.

In summary, the liquidity cost impacts the hedging strategy in three factors:

the value of hedging strategy, different transactions on the identical stock price

and the lag response of the stock price movement.

5.4 Analysis of Hedging Strategies and Reser-

vation Prices

We conduct comparative analysis to study the characteristics of the optimal

strategy with liquidity costs. By using some stock paths, we illustrate the effects

of five market parameters and the illiquidity effect parameter α on different op-

timal portfolio strategies. We examine the performance of the reservation price

by changing market parameters in the illiquid market. In order to isolate and

distinguish the individual effect of these parameters on the stability of the model,
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each of these parameters will consider separately.

5.4.1 Initial Portfolio

Some paper on portfolio selection with liquidity constraint have demonstrated

that the illiquidity in the market can be regarded as a shadow cost in the whole

trading (for example, Longstaff (2001), Cetin & Rogers (2007) and Rogers &

Singh (2010)). The most direct way to identify how illiquidity affects portfolio

decisions is to compare the investor’s initial portfolio when there are restrictions

to the initial portfolio chosen in the absence of restrictions. Because the investor

in real market is not constrained in the choice of the initial portfolio; the illiquidity

only takes influence on rebalancing the portfolio subsequently. By choosing the

initial number of shares, investors can control the dynamics of wealth which

to maximize expected utility. Due to adoption of negative exponential utility

function, we analyse the optimal strategy and how reservation prices depend on

initial portfolio in the illiquid market.

We first consider the hedging strategy in the perfectly liquid market. Intu-

itively, investors with different initial portfolios would do identical strategies in

the market without frictions. It is not necessary to analyse the hedging strategy

with different initial portfolios in the perfectly liquid market. But we check the

difference between the hedging strategy at the zero initial number of shares and

the theoretical replicating strategy. Figure 5.15 displays the difference between

hedging strategy and replicating strategy. The gap between them goes narrower

over time.

In order to check whether the initial portfolio indeed changes the optimal
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Figure 5.15: Comparison between the hedging strategy for 1 call option with strike
K = 1 and theoretical replicating strategy. Graph for the Stock Path A (other param-
eters given in Table 5.1).

strategy, we apply two levels of illiquidity effects α = 0.05 and α = 0.1 into the

default model and display the corresponding hedging strategies with different ini-

tial portfolios in Figure 5.16. As Figure 5.16 shown, investors with different initial

portfolio condition would be willing to execute almost identical hedging strategy

at the same time period. However, almost identical means some differences ex-

isting and those differences are slightly extended by increasing in the illiquidity

effect. Various examples of stock paths reveal that the hedging strategy changes

due to different liquidity effect parameter and other market parameters rather

than the initial portfolio. Nevertheless, investors must have different optimal

strategies if they obtain different initial portfolios. We continue to investigate

the optimal strategy without option and the optimal strategy with option.

Figure 5.17 lists two panels which are optimal strategy without and with op-

tion in the market with α = 0.05. First, we observe that optimal strategies
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Figure 5.16: The hedging strategy for one call option with strike K = 1 versus time
(calculated in periods) for different initial stock holdings. Graph for the Stock Path A
(other parameters given in Table 5.1).

without option in different initial number of shares hold very different amounts

of shares in the beginning of the whole trading period (e.g. the first 10 periods).

These gaps among them are sharply reduced and tracing to be identical after-

wards. The same observation happens in the optimal strategy with option. This

observation reveals that the initial portfolio (e.g. the initial number of shares in

the negative exponential utility function) indeed affects investors’ trading strat-
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Figure 5.17: The stock holdings versus time (calculated in periods) changing on initial
stock holdings by Stock Path A in the market with α = 0.05 (other parameters given
in Table 5.1).

egy, especially in the beginning of trading.

The next investigation is how the reservation prices depend on the initial

portfolio. We proceed by defining two different portfolio optimization problems:

the first problem deals with an investor who trades in the market for the stock

account and the money market account, and who holds a long position of 1 call

option; the second one is for the investor who trades in the stock and the bond,

and who holds a short position of 1 call option. Those options in a long/short

position have the same exercise price K and time to expiry T .
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Figure 5.18: Reservation buy/sell prices of a European call option as functions of
initial portfolio in the market with α = 0.05 (shown in dashed lines) and the Black-
Scholes call price in the perfectly liquid market (shown in solid line).

The reservation prices in the perfectly liquid market would be identical and

independent of the initial number of shares. We analyse the reservation buy/sell

price in the market with illiquidity effect. Figure 5.18 illustrates how the conver-

gence pattern of reservation prices depend on the increase of the initial number

of shares with α = 0.05 in the negative exponential utility function. The Black-

Scholes call price is the theoretical price of call option in the perfectly liquid

market. We observe the reservation buy and write price are decreasing functions

of the initial portfolio. Notice that, for very low levels of initial portfolio where the

reservation write price (considered in the option writer’s problem) is higher than

the Black-Scholes call price without illiquidity costs, whereas for high levels initial

portfolio approaches to horizontal axis. The line of reservation buy price shows

that the investor hedges against the risk (e.g. here the risk aversion coefficient

γ = 1) arising from holding the call option. However, the illiquidity cost makes
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hedging costly and consequently the investor deducts the hedging costs from the

price he is willing to purchase the option. The reservation write price has the

similar intuition for its decreasing function against the initial portfolio. In Fig-

ure 5.18, the gap between reservation write and buy price is the bid-ask spread.

Damgaard (2006) examines the reservation prices with proportional transaction

costs not the illiquidity costs and get the similar convergence pattern of the reser-

vation prices against the initial portfolio. We focus on the option writer’s problem

in the hedging strategy and reservation prices in the following contents referred

to other market parameters since writing a call option serves as a substitute for

selling the stock.

Figure 5.19: Reservation sell prices of a European call option as functions of initial
portfolio with different illiquidity effects (shown in dashed lines) and the reservation
price in the perfectly liquid market (shown in solid line).
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The C-R model considers small investors since this model belongs to the tem-

porary impact model which implies the trading amount would not take influence

on the market price. Those large investors exactly affect the price when they

trade. Another type of model named the feedback effect model is used for the

large investors. Therefore, we only focus on a narrow range of initial portfolio to

discuss the reservation price. Figure 5.19 displays the reservation write price on a

small range of initial number of shares [0, 4.5]. We find that the reservation price

at the zero initial number of share would be increasing with α. Reservation prices

in the market with liquidity effects are all greater than the reservation prices in

the perfectly liquid market. Once the initial number of shares increased, these

prices of call option keep reducing and definitely cross the straight line of option

price with α = 0. Although these lines of option prices decrease linearly based

on Figure 5.19, Figure 5.18 reveals the convex shape of option prices in illiquid

markets. A very interesting observation in Figure 5.19 is that lines of option price

with different liquidity effects seem to intersect the default line of option price in

the perfectly liquid market at the same position. This explores that whether their

intersections are identical and why there exists an extraordinary position where

option price is identical no matter how much the illiquidity effect in the market.

We will particularity study the reason that causes an intersection between the

illiquid market and the perfectly liquid market in Section 5.5.

5.4.2 Risk Aversion

The C-R model characterises an investor’s risk preference by a utility function

with a risk aversion parameter. In this study we consider a negative exponential
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utility (CARA). Investors with CARA (constant absolute risk aversion) utility

make the same decision about optimal stock position irrespective of wealth levels.

The absolute risk aversion coefficient γ affects the investor’s expected utility and

optimal strategy. Investors with a higher risk aversion parameter γ allocate less

wealth to stocks. In this subsection, we analyse the impact of risk aversion

coefficient on the optimal strategy or the hedging strategy. We also examine the

option price in the function of initial stock holdings under different liquidity costs

and risk aversion coefficients.

We investigate the effect of increasing risk aversion on reservation price in a

100−period economy for a trader with one short European call option. We pick

the stock path B which is a stock trajectory finishing in-the-money and produce

several hedging strategies in perfectly liquid market. We select three different

values of risk aversion γ that equals to 1, 2 and 4, respectively. As shown in

Figure 5.20, these corresponding hedging strategies are identical.

We set the solid line (γ = 1) in Fig. 5.20 as the default one and compare

this line to the dash lines with higher risk aversion coefficients. This graph illus-

trates that hedging strategies with different risk aversion coefficients are almost

identical over time. The difference among these trajectories of hedging strategy

is caused by the numerical errors. Thus we could consider the hedging strategies

with different risk aversion values are identical in the perfectly liquid market. In

financial market, there exists two kinds of strategies: optimal strategy for the case

without option, we name it strategy a©; and replicating strategy for the option

which can exactly replicate strategy a©, we call it strategy b©. In the perfectly

liquid market, the utility corresponding to strategy a© without option must be

equal to the utility corresponding to the sum of strategy a© and strategy b© with
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Figure 5.20: The stock holdings versus time (calculated in periods) changing on risk
aversion coefficient, without liquidity cost, followed by Stock Path B (other parameters
given in Table 5.1).

option. Intuitively, the sum of strategy a© and strategy b© totally remove the op-

tion effect on the optimal strategy. Hence, the hedging strategies with different

risk aversion should be the same. It reveals that investors with the exponential

utility make identical decisions irrespective of their risk aversion in the perfectly

liquid market.

The following discussion is the influence of risk aversion parameter on the

hedging strategy in the market with illiquidity effect. Once applying the illiquidity

effect into the previous hedging strategies in Figure 5.20, those strategies would

not be identical any more. As Figure 5.21 shown, all curves have more smooth

fluctuations than those in the perfectly liquid market since investors with the

same initial wealth have to pay the liquidity cost in the transactions. However,
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Figure 5.21: The stock holdings versus time (calculated in periods) changing on risk
aversion coefficient, with liquidity effect α = 0.05, followed by Stock Path B (other
parameters given in Table 5.1).

investors with different risk tolerance levels trade different amount at the same

time period. Investor with higher risk tolerance level (less value in γ) would hold

less shares in the portfolio with short call option.

Many papers concentrate on the study of reservation price, especially in the

CARA utility. When the risk aversion parameter goes into infinity, the reserva-

tion price tends to the superreplication price (the superreplication price means

the price of hedging the option without any risk, quoted from Carassus & Ra-

sonyi (2011)). Rouge & El-Karoui (2000) prove the convergence of reservation

price with infinity risk aversion to the superreplication price; Carassus & Rasonyi

(2011) built up the numerical applications in continuous-time model. Neverthe-

less, all these papers only consider the reservation price without liquidity costs.
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Figure 5.22: The price of call option versus the initial number of shares: The upper
panel displays lines of option price with the liquidity effect α = 0.05 and the lower panel
shows lines of option price with the liquidity effect α = 0.1 in 100−Periods Model (other
parameters given in Table 5.1).
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In this study, we analyse the reservation prices by changing the risk aversion

levels in the illiquid market. Figure 5.22 displays lines of call option price under

three risk tolerance levels. These two panels present changes in option price under

α = 0.05 and α = 0.1, respectively. Concentrating on the case with the default

risk aversion value γ = 1, the reservation price at zero initial stock holdings with

the illiquidity effect α = 0.05 is larger than the corresponding one with α = 0.1.

The lines of option price with different risk aversion parameters in the top panel

intersect each other in a tiny area and the zoom-in box shows the exact intersec-

tions at the initial shares levels. Once applying a bigger illiquidity effect into the

corresponding model, i.e. the illiquidity effect α increased from 0.05 to 0.1, we

clearly see lines of option price would cross at very different initial shares levels

(displayed in the bottom panel of Figure 5.22). The larger illiquidity effect the

more distinct differences of intersections at the initial stock holdings levels. We

will discuss more details about how lines of option price against the initial shares

intersect each other and the corresponding financial contribution in Section 5.5.

5.4.3 Strike Price

In finance, the strike price of an option is the fixed price at which the option

owner can buy (in a call option) or sell (in a put option) the underlying security.

This subsection discusses the optimal strategy and reservation price for a trader

writing one European call option. We select three different values of strike price

K and display the corresponding hedging strategies by stock path B in Figure

5.23. The stock path B (shown in the top panel of Fig. 5.13) is a stock price

trajectory finishing in-the-money. The terminal stock price in stock path B is
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ST = 1.3 so we select three other different strike prices which present in-the-

money K = 1.2, at-the-money K = 1.3 and out-of-money K = 1.4 besides the

default strike price K = 1, respectively, to check the change of hedging strategy.

Figure 5.23: The stock holdings versus time (calculated in periods) changing on strike
price, without liquidity cost, followed by Stock Path B (other parameters given in Table
5.1).

We explore two special parts which are drew in the rectangles in Figure 5.23

to characterise strike price on the hedging strategy. Part 1© concentrates on

the difference of the initial stock holdings in curves with different strike prices.

It shows that a lower strike price in a portfolio with shorten one call option

makes the investor hold more shares over time. The different values of the initial

stock holdings disclose that the strike price is an important factor on the hedging

strategy. Part 2© highlights the stock holdings at the terminal time t100. The

significant differences of stock holdings happen at the final periods. Cases with

the option in-the-money (e.g. K = 1 and K = 1.2) and at-the-money (K = 1.3)
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would tend to the limit 1 since these trajectories can be exercised at the maturity

date. However, the hedging strategy with the option out-of-money has more

fluctuations at the final periods and tend to zero at the terminal time.

Figure 5.24: The price of call option versus the strike price K: panels display compar-
ison of option price in different initial number of shares, with liquidity effect α = 0.05
and α = 0.1, respectively (other parameters given in Table 5.1).

The following investigation is the influence of strike price on the reservation

price in the market with illiquidity effects. We test the illiquidity effect on the

option price against various K. Figure 5.24 depicts lines of option price against

the strike price under different initial shares. The top panel with less illiquidity

effect α = 0.05 shows narrower gaps among these lines of option price than the
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bottom panel in Figure 5.24. During the increase in the strike price, lines in both

panels would be folded together and it is hard to identify the difference.

Figure 5.25: The difference of option price versus the strike price K with different
initial number of shares. Other parameters are given in Table 5.1.

Then we plot the difference of option price under each initial portfolio con-

dition between α = 0.05 and α = 0.1 in Figure 5.25. This figure illustrates

trivial changes between the hedging strategies with illiquidity effect α = 0.05 and

α = 0.1, no matter how much initial wealth the investor holds. Once the option

is deep-out-of-money, the change of option price in different illiquid markets will

tend to zero.

To sum up, we conduct the influence of strike price on the optimal strategy

and the option price in this subsection. Because the strike price decides whether

or not the option is exercised in the portfolio, it affects the optimal strategy

indeed. In the study of option price, the price of call option is reduced by the
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increasing strike price no matter how much initial shares the investor holds.

5.4.4 Time Horizon

In finance, the price of an option has two key components: intrinsic value and

time value. Intrinsic value of an option is the difference between the market price

of the underlying security and the strike price of the option. It is usually called

as the payoff of the option. The strike price K has been discussed in previous

subsection. Numerically, time value is decided by the time to expiration and the

option’s volatility of the underlying security. We discuss the effect of time horizon

T (time to expiration) in this subsection. The option’s volatility is investigated

in Section 5.6.

Generally speaking, long-maturity calls typically have more value than short-

maturity calls since there is more time to have transactions that can occur to make

them go in the money. For investors holdings the same initial wealth, different

time horizons indicate strategies with different time lengths. It is meaningless

to compare these hedging strategies. Therefore we examine the expected utility

of terminal wealth with different liquidity effects. We compute the values of EU

under different maturities, which perform changes of EU affected by time horizon

T . Many papers quantify the performance of optimal strategy via maximal utility

of terminal wealth or minimal loss in utility. Rogers (2001) discusses the wealth

problem of maximizing the expected utility of terminal wealth in power utility

form (CRRA utility). He defines the quantity of efficiency by comparing the

expected utilities and illustrates that investors require longer time horizons of

price data to obtain better performance of optimal strategy. The concept of
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efficiency in Rogers (2001) is defined as the difference of expected utility between

complete and incomplete markets. Brendle (2006) also expresses the loss of utility

both in negative exponential utility and power utility functions. We apply the

illiquidity effect into the model and concentrate on the maximal expected utility

of terminal wealth.

Figure 5.26: The expected utility of terminal wealth versus time to maturity T with
the liquidity effect α = 0, α = 0.05 and α = 0.1 (other parameters given in Table 5.1).

Figure 5.26 depicts the expected utility against the time length T . These

go-upward values in expected utility reveal that investors obtain greater values

of expected utility by increasing time horizons. Moreover, the bigger illiquidity

effect α the smaller value in expected utility of terminal wealth since investors

must pay extra costs as the illiquidity effect during the whole time length. To

sum up, a long-term time horizon is beneficial to investors on wealth problem.

The next study in time horizon T concentrates on the price of call option with

different initial number of shares in illiquid markets. As Figure 5.27 shown, prices
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Figure 5.27: The price of call option versus time to maturity T : panels display
comparison of option price in different initial number of shares, with liquidity effect
α = 0.05 and α = 0.1, respectively (other parameters given in Table 5.1).

of call option tend to increase with expanding time horizons. This figure displays

option price with time horizon from 0.5 to 5 years. If we apply a bigger number

of time horizon, for example T = 10, the concave increasing tendency of the

option price should be easier illustrated. The two panels with different illiquidity

effect in Figure 5.27 both depict that investors with more initial stock holdings

would afford the call option in lower price. The opposite situation happens at the

case with investor written put options. Gaps among option price lines would go

wider with longer time horizons, especially in less liquid market. It discloses that

the larger the illiquidity is, the bigger the benefit of shorting call option might
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be. This phenomenon can be explained by the stock positions of the financial

institution and the illiquidity on the market.

In short, an option portfolio with longer time horizon can produce higher

expected utility of terminal wealth. The option price keeps increasing with longer

time length and the illiquidity effect would amplify these increases. We conclude

that long-term time horizon is beneficial to the portfolio performance.

5.4.5 Number of Options

Besides those basic characteristics of option discussed in previous subsections,

we concentrate on the number of options. We analysed the hedging strategies per

one option depending on different options solved with different illiquidity effects

in Section 5.3.2. As Figure 5.14 shown, varying number of options takes little

influence on hedging strategy of the particular stock price trajectory. However,

the illiquidity effect would amplify the influence of number of options in the

hedging strategy. This subsection we only examine how the number of options

affects the option price.

Intuitively, comparing to people having small amount of initial shares, in-

vestors holding heavy initial shares would pay the call option per unit in lower

price. Curves of option price in Figure 5.28 verify the above phenomenon. These

two panels display that different number of options hedged in the portfolio change

the option price. At the same initial wealth level, the option price by the investor

with more options is higher than the one with less options. Comparing curves in

Figure 5.28 and the straight line of option price in the perfectly liquid market,

the option price rapidly decrease with the increasing initial stock holdings. The
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Figure 5.28: Effect of the number of call options with different illiquidity effects of
reservation price.

only difference between curves in Figure 5.28 and the straight line is the value of

illiquidity efect α. Thus, we regard that the illiquidity effect causes this change.

The bigger illiquidity effect in the market the more distinct convex decrease in

the option price against the initial stock holdings. Notice that we select a large

range of initial number of shares to generate the option price. With this selection,

we found that the gap between different curves decreases with increasing initial
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number of shares. The curves would be trended very close but not identical with

each other. For investors holding a large amount of shares at the initial time, the

number of option takes little influence on the option price.

However, based on same number of options, option prices with different illiq-

uidity effects would intersect with each other. Intersections of option price caused

by the illiquidity effect inspire us to get benefits of writing options in the C-R

model. We will discuss this interesting circumstance in Section 5.5.

5.4.6 Put-Call Parity

Put-call parity is a relationship between the prices of European put and call

option with the same strike price and the expiration date. Stoll (1969) first

identified this relationship. This theorem states that a portfolio of long a call

option and short a put option is equivalent to a single forward contract at the

same strike price and expiry. In practice, due to the existence of transaction and

liquidity costs, the put-call parity will not hold.

Applying the default values in Table 5.1 into the calculation of Black-Scholes

model, we obtain that the Black-Scholes call price is 0.1423 and put price is 0.0935.

We regard the difference between these two prices (0.0488) as the benchmark of

put-call parity and compare it to reservation prices with different liquidity costs.

As Section 5.4.1 mentioned, the initial number of shares affects the option

price in illiquid markets. Therefore, we focus on the difference of call price and

put price with different initial portfolios. Table 5.7 lists comparison of difference

of call and put price with different initial number of shares. The first row of Table

5.7 shows that the difference between the reservation call and put price increases
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with increasing α. Considering the zero initial number of shares, the call price

in the market with larger α value is more expensive than the one with a smaller

illiquidity effect value. This phenomenon is verified by many graphs in Section 5.4

(e.g. Figure 5.19). Reservation call prices in the illiquid market are higher than

the replicating price without liquidity cost since that call price in the perfectly

liquid market is what the investor’s ultimate goal but hardly chased due to the

illiquidity effect. Figure 5.29 shows the opposite situation happens at the price

of put option. The reservation put price at the position of zero initial number of

shares decreases with increasing illiquidity effect. Hence, the difference between

call price and put price increases with α.

Table 5.7: Difference between reservation prices per call option and per put option
when changes the initial number of shares (other parameters given in Table 5.1). The
difference between the Black-Scholes call and put price equals to 0.0488.

Initial Shares α = 0 α = 0.005 α = 0.01 α = 0.05 α = 0.1

0 0.04877 0.05147 0.05294 0.05945 0.06444
1 0.04877 0.04919 0.04944 0.05043 0.05141
2 0.04877 0.04693 0.04591 0.04154 0.03803
3 0.04877 0.04464 0.04241 0.0329 0.02577

Table 5.7 shows when the initial number of shares changes, the difference

between call price and put price in different illiquid markets changes. The second

row displays that when the initial number of shares equals to 1, the difference

of reservation call and put price still increases with α but the increasing ratio

is less than the first row. However, when the initial number of shares increases

to 2 or more shares (the last two rows in this table), the difference between the

reservation call and put price decreases with increasing α. Figures 5.19 and 5.29

show the price of call option and put option under the same parameters setting,
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Figure 5.29: Reservation sell prices of a European put option as functions of initial
portfolio with different illiquidity effects (shown in dashed lines) and the reservation
price in the perfectly liquid market (shown in solid line).

respectively. The above difference in Table 5.7 can be explained by comparing

these two figures. At the condition of 1 initial share, Figure 5.29 illustrates the

corresponding prices are close to each other; the call option price in Figure 5.19

still increases by the increasing α. Hence, the difference between call and put

price is affected by the call price at the condition of 1 initial share. For other

initial number of shares cases, Figure 5.19 shows that call option price decreases

with increasing in α; while Figure 5.29 displays the put option price increases

with increasing α. Therefore, the last two rows in Table 5.7 demonstrate that

the difference between call and put price reduces with the increasing illiquidity

effect. It highlights again the importance of that point where option price in the

illiquid market intersects the price in the perfectly liquid market. We particularly

analyse that point and the corresponding option prices in the following section.
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Table 5.8: Difference between reservation call price and put price when changes the
number of options (other parameters given in Table 5.1). The difference between the
Black-Scholes call and put price equals to 0.0488.

Number of Options α = 0 α = 0.005 α = 0.01 α = 0.05 α = 0.1

1 0.04877 0.05147 0.05294 0.05945 0.06444
2 0.04875 0.05175 0.05339 0.06061 0.06628
3 0.04754 0.05101 0.05291 0.06133 0.06798

Another interesting component that impacts the relation between the call

and put price is the number of options sold. Table 5.8 compares a difference

between call and put prices under different number of options applying into the

pricing of option. From Table 5.8, no matter how much the number of options is,

the difference of reservation price increases with the increasing illiquidity effect

α. However, considering in the same illiquidity effect parameter, the number

of options indeed affects the reservation prices. In the perfectly liquid market

(α = 0), there exists an effect that increasing in the number of options slightly

reduce the difference of reservation prices. This effect is weakened by increasing α.

If the value of α is big enough, for example α > 0.05, the difference of reservation

prices homogeneous increases by α.

To sum up, the put-call parity would not be held in the illiquid market.

Considering different initial number of shares, we found that the relation between

the difference of reservation prices and the illiquidity effect α would be affected

by intersections of option prices. It inspires us to concentrate on the study of

intersections of option price with different liquidity costs.
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5.5 Analysis of Price Transition Point for Op-

tion Price

In this section, by examining effects of changing the liquidity cost and the risk

aversion parameter, we are able to evaluate the approximate intersection point of

reservation prices and the price of option changes. By decreasing the discretiza-

tion step to δr = 0.0005 (the default discretization step is δr = 0.002), we have a

better precision of computation. We decrease this parameter in order to analyse

the intersection points in the graphs of option prices with various illiquidity ef-

fect parameters. The intersection points are observed since lines of option price

with illiquidity effect parameters always cross the horizontal line of option price

without liquidity cost. We call those intersection points ’Price Transition Point’

(PTP). In this section we discuss some phenomenons about the PTP in three

main parts. First, we discuss the position of PTP and study hedging strategy

in a single period model. Second, we investigate different positions of PTPs in

a two-period model and show some special properties which are succeeded from

the single period model; third, we compare intersections of reservation price in

different period models and discuss general interpretations of reservation price in

multi-period model.

5.5.1 Single-Period Model

Section 5.4 gives a comparative analysis of the reservation price under five

changing model parameters. We observe that curves of option price with different

liquidity cost would be intersected. These intersections (we call them PTPs) are
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very close to each other in the graph of option prices. In order to carry out

the special meaning of these PTPs in the option price versus the initial stock

holdings, we analyse the reservation price from the simplest model - the single

period model. Figure 5.30 presents the price of call option versus the initial

number of shares in the single period model. Based on three different values of

illiquidity effect α, lines of call option prices α = 0.05 and α = 0.1 intersect

with α = 0 line (which is the horizontal line at the level 0.148885) at one point

approximately. With current discretization step size δr = 0.0005, those price

transition points are quite close to each other but unfortunately they can not

be regarded as identical. When the discretization step is not precise enough,

e.g. δr = 0.05, it is difficult to observe that these PTPs are different from each

other. That is why we choose δr = 0.0005 in this section rather than the default

δr = 0.002. At the right top corner of Figure 5.30, we zoom in the small area of

these PTPs to display differences clearly. In the enlarged region, α = 0.05 line

crosses α = 0 line at the level 2.1038. Notice that this is a better precise value

than the scale used in this graph (δr = 0.0005). Current implementation cannot

provide such precise value automatically. We use the linear interpolation method

to get this value.

Figure 5.30 displays call option prices in the function of the initial number

of shares, varying the illiquidity effect parameter α. Based on the definition

of reservation price in Chapter 3, we know that in perfectly liquid market, the

reservation price is independent of the initial portfolio. Thus, the price of option

in the initial stock holdings function is exhibited as a straight line. The lines

of option price with liquidity effects show that, comparing with the default one

without illiquidity effect, the prices to the left of the corresponding PTP are
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Figure 5.30: Price of option v.s. initial number of shares: The price transition point
in price of call option is given by the default risk aversion γ = 1 and changing liquidity
effects; the enlarged region shows the PTPs between in the illiquid market and in the
perfect liquid market, respectively.

higher and the prices to the right of the PTP are lower. Moreover, the higher the

liquidity effect, the steeper the price of option. Applying more liquidity effects

into the calculation of reservation prices, lines of option price become steeper

since the larger liquidity effect makes the hedge more costly. There exists similar

PTP of price for put option case: prices of put option increase with increasing

initial stock holdings, except the line with α = 0. The plot of put option case is

shown in Figure 5.29.

Although the PTPs do not locate at the same position in Figure 5.30, we

observe an interesting phenomenon: once applying the illiquidity effect into the

model, if there are investors with the initial number of shares bigger than the PTP
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(number of shares 2.104 in Figure 5.30), then these investors can purchase call

options for lower prices than people with same initial shares in the perfectly liquid

market. And vice versa, investors with initial position smaller than the PTP 2.104

are willing to purchase call option for higher prices than people in the market

without illiquidity effect. This observation reflects that in real world, traders at

greater initial positions in shares (amount exceeding the corresponding PTP) are

happy to write call options in lower prices. Moreover, comparing to investors in

markets with smaller α, the investors in larger α market whose initial shares are

more than the PTP would short options in a lower price. That highlights the

importance of the position of PTP. It reveals that the larger the illiquidity is,

the bigger the benefit of shorting call options might be. We will explain why the

illiquidity effect influences the price of option at the end of this subsection.

In the single period model, differences between any two PTPs are small. We

propose the value 2.104 (the approximation of all PTPs) as the initial stock

holdings in single period model. Then we pick up four initial stock positions

symmetric around this PTP 2.104 plus this point to check corresponding hedg-

ing strategies. Table 5.9 lists these five selected initial stock holdings and their

corresponding hedging strategy in the single period model. The data in Table

5.9 indicates that the hedging strategy for the PTP takes the maximal value in

these selected points. Moreover, values in other cases of the initial stock holdings

display symmetrically decreasing besides this PTP.

Section 5.4.2 shows that the risk aversion parameter affects the position of

PTPs. The next investigation is to check the price of call option in the function

of initial stock holdings with a larger γ. We test the price of call option under

the high risk aversion condition γ = 6 in Figure 5.31. This graph reveals that
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Table 5.9: Comparison on hedging strategy in selected initial stock holdings points.
Other parameters are given in Table 5.1.

Initial Stock Holdings
α 0.104 1.104 2.104 3.104 4.104

0 0.5745 0.5745 0.5745 0.5745 0.5745
0.05 0.3645 0.369 0.37 0.369 0.364
0.1 0.259 0.2695 0.273 0.2695 0.2585

the prices of call option under the high risk aversion coefficient, varying illiquid-

ity effects, still exist PTPs close to each other. Moreover, Figure 5.32 compares

corresponding hedging strategies between in the low and high risk aversion coef-

ficients.

Figure 5.31: Price of option v.s. initial number of shares: The price transition point
in price of call option is given by a high risk aversion γ = 6 and changing liquidity
effects; the enlarged region shows the PTPs between in the illiquid market and in the
perfect liquid market, respectively.

148



5.5 Analysis of Price Transition Point for Option Price

Comparing Figure 5.30 and 5.31, we observe three properties of reservation

price. First, changes in risk aversion coefficient do not affect the reservation

price if the market is perfectly liquid. Based on Equation (3.25) (the equation

of reservation buy price in Chapter 3) we know that the change in risk aversion

coefficient is recovered by changes both in value function with and without op-

tion. In Figure 5.20 of Section 5.4.2, we provide an evidence of identical hedging

strategies by changing risk aversion values in the perfectly liquid market. This

property reveals that, in the perfectly liquid market, investors pay the same op-

tion price no matter how much initial wealth and risk tolerance level are. Second,

the approximation of the PTP is changed with different values of the risk aversion

coefficient. Comparing Figure 5.30 and 5.31, we explore that the position of PTP

moves from 2.104 to 0.591. With an increasing γ, the initial number of shares

of PTP would decrease. Third, comparing to lines in Figure 5.30, the concavity

of option price lines in Figure 5.31 is more distinct. Figure 5.30 and 5.31 both

reveal that if the risk aversion parameter increases, the initial number of shares

of the PTP would decrease and the concavity of the option price line would be

easier to observe.

Figure 5.32 characterises the hedging strategy in the function of the initial

number of shares: the top panel is for γ = 1 and the bottom panel is for γ = 6.

Both panels in this figure demonstrate that the maximal value of hedging strategy

is produced by the initial number of share of PTP. Especially, the concave and

symmetric properties of the hedging strategy in the high risk aversion coefficient

condition is more distinct rather than in the low risk aversion condition .

Besides the symmetric and concave properties in the hedging strategy, we are

more interested in a phenomenon: lines of option price in the illiquid market cross
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Figure 5.32: Maximum of hedging strategy versus initial number of shares: the
existence of PTP in reservation prices varying by liquidity effects in γ = 6.

with the line in the perfectly liquid market (as Figure 5.30 and 5.31 shown). These

two figures illustrate some benefits provided by the portfolio of writing an option

in the illiquid market. Once we find the position of the PTP, it is beneficial for

the writer of the option since the price is lower to the right of the PTP; whereas
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to the left of the PTP, it is bad for the writer of the option then the option price

is higher. Generally speaking, the optimal strategy without option in perfectly

liquid market is what the investor aims at, but he is prevented from doing it due

to trading costs (liquidity costs). A written option allows the investor to remove

some kind of costs since a short option has some characteristics of selling shares.

That is the reason why we study writing a call option in the portfolio.

In real world, it is common that investors are willing to sell certain options

for a price which seems lower than the price implied by the market. This is often

caused by the need to close some certain open positions, e.g. to close a long call

option or to pair a short put besides with a short call. However, Figure 5.30 and

5.31 both reveal that this phenomenon can also be caused by the initial portfolio

of the financial institution and the illiquidity effect in the market.

In order to interpret why the benefits above are caused by the initial stock

position and the illiquidity effect, we compare the optimal strategy with illiquidity

effect to the one without it. The optimal strategy without option in the perfectly

liquid market is what the investor aims at. We propose that the ultimate goal

is the optimal strategy without illiquidity effect and the replicating strategy for

the option (optimal strategy with option). They display straight lines in the

graph of option price against the initial portfolio. Unfortunately the investor is

prevented from doing the optimal strategy without any illiquidity effect because

of the existence of trading costs in the market. Those downward skew lines of

option price in the illiquid market present the hedge costly. Table 5.10 shows

optimal strategies without and with option by varying illiquidity effect α and the

differences between these illiquidity effects.

We start from the middle column (initial number of shares x = 2.104). In
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Table 5.10: Comparison of optimal strategies in the function of initial stock holdings.
Other parameters are given in Table 5.1.

Strategy without Option
Conditions 0.104 1.104 2.104 3.104 4.104

α = 0 1.816 1.816 1.816 1.816 1.816
α = 0.05 1.203 1.5625 1.9185 2.2755 2.64
DIFF 1 -0.613 -0.2535 0.1025 0.4595 0.824
α = 0.1 0.9075 1.442 1.967 2.2755 3.041
DIFF 2 -0.9085 -0.374 0.151 0.68 1.225

Strategy with Option
α = 0 2.3905 2.3905 2.3905 2.3905 2.3905
α = 0.05 1.5675 1.9315 2.2885 2.6445 3.004
DIFF 1c -0.823 -0.459 -0.102 0.254 0.6135
α = 0.1 1.1665 1.7115 2.24 2.7655 3.2995
DIFF 2c -1.224 -0.679 -0.1505 0.375 0.909

this column, the difference of optimal strategy without option between α = 0.05

and α = 0 is 0.1025 and the corresponding difference of optimal strategy with

option is −0.102. This comparison verifies that the difference of optimal strategy

with option would be smaller than the difference of optimal strategy without

option since writing option removes some costs and the investor is willing to sell

more shares. Besides this possible interpretation, we concentrate on the data

of optimal strategy without option to explain the benefits of writing an option.

From the first two columns in Table 5.10, we can see that those initial number

of shares which are smaller than the PTP (initial number of shares 2.104) in

illiquid markets can generate values of optimal strategy smaller than values in

α = 0. In other words, the smaller values of optimal strategy means less trading

amount. As Figure 5.30 shown, the price to the left of the PTP is higher than

the price in α = 0, which is bad for the writer of the option. The low trading

amount (value of optimal strategy) could be considered as a reflection of this bad

152



5.5 Analysis of Price Transition Point for Option Price

influence on the price. The values of optimal strategy decrease with increasing

illiquidity effect parameter. Looking at the last two columns in Table 5.10, when

the initial number of shares are bigger than the value in PTP, the trading amounts

are larger than the amount in α = 0 and the corresponding prices of option are

lower (to the right of the PTP in Figure 5.30). That is beneficial for the writer

of the option.

In Table 5.10, DIFF 1 (or DIFF 2) indicates the difference of optimal strategy

between α = 0.05 (or α = 0.1) and α = 0. Based on the first two column in Table

5.10, we explore that values in DIFF 1 row are greater than the corresponding

values in DIFF 2 row. While from the last two columns, we observe that the

values in DIFF 2 row are greater than that in DIFF 1 row. The description above

represents that when the illiquidity effect is large, both good and bad influences

are amplified. The intuition behind the data in the optimal strategy with option

is similar to the strategy without option. Considering the illiquidity effect into

the market, investors hedged by written call options have to hold less number of

shares than in the perfectly liquid market. The larger illiquidity effect makes the

stock holding less since investors need to pay transaction costs at every trade.

Therefore, we regard that the illiquidity effect reduces the option price when the

investor holds sufficient shares (larger than the shares by PTP) in the initial time.

We compute the expected utility of terminal wealth for the case with and without

option followed by Table 5.10.

In summary, this subsection demonstrates that there does not exist an exact

intersection but many PTPs are close to each other. Investors who holds more

initial shares than the value of PTP can take benefit through writing the op-

tion. In following subsection, we will show how the PTPs move and explain the
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importance of observing the PTP in the two period model.

5.5.2 Two-Period Model

Once we have understood the reservation price and the hedging strategy given

by the single period model, it is easy to extend the model to the two-period model

so that options with maturity in two or multi periods can be examined. Com-

paring to the single period model, the two-period model with a chain of hedging

strategy values depicts more details of characteristics of option pricing. Investors

release all stock holdings at the terminal time, thus the following analysis of

hedging strategy focus on all nodes except the nodes in the last period.

Figure 5.33: Price of option versus initial number of shares in a two-period model:
the price transition point in price of call option is given by changing liquidity effects;
the enlarged region shows the PTPs between in the illiquid market and in the perfectly
liquid market.
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Figure 5.33 displays lines of call option price versus the initial stock holdings

in two-period model. The enlarged region in Figure 5.33 shows that the lines of

option price with different levels of liquidity cost indeed intersect with the line

without liquidity cost, separately. The PTP between α = 0 line and α = 0.05 line

is at the level of 1.9255 shares and another PTP between α = 0 line and α = 0.1

line is at the level of 1.9365 shares. The difference between these two PTPs is

0.011. This difference distinctly shows that PTPs between lines of option price

with illiquidity effects and the default line in the perfectly liquid market are not

identical. By comparing this value to the difference between PTPs in Figure 5.30

(0.0002), we notice that the difference between PTPs in two-period model is larger

than the one in single period model. Moreover, in multi-period model (show in

Section 5.5.3), this corresponding difference increases with the expanding number

of periods in the model.

In single period model, we checked the hedging strategy given by different ini-

tial stock holdings and found that the PTP at the level of 2.104 shares indicates

the maximal value of hedging strategy (shown in Figure 5.32). We conduct a sim-

ilar analysis in the two-period model to check whether this special phenomenon

exists as well. Because of the trading restriction on the terminal time, releasing

all stock holdings at the terminal period, we do not consider the transaction in

the terminal time. Table 5.11 displays 5 selected initial stock holdings and cor-

responding values of hedging strategy at the period 0 and 1, with three levels of

illiquidity effect α.

We select a middle value 1.93 between those two PTPs shown in Fig.5.33 as

the initial number of shares. The next step is to select other values in the initial

stock holdings which are symmetric distributed besides 1.93 shares. Table 5.11
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Table 5.11: Comparison on hedging strategy in the function of initial stock holdings
in the two-period model with γ = 1 and other parameters given in Table 5.1.

Initial Stock Holdings
Node α -0.07 0.93 1.93 2.93 3.93

0 0.553 0.553 0.553 0.553 0.553
St0 0.05 0.3715 0.35 0.3305 0.3095 0.2895

0.1 0.2975 0.2755 0.252 0.225 0.199
0 1 1 1 1 1

St1,u 0.05 0.702 0.6925 0.6835 0.673 0.6628
0.1 0.5351 0.534 0.5195 0.5005 0.4825
0 0 0 0 0 0

St1,d 0.05 0.218 0.2025 0.191 0.1785 0.167
0.1 0.2195 0.202 0.185 0.165 0.145

expresses stable values in the hedging strategy without liquidity cost. It reveals

that the line of hedging strategy in the function of the initial stock holdings keeps

straight in the two-period model. This property is also involved in the single

period model. The value 0.553 at the node St0 is slightly smaller than the value

0.5745 at the initial node in single period model (shown in Table 5.9) since more

periods would reduce the initial value of hedging strategy. This phenomenon

is more distinct in multi-period model (e.g. m = 100). The value one at the

node St1,u and zero at the node St1,d in Table 5.11 are reflected by the payoff

of call option at the maturity time according to the corresponding stock price.

Another observation in Table 5.11 is that values of hedging strategy descend

progressively with increasing values of initial stock holdings, at all nodes. We

do not know why the beautiful phenomenon that maximal hedging strategy in

the approximate intersection disappear unexpectedly from single period model

to two-period model. It does not appear in the multi-period model as well.

Nevertheless, the existing of PTPs in Figure 5.33 characteristics some benefits
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5.5 Analysis of Price Transition Point for Option Price

provided by the option writer’s problem with illiquidity effect in two-period model

as well. The analysis of two-period model gives us further research issue: there is

a phenomenon that investors with more initial portfolios will sell the call option

in a price which is lower than the option price in the perfectly liquid market.

This phenomenon is caused by liquidity cost in the market. The intuition here is

that the presence of liquidity costs makes hedging costly when the investor only

holds a small amount of shares (less than the PTP shares); consequently, the

investor will deduct the hedging costs from the option price if his initial portfolio

is greater than the PTP’s initial shares.

To sum up, this subsection demonstrates no precise intersection but an ap-

proximation existed in the graph of option price against the initial share holdings,

and symmetric convex shape of hedging strategy (maximal value in the hedging

strategy) disappears suddenly.

5.5.3 Multi-Period Model

In this part we analyse option price in multi-period model with different liq-

uidity costs and explain how the liquidity costs affect the option price. This

model is more realistic than the single-period model.

Figure 5.34 represents the price of call option in the function of the initial

stock holdings in a 100−period model. Numbers in the enlarged region in Fig.5.34

specify the length of two PTPs with different liquidity costs. The 100−period

model has one feature which is different from single and two-period model: the

PTP between α = 0 line and α = 0.1 line is at the level of 1.795 shares; this value

is less than the value of PTP between α = 0 line and α = 0.05 line (at the level
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5.5 Analysis of Price Transition Point for Option Price

1.796 shares). This difference makes the PTP between α = 0.05 line and α = 0.1

line stand above the line of option price without liquidity cost. Lines of option

price in the 100−period model are similar as graphs in single and two-period

model. It reveals that in both single and multi-period models, lines of option

price with different liquidity costs indeed intersect with the option price in the

perfectly liquid market.

Figure 5.34: Price of option versus initial number of shares in a 100-period model:
the price transition point in price of call option is given by changing liquidity effects;
the enlarged region shows the PTPs between in the illiquid market and in the perfectly
liquid market.

Table 5.12 lists values of price transition points in different number of period

models. The first comprehension from Table 5.12 is that the value of PTP de-

creases with increasing number of periods. The last row in Table 5.12 displays the

difference between α = 0.05 and α = 0.1 and there is no homogeneous tendency
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on these differences. We assume that the shifts of these differences are caused by

the computation error of the current implementation.

Table 5.12: Intersection point between with liquidity cost (shown in the first row) and
without liquidity cost (α = 0) in models with different number of periods, with respect
to discretization step size δr = 0.0005 and other parameters given in Table 5.1. The
last row displays the difference of intersection points between α = 0.05 and α = 0.1.

m = 1 m = 2 m = 50 m = 100

α = 0.05 2.1038 1.9255 1.7992 1.796
α = 0.1 2.104 1.9365 1.7995 1.795
DIFF 0.0002 0.011 0.0003 0.001

To summarise, this section examines the price of option in the function of

the initial stock holdings with different liquidity costs both in single and multi-

period models. First, graphs establish a phenomenon that lines of option price

with illiquidity effects intersect with the default option price (α = 0). Second,

we compare the case of option price with liquidity cost to the case without it.

Based on this comparison, investors holding more initial shares are able to hedge

the written call (put) option in lower (bigger) price since the payoff of call (put)

option is analogous to trade less (more) shares.

5.6 Illustration of Implied Volatility Curves

In recent years the Black-Scholes formula is rarely used to price options since

a lot of options with a wide range of strikes and expiries are so liquid that the

market price cannot be disputed. The volatility implied by the Black-Scholes

formula is a common way to display the market prices of liquid options. We

discuss the implied volatility in this section. Before understanding the mean-

ing of implied volatility, we first discuss what historical volatility is. Historical
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5.6 Illustration of Implied Volatility Curves

volatility is the realized volatility of a underlying asset over a given time period,

stated in terms of annualized standard deviation of the market prices as a per-

centage of the underlying asset. The historical volatility is calculated from the

past returns of a security. Different from historical volatility, the implied volatil-

ity is a forward-looking and subjective measure. Due to being forward-looking,

the implied volatility tends to lead backward-looking historical volatility read-

ing. The implied volatility is widely regarded as the option market’s forecast

of future return volatility over the remaining life of the relevant option(quoted

from Christensen & Prabhala (1998)). However, it is not possible to give a closed

form formula directly for implied volatility in terms of option price. We choose

Newton’s method as the root finding technique in the implementation to solve

the calculation of implied volatility.

5.6.1 Illiquidity Effect on Implied Volatility

Past papers concentrate on the time maturity behaviour of the implied volatil-

ity. For example, Rogers & Tehranchi (2010) deal with the long-term maturity

behaviour of implied volatility and Forde et al. (2010) investigate the asymptotic

formulae for implied volatility in the Heston model. Figure 5.35 shows curves of

the implied volatility in the function of strike price K with different maturities.

The top panel displays implied volatility curves with shorter maturities (0.1 to

0.5) and the bottom panel shows implied volatilities for larger maturities (0.6

to 1). Notice that the curve of implied volatility gets flatter when the maturity

increases. With increasing in the strike price, the corresponding option would

change from deep in-the-money to at-the-money and values of implied volatilities
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5.6 Illustration of Implied Volatility Curves

rapidly fall down to around the level of 30%. Within a shorter maturity, this drop

is distinct. Figure 5.35 shows half U-shape curves showing high implied volatil-

ities for in-the-money call options and low volatilities for at-the-money options.

Many papers find empirical evidences of this phenomenon (e.g. Christensen &

Prabhala (1998), Grover & Thomas (2012) and Chaudhury (2011)). Figure 5.35

proves that the skewed shape of implied volatility becomes flatter at longer ma-

turities (Rogers & Tehranchi (2010) prove this phenomenon as well). Notice that

the line of implied volatility in the short-term maturity (e.g. T = 0.1) in Figure

5.35 shows a slightly upward skew towards the right. This is caused by a nu-

merical error since the binomial model of stock price in our implementation is a

discrete approximation of the Black-Scholes model.

When observed the ’smile effect’ of the implied volatility in Figure 5.35, we

investigate whether the liquidity cost, the main issue in our research, influences

that ’smile effect’. Past papers discuss the reason of ’smile effect’ in stochastic

volatility, human behaviours and transaction costs (e.g. Gatheral (2006), Boyle

& Vorst (1992)). The ’smile effect’ is a result of an empirical observation of the

option’s implied volatility in the function of strike price, with the same expiration

date. Recent research of the implied volatility issue concentrate on how jumps in

prices of underlying affect the ’smile effect’. In real market, the price of underlying

asset does not diffuse smoothly that looks like jumps. Jumps in the stock prices

can explain the volatility smile since they produce the steep short skewness that

exists in the market. However, the liquidity cost, the convex transaction costs,

also may result in the steep skew at the short-term of the implied volatility. Cetin

et al. (2006) provides empirical evidence to show that the liquidity cost affects

option price, and their results demonstrate changes in the implied volatility. The
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5.6 Illustration of Implied Volatility Curves

Figure 5.35: Implied volatilities against strike price with different maturities by writ-
ing one call option in the perfectly liquid market α = 0: the top panel shows implied
volatility with maturity from T = 0.1 to T = 0.5; the bottom panel shows i.v. with
T = 0.6 to T = 1.0.

implied volatility’s significant level for option price is illustrated by the implied

volatilities given by corresponding liquidity effect parameter α by Cetin et al.
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(2006).

Figure 5.36: Implied volatilities against strike price with different α. Other parame-
ters are given in Figure 5.1).

Figure 5.36 shows five implied volatility curves for various values of the illiq-

uidity effect parameter α. It is clear that the implied volatility curves are steeper

when the market has less liquidity (higher value in α). These results are consis-

tent with the findings of Cetin et al. (2006) who show that with an increase in

liquidity, there will be a decline in the level of the implied volatility curve. Given

that the implied volatility is positive linked with the option price, the observa-

tion in Figure 5.36 implies that low liquidity leads to high option prices. This

graph implies that the change of implied volatilities does not have to be caused

by jumps in underlying asset price but can also be caused by the illiquidity effect

in the market.
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5.6 Illustration of Implied Volatility Curves

Considering the illiquidity issue on the implied volatility, we firstly try to

match the market price of short one at-the-money call option (K = 1) with the

linear transaction cost. One root-finding method, the bisection method, is used

to find the relation between the convex liquidity cost and the linear transaction

cost. The bisection method repeatedly bisects an interval and then selects a

subinterval in which a root must lie for further processing. Applying a function

of the bisection method described above into the implementation, it is simple

and robust to match the market price of at-the-money option between the convex

condition and the linear condition. This method is just a rough approximation to

a solution which is used as a starting point for more rapidly converging methods

(quoted from page 31 of Burden & Faires (1985)).

Table 5.13: Comparison of illiquidity effect α and linear transaction cost when they
match the price of at-the-money call option K = 1 and the maturity T = 1.

α 0.0005 0.005 0.01 0.05 0.1

linear 0.00074 0.00347 0.00518 0.01185 0.0169

Table 5.13 displays comparison between the illiquidity cost (the top row) and

the linear transaction cost (the bottom row) in the case that investors write a call

option at K = 1 and T = 1. In order to figure out the relation between the convex

cost and the linear cost, we select one set (α = 0.05 and linear = 0.01185) as

an example to discuss. Figure 5.37 displays the implied volatilities from K = 0.4

to K = 1 under the condition of zero initial shares. The top and bottom panes

show 1 and 5 options, respectively. As Figure 5.37 shown, in the zero initial shares

condition, the gap between the implied volatility curves is narrow with shorten

one option; the gap sharply increases with shorten 5 options. In particular, the

implied volatilities with shorten 5 options are no longer close to each other at
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the strike price K = 1. That implies when we amplifies the number of options,

the corresponding market price calculated by the liquidity cost function does not

match the market price by the linear transaction cost.

Figure 5.37: Comparison of implied volatility between illiquidity cost and linear
transaction cost for one option and for five options under zero initial shares. Other
parameters are given in Figure 5.1).

Figure 5.38 shows the implied volatilities when the initial shares increases

to 3 shares. For the top panel, we observe a narrow gap of implied volatilities
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5.6 Illustration of Implied Volatility Curves

Figure 5.38: Comparison of implied volatility between illiquidity cost and linear trans-
action cost for one option and for five options under 3 initial shares. Other parameters
are given in Figure 5.1).

between the convex and the linear one as well. But the curves are distinctly

shown a upward skew when the option goes to the position of at-the-money. For

the bottom panel, curves of implied volatility intersect between the strike price

K = 0.7 and K = 0.8. Comparing Figure 5.37 to Figure 5.38, we conclude that

the convexity of liquidity cost amplifies the effect of proportional transaction
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costs. It inspires us that some of the general observations from previous sections

should also hold for linear transaction costs provided that the trading was in

small quantities.

5.6.2 Comparison with Market Data

We discuss the change of implied volatility in our model of illiquid market in

the previous subsection. It inspires us to check the difference of implied volatility

between the real market quotes and the model quotes. In this subsection, we

analyse how the implied volatility is affected by market parameters in our model

of the illiquid market. We compare the model quotes to the market quotes (S&P

500 index with one month Call maturity) to get a reasonable estimation of level

of liquidity in the real market.

S&P 500 index options are used in our comparison since the data is readily

available and the options market is very active. We select the data of Euro-

pean call option with one month maturity in S&P 500 index. The data for

the market example include the average price quotes and the corresponding im-

plied volatility quotes for European call options during the period 10th,March

to 11th, April, 2014. The average price is the middle value of bid and ask prices.

This example is a European call option with dividend yield 2.0065%. We select

the one month LIBOR interest rate 0.155% in March, 2014 as the interest rate

for computing call option price.

The analysis of implied volatility in the previous subsection is based on the

binomial model without dividend. We modify the computation of CRR binomial

model in the implementation: the probability of price movement of underlying
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5.6 Illustration of Implied Volatility Curves

Figure 5.39: Comparison of implied volatilities both in real market quotes and in
model quotes: the blue curve is the market quotes for implied volatilities from S&P
500 index European call option prices for the April 2014 option expiration; the other
curves are Black-Scholes implied volatilities computed from our model with different
volatility σ values.

asset pd = e(µ−q)∆t−d
u−d to replace the probability in the case without dividend

p = eµ∆t−d
u−d , where q represents the dividend yield. We match the quoted prices

as closely as possible with different moneyness from the example. Moneyness is a

term describing the relationship between the strike price of an option and the spot

price of its underlying security. We only concentrate on the range of 90%− 120%

moneyness in the comparison. Because investors usually trade options in this

range in the real market. Figure 5.39 displays the market quotes of implied

volatilities in Black-Scholes pricing model and several implied volatilities under

different market volatilities in our model.

Figure 5.39 illustrates big difference of implied volatilities between in market

quotes and in our model data. The blue curve of market quotes is selected
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5.6 Illustration of Implied Volatility Curves

as the benchmark. We display changes of implied volatilities in the model by

varying market parameters and compare them to the benchmark. All curves of

implied volatilities with different σ values in our model of perfectly liquid market

(α = 0) are flat lines with a slight upward ending in moneyness 120%. Due to

unknown of market volatility in the real market, we try different values of σ in

the model computation. Cases σ = 0.09 and σ = 0.10 have similar values of

implied volatilities to the benchmark in the moneyness range 102.5% − 120%.

Considering liquidity cost into the model would make implied volatility curves go

upward in the range 90%− 100% (as Fig.5.36 indicated).

The analysis of implied volatility is the discussion of the liquidity cost on the

option prices. Figure 5.40 shows the comparison of implied volatilities in the

market with different level of liquidity. These two panels have the same setting

of market parameters except the volatility σ: the one month LIBOR interest rate

r = 0.155%, the drift µ = 0.15, the risk aversion parameter γ = 1 and zero initial

number of shares x0 = 0. The top panel is for σ = 0.09 and the bottom one is

for σ = 0.10. Both in these two panels, the solid lines are the curves of implied

volatilities from our model with level of liquidity α = 0.003 and the dash lines

are the ones with level of liquidity α = 0.004. Comparing Fig.5.40 to Fig.5.39,

we find that applying the liquidity cost into the model would increase the value

of implied volatilities at the both sides of moneyness 100% (at-the-money). It

makes the volatility smile in the illiquid market. The curves of implied volatilities

from our model in the top panel simulate approximately the market quote (the

blue line) better than curves in the bottom panel. This indicates that σ = 0.09

is a good estimation of market volatility in S&P 500 index. We set up σ = 0.09

in the following analysis of other market parameters. The difference of implied
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Figure 5.40: Comparison of implied volatilities both in real market replication and in
model quotes: the blue curve displays the market quotes from S&P 500 index European
call option prices for the April 2014 option expiration; the top panel is for Case σ = 0.09
and the bottom panel is for Case σ = 0.10.

volatilities between the solid line and the dash line confirms that less liquidity in

the market (higher value in α) makes higher implied volatility. This phenomenon
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5.6 Illustration of Implied Volatility Curves

makes sense in the real market because less liquidity refers to higher liquidity cost

and higher purchase price of call options. The top panel in Fig.5.40 reveals that

the study of implied volatilities from our model would indicate the real market

quotes in a certain extent. Moreover, the liquidity parameter α = 0.003 to 0.004

is a good indication for the level of liquidity in the real market.

Figure 5.41: Comparison of implied volatilities both in real market replication and
in model quotes: the blue curve displays market quotes from S&P 500 index European
call option prices for the April 2014 option expiration; the black curves are implied
volatility lines with different initial number of shares in our model.

Figure 5.41 represents changes of implied volatility with different initial num-

ber of shares in the market with α = 0.003. We observe that the implied volatility

with more initial number of shares is smaller than the one with less initial number

of shares when the moneyness < 97%. During the increasing in the moneyness,

the implied volatility with more initial portfolio is bigger than others with less

initial portfolio. The difference of implied volatility among those cases would
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Figure 5.42: Comparison of implied volatilities both in real market replication and
in model quotes: the blue curve displays market quotes from S&P 500 index European
call option prices for the April 2014 option expiration; black curves in the top panel
display the change of implied volatility by varying the stock price drift µ and black
curves in the bottom panel display the change of implied volatility by varying the risk
aversion parameter γ.
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tend to zero with the increasing moneyness value. This observation reflects the

property of PTP in Section 5.5. We test the value of PTP in the model as de-

scribed in Fig.5.41, which is between 1 and 2 initial number of shares. Because

the value of implied volatility is monotonic to the price of options. Figure 5.41

confirms the existence of PTP again.

The top panel and the bottom panel in Figure 5.42 separately display the

change of implied volatility by varying the stock price drift µ and the risk aversion

parameter γ. The top panel shows that the implied volatility is monotonically

increasing with the stock price drift. Moreover, the drift µ = 0.15 to 0.17 is a

good estimation for S&P 500 index at March to April, 2014. The bottom panel

represents that the risk aversion parameter γ affects the implied volatility and

the price of options clearly.

Based on Figure 5.39 to Figure 5.42, we can conclude that all market parame-

ters take sensitive affects on the implied volatility when options are in-the-money

rather than when they are out-of-the-money. We provide an estimation of the

level of liquidity α = 0.003 for the real market.

5.7 Summary

We described the dynamics of the C-R model of optimal strategy with illiq-

uidity effect in this chapter. First, we specify the market parameters and their

corresponding default values. Second, we introduced how to decide the default

values of the benchmark case. Third, we concentrated on the generation of hedg-

ing strategy in the small period and large period models. Fourth, we illustrated

how the market parameters impact on the optimal strategies and corresponding
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reservation prices in the default model with illiquidity effect. Once investigated

different dynamics of market impact on the reservation price, we observe an im-

portant phenomenon in the option price graph: we explain the reason that both

of the illiquidity effect in the market and investors’ stock positions take good

influence on the option price (lower prices than the one in the perfectly liquid

market) when the initial stock position is greater than the Price Transition

Point of shares in the market without liquidity cost. In addition, we analysed

the corresponding value of hedging strategy in the PTP position both in single

period and multi-period models. Finally, we explore the implied volatility in the

model without and with liquidity cost. We compare the convex liquidity cost to

the linear transaction cost when they are matching at the price of at-the-money

option and conclude that the convexity of liquidity cost amplifies the effect of pro-

portional transaction costs. Moreover, we compare the data of implied volatilities

from the model to the real market S&P 500 index. The comparison expresses that

the model has a good potential to simulate the real market quotes. Most impor-

tantly, this comparison reveals a good estimation of the level of liquidity in the

real market, which is around α = 0.003.
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Chapter 6

Conclusions

In this thesis we study an optimal portfolio choice problem in the model

introduced by Cetin & Rogers (2007). The objective is to investigate the option

prices in the market with liquidity costs. We examine the hedging of option to

measure the liquidity in the market. The maximisation of the expected utility of

terminal wealth is as a tool to identify the optimal portfolio choice problem.

In the C-R model, the capital is allocated to a risk-less asset and a risky asset.

When the investor changes his portfolio, he has to pay the liquidity cost. The

liquidity cost is a non-linear (convex) transaction cost depending on the volume

of trades. The larger the volume, the deeper we have to reach an order book to

find buyers/sellers. This increases the cost of transaction compared to trading at

the quoted market price. In order to implement the model introduced by Cetin

& Rogers (2007), we design an efficient numerical algorithm for the computation

of the value function via the dynamic programming principle. Moreover, in order

to understand the impact of liquidity, we present an analysis of numerical results

for hedging and pricing of options with different liquidity costs. Our numerical
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analysis shows both changes in hedging strategy and option prices in the illiquid

market with varying market parameters. We also identify how the initial portfolio

and the number of options affect the put-call parity and pricing of options. In the

analysis of option prices, we observe that the horizontal line of replication price

without liquidity cost is indeed intersected by curves of option prices in the illiquid

markets. Intersections responding to different liquidity cost levels are very close

to each other. We name such intersections as Price Transition Points (PTPs).

This phenomenon illustrate that if an investor’s initial number of shares is larger

than PTPs, he will be willing to sell options at a lower price than the replication

price in the perfectly liquid market. To the best of our knowledge this is a new

observation. We regard this phenomenon as the impact of liquidity in the market

and interpret it from two aspects: the initial portfolio of the financial institution

and the illiquidity effect in the market. In order to understand the pricing of

options, we show a comparison of implied volatility between the convex liquidity

cost case and the proportional transaction cost case. We prove that the change

of implied volatilities does not have to be caused by jumps in underlying asset

price but can also be caused by illiquidity effect in the market. That comparison

shows that the liquidity cost can amplify the transaction cost. We compare the

implied volatility from the model quotes to the one from the real market quotes.

That comparison reveals that the current model has the potential to simulate the

real market and also indicates the level of liquidity in the real market.

In the following, we explain more details about the main numerical procedures

and relevant numerical analysis of this thesis. Section 6.1 shows some outlook for

further research.
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Numerical approach In order to provide the optimal strategy numerically, we

design an efficient algorithm to compute the value function in the illiquid binomial

model. We also implement numerical procedures for calculating the relevant

implied volatility and Monte Carlo simulation. In the algorithm of value function

in binomial model, we select the dynamic programming approach as the numerical

tool. The normal dynamic programming backward algorithm is used to construct

a matrix for storing all nodes in the binomial tree. However, in order to improve

the computation efficiency, we build up an array for storing all nodes. First, we

store nodes in the sequence that from the terminal period to the initial period.

In the same period, nodes having smaller stock prices would be first ordered

than those having larger stock prices. The challenging component of the existing

binomial implementation is to identify the period number and the node position

in every period. The next step for computation of value function is to produce

an array for every variable in the previous array. That is for the discretization of

the range of stock holdings. In other words, the selection of optimal strategy is

structured by a matrix, which is much faster than the normal matrix × matrix.

Monte Carlo simulation is produced by two reasons: the determination of range

of stock holdings and the verification for binomial model. Whether the range of

stock holdings is sufficient decides the correctness of the optimal strategy. We

have to identify the range in every trading period. Any algorithm is needed to

verify the correctness. Based on Monte Carlo simulation, we can not only prove

the correctness of expected utility of terminal wealth from the binomial model

but also know the sufficient range of stock holdings in any random stock price

trajectory.
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Hedging and pricing in the illiquid market We discussed the importance

of research on hedging and pricing of options in the illiquid market. Based on

the numerical data from the existing implementation, we conducted analysis by

changing market parameters and revealed the characteristics of hedging and pric-

ing of options in the market with liquidity costs. In order to identify how the

liquidity cost affects the portfolio selection, we compared the prices of option

with different initial portfolios in the illiquid market; we found that reservation

prices in the illiquid market are reducing with increasing initial portfolios. That

is because the illiquidity makes hedging of options costly and consequently the

investor has to deduct the hedging cost from the price which he is willing to pay

for the option. Considering the risk aversion coefficient, we observed that it has

no impact on hedging strategies in the perfectly liquid market; but it has a big

influence on hedging strategies in the illiquid market. In addition, in the analysis

of option pricing with varying risk aversion coefficient, we observed that curves

of option prices in the market with liquidity cost are indeed intersected by the

horizontal replicating price without liquidity cost. We call these intersections as

Price Transition Points and the PTPs are very close to each other. Another

aspect of comparative analysis is about changes of option parameters: the strike

price, the time horizon and the number of options. The strike price affects the

optimal strategy significantly and the price of call option is reduced by increasing

strike prices; a longer time length for trading is benefit on the option pricing

besides the illiquidity in the market would amplify that benefit; we proved that

the number of options affects the hedging and pricing of options, especially in the

illiquid market. Moreover, we investigated the put-call parity and proved that it

would not be held in the illiquid market and particularly affected by the initial

178



portfolio and the number of options. The whole part of analysis inspires us to

study the price transition point which exist in the curves of option price with

different liquidity costs and the replicating price in the perfectly liquid market.

Price Transition Point By examining effects of liquidity costs, we evaluated

the price transition point (PTP) which is determined by the reservation prices in

the perfectly liquid market and in the illiquid market. We separately investigated

the corresponding hedging strategies with different initial portfolios and found

that the hedging strategy obtains a maximal value if its related initial portfolio

equals to the number of PTP. However, this nice phenomenon only exists in the

single period model. The existence of PTPs in different levels of liquidity shows

that the illiquidity effect in the market makes option prices decrease with the

increasing initial portfolios. It reveal that option sellers in the illiquid market

are willing to sell call options at lower prices than the replicating price in the

perfectly liquid market; the constraint is that sellers have to hold the initial

number of shares larger than the PTP. This phenomenon is reflected in the real

market, traders at larger initial positions in shares are happy to write call options

in lower prices. It highlights that once the investor holds greater initial number of

shares than the PTP, in the illiquid market there exists call options in lower prices

than the market price in a complete liquid market. This phenomenon implies

that sellers of call option holding higher initial shares than PTPs are willing to

purchase in lower price than the replicating price to reduce the illiquidity in the

market; whereas it is bad for option seller whose initial shares are less than the

PTPS since the price is higher than the replicating price and they have to afford

the liquidity costs as well. We explained this observation from the initial portfolio
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and the illiquidity effect perspectives.

Application of implied volatility Many papers show that jumps in the price

of the underlying have greater effect on the curve of the implied volatility for

short-expiration options than for long-expiration options. Our numerical solu-

tion of implied volatilities in the market with liquidity costs proves that the

deeply smile in the implied volatility can also be caused by the liquidity cost.

We explored the implied volatility with liquidity cost and compared the convex

liquidity cost to the linear transaction cost when they are matching at the price of

at-the-money call option. With higher liquidity costs, curves of implied volatility

tend to be steeper since the liquidity cost indeed makes the market price of option

higher. In addition, we compared the corresponding implied volatilities between

the liquidity cost case and the proportional transaction cost case when we changed

both the number of options and the initial portfolio. Those comparisons reveal

that the convexity of liquidity cost amplifies the effect of proportional transaction

cost. Moreover, we concentrate on comparing the model data of implied volatility

to the market quotes. That comparison shows that the current model provides

good simulation of implied volatility to S&P 500 index. We discuss the change of

implied volatility by five varying market parameters and observe an estimation

of the level of liquidity in the real market.

6.1 Further Research

Calibration to market data Some papers had measured the illiquidity effect

in the limit order market. For example, Malo & Pennanen (2012) proposed a
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parametric approach for temporary impact modelling of bid-ask spread. Their

resulting models are able to calibrate and to analyse for stochastic stock price

processes. We can extend the study to find whether the illiquidity effects in Cetin

& Rogers’ model can fit to the empirical data in the London Stock Exchange. We

can explore whether the illiquidity calibrated to stock market data is coherent

with the one implied by observed option prices. In the analysis of option price in

the market with liquidity cost, we observed some surprising behaviours of option

sellers with regards to their pricing decisions. We are able to calibrate this model

with real market price and conduct a thorough empirical study. The aim is to

check whether those unusual phenomenons exist in the real market. In both above

directions, we can measure the liquidity quantitatively in the empirical analysis.

Many papers on the liquidity literature thought that it is hard to choose the value

of liquidity parameter as the reflection of realistic levels of liquidity. The paper

by Rogers & Singh (2010) introduced an example that a quant with experience of

trading equities thought ”a dawn raid of 10% liquidity cost or so of the shares will

probably propel the market 15% higher”. We can examine the difference between

our numerical solution and the empirical data in order to measure the realistic

level of liquidity cost.

Implementation for the CRRA utility functions Further research on a

general utility function would grateful help the optimal portfolio selection prob-

lem. Many papers adopted the CARA utility function (negative exponential

utility) as the example to calculate the value function in the market since this

specific form of utility allows us to eliminate one parameter of the value func-

tion (the risk-less asset wealth). The relevant dynamic programming modelling
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is much more computationally efficient. Once the utility function is chosen as

the CRRA utility functions (e.g., the power or logarithmic utility functions), we

have to compute the value function in full dimensions. For the exponential utility

function, in each node of the binomial tree we have to store an array with values

of the value function for all numbers of shares from a prespecified grid. However,

for the CRRA utility functions, one more dimension is needed, resulting in a ma-

trix at each node of the binomial tree. This will increase the memory requirement

as well as the computation time precisely as many times as the size of the grid of

the additional variable. One possible way to deal with the CRRA utility is to use

a new discretization method. That method had been introduced in Palczewski

et al. (2013). They described a dimensionality reduction, non-equidistant dis-

cretization method which provides a variable range of stock holdings for different

nodes.

Considering the logarithm or power utility function, we have to ensure that

the terminal wealth is positive. For the portfolio without option, it is simple to

solve by only taking long positions in shares and bonds. For the portfolio with

option, we need to verify the value of terminal wealth. One possible way is that

once the terminal wealth is negative, we choose that value to minus infinity. That

would give the algorithm a signal to abandon those trading strategies that lead to

negative wealth. It might also happen that for some initial positions we cannot

get the corresponding reservation prices.
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Algorithms for Implementation

A.1 Construction of stock prices in binomial model

Algorithm 1 shows the pseudo code of stock price process in binomial model.

Algorithm 1 Construction of Stock Prices in Binomial Model

1: Input: u, d, S0, T , m
2: Set δt = T/m
3: Set n = (m+ 1)(m+ 2)/2
4: for i = 0 to n− 1 do
5: Si = S0 · ui · dm−i
6: end for
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A.1 Construction of stock prices in binomial model

Algorithm 2 Dynamic Programming of Value Function

1: Input: u, d, prob, S[0], m
2: Set num discretization = (range max - range min) / δr + 1
3: for n = 0 to m do /* last period*/
4: pos = (m + 1)(m + 2) / 2 + n
5: S[pos] = S[0] · un · dm−n
6: for i = 0 to num discretization do /*discretization*/
7: Set x = range min + δr · i
8: Set φ = −x
9: Set V ∗[pos][i] = −exp(γ · φ · S[pos])

10: end for

11: for L = m− 1 to 0 do /*current period number*/
12: Set interest = exp(r · T/m · (m− L))
13: for n = 0 to L do /*node number in current period*/
14: pos = (L + 1) L / 2 + n
15: S[pos] = S[0] · un · dL−n
16: Set pos d = pos + L + 1
17: Set pos u = pos d + 1

18: for i = 0 to num discretization do /*discretization*/
19: Set x = range min + δr · i
20: for j = 0 to num discretization do
21: Set x = range min + δr · j - x
22: Set φ = φ(x))
23: Set c = exp(γ · φ · S[pos] · interest)

24: Set V [pos][j] = c

{
prob·V [pos u][j]+(1−prob)·V [pos d][j]

}
25: if j == 0 then
26: else/*store maximal value function*/
27: if V [pos][j] > V ∗[pos][j] then
28: Set V ∗[pos][j] = V [pos][j]
29: end if
30: end if
31: end for
32: end for

33: end for
34: end for
35: end for

36: Output: V ∗
[
(m+ 1)(m+ 2)/2

][
num discretization

]
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A.2 Dynamic programming of value function

A.2 Dynamic programming of value function

A.3 Recursive algorithm for checking optimal

strategy

Algorithm 3 calc strategy(L, strategy pos, m, min x, δr): this recursive function is
for Checking Optimal Startegy in All Nodes of non-recombining tree.

1: Find start point of this recursion:
2: current pos = (initial shares - min x) / δr
3: strategy[strategy pos] = ∆X[current pos]

4: if current level L < number of periods m then
5: strategy pos d = 2 strategy pos + 1
6: strategy pos u = strategy pos d + 1

7: calc strategy(L + 1, strategy pos d, m, min x, δr)
8: calc strategy(L + 1, strategy pos u, m, min x, δr)
9: end if

A.4 Determination of ranges of stock holdings

A.5 Verification of expected utility by Monte

Carlo

A.6 Computation of implied volatility
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A.6 Computation of implied volatility

Algorithm 4 Determination of Ranges of Stock Holdings

1: Input: min x, max x
2: for k = 1 to l do
3: for i = 1 to m do
4: if i == 1 then
5: range min = strategyi
6: range max = strategyi
7: else
8: if i == m then
9: if min x ≤ strategyi ≤ min x+ 0.5δr then

10: Set lower hit = lower hit + 1
11: else
12: if max x− 0.5δr ≤ strategyi ≤ max x then
13: Set upper hit = upper hit + 1
14: end if
15: end if

16: else
17: if strategyi < range min then
18: range min = strategyi
19: end if
20: if strategyi > range max then
21: range max = strategyi
22: end if
23: if min x ≤ strategyi ≤ min x+ 0.5δr then
24: Set lower hit = lower hit + 1
25: else
26: if max x− 0.5δr ≤ strategyi ≤ max x then
27: Set upper hit = upper hit + 1
28: end if
29: end if
30: end if
31: end if
32: end for
33: end for
34: Output: rang min, range max, lower hit, upper hit
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A.6 Computation of implied volatility

Algorithm 5 Verification of Expected Utility by Monte Carlo

1: Input: u, d, prob;
2: for k = 1 to l do
3: for i = 1 to m do
4: Compute an U(0, 1) sample ε
5: if ε < prob then
6: Si+1 = Si · u
7: else
8: Si+1 = Si · u
9: end if

10: Set Wi = Wi − Si · φ · exp(r · T
m
· (m− i))

11: end for

12: Set EUk = − exp(−γ ·Wm,k)
13: end for

14: EU∗ = 1
l

∑l
k=1EUk

15: Output: EU∗

Algorithm 6 Generation of Implied Volatility

1: Input: Cm, accuracy
2: Initialise σ = Cm/(0.398 · S0 ·

√
T )

3: if σ < 0.3 then σ = 0.3
4: end if
5: for i = 1 to 100 do
6: CBS = Function of Black-Scholes (σ)
7: diff = Cm - CBS
8: if abs(diff ) < accuracy then
9: return σ

10: else
11: Set d1 = (ln(S0/K) + r · T )/(σ ·

√
T + 0.5 · σ ·

√
T )

12: Set κ = 1/
√

2πS0 exp(−rT ) exp(−0.5d2
1)
√
T

13: Set σ = σ + diff/κ
14: end if
15: end for
16: Output: σ
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