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Abstract

There are significant temporal dependencies between online behaviour

and occurring real world activities. Particularly in text modelling, these

are usually ignored or at best dealt with in overly simplistic ways such

as assuming smooth variation with time. Social media is a new data

source which present collective behaviour much more richly than tradi-

tional sources, such as newswire, with a finer time granularity, timely

reflection of activities, multiple modalities and large volume. Analysing

temporal patterns in this data is important in order to discover newly

emerging topics, periodic occurrences and correlation or causality to real

world indicators or human behaviour patterns. With these opportunities

come many challenges, both engineering (i.e. data volume and process-

ing) and algorithmic, namely the inconsistency and short length of the

messages and the presence of large amounts of irrelevant messages to our

goal. Equipped with a better understanding of the dynamics of the com-

plex temporal dependencies, tasks such as classification can be augmented

to provide temporally aware responses.

In this thesis we model the temporal dynamics of social media data. We

first show that temporality is an important characteristic of this type of

data. Further comparisons and correlation to real world indicators show

that this data gives a timely reflection of real world events. Our goal is to

use these variations to discover emerging or recurring user behaviours. We

consider both the use of words and user behaviour in social media. With

these goals in mind, we adapt existing and build novel machine learning

techniques. These span a wide range of models: from Markov models to

regularised regression models and from evolutionary spectral clustering

which models smooth temporal variation to Gaussian Process regression

which can identify more complex temporal patterns.

We introduce approaches which discover and predict words, topics or be-

haviours that change over time or occur with some regularity. These



are modeled for the first time in the NLP literature by using Gaussian

Processes. We demonstrate that we can effectively pick out patterns, in-

cluding periodicities, and achieve state-of-the-art forecasting results. We

show that this performance gain transfers to improve tasks which do not

take temporal information in account. Further analysed is how temporal

variation in the text can be used to discover and track new content. We

develop a model that exploits the variation in word co-occurrences for

clustering over time. Different collection and processing tools, as well as

several datasets of social media data have been developed and published

as open-source software.

The thesis posits that temporal analysis of data, from social media in par-

ticular, provides us with insights into real-world dynamics. Incorporating

this temporal information into other applications can benefit standard

tasks in natural language processing and beyond.
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Chapter 1

Introduction

In an Internet where user generated content is ubiquitous, systems that are aware

of the temporal evolution of data are paramount for a better understanding of real

world phenomena. Thus, in this thesis, we aim to develop machine learning models

for streaming user generated social media data which incorporate the temporal com-

ponent in order to discover topic emergence, recurrence or correlation to underlying

events.

The Internet has become immense1 and plays a large part in the life of most people.

This is mainly due to its widespread and proliferation of devices that can access it.

Many people have shifted much of their daily personal activities to the online medium

like socialising, work or information gathering. This is particularly obvious by the

recent burst in usage of social media and user-generated content. Reportedly, social

media usage became the single most time-consuming activity on the web as measured

within the U.S., overtaking search, e-mail or gaming.2

With social media, we have seen a shift in paradigms for posting online content.

Before social media, and the so-called Web 2.0 in general, the content was static;

there were a few hubs of information which were updated only by those who had the

authority, curating the content in the process. Now, also with the aid of the technical

advances, user-generated content has become prevalent online. Thus, every person

using social media can be thought as being a ‘journalist’ [Murthy, 2011] on his daily

life, exhibited by him sharing news, events, moods or images.

For many, these sources have become the primary source of information for time

sensitive or local events. This is mostly because people trust their peers more for

giving accurate more insights, comments and a complementary view compared to

traditional editorial sources. The lack of curation tends to lead to swifter responses.

1http://archive.org/
2http://cn.nielsen.com/documents/Nielsen-Social-Media-Report_FINAL_090911.pdf
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A notorious example illustrating the timely nature of social media (i.e. Twitter)

updates was the 2011 Earthquake in Virginia, U.S. Allegedly, tweets about the earth-

quake were read by people living in nearby cities before the seismic waves reached

their location.3 Indeed, currently many people follow events [Johnson, 2009], like

sports matches, foremost through the social media lens, as it provides very up-to-

date and broad coverage which allows to get a better picture for the atmosphere and

public perception of that event.

It is therefore not surprising that even more ‘traditional’ sources have embraced

social media for time sensitive communications. For example, local police departments

in the U.K. started in 2010 to offer emergency information and updates about public

safety, disruptions or disorder through social media, recognising the importance for

disseminating time sensitive information this way.

However, all these benefits come with some obvious downsides. Lack of content

curation can lead to content that is unreliable or misleading. Malicious users or spam-

mers might create content of hard to asses authenticity. From a practical perspective,

the volume of the data is vast, making storage and processing challenging. Due to

the breadth of the content, most will be probably irrelevant for any task while having

badly structured information, non-literal text and lack of context.

Social media websites are built around users sharing a piece of content within

the underlying social network. This piece of content can be either short text (e.g.

Twitter), photos (e.g. Instagram, Pinterest), location (e.g. Foursquare), professional

information (e.g. LinkedIn), videos (e.g. YouTube, Vimeo), business reviews (e.g.

Yelp) or general personal information (e.g. Facebook, Google+). There are multiple

peculiarities that make social media exciting for research such as the presence of the

underlying social network structure, the multiple modalities of the data, the spatial

annotations and its richness and diversity.

In this thesis we will focus on using the temporal information that enhances social

media data. We argue that, conditioning on time, the data has different proprieties

that can be harnessed for practical objectives. We discover that a part of this data is

informative and reflects real world activities and trends. Before social media, textual

and behavioural temporal data was harder to gather and was limited to a specific set

of sources. By using social media data we can analyse text at a much finer granularity

(cf. to news), of a broader set of topics (i.e. related to daily life, TV shows) and in

particular, identify specific effects such as periodicities.

3http://www.huffingtonpost.com/2011/09/01/twitter-ad-earthquake-video_n_945480.

html
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We consider two broad scenarios for our models. Foremost, a supervised fore-

casting setting that aims to forecast either a variable that is internal to the social

media system (e.g. future word frequencies) or an external real world variable that

we expect to be correlated to features derived from social media (e.g. political party

voting intention). We use historical time series to forecast future values using social

media features that are independent of external resources and generalisable across

use scenarios (e.g. language). Secondly, we consider an unsupervised scenario that

explores time variations in social media text usage and groups words into clusters

which can be linked to real world events that have initially caused these variations.

Temporal smoothness constraints imposed on the clusters between consecutive time

steps allows interpretation of topic drift.

The main challenges we have to deal with when using social media data are the

volume and the non-standard form of the data. Also, social media is very diverse

and used for a wide range of activities, from spam and self-promotion to chatter and

news reporting. Usually a large amount of data is irrelevant to our goals and must

be treated as input noise.

1.1 Aims

• The first aim of the thesis is to show that social media data is time dependent.

We study data over time from two social media platforms: Twitter, which is

used to share short texts, and Foursquare, which is used to share the location

of the author with additional meta-data.

The outcome is a solid motivation that, conditioning on time, a better under-

standing can be achieved of what happened or will likely happen at that specific

moment. In addition, a justification for the importance of modelling complex

temporal patterns, specifically periodicities, is presented. Other outcomes are

models that correlate social media data with trends in order to forecast real

world indicators. These explicitly incorporate the noise that is present in social

media in the form of non-informative words and authors. Correlation with real

world trends gives an indication on the time dependence of the data.

• The main aim of the thesis is to prove that modelling the temporal information

of social media text is beneficial for gaining a better understanding of real

world effects. Simple temporal patterns, such a smoothness, as well as complex

periodic patters are studied.

3



The outcomes are models which can automatically identify temporal patterns

in data from both of our sources, namely words and locations. Given the data

conditioned on time, we aim to infer the temporal patterns from that data in

order to forecast future values in a supervised setting. The forecasting meth-

ods go beyond state-of-the-art and use Gaussian Process regression in order to

categorise the temporal patterns and forecast values.

Another outcome is a method that uses the changes in the word co-occurrence

distributions to perform event detection and tracking over time. The presented

method can identify and label very specific events and general topics, whilst also

scaling to the large volume of data arising from social media. This is performed

by using a spectral clustering algorithm which imposes clusters in consecutive

time windows to be similar, imposing a temporal smoothness constraint. Tem-

poral smoothness is also incorporated in predicting real world indicators.

• Another important aim is to show the practicality of modelling time by incor-

porating them downstream into applications, improving their accuracy.

The outcomes are classification and summarisation applications which use the

temporal information in order to improve accuracy and aid interpretation.

• The techniques developed in this thesis are aimed to be reproducible and portable

to new use cases. We aim for a limited dependence on external information and

specific features of any language.

A peripheral outcome of the thesis is the development of a series of open-source

tools for collecting and processing OSN data.

1.2 Thesis structure

The first two chapters of the thesis examine Online Social Networks (OSN) as the

source of our analysis. Chapter 2 introduces OSNs and presents an overview of their

properties. It also introduces the datasets we will use in the rest of the thesis and the

methods for collecting the data. These are available as open-source software packages.

Chapter 3 describes the processing operations we conduct on the OSN data, which are

novel or adapted for use with our social media data. All of these are also available in

an open-source pipeline framework for streaming and parallel processing introduced

in [Preoţiuc-Pietro et al., 2012].

4



Chapter 4 has the role of motivating further research by showing that social me-

dia data is time dependent. First, we overview previous work which studies temporal

influence or modelling, focusing on social media applications. We then analyse cor-

relations with real world trends, in particular to political party voting intention, and

show significant correlations with these, together with predictive power. Using su-

pervised models that take time into account and place more emphasis on recent data

we manage to improve the predictive accuracy.

Chapter 5 presents a supervised learning setup based on Gaussian Process regres-

sion for identification, categorisation and forecasting of temporal trends. We show

that by using different kernels and performing Bayesian model selection, we can iden-

tify temporal trends that are more complex than linear or smoothly varying with a

special emphasis on periodicities. This gives better results for forecasting of word

behaviour when compared to a number of other methods. Furthermore, these results

are proven to be useful downstream. By taking this prediction into account, time-

aware text classification yields better results than the time-agnostic methods. We

also study user behaviour uncovering similar patterns to words.

Chapter 6 proposes an unsupervised learning setup which aims to use the varia-

tions in word usage over time to uncover events. A method based on the distributional

similarity assumption for words is formulated. This hypothesises that words in a re-

stricted time frame with similar distributional proprieties are indicative of the same

event. Based on co-occurrence information from short social media texts, we develop

methods which cluster words together in a time frame. A comparative analysis is

performed using the same method on data aggregated over a larger time span. A

temporal method that relates these clusters is also developed which is important for

highlighting topic drift.

Finally, Chapter 7 summarises the findings of the thesis and indicates directions

of future work.

1.3 Published material

Parts of this thesis overlap with work published in peer-reviewed venues. This is as

follows:

• The framework for social media data pre-processing presented in Chapter 3 was

developed in collaboration with colleagues from the University of Southampton

and first introduced in [Preoţiuc-Pietro et al., 2012].
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• The user geolocation algorithm presented in Section 3.1.7 was developed in

collaboration with my colleague Dominic Rout and was published in [Rout

et al., 2013].

• Results from Section 4.3.3 are based on work in collaboration with Vasileios

Lampos that were first introduced in [Lampos et al., 2013].

• The user behaviour data analysis in Section 2.2.3 and the venue category anal-

ysis from Section 5.3 were published in [Preoţiuc-Pietro and Cohn, 2013b].

• The models from Chapter 5 and the experiments relating to hashtags were

original contributions published in [Preoţiuc-Pietro and Cohn, 2013a].

• The aggregate experiments on the Austrian Politics dataset from Chapter 6 are

presented in [Preoţiuc-Pietro et al., 2013b].
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Chapter 2

Online Social Networks

This thesis deals with Online Social Networks (OSN), a relatively new source of data.

For this reason, it is important to define and understand what are OSNs, specifically

the two types we consider further, and what are the peculiarities of data coming

from these. In order to put our thesis into context, we aim to overview research on

the properties of these networks. The most important OSNs, such as Twitter and

Foursquare, have tens to hundreds of millions users worldwide. Another aim of the

chapter is a description and analysis of the data we collect and use in the rest of this

thesis.

The first two sections overview the two types of OSNs we consider in the rest of

the thesis: microblogs in Section 2.1 and Location Based Social Networks (LBSNs) in

Section 2.2. In each of their respective sections, we also introduce the datasets used

in the rest of the thesis. Further, an analysis that presents the general properties of

the data is conducted which aims to highlight the features that make OSN data of

significant research interest compared to traditional data sources.

2.1 Microblogging

Microblogging platforms, the most important of which is Twitter, have evolved since

2006 as an easy-to-use alternative to blogging and have quickly matched these in pop-

ularity. Blogs (i.e. web logs) are usually maintained by individuals and they express

subjective entries like commentaries, opinions, photos and videos. Posts are displayed

in reverse chronological order. Blogs are usually interactive, allowing visitors to com-

ment on posts or chat to each other. A basic element of social networking is also

involved as blogs have a ‘blogroll’ in which other related blogs or blogs of friends

of the owner are added. Blogs became popular in the early 2000s being part of the

emerging Web 2.0 movement. In September 2013 the number of blogs is estimated

7



to be around 270 million across the 3 most popular platforms (Tumblr, Wordpress,

Blogger). Even though blogs are important sources of data and have been studied

by researchers [Facca and Lanzi, 2005], the lack of social interaction between them,

as well as the diversity of the blogging platforms and the difficulty of data collection

allowed only limited research progress.

Microblogs are blogs in which the post length is limited usually to a very low value.

The most popular micro-blogging service is Twitter with a number of around 500

million registered users as of March 2013 out of which 200 million are active monthly.1

Twitter is a OSN and microblogging service that allows its users to send and read other

users updates (known as ‘tweets’), which are text-based posts of up to 140 characters

in length. The length of the message was restricted when the platform was created in

2006 especially so that users can post updates on Twitter via SMS messages from their

phone. Even though most people now use mobile phones that enable mobile Internet

access and posting through dedicated applications, the maximum message length

was kept at the 140 character limit. This encourages conciseness and effectiveness

in communication, which together with access mobility, play an important role in

reducing the cost of information sharing and promoting timely updates. This brevity

also makes users that receive the information to easily browse and monitor large

numbers of users.

Like every OSN, Twitter allows users to connect with other users but, unlike most

of other OSNs, this relationship is not mutual. If a user is interested in other users’

posts they ‘follow’ that user with no need of their approval (except if the ‘protect

my tweets’ option is turned on). The group of users that follow a user are called

his ‘followers’ and the group of users someone follows are called their ‘friends’ or

‘followees’. When a user sends a tweet in the stream, this is displayed on his profile

page, in the stream of his followers and in the Twitter public timeline (subject to

the ‘Protect my tweets’ option) so these messages can be viewed by those following,

by those visiting the profile or by those who search the public timeline by keywords.

Twitter offers very good integration with other OSNs. A Twitter account can be

linked so that updates can be pushed from other OSNs (e.g. Foursquare) to the

Twitter stream. The stream can be monitored for updates via the Twitter website,

SMS, RSS or other widgets or third party applications.

Twitter became widely adopted because it’s a very easy and convenient method

of communication in which people can interact with thousands of others in just a

1http://expandedramblings.com/index.php/march-2013-by-the-numbers-a-few-

amazing-twitter-stats/
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few seconds no matter their location. Users can share information, ask questions,

network, receive breaking news and follow your friends updates. From the start of

the service, it has also put a great emphasis on mobile connectivity, with a large

number of lightweight applications and support for mobile phones. As of March

2013, 60% of all Tweets come from mobile devices. If the mobile devices have their

geolocation tracking option turned on, each tweet will have attached the co-ordinates

from which it was sent. This represents a huge novel opportunity for researchers to

gain insight from this geo-tagged data, although only around 1-2% of all tweets are

geo-tagged.

2.1.1 Conventions

Twitter users have developed a set of conventions which we will briefly present:

@ reply In Twitter, users can directly send messages to a user by using the @

symbol before their user name. That message will be displayed to that users stream

indicating who is communicating with them. The @ messages are also used in tweets

in order to make a reference to other users or indicating intended recipients of mes-

sages that are posted in an otherwise public forum in order to gain the target persons

attention, which is essential for conversation to occur. The convention is that in a

direct message the @ mention is first in the tweet, while in a referencing message the

@ appears in other parts of the tweet.

Honeycutt and Herring [2009] offer insights into the usage of @ replies. Sousa

et al. [2010] investigates what motivates users’ interactions. The study concludes that

the social aspect appears to be predominant to the topical aspect. However, a slight

tendency was observed for users with larger networks to separate their connections

depending on the topics discussed.

Retweets Retweeting is the Twitter equivalent of email forwarding where users post

tweets originally posted by others. This convention emerged from Twitter users. Due

to this fact, unlike @replies and hashtags, the conventions for retweeting were, until

recently, hugely inconsistent although ‘RT @usr msg’ has emerged as the common

form of retweeting the message ‘msg’ tweeted by the user ‘usr’. In 2010, retweeting

has become an integral feature of Twitter although most users still tend to follow the

old conventions.

Because Twitter limits tweets to 140 characters, messages being retweeted must

frequently be modified to accommodate the additional notation meant to indicate
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that the message is a retweet. While retweeting may simply be seen as the act of

copying and rebroadcasting, most people regard this as an act of approval of their

tweets value. For this reason, some of the most visible Twitter participants retweet

others and look to be retweeted [Boyd et al., 2010].

Hashtags Hashtags represent crowdsourced free-form text labels that are part of

tweets allowing users to assign them to a discussion thread and enable users to search

for them. Due to the massive amounts of data that are published in the public Twitter

stream there is a problem in organising for searching, browsing and making sense of

all these messages. A particular tweet can have more than one hashtag attached to

it. The hashtags can be considered a proxy for the topic because they group similar

tweets [Laniado and Mika, 2010].

The practice of using keywords to label tweets most likely parallels the use of

‘tags’ to categorise web content. Tagging gained visibility with social bookmarking,

but has expanded to all other forms of social media. Usually, hashtags are very

Twitter specific and can be used as regular words integral to the tweet, referring to

a general topic (#jobs) or emotion (#sadtweet), current events (#25jan) or Twitter

memes (#backintheday) or games (#followfridays). Definitions of hashtags can be

found at http://tagdef.com/.

Trending topics The large volume of Twitter content generates very different and

diverse topics of interest. When topics or trends arise around the world, Twitter

acts as filter and amplifier of these and thus contributes to the public agenda. In

this competitive environment, the topics that manage to attract the largest attention

in the system reaching the top in terms of popularity are called ‘trending topics’.

Although the exact algorithm of detecting the trending topics is kept secret by Twit-

ter, studies have found that the content that trends is largely news from traditional

media sources, which are then amplified by repeated retweets on Twitter to create

trends [Asur et al., 2011].

For more details, a complete description of Twitter and its conventions is presented

in [O’Reilly and Milstein, 2009, McFedries, 2010]. Due to a very large base of engaged

users that post multiple tweets every day, the textual information and the directed

structure of the network, Twitter has become by far the most used OSN in research

studies. The relative ease of collecting data is also a key reason why Twitter is

popular with the research community. The specific methods for collection we will use

are presented in the next section.
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2.1.2 Quantitative analysis

In this section we will briefly present the main quantitative characteristics of the Twit-

ter microblogging service in order to better understand the context of our research.

The around 500 million Twitter users that generate on average 500 million tweets per

day (as of October 2012)2 are not representative of the demographics of the entire

population. A study on demographics of people using Twitter was conducted in the

U.S.,3 one of the top three most active countries with 18% of its entire population us-

ing the service. This study showed that younger people (aged 18-29) are significantly

more represented than all the other older categories, with lower percentages as the

age group increases. Also, people with a higher household income, more education

and living in urban areas are more likely to use Twitter. Ethnicity also shows sig-

nificant differences, with people from a hispanic or afro-american background being

more attracted to using Twitter.

However, not all the users on Twitter use the system with the same frequency.

Research [Wu et al., 2011] has concluded that from all the Twitter users, 50% of

tweets are generated by 0.01% of ‘elite’ users. Heil and Piskorski [2009] drew a

similar conclusion, reporting that just 10% of Twitter’s users produced 90% of the

tweets in 2009.

Researchers have studied why and how people use microblogging, providing dif-

ferent categorisations of users. In the first study on why people use Twitter, Java

et al. [2007] identify the following reasons: conversations, sharing of daily activities,

seeking and sharing information and reporting of current events. The users were in

turn divided into sources of information, friends or information seekers, a distinction

that was more or less acknowledged in future work. [Zhao and Rosson, 2009] identi-

fied that the main types of content users share on Twitter are personal whereabouts,

links and opinions. The social conversational and collaborative aspect was studied in

[Honeycutt and Herring, 2009] suggesting that Twitter can be used as a new informal

communication service. [Jansen et al., 2009] analysed Twitter as ‘electronic word-of-

mouth’ finding that around 19% of tweets talk about brands, out of which around

20% present an opinion relating to it. [Naaman et al., 2010] classified users in terms

of content into ‘informers’ and ‘meformers’. The former category of users represent

a minority (around 20% at that time) which produce new content related to events

external to themselves, while the later and larger category share content relating to

them: their whereabouts, feelings, opinions or self-promotion messages.

2http://www.telegraph.co.uk/technology/twitter/9945505/Twitter-in-numbers.html
3http://pewinternet.org/Reports/2013/social-networking-sites.aspx
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Another significant feature of Twitter is its social network of followers. A large

scale analysis that crawled the entire social graph of Twitter as of June 2009 (only

41 million users back then) is presented in [Kwak et al., 2010]. In the directed graph

topology analysis the authors have found a non-power-law follower distribution, a

short effective diameter of the graph, and low reciprocity. This contradicts the social

network remarks of Java et al. [2007] showing a maturation of the OSN and a deviation

from known characteristics of human social networks.

Kwak et al. [2010] analysed and reported tweets in top trending topics based on

their temporal behaviour and user participation. The trending topics were classified

based on the active period and show that the majority of topics are headline news

or persistent news. This shows that Twitter acts as a filtering and dissemination

platform for real world news and events. Quantitative information about information

diffusion shows that diffusion of news in Twitter is almost instantaneous. Another

finding of the study is the existence of a two-step flow of information. Almost half

the information that originates from the media passes to the masses indirectly via a

diffuse intermediate layer of opinion leaders, who although classified as ordinary users

are more connected and more exposed to the media than their followers. All in all,

we can draw the conclusion that Twitter is more of a broadcast channel.

Moreover, internal Twitter statistics have shown that 40% of users worldwide

simply use the service as a ‘curated news feed of updates that reflect their passions’

with many accounts having posted no tweets at all.

2.1.3 Data

The data we collect for our experiments is obtained from the public APIs that the

Twitter microblogging platform offers for free. The data provided by the APIs is

presented to the end-user into the popular lightweight JSON format. These APIs

are restricted in the data they provide and the rate with which to collect it. Privacy

restrictions are enforced by the OSNs that own the data. They claim the rights for

that data and do not want it fully accessible in the public domain. An agreement by

the Library of Congress will offer an improvement in data access in the near future.4

Considering the huge volume as another factor, the distribution of data sets has thus

become a real issue. The replicability of research is a hot and fiercely debated topic

in the scientific community.

4http://blogs.loc.gov/loc/2013/01/update-on-the-twitter-archive-at-the-library-

of-congress/
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One of the workarounds is anonymising parts of the data so that user information

is not viewable or deductible. Also publishing the aggregate statistics and feature

representations we will feed to our models is a way of anonimisation. Another alter-

native we use for publishing datasets is by using the method introduced as part of

the TREC Microblog task. The data is distributed as a list of unique tweet and user

id pairs. Using a PERL script any user can re-crawl the data from the website on

their own machine, although deleted tweets will become inaccessible.

This section provides a description of three datasets we will use throughout the rest

of the thesis. The collection code developed for downloading the data is published

open-source.5 An extensive coverage of the Twitter APIs is presented in [Makice,

2009].

2.1.3.1 Gardenhose dataset

One of the two public Twitter APIs is the Streaming API6 which feeds large amounts

of real time data to users. However, rate limiting constraints are enforced7 and the

public timeline only constitutes a statistical representative sample of the entire data.

The method is very popular for getting hold of large volumes of live data which

can be later filtered. We have used a local server to gather data using the Twitter

Streaming API since 2009 and, with very little gaps, have collected data up to the

time of writing. The access level we posses, Gardenhose, allows storing of a 10%

sample of the entire stream. The size of the dataset (in GB) over time is presented

in Figure 2.1. The data in compressed using the LZO (LempelZivOberhumer) block-

compression algorithm.8 The compression rate is around 19 with 1GB compressed

data holding around 7 million tweets. The general trend in Twitter data is to increase

over time. The lower dataset size at the end of 2011 and beginning of 2012 is due to

only receiving 1% of the sample from Twitter during that time. A few logistic issues

over 2013 have resulted in a slight loss of data in some months.

2.1.3.2 U.K. Users dataset

When we want to analyse specific user behaviour, the Gardenhose stream is usually

not good enough because it only presents a sample which possibly misses important

information. We have thus developed a collection scheme focused on specific sets of

5http://github.com/danielpreotiuc/twitter-collection-utils
6http://dev.twitter.com/docs/streaming-apis
7http://dev.twitter.com/pages/rate-limiting
8http://www.lzop.org/
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Figure 2.1: Size of the Gardenhose dataset over collection time.

users. This scheme uses the other public Twitter API, the REST API9 (or Search

API), to cycle through a set of users and retrieve the new tweets with regularity. The

REST API gives access to the entire Twitter stream, but it imposes rate limits and

restrictions for retrieving historical data.

The dataset in this section is collected using this method and aims to provide a

general snapshot of active Twitter users in the United Kingdom. We have collected

all users that authored tweets in the Gardenhose stream during one month. We then

assumed each user to be from the U.K. if the location field in their profile was matched

with a list of all U.K. cities (detailed in Section 3.1.7) and their timezone was set to

G.M.T. In this way, we extracted hundreds of thousands of U.K. users. In Figure 2.2

we presented the distribution of users across the U.K. which shows a similarity to the

distribution of the actual population.

Although the data collection is a continuous process, for our experiments we use

data authored between 30 April 2010 and 13 February 2012. This spans 2 years

in which many important events took place in the U.K., for example the general

elections (May 2010) or the riots (August 2011). Complete dataset statistics are

given in Table 2.1.

No.tweets No.users Size

6,655,146 42,484 16.6 GB

Table 2.1: Statistics for the U.K. Users Dataset.

9http://dev.twitter.com/docs/api/1.1
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Figure 2.2: Distribution of the U.K. Users.

2.1.3.3 Austrian Politics dataset

The other dataset we use is collected by the same user-centric method as the previous

one. It aims to present a snapshot of the users that are talking about the same broad

topic (i.e. politics) in a country. For this, we called upon the expertise of SORA,10 an

Austrian institute for social research, to provide us with an extensive list of Twitter

users that discuss politics and current affairs, with an emphasis on Austria. The

dataset spans the period of 25 January 2012 to 31 August 2013, although as in the

previous case, the dataset is continuously updated. This is slightly smaller size and

length than the previous one, but we expect it to be cleaner in terms of content,

with fewer conversational, spam or self-promotion messages. The dataset statistics

are presented in Table 2.2.

The dataset is also particularly interesting because most of its contents is written

in German. This is helpful for establishing the portability of the methods we describe

in this thesis.

No.tweets No.users Size

2,585,364 1,973 5.7 GB

Table 2.2: Dataset statistics for the Austrian Politics Dataset.

2.2 Location Based Social Networks

With the widespread adoption of smart-phones and mobile Internet, users have started

sharing information about their location with their friends. Location is increasingly

10http://www.sora.at
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becoming a crucial aspect of many online services: people appear more willing to

share their geographic location with friends, giving the opportunity for companies to

customise their services by taking into account where the user is located. Location is

assumed to be highly dependent on time: based on the time of day, day of week or

holidays, users prefer specific locations. It is thus expected that models using location

data should also integrate temporal information.

The first OSNs based on location sharing appeared in 2009 and they have by now

reached maturity. The most well known Location Based Social Network (LBSN) is

Foursquare, with other popular OSNs such as Google+ also having location sharing

features. Although these networks lack a widespread audience the size of other OSNs,

their target audience is formed of regular and devoted users of the service. Statistics

from November 2013 show Foursquare having around 40 million users.11

The main functionality of LSBNs is that they allow users to share their current

location. This location, corresponding to the geo-coordinates of the user, is focused

on venues. Venues are user-specified real-world places with geo-spatial coordinates.

The sharing of location in a predetermined venue is called a check-in. A user can

add tips, categories, tags, comments and upload photos or videos regarding once he

checkes-in to an actual venue. In this way, places are semantically enriched with

collaborative user knowledge. It is estimated that 1.5 million venues are annotated

in the Foursquare platform.12 The user can also see information about people who

are nearby or who have been there before. These check-ins can be further pushed

to other more mainstream OSNs such as Twitter and Facebook. As an addition to

other LBSNs, Foursquare provides game features like mayorships and badges which

encourage regular use of the system.

As in normal OSNs, LSBN users can make friends with each other in order to

monitor their friends’ location, tips and status. The friendship relationship is mutual,

requiring each user to accept friendship requests to allow location sharing. The data

arising from this application is subject to privacy constraints. The check-in data for

users is thus not directly available to any user. Only the friends of an user have access

to only recent locations, making data collection on a large scale challenging.

2.2.1 Quantitative analysis

In this section we will briefly review the most important properties of LBSNs as

identified by other quantitative studies. With respect to Foursquare, geographic user

11http://foursquare.com/about
12http://business.foursquare.com/
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activity patterns are studied in [Noulas et al., 2011]. The study on around 12 million

check-ins analyses user check-in dynamics, demonstrating how it reveals meaningful

spatio-temporal patterns and offers the opportunity to study both user mobility and

urban spaces. The geo-temporal dynamics of collective user activity on Foursquare

shows how check-ins provide a means to uncover human daily and weekly patterns,

urban neighbourhood properties and recurrent transitions between different activities.

Data about the interplay between users and locations are for the first time available

to researchers by analysing LBSN data. Analysing socio-spatial proprieties provides

unprecedented chances to understand how users actively engage with places and online

friends. [Scellato and Mascolo, 2011] quantitatively analyses user activity in Gowalla,

a now defunct LBSN. The Gowalla API allowed access to the social network to obtain

the dynamics with which users add new friends. The study highlights the differences

in the distributions of friends, check-ins and places of Gowalla users. The temporal

evolution of these distributions is analysed, noting that users add new friends at a

faster rate than they accumulate new places and check-ins and presenting how these

variations may influence the aggregated statistics. Scellato et al. [2011b] analyse

the network of friends of a user together with their geographic location using data

from three LBSNs (i.e. Foursquare, Gowalla and Brightkite). The study highlights

how observed properties deviate from what would be expected by chance with purely

social or geographic mechanisms. Users exhibit different characteristic geographic

scales of online interaction, with weak positive correlation between number of friends

and their average distance. Also, a similar heterogeneity appears with respect to

social triads (i.e. groups of three interconnected users), with users participating in

geographically wider triangles as their number of friends increase.

The trails of user locations (mobility patterns) are also revealed by LBSN check-

ins. A comprehensive quantitative study using Foursquare data was conducted by

Cheng et al. [2011]. The authors study human mobility patterns and explore factors

that influence this mobility, including social status, sentiment, and geographic con-

straints. As data, the authors used over 22 million check-ins across 220,000 users.

They analysed the spatial, temporal, social, and textual aspects associated with these

check-ins. The authors concluded that LBSN users follow the Levy Flight [Rhee et al.,

2011] mobility pattern and adopt periodic behaviours. The users mobility patterns

seem related to their geographic, economic constraints as well as their social status. A

basic sentiment analysis regarding the comments or tips associated with the check-ins

was also provided, showing that this data could be exploited in work that combines

the multiple modalities of the data.
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Initially, mobility patterns were studied using proxies to movement such as U.S.

banknote movement [Brockmann et al., 2006] and marine predators [Sims et al.,

2008]. The development and availability of portable devices like mobile phones made

tracking of people’s location easier. For example, Gonzalez et al. [2008] analysed a

dataset from 100,000 users over 6 months. This dataset contained the locations of the

user’s closest mobile phone tower every time they made a phone call. This allowed

the researchers to have approximate data of each users’ location.

2.2.2 Data

In order to study individual human behaviour we need access to the full data generated

by users. This is due to sparsity of check-ins (only a few on average every day) and

in order to reliably analyse transitions between locations. Until recently, the main

bottleneck for this type of work was data availability largely as a consequence of

concerns about anonymity and personal security.

On Foursquare, recent statistics13 show a rate of around 6 million daily check-ins.

Considering there are about 40 million users, we find that every user uses the system

far less than once a day. Based on this, we conclude that we need to identify users

that use the social network on a frequent daily basis.

2.2.2.1 Frequent Users dataset

Only the friends from the social network of a user have access to (a limited set of)

his check-ins. In this section we present a novel collection method that overcomes

this restriction and extracts all check-ins from specific users, using a combination

of the Twitter and Foursquare APIs. This targets the users who choose to push

their Foursquare check-ins to the public Twitter stream (around 20-25% of the total

users [Noulas et al., 2011]). This way, their activity becomes available for collection.

However, this is not a straight-forward task as the venue data is available from the

Foursquare check-in page linked to from the tweet. This requires crawling and parsing

in order to collect the venue information and then linking it back to the original

timestamp and user data collected via Twitter.

We name this dataset ‘Frequent Users Dataset’ and we define a ‘frequent user’ as

one that uses Foursquare at least 3 times per day. We identify a number of ‘frequent

users’ of Foursquare using the Twitter Streaming API. The dataset collection interval

is 31 August 2011 – 1 October 2011. The dataset statistics are presented in Table 2.3.

13http://go.bloomberg.com/tech-deals/2013-04-11-checking-into-whats-behind-

foursquares-41-million-infusion/
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No.users No.check-ins No.check-ins/user
9167 959,122 104.6 ± 49.4

Table 2.3: Frequent Users Dataset statistics

The average number of check-ins per user and day is more than 10 times the

number presented in other studies [Lian and Xie, 2011, Cheng et al., 2011] which

collect Foursquare check-ins via Twitter in bulk. Cheng et al. [2011] specify that 72%

of the users have fewer than 100 check-ins in a 5 month interval. When performing

an aggregate analysis over the check-ins a sample of the data is sufficient. However,

performing a study on individual user patterns is not possible if using a random

sample of the data (e.g. transitions between consecutive venues will be altered) but

only if using the full data of frequent users.

Our approach considers only users that choose to push their location sharing

information on other public social networks, specifically Twitter. We note that this

set of users may not be representative for the entire Foursquare user base or for

the population in general, but it will still span multiple types of users that differ in

behaviour, location and age group. In the next section we conduct an analysis in

order to determine if our dataset presents the same characteristics in terms of group

behaviour as other studies of Foursquare or other sources.

The collection code developed for this is available as open-source software.14 The

dataset is available in an anonymised format using the TREC Microblog method.15

2.2.3 Data analysis

In this section we will study the proprieties of our LBSN data and relate the dataset

statistics to previous findings in human mobility patterns study e.g. [Gonzalez et al.,

2008]. Our aim will be to show that the datasets have similar proprieties even if they

were extracted from different sources.

Time distribution We start by analysing the time distribution of check-ins. A

plot of the number of check-ins for the entire dataset is presented in Figure 2.3.

As our data is collected during a month, we could expect to find regularities in

the size and time of the total number of check-ins. We observe that, in general, there

is a consistent weekly pattern of activity, with weekdays each having three peaks

14http://github.com/danielpreotiuc/foursquare-collection-utils
15http://www.dcs.shef.ac.uk/~daniel/foursquare/
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Figure 2.3: Time distribution of check-ins over a month. The start of the week is
indicated by vertical lines.

during the day and weekends having a smoother distribution and generally lower

activity. Transitions between days can be observed by very low activity during nights

as expected. We also notice a slightly upward trend in the number of check-ins in

weekdays as the week progresses.

We plot in Figure 2.4 the check-in frequency per each weekday aggregated over

the four fully observed weeks in our dataset. We notice the same daily period of

check-ins that spikes at 3 times: at 9am when people start their day, at noon when

most of the people have their lunch break and in the evenings when they leave the

workplace or go out. Here we observe a trend: whilst check-ins in the morning and

afternoon are similar, we notice an increase in activity in the evenings from Monday

to Friday. This reveals that as the week progresses and it gets closer to the weekend,

people tend to visit more places in the evenings.

Gyration We now examine the radius of gyration for each user. This will give us

an indication of how often a user travels far away from his home location. The radius

of gyration for a user is computed according to the following formula:

g =

√√√√ 1

n

n∑
i=1

dist(loci, lochome) (2.1)

The home location is chosen as the most frequent venue the user checks-in to. As the

measure of distance we consider the great-circle distance to account for the Earth’s

curvature. The distribution of radius of gyration is presented in Figure 2.5. A low

radius of gyration indicates users that travel only locally, while a higher radius of

gyration indicates users that often travel long distances.
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By analysing the graph, we can see that the distribution roughly follows a power

law of the form x−β with β = 1.45 (if ignoring the first points of the distribution).

Comparing our results to those in [Cheng et al., 2011] we find out that our distribution

is much more compact. As a comparison, we only have 4.3% of users with a gyration

than more 500 miles, while Cheng et al. [2011] report 14.6%. This is due to the

fact that we consider only frequent users that check-in at frequent time intervals, as

opposed to the sampling approach used by Cheng et al. [2011] that uses all users and

only a subset of their data. Another factor is that infrequent users check-in rarely

and have a higher possibility of taking large trips between these check-ins.
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Figure 2.4: Weekly check-in frequen-
cies.
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Interevent times and distances Further, we investigate the proprieties of con-

secutive check-ins of the same user. We study both the interevent times and distance.

The distribution of the former is presented in Figure 2.6 while the latter is presented

in Figure 2.7, both plotted in log-log space.

The distribution of interevent times indicate that most of the check-ins are per-

formed within a 2 hour interval from the previous. This is because most check-ins

in our dataset are performed at transport hubs, shops or food outlets where people

do not spend much time. The frequencies decrease with increasing time intervals,

with the exception of a small plateau at around 8-10 hours. This represents the usual

length of the workday. The interevent distance fits a power law of the form x−1.56,

with very few consecutive check-ins more than 100 km from each other.

Venue frequency distribution We now study the distribution of check-ins/venue

for users. This is for each user the distribution of frequencies for every venue that he
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Figure 2.8: Venue Frequency Distribution.

has checked in. We aggregate all the distributions corresponding to every user in our

dataset and show the results in log-log space in Figure 2.8.

Most users have a few places they visit very often (the peak at 10-20% of their

total check-ins) and many places they seldom visit. It has to be noted that while it

is likely that users would get ‘bored’ of performing check-ins in the same place they

visit frequently, the game elements of Foursquare which offers mayorships keeps users

motivated to continue checking in.

Returning frequency Now, we examine the periodic patterns in human mobility

by measuring the returning frequency at a venue. The returning frequency is the

number of times a user returning to a place visited h hours ago. This is presented for

our dataset in Figure 2.9.
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Figure 2.9: Returning frequency.

0 50 100 150 200

0.
00

0.
04

0.
08

F
re

qu
en

cy
 R

at
io

No. Hours

Figure 2.10: Returning frequency ratio.

We notice spikes for daily intervals, which diminish rapidly for the future days. We

also notice a strong weekly (168 hours) return probability. This behaviour is similar

to the one reported in [Gonzalez et al., 2008] who tracked mobile phone positioning.

However, when comparing it to a similar figure from [Cheng et al., 2011] that uses

the same data source as us, we observe that the downward trend in the returning

probability is diminished in their dataset. We can explain this by the fact that the

authors used a sample of the underlying distribution. The returning probability gets

‘spread’ in future days, smoothing the distribution.

We also compute a returning frequency ratio. This measures the number of times

a user returned to a venue after h hours divided by the times he was observed after

h hours. Because we consider only days when users register more than 3 check-ins,

we exclude these days and adjust the ratios accordingly. This technique corrects for

sporadic or bursts use of the LBSN such that longer term patterns can be more reliably

identified. The distribution of returning frequency ratios is presented in Figure 2.10.

From this figure we observe that the highest returning ratio is the weekly one.

High values are obtained for daily returning ratios as well. This shows that it is more

likely that one visits the same place as a week ago than a place that one visited the

day before. A reason for that may be the different activities one does on weekdays

and weekends which break the daily pattern.

2.3 Conclusion

In this chapter we have presented an introduction to OSNs, focusing on two specific

networks: one based on sharing text (Twitter) and another on location (Foursquare).

We have placed a specific emphasis on the different novel properties of data arising
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from OSNs compared to other sources. The aspects include the social and the con-

versational, in the form of the underlying social network structure, the spatial and

the temporal dimensions. For example, a deeper analysis on mobility patterns in

Foursquare has shown strong temporal effects (e.g. periodicities) in user activity and

types of places visited.

Data collection from OSNs can be challenging, mainly due to traffic limiting and

privacy constraints, although it is provided for free to consumers. We have presented

open-source libraries for data collection and introduced the datasets that will be used

for the rest of the thesis. Also described was an analysis of these datasets, including

their temporal characteristics.

As discussed within the chapter, several challenges arise with the study of OSN

data. From an engineering perspective, the sheer volume of data is big and simply

storing, loading in memory or accessing all the data leads to many issues and a need

for new tools to be used. From an algorithmic point of view, the main issue we

face is again the volume of data with most of it being irrelevant for our goals. When

analysing text however, even simple text processing operations, like tokenisation, need

to be rethought. Being of short length, many texts from OSNs exhibit non-standard

language and capitalisation use, abbreviations, new terms or short-lived conventions

while also suffering from lack of context. An architecture for processing this data in

order to be used by further algorithms or applications will be the topic of Chapter 3.

24



Chapter 3

Architecture for experimental
setup

The ability to create representations of data is an essential part of designing ap-

plications and algorithms. As we have seen from the previous chapter, there are

peculiarities with OSN data that do not allow us to use well established NLP tools

for data processing. In this chapter we aim to present a viable architecture that ad-

dresses this problem. This contains multiple modes, each performing a specific task,

in a pipeline framework that can be scaled to large volumes of data and used in an

online setting.

We describe each individual component for data pre-processing in Section 3.1

where we also present the results of a novel algorithm for identifying user location

based on their social ties. The overall open-source framework which incorporates all

these modes is described in Section 3.2, together with the design aims, architecture

and data format.

3.1 Components

We first describe the individual components of the framework for OSN data pre-

processing. Usually (e.g. on newswire data) this is performed by standard NLP tools

developed over time by the NLP community. However, like previously highlighted,

data (and text in particular) in OSNs has different properties to the one normally

used in NLP tasks. OSN data is usually noisy and contains many service specific

conventions, misspellings, shortenings, abbreviations, the texts have short length and

suffer from ambiguities due to restricted context. For this reason, specific tools have

to be created or adapted to the peculiarities of OSN data. We identified a number

of tools that are useful for our downstream algorithms and implemented each as an
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individual component which can use input from previous modes. We note that some

of the described modes are not used in the rest of the thesis, i.e. the stemmer from

Section 3.1.3 and the sentiment detector from Section 3.1.6.

3.1.1 Tokenisation

Tokenisation is the process by which an unstructured input text it split into lexical

units (called tokens) that carry a meaning of their own, like words, punctuation

marks or emoticons. This process stands at the foundation of any subsequent NLP

applications. Usually this is performed by a standard set of rules (e.g. white-space

delimitation), but OSN data introduces a few extra challenges. In particular, we

need to correctly identify and handle tokens such as URLs, sequences of punctuation

marks, emoticons, Twitter conventions, abbreviations and dates, not all of which have

orthodox forms (e.g. no white-space between punctuation and words, URLs with no

leading http).

Our implementation works through a chainable set of regular expressions which

define patterns of tokens that it aims to ‘protect’, followed by white-space delimita-

tion of the remaining tokens. Further different categories of tokens to protect can

be specified. In this way, we create classes of tokens: ‘protected’ (e.g. OSN conven-

tions, emoticons, URLs and punctuation) and ‘unprotected’ (e.g. regular words and

numbers) together with a combined set of both categories tokens.

Examples of tweets and their tokens as extracted by our method are in Table

3.1. Note that the tokenisation scheme only works with Latin scripted languages

and their conventions (e.g. delimitation between words by punctuation or white-

space). Other languages (e.g. Chinese, Hindi) pose fundamentally different issues

for tokenisation [Wu and Fung, 1994] and have not been analysed.

Tweet RT @USER: Ah!Had d most amazing meal,Love WASABI at th Taj,defntly d
best japanese food in India:)had 2 loosen my belt ate so ...

Tokens [RT, @USER, :, Ah, !, Had, d, most, amazing, meal, ‘,’, Love, WASABI, at, th,
Taj, ‘,’, defntly, d, best, japanese, food, in, India, :), had, 2, loosen, my, belt,
ate, so, ...]

Tweet ”ALL JUMPERS/MINI PRIX HAVE BEEN CANCELED FOR
MAY. NEW SCHEDULE/START TIMES AVAILABLE AT
www.farandawayfarmhorseshows.com”

Tokens [ALL, JUMPERS, /, MINI, PRIX, HAVE, BEEN, CANCELED, FOR,
MAY, ., NEW, SCHEDULE, /, START, TIMES, AVAILABLE, AT,
www.farandawayfarmhorseshows.com]

Table 3.1: Tokenisation examples.
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3.1.2 Language detector

Language detection is the task that detects the language of a text based on its lin-

guistic content. Multiple systems for solving this task are readily available and have

shown to perform very well on long texts [Cavnar and Trenkle, 1994]. Most language

detection tools exploit character n-gram language models trained over large corpora

for each language and then identify the most probable language under the models.

The main challenge when applied on OSN data is the short number of tokens and

their noisy nature. Baldwin and Lui [2010] identify a decrease in performance from

90-95% to around 70% with then state-of-the-art language detection algorithms when

restricting the input text’s length.

We use the language detection method presented in Lui and Baldwin [2011] which

we have reimplemented in Java in order to fit into our pipeline. It uses as features

a mixture of byte n-grams selected using Information Gain to be informative across

all languages whilst not domain specific. These features are used in a Näıve Bayes

classifier for assigning the most probable language to a piece of text. As input, we

provide only the ‘unprotected’ tokens as determined by our tokeniser. Due to the

short length of the text, we can make the simplifying assumption of one language per

tweet. We choose the tool of Lui and Baldwin [2011] over others [Cavnar and Trenkle,

1994] for the following reasons: it is reported as being the fastest, it is standalone and

is pre-trained on 97 languages, it works at a character level without using the script

information (thus needing only the ‘text’ field as input).

We evaluate the method on the microblog dataset introduced by Carter et al.

[2013]. Our accuracy on this dataset is 89.3% when using a 97-way classifier compared

to 89.5% reported by Carter et al. [2013] but when using only a 5-way TextCat

classifier [Cavnar and Trenkle, 1994]. Given that we aim to identify as many languages

as possible, we conclude that the language identification performs sufficiently well.

Further evidence on the suitability of this language detection method on OSN data

is provided in [Lui and Baldwin, 2012].

Room for improvement is still possible in a few ways. First, Carter et al. [2013]

suggest using other OSN specific information (e.g. the user self specified language)

to boost accuracy to up to 97%. Further, there have recently been studies that go

beyond the 1 language/text restriction in order to identify language switching inside

a text [King and Abney, 2013, Nguyen and Dogruoz, 2013], but they are subject to

scalability concerns.
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3.1.3 Stemmer

We use the traditional Porter Stemmer, which represents the standard stemmer for

NLP and Information Retrieval. We use the Snowball stemmer backed by the Terrier

Snowball stemmer implementation.1

3.1.4 Local time

The timestamps of the OSN items are presented in time reported in G.M.T. However,

for some applications such as human mobility patterns, we are more interested in the

local time of the OSN data. To address this, we compute a local time for each item

by simply adding the provided time offset relative to G.M.T.

3.1.5 Deduplicator

A common occurrence in OSNs is that of duplicate or near-duplicate messages. These

can be caused either by redistribution of messages (e.g. the retweet convention in

Twitter), automated messages (e.g. application updates) or spam accounts. Examples

of duplicate tweets are presented in Table 3.2. When computing aggregate statistics

over the data, such as co-occurrence counts, messages with many copies will bias

these statistics, artificially increasing them and perhaps leading to wrong conclusions

downstream.

Tweet Sitting in green room with Justin Bieber...must resist urge to roundhouse
kick him in his midget face

RT (not flagged) Sitting in green room with Justin Bieber...must resist urge to roundhouse
kick him in his midget face (via @WillFerrell) He he he

Added comment He he he
Tweet High hopes for new pneumonia jab: A new vaccine against pneumonia is

being rolled out in Africa which, exper... http://bbc.in/gdRUfj BBC
Near-duplicate High hopes for new pneumonia jab: A new vaccine against pneumonia is

being rolled out in Africa which, experts s... http://bbc.in/gwn5Ir
Tweet I just ousted @beamena as the mayor of Future bistro 483 bloor st west on

@foursquare! http://4sq.com/aupeLA
Near-duplicate
automated tweet

I just ousted @ryansullivan as the mayor of Noodles & Company on
@foursquare! http://4sq.com/5ZHqvT

Table 3.2: Deduplication examples.

First, in order to correctly handle Twitter retweets not performed using the

‘retweet’ action (see Table 3.2), we have developed a set of regular expressions using

different websites for Twitter etiquette (e.g. tweets starting with ‘RT’, ending with

1http://terrier.org/
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‘via @username’). Using these, we can identify if a retweet was performed and split it

into the retweeted text and the comment that might have been added to the original

message.

For identifying documents with duplicate or near-duplicates content within a set,

we use the following strategy. Given that usually we want to deduplicate a large set of

documents, we use the Bloom filter [Bloom, 1970] as a data structure for keeping track

of existing content. The Bloom filter is a randomised data structure that indicates if

an element is a member of a set. The data structure is space efficient and guarantees

not to return false negatives, with the cost of returning false positives at a defined

rate (e.g. 0.01 in our default setting). An analysis on the type of automated messages

suggests that for near-duplicate detection it is sufficient to use the first 5 ‘unprotected’

tokens (see Section 3.1.1). We thus ignore in deduplication the usernames, URLs and

altered endings. For example, the last example in Table 3.2 represent frequent auto-

mated messages pushed from Foursquare about mayorship changes having different

usernames and venues. We have thus multiple levels of deduplication, depending on

how many of the following categories of documents we remove: duplicate content,

near-duplicate content, retweets, retweets without comments.

3.1.6 Sentiment detector

Sentiment detection, by which the subjectivity and polarity of a document is ex-

tracted, is still a difficult task for automated methods. A special emphasis in recent

research was regarding sentiment detection in OSN data, with properties of this data

posing extra challenges to the task on a document level [Nakov et al., 2013].

However, for extracting aggregate opinions, simplistic methods that just rely on

dictionary based sentiment detection appear to work sufficiently well in some down-

stream tasks [O’Connor et al., 2010]. We implemented a simple sentiment detector

that computes a score for each document based on counting the words that belong to

sentiment dictionaries, one for each polarity (positive and negative). The dictionaries

we use are from OpinionFinder [Wilson et al., 2005]. The ‘sentiment score’ for each

document is a number in the [−1, 1] interval computed using the formula: s = p−n
p+n

,

where p and n are the number of ‘positive’ and ‘negative’ terms in the message. Ex-

amples of texts and their scores are shown in Table 3.3. The ‘sentiment score’ can

then be generalised to datasets by computing the average of the individual documents

sentiment scores.
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Text p n s
So im now at my dad’s apartment and he gives me some ital food to eat..this
shit look so nasty but taste really good.lol

5 2 0.71

Dear @barrackobama I seen you down in la. For dat oil spill is you comin
here cuz I think this worse than oil an dead shrimp #imjustsaying

2 3 -0.2

Table 3.3: Sentiment detection examples.

3.1.7 Geolocator

A geolocator assigns to each OSN account a home location as the location from which

the account emits most of its data from. A home location is represented as the pair

of its geo-coordinates (i.e. latitude and longitude) which can be either an exact point

on the map or a representative for a larger area (e.g. centre of a city or country). This

is used in this thesis for identifying users in order to build the datasets presented in

Section 2.1.3. Generally, there are four methods by which an account is assigned to

a specific location: using the IP address, using its geo-tagged documents, the self-

specified free text location description or automated methods that aim to infer it from

data.

IP address geolocation achieves very good performance, with 70% of IPs correctly

assigned within a 40km distance in the U.K.2 However, access to an account’s IP

address is not available for regular applications and users.

The geo-tagged documents approach gives the most reliable estimate of a user’s

location, usually down to the exact geo-coordinates. If a user uses the OSN on a

GPS enabled device and has the geo-tag feature enabled, the meta-data of the social

media item will contain the geo-coordinates of the user when posting the message.

The home location can then be selected as the most frequent pair in the user’s recent

or entire history. However, we have approximated using our data that only 1.7% of

tweets are geo-tagged, which indicates that alternative methods are needed for better

coverage.

Usually, each account on an OSN has profile information generated by the user

which describes his location. Hecht et al. [2011] have shown that in the majority of

cases, users on Twitter do not disclose information that can be used to accurately

locate them, either by leaving the information blank, by providing vague information

or a completely fictional description. Cheng et al. [2010] identify that 26% of users

supply an actual city or town in this field. Examples of location field entries are

presented in Table 3.4.

2http://www.maxmind.com/en/city_accuracy
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Type Location Field

Exact location Manchester, UK
Ambiguous location Newcastle
Vague location United Kingdom
Non-Geographic entry A blue telephone box

Table 3.4: Location field examples.

In order to geolocate accounts in the U.K. using the location field, we have com-

piled a gazeteer of U.K. city names and additional meta-data from DBpedia (e.g.

geo-coordinates of the centre, region, population).3 In total, the list comprises of

17,521 settlements. Because we will use the locations for training an algorithm, we

aimed to develop a high precision method. This is based on regular expressions that

looks up the content of the location field, extracts the city name and tries to match

it with the gazeteer entries. The geo-coordinates of an account will be the centre

coordinates of the city. A problem when using this method is the ambiguity between

locations with different names (e.g. Newcastle in Tyneside and in Shropshire). In this

case, in the absence of other context, the city with the largest population (according

to DBpedia) is selected. While disambiguation within the U.K. is not a major issue,

when considering locations in the entire world there might be many candidates for

each location [Hoffart et al., 2011].

We have evaluated the accuracy of this method on a random sample of 1,000 Twit-

ter accounts that were matched to a location by our method. Using two independent

human annotators, we have found that 97,2% of the accounts matched the human

judgements. Extensions can go beyond the U.K. and also look at alternative name

variants for places (e.g. LDN for London). Still, the majority of accounts (65.63%) can

not be matched to a location. For these, automated methods use machine learning

with features devised from account data are used.

Automated methods can be divided into approaches that use the social network

information, the textual content on the messages or both [Ren et al., 2012]. For using

text, researchers have framed this problem either as a generative model [Eisenstein

et al., 2010] in which the location of a user influences the words they use or as a clas-

sification task where text was used to create features for standard classifiers [Cheng

et al., 2010, Mahmud et al., 2012]. Algorithms that explore the social connections of

an account exploit the fact that users make connections often caused by real world

interactions, which are still dominated by closeness in location [Liben-Nowell et al.,

3http://dbpedia.org
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2005]. Backstrom et al. [2010] created a model for the distribution of distance between

pairs of friends and used this to find the most probable location for an account.

In [Rout et al., 2013], we build a classification approach to geolocating users on

Twitter and experiment on U.K. data. Using as ground truth the accounts mapped

using the location field based method, we aim to classify user accounts into cities

using as features the location of (a part of) his network connections, the city size, the

reciprocated friendships and the triads in the social network. The performance for

different geolocation methods is presented in Table 3.5 as the percentage of correct

user-location assignments within a certain radius (in miles). We only consider as

candidates the cities of the friends of a user, thus setting an upper-bound on the

accuracy (denoted ‘Oracle performance’). A ‘random’ baseline chooses at random

only from within this set of locations. We also compare with the previous social

network based geolocation method Backstrom et al. [2010] and with choosing the most

frequent location from within the friends (‘Most Common Location’) or weighted by

number of users in each city (‘Inverse City Frequency’). Using a SVM classifier with

a Radial Basis Function (RBF) kernel we obtain the best results, while adding more

features improves results.

Method ≤ 0 m ≤ 50 m
Random assignment 31.6%± 0.4% 43.6%± 0.5%
Backstrom Backstrom et al. [2010] 9.1% 47.3%
Backstrom Best Backstrom et al. [2010] 25.4% 52.0%
Most Common Location 39.4%± 0.3% 47.7%± 0.4%
Inverse City Frequency 10.6%± 0.1% 40.5%± 0.4%
SVM: Population 45.9%± 0.4% 58.2%± 0.4%
SVM: Population & Triads 47.1%± 0.4% 59.2%± 0.4%
SVM: Population & Triads & Reciprocation 50.0%± 0.5% 62.0%± 0.5%
Oracle performance 78.1%± 0.2% 89.5%± 0.2%

Table 3.5: Performance of multiple geolocation methods, with 99% confidence inter-
vals.

The results show significant improvement to the previous method using the social

network connections and, combined with the other two precision focused methods,

we can achieve geolocation performance comparable with geolocation using the IP

address, which is inaccessible to regular users.
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3.1.8 Possible extensions

In addition to the modes previously described that are already an integral part of the

general framework for data pre-processing, other tools have been identified as useful

for other applications. Here, we list these modes as well as viable existing tools that

can be readily integrated.

Filters Filtering of messages restricts the input dataset to a subset that respects

a specific set of conditions. These are usually in the form of existing fields having a

value from a set or belonging to an interval. For example, existing filters can restrict a

dataset to contain only data detected as belonging to a specific language. This can be

extended to contain a specific a set of tokens, to answer a query or to be opinionated.

POS Tagger This is a tool that labels each word in a text with its appropriate part-

of-speech (e.g. noun, personal pronoun). Studies have identified [Gimpel et al., 2011,

Derczynski et al., 2013a] that state-of-the-art POS taggers suffer a drop in accuracy

when applied on OSN data. Tools adapted to OSN data have been developed by

Gimpel et al. [2011], Owoputi et al. [2013], Derczynski et al. [2013b] and are freely

available.

Named entity recogniser The NER is a tool that extracts the tokens that belong

to categories like names of persons, organisations, locations, etc. Ritter et al. [2011]

reveals that the results of standard NER systems on OSN data have low accuracy. It

also builds an improved freely available tool for this task. Also, systems participating

in the MSM 2013 Concept Extraction Challenge [Cano et al., 2013] represent relevant

alternatives for solving this task.

Normaliser Text normalisation refers to the procedure which assigns the standard

vocabulary form to a non-standard lexical variant. The later are very present in OSN

data and this is usually a consequence of the need for conveying a more nuanced opin-

ion (e.g. word lengthening for amplifying opinions [Brody and Diakopoulos, 2011]),

regional or demographic peculiarities (e.g. ‘sis’ is usually a term specific to African

American people [Eisenstein et al., 2011]) or the length constraints of the system (e.g.

4 instead of ‘for’). Example of normalised versions of texts are presented in Table 3.6

The normalisation route is appealing because it helps alleviating word level sparsity

and should theoretically lead to a reduced effort in adaptation of other processing
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tools. However, some researchers [Eisenstein, 2013] have questioned the need of nor-

malisation or have used features that deal with un-normalised text [Owoputi et al.,

2013].

There are multiple approaches to text normalisation [Han and Baldwin, 2011, Han

et al., 2013, Ling et al., 2013, Yang and Eisenstein, 2013, Xu et al., 2013], exploiting

different aspects like pronunciation, edit distance, translations into another language.

Han et al. [2012] showed that a simple dictionary based approach can achieve a

reasonably high performance. Any of these systems can be added as a mode that

outputs a list of normalised variants of the tokens.

Original RT @USER: Ah!Had d most amazing meal,Love WASABI at th Taj,defntly d
best japanese food in India:)had 2 loosen my belt ate so ...

Normalised RT @USER: Ah! Had the most amazing meal,Love WASABI at the
Taj,definitely the best japanese food in India:)had to loosen my belt ate so
...

Original @erinbieberxoxo ok:)i’ll keep thinking.wat did i say b4?haha.i 4got.
Normalised @erinbieberxoxo ok:)i’ll keep thinking.what did i say before?haha.i forgot.

Table 3.6: Normalisation examples.

User influence All the OSN peculiarities that make it popular for sharing timely

updates, like its open structure, ease of usage and access, raise natural issues about

user credibility [Castillo et al., 2011] and content attractiveness [Suh et al., 2010].

User influence or impact is thus an essential step in order to asses the importance

of a given message in social media. This can be established in a number of ways.

Intuitively, the raw number of users that receive a message (i.e. the ‘followers’) is a

natural candidate. But, in the case of Twitter, this might not be the case, because

tweets can for example be retweeted, reaching a much bigger audience. Meeyoung

et al. [2010] compare followers, retweets and @-mentions received by an account as

measures of influence and discover that the number of followers alone is not always

a good indicator of influence. Furthermore, even a regular user that does not post

content can gain a great number of followers using, for example, a follow-back strategy

(i.e. an account follows a user expecting reciprocation from the other). Bakshy et al.

[2011] measures influence of an account as the logarithm of the average size of all

cascades for which that user was a seed. Companies like PeerIndex4 or Klout5 also

offer influence scores for users which can be accessed using their public APIs.

4http://www.peerindex.com/
5http://www.klout.com/
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In [Lampos et al., 2014] we propose a new impact score which is shown to relate to

popular perception. Impact is usually quantified by the number of followers, i.e. users

interested in this account. However, non popular users can also gain a large number

of followers, for example by exploiting the follow-back strategy, i.e. following many

other accounts expecting to get followed back. The ratio of followers and followees is

not a reliable metric, as it is invariant to scaling. In order to solve this, the number

of followers is emphasised by squaring. An additional impact indicator is the number

of times an account has been listed by others. Lists provide a way to curate content,

thus, users included in many lists are attractors of interest. The final impact score is

defined as: ln
(
(listed+ 1) (followers+ 1)2/(followees+ 1)

)
. Further, we propose a

learning method for predicting and characterising impact of users based on features

under a user’s direct control (e.g. topics of tweets, user profile features, not the number

of retweets) obtaining as high as ρ = 0.78 correlation with the impact score. Bakshy

et al. [2011] achieve a modest correlation (ρ = 0.34) with their impact score (based on

number of initiated cascades of posts) using classification and regression trees with a

restricted set of features and past user influence. Any of these impact scores can be

added as a mode and further used to filter documents based on a minimum influence

threshold.

3.2 Open-source tool

This section describes the technical details of our OSN data processing architecture

and presents the main aims for which it was built. Our system is focused on a real

world scenario where fast processing and accuracy is paramount, while also allowing

users to easily add their own modules and specify which processing steps they want

when running this system. We identify two main use cases. Firstly, batch analysis of

large volumes of documents and applying filters for keywords, language, etc in order

to compute aggregate counts of features, sentiment, etc over them when dealing with

archival scenarios. Secondly, a real time analysis scenario with streaming input. To

address these concerns, we propose a set of command line tools. The tools implement

the modes of our pre-processing pipeline presented in Section 3.1.

3.2.1 Aims

The aims for our architecture for OSN data pre-processing are as follows:
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Scalability The volume of data we need to process is expected to be very large in

size and analysis might take less time than random disk access;

Modularity Each data analysis step should be a separate tool. The framework will

be able to combine separate tools (modes) and allow easy extension with new modes;

Pipeline The end-user should have control over what processing steps are required

for their application. The system should have a pipeline architecture with inter-

changeable modules;

Compatibility The system should be able to work with data from different sources

(e.g. Twitter, Google+), which may have different format and data fields;

Data consistency In order for different modes to be able to run independently or

part of a chain, the original data fields should never be altered;

Re-usability To guarantee the repeatability of all our experiments, the architecture

should be released as open-source.

3.2.2 Architecture

We expect that any specific task applied to an individual tweet will take less time

compared to random disk access required for reading and outputting compressed data.

This I/O bound analysis has been addressed in the past6 with the use of clusters of

machines with shared access to distributed data using the MapReduce framework

and Distributed File System. MapReduce is a software framework for distributed

computing introduced by Google in 2004 to support distributed processing of massive

datasets on commodity server clusters. Logically, the MapReduce computational

model consists of two steps, Map and Reduce. In the Map step, data items are

mapped in parallel to < key, value > pairs, which are then aggregated, sorted by key

and sent as input to the Reduce step which performs and aggregation on all data and

also outputs < key, value > pairs.

We use Apache Hadoop,7 an open-source implementation of MapReduce. Spec-

ifying the Map and Reduce functions for Hadoop can be done using either Hadoop

Streaming8 or by writing custom Java tools interacting with the underlying Hadoop

6http://engineering.twitter.com/2010/04/hadoop-at-twitter.html
7http://hadoop.apache.org/
8http://hadoop.apache.org/common/docs/r0.15.2/streaming.html
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Java libraries. Hadoop streaming allows the specification of the Map and Reduce

functionality through POSIX like standard in and standard out enabled command

line utilities. This allows for quick prototyping using any programming language, but

lacks the flexibility exposed when using Hadoop as a library in Java. Instead we im-

plement a Hadoop enabled pre-processing tool in Java. This tool exposes the various

stages of our pre-processing pipeline as modes. The inner components of the tool are

shared between two separate tools: a local command line utility and a Hadoop pro-

cessing utility. The individual stages of the pre-processing pipeline are implemented

in pure Java and exposed as modes in the tools. In the local utility, individual tweets

are loaded one at a time and each selected pipeline stage is applied to a tweet as it

is loaded. In the Hadoop implementation, the Map stage is used to load each item

wherein each pre-processing step is applied to individually and emitted by the Map-

per. If an aggregation is required, this is performed in the Reducer, otherwise the

Null Reducer is used.

For addressing the modularity aim, both the Hadoop and Local tools are driven

through the same mode specifications and implementations. To implement a new

mode in both tools, a simple Java interface is implemented that specifies a single

function which accepts a data item and adds its output. Furthermore, multiple im-

plemented modes can be executed in a single invocation of the tool. Concretely, this

results in multiple analysis being performed on a single item while it is in memory

(in the Local tool) or multiple analysis being performed in the single map task (in

the Hadoop tool).

3.2.3 Data format

Data consistency is related to modularity. Each component of the pipeline may run in

isolation, or as a chain of pre-processing tasks. To this end, each component must be

able to predict what data is available and be able to reuse or reproduce the output of

preceding stages it relies upon. This means that the original data item must remain

unchanged. To achieve this, we keep the format of the original data and at each step

of the pipeline we augment the output of the previous steps with extra fields inside a

special ‘analysis’ entry corresponding to the results of preceding steps. Implemented

components of the pipeline use this ‘analysis’ map to retrieve the output of previous

stages9 and they also add their own analysis output to this map.

9A stage has a unique name which it uses to store data.
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The system was first built on using Twitter data and the JSON data format

provided by the majority of OSNs as output from their API. However, although there

are similarities between the type of information provided by each OSN, each might

have a different format schema (e.g. different data fields or different names for the

same field). In order to address the compatibility aim, we internally use the USMF

(Unified Social Media Format) data format. USMF is a data format that generalises

data extracted from social networks devised by Tawlk.10 A specific OSN data schema

can be converted to this universal format for social media items by defining a simple

mapping between fields.

3.2.4 Running times

The results in Table 3.7 show timings of both our Standard and Hadoop pre-processing

tools. Both experiments were run on tweets generated in one day on October 10th,

2010. The local tool was run on a single core whilst the Hadoop tool was run on a

Hadoop cluster of 6 machines, totalling 84 virtual cores across 42 physical cores. Our

timings show that a relatively small Hadoop cluster can pre-process tweets at a faster

rate then what is created in the live Twitter stream. Furthermore, due to Hadoop’s

ability to scale with the addition of new machines, we believe that the addition of a

few machines will allow our tools to scale easily as Twitter grows in popularity.

Time Local Hadoop 10% Twitter Total Twitter
1 hour 0.51 7.6 ∼1 ∼10

Table 3.7: Number of tweets (in millions) analysed and created in an hour. Analysis
performed: tokenisation and language detection.

For re-usability, we make out pre-processing pipeline available to the community

for use in reproducing our experiments or producing novel applications. This is done

via an open-source project under BSD licence.11

3.3 Conclusions

We have presented in this chapter a framework that includes multiple modes for

processing OSN data. These modes include standard NLP operations like tokenisation

and language detection as well as others based on learning over the social network

structure as in the case of user geolocation. The framework that integrates all the

10http://sharismlab.com/blog/2012/11/16/usmf-one-format-to-rule-them-all/
11http://github.com/danielpreotiuc/trendminer-java
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modes was developed as an open-source project and can reliably process large volumes

of streaming data in parallel in a pipeline architecture.

By applying all the processing steps we have access to a richer and standardised

format of OSN data. This representation is suitable for filtering, grouping and to

build feature representations that can be fed to applications downstream.

In the next chapters we will use the collected and processed data as input for al-

gorithms that explicitly model the temporal dimension. First, in the following Chap-

ter 4, we analyse data temporality in a supervised setting by identifying correlations

to real-world indicators.
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Chapter 4

Temporality and social media

OSN data is inherently temporal with timestamped posts arriving in a stream, as

we have seen from previous chapters. But, what is the impact of temporality and

how should we model its effect? The temporal characteristics of data were previously

studied by researchers in different settings e.g. by simply examining timestaped data,

by using it to forecast values internal or external to social media, by incorporating

time into graphical models.

Timestamped data can be analysed without explicitly modelling time, but only

analysing its effects. An overview of these approaches is performed in Section 4.1.

Basic methods presented in Section 4.1.1 aim to analyse existing temporal patterns by

examining past data. Often an application on top of this type of analysis is forecasting

of variables in the near future (e.g. the following day) based on OSN derived features.

These applications are presented in Section 4.1.2. In a supervised setting, a model is

learnt on existing previous data and is used to predict the output variable when its

values are not available. In the case of OSNs, the output variables can be internal (e.g.

if a keyword will trend, frequency of people visiting bars tomorrow) or external, with

which some of the system’s features are expected to correlate (e.g. rainfall, natural

disasters). More sophisticated models aim to model time as a separate variable (e.g.

conditioning on time or including the timestamp as a variable in a generative model)

before analysing its dynamics. However, modelling time is usually performed by

making strong assumptions, such as temporal smoothness. In Section 4.2 we review

work on temporal modelling, with an emphasis on OSN oriented research.

In Section 4.3 we explore how text features derived from Twitter data can be

correlated to real world indicators external to the social network. We consider time

varying political party voting intention scores from two different countries as use cases.

In a supervised setting, we aim to forecast these scores from Twitter data. We build

sparse regression models that learn which features are predictive of the underlying
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signal. In order to handle the large amount of input noise we introduce bilinear

regression models in Section 4.3.3. However, these are not temporal models as they

treat the word features as stationary. In Section 4.4 we explore one of the simplest

types of temporal dynamics: an online setup where old data is down-weighted in

favour of new data. This way, we aim to show that temporality plays an important

role in building predictive models from social media.

4.1 Non-temporal models

4.1.1 Timestamped data analysis

A straightforward method of analysing the temporal characteristics of features derived

from OSN data is to perform time series analysis. Tools that enable this kind of

analysis are available for large scale data, for example in the case of search queries

and news headlines1 or n-grams in book collections.2

Visualisation Further work on data visualisation in OSNs have shown informative

patterns of human activity. Rios and Lin [2012, 2013] present tweeting volume pat-

terns over a year in different cities of the world. They display low activity during

the nights and usually the highest activity during the evenings. Weekends exhibit

a different pattern compared to weekdays, with the activity more evenly spread out

during the course of the day. However, cultural peculiarities are also a factor that

influences these patterns. For example, denizens of some cities (e.g. Tokyo) are more

‘serious’ and do not tweet that much during usual work hours (10AM - 6PM) while

school holidays mean that more tweets are sent later in the night as a large group of

people are not constrained to wake up early in the morning. Religious customs are

shown to have an impact as well, as in cities with a majority of Islamic population,

people do not tweet much during prayer times or adjust their daily program during

Ramadan to have more activities after sunset. When looking at human activity from

LBSNs in Section 2.2.3, we have also identified similar patterns for the weekdays and

weekends, while very different across these categories. However, other than geo-tags

and time, LBSNs offer other meta-data about the location of the posts, such as the

type of place (e.g. bar, park). A joint analysis will be presented in Section 5.3.

1http://www.google.co.uk/trends/
2http://books.google.com/ngrams/
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For OSNs, multiple commercial tools have been developed to enable users to

discover and analyse trends.3,4,5,6 Usually, these include a filtering step which restricts

the content to that relevant to the users interests. Then, aggregate statistics such

as volume of messages, relevant terms and sentiment scores are displayed as a time

series for human interpretation.

Filtering Some research studies use the same filtering approach for analysis. Rios

and Lin [2012] display activity during a major event, the Football World Cup in 2010,

highlighting the volume of activity for different teams and competition stages. By

monitoring keywords over time, Doan et al. [2011] study the relationship between

Twitter messages and the Tohoku Earthquake in Japan and find that Japanese mes-

sages could be used as an early warning system. They also measure anxiety in the

Japanese population using keywords and found that a spike occurs in the case of a

natural disaster, but this goes back to normal levels after a short time span. Lansdall-

Welfare et al. [2012] filter geo-located tweets in the U.K. for mood-bearing words (four

moods: joy, fear, anger and sadness [Strapparava and Valitutti, 2004]) to identify the

‘mood of the nation’.7 They show that bursts in certain moods coincide with events,

such as the U.K. riots or Christmas. Dodds et al. [2011] attempt to measure happi-

ness as self-reported by users on Twitter. With the help of Amazon Mechanical Turk8

they have gathered happiness evaluations for more than 10,000 words and used these

to analyse specific words and create an aggregate ‘happiness’ profile for different time

intervals. For example, they have shown an increase in happiness during mornings

and in the weekends, confirming also conclusions of [Golder and Macy, 2011]. The

changes observed in moods over time lead them to perform a word shift analysis.

This looks at which words contribute to the change in average happiness for days in

which a sudden change in this mood was observed. For example, words like ‘kiss’,

‘prince’ and ‘dress’ contributed the most for the happiness spike on the day of the

British Royal Wedding of 2011.

Event detection A similar idea to word shift analysis was used for event detection

in [Mathioudakis and Koudas, 2010]. They assume that if a word exhibits a burst

in usage, then an event relating to this word has occurred. Snowsill et al. [2010]

3http://www.brandwatch.com/
4http://www.opiniontracker.net/
5http://www.ubervu.com/
6http://www.tribatics.com/
7http://geopatterns.enm.bris.ac.uk/mood/
8http://www.mturk.com/
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perform a statistical test to identify which n-grams have increased in frequency over

their expected frequency, thus indicating possible underlying events. The different

temporal patterns of social media memes have been explored by Yang and Leskovec

[2011]. They build a K-Spectral Centroid method for grouping time series which

uncover discovering six categories, all of which have a large burst as a component.

Models that predict the volume of the temporal diffusion of information in OSNs have

also been studied [Yang and Leskovec, 2010] showing that imitation and novelty are

key factors in the adoption of news-related textual words and phrases.

Dimensionality reduction The major issue with analysing trends of individual

words is their large number. A better representation of text content is arguably

needed in order to enable a better overview of the OSN data stream [Ramage et al.,

2010]. A traditional approach is to distill a collection of documents into clusters of

words or ‘topics’.

Topic models are generative probabilistic models that learn a small number of

distributions over a words (called ‘topics’) which describe a document collection.

Latent Dirichlet Allocation (LDA) [Blei et al., 2003], the most popular topic model,

is a fully unsupervised model that uses co-occurrences between words in a document in

order to group them in similar ‘topics’. A document is then represented by a mixture

of these ‘topics’. Because each document can belong with a certain probability to

each underlying topic, topic models have been used by researchers to aid browsing

document collections.9,10,11

Thus, it is not surprising that they have also been used to analyse collections of

timestamped documents. Griffiths and Steyvers [2004] have trained LDA over a large

set of PNAS scientific articles and plot the distribution of topics over time. Hall et al.

[2008] try to link topic distributions between documents from different years in order

to analyse trends in the NLP community. However, all these models only use the

timestamp after learning the distributions as a way of displaying the information,

rather than incorporating it as a variable of the learned model. An overview of work

that uses the timestamp in learning is presented in Section 4.2.4.

Use of topics models in OSNs has been restricted mostly due to the large data

volume and the restricted length of a document, which impairs inference due to a

low number of co-occurring terms. Hong and Davison [2010] apply LDA in order

to model OSN user interests and to aid categorisation. They have also shown that

9http://www.cs.cmu.edu/~lemur/science/
10http://www.princeton.edu/~achaney/tmve/wiki100k/browse/topic-presence.html
11http://christo.cs.umass.edu/NYT/
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another model, the Author-Topic model [Rosen-Zvi et al., 2004], quite successful for

identifying authored sections in multi-authored documents, is useless when confronted

with OSN data. Zhao et al. [2011] introduce TwitterLDA is based on the assumption

that one tweet can only have words from one topic and a ‘background’ one. This

shows better results than when applying standard LDA. They compare the topics

learnt with LDA over newswire with those from social media, showing a completely

different distribution of topics between the two sources, with personal and family

related topics more prominent on Twitter. An usual method of overcoming the short

length of OSN messages is to aggregate them based on a similar characteristic, such

as the author [Eisenstein et al., 2010], and use them as documents in regular LDA.

4.1.2 Forecasting

As we have seen in the previous section, many studies provide evidence that mean-

ingful patterns can be extracted from the data of the OSN stream. These patterns

can be harnessed in forecasting settings. A model is learnt using data coupled with

responses and used to forecast the response in the future, based only on data. Al-

though these do not represent temporal models per se, they use timestamped data in

order to predict future behaviour, thus using the temporality of the data.

For example, a very popular application is that of predicting future human be-

haviour based on the mobility history, also known as ‘next location prediction’ [Chin

and Zhang, 2013]. Methods used in mobile computing consider the spatial trajecto-

ries [Spaccapietra et al., 2008], temporal patterns [Nguyen and Tu Minh, 2007], or

spatio-temporal patterns [Scellato et al., 2011a] for location prediction. For LBSNs,

social proprieties (e.g. friend’s patterns, demographic data) have also been incorpo-

rated into prediction models based on spatio-temporal patterns in [Chang and Sun,

2011, Gao et al., 2012] with relative success. For Twitter, researchers have attempted

to predict future events, such as the volume of hashtags using content features [Tsur

and Rappoport, 2012] or if a message is going to be retweeted [Petrović et al., 2011]

or deleted [Petrović et al., 2013].

In the previous section we have also shown that researchers used OSN data in

order to identify and observe real world events. We can thus expect that response

variables which are external to the OSN can be nowcasted or forecasted using OSN

derived features. Nowcasting or ‘predicting the present’ [Choi and Varian, 2011] is

used to track current indicators in near-real time for responses that are usually very

costly to evaluate and can further offer a detailed break-down with the help of meta-

data (e.g. geography, demographics). Forecasting or ‘predicting the future’ is use to
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predict variables days or weeks in advance. Usually the response variables are from the

domain of Social Sciences [Miller, 2011] such as political science (e.g. voting intention

[Tumasjan et al., 2010], presidential approval [O’Connor et al., 2010]), economics

(e.g. stock market trends [Bollen et al., 2011]) or health (e.g. flu rates [Lampos et al.,

2010]).

Before social media, Goel et al. [2010] have used search query volumes on Google

to forecast the opening weekend box-office revenue for features films, songs, video

games, while Ginsberg et al. [2008] used query volumes to track flu trends. By using

OSN data, successful attempts have at first been reported for a range of applications

with easy to derive features. Asur and Huberman [2010] suggest that the tweet

rate about a feature film can predict the box office revenues better than traditional

forecasting models. Tumasjan et al. [2010] show experiments on the German federal

election of 2009 and find significant correlation between the number of political party

mentions on Twitter and election results. Culotta [2010] shows strong correlation

between flu related tweet volume and CDC ILI (The U.S. Centers for Disease Control

and Prevention infuenza-like illness) rates.

Methods building on the previous perform an analysis on the filtered set of mes-

sages. The most common is to compute a sentiment score based on the intuition

that more favourable messages toward some entity will correlate better with the re-

sponse variable. For financial time series, Bollen et al. [2011] suggested that Twitter

can be used for stock market prediction. With political voting intention application,

O’Connor et al. [2010] and Lampos [2012] filter the Twitter stream and compute a

sentiment score (using OpinionFinder [Wilson et al., 2005] or WordNet Affect [Strap-

parava and Valitutti, 2004]) for each political entity (party or politician). They obtain

mixed results, with the OSN derived features not correlating in all cases with the re-

sponse variable, hinting that more complex methods may be needed.

In fact, most of the initial research was subject to controversy due to the lack

in experiment replicability, one-sample testing or not simulating a pure forecasting

setup by feature engineering using the test results [Metaxas et al., 2011]. For example,

Jungherr et al. [2012] contradict the conclusions of Tumasjan et al. [2010] by showing

that the volume of tweets about the Pirate Party was the largest across all parties.

Had they been included in the original study, they would have been forecasted as

the winners of the election although they only obtained 2% of the votes. Metaxas

et al. [2011] perform an analysis over 6 different U.S. senatorial or congressional races

using the methods of [Tumasjan et al., 2010] and [O’Connor et al., 2010]. They

conclude that any of the two methods predicts only half of the elections correctly. By
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comparing the predictions, the sentiment based methods of [O’Connor et al., 2010]

performs consistently better, but still has an average error of 7,6% percentage points

to the actual voting intention (compared to 17,1%).

A further limitation is the dependence of some methods on large hand crafted

lists of words for filtering or sentiment calculation. Most of the systems are thus

not easily portable across different tasks and data scenarios. In order to address

this and also to obtain a better accuracy, Marchetti-Bowick and Chambers [2012]

use distant supervision [Mintz et al., 2009] for both the filtering and sentiment steps.

This involves using a few general keywords in order to retrieve relevant documents

which are then used to train a classifier in order to extract further messages that

even if they do not include the original keywords. For presidential approval in the

U.S., they discover that distant supervision aids both steps, obtaining a high positive

correlation (ρ = 0.70) with both positive and negative approval rate compared to

the method of [O’Connor et al., 2010] which shows negative correlation with positive

approval. However, they also discover that computing sentiment over the entire data,

without content filtering, is comparable to their best results.

Several issues have been identified in existing forecasting models [Gayo-Avello,

2012]. The problem of demographic and self-selection bias in the OSN user base

should be incorporated as a factor and predictions should be sensitive to this. Statis-

tics have shown that OSN population is not representative of the entire population12

and reactions to events are often disproportionate to the public.13 In 2011, only 22%

of registered voters have let others know how they voted on OSNs in the U.S.14 Further

issues are represented by the vast volume of irrelevant messages and the difficulty in

identifying relevant messages amongst these. Opinion spam and propaganda are ever

increasing phenomena which should also be accounted for [Mustafaraj et al., 2011].

Models should compare their performance to traditional methods and the processing

operations on the data before the prediction should be pre-determined and fixed.

A few methods try to address some of these issues. Huberty [2013] used an

ensemble supervised learning algorithm on OSN data for the 2010 U.S. congressional

elections to obtain better predictions then a very competitive incumbency baseline

and the volume and sentiment based methods. However, testing the same model learnt

on out-of-sample 2010 data on 2012 election data showed poor results. The conclusion

is that recent data is important in forecasting. In a similar regression setup, Lampos

12http://pewinternet.org/Reports/2013/social-networking-sites.aspx
13http://www.pewresearch.org/2013/03/04/twitter-reaction-to-events-often-at-

odds-with-overall-public-opinion/
14http://pewinternet.org/Reports/2011/Politics-and-social-media.aspx
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and Cristianini [2010] explore the relationship between flu rates as measured in the

U.K. and data from Twitter. They use a regularised linear regression [Bach, 2008] in

order to identify a sparse set of keywords that best correlate in frequency with the flu

rates. They achieve as high as ρ = 0.94 correlation with ground truth in a forecasting

setting [Lampos et al., 2010]. We argue that by using existing ground truth data we

can automatically adjust for the demographic and self-selection biases and perform

automatic word features selection, removing the need for adaptation between test

scenarios. We explore a model based on this idea in Section 4.3.3. Further systematic

analysis of forecasting models are presented in [Schoen et al., 2013, Gayo-Avello,

2012].

4.2 Temporal models

4.2.1 Online learning

Temporal models aim to explicitly incorporate time as a factor that impacts the

outcome of the model. This is based on the concept of data non-stationarity: the

properties of the data are different conditioned on time. Central to this are methods

and concepts of online learning.

In online learning, data arrives in a stream and needs to be incorporated into

the model one at a time. Usually labeled feedback is also provided with data in a

streaming setting. This is in contrast with the traditional machine learning setup

where the data is static and a model is trained on the entire dataset. Models trained

in this way are not able to incorporate new information without retraining the entire

model. The most naive way in extending these models to handle streaming data is

to retrain models in fixed size data windows. However, this method is usually hard

to apply in real settings due to the cost in time associated with training a new model

from scratch. This motivates research into online one pass algorithms trained over

streaming input.

In the general online learning framework, no assumptions on the origin of the data

stream (e.g. stationarity) are made. Studies have shown that in practice, dataset size

is an important factor for the performance of different models [Halevy et al., 2009].

Simpler models trained on large data have produced better results than better models

with a smaller dataset [Banko and Brill, 2001]. Thus, evaluation of online learning

methods is usually done by regret analysis [Shalev-Shwartz, 2007]. Regret analysis

compares the cumulative loss of the sequentially trained online learning algorithm to

the results of a batch model trained from scratch from all the data available before
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each prediction. Regret thus measures the penalty paid by the online model compared

to the batch model. An alternative is to consider that the model should evolve over

time and the online algorithm is penalised in both loss and the shifts in the model

[Herbster and Warmuth, 2001]. Negative regret is usually hard to obtain in static

datasets, where one pass online algorithms are expected to perform worse than the

batch variants. However, the potential non-stationarity of the data might lead to

better results by an online learner.

Recently, online variants of learning algorithms have been proposed. Stochastic

Gradient Descent is a common approach to online learning that has shown very good

results in NLP tasks [Bottou, 2010, Martins, 2012]. For graphical models, online

variational Bayes was used to build an online version of LDA which finds models as

least as good as those learned with batch variational Bayes [Hoffman et al., 2010]. An

alternative approach to an online setup for LDA is presented in [AlSumait et al., 2008]

and a version that differs from the original version by considering a sliding window for

training is presented in [AlSumait et al., 2009]. A paper that adapts pLSA [Hofmann,

1999], a basic version of LDA, to an online setting is presented by Gohr et al. [2009].

Applications using OSN data are relatively restricted, as many researchers have only

tested batch prototypes.

4.2.2 Online clustering and event detection

Topic (or event) detection and tracking has experienced a new rise in attention once

with the availability of OSN data. Historically, these tasks were defined and stud-

ied in the context of ‘Topic detection and tracking’ (TDT) on newswire text [Allan,

2002]. Methods for topic detection can be grouped into document and feature based

approaches. The former aims to cluster documents into events and then extract fea-

tures from the clusters [Brants et al., 2003]. The later category is based on identifying

and clustering features that are representative of events [Kleinberg, 2002]. In OSNs,

a streaming setup is assumed as data arrives ordered in time and in high volume,

making one pass algorithms a necessity.

Generally, clustering methods that operate in a streaming setting have been

adapted from batch algorithms [Guha et al., 2003]. The two main approaches are

centroid models and density based models. Centroid models assume that each cluster

is represented by a central item. The most common method of this type fixes the

number of clusters beforehand to k, leading to the k-median optimisation problem,

usually solved by the k-means algorithm. Online approaches to this problem have
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shown very good results [O’Callaghan et al., 2002]. However, the restriction of spec-

ifying k beforehand is limiting for discovering new topics, usually meaning that in

order for a new cluster to emerge, another has to be deleted. Another limitation is

usually the spherical shape of the clusters which is due to the distance metric (i.e.

usually Euclidian).

Density based models (e.g. DBSCAN [Ester et al., 1996]) assume that clusters are

represented by areas of high density. In order to compute the ‘density’, a notion of

similarity between two items is used and needs to be defined. Items that do not belong

to any high density area are considered noise and thus not clustered. Density based

methods have the advantage of handling outliers and can identify arbitrary numbers

and shapes of clusters. However, the algorithms are based on a good definition of

similarity, which might not be intuitive for high-dimensionality problems and are

incapable of identifying clusters of different densities. Streaming versions of density

based algorithms have also been proposed [Feng et al., 2006]. Evolutionary clustering

methods [Chakrabarti et al., 2006] provide another view on temporal clustering. They

attempt to link clustering results performed on consecutive time intervals. Results

aim to reflect long-term trends while being robust to short-term variations. This is

performed by adding a temporal smoothness penalty to the static clustering criterion

in each time interval [Chi et al., 2007, Xu et al., 2010].

Document based methods for online OSN data clustering usually use the key

assumption of temporal locality due to the ephemeral nature of most events, as was

identified in Section 4.1.1. This is used by creating time windows for clustering in

order to allow a quick change in topics and to be affective when presented with large

data volumes. For example, Incremental DBSCAN [Ester et al., 1998] is used by [Lee,

2012] for clustering within a sliding window, moreover adding a penalty for items that

are further apart in time. For a related task, that of first story detection, [Petrović

et al., 2010] uses randomized algorithms (i.e. Locality Sensitive hashing) to identify

messages in OSNs that are very different from all the previous and use hashing to

keep track of documents.

For feature based methods, a parametric distribution of the temporal patterns of

events is usually assumed e.g. a burst in frequency followed by a decay. By analysing

natural hazard related keywords, Sakaki et al. [2010] assume that the distribution

of messages relating to these events has an exponential distribution. They build

a classifier for these messages and build an early detection system for this type of

events. [Becker et al., 2011b] assigns a message to a cluster based on document

similarity. However, in order to discover which clusters are related to events, they use

49



temporal features such as the similarity of a word temporal profile to an exponential

distribution. Mathioudakis and Koudas [2010] identifies bursts in frequencies of words

and assumes these are caused by events. The method further filters the stream for

the bursty words and finds other words which co-occur with it in order to characterise

an event by a set of words. Zimmermann et al. [2012] tries to address limitation in

findings subtopics by creating a two-level hierarchy of topics and identifying whether

a change occurred either at a local or global level. Li et al. [2012] expand burst

detection to segments in messages and identify the top segments as potential event-

related segments. Clustering using a variant of k-nearest neighbours is used in order

to group the features and further refine the clusters.

Feature based methods are usually easier to scale and clustering in a high dimen-

sional space with very few activated features (non-zero values in the vector repre-

sentation) usually leads to weak cluster assignments. However, the assumption of a

bursty behaviour for feature frequencies might not always hold, for example in the

case of frequent features or topics without a large coverage where bursts are hard to

be reliably identified. In Chapter 6 we attempt to overcome these limitations by iden-

tifying events based on variation in co-occurrences. We argue that these are robust

to word frequency values and can also capture events of restricted interest.

4.2.3 Regularised learning

One of the common approaches to regression and classification is using generalised

linear models [McCullagh and Nelder, 1989]. Models take a m-dimensional feature

vector input xxx and aim to build linear functions of xxx for predicting the response

variable y. The objective is to find an optimal function (in the form of a vector of

weights www) that minimises a model-dependent loss function L subject to a regular-

isation penalty ψ. The regularisation penalty incorporates into the model desirable

properties of the weight vector www. For example, by using a l2 regulariser, high weights

are penalised (a.k.a. ‘ridge regression’ [Hoerl and Kennard, 1970]). This is very im-

portant for high dimensional problems in order to avoid overfitting. Another option

is to use the l1 regulariser (a.k.a. LASSO [Tibshirani, 1994]), which penalises more

harshly non-zero values for weights. This builds into the model the bias that only a

sparse set of features have to be used for prediction. This is desirable when m is very

large, usually higher than the number of training examples n and several features are

expected to be correlated.

However, the regulariser can also be used to incorporate time dependencies be-

tween features. Assuming that features can be arranged in temporal order, fused
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LASSO [Tibshirani et al., 2005] penalises the l1 norm of the weights and their con-

secutive differences. The l1 penalty models local smoothness between weights. On

the assumption that the training examples can be grouped based on time, [Yogatama

et al., 2011] learn a weight vector for each time step. They use l2 regularisation be-

tween the weight vectors in each separate time step to induce smoothness for weights

over time. They note that the prior distribution over the weight sequences is linked

to a first-order auto-regressive process, AR(1).

4.2.4 Generative models

Modeling time using generative models, such as LDA, has been studied in different

contexts. We have identified two major ways in which researchers have addressed the

issue of time modeling: by expressing the time variable explicitly in the model or by

building into the model the time dependency between variables.

The former category of models that we have identified consists of models that

explicitly treat the time variable, including it into the graphical models specifica-

tion. The first model that used this was Topics Over Time (TOT) model introduced

in [Wang and McCallum, 2006] where a beta prior is assumed over the temporal

distribution. The model presented in [Li et al., 2006] uses the same idea and pri-

ors as in the Topics over Time model. However, they use as the underlying model,

instead of LDA, Pachinko Allocation [Li and McCallum, 2006]. Song et al. [2005]

suggests a topic model that incorporates different variables in the model (e.g. con-

tact information, content and the time of a text). Use cases include timestamped

e-mail collections, the set of the State of the Union addresses or a set of conference

proceedings.

The later category is characterised by the intention of building into the model a

dependency between documents or collections of documents. For many collections of

texts the implicit assumption of exchangeable documents, which is an integral part

of LDA, is inappropriate as is the case of collections that come from different time

periods. The first study to consider this problem is Blei and Lafferty [2006]. The goal

is to capture the evolution of topics in a sequentially organised corpus of documents.

The paper introduces Dynamical Topic Models (DTM) where documents in each time

bucket are modeled with LDA and the topics associated with the current bucket evolve

from the topics associated with the previous one. Building upon DTMs (or discrete

dDTM), other models like cDTM (Continuous Time Dynamic Topic Model) [Wang

et al., 2008] and Multiscale Dynamic Topic Models (MDTM) and Online MDTM

[Iwata et al., 2010] are introduced. Online pattern discovery in multiple time series
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is the goal of Wei et al. [2007]. This study presents the Dynamic Mixture Models

(DMM), a latent variable model that takes into consideration the timestamps of data

records in dynamic streams.

Markov topic models (MTM) are introduced in [Wang et al., 2009]. These models

aim to learn topics simultaneously from multiple corpora. MTMs are an extension of

the LDA where a Markovian framework is applied to the topic parameters for different

corpora. Using the exact same framework, but only modeling topic distributions with

Markov random fields, are the Markov Random topic fields (MRTF) introduced by

Daume III [2009]. While not modeling temporal data in their experiments, these

two models (MRM and MRTF) can be adapted to temporal modeling by assuming

the dependencies of documents or corpora to be of temporal origin. These studies

use datasets of long and well structured documents on a restricted set of topics (e.g.

conference proceedings or political addresses).

4.3 Forecasting political voting intention

In this section, we approach the problem of supervised learning with the goal of fore-

casting external variables based on textual features derived from OSNs. We develop

models that go beyond state-of-the-art techniques. Specifically, the bilinear modeling

framework is introduced for handling the noisy nature of OSN data, where only a

small fraction of the content is relevant for the predictive task. As case studies, we

consider the application of predicting political party voting intention in two differ-

ent countries: the U.K. and Austria. We compare our models to existing methods,

such as volume, sentiment score and regularised linear regression. These are expected

to suffer in terms of predictive accuracy when faced with data of large scale and in

presence of noise.

4.3.1 Voting intention scores

We use as the external variable for prediction voting intention percentages for the top

political parties. In order to prove that our methods are generalisable and robust,

we use two different test cases: the U.K. and Austria. These are bound by different

characteristics such as language, time intervals, number of users, size and relevance of

data. We use as data the U.K. Users Dataset and Austrian Politics Dataset introduced

in Section 2.1.3.
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Voting intention is quantified by polls performed by specialist polling institutes in

both countries. First, for the U.K., we use polls provided by YouGov15 which usually

provide 5 polls every week, totaling 240 polls for the almost 2 years of the dataset.

We selected the top 3 parties, which accounted for more than 90% of the voting

intention in our interval of study: the Conservative Party (CON), the Labour Party

(LAB) and the Liberal Democrats (LIB). For Austria, we collect polls from all the

pollsters16 as none performed frequent polling. We collect 65 polls for approximately

1 year of our data, which we expand to 98 polls by replicating polls to days when no

polls were conducted in order to ensure a sufficient number of training points. The

parties selected were: the Social Democratic Party (SPÖ), the People’s Party (ÖVP),

the Freedom Party (FPÖ) and the Green Alternative Party (GRÜ), which totalled

over 90% of the voting intention at the beginning of our dataset. Thus we will have

a prediction task for each party, three for the former setup and four for the later.

The voting intention time series are presented in Figures 4.1 and 4.2. We observe

that the scores are quite stable across time, but a few change points exist. In the

U.K. use case, LIB have an abrupt fall in popularity at the start of the time series

and stabilise around of a score of 10%. CON and LAB interchange the first position

in voting intention several times in the duration of the dataset. For Austria, the

changes in voting intention are at the start of the time series between FPÖ and SPÖ

and later between ÖVP and FPÖ. SPÖ and GRÜ have more stable scores.
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Figure 4.1: Voting intention for the
U.K. experiments.
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Figure 4.2: Voting intention for the
Austria experiments.

In order to establish the usefulness of modeling voting intention with OSN data, we

also compare to methods which use only historical voting intention scores. We define

15http://yougov.co.uk/
16http://de.wikipedia.org/wiki/Nationalratswahl_in_\%C3\%96sterreich_2013
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Mean as the method that forecasts for a party its average voting intention the entire

past data. Last is the method that forecasts the value of the most recent available

poll. Due to the fact that polls are relatively stable in time, these method should

achieve very good results. Any potential gain in accuracy beyond these methods

would prove that OSN data is of significant usefulness for predicting voting intention.

4.3.2 Linear regression

As mentioned in Section 4.2.3, generalised linear models are a standard approach for

regression tasks. In a regression task, a set of n input-response pairs (xxxi, yi) are given.

The goal is to learn a function f(x) that predicts y when only the value of xxx is given.

Simple linear regression17 learns a linear function of xxx:

f(x) = xxxTwww + β where xxx,www ∈ Rm (4.1)

The objective is to learn the parameters of the model θ = (www, β), where we refer

to www as the feature weights and to β as the bias term. The goal is to minimise the loss

function, which is the sum of a model-dependent loss function L and a regularisation

penalty ψ. The loss function L is the sum of squared errors over the training set.

Thus, the objective is:

{www, β} = argmin
www,β

n∑
i=1

(xxxTi ·www + β − yi)
2

+ ψ(www, ρ) (4.2)

Common choices for ψ are l1 and l2 regularisation (see Section 4.2.3). The l1-norm

regularisation has found many applications in several scientific fields as it encourages

sparse solutions which reduce the possibility of overfitting and enhance the inter-

pretability of the inferred model [Hastie et al., 2009]. This is especially the case when

the number of training examples is less than the number of features, as usually with

text features. We use the elastic net regulariser [Zou and Hastie, 2005], which applies

an extra penalty on the l2-norm of the weight vector. This can resolve instability

issues of LASSO which arise when correlated predictors exist in the input data [Zhao

and Yu, 2006]. Its regularisation function ψel is defined by:

ψel (www, λ, α) = λ

(
(1− α)

‖www‖2
2

2
+ α‖www‖1

)
(4.3)

where λ > 0 and α ∈ [0, 1); setting parameter α to its extremes transforms elastic

net to ridge regression (α = 0) or LASSO (α = 1).

17referred to as ‘linear regression’ further
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In our setting, the number of samples n is represented by the number of polls

used in training. We will consider word frequencies as features of the regression task.

Corresponding to each poll, the frequencies are aggregated over the time interval

between the previous poll and the current. We only use raw frequencies due to their

simplicity in computation and interpretation. With a different use case, we have

experimented with using deeper linguistic features, such as entities or part-of-speech

tags [Preoţiuc-Pietro et al., 2014]. However, this only led to only minor improvements

over unigram word frequencies.

4.3.3 Bilinear regression

As we have highlighted in Section 4.1.2, when using OSN data important issues arise

from the vast volume of irrelevant messages to our prediction task. The presence

of these can lead to arbitrary correlations in training and poor generalisation. In

Section 2.1.2 we have seen that users of OSNs can be of different types, only a sub-

category of which discuss current news and politics. This, together with demographic

bias and opinion spam lead to the conclusion that not all users should be treated

‘equal’ in a predictive model. Rather than identifying and quantifying each of these

sources of bias, a model should automatically account for them.

In this section we present a novel approach which performs high quality filtering

automatically, through modelling not just words but also users. This is framed as a

bilinear model with sparse regulariser [Lampos et al., 2013]. Regularised regression

on both user and word spaces allows for an automatic selection of the most important

words and users, performing at the same time an improved noise filtering.

In addition, we explore more advanced regularisation functions in multi-task learn-

ing schemes that can exploit shared structure in the feature space. The latter prop-

erty becomes very useful in multi-output regression scenarios, where selected features

are expected to have correlated or anti-correlated impact on each output (e.g. when

inferring voting intentions for similar or competing political parties).

We highlight that our bilinear models can be used with any combination of two

variables with which the data can be decomposed in the same manner. In the rest of

this section we will refer to the two sets of variables as the ‘words’ and ‘users’.

4.3.3.1 Bilinear framework

A number of different possibilities exist for incorporating user information into a

regression model. A simple approach is to expand the feature set, such that each
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user’s effect on the response variable can be modelled separately. Although flexible,

this approach would be doomed to failure due to the sheer size of the resulting feature

set, and the propensity to overfit all but the largest of training sets. One solution

is to group users into different types (e.g. journalist, politician, activist) but this

presupposes a method for classification or clustering of users which is a non-trivial

undertaking. Besides, these näıve approaches fail to account for the fact that most

users use similar words to express their opinions, by separately parameterising the

model for different users or user groups.

We propose to account for individual users while restricting all users to share the

same vocabulary. This is formulated as a bilinear predictive model:

f(X) = uuuTXwww + β (4.4)

where uuu ∈ Rp are the user weights, www ∈ Rm are the word weights, X is a m×p matrix

of word-user frequencies and θ = (uuu,www, β) are the model parameters. Let Q ∈ Rn×k×p

be a tensor which captures our training inputs, where n is the number of samples, m

is the number of words and p is the number of users; Q can simply be interpreted as

n stacked versions of X (denoted by Qi), one for each training sample (i.e. time step

in our setup). Each element Qijk holds the frequency of term j for user k during the

time associated with sample i. If a user k has posted ci·k messages during day i, and

cijk ≤ ci·k of them contain a term j, then the frequency of j for this day and user is

defined as Qijk =
cijk
ci·k

.

Aiming to learn sparse sets of users and terms that are representative of the voting

intention signal, we formulate our optimisation task as follows:

{www∗,uuu∗, β∗} = argmin
www,uuu,β

n∑
i=1

(
uuuTQiwww + β − yi

)2
+ ψ(www, ρ1) + ψ(uuu, ρ2) (4.5)

where yyy ∈ Rn is the response variable, uuuTQiwww expresses the bilinear term, β ∈ R
is a bias term and ψ(·) is a regularisation function over both the user and word

weights with different parameters ρ1 and ρ2. The first term in Equation 4.5 is the

standard sum squared error. In the main formulation of our bilinear model, as the

regularisation function ψ we again use the elastic net [Zou and Hastie, 2005].

The optimisation of the objective in Equation 4.5 can be treated as a biconvex

learning task [Al-Khayyal and Falk, 1983], by observing that for a fixed www, learning

uuu is a convex problem and vice versa. Biconvex functions and possible applications

have been well studied in the optimisation literature [Quesada and Grossmann, 1995,
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Pirsiavash et al., 2009]. Their main advantage is the ability to solve efficiently non-

convex problems by a repeated application of two convex processes i.e. a form of

coordinate ascent. In our case, the bilinear technique makes it possible to explore

both word and user spaces, while maintaining a reduced complexity: twice the number

of iterations times that of the linear learner. The method for optimisation we use is

FISTA (Fast Iterative Shrinkage-Thresholding Algorithm) [Beck and Teboulle, 2009].

Therefore, in our bilinear approach we divide learning in two phases, where we

learn word and user weights respectively. For the first phase we produce the term-

scores matrix V ∈ Rn×m with elements given by:

Vij =

p∑
z=1

uzQijz. (4.6)

V contains weighted sums of term frequencies over all users for the considered set

of days. The weights are held in uuu and are representative of each user. The initial

optimisation task is formulated as:

{www∗, β∗} = argmin
www,β

n∑
i=1

(Vwwwi + β − yyyi)2 + ψ (www, ρ1) (4.7)

where we aim to learn a sparse but consistent vector of weights www∗ for the words of

our vocabulary.

In the second phase, we are using www∗ to form the user-scores matrix D ∈ Rn×p:

Dik =
m∑
z=1

w∗zQizk (4.8)

which now contains weighted sums over all terms for the same set of days. The

optimisation task becomes:

{uuu∗, β∗} = argmin
uuu,β

n∑
i=1

(Duuui + β − yyyi)2 + ψ (uuu, ρ2) (4.9)

By inserting the weights of the second phase back to phase one, we can iterate

the process as in each step we are dealing with a convex problem. We cannot claim

that a global optimum will be reached, but biconvexity guarantees that our global

objective (Equation 4.5) will decrease in each step of this iterative process (i.e. local

optimality). We will refer to this method as Bilinear Elastic Net (BEN).
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4.3.3.2 Exploiting word-target or user-target relationships

The previous model assumes that the response variable yyy holds information about

a single inference target. However, the task that we are addressing in this paper

usually implies the existence of several targets, i.e. different political parties. An

important property, therefore, is the ability to perform multiple output regression.

A simple way of adapting the model to the multiple output scenario is by framing a

separate learning problem for each output, but tying together some of the parameters.

Here we consider tying together the user weights uuu, to enforce that the same set of

users are relevant to all tasks, while learning different word weights. Note that the

converse situation, where www’s are tied and uuu’s are independent, can be formulated in

an equivalent manner.

Suppose that our target variable YYY ∈ Rτ ·n refers now to τ different response vari-

ables (e.g. political parties), YYY =
[
yyyT

1 yyy
T
2 ...yyy

T
τ

]T
; in this formation the top n elements

of YYY match to the first response variable, the next n elements to the second and so

on. In the first phase of the bilinear model, we would have to solve the following

optimisation task:

{www∗, β∗} = argmin
w,β

τ∑
i=1

‖Vwiwiwi + βi − yyyi‖2
2 +

τ∑
i=1

ψ (wwwi, ρ1) (4.10)

where V is given by Equation 4.6 and www∗ ∈ Rτm denotes the vector of word weights

which can be sliced into τ sub-vectors {www∗1, ...,www∗τ} each one representing a response

variable. In the second phase, sub-vectors www∗i are used to form the input matrices Di,
i ∈ {1, ..., τ} with elements given by Equation 4.8. The input matrix D′ is formed

by the vertical concatenation of all Di user score matrices i.e. D′ =
[
DT

1 ... DT
τ

]T
,

and the optimisation target is equivalent to the one expressed in Equation 4.9. Since

D′ ∈ Rτ ·n×p, the user weight vector uuu∗ ∈ Rp and thus, we are learning a single weight

per user and not one per response variable as in the previous step.

The method described above allows learning different word weights per response

variable and then binds them under a shared set of user weights. As mentioned before,

one could also try the opposite and learn a single weight per word and different user

weights for each response variable. In this case, the first phase of the model would

have to solve:

{uuu∗, β∗} = argmin
u,β

τ∑
i=1

‖Duiuiui + βi − yyyi‖2
2 +

τ∑
i=1

ψ (uuui, ρ2) (4.11)

where D is given by Equation 4.8 and uuu∗ ∈ Rτp denotes the vector of user weights

which can be sliced into τ sub-vectors {uuu∗1, ...,uuu∗τ} each one representing a response
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variable. In the second phase, sub-vectors uuu∗i are used to form the input matrices Vi,
i ∈ {1, ..., τ} with elements given by Equation 4.6. The input matrix V ′ is formed by

the vertical concatenation of all Vi word score matrices i.e. V ′ =
[
VT

1 ... VT
τ

]T
, and

the optimisation target is equivalent to the one expressed in Equation 4.9.

Both those models can also be optimised in an iterative process. However, ex-

periments revealed that those approaches did not improve on the performance of the

BEN model. Still, this behaviour could be problem-specific, i.e. learning different

words from a shared set of users (and the opposite) may not be a good modelling

practice for this task. Nevertheless, this observation served as a motivation for the

method described in the next section, where we extract a consistent set of words and

users that are weighted differently among the considered political entities.

4.3.3.3 Multi-task learning

All previous models – even when combining all inference targets – were not able to

explore relationships across the different task domains; in our case, a task domain is

defined by a specific political party. Ideally, we would like to make a sparse selection of

words and users but with a regulariser that promotes inter-task sharing of structure,

so that many features may have a positive influence towards one or more targets,

but negative towards the remaining ones. It is possible to achieve this multi-task

learning property by introducing a different set of regularisation constraints in the

optimisation function.

We perform multi-task learning using an extension of group LASSO [Yuan and Lin,

2006], a method known as l1/l2 regularisation [Argyriou et al., 2007]. Group LASSO

exploits a predefined group structure on the feature space and tries to achieve sparsity

in the group-level i.e. it does not perform feature selection (unlike the elastic net),

but group selection. The l1/l2 regulariser extends this notion for a τ -dimensional

response variable. The global optimisation target is now formulated as:

{W ∗, U∗,βββ∗} = argmin
W,U,βββ

τ∑
t=1

n∑
i=1

(
uuuT
t Qiwwwt + βt − yti

)2
+ λ1

m∑
j=1

‖Wj‖2 + λ2

p∑
k=1

‖Uk‖2

(4.12)

where the input matrix Qi is defined in the same way as earlier, W = [www1 ... wwwτ ] is the

word weight matrix (each wwwt refers to the t-th task i.e. political entity), equivalently

U = [uuu1 ... uuuτ ], Wj and Uj denote the j-th rows of weight matrices W and U respec-

tively, and vector βββ ∈ Rτ holds the bias terms per task. We are now regularising the

`2,1 mixed norm of W and U , which is defined as the sum of the row `2-norms for
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those matrices. In this optimisation process, we aim to enforce structured sparsity

in the feature space, biasing user and word weights accross all tasks to a value of

zero [Argyriou et al., 2007, Eisenstein et al., 2011]. Only a subset of both users and

words will have non-zero weights, the same across all tasks (corresponding to the rows

of W and U). Consequently, we are essentially performing filtering while assigning

weights to the selected users or words. This is suitable for many use cases, such as

our political application, where pro-A often means anti-B.

Equation 4.12 can be split into two convex tasks (following the same notions as in

Equations. 4.7 and 4.9), where we individually learn {W,βββ} and then {U,βββ}; each step

of the process is a standard linear regression problem with an `1/`2 regulariser. Again,

we are able iterate this bilinear process and in each step convexity is guaranteed. We

refer to this method as Bilinear Group `1/`2 (BGL).

4.3.4 Experimental setup

Basic pre-processing has been applied on the vocabularies of both the U.K. Users

and Austrian Politics datasets aiming to filter out some of the word features and

partially reduce the dimensionality of the problem. Stop words and URLs were re-

moved from both dictionaries, together with character sequences of length <4 and <3

respectively.18 As the vocabulary size of the former dataset was significantly larger,

for this data set we have additionally merged Twitter hashtags with their exact non

topic word match, where possible (by dropping the ‘#’ when the word existed in the

index). After performing the pre-processing routines described above, the vocabulary

sizes for were 80,976 and 22,917 respectively. The number of users is 42,484 in the

U.K. scenario and 1,118 in the Austrian one. In building the feature matrices Xi we

use the messages since the day of the previous poll up to the day of the current poll.

We could have considered a lag in response to a poll, as in [O’Connor et al., 2010],

but decided not to because the polls have good frequency and their fieldwork dates

are specified.

To evaluate the predictive accuracy of our methods, we emulate a real-life scenario

of voting intention prediction. The evaluation process starts by using a fixed set of

polls matching to consecutive time points in the past for training and validating the

parameters of each model. Testing is performed on the following δ (unseen) polls of

the data set. In the next step of the evaluation process, the training/validation set is

increased by merging it with the previously used test set (δ polls), and testing is now

18Most of the times those character sequences were not valid words. This pattern was different in
each language and thus, a different filtering threshold was applied in each data set.

60



performed on the next δ unseen polls. In our experiments, the number of steps in this

evaluation process is set to 10 and in each step the size of the test set is set to δ =

5 polls. Hence, each model is tested on 50 unseen and consecutive in time samples.

The loss function in our evaluation is the standard Mean Square Error (MSE), but

to allow a better interpretation of the results, we display its root (RMSE) in tables

and figures.19 RMSE is computed per party in each fold and the reported result is

the average across folds.

The hyperparameters of each model (αi for BEN and λi for BEN and BGL,

i ∈ {1, 2}) are optimised using a held-out validation set by performing grid search.

Note that it may be tempting to adapt the regularisation parameters in each phase

of the iterative training loop, however this would change the global objective (see

Equations 4.5 and 4.12) and thus convergence will not be guaranteed. A key ques-

tion is how many iterations of training are required to reach convergence. Figure 4.3

illustrates how the BEN global objective function (Equation 4.5) converges during

this iterative process and the model’s performance on an unseen test set. Notice that

there is a large performance improvement after the first step (which alone is a linear

solver), but overfitting occurs after step 11. Based on this result, for subsequent ex-

periments we run the training process for two iterations (4 steps), and take the best

performing model on the held-out validation set.
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Figure 4.3: Global objective function and RMSE on a validation set for BEN in 15
iterations (30 steps) of the model.

19RMSE has the same metric units as the response variable.
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4.3.5 Quantitative results

Forecasting results comparing inferred voting intention percentages and polls are pre-

sented for both datasets in Tables 4.1 and 4.2 respectively. For the U.K. study, both

BEN and BGL perform best in average performance across all parties. However in the

Austrian case study, LEN performs better that BEN, something that could be justi-

fied by the fact that the number of users in this dataset was small enough and they

were chosen to be relevant for current affairs. Imposing a filtering on them is thus not

needed. Nevertheless, the difference in performance was rather small (≈ 0.26 error)

and the inferences of LEN and BEN followed a very similar pattern (ρ̄ = .94 with

p < 10−10).20 Multi-task learning (BGL) delivered the best inference performance in

both case studies, which was on average smaller than 1.48 (RMSE).

Inferences for both BEN and BGL are been plotted in Figures 4.6, 4.7, 4.8 and

4.9. They are presented as continuous lines of 50 inferred points (per party) which

are created by concatenating the inferences on all test sets. For the U.K. case study,

one may observe that BEN (Figure 4.6) cannot register any change in leading voting

intention supremacy (CON versus LAB) with the exception of one test point; BGL

(Figure 4.8) performs much better in that aspect. In the Austrian case study this

characteristic becomes more obvious. BEN (Figure 4.7) consistently predicts the

wrong ranking of ÖVP and FPÖ, whereas BGL (Figure 4.9) does much better. Most

importantly, a general observation is that BEN’s predictions are very smooth. This

might be a result of overfitting the model to a single response variable which usually

has a smooth behaviour. On the contrary, the multi-task learning property of BGL

reduces this type of overfitting providing more statistical evidence for the terms and

users and thus, yielding not only a better inference performance, but also a more

accurate model. We note that further investigation on the validity of the results is

necessary in order to make this tool useful in practice and to replace, at least partially,

the need of traditional voting intention polling.

4.3.6 Qualitative analysis

In this section, we refer to features that have been selected and weighted as significant

by our bilinear learning models. The top positive weighted words for each party are

presented in word clouds in Figures 4.10, 4.11 and 4.12. We notice first that key

political terms are selected with high weights (e.g. tory, labour). Some words are

related to events which impact political outcomes (e.g. egypt, election), while others

20Pearson’s linear correlation averaged across the four Austrian parties.
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Figure 4.4: Voting intention for the
U.K. tests.
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Figure 4.5: Voting intention for the
Austria tests.
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Figure 4.6: Results of the BEN model
for the U.K.
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Figure 4.7: Results of the BEN model
for Austria.
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Figure 4.8: Results of the BGL model
for the U.K.
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Figure 4.9: Results of the BGL model
for Austria.
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CON LAB LIB µµµ
Mean 2.272 1.663 1.136 1.69
Last 2 2.074 1.095 1.723
LEN 3.845 2.912 2.445 3.067
BEN 1.939± 1.92 1.644± 1.59 1.136± 1.03 1.573
BGL 1.7851.7851.785± 1.53 1.5951.5951.595± 1.09 1.0541.0541.054± 0.81 1.4781.4781.478

Table 4.1: U.K. case study – Average RMSEs representing the error of the inferred
voting intention percentage for the 10-step validation process; µµµ denotes the mean
RMSE across the three political parties for each baseline or inference method. Stan-
dard deviation across folds shown for the bilinear models.

SPÖ ÖVP FPÖ GRÜ µµµ
Mean 1.535 1.373 3.3 1.197 1.851
Last 1.148 1.556 1.6391.6391.639 1.536 1.47
LEN 1.291 1.286 2.039 1.1521.1521.152 1.442
BEN 1.392± 1.39 1.31± 1.00 2.89± 2.20 1.205± 1.05 1.699
BGL 1.619± 1.54 1.0051.0051.005± 0.90 1.757± 1.39 1.374± 1.10 1.4391.4391.439

Table 4.2: Austrian case study – Average RMSEs for the 10-step validation process.
Standard deviation across folds shown for the bilinear models.

(e.g. video, blog, live) are potentially indicative of the type of tweets which contain

news or opinions which may impact political voting intention. While the word clouds

are representative, they are not exhaustive, as the sparse regulariser aims to remove

words which have a correlated behaviour. The selected users can not be displayed

for privacy reasons, but these mostly report news or comment on politics and current

affairs, which is consistent to our goal of filtering out users which are uninformative

to our regression goal.

Based on the weights for the word and the user spaces that we retrieve after the

application of BGL in the last step of the evaluation process (see the previous section),

we compute a score (weighted sum) for each tweet in our training datasets. Table

4.3 shows examples of interesting tweets amongst the top weighted ones (positively

as well as negatively) per party. Together with their text and scores, we also provide

an attribute for the author (anonymised for privacy reasons). In the displayed tweets

for the U.K. study, the only possible outlier is the ‘Art Fanzine’; still, it seems to

register a consistent behaviour (positive towards LAB, negative towards LIB) and,

of course, hidden, indirect relationships may exist between political opinion and art.

The Austrian case study revealed even more interesting tweets since training was
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conducted on data from a selected set of users. For a better interpretation of the

presented tweets, it may be useful to know that ‘Johannes Voggenhuber’ (who receives

a positive comment for his book) and ‘Peter Pilz’ (whose comment is questioned) are

members of GRÜ, ‘Krone’ (or Kronen Zeitung) is the major newspaper in Austria21

and that FPÖ is labelled as a far right party, something that may cause various

reactions from ‘Human Rights’ organisations.

Figure 4.10: Highest positive weighted
words for the Conservative Party
(CON) (final fold). Font size is pro-
portional to the word weight.

Figure 4.11: Highest positive weighted
words for the Liberal-Democrat (LIB)
Party (final fold). Font size is propor-
tional to the word weight.

Figure 4.12: Highest positive weighted
words for the Labour Party (LAB) (fi-
nal fold). Font size is proportional to
the word weight.

21‘Accused of abusing its near monopoly to manipulate public opinion in Austria’, Wikipedia,
19/02/2013, http://en.wikipedia.org/wiki/Kronen_Zeitung
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Party Tweet Score Author

CON PM in friendly chat with top EU mate, Sweden’s Fredrik Reinfeldt, before
family photo

1.334 Journalist

Have Liberal Democrats broken electoral rules? Blog on Labour complaint
to cabinet secretary

−0.991 Journalist

LAB Blog Post Liverpool: City of Radicals Website now Live <link> #liverpool
#art

1.954 Art Fanzine

I am so pleased to hear Paul Savage who worked for the Labour group has
been Appointed the Marketing manager for the baths hall GREAT NEWS

−0.552 Politician
(Labour)

LIB RT @user : Must be awful for TV bosses to keep getting knocked back by
all the women they ask to host election night (via @user)

0.874 LibDem MP

Blog Post Liverpool: City of Radicals 2011 – More Details Announced
#liverpool #art

−0.521 Art Fanzine

SPÖ Inflationsrate in Ö. im Juli leicht gesunken: von 2,2 auf 2,1%. Teurer
wurde Wohnen, Wasser, Energie.

0.745 Journalist

Hans Rauscher zu Felix #Baumgartner “A klaner Hitler” <link> −1.711 Journalist

ÖVP #IchPirat setze mich dafür ein, dass eine große Koalition mathematisch
verhindert wird! 1.Geige: #Gruene + #FPOe + #OeVP

4.953 User

kann das buch “res publica” von johannes #voggenhuber wirklich
empfehlen! so zum nachdenken und so... #europa #demokratie

−2.323 User

FPÖ Neue Kampagne der #Krone zur #Wehrpflicht: “GIB BELLO EINE
STIMME!”

7.44 Political satire

Kampagne der Wiener SPÖ “zum Zusammenleben” spielt Rechtspopulis-
ten in die Hände <link>

−3.44 Human Rights

GRÜ Protestsong gegen die Abschaffung des Bachelor-Studiums Internationale
Entwicklung: <link> #IEbleibt #unibrennt #uniwut

1.45 Student Union

Pilz “ich will in dieser Republik weder kriminelle Asylwerber, noch krim-
inelle orange Politiker” - BZÖ-Abschiebung ok, aber wohin? #amPunkt

−2.172 User

Table 4.3: Examples of tweets with top positive and negative scores per party for
both datasets.

4.4 Non-stationary models of forecasting

Experiments and analysis of results from the previous Section have shown that text

in social media correlates to real-world indicators. However, the forecasting task is of

a streaming nature, something which was not exploited by the batch algorithms used

to train the models we presented. The prediction model needs to be updated as new

data arrives one by one in a (possibly) unbounded stream containing the word × user

frequency matrices Qi and the voting intentions for the parties yi. Online learning,

presented in Section 4.2.1, is usually used in this setting in order to avoid retraining

the full model to incorporate each input, which is usually very costly. This class of

methods are particularly useful when the distribution of the data is non-stationary

i.e. its properties change with time. In our case, we study the impact of considering

newer data to play a more important role in predictions in comparison to older data.

4.4.1 Online bilinear learning

We start by introducing an online biconvex learning scheme for the bilinear models in

Section 4.3.3. This allows the bilinear models to work in a streaming, one pass setting.
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This allows the model to update the weights for words, users as well as the bias terms

on the addition of new data. This scheme uses Stochastic Gradient Descent (SGD)

with proximal updates for regularisation. Our experiments (Section 4.4.1.2) use the

online version of the BGL model, as this obtained the best results in the batch setting.

We will analyse regret by comparing the results with those of the batch model.

4.4.1.1 Algorithm

Our technique extends Stochastic Gradient Descent methods with proximal updates

for regularisation to work in a biconvex context. The objective is to optimise the loss

function e.g. Equation 4.12 for BGL. Optimisation is usually performed via gradient

descent.

Gradient descent methods consist on iteratively following the gradient of the dif-

ferentiable objective function F . If this is also convex then reaching a global optimum

is guaranteed, otherwise the optimum might be only local. Assuming differentiable

and decomposable F , the gradient of F at w is given by ∇F (w) = 1
N

∑N
n=1∇Fn(w).

An algorithm for optimising F (w) iteratively updates the weight vector w following

the negative of the gradient by the learning rate η: w∗ = w−η∇F (w). The downside

is that the gradient needs to be recomputed using the entire dataset. When the num-

ber or test points or the dimensionality of the problem is large, the computational

cost is high, making learning new models from scratch costly.

An alternative to gradient descent is represented by Stochastic Gradient Descent

[Bottou, 2004]. This replaces the full gradient computation ∇F (w) with an estimate

of the gradient built from a small subset of the training instances, T .For online learn-

ing, T is chosen to contain only the most recent timestamp before each prediction.

Stochastic Gradient Descent converges with probability one or almost surely [Rogers

and Williams, 2000] to a minimum (global in the case of convex objectives) with the

learning rate ηt = O(1/
√
t).

However, Stochastic Gradient Descent has issues when seeking sparse solutions, as

those promoted by the `1 and `1/`2 regularisers used in our bilinear models. Since the

regularisers are non-differentiable at the origin, the solutions are rarely sparse, having

components close, but not equal to zero [Martins et al., 2011b]. These solutions are

slightly inferior and are a consequence of noisy SGD. In order to address this problem

we follow the method from [Martins et al., 2011a]. The (sub)gradient is computed

of F only with respect to the loss function, followed by proximal steps for each

component of the regulariser. The proximal operator proxφ(w) [Moreau, 1962] gives
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Algorithm 1 Online Biconvex Proximal Gradient Algorithm.

1: Q ← {Q1, ...,Qn} . A streaming sequence of word × user frequency matrices
2: Y ← {y1, ..., yn} . A streaming sequence of response variables
3: Θ← {η, dw, du} . Learning rates, proximal parameters
4: procedure OnlineBilinearLearner(Q, Y , Θ)
5: initialise www . Initialise word, user weights and bias
6: for 〈Qi, yi〉 ∈ 〈Q, Y 〉 do
7: while !StoppingCondition(Θ; www,uuu, β) do
8: V i ← uuuTQi + β . The word-scores matrix
9: www ← www − ηt∇L(www;Vi, yi, {www, β}) . Word Gradient Step

10: www = prox(www) . Word Proximal Step
11: Di ← Qiwww + β . The user-scores matrix
12: uuu← uuu− ηt∇L(uuu;Di, yi, {uuu, β}) . User Gradient Step
13: uuu = prox(uuu) . User Proximal Step
14: Bi ← uuuTQiwww + β . Current estimate with bias
15: β ← β − ηt∇L(β;Bi, yi, {β}) . Bias Gradient Update
16: end while
17: end for
18: end procedure

the best trade-off between a good approximation of w and the cost associated with

the function φ:

proxφ(w) = argmin
w′

1

2
‖w′ − w‖2

+ φ(w′) (4.13)

In our algorithm, φ is the regulariser and w are the current weights as obtained by

the gradient descent step. The weights thus are again subject to sparsity constraints.

Algorithm 1 outlines the generic algorithm for online learning using Stochastic

Gradient Descent with proximal updates for bilinear models. This works as follows.

For each training pair 〈Qi, yi〉, the algorithm alternatively updates each of the two

sets of weights (uuu or www) whilst keeping the other fixed. Similarly to the batch setting,

this is performed for a number of iterations. The update step consists, for any of the

two sets of weights, in alternating between (sub)gradient steps with respect to the

loss function and proximal steps with respect to the regulariser. At the end of each

iteration, a gradient update on the bias is performed by keeping both sets of weights

fixed. In our generic algorithm, the loss function and the regulariser are not explicitly

specified. Any loss function with a calculable (sub)gradient can be used in this setting.

Analogously, the regulariser needs to have a calculable proximal operator.

The best experimental results in Section 4.3.4 were obtained using the BGL model.

This uses as loss function the sum squared loss. The loss for a single training pair
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〈Qi, yi〉 is:

L(Qi, yi; {www,uuu,βββ}) =
τ∑
t=1

(
uuuT
t Qiwwwt + βt − yti

)2
(4.14)

When updating www, we first calculate Vi, thus keeping uuu fixed. The gradient of this

loss function is used to update www:

Vi =uuuTQi

L(Vi, yi, {www, β}) =
τ∑
t=1

(Viwwwt + β − yti)2

∇L(www;Vi, yi, {www, β}) =
τ∑
t=1

2Vi (Viwwwt + β − yti)

(4.15)

This is a convex function 22 and thus updating following the gradient is guaranteed

to lead to a global optima. The quantity by which the gradient is followed is a

parameter of the online algorithm ηt. The gradient update for www is computed in a

similar way:

Di =Qiwww

L(Di, yi, {uuu, β}) =
τ∑
t=1

(
uuuTDi + β − yti

)2

∇L(uuu;Di, yi, {uuu, β}) =
τ∑
t=1

2Di
(
uuuTDi + β − yti

) (4.16)

Finally, we also update the bias term β. Its gradient is:

Bi =uuuTQiwww

L(Bi, yi, {β}) =
τ∑
t=1

(Bi + β − yti)2

∇L(β;Bi, yi, {β}) =
τ∑
t=1

2 (Bi + β − yti)

(4.17)

For regularisation, BGL uses the `1/`2 regulariser. The proximal update step for

the words which form a group m is:

proxGL(www)m =

{
0 if ‖wwwm‖2 ≤ dw
‖wwwm‖2−dw
‖wwwm‖2 wwwm otherwise

(4.18)

Practically, for the `1/`2 (and also `1) regulariser, this operator shrinks all values

and pushes to zero those under a threshold, thus finding sparse solutions.

22 The initial bilinear loss function in Equation 4.14 is non-convex

69



Algorithm 1 receives an input stream of training pairs {〈Q1, y1〉, ..., 〈Qn, yn〉}. The

algorithm has various parameters including initialisation, learning rates and regulari-

sation parameters. First, before data is seen, thewww and uuu vectors need to be initialised

(Line 5). We found the convergence of the algorithm is very dependent on a good

initialisation. Zero initialisation leads to zero gradient update, while a random one

slows the rate of learning. In our experiments we initialised uuu uniformly with a low

value (i.e. 0.1) and initialised www and the bias terms β with zero, making the first

update of www to be data driven. We set the number of iterations to a minimum of

3 and maximum of 10, further stopping in case of few changes in the weights (i.e.

(∆www + ∆uuu+ ∆β)/(www + uuu+ β) < 0.01) (Line 7).

4.4.1.2 Experiments

In this section we experiment with the online biconvex learner used to train a bilinear

model. We aim to demonstrate the capabilities of the online learner by comparing it

to the batch learner using the same experimental setup. Our experiments focus on

the Austrian political use case as described in Section 4.3.4.

Regret analysis [Shalev-Shwartz, 2007] compares the cumulative loss of the se-

quentially trained online learning algorithm to the results of a batch model trained

from scratch from all the data available before each prediction. Regret thus measures

the penalty paid by the online model compared to the batch model. Our batch exper-

iments simulated a real world scenario where predictions were made up to five time

steps into the future (given the observations for these days). After the predictions

were made, a new model was trained on the entire previous data and the new data

points. We simulate the same setting for the online model. The model is trained

online, makes the next five predictions and only after, the new data is incorporated

into the model by online updates.

SPÖ ÖVP FPÖ GRÜ µµµ
BGL Batch 1.619± 1.54 1.005± 0.90 1.757± 1.39 1.374± 1.10 1.439
BGL Online 2.028± 1.75 1.602± 1.01 1.722± 1.75 1.2465± 1.03 1.648

Table 4.4: Austrian online learning comparison – Average RMSEs for the 10-step
validation process.

The results of the online model are presented in Table 4.4 and in Figure 4.13. We

notice that the predictive performance of the online model is, as expected, worst than

the batch model but only by around 0.2 RMSE.
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Regret is plotted in Figure 4.14. We also give a measure of average regret as the

mean of the differences between the batch and online model up to a given point in

Figure 4.15. We measured the regret between the 10 testing steps. We observe that

regret quickly increases in the first testing steps, with an decrease in the later steps.

As more data is seen, the online model performs better predictions, reflected by a

decrease in average regret. In steps 7 and 8 the online learner performs even slightly

better than the batch algorithm, highlighted by a decrease in regret. This indicates

possible non-stationarity of our data.
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Figure 4.13: Results of the Online BGL model for Austria.
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Figure 4.14: Regret (cumulative loss)
over the 10 testing steps.
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Figure 4.15: Average regret over the
10 testing steps.

4.4.2 Non-stationarity

In this chapter we examine the possibility of the data being non-stationary. Given

our use case, that of political party voting intentions, it is expected that new data
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should be more relevant at the current time compared to older data. This is due to

current events being reflected very quickly in public opinion. Treating all the data

similarly as important would have the effect of a slow adaptation to sudden changes

in data.

4.4.2.1 Forgetting old data

Both the word × user frequency matrices Qi and the output values Yi are likely to

have means, variances and co-variances that change over time. Though non-stationary

distributions can occur for a variety of reasons, one way in which they are generated is

through a process similar to a random walk wherein recent values are better indicators

of future values than historic values.

In this section we study the impact of downscaling weights learnt from older data.

We thus attempt to deal with the potentially non-stationary nature of the training

pairs, which arrive in an ordered stream. In Algorithm 1, Line 6, after a new training

pair is received but before any updates are made, each of the weight vectors uuu,www, β

can be scaled down by multiplying with a value of γ, 0 ≤ γ ≤ 1, which we name

the ‘forgetting factor’. The value of γ controls how quickly the old data is forgotten.

When γ = 1 no modification to the online algorithm is done and if γ = 0, then only the

newest input data is used. This would result in the effect of early training pairs on the

model’s weightings disappearing entirely as novel items are added. If the distribution

of independent and dependent variables is truly non-stationary, then predictions of

future variations should improve as a consequence of forgetting unhelpful old data

while emphasising newer input data.

4.4.2.2 Experiments

We have performed experiments using different values for γ using the online bilin-

ear algorithm. The model used as training and testing data the first fold of the

experiments from Section 4.4.1.2.

The average RMSE as a function of γ is presented in Figure 4.16.

We can identify that the best result is obtained with a obtained with a value of

γ = 0.95. Moreover, compared to the model with no forgetting factor, the model

obtains better results with all values of 0.7 < γ < 0.98.

This result is evidence that political voting intentions have a non-stationary dis-

tribution as the results would be expected if the distant-past was a worse predictor

of the test-time period than the near-past. These results show a simple, yet effective

way of improving the bilinear model’s predictive ability. The appropriate amount of
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Figure 4.16: Results with varying forgetting factor.

dampening can be adjusted using validation data, as this is likely to be affected by

various factors including the rate of change of underlying random walk, the rate at

which data is added to the model, the optimal or desired training window.

4.5 Conclusion

In this chapter we have presented an overview that highlights the important role

time has on the properties of OSN data. Analysis that look at the time series of

words generated by social media data have proven useful in a number of domains

and application areas. Tools, such as dimensionality reduction, further aid this kind

of analysis. We have overviewed the different ways in which researchers have dealt

with temporality in learning models e.g. as a variable in generative models or as

regularisation in a linear model. Time also was shown to play an essential role in

event detection, where word and text proprieties change in time.

Social media was shown to also be indicative of real-world activity. We have

introduced models which correlate OSN data to real-world quantities (i.e. political

voting intentions). These exploit both word and user spaces by solving a bilinear

optimisation task and further possible relationships between the different outputs.

These methods use sparse regularisers on large-scale data in order to perform noise

filtering. Generality and robustness of the models were emphasised by the adaptation

to two different use cases. Results have shown very good (< 1.5 RMSE) performance

for political party prediction. Further, we have introduced an online learning scheme

and analysed its performance, showing this is comparable to that of the batch al-

gorithm, with the advantage of a lower computational cost for the online scheme.
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We introduced a basic technique for emphasising new data, finding evidence of non-

stationarity. This underscores the importance of temporal modelling.

This chapter implies that complex temporal dependencies and data volatility are

important characteristics of OSN data. In the following chapters we aim to explic-

itly model these characteristics by building them into machine learning models and

further applications. Specifically, the next chapter will deal with discovering complex

temporal patterns in OSN data.
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Chapter 5

Temporal prediction

Strong and complex temporal dependencies exist in OSN data as presented in the

previous chapter. For modeling temporality we have incorporated into our novel

models the intuition that recent data is more relevant than older data using an online

learning scheme. While forgetting old data is a powerful yet simple way of modelling

temporality, these methods cannot capture temporal dependencies such as periodic

rise and fall. In this chapter, we aim to develop algorithms that allow modeling of

more complex temporal dependencies, with an emphasis on periodicities [Preoţiuc-

Pietro and Cohn, 2013a], in data from both types of OSNs under study. We consider

a supervised forecasting setup where the learnt patterns are used to predict future

behaviours.

We start by describing the Machine Learning framework we will use for the predic-

tion, namely Gaussian Processes, in Section 5.1. Gaussian Processes are a Bayesian

non-parametric method that is widely regarded as state-of-the-art for regression. In

the following sections, we will model the OSN data using this approach for word and

topics in Section 5.2 and for user behaviours in Section 5.3. We automatically identify

and categorise temporal patterns and compare to a series of other competitive meth-

ods which also incorporate temporal dependencies. Conditioning on time, we aim

to get a better representation of the expected events. To show this, we incorporate

our forecasts into a time-aware classifier which also uses temporal effects to classify

documents, rather than only words.

5.1 Gaussian Processes

In this section we present the learning framework we will use for prediction: Gaus-

sian Process (GP) models of regression [Rasmussen and Williams, 2005]. GPs are
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a probabilistic machine learning framework incorporating kernels and Bayesian non-

parametrics which is widely considered as state-of-the-art for regression. The GP de-

fines a prior over functions which applied at each input point gives a response value.

Given data, we can analytically infer the posterior distribution of these functions

assuming Gaussian noise. The kernel of the GP defines the covariance in response

values as a function of its inputs.

We can identify two different setups for a regression problem. If the range of

values to be predicted lies within the bounds of the training set we call the prediction

task as interpolation. If the range of the prediction is outside the bounds, then our

problem is extrapolation. In this respect, extrapolation is a more difficult task as the

model needs to extract the general patterns of the data. The covariance kernel which

incorporates our prior knowledge plays a major role in the prediction.

There is the case when multiple covariance kernels can describe our data. For

choosing the right kernel only using the training data we employ Bayesian model

selection which makes a trade-off between the fit of the training data and model

complexity. We briefly overview GP regression, kernel choice and model selection. A

detailed introduction to GPs is presented in Rasmussen and Williams [2005].

5.1.1 Gaussian Process regression

Consider a time series regression task where we only have one feature, the time t for

which we have the value xt. Our training data consists of n pairs D = {(t, xt)}. The

model will need to predict values xt for values of t not in the dataset using a function

f learned from data.

Intuitively, the Gaussian Process defines a distribution over functions, which are

subject to constraints given by the training data, i.e. passing near these values. For-

mally, the Gaussian process is a collection of random variables, any finite number of

which have a joint Gaussian distribution [Rasmussen and Williams, 2005]. In this

case the random variables are the values of the function xt. GP regression assumes

a latent function f that is drawn from a GP prior f(t) ∼ GP(m, k(t, t′)) where m is

the mean and k a kernel. The GP is completely specified by the mean m, assumed

0 in the rest of the section, and a kernel k(t, t′). The kernel specifies the covariance

between pairs of outputs:

k(t, t′) = cov(xt, x
′
t) (5.1)

Given the covariance is defined over an infinite set of pairs, we need to assume a

simple form of the covariance by defining covariance values using a kernel function.
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The covariance implies a distribution over functions and encodes the properties of the

functions (e.g. smoothness, periodicity, stationarity). We illustrate this by generating

random functions f ∼ N (0, k(t, t′)) where k is a squared exponential kernel that

defines smooth functions (defined in Section 5.1.2) and t are equally spaced data

points. Different samples of functions are presented in Figure 5.1.

3 2 1 0 1 2 3

2

1

0

1

2

Figure 5.1: Functions drawn from a
GP prior with a standard smooth co-
variance (Squared Exponential, Sec-
tion 5.1.2). The thick line represents
the mean and the shaded area repre-
sents the 95% confidence region.
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Figure 5.2: Functions drawn from the
posterior after observing 10 noisy sam-
ples (marked with crosses). The thick
blue line represents the mean and the
shaded area represents the 95% confi-
dence region.

We assume the predicted value is obtained by the function evaluated at the cor-

responding data point, xt = f(t) + ηt, where η ∼ N (0, σ2) is white-noise. In order

to make predictions incorporating our belief over possible functions after observing

the training set D we must compute the posterior distribution over functions. For

this, we need to restrict the joint prior distribution of the training and test points to

generate the observed training points. The posterior at a test point t∗ is given by:

p(x∗|t∗,D) =

∫
f

p(x∗|t∗, f) · p(f |D) (5.2)

where x∗ and t∗ are the test response and input. The predictive posterior can be

solved analytically with the solution:

x∗ ∼ N (kT∗ (K + σ2
nI)−1t, k(t∗, t∗)− kT∗ (K + σ2

nI)−1k∗) (5.3)

where k∗ = [k(t∗, t1)...k(t∗, tn)]T are the kernel evaluations between the test point

and all the training points, K = {k(ti, tj)}i=1..n
j=1..n is the Gram matrix over the training
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points and t is the vector of training points. The posterior of x∗ includes the mean

response as well as its variance, thus expressing the uncertainty of the prediction.

The forecast is usually taken as the expected value. Sample functions taken from the

posterior after observing a few data points are presented in Figure 5.2. We note that

due to the matrix inversion in 5.3, exact inference is of complexity O(n3), where n

is the number of training points. Efforts to scale GPs to a large number of variables

are well understood [Candela and Rasmussen, 2005] and approximate a solution in

complexity to O(nm2), where m is selected at runtime, with a higher value giving

better approximations.

5.1.2 Kernels

The kernel together with its parameters fully define the GP. The kernel induces the

covariance in the response between pairs of data points. Intuitively, if the desired

function is smooth, closer points should have high covariance compared to points

that are further apart. If a periodic behaviour is desired, points at period p distance

should have the highest covariance. Usually, the kernel is isotropic i.e. invariant to

all rigid motions.

For interpolation, a squared exponential kernel is usually used which encourages

smooth functions. Figure 5.3 shows regression over three days for the frequency of

the hashtag #goodmorning on Twitter when only a random third of the values of

the function are observed. We see that both a smooth kernel (Squared Exponential,

defined below) and a periodic kernel (Periodic Spikes, defined below) give good results.

This is because in interpolation scenarios a smoothly transitioning function between

observations usually provides a good fit. We notice however that in intervals when

no observations are provided (as in the extrapolation scenario) the variance of the

prediction is very high.

Consequently, for extrapolation, the choice of the kernel is paramount. The kernel

encodes the prior belief about the type of function we aim to learn. To illustrate this,

in Figure 5.4, we show the same time series over a larger 2 weeks interval and plot

the regression for the future week learned by using different kernels.

We will use multiple kernels, each most suitable for a specific category of temporal

patterns in our data. This includes a new kernel inspired by observed word occurrence

patterns. The kernels are:

Constant (Const): The constant kernel is kC(t, t′) = c and it describes a con-

stant relationship between outputs. Its mean prediction will always be the value c

learned in training. Its assumption is that the signal is modeled only by Gaussian
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Figure 5.3: Interpolation for #goodmorning over 3 days with SE and PS(p=24,s=3)
kernels. Prediction variance shown in grey for PS(24). Crosses represent training
points.
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Figure 5.4: Extrapolation for #goodmorning over 3 weeks with GPs using different
kernels. Forecast is the predictive mean.

noise centred around this value. This describes the data best when we have a noisy

signal around a stationary mean value.

Squared exponential (SE): The SE kernel or the Radial Basis Function (RBF)

is the standard kernel used in most interpolation settings:

kSE(t, t′) = s2 · exp

(
−(t− t′)2

2l2

)
(5.4)

This gives a smooth transition between neighbouring points and best describes

time series with a smooth shape e.g. a uni-modal burst with a steady decrease. How-

ever, the predictive variance increases exponentially with distance. Predictions well

into the future will have no covariance. Its two parameters s and l are the characteris-

tic length-scales along the two axes. Intuitively, they control the distance of inputs on

a particular axis from which the function values become uncorrelated. We note that
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Figure 5.5: Constant kernel.
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Figure 5.6: Linear kernel.
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Figure 5.7: Squared exponential ker-
nel.
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Figure 5.8: Periodic kernel.
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Figure 5.9: Behaviour of the PS kernel
with p=50.

using the SE kernel in a Gaussian Process corresponds to Bayesian linear regression

with an infinite number of basis functions [Rasmussen and Williams, 2005].

Linear (Lin): The linear kernel describes a linear relationship between outputs:

kLin(t, t′) =
|t · t′|+ 1

s2
(5.5)
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This kernel is non-stationary as the covariance between outputs does not depend

only on the difference between data points |t− t′|, but on their actual values. Gaus-

sian processes using the linear kernel is equivalent to Bayesian linear regression with

N (0, 1) priors on the corresponding regression weights and a prior of N (0, s2) on the

bias.

Periodic (PER): The periodic kernel represents a SE kernel in polar coordinates

and describes a sinusoidal relationship between outputs:

kPER(t, t′) = s2 · exp ·
(
−2 sin2(2π(t− t′)/p)

l2

)
(5.6)

The kernel is good at modelling periodically patterns that oscillate smoothly be-

tween low and high frequency. s and l are characteristic length-scales as in the SE

kernel and p is the period i.e. distance between consecutive peaks.

Periodic spikes (PS): We introduce this kernel in order to model the following

periodic behaviour: abrupt periods of high values, usually with a peak, followed by

periods of very low occurrence:

kPS(t, t′) = cos

(
sin

(
2π · (t− t′)

p

))
· exp

(
s cos(2π · (t− t′))

p
− s
)

(5.7)

This is inspired by observations on studying word frequencies for which low values

can be observed for short or long time intervals, followed by abrupt periodic rise in

usage. For example, words associated with a weekly TV series will only have non-zero

frequency during and around its air time. Some other words will only be used at close

to nighttime and seldom during the rest of the day.

The kernel is parametrised by its period p and a shape parameter s. The period

indicates the time interval between the peaks of the function, while the shape pa-

rameter controls the width of the spike. The behaviour of the kernel is illustrated in

Figure 5.9. We constrain s ≥ 1.

In Figure 5.4 we illustrate how the forecast is highly dependent on the kernel

choice. When having as input this periodic time series, the PER and PS kernels will

normally model and forecast best. The PS kernel works better because it can better

model the sharp peaks whilst also fitting the abrupt drop and very small values. The

PER kernel underpredicts the peaks and only allows for a smoother drop in usage. We

use for both kernels a period of 168 hours. This is because although a daily pattern

exists, the weekly one is stronger, with the day of the week influencing the volume of

the hashtag. NRMSE (Normalised Root Mean Square Error) in Table 5.1 on the held

out data confirms this finding, with PS showing the lowest error. Examples when each
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other kernel perform best are presented further in Figure 5.11. The flexibility of the

GP framework also allows us to combine kernels (e.g. SE · PS or PS + Lin) in order to

identify a combination of trends [Duvenaud et al., 2013, Gönen and Alpaydin, 2011].

Experiments on subsets of data showed no major benefits of combining kernels, but

the computational time and model complexity increased drastically due to the extra

hyperparameters.

Const Lin SE PER PS

NLML -41 -34 -176 -180 -192
NRMSE 0.213 0.214 0.262 0.119 0.107

Table 5.1: Negative Log Marginal Likelihood (NLML) shows the best fitted model
for the #goodmorning time series in Figure 5.4. NRMSE computed on the third
unobserved week. Lower values are better in both cases.

5.1.3 Model selection and optimisation

We briefly overview the concepts of model selection in the GP framework. By this

we refer to multiple aspects such as choosing the model (kernel) from a discrete

set H = {Hi}ni=1 and optimising the kernel parameters θ (which we refer to as the

model hyperparameters). In the GP Bayesian inference scheme, we can compute the

probability of the data given the hyperparameters and model marginalising over the

function space. This is called the marginal likelihood or evidence and is useful for

model selection using only the training set:

p(xxx|D, θ,Hi) =

∫
f

p(xxx|D, f,Hi)p(f |θ,Hi) (5.8)

where xxx is the vector of outputs. For finding the hyperparameters θ, instead of

computing the posterior using Bayes rule:

p(θ|xxx,D, Hi) =
p(xxx|D, θ,Hi)p(θ|Hi)

p(xxx|D, Hi)
(5.9)

we approximate it using a point estimate by minimising the negative log of Equa-

tion 5.8 over hyperparameters θ. This approximation is also known as type II maxi-

mum likelihood (ML-II). The negative log of the evidence (Equation 5.8 i.e. Negative

Log Marginal Likelihood or NLML) for GP regression can be computed analytically:

− log p(xxx|D, θ,Hi) =
1

2
xxxK−1

xxx xxx+
1

2
log |Kxxx|+

n

2
log 2π (5.10)

where Kxxx = Kf + η2
nI and Kf is the covariance matrix for the latent function f .
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The NLML balances data fit and the model complexity by automatically incor-

porating the Occam’s Razor principle namely that ‘the simplest solution is to be

preferred over a more complex one’) [Rasmussen and Ghahramani, 2000]. By exam-

ining the components of the NLML, 1
2
xxxK−1

xxx xxx represents the data fit of the observed

values, while 1
2

log |Kxxx| represents a complexity penalty which depends only on the

kernel and its hyperparameters. The final term is a normalisation constant.

Our second goal is to identify the best model Hi (kernel) from a set H. The

posterior for a model is:

p(Hi|xxx,D) =
p(xxx|D, Hi)p(Hi)

p(xxx|D)
(5.11)

Assuming a uniform prior over the models in p(θ|Hi), the posterior for a model is

then proportional to:

p(Hi|xxx,D) ∝ p(xxx|D, Hi) =

∫
θ

p(xxx|D, θ,Hi)p(θ|Hi) (5.12)

The marginal likelihood p(xxx|D, Hi) is the probability of the data given the model

and is approximated by taking the maximum. The evidence has to normalise and

this way, complex models which can account for many datasets achieve low Bayesian

evidence. One can think of the evidence as the probability that a random draw of

a function from the model class would generate the dataset D. Complex models

are penalised because they can describe many datasets, while the simple models can

describe only a few datasets, thus the chance of a good data fit is very low.

This is for example the case of the periodic bursts in Figure 5.4. Although the

periodic kernel can fit the data, it will incur a high model complexity penalty. Intro-

ducing a periodic covariance between outputs at p intervals using the PER kernel also

includes multiple covariances which are not necessary in describing the data. This

results in a high rank/determinant of Kxxx in Equation 5.10. Intuitively, the result-

ing model can describe many more functions than the one observed. The PS kernel

introduces less covariance other than between outputs at p intervals resulting in a

sparser Kxxx and a lower complexity penalty. Consequently the model can describe

fewer functions while still fitting the data. The PS kernel in this respect is a simpler

model and the preferred one.

When the dataset is observed, the evidence can select between the models. More

generally, the model choice actually gives an implicit classification of the temporal

patterns depending on the kernel choice we make. We can thus identify which data

is best fit by a non-stationary kernel (e.g. linear, polynomial or neural network [Neal,
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1996]) as opposed to a stationary one. By considering the stationary kernels from the

previous section and a one-dimensional input we can identify the following classes:

a steady signal with noise (Const kernel), a signal with local temporal patterns

(SE kernel), an oscillating periodic pattern (PER kernel) or a pattern with abrupt

periodic peaks (PS kernel).

In our experiments, we use the NLML for optimising the hyperparameters only

using training data. For optimising the parameters of the kernel introduced in Equa-

tion 5.7, it is important to first identify the right period. We consider as possible

periods all integer values less than half the size of the training set, and then tune

the shape parameter using gradient descent to minimise NLML. We then take the

argmin value of those considered. We show the NLML for a sample regression in

Figure 5.10.
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Figure 5.10: NLML for #goodmorning on the training set as a function of the 2 kernel
parameters.

The figure shows that there are multiple canyons in the likelihood, which can lead

a convex optimisation method to local optima. These appear when p is equal or an

integer multiple of the main period of the data, in this case 24. The lowest values

are obtained when p = 168, allowing the model to accommodate the day of week

effect. Our procedure is not guaranteed to reach a global optima, but is a standard

technique for fitting periodic kernels [Duvenaud et al., 2013].

5.2 Temporal modelling of words

Text use changes with time as we have seen in Chapter 4 and can affect many down-

stream applications. In this section we mainly model periodic distributions of words

over time, which have largely been ignored in NLP applications. Our use case is
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hashtag frequency in Twitter and first automatically identify the periodic patterns

and their shape. We propose a model that first broadly identifies several types of tem-

poral patterns: a) periodic, b) constant in time, c) falling out of use after enjoying a

brief spell of popularity (e.g. Internet memes, news). This is performed automatically

only using training data and makes no assumptions on the existence or the length of

the periods we aim to model. The model is then used to forecast the frequency of a

hashtag.

We expect text usage to follow multiple periodicities at different scales. For ex-

ample, people on social media might talk about different topics during and after work

on weekdays, talk every Friday about the weekend ahead, or comment about their

favorite weekly TV show during its air time. Given this, text frequencies will display

periodic patterns. This applies to other text related quantities like co-occurrence val-

ues or topic distributions over time, as well as applications like user behaviour, which

we consider in the next section.

Modelling temporal patterns and periodicities can be useful to downstream tasks

like text classification. We use the GP forecast for a hashtag’s frequency in a time

interval as a prior in a Näıve Bayes model for text classification and compare to

methods which do not account for temporal periodicities. For example, a tweet

containing ‘music’ is normally attributed to a general hashtag about music like #np

(now playing). However, we can exploit information about the time the tweet was

authored. If this is during the (weekly periodic) air time of ‘American Idol’ it is more

likely for it to belong to #americanidol or if its mentioned in the days building up

to the Video Music Awards to be assigned to #VMA. The predicted values are thus

incorporated in the classification task of assigning the tweet hashtag based on the

rest of its text.

5.2.1 Task

We treat our task of forecasting the volume of a Twitter hashtag as a regression

problem. The hashtag volume is aggregated into one hour time intervals. Because

the total number of tweets varies depending on the day and hour of day, we chose to

model the proportion of tweets with the given tag in that hour. Given a time series

of these values as the training set for a hashtag, we aim to predict the values in the

testing set, extrapolating to the subsequent month.

Hashtags represent free-form text labels that authors add to a tweet in order to

enable other users to search them to participate in a conversation defined by these

(see also Section 2.1.1). They group similar tweets (like topics), reflect real world
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events (some of which are periodic) and present direct means of evaluation. Note that

this approach could be applied to many other temporal problems in NLP or other

domains. We treat each regression problem independently, learning for each hashtag

its specific model and set of parameters. Although multi-task learning [Álvarez et al.,

2012] can be applied to share hyperparameters across regression tasks, this incurs a

large increase in processing time and preliminary experiments showed no major boost

in performance.

5.2.2 Related work

Modelling periodicities is one of the standard applications of Gaussian Processes [Ras-

mussen and Williams, 2005]. Recent work by Wilson and Adams [2013] and Durrande

et al. [2013] show how different periods can be identified from data. Methods that

assume certain periodicities at daily or weekly levels were proposed in [McInerney

et al., 2013]. With text application, GPs were used by Polajnar et al. [2011] for pro-

tein interaction detection in biomedical texts, by Cohn and Specia [2013] for modelling

subjective human evaluations of machine translation quality, by Lampos et al. [2014]

to predict user impact on Twitter based on text and profile features and by Spe-

cia et al. [2013] and Shah et al. [2013] in feature selection for predicting machine

translation quality.

For predicting future popularity of hashtags, Tsur and Rappoport [2012] use linear

regression with a wide range of features. Ma et al. [2012, 2013] frame the problem as

classification into a number of pre-determined frequency intervals and apply all the

standard classifiers. None of these studies model periodicities, although the former

stresses their importance for accurate predictions. For predicting the hashtag given

the tweet text, Mazzia and Juett [2011] use the Näıve Bayes classifier with the uniform

and empirical prior or TF-IDF weighting. Zangerle et al. [2011] use cosine similarity

between tweets to recommend hashtags at write time while Godin et al. [2013] uses

topic models to identify the most likely hashtag for a tweet. Hashtag recommendation

using content-based collaborative filtering was explored in [Kywe et al., 2012]. Our

model incorporates in addition information about temporal periodicities.

5.2.3 Experimental setup

For our experiments we used Twitter data from the Gardenhose dataset (described

in Section 2.1.3) in the interval 1 January – 28 February 2011. For simplicity in the

classification task, we filtered the stream to include only tweets that have exactly one
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hashtag. These represent approximately 7.8% of our stream. As text processing steps,

we have tokenised all the tweets, filtered them for English and removed duplicate

tweets using methods described in Chapter 3.

In our experiments we use the first month of data as training and the second

month as testing. Note the challenging nature of this testing configuration where

predictions must be made for up to 28 days into the future. We keep a total 1176 of

hashtags which appear at least 500 times in each split of the data. This is done in

order filter the many hashtags which are short lived and are not interesting for long

term forecasting. The average frequencies of the hashtags is 5456. The vocabulary

consists of all the tokens that occur more than 100 times in the dataset and start

with an alphabetic letter. After processing, our dataset consists of 6,416,591 tweets

with each having on average 9.55 tokens and each hashtag appearing on average in

5456 tweets.

5.2.4 Methods

We choose multiple baselines for our prediction task in order to compare the effec-

tiveness of our approach. These are:

Mean value (M): We use as prediction the mean of the values in the training

set. Note that this is the same as using a GP model with a constant kernel (+ noise)

with a mean equal to the training set mean.

Lag model with GP determined period (Lag+): The prediction is the mean

value in the training set of the values at lag δ where δ is the period rounded to the

closest integer as determined by our GP model. This is similar to an auto-regressive

(AR) model with all the coefficients except δ set to 0. Please note that given the period

δ this is a very strong model as it gives a mean estimate at each point. Comparing to

this approach we can see if the GP model can recover the underlying function that

described the periodic variation and filter out the noise in the observations. Correctly

identifying the period is very challenging as we discuss in Section 5.2.6.

GP regression: Gaussian Process regression using either the SE kernel (GP-

SE), the periodic kernel (GP-PER), the PS kernel (GP-PS). The method that

chooses between kernels using model selection as described in Section 5.1.3 is denoted

as GP+. We will also compare to GP regression the linear kernel (GP-Lin), but we

will not use this as a candidate for model selection due the poor results shown below.

Experiments on a subset of data showed no major benefits of combining kernels,

but the computational time and model complexity increased drastically due to the

extra hyperparameters. However, in our experimental setup where we use a relatively
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small time frame, there are few linear trends in the data. It might seem limiting

that we only learn a single period, although we could combine periodic kernels with

different periods together. But, as we have seen in the #goodmorning example (with

overlapping weekly and daily patterns), if there is a combination of periods the model

can select a single period which is the least common multiple.

5.2.5 Results

We start by qualitatively analysing a few sample regressions that are representative

of each category of time series under study. These are shown in Figure 5.11. For

clarity, we only plotted a few kernels on each figure. The full evaluation statistics in

Normalised Root Mean Squared Error (NRMSE) computed on the test set and the

Bayesian evidence on the training set are show in Table 5.2.

Hashtag
Lag+ Const SE PER PS

NRMSE NLML NRMSE NLML NRMSE NLML NRMSE NLML NRMSE

#fyi 0.1578 -322 0.1404 -320 0.1898 -321 0.1405 -293 0.1456
#confessionhour 0.0404 -85 0.0107 -186 0.0012 -90 0.0327 -88 0.0440

#fail 0.1431 -376 0.1473 -395 0.4695 -444 0.1387 -424 0.1390
#breakfast 0.1363 -293 0.1508 -333 0.1773 -293 0.1514 -367 0.1276

#raw 0.0464 -1208 0.0863 -1208 0.0863 -1323 0.0668 -1412 0.0454

Table 5.2: NRMSE shows the best performance for forecasting and NLML (only using
training data) shows the best model for all the regressions in Figure 5.11. Lower is
better.

For the hashtag #fyi there is no clear pattern. For this reason the model that uses

the constant kernel performs best, being the simplest one that can describe the data,

although the others give similar results in terms of NRMSE on the held-out testing

set. While time series modelled using this kernel do not significantly outperform all

others on NRMSE on held-out data, the kernel is useful for interpreting the time

series, separating noisy ones from those having an underlying periodic behaviour.

The #confessionhour (the hashtag tags tweets of people posting things they have

never told anyone) example illustrates a behaviour best suited for modelling using

the SE kernel. We notice a sudden burst in volume which decays over the next 2

days. This is actually the behaviour typical of ‘Internet memes’ as presented in Yang

and Leskovec [2011]. These cannot be modelled with a constant or periodic kernel as

shown by the results on held-out data and the time series plot. The periodic kernels

will fail in trying to match the large burst with others in the training data and will

attribute to noise the lack of a similar peak, thus making bad predictions. In this

88



03/1 10/1 17/1 24/1 31/1 07/2 14/2 21/2 28/2
0

0.5

1
#fyi

 

 
Gold
PS
Const

#fyi

03/1 10/1 17/1 24/1 31/1 07/2 14/2 21/2 28/2
0

0.5

1
#confessionhour

 

 
Gold
PS
SE

#confessionhour

03/1 10/1 17/1 24/1 31/1 07/2 14/2 21/2 28/2
0

0.5

1
#fail

 

 
Gold
PER
Const

#fail

03/1 10/1 17/1 24/1 31/1 07/2 14/2 21/2 28/2
0

0.5

1
#breakfast

 

 
Gold
PS
Const

#breakfast

03/1 10/1 17/1 24/1 31/1 07/2 14/2 21/2 28/2
0

0.5

1
#raw

 

 
Gold
PS
Const

#raw

Figure 5.11: Sample regressions and their fit using different methods.

example, forecasts will be very close to 0 under the SE kernel, which is what we would

desire from the model.

The periodic kernel best models hashtags that exhibit an oscillating pattern. For

example, this best fits words that are used frequently during the day and less so

during the night, like #fail (used by people tweeting about their or others’ failures).

Here, the period is chosen to be one week (168) rather than one day (24) matching

the weekly effect superimposed on the daily one. Our model recovers that there is

a daily pattern with a higher frequency during the day. On weekends however, and
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especially on Friday evenings, people talk are more preoccupied by other things.

The PS kernel introduced in this chapter models best hashtags that have a large

and short lived burst in usage. We illustrate this by two examples. First, we choose

#breakfast which has a daily and weekly pattern. As we would expect, a big rise in

usage occurs during the early hours of the day, with very few occurrences at other

times. Our model discovers a weekly pattern as well. This is used mainly for modelling

the difference between weekends and weekdays. On weekends, the breakfast tag is

more evenly spread during the hours of the morning, because people who do not have

to wake up for work can have breakfast at a more flexible time than during the week.

In the second example, we present a hashtag that is associated to a weekly event:

#raw is used to discuss a wrestling show that airs every week for 2 hours on Monday

evenings in the U.S.. With the exception of these 2 hours and the hour preceding

it, the hashtag is rarely used. This pattern is modelled very well using our kernel,

with a very high value for the shape parameter (s = 200) compared to the previous

example (s = 11) which captures the abrupt trend in usage. In all cases, our GP

model chosen by the evidence performs better than the Lag+ model, which is a very

strong method if presented with the correct period. This further demonstrates the

power of the Gaussian Process framework to deal with noise in the training data and

to find the underlying function of the time variation of words.

In Table 5.3 we present sample tags identified as being part of the four hashtag

categories, and the total number of hashtags in each. We notice a significant number

of bursty hashtags identified by the SE kernel. These are either ‘Internet memes’

(e.g. #backintheday, #questionsidontlike) which were prevalent on the training set

and decayed in frequency in the test set, while still being mentioned. Another type

of hashtags in this class is the ones that mention events which peaked in January

(e.g. #haiti or #snowday). Because we keep only hashtags that occurred above the

threshold (of 500 in each split) in both the training and testing sets, we discard the

vast majority (∼ 90%) of hashtags which only occur for less then one day usually and

which normally would belong to this class. The Const kernel is selected for the lowest

number of hashtags. This is both caused by both the day/night effect which makes

many hashtags periodic and the bursty effect described by the SE kernel. Hashtags

include those used constantly by Twitter users (e.g. #nf – now following, #funny).

The PER kernel identifies hashtags which mainly exhibit a day/night effect, such

as #coffee or #xbox, but without a rapid decay at any point in time. Conversely,

the PS kernel identifies hashtags that suffer from a high decay, being hardly used

at some periods of time. For example, #tgif (‘Thank God is Friday’), #ff (‘Follow
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Friday’), #ww (‘Writers Wednesday’) only occur on one day of the week. Similarly,

#goodnight and #twitteroff are frequent only in the evenings when users take a break

from posting on their Twitter account, while #jobs is frequent only during working

hours as people use the hashtag to announce job opportunities.

Const SE PER PS
#funny #2011 #brb #ff
#lego #backintheday #coffee #followfriday

#likeaboss #confessionhour #facebook #goodnight
#money #februarywish #facepalm #jobs

#nbd #haiti #fail #news
#nf #makeachange #love #nowplaying

#notetoself #questionsidontlike #rock #tgif
#priorities #savelibraries #running #twitterafterdark

#social #snow #xbox #twitteroff
#true #snowday #youtube #ww

49 268 493 366

Table 5.3: Sample hashtags for each category. The last line shows the total number
of hashtags of each type.

As a means of quantitative evaluation we compute the relative NRMSE on the

test set compared to the Mean (M) method for forecasting. We choose this, because

we consider that NRMSE is not comparable between regression tasks due to the

presence of large peaks in many time series, which distort the NRMSE values. The

results are presented in Table 5.4 and show that Gaussian Processes with model

selection performs best. Remarkably, it consistently outperforms the Lag+ method,

which shows the effectiveness of the GP models to incorporate uncertainty and to

capture significant periodic patterns. The GP-PS model does very well on its own.

Although chosen in the model selection phase in only a third of the tasks, it performs

consistently well across tasks because of its ability to model well all the periodic

hashtags, be they smooth or abrupt. The GP-Lin model does worse than the average,

mostly due to time series with a few modes for which the GP-Lin model will spread

the mass across time.

Lag+ GP-Lin GP-SE GP-PER GP-PS GP+
7.29% -3.99% -34.5% 0.22% 7.37% 9.22%

Table 5.4: Average relative gain over mean (M) prediction for forecasting on the
entire month.
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5.2.6 Discussion

Let us now turn to why the GP model is better for discovering periodicities than some

classic time series modelling methods. Measuring auto-correlation between points in

the time series is used to discover the hidden periodicities in the data and in building

AR models. The auto-correlation computes the similarity between points in the time

series as a function of the time lag. The period candidates are represented by the time

lag value corresponding to peaks in the auto-correlation function. The first problem of

this method is that if a period exists, all integer multiples will be feasible candidates.

Another problem is that of auto-correlated noise e.g. occurring in a burst over a time

window. This case is illustrated in Figure 5.12 where #confessionhour shows auto-

correlation at low time lag values with a peak. However, as seen in Figure 5.11, the

time series lacks a periodic component.

Another approach to discovering periods in data is by computing the power spec-

tral density. The spectrum decomposes a time series (or stochastic process) into the

frequencies present in that process. The periods are indicated by peaks in the peri-

odogram at the respective frequency value. This works best in case of time series that

have a short Fourier series decomposition which expresses the time series as a sum of

oscillating patterns. However, this is incapable to clearly discover the correct period

when dealing with time series with large periodic bursts like those exhibited by the

#raw time series as shown in Figure 5.13. The Fourier decomposition cannot model

step-functions and other non-smoothly varying signals. In Figure 5.13, the lowest

frequency spike corresponds to the correct period of 168, but also other candidate

periods are shown as almost equally likely. This method has been used in the GP

framework before by Wilson and Adams [2013] for initialising the periodic component

of a periodic kernel.

5.2.7 Text based prediction

In this section we demonstrate the usefulness of our model in a downstream task:

predicting the hashtag of a tweet based on its text. In contrast to this classification

approach for suggesting a tweet’s hashtag, information retrieval methods based on

computing similarities between tweets are hard to scale to large data [Zangerle et al.,

2011].

We choose a simple model for prediction, the Näıve Bayes Classifier, which pro-

vides us with a straightforward way to incorporate our prior knowledge of how fre-

quent a hashtag hk is in a certain time frame. The Näıve Bayes Classifier chooses for
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Figure 5.12: Sample auto-correlation
for #confessionhour.
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Figure 5.13: Periodogram Power spec-
tral density estimate for #raw.

a tweet with the bag of words W , the hashtag h∗:

h∗ = arg max
k=1,...,K

(log p (hk) + log p (W | hk)) (5.13)

log p (W | hk) =
∑
wj∈W

p (wj | hk) =
∑
wj∈W

freq(wj, hk)

freq(wj)
(5.14)

where by freq(wj) is the frequency of word wj in the training set and freq(wj, hk) is

the frequency of word wj appearing in tweets with hk hashtag. p (hk) is the prior

probability of a tweet having hashtag hk. The empirical prior (NB-E) estimates the

prior from training data: log p (hk) = freq(hk).

We use as prior in the Näıve Bayes model (NB-P) the forecast for the hour (t)

the target tweet was authored in: log p (hk) = hkt. In our comparison we use the

Most Frequent (MF) baseline. Because there are more than 1000 possible classes we

show the accuracy of the correct hashtag being amongst the top 1,5 or 50 hashtags

as well as the Mean Reciprocal Rank (MRR). The results are shown in Table 5.5.

MF NB-E NB-P

Match@1 7.28% 16.04% 17.39%
Match@5 19.90% 29.51% 31.91%
Match@50 44.92% 59.17% 60.85%

MRR 0.144 0.237 0.252

Table 5.5: Results for hashtag classification. Higher is better.

The results show that incorporating the forecasted values as a more informative

prior for classification we obtain better predictions. The improvements are consistent

in all the Match values. Also, we highlight that a 9% improvement in the forecasting
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Tweet Time Prior Rank Prediction

Bruins Goal!!! Patrice Bergeron makes it 3-1 Boston
2-3am E: 0.00017 7 #fb

2 Feb 2011 P: 0.00086 1 #bruins

i need some of Malik people
3-4am E: 0.00021 7 #ff

2 Feb 2011 P: 0.00420 1 #thegame

Alfie u doughnut! U didn’t confront Kay? SMH
7-8pm E: 0.00027 8 #nowplaying

3 Feb 2011 P: 0.00360 1 #eastenders

Table 5.6: Example of tweet classification using the Näıve Bayes model with the two
different priors (E - empirical, P - GP forecast). Rank shows the rank in probability
of the correct class (hashtag) under the model. Time is G.M.T.

task carries over to about a 2% improvement in classification. Moreover, treating the

entire classification task in a GP modelling framework can lead to further improve-

ments, but is subject to scaling issues for a large number of candidate classes. In

Table 5.6 we show a few examples in which the GP learned prior makes a difference

in classification together with the values for both priors.

5.3 Temporal modelling of user behaviour

Time plays a very important factor in user behaviour as presented in Section 2.2.2.1.

In this section we use LBSN data where a data point represent a user checking-in to

a specific location, called venue. Temporal information, such as the local time or the

day of the week influences the user’s choice of location. We aim to use this observation

by adding periodicity information to the task of next location prediction. Because

there is a very high potential number of places a user will visit, some of which might

not have been observed before, the prediction task will suffer from data sparsity. For

alleviating this problem, we use as an intermediate representation of the location, i.e.

its category. The categories are a discrete set of nine different types, each with its

own characteristics.

We study the temporal patterns of venue categories in Section 5.3.1. Observing

such patterns can aid understanding human mobility with an immediate application

in predicting future user location. For this task, simple Markov Models have proven

accurate in previous work. Consequently, we also perform a study of transitions

between venue categories, showing which transition is prevalent given the current

venue. The underlying data is represented by the ‘Frequent Users Dataset’ introduced

in Section 2.2.2. Experiments are performed with predictions up to one week into

the future (Section 5.3.2). We experiment with different methods (Section 5.3.3)

including effective, yet simple, Markov Models and models exploiting periodicity.
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5.3.1 Venue categories

In this section we present an analysis focused on the venues where users check-in

studying their temporal dynamics (Section 5.3.1.1) and the way users transition

from one venue to the next (Section 5.3.1.2). The metadata associated with each

Foursquare venue includes venue types. These are organized in a hierarchy with

three levels. In our study we only use the most general layer of the hierarchy which

contains nine venue types: ‘Arts & Entertainment’, ‘Travel & Transport’, ‘Shop &

Services’, ‘Food’, ‘Great Outdoors’, ‘Nightlife Spot’, ‘Residence’, ‘College & Univer-

sity’ and ‘Professional & Other Places’. The next layer of the hierarchy contains 259

venue types, which is too many for statistical and visualization purposes. Each venue

can have multiple categories. In the rest of this section we use only the ‘primary’

category associated with every venue.

5.3.1.1 Temporal properties

Category frequency The percentage of check-ins for each category over our entire

dataset is presented in Table 5.7. We observe that the categories with the highest

number of check-ins are ‘Food’ and ‘Shops & Services’. ‘Travel & Transport’ and

‘Professional & Other Places’ have high percentages as well, which mostly indicate

that people use the service when traveling to different places and when they arrive at

their office. ‘Residence’ has a significant percentage of check-ins as well, indicating

that many users from our dataset check-in at their homes, probably when they leave or

arrive. ‘Nightlife Spot’ and ‘Arts & Entertainment’ have low percentages as we would

expect from a dataset that models regular day-to-day behaviour. When analysing

LBSNs, there was a concern that many people use them only to show to their social

network where they are going out. This appears not to be the case, which we ascribe

to our filtering for frequent users who use the service more frequently and for a more

general purpose.

Temporal frequency modelling We examine the temporal distribution of the

check-ins for each category. We present the distribution of check-ins (denoted by

Gold) on the entire month for the categories ‘Professional & Other Places’ in Fig-

ure 5.14 and for ‘Nightlife Spot’ in Figure 5.15.

We notice that the temporal frequency patterns are similar to those observed

for periodic Twitter hashtags, e.g. in Figure 5.4. Consequently, in order to forecast

future venue frequencies we use the modelling techniques introduced in Section 5.1.
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Venue category Percentage

Arts & Entertainment 3.7%
College & University 5.1%

Food 17.7%
Great Outdoors 6.8%
Nightlife Spot 3.7%

Residence 11.6%
Shop & Services 20.2%

Professional & Other Places 14.8%
Travel & Transport 15.9%

Table 5.7: Check-in frequency per venue category.
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Figure 5.14: Check-in frequency for venue type ‘Professional & Other Places’ and
forecast for the last 9 days.
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Figure 5.15: Check-in frequency for venue type ‘Nightlife Spot’ and forecast for the
last 9 days.

We perform similar experiments on the 9 category time series using the same methods

as in Section 5.2.4. We illustrate forecasts for two category frequency time series in

Figures 5.14 and 5.15.

Both figures illustrate periodic patterns which are best fitted by the PS kernel

with a weekly period. A daily drop in frequency indicates reduced activity during the

nights. The category ‘Professional & Other Places’ consists mostly in office buildings.

Activity here increases during weekdays with a low activity in weekends. During the

days of the week, check-in patterns are consistent, with a spike during the morning,
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when people arrive at work and a smaller one after lunch, if the users left for lunch

and returned to work. The only weekday in our dataset with lower activity than the

others is 5 September. The justification of this a U.S. holiday (‘Labour Day’), where

many of our users are based.

For the category ‘Nightlife Spot’, we observe a different frequency distribution with

the same periodic patterns. While generally activity is low during the day and spikes

in the evenings, we also notice a trend. Activity is lowest on Sundays and Mondays

and starts growing until peaking on Friday and Saturday nights. This shows us that

during weekdays, people tend to go out more in the evenings as the week progresses,

reaching a high in the weekend nights.

Forecasting results are presented in Table 5.8. The venue category distributions

were all best fit by periodic kernels (7 by PS and 2 by PER) with a period of 168

hours (one week). This explains the very high relative improvement over mean for

the periodic methods. However, the Lag+ model forecasts best. This is because the

frequencies present significant consistency in periods and trends with little noise over

the entire month. This is despite the number of check-ins being relatively low (at

most 500 check-ins/hour for a category).

Lag+ GP-Lin GP-SE GP-PER GP-PS GP+
67.92% 0% -104% 54.38% 61.61% 63.36%

Table 5.8: Average relative gain over mean (M) prediction for forecasting on the last
9 days month using the different models.

Temporal distribution While the previous experiments show and forecast the

category check-in frequency at a certain hour, we are also interested in empirically

studying the distribution of check-ins over venue categories. We aggregate check-ins

over all weeks in our dataset as the weekly returning pattern is strongest (Figure 2.10).

We look at activity on Saturdays as well as activity on all the weekdays combined as

they showed similar temporal patterns for most categories. We present the check-in

distributions in Figure 5.16 and Figure 5.17.

From the graphs we empirically observe interesting patterns. Check-ins into ‘Pro-

fessional & Other Places’ are very frequent on weekdays and especially during the

morning, when people arrive at work. This influx is preceded by an increase in check-

ins to venues from the ‘Travel & Transport’ category. As we would expect, ‘Colleges

& University’ follow the same trend as the ‘Professional & Other Places’ only at a

smaller scale both on weekdays and Saturdays. The ‘Residence’ category has the

97



0 4 8 12 16 20
Hour of Day

0.0

0.2

0.4

0.6

0.8

1.0
Fr

e
q
u
e
n
cy

Arts & Entertainment

Travel & Transport

Shop & Service

Food

Great Outdoors
Nightlife

Residence

College & University

Professional & Other Places

Figure 5.16: Weekday check-in distri-
bution.
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Figure 5.17: Saturday check-in distri-
bution.

most check-ins in the morning (people wake up and check-in to their house) and in

the afternoon (after 6pm) when people arrive home from work. For this category,

the distribution is smoother on Saturdays but follows the same pattern. The ‘Shops

& Services’ category has a consistent pattern as well, with increasing activity after

lunch and decreasing as the night approaches. On Saturdays, ‘Shop & Service’ is the

most important category during the day. As the night approaches, ‘Nightlife Spot’

venues become more popular, as during the day their frequency was the lowest.

We highlight that we only look at the time distribution of when check-ins occur

which is different to the distribution of where the users from the dataset are. We

do not assume that between two consecutive check-ins the user is located at his last

registered location as we do not know that the users post their entire mobility data.

The task of location prediction is in this case a partially observed inference problem.

We expect that the venue type will influence how much time people actually spend

there before moving to a new destination.

5.3.1.2 Transitions

We have focused so far on general, temporal and periodic analysis of venue cate-

gories. We now switch to a user-centered view by analysing individual mobility trails.

We study transitions between venue categories. It was previously shown that Markov

models of human behaviour perform well when predicting future locations [Song et al.,

2003]. This means that there is an underlying structure in transitions. We present

a heatmap of the transition probabilities from one venue category to another, aggre-

gated over all the users in the dataset, in Figure 5.18.
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Figure 5.18: Transition diagram between categories. Lighter represents higher values.
The transition source is on the vertical axis and the destination on the horizontal axis.

At first we notice the high frequency on the principal diagonal. This means, for

most of the categories, that if a user is at a certain type of location, it is very likely

for him/her to transition to a place belonging to the same category. This behaviour is

most predominant for the ‘Travel & Transport’ and ‘College & University’ categories.

This is expected, as people often visit many transport locations before reaching their

destination and, if they are at a University building, it is very likely that they will

visit another building from the campus next.

We also notice the lack of symmetry in the heatmap. This highlights that there

are some transitions that are more likely to happen in one direction rather than the

other. For example, it is very likely for people to go to eat (category ‘Food’) after an

artistic event (category ‘Arts & Entertainment’), while the opposite is less common.

Other examples include the high probability for people to visit shops or to eat after

work and in the lunch break or to go home after going out in the evenings. On the

other hand, we also observe some reciprocal relations, such as the one between food

and shopping activities, with all transitions with high values.

5.3.2 Experimental setup

We use the ‘Frequent Users Dataset’ introduced in Section 2.2.2. For the next location

prediction task we use the following testing scenario. We train our models on the first

three weeks (21 days) of data and test on the remaining days (9 days). After we obtain

an average prediction percentage for each user, we then macro average the results and

report this as the performance of the method.
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5.3.3 Methods

Although [Eagle and Pentland, 2009] attempts to empirically show some temporal

patterns, integrating them into prediction models has not been very successful [Lian

and Xie, 2011]. This can be because the historical information was considered in

conjunction with individual venues [Gao et al., 2012]. Very sparse representations are

obtained and, as we collect more user data, the number of observed venues increases

over time leading to a decrease in prediction performance. As also highlighted in [Lian

and Xie, 2011], we must find a proxy for these venues that can be used for prediction.

We use the category type information as this proxy, adding some semantics to user

transitions. The advantage of using category information is that it is fixed to a limited

number (i.e. 9), alleviating sparsity concerns, but still captures individual preferences

and patterns.

We will use domain-independent methods for prediction. These methods take into

account for prediction only the previous history of transitions of a user. The most

common class of methods of this type is the Order-K Markov model, where we use

as context the last K transitions of the user and find the most likely location where

the user will transition next based on this context. This method allows us to learn

simple transition rules for every user and predict the future location accordingly (e.g.

after work a person will go to a food vendor, after a restaurant and a bar the person

will likely go home or to another bar).

We want to integrate our knowledge about existing temporal patterns related to

venue types. We have observed very strong patterns for each user and each category.

The strongest was the weekly pattern, where a user transitions to the same venue

category as the same day and time as one week before. Also strong was the daily

pattern, where a user visits the same category type as the day before at the same

time. We want to experiment with building these periodicities explicitly into a simple

model in order to assess their predictive power.

Although other domain-independent methods exist, previous studies [Song et al.,

2003] have shown that the improvement over the simple Markov based methods is

marginal and, as our focus is on testing if incorporating the temporal returning pat-

terns is beneficial, we chose not to implement them.

The methods we test are:

Most Frequent Category: We assign to each testing instance the category that

was most frequent in the users’ history. Note that this is equivalent to an Order-0

Markov predictor.
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Markov-1: We assign to the testing instance the most frequent category based

only on the last visited venue and its category. In case the transition was not observed

in the users’ history, we back-off to the ‘Most Frequent Category’.

Markov-2: We assign to the testing instance the most frequent category based

on the last 2 visited venues. In case the transitions were not observed in the users

history, we back-off to the ‘Markov-2’ model.

The probability of the next check-in cn+1 at location l with an Order K Markov

model is:

pk(cn+1 = l|H) = p(cn+1 = l|cn−k+1, ..., cn)

=
| {cr|cr ∈ H, cr = l, cr−j = cn−j+1} |
| {cr|cr ∈ H, cr−j = cn−j+1} |

(5.15)

where H = {c1...cn} is the history of the previous check-ins.

Most Frequent Hour: We assign to the testing instance the category that was

most visited by the user in the same hour of the day in its history. This model assigns

the probability of the next check-in cn+1 at location l at time h as the probability of

the location l occurring at time h in the previous check-in history:

pMFH(cn+1 = l|H, tn+1 = h) =
| {c|cr ∈ H, cr = l, tr = h} |
| {cr|cr ∈ H, tr = h} |

(5.16)

Most Frequent Day of Week and Hour: We assign to the testing instance

the category that was most visited by the user in the same hour of the same day of

the week in the training set. The probability of the model is similar to that of ‘Most

Frequent Hour’, but in addition conditioning on the day of week.

5.3.4 Results

The results, measured as the percent of correct predictions, are shown in Table 5.9.

Method Accuracy
Random Baseline 11.11%
Most Frequent Category (Markov-0) 35.21%
Markov-1 (with back-off to Markov-0) 36.13%
Markov-2 (with back-off to Markov-1) 34.21%
Most Frequent Hour 38.92%
Most Frequent Day of Week and Hour 40.65%

Table 5.9: Accuracy of different methods.

We observe that the results match our intuitions. We notice that the ‘Most Fre-

quent Category’ baseline is quite high when compared to the other models. ‘Markov-1’
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with back-off performs slightly better which confirms that some information is gained

by looking at the previous step of a transition. This improvement is however not

that significant, indicating that user movement is governed also by other factors and

patterns. ‘Markov-2’ performs slightly worst than the baseline. This confirms the

previous results of [Song et al., 2003].

Incorporating explicitly the periodicity of user behaviour shows the best results.

We observe that the ‘Day of Week’ pattern is strongest and obtains the best results,

even if the history for a user is very restricted, basically to only 3 weeks of previously

observed data. Actually, for almost half of the cases, we have used the backoff, which

shows that the ‘Day of Week’ and ‘Hour of Day’ prediction is very effective when

applicable. This method improves on all the Order-K Markov methods, showing that

periodicity is a factor that has to be taken in account when studying human mobility

patterns.

In all models, the overall macro-average is relatively low. The task of predicting

future movements in the case of users which are not restricted to an age group,

profession or geographical area is shown to be much harder then when using subjects

that have the same characteristics such as lab students [Eagle and Pentland, 2009].

The results show the need for prediction algorithms that take into account temporal

periodicities over different time intervals. However, some users have very different

behaviours (e.g. holidays) in the testing period, switching between usage modalities.

For example, over 8% of users have under 11% accuracy for the ‘Most Frequent

Category’ method, meaning that these users have checked-in to their most frequent

venue category from the training period less than random in the test set.

5.4 Conclusion

In this chapter we have presented a method that identifies complex temporal patterns

in OSN data that go beyond temporal smoothness. Using Gaussian Processes, we

have shown how to forecast future values based on past data, achieving state-of-

the-art performance when compared to competitive methods. This modelling was

effective not only for qualitative analysis, but also when incorporated downstream

into applications, such as time-aware text classification. We have thus demonstrated

that temporal context is important and worthwhile modelling in further applications.

While in this chapter we have focused more on behaviours that exist in large

periods of time, many were shown to be unpredictable and ephemeral. These events
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are likely caused as a response to external stimuli, most likely in the form of real-

world events. In the next chapter we take a closer look at this effect and try to

exploit sudden changes in word distributions in order to discover and describe their

underlying topics and events.
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Chapter 6

Detection of timely events

Social media text usage is often impacted by real-world events. This chapter aims

to present methods that exploit these changes. Our goal is to detect events (i.e.

newsworthy happenings) and track their evolution over time, both in volume and

textual content. The underlying hypothesis is based on word co-occurrence: if two

words appear in the same context more often than usual within a restricted time

frame, then they are indicative of the same event. Clustering words within a time

frame based on their co-occurrence would thus extract sets of weighted words that

can uniquely define events from that respective time interval. In contrast, in large

established corpora (e.g. Wikipedia) the contexts in which a word appears are sta-

tionary under the distributional hypothesis: words that occur in similar contexts tend

to have similar meanings [Harris, 1954, Curran, 2004]). Clustering words based on

their co-occurrence in static corpora would then uncover sets of semantically related

words (i.e. topics) in the corpus. We also investigate co-occurrences in large time

windows of social media data. In this case, we expect the temporal influence to be

dampened.

We start with defining and analysing the temporal dynamics of word co-occurrences

in OSN data in Section 6.1. We use the normalised version of the popular pointwise

mutual information (PMI) metric for measuring co-occurrence between words in a

dataset. A number of clustering methods are presented in Section 6.2 which use the

co-occurrence score between words as a similarity metric in the clustering algorithm.

We use the unsupervised spectral clustering algorithm. We experiment with differ-

ent datasets in both time span and volume in Section 6.3. Focusing on clusters in

restricted time frames, we show how to measure the magnitude and coherence of a

cluster and, using a cluster centrality measure, automatically select relevant messages

that can be presented as summaries for the clusters to end users. Clusters discov-

ered at every time interval are hard to interpret longitudinally because of random
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changes in cluster memberships and identifiability issues. In Section 6.4 we develop

an evolutionary spectral clustering method which takes into account the linear tem-

poral relationship between consecutive datasets with respect to time. The method

treats time in a similar way to the forgetting factor in the online biconvex learning

method presented in Section 4.4.2. This results in clusters which are consistent and

identifiable over time. This way, we can study the dynamics of real world events as

reflected by social media.

6.1 Word co-occurrence

Methods based on word co-occurrences have a long tradition in NLP and have been

used successfully for applications ranging from sentiment analysis to thesaurus learn-

ing, collocation extraction and finding multiword expressions [Turney, 2002, Curran,

2004, Sag et al., 2002, Evert, 2005]. However in most cases, these scores have been

computed over static corpora, ignoring any temporal variation. In this section we

study the changing nature of word co-occurrences over time in a streaming setting

using social media data. We hypothesise that the co-occurrence statistics of words

will change over time based on real world events.

To illustrate the time evolution of word usage, consider the example of the word

‘riot’. Using static corpora, e.g. Wikipedia, the highest co-occurring words would be

syntactically or semantically related words (e.g. ‘city’, ‘police’, ‘riots’). When com-

puting the co-occurrence scores over a large dataset of two months of social media

data, we obtain semantically related words (e.g. ‘police’, ‘inciting’, ‘protesters’) or

words that are part of collocations (e.g. ‘ra’ from the band ‘Ra Ra Riot’, ‘atari’ from

the group ‘Atari Teenage Riot’ or Atari’s RIOT chip). However, when considering

text from a restricted time interval from timely social media data, the set of most

frequently co-occurring words changes over the course of 2011. Figure 6.1 displays the

variation in frequency of the word ‘riot’ and the top co-occurring words in different

time intervals. In January ‘Egypt’ and ‘#jan25’ (the hashtag associated with the

Egyptian revolution) commonly co-occur with ‘riot’ (due to the riots and the abun-

dance of news and opinions about these events), while in February, ‘riot’ co-occurs

more with words like ‘Bahrain’ where a different series of riots took place. Moreover,

in small time frames, increases of co-occurrences of other seemingly unrelated words

(e.g. ‘Bieber’) can be observed as a consequence of popular opinions or viral messages

(e.g. ‘If Bieber wins, we riot’).
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Figure 6.1: Temporal variation of the frequency of word ‘riot’ on Twitter and top
co-occurring words in different time frames.

6.1.1 Pointwise mutual information

A standard method of uncovering associations between pairs of words is by computing

the pointwise mutual information (PMI). The association score is usually obtained by

computing the PMI value over a large but fixed corpora. In this section, we consider

computing association scores over corpora of various time spans and sizes.

PMI is an information theoretic measure that indicates which words tend to often

co-occur in a context. It measures how much the actual probability of a particular

co-occurrence of words p(x, y) differs from what is expected under the assumption of

independence of the individual events, p(x)·p(y). A generalised formula for computing

PMI is the following:

PMI(X, Y ) = α · ln p(x, y)

p(x) · p(y)
(6.1)

where p(x) = freq(x)/N , freq(x) is the count of word x and N is the total number of

tokens in the dataset.

Note several issues when calculating PMI (α = 1): the sensitivity to low count

events and uninterpretable fixed values with a lacking upper bound. For example,

if two words are perfectly correlated and p(x) = p(y) = p(x, y) the PMI will have

a value of − ln p(x, y). This makes the value dependent and inversely proportional

to the number of times that word pair is observed. The value is hard to interpret

numerically because it depends on the raw number of occurrences of the words.
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A normalisation that addresses the interpretability issue was introduced by Church

and Hanks [1990]. They present a version of the PMI, the Normalized PMI (NPMI)

which is bounded in the [−1, 1] interval and uses α = −lnp(x, y). The interpretation

of the values of the NPMI is natural and fixed for any word pair. A positive NPMI

value denote word pairs that co-occur more often than predicted by change, and

negative values less often. Bouma [2009] shows that even though NPMI differs from

PMI, the information they capture is essentially very similar. However, PMI and, to a

smaller extent, NPMI are sensitive to rarely occurring events [Manning and Schütze,

1999] because of the uncertainty of the estimate for the true value of p(x, y). It is thus

common to introduce a threshold in the minimum number of co-occurrences for which

the NPMI value is computed. In our examples, we chose this to be 5. We will use

NPMI as the word co-occurrence measure and consider this as a similarity measure

between words computed over a specific dataset for our subsequent experiments.

In a streaming setting, the main computational issue for computing the PMI is

the numerator in Equation 6.1. If the vocabulary size is large, which is usually the

case, updating these values becomes computationally infeasible. Van Durme and Lall

[2009] have shown the impracticality of perfect online PMI computation and presented

methods to compute these values with high expected accuracy. In order to avoid these

issues, we chose to segment the corpus into fixed-length time intervals (e.g. one hour,

one day), discretising time. If this interval is too short, very few co-occurrence values

are significant. Conversely, if the time interval is large, then short lived events might

not be identified. NPMI computation is easily parallelisable, which we exploit by

using a cluster running Apache Hadoop.

The association measure of words is normally indicative of collocations. Given

data from a narrow time frame, however, we expect that words co-occur often if they

are indicative of the same event that was mentioned in multiple texts. By clustering

words based on co-occurrences we expect to find the terms that can reliably and

uniquely characterise an event. Table 6.2 presents a list of word pairs with very

high NPMI scores as computed over a large two months social media dataset. These

consist mainly of frequent collocations (e.g. names of singers, TV series) where each

word rarely occurs without the other one. In Table 6.1 we present a selected list of

word pairs with very high NPMI computed over an hour long social media dataset

which show high co-occurrence values for terms in current news at that time.
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Word1 Word2 NPMI Description

baghdad bombs 0.705 Baghdad bombings
troops ufc 0.704 UFC Fight for the Troops show

cameras spotted 0.668 LG G-Slate tablet camera spotted
iran nuclear 0.646 Iran nuclear ambitions

djokovic quarters 0.641 Djokovic in Australian Open quarterfinals at tennis
fighter stealth 0.639 China unveils stealth fighter

motorola launching 0.636 Motorola XOOM announced for launch on 17th February
jets steelers 0.632 New York Jets - Pittsburgh Steelers Football match

activist arrested 0.614 Yemen arrests anti-government activist
protests tunisia 0.605 Protests in Tunisia

Table 6.1: Selected top NPMI values for 23 Jan, 9-10am. Word1, Word2 are in
alphabetical order.

Word1 Word2 NPMI Description

feng shui 0.734 philosophical system
#sunrise #sunset 0.727 weather hashtags
phineas ferb 0.723 TV series
avenged sevenfold 0.723 music band
erykah badu 0.722 singer
mardi gras 0.722 event
tinie tempah 0.721 singer

gwyneth paltrow 0.721 actress
battlestar galactica 0.721 TV series

estee lauder 0.720 company

Table 6.2: Top NPMI values over the entire two months of the Twitter Gardenhose
dataset. Word1, Word2 are in selected order for enhanced interpretability.

6.1.2 Temporal evolution

Our assumption is that the co-occurrence distribution of words changes in time as a

consequence of real-world events. We first analyse pairs of words relating to events

(event description is in Section 6.3.3). For four such word pairs we display the tem-

poral evolution of co-occurrence counts in Figure 6.2 and of the NPMI values in

Figure 6.3. From Figure 6.2 we observe that pairs like ‘Taco Bell’ and ‘Toyota recall’

co-occur often in a daily pattern. For ‘Taco Bell’ this happens mostly because U.S.

users comment on the company’s products every day. The other four pairs mostly

co-occur around events related to them, with a decay as the relevance of the event

diminishes. In the ‘Taco Bell’ case, this trend is combined with the daily pattern.

In contrast, when analysing NPMI from Figure 6.3, all the pairs have high values

at the start of the related event keeping a non-zero value until the event looses its

importance almost entirely. This shows that NPMI values remain high even when
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the co-occurrence counts are relatively low. This would allow a clustering algorithm

applied to co-occurrences to uncover even events with lower popularity. As the NPMI

can also have negative values and can be close to zero due to noisy estimates, it is

prudent to set a threshold below which NPMI values are set to zero [Turney and

Pantel, 2010].
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Figure 6.2: Temporal variation of co-occurrence pairs.
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Figure 6.3: Temporal variation of co-occurrence values (NPMI).

6.1.3 Applications

The study of word co-occurrences has a long tradition in Natural Language Process-

ing. Measures of co-occurrence have been first studied by Fano [1961] and Dunning

[1993]. They have been used for finding collocations or multiword expressions in

documents [Sag et al., 2002, Evert, 2005], for weighting vectors for measuring distri-

butional semantic similarity [Turney and Pantel, 2010] or for finding the sentiment

polarity of words [Turney, 2002]. More related to our experiments, Newman et al.

[2010] obtain by using PMI the best performance for measuring topic coherence.
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6.2 Methods

In this section we introduce the methods used to identify events and topics in social

media data. These methods are based on grouping words into clusters which are

used to characterise events or topics. We will refer to a ‘topic’ as having a broader

meaning [Lin et al., 2011], e.g. ‘football’ or ‘U.K. politics’, combining semantically

related concepts. We define an ‘event’ with a more restricted meaning, similarly as

the term ‘topic’ in the context of Topic Detection and Tracking [Allan, 2002]: ‘a set

of news stories that are strongly related by some seminal event that triggers a topic’,

e.g. a single football match or a political debate. There is however a fine line between

these concepts as some events can be very broad and thus similar to a topic.

Generally, two different classes of clustering methods exist: hard or soft clustering.

In hard clustering, the items are divided into mutually exclusive clusters. Conversely,

in soft clustering an item can belong to multiple clusters and has a probability distri-

bution across all clusters. This indicates the association strength between the item

and each cluster.

The latter set of methods contain topic models (see Section 4.2.4) which identify

distributions over vocabularies based on document level co-occurrences called ‘topics’,

effectively performing a soft clustering on the vocabulary. After initial experimen-

tation using online LDA we found uninterpretable results. This is due to the short

message length and frequent foreign terms co-occurring within a tweet.

In this chapter, we develop and experiment with two hard clustering methods:

K-means clustering [MacQueen, 1967] and spectral clustering [Ng et al., 2002]. These

make use of the co-occurrence scores between words as a similarity measure in order

to create clusters that reflect events/topics. Some assumptions can be made about

the data and the behaviour we aim to model. Our goal is to preserve clusters that

contain pairs of highly co-occurring words and their local neighbours. Due to the

distributional similarity hypothesis, not all words need to have high similarities with

every other word in order to refer to the same event/topic as they might occur inter-

changeably. We thus aim for clusters to include words that may not co-occur, but are

distributionally similar (e.g. ‘recall’ and ‘recalls’; ‘Moscow’ and ‘Domodedovo’ - i.e.

Moscow’s airport). The size of the clusters is unknown and we expect it to depend

on the event type. The number of clusters can also vary dramatically based on the

time of day and the day itself (e.g. weekday vs. weekend).
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6.2.1 K-means clustering

Hard clustering algorithms aim to partition n items (i.e. words in our case) into k

groups or clusters. Items in each cluster should be similar whilst being different

to items in all the different clusters. This can be formulated as a combinatorial

optimisation problem by defining a loss function:

W (C) =
k∑
i=1

∑
w,w′∈C

d(w,w′) (6.2)

where C = {Ci}ki=1 is the set of k clusters and d is a disimiliarity function.

This is called between-cluster point scatter and minimising W (C) for all cluster

assignments is not computationally feasible even for low values of n and k. For

identifying the optimal clusters, an approximate algorithm needs to be developed.

Most common are algorithms based on iterative greedy descent such as the K-means

algorithm [MacQueen, 1967]. These algorithms change cluster assignments at each

iteration such that the criterion is always lowered until convergence or a limit in

the number of iterations is reached. However, reaching a global optimum is not

guaranteed, but only a local one.

Algorithm 2 Partitioning Around Medoids

1: k ∈ R . Number of clusters (fixed)
2: D = {w1, ..., wn} . Data items
3: D ∈ Rn×n . Pairwise disimiliarity matrix
4: procedure PAM(k,D, D)
5: randomly initialise M = {m1, ...,mk},M∗ = ∅ . Randomly initialise medoids
6: while M ! = M∗ do
7: M∗ ←M
8: for wi ∈ D do
9: CargminkD(i,mk) ← wi . Assign each data point to the cluster of its

closest medoid
10: end for
11: for mi ∈M do
12: for wj ∈ Ci do
13: if W (M \ {mi}+ {j}, C) < W (M, C) then
14: m∗i ← j . Check in each cluster i if a ‘better’ medoid exists
15: end if
16: end for
17: end for
18: end while
19: end procedure
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The K-means algorithm is a centroid-based clustering algorithm that aims to

partition the n items such that each item belongs to the cluster with the nearest

mean, serving as a prototype of the cluster. However, in computing the distance

between items, K-means algorithm uses the Euclidean distance between the items,

which is not suitable for any task. The K-medoids algorithms is an alternative to the

K-means algorithm where the cluster prototype is restricted to be one of the items,

i.e. the medoid instead of the mean. In this way, a custom distance function can

be used in clustering, given as a distance (or similarity) matrix between each pair

of data items. Because of this, K-medoids is considered to be more robust to noise

and outliers in comparison to K-means. The most common solution to K-medoids

clustering is the Partitioning Around Medoids (PAM) (Algorithm 2) [Theodoridis and

Koutroumbas, 2008]. The function to optimise for this algorithm takes the form:

W (M, C) =
k∑
i=1

∑
w∈Ci

d(w,wmi
) (6.3)

where M = {m1, ...mk} are the k medoid indices.

6.2.2 Spectral clustering

Spectral clustering [Shi and Malik, 2000, Ng et al., 2002] is a clustering algorithm

that has been shown to achieve state-of-the-art performance for a range of tasks,

from image segmentation [Shi and Malik, 2000] to community detection [Smyth and

White, 2005]. Besides its performance, it is also appealing because of its theoretical

grounding in spectral graph theory [Chung, 1997]. This algorithm treats the clustering

problem as one of graph partitioning on the similarity graph between data points.

Following [Ng et al., 2002], the objective of (normalised) spectral clustering is to

minimise the normalised cut (Ncut):

WNcut(C) =
1

2

k∑
c=1

∑
i∈Cc,j 6∈Cc

sij∑
i,j∈Cc

sij
(6.4)

where S = {sij}ni,j=1 is the adjacency matrix of the similarity graph. The Ncut ob-

jective is to find the best graph partition such that similarities between partitions are

low while the similarities within each partition have high values. The normalisation

of each cluster with the sum of the within cluster similarities is also performed in

order to avoid degenerate solutions with clusters of size one. This way, we aim to

have clusters with similar volumes. Another view of the Ncut objective is to identify
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a partition such that a random walk weighted by sij in the graph seldom changes

cluster memberships. However, solving the Ncut problem is NP-hard.

If we define:

D = diag

(
{

k∑
j=1

sij}ni=1

)
(6.5)

L = D − S (6.6)

H = {hij}ni,j=1 =

{
1/
√∑

k1,k2∈Cj
sk1k2 if wi ∈ Cj

0 otherwise.
(6.7)

the Ncut problem can be reformulated as:

min
C

Tr(H ′LH), subject to H ′DH = I. (6.8)

By relaxing the constraint on the discrete structure of H from Equation 6.7 and

by defining T = HD1/2, the objective becomes:

min
C

Tr(T ′D−1/2LD−1/2T ), subject to T ′T = I. (6.9)

where Lsym = D−1/2LD−1/2 is called the normalised graph Laplacian.

This is a trace minimisation problem with the solution T having as columns the

first k eigenvectors of Lsym, corresponding to the smallest eigenvalues and ignoring

zero values. A final discretisation step is then performed on the matrix T in order to

transform it to the original structure of H and obtain a hard clustering of the data.

Intuitively, the spectral clustering algorithm projects the data points via Singular

Value Decomposition (SVD) into a reduced space which aims for maximal separation

of clusters. This way, spectral clustering is useful when data dimensionality is high. It

is also particularly useful when the clusters are hard to be discovered using a spherical

metric, as is the case, for example, with K-means.

Normalised spectral clustering [Ng et al., 2002] is presented in Algorithm 3. We

start with the similarity matrix S and with a choice of the number of clusters k.

After computing the diagonal matrix D and the graph Laplacian L, SVD is applied

to identify the first k eigenvectors of the Laplacian. On the reduced matrix T , K-

means clustering is performed in order to identify the cluster memberships.

A good clustering relies on a good similarity matrix which best reflects the con-

nections between objects. Sparsity of this matrix is another desirable property as

the eigensolver can produce faster results with sparser matrices. Most of the work

in applying spectral clustering is performed to build the optimal similarity graph
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Algorithm 3 Normalised Spectral clustering

1: k ∈ R . Number of clusters (fixed)
2: S ∈ Rn×n . Pairwise similarity matrix
3: procedure NSpectral(k, S)
4: Lsym ← I−D−1/2SD−1/2 . Compute graph Laplacian
5: U = {uuui}ki=1 ← SV D(Lsym, k) . Get first k eigenvectors

6: T = {tij}ki,j=1, tij ← uij/ (
∑

k u
2
ik)

1/2

7: C ← KMeans(ttt1, ..., tttn) . Run K-means on the reduced space
8: end procedure

which best reflects the relationships in the data. The application of spectral cluster-

ing methods in NLP has been limited because of increased storage space and runtime

when faced with large-scale text datasets [Lin and Cohen, 2010]. Further details,

proofs and a discussion on the approximation to the Ncut solution are presented

in [Von Luxburg, 2007].

6.2.3 Evolutionary spectral clustering

When analysing temporal data, the clusters at each time interval are expected to be

similar to the ones from the previous time interval and smoothly vary over time. Our

assumption is that the data is computed over a restricted time window such that

it can be considered stationary. If performing independent clusterings for each time

interval there is no explicit relationship between clusters. This causes problems as the

clustering results are sensitive to noise and the results can be unstable and inconsistent

with the ones from the previous time step. Another issue is the identifiability of

clusters through consecutive time steps.

Evolutionary clustering algorithms [Chakrabarti et al., 2006] have been developed

for clustering objects that evolve over time and can be used to track changes over time.

This aims to reflect long-term trends while being robust to short-term variations by

adding a temporal smoothness penalty to a static clustering method. Further methods

for evolutionary spectral clustering were developed by Xu et al. [2010], which build

on the work of Chi et al. [2007] and which we present below.

The intuition of the algorithm is that a current partition Ct at time t needs to

both partition the current dataset well and also to perform well in partitioning the

data at the previous time step t − 1. This way, we seek partitions that are also

consistent with past data. The alternative to this is to impose Ct to be similar to

Ct−1 in addition to performing a good partitioning of the data. The objective of the
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evolutionary spectral clustering at time t is thus a convex combination of the cost at

times t and t− 1:

WEvNcut(C) = α ·WNcut(Ct) + (1− α) ·WNcut(Ct−1)

= α · 1

2

k∑
c=1

∑
i∈Cc,j 6∈Cc

stij∑
i,j∈Cc

stij
+ (1− α) · 1

2

k∑
c=1

∑
i∈Cc,j 6∈Cc

st−1
ij∑

i,j∈Cc
st−1
ij

(6.10)

where 0 ≤ α ≤ 1 is a forgetting factor which controls the amount of smoothing to be

applied.

By relaxing the objective in a similar way as in the previous section, we obtain:

min
C

Tr(T ′(αD
−1/2
t LtD

−1/2
t + (1− α)D

−1/2
t−1 Lt−1D

−1/2
t−1 )T ), subject to T ′T = I (6.11)

We have the same trace optimisation problem as in Equation 6.9 for which the solu-

tion is the matrix of the first k eigenvalues of αD
−1/2
t LtD

−1/2
t +(1−α)D

−1/2
t−1 Lt−1D

−1/2
t−1 .

Considering L = D −W , we can simply define the similarity matrix at time t for

evolutionary clustering as being:

St∗ = αSt + (1− α)St−1 (6.12)

The problem of choosing the α adaptively at each time step is approached by Xu

et al. [2010]. Because it is smoothed, the new similarity matrix St∗ has lower vari-

ance than St. However, this might induce a bias leading to a bias-variance trade-off

problem. An approach similar to [Ledoit and Wolf, 2003] for shrinkage estimation

of covariance matrices is used for choosing α. Its objective is to optimise the square

Frobenius norm of the difference between the true underlying similarity matrix and

the St∗. As the true similarity matrix is unknown, all unknowns are replaced with

sample equivalents [Schäfer and Strimmer, 2005]. Practically, this consists in iterating

until convergence between obtaining an approximate α∗ based on the cluster assign-

ments and updating the assignments while fixing α∗. Full details of the algorithm

can be found in [Xu et al., 2010]. We note that this is the first time evolutionary

clustering algorithms have been applied in an NLP task.

6.3 Experiments

In this section we present the datasets (Section 6.3.1) and the experiments (Sec-

tions 6.3.3, 6.3.4) we conduct in order to evaluate our clustering algorithms. We also

introduce the cluster measures used in our experiments (Section 6.3.2). Two differ-

ent types of evaluation for clustering exist: internal and external [Manning et al.,
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2008]. Internal evaluation aims to evaluate and compare an internal criterion of the

clustering algorithm, e.g. the objective function. However, good performance on the

internal evaluation might not correspond in better experimental results if the assump-

tions (e.g. similarity metric) do not match the desired goal of the clustering. External

evaluation aims to evaluate how well the results of the clustering algorithm match

its desired application. While this form of evaluation is more direct, it is also very

hard to perform at a large scale as human evaluation is costly. An alternative for

human evaluation is to provide a set of gold standard classes e.g. sets of words that

belong in the same cluster. An external criterion can evaluate how well the clustering

results map to the gold standard classes. We perform automatic internal and external

evaluation of our methods in Section 6.3.3.1 in order to compare algorithms and their

setups. The rest of the experiments are analysed qualitatively and evaluated using

human judgements.

6.3.1 Data

We use multiple datasets in both volume, content and time span for our experiments

(see Section 2.1.3). First, we use the Twitter Gardenhose dataset from 1 January –

28 February 2011. Because of the large volume of data (∼9 million messages daily),

computing the co-occurrences and clusters is performed using one hour time inter-

vals. The second corpus is the Austrian Politics spanning one year: from September

2012 to September 2013. This has the advantage of being focused on specific real-

world events (i.e. relating to Austrian politics) and thus containing fewer conversation

and personal messages which often represents noise for the goal of event detection.

Because the data is of a smaller volume (∼1.8 million messages in total), for the

temporal experiments each partition will consist of tweets authored across one day

intervals. We also experiment with computing co-occurrences and clusters over each

entire corpus in order to validate our hypothesis.

For text processing, we have tokenised and deduplicated all the tweets using the

methods presented in Chapter 3. Removing duplicate tweets is important as these

messages bias the co-occurrence values, artificially inflating the counts for the terms

therein. For computing the NPMI, we consider that two words co-occur if they are

part of the same message. Commonly, co-occurrences were computed over a word

window. We chose our method because tweets are short (∼6 vocabulary tokens) and

we can assume that they refer only to one topic. The vocabulary consists of the most

frequent 50,000 tokens. In the second dataset, the vocabulary is formed of words with

at least 10 occurrences in the dictionary (48,946 in total).
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6.3.2 Cluster measures

In order to measure the ‘quality’ of a cluster we compute for each word w an average

coherence score with respect to the words in its assigned cluster C using the original

similarity scores (even if we will use other variations of it in clustering):

Qw =
∑
x∈C

NPMI(w, x)(|c|
2

) (6.13)

The coherence of cluster c is defined as the average coherence of its words:

QC =

∑
w∈C Qw

|C|
(6.14)

We define the magnitude of a cluster as the average co-occurrence frequency across

all word pairs in the cluster. In order to measure which tokens are more representative

for a cluster we compute for each word a centrality measure using the following

formula:

Cew =

∑
x∈C NPMI(w, x)

|C| − 1
(6.15)

This scores highly words with high co-occurrence scores with all the other tokens

which are expected to be more central concepts in its cluster.

6.3.3 Gardenhose experiments

Our first set of experiments are conducted on the Gardenhose dataset. This consists

of a very large set of unfiltered tweets which contains, other than timely event related

messages also many conversational or general tweets. We aim to see if clustering in

small time windows (here one hour) can uncover events and if it can filter the noise

arising of conversational messages. We first present in Section 6.3.3.1 a quantita-

tive analysis which aims to compare the different clustering methods, show how they

improve over baselines and present how the parameters of the algorithms can be ad-

justed automatically. Qualitative experiments in Section 6.3.3.2 present and evaluate

events discovered using word co-occurrence statistics and clustering. We also perform

aggregate experiments over the entire two months of data. Given the general purpose

and large volume of the dataset, we expect word co-occurrences not to be affected

by short term perturbations and have high co-occurrence scores with semantically

related words.
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6.3.3.1 Quantitative analysis

First, we quantitatively compare K-means (denoted K) and spectral (denoted S)

clustering and analyse the sensitivity to different parameter settings. We perform 24

individual evaluations on each hour of a randomly selected day of the dataset (i.e. 23

January 2011) and report the average scores across all hours. The most important

parameter is the number of clusters (k). Beyond this, also important is the underlying

similarity graph, which should be sparse for efficiency reasons. We experiment with

a few setups, each building on the previous. First, we discard all the NPMI values

less than 0.3. From the resulting graph we discard all items that do not belong to the

largest connected component, as these components typically represent trivial clusters.

This way, we remove both common words that are unspecific for any event/topic and

words which are correlated only to a few others. We denote this setup with the -f

suffix e.g. K-f is K-means with this setup. For comparison purposes, this reduced

vocabulary is used in all experiments for the respective hour. From the resulting

graph, we build a mutual nearest-neighbourhood graph with n = 501 (denoted -r).

We experiment with ‘spreading’ the values in the [0, 1] interval by applying a Gaussian

similarity function2 with σ = 0.3 (denoted -s). Emphasising higher NPMI scores was

shown to produce better results in some applications [Aletras and Stevenson, 2013].

K-means with no pruning of the NPMI values is denoted as K and a random partition

as R.

As a means of internal cluster evaluation we use the total coherence score for a

clustering. This is defined as the average across all word coherence scores (see Equa-

tion 6.13) and corresponds to the objective of K-means clustering from Equation 6.2.

The results are presented in Table 6.3. We note that scores are not comparable

across different number of clusters k, as larger clusters tend to have lower scores. We

discover first that K-means has better results for lower number of clusters, but this

changes in favour of spectral clustering when increasing the number of clusters above

300. This is somewhat expected: the K-means algorithm collapses many words into

large clusters (k = 500, σ = 131) because they have similar values (close to 0) for the

majority of dimensions. Spectral clustering avoids this problem (k = 500, σ = 16) by

performing clustering on a reduced space that provides a better separation. Under

this measure, the three setups have similar results, with (s) having the advantage of

a lower computational cost.

1Lowest value that keeps the graph connected as recommended by Von Luxburg [2007]
2gs(x) = 1− exp( −x

2·σ2 )
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For automatic external evaluation, a gold standard set of word clusters is needed.

For this, we consider that the word, its equivalent hashtag and its plural should appear

in the same cluster (e.g. ‘packer’, ‘#packer’, ‘#packers’). These pairs also are likely

to have a very small NPMI value, because they rarely co-occur in the same tweet

(Twitter users use the hashtag to substitute the word). In our vocabulary there are

in total 2009 pairs and 114 triples (due to pruning by largest connected component,

not all are present in every clustering). We consider purity [Manning et al., 2008] as

measure:

purity(C,Ω) =
1

n

∑
k

max
j
|Ck ∩ ωj| (6.16)

where Ω is the set of gold standard clusters. The score is also presented relative

to a random baseline that keeps the cluster sizes fixed and randomises the assign-

ments as in [Bamman et al., 2013], as the size distribution influences the purity score.

For example, a partitioning which has a very large cluster containing all gold stan-

dard pair achieves maximum purity score but is not interpretable. The scores are

presented in Table 6.4, showing that all our models obtain better performance even

when confronted with this difficult task, with spectral clustering (S-s) with k = 500

having the best improvement compared to the baseline. All results compared to the

random baseline are statistically significantly better, p < .01. Because spectral clus-

tering showed consistently better results, we only use this algorithm in the qualitative

experiments sections. We highlight that the experiments which lead to the optimal

parameter settings for experiments to different factors such as vocabulary size or data

volume. As a consequence, similar quantitative experiments need to be conducted in

order to obtain tailored parameter settings.

k R K K-f K-r K-s S-f S-r S-s
50 0.005 0.015 0.013 0.012 0.012 0.010 0.010 0.010
100 0.005 0.023 0.020 0.020 0.020 0.016 0.016 0.016
200 0.005 0.035 0.034 0.033 0.033 0.030 0.030 0.030
500 0.004 0.066 0.064 0.064 0.064 0.087 0.087 0.088

Table 6.3: Average word coherence. Bold numbers show best performance. Results
not comparable across different values of k.

6.3.3.2 Qualitative analysis

In this section, we present a qualitative analysis of our method. We use the single

model that yielded best results in the previous Section, i.e. spectral clustering with

500 clusters on the reduced matrix and with similarity function (S-s).
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k K K-f K-r K-s S-f S-r S-s
50 0.20 ↑ 11% 0.13↑ 11% 0.11↑ 11% 0.11↑ 9% 0.10↑ 9% 0.12↑ 9% 0.12↑ 8%
100 0.32 ↑ 9% 0.23↑ 10% 0.20↑ 9% 0.19↑ 7% 0.23↑ 11% 0.25↑ 11% 0.25↑ 11%
200 0.48 ↑ 8% 0.37↑ 9% 0.33↑ 8% 0.32↑ 8% 0.42↑ 15% 0.43↑ 14% 0.43↑ 14%
500 0.68 ↑ 6% 0.59↑ 7% 0.55↑ 7% 0.56↑ 7% 0.64↑ 16% 0.65↑ 16% 0.65↑ 16%

Table 6.4: Purity on labeled word pairs. Percentage shows improvement over a
controlled random baseline.

We expect many clusters to be non-indicative of any event as many words are only

conversational or are otherwise not very important to any specific event. Such words

would appear in very different contexts and consequently will have low co-occurrence

scores. We only keep clusters with a high coherence score (see Equation 6.14), empir-

ically set for the current experiments to a value of 0.15. This way, we also control for

the different number of events in a dataset. On average, the number of clusters within

one hour with a coherence score above the 0.15 threshold is 175.6 with a standard

deviation of 41. After reducing the full matrix to the one used in clustering, we have

on average 7858 words as input to the clustering algorithm.

Cluster quality Our first experiment aims to provide an overview of the contents

of the clusters. We randomly chose a date and hour from our dataset (24 January

2011, 9-10pm G.M.T.) and asked two independent annotators to judge if and how

relevant each cluster is to an event on that hour. The Inter-Annotator agreement

(IAA) is 0.67 and Cohen’s kappa κ = 0.53 (significant at p < .01). Results are

presented in Table 6.5 showing that most of the clusters are indeed related to events.

Event related Partially related Not related Spam
44.27% 20.99% 18.32% 16.41%

Table 6.5: Cluster quality judgements over 131 clusters averaged over two independent
annotators.

Sample clusters We start by presenting a random set of clusters of different num-

ber of words from this hour of the dataset in Figure 6.6. The top clusters in terms

of coherence are presented in Table 6.7 and in terms of magnitude are displayed in

Table 6.8. We will refer to clusters in text with their topmost word from the table.

We observe that, for the majority of clusters, we can deduce the key information

about the event that it describes. For example, cluster ‘#sotu’ refers to discussion

about the ‘State of the Union’ address3 (happening on the next day, 25 January 2011)

3http://www.whitehouse.gov/state-of-the-union-2011
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show report action stay
name gig grab says

tv cnn joint reuters
ideas ceo military continue
eric producer discuss bob

awarded google’s rebel chief
schmidt countries tuned
outgoing region executive
rumored rumors remain

defence aig
0.31 0.35 0.31 0.24

6 shower ap making
review broke points lord
driving daughter tech taylor
series grandma jones judge
gear jimmy average trial

active abc solid defense
previous someone’s closing claims
published reveals shy false

o’clock rivers stocks jury
bmw melissa closes enses

entering dow investigating
12,000

0.22 0.25 0.35 0.29

#sotu goal football f
skills score sports fair
held chelsea sky ca

protect goals female county
americans blues andy pressure
millions scored comments field
illegal scores keys falling
secure 41 gray mph

workers 56 richard calm
laws #football assistant winds

lottery 2-0 sack mb
border bolton rant wa

@barackobama #cfc sacked kt
visa 4-0 sian nc

existing #chelsea sexist wi
#s #epl aimed mn

educational drogba ironing reporting
immigration reebok sexism clouds

overly davies apologise automatic
mandatory anelka referee regional
employers @chelseafc presenter overcst

cech massey southwest
0-4 hu

malouda northwest
ramires terminal
#bwfc 72

0.22 0.26 0.29 0.23

Table 6.6: Example of clusters and coherence scores for 24 January 2011 9-10pm
G.M.T.

behind weather cheaper works sea
john chill replacement manager pure

tweetdeck across rubber bears boat
medium canada originally coach pushed

keen recent doh general breeze
techcrunch brave smith depth

mogul ch jerry probe
tctv canadians extension flowing

coldest angelo curiosity
warnings lovie

0.53 0.42 0.42 0.38 0.38

Table 6.7: Most coherent clusters and coherence score for 24 January 2011 9-10pm
G.M.T.

while ‘goal’ refers to details about the Bolton Wanderers – Chelsea English Premier

League football match.4 We notice that both clusters contain key related terms, in

the case of the ‘#sotu’ cluster topics that will probably be addressed such as ‘immi-

gration’, ‘employers, ‘laws’, ‘protect and in the case of the ‘goal’ cluster the names of

the football teams (‘bolton’, ‘chelsea’), all the four goalscorers (‘drogba’, ‘malouda’,

‘anelka’, ‘ramires’) as well as both teams’ hashtags (‘#cfc’, ‘bwfc’). Conversely, the

4http://www.telegraph.co.uk/sport/football/competitions/premier-league/7943954/

Bolton-Wanderers-v-Chelsea-live.html
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down half free come believe
shut sister card other tried
50 oprah gift doing huge

@50cent meets secret bored lee
cent reveal picked chat shooting
wshh adoption receive each guilty

shutting oprah’s $1,000 http://tinychat.com murder
shuts winfrey victoria’s tinychat mass

worldstarhiphop @oprah chosen chatroom arizona
shuttin patricia selected suspect

half-sister drawn accused (...)
304 82 62 47 42

Table 6.8: Most important clusters and magnitude score for 24 January 2011 9-10pm
G.M.T.

‘cheaper’ and ‘shower’ clusters are not related to any event at that time. These

consist however of words that can be related pairwise to each other (e.g. ‘melissa’

and ‘rivers’, ‘cheaper’ and ‘replacement’, ‘cheaper’ and ‘originally’) in terms of high

co-occurrence. In this case, the clustering algorithm’s capacity of creating clusters in

which not all the pairwise similarities are high fails and adds a chain of words, only

few with high similarities.

We also observe clusters such as ‘free’ and ‘come’ where all words are related,

but are not uncovering any event. These are likely caused by multiple very similar

messages, some automatic. Because these messages are slightly altered, the dedupli-

cation step fails to filter them. Words in these messages will have very high NPMI

values and thus they would be discovered in the same cluster. Our goal of capturing

distributionally similar words is illustrated by the presence in the same cluster of

pairs of words (e.g. ‘wshh’ and ‘worldstarhiphop’, ‘techcrunch’ and ‘tctv’) which very

rarely co-occur but are an abbreviation of the other and thus representative of the

same event (i.e. users will use the terms interchangeably but rarely at the same time).

Selected events For an in-depth analysis we chose a number of known real-world

events that happened during our data collection interval. For objectivity, we used a

subset of events extracted from the queries of the TREC Microblog track 2011.5 This

track addresses a realtime search task, where the user wishes to see the most recent

relevant information to the query. The organisers also provided 50 queries for this

task. While no narrative and description tags are provided, the topic assessor has

a clearly defined information need. These queries thus actually represent real-world

event keywords.

5http://sites.google.com/site/microblogtrack/
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Query: Taco Bell filling lawsuit
Label: Taco Bell defends its
mixture of seasoned meat
http://bit.ly/efIzP3
Coherence: 0.38
Magnitude: 73
Date: 25 Jan 2011, 10-11pm

Query: Moscow airport bomb-
ing
Label: Suicide bomber
kills 35 at Moscow airport
http://ind.pn/idWMJj
Coherence: 0.30
Magnitude: 214
Date: 24 Jan 2011, 5-6pm

Query: Kubica crash
Label: Formula 1 driver Robert
Kubica injured in rally crash
http://ow.ly/3R7IQ
Coherence: 0.35
Magnitude: 140
Date: 6 Feb 2011, 12-1pm

Query: Oprah Winfrey half-
sister
Label: Oprah Win-
frey has a half-sister.
http://bit.ly/i7NNjs
Coherence: 0.25
Magnitude: 43
Date: 24 Jan 2011, 9-10pm

Query: Toyota recall
Label: Toyota recalls
nearly 1.7 million vehicles
http://lsnlw.com/t/132876715/
Coherence: 0.33
Magnitude: 230
Date: 26 Jan 2011, 6-7am

Query: U.S. Unemployment
Label: Unemployment 9.0%
#unemployment #economy
Coherence: 0.22
Magnitude: 108
Date: 4 Feb 2011 2-3pm

Figure 6.4: Original TREC Microblog query, the most relevant tweet, words in the
cluster with font size defined by centrality, coherence, magnitude and date of the
events.

We discarded single word queries and those in which any word pair had less than 5

occurrences in any hour. We do this because these pairs could have been discarded in

our filtering steps which are necessary for adjusting the NPMI bias for rarely occurring

words. Most of the TREC events are of lower interest (e.g. ‘the release of the Rite’)

or are general and static (e.g. ‘global warming and weather’). If we used the entire

Twitter stream as input, recall would be higher.

We present the clusters associated with the 13 discovered events in Figure 6.4 and

continued in Appendix A. The cluster was automatically identified as the cluster that

contained the query terms and the time interval as the largest value of the sum of

co-occurrence frequencies between all pairs of words in the query.

We notice that we can reliably discover all the events indicated by our queries.

A qualitative inspection shows that the clusters contain most of the relevant words

to that event and its specific time. For example, in the ‘Oprah’ cluster we see that
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the related event is about the revealing that she has a half-sister who was given

to adoption.6 Her name (‘Patricia’) together with Oprah’s surname, hashtag and

username are also present. In the ‘Kubica’ example, we observe that Robert Kubica

was a driver that was badly injured in a rally crash in Italy.7 We notice other words

that describe his activity as a Formula 1 driver, like ‘f1’, ‘#f1’, ‘formula’ and the team

for which he was racing (‘Renault’). The centrality measure emphasises correctly

the concepts important to the cluster (e.g. ‘Oprah, ‘Winfrey’, ‘sister’, ‘half-sister’ or

‘Kubica’, ‘Robert’, ‘crash’, ‘injured’). Moreover, our method finds related words even

if they are very frequent in the dataset, which a method based on a tf-idf metric

[Manning et al., 2008] will discard because of high document frequency (e.g. ‘sister’

in the ‘Oprah’ cluster or ‘Italy’ in the ‘Kubica’ cluster). We highlight that our event

detection method is unsupervised in that it discovers these events with no supervision

or manual tuning.

6.3.3.3 Aggregated analysis

The analysis from the previous section was performed when similarities were com-

puted over a restricted time frame i.e. one hour. In this section we apply the

same clustering method but using the similarity matrix computed on the entire two

months dataset. These experiments aim to confirm our initial hypothesis: word co-

occurrences in a static corpus built over a large time interval reflects semantically

related concepts. In such cases the temporal effect is watered down.

Cluster quality We have experimented with a number of clusters k from 50 to

500 in increments of 50. We chose to present results with k = 100, which obtained

best purity results. This is also similar to the recommended setup for the number

of topics in topic models based on topic coherence [Stevens et al., 2012]. In order

to provide an overview of the type of clusters the method discovers, we asked two

independent annotators to judge if and how each cluster is relevant to either an event

or topic. The Inter-Annotator agreement (IAA) is 0.67 and Cohen’s kappa κ = 0.66

(significant at p < .01). Results presented in Table 6.9 show a shift in the type of

cluster content. Many of the clusters now represent general topics, similar to those

discovered by topic models.

6http://www.bbc.co.uk/news/entertainment-arts-12274349
7http://news.bbc.co.uk/sport1/hi/motorsport/formula_one/9388940.stm
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General topic Event related
Partial relevance
or mix of topics

Not topic
or event related

62.5% 10.5% 18.5% 8.5%

Table 6.9: Cluster quality judgements averaged over two independent annotators for
aggregated dataset experiments.

Selected clusters We present an in-depth analysis of a selected set of clusters in

Figure 6.5. This set aims to be representative of the types of clusters identified in our

data. A complete list of clusters presented as a list of the top 10 most central words

(using Equation 6.15) is in Appendix B.

Cluster #28 Label:
Drinks

Cluster #31 Label:
Words with elongated
endings

Cluster #34 Label:
Nighttime

Cluster #39 Label: Tech Cluster #63 Label:
Portuguese and Spanish
words

Cluster #96 Label:
Floods

Figure 6.5: Six sample clusters from the Gardenhose aggregated corpus. Size is
proportional to word centrality. The topics are human labelled. Colours are only for
clarity purposes.

We first identify clusters in which the words refer to the similar semantic concepts,

such as ‘Tech’ in Cluster #39 or words referring to types of drinks in Cluster #28.

Cluster #31 is made up of words that share a particular feature: they all have elon-

gated endings. This is very intuitive on an analysis of the data, as a group of users

prefer to write messages using such words. A similar effect leads to clusters of words

specific to one particular language as in Cluster #63. Tweets are usually written in

a single language resulting in words from that language having high co-occurrence.
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The most central words are frequent words from that particular language. These are

central to that cluster because they have non-zero co-occurrence scores with most

other words in the cluster, having appeared together in tweets. Conversely, English

stopwords are not central to any cluster as they occur with words from many clusters,

thus ‘spreading’ their centrality across many clusters. Cluster #34 consists of words

which co-occur for a different reason: they all represent words written by people when

they leave Twitter at night. Finally, Cluster #96 is considered a more event, rather

then topic, related cluster. This is made up of words relating to the Queensland

floods in Australia that happened at the start of 2011. Because these spread across a

longer time interval and few other tweets mentioned other flood related words, these

words were captured within a single cluster. We expect that by further broadening

the time interval used for computing the co-occurrence scores, this effect to further

diminish.

6.3.4 Austrian Politics experiments

We now present experiments conducted on the Austrian Politics dataset. This has

some very distinctive proprieties compared to the Gardenhose dataset. Most im-

portantly, it is considerably smaller volume with data over the entire year being

approximately the same volume as 4-5 hours of the Gardenhose dataset. Secondly,

the data is from political users who discuss current affairs and thus is more event

focused. As highlighted in the quantitative analysis from the previous experiments,

a few parameters of our method need to be adjusted. First, we aggregate our data

on a daily basis, rather then an hourly one in order to have a larger underlying set of

data for co-occurrence computation. Using similar quantitative experiments to those

in Section 6.3.3.1, we have determined the number of clusters k = 30. After building

the nearest-neighbour graph and keeping only the largest connected component we

have found an average of only 567 words are ‘active’ in a given day. Informed by the

previous set of experiments, we set the number of clusters to 15 times less than the

number of words to be clustered.

6.3.4.1 Daily analysis

We analyse the results obtained on a randomly selected day of our corpus, 31 May

2013. We have used the coherence threshold of 0.1 in order to remove the clusters

with low coherence. On a manual inspection these mostly contained conversational

and frequent words as well as words in English, a language that is not prevalent in
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our dataset which is predominantly in German. Using this threshold we obtain on

average 7 coherent clusters in a day. We note this threshold is lower than the 0.15 we

used for the Gardenhose experiments. Because the underlying dataset is small, the

level of sparsity of the underlying similarity matrix is higher and clusters with higher

coherence are harder to find. All the coherent clusters for this hour, with the words

sorted by their centrality, are presented in Table 6.10.

istanbul adria schau auto paar #gntm gedacht vielen
video alpe n interessant letzten #femen weniger #ff

#occupygezi hypo gleich halt andere next millionen dank
police verkauft ma vs tweets interview deutschland denen
polizei euro #heuteshow einer seine gestern menschen folgen
park bank twittern richtig #wernerfaymann find deutsche leute

#direngezipark #hypo sagen faymann leben anderen
offenbar mio #domian stunden neuer

rt zeitung kommt minuten als
#blockupy kaufen herr platz
#istanbul kleine meinem lassen

#wien austria tweet werde
today idee deine
folgt geht jahre
gegen ein
vor alles

guter
thema

0.12 0.17 0.10 0.12 0.10 0.13 0.11 0.11

Table 6.10: Coherent clusters and coherence scores for 31 May 2013.

We observe that some clusters are event related and provide the essential informa-

tion for uncovering the underlying event. For example, cluster ‘istanbul’ contains

words referring to the ‘Occupy Gezi’ movement8 that started on 29 May 2013 in

Turkey, while cluster ‘adria’ refers to an economic event which involved the Hypo-

Alpe-Adria bank.9 Cluster ‘#gntm’ is about a popular TV show while ‘paar’ in-

volves the Austrian chancellor Werner Faymann. However, the other clusters do not

uncover events. For example, cluster ‘vielen’ contains words in the context of ‘follow

Friday’ (‘#ff’), messages which users send on Fridays in order to get more followers.

We also observe many very frequent terms which were not filtered as in the Gar-

denhose experiments. We conclude that while the key events are identified, further

filtering for words is needed to remove noise. These inferior results are caused by the

small volume of data (∼5000 tweets/day), which do not lead to an accurate compu-

tation of the co-occurrence values and by simply the reduced number of events that

exist in the underlying dataset.

8http://en.wikipedia.org/wiki/2013_protests_in_Turkey
9http://www.reuters.com/article/2013/05/31/austria-hypoalpeadria-

idUSL5N0EC17220130531
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6.3.4.2 Aggregated analysis

In this section we perform experiments with co-occurrences computed on the aggre-

gated dataset in a similar way as in the Gardenhose experiments from Section 6.3.3.3.

Although the dataset spans a large time interval (one full year), it is still lower vol-

ume (∼300 times) compared to the Gardenhose dataset. Experiments were conducted

with k = 200 clusters using spectral clustering.

Cluster quality In order to asses cluster quality, SORA10 subjectively assessed the

coherence of each cluster due to their expertise and domain knowledge in Austrian

politics and affairs. The coherence scores were categorised as being: ‘Not topic or

event related’, ‘Partial relevance or mix of topics’ and ‘Event related’ or ‘General

topic’. Results are shown in Table 6.11.

General topic Event related
Partial relevance
or mix of topics

Not topic
or event related

8% 60.5% 16.5% 15%

Table 6.11: Cluster quality judgements averaged over two independent annotators for
the aggregated dataset experiments.

The results are very different from the aggregate results on the Gardenhose dataset

from Table 6.9. Whereas the ‘General topic’ category was the most prevalent earlier,

here it is the least prevalent. Conversely, the ‘Event related’ clusters are the most

frequent in this set of clusters. This can be explained by the following factors: dataset

size and the type of messages. Messages are authored by users that mainly discuss

current affairs and news, with a restricted number of conversational or general purpose

messages. This is expected to heavily influence the co-occurrence statistics. Most

words rarely appear in their natural context, but only in event related ones, pushing

the co-occurrences away from semantically similar concepts. The smaller volume of

the dataset is likely to play an important role as well, as many words only occur

during a related event which lasts generally a few days.

Selected clusters A detailed view of a few selected clusters obtained using the

aggregate dataset is presented in Figure 6.6.

We first identify the clusters related to specific events from the one year time

interval. Clusters #70 and #92 present events of international importance such as

10The institute that also helped assemble the dataset.
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Cluster #30 Label: Elections for the Aus-
trian student union

Cluster #70 Label: Papal election

Cluster #92 Label: Horse meat scandal Cluster #196 Label: Southern Ger-
man/Austrian slang words

Figure 6.6: Four sample clusters from the Austrian Politics dataset. Size is propor-
tional to word centrality. The clusters are manually labelled. Colours are only for
clarity purposes.

the Papal election11 and the horse meat scandal.12 By analysing the words from

Cluster # 70 we can identify words related to the election (‘#papstwahl’ - papal

election, ‘#pontifexit’, ‘#konklave’ - conclave), to the location (‘#vatikan - Vati-

can,’#sixtinische’ - Sistine (Chapel), ‘petersplatz’ - St. Peter’s Place ), the previous

Pope (‘benedikt’) and the newly elected Pope, the Argentinian Franciscan archbishop

of Buenos Aires, Jorge Mario Bergoglio as Pope Francis I (‘jorge’, ’#bergoglio’, ‘ar-

gentiner’) Cluster #92 identifies the key terms as being related to meat and its origin

(‘pferde’ - horse, ‘rind’ - beef, ‘fleisch’ - meat). Also relevant are identified a supermar-

ket that was alleged to have commercialised horse meat (‘lidl’) as well as the products

that contained it (‘tortelloni’). Cluster #30 reflects a local Austrian event: the elec-

11http://en.wikipedia.org/wiki/Papal_conclave,_2013
12http://www.theguardian.com/uk/2013/may/10/horsemeat-scandal-timeline-

investigation
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tions for the president (‘vorsitzender’) of the Austrian Student Union (Österreichische

HochschülerInnenschaft – ÖH or OEH) in June 2013.13 We identify the key hashtags

associated to these elections (‘#oeh13’, ‘#oehwahl2013’), the parties involved (‘gras’,

‘ag’, ‘’diefest’) as well as the winner of the election (‘#kraushofer’). Cluster #196 is

labeled as a general topic. This contains words from Southern Germany and Austrian

slang and are used only by a subset of users in their messages.

6.3.5 Application to summarisation

In order to label the clusters, we extract relevant tweets by using the words in a cluster

and their centrality score. Given a cluster, we compute for each tweet a weighted sum

of its tokens, where the weight is the word’s centrality score in the cluster:

SC =

∑
w∈C Cew

|C|
(6.17)

In order to remove short tweets that are not suited for our purpose we keep only

tweets with more than 3 tokens. Becker et al. [2011a] shows that, even though using

a different measure of similarity and centrality, when finding representative tweets in

a collection, weighting by the centrality of words performs well. Examples of relevant

tweets for their cluster are shown as cluster labels in Figure 6.4. We find that the

most representative tweet to a cluster is a well written piece of text that describes

that event succinctly.

In order to evaluate label quality we perform a human experiment. This ex-

periment also indirectly evaluates the quality of the words within a cluster. The

annotators were presented for each of the previously identified 13 TREC microblog

events (see Section 6.3.3.2) with a URL giving background information about the

event and the following tweets: 3 random tweets for each ‘highly relevant’, ‘relevant’

and ‘not relevant’ category as judged as part of the 2011 TREC Microblog task eval-

uation and the top 3 most relevant tweets as found by our method using the same

underlying data. The question they had to answer was: ‘On a scale from 1-5, how

well each tweet is suitable as a label for that event’: 1 - tweet is not relevant; 2 - tweet

is somewhat relevant; 3 - tweet is relevant but not suitable as a label/summary; 4 -

tweet is relevant and can be used as a summary, but contains too little information

or extra unrelated words; 5 - tweet is relevant and can be used as a summary’. Each

annotator judged all the 13 events. The average variance across judges is 0.38. IAA

13http://diepresse.com/home/bildung/universitaet/oehwahl/1424287/Florian-

Kraushofer-ist-neuer-OHChef
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is computed as the average Spearman’s ρ between the scores given by the annotator

and the average ratings given by all other annotators. The average IAA across all

topics was 0.875. The results presented in Table 6.12 show that our method outputs

the best labels for events, with a very high average score. This shows that the words

in our clusters identify the correct events and provide a good match for the queries.

Method Average score

Our method 4.33
TREC judged ‘Very relevant’ 3.61
TREC judged ‘Relevant’ 3.13
TREC judged ‘Not relevant’ 1.53

Table 6.12: Relevance judgement results.

6.4 Temporal experiments

Given the clusters and events uncovered in the previous section we can study their be-

haviour over time with the help of our evolutionary clustering algorithm. We highlight

that cluster correspondence is performed automatically by our evolutionary clustering

algorithm without needing to solve matching for cluster identifiability. In addition to

a lower computational cost, this also results in more consistent longitudinal clusters.

Results for two events are shown in Figure 6.7 with emphasis on the content drift

and the evolution in magnitude over time.

In the ‘Oprah sister’ event, we observe some buzz before the announcement be-

cause she advertised that she will reveal a ‘family secret’ without further details. A

few hours before the announcement, people found out that she would reveal her half-

sister. The peak in magnitude is when the announcement was made on the morning

show in the U.S. (time is G.M.T.) and there is another smaller peak when her af-

ternoon show aired. By then, people were already talking about her sister’s name

(‘Patricia’) and that she was given up for adoption.

For the ‘Kubica crash’ event we notice a more abrupt trend. When the rally crash

happened, there were many users reporting it, and afterwards the magnitude decays

quickly. In the first hour of the crash, people were reporting the news without many

details or comments (‘f1’, ‘rally’, ‘crash’). After a few hours, the number of words

relating to the event increased as more news and different comments about the driver

are made. After 12 hours from the event, we notice a drift in content. Many people

are talking about the surgery the driver had and are wishing him a ‘speedy recovery’

while others still mention the rally crash.
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Figure 6.7: Cluster evolution in magnitude and words over time.

6.5 Conclusion

This chapter introduced methods that exploit the temporal changes in word propri-

eties in order to detect the events that generated them. The method of event iden-

tification is based on computing word co-occurrences within a time window. Using

this data representation, we proposed a hard spectral clustering method to identify

word clusters. By experimenting with two very different datasets (in size and lan-

guage) we have identified that word co-occurrence clustering on a small time interval

of OSN data can uncover events (timely newsworthy happenings) in that dataset. By

increasing the time interval and data volume, this effect is reduced and words are no
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longer identified with words relating to the same event, but broadly to semantically

similar classes (‘topics’). However, experiments on a smaller dataset highlighted the

importance of a high data volume in order to dampen the influence of event related

words. On this dataset, focused on reporting and discussing current affairs, the clus-

ters discovered using one year of data mainly identify events. We also studied a series

of outcomes of the clustering method, such as weighting the words by their centrality

to determine the important concepts of the cluster, cluster coherence as a way of

filtering uninteresting clusters and identifying the most relevant tweets for a cluster

as a way of summarising the content.

Further, we have shown how to track events over time, incorporating temporal

smoothness in an evolutionary spectral clustering method. Our methods showed that

abrupt changes in word distributions in OSN data are triggered by real-world events

whilst being efficient and robust. Similarly to Chapter 4, we have only considered

a smooth temporal effect, by which the evolution of text is smooth across time and

influenced by the previous time step. More complex temporal modelling techniques

presented in the Chapter 5 can be combined with the current approach e.g. to identify

periodic events and their content.
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Chapter 7

Conclusions

This thesis studied the impact of time on social media data. The work undertaken

in this thesis provides an extensive evidence that the properties of social media data

change conditioned on time. As people switched many activities to the online medium,

it is expected that social media should contain useful information about their real

world behaviours as well about real events. Based on the significant correlations

discovered and strong empirical accuracy of social media data to real world indicators

and the correlation of clusters extracted from data to real events, we can conclude

that social web data provides a timely reflection of the real world. Time has proven to

play essential role in the type of information contained and including time explicitly

into modelling is highly beneficial.

Throughout this thesis we developed several ways of modelling time using ma-

chine learning methods. These used temporal social media data in order to discover

correlations to real world indicators, for making forecasts and for event emergence

and tracking. We have used data from two different types of OSNs, with a strong

emphasis on text, which provide temporal streams of short documents and user be-

haviours. Time was modelled in two different ways. First, in both a supervised and

an unsupervised setting, we have assumed a smooth evolution of data with time.

Although this is an intuitive and effective use of temporal information, more com-

plex temporal dependencies also exist in the data which have not been previously

explored in natural language processing research. We have developed a supervised

method that focuses on identifying periodicities from both word and user behaviour

data. Our methods had to deal with practical challenges, such as large volume or

non-standard input, as well as algorithmic challenges, such as reasoning over large

collections of messages where few are relevant to our goals.

Our first major contributions are temporal models for forecasting. We develop two

different methods, each modelling different temporal effects. First, we develop super-
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vised regression models which correlate text features extracted from social media data

with real world indicators, namely political party voting intention. We introduce a

bilinear regression model with sparse regularisation which uncovers a sparse weighted

set of both user and text features used in a multi-task prediction setting. Further, an

online algorithm is developed to work effectively in a real world streaming scenario,

where voting intentions are predicted whenever new data is available. We introduce in

this model a temporal smoothness constraint, where older data is gradually forgotten

in the detriment of new data. Experiments on two different use cases show very good

predictive results for the forecasting task, outperforming established methods. Incor-

porating temporality also proved beneficial, showing that performance gains resulting

from simple assumptions on the temporal dynamics.

Our second forecasting model deals with identifying and categorising complex pe-

riodic patterns in data. We use Gaussian Process regression to model time series of

hashtags frequencies in Twitter and user behaviour in LBSNs. We introduce a kernel

which can effectively model a specific behaviour of frequencies on social media: spik-

ing patterns characterised by an abrupt periodic rise followed by very low frequency

intervals. Experiments show excellent predictive performance in an extrapolation set-

ting, with predictions being made weeks in advance. A classification is automatically

performed by the kernel selection, uncovering the periodic and non-periodic time se-

ries. Further, we incorporate the hashtag and user behaviour frequency forecasts

in downstream applications: text classification and user beheviour prediction. We

demonstrate the power of the temporal pattern information by obtaining improve-

ments over standard methods even with a straightforward integration of the temporal

information.

Another major contribution is an unsupervised method of event discovery and

tracking. Newsworthy events are reflected by multiple posts on social media and

will likely influence word properties. Here, we have studied the temporal evolution

of word co-occurrences. We have developed an efficient spectral clustering method

which groups words based on their co-occurrence within a time window. Human

and automatic evaluation showed discovered that in restricted time windows, co-

occurrence clusters are highly indicative of events. However, with the expansion of

the time window, words tend to co-occur more with semantically related concepts,

overcoming the effects of short lived events.

At the foundation of all our methods and experiments stands an emphasis on

replicability, generality and independence from external resources. All our methods

can be directly applied with any other textual data, provided we can extract textual
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and temporal features, as we have not used features specific to the Twitter social

network. We have also proven generality across use cases by performing experiments

on data from a different language (German cf. English). Throughout the thesis, we

have not used any data or resources external to the raw social media input which

makes methods portable to new applications. The only exception is the political

polling data used as supervision in the voting intention experiments. We note that

the models tested on the polling data can be applied in order to discover correlations

with other real world time series. By modelling periodicities on Twitter hashtags, we

have discovered that similar patterns also exist in the case of user behaviour, showing

wider applicability. For the unsupervised clustering algorithm, different experimental

setups were considered which uncovered the effects of different types and volumes of

input data. Social media data is of high volume and subject to privacy constraints,

which makes dataset distribution and experiment replicability an issue. However,

feature representations and data collection code are provided openly together with

guidelines in the processing steps used for each experiment.

Another contribution of this thesis is the development of a text pre-processing

pipeline tailored for social media data. Our pre-processing pipeline contains all oper-

ations needed in order to transform a raw social media dataset to feature representa-

tions: tokenisation, language detection, data deduplication, etc.

7.1 Further research

Methods developed as part of this thesis can be more generally used in other appli-

cations and fields of research. We mention some directions for further research:

• The bilinear model introduced in Section 4.3.3 can be further extended in mul-

tiple ways by modifying either the task or how the regularisation is performed.

First, we can apply a similar model to a classification task, where the response

is the presence or absence of an event (e.g. social unrest). Further, the initial

model, even using the same data from our experiments, can be correlated to

other time series from different domains (e.g. economics). The multi-task learn-

ing scenario can be extended in order to incorporate user specific information

(e.g. demographics, location) as well as voting intentions conditioned on these

factors. Preliminary results are presented in [Preoţiuc-Pietro et al., 2014]. From

a regularisation perspective, we can use semantic information about words (e.g.

word clusters) to build hierarchical or overlapping groups for regularisation.

This biases groups of semantically related words to be selected simultaneously,
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leading to more interpretable results. Other deeper linguistic information, such

as named entities or ontologies, can also be used as features in order to gain a

better understanding of the results. Collaborations with researchers from the

social sciences can aid the interpretation of the models. Throughout our work,

we have assumed the bilinear components represent user and word features.

However, other feature sets, such as news and news sources, can be used with

no change in algorithms.

• Complex patterns, such as the periodic ones identified in Chapter 5, can be

further combined with models assuming temporal smoothness or integrated in

other methods (e.g. as a prior in topic models). Topic models (Section 4.1.1)

aiming to model time make simplistic assumptions on the temporal dependen-

cies. More complex dynamics, such as described by a mixture of radial basis

functions or periodic functions, can be used in conjunction to models such as

LDA (Latent Dirichlet Allocation) [Blei et al., 2003] or DMR (Dirichlet Multi-

nomial Regression) [Mimno and McCallum, 2008].

• The text classification experiments in Section 5.2.7 use the temporal forecast

value as a prior in a Näıve Bayes classifier. This motivates future work to

use this information in discriminative classifiers, thus avoiding the need for the

Näıve Bayes decomposition. The GP modelling framework can accommodate

classification (through the logistic likelihood), although scaling issues arise when

using a large number of features or output classes.

• Although this thesis focuses on studying the venue type information in LBSN

check-ins, the underlying data is much richer. Multiple modalities exist, such

as text or images, and combining them into a joint model is a promising re-

search area. Temporal check-in patterns, as well as category and text infor-

mation, can also be used to identify specific characteristics of cities or neigh-

bourhoods [Preoţiuc-Pietro et al., 2013a]. Studying neighbourhood and city

similarities using temporal and textual features is a less explored area.

• Word co-occurrence scores computed over restricted time intervals can aim fur-

ther downstream applications. Information retrieval techniques can use tempo-

ral co-occurrence information in order to provide temporally aware responses to

users. The clusters discovered by our method can be used for dimensionality re-

duction of the word feature space. The Gardenhose clusters from Appendix B
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have been used successfully in [Lampos et al., 2014] for predicting and char-

acterising user impact on Twitter using user profile features combined with

cluster/topic features. The clusters provide extra interpretability on the topics

which determine higher user impact.

• The open-source data pre-processing tool presented in Chapter 3 can be fur-

ther extended with other components. Some suggestions are presented in Sec-

tion 3.1.8, such as text normaliser, Part-of-Speech tagger or an entity recogniser.

Extending this tool will allow for easier access to social media data and NLP

techniques. Researchers from other disciplines, such as the Arts & Humanities,

should be encouraged to engage in collaborative research projects.

7.2 Summary

In summary, this thesis highlights the importance of modelling time in applications

using social media data. Both supervised and unsupervised machine learning methods

are introduced for modelling either smooth temporal relationships in data or long term

complex temporal patterns. Together, these methods perform event emergence and

tracking, discovery of correlations to real world indicators and forecasting of voting

intentions, word frequency and user behaviour. Our methods allow further integration

into downstream tasks, such as classification, as well as providing support for human

analysis of social media data.
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Appendix A

Event related clusters

Query: Cuomo budget cuts
Label: Official: NY’s Cuomo
proposing painful budget cuts
http://feeds.foxnews.com/...
Coherence: 0.27
Magnitude: 662
Date: 1 Feb 2011 4-5pm

Query: Egyptian curfew
Label: Military issues curfew in
Cairo, Alexandria and Suez
Coherence: 0.24
Magnitude: 132
Date: 28 Jan 2011 3-4pm

Query: healthcare law uncon-
stitutional
Label: Judge strikes down
Obama healthcare law
Coherence: 0.24
Magnitude: 125
Date: 31 Jan 2011 8-9pm

Query: Keith Olbermann new
job
Label: Keith Olbermann
heads to Current TV
http://lat.ms/dHxYnq
Coherence: 0.24
Magnitude: 198
Date: 6 February 2011 12-1pm

Query: protests in Jordan
Label: Jordan’s King Ab-
dullah dismisses government
http://lat.ms/gMa9wt
Coherence: 0.36
Magnitude: 398
Date: 1 Feb 2011 2-3pm

Query: Kucinich olive pit law-
suit
Label: Dennis Kucinich Sues
Congressional Cafeteria Over
Olive Pit http://gaw.kr/eiuDIH
Coherence: 0.25
Magnitude: 128
26 Jan 2011, 8-9pm

Figure A.1: Original TREC Microblog query, the most relevant tweet, words in the
cluster with font size defined by centrality, coherence, magnitude and date of the
events (continued on next page).
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Query: White Stripes breakup
Label: Hmm White stripes split
Coherence: 0.20
Magnitude: 439
Date: 2 Feb 2011, 6-7pm

Figure A.1: Original TREC Microblog query, the most relevant tweet, words in the
cluster with font size defined by centrality, coherence, magnitude and date of the
events.
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Appendix B

Aggregated clusters

No. Top words by centrality

1 tna , #wwe , #wrestling , whether , wcw , facebooking , hogan , wrestlers , speaking

2 yu , floored , mateee , usher , wens , urs , #confessions , ight , #movingon

3 blvd , walt , angeles , nv , bellagio , wynn , brazilian , tenor , santa

4 romeo , sorrows , shakespeare , upon , playboy , aguilera , hill , vaccine , grave

5 hooooo , hooo , hellll , helll , woooo , whoooo , wooooo , whooo , hoo

6 40’s , 30’s , 50’s , 20’s , 60’s , freezing , warmer , 60s , upper

7 fi , seh , mek , gyal , sef , suh , weh , tek , inna

8 wine , tasting , wines , pinot , #beer , winery , brewing , gardening , foods

9 disorder , outward , aristotle , orchestra , anxiety , napoleon , rohn , inward , sexual

10 roasted , spinach , tomato , potatoes , chicken , salad , soup , cheese , onions

11 contributors , null , favorited , a3 , hashtags , href , rel , geo , a2

12 nurse , rn , registered , bedroom , clinical , #news , estate , #hospital , healthcare

13 fucka , mutha , shoulda , coulda , woulda , anotha , stayed , brotha , fucker

14 #online , #ebook , #kindle , #tv , #film , #ebooks , #read , #media , #book

15 disagree , wholeheartedly , anyone , twit , least , pic , else , at , southerners

16 kinda , basically , shunned , folkestone , shunning , beefed , leas , 1902 , blacklisted

17 bercow , reprimanded , #conservatives , theroux , devey , corner , #sp11 , wife , boothroyd

18 sooner , brrr , brrrr , 909 , txt , brr , #h50 , five-0 , evah

19 zoom , canon , lens , intel , nikon , optical , digital , camera , lcd

20 #cricket , cricket , sachin , #nba , #steelers , federer , #tennis , tennis , #icd

21 hustle , #hard , brilliant , #hardwork , #grind , #dedication , stelling , tamsin , lineker

22 anniversary , cena , orton , wrestlemania , undertaker , miz , hhh , smackdown , wrestler

23 #diet , #health , remedies , #natural , #body , #exercise , acne , loss , #weightloss

24 psalm , christ , #nhl , proverbs , unto , salvation , psalms , lord , righteousness

25 astrology , zodiac , aries , libra , aquarius , pisces , taurus , virgo , horoscopes

26 rick , swizz , kanye , jay-z , biggie , t-pain , nicki , hilson , wale

27 #10oclocklive , #bbcqt , #ihate , #blah , #bbctw , #ilove , huq , portillo , wagwan

28 lemonade , rum , coffee , espresso , coke , sprite , tea , soda , skittles

29 blackburn , manchester , spurs , sunderland , redknapp , bolton , #epl , #thfc , milan

30 meeeee , youuuuu , doooo , dooooo , shucks , meeeeee , goooo , tooooo , yoooou
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No. Top words by centrality

31 dayyy , theee , goood , alll , youuu , loveee , folllow , birthdayyy , happpy

32 rican , puerto , dulce , leche , cabo , cinco , verde , calle , pollo

33 terminal , fri , wed , #myfitnesspal , march , international , earthquake , tues , ord

34 tweeties , sweetdreams , gtg , #goodnight , goodnite , #sweetdreams , gnite , g’night , beddy

35 roadworks , northbound , southbound , junctions , #job , #jobs , eastbound , westbound ,
analyst

36 #sex , #hardcore , #fuck , #boobs , #tits , #amateur , #sexy , #milf , #ass

37 nak , gw , gue , kalo , itu , aku , aja , ini , klo

38 necklace , sterling , pendant , 14k , silver , bracelet , bead , jewelry , #handmade

39 nintendo , #xbox360 , #ps3 , #gaming , #pc , #apps , ps3 , #apple , xbox

40 exceeding , barney’s , himym , moonwalking , sky’s , mix-up , forsee , skys , ladies

41 golly , fxck , derp , bbz , herp , looool , looooool , dyin , loooooooool

42 cheek , smiles , grins , gently , tummy , leans , giggles , kisses , stomach

43 eyebrows , beard , shave , nail , waxing , infection , eyebrow , pierced , piercing

44 ankle , terrier , jeans , shorts , muscles , dogs , spider , yorkie , knee

45 ewwww , dovey , lovey , ewww , ew , ewwwww , ewwwwww , eww , grossed

46 #marvel , #african , #xmen , #spiderman , #american , #trailer , #captainamerica , #super8
, #deadisland

47 republican , gop , police , arrested , voters , robbery , democrats , presidential , charged

48 fingering , bbw , khalifa , bdsm , dogg , wiz , lesbians , feat , milfs

49 e.i , t.i , tae , shi , walla , shay , h.i , ee , n.i

50 #webdesign , #freelance , php , css , sql , mysql , wordpress , #php , #seo

51 #celebrity , #celebs , #fame , #rock , #guitar , #famous , #celeb , #peace , #musicmonday

52 #500aday , #tfb , #instantfollowback , #ifollowback , #instantfollow , #followback , #tea-
mautofollow , #autofollow , #follow4follow

53 stargazing , #bbc2 , #bbcstargazing , #lakeside , #bdo , wolfie , bdo , dara , bbc2

54 potter , #tvd , harry , elena , kate , portman , pattinson , hermione , kristen

55 tanya , bardsley , bramble , snodgrass , yummers , safc , asamoah , #shocking , equalise

56 inventory , coupon , toyota , mileage , sedan , nissan , adde , jeep , 2002

57 wacko , jacko , gypsys , #mybigfatgypsywedding , caravans , #bigfatgypsyweddings , #bigfat-
gypsywedding , pikeys , appleby

58 withh , justt , forr , shee , myy , likee , thatt , andd , itss

59 frack , frick , sheik , rearing , #fuckthis , strung , corporates , ugly , ughhh

60 #energy , #eco , #green , efficient , #recycle , #solar , nature , #home , #relaxation

61 #tunisia , #iran , #israel , #palestine , tunisia , arab , #jan25 , iran , protests

62 affiliate , affiliates , converting , earn , 75% , epc , recurring , commission , #education

63 vou , pra , que , es , una , vai , cuando , el , nao

64 20s , 40s , 50s , highs , 10s , utc , temps , rounds , gusts

65 shore , sammi , deena , soulja , waka , vinny , flocka , liams , aunts

66 9:00 , nws , 6:00 , 10:00 , 7:00 , 12:00 , p.m. , 4:00 , 5:00

67 anche , io , santiago , rio , bene , brazil , janeiro , colombia , ciao

68 reblog , texts , reblogging , fb , reblogged , deactivated , bbms , msgs , messages

69 iglesias , enrique , rome , angelina , nicole , erykah , scherzinger , jr , seth

70 niall , zayn , horan , jls , avoi , n-dubz , marvin , merrygold , marry
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No. Top words by centrality

71 je , ook , niet , wel , maar , een , nog , op , het

72 #aries , #leo , #aquarius , #gemini , cultural , #pisces , awarded , #capricorn , attraction

73 30mins , 2hrs , 15mins , 3hrs , 20mins , 45mins , 5hrs , 4hrs , 1hour

74 syndrome , patients , ski , dental , chronic , diagnosed , #dog , prostate , cardio

75 winnie , grin , stares , smiled , fist , sits , bollocks , moaning , twat

76 pips , eurusd , #forex , volume , 12% , gbpusd , 13% , 4% , reduced

77 243 , #twalue , 83 , 251 , 221 , 203 , 216 , 89 , 227

78 salman , srk , #bollywood , kapoor , rukh , kaif , karan , kansas , martial

79 avenged , mentally , deepest , a7x , physically , sexually , confessions , courage , cease

80 exceeded , urls , further , error , limit , dary , wait , rate , legen

81 jl , jalan , raya , barat , cok , kota , indonesia , hic , bsd

82 ping , likes , vista , punto , fiat , epcot , bizjournals , com , logo

83 bmx , bicycle , bikes , fitness , stroller , guitar , curves , drums , pedals

84 tweet , dedicating , 1000th , #teambieber , 000th , 2000th , #beliebers , 3000th , beliebers

85 continue , tristan , cracking , creaking , 20mph , pelted , rpc , 60mph , obscenities

86 carew , #stoke , delap , shawcross , #fulham , #ffc , outside , whitehead , bestie

87 kuala , bangkok , malaysia , malaysian , jaya , plaza , phuket , thailand , rama

88 wish , luck , proceeding , wished , appealed , could , good , 11.11 , wishes

89 #arsenal , #lfc , fabregas , cesc , nasri , torres , liverpool , wenger , chelsea

90 i‘m , it‘s , can‘t , you‘re , i‘ll , i‘ve , y.i , posner , u.i

91 #6nations , #wales , #6n , #bbcsixnations , cueto , tindall , #heartbeats , #whoyouare ,
#eng

92 olivia , remain , disagreeing , old , agreeing , heartily , dull , silent , focus

93 ako , ko , naman , lang , sa , kasi , ang , nga , yun

94 humidity , barometer , gust , winds , hpa , temperature , kt , #weather , 0.0

95 7.30 , 8.30 , 6.30 , 30am , ago , weeks , 5.30 , 9.30 , 10.30

96 floods , queensland , avenue , qld , resort , hotel , resorts , yelp , beach

97 avatar , #england , airbender , #scotland , #avatar , ospreys , toulon , #hcup , twickenham

98 dollars , narcolepsy , #millionpounddrop , indycar , sleepwalking , #indycar , marple , #mpd
, coyne

99 bhi , nahi , aur , kya , kuch , hain , kar , mein , aap

100 huddersfield , swindon , #htafc , terriers , robins , #stfc , #suarez , #torres , aldershot

Table B.1: All clusters computed over a two months aggregated Gardenhose dataset
represented by their top 10 most central words.
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social media: Persistence and decay. CoRR, 2011.

Francis R. Bach. Bolasso: model consistent LASSO estimation through the bootstrap.

In Proceedings of the 25th International Conference on Machine Learning, ICML,

pages 33–40, 2008.

Lars Backstrom, Eric Sun, and Cameron Marlow. Find me if you can: improving

geographical prediction with social and spatial proximity. In Proceedings of the

19th International Conference on World Wide Web, WWW, pages 61–70, 2010.

Eytan Bakshy, Jake M. Hofman, Winter A. Mason, and Duncan J. Watts. Every-

one’s an influencer: quantifying influence on Twitter. In Proceedings of the 4th

International Conference on Web Search and Data Mining, WSDM, pages 65–74,

2011.

Timothy Baldwin and Marco Lui. Language identification: the long and the short of

the matter. In Proceedings of the 2010 annual Conference of the North American

Chapter of the Association for Computational Linguistics, NAACL, pages 229–237,

2010.

David Bamman, Brendan O’Connor, and Noah Smith. Learning latent personas of

film characters. In Proceedings of the 51st annual meeting of the Association for

Computational Linguistics, ACL, 2013.

Michele Banko and Eric Brill. Scaling to very very large corpora for natural language

disambiguation. In Proceedings of the 39th annual meeting of the Association for

Computational Linguistics, ACL, pages 26–33, 2001.

Amir Beck and Marc Teboulle. A Fast Iterative Shrinkage-Thresholding algorithm

for linear inverse problems. IAM Journal on Imaging Sciences, 2(1):183–202, 2009.

Hilla Becker, Mor Naaman, and Luis Gravano. Selecting quality Twitter content for

events. In Proceedings of the 5th International AAAI Conference on Weblogs and

Social Media, ICWSM, 2011a.

Hilla Becker, Mor Naaman, and Luis Gravano. Beyond trending topics: real-world

event identification on Twitter. In Proceedings of the 5th International AAAI Con-

ference on Weblogs and Social Media, ICWSM, 2011b.

145



David M. Blei and John D. Lafferty. Dynamic topic models. In Proceedings of the

23rd International Conference on Machine Learning, ICML, pages 113–120, 2006.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.

Journal of Machine Learning Research, 3:993–1022, 2003.

Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Com-

munications of the ACM, 13(7):422–426, 1970.

Johan Bollen, Huina Mao, and Xiao-Jun Zeng. Twitter mood predicts the stock

market. Journal of Computational Science, 2(1):1–8, 2011.
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