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Abstract 

The application of Diamond-Like Carbon (DLC) coatings for automotive 

components is becoming a promising strategy to cope with the new 

challenges faced by automotive industries. DLC coatings simultaneously 

provide low friction and excellent wear resistance which could potentially 

improve fuel economy and durability of engine components in contact. The 

mechanisms by which a non-ferrous material interacts with a variety of 

lubricant additives is becoming better understood as research efforts in this 

area increase. However there are still significant gaps in the understanding. 

A better understanding of DLC wear may lead to lubricant additive solutions 

being tailored for DLC surfaces to provide excellent durability (wear) as well 

as similar or increased fuel economy (low friction). In this work, the wear and 

friction properties of DLC coating under boundary lubrication conditions have 

been investigated.  

 

In this study, tribological performance of DLC coatings was evaluated using 

a pin-on-plate tribometer. The experiments were conducted using (High 

Speed Steel) HSS plates coated with 15 at.% hydrogenated DLC (a-C:15H) 

sliding against cast iron pins. Oils with different formulations were used in 

this study and the friction and wear response of the fully formulated oils is 

discussed in detail.  

 

Using  different surface analysis techniques such as optical and scanning 

electron microscopes (SEM), Energy-Dispersive X-ray analysis (EDX), X-ray 

Photoelectron Spectroscopy (XPS) analysis, Focused Ion Beam (FIB) and 

Transmission Electron Microscopy (TEM) were performed on the surfaces to 

understand physical characterization and the tribochemical interactions 

between oil additives and the DLC coating. A nano-indentation study was 

also conducted to observe the changes in the structure of the coating, which 

can provide a better insight into the wear mode and failure mechanism of 

such hard coatings. 
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In light of the physical observations and tribochemical analysis of the wear 

scar, the tribological performance of a hydrogenated DLC (a-C:15H) coating 

was found to depend on the oil formulation. The level of Molybdenum Dialkyl 

Dithiocarbamate (MoDTC) friction modifier (Mo-FM) blended in the oils 

greatly influenced the friction and the wear performance of the DLC 

coatings. High concentration of Mo-FM resulted in lower friction but higher 

wear of a-C:15H DLC coating. However, the addition of Zinc 

dialkyldithiophosphate (ZDDP) to the oils showed a positive effect in 

mitigating such high wear. The tribochemical mechanisms, which contribute 

to this behaviour, are discussed in detail.  
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Chapter 1 Introduction

1.1. Global Energy Challenges 

Friction, lubrication and wear have always been a challenge for human 

beings throughout history. They have a great impact on the efficiency and 

lifetime of the driveline in contact, and thus on the global economy. A 

substantial amount of energy is being dissipated to overcome friction, 

particularly in the transportation, industrial, and power-generation sectors 

whereas the wear of the products and components and their replacement 

causes a considerable loss to the economy [1, 2].  

 

In addition, increasingly stricter emission legislation has made industry to 

devote a huge effort to produce energy-efficient vehicles. This provides 

benefits both economically and environmentally. In certain countries, 

financial penalties are imposed on companies which do not meet the CO2 

requirements. In 2009, the European Union imposed a new average CO2 

emissions reduction target and made it to 130 g/km, until 2015 [3, 4].  

 

Furthermore, application of mineral oils as lubricants is another issue to be 

considered as the global oil resources are limited and the disposal of the oil 

waste in nature would be environmentally problematic. About 1% of the 

crude oil accounts for formulating the lubricants while between 13% (in EU 

countries) and 32% (in the US) of these oils finds its way to the nature after 

being used almost with different properties and appearance. Although, base 

oils are biodegradable, finished lubricants contain additives which makes 

them poorly compatible with the ecosystem [5, 6].  

 

Transportation consumes about 20% of the global primary energy which 

leads to about 18% of the total anthropogenic greenhouse gas emissions [3, 

7]. Passenger cars  are responsible for 45% of the total energy consumption 

in transportation. It has been reported that friction and wear reduction in 

engine and drive train components could save an enormous 120 billion US 

dollars annually [8].     



1: Introduction 

2 

 

In a passenger car, fuel energy is consumed in the exhaust system, the 

cooling system and to generate mechanical power (see Figure  1-1). 

Mechanical power is responsible for about 38% of the fuel energy used in a 

passenger car and only about 21.5% of the variable available energy in the 

fuel find its way to move a passenger car, with some 33% being dissipated 

mainly as frictional losses [1]. A significant proportion of the mechanical 

power losses of the engine arises at the sub-mechanisms of the internal 

combustion engine. 10% reduction in mechanical losses would lead to 1.5% 

reduction in fuel consumption [9]. Friction losses take place primarily at the 

pistons, piston rings, bearings and valve mechanism. Applying new friction 

modifiers as well as implementing novel coatings for some of the engine 

components such as valve train and piston rings/liner, can lead to reduction 

in the losses and improvement in fuel efficiency which is obviously desirable.  

 

 

Figure 1-1 Breakdown of passenger car energy consumption [1]. 

 

Tribologically loaded surfaces in power train and drive-line components must 

operate under high loading conditions. Design changes and the use of 

conventional technologies can, to a certain extent, cope with this demand, 

however, alternative surface engineering solutions are required to deal with 

these changes. In addition, lubricant additives (e.g. ZDDP) contain P- and S- 

which can be harmful to catalytic convertors and to the environment 

subsequently. Reduction in the losses and improvement in fuel efficiency 

can be achieved to some extent by using low viscosity oils and new friction 

modifiers as well as implementing novel coatings for engine components.   
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Moreover, reducing the wear and frictional losses to extend the life time and 

improve the efficiency of the engine components is a need. Thus, it is crucial 

to optimise coating and lubricant compatibility for achieving a system with 

better performance in terms of fuel economy and durability. 

 

The use of DLC coatings has increased over the last decade, particularly in 

high value racing engines, primarily due to their ability to provide good wear 

resistance with low friction. Commonly used friction modifiers and anti-wear 

additives are optimised to work on ferrous surfaces. Thus, researchers have 

started to consider how conventional lubricant additives interact with DLC 

surfaces but the results so far have been non-conclusive.   

 

DLC itself is not an appropriate description for a type of coating. it can have 

variable levels of hydrogenation, different application methods, different 

layered structures and different levels of doping.  Thus, a systematic study is 

required to accurately define how the characteristics of DLC affect the 

interactions with the lubricant additives and conversely how the structural 

changes of the lubricant additive affect the interaction with the DLC surface.  

The tribochemistry of DLC is essentially an area which needs more 

systematic attention and this research project has aimed to address this for 

a specific type of DLC coating and subset of lubricants.   

1.2. Rationale and Objectives of this Study 

In this work, the tribological performance and tribochemical interactions of a 

hydrogenated DLC coating under boundary lubrication conditions have been 

investigated. It should be borne in mind that entire replacement of the 

conventional ferrous components with those of novel coatings may not take 

place soon enough and therefore the conventional lubricants, initially 

optimised to work on the Fe-base surface, should still lubricate the coated 

parts. Therefore, it is important to know how the conventional lubricants 

would interact with the new coatings. The overall aim of the project was to 

improve the understanding of DLC lubrication to enable additive solutions to 

be tailored to DLC surfaces.  The specific objectives are: 
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 To assess how the nature of the fully formulated oils affects the 

tribochemical reactions at DLC interfaces in a hydrogenated DLC. 

This would provide a map of the overall performance of the fully 

formulated oils on the tribological performance of DLC in comparison 

to uncoated steel.    

 To study the effect of a MoDTC-type friction modifier (Mo-FM) 

concentration on the tribological performance of hydrogenated DLC 

coating under boundary lubrication conditions using fully formulated 

oils. This could elucidate whether or not additive solutions can be 

tailored for an optimum performance of DLC/lubricant. 
 

The performance of a commercial DLC coating lubricated with different fully 

formulated oils was investigated in this study. Oils were blended based on 

the formulations which are used in different regions of the world. The tests 

were performed in a reciprocating pin-on-plate tribotester and the test 

conditions were chosen to be representative to a valve-train system.  

1.3. Thesis Outline 

The outline of this thesis is as follows: 

 

In  Chapter 2 the basic concept of tribology which is absolutely crucial to 

understanding lubricant/DLC interaction is presented. In addition, different 

deposition techniques by which novel coatings are being produced are 

explained in detail. 

 

The literature around the lubricant/DLC interaction has been reviewed 

extensively in  Chapter 3. Moreover, the nature of  the tribofilm formed from 

known friction modifier and anti-wear additives is presented and the current 

understanding of the effect of different additives on the tribological 

performance of the ferrous surfaces as well as DLC coatings has been 

discussed.  
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Experimental details and the descriptions of the materials which have been 

used in this study are provided in  Chapter 4. In addition, surface analysis 

techniques which were conducted in this study have been explained in 

detail. 

 

In  Chapter 5, the overall performance of DLC coating using a range of 

commercial fully formulated oils was investigated followed by surface 

analysis which explained the obtained results. The tribological performance 

and the tribochemical interactions were compared with that of an uncoated 

steel system. 

 

Following the obtained results presented in  Chapter 5, one fully formulated 

oil was chosen and the effect of Mo-FM concentration in that particular oil 

was investigated in  Chapter 6. The idea was to see any deviation in terms of 

tribological performance which was observed in the previous chapter. In 

addition, the effect of test duration was studied for a better comparison of 

wear mechanisms between different oils. The effect of MoDTC type and 

counterpart type was also examined and the results are presented in this 

chapter. 

 

In  Chapter 7, a comprehensive discussion of the important obtained 

observations has been provided in relation with the published literature. In 

addition, the contributions made in this work are also highlighted. 

 

 Chapter 8 summarises the main conclusions obtained from this work and 

proposes potential future work. 
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Chapter 2 Tribology 

 

2.1. Introduction to Tribology 

Amidst the developments in engineering science and technology at an ever-

increasing rate and its tendency towards high efficiency and less energy 

loss, new aspects of science is introduced. Tribology is relatively a new word 

in engineering and most of the knowledge has been achieved after the 

second world war [10] and was defined in the United Kingdom in 1966 [11]. 

However, it may be considered as gathering previous known subjects of 

friction, wear and lubrication.  

 

Tribology is derived from the Greek word ‘tribos’ meaning rubbing or sliding 

[10]. Therefore, it can be thought of as the science of rubbing or, if stated 

more formally, “science of interactive surfaces in relative motions”. The 

scientific studies of tribology go back to the studies of friction carried out by 

Leonardo da Vinci (1452-1519) and lubrication science, as it is known today 

it all started with theory of Sir Isaac Newton (1642-1727), that fluid 

resistance to shear depended on the velocity gradient while, considerable 

studies of wear just appeared in the middle of the twentieth century [12].  

2.2. Friction 

Friction is a resistance which occurs when one body is forced to move 

tangentially over another [13]. It occurs in dry as well as lubricated contacts. 

In many applications, low friction is desirable as it results in less energy loss 

and a better efficiency. It should be mentioned, however, that high friction is 

desirable in particular applications (e.g. brakes, clutches. etc.) [14]. The 

coefficient of friction is defined by   
 

 
 where F is friction force and w is the 

normal load applied. 

2.3. Wear 

Wear is a progressive damage of the surface along with material loss which 

happens on the surface of a body due to its motion over another under load. 
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As a consequence of plastic deformation or/and material loss, there will be 

inefficiency in performance of industrial machines [15], it will limit the useful 

life of engineering components and it has a significant effect on reliability 

and consequently upcoming maintenance. Therefore researchers around the 

world have investigated wear and mechanisms by which it may occur. In 

addition, investigations have been made towards finding new ways of 

reducing and/or controlling the process of wear. Generally, there are five 

basic wear mechanisms.  

 

 Adhesive wear is almost the worst form of wear and least preventable 

one which occurs due to cold welding at asperity junctions. 

 Abrasive wear (see Figure  2-1) comes from cutting grooves from a softer 

surface when a harder surface moves over it either by asperities on a 

harder body (two-body abrasion) or by hard particles brought into the 

interface [16].  

 Fatigue wear is removal of material from a body by fatigue over a long 

period of time due to cyclic stress changes [13].  

 Corrosive wear (see Figure  2-1) occurs when chemical reaction and 

rubbing comes together at the same time (e.g. formation of chemical 

oxide layers on metal surfaces and following removal by rubbing).   

 Erosive wear is impact of hard particles carried by a fluid on the surface 

which results in damage on that surface and its rate depends upon the 

kinetic energy of the particles.  

 

Figure 2-1 Advanced stage of abrasive wear and corrosion in inner raceway 
and rollers of a spherical roller bearing [17]. 

 

Wear is a complex process since sometime more than one mechanism 

involves in its appearance. Galling and scuffing occur due to severe 
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adhesive wear and results in a catastrophic damage and roughened surface. 

High temperature is a consequence of friction heating occurred due to this 

kind of wear. In lubricated interface it is called scuffing and in non-lubricated 

interface it is called galling [14]. Scoring is an abrasive kind of wear which 

produces pattern of scratches on the surface and can cause severe failure in 

some cases [13]. Polishing is a phenomenon which appears by mild 

abrasive wear [16] sometimes combined with corrosive wear which will give 

a very smooth, often mirror-like, surface texture. It can lead to a catastrophic 

failure in lubricated components due to the fact that polished surface is 

unable to retain enough lubricant and will be starved of sufficient lubricant 

[14]. Fretting (shown in Figure  2-2) is phenomenon which is as a result of 

synergy between adhesive, corrosive and abrasive wear and usually 

happens between metal surfaces where the degree of relative motion is 

relatively small (e.g. splined flange) [14]. Pitting is a consequence of fatigue 

wear. Pits and craters can be seen on the surface as a result of this wear 

and it is a common damage in rolling element bearings where it operates 

under high vibration and noise [14]. 

 

 

Figure 2-2 Advanced (a) Fretting grooves worn into the raceways by axial 
movement of the rollers during transportation. (Courtesy of the Timken 
Company.) (b) Fretting on the outer diameter of an outer race ring 
caused by nonuniform seat in housing and Roller Bearing Damage [17]. 

 

It has been postulated by Archard that the total wear volume is proportional 

to the real contact area multiplied by the sliding distance [18] and is defined 

as:  

         
 

 
     

Equation 2-1 
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Where   is the wear volume (m3),   is the dimensionless wear coefficient, 

    is the real area of the contact (m2),   is the sliding distance (m),   is the 

load (N) and   is the hardness of the softer surface (Pa) [11]. Since defining 

a precise   is difficult, a rather more useful quantity than the value of     

alone is the ratio of   and   which is called dimensional wear coefficient       

and is defined as:  

  
 

  
 

Equation 2-2 

 

The unit of the dimensional wear coefficient is generally expressed as m3N-

1m-1 or mm3N-1mm-1. It should be considered that Archard law does not 

reflect the influence of lubricant chemistry and it is usually valid when 

mechanical mechanisms, adhesive wear in particular, are dominant [15]. 

2.4. Hetrzian Elastic Contact Analysis and Contact Geometry 

In many tribological applications, including rolling contact bearings, gears, 

cams and tappets, seals, etc., the contacting surfaces have low conformity 

resulting in very small contact areas and very high pressures, as a result. 

These stresses can be defined from the analytical formulae, based on the 

theory of elasticity, developed by Hertz in 1881 [19-21]. Hertz formulated the 

concept of a geometrically equivalent solid loaded against a perfectly rigid 

plane (Figure 2-3).  

 

 

Figure 2-3 Point contact between a sphere and a flat surface [22]. 
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Where reduced Young’s modulus is defined as: 

 

 

  
 

 

 
 
    

 

  
 

    
 

  
  Equation 2-3 

 

Where: 

   and    are the Poisson’s ratios of the contacting bodies “A” and “B”, 

respectively; 

 

   and    are the Young’s moduli of the contacting bodies “A” and “B”, 

respectively. 

 

The radii of curvature of a plane surface are infinite and symmetry of the 

sphere applies so that     =     =  and     =    =  . The reduced radius 

of curvature (    is defined as: 

 

 

  
 

 

  
 

 

  
 

 

Where: 

 

 

  
 

 

   
 

 

   
 

 

  
 

 

 
 

 

  
 

 

  
 

 

   
 

 

   
 

 

  
 

 

 
 

 

  
 

 

Thus: 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

Equation 2-4 

Maximum contact pressure (Hertzian stress) (Pa) is defined as: 

     
  

    
 Equation  2-5 
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Where:  

 

  is the normal load (N) and   is the radius of the contact area (m) and is 

defined as: 

 

   
    

  
 
 
  Equation  2-6 

 

Average contact pressure (Pa) is defined as: 

 

         
 

 
     

 

   
 Equation  2-7 

 

Maximum deflection  (m) is defined as: 

 

         
  

     
 
 
  Equation  2-8 

 

 

 Maximum shear stress (Pa) is located at : 

 

          (i.e. beneath the surface) Equation  2-9 

 

And is defined as: 

 

     
 

 
      Equation  2-10 

2.5. Lubrication 

Lubrication is defined by effective application of solid, liquid or gas between 

two bodies with the purpose of reducing friction and/or wear as one body 

moves over the other. The lubricant is a substance used to decrease friction 
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and wear and by means of that to provide smooth running and better life of 

tribological components [14]. The term lubricant is predominantly related to 

oils and greases but it comprises a wide range of materials including mineral 

oil, synthetic oil, grease, vegetable oil, water, air, process fluid, solid, etc. 

 

The form of lubrication involved in a tribological interface is dependant of 

materials of the surfaces, surface conformity and texture, lubricant properties 

and operating conditions (e.g. load, speed, temperature, environment and 

etc.). An easy way to classify the form of lubrication in a tribological interface 

is through lubrication regimes. They enable us to have an idea about the 

overall performance of the tribological system usually in terms of friction and 

wear. There are four lubrication regimes: 

 

 Hydrodynamic Lubrication: the surfaces are prevented to come into 

contact by a fluid lubricant film separation which is thick enough.  

 Boundary lubrication: (shown in Figure  2-4a) fluid film does not 

separate the surfaces and contact will occur over an area similar to the 

one in dry contact.   

 Mixed Lubrication: (shown in Figure  2-4b) a mixture of hydrodynamic 

and boundary lubrication is encountered.  

 Elastohydrodynamic: Lubrication: occurs under high pressure 

generated by low conformity and highly loaded interface [14]. 

 

  

(a) (b) 

Figure 2-4 Schematic view of (a): boundary lubrication and (b): mixed 
lubrication [14]. 
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Illustrated in Figure  2-5 is a modified Stribeck diagram where   is defined by: 

 

  
    

  
 

Equation  2-11 

 

Where,     is the Root Mean Square (RMS) roughness of the two surfaces in 

contact and is defined by: 

 

   √   
     

  

Equation  2-12 

 

    and     are the respective RMS surface roughness of the two solid 

surfaces and     , minimum film thickness for a point contact, is numerically 

defined as [21, 22]:  

 

    

  
      (

   

    
)
    

         (
 

     
)

      

            Equation  2-13 

Where: 

     is the minimum film thickness (m); 

  is the entraining surface velocity (m/s), 

i.e.            , where the 

subscripts‘ ’ and ‘ ’ refer to the

velocities of bodies ‘ ’ and ‘ ’

respectively; 

   is the dynamic viscosity at atmospheric 

pressure of the lubricant (Pas); 

   is the reduced Young's modulus (Pa) ; 

   is the reduced radius of curvature (m); 

  is the viscosity-pressure coefficient 

(m
2
/N) ; 

  is the contact load (N); 

  is the ellipticity parameter defined as: k 

= a/b, where ‘a’ is the semiaxis of the 

contact ellipse in the transverse direction 

(m) and ‘b’ is the semiaxis in the 

direction of motion (m). For point 

contact k=1. 



2: Tribology 

14 

 

Lambda ratio      is used in the modified version of Stribeck diagram due to 

the direct relation between lubrication regimes and the nature of the surface 

texture. In most of the cases in automotive applications, the lubrication 

regime is of boundary lubrication nature [15].  

 

 
Lambda Ratio, λ 

 

Figure 2-5 The modified Stribeck diagram [14]. 

 

2.5.1. Base Oils 

Different base oils are being used in the lubricants such as mineral oils, 

vegetable oils, synthetic oils and re-refined oils. American Petroleum 

Institute (API-1509) has classified them into five different categories based 

on the saturate content, sulphur content and viscosity index. In Table  2-1 the 

API classification of base oils is shown. Physical and chemical properties of 

base oils will influence the effectiveness of the additives blended in the 

automotive lubricants [23]. 

Table 2-1 Base oil categories [23]. 

Base oil Description Sulphur (%) Saturates (%) Viscosity 
index 

Group - I Solvent refined oils > 0.03% ≤90 > 80 to <120 

Group - II mineral oils < 0.03% ≥90 > 80 to <120 

Group - III mineral oils < 0.03% ≥90 > 120 

 Group - IV  All Polyalfaolefins (PAOs) 

 Group - V All base oil not in Group I –IV.  
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Base oils can be mineral or synthetic oils. Mineral oils are usually consisted 

of hydrocarbons together with nitrogen, oxygen and sulphur and are 

produced from natural crude oil. They start to degrade at temperatures 

above 80°C and therefore their oxidation stability is not as good as synthetic 

oils. Mineral oils are relatively cheap and used in applications with low loads, 

pressures and operating temperatures [23, 24]. 

 

Synthetic lubricants are hydrocarbons with a fully controlled chemical 

structure, commonly used as base oil. They have a better thermal stability, 

oxidative stability, viscosity and flow characteristics over a wide range of 

operating conditions which made them quite popular to be used as base oils. 

Polyalphaolefins (PAO’s) are among the most popular synthetic oils and are 

derived from ethylene and esters [23, 24].  

 

Depending on the application of the lubricant, an appropriate base oil should 

be selected. PAO's are free of the impurities or waxes which are usually 

found in conventional mineral oils. This will offer longer service life, good 

stability and good overall performance of the lubricant at both low and high 

temperatures. However, some useful elements such as sulphur and nitrogen 

that naturally exist in crude oil are absent in their composition, which should 

be taken into account when selecting the additive package for the lubricant 

[23, 24] .  

 

2.5.2. Additives 

Chemical additives are oil soluble chemicals or mixture of several chemicals 

introduced to the base oil to modify or improve the existing properties of the  

lubricant or add completely new properties to the base oil. This will increase 

useful life of operation of the lubricant and the component in contact. This 

will particularly affect the applications in which high temperature, pressure, 

and environment are involved [23, 25]. Based on their functionality, lubricant 

additives are either to protect the metal surfaces in the engines, such as 

anti-wear, anti-rust and anti-corrosion additives or to reinforce base stock 
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performance, such as antioxidants, dispersants, viscosity modifiers and pour 

point dispersants.  

 

Friction reduction in marine engines was first achieved using oiliness 

additives which was introduced in 1918 [26]. Later on, between 1930 and 

1940, a large group of additive classes, including pour point depressants, 

extreme pressure (EP) additives, viscosity modifiers, antioxidants, corrosion 

inhibitors and detergents, were discovered. Antiwear additives were first 

developed mainly to cope with problems arising in aviation applications at 

the time [27, 28] but, soon became a key component of engine motor oils 

[29]. Although the most important types of lubricant additives had been 

identified by the mid-1940s, much remains to be done in developing new 

chemistries. In Figure  2-6, chronology of development of main classes of 

lubricant additive is given [29].  

 

 

Figure 2-6 Chronology of development of main classes of lubricant additive 
[29]. 

 

The most common additives which are being used in lubricants are 

described as follows. 
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2.5.2.1. Extreme Pressure/Anti-wear 

Generally adding extreme pressure/anti wear (EP/AW) mixtures to the 

lubricant leads to increase in the boundary lubrication abilities of the 

lubricant to decrease friction and prevent scuffing and scoring wear. EP 

additives, generally made from sulphur or phosphorus, chemically interact 

with the surface to make a lubricous protective layer on the surface. On the 

other hand, AW additives with long chain polar molecules of fatty oils, acids, 

or esters, create sacrificial lubricious adsorbed layers on the surface [25]. 

Zinc dialkyldithiophosphates (ZDDPs) are by far one of the most common 

EP/AW additives which can generate boundary lubrication films by chemical 

reactions with the surface and provide the greatest film strength which can 

be applied in most severe operating conditions [14, 30].  

 

2.5.2.2. Friction Modifiers 

Friction modifiers are employed to reduce friction, increase oil film strength 

and to prevent oil film rupture by forming surface films [23]. Laboratory tests 

have shown that a variety of esters, amides and metal soaps decrease up to 

30% of friction. Modern engine oils often embody a friction modifier [14]. 

These additives fall into two categories; the physically absorbed fatty acids 

and amides, and chemically reactive species such as Molybdenum 

dithiocarbomate (MoDTC). The latter is commonly being used as a friction 

modifier in modern engine oils [14, 30]. 

 

2.5.2.3. Detergents 

Detergents are used in the lubricants to reduce or prevent deposits in 

engines operated at high temperatures. They control build-up of varnish and 

sludge by reacting with oxidation products to form oil soluble material which 

remains suspended. They also neutralize acids and clean deposits [23]. The 

common detergents which are being used today are organic soaps and salts 

of alkaline earth metals such as calcium, magnesium, sodium. Some of the 

most common metal-containing detergents used in the oil formulations 

include but not limited to calcium and magnesium sulphonates and calcium 

phenates [23, 30].   
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2.5.2.4. Dispersants 

Dispersants are to disperse or suspend fine particles of soot, potential 

sludge and varnish material into the oil particularly those formed at low 

temperature operation. They act as surface active compounds by adsorbing 

at the surface of the soot and prevent them from forming bigger particles 

[23]. Dispersants do not contain any metal and therefore are ashless. 

Typical dispersants are polymeric succinimides, succinic esters of polyols 

and Manich base [23, 30].  

 

2.5.2.5. Antioxidants  

Antioxidants can minimize the formation of resins, varnish, acids, sludge and 

increase the life of the oil, as a result. Their mode of action is to react with 

organic peroxides, terminating the oxidation chain. They reduce formation of 

acids by decreasing oxygen take up in the oil. In addition they prevent 

catalytic reactions [23]. 

 

2.5.2.6. Viscosity Index (VI) Improvers 

VI property is usually dependent upon the type of base oil chosen. However, 

polymeric additives are used to increase the VI. These long chain polymers 

are the key to the success of multi-grade mineral, engine oils (e.g. SAE 

10W-30) to gain adequate viscosity for high and low temperature 

performances. However, the polymers are just capable of improving VI 

under minimal shear stress and at high shear stresses, related to those in 

rolling bearings; are unable to stop the flow to increase viscosity. 

Furthermore, under specific operating conditions (e.g. high shear), the 

polymers break down earlier than the lubricant, therefore acting as the 

limiting factor in the lubricant lifetime [25]. 

 

2.5.2.7. Other Additives 

Apart from the mentioned additives which are the main lubricant additives, 

there are many other important additive groups such as pour point 

depressants, antifoaming agents, corrosion inhibitors, rust inhibitors, 

demulsifies, emulsifiers, etc. , each of which has a different mode of action 

by which they protect the surface and enhance the properties of the base oil 

[25]. These additives are usually present in the finished lubricant and play a 

great role with regards to the lubricant performance in the lubricated system.  
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2.6. Surface Coating Deposition 

2.6.1. Physical Vapour Deposition (PVD) 

PVD is a deposition technique in which material is vaporized from a solid or 

liquid source in the form of atoms or molecules, transported in the form of a 

vapour through a vacuum or low pressure gaseous (or plasma) environment 

to the substrate where it condenses. PVD is usually used to deposit very thin 

films in the range of a few nanometres to about ten micrometres; however 

they can also be applied to produce multilayer coatings, graded composition 

deposits, very thick deposits and freestanding structures. Using PVD, the 

substrates with different sizes from very small to very large (e.g. 10' x 12' 

glass panels) and almost any shapes can be coated. PVD processes 

typically have deposition rate of 1–10 nanometres per second. They can 

deposit films of elements and alloys as well as compounds. Compounds can 

be formed by the reaction of depositing material with the ambient gas 

environment such as nitrogen or with a co-depositing material (e.g. titanium 

carbide, TiC). Typical process temperatures in PVD are in the range of 200-

300oC. In a PVD process, prior to coating deposition, the substrate is 

bombarded with argon ions for cleaning purposes. One of the main 

disadvantages of PVD process is that it is a line-of-sight technique leading to 

poor surface coverage, and thus makes coating of complex shapes almost 

impossible [31].  

 

2.6.2. Sputtering/DC Magnetron Sputtering 

The term sputtering can be described as the removal of material from a solid 

target by the bombardment of high energy ion particles. The ejected atoms 

will be then deposited on the substrate and form the desired thin film of the 

target material onto the substrate surface.  

 

DC magnetron sputtering is one of different types of sputtering in which 

sputtering occurs in a vacuum chamber where the path of the generated 

atoms are controlled by magnetrons. An array of high voltage magnetron 

cathodes are placed beneath the target. A low pressure gas, commonly 

argon, will be introduced into the deposition chamber while applying an 

electric field between the target (cathode) and the substrate (anode). This 

will cause ionisation of the gas (argon ) atoms and generation of a high flow  

between the target and the substrate. The generated high energy plasma 
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hits the target and results in ejection of atoms from the target material and 

the atoms bond with the substrate.  

 

 

Figure 2-7 Schematic diagram of a DC-magnetron sputtering unit. 

 

2.6.3. Chemical Vapour Deposition (CVD) 

CVD refers to “the deposition of a solid on a heated surface from a chemical 

reaction in the vapour phase”. CVD are among vapour-transfer processes 

which is atomistic in nature. In other words, the deposition species are 

atoms or molecules or a combination of these. In many respects, CVD will 

be followed by PVD or a combination of both will be applied to deposit a 

coating onto the substrate, especially, in the newer processes such as 

plasma enhanced CVD which will be explained as follows [32].  
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1- Diffusion in of reactants through boundary layer. 

2- Absorption of reactants on substrate. 

3- Chemical reaction takes place. 

4- Desorption of absorbed species. 

5- Diffusion out of by-products. 

Figure 2-8 Sequence of events during deposition [32]. 

 

2.6.4. Plasma Enhanced Chemical Vapour Deposition (PECVD) 

The PECVD is a process of depositing thin films from a gas phase to solid 

state on a substrate. It can be considered as combination of PVD and CVD 

systems where the glow discharge of PVD facilitates plasma creation of the 

reacting gases. The main advantage of PECVD is the lower deposition 

temperature compared to that of thermally driven CVD while maintaining a 

good deposition rates and high quality product. More recently, the PECVD of 

diamond films has captivated a large amount of interest [33]. The schematic 

diagram of the PECVD process is shown in Figure  2-9. 
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Figure 2-9 Schematic diagram of PECVD system. 
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Chapter 3 Literature Review 

 

3.1. Introduction 

With the application of non-ferrous hard coatings, lubricant/surface 

interactions, particularly when the components experience the 

boundary/mixed lubrication regime, have become a new challenge for both 

researchers and industry. In this chapter, a comprehensive review of the 

current understanding of the lubricant additives and their interactions with 

ferrous surfaces, which are key to understanding lubricant/coating 

interactions, has been provided. Furthermore, Diamond-like carbon (DLC) 

coatings and their properties have been described. This review will aim to 

cover the current understanding of lubricant/DLC interactions and the effect 

of conventional lubricant additives on the tribological performance of DLC 

coatings has been shown.  

3.2. Lubricant Additives and their Interactions with Ferrous 

Surfaces 

Commonly-used friction modifiers and anti-wear additives are optimized to 

form tribofilms on ferrous surfaces. Molybdenum dithiocarbamate (MoDTC) 

and Zinc dialkyldithiophosphates (ZDDP) are well-known friction modifier 

and anti-wear additives respectively, used for ferrous surfaces. MoS2 low 

friction sheets, derived from MoDTC decomposition, provide low friction at 

tribological contacts [34-36]. ZDDP offers anti-wear properties by forming 

sulphide and phosphate containing tribofilms at the ferrous surfaces [35-37]. 

In addition, MoDTC has been found to improve the wear resistance of the 

ferrous surfaces by forming N-containing species in the tribofilm [35]. With 

the emergence of new non-ferrous coatings, researchers have started to 

consider how different lubricant additives interact with various types of hard 

coatings such as DLC coatings under boundary lubrication. However, in 

order to understand how the current lubricant additives would interact with 

this novel surfaces (non-ferrous), there is a need to understand and review 

how these additives will behave on ferrous materials and the mechanisms by 

which they form tribofilms on the surface.  
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3.2.1. Zinc Dialkyldithiophosphate (ZDDP) 

Zinc dialkyldithiophosphate (generally referred to as ZDDP) additive is one 

the most common anti-wear additives which are being used in engine oils. It 

offers a wide range of properties which provide the lubricant with the 

required characteristics such as  anti-wear, extreme pressure (EP) and anti-

oxidant action [29].  

 

Following the applications of phosphorous and sulphur containing additives 

which started in the 1930s, ZDDP was first introduced by Lubrizol in 1941 as 

antioxidant additive; however, its ability as anti-wear additive, by forming 

reaction films on rubbing metal surfaces, was noticed in 1955 and was 

mainly used in engines to prevent excessive wear in the cam and follower 

contact [29, 38, 39].  

 

With the introduction of exhaust after treatment system catalysts in 1990s, 

ZDDP was found to have a  detrimental effect on the catalytic convertors as 

ZDDP-derived phosphorus and sulphur oxidised the exhaust catalysts which 

in turn could reduce the life of the exhaust treatment system [29]. In order to 

cope with this issue and due to the fact that ZDDP is the only source of P in 

the engine lubricant, restrictions on the ZDDP concentration have been 

considered. However, ZDDP has been the most effective anti-wear additive 

used in the lubricants and limitations on its concentration can result in 

ineffectiveness of the lubricant in terms of wear performance [38]. This is 

where the surface engineering comes into equation by providing an 

alternative solution which could reduce the dependence on ZDDP additive. 

One of the potential solutions is to apply hard coatings such as Diamond-

Like Carbon (DLC).  

 

ZDDP’s molecular structure is rather complex and is shown in Figure  3-1. 

The radical group can be alkyl or aryl and its task is to help to increase the 

solubility additive in the base oil.   
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Figure 3-1 Molecular structure of ZDDP [29]. 

 

ZDDP is the product of reaction between alcohols, phosphorus 

pentasulphide and zinc slats. Depending on the type of organic alcohol used 

to synthesize ZDDP, it will fall into three different types namely, aryl ZDDP, 

primary ZDDP (CH3CH2CH2CH2O-), secondary ZDDP (CH3CH2CH(CH3)O-) 

[40]. The ranking of anti-wear effectiveness of different type of ZDDPs are as 

follows [29]: 

 

Secondary alkyl > primary alkyl > aryl  

 

Aryl ZDDPs which are more thermally stable are preferably used in diesel 

engine whereas more reactive primary and secondary ZDDPs are widely 

used in gasoline engines [41, 42]. It has been reported that primary ZDDP 

gives more wear than secondary ZDDP which was mainly related to the 

thermal stability of the additives, molecular weight and/or concentration of 

unreacted acids used in the production of ZDDP [43].  

 

The effectiveness of ZDDP is correlated to the formation of a tribofilm on the 

surface followed by its chemical activation with the surface. ZDDP is mainly 

efficient in non-conforming surfaces where elastohydrodynamic lubrication 

breaks down such as cam and follower in valve train system [44]. 

 

3.2.2. Tribological Performance of ZDDP on Ferrous Surfaces 

Different factors have been found to influence tribological performance of 

ZDDP such as temperature, contact pressure and the surface properties [45-

47]. 
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ZDDP was shown to be more effective in wear reduction when it was used in 

oils lubricating fully hardened metals [45]. It was shown that formation and 

depletion of the ZDDP tribofilm resulted in loss of materials and higher wear 

as a result [45]. The hardness values of two materials rubbing against each 

other was suggested to be as close as possible for ZDDP to be effective in 

film formation on the surface. This would in turn lead to a shorter running-in 

period, easier growth of surface film and less cutting and ploughing action 

[46, 47]. Also, roughness of two interacting surfaces was suggested to be 

similar in order to have a better wear protection by ZDDP [46].   

 

Another factor which affects the ZDDP effectiveness in wear reduction is 

contact load. ZDDP was shown to reduce wear at low loads while increased 

the wear rate when the load was high. This was attributed to the lower 

sulphur content of the formed tribofilm at high loads. Sulphides are much 

harder than polyphosphates and reduction in sulphite content in the film 

would lead to lower mechanical strength and higher wear, as a result [48]. 

ZDDP-derived hard sulphides enhance the load bearing capability which in 

turn protect the surface from extreme pressure [48, 49]. Sliding speed was 

also found to affect the film formation from ZDDP [46, 50].  

  

ZDDP starts to form a physisorbed film at around 50oC and a chemisorbed 

film at temperatures above 80oC [46]. It was suggested that higher sliding 

speed would increase the chemisorbed film formation from ZDDP [51]. The 

thickness of the tribofilm formed from ZDDP was shown to be 5-50 nm and 

on the wear scar [52]. This film thickness was reported to vary depending on 

the temperature and the ZDDP concentration in the lubricant [53, 54].  

 

Therefore, it seems that operating conditions play a great role in providing 

the improved anti-wear performance by ZDDP and sufficient supply of the 

additive in the oil to replenish the tribofilm is crucial. 

 

Reports that have been published about the effect of ZDDP on the friction 

performance have been contradictory and quite complicated. In the 

literature, the presence of ZDDP in the lubricants have been reported to 

increase the friction [48, 55-58]. It was shown that ZDDP has a detrimental 
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effect on the effectiveness of friction modifiers. The increase in friction in the 

presence of ZDDP was attributed to the anti-wear film formation [56]. It was 

suggested that increase in roughness due to the film formation could 

promote boundary lubrication which in turn increased the friction values [58]. 

The highest impact of ZDDP on increasing the friction was seen mainly  in 

mixed lubrication regime and to some extent in boundary lubrication. 

However, friction change was not observed in EHL lubrication [59]. Besides 

the effect of higher roughness of ZDDP tribofilm, ZDDP was shown to inhibit 

the lubricant entrainment into the contact resulting in a reduced EHL film 

thickness compared to ZDDP-free lubricants [60, 61]. In contrast, in some 

other literature, addition of ZDDP to the lubricant was found to have either 

neutral effect [62] or a decrease on friction [63].  

 

The difference in the reported results could be related to different test 

parameters (i.e. additive mixture, material, temperature, etc.) which was 

used in each study. 

 

3.2.3. Chemical Properties of ZDDP tribofilm and Mechanisms of 

Wear Reduction 

In order to understand the mechanisms by which ZDDP could facilitate  low 

wear, it is crucial to know the chemical species as well as the elements 

which are present in the formed tribofilm. ZDDP tribofilm is made up of 

inorganic polymer materials containing zinc, phosphorus, oxygen and 

sulphur [64-66].  

 

Different mechanisms have been proposed for the ZDDP decomposition 

such as, surface adsorption [67, 68], thermal degradation [69, 70], thermo 

oxidation and hydrolysis [64, 65]. It was shown that increasing temperature 

resulted in higher ZDDP decomposition rate which indicates that ZDDP 

decomposition has a thermal nature [69]. In another literature, the chemical 

reactivity of ZDDP with iron was shown to be key for anti-wear property of 

ZDDP. Hydrolytic mechanism of ZDDP was proposes by Spedding and 

Watkins [64, 65]. They concluded that ZDDP breakdown is water-catalysed 

and elimination of water from the reaction would supress the ZDDP 

decomposition.  
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A layered film structure has been proposed by Bell et al. [71] and is given in 

Figure 3-2. Based on this model, the top layer of the ZDDP tribofilm 

composed of glassy phosphate films whereas the layer near the surface was 

rich in iron sulphide and iron oxides.   

 

 

Figure 3-2 ZDDP film structure [71]. 

 

Using surface sensitive analytical techniques such as X-ray photoelectron 

spectroscopy (XPS) and X-ray Absorption Near Edge Structure (XANES), 

Yin et al. [72] showed that increasing the test duration, enhanced the long 

chain polyphosphate formation on the topmost surface. XPS analysis 

revealed that the thickness of film after 12 h tests was much thicker than that 

of 30 min test. They also concluded that the rate of ZDDP decomposition 

would increase with increase in temperature and load. In addition, more 

ZDDP was detected on the tribofilm when concentration of ZDDP was higher 

in the lubricant. 

 

In Figure  3-3, a simple model for ZDDP tribofilm proposed by Martin et al. 

[73] is shown. Based on the proposed model, the top layer is rich in long 

chain zinc poly(thio)phosphate polymer-like material with the thickness of 

about 10 nm. A mixed iron and zinc short chain polyphosphate with a 

gradient concentration of about 100 nm thick was formed in the bulk 

containing metal sulphide precipitates which was likely to be ZnS and ZnO. 

Interestingly, no oxide/sulphide layer was found at the interface between the 

phosphate and the steel surface[73].  
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Figure 3-3 Two-layer model of ZDDP tribofilm [73]. 

 

No carbon was evident in the bulk of the ZDDP tribofilm (Figure  3-4) [74]. It 

was proposed that sulphur might partly substitute for oxygen in the polymer 

chain backbone (O–P–S instead of O–P–O). Thermo-oxidative 

decomposition of ZDDP results in the formation of phosphate film on a steel 

surface. It will be followed by a reaction between the phosphate and the iron 

oxide native layer. The reaction between the phosphate and Fe2O3, provides 

an inter-grown layer based on the acid–base chemical reaction (HSAB). Iron 

oxide particles can be formed during the wear process, when the thermal 

film is disrupted and dissolved oxygen from the lubricant reacts with the 

nascent surface. Iron oxide particles could also originate from other parts of 

the mechanical system. Iron oxide particles, Fe2O3 in particular, can cause 

severe damage by abrasive wear of the film. This is mainly correlated  to the 

high hardness of the crystallized oxide as well as its high melting point 

(>1200oC) [74].  

 

An important aspect of the anti-wear mechanism of ZDDP, which has been 

identified, is the ability of polyphosphate glasses to eliminate abrasive 

particles of metal oxides through tribochemical reactions [73, 75]. The 

proposed model by Martin et al. [73] illustrates that the third body abrasive 

iron oxide particles can be eliminated by the formation of short-chain mixed 

iron/zinc phosphate glasses as a result of classical acid–base chemical 

reactions (HSAB). Fe+3 is harder Lewis acid compared to Zn2+ and the cation 

exchange is more favourable based on the HSAB principle [76]. On the other 

hand, phosphates are hard bases and will react with the harder acid leading 
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to reaction of iron and the phosphate which in turn results in elimination of 

the iron oxide. Starting from the polymer-like zinc metaphosphate for 

example, a possible route for the elimination of 1 mole of Fe2O3 was 

suggested to be as follows [73, 74, 77]: 

   

5Zn(PO3)2 + Fe2O3  Fe2Zn3P10O31 + 2ZnO 

(ZnO,P2O5)         (Fe2O3,3ZnO,5P2O5) 

 

The above reaction illustrates the cation exchange process between iron 

oxide (as Fe2O3 in this case) and zinc (as ZnO) [74].  

 

 

Figure 3-4 ZDDP tribofilm profile  obtained using Auger Electron 
Spectroscopy (AES). The top layer contains only zinc 
polythiophosphate. There is no carbon in the film (except contamination 
at the outmost surface) [74]. 

 

Molecular Dynamics (MD) simulation has been used by authors [74, 75, 78] 

to study very basic and important tribochemical reactions occurring during 

sliding between the glassy zinc phosphates and the nano-oxide particle. 

Martin et al. [74] have recently developed a classical molecular dynamics 
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approach to study the HSAB reactions occurring in the anti-wear chemistry 

of ZDDP. They have proposed that the combined effects of pressure and 

shear in the confined interface region is crucial for the tribochemical reaction 

of ZDDP and that the particle cannot be eliminated only by pressure 

(Figure  3-5).  

 

 

Figure 3-5 The MD simulation showing the combined effects of pressure and 
shear is essential for the digestion of iron oxide embedded in the zinc 
metaphosphate by MD [74]. 

 

In another study on MD calculation coupled with finite element (FM) method, 

the mixing of zinc phosphate and native iron oxide on ferrous substrate was 

found to be responsible for both increasing mechanical hardness of the 

tribofilm material and its adhesion to the iron oxide substrate [79].  

 

The role of the nature of manganese oxide and chromium oxide, which are  

generally found In chemical composition of steel substrate, in achieving anti-

wear effect of ZDDP has also been investigated using MD. It was found that, 

in spite of having higher melting point and hardness compared to iron 

oxides, manganese oxide and chromium oxide are eliminated from the 
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system by zinc phosphate under the combined effects of pressure and 

shear, in a similar manner to digestion of iron oxides Figure  3-6 [75].  

 

 

Figure 3-6  MD simulation of digestion of manganese and chromium oxides 
nanoparticles embedded in zinc metaphosphate matrix under the effect 
of (a) pressure and (b) combined pressure and shear. Temperature 
=353 K. Steps of simulation (1,000,000) [75].  

 

Another layer structure model for the ZDDP film formation has been 

proposed by Fuller et al. [80]. In this model, the presence of Fe2O3 was not 

found to be essential for the anti-wear film formation. It was shown that 

hydrolysis of polyphosphates is involved in the formation of short chain 

polyphosphates. The presence of a linkage isomer of ZDDP ( LI-ZDDP) was 

found to be important for the ZDDP film formation. The proposed ZDDP film 

formation processes are as follows: 

 

1. ZDDP is adsorbed onto metal surface: 

Zn((RO)2PS2)2 (solution) => Zn((RO)2PS2)2 (ZDDP absorbed) 

 

2. ZDDP in solution is converted into a linkage isomer of ZDDP: 

          Zn((RO)2PS2)2 (solution) => Zn(O2P(SR)2)2 (LI-ZDDP in solution) 
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3. The linkage isomer of ZDDP in the solution is adsorbed onto the 

metal surface: 

Zn(O2P(SR)2)2 (solution) => Zn(O2P(SR)2)2(LI-ZDDP absorbed) 

 

4. Thermal degradation of the adsorbed linkage isomer of ZDDP by 

O2 or ROOH to form long chain polyphosphate Zn(PO3)2: 

                  Zn(RO)4P2S4 + O2 (or ROOH)                    Zn(POxS3-x)n + Sulphur 

species 

 

5. Hydrolysis of polyphosphate by the water present in the base oil to 

form short chain polyphosphates: 

      7Zn(PO3)2 + 6H2O => Zn7(P5O16)2 + 4H3PO4 

     2Zn(PO3)2 + 3H2O => Zn2P2O7 + 2H3PO4 

 

Another hypothesis regarding the mechanism by which ZDDP can protect 

the surface from further wear is the action of ZDDP phosphate film as a 

viscous lubricant in boundary lubrication [81]. Although, temperature and 

shear would affect the viscosity of the glass. Formation of ZDDP-derived 

glassy phosphate could also passivate the surface against further thermo-

oxidative reactions (e.g. corrosion wear). In another work by Williams [82], 

the effectiveness of ZDDP in reducing wear was related  to the formation of 

a tribofilm which is softer than the substrate and could reduce the asperities 

in contact.  

 

3.2.4. Mechanical Properties of ZDDP Tribofilm 

Many researchers have studied and evaluated mechanical properties of 

ZDDP tribofilms [83-91]. They have used different techniques (mainly 

nanoindentation) to evaluate the thickness and mechanical properties of the 

films formed from ZDDP-containing oils. Bec and Tonck [84] used 

nanoindentation analysis along with imaging procedures in order to measure 

the hardness and Young’s modulus of the tribofilm. They found that the 
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ZDDP film is heterogeneous and that mechanical properties of the film 

showed reduction in their values. Ye et al. [92] measured the mechanical 

properties of ZDDP and ZDDP/MoDTC tribofilms and did not find any 

difference with regards to the mechanical properties of the films. They 

reported that the values of hardness and the reduced Young’s modulus 

gradually increased with increase in depth.  In another study by Pidduck and 

Smith [85], the thickness of the ZDDP tribofilm was found to be dependent 

on the oil formulation. They found that the film thickness was in the range of 

100-140 nm when base oil was formulated with ZDDP, detergent and 

dispersant.  Bec et al. [93] used combination of nanoindentation experiments 

with continuous stiffness measurements and a specific developed 

rheological model to determine the nanomechanical properties of the films 

formed from ZDDP-containing oils. They found that tribofilm formed from 

ZDDP + MoDTC  was heterogeneous whereas its thickness and mechanical 

properties varied depending on the test location. The films were found to be 

mono layer at some locations and bilayered structure in other places. In 

contrast, the film formed from ZDDP+ MoDTC + detergent/dispersant was 

found to be homogeneous. Only its thickness was found to vary, depending 

on the test area. Table  3-1 summarises some of the obtained results by 

authors [84, 85, 92, 93].  The variation in mechanical properties of ZDDP 

could be due to numerous  factors. These include different test parameters, 

different type of blends, different concentration of ZDDP and different 

measurement techniques. 

 

In addition, Graham et al. [87] used Atomic Force Microscopy (AFM) and 

Infinite Focus Microscopy (IFM) to provide high resolution topographic 

images and  to measure quantitative nanomechanical properties of the films 

derived from alkyl and aryl ZDDP. They found different distinct regions within 

alkyl films with respect to topography and mechanical properties. The values 

obtained for indentation modulus of alkyl was in the range of 37±7.3 to 

209±38 GPa whereas the maximum value of the indentation modulus for aryl 
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films was found to be 50±10 GPa. This could explain the better wear 

protection provided by alkyl ZDDPs compared to aryl ZDDPs.  

 

Table 3-1 Mechanical properties of tribofilmed formed from ZDDP-containing 
oils. 

Author(s) [84] [92] [93] [85] 

Technique(s) Nanoindentation/  

Imaging procedures 

Nanoindentation/ 

AFM 

Nanoindentation/  

rheological film model 

AFM 

Unwashed 
film 

Solvent 
washed 

 

Penetration Depth (nm) 3 30 5 30 - - - 

ZDDP film E (GPa) 78-115 127-156 150 215 - 

H (GPa) 2-4.5 8.4-11 6 10 

Film 
thickness 
(nm) 

- - ≤100 

ZDDP+ 
MoDTC 
film 

E (GPa) - 150 215 5-80 8-110 

H (GPa) 6 10 0.2-4.8 0.3-3 

Film 
thickness 
(nm) 

≤100 60-120 3-175 

ZDDP+ 
FM+ 
detergent, 
dispersant 

E (GPa) - - 10-80 15-120 

H (GPa) 1-4 0.3-3.5 

Film 
thickness 
(nm) 

2-147 5-125 100-140 

 

Aktary et al. [88] used Scanning Electron Microscopy (SEM) and infrared 

spectroscopy and showed that precipitation of ZDDP products resulted in 

formation and growth of islands containing long chain polyphosphates. 

These islands were found to be surrounded by shorter chain polyphosphates 

which were formed beneath the top layer. Some other studies [92, 94] 

showed that ZDDP anti-wear tribofilm is a mixture of white patches and dark 

strips formed along sliding direction [92, 94]. Nicholls et al. [95] suggested 

that the raised white patches are long chain polyphosphates and the darks 

areas are mainly consisted of short chain polyphosphates and 

undecomposed ZDDP. Figure 3-7 shows a schematic diagram of the ZDDP 

tribofilm pad structure. 
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Figure 3-7 Schematic diagram of pad structure and composition [29]. 

 

In Figure  3-8, the schematic picture of the most likely ZDDP tribofilm layers 

structure and their mechanical properties is given [89].  

 

Figure 3-8 Schematic picture of the structure and mechanical properties of 
the full anti-wear film formed by simple ZDTP solution [89]. 

 

Nevertheless, based on the published literature, the anti-wear tribofims have 

been found to be patchy and inhomogeneous and different mechanical 

properties (i.e. hardness and elastic modulus), have been reported for ZDDP 

tribofilm. This controversy could be related to different test methods, 

measurement techniques and surface preparation used. However, it is 
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apparent that the obtained values for hardness and modulus of the film 

formed from ZDDP are generally smaller than the substrate.  

 

3.2.5. Molybdenum Dialkyl Dithiocarbamate (MoDTC)  

One of the most important types of friction modifier are molybdenum-sulphur 

containing compounds. They were shown to reduce friction by forming a 

layer-lattice structure of MoS2 film on ferrous surfaces [96-105]. The bonding 

between atom species in MoS2 molecules are strong covalent whereas 

between the layers weak Van der Waals attraction exist. This weak Van der 

Waals forces between the layers facilitates low friction by maintaining easy 

shear within the molecule. The MoS2 solid state structure is shown in 

Figure 3-9 [96].  

 

Figure 3-9 MoS2 solid state structure [96]. 

 

Molybdenum disulphide adheres freely to most of the substrates. Mo-S 

complexes are not only able to provide low friction but also enhance the load 

bearing capability [106, 107]. They are reported to provide EP and anti-wear 

properties as well as friction reduction.  
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One of the most commonly used Mo-S compound friction modifier additives 

is molybdenum dialkyl dithiocarbamate (MoDTC) [97, 98]. Two Mo atoms 

are present in the centre of the molecule and for that reason this compound 

is also called Moly Dimer. The structure of MoDTC is shown in Figure  3-10. 

 

 

Figure 3-10 MoDTC structure 

 

High temperature ( > 200oC) and rubbing is required for the formation of low 

friction MoS2 from MoDTC. The MoDTC effectiveness in giving low friction 

depends on its concentration in the oil, the MoDTC type, type of contact, 

load and surface roughness and varies with the operating temperature [97, 

100, 101]. The surface analysis provided inside the wear scar showed the 

formation of MoS2 and MoO3 whereas only MoO3 was detected outside of 

the wear scar [97, 108]. Furthermore, Grossiord et al. [34] detected  

undecomposed MoDTC in the tribofilm. They proposed MoDTC 

decomposition in a two-stage model. According to their model, first stage of 

the MoDTC decomposition is electron transfer at the Mo–S chemical bond in 

MoDTC (Figure  3-11a), resulting in the formation of three free radicals 

(Figure  3-11a b): one relates to the core of MoDTC and the other two to the 

chain ends. The third step is the formation of MoS2 and MoO2 from core 

radical decomposition (Figure  3-11c) which can oxidise in the presence of 

O2.  
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Figure 3-11 Model proposed for MoDTC decomposition [34] . 

 

MD modelling was used to study the dynamics of MoS2 tribofilm formation 

on Fe substrate. It was shown that, as a result of the tribochemical reactions, 

MoS2 layer which was initially amorphous, self-organized its structure and 

formed layered MoS2 tribofilm. MoS2 layer was initially generated on the Fe 

surface, followed by the formation of an intermediate MoS2 layer 

(Figure  3-12) [109].  

 

Figure 3-12 (a) MD model, (b) behaviour of MoS2 layer during simulation 
from x–z direction, and (c) behaviour of MoS2 layer near the upper Fe 
substrate from x–y direction [109]. 
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The chemical reaction dynamics of the MoDTC molecule in the heated 

engine oil phase and on the nascent iron surface were investigated by 

Onodera et al. [110]. It was suggested that, in the heated oil phase, the 

MoDTC molecule produced its linkage isomer and, subsequently, a weak 

bonding intermediate. They have demonstrated that the adsorbed molecule 

decomposed into molecular MoS2 on the rubbing nascent iron surface. This 

indicated the initiation of MoS2 solid film formation. In addition, they 

suggested that this dissociation reaction dynamics were initiated by electron 

donation from the nascent surface and promoted by mechanical force during 

dynamic friction [110] . 

 

 

Figure 3-13 MoS2 formation from LI-MoDTC molecule adsorbed on nascent 
Fe surface [110].  

 

During rubbing of the two surfaces over each other in tribological contacts, 

metal layer will be exposed after mechanical removal of the iron oxide which 

will form a nascent iron surface. Morina et al. [35] suggested that, the 

MoDTC-derived thiuram disulphide further decomposes and reacts with the 
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nascent iron surface leading to formation of iron sulphide. According to the 

HSAB principle, S2− are soft base and Fe atoms are hard acids resulting in 

reaction of iron and sulphide which in turn forms FeSx, leaving the N part to 

deposit on the surface. Iron sulphide could reduce wear by acting as a 

protective layer and by that enhance the formation of a friction-reducing 

layer of MoS2 from the other radical.  

 

Moly Trimer is a term referred to one type of MoDTC with trinuclear  

structure and composed of three Mo atoms around a central core, as shown 

in Figure  3-14. In the molecular structure of Moly Trimer, unlike Moly Dimer 

(see Figure  3-10), no oxygen atom is present in the trinuclear core. Oxygen 

in the Moly Dimer contributes significantly to the formation of MoO3 which is 

detrimental to both wear and friction performance. 

 

 

 

Figure 3-14 Molecular structure of Trinuclear MoDTC (Moly Trimer) [111] 

 

The mechanisms by which Moly Trimer is decomposed thermally is shown in 

Figure  3-15 [111]. The trinuclear additive molecular structure is composed of 

three Mo atoms that are linked by three disulfide ligands. The remaining 

coordination sphere of each Mo atom is filled with a dithiocarbamate ligand. 

The oxidation state of Mo in Moly Dimer is +5 and requires a reduction to 
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oxidation state of +4 before it can form low-friction MoS2. In addition, the 

presence of oxygen in the Moly Dimer structure is detrimental to the friction 

performance as it leads to the formation of  molybdenum oxide. In contrast, 

the oxidation state of Moly Trimer is +4 and it can readily react to form MoS2 

which in turn can facilitate friction reduction. Besides, the molecular structure 

of the trinuclear core resembles the hexagonal units found in lamellar MoS2.  

Therefore, for the formation of MoS2, the loss of the apical sulphur atom and 

dithiocarbamate is required which is then followed by the aggregation of 

MoS2. Although, the thermal decomposition of Moly Trimer to form MoS2 has 

been verified,  the tribochemical contribution has not been explored [111]. 

 

 

Figure 3-15 Mechanism of thermal MoS2 formation from Moly Trimer [111] 

 

3.2.6. Tribological Performance of MoDTC 

MoDTC was shown to provide a very low friction values of around 0.05 in the 

mixed to boundary lubrication [100, 112]. However, the effectiveness of 

MoDTC in giving low friction depends on different factors such as, MoDTC 

concentration, MoDTC type, operating load, operating temperature, type of 

contact, roughness, etc [100]. 

 

The friction traces given by MoDTC-containing oil shows two distinct 

regions. The initial region is called the induction phase which is followed by 

the reduced steady state friction. Yamamoto and Gando [97] claimed that 
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the concentration of MoDTC in the solution only affects the first region of the 

friction response and the final friction value was independent of the MoDTC 

concentration used. In contrast, Sorab at al. [113] showed that the level of 

MoDTC in the oil must be more than 500 ppm for an efficient friction 

reduction. In another work, in order to have a reduction in friction, the level of 

MoDTC was suggested to be at least 180 ppm but was found to be 

temperature sensitive [101]. Nevertheless, these results suggest the 

important role of concentration and the operating temperature on the 

effectiveness of MoDTC. 

 

It was also found that combination of high additive concentration with high 

temperature provided the most effective friction reduction by MoDTC [100]. 

Increasing the temperature resulted in a lower induction time; whereas, this 

reduction failed to continue and the friction increased [101]. In contrast, 

Yamamoto et al. [114] showed that increasing temperature above 100oC,  

resulted in higher induction time but that the steady state friction values were 

lower than tests with lower temperatures. They realized that the optimum 

temperature for the best performance of MoDTC was achieved with 80oC.  

 

Graham et al. [100] showed that the type of contact is also important in 

effectiveness of MoDTC in reducing the friction. They reported that MoDTC 

is only effective in boundary lubrication where direct solid-solid contacts 

occur. They observed that in the sliding/rolling contact MoS2 formation is 

hindered by the micro-elastohydrodynamic lubrication which exists at such 

contacts.  

 

3.2.7. Additive-Additive Interactions 

Interactions of two or more additives may lead to either synergistic or 

antagonistic effects on the tribological performance of component in contact. 

It was reported by Rounds [115] that ZDDP in combination with metallic 

dithiocarbamate oxidation inhibitors, primary alkyl amine friction modifiers, 

sulphur and chlorine containing EP agents showed a detrimental effect on 

the wear performance; whereas, addition of detergents, dispersants, 

oxidation inhibitors, VI improvers and EP agents to ZDDP showed little or no 

effect on the wear performance. The literature on the interactions of 
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additives and the related tribological performance will be reviewed in this 

section.  

 

3.2.7.1. ZDDP Interactions with MoDTC 

In general, the performance of engine oil additives, such as; ZDDP may be 

influenced when used in conjunction with other additives. This effect could 

be synergistic or antagonistic and therefore a great deal of research has 

carried out to study the possible effects [116] from which a considerable 

amount was focused on the ZDDP interaction with MoDTC.  

 

In the literature several reports showed that MoDTC in combination with 

ZDDP was more effective in friction reduction [117-119]. Muraki et al. [119] 

showed that under rolling-sliding conditions, combination of ZDDP with 

MoDTC resulted in both lower friction and better wear performance 

suggesting a synergistic effect of ZDDP on frictional behaviour of MoDTC. 

However, mechanism by which ZDDP could promote MoS2 formation was 

not provided. ZDDP tribofilm formation was shown to be responsible for 

more effective friction reduction by MoDTC. It was shown that friction started 

to drop as soon as the ZDDP tribofilm was formed [120].  

 

Martin et al. [121] reported a synergistic effect on both fiction and wear  

when ZDDP was used together with MoDTC compared to individual ZDDP 

or MoDTC. They suggested that the wear is reduced due to the reaction of 

MoO3 and possible iron oxides with zinc polyphosphate leading to their 

elimination. This would also preserve the pure MoS2 from oxidation which in 

turn could improve the friction performance. In contrast, Morina et al. [35] 

found that ZDDP showed an improved wear performance than 

ZDDP/MoDTC. On the other hand, Kasrai et al. [117] showed that almost the 

same wear was given by ZDDP and ZDDP/MODTC whereas the friction was 

reduced for ZDDP/MoDTC compared to MoDTC or ZDDP alone.  

 

Sogawa et al. [122] studied the contribution of MoDTC and ZDDP in 

providing sulphur for MoS2 formation in a ZDDP/MoDTC-containing solution. 

They realized that about 40% of the required sulphur for MoS2 formation is 
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derived from ZDDP which clearly shows the interaction between ZDDP and 

MoDTC to form MoS2. 

 

MoDTC has been shown to have a detrimental effect on the structure of 

ZDDP tribofilm. It was shown that a thick patchy pad-like tribofilm which was 

formed by ZDDP alone became much thinner and  the patchy structure was 

vanished [123]. In another work, MoDTC/ZDDP tribofilm was found to be 

rougher than ZDDP alone which could elucidate any relation between lower 

observed friction and the transformation to elastohydrodynamic lubrication 

[92]. 

 

3.2.7.2. ZDDP Interaction with Detergents and Dispersants 

Detergents and dispersants are key additives in oil formulation as they will 

keep the insoluble products in suspension which would later be removed by 

filters. Detergents have also been shown to offer anti-wear properties by 

forming carbonates in the wear scar [115, 124, 125]. Metallic detergents 

were seen to have an antagonistic effect on the wear performance of ZDDP 

[124, 126, 127]. 

 

ZDDP effectiveness was deteriorated due to the interaction with overbased 

metallic detergents. This behaviour was attributed to the competition 

between these two additives for surface sites. It was shown that Ca2+ ions 

took over the Zn2+ in the polyphosphate structure of tribofilms, leading to the 

formation of short chain polyphosphate [124]. This was in agreement with a 

previous work by Willermet et al.  [125] who showed the formation of ortho- 

and pyro-phosphates with lower molecular weight than phosphates when Zn 

partially replaced with Ca. 

 

In agreement with other works, Kasrai et al. [127, 128] reported 

ineffectiveness of ZDDP in combination with detergents. They investigated 

the effect of overbased calcium  sulphonates in formation of sulphur and 

phosphorous species. Surface analysis of the tribofilms showed that the 

presence of detergent along with ZDDP resulted in the formation of  calcium 

phosphate instead of long chain polyphosphates. The higher wear given was 
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thought to be related to the higher hardness of calcium phosphate formed 

from detergent in the solution compared to the wear given ZDDP only. 

 

Yin et al. [72] showed that calcium phenate detergents have an adverse 

effect on the ZDDP film formation even at low temperatures whereas 

calcium sulphunates interaction with the absorbed ZDDP occurred only  at 

high detergent concentrations. 

 

Rounds [115] reported that succinimide dispersants increased wear when 

added to ZDDP solutions in 4-ball wear tests. Similarly, Shiomi et al.  

reported the same effect when used in valve train tests [129]. However, this 

adverse effect was diminished by borating the succinimide. Formation of a 

borate component in the anti-wear film was responsible for this improvement 

[130]. The antagonistic effect of dispersants on wear reduction was 

attributed to the reduction in the amount of ZDDP available for film formation 

by forming a complex. The degree of their impact on wear, however, 

depends on the strength of the complexes formed with various dispersants 

and with amines [125]. However, no evidence was found for such behaviour 

by adsorption studies [131]. Borated dispersants, for instance, could 

contribute to this behaviour by formation of a borate component in the anti-

wear film [130]. Succinimide together with other additives increases the 

decomposition temperature of ZDDP. This will promote scuffing wear at 

lower oil temperatures when using a succinimide and other additives with 

ZDDP [130]. 

 

Smith et al. [132] showed that with a simple ZDDP mineral oil solution, the 

film is mainly composed of phosphate which is bonded to the ferrous 

substrate. When both detergent and dispersant are used in the ZDDP 

solution, the film thickness was increased but in a more patchy shape which 

has no clear underlying sulphide layer. This was attributed to the competition 

for surface sites between the wider range of surface-active additives present 

in the formulation. Dispersant only formed a thin layer of nitrogen-containing 

material on the outer surface [132] and did not mainly contribute in the film 

structure. The schematic structure for the film formed with ZDDP-containing 

lubricant and ZDDP/detergents/dispersant solution is shown in Figure  3-16.  
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(a) (b) 

 

Figure 3-16 Schematic structures for films generated by (a) ZDDP and (b) 
ZDDP+ Detergents+ Dispersant [132]. 

 

It was also found that the mechanical properties of the tribofilm formed from 

ZDDP varied with the addition of the detergent to the oil formulation. The 

indentation modulus was measured to be lower for the film formed from 

ZDDP/detergent compared to ZDDP tribofilm. Contribution of CaCO3 in the 

tribofilm was thought to be the main reason for such measured values [91]. 

 

3.2.7.3. Additive Interactions in Fully Formulated Oils 

Engine oil formulations contain different types of additives including anti-

wear, extreme pressure, antioxidants, dispersant, detergents, corrosion 

inhibitors, etc. The physical and/or chemical properties of the base oil, or the 

(ferrous) surface might be affected by individual additives present in the 

lubricant formulation. However, the mechanisms by which each additive 

contributes to the overall performance of the surface/lubricant is complex 

and, thus studies on the tribofilms formed from fully formulated oils are 

limited. 

 

Using a fully formulated oil (FF) which is commercially available, wear of 

52100 steel was reported to increase substantially compared to ZDDP 

alone. Figure  3-17 shows the time dependent wear scar widths (WSWs) for 

the films formed from FF oils compared to ZDDP alone. Using X-ray 

Absorption Near Edge Structure (XANES), it was shown that tribofilm formed 
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from the fully formulated oil was rich in medium chain Ca phosphate. It was 

concluded that ZDDP does not play its role fully as an anti-wear agent (by 

forming Zn-phosphate)  in FF oils, and only initiate the film formation. After 

the initial film formation, ZnS and Ca phosphate film grow. ZDDP-derived 

tribofilm was found to be mainly consisted of ZnS (78%) whereas the 

remaining 22% Zn was identified as Zn Phosphate. In addition. MoS2 

formation was also evidenced in the tribofilm whereas no Mo-oxide was 

present in the film [133].  

 

 

Figure 3-17 Wear scar width as function of rubbing time [133]. 

 

3.3. Valve Train System 

Increased power for internal combustion engines by means of the 

enhancement in engine breathing has been realized since 100 years ago 

[134]. Valve train system is one of the most important components in an 

internal combustion engine which is responsible for introducing air into the 

combustion chamber and for exhausting the burnt gases. The lubrication of 

cam and follower in a valve train system has been always a challenge for 

manufacturers and a great deal of research has been carried out to 

investigate the engineering background to this issue [135, 136].  
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Although, it has been demonstrated that elastohydrodynamic lubrication 

plays a role in valve train, the modern cam and follower is traditionally 

operating under boundary lubrication regime where chemical reactions 

between the lubricant and the surfaces dominate the tribological 

performance of the component by forming thin films on the surfaces in 

contact [134].  The severe operating conditions (i.e. high temperature and 

high pressure) which exist in boundary lubrication regime imply that cam and 

follower experience high wear. Polishing, scuffing and pitting were 

suggested to be the main modes of failure in cam and follower [9, 134].  The 

mode of failure depends significantly on the combination of materials in 

contact, lubricant additive package, design and operating condition under 

which valve train system operates.  

 

Different types of cast iron such as grey [137], nodular, chilled and hardened 

[138] have been used to make camshafts. Although steel and composite 

materials have been recently used as an alternative to cast iron, cast iron 

remains the cheaper option and is still being used for large volume 

production of camshafts [139]. 

 

Offering outstanding anti-wear properties, ferrous powder sintered metal with 

high chromium, high chromium cast iron or silicon nitride ceramics are 

conventionally used as follower materials also called shims [140]. Recently, 

steel or light weight forged aluminium have been used as shim materials as 

the use of ceramics has not been economically feasible [141]. Around 40% 

reduction of friction torque has been reported when steel tappets were 

replaced with aluminium ones along with an aluminium retainer [142]. The 

limiting factor, however, was the requirement of coating on the side wall of 

the aluminium tappet to prevent galling effect. 

 

Different surface treatments are conducted to improve the running-in and 

prevent early stage failures. One of the treatments of the cam surfaces is 

deposition of different coatings such as phosphate coatings, oxide coatings, 

carbon bearing epsilon FeN layers, etc. This would  enhance the wettability 

of the surface, and thus offers improved running-in performance [143]. 

Chemical conversion method such as phosphating, oxidizing, sulfinuz, 

tufftriding, etc. are among surface modification techniques which are 
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traditionally being used to improve running-in properties of metallic shims.  

[135, 138]. In addition, depending on the type of materials used, several 

other surface modification methods including induction hardening or flame 

hardening of cast iron, carburizing of low carbon steel, induction hardening 

of medium carbon steel, electroplating and depositing PVD or CVD coated 

hard coatings etc., are applied on cam and shim surfaces [144]. 

 

Of particular interest is the application of Diamond-Like Carbon (DLC) 

coatings of different types in engine valve train as it offers excellent running-

in, low friction and anti-wear properties [145-148]. In several attempts, shims 

in gasoline engines have been coated with DLC coatings [145-148]. In 

addition, other  parts of valve train reported to be coated by DLC are 

camshaft, valve stem and rocker arm [146].        

 

Slight improvements in friction torque was reported by Gangopadhyay et al. 

[147] when production shim was replaced with a 10 at.% Si doped 

hydrogenated DLC coated shim. This improvement was only seen when the 

lubricant was free of friction modifier. Friction modifier containing lubricants 

did not show any improvement in friction comparing production shims with 

those of DLC coated. Yasuda et al. [145], using fully formulated oils, 

reported a significant 45% reduction of friction reduction when they coated 

steel shims with ion-plated PVD-DLC compared to conventional phosphate 

coated shim. However, no substantial difference in friction was observed 

using tungsten doped DLC and undoped hydrogenated DLC compared to 

conventional steel shims [146]. In fact, pitting wear and spallation of DLC 

coatings was evident after the test.  

 

Nissan has claimed that they managed to reduce friction by approximately 

40% between engine parts by combination of a hydrogen-free DLC and an 

optimized lubricant. They correlated the friction reduction to formation of 

ultra-low friction film of nanometer scale on top of the hydrogen-free DLC 

coating. Nissan stated that applying this technology would lead to 25% 

reduction in overall engine friction [149].  
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Nevertheless, the performance of DLC coatings is greatly influenced by the 

type of DLC coatings as well as selection of lubricant additives which will be 

reviewed extensively in the following sections. The focus of this study is to 

investigate the lubricant/surface interaction at cam/follower contact, and so, 

the material selection and operating condition was chosen to replicate the 

tribological situation which is experienced in a valve train of an internal 

combustion engine (see  Chapter 4).   

3.4. Diamond-Like Carbon (DLC) Coatings 

The hardest known material is diamond which has unique mechanical 

properties such as high elastic limit and yield stress, high thermal 

conductivity, chemical inertness, excellent electrical insulation 

characteristics, high dielectric constant, low coefficient of thermal expansion 

and the lowest compressibility of any material [150]. Diamond can also be 

doped with different doping elements to become semiconductor. It is also 

very transparent to the light from visible to the infrared part of the spectrum 

[151]. Moreover, diamond demonstrates a good tribological properties when 

polished [152]. The properties and high density of diamond implies that it is 

formed and crystallized under high pressure which in nature can happen at 

about 150 kilometres in depth within the earth. The very first synthetic 

diamond was made in 1950s using high pressure and high temperature 

techniques. Later in 1980s, CVD deposition technique was employed to 

make diamond in lower pressures in the form of polycrystalline coating [151, 

153].  

 

Diamond-like carbon is a carbon coating which has similar mechanical, 

optical, electrical and chemical properties to diamond but do not have a 

crystalline lattice structure, rather is an amorphous carbon coating having a 

network of sp2 (graphite-like) and sp3 (diamond-like) and hydrogen bonds. 

Diamond like carbon is a term referred to a wide range of carbon base 

materials with interesting properties, like low coefficient of friction, high wear 

resistance, high hardness, chemical inertness, a relatively high optical gap 

and high electrical resistance. Its properties are dependent on the ratio of 

sp2/ sp3 bonds. DLC may contain as high as 50 % hydrogen (a-C:H) and as 

low as 1-2 % hydrogen (a-C). Several doping elements such as metals, 



3: Literature Review 

52 

 

nano-particles, etc. are incorporated to reduce the internal stress as well as 

enhancing the adhesion strength of the coatings [154, 155]. 

 

3.4.1. Application of DLC Coatings 

Excellent physical, mechanical and tribological properties of DLC films make 

them a good candidate for variety of applications. In industrial applications, 

DLC coatings can be classified in two main categories, namely undoped 

single layer DLC and doped DLC films. The former is applied when the 

contact pressure is comparatively low as well as the shear stresses and/or 

heat generation is not significant. Knives used in textile industry to cut many 

layers of synthetic fibres, are good examples of the application of unoped 

single layer DLC film. On the other hand, for high shear stress application, 

DLC coatings with interfacial bonding layers and alloyed and layered coating 

structures are typically used. Ball bearing cages and caves, journal bearings, 

gears from aircraft landing-flap controls, compressor screws and extrusion 

dies in cutting tools for aluminium are examples of such DLC coatings 

(doped) applications [156].  Furthermore, some of the moving components in 

the engine, such as diesel engine injection system, were coated with DLC 

and the wear rates have been shown to be decreased successfully [157]. 

Recently, DLC coatings are widely used in more than thirty components in 

an automotive engine [158]. In addition, DLC coatings have a role to play in 

medical applications such as orthopaedic pins and screws and for bearing 

surfaces of artificial joints. They are also applied as anti-reflection coatings 

on germanium and silicon optics and solar cells or as the protective coatings 

on zinc sulphide IR windows. DLC coatings improve the scratching 

resistance of the metal components [159]. DLC coatings have a wide 

application as a protection of the hard disk drives and other magnetic 

recording media[160]. Providing low friction and wear, DLC coatings are able 

to reduce the dependency on lubricant friction modifiers and anti-wear 

additives which contain sulphur and phosphorous and are harmful to 

catalytic convertors. 

 

3.4.2. Structure of DLC Coatings 

Carbon is made up of three different types of bonding configuration, namely 

sp3, sp2 and sp (Figure  3-18). In diamond, four sp3 hybridized orbitals forms 

four equal C-C bonds with adjacent atoms which is responsible for the 
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tetrahedral structure of the diamond. Superior properties of diamond, like 

high hardness and high thermal conductivity, originate from these strong 

covalent bonded atoms in the tetrahedral structure. In graphite, three 

trigonally sp2 hybrid orbitals lie in a plane in which each carbon is bonded to 

three other carbon atoms with strong covalent bonds. The layers of carbon 

atoms are then attached to each other by weak Van der Waals forces which 

accounts for the layered structure of graphite which in turn is responsible for 

the low friction behaviour of graphite [150, 161, 162]. DLC films have a 

mixed structure of sp3/sp2 and the proportions of sp3/sp2 are dependent on 

the deposition technique and deposition parameters used. Depending on the 

deposition technique used, DLC films can be formed on the substrate at 

rather low temperatures, in the range of below 200oC [163] to 325oC [164], 

and overheating the substrate would have a detrimental effect on the film 

properties. Furthermore, the substrate material does not play an important 

role on the film growth and the film properties [150, 165]. 

 

 

 

Figure 3-18 sp3, sp2 and sp hybridised bonding [155]. 

 

In terms of hydrogen content, DLC coatings can be divided into two different 

categories namely hydrogenated amorphous carbon, a-C:H, coatings and 

hydrogen-free carbon, a-C, coatings. The hydrogen content of the film in a-

C:H can vary significantly depending on the deposition method, hydrocarbon 

source and deposition parameters. The role of hydrogen in a hydrogenated 

DLC film is mainly to gain a wide optical gap and high electrical resistivity. In 

addition hydrogen can help to stabilize the diamond structure by maintaining 

the sp3 hybridization configuration [164]. It should be mentioned that too 
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much hydrogen content would cause the molecular interconnection not to be 

formed and the higher the hydrogen content the lower the hardness.  

 

In Figure  3-19, the relation between density and sp3 content for ta-C, ta-C:H 

and a-C:H which is proposed by Ferrari et al. [166] is given. They suggested 

that in ta-C, properties, such as Young’s modulus, hardness, density and 

smoothness correlate directly with the C-C sp3 fraction. In a-C films, 

hydrogen is considered as an impurity. Tetrahedral amorphous carbon, ta-C, 

is a highly sp3 bonded which is also referred to as amorphous diamond 

because of its tetrahedral structure that is similar to diamond [150]. 

 

 

 

Figure 3-19 Density vs sp3 fraction for DLC film. The trends are different 
when comparing ta-C and ta-C:H with a-C:H [166]. 

 

Various forms of DLCs are shown by the phase ternary diagram as in 

Figure  3-20. This diagram was proposed by Ferrari and Robertson [167], 

who have contributed significantly in understanding the chemical and 

structural properties of DLC films using different spectroscopic techniques. 

Most of the a-C:H coatings remain in the middle of the diagram showing a 

varying ratio of sp3/sp2 bonding and hydrogen content while a-C coatings are 

placed at the left side and depending on the ratio of sp3/sp2 the mechanical 

properties of the coatings would be different. The sp2 bonded graphitic 

carbon lies in the lower left-hand corner. The ta-C coatings lie on the left 

side of the diagram depending on the ratio of sp3/sp2. Phases that have high 
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content of hydrogen are not able to form an interconnected molecular 

structure, rather form gas or liquid molecules and lie at the lower right-hand 

corner of the diagram [168]. 

 

Figure 3-20 Ternary phase diagram of amorphous carbon coatings [155]. 

 

The hardness and density variation of DLC films with respect to their sp2, sp3 

and H content have been summarised in Table  3-2 and are compared with 

those of diamond and graphite. 

 

Table 3-2 Properties of various forms of carbons [150, 155].  

 Density (gcm
-3

) Hardness (GPa) at.%  sp
3
 at.% H 

Diamond 3.2 100 100 0 

Graphite 2.3 - 0 0 

a-C 1.9-2.4 11-15 2-5 1-2  

a-C:H, hard  1.6-2.2 10-25 30-60 10-40 

a-C:H, soft 0.9-1.6 <5 50-80 40-65 

ta-C 3.0 55-65 65-85
 

<1 

 

 

DLC films can offer the broadest range of hardness and friction values, 

whereas some of the recently developed nanocomposite coatings are 

capable of providing super hardness but lack lubricity or low friction [169, 

170]. Figure  3-21 shows classification of different coatings with regards to 

their hardness and friction performance implying the fact that most carbon 

coatings and in particular, DLC coatings can provide not only low friction but 

also high hardness. 
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Figure 3-21 Schematic representation of hardness and coefficients of friction 
(COF) of carbon-based and other hard coatings in dry sliding condition 
[170]. 

 

3.4.3. Deposition of DLC Coatings 

DLC coatings are formed when ionized and decomposed hydrocarbon or 

carbon species hit the surface with energies ranging from several tens of eV 

to 200 eV [150, 171]. All deposition methods are considered to be non-

equilibrium processes as described by the interaction of energetic ions with 

the surface of the growing films. Deposition pressure, bias voltage, etc. may 

be different depending on the deposition method which is being used to 

make DLC coatings [155]. DLC coatings can be deposited on the substrate 

at temperature in the range of 200oC [163] to 325oC [164]. This property 

makes deposition of DLC coatings possible on most engineering materials 

including polymers [150].  However, the chemical nature of these substrate 

could play a great role in formation of a strong bonding and adhesion of the 

DLC film to the substrate. In most tribological applications where the surface 

is under high normal and/or shear forces, poor adhesion of DLC film to the 

substrate, may result in permanent fracture and delamination of the DLC 

coating from the substrate [170, 172].     

 

Carbide- and silicide-forming substrates (such as Si, Ti, W and Cr) can 

promote a strong interfacial bonding to the substrate which is not the case 

for other metallic and ceramic substrates. However, deposition of an initial 

bond layer on these substrate prior to DLC deposition could enhance the 

adhesion of the DLC film to the substrate. These interlayers, which are 
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chosen from strong carbide- and silicide-formers, make a chemical reaction 

with the substrate and provide a strong bonding. The deposition of these 

interlayers are typically done in the same chamber prior to the actual DLC 

deposition [170]. 

 

As mentioned in the previous chapter, deposition methods can be classified 

into two major categories, namely, chemical vapour deposition (CVD) 

techniques and physical vapour deposition (PVD) techniques. CVD 

techniques, like DC plasma and radio frequency (RF) plasma assisted 

chemical vapour deposition, and PVD techniques, such as sputter 

deposition, ion-plating techniques and ion beam techniques can be applied 

to make hydrogenated DLC films. Molecular Dynamics (MD) simulation of 

the atomic structure of a hydrogenated DLC is shown in Figure  3-22 [170]. 

 

 

Figure 3-22 Molecular dynamic simulation of the atomic structure of a 
hydrogenated DLC [170]. 

 

PVD techniques such as magnetron sputtering, mass selected ion beam 

(MSIB), cathodic arc and laser plasma deposition are typically employed to 

form hydrogen-free a-C and ta-C coatings [150, 173-175].  
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3.4.4. DLC Performance in Dry Sliding 

Formation of a transfer layer has been observed frequently in tribological 

testing of DLC coatings and initially has been reported by authors [176-178]. 

This carbonous transfer layer was seen to be formed on the sliding surfaces 

and reduce the friction drastically [177] whereas in another study the 

generation of the transfer of hydrocarbons with a specific orientation to the 

ball surface was reported to be responsible for friction reduction [178]. 

Increasing the sliding distance (from 20-25 km) has been seen to improve 

the formation of transfer layer, in ambient air, resulting in lower friction 

values (from 0.16 to 0.05-0.07) [179, 180]. In addition, as shown in 

Figure  3-23, the sliding speed has a positive effect on the transfer film 

formation, where the high load and high sliding speed provided the largest 

and most compact transfer layer on the steel counterparts. Furthermore, the 

thick transfer layer was also seen to decrease wear rate of the hydrogenated 

DLC coating and the steel pin counterpart [181]. Although formation of 

transfer layer is typically reported in the tests conducted in ambient air, it 

was also seen in experiments carried out in Ultra High Vacuum (UHV) when 

DLC was rubbing against steel [182].   

 

 

Figure 3-23 The wear surfaces of the steel pins slid against the PACVD 
deposited hydrogenated a-C:H film. The tests were carried out 
unlubricated in room air at 22±2 °C temperature and with 50±5 % 
relative humidity. The sliding speed was varied in the range 0.1–3.0 
ms−1 and the normal load in the range 5–40 N [181]. 
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3.4.5. The Graphitization of Hydrogenated DLC 

At high temperatures, hydrogen in the a-C:15H coating starts to diffuse out 

of the coating matrix, giving rise to collapse of the tetrahedral sp3 structure to 

a graphite-like sp2 structure, often referred to as “graphitization” [183].  The 

graphitization of DLC is strongly dependent on the thermal and/or straining 

effects, as was widely reported by researchers [184-186].  The graphitization 

process has reported to start at temperature between 200oC to 300oC but is 

more pronounced at temperature above 300oC or 400oC and the 

transformation process completes at a high temperature of 700oC or more 

[187]. However, the hydrogenated DLC has reported to have a lower 

transition temperature due to having higher strain [170, 183, 188, 189].  

 

The graphitization of DLC plays an important role in friction reduction under 

dry sliding conditions [185, 190, 191]. Under tribological conditions, usually, 

the softer of the two materials will be worn while this is not the case for DLC. 

Wear products from DLC, which can have a graphite nature [192], can be 

transferred to the counter body forming a so-called transfer layer on the 

softer surface. The softer surface will then be protected from being worn off 

while the DLC slides over the transfer layer. The wear rate of DLC will also 

be extremely low after the transfer layer is formed. In addition the transfer 

layer also behaves as a solid lubricant [185, 193]. The formation and 

adhesion properties of this transfer layer depend strongly on the tribological 

and environmental conditions as well as the chemical properties of the 

counterpart [194].  

 

The detection of graphitization has been carried out using different surface 

analysis techniques. Among which, Raman spectroscopy (Figure  3-24) has 

been widely used by different authors to characterize carbonous transfer 

layer or the debris particles at the sliding interfaces to find any sign of carbon 

with disordered graphitic structure [186, 195, 196].  
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Figure 3-24 The micro-Raman signal of the steel ball wear surface and wear 
debris after sliding against a-C:H film for 5000 m in humid air (50±5% 
relative humidity). The sliding velocity was 2.6 m s−1 and the normal 
load 35 N. The diamond and graphite signals are used as reference. 

 

In addition to Raman analysis, the electron diffraction pattern analysis,  

Fourier Transform Infrared Spectroscopy (FTIR) and bright field-dark-field 

imaging has also been also used to investigate the graphitization of 

hydrogenated DLC coatings [186, 194, 197, 198]. Using nanoindentation 

analysis, the transfer layer with graphitic nature has been found to have 

lower Young’s modulus (E) and hardness (H) compared to bare coating 

[199].  

 

3.4.6. Chemical Reactivity of DLC 

DLC coatings have the potential to be tailored for desirable properties such 

as low friction, high wear resistance and anti-sticking properties, to be best 

suited for different engineering applications under dry and lubricated 

conditions [200]. In particular, lubrication of DLC has attracted interest in 

automotive industry for their more general and wider range of applications in 

mechanical components. However, the properties of DLC under lubricated 

condition is totally different from those which were extensively studied under 

dry or different gas atmosphere [184, 201, 202]. Their well-known low friction 

and anti-sticking properties are attributable to their inertness and low surface 
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energy in non-lubricated conditions whereas one of the requirements for an 

efficient boundary lubrication regime is the chemical reactivity of the surface 

with lubricant additives. In addition, low friction values observed for DLC in 

dry conditions were not usually seen in lubricated condition. Therefore, 

improvements of DLC boundary lubrication is required by means of using 

different additives and optimising the additives/coatings which in turn 

requires the reactivity of DLC.  

 

The improvement of the tribological behaviour of DLC has been reported by 

using  additive-containing oils in DLC/steel systems. Tribochemical reaction 

between the DLC and steel counterpart has been reported but the tribofilm 

was only found on the steel counterpart rather than the actual DLC coating 

[203]. It is reasonable to expect that the presence of steel in the DLC/steel 

system can promote DLC/lubricant interaction. This could be mainly due to 

the interaction between the steel counterpart and the lubricant additives in 

conventional manner; thus, they would react with oils and additives, which 

are originally designed to form triobofilms on metal surfaces. Moreover, 

these reaction products can in turn transfer to the DLC coating or/and 

interact with DLC surfaces and affect the tribochemical and tribological 

interactions at the interface [204].  

 

Furthermore, self-mated DLC/DLC contacts were observed to be inactive in 

comparison to DLC/steel [200]. In contrast, in many other studies, additives 

were found to significantly affect the tribological performance of self-mated 

DLC/DLC contacts [204-209] which clearly suggest the interaction between 

DLC and the additives and elucidate the interference of the steel from the 

system. In general, the tribological performance, especially wear, of the DLC 

was improved in the presence of lubricant additives [204-209]. However, 

direct evidence of such interaction was not provided for different reasons 

[209]. For doped-DLC coatings, the improved tribological behaviour was 

correlated to the presence of doping elements in DLC matrix which could 

replicate “metal-like” behaviour [204, 209] and simulate well-understood 

conventional additives reaction mechanisms [210]. In addition, in some 

recent studies, direct reaction between DLC coatings and additives were 

evidenced [211-214] and elucidate any doubt about the DLC/additive 

interactions.  
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3.5. DLC/lubricant Interactions 

As mentioned earlier, conventional lubricant additives are designed to work 

on ferrous surfaces. However, many engine DLC coated components are 

lubricated by conventional additive-containing lubricants. Different 

researchers have started to evaluate interactions between lubricant additives 

with various types of non-ferrous DLC coatings under boundary lubrication.  

 

In this section a review of the current understanding of the DLC/lubricant 

interactions and the important factors which could affect this interaction is 

provided.  

 

3.5.1. Tribochemical Interactions 

The tribochemistry of DLC is complex and has been a matter of interest to 

different research activities in recent years. The sliding contact surfaces of 

DLCs are chemically very stable. Therefore, in static condition, they do not 

normally take part in the chemical interactions with solid materials and/or 

liquids when brought into direct contact [170]. However, they may interact 

with counterfaces and their surroundings such as water molecules, oxygen 

and hydrocarbons under influence of dynamic sliding contacts. DLC coatings 

have been reported to be chemically inert using a steel pin sliding against 

DLC-coated disks lubricated in oil containing MoDTC and/or ZDDP [215]. In 

contrast, molybdenum-based friction modifiers and ZDDP anti-wear have 

been shown to form low friction MoS2 sheets and/or ZDDP-derived 

compounds respectively, on the DLC coating providing low friction and better 

wear performance under boundary lubrication conditions [4, 206, 216-220].  

 

Extensive research has been carried out on DLC/lubricant interaction and 

the friction and wear mechanisms of DLC coatings. Previous works are 

mainly focused on tribological performance of DLC coatings using model oils 

containing one or combination of additives. These include anti-wear additive 

zinc dialkyl-dithiophosphate (ZDDP)  [212, 213, 218, 221, 222], glycerol 

mono-oleate (GMO) [207, 212, 223]  molybdenum dialkyl-dithiocarbamate 

(MoDTC) [41, 224], combination of ZDDP and MoDTC [206, 215] and EP 

additives [225-228].  
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In the literature, studies on the more realistic DLC/fully formulated oil 

systems, are limited [229-233]. An improved friction and wear performance 

of a-C:H coatings compared to the uncoated steel surfaces (Figure  3-25 and 

Figure  3-26) was reported under fully formulated oil lubrication [229, 

230]. Using fully formulated oils, no additive reactions on the DLC-coating 

surface was detected, while on the uncoated steel counterpart, typical S and 

P tribofilms was formed [230]. In contrast, Vengudusamy et al. [229] showed 

that a mixture of a-C:15H- and additive-derived products were present in the 

tribofilm formed in a-C:15H/steel contact compared to those present in the 

steel/steel contact under fully formulated oil lubrication. Forsberg et al. [231] 

investigated the performance of DLC coatings with varying doping types and 

layer structures lubricated with two different commercially available engine 

oils. They performed reciprocating ball-on-flat tests (coated flat specimen 

rubbed against steel balls). It was revealed that silicon doped coating 

enhanced formation of protective tribofilms by means of activating the 

additives and showed the best overall wear performance. In addition, 

doubling the initial contact pressure resulted in approximately 20% friction 

reduction for all coating/lubricant combinations, while the wear rates were 

reduced with over 50% for some combinations.  

 

 

Figure 3-25 Friction coefficients for steel/steel and a-C:H/steel contacts 
when lubricated in base oil and fully formulated gear oil [229] 
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Figure 3-26 Composite wear coefficients for steel/steel and a-C:H/steel 
contacts when lubricated in base oil and fully formulated gear oil [229]. 

 

In the automotive components, either the DLC coating is deposited on one 

part and the other part remains uncoated or both parts are coated [144]. 

Selection of additives could affect the friction and wear response of both 

DLC/steel and DLC/DLC combinations.  

 

In most of the literature, the wear data of the ferrous counterparts are given 

rather than the wear of DLC coatings. This could be mainly due to the short 

tests duration which gave insignificant wear of DLC coating whereas wear 

on the softer ferrous counterbodies was measurable. Ronkainen et al. [234] 

reported a lower pin wear when rubbed against a-C:15H coating in the a-

C:H/steel system compared to a-C/steel combination when extreme 

pressure additive was used (see Table  3-4). However, the response was 

opposite when pure mineral base oil was used. In addition, no measurable 

wear was reported for a-C and a-C:15H coatings. Similar observations were 

reported by Barros’Bouchet et al. [206] and Stallard et al. [235]. The higher 

hardness of a-C coating compared to a-C:H coatings, was responsible for 

such higher wear given by a-C coatings to the steel counterbodies. Stallard 

et al. [235] also reported higher wear of a-C:H coating than a-C coating 

indicating that higher hardness of a-C coatings govern not only the wear of 

the counterpart but also the wear of the coating itself. Table  3-3 and 
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Table  3-4 summarise  some of the literature on the tribological performance 

and DLC/lubricant interactions.  

 

Table 3-3 Summary of the literature on frictional behaviour of DLC coatings 
compared to an uncoated steel system 

*Superlow friction coefficient 

Source Lubricants Test/Duration Material/Coatings 
Combinations 

COF 

[206, 
236] 

PAO+ MoDTC+ ZDDP 
 

Reciprocating 
cylinder-on-flat/      
1 h 

a-C Steel ~0.08 

a-C:H a-C:H ~0.04 

a-C:H Steel ~0.05 

Ti-C:H Ti-C:H ~0.06 

Ti-C:H Steel ~0.05 

Steel Steel ~0.06 

 [233]  PAO pin-on-disk/ 
2 h 

WC-C:H WC-C:H ~0.078 

WC-C:H Steel ~0.082 

Steel Steel ~0.075 

GL-4 
Fully formulated oil 

WC-C:H WC-C:H ~0.07 

WC-C:H Steel ~0.06 

Steel Steel ~0.08 

 [207] PAO+ GMO pin-on-disk/ 
1 h 

a-C a-C ~0.03
* 

a-C Steel ~0.02
*
 

a-C:H  a-C:H  ~0.12 

a-C:H Steel ~0.09 

Steel Steel ~0.1 

[237] PAO HFRR High 
Frequency 
Reciprocating 
Rig(ball-on-disk) 
/1 h 

a-C:H a-C:H ~0.02
*
 

Steel Steel ~0.12 

PAO+ ZDDP a-C:H a-C:H ~0.07 

Steel Steel ~0.08 

[234]  Mineral Base oil + EP 
additive 

Reciprocating pin-
on-disk/ 21 h 

Steel Steel ~0.12 

a-C Steel ~0.08 

a-C:H Steel ~0.13 

a-C:H (Ti) Steel ~0.12 

[214, 
220] 

PAO +  secondary 
ZDDP 

pin-on-plate/ 
6 h 

a-C:30H CI ~0.10 

Steel CI ~0.12 

PAO +  Moly Dimer a-C:30H CI ~0.12 

Steel CI ~0.12 

PAO +  Moly Dimer + 
secondary ZDDP 

a-C:30H CI ~0.07 

Steel CI ~0.09 

PAO +  Moly Trimer a-C:30H CI ~0.05 

Steel CI ~0.07 

PAO +  Moly Trimer + 
secondary ZDDP 

a-C:30H CI ~0.04 

Steel CI ~0.07 

[223] PAO Pin-on-disc/1 h 
ta-C Steel ~0.09 

ta-C ta-C ~0.025
*
 

PAO+ GMO ta-C Steel ~0.025
*
 

ta-C ta-C ~0.025
*
 

[229] PAO Ball-on-disc/ 2 h 
a-C:15H Steel ~0.15 

Steel Steel ~0.15 

GL-5, SAE 75W-85 
Fully formulated oil 

a-C:15H Steel ~0.09 

Steel Steel ~0.10 
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Based on the published results, the effectiveness of the lubricant in providing 

low friction and wear greatly depends on the type of DLC coating, type of 

tests, tests parameters, additive package, and type of contact. The obtained 

results were different and even contradictory in some cases. Some of the 

governing factors which could influence the tribological behaviour of the DLC 

coating will be discussed in more detail in the following sections.  

 

Table 3-4 Summary of the literature on wear behaviour of DLC coatings 
compared to an uncoated steel system 

Source Lubricants Test/Duration Material 
Combination 

Total Wear 

Plate/Cylinder 
×10

-18
 m

3
/Nm 

Counterbody 
×10

-18
 m

3
/Nm 

[234] Mineral Base oil + EP 
additive 

Reciprocating 
pin-on-disk/        
21 h 

a-C/Steel No Wear 300 

a-C:H/Steel No Wear 80 

a-C:H (Ti) 
/Steel 

No Wear 50 

Steel/Steel No Wear 90 

[235] Semi-synthetic oil 
(10W40) 

pin-on-disk/        
10 h 

a-C/Steel 0.03 4.3 

a-C:H/Steel 0.12 0.6 

Steel/Steel 
 

0.35 7.4 

[206] PAO+ MoDTC+ ZDDP Reciprocating 
cylinder-on-
flat/      
1 h 

a-C/Steel Not Mentioned 50 

a-C:H/Steel Not Mentioned 2 

Ti-C:H/Steel Not Mentioned 2 

Steel/Steel Not Mentioned 6 

a-C:H/ a-C:H Not Mentioned 0.06 

Ti-C:H/ Ti-C:H Not Mentioned 0.2 

[214, 
220] 

PAO +  secondary 
ZDDP 

pin-on-plate/        
6 h 

a-C:30H/CI Delaminated 0.442 

Steel/CI 
 

71.2 47 

PAO + Moly Dimer a-C:30H/CI Delaminated 11.4 

Steel/CI 
 

6.95 18.7 

PAO + Moly Dimer + 
secondary ZDDP 

a-C:30H/CI Delaminated 4.93 

Steel/CI 
 

78.7 50.1 

PAO +  Moly Trimer a-C:30H/CI 0.918 0.945 

Steel/CI 
 

2.76 7.63 

PAO +  Moly Trimer + 
secondary ZDDP 

a-C:30H/CI 0.879 0.476 

Steel/CI 
 

2.47 1.59 

[229] PAO Ball-on-disc/ 

2 h 

Steel/steel 6.3 6.5 

a-C:15H/steel 22.7 4.4 

GL-5, SAE 75W-85 
Fully formulated oil 

Steel/steel 6.5 5.0 

a-C:15H/steel 4.4 0.2 
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3.5.2. Effect of DLC Coating Type on DLC/Lubricant Interactions 

The tribological behaviour of DLC under boundary lubrication, depends 

significantly on the coating  type [209, 226, 230, 238, 239], as illustrated in 

Figure  3-27. For self-mated DLC/DLC contacts the obtained friction and 

wear was lower for non-doped DLCs than for doped ones. When additives 

were blended into the base oil, a soft amorphous layer was formed on some 

of the non-doped DLCs but not doped ones. However, no direct evidence of 

DLC/lubricant interaction was found for DLC/DLC contacts [209]. In contrast, 

MoDTC and ZDDP were shown to interact directly with some hydrogenated 

DLCs and form tribofilms on the coating surface, and thus improved the 

friction and wear performance of these contacts [206, 217]. Therefore, it is 

clear that the DLC/lubricant interaction strongly depends on the type of DLC 

as well as lubricant composition, particularly when these coatings are rubbed 

against uncoated steel surfaces [170]. 

 

 

Figure 3-27 Influence of coating type on the steady-state friction of 
boundary-lubricated DLC/DLC contacts tested with mineral oil (M), a 
mixture of mineral oil and AW/EP additive (M + AW/EP) and a mixture 
of mineral oil and EP additive (M + EP). DLC-1 and DLC-2 are 
hydrogenated DLCs with Si-based and Ti-N interlayer (Pmax = 1 GPa, v 
= 0.1 m/s, T = 80°C) [209]. 
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Low wear and friction similar to boundary-lubricated steel surfaces (∼0.15) 

was obtained using non-doped DLC coatings rubbed against uncoated steel 

when lubricated in pure PAO oil. In addition, EP (a mixture of amine 

phosphates, having 4.8% and 2.7% of P and N, respectively) and AW 

(dialkyl dithiophosphate, containing 9.3% of P and 19.8% of S) additives as 

well as fully formulated oils were found to have insignificant effect on friction 

and wear of non-doped DLC coatings [240], particularly at lower additive 

concentrations. On the other hand, for self-mated DLC/DLC contacts, no 

indication of reaction products or tribofilm formation on the DLC-coated 

surface was found [225, 233, 241, 242]. For DLC/steel system, however, 

friction reduction and  good wear performance was related to the formation 

of a  carbon transfer layer on steel counter surfaces after sliding [164]. In 

addition, in the DLC/steel system, high additive concentrations resulted in 

the interaction between lubricant additives and the steel counterface in a 

similar way to steel/steel system [243]. For DLC/steel contacts, the lowest 

steady state friction was observed in the steel/W-DLC system when 

lubricated with the EP additive. However, this steady-state friction was 

observed with the cost of DLC coating removal and reaching to Cr-interlayer 

(Figure  3-28) [204]. 

 

 

Figure 3-28 Influence of coating type on the steady-state friction of 
boundary-lubricated DLC/steel contacts tested with mineral oil (M), a 
mixture of mineral oil and AW/EP additive (M + AW/EP) and a mixture 
of mineral oil and EP additive (M + EP). DLC-1 and DLC-2 are 
hydrogenated DLCs with Si-based and Ti-N interlayer (Pmax = 1 GPa, v 
= 0.1 m/s, T = 80°C) [204]. 
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Friction and wear performance of doped DLC coatings was seen to be better 

than uncoated steel surfaces, but generally give about two times higher wear 

rates than non-doped DLC coatings. However, additive interaction with 

doped DLC coatings was found to be much more pronounced than pure 

DLCs, especially metal-doped DLC coatings (Me-C:H) [217]. The 

improvement of the boundary lubricating effect of DLC coatings, in a metal-

doped DLC, was related to the “metal-like” behaviour of the doping element 

which was present in the DLC matrix [209, 217]. For metal-doped DLC 

coatings, tribofilms were usually formed on the steel counterpart or on the 

exposed steel substrate, but not on the DLC coating itself [43,44,46,47]. 

However, for some Mo-based additives MoS2 containing layers were also 

found on the coated surface [206, 217, 241].  

 

It was shown that, W-doped DLC coatings gave a friction of about 0.15 when 

rubbed against uncoated steel lubricated in pure PAO oil. Similar friction 

values were obtained using low AW additive concentrations, whereas high 

AW additive concentrations resulted in similar friction as seen in steel/steel 

system in boundary lubrication. EP additive concentration, however, greatly 

influence the tribology of W-doped DLC coatings, with optimum EP additive 

concentration resulting in considerable improved friction and wear of the 

contact [230, 243]. In another work, ZDDP+ MoDTC mixture was reported to 

provide overall beneficial performance in W-DLC/CI lubrication compared to 

single MoDTC or ZDDP model oils. Friction reduction, however, was more 

attributed to the formation of MoS2 rather than WS2-containing tribofilm in W-

DLC/CI tribocouple [244].  

 

More recently, the effect of tungsten content on the tribological performance 

of W-doped DLC under PAO lubrication condition was investigated by Fu et 

al. [245]. It was revealed that increasing W content in the coatings resulted 

in friction reduction. In addition, the mechanical properties of the coatings 

(hardness and elastic modulus) was not significantly influenced by W 

content. However, the influence of W content on the wear rates of the DLC-

coated sample was less pronounced when W content was less than 

10.73 at.%.  
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In another study, Yue et al. [246] showed that sulfurized W-DLC coating 

showed better friction and wear (Figure  3-29) performance than W-DLC 

when lubricated by PAO+ MoDTC. The improved tribological properties were 

related  to the formation of WSx as well as the higher ratios of Mo 

sulphide/Mo oxide and sp2/sp3. 

 

 

Figure 3-29 (a) Wear rates of W-DLC and sulfurized W-DLC coatings and (b) 
wear rates of balls against W-DLC and sulfurized W-DLC coatings 
[246]. 

 

3.5.3. Super-lubricity of DLC Coating using GMO/PAO 

Super low friction was obtained using PAO+ GMO in the ta-C/steel and the 

ta-C/ta-C system [207, 223]. Kano et al. [207] showed that using PAO+GMO 

model oil, super low friction of 0.02 was obtained in a ta-C/ta-C system. The 

thickness of the tribofilm formed using PAO+GMO was reported to be less 

than 2 nm. They suggested that the tribochemical reaction of lubricant 

alcohol function groups with the hydroxilated carbon atoms resulted in the 

formation of OH-terminated layer on the ta-C surface. They related the 
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obtained super-low friction to the low van der Waals forces between the OH-

terminated surfaces. Similarly,  Minami et al. [247], reported that the addition 

of GMO to PAO improved the friction performance of the DLC/steel contact 

to 0.02-0.03 from 0.12 without GMO. They suggested that GMO interacted 

with DLC in the ester form and the hydroxyl groups in the molecule was 

mainly responsible for such interaction. Tasdemir et al. [223] reported ultra-

low friction for ta-C/steel and ta-C/ta-C combination in PAO and PAO+GMO. 

Using PAO alone, however, ultra-low friction behaviour did not last long In 

the ta-C/steel system mainly due the total wear of coating (steady state 

friction was almost equal to 0.09). Interaction between nascent ta-C surface 

and base oil or graphitization of very thin topmost surfaces of ta-C DLC was 

thought to be responsible for the observed ultra-low friction (Figure  3-30). In 

addition, Equey et al. [237] reported a similar response of friction by using 

PAO alone in a-C:H/a-C:H system. In contrast, Podgornik et al. [233] did not 

observe such a friction drop using PAO in WC-C:H/WC-C:H system. 

Furthermore, recently Vengudusamy et al. [229] reported that with PAO, a-

C:H/steel contact exhibited lower friction than steel/steel contact (0.15) for 

the first 90 min of the tests. However, this value gradually increased to the 

value of steel/steel contact (0.15) probably due to the high wear of a-C:15H 

coating and reaching to the substrate. Based on the published literatures, 

the effectiveness of PAO seems to be greatly influenced by the type of DLC 

used. 

 

Figure 3-30 Raman spectra of steel counterpart rubbing in pure PAO for 
DLC/steel tribopair (a) before total wear occurs (b) after partial wear out 
of coating from the topmost surface [223].  
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3.5.4. Effect of Hydrogen on DLC/Lubricant Interaction 

It looks quite obvious that the presence of hydrogen in DLC matrix is playing 

a great role for their interactions with lubricant additives. Although this 

significant role has already been investigated extensively [184, 210, 248-

250], the published results are different and, thus the exact mechanisms by 

which hydrogen could take part in the DLC/lubricant interaction has been 

poorly understood. In diamond, carbon atoms can form three covalent bonds 

whereas the fourth bond remains open and dangling out of the surface. 

These dangling bonds can be passivated by chemisorbed species form the 

environment such as O and H to form water molecules, and so the initial 

high friction would drop [250, 251] (Figure  3-31).  

 

 

 

Figure 3-31 Schematic illustration of dangling bonds in diamond and weak 
shear plane between hydrogen-terminated diamond surfaces [250] 

 

It was suggested that similar mechanisms could participate in DLC/lubricant 

interaction and  the lubricant additives could interact with the dangling bonds 

of DLC [251]. Hydrogen in hydrogenated DLC terminated the dangling 

bonds, implying that different species are responsible for DLC/lubricant 

interaction and adsorption of lubricant additives. That could explain the 

different behaviour of non-hydrogenated and hydrogenated DLC when 

lubricated with different additive package.  

 

The effect of hydrogen content on the friction performance of DLC has been 

reported by Yasuda et al. [145] and Mabuchi et al. [252]. It was shown that 

the friction coefficient decreased with a lower hydrogen content of the film. 
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They claimed that higher hydrogen content in the DLC film resulted in poor 

wettability of the surface which in turn affected the interaction between the 

engine oil and the DLC surface. Therefore, the higher obtained friction was 

due to the loss of additive adsorption on the DLC surface.  

 

In contrast, Barros' Bouchet et al. [206] reported the positive effect of 

hydrogen in the tribofilm formation on the DLC coating. They found that 

hydrogenated DLC provided lower friction compared to hydrogen-free DLC. 

Performing XPS analysis, they showed the presence of additive-derived 

tribfilm on both a-C:H and a-C coating when rubbed against AISI 52100 steel 

(Figure  3-32). However, the ratio of MoS2/MoO3 for a-C:H was five times 

higher than that observed with hydrogen-free DLC. The lower friction 

obtained by hydrogenated DLC was attributed to this higher ratio. They 

argued that, during friction process, DLC dangling bonds form hydrogen-

terminated surfaces reacted with the oil additives. They made assumptions 

on the basis of the chemical hardness approach (HSAB principle). Based on 

their argument, from the chemical hardness point of view, hydrogenated 

carbon materials are soft bases and favourably interacts with soft acids, like 

Mo4+, involved in the formation of MoS2. On the other hand, hydrogen-free 

carbon materials could be considered as ‘intermediate bases’ which reacts 

with Mo6+ and promotes the formation of MoO3 high friction species. This 

could explain why hydrogen-containing carbon materials gave a higher ratio 

of MoS2/MoO3 and lower friction, as a result. They also reported the positive 

effect of ZDDP when used in combination with MoDTC. They claimed that 

ZDDP could facilitate the formation of low friction MoS2 by supplying more 

sulphur. Kano et al. [215] performed similar tests and found out that 

ZDDP/MODTC solution provided lower friction than ZDDP alone. However, 

after conducting XPS analysis, no evidence of tribofilm formation on the DLC 

surface was found. Instead, the tribofilm was observed on the steel 

counterpart.  
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Figure 3-32 Friction-induced MoS2 with steel cylinder against DLC-coated 
flat friction test. XPS Mo3d peak recorded on (a) pure MoO3 powder; 
(b) pure cleaved MoS2 crystal; (c) MoDTC+ZDDP tribofilm on the a-C:H 
coated flat; (d) MoDTC+ZDDP tribofilm on the a-C coated flat; (e) 
outside the MoDTC+ZDDP tribofilm on the a-C:H coated flat [206]. 

 

In addition, role of hydrogen in the DLC matrix on the wear performance of 

the DLC/steel contact, when lubricated in ZDDP, has been reported by 

Barros' Bouchet et al. [206]. The wear of steel counterpart was seen to be 

higher when rubbed against hydrogen-free DLC than that of hydrogenated 

one. The XPS analysis revealed that P and Fe were depleted in the tribofilm 

formed on both DLC surfaces suggesting that iron did not take part in the 

ZDDP film formation and that no transfer of iron to DLC counterface was 

occurred. ZDDP-derived ZnO/ZnS was detected in the tribofilm formed from 

ZDDP on both surfaces but the presence of Zn was more pronunced on the 

hydrogenated DLC. 

 

Equey et al. [213] observed the formation of  ZDDP tribofilm on the 

hydrogenated DLC coating in a self-mated DLC/DLC contact. The tribofilm 

was easily removed after the samples were cleaned in an ultrasonic bath 

with cyclohexane suggesting that the adhesion of the ZDDP tribofilm to 

hydrogenated DLC was weaker than uncoated ferrous surface.  In addition, 

Fe was not detected in the tribofilm formed on the DLC coating implying that 

no delamination of the coating occurred and that ZDDP formed a tribofilm on 

the DLC without the presence of Fe.  
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3.5.5. Adverse Effect of MoDTC on DLC High Wear  

Recently, the effect of MoDTC in increasing wear of a DLC coating in a 

DLC/steel contact has been reported [41, 214, 220, 253-256]. Shinyoshi et 

al. [41] performed block-on-ring tests to evaluate the friction and wear 

properties of DLC coatings in the MoDTC-containing oil. The results 

suggested that MoO3 which is the decomposition product of MoDTC reacted 

with DLC and promoted the wear of DLC coating. The wear mechanism by 

which MoDTC is giving high wear to DLC is summarised in Figure  3-33.   

 

 

Figure 3-33 Wear steps of DLC coating in oil containing Mo-DTC [41]. 

 

Haque et al. [220] showed that DLCs rubbed against steel in the presence of 

a MoDTC-containing base oil gave extremely high wear but that the addition 

of the anti-wear additive ZDDP terminated this effect. Sugimoto [254] also 

reported the higher wear of DLC in a DLC/steel system when lubricated in 

MoDTC-containing fully formulated oil. However, the wear process was 

reported to be almost entirely independent of the presence or absence of 
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MoO3. In contrast, Tung et al. [232] showed that MoDTC can reduce the 

wear of a DLC coating lubricated in fully formulated engine oil which could 

be due to the fact that ZDDP was present in his oil and could suppress the 

effect of MoDTC on promoting wear of DLC coatings reported by others. 

Vengudusamy et al. [255] studied the tribological behaviour of several types 

(a-C, a-C:H, WC-DLC, Si-DLC, etc.) of DLC coatings for MoDTC-containing 

oil in the DLC/steel system. The wear rates of DLC coatings lubricated with 

MoDTC were shown to be even higher than those with PAO. This was 

correlated to the formation of large amounts of abrasive MoO3  which in turn 

will enhance removal of tribofilms from DLC coatings and thus high 

wear. Recent literature on the harmful effect of Mo-containing friction 

modifier in promoting high wear of DLC is summarised in Table  3-5.  

 

Table 3-5 Summary of literature on the effect of MoDTC in promoting high 
wear of DLC coatings. NM stands for “Not Mentioned”. 

Author(s) System Type of 
DLC 

High wear for DLC coating observed 
with: Wear Mechanism 

Model oils Fully 

formulated 

oils 

MoDTC ZDDP 
+MODTC 

[232] DLC/CI NM - - No 
A protective 

tribofilm produced 
by MoDTC with 

ZDDP, which acts 
to reduce wear. 

[41] DLC/steel NM Yes - - Oxidative wear 
due to reaction of 

MoO
3
 with the 

DLC active sites. 

[220, 253] DLC/CI a-C 
a-C:15H 

Yes 
(Multiple 
sources) 

No - In the absence of 
ZDDP, high 

pressure exerted 
by small third 
body particles 

could go beyond 
the endurance 

limit of the 
coating. 

[255] DLC/steel a-C 
a-C:H 

Si-DLC 
WC-DLC 

Yes - - “Pro-wear process 
must involve the 
presence of the 
steel counterface” 

DLC/DLC No - - 

[254] DLC/steel a-C:H - - Yes Graphitization of 
the DLC followed 
by the formation 

of hard Mo 
compounds on 

the steel 
counterpace 

accelerating the 
wear on the DLC 

plate. 
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The origin of “MoDTC induced wear” on DLC is not fully understood and 

previous studies mainly used single additive solutions rather than realistic 

fully formulated oils. Furthermore, the addition of ZDDP to the lubricant has 

been shown to cancel or reduce the effect of MoDTC in promoting wear on 

DLC coatings, but it has not been reported whether other surface active 

additives in the oil could provide similar protection. Therefore, a 

comprehensive understanding of the DLC/MoDTC interaction, especially on 

the wear performance of DLC coating, is still to be clearly produced.   

 

3.5.6. Effect of Temperature on the DLC/Lubricant Interaction 

Although many researchers have been carried out on the boundary 

lubrication of DLC coatings, the actual boundary lubrication mechanisms, the 

DLC/lubricant additives interaction and the parameters involved are still 

poorly understood. Operating temperature of contact surfaces in boundary 

lubrication may vary with changes in contact pressure and sliding speed. 

Contact temperature is an important factor which can have a detrimental 

effect on the reactivity of different additives with metals [210, 257]. The 

tribological properties of DLC surfaces can be changed when the coated 

surfaces will be exposed to different operating temperatures, particularly 

when lubricated by formulated oils [238].  

 

For non-doped DLC coatings, regardless of operating temperature, no 

significant difference in friction and wear was observed using  both base oils 

and formulated lubricants, as shown in Figure  3-34 and Figure  3-35 [238]. 

However, when temperature exceeds 200°C, decomposition of DLC starts 

occurring [188, 238], leading to reduced friction but with the cost of 

increased coating wear rate [238].  
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Figure 3-34 Effect of operating temperature on steady-state friction of 
undoped DLC coatings running against uncoated steel (Pmax = 1.5 GPa, 
v = 0.02 m/s) [238]. 

 

 

Figure 3-35 Effect of operating temperature on wear rate of undoped DLC 
coatings running against uncoated steel (Pmax = 1.5 GPa, V = 0.02 m/s) 
[238]. 
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On the other hand, tribological performance of metal-doped DLC coatings 

was found to be much more sensitive to the operating temperature. The 

effect of test temperature on the tribological behaviour of W-doped DLC 

coatings in boundary lubricated condition, is shown in Figure  3-36 and 

Figure  3-37. Similar to non-doped DLC coatings, for additive-free PAO oil, 

friction and wear rates were observed to be almost independent of the 

operating temperature up to 200°C. Apart from coefficient of friction at 

200°C, the same behaviour was also observed when PAO+ AW additives 

was used [238]. However, using PAO+ EP additive, increase in temperature 

was found to affect both friction and wear. When the temperature exceeded 

100°C, up to 40% reduction in friction was observed (Figure  3-36). The low 

friction observed was related to the formation of WS2-containing tribofilms. 

W–S reaction kinetics was accelerated in higher temperatures and activation 

energy was increased [258], thus promoted faster tribofilm formation and 

friction reduction as a result. 

 

 

Figure 3-36 Influence of operating temperature on steady-state friction of 
steel/W-doped DLC combination (Pmax = 1.5 GPa, V = 0.02 m/s) [238]. 
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Figure 3-37 Influence of operating temperature on wear rate of steel/W-
doped DLC combination (Pmax = 1.5 GPa, V = 0.02 m/s) [238]. 

 

Nevertheless, based on the published literature, it is obvious that the effect 

of temperature on boundary lubricated DLC coatings is greatly influenced by 

the type of DLC coatings as well as the lubricant additive package used.  

3.6. Summary 

This review provided a summary of the current understanding of the 

lubricant additives and their interactions with ferrous surfaces. Furthermore, 

Diamond-like carbon (DLC) coatings and their properties have been 

described. The state of the art in lubricant/DLC interaction and the effect of 

different parameters on the tribological performance of DLC coatings has 

been shown. 

 

Molybdenum Dithiocarbamates (MoDTC) and Zinc Dialkyldithiophosphates 

(ZDDP) are well-known friction modifier and anti-wear additives respectively, 

used for ferrous surfaces. Having low shear strength, MoS2 low friction 

crystals, derived from MoDTC decomposition, provide low friction at the 
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tribological contacts in boundary lubrication conditions [34-36]. ZDDP offers 

anti-wear properties by forming sulphide- and phosphate-containing 

tribofilms at ferrous surfaces [35-37]. It has also been suggested that the 

presence of ZDDP could promote MoS2 formation and that ZDDP may 

enhance durability of the MoS2 sheets [259, 260]. In addition, MoDTC has 

been found to improve the wear resistance of the ferrous surfaces by 

forming N-containing species in the tribofilm [35].  

 

Diamond-Like Carbon (DLC) coatings have become an attractive surface 

engineering solution in the automotive industry as they offer excellent 

tribological performance including low coefficient of friction, high wear 

resistance [234, 261] and outstanding running-in properties [234].  Diamond 

like carbon coatings have similar properties to diamond but are amorphous 

carbon coating consisting network of sp2 (graphite-like), sp3 (diamond-like) 

and hydrogen bonds.  

 

Commonly used lubricant additives are designed to form tribofilms on 

ferrous-base surfaces. It is therefore essential to optimize coating and 

lubricant compatibility to enable additive solutions to be tailored to DLC 

surfaces.  The properties of DLC coatings depend extensively on the sp2/sp3 

ratio as well as hydrogen content, which in turn depends on the deposition 

process and applied parameters [262]. Thus, the interaction between 

lubricant additives and DLC depends significantly on the type of DLC used. 

 

Different researchers have started to evaluate interactions between lubricant 

additives with various types of non-ferrous DLC coatings under boundary 

lubrication. DLC coatings have been reported to be chemically inert using a 

steel pin sliding against DLC-coated disks lubricated in oil containing 

MoDTC and/or ZDDP [215]. In contrast, molybdenum-based friction 

modifiers and ZDDP anti-wear have been reported to form low friction MoS2 

sheets and/or ZDDP-derived compounds respectively, on the DLC coating 

providing low friction and better wear performance under boundary 

lubrication conditions [4, 206, 216, 217, 219, 220, 263]. Based on the 

published literature, researchers mostly used model oils containing one or 

combination of additives rather than more realistic fully formulated oils. 

Obviously, interaction between different additives could result in antagonistic 
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or synergistic effects which influence the tribological behaviour  of the 

contacts in a real engine when lubricated with a fully formulated oil.  

 

Based on the literature presented in this chapter,  DLC/lubricant interaction 

depends significantly on numerous  factors such as contact conditions, test 

parameters, the physical and mechanical properties of the DLC coatings, 

lubricant type, etc. Therefore, a comprehensive understanding of the 

DLC/lubricant interaction is still to be clearly produced. The main objective of 

this study is to evaluate how the nature of the fully formulated oils affects the 

tribochemical reactions at DLC interfaces in a hydrogenated DLC. This could 

provide information regarding the feasibility of modifying additive solutions 

for increased performance of DLC/lubricant. 
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Chapter 4 Experimental Procedures 

 

4.1. Introduction 

In this chapter, the details of test materials and coatings, test lubricants, 

sample preparation techniques, coating deposition techniques, experimental 

rigs are presented along with the surface analysis techniques used to test 

and characterise lubricant/surface interactions. 

4.2. Test Materials and Coatings 

In this study, tests were performed in a pin-on-plate rig where the HSS M2 

Grade steel samples were coated by 15 at.% hydrogen containing DLC (a-

C:15H) coatings. The concentration of hydrogen in DLC coating was 

provided by the supplier. BALINIT® DLC STAR, a commercial low 

hydrogenated DLC coating, was supplied by Oerlikon Balzers Coating (UK). 

This coating is popular because of its high hardness, excellent load bearing 

capability, excellent fatigue resistance and corrosion resistance. The coated 

samples were pure sliding against BS 1452 cast iron (CI) pins. The 

properties of materials and coatings are given in Table 4-1. Steel/CI, a-

C:15H/CI and a-C:15H/ceramic were the material combinations which were 

used in this study. 

Table 4-1 Physical properties of plates (substrate/coatings) and counterpart 
materials.  

Properties of coating 

and other related 

materials 

Ferrous Material Ceramic Ball DLC Coating 

Specification  HSS M2 Grade  Cast iron BS1452  Si3N4 a-C:15H 
a
  

Hardness  8.0 GPa  4.0 – 4.5 GPa  14-17 Gpa 17.0 GPa  

ReducedYoung’s

modulus  

218 GPa  134 GPa  300-320 Gpa 190 GPa  

Roughness, R
q
  0.04-0.06 µm  0.07-0.09 µm  0.02-.0025 µm 0.04-0.06 µm  

Composition/ 

Coating thickness  

C 0.64%, Si 

0.55%, Cr 1.57%, 

and Mn 0.49%  

C 3.0%, Si 2.0%, Mn 

0.4%, Cr 0.1%, Cu 

0.3%  

90% Si3N4 2-4 µm coating 

aCommercial coatings obtained from Oerlikon Balzers Ltd., UK. 
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4.3. Pin-on-Plate Test Rig 

4.3.1. Test Setup 

A reciprocating pin-on-plate tribometer under boundary lubrication conditions 

was used to simulate the severe conditions that occur at the cam/follower 

contact [134] in the valve train of an internal combustion engine. The 

lubricant is heated using a heater and the temperature is maintained at a set 

value (mainly 100oC in this study) using the feedback controller where a 

thermocouple is used to detect the temperature of the reservoir. The contact 

point of the plate and the pin was lubricated under a static volume of oil (3 

ml). The speed can be adjusted by a built-in speed controller. The stroke 

length and average speed were 10 mm and 0.020 m/s respectively (stroke 

frequency of 1 Hz) and the contact between the plate and the pin was pure 

sliding in a lubricated condition as given in Table 4-1.  

 

 

Figure 4-1 Schematic diagram of the contact in the pin-on-plate tests where 
the contact is submerged in lubricant. 

 

Considering the radius of curvature on the CI pin, the load was used such 

that the initial Hertzian contact pressure was 700-800 MPa, similar to the 

pressure range of cam/follower contact in a passenger gasoline engine. In 

the DLC/CI system the actual load was about 390 N and in the DLC/ceramic 

the actual load was 13 N. Hertzian contact pressure was calculated using 

Equation  2-5 and Equation  2-6. Considering load, material and lubricant 

properties and using Equation  2-11, Equation  2-12 and Equation  2-13, the 

10 mm 

Oscillation of plate 

Load 

Pin 

Plate 
Lubricant 
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calculated lambda ratios were well below unity (≈0.004) meaning that 

lubrication occurred in the boundary lubrication regime. To evaluate friction 

performance, each type of test was repeated three times and average 

repeatability was seen to be less than 0.03 for the friction coefficient in the 

steady state region (i.e. last hour of the test). The friction force was 

measured using a bi-directional load cell of the range of 58.8 N with a 

combined error of -0.0037 N. The combined error is considered to be the 

combination of non-linearity, temperature effect, load cell sensitivity and 

hysteresis. The data collected from the load cell is converted to digital signal 

in an analogue to digital converter and finally processed by Labview 

software in a computer. The friction force data was measured continuously 

and periodically averaged every minute. The duration of the tests varied 

between 6 ,12 and 20 h. 

 

4.3.2. Test Samples 

The dimensions of the CI pins which were used in pin-on-plate tests were 20 

mm in length, diameter 6 mm and the ends of the pins had a 40 mm radius 

of curvature. The geometry of the plate was 15 mm × 6 mm × 3mm. The 

radius of silicon nitride ball was 6 mm. All sample preparations, heat 

treatment, etc.  have been conducted by external provider and the properties 

of the CI pin, the silicon nitride ceramic ball, High Speed Steel (HSS) plates 

and the DLC coating are given in Table  4-1. Prior to the tests, samples were 

cleaned using acetone in an ultrasonic bath for 15 minutes.  

 

4.3.3. Coating Deposition 

A hybrid unbalanced magnetron sputter ion plating/PECVD deposition 

system was used to deposit the a-C:15H coating on the steel plate. First the 

substrates were cleaned by Ar+ plasma ion etching using pulsed DC bias 

followed by deposition of a thin adhesion promoting Cr layer by DC 

magnetron sputtering with a pulsed DC bias. A CrN intermediate layer was 

then deposited by introducing nitrogen gas into the chamber. Finally, by 

adding a hydrocarbon gas, a layer of the a-C:15H coating was deposited 

using a plasma enhanced chemical vapour deposition (PECVD) technique, 

where a pulsed DC bias was applied on the substrate and a discharge 

enhancing electrode with a 13.56-MHz RF generator was used.   
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4.4. Lubricants 

In phase I, six fully formulated oils were used as given in Table  4-2. All the 

oils are supplied by Infineum UK limited and the key additive components of 

each oil are shown in Table  4-3. In addition to the information provided, the 

fluid contains detergent, dispersant as well as antioxidants.  

 

Table 4-2 Oil lubricants-Phase I 

Lubricants Annotations Base stock P from 
ZDDP 
(ppm) 

Mo 
(ppm) 

Other 
Additives 

Detergent 
Dispersant 
Antioxidant 

PAO PAO Group IV N/A N/A N/A Y 

Base Base oil Group III N/A N/A N/A Y 

Fully formulated oil 1 FF1+ Group III  750  40  GMO  Y 

Fully formulated oil 2 FF2+ Group III  750  - - Y 

Fully formulated oil 3 FF3+ Group III  750  60  GMO  Y 

Fully formulated oil 4 FF1- Group III  - 40  GMO Y 

Fully formulated oil 5 FF2- Group III  - - - Y 

Fully formulated oil 6 FF3- Group III  - 60  GMO Y 

 

In phase II, ZDDP-containing (FF1+) and ZDDP-free (FF1-) oil with three 

levels of a MoDTC type friction modifier (Mo-FM) were used. In this phase of 

the study, FF1+ and FF1- oils are annotated FF40+ and FF40- , respectively 

(40 is the Mo concentration in the oil).This relabeling was done for an easier 

comparison between oils with different MoDTC level. The key additive 

components in each oil are shown in Table  4-3.  

 

Table 4-3 Oil lubricants Phase II 

*All FF oils contain organic friction modifier (OFM), detergent, dispersant and antioxidant. 
 
 

Lubricants Annotations P (ppm) Mo (ppm)* 

Fully Formulated Oil  FF40+ (FF1+) 750 40 

FF300+  750 300 

FF600+ 750 600 

FF40- (FF1-) - 40 

FF300- - 300 

FF600- - 600 
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4.5. Surface Analysis Techniques 

Different surface analysis techniques were used in this study to provide 

better understanding of the mechanisms involved in the lubricant additive 

interaction. The description of each technique will be explained in detail. The 

summary of the techniques which are used in this study is given in 

Table  4-4. 

 

Table 4-4 Summary of the surface analysis techniques which were used in 
this study. 

Surface analysis technique The application 

Optical Microscope Physical observation of the surface 

features  

WYKO white Light Interferometer Roughness evaluations, wear scar depth, 

cross sectional area and wear volume 

measurements of samples. 

Scanning Electron Microscope (SEM)/ 

Energy Dispersive X-Ray (EDX) 

Visual evaluation of the sample surfaces 

and to provide information about wear 

mechanisms and durability of the DLC 

coatings. 

Focused Ion Beam (FIB)/ Transmission 

Electron Microscopy (TEM) 

Coating characterization before and after 

the tests. 

Nano-indentation To provide mechanical properties of the 

samples. 

X-Ray Photoelectron Spectroscopy 

(XPS) 

Chemical analysis of the tribofilms 

formed on the samples. 

Raman Spectroscopy To characterize DLC for structural 

modification. 

 

4.5.1. Optical Microscope 

A Leica DM6000M Microscope was used for physical observation of surface 

features providing information on wear mechanisms. This microscope is 

capable of recording high quality 2D and 3D Images using LAS V3.8 

software. In this study the optical microscope was used along with other 

techniques to investigate the durability of coatings as well as to measure the 

diameter of the wear scars formed on the counterpart pins. The diameters of 

the pins were used to measure the lost segment of the sphere on the pins 

using Equation  4-1.  
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           Equation 4-1 

Where     √      

  = Radius of the curvature for the pin 

  =
 

 
=Radius of the wear scar measured by the optical microscope 

  = Volume loss of pin material (m3) 

  = Height of sphere of pin worn after the test (m) 

 

Finally, the specific wear coefficients have been calculated using the 

Archard wear equation (see Equation  2-2). 

 

4.5.2. WYKO White Light Interferometer 

Wear of the plates (where measurable) was measured using a Veeco 

WYKO white light interferometer (NT3300S model) which had the capability 

to measure wear scar depth, cross sectional area and wear volume. In this 

study, the cross sectional areas of the wear scars were measured at least in 

three different positions across the wear track. The average value of the 

cross sectional area was multiplied by the stroke length which gave the wear 

loss volume of the plate. The typical data of the cross sectional area of the 

wear scar, obtained from the Vision64 software, is given in Figure  4-2. The 

software was also capable to provide the wear volume directly but levelling 

the surface made it difficult to get the correct wear volume. Measuring the 

wear volume, the specific wear coefficients were calculated using the 

Archard wear equation (see Equation  2-2). 

 

Wear measurement of the plates in phase I was a challenge as the wear 

rate was extremely low and there was no roughness variations  comparing 

different samples and therefore the wear evaluation was done semi-

qualitatively using SEM/EDX analysis of the wear scar on the plates.  
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Figure 4-2 Wear measurements of the plates 

 

4.5.3. Scanning Electron Microscope (SEM)/ Energy Dispersive X-

Ray (EDX) 

In this study, a Zeiss EVO MA15 Variable Pressure SEM was used to 

investigate the mechanism of wear and the durability of the coatings. This 

SEM is integrated with an Oxford Instruments Energy Dispersive X-ray 

(EDX) analysis system. In this study, the EDX analysis was used to provide 

information about the durability of the coating. EDX mapping obtained within 

the wear tracks showed the presence of C and Cr. Cr comes from the 

underlying CrN/Cr intermediate layer and so could be used as a qualitative 

analysis of the extent of the coating wear. The higher the Cr intensity in the 

EDX maps, the higher removal of coating thickness due to wear (Figure  4-3).  
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Figure 4-3 Schematic diagram showing the cross section of the a-C:15H 
coating plate. Concentration of Cr, detected by EDX, is higher inside 
the wear track compared to outside.  

 

4.5.4. Focused Ion Beam (FIB)/ Transmission Electron 

Microscopy (TEM) 

FEI Nova200 NanoLab high resolution Field Emission Gun Scanning 

Electron Microscope (FEGSEM) with precise Focused Ion Beam (FIB) was 

used to expose cross-sections of the DLC samples. Milling was performed at 

30 kV and at beam currents between 5 and 0.1 nA. A final cleaning step was 

performed at 5 kV and with a beam current of 29 pA. Cross-sections were 

then removed in-situ using a Kleindiek micromanipulator and attached to a 

TEM support grid ready for analysis. Sputter coating was applied to the 

surface before a thicker 1 µm Pt layer was applied by a gaseous injection 

system. This was done in order to protect the surface from the ion beam. To 

get a high resolution view of the provided cross-sectional areas of the DLC 

coatings, Transmission Electron Microscopy (TEM) analyses were 

performed. TEM characterisation was carried out using a Philips CM200 

FEGTEM operated at 197 kV and fitted with a Gatan GIF200 imaging filter. 

The TEM high resolution images were taken to characterise the DLC 

coatings before the tribo-test and to provide quantitative and qualitative  

information about the thickness of the DLC coatings post tribo-tests. Prior to 

the analysis, DLC samples were cleaned in an ultrasonic acetone bath for 15 
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minutes. Figure  4-4 shows the different steps involved in FIB sample 

preparation to be used for TEM analysis of the cross-sections. 

 

  

  

  

Figure 4-4 Typical TEM slide preparation using FIB. 
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4.5.5. Nano-indentation Analysis 

Mechanical properties of the coatings were obtained by nano-scale 

indentation using a Micro Materials Limited NanoTestTM Platform One 

device. The indentations were performed in a controlled environment 

temperature of 25oC, using a Berkovich-type indenter. The Berkovich 

indenter used in this study had a three faced pyramid and a typical tip radius 

of 100-500 nm. As a result of the measurement, the force–displacement 

curve was produced. A typical loading/unloading curve obtained using 

nanoindentation on the as-deposited a-C:15H coating is given in Figure  4-5. 

By analysing the recorded results, the mechanical properties such as 

hardness and modulus of elasticity were obtained. Nano-indentation analysis 

in this study was performed to check the modification/graphitisation of the 

DLC coatings, not to characterize tribofilms. Therefore, prior to the tests, all 

samples were left in an ultrasonic acetone bath for at least 15 minutes. This 

would most probably lead to the removal of the tribofilm which is weakly 

bonded to the DLC coatings.  

 

 

  

Figure 4-5 Typical loading/unloading curve obtained using Nanoindentation 

on the as-deposited a-C:15H coating.  

 

A commonly used rule of thumb is to limit the indentation depth to less than 

10% of the thickness of the coating to eliminate the “substrate effects” [264, 

265]. Therefore, in this study, the indentation load was set at 5 mN, resulting 

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100

L
o
a
d
 (

m
N

) 

Depth (nm) 



4: Experimental Procedures 

93 

 

in a maximum indentation depth of 80-120 nm in the coating (In this study 

the thickness of as-deposited DLC coating was about 2.5 µm). Loading and 

unloading was performed for 30 s with a 5 s hold at pick load. A thermal drift 

correction of 60 s at 90% unloading was used so that the material could 

settle within temperature variations caused by the indentation process. A 

standard indentation grid of four rows by three columns (50 µm spacing) was 

chosen arbitrarily and was applied to all samples. The indenter was tested 

regularly for accuracy using a standard silicon plate that has known 

hardness values. 

 

4.5.6. X-ray Photoelectron Spectroscopy (XPS) 

XPS analysis measurements were made on the tribofilm formed on the plate 

surfaces. This surface sensitive technique can analyse very top layer of the 

surface (5 nm depth). Any residual oil and/or contaminants were removed by 

soaking the samples in N-heptane for 10 seconds prior to the XPS analysis. 

An area of 500 µm × 500 µm in the wear scar of the plates has been 

analysed using a monochromatized Al K[α] source in the XPS. Spatial mode 

was chosen to acquire all the spectra. The XPS survey scan was used to 

determine the type of elements present in the tribofilms (Figure  4-6a) The 

curves on the XPS peaks obtained from long scans (Figure  4-6b) were fitted 

using CasaXPS software [266] and the quantitative analyses of the peaks 

were performed using peak area sensitivity factors. The chemical species 

corresponding to each binding energy have been found using a handbook of 

XPS [267]. The position of C1s peak (284.8 eV) was considered as the 

reference for charge correction. The peak area ratio, difference between 

binding energies of the doublets, and full-width at half-maximum (FWHM) 

were constrained to provide the most appropriate chemical meaning. A 

linear background approximation was used to process the data in this study.  
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(a) (b) 

Figure 4-6 Typical survey scan (a) and long scan (b) XPS spectra. 

 

4.5.7. Raman Spectroscopy 

Raman Spectroscopy has been used as a technique to characterize DLC 

coatings, and their wear debris in the literature [198, 268, 269]. Renishaw 

inVia Raman microscope was used to analyse the structural modifications of 

the a-C:15H coating and nature of the layer transferred to the CI pin. The 

excitation wavelength used was 325.02 nm and the spectra were acquired 

with 10% power filter. The current intensity was controlled in order to 

achieve probing depth within 1 µm. The acquired Raman spectra usually 

comprised of distinct carbon peaks. In the Raman spectra recorded outside 

of the wear track, the G peak around 1580 cm−1 represents the graphite and 

D peak 1380 cm−1 represents the disorder-condensed benzene rings in 

amorphous carbon [198, 269]. The spectra were fitted with Lorenzian-

Gaussian distributions associated with the peaks commonly found in 

amorphous hydrogenated carbon (Figure  4-7).  
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Figure 4-7 A typical Raman spectra and Gaussian curve-fitting obtained from 
as-deposited a-C:15H coating. 

 

In Figure  4-7, a Raman spectra and Gaussian curve-fitting obtained from as-

deposited a-C:15H coating is shown. In the actual analysis, the ratio of the 

intensity between the D and G peaks is considered to characterise the 

structure of the a-C:15H coating, rather than considering the overall intensity 

taken from one location to another. It is reported that the relative intensity 

height of the D peak is related to the microcrystalline size of the graphitic 

cluster, where less-graphitic amorphous films have a lower HD/HG value 

[167, 270-272]. Therefore, higher values of the HD/HG ratio imply 

transformation of the a-C:15H coating into graphite in the a-C:15H matrix 

under the present boundary-lubricated conditions [198]. 
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Chapter 5 Results: Phase I - Tribological performance and 

tribochemical processes in a DLC/steel system when 

lubricated in a fully formulated oil and base oil 

 

5.1. Introduction 

In phase I of the study, the overall view of the tribological performance of the 

a-C:15H coating/commercial fully formulated oil system in terms of friction, 

wear and coating durability under boundary lubrication conditions has been 

investigated and the tribological performance compared with that of an 

uncoated steel system. In this chapter, results obtained from pin-on-plate 

tests performed using a-C:15H coating and uncoated steel system lubricated 

with various fully formulated oils are presented.  

 

Based on the published literature, most authors have used model oils 

(containing one or combination of additives) rather than more realistic fully 

formulated oils. Obviously, the interaction between different additives in a 

fully formulated oil could result in antagonistic or synergistic effects which 

affects the tribological behaviour of the contacts in a real engine. For the 

above reason, in this study, fully formulated oils were used which could 

provide a more realistic evaluation of DLC/lubricant interaction.  

 

Two material systems namely steel/CI, a-C:15H/CI were used for the pin-on-

plate tests. Eight oils designated as Base, PAO, FF1+, FF2+, FF3+, FF1-, 

FF2- and FF3- were used in this study. The properties of materials and 

coatings, geometry of the samples, coating deposition techniques, and oil 

compositions are described in Chapter 4 and the test duration was 6 h in 

Phase I of the study. All tests have been conducted at least three times and 

the results were observed to be repeatable. The map of the study which is 

conducted and presented in this chapter is shown in Figure  5-1. 
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Figure 5-1 Map of the study which is presented in this chapter. 
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5.2. Tribological Performance of the Steel/CI System 

5.2.1. Friction Results 

In Figure  5-2, the friction results of the steel/CI system as a function of time 

using eight different fully formulated oils are presented. Based on the friction 

traces, it can be seen that all the fully formulated oils followed a similar trend 

with time. However, Base oil (Base group III) showed an increase in friction 

with regards to time. Generally, all oils exhibited a high friction coefficient of 

above 0.1. 

 

 

Figure 5-2 Friction coefficient as a function of time for the steel/CI system 
lubricated in oils.  

 

In addition, the steady state coefficients of friction (i.e. last hour of the tests) 

as a function of different fully formulated oils for steel/CI system are shown 

in Figure  5-3. Based on the obtained results, ZDDP increased friction and 

FM decreased friction for most of the cases. However, despite the presence 

of FM in the oils (except for FF2+ and FF2-), none of the oils showed any 

significant friction drop with time and all fully formulated oils gave relatively 
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high friction in the range of 0.1 to 0.12. Among ZDDP-containing FF oils, 

FF2+ showed higher friction compared to FF1+ and FF3+ oils. It was also 

the case for ZDDP-free oils where FF2- showed higher friction value 

compared to FF1- and FF3- oils. This was not surprising as there was no 

Friction Modifier (FM) in FF2+ and FF2- oils formulation. In fact, ZDDP-

containing FF2+ showed high friction values in the range of PAO and Base 

oil group III. Based on the friction results for steel/CI system, it was also 

seen that the presence of ZDDP in the formulated oils increased friction 

values in comparison to ZDDP-free oils as has been widely reported for steel 

systems [48, 55-58].  

 

 

Figure 5-3 Steady state friction coefficients as a function of FF oils for 
steel/CI system. 

 

5.2.1.1. Effect of Temperature 

All fully formulated oils showed relatively high friction in the range of 0.1 to 

0.12 and the presence of FM did not offer any significant improvement in 

friction behaviour of steel/CI system. It could be argued that friction modifiers 

were not functioning at the given experimental conditions. It was shown that, 

in the steel/lubricant system, increasing temperature above 100oC, resulted 

in lower steady state friction values than tests with lower temperatures [97, 

114]. To prove this supposition, tests were performed using FF3- oil at 
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100oC and 140oC. Tests performed using FF3- at 140oC showed almost the 

same friction as that obtained at 100oC (Figure  5-4). This was in contrast 

with the findings of Yamamoto et al. [97] where with the oil containing 

MoDTC, increasing the temperature from 100oC to 120oC resulted in friction 

reduction from 0.07 to below 0.05.  

 

 

Figure 5-4 Effect of temperature on coefficient of friction as a function of time 
in a steel/CI system lubricated in FF3-. 

 

5.2.1.2. Effect of Time 

In this phase of the study, the tribo-tests were performed for 6 h and no drop 

in friction was observed using any of the fully formulated oils. Therefore, in 

order to find out the potential effect of the test duration on the friction 

performance of different oils, tests for FF3- (FM containing but ZDDP-free) 

which provided comparatively lower friction than other oils after 6 h tests, 

were continued longer (20 h). This was carried out to elucidate whether or 

not increasing the test duration facilitates the formation of a low friction 

tribofilm on the surface and lower friction as a result. Figure  5-5 shows the 

friction response with respect to time. Based on the obtained results, no 

significant difference in terms of friction was observed even after 20 h tests. 
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It could be argued that the low concentration of the FM additive in the oils 

and the presence of other additives could potentially affect the low friction 

film formation on the surface. Chemical analysis of the surfaces post tribo-

tests could support the observed friction behaviour which will be discussed  

later in this chapter. 

 

 

Figure 5-5 Effect of time on coefficient of friction as a function of time in a 
UC steel/CI system lubricated in FF3-. 

5.3. Tribological Performance of the a-C:15H/CI System 

5.3.1. Friction Results 

The friction coefficient as a function of time for the a-C:15H/CI combination 

using eight different oils is given in Figure  5-6. All fully formulated oils 

followed the same trend with regards to time and no friction variation was 

seen with time whereas, interestingly, a drop in friction was observed when 

PAO and Base oil (group III) with no additives were used. Additive-free PAO 

showed a drop in friction 2 h after the start of the tests giving the lowest 

steady state coefficient of friction of all the oils in the a-C:15H/CI system. 
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Although this low friction was obtained at the cost of high wear which will be 

explained in detail later in the section  5.3.2 and  5.4.3 .  

 

 

Figure 5-6 Friction coefficient as a function of time for the a-C:15H/CI system 
lubricated in oils.  

 

In addition, the average steady state friction (i.e. the last hour of the tests) as 

a function of different oils for a-C:15H/CI system are presented in Figure  5-7. 

Overall, base oils and additive-containing fully formulated oils behave in a 

completely different manner to the a-C:15H/CI system. In general, additive-

free base oils gave lower friction than fully formulated oils. PAO, in 

particular, provided the lowest friction when used in a-C:15H/CI system.  

Using fully formulated oils, FF2+ and FF2- showed lower friction than other 

fully formulated oils which is opposite to what was seen in steel/CI system 

and the friction values obtained using FF2- oil was lower than FF2+ whereas 

for other fully formulated oils and considering the error bars the presence of 

ZDDP in the oils did not significantly affect the friction values. Nevertheless,  

it is evident that Mo-FM was not effective in friction reduction of a-C:15H/CI 

as oils containing FM showed even higher friction than FM-free oils. 

However, it should be borne in mind that the Mo-FM concentration in 

FF1+/FF1- and FF3+/FF3- was only 40 and 60 ppm, respectively. This could 
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be the main reason for the obtained friction values which were quite high for 

both DLC and steel systems compared to typical friction values reported in 

the literature and will be discussed in the discussion ( Chapter 7) in detail. 

 

 

Figure 5-7 Steady state friction coefficients as a function of FF oils for a-
C:15/CI system. 

 

5.3.2. Coating Durability and Wear Performance 

5.3.2.1. Optical Microscope/ SEM Images 

The wear of the plates on both a-C:15H/CI and steel/CI systems using fully 

formulated oils was observed to be very low making the wear measurements 

extremely difficult. Figure  5-8 shows typical images of the wear scar; it is 

evident that the extent and mechanisms of wear is dependent on the type of 

lubricant and additive-containing oils showed improved wear performance of 

DLC coatings.  

 

Obviously, PAO (Figure  5-8a) and Group III base oil (Figure  5-8b) showed 

much higher wear of the a-C:15H coatings with some evidence of 

delamination across the wear scar whereas using fully formulated oils 

(Figure  5-8c-f) there was no delamination; rather, the wear of the coatings 

was dominated by gradual polishing wear.  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

PAO Base FF1+ FF2+ FF3+ FF1- FF2- FF3-

C
o
e

ff
ic

ie
n

t 
o

f 
F

ri
c
ti
o
n

 

ZDDP-free ZDDP-containing 



5: Results: Phase I 
 

 

104 

 

 

 

 

(a)  (b) 

   

(c) (d) (e) 

   

(f) (g) (h) 

Figure 5-8 Optical images of the wear scars formed on the a-C:15H coated 
plates using (a) PAO, (b) Base oil Group III, (c) FF1+, (d) FF2+, (e) 
FF3+, (f) FF1- (g) FF2- and (h) FF3- .The arrows on the right side of the 
images show sliding directions. 

 

In addition, SEM analysis was carried out in the wear scars of the a-C:15H 

coated plate to investigate coating durability (Figure  5-9).  

 

Severe Delamination 
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(a)  (b) 

   

(c) (d) (e) 

   

(f) (g) (h) 

Figure 5-9 SEM images of the wear scars formed on the a-C:15H coated 
plates using (a) PAO, (b) Base oil Group III, (c) FF1+, (d) FF2+, (e) 
FF3+, (f) FF1- (g) FF2- and (h) FF3- .The arrows on the right side of the 
images show sliding directions. 

 

Observations from SEM images showed good agreement with the optical 

microscope images and wear results. Based on the optical microscope 

images and SEM images, severe delamination of the a-C:15H coating at 
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multiple regions was seen when lubricated in PAO (Figure  5-8a and 

Figure  5-9a) while Group III base oil (Figure  5-8b and Figure  5-9) gave 

limited delamination at some regions on the a-C:15H coated plate. In 

contrast in fully formulated oils (Figure  5-9c-f) no delamination was observed 

and the main wear mechanism involved was polishing.  

 

As shown earlier, using fully formulated oils, the wear of the a-C:15H plates 

was not measurable and there was almost no variation in the roughness 

measurements suggesting that all fully formulated oils showed a good wear 

performance, and thus the wear rates of the DLC coated plates could not be 

compared after 6 h tests. However, it turns out that oils with 60 ppm of Mo-

FM showed virtually no wear suggesting the positive effect of Mo-FM in the 

oil with low concentration and that for coatings lubricated with the ZDDP-

containing oil wear was even lower (see Figure  5-8e and Figure  5-9e) as 

reported elsewhere [253]. FF1+, FF2+, FF1- and FF2- provided 

microscratches on the wear scar of the coating. The colour of the wear 

tracks was brighter than outside of the wear track suggesting an insignificant 

polishing wear of the DLC coating. 

 

5.3.2.2. EDX Analysis 

To verify the observations from SEM results and optical microscope images, 

EDX was carried out in the wear scar. It is important to note that, the 

SEM/EDX analysis in this study was performed to check the durability of 

coating, not to characterize tribofilms. Therefore tribofilm on the plates were 

removed using acetone prior to the SEM/EDX analysis. 

 

EDX spectra obtained from inside the wear tracks showed presence of C 

and Cr. The difference between concentration of Cr in the wear tracks and 

outside of the wear tracks was used to identify the wear performance of 

various oils which are shown in Figure  5-10. The repeatability of the results 

for the coating durability was considered obtaining spectra in three different 

places across the wear tracks for tests using the same oil.  Due to the fact 

that PAO showed severe delamination on the a-C:15H-coated sample plate, 

EDX analysis was performed outside the delaminated regions.  
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Figure 5-10 Difference between concentrations of Cr inside the wear tracks 
and outside of the wear tracks using various oils. 

 

Based on the results, it is apparent that fully formulated oils showed very 

little difference in concentration of Cr implying very low wear on the coated 

plates which is in line with the initial observation and Optical/SEM images 

and explains why the wear on the plates were immeasurable using 

interferometer. Highest gradual wear was observed for additive-free base oil 

oils. 

5.4. Overall System 

As explained in previous section, tribological performance of the chosen oils 

on both steel and DLC system have been examined and reported. In this 

section, friction and wear and the tribochemistry involved in the obtained 

results are presented. In addition, an overall comparison between the  

performance of the oils on a-C:15H are made with that of steel system. 

 

5.4.1. Friction Performance 

The average friction coefficient values for the last hour of the test as a 

function of lubricant for a-C:15H/CI system versus steel/CI system are 
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plotted in Figure  5-11. This graph will facilitate a direct comparison between 

steel system with DLC system as a function of coefficient of friction. Shown 

in Figure  5-11, the friction values for steel/CI system and a-C:15H/CI system 

does not lie on the 45o line which means that the friction performance of all 

the oils are different for the steel/CI in comparison with the a-C:15H/CI 

system.  

 

Figure 5-11 Steady state friction coefficients as a function of lubricants for a-
C:15H/CI system versus Steel/CI system. 

 

Overall, friction behaviour was observed to be oil dependent for both 

systems. Base oils (PAO and Base group III) showed a better friction 

performance in the DLC system compared to the steel system. In addition, 

FM-free oils (i.e. FF2+ and FF2-) gave a lower friction than FM containing 

oils (i.e. FF1+/FF1- and FF3+/FF3-) in the a-C:15H/CI whereas it was 

opposite in the steel/CI system. In the steel/CI system, the presence of 

ZDDP in the fully formulated oils increased the friction in comparison to the 

ZDDP-free oils. In the DLC/CI system, however, the presence of ZDDP did 

not significantly affect the friction performance.  
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5.4.2. Pin Wear 

The wear coefficients of the CI counterbodies for various oils are given in 

Figure  5-12. In general, using fully formulated oils, pin wear rates were lower 

for the steel/CI system compared to a-C:15H/CI system. Regardless of the 

tribological system, ZDDP-free oils protected the CI pins better compared to 

ZDDP-containing fully formulated oils. This suggests that ZDDP is less 

effective in wear protection of the counterbody when was used together with 

detergent, dispersant and antioxidant. PAO showed the highest pin wear in 

the steel/CI system, as expected. In the a-C:15H/CI system, however, PAO 

showed lower pin wear than additive containing fully formulated oils in the a-

C:15H/CI system. That could be attributed to the high wear observed on the 

DLC plate when lubricated with PAO. The wear products from the high wear 

of the DLC plates which can have a graphitic nature [192] could protect the 

surface of the pin from further wear. The effect of this transfer layer and its 

formation on the tribological performance of a-C:15H/CI system will be 

explained in detail as in  Chapter 7. 

 

 

Figure 5-12. Dimensional wear coefficients as a function of lubricants for a-
C:15H/CI system. 
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5.4.3. Effect of Transfer Layer 

As explained in section 5-2, PAO and base oil group III showed a drop in 

friction in the a-C:15H system. In Figure  5-13, it is shown how wear products 

from a-C:15H are transferred to the counter body forming a layer on the pin 

when PAO and Base oil group III were used. The transfer material seems to 

accumulate around the edges of the wear scars on the pins.  

 

   

(a) (b) (c) 

Figure 5-13 Transfer layer on the pin coming from the wear track of a-C:H 
coating when (a) PAO, (b) Base oil group III, (c) any of the fully 
formulated oils were used.  

 

It should be noted that the transfer layer was not seen using any fully 

formulated oil (see Figure  5-13C). In order to investigate the possible effect 

of the transfer layer formed on friction reduction, the pin and the plate were 

cleaned by acetone every hour during the test to assure that no transfer 

material resided on the interface. The aim was to observe the effect of this 

layer on  friction reduction and  wear protection of the pin. In Figure  5-14, the 

friction response after the transfer material was removed every hour during 

the test, is shown. Resuming the tests after removing the formed transfer 

layer from the pin and the plate, friction droped almost immediately. This 

suggests that the preconditioned a-C:15H surface facilitate regeneration of  

the transfer layer leading to low friction performance.  
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Figure 5-14 Friction response after cleaning transfer material every hour 
during the test. 

 

In Figure  5-15 the steady state friction as a function of pin wear is shown. It 

can be seen that removing the formed transfer layer during the test not only 

hindered friction reduction but increased the pin wear. 

 

 

Figure 5-15 Effect of cleaning transfer layer on friction and wear. 
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Therefore, based on the results shown in Figure  5-14 and Figure  5-15, the 

positive effect of the formed transfer layer on friction reduction and reducing 

the wear of CI counterpart is evident. This could explain why using PAO the 

coefficient of friction and the wear rate is lower than those obtained by fully 

formulated oils. In order to understand the structural modifications of a-

C:15H within the wear track and the nature of wear debris transferred to the 

CI counterbody from the worn a-C:15H coating, Raman spectroscopy 

analysis was performed in the wear scars of the a-C:15H coating and CI pin. 

Figure  5-16 shows Raman spectra obtained using PAO from: (a) outside of 

a-C:15 coating wear scar, (b) inside of a-C:15H coating wear scar, (c) 

transfer material on the pin and (d) out of wear scar of pin.   

 

 

  

Figure 5-16 Raman spectroscopic analysis on the samples obtained using 
PAO. Hd and Hg are the intensity height of D and G peaks, respectively. 
The coloured boxes on the optical image of the CI pin and the SEM 
image of a-C:15H coating show the sites where the Raman analyses 
were carried out. 
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As shown in Figure  5-16, the value of the ratio Hd/Hg and the full-width at 

half-maximum (FWHM) of the G peak show insignificant difference within 

and outside the wear scar of the a-C:15H coating suggesting that no 

structural modifications of the a-C:15H coating due to the tribological test in 

the wear scar have occurred or that there was no detectable graphitic layer 

on the a-C:15H coating. However, distinct G and D peaks were detected in 

the wear scar on the CI pin, and no such peaks were observed outside the 

wear scar. The Hd/Hg ratio for the transfer material on the CI pin was found 

to be higher than a-C:15H coating and the FWHM of the G peak decreased, 

which indicates that the transfer of the material to the CI pin was more of 

graphitic nature material. 

 

Furthermore, the D and G peaks were not found in the spectrum taken from 

outside the wear scar of the CI pin suggesting that the graphite flakes, which 

are normally present in the microstructure of the cast iron, did not participate 

in the formation of the transfer layer on the pins. It appears that the graphite 

present in the microstructure of CI was not sufficient to give a distinct G peak 

compared with the a-C:15H coating material [253]. 

 

5.4.4. Chemical Analysis of Tribofilms 

Fully formulated oils contain different surface active engine oil additives, 

namely, friction modifier, anti-wear additives, detergents, dispersants, 

antioxidants, etc. Interaction between different additives could result in 

synergetic or antagonistic effects on the additive/surface interaction. This 

could make the tribochemistry of the system complex and difficult to 

understand [273].  

 

Commonly-used friction modifiers and anti-wear additives are optimized to 

form tribofilms on ferrous surfaces. In ferrous surfaces, friction reduction is 

usually associated with the MoDTC activity. MoS2 low friction sheets, derived 

from MoDTC decomposition, provide low friction at the tribological contacts 

[34-36]. ZDDP offers anti-wear properties by forming sulphide and 

phosphate containing tribofilms at the ferrous surfaces [35-37]. In addition, 
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MoDTC has been found to improve the wear resistance of the ferrous 

surfaces by forming N-containing species in the tribofilm [35].  

 

Following the overall tribological performance of different FF oils, regardless 

of friction modifier being present in the formulation or not, friction reduction 

was not observed using any of the oils in both steel/CI and a-C:15H/CI 

system (i.e. FM was inefficient) while the wear performance of the a-C:15H 

coating was generally good. 

 

In order to explain the observed tribochemical behaviour of different oils in 

both DLC and steel system, X-ray photoelectron spectroscopy (XPS) 

analyses were conducted on the wear scars formed on uncoated steel, and 

a-C:15H (DLC) coatings and their respective CI counterbodies to 

characterize the tribofilms where the X-ray penetrated several nanometers 

(~5nm) in the surface.   

 

In this study, mainly due to time constraints, XPS analysis was only 

performed on FF2+, FF3+ and the corresponding ZDDP-free oils (i.e. FF2- 

and FF3-). Performing XPS analysis, the effect of FM on the tribofilm 

formulation could also be established as there was no FM blended in FF2+ 

and FF2- compared to FF3+ and FF3-. Argon etching was not performed in 

any of the cases as it is argued that the etched tribofilms may be damaged 

by irradiation, especially to sulphur species [36] which may result in 

misinterpretation of the low friction compound MoS2, which is known to be 

responsible for friction reduction. XPS gives information of the outermost few 

nanometers of the tribofilm whereas MoDTC-derived MoS2 can form clusters 

within the tribofilm which may not exist necessarily on the topmost surface. 

However, considering the friction response, MoDTC was not seen to take 

part in the film formation on both steel plates and CI pins using any of the 

MoDTC-containing oils.  Figure  5-17 and Figure  5-18 show the survey scans 

on the tribofilms formed on the steel plates and CI pins, respectively.   

 

In general, the triobofilm is mainly rich in oxygen. Based on the XPS 

quantification of the elements of the tribofilms formed both on steel and CI 
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pins by FF2+, FF3+, FF2- and FF3-, it can be seen that ZDDP derived 

elements (i.e. P and Zn) have been found on the steel plates and CI pins.  

 

  

  

Figure 5-17 XPS survey scan for the tribofilms formed on the steel plates in 
steel/CI system. 
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Figure 5-18 XPS survey scan for the tribofilms formed on the CI pins in 
steel/CI system. 

 

In addition, detergent derived elements (N and Ca) were also found to 

contribute to the film formation on both steel plates and CI pins. In 
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Figure  5-19 and Figure  5-20, the survey scans on the tribofilms formed on 

the a-C:15H coated plates and the corresponding CI pins, are given.  

  

  

Figure 5-19 XPS survey scan for the tribofilms formed on the a-C:15H 
coated plates in a-C:15H/CI system. 
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Based on the XPS quantification of the elements of the tribofilms formed 

both on a-C:15H coated plate and CI pins by FF2+, FF3+, FF2- and FF3-, 

the trobofilm is generally rich in carbon for the a-C:15H coated plates 

whereas Oxygen is more dominant on CI pins.  

  

  

Figure 5-20 XPS survey scan for the tribofilms formed on the CI pins in a-
C:15H/CI system. 
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In addition, other additive derived elements were also present in the 

tribofilm. In a similar manner to steel/CI system, P and Zn tribofilm has been 

formed on the a-C:15H coated plates and CI pins by ZDDP-containing oils 

while the absence of MoDTC–derived elements was evident on both a-

C:15H coated plates and CI pins using any of the MoDTC-containing oils.  

Furthermore, detergent derived elements (N and Ca) contributed to the film 

formation on both a-C:15H plates and corresponding CI pins. 

 

High resolution scans (long scans) of the elements are also carried out in 

order to provide a better picture of the species which are formed on the 

surface of the pins and plates. The binding energies of the main fitted peaks 

and corresponding chemical species for a-C:15H/CI and Steel/CI system are 

shown in table 5-1 to Table 5-4. It is evident that the amount of Mo 3d 

detected on the tribofilm formed from fully formulated oils is insignificant for 

both a-C:15H/CI and steel/CI systems.  

 

Table 5-1 Binding energies, concentration of XPS and corresponding 
chemical in the tribofilms formed on steel plates in steel/CI system by 
oils FF2+, FF3+ and FF3-. 

Oils Binding Energies, chemical species and concentrations 

S 2p  Mo 3d  P 2p  Zn 2p  

steel plates 

FF2+ 161.2 eV, Sulphide (100 %) 

 

- 133.1 eV, 
pyrophosphate 

(100%) 

1022.0 eV, 
ZnS/ZnO/Zn
-phosphate 

(100%) 

FF3+ 160.8 eV, Sulphide (75.0 %) 

167.5 eV, Sulphite (25.0 %) 

Small to fit 
the curve 

132.8 eV, 
pyrophosphate 

(100%) 

1021.5 eV, 
ZnO/Zn-

phosphate 
(100%) 

FF3- 160.8 eV, Sulphide (10.9 %) 

167.0 eV, Sulphite (59.3%) 

168.9 eV, Sulphate (29.8%) 

Small to fit 
the curve 

- - 
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Table 5-2 Binding energies, concentration of XPS and corresponding 
chemical in the tribofilms formed on CI pins in steel/CI system by oils 
FF2+, FF3+ and FF3-. 

Oils Binding Energies, chemical species and concentrations 

S 2p  Mo 3d  P 2p  Zn 2p  

CI pins 

FF2+ 161.6 eV, Sulphide (100 %) 

 

- 133.0 eV, 
pyrophosphate 

(100%) 

1022.2 eV, 
ZnS/ZnO/Zn-
phosphate 

(100%)  

FF3+ 161.1 eV, Sulphide (57.4 %) 

167.9 eV, Sulphate (42.6 %) 

Small to fit 
the curve 

132.8 eV, 
pyrophosphate 

(100%) 

1022.0 eV, 
ZnS/ZnO/Zn-
phosphate 

(100%) 

FF3- 160.9 eV, Sulphide (34.5 %) 

168.0 eV, Sulphate (65.5%) 

 

Small to fit 
the curve 

- - 

 

 

Table 5-3 Binding energies, concentration of XPS and corresponding 
chemical in the tribofilms formed on a-C:15H coated plates in a-
C:15H/CI system by oils FF2+, FF3+ and FF3-. 

Oils Binding Energies, chemical species and concentrations 

S 2p  Mo 3d  P 2p  Zn 2p  

a-C:15H coated plates 

FF2+ 163.6 eV,  Sulphide (21.6%) 

162.1 eV, Sulphide (29%) 

- 133.7 eV, 
metaphosphate 

(100%) 

1022.5 eV, 
ZnS/ZnO/Zn-
phosphate 

(100%) 

FF3+ 163.6 eV, Sulphide (68.7 %) 

168.4 eV, Sulphate (15.2 %) 

171.1 eV, Sulphate (16.1 %) 

Small to fit 
the curve 

133.8 eV, 
metaphosphate 

(100%) 

1022.6 eV, 
ZnS/ZnO/Zn-
phosphate 

(95%) 

1024.4 eV, 
Zn-S-O (5%) 

FF3- 163.6 eV, Sulphide (34.1%) 

168.1 eV, Sulphate (49.9%) 

169.8 eV, Sulphate (16.0%) 

Small to fit 
the curve 

- - 
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Table 5-4 Binding energies, concentration of XPS and corresponding 
chemical in the tribofilms formed on CI pins in a-C:15H/CI system by 
oils FF2+, FF3+ and FF3-. 

Oils Binding Energies, chemical species and concentrations 

S 2p  Mo 3d  P 2p  Zn 2p  

CI pins 

FF2+ 161.3 eV, Sulphide (100 %) 
 

- 132.9 eV, 
pyrophosphate (100%) 

1021.9 eV, 
ZnS/ZnO/Zn
-phosphate 

(100%) 

FF3+ 161.2 eV, Sulphide (72.5 %) 
168.3 eV, Sulphate (27.5 %) 

Small to 
fit the 
curve 

132.9 eV, 
pyrophosphate (100%) 

1021.9 eV, 
ZnS/ZnO/Zn
-phosphate 

(100%) 
 

FF3- - Small to 
fit the 
curve 

- - 

 

In addition, regardless of the tribo-system, a P peak was detected on all the 

ZDDP-containing fully formulated oils. 

 

 

Figure 5-21 P 2p curve fitting for ZDDP-containing fully formulated oils on a-
C:15H plates. 
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Zn 2p peaks were also found on both a-C:15H/CI and steel/CI systems for 

all the ZDDP-containing oils. The binding energies of the ZDDP-derived 

elements (shown in Table  5-1 to Table  5-4) suggest that, all fully formulated 

oils formed ZnS/ZnO/Zn-phosphate on both systems. Phosphate was also 

found in the tribofilm formed from FF3+ ( ZDDP-containing fully formulated 

oils in combination with Mo-FM) in both a-C:15H/CI and steel/CI systems. In 

the a-C:15H/CI system, Fe 2p peaks were not detected in the tribofilms 

using any of the oils suggesting that the coating was not delaminated and 

that the iron coming from the pin worn particles did not take part in the 

tribofilm formation on the a-C:15H surface. 

 

It is evident from Figure  5-22 that using fully formulated oils, detergent- and 

dispersant-derived elements were detected on both steel and a-C:15H 

surface. However, the nature of Ca and N species formed on a-C:15H were 

different from those on steel.  

 

  

(a) (b) 

Figure 5-22 Detergent-derived Ca 2p peak (a) and dispersant-derived N 1s 
peak (b) using fully formulated oils.  
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DLC coated plate peaks were detected at 347.9 eV and 348.7 eV which 

corresponds to CaSO4 and Ca-N-O compounds, respectively [267]. 

Nevertheless, investigations on the formation of Ca-based tribofilms in the 

literature are very restricted but in this study, the presence of Ca and N on 

the surface could affect the effectiveness of Mo-FM in low friction film 

formation on both a-C:15H and steel surfaces. This could be another 

explanation for comparatively high friction values observed from fully 

formulated oils in both of the systems.   

 

Based on the tribo-test results and post chemical analysis of the surfaces, it 

was evident that using fully formulated oils, additive-derived tribofilms are 

formed on both DLC and steel surfaces. Oil additives could offer a beneficial 

wear performance to the DLC coatings by formation of  lubricous 

tribochemical layer on the interface [211]. Formation of the tribofilm on the 

DLC surface could hinder graphitization of the coating which was observed 

using base oils. This will be discussed in detail in  Chapter 7. 

5.5. Summary 

In phase I of this study, the friction and wear properties of a hydrogenated 

DLC coating under boundary lubrication conditions lubricated in fully 

formulated oils, have been investigated and the tribological performance 

compared with that of an uncoated steel system. Overall, this part of the 

study showed that the durability of the a-C:15H coating strongly depends on 

the type of lubricant used. Also, the effect of detergent, dispersant and 

antioxidants on the performance of the molybdenum-based friction modifier 

(Mo-FM) and ZDDP anti-wear additive should not be ignored. In summary, 

the following key points can be drawn from this part of the study:  

 

 ZDDP decomposed under boundary lubrication condition and formed 

Zn-phosphate/ZnS/ZnO anti-wear species in the tribofilms formed on 

a-C:15H. In contrast, the amount of Mo 3p detected on the a-C:15H 

surface was very low using fully formulated oils which shows 

inefficiency of the Mo-FM additive in forming a low friction tribofilm on 

the interface. 
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 Friction reduction was not seen using any of the FM-containing 

lubricants suggesting that friction modifier in fully formulated oils were 

not effective in terms of friction reduction in both steel and DLC 

systems. This could be mainly due to low concentration of MoDTC 

with which the oils were blended. Furthermore, all the fully formulated 

oils contain detergent, dispersant, antioxidant which are the surface 

active additives and their interaction could affect Mo-FM-derived film 

formation. Detergent and dispersant derived tribofilms were detected 

on both uncoated steel and DLC surfaces.  

 

 In general, all fully formulated oils demonstrated a good wear 

performance of the a-C:15H coatings. The main wear mechanism on 

the FM-free fully formulated oils was polishing wear while the 

presence of FM in the fully formulated oils with formulation carrying a 

60 ppm of Mo-FM (i.e. FF3+ and FF30-), showed a positive effect on 

the wear of the a-C:15H coatings. Nevertheless, in phase I of this 

study, tribo-tests were carried out  for 6 h and as such no significant 

difference in tribological behaviour of DLC and steel system was 

observed. Hence, longer tests can provide a better tribological 

comparison between different oils when lubricating DLC coatings.  

  

 The a-C:15H coating durability is strongly lubricating oil dependant 

and the coating failure can be avoided using additive containing oils 

which form a protective tribofilm on the surfaces and suppress the a-

C:15H coating structural modification. Base oil (group III) performed 

better wear performance than PAO suggesting the important role of 

selection of base oil in the lubricant. 
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Chapter 6 Results: Phase II - Effect of Mo-FM on the 

Tribological performance of a hydrogenated DLC coating. 

 

 

6.1. Introduction 

As shown in chapter 5, in phase I of the study, the friction reduction was not 

observed using any of the fully formulated oils while a-C:15H coating 

showed extremely low wear for 6 h tests using all fully formulated oils. The 

main objective of phase II, which is presented in this chapter, was to study 

the effect of a MoDTC-type friction modifier (Mo-FM) concentration on the 

friction and wear performance of 15 at.% hydrogenated DLC coating (a-

C:15H) under boundary lubrication conditions using fully formulated oils. The 

tribological performance was compared to an uncoated steel system. It was 

intended to investigate whether increasing the Mo-FM level in the oil would 

result in an improvement of the performance of the system by reducing  the 

friction without losing the durability observed and measured in the previous 

part (when lubricated with lower level (40 ppm and 60 ppm of MoDTC)). The 

test duration was also increased to investigate whether typical fully 

formulated oils would still perform well in terms of wear after 20 h of the 

tests. Initial tests revealed that 20 h is long enough for the comparison of the 

DLC coated plates in terms of friction and wear performance.  

 

In phase II, ZDDP-containing and ZDDP-free fully formulated oils with 40, 

300 and 600 ppm of Mo-FM with oxidation state of +4 friction modifier were 

used. The oils with 300 and 600 ppm are called FF300+, FF300-, FF600+ 

and FF600- (“+” refer to the presence of ZDDP in the oils and “−” refers to 

ZDDP-free oils). It should be noted that in this chapter, fully formulated oils 

with 40 ppm Mo-FM with oxidation state of +4 which were initially labelled as 

FF1+ and FF1- in previous chapter, are now annotated FF40+ and FF40- , 

respectively (“+” refer to the presence of ZDDP in the oils and “−” refers to 

ZDDP-free oils). In Figure  6-1, a map of the study in this chapter is 

presented. 
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Figure 6-1 Map of the study which is presented in this chapter. 
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6.2. Tribological Performance of the Steel/CI System 

6.2.1. Friction Results 

Given in Figure  6-2 is the friction coefficient as a function of time for the 

steel/CI combination using six different oils. All tribo-tests were repeated no 

less than three times. It is evident that oils with low level of Mo-FM showed a 

high coefficient of friction after 20 h tests likewise reported for 6 h tests in 

chapter 5. Therefore, it is apparent that time duration does not affect the 

friction performance for low concentration Mo-FM containing fully formulated 

oils. In contrast, increasing the Mo-FM concentration to 300 ppm and 600 

ppm in the oils formulation resulted in friction reduction. Although, the time 

requires for the friction to drop depends on the level of FM in the oil. In 

addition, higher Mo-FM concentration in the oils resulted in a faster friction 

drop in the induction phase of friction/time graph.  

 

 

Figure 6-2 Friction traces as a function of time for the steel/CI system for 
FF40+, FF40−, FF300+, FF300-, FF600+ and FF600−. 

 

The average friction coefficients of the last hour of the tests as a function of 

Mo-FM concentration for steel/CI system are shown in Figure  6-3. Generally, 

friction was observed to be proportional to Mo-FM concentration (i.e. the 

higher the Mo-FM the lower the friction). Based on the friction results for 
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steel/CI system, it was also seen that, except for the fully formulated oils with 

low Mo-FM concentration, the presence of ZDDP in the formulated oils 

increased friction values in comparison to the ZDDP-free oils, as has been 

extensively reported for steel systems [48, 55-58]..  

 

 

Figure 6-3 Steady state friction coefficients as a function of Mo-FM 
concentration for steel/CI system. 

 

6.2.2. Wear Results 

Wear measurement of the a-C:15H coated plates and uncoated steel plates 

were conducted using a Veeco WYKO optical white light interferometer. The 

loss volume of the plates were obtained by multiplying the average value of 

the cross sectional area by the stroke length. The wear coefficients as a 

function of Mo-FM concentration calculated using Equation  2-2 for steel 

plates are given in Figure  6-4. In general and considering the error bars, 

wear provided by all the lubricants and regardless of the level of FM in the 

oils are insignificant and the wear rates are comparable for all oils. However, 

it is evident that in the presence of ZDDP there was a slight improvement, if 

any, in the wear performance for oils with high level of Mo-FM (FF600+).  
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Figure 6-4 Wear coefficient versus Mo-FM concentration for the steel/CI 
system. 

6.3. Tribological Performance of the a-C:15H/CI System 

6.3.1. Friction Results 

The friction coefficient as a function of time for the a-C:15H/CI combination 

using six different oils is given in Figure  6-5. Based on the friction traces, it 

can be seen that both the induction phase and the steady state friction was 

observed to be dependent on the Mo-FM level in the oils. The rate of friction 

drop was observed to rise with increase in Mo-FM level in fully formulated 

oils. The average friction coefficients of the last hour of the tests as a 

function of Mo-FM concentration for a-C:15H/CI system are presented in 

Figure  6-6. Overall, friction was observed to be oil dependant and reduced 

with increase in Mo-FM concentration as expected. Based on the friction 

results, it can be seen that Mo-FM was not effective in friction reduction 

when its concentration was low in the oil (40 ppm) while increasing the Mo-

FM concentration in the oils resulted in lower values for friction. In general, 

the presence of ZDDP in the formulated oils (Oil300+ and Oil600+) 

increased friction in comparison to the ZDDP-free oils (Oil300- and Oil600-). 

However, in high level Mo-FM-containing fully formulated oils ZDDP did not 

significantly affect friction and the Mo-FM dominated the friction 

performance. 
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Figure 6-5 Friction traces as a function of time for the a-C:15H/CI system for 

FF40+, FF40−, FF300+, FF300-, FF600+ and FF600−. 

 

 

Figure 6-6 Steady state friction coefficients as a function of Mo-FM 
concentration for a-C:15H/CI system. 
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6.3.2. Coating Durability and Wear Results 

Similar to wear measurements of the steel plates, using a Veeco WYKO 

optical white light interferometer, the wear coefficients as a function of Mo-

FM concentration calculated using Equation  2-2 for a-C:15H coating are 

given in Figure  6-7. It is evident that the higher the Mo-FM, the higher the 

wear. The wear provided by the lowest Mo-FM concentration-containing fully 

formulated oils (FF40+ and FF40-) on a-C:15H/CI system were observed to 

be very low while increasing Mo-FM concentration significantly increased the 

wear. It is interesting to note that the addition of ZDDP significantly improved 

the wear performance; this is clear by comparing FF300+ with FF300- and 

FF600+ with that of FF600-. However, ZDDP effectiveness in counteracting 

the adverse effect of Mo-FM is dominant for low and medium levels of Mo-

FM. It is not as effective for high concentrations of Mo-FM. Overall, it is 

evident that reduction in friction comes at the price of the DLC coating high 

wear. From Figure  6-7, it is evident that FF300-, FF600+ and FF600- 

illustrated a high wear on the hydrogenated DLC coating.  

 

  

Figure 6-7 Wear coefficient versus Mo-FM concentration for the a-C:15H/CI 
system. 
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A typical 2D wear depth profile of high wearing a-C:15H coatings is given in 

Figure  6-8-Figure  6-10; a wear characteristic observed in high wearing oils 

(i.e. FF300-, FF600+ and FF600-). In general, it can be appreciated that as 

test duration increases, the risk of penetration through the coating increases 

leading to removal of the coating from the substrate. In addition, the width of 

wear in Y direction (cross section) of all high wearing oils was in the range of 

1.3-1.4 mm which could be an indication of similar wear rates of the 

counterparts (CI pins).   

 

 

(a) 

 

(b) 

 

(c) 

 

 

Figure 6-8 A typical profile of the wear scar formed on (a): a sample of a-
C:15H coating for FF300- fully formulated oil along (b): X direction and 
(c): Y direction measured by WYKO. 

 

It is evident from Figure  6-8 that the wear depth given by FF300- oil was 

seen to be uneven along the wear track in both directions for one measured 

point of a typical sample. The average wear depth was less than a 

micrometre in both directions.  
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(a) 

 

(b) 

 

(c) 

 

Figure 6-9 A typical profile of the wear scar formed on (a): a sample of a-
C:15H coating for FF600+ fully formulated oil along (b): X direction and 
(c): Y direction measured by WYKO.. 

 

The wear depth given by FF600+ was relatively uniform along the wear scar 

in both directions as illustrated in Figure  6-9. The average wear depth was 

less than 1.2 µm in both directions for one measured point of a typical 

sample. However, the maximum wear depth was in the range of 1.5 µm at 

some regions along the X direction.  

 

From Figure  6-10, a clear wear through the DLC coating is evident for 

FF600- oil. For this particular sample, the wear was seen to be almost 

uniform along the wear scar and the highest wear depth was seen to be 

1.20-1.25 µm. It should be borne in mind that the wear rate values used for 

calculating the wear rates (Figure  6-7) was the average cross sectional 

areas of the wear scars at different positions of the wear scar for no less 

than three different samples.  



6: Results: Phase II 
 

134 

 

 

(a) 

 

(b) 

 

(c) 

 

Figure 6-10 A typical profile of the wear scar formed on (a): a sample of a-
C:15H coating for FF600- fully formulated oil along (b): X direction and 
(c): Y direction measured by WYKO. 

 

Figure  6-11 shows typical images of wear scar. It is evident that the extent 

and mechanisms of wear is dependent on the additive package used in the 

lubricant. Based on the optical images, the colour of the wear tracks were 

brighter than outside of the wear tracks suggesting the relation of underlying 

Cr/CrN layers, as a result of the loss of coatings.  

 

Delamination of the coatings was not observed using FF40+, FF40- and 

FF300+ (Figure  6-11a-c); rather, the wear of the coatings was dominated by 

gradual polishing wear. Additionally, the average depth of the wear tracks of 

a-C:15H coating for the highest obtained wear, provided by FF600-, was 

approximately 1.06 µm over the duration of the test when compared to the 

best wear performance by FF40- which was only 0.03 µm. 

 



6: Results: Phase II 
 

135 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6-11 Optical images of the wear scars formed on the a-C:15H coated 
plates using (a) FF40+, (b) FF40-, (c) FF300+, (d) FF300-, (e) FF600+- 
and (f) Oil600-.The arrows on the images show sliding directions and µ 
and Hd are the coefficient of friction and the average depth of the wear 
track, respectively. 

 

To verify the observations from wear results and optical microscope images, 

EDX was carried out in the wear scar. It is important to note that, the 

SEM/EDX analysis in this study was performed to check the durability of 
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coating, not to characterize tribofilms. The EDX measured the level of Cr 

from the Cr interlayer as a measure of coating thickness loss. The tribofilm 

on the plates was removed using acetone prior to the SEM/EDX analysis.  

Figure  6-12 shows a typical secondary electron (SE) image of a section of a-

C:15H coating wear scar along with EDX mapping of C, Cr and Fe after the 

pin-on-plate tests.  It is obvious that EDX mapping of a sample with higher 

wear provides lower carbon, higher chromium and some iron (in some 

cases) in the wear scar. Based on the mapping images, fully formulated oils 

with low level of Mo-FM showed very little difference in concentration of C 

and Cr comparing inside and outside of the wear scar implying very low 

gradual wear on the coated plates. 

 

It is also clear that with increasing the level of Mo-FM, Cr was richer in the 

middle of the wear scar than outside (higher wear). Removal of dark coating 

exposed the underlying bright Cr interlayer as observed by optical images 

and confirmed by EDX analysis. Comparing EDX mapping of C, Cr and Fe 

atoms of a-C:15H coating after the tests, in general, ZDDP-containing oils 

showed lower wear compared to ZDDP-free oils. It should be noted that, Fe 

was seen to be dominant at some regions inside the wear scar for FF300- 

and FF600- while iron transfer from the pin is excluded as wear of the pin 

was comparable from all the tests (which will be discussed in the following 

paragraph) showing that either the substrate is exposed (delamination) or 

the coating became very thin in the wear scar region (severe wear).  
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Sample Electron Image C Cr Fe 

FF40+ 

    

FF40- 

    

FF300+ 

    

FF300- 

    

FF600+ 

    

FF600- 

    

Figure 6-12 SEM image of a-C:15H coating along with EDX mapping of the 
C, Cr and Fe atoms for 20 h tests. 

 

In order to provide a better picture of wear in a-C:15H coatings, FIB slides 

prepared from the wear scar of the coatings worn by high Mo-FM-containing 
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oils (FF600+ and FF600-) are compared with that of unworn coating. 

Figure  6-13-Figure  6-15 are the TEM images of the slides from a bare a-

C:15H coating (Figure  6-13), worn a-C:15H coating by FF600+ (Figure  6-14) 

and worn a-C:15H coating by FF600- (Figure  6-15). The top layer of the bare 

coating (carbon) showed to have about 0.79 µm thickness whereas the 

thickness of the coating including the interlayers was seen to be 2.5 µm.   

 

  

  

Figure 6-13 TEM image of the unworn a-C:15H coating. The areas circled in 
red are also presented in higher magnification. 

 

Using FF600+, it is clear that carbon layer has become very thin at some 

regions inside the wear scar due to the  high wear (see Figure  6-14). The 

area circled in red are also presented in higher magnification (see 

Figure  6-14 area 1 and 2). In the area where the carbon layer still exists ( the 
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area annotated as 2), more than half of the top layer is removed due to the 

wear whereas in area 1, the a-C:15H coating top layer is worn severely and 

a deposit layer is visible which was not detected by EDX mapping (EDX 

mapping of the slides are presented later in this chapter). This deposit layer 

could be accumulation of worn DLC coating or a transformed carbon phase. 

The nature of this layer, however, is not verified.  

 

  

  

Figure 6-14 TEM image of the worn a-C:15H coating provided by FF600+. 
The areas circled in red are also presented in higher magnification. 
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Figure 6-15 TEM image of the worn a-C:15H coating provided by FF600-. 
The areas circled in red are also presented in higher magnification.  
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For the highest wearing oil (FF600-), the coating is observed to become 

thinner in some regions (≈165nm to 220 nm) whereas the top carbon layer is 

totally gone at limited regions (see Figure  6-15). This is in agreement with 

the observations obtained from optical microscope, interferometer and EDX 

mapping which showed that a-C:15H coated plates showed severe wear 

using FF600-. 

 

In Figure  6-16- Figure  6-18, the EDX mapping of the slides prepared by FIB 

is shown. These were obtained to provide a better view of the coating layers 

before and after the tribo-test using high wearing oils (FF600+ and FF600-).  

 

   

   

   

Figure 6-16 EDX mapping of the unworn a-C:15H coating. 
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Different elements were detected using EDX mapping from as-deposited 

DLC coating (see Figure  6-16) and worn a-C:15H coatings (see Figure  6-17-

Figure  6-18). Platinum was detected on top of the layers as a protective 

platinum layer was deposited on the slide during sample preparation by FIB. 

The coating layers from top to bottom were detected to be carbon, chromium 

and Iron (substrate), respectively. It is clear, depending on the extent of 

wear, how layers differ (see Figure  6-17 and Figure  6-18) from an unworn a-

C:15H coating (see Figure  6-16). Molybdenum, vanadium and tungsten were 

also detected and were related to the substrate (HSS steel).  Detection of 

nitrogen was due to the nitrogen which was trapped in the DLC structure 

during the coating deposition procedure. 

 

   

   

   

Figure 6-17 EDX mapping of the worn a-C:15H coating provided by FF600+. 
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From Figure  6-18, the increased intensity of the chromium signal at the 

bottom of the chromium interlayer (close to the iron substrate) was due to an 

increase in thickness of the specimen and not due to increased amount of 

chromium.  

 

   

   

   

Figure 6-18 EDX mapping of the worn a-C:15H coating provided by FF600-. 

 

The wear coefficients of the CI counterbodies for various oils are given in 

Figure  6-19. For lubricants with low Mo-FM concentration, surprisingly, the 

wear on the pin from ZDDP-free oil (FF40-) was less than that of the same 

oil but containing ZDDP (FF40+). It implies that the presence of ZDDP in the 

oil (with 40 ppm Mo-FM) did not provide a beneficial effect on wear reduction 

of the CI pin counterparts compared to the same oil without ZDDP. In 

general, considering the error bars, there was not much difference between 
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the wear rates for oils with medium (i.e. 300 ppm) and high (i.e. 600 ppm) 

level of Mo-FM and the values for all the oils were comparable and within the 

scatter of the results. Therefore, it can be argued that the different wear 

rates for the a-C:15H plates was not primarily due to the difference in the 

wear performance of the CI pin counterface. This is in line with the typical 2D 

profiles obtained from the a-C:15H coating wear scar where the width of 

wear in Y direction (cross section) of all high wearing oils was almost in the 

same range. 

 

Figure 6-19 Dimensional pin wear coefficients as a function of lubricants for 
a-C:15H/CI systems. 

 

Taking into account the observations for the wear data provided by 

interferometer, optical microscope and EDX mapping, it looks quite obvious 

that for high giving wear oils (i.e. FF300-, FF600+ and FF600-), the coating 

was worn through at some regions and the Cr interlayer was exposed. This 

could result in a different interface and the tribological behaviour could relate 

to the Cr/CI interface rather than DLC/CI.  For FF600+ and FF600-, during 

the wearing period of the coating, i.e., in the initial stages of the sliding, the 

friction was dropping (see Figure  6-5). The friction values were then became 

stable after 8-10 h of the tribo-tests but  again increased to a higher value.  

This behaviour could relate to the change in the interface and/or 

formation/depletion of the tribofilm on the interface. A reduction in steady 

state friction as a consequence of W-DLC coating removal and sliding of 

steel ball over the Cr interlayer in a DLC/steel system lubricated by EP 

additive was reported by authors [204] . Therefore, further surface analysis 
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of the tribofilms and shorter tests could clarify the tribological behaviour of 

the oils with different Mo-FM concentration which will be addressed in the 

following sections.  

 

6.3.3. Chemical Analysis of Tribofilms 

6.3.3.1.  Elemental quantification 

The chemical quantification of the surface tribofilms for the a-C:15H/CI 

tribocouple is shown in Table  6-1. The presence of the additive-derived 

elements on both the a-C:15H and the CI pin counterbody imply that the 

additives were decomposed under boundary lubrication and significantly 

influenced the tribological performance of the a-C:15H/system and 

particularly durability of the coating. Fe 2p peak was detected only in the 

tribofilm formed from FF600- suggesting that delamination of the a-C:15H 

coating occurred at some regions or/and that the iron coming from the pin 

worn particles took part in the tribofilm formation on the a-C:15H surface. 

This is in agreement with our observation from EDX analysis where iron was 

detected at some regions inside the wear track.  

 

Table 6-1 XPS quantification of tribofilms for a a-C:15H/CI system after 20 h 
tests. 

Sample Surface Elemental composition of Tribofilms (at.%) 

Fe 
 

O 
 

P 
 

Zn 
 

C 
 

Ca 
 

Mo 
 

N 
 

S 
 

FF40+ Pin 1.3 21.3 1.5 0.2 68.1 3.9 1.9 0.9 0.9 

Plate 0.0 4.3 0.3 0.2 91.9 0.8 1.1 0.9 0.6 

FF40- Pin 3.8 32.4 0.0 0.0 60.7 1.1 2.0 0.0 0.0 

Plate 0.0 4.3 0.0 0.0 90.7 1.2 1.1 2.0 0.7 

FF300+ Pin 1.2 35.7 1.1 0.2 54.9 1.8 2.6 1.8 0.7 

Plate 0.0 3.7 0.4 0.1 92.0 0.6 1.4 1.1 0.8 

FF300- Pin 1.6 34.9 0.0 0.0 42.7 1.3 12.3 6.4 0.8 

Plate 0.0 2.8 0.0 0.0 93.5 0.6 0.9 1.8 0.4 

FF600+ Pin 0.8 34.7 3.2 0.9 48.6 2.7 5.3 2.6 1.1 

Plate 0.0 3.0 0.4 0.1 91.4 0.7 2.3 1.3 0.8 

FF600- Pin 0.9 21.0 0.0 0.0 63.2 2.0 7.8 4.0 1.1 

Plate 0.3 9.1 0.0 0.0 76.5 1.6 6.9 4.1 1.4 

 

6.3.3.2. Low friction film formation 

From Table  6-1, it is also evident that the amount of Mo 3d detected in the 

tribofilm formed from oils with low level of Mo-FM is negligible compared to 

the oils with high Mo-FM concentration which made it almost impossible to fit 
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the obtained Mo 3d peaks. That could explain relatively high friction obtained 

by these oils (i.e. FF40+ and FF40-). Furthermore, oils with medium level of 

Mo-FM showed to provide negligible amount of Mo 3d on the tribofilm 

formed on the DLC plates using both FF300+ and FF300- whereas the 

amount of Mo 3d detected on the pins was comparatively higher for FF300- 

compared to FF300+ which could validate the lower friction values obtained 

by this oils. In addition, Mo was detected in the tribofilm formed from oils with 

high Mo-FM concentration both on the a-C:15H coated plates and the CI 

pins. However, the amount of Mo detected on the DLC plate provided by 

FF600+ was comparatively low and therefore, the Mo 3d peak was difficult to 

be fitted. The fitted Mo 3d peaks obtained from the FF600- tribofilm formed 

on both pin and a-C:15H coating are shown in Figure  6-20. Taking into 

account the binding energies of S 2p peaks, it is evident that both additives 

tribofilms contained abrasive Mo-oxide species (possible cause of DLC 

brittleness [41]) as well as the low shear strength MoS2. That could explain 

the highest wear and lowest friction obtained by the oils with high level of 

Mo-FM (600 ppm). 

 

 

Figure 6-20 Curve fitting of Mo 3d peaks obtained from tribofilm formed from 
FF600- on both pin and a-C:15H coating. 

 

The fitted carbon peaks for the highest wearing oil (FF600-) in the tribofilm 

formed on both CI pin and a-C:15H plate are shown in Figure  6-21. It can be 
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seen that only a minor portion of carbon on the a-C:15H coating was oil-

derived oxygen-containing hydrocarbon species while a major part was 

detected to be pure carbon (graphitic) [267] which would derive from transfer 

from the coating. High wear provided by high Mo-FM concentration fully 

formulated oils resulted in transferring a-C:15H wear debris from the a-

C:15H coating to the pin counterface which is confirmed by the presence of 

graphitic carbon in the tribofilms formed on the CI pin. Furthermore, the 

higher detected oil-derived hydrocarbon species on the CI pin could be due 

to the higher reactivity of ferrous counterbody with the lubricant components 

compared to the a-C:15H coating. Therefore, it is evident that DLC wear 

debris could also contribute to the friction reduction along with the additive 

derived low friction MoS2 sheets [253]. 

 

Figure 6-21 Carbon species on the wear scar of a-C:15H coating and CI pins 
for the highest wear giving lubricants (FF600-). 

 

6.3.3.3. Antiwear film formation 

Zn-phosphate and ZnS/ZnO species were formed in the tribofilms using all 

ZDDP-containing fully formulated oils which is in agreement with the 

presence of zinc phosphates on the low hydrogen-containing DLC (a-C:15H) 

coating as reported elsewhere [216]. It is also clear that the presence of Mo-
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FM in the oil did not affect phosphate film formation on the surface. In 

addition, ZDDP increased friction when added to the lubricant which is in 

agreement with the literature where formation of pad-like tribofilm was 

identified as the reason for such higher friction [29]. The fitted Zn 2p and P 

2p peaks are shown in Figure  6-22. The obtained results clearly show the 

critical role of ZDDP on the wear performance/durability of a-C:15H coating.  

 

  

(a) (b) 

Figure 6-22 XPS spectra of ZDDP derived species (a) Zn 2p, (b) P2p formed 
on the a-C:15H coated plate using different fully formulated oils. 

 

6.3.4. Mechanical Properties of the Coatings 

Nano-indentation tests were conducted around the centre of worn a-C:15H 

coating surfaces as well as outside of the wear scar for each sample. In 

Table  6-2, the hardness and reduced elastic modulus (Er) values for the 

coated samples after 20 h pin-on-plate test are given. Reduced modulus 

indicates the compliance of a sample with the indenter. It is calculated by 

combining the elastic modulus and Poisson’s ratio of the indenter and the 

sample being indented. Comparing these values with properties of the as-

deposited coating (H >20 GPa and Er 180 GPa), it can be observed that the 

coatings which experienced higher wear, generally showed decreased 

coating hardness and modulus of elasticity. Although the standard deviation 

from the average values were quite high specially when the measurements 

FF40+ 

FF300+ 

FF600+ 
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FF300+ 
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were conducted outside of the wear scar. The high error for the obtained 

values outside of the wear scar probably originated from the specific surface 

morphology of the DLC coatings. In addition, the obtained values, outside of 

the wear scar differ from one sample to another which could be due to 

inevitable differences in sample preparation (e.g. different coating quality). 

Nevertheless, taking into account the standard deviation, the obtained 

results suggests that the mechanism of a-C:15H coating wear could be 

related to the change in the mechanical properties of the coating, which in 

turn is a function of tribochemistry of additive components on the a-C:15H 

coating surface.  

 

Table 6-2 Nano-scale mechanical properties of DLC coating after 20 h tests.  

Sample 

 
 

Measurement 
position 

Maximum 
depth 
(nm) 

Standard 
deviation 

(±) 

Hardness 
(GPa) 

Standard 
deviation 

(±) 

Reduced 
elastic 

modulus 
(GPa) 

Standard 
deviation 

(±) 

FF40+ 

Inside Wear 
Track 

116.2 5.5 17.2 1.8 159.1 11.5 

Outside Wear 
Track 

104.3 10.7 21.1 4.3 191.7 28.1 

FF40- 

Inside Wear 
Track 

111.5 4.7 18.2 1.7 170.6 11.3 

Outside Wear 
Track 

115.6 11.6 17.1 3.2 165.8 24.5 

FF300+ 

Inside Wear 
Track 

120.3 5.5 15.8 1.6 154.0 10.7 

Outside Wear 
Track 

110.3 16.5 19.1 5.4 184.0 43.1 

FF300- 

Inside Wear 
Track 

70.1 12.3 14.0 1.9 148.2 11.9 

Outside Wear 
Track 

115.5 18.8 18.4 7.4 171.4 43.9 

FF600+ 

Inside Wear 
Track 

80.9 14.4 10.7 2.2 129.6 11.1 

Outside Wear 
Track 

100.6 10.9 23.3 5.2 198.4 33.4 

FF600- 

Inside Wear 
Track 

77.4 16.0 10.9 1.6 140.3 9.3 

Outside Wear 
Track 

105.1 9.4 20.9 4.9 186.4 26.1 

 

Due to the fact that FF600- showed delamination of the a-C:15H coating at 

some regions, the analysis was carried out in chosen areas where coating 

was still remained on the substrate. However, the obtained hardness and 

reduced elastic modulus values could have been affected by the Cr/CrN 

interlayer or/and substrate because of the high wear seen using this 
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particular oil. Therefore, The obtained results for analysis of the wear scar of 

the a-C:15H coating using FF600- is presented in red (Table  6-2) to highlight 

the possible “substrate effect”.  

 

Moreover, the obtained nanoindentation average values from outside of the 

wear scar (see Table  6-2), and considering the standard deviation, were 

found to be comparatively close to that of as-deposited coating indicating 

that the wear mechanisms of the a-C:15H coatings are more likely to be 

tribochemical effect rather than pure chemical reaction of the oils with the a-

C:15 coatings. 

 

In addition, in order to find out whether the obtained results for mechanical 

properties of the DLC coatings, when the wear was high, have been 

potentially influenced by CrC/CrN interlayer or/and substrate, 

nanoindentation analysis was also performed on the CrN coatings (see 

Table  6-3) which were provided by the commercial provider of the DLC 

coatings. In addition nano-scale mechanical properties of the steel substrate 

were also conducted and are shown in Table  6-3. The CrN coating was a 

good replica of what could be found with regards to the interlayer in a a-

C:15H DLC coating. The measurements are based on three different 

samples of each material and typical results are presented in Table  6-3.  

 

Table 6-3 Nano-scale mechanical properties of CrN coating interlayer and 
steel substrate. 

Sample Maximum 
depth (nm) 

Standard 
deviation 

(±) 

Hardness 
(GPa) 

Standard 
deviation 

(±) 

Reduced 
elastic 

modulus 
(GPa) 

Standard 
deviation 

(±) 

CrN 
(Interlayer) 

92.8 10.1 16.1 3.3 254.4 34.1 

Steel 
(Substrate) 

987.5 58.2 10.5 1.4 211.3 14.7 

 

It should be noted that depth of penetration for nanoindentation analysis of 

coatings which experienced comparatively higher wear (i.e. FF300-, FF600+ 

and FF600-) was maintained to be less than 10% of the coatings 

thicknesses inside the wear scar to minimise the possible  “substrate effect” 

on the obtained results. Obviously, FF600- showed severe 
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wear/delamination of the coating at some regions which might have affected 

the nanoindentation measurements of the coating lubricated with this 

particular oil.  

 

Therefore, considering the depth of penetration for nanoindentation analysis 

and the mechanical properties of the CrN interlayer and the steel substrate, 

the tribochemistry of additive components dominates the surface 

modification of the a-C:15H coating surfaces rather than the “substrate 

effect” on the obtained values of hardness and Young’s modulus. DLC 

coating might have undergone graphitisation and showed lower values of 

lower Young’s modulus (E) and hardness (H) compared to bare coating 

[199]. However, nanoindentation analysis of the DLC coatings which were 

experienced shorter tribo-tests and subsequent lower wear, could further 

elucidate possible effect of CrC/CN interlayer or and substrate. This will be 

presented later in this chapter. 

 

6.3.5. Effect of Test Duration 

Following the results obtained using oils with different Mo-FM level, it was 

seen that the friction decreased with increase in Mo-FM concentration in the 

oils. MoDTC derived MoS2 sheets, which are known to be responsible for 

friction reduction, where observed on the a-C:15H coated plates using oils 

with high level of Mo-FM. In addition wear values showed an inverse 

correlation with friction (i.e. the higher the friction the lower the wear values).  

 

In order to provide a better picture of low friction film formation and wear 

mechanism, shorter tests were also performed (i.e. 6 and 12 h) and the 

tribological comparison were made with those obtained after 20 h tests. The 

aim  was to provide an insight into DLC-MoDTC interaction by investigating 

whether a-C:15H coating first undergoes high wear due to the interaction 

with MoDTC and that is where the drop in friction starts occurring or it is the 

case that MoDTC decomposition products initially form a tribofilm on the 

surface offering low friction followed by high wear on the a-C:15H coated 

plates. The results for 20 h tests have been reported in previous section and 

are represented here for comparison purposes. 
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6.3.5.1. Friction Results 

The steady state friction coefficients(i.e. the average of the last hour) as a 

function of test duration for the a-C:15H/CI combination using six different 

oils are presented in Figure  6-23. Overall, regardless of the test duration, 

friction was seen to be oil dependant and a drop in friction was seen with 

increase in Mo-FM level (i.e. 300 ppm and 600 ppm) even 6 h after the start 

of the tests. In general, friction behaviour for FF40+, FF40- and FF300+ was 

seen to be independent of the test duration while in the case of FF300-, 

FF600+ and FF600- the friction values were observed to be on average 

lower after 12 h compared to 20 h. Based on the friction results, ZDDP in 

high level Mo-FM-containing fully formulated oils (600 ppm), when the test 

was running over 12 h,  did not significantly affect friction and the presence 

of Mo-FM was the dominating factor on the observed friction response (i.e. 

the obtained friction values for 12 and 20 h tests for high Mo-FM-containing 

oils (FF600+ and FF600-) were comparable and within the scatter of the 

results). 

 

Figure 6-23 Steady state friction coefficients as a function of oils with 
different Mo-FM concentration at different time intervals for a-C:15H/CI 
system. 

 

6.3.5.2. Wear Results 

The wear coefficients as a function of test duration for the a-C:15H/CI 

combination using six different oils are given in Figure  6-24. The wear values 

for low Mo-FM concentration (i.e. FF40+ and FF40-) was found to be 
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extremely low for 6 h tests and therefore was almost impossible to be 

measured. That is why no wear values are present for 6 h tests using these 

oils (See Figure  6-24). By increasing the duration of the test to 12 and 20 h, 

the wear rates provided by low Mo-FM concentration-containing fully 

formulated oils (FF40+ and FF40-) on a-C:15H/CI system were still observed 

to be comparatively low. In addition FF300+ wear rates were also seen to be 

relatively low and comparable for all the time intervals. However, in the case 

of FF300-, FF600+ and FF600-, wear rates were generally higher compared 

to other oils and significantly increased with increase in the test duration.  

 

 

Figure 6-24 Wear coefficient as a function of oils with different Mo-FM level. 

 

It is interesting to note that for 6 h tests and considering the error bars, the 

wear rates are similar for FF300-, FF600+ and FF600- while increasing the 

test duration made a significant difference in the wear rates of the a-C:15H 

coated plates. It is also evident that ZDDP did not offer any positive effect in 

wear protection for low concentration Mo-FM oils ( FF40+ and FF40-) while 

for oils with medium and high Mo-FM level (i.e. FF300+, FF300-, FF600+ 

and FF600-), irrespective of the test duration, the wear performance was 

improved in the presence of ZDDP; this is clear by comparing FF300+ with 

FF300- and FF600+ with that of FF600-. However, it should be noted that for 

20 h tests, ZDDP is not as effective in counteracting the adverse effect of 

Mo-FM on high wear of a-C:15H coating for high concentrations of Mo-FM 

(i.e. FF600+ compared to FF600-). Figure  6-25 shows typical images of 

wear track on the a-C:15H coating after 6,12 and 20 h, respectively. 
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Oil Test Duration (h) 

6 12 20 

 

 

a 

   

 

 

b 

   

 

 

c 

   

 

 

d 

   

Figure 6-25 Optical images of the wear scars formed on the a-C:15H coated 
plates using (a) FF300+, (b) FF300-, (c) FF600+ and (d) Oil600-.The 
arrows on the images show sliding directions and µ and Hd are the 
coefficient of friction and the average depth of the wear track, 
respectively. 
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Images of the wear track provided by low Mo concentration (Figure  6-25) are 

not presented here as they showed insignificant wear. Based on the 

provided images, it is evident that the extent and mechanisms of the wear is 

not only dependent on the additive package used in the lubricant but also 

affected by the test duration. The brighter colour of the wear track (see 

Figure  6-25), is due to the underlying Cr/CrN interlayers which is exposed as 

a result of the loss of top carbon layer of the DLC coating. To verify the 

observations from wear results and optical microscope images, EDX was 

carried out in the wear scar. The typical secondary electron (SE) image of a 

section of a-C:15H coating wear scar along with EDX mapping of C, Cr and 

Fe after 6 h tribo-tests using oils with medium (300 ppm) and high (600 ppm) 

MoDTC concentration are shown in Figure  6-26.   

 

Sample Electron Image C Cr Fe 

FF300+ 

    

FF300- 

    

FF600+ 

    

FF600- 

    

Figure 6-26 SEM image of a-C:15H coating along with EDX mapping of the 
C, Cr and Fe atoms for 6 h tests. 
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Based on the images (see Figure  6-26), no significant difference was 

observed by different oils after 6 h tests. For all the oils, except for FF600-, 

no sign of carbon removal or Cr-interlayer exposure was seen. Only in the 

case of FF600-, a trace of carbon removal  was seen and the chromium was 

richer inside the wear track. This implies that the wear, given by these oils, 

was insignificant 6 h after the start of the tests which is in agreement with 

our wear data and optical microscope observation. Fe was not detected 

using any of the oils which elucidate any possible delamination of the 

coatings. In addition, the EDX mapping was carried out for medium and high 

Mo-FM concentration after 12 h tribo-tests (see Figure  6-27).  

 

Sample Electron Image C Cr Fe 

FF300+ 

    

FF300- 

    

FF600+ 

    

FF600- 

    

Figure 6-27 SEM image of a-C:15H coating along with EDX mapping of the 
C, Cr and Fe atoms for 12 h tests. 
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For oils with high MoDTC formulation (600 ppm), it is evident that by 

increasing the test duration, C was being removed and Cr was becoming 

richer in the middle of the wear scar than outside (higher wear). In general, 

this was more pronounced for ZDDP-free oil (FF600-). No significant 

difference in C ,Cr and Fe content was seen for FF300+ whereas eliminating 

ZDDP from the oil formulation ((FF300-) resulted in slightly lower C and 

higher Cr inside the wear track. Comparing EDX mapping of C, Cr and Fe 

atoms of a-C:15H coating after the tests, in general, ZDDP-containing oils 

showed lower wear compared to ZDDP-free oils. Fe was absent at any 

regions inside the wear scar indicating that no delamination of the coatings 

or/and iron transfer from the CI pin to the DLC coating has occurred after 12 

h of the tests using any of the oils.   

 

Regardless of the test duration, FF300+ (Figure  6-25a) did not give high 

wear and/or delamination of the coating; rather, the wear of the coating was 

dominated by gradual polishing wear. Furthermore, the average depth of the 

wear track (hd) of a-C:15H coating for the highest obtained wear, given by 

FF600-, was approximately 0.15 µm over 6 h test while it has increased 

dramatically to 1.06 µm when the test continued for 20 h. 

 

6.3.5.3. Chemical Analysis of the Tribofilms 

6.3.5.3.1. Elemental Composition 

In order to compare the formed tribofilm on the a-C:15H plates and their 

corresponding counterparts as a function of the test duration XPS analysis 

was conducted on the samples. The chemical quantification of the tribofilms 

formed on the a-C:15H/CI tribocouple lubricated in oils with different MoDTC 

concentration for 6 and 12 h tests are shown in Table  6-4 and Table  6-5, 

respectfully. As expected, it is evident that oil additives were decomposed 

and formed on both the a-C:15H and the CI pin counterpart which in turn 

could generally dominates the tribological performance of the a-

C:15H/system and durability/wear performance of the coatings in particular.  

 

In addition, the absence of Fe 2p peak in the tribofilm formed from all oils on 

the a-C:15H coatings implies that no delamination of the a-C:15H coating 

occurred or/and that no iron coming from the pin worn particles participated 
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in the tribofilm formation on the a-C:15H surface. It should also be noted that 

based on the XPS analysis, Cr 2p peak was not detected in the tribofilm 

formed on the a-C:15H coating using Mo-FM-containing oils for both 6 and 

12 h tests proposing that, despite the severe wear of the coatings which was 

observed using FF300-, FF600+ and FF600- oils, in any of the cases, the 

chromium internal layer was not exposed even after 12 h tribo-tests and that 

the tribofilms were formed on the top carbon layer of the DLC coatings.  

 

Table 6-4 XPS quantification of tribofilms for a a-C:15H/CI system after 6 h 
tests. 

Sample (6 h) Surface 

Elemental composition of Tribofilms (at.%) 

Fe O P Zn C Ca Mo N S 

FF300+  
Pin 0.3 18.7 0.9 0.4 70.0 2.3 4.4 1.2 1.7 

Plate 0.0 5.7 0.2 0.1 90.2 0.2 1.9 0.9 0.7 

FF600+ 
Pin 0.4 14.0 0.3 0.2 76.7 0.8 4.1 1.6 1.9 

Plate 0.0 7.4 0.2 0.1 86.7 0.5 3.2 0.9 0.8 

FF300- 
Pin 0.5 17.6 0.0 0.0 73.2 1.6 4.9 1.4 0.9 

Plate 0.0 5.5 0.0 0.0 90.8 0.5 1.6 1.1 0.5 

FF600- 
Pin 0.2 13.7 0.0 0.0 69.2 1.6 11.9 2.3 1.2 

Plate 0.0 6.3 0.0 0.0 89.5 0.5 2.0 1.0 0.7 

 

Table 6-5 XPS quantification of tribofilms for a a-C:15H/CI system after 12 h 
tests. 

Sample (12 h) Surface 

Elemental composition of Tribofilms (at.%) 

Fe O P Zn C Ca Mo N S 

FF300+  
Pin 0.1 17.4 0.6 0.2 74.6 2.2 1.6 2.2 1.0 

Plate 0.0 2.1 0.1 0.2 94.9 0.3 1.1 0.7 0.6 

FF600+ 
Pin 0.4 16.6 0.7 0.3 62.1 0.9 11.4 5.9 1.7 

Plate 0.0 2.4 0.2 0.1 93.9 0.0 1.4 1.3 0.7 

FF300-  
Pin 0.5 22.7 0.0 0.0 62.3 2.2 6.7 4.6 1.0 

Plate 0.0 1.9 0.0 0.0 95.8 0.3 0.8 0.9 0.3 

FF600- 
Pin 0.5 18.2 0.0 0.0 52.9 1.5 17.0 7.9 1.8 

Plate 0.0 2.9 0.0 0.0 93.8 0.3 1.4 1.1 0.5 

 

6.3.5.3.2. Low Friction Film Formation 

In terms of low friction film formation, as shown in Table  6-4 and Table  6-5, it 

is interesting to note that the amount Mo which was detected in the tribofilm 

formed on the pins was generally higher for 12 h compared to 6 h tests 
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which could justify relatively lower friction obtained after 12 h compared to 6 

h tests. However, the amount of Mo which was formed on the a-C:15H 

coating plates was insignificant irrespective of the test duration. On the other 

hand, the amount of Mo which was seen on the CI tribofilm in the a-

C:15H/CI system after 20 h test (see Table  6-1) was lower compared to 12 h 

test which is in line with the obtained friction results comparing 12 h tests 

with those of 20 h.  

 

As mentioned earlier, the amount of Mo detected on the a-C:15H coated 

plates were insignificant and therefore fitting the obtained Mo 3d curves was 

a challenge and almost impossible. However, comparing the formed Mo 3d 

peaks on the counterparts could be a good tool to understand the 

tribochemistry of a-C:15H/CI system. The fitted Mo 3d peaks obtained from 

the oils with different MoDTC concentration formed on the pins after 6 h and 

12 h are shown in Figure  6-28. Considering the binding energies of S 2p 

peaks, it is evident that abrasive Mo-oxide species as well as the low shear 

strength MoS2 have been identified in the tribofilms formed on the CI pins 

regardless of the duration of the tests. However, in general, MoS2 

contributed more to the film formation.  

 

  

(a) (b) 

Figure 6-28 Curve fitting of Mo 3d peaks obtained from tribofilm formed from 
oils with different level of MoDTC on the CI pins after (a) 6 h and (b) 12 
h. 
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As illustrated in Figure  6-28, it is also evident that FF600- oil formed a 

sharper peak with higher intensity than other oils which can be correlated to 

the richer low friction film on the CI pins justifying the lower obtained friction 

with this oil. Furthermore, in order to compare the low friction film formation 

with regards to the duration of the tests, the fitted Mo 3d peaks formed on 

the CI pins from oils with different level of Mo-FM as a function of test 

duration is shown in Figure  6-29.  

 

 

 

(a) (b) 

  

(c) (d) 

Figure 6-29 The fitted Mo 3d peaks formed on the CI pins from (a): FF600-, 
(b):FF300-, (c): FF600+ and (d):FF300+ as a function of test duration 
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It can be seen that for FF600-, FF600+ and FF300- oils ( see Figure  6-29 a, 

b and C), the intensity of the Mo 3d peaks were higher after 12 h compared 

to 6 and 20 h tests. It implies that the tribofilm formed from these oils were 

richer in Mo, mainly consisted of MoS2, after 12 h but that the Mo started to 

become depleted in the tribofilm when the tribo-tests continued for 20 h. This 

is in agreement with our friction results (see Figure  6-23) as using FF600-, 

FF600+ and FF300- oils, the lowest friction values were obtained after 12 h 

compared to 6 and 20 h tests. 

 

In addition, the intensity of Mo 3d peak which is detected on the tribofilm 

formed from FF300+ is higher after 20 h of the tests compared to 6 and 12 h 

experiments. That could explain the friction values which were decreased 

with increase in the test duration using this oil. However, it is worth 

mentioning that the Mo tribofilm formed from FF300+ was mainly consisted 

of MoO3 which has an abrasive nature and could increase the friction.  

 

6.3.5.3.3. Anti-wear Film Formation 

The XPS spectra of ZDDP derived species (Zn 2p and P 2p) formed on the 

a-C:15H plate (Figure  6-30-a and Figure  6-30-b) and on the CI pin 

(Figure  6-30-c and Figure  6-30-d) using FF600+ oil as a function of test 

duration is shown in Figure  6-30. It is clear that using FF600+ oil, 

irrespective of the duration of the tests, Zn-phosphate and ZnS/ZnO species 

were formed on both the a-C:15H plates and CI pins. The only exception 

was the tribofilm which is formed on the CI pin after 6 h using FF600+ which 

was mainly Zn-S-O compounds (BE=1023.15 eV). It is therefore evident that 

despite high level of Mo-FM which was blended in the FF600+ oil, the 

phosphate film formation on the surface was not halted.  
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(a) (b) 

  

(c) (d) 

Figure 6-30 XPS spectra of ZDDP derived species (a) Zn 2p, (b) P2p formed 
on the a-C:15H coated plate and (c) Zn 2p and (d) P2p formed on the 
CI pin using FF600+ as a function of test duration. 

 

XPS spectra of Zn 2p and P 2p formed on the a-C:15H plate and on the CI 

pin using FF300+ oil as a function of test duration was illustrated in 

Figure  6-31. It is evident that using FF300+ oil, and considering binding 

energies of the main peaks, the nature of the anti-wear tribofilm formed on 

surface of the a-C:15H coated plate was mainly Zn-S-O compound for 6 and 

20 h tests whereas Zn-phosphate and ZnS/ZnO species were formed in the 

a-C:15H tribofilms after 12 h tests. In a similar manner, the surface of the CI 
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pin counterparts were mainly rich in anti-wear ZDDP derived Zn-phosphate 

and ZnS/ZnO species. 

 

  

(a) (b) 

  

(c) (d) 

Figure 6-31 XPS spectra of ZDDP derived species (a) Zn 2p, (b) P2p formed 
on the a-C:15H coated plate using and (c) Zn 2p and (d) P2p formed on 
the CI pin using FF300+ as a function of test duration. 
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addition, as shown in Figure  6-24, irrespective of the test duration, ZDDP in 

the oil played an important role on the wear performance/durability of a-

C:15H coating.  

 

6.3.5.4. Mechanical properties of the coatings 

In section  6.3.4, nano-indentation tests on the a-C:15H coatings which were 

undergone 20 h pin-on-plate experiments revealed that the tribochemistry of 

additive components is probably the dominating factor in hardness loss of 

the a-C:15H coating surfaces but that the “substrate effect” could also have 

had an impact on the obtained values of hardness and Young’s modulus. 

That was mainly due to the fact that using oils which were blended with high 

level of Mo-FM, the coatings became very thin at some regions inside the 

wear scar which in turn could have affected the measurements which were 

untertaken inside the wear scar of the coatings. Therefore, in order to have a 

better comparison between oils with different Mo-FM concentration, nano-

indentation tests were carried out on the a-C:15H coatings which were 

undergone shorter tests (i.e. 6 and 12 h) and experienced lower wear, as a 

result. This could provide a better comparison and minimise the effect of 

substrate as the remaining coating inside the wear scar was reasonably 

better after 6 and 12 h tests.   

 

In a similar manner to what was carried out in section 6.3.4, indentations 

were performed on the worn regions of a-C:15H coating surfaces as well as 

outside of the wear scar for each sample. The obtained results are shown in 

Table  6-6 and Table  6-7 for 6 and 12 h pin-on-plate experiments, 

respectively. The measured hardness and reduced elastic modulus (Er) 

values for the coated samples are presented. For 6 h tests as shown in 

Table  6-6, it is evident that regardless of the extent of wear on the coatings 

and considering the standard deviation, hardness and modulus of elasticity 

values were comparable with those of as-deposited coating (H >20 GPa and 

Er 180 GPa). Comparing different DLC samples, It is also clear that the 

values obtained outside of the wear scar has large standard deviation from 

the average values which is probably due to the specific surface morphology 

of the DLC coatings. In addition, the obtained values, outside of the wear 

scar differ from one sample to another which could be due to inevitable 

differences in sample preparation (e.g. different coating quality). Similarly, 
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the obtained result for 12 h tests (see Table  6-7) shows that apart from 

FF600- (i.e. the lowest giving friction and highest wearing oil), there was no 

significant difference with regards to the hardness loss or/and Young’s 

modulus compared to as-deposited coating. For FF600- oil, however, the 

hardness and elasticity modulus, which were almost unchanged after 6 h 

reciprocating experiments, decreased when the test duration continued for 

12 h suggesting that the tribochemical effect of FF600- oil on surface 

modification of a-C:15H coating occurred after 6 h which is in agreement 

with our chemical analysis of the tribofilms where MoS2 and MoO3, which are 

the decomposition products from MODTC, were dominant on the a-C:15H 

coating after 12 h but not 6 h. 

 

As shown in Figure  6-25, the average wear depth on a-C:15H coating wear 

track given by FF600-, was seen to be Hd=0.62 µm. In addition, the depth of 

penetration for nano-indentation analysis (96.7± 6.2 nm) which was chosen 

to be well below the 10% of the remaining coating thickness inside the wear 

scar implying that the tribochemistry of additive components initiated the 

surface modification of the a-C:15H coating and the obtained measurements 

were not mainly influenced by the “substrate effect”. 

 

Table 6-6 Nano-scale mechanical properties of DLC coating after 6 h tests. 

Sample 

 
Measurement 

position Maximum 
depth 
(nm) 

Standard 
deviation 

(±) 

Hardness 
(GPa) 

Standard 
deviation 

(±) 

Reduced 
elastic 

modulus 
(GPa) 

Standard 
deviation 

(±) 

FF300+ 

Inside Wear 
Track 

102.8 7.0 18.1 3.7 163.6 13.4 

Outside Wear 
Track 

100.8 13.8 18.3 4.9 171.7 39.4 

FF300- 

Inside Wear 
Track 

97.2 7.5 18.7 2 167.9 10.9 

Outside Wear 
Track 

116.1 23.4 18.9 7.4 178.2 53.4 

FF600+ 

Inside Wear 
Track 

107.0 6.3 16.5 1.9 140.8 8.2 

Outside Wear 
Track 

115.9 12.5 18.4 4.6 167.4 28.9 

FF600- 

Inside Wear 
Track 

96.4 7.0 19.0 2.6 176.0 15.4 

Outside Wear 
Track 

97.8 13.1 19.4 5.4 177.7 39.8 
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Table 6-7 Nano-scale mechanical properties of DLC coating after 12 h tests. 

Sample 

 
Measurement 

position Maximum 
depth 
(nm) 

Standard 
deviation 

(±) 

Hardness 
(GPa) 

Standard 
deviation 

(±) 

Reduced 
elastic 

modulus 
(GPa) 

Standard 
deviation 

(±) 

FF300+ 

Inside Wear 
Track 

98.8 8.9 19.5 2.4 165.2 18.8 

Outside Wear 
Track 

98.1 11.1 19.9 4.5 174.7 37.3 

FF300- 

Inside Wear 
Track 

100.6 4.9 17.7 1.6 166.7 7.3 

Outside Wear 
Track 

97.9 14.1 18.7 5.5 185.2 37.9 

FF600+ 

Inside Wear 
Track 

93.3 6.1 20.7 2.0 180.8 8.8 

Outside Wear 
Track 

94.2 15.8 22.3 8.0 192.1 50.5 

FF600- 

Inside Wear 
Track 

96.7 6.2 12.4 2.7 150.4 9.8 

Outside Wear 
Track 

103.9 13.31 16.4 4.9 165.3 37.9 

 

 

6.3.6. Effect of Mo-FM Source 

In previous sections of this chapter, the effect of Mo-FM in giving high wear 

to the a-C:15H coating was shown. It was seen that the higher the Mo-FM 

level in the oil, the higher the wear. It should be borne in mind that the Mo-

FM which was used in previous sections was molybdenum dithiocarbamates 

with oxidation state of +4. In order to investigate the potential effect of Mo-

FM source on the wear performance of the DLC coating, molybdenum 

dithiocarbamates with a different oxidation state (+5) was blended in the oil. 

Fully formulated oil with 300 ppm Mo-FM (oxidation state of +5) was used 

and the obtained results were compared with those observed earlier 

(section  6.3) using the same oil but formulated with Mo-FM with oxidation 

state of +4.  

 

6.3.6.1. Friction Results 

Friction traces as a function of time for the a-C:15H/CI combination using 

oils with different moly source is given in Figure  6-32. Based on the friction 

traces, regardless of presence or absence of ZDDP, using Mo-FM with 

oxidation state of +5, friction reduction was not observed over the duration of 
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the test. In contrast, a drop in friction was observed when ZDDP-free Mo-

FM-containing fully formulated oil with oxidation state of +4 was used.   

 

 

Figure 6-32 Friction traces as a function of time for the a-C:15H/CI 
combination using oils with different Mo-FM source. 

 

 

Figure 6-33 Steady state friction coefficients as a function of oils with 
different Mo-FM concentration at different time intervals for a-C:15H/CI 
system. 
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The average steady state friction (i.e. the last hour of the tests) as a function 

of different oils for a-C:15H/CI system are presented in Figure  6-33. Overall, 

it is evident that friction behaviour was seen to be comparable for both Mo-

FM with oxidation state of +5 and Mo-FM with oxidation state of +4 when 

ZDDP is present in the oil (FF300+). In contrast, Mo-FM with oxidation state 

of +4 provided a lower friction compared to Mo-FM with oxidation state of +5 

when ZDDP is absent in the oils formulation (i.e. FF300-).  

 

6.3.6.2. Wear Results 

The wear coefficients as a function of Mo-FM source for a-C:15H coating are 

given in Figure  6-34. Based on the wear results, it is evident that, regardless 

of ZDDP being present in the oils or not, Mo-FM with oxidation state of +5-

containing oils gave lower wear rate compared to Mo-FM with oxidation state 

of +4 after 20 h tests. In the case of the oils formulated with Mo-FM with 

oxidation state of +4, the wear rate was almost 12 times higher when ZDDP 

was not present in the oils (i.e. the addition of ZDDP to Mo-FM with oxidation 

state of +4-containing oils, significantly improved the wear performance).  

 

 

Figure 6-34 Wear coefficient as a function of oils with different Mo-FM 
concentration at different time intervals for a-C:15H/CI system. 
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In order to provide a better and comparative picture of the wear performance 

of oils with different type of MoDTC, typical images of wear track on the a-

C:15H coating for oils with different Mo-FM source are shown in Figure  6-35. 

It is evident that the type of Mo-FM source used played an important role on 

the wear performance of the a-C:15h coating. In general, Mo-FM with 

oxidation state of +5-containing oils provided a lower wear compared to Mo-

FM with oxidation state of +4-containing oils while, in the absence of ZDDP, 

the high wear given by Mo-FM with oxidation state of +4-containing oils 

exposed the underlying Cr/CrN interlayers. Comparing the µ and Hd values, 

it is clear that, in general, the higher the wear the lower the friction and vice 

versa. 

 

  

a  b 

  

c d 

Figure 6-35 Optical images of the wear scars formed on the a-C:15H coated 
plates using (a) FF300+ (Mo-FM with oxidation state of +4), (b) FF300- 
(Mo-FM with oxidation state of +4), (c) FF300+ (Mo-FM with oxidation 
state of +5) and (d) FF300- (Mo-FM with oxidation state of +5).The 
arrows on the images show sliding directions and µ and Hd are the 
coefficient of friction and the average depth of the wear track, 
respectively. 

µ=0.09, Avg Hd=0.08µm  

 

µ=0.07, Avg Hd=0.72µm  

 

µ=0.1, Avg Hd=0.072µm  

 

µ=0.1, Avg Hd=0.062µm  
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In a similar manner to what was carried out in previous sections and to verify 

the observations from wear results and optical microscope images, EDX was 

carried out inside the wear scar. The tribofilm on the plates was removed by 

leaving the samples in an ultrasonic acetone bath (15 min) prior to the 

SEM/EDX analysis. Figure  6-36, illustrates the typical secondary electron 

(SE) image of a section of a-C:15H coating wear scar along with EDX 

mapping of C, Cr and Fe after the pin-on-plate tests. It is obvious that EDX 

mapping of a sample with higher wear provides lower carbon, higher 

chromium and some iron inside the wear scar.  

 

From Figure  6-36, it is evident that only in the case of FF300- oil formulated 

with Mo-FM with oxidation state of +4, the top carbon layer was almost 

removed while Cr was richer inside the wear track. In addition, Fe was 

detected at some regions inside the wear scar of a-C:15H coating indicating 

that either the substrate is exposed (delamination) or the coating became 

very thin in the wear scar region (severe wear). This is in agreement with our 

previous observations using optical microscope and light interferometer 

which showed a high wear obtained by FF300- (Mo-FM with oxidation state 

of +4). 

 

In spite of the fact that light interferometer showed a lower gradual wear 

using Mo-FM with oxidation state of +5, based on the EDX mapping 

presented in Figure  6-36, it is clear that wear scar given by Mo-FM with 

oxidation state of +5-containing fully formulated oils exhibited carbon 

removal at some points inside the wear scar. However, the amount of this 

removal was limited to the top carbon layer and was not extended to the 

interlayer or/ and the substrate. 
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Sample Electron Image C Cr Fe 

FF300+ 

(Mo-FM with 

oxidation 

state of +4)     

FF300- 

(Mo-FM with 

oxidation 

state of +4)     

FF300+ 

(Mo-FM with 

oxidation 

state of +5) 

    

FF300- 

(Mo-FM with 

oxidation 

state of +5)     

Figure 6-36 SEM image of a-C:15H coating along with EDX mapping of the 
C, Cr and Fe atoms. 

 

6.3.6.3. Chemical Analysis of the Tribofilms 

6.3.6.3.1. Elemental Composition 

Following the tribo-tests using oils blended with different MoDTC source, 

XPS analysis was performed on the samples. The chemical quantification of 

the surface tribofilms for the a-C:15H/CI tribocouple lubricated in oils with 

different MoDTC source is shown in Table  6-8. XPS quantification obtained 

from Mo-FM with oxidation state of +4-containing oils is represented in the 

table for comparison purposes. Additive-derived elements were present on 

the tribofilm formed on both the a-C:15H and the CI pin counterbody 
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suggesting that the additives were decomposed under boundary lubrication. 

This could probably affect the tribological performance of the a-

C:15H/system and particularly durability/wear performance of the coatings. 

Fe 2p peak was not detected in the tribofilm formed from any of the oils on 

the a-C:15H coatings signifying that delamination of the a-C:15H coating did 

not occur or/and that the iron coming from the pin worn particles did not 

participate in the tribofilm formed on the a-C:15H surface. In addition, Cr 2p 

peak was not found in the tribofilm formed on the a-C:15H coating using Mo-

FM with oxidation state of +5-containing oils suggesting that wear of the 

coatings was not severe (enough) to make chromium internal layer exposed. 

This is in agreement with our physical observation where wear rates of a-

C:15H coatings were measured to be fairly low using Mo-FM with oxidation 

state of +5 oils.  

 

Table 6-8 XPS quantification of tribofilms for a a-C:15H/CI system lubricated 
in oils with different source of MoDTC. 

Sample Surface 

Elemental composition of Tribofilms (at.%) 

Fe O P Zn C Ca Mo N S 

FF300+ (Mo-FM 
with oxidation 
state of +5) 

Pin 0.2 19.3 0.7 0.1 73.0 2.6 2.0 0.8 1.3 

Plate 0.0 2.4 0.1 0.2 94.2 0.3 1.1 1.0 0.7 

FF300- (Mo-FM 
with oxidation 
state of +5) 

Pin 0.4 20.5 0.0 0.0 71.6 2.6 3.1 1.1 0.7 

Plate 0.0 5.9 0.0 0.0 90.4 0.9 0.9 1.6 0.4 

FF300+ (Mo-FM 
with oxidation 
state of +4) 

Pin 1.2 35.7 1.1 0.2 54.9 1.8 2.6 1.8 0.7 

Plate 0.0 3.7 0.4 0.1 92.0 0.6 1.4 1.1 0.8 

FF300- (Mo-FM 
with oxidation 
state of +4) 

Pin 1.6 34.9 0.0 0.0 42.7 1.3 12.3 6.4 0.8 

Plate 0.0 2.8 0.0 0.0 93.5 0.6 0.9 1.8 0.4 

 

6.3.6.3.2. Low Friction Film Formation 

Based on the elemental composition which is shown in Table  6-8, it is clear 

that regardless of the type of MoDTC which was blended in the oil, for 

ZDDP-containing oils with medium level of Mo-FM, the amount of Mo 3d 

detected on the tribofilm on both the a-C:15H coated plates and the pin 

counterparts was negligible. This made curve-fitting of the obtained Mo 3d 

high resolution peaks, from both the pin and the plate, almost impossible.  
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For ZDDP-free oils the amount of Mo 3d detected on the a-C:15H coated 

plates from oils with medium level of Mo-FM (FF300-) was insignificant 

whereas more Mo 3d was generally identified on the pins. Therefore, Mo 3d 

peaks obtained from tribofilm formed on the pins were used to compare 

ZDDP-free oils formulated with different Mo-oxidation state.  

 

Figure  6-37 shows the long scan of Mo 3d peak obtained from tribofilm 

formed on the pin from ZDDP-free oils. It can be seen that both oils formed 

MoS2 and MoO3 on the tribofilm of the pins. However, in the case of FF300- 

(Mo-FM with oxidation state of +4) where the friction values were 

comparatively lower, more Mo 3d was detected on the tribofilm of the pin 

compared to FF300- treated with Mo-FM with oxidation state of +5. This 

could explain the lower obtained friction using this oil. 

 

 

Figure 6-37 Curve fitting of Mo 3d peaks obtained from tribofilm formed from 
FF300- (Mo-FM with oxidation state of +5) and FF300- (Mo-FM with 
oxidation state of +4) on the pin. 

FF300- (Mo-FM with oxidation state of +5)_Pin 

FF300- (Mo-FM with oxidation state of +4)_Pin 

MoS2=41.27 % (228.8 eV) 

MoS2=46.52 % (228.2 eV) 

MoO3=54.8 % (232.8 eV) 

MoO3=43.6 % (232.9 eV) 

S 2s 

S 2s 
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6.3.6.3.3. Anti-wear Film Formation 

Zn-phosphate and ZnS/ZnO species were formed in the tribofilms of the pins 

using FF300+ (Mo-FM with oxidation state of +5) which is in a similar 

manner to what was reported using FF300+ (Mo-FM with oxidation state of 

+4) whereas Zn-S-O compound was mainly formed on the a-C:15H coated 

plate. 

 

It appears that phosphate film formation on the surface was not affected by 

the presence of Mo-FM with oxidation state of +5 in the oil (see Figure  6-38). 

The fitted Zn 2p and P 2p peaks are shown in Figure  6-38. The obtained 

results could explain high friction and good wear  performance/durability of 

a-C:15H coating and reconfirms the important role of ZDDP on the wear 

protection of the DLC surface.  

 

  

(a) (b) 

Figure 6-38 XPS spectra of ZDDP derived species (a) Zn 2p, (b) P2p formed 
on the a-C:15H coated plate using Mo-FM with oxidation state of +5-
containing fully formulated oils. 

 

6.3.6.3.4. Effect of Other Additives 

Figure  6-39 demonstrates the high resolution scan of detergent-derived Ca 

2p obtained from the tribofilm formed on both a-C:15H coated plate and the 

CI pin when lubricated in oils with different MoDTC type friction modifier. It is 

evident that irrespective of the formulation of the oils using different MoDTC, 

Pin 

Plate 

Pin 

Plate 
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Ca film was formed on both the pin and the plate. The binding energies of 

the Ca 2p peaks on the DLC plates using different oils was in the range of 

348.5-348.9 eV (see Figure 6-29 (a)) which corresponds to Ca(NO3)2 

whereas on the CI pin surface Ca was in the form of CaCO3 using FF300+ 

(Mo-FM with oxidation state of +5) and in the form of  CaSO4 by all other oils 

[267]. 

 

 
 

(a) (b) 

Figure 6-39 Detergent-derived Ca 2p peak formed on a-C:15H plate (a) and 
CI pin (b) using oils with different MoDTC. 

 

Nitrogen species are  generally a decomposition product of dispersant which 

is blended in the oil. Figure  6-40 shows the long scan of N 1s from the 

tribofilm which is formed on the a-C:15H coatings and their corresponding 

pins using oils with different type of MoDTC. Nevertheless, the nature of 

Nitrogen species and the mechanisms by which they could potentially affect 

the film formation is beyond the scope of this study and requires further 

investigation.  

 

Mo 3p peak has a line position of around 394 eV and therefore has an 

overlap with N 1s. It is clear that irrespective of the type of Mo-FM blended in 
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the oils used, no Mo 3p was detected on the a-C:15H tribofilm. In contrast, 

Mo3p peaks are evident in the tribofilm formed on the pin from Mo-FM with 

oxidation state of +4-containing oils which reconfirms the formation of 

MoDTC-derived compounds on the counterparts when oil was formulated 

using Mo-FM with oxidation state of +4 as a friction modifier .  

 

  

(a) (b) 

Figure 6-40 Dispersant-derived N 1s peak formed on a-C:15H plate (a) and 
CI pin (b) using oils with different MoDTC. 

 

6.3.7. Effect of Counterpart Type 

In another attempt and in order to find out the potential role of the 

counterpart substance, in general, and iron in particular, in giving high wear 

to the a-C:15H coating, 20 h tests were carried out using ceramic balls 

(Si3N4) while keeping the rest of the test parameters consistent (i.e. same 

temperature, contact pressure, etc.). In order to have a similar pressure to 

the DLC/CI system, the actual load on the silicon nitride ball in the 

DLC/ceramic was 13 N which gave a pressure of 700-800 MPa. The 

lubricating oil was chosen to be the lowest friction/highest wear giving oil 

(FF600-) and the obtained results were compared with those of CI pins. The 

obtained results for a-C:15H/CI system are represented here for comparison 

purposes.   
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6.3.7.1. Friction Results 

Given in Figure  6-41 are the friction traces produced by the lowest 

friction/highest wearing oil (i.e. FF600-) using two different counterparts 

when rubbed against a-C:15H coated plate. Interestingly, using the same 

test parameters, no drop in friction was observed when the counterpart was 

ceramic while a significant friction reduction was evident using the CI pins.   

 

Figure 6-41 Friction traces as a function of time using different counterpart 
on a-C:15H coated plate lubricated in FF600-.  

 

 

Figure 6-42 Steady state friction coefficients as a function of FF600- using 
different counterpart on a-C:15H coated plate. 
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In addition, steady state friction coefficient (i.e. average of the last hour of 

the tests) for two different counterparts are shown in Figure  6-42. It is clear 

that the friction was almost 1.5 times lower when CI pin was used compared 

to ceramic ball. 

 

6.3.7.2. Wear Results 

Typical images of the wear scar on the a-C:15H coating plate imposed by 

the ceramic ball (Figure  6-43a) and the cast iron pin (Figure  6-43b) using the 

highest wear/lowest friction giving oil (i.e. FF600-) are presented. It is clear 

that using ceramic as the counterpart, there was barely any evidence of 

significant wear on the plate after 20 h tests while high wear was observed 

using the same oil but with the cast iron counterpart. 

 

  

(a) (b) 

Figure 6-43 Optical images of the wear scars formed on the a-C:15H coated 
plates using (a) FF600- (ceramic ball) and (b) FF600- (CI pin). The 
arrows on the images show sliding directions and µ and Hd are the 
coefficient of friction and the average depth of the wear track, 
respectively. 

 

In addition, EDX mapping of the a-C:15H coating using two different 

counterpart are shown in Figure  6-44. Based on the EDX mapping results, It 

is clear that using the ceramic ball, no difference in C and Cr concentration 

was seen comparing inside and outside of the wear scar implying almost no 

gradual wear of the coated plates. Using the CI pin, Fe was detected at 

some regions inside the wear scar for FF600- showing that the coating 

became very thin in the wear scar region (severe wear). It should be noted 

that, iron transfer from the CI pin is excluded due to the fact that wear of the 

pin was comparable from all the tests (see Figure  6-19). 
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Sample Electron Image C Cr Fe 

DLC_ceramic_FF

600-(Mo-FM with 

oxidation state of 

+4) 
    

DLC_CI_FF600-

(Mo-FM with 

oxidation state of 

+4) 
    

Figure 6-44 SEM image of a-C:15H coating along with EDX mapping of the 
C, Cr and Fe atoms. 

 

6.3.7.3. Chemical Analysis of the Tribofilm 

6.3.7.3.1. Chemical Quantification 

In order to investigate the effect of using different counterparts on the 

tribological performance of DLC coatings, XPS analysis was performed on 

the tribofilm formed on the a-C:15H coated plates when rubbed against the 

cast iron pin compared to the ceramic ball using the highest wearing oil 

(FF600-). Figure  6-45 illustrates the survey scans on the tribofilms formed on 

the DLC coated plates using the CI pin and the ceramic ball, respectively. It 

is evident that regardless of the type of the counterpart, additive-derived 

elements were present in the tribofilm formed on a-C:15H. Fe 2p and Cr 2p 

peaks were only detected in the tribofilm when rubbed against the CI pin 

indicating that severe wear/delamination of the a-C:15H coating only 

occurred when the counterpart was cast iron. This suggests that the 

presence of iron is crucial in the wear process by which FF600- oil gave high 

wear to the DLC coating in the a-C:15/CI system. This is in agreement with 

our physical observation where iron was detected at some regions inside the 

wear track only when the counterpart was cast iron.  
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Figure 6-45 Survey scan obtained from inside a-C:15H coating wear scar 
when rubbed against CI (top) and ceramic (bottom). 

 

The XPS quantification of the elements of the tribofilms formed on a-C:15H 

plates when rubbed against the ceramic ball and the CI pin are given in 

Table  6-9. It is clear that the tribofilm formed on the a-C:15H plate in both 

DLC/ceramic and DLC/CI was rich in carbon whereas minor portion of the 

tribofilm was the contribution of other additives. Nevertheless, more additive-

derived elements was detected in the tribofilm formed on the a-C:15H in the 

DLC/CI system compared to DLC/ceramic.  

 

Table 6-9 XPS quantification of tribofilms on the a-C:15H coating for a-
C:15H/CI and a-C:15H/ceramic systems. 

Sample 

Elemental composition of Tribofilms (at.%) 

O  C  Ca  Mo  N  S  Fe  

DLC/ceramic 4.9 89.0 0.8 3.1 1.7 0.5 0.0 

DLC/CI 9.1 76.5 1.6 6.9 4.1 1.4 0.3 

 

 

DLC/CI 

DLC/ceramic 
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6.3.7.3.2. Low Friction Film Formation 

As shown in Table  6-9, although MoDTC decomposed and took part in the 

film formation on the a-C:15H coating using both the CI pin and the ceramic 

ball, Mo 3p was more dominant in the tribofilm formed on the a-C:15H 

coating when rubbed against CI.  

 

In Figure  6-46, the high resolution scan of Mo 3d peak obtained from 

tribofilm formed on a-C:15H coated plate using the CI pin (top) and the 

ceramic ball (bottom) is given. It is evident that, for a-C:15H/CI, MoS2 and 

MoO3 which are the decomposition products of MoDTC formed on the a-

C:15H coating. In the case of a-C:15H/ceramic system, binding energy of 

229.6 eV corresponds to either MoO2 or MoS2 and binding energy of 233.2 

eV corresponds to MoO3. Nevertheless, the amount of Mo3d detected on the 

tribofilm of the DLC in the a-C:15H/CI formed from FF600- is higher 

compared to the a-C:15H/ceramic system which could be the potential 

cause of lower friction and higher wear observed in a-C:15H/CI. 

 

 

Figure 6-46 Curve fitting of Mo 3d peaks obtained from tribofilm formed from 
FF600- on the a-C:15H coating using the CI pin (top) and the ceramic 
ball (bottom). 
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6.3.7.3.3. Effect of Other Additives 

Figure  6-47 shows the long scan of Ca 2p and N 1s peaks. It is clear that 

regardless of the type of counterpart, using FF600-, detergent- and 

dispersant-derived elements were detected on a-C:15H surface. It should be 

noted that calcium in the tribofilm formed on the a-C:15H coating in the a-

C:15H/CI system was in  the form of CaCO3 which could potentially increase 

the friction [274] whereas in the a-C:15H/ceramic system Ca turned out to be 

CaSO4/Ca(NO3)2. It is worth mentioning that Mo 3p peak (see Figure 6-35 b) 

which has an overlap with N 1s is clearly identified on the a-C:15H tribofilm 

using both counterparts which reconfirms the formation of MoDTC-derived 

compounds. However, the Mo 3p peak was more evident and sharp in the 

DLC/CI system.   

 

   

(a) (b) 

Figure 6-47 Detergent-derived Ca 2p peak (a) and dispersant-derived N 2p 
peak (b) using FF600- oil using the CI pin(top) and the ceramic ball 
(bottom).  

6.4. Summary  

In this part of the study (phase II), the effect of increasing Mo-FM 

concentration in one type of fully formulated oil on the tribological 

performance of both steel/CI and DLC/CI system was investigated in detail. 

In addition, test duration was increased to 20 h to discriminate between 

348.6 eV 

CaSO4/Ca(NO3)2 

DLC/CI 

DLC/ceramic 

347.5 eV 

CaCO3 

DLC/CI 

DLC/ceramic 
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different oils in terms of tribological performance of the a-C:15H coating. 

Initial tests suggested that 20 h was long enough for the highest wearing oil 

(FF600-) to give severe wear of the DLC coating, and as a result removal of 

the a-C:15H coating and reaching to the CrN/CrC interlayer. Following long 

20 h tests, friction response of the oils (see Figure  6-5), was seen to vary 

with time. In particular, for FF600+ and FF600- oils, the friction coefficients 

which were initially dropped, started to rise again in the region of 10-12 h 

after the start of the tests. Thus, 12 h test were conducted to provide a better 

understanding of friction behaviour and wear mechanisms of the oils on the 

DLC coatings as a function of time. In addition, 6 h tests were conducted in 

the region where friction was still decreasing and the coating was not 

suffering from severe wear. Furthermore, the effect of Mo-FM type which 

was blended in the oils was investigated. In summary, the following key 

points can be drawn from this part of the study:  

 

 High concentration of Mo-FM with oxidation state of +4 can promote 

wear of a-C:15H coating in oils without ZDDP and this wear can be 

mitigated by the addition of ZDDP. Unlike ZDDP, the presence of 

other additives (antioxidants, detergents and dispersants) in a fully 

formulated did not provide similar wear protection.  

 

 The presence of ZDDP in the oil increased the friction for steel/CI. 

This was also true for DLC/CI when lubricated in oil formulated with 

medium (i.e. 300 ppm) and high level (i.e. 600 ppm) of Mo-FM.  

 

 The mechanical properties of the a-C:15H coating can be modified by 

the addition of the Mo-FM with oxidation state of +4 in a fully 

formulated oil. Furthermore, considering the standard deviation of the 

obtained nanoindentation measurements of the coatings outside of 

the wear scar, no significant difference was observed as compared to 

as-deposited coating. This suggests that the antagonism effect of Mo-

FM to a-C:15H in terms of wear was more of tribochemistry of the 

rubbing surfaces rather than chemical reaction of  the oils with the a-

C:15H coating.  
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 The  tribochemical effect of oils with higher concentration of Mo-FM 

on surface modification of a-C:15H coating required more than 6 h to 

occur which was also in agreement with our chemical analysis of the 

tribofilms where MoDTC derived MoS2 and MoO3, which are reported 

to be the potential cause of surface modification/graphitisation of DLC 

[41, 254], were dominant on the a-C:15H coating after 12 h but not 6 

h. 

 

 Tribological tests and surface analysis of the DLC coatings over the 

time intervals suggests that MoDTC decomposition products initially 

form a tribofilm on the surface offering low friction followed by high 

wear on the a-C:15H coated plates. In addition, for high wearing oils, 

wearing through the coating and reaching to CrC/CrN interlayer may 

also be responsible for a reduced steady state friction [204].  

 

 The high wear observed by ZDDP-free oils with medium level of Mo-

FM with oxidation state of +4 on the a-C:15H coating was not seen by 

the same oil but blended with Mo-FM with oxidation state of +5. This 

suggests the important role of MoDTC type in promoting high wear to 

DLC coatings. 

 

 The MoDTC-induced high wear of a-C:15H coated plates was only 

seen in the a-C:15H/CI combination but the same effect was not 

observed when DLC rubbed against the ceramic counterpart. This 

indicates that the presence of the steel plays an important role on 

wear mechanisms by which MoDTC is causing a high wear on the 

hydrogenated DLC coating. 
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Chapter 7 Discussion 

7.1. Introduction 

In phase I of the study, fully formulated oils were used to evaluate the overall 

tribological performance of 15% hydrogenated DLC under boundary 

lubrication conditions and the tribological performance compared with that of 

an uncoated steel system. The obtained results suggest that fully formulated 

oils (with 40/60 ppm or no Mo-FM) provide no friction reduction in both the 

steel/CI and a-C:15H/CI systems. In addition, using these oils, DLC coating 

showed extremely low wear making the wear measurements almost 

impossible. Following the overall tribological evaluation of the DLC coating 

using fully formulated, the effect of MoDTC concentration on tribological 

performance of DLC system has been assessed in phase II and the obtained 

results are presented in chapter 6 in detail. The observations which are key 

to this study along with the possible hypotheses and potential wear 

mechanisms will be the focus of this chapter. In addition, the obtained 

results will be assessed and compared with other published literature. 

7.2. Effect of Lubricant Additives on Tribological 

Performance of the DLC/CI and the Steel/CI System. 

7.2.1. Low Friction Film Formation 

The DLC/lubricant interaction strongly depends on the type of DLC as well 

as lubricant composition, particularly when these coatings are rubbed 

against uncoated steel surfaces [170]. In the literature, direct interaction of 

MoDTC and ZDDP with some hydrogenated DLCs has been evidenced and 

the formed tribofilms on the coating surface have been reported to improve 

the friction and wear performance of these contacts [206, 217].  

 

In this study, oils with low concentration of Mo-FM did not provide any 

friction reduction. The coefficient of friction obtained using these oils, was 

relatively high in both DLC and steel systems. In addition, XPS analyses 

revealed that the amount of Mo, detected in the tribofilm formed on both 
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surfaces, was insignificant. Since the friction coefficient in both systems was 

in the same range, the different contact type could not be responsible for 

such high friction values.  

 

The friction behaviour of the fully formulated oils on both of the DLC/CI and 

the steel/CI systems can be correlated to the increased shear strength at the 

interface due to the surface/additive interaction, as widely reported for 

different lubricated systems [29, 210, 257, 275] as well as DLC [209, 276]. 

The interaction between different additives which are present in the oils’ 

formulation could play a great role in the functionality of Mo-FM and friction 

reduction which will be discussed in detail later in this chapter. That could 

also explain relatively high friction obtained by conventional fully formulated 

oils (with 40/60 ppm Mo-FM) used in phase I of this study.  

 

In addition, high friction obtained using fully formulated oils with low level of 

Mo-FM (40/60 ppm) could be also due to the low concentration of friction 

modifier in the formulations. In other words, certain amount of Mo-containing 

source is paramount for the reduction in friction. The MoDTC effectiveness 

in giving low friction depends on different factors including its concentration 

in the oil [97, 100, 101, 113]. The level of MoDTC in the oil was suggested to 

be at least 500 ppm [113] and 180 ppm [101] for an efficient friction 

reduction.  

 

In this study, formation of MoS2 which could be partly responsible for 

providing low friction, was only dominant in the tribofilm formed from fully 

formulated oils with the increased Mo-FM concentration (300 ppm and 600 

ppm) in the DLC/CI tirbocouple. In addition, Yamamoto and Gando [97] 

reported that the concentration of MoDTC in the solution only affects the 

induction phase of the friction response and the steady state friction values 

were independent of the MoDTC concentration used. In this study, however; 

both the induction phase and the steady state friction was observed to be 

dependent on the Mo-FM level in the oils.  

 

Coefficients of friction as a function of Mo-sulphide/Mo-oxide ratio for a-

C:15H/CI using oils with different concentration of Mo-FM are given in 
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Figure  7-1. It is evident that the higher the Mo-sulphide/ Mo-oxide ratio, the 

lower were the friction coefficients. In addition, It is also clear that Mo-

sulphide/ Mo-oxide  was increased with increase in Mo-FM concentrations in 

the oil formulation. Hence, the results presented in Figure  7-1 clearly 

demonstrate that the friction behaviour of a-C:15H coating is influenced by 

the formation of low friction MoS2 species.  

 

 

Figure 7-1 Average coefficient of friction as a function of Mo-sulphide/Mo-
oxide ratio for a-C:15H/CI system using oils with different concentration 
of Mo-FM after 20 h tests. 

 

Figure  7-2 illustrates Mo-sulphide/Mo-oxide ratio for a-C:15H coating as a 

function of test duration using oils with different level of Mo-FM. It is evident 

that the tribofilm formed from these oils were richer in MoS2 after 12 h 

compared to 6 and 20 h tests. However, Mo-sulphide/Mo-oxide ratio 

decreased with increase in test duration for low friction giving oils (i.e. 

FF300-,FF600+ and FF600-). This is in agreement with our friction results 

(see Figure  6-23) where the friction coefficients obtained using these oils 

were lower after 12 h compared to 6 and 20 h tests. It should be noted that 

although the Mo-sulphide/Mo-oxide ratio is higher for FF600+ oil, the XPS 

high resolution scan of Mo obtained from tribofilm formed on the cast iron pin 

using FF600- showed a higher Mo intensity compared to FF600+. This could 

be an indication of the higher amount of MoS2/MoO3 formed on the cast iron 

counterpart when rubbed against a-C:15H coating lubricated in FF600-. This 
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could also justify the lower friction values obtained in the DLC/CI system 

using FF600- oil compared to other oils.  

 

 

Figure 7-2 Mo-sulphide/Mo-oxide ratio for a-C:15H coating as a function of 
test duration using oils with different level of Mo-FM.  

 

Reduction in friction in the DLC/CI system, comes at the price of significant 

wear of hydrogenated DLC. In addition, high wear of the a-C:15H coating 

which was seen by fully formulated oils treated with medium (300 ppm) and 

high (600 ppm) level of MoDTC, resulted in transfer of DLC worn material to 

the CI pin. The presence of sp2 carbon bonds in the DLC coating matrix 

provides them with inherent low friction properties and so the transfer layer 

of the a-C:15H coating, as evidenced by the XPS analysis, may consist of 

the low shear strength sp2-dominated graphitic carbon. Therefore, it is clear 

that a combination of MoDTC derived MoS2 species along with DLC wear 

debris facilitated friction reduction in the a-C:15H/CI tribocouple. This is also 

in agreement with a similar study [229] which was conducted on the a-

C:15H/steel system using fully formulated oils where a mixture of additive- 

and a-C:15H-derived products was found to be responsible for tribological 

behaviour of a-C:15H/steel system. In Figure  7-3, mechanism of low friction 

film formation on the a-C:15H coating is schematically compared with that on 

the uncoated steel surface. Figure  7-3 shows that the friction reduction on 

the DLC surface is influenced by both low friction MoS2 and low friction DLC 
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wear debris whereas on the steel surfaces low friction MoS2 species were 

dominating friction [253]. 

 

  

(a) (b) 

Figure 7-3 Schematic diagram of low friction film present at the interface in 
(a):steel/CI [253] and (b): a-C:15H/CI systems. 

 

7.2.2. Anti-wear Film Formation 

The obtained results clearly showed the critical role of selected additives in 

the oils on the durability of the coating which is in agreement with previous 

findings [214, 253].  

 

Zn-phosphate and ZnS/ZnO species were formed in the tribofilms using fully 

formulated oils. That could explain the good wear performance which was 

observed using all typical fully formulated oils (FM-free for with 40/60 ppm 

Mo-FM) in both the DLC/CI and steel/CI system. This is in agreement with 

published literature where formation of ZDDP-derived compounds on the 

DLC coating provided better wear performance of the DLC coating under 

boundary lubrication conditions [4, 206, 216-220]. Furthermore, the 

presence of Mo-FM in the oil did not affect phosphate film formation on the 

surface.   
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In the steel/CI system, different MoDTC concentration did not affect the 

performance of ZDDP and the steel plate wear rates were comparable for all 

the oils. The wear given for all the oils were insignificant and in the same 

range (≈1× 10-18 m3/Nm) indicating the effectiveness of ZDDP in providing a 

good wear performance of the uncoated steel/CI system regardless of the 

level of MoDTC in the oil.  

 

This study also showed that ZDDP offered a significant improvement in wear 

protection; however, its anti-wear performance depends significantly on the 

concentration of Mo-FM in the lubricant. However, XPS analysis showed that 

all ZDDP-containing fully formulated oils form ZDDP derived tribofilm on 

DLC surface as well as CI counterpart. Zn-phosphate and ZnS/ZnO species 

were formed in the tribofilms using all ZDDP-containing fully formulated oils.  

 

For low level of Mo-FM (40 ppm) the wear was not very much dependant on 

the presence or absence of ZDDP. In both cases (i.e. FF40+ and FF40-) the 

wear was extremely low after 20 h tribo-tests.  

 

Based on the obtained results in this study, ZDDP effectiveness in providing 

a good wear performance of a hydrogenated DLC was more pronounced 

when it was used with medium level of Mo-FM (300ppm). For medium level 

of Mo-FM, the presence of ZDDP in the oil prevents the high wear given by 

MoDTC to the DLC coating (i.e. comparing FF300+ and FF300-). Similarly, 

Haque et al. [220] reported that addition of the anti-wear additive ZDDP to 

MoDTC-containing base oil could suppress the adverse effect of MoDTC in 

giving high wear to DLC coating in a DLC/steel system [220]. In addition, 

Tung et al. [232] showed that MoDTC could reduce the wear of a DLC 

coating lubricated in fully formulated engine oil but with the aid of ZDDP 

which was present in the tested oil. It has been shown that DLC high wear 

was not seen with DLC/DLC contact and therefore, the presence of steel 

counterface was thought to be crucial in promoting the formation of MoO3 

[255], or iron oxide particles may produce higher local temperatures [214] 

which could then results in modification/graphitization of the DLC coating, 

and thus high wear. ZDDP derived glassy phosphate species which were 

formed on the surface of the coating could protect the surface from 

excessive wear or/and the formation of iron oxide particles. ZDDP could also 
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act as an oxidation inhibitor [29, 38, 39] and hinder the formation of MoO3 

which is the potential cause of high DLC wear (possible cause of DLC 

brittleness) [41] in MoDTC-containing oils..  

 

Although, XPS analysis showed the presence of ZDDP derived elements on 

the tribofilm formed on both DLC coated plates and CI pins using oils 

formulated with high level of Mo-FM, the given wear was high for both 

ZDDP-containing and ZDDP-free oils. It could be argued that the large 

amount of MoDTC supply in the oil formulation had a detrimental effect on 

the structure of ZDDP tribofilm. It was shown that a thick patchy pad-like 

tribofilm which was formed by ZDDP alone became much thinner and  the 

patchy structure was vanished [123]. In addition, the larger amount of MoO3 

formed in the tribofilm could enhance removal of tribofilms from DLC coating 

due to its abrasive nature resulting in high wear losses [246]. Nevertheless 

further study is required to establish the exact link between Mo-containing 

friction modifiers and the wear of DLC and the mechanisms by which ZDDP 

could stop this effect. 

 

7.2.3. Effect of ZDDP on Friction Reduction 

In this study, ZDDP in combination with Mo-FM showed friction reduction in 

the a-C:15H/CI system when comparing FF3+ with FF3-. Although, no such 

relation was observed comparing FF1+ with FF1- which could be due to the 

lower Mo concentration in FF1+ and FF1- ( 40 ppm) compared to FF3+ and 

FF3- (60 ppm). In the literature several reports showed that in steel systems 

MoDTC in combination with ZDDP was more effective in friction reduction 

[117-119]. For Mo-FM free oils, the presence of ZDDP increased the friction 

(i.e. FF2+ compared to FF2-) which has been widely reported for ferrous 

systems [48, 55-58]. In addition, for oils with medium and high level of Mo-

FM, addition of ZDDP to the oil formulation resulted in an increase in friction 

values of the a-C:15H/CI system.  

 

In the steel/CI system, in general, ZDDP increased friction when added to 

the lubricant which is in agreement with the literature where formation of 

pad-like tribofilm was identified as the reason for such higher friction [29].  
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The results obtained in this study was is in agreement with the published 

literature where the presence of ZDDP in the lubricants was shown to 

increase the friction [48, 55-58]. The increase in friction by ZDDP was 

correlated to the anti-wear film formation [56]. Increase in roughness due to 

the formation of ZDDP film could promote boundary lubrication and a higher 

friction as a result [58]. In contrast, in some other literature, addition of ZDDP 

to the lubricant found to have either neutral effect [62] or friction drop [63].  

 

7.2.4. Effect of Other Additives Interaction on Tribofilm Formation 

Fully formulated oils contain different additives including detergent and 

dispersant. They are blended in a fully formulated engine oil to form a film on 

the part surface preventing deposition of sludge and varnish and to keep oil 

insoluble contaminants and degradation products in suspension, at elevated 

temperature for detergents and at low temperatures for the dispersant 

additives. However, interaction between different additives when used 

together in formulated oils could result either in synergetic or antagonistic 

effects modifying the characteristics of the protective surface tribofilms which 

in turn affects the oil performance regarding anti-wear and frictional 

responses [93].  

 

Using fully formulated oils, detergent and dispersant-derived elements were 

detected on both steel and a-C:15H surface. However, the nature of Ca and 

N species formed on the a-C:15H were different from those on the steel 

surfaces. It was shown that in a ZDDP/detergent/dispersant mixture, 

dispersant did not make a significant contribution to the film formation and 

formed a thin layer of nitrogen-containing material on the outer surface [132]. 

The presence of Ca and N on the surface could influence the formation of 

FM-derived tribofilms on both a-C:15H and steel surfaces. Interaction 

between ZDDP and Ca-based detergent could reduce the amount of S, P 

and Zn on the tribofilm and increase friction due to less rich film and 

formation of CaCO3 [274]. That could explain comparatively high friction 

values observed when fully formulated oils with low level of Mo-FM was 

used (40/60 ppm). In contrast, the interaction between MoDTC, ZDDP and 

overbased calcium borate detergent in a ternary oil solution was shown to 

provide 25% better friction (coefficient of 0.05 compared to 0.07) than the 

binary ZnDTP/MoDTC mixture. However, the anti-wear efficiency of the 
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ZnDTP/MoDTC system was found to be independent of the presence of the 

calcium borate [277].  

 

Detergents have been shown to provide anti-wear properties by forming 

carbonates in the wear scar [115, 124, 125]. Metallic detergents, however, 

were seen to have an antagonistic effect on the wear performance of ZDDP 

[124, 126, 127].  On the other hand, succinimide dispersants were found to 

increase wear when added to ZDDP solutions [115, 129]. However, this 

adverse effect was diminished by borating the succinimide. Formation of a 

borate component in the anti-wear film was responsible for this improvement 

[130]. The antagonistic effect of dispersants on wear reduction was 

attributed to the reduction in the amount of ZDDP available for film formation 

by forming a complex.  

 

In this study, however, the direct effect of detergent and dispersant 

interactions in the formulation cannot be established as all lubricants were 

fully formulated oils containing detergent, dispersant, antioxidants as well as 

other surface active additives. However, undoubtedly the competition for 

surface sites between the wider range of surface-active additives present in 

the formulation could result in a different behaviour than what has been 

already published in the literature mostly using binary and ternary oil 

solutions. Based on the obtained results in phase I of this study, all fully 

formulated oils showed an excellent wear performance as well as relatively 

high friction for both DLC/CI and steel/CI system. The presence of 

detergents, dispersants and antioxidants in the blend did not seem to 

provide similar surface protection of the coating against “Mo-FM induced 

wear” when ZDDP was absent in the formulation (i.e. comparing FF300+ to 

FF300-).  

 

7.2.5. Effect of Oil Chemistry on Coating Wear/Delamination 

7.2.5.1. Graphitisation of Hydrogenated DLC Coating 

Having a graphite-like structure through transferring worn materials from the 

a-C:15H coating to the interface could significantly reduce friction in dry 

conditions [185, 190, 191]. Graphitisation could be initiated by high 

temperature (400oC) causing the hydrogen to be diffused out of the a-C:15H 
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matrix which in turn results in collapse of the random covalent structure of a-

C:15H and provide a graphitic layer. Based on a simple model, asperity 

temperature rise due to friction (friction-induced temperature) can be 

calculated by Equation  7-1 [16, 185].  

 

   
 

 

   

           
 Equation  7-1 

 

where      
 

  
 

 

 ,    is the induced temperature rise,   the friction 

coefficient,   is the applied normal load (Pa),   the sliding speed (m/s),      

and     are the thermal conductivities of the a-C:15H coating and CI 

counterbody (Wm-1K-1), respectively,   the contact radius of the real contact 

area, and H is the measured hardness of the a-C:15H coating (Pa).  

 

Considering the highest obtained coefficient of friction and the experimental 

parameters of this study, the rise of the temperature at the contact was not 

significant (≈20oC). Therefore, the friction-induced temperature was too low 

to be responsible for the phase transformation of the a-C:15H coating. 

 

The phase transformation temperature of DLC coating is a function of 

contact pressure which can be expressed by Equation  7-2 [278]. 

 

         
 |  |

 
     Equation  7-2 

 

Where    is the critical phase transformation temperature (        ,   is 

the phase transition energy of diamond (15.6×104 Jkg-1),    is the diference 

between the specific volume of hydrogen-free (0.284×10−3m3 kg−1) and 

hydrogenated coating (0.294×10−3m3 kg−1 to 0.416×10−3m3 kg−1),    is the 

difference between Hertzian contact pressure and atmospheric pressure. 

 

Using Equation  7-2 and taking into account the experimental parameters of 

this study, the phase transformation temperature of a-C:15H coating is much 

http://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/Kelvin
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higher than the operating temperature of the experiments (100oC). 

Therefore, the Hertzian contact pressure exerted by the counterbody on the 

a-C:15H coating is not likely to be responsible for DLC graphitisation. 

However, according to Clapeyron law (Equation  7-2) transformation of a-

C:15H could occur at a much lower temperature when subjected to high 

pressure (stressed-induced graphitisation) [190]. The phase transformation 

temperature of DLC coating as a function of contact pressure is plotted in 

Figure  7-4. Depending on different assumptions  with regards to the specific 

volume of the hydrogenated coating (0.294×10−3m3 kg−1 to 0.416×10−3m3 

kg−1), three different curves are obtained. Green, blue and red curves 

represent the upper limit, average and higher limit of these values, 

respectively. Generation of ferrous wear particles from the worn CI 

counterbody along with the scratches with positive edges on the surface, 

decrease the contact area and increase the contact pressure significantly, 

thus, subsequently reduces the temperature required for initiation of 

graphitisation and accelerate the graphitisation process [279, 280]. 

Estimation of the phase transformation temperature for DLC coating has 

also been reported elsewhere [198, 214] showing the important role of 

contact pressure on structural changes of a-C:15H.  

 

Figure 7-4 The phase transformation temperature of DLC coating as a 
function of contact pressure [278]. 
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7.2.5.2. Wear Mechanism/DLC Coating Failure 

Additive-free PAO used in this study provided comparatively lower friction 

while showing severe delamination of the a-C:15H surface as well as high 

gradual wear. The high contact pressure exerted by positive edges of the 

scratches [279] and “micro-size” iron particles coming from the counterbody 

[214] could be responsible for graphitisation of the a-C:15H surface which 

consequently could lead to severe delamination of the a-C:15H coating 

(Figure  7-5). It is interesting that the pin wear provided by PAO was less 

than those of fully formulated oils. It could be argued, wear products from 

DLC, which can have a graphitic nature [192], can be transferred to the 

counterbody forming a transfer layer on the softer surface. The softer 

surface (i.e. pin surface) will then be protected from being worn off while the 

DLC slides over the transfer layer (Figure  5-13). The wear rate of DLC will 

also be extremely low after the transfer layer is formed. In addition the 

transfer layer also behaves as a solid lubricant [185, 193]. It should be noted 

that transfer layer has low shear strength and is progressively removed from 

the surface [190]. The formation and adhesion properties of this transfer 

layer depend strongly on the tribological and environmental conditions as 

well as the chemical properties of the counterpart [194].  

 

 

Figure 7-5 Schematic of the effect of iron particles and positive edges of the 
scratches on pressure induced graphitisation of DLC coating when 
lubricated in base oils.  
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Increasing graphitisation and removal and transfer of materials to the 

counterbody with time will lead to gradual thinning of the a-C:15H coating 

which in turn will decrease the load bearing capability of the a-C:15H 

coating. With the poor load bearing capability of the coating, the high shear 

stress is transmitted to the substrate causing plastic deformation to the 

substrate/intermediate layer which leads to debonding of the Cr interlayer 

form the substrate and to the coating failure accordingly [281]. 

  

A similar low friction and high gradual abrasive/polishing wear was observed 

when base oil group III was used but mild delamination was seen after 6 h of 

the tests. Nevertheless both base oils showed higher wear of the a-C:15H 

coating and lower friction compared to fully formulated oils. On the other 

hand the pin wear in the a-C:15H/CI system using base oil group III was 

higher than all other oils. Considering mild delamination/graphitization on the 

coating and the fact that there was no additive blended in the base oil to 

form any possible protective tribofilm on the pin surface, it can be argued 

that less transfer materials have been transferred to the pin surface, and 

thus resulted in less wear protection. 

 

Based on the tribo-test results and post chemical analysis of the surfaces, it 

was evident that using fully formulated oils, the additive-derived tribofilm has 

been formed on both DLC and steel surfaces. Additives in fully formulated 

oils could suppress graphitization by providing a “tribochemical protective 

layer” on the interface. Oil additives could offer a beneficial wear 

performance to the DLC coatings by formation of  lubricous tribochemical 

layer on the interface [211]. Additive-derived anti-wear compounds could 

inhibit the formation of wear particles which in turn could avoid pressure 

induced graphitization. In addition, the formed tribofilm can reduce the peak-

stresses and provide a more uniform stress distribution at the interface [282-

284]. This reduces the interfacial strain which is a recognized mechanism for 

the graphitization of DLC. That is well in agreement with our observations 

where graphitization of DLC coating occurred using base oils but not with 

additive-containing fully formulated oils (Figure  7-6). The ability of additives 

to suppress graphitization was also reported by Kalin et al. [200] and 

Vengudusamy et al. [229]. The formed tribofilm could also prevent the 

counterbody from excessive wear which could explain why less wear was 
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observed on the pins when additive-containing oils were used compared to 

the base oil in the a-C:15H/CI system.  

 

Figure 7-6 Schematic of the effect of tribochemical protective layer in 
suppressing graphitisation of  DLC coating when lubricated in 
conventional fully formulated oils (low concentration of Mo-FM). 

 

The main wear mechanisms on the FM-free fully formulated oils appeared to 

be polishing wear while the presence of 60 ppm FM  in the oil formulation 

(i.e. FF300+ and FF300-) showed a slight positive effect on the wear of the 

a-C:15H coatings. In the a-C:15H coating, Haque et al. [220] reported the 

negative effect of the friction modifier on the anti-wear performance of ZDDP 

in the a-C:15H/CI system. However, they have used model oils (i.e. ZDDP 

and ZDDP/MoDTC) rather than fully formulated oils. In addition, 

concentration of MoDTC in their work was 500 ppm which was much higher 

than 60 ppm.  

7.3. Effect of Mo-FM on a-C:15H Coating Durability/Wear 

In phase II, the focus of the study was on the effect of MoDTC concentration 

on the tribological performance of the a-C:15H coating. In light of the 

physical observations and tribochemical analysis of the wear scar, friction 

and wear behaviour of hydrogenated DLC (a-C:15H) coating was found to 

depend on the concentration of the Mo based friction modifier and the wear 

performance was much better when ZDDP is present in the oil. The 
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tribochemical mechanisms, which contribute to this behaviour, are discussed 

in the following section. 

 

7.3.1. Mechanisms of MoDTC-induced High Wear on DLC  

The effect of MoDTC in increasing wear of DLC coatings has been reported 

in the literature [41, 224, 253]. However, they mainly used single additive 

solutions rather than more realistic fully formulated oils. Using fully 

formulated oils, this study has shown that the wear of the a-C:15H coating in 

the boundary lubrication regime is largely affected by the presence of Mo-

FM and that its effect strongly depends on the level of Mo-FM in the 

lubricant.  

 

XPS study confirmed that MoS2 and MoO3 which are known to be 

decomposition products from MoDTC [34, 35, 259] are formed, particularly 

from high concentration Mo-FM-containing fully formulated oils, on the wear 

scar. Nano-indentation study suggested that, depending on the level of Mo-

FM in the oil, the mechanical properties of the a-C:15H coatings were 

modified and that the wear scar became softer than as-received coating with 

increasing the Mo-FM level. The mechanisms by which MoDTC gives high 

wear on DLC could be explained by different hypotheses.  

 

Shinyoshi et al. [41] suggested that flash heat by friction and mechanical 

energy during sliding resulted in resolution of C-H bonds and formation of 

dangling bonds. MoDTC decomposes on the sliding surfaces generating 

MoO3. The reaction of generated MoO3 with the active sites of DLC (C-H 

bonds and dangling bonds) could eventually result in high wear, and thus 

brittleness of the DLC coating [41]. They evidenced the reaction of MoO3 

with DLC coating by performing a TG-DTA reaction analysis.  The analyses 

were conducted in an N2 atmosphere on various Mo compounds which were 

thought to be part of MoDTC decomposition products along with carbon 

powder of different structure which is believed to be present in the DLC 

matrix. They showed that the carbon powder which was heated to 800oC 

with MoO3 indicated a reaction and elimination of the D-band when analysed 

by Raman spectroscopy.  
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Figure 7-7 Raman spectra of carbon powder after heating with MoO3 [41]. 

 

Based on this hypothesis, it can be proposed that MoO3 can easily reduce to 

MoO2 by the following chemical reaction: 

 

 

 

 

 

Reaction of MoO3 with the C-C bonds could promote graphitisation of DLC. 

In addition, temperature and/or stress-induced graphitisation of DLC coating 

have been reported by different authors [185, 190, 198]. Graphitisation of 

DLC could then be followed by wearing through the DLC coating.  

 

In contrast, Sugimoto et al. [254] investigated the connection between 

graphitisation and MoO3 and suggested that DLC wear mechanism in oils 

containing MoDTC is independent of the presence of MoO3. They suggested 

the following mechanism for MoDTC-induced high wear on DLC: 
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1. During sliding, the surface of DLC undergoes friction/temperature 

induced graphitization which will change the DLC to a brittle structure 

and wear develops from these sheared areas.  

2. Formation of hard Mo compounds on the steel counterpart will 

promote wear by assisting the shearing of the DLC surface. 

 

In the proposed mechanism, however, the process by which Mo hard 

compounds could accelerate the shearing of graphitised DLC areas was not 

verified.  Based on the proposed hypothesis [254], the presence of steel 

counterpart which is hardened by Mo compounds (Haverage=17.6 GPa), is 

essential for shearing of the DLC surface after the initial graphitisation of the 

coating. In agreement, Vengudusamy et al. [224] did not observe a high 

wear in a DLC/DLC system compared to DLC/steel combination using 

MoDTC-containing lubricant. They suggested that the wear mechanisms by 

which MoDTC is causing high wear to DLC involves the presence of the 

steel counterpart.  

 

As shown in section  6.3.7, in order to elucidate the effect of steel counterpart 

in promoting MoDTC-induced high wear, the CI pin was replaced with a 

silicon nitride ceramic ball. Ceramic balls are considered to be inert and 

much harder than the CI pin. Therefore, formation of Mo compounds on the 

ceramic ball would be mitigated due to the inertness of the counterpart. On 

the other hand, the high hardness of the ceramic ball (15-20 GPa) could 

replicate the situation where Mo compounds hardened the steel counterpart 

which was believed [254] to play a significant role in imposing high wear to 

the DLC coating. 

 

In this study, the friction and wear behaviour of DLC coating, when the 

counterpart was a ceramic ball was compared with that of the CI pin. The 

lubricant which gave the highest wear to the DLC/CI combination was 

chosen (i.e. high level of MoDTC and free of  ZDDP) for a better comparison 

of the tribological behaviour when CI was replaced with ceramic. Running 20 

h tribo-tests, friction was observed to be lower and wear was much higher 

using the CI pin compared to the ceramic ball. In fact, no significant wear 

was seen on the DLC plate when rubbed against the hard ceramic ball. XPS 
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analysis showed clear evidence of Mo compounds formation (both sulphides 

and oxides) on the DLC wear track using both the CI pin and the ceramic 

ball. However, the presence of Mo compounds was much more pronounced 

when rubbed against the CI pin (Figure  6-45 and Figure  6-46). In addition, 

Mo compounds were also present on the CI counterpart. That could explain 

lower friction/higher wear observed in the DLC/CI system compared to the 

DLC/ceramic system. In addition, steel may promote formation of Mo 

compounds. According to HSAB principle [76], in the presence of Iron, since 

S2- and metal atoms are known to be soft base and acid, respectively, FeS is 

formed which acts as a protective layer and facilitates formation of Mo 

compounds on the steel counterpart [35].  

 

Figure  7-8 shows the coefficient of wear and hardness variation with time for 

the DLC/CI and the DLC/ceramic combinations. It is clear that using CI pins, 

the wear showed an inverse relationship with hardness of the coating, i.e. 

the higher the coating wear, the lower the hardness, and vice versa. 

However, the hardness value of DLC coating was not changed when rubbed 

against the ceramic ball and was observed to be in the range of hardness of 

as-deposited coating. The obtained results do not contradict the finding by 

Sugimoto et al. [254] but suggest that graphitization/surface modification of 

DLC did not occur when the counterpart was ceramic. It appears that 

hardened steel counterpart independently, could not accelerate wear in 

MoDTC-induced wear observed in DLC/steel combination. It could be 

argued that using CI pins, as mentioned in section  7.2.1, iron wear debris 

can be generated during sliding. These iron particles could exert a very high 

local pressure and lowers down the graphitisation temperature of DLC 

coating. Unlike CI pins, the ceramic ball is a harder counterpart and does not 

generate significant third body particles and that could explain why 

graphitisation of DLC was not observed using the ceramic ball.  
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Figure 7-8 Wear and harness variation with time using DLC/CI and 
DLC/ceramic systems. 

 

Whether MoO3 reacts with DLC and promotes graphitisation or Mo 

compounds are hardening the ferrous counteropart leading to acceleration of 

the wear processes, it is reasonable to assume that MoDTC decomposition 

products are playing a great role in giving this high wear to hydrogenated 

DLC and that the presence of steel counterpart is essential for such high 

wear. However, it is not verified whether the wear process is catalysed by 

Mo compounds or mainly abrasive by MoO3. It has been reported that 

MoO3/dithiocarbamate ligands combinations act as oxidation catalysts for 

hydrocarbons [285]. 

 

Based on the observations, and the proposed mechanisms for MoDTC-

induced high wear by authors [41, 224, 254], the mechanisms leading to low 

friction and high wear, induced by MoDTC in a DLC/CI system are proposed 

(schematically shown in Figure  7-9) as follows: 

1. During sliding, wear debris formed from cast iron pins increase the 

contact pressure and promotes pressure induced graphitisation. 
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2. MoDTC forms low friction MoS2 species on the CI pin, offering  low 

friction of the a-C:15H/CI system. Formation of hard Mo compounds  

on the DLC/CI interface assist the shearing of the DLC surface and 

accelerate wear (MoO3 has an abrasive nature). 

3. Tribochemical reaction of the MoDTC-derived tribofilm with DLC 

surface promoting a high wear on a-C:15H coating. 

 

This hypothesis is further supported by observations seen when the ceramic 

counterbody was used. Ceramic balls are hard (H=15-20 GPa) and would 

not provide much wear debris. This will terminate the first stage of the wear 

mechanism (pressure induced graphitisation of DLC).  

 

  

  

(1) (2) 

Figure 7-9 Schematic diagram showing the MoDTC-induced wear 
mechanisms. (1) and (2) represent the first and the second stage of the 
proposed wear mechanisms. 

 

Formation of wear debris 

promotes pressure-

induced graphitisation of 

DLC 

Formation of Mo 

compounds on the 

DLC/CI interface leading 

to shearing of the DLC 

surface 
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As discussed earlier in section  7.2.2, this high wear was mitigated in the 

presence of ZDDP for medium level of Mo-FM (FF300+). It could be argued 

that ZDDP could protect the pin surface from wear and generation of third 

body wear debris. ZDDP-derived zinc polyphosphate could react with MoO3 

and iron oxides leading to their elimination. ZDDP could also prevent pure 

MoS2 from oxidation and further formation of abrasive MoO3 [37]. Barros' 

Bouchet et al. [206] reported the positive effect of ZDDP when used in 

combination with MoDTC in the a-C:15H/steel system. They claimed that 

ZDDP could facilitate the formation of low friction MoS2 by supplying more 

sulphur. 

 

However, ZDDP was not effective in mitigating the adverse effect of MoDTC 

in giving high wear to DLC when the Mo-FM level was high in the oil (i.e. 

FF600+). This could be primarily due to high supply of MoDTC in the oil 

formulation which detrimentally affected ZDDP film structure leading to a 

much thinner tribofilm [123]. In addition, larger amount of MoDTC in the oil 

could facilitate MoO3 formation in the tribofilm. MoO3 is thought to be 

abrasive which could potentially enhance removal of protective tribofilms 

from DLC coatings [246]. This could lead to the formation of cast iron wear 

debris which is essential for initiation of graphitisation followed by high wear 

(as proposed earlier). 

 

7.3.2. Effect of Mo-FM Source on MoDTC-induced Wear 

As part of this study, the possible effect of MoDTC source on the “MoDTC 

induce wear” was investigated. Based on the obtained results, when ZDDP 

was present in the oils formulation, friction and wear behaviour was seen to 

be comparable for both Mo-FM with oxidation state of +5 and Mo-FM with 

oxidation state of +4 (i.e. FF300+). In contrast, removing ZDDP from the oil, 

Mo-FM with oxidation state of +4 provided a lower friction and much higher 

wear than Mo-FM with oxidation state of +5 (i.e. FF300-). That indicates the 

critical role of MoDTC source in giving high wear to DLC by MoDTC-

containing fully formulated oils.  

 

Mo-FM with the oxidation state of +4 can facilitate the formation of MoS2 

whereas Mo-FM with the oxidation state of +5 first needs reduction to +4 to 
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be able to form MoS2. Besides, the presence of oxygen in the Mo-FM with 

oxidation state of +5 structure accelerate the formation of molybdenum 

oxides which could bring detrimental effects on friction performance and was 

thought to be responsible for MoDTC-induced wear to DLC coatings [41]. 

However, XPS analyses revealed that the amount of Mo3d detected on the 

tribofilm of the pin formed from FF300- (Mo-FM with oxidation state of +4) 

was higher than FF300- (Mo-FM with oxidation state of +5) and as a result, 

more MoO3 was present in the tribofilm formed from FF300- (Mo-FM with 

oxidation state of +4). That could explain the higher friction and lower wear 

obtained by ZDDP-free oil formulated with the Mo-FM with oxidation state of 

+5. Sugimoto et al. [254], however, reported that “MoDTC-induced high 

wear” is independent of the presence or absence of MoO3. 

 

In contrast with findings of this study, the effect of MoDTC in giving high 

wear to DLC has been reported for multiple Mo-FM sources [220, 253]. 

However, the difference in concentration of MoDTC and the tests 

parameters with the ones which were conducted in this study, could result in 

contradictory results. 

 

7.4. Practical Tribochemistry of DLC 

7.4.1. Lubrication Comparison of the a-C:15H/CI and the Steel/CI 

systems  

Based on this study, friction and wear results obtained from steel/CI system 

were generally different from those of a-C:15H/CI system. ZDDP usually 

decomposes on the ferrous surfaces and then it reacts with Fe2O3 from 

either wear debris/ ferrous surface and form strongly bonded Zn-phosphate 

anti-wear compounds [85, 88, 121]. Comparing the XPS atomic 

concentration of ZDDP-derived elements formed on the surface, it can be 

seen that the amount of Zn and P elements are higher on the steel 

compared to the a-C:15H surface. This suggests that a thicker film is 

obtained when the surface was ferrous.   
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Comparing the pin wear results, a-C:15H greatly reduces the wear of the 

counterbody when additive-free base oils were used. All other oils showed 

higher wear of the pins in the a-C:15H/CI system. It can be explained by the 

fact that the wear rate on the a-C:15H plates was extremely low and based 

on the physical observations; transfer layer is not believed to be formed on 

the pins using fully formulated oils. Thus, under tribological conditions, 

usually, the softer of the two materials which in this study is cast iron will be 

worn. In the case of a-C:15H/CI system, using additive free base oils, the 

formed transfer layer on the pins would protect the pin surface from further 

wear providing a lower wear on the pins leading to higher wear on the a-

C:15H plate. In addition the transfer layer could also behave as a solid 

lubricant justifying the low friction obtained by the base oils in the a-C:15H/CI 

system which was discussed in detail in section  7.2.1.  

 

The obtained results in this study are in agreement with a similar study on a-

C:15H coating by Haque et al. [144] where FF oils showed higher pin wear 

in the a-C:15H/CI system than in the steel/CI system. The wear rates of cast 

iron pins with fully formulated oils in this study were in the range of 33×10-18- 

66×10-18 depending on the type of oil used. Haque et al. [144] however, 

reported values in the range of about 10×10-18-70×10-18 with three different 

FF oils for a similar contact pressure. The observed variation in the wear 

rates could be mainly due to the difference in the oil formulations as other 

test parameters were similar.  

 

In addition, the average wear depth of cast iron pins observed for different 

oils are plotted in Figure  7-10. The obtained results are also compared with 

the average wear depth seen in a chilled cast iron cam nose of a 2.3L 

4D55T/C diesel engine [286]. In this study, the obtained wear for cast iron 

pins in the steel/CI system and in the a-C:15H/CI system are generally 4-6 

times and 6-10 times, respectively, higher than the average wear values 

reported for the cam nose in a real engine. The observed discrepancy in 

wear values could primarily originate from different test parameters used 

(contact type, entrainment speed, temperature, pressure, oil type, etc.) [287] 

. In addition, the high hardness of a-C:15H coating in this study compared to 

the uncoated shim in a real diesel engine could also be involved in the 

observed variations in wear results.  
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Figure 7-10 The comparison between the wear depth of the CI pins when 
rubbed against a-C:15H coating and uncoated steel plates with 
average cam nose wear in 4D55T/C diesel engine [286].  

 

7.4.2. DLC Life Time/Optimum Performance  

It was shown that conventional fully formulated oils which were free from 

friction modifiers (i.e. FF2+/FF2-) or contain low level of Mo-FM (40/60 ppm) 

provided comparatively high friction and low wear on a-C:15H coating. 

Increasing MoDTC concentration in the oils with the intention of obtaining 

lower friction resulted in a better friction response but with the cost of high 

wear of the a-C:15H coating. In Figure  7-11, the overall performance of the 

a-C:15H/CI system in terms of friction and wear is shown. It is apparent that 

the lower the friction, the higher the wear rates for the a-C:15H coating. 

InterestinglyFF300+ showed comparatively lower friction compared to FF40+ 

and FF40- while, owing to the presence of ZDDP, maintained a good wear 

performance. This suggest that an additive solution can be tailored for the 

mitigation of DLC wear with formulation carrying a 300 ppm of Mo-FM. Thus, 

among all the oils, FF300+ provided an optimum friction/wear performance. 
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Figure 7-11 Friction and wear response of a-C:15H coating in the a-
C:15H/CI system lubricated with oils formulated with different Mo-FM 
level (20 h tests). 

 

This study revealed that graphitisation of a-C:15H coating occurred with 

base oils whereas fully formulated oils without Mo-FM or with low level of 

Mo-FM suppressed graphitisation by forming protective additive-derived 

tribofilms. The high wear on the a-C:15H coating was also observed by 

increasing the Mo-FM level in the FF oils, and as a result the mechanical 

properties of a-C:15H coating were modified. Despite superior friction 

reduction by formation of DLC-derived low friction graphitic carbon, 

graphitisation is detrimental as it increases the wear of the DLC coating. 

Thus, as test duration increases, the high wear of the DLC coating would 

eventually result in entire removal of the coating from the substrate. In 

Figure  7-12, the average wear depth of a-C:15H coating lubricated in fully 

formulated oils with different level of Mo-FM as a function of test duration is 

given. It appears that the DLC coating will eventually be worn through the 

CrC/CrN interlayer using oils with medium and high level of Mo-FM (with one 

exception being FF300+). However, depending on the level of Mo-FM in the 

oils, the penetration rate (Table  7-1) is different (i.e. the higher the Mo-FM 

concentration, the higher the penetration rate).  
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Figure 7-12 Average wear depth on a-C:15H coating as a function of FF oils 
formulated with different Mo-FM level. 

 

Based on the obtained results, if the tests continue, FF300-, FF600+ and 

FF600- will result in the removal of the a-C:15H coating and reaching to the 

CrN/CrC interlayer in about 19, 22 and 27 h, respectively. Interestingly, 

using FF300+, DLC coating will last much longer (677 h) while giving almost 

20% and 28% lower friction compared to FF40+ and FF40- (COF=0.12), 

respectively.  

 

Table 7-1 a-C:15H coating thickness loss rate (µm/h) and DLC coating life 
(h)   

Oils Penetration Rate (µm/h) a-C:15H coating life (h) 

FF300+ 0.001 677.1 

FF300- 0.045 27.2 

FF600+ 0.060 22.3 

FF600- 0.065 18.7 

 

Lubricant optimisation by means of applying new additives or/and additives 

with developed chemistry is one approach towards obtaining an optimum 
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DLC/lubricant system. However, tailoring DLC to be more compatible with 

the current additive technology should also be considered. Recently, 

applying CrC/a-C:H coatings with different Cr content, it was reported that 

CrC/a-C:H coatings with Cr:C ratios in the range of 1, but having a 

significant amount of an amorphous a-C:H phase, provided an optimum 

solution for metal free a-C:15H/MoDTC-containing lubricant interaction as 

they exhibit both low friction and extremely low wear rates [288]. 

Nevertheless, engine components in a real engine should operate for 

hundreds of thousands of cycles before being replaced implying that coating 

the parts with DLC requires careful optimisation of DLC/lubricant to avoid 

early failure of the coated parts in use. 
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Chapter 8 Conclusions and Future Work 

8.1. Concluding Remarks 

This study provided some insights into the DLC lubrication. The obtained 

results revealed the possibility of  the tribofilm formation on a a-C:15H 

coating and the effectiveness in reducing boundary friction and wear in a-

C:15H/CI systems under FF-lubricated condition. The a-C:15H coating 

durability was found to be strongly oil dependant. Coating failure can be 

avoided using additive-containing oils by forming a protective tribofilm on the 

surfaces, and thus suppressing the a-C:15H coating structural modification.  

 

The friction and wear properties of the a-C:15H coating/commercial in fully 

formulated oils under boundary lubrication conditions have been investigated 

in detail and the tribological performance compared with that of an uncoated 

steel system. In general, the durability of the a-C:15H coating was seen to 

be strongly dependant on the type of lubricant. Furthermore, the effect of 

detergent, dispersant and antioxidants on the performance of the 

molybdenum-based friction modifier (Mo-FM) and ZDDP anti-wear additive 

have been considered. The XPS analysis revealed the formation of 

detergent- and dispersant-derived species in the tribofilm.  

 

In addition, the effect of Mo-FM concentration in one type of fully formulated 

oil on the tribological performance DLC/CI system was investigated and the 

obtained results were compared with those of the steel/CI system. To 

investigate the above, the test duration was set to 6, 12 and 20 h. 

Conducting tests in different time intervals provided a better understanding 

of the mechanisms by which MoDTC produces high wear on the a-C:15H 

coating. Furthermore, the effect of Mo-FM type and counterpart type on 

MoDTC-induced wear was studied.  

 

In summary, the key conclusions made from this work are presented:  
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 In general, friction reduction was observed using base oils but at the 

price of severe delamination of the a-C:15H surface in some regions 

inside the wear scar as well as high gradual wear. It appears that 

graphitization of DLC coating was responsible for such high wear. 

Potentially, the high contact pressure exerted by positive edges of the 

scratches and generation of “micro-size” iron particles from the 

counterbody could promote pressure-induced graphitization of the a-

C:15H surface leading to high gradual wear of  the a-C:15H coating.  

 Based on the provided SEM and optical microscope images, base oil 

(group III) gave slightly better wear performance than PAO 

suggesting the important role of base oil type in the lubricant. 

 Formation of ZDDP-derived Zn-phosphate/ZnS/ZnO anti-wear 

species under boundary lubrication condition was evident in the 

tribofilms formed on both the a-C:15H coating and coating the 

counterpart (CI pin). This could reduce the peak-stresses by offering 

a more uniform stress distribution at the interface providing superior 

wear performance to DLC. In addition, the formation of an anti-wear 

“tribochemical protective layer” on the interface could suppress/inhibit 

the formation of wear particles, and as a result pressure-induced 

graphitization of DLC.  

 Using conventional fully formulated oils with low levels of Mo-FM 

(40/60 ppm), the amount of Mo detected Mo 3d peak on both the a-

C:15H/uncoated steel surface and cast iron pins was very low. This 

implies ineffectiveness of the Mo-FM additive in forming a low friction 

tribofilm on the interface. Furthermore, this could justify comparatively 

high friction obtained using these oils on both the a-C:15H/CI and the 

steel/CI systems.  

 Ineffectiveness of friction modifier on friction reduction in both the 

steel and the DLC systems was mainly attributed to the low 

concentration of MoDTC in the lubricants. In addition, in the presence 

of ZDDP, phosphate formation on the surface can influence MoDTC 

film formation. Furthermore, several surface active additives, such as; 
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detergents, dispersants and antioxidants are present in the fully 

formulated oils which could synergistically or antagonistically affect 

low friction film formation on the surface. The friction behaviour of the 

fully formulated oils on both the DLC/CI and the steel/CI can also be 

correlated to the increased shear strength at the interface due to the 

surface/additive interaction.  

 Conventional fully formulated oils showed a good wear performance 

of the a-C:15H coatings (phase I). The main wear mechanisms on the 

FM-free fully formulated oils were polishing wear while the presence 

of 60 ppm FM showed a slight positive effect on the wear of the a-

C:15H coatings. However, increasing concentration of Mo-FM (with 

oxidation state of +4) in the oils promoted wear of a-C:15H coating in 

the oils without ZDDP (phase II) and, for certain level of Mo-FM (300 

ppm), this wear was mitigated by the addition of ZDDP. This implies 

the critical role of MoDTC concentration in the oil and its effect on the 

triblogical performance of a-C:15H coating.  

 This study indicated that the presence of ZDDP in fully formulated oils 

can promote some level of confidence that an additive solution can be 

tailored for the mitigation of DLC wear with formulation having 300 

ppm of Mo-FM (FF300+).  

 Unlike ZDDP, the presence of other surface active additives 

(antioxidants, detergents and dispersants) in fully formulated oils did 

not offer protection of the a-C:15H coating against MoDTC-induced 

high wear.  

 Apparently, using FF oils with medium and high level of Mo-FM, the 

mechanical properties of the a-C:15H coating were modified. 

Furthermore, the MoDTC-induced high wear seen for a-C:15H 

coating was more of tribochemistry of the rubbing surfaces rather 

than chemical reaction of  the oils with the a-C:15H coating. This was 

evident by comparing the hardness values of the outside of the wear 

tracks with as-deposited coating, which, considering the standard 

deviation, were almost the same.  



8: Conclusion and Future Work 

 

 

215 

 

 XPS analysis of the tribofilms formed from oils with medium and high 

level of MoDTC showed that MoS2 and MoO3 species, which are the 

potential cause of surface modification/graphitisation of DLC, were 

dominant on the a-C:15H coating after 12 h. Thus, it is apparent that 

the tribochemical effect of MoDTC-containing oils on surface 

modification of a-C:15H coating requires certain amount of time to 

occur. 

 Tribological tests and surface analysis of the DLC coatings over the 

time intervals suggested that MoDTC decomposition products initially 

form a tribofilm on the surface offering low friction followed by high 

wear on the a-C:15H coated plates. In addition, for high wearing oils, 

wearing through the coating and reaching to CrC/CrN interlayer may 

change the interface from the a-C:15H/CI to the interlayer/CI system. 

 The MoDTC type was also found to be important in promoting 

MoDTC-induced wear. This study revealed that the high wear on the 

a-C:15H coating observed using ZDDP-free oils with medium level of 

Mo-FM was only seen when the oxidation state of Mo-FM was +4. 

However, the same effect was not observed with the same 

formulation but carrying Mo-FM with oxidation state of +5.  

 This study revealed that the presence of the steel counterpart is 

involved in the wear mechanisms by which the MoDTC is causing 

high wear on a-C:15H coating. It was shown that MoDTC-induced 

high wear on DLC plates was only seen when rubbed against CI pins. 

This phenomenon was diminished when the CI counterpart was 

replaced with silicon nitride ceramic counterpart. 

 

8.2. Suggestions for Future Work 

 

Undoubtedly, formulations can be optimised for DLC surfaces; much 

remains to be done in this area but good progress has been made. There 

are different aspects of DLC lubrication which could be investigated and are 
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not accomplished in the current work mainly due to time constraints. Few 

suggestions are proposed to continue research in this direction: 

 

 Nanoscratch tests could be conducted on the worn DLC coated plates 

to investigate the potential brittleness of the DLC coating caused by 

MoDTC-derived species. This could further support the results 

obtained from nanoindentation analysis performed in this study and 

provide a better picture of wear mechanisms involved in this 

phenomenon.  

 Conducting some simple static tests by heating the DLC coated 

samples with oils containing different additives. This will be followed 

by Fourier Transform Infrared spectroscopy (FTIR) analysis of the 

samples. This will elucidate possible thermal effects on chemical 

reaction of the additives, MoDTC in particular, with the DLC coatings.  

 Optimising Mo and other FMs to produce low friction and manageable 

wear. This includes developing new friction modifiers and applying 

organic friction modifiers to replace with Mo-FM.  

 The obtained results in this study are only valid for a-C:15H coating. 

Changing DLC coatings to be more compatible with current Mo 

additive technology could be a potential approach to take.  In addition, 

applying different coatings with varying degrees of hydrogenation and 

metal doping on a commercial basis could lead to a DLC coated 

system with an optimum tribological performance. Some preliminary 

suggestions for doping will be W, Cr and Mo. Mo chosen to 

specifically replace Mo from the friction modifier additive MoDTC.   

 To verify the test data obtained from the current study by using the 

same blends in the valve train test rig. This would provide a more 

realistic system and  validate  the assumptions made regarding 

simple tribometer testing. 
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