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Abstract

Stochastic filtering theory is the estimation of a continuous random system
given a sequence of partial noisy observations, and is of use in many different
financial and scientific areas. The main aim of this thesis is to explore the
use of Lévy processes in both linear and non-linear stochastic filtering theory.

In the existing literature, for the linear case the use of square integrable
Lévy processes as driving noise is well known. We extend this by dropping the
assumption of square integrability for the Lévy process driving the stochas-
tic differential equation of the observations. We then explore a numerical
example of infinite variance alpha-stable observations of a mean reverting
Brownian motion with a Gaussian starting value, by comparing our derived
filter with that of two others.

The rest of the thesis is dedicated to the non-linear case. The scenario
we look at is a system driven by a Brownian motion and observations driven
by an independent Brownian motion and a generalised jump processes. The
result of our efforts is the famous Zakai equation which we solve using the
change of measure approach. We also include conditions under which the
change of measure is a martingale. Next, via computing a normalising con-
stant, we derive the Kushner-Stratonovich equation.

Finally we prove the uniqueness of solution to the Zakai equation, which in
turn leads to the uniqueness of solution to the Kusher-Stratonovich equation.
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Introduction

Suppose you have a random system which is not directly observable, instead
you have a sequence of partial observations. Using the information gathered
from these observations, what can we infer about the underlying system?
Using stochastic models to make these deductions is known as stochastic
filtering. The primary objective of this thesis is to explore stochastic filtering
theory using Lévy processes as driving noise.

We begin by introducing the relevant background theory and some prop-
erties of square integrable Lévy processes which will be required in the sub-
sequent chapters. Once this has been completed we move onto the main
subject of this thesis, that of stochastic filtering theory. We begin by look-
ing at the linear case, by deriving the famous Kalman-Bucy filter in finite
dimensions for a square integrable Lévy processes with given finite variances.
This is carried out by following the usual innovations process methodology.

We then extend the Kalman-Bucy filter by dropping the square integra-
bility assumption on the observation noise. The main tools here will be Itó’s
lemma, approximation by bounded jumps, and limiting arguments. The key
result here is that as we pass to the limit, the noise term in the Kalman-
Bucy filter disappears. We conclude this chapter by looking at numerical
simulation, we take our result for the infinite variance Kalman-Bucy filter
and compare it with two other filters at their point of overlap with our fil-
ter. We show that in the case of infinite variance α-stable observations of a
mean reverting Gaussian system, the calculation of estimates in the absence
of noise gives a more accurate representation of the system.

The next chapter looks at the non-linear filtering case. We start by de-
riving the cornerstone of this field - the Zakai equation, this time using a
Brownian motion and generalised jump process in the observations and stan-
dard Brownian motion in the system. The Zakai equation is solved using the
standard change of measure approach; sufficient conditions for the change
of measure to be a martingale are also proved. We complete this chap-
ter by deriving the Kusher-Stratonovich equation, this involves computing
a normalising constant to turn the measure valued Zakai equation into the
probability measure valued process of the Kushner-Stratonovich equation. In
order to find this normalising constant, we require a technical stopping time
argument. We also present the beginnings of a alternative method which
would require a further assumption.

Chapter 4 deals with the uniqueness of solution of the Zakai equation,
which in turn leads to uniqueness of the Kusher-Stratonovich equation. This
is done by transforming the solution to a stochastic differential equation in a
Hilbert space and then using some estimates based on Hilbert space theory.
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Notation

Rd is a d-dimensional Euclidean space, where d ∈ N. The elements of Rd

are vectors x = (x1, x2, . . . , xd) with each xi ∈ R for 1 ≤ i ≤ d. The inner
product in Rd is denoted by (x, y) where x, y ∈ Rd so that,

(x, y) =
d∑
i=1

xiyi,

or as xTy where xT is the transpose of the vector x.

We then have the Euclidean norm |x| = (x, x)1/2 =
(∑d

i=1 x
2
i

)1/2
.

The determinant of a square matrix A is written as det(A) and its trace
is tr(A). The identity matrix will always be denoted I. The space of n×m
real valued matrices is denoted Mn,m(R). For any matrix A, the transpose
of A will be written as AT .

We will sometimes write R+ = [0,∞), and Rd
0 = Rd − {0}.

For 1 ≤ n ≤ ∞ we write Cn
c (Rd) to denote the space of all n times differ-

entiable functions of compact support from Rd to R, all of whose derivatives
are continuous. The jth partial derivative of f ∈ C1(Rd) at x ∈ Rd will
sometimes be written (∂jf)(x).

Let B(S) be the Borel σ-algebra of a Borel set S ⊆ Rd. Elements of B(S)
are called Borel sets, and any measure on (S,B(S)) is called a Borel measure.
Let (S,S, µ) be an arbitrary measure space, then will write µA to denote the
restriction of the measure µ to the set A ∈ B(S). The Lebesgue measure on
R is written as Leb.

We will make use of Landau notation, according to which (o(n), n ∈ N) is
any real valued sequence for which limn→∞(o(n)/n) = 0 and (O(n), n ∈ N)
is any non negative sequence for which lim supn→∞(O(n)/n) <∞.

Given two random variables X and Y we will write Cov(X, Y ) meaning
the covariance of X and Y , and Var(X) meaning the variance of X. We will

also write X
d
= Y if X is equal to Y in distribution.

For 1 ≤ p <∞ let Lp(S,S, µ;Rd) be the Banach space of all equivalence
classes of mappings S → Rd which coincide a.e with respect to µ such that
||f ||p <∞ where || · ||p denotes the norm

||f ||p =

[∫
S

|f(x)|pµ(dx)

]1/p
In particular when p = 2 we have a Hilbert space with respect to the

inner product

〈f, g〉 =

∫
S

(f(x), g(x)) ν(dx).
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The open ball of radius r centered at x in Rd is denotedBr(x) =
{
x ∈ Rd; |y − x| < r

}
and we write B̂ = B1(0). if f is a mapping between two sets A and B, we
denote its range as Ran(f) = {y ∈ B; y = f(x) for some x ∈ A}.
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1 Review of Stochastic Calculus for Lévy Pro-

cesses

In this chapter we give a brief introduction to the background and required
probability tools that will be used throughout this thesis.

1.0.1 Filtrations and Adapted Processes

Let (Ω,F , P ) be a probability space where F is a σ-algebra of a given set Ω.
A collection of sub σ-algebras of F , denoted (Ft, t ≥ 0) is termed a filtration
if we have,

Fs ⊆ Ft for all s ≤ t.

A probability space is said to be filtered if it is equipped with a filtration,
as above. During this thesis we will be working with a complete filtered
probability space (Ω,F , (Ft, t ≥ 0), P ), which is a probability space satisfying
the usual hypotheses listed below, and unless stated otherwise all random
variables are defined on this space.

Definition 1.0.1. (Usual Hypotheses) Given a probability space (Ω,F , P )
a filtration {Ft}t≥0 is said to satisfy the usual hypotheses if,

1 F0 contains all the P -null sets of F .

2 Ft =
⋂
ε>0Ft+ε; that is the filtration F is right continuous.

In the following work, when there is mention of measurable mappings
taking values in a subset of Rd we will assume that Rd is equipped with the
Borel σ-algebra, B(Rd), i.e the smallest σ-algebra of subsets of Rd containing
all open sets.

Let X = (X(t), t ≥ 0) be a stochastic process defined on (Ω,F , P ), then
we say X is adapted to the filtration (Ft, t ≥ 0) if X(t) is Ft-measurable for
each t ≥ 0. Given an Ft adapted process X which satisfies E [|X(t)|] < ∞
for each t ≥ 0, then if for 0 ≤ s < t <∞,

E [X(t)|Fs] = X(s) a.s.,

we call X a martingale. For more on martingales see [52].

1.0.2 Characteristic Functions

We define the indicator function 1A(x) which equals 1 when x ∈ A and equals
0 when x /∈ A. Let µ1 and µ2 be two probability measures on Rd, then we
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define the convolution of these two measures as

(µ1 ∗ µ2)(A) =

∫
Rd

∫
Rd

1A(x+ y)µ1(dx)µ2(dy) (1)

for each A ∈ B(Rd).
Given a random variable X on (Ω,F , P ) taking values on Rd with prob-

ability law pX we define its characteristic function φX : Rd → C by

φX(u) = E[ei(u,X)] =

∫
Rd
ei(u,x)pX(dx),

for each u ∈ Rd. The characteristic function is therefore similar to a moment
generating function but with the real part replaced with iu, this has the ad-
vantage that it always exists since x→ ei(u,x) is bounded. Note the following
fundamental properties of the characteristic function.

(i) If µ1 and µ2 have characteristic functions φ1(u) and φ2(u) then µ1 ∗ µ2

has characteristic function φ1(u)φ2(u).

(ii) The characteristic function uniquely determines the distribution.

See [7, p.342] for details. More generally, if µ is a probability measure on
Rd then its characteristic function is defined by φµ(u)=

∫
Rd e

i(u,y)µ(dy) for
u ∈ Rd.

1.1 Lévy Processes

Before defining a Lévy process we begin by contrasting the similarities and
differences of two well known processes, Brownian motion and Poisson pro-
cesses, which are covered below.

We say a process has independent increments if ∀ n ∈ N, 0 ≤ t1 < t2 <
· · · < tn+1 < ∞ the random variables (X(tj+1) − X(tj), 1 ≤ j ≤ n) are

independent. A process has stationary increments if each X(tj+1)−X(tj)
d
=

X(tj+1 − tj)−X(0).
It was Norbert Wiener [56] in 1923 who defined Brownian motion in a

mathematical sense and showed it to exist.

Definition 1.1.1. (Brownian Motion)
A real valued process B = (B(t), t ≥ 0) defined on a probability space

(Ω,F , P ) is said to be a Brownian motion if the following hold.

(i) The paths of B are P -(a.s) continuous.
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(ii) B(0) = 0 a.s.

(iii) B has stationary and independent increments.

(iv) For each t > 0, B(t) is equal in distribution to a normal random vari-
able with mean zero and variance t.

Definition 1.1.2. (Poisson Process)
A non-negative integer valued process N = (N(t), t ≥ 0) defined on a

probability space (Ω,F , P ) is said to be a Poisson process with intensity λ > 0
if the following hold.

(i) The paths of N are P -(a.s) right continuous with left limits.

(ii) N(0) = 0 a.s.

(iii) N has stationary and independent increments.

(iv) For each t > 0, N(t) is equal in distribution to a Poisson random
variable with parameter λt.

On first look, these two processes can appear to be rather different. B
has continuous paths [7, p.501], [31, p.387], whereas N does not, N is non-
decreasing whereas B is not. The paths of N are almost surely of finite
variation over finite time intervals [32, p.228] whereas the paths of B are al-
most surely of infinite variation over finite time intervals [38], [3, p.112]. On
closer inspection however, we see that they do have some common proper-
ties. Both processes begin from the origin, have stationary and independent
increments and have sample paths that are right continuous with left limits.
We can then use these properties to define a more general class of stochastic
processes, which we call Lévy processes.

Definition 1.1.3. (Lévy Process)
A stochastic process X = (X(t), t ≥ 0) defined on a probability space

(Ω, F, P ) is a Lévy process if it has the following properties.

(L1) X(0) = (0) (a.s),

(L2) X has stationary and independent increments,

(L3) X is stochastically continuous, i.e ∀ a > 0, s ≥ 0

lim
t→s

P (|X(t)−X(s)| > a) = 0.
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For other aspects of Lévy processes, including subordinators, potential
theory and Markov properties see [6], and for fluctuation theory see [38] and
[19]. In Chapter 2 we will need additive processes which are a little more
general than Lévy processes so we introduce them briefly here.

Definition 1.1.4. (Additive Processes)
A stochastic process (X(t), t ≥ 0) on Rd is an additive process if the

following conditions are satisfied.

(1) X0 = 0 (a.s)

(2) X has independent increments

(3) X is stochastically continuous.

Before moving on, we give a more precise mathematical formulation of
sample paths that are right continuous with left limits.

Definition 1.1.5. (Càdlàg Functions)
A function f : [0, T ] → Rd is said to be càdlàg if it is right continuous

with left limits, i.e for each t ∈ [0, T ] the limits,

f(t−) = lim
s→t,s<t

f(s) f(t+) = lim
s→t,s>t

f(s)

exist and are finite and f(t) = f(t+).

Obviously every continuous function is càdlàg, but càdlàg functions can
have discontinuities. If t is a point at which a discontinuity occurs then we
denote the jump of a function f at time t by,

∆f(t) = f(t)− f(t−). (2)

A càdlàg function can have at most a countable number of jump discontinu-
ities, i.e {t ∈ [0, T ] : f(t) 6= f(t−)} is countable; see [21] for proof. Further
to this, every Lévy process has a càdlàg modification that is itself a Lévy
process see [3, Theorem 2.1.8], and we will always use this modification.

Remark 1.1.6. When dealing with stochastic processes we should always
read càdlàg as (a.s)-càdlàg, i.e if X is a càdlàg Lévy process then ∃ Ω0 ∈ F
where P (Ω0) = 1 such that t→ X(t)(ω) is càdlàg ∀ ω ∈ Ω0.

For more information on càdlàg functions see [3, p.139], [15, p.37] [27,
p.34] [8, p.119].
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1.1.1 The Lévy-Khintchine Formula

Definition 1.1.7. (Infinite Divisibility)
Let M1(Rd) be the set of all Borel probability measures on Rd then µ ∈

M1(Rd) is infinitely divisible if for each n ∈ N there exists another measure
µ1/n ∈ M1(Rd) such that µ =

(
µ1/n

)∗n
, where µ∗n is the n-fold convolution

of µ.

We also introduce infinite divisibility for random variables. Let X be a
random variable taking values in Rd with law µX . We say X is infinitely
divisible if, ∀ n ∈ N there exist i.i.d random variables Y

(n)
1 , . . . , Y

(n)
n such

that
X

d
= Y

(n)
1 + · · ·+ Y (n)

n .

Note that if X is infinitely divisible then its law µX is infinitely divisible in
the sense of Definition 1.1.7.

To present the Lévy-Khintchine formula, firstly we need the concept of a
Lévy measure.

Definition 1.1.8. (Lévy Measure)
Let ν be a Borel measure defined on Rd − {0}. We say that it is a Lévy

measure if ∫
Rd−{0}

(|x|2 ∧ 1)ν(dx) <∞. (3)

This is just a streamlined way of stating that on Rd − {0},∫
|x|<1

|x|2ν(dx) <∞ and ν(|x| ≥ 1) <∞.

It is worth noting that every Lévy measure on Rd−{0} is σ-finite, see [3,
p.29].

Theorem 1.1.9. (Lévy-Khintchine Formula)
A probability measure µ on Rd is infinitely divisible if and only if there

exists a vector b ∈ Rd a non-negative definite symmetric d× d matrix A and
a Lévy measure ν on Rd − {0} such that for all u ∈ Rd

φµ(u) = exp

{
i(b, u)− 1

2
(u,Au) +

∫
Rd−{0}

[ei(u,y) − 1− i(u, y)1B̂(y)]ν(dy)

}
,

(4)
where B̂ is the open unit ball without zero, i.e {x : |x| < 1} − {0}.
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For full proof see [54, p.40], [43], [40], [24].
We say that (b, A, ν) are the characteristics of the Lévy-Khintchine for-

mula; for example, in the Gaussian case b is the mean, A is the covariance
and ν = 0. Also for notational convenience we denote φµ(u) = eη(u).

We can see that Gaussian random variables are infinitely divisible with
each Y

(n)
j ∼ N(b/n, (1/n)A) for all n ∈ N and each 1 ≤ j ≤ n and have

characteristic function

φX(u) = exp[i(b, u)− 1

2
(u,Au)], (5)

see [3, Example 1.2.8] for details.
If (Z(n), n ∈ N) is a sequence of i.i.d Rd-valued random variables, then we

define a compound Poisson random variable, X = Z(1) + · · ·+ Z(N) where
N is an independent Poisson process with intensity λ. If X is a compound
Poisson process we write X ∼ π(λ, µZ) and it is infinitely divisible with each

Y
(n)
j ∼ π(λ/n, µZ) and characteristic function

φX(u) = exp[λ(φZ(u)− 1)]. (6)

See [3, Proposition 1.2.11] for details.
We can see that for each t ≥ 0 a Lévy process X(t) is infinitely divisible,

see [3, p.43], [38, p.4]. What is not quite so clear is whether given an infinitely
divisible distribution we can construct a Lévy process X, such that X(1) has
this distribution.

Theorem 1.1.10. (Lévy-Khintchine Formula for a Lévy Process)
Let b ∈ Rd, A be a non-negative definite symmetric d × d matrix, and ν

a Lévy measure. From this triple define for each u ∈ R,

η(u) = i(b, u)− 1

2
(u,Au) +

∫
R−{0}

[ei(u,y) − 1− i(u, y)1B̂(y)]ν(dy). (7)

Then there exists a Lévy process X = (X(t), t ≥ 0) such that

E[ei(u,X(t))] = etη(u) (8)

where (b, A, ν) are the characteristics of X(1).

See [3, p.127] for proof.
We will require the following theorem, proved here, in Theorem 3.3.3.

Theorem 1.1.11. Given a probability space (Ω,F , P ), and filtration (Ft, t ≥
0) then if (X(t), t ≥ 0) is a càdlàg adapted stochastically continuous process
such that for all 0 ≤ s ≤ t <∞, u ∈ Rd and X(0) = 0 a.s where

E
[
ei(u,X(t)−X(s))|Fs

]
= e(t−s)η(u) (9)

then X is a Lévy process.
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Proof. Firstly, let s = 0, by (9), E
[
ei(u,X(t))

]
= E

[
ei(u,X(t))|F0

]
= etη(u).

We need to show that X has stationary and independent increments.
Starting with stationarity, from (9)

E
[
ei(u,X(t)−X(s))

]
= E

[
E
[
ei(u,X(t)−X(s))|Fs

]]
= E

[
e(t−s)η(u)

]
= E

[
ei(u,X(t−s))] . (10)

Now since the characteristic function uniquely determines the law of X

X(t)−X(s)
d
= X(t− s).

For independent increments: for r < s < t, u1, u2 ∈ Rd,

E
[
ei(u1,X(r))+i(u2,X(t)−X(s))

]
= E

[
ei(u1,X(r))E

[
ei(u2,X(t)−X(s))|Fs

]]
= E

[
ei(u1,X(r))

]
e(t−s)η(u2)

= E
[
ei(u1,X(r))

]
E
[
ei(u2,X(t−s))]

= φX(r)(u1)φX(t−s)(u2)

= φX(r)(u1)φX(t)−X(s)(u2), by (10).

So by Kac’s theorem (see [3, p.18]) we have independent increments.

1.1.2 Stable Processes

We now introduce stable processes, as they will form the basis of the numer-
ical simulations which will be carried out at the end of chapter 2.

Definition 1.1.12. (Stable Random Variables)
A random variable Y is said to have a stable distribution if for all n ≥ 1

we have the following distributional equality,

Y1 + · · ·+ Yn
d
= anY +mn (11)

where Y1, . . . , Yn are independent copies of Y , an > 0 and mn ∈ R. The name
stable comes from the above mentioned stability under addition property.

By subtracting mn/n from each term on the left hand side of (11) we
can see that this implies that any stable random variable is also infinitely
divisible. It can be shown, see [53, Corollary 2.1.3], that the only choice of

15



an in (11) is of the form n1/α, 0 < α ≤ 2. This constant is termed the index
of stability.

Consider the sum,

Sn =
1

σn
(Y1 + · · ·+ Yn − cn) (12)

where (cn, n ∈ N) is a sequence in R, (σn, n ∈ N) is a sequence in R+. By the
usual central limit theorem, if each cn = nb and σn =

√
nσ then Sn converges

in distribution to Y which is normally distributed with mean b and variance
σ2. It can be shown that a random variable is stable if it arises as a limit of
(12), and so is therefore a generalisation of the normal CLT. It is not difficult
to see that (12) and (11) are equivalent, see [9], [22]. The Gaussian case has
finite variance and index of α = 2. It can be shown that E[Y 2] < ∞ if and
only if α = 2 and also that E[|Y |] < ∞ if and only if 1 < α ≤ 2, see [15,
p.95].

The characteristics in the Lévy-Khintchine formula are given by the result
below.

Theorem 1.1.13. (Characteristics for a Stable Random Variable)
If X is a stable real-valued random variable, then its characteristics must

take one of the two following forms:

(1) When α = 2, ν = 0 so X ∼ N(b, A);

(2) When α 6= 2, A = 0 and

ν(dx) =
c+

x1+α
1(x>0)(x)dx+

c−

|x|1+α
1(x<0)(x)dx

where c+ ≥ 0, c− ≥ 0 and c1 + c2 > 0.

A proof can be found in [54, p.80].

1.2 The Lévy Itô Decomposition

For the rest of this report we will require the following assumptions as they
are required for the proof of the Lévy Itô decomposition, and we refer the
reader to [3, p.90] for further details.

A1 Every Lévy process X =
(
X(t), t ≥ 0

)
is Ft-adapted and has càdlàg

sample paths,

A2 Sharpen (L2) to X(t)−X(s) is independent of Fs for all 0 ≤ s < t <∞.
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1.2.1 The Jumps of Lévy Processes

Recall from (2) the jumps of a càdlàg function were defined as ∆f(t) =
f(t)− f(t−). We now introduce the jump of a Lévy process (∆X(t), t ≥ 0)
by

∆X(t) = X(t)−X(t−) for each t ≥ 0.

From the above definition, it is clear that ∆X is an adapted process, however
it is not a Lévy process as it can be shown to fail the independent increments
property, see [3, Example 2.3.1].

Definition 1.2.1. (Counting jumps)
Let 0 ≤ t <∞ and A ∈ B(Rd − {0}), then we define

N(t, A)(ω) = #{0 ≤ s ≤ t|∆X(s)(ω) ∈ A} =
∑
0≤s≤t

1A (∆X(s)(ω)) , (13)

if ω ∈ Ω0 and by convention N(t, A)(ω) = 0 if ω ∈ Ωc
0, the complement of

Ω0. Recall our definition of Ω0 from Remark 1.1.6.

We say A is bounded below if 0 is not in Ā, the closure of A. Given this
condition then N(t, A) < ∞ for all t ≥ 0; see [3, p.101] for a proof. If A
is not bounded below, i.e we allow 0 in the closure of A then N(t, A) may
no longer be finite for all t ≥ 0 as infinite quantities of small jumps may
accumulate to give infinite mass.

Let S be a subset of Rd − {0} and N an integer valued random ran-
dom measure on U = R+ × S. For a definition of random measures see [3,
p.102],[26] and [49, Appendix F].

Definition 1.2.2. N is a Poisson random measure if,

(1) For each t ≥ 0 and A ∈ B(S) bounded below, N(t, A) has a Poisson
distribution.

(2) For each t1, . . . , tn ∈ R+ and each disjoint family A1, . . . , An ∈ B(S)
bounded below, the random variables

(
N(ti, Ai), 1 ≤ i ≤ n

)
are inde-

pendent.

The intensity measure of N is defined as µ(A) = E[N(1, A)] for all A
bounded below and µ(A) <∞.

We now define the compensated Poisson random measure for A bounded
below as

Ñ(t, A) = N(t, A)− tµ(A). (14)
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1.2.2 Poisson Integration

Define the Poisson integral of a Borel measurable function f from Rd → Rd

as a random finite sum by∫
A

f(x)N(t, dx) =
∑
x∈A

f(x)N(t, {x}) =
∑

0≤u≤t

f(∆X(u))1A(∆X(u)) (15)

where A is bounded below, t > 0. The last equality is due to the fact that
N(t, {x}) 6= 0 if and only if ∆X(u) = x for at least one value of u between
[0, t].

Theorem 1.2.3. Let A be bounded below. Then:

(1)
∫
A
f(x)N(t, dx) has a compound Poisson distribution such that for each

t ≥ 0, u ∈ Rd,

E
(

exp

[
i

(
u,

∫
A

f(x)N(t, dx)

)])
= exp

(
t

∫
Rd

(ei(u,x) − 1)µf,A(dx)

)
where µf,A(B) = µ(A ∩ f−1(B)) for each B ∈ B(Rd).

(2)

E
[∫

A

f(x)N(t, dx)

]
= t

∫
A

f(x)µ(dx)

for f ∈ L1(A, µA).

(3)

Var

[∣∣∣∣∫
A

f(x)N(t, dx)

∣∣∣∣) = t

∫
A

|f(x)|2µ(dx).

for f ∈ L2(A, µA).

For proof see [3, Theorem 2.3.7], [54, Proposition 19.5], also see [30].
We can now define the compensated Poisson integral for f ∈ L1(A, µA), t ≥

0 and A bounded below by,∫
A

f(x)Ñ(t, dx) =

∫
A

f(x)N(t, dx)− t
∫
A

f(x)µ(dx). (16)

A result that we will use frequently later is that the compensated Poisson
integral is a martingale, see [38, p.46] for proof. From here on we write,∫

|x|<1

Ñ(t, dx) = lim
n→∞

∫
εn<|x|<1

Ñ(t, dx)

where (εn, n ∈ N) is any sequence monotonically decreasing to zero, and the
limit is taken in the L2 sense. For existence of the limit see [3, Theorem
2.4.11].
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1.2.3 The Lévy-Itô Decomposition

Let A be a non-negative definite symmetric d× d matrix, with square root σ
such that σ is a d×m matrix and A = σσT . Let B be a standard Brownian
motion in Rm, then we write

BA(t) = σB(t).

The Lévy-Itô decomposition was established by Lévy in [40] and [41] and
proved by Itô in [24]. For a fuller account see [54, Ch.4], [3, Ch.2], [51, p.327].

Theorem 1.2.4. (The Lévy-Itô Decomposition)
If X is a Lévy process, then there exists;

(i) b ∈ Rd,

(ii) A Brownian motion BA with covariance matrix A ,

(iii) An independent Poisson random measure N on R+ × (Rd − {0}),

such that, for each t ≥ 0;

X(t) = bt+BA(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx) (17)

where b = E
(
X(1)−

∫
|x|≥1 xN(1, dx)

)
.

Remark 1.2.5. The choice of integrating above and below 1, is purely for
convenience. But the random processes are very different, the integral below
one is an L2 limit of a compensated sum of jumps, summed over εn < |x| < 1.
The integral greater than one describes the “large” jumps and is a compound
Poisson process.
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1.3 Square Integrable Lévy Processes

In this section we develop square integrable Lévy processes which will be used
extensively in chapter 2. We will then define orthogonal increment processes
and show how they relate back to square integrable Lévy processes. We finish
the section by calculating the variance for a mean zero square integrable Lévy
processes.

Firstly we note the following useful result.

Theorem 1.3.1. If X is a Lévy process and n ∈ N, E[|X(t)|n] < ∞ for all
t > 0 if and only if

∫
|x|≥1 |x|

nν(dx) <∞.

See [3, p.132] for proof.

If E [|X(t)|] <∞ for all t > 0 then we may define,∫
|x|≥1

xÑ(t, dx) =

∫
|x|≥1

xN(t, dx)− t
∫
|x|≥1

ν(dx)

and we may also compensate over the whole range of jumps by defining,∫
Rd−{0}

xÑ(t, dx) :=

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xÑ(t, dx).

Lemma 1.3.2. The Lévy-Itó decomposition for a square integrable Lévy pro-
cess is of the form

X(t) = b′t+BA(t) +

∫
Rd−{0}

xÑ(t, dx), (18)

where b′ = b+
∫
|x|≥1 xν(dx).

Proof. By Theorem 1.3.1 for all t ≥ 0 and using [3, Theorem 2.4.7],

E(|X(t)|2) <∞ ⇐⇒ E

(∣∣∣∣∫
|x|≥1

xN(t, dx)

∣∣∣∣2
)
<∞

⇐⇒
∫
|x|≥1
|x|2ν(dx) <∞.

(19)
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Also note that by using the Cauchy-Schwarz inequality,∣∣∣∣∫
|x|≥1

xν(dx)

∣∣∣∣2 =

∣∣∣∣∫
|x|≥1

x · 1ν(dx)

∣∣∣∣2
≤
∫
|x|≥1
|x|2ν(dx)ν{|x| ≥ 1} <∞,

and so b′ is finite. Therefore from Theorem 1.2.4,

X(t) = bt+BA(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx)

= bt+BA(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xÑ(t, dx) + t

∫
|x|≥1

xν(dx)

= b′t+BA(t) +

∫
Rd−{0}

xÑ(t, dx).

Next we look at the properties of these square integrable Lévy processes.

Theorem 1.3.3. A Lévy process is a martingale if and only if it is of the
form

X(t) = BA(t) +

∫
Rd−{0}

xÑ(t, dx). (20)

Proof. The form (20) is a martingale as it consists of a sum of a Brownian
motion, widely known to be a martingale see [27, p.271], and a compensated
Poisson integral proven to be a martingale in [38, p.46]. Conversely, if a Lévy
process is a martingale then by Theorem 1.3.1 for each t ≥ 0, E

(
|X(t)|

)
<

∞ ⇐⇒
∫
|x|≥1 |x|ν(dx) < ∞ thus by a similar argument to the proof of

Theorem 1.3.2 we can write X(t) as in (18). By definition martingales have
constant expectation ∀ t ≥ 0, and E

(
X(t)

)
is constant if and only if b′ =

0.

This now allows us to show the following.

Corollary 1.3.4. A Lévy process X has mean zero if and only if it is a
martingale.

Proof. SupposeX is a martingale, thenX is of the form (20), and it is known
that

(
BA(t), t ≥ 0) and

( ∫
Rd−{0} xÑ(t, dx), t ≥ 0

)
are centred martingales,

i.e each has mean zero, hence E[X(t)] = 0. Conversely, if X is mean zero,
following the same argument as Lemma 1.3.2, X can be written in the form
(18) and b′ = 0. Then from Theorem 1.3.3 it is a martingale.
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1.4 Orthogonal Increments

We want to consider a general square integrable stochastic process (X(t), t ≥
0) taking values in Rd.

Lemma 1.4.1. If X is a square integrable stochastic process then for any
pair of non-overlapping intervals (s, t), (s′, t′)∣∣∣E [(X(t)−X(s)) (X(t′)−X(s′))

T
]∣∣∣2 <∞.

Proof. The result follows from a straightforward application of the Cauchy-
Schwarz inequality.

Definition 1.4.2. A square integrable stochastic process is said to have or-
thogonal increments if for any non overlapping intervals (s, t), (s′, t′)

E
[
(X(t)−X(s)) (X(t′)−X(s′))

T
]

= 0. (21)

Theorem 1.4.3. A square-integrable martingale has orthogonal increments.

Proof. For 0 ≤ s′ ≤ t′ ≤ s ≤ t ≤ ∞

E
[
(X(t)−X(s)) (X(t′)−X(s′))

T
]

= E
[
E
[
(X(t)−X(s)) (X(t′)−X(s′))

T
] ∣∣∣Fs]

= E
[
E
[(
X(t)−X(s)

∣∣Fs) (X(t′)−X(s′))
T
]]

= 0,

where in the last step we used the martingale property that E [X(t)|Fs] =
X(s).

Corollary 1.4.4. A mean zero square integrable Lévy process has orthogonal
increments.

Proof. This is a direct consequence of Theorem 1.4.3 and Corollary 1.3.4.
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1.4.1 Computation of Variance

The variance of a one dimensional zero mean square integrable Lévy process
is Var[X(t)] = E[X(t)2]. Furthermore using (20),

E[X(t)2] = E[B(t)2] + 2E[B(t)]E
[∫

R−{0}
xÑ(t, dx)

]
+ E

[(∫
R−{0}

xÑ(t, dx)

)2
]

= t

(
σ2 +

∫
R−{0}

|x|2ν(dx)

)
using [3, p.109]. (22)

Similarly in d dimensions we have for 1 ≤ i, j ≤ d and recalling the charac-
teristics of a Lévy process (b, A, ν)

Cov [Xi(t), Xj(t)] = E
[
Xi(t)Xj(t)

T
]

= Ai,jt+ t

(∫
Rd−{0}

xixjν(dx)

)
. (23)

We will denote Ai,jt+ t
(∫

Rd−{0} xixjν(dx)
)

= ρi,j for future convenience.
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1.5 Stochastic Integration

This section introduces some key elements of stochastic calculus for Lévy
processes. The main topics here will be the construction of stochastic inte-
grals based on Lévy processes, Itô’s formula for a Lévy process, Itô’s product
formula and some basic properties of the space H2(t).

We refer the reader to [3, Section 2.2.1] for the definition of the predictable
σ-algebra. To be able to deal with jumps we need a slight generalisation of
this:

Fix E ∈ B(Rd) and 0 < T <∞ and let P denote the smallest σ-algebra
with respect to which the mappings F : [0, T ] × E × Ω → R satisfying the
following two conditions are measurable

(1) for t ∈ [0, T ] the mapping (x, ω)→ F (t, x, ω) is B(E)⊗Ft measurable

(2) for each x ∈ E, ω ∈ Ω the mapping t→ F (t, x, ω) is left continuous.

In order to ensure existence of the Lévy stochastic integral we must first
define two spaces, firstly P2(T,E) the space of all predictable mappings F :
[0, T ]× E × Ω→ Rd which satisfy

P

[∫ T

0

∫
E

|F (t, x)|2ν(dy)dt <∞
]

= 1

and secondly, P2(T ) the space of all predictable mappings F : [0, T ]×Ω→ Rd

satisfying,

P

[∫ T

0

|F (t)|2 <∞
]

= 1.

1.5.1 Lévy Type Stochastic Integrals

Take E = B̂−{0}. We define an Rd valued stochastic process Y = (Y (t), t ≥
0) to be a Lévy type stochastic integral if it is of the following form,

Y (t) = Y0 +

∫ t

0

G(s)ds+

∫ t

0

F (s)dB(s)

+

∫ t

0

∫
|x|<1

H(s, x)Ñ(ds, dx)

+

∫ t

0

∫
|x|≥1

K(s, x)N(ds, dx), (24)
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for 1 ≤ i ≤ d, 1 ≤ j ≤ m, t ≥ 0 and |Gi| 12 , F i
j ∈ P2(T ), H i ∈ P2(T,E)

and Ki predictable. The construction of these integrals can be found in [3,
p.229-232].

1.5.2 Itô’s Formula

Itô’s formula for a Lévy type stochastic differential equation as introduced
below is both an extension of the well known Brownian case, and a special
case of the more general semimartingale framework detailed in [50, p.271].
So we simply state, Itô’s lemma for Lévy processes and refer the reader to
[3, p.251-p.256] for further details.

From now on we will impose the following assumption of local bounded-
ness on the small jumps

P

(
sup
0≤s≤t

sup
0<|x|<1

|H(s, x)| <∞

)
= 1,

this is required in the the proof of Itô’s lemma for Lévy processes see [3,
p.252] for details.

In order to introduce Itô’s lemma and product formula we firstly need
to define the quadratic variation process of a Lévy type process [Y, Y ] =
([Y, Y ](t), t ≥ 0) for the (i, j)th entry (1 ≤ i, j ≤ d) of (Y (t), t ≥ 0) of the
form (24).

[Y i, Y j](t) =
m∑
k=1

∫ T

0

F i
k(s)F

j
k (s)ds+

∫ t

0

∫
|x|<1

H i(s, x)Hj(s, x)N(ds, dx)

+

∫ t

0

∫
|x|≥1

Ki(s, x)Kj(s, x)N(ds, dx)

see [3, p.257] for details. In the following we will use Yc to denote the con-
tinuous part of Y i.e.

Y i
c (t) =

∫ t

0

Gi(s)ds+
m∑
j=1

∫ t

0

F i
j (s)dBj(s),

for each t ≥ 0, 1 ≤ i ≤ d.

Theorem 1.5.1. (Itô’s lemma for Lévy Processes)
If Y is a Lévy-type stochastic integral of the form (24), for each f ∈

C2(Rd), t ≥ 0, with probability 1 we have;
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f
(
Y (t)

)
− f

(
Y (0)

)
=

∫ t

0

∂if
(
Y (s−)

)
dY i

c (s)

+
1

2

∫ t

0

∂i∂jf
(
Y (s−)

)
d[Y i

c , Y
i
c ](s)

+

∫ t

0

∫
|x|≥1

[
f
(
Y (s−) +K(s, x)

)
− f

(
Y (s−)

)]
N(ds, dx)

+

∫ t

0

∫
|x|<1

[
f
(
Y (s−) +H(s, x)

)
− f

(
Y (s−)

)]
Ñ(ds, dx)

+

∫ t

0

∫
|x|<1

[
f
(
Y (s−) +H(s, x)

)
− f

(
Y (s−)

)
−H i(s, x)∂if

(
Y (s−)

)]
ν(dx)ds (25)

Theorem 1.5.2. (Itô’s Product Formula)
If Y1 and Y2 are real valued Lévy stochastic integrals of the form (24) then

with probability 1 we have,

Y1(t)Y2(t) = Y1(0)Y2(0) +

∫ t

0

Y1(s−)dY2(s)

+

∫ t

0

Y2(s−)dY1(s) + [Y1, Y2] (t). (26)

For proof see [3, Theorem 4.4.13].

1.5.3 The Space H2(T )

We require the following norms, firstly the operator norm ||F ||OP for F ∈
Mn,m(R) defined by,

||F ||OP = sup {||Fv||Rn : v ∈ Rm, ||v||Rm = 1} ,
where || · ||Rn and || · ||Rm are the Euclidean norms in Rn and Rm respectively.
Secondly the Hilbert Schmidt norm ||F ||HS defined by,

||F ||2HS = tr(FF T ).

The following useful inequality is well known when m = n. We include
the proof for the more general case.
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Proposition 1.5.3. For A ∈Mn,m(R) and B ∈Mm,r(R),

||AB||HS ≤ ||A||OP ||B||HS (27)

Proof. Choose an orthonormal basis {ei; 1 ≤ i ≤ m} of Rm. Using the prop-
erty that the trace is invariant under cyclic permutations (see [46, Proposition
4.36] for proof) we have,

||AB||2HS = tr(ABBTAT )

= tr(ATABBT )

=
n∑
i=1

||ATABBT ei||

≤ ||ATA||OP ||B||2HS

and the result follows.

Using a similar argument we can show that,

||AB||HS ≤ ||A||HS||B||OP . (28)

Let F be a measurable mapping from [0, T ] to Mn,m(R). Let H2(T ) be
the space of all such mappings which satisfy,∫ T

0

[
||F (s)ρ1/2||2HS

]
ds =

∫ T

0

tr
(
F (s)ρF (s)T

)
ds <∞,

for some non-negative definite symmetric matrix ρ ∈Mm,m(R). Then H2(T )
is a Hilbert space with inner product,∫ t

0

〈
F (s)ρ1/2, G(s)ρ1/2

〉
HS

ds =

∫ T

0

tr
(
F (s)ρG(s)T

)
ds,

for F,G ∈ H2(T ).

Lemma 1.5.4. Let F be a left continuous mapping from [0, T ]→Mn,m(R)
and X = (X(t), t ≥ 0) be an Rm valued square integrable mean zero Lévy
process with covariance ρ = A+

∫
Rm−{0} xx

Tν(dx) as in (23). Then,

E

[∣∣∣∣∫ T

0

F (t)dX(t)

∣∣∣∣2
]

=

∫ T

0

||F (s)ρ1/2||2HSds.
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Proof.

E

[∣∣∣∣∫ T

0

F (t)dX(t)

∣∣∣∣2
]

= E

[(∫ T

0

F (t)dX(t)

)T ∫ T

0

F (t)dX(t)

]

=
∑
i,j,k

E
[∫ T

0

dXj(t)Fj,i(t)

∫ T

0

Fi,k(t)dXk(t)

]
(29)

and so by Itô’s isometry (see [3, p.271]),

E

[∣∣∣∣∫ T

0

F (t)dX(t)

∣∣∣∣2
]

=
∑
i,j,k

E
[∫ T

0

Fi,k(t)dXk(t)

∫ T

0

dXj(t)Fj,i(t)

]

=
∑
i,j,k

[∫ T

0

Fi,k(t)ρk,jFj,i(t)

]

=

∫ T

0

[
tr
(
F (t)ρF (t)T

)]
dt

=

∫ T

0

[
||F (s)ρ1/2||2HS

]
ds

We can see that the above is a version of Itô’s isometry between the
spaces L2(Ω,F , P ;Rm) and H2(T ). For the extension to the case where Rm

is generalised to a separable Hilbert space see [2].

1.5.4 Existence and Uniqueness

We finish this chapter by looking at systems of Lévy stochastic differential
equations, focusing on the following form;

dY i(t) = bi(Y (t−))dt+
n∑
j=1

σij(Y (t−))dBj(t) +

∫
|x|<1

F i(Y (t−), x)Ñ(dt, dx)

+

∫
|x|≥1

Gi(Y (t−), x)N(dt, dx), (30)

with initial condition Y (0) = Y0 (a.s.), where Y0 is a given Rd valued F0

measurable random variable. The mappings bi : Rd → R, σij : Rd → R,
F i : Rd×Rd → R, Gi : Rd×Rd → R are all assumed to be measurable. The
solution to (30) when it exists, is an Rd-valued adapted stochastic process
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(Y (t), t ≥ 0). The existence and uniqueness of the solution to (30) is de-
scribed by the next theorem. We will require the following conditions which
make use of the matrix seminorm on d× d matrices

||a|| =
d∑
i=1

|aii|.

(C1) Lipschitz Condition There exists K1 > 0 such that for all y1, y2 ∈ Rd,

|b(y1)− b(y2)|2+||a(y1, y1)− 2a(y1, y2) + a(y2, y2)||

+

∫
|x|<1

|F (y1, x)− F (y2, x)|2ν(dx) ≤ K1|y1 − y2|2,

(31)

where a(y1, y2) = σ(y1)σ(y2)
T for each y1, y2 ∈ Rd.

(C2) Growth condition There exists K2 > 0 such that for all y ∈ Rd

|b(y)|2 + ||a(y, y)||+
∫
|x|<1

|F (y, x)2ν(dx) ≤ K2(1 + |y|2) (32)

(G) We assume that the mapping y → G(y, x) is continuous for all |x| > 1.

Theorem 1.5.5. There exists a unique càdlàg adapted solution to (30).

See [3, Theorem 6.2.9] for the full proof.
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2 The Filtering Problem

2.1 Background and Motivation

The discrete time filtering problem goes back as far as the work of Kol-
mogorov in 1939 and 1941 ([33] and [34]) and Krein in 1945 (see [35] and
[36]). Meanwhile Wiener developed the continuous time case see [57] which
discussed the optimal estimation in a dynamical system with the presence
of noise. This was originally provided to defence engineers in 1942 but only
declassified and published as a book in 1949. The Kalman filter was devel-
oped in the 60’s, see [28] [29], and produces estimates of the true values of
measurements by predicting a value, estimating the uncertainty of this pre-
dicted value, and computing a weighted average of the predicted value and
the measured value. The most weight is given to the value with the least
uncertainty.

The continuous time version of the Kalman filter is called the Kalman-
Bucy filter. It was developed by Richard Bucy see [10] and is what we will
be focussing on in this chapter. The Kalman filter and the Kalman - Bucy
filter provide a computationally viable method for estimation of the filtering
problem and they have had a massive impact on a wide host of applications;
not exclusively consisting of radar detection, stock market analysis, aerospace
engineering such as orbit determination, 3D modelling, satellite navigation
and weather forecasting.

In most of the literature the Kalman-Bucy filter is derived using Brow-
nian motion, or white noise processes (or in the case of [17] orthogonal in-
crement processes) with unit variance. Therefore our first task will be to
derive the Kalman-Bucy filter using Lévy processes of finite variance, which
is a straightforward extension of existing methodology. We take a route sim-
ilar to [47, Ch.6], in that we use an innovations process method to derive
the filter. When using Brownian motion, we have the nice result that the
innovations process is also a Brownian motion. In our case however the anal-
ogous result no longer holds true, but by looking into the properties of our
innovations process we can show that it is an orthogonal increment process
with càdlàg paths.

We then move on to the main focus of this chapter, we aim to answer
the question: is there a Kalman-Bucy filter for a square integrable Lévy
driven system with an infinite variance Lévy driven observation process? We
achieve this by generalising the Kalman-Bucy filter by extending the noise in
the observations process to an infinite variance Lévy process, all of which is
new and original work. This is achieved by truncating the size of the jumps
in the observation noise. We then take the Kalman-Bucy filter derived in
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the first half of this chapter and pass to the limit. This allows an L1 linear
estimate of the system. In this case the Riccati equation for the mean square
error also linearises and as a result it can no longer be interpreted as a mean
square error even though it is a limit of these terms.

Before we move on, we draw the readers attention to two papers. Firstly
the paper by Ahn and Feldman [1]; this paper deals with a similar problem
to ours, but it allows a non-linear optimal recursive filter for best measurable
estimate of the system given an infinite variance observation process. In this
they require that the system be driven by Gaussian noise, which they describe
as a ”significant limitation” in the closing paragraph of their paper. Secondly,
the paper by Le Breton and Musiela [39] uses a very different approach to
the one here, and they state that due to the limitations of their methodology,
the filter only seems to work for α-stable Lévy processes. To summarise, the
work here deals with more general noise types than those presented above,
and does so in a finite dimensional framework.

2.2 Framework

For the rest of this thesis we work on the interval [0, T ] for some fixed T > 0.
We begin by formulating the general linear filtering problem within the

context of Lévy processes. Suppose the state Y (t) ∈ Rd at time t ∈ [0, T ] of
a system is given by the stochastic differential equation

dY (t) = A(t)Y (t)dt+B(t)dX1(t), (33)

where X1(t) is a zero mean Lévy process on Rp, B(t) is a Borel measurable,
locally bounded left continuous (d×p) matrix valued function, A(t) is a Borel
measurable locally bounded left continuous (d × d) matrix valued function,
and the initial condition Y0 is a random variable on Rd.

We assume that the observations Z(t) ∈ Rm of Y (t) are performed con-
tinuously and are of the form

dZ(t) = C(t)Y (t)dt+D(t)dX2(t), (34)

where X2(t) is a zero mean Lévy process on Rr independent of X1(t). D(t)
is a Borel measurable, locally bounded left continuous (m× r) matrix valued
function such that D(t)D(t)T is invertible, and C(t) is a Borel measurable
locally bounded left continuous (m× d) matrix valued function.

Let (V (t), 0 ≤ t ≤ T ) be any stochastic process taking values in Rm such
that E [|V (t)|2] <∞ for all 0 ≤ t ≤ T , then

L(V, T ) = The closure in L2(Ω,F , P ;Rd) of all linear combinations

c0 + c1V (t1) + · · ·+ ckV (tk); 0 ≤ ti ≤ T, c0 ∈ Rd, cj ∈Md,m(R).
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It is straightforward yet worth noting that L(V, T1) ⊆ L(V, T2) for T1 ≤
T2, as L(V, T2) will contain all linear combinations that were contained in
L(V, T1).

Let PL denote the projection from L2(Ω,F , P ;Rm) onto L(Z, T ). We can
then define for each 0 ≤ t ≤ T , Ŷ (t) to be the projection of Y (t) onto L(Z, T ),
i.e Ŷ (t) = PL(Y (t)). From this we can see that Y (t)− Ŷ (t) = (I −PL)Y (t),
and so Y (t)− Ŷ (t) ⊥ L(Z, t).

The key question for us is: given the observations Z(s) satisfying (34) for
0 ≤ s ≤ t, what is the best estimate Ŷ (t) of the state Y (t) of the system (33)
based on these observations?

Within the following steps, we follow [47, Ch.6] inserting Lévy processes
and reworking proofs as necessary. The first step in [47] shows that in a
Gaussian framework linear estimates are equivalent to measurable estimates.
We are unable to show this holds once Gaussianity is removed, and so we
will continue with just linear estimates.

From here on, until otherwise stated, we will be working with square
integrable zero mean Lévy processes. Therefore from Theorem 1.3.3 for i =
1, 2, Xi(t) is as follows;

Xi(t) = Bi(t) +

∫
R0

xÑi(t, dx) (35)

with covariance matrix,

ρi = E[Xi(1)Xi(1)T ] = Ai +

∫
|x|6=0

xxTνi(dx)

by (22). We will also need

λi = tr(ρi) = tr(Ai) +

∫
|x|6=0

|x|2νi(dx) (36)

.
We begin by finding an explicit form for (Y (t), 0 ≤ t ≤ T ).

Lemma 2.2.1. For all t ≥ 0, Y (t) takes the following form:

Y (t) = exp

(∫ t

0

A(u)du

)
Y0 +

∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)dX1(s). (37)

Proof. For each 0 ≤ t ≤ T let

W (t) = exp

(
−
∫ t

0

A(u)du

)
Y (t).
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Therefore by (33),

dW (t) = −A(t) exp

(
−
∫ t

0

A(u)du

)
Y (t)dt

+ exp

(
−
∫ t

0

A(u)du

)[
A(t)Y (t)dt+B(t)dX1(t)

]
= exp

(
−
∫ t

0

A(u)du

)
B(t)dX1(t).

Integrating over [0, t] we get

W (t) = W0 +

∫ t

0

exp

(
−
∫ s

0

A(u)du

)
B(s)dX1(s),

and so

Y (t) = exp

(∫ t

0

A(u)du

)
W (t)

= exp

(∫ t

0

A(u)du

)
Y0

+ exp

(∫ t

0

A(u)du

)[∫ t

0

exp

(
−
∫ s

0

A(u)du

)
B(s)dX1(s)

]
= exp

(∫ t

0

A(u)du

)
Y0 +

∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)dX1(s).

More generally, if 0 ≤ r ≤ t by a similar argument we get,

Y (t) = exp

(∫ t

r

A(u)du

)
Y (r) +

∫ t

r

exp

(∫ t

s

A(u)du

)
B(s)dX1(s) (38)

The following is not necessary for the derivation of the Kalman-Bucy
filter, however it is an interesting observation.

Corollary 2.2.2. Let Y ′(t) = Y (t) − Y0, then (Y ′(t), t ≥ 0) is an additive
process.

Proof. By (38), for all 0 ≤ t ≤ T ,

Y ′(t) =

[
exp

(∫ t

0

A(u)du

)
− 1

]
Y0 +

∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)dX1(s)

= G(t) +

∫ t

0

F (u)dX1(u)
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where, G(t) :=
(

exp
(∫ t

0
A(u)du

)
− 1
)
Y0 and F (u) := exp

(∫ u
s
A(r)dr

)
B(u).

We note that firstlyG(t) is deterministic, and secondly that
∫ t
0
F (u)dX1(u)

is of the form given in [3, Lemma 4.3.12], from which it follows that Y ′(t)−
Y ′(s) is independent of Fs. We can subsequently use [4, Lemma 2.1]to show
that

∫ t
0
F (s)dX(s) is stochastically continuous. So Y ′ has independent in-

crements, and is stochastically continuous and since Y ′0 = 0, (Y ′(t), t ≥ 0) is
an additive process.

2.3 The Innovation Process

Before introducing the innovation process it is necessary to establish a rep-
resentation of the functions in the space L(Z, T ). In order to derive this
representation we require the following lemma which generalises [47, 6.2.11].

We require the following assumption.

inf
0≤t≤T

λmin(t) > 0 (39)

where λmin(t) is the smallest eigenvalue of D(t)ρD(t)T .

Lemma 2.3.1. Let F ∈ H2(T ), then

A4

∫ T

0

||F (t)||2HSdt ≤ E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)dZ(t)

∣∣∣∣∣∣∣∣2
HS

]
≤ A3

∫ T

0

||F (t)||2HSdt (40)

for some A3, A4 ≥ 0.

Proof. For all 0 ≤ t ≤ T ,

E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)dZ(t)

∣∣∣∣∣∣∣∣2
HS

]
= E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)C(t)Y (t)dt

∣∣∣∣∣∣∣∣2
HS

]

+ E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)D(t)dX2(t)

∣∣∣∣∣∣∣∣2
HS

]

+ 2E
[〈∫ T

0

F (t)C(t)Y (t)dt,

∫ T

0

F (t)D(t)dX2(t)

〉
HS

]
(41)

Then using the Cauchy-Schwarz inequality, Fubini’s theorem and Propo-
sition 1.5.3
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E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)C(t)Y (t)dt

∣∣∣∣∣∣∣∣2
HS

]
≤ E

[(∫ T

0

||F (t)C(t)Y (t)||HS dt
)2
]

≤ E

[(∫ T

0

||F (t)||HS||C(t)Y (t)||OPdt
)2
]

≤
∫ T

0

||F (t)||2HSdtE
[∫ T

0

||C(t)Y (t)||2OPdt
]

≤ C1

∫ T

0

||F (t)||2HSdt
∫ T

0

E
[
||Y (t)||2HS

]
dt

= A1

∫ T

0

||F (t)||2HSdt, (42)

where C1 = sup0≤t≤T ||C(t)||2OP andA1 = sup0≤t≤T ||C(t)||2OP
∫ T
0
E [||Y (t)||2HS] dt.

This can be seen to be finite by,∫ T

0

E
[
||Y (t)||2HS

]
dt =

∫ T

0

E
[∣∣∣∣∣∣∣∣exp

(∫ t

0

A(u)du

)
Y0

+

∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)dX1(s)

∣∣∣∣∣∣∣∣2
HS

]
dt

≤
∫ T

0

E

[∣∣∣∣∣∣∣∣exp

(∫ t

0

A(u)du

)
Y0

∣∣∣∣∣∣∣∣2
HS

]
dt

+

∫ T

0

E

[∣∣∣∣∣∣∣∣∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)dX1(s)

∣∣∣∣∣∣∣∣2
HS

]
dt

=

∫ T

0

E

[∣∣∣∣∣∣∣∣exp

(∫ t

0

A(u)du

)
Y0

∣∣∣∣∣∣∣∣2
HS

]
dt

+

∫ T

0

E

[∣∣∣∣∣∣∣∣∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)ρ1ds

∣∣∣∣∣∣∣∣2
HS

]
dt

<∞. (43)
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By independence and (38),

E
[〈∫ T

0

F (t)C(t)Y (t)dt,

∫ T

0

F (t)D(t)dX2(t)

〉
HS

]
=

〈∫ T

0

F (t)C(t)Y (t)dt,E
[∫ T

0

F (t)D(t)dX2(t)

]〉
HS

= 0. (44)

By Lemma 1.5.4 and (27),

E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)D(t)dX2(t)

∣∣∣∣∣∣∣∣2
HS

]
=

∫ T

0

∣∣∣∣∣∣F (t)D(t)ρ
1
2
2

∣∣∣∣∣∣2
HS

dt

≤
∫ T

0

||F (t)||2HS||D(t)ρ
1
2
2 ||2OPdt

≤ ||ρ2||OP sup
0≤t≤T

||D(t)||2OP
∫ T

0

||F (t)||2HSdt

= A2

∫ T

0

||F (t)||2HSdt (45)

where A2 = ||ρ2||2OP sup0≤t≤T ||D(t)||2OP .
We now obtain a lower bound, by (41) and [58, Theorem 1],

E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)dZ(t)

∣∣∣∣∣∣∣∣2
HS

]
≥ E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)D(t)dX2(t)

∣∣∣∣∣∣∣∣2
HS

]

=

∫ T

0

∣∣∣∣∣∣F (t)D(t)ρ
1/2
2

∣∣∣∣∣∣2
HS

dt

=

∫ T

0

tr
(
F (t)D(t)ρ

1/2
2 ρ

1/2
2 D(t)TF (t)T

)
dt

=

∫ T

0

tr
(
D(t)ρ2D(t)TF (t)TF (t)

)
dt

≥
∫ T

0

λmin(t)tr
(
F (t)TF (t)

)
dt

≥ inf
0≤t≤T

λmin(t)

∫ T

0

||F (t)||2HSdt.

We now have,

A4

∫ T

0

||F (t)||2HSdt ≤ E

[∣∣∣∣∣∣∣∣∫ T

0

F (t)dZ(t)

∣∣∣∣∣∣∣∣2
HS

]
≤ A3

∫ T

0

||F (t)||2HSdt

for A1, A2, A3, A4 > 0 where,
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• A3 = A1 + A2

• A4 = inf−≤t≤T λmin(t) > 0 by (39).

We now establish a representation of the functions in L(Z, T ). The fol-
lowing lemma is a generalisation of [47, Lemma 6.2.4].

Lemma 2.3.2. L(Z, T ) =
{
c0 +

∫ T
0
F (t)dZ(t)

∣∣∣F ∈ H2(T ), c0 ∈ Rd
}

.

Proof. Denote the right hand side by N (Z, T ). Then we wish to show the
following,

a) N (Z, T ) ⊂ L(Z, T )

b) N (Z, T ) contains all linear combinations of the form

c0 + c1Z(t1) + · · ·+ ckZ(tk); 0 ≤ ti ≤ T

c) N is closed in L2(Ω,F , P ;Rd),

from which the result follows.

a): If F is continuous, then using dyadic intervals and limits in L2(Ω,F , P ;Rd),∫ T
0
F (t)dZ(t) is of the form c1Z(t1) + · · ·+ ckZ(tk).

as shown in [47, Lemma 6.2.4]. Note that if F is not continuous we can
approximate using simple functions.

b): Suppose 0 = t0 ≤ t1 < · · · < tk ≤ tk+1 = T , ci := c′i−1 − c′i, c0 = 0 for
convenience, ∆Z(j) := Z(tj+1)− Z(tj) then,

k∑
i=1

ciZ(ti) =
k−1∑
j=0

c′j∆Z(j)

=
k−1∑
j=0

∫ tj+1

tj

c′jdZ(t)

=

∫ T

0

( k−1∑
j=0

1(tj ,tj+1](t)c
′
j

)
dZ(t).
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c): Let
( ∫ T

0
Fn(t)dZ(t), n ∈ N

)
be a sequence which converges in L2(Ω,F , P ;Rd)

to say Q(T ). From Lemma 2.3.1,

A4

∫ T

0

||Fn(t)− Fm(t)||2HSdt ≤ E

[∣∣∣∣∣∣∣∣∫ T

0

(
Fn(t)− Fm(t)

)
dZ(t)

∣∣∣∣∣∣∣∣2
HS

]

≤ A3

∫ T

0

||Fn(t)− Fm(t)||2HSdt. (46)

It follows that (Fn, n ∈ N) is Cauchy in H2(T ) and so converges to say,
F . By taking limits as n→∞

A4

∫ T

0

||Fn(t)− F (t)||2HSdt ≤ E

[∣∣∣∣∣∣∣∣∫ T

0

Fn(t)dZ(t)−Q(T )

∣∣∣∣∣∣∣∣2
HS

]

≤ A3

∫ T

0

||Fn(t)− F (t)||2HSdt.

We also know that,

A4

∫ T

0

||Fn(t)− F (t)||2HSdt ≤ E

[∣∣∣∣∣∣∣∣∫ T

0

(
Fn(t)− F (t)

)
dZ(t)

∣∣∣∣∣∣∣∣2
HS

]

≤ A3

∫ T

0

||Fn(t)− F (t)||2HSdt. (47)

Therefore from the uniqueness of limits in L2(Ω,F , P ;Rd)

Q(T ) =

∫ T

0

F (t)dZ(t),

therefore N (Z, T ) is closed.

We now define the innovation process
(
M(t), t ≥ 0

)
, where M(t) ∈ Rm

is as follows:

M(t) = Z(t)−
∫ t

0

C(s)Ŷ (s)ds,

and so
dM(t) = C(t)(Y (t)− Ŷ (t))dt+D(t)dX2(t). (48)

Lemma 2.3.3. a) L(M, t) = L(Z, t) ∀ t ≥ 0

b)
(
M(t), t ≥ 0

)
has orthogonal increments.
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Proof. a): L(M, t) ⊂ L(Z, t) since,

c0+c1M(t1) + · · ·+ ckM(tk)

= c0 + c1

(
Z(t1)−

∫ t1

0

C(s)Ŷ (s)ds

)
+ · · ·+ ck

(
Z(tk)−

∫ tk

0

C(s)Ŷ (s)ds

)
= c0 + c1Z(t1) + · · ·+ ckZ(tk)

−
k∑
i=1

∫ ti

0

C(s)Ŷ (s)ds

∈ L(Z, t),∫ ti
0
C(s)Ŷ (s)ds ∈ L(Z, t) because,

∫ t

0

C(s)Ŷ (s)ds =

∫ t

0

C(s)PL(Y (s))ds

= PL
(∫ t

0

C(s)Y (s)ds

)
by the continuity of PL.

To establish the reverse inclusion, see [47, p92-93].

b): If s < t consider K ∈ L(Z, s). By Fubini’s theorem,

E
[
(M(t)−M(s)) ·K

]
= E

[(∫ t

s

C(r)(Y (u)− Ŷ (u))du+

∫ t

s

D(u)dX2(u)

)
·K
]

=

∫ t

s

C(t)E[(Y (u)− Ŷ (u)) ·K]du+ E
[(∫ t

s

D(u)dX2(u)

)
·K
]

= 0,

since Y (u)− Ŷ (u) ⊥ L(Z, u) ⊃ L(Z, s) for u ≥ s and the expectation
of the stochastic integral is zero.

Recall that D(t)D(t)T was assumed to be invertible and bounded away
from 0 on bounded intervals. We will find it convenient as in [17, p.136] to
define
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G(t) =
(
D(t)D(t)T

)− 1
2

i.e. G(t) is anym×mmatrix such thatG(t)TG(t) = G(t)G(t)T =
(
D(t)D(t)T

)−1
.

Define the process R(t) ∈ Rm by,

dR(t) = G(t)dM(t). (49)

The next lemma will be of use when finding the first two moments of
R(t).

Lemma 2.3.4.
E[Ŷ (t)] = E[Y (t)],

for all 0 ≤ t ≤ T .

Proof. E[Y (t)] = 〈Y (t), 1〉 thus,

E[Ŷ (t)] = 〈Ŷ (t), 1〉 = 〈PL(Y (t)), 1〉
= 〈Y (t), PL(1)〉 = 〈Y (t), 1〉 = E[Y (t)].

We now have a look at some of the properties of the process R. In
a scenario where the system and observation processes are both driven by
Brownian motion, it can be shown that R is a Brownian motion. We will
show that given a Lévy setup we have an orthogonal increment process with
càdlàg paths.

Lemma 2.3.5. (R(t), 0 ≤ t ≤ T ) has the following properties,

a) R has càdlàg paths,

b) R has orthogonal increments,

c) E[R(t)] = 0 and E[R(t)R(s)T ] = Σ2(s) if s < t where

Σ2(t) =

∫ t

0

G(s)D(s)ρ2D(s)TG(s)Tds

Proof. a): This follows since M(t) has càdlàg paths, see [3, p.140].

b): This follows since M(t) has orthogonal increments.
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c): Using Fubini’s theorem and Lemma 2.3.4

E[R(t)] = E
[∫ t

0

G(s)
(
C(s)(Y (s)− Ŷ (s))ds+D(s)dX2(s)

)]
=

∫ t

0

[
G(s)C(s)E(Y (s)− Ŷ (s))

]
ds− E

[∫ t

0

G(s)D(s)dX2(s)

]
= 0,

By orthogonal increments and the fact that E[R(s)] = 0 for all s, for
s < t we have,

E[R(t)R(s)T ] = E[(R(t)−R(s))R(s)T ] + E[R(s)R(s)T ]

= E[R(t)−R(s)]E[R(s)T ] + E[R(s)R(s)T ]

= E[R(s)R(s)T ]. (50)

So by using Itô’s product formula,

d[R(t)R(t)T ] = R(t)dR(t)T + dR(t)R(t)T + dR(t)dR(t)T

= R(t)(G(t)dM(t))T +G(t)dM(t)R(t)T

+G(t)D(t)

[
σ2σ

T
2 dt+

(∫
R0

xxTN(dt, dx)

)]
D(t)TG(t)T .

Taking expectations and integrating gives,

E[R(t)R(t)T ] = R0R
T
0 + E

[∫ t

0

G(s)D(s)ρ2D(s)TG(s)Tdt

]
= R0R

T
0 +

∫ t

0

G(s)D(s)ρ2D(s)TG(s)Tds

= Σ2(t), (51)

where R0 = 0 is clear by definition. Therefore by (50)

E[R(t)R(s)T ] = Σ2(s)

for s < t.

We will require the following result later in this chapter.

Corollary 2.3.6. Recall the definition of λ2 from (36) then,

E
[
R(t)TR(t)

]
= λ2t
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Proof.

d(R(t)TR(t)) = dR(t)TR(t) +R(t)TdR(t) + dR(t)TdR(t)

= (G(t)dM(t))TR(t) +R(t)TG(t)dM(t)

+ dM(t)TG(t)TG(t)dM(t)

= (G(t)dM(t))TR(t) +R(t)TG(t)dM(t)

+ dX2(t)
TD(t)TG(t)TG(t)D(t)dX2(t)

= (G(t)dM(t))TR(t) +R(t)TG(t)dM(t)

+ tr(A)dt+

∫
R0

xTxN(dt, dx).

Integrating, using (35) and taking expectations yields,

E
[
R(t)TR(t)

]
= RT

0R0 + tr(A)t+ E
[∫ t

0

∫
R0

xTxN(dt, dx)

]
= tr(A)t+ t

∫
R0

|x|2ν(dx)

= λ2t. (52)

We now wish to replicate Lemma 2.3.3 (a) for the process R.

Lemma 2.3.7.
L(M, t) = L(R, t) (53)

Proof.

L(M, t) =

{
c0 +

∫ T

0

F (t)dM(t)
∣∣∣F ∈ H2(T ), c0 ∈ Rd

}
(54)

=

{
c0 +

∫ T

0

F (t)G(t)−1dR(t)
∣∣∣F ∈ H2(T ), c0 ∈ Rd

}
⊆
{
c0 +

∫ T

0

H(t)dR(t)
∣∣∣H ∈ H2(T ), c0 ∈ Rd

}
= L(R, t).
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We can see H ∈ H2(T ) since,

E

[∣∣∣∣∫ T

0

F (t)G(t)−1(t)dR(t)

∣∣∣∣2
]

=

∫ t

0

E
[∣∣F (t)G(t)−1

∣∣2]Σ2(t)dt

≤ sup
0≤t≤T

|D(t)|2
∫ T

0

E[|F (t)|2]Σ2(t)dt

≤ KTE
[∫ t

0

|F (t)|dR(t)

]2
The reverse inclusion follows the same argument.

We now find a representation of (Ŷ (t), 0 ≤ t ≤ T ), which is a generalisa-
tion of [47, Lemma 6.2.7], in that it is done in finite dimensions for a square
integrable Lévy process with a non unit variance.

Lemma 2.3.8. For all 0 ≤ t ≤ T ,

Ŷ (t) = E[Y (t)] +

∫ t

0

∂

∂s
E[Y (t)R(s)T ]Σ2(s)

−1dR(s)

Proof. From Lemma 2.3.2 and Lemma 2.3.7 and using Proposition 4.1.1 in
[17] we have

Ŷ (t) = c0(t) +

∫ t

0

J(s)dR(s) for some J ∈ H2(T ), c0(t) ∈ Rd.

Now if we take expectations we find that from Lemma 2.3.4 c0(t) = E[Ŷ (t)] =
E[Y (t)], and from Lemma 2.3.3 and Lemma 2.3.2

Y (t)− Ŷ (t) ⊥
∫ t

0

F (s)dR(s) for all F ∈ H2(T ),

as
∫ t
0
F (s)dR(s) ∈ L(R, t) = L(Z, t) ⊥ (I−PL)Y (t) = Y (t)−Ŷ (t). Therefore

using Itô’s isometry, and Lemma 2.3.5 (c)

E

[
Y (t)

(∫ t

0

F (s)dR(s)

)T]
= E

[
Ŷ (t)

(∫ t

0

F (s)dR(s)

)T]

= E

[∫ t

0

J(s)dR(s)

(∫ t

0

F (s)dR(s)

)T]

=

∫ t

0

J(s)Σ2(s)F (s)Tds. (55)
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Let F = 1[0,r]Ei,j for some r ≤ t, where (Ei,j, 1 ≤ i ≤ d, 1 ≤ j ≤ m) is the
natural basis for Md,m(R) defined by

Ei,j =

{
1 in the (i, j)th entry of the matrix
0 everywhere else

∫ t

0

1[0,r)Ei,jdR(s) =


0
. . .
Rj(r)
. . .
0


(i)

where Rj(r) is in the ith row. Therefore

E

[
Y (t)

(∫ t

0

F (s)dR(s)

)T]
=


0 . . . E [Y1(t)Rj(r)] . . . 0
... . . . E [Y2(t)Rj(r)]

... 0
... . . .

... . . .
...

0 . . . E [Ym(t)Rj(r)] . . . 0


(i)

(56)
Now,

Σ2(s)Ej,i =


0 . . . Σ2(s)1,j . . . 0
... . . . Σ2(s)2,j

... 0
... . . .

... . . .
...

0 . . . Σ2(s)m,j . . . 0


(i)

.

In words, the jth column of Σ2 is moved to the ith column of the resulting
matrix. So we have that,

J(s)Σ2(s)Ej,i =


0 . . .

∑m
k=1 J1,kΣ2(s)k,j . . . 0

... . . .
∑m

k=1 J2,kΣ2(s)k,j
... 0

... . . .
... . . .

...
0 . . .

∑m
k=1 Jn,kΣ2(s)k,j . . . 0


(i)

hence, by (55) and (56), for all 1 ≤ i ≤ d, 1 ≤ j ≤ m, E [Yi(t)Rj(r)] =∫ r
0

(J(s)Σ2(s))i,j ds, and it follows that,

E
[
Y (t)R(r)T

]
=

∫ r

0

J(s)Σ2(s)ds.

We can clearly see that the matrix valued function E[Y (t)R(r)T ] is differen-
tiable component-wise with respect to r hence,

J(r) =
∂

∂r
E[Y (t)R(r)T ]Σ2(t)

−1.
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2.4 The Differential Equation for Ŷ (t)

We now make the representation of Ŷ from Lemma 2.3.8 more precise.

Lemma 2.4.1. For all 0 ≤ t ≤ T ,

Ŷ (t) = E[Y (t)]

+

∫ t

0

exp

(∫ t

s

A(u)du

)
S(s)C(s)TG(s)TΣ2(s)

−1dR(s), (57)

where

S(s) = E
[
Ỹ (s)Ỹ (s)T

]
= E

[(
Y (s)− Ŷ (s)

)(
Y (s)− Ŷ (s)

)T]
(58)

is the mean square error.

Proof. Let f(s, t) =
∂

∂s
E[Y (t)R(s)T ]Σ−12 (s) for s ≤ t then Lemma 2.3.8

states that,

Ŷ (t) = E[Y (t)] +

∫ t

0

f(s, t)dR(s). (59)

From (48) and (49) we have,

R(s) =

∫ s

0

G(r)C(r)
(
Y (r)− Ŷ (r)

)
dr +

∫ s

0

G(r)D(r)X2(r)

and so we obtain by independence of Y and X2,

E[Y (t)R(s)T ] =

∫ s

0

E[Y (t)Ỹ (r)T ]C(t)TG(t)Tdr (60)

where Ỹ (t) = Y (t) − Ŷ (t) is the error between the system and the best
estimate. Using (38) for Y (t), and recalling that the expectation of the
stochastic integral is zero, we obtain

E[Y (t)Ỹ (r)T ] = E
[(

exp

(∫ t

r

A(u)du

)
Y (r)

+

∫ t

r

exp

(∫ t

s

A(u)du

)
B(s)dX1(s)

)
Ỹ (r)T

]
= exp

(∫ t

r

A(u)du

)
E[Y (r)Ỹ (r)T ]

= exp

(∫ t

r

A(u)du

)
S(r). (61)
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Substituting (61) back into (60) we get

E[Y (t)R(s)T ] =

∫ s

0

exp

(∫ t

r

A(u)du

)
S(r)C(r)TG(r)Tdr,

and so,

∂

∂s
E[Y (t)R(s)T ] = exp

(∫ t

s

A(u)du

)
S(s)C(s)TG(s)T

therefore

f(s, t) = exp

(∫ t

s

A(u)du

)
S(s)C(s)TG(s)TΣ2(s)

−1. (62)

and the result follows.

We now show that the mean square error (S(t), 0 ≤ t ≤ T ) satisfies a
deterministic Riccati equation.

Theorem 2.4.2. (S(t), 0 ≤ t ≤ T ) satisfies the Riccati equation,

dS(t)

dt
= A(t)S(t) + S(t)A(t)T +B(t)ρ1B(t)T

−
(
S(t)C(t)TG(t)TΣ2(t)

−1G(t)C(t)S(t)T
)
. (63)

Proof. We can see that

E
[(
Y (t)− Ŷ (t)

)(
Y (t)− Ŷ (t)

)T]
= E[Y (t)Y (t)T ]− E[Ŷ (t)Ŷ (t)T ],

and so from (59) and Itô’s isometry,

S(t) = E[Y (t)Y (t)T ]− E[Y (t)]E[Y (t)]T −
∫ t

0

f(s, t)Σ2(s)f(s, t)Tds

= T (t)−
∫ t

0

f(s, t)Σ2(s)f(s, t)Tds− E[Y (t)]E[Y (t)]T (64)

where T (t) = E[Y (t)Y (t)T ]. Now from (38)

T (t) = exp

(∫ t

0

A(u)du

)
E[Y0Y

T
0 ] exp

(∫ t

0

A(u)Tdu

)
+

∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)ρ1B(s)T exp

(∫ t

s

A(u)Tdu

)
ds.
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Differentiating gives

dT (t)

dt
= A(t) exp

(∫ t

0

A(u)du

)
E[Y0Y

T
0 ] exp

(∫ t

0

A(u)Tdu

)
+ exp

(∫ t

0

A(u)du

)
E[Y0Y

T
0 ] exp

(∫ t

0

A(u)Tdu

)
A(t)T +B(t)ρ1B(t)T

+

∫ t

0

A(t) exp

(∫ t

s

A(u)du

)
B(s)ρ1B(s)T exp

(∫ t

s

A(u)Tdu

)
ds

+

∫ t

0

exp

(∫ t

s

A(u)du

)
B(s)ρ1B(s)T exp

(∫ t

s

A(u)Tdu

)
A(t)Tds

= B(t)ρ1B(t)T + A(t)T (t) + T (t)A(t)T . (65)

We also need to differentiate E[Y (t)]E[Y (t)]T .

d

dt
E[Y (t)]E[Y (t)]T =

d

dt
E
[
exp

(∫ t

0

A(u)du

)
Y0Y

T
0 exp

(∫ t

0

A(u)Tdu

)]
= A(t)E

[
exp

(∫ t

0

A(u)du

)
Y0Y

T
0 exp

(∫ t

0

A(u)Tdu

)]
+ E

[
exp

(∫ t

0

A(u)du

)
Y0Y

T
0 exp

(∫ t

0

A(u)Tdu

)]
A(t)T

= A(t)E[Y (t)]E[Y (t)]T + E[Y (t)]E[Y (t)]TA(t)T (66)
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Differentiating (64) and combining it with (65) and (66) we get

dS(t)

dt
=
dT (t)

dt
− f(t, t)Σ2(t)f(t, t)T −

∫ t

0

f(s, t)Σ2(t)
∂

∂t
f(s, t)Tds

−
∫ t

0

∂

∂t
f(s, t)Σ2(t)f(s, t)T

− A(t)E[Y (t)]E[Y (t)]T − E[Y (t)]E[Y (t)]TA(t)T

= B(t)ρ1B(t)T + A(t)T (t) + T (t)A(t)T

−
(
S(t)C(t)TG(t)TΣ2(t)

−1)Σ2(t)
(
Σ2(t)

−1G(t)C(t)S(t)T
)

− A(t)

∫ t

0

f(s, t)Σ2(s)f(s, t)Tds−
∫ t

0

f(s, t)Σ2(s)f(s, t)TdsA(t)T

− A(t)E[Y (t)]E[Y (t)]T − E[Y (t)]E[Y (t)]TA(t)T by (65), (62) and (66)

= B(t)ρ1B(t)T + A(t)T (t) + T (t)A(t)T

−
(
S(t)C(t)TG(t)TΣ−12 (t)G(t)C(t)S(t)T

)
− A(t)

∫ t

0

f(s, t)Σ2(s)f(s, t)Tds−
∫ t

0

f(s, t)Σ2(s)f(s, t)TdsA(t)T

− A(t)E[Y (t)]E[Y (t)]T − E[Y (t)]E[Y (t)]TA(t)T

= A(t)S(t) + S(t)A(t)T +B(t)ρ1B(t)T

−
(
S(t)C(t)TG(t)TΣ−12 (t)G(t)C(t)S(t)T

)
.

The last part is to find the SDE for Ŷ (t).

Theorem 2.4.3. The solution Ŷ (t) = PL(Y (t)) of the finite-dimensional
linear filtering problem satisfies the stochastic differential equation,

dŶ (t) = A(t)Ŷ (t)dt

+ S(t)C(t)TG(t)TΣ2(t)
−1G(t)

[
dZ(t)− C(t)Ŷ (t)dt

]
(67)

with initial condition Ŷ0 = E[Y0] and,

S(0) = E
[
(Y0 − E[Y0]) (Y0 − E[Y0])

T
]
.

Proof. From (59),

Ŷ (t) = c0(t) +

∫ t

0

f(s, t)dR(s) where c0(t) = E[Y (t)].
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It follows that

dŶ (t) = c′0(t)dt+ f(t, t)dR(t) +

(∫ t

0

∂

∂t
f(s, t)dR(s)

)
dt

and so by (62) and since c′0(t) =
d

dt
E[Y (t)] =

d

dt
E
[
exp

(∫ t
0
A(u)du

)
Y0

]
=

A(t)E[Yt] = A(t)c0(t), we obtain,

dŶ (t) = c′0(t)dt+ S(t)C(t)TG(t)TΣ2(t)
−1dR(t) + A(t)

(∫ t

0

f(s, t)dR(s)

)
dt

= c′0(t)dt+ A(t)
(
Ŷ (t)− c0(t)

)
dt+ S(t)C(t)TG(t)TΣ2(t)

−1dR(t)

= A(t)Ŷ (t)dt+ S(t)C(t)TG(t)TΣ2(t)
−1dR(t).

By (49) we have,

dR(t) = G(t)dM(t)

= G(t)
[
C(t)

(
Y (t)− Ŷ (t)

)
dt+D(t)dX2(t)

]
by (48)

= G(t)
[
C(t)Y (t)dt+D(t)dX2(t)− C(t)Ŷ (t)dt

]
= G(t)

[
dZ(t)− C(t)Ŷ (t)dt

]
,

substituting in the above we conclude that,

dŶ (t) = A(t)Ŷ (t)dt

+ S(t)C(t)TG(t)TΣ2(t)
−1G(t)

[
dZ(t)− C(t)Ŷ (t)dt

]
.
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2.5 Extension of the Kalman - Bucy Filter

Given an observation process with a fixed finite variance, we know from (67)
what the appropriate Kalman-Bucy filter is. However given the scenario of
an observation process which is allowed to have infinite variance what is the
best estimate of the system in this case? What can we say about the mean
square error?

We now wish to extend the Kalman-Bucy filter derived in Theorem 2.4.3
to allow an infinite variance observation process. We do this by dropping the
assumption that the process (X2(t), t ≥ 0) has finite second moment for all
t ≥ 0. However we continue to insist that it has finite first moment. i.e

E[|X2(t)|] <∞.

A necessary and sufficient condition for integrability of X2(t) for all t ≥ 0 is,

•
∫
|x|≥1 |x|ν2(dx) <∞

see [3, Theorem 2.5.2] for the proof.
In order to derive a Kalman-Bucy filter we will find it convenient to

approximate X2 by a sequence of Lévy processes (X
(n)
2 (t), t > 0, n ∈ N)

where each E[|X(n)
2 (t)|2] < ∞ for all n ∈ N. We do this by truncating the

jumps, i.e.

X
(n)
2 (t) = B2(t) +

∫
|x|≤n

xÑ2(t, dx), (68)

and we note that,

E[X
(n)
2 (1)X

(n)
2 (1)T ] = ρ

(n)
2 = A2 +

∫
|x|≤n

xxTν2(dx). (69)

We now have that
∫
|x|≥1 |x|

2ν2(dx) =∞ and we assume that
∫
|x|≥1 x

2
i ν2(dx) =

∞ for all values of i where 1 ≤ i ≤ r.

We also write βν2(n) := max
{∫
|x|≤n x

2
i ν2(dx); 1 ≤ i ≤ r

}
. In order to de-

velop a manageable theory, we will also make the assumption that
∣∣∣∫|x|≥1 xixjν(dx)

∣∣∣ <
∞ for all i 6= j.

An example of the above set up would be when the components of X2

are independent, centred one-dimensional Lévy processes, all of which have
infinite variance. In that case, for each i 6= j,∫

|x|≥1
xixjν(dx) =

(∫
|x|≥1

xiν(dx)

)(∫
|x|≥1

xjν(dx)

)
= 0.
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Let ψ(n) = (ψ
(n)
ij ) be the covariance matrix corresponding to the jump

part of Xn
2 as in (22). In this section, we will need to consider the existence

of limits of the form limn→∞(ψ(n))−1. If r = 1 it is easy to see that this limit
exists and is zero. If r > 1, then each element of the matrix of cofactors of
ψ(n) is O(βν(n)α) where 1 ≤ α ≤ r − 1, however det(ψ(n)) is O(βν(n)r). It
follows that limn→∞(ψ(n))−1 = 0 also in this case.

We will write γ = diag
(∫
|x|≤1 x

2
1ν(dx), . . . ,

∫
|x|≤1 x

2
rν(dx)

)
and also γa :=

a+ γ.

Theorem 2.5.1. For each t ≥ 0,

lim
n→∞

∣∣∣∣∣∣X2(t)−X(n)
2 (t)

∣∣∣∣∣∣
1

= 0.

Proof.∣∣∣∣∣∣X2(t)−X(n)
2 (t)

∣∣∣∣∣∣
1

= E
[∣∣∣∣∫ t

0

∫
|x|≥n

xÑ(ds, dx)

∣∣∣∣]
= E

[∣∣∣∣∫ t

0

∫
|x|≥n

xN(ds, dx)−
∫ t

0

∫
|x|≥n

xν(dx)ds

∣∣∣∣]
≤ E

[∣∣∣∣∫ t

0

∫
|x|≥n

xN(ds, dx)

∣∣∣∣]+ t

∫
|x|≥n
|x|ν(dx).

Now if we define UA =
(
UA(t), t ≥ 0

)
as UA(t) =

∫
A
xN(t, dx) then using [3,

p.231]

E
[∣∣∣∣∫ t

0

∫
|x|≥n

xN(ds, dx)

∣∣∣∣] = E

[∣∣∣∣∣ ∑
0≤u≤t

∆U(|x|≥n)(u)1(|x|≥n)
(
∆U(|x|≥n)(u)

)∣∣∣∣∣
]

≤ E

[ ∑
0≤u≤t

∣∣∆U(|x|≥n)(u)1(|x|≥n)
(
∆U(|x|≥n)(u)

)∣∣]

= E
[∫ t

0

∫
|x|≥n
|x|N(ds, dx)

]
= E

[∫
|x|≥n
|x|N(t, dx)

]
= t

∫
|x|≥n
|x|ν(dx).

We conclude that,∣∣∣∣∣∣X2(t)−X(n)
2 (t)

∣∣∣∣∣∣
1
≤ 2t

∫
|x|≥n
|x|ν(dx)→ 0 as n→∞.
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Now we need to show that each E[|X(n)
2 (t)|2] < ∞ or equivalently each∫

|x|≤n |x|
2ν(dx) <∞ see [3, Theorem 2.5.2], so that X

(n)
2 ∈ L2(Ω,F , P ;Rr).

Lemma 2.5.2. ∫
|x|≤n
|x|2ν(dx) <∞

Proof. ∫
|x|≤n
|x|2ν(dx) =

∫
|x|<1

|x|2ν(dx) +

∫
1≤|x|≤n

|x|2ν(dx)

≤
∫
|x|<1

|x|2ν(dx) + n2ν{1 ≤ |x| ≤ n}

<∞.

The observation process (Z(t), t ≥ 0) is defined as previously as the so-
lution of the stochastic differential equation

dZ(t) = C(t)Y (t) +D(t)dX2(t),

but note that it is now of infinite variance. We obtain a sequence of fi-
nite variance observation processes by incorporating the sequence of Lévy
processes we defined in (68).

dZ(n)(t) = C(t)Y (t)dt+D(t)dX
(n)
2 (t). (70)

It therefore follows directly from Lemma 2.5.2 that each
Z(n)(t) ∈  L2(Ω,F , P ;Rm).

Theorem 2.5.3. For each t ≥ 0,

lim
n→∞

∣∣∣∣Z(t)− Z(n)(t)
∣∣∣∣
1

= 0.
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Proof. From (70) and (34),

∣∣∣∣Z(t)− Z(n)(t)
∣∣∣∣

1
= E

[∣∣∣∣∫ t

0

D(s)dX2(s)−
∫ t

0

D(s)dX
(n)
2 (s)

∣∣∣∣]
= E

[∣∣∣∣∫ t

0

∫
|x|≥n

D(s)xÑ(ds, dx)

∣∣∣∣]
= E

[∣∣∣∣∫ t

0

∫
|x|≥n

D(s)xN(ds, dx)− t
∫ t

0

∫
|x|≥n

D(s)xν(dx)ds

∣∣∣∣]
≤ E

[∣∣∣∣∫ t

0

∫
|x|≥n

D(s)xN(ds, dx)

∣∣∣∣]+ t

∣∣∣∣∫ t

0

∫
|x|≥n

D(s)xν(dx)ds

∣∣∣∣
≤ E

[∣∣∣∣∫ t

0

∫
|x|≥n

D(s)xN(ds, dx)

∣∣∣∣]
+ t

∫ t

0

∫
|x|≥n
||D(s)||OP · |x|ν(dx)ds

≤ E
[∣∣∣∣∫ t

0

∫
|x|≥n

D(s)xN(ds, dx)

∣∣∣∣]
+ t sup

0≤s≤t
||D(s)||OP

∫
|x|≥n
|x|ν(dx).

Following a similar argument to the proof of Theorem 2.5.1 we get,∣∣∣∣Z(t)− Z(n)(t)
∣∣∣∣

1
≤ 2t sup

0≤s≤t
||D(s)||OP

∫
|x|≥n
|x|ν(dx)→ 0 as n→∞.

We now need to make sense of Ŷ (t) for 0 ≤ t ≤ T . This was previously
defined using the projection from L2(Ω,F , P ;Rd) onto L(Z, T ). Let us define
L(n)(Z, t) to be the closure of the linear span of all vectors of the form,

c0 + c1Z
(n)(t1) + · · ·+ ckZ

(n)(tk), 0 ≤ t1, . . . , tk ≤ t, n ∈ N. (71)

For all n ∈ N let P(n) be the orthogonal projection of L2(Ω,F , P ;Rd)
onto L(n)(Z, t), and we write Ŷ (n)(t) = P(n)(Y (t)).

We can clearly see that for each n ∈ N, Ŷ (n) satisfies a Kalman-Bucy filter
derived previously, but not so clear is that the mean square error

(
S(n)(t), n ∈

N, t > 0
)

defined as

S(n)(t) = E
[(
Y (t)− Ŷ (n)(t)

)(
Y (t)− Ŷ (n)(t)

)T]
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satisfying,

dS(n)(t)

ds
= A(t)S(n)(t) + S(n)(t)A(t)T +B(t)ρ1B(t)T

−
(
S(n)(t)C(t)TG(t)T (Σ

(n)
2 (t))−1G(t)C(t)S(n)(t)T

)
,

converges to a limit. Clearly for all 0 ≤ t ≤ T the sequence (S(n)(t), n ∈ N)
is bounded below by 0.

We will find the following inequality useful in the sequel.

Lemma 2.5.4. For all n ∈ N, 0 ≤ t ≤ T ,

||S(n)(t)||HS ≤ d||Y (t)||22 (72)

Proof. For 1 ≤ i, j ≤ d,

|S(n)(t)ij| ≤ E
[
|Y (t)i − Ŷ (t)i||Y (t)j − Ŷ (t)j|

]
≤ E

[
|Y (t)− Ŷ (t)|2n

]
= ||P (n)⊥Y (t)||22
≤ ||Y (t)||22

Taking the Hilbert-Schmidt norm we get,

||S(n)(t)||HS =

(
d∑

i,j=1

S(n)(t)2i,j

) 1
2

≤ d||Y (t)||22

We must next find an analogue of the Riccati equation. To simplify
expressions we introduce the notation Q(t) := G(t)C(t) for 0 ≤ t ≤ T .

We note that since limn→∞ ϕ
(n) → 0, for each 0 ≤ t ≤ T,Σ

(∞)
2 (t)−1 =

limn→∞Σ
(n)
2 (t)−1 exists and is the zero matrix.

Theorem 2.5.5. For each 0 ≤ t ≤ T the sequence (S(n)(t), n ∈ N) converges
to a matrix S(∞)(t). The mapping t → S(∞) is differentiable on [0, T ] and
S(∞) is the unique solution of the Riccati equation

dS(∞)(t)

dt
= A(t)S(∞)(t) + S(∞)(t)A(t)T +B(t)ρ1B(t)T
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Proof. Let (Γ(t), 0 ≤ t ≤ T ) be the unique solution of,

dΓ(t)

dt
= A(t)Γ(t) + Γ(t)A(t)T +B(t)ρ1B(t)T , with Γ(0) = Cov(Y0).

Then we wish to show that Γ(t) = S(∞) for all 0 ≤ t ≤ T . Using (63), for all
n ∈ N we have,

d

dt

(
Γ(t)− S(n)(t)

)
= A(t)

(
Γ(t)− S(n)(t)

)
+
(
Γ(t)− S(n)(t)

)
A(t)T

+

(
S(n)(t)Q(t)T

(
Σ

(n)
2 (t)

)−1
Q(t)S(n)(t)T

)
.

Integrating we get,

Γ(t)− S(n)(t) =

∫ t

0

A(u)
(
Γ(u)− S(n)(u)

)
du+

∫ t

0

(
Γ(u)− S(n)(u)

)
A(u)Tdu

+

∫ t

0

(
S(n)(u)Q(u)T

(
Σ

(n)
2 (u)

)−1
Q(u)S(n)(u)T

)
du.

Taking norms and using the triangle inequality and (72)∣∣∣∣Γ(t)− S(n)(t)
∣∣∣∣
HS

=

∣∣∣∣∣∣∣∣∫ t

0

A(u)
(
Γ(u)− S(n)(u)

)
du

+

∫ t

0

(
Γ(u)− S(n)(u)

)
A(u)Tdu

+

∫ t

0

(
S(n)(u)Q(u)T

(
Σ

(n)
2 (u)

)−1
Q(u)S(n)(u)T

)
du

∣∣∣∣∣∣∣∣
HS

≤
∣∣∣∣∣∣∣∣∫ t

0

A(u)
(
Γ(u)− S(n)(u)

)
du

∣∣∣∣∣∣∣∣
HS

+

∣∣∣∣∣∣∣∣∫ t

0

(
Γ(u)− S(n)(u)

)
A(u)Tdu

∣∣∣∣∣∣∣∣
HS

+

∣∣∣∣∣∣∣∣∫ t

0

(
S(n)(u)Q(u)TΣ

(n)
2 (u)−1Q(u)S(n)(u)T

)
du

∣∣∣∣∣∣∣∣
HS

≤ 2

∫ t

0

||A(u)||OP
∣∣∣∣Γ(u)− S(n)(u)

∣∣∣∣
HS

du

+

∫ t

0

∣∣∣∣S(n)(u)
∣∣∣∣2
OP
||Q(u)||2OP

∣∣∣∣∣∣Σ(n)
2 (u)−1

∣∣∣∣∣∣
HS

du

≤ 2

∫ t

0

||A(u)||OP
∣∣∣∣Γ(u)− S(n)(u)

∣∣∣∣
HS

du

+ d

∫ t

0

||Y (u)||42 ||Q(u)||2OP
∣∣∣∣∣∣Σ(n)

2 (u)−1
∣∣∣∣∣∣
HS

du.
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Now using Gronwall’s inequality,

∣∣∣∣Γ(t)− S(n)(t)
∣∣∣∣
HS

= d exp

(∫ t

0

||A(u)||OPdu
)

×
∫ t

0

||Y (u)||42 ||Q(u)||2OP
∣∣∣∣∣∣Σ(n)

2 (u)−1
∣∣∣∣∣∣
HS

du

By assumptions on D and the sequence (ψn) we have that

sup
n∈N

sup
0≤t≤T

∣∣∣∣∣∣Σ(n)
2 (t)−1

∣∣∣∣∣∣2
HS
≤ sup

0≤t≤T

∣∣∣∣(G(t)D(t)γaD(t)TG(t)T )−1
∣∣∣∣2
HS

<∞,

and so by dominated convergence, limn→∞ ||Γ(t) − Sn(t)||HS = 0, and the
result follows.

This is a very surprising result, as the non-linear term has vanished as
we’ve passed to the limit and so the Riccati equation is now a simple first
order differential equation with an exact solution. It can be solved in one
dimension by the integrating factor method, to give,

S(∞)(t) = ρ1 exp

(
2

∫ t

0

A(u)du

)∫ t

0

exp

(
−2

∫ s

0

A(u)du

)
B(s)2ds. (73)

In the finite dimensional case if A(t) is symmetric for all 0 ≤ t ≤ T , this
can be solved using a similar methodology.

Our next result is the desired L1 Kalman-Bucy filter.

Theorem 2.5.6. For each 0 ≤ t ≤ T the sequence (Ŷ (n)(t), n ∈ N) converges
in L1(Ω,F , P ;Rd) to Ŷ (t). The process Ŷ is the solution of the following DE:

dŶ (t) = A(t)Ŷ (t)dt (74)

Proof. Let Ψ = (Ψ(t), 0 ≤ t ≤ T ) be the unique solution of the DE

dΨ(t) = A(t)Ψ(t)dt (75)

with the initial condition of Ψ(0) = µ0 (a.s). We are required to show that
limn→∞ ||Ψ(t) − Ŷn(t)||1 = 0 and the result then follows by uniqueness of
limits. We use a similar argument to that in the proof of Theorem 2.5.5.
Using (67) we find that

Ψ(t)− Ŷn(t) =

∫ t

0

A(r)
(

Ψ(r)− Ŷ (n)(r)
)
dr

−
∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1Q(r)Ŷ (n)(r)dr

−
∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)TdZ(n)(r) (76)
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Taking the L1-norm we find that

||Ψ(t)− Ŷ (n)(t)||1 ≤
∫ t

0

||A(r)||OP ||Ψ(r)− Ŷ (n)(r)||1dr

+ E
[∣∣∣∣∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)dZ(n)(r)

∣∣∣∣]
+

∫ t

0

||S(n)(r)||OP ||Q(r)T ||OP ||Σ(n)
2 (r)−1||1

× ||Q(r)||OP ||Ŷ (n)(r)||dr. (77)

To proceed further we need some additional estimates. First note that for
all n ∈ N,

||Ŷ (n)(t)||1 ≤ ||Ŷ (n)(t)||2 = ||P (n)Y (t)||2 ≤ ||Ŷ (t)||2.

Secondly, using (34):

E
[∣∣∣∣∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)dZ(n)(r)

∣∣∣∣]
≤ E

[∣∣∣∣∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1Q(r)Y (r)dr

∣∣∣∣]
+ E

[∣∣∣∣∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)D(r)dB2(r)

∣∣∣∣]
+ E

[∣∣∣∣∫ t

0

∫
|y|<n

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)D(r)Ñ2(dy, dr)

∣∣∣∣]
≤
∫ t

0

||S(n)(r)||OP ||Q(r)T ||OP ||Σ(n)
2 (r)−1||OP ||Q(r)||OP ||Y (r)||1dr

+

(
E

[∣∣∣∣∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)D(r)dB2(r)

∣∣∣∣2
]) 1

2

+ 2

∫
R0

|y|ν2(dy)

∫ t

0

||S(n)(r)||OP ||Q(r)T ||OP

× ||Σ(n)
2 (r)−1||OP ||G(r)D(r)||OPdr,
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and by Itô’s isometry,

E

[∣∣∣∣∫ t

0

S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)D(r)dB2(r)

∣∣∣∣2
]

=

∫ t

0

||S(n)(r)Q(r)TΣ
(n)
2 (r)−1G(r)D(r)A

1
2 ||2HSdr

≤ tr(A)

∫ t

0

||(S(n)(r)||2OP ||Q(r)T ||2OP

× ||Σ(n)
2 (r)−1||2OP ||G(r)D(r)||2OPdr.

We now apply these estimates to (77) and also make use of Lemma 2.5.4 to
conclude that there exist bounded measurable positive functions t → Hj(t)
defined on [0, T ] for j = 1, 2, 3, 4 so that

||Ψ(t)−Ŷ (n)(t)||1

≤
∫ t

0

H1(r)||Ψ(r)− Ŷ (n)(r))||1dr +

∫ t

0

H2(r)||Σ(n)
2 (r)−1||OPdr

+

(∫ t

0

H3(r)||Σ(n)
2 (r)−1||OPdr

) 1
2

+

∫
R0

|y|ν(dy)

∫ t

0

H4(r)||Σ(n)
2 (r)−1||OPdr.

Then by Gronwall’s inequality

||Ψ(t)− Ŷ (n)(t)||1 ≤ exp

(∫ t

0

H1(r)dr

)[∫ t

0

H2(r)||Σ(n)
2 (r)−1||OPdr

+

(∫ t

0

H3(r)||Σ(n)
2 (r)−1||OPdr

) 1
2

+

∫
R0

|y|ν(dy)

∫ t

0

||Σ(n)
2 (r)−1||OPH4(r)dr

]
,

and the result follows by using dominated convergence (which is justified by
using (2.5.4) and the fact that

∫
R |y|ν(dy) <∞).
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2.6 Numerics

In this section we look at three different methods for filtering an infinite vari-
ance observation process in a linear framework. Our aim will be to investigae
the value of the result in (74).

2.6.1 Infinite Variance Observations of a Mean Reverting Brow-
nian Motion

The example we look at is a simple numerical example of filtering a mean
reverting Brownian motion from infinite variance observations. We aim to
compare the performance of the different filters in an ideal situation where
all parameters are known. We choose the following two existing filters in
this field i.e the work of [39] and [1]. The work of [39] is only applicable
in the case of α-stable noise, and the work of [1] is only applicable in the
case of a Gaussian system and Gaussian observations with a pure Lévy jump
process. Therefore the only point of intersection for these three filters will be
a Gaussian system with α stable observations. In order to proceed we will
employ the use of the commonly used Euler approximation see [23, Chapter
2].

We assume the observations to occur at a fixed rate and set the last ob-
servation to occur at time T . Our comparative example is a system described
by a mean reverting Brownian motion, i.e

Y (t) = Y0 −
∫ t

0

Y (s)ds+X1(t)

where in this case A(t) = −1 and B(t) = 1, X1(t) is a standard Brownian
motion and Y0 is a standard Gaussian random variable which is independent
of (X1(t), t ≥ 0). We take observations of this system of the following form,

dZ(t) = Y (t)dt+ dX2(t)

where C(t) = 1 and D(t) = 1, and X2(t) is an symmetric α-stable process
with infinite variance, and finite expectation, so that we must take 1 < α < 2
and we fix the dispersion parameter c (see Theorem 1.1.13) to be 1.

For the filter described in (74), S(∞)(t) is of the form,

dS(∞)(t)

dt
= −2S(∞)(t) + 1,where S0 = 0

which we integrate using the integrating factor method to get,

S(∞)(t) =
1

2
[1− exp(−2t)]
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and we compute our best estimate using (74) which yields,

dŶ (t) = −Ŷ (t)dt,

and so,
Ŷ (t) = Y0e

−t.

The filter of Le Breton and Musiela [39] takes the form,

dŶ (t)∗ = −Ŷ (t)∗dt− |γ|q/p(dZ(t) + Ŷ (t)∗dt)

where γ is given by,

dγ

dt
= −pγ + 1− (p− 1)|γ|q.

We take the values p = 1.1 and q = 11 as were taken in [1]. Finally the
filter of Ahn and Feldman, [1] takes the form of the following recursion,

Ŷ ∗∗(tj+1) = −λjσ2
j+1

f ′j+1

fj+1

(
∆Z(tj+1)− γjŶ ∗∗(tj)

)
+ exp

(
−δŶ ∗∗(tj)

)
,

with the following coefficients, p = exp(δ)− 1, r = p− p exp(−δ)− δ

λi+1 =
σ2
i+1 + r

pσ2
i+1

σ2
i+1 =

1

2
p2(1− exp(2δ)) + 2p(exp(−δ)− 1) + 3δ + p exp(−δ)Vi

Vi+1 = 2p−2δ − p−2σ2
i+1(1− pλi)2.

We simulate the system and observation processes using the Euler approxi-
mation. In order to do this, we will make use of the self-similarity property of
stable processes, (see [54, Proposition 13.5] for a proof that a Lévy process is
self similar if and only if it is a strictly stable processes). Firstly we consider
the system, this results in us being required to simulate the increment of a
standard Brownian motion, which we can do by the following

B(t+ ∆t)−B(t) ≈ N(0,∆t) ≈
√

∆t ·N(0, 1).

For the observations we need to simulate the increment of an α-stable
process which can be done as follows,

X2(t+ ∆t)−X2(t) ≈ X2(∆t · 1) ≈ (∆t)
1
αX2(1).
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To measure and compare the filters accuracy we used 3 different values of
α, i.e {1.1, 1.5, 1.9}. We then calculated the error, this was done by taking
the mean square error of the system from the predicted value. We set the
inter-arrival times of the observations to be 0.01, and the expiration time to
be T = 10.

100, 000 Monte-Carlo simulations were generated to allow us to estimate
the error with some accuracy, we then took a median of these values due to
the skewed nature of the distribution of the results.

From Table 1 we note that having no filter provides a closer estimate of
the underlying system (for α = {1.1, 1.5}. Whilst these results are particular
only to the setup proposed, it is still worth noting that there may be other
examples where computing estimates in the absence of noise will give results
closer than when making best estimates in the presence of infinite variance
noise.

Table 1: A Comparison of Filters

α No Filter Error LBM Filter Error AF Filter Error

1.1 0.6601 0.7819 0.7485
1.5 0.6593 0.6819 0.7507
1.9 0.6603 0.6446 0.7508

The following figure provides a graphical representation of one instance
of the above calculations. It shows that the filter of Le Breton and Musiela
is quite prone to large jumps in the observations, causing a higher error
in this instance. The filter of Ahn and Feldman remains relatively close
to 0, but having no filter provides the lowest error. Whilst this may seem
counter-intuitive it should be noted that when α = 1.1 the noise in the
observation process is very wild, and so the observation process bears almost
no resemblance to the system process.

For the code, see appendix B.
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Time
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Observations : alpha=1.1
System
AB Filter : Err=0.1699 
LBM Filter : Err=0.3421
AF Filter : Err=0.2666

A Comparison of Filters

The above figures give a comparison of the three filters, incorporating two
different starting values. a
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3 Non-Linear Filtering

In this chapter we move away from the linear Kalman-Bucy filter and look
towards the non-linear arena. The output of the filter is the distribution of
the estimated process given all the available data of the observations, other-
wise known as the posterior distribution. We will start by introducing the
relevant background before moving on to the celebrated filtering equations
of Kallianpur-Striebel, Zakai and Kushner-Stratonovich. During this chapter
we mainly follow and extend the works of [5] and [45]. Whilst [5] expertly
deals with the Brownian case, more general noise processes such as those
with jumps are not dealt with. Meanwhile the papers [45] and [44] deal with
Lévy processes but leave out many technical difficulties which will be fully
dealt with in this chapter.

3.1 Introduction

We can draw parallels to the previous chapter in that we have an observa-
tion process (Z(t), t ≥ 0) and a signal process (Y (t), t ≥ 0) which is not
directly observable. Similarly to the Kalman-Bucy filter derived earlier the
observation process is a function Z of the signal Y and a measurement noise
particular to the observations say (X2(t), t ≥ 0), i.e.

Z(t) = f (Y (t), X2(t)) .

This will be defined rigorously later.
Let (Zt, t ≥ 0) be the σ-algebra generated by the observations Z. Then

this can be interpreted as the collective information gathered from all the
observations up to time t. We wish to use this information to try and answer
questions such as: what is the best estimate of the signal at time t, and can
we calculate the conditional probability that the signal lies inside some set G
at time t, i.e. P (Y (t) ∈ G|Zt)? The first question is generally referred to in

a mean square sense, by which we wish to minimise E
[(
Y (t)− Ŷ (t)

)2
|Zt
]

and therefore this relates to computing Ŷ (t) = E [Y (t)|Zt].
Readers may recall that in the previous chapter we used linear estimates,

in this chapter we will be using measurable estimates, and these two esti-
mations are generally different. To expand on this, we have the following
inequality in the L2 framework,

E
[
(Y − E [Y |F ]))2

]
≤ E

[
(Y − PL(Y ))2

]
for more on this, see [47, p.92] and [16, p.19].
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3.2 Framework

In this section we are following the approach of [5, Chapter 2]. As mentioned
in the introduction we are interested in finding the conditional distribution
of the signal Y given the σ-algebra generated by the observations. We now
give a more precise definition of this observation σ-algebra, which we denote
Zt.

Zt = σ(Zt, 0 ≤ s ≤ t) ∨N ,

where N is the collection of null sets of the complete probability space
(Ω,F , P ). It is mandatory that we incorporate these null sets into our obser-
vation sigma algebra as we will need to modify Zt-adapted processes. This
augmentation of Zt by the addition of null sets ensures that any modified
process is also Zt adapted. We also require the right-continuous enlargement
of the observation filtration Zt. Therefore we choose the following enlarge-
ment, (Zt+, t ≥ 0) where Zt+ = ∩s>tZs, and to save notation we will write
Zt instead of Zt+ from now on.

Another very important point is that the conditional distribution of the
signal, otherwise known as the posterior distribution, can be thought of as
a stochastic process taking values in the space of probability measures. To
formalise this we let the signal process Y take values in R. We now define
P(R), the space of Borel probability measures over R and a P(R)-valued Zt
adapted stochastic process (πt, t ≥ 0) which satisfies the following,

πt(A) = P (Y (t) ∈ A|Zt),

where A is an arbitrary set in the σ-algebra B(R) and π0 ∈ P(R).
For the following work we now consider one particular case of a signal

process, i.e. when Y is a diffusion process. We let the state space of the
signal be R and let Y be the solution of the stochastic differential equation
driven by a Brownian motion (BY (t), t ≥ 0),

Y (t) = Y0 +

∫ t

0

b(Y (s))ds+

∫ t

0

σ(Y (s))dBY (s). (78)

We assume that b : R → R and σ : R → R are globally Lipschitz. This
global Lipschitz assumption then ensures that (78) has a unique solution
using [5, Theorem B.38].

In later work we will require the martingale (Mϕ
t , t ≥ 0) where

Mϕ
t =

∫ t

0

ϕ′(Y (s))dB(s)

64



for any ϕ ∈ C2
c (R) the space of twice differentiable compactly supported

continuous functions on R. This is derived from Itô’s formula from which we
obtain

Mϕ
t = ϕ(Y (t))− ϕ(Y (0))−

∫ t

0

Aϕ(Y (s))ds t ≥ 0. (79)

where A is the second order differential operator,

A = b
∂

∂x
+

1

2
σ2 ∂

2

∂x2
, (80)

and we assume that the distribution of Y (0) is π0. (79) suggests that more
general signal processes could be described as the solution of martingale
problems. There is some discussion of this in [5].

The following work extends and clarifies the work of [45] where the Zakai
equation is stated but not derived, nor are any conditions for existence of
solutions obtained. The paper [44] offers a proof of the Zakai equation, along
with some conditions for existence of its solution. The proof is somewhat
lacking in its thoroughness, which will be dealt with here in a much more
detailed fashion, and in the upcoming lemmas we will show that a certain
martingale condition, which was imposed in [44] is not required and will be
derived from our assumptions. Other work in this area includes the papers
by Colaneri and Ceci [13] and [12] which have a system and observation pro-
cess that employs the use of Poisson random measures with common jump
times, and a proof of uniqueness of solution. This paper focuses on deriv-
ing the Kushner-Stratonovich equation using the filtered martingale problem
approach. The paper [48] has a system driven by Brownian motion and a
Poisson random measure with observations of either a diffusion or a Poisson
process. This paper follows the change of measure approach but again misses
out many details in its derivation of the Zakai equation. Finally for results
regarding a discontinuous system and continuous observations see [55].

After deriving the Zakai equation we will then obtain the normalised
Kushner-Stratonovich equation.

We begin by outlining the non-linear filtering problem we wish to inves-
tigate. Let h : R+ × R→ R be a measurable function such that

P

(∫ t

0

|h(s, Y (s))|ds <∞
)

= 1. (81)

Suppose that the observation process is given by the solution of the stochastic
differential equation,
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dZ(t) = h(t, Y (t))dt+ dBZ(t) +

∫
R0

yNλ(dt, dy) (82)

where BZ is a Brownian motion and Nλ is an independent integer valued
random measure which has the predictable compensator

λ(t, Y (t), y)dtν(dy)

for a Lévy measure ν which we restrict to be finite, and a measurable function
λ : [0, T ] × R × R → R. See [25, p.32] for more details of such random
measures.

We then note that,

E [Nλ(t, A)] = E
[∫ t

0

∫
A

λ(u, Y (u), y)ν(dy)du

]
.

We further assume that λ > 0 a.e. and finally we will need,∫ t

0

∫
R0

|y|2ν(dy) <∞.

The need for this requirement will be made apparent later in the work.
The solution to (82) can be constructed using the interlacing procedure

similar to [3, Theorem 6.2.9] outlined here.
Let P = (P (t), t ≥ 0) be the point process defined by

P (t) =

∫ t

0

∫
R0

yNλ(ds, dy)

with jumps at times τ1, τ2, τ3 . . . .
Let A = (A(t), t ≥ 0) be the continuous process defined by,

A(t) = Z0 +

∫ t

0

h(s, Y (s))ds+BZ(t) (83)

then we construct the process Z(t) as follows,

Z(t) = A(t) 0 ≤ t < τ1,

Z(τ1) = A(τ1) + ∆P (τ1) t = τ1

Z(t) = Z(τ1) + A(t)− A(τ1) τ1 < t < τ2

Z(τ2) = Z(τ2−) + ∆P (τ2) t = τ2.
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and so on recursively.
The initial condition is assumed to be a random variable independent of

Y (t) and BZ(t). For notational simplicity we will henceforth write λ(t, y) =
λ(t, Y (t), y), but the reader should always keep it in mind that λ is also a
function of a random variable. Note that the condition (81) is required to
ensure the existence of the integral in (83).

So, the filtering problem is the calculation of the conditional distribution
πt of the signal Y at time t given the information gathered from observing
the process Z up to time t ≥ 0. That is for ϕ ∈ C2

c(R) we require

πt(ϕ) = E [ϕ(Y (t))|Zt] .

We solve this problem by using the change of measure approach. This
method works by constructing a new measure under which the observations
Z become a Lévy process and we show that the probability measure valued
process π can be represented in terms of an unnormalised measure valued
process ρ. We then show that ρ satisfies a linear evolution equation called
the Zakai equation which we obtain via Itô’s formula and approximation
techniques.
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3.3 A Change of Measure

In this section we find an equivalent probability measure on Ω to transform
the process Z into a Lévy process. To be more precise we define Q on (Ω,F)
via dQ = ΩTdP with Radon-Nikodym density

ΩT = exp

{
−
∫ T

0

h(t, Y (t))dBZ(t)− 1

2

∫ T

0

h(t, Y (t))2dt

−
∫ T

0

∫
R0

log(λ(t, y))Nλ(dt, dy)−
∫ T

0

∫
R0

(1− λ(t, y))ν(dy)dt

}
. (84)

If we were to only consider Brownian motion as the signal and observa-
tion noise we could impose the classic Novikov condition [42] to ensure that
(Ωt, 0 ≤ t ≤ T ) is a martingale, i.e. that

E
[
exp

(
1

2

∫ t

0

h(t, Y (t))2ds

)]
<∞.

This can be quite a difficult condition to verify, and so in the course of
the next few lemmas we will seek to provide conditions which ensure that Ω
is a martingale.

The stochastic derivative in the following lemma will be of use in showing
the change of measure (84) is a martingale and in the derivation of the Zakai
equation.

Lemma 3.3.1.

dΩt = Ωt−

{
−h(t, Y (t))dBZ(t) +

∫
R0

[
λ(t, y)−1 − 1

]
Ñλ(ds, dy)

}
(85)

Proof. Applying Theorem 1.5.1 to (84),

dΩt = Ωt−

{
−h(t, Y (t))dBZ(t)− 1

2
h(t, Y (t))2dt

}
+

1

2
Ωt−h(t, Y (t))2dt

− Ωt−

∫
R0

[1− λ(t, y)] ν(dy)dt+

∫
R0

[exp {−η(t−)− log λ(t, y)} − Ωt−]Nλ(dt, dy)

= Ωt−

{
−h(t, Y (t))dBZ(t)−

∫
R0

[1− λ(t, y)] ν(dy)dt

}
+

∫
R0

[
λ(t, y)−1 − 1

]
Nλ(ds, dy)

= Ωt−

{
−h(t, Y (t))dBZ(t) +

∫
R0

[
λ(t, y)−1 − 1

]
Ñλ(ds, dy)

}
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The following lemma is a generalisation of [5, Lemma 3.9], and shows us
the conditions required in order for the change of measure to be a martingale.

Lemma 3.3.2. Let h be the measurable process defined earlier, and Nλ the
integer valued random measure with predictable compensator λ. If we impose
the following conditions;

E
[∫ t

0

h(s, Y (s))2ds

]
<∞ E

[∫ t

0

∫
R0

(
λ(s, y)−1 + λ(s, y)

)
ν(dy)ds

]
<∞

(86)
and if the processes Ω, λ and h satisfy the following for all t ≥ 0,

E
[∫ t

0

Ωs−h(s, Y (s))2ds

]
<∞,

E
[∫ t

0

∫
R0

Ωs−(λ(s, y)− 1)2ν(dy)ds

]
<∞, (87)

then Ω is a martingale.

Proof. By Lemma 3.3.1 and using a similar result to [3, p289] we can see
that Ω is a càdlàg local martingale. Using stopping times and Fatou’s lemma
as in [3, p.289] we can show this is a supermartingale.

Therefore to show that Ω is a martingale we need to calculate its expec-
tation and show that this is constant, see [3, Lemma 5.2.3].

We use the following elementary result that given

f(x) =
x

(1 + ax)

then for c ∈ R

f(cx)− f(x) =
(c− 1)x

(1 + ax)(1 + acx)
.

By Theorem 1.5.1, for arbitrary ε > 0 and using the above result,
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Ωt

1 + εΩt

=
1

1 + ε
−
∫ t

0

Ωs−

(1 + εΩs−)2
h(s, Y (s))dBZ(s)

−
∫ t

0

εΩ2
s−h(s, Y (s))2

(1 + εΩs−)3
ds

+

∫ t

0

∫
R0

Ωs−(λ(s, y)−1 − 1)

(1 + ελ(s, y)−1Ωs−)(1 + εΩs−)
Ñλ(ds, dy)

+

∫ t

0

∫
R0

ε(λ(s, y)− 1)(λ(s, y)−1 − 1)Ω2
s−

(1 + ελ(s, y)−1Ωs−)(1 + εΩs−)2
ν(dy)ds (88)

Using the square integrability condition of h:

E

[∫ t

0

(
Ωs−

(1 + εΩs−)2

)2

h(s, Y (s))2ds

]
≤ 1

ε2
E
[∫ t

0

h(s, Y (s))2ds

]
<∞.

Now using condition (86) and the finiteness of ν,

E

[∫ t

0

∫
R0

∣∣∣∣ Ωs−(λ(s, y)−1 − 1)

(1 + ελ(s, y)−1Ωs−)(1 + εΩs−)

∣∣∣∣2 λ(s, y)ν(dy)ds

]

≤ E

[∫ t

0

∫
R0

∣∣∣∣Ωs−(λ(s, y)−1 − 1)

Ωs−

∣∣∣∣2 λ(s, y)ν(dy)ds

]

= E
[∫ t

0

∫
R0

(λ(s, y)−1 − 1)2λ(s, y)ν(dy)ds

]
= E

[∫ t

0

∫
R0

(
λ(s, y)−1 + λ(s, y)− 2

)
ν(dy)ds

]
<∞

Hence both the second and fourth terms of (88) are square integrable
martingales with zero expectation, therefore if we take expectations we are
left with,

E
[

Ωt

1 + εΩ(t)

]
=

1

1 + ε
− E

[∫ t

0

εΩ2
s−h(s, Y (s))2

(1 + εΩs−)3
ds

]
+ E

[∫ t

0

∫
R0

∣∣∣∣ε(λ(s, y)− 1)(λ(s, y)−1 − 1)Ω2
s−

(1 + ελ(s, y)−1Ωs−)(1 + εΩs−)2

∣∣∣∣ ν(dy)ds

]
.

We now take limits of the above as ε → 0. It is clear the first term will
yield 1. For convergence of the second term to zero, the reader is directed to
[5, p.53].
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For the final term we use (87)

E
[∫ t

0

∫
R0

∣∣∣∣ε(λ(s, y)− 1)(λ(s, y)−1 − 1)Ω2
s−

(1 + ελ(s, y)−1Ωs−)(1 + εΩs−)2

∣∣∣∣ ν(dy)ds

]
≤ E

[∫ t

0

∫
R0

∣∣∣∣εΩ2
s−(λ(s, y)− 1)(λ(s, y)−1 − 1)

ελ(s, y)−1Ωs−

∣∣∣∣ ν(dy)ds

]
= E

[∫ t

0

∫
R0

Ωs−(λ(s, y)− 1)2ν(dy)ds

]
<∞

and using dominated convergence we see that,

lim
ε→0

E
[∫ t

0

∫
R0

ε(λ(s, y)− 1)(λ(s, y)−1 − 1)Ω2
s−

(1 + ελ(s, y)−1Ωs−)(1 + εΩs−)2
ν(dy)ds

]
= 0.

Therefore, the expectation is constant and we have a martingale.

For the rest of this thesis, we will make the assumptions (86) and (87).

Theorem 3.3.3. Z = (Z(t), t ≥ 0) is a Q Lévy process.

Proof. We will derive the Lévy-Khintchine formula for the given process.
Firstly using basic principles of martingales, for u ∈ R

EQ
[
eiuZ(t)

]
= EP

[
eiuZ(t)ΩT

]
= EP

[
EP
[
eiuZ(t)ΩT |Ft

]]
= EP

[
eiuZ(t)Ωt

]
.

We now apply Itô’s product rule to get,

d
(
eiuZ(t)Ωt

)
= d(eiuZ(t))Ωt− + eiuZ(t−)dΩt + d

(
eiuZ(t)

)
dΩt.

So using Lemma 3.3.1 and (82),
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d
(
eiuZ(t)Ωt

)
= eiuZ(t−)Ωt−

{
iudBZ(t) + iuh(t, Y (t))dt− 1

2
u2dt+

+

∫
R0

(
eiuy − 1

)
Nλ(dt, dy)

− h(t, Y (t))dBZ(t) +

∫
R0

(
λ(t, y)−1 − 1

)
Ñλ(dt, dy)

− iuh(t, Y (t))dt+

∫
R0

(
eiuy − 1

) (
λ(t, y)−1 − 1

)
Nλ(dt, dy)

}
= eiuZ(t−)Ωt−

{
(iu− h(t, Y (t))dBZ(t)− 1

2
u2dt

+

∫
R0

(
λ−1(t, y)(eiuy − 1)

)
Nλ(dt, dy)

+

∫
R0

(
λ(t, y)−1 − 1

)
Ñλ(dt, dy)

= eiuZ(t−)Ωt−

{
(iu− h(t, Y (t))dBZ(t)− 1

2
u2dt

+

∫
R0

(
λ(t, y)−1eiuy − 1

)
Ñλ(dt, dy)

+

∫
R0

(
eiuy − 1

)
ν(dy)dt

}
. (89)

Integrating yields,

eiuZ(t)Ωt =

∫ t

0

eiuZ(s−)Ωs−(iu− h(s, Y (s−)))dBZ(s)

+

∫ t

0

∫
R0

eiuZ(s−)Ωs−
(
eiuyλ(s, y)−1 − 1

)
Ñλ(ds, dy)

+

∫ t

0

∫
R0

eiuZ(s−)Ωs−
(
eiuy − 1

)
ν(dy)ds− 1

2
u2
∫ t

0

eiuZ(s−)Ωs−ds.

(90)

Now we let φu(s, t) = E
[
eiuZ(t)Ωt|Fs

]
then,

φu(s, t) = eiuZ(s)Ωs + η(u)

∫ t

s

φu(s, r)dr,
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where η(u) = −1
2
u2 +

∫
R0

(eiuy − 1) ν(dy). Now as eiuZ(s)(ω)Ωs(ω) 6= 0 for
almost all ω ∈ Ω we can define

g(s, t) =
φu(s, t)

eiuZ(s)Ωs

= EP
[
eiu(Z(t)−Z(s))

Ωt

Ωs

∣∣∣Fs]
and so we have,

g(s, t) = 1 + η(u)

∫ t

s

g(s, r)dr.

Now, it follows that t → g(s, t) is differentiable for s < t and d
dt
g(s, t) =

η(u)g(s, t) with initial condition g(s, s) = 1. Therefore,

g(s, t) = e(t−s)η(u).

Then it follows from Lemma 1.1.11 that we have a Lévy process.

As shown above, we have transformed the observation process into a
pure noise process consisting of a Q Brownian motion and a pure jump Lévy
process, i.e (82) becomes,

dZ(t) = dBQ(t) + dL(t), (91)

where Z(t) is now a Lévy process independent of Y (t) with

BQ(t) = BZ(t) +

∫ t

0

h(s, Y (s))ds (92)

as the Brownian part (from Girsanov’s theorem), and

L(t) =

∫ t

0

∫
R0

yN(ds, dy) (93)

as the jump component. Since Z is a Q -Lévy process, N is a Poisson random
measure with compensator ν(dy)dt as has been defined earlier in (16). At
this point we calculate the Q expectation of the observation process for each
t ≥ 0:

EQ [Z(t)] = EQ
[∫ t

0

∫
R0

yN(ds, dy)

]
=

∫ t

0

∫
R0

yν(dy)ds. (94)
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Let Ω̃t = (Ω̃t, t ≥ 0) be the process defined as Ω̃t = Ω−1t i.e,

Ω̃t = exp

{∫ t

0

h(s, Y (s))dBZ(s) +
1

2

∫ t

0

h(s, Y (s))2ds

+

∫ t

0

∫
R0

log(λ(t, y))Nλ(ds, dy) +

∫ t

0

∫
R0

(1− λ(t, y)) ν(dy)ds

}
. (95)

When we find an expression for the unnormalised conditional distribution,
we will take Q expectations and transform them back to P expectations,
therefore we will find the following lemma of use.

Lemma 3.3.4.

dΩ̃t = Ω̃t−

{
h(t, Y (t))dBQ(t) +

∫
R0

[λ(t, y)− 1]Nλ(ds, dy)

−
∫ t

0

(λ(t, y)− 1)ν(dy)ds

}
(96)

Proof. Using (95),(92) and Itô’s formula,

dΩ̃t = Ω̃t−

{
h(t, Y (t))dBZ(t) +

1

2
h2(t, Y (t))dt

}
+

1

2
Ω̃t−h

2(t, Y (t))dt

+ Ω̃t−

∫
R0

[1− λ(t, y)] ν(dy)dt+

∫
R0

[
exp {η(t−) + log λ(t, y)} − Ω̃t−

]
Nλ(ds, dy)

= Ω̃t−

{
h(t, Y (t))dBQ(t) +

∫
R0

[1− λ(t, y)]ν(dy)dt

+

∫
R0

[λ(t, y)− 1]Nλ(ds, dy)

}

It is convenient to rewrite (95) from a Q perspective as follows,

Ω̃t = exp

{∫ t

0

h(s, Y (s))dBQ
s −

1

2

∫ t

0

h(s, Y (s))2ds

+

∫ t

0

∫
R0

log(λ)Nλ(ds, dy) +

∫ t

0

∫
R0

(1− λ) ν(dy)ds

}
(97)

The final proposition in this section is important when deriving the non
linear filtering equations using the change of measure approach. It shows
us that we can replace the σ-algebra Zt with a fixed, non time dependent
σ-algebra Z. The intriguing interpretation of this is that it tells us the future
observations will not affect our best estimate.
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Proposition 3.3.5. Let U be a Q integrable Ft measurable random variable.
Then we have,

EQ [U |Zt] = EQ [U |Z]

where
Z =

∨
0≤t≤T

Zt.

For proof see [5, Proposition 3.15].
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3.4 The Unnormalised Conditional Distribution

We start this section by first stating the Kallianpur-Striebel formula and
then go on use this to define the unnormalised conditional distribution.

Theorem 3.4.1. (Kallianpur-Striebel)
For every ϕ ∈ C2

c (R) and for fixed t ∈ [0,∞),

πt(ϕ) =
EQ
[
Ω̃tϕ(Y (t))|Z

]
EQ
[
Ω̃t|Z

] P (Q)a.s. (98)

For proof see [5, Proposition 3.16].
In the following work we will define (β(t), 0 ≤ t ≤ T ) as

β(t) = EQ
[
Ω̃t|Zt

]
and we will identify it with a càdlàg version which always exists by the
argument in [5, p.58]. This leads us nicely to the following definition of the
unnormalised conditional distribution.

Definition 3.4.2. Define the measure valued process ρ = (ρt, t ≥ 0), to be
the unnormalised conditional distribution of the signal Y . It is given by

ρt(ϕ) := πt(ϕ)β(t),

for ϕ ∈ B(R) and t ≥ 0.

Lemma 3.4.3. The process (ρt, t ≥ 0) is càdlàg and Zt adapted. Further-
more, for any t ≥ 0

ρt(ϕ) = EQ
[
Ω̃tϕ(Y (t))

∣∣Zt] P (Q)a.s.

For proof see [16, Lemma 3.18].

It is tempting, in the following, to write πt(ϕ) = ρt(ϕ)
ρt(1)

but we avoid this

at this stage since it is not clear if ρt(1) 6= 0 (a.s).

Corollary 3.4.4. For ϕ ∈ C2
c (R) and t ≥ 0,

πt(ϕ)ρt(1) = ρt(ϕ) P (Q)a.s.
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For proof see [5, Corollary 3.19]. It is of vital importance to our filtering
equations to find the conditions under which we can pass conditional expec-
tations through an integral. However before we look at this problem we first
need the following lemma.

Lemma 3.4.5. Let X = (X(t), t ≥ 0) be a Lévy process on a probabil-
ity space (Ω′,F ′, P ′) adapted to a given filtration (F ′t, t ≥ 0). Define St =
{(εrt , t ≥ 0)|r ∈ L∞ ([0, t],R)} where,

εrt = exp

(
i

∫ t

0

r(s)dX(s)−
∫ t

0

η(r(s))ds

)
(99)

and η(·) is the Lévy symbol corresponding to the process X. Then St is a
total set in L1(Ω,F , Q), by this we mean if a ∈ L1(Ω,F , Q) and E[aεt] = 0
for all ε ∈ St then a = 0 a.s. Also, each εrt in St satisfies an SDE of the
following form,

εrt = 1 +

∫ t

0

iεrsr(s)dB(s) +

∫ t

0

∫
R0

(
eir(s)y − 1

)
εrsÑ(ds, dy) (100)

The proof of the first part is a direct generalisation of [5, B.39] and is
included in the appendix A.0.6. For the representation in the second part,
the reader is referred to [3, Lemma 5.3.3(ii)], where only an application of
Itô’s formula is required.

The following result is a generalisation of [5, Lemma 3.21].

Lemma 3.4.6. Let (ut, t ≥ 0) be an Ft predictable process such that for all
(t ≥ 0) we have

EQ
[∫ t

0

u2sds

]
<∞, (101)

then for all t ≥ 0 for our observation process Z defined earlier, we have

EQ
[∫ t

0

usdZ(s)
∣∣∣Z] =

∫ t

0

EQ [us|Z] dZ(s). (102)

Proof. Every εrt from the total set defined in Lemma 3.4.5 satisfies the fol-
lowing stochastic integral equation (100) and so we have, using (91), (94)
and the conditional Fubini theorem,
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EQ
[
εrtEQ

[∫ t

0

usdZ(s)
∣∣∣Z]] = EQ

[
εrt

∫ t

0

usdZ(s)

]
= EQ

[∫ t

0

usdZ(s)

]
+ EQ

[∫ t

0

iεrsrsusds

]
+ EQ

[∫ t

0

∫
R0

y
(
eir(s)y − 1

)
εrsusν(dy)ds

]
= EQ

[
EQ
[∫ t

0

∫
R0

yusν(dy)ds
∣∣∣Z]]

+ EQ
[
EQ
[∫ t

0

iεrsrsusds
∣∣∣Z]]

+ EQ
[
EQ
[∫ t

0

∫
R0

y
(
eir(s)y − 1

)
εrsusν(dy)ds

∣∣∣Z]]
= EQ

[∫ t

0

∫
R0

yEQ [us|Z] ν(dy)ds

]
+ E

[∫ t

0

iεrsrsE [us|Z] ds

]
+ EQ

[∫ t

0

∫
R0

y
(
eir(s)y − 1

)
εrsEQ [us|Z] ν(dy)ds

]
= EQ

[
εrt

∫ t

0

EQ [us|Z] dZ(s)

]
.

We will need the following lemma for the proof of the Zakai equation.

Lemma 3.4.7. Let N be a Poisson random measure, with compensator
Ñ(ds, dx) = N(ds, dx) − ν(dx)ds, and B an independent standard Brow-
nian motion defined on the probability space (Ω′,F ′, P ′). Let both ψn, ψ and
φn, φ be predictable mappings such that

∫ t
0

∫
R0
|ψ(s, y)|2ν(dy)ds <∞ a.s. and∫ t

0
φ(s)2ds <∞ a.s.

a) If

lim
n→∞

∫ t

0

∫
R0

|ψn(s, y)− ψ(s, y)|2ν(dy)ds = 0 (103)

in probability then,

lim
n→∞

sup
0≤t≤T

∣∣∣∣∫ t

0

∫
R0

(ψn(s, y)− ψ(s, y))Ñ(ds, dy)

∣∣∣∣ = 0

in probability.
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b) If

lim
n→∞

∫ t

0

|φn(s)− φ(s)|2ds = 0

in probability then

lim
n→∞

sup
0≤t≤T

∣∣∣∣∫ t

0

(φn(s)− φ(s))dB(s)

∣∣∣∣ = 0

in probability.

The proofs of these results follow a similar argument, and the reader is
directed to [16, Proposition B.41] for part (b) and the appendix A.0.5 for
part (a).

3.5 The Zakai Equation

We now need to make the following assumptions, for all t ≥ 0,

Q

[∫ t

0

ρs (h(s, Y (s))2 ds <∞
]

= 1. (104)

Q

[∫ t

0

∫
R0

[
ρt
(
λ−1(t, y) + λ(t, y)

)]2
ν(dy)ds <∞

]
= 1 (105)

The assumption (104) is found in [5] and will be used to deal with the
Brownian terms in the upcoming proof. The condition (105) is analogous to
the first but will be used to control the jump terms.

Now we are ready to derive the celebrated Zakai equation. Note that our
derivation here agrees with the one found in [5, Theorem 3.24] when there is
no jump part.

Theorem 3.5.1. (Zakai Equation)
The process (ρt, t ≥ 0) satisfies the following evolution equation.

ρt(ϕ) = π0(ϕ) +

∫ t

0

ρs[Aϕ]ds

+

∫ t

0

ρs [(ϕ(Y (s))h(s, Y (s))] dBQ(s)

+

∫ t

0

∫
R0

ρs [ϕ(Y (s))(λ(s, y)− 1)] Ñ(ds, dy) (106)
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Proof. This proof unfolds over the next few pages and is quite delicate. We
adapt the technique used in [5, p.62-65], and so our first aim is to approximate
Ω̃t by,

Ω̃ε
t =

Ω̃t

1 + εΩ̃t

where ε > 0. The second step is to use Itô’s formula, integrate and then take
conditional expectations, which will require certain conditions being met in
order to pass the conditional expectations through the integrals. Finally in
our third step we take limits as ε→ 0.

Using Itô’s formula we see that

d
(

Ω̃ε
tϕ(Y (t))

)
= dΩ̃ε

tϕ(Y (t−)) + Ω̃ε
t−dϕ(Y (t)) + dΩ̃ε

tdϕ(Y (t)),

Now using Lemma 3.3.4 and (79),

d
(

Ω̃ε
tϕ(Y (t))

)
= Ω̃ε

t− [Aϕ(Y (t−))] dt+ Ω̃ε
tdM

ϕ
t

+ ϕ(Y (t−))
Ω̃t−

(1 + εΩ̃t−)2

{
h(t, Y (t))dBQ(t) +

∫
R0

(1− λ(t, y))ν(dy)dt

}
− εϕ(Y (t−))

(1 + εΩ̃t−)3
Ω̃2
t−h(t, Y (t))2dt

+

∫
R0

ϕ(Y (t))Ω̃t−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃t−)(1 + εΩ̃t−)
N(dy, dt)

= Ω̃ε
t [Aϕ(Y (t−))] dt+ Ω̃ε

tdM
ϕ
t

+ ϕ(Y (t−))
Ω̃t−

(1 + εΩ̃t−)2

{
h(t, Y (t))dBQ(t) +

∫
R0

(1− λ(t, y))ν(dy)dt

}
− εϕ(Y (t−))

(1 + εΩ̃t−)3
Ω̃2
t−h(t, Y (t))2dt

+

∫
R0

ϕ(Y (t−))Ω̃t−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃t−)(1 + εΩ̃t−)
Ñ(dt, dy)

+

∫
R0

ϕ(Y (t))Ω̃t−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃t−)(1 + εΩ̃t−)
ν(dy)

= (107)
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= Ω̃ε
t− [Aϕ(Y (t−))] dt+ Ω̃ε

tdM
ϕ
t

+ ϕ(Y (t))
Ω̃t−

(1 + εΩ̃t−)2

{
h(t, Y (t))dBQ(t)

}
− εϕ(Y (t−))

(1 + εΩ̃t−)3
Ω̃2
t−h(t, Y (t))2dt

+

∫
R0

ϕ(Y (t−))Ω̃t−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃t−)(1 + εΩ̃t−)
Ñ(dt, dy)

−
∫
R0

ϕ(Y (t−))ε(λ(t, y)− 1)2Ω̃2
t−

(1 + εΩ̃t−)2(1 + ελ(t, y)Ω̃t−)
ν(dy)dt (108)

For convenience we now label the terms in (108) from (1) to (6). We
need to integrate over [0, t] and pass conditional expectations through the
integrals.

For the first term since ϕ ∈ C2
c (R) and Ω̃ε

t is bounded then it is clear
that,

EQ
[∫ t

0

EQ
[∣∣∣Ω̃ε

sϕ(Y (s−))
∣∣∣Z] ds] <∞

and so by the conditional form of Fubini’s theorem we have,

EQ
[∫ t

0

Ω̃ε
sϕ(Y (s−))ds

∣∣Z] =

∫ t

0

EQ
[
Ω̃ε
sϕ(Y (s−))

∣∣Z] ds
For the second term we note that since Ω̃ε

t is bounded,

EQ
[∫ t

0

Ω̃ε
sdM

ϕ
s

∣∣Z] = 0

For terms (3) and (5) we will use Lemma 3.4.6 to take conditional expec-
tations and pass them through the integrals, but in order to do this we must
first satisfy condition (101).

To this end, we require the following elementary inequality,

1

1 + α
≤ min

{
1,

1

α

}
for all α ≥ 0. (109)

Now by Itô’s isometry,
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EQ

(∫ t

0

∫
R0

ϕ(Y (s))Ω̃s−(λ(s, y)− 1)

(1 + ελ(s, y)Ω̃s−)(1 + εΩ̃s−)
Ñ(ds, dy)

)2


≤ ||ϕ||
2
∞

ε2
EQ
[∫ t

0

∫
R0

(λ(s, y)− 1)2ν(dy)ds

]
=
||ϕ||2∞
ε2

E
[∫ t

0

∫
R0

Ωs−(λ(s, y)− 1)2ν(dy)ds

]
<∞. (110)

The proof of

E

(∫ t

0

ϕ(Y (s))
Ω̃s−

(1 + εΩ̃s−)2
h(s, Y (s))dBQ(s)

)2
 <∞

follows from (87), and can be seen in [5, p.62].
For term (6) we need the result of the following in order to use the condi-

tional form of Fubini’s theorem. So, using (109), (87) and the tower property:

EQ
[∫ t

0

∫
R0

EQ

[∣∣∣∣∣ ϕ(Y (s))ε(λ(s, y)− 1)2Ω̃2
s−

(1 + εΩ̃s−)2(1 + ελ(s, y)Ω̃s−)

∣∣∣∣∣ ∣∣∣Z
]
ν(dy)ds

]

= EQ

[∫ t

0

∫
R0

∣∣∣∣∣ ϕ(Y (s))ε(λ(s, y)− 1)2Ω̃2
s−

(1 + εΩ̃s−)2(1 + ελ(s, y)Ω̃s−)

∣∣∣∣∣ ν(dy)ds

]

≤ ε||ϕ||∞EQ

[∫ t

0

∫
R0

(λ(s, y)− 1)2Ω̃2
s−

(1 + εΩ̃s−)2(1 + ελ(s, y)Ω̃s−)
ν(dy)ds

]

≤ ε||ϕ||∞EQ

[∫ t

0

∫
R0

(λ(s, y)− 1)2Ω̃2
s−

(εΩ̃s−)2
ν(dy)ds

]

=
||ϕ||∞
ε

EQ
[∫ t

0

∫
R0

(λ(s, y)− 1)2ν(dy)ds

]
=
||ϕ||∞
ε

E
[∫ t

0

∫
R0

Ωs−(λ(s, y)− 1)2ν(dy)ds

]
<∞

Finally all that remains is to show that we can use the conditional form
of Fubini’s theorem on term (4). Using (109) and (87),
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EQ
[∫ t

0

EQ
[∣∣∣∣ εϕ(Y (s−))

(1 + εΩ̃s−)3
Ω̃2
s−h(s, Y (s))2

∣∣∣∣ ∣∣∣Z] ds]
= EQ

[∫ t

0

∣∣∣∣ εϕ(Y (s−))

(1 + εΩ̃s−)3
Ω̃2
s−h(s, Y (s))2

∣∣∣∣ ds]
≤ ε||ϕ||∞EQ

[∫ t

0

∣∣∣∣∣ Ω̃2
s−

(1 + εΩ̃s−)3
h(s, Y (s))2

∣∣∣∣∣ ds
]

≤ ||ϕ||∞
ε

EQ
[∫ t

0

h(s, Y (s))2ds

]
=
||ϕ||∞
ε

E
[∫ t

0

Ωs−h(s, Y (s))2ds

]
<∞.

Now returning to (108), using the results just proved, integrating and
applying Lemma 3.4.6

EQ
[
Ω̃ε
tϕ(Y (t))|Z

]
=

π0
1 + ε

+

∫ t

0

EQ
[
Ω̃ε
sAϕ(Y (s))|Z

]
ds

+

∫ t

0

EQ

[
ϕ(Y (s))

Ω̃s−

(1 + εΩ̃s−)2
h(s, Y (s))

∣∣∣Z] dB(s)

+

∫ t

0

EQ
[
εϕ(Y (t))

(1 + εΩ̃t−)3
Ω̃2
t−h(t, Y (t))2

∣∣∣Z] dt
+

∫ t

0

∫
R0

EQ

[
ϕ(Y (s))Ω̃s−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃s−)(1 + εΩ̃s−)

∣∣∣Z] Ñ(ds, dy)

−
∫ t

0

∫
R0

EQ

[
ϕ(Y (s))ε(λ(t, y)− 1)2Ω̃2

s−

(1 + εΩ̃s−)2(1 + ελ(t, y)Ω̃s−)

∣∣∣Z] ν(dy)ds.

(111)

We now wish to let ε tend to 0 so that limε→0 Ω̃ε
t = Ω̃t P (Q) a.s. Using

Lemma 3.4.3 and the conditional form of the dominated convergence theorem
(see [20, p.397] for statement and proof) it is shown in [5, p.62] that∫ t

0

EQ
[
Ω̃ε
sAϕ(Y (s))|Z

]
→
∫ t

0

ρs [Aϕ(Y (s))] ds.

The proof that
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lim
ε→0

∫ t

0

E

[
ϕ(Y (s))

Ω̃s−

(1 + εΩ̃s−)2
h(s, Y (s))

∣∣∣Z] dB(s)

=

∫ t

0

ρs [ϕ(Y (s))h (s, Y (s))] dB(s)

and

lim
ε→0

∫ t

0

EQ
[
εϕ(Y (s))

(1 + εΩ̃s−)3
Ω̃2
s−h(s, Y (s))2

∣∣∣Z] ds = 0

can also be found in [5, p.64].
The next stage of this proof requires us to show that the last term in

(111) tends to zero as ε→ 0.
To justify the use of dominated convergence we first compute

∫ t

0

∫
R0

∣∣∣∣∣ ϕ(Y (s))ε(λ(s, y)− 1)2Ω̃2
s−

(1 + εΩ̃s−)2(1 + ελ(s, y)Ω̃s−)

∣∣∣∣∣ ν(dy)ds

< ε||ϕ||∞
∫ t

0

∫
R0

∣∣∣∣∣(λ(s, y)− 1)2 Ω̃2
s−

(εΩ̃s−)2

∣∣∣∣∣ ν(dy)ds

=
||ϕ||∞
ε

∫ t

0

∫
R0

∣∣(λ(s, y)− 1)2
∣∣ ν(dy)ds.

The right hand side of the above can seen to be Q-integrable using (87)
to obtain,

EQ
[∫ t

0

∫
R0

(λ(t, y)− 1)2ν(dy)ds

]
= E

[∫ t

0

∫
R0

Ωs(λ(t, y)− 1)2ν(dy)ds

]
<∞

and so we use the conditional form of dominated convergence again to show
that

lim
ε→0

∫ t

0

∫
R0

EQ

[
ϕ(Y (s))ε(λ(t, y)− 1)2Ω̃2

s−

(1 + εΩ̃s−)2(1 + ελ(t, y)Ω̃s−)

∣∣∣Z] ν(dy)ds

=

∫ t

0

∫
R0

EQ

[
lim
ε→0

ϕ(Y (s))ε(λ(t, y)− 1)2Ω̃2
s−

(1 + εΩ̃s−)2(1 + ελ(t, y)Ω̃s−)

∣∣∣Z] ν(dy)ds

= 0. (112)
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Our last step in this proof is to show that as ε→ 0

∫ t

0

∫
R0

EQ

[
ϕ(Y (s))Ω̃s−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃s−)(1 + εΩ̃s−)

∣∣∣Z] Ñ(ds, dy)

→
∫ t

0

∫
R0

ρs [ϕ(Y (s))(λ(t, y)− 1)] Ñ(ds, dy). (113)

We aim to show this convergence using Lemma 3.4.7. First, we consider
the local martingale

t→
∫ t

0

∫
R0

EQ

[
ϕ(Y (s))Ω̃s−(λ(t, y)− 1)

(1 + ελ(t, y)Ω̃s−)(1 + εΩ̃s−)

∣∣∣Z] Ñ(ds, dy) (114)

and we show that this is square integrable. By Itô’s isometry, the conditional
Jensen inequality, Fubini’s theorem and (87),

EQ

[(∫ t

0

∫
R0

EQ

[
ϕ(Y (s))Ω̃s−(λ(s, y)− 1)

(1 + ελ(t, y)Ω̃s−)(1 + εΩ̃s−)

∣∣∣Z] Ñ(ds, dy)

)2 ]

= EQ

[∫ t

0

∫
R0

(
EQ

[
ϕ(Y (s))Ω̃s−(λ(s, y)− 1)

(1 + ελ(s, y)Ω̃s−)(1 + εΩ̃s−)

∣∣∣Z])2

ν(dy)ds

]

≤ EQ

∫ t

0

∫
R0

EQ

( ϕ(Y (s))Ω̃s−(λ(s, y)− 1)

(1 + ελ(t, y)Ω̃s−)(1 + εΩ̃s−)

)2 ∣∣∣Z
 ν(dy)ds


≤ ||ϕ||

2
∞

ε2

∫ t

0

∫
R0

EQ
[
(λ(s, y)− 1)2

]
ν(dy)ds

=
||ϕ||2∞
ε2

∫ t

0

∫
R0

E
[
Ωs(λ(s, y)− 1)2

]
ν(dy)ds

<∞

and so the process in (114) is a martingale. We postulate that the limit
process as ε→ 0 is the well defined local martingale,

t→
∫ t

0

∫
R0

EQ
[
Ω̃sϕ(Y (s)(λ(t, y)− 1)|Z

]
Ñ(ds, dy)

=

∫ t

0

∫
R0

ρs [ϕ(Y (s)(λ(s, y)− 1))] Ñ(ds, dy)
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First observe that the difference of the above with (114) is also a local
martingale taking the form,

t→
∫ t

0

∫
R0

EQ

[
ϕ(Y (s))(1− λ(s, y))Ω̃2

s(1 + λ(s, y) + ελ(s, y)Ω̃s)ε

(1 + ελ(s, y)Ω̃s)(1 + εΩ̃s)

∣∣∣Z] Ñ(dy, ds).

(115)
We now use Lemma 3.4.7 to prove that the integral above converges to 0

Q-a.s.
We compute,

∣∣∣∣∣ϕ(Y (t))(λ(t, y)− 1)Ω̃2
s(1 + λ(t, y) + ελ(t, y)Ω̃s)ε

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣∣∣
≤ ||ϕ||∞

∣∣∣∣∣ ε(λ(t, y)− 1)Ω̃2
s

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)
+
ε(λ(t, y)− 1)Ω̃2

s(1 + εΩ̃s)λ(t, y)

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣∣∣
≤ ||ϕ||∞

(∣∣∣∣∣ ε(λ(t, y)− 1)Ω̃2
s

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣∣∣+

∣∣∣∣∣ε(λ(t, y)− 1)Ω̃2
sλ(t, y)

(1 + ελ(t, y)Ω̃s)

∣∣∣∣∣
)

≤ ||ϕ||∞

(∣∣∣∣∣ε(λ(t, y)− 1)Ω̃2
s

ελ(t, y)Ω̃s

∣∣∣∣∣+

∣∣∣∣∣ε(λ(t, y)− 1)Ω̃2
sλ(t, y)

ελ(t, y)Ω̃s

∣∣∣∣∣
)

= ||ϕ||∞
(∣∣∣(1− λ(t, y)−1)Ω̃s

∣∣∣+
∣∣∣(λ(t, y)− 1)Ω̃s

∣∣∣)
≤ ||ϕ||∞Ω̃s

(
λ−1(t, y) + λ(t, y) + 2

)
. (116)

We now show the right-hand side of (116) is Q integrable a.e. First
observe that

EQ
[
Ω̃s

(
λ−1(t, y) + λ(t, y) + 2

)]
= 2 + E

[
λ−1(t, y) + λ(t, y)

]
.

By Fubini’s theorem and (86)

E
[∫ t

0

∫
R0

(λ(s, y) + λ−1(s, y))ν(dy)ds

]
=

∫ t

0

∫
R0

E
[
(λ(s, y) + λ−1(s, y))

]
ν(dy)ds

<∞

and this implies that E [(λ(t, y)− λ−1(s, y))] <∞ a.e (Leb× ν).
Using the dominated convergence theorem once more we can conclude

that for almost every t ≥ 0 and y ∈ R,
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lim
ε→0

EQ

[
ϕ(Y (t))(λ(t, y)− 1)Ω̃2

t (1 + λ(t, y) + ελ(t, y)Ω̃t)ε

(1 + ελ(t, y)Ω̃t)(1 + εΩ̃t)

]
= 0 Q-a.s. (117)

Using (116) we have,

∣∣∣∣∣EQ
[
ϕ(Y (s))(λ(t, y)− 1)Ω̃2

s(1 + λ(t, y) + ελ(t, y)Ω̃s)ε

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣Z]∣∣∣∣∣
≤ ||ϕ||∞

∣∣∣EQ [Ω̃s

(
λ−1(t, y) + λ(t, y) + 2

)
|Z
]∣∣∣

= ||ϕ||∞
∣∣ρt (λ−1(t, y) + λ(t, y) + 2

)∣∣
and therefore using (105) it follows that Q-a.s,

∫ t

0

∫
R0

(
EQ

[
ε
ϕ(Y (s))(λ(t, y)− 1)Ω̃2

s(1 + λ(t, y) + ελ(t, y)Ω̃s)

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣Z ])2

ν(dy)ds

≤ ||ϕ||2∞
∫ t

0

∫
R0

[
ρt
(
λ−1(t, y) + λ(t, y) + 2

)]2
ν(dy)ds

<∞.

Now using dominated convergence, we can show that,

lim
ε→0

∫ t

0

∫
R0

(
EQ

[
ε
ϕ(Y (s))(λ(t, y)− 1)Ω̃2

s(1 + λ(t, y) + ελ(t, y)Ω̃s)

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣Z ])2

ν(dy)ds

=

∫
R0

(
EQ

[
lim
ε→0

∫ t

0

ε
ϕ(Y (s))(λ(t, y)− 1)Ω̃2

s(1 + λ(t, y) + ελ(t, y)Ω̃s)

(1 + ελ(t, y)Ω̃s)(1 + εΩ̃s)

∣∣∣Z ])2

ν(dy)ds

= 0 Q− a.s. (118)

We have now satisfied condition (103) and so as a consequence of the
above we can now use Lemma 3.4.7 to establish the convergence proposed in
(113).
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3.6 The Kushner Stratonovich Equation

In the previous section we derived the form for the unnormalised conditional
distribution. We now wish to extend this by finding an equation for the
normalised version π.

In this section we will require the following assumptions. They can how-
ever be shown to be implied by the stronger conditions (86) and (87) stated
earlier.

P

(∫ t

0

πs (h(s, Y (s)))2 <∞
)

= 1 (119)

P

(∫ t

0

∫
R0

πs(λ(s, y)− 1)ν(dy)ds <∞
)

= 1 (120)

Before moving on to the derivation of the normalised conditional distri-
bution, we see from Corollary 3.4.4 that in order to find πt(ϕ), we will be
required to divide by ρt(1). We already know from (3.4.3) that ρt(1) =

EQ
[
Ω̃t|Z

]
. Since Ω̃t > 0 for all t, it also follows that EQ

[
Ω̃t|Z

]
> 0 a.s. and

so, ρt(1) > 0 a.s for all t > 0. However this result is not enough, and in fact
we need to show the following,

P (ρt(1) > 0,∀t > 0) = 1

We give thanks to Aleksandar Mijatović for his guidance on the proof below.

Lemma 3.6.1. Given any càdlàg martingale M = (Mt, t ≥ 0) such that
Mt > 0 a.s for all t > 0 then,

P (Mt > 0,∀t > 0) = 1

Proof. Let τ = inf {t > 0;Mt = 0} and assume τ is bounded then P (Mτ =
0) = 1. We define the set,

As = τ−1 ([0, s]) , s > 0

and define the stopped σ-algebra,

Zτ = {A ∈ F ;A ∩ (τ ≤ t) ∈ Zt, ∀t ≥ 0} .

Then if we let b > τ we note that

M(τ) = 0 (a.s) =⇒ E [Mτ1As ] = 0 =⇒ E [1AsE [Mb|Zτ ]] = 0
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by the optional stopping theorem, and since As ∈ Zτ . Therefore with prob-
ability 1

1AsE [Mb|Zτ ] = 0.

It follows that,

lim
s→∞

E [1AsMb|Zτ ] = 0

and we note that 1AsMb ↑ 1A∞Mb, where A∞ = τ−1[0,∞) = {τ <∞}. Using
the conditional version of the monotone convergence theorem,

E [1A∞Mb|Zτ ] = 0

and finally taking expectations of the above we have,

E
[
1{τ<∞}Mb

]
= 0

which in turn implies that 1{τ<∞}Mb = 0 a.s., i.e. that Mb(ω) = 0 for all ω
in a set of positive measure. Now assume that τ is unbounded. Since

{τ <∞} =
⋃
n∈N

{n− 1 ≤ τ < n}

if P (τ < ∞) > 0, then at least one of the sets An = {n − 1 ≤ τ < n}
must have positive measure. Let An be such a set. Then if b > n the same
argument as above for bounded stopping times shows that

1AnM(b) = 0,

on a set of positive measure, and we have our desired contradiction.

Using the above lemma it is now easy to see that ρt(1) > 0 for all t with
probability 1.

Lemma 3.6.2. Given assumptions (86),(87), (105) and (104) then the pro-
cess t→ ρt(1) has the following representation,

ρt(1) = exp

{∫ t

0

πs(h(s, Y (s)))dBQ(s)

−
∫ t

0

1

2
π2
s(h(s, Y (s)))ds

+

∫ t

0

∫
R0

log(πs(λ)N(ds, dy)

−
∫ t

0

∫
R0

πs(λ(s, y)− 1)ν(dy)ds

}
(121)
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Proof. Since h is not necessarily bounded it is not trivial to see that h is
integrable with respect to πt, i.e that πt(h) exists. However conditions (86)
and (87) ensures that it is defined Leb⊗ P -a.s.

Using the Zakai equation and the identity A1 = 0 it follows that ρt(1)
satisfies the following identity,

ρt(1) = 1 +

∫ t

0

ρs[h(s, Y (s))]dBQ(s)

+

∫ t

0

∫
R0

ρs[(λ(s, y)− 1)]Ñ(dy, ds)

If we now apply Corollary 3.4.4 we can rewrite the above as,

ρt(1) = 1 +

∫ t

0

ρs(1)πs(h(s, Y (s)))dBQ(s)

+

∫ t

0

∫
R0

ρs(1)πs(λ(s, y)− 1)Ñ(dy, ds) (122)

we now apply Itô’s formula to log(ρt(1)).

d log(ρt(1)) =

(
1

ρt(1)

)
ρt(1)πt(h)dBQ(t)

− 1

2

1

ρt(1)2
(πt(h)ρt(1))2 dt

+

∫
R0

[log (ρt(1) + ρt(1)πt(λ(t, y)− 1))

− log (ρt(1))] Ñ(dy, dt)

+

∫
R0

[
log (ρt(1) + ρt(1)πt(λ(t, y)− 1))

− log (ρt(1))− ρt(1)πt(λ(t, y)− 1)

ρt(1)

]
ν(dy)dt

= πt(h)dBQ(t)− 1

2
πt(h)2dt

+

∫
R0

log(πt(h))N(dy, dt)−
∫
R0

πt(λ(t, y)− 1)ν(dy)ds (123)

Now integrating and taking exponentials gives the required result.
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In the work of [5, p.67] the authors do not use Lemma 3.6.1, instead an
approximation argument similar to the one in the Zakai equation is used.
This is needed because the author cannot use Itô’s formula directly since
x→ log(x) is not defined at x = 0, and if it was not for the previous lemma
we would not know that ρt(1) > 0 for all t ≥ 0 a.s. It is however never
negative which allows the following approximation. This works well when
the observation noise is Gaussian, however when we add jump noise the
result does not follow so easily. We have decided to include partial workings
here to warn others against following Alice down the rabbit-hole [11].

During the rest of the proof, we will take h to mean, (h(t, Y (t)), t ≥ 0).
By using Itô’s formula applied to (122) we get,

d
(

log
√
ε+ ρt(1)2

)
=

ρt(1)2

(ρt(1)2 + ε)
πs(h)dBQ(t)

+
1

2

ε− ρt(1)2πt(h)2

(ρt(1)2 + ε)2
dt

+

∫
R0

1

2
log

(
ε+ [ρt(1)(1 + πt(λ(s, y)− 1))]2

ε+ ρt(1)2

)
Ñ(dy, dt)

+

∫
R0

[
1

2
log

(
ε+ [ρt(1)(1 + πt(λ(s, y)− 1))]2

ε+ ρt(1)2

)

−πt(λ(s, y)− 1)
ρt(1)2

(ρt(1)2 + ε)

]
ν(dy)dt.

(124)

Noting that

ρt(1)(1 + πt(λ(s, y)− 1)) = ρt(1) + ρt(λ(t, y)− 1)

= ρt(λ(t, y)).

we can simplify the above to,
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d
(

log
√
ε+ ρt(1)2

)
=

ρt(1)2

(ρt(1)2 + ε)
πs(h)dBQ(t) +

1

2

ε− ρt(1)2πt(h)2

(ρt(1)2 + ε)2
dt

+

∫
R0

1

2
log

(
ε+ ρt(λ(s, y))2

ε+ ρt(1)2

)
Ñ(dy, dt)

+

∫
R0

[
1

2
log

(
ε+ ρt(λ(s, y))2

ε+ ρt(1)2

)
−πt(λ(s, y)− 1)

ρt(1)2

(ρt(1)2 + ε)

]
ν(dy)dt

(125)

The first and second terms above are expertly dealt with in [5], however
in order to control the jump terms this author suggests an assumption such
as the following would be required,

∫ t

0

∫
R0

[
max

{
1 + ρs(λ(s, y))2

ρs(1)2
,

1 + ρs(1)2

ρs(λ(s, y))2

}]
ν(dy)ds <∞.

We now continue from Lemma 3.6.2 to derive the normalised conditional
distribution.

Theorem 3.6.3. (The Kushner-Stratonovich Equation) If condi-
tions (86), (87), (119) and (120) hold, then the conditional distribution of
the signal πt satisfies the following evolution equation called the Kushner-
Stratonovich equation.

πt(ϕ) = π0(ϕ) +

∫ t

0

πs(Aϕ)ds

+

∫ t

0

[πs(ϕh)− πs(h)πs(ϕ)]
[
dBQ(s)− πs(h)ds

]
+

∫ t

0

∫
R0

[
πs(λ(s, y)−1) (πs(ϕ(λ(s, y))− πs(ϕ) + 1)− 1

]
N(dt, dy)

+

∫ t

0

∫
R0

[πt(λ(t, y)− 1)− πt(ϕ(λ(t, y)− 1))] ν(dy)dt

for any ϕ ∈ C2
c (R).

Proof. From Lemma 3.6.2 we obtain,
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1

ρt(1)
= exp

{
−
∫ t

0

πs(h)dBQ(s) +
1

2

∫ t

0

πs(h)2ds

−
∫ t

0

∫
R0

log(πt(λ(s, y)))N(dt, dy) +

∫ t

0

∫
R0

πt(λ(s, y)− 1)ν(dy)dx

}
and so,

d

(
1

ρt(1)

)
=

1

ρt(1)

[
−πt(h)dBQ(t) + π2

t (h)dt+

∫
R0

πt(λ(s, y)− 1)ν(dy)dt

+

∫
R0

(
πt(λ(s, y))−1 − 1

)
N(dt, dy)

]
Now using the Zakai equation (106) for ρt(ϕ) and the Kallianpur-Striebel

formula (98), we obtain by Itô’s product formula,

πt(ϕ) = ρt(ϕ) · 1

ρt(1)

d (πt(ϕ)) = d (ρt(ϕ))
1

ρt−(1)
+ ρt−(ϕ)d

(
1

ρt(1)

)
+ d (ρt(ϕ)) d

(
1

ρt(1)

)
Breaking these parts up for easier digestion,

1)

d (ρt(ϕ))
1

ρt(1)

=

(
ρt(Aϕ)dt+ ρt(ϕh)dBQ(t) +

∫
R0

ρt(ϕ(λ(t, y)− 1))Ñ(dt, dy)

)
1

ρt(1)

= πt(Aϕ)dt+ πt(ϕh)dBQ(t) +

∫
R0

πt(ϕ(λ(s, y)− 1))Ñ(ds, dy)
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2)

ρt(ϕ)d

(
1

ρt(1)

)
=
ρt(ϕ)

ρt(1)

[
−πt(h)dBQ(t) + π2

t (h)dt+

∫
R0

πt(λ(t, y)− 1)ν(dy)dt

+

∫
R0

(
πt(λ(t, y))−1 − 1

)
N(dt, dy)

]
= πt(ϕ)

[
−πt(h)dBQ(t) + π2

t (h)dt+

∫
R0

πt(λ(t, y)− 1)ν(dy)dt

+

∫
R0

(
πt(λ(t, y))−1 − 1

)
N(dt, dy)

]
3)

d (ρt(ϕ)) d

(
1

ρt(1)

)
=

(
ρt(Aϕ)dt+ ρt(ϕh)dBQ(t) +

∫
R0

ρt(ϕ(λ(s, y)− 1))Ñ(dt, dy)

)
× 1

ρ(1)

[
−πt(h)dBQ(t) + π2

t (h)dt+

∫
R0

πt(λ(s, y)− 1)ν(dy)dt

+

∫
R0

(
πt(λ(s, y))−1 − 1

)
N(dt, dy)

]
= −πt(ϕh)πt(h)dt+

∫
R0

πt(ϕ(λ(s, y)− 1))×
(
πt(λ(s, y))−1 − 1

)
N(dt, dy)

Now combining these back together we get,
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d (πt(ϕ)) = πt(Aϕ)dt+ πt(ϕh)dBQ(t) +

∫
R0

πt(ϕ(λ(t, y)− 1))Ñ(dt, dy)

+ πt(ϕ)

[
−πt(h)dBQ(t) + π2

t (h)dt+

∫
R0

πt(λ(t, y)− 1)ν(dy)dt

+

∫
R0

(
πt(λ(t, y))−1 − 1

)
N(dt, dy)

]
− πt(ϕh)πt(h)dt+

∫
R0

πt(ϕ(λ(s, y)− 1))(πt(λ(s, y))−1 − 1)N(dt, dy)

= πt(Aϕ)dt+ πt(ϕ)π2
t (h)dt− πt(ϕh)πt(h)dt

+ πt(ϕh)dBQ(t)− πt(ϕ)πt(h)dBQ(t)

+

∫
R0

{[
πt(ϕ(λ(t, y)− 1)) +

(
πt(λ(t, y))−1 − 1

)]
+ πt(ϕ(λ(s, y)− 1))(πt(λ(s, y))−1 − 1)

}
N(dt, dy)

+

∫
R0

πt(λ(t, y)− 1)− πt(ϕ(λ(t, y)− 1))ν(dy)dt

Finally integrating and simplifying gives,

πt(ϕ) = π0(ϕ) +

∫ t

0

πs(Aϕ)ds

+

∫ t

0

[πs(ϕh)− πs(h)πs(ϕ)]
[
dBQ(s)− πs(h)ds

]
+

∫ t

0

∫
R0

[
πs(λ(s, y)−1) (πs(ϕ(λ(s, y))− πs(ϕ) + 1)− 1

]
N(dt, dy)

+

∫ t

0

∫
R0

[πt(λ(t, y)− 1)− πt(ϕ(λ(t, y)− 1))] ν(dy)dt
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4 Uniqueness of the Solution to the Zakai

Equation

In this chapter we prove the uniqueness of the solution to the Zakai equation
(106) by following a similar methodology to [59, Chapter 6] which in turn
is based on [37]. We achieve this by transforming the solution to that of
a stochastic differential equation in a Hilbert space and subsequently using
estimates based on Hilbert-space theory.

To establish this transformation, we will need some well known results
about Hilbert spaces and we refer the reader to [18] for details.

We also need to introduce the space of finite signed measures on R which
is denoted byMS(R). Given any v ∈MS(R), the Jordan decomposition [14,
Corollary 4.15] states that there exists two positive measures v+ and v− (at
least one of which is finite) so that v = v+−v−. We now define the variation
of the measure v as the positive measure |v| as |v| = v+ + v−.

We also define the total variation norm by ||v|| = |v|(X), and by [14,
Proposition 4.1.7], MS(R) is complete under the total variation norm.

4.1 Transformation to a Hilbert Space

We start this section by recalling that for all ϕ ∈ Cb(R), t ≥ 0,

E [ϕ(Y (t))|Zt] =

∫
R
ϕ(x)πt(dx)

where πt is the conditional probability measure. By (98), EQ [Ωtϕ(Y (t))|Zt]
is the measure valued solution to the Zakai equation. Therefore it can be
written as

∫
R ϕ(x)Vt(dx) for some conditional measure Vt and some ϕ ∈

C2
c(R). We can therefore rewrite the Kallianpur-Striebel formula (98) as,

E [ϕ(Y (t))|Zt] =

∫
R
ϕ(x)πt(dx) =

∫
R ϕ(x)Vt(dx)

Vt(R)

Now, from the Zakai equation we have,
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ρt(ϕ) =

∫
R
ϕ(x)Vt(dx)

=

∫
R
ϕ(x)π0(dx) +

∫ t

0

∫
R
Aϕ(x)Vs(dx)ds

+

∫ t

0

∫
R
ϕ(x)h(s, x)Vs(dx)dB(s)

+

∫ t

0

∫
R0

∫
R
ϕ(x)(λ(s, y)− 1)Vs(dx)Ñ(ds, dy). (126)

Recall that L2(R) is the Hilbert space of square integrable functions on R.
To obtain relevant estimates to study uniqueness we will need to transform
an MS(R)-valued process to an L2(R)-valued process.

For the rest of this chapter we will also require the following assumptions.

Assumption 4.1.1. The mapping h defined earlier is bounded and uniformly
Lipschitz, i.e. for all x1, x2 ∈ R, t ≥ 0 there exists K > 0 such that

|h(t, x1)− h(t, x2)| ≤ K|x1 − x2|

and the predictable compensator λ satisfies∫
R0

|λ(t, x1, y)− λ(t, x2, y)|ν(dy) ≤ K|x1 − x2|.

For δ ≥ 0 we define the operator Tδ : L2(R)→ L2(R) by,

Tδφ(x) =

∫
R
Gδ(x− y)φ(y)dy ∀φ ∈ L2(R),

where Gδ is the heat kernel given by,

Gδ(x) = (2πδ)−
1
2 exp

(
−|x|

2

2δ

)
for all x ∈ R.

For any γ ∈MS(R) and δ > 0, let,

(Tδγ)(x) =

∫
R
Gδ(x− y)γ(dy).

Lemma 4.1.2. For all δ > 0 Tδ :MS(R)→ Cb(R).
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Proof. For boundedness we note that,

sup
x∈R
|Tδ(γ)(x)| = sup

x∈R

∣∣∣∣∫
R
Gδ(x− y)γ(dy)

∣∣∣∣
≤ (2πδ)−

1
2 ||γ||

<∞.

Let x ∈ R and (xn, n ∈ N) be a sequence such that xn → x as n → ∞. Let
γ ∈MS(R) then,

Tδ(γ)(x)− Tδ(γ)(xn) =

∫
R

(Gδ(x− y)−Gδ(xn − y)) γ(dy).

We can use dominated convergence to show that,

lim
xn→x

∫
R

(Gδ(x− y)−Gδ(xn − y)) γ(dy)

=

∫
R

(
Gδ(x− y)− lim

xn→x
Gδ(xn − y)

)
γ(dy)

= 0

The following is standard in semigroup theory, for a proof see [59, Lemma
6.6].

Lemma 4.1.3. The operators (Tt, t ≥ 0) form a contraction semigroup on
L2(R) i.e. for all t, s ≥ 0 and φ ∈ L2(R),

Tt+s = TtTs and ||Ttφ|| ≤ ||φ||.

The following results will also be required.

Lemma 4.1.4. If γ ∈MS(R) and δ > 0 then;

1) Tδγ ∈ L2(R),

2) || T2δ|γ| || ≤ || Tδ|γ| ||.

See [59, Lemma 6.7] for proof.

The following result is key, since it shows how we can transfer the measure
valued solution to an SDE in a Hilbert space.

Lemma 4.1.5. For any t ≥ 0, γ ∈MS(R) and f ∈ L2(R) we have,
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1)

〈Tδγ, f〉 =

∫
R
Tδf(x)γ(dx).

2) If f is such that Df ∈ L2(R) then,

DTδf = TδDf

where Df = df
dx

.

For proof see [59, Lemma 6.8].

If we replace ϕ with Tδϕ and write Zδ
s = TδVs where Vs is an MS(R)

valued solution to the Zakai equation, using Lemma 4.1.5 (1) we obtain from
(126):

〈Zδ
t , ϕ〉 =

∫
R
Tδϕ(x)Vt(dx)

=

∫
R
Tδϕ(x)π0(dx) +

∫ t

0

∫
R
ATδϕ(x)Vs(dx)ds

+

∫ t

0

∫
R
Tδϕ(x)h(s, Y (s))Vs(dx)dB(s)

+

∫ t

0

∫
R0

∫
R
Tδϕ(x)(λ(s, y)− 1)Vs(dx)Ñ(ds, dy). (127)

Recall from (80) that A is a diffusion operator, then using Lemma 4.1.5
(2) we obtain,

∫
R
ATδϕ(x)Vt(dx) =

∫
R

(
1

2
σ2D2(Tδϕ(x)) + bD(Tδϕ(x))

)
Vt(dx)

=
1

2

∫
R
σ2TδD2ϕ(x)Vt(dx)−

∫
R
bTδDϕ(x)Vt(dx).

Now using Lemma 4.1.5 (1) we get,

∫
R
ATδϕ(x)Vt(dx) =

1

2

〈
Tδ(σ

2Vt),D2ϕ
〉
− 〈Tδ(bVt),Dϕ〉

=
1

2

〈
D2Tδ(σ

2Vt), ϕ
〉

+ 〈DTδ(bVt), ϕ〉.

Similarly we can show that,
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∫
R
Tδϕ(x)h(t, x)Vt(dx) = 〈Tδ(h(t, Y (t))Vt), ϕ〉

and for all y ∈ R,∫
R
Tδϕ(x)(λ(t, y)− 1)Vt(dx) = 〈Tδ((λ(t, y)− 1)Vt), ϕ〉

Inserting these back into the the Zakai equation we get,

〈Zδ
t , ϕ〉 = 〈Zδ

0 , ϕ〉+
1

2

∫ t

0

〈
D2Tδ(σ

2Vs), ϕ
〉
ds

+

∫ t

0

〈DTδ(bVs), ϕ〉 ds+

∫ t

0

〈Tδ(h(s, Y (s))Vs), ϕ〉 dBQ(s)

+

∫ t

0

∫
R0

〈Tδ((λ(s, y)− 1)Vs), ϕ〉 Ñ(ds, dy)

We now seek the stochastic differential of 〈Zδ
t , ϕ〉2. By Itô’s product

formula we have,

d〈Zδ
t , ϕ〉2 = 2〈Zδ

t−, ϕ〉d〈Zδ
t , ϕ〉+ d〈Zδ

t , ϕ〉d〈Zδ
t , ϕ〉.

Now using Itô’s formula we get,

d〈Zδ
t , ϕ〉 =

1

2
〈D2Tδ(σ

2Vt), ϕ〉dt+ 〈DTδ(bVt), ϕ〉dt

+ 〈Tδ(h(t, Y (t))Vt, ϕ〉dBQ(t)

+

∫
R0

(
〈Zδ

t− + Tδ(λ(t, y)− 1)Vt, ϕ〉 − 〈Zδ
t−, ϕ〉

)
Ñ(dt, dy)

+

∫
R0

(
〈Zδ

t− + Tδ(λ(t, y)− 1)Vt, ϕ〉 − 〈Zδ
t−, ϕ〉

− 〈Tδ(λ(t, y)− 1)Vt, ϕ〉
)
ν(dy, dt), (128)

and the Itô correction term is,

d〈Zδ
t , ϕ〉d〈Zδ

t , ϕ〉 = 〈Tδ(h(t, Y (t)))Vt, ϕ〉2dt

+

∫
R0

〈Tδ(λ(t, y)− 1)Vt, ϕ〉2N(dt, dy).

Combining the above and integrating gives,
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〈
Zδ
t , ϕ
〉2

= 〈Zδ
0 , ϕ〉2 +

∫ t

0

〈Zδ
s , ϕ〉0

〈
D2Tδ(σ

2Vs), ϕ
〉
ds

+

∫ t

0

2〈Zδ
s , ϕ〉〈DTδ(bVs), ϕ〉ds

+

∫ t

0

2〈Zδ
s , ϕ〉〈Tδ(h(s, Y (s))Vs), ϕ〉dBQ(s)

+

∫ t

0

〈Tδ(h(s, Y (s))Vs), ϕ〉2ds

+

∫ t

0

∫
R0

2〈Zδ
s−, ϕ〉 〈Tδ ((λ(s, y)− 1)Vs) , ϕ〉 Ñ(ds, dy)

+

∫ t

0

∫
R0

〈Tδ ((λ(s, y)− 1)Vs) , ϕ〉2N(ds, dy). (129)

Summing over ϕ in a complete orthonormal system of L2(R) and using
Parseval’s formula we get,

||Zδ
t ||2 = ||Zδ

0 ||2 +

∫ t

0

〈
Zδ
s ,D2Tδ(σ

2Vs)
〉
ds

+

∫ t

0

2〈Zδ
s ,DTδ(bVs)〉ds

+

∫ t

0

2
〈
Zδ
s , Tδ(h(s, Y (s))Vs)

〉
dB(s)

+

∫ t

0

||Tδ(h(s, Y (s))Vs)||2 ds

+

∫ t

0

∫
R0

2
〈
Zδ
s−, Tδ((λ(s, y)− 1)Vs)

〉
Ñ(ds, dy)

+

∫ t

0

∫
R0

||Tδ ((λ(s, y)− 1)Vs) ||2N(ds, dy).

Taking expectations we obtain,
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EQ
[
||Zδ

t ||2
]

= EQ
[
||Zδ

0 ||2
]

+ E
[∫ t

0

〈
Zδ
s ,D2Tδ(σ

2Vs)
〉
ds

]
+ EQ

[∫ t

0

2〈Zδ
s ,DTδ(bVs)〉ds

]
+ EQ

[∫ t

0

2
〈
Zδ
s , Tδ(h(s, Y (s))Vs)

〉
dBQ(s)

]
+ EQ

[∫ t

0

||Tδ(h(s, Y (s))Vs)||2 ds
]

+ EQ
[∫ t

0

∫
R0

2
〈
Zδ
s , Tδ((λ(s, y)− 1)Vs)

〉
Ñ(ds, dy)

]
+ EQ

[∫ t

0

∫
R0

||Tδ ((λ(s, y)− 1)Vs) ||2N(ds, dy)

]
= EQ

[
||Zδ

0 ||2
]

+ E
[∫ t

0

〈
Zδ
s ,D2Tδ(σ

2Vs)
〉
ds

]
+ EQ

[∫ t

0

2〈Zδ
s ,DTδ(bVs)〉ds

]
+ EQ

[∫ t

0

||Tδ(h(s, Y (s))Vs)||2 ds
]

+ EQ
[∫ t

0

∫
R0

||Tδ ((λ(s, y)− 1)Vs) ||2ν(dy)ds

]
(130)

To pass the expectations through the integrals requires a dominated con-
vergence argument that will be dealt with once we have introduced the nec-
essary estimates in the next section.

4.2 Useful Inequalities

Let fi : R→ R, i = 1, 2 be bounded Lipschitz continuous functions such that
there exists K > 0 so that,

|fi(x)− fi(y)| ≤ K|x− y| ∀x, y ∈ R and |fi(x)| ≤ K ∀x ∈ R.

Lemma 4.2.1. Suppose that g ∈ L2(R) is such that Dg ∈ L2(R). Then,

|〈g, f1Dg〉| ≤
1

2
K||g||2.
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For proof see [59, Lemma 6.9].

Note that for ζ ∈MS(R), f1ζ is an R - valued signed measure.

Lemma 4.2.2. Tδ(f1·) :MS(R)→ L2(R) for all δ > 0.

Proof. For all ζ ∈MS(R),∫
R
|Tδ(f1ζ)|2 dx =

∫
R

∣∣∣∣∫
R
Gδ(x− y)f1(y)ζ(dy)

∣∣∣∣2 dx
≤
∫
R

(∫
R

Gδ(x− y)|ζ|(dy)

)
×
(∫

R
Gδ(x− y)|f1(y)|2|ζ|dy

)
dx

≤ (2πδ)−1/2||ζ|| ||f1||2∞
∫
R

∫
R
Gδ(x− y)dx|ζ|(dy)

≤ (2πδ)1/2||f1||2∞||ζ||2 <∞.

Lemma 4.2.3. There exists K1 and K2 dependent on K such that for any
ζ ∈MG(R),

||Tδ(f1ζ)|| ≤ ||Tδ(|f1| · |ζ|)|| ≤ K||Tδ(|ζ|)|| (131)

|〈Tδ(f2ζ),DTδ(f1ζ)〉| ≤ K2||Tδ(|ζ|)||2 (132)

see [59, Lemma 6.10] for proof.

Lemma 4.2.4. There exists a constant K1 such that for any ζ ∈MS(R) we
have,

〈Tδζ,D2(c2ζ)〉+ ||DTδ(cζ)||2 ≤ K1||Tδ(|ζ|)||2.

see [59, Lemma 6.11] for proof.

Carrying on from (130), and using the above estimates
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EQ
[
||Zδ

t ||2
]

= EQ
[
||Zδ

0 ||2
]

+ EQ
[∫ t

0

〈
Zδ
s ,D2Tδ(σ

2Vs)
〉
ds

]
+ EQ

[∫ t

0

2〈Zδ
s ,DTδ(bVs)〉ds

]
+ EQ

[∫ t

0

||Tδ(h(s, Y (s))Vs)||2 ds
]

+ EQ
[∫ t

0

∫
R0

||Tδ ((λ(s, y)− 1)Vs) ||2ν(dy)ds

]
≤ ||Zδ

0 ||20 +KEQ
[∫ t

0

||Tδ(|Vs|)||2ds
]

≤ ||Zδ
0 ||20 +KEQ

[∫ t

0

|| |Vs| ||2ds
]
<∞ (133)

By dominated convergence,

EQ
[
||Zδ

t ||2
]

= EQ
[
||Zδ

0 ||2
]

+

∫ t

0

EQ
[〈
Zδ
s ,D2Tδ(σ

2Vs)
〉]
ds

+

∫ t

0

2EQ
[
〈Zδ

s ,DTδ(bVs)〉
]
ds

+

∫ t

0

EQ
[
||Tδ(h(s, Y (s))Vs)||2

]
ds

+

∫ t

0

∫
R0

EQ
[
||Tδ ((λ(s, y)− 1)Vs) ||2

]
ν(dy)ds (134)

4.3 Uniqueness for the Zakai Equation

Theorem 4.3.1. If V is aMS(R) valued solution to the Zakai equation and
Zδ = TδV then,

EQ
[
||Zδ

t ||2
]
≤ ||Zδ

0 ||2 +K1

∫ t

0

EQ
[
||Tδ(|Vs|)||2

]
ds

where K1 is a constant.

Proof. Looking at the estimate (134) the first four terms are dealt with as
in [59, Theorem 6.12], so all that is required is to note that the last term is
bounded by a constant multiplied by ||Tδ(|Vs|)||2 using (4.2.4).
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Let MB(R) be the space of finite Borel measures on R.
The following corollary requires some explanation in that it states that

given a measure valued process (Vt, 0 ≤ t ≤ T ), such that Vt ∈ MB(R) for
each t, we can find Ṽt ∈ L2(R) such that for arbitrary f ∈ L2(R),

〈Ṽt, f〉 =

∫
R
f(x)Vt(dx) a.s.. (135)

From now on, when we write Vt ∈ L2(R) it should be understood in the
sense of (135), i.e. we identify the measure Vt with the class of functions Ṽt.
As a consequence of Theorem 4.3.1 we have the following corollary.

Corollary 4.3.2. If V is a solution to the Zakai equation taking values in
the space of Borel measures MB(R), and V0 ∈ L2(R), then Vt ∈ L2(R) a.s.
and EQ [||Vt||2] <∞ for all t ≥ 0.

The following theorem is a generalisation of [59, Theorem 6.14]

Theorem 4.3.3. Suppose that V0 ∈ L2(R)+. Then the Zakai equation has
at most one MB(R) valued solution.

Proof. Let V 1
t and V 2

t be two measure valued solutions with the same initial
value V0. By Corollary 4.3.2, V 1

t and V 2
t ∈ L2(R) a.s. Let Vt = V 1

t − V 2
t ,

then Vt ∈ L2(R) a.s. and

EQ
[
||TδVt||2

]
≤
∫ t

0

EQ
[
||Tδ(|Vs|)||2

]
ds.

To apply dominated convergence we require the following, using Lemma
4.1.3, ∫ t

0

EQ
[
||Tδ(|Vs|)||2

]
ds ≤

∫ t

0

EQ
[
||Vs||2

]
ds

<∞.

Now as we let δ → 0,

EQ
[
||Vt||2

]
≤ K1

∫ t

0

EQ
[
|| |Vs| ||2

]
= K1

∫ t

0

EQ
[
||Vs||2

]
ds.

Then, via an application of Gronwall’s inequality we see that Vt must be
zero a.s.

Given that we have now shown that the Zakai equation has at most one
solution, we can use this to show that the Kushner Stratonovich equation
has a unique solution using the following theorem.

The following is an adaptation of [5, Theorem 4.19].
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Corollary 4.3.4. The Kushner-Stratonovich equation has at most one prob-
ability measure valued solution.

Proof. Let π1 and π2 be two distinct probability measure valued solutions
to the Kushner Stratonovich equation in Theorem 3.6.3. From the proof of
Theorem 3.6.3, using Itô’s product formula, we have for each πi for i = 1, 2,
ϕ ∈ C2

c (R),
πi(ϕ)ρi(1) = ρi(ϕ).

We know from Theorem 4.3.3 that the Zakai equation has a unique solu-
tion such that ρ1 and ρ2 coincide. Therefore,

ρ1t (1) = ρ2t (1) (a.s.)

for all t ≥ 0. Hence for all t ≥ 0,

π1
t (ϕ) =

ρ1t (ϕ)

ρ1t (1)
=
ρ2t (ϕ)

ρ2t (1)
= π2

t (ϕ) (a.s.).
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A Proof of Lemma 3.4.7

Lemma A.0.5. Let N be a Poisson random measure defined on R+ × R0

with compensator Ñ and intensity measure ν where ν is a Lévy measure and
let ψn and ψ be predictable mappings such that

∫ t
0

∫
R0
|ψ(s, y)|2ν(dy)ds <∞

a.s and

lim
n→∞

∫ t

0

∫
R0

|ψn(s, y)− ψ(s, y)|2ν(dy)ds = 0

in probability then

lim
n→∞

sup
0≤t≤T

∣∣∣∣∫ t

0

∫
R0

(ψn(s, y)− ψ(s, y))Ñ(ds, dx)

∣∣∣∣ = 0

in probability.

Proof. Let Ψn(s, y) = ψn(s, y)−ψ(s, y). For some arbitrary t, ε, η and δ > 0
we define

τη = inf

{
t :

∫ t

0

∫
R0

|Ψn(s, y)|2ν(dy)ds > η

}
where,

Ψ(η)
n (s, y) = Ψn(s, y)1[0,τη ](s).

Then,

P

(
sup
0≤s≤t

∣∣∣∣∫ s

0

∫
R0

Ψn(s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
≤ P

(
τη < t : sup

0≤s≤t

∣∣∣∣∫ s

0

∫
R0

Ψn(s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
+ P

(
τη ≥ t : sup

0≤s≤t

∣∣∣∣∫ s

0

∫
R0

Ψn(s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
≤ P (τη < t) + P

(
sup
0≤s≤t

∣∣∣∣∫ s

0

∫
R0

Ψ(η)
n (s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
≤ P

(∫ t

0

∫
R0

|Ψn(s, y)|2ν(dy)ds > η

)
+ P

(
sup
0≤s≤t

∣∣∣∣∫ s

0

∫
R0

Ψ(η)
n (s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
Now using Chebychev’s inequality and Doob’s martingale inequality we

can show the second term on the right hand side above is bounded.
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P

(
sup
0≤s≤t

∣∣∣∣∫ s

0

∫
R0

Ψ(η)
n (s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
≤ 1

ε2
E

[(
sup
0≤s≤t

∣∣∣∣∫ t

0

∫
R0

Ψ(η)
n (s, y)Ñ(dy, ds)

∣∣∣∣)2
]

≤ 4

ε2
E

[(∫ t

0

∫
R0

Ψ(η)
n (s, y)Ñ(dy, ds)

)2
]

=
4

ε2
E
[∫ t

0

∫
R0

(
Ψ(η)
n (s, y)

)2
ν(dy)ds

]
≤ 4η

ε2
.

Therefore,

P

(
sup

0≤t≤T

∣∣∣∣∫ t

0

∫
R0

Ψn(s, y)Ñ(dy, ds)

∣∣∣∣ ≥ ε

)
≤ P

(∫ t

0

∫
R0

|Ψn(s, y)|2ν(dy)ds > η

)
+

4η

ε2
(136)

Now, given some δ > 0 we choose η < δε2/8 so that 4η/ε2 < δ/2. From
the condition proposed at the beginning of the lemma, we can see that there
exists N(η) such that for n ≥ N(η) the first term is bounded by δ/2 and so
the whole right side is bounded by δ and we are done.

The following is very closely based on [5, B.39] but whereas the result
therein used only Brownian motion, we have a general Lévy process.

Lemma A.0.6. Let X = (X(t), t ≥ 0) be a Lévy process on a proba-
bility space (Ω′,F ′, Q′) adapted to a given filtration (F ′t, t ≥ 0). Define
St = {(εrt , t ≥ 0)|r ∈ L∞ ([0, t],R)} where,

εrt = exp

(
i

∫ t

0

r(s)dX(s)−
∫ t

0

η(r(s))ds

)
(137)

and η(·) is the Lévy symbol corresponding to the process X. Then St is a total
set in L1(Ω′,F ′, Q′), by this we mean if a ∈ L1(Ω′,F ′, Q′) and E[aεt] = 0 for
all ε ∈ St then a = 0 a.s.
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Proof. Define a set

S ′(t) =

{
εt = exp

(
i

∫ t

0

r(s)dX(s)

)
, r ∈ L∞([0, t], R)

}
.

Fix a in L1(Ω′,F ′, Q′) such that EQ[aεt] = 0 for all εt ∈ S ′(t). This can then
be seen to be equivalent to the statement that EQ[aεt] = 0 for all εt ∈ S(t),
and so we will assume this. Take t1, t2, . . . , tp ∈ (0, t) with t1 < t2 < · · · < tp,
then given l1, l2, . . . , ln ∈ R define

µp = lp, µp−1 = lp + lp−1, . . . , µ1 = lp + · · ·+ l1.

We set t0 = 0 and define,

rt =

{
µh for t ∈ (th−1, th), h = 1, . . . , p;
0 for t ∈ (tp, T ).

Then since, X(t0) = X(0) = 0,
p∑

h=1

lhX(th) =

p∑
h=1

µh(X(th)−X(th−1)) =

∫ t

0

rsdX(s).

Therefore, for a ∈ L1(Ω′,F ′, Q′)

EQ

[
a exp

(
i

p∑
h=1

lhX(th)

)]
= EQ

[
a exp

(
i

∫ t

0

rsdX(s)

)]
= 0,

the second equality follows from the assumption E[aεt] = 0 for all ε ∈ S ′(t).
Therefore by linearity,

EQ

[
a

K∑
k=1

ck exp

(
i

p∑
h=1

lh,kX(th)

)]
= 0.

Let F (x1, . . . , xp) be a continuous bounded complex valued function defined
on Rp. By the Weierstrass approximation theorem there exists a uniformily
bounded sequence of functions of the form

P (n)(x1, . . . , xp) =
Kn∑
k=1

c
(n)
k exp

(
i

p∑
h=1

l
(n)
h,kxh

)
such that

lim
n→∞

P (n)(x1, . . . , xp) = F (x1, . . . , xp).

So we have EQ [aF (X(t1), . . . , X(tp)] = 0 for every continuous function F or
by a further approximation a bounded measurable function. Since t1, t2 . . . tp
are arbitrary we obtain EQ[ab] = 0 for any bounded measurable function b.
Also we have that EQ[a2 ∧m] = 0 for arbitrary m, hence a = 0 Q-a.s.
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B Code Used in Numerics

B.1 Code Used to Create Graphics

library(fBasics)

library(stabledist)

N<-1000

T<-10

x<- 0

y0<-rnorm(1,0,1)

theta1<-c(-1,1)

theta2<-c(1,1)

Dt<- T/N

###SYSTEM###

Y<- numeric(N+1)

Y[1] <-y0

B<- rnorm(N, 0, 1)

for(i in 1:N) {

Y[i+1] <- Y[i] + (theta1[1]*Y[i])*Dt + theta1[2]*sqrt(Dt)*B[i]

}

Y<- ts(Y,start=0, deltat=T/N)

###OBSERVATIONS###

alpha<-1.9

Z<- numeric(N+1)

Z[1] <- k

A<- rstable(N, alpha, 0)

for(i in 1:N) {

Z[i+1] <- Z[i] + (theta2[1]*Y[i])*Dt + theta2[2]*(Dt^(1/alpha))*A[i]

}

Z<- ts(Z,start=0, deltat=T/N)

###MSE###

s<-numeric(N+1)

s[1]<-0.5

for(i in 1:N) {

s[i] <- 0.5 - 0.5*exp(-2*i*Dt)

}

s<- ts(s,start=0, deltat=T/N)
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###MY FILTER###

k<-Z[1]

Yhat<- numeric(N+1)

Yhat[1] <- y0

for(i in 1:N) {

Yhat[i+1] <- Yhat[i] + theta1[1]*Yhat[i]*Dt}

Yhat<- ts(Yhat,start=0, deltat=T/N)

###MSE M&B FILTER ###

gamma<-numeric(N+1)

gamma[1]=Dt

for(i in 1:N){

gamma[i+1] <- gamma[i]+ theta1[1]*1.1*gamma[i]*Dt

+(theta1[2]^1.1)*Dt

- 0.1*(abs((theta2[1]/theta2[2])*gamma[i])^11)*Dt}

gamma<- ts(gamma,start=0, deltat=T/N)

###M&B FILTER###

Yhoot<-numeric(N+1)

Yhoot[1]<-y0

for(i in 1:N) {

Yhoot[i+1] <- Yhoot[i] +theta1[1]*Yhoot[i]*Dt +sign(theta2[1])

*abs(theta2[1]*gamma[i])^10 *((theta2[1]*Y[i])*Dt

+ theta2[2]*(Dt^(1/alpha))*A[i] - theta2[1]*Yhoot[i]*Dt)

}

Yhoot<- ts(Yhoot,start=0, deltat=T/N)

###AH FILTER###

beta<-exp(-Dt)

p<- exp(Dt)-1

r<- p - p*exp(-Dt)-2*Dt

sigma<-numeric(N+1)

sigma[1]<-0.019801

V<-numeric(N+1)

V[1] <- 0

lambda<-numeric(N+1)

lambda[1]<- -0.4974749

for(i in 1:N) {

sigma[i+1]<- 0.5*(p^2)*(1-exp(-2*Dt))+2*p*(exp(-Dt)-1)

+2*Dt+((p*beta)^2)*V[i]
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lambda[i+1] <- (sigma[i+1]+ r)/(p*sigma[i+1])

V[i+1]<- (p)^(-2)*2*Dt - (p)^(-2)*sigma[i+1]*(1-p*lambda[i])^2

}

sigma<- ts(sigma,start=0, deltat=T/N)

lambda<- ts(lambda,start=0, deltat=T/N)

V<-ts(V,start=0, deltat=T/N)

h<-numeric(N+1)

for(i in 1:N){

h[i]<- (0.01*A[i]+B[i])/sqrt(abs(sigma[i]))}

f<-numeric(N+1)

for(i in 1:N){

f[i+1]<- density(h, from=h[i], to=h[i], n=1)$y

}

g<-numeric(N+1)

for(i in 1:N){

g[i+1]<- (density(h, from=h[i], to=h[i]+0.01, n=1)$y

- density(h, from=h[i], to=h[i], n=1)$y)/0.01

}

zero<-which(f==0)

g[zero]<-0

f[zero]<-10

x<-0

YAH<-numeric(N+1)

YAH[1]<-y0

for(i in 1:N){

YAH[i+1]<- -lambda[i]*(abs(sigma[i+1])^0.5)*(g[i+1]/f[i+1])

+ beta*YAH[i]}

YAH<- ts(YAH,start=0, deltat=T/N)

###ERROR ESTIMATION###

error<-(Yhat-Y)^2

error1<-(Yhoot-Y)^2

error2<-(YAH-Y)^2

print((mean(error)))
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print((mean(error1)))

print((mean(error2)))

###PLOTS###

plot(Z,type="l",ylim=c(-12,12),ylab="")

lines(Y,col="red")

lines(Yhat,col="green")

lines(Yhoot,col="blue")

lines(YAH,col="purple")
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