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Abstract  
 

Open pore metal foams with moderate porosity (0.6 – 0.7) may be of interest as 

regenerators due to their high volumetric heat capacity and large specific surface area. 

Replication process is a low cost and simple foam manufacturing method which provides 

moderate porosity metal foams. Due to its simplicity, it provides many opportunities to 

investigate the effect of porosity, pore size and shape or their combination.    

In this study, this process was used to manufacture metal foams. A method, called vacuum-

gas, was the standard method for manufacturing metal foams in the University of Sheffield 

Material Science and Engineering department. This method was further investigated and 

two new methods, gas-only and mechanical infiltration, were introduced. Based on the 

foams produced by these methods, the gas-only method was adopted due to its 

repeatability and quality. The method was further investigated by manufacturing eight more 

samples (1.4-1.7 mm pore size) under various infiltration pressures and the optimum 

infiltration pressures were found for manufacturing foams with pore size of 1-1.1 mm, 1.4-

1.7 mm and 2.0-2.36 mm.  

A total of nine aluminium metal foams were manufactured for thermal and pressure testing. 

The manufactured foams had three different pore sizes, 1-1.1 mm (called Small samples), 

1.4-1.7 mm (called Mid samples) and 2-2.36 mm (called Large samples). On average foams 

had porosity in the range of 0.62 – 0.65. Since this type of metal foams never been tested as 

a regenerator, two extra samples (a packed bed of 10000 2mm ball bearing and a packed 

bed of 100 layers of wire mesh No. 200) were made to compare with the manufactured 

foams and the results from other researchers.  

A test rig was built to test the pressure drop under steady state flow condition from 1 to 6.5 

m/s (permeability based Reynolds number from 20 to 175). The extended Darcy-

Forchheimer equation and a cubic velocity of Darcy-Forchheimer were used to measure the 

permeability and form drag of the samples. The results showed that the cubic velocity 

equation had a better prediction of the permeability and form drag. The Small samples had 

the lowest permeability and highest form drag coefficient for metal foams. The wire mesh 

sample had the lowest permeability and lowest form drag among the tested samples.  
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In addition to steady state flow, samples pressure drop was also measured under oscillatory 

flow. A test rig was built to measure pressure drop and air instant velocity under oscillatory 

flow (1 to 19 Hz). The results showed that the oscillatory pressure drop was higher than 

steady state flow except for the Small samples which had higher pressure drop at steady 

state flow. The pressure drop for the wire mesh sample was measured to compare with 

other researchers data and a good agreement was observed with some of the published 

data. Moreover, the instant air velocity was measured by a hot-wire anemometer inside the 

connecting tube between the sample holder and the compressor. The results showed that 

the air velocity behaved like a turbulent flow during the acceleration and deceleration 

period. 

A single-blow test rig was designed and manufactured to measure thermal performance of 

the samples. To estimate the average heat transfer coefficient of the samples, several types 

of the single-blow models were studied and the extended Schumann-Hausen model was 

implemented for predicting the samples’ outlet air temperature history. Two matching 

techniques, maximum gradient and direct curve matching were used to march the 

experimental and modelled outlet temperatures history to estimate samples’ NTU and 

average heat transfer coefficient. The results showed that NTU increased with decreasing of 

pore size. Based on mass flow rate Mid samples had the highest h, however the difference 

between the metal foam samples were insignificant. The foam samples had higher heat 

transfer coefficient than the ball bearing sample but the wire mesh sample had the highest 

heat transfer coefficient. The heat transfer results for the wire mesh and ball bearing 

samples were compared with published data and good agreements were observed.   
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Nomenclature  
 

A Empirical constants     Cross section area (m2)     Heat transfer surface area (m2)     Dimensionless oscillation amplitude     Specific surface area (m2) 
B Empirical constants    Biot number 
C Form drag coefficient (m-1)    Specific heat capacity at constant pressure (kJ/(kg K)) 
Dh Hydraulic diameter of the pipe (m) 
E Instantaneous applied bridge voltage (V) 
H Elevation of the point above the reference point  (Bernoulli’s equation)  (m) 
K Permeability (m2) 
L Length (m)   Mass (kg) 
N Number of neighbouring data points     Number of Transfer Units   Pressure (Pa)   Thermal energy (J)  ̇ Dissipated power (King’s law) (V) 
R Resistance (Ω)    Reference resistance (Ω)     Hot-wire reference resistance at 20C (Ω)    Hot-wire total resistance (Ω)    Hot-wire resistance (Ω) 
Re Reynolds number  
Rek Reynolds numbers (permeability-based)     Kinetic Reynolds number     Heat capacity ratio 
Rad Radios  
Smax Maximum gradient 
Sf Shape factor     Stanton number 
SSE Sum of Squares Due to Error 
SSR Sum of Squares Regression 
SST Total Sum of Squares 
T Dimensionless temperature     Hot-wire reference temperature (ᵒC)    Mean wire temperature (ᵒC)     Dimensionless sold temperature  
Vp Swept volume of the piston (m3) 
W Wall thickness (m) 
X Dimensionless distance (Negligible thermal resistance model)   Distance between the wires in wire mesh (m) 
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 ́ Constants 
a Constants    Constants 
b Constants 
d Diameter m 
di Diffusion number  
f Friction factor 
h Heat transfer coefficient (W/(m2K)) 
I Current  (A)    Effective thermal conductivity  
k Thermal conductivity coefficient (W/(m K))  ̇ Flow rate (kg/s) 
n Empirical constants 
p Order of the spline 
r Residual (m)    Hydraulic radius (m) 
s Smoothing function applied to the data   Temperature (ᵒC)    Cross-sectional mean velocity (m/s)      Maximum mean cross-sectional velocity (m/s) 
v Darcian Velocity (m/s)    Ratio of wire diameter to distance between the wires in wire mesh  
xmax Maximum fluid displacement (m)   Response value    Predicted value of y    Mean of y values     Moving average (Eq. 8.3) 
 

Greek symbols   Hot-wire temperature coefficient   porosity   Dimensionless time (Schumann-Hausen model) Θ Dimensionless time    Longitudinal thermal conduction parameter   Dynamic Viscosity (kg/m s)   kinematic viscosity (m2/s)   Dimensionless distance   Density (Kg/m3)    Dimensionless time    Time (s) 
   Phase angle (Radian)   Inlet air response time    oscillatory angular frequency 
 

Subscripts 
cs Cross section 



 

3 
 

e Effective  
f fluid 
fi Fluid Initial  
fmax Fluid maximum  
hs Heat transfer surface    A single point in discretised   direction   A single point in discretised time dimension 
m mean  
ma Moving average  
max maximum 
s Solid 
ss Specific surface  
T total 
w wall 
wire Wire  
0 At time zero   
20 sensor temperature coefficient of resistance at T20 
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Chapter 1 – Introduction and literature review  
 

1.1 Introduction 
 

A regenerator is a temporary heat storage which intermittently absorbs and releases the 

heat from/to working fluid respectively.  It is mainly adopted in different applications such 

as Stirling engine where working fluid shuttles between a heated cylinder (expansion 

chamber) and a cooled cylinder (contraction chamber).  Shown in Fig. 1.1 is a simple 

diagram of a regenerator. It shows the thermal energy transfers from the hot air to the 

regenerator and in reverse it passes thermal energy from the regenerator to the cool fluid. 

The major difference between a heat exchanger and a regenerator is the direction of the 

heat transfers between the fluids. In heat exchanger (gas-to-gas), thermal energy transfers 

from one gas to the wall between the gases and from the wall to the other gas in one 

direction. Therefore, high thermal conductivity material such as aluminium is desirable for 

heat exchanger. However, in a regenerator heat transfers from a gas to a solid and then the 

stored heat transfers from the solid to the gas at a later stage. Having high thermal 

conductivity causes the heat to transfer through the structure (longitudinal) of the 

regenerator as it reduces the temperature difference between the gas and the regenerator. 

This reduces regenerators’ effectiveness. Having high volumetric heat capacity (density 

multiple specific heat capacity) is another important factor for applications such as Stirling 

engines which the size of the regenerator is curtail. For instance, for a given volume, a 

stainless steel regenerator can store nearly twice the thermal energy than an aluminium 

regenerator.       

 
Fig 1.1 Schematic diagram of the operation of a regenerator in a thermal system. The switch 
between the charging and discharging phases may happen at several Hertz or a fraction of a 
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Hertz, depending on the application [1]. 
 

The other important factor for having a high performance regenerator is having a large 

specific surface area. Since the heat transfer resistance between the gas and the solid is 

much higher than the resistance inside the regenerator. Therefore, transferring the heat 

from the gas to the regenerator can be increased by increasing the specific surface area. 

However, increasing the surface area also increases the pressure drop and consequently 

increases the parasitic loss. These two factors, high specific surface area and low pressure 

drop, are conflicting factors and increasing one desirable factor (surface area) would also 

increase the other undesirable factor (pressure drop). Therefore, finding the optimum point 

can be challenging and it might be difference from one application to another application.  

Packed beds of stainless steel wire mesh screens are commonly used as a regenerator for 

Stirling engine due to their high volumetric heat capacity, high specific surface area and high 

longitudinal thermal conductivity. However, they are not an ideal regenerator. They have 

high pressure drop and is difficult to seal the gap between the holder wall and the 

regenerator. This problem can be prevented by oversizing the wire meshes but is also 

increases the pressure loss even further [2]. In addition, stacking the wire mesh screen is 

difficult and the packed bed performance depends on the packing method (random or 

structured packing) and space between the screens.  

1.2. Metal foam as a regenerator  
 

Based on application purpose there are two methods in literatures of measuring thermal 

performance of metal foams: 

1- Measuring the heat transfer between the wall and the sample (e.g. heat exchangers, 

heat sinks for cooling electronic components, etc.)   

2- Measuring the heat transfer between the fluid and the sample (e.g. regenerator, 

recuperators, advance burners etc.)      

In method one, generally metal foam is attached to a hot surface and the heat transfer rate 

from the surface to the passing fluid is measured. Then the results are compared with the 

results when no metal foam is attached to the surface. This method is mainly adopted to 
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study the performance of metal foams as a heat exchanger [3–7] or as a fins to increase the 

heat transfer surface of heat exchangers [8]. A good review of thermal transportation in 

high porosity cellular metal foam was done by Zhao [9] and more information regarding this 

method can be found in this review.  

The second method measures the heat transfer rate from the fluid to the solid. In this 

method, a fluid flows steadily through the sample which is allowed to equilibrate with the 

passing fluid. A step change in temperature is applied to the inlet flow. The outlet 

temperature history is then measured until the new equilibrated temperature is achieved. 

The heat transfer coefficient is estimated by matching the outlet temperature curve with 

the curve predicted by the model. This method is called single-blow method and it was 

introduced by Schumann and Hausen [10,11]. A full literature review of this method will be 

given in chapter 6.  

Majority of the studies have been conducted based on the second method were mainly 

focused on the packed beds [10,12–15] with porosities range of  0.4 – 0.5 or stack of wire 

meshes [16–20]. Since the internal structure and porosity of metal foams are different from 

packed beds, the results from these studies may not be applicable to metal foams. In 

comparison to packed beds, a limited number of studies have been conducted on metal 

foams and ceramic foams [21–23]. Ceramic foams have similar internal structure like metal 

foams but they have lower thermal conductivity than metal foams. Therefore, the results 

from these studies may also not be applicable to metal foams.      

Open-cell metal foams are thought to be suitable for manufacturing regenerators due to 

their high specific surface area and low pressure drop.  However, relatively few studies have 

been done to investigate the thermal performance of metal foam as a regenerator. 

Researchers [20,24] have conducted a series of tests to measure the pressure drop and heat 

transfer coefficient of high porosity open-cell aluminium foams under oscillatory flow and 

reported lower pressure drop compared to the wire mesh screens. Although high porosity 

metal foams (90-95%) has shown less pressure drop and high heat transfer coefficient, their 

performance is limited due to their low volumetric heat capacity and high dead volume.  

Medium porosity metal foams (60-70%) have received less attention as they have not been 

readily manufactured. This type of metal foams has a better volumetric heat capacity and 
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less dead volume due to their lower porosity. Hwang et al. [25] studied thermal 

performance of three different porosity (ε=0.7, 0.8 and 0.95) and  their results showed that 

both friction factor and volumetric heat transfer coefficient increases with increase with 

decreasing the foam porosity. Some researches tried to improve the thermal performance 

of high porosity aluminium foams by compressing the foams and decreasing their porosity. 

However, they didn’t test the compressed foam as a regenerator[26].  

The replication process or “the space-holder technique” is one of the simplest and most 

inexpensive methods [27] of producing foams with moderate porosity (60 - 70%). It has the 

potential to compete with conventional regenerators like wire mesh screens (porosity of 50 

– 70%). In this process the metal foam porosity, pore size, pore shape and material can be 

altered. Therefore it provides an excellent opportunity for testing the effect of changing 

each of these parameters or their combination to optimise their performance. In addition, 

this type of metal forms has not been tested as a regenerator.  

The primary goal for this research is to study metal foams with moderate porosity as a 

regenerator. To achieve this goal, the replication process for manufacturing metal foams 

technique was investigated and improved. Three different pore sizes aluminium foam (three 

of each pore size) and two additional conventional regenerators (a randomly packed of 

2mm steel ball bearings and a packed bed of 100 layers of steel wire mesh No 200) were 

manufactured. The results of this investigation on replication process and samples 

properties will be presented in Chapter 2. Pressure drop under unidirectional flow will be 

discussed in Chapters 3 and 4. The samples were tested under oscillatory flow to evaluate 

their pressure drop performance. The experimental presider and the results will be given in 

Chapter 5 and 6.  Thermal performance of the samples was evaluated by the single-blow 

method. A mathematical model and data reduction technique for the single-blow method 

will be presented in Chapters 7, 8 and 9. The overall performance of the samples will be 

discussed in Chapter 10 and Conclusions and Future Work will be in Chapter 11.     
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Chapter 2 – Metal foam manufacturing  

2.1. Replication process  

Porous metal foams can be made by casting (or infiltrating) molten metal around a space 

holder (or preform) to retain spaces in the molten metal. By removing the space holder 

chemically or thermally a porous metal can be produced. This process is known as 

Replication [27]. An application of the method is using sodium chloride (salt) particles as the 

space holder to make aluminium foams [28–30]. The salt-aluminium method was first 

developed by Seliger and Deuther [31] has the advantages of being inexpensive, plus the 

salt is non-toxic and easily removed with water. The pore size and porosity can be altered by 

changing the preform (shape and size of the particles; and density of the preform), 

infiltration pressure and method of infiltration[28].  

In this study aluminium foams were manufactured by the salt-aluminium method. To make 

foams with different pore sizes, three different salt particles sizes (1-1.1 mm, 1.4-1.7mm 

and 2-2.36 mm) were used to make the preforms. The preform was made by randomly 

packing (pouring salt in a mould) the salt particles into a mould. After preparing the preform 

molten aluminium was infiltrated into the preform. The infiltration method was improved 

and developed throughout in this study.  

In this chapter, the preform preparation will be explained. Then the test rig used for making 

the foam will be discussed. Finally, the different methods of infiltration and the effect of 

infiltration pressure will be presented.  

2.2. Preform preparation 

The first step in the replication foam manufacturing process is preparing the preform. The 

preform is the negative shape of the foam as it fills all of the space that will become pores. 

The structure of the foam can be changed by using different shape and size of the space 

holder. The preform material must fulfil three main conditions [27]:  

1- Have a higher melting point than the metal being cast. 

2- Be chemically stable in contact with the molten metal. 
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3- Easy to remove once the metal has solidified.  

Sodium chloride fulfils all of these conditions, and was used here. Its melting point is 801°C 

[32] and it is chemically inert in contact with aluminium during the infiltration and leaching 

steps. Moreover, removing it from the foam does not create toxic or hazardous by-products 

[27]. 

Initially ordinary rock salt was used to make the preform for this experiment. However, it 

was found to have some disadvantages. It cracked at high temperature (740 oC) and during 

the infiltration aluminium flowed into the resulting cracks and altered the general structure 

of the foam. To prevent the salt from reacting with oxygen it was necessary to heat it under 

vacuum. If this was not done, the rock salt turned into an ash like powder, likely due to the 

presence of impurities.   As a result of this water softening tablets were used to overcome 

these problems.  

The water softening salt tablets were obtained in the form of lozenges with typical diameter 

of 20 mm. They were then crushed and sieved to obtain the desired size. To get salt 

particles in the required range, particles were passed through several grades of sieves. A 

schematic view of the sieve order is shown below.  

 

 

 

 

Fig. 2.1, The order of the sieves used to separate the particles size. 

The crushed salt particles were poured in the first sieve which was shaken to separate the 

particles. As it can be seen from the Fig. 2.1, particles that remained in the top red sieve 

were used to make the foam. For instance, particles remained in the sieve 2.00 mm had size 

between 2.00 mm to 2.36 mm. The three sizes of salt particles used in this study were those 

found in the red sieves in Fig. 2.1.   

2.36 mm 

2.00 mm 

1.70 mm 
 

1.40 mm 
 

1.10 mm 
 

1.00 mm 
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Packing density has an inverse relation with the porosity of the sample.  If the salt particles 

were packed randomly in the mould, the maximum relative densities which could be 

achieved were below 0.7 but with sintering this can be increased up to 0.8 [33]. Some 

researchers have studied modification of the starting salt grains using additives that control 

the growth habit of the salt crystals or by a melting process to produce roughly spherical 

crystals [34].With these types of preforms exotic foams can be manufactured with 

replication method. However making these types of preforms is expensive and was not 

investigated here, as an aim of the study was to manufacture inexpensive foams. Randomly 

packed crushed salts were used for making all the preforms in this study.    

Random packing the crushed salt particles has an effect on the manufactured foam 

structure and alters the magnitude of the pressure loss of fluids through the manufactured 

foam. Ergun [35] showed that viscous energy losses were proportional to (   )    and the 

kinetic energy losses to (   )   (   is samples porosity). This indicates the strong influence of 

porosity on pressure drop. As a result of random packing, fluctuation of sample porosity was 

inevitable and the effect of this randomness on pressure drop will be discussed in Chapter 3.  

 
Fig. 2.2a, Foam manufacturing rig 

Furnace  
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2.3. Test rig description 

Replication method had been one of the foam manufacturing methods used at Material 

Science and Engineering department in the University of Sheffield. The first replication foam 

manufacturing rig was only able to produce foam inside a test tube (19mm diameter) with 

an induction heating system[36] [27]. The current test rig (Fig. 2.2a) was manufactured to 

produce larger size metal foam. The vacuum-gas method was implemented by Abdulla [37] 

to manufacture the metal foam. The current author introduced two new methods to 

overcome the issues Abdulla highlighted in his work.   

 
Fig. 2.2b, Valves positions in the metal foam manufacturing rig  

In order to infiltrate the molten aluminium into the preform three methods (vacuum-gas, 

gas-only and mechanical infiltration) were tested. For applying the gas and vacuum-gas 

methods the same test rig (shown in Fig. 2.2c) was used. It consisted of an argon gas 

cylinder, a vacuum pump, a furnace and a mould. They were connected by stainless steel 

pipes, via three valves and appropriate fittings. The gas pressure was monitored with a 

pressure and vacuum gauges. The argon pressure could be regulated up to 10 bar and the 

flow of argon leaving the cylinder could also be monitored.  

Valve 2 Valve 1 

Valve 3 

Pressure gauge 
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The valve 1 isolated the mould and the gas cylinder from the vacuum pump and was closed 

to pressurise the mould. During the vacuum process, valve 2 was closed to prevent damage 

to the pressure gauge. Valve 3 was used to isolate the mould from the system and to detect 

any gas leakage from the piping system. Quick release clamps were fitted between the 

mould and the valve 3 so the mould could be separated from the system. The vacuum pump 

could provide a vacuum down to 750 Torr. The furnace was an electrical furnace with a 

heater controller that could be programed for various heating processes.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2c, A schematic view of the foam making test rig. 

The mould consisted of two sets of flanges (top and bottom) and a cylinder. This assembly 

was held together by six M8 bolts and nuts.  All the components of the mould were made 

from stainless steel to withstand the high temperatures in the furnace. In order to seal the 

mould, graphite gaskets were placed between the flanges.  

During foam manufacturing the stainless steel retaining nuts were found to deform under 

the high load (nuts were tight fastened to provide a good vacuum inside the mould) and 

temperature (740ᵒC).  After being used two or three times they were found to damage the 

studs. Replacing the studs was expensive therefore the stainless steel nuts were replaced by 

mild steel nuts which were discarded after each experiment.  
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Fig. 2.3, A schematic view of the mould used for making the foams. 

2.4. Foam making procedure with gas infiltration 

Since the surface tension of the molten aluminium is high, wetting the salt granules without 

external pressure is difficult. In order to infiltrate molten aluminium into the preform two 

gas infiltration methods (gas-only and vacuum-gas) were tested. The vacuum-gas method 

had been used for foam manufacturing before but it had reproducibility and quality issues. 

Therefore the gas-only was developed and the foams manufactured by two methods were 

compared.    

2.4.1 Vacuum-gas infiltration  

In this method, first the inside of the mould was coated with boron nitride using an aerosol 

spray. This prevented the molten aluminium sticking to the wall of the mould. Once the 

coating dried seventy five grams of salt granules were poured into the mould and packed. 

Then approximately 200 grams of 2 inch aluminium bar (99.9% purity) was placed on top of 

the salt. After placing the gaskets and closing the lid the air inside the mould was removed 
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by vacuum pump to a final pressure of 720 Torr. Following a check to ensure the mould 

could hold the pressure it was placed inside the furnace. The furnace was heated using the 

profile depicted in Fig. 2.4. The vacuum pump was left on to maintain the vacuum inside the 

mould until 5 minutes before the end of the heating process.  

 

Fig. 2.4, Heating profile of the furnace.  

From Fig. 2.4 it can be seen that that the mould was heated at two stages. For the first stage 

the mould was gradually heated up to 420 ᵒC and kept at this temperature for 35 minutes to 

make sure all the parts heated uniformly. After that, the furnace temperature was gradually 

increased up to 740 ᵒC and was kept there for two hours to melt the aluminium and heat 

the preform. Valve 1 was then closed to isolate the mould from the vacuum pump and 

argon was injected into the mould. 

The flow rate of the gas was crucial. Molten aluminium on top of the preform does not wet 

the surface of the mould and by applying gas at too low flow rate, gas could leak from the 

gap between the mould and the molten aluminium (Fig. 2.5) and filled the negative pressure 

inside the preform (P1). As a result, the pressure difference between the top and bottom of 

the molten aluminium reduced and there was either no or partial infiltration (Fig. 2.6a). At 

high gas flow rates the connecting pipe to the mould acted as an air jet and sprayed molten 

aluminium into the preform. This made a cone shape structure under which salt granules 
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became trapped (Fig. 2.5). Difficulty of controlling the air flow rate made the repeatability of 

this method poor.  

 

 

 

 

 

 

 

 

 

 

Fig. 2.5, Salt particles trapped inside the aluminium made with vacuum-gas method 

During the infiltration process the pressure inside the mould was kept at one bar. Once the 

gas had infiltrated the molten aluminium, the mould was kept inside the furnace for 5 

minutes and then it was taken out of the furnace and placed on top of a large copper block. 

This helped the solidification to start from the bottom to top of the sample and from the 

outer edge to the centre of the sample. It was important to keep the valve 3 shut to avoid 

reducing the mould pressure while the aluminium was still not fully solidified.       

This infiltration method had two further disadvantages: 

• It was not suitable for the preforms made from porous material or material with 

cracks in such as dough preform used by [38] (a mixture of salt, flour and water 

shaped together and heated to burn the flour). This kind of preform had a porous 
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structure and under vacuum the molten aluminium was sucked into the structure of 

the preform (Fig. 2.6c). 

• If the pressure inside the mould was too high the molten aluminium enclosed the 

salt granules after infiltration and made it impossible to leach the salt completely out 

of the sample. Fig. 2.7 shows the foam with salt particles trapped inside the 

aluminium that could not be dissolved by leaching. 

Fig. 2.6a, Low flow rate gas 
infiltration 

Fig. 2.6b, High flow rate gas 
infiltration 

Fig. 2.6c, Preform made from 
dough and infiltrated with 

vacuum-gas method  

 

Fig. 2.7, Salt particles trapped inside the aluminium made with vacuum-gas method  
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2.4.2 Gas infiltration  

In this method one third of the mould was filled with crushed salt and rest of the mould 

filled with 51 mm aluminium bar. The size of aluminium bar placing on top of the preform 

was essential for successful infiltration. If the height of aluminium bar on top of the salt was 

smaller than 30 mm, gas could leak from the side of the molten aluminium into the preform 

during the infiltration stage. This negated the pressure difference between the top and 

bottom of the molten aluminium; and stopped the gas infiltrating the molten aluminium 

into the preform.  

For this method, the air inside the mould was removed with a vacuum pump and any 

leakage was checked. Argon gas then injected into the mould and pressurised to 

atmospheric pressure. This could also be achieved by letting air into the mould and 

equalising the pressure inside and outside of the mould. However, if during the heating 

process the molten aluminium was exposed to air a black oxide layer was formed on top of 

the molten aluminium (Fig. 2.8). The use of argon gas avoided this. The pressure was kept 

constant during the heating process by venting gas from the mould. 

 
Fig. 2.8, Top part of the molten aluminium- Left melted under argon gas- Right- melted 

under atmospheric air  

The same heating cycle that was used for the vacuum-gas method was used here and is 

shown in Fig. 2.4. At the end of heating process aluminium was ready for infiltration. Setting 

the right infiltration pressure is vital for the manufacture of a good sample as it defines the 

closeness of the pores in the foam. The optimum pressure depended on the size and shape 

of the salt particles which influence the permeability of the preform. The viscosity of the 

molten aluminium also had an influence.  
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The method manufacture, in particular the infiltration pressure, will also influence the 

pressure drop by increasing the density and closeness of the pores. As it was discussed 

previously, a certain threshold pressure is necessary for the molten aluminium to penetrate 

the preform. Once the threshold pressure is achieved, the molten aluminium only invades 

larger gaps between the salt particles or even the preform. In order to fill finer pores 

significantly higher pressures are needed. The gradual nature of infiltration has been 

quantified by means of “drainage/imbibition” curves which is plotted the fraction of open 

pore space filled by the metal as a function of the infiltration pressure [39].  The curve 

depends on a number of factors including[39]: 

1- Intrinsic capillary parameters (wetting angle and the surface tension of the molten 

metal) 

2- The average pore size  

3- Pore size distribution  

4- Shape of solid elements 

 

 

 

 

 

Fig. 2.9, Sketch of progressive infiltration at low applied pressure (a) and high applied 

pressure (b)[39]. 

Shown in Fig. 2.9 are sketches of progressive infiltration between touching salt particles at 

low and high infiltration pressures. By increasing the infiltration pressure the gaps between 

the salt particles fill with aluminium and reduce the window between the pores and 

consequently increase the pressure drop. In addition, increasing the infiltration pressure 

also reduces the porosity of the samples.  

Samples with medium pore size were manufactured at various infiltration pressures and it 

was found that the sample made at 4.5 bar had low pressure drop and had uniform 

structure. The result of this experiment will be presented at Chapter 3. By assuming that 
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small pore size particles require higher infiltration pressure and vice-versa for large size salt 

particles, different samples were made at pressure above and below that 4.5 bar for small 

and large samples and it was found that for small pore size sample 5 bar pressure and for 

large pore size 4 bar infiltration pressure was sufficient for making uniform samples. 

Samples, which were made under pressure lower than specified pressure, did not fully 

infiltrated and samples made under higher specified pressure were unusable since the 

preform was trapped inside the foam. For instance, shown in Fig. 2.10a is a sample with 

large pore size (2-2.36mm) that was made at 7 bar infiltration pressure. The pores were 

nearly blocked by the aluminium and salts were trapped inside the sample which could not 

be dissolved. An example for samples made under pressure lower than specified pressure 

can be seen in Fig. 2.10b. This sample(2-2.36mm pore size) were made under 2 bar 

infiltration pressure and was partly infiltrated There is a notable defect near the bottom of 

the sample (marked with a red oval).  

  

Fig. 2.10a, Large pore size sample made 
under 7 bar pressure. 

Fig. 2.10b, Large pore size sample made 
under 2 bar pressure. 

Shown in Fig. 2.11a, 2.11b and 2.11c are samples made with gas-only infiltration. A total of 

nine samples (three for each pore size) were manufactured with this method, their 

properties are given in Table 2.1.        
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Fig. 2-11a, Small pore size 
foam made with gas 

infiltration 

Fig. 2-11b, Mid pore size 
foam made with gas 

infiltration 

Fig. 2-11c, large pore size 
foam made with gas 

infiltration 

To calculate samples porosity, first a sample’s weight and volume were measured. Then 

weight of a solid aluminium bar similar to the sample (same volume) was calculated by 

knowing the pure aluminium density (2.7 g/cm3 provided by the supplier). Now the porosity 

can be calculated by subtracting these two values and calculating the percentage of the 

empty space inside the sample.    

Table 2.1 – Properties of the foams made by gas-only infiltration method. 
Name  Grain sizes Weight (gr) Length (mm) Diameter (mm) Porosity 
Small 1 1-1.18mm 51.7 24.7 51.1 0.62 
Small 2 1-1.18mm 51.3 25.1 51.1 0.63 
Small 3 1-1.18mm 57.8 25.7 51.1 0.59 
Mid 1 1.4-1.7mm 49.9 23.8 51.1 0.62 
Mid 2 1.4-1.7mm 52.0 26.5 51.1 0.64 
Mid 3 1.4-1.7mm 48.7 24.5 51.1 0.64 
Large 1 2-2.36mm 47.4 25.5 51.1 0.66 
Large 2 2-2.36mm 48.8 25.3 51.1 0.65 
Large 3 2-2.36mm 51.4 26.7 51.1 0.65 

 

2.5. Mechanical infiltration  

An external force is required for infiltrating molten aluminium. Here the external force used 

to wet the salt granules with molten aluminium was applied by a piston inside the mould. 

Two new moulds (20 mm and 51mm diameter) were designed and manufactured to 

implement this method. A schematic of the mould with piston can be seen in Fig. 2.12. The 
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aluminium bar was placed under the preform since the air trapped inside the preform could 

be forced out of the preform by the molten aluminium. If the aluminium bar was placed on 

top of the preform the air inside the preform stopped the aluminium fully infiltrating the 

preform.   

 

 

 

 

 

 

Fig. 2.12, Schematic view of mechanical infiltration rig  
 

  

Fig. 2.13a, Partially infiltrated 20 mm foam 
made with mechanical infiltration method. 

Fig. 2.13b, Partially infiltrated 51 mm foam 
made with mechanical infiltration method. 

Higher forces were needed to infiltrate the preform with smaller particles compared to 

larger particles. For fine salt particles (<1.1 mm) a hydraulic press was used whilst a manual 

press could be used for larger particles (>1.1 mm). Similar to packed beds, porosity of the 
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Al 

Furnace 
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preforms were higher close to the cylinder wall than in the centre. This effect depends on 

the tube/particle diameter ratio and has been shown to be negligible when the ratio is 

larger than 12 [40]. Consequently, foams made with this method had high porosity at the 

centre compared with that close to the wall. Problems occurred with molten aluminium 

leaking from the high porosity area at the top of the preform and not infiltrating the 

preform. 

 
Size comparison- Meatal foams and a one pence coin 

   
Fig. 2.14a, Large pore size Fig. 2.14b, Medium pore size  Fig. 2.14c, Small pore size 

In order to overcome the aforementioned problem the furnace temperature was changed 

to alter the viscosity of the molten aluminium. Three different temperatures, 760⁰C, 740⁰C 

and 720⁰C, were tested for this study. It was found that at 760⁰C the salt granules started to 

deform under the piston pressure and blocked the pores inside the preform. This blockage 

stopped molten aluminium from infiltrating the preform. The viscosity of the molten 

aluminium was high at 740⁰C and it tended to infiltrate from the larger pores or from 

outside of the preform.  A temperature of 720⁰C was found to give the best results. Table 

2.2 shows the properties of the successful samples that were later tested.  

Table. 2.2 – Properties of 20 mm diameter foams made from mechanical infiltration  
Name  Grain sizes 

(mm) 
Weight  
(g) 

Length  
(mm) 

Volume 
(   ) 

Al weight 
(g) 

Porosity  

S1 1-1.18 4.82 18.2 5717.6 15.43 0.69 
S3 1-1.18 5.73 23 7225.6 19.50 0.71 
S4 1-1.18 5.91 23.88 7502.1 20.25 0.71 
M1 1.4-1.7 4.51 18.98 5962.7 16.09 0.72 
M2 1.4-1.7 4.89 18.51 5815 15.70 0.69 
M3 1.4-1.7 6.37 23.9 7508.4 20.27 0.69 
M4 1.4-1.7 5.78 23.56 7401.5 19.98 0.71 
L1 2-2.36 3.91 14.9 4680.9 12.63 0.70 
L2 2-2.36 4.47 16.9 5309.2 14.33 0.69 
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The porosity of these samples was found to vary along their height. The porosity was at its 

lowest at the bottom and increased upwards. The reason for this could be that during 

solidification the molten aluminium inside the preform contracted and since it was still in 

liquid state it pulled the molten aluminium from the outside of the preform. The excess 

aluminium which stayed on top of the preform was pulled into the foam but since there was 

no excess aluminium in the bottom of the mould the foams had lower density there. It can 

be seen from the table that these samples had higher porosity then the samples made from 

the gas-only method. One of reason for having higher porosity could be having a lower 

density at the bottom of the samples made with this method.     

Foams of 20 mm diameter were made for testing the foam manufacturing methods since 

they needed fewer raw materials (aluminium and crushed salt) for making samples. 

However, the diameter of these samples was not large enough to avoid the wall effects 

(tube/particle ratio>12) and the number of pores per tube diameter was insufficient to 

provide a statistically representative sample. Therefore, 20 mm samples were not used for 

pressure and thermal test in this study.   
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Chapter 3 - Steady state pressure drop  

3.1. Empirical model  

Fluid flow through a porous matrix has been studied for over 150 years. Darcy [41] 

published what later became known as Darcy law in 1856 which states that for slow moving 

fluids pressure drop per unit length of a porous medium is proportional to the dynamic 

viscosity and velocity of the fluid, and inversely proportional to the permeability of the 

porous matrix. The fluid velocity, v, can be either the Darcian velocity (based on the cross-

section of the channel) or the pore velocity (dividing the Darcy velocity by volumetric void 

fraction of the porous matrix). However, this must be stated when presenting the results.    

The above equation is only valid for the low permeability-based Reynolds numbers (Rek=1) 

[42] and for higher flow velocities, another term must be added to accurately model the 

pressure drop. Osborne Reynolds was the first to formulate the pressure drop as the sum of 

two terms (Eq. 3.2). He showed that the pressure drop is proportional to the first power of 

the fluid velocity and the second power of the fluid velocity times the fluid density. In this 

equation a and b are constant. 

Ergun showed that as the velocity approaches to zero, the ratio of pressure drop to velocity 

will become constant. At high velocities the first term becomes negligible in comparison to 

the second term [35].   

The first term of Eq. 3.2 represents viscous energy loss (as defined by Darcy) and the second 

term represents the kinetic energy loss. Dupuit [43] and Forchheimer [44]suggested a 

quadratic velocity term to extend the Darcy law to accommodate the effect of form drag at 

Δ  =   v Eq.3.1 

Δ  =  v +   v2 Eq. 3.2 

lim (Δ / v → ) = lim ( →  +   v) =   Eq. 3.3 
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high velocity. The extended Darcy-Forchheimer equation (Eq. 3.4) is the most widely used 

model for describing the pressure drop in porous media [45]. 

where ∆P is the pressure drop, L is the length of the sample, µ is the fluid viscosity, C is  form 

drag coefficient and K is the permeability. 

Dybbs and Edwards [44,46] proved that above equation is applicable for packed beds of 

spheres in the range of 5<Rek<80 (permeability based Reynolds number[44]). However, Lage 

et al. [44,47]showed that for Rek higher than this range a cubic velocity expression should be 

used for an accurate description of pressure drop in metal foams.  

Here the permeability and the inertia coefficients are the same as those obtained over the 

low velocity range, the high velocity range only impacts the cubic coefficient c. 

The permeability (K) and the from drag coefficient (C) are calculated by fitting a curve to the 

pressure data. One method of doing this is to use a least-squares quadratic curve through 

the pressure / fluid velocity data [42] or a least-squares cubic curve [47] depending on the 

maximum Reynolds number. Another method is to bring Eq. 3.4 into a linear form and then 

calculate the K and C with a linear least square fit. By dividing both sides of Eq. 3.4 by L, a 

linear form of this equation can be written as: 

By assuming the fluid viscosity and density remains constant, the first term can be replaced 

with ‘a’ and C with ‘b’. Therefore Eq. 6 becomes a linear equation (Eq. 3.7). The permeability 

and the form drag coefficient can be extracted by fitting the pressure data into Eq. 3.7. 

Δ  =   v +    2 Eq. 3.4 

   =  v√   
 

Δ  =   v +    1/2 v2 +  v3 Eq. 3.5 

Δ  v =   +   v Eq. 3.6 
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It should be noted that this method is only valid for 5<Rek<80 and for higher Reynolds 

numbers the cubic law of Lage et al. should be used for data reduction. In this study both 

methods were applied to the pressure data.     

3.2. Experimental apparatus and Procedure  

The experimental setup shown in Fig. 3.1 was used to measure the pressure drop across the 

samples. It consisted of a fan, a test section, an orifice plate, two differential pressure 

transducers, a variable transformer (Variac), a data acquisition card and computer. For this 

experiment constant air flow was essential. Two 1000 W high speed centrifugal fans were 

placed inside a box to provide the suction power needed for the experiment, see Fig. 3.1 

and Fig. 7.3a. The fan speed was controlled by adjusting the input current using an 8 Amp 

Variac variable transformer. It was found that at low current, the fan speed fluctuated and 

disturbed the flow rate. This was avoided by running the fans at high speed and controlling 

the flow by a ball valve connected to the box. The valve reduced the negative pressure 

inside the box lowering the suction power. To fine tune the flow rate the fans speed were 

adjusted with the Variac.  

Air flowed through a 1500 mm two inch nominal size ABS pipe (internal diameter 52.9 mm 

and wall thickness 3.5mm) to ensure that it was fully developed before reaching a calibrated 

flanged-type orifice plate that was used to measure the flow rate. The orifice plate was 

calibrated against a manufacturer calibrated laminar flow meter (Cussons Technology P7250) 

and was found to have a discharge coefficient of 0.632 (max. error  0.5%). The calibration 

data is presented in Appendix 1. The pressure tappings and their position were compatible 

with BS EN ISO 5167-1 [48]. The pressure drop across the orifice plate was measured by a 

differential pressure transmitter (Furness Controls - Model 332-4W) with an accuracy of 

±0.25% (reading). To calculate the flow rate, the air density was calculated from the 

atmospheric pressure, temperature and humidity. To calculate the air Humidity, a 

psychrometric thermometer was used to measure the air wet-bulb and dry-bulb 

temperature. The humidity result was cross checked by a digital humidity measuring device 

(VELOCICALC Models 8347(A)).    

Δ  v =  +   v Eq. 3.7 
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Fig. 3.1, A schematic view of the test rig for measuring steady state pressure drop  

The pressure drop across the samples was measured with a differential pressure transmitter 

(Omega DPGM409DIFF- 350HDWU, 0.08% combined linearity, hysteresis and repeatability). 

The pressure loss of each sample was measured at 7 different flow rates and the 

measurement was repeated 20 times at each flow rate.    

The test section could be separated from the rig by undoing the two flanges. The 

circumference of the samples were sealed by PTFE tape and pushed into the test section. 

Three small pins (2mm long) were placed evenly inside the test section to keep the samples 

in place. The effect of these pins on pressure drop was found to be negligible.  

A 16-bit PCI-6221 National Instrument (NI) data acquisition card (DAQ) was used to receive 

the signals from two pressure transmitters. The DAQ card was connected to a PC running 

Windows XP. A code was written in LabVIEW software to control the DAQ card.   

3.2.1. Tested Samples 

In this experiment nine metal foams were manufactured with gas-only method and two 

other samples, a packed bed of 100 layers wire mesh (200 pores per inch and 0.041 mm 

wire diameter) and a packed bed of 10000 ball bearings (2mm). Samples physical properties 

were tabulated in Table 3.1.  
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Table 3.1 – Properties of the foams made by gas-only infiltration method. 
Name Grain size 

/pore size (mm) 
Weight 
(gr) 

Length 
(mm) 

Diameter 
(mm) 

Porosity 

Small 1 1-1.18  51.7 24.7 51.1 0.62 
Small 2 1-1.18  51.3 25.1 51.1 0.63 
Small 3 1-1.18  57.8 25.7 51.1 0.59 
Mid 1 1.4-1.7  49.9 23.8 51.1 0.62 
Mid 2 1.4-1.7  52.0 26.5 51.1 0.64 
Mid 3 1.4-1.7  48.7 24.5 51.1 0.64 
Large 1 2-2.36  47.4 25.5 51.1 0.66 
Large 2 2-2.36  48.8 25.3 51.1 0.65 
Large 3 2-2.36  51.4 26.7 51.1 0.65 
Wire mesh 0.041  50.4 12.1 52.9 0.70 
Ball bearing  2  326.7 35.2 52.5 0.43 

 

3.3. Results and Discussion  

All the pressure data were calculated and reported based on Darcian flow velocity which 

was calculated by dividing the volumetric flow rate by the cross-sectional area. The pressure 

data were normalised by divided the data to the sample length. A quadratic and cubic curve 

was fitted through the data points for each sample and the permeability and the form drag 

calculated. The results from each method was presented and compared with other method. 

The goodness of fit was calculated in Excel from the following equation.   

 

Shown in Figure 3.2 is the experimental pressure-drop data for nine samples representing 

three pore sizes against Darcian velocity. Samples were tested for velocity of up to 6.1 m/s. 

This was the highest velocity which could be achieved and the pressure drop be measured 

for all the samples i.e. the maximum range of flow rate was achieved by the fans for the 

samples with the smallest pore size. The pressure-drop data for the samples with similar 

pore size had notably different values. The reasons for this scatter will be discussed in the 

last part of this chapter.   

 −       =       = ∑ (   −   )     ∑ (  −   )      Eq. 3.8 
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As it can be seen from Fig. 3.2 the sample with largest pore size had smaller pressure drop 

than the medium and small pore size samples. The pores of the Small samples were on 

average half the diameter of the pores of the Large samples. However, the pressure drop of 

the Small samples on average was 4.4 times higher (at 6.5 m/s velocity) than the Large 

samples.  

 
Fig. 3.2, Normalised pressure drop of 9 metal foams, wire mesh (No.200) and ball bearing 

(2mm diameter) against air velocity 

 

 
Fig. 3.3, Linearized pressure-drop data based on the Darcian velocity 
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For Fig. 3.3, the pressure data was linearized by dividing the normalised pressure data by 

velocity and a least-square line was fitted to each data set. The graph shows that the flow 

through the samples deviated from Darcy law flow and they were not changing linearly with 

velocity. In other words, the pressure drop across the samples should be fitted with a 

quadratic function.  

Fig. 3.4a, The form drag of the foams plotted 
against the values of average pore size.   

Fig. 3.4b, The permeability of the foams plotted 
against the values of average pore size.   

By applying a linear-regression to the data the constants a and b can be determined from 

which the permeability and form drag coefficient were calculated, Table 3.2. The results 

shows that the average permeability increases with increasing pore size (Fig. 3.4b) and the 

form drag coefficient decreases by increasing pore size (Fig. 3.4b). It can be seen from Table 

3.2 that by reducing the pore size (on average) by 30% the form drag increased by 1.7 times 

and by 50% reduction in pore size the form drag increases by 3.22 times. The wire mesh 

sample results shows that, C and K were higher than the foam results however the 

permeability of wire mesh was much lower than the Small samples. This may suggested that 

even for low velocity, wire mesh generate larger pressure drop compared to the foam but 

the rate of increasing was close to Small 3 sample. A packed bed of 2 mm ball bearing 

(51mm diameter and 35.2 mm length) was tested in this study. It generated similar pressure 

drop to the Small samples (small 1 and 3). 

The results from the second method on average were lower than the results from the first 

method (Fig. 3.4a, 3.4b). In addition, Table 3.2 shows that the R2 values reduced with the 

pore size. In other words, by reducing the pore size the data did not fit into a linear line. 
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Fig. 3.5, Linearized pressure-drop data based on the Darcian velocity 

Pressure drop data linearized and plotted against permeability based Reynolds number (Fig. 

3.5). As can be seen from the graph, Reynolds number for metal foams was higher than 80. 

As it was discussed before, for a better fitting the second method should be used.  

The second method was done by fitting a least-square cubic curve to the pressure data and 

calculating K and C from Eq. 3.5. The results were tabulated in Table 3.2.  The samples with 

large pore size had the lowest difference for C value and highest for Mid samples. The 

difference for K value increased by decreasing the pore size but the wire mesh sample did 

not flow the same trend. Comparing the R2 value in Table 3.2 and 3.3 shows that second 

method fitted better than the first method. The tables also show that the second method 

predicted consistently lower results for C and K. One of the reasons for this discrepancy 

could be the error of fitting a line through the data. R-square in Table 3.3 shows that the 

cubic curve fits better than the linear least-square line. Therefore, K and C predicted with 

the cubic curve fitting could be more accurate than the other fitting.      
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Table 3.2- Calculated permeability and form drag by fitting a least-square line. 
Sample a b K×108(m2) C×10-3(m-1) R2 

Large 1 1.50 5.66 11.82 4.80 0.9999 
Large 2 1.76 6.35 10.07 5.38 0.9998 
Large 3 1.49 6.45 11.92 5.47 0.9998 
Mid 1 2.76 9.25 6.45 7.84 0.9997 
Mid 2 2.76 9.30 6.45 7.89 0.9994 
Mid 3 3.31 15.21 5.37 12.90 0.9990 
Small 1 2.78 18.29 6.39 15.51 0.9976 
Small 2 3.68 22.04 4.82 18.69 0.9981 
Small 3 2.82 23.66 6.31 20.067 0.9963 
Wire Mesh 92.99 24.21 0.19 20.54 0.9992 
Ball bearing 7.37 18.88 2.42 16.01 0.9991 

 

Table 3.3 - Calculated permeability and form drag by fitting a least-square cubic curve. 
Sample c B A K×108(m2) C×10-3(m-1) R2 
Large 1 0.05 5.23 2.27 7.84 4.43 1 
Large 2 0.06 5.87 2.60 6.86 4.98 1 
Large 3 0.08 5.80 2.67 6.67 4.92 1 
Mid 1 0.12 8.34 4.28 4.16 7.07 1 
Mid 2 0.15 8.19 4.49 3.97 6.95 1 
Mid 3 0.27 10.77 6.69 2.66 9.13 1 
Small 1 0.93 14.85 16.09 1.11 12.59 0.9999 
Small 2 0.65 13.30 11.14 1.60 11.28 0.9999 
Small 3 1.01 15.46 15.02 1.19 13.11 0.9999 
Wire Mesh 1.00 15.23 110.10 0.16 12.91 0.9997 
Ball bearing 0.39 15.63 13.37 1.33 13.26 0.9999 

 

3.4. Data scattering in pressure data 

As can be seen from Fig. 3.2, samples with the same pore size generate different pressure 

drops. There are several factors affecting the pressure drop of metal foams manufactured 

by replication process especially as the structure of the foams were random (due to 

unstructured (random) salt particles position inside the mould prior infiltration). This 

randomness affects the pressure-drop across this type of metal foams. Ergun [35] stated 

that pressure drop through a packed bed depends on:  



33 
 

1- Rate of fluid flow 

2- Viscosity and density of the fluid, 

3- Closeness (fractional void volume) and orientation of packing 

4- Size, shape, and surface of the particles  

The first two are fluid related and the last two are related to the sample and will be 

discussed in this section.  

Ergun studied the effect of fractional void on pressure drop and concluded that total energy 

losses in fixed beds are equal to the sum of viscous and kinetic energy losses. He showed 

that viscous energy losses were proportional to (1-ε)2/ε3 and the kinetic energy losses to (1-

ε)/ε3. He argued that Eq. 3.3 could be rewritten such that:  

As it can be seen from Eq. 3.10 the fractional void volume has both second and third-power 

terms and any variation would have a large effect on pressure drop. For instance Ergun 

showed that for crashed material the most tightly packed bed having a height of 30 cm 

could easily be expanded by 6 to 7 cm. This could be one of the reasons of pressure drop 

data scattering. Porosity of the metal foams could be increased by increasing the preform 

packing density. The packing density depends on several factors such as shape of the 

particles (crushed or spherical), friction factor between particles, density of the particles, 

the ratio of particle diameter to the container diameter and many other factors which are 

beyond the scope of this study and did not investigated for this study.   

3.5. Effect of infiltration pressure on samples pressure drop   

Eight samples of increasing infiltration pressure (2.5 bar to 7 bar, pore size 1.4-1.7 mm) 

were manufactured. Samples properties were tabulated in Table 3.4. Fig. 3.6 shows the 

normalized pressure drop of the samples against the Darcian velocity. Samples made under 

4.5 bar had lower pressure drop but they were non-homogenies and were only partly 

infiltrated. For sample with infiltration pressures higher than 4.5 bar were uniform and fully 

infiltrated. However, by increasing the infiltration pressure samples became denser and the 

Δ  =  ́ (1 −  )2 3 v +   1 −   3  v2 
Eq. 3.10 
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pressure drop increased. Since having low pressure drop and high surface area (fully 

infiltrated samples) are essential for high performance regenerators; the results from this 

experiment were used to estimate the optimum infiltration pressure for manufacturing the 

samples for this study. As it was explained in chapter two (section 2.4.2), 4.5 bar pressure 

was used for manufacturing samples with pore size of 1.4-1.7mm based on the results from 

this experiment. 

 
Fig. 3.6, Pressure-drop versus fluid flow velocity for samples made under different 

infiltration pressure. 

 

Table. 3.4 – Material properties of the samples manufactured under various 
infiltration pressures.   
Sample Name  Weight (gr) Length (mm) Dia (mm) Volume (mm3) Porosity 
2.5 bar 55.4 32.0 51.1 65626.9 0.69 
2.9 bar 44.9 24.8 51.1 50758.3 0.67 
3.0 bar 45.9 26.5 51.1 54347.2 0.69 
3.3 bar 47 27.0 51.1 55372.7 0.69 
4.5 bar 49.1 25.6 51.1 52419.5 0.65 
5.0 bar 57.7 27.3 51.1 55987.9 0.62 
6.0 bar 71.9 34.2 51.1 70036.2 0.62 
7.0 bar 60.9 28.5 51.1 58448.9 0.61 
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Chapter 4 - Oscillatory pressure drop in metal foam  

The optimum design of a regenerator depends on the accuracy of the predicted pressure 

drop and thermal performance of the regenerators [49]. Early researchers used 

unidirectional friction factor correlations to estimate the pressure drop through 

regenerators. However, it has been found that pressure drop in oscillatory flow is different 

from unidirectional flow and factors such as the fluid displacement amplitude could affect 

the pressure drop in regenerators[49].  The majority of the studies have been done on wire 

mesh regenerators. Metal foams have not been tested to same extent and most of those 

studies were focused on high porosity (90%)  foam [20,50,51]. To the knowledge of the 

author, foams made with the replication process with porosities of less than 90% have never 

been tested for pressure drop under oscillatory flow. The aim of this chapter is to discuss 

the pressure drop in oscillatory flow and present the experimental method used in this 

study to measure the pressure drop and flow velocity under oscillatory conditions.  

4.1. Pressure drop and velocity profile inside a pipe  

The pressure drop in oscillatory flows has been studied for nearly 100 years. These studies 

have been focused on two main areas; inside a pipe (or duct) and in packed beds (or 

regenerators). Although the nature for pressure drop inside a pipe is different from 

regenerators, it helps to understand the pressure drop mechanism in regenerators. 

Therefore, in the section, velocity profile and pressure drop inside a pipe under oscillatory 

flow will be discussed and this will be continued for regenerators.  

As early as 1929 it was recognised that the velocity profile in a reciprocating flow was 

different to that for unidirectional flow down a pipe. Richardson and Tyler [52] 

experimentally investigated oscillatory flow in a pipe and they discovered the “annular 

effect”. In an oscillatory flow, velocity profiles constantly change with the crank angle. 

During the first quarter cycle, a viscous layer caused by the wall friction grows in thickness 

and the velocity profile changes from a rectangular to a parabola-like shape. On the next 

quarter cycle, flow starts to decelerate and because of inertial effects, the velocity profile 

becomes flatter at the centre and overshoots near the wall (the annular effect)[53].  
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In oscillatory flow, because of the annular effect, flow is more “like a turbulent flow” during 

the deceleration phase [54]. It seems that this type of flow behaviour could dissipate more 

energy and consequently, increases the friction factor during the deceleration phase in 

oscillatory flow.  Isshiki et al. experimentally showed that the friction factor in a decelerating 

period was higher than that in the accelerating period [55]. Beside the deceleration effect, 

by increasing the frequency or kinetic Reynolds number, the “annular effect” becomes 

higher and thus the radial velocity gradients near to the pipe wall became steeper. As a 

result, friction factor increases with oscillation frequency.  

In addition to oscillation frequency, oscillation amplitude influences onset of turbulence in 

oscillatory flow [56]. For instance, if we assume bore diameter of two pistons are the same 

but one has a long stroke and other has a short stroke. The oscillating flow inside the pipe 

would behave differently at the same oscillation frequency for these pistons. Zhao and 

Cheng [57] showed that flow at kinetic Reynolds number of 302.2 and dimensionless 

oscillation amplitude of 21.4 exhibited a laminar flow but by only changing the amplitude to 

97.1 the flow behaved like a turbulent flow. They defined the dimensionless oscillation 

amplitude as:   

    =        Eq. 4.1 

   =        Eq. 4.2 

where, Vp is the piston swept volume, Acs is the cross section area of the connecting pipe 

and Dh is the hydraulic diameter of the pipe. In equation 1, xmax is the maximum fluid 

displacement or maximum distance that fluid can travel inside the pipe.      

4.2. Pressure drop in regenerators  

Similar to oscillatory flow in a pipe, pressure drop was reported higher than unidirectional 

flow in regenerators. Tanaka et al. [20] measured pressure drops for frequencies up to 10 Hz 

and their results were higher than unidirectional flow results for a given Reynolds number. 

They also conducted a similar experiment with a pipe bundle (8370 pipes, inner diameter of 

0.22 mm and outer diameter of 0.4 mm) and reported 30% higher pressure drop than the 
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value for unidirectional flow. Zhao and Cheng [49] did a similar experiment for frequencies 

between 1/3Hz and 9Hz and reported that the cyclic-average pressure drop was 4 to 6 times 

higher than a steady flow at the same Reynolds number (based on the cross sectional mean 

velocity).  More recently, Ju et al. [58] experimentally measured the pressure drops and the 

phase shift characteristics for five different regenerators made of wire-mesh screens. They 

obtained a correlation equation of the friction factor for a 50Hz oscillating flow and 

reported pressure drops two to three times higher than that for steady flow at the same 

Reynolds number (cross-sectional mean velocity).  

 A number of workers have shown that at low frequencies the maximum pressure drop in 

the reciprocating case is the same as that for the unidirectional situation. For instance, 

Gedeon and Wood [59] measured the pressure drop under oscillatory flow conditions and 

compared their results with the unidirectional flow result (1-120Hz). They found that their 

results were similar within their frequency range. In other work, Hsu [60] measured 

pressure drop of wire mesh (Table 4.1) under oscillatory  up to 4.0 Hz and also steady flow, 

and reported no difference between the results.  

Table 4.1 Properties of the wire mesh and packed columns [60]   
Mesh 
Size(No.) 

Pitch distance 
(mm) 

Wire diameter 
(mm) 

Porosity Hydraulic 
diameter (mm) 

20 1.243 0.32 0.792 1.213 
30 0.849 0.22 0.788 0.8263 
40 0.613 0.224 0.694 0.509 

It has been reported that the dimensionless oscillating amplitude also affects the pressure 

drop in oscillatory flow. For instance, Zhao and Cheng [49] used a yoke sinusoidal 

mechanism to adjust the fluid displacement and reported that the pressure drop not only 

depends on the shape and structure of the sample but also on the kinetic Reynolds number 

and dimensionless oscillating amplitude    . They compared their data with Tanaka et al. 

[20] correlation equations argued that Tanaka’s data were only applicable to a limited range  

of dimensionless oscillating amplitude of 145.  

In oscillatory flow the maximum pressure drop occurs at 90o phase angle but it became 

increasingly delayed as the frequency went up. Zhao and Cheng reported significant phase 

lags for higher values of the kinetic Reynolds number (   =     ⁄ ). For example, the 
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phase angle lagged by 18o at    = 0.03770 and lagged by 24o at    = 0.05529 . 

However, they observed that phase lag was relatively independent of    [49].  

4.3. Air velocity measurement 

In order to present the pressure drop data, cross-sectional mean velocity was estimated 

based on piston’s swept volume and angular velocity of the crank shaft. In addition to this, 

air velocity was measured with Hot-wire anemometer for studying the fluid behaviour under 

the oscillatory condition. The fluid velocity was only measured at the centre of the pipe with 

Hot-wire anemometer. These two methods will be discussed further in this section    

4.3.1. Cross-sectional mean velocity estimation 

By assuming that the oscillating air in the pipe is an incompressible fluid and the flow 

motion is driven by a sinusoidal displacer, the cross-sectional mean velocity um can be 

calculated using: 

  =     sin ( ) Eq. 4.3 

where   is the phase angle of the cross-sectional mean velocity, and is related to the 

oscillatory angular frequency ω. The maximum mean cross-sectional velocity depends on 

the maximum fluid displacement xmax and oscillatory frequency which can be calculated by 

[56]:  

    =      2  Eq. 4.4 

xmax can be calculated from Eq. 4.1.  

4.3.2. Hot-wire anemometer  

Hot-wire anemometer (HWA) is one of the key methods for measuring fluid velocity under 

rapid motion. The main advantages of conventional HWA for this experiment are:   

1- Low Cost – Hot-wire systems are relatively cheap in comparison with laser based 

techniques.  
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2- High frequency response – Constant Temperature (CT) anemometers can achieve up 

to 20-50 kHz [61].   

3- Small size – A typical size of the hot-wire probe is about 5 µm and can be placed 

easily inside a narrow pipe.   

4- High accuracy – This system can achieve accuracy of 0.1% to 0.2% in careful 

controlled experiments and 1% for practical applications [61]. 

HWA is based on the changes in the convection heat transfer from a heated wire which is 

placed in a fluid. The heat transfer rate between a high temperature surface and a low 

temperature moving fluid is proportional to temperature difference, heat transfer 

coefficient, h, and surface area. The heat transfer coefficient increases with fluid velocity 

reflecting the increased the heat transfer rate. The heat transfer relationship between the 

hot-wire and the fluid for both infinitely long and finite length wire element have been 

derived [61].     

The changes in heat transfer coefficient are detected by monitoring changes in the wire 

resistance.  The hot-wire probe is connected to a Wheatstone bridge circuit as illustrated in 

Fig. 4-1. The relationship between the hot wire resistance,   , and the mean wire 

temperature,    is provided by Eq. 5[62]. 

  =   [1 +  (  −   )] Eq. 4.5 

where    is a reference resistance measured at temperature    and   is the temperature 

coefficient. The reference temperature is often selected as room temperature (20 ⁰C) and 

adding the probe lead, support and cable resistances the Eq. 5 can be rewritten as   

  =      +         +       +       (  −    )] Eq. 4.6 

The mean sensor temperature,  , can be estimated by measuring the sensor resistance. In 

order to heat the sensor a current is passed through the wire. The temperature adjustment 

of the wire is called overheat adjustment and has an effect on response time of the HWS 

(see Section 4.3.2.1). The relationship between the heat transfer rate from the sensor to the 

cooling fluid velocity is given by King’s law [62,63] as  
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 ̇ =    =  +     Eq. 4.7 

where A, B and n are empirical constants that depend on the fluid, operating temperature, 

and sensor physical properties and dimension [62]. The coefficients in Equation 4.7 are 

obtained by calibration which will be discussed in Section 4.3.2.2.  

There are three types of operating mode for the anemometers: Constant Current (CC), 

Constant Temperature (CT) and Constant Voltage (CV). The two most common types of 

HWA are Constant Temperature (CT) and Constant Current (CC). The CT mode maintains the 

hot-wire at constant operational temperature and as a result at a constant hot resistance 

[61]. In this mode the thermal inertia of the sensor element is automatically adjusted and 

therefore has a faster frequency response than CC [61]. Thus CT is generally adopted for the 

rapid flow measurements.    

 

Fig. 4-1, A diagram of a CT anemometer Wheatstone bridge with feedback amplifier.  

Fig. 4-1 illustrates the principle of a CT circuit which consists of a Wheatstone bridge, how-

wire probe and differential amplifier. The fluid passing over the sensor varies the error 

voltage e2-e1 which is a measure of the corresponding change in the wire resistance. The 

error voltage forms a feedback to a differential feedback amplifier. The amplifier feeds an 

output current, i ( i is inversely proportional to the resistance changes of the sensor) back to 

the top of the bridge to restore the sensor’s resistance (temperature) to its original value 

[61]. The instantaneous power (I2Rs) required to maintain the sensor’s temperature is equal 

to the rate of heat transfer from the sensor (Eq. 4.7). The fluid velocity then can be found 
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(Eq. 4.8) by knowing the instantaneous applied bridge voltage, E, which is required to keep 

the sensor at constant resistance.    

  =  +     Eq. 4.8 

The resistance ratio R2/ R1 is called the bridge ratio. The bridge configuration can be 

selected based on required bandwidth, power to the probe and the distance between the 

probe and CT anemometer [64]. The resistance on the right-hand-side of the bridge is 

normally larger than the other side in order to utilise the available current from the 

amplifier[61]. O’Dea and Fleming [65] studied the sensitivity and precision of the 

Wheatstone bridge and concluded that a bridge ratio of 1 gives the maximum sensitivity and 

zero ratio provides the highest precision. For the current experiment the bridge ratio of 1:20 

or 0.05 was a default setting and had 5% departure from highest precision possible. This 

error was negligible for measuring the mean velocity of oscillating air for this experiment.   

4.3.2.1. Overheat calculation  

For setting up the anemometer an overheat adjustment (static bridge balancing) and a 

square wave test (dynamic balancing) should to be done prior to the test. The anemometer 

(DANTEC 54T30) used in this experiment did not have the option for the square wave test, 

so only the overheat adjustment was done here. However, the manufacturer reported 5-10 

kHz frequency response for the anemometer which was sufficient for this study.  

The working temperature of the sensor can be determined by adjusting the overheat ratio, 

Rw /R20. This was done by adjusting the decade resistor, R3. The resistors Rw  (sensor resistor 

at desirable working temperature) and R20 (sensor resistor at 20oC) are related via the 

overheat ratio, a [64]:  

 =   −        Eq. 4.9 

The temperature difference between Tw and T20 (over temperature) can be calculated as:  

  −    =  ∝   Eq. 4.10 
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where ∝   is the sensor temperature coefficient of resistance at T20.  

In this experiment the hot-wire probe specification was provided by the manufacturer: 

R20 = 3.33 Ω, Rlead = 0.9 Ω, Rcable = 0.2 Ω, Rsupport ≈ 0.0 Ω, α20 = 0.0036 /⁰C  

The recommended overheat ratio was 0.8 giving an operating temperature of Tw=242 ⁰C for 

air.  Based on Eq. 4.6, the total resistance was:  

  = 0.9 + 0.2 + 3.33[1 + 0.0036(242 − 20)] = 7.09    

Since the bridge ration is 1:20, the decade resistance was set at: 

  = 20.  = 141.8    

 

4.3.2.2. Hot-wire calibrator and operating principles  

The relationship between the output of the anemometer E and V the velocity component in 

the mean-flow direction is: 

E=F(V) Eq. 11 

The purpose of a calibration is to obtain a set of calibration points (E and V) over the 

required velocity range. This involves placing the probe in a flow of known velocity and 

measuring E for the minimum of 10 velocities. To determine the calibration constants a 

least-squares curve-fitting method was applied (Fig. 4-3). 

A YSI 1125 calibrator was used to calibrate the hot-wire. A schematic is shown in Fig. 4-2. 

Dry compressed air was supplied to the calibrator. The calibrator had an internal heat 

exchanger with auxiliary fan and flow control valve to adjust the air flow. The air 

temperature reached the ambient temperature by passing it through the heat exchanger 

and the air temperature was measured by a K-type thermocouple placed inside chamber 1. 

The temperature was required to calculate the air density and compensate the hot-wire 

calibration if it deviated from the overheat adjustment. Air pressure was measured by a 
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differential micro-manometer (Furness FC0510) which had a range of 0.00 Pa to 2383 Pa 

and an accuracy of ±0.0002 Pa. The manometer was calibrated by the manufacturer and 

was valid during the experimental period.   

 

 

 

 

 

 

Fig. 4-2, A schematic view of YSI 1125 calibrator. 

The calibrator had three chambers that permitted the user to calibrate over three ranges of 

velocities. In this work a velocity range from 1.5 ms-1 to 300 ms-1 was used. 

The velocity can be calculated using Bernoulli’s equation between section 1 and section 3.  

  + 12 v  +     =   + 12 v  +      Eq. 4.12 

By applying the law of continuity to section 1 and 3 we have: 

v   = v    Eq. 4.13 

The diameter of section 1 is 72 mm and for section 3 is 3.8mm. By assuming that the 

maximum velocity in section 3 is 30 ms-1, we have: 

v = v     = 30 × 3.611296 ≈ 0  

Point 3 is about one diameter (3.8 mm) downstream from the nozzle and the static pressure 

of that point is equal to the atmospheric pressure. Therefore, by measuring the 
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corresponding total pressure (PT=P1-P3) which is equal to the stagnation pressure at point 3 

and assuming that H is 0, the velocity at point 3 can be calculated from: 

v =  2    Eq. 4.14 

In order to achieve a good accuracy with hot-wire anemometry, it is important to minimise 

any calibration errors and select an appropriate curve fit. King’s law (Eq. 4.8) [63] has been 

used extensively to characterise the relationship between the fluid velocity and the 

anemometer output. With this method, it is necessary to carry out an inversion process to 

obtain the required velocity [61]. However, the hot-wire relationship expressed in the form 

v=F(E) can be used to obtain velocity directly. George et al. [66] introduced a polynomial 

equation for hot-wire relationship as:  

v =  +   +    +    + ⋯ Eq. 4.15 

The accuracy of a polynomial fit was investigated by Bruun [61] and he suggested to apply 

either a full fourth-order polynomial in E or a third-order in E2 for best accuracy. Here a 

fourth-order polynomial fit was used and is shown in Fig. 4-3. In this graph R is R-square 

value of the fit, where a value closer to 1 indicates a better fit.    

 

Fig. 4.3, Hot-wire calibrating curve with polynomial equation and fitting R-square value.  
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As a result of small fluctuations in the velocity during calibration and the electronic noise, 

the values of V and E for each point were measured over 10 s interval. The data was logged 

at 100 Hz.  

4.4. Experimental set-up 

From the literatures it can be seen that two methods, double-acting air pump 

[20,49,51,60,67]and a single cylinder compressor[52,58,59,68], have been used to generate 

oscillatory flow. One method uses a double-acting air pump to push and pull the air through 

the sample. This method is popular since it generates exactly 180o phase different between 

the pushed and pulled air. Another advantage of this method is the possibility of adjusting 

the fluid displacement. However, because of dynamically unbalancing of this mechanism it is 

difficult to achieve high frequency.  

The other method is using a single cylinder compressor to generate oscillatory flow. This 

method is simple and high frequencies can be achieved but it has the limitation of fixed fluid 

displacement. In addition, this method does not replicate the oscillatory flow in Stirling 

engines since there is no mechanism to push the air while the compressor pulls it and vice 

versa. In this method atmospheric pressure works as a large buffer tank that helps to push 

the air through the sample while the compressor pulls it. 

In this study, two twin-cylinder compressors were connected via a toothed belt to generate 

high frequency oscillatory flow. A twin-cylinder compressor has 90o phase different between 

the pistons.  Therefore, the compressors were adjusted to have 180o phase angle. Despite 

the best effort to synchronise the compressors, a slight phase difference always existed 

which affected the pressure results. Even after careful synchronising the compressors, slight 

tension in the toothed belt could change the phase difference between them. Therefore, 

this method was abandoned and a single twin-cylinder compressor was used for this study.  

The test rig (Fig. 4.4) consisted of two V-type twin-cylinder compressor (Clarke CE20-91cc 

swept volume), a 1 kW three phase AC motor, hot-wire anemometry system, pressure 

transducer and the test section. The compressor and the motor were coupled by a toothed 

belt and two pulleys. The motor speed and torque were controlled by a variable-frequency-
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drive controller (VFD) (Mitsubishi FR-D700). The test section in which the sample was held 

was a copper pipe (52 mm internal diameter and 80 mm length). It was connected to the 

compressor via a copper reducer and 600 mm length copper pipe (internal diameter 20 mm). 

A 5 µm hot-wire probe (DANTEC 55P16) was mounted at the middle of the connecting and 

positioned at the centre of the cross section of the pipe to measure the flow velocity. As the 

swept volume of the compressor was 91 cc, the maximum distance the air inside the 

compressor could travel inside the 20 mm pipe was 300 mm and this was where the hot 

wire probe was placed.   

 

 

 

 

 

 

Fig. 4.4, Oscillatory test rig for measuring pressure drop and flow velocity.  

A pressure tap was placed 10 mm before the sample and a high-frequency pressure 

transducer (Kulite ETM-375-100GS) installed. A 16 bit data accusation card (DAQ) (National 

Instrument PCI-6221) was used to log the data and a LabView code was developed to 

communicate with the DAQ card and also process and analyse the data.  

In order to measure the pressure drop, samples were placed inside the tube between two 

thin rings used to hold the sample in place. The rings had three screws which were 

positioned every 120ᵒ from each other and were used to fix the rings. The circumference of 

the sample was wrapped with PTF tape to prevent air leakage. To place the sample inside 

the tube, first, one of the rings was inserted inside the pipe and tightened. Then the sample 

inserted into the tube. After that, the second ring slid into the pipe and tightened.   
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After fixing the sample in the tube, the frequency of the electric motor was adjusted with 

the converter. Once the motor reached the required speed, the signals from the pressure 

transducer, thermocouple and the hot-wire probe were recorded by the DAQ. The sample 

rate and sampling time were adjusted for each motor frequency to ensure the whole cycle 

data was recorded with sufficient data points. The magnetic pick-up triggered the DAQ card 

when the compressor’s piston reached the top-dead-centre to ensure that DAQ card 

recorded the data at top-dead-centre (TDC). As a result, data was recorded from beginning 

of each cycle. The time that it took to complete each cycle was used to calculate the 

compressor running frequency. This time was divided into 360 segments to represent crank 

angle degree.  

4.5. Velocity measurement system  

The HWA used to measure the air velocity in the rig consisted of a probe with probe support 

and cabling, CTA anemometer and a signal conditioner, a data acquisition card (A/D board) 

and a computer (FIG. 4.5). The analog signal from the anemometer was converted to digital 

signals by the DAQ card and analysed and stored in the computer. 

 

 

Fig. 4.5, The hot-wire measuring system. 

The probe holder, showed in Fig. 4.6, consisted of a modified 20 mm brass Tee fitting. A 

piece of brass bar was soldered into the Tee then drilled and threaded to hold the fitting. 

The empty space inside the Tee was filled with plastic and a drill hole was made to pass the 



48 
 

hot-wire probe. This minimised any flow disruption through the Tee. A technique was 

developed to position the probe at the centre of the Tee. Both sides of the Tee were 

covered by two caps which had a small hole at the centre. The probe was then slid into the 

Tee till the probe and two holes visually lined up.   

 

Fig. 4.6, Hot-wire probe holder and caps for positioning the probe. 

It was found that small dust and fibres floating in the lab air contaminated the hot-wire 

probe and affected both the calibration value and frequency response. On some occasions 

the fibres were so entangled that cleaning of the probe became impossible without 

damaging it. To avoid contaminating the probe, a fine gauze mesh was placed after the test 

section and the compressor to filter the air going into the measurement length. 
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Chapter 5 - Oscillatory flow data 

5.1. Pressure drop 

In this chapter the experimental results for the pressure drop across the samples subjected 

to a periodically reversing flow are presented. Experiments were carried out for the nine 

metal foam samples and wire mesh sample at frequencies ranging from 1.1 to 19 Hz.  

Pressure and velocity were measure for 20 cycles at each frequency and results were 

averaged.  

 
Fig. 5.1, Raw and averaged pressure drop of Sample 1 at 14 Hz. 

In this experiment the DAQ card was trigged at pistons top-dead-centre and pressure data, 

hot-wire data and time were logged for a full cycle. Since the rig didn’t have a shaft encoder 

to record the crank angle, the time of each complete cycle was measured (from top-dead 

centre to next top dead-centre) and converted to 360ᵒ. To do this conversion, it was 

assumed that compressor was running at a constant speed. The time for completing each 

cycle was divided to 360 to calculate the time for completing each degree crack angle. In Fig. 
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5.1 the blue line is a raw pressure data for a complete cycle and the red line is the average 

pressure data of 20 measurements.   

Shown in Fig. 5.2 is the averaged pressure drop for sample Mid 3 at various frequencies 

plotted against crank angle. This graph shows that increasing the frequency resulted in 

increased pressure drop. The profile of pressure drop for frequencies lower than 14 Hz were 

nearly sinusoidal due to the reciprocating motion of the piston. At higher frequencies the 

pressure drop profile became unsymmetrical notably where the piston accelerated (before 

90o). Similar trends were observed for the second half of the cycle between 180o and 270o.   

 
Fig. 5.2, Pressure drop vs. crank angle for a sample Mid3 (zero degree is the top-dead centre) 

From simple harmonic motion the maximum velocity should occur at 90o and 270o which is 

where the maximum pressure drop should also be. However, Fig. 5-2 shows that as the 

frequency increased the maximum pressure drop was shifted by a few degrees. Data from 

other samples showed similar phase shifts which also increased by increasing the pressure 

drop. For instance sample Large 1 had 2o, Mid 3 had 18o and Small 3 had 20o phase shift. 

Despite the best effort of the author, the position of the top-dead-centre did not set 

precisely and was slightly out of phase due to belt tension.    

Figure 5.3 shows the pressure drop of the samples against frequency. Samples with small 

pore size had larger pressure drop compared to the samples with medium and large pore 

size.  
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Fig. 5.3, Pressure drop of the metal foams against frequency and flow velocity 

 

 
Fig. 5.4, Reduced pressure maximum pressure drop against Darcian velocity 

Due to the variation in velocity profile through a cycle, an oscillatory flow is not strictly the 

same as used modelled by the Darcy-Forchheimer equation.  However, applying the Darcy-

Forchheimer equation to the oscillatory pressure data shows that pressure under oscillatory 

flow follows this model. Shown in Figure 5.4 is reduced pressure drop (based on Eq. 3.7) 
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plotted against velocity. From 0.5 m/s the reduced pressure increases linearly with velocity. 

In Chapter 3 it was shown that the Darcy-Forchheimer model is only valid for velocities 

above a certain threshold velocity. In Fig. 5.4, flow regime change from Darcy to Darcy-

Forchheimer can be seen to occur around 0.5 m/s and the form drag term becomes 

important. A similar trend also was reported for metal foams by Dukhan and Minjeur for 

steady flow [69]. Due to the orifice plate limitation, samples pressure drop did not 

measured for flow velocity lower than one m/s velocity. Therefore, oscillatory results 

showed the regime change from Darcy to Darcy-Forchheimer.  

The pressure data was linearized by dividing the normalised pressure data by velocity and a 

least-square line was fitted to each data set. The permeability and the form drag were 

calculated by applying a linear-regression to the data (method was described in Chapter 3). 

The calculated values are tabulated in Table 5.1 and compared to the steady pressure drop 

data. The results show that for the medium and large pore size both K and C were higher for 

oscillatory pressure drop. However, for the samples with small pore size both K and C were 

higher for steady flow than the oscillatory data.    

Table 5.1 – Permeability and form drag coefficient for steady and oscillatory flow. 
Name Oscillatory flow Steady flow 
 a b K×108(m2) C×10-3(m-2) a b K×108(m2) C×10-3(m-2) 

Small 1 11.38 15.69 1.57 13.31 2.78 18.29 1.11 12.59 
Small 2 9.06 13.58 1.97 11.52 3.68 22.04 1.60 11.28 
Small 3 12.56 15.28 1.42 12.96 2.82 23.66 1.19 13.11 
Mid 1 4.46 8.62 3.99 7.31 2.76 9.25 4.16 7.07 
Mid 2 4.31 8.54 4.13 7.24 2.76 9.30 3.97 6.95 
Mid 3 6.05 12.99 2.94 11.02 3.31 15.21 0.91 1.04 
Large 1 1.55 5.88 11.49 4.99 1.50 5.66 7.84 4.43 
Large 2 1.80 6.59 9.90 5.59 1.76 6.35 6.86 4.98 
Large 3 1.63 6.23 10.93 5.28 1.49 6.45 6.67 4.92 

 

The difference between pressure drop under oscillatory flow and steady flow were 

tabulated against velocity in Table 5.2. It can be seen from the table that the difference 

between the steady and oscillatory result was lower for samples with larger pressure drop 

(sample Small 1, S and 3). In addition, for these samples (Small 1, 2 and 3) the pressure drop 

for steady flow was higher than the oscillatory flow after 2.15 m/s. The reasons for these 



53 
 

differences were not clear but it could be down to internal structure of the foams. A further 

study is needed to study the internal structure of the samples with non-destructive test such 

as 3D X-ray tomography.    

Table 5.2- Difference between the oscillatory and steady flow pressure drop (percentage).  
V (m/s) Small 1 Small2 Small3 Mid 1 Mid 2 Mid 3 Large1 Large2 Large3 
1.00 9.50 6.34 14.46 17.44 11.88 11.36 14.21 13.88 9.42 
1.17 1.33 10.79 13.27 27.74 10.93 7.60 17.14 15.49 9.70 
1.32 6.02 3.86 9.80 12.71 23.16 9.49 11.04 15.71 9.96 
1.50 4.73 3.83 11.27 13.33 17.74 6.76 17.21 21.67 10.20 
1.65 2.29 2.87 4.48 16.14 12.12 9.12 14.98 14.39 10.41 
1.82 1.86 2.33 5.15 15.24 14.12 8.16 17.03 17.19 10.60 
1.98 1.40 1.51 1.99 14.85 11.64 8.74 15.02 16.29 10.77 
2.15 0.96 -0.13 0.80 15.48 12.37 8.33 16.25 17.18 10.92 
2.31 -0.99 -0.38 -2.47 14.46 13.74 5.53 19.22 18.32 11.06 
2.48 -2.18 -1.15 -2.70 14.98 12.13 6.05 16.76 18.55 11.19 
2.63 -3.70 -2.36 -6.02 13.56 11.53 5.48 19.86 18.47 11.30 

 

5.2. Velocity data  

As it was discussed in chapter four, section 4.4.4, air velocity was measured with hot-wire 

anemometer to investigate the fluid behaviour under oscillatory motion. To do this, air 

velocity was measured inside the pipe connecting the test section to the compressor. Since 

the hot-wire probe was placed at the centre of the pipe it measured the actual air velocity 

at that particular point. Therefore, the results were different from the average velocity 

which was estimated by knowing the frequency. However, the results were used to cross 

check the velocity measured by the other method.  

Show in Fig. 5.5 is the air velocity measured at the centre of the pipe at 18.84 Hz. Air 

velocity values was presented as absolute value since the hot-wire anemometer cannot 

detect the flow direction. The graph shows that the air velocity starts to fluctuate before 

and after it reaches the maximum value. Zhao and Cheng [56] investigated this fluctuation in 

air velocity under oscillatory flow condition. They explained that at high kinetic Reynolds 

number (high frequency) the annular effect became pronounced and this makes the fluid 

flow near the wall become unstable and eddies occur near the wall. These eddies then 

transferred to the centre of the flow which causes small fluctuations. During the 
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acceleration period (the first quarter and third quarter par of each cycle) the turbulence 

dissipates and the flow recovers to a laminar-like flow. The annular effect and the 

turbulence that generated during the deceleration period are key factors of increasing the 

pressure drop comparing to the steady flow pressure drop[56].   

 
Fig. 5.5, Air velocity measured at the centre of the pipe at 18.84 Hz. 

 

 

Fig.5.6, Temporal variation of air velocity at different frequency. 
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Air velocity was measured for 20 cycles for each frequency and the data were averaged and 

plotted at Fig. 5.6. It can be seen from the graph that even after averaging the results of 20 

measurements the air velocity fluctuated during acceleration and deceleration period. The 

graph also shows that the maximum air velocity was shifted at high frequencies and this 

phase shifting increased by increasing the oscillation frequency. For instance the phase shift 

at 19.11 Hz was 16o and at 3.61 Hz no phase shift was detected. 

Since the air velocity was measured in the connecting pipe with inner diameter of 20 mm, it 

was converted into the velocity at the test section with inner diameter of 51.9 mm. The 

maximum air velocity at each cycle was slightly higher than the value calculated by the crank 

angle velocity. The reason for this could be the shape of the velocity profile inside the pipe. 

Since the air velocity was measured at the centre of the pipe, it only represented one single 

point of the velocity profile. Therefore the results could be higher than the average air 

velocity which was calculated by the other method.  

5.3. Comparing results with other researchers 

To the best knowledge of the author this type of metal foam has not been tested under 

oscillatory condition before. As a result, there is no available data to compare the 

experimental results of this study. In contrast, there have been many studies on wire mesh 

screens. In order to check the results produced by the rig were similar to other workers the 

wire mesh sample was tested under oscillatory flow. The results were compared with 

Tanaka et al [20] and Choi et al [70].   

To generate the pressure drop data based on the Tanaka empirical correlation, Eq. 5.1 was 

used to calculate the pressure drop for the wire mesh sample. In order to present Tanaka’s 

result based on pressure drop and air velocity, Reynolds number converted to velocity by Eq. 

5.3 and 5.4; and friction factor converted to pressure drop by Eq. 5.2.  

 = 198  + 1.737 Eq. 5.1 

 = ∆          /2 Eq. 5.2 
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Similar steps were taken to calculate the pressure data from Choi et al friction factor 

correlation. Reynolds number and hydraulic diameter were calculated with Eq. 5.3 and 5.4 

and friction factor and pressure data from Eq. 5.5 and 5.6.    

 
 

 
Fig. 5.7, The maximum pressure drop of 100 layers of wire mesh (No.200) under oscillatory flow 

 

The result of the maximum pressure drop of the wire mesh sample under oscillatory flow 

against the maximum air velocity is depicted in Fig. 5.7. The pressure drops measured in this 

study were similar but slightly lower than those measured by Choi et al correlation results, 

both were lower than Tanaka’s results. Ju and Shen [71] compared four friction factor 

correlations [20,49,70,72]and showed even greater variation in the pressure drop data. 

They argued that the reason for this discrepancy came from the differences in the geometric 

properties of the  packed wire mesh, the operating frequencies and pressures, the different 
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  =          Eq. 5.3 

  = 4      4(1 −  ) Eq. 5.4 

 = 39.52  + 0.01 Eq. 5.5 

 = ∆   2        Eq. 5.6 
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definition of friction factor and dimensionless numbers; and uncertainty dealing with 

experimental data [73]. 
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Chapter 6 - Single-blow method  

6.1. Introduction  

Measuring the local heat transfer in a regenerator is difficult due to its small pore size and 

complex geometry. To measure the temperature and velocity at pore level, would require 

inserting many probes inside pores and simultaneously measuring them across the 

regenerator. Currently this type of probe is not readily available. Therefore, the average 

heat transfer coefficient between the regenerator and flow is usually measured [74]. Two 

methods, the single-blow and oscillating flow techniques are commonly used to evaluate 

thermal performance of heat exchangers and regenerators. Although the oscillating flow 

method is closer to the actual operating conditions in Stirling engines, the difference in heat 

transfer coefficient is not significant. As a number of workers have shown that for Reynolds 

number (within the pore) higher than 60, the difference in heat transfer coefficient is less 

than 15% [2,20].  Moreover, the oscillating testing facility is more complicated and 

temperature measurement at high frequency is more challenging than the single-blow 

method.  

The single-blow method is composed of three elements [75], an experiment, a heat transfer 

model and an evaluation scheme (matching technique). The experiment is relatively simple; 

a fluid flows steadily through the sample which is allowed to equilibrate with the passing 

fluid. A step change in temperature is applied to the inlet flow and heat transfer takes place 

between the fluid and the regenerator. The outlet temperature history (the breakthrough 

curve) is measured until the new equilibrated temperature is achieved. The heat transfer 

coefficient is estimated by matching the breakthrough curve with the curve predicted by the 

model.  

Depending on the working fluid and regenerator type, a mathematical model can be 

developed to predict the outlet temperature. Schmidt and Willmott [76] presented and 

analysed several types of the single-blow model which will be discussed in the following 

section. The single-blow models of other researchers will be presented here. The 

consequences of using different assumptions will be presented and the numerical solution 

of the model used for this study will be discussed.  
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6.2. Mathematical model for the single-blow method 

In the single-blow method the sample experiences a step change in temperature. Depending 

on fluid properties, thermal storage material and experimental setup, different 

mathematical model can be developed to predict the outlet temperature history.  

Shown in Fig. 6.1 are the range of single-blow models possible depending on the initial 

assumptions. The single-blow model can be divided into two main models, finite and infinite 

fluid heat capacity dependent on the working fluid. Infinite fluid heat capacity models have 

two sub models based on the thermal conductivity of the thermal storage material. Finite 

fluid heat capacity models can be divided into two sub models dependent on the thermal 

resistance between the fluid and the thermal storage material. The Schumann-Hausen 

model can be divided into five sub models depending on the properties of experimental 

setup and regenerator’s properties.       

 
Fig. 6.1, Single-blow models based on different assumptions.   
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6.2.1. Infinite fluid heat capacity 

Here it is assumed that the fluid temperature remains constant as it passes through the 

regenerator. This assumption is only valid if the fluid changes its phase as it passes through 

the regenerator or for fluids with high thermal capacity[76]. Heat transfer to the storage 

material can be modelled by the following two assumptions:   

6.2.1.1. Negligible temperature gradients in the storage material (infinite 

thermal conductivity) 

The temperature gradient within the sample is assumed negligible, when the following 

statements are valid: 

I. The major heat transfer resistance is offered by the convection film between 

fluid and solid interface and negligible thermal conductivity of the storage 

material 

II. Infinite fluid heat capacity.  

Under these conditions the mathematical model for a storage unit can be obtained by 

performing an energy balance:  

By introducing the following dimensionless quantities: 

Equation 6.1 becomes: 

 Net rate of accumulation of energy by the matrix  =  Net rate of heat removed from the fluid   

             = ℎ (   −   ) 

Eq. 6.1 

   =   −      −     
 = ℎ             

Eq. 6.2 
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Thus the model is independent of the geometric configuration of the matrix.  

6.2.1.2. Internal temperature gradients in storage material (finite thermal 

conductivity) 

Large temperature gradient exist in the storage material if the heat transfer resistance 

offered by the convective film is of the same order of magnitude as that offered by the 

storage material[76]. In other words, thermal resistance of the material is much higher than 

the film heat transfer coefficient between fluid and the solid. The mathematical model of 

this type of application is depends on the geometry of the unit and the initial temperature 

distribution within the storage material. Figure 6.2 shows the case if the matrix is a 

rectangular flat slab.  

 

 

 

 

 

 

 

 

Fig. 6.2, Cross section of the storage unit 

Since there are no temperature changes in the fluid (fluid phase change), the differential 

equation for the storage material is  

      = 1 −      Eq. 6.3 

         =            Eq. 6.4 
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By applying a dimensionless length Y=y/w (w is the slab thickness) and the Biot number 

(  =     ) the dimensionless energy equation becomes as: 

with the initial and boundary conditions of: 

Since the heat capacity of the fluid is infinite (fluid temperature is constant in x direction) 

and the thermal conductivity of the material is low, the temperature of the thermal storage 

material is the same in x direction at the same distance from the fluid-solid surface. As a 

result, the temperature gradient only exists in y direction. This also can be seen in Eq. 6.5. 

 

6.2.2. Finite fluid heat capacity   

In applications in which the working fluid is gas and has low heat capacity it is more 

appropriate to assume that the thermal energy storage unit operates with a finite fluid heat 

capacity. In this model the fluid and the thermal storage material have temperature 

gradient in x direction.   

6.2.2.1. Negligible thermal resistance  

This is the simplest model of finite fluid heat capacity model. If the thermal conductivity of 

the thermal storage unit and the convection heat transfer coefficient are very large, 

negligible heat resistance occurs between the fluid and the unit. Therefore, the temperature 

      = 1            Eq. 6.5 

for  = 0                                  = 0 

for  = 0                                  = 0 

for  = 1               =   (1 −    ) 

Eq. 6.6 



63 
 

of the fluid and the unit will be the same. As a result, one energy equation can be written 

for both the fluid and the storage material: 

 

The following dimensionless variables are introduced: 

Substituting the above variables in Eq. 6.7 yields: 

 

6.2.2.2. Schumann-Hausen model  

This model was developed and analytically solved separately by Schumann [10] and Hausen 

in 1929. The theory was applied to a practical scenario the following year when Furnas [12] 

used the solutions in a study on heat transfer from a gas stream to a bed of iron balls. 

Furnas compared the experimental output curve from the single-blow rig to the theoretical 

curve generated from Schumann’s work to determine the practical heat transfer coefficients 

and derive empirical solutions. Tong and London [16] used Schumann’s model to 

experimentally evaluate the thermal performance of six types of wire-screen matrixes and a 

packed bed of steel balls with different porosity for a range of Reynolds number. They 

obtained correlation equations of heat transfer and pressure drop for the samples.  

 ̇       +             =            Eq. 6.7 

 =    ( ̇  ) 

 =  −      −    

Θ =  ( ̇  )            

Eq. 6.8 

    +    Θ =         Eq. 6.9 
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In this model the thermal conductivity of the thermal storage material is infinite in the y 

direction (high thermal conductivity) and zero in the x direction. Therefore, the temperature 

gradient of the fluid and the heat storage material will be only in x direction.   

The following assumptions were made [76]: 

1- Adiabatic walls  

2- Step change in inlet fluid temperature  

3- Sample has infinite traverse thermal conductivity and zero longitudinal thermal 

conductivity 

4- Fluid and sample material have constant properties  

5- The gas flows at a constant speed along the sample 

6- Uniform heat transfer coefficient  

Mathematical expressions for the temperature distribution in the cross-section of a 

regenerator will be presented in the following section.  

6.2.2.2.1. Deriving the equations  

By writing the energy balance for an incremental volume of length ∆x the one-dimensional 

energy equation can be derived. The heat entering the incremental volume is equal to the 

heat leaving plus the heat accumulated within the sample.  

 

 

 

 

Fig. 6.3, The incremental volume of solid and fluid 

Fig. 6.3 shows the energy content entering and leaving the section and the portion of heat 

transferred from the fluid to the solid and accumulated in the section. Since the fluid has 
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low thermal capacity, the rate of accumulation of heat by the fluid is negligible (finite heat 

capacity of the fluid).   

The energy balance for the fluid is [76]: 

 ̇     ( ) = ℎ   ∆     −    +  ̇     (  ∆ ) Eq. 6.10 

 

The fluid temperature leaving the section is equal to:  

  (  ∆ ) =   ( ) +      ∆  Eq. 6.11 

 

The Eq. 6.10 can be simplified to: 

 ̇    ℎ        =    −     Eq. 6.12 

A similar method can be applied to the solid within the incremental volume. The left side of 

the Eq. 6.13 is the rate of accumulation of heat by the solid which is equal to the heat 

transferred from the fluid to the solid. The energy balance for the solid is: 

   ∆          = ℎ   ∆     −     Eq. 6.13 

which can be simplified to:  

        ℎ        =    −     Eq. 6.14 

 

The following dimensionless variables are introduced [76]:   

Dimensionless distance:  = ℎ     ̇     Eq. 6.15 
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Dimensionless length (NTU):    = ℎ     ̇    
 

Dimensionless time:  = ℎ             
 

Dimensionless fluid temperature:   =   −     −     

Dimensionless solid temperature:   =   −     −     

The dimensionless form of the Eq. 6.12 and 6.14 become: 

For the fluid:     ξ =   −    Eq. 6.16 

For the solid:     η =   −    Eq. 6.17 

  

Initial and boundary conditions are: 

 = 0                              = 1       = 1.0 −     Eq. 6.18 

                                           = 0                                                = 0     

6.2.2.2.2. Analytical solution 

Shown in Eq. 6.19 is analytical solution for Eq. 6.16 and 6.17 which was offered by 

Kohlmayer [77]. It was used to generate the predicated break out temperature history.  

  =       1 +         + 1 
   ×   (−1)        ! ( − 1)! ( −  )! 

      Eq. 6.19 

 

A Matlab code was written to generate the outlet flow temperature for different NTU value 

based on E. 6.19 and plotted against the dimensionless time ( ), show in Fig. 6.4. The power 

series in Eq. 6.19 is valid for   and   larger than 60.  
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Fig. 6.4, Outlet fluid temperature against dimensionless time with different NTU values.  

 

6.2.2.3. Extended Schumann-Hausen: 

A number of the assumptions in the Schumann-Hausen model are unrealistic. For instance, 

it is near physically impossible to execute an experiment that achieves an ideal temperature 

step change [75]. Moreover, in the actual experiment there is always heat loss from the test 

section which influences the outlet fluid temperature. That the wall is adiabatic is a poor 

assumption for many applications. In addition, if a large pressure drop exists across the 

regenerator the Joule-Thomson effect influences the outlet temperature. This effect is more 

common in cryogenics application. Some regenerators have large longitudinal conduction 

and neglecting this effect in the simplified model may introduce an error in the estimation 

of heat transfer coefficient. Sample holders and wind tunnel walls may also participate in 

increasing the sample core mass and may introduce an error to measuring the heat capacity 

of the regenerator. Since the development of the Schumann-Hausen model researchers 

have improved this model to more correctly represent the single-blow experiment. In the 

next section five improved models will be discussed.  
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Neglecting the longitudinal thermal conductivity could introduce large error in 

predicting the NTU value. For instance, Loehrke showed that ignoring this effect 

could introduce nearly a factor of 2 error in the NTU estimation [75]. Pucci et al. [78] 

added this effect in their model and showed that it was dominant for NTU>2.  In 

another study Cai et al. [79] showed that this effect must be included for NTU ≥3.  

• Arbitrary inlet temperature  

Since experimentally achieving a step change temperature is not physically possible; 

Liang and Yang [80], Cai et al. [79] and Mullisen and Loehrke [81] used an 

exponential variation to define the inlet fluid temperature. By knowing the 

mathematical expression of the inlet fluid temperature curve it became possible to 

have an arbitrary inlet fluid temperature instead of a step function in the previous 

model.  

• Non adiabatic wall  

Depending on the test rig design and fabrication, heat from the sample could 

dissipate through the wall and neglecting this heat loss could introduce error to the 

result. Chen and Chang [74] added the effect of axial conduction and heat flux into 

the wall in their single-blow  model by introducing the thermal conductivity of the 

wall (λ ), NTUw and Rtc (capacitance ratio of matrix to the tube wall). They showed 

that for their test rig NTU value was underestimated by 31% due to the adiabatic 

wall assumption.  

• Joule-Thomson effect   

Depending on the Joule-Thomson coefficient (positive or negative), a fluid 

temperature could drop or rise when it encounters a restriction in the flow [82]. This 

effect was introduced in the single-blow model by Chen et al. [2] and they showed 

the effect of neglecting this effect on regenerator. However, they reported for a pack 

of 200 wire mesh (No. 200) which had a pressure drop around 0.2 MPa the air 

temperature drop was only 3%. Therefore, this effect is only applicable for samples 

with high pressure drop.  
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• Transverse heat transfer in the bed  

The radial conduction in the fluid flow and the regenerator was added in the single-

blow model by Chang et al. [18]. They observed that the temperature distribution 

along the direction normal to the fluid flow was not uniform. The results from the 

new model were 8% lower than the results predicted when this effect omitted from 

the model. However, these results were for the regenerator with high NTU 

(NTU>150) and the effect would be negligible for lower NTU. In addition, tested 

samples were made of stainless steel which had nearly 4 times lower thermal 

conductivity compared to aluminum. As a result, this effect has negligible effect on 

predicted NTU result here.  

 

6.3. Single-blow model used for this study  

In this study the model which developed by Chang and Chen [18] was used to predict the 

outlet temperature history. However, as explained in the previous section the effect of 

radial conduction within the sample and the Joule-Thomson expansion effect were omitted 

because of their negligible effect for this type of regenerator. The samples used in this study 

were made from aluminium which had high thermal conductivity. Therefore the radial 

thermal conductivity effect would be negligible. In addition, Joule-Thomson expansion 

effect was insignificant because of relatively low pressure drop across the samples. The 

following PDEs are used to model the outlet temperature history:  

For the fluid, 

     +       −    +       −    = 0 Eq. 6.20 

 

For the regenerator,  

     +         +       −    = 0 
Eq. 6.21 
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For the side wall, 

     −             +           −    = 0 
Eq. 6.22 

 

Dimensionless variables: 

   =                =       ̇            =      ̇           =  ̇         

Initial conditions: 

 = 0,     ( ) =   ( ) =   ( ) = 0 

Boundary conditions (Neumann type): 

 For t>0 

 = 0,       = 1 −  (    ⁄ ) 

 = 0,         = 0,         = 0 

 = 1,         = 0,         = 0 

This is a system of three partial differential equations (PDE) with two independent variables 

(x and t), there are three dependent variables, Tf (x, t), Tw (x,t) and Ts(x,t) to be determined. 

Since the PDEs are parabolic the solution was marched forward in time from the initial 

condition and guided and modified by the boundary conditions [83] (Fig. 6.5b).  
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6.4. Numerical scheme 

6.4.1. Discretization 

Since Eq. 6.21, 6.22 and 6.23 are parabolic partial differential equations, first an explicit 

method was used to solve them for the solution domain. Then the results were recalculated 

by an implicit method (The Crank-Nicolson) to improve their accuracy. Finally, the results 

were evaluated by the Kohlmayer’s [77](Eq. 6.19) analytical solution.    

To numerically solve the Eq. 6.21, 6.22 and 6.23, first the physical domain was discretized 

into a difference grid. Since the samples of interest here have high thermal conductivity (so 

that there is no traverse temperature gradient), the solution domain was discretised only in 

the flow direction (x) (Fig. 6.5b). It was assumed that there is no heat transfer through the 

wall.        

  

 

 

 

Fig. 6.5a, Position of the sample and holder  Fig. 6.5b, One-dimensional physical domain 

Each part of the partial differential equations (PDE) was approximated by algebraic finite 

difference approximations (FDAs). The second-order centred-space approximation was used 

to determine          (Eq. 6.23) and the first-order forward-time approximation was used to 

give       and       (Eq. 6.23 and 6.24). The first-order forward-space approximation was used 

for 
      (Eq. 6.25). 

      =      − 2   +      Δ   
Eq. 6.23 

    =      −    Δ  
Eq. 6.24 
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    =      −    Δ  
Eq. 6.25 

The FDAs (Eq. 6.23, 6.24 and 6.25) were substituted into the PDEs (Eq. 6.20, 6.21 and 6.22) 

to obtain algebraic finite difference equations (FDE).  

      −     Δ +         −      +          −      = 0 
Eq. 6.26 

      −     Δ −          − 2    +       Δ   +        −      = 0 
Eq. 6.27 

      −     Δ −    ×          − 2    +       Δ   +    ×          −      = 0 
Eq. 6.28 

 

For the boundary conditions (by the first-order forward- space approximation) at  =0     1: 

      −     Δ =     −     Δ = 0         ⎯⎯⎯    =         =       
By knowing the initial temperature of the fluid at time step 1 (    ), the sample and wall 

temperature at time 2 (    and     ) can be calculated by Eq. 6.27 and 6.28. Knowing the 

value of     and     ,       can be calculated from Eq.18. These steps were depicted in Fig. 6-6. 

In this figure the stars show the solution at each point for the sample (blue), wall (green) 

and fluid (red); and the circles represent the required data for finding the solution of each 

stars.   

As it can be seen from the Eq. 6.27 and 6.28 the solution at each point at time level l+1 

depends only on the solution at neighbouring points at time level l. This finite difference 

method is called an explicit method because the solution at each point is specified in terms 

of the known solution at neighbouring points at previous time step [83].  
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Fig. 6.6, Description of the explicit method used of the mode 

6.4.2. Convergence and Stability   

In explicit method if Δx and Δt approach zero, the results approach the true solution. 

However, this also increases the computation cost of the numerical solution. Setting Δx and 

Δt too large reduces the computation cost but the solution may not be stable or even 

converge. In order to have a stable and convergent numerical solution,        , which is in 

some text book called diffusion number [84], should be equal or smaller than 0.5. It is also 

reported that that setting the diffusion number, di, to 0.5 could stop growing the errors but 

the result may oscillate. To minimise the error oscillation di should be smaller or equal to 

1/4. It is also suggested that setting di ≤1/6 minimised the truncation error [85]. Depending 

on the value of   for each sample, ∆x and ∆t were calculated to ensure the convergence and 

stability of the solution. An example of this calculation presented in Appendix 2.   

6.4.3. The Crank-Nicolson Method  

For further correction, the Crank-Nicolson method was applied to Eq. 6.21 and 6.22 and 

iterated several times until Ts, Tw and Tf converged. The Crank-Nicolson is an implicit method 

which is consistent and unconditionally stable. However, in this method the special 

derivative is approximated at l+1 time level and solving the equation would not be possible 

without knowing the values at l+1 time level. Unlike the previous method, the Crank-

Nicolson method needs eight unknowns (marked by doughnut shapes) at l and l+1 level to 
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calculate Ts, Tw and Tf (marked by star shapes – green for solid, blue for wall and red for fluid 

temperature). Therefore, unlike the implicit method, the equations cannot be solved in this 

method without knowing the variable at level l+1. Consequently, this method was applied to 

the initial predicted value which was calculated by the first method to further improve the 

results. Similar procedure was also applied to this model by Chen and Chang [86] and Chen 

et al. [2]. 

      =     −  2 Δ Δ  +    . Δ               +     2  +  Δ Δ                 +               +       +       2  
+    . Δ        −     2  = 0 

Eq. 6.29 

      =     −                                    +                                                           +
   . Δ .                 = 0 

Eq. 6.30 

 

 

 

 

 

 

 

 

Fig. 6.7, Description of the Crank-Nicolson method used for correction 

 

In this method the circle with the star represented the value of that point which was 

previously calculated by the explicit method. The equations 6.21 and 6.22 were iterated 

until the values were converged whilst for Eq. 6.20 the explicit method was used.    
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The numerical solution was tested against the analytical solution presented in section 

6.2.2.2.2. For NTU=10, ∆τ=0.01 and ∆x=0.01 the outlet temperature was 0.6% lower than 

the analytical result and by setting ∆τ=0.001 the result was only improved 0.1%.     

6.5. The effect of different variables on the outlet temperature  

To understand the impact of the modelling assumptions and sample properties a parametric 

study was run using the final model described above. The temperature history curves were 

characterised by their maximum gradient (Smax) which has been shown to have a unique 

relationship with the NTU of the sample [77].  Better performing regenerators will have 

larger values of Smax.  

6.5.1. Relationship between the maximum gradient (Smax) and NTU 

 

  
Fig. 6.8, The temperature response and 1st 

derivative of the curve. 
Fig. 6.9, Smax of the response curve for different 

NTU. 

Fig. 6.8 demonstrates the outlet temperature curve for NTU = 10 (NTUw=0.001, λ=0.001, 

λw=0.001,   =0.0001 and Rtc=0) with the first derivative from which the maximum gradient 

was obtained. As the NTU was increased (either by increasing the sample specific surface 

area or reducing the flow rate) the break out curve gradient becomes steeper resulting in an 

increase in Smax.  
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6.5.2. Heat loss from the walls 

  
Fig. 6.10, The effect of wall NTU on Smax of the 

sample.  
Fig. 6.11, The effect of NTUw on estimated NTU. 

The heat flux into the tube wall can be modified by adjusting NTUw, Rtc and kw. Heat lost to 

the wall reduces the thermal performance of the sample. Shown in Fig. 6.10 is the impact of 

increasing NTUw on Smax, all the other variables were kept constant (NTU=10, Rtc=1 , λ=0.001, 

λw=0.001 and    =0.0001). The maximum gradient decreases as NTUw increased. Thus the 

heat loss from the wall will reduce the performance of regenerators. The maximum 

gradients for three different NTUw values are shown in Fig. 6.11. The selected values were a 

realistic value for heat lost through the wall based on the value achieved from the 

experimental results. Also shown in Fig. 6.11 is the impact of different NTUw values on 

predicted NTU.   

6.5.3. Longitudinal heat transfer effect 

  
Fig. 6.12, The effect of sample’s ND effective 

axial thermal conductivity on Smax. 
Fig. 6.13, The effect of sample’s ND effective 
axial thermal conductivity on estimated NTU. 

The longitudinal heat transfer depends on both the sample material and its method of 

manufacture. It can be modified in the model by changing the thermal conductivity; this is 
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shown in Fig. 6.12, where Smax decreases as the dimensionless effective thermal conductivity 

increases. Stainless steel which has a low thermal conductivity will perform better than 

samples manufactured from aluminium which was used here.   Moreover, in Stirling engines 

the regenerator connects the high and low temperature parts of the engine and using 

regenerators with low axial conduction reduces the thermal bridging effect form the hot to 

cold part. Any heat leakage from one side to the other part reduces the overall efficiency of 

the engine. Fig. 6.13 shows that like NTUw neglecting λ in the model will result in as 

underestimated of the sample NTU. 

6.5.4. Sample heat capacity ratio effect  

  
Fig. 6.14, The effect of capacity ratio of sample 

to the wall on Smax. 
Fig. 6.15, The effect of capacity ratio of sample to 

the wall on Smax. 

The effect of capacity ratio (Rtc) on the maximum gradient is depicted on Fig. 6.15. It shows 

by increasing the sample’s heat capacity and reducing the wall heat capacity the maximum 

gradient increases. The negligence of this effect would yield an overestimation of the NTU.  

6.5.5. Inlet temperature profile effect 

Shown in Fig. 6.16 is the effect of inlet temperature profile on predicted maximum gradient, 

(Smax) results. The graph shows the impact of reducing the inlet temperature response time 

and keeping the other variable constant (NTU=10, NTWw, Rtc=1.1, λ=0.001 and λw=0.001). 

Next graph, Fig. 6.17, shows the inlet temperature profiler at various response times. These 

data were calculated by   = 1 −  (   ⁄ ) which was given earlier as the boundary condition 

for inlet air profile. This profile depends on the test rig performance and it means the time 

that takes the inlet temperature reaches the maximum temperature.       
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Fig. 6.16, The effect of inlet temperature profile 

on Smax. 
Fig. 6.17, The inlet temperature profile at various 

response times. 
  

 

Fig. 6.18, The effect of inlet temperature profile on predicted NTU 

Predicted NTU value can be underestimated by neglecting the inlet temperature profile in 

the single-blow. This can be seen in Fig. 6.18. For instance, if the response time of the rig is 

0.5 and sample has maximum gradient of 0.8. The predicted NTU with a near step-change (   =0.001) will be 7 but the actual NTU value of the sample by considering the response time 

would be 18. Therefore, for accurate NTU prediction the inlet flow temperature should be 

included in the prediction model.  

6.6. Matching technique 

Once the appropriate model is defined and solved, outlet fluid temperature can be 

predicted by the model.  Assuming the model parameters have been correctly accounted for 

(e.g. heat loss to walls) the heat transfer coefficient can be found by matching the 

experimental temperature curve with curve predicted by the model. Matching the entire 

curve is practically very difficult due to experimental errors and modelling uncertainties. 

Therefore researchers have developed several methods to match the measured and 
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predicted curve in the single-blow method.  A list of the popular matching methods will be 

given in this part and their strengths and weakness will be discussed.    

6.6.1. Maximum gradient  

A unique relationship existed between the maximum slopes of the response curves and the 

number of heat transfer units (NTU). This method called “maximum slope technique” and 

developed by Locke [13]. In this technique the maximum first derivative of the experimental 

data is matched with the predicted data from the model. This method reduces the 

computational effort in the analysis by reducing the matching to a single point. Coppage and 

London and Tong and London [14,16] both used the maximum gradient technique to match 

their experimental and predicted results. However, Kohlmayr [77] pointed out that this 

method was not suitable for NTU<2 since the outlet fluid temperature had no point of 

inflection. He extend the matching for lower NTU range (0.5 <NTU< 5) by introducing a 

method called centroid.  

6.6.2. Selected point matching technique 

As it was explained before, matching the entire curve is not always possible. Therefore, part 

of the curve or data points at certain interval can be used to match the curve. For instance, 

Darabi [87] introduced an alternative method to the Locke method. Instead of using entire 

breakthrough curve, he measured the time interval between 20 and 80% of dimensionless 

gas temperature and related this to the relationship called shape factor-NTU (Eq. 6.31). 

However, this method is only valid for an ideal step input and NTU range from 1.8 to 20. 

Liang and Yang [80] proposed a technique called selected point matching technique, which 

later developed by Cai et al. [79], to match the curves by matching selected points at 

different times on the response curve. In this method the measured value selected at a 

certain time matches with the corresponding theoretical value. When the difference 

between these value is within an acceptable value (<0.005), the theoretical value of NTU is 

take to be the result at that specific time. Then a new point at a larger time is selected and 

the procedure is repeated for minimum of five points. The arithmetic mean value of the 

calculated NTU is considered to be the NTU value of this test run [79].  
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  =  ̇   ∆             
Eq. 6.31 

 

6.6.3. Differential fluid enthalpy method (DFEM) 

A matching technique called the differential fluid enthalpy method (DFEM) was developed 

by Baclic et al [88,89]. In this method both the temperature readings, upstream and 

downstream of the sample, were measured and intergraded with respect to time. These 

values were multiplied to fluid capacity rate and subtracted from each other to obtain the 

differential fluid enthalpy change up to a particular instance. This value then related to the 

parameters of the model to determine the NTU of the sample for arbitrary inlet fluid 

temperature variations. However, this analysis requires definition of the apparatus 

parameters such as NTU of fluid-to-wall, time constant of thermocouples, core matrix 

specific heat capacity, maximum fluid temperature rise and the time constant of the 

exponential inlet temperature signal. As a result, defining each of these parameters could 

introduce lots of uncertainties to the final result. 

6.6.4. Direct curve matching 

In this method the entire experimental and predicted data are matched by minimizing the 

least-square error. Heggs and Burns [90] analyzed their experimental data by four 

commonly used data reduction techniques, direct curve matching (least squares method), 

the maximum slope, shape factor and DFEM. They reported that NTU predicted by using the 

least squares method and DFEM were consistent but over predicted. However, the example 

of inlet and outlet temperature in this paper showed that they failed to generate a good 

step change and the inlet temperature increased gradually during the experiment and this 

could affect the outlet temperature curve. Any small variation in the outlet temperature 

curve is magnified by the first derivation therefore consistency of the maximum gradient is 

highly depends on the quality of the inlet temperature curve as it was shown in the section 

6.5.5.  
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Loehrke [75] showed that mismatching the model and experimental result may predict 

different results with different matching method for the same heat exchanger. He 

generated the data from an analytical model and matched the data with the three matching 

technique (curve matching at multiple points, maximum gradient and DFEM) under different 

modeling assumption such as non-ideal inlet fluid temperature history, longitudinal 

conduction, variable heat transfer coefficient and effective core mass. He presented the 

effect of common mismatching between the model and the experiment. He also provided 

guidelines for determination of the potential error that could occur because of various 

mismatching between the experiment and the model. He stated that even if two different 

matching methods yielded similar estimates these estimates may be far from correct.  

In more recent years, researchers [2,18,22,91,92] either used both the maximum gradient 

technique and curve matching at multiple points or just implement the later method. 

Therefore, the maximum slope method and whole curve matching were used in this study 

to obtain the heat transfer coefficient. The Joule-Thomson expansion effect was negligible 

for the samples tested for this experiment (low pressure drop) and excluded from the model. 

Since the effect of radial conductivity was only 8% for NTU=150 and samples for this study 

were small, this effect was not added in the model. The effects of heat flux from the sample 

to the sample holder, arbitrary inlet flow temperature and axial thermal conductivity were 

added in the model.     
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Chapter 7- Thermal test Apparatus 

7.1. Experimental set-up   

In order to measure the heat transfer rate a test apparatus was designed and manufactured. 

The single-blow method explained in the previous chapter was used for analysing the 

experimental data.  The rig consists of a heating system, two fans, an orifice plate and the 

test section. All fittings, valves and pipes were made out of ABS for its low thermal 

conductivity. The rig was tested for leaks by pressurising it to 0.3 bar, which it held for 30 

min.  

 
 
 
 
 
 
 
 
 
 
Fig. 7.1, A schematic diagram of the test rig used for the thermal and pressure drop measurements. 

The suction power needed for the experiment was provided by two 1000 W high speed 

centrifugal fans placed inside a box, see Fig. 7.3a. Three fans were installed in the box but 

only two of them were used and the third fan was a redundant. The fan speed was 

controlled by adjusting the input current using an 8 Amp Variac variable transformer. It was 

found that at low current, the fans speed fluctuated and disturbed the flow rate. This was 

avoided by running the fans at high speed and controlling the flow by a ball-valve connected 

to the box (Fig. 7.3a). The valve reduced the negative pressure inside the box and lowered 

the suction power. To fine tune the flow rate the fans speed were adjusted by the Variac.  

Moving from right to left, atmospheric air was sucked in by the fans and passed an inline AC 

heater. Having a constant inlet air temperature is essential for accuracy of the single-blow 

method. In order to provide this, a heating system was designed and manufactured to 

providing a constant inlet air temperature. The inline heater (AHF-14240 Omega) was used 

for heating the incoming air up to 20°C above ambient. On/Off control was used to control 
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the heater, which is powered by a 240V alternating current (AC). The heater was controlled 

by adjusting the duty cycle of the power supply. Duty cycle is the ratio of the pulse duration 

to the pulse period. In heaters, 25% duty cycle means the power is on 25% of the time and 

off 75% of the time (Fig. 7.2). Since the thermal mass of the heater element and the 

incoming air were low, a shorter cycle was required to generate constant temperature. 

 
 
 
 
 
 
 
 
 
 

Fig. 7.2, Duty cycle is an expression of the On time to the Off time.   

A LabView code was developed to generate the variable duty cycle pulse. This was linked to 

a PID code that controlled the heater temperature by adjusting the duty cycle. Since the AC 

current alternates at 50 Hz, the heater cycle was synchronised with the main current by 

using a Zero-Crossing Solid-State Relay. This type of relay switches the relay on or off when 

the AC mains voltage reaches the zero-crossing point of the sine-wave. The cycle for this 

experiment was set at 1/7th s (7Hz). The PID sent the signal from the DAQ card to the relay 

and controlled the temperature by adjusting the duty cycle of the signal. A 0.5 mm K-type 

thermocouple, positioned after the heater, provided the feedback loop to the PID code.   

After the heater, air flowed through a stack of 10 layers of wire-mesh (No. 20) to condition 

the flow. The flow then passed through a 1500 mm length of pipe (2 inch nominal pipe) to 

fully developed the flow before reaching a calibrated flanged-type orifice plate that was 

used to measure the flow rate. The pressure tappings and their position were compatible 

with BS EN ISO 5167-1:19979. The pressure drop was measured by a differential pressure 

transmitter (Furness Controls - Model 332-4W) with an accuracy of ±0.25% (reading). To 

calculate the flow rate, the air density was calculated from the atmospheric pressure, 

temperature and humidity of the air after the heater. 
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Fig. 7.3a, A view of the fan box with the ball-

valve.  
Fig. 7.3b, A view of the test section, bypass valve 

and the three-way valve with rotary actuator 
 

To generate a repeatable temperature step change a three-way valve was installed to direct 

the incoming air either through the test section or the bypass. To operate the valve swiftly 

and at constant speed, a rotary pneumatic actuator (Norgren M/60284/90) was mounted on 

top of the valve and controlled by a solenoid valve, which could redirect the incoming air in 

less than 0.15 seconds (Fig. 7.3b). Since there was less restriction through the bypass than 

the test section, switching the flow from the bypass to the sample resulted in a sudden 

reduction in the air velocity. Due to the response time of the PID controller and heater, it 

took several seconds for the controller to stabilise the temperature. This significantly 

affected the profile of the inlet flow temperature.  To eliminate this problem a globe valve 

was placed in the bypass and the flow rate adjusted such that it was similar to the flow rate 

though the sample.  

Porous matrix samples were placed inside the test section in line after the three-way valve. 

The sample holder can be attached or detached from the rig by the flanges at both end of 

the holder. The flanges should be fastened by a torque meter up to 6 N/m to ensure the 

airtightness of the rig. Before placing a sample in the holder its circumference was wrapped 

in PTFE tape to seal the gaps between the sample and pipe wall and reduce the heat loss 

from the sample to the pipe wall. 

The temperature before and after the sample was measured using two K-type butt-welded 

unsheathed 0.25 mm thermocouples which were positioned at the centre of the pipe. Fine 

thermocouples were used to ensure that the transient thermal response of the 
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thermocouple did not influence the results. The time constant of the test thermocouples 

was found to be 0.003 seconds at an air velocity of 20 m/s. Two 2-wire temperature 

transmitters (Farnell 300TX with ±0.2% accuracy of thermocouple range) were used to 

amplify and linearise the signals. 

A 16-bit PCI-6221 National Instrument (NI) data acquisition card (DAQ) was used to receive 

and send the signals. A NI LabView code monitored and logged the data, and a PID LabView 

code controlled the On/Off switching of the heater. Experiments were performed at five 

different air velocities (from 1 to 6 m/s) and for each velocity four tests were conducted. 

7.2. Experimental procedure  

Each sample was wrapped in with PTFE tape and pushed in the holder. Then the holder was 

placed between the flanges and nuts were tightened up to 6 N/m. The test rig was run for 

30 minute to warm up the rig for ensuring constant inlet air temperature. Once the air 

temperature stabilized, the three-way valve directed the air to the sample and the air flow 

adjusted to the desirable flow rate by changing the fan speed. After adjusting the flow 

through the sample, the hot air was redirected to the bypass valve by the three-way valve. 

Then the flow rate matched with the air flow passing through the sample. This was done 

since a sudden change in flow rate affected the heater’s PID controller and it needed time to 

readjust the air temperature based on the new flow rate. Therefore, the air flow through 

the sample and the bypass valve were matched to prevent this sudden change in air flow 

rate. 

The sample then was cooled to the room temperature by sucking the room air into the 

sample. After cooling the sample, the three-way valve switched the air from the bypass to 

the test section. This was done by sending an electric signal to a solenoid valve which 

operated the three-way valve. The signal also triggered the DAQ card to start logging the 

data. The air flow rate and temperature history across the sample were measured till the air 

temperature after the sample did not changed with time. After logging the data, the process 

repeated for the next flow rate.    
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Chapter 8 – Thermal Data reduction  

8.1. Experimental temperature data  

Shown in Fig. 8.1 is an example of the temperature data recorded for the Mid 2 sample. The 

graph shows the step change temperature change applied to the sample and the resulting 

outlet temperature response. Both temperature data had electronic noise but inlet 

temperature had more fluctuation than the outlet temperature. This could be the effect of 

turbulence and circulation of the air flow after the three-way valve. However, the air flow 

turbulence was conditioned by the sample and the outlet temperature had mainly 

electronic noise. The outlet temperature can be seen to be lower than the inlet temperature 

even after 40 seconds. The reason of this temperature difference was the heat loss from the 

sample to the wall. The heat loss was estimated by matching the temperature curve with 

the curve generated by the model and will be discuss.   

 
Fig. 8.1, A typical inlet and outlet temperature data recorded from the test rig. 

 

8.2. Non-dimensionalising data (time-temperature) 

Experimental data, time and temperature should be non-dimensionalised before matching it 

with the predicted data. Dimensionless time can be calculated by Eq. 8.1. The data from the 

experiment showed that there was some discrepancy between the trigger time and opening 

the three-way valve. The reason for this variation was thermal expansion of the valve 
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components. Although the same signal was sent to the DAQ card and the valve, sometimes 

the valve jammed and delayed the opening time. During the experiment, the valve 

components were heated by the incoming air and as a result of this they expanded which 

consequently increased the operating time. This variation was rectified by subtracting the 

time from the time before rise of the inlet air temperature. This will be discussed in section 

8.6.2. In addition, the possible effect of this delay on inlet temperature profile was 

compensated by estimating inlet temperature response time which will be discussed later in 

this chapter. 

  =  ̇          
Eq. 8.1 

 

The air temperature was non-dimensionlised by Eq. 8.2. In this equation       is the 

maximum air temperature before the sample (blue line in Fig. 8-1) and    is the initial 

temperature of the air inside the sample. The inlet air temperature was averaged for 

calculating       and the minimum outlet temperature was used as   .  

  =   −       −     Eq. 8.2 

8.3. Smoothing the data  

Once nondimensionalised, the temperature data was smoothed. Since the first derivation of 

the temperature data is going to be calculated, even a moderate amount of noise could 

severely corrupt the result. Smoothing was performed using the Matlab Curve Fitting 

Toolbox.  

The data from the experiment showed that occasionally they contained outliers which 

existed as a result of electronic noise. The smoothed values can become distorted, and not 

reflect the behaviour of the bulk of the neighbouring data points if these points do not 

remove from the bulk data. To overcome this problem, the outliers were eliminated before 

applying the above method. The outliers were found automatically by defining the upper 

and lower limits (10% from the mean) of the data based on their neighbouring data. If the 

data point was out of the range it was eliminated from the data.  
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After eliminating the outliers Moving Average method was used to smooth the data by 

replacing each data point with the average of the neighbouring data points which were 

defined within the span. The process was done by the following equation [93]: 

   ( ) = 12 + 1 ( ( +  ) +  ( +  − 1) + ⋯ +  ( −  )) Eq. 8.3 

where    ( ) is the smoothed value for the ith data point, N is the number of neighbouring 

data points on either side of     ( ), and the span is 2N+1.  

 

Fig. 8.2, A typical dimensionless temperature data smoothed by the Moving Average method  

8.4. Curve fitting the data 

Following the use of the Moving Average method further smoothing was necessary to make 

it possible to perform the first derivation. To do this a curve was needed to fit through the 

data to ensure that the first derivatives are continuous at each data point. Nonparametric 

fitting (splines) were used for this as it was not necessary to interpret the curve coefficients.    

A spline function is method of applying low-order polynomials to subsets of data point. The 

polynomials between the points can be as simple as a straight line (Linear Spline) or a third-

order curve. To ensure that the nth derivatives are continuous at each point, a spline of at 

least n+1 order must be used. Third-order polynomials or cubic splines that ensure 

continues first and second derivatives are most frequently used in practice and used for this 

study [84].    

Once the data were imported to the software the level of smoothness (order of the spline) 

could be adjusted by varying the parameter p. This changed the curve from a least square 
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straight-line approximation (p=0) to a cubic spline (p=1) interpolant. The following equation 

was used in Matlab to fit the spline curve to the data[93].   

  (  −  (  ))  + (1 −  )  (      )    
Eq. 8.4 

  and     are the data point and s is the function applied to the data. 

After fitting the curve through the data, the goodness of the fit should be evaluated. The 

Curve Fitting Tool provides the goodness of fit measures:  

• Residuals 

• Goodness of fit statistics  

The software provides both numerical and graphical measures. The goodness of the fits 

statics are numerical measures and the residuals are graphical measures. The graphical 

measure is more beneficial than the numerical measure since it allows the user to view the 

entire data set at once. The numerical measures are more narrowly focus on a particular 

aspect of the data such as The Sum of Squares due to Error (SSE) or R-square.  

 

8.4.1. Residuals 

The difference between the response value y and the predicted response value    is 

mathematically called the residual for a specific predictor value.  

 =  −    Eq. 8.5 

Here the residual is the difference between the fitting and the dimensionless experimental 

data. If the residual approximate the random errors it suggests that the data fits well with 

the fitting. However, if it displays a systematic patter, it is a clear sign of poorly fitted curve. 

Fig. 8.3 shows the dimensionless data (blue dots), smoothed data (green dots) and the 

fitting curve (red line). A graphical display of the residuals is also shown in Fig. 8.3 for a short 

period of time. The graph shows that this part of the data fit well with the curve and as a 

result the residuals appeared randomly around zero.      
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Fig. 8.3, An example of a fitted curve (red line) to the smoothed data (green dots), the dimensionless 
data (blue dots), the residuals error of the fitted curve and the smoothed data 

 

8.4.2. Goodness of Fit Statistics 

In order to evaluate the goodness of the fit statistic, four methods which were provided by 

The Curve Fitting Toolbox were used for this study: 

8.4.2.1. The sum of squares due to error (SSE) 

Sum of Squares Due to Error measures the total deviation of the response values from the 

fit to the responses values. A fit that produces SSE closer to 0 is a better fit.   

   =  (  −    )  
    

Eq. 8.6 

8.4.2.2. R-Square  

This is the square of the correlation between the experimental data and the data from the 

fitted curve.  R-square is defined as the ratio of the sum of squares of the regression (SSR) 

and the total sum of squares (SST). 
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 −       =       = ∑ (   −   )     ∑ (  −   )      
Eq. 8.7 

  

R-square value could be any number between 0 and 1 and a value closer to 1 indicating a 

better fit. For instance, an R-square=0.92 means that the fitting covers 92% of the total 

variation in the data about the average.   

For the medium pore size sample in Fig. 8.3 SSE=1.986E-4 and R-square=1.000.   

 

8.5. Differentiating the curves: 

In order to find the maximum gradient of the curve, the first derivative of the curve should 

be calculated. The maximum value of the first derivative or inflection point of the 

temperature is the maximum gradient of the data.  

 
Fig. 8.4, An example of smoothed data with the 1st derivative of the data 

 

The first derivative of the curve was calculated in Matlab by a built in function 

“fx=differentiate(FO, X)”. This function applied the centred difference equation to 

numerically calculate the first derivative: 

    =  ( + Δ ) −  ( − Δ )2Δ  
Eq. 8.8 
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An example of the maximum gradient and the fitted curve can be seen in Fig. 8.4. Even after 

careful smoothing the data and fitting the curve, fluctuations were noticeable after the 

inflection point. This was due to slight variations in the fan velocity and the heater 

temperature fluctuation. For this case the first derivation was carried out for entire data and 

it can be seen that for the first 0.2 seconds the first derivation decreased before increasing 

till the inflection point. This decreasing was happened due to slight temperature difference 

between the sample initial temperature and the air trapped between the three-way valve 

and the sample. To avoid the effect of this on the fitted curve the first 0.2 seconds of the 

data was removed before fitting the curve.   

8.6. Predicting outlet air temperature with the model  

In order to predict the outlet temperature history accurately with the single-blow model 

samples physical properties should be estimated correctly.  

8.6.1. Inlet air temperature response  

It is physically difficult to execute an ideal step change but as it can be seen from the Fig. 8.1 

the test rig generated an acceptable step change and the inlet temperature was constant for 

the entire measurement. As it discussed in the Chapter 6, the inlet fluid temperature history 

was characterised as an exponentially increasing function of time:   

  (0,  ) = 1 −       Eq. 8.9 

By applying the above equation the effect of deviating from an ideal step can be 

compensated in the prediction model. By fitting a curve generated by the Eq. 8.9 to the inlet 

air temperature history   can be calculated. Fig. 8.5 shows a typical inlet temperature 

history and a curve with  =0.007.  The temperature measurement started 0.27 s before 

opening the valve to record the initial temperature of the fluid and sample. The inlet 

temperature response was calculated for each experiment and the results were applied to 

the model.     
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Fig. 8.5, A typical inlet flow temperature profile and a curve fitted to model the data 

 

8.6.2. Dimensionless effective thermal conductivity 

Majority of the parameters needed for the model can be measured or estimated with 

reasonable accuracy. However, one of the parameters, effective thermal conductivity of the 

sample, was difficult to estimate.  

As Aichlmayer and Kulacki [94] explained in their introduction to measuring the thermal 

conductivity of the packed beds, predicting the effective thermal conductivity of saturated 

porous media is one of the greatest unsolved problems in heat transfer science despite 

decades of experimental and theoretical work. They argued that the problem is unsolved 

because the effective conductivity is a phenomenological characterisation of a solid-fluid 

medium rather than a thermo-physical property. As a result, it is characterised in 

macroscopic terms such as the thermal conductivity and volume fraction. However, the 

effective thermal conductivity also depends on the geometry and arrangements of sold-fluid 

medium; and generally these information are not available from experiments. Consequently, 

for accurate measurement of this parameter one should measure it experimentally and this 

is beyond the scope of this research. However, in order to run the model this parameter 

should be estimated. 

To the best knowledge of the author, the effective thermal conductivity of this type of metal 

foam has not been carried out yet. Majority of the studies have been done on packed beds, 
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sintered metals and cell type metal foams. The structure of the metal foam manufactured 

for this study was different to cell type metal foam and sintered metal balls but it has 

similarities to both of them. For instance, cell type metal foam has high porosity (80%-95%) 

but sintered metal balls has low porosity (40%-55%) and the foams manufactured for this 

study had 63% porosity. Therefore, results from both types of porous media were studied to 

estimate the effective thermal conductivity of the foams.  

  =   (    )(1 −  ) .   
Eq. 8.10 

  = 0.35    + (1 −  )   + 1 − 0.35    + 1 −      
Eq. 8.11 

Boomsma and Polikakos [95] developed a geometrical effective thermal conductivity model 

of a saturated cell type metal foam, based on the idealised three-dimensional basic cell 

geometry of a foam, the tetrakaidecahedron. They validated their model with 

Bhattacharyaet al. [4] empirical correlation (Eq. 8.11). Both results and the results from the 

Alexander [96] [97] model were plotted in Fig. 8-6. As it can be seen from the graph, the 

data for both models were extrapolated beyond the porosity of cell metal foams and 

sintered metal balls. This was done to cover the porosity (63%) of the foams for this study. 

The result from sintered metal balls (ke=18.4) was lower than the results from cell type 

metal foam (ke=25.6). Since the foams had the structure between these porous media, an 

average value from both models at 63% porosity was estimated for the foams effective 

thermal conductivity. The experimental estimated value of the metal foams will be 

calculated in section 9.3 and the results will be compared with both sintered metal balls and 

cellular metal foams correlations. 

After estimating the effective thermal conductivity of the samples, dimensionless effective 

thermal conductivity can be calculated from Eq. 8.11. Dimensionless effective thermal 

conductivity of the wall was negligible and did not have an effect on thermal results.  

 =       ̇      Eq. 8.11 
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Fig. 8.6, Estimated effective thermal conductivity of the metal foams plotted with the correlation 

results from other studies 
 

 

8.6.3. Heat capacity ratio  

The ratio of sample’s heat capacity to wall heat capacity ratio is called heat capacity ratio. 

This value was calculated by estimating length of the sample holder based on sample length 

and wall thickness. In this experiment the mass of PTFE tape which was wrapped around the 

sample was negligible compared to the mass of the holder. Therefore the ratio calculated 

based on the sample and wall mass.    

   =            
Eq. 12 

 

8.7. Estimating heat transfer coefficient 

Once the all required parameters for the model were calculated, the outlet flow can be 

predicted by guessing the NTU and NTUw values. The first derivative of the predicted data 

was calculated and if both, the maximum gradient and maximum exit flow temperature, 

matched with the experimental data, the guessed results represented the sample NTU value. 

If the values did not match, the process iterated till the data matched within the error of 

±0.1.   
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After matching the maximum gradient and the maximum outlet temperature, next step 

would be matching entire curve. This step was done to check the accuracy of the results 

from the maximum gradient.   
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Chapter 9 – Thermal results 

9.1. Matching experimental and prediction data 

As it was discussed in chapter 8, two methods were used to match the model and 

experimental data. It was found that the maximum gradient method was faster and easier 

than fitting the entire curve. However, the sample’s effective thermal conductivity (ke), heat 

capacity ratio (Rtc) and heat loss to the wall (NTUw) should be known for an accurate value of 

NTU to be obtained. This is less of a problem for samples with negligible ke and NTUw. A 

classic example of this type of sample is a pack of stainless steel wire mesh. This type of 

sample has very low contact surface area (wire mesh screen edges) between the wall and 

the sample which significantly reduces the heat loss to the wall. In addition, stainless steel 

has relatively low thermal conductivity and high heat capacity. As a result, the maximum 

gradient method can be applied to estimate NTU for this type of samples by assuming ke 

and NTUw are negligible.   

 
Fig. 9.1, Experimental and predicted outlet air temperature history of the stainless steel wire mesh 

sample at 2.65 m/s air velocity. 
 

Shown in Fig. 9.1 is the predicted result (red line) which was collapsed on the experimental 

data (blue line) for a wire mesh sample at air velocity of 2.65 m/s. The graph shows that the 

outlet air temperature reached the inlet air temperature, indicating that this sample had 
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negligible heat lost to the wall. To obtain the predicted temperature curve Rtc, ke  and NTUw  

were assumed negligible.  

However, this is not the case for the metal foam samples. These had large heat transfer 

surface area between the sample and the wall which increased heat transfer loss to the wall 

even with PTFE tape wrapped around the sample. Moreover, they were made from 

aluminium which has high thermal conductivity and has low heat capacity (for the same 

volume) compared to stainless steel. In other words, Rtc, ke and NTUw should be known to 

predict the outlet temperature history profile.  

 In Chapter 8 (section 8.6.2) the effective thermal conductivity was estimated using a 

correlation which did not fully represent this type of metal foam hence it only gave a crude 

estimation.  

 

Fig. 9.2, Experimental outlet air temperature history (sample Small 3 at 2.64 m/s air velocity) fitted 
with two different matching methods and different ke 

Show in Fig. 9.2 is the effect of using inaccurate ke on NTU value predicted with the 

maximum gradient method.  The blue line is the outlet air temperature history for the Small 

1 sample at 2.64 m/s. The red line is the 1st derivation of the experimental data and its 

maximum value was 0.73. The sample NTU value then can be predicted by matching the 

maximum gradient of the experimental data and predicted data. The black dashed line is the 
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predicted temperature curve which was predicted by the model based on the maximum 

gradient and maximum temperature of the experimental data, samples and Rtc=1.57 value 

and assuming that the sample ke is 0.1 W/(m.K). In this example all the modelling inputs 

were correct apart from the ke assumption. Based on this wrong ke assumption, NTU=9.34 

and NTUw=0.23 were wrongly estimated. The graph clearly shows that predicted curves, 

dashed red curve (correct match) and the dashed black curve (wrong match), had the same 

maximum gradient but different shape. In this example, NTU =6.8, NTUw=0.18 and ke=25 

W/(m.K) were predicted from direct curve matching. In other words, in this example 

applying the maximum gradient without knowing ke could lead to 27% error in NTU result 

and 21% error in NTUw. Therefore the maximum gradient method only predicted a correct 

NTU when all the correct variables (in this case ke =25) were added into the model. 

It was found that the effective thermal conductivity of the samples could be predicted by 

direct curve matching method. Shown in Fig. 9.2, the red dashed line was fitted to the 

experimental data (blue line) by guessing the three modelling variables, NTU, ke and NTUw. 

The author was aware that there could be a risk of having a similar answer with different 

combination of these three variables. However, this was not possible due to the nature of 

the heat transfer within the sample and to the wall. At Zone one, since the time is very short 

the heat mainly transfers by the convection to the sample. Therefore the NTU value is 

mainly dominant at this Zone. Once part of the air heat absorbed by the sample, the heat 

within the sample transfers mainly by conduction through the sample. Therefore sample’s 

thermal conductivity is dominant at Zone 2. When the heat saturated the sample, it 

transfers from the sample to the wall. Since the conduction between the sample and the 

wall is lower than the conduction within the sample, it takes longer to reach the equilibrium 

state with the wall and surrounding. Therefore, this Zone is mainly affected by the NTUw. 

This was tested by changing one of the variables and keeping the others constant. The 

results showed that the influence of each variable was dominant at certain part (Zone 1, 2 

and 3) of the breakout curve, which are depicted in Fig. 9.3, 9.4 and 9.5.  

For instance, the effective thermal conductivity was dominant at mid temperature (Zone 2). 

Fig. 9.3 shows the predicted curves with different λ (Eq. 8.11). It can be seen from the graph 

that the effect of λ is more visible at middle of the Zone 2.     
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Fig. 9.3, Experimental outlet air temperature history (sample Small 3 at 2.64 m/s air velocity) fitted 
predicted curve with different λ (dimensionless ke). 

 

Fig. 9.4, Experimental outlet air temperature history (sample Small 3 at 2.64 m/s air velocity) fitted 
with predicted curve with different NTU. 

The modelling results show that NTU mainly affects the predicted curve at Zone 1. The 

predicted curves were generated by keeping all the variables constant and just changing the 

NTU. The NTU effect on the predicted curves is shown in Fig. 9.4. The graph shows that by 

increasing NTU the predicted curve is shifted from left to right and the gradient of the curve 
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increased. In fact by increasing NTU the predicted curve stays longer in Zone 1 which means 

the sample can absorb more heat. It was found that it was faster to start matching curves 

from Zone 1 since the shape of the curve in this zone is relatively independent from the 

other variables. The graph shows that NTU also affects the predicted curve at Zone 3 but the 

effect is less negligible in that area.    

Shown in Fig. 9.5 are the experimental data fitted with a predicted curve and two other 

predicted curve calculated at NTUw. All three curves were predicted based on Small 3 

sample properties but with different wall heat transfer rate scenarios. The graph shows that 

NTUw effect is dominant at Zone 3 and it has almost no effect on Zone 1. A possible reason 

for this behaviour could be the time that take the heat to transfer within the sample and 

then to the wall. Therefore, the shape of the curve at Zone 3 is mainly depends on the heat 

transfer rate to the wall. Reducing this heat transfer could improve the thermal 

performance of the sample but as Fig. 9.5 shows, having higher NTUw does not affect 

sample’s NTU (Zone 1).   

 
Fig. 9.5, Experimental outlet air temperature history (sample Small 3 at 2.64 m/s air velocity) fitted 

with predicted curve with different NTUw. 

9.2. NTU results 

Shown in Fig. 9.6 are the NTU values plotted against Reynolds number for the foam samples. 

The Reynolds number was calculated for the flow within the sample. The average diameter 
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of the salt particles was used as a characteristic length. Reynolds number was calculated 

using: 

 

where, Acs is the cross section area of the sample and d is the characteristic length.  

The Small samples had the highest values of NTU and there was little difference between 

the samples NTU value particularly at low Reynolds number. As the salt diameter increased 

the NTU decreased also the scatter between samples grew.  

The ball bearing and wire mesh sample were tested and their NTU results were plotted 

against Reynolds number in Fig. 9.7a and 9.7b. For the ball bearing sample the characteristic 

length was the ball bearings diameter (2mm) and for the wire mesh sample the hydraulic 

radius calculated with Eq. 9.3 was used. The wire mesh had more than ten times higher NTU 

than the highest NTU for the metal foam. However, the ball bearings had similar NTU’s with 

the Large foam samples.   

 
Fig. 9.6, Metal foams NTU values against Reynolds number based on average pore size diameter 
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Fig. 9.7a, Wire mesh sample NTU against 
Reynolds number 

Fig. 9.7b, Ball bearing sample NTU against 
Reynolds number 

 

9.3. Metal foams effective thermal conductivity 

The effective thermal conductivity derived from the breakout curves of the metal foams was 

calculated at each flow rate and the results were averaged and tabulated in Table 9.1. The 

values were close to the results predicted in section 8.6.2 (Fig. 8-6). Shown in Fig. 9-8 is the 

effective thermal conductivity of the foams plotted with the correlation data found by three 

other researchers. The large samples had, due to their relatively small surface area, low 

NTU’s and their outlet temperature was more susceptive to factors such as heat loss to the 

wall and inlet air profile. As a result it was more difficult to match the experimental and 

predicted data. Hence, ke of the Large samples were more than the other samples. 
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Fig. 9.8, Effective thermal conductivity of the metal foam samples against porosity 
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Table 9.1. Average effective thermal conductivity of the samples with their standard deviation.   
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Mean ke 25.00 24.25 24.28 29.83 33.17 24.07 36.83 15.33 19.50 
Standard deviation 0.33 0.42 1.23 1.47 0.98 1.28 5.15 3.50 2.43 
 

 

9.4. Heat transfer coefficient and samples specific surface area 

Once the NTU value is predicted by matching the experimental data and modelling data the 

heat transfer coefficient, h, can be calculated from NTU (Eq. 6.15). In addition to NTU, the 

heat transfer surface area must be known for calculating h. For the ball bearing sample it 

was assumed that the steel balls were impenetrable spheres and the pack was statistically 

homogeneous. The heat transfer surface area was obtained by[98]: 

where   is the number of spheres and Rad is the radius. The number of spheres was 

calculated knowing the mass of 2000 spheres and weighing the whole sample to estimate 

the total number. It was estimated that there were ten thousand ball bearings in the sample 

following this method. The surface area and specific surface area of the ball bearing sample 

were found to be: 

The specific surface area also can be calculated with [99]:   

which yields 

  = 4       Eq. 9.2 

  = 125663        = 1678.5     

 

   = 6(1 −  )  
Eq. 9.3 
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This result is in good agreement with the results from the previous method.  

Table. 9.2 – Specific surface area of the metal foams 
Sample Name  Porosity Ave pore size (mm) Surface area (m-1) 
Small 1 0.622 1.05 3553.41 
Small 2 0.631 1.05 3603.47 
Small 3 0.594 1.05 3393.36 
Mid 1 0.621 1.55 2402.17 
Mid 2 0.645 1.55 2496.07 
Mid 3 0.640 1.55 2478.53 
Large 1 0.664 2.18 1828.36 
Large 2 0.652 2.18 1793.95 
Large 3 0.652 2.18 1795.24 

 

The specific surface of the metal foams area was obtained by assuming that all the salt 

particles and hence the pores formed were spheres. Therefore the equation 9.3 was used to 

obtain the specific surface area, expect that the solid and gas phases are inverted and ε was 

used instead of (1-ε). The specific surface area of the foams were calculated and tabulated 

in Table 9.2. 

Specific surface area and hydraulic radius of the wire mesh sample was calculated with the 

method outlined by Tong and London [16] method. The specific surface area (Asp) can be 

calculated by knowing the ratio of the wire diameter (dwire) to the distance between wires 

(X).  

 

Shown in Fig. 9.9a is an image of a layer of the wire mesh sample under microscope. The 

scale of the image shows that 4 pore per 500 μm. A simple calculation shows that based on 

this image it should be 203 pores per inch (PPI) which is in good agreement with the number 

provided by the wire mesh supplier (200 PPI).  

   = 6(1 − 0.43)0.002 = 1687.8     
Eq. 9.4 

  =        
Eq. 9.5 

   =       Eq. 9.6 
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Fig. 9.9a, Wire mesh screen (No. 200) under 
microscope 

 

Fig. 9.9b, A schematic view of wire mesh  

Based on this image X was 125 μm and dwire was 41.6 μm. Specific surface area then can be 

calculated with Eq. 9.6: 

Hydraulic radius of the wire mesh was calculated by:  

9.5. Heat transfer coefficient results  

Shown in Fig. 9.10 are the heat transfer coefficients of the metal foams increasing with 

Reynolds number (calculated for the flow within the foam). The graph shows that the Small 

samples had the highest h value. However, at lower Reynolds number h was similar for both 

the Small and Mid samples. The Large samples had much lower h than two other pore sizes. 

Even at low Reynolds number the Large samples had nearly half the h value of the Small 

samples. The graph shows that the rate of increasing h decreases with Reynolds number for 

all the samples.  

   =  3 × 41.6 = 25132      

  =     = 0.725132 = 2.7852  − 05 ( ) Eq. 9.7 

  X
 

 d
w

ire
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Fig. 9-10, Heat transfer coefficient of the metal foams against Reynolds number 

The h is calculated for the wire mesh and ball bearing samples plotted with Reynolds 

number in Fig. 9.11a and 9.11b. It can be seen that Reynolds number was much smaller for 

the wire mesh than the ball bearing sample for the same air cross sectional mean velocity. 

The reason for this is the hydraulic diameter of the wire diameter was considerably smaller 

than the ball bearing. By assuming that each h point was measured at the same flow rate, 

figure 9.9a and 9.9b show that the wire mesh h was nearly three times higher than the ball 

bearing.   

  
Fig. 9.11a, Heat transfer coefficient of the wire 

mesh sample against Reynolds number 
Fig. 9.11a, Heat transfer coefficient of the ball 

bearing sample against Reynolds number 
 

Shown in Fig. 9.12 is the thermal performance of the wire mesh and ball bearing samples 

plotted with the correlation result obtained by Kays and London [100]. For doing this 

comparison, Stanton number (Eq. 9.8) was calculated for each sample and plotted with 

Reynolds number.  

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400

h 
(W

/m
2 

K)

Reynolds No.

Small 1
Small 2
Small 3
Mid 1
Mid 2
Mid 3
Large 1
Large 2
Large 3

0

200

400

600

800

1000

1200

1400

20 30 40 50 60

h 
(W

/m
2 

K)

Reynolds No.

0
50

100
150
200
250
300
350
400

650 850 1050 1250 1450 1650

h
(W

/m
2 

K)

Reynolds No.



108 
 

The graph shows a good agreement for the wire mesh sample. However, the ball bearing 

results was lower than their result. One of the possible reasons could be the error in 

calculating specific surface area. The specific surface area was calculated based on all 

surface area of each steel ball. However, the area between the ball bearings interface 

cannot transfer heat from the air to the ball bearing. Therefore the effective surface area 

was lower than the calculated area. Consequently, the estimated h was higher than the 

actual value and therefore St was lower than the Kays and London results. This is not the 

case for the wire mesh sample since the method used for calculating the specific surface 

area was the same for Kays and London. Therefore the wire mesh result was closer to their 

results.   

 

Fig. 9.12, Heat transfer characteristics of the wire mesh and ball bearing sample plotted with the 
correlation of Kays and London experimental data. 

  = ℎ     ̇   
Eq. 9.8 
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Chapter 10 – Discussion 
 

The thermal performance and pressure drop of the samples have been studied but for 

overall performance evaluation, the combination of both results should be considered. 

Performance of a regenerator depends on its capability of storing heat and the mechanical 

power expenditure to pass the fluid through it. Since regenerators mainly operating with 

low-density fluids such as air, the friction power expenditure is relatively high compared to 

the heat transfer rate. If we assume that in most thermal power systems the efficiency is 

around 25 to 35% this means mechanical energy is worth three to four times that of thermal 

energy. Therefore, it is easy to expend same amount of energy to overcome pressure drop 

as to store heat [100].  

 
Fig. 10.1, Heat transfer coefficient of the metal foams against Reynolds number 

 

Pressure data measurements showed that the Small samples had the highest pressure drop 

and they also had the highest NTU. Hence, reducing the pore size increases heat transfer 

but this also increases pressure drop. Therefore, sample’s pore size has conflicting effects on 

pressure drop and NTU. 

As it can be seen from Eq. 10.1 that transferred thermal energy from air to a regenerator 

depends on the heat transfer coefficient (h) and heat transfer area (Ahs). Therefore samples 
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with high h and surface area would have the highest ability to absorb heat from air flow 

(assuming that samples made from similar material). Shown in Fig. 10.1 is the h for the 

metal foams plotted against the air mass flow rate. The graph shows that Mid samples had 

the highest h. However, it should be remembered that Small samples on average have 30% 

more surface area than the Mid samples.  

 

In this study metal foam samples had relatively similar length but different specific surface 

area. Therefore it was difficult to compare the overall performance of the sample. To 

compare two samples, first the total amount of thermal energy (Q in Eq. 10.1) which can be 

absorbed by one of the sample was calculated by knowing h (from the experimental result), 

Ahs (Table 9.2) and ΔT (for a single degree difference). Then the heat transfer surface area of 

the second sample which could store the same amount of energy was calculated by knowing 

the specific transfer surface area. Once the required heat transfer surface area was 

calculated the length was calculated to store the same amount of thermal energy of the first 

sample. By knowing the required length, sample pressure drop was calculated by assuming 

that pressure drop increase linearly with the sample length. Now the sample performance 

could be compared with the first sample in terms of pressure drop. The author is aware that 

applying this method for each individual sample may increase the risk of wrong estimating 

one particular samples performance due to unknown internal structure or possibly defect. 

However, it could provide a preliminary information regarding samples overall performance.  

It can be seen from Fig. 10.1, at 0.016 (Kg/s) flow rate, h for sample Mid 1 and Small 3 was 

661 and 571 (W/m2 K) respectively. Multiplying this value to samples surface area (assuming 

the temperature difference (ΔT) is one degree) Eq. 10.1 yields %32 more thermal energy for 

Small 3 than Mid 2. Therefore, in order to store the same amount of thermal energy with 

Mid 1 sample it should be 32% longer than Mid 1 or in other word it should have 32% more 

surface area. Since the flow inside the foams is laminar, it can be assumed that the pressure 

drop increases linearly with samples length. Therefore, this imaginary longer sample would 

have 38% more pressure drop than Mid 2 sample. However, the imaginary sample would 

 = ℎ   ∆  Eq. 10.1 
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have 45% less pressure drop than Small 3 and 30% less than Small 2. As a result, the 

imaginary sample would outperform Small 3 and 2 in terms of pressure drop and thermal 

performance. Similar analogy shows that Large 2 should be 89% longer to have a similar 

thermal performance to Small 3. This imaginary Large 2 sample would have 50% less 

pressure drop compared to Small 3 and 35% less compared to Small 2. This means that the 

imaginary Large 2 sample would perform better than the imaginary Mid 2. Using the same 

analogy, the wire mesh sample can absorbed the same amount of thermal energy as Small 3 

but at 87% shorter length or 74% less pressure drop than Small 3 sample and 66% less 

compared to Small 2.    

The above analogy shows that for metal foams, Mid 2 and Large 2 had better performance 

than Small 3. Large 2 performed slightly better than Mid 2. It also shows that by increasing 

the Large 2 length a similar thermal performance to Small 3 could be achieved with lower 

pressure drop. However, having  longer length may not be an issue for some application like 

stationary heat recovery unit but it is not desirable for some application such as regenerator 

in Stirling engines. In Stirling engine any gas which does not generate work considered as a 

dead volume. Increasing sample’s length would increase its dead volume (the air inside the 

regenerator which does not involve generating work). For instance the imaginary Large 2 

have 89% more dead volume than Small 3. Therefore the design of a regenerator involves a 

consideration of all these factors.  

In addition to the dead volume, regenerator effectiveness is the other important factor in 

regenerator design. Since in Stirling engine the working fluid moves across the regenerator 

at frequency as high as 50 Hz, it is important to select the right wire thickness or in the case 

of metal foam thickness of the material between pores. For instance, in Fig. 10.2 shows the 

cross section area of the connecting part between pores in metal foams with three different 

pore size. The orange arrows represent the heat penetration into the foam material. If the 

pore size is too large (the 3rd image from left) heat does not penetrate completely into the 

foam material within the blow time and the centre part will be unusable. Since the pores are 

too small, heat penetrates into the foam and saturates the foam before the blow time 

expires. In this case, part of the heat cannot be absorbed by the foam and effective heat 

storage would be insufficient. Therefore larger sample is needed to provide enough heat 



112 
 

storage capacity. However, this would also increase pressure loss through the sample. In 

order to investigate this effect, samples should be tested under oscillatory condition. 

Optimum pore size of the samples could be identified by testing samples under oscillatory 

flow. A similar analogy was presented by Miyabe et al.  [72]for wire mesh screens.  

 

 

 

 

 

Fig. 10.2, Strut diameters of the different pore size samples 

As it was discussed earlier in this chapter, the wire mesh sample had exceptionally good 

performance compared to the metal foams. There are several factors that makes wire mesh 

performs better than then the metal foams. One of the main factors is the sample material. 

Stainless steel has one of the highest volumetric heat capacity (material density times the 

specific heat capacity) among the conventional metals. Although aluminium has higher 

specific heat capacity than stainless steel, it has relatively lower density. Stainless steel has 

nearly 60% higher volumetric heat capacity than aluminium and therefore samples made 

from stainless steel would have 60% more thermal capacity than aluminium.  

One of the issues with metal foam samples was their high longitudinal thermal conductivity. 

As it was shown in the previous chapter, having higher thermal conductivity reduces 

samples NTU and therefore reduces thermal performance. This is due to heat transfer 

through the samples via conduction which reduces the temperature difference between the 

air and the sample. As a result, reduces the samples effectiveness. In contrast, heat in 

samples with high thermal conductivity transfers from the gas to the sample and not 

through the sample itself. Once the gas thermal energy transfers to the sample its 

temperature drops to near the sample initial temperature. Therefore it passes the sample 

without increasing the temperature for the rest of the sample. As a result, rest of the 

Pores  

Penetrating heat 
into strut 
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sample would have higher temperature difference between the gas and the sample which 

means that part of the sample would have higher effectiveness. For instance, in wire mesh 

heat transfers from the gas to the first few layers of the sample and gas temperature drops 

to the sample initial temperature. After blowing more high temperature gas, the first few 

layers are saturated with heat and they would have low effectiveness. However, the rest of 

the layers are still in initial temperature with high effectiveness. If this sample had high 

thermal conductivity, the heat would transfer through the sample and increases the entire 

sample temperature and reduces the sample overall effectiveness. This is particularly 

important in application such as Stirling engine which the working gas shuttles between two 

cylinders at high frequency. In addition, low thermal conductivity and small contact area 

with the wall leads to negligible heat loss to the wall which improves thermal performance 

of the wire mesh sample.         

 

 

 

 

Fig. 10.3, A schematic view of sliced sample with tapered edges inside a pipe.  

Thermal performance of aluminium metal foams could be improved by reducing 

longitudinal thermal conductivity and minimising heat loss to the wall. Samples longitudinal 

thermal conductivity could be reduced by slicing the sample into thin disks and alternately 

packed them with low conductivity stainless steel spacer. Doing this could potentially 

reduce the longitudinal thermal conductivity of the metal foam samples and therefore 

improve their thermal performance. Heat transfer to the wall could also be reduced by 

reducing the contact area between the sample and the wall. After slicing the foam, the edge 

of the disks can be tapered to reduce the contact surface area and therefore reduces the 

heat transfer between the wall and the sample. Shown in Fig. 10.3 is a schematic view of the 

sliced sample with tapered edges.  
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Chapter 11 - Conclusions and future work  

11.1. Concluding remarks  

The current study was covered several topics to help understand heat transfer and fluid 

mechanics in metal foams manufactured by the Replication method. The results of this 

study could help to develop high performance and low cost regenerators. The following list 

is a brief summary of the achievements and the work remains to be done.  

11.1.1. Sample manufacturing: 

1- Three different size salt particles (1-1.1 mm, 1.4-1.7 mm and 2.0-2.36 mm) were 

used to make aluminium foam with the Replication process.  

2- The infiltrations method for replication process was investigated and two new 

methods, gas-only and mechanical infiltration, were introduced. It was found that 

samples manufactured by the gas-only method had better quality and process was 

more repeatable than the standard vacuum-gas and mechanical infiltration methods.  

3- A total of eight samples (1.4-1.7 mm pore size) were manufactured under various 

infiltration pressures to study the effect of infiltration pressure on samples pressure 

drop. 

4- The optimum infiltration pressure for gas-only method was studied and the optimum 

infiltration pressure for three pore sizes, 1-1.1 mm, 1.4-1.7 mm and 2.0-2.36 mm, 

were identified.  

5- A total of nine metal foams (three of each pore size) were manufactured by the gas-

only method for thermal and pressure test. The manufactured samples had on 

average 63% porosity. 

6- A packed bed of 10000 2mm ball bearing and a packed bed of 100 layers of wire 

mesh (No. 200) were built for comparing with metal foams samples.  

11.1.2. Steady state pressure drop:  

1- A test rig was built and the samples pressure drop was tested from 1 to 6.5 m/s.  

2- The extended Darcy-Forchheimer equation was used to calculate the samples 

permeability and form drag coefficient.  
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3- The results showed that samples’ permeability increased by increasing the pore size 

and the form drag reduced by increasing the pore size.  

4- The Wire mesh sample had the highest normalised pressure drop following the Ball 

bearing sample.  

5- The samples made under different infiltration pressure were tested and the results 

showed that the samples made under higher infiltration pressure than 4.5 bar had 

higher pressure drop and the samples made at lower infiltration pressure either 

partly infiltrated or had defects.      

11.1.3. Oscillatory pressure drop: 

1- A test rig was built and samples pressure drop were measured under oscillatory flow 

from frequency 1 to 19 Hz.   

2- The results showed that the profile of the pressure drop for frequencies lower than 

14 Hz were nearly sinusoidal due to the reciprocating motion of the piston but at 

higher frequencies the pressure drop profile became unsymmetrical notably where 

the piston accelerated (before 90o). Similar trends were observed for the second half 

of the cycle between 180o and 270o.  

3- The maximum pressure drop occurred at 90o and 270o which was where the air 

velocity was at maximum. However, as the frequency increased the maximum 

pressure drop was shifted by a few degrees. This phase shift also increased by 

increasing the pressure drop.  

4- Samples had higher pressure drop under oscillatory flow than steady state flow 

except for the Small samples which had higher pressure drop at steady state flow.  

5- Darcy-Forchheimer equation was applied to the oscillatory pressure data and the 

data showed that the reduced pressure drop only followed Darcy-Forchheimer 

regime for flow velocity higher than 0.5 m/s 

6- Flow velocity was measured at the centre of the connecting pipe (between the 

compressor and the test section) by a hot-wire anemometer. The results showed 

that the air velocity fluctuated during the acceleration and deceleration period and 

behave “like a turbulent flow”. 
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11.1.4. Heat transfer measurement:  

1- A single-blow test rig was designed and manufactured to measure thermal 

performance of the samples. Samples were tested at Reynolds number from 250 to 

1350. Reynolds number was measured based on foams pore diameter.  

2- Several types of the single-blow model method (depending on working fluid 

properties and regenerator types) were presented and analysed. The extended 

Schumann-Hausen model was implemented for predicting the outlet air 

temperature.  

3- The mathematical model was numerically solved by an explicit finite difference 

method and the results were further improved by an implicit method (The Crank-

Nicolson) for better accuracy. The accuracy of the modelling results was validated by 

the Kohlmayer’s (Eq. 6.19) analytical solution.  

4- The effect of changing NTU, NTUw, Rtc and inlet air response on the maximum 

gradient was investigated and the results were plotted for visualising the effect of 

variables on NTU.  

5- Four different matching techniques were evaluated and the maximum gradient 

method and direct curve matching were selected for match the experimental and 

predicted curves.  

6- A new technique was introduced to match the experimental and predicted data with 

direct curve matching when the effective thermal conductivity, NTU and NTUw were 

unknown.  

7- Effective thermal conductivity of the foams was estimated for the first time with the 

direct matching technique and the results had good agreement with the data 

estimated based on sintered metal and high porosity metal foam correlation.   

8- The metal foams results showed that NTU increased by decreasing the pore size and 

the results were similar for each pore size. 

9- Samples heat transfer coefficients were calculated and plotted against Reynolds 

number. The results showed that based on mass flow rate Mid samples had the 

highest h, however the differences between the metal foams were insignificant.  



117 
 

10- The Ball bearing and Wire mesh samples results were compared with Kays and 

London results and good agreement particularly with the Wire mesh results was 

achieved.      

11.2. Future work  

During the course of this study several opportunity were discovered which could improve 

the results of this research. However, it was not possible to implement these ideas into this 

study mainly due to budget and time limitation. The following list is the author 

recommended future work:       

11.2.1. Improving thermometry system  

For this study K-type thermocouples were used to measure the temperature across the 

sample. The primary reason for selecting K-type thermocouple was the cost of the fast 

response thermometry system. The current system offered an acceptable level of accuracy 

but for better accuracy K-type thermocouples would not recommended. Instead, a cold-wire 

anemometry system would be an ideal thermometry system for this application due to high 

frequency and accuracy.  

11.2.2. Measuring surface area with X-ray 3D CT-scan  

As it was discussed earlier, accuracy of the heat transfer coefficient highly depends on 

accuracy of the specific surface area. Due to random and complex structure of the metal 

foam it is difficult to accurately estimate the specific surface area through a mathematical 

model. Therefore direct measurement of the specific surface area is more desirable. One of 

possible way of measuring is by X-ray tomography. A similar work has been done by Bock 

and Jacobi [101] on high porosity metal foams which can be adopted for the current metal 

foams. The results of X-ray tomography would be beneficial not only for measuring the 

surface area but also for detecting defects inside the foams. In addition, the digital 

geometry of the foam can be generated by this method and could be used in CFD study. 
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11.2.3. CFD modelling and analysis 

The geometry created by the X-ray tomography can be used to model the foams and run 

CFD analysis to optimise the foams performance. Current experimental data could also be 

used to validate the model.    

11.2.4. Writing an algorithm to match curves  

As it was discussed in chapter 8, the predicted curve was fitted by guessing samples NTU, 

NTUw and λ. This was a tedious method and will not be practical for large number of 

samples. Therefore, writing an algorithm and a computer code to do this automatically 

would be beneficial. 

11.2.5. Measuring effective thermal conductivity  

Knowing samples effective thermal conductivity is important for accurately predicting outlet 

temperature. Knowing this value is essential for the maximum gradient method and without 

this value using this method would yield a large error. Therefore, direct measurement of keff 

is recommended for future study. It would be important to measure this value and validate 

the results estimated in this study by matching the entire curve.   

11.2.6. Measuring thermal performance under oscillatory flow  

Samples optimum pore size and effectiveness of the regenerators could be evaluated under 

oscillatory condition. In addition, comparison between the steady and oscillatory flow 

results would be beneficial for investigating the physics of heat transfer under oscillatory 

flow.     

11.2.7. Manufacture more samples with an improved packing mechanism  

For this study three samples were manufactured with randomly packing the salts particles. 

However, the pressure drop results showed that the samples with similar pore size were not 

identical. As it was discussed in chapter 3, the reason of the discrepancy in pressure data 

could be the randomness of the salts packing. Therefore, more samples needed to be 

manufactured to statistically identifying samples deviation. Another possible action would 



119 
 

be improving repeatability of the process by improving the packing mechanism. This could 

be done by vibrating the salts particles pack to ensure consistent in packing density.     

11.2.8. Manufacturing foams with different pore shape  

As it was discussed in chapter 3, packing density depends on several factors such as shape, 

size and friction factor between the particles. Metal foam density depends on the preform 

packing density and the infiltration pressure. Therefore, changing the salt particles shape 

may change the foams density and pressure drop performance. Since the foams made for 

this study were made with crushed salt particles, it would be interesting to see the effect of 

particles shape on samples performance.  

11.2.9. Making stainless steel foam 

Stainless steel is suitable for using as a regenerator material since it has high volumetric 

heat capacity. Making foam from stainless steel with replicating method is a challenging 

process due to higher melting point of stainless steel. Therefore, a different preform 

material should be used to have a higher melting point than stainless steel and can be 

dissolved without reacting with the solvent.    

11.2.10. Slicing foams to improve thermal performance  

Following the discussion on chapter 10, reducing the longitudinal effective thermal 

conductivity could improve thermal performance of the samples without increasing the 

pressure drop. Slicing the samples into thin disks and alternately packing them with low 

conductivity stainless steel spacer could reduce keff. However, it is not clear the extent of 

this improvement. Therefore, testing samples before and after this process could reveal the 

effect of reducing samples thermal conductivity.   
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Appendix 1 
 

1. Orifice plate calibration 

The orifice plate was used to measure flow rate in this study was calibrated with a laminar flow 

meter (Cussons Technology P7250). The laminar flow meter (LFM) was connected to the 

inlet pipe of the steady pressure measurement test rig (Fig 3-1) and the pressure drop 

across the orifice plate and the laminar flow meter was measured.  The following table 

(Table 1) shows the measured pressure drop across the orifice plate (ΔP) and calculated flow 

rate for orifice plate and LFM in litre per second. The error is the absolute value of the 

difference between two measured values.   

Table A1.1 
LFM ΔP (Pa) Orifice ΔP (Pa) Orifice flow rate (L/s) LFM flow rate (L/s) error % 
107 154 4.93 4.90 0.52 
136 248 6.23 6.22 0.23 
149 299 6.83 6.81 0.39 
161 349 7.38 7.37 0.12 
173 401 7.91 7.91 0.02 
192 490 8.75 8.77 0.30 
212 600 9.67 9.67 0.03 
227 695 10.41 10.39 0.17 
242 786 11.07 11.08 0.11 
243 789 11.09 11.09 0.01 
261 910 11.91 11.91 0.06 
275 1009 12.54 12.55 0.08 
287 1098 13.08 13.09 0.10 
301 1210 13.73 13.74 0.10 
312 1306 14.26 14.27 0.05 
324 1411 14.83 14.81 0.13 
334 1493 15.25 15.26 0.07 
347 1607 15.82 15.83 0.11 
359 1721 16.37 16.41 0.25 
368 1812 16.80 16.80 0.00 
378 1916 17.27 17.28 0.07 
389 2031 17.78 17.78 0.01 
406 2221 18.59 18.57 0.12 
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The following equation was used to calculate the flow rate for orifice plate [48]:  

Where do is the orifice plate inner diameter, Co is the discharge coefficient, β is the pipe 

diameter to do. The orifice plate had 24.5 mm inner diameter and β was 0.46. The discharge 

coefficient was 0.632 and air density (ρ) was 1.195 on the calibration day.   

 

  =  4       2∆   (1 −   )  
Eq. A1.1 
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Appendix 2 
 

1. Diffusion number example   

The following figure, Fig. A2.1 shows the predicted outlet temperature history generated by 

the model. In this example NTU=10, λ=0.001, Rtc=1, λw= 0, Δx=0.01 and Δτ=0.001. Diffusion 

factor can be calculated as: 

 

Diffusion number for this example is lower than 0.25 and the plotted graph of the model 

shows that the results was stable and not oscillate      

 
Fig. A2.1. Outlet temperature history for diffusion number of 0.01 

 

The following will show the case that diffusion number was 0.5. In this example these input 

were used to predict the outlet temperature history: NTU=10, λ=0.05, Rtc=1, λw= 0, Δx=0.01 

and Δτ=0.001. Diffusion factor can be calculated as: 
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Shown in Fig. A2.2, is the outlet temperature history predicted by the model. The graph 

shows that the results was not stable and noticeably oscillate after 2.5 non-dimensional 

time.  

 
Fig. A2.2. Outlet temperature history for diffusion number of 0.5 
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