
  

 

Iodine Chemistry in the 

Remote Troposphere 

 

Samantha Marie MacDonald 

 

 

 

Submitted in accordance with the requirements for the degree of Doctor of 

Philosophy 

 

The University of Leeds 

 

School of Chemistry 

 

September 2013 



i 

 

 

 

 

 

The candidate confirms that the work submitted is her own, except where work which 

has formed part of jointly authored publications has been included. The contribution 

of the candidate and the other authors to this work has been explicitly indicated below. 

The candidate confirms that appropriate credit has been given within the thesis where 

reference has been made to the work of others. 

 

 

This copy has been supplied on the understanding that it is copyright material and that 

no quotation from the thesis may be published without proper acknowledgement. 

 

© 2013 The University of Leeds and Samantha Marie MacDonald 

  



ii 

 

Summary of Contributions to Jointly Authored Work 

 

1. Lucy J. Carpenter, Samantha M. MacDonald, Marvin D. Shaw, Ravi Kumar, 

Russell W. Saunders, Rajendran Parthipan, Julie Wilson & John M. C. Plane 

(2013). Atmospheric iodine levels influenced by sea surface emissions of 

inorganic iodine.Nature Geoscience, 6, 108-111, doi:10.1038/ngeo1687. 

 

S. M. MacDonald performed the experiments using the iodine oxide particle 

method, analysed the data and contributed to the production of the paper. L. J. 

Carpenter wrote the paper and developed the kinetic model. M. D. Shaw and R. 

Parthipan performed the spectrophotometric experiments. J. Wilson 

performed the multiple linear regression analysis and J. M. C. Plane provided 

the modelling work using THAMO. R. Kumar and R. W. Saunders helped with 

initial set up of the experiments. The experimental work is included in Chapter 

3 and the modelling work in Chapter 4. 

 

2. Juan Carlos Gómez Martín , Anoop Mahajan , Timothy Hay , Cristina Prados-

Román , Carlos Ordóñez , Samantha MacDonald , John Plane , Mar Sorribas , 

Manuel Gil , Jimmy Francisco Paredes Mora , Mario Virgilio Agama Reyes , 

David Oram, Emma Leedham & Alfonso Saiz-Lopez (2013). Iodine chemistry in 

the Eastern Pacific marine boundary layer. Journal of Geophysical Research: 

Atmospheres, 118,1-18, doi:10.1002/jgrd.50132. 

 

S. M. MacDonald participated in 2 field campaigns in September – October 

2010 and February – March 2011. S. M. MacDonald helped with the initial set 

up of the DOAS and ancillary measurement instruments, running of the 

equipment and data processing and initial analysis of the DOAS data. The final 

analysis of the LP-DOAS and MAX-DOAS data was performed by A. S. Mahajan, 

T. Hay, C. Prados-Roman. Correlation studies were performed by J. C. Gomez 

Martin who also wrote the paper. CH3I measurements were made by D. Oram 

and E. Leedham and particle measurements by M. Sorribas and M. Gil. A. Saiz-

Lopez was PI of the project and J. M. C. Plane provided the DOAS instruments. 

This work is discussed in Chapter 5. 

  



iii 

 

Acknowledgements 

First and foremost I would like to thank my supervisor Professor John Plane for giving 

me the opportunity to pursue this project, and providing the funding for me to spend a 

field campaign in such an incredible place as the Galapagos Islands. You have provided 

guidance throughout my PhD (along with a raised eyebrow or two) and always asked 

the right questions to keep me moving forward in this project. 

I would also like to thank the many people I have had the pleasure to work with over 

the last four years. To my fellow group members (past and present) - JC, Vicki, Anna, 

David, Sandy, Juan Diego, Tamas, Erin, Wuhu, Sarah, Charlotte, Russell, Ravi, Hilke and 

Anoop - I am grateful for your daily support, conversation and general good company. 

You made the whole experience much more bearable, and it was always encouraging 

to know that, however badly things were going, I was never alone. Special thanks must 

go to Anoop and Hilke who introduced me to the wonders of DOAS analysis and guided 

me through my MChem project and the initial few months of my PhD, even making a 

dark and dingy basement office an enjoyable place to work. Ravi also deserves a 

special mention for all the help he provided in setting up and carrying out the 

laboratory experiments, as does JC for all his help with the laser experiments. 

During my PhD I have been fortunate enough to take part in two field campaigns and 

work with some truly wonderful people, in some often trying circumstances. In 

Galapagos I had the pleasure of working with Alfonso, Anoop and JC during the first 

campaign, where it seemed like it would be a miracle if our equipment ever arrived, let 

alone if we made any measurements.  The same team were assembled in Galicia, Spain 

(along with the lovely Mar) for a two week campaign, fraught with malfunctioning 

equipment, vengeful fishermen and plenty of algae. Despite the trials and tribulations, 

you still managed to make it an enjoyable experience, banishing the bad spirits – and 

not forgetting the surprise birthday cake!  

The second campaign in Galapagos also gave me the chance to meet some more great 

people from around the globe: Deb, Tim, Maria, Marcos, Emmy and Fei you all helped 



iv 

 
to make the experience truly memorable, even when coping with cockroaches, giant 

spiders, sunburn, military coups and a tsunami warning. 

I also owe great thanks to all my friends in Leeds who I’ve had the pleasure of knowing 

for the past 8 years, and those who have now moved further afield. I won’t name them 

all for fear of leaving someone out but you know who you are. From the fun 

adventures to just sitting on the sofa with a cup of tea, you’ve made living in Leeds the 

best time of my life (so far) and are the reason I consider it home. 

The biggest thanks have to go to my family, Mum, Dad and Rory who have supported 

me (both morally and financially) throughout my life and education, and always 

allowed me to pursue my interests, whatever they may be. I’ve never doubted that I 

had your complete support and I hope that you’ll think it was worth the effort to see 

me wearing the gown and floppy hat. 

I’ve been lucky enough during my PhD to have the support of not just one loving family, 

but two. To the Wrights – Malcolm, Ali, Jo and Grace – you’ve always welcomed me 

with open arms (quite literally) and I’m so grateful for all the love and encouragement 

you’ve given me over the last 7 years. 

Finally, to the other Sam, I think you’ll be the most pleased to be reading this, knowing 

that you finally have your fiancé back after all those months of shutting myself away in 

front of a laptop, occasionally appearing searching for more tea. Thanks for tidying the 

house, making my dinner and keeping me (mostly) sane. I really couldn’t have done it 

without you. 

 

  



v 

 

Abstract 
Measurements of the flux of I2 and HOI from the heterogeneous reaction of gaseous 

ozone with aqueous iodide were performed by conversion to iodine oxide particles 

and detection using a nano-differential mobility analyser. Fluxes were measured as a 

function of [O3], [I-], salinity, temperature, and in the presence of organic species. A 

linear response was observed for O3 and salinity; iodide showed some deviation at 

higher concentrations. The temperature dependence of the I- + O3 reaction was found 

not to be significant and none of the organic species investigated had a significant 

effect on the resulting I2 and HOI fluxes. A kinetic model of the interfacial layer was 

then employed to verify the experimental results and good agreement was found, 

apart from observations at high iodide where the I2 flux was over-predicted. 

Parameterised expressions for the flux of I2 and HOI were then produced from the 

model outputs using multiple linear regression analysis. 

The differential optical absorption spectroscopy (DOAS) technique was used to 

measure IO on the Galapagos Islands in the Eastern Pacific. The long path (LP) DOAS 

instrument was unable to measure IO above the detection limit (0.9 pptv) and 

measurements from the multi-axis (MAX) DOAS instrument ranged from below the 

detection limit to 0.9±0.2 pptv. IOx (IO + I) was inferred from the measured O3 

concentrations and correlation analyses were conducted with available ancillary 

measurements (O3, wind speed, temperature) and satellite data (Chl-a, CDOM, SST, 

and salinity). A significant positive correlation was observed with both SST and 

salinityand this was linked to variations in sea surface I-. 

The parameterised expressions for I2 and HOI were then input into the 1-D chemistry-

transport model THAMO (Tropospheric HAlogen chemistry MOdel) to compare the 

predicted IO and IOx mixing ratios with measurements performed on the Cape Verde 

islands in the Atlantic ocean and during the HaloCarbon Air Sea Transect-Pacific 

(HaloCAST-P) cruise in the Eastern Pacific. The predicted fluxes were in agreement at 

higher wind speeds, however, at lower wind speeds, IO was over-predicted byaround a 

factor of three; O3 concentrations were reduced to 2 ppb (20 times lower than 

calculated) to match the observations.  
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Chapter 1   

Introduction to the Earth’s Atmosphere 

The Earth’s atmosphere consists of a layer of gases which surround the planet 

extending from the surface up to several hundred km and retained by the Earth’s 

gravity. The atmosphere contains a variety of chemical species, with N2 and O2 being 

the most abundant (at around 78 and 21 % respectively). The chemistry of the Earth’s 

atmosphere is influenced by a multitude of factors and the composition evolved over 

time due to inputs from the lithosphere, from the seas and oceans, extra-terrestrial 

sources and the biosphere. Understanding the chemical processes in the atmosphere 

requires knowledge of all of these systems and the interactions between them. The 

chemistry of the atmosphere is of huge importance due to its influence on living 

organisms and its ability to sustain life on Earth. Changes in the chemical composition 

of the atmosphere through natural and anthropogenic forces will influence the balance 

between the biological, chemical and physical processes occurring on Earth. The study 

of atmospheric chemistry aims to increase our knowledge of these processes and 

explain past and present changes in the atmosphere, and those that will occur in the 

future of the planet. 

1.1 Structure of the Earth’s Atmosphere 

The structure of the atmosphere can be split into several distinct layers, deriving from 

the temperature dependence in these regions with increasing altitude (Figure 1.1).  

The lowermost layer of the atmosphere is the troposphere, reaching from the surface 

up to around 10-15 km (the tropopause) which is characterized by a decrease in 

temperature with increasing altitude and fast vertical mixing. The reason for this 

decrease in temperature is that the air nearest the surface of the Earth is heated by 

the infrared (IR) radiation from the surface and the heating decreases with height. The 
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troposphere can be further split into the planetary boundary layer which is the lowest 

1 km of the troposphere and the free troposphere from 1 km upwards. The boundary 

layer is directly affected by changes at the surface of the Earth with rapid fluctuations 

in temperature and moisture, leading to a turbulent atmosphere. The boundary layer 

is also directly affected by exchange of gases between the oceans, terrestrial surfaces 

and with the biosphere and shows rapid vertical mixing. The boundary layer shows 

variation across the globe from around 200 m at the poles to around 1 km at the 

equator, and also varies diurnally, increasing in height during the day due to 

convective heating from the surface (Seinfeld, 2006). The marine boundary layer (MBL) 

refers to the layer directly above the oceans which will be particularly influenced by 

sea-air transfer of gases at the surface and changes in temperature due to variations in 

ocean currents. 
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Figure 1.1 The structure of the atmosphere showing the four different layers based on the variation of 
temperature with altitude. Figure taken from Seinfeld and Pandis (2006). 

The next layer is the stratosphere where, in contrast to the troposphere, temperature 

begins to increase with height owing to the presence of O3 which absorbs high energy 

ultraviolet (UV) radiation from the sun. This photolyses O3 to form O2 and O atoms or 

excited O(1D) which is then quenched to the ground state via collisions with a bath gas 

(either O2 or N2). This cycle of reactions (Figure 1.2) was first proposed by Chapman in 

the 1930s (Chapman, 1930) and describes well the overall structure of O3 in the 

stratosphere, however, results in an over-prediction in the absolute values by a factor 

of around two. Both the destruction of O3 and subsequent recombination of O2 and O 

are exothermic processes, releasing heat into the stratosphere. At higher altitudes O 

atoms are more abundant due to more high energy UV radiation (< 242 nm).  
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In the upper stratosphere a steady state can be assumed to exist where the positive 

temperature gradient with height leads to slow vertical mixing as a result of a lack of 

convection and turbulence, however, due to the stratification, rapid horizontal mixing 

occurs in the stratosphere. The stratosphere extends from the tropopause up to the 

stratopause at 45–55 km. The temperature increases from around 217 K at the 

tropopause to around 271 K at the stratopause, not much lower than at the Earth’s 

surface (288 K) (Seinfeld, 2006). 

Above this lies the mesosphere which extends to the mesopause at 80–90 km. This is 

the coldest part of the atmosphere due to the decrease in temperature with height 

observed in the mesosphere. This decrease in temperature is caused by decreasing 

solar heating and increased cooling by CO2 radiative emission. The mesosphere is 

characterized by strong zonal winds, gravity and planetary waves which travel upwards 

from the lower atmosphere and dissipate in the mesosphere leading to large scale 

circulations. The mesosphere is also the part of the ionosphere where the D layer 

occurs, extending from around 60–90 km; minor constituents such as NO or metal 

atoms are ionized by H Lyman- radiation at 121.6 nm (Wayne, 2000).  It also contains 

metal layers extending from and consisting of elements such as sodium, iron and 

potassium, which arise from the ablation of meteoric material in the upper 

atmosphere. In addition, formation of polar mesospheric clouds occurs in the 

mesosphere. 

The thermosphere then extends from the mesopause up to around 500 km where high 

temperatures exist due to absorption by N2 and O2 of short wavelength radiation. At 

O2 O O3 

4. Slow 

1. Slow 2. Fast 

3. Fast 

Figure 1.2 The Chapman cycle 
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this altitude the atmosphere is extremely thin and collisions between atoms or 

molecules become infrequent, hence inefficient equilibration of energy between 

energy modes occurs, with an excess of translational energy leading to the rise in 

temperature with altitude. The E and F ionospheric regions lie within the 

thermosphere; the presence of ionizing solar radiation (extreme UV and X-ray) leads to 

the formation of positive ions. The E region extends from around 100–150 km and the 

major ions in this region are NO+ and O2
+ formed from extreme UV radiation between 

80–103 nm and X-rays from 1–10 nm in wavelength. The F region begins around 

150 km with the dominant ions consisting of N+ and O+, although at the highest 

altitudes H+ and He+ ions begin to dominate due to gravitational separation. Above the 

thermosphere lies the exosphere where gas molecules possessing sufficient energy can 

escape the gravitational field of the Earth into space (Seinfeld, 2006; Wayne, 2000). 

Pressure in the atmosphere also varies with height due to the effect of gravity and 

there is no distinct boundary between the atmosphere and space as the mass 

gradually fades outwards. The majority of the mass of the atmosphere is therefore 

contained within the troposphere (around the first 10 km) accounting for around 75 % 

of the total mass of the atmosphere. The pressure drops exponentially with height 

according to Equation 1.1: 

  (1.1) 

where pz is the pressure at a height, z, p0 is the pressure at the surface and H is the 

scale height of the atmosphere which is defined as the height at which the pressure 

drops to 1/e of that at the surface. Hz can be described by Equation 1.2. 

  (1.2) 

where kB is Boltzmann’s constant (1.38 x 10-23 J K-1), T is the temperature, m is the 

molecular mass and g is the acceleration due to gravity. It should be noted that the 

temperature is assumed to be constant in Equation 1.1; and therefore a scale height 

must be calculated at a set temperature. Using the average temperature of the 

zH

z

z epp 0

mg
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troposphere, 253 K, gives a scale height of 7.4 km. This means that the pressure falls by 

about an order of magnitude every 16 km (Seinfeld, 2006).   

Variations in pressure in the atmosphere also lead to winds which are responsible for 

transport and mixing of chemical species. Wind can be thought of as the air flow 

response to pressure differentials between locations on the planet and remove these 

differences by transporting heat (in both latent and sensible forms). At the Earth’s 

surface, winds are highly variable and turbulent, whereas higher up, away from surface 

features and friction, the wind motions become much more regular. The atmospheric 

general circulation describes the pattern of global winds, averaged over several days or 

weeks. This can be reasonably approximated using a three cell model, where the winds 

are driven by the energy imbalance caused by the larger input of solar energy at the 

equator than at the poles, and also the Coriolis force which results from the rotation of 

the Earth about its axis. These winds are summarised in Figure 1.3. 

 

Figure 1.3 General circulation of the atmosphere showing the three cell model. 
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At the equator, hot air rises and is forced towards the cooler poles by higher pressures 

in the higher temperature regions. Each hemisphere has its own circulation cell known 

as a Hadley cell and these converge near the equator at the intertropical convergence 

zone (ITCZ). The transition occurs a few degrees north of the equator and this region is 

characterised by very strong upward motion and heavy rainfall. This is caused by the 

returning surface air becoming saturated with water as it passes over the ocean; as it 

rises, the water condenses, resulting in heavy precipitation. This also releases latent 

heat causing convective instability, resulting in a reduced lapse rate and increase in the 

pressure differential. 

At 30° latitude, the surface high pressure causes air near the ground to diverge and 

forces the air from above downwards to fill in for the surface air moving away. The air 

flowing northward from the equator higher up in the atmosphere is warm and moist 

compared to the air nearer the poles and causes a strong temperature gradient 

between the two different air masses. This is what causes the jet stream which moves 

from west to east in both the Northern and Southern Hemispheres. Some of the air 

that sinks at 30° latitude returns to the equator to complete the Hadley cell, producing 

the northeast trade winds in the Northern Hemisphere and the southeast trade winds 

in the Southern Hemisphere. 

The air descending to the surface at 30° latitude that does not move southward 

towards the equator, moves north and is deflected to the right by the Coriolis force. 

The winds north and south of the trade wind belt tend to blow from west to east 

(westerlies). Baroclinic instabilities arise in this region when the temperature gradients 

and upper level winds are sufficiently large, causing the westerly flow to break into 

large-scale eddies. These baroclinic instabilities are the source of the weather 

experienced in the mid latitudes. At 60°, warm, moist air rises and some of this air, 

when it reaches the tropopause, moves southwards towards the region of 

convergence above 30°N, completing the Ferrel cell. 

At the polar front (~60° latitude), the air that does not move towards the equator 

instead moves towards the poles, where it converges and sinks. The sinking cold air 
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then flows towards the equator at the surface and the Coriolis force drives the winds 

towards the west, producing the polar easterlies above 60°. This polar cell is the 

weakest of the three circulation cells (Wayne, 2000). 

1.2 Chemical Composition of the Atmosphere 

The main constituents of the Earth’s atmosphere remain almost constant over time 

and predominantly consist of N2 and O2 (99 %) with small variations in trace gas 

concentrations. This is true up to around 100 km, above which gravitational settling 

becomes important. This allows the atmosphere to be separated into two sections, the 

“homosphere” below 100 km and the “heterosphere” above. As well as N2 and O2 

there are a number of other inert gases which dominate the chemical composition of 

the atmosphere along with a vast number of trace gases. The dominant chemical 

species in the atmosphere and their percentage concentrations for a dry atmosphere 

(i.e. containing no water vapour) are summarised in Table 1.1.  

In addition to the chemical species in Table 1.1, water vapour (H2O) is also present in 

significant quantities in the atmosphere but at variable concentrations, averaging 

around 0.4 % over the whole atmosphere and around 1–4 % at the surface. Ozone (O3) 

is another species which shows significant variability with height, but is of great 

importance in the chemistry of the atmosphere and can range from parts per billion 

(ppb) to parts per million (ppm).  O3 plays a vital role in protecting life on Earth by 

absorbing potentially harmful UV radiation in the stratosphere. In the troposphere, 

however, O3 is harmful to health, causing respiratory problems in humans and animals 

and is damaging to crops (Fumagalli et al., 2001; Kampa and Castanas, 2008). 
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There are also a vast number of trace gas species which exist in ppm, ppb or ppt (parts 

per trillion) concentrations that include volatile organic compounds (VOCs), nitrogen 

oxides (NO and NO2), alkyl halides (e.g. CH3I, CH2I2), sulphur-containing compounds 

such as dimethyl sulphide (DMS) and halogen oxides (IO, BrO). 

1.3 Solar Radiation and Photochemistry in the 
Troposphere 

The radiation reaching the Earth’s surface from the sun is altered from the radiation 

reaching the top of the atmosphere due to absorption by chemical species and 

aerosols in the atmosphere and due to scattering by aerosols and clouds (Figure 1.4). 

Different wavelength regions are affected depending on the molecules which absorb in 

these regions. For instance, in the region below 290 nm, almost all of the radiation 

from the sun has been absorbed by O2 and O3 before it reaches the Earth’s surface. 

Table 1.1 The main chemical constituents of the atmosphere and their percentage concentrations. 
Data from NASA NSSDC (http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html). 

Chemical Species Percentage concentration / % 

Nitrogen, N2 78.084 

Oxygen, O2 20.946 

Argon, Ar 0.934 

Carbon Dioxide, CO2 0.0394 

Neon, Ne 0.00182 

Helium, He 0.000524 

Methane, CH4 0.000179 

Krypton, Kr 0.000114 

Hydrogen, H2 0.000055 

http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
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However, atmospheric absorption between 300 and 800 nm is less strong leading to so 

called “window regions” in the spectrum. The degree to which species absorb 

electromagnetic radiation is dependent on the properties of the molecule. Molecules 

such as H2O have a permanent dipole moment whereby positive charge is localised on 

the H atoms whereas negative charge accumulates at the O atom. This results in strong 

interactions between the electromagnetic wave and the dipole. 

 

Figure 1.4 Solar irradiance at the top of the atmosphere (purple line) and at the Earth's surface (red 
line). The difference is due to scattering and absorption by the molecules indicated. Data from: 
American Society for Testing and Materials, Terrestrial Reference Spectra for Photovoltaic Performance 
Evaluation. 

The Earth’s surface will emit radiation in the IR region of the spectrum, the region from 

around 7–13 m is a window region, with the majority of the radiation escaping to 

space. A number of greenhouse gases absorb efficiently in this region such as N2O, O3, 

CH4 and chlorofluorocarbons (CFCs), and therefore small fluctuations in their 

concentrations will have a significant effect on radiative forcing. However, band 

saturation can occur when an increase in concentration of a greenhouse gas causes 

complete absorption in a particular wavelength band, and so further increases in the 
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gas will have less and less effect on climate. In the case of CO2, an increase in 

concentration in the troposphere does not show a one-to-one relationship with 

climate warming, as much of the radiation in the 15 m region has already been 

absorbed by the CO2 already present in the atmosphere. This means a doubling of CO2 

from current concentrations will show around a 10–20 % increase in its warming effect 

(Seinfeld and Pandis, 2006). 

Due to the absorption of radiation higher in the atmosphere, the photochemistry 

occurring in the troposphere will be dependent on the available wavelengths at the 

surface. The solar radiation at the surface is measured in terms of actinic flux which is 

defined as the amount of radiation received at some point in the atmosphere per unit 

time. Photolysis involves the breaking down of molecules due to the action of photons, 

and the rate of photolysis of a species depends on the actinic flux, absorption cross 

section of the species and the quantum yield from photolysis. Species with short 

photolysis lifetimes will be of most importance in the troposphere (and those with 

longer lifetimes such as CFCs are of greater importance in the stratosphere) and 

include NO2, alkyl halides and O3. Photolysis reactions lead to the production of 

reactive species and initialise many oxidation processes in the troposphere as 

discussed in the next section.  

1.4 Oxidation Processes in the Troposphere 

The hydroxyl radical (OH) is the most important oxidising species in the troposphere 

due to its high reactivity and relatively high concentration. It reacts with most trace 

gases in the atmosphere in catalytic cycles, maintaining the concentration of OH at 

around 1 x 106 molecule cm-3 during daylight hours (Krol and Lelieveld, 2003; Prinn et al., 

2001). It is produced in the troposphere through the photolysis of O3. Although the 

majority of the short-wavelength UV light is absorbed by O3 and O2 in the stratosphere, 

sufficient light at wavelengths < 319 nm reaches the troposphere to photolyse O3. This 

process produces both ground state (O) and excited state (O1D) oxygen atoms (R1.1a 

and R1.1b). O(1D) may also be produced from photolysis of O3 at wavelengths up to 
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330 nm due to dissociation of internally excited O3 and via the spin forbidden pathway 

(R1.1c). 

  (R1.1a) 

  DOOO 1
23  h  (R1.1b) 

    DOOO 1
g23  3h

 (R1.1c) 

The ground state O atom will react rapidly with O2 to re-form O3 (R1.2) so that reaction 

R1.1a followed by reaction R1.2 produces a null cycle. 

  (R1.2) 

In the case of the excited state O(1D), the spontaneous O(1D)  O transition is 

forbidden and therefore the O(1D) must react with another species which in most 

instances will be either N2 or O2, so that the O(1D) will be quenched to the ground state 

(R1.3). 

  (R1.3) 

The resulting ground state O can then react with O2 via reaction 1.2 to reproduce O3 

resulting in another null cycle. However, if the excited state O(1D) reacts with a water 

molecule (H2O) then two OH radicals will be produced (R1.4). 

  (R1.4) 

The highest concentrations of OH are predicted around the tropics due to the high 

humidities and strong actinic fluxes leading to increased O3 photolysis and production 

of OH from O(1D). Higher OH levels are also expected in the Southern Hemisphere 

because of the increased concentrations of CO from anthropogenic activities in the 

Northern Hemisphere which will react with OH and reduce its concentration. OH will 

OOO 23  h

MOMOO 32 

MOMD)O(1 

2OHOHD)O( 2
1 
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also react with many other atmospheric trace species including methane (CH4) which is 

an important greenhouse gas and whose sources are predominantly biogenic including 

emissions from wetlands, decaying organic matter and emissions from agriculture and 

cattle (Jacob, 1999). These oxidation processes ultimately lead to the formation of CO2 

and H2O and so provide a route for the removal of anthropogenic and biogenic 

emissions from the gas phase. The oxidation of CH4 will initially lead to the formation 

of CO which can then be oxidised further to CO2, another key greenhouse gas (Seinfeld, 

2006; Wayne, 2000). The oxidation cycle for CH4 is shown below. 

  (R1.5) 

 MOCHMOCH 2323   (R1.6) 

 2323 NOOCHNOOCH   (R1.7) 

 223 HOHCHOOOCH   (R1.8) 

   HHCOHCHO  nmh 338  (R1.9) 

 MHOMOH 22   (R1.10 

 22 HOCOOHCO   (R1.11) 

The oxidation of CO proceeds as follows: 

  (R1.12) 

 MHOMOH 22   (R1.13) 

The oxidation of CH4 and of CO leads to the production of HO2 radicals which can 

reform the OH radical through reaction with NO, leading to a chain reaction.  

OHCHCHOH 23  4

2COHCOOH 
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  (R1.14) 

This self-catalytic process relies on the presence of NO; in remote locations the 

concentrations of NO tend to be low (< 1 ppb) and therefore reaction R1.14 (or R1.7) 

does not dominate. In this case the HO2 will undergo self-reaction to form peroxides 

and can then undergo photolysis to reproduce OH or may be lost from the gas phase 

by heterogeneous uptake onto aerosol. 

  (R1.15) 

 23223 OOOHCHHOOCH   (R1.16) 

 2OHOH 22  h  (R1.17) 

NOx (NO and NO2) is important in the troposphere as it affects the oxidising capacity 

through production of O3. The sources of NOx in the atmosphere include lightning and 

soil emissions as well as anthropogenic sources such as the combustion of fossil fuels. 

NO2 is photolysed at wavelengths < 424 nm to produce NO and O atoms. These O 

atoms will then react with O2 as in reaction 2 to produce O3. The O3 produced can then 

react with NO to reform NO2 and form a photostationary state. 

  (R1.18) 

 MOMOO 32   (R1.2) 

 223 ONOONO   (R1.19) 

Reaction of NO2 with OH is a terminating step which produces nitric acid (HNO3) which 

can be removed by dry deposition or uptake onto aerosol. This removes both HOx (OH 

plus HO2) and NOx from the system. 

22 NOOHNOHO 

   MOOHMHOHO 22222 

ONONO2  h
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  (R1.20) 

At night another nitrogen species, NO3 becomes an important oxidising species in 

polluted environments. It is produced through the reaction of NO2 with O3. NO3 will 

not play a major role in daytime oxidation processes as it is rapidly photolysed to NO2. 

It may also form N2O5 through reaction with NO2, which can be removed by uptake 

onto aerosol and dry deposition, leading to the removal of NOx from the gas phase. 

NO3 may also react with NO to reform NO2 (Seinfeld, 2006; Wayne et al., 1991; Wayne, 

2000). 

 2332 ONOONO   (R1.21) 

 MONMNONO 5223   (R1.22) 

  (R1.23) 

In addition to the above reactions there are many other species which will be broken 

down in the troposphere through oxidation processes. These include oceanic 

emissions such as alkyl halides and dimethyl sulphide (DMS). The chemistry of these 

alkyl halides and the halogen cycles they are involved in is discussed in the next 

chapter. DMS may be oxidised by OH or NO3 in the troposphere to produce methane 

sulfonic acid (MSA) and further to produce SO2. DMS is an important biogenic emission 

which plays a role in aerosol formation in the marine boundary layer. Details of the 

properties of aerosols and their formation processes are discussed in the next section. 

1.5 Aerosols in the Troposphere 

Aerosols can be defined as an “ensemble of solid, liquid, or mixed phase particles 

suspended in air” (Jacobson, 2005), with the aerosol particle describing a singular such 

particle. Aerosols in the atmosphere arise from a number of different sources including 

natural sources such as windborne dust, sea spray and volcanoes and anthropogenic 

MHNOMOHNO 32 

23 2NONONO 
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sources such as fuel combustion. The composition and size of aerosols shows large 

variability from region to region as the lifetime of aerosols in the atmosphere tends to 

be on the order of a few hours to a few days. 

Aerosols can be formed directly from particle emission (primary) or form in the 

atmosphere from gas-to-particle conversion processes (secondary). The size of 

aerosols also varies depending upon their sources and formation processes and can 

range from nm up to tens of m. Aerosols can be broadly divided into two classes 

based on size; those with a diameter smaller than 2.5 m are termed “fine” aerosol 

and those greater than 2.5 m in diameter are termed “coarse”.  The sources, 

formation processes, composition, optical properties and removal mechanisms of fine 

and coarse aerosol all differ and therefore the distinction between the two classes is 

vital when discussing the chemistry, measurement and health effects of aerosol.  

The fine aerosol can be sub-divided into three further categories or modes. Those 

smaller than 10 nm are nucleation mode aerosol and are formed from condensation of 

vapours in combustion processes or the nucleation of atmospheric species (Figure 1.5). 

Aitken mode aerosols are in the size range 10–100 nm, and aerosol in the size range 

100 nm–2.5 m are accumulation mode aerosols. The accumulation mode aerosols are 

formed by coagulation of nucleation mode particles and from condensation onto 

existing particles. Coarse mode aerosol are formed through mechanical processes and 

predominantly arise from combustion or from natural dust emissions (Seinfeld, 2006). 
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Figure 1.5 Aerosol size classifications and formation pathways. The shaded boxes indicate the various 
sources and phases of particles during the formation process. Adapted from Seinfeld and Pandis (2006). 

Changes in aerosol size and composition can occur through condensation and 

evaporation, coagulation with other aerosol, chemical reaction and activation in 

supersaturated water vapour to form cloud droplets and fog. The composition of 

aerosols varies greatly throughout the atmosphere; it can include contributions from 

sulphate, ammonium, nitrate, sodium, chloride, trace metals, carbonaceous materials, 

crustal elements and water.  

Carbonaceous material may include elemental carbon (or “black carbon”) which comes 

entirely from fuel combustion and will absorb radiation to have a heating effect on the 

atmosphere. Organic species can form aerosol either directly or from condensation of 

atmospheric vapours. Organic aerosols have been implicated in a number of health 

effects on humans and may contain species which are carcinogenic or mutagenic 

(Poschl, 2005). Mineral dust also provides a source of aerosol from windborne particles, 

predominantly from the deserts of North Africa, and this also provides a source of iron 
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to the world’s oceans, an important driver of biological productivity (Jickells et al., 

2005).  

The effects of atmospheric aerosols on climate are both direct and indirect (Figure 1.6). 

They can back-scatter incoming solar radiation to give a cooling effect or, as in the case 

of elemental carbon, absorb the radiation to produce a warming effect and therefore 

directly influence climate. They can also influence climate indirectly through acting as 

cloud condensation nuclei (CCN) and therefore affecting the formation of clouds. This 

will have an effect on the way in which the clouds absorb or reflect solar radiation and 

therefore impact on climate.  Calculation of the direct and indirect forcing effects of 

aerosol remains one of the largest uncertainties in predicting future climate change 

(Forster and Ramaswamy, 2007). 

 

Figure 1.6 Summary of aerosol direct and indirect effects on the radiative balance (Forster and 
Ramaswamy, 2007). 

Aerosols can also influence tropospheric chemistry by providing sites for 

heterogeneous reactions to occur, in particular, the emission of large amounts of 

halogen species from heterogeneous reactions on sea-salt aerosols (discussed further 

in Chapter 2).  

The formation of particles through gas to particle conversion remains an area of 

uncertainty, however, the dominant gaseous sources are considered to be DMS 

emitted from the oceans and non-methane hydrocarbons from both natural emissions 
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from vegetation and anthropogenic emissions which undergo oxidation in the 

troposphere (Andreae and Crutzen, 1997). Iodine oxides have also been found to be a 

source of particles in the troposphere in areas with increased iodine emissions and 

may lead to the formation of CCN (McFiggans et al., 2004; O'Dowd et al., 2002). The 

mechanism for iodine oxide particle formation is discussed further in Chapter 2. 
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Chapter 2   

Halogen Chemistry in the Marine 
Boundary Layer 

2.1 Sources of Halogens in the Atmosphere 

The primary sources of reactive halogens in the atmosphere are biogenic, with oceanic 

sources dominating, including sea-salt aerosol and emissions from marine macro and 

microalgae. 

2.1.1 Sea-salt Aerosol 

The release of halogen compounds from sea-salt aerosols represents a significant 

biogenic source of reactive halogen species in the troposphere. Chloride, bromide and 

iodide salts are present in sea water and are released to the atmosphere through 

droplets of spray (although this is a minor source in the case of iodine) (von Glasow, 

2008). The mechanism by which halogen species are released from sea-salt aerosols 

involves heterogeneous reactions with nitrogen oxides, hypohalous acids (HOX, where 

X=Cl, Br, I) and strong acids (e.g. H2SO4 and HNO3) (Saiz-Lopez and Plane, 2004a).   

Uptake of HOX onto sea-salt aerosol allows conversion of halide ions (Cl-, Br- and I-) 

into di-halogens (e.g. Br2, IBr, and BrCl). This process requires the presence of protons 

(H+) (Fickert et al., 1999) which are supplied by strong acids such as H2SO4 and HNO3, 

present in the atmosphere from anthropogenic or biogenic sources. 

  (R2.1) 

Extremely efficient heterogeneous halogen activation occurs in the Polar Regions 

during spring, involving bromine in sea ice; the so-called “bromine explosion” (Barrie 

et al., 1988; Wennberg, 1999). This occurs via reaction R2.1, where X and Y are Br, and 

OHXYHYHOX 2aqaq  
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the sea-ice is covered by brine. The Br2 produced is emitted into the gas phase and is 

readily photolysed to produce two Br atoms. These will then react with O3 to form two 

BrO molecules, which then go on to react with HO2 to form two HOBr molecules. These 

can then be recycled through the brine-covered ice to form two Br2 molecules, 

therefore leading to an exponential growth in BrO concentration (von Glasow and 

Crutzen, 2003). 

Uptake of XONO2 can also lead to the release of dihalogen molecules in a similar way 

as for HOX. The XONO2 is converted to HOX in the aqueous phase and this can then go 

on to react in the same catalytic cycle as mentioned previously. This process will occur 

in the presence of polluted air masses containing high levels of halogen nitrates, which 

can lead to an increase in gas phase halogen species (von Glasow and Crutzen, 2003).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              

  (R2.2) 

  (R2.1) 

The mechanism involving uptake of strong acids, such as H2SO4 and HNO3, onto aerosol 

releases halogens in the form hydrogen halides (HX) (Wayne, 1995). These HX species 

are highly soluble and will most likely be taken up by the sea-salt aerosol (McFiggans et 

al., 2002; Vogt et al., 1999). The X- ions produced can then be released back into the 

gas phase as dihalogen molecules as in the previous case.  

In polluted environments, the release of halogenated nitrogen oxides occurs through 

reactions of NO2 and N2O5 with NaX in sea-salt aerosol (Behnke et al., 1991; Zetzsch 

and Behnke, 1992). These halogenated nitrates will then photolyse or react further 

with the sea-salt to release dihalogens. Recent work by Roberts et al. (2009) looked 

into the uptake of N2O5 onto chloride containing aerosols and found that ClNO2 

production increased with increasing aerosol chloride concentration, in agreement 

with field observations. 

aq3aq2g2 HNOHOXOHXONO 

OHXYHYHOX 2aqaq  
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In addition, the uptake of halogen species onto sea-salt aerosol can lead to activation 

of other halogen species within the aerosol, leading to depletion of halides (in the case 

of Br and Cl) in the aerosol compared to sea water (Ayers et al., 1999). 

2.1.2 Marine Algae 

Iodine species in the atmosphere predominantly originate from macro algae (seaweed) 

and micro algae (phytoplankton), which produce organic iodine species e.g. methyl 

iodide (CH3I), dimethyl iodide (CH2I2) and molecular iodine (I2). They also provide a 

significant source of brominated and chlorinated organic compounds such as CHBr3, 

CH3Br, CHCl3, and CH2BrCl. Of these compounds the most important for tropospheric 

chemistry will be those with short lifetimes with respect to photolysis such as CH2I2, 

CH2IBr and I2 (with lifetimes of around 5 minutes, 1 hour and 5–10 seconds 

respectively (Carpenter et al., 1999; Saiz-Lopez and Plane, 2004b)). The longer lived 

halocarbons (e.g. CH3Cl, CH2Cl2, CH3Br, CH2Br2) will be transported to the stratosphere 

where they can influence stratospheric O3 (Saiz-Lopez and Plane, 2004b). Alternatively, 

the halocarbon may live just long enough to reach the upper-troposphere lower-

stratosphere (UTLS) region where it will destroy O3, such as in the case of CH3I, which 

has a lifetime of 3–5 days (Tegtmeier et al., 2013). Once in the atmosphere these 

species are photolysed by sunlight to give halogen atoms which go on to react with O3 

in the air, producing halogen oxides. 

The release of iodocarbons, such as CH3I and CH2I2, has been found to occur during low 

tide when macro algae are exposed to sunlight (Carpenter et al., 1999) and coastal 

halocarbon mixing ratios are generally higher than open ocean mixing ratios (Saiz-

Lopez et al., 2011). The reason for these halocarbons being emitted is believed to be a 

response to oxidative stress (Pedersen et al., 1996). The mechanism for production of 

halocarbons involves either a methyl transferase enzyme (mono-halogenated organic 

compounds) or a haloperoxidase enzyme (di and tri-halogenated organic compounds). 

Hydrogen peroxide is released during cell metabolism and when the organism is 

exposed to oxidative stress. It is a highly oxidative species and therefore its removal is 

vital to protect the cell from harm. The hydrogen peroxide can oxidise halides in the 
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cell, catalysed by the haloperoxidase enzyme. This produces electrophilic halogenating 

species which can go on to react with organic matter within the cell via the iodoform 

reaction whereby the hypohalite ion can react with a methyl ketone to form an 

organohalogen compound. The resulting volatile halocarbons are then released into 

the surrounding water or air (Carpenter, 2003). 

 

Figure 2.1 Haloform reaction producing volatile CHX3 which can then be released to the atmosphere. 

In addition to emissions from macroalgae, in the open ocean phytoplankton species 

are the main emitters of halocarbon species. Several studies have found emissions of 

halocarbons (including CHCl3, CCl4, CH2Br, CHBr3 and CH3I) from phytoplankton species 

(e.g. Abrahamsson et al., 2004; Moore et al., 1996; Roy, 2010; Smythe-Wright et al., 

2006) which are highly variable and often show a seasonal trend, coinciding with 

phytoplankton blooms. The rate of production of halocarbons is also highly species 

dependent (Tokarczyk and Moore, 1994) and is also influenced by nutrient 

concentration (Smythe-Wright et al., 2010). As well as the emissions from 

phytoplankton, cyanobacteria have also been shown to be a significant source of 

halocarbons during summer blooms in the Baltic sea (Karlsson et al., 2008). 

I2 has also been found to be a significant source of reactive iodine in the atmosphere 

(McFiggans et al., 2004; Saiz-Lopez and Plane, 2004a), and is also emitted by certain 

macroalgae. Originally, emissions were thought to be primarily from the species 

Laminaria digitata (Ball et al., 2010; Küpper et al., 2008; Palmer et al., 2005), however, 

recent studies have shown that additional macroalgae species (Fucus vesiculosus and 

Ascophyllum nodosum) can also be major contributors (Huang et al., 2013). The 

mechanism of its release is suggested to involve an equilibrium between HOI, I- and I2 

in solution: 



Chapter 2.  Halogen chemistry in the marine boundary layer 24 

 

 

  (R2.3) 

At low tide, the laminaria become exposed to the oxidising atmosphere, leading to the 

formation of HOI and displacing the equilibrium towards molecular iodine. Molecular 

iodine is relatively volatile and will therefore partition between the aqueous and 

gaseous phases. For I2 to be emitted into the troposphere it must volatilise to the gas 

phase before it can react with dissolved organic matter in sea water, and this can only 

occur at low tide (McFiggans et al., 2004). Alternatively, Küpper et al. (2008) suggested 

that under conditions of oxidative stress, I- is released in large quantities to the thallus 

surface (outside the cell membrane) where it reacts with oxidants such as H2O2 and O3, 

leading to production of I2. Recent studies have shown that I2 can also be released by 

seaweed species even under low-stress conditions (Nitschke et al., 2011) and the 

emissions will depend upon the degree of emersion as the tide level rises and falls 

(Ashu-Ayem et al., 2012). 

In addition to the emissions from macroalgae, measurements by Hill and Manley (2009) 

have shown that polar marine diatom species also emit large quantities of both HOI 

and HOBr, much higher than previously measured emissions of organic halogens and 

could be released to the polar MBL through brine channels in the sea ice (Saiz-Lopez et 

al., 2011).  

2.1.3 Ozone Deposition to Seawater 

Recent laboratory studies have shown that O3 deposition to the ocean surface in the 

presence of dissolved organic matter could also lead to emissions of iodocarbons 

(Martino et al., 2009).  This process involves the reaction of dissolved organic matter 

with molecular iodine, formed by the reaction of ozone with iodide at the sea surface 

(Martino et al., 2009).  In addition, the photolysis of CH2I2 in the sea surface micro-

layer leads to the production of CH2ClI which can subsequently escape into the 

atmosphere (Martino et al., 2005).  

OHIHIHOI 22  
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The reaction of O3 with dissolved iodide in seawater can also lead to the release of I2 to 

the atmosphere (Garland and Curtis, 1981). Recent studies have found that I2 and IO 

are emitted from the reaction of O3 with iodide solutions (Sakamoto et al., 2009) and 

that the emission of both species is affected by the presence of organic species such as 

phenol (Hayase et al., 2010), and by organic surfactants such as octanol (Rouviere and 

Ammann, 2010). These processes could lead to significant release of reactive iodine 

species from the open ocean, and therefore have a considerable impact upon the 

global ozone budget. 

2.1.4 Terrestrial Sources 

The presence of iodine in soil is due to input from the atmosphere and through 

decomposition of plant matter containing iodine (Carpenter, 2003). The terrestrial 

sources of CH3I are believed to comprise around 30 % of the total global budget and 

include emissions from rice paddies, wetlands and biomass burning (Carpenter, 2003). 

Alkylation of halide ions during the oxidation of organic matter has been found to 

produce volatile halogenated organic compounds in the presence of an electron 

acceptor (FeIII); in this case sunlight is not required (Keppler et al., 2000). The 

magnitude of this source will depend on a number of factors including temperature, 

moisture and soil acidity. 

2.1.5 Volcanic Eruptions 

Reactive halogen species (e.g. BrO and ClO) have been shown to be present as minor 

constituents in the gas plumes from volcanic eruptions at a number of locations 

(Bobrowski et al., 2003; Bobrowski and Platt, 2007; Bobrowski et al., 2007; Lee et al., 

2005a).  

Chlorine is in general the most abundant halogen species found in volcanic gas plumes 

with concentrations increasing with increasing water content and decreasing SO2 

content (Aiuppa et al., 2009). Fluorine is around five times less abundant than Cl in 

volcanic gas plumes and does not appear to show a correlation with water content. 
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Both Cl and F are thought to be transported in gas plumes predominantly as HCl and 

HF. 

Measurements of BrO have been recorded at a site in Montserrat (Bobrowski et al., 

2003) and suggest that emissions of halogen species from volcanoes could have a 

significant impact on both tropospheric and stratospheric chemistry.  Long-path DOAS 

observations of BrO at Masaya Volcano, Nicaragua (Kern et al., 2009) were consistently 

below the detection limit of the instrument at night suggesting that BrO is not emitted 

directly from the volcano but is the result of photochemistry within the volcanic plume.  

Aiuppa et al. (2005) measured total Br and I emissions (mainly in the form of HBr and 

HI) from the volcanic plume of Mount Etna and estimate the global budget of Br and I 

from volcanic degassing to be 13 and 0.11 Kt yr-1, respectively. This suggests that 

volcanoes are a significant source of reactive bromine to the atmosphere whereas they 

represent only a minor contribution to the global reactive iodine budget (Aiuppa et al., 

2005). 

The presence of these compounds in volcanic plumes could cause substantial ozone 

depletion in the vicinity of the volcano. Reactive halogen emissions from volcanic 

degassing will predominantly play a role in the chemistry of the free troposphere and 

the stratosphere as the lifetime of atomic Br is sufficiently long to be transported to 

these altitudes (Bobrowski et al., 2003). 

2.1.6 Anthropogenic Emissions 

Although biogenic emissions are the dominant source of reactive halogen species in 

the troposphere, anthropogenic sources also play a part. Biomass burning and fossil 

fuel combustion have been shown to be sources of Br- in aerosols in polluted 

environments (Keene et al., 1999).  
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2.2 Impacts of Halogens in the Atmosphere 

There are large numbers of different halogen containing species released into the 

troposphere and these can have a significant effect on the chemistry occurring in the 

lower atmosphere. A simple scheme of the chemistry involving halogen species 

occurring in the troposphere is shown in Figure 2.2. 

 

Figure 2.2 A schematic diagram of the chemistry involving halogen species in the marine boundary layer, 

dashed lines show photolysis reactions (Mahajan, 2009). 

2.2.1 Ozone Depletion 

The destruction of ozone in the stratosphere by halogen radicals is a well known 

phenomenon; however, this process also occurs in the troposphere through reactions 

involving halogen oxide radicals (McFiggans et al., 2000; Saiz-Lopez and Plane, 2004b): 

  (R2.4) 23 OXOOX 
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  (R2.5) 

  (R2.6) 

   

In the polar regions during springtime complete removal of ozone in the troposphere 

can occur within days due to catalytic bromine cycles involving the BrO self-reaction 

and the so called “bromine explosion” as mentioned previously in section 2.1.1 (von 

Glasow and Crutzen, 2003).  

  (R2.7) 

  (R2.8) 

  (R2.9) 

  (R2.10) 

   

Studies by Read et al. (2008) showed that combined bromine and iodine cycles could 

account for almost 50 % of ozone loss at the Cape Verde islands in the tropical north 

Atlantic, suggested to be representative of the open ocean. This is due to the following 

reaction, which increases the rate at which BrO is converted back to Br: 

  (R2.11) 

Reaction with HO2 radicals becomes important at lower halogen oxide concentrations 

and under low NOx conditions, leading to significant ozone depletion at remote marine 

environments at sunrise due to the photolysis of halogen species that have built up 

overnight through release from sea salt aerosol (Saiz-Lopez and Plane, 2004b). 
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  (R2.4) 

  (R2.12) 

  (R2.13) 

  (R2.14) 

   

Under high NOx conditions formation of halogen nitrates occurs, leading to ozone 

depletion: 

  (R2.15) 

  (R2.16) 

  (R2.17) 

  (R2.4) 

  (R2.18) 

   

The efficiency of this cycle will be reduced, however, by the photolysis of XNO3 to XO + 

NO2 and also the fact that the major photolysis pathway of NO3 produces NO2 + O, 

therefore leading to no overall ozone depletion (Saiz-Lopez and Plane, 2004b). 

The self-reaction of IO results in the formation of OIO, a starting block for particle 

formation. A recent study by Gómez Martín et al. (2009) shows that OIO photolysis 

occurs in the visible region with a quantum efficiency of unity and produces I atoms;  

much smaller sources of iodine precursors will therefore be required for substantial 

ozone depletion. Particle production from polymerisation of OIO will be inhibited 
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during the day due to its rapid photolysis, with a peak occurring at sunset when OIO 

photolysis ceases. 

2.2.2 Oxidation of Organic Compounds 

Atomic Cl and Br can react with non-methane hydrocarbons (NMHCs) in the same 

manner as OH to abstract a hydrogen atom and in some cases Cl is even more reactive 

towards these compounds than OH (von Glasow and Crutzen, 2003). 

Reactions of halogen atoms with HO2 radicals produce hydrogen halides which are 

removed from the gas phase through wet/dry deposition. HOI uptake onto halide rich 

surfaces can enhance bromine release in the form of IBr (Saiz-Lopez et al., 2007b). 

Halogen oxides (BrO and ClO) and atomic chlorine (Cl) can oxidise DMS in the marine 

boundary layer at a rate around an order of magnitude faster than by OH in coastal 

Antarctica (Saiz-Lopez et al., 2007b). The products of these reactions (dimethyl 

sulfoxide, dimethyl sulfone, methyl sulfinic acid) do not produce new particles, they 

can only condense onto existing particles unlike the H2SO4 and SO2 produced from OH 

+ DMS reaction. The differing products will affect the number and size of cloud 

condensation nuclei (CCN), thereby influencing cloud formation and chemistry-climate 

feedbacks (von Glasow and Crutzen, 2004). 

2.2.3 Changes to the NOx and HOx Balance 

During the daytime OH is the principal oxidising agent in the troposphere and it 

determines the lifetime of innumerable chemical species. Reaction of OH with CO 

leads to the formation of HO2 and a steady state between the two species is 

established. Halogens affect the [HO2]/[OH] ratio through the XO + HO2 reaction. This 

can be followed by photolysis or uptake of HOX onto aerosol (Bloss et al., 2005).  

  (R2.12) 
22 OHOXHOXO 
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223 ONOONO 

NOP)O(NO 3
2  h

  (R2.13) 

  (R2.19) 

HOX acts as a sink for HO2 and provides a route to OH formation causing the [HO2]/[OH] 

balance to decrease. Measurements at Mace Head, Ireland showed that the XO + HO2 

reaction could account for 40±12 % of HO2 loss and subsequent photolysis of HOX 

provided up to 15 % of OH production (Bloss et al., 2005). Studies at Cape Verde also 

found a significant effect on the HOx ratio when halogen chemistry was included in 

model simulations, accounting for an overall 9 % increase in OH concentrations 

(Whalley et al., 2010). This reaction is particularly important in the presence of iodine 

as HOI photolysis is more rapid than that of HOBr (typically HOI has a lifetime against 

photolysis of around 2 minutes at ground levels at noon compared to HOBr which is 

typically around 1 hour) (Saiz-Lopez and Plane, 2004b). 

A similar relationship exists between NO and NO2 in the troposphere, controlled by the 

following reactions: 

  (R2.18) 

  (R2.20) 

The presence of significant halogen concentrations shifts the [NO2]/[NO] balance 

towards NO2 through the following reaction (Davis et al., 1996): 

  (R2.21) 

2.2.4 Oxidation of Elemental Mercury 

The lifetime of atomic mercury (Hg0) in the troposphere is around one year and it is 

released into the atmosphere from a number of sources including coal combustion 

(Schroeder and Munthe, 1998). Atomic Br and Cl are highly reactive towards Hg0 at low 

XOHHOX  h

lossaerosolHOX 
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23 OBrOOBr 

BrHgOHgBrO 0 

HgBrOHgBrO 0 

OHgBrHgBrO 0 

temperatures, and lead to conversion of Hg0 into reactive gaseous mercury (RGM) in 

the form HgBr2/HgCl2 (Saiz-Lopez and Plane, 2004b).  This RGM can then quickly enter 

the food-chain in the Arctic ecosystem. Hg0 depletion events correlate well with those 

of O3 suggesting that they must involve similar elevated bromine levels. The proposed 

oxidation pathways may involve atomic Br or BrO (Saiz-Lopez and Plane, 2004b; 

Simpson et al., 2007): 

  (R2.7) 

  (R2.22) 

  (R2.23) 

  (R2.24) 

  (R2.25) 

  (R2.26) 

Atomic Br is thought to be the more important oxidant in atomic mercury depletion 

events (AMDEs) in the Arctic (Simpson et al., 2007), and it is believed that the reactions 

of Cl, Cl2 and Br2 with Hg0 are too slow to compete with the atomic Br reaction during 

these events (Goodsite et al., 2004). 

2.2.5 New Particle Formation 

The ability of iodine oxides to form new particles in the troposphere has been 

extensively studied over recent years; however, the mechanism by which new particles 

are formed is still poorly understood. Ultrafine particles (diameter < 100 nm) formed in 

the troposphere will affect the radiative balance of the atmosphere, through their 

direct scattering effects and absorption of incoming radiation and also their ability to 

form cloud condensation nuclei (CCN) as mentioned in Chapter 1. This could have a 

HgBrM)Br(Hg0 

2HgBrM)Br(HgBr 
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significant impact on climate, therefore understanding formation mechanisms for 

these particles will provide valuable information for climate modelling.  

Studies at Mace Head, Ireland suggested a clear link between iodine/bromine oxide 

species and new particle formation (O'Dowd et al., 2002) with levels of 

106 particles cm-3 observed. A strong correlation between IO and ultra fine particles 

was also observed at Roscoff in Northern France during the 2006 RHaMBLe (Reactive 

Halogens in the Marine Boundary Layer) campaign, further evidence that iodine oxide 

species are involved in new particle formation (Furneaux et al., 2010). 

OIO is produced from the self reaction of IO and the reaction of IO with BrO (Cox et al., 

1999). It can then undergo further self-reactions to produce higher iodine oxides such 

as I2O2, I2O3, I2O4 and I2O5. 

Laboratory and modelling studies of particles generated from I2 by Saunders and Plane 

(2005) suggested that the main component of iodine aerosol is I2O5 (inferred from the 

average O/I ratio of 2.45±0.08). The mechanism they propose for particle formation 

involves a series of exothermic oxidation reactions of ozone with I2O2, I2O3 and I2O4 to 

produce I2O5. The I2O5 molecules can then form larger clusters through polymerisation 

and coagulation. 

Alternatively, studies by Jimenez et al. (2003)  of particle formation from photolysis of 

CH2I2 suggested that the main component of the iodine oxide particles was I2O4, and 

that production of particles was through polymerisation of iodine oxides such as OIO. 

Recent laboratory studies have shown that iodine oxide particles (IOPs) can be 

produced from IO in the absence of O3, suggesting IOPs form from the polymerisation 

of I2O3 and I2O4, produced from the OIO self reaction or recombination of IO and OIO 

(Mahajan et al., 2010a). The mechanism of IOP formation is discussed further in 

Chapter 3. 

Growth of ultra-fine particles into CCN has been suggested to occur through the 

condensation of iodine compounds onto ammonium-sulphate clusters (McFiggans et 

al., 2004).  Concentrations of ammonia and sulphuric acid in the atmosphere are 
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unable to account for the observed particle growth to observable sizes, therefore it 

has been postulated that iodine vapours will condense onto thermodynamically stable 

NH3-H2O-H2SO4 clusters. Modelling work has shown that iodine oxide particles can act 

as condensation nuclei themselves with sulphuric acid condensing onto the surface of 

these particles in the presence of ammonia once a threshold size of a few nm has been 

reached (Mahajan, 2009). The growth of IOPs to CCN size is a highly non-linear process, 

and modelling studies have shown that it is highly dependent on both IO concentration 

and background aerosol surface area (Figure 2.3). 

 

Figure 2.3 Number of potential CCN (D=20 nm) formed at 10 m as a function of mean daytime IO. Two 
cases are shown with different aerosol surface areas: a typical MBL value of 1 x 10

-6
 cm

2
 cm

-3
 (red line); 

and an ultra-clean value of 1 x 10
-7

 cm
2
 cm

-3
 (blue line). Figure from Mahajan et al. (2010). 
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2.3 Previous Measurements of Halogen Species 

2.3.1 Measurement Techniques 

Differential Optical Absorption Spectroscopy (DOAS) has been used for a number of 

years to measure halogen species in a wide variety of locations (e.g. Bobrowski et al., 

2003; Honninger et al., 2004b; Mahajan et al., 2009b; Mahajan et al., 2010a; Saiz-

Lopez et al., 2006; Saiz-Lopez et al., 2007b).  The long-path DOAS technique employs 

the Beer-Lambert law to determine the concentration of specific species in the 

atmosphere based on its absorption cross section and light absorption in the 

atmosphere. The technique is particularly useful as it allows simultaneous 

measurement of more than one species in a particular wavelength region (Plane and 

Saiz-Lopez, 2006). The DOAS technique is discussed in detail in Chapter 5. 

In addition to the various DOAS techniques, there are a number of other techniques 

which have been employed to measure halogen species in the boundary layer. For 

instance, broadband cavity ring down spectrometry (BB-CRDS) (Bitter et al., 2005), 

inductively coupled plasma mass spectrometry (ICP-MS) (Saiz-Lopez et al., 2006) and 

molecular fluorescence (Gómez Martín et al., 2011) techniques have all been used to 

successfully measure I2. Measurements of IO have also been conducted by CRDS 

(Wada et al., 2007) and laser induced fluorescence (LIF) (Whalley et al., 2007). One 

advantage of the in situ measurements is the ability to measure localized emissions, 

particularly in coastal locations, which can be up to an order of magnitude higher than 

the DOAS measurements which are averaged over a much larger distance (Saiz-Lopez 

et al., 2011). The majority of halocarbon measurements have been performed using 

gas chromatography-mass spectrometry (GC-MS) (e.g. Jones et al., 2009). 

2.3.2 Bromine Oxide - BrO 

BrO has been observed in a number of different environments including over the snow 

pack in the Polar regions (Saiz-Lopez et al., 2007b), over salt lakes (Stutz et al., 2002) 

and in volcanic plumes (Bobrowski et al., 2003). The first measurements of BrO were 
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conducted in the Arctic boundary layer by Hausmann and Platt (1994) using the DOAS 

technique. This triggered further measurements in Polar regions which showed that 

significant mixing ratios (up to 30 ppt) of BrO could be observed during spring time 

(Frieβ et al., 1999; Honninger and Platt, 2002). 

In later years BrO was also observed over salt lakes such as the Dead Sea and in Salt 

Lake City with mixing ratios up to 176 ppt (Honninger et al., 2004a; Matveev et al., 

2001; Stutz et al., 2002; Wagner et al., 2007). 

More recently, BrO has been detected in the tropical marine boundary layer, at a site 

in Cape Verde (Read et al., 2008) with an average mixing ratio of 2.5 ppt (detection 

limit 0.5–1.0 pptv). BrO has also been detected in the mid-latitude marine boundary 

layer at a coastal site in Brittany (Mahajan et al., 2009a) where it was observed with 

mixing ratios up to 7.5 ppt and at Mace Head in Ireland where a maximum mixing ratio 

of 6 ppt and a daytime average of 2.3 ppt were observed (Saiz-Lopez et al., 2006).  

These measurements were all performed using the long-path DOAS technique. 

BrO has also been measured in a number of volcanic plumes using either the long-path 

or multi-axis DOAS techniques. Mixing ratios of ~1000 ppt have been observed (Aiuppa 

et al., 2005; Bobrowski et al., 2003; Lee et al., 2005a). 

In addition to the ground based measurements mentioned above, satellite 

measurements have also been carried out which show elevated BrO mixing ratios of up 

to 30 ppt over polar regions (Wagner and Platt, 1998; Wagner et al., 2001). Balloon-

borne measurements of BrO using solar occultation DOAS and in situ resonance 

fluorescence over the tropics showed mixing ratios up to 21.5 ppt in the stratosphere 

(33 km) but negligible amounts (< 1 ppt) in the lower and middle troposphere (Dorf et 

al., 2008). 

2.3.3 Iodine Species – IO, OIO, I2 and I 

The majority of iodine measurements have been conducted at coastal sites where 

there are increased biogenic sources, however, increasingly measurements have been 
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performed over the open ocean, where alternative sources of reactive iodine will 

dominate. A summary of the current measurements of IO, OIO, I2 and I made in a 

variety of locations, both coastal and open ocean, is provided in Table 2.1. 

Measurements in coastal Antarctica made by Frieβ et al. (2001) showed slant column 

densities up to 1014 molecules cm-2, equivalent to around 10 pptv if confined to the 

marine boundary layer (< 1300 m), with higher IO during the summer. Later 

measurements by Saiz-Lopez et al. (2007b) showed maximum mixing ratios of IO over 

20 pptv during springtime, the highest concentrations recorded anywhere at the time. 

Satellite measurements have shown that the IO over Antarctica is not just confined to 

the coasts, but extends over a large area of the continent (Saiz-Lopez et al., 2007a; 

Schönhardt et al., 2008). This suggests that there must be significant recycling of iodine 

species through the snowpack; IO concentrations up to 50 ppbv have been measured 

within the snowpack (Frieß et al., 2010), however, these measurements remain to be 

confirmed. 

In contrast to the very large IO mixing ratios observed over Antarctica, IO 

measurements in the Arctic show much lower mixing ratios, and the gas phase iodine 

chemistry is much more localised. Measurements from Spitsbergen of total gaseous 

iodine using activated charcoal and detection of the isotope I128 were typically 1–2 

pptv with a maximum of 8 pptv during a high bromine loading event, but IO was not 

observed above the detection limit using the DOAS technique (2–4 pptv) (Martinez et 

al., 1999). Mahajan et al. (2010b) measured a maximum of 3.4 pptv IO at Hudson Bay, 

Canada, which coincided with higher iodocarbon emissions from open water “polynyas” 

formed in the sea ice. The sporadic nature of the IO measurements are also in contrast 

to the regional scale “clouds” of BrO observed in the Arctic, due to the “bromine 

explosion” described in section 2.1.3 (Saiz-Lopez, 2011). 
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Table 2.1 Summary of gas phase iodine species measurements in a variety of locations across the world. 
Adapted from Saiz-Lopez et al. (2011). 

Species Location Mixing Ratio / pptv Reference 

Max. LOD 

IO Antarctica ~10 
20±1 

12 
~10 

 
0.5 

 
 

(Frieβ et al., 2001) 
(Saiz-Lopez et al., 2007b) 
(Saiz-Lopez et al., 2007a) 
(Schonhardt et al., 2008) 

Arctic 0.8±0.2 
3.4±1.2 
0.4±0.1 

0.3 
1.3 
0.2 

(Wittrock et al., 2000) 
(Mahajan et al., 2010b) 

(Oetjen, 2009) 

North Sea (Germany) 2.0±0.7 
1.4±0.3 

0.28 
0.14 

(Peters et al., 2005) 
(Oetjen, 2009) 

Mace Head (Ireland) 6.6±0.5 
3.0±0.3 
7.0±0.5 

29±9 
30±1 

0.9 
0.2 
0.5 
14 
1.4 

(Alicke et al., 1999) 
(Allan et al., 2000) 

(Saiz-Lopez and Plane, 
2004a) 

(Seitz et al., 2010) 
(Commane et al., 2011) 

Brittany 7.7±0.5 
10.1±0.7 

54±18 
30±7 

0.23 
0.5 
12 
1.1 

(Peters et al., 2005) 
(Mahajan et al., 2009b) 

(Wada et al., 2007) 
(Furneaux et al., 2010) 

Gulf of Maine (USA) 4.0±0.5  (Stutz et al., 2007) 

Cape Grim (Australia) 2.2±0.3 0.2 (Allan et al., 2000) 

Heraklion (Greece) 1.9 0.8 (Oetjen, 2009) 

Dead Sea (Israel) 10±1 3 (Zingler and Platt, 2005) 

Tenerife 4.0±0.3 
0.4±0.2 

0.2 
0.2 

(Allan et al., 2000) 
(Puentedura et al., 2012) 

Cape Verde 3.1±0.4 0.4 (Read et al., 2008) 

Maldives 2.8±0.7 0.9 (Oetjen, 2009) 

Eastern Pacific 0.9±0.1  (Mahajan et al., 2012) 

Western Pacific 2.2±0.5  (Großmann et al., 2013) 

Alcantara (Brazil) 0.8±0.3 0.3 (Butz et al., 2009) 

OIO Mace Head (Ireland) 3.0±0.4 
9.2±1.3 

13±4 

0.5 
3.2 
4 

(Saiz-Lopez and Plane, 
2004a) 

(Peters et al., 2005) 
(Bitter et al., 2005) 

Brittany (France) 8.7±2.3 3 (Mahajan et al., 2009b) 

Gulf of Maine (USA) 27±7  (Stutz et al., 2007) 

Cape Grim (Australia) 3.0±0.4 0.5 (Allan et al., 2001) 

I2 Mace Head (Ireland) 93±5 
61±12 
94±20 
~200 

3 
10 
20 

(Saiz-Lopez and Plane, 
2004a) 

(Peters et al., 2005) 
(Bitter et al., 2005) 
(Bale et al., 2008) 
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Mweenish Bay 
(Ireland) 

115 
302±4 

0.2 (Saiz-Lopez et al., 2006) 
(Huang et al., 2010) 

Brittany (France) 52±4 
50±10 

5 
10 

(Mahajan et al., 2009b) 
(Leigh et al., 2010) 

Ria de Arousa (Spain) 300±100 30 (Mahajan et al., 2011) 

California (USA) 4.0±0.6 0.1 (Finley and Saltzman, 2008) 

I Mace Head (Ireland) 22±5 2.5 (Bale et al., 2008) 

Ria de Arousa (Spain) 10±5 2 (Mahajan et al., 2011) 

High concentrations of IO were recorded by Whalley et al. (2007)  in Roscoff, Brittany, 

where levels reached a maximum of 27.6±2.3 pptv. The laser-induced fluorescence (LIF) 

technique was employed and as such represents a point measurement. During the 

same campaign LP-DOAS measurements recorded a maximum IO concentration of 

10.1±0.7 pptv (Mahajan et al., 2009b). This indicates hot-spots for reactive iodine 

species which may be lost when using the DOAS technique as concentrations are 

averaged over a much larger distance of around 3.4 km. 

OIO has been successfully observed at a number of coastal sites including Mace Head, 

Ireland, Cape Grim, Australia and Roscoff, France (Allan et al., 2001; Mahajan et al., 

2009b; Saiz-Lopez and Plane, 2004a).  Mixing ratios of up to 8.7 pptv have been 

observed at night in the semi polluted coastal environment at Roscoff, France 

(Mahajan et al., 2009b). 

Butz et al. (2009) performed measurements of IO and OIO using balloon-borne solar 

occultation in the upper troposphere and lower stratosphere (UTLS). They found an 

upper limit of 0.1 pptv for both species based on the detection limit of the instrument, 

indicating that iodine does not have a significant ozone depleting effect at these 

altitudes and at this location. However, they state iodine could be transported to the 

UTLS in particulate form which could not be detected. Ground-based zenith sky 

spectroscopy measurements showed up to 0.8 pptv IO in the stratosphere at 

Spitsbergen during polar spring (Wittrock et al., 2000). 

The first measurements of I2 were recorded using the long-path DOAS technique by 

Saiz-Lopez and Plane (2004a) at Mace Head, in August 2002 with mixing ratios of up to 

93 pptv. Since then I2 has been observed at a coastal site in Brittany in 2003 with 

mixing ratios up to 61±12 pptv. Its presence was only observed at very low tide when 
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the laminaria were directly exposed to ambient air (Peters et al., 2005). I2 was also 

observed at Roscoff, again using the long-path DOAS technique, with mixing ratios up 

to 52.3 ppt at night (Mahajan et al., 2009b). Diffusion denuder measurements of I2 

taken directly above an algal bed showed concentrations varied from 110 up to 302 

pptv (Huang et al., 2010). 

Recently, satellite measurements of IO have been recorded using the Scanning Imaging 

Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite 

instrument (Schonhardt et al., 2008) and showed high slant columns (up to 

8 x 1012 molecules cm-2) along the coast of South America. To relate these 

concentrations to mixing ratios in the marine boundary layer, it must first be assumed 

that the IO is confined to the lowest layer of the atmosphere. Assuming a layer of 1 km 

thickness, this gives a mixing ratio for IO of 3.2 pptv, however if the IO were confined 

to an even smaller height within the marine boundary layer, around 300 m (as has 

been modelled), this would give maximum IO mixing ratios of 10.7 pptv. This is much 

higher than the average IO measured at Cape Verde in the Atlantic Ocean (~1.5 pptv) 

and measurements in the Eastern (maximum ~1 pptv (Mahajan et al., 2012)) and 

Western Pacific Ocean (maximum 2.2 pptv (Groβmann et al., 2013)). The low 

reflectivity of the ocean surface means that satellite observations have comparatively 

low signal-to-noise and therefore these measurements should be treated with caution 

(Saiz-Lopez et al., 2011).  

2.3.4 Halocarbons 

Measurements of halocarbons in the atmosphere are generally performed using GC-

MS, a technique which is able to detect a number of different halocarbon species 

simultaneously. Among the halocarbons which have been measured in the atmosphere 

are CH2Br2, CHBr3, CH3Br, CH2I2, CH3I, CH2ICl, CH2IBr and C2H5I. These species have 

been observed at a number of European locations (Carpenter et al., 1999; Peters et al., 

2005). 
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The mixing ratios of the iodine containing halocarbons for Mace Head (Carpenter et al., 

1999) and Roscoff (Jones et al., 2009) were generally below 1 ppt, however the same 

species were observed in much higher concentrations in Lilia, Brittany (Peters et al., 

2005). The extremely high levels of CH3I and CH3Br observed (up to 1830 and 875 ppt 

respectively) were linked to exceptional levels of bioactivity. A comparison of 

measurements from Cape Grim, Australia and Mace Head (Carpenter et al., 2003) 

found mixing ratios of CHBr3, CHBr2Cl, CH2Br2, CH3I and CH2ICl were around 25–50 % 

lower at Cape Grim; the emissions at Mace Head were directly influenced by the 

adjacent seaweed beds, whereas this was not the case in the cliff top location of Cape 

Grim. 

Concentrations of iodocarbons are generally in the order CH3I > C2H5I ≈ C3H7I > CH2ICl > 

CH2I2 > CH2IBr and as a consequence, open ocean CH3I measurements are much more 

abundant than the other iodocarbons. Yokouchi et al. (2008) observed methyl iodide 

at a number of locations: at high, mid and low latitudes in both hemispheres. They 

found considerable median concentrations of CH3I at San Cristobal Island, in the 

Galapagos of 1.05 pptv with a maximum of 2.55 pptv. CH3I has a distinct latitudinal 

distribution with higher concentrations observed at low latitudes (with slightly lower 

values at the equator)(Butler et al., 2007; Yokouchi et al., 2008) and also a clear 

seasonality with maximum concentrations observed in summer (Archer et al., 2007; 

Sive et al., 2007; Yokouchi et al., 2001). C2H5I, CH2ICl, CH2I2 and CH2IBr followed a 

similar seasonal pattern to CH3I in the shelf region of the English Channel, although 

less pronounced (Archer et al., 2007). 

2.3.5 Iodine Speciation – IO3-, I- and SOI 

The cycling of iodine through water, snow, ice and aerosols is dependent upon the 

speciation of iodine within these media. As I- participates in halogen activation to yield 

IX, it was originally assumed that IO3
- would be the only stable iodine species in aerosol 

(McFiggans et al., 2000; Vogt et al., 1999). However, measurements from marine 

rainwater and aerosol have shown that the I-/IO3
- ratio is in fact highly variable, and 

the mechanisms controlling this ratio are still unclear (Saiz-Lopez, 2011). 
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Several measurements have also indicated a significant fraction of soluble organic 

iodine (SOI) in rainwater and aerosol; the proportion is highly variable but can often 

constitute the major fraction of total iodine (Baker et al., 2000; Baker, 2005; Gilfedder 

et al., 2007a, b; Gilfedder et al., 2008; Lai et al., 2008). The majority of these SOI 

species have not been determined; only one species, iodoacetic acid, has been 

tentatively identified (Gilfedder et al., 2007a, b; Gilfedder et al., 2008).  The source of 

this SOI has been proposed to be the release of iodinated organic matter from bubble 

bursting at the sea surface (Seto and Duce, 1972) or from reactions of organic matter 

with HOI within the aerosol. There can also be a significant insoluble iodine fraction 

(Tsukada et al., 1987), which is most likely to be organic (Baker et al., 2000) or consist 

of iodine species adsorbed to mineral or black carbon surfaces (Gilfedder et al., 2010). 

Observations of IO in Mace Head and Tenerife (Allan et al., 2000) cannot be 

reproduced in models without recycling of iodine through the particulate phase 

(McFiggans et al., 2000), with suggestions of a reduction of iodate occurring through 

inorganic cycles (Pechtl et al., 2007). The pH dependent Dushman reaction reduces 

iodate to  molecular iodine through the presence of iodide under acidic conditions 

(Schmitz, 1999). Recent work by Saunders et al. (2012) has shown that iodate can be 

reduced to iodide by irradiation with light (λ < 310 nm) in the presence of humic 

material (commonly found in marine aerosol); a significant organically bound iodine 

fraction was also produced. 

Large variations also exist in the ratio of iodate to iodide in seawater, and the controls 

on this ratio are biological, chemical and physical.   Iodide is generally much higher in 

surface waters than in deeper waters, where iodate dominates the total iodine, 

however, total iodine is often depleted at the surface, showing that iodine is being 

removed from the surface waters (Elderfield and Truesdale, 1980). Elderfield and 

Truesdale (1980) suggested that the interconversion of iodate and iodide in surface 

waters of the Atlantic and Pacific oceans is most likely due to biological processes, 

which are more active in equatorial and temperate waters than at higher latitudes. 

Huang et al. (2005) also found higher iodide concentrations in warmer waters, 
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presumed to be due to biological processes, and also measured a small organically 

bound fraction in surface waters that was not present at depth.  

Spokes and Liss (1996) suggested a photochemical mechanism mediated by organic 

matter could be responsible for the reduction of iodate to iodide in seawater. 

Measurements in the Sargasso sea and Bermuda (Jickells et al., 1988) showed that 

iodide formation only occurred when waters had been isolated for a considerable 

amount of time, and could be due to a photoreduction mechanism or bacterial activity. 

Iodide may also be expected to vary due to the mixing of different ocean waters, and 

stratification in the water column and changes in replenishment of iodate from deeper 

waters was found to be important for measurements in the Atlantic ocean (Truesdale 

et al., 2000). 

2.4 Project Aims 

Despite the great progress achieved in understanding halogen chemistry in the MBL 

over the past several decades, there remain several unanswered questions in relation 

to the sources and impacts of iodine over the remote oceans. Several studies have 

shown that the levels of reactive iodine (in the form of IO) measured over the open 

ocean cannot be accounted for by measurements of organoiodines alone, and 

alternative sources are required to match these observations. A number of 

mechanisms have been proposed for the release of reactive iodine in inorganic forms 

from non-biological processes as discussed previously. 

The aims of this work were to try to better understand the mechanism by which iodine 

could be released into the atmosphere from the open ocean through the reaction of 

O3 and iodide in the sea surface. In the atmosphere, this process will be affected by a 

number of different physical and chemical parameters, and this work aimed to 

investigate these effects with the aim of quantifying the inorganic source of iodine 

from the ocean. 

The experiments could then be used to produce parameterisations for the inorganic 

iodine flux based on measurable parameters such as sea surface iodide concentration 
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and atmospheric ozone concentration. Comparison of the predicted fluxes with field 

measurements of iodine oxides taken over the remote ocean in the Galapagos Islands 

provided a useful method for assessing the applicability of these expressions to the 

real atmosphere. The motivation for producing these expressions is to provide a useful 

tool for use in atmospheric global models, so that the impacts of iodine chemistry can 

be assessed on a global scale. 
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Chapter 3   

Measurements of the Iodine Flux from 

the I- + O3 Reaction 

An important element of this PhD project involved laboratory experiments to 

investigate the so-called “inorganic iodine flux” produced from the reaction of O3 

deposited to the surface of an iodide solution. Several recent field measurements have 

shown that the observed levels of gaseous IO cannot be explained by the measured 

halocarbon fluxes and that an additional inorganic iodine source is required to match 

the observations (Gromann et al., 2012; Mahajan et al., 2010a; Mahajan et al., 2012). 

The reaction of gaseous O3 with I- in surface seawater has been demonstrated to 

produce significant amounts of I2, which may provide the explanation for the missing 

source of I2 in these field measurements (Garland and Curtis, 1981). The aim of these 

experiments was to try to quantify the I2 flux produced via this mechanism and study 

the effects of a number of ocean physical variables such as temperature, salinity and 

organic compounds on the resulting flux.  

The method employed involved conversion of the reactive iodine from solution into 

iodine oxide particles (IOPs) and subsequent detection using a nano-differential 

mobility analyser.  Measurements were performed using the Tapcon (EMS VIE-10) 

instrument, which measures both the number and size of the iodine particles 

produced. A description of the various components of the Tapcon system, the process 

of IOP formation and the experimental set-up is provided in section 3.1. Section 3.2 

goes on to discuss the experiments performed using iodide solutions, where the 

effects of various atmospherically relevant parameters on the resulting inorganic 

iodine flux are presented. 
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3.1 Experimental Technique 

3.1.1 The Tapcon Instrument 

The Tapcon instrument is an electrical mobility spectrometer made up of a number of 

different components which allow the separation of particles based upon their size. 

The instrument is capable of measuring down to thousands of particles, and this 

indirect method gives detection limits for I2 of 1–2 ppt, a greater sensitivity than is 

currently achievable with traditional direct absorption techniques. This level of 

sensitivity is necessary due to the very low fluxes of I2 and HOI expected under 

atmospherically relevant conditions. The main body of the instrument which provides 

the separation is the differential mobility analyser (DMA) which separates the particles 

based on electrical mobility. This electrical mobility determines the drift velocity of the 

particle under the influence of an electric field and is dependent upon the size of the 

particle.  The basis of this technique is discussed in detail by Reischl (1991), and a brief 

description is provided below along with a schematic diagram of the various 

components of the Tapcon system (Figure 3.1). 

 
Figure 3.1 Tapcon instrument set-up (figure taken from Berner et al., (2006)) showing all components 
including: neutraliser, differential mobility analyser, Faraday cup electrometer and EMS control system. 
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For the determination of the electrical mobility distribution, the particles must first be 

brought into charge equilibrium; this is achieved by flowing the aerosol through a 

neutralizer. The neutralizer consists of a radioactive source (Am-241), contained within 

a lead shielded stainless steel cylinder, that produces both positive and negative ions 

through bipolar diffusion charging (Figure 3.2). The alpha particles emitted by the 

radioactive source ionise the surrounding air molecules (N2 and O2) producing N2
+ and 

O2
+ ions (Reischl et al., 1996; Winklmayr et al., 1991). The aerosol sample is then 

introduced into the chamber where it is exposed to the high ion concentration. 

Diffusion charging occurs due to the random thermal motion of the ions and particles, 

leading to ion-particle collisions which give rise to charged particles through ion 

capture (Winklmayr et al., 1991). An equal number concentration of both positive and 

negative ions are produced within the cylinder; however, an imbalance arises 

downstream of the ionisation chamber due to increased wall losses of negative ions 

due to their greater mobility. This leads to a greater concentration of positive to 

negative ions in the connection space between the neutraliser and the DMA (Lee et al., 

2005b). 

 

Figure 3.2 Schematic diagram of the Am-241 ionisation source and the mechanism of ionisation 
occurring downstream with a greater number of positive than negative ions produced (adapted from 
Figure 10 in Lee et al. (2005b)). 

Am-241 source

Aerosol in

Particle
Positive ion
Negative ion

ni
+ = ni

-

ni
+ > ni

-

DMA



Chapter 3. Measurements of the iodine flux from the I- + O3 reaction 48 

 

 

After this the particles are flowed into the DMA which is used to classify particles in 

the size range 0.6–40 nm. The DMA has a cylindrical arrangement with a grounded 

outer electrode and an inner electrode held at a set voltage, producing an electrical 

field in the space between the two (Figure 3.3). The aerosol flow is introduced close to 

the outside wall of the DMA and an additional particle-free “sheath” air flow is injected 

which fills the remaining space between the electrodes. A tangential inlet into the 

entrance channel gives a uniform flow along the length of the DMA and low diffusional 

losses of fine particles, which is essential to achieve optimum performance of the 

instrument (Flagan, 2008; Winklmayr et al., 1991). Particles flow towards the central 

electrode with a velocity determined by their electrical mobility (which will be 

dependent on both their size and electric charge); the smaller the particle (or higher 

the electric charge), the higher its electrical mobility. The particle size distribution is 

measured over a range of particle mobilities by varying the voltage on the central 

electrode in discrete steps. A small slit at the far end of the electrode allows through 

particles with mobilities in a narrow range (Knutson and Whitby, 1975; Reischl, 1991). 
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Figure 3.3 Diagram showing the essential components of the DMA including the aerosol and sheath air 
inlets, inner and outer electrodes, sample and excess air outlets and the high voltage supply (taken from 
Berner et al. (2006)). 

The particles then flow into the Faraday Cup electrometer (FCE) which is based on the 

principles of a Faraday cage. In the FCE, the electrical charges of the particles entering 

the cage are compensated by a current on the outside of the cup which is measured by 

an amplifier. The current signal is then converted to a voltage signal and fed to the 

Electromobility Spectrometer Process Controller (EMS EPC-10) where, after further 

processing, it can be related to the number of particles entering the Faraday Cup per 

unit time using the system software (Berner, 2006). 

Sheath 
Air Inlet 
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The stability of the air flow through the instrument is paramount for optimal 

functioning of the DMA. Stability is achieved through the use of a flow control unit 

(FCU) which uses a recycling process for the sheath air passing through the DMA. The 

FCU consists of a number of components: a coalescence filter to remove particles; a 

critical orifice to determine flow rate; a vacuum pump; a dryer consisting of silica gel; 

activated charcoal to eliminate hydrocarbons and reactive components from the air; 

and a flow meter to check the sheath air flow rate. These components provide the 

necessary gas conditioning and vacuum generation for the DMA (Berner, 2006; 

Winklmayr et al., 1991). 

3.1.2 Mechanism of IOP Formation 

The current experimental set-up involves the production of iodine oxide particles from 

the reaction of gaseous O3 with a solution containing iodide and subsequent photolysis 

of the gaseous products. The reaction between O3 deposited on the surface of the 

solution and I- in the interfacial layer produces iodine molecules (I2) and hypoiodous 

acid (HOI) that are then released into the gas phase. These I2 and HOI molecules must 

then be photolysed to produce I atoms. The I atoms can then go on to react with 

ozone (O3) to produce iodine oxide particles (IOPs). 

There remain a number of uncertainties regarding the exact mechanism of IOP 

formation, although there has been significant progress in this area over the last few 

years. Measurements by Saunders et al. (2010) showed that IOPs were produced from 

IO even in the absence of O3, which conflicted with the initially proposed mechanism 

involving a series of O3 oxidation steps to produce I2O5 which then undergoes 

polymerisation and coagulation (Saunders and Plane, 2005) (summarised in Figure 3.4 

below). 
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Figure 3.4 IOP production mechanism as described in Saunders and Plane (2005). 

More recent studies by Gómez Martín et al. (2013) using photo-ionisation time-of-

flight mass spectrometry (PI-TOF-MS) and complementary quantum calculations have 

shown that the most likely precursor to IOP formation is in fact I4O8 formed from the 

dimerisation of I2O4. The I2O4 dimer was found to be remarkably stable compared to 

the other iodine oxide aggregates due to the presence of two I—O bonds with highly 

covalent character. Therefore the currently proposed mechanism proceeds via the 

following steps: 
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Figure 3.5 Updated IOP mechanism based on work by Gomez Martin et al. (2013) showing stable I4O8 
dimer. 

I4O8 may then polymerise and the subsequent iodine oxide aggregates coagulate. 

There is also the possibility that I2O2, I2O3 and I2O5 may attach to the I4O8, but direct 

formation of IOPs from any of these three species is not viable, especially considering 

the very slow O3 oxidation rates. 

The results of Saunders and Plane (2005) predict that the IOPs produced will consist 

predominantly of I2O5. This is assumed to be the case when working out the mass of 

iodine contained within the particles (this procedure is described in the next section). 

This likely occurs through restructuring in the solid phase and liberation of I2 (Gómez 

Martín et al. (2013)): 

 25242 IOI4OI5   (R3.1) 

3.1.3 Experimental Set-up 

As mentioned above the current experimental set-up requires air containing IOPs to be 

flowed into the DMA of the instrument through the neutraliser for the particles to be 

separated and detected. The iodide solution is contained within a jacketed glass cell to 
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allow control over the solution temperature and is covered with black cloth to prevent 

stray light entering. A mixture of N2 and O3/O2 is flowed through the cell at varying 

rates to produce I2 molecules which are then transported to the IOP cell. At this point 

additional flows of N2 and O3/O2 are added. 

The O3 flow is produced from photolysis of O2 using UV light ( = 185 nm) from a 

mercury pen lamp.  The total flow at the entrance to the IOP cell is kept constant at 

600 sccm (standard cubic centimetres per minute). At the other end of the cell a 

tungsten lamp is positioned to photolyse the I2 or HOI molecules to produce I atoms. 

An additional flow of N2 (2500 sccm) is added at this point and the total flow is then 

passed through the radioactive source and into the DMA. A flow diagram for the 

experiment is given in Figure 3.6. 

 

Figure 3.6 Flow diagram for I
-
+ O3 experiments. Arrows indicate the direction of air flow. 

Each experimental run takes approximately three minutes and a size distribution plot 

is obtained from which the total number of particles can be deduced and also the total 

volumetric mass of iodine in the particles. The instrument is able to detect particles in 

the range 0.6–40 nm in diameter. The volumetric mass of iodine in the particles is 

calculated by assuming that the IOPs produced have a composition I2O5 (as previously 

determined by Saunders et al. (2005)), with spherical particles for diameters of 
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0.6-6.6 nm and fractal particles for diameters > 6.6 nm. The density of the former is 

taken as 5.0 g cm-3 ( bulk = density of I2O5) and for the fractal particles are assumed to 

have dimensions Df = 2.5 (Saunders and Plane, 2006) and size-dependent densities 

where <  bulk and ranges from 4.95 g cm-3 at a diameter of 6.7 nm down to 

2.03 g cm-3 for a particle diameter of 40 nm.  

3.1.4 Calibration of the Tapcon Instrument 

To ensure that the mass of iodine in the IOPs determined from the size distribution of 

the Tapcon can be related to the amount of I2 released from solution, the instrument 

was calibrated using I2 crystals. This allowed a measure of the amount of I2 released as 

vapour from the iodine crystals which ended up in the IOPs, which takes into account 

the various points at which the efficiency of the detection system may not be one 

hundred percent, such as the photolysis of the I2 molecules and reaction with O3 to 

form particles. 

A cell containing a few iodine crystals was added to the experimental set-up in place of 

the solution cell. N2 was flowed over the cell at varying flow rates from 5 sccm to 

25 sccm. The experiment was conducted at 0.4 °C to reduce the vapour pressure of I2, 

because at room temperature the IOPs produced were beyond the detectable range of 

the Tapcon instrument (> 40 nm). The measurements show a linear trend which can be 

seen in Figure 3.7 below.  
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Figure 3.7 Plot of flow rate of N2 through iodine containing cell and total mass of particles measured by 
Tapcon showing a linear dependence. 

To calculate the efficiency of the Tapcon instrument the vapour pressure of iodine 

above the iodine crystals needed to be known. Values for the vapour pressure at a 

range of temperatures were used (Baxter and Grose, 1915; Saiz-Lopez et al., 2004c) to 

calculate the value for a temperature of 0.4 °C. Using this value the concentration of I2 

in the N2 flow leaving the cell could be calculated at 1 atm pressure. This flow was then 

diluted further by the addition of the O3 and N2 flows in the IOP generation cell, 

therefore the concentration of I2 in the flow entering the TAPCON instrument would 

be reduced. This fraction of I2 in the total flow was calculated for each different flow 

rate through the iodine crystal cell. 
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Table 3.1 I2 concentration from vapour pressure at different flow rates of N2 through the I2 crystal cell. 

Total Flow / 

sccm 

I2 Flow / 

sccm 

Fraction of 

I2 flow 

[I2(g) ] at 0.4˚C / 

molecule cm
-3

 

[I2(g)] in flow / 

molecule cm
-3

 

600 5 0.01 1.11 x 10
15

 9.25 x 10
12

 

600 10 0.02 1.11 x 10
15

 1.85 x 10
13

 

600 15 0.03 1.11 x 10
15

 2.77 x 10
13

 

600 20 0.03 1.11 x 10
15

 3.70 x 10
13

 

600 25 0.04 1.11 x 10
15

 4.62 x 10
13

 

By comparing the amount of I2 in the flow through the IOP generation cell and the 

amount of I2 in the IOPs measured (assuming a composition of I2O5 (Saunders and 

Plane, 2005)), a percentage efficiency could be calculated for each flow rate. This is 

summarised in the table below. An average efficiency was taken and this correction 

was applied to all measurements that followed in calculations of the I2 flux from 

solution.  

Table 3.2 Efficiency of IOP production calculated from IOP mass and vapour pressure of I2 crystals. 

Additional calibrations were performed for each ozone concentration and light source 

used in the following experiments, and the different correction factors applied to the 

individual experiments under those conditions. The effect of relative humidity on the 

efficiency of the Tapcon system was not investigated, however, this may impact on the 

efficiency of particle formation, and therefore the fluxes derived, in the temperature 

dependence experiments. An increase in relative humidity has been shown to 

decrease particle formation in previous experiments (Saunders et al., 2010), however, 

Flow / sccm Total particles Total mass / g cm-3 Mass of I / g cm-3 Efficiency % 

5 2.49 x 105 3.57 x 10-13 2.71 x 10-13 3.48 x 10-2 

10 2.86 x 105 9.12 x 10-13 6.93 x 10-13 4.44 x 10-2 

15 2.85 x 105 1.32 x 10-12 1.00 x 10-12 4.28 x 10-2 

20 2.86 x 105 1.87 x 10-12 1.42 x 10-12 4.56 x 10-2 

25 2.82 x 105 2.27 x 10-12 1.73 x 10-12 4.43 x 10-2 

   
Average = 4.24±0.43 x 10-2 
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any effect in the current experiments should be minimal due to the dilution of the air 

flowing from the solution cell prior to photolysis and particle formation. This is 

discussed further in section 3.3.2.  

3.2 KI + O3 Experiments 

A number of experiments have shown that the action of ozone on the surface of 

solutions containing iodide can lead to the release of iodine molecules to the gas 

phase (Garland and Curtis, 1981; Sakamoto et al., 2009). A number of measurements 

of the ozone deposition rate to the sea surface have been performed at various 

locations around the globe. These range from 0.01 to as high as 0.1 cm s-1 (Gallagher et 

al., 2001; Wesely and Hicks, 2000) and will influence the rate at which I2 is released 

from sea water. Laboratory studies have shown that the presence of iodide can cause 

an increase in the uptake of ozone to the surface of the solution (Magi et al., 1997).  

Modelling studies have also shown that this reaction could significantly enhance ozone 

deposition (Chang et al., 2004; Oh et al., 2008); however, work by Coleman et al. (2010) 

found that the reaction of ozone with iodide in sea water was not sufficient to explain 

the observed deposition rates and reactions with organic species must occur to 

account for the observed difference. However, the reaction of ozone with iodide at the 

sea surface could provide a significant source of I2 and HOI which is required to explain 

observations of IO in Cape Verde (Jones et al., 2010; Mahajan et al., 2010a).  

The purpose of the experiments described below was to determine the flux of I2 from 

this reaction at ambient concentrations and how factors such as temperature and 

salinity affect this flux. 

3.2.1 Effect of Ozone Concentration 

Initial runs were conducted with iodide and ozone both at higher than ambient 

concentrations; typical concentrations of iodide in seawater range from 0–300 nM. A 

1 x 10-5 M solution of iodide was used and ozone was flowed over the solution at 

varying flow rates. Ozone was generated by photolysis of O2 at 185 nm using a mercury 
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UV pen lamp at a quartz cell upstream of the solution cell. A clear particle distribution 

was observed for all flow rates, with an increase in particle number and mass observed 

on increasing the flow of ozone over the solution. This can be seen in Figure 3.8. 

 

Figure 3.8 Plot showing increase in IOP mass with increasing ozone flow over solution. 

The mechanism by which I2 is released from the iodide solution was described by 

Sakamoto et al. (2009) and involves the formation of an IOOO- intermediate at the 

solution/air interface. 

 )(interfacece)(g/interfa3(aq) IOOOOI    (R3.2) 

 )aq(2)aq()erface(int OIOIOOO    (R3.3) 

 )(aq)(aq HOIHIO    (R3.4) 

 OHIHIHOI 2)(aq2)(aq)(aq    (R3.5) 
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 )g(2)aq(2 II   (R3.6) 

 )aq(3)aq()aq(2 III    (R3.7) 

 
  HO2IOO2IO/HOI 2)aq(3)aq(3)aq(  (R3.8) 

To investigate the effect that ozone concentration had on the mass of IOPs produced, 

the concentration of ozone was measured at different flow rates and with the mercury 

pen lamp at increasing distances from the quartz cell. The mercury pen lamp distance 

was increased until close to ambient levels (78 ppb) were achieved and a clear size 

distribution of IOPs was still observed (i.e. particles were being produced). The 

variation of IOP mass with ozone concentration is shown in Figure 3.9. 

 

Figure 3.9 Plot showing increased mass of IOPs with increasing ozone concentration at constant iodide 
concentration (1 x 10

-7
 M). 

The IOP mass shows a linear dependence on the O3 concentration as can be seen in 

the plot above, which is what would be expected given the mechanism of I2 formation. 
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O3 is only involved in the initial formation step where HOI is produced (showing a first 

order dependence with respect to O3), and any increase in the O3 concentration over 

the solution will result in a corresponding increase in the O3 in the interfacial layer by 

virtue of the Henry’s law equilibrium (providing the timescale for reaction with iodide 

is longer than for evasion from solution). 

3.2.2 Effect of Iodide Concentration 

The next experiments involved reducing the iodide concentration to approximate sea 

water concentrations, around 100 nM, although this will vary depending on location 

and factors such as temperature and biological activity (discussed later in Chapter 5). 

The IOP mass fell with decreasing iodide concentration, with a linear trend when 

plotted on a log scale (Figure 3.10). This suggests that, in contrast to the first-order 

kinetics displayed in the O3 dependence experiments, the overall mechanism displays a 

more complex I- dependence. 

 

Figure 3.10 Plot of IOP mass vs. [I
-
(aq)] showing increasing trend. 
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There is a possible deviation from linearity at the highest iodide concentrations which 

could be due to a surface saturation effect. 

3.2.3 Effect of Organic Species 

The sea surface microlayer is known to contain a large quantity of dissolved organic 

matter (DOM) which is composed of a number of different organic compounds of both 

biogenic and anthropogenic origin. The microlayer has an enhanced concentration of 

DOM compared to bulk seawater (around 40–80 M (Hansell et al., 2009)), and the 

composition of this DOM has been the subject of numerous studies, and contains 

contributions from carbohydrates, proteins, fatty acids and organic carbon, although 

much of the composition is still unknown (Hunter and Liss, 1977). There are a number 

of effects that the presence of these compounds may have on the I- + O3 reaction. The 

presence of organic compounds is known to enhance the deposition rate of O3 to 

surface seawater (Coleman, 2010; Martino et al., 2012), however, these organic 

compounds may compete with I- for reaction with O3 if the reactions are fast enough 

(Hayase et al., 2010; von Gunten, 2003). In addition, the presence of organic films, 

known to form at the surface of both seawater (Frew, 1997) and marine aerosols 

(Mochida et al., 2002; Tervahattu et al., 2002), may inhibit the release of the I2 and HOI 

produced to the gas phase (Rouviere and Ammann, 2010). A number of studies have 

found that iodine may be incorporated into organic material (Martino et al., 2009; 

Reiller et al., 2006; Saunders et al., 2012), possibly through photosynthetic pathways, 

which is confirmed by the presence of a large organic fraction of iodine in marine 

aerosols (Baker et al., 2000; Gilfedder et al., 2008). Therefore this could inhibit its 

release or mean the iodine is released in the form of iodocarbons, the majority of 

which will be less reactive in the marine boundary layer than the inorganic forms. A 

number of different organic compounds were considered to investigate their effect on 

the I2 flux on addition to the iodide solutions. 

The first organic species investigated was humic acid which is not a single compound 

but contains a number of different organic functional groups formed through the 

degradation of organic matter. In this case the humic acid was obtained from Sigma 
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Aldrich and was from a terrestrial source. A small amount was added to a 1 x 10-7 M KI 

solution which was then stirred overnight and any remaining un-dissolved humic acid 

filtered off.  

Although it was difficult to know the exact amount of humic acid dissolved in the 

solution, it was possible to estimate the initial dissolved organic content through 

spectroscopic measurements. Specific UV absorbance (SUVA) values for humic acids 

have been reported around 5 mg L-1 m-1 at 254 nm (Weishaar et al., 2003), and spectra 

showed that the absorption due to humic acid in the solution at 254 nm was around 

0.1. This gave a dissolved organic carbon concentration of ~2 mg L-1 which was in good 

agreement with measured values of DOM in shallow seawater (defined as the first 300 

m) (Thurman, 1985). The humic material was found to have no significant effect on the 

resulting I2 flux compared to the pure iodide solution. This is in agreement with recent 

work by Hayase et al. (2012) which showed that humic acid had little effect on the 

concentration of I2 produced in more concentrated iodide solutions, although fulvic 

acid was found to have an effect due to more effective proton donation from the 

carboxylic acid group.  

Experiments performed by Hayase et al. (2010) investigated the effect that certain 

organic compounds have on the iodide plus ozone reaction. They found that phenol 

and other species containing the phenol functional group had a marked effect on the 

iodine produced in the gas phase. Working at concentrations which were significantly 

higher than ambient levels (1 mM phenol), the I2 and IO produced was around half that 

of a pure NaI solution. This was attributed to the fast reaction of the phenolate ion 

with O3 (1.4 x 109 M-1 s-1) which competes with that of I-. To determine whether a 

similar decrease could be detected in the IOP system, ambient levels of phenol 

(1 x 10-8−1 x 10-7 M) were added to a 1 x 10-7 M solution of KI. This was found to have 

no observable effect on the mass of IOPs produced, therefore it was decided to 

increase the concentration of phenol. Only at a concentration of 1 x 10-3 M phenol (the 

same concentration used in the Hayase et al. (2010) experiments) was an effect 

observed. The total particle mass was reduced by around half and a significant 

reduction in the particle size distribution can be seen in Figure 3.11. 
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Figure 3.11 Particle distribution for 1 x 10
-7

 M KI solution with and without addition of phenol. 

This concentration is orders of magnitude higher than that found in sea water, 

therefore phenolic compounds were not deemed to play an important role in 

regulating emission of I2 from the reaction of iodide and ozone. 

The final organic compound investigated was sodium dodecyl sulphate (SDS) which is a 

surfactant compound commonly found in a number of detergents and present at 

around 10 g L-1 in seawater (Ćosović et al., 1985). SDS was added to a 1 x 10-7 M KI 

solution at sufficient concentration to form a monolayer at the solution surface 

(6.2 x 10-3 M) (Hore et al., 2005). However, this amount of SDS was found to have no 

significant effect on the resulting IOP mass. Studies by Rouviere and Ammann (2010) 

showed that certain surfactant species could inhibit the release of I2 from iodide 

solution reacted with O3 by forming a barrier to I2 release. Their work did suggest, 

however, that chain lengths of > C15 may be necessary for a significant reduction in 

the I2 flux to be observed. This is most likely due to the structure of the monolayer 

formed and how densely the monomers are packed. 



Chapter 3. Measurements of the iodine flux from the I- + O3 reaction 64 

 

 

In addition to the organic species mentioned above, real seawater samples were also 

collected to see whether the same mechanism could actually be observed in the 

environment. The seawater samples were collected from the coast of Scarborough, 

North Yorkshire in HCl acid-washed, 1 L, high density polyethylene (HDPE) bottles. The 

samples were then taken back to the laboratory on the same day and stored in a 

refrigerator at 3 °C. Before adding the seawater samples to the solution cell, the 

samples were first filtered to remove the larger traces of organic or biological matter. 

The same procedure that was used for the iodide solutions was employed and an O3 

concentration of 222 ppb was flowed over the seawater surface. The results are shown 

in Figure 3.12 below.  

 

Figure 3.12 IOP distribution from a real seawater sample with (red line) and without (blue line) the W 
lamp turned on for photolysis of I2. 

A clear distribution of particles is observed showing that this mechanism can occur in 

real seawater conditions. Unfortunately, it was not possible to verify the amount of 

iodide in the seawater samples, however, as the samples were obtained from a coastal 

location it is likely the levels are higher than those in the open ocean.  
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Also shown is an experiment performed with the tungsten lamp turned off to show 

that the IOPs observed are formed from the photolysis of I2 rather than directly from 

IO released from solution. Previous studies have shown that IO is also released from 

the reaction of O3 with iodide in solution as well as I2 in the ratio 1:100. However, this 

effect may not be observed in these experiments due to the much lower 

concentrations used, the detection limit for the set-up and the fact that any IOPs 

produced in the solution cell would have a longer time to grow and would therefore 

likely be outside the observable range of the DMA (> 40 nm). 

3.2.4 Effect of Mixing 

In all other experiments the iodide solutions were unmixed, however, in real seawater 

it would be expected that there will be increased mixing due to the action of wind and 

waves at the sea surface. Therefore experiments were conducted using a 1 x 10-7 M KI 

solution with a magnetic stirrer bar added to the solution cell. The solution was 

alternately mixed and unmixed by turning on and off the magnetic stirrer plate and the 

resulting IOP mass calculated. The results of the experiments showed that there was 

around a factor of two reduction in the IOP mass when the solution was stirred 

compared to the unstirred solution (IOP mass of 2.44 x 10-15 g cm-3 compared to 

4.44 x 10-15 g cm-3). This result is due to increased mixing of the I2 from the surface into 

the bulk solution. This leads to a decrease in the I2 at the solution surface resulting in a 

reduced I2 flux to the gas phase. 

3.2.5 Effect of Salinity 

As sea water has a high salinity of around 35 psu (practical salinity units) it was 

deemed necessary to investigate what effect increasing salinity would have on the 

reaction of iodide with ozone. Therefore solutions of 1 x 10-5 M KI containing varying 

concentrations of NaCl from 0.1 to 0.5 M were made up and the IOPs produced from 

reaction with ozone were measured. This showed an increasing trend with Cl- 

concentration as can be seen in Figure 3.13. 
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Figure 3.13 Plot showing increase in IOP mass with increasing [Cl
-
] 

3.2.6 Effect of Temperature 

The temperature of surface sea water varies greatly over the globe and depending on 

season and changes in climate. Temperatures can range from -2 °C around the poles 

up to as high as 45 °C in equatorial coastal waters.  The effect of temperature on the 

iodide plus ozone reaction is therefore important to assess how the emission of iodine 

from this process may vary in different ocean waters. 

To investigate the effect of temperature on this reaction a jacketed solution cell was 

used to allow the circulation of water at a controlled temperature surrounding the 

solution. The temperature of the water was controlled using a NESLAB Chiller, and the 

temperature of the solution inside the cell monitored using a thermocouple. The initial 

measurements were taken at room temperature. The solution was then cooled in 

approximately 5 °C increments and further measurements taken.  A total of 10 scans (3 
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minutes per scan) were taken at each temperature.  The results show an exponential 

decrease in particle mass as the temperature is lowered.  

An Arrhenius plot of the results was produced, which showed a typical linear profile 

(Figure 3.14). 

 

Figure 3.14 Arrhenius plot of ln(mass of I) vs. 1/T for a 1x10
-7

 M KI solution. This represents the 
temperature dependence for the overall mechanism. 

The calculated activation energy of 101±35 kJ mol-1 is in good agreement with the 

previous measurements of Magi et al. (1997) who report an activation energy of 

73±30 kJ mol-1 for the aqueous phase I- + O3 reaction. However, it should be noted that 

the activation energy obtained from the IOP experiments represents the overall 

mechanism, rather than an elementary process as is the case in the experiments by 

Magi et al. (1997). The method used in this case measured the disappearance of 

gaseous O3 to an aqueous iodide solution using the droplet train technique rather than 

measuring the products of reaction. However, the Arrhenius expression obtained by 
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Magi et al. (1997) experiments gave an unphysical pre-exponential factor (1.44 x 1022) 

around ten orders of magnitude larger than the diffusion limit. The temperature 

dependence experiments were therefore repeated using the laser set-up described 

below and the results of these experiments and implications for the results obtained 

above are discussed in section 3.3. 

3.2.7 Measurements in Buffered Solutions 

The measurements reported above were all performed using deionised water with a 

measured pH of around 6. However, seawater has a pH around 8 and this decrease in 

pH will affect the rate of the I- + O3 reaction due to the initial reaction involving H+: 

 23 OHOIHIO    (R3.9) 

To investigate how changing the pH of the solution would affect the flux of I2 from 

solution, experiments were repeated using potassium iodide dissolved in 0.1 M sodium 

phosphate buffer at pH 8 (made by mixing 0.1 M solutions of sodium phosphate 

dibasic and sodium phosphate monobasic in appropriate quantities to reach the 

desired pH). The pH of the solution was checked using pH indicator paper before each 

experiment. 

As a result of the lower emission flux of I2 from solution at higher pH, the output of the 

tungsten lamp was increased to 20 V (as opposed to 10 V used previously) and as a 

result the efficiency of the system was improved by a factor of ten. This allowed 

detection of IOPs at lower iodide and ozone concentrations. 
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Figure 3.15 IOP mass at different iodide concentrations in pH 8 sodium phosphate buffered solutions. 

Figure 3.15 shows the IOP mass as a function of iodide concentration in buffered 

solution. As can be seen the IOP mass increases with iodide concentration with a tail 

off at the higher concentrations, as observed in the un-buffered experiments.  

The chloride dependence experiments were also repeated and showed a similar 

increase with increasing chloride concentration, however when in buffered solution 

this effect was less pronounced. The increase observed in moving from no chloride up 

to 0.5 M NaCl was a factor of 2.5 compared to 5 observed in the un-buffered 

experiments.  
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Figure 3.16 IOP mass at different chloride concentrations in pH 8 sodium phosphate buffered solutions. 

Although this may seem like a large increase, the changes in salinity observed in real 

seawater are on a much smaller scale with salinity ranging from around 33 – 37 psu 

which equates to a chloride concentration of around 0.51 to 0.58 M. As a result, the 

effect of chloride on the emission of I2 in seawater, assuming the same trend as 

observed in these experiments will be around 1 % and therefore negligible. 

3.2.8 Measuring the Flux of HOI 

The measurement technique described so far is sensitive to detection of I2 only (with 

possible contributions from ICl and IBr in experiments using chloride and bromide) due 

to the light source used and its output in the visible–IR region; the spectrum increases 

from close to zero at 400 nm to peak at around 600–700 nm. Modelling work 

performed in York (Lucy Carpenter, University of York, personal communication) 
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suggested that HOI may also be released by the reaction of I- + O3 (produced in 

reaction R3.9) despite its low Henry’s law constant, due to a large build up in the 

interfacial layer.  

To detect HOI using the current experimental set-up, a change of light source was 

required with larger output in the UV due to the peaks in the absorption cross section 

of HOI at around 340 and 420 nm (see Figure 3.17). For this purpose, the tungsten 

lamp was exchanged for a 1000 W xenon arc lamp which has increased output in the 

UV. 

To allow selective photolysis of both HOI and I2, two different band-pass filters were 

employed: a blue glass band-pass filter (Schott UG-1, transmittance window 

270-420 nm, and > 670 nm), and a yellow glass long-pass filter (Schott GG495, 

transmittance > 480 nm). The transmission spectra of these two filters are shown in 

Figure 3.17 below, along with the absorption cross sections for HOI and I2. The 

photolysis rates of HOI and I2 through each of the filters were determined by 

convoluting the transmitted spectral intensity of the Xenon lamp (measured using a 

grating spectrometer and charge coupled device (CCD) detector) with the respective 

molecular absorption cross section. 
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Figure 3.17 Absorption cross-sections of I2 (solid black line) and HOI (solid red line) and the transmission 
spectra of the xenon light through the blue (blue dashed line) and yellow (yellow dashed line) optical 
filters. 

As can be seen from Figure 3.17, there is still some overlap between the transmission 

spectrum of the UV filter and the absorption cross section of I2 at the lowest and 

highest wavelengths and this needs to be taken into account when calculating the IOP 

mass from each individual species. Due to the order of magnitude larger peak in the I2 

absorption cross section compared to HOI this overlap could provide a significant 

contribution from I2 to the IOP mass in the experiments using this filter. To calculate 

the relative contributions for each species to the total IOP mass, expressions were 

derived for the IOP mass produced by photolysis through each filter: 

        HOIHOIII 22  YYY JJM 2  (3.1) 

        HOIHOIII 22  BBB JJM 2  (3.2) 
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MY and MB represent the observed IOP mass from the experiments using the yellow 

and blue filters respectively.  JY(I2) and JY(HOI) are the J values for HOI and I2 calculated 

by multiplying the absorption cross section of each species by the emission spectrum 

of the xenon lamp through the yellow filter, and JB(I2) and JB(HOI) represent the same 

values calculated using the xenon lamp spectrum through the blue filter. 

By assuming that JY(HOI) is zero (i.e. there will be no photolysis of HOI using this filter) 

and combining the two equations, an expression for the ratio of [HOI]/[I2] was 

produced: 
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By calculating the I2 emission using a measured efficiency factor, determined by 

calibration as previously described, the corresponding HOI emission could also be 

calculated. As a result of the overlap of the spectra in the HOI experiments and the low 

IOP masses (close to the detection limit) the errors on the resulting HOI/I2 ratios are 

quite large. 

The HOI/I2 ratio as a function of iodide was measured and the results are shown in 

Figure 3.18. 
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Figure 3.18 HOI/I2ratio at different iodide concentrations. 

3.3 Laser Experiments 

Due to the unsatisfactory errors on the measurements using selective photolysis 

described in section 3.2.8, a further technique was employed to try to measure the 

relative contributions of HOI and I2 to the observed IOP masses. A Nd:YAG 

(neodymium-doped yttrium aluminium garnet) laser was deemed ideal for selectively 

photolysing each species as the second and third harmonics at 532 nm and 355 nm 

coincide with peaks in the I2 and HOI absorption cross-sections, respectively (see 

Figure 3.17). 

The set-up of the laser experiments is shown in Figure 3.19. 
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Figure 3.19 Experimental setup for the laser experiments showing the two lasers used. A second laser 
was used due to its higher power in the UV region for photolysis of HOI and to minimise the time for 
switching between lasers. 

The laser consists of a neodymium doped crystal of yttrium aluminium garnet 

(Nd:Y3Al5O12) with typically 1 % of the yttrium ions replaced by neodymium ions. The 

laser is pumped using xenon flash lamps producing a population inversion in the 

Neodymium ions. A Q switch inserted into the laser cavity requires maximum 

population inversion in the neodymium ions before it opens, allowing light into the 

cavity and depopulating the excited laser medium at maximum population inversion. 

By increasing the Q switch delay, the laser power could be decreased, should the 

observed particles extend beyond the size range observable by the nano-DMA 

(0.6-40 nm). 

By frequency doubling and tripling, wavelengths of 532 and 355 nm, respectively, can 

be achieved. This is a non-linear process whereby photons interacting with a non-

linear material “combine” to form new photons with twice or three times the energy 

of the fundamental photons at 1064 nm. 
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The mass of IOPs can be said to be a product of the concentration of HOI or I2 in the 

gas flow, the cross section at the wavelength used, the fluence of the laser, the 

number of I atoms produced from photolysis (i.e. one for HOI and two for I2), and a 

factor describing the efficiency of particle formation. Assuming that the efficiency of 

particle formation is the same whether HOI or I2 is photolysed, this leads to an 

expression for the ratio of the masses as follows: 
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The fluence (F) can be calculated from the laser energy, the wavelength of the laser 

beam and the diameter of the laser beam at the photolysis cell. The laser power was 

measured at the beginning and end of each experiment using a laser power meter 

along with the diameter of the laser spot in the photolysis cell. The number of photons 

(N) can then be calculated as: 

 
hc

E
N   (3.5) 

where E is the measured energy of the laser in J, h is Planck’s constant 

(6.626 x 10-34m2 kg s-1), c is the speed of light in nm s-1 (2.998 x 1017) and  is the 

wavelength of the laser beam in nm. The fluence (in photons/cm2) is then the number 

of photons divided by the area of the laser beam (diameter = 0.125 cm). 

As h, c and the laser beam diameter remain the same throughout, the fluence term 

can be calculated as EI2*532/EHOI*355. The ratio [I2]/[HOI] is then: 
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3.3.1 Effect of Iodide Concentration on I2/HOI Ratio 

Experiments were conducted using the laser technique described above for a range of 

iodide concentrations from 1 x 10-5 to 1 x 10-4 mol dm-3 and the I2/HOI ratio calculated 

for each experiment. Two lasers were set up at the two different wavelengths so that 

experiments at each wavelength could be conducted sequentially with the minimum 

amount of time between experiments. All solutions were made up using sodium 

phosphate buffer at pH 8. As a result of the order of magnitude lower cross section for 

HOI, the fact that only one I atom is produced per molecule, and the lower laser power 

at 355 nm, higher O3 concentrations were used so that the signal was above the 

detection limit for all iodide concentrations.  

 

 

Figure 3.20 I2/HOI ratio at different iodide concentrations using the laser technique for selective 
photolysis of HOI and I2. 
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The ratio of I2/HOI increased with increasing iodide concentration, which is to be 

expected given the mechanism of I2 and HOI formation, i.e. higher I- concentrations 

lead to more I2 being produced through reaction (R3.5). 

3.3.2 Temperature Dependence 

The temperature dependence of the I2/HOI ratio was then studied from 276 to 298 K 

and the results are shown below using the same laser technique (Figure 3.21). As can 

be seen the ratio appears to increase as the temperature is decreased but then at the 

lowest temperature begins to decrease again. A wide range of values was observed at 

the lowest temperature, however, and this was due to the large variability in the 

absolute concentrations of I2 and HOI, suggesting that the measurements at low 

temperatures are less reliable. The ratio would be expected to show an increase with 

decreasing temperature due to the greater temperature dependence of the HOI mass 

transfer compared to I2 (due to a greater contribution from the temperature 

dependent Henry’s law constant). This is described in greater detail in Chapter 4 when 

discussing the kinetic model of the interfacial layer. 
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Figure 3.21 Temperature dependence of the I2/HOI ratio measured using the laser set-up. 

Experiments were then conducted on the temperature dependence of I2 emission 

using the laser set-up to compare with the previous experiments performed using 

either the tungsten or xenon lamp to photolyse I2. 

An additional effect observed with the laser temperature dependence experiments 

was that of ozone. The activation energy for the emission of I2 varied greatly between 

experiments and the only difference between the experiments was the amount of O3. 

This had to be varied due to the differing efficiencies of the various light sources to 

ensure that a good signal of IOPs could be observed. The result was that at the highest 

ozone concentrations, the activation energy for the I2 emission became negative, and 

as the ozone concentration decreases, the activation energy becomes more positive.  

A summary of the activation energies obtained from all temperature dependence 

experiments using the three different light sources for I2 photolysis (tungsten lamp, 

xenon lamp and YAG laser) are shown below. Figure 3.22 shows the activation energy 
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plotted against O3 and this shows a clear decrease in the activation energy as the O3 

concentration is increased. 

Table 3.3 Summary of all temperature dependence experiments showing varying ozone and light 
sources used and resulting activation energy. 

Activation energy 
/ kJ mol-1 

Light source [Iodide] / mol dm-3 O3 / ppb 

 -84 Tungsten 5.0 x 10-6 2800  

-79 Tungsten 5.0 x 10-6 2800  

40 Tungsten 5.0 x 10-6 900  

-14 laser 5.0 x 10-6 900  

-13 laser 5.0 x 10-6 900  

115 Xenon 1.0 x 10-6 222 with 0.55 M 
chloride 93 Xenon 1.0 x 10-6 222 with 0.55 M 
chloride 101 Xenon 1.0 x 10-6 222  

Unbuffered 
solution 

   101 Tungsten 1.0 x 10-6 222  
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Figure 3.22 Activation energy vs. O3 for all temperature dependence experiments using different light 
sources. At higher ozone concentrations a clear decrease in the activation energy is observed. 

It was not clear whether this dependence was due to some part of the I- + O3 

mechanism or whether it might be an experimental artefact. One possible explanation 

could be that IO is being produced in the solution cell at such high ozone 

concentrations as observed by Sakamoto et al. (2009). This would give the potential for 

IOP formation in the solution cell which could influence the number and size of the 

IOPs observed downstream at the Tapcon. The efficiency of IOP formation is also 

temperature dependent with a negative activation energy so that this process would 

be more efficient at the lower temperatures which would explain the apparent 

negative activation energy observed in the experiments at very high O3. 

Humidity is another factor which could influence the temperature dependence 

observed in these experiments. At high humidities (90 % relative humidity, RH), 

Saunders et al. (2010) found that the efficiency of IOP production was reduced by 
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around an order of magnitude compared with that at lower humidities (10 % RH). At 

higher temperatures the humidity would increase due to the higher vapour pressure of 

the solution. In the temperature experiments performed above, the humidity in the 

solution cell would reduce by around 75 % when moving from 298 K down to 276 K. 

However, this effect should be minimal as the air flow from the solution cell is diluted 

more than ten times as it enters the photolysis cell, meaning the change in humidity 

would be around 7.5 %, which would correspond to a change in IOP mass of < 10 %, 

well within experimental error. 

Another problem with the temperature dependence experiments is the very large 

activation energy observed at low ozone concentrations (222 ppb), despite the 

agreement with previous observations. Because the pre-exponential factor is around 

ten orders of magnitude larger than the diffusion limit as mentioned previously, the 

observed activation energy cannot be applicable to the I- + O3 reaction. This suggests 

that the temperature dependence in these experiments arises from some other source.  

In the IOP experiments at low ozone where the temperature dependence was 

measured using either the xenon (for buffered solutions) or tungsten (for non-buffered 

solutions) lamps there may be an issue with I2 sticking onto the walls of the solution 

cell. At the colder temperatures this effect would most likely be greater with more I2 

sticking to the walls of the cell. At low ozone, there will be a lower I2 flux from solution 

and therefore any influence of this effect would likely be exaggerated. At higher ozone 

concentrations the flux of I2 will be much greater and it is likely that the available sites 

on the solution cell would be filled more quickly. In the low temperature experiments 

this would lead to the large temperature dependence observed, with the effect being 

less noticeable as the ozone concentration, and therefore I2 flux, is increased. 

An additional complication is the effect of pH, which will vary with temperature. At 

higher temperatures the pH and therefore the hydrogen ion concentration will be 

higher (although this effect should be quite small in the buffered solutions). As a result, 

the hydrogen ion concentration was calculated for each temperature based on the pKa 

value of the sodium phosphate buffer solution (6.82) and the observed change with 
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temperature from the literature (dpKa/dT = -0.0028 °C-1), according to the following 

equations: 

 
 15.298,  T

dT

dpK
pKpK a

aTa  (3.7) 

 

     HAA logH apKp  (3.8) 

where [A-] and [HA] are the concentrations of the dibasic and monobasic forms of 

sodium phosphate, respectively, in the buffer solution. 

To try to relate all the different experiments, the data points were normalised by 

dividing the observed I2 flux (after applying the efficiency from calibration with each 

light source) by the concentration of ozone, iodide and hydrogen ions to get a value for 

the rate constant for the reaction of I- + O3. The rate constants were then split into 5 °C 

bins and an average and standard deviation calculated for each bin. The same process 

was also applied to the HOI temperature dependence measurements.  Arrhenius plots 

were then created of the calculated rate constants against temperature, as shown in 

Figure 3.23.  
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Figure 3.23 Temperature dependence for the flux of I2 and HOI after normalising for I
-
, O3 and H

+
. The 

solid red line shows a weighted linear fit to the data and the red dashed lines show the 95 % confidence 
bands. 

This shows clearly the greater uncertainty in the results at low temperature compared 

to those at room temperature. Also plotted are the 95 % confidence intervals for the 

fit. This means that the activation energy from these experiments for I2 is -7±18 kJ mol-

1 and for HOI is 17±50 kJ mol-1. Therefore the conclusion reached is that there is not a 

large temperature effect for the I2 and HOI fluxes from the I- + O3 reaction. Further 

discussion of the temperature dependence of this reaction is provided in the context 

of the kinetic model in Chapter 4 where various sensitivity studies have been 

conducted. The main conclusions of this chapter and those of Chapters 4, 5 and 6 are 

provided in Chapter 7. 
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Chapter 4 

Modelling the I- + O3 Reaction in the 
Interfacial Layer 

This chapter describes the kinetic model of the solution surface used to verify the 

experimental results of Chapter 3. Ozone, iodide, salinity and temperature are varied 

in the model and compared with the experimental results for the same parameters 

and the outcomes are discussed. 

4.1 The Sea-Surface Model 

To simulate the observations of the experiments described in Chapter 3, a kinetic 

model, developed by Prof. Lucy Carpenter, University of York, was used. The model 

consists of a number of chemical reactions involving iodine species in the interfacial 

layer, including iodine disproportionation, oxidation and reduction. The complete 

reaction scheme is given in Table 4.1.  It uses the commercial software FACSIMILE for 

integrating the chemical rate equations. 

The model assumes that the reaction of I- + O3 occurs in the interfacial layer, rather 

than at the surface, and is initiated by accommodation of O3 and rapid reaction with I- 

in the surface layer. There is strong experimental evidence that this is the case 

(Garland et al., 1980; Magi et al., 1997; Rouviere et al., 2010), rather than following the 

Langmuir-Hinshelwood kinetics indicative of a surface reaction which occurs in many 

heterogeneous reactions of O3 with liquid phase substrates (Clifford and Donaldson, 

2007). The velocity of ozone deposition in this case is governed by the aqueous phase 

resistance of the surface layer, along with a smaller contribution from the aerodynamic 

resistance of the layer of air above the surface. 
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where Γa and Γs are, respectively, the air and water side resistance, H is the 

dimensionless gas over liquid form of the Henry’s law constant for O3, D is its 

molecular diffusivity in water and  is the integrated chemical reactivity of O3 in 

seawater. 

The gas phase flux of O3 into the interfacial layer can be defined as: 

   ][
)(33 gDO OF   (4.3) 

so that the change in O3 concentration in the interfacial layer is: 
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  (4.4) 

where A is the surface area of solution, V is the volume of the interfacial layer, and A/V 

is equal to the inverse of the depth of the interfacial layer defined as the reacto-

diffusive length, .  

The model assumes there is no horizontal advection but vertical mixing with the bulk 

mixed layer occurs at a fixed interfacial layer turnover time. The concentration of [I-], 

[H+] and [OH-] are fixed for each model run and all iodine species (except IO3
- and HIO2, 

which do not influence gaseous iodine emissions) reach steady state after a few model 

seconds. 

The mass fluxes of I2 and HOI out of the surface layer are calculated according to the 

two-resistance model for air water partitioning. In this model, the main body of the 

two phases is assumed to be well mixed so that turbulent transfer occurs, and the 

main resistance to transfer occurs at the gas and liquid phase interfacial layers, where 
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transfer occurs through molecular processes. Using this approach, the flux of a 

particular species is then given by (Liss and Slater, 1974): 

  gwt ccKF   (4.5) 

 
awt HKKK

111


 (4.6) 

where cw and cg are the respective gas phase and aqueous phase concentrations and 

Kt, Kw and Ka are, respectively, the total, water-side and air-side mass transfer 

coefficients. H is the dimensionless gas over liquid form of the Henry’s law constant 

with a defined temperature dependence (von Glasow et al., 2002). The inverse of Kw 

and Ka are the corresponding water and air-side resistances, respectively. 

For soluble molecules such as HOI the air-side resistance term will dominate so that 

Kt = HKa whereas in the case of I2, which is only sparingly soluble, the water-side 

resistance term dominates, although the air-side resistance can reduce the total mass 

transfer by several percent. 

To calculate the air-side mass transfer coefficient, Ka, for laboratory conditions, an 

empirical approach is used, based on the dimensionless Sherwood number, Sh, and 

relevant for indoor or laminar flow environments (Guo and Roache, 2003). 

 
L

DS
K ah

a

)(
  (4.7) 

where Da is the diffusivity in air and L is the characteristic length calculated from the 

square root of the source area (the surface area of solution in contact with the air). In 

this case Ka has units of m h-1. Guo and Roache (2003) found an uncertainty of up to 

17 % between experimentally determined and modelled gas-phase transfer 

coefficients using this approach. 

The Sherwood number is a function of the temperature-dependent Schmidt number of 

the relevant gas in air, Sca, and the Reynolds number, Re (Guo and Roache, 2003). 
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where  is the viscosity of air (g m-1 h-1),  is the density of air (g m-3) and u is the air 

velocity (m h-1). 

The water-side mass transfer coefficient, Kw, is again calculated using the empirical 

approach of Guo and Roache (2003): 

 ww DK 99.2  (4.11) 

where Dw is the diffusion coefficient of the gas in question in water (m2 h). Here Kw has 

units of m h-1. The average uncertainty on the calculated liquid-phase transfer 

coefficients using this approach compared to experimental values was found to be 

approximately 22 %, and the uncertainty was found to increase as the Henry’s law 

constant decreased (Guo and Roache, 2003). 

The standard Henry’s law constants used in the model were 3.0 M atm-1 for I2 and 4.5 x 

102 M atm-1 for HOI, with temperature dependences as described in von Glasow et al. 

(2002). Whilst the Henry’s law constant for I2 has been well established to be around 3 

M atm-1 (estimates range from 1.1–3.3 M atm-1), that for HOI is much more uncertain 

with values in the range 4.5 x 101–4.5 x 104 M atm-1 (Sander, 1999). This leads to 

calculated total mass transfer coefficients for HOI ranging over three orders of 

magnitude, a large source of uncertainty in the model. 

For simulating real seawater conditions the mass transfer coefficients for I2 and HOI 

were computed according to the parameterization by Johnson (2010). In this case the 

air-side mass transfer coefficient is calculated as a function of wind speed u (at 10 m 
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above the water surface), friction velocity, u*, the Schmidt number of the gas, and the 

drag coefficient, CD: 
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where  is the von Karman constant (taken to be 0.4 in seawater) and u* and CD are 

calculated according to the equations presented in Johnson (2010) for a 10 m wind 

speed of 7 m s-1: 
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To calculate the water-side transfer coefficient for real seawater conditions the 

parameterization from Nightingale et al. (2000) was employed: 

   uuKw 333.0222.0
2
  (4.15) 

The total mass transfer coefficients were then calculated assuming a seawater 

temperature of 15 °C, an air temperature of 20 °C and a 10 m wind speed of 7 m s-1. All 

the above model parameters were calculated either off line or directly in the model 

without being tuned to the experimental results. 

The additional reactions used when describing real seawater are included at the 

bottom of Table 4.1.  These include the reactions of O3, I2 and HOI with DOM in the sea 

surface layer and the interhalogen reactions in the presence of Cl- (taken as 0.55 M) 

and Br- (8.6 x 10-4 M). The pseudo-first order interfacial loss rate of O3 to DOM is taken 

to be 100 s-1, the value suggested by Ganzeveld (2009) for open ocean waters. For 

I2/HOI + DOM the value estimated by Truesdale et al. (1995b) is used (5 x 10-5 s-1). The 

reaction of HOI with DOM is likely to be faster than that of I2, however, using a rate 
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constant 100 times faster than that reported in the table results in only minor 

reductions in the I2 and HOI fluxes (0.17 and 0.16 % respectively). Iodate was fixed in 

the model at 2 x 10-7 M, although this had no impact on the resulting inorganic iodine 

emissions. For each model run the concentrations of I-, H+ and OH- were fixed, and all 

iodine species reached steady state within a few model seconds. 

The model is clearly a simplified approach which does not take into account the 

potential concentration gradients occurring in the interfacial layer. There will of course 

be a gradient in the O3 concentrations: the O3 will be, by definition, zero at the bottom 

of the reacto-diffusive layer (the length over which O3 is removed by reaction with I- as 

it diffuses into the bulk solution).  There have also been several studies showing that I- 

concentrations will be greater at the solution surface (discussed further in section 

4.2.3). However, these gradients are effectively accounted for by integrating over the 

reacto-diffusive length, and average I- concentrations experienced by O3 diffusing over 

this depth will be very close to the bulk I- concentration. 

The rate constants used when comparing the model output with the experimental 

results have been obtained from numerous experimental and modelling studies on the 

hydrolysis of molecular iodine in solution. No temperature dependence data was 

available for these reactions; however, sensitivity studies (discussed in section 4.2.4) 

showed that the modelled fluxes were not particularly sensitive to temperature 

dependences in the component reactions. 

Although there may be uncertainty over the individual rate constants, the overall 

model successfully reproduces experimental results of iodine disproportionation over 

a range of pHs (Carpenter et al., 2013, Supplementary Material). Further experiments 

on the I- + O3 reaction were performed at the University of York using an entirely 

independent method for HOI and I2 detection (Carpenter et al., 2013). In those 

experiments the gas flow was trapped in n-hexane with subsequent 

spectrophotometric detection at 522 nm for I2 or in phenol red with subsequent 

detection of iodophenol blue at 591 nm for HOI. The model results compared well with 

the experimentally determined I2 and HOI fluxes over a range of iodide concentrations, 

which provides greater confidence in the proposed mechanism. 
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Table 4.1 Summary of kinetic data used in the interfacial model. 

Reaction 
Rate constant - forward 

reaction 

Rate constant - reverse 

reaction 
Reference 

Reactions included for iodide solutions and seawater: 

R4.1 
)(interface3(g)3 OO   d,O3 x (A/V) s-1  See text 

R4.2 
     2interface3 OHOIHIO    2.0 x 109 M-1 s-1 (pH 8)  (Garland et al., 1980; Magi et al., 1997) 

R4.3     HOHIOHI 222  3.2 s-1 2.0 x 1010 M-1 s-1 (Lengyel et al., 1993) 

R4.4   IHOIOHI2  1.34 x 106 s-1 4.0 x 108 M-1 s-1 (Lengyel et al., 1993) 

R4.5 
  32 III  6.2 x 109 M-1 s-1 8.9 x 106 s-1 Forward: (Lengyel et al., 1993) 

Reverse: (Palmer et al., 1984) 

R4.6 2HIOIHHOIHOI    2.5 x 101 M-1 s-1 2.0 x 1010 M-2 s-1 Forward: (Schmitz, 2004) 

Reverse: (Edblom et al., 1987) 

R4.7   IHOIOHI2  7.0 x 104 M-1 s-1 2.1 x 103 M-1 s-1 (Sebok-Nagy and Kortvelyesi, 2004) 

R4.8   HIOHOI  1.0 x 10-1 s-1 1.0 x 1010 M-1 s-1 (Wren et al., 1986) 

R4.9   IHIOIOHOI 2  1.5 x 101 M-1 s-1 Negligible (Bichsel and von Gunten, 2000) 
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R4.10 
 2HIIOHOIHIO 32  2.4 x 102 M-1 s-1 1.2 x 103 M-3 s-1 Forward: (Furrow, 1987) 

Reverse: (Schmitz, 2000) 

R4.11   HHOIOIH2  9.0 x 108 s-1 2.0 x 1010 M-1 s-1 (Lengyel et al., 1993) 

R4.12     IOIHOHI 222  1.2 x 10-1 s-1 1.0 x 1010 M-1 s-1 (Lengyel et al., 1993) 

R4.13  23)(interface3 2OHIO2OHOI  
 3.6 x 104 M-1 s-1  (Bichsel and von Gunten, 2000) 

R4.14 
23)(interface3 2OIO2OIO 

  1.6 x 106 M-1 s-1  (Bichsel and von Gunten, 2000) 

R4.15 bulkI2   kmix   

R4.16 bulkHOI  kmix   

Reactions included only for seawater and chloride dependence experiments 

R4.17   productsDOMO
)(interface3   

500 s-1 (coastal 

100 s-1 (open ocean) 

 (Ganzeveld, 2009) 

R4.18   productsDOMI2   
7.0 x 10-3 s-1 (coastal) 

5.0 x 10-5 s-1 (open ocean) 

 
(Truesdale et al., 1995a; Truesdale et 

al., 1995b) 

R4.19   productsDOMHOI   
7.0 x 10-3 s-1 (coastal) 

5.0 x 10-5 s-1 (open ocean) 

 Assumed analogously to R4.18 

R4.20  OHIBrHBrHOI 2   4.1 x 1012 M-2 s-1  (Faria et al., 1993) 
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The results of Sakamoto et al. (2009) show that IO is also released as a result of the reaction of I- + O3, however, due to the very small 

contribution of this species to the iodine flux of around 1 % compared to I2 and the lack of any kinetic data, this process was ignored in the 

model. In addition, photo-oxidation of I- by oxidants such as O2, IO3
- and NO3

- in seawater were also not included due to their negligible rates 

as reported by Truesdale (2007). 

R4.21  OHIClHClHOI 2   2.9 x 1010 M-2 s-1  (Wang et al., 1989) 

R4.22 IBrIBrI2    4.74 x 103 M-1 s-1  (Faria et al., 1993) 

R4.23 ClIClI 22    8.33 x 104 M-1 s-1  (Margerum et al., 1986) 

R4.24 
 ClIClICl2  6.0 x 105 s-1  (Margerum et al., 1986) 

R4.25   ClIIClI 2  1.1 x 109 M-1 s-1  (Margerum et al., 1986) 
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4.2 Comparison of Kinetic Model with Experimental 
Results 

The kinetic model was used to verify that our experimental results make sense in 

terms of the current understanding of solution phase iodine chemistry and the physical 

processes governing gas-transfer in the interfacial layer. In order to do this, the 

parameters which were altered in the original experiments were also varied in the 

model to test the sensitivity of both the I2 and HOI fluxes to each of these parameters. 

4.2.1 Varying Ozone Concentration 

The first parameter in the model to be tested against the experimental results was that 

of ozone. As shown in Figure 4.1, increasing the ozone concentration in the gas phase 

in the kinetic model leads to a linear response in the resulting I2 and HOI fluxes. This is 

in good agreement with the experimental results where the response was linear over a 

wide range of different gaseous ozone concentrations. This response is to be expected 

given the mechanism of the reaction and emission processes as the stoichiometry of 

the equation is one-to-one and, due to its low Henry’s law constant, the ozone in the 

interfacial layer will always be the limiting species (assuming concentrations of 

1 x 10-7 M iodide or greater) in the I- + O3 reaction, and ozone does not participate in 

any of the other solution phase reactions. 
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Figure 4.1 Measured (black squares) and modelled (red dashed line) I2 flux for a range of O3 
concentrations. 

4.2.2 Varying Iodide Concentration 

The next parameter to test against experimental results was that of the iodide 

concentration in solution. This was varied from 1 x 10-7 up to 1 x 10-3 M for both model 

and experiments. The model shows a linear trend in the iodide concentration, whereas 

there is a levelling out in the experimental results at the higher iodide concentrations 

(Figure 4.2). This suggests that there is perhaps a surface saturation effect occurring at 

high iodide concentrations in solution which is not captured by the model. The reason 

for this increase in the I2 and HOI fluxes with increasing iodide concentration is due to 

the decreased surface resistance, meaning a greater concentration of O3 will be 

present in the interfacial layer. At these iodide concentrations any O3 present in the 

interfacial layer will be immediately scavenged. 
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In addition to the increase in the I2 and HOI fluxes with increasing iodide 

concentrations, the model also shows clearly the change in the relative contributions 

of the two species to the overall flux. Figure 4.3 shows the I2/HOI ratio against iodide 

concentration, along with the experimentally determined values from the laser 

experiments reported in Chapter 3; a good agreement between model and experiment 

is achieved (assuming a room temperature of 22 °C; see section 4.2.4 for further 

discussion of the temperature dependence).  

Figure 4.2 Experimental (black squares) and modelled (red dashed line) iodide dependence of the I2 flux 
from solution showing the deviation between the two at higher iodide concentrations. 
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Figure 4.3 Measured (black squares) and modelled (red dashed line) I2/HOI ratio over a range of iodide 
concentrations. 

4.2.3 Varying Chloride Concentration 

The chloride concentration in the model was varied from 0–0.55 M and compared with 

the experimental results. As expected, the I2 flux increased with increasing chloride 

concentration due to the influence of R4.21 and reactions R4.23–25 (Table 4.1) where 

some HOI is converted to I2 via ICl. As the concentration of HOI in the interfacial layer 

is orders of magnitude larger than that of I2 the corresponding decrease in HOI is 

negligible so that the HOI flux shows no dependence on the chloride concentration 

(which was also observed in the laser experiments described in Chapter 3).  
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Figure 4.4 Measured (black squares) and modelled (red dashed line) I2 flux for 1 x 10-7 M iodide with 
varying chloride concentrations. 

The observed increase in the I2 flux from experiments is somewhat greater than the 

model predicts: a 2.5 fold increase compared to 1.5 in the model results. This could 

indicate an additional effect of iodide enhancement at the surface of the solution 

under high chloride conditions. 

In fact, there have been a number of studies which have shown that halides are 

enhanced at the surface of solutions in comparison to the bulk phase. These studies 

have consisted of both theoretical molecular dynamics simulations and experiments 

using electron spectroscopy to detect the relevant halide ions (Caleman et al., 2011; 

Ghosal et al., 2005; Gladich et al., 2011). The physical basis for this effect is due to the 

relative polarisability of the anions. The larger anions I- and Br- have been found to 

both show a propensity for the water-air interface of an aqueous solution, whilst Cl-, 

although it is somewhat polarisable, preferentially remains in the bulk solution. The 

polarisability of the anions increases in the order Cl-<Br-<I- (3.25, 4.53, 6.90 A) and this 
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is directly linked to the induced dipole of the specie in question. Molecular dynamics 

simulations showed that a dipole moment at the interface will position itself so that 

the positive pole points outward from the interface thereby reducing the electrical 

potential energy. This reduction is proportional to the dipole moment and therefore 

the polarisability so that the higher the polarisability the higher the energetic gain 

from the halide ions remaining at the interface (Gladich et al., 2011). This could mean 

that the less polarisable chloride ions help to increase this effect and “push” the iodide 

ions out towards the surface, leading to an enhanced reaction rate at high chloride 

concentrations. 

A further possibility is that the observed increase could be due to contributions from 

iodide impurities in the NaCl used. Quantitative mass spectrometry was employed to 

analyse the magnitude of the iodide impurity in the NaCl (performed by Dr Stuart 

Warriner, University of Leeds). The relative intensity of the iodide mass peak observed 

in a 0.104 M NaCl solution was found to be less than a sample spiked with 9.9 x 10-9 M 

KI, therefore, a 0.5 M NaCl solution would contain an iodide impurity of < 5 x 10-8 M. 

This is a factor of 20 smaller than the 1 x 10-6 M KI solutions employed in the salinity 

dependence experiments, and therefore rules out this explanation. 

4.2.4 Temperature Dependence 

The kinetic model contains a number of parameters each with differing temperature 

dependences which will affect the overall temperature dependence for the fluxes of 

both HOI and I2. The various temperature dependent terms in the model are described 

below along with the physical basis for that dependence. 

The transfer coefficients for I2 and HOI both show a positive temperature dependence 

arising from the Henry’s law term in their calculation (Equation 4.6). As the Henry’s law 

constant characterises the solubility of the species in question, in its gas-over-liquid 

form it will show a positive temperature dependence, the higher the temperature the 

greater the solubility. 



Chapter 4. Modelling the I- + O3 reaction in the interfacial layer  100 

 

The diffusion coefficient and Henry’s law constant for O3 both show positive 

temperature dependences which result in a negative temperature dependence for 

both the surface resistance and the reacto-diffusive length. This means that at higher 

temperatures less O3 will enter the interfacial layer and be available for reaction with I-. 

In the initial model runs when comparing with the room temperature experimental 

data, the pH was assumed to be constant (at pH 8) and therefore so was the hydrogen 

ion concentration. The concentration of hydrogen ions in solution will obviously affect 

the rate of production of both HOI and I2 through reaction 2 and the reverse of 

reactions R4.3, R4.6, R4.8, R4.10 and R4.11 in Table 4.1 (as has been shown by 

comparing the reduced flux from buffered solutions at pH 8 compared to un-buffered 

solutions where the pH was measured as 5.8) and this concentration will change with a 

change in temperature. As a result the change in the hydrogen ion concentration with 

temperature was calculated as described in Chapter 3 and input as a parameter in the 

kinetic model. 

The only aqueous phase reaction in the model for which there was available 

temperature dependence information was that of the O3 + I- reaction itself from Magi 

et al. (1997) and this was used in all the modelling studies when comparing the 

experiments at room temperature. For all other reactions, no temperature 

dependence information was available and therefore sensitivity studies were 

conducted to test whether, should any of these reactions have a significant 

temperature dependence, this would have a significant effect on the resulting I2 and 

HOI fluxes. Those reactions in Table 4.1 which had rate constants < 109 M-1 s-1 and 

therefore most likely to be activation controlled, were tested individually. The 

reactions used were the forward reactions of R4.3 and R4.6–12, and the reverse 

reactions of R4.6, R4.7 and R4.10. Using the currently accepted rate constant values as 

listed in Table 4.1, maximum activation energies were estimated such that the pre-

exponential factor for the reaction was not larger than the diffusion limit (~1012 M-1 s-1).  

The addition of these activation energies to the majority of the reactions in the 

chemistry scheme showed no significant effect on the resulting HOI and I2 fluxes. The 

only reaction where a significant change in the overall activation energy was observed 

was the forward reaction 6 where using an activation energy for the reaction of 
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60 kJ mol-1 resulted in an activation energy ~20 kJ mol-1 smaller for the resulting I2 flux 

compared to when the activation energy of this reaction was set to zero. 

The above mentioned model runs used the activation energy from Magi et al. (1997) of 

~73 kJ mol-1 which gives a rate constant at room temperature which lies within the 

established range of values from previous experiments of 1–2.5 x 109 M-1 s-1 (Garland 

et al., 1980; Hu et al., 1995; Liu et al., 2001; Magi et al., 1997). As discussed previously, 

the published pre-exponential factor is around ten orders of magnitude larger than the 

diffusion limited rate therefore this activation energy cannot be applicable to this 

reaction at the rate constants observed. They also show large errors on the results at 

lower temperatures, in agreement with the lack of reproducibility observed in the 

experiments described in Chapter 3. Results of the fitting in Chapter 3 suggest this 

reaction may have a small or negative activation energy, however, it is important to 

remember that the experimental results give the temperature dependence of the I2 

and HOI fluxes which are both dependent on a number of other temperature 

dependent processes as mentioned in the section above. 

Measurements by Hu et al. (1995) gave a rate coefficient for the I- + O3 reaction at 

277 K of 4 x 109 M-1 s-1. Given that previous measurements have established that the 

rate constant at 298 K lies within the range 1–2.5 x 109 M-1 s-1 this implies that the 

reaction may in fact have a slightly negative temperature dependence. It should be 

noted, however, that the measurements of Hu et al. (1995) showed a very large error, 

which actually encompassed the existing estimates for the room temperature rate 

constant (and they do not report a room temperature measurement). Therefore the 

model was run assuming zero activation energy for the O3 + I- rate constant.  

The iodide and ozone concentrations were then varied to examine how this rate 

constant affected the temperature dependences of the I2 and HOI fluxes. The 

temperature dependence for I2 and HOI fluxes was dependent on both the iodide and 

ozone concentrations and the resulting HOI and I2 flux temperature dependences are 

reported in Table 4.2 for the range of ozone and iodide concentrations used in the 

temperature dependence experiments. 
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Table 4.2Modelled activation energies for the HOI and I2 fluxes with different O3 and I
-
 concentrations. 

[I-
(aq)] / mol dm-3 [O3(g)] / ppb Ea (I2 flux) / kJ mol-1 Ea (HOI flux) / kJ mol-1 

1 x 10-6 222 -5.6 20.3 

5 x 10-6 900 -3.4 24.8 

5 x 10-6 2800 2.0 30.3 

The table shows that when increasing the O3 concentration in the model the activation 

energy of both the I2 and HOI fluxes increases. In contrast, increasing the iodide 

concentration has the opposite effect, causing a decrease in the activation energy of 

both fluxes.  

The model was also run for real seawater conditions, assuming zero activation energy 

for the I- + O3 reaction, an O3 concentration of 30 ppb (representative of clean marine 

air), an iodide concentration of 1 x 10-7 M and a wind speed of 7 m s-1. The activation 

energies obtained for the I2 and HOI fluxes were -0.2 kJ mol-1 and 29 kJ mol-1, 

respectively. Due to the very minimal apparent temperature dependence, this factor 

was not considered in the next section when producing a parameterisation of the 

inorganic iodine flux. 

4.3 Parameterisation of the Inorganic Iodine Flux 

To derive algorithms describing the relative inorganic iodine fluxes a multiple linear 

regression model was used. This involved investigating the relationships between each 

covariate and the response variable (HOI or I2) as computed by the kinetic model for 

real seawater conditions. The variables considered were O3, I- and wind speed, 

temperature and salinity were not considered for the reasons discussed above and in 

Chapter 3. The analysis was carried out as described below by Dr Julie Wilson, 

University of York. 
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The ozone concentration was found to have a simple multiplicative effect on both the 

response variables (HOI and I2 flux), i.e. increasing the ozone concentration by a factor 

k would cause an increase in the HOI and I2 flux by the same factor. For this reason the 

models were initially developed for a constant O3 and multiplied by the appropriate 

factor afterwards. The O3 and wind speed were considered separately for fixed values 

of the other covariate in each case. 

Both the HOI and I2 fluxes were found to show a clear association with I- and wind 

speed individually, however, none of these relationships were linear. Therefore, the 

covariates were transformed by the appropriate function to give a linear relationship 

with the response variable before fitting the linear regression model. These 

transformations and corresponding correlations are summarised in Table 4.3 below. 

Table 4.3 Transformations for the relevant covariates before fitting in the linear regression model. 

Response, y Covariate, x Transformation, f(x) 

HOI 

ws ws1  

I- I  

I2 

ws )wsln(  

I-   3.1
I   

 

The linear regression model takes the form: 

 21322110 xxxxy    (4.15) 

where x1 and x2 are the transformed covariates and i (where i = 0,..3) are the 

coefficients to be determined. For both response variables the intercept was found to 

be insignificant and therefore 0 was not included in the fitting procedure. 

For I2 the coefficient of the [I-]1.3 term was not significant, however, the coefficient for 

the interaction term, ln(ws) x [I-]1.3 and the ws coefficient were highly significant 
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(p < 0.0001). The F-statistic for comparison of the two models with and without the 

[I-]1.3 coefficient showed that the reduced model was preferable. The resulting 

expression (Equation 4.16) produces a correlation of 0.9991 between calculated 

(kinetic model) and predicted I2 emissions. 

         wsF ln1054.61074.1 893.1
 

aqg3I IO
2

 (4.16) 

The flux is given in nmol m-2 day-1 with [O3(g)] in ppb, [I-
(aq)] in mol dm-3 and wind speed 

in m s-1. 

For HOI the coefficients of both covariates and of the interaction term were all highly 

significant. The expression produced (Equation 4.17) gives a correlation of 0.9986 

between the calculated and predicted HOI emissions. 
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Both these expressions were employed for use in the 1-D model THAMO to link 

inorganic iodine emissions from seawater to measurements of IO and IOx over the 

oceans and results suggested that these equations may only be applicable when the 

wind speeds are higher than 2 m s-1. This work is described in Chapters 5 and 6. 
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Chapter 5 

Iodine in the Remote Tropical MBL 

As part of the PhD project, field measurements have been performed using long-path 

(LP) and multi-axis (MAX) differential optical absorption spectroscopy (DOAS) on the 

Galapagos Islands in the Eastern Pacific ocean as part of the Climate and HAlogen 

Reactivity tropical EXperiment (CHARLEX) field campaign. The theoretical basis of the 

LP-DOAS and MAX-DOAS techniques is discussed below in section 5.1, along with a 

description of the instrument and the experimental set-up. The motivations for, and 

results of, the CHARLEX field campaign are then discussed in section 5.2. 

5.1 Experimental Techniques 

5.1.1 Differential Optical Absorption Spectroscopy 

Differential optical absorption spectroscopy (DOAS) has been used for many years as a 

valuable technique for taking atmospheric measurements.  It has many advantages for 

measuring trace gases in the atmosphere, one of which being that it can retrieve 

concentrations without affecting the chemical behaviour of the species being studied, 

which is particularly useful when studying highly reactive species such as free radicals 

(Stutz and Platt, 1997).  

DOAS relies on using the narrow band absorption structure of the species being 

measured, which is characteristic of an individual molecule and can therefore be used 

as a fingerprint.  The technique is capable of measuring multiple species with a single 

instrument, valuable in field campaigns in remote locations. DOAS can also detect 

unsuspected species in the atmosphere which may be revealed in the residual 

structure after spectral de-convolution (Plane and Nien, 1992).  
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Measurements can be performed continuously and with a high time resolution of 

typically a few minutes, giving insight into the chemical interactions between species 

(Plane and Nien, 1992; Stutz and Platt, 1996). 

5.1.2 Physical Basis of DOAS 

The basis of the DOAS technique is the Beer-Lambert law which details the exponential 

relationship between the intensity of light passing through a sample and the 

concentration of the absorbing species: 
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where Itr is the intensity of light transmitted through the sample at wavelength , I0 is 

the intensity of the incident light, l is the path length of light, ci is the concentration of 

the absorbing species i and i is its absorption cross section at pressure P and 

temperature T. 

Taking the natural logarithm of I0()/Itr() then gives the optical density (OD) which is 

the sum of the optical densities of the n absorbing species at the wavelength: 
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Converting to concentrations gives: 
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This is the average concentration of the species i over the path length l. 
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However, the Beer-Lambert law is an over simplification when considering absorption 

in the atmosphere.  This is because in the atmosphere, light is also extinguished 

through elastic scattering by air molecules and aerosols.  These scattering processes 

are described by the Rayleigh and Mie extinction coefficients, R and M, respectively.  

Although they are not absorption processes, they can be treated as such in the case of 

DOAS as they scatter light out of the path of the beam from the DOAS instrument 

(Platt, 1994).   

The Rayleigh extinction coefficient R describes the elastic scattering of light by 

particles which are smaller than the wavelength of the incident light: 

   airRR c4   (5.4) 

whereR is 4.4 x 10-16 cm2 nm4 for air and cair is the concentration of air in molecules 

cm-3. It is clear from Equation 5.4 that Rayleigh scattering is strongly dependent on the 

wavelength of light, so that for instance, light intensity at  = 300 nm will be reduced 

by around 12 % per km of light path compared to only 1 % at 600 nm. This is one of the 

reasons that make DOAS measurements in the UV region challenging in the MBL. 

The Mie extinction coefficient defines the scattering of light by particles which are 

larger than the wavelength of the incident light, such as aerosols: 

   n
MM

   (5.5) 

where n (which varies between 1 and 4) and M depend on the chemical composition 

and size distribution of aerosol. 

Including these processes in Equation 5.1 and averaging over the optical path length, l, 

leads to: 
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In the atmosphere, the Beer-Lambert law cannot be applied directly as most molecular 

species are present continuously and extinction by Rayleigh and Mie scattering always 

occur, therefore I0 cannot be obtained free from extinction. The differential absorption 

is used instead, providing the absorbing species has a highly structured absorption 

spectrum within a narrow wavelength range. This structure can be used as a 

fingerprint for the species, appearing in the atmospheric spectrum.  

The differential absorption cross-section, i’ is defined as the difference between the 

absolute cross-section, i, and the broad trend, is, which varies slowly with 

wavelength (Plane and Saiz-Lopez, 2006; Platt, 1994). 

       s

iii  '  (5.7) 

This is shown in Figure 5.1 for the case of NO2, showing the absolute cross section, the 

broad trend of the spectrum and finally the differential cross-section, over a 

wavelength range of 40 nm, typical of that used by DOAS instruments (Plane and Saiz-

Lopez, 2006). A 3rd order polynomial is employed to describe the slowly varying 

component of the absorption cross section for the case of NO2; the degree of the 

polynomial used will depend on the species and wavelength region of interest. 
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Figure 5.1 Absolute and differential absorption cross-sections for NO2showing the 3
rd

 order polynomial 
fitted to the absorption cross section (Plane and Saiz-Lopez, 2006). 

Substituting this into Equation 5.6 and taking into account instrument related 

factorsFins(), which includes the wavelength dependence of the optical transmission 

within the spectrometer and the quantum efficiency of the detector, gives: 
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This equation can be considered in two parts: the first exponential factor describes the 

narrow band absorption features; the second exponential factor and the instrumental 

factor explain the broad band features (Plane and Saiz-Lopez, 2006; Platt, 1994).  The 

intensity measured in the absence of differential absorption can then be defined as: 
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where the optical density is given by: 
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And finally converting to concentrations (as for Equation 5.3) yields: 
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5.1.3 The LP-DOAS Instrument 

The basic components of the long-path DOAS instrument involve a transmitter, usually 

a high pressure Xe lamp, a receiver which is coupled to a spectrometer and a detector 

where the dispersed spectrum is recorded.  In early DOAS instruments the transmitter 

and receiver were placed at opposite ends of the light path and a slotted disc scanning 

device along with a photomultiplier tube was used as the detector (Platt et al., 1979).  

Developments in the design of LP-DOAS instruments have involved placing the 

transmitter and receiver in the same location and folding the light path using a 

reflector and using photodiode array (PDA) or charge coupled devices (CCD) in place of 

photomultiplier tubes.  A description of a typical DOAS instrument is described below 

and a schematic diagram of the setup is shown in Figure 5.2. 

The long-path DOAS instrument uses a Xe Arc lamp as the light source which is 

projected over the given path length through a Newtonian telescope. The advantages 

of using a xenon lamp include the relatively high intensity in the UV wavelength region 

(allowing measurements of species such as BrO) and the small arc size, allowing easier 

focusing onto the optic fibre (Plane and Nien, 1992). This light source is generally 

positionedat the focal point of a spherical or parabolic mirror to provide a highly 

collimated beam. The light is then reflected back to the telescope by a corner-cube 

array of mirrors, positioned several kilometres away.  The corner-cube array uses 

internal reflections to reflect the light back to the spectrometer with high accuracy.  In 
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addition to this it has a large acceptance angle (~20°) so that it does not need to be 

pointed accurately at the source (Plane and Saiz-Lopez, 2006; Platt, 1994). 

A number of advantages are achieved from folding the light path and housing the 

receiver and transmitter in the same location. Firstly, in the processing of the 

atmospheric spectrum, a spectrum of the lamp is required which is unattenuated by 

transmission through the atmosphere.  This can easily be achieved if the light source 

and spectrometer are housed in the same location. Secondly, folding the light path 

gives double the path length and reduces complications which could arise from 

inhomogeneous air masses over long distances. Thirdly, folding the light beam means 

that light losses from divergence of the light beam are significantly reduced as the 

reflected light converges back to the source. In addition to this, housing the 

transmitter and receiver in the same location is preferable when taking measurements 

in remote locations as only one power source is required (Plane and Nien, 1992; Plane 

and Saiz-Lopez, 2006). 

The received light is then focused onto a quartz optic fibre bundle and the light 

dispersed through a 0.5 m Czerny-Turner spectrometer through a 1200 or 600 mm-1 

grating.  This gives a resolution of 0.2–0.4 nm.  An advantage in using a CCD is that CCD 

chips can have high quantum efficiencies in the near-UV, extremely useful for 

wavelengths < 400 nm.  This is achieved through application of a suitable surface 

coating (e.g. Lumogen) which improves the quantum efficiency in the region below 

400 nm (without this coating the quantum efficiency falls to zero at 350 nm). The CCD 

is also cooled to -70 °C using a multistage Peltier thermoelectric cooling system to 

minimise the dark current within the device and improve signal to noise. The signal 

from the CCD is then detected by the computer.  

In addition to these components, stepper motors can be used to shutter-off light so 

that scattered light spectra can be recorded and also to obtain unattenuated lamp 

spectra.  Filter wheels are also used with neutral density filters to attenuate the light 

entering the spectrometer so that the CCD is not saturated (Plane and Saiz-Lopez, 

2006). 
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Figure 5.2 Schematic diagram of the LP-DOAS instrument (Plane and Saiz-Lopez, 2006). 

5.1.4 Analysis of Halogen Measurements 

There have been a number of field campaigns involving measurement of halogen 

species using LP-DOAS, in a variety of locations, covering polar, mid-latitude and 

tropical environments (e.g. Friess et al., 2011; Honninger et al., 2004b; Huang et al., 

2010; Mahajan et al., 2009b; Peters et al., 2005; Read et al., 2008; Saiz-Lopez and 

Plane, 2004a; Saiz-Lopez et al., 2007b; Stutz et al., 2011). The halogen species that 

have been successfully measured during these campaigns are I2, IO, OIO, and BrO and 

concentrations for all are typically several parts per trillion. These species do not all 

absorb in the same spectral region and therefore simultaneous measurements are not 

possible using this technique. 

BrO is measured in the near-UV region of the spectrum from 324–357 nm, IO in the 

visible at 425–445 nm and I2 and OIO are measured in the region 535–575 nm (Gomez 

Martin et al., 2005; Mahajan, 2009; Saiz-Lopez et al., 2004c; Wilmouth et al., 1999). 

The absorption cross sections of each of these species and others commonly measured 

using LP-DOAS are given in Figure 5.3. 
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Figure 5.3 Differential absorption cross sections for species commonly measured using LP-DOAS (Plane 
and Saiz-Lopez, 2006). 
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The instrument will be set up to focus on a specific region of the spectrum dependent 

upon the species of interest. Spectra are recorded every 30 s, and consist of three 

components: the atmospheric spectrum (A), scattered light spectrum (S) and lamp 

spectrum (L) which are differentiated using three separate measurements every 10 s 

(A+L+S, A+S and S). Each of these measurements is a single spectrum, which is 

comprised of contributions from the individual A, L and S spectra. 

For the concentrations of species to be retrieved, a spectral de-convolution procedure 

must be followed. The first step involves producing processed spectra (Ipr) using the 

formula: 

 
ASALS

SAS
Ipr




  (5.12) 

In this way the Xe lamp spectral features are removed from the spectrum before 

analysis (Plane and Saiz-Lopez, 2006).  

The spectra are then converted to optical densities using a Fourier transform and filter 

procedure. A smoothed spectrum is obtained using a fast Fourier transform (FFT) and 

high-pass frequency filter and a low-pass filter FFT analysis gives the overall trend of 

the processed spectrum. The differential optical density is then given by the logarithm 

of the broad trend spectrum divided by the smoothed spectrum (Plane and Nien, 

1992). The variation of wavelength of the attenuation in intensity caused by Mie and 

Rayleigh scattering is largely removed by employing this process. The optical density 

spectrum is then given by the sum of the contributions from n individual absorbers at 

each wavelength. To this, a first order polynomial is added, optimised during the fitting 

procedure, which accounts for any residual off-sets: 
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Dependent upon the region of interest, there will be several species with strong 

absorption features that should be considered; for the 425–445 nm range the 

important species are IO, NO2 and H2O. Reference differential absorption cross 

sections for these species must first be converted to optical densities using the same 

FFT, low and high-pass filter procedure as employed for the processed spectra. The OD’ 

is measured over a large number of wavelengths in a multiplexing detector leading to 

1024 simultaneous equations for the i unknown concentrations ic (Plane and Nien, 

1992). However, the unknowns in the equation are the n molecular concentrations ic  

and the parameters  and , and this means there are usually fewer than ten 

unknowns in total. The solution to Equation 5.13 is therefore greatly over-determined. 

The solution to this is to use a least squares fitting routine using singular value 

decomposition (Press et al., 1986) where the reference optical density spectra are 

fitted simultaneously to the processed OD’ leaving a featureless residual spectrum. 

Also included in the analysis procedure is the ability to stretch or shift the reference 

spectra with respect to wavelength to correct for differences in the wavelength 

calibration between the DOAS spectrometer and the literature cross-sections. 

The errors on the retrieved concentrations and the detection limits of the DOAS 

instrument will depend on a number of factors such as the size and structure of the 

differential absorption cross sections, the number of absorbers, the optical path length 

and the intensity of the light signal transmitted through the atmosphere. A chi-squared 

significance analysis gives a measure of the goodness of fit of the de-convolution 

routine: 

 
   

1

''

2

12

2

1















 


m

clOD
n

i

ii







  
(5.14) 

 

 



Chapter 5. Iodine in the remote tropical MBL 116 

 

where m is the number of wavelength intervals between 1 and 2 (i.e. the number of 

elements of the detector). The smaller the 2, the better the fit, and the less structure 

in the residual spectrum (which is assumed to be random). The statistical standard 

errors on the retrieved concentrations are calculated directly from the singular value 

decomposition routine (Press et al., 1986) and are weighted by the 2 distribution and 

the m−n degrees of freedom of the system. This 1 statistical error is normally an 

underestimation of the overall error as it does not account for systematic errors such 

as those in the absolute absorption cross section of the reference spectra and the 

errors in the length of the optical path. 

In some instances, consistent structures can be observed in successive residual spectra 

and this can be for a number of reasons, including the presence of an unknown 

absorbing molecular species (although this is rare) or incorrect matching of the 

reference and atmospheric spectra. Another cause can be incomplete removal of lamp 

spectral features due to variations in the spectral output across the Xe arc (this can 

often be improved by fitting the lamp spectrum as another absorber in the fitting 

routine). One way to remove consistent structures in a sequence of residual spectra is 

to average them to give an “instrumental reference” spectrum which can be fitted in 

the de-convolution routine along with the other molecular absorbers (Allan et al., 

2000). This will often lead to reduced errors and detection limits for trace absorbing 

species without significantly affecting the retrieved concentrations. 

The minimum detectable OD’ can be estimated from the root mean square of the 

residual (Equation 5.15 below) and the detection limit for each individual species can 

then be estimated using Equation 5.11.   
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The detection limit will depend on the conditions affecting the light transmission 

through the atmosphere and scattered sunlight such as precipitation, cloud and  
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time of day. This is because 2 varies inversely with the light intensity transmitted 

through the atmosphere and is proportional to the level of scattered sunlight (Plane 

and Saiz-Lopez, 2006). 

5.1.5 The MAX-DOAS Instrument 

Multi-axis DOAS is based on the same principles as the LP-DOAS technique, however, 

in this case rather than an artificial light source, scattered-sunlight is used. There are 

numerous so-called “passive” DOAS techniques which use scattered sunlight, as well as 

stellar and lunar light, on various different measurement platforms including ground-

based, aircraft, balloon-borne and satellite measurements (Brewer et al., 1973; 

Burrows et al., 1995; Pfeilsticker and Platt, 1994; Pommereau and Piquard, 1994; 

Roscoe et al., 1994; Solomon et al., 1987; Wagner et al., 2000). Figure 5.4 shows the 

viewing geometry for both a zenith-sky instrument, used extensively for measuring O3 

and NO2 in the stratosphere (e.g. Roscoe et al., 1999), and that of a multi-axis 

instrument. 
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Figure 5.4 Diagram showing the zenith-sky and multi-axis viewing geometries (Oetjen, 2009). 

This demonstrates the path of a single photon through the atmosphere whereas, in 

reality, the signal recorded by the instrument is due to a large number of photons all 

having taken differing paths through the atmosphere. The viewing geometry can be 

described using three different angles: the solar zenith angle (SZA); the elevation angle 

of the telescope relative to the horizon; and the solar azimuth angle (SAA) which is the 

angle between the viewing direction of the telescope and the position of the sun when 

both are projected to the plane of the surface level. 

Zenith measurements can be reasonably approximated by considering single scattering 

as photons are scattered only once above the instrument’s line of sight, having passed 

a great distance through the stratosphere before this (Solomon et al., 1987). This 
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height is dependent on the scattering probability which is proportional to the light 

intensity multiplied by the density of scatterers. To a first approximation the density of 

scatterers can be described by the air density which decreases exponentially with 

height. Therefore light intensity decreases moving closer to the surface as it is 

attenuated by scattering processes in the lower layers of the atmosphere (Solomon et 

al., 1987). 

This gives a most probable height for scattering which will change with SZA; as the sun 

sets the light intensity at the surface decreases to an even greater extent meaning the 

most probable scattering height will be shifted upwards. The light path through the 

troposphere remains almost constant, independent of SZA. This means zenith 

measurements have a much greater sensitivity to stratospheric absorbers (Brewer et 

al., 1973). 

The MAX-DOAS instrument achieves greater sensitivity to tropospheric absorbers by 

positioning the telescope viewing angle closer to the horizon compared to zenith 

measurements. This has allowed a large number of different tropospheric trace species 

to be measured using the MAX-DOAS technique, including IO, OIO, I2, BrO, ClO, O3, 

HCHO and CHOCHO.  

In the case of MAX-DOAS measurements, by measuring light at several different 

elevation angles as well as at the zenith (as shown in Figure 5.5), profile information 

about the trace gas absorbers can be obtained (Honninger and Platt, 2002). The 

stratospheric light path remains fairly constant for all elevation angle measurements. 

Unlike zenith sky measurements the sensitivity of the off-axis measurement is strongly 

dependent upon the aerosol load of the atmosphere. The accurate interpretation of 

the light path therefore requires consideration of multiple scattering of photons, which 

is where radiative transfer modelling is employed to understand all possible photon 

paths (Marquard et al., 2000). 
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Figure 5.5 Schematic diagram of the MAX-DOAS instrument set-up showing different elevation angles 

() passing through the trace gas layer and the solar zenith angle () which is a function of the time of 
day. Figure adapated from Honninger and Platt (2002). 

For scattered sunlight DOAS the Beer-Lambert law needs to be modified to take into 

account the source of light being outside the Earth’s atmosphere (Solomon et al., 

1987). 

 )SCD)(exp()(I)(I 0tr    (5.16) 

The SCD is the slant column density which is integrated along the path that solar 

photons take through the atmosphere. The optical density is then given by: 
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where n is the number of species present in the light path which absorb at wavelength, 

. 

As in the case of the LP-DOAS technique, the photons passing through the atmosphere 

are subject to Rayleigh and Mie scattering, and so wavelength dependent extinction 

coefficients are included as described previously (section 5.1.2).  
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The unattenuated I0 spectrum, which in the case of the LP-DOAS analysis is accounted 

for by dividing by the lamp spectrum, cannot be obtained directly and an alternative 

method must be employed to account for this. Ideally, an extra-terrestrial spectrum 

recorded using the same instrument would be used, however, this is clearly not 

possible and using a spectrum recorded by, for instance, a satellite instrument would 

introduce additional uncertainty due to instrumental variations. Therefore the solar 

spectrum when the solar zenith angle (SZA) is at a minimum (i.e. local noon) is used, as 

this represents the point at which the slant column is at a minimum and includes as 

little absorption as possible from the Earth’s atmosphere (Noxon, 1975, 1976). This 

process removes the highly structured Fraunhofer lines in the solar spectrum which 

account for much of the observed absorption (~30 %) so that the much smaller 

molecular absorptions can be discerned (Plane and Saiz-Lopez, 2006). 

Another effect which needs to be taken into account when analysing the MAX-DOAS 

spectra is the so-called “Ring effect” (Grainger and Ring, 1962). This comes from the 

partial filling in of the Fraunhofer lines as sunlight passes through the atmosphere, 

most likely due to Raman scattering (Fish and Jones, 1995; Sioris and Evans, 1999; 

Vountas et al., 1998), resulting in reduced optical densities of the Fraunhofer lines. The 

Ring effect needs to be accounted for as it can represent a change in optical density an 

order of magnitude larger than the absorption of atmospheric trace gases. This is 

usually achieved using an artificially generated Ring spectrum (Chance and Spurr, 1997) 

fitted as another absorber in the analysis routine. Another complicating factor in the 

analysis of MAX-DOAS spectra is the effect of clouds which increase the optical path 

length of the solar photons and can also increase the Ring effect (de Beek et al., 2001). 

After accounting for these various effects and calculating the contribution of the 

individual absorbers, a SCD for each species is obtained. However, a more useful 

quantity is the vertical column density (VCD), and conversion is achieved through 

calculation of an air mass factor (AMF) (Perliski and Solomon, 1993; Solomon et al., 

1987). The VCD is then given by: 
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AMF

SCD
VCD 

 
(5.18) 

The AMF is dependent on the radiative transfer of the atmosphere and is calculated 

using radiative transfer models as mentioned previously, which take into account 

wavelength-dependent Rayleigh and Mie scattering effects, temperature and pressure 

profiles as well as SZA and the azimuth angle of the receiving telescope (Marquard et 

al., 2000; von Friedeburg et al., 2002). This determines the altitude at which significant 

light scattering occurs for the SZA () and elevation angle () used. For a stratospheric 

absorber there will be a strong dependence of the AMF on , whereas a boundary 

layer absorber will have a much smaller dependence on  and a strong dependence on 

. 

This can be explained with reference to Figure 5.6, which shows the scattering 

geometries for an absorber in the stratosphere (A) and in the boundary layer (B). For 

single scattering occurring below the trace gas layer (as in the case of a stratospheric 

absorber) the AMF can be estimated as 1/cos . In the case of the boundary layer 

absorber, scattering occurs above the trace gas layer and the AMF can be 

approximated as 1/sin . In the case of a molecule being present in both the 

stratosphere and troposphere, the SCD will clearly contain contributions from both 

regions. However, for a fixed , the slope of a plot of SCD against AMF (1/sin ) will 

give an estimate of the vertical column below the scattering altitude (i.e. in the 

troposphere), whereas the intercept will give an estimate of the stratospheric 

component (Honninger and Platt, 2002). 
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Figure 5.6 Diagram showing the single scattering for an off-axis viewing geometry for a trace species 
absorbing in the stratosphere (A) and in the boundary layer (B). The measured SCD (along ds) is 
converted to a VCD (along dz) by applying an AMF. Figure adapted from Honninger and Platt (Honninger 
and Platt, 2002) 

5.1.6 Recent Developments in DOAS Measurements 

A number of recent developments to the DOAS technique have arisen through the 

necessity to measure species in a variety of locations, including ship-borne and air-

borne measurements in remote locations. This has led to the development of more 
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portable instruments which require lower power compared to traditional DOAS 

techniques.  

One such technique is that of Cavity Enhanced DOAS (CE-DOAS), based on the 

principles of Cavity Ring-Down Spectroscopy (CRDS), using two highly reflective mirrors 

to increase the path length inside the cavity and therefore obtain increased sensitivity 

to atmospheric trace species (Meinen et al., 2010; Platt et al., 2009; Thalman and 

Volkamer, 2010). Using broadband light sources such as light emitting diodes (LEDs) (as 

opposed to e.g. Xe arc lamps used in LP-DOAS) means that the power required is 

significantly reduced, and the LED colour can be tuned to the specific wavelength 

range of interest. As with other DOAS techniques, the instrument is also inherently 

calibrated and therefore the frequent calibrations required in other cavity-enhanced 

absorption spectroscopy (CEAS) techniques are not needed so that sampling is not 

compromised (Thalman and Volkamer, 2010). In addition, the ability to make in situ 

measurements, rather than averaging over a large distance gives greater information 

on the spatial distribution of halogens. 

Portability has been improved by the development of mini-DOAS instruments which 

have been developed for use in measuring networks of species such as NH3 (Volten et 

al., 2012), and on aircraft platforms for measurements of BrO, IO, O3 and HONO 

(Prados-Roman et al., 2011). It has also been suggested they may be used for making 

flux measurements by arranging two or more instruments in a gradient set-up (Volten 

et al., 2012). As well as being smaller than traditional instruments, they also have 

reduced costs and handling complexity (with increased automation) making them ideal 

for deployment in remote, unmanned locations (Carlson et al., 2010). 

In addition, the use of instruments on mobile platforms requires some compensation 

for pitch and roll in both aircraft and ship based measurements which has lead to the 

development of motion compensation systems for the telescopes of MAX-DOAS 

instruments, including angle sensors with feedback loops to correct the telescope 

angle in real time (Baidar et al., 2013) . As well as developments in instrumentation, 

measurements of trace gas species from mobile platforms have also necessitated 

adaptations to the analysis technique due to the rapidly changing air masses 
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encountered (Wagner et al., 2010) and lack of a priori information on vertical profiles 

for species like BrO and IO (Prados-Roman et al., 2011). 

In addition, the increasing need for spatial information of chemical species, particularly 

in terms of possible pollutants, has led to extensions of the DOAS technique to acquire 

a 2D or even 3D picture of the relevant species. These techniques include imaging 

DOAS (IDOAS) which has been employed to measure NO2 plumes from industrial 

activities (Heue et al., 2008; Lee et al., 2009a) and volcanic gas emissions (Louban et al., 

2009), and Hemispheric Scanning Imaging DOAS (HSI-DOAS) where a 360° rotating 

head unit allows scanning of entire hemispheres of the surrounding skyline (Graves et 

al., 2013). A further challenge for the continuing use of DOAS instruments in the field is 

to achieve even better detection limits as the species of interest are often in minute 

trace quantities (<pptv levels). There has been progress in this area through limiting 

the effects of detector non-linearity noise and small temperature fluctuations which 

can cause variations in optical resolution (Coburn et al., 2011). 

A description of the specific set-up of both the LP-DOAS and MAX-DOAS instruments 

deployed during the CHARLEX field campaign is provided in the next section.  
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5.2 CHARLEX Field Campaign 

Satellite measurements  have indicated that elevated levels of IO can be observed 

around the Galapagos Islands, with the largest mixing ratios observed outside the polar 

regions (Schonhardt et al., 2008). This is believed to be due to increased biological 

activity in the waters surrounding the islands from nearby deep water kelp forests 

(Thiel et al., 2007). However, on averaging the data over several years (2004–2009) it is 

found that the peak disappears around Galapagos (Schönhardt, 2009); this may be due 

to a seasonal effect and despite the IO being under the detection limit it could still 

have a significant impact on O3. Ozonesonde data from the Southern Hemisphere 

Additional Ozonesondes (SHADOZ) experiment (Solomon et al., 2005) also shows 

frequent reduced ozone episodes in the boundary layer across a number of sites in the 

Pacific ocean, indicating a possible link to halogen emissions . 

In addition, in tropical coastal regions it is known that deep convection occurs which 

could transport species such as CH3I through the free troposphere and possibly to the 

stratosphere (Butler et al., 2007). This means the reactive species emitted at these 

sites may have a larger impact on the chemistry occurring higher in the atmosphere 

than at other locations such as the Arctic where zenith sky measurements estimate an 

IO concentration in the stratosphere of up to 0.8 pptv (Wittrock et al., 2000). 

To verify the high satellite measurements of IO and to address the impact that these 

iodine emissions may have on the local ozone concentrations a field campaign was 

conducted on the island of Isabela, Galapagos. The Climate and Halogen Reactivity 

tropical EXperiment (CHARLEX) had several aims to better understand halogen 

chemistry in remote tropical environments, these were: 

1) to validate the high satellite measurements of IO observed around the 

Galapagos Islands 

2) to explain the extremely low surface O3 measurements observed during the 

SHADOZ experiments at San Cristobal Island 
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3) to characterise the role of halogen species in the remote tropical marine 

boundary layer 

4) to determine whether the levels of IO observed were sufficient to lead to 

particle formation and the subsequent formation of CCN. 

To achieve these aims a number of different measurement techniques were employed 

to observe a range of halogen species including I, IO, OIO, I2 and BrO. In addition, a 

suite of instruments was used to make complimentary measurements of NOx, O3, 

particles, RGM and meteorological conditions such as wind speed and temperature. 

5.2.1 Site Description and Meteorology 

The CHARLEX campaign is an ongoing campaign on the Galapagos Islands in the 

tropical Pacific Ocean. The campaign can be split into two, with the first campaign 

which ran from September 2010 to May 2011 involving a suite of instruments, 

including both the LP and MAX-DOAS instruments at Puerto Villamil on the Island of 

Isabela (0°57’27.37”S, 90°57’55.55”W), which is the largest island of the Galapagos 

archipelago. The second part of the campaign which ran from June 2011 until present 

took place at the INAMHI meteorological station in Puerto Baquerizo Moreno on the 

island of San Cristobal (0°54’14.53”S, 89°36’50.92”W), the eastern-most island of the 

archipelago, with semi autonomous MAX-DOAS, ozone monitor and aerosol 

instruments.  
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Figure 5.7 Satelite image of the two measurement sites (Google Earth). The middle panel shows the 
position of the measurement sites within the Galapagos archipelago. The top panel shows the site of the 
Met station in San Cristobal where the MAX-DOAS and particle instruments were located and La Loberia 
where additional particle measurements were performed. The bottom panel shows the measurement 
site at Isabela with the LP-DOAS light path and MAX-DOAS line of sight. The group of islets known as the 
Tintoreras are also visible to the bottom right. 

MAX-DOAS line of sight

La Loberia – Particles

Met. Station - MAX-DOAS, O3, particles

Puerto Baquerizo Moreno

4.54 km MAX-DOAS line of sight

LP-DOAS light path

In-situ instruments

Puerto Villamil
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The Galapagos archipelago is a range of volcanic islands in the equatorial Pacific almost 

1000 km west of the coast of Ecuador. The surrounding ocean is subject to large 

seasonal variability in both sea surface temperature (SST) and salinity, and shows 

highly temporally variable areas of heightened primary productivity. This arises due to 

the position of the Galapagos Archipelago at the intersection of several different 

current systems. The islands are bisected by the Equatorial Front which divides the 

warmer tropical waters in the North from the cooler temperate waters in the south 

(Pak and Zaneveld, 1974). There are three major currents which influence the waters 

surrounding the islands: the cool Humboldt current from the south; the North 

Equatorial Countercurrent (NECC) from the North; and the westward-flowing South 

Equatorial Current (SEC) (Kessler, 2006). The SEC is influenced by both the Humboldt 

and NECC at different times of year depending on the position of the inter-tropical 

convergence zone (ITCZ). During May–December (cold season) the ITCZ is north of the 

equator and the Humboldt Current is the major contributor to SEC influence. From 

December-May (warm season) the ITCZ shifts south so that the SEC is pushed towards 

the NECC and North Easterly trade winds become dominant (Schaeffer et al., 2008). 

There is an additional influence from the eastward flowing Equatorial Undercurrent 

(EUC) which collides into the Archipelago, upwelling cold nutrient rich waters to the 

warmer tropical surface waters (Steger et al., 1998). 

The island coastal shelves are relatively shallow, with a gradual incline with lava flows 

forming protrusions and shallow bays around the islands. These waters do not 

however contain any large beds of iodine emitting macroalgal species. The waters 

around the Galapagos Islands are home to deep-water tropical kelp forests (Graham et 

al., 2007) which increase with depths > 60 m. These kelp beds could act as a source of 

iodine species to the ocean surface. 

The air masses arriving at the island are predominantly south-easterly trade winds, 

which have spent a considerable time over the ocean and therefore can be considered 

clean, with little influence from terrestrial sources. Figure 5.8 shows the back 

trajectories of air masses arriving at the Galapagos during the entire measurement 

period. The back trajectories are classified according to the contribution from different 

oceanic regions (as indicated on the figure). These are defined roughly according to: in 
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the Southern Hemisphere their primary productivity; in the Northern Hemisphere their 

proximity to land masses. The trajectories show that 60–89 % of the time the air 

masses pass over low Chl-a regions in the open ocean. 

 

Figure 5.8 Hysplit five day back trajectories for the entire measurement period: the bold outlined black 
box represents the region used for comparing Moderate Resolution Imaging Spectroradiometer (MODIS) 
chlorophyll-a (Chl-a), chromophoric dissolved organic matter (CDOM) and sea surface temperature (SST) 
data to the reactive iodine observations. The colours are indicative of the number of days before the air 
mass arrived at the measurement site (Gómez Martín et al., 2013). 

The wind vectors observed are consistent with the expected patterns for the Eastern 

Equatorial Pacific (Hayes et al., 1989; Wallace et al., 1989) with weaker meridional 

components during the warm season, leading to negative (i.e. northerly) meridional 

components in March 2011.  The weakening of the meridional component implies that 

the air masses pass closer to, and spend more time around the upwelling region along 

the Peruvian coast and also around the Galapagos archipelago itself, reaching the 

islands from the east rather than the south (as observed during the cold season).  

At San Cristobal the observed wind speeds are stronger than at Isabela with a daytime 

average of 3.7 m s-1 compared to 1.7 m s-1. The zonal wind at Isabela is also more 

variable with both positive (westerly) and negative (easterly) values, whereas at 

San Cristobal the zonal component is fairly consistently negative. The observations at 
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San Cristobal are in agreement with buoy wind measurements previously conducted in 

the region (Hayes et al., 1989; Wallace et al., 1989). The greater variability at Isabela is 

indicative of the surface winds being partially blocked or slowed down by the presence 

of the group of islets (known as the Tintoreras) to the south of the measurement site.  

Throughout both campaigns the SST can be described as either La Niña or ENSO 

(El-Niño-Southern Oscillation) neutral with the greatest temperature anomalies 

occurring in the 2010 cold season (SST anomalies up to -2 °C). There was then a 

transition to ENSO neutral conditions during the 2011 warm season followed by 

moderate La Niña conditions in the 2011 cold season (SST anomalies < -1.2 °C). The 

warm season of 2012 saw a return to ENSO neutral conditions. The air temperature 

recorded at both Isabela and San Cristobal for 2010 and 2011 was within ±1 °C of the 

average except during the 2010 cold season where the temperature anomaly reached 

below -1.5 °C. 

5.2.2 Instrumentation 

The LP-DOAS instrument ran from September 2010 to March 2011 and was housed in 

an air-conditioned room in Puerto Villamil, Isabela. It consisted of a Newtonian 

telescope containing a 450 W xenon arc lamp and the transmitting and receiving optics. 

The light beam extended 4.54 km to the West where a retro-reflector was positioned, 

on the other side of Villamil bay to fold the light path back to the telescope. This gave a 

total optical path length of 9.08 km. The height of the light beam above the ocean 

ranged from around 1 m at high tide at the instrument site up to around 5 m where 

the retro-reflector was situated.  

The instrument uses a 0.5 m Czerny-Turner spectrometer with a 1200 groove mm-1 

grating coupled to a cooled (-70 °C) CCD camera, giving a spectral resolution of 0.25 

nm at full-width half-maximum (FWHM) and covering a spectral range of around 40 

nm. The recorded differential spectra were then averaged for 30 minutes to improve 

the signal-to-noise ratio and then converted to optical densities. The contributions 

from individual absorbing species were then calculated using multivariate fitting of a 
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library of reference absorption cross sections, degraded to the resolution of the 

spectrometer and taking into account stretching and shifting effects of the instrument.  

Throughout the campaign, the measurements were alternated between four different 

spectral regions to probe a number of reactive halogen species. The reference spectra 

fitted in the 425–440 nm region were IO (Gómez Martín, 2005), NO2 (Vandaele et al., 

1998), H2O (Rothman et al., 2003) and glyoxal (Volkamer et al., 2005). For the 

530-570 nm region the species fitted were I2 (Saiz-Lopez et al., 2004c) and OIO (Spietz 

et al., 2005). 

During the first part of the campaign, the MAX-DOAS scanning telescope was situated 

on the terrace of the laboratory at a height of around 3 m above sea level and around 

15 m away from the mean tide level. The telescope pointed in a westerly direction, 

almost parallel to the light beam of the LP-DOAS instrument. At the site in San 

Cristobal the instrument is located at around 5 m on the roof of a building around 160 

m from the coastline. The telescope points NNW but does not overlook the seaport.  

The MAX-DOAS telescope consists of a 2.5 cm diameter quartz lens set at 7.5 cm focal 

length from a fibre optic bundle giving a 1° field of view. The telescope is mounted on 

a stepper motor allowing spectra to be recorded at 19 discreet elevation angles 

between -5° and 90°. The optic fibre was then connected to a spectrometer (Princeton 

Instruments SP500i) positioned inside the temperature-stabilized laboratory with 

1200 grooves mm-1 grating and CCD camera (Princeton Instruments Pixis 400B) giving a 

spectral resolution of 0.25 nm FWHM and a 40 nm spectral range. Spectra were 

recorded at 10 s exposure time for each elevation angle. The spectral range was 

extended to 80 nm when the instrument was moved to the San Cristobal site and the 

number of discreet elevation angles was reduced to six (from 0° to 90°). The exposure 

time was increased to 30 s per elevation angle giving a better signal-to-noise ratio. 

Finally, one hour averaging at each elevation angle was employed to further improve 

signal-to-noise.  

The measurements also alternated between different spectral windows to allow 

retrieval of different trace species. For the retrieval of IO, the reference spectra as 

indicated above for the LP-DOAS measurements were fitted along with O3 (recorded at 
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223 K) (Bogumil et al., 2003) and a Ring spectrum (Chance and Spurr, 1997). These 

were fitted simultaneously using the commercial QDOAS software (Fayt and van 

Roozendael, 2011) together with a 3rd order polynomial to take into account 

broadband extinction processes, and a linear intensity offset to allow for possible 

instrumental stray light. The window region chosen for spectral deconvolution was 

416–440 nm and the zenith spectrum recorded for each scan was used as a reference. 

In addition to the two DOAS instruments measuring iodine species, another technique, 

resonance and off-resonance fluorescence by lamp excitation (ROFLEX), was used to 

measure atomic and molecular iodine. This technique is described in detail in Gomez 

Martin et al. (2011). Briefly, the instrument works by pumping ambient air at a rate of 

7000 cm3 min-1 through a 0.8 mm pinhole and through a low pressure chamber. Iodine 

atoms in the airflow are then excited by vacuum UV radiation at 178.276 and 183.038 

nm by a radiofrequency discharge iodine lamp. Resonance fluorescence is then 

collected orthogonally by a photon counting module. Background measurements are 

made by drawing the airflow into an iodine trap for a set time before entering the 

fluorescence chamber. The iodine trap consists of a blackened glass tube where the I 

atoms are scavenged by excess O3. The instrument was calibrated by concurrently 

measuring I2 off-resonance fluorescence by the ROFLEX instrument and absorption by 

incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), combined 

with photolysis of known amounts of molecular iodine to generate atomic I. 

The ROFLEX instrument was located less than 30 m from the high tide line throughout 

October 2010 and around 1 m above sea-level. In February 2011 the ROFLEX was 

located with the rest of the in situ instruments on a nearby pier, closer to the sea but 

around 5 m above sea level. The detection limit of the instrument for atomic iodine 

was found to be 1.1 pptv for one hour averaging during October 2010, increasing to 

1.9 pptv during February 2011. 

Air samples were taken at the coast of Isabela during May and June 2011 for 

halocarbon analysis using GC-MS. Samples were collected in 3.2 L silicocans and 

transported to University of East Anglia for analysis. Iodocarbons were monitored 
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using the m/z 127 peak for iodinated compounds with typically better than 5 % 

precision. 

During the second half of the campaign at San Cristobal, ambient aerosol particle size 

distributions were measured using a scanning mobility particle sizer (SMPS) consisting 

of a neutralizer and differential mobility analyser. An ultrafine concentration particle 

counter (UCPC) was used to count particles, and this set-up allowed particles with sizes 

in the range 9–483 nm to be measured. A second UCPC instrument was employed to 

measure particles with diameters greater than 3 nm and by subtracting these 

measurements from those of the SMPS, particles in the size range 3–9 nm could be 

evaluated. The instruments were deployed from 21st July – 11th August for the UCPC 

and 30th July – 5th August for the SMPS instrument, both being housed in the same 

laboratory as the MAX-DOAS instrument. The instruments could not be deployed 

during the 9 month campaign in Isabela due to logistical reasons. 

Two ozone monitors (2BT 202 and 205) and a NOx analyser (Teledyne 200EU) were 

situated on the second floor of a cabin, on the end of a pier pointing South, allowing 

air to be sampled directly off the ocean. The Teflon inlet tubing for the ozone and NOx 

instruments was guided using a pole pointing south so that the air sampled was 

around 2 m away from the walls of the cabin and around 5 m above sea level. The 

detection limits for these instruments were 2 ppbv and 50 pptv, respectively. 

A weather station (WeatherLink Vantage) measuring temperature, relative humidity 

(RH %), wind speed and direction, and rainfall, and a global radiometer (Kipp and 

Zonen CPM11) were also situated on the same pole as the inlet tubing for the NOx and 

ozone instruments at Isabela. At San Cristobal, the existing weather station provided 

the relevant meteorological measurements; surface and sonde measurements 

suggested that the weather conditions at both sites were very similar. 
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5.2.3 Observations of Reactive Iodine Species 

5.2.3.1 IO 

Measurements of IO were recorded as mentioned previously by both the LP and MAX-

DOAS instruments. The differential SCDs (dSCD) obtained from the MAX-DOAS analysis 

routine (Figure 5.9) had typical detection limits in the range 5 x 1012 to 

1 x 1013 molecule cm-2 with a root mean squared (RMS) of 2.5–5 x 10-4. Before 

converting dSCDs into volume mixing ratios (VMRs), filters were applied to remove 

data from SZA > 60° (to avoid influence of higher atmospheric layers), RMS > 4 x 10-4 

and data recorded under cloudy conditions, estimated using a cloud filter (Sinreich, 

2010) which uses the ratio of radiation fluxes at the edges of the spectral window. 

Only data from clear sky conditions were used for further analysis. 

 

Figure 5.9 a) MAX-DOAS IO dSCDs at different elevation angles. b) An example spectral fit for IO. c) 
Example residual spectrum after all other absorbers have been fitted out (Gomez Martin et al. 2013). 

For selected days when there were three or more viewing angles after filtering, to 

convert the filtered dSCDs into VMRs the so-called O4 method was employed which 

has been used by a number of groups (Sinreich, 2010; Wagner et al., 2004) in addition 

to the NIMO fully spherical Monte Carlo radiative transfer model (RTM) (Hay et al., 

2012). The procedure involves estimating an aerosol profile to reproduce the observed 

O4 dSCDs, whose vertical distribution is known through forward modelling using the 
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RTM. O4 dSCDs act as good proxies for the average effective path lengths of observed 

photons in the boundary layer due to their known vertical distribution which decreases 

in proportion to the square of the pressure. Aerosol profiles with varying optical 

depths and shapes were prescribed and the profile parameters were floated to achieve 

the best fit between the forward modelled and the observed O4 dSCDs.  

Aerosol profiles were only available for days when spectra were recorded in the UV as 

the 360 nm O4 band was used. Therefore, for days when IO was measured the aerosol 

profile for either the previous or following day was used in the RTM for retrieval of the 

IO vertical profile by optimal estimation (Rodgers, 2000). This method requires an a 

priori profile for IO, which was assumed to decrease linearly from 0.4 pptv at the 

surface to 0 pptv at 4 km with a vertical resolution of 50 m and an error of 80 % at 

each level. A shortened light path due to aerosols meant that there was no available 

information from the 1o elevation angle and therefore a reduced sensitivity of the 

optimal estimation to the first 200 m of the boundary layer. With the available viewing 

angles, a more accurate estimation of the VMRs was achieved for a layer of 1000 m 

compared to 200 m. The closeness of most IO dSCDs to the detection limit and poor 

sampling of elevation angles means the quality of the data is insufficient for obtaining 

reliable vertical profiles. 

A second more straight forward method was also used for the retrieval of IO VMRs 

from the observed dSCDs for the entire measurement period. This method used the 3° 

viewing angle dSCDs scaled with the simultaneously measured O4 dSCDs to account for 

light path changes due to differences in aerosol loading. The upper altitude was 

defined by the mean last scattering altitude for photons reaching the detector and this 

provides an averaged VMR inside the layer with no vertical profile information. A 

further correction is required to account for the more rapidly decreasing IO profile 

with altitude. Correction factors were applied to remove the contribution of O4 to the 

O4 dSCDs from above the mean last scattering altitude (1200 m). This was achieved by 

using the single scattering geometrical approximation to calculate relative path lengths 

above and below 1200 m for each SZA. The O4 derived path lengths were then 

calculated by dividing the O4 dSCDs by the average O2 squared concentration 

(2.4 x 1037 molecules2 cm-6 from PTU sonde measurements) up to 1200 m. 
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The two methods gave IO VMRs which agreed within 25 % for O4 derived path lengths 

shorter than 19 km, corresponding to a last scattering altitude of 1000 m based on the 

single scattering geometrical approach. For last scattering altitudes > 1000 m the O4 

scaled VMRs are systematically lower than those from the optimal estimation as a 

result of overestimation of the light path due to the differing profiles of O4 and IO. 

Extremely high errors in the optimal estimation method result from the high errors on 

the IO apriori profile required to optimize the residual RMS of the forward model fit to 

the measurements. Due to the high dSCD errors and the lack of profile information 

from the lowest elevation angles the retrieval errors are only slightly reduced 

compared to the apriori. The errors on the O4 method are somewhat harder to 

estimate due to the differences in the O4 and IO profile shapes being unknown. The 

estimated errors arise from the range of the last scattering altitude from the different 

aerosol profiles in the O4 forward modelling fits to the measurements. This gives an 

uncertainty in the mean O4 extinction coefficient along the light path which is 

combined with the propagated errors from the O4 and IO dSCDs to give the errors in 

the final IO VMRs. 

The average 2 detection limit with the LP-DOAS instrument over the entire campaign 

was 0.9 pptv which corresponds to a root mean squared residual of 2 x 10-4 and IO was 

not observed above this limit over the duration of the campaign at Isabela. For the 

derived VMRs from the MAX-DOAS instrument during the same period, 99 % were also 

under this limit. Comparison of the LP and MAX-DOAS instruments must be treated 

with caution, however, as the MAX-DOAS VMRs are averaged over a height of 1000 m 

whereas the LP-DOAS instrument measurements were sampled at 1–5 m above the 

ocean surface. The highest VMRs from the MAX-DOAS measurements were found for 

the lowest single scattering heights (average of 600 m) and shortest O4 path lengths 

(average of 11 km). This implies that most of the IO is contained in the lowermost part 

of the MBL. 

The atomic I was below the detection limit of the ROFLEX instrument (1.1 pptv) in 

October 2010 and February 2011 (1.9 pptv). The absolute mixing ratios of atomic I can 

be reasonably estimated by using a box model constrained by standard HOx and NOx 

chemistry. For low NOx conditions (20 pptv for open ocean conditions (Lee et al., 2010)) 
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the IO to I ratio calculated at noon is found to follow the linear relationship 

IO/I = 0.13 x [O3] where the O3 mixing ratio is in ppbv. The calculated I atom 

concentrations using this relationship are consistent with the detection limits of the 

ROFLEX instrument. The low O3 concentrations result in I atom mixing ratios which are 

comparable to or even larger than the IO mixing ratios. To directly link these species to 

oceanic iodine sources, the variable IOx is used, which represents the sum of the 

measured IO and modelled I atom mixing ratios. IOx rather than IO is used as this 

allows potential links between variables to be elucidated without being obscured by 

the partitioning between I and IO, which is essentially dependent on O3 and radiation. 

Unfortunately, measurements of other reactive iodine species such as OIO and I2, 

targeted by twilight and night-time measurements with the LP-DOAS instrument, could 

not be observed above the detection limits (2.2 and 10 pptv respectively). 

5.2.3.2 Halocarbons 

Halocarbons can act as important sources of reactive iodine to the marine boundary 

layer in coastal regions, however, they are not believed to be the major source in the 

remote ocean, where inorganic precursors have been found to contribute over 50 % to 

the production of IO (Mahajan et al., 2010a).  However, in tropical locations where 

deep upwelling regions occur, the transport of the longer lived halocarbons (as 

opposed to inorganic halogenated species) could provide a source of halogens to the 

upper troposphere–lower stratosphere (UTLS) region. 

One such compound is CH3I which has a lifetime at the equator of approximately two 

days and therefore is not considered to be a major contributor to reactive iodine in the 

MBL. However, it can be transported up to the UTLS region where it becomes the 

major contributor to IOx (Ordonez et al., 2012; Saiz-Lopez et al., 2012). 

Samples of CH3I were taken during May and June 2011 at the site in Isabela and mixing 

ratios were found to vary between 0.6 to 5.4 pptv with an average during that period 

of 1.83±1.05 pptv (1σ standard deviation). These are significantly higher than those 

reported in a previous campaign at San Cristobal in 2004 (Yokouchi et al., 2008) where 

mixing ratios were found to vary from 0.53–2.55 pptv with a yearly average of 
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1.13±0.37 pptv (the average for May–June 2004 was 1.2 pptv). The earlier 

measurements are in good agreement with the open ocean measurements recorded 

during the HaloCAST-P cruise whilst crossing the equator in April 2010 (Mahajan et al., 

2012). There is only one previous study which reports open ocean CH3I measurements, 

where mixing ratios of up to 3 pptv were observed in the South Atlantic near the coast 

of Argentina (Arnold et al., 2010; Lai et al., 2011). These high values were attributed to 

increased phytoplankton activity and high Chl-a concentrations. 

Previous studies have suggested a correlation between gaseous CH3I with SST and Chl-

a. However, the differences in SST (~2°C warmer) and Chl-a (~20 % lower in 2011) 

based on MODIS-A measurements south of Galapagos in May-June 2004 and 2011 do 

not agree with the linear relationships of CH3I with these variables previously reported. 

Furthermore, no significant correlation is observed in the CHARLEX data set between 

CH3I and open ocean Chl-a or exposure to Chl-a. 

All these factors suggest a localised source of CH3I. There is no significant correlation 

observed between CH3I and wind speed or tidal height therefore influence of a local 

terrestrial or intertidal source can be rejected.  An interesting feature in the MODIS-A 

Chl-a data shows periodically enhanced biological activity in a narrow strip (~10 km 

wide) along the Southern coast of Isabela with an average Chl-a concentration of 

0.4±0.2 mg m-3 and a maximum of 1.6 mg m-3 during the CHARLEX campaign. Indeed, 

this could be observed at times along the beach at Puerto Villamil, where significant 

green algal deposits would appear at the tide lines. The Chl-a fields around San 

Cristobal are shown to be much weaker and therefore the increased CH3I observed at 

Isabela compared to CH3I could be attributed to this increased biological activity. 

Unfortunately, due to the long time elapsed between sample collection and analysis 

(around 4–5 months) it was not possible to obtain mixing ratios for the more photo-

labile halocarbon species such as CH2I2. 
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5.2.4 Ancillary Measurements 

Ozone VMRs observed during both campaigns were generally low (< 32 ppbv) which 

was to be expected for such a remote marine location. The seasonal cycle of ozone can 

be seen to be driven by SST; evaporation of H2O from the ocean reacts with O1D to 

reduce ozone production. The lowest VMRs are observed in the warm season, when 

the water vapour also peaks, with values of a few ppb and sometimes even below the 

detection limit (DL) of the ozone monitor. 

Daily O3 does not show a photolytic profile as has been observed during previous 

campaigns over the open ocean (e.g. Read et al., 2008), except for limited depletion in 

October 2010 (2.5 ppbv) plus night time depletion due to NO in January-April 2011 and 

2012. This phenomenon is isolated to the more populous islands where there are 

increased emissions of NOx due to activities such as fishing, tourism, shipping and local 

fossil fuel plants. During warm season nights NOx is emitted into slow moving air 

masses with negative meridional component (i.e. flowing from north to south) which 

reach the detector depleted in O3. In the morning NO2 photolysis initiates O3 

production but simultaneously wind strength increases from the south bringing fresh 

open ocean air. Therefore the O3 measurements were filtered by setting NOx and wind 

speed thresholds (200 ppt, 1 ms-1) to remove these localised effects. 

The particle measurements recorded at the meteorological station Puerto Baquerizo 

are typical of a background rural site. The instrument was located away from local 

influences - roads were located 160 and 400 m away downwind of the measurement 

site. However, particles related to rural activities during daylight hours (i.e. 6.00–18.00 

local time) could contribute to the observed background aerosol levels. New particle 

formation events were observed at this site with the peaks in particle concentration at 

3500 cm-3 (3–9 nm) and 5000 cm-3 (< 3 nm) coinciding with winds arriving from the 

South East. These winds travel over a densely wooded part of the island and therefore 

the particle bursts are thought to be associated with secondary organic aerosol (SOA) 

formation from organic compounds released by vegetation. Particle concentrations 

were much smaller when the air was arriving from the south and south-west, passing 

over a much more barren strip of land. Particle measurements at La Loberia, sampling 
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oceanic air, showed no evidence of new particle formation, with average total particle 

numbers of 400-500 cm-3, typical of a coastal clean environment (Brechtel et al., 1998; 

Heintzenberg et al., 2000). The particle concentrations were found to be independent 

of solar radiation, wind direction and all other meteorological variables. This adds to 

the evidence that the observed new particle formation events at the meteorological 

station were caused by SOA. Previous modelling work (Mahajan et al., 2010a) 

suggested that IO mixing ratios of around 10 pptv would be required to produce new 

particles of 20 nm diameter (large enough that they would be likely to survive to form 

CCN), whereas the MAX-DOAS observations reported here are more than an order of 

magnitude smaller than this, and therefore halogen driven new particle formation will 

not be important at this location. 
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Figure 5.10 Full time series of daily averaged data over entire measurement period. From top to bottom: 
a) O3, NO and NO2 mixing ratios from in situ instruments; b) average global radiation and relative 
humidity; c) wind speed, MODIS-A sea surface temperature and in situ air temperature; d) salinity (from 
ARGO floats) and in situ accumulated rainfall; e) MODIS-A sea surface Chl-a and CDOM; f) MAX-DOAS IO  
quality filtered VMRs (assuming a height of 1000 m) with detection limits in red. The data before the 
dashed lines were collected at the measurement site on Isabela Island and those after are from 
San Cristobal. 
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5.2.5 Correlation of IOx Measurements with Oceanic 
Variables 

Due to the sparseness of the MAX-DOAS data after quality and cloud filtering, the 

measurements cannot be used to make conclusions on the daily or weekly variability 

of IO. However, the data are sufficient for investigating the monthly and seasonal 

variability of reactive iodine mixing ratios and the influence of ocean variables.  The 

MAX-DOAS data should not be influenced by local effects such as the shielding of wind 

speed at Puerto Villamil due to the presence of the small islets. As a consequence of 

the cloud filtering of the MAX-DOAS data, correlations will only reflect measurements 

recorded during clear sky conditions, therefore any variations in ocean variables 

occurring during cloudy sky conditions will not be reflected in the correlations 

obtained. However, the sampling of measurements was found to be fairly 

homogeneous over the course of the campaign at both measurement sites, even after 

filtering. 

A correlation analysis was carried out between the reactive iodine mixing ratio time 

series and available in situ and satellite data. It should be noted that the I atom data 

used in the correlation analyses were calculated via IOx concentrations, inferred from 

the MAX-DOAS IO data using the relationship previously described by Mahajan et al. 

(2012). Time series of Chl-a CDOM and SST were averaged in a box defined by the 

coordinates 5.97–0.97o S x 93.48–88.48o W where most of the one day long back 

trajectories were contained. A larger box was used for the salinity data to account for 

the poorer sampling available from the ARGO drifting floats.  

5.2.5.1 Shorter-term Variability 

To remove any influence of the short term variability in contiguous data points and 

seasonal variability a Fast Fourier Transform (FFT) band-pass filter was applied with 

higher and lower cut off frequencies of 0.2 and 0.0167 day-1, respectively. Pearson 

correlation coefficients were then calculated for the filtered data for the entire 

measurement period and for each measurement site separately. The only significant 

correlation of the high-pass filtered entire data series was with satellite SST (R = 0.3, 
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p = 0.001) and air temperature, with a similar but less significant correlation also 

observed for I atoms and IOx. 

Looking at each site separately, this picture changes completely. At the Isabela 

measurement site using the IO measurements, no significant correlations are observed, 

whereas the IO data from San Cristobal shows significant correlation with SST (R = 0.48, 

p = 0.001) and with air temperature (R = 0.51, p < 0.001). This correlation is also strong 

for the high-pass filtered I atom and IOx data. The larger variability of the IO data from 

Isabela may be due to more variable mixing in the boundary layer or to intermittent 

emissions of very short lived iodocarbons from periodic episodes of increased 

biological activity in the narrow strip south of the island, as mentioned in the previous 

section. 

There is a distinct lack of correlation between the observed IOx and exposure to Chl-a, 

which is consistent with the minor contribution of CH3I to IOx as estimated previously. 

However, the Chl-a fields south of Galapagos are fairly homogeneous along the track 

of the air mass trajectories and only show an obvious enhancement at more than six 

days upwind of the Archipelago. 

5.2.5.2 Longer-term Variability 

For analysing any month to month or seasonal patterns, the low-pass FFT filter (as 

defined above) was applied to the daily averaged time series. Once the IO mixing ratios 

were smoothed in this way an anti-correlation with radiation (R = -0.65, p < 0.001) and 

Chl-a (R = -0.35, p < 0.001) was determined, whereas a positive correlation was 

observed for salinity (R = 0.50, p < 0.001). I and IOx were found to be anti-correlated to 

O3, which dominates the variability of these species over that of IO itself, and follow 

the seasonal cycle of O3 with a 180° phase shift. No strong correlation was observed 

for either relative humidity or SST. I atoms were shown to be weakly correlated to 

radiation (R = 0.31, p = 0.003) in contrast to IO, and there was anti-correlation of I and 

IOx with Chl-a and CDOM. 

Looking at the Isabela data separately an anti-correlation of IOx with the O3 cycle can 

be observed and a correlation with relative humidity and wind direction. The IO 
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correlation with salinity and anti-correlation with radiation and Chl-a becomes 

stronger, and a strong correlation with wind speed becomes apparent (R = 0.74, 

p < 0.001). There is also a distinct negative correlation of IO with SST. 

Using only the San Cristobal data there is an even stronger anti-correlation of IO with 

O3 (R = -0.83, p < 0.001). I and IO can be seen to grow in parallel along with a 

continuous decrease in the O3. They show a positive correlation with SST and a 

negative correlation with Chl-a and CDOM. Radiation data was not available for this 

period of the campaign and there is no significant change in salinity during this time. 
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Figure 5.11 Pearson correlation coefficients for IO (black) and IOx (red) VMRs with meteorological and 
ocean physical variables. From top to bottom: band-pass filtered data for San Cristobal only; low-pass 
filtered data for Isabela only; low-pass filtered data for San Cristobal only; low-pass filtered full data set. 
The grey dashed lines show the 99 % confidence intervals on the correlations. 
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to SST and salinity indicate that there are multiple factors influencing the emission rate. 

Several mechanisms have been proposed for the release of reactive iodine compounds 

into the MBL from surface seawater as discussed in Chapter 2 and include production 

of iodinated hydrocarbons by marine organisms such as phytoplankton or alternatively 

abiotic sources including photochemical production or, as discussed in Chapter 3, the 

reaction of O3 deposited to the sea surface with iodide in the surface layer to release I2 

and HOI. 

At San Cristobal, the positive correlation of IO and IOx with SST could be a consequence 

of increased sea-air emission of reactive iodine precursors or an increased rate of 

production in the ocean surface. The decoupling of the IO and IOx seasonal trend to 

that of SST at Isabela where no correlation is observed for IOx and a negative 

correlation is observed for IO could be due to changes in salinity and/or radiation. The 

minimum in IO observed during February–April 2011 coincides with a minimum in both 

salinity and radiation. Higher radiation would result in a shift of the I/IO balance 

towards I and an increased rate of formation of IOx from photolysis of reactive iodine 

precursors and also possibly the production rates of those precursors.  

To best describe the seasonal trends in the IOx data, the SST and salinity data must be 

combined. A multiple linear regression of the low-pass filtered IOx mixing ratios against 

SST and salinity gives a much improved correlation (R2 = 0.34) compared to each of the 

variables individually (R2 = 0.01 for SST and R2 = 0.03 for salinity). Corresponding 

expressions for the resulting IOx from changes in these two variables can then be 

defined as 0.075±0.010 pptv °C-1 for SST and 0.40±0.05 pptv psu-1 for salinity. The 

average monthly IO and IOx for the whole campaign are compared with those of SST 

(from satellite data) and salinity (ARGO floats) in Figure 5.12. 

 



Chapter 5. Iodine in the remote tropical MBL 148 

 

 

Figure 5.12 Monthly averaged MAX-DOAS IO VMRs (solid black triangles) and IOx derived from 
expression in Mahajan et al. (2012) (open black triangles). Monthly averaged MODIS-A SST (red circles) 
and salinity (blue squares) for the region to the south of Galapagos as indicated by the bold black 
outlined box in Figure 5.8. 

The salinity in the waters surrounding the Galapagos is influenced by the various 

movements of currents converging at this point in the ocean (described in section 

5.2.1, previously). A shift in the ITCZ downwards during the warm season (January–

June) results in lower salinity waters surrounding the Galapagos islands due to a shut-

down of the equatorial upwelling and water being advected southwards from the less 

saline Northern Hemisphere (Donguy and Henin, 1980; Pak and Zaneveld, 1974). In 

addition, the increased rainfall associated with this shift in ITCZ during the warm 

season results in dilution at the ocean surface (Donguy and Henin, 1980). The 

cessation of the equatorial upwelling would be expected to enhance the reduction of 

Iodate to iodide close to the surface and hence increase the emission of reactive iodine 

to the MBL, causing a negative correlation between IOx and salinity (Truesdale et al., 

2000; Truesdale and Bailey, 2002). 

However, the decrease in salinity due to advection of Northern Hemispheric waters 

may also be indicative of reduced iodide availability in the surface waters. This 

decrease in iodide could explain the decrease in IOx observed, as the reaction of O3 
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deposited to the ocean surface with iodide in the surface layer acts as a source of 

reactive iodine (in the form of I2 and HOI) to the atmosphere. Currently, 

measurements of iodide in surface oceans are fairly sparse and the only 

measurements available in this region are those of Elderfield and Truesdale (1980) 

recorded during a ship cruise in 1976. These data show nearly a factor of two higher 

iodide concentrations in the waters of the Peruvian upwelling region compared to 

those surrounding the Galapagos Islands during the warm season. 

The anti-correlation observed for IO and IOx with Chl-a and CDOM suggests an 

inhibiting role of biological activity, although this may be due to its association with the 

upwelling of cold waters and therefore is anti-correlated to SST seasonally. In any case, 

an emission mechanism which is dependent upon the availability of Chl-a is unlikely to 

be operating in this region, which points to the greater importance of the inorganic I- + 

O3 reaction in supplying reactive iodine species to the atmosphere. Another possible 

reason for the negative correlation of IO and IOx with Chl-a and CDOM is the possibility 

of organic films forming on the surface of the ocean (associated with biological activity) 

which may inhibit the release of reactive iodine species from the sea surface layer to 

the atmosphere (Rouviere and Ammann, 2010). 

5.2.6 Comparison with Satellite and Previous Open Ocean 
Data 

The IO measurements at Galapagos are consistent with those measured during the 

HaloCAST-P cruise which took place in March/April 2010 with the cruise track running 

from Punta Arenas in southern Chile, North to Seattle, USA (Mahajan et al., 2012). 

These measurements are consistent with the observations of low iodine loading in the 

marine boundary layer of the Pacific ocean and also show a correlation with SST and 

salinity (albeit with a very small slope) and an anti-correlation with Chl-a, again backing 

up the suggestion of an “inorganic” mechanism playing the major role in reactive 

iodine emissions over the ocean. At the equatorial crossing point during the cruise the 

IO mixing ratio, assuming a 1000 m layer height, was 0.4±0.2 pptv (IOx = 0.7±0.2 pptv) 

which compares well with the monthly average for April observed in Galapagos of 

0.33±0.17 pptv (IOx = 0.7±0.4 pptv) and the maximum during this period of 0.57 pptv 
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(IOx = 1–2 pptv). Both salinity and SST were higher during the HaloCAST-P 

measurement period in April 2010 compared to the Galapagos in April 2011 which may 

explain the slightly higher mixing ratios observed.  

By merging the IOx daily averages observed during the HaloCAST-P cruise and the 

monthly averages from Galapagos, a strong linear correlation is found between the IOx 

and SST (R2 = 0.60, p < 0.001) and between SST and IO itself. The addition of a salinity 

term to the correlation analysis does not improve the fitting of the IO and IOx data. The 

link between the SST and reactive iodine loading, however may not be a direct effect 

such as an increase in the rate of emission or production of reactive iodine precursors, 

but could be related to the change in iodide in the surface waters. As shown in 

Figure 5.13 the iodide shows a gradual increase when moving from the mid-latitudes 

towards the equator in the Pacific Ocean which correlates well with the observations 

of IO and IOx. An increase in iodide has been shown to lead to increased emissions of 

both I2 and HOI into the gas phase, which would lead to increased IO and IOx following 

photolysis during daylight hours. Further modelling of this mechanism is discussed in 

Chapter 6. 

As well as the ship-based measurements, ground-based measurements at Cape Verde 

in the tropical Atlantic ocean have also been performed using the same LP-DOAS and 

MAX-DOAS instruments as used in the Galapagos campaign (Read et al., 2008) and 

showed somewhat higher IO mixing ratios of 1.4±0.8 pptv, in contrast to the 

observations in Galapagos where IO was not observed by the LP-DOAS instrument 

above the detection limit of 0.9 pptv. The observations during the Cape Verde 

campaign which ran from November 2006 to June 2007 did not show any seasonal 

variability over and above the instrument uncertainty. In this region, higher mixing 

ratios of O3 will result in most of the IOx being in the form of IO. The SST range 

observed during the November 2006 – June 2007 period was narrower (19–24 °C) than 

that during the Galapagos measurement period (19–28 °C) and the salinity at this time 

was higher at 36.4 psu. This may explain the higher and more constant IOx values 

observed. 
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A further ship-based campaign was conducted in the Western Pacific during October 

2009 as part of the TransBromSonne cruise from Tomakomai, Japan to Townsville, 

Australia, where measurements of IO were recorded using the MAX-DOAS technique 

(Gromann et al., 2012). A similar latitudinal distribution is observed as seen in the 

Eastern Pacific cruise with higher mixing ratios of IO observed closer to the equator (up 

to 2.2 pptv) and lower values (around 1 pptv) observed in the mid latitudes. In addition, 

the retrieved profiles suggested that the majority of the IO was contained in the lowest 

part of the marine boundary layer (< 300 m altitude). As was concluded during the 

Cape Verde and Eastern Pacific campaigns, the observed IO mixing ratios cannot be 

explained using the concurrent iodocarbon fluxes measured during the campaign, and 

an additional reactive iodine flux was required to model the observations. Attempting 

to convert the IO observations into IOx using the same principle as employed 

previously for the Eastern Pacific data set is not so straight forward as the reported 

ozone measurements are much lower. 

Earlier campaigns in Tenerife and Tasmania (Allan et al., 2000) (representative of open 

ocean sites) are also in agreement with the observations in Galapagos. The 

measurements in Tenerife gave an average IO mixing ratio of 1.23 pptv, whereas the 

detection limit for the open ocean measurements in Tasmania (a location with colder 

ocean waters) gave an upper limit for IO of 0.38 pptv. 

Satellite measurements of IO retrieved from the SCIAMACHY satellite instrument have 

been reported (Schonhardt et al., 2008) from 2005 with monthly average IO columns 

of up to 8 x 1012 cm-2 observed (detection limit 3–7 x 1012 cm-2). However, the retrieval 

of these columns was highly sensitive to the fit settings due to the poor signal to noise 

ratio of the spectra, and the authors advise caution when using the data. Subsequent 

publications show a time series of IO columns retrieved from 2005 to 2007 where the 

data is spatially averaged (5°N–10°S, 80°W–100°W) plus the daily averaged IO columns. 

The average IO column for this time period is around 3 x 1012 cm-2 with a standard 

deviation of 4 x 1012 cm-2 and a maximum of 8 x 1012 cm-2. The monthly averages range 

from around 2–4 x 1012 cm-2 with no significant seasonal variation discernible from the 

data. Assuming a unit air mass factor so that the slant column is equal to the vertical 

column density and using a box profile height of 1 km the average slant columns of 
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3 x 1012 cm-2 convert to a mixing ratio of 1.4 pptv. This is around a factor of two higher 

than the highest IO mixing ratios recorded in Galapagos, and around a factor of three 

higher than the monthly averaged IO.   

In addition to this, as the IO most likely shows a decreasing vertical profile moving 

upwards through the boundary layer, the actual surface mixing ratios would be much 

larger than 1.4 pptv, and well above the detection limit of 0.9 pptv for the LP-DOAS 

instrument. The spatial distribution of the IO measurements from the satellite also 

does not match those of the HaloCAST-P cruise and so it can be concluded that the 

field measurements of IO are not consistent with those of the satellite. It should be 

noted, however, that the satellite measurements would be sensitive to any IO which 

may be located higher up in the free troposphere. Recent airborne MAX-DOAS 

observations of IO in the free troposphere over the Pacific ocean around Hawaii found 

that up to two-thirds of the observed VCDs arose from IO above the MBL (~800 m) (Dix 

et al., 2013). In addition, MAX-DOAS measurements at a mountain site in Tenerife also 

showed elevated levels of IO in the free troposphere (0.2–0.4 pptv), possibly 

associated with Saharan dust input (Puentedura et al., 2012). 

5.2.7 Link to I- in Surface Seawater 

Due to the link between the surface iodide concentrations and measured IOx observed 

during the CHARLEX campaign, further investigation into this correlation was then 

carried out. There have been a number of studies where surface sea water iodide 

concentrations have been measured, and these findings are summarised in Figure 5.13 

(courtesy of Rosie Chance, University of York). As can be seen, the surface iodide 

concentrations show a clear latitudinal distribution with higher concentrations at the 

tropics and in coastal regions and lower concentrations at mid and high latitudes 

(especially in the Southern Hemisphere) with concentrations ranging from 0 up to 

around 300 nM. 
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Figure 5.13 Global surface seawater iodide concentrations in nM. Black dots show the actual point of 
measurements with the colours derived from simple interpolations using Ocean Data View (courtesy of 
Rosie Chance, University of York, 2012). 

Measurements of IO recorded at open ocean locations including those during the 

HaloCAST-P cruise and CHARLEX campaigns and previous measurements from 

campaigns in Cape Verde (Read et al., 2008), Tenerife (Allan et al., 2000) and Tasmania 

(Allan et al., 2000) were plotted against surface seawater concentrations of iodide 

recorded during cruises in the Atlantic (Truesdale et al., 2000) and Pacific (Huang et al., 

2005; Nakayama et al., 1989; Tsunogai and Henmi, 1971). The IOx concentrations were 

also computed based on the expression derived by Mahajan et al. (2012) for the IO/I 

ratio and the measured O3 where available.  
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The observed IO and IOx measurements appear to match well with the measurements 

of iodide in both the Atlantic and Pacific surface waters suggesting that the I- + O3 

mechanism may be the most significant source of reactive iodine over the oceans. 

Correlation coefficients were calculated between the HaloCAST-P cruise and the Pacific 

iodide data from Tsunogai and Henmi (1971) with a significant R = 0.67 and using the 

Atlantic iodide data the correlation is even stronger with R = 0.78. The correlation plots 

are shown in Figure 5.15. 

Figure 5.14 Iodide (nM) from both the Atlantic (Truesdale et al., 2000) and Pacific (Huang et al., 2005; 
Nakayama et al., 1989; Tsunogai and Henmi, 1971) and IOx (pptv) from the HaloCAST-P cruise and 
previous DOAS measurements in open ocean locations plotted against latitude. 
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Using the surface iodide measurements, along with SST and salinity measurements, a 

multiple linear regression analysis was performed on the IOx HaloCAST-P data. This 

gave an R2 value of 0.81 (R value of 0.91) for the multiple linear regression, compared 

to individual R2 values of 0.69, 0.41 and 0.61 for SST, salinity and iodide respectively 

and coefficients of 0.038 pptv °C-1, 0.026 pptv psu-1 and 9.5 x 10-4 pptv nM-1. 
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Figure 5.15 Correlation plots for IOx from the HaloCAST-P cruise and iodide measurements from a) the 
Pacific (Tsunogai et al. 1971) and b) the Atlantic (Truesdale 2000). 
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Further discussion and modelling of this mechanism using the 1D chemistry-transport 

model THAMO and the flux expressions derived for I2 and HOI from Chapter 4 is 

presented in Chapter 6. The model results are compared with the available field 

measurements from open ocean locations and the atmospheric impacts are discussed. 
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Chapter 6 

Modelling the Inorganic Iodine Flux 

To link the experimental measurements of the inorganic iodine flux to field 

measurements of reactive iodine species in the marine boundary layer, the 1-D 

chemistry-transport model THAMO was employed. In the first part of the chapter the 

model itself is described, including recent updates to the iodine oxide particle growth 

scheme, and the derivation of the parameterised I2 and HOI fluxes. The model is then 

used to explain the variability in observations of IO and IOx over the oceans in relation 

to the flux of inorganic iodine. 

6.1 The Tropospheric HAlogen chemistry MOdel – 
THAMO 

The Tropospheric HAlogen chemistry MOdel (THAMO) was first developed by Saiz-

Lopez et al. (2008) to interpret field measurements of halogen species in the coastal 

Antarctic boundary layer. The model was later developed to include a full description 

of iodine oxide particle formation and has been used to validate results from several 

field campaigns in a range of environments including tropical, mid-latitude and polar 

locations (Gómez Martín et al., 2013; Mahajan et al., 2009b; Mahajan, 2010; Mahajan 

et al., 2010b; Saiz-Lopez et al., 2008). The model utilises a multistep implicit explicit 

(MIE) integration routine (Jacobson, 2005) coupled to a vertical diffusion routine 

(Shimazaki, 1985) and a dynamic particle production and growth code (Jacobson, 

2005). 

There are four main components to the model: 

1. A chemical scheme that includes photochemical, gas phase and uptake 

reactions using the MIE procedure. 
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2. A 1-D transport module using vertical eddy diffusion 

3. A radiation scheme that calculates solar irradiation as a function of altitude, 

wavelength and solar zenith angle (SZA). 

4. A particle formation and growth module. 

Each of these components is described in detail in the following sections. 

6.1.1 The Chemistry Scheme 

The MIE routine is a positive-definite, mass conserving, unconditionally stable iterative 

technique. It achieves this through use of the explicit forward Euler (mass conserving 

but positive-definite only for short time steps) and implicit backward Euler (positive-

definite but not mass conserving) schemes without the need for much more computer 

time. Concentrations of chemical species are estimated using the iterative backward 

Euler and are applied to reaction rates in the forward Euler scheme. Upon iteration, 

the forward Euler converges to the backward Euler; as the backward Euler is always 

positive then the forward Euler will converge to a positive value and upon iteration 

with the backward Euler will produce values which are mass conserving. A 

convergence factor defines the number of consecutive iterations required so that both 

forward and backward Euler estimates are positive; in the case of THAMO this has a 

value of 20 and gives an error of < 1 %. 

The continuity equations for describing the concentration Ni of a species i at time t and 

altitude z is given by Equation 6.1: 
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 (6.1) 

where Pi and Li are, respectively, the production and loss rates for the backward Euler 

scheme and i is the vertical flux of species i due to eddy diffusion. 

The equations are solved using an integration time step of 2 minutes which is a 

compromise between computational efficiency and compliance with the Courant-Levy 

criterion (Courant et al., 1928). The model consists of 200 stacked boxes, representing 
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a boundary layer height of 1 km in the tropics with 5 m resolution. At the lower 

boundary, deposition of species i may occur, or a flux of i into the bottom box. 

The chemical production and loss rates for a trace gas species i are given by: 
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The production and loss terms are calculated at every iterative time step in the MIE 

routine. 

The full chemistry scheme for iodine chemistry as described in Mahajan (2009) is 

employed. These reactions are used to calculate the production and loss rates as 

described above. 

In addition to the gas phase reactions, THAMO also treats heterogeneous chemical 

processes through uptake onto aqueous aerosol. Because the modelling studies are 

conducted for the marine boundary layer this is assumed to be sea-salt aerosol.  

Uptake and hydrolysis of HOX, XONO2 and XNO2 onto sea salt aerosol gives HOX(aq) as 

described in Chapter 2. The HOX(aq) is then processed to produce XY via reaction with Y- 

and this takes around 10–15 minutes in fresh sea-salt aerosol (McFiggans et al., 2000). 

Due to the low solubility of XY it is rapidly released into the gas phase and hence, it is 

assumed that uptake of inorganic iodine species onto aerosols is the rate-limiting step 

in these recycling reactions (McFiggans et al., 2000). There is a depletion of Y- in aged 

aerosol, leading to a lengthened processing time, however, their increased acidity due 

to HNO3, H2SO4 and SO2 uptake will increase the processing rate (von Glasow et al., 

2002).  

The aqueous phase chemistry in the bulk phase of the aerosol is not treated explicitly 

in THAMO. In the model it is assumed that the rate limiting step for halogen 

heterogeneous recycling on aerosol is the first order rate of uptake using uptake 
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coefficients for each of the relevant gaseous species. The total uptake is then 

computed using the volumetric aerosol surface area (ASA) and a free molecular 

transfer approximation (Fuchs, 1964). The ASA used in the model is taken from field 

observations for the respective field campaigns and for simplicities sake, the ASA and 

humidity are considered to be constant in each of the vertical levels of the model. 

In addition to uptake on aerosol, dry deposition to the ocean surface is included in the 

lowermost box and is applied to most of the soluble halogen species as well as 

nitrogen oxides and O3. The dry deposition flux (Fd) for each individual species, i, is 

given by Equation 6.4: 

 idid NVF   (6.4) 

where Vdi is the deposition velocity and Ni is the concentration of species i. For the 

sake of simplicity the ocean is taken to be a flat surface. 

6.1.2 Vertical Transport 

The vertical flux due to eddy diffusion (the final term in Equation 6.1) is defined as: 
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where T is the temperature at altitude z,   is the scale height of the atmosphere (as 

defined in Chapter 1) and Kz is the eddy diffusion coefficient which is a function of time 

t and height z. At the surface turbulence is predominantly generated by wind shear 

and can be described by Monin-Obhukov similarity theory. From this a function for the 

eddy diffusion coefficient can be derived (Stull, 1988): 

    tzut,zK *z   (6.6) 
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where  is the von Karman constant (0.4) and u*(t) is the surface friction velocity. In 

the case of the stable BL, the surface friction velocity can be described to a good 

approximation by: 
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where Uz is the wind speed at height z and z0 is the surface roughness length. The 

value for surface roughness length for the open ocean is taken from Jacobson (2005). 

One problem with Kz defined as in Equation 6.6 is that it is linearly dependent on z and 

therefore tends to zero at the surface. This implies that a gas released at a height z = 0 

would never diffuse upwards which is clearly unrealistic. Therefore, for modelling 

purposes a surface condition is assumed such that this form of Kz is only valid for z > z0 

(Stull, 1988). Because the BL is a well mixed region of the atmosphere, photolysis rates, 

ASA and relative humidity were all considered to be constant with height. 

6.1.3 Radiation Scheme 

Photolysis rates for all chemical species in the model are calculated on-line using an 

explicit two-stream radiation scheme described by Thompson (1984).  The photolysis 

rate J of a species i by a pathway I is defined as: 
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where  is the absorption cross section of species i at a wavelength  and temperature 

T,  is the quantum yield or probability that molecule i will decompose via pathway I 

on absorption of light at wavelength  and Ftotal() is the solar flux at wavelength . 

Due to the abundance of measurements of absorption cross sections and quantum 

yields for tropospheric trace gas species, the calculation of photolysis rates in the 

model reduces to calculating the UV-visible solar flux under relevant atmospheric 

conditions. The irradiation reaching the Earth’s surface is computed after photons 

have been attenuated through 50 layers of 1 km each in the atmosphere as a function 
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of SZA, time of year and location. These layers are considered to be cloud free and the 

total overhead O3 column abundance is used to filter the UV radiation reaching the 

surface. 

The photolysis rates for individual species are then calculated by including albedo 

measurements from an actinic flux spectrometer co-located with the DOAS 

instruments. 

6.1.4 Particle Formation and Growth 

The final part of the model is the particle formation and growth scheme. As described 

in Chapter 2 there have been numerous measurements of particle bursts linked to 

increased emissions of reactive iodine species in coastal locations and in Antarctica. 

The exact mechanism of IOP formation, their growth behaviour in the presence of 

condensable vapours and their precise chemical composition are still uncertain, 

however, there have been a number of recent advances in this field. 

Work by Saunders and Plane (2005) suggested that the most probable form of IOPs is 

I2O5 and the original particle scheme considered that particles were formed from 

polymerisation of I2O5 via the formation pathway described in Saunders and Plane 

(2005). This pathway involved the oxidation of I2O3 and I2O4 by O3, however, although 

theoretical calculations indicate that these reactions are exothermic, they had not 

been studied experimentally. Here, it was assumed that the rate of I2O5 formation in 

the particle was the same as Saunders and Plane (2005), albeit in the gas phase. Once 

formed, the concentration was no longer calculated explicitly and subsequent 

evolution was described using a dynamic aerosol module. However, there have been 

more recent studies that have shown that I2O5 does not form in the gas phase, and its 

presence in IOPs may be due to condensation of other iodine oxides followed by 

formation of I2O5 in the particle phase: the work of Gómez Martín et al. (2013) 

suggests that the mechanism most likely proceeds from formation and dimerisation of 

I2O4 in the gas phase. 
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The aerosol module in THAMO is semi-implicit, volume conserving and uses a sectional 

approach to consider the two methods of particle growth: coagulation and 

condensation. Coagulation reduces the number of particles but conserves the particle 

volume whereas condensation results in an increase in the total particle volume but 

conserves the number. In the remote MBL condensation should be the more 

important form of particle growth as these regions will have a low initial I2O5 

concentration for coagulation to occur. 

The aerosol distribution is divided into 30 individual bins (NB) where the bin spacing is 

determined by a volume ratio (Vrat) of 1.5. The first bin is assumed to be made up of 

I2O5 monomers and is coupled to the I2O5 in the gas phase to simplify the mechanism 

rather than using rearrangement of I2O4 dimers in the aerosol phase and subsequent 

release of I2. The volume of the first bin is calculated using the known mass of I2O5 and 

the density of bulk I2O5, 4980 kg m-3(Saunders and Plane, 2006). For the second bin 

onwards the centre volume for each bin is defined by the volume ratio: 

 1 irati VVV  (6.9) 

There is assumed to be no thermodynamic barrier to homogeneous nucleation as 

single I2O5 molecules are used as the monomer and subsequent growth in the aerosol 

phase contains any multiple of I2O5 leading to compact polymers. In fact, fractal 

geometry plays a large role for particle diameters > 6–7 nm (Saunders and Plane, 2006), 

however, if particles deliquesce before they grow to this size, the fractal effect can be 

ignored because particles will be spherical. 

To calculate changes in distribution resulting from the collision and coalescence of 

particles from smaller bins (resulting in fewer, larger particles) the semi-implicit, 

volume conserving technique described in Jacobson (2005) is employed. In this 

method for each collision between a particle in bin i and a particle in bin j an 

intermediate volume Vi,j can be defined: 

 jij,iV    (6.10) 
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where i and j are the respective volumes of each particle in bin i and j. The fraction 

partitioned into the adjacent larger bins around bin k is determined by: 
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The total volume, V, in each bin k at time t is then given by: 
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where h is the time step and ni is the number of particles in bin i. This equation again is 

solved using a MIE routine in order to use the larger two minute time step as described 

previously. The total number of particles in each bin can be calculated easily using the 

section model, as the volume of all particles in a given bin is the same: 
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The term  in Equation 6.12 is the coagulation rate coefficient (or kernel) and its value 

is calculated using Fuch’s interpolation formula for the transition regime (Knudsen 

number, Kn ~1). The collision kernel for particles in bin i with bin j is given by: 
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where ri is the radius of the particles in bin i, i is the mean distance from the centre of 

a sphere that a particle leaving its surface reaches when travelling one mean free path 

(p,i). Dp,i is the diffusion coefficient and p,i is the thermal speed of the particle in air. 

These values can be calculated from the well known expressions below: 
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where kB is Boltzmann’s constant (1.38 x 10-23 J K-1 molecule-1), T is the temperature 

and Mp,i is the mass of one particle in bin i.  
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a is the viscosity of air given by Sutherland’s expression (List, 1984): 
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Gi is Cunningham’s slip-flow correction (Cunningham, 1910) calculated using the 

estimation of Knudsen and Weber (1911) and coefficients from Kasten (1968). 
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Kn(a,i) is the Knudsen number for air which can be calculated from the mean free path 

and the radius of particle i: 

  
i

a
i,an

r
K


  (6.21) 

At high Knudsen numbers (i.e. smaller particles) Equation 6.14 simplifies to give 

Equation 6.22, and is valid for the first few bins in THAMO. 
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In the MBL, there are a number of other gaseous vapours such as water and acids at 

pph and ppt levels which could contribute to particle growth. These condensable 

vapours could play an important role in the growth of new particles into CCN. Work by 

Saunders et al. (2010) showed that there was an increase in the size and number of 

IOPs in the presence of H2SO4. In THAMO it is assumed that once particles grow to 1-2 

nm in radius they will deliquesce and subsequent growth is determined by 

condensation of H2O and acids. This can be considered the critical radius which is 

defined as the size above which there will be spontaneous growth of the particle. At 

smaller sizes the Kelvin effect plays an important role in decreasing the vapour 

pressure of the particle so that growth will not occur.  

Chemical transformations within the aerosol phase are still highly uncertain and for 

simplicity’s sake, in THAMO it is assumed that the effects of individual components on 

the vapour pressure are independent of each other. At larger sizes this should not 

make a big difference due to the dilution of I2O5. For instance, when a 1 nm particle 

grows to 10 nm, I2O5 will make up ~0.005 % of the weight due to the condensed H2O. 

This number would clearly be lower if the density of the condensed vapour is higher 

than H2O. 
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The amount of water condensed will depend on the relative humidity and weight 

percentage of I2O5 within the new particle. I2O5 clusters deliquesce at around 80 % 

relative humidity therefore growth from condensation can occur above this threshold 

(Kumar et al., 2010). The growth of the particles is then controlled by the vapour 

pressure of the particle; once the vapour pressure of the aerosol is greater than that of 

the atmosphere, growth will stop. The growth is constrained using the water activity of 

the particle where the growth of the particle (assuming it is composed of I2O5 and H2O 

only) ceases if the H2O is greater than 30 % of the weight at 80 % relative humidity. 

This means that a 1 nm particle only grows to 1.44 nm before the vapour pressure 

becomes too high (this number will be larger at higher humidities). In the MBL 

particles are certainly not just I2O5 and H2O and contain a large number of condensable 

acids including H2SO4, HNO3, organic acids etc. These acids will condense at a rate than 

can be calculated using the free molecular transfer approximation (Fuchs, 1964): 
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where acid is the uptake coefficient, acid is the volume of one molecule, nacid is the 

concentration and Macid is the mass in kg. The condensation of acids onto particles will 

lower the vapour pressure and therefore allows the particle to take up more H2O. 

Therefore it can be said that the I2O5 polymers act as nuclei, while the uptake of H2O 

and growth are controlled by condensation of acids. In THAMO it is assumed that the 

uptake of H2O is not rate limiting in the MBL and the main condensing acids are taken 

to be H2SO4 and HNO3. The water activities of H2SO4 and HNO3 have been measured in 

previous studies and particle growth will cease at < 27 % weight of H2SO4 (Giauque et 

al., 1960) or 23.7 % weight of HNO3 (Tang et al., 1988) assuming 80 % relative humidity. 

As mentioned previously the contributions of each species are considered independent 

so that each will control the growth rate individually. The uptake of I2O5 may also 

contribute by condensing onto existing particles, however, its contribution in the MBL 

is likely to be minimal. 



Chapter 6. Modelling the inorganic iodine flux 168 

 

The final aspect to consider in modelling particle growth is the loss of new particles 

onto pre-existing sea-salt aerosol. The heterogeneous loss rate can be calculated using 

the measured ASA from: 
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where i is unknown but assumed to be large (0.5) and the same for all small IOPs, i is 

the volume of the particle, ni is the concentration and Mi is the mass of one particle in 

bin i. This channel is considered to be the largest loss of IOPs in the MBL. 

In addition to the aerosol processes mentioned above, recycling of I2 out of the aerosol 

was also considered. Iodate will accumulate in aerosol due to the uptake of I2O3, I2O4 

and I2O5 vapours and recent work by Saunders et al. (2012) on the reduction of iodate 

to iodide, showed that, in the presence of humic acid and light at wavelengths < 310 

nm, iodate is reduced to iodide, with a rate of 1.2 x 10-5 s-1. Through spectroscopic 

measurements, it was found that a significant proportion of the iodide produced is 

organically bound (~80 %). The remaining 20 % will rapidly react with O3 deposited to 

the particle surface with an efficiency of around 2 x 10-7 for every O3 collision with the 

surface of a 1 x 10-7 M iodide solution. Assuming a typical O3 concentration of 20 ppb 

in the MBL, the lifetime of iodide in aerosol is only around 1 s. 

In THAMO it is assumed that the aerosol particles contain a high loading of humic acid 

so that the laboratory determined photochemical loss rate of iodate to iodide was 

applied during daylight hours. The iodide produced is assumed to be immediately 

recycled back to the gas phase as I2 due to O3 uptake. The levels of iodide reported in 

aerosol are at odds with this assessment, however, it is important to note that these 

measurements are ex situ and analysis is often performed weeks or months after the 

aerosol are filtered out of the atmosphere. Therefore, in dark, O3-less conditions it is 

likely that I- may be regenerated from the soluble organic fraction or via 

disproportionation; this can only be verified by fast, in situ aerosol iodide analysis 

which has, to date, not been performed. 
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6.2 Deriving an SST-dependent Inorganic Iodine Flux 

In Chapter 4, expressions for the flux of I2 and HOI from the sea surface were produced 

as a function of gaseous O3, aqueous I- and wind speed. Although there have been a 

number of field measurements of I- in surface seawater – as indicated by Figure 5.13 in 

Chapter 5 - these measurements generally do not coincide geographically with 

measurements of reactive iodine species in the overlying MBL. This presents a problem 

for modelling the effect of this additional iodine flux, especially for global modelling 

purposes. There appears to be no clear link between iodide and chemical parameters 

such as nitrate or phosphate concentration or with biological markers such as Chl-a 

and CDOM. However, the map indicates a strong latitudinal dependence which 

matches well with observed variability in SST, albeit with further local phenomena 

overlaid. 

Figure 6.1 below shows a correlation plot of measured sea surface iodide against SST 

from field campaigns in the Atlantic and Pacific where concurrent measurements were 

available. When plotted in Arrhenius form, an activation energy of ~76 kJ mol-1 is 

obtained. This activation energy may be indicative of a threshold for iodide production 

through biological processes, so that at higher temperatures IO3
- is converted to I- by 

phytoplankton in the surface ocean. 
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Figure 6.1 Arrhenius plot of SST and sea surface iodide concentrations for ship-based campaigns in the 
Atlantic and Pacific oceans (Huang et al., 2005; McTaggart et al., 1994; Truesdale et al., 2000; Tsunogai 
and Henmi, 1971). The three red squares in the top right of the plot were omitted from the regression 
analysis as they correspond to a high iodide episode at low latitudes during the Atlantic cruise 
(Truesdale et al., 2000). 

From this plot, an Arrhenius type expression can be derived to describe the sea surface 

iodide concentration with respect to SST: 
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where [I-] is in nM and SST is in K. 

This Arrhenius expression is then used in place of the iodide terms in the HOI and I2 

flux expressions derived in Chapter 4.  
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6.3 Modelling Field Measurements of IO and IOx 

6.3.1 Cape Verde 

There have been a number of field measurements of IO and IOx in the MBL over the 

open oceans and in this section, the results from two campaigns are used to test the 

derived flux expressions. The first of these is the ground-based campaign on the Cape 

Verde islands in the tropical Atlantic Ocean during 2006-2007, where measurements of 

IO were recorded using the LP-DOAS instrument described in Chapter 5. The flux 

expressions are input into THAMO and typical measured values for temperature (296 

K), wind speed (7 m s-1) and O3 (30 ppb) are used.  

The Kz profile was constructed using wind speed measurements at Cape Verde at three 

different heights (4, 10 and 30 m). Aircraft measurements at Cape Verde showed that 

there was a distinct temperature inversion at around 1 km altitude which shows that 

the BL is decoupled from the free troposphere at this site. Therefore the Kz profile was 

assumed to increase up to 30 m (where it peaked at 3 x 104 cm s-1) and then decrease 

monotonically to 2 cm2 s-1 at the top of the BL (1 km). A plot of the Kz profile is shown 

in Figure 6.2. 
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Figure 6.2 Kz profile used for modelling the iodine chemistry at Cape Verde. 

The model is constrained using typical measured mixing ratios of a number of species: 

[NOx] = 25 ppt, [CO] = 110 ppb, [DMS] = 30 ppt, [CH4] = 1820 ppb, [ethane] = 925 ppt, 

[CH3CHO] = 970 ppt, HCHO = 500 ppt, isoprene = 10 ppt, propane = 60 ppt, propene = 

20 ppt (Carpenter et al., 2010; Lee et al., 2009b; Mahajan et al., 2010c; Read et al., 

2008; Read et al., 2009). The average background aerosol surface area was taken to be 

1 x 10-6 cm2 cm-3 based on measurements recorded at the site (Allan et al., 2009). The 

modelled HOx was in agreement with the measured values at Cape Verde (Whalley et 

al., 2010). The iodocarbon fluxes (cm-2 s-1) measured during the campaign were also 

included: CH2I2 = 1.3 x 107, CH2IBr = 7.6 x 106, CH2ICl = 1.2 x 107, CH3I = 3.38 x 107, C2H5I 

= 2.86 x 106, C3H7I = 6.27 x 105 (Jones et al., 2010). 

The HOI and I2 fluxes calculated by THAMO were 1.74 x 108 and 7.76 x 106 cm-2 s-1, and 

the corresponding surface seawater concentrations for HOI and I2 were 5.89 x 10-9 and 

6.77 x 10-12 M, respectively. The model was initially run by considering the fluxes as 
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purely evasive terms, and subsequently by considering equilibration with their surface 

atmospheric concentrations where the flux was calculated as: 
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The Henry’s law constants (Sander, 1999), which are temperature dependent, and 

transfer coefficients, which depend on both wind speed and temperature, were 

calculated in THAMO according to the equations in Chapter 4. 

Figure 6.3 shows the measured (annual average) and modelled IO diurnal profile. The 

dashed line shows the modelled IO if only iodocarbons are included, the solid black 

line shows the modelled IO when both iodocarbons and the inorganic iodine fluxes are 

included, and the solid red line shows the modelled IO when both iodocarbons and the 

equilibrated inorganic iodine fluxes are included. It is clear from the plot that when 

only iodocarbons are considered the IO is under-predicted by ~63 %. In the case of the 

purely evasive inorganic iodine fluxes, the IO is over-predicted by around 60 %. A good 

agreement with the measured IO mixing ratios is achieved, however, when the 

equilibrated inorganic iodine fluxes are included. 
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Figure 6.3 The modelled diurnal IO profile at 5 m above the ocean surface, produced from combined 
emissions of halocarbons, HOI and I2 equilibrated with atmospheric concentrations (black solid line), 
without equilibration (red dashed line) and from halocarbon emissions only (blue dashed line). The black 
squares show the annual average IO measured using the LP-DOAS instrument and associated standard 
deviations. 

It should be noted that the large peak in IO observed around sunrise in the model is 

due to the rapid photolysis of I2 which has built up overnight. This feature has, as yet, 

not been observed in field observations. However, the timescale for this is on the 

order of around 20 minutes in the model and the DOAS spectra were averaged over an 

hour to improve signal to noise ratio for the Cape Verde measurements, which may 

explain why this predicted effect is not seen in the measurements. 

Figure 6.4 shows the diurnal profile for the equilibrated HOI and I2 fluxes for the 

conditions mentioned above. The gas phase chemistry of iodine and HOx causes a build 

up of HOI in the atmosphere above the sea surface during the day causing the HOI flux 

to be suppressed. At night, the HOI is converted to I2 and IBr by heterogeneous 

chemistry on sea salt aerosol and so the sea-air flux of HOI increases to approximately 
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twice that of the daytime flux. The I2 flux, on the other hand, shows the opposite 

behaviour: during the day I2 is rapidly photolysed meaning that a relatively large I2 flux 

is maintained, whereas at night the build up of I2 causes the flux to reduce to zero. 

 

Figure 6.4 Diurnal profiles for the HOI and I2 emission fluxes showing the effect of equilibration with 
atmospheric concentrations above the surface. 

The time-height profiles for IO, OIO, HOI and I2 are shown in Figure 6.5 for a diurnal 

cycle. The IO is only present at significant levels during the daytime and extends from 

the surface up to around 300 m where the levels drop to around 50 % of the near 

surface values. The IO then disappears at sunset as photolysis is switched off and 

therefore there is no possibility for reaction of I + O3. OIO is also only present at 

significant levels during daytime although the mixing ratios remain relatively low 

throughout the day. The HOI is present during the day due to HOx chemistry (reactions 

R6.1 and R6.2) and increases as sunset approaches due to the decrease in photolysis 

rate.  
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22 OHOIHOIO   R6.1 

 OHIHOI  h  R6.2 

During the night any HOI which evades from the sea surface will react rapidly on sea-

salt aerosol and therefore the mixing ratio remains low. The I2 shows daytime levels 

which are very low due to its rapid photolysis rate. The mixing ratios then increase 

following sunset but begin to decrease throughout the night due to its reaction with 

NO3. 

 

Figure 6.5 Modelled IO, OIO, I2 and HOI mixing ratios (pptv) for Cape Verde in the 1 km boundary layer 
where the total iodine flux includes the contributions from both halocarbon and equilibrated inorganic 
iodine fluxes. 
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The presence of significant concentrations of HOI could also lead to changes in OH 

through HOx chemistry (via R6.1 and R6.2), leading to changes in the oxidative capacity 

of the marine boundary layer.  

To investigate the contribution of this additional HOI to the OH concentration, the 

model was run assuming that all the inorganic iodine emission was in the form of I2; 

the calculated HOI flux in the model was halved (to take into account that only one I 

atom is liberated on photolysis of HOI) and added to the calculated I2 flux. The 

resulting IO concentrations were then compared to the previous model runs where 

both fluxes were included. The OH produced when the inorganic iodine flux was 

assumed to be solely due to I2 was only around 2 % lower than when HOI was also 

included, therefore it is unlikely that the additional HOI produced from this mechanism 

will have a significant impact on the OH concentrations in the MBL. 

6.3.2 Eastern Pacific 

Using the new expressions, the HOI and I2 fluxes for each of the measurement points in 

the HaloCAST-P cruise were calculated from the on board measurements of SST, wind 

speed and the modelled O3 from the global model CAM-Chem (Mahajan et al., 2012; 

data provided by Juan Carlos Gómez Martín). The total inorganic I flux is then 

calculated as the HOI flux plus twice the I2 flux (owing to the two I atoms produced 

from photolysis of I2). This is then plotted against the measured IOx from the 

MAX-DOAS instrument and the correlation plot is shown in Figure 6.6. 
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Figure 6.6 Measured IOx (top panel) and IO (bottom panel) during the HaloCAST-P cruise versus 
predicted inorganic iodine flux (HOI + 2I2). The red lines show a straight line fit of the data and a 
significant intercept is observed for both. The points highlighted in red were excluded from the linear 
regression analysis. 

Before fitting a straight line to the data, three of the points at very high O3 were 

omitted as these points coincided with the cruise ship passing over the equatorial front. 

In this region the O3 is particularly sensitive to changes in SST and humidity which in 

turn depend on seasonal cycles such as El Niño or La Niña. As a result the high O3 

output from CAM-Chem may not be representative of the actual O3 during the 
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Thompson cruise. The correlation coefficients obtained from this fit were R2 = 0.10 

(p = 0.13) for IOx and R2 = 0.15 (p = 0.09) for IO. 

Another interesting feature of the correlation plot is the significant intercept of 

0.66±0.08 ppt obtained for the IOx plot (0.48±0.08 ppt for IO). This intercept may 

indicate the contribution of halocarbons to the measured IOx in the absence of the 

inorganic iodine flux. The modelling work performed by Mahajan et al. (2012) 

suggested that around 20 % of the IOx could be explained by the observed emissions of 

CH3I, and there are likely other iodocarbon species which will also contribute. THAMO 

was run with the HOI and I2 fluxes turned off and the halocarbon fluxes were adjusted 

so that the resulting daytime IOx was ~0.66 ppt. In fact, using the average CH3I flux 

measured during the campaign (4.17 x 106 molecule cm-2 s-1), and the average 

measurements from the Cape Verde campaign for the other halocarbons (Mahajan et 

al. 2010), gave IOx in agreement with this value. This halocarbon flux was then fixed for 

further THAMO model runs. 

The HOI and I2 flux expressions, Equations 4.16 and 4.17 (using the Arrhenius SST 

expression (Equation 6.25) in place of I-), were in-put into THAMO and all the points of 

the Thompson cruise were modelled. The measured O3, wind speed and SST were used 

and a separate Kz profile was produced for each point based on the measured wind 

speed.  

The IO and IOx output from the model were then plotted against the HOI and I2 fluxes 

along with the measured IO and IOx. The IO and IOx was computed by averaging over 

the first 200 m of the model (first 40 boxes) using only the daylight measurements. 

This was done because the mixing ratios were calculated assuming a 200 m box profile 

from the MAX-DOAS slant columns and for quality control, only daylight data with 

SZA < 60° was used.  Figure 6.7 below shows the modelled and measured IO and IOx 

with the model output for the same conditions.  
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Figure 6.7 Measured (black squares) and modelled (red circles) IO and IOx against predicted total 
inorganic iodine flux from the parameterised expressions. 

There is good agreement for the points with lower computed HOI and I2 fluxes, 

however, there is a large disagreement as the HOI and I2 flux increases, with the IO and 

IOx being over-predicted by more than a factor of three. This is largely due to the high 

O3 and low wind speeds for the highest three points which result in the very high 

predicted fluxes. As mentioned previously the high O3 from the CAM-Chem output 

may not accurately represent the O3 during the Thompson cruise. Therefore, the 
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model was re-run for the highest three points, varying the O3 concentration until the 

resulting IO matched the measured mixing ratios. The IO was used to match the 

observations as the IOx measurements were derived from the O3 mixing ratios 

predicted by CAM-Chem. 

The O3 had to be reduced to 2 ppb before the observations could be matched. 

Although such low concentrations have been observed previously over the open ocean, 

these are much lower than even the lowest O3 mixing ratios calculated during the 

cruise. 

An additional possible reason for the lower measured IO compared to the predicted 

values could be due to the very low wind speeds meaning there is much less mixing 

just above the surface of the ocean. This could mean that any I2 and HOI emitted into 

the bottom box would build up to levels that would suppress further emission due to 

equilibration. In addition, increased mixing ratios of I2 and HOI in the bottom box 

during daylight hours could lead to sufficient IO concentrations for IOP formation to 

occur. As IOP formation is treated as a sink for IO in the model, this would reduce the 

overall IO levels over the first 200 m. A further physical effect of reduced wind speeds 

over the ocean is the possibility for organic films to form at the surface, inhibiting the 

release of I2 and HOI from the sea to the gas phase. For these reasons, the Kz profile for 

the highest points was adjusted so that the Kz values in the first five boxes (first 25 m) 

were reduced by a factor of two to test whether this would lower the mixing ratio. 

Using the reduced Kz in the first five boxes, the resulting daytime average IO mixing 

ratio over the first 200 m for the highest point was 2.46 ppt, still three times higher 

than the observed mixing ratio (~0.8 ppt). The Kz profile was then adjusted so that the 

Kz value in the first box (5 m above the ocean surface) was an order of magnitude 

smaller than that calculated, however, the reduction was even smaller in this case 

(2.58 ppt IO). 

A further possible explanation for the lower observed IO and IOx in this region could be 

due to iodide becoming depleted in the top layer of the ocean. At the highest 

calculated HOI and I2 fluxes, over the course of 24 hours, the iodide would be depleted 

in a layer at the surface down to around 8 mm. Using the diffusion coefficient for 
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iodide of 2 x 10-5 cm2 s-1 (Friedman and Kennedy, 1955) it would take around 3 hours 

for the iodide in this layer to be replenished from below. Hence, this explanation 

appears to be unlikely. 

Another reason for the discrepancy could be the change in organoiodine flux 

throughout the campaign. During the latter half of the campaign the measured CH3I 

flux was lower than during the first half of the campaign and there is some evidence 

for a correlation between IO and the CH3I flux (although this is only significant at the 

95 % confidence level and not at 99 %). Reducing the CH3I flux from 4.17 x 106 cm-2 s-1, 

(the average flux observed during the whole campaign) to 1.5 x 106 cm-2 s-1 (the flux 

observed at the highest modelled point), the daytime average IO mixing ratio was 

2.58 ppt, so only a small reduction compared to the previously modelled result. 

Assuming that the other halocarbons in the model are reduced by the same factor, the 

resulting IO mixing ratio was 2.49 pptv. This demonstrates that the halocarbon flux is 

only playing a minor role in the overall contribution to the observed IO mixing ratios. 

Variations in the halocarbon fluxes could be one of the explanations for the higher IO 

mixing ratios observed in the Western Pacific (Großmann et al., 2013), even at low O3 

concentrations, where their contribution would become more important; despite CH3I 

emissions being nearly an order of magnitude smaller than the Cape Verde 

observations, the shorter lived CH2ICl and CH2I2 fluxes were much larger (3.8 x 107 and 

2.3 x 107 cm-2 s-1, respectively). 

The other reason that the observations may not match for these data points is down to 

uncertainty in the parameterisation of the iodide concentration based on SST 

measurements. As mentioned in section 6.2, the general trend of the sea surface 

iodide was to follow the changes in SST, however, there are a number of local 

phenomena which do not conform to this pattern. If the iodide around the ITCZ was 

much lower than indicated by the SST measurements this would again lead to a 

reduced HOI and I2 flux, and therefore lower IO and IOx as observed in the cruise data. 

Seasonal variations in ocean currents could cause fluctuations in sea surface salinity, 

and therefore also in iodide, as was observed in the case of the Galapagos IOx data in 

Chapter 5. 
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6.3.3 Sensitivity Studies 

Sensitivity studies were conducted to investigate the effect of the three variables (O3, 

wind speed, SST) in the parameterised flux expressions on the modelled IO and IOx 

mixing ratios over the first 200 m. The results of these investigations are shown in 

Figure 6.8. 

As expected, there is a clear increase in IO with an increase in O3, however, this 

increase is not reflected in the IOx mixing ratios. At lower O3 concentrations the 

majority of the IOx will be in the form of I rather than IO. As the O3 increases, the IOx 

ratio will shift towards IO and at the highest O3 concentrations this IO is converted to 

I2O5 and further to IOPs. This acts as a sink for IO in the model and therefore reduces 

the total IOx at higher O3 concentrations. 

The increase in the IO and IOx with SST can be attributed to two factors: the first is that 

an increase in SST leads to a greater predicted sea surface iodide concentration from 

the Arrhenius expression described previously; the second is that the higher 

temperature leads to larger transfer coefficients (Kt) for both HOI and I2 leading to a 

greater inorganic iodine flux. 
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Figure 6.8 Modelled diurnal profiles of IO and IOx as a function of O3 (top panels), wind speed (central 
panels) and SST (bottom panels). 

A clear dependence on wind speed is demonstrated, however, the effect becomes 

quite extreme when a wind speed of 0.5 m s-1 is used. The resulting IO and IOx mixing 

ratios are clearly unrealistic for remote ocean conditions and a limiting factor must 

come into play at these very low wind speeds. Comparing the wind speed dependence 

of the HOI and I2 flux expressions with the output from the kinetic model, there is a 

clear divergence at wind speeds lower than 2 m s-1 (Figure 6.9).  
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Figure 6.9 Total inorganic iodine flux (HOI + 2I2) predicted by the kinetic model (black squares) and the 
parameterised flux expressions (red circles). 

Some adaptation of the expressions may therefore be required for very calm 

conditions when wind speeds drop close to zero. As mentioned previously, one 

possibility at these very low wind speeds is that this gives the chance for organic films 

to form on the still surface waters. Organic films are well known to inhibit sea-air 

transfer of a number of species (e.g. Frew, 1997; Frew et al., 2004; Goldman et al., 

1988) and this may suppress the HOI and I2 emissions.  

Another important feature that is shown in Figure 6.8 is the presence of IO at night. 

The production of IO at night in the model occurs through the reaction of I2 with NO3 

(R6.3) giving I atoms. The atoms can then react further with NO3 (R6.4) or with O3 (R6.5) 

to produce IO.  

 332 INOINOI   (R6.3) 
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 23 NOIONOI   (R6.4) 

 23 OIOOI   (R6.5) 

Under the very clean conditions encountered in the remote oceans the amount of 

night time IO produced is minimal due to the very low NOx concentrations. However, in 

more polluted environments, with higher NOx concentrations, this reaction may 

become more important and could act as a significant night time source of IO. In 

addition to this, there is the possibility that HOI may also react with NO3 to produce IO 

directly via reaction R6.6. 

 33 HNOIONOHOI   (R6.6) 

In more polluted areas, the concentration of O3 will also be higher, with transport of 

polluted air from the continents in the Northern Hemisphere over the ocean giving rise 

to O3 concentrations which can exceed 100 ppb (Logan, 1985; Vingarzan, 2004). These 

increased O3 concentrations will lead to higher emissions of HOI and I2 to the gas 

phase due to the linear relationship between O3 and the HOI and I2 fluxes from the 

parameterised expressions. This in turn will lead to more reactive iodine, which will 

cause O3 destruction through the catalytic cycles described in Chapter 2. This could be 

increasingly important in coastal regions where the sea surface emissions may help to 

limit the amount of O3 over the surface of the open ocean. 
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Chapter 7 

Conclusions and Further Work 

This work describes experimental results from laboratory measurements of the I2 and 

HOI fluxes produced from the reaction of O3 and I-, kinetic modelling to verify the 

experimental results, field measurements of reactive iodine species in the remote MBL 

and finally 1-D modelling work to link the experimentally determined fluxes to the field 

measurements. The main conclusions from chapters 3, 4, 5 and 6 are discussed below, 

along with suggestions for further work to improve the understanding of iodine 

chemistry in the MBL. 

In Chapter 3, a number of different parameters were investigated for their influence 

on the I2 and HOI fluxes produced from the reaction of I- + O3. The I2 and HOI fluxes 

were found to increase with increasing O3 concentration and showed a linear response 

over the range of O3 concentrations investigated. Increasing iodide concentration also 

resulted in an increase in the HOI and I2 fluxes although there was some deviation 

from linearity at the highest iodide concentrations which may be indicative of a surface 

saturation effect. 

Salinity was found to have a positive influence on the I2 flux, with around a 2.5 fold 

increase moving from 0 to 0.5 M Cl-, but had no significant effect on the HOI flux. 

However, this effect was deemed negligible over the range of salinity observed in real 

seawater. Mixing was found to be an important parameter in determining the I2 and 

HOI fluxes, with an increase in mixing causing a decrease in the fluxes, due to mixing of 

I2 from the surface into the bulk solution. 

None of the three organic species investigated in this work were found to have a 

significant effect on the HOI and I2 concentrations when using realistic seawater 

concentrations. An effect of organic surfactants cannot be ruled out, however, given 

previous experimental results, as longer chain hydrocarbons may cause a greater 
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effect and are likely to be present in the highly heterogeneous organic surface films 

found in seawater. 

Initial results from the temperature dependence experiments suggested that the 

reaction had a large, positive activation energy ~100 kJ mol-1 in agreement with 

previous studies (within experimental error). However, given the unphysical nature of 

the reported pre-exponential factor, and the poor reproducibility of observations at 

low temperatures, further experiments suggested that the temperature dependence is 

most likely minimal, both for HOI and I2. Combining the measurements under all 

experimental conditions and normalising for [O3], [I-] and [H+], the activation energies 

obtained for the HOI and I2 fluxes were 17±50 and -7±18 kJ mol-1, respectively. 

In Chapter 4 a kinetic model of the interfacial layer was found to reproduce the 

experimental observations well under most of the conditions studied with a few 

exceptions. There was some deviation at higher iodide concentrations, with the model 

predicting much higher emissions for I2, and this was considered to be a result of a 

surface saturation effect occurring in the experiments and not considered in the 

model. However, these discrepancies arose at much higher concentrations than 

observed in real seawater.  

The model under-predicted the effect of salinity on the I2 flux slightly when compared 

to the experimental results. This could be due to a surface enhancement effect 

whereby the preference of iodide to remain at the surface of solution is enhanced by 

the presence of the larger chloride ions. The temperature dependence in the model 

was found to be in good agreement with the results of the combined temperature 

dependence experiments and the modelled activation energies were 

29 and -0.2 kJ mol-1 for HOI and I2, respectively.  

The results of the experiments were then used to produce parameterised expressions 

for both the HOI and I2 fluxes, as a function of [O3], [I-] and wind speed. The resulting 

fluxes were found to be in excellent agreement with the modelled results, apart from 

at very low wind speeds, where the 1/ws term in each of the expressions caused an 

over-prediction in both fluxes. 
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The results of the CHARLEX field campaign in Chapter 5 suggest that IO and IOx in the 

Eastern Pacific MBL are consistently low and are inconsistent with previous satellite 

measurements in the region, however, the possibility that there are higher 

concentrations of IOx in the free troposphere cannot be ruled out. 

The iodine emissions were found to be dependent on multiple factors. The anti-

correlation with Chl-a and CDOM suggests that biological activity is unlikely to play a 

major role, and in fact may have an inhibitory effect. This could be due to surfactant 

effects or additional reactions of organics with iodine species in surface seawater. 

There was a strong seasonal cycle observed which correlated well with SST and salinity, 

and it seems most likely that an abiotic mechanism is responsible for the iodine 

emissions.This seasonal cycle may not be directly linked the temperature and salinity 

variations, but could actually indicate changes in the sea surface iodide concentration. 

This would lead to variations in the inorganic source from the mechanism described in 

Chapter 3. 

Based on model calculations, the organoiodine flux contribution (in the form of CH3I) 

to the IOx mixing ratios was found to be small, but significant, at around 30 %, 

suggesting that the inorganic source will be a major contributor to the overall iodine 

flux from the ocean to the atmosphere, although other organoiodine species will also 

likely play a role. 

Photolytic O3 loss and particle formation were not observed due to the low 

concentrations of halogens observed during the campaign. The maximum O3 loss 

attributable to halogen chemistry was modelled at around 30 %. The absence of 

particle formation observed during the CHARLEX campaign and the Cape Verde 

campaign described in Chapter 6 and this leads to the conclusion that it is unlikely that 

iodine oxide particle formation is important over the open oceans. 

In Chapter 6 the 1-D chemistry transport model THAMO was used to test the 

parameterised expressions for predicting IO concentrations measured during field 

campaigns in Cape Verde and the Eastern Pacific. The model was found to produce 

good agreement with the yearly averaged diurnal profile of IO measured in Cape Verde 

and the results showed a number of interesting features. 
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Because measurements of iodide in surface seawater are quite sparse it was deemed 

necessary to produce a more useful parameterisation for use in global models. The 

surface iodide concentration was found to show a good correlation with sea surface 

temperature and an Arrhenius type fit was produced which matched the overall trend 

well. The Arrhenius expression was then used in THAMO to predict the iodide 

concentration for each of the points in the HaloCAST-P cruise.  

The model was able to reproduce the observed IO for the higher wind speeds, 

however, there was a significant over-prediction at lower wind speeds, due to the very 

high inorganic iodine fluxes predicted by the parameterised expressions. In addition, 

the O3 concentration was not measured during the cruise and O3 data were derived 

from the CAMChem global model. The very high O3 concentrations predicted for the 

latter part of the campaign coincided with the ship track passing through the ITCZ. The 

O3 concentrations in this region are known to vary greatly depending on the season 

and year due to sea surface temperature variations and the very large O3 

concentrations predicted may not accurately reflect the O3 during the campaign. To 

best match the result an O3 concentration of 2 ppb was required. 

Sensitivity studies showed that, as expected, the modelled IO mixing ratios increased 

with increasing O3 concentration. However, this increase was not observed in the IOx; 

at the lower O3 concentrations the IOx will be mostly in the form of I, but as the O3 

concentration increases the ratio will shift towards IO and the formation of I2O5 

leading to a lower total IOx mixing ratio. Increasing SST in the model resulted in an 

increase in both the IO and IOx mixing ratios as a consequence of two factors, the 

increase in the predicted sea surface I- from the Arrhenius expression and the larger Kt 

coefficients for both HOI and I2 at higher temperatures, both of which will lead to 

higher predicted fluxes. The IO and IOx concentrations both decreased with increasing 

wind speed as a result of the increased mixing of I2 and HOI from the surface to bulk 

seawater. However, there was a significant over-prediction by the model at very low 

wind speeds due to the 1/ws term in the parameterised expressions, which suggests 

that a further limiting factor may be necessary when modelling iodine chemistry under 

very still conditions. 
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The results presented in this thesis demonstrate that there is a ubiquitous inorganic 

source of iodine over the open ocean, but that the overall levels of reactive iodine 

species, such as IO, may be lower than previous results suggested. The levels of 

reactive iodine observed are not capable of sustaining IOP production, and new 

particle formation will most likely be confined to coastal locations with exposed algal 

beds. The impact on ozone will also be smaller than previously predicted, but still 

significant. 

This thesis has addressed several aspects of iodine chemistry occurring over the 

remote oceans, however, there are still a number of outstanding questions. Further 

work in all three branches of atmospheric chemistry (laboratory work, field 

measurements and modelling) is necessary before we can fully assess the impact of 

iodine chemistry on a global scale. In terms of laboratory work, further experiments on 

the role of organics and organic films, possibly using real seawater samples, would be 

beneficial to ascertain whether these can have an inhibitory effect which may be 

important under low wind speed conditions.  

Concurrent measurements of reactive iodine species in the air and iodide in surface 

seawater using ship-based measurements would help to remove some of the 

uncertainties related to the iodide-SST parameterisation. Improving the detection 

limits of the available instruments for reactive iodine measurements would also be 

beneficial, particularly for night-time measurements of I2 which would help to verify 

that this inorganic mechanism is functioning in dark conditions. In addition, field 

measurements in more polluted locations, such as off the coasts of North America and 

China, would be useful to determine whether this additional mechanism, which will 

increase in the presence of increased O3 concentrations, could help to limit the 

concentrations of O3 in these regions.  

Finally, use of the parameterised expressions derived in this thesis in global models will 

help our understanding of iodine chemistry in the MBL and higher up in the free 

troposphere. By combining the global model results with the increasing number of 

measurements of reactive iodine species over the open oceans, these expressions may 
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be further refined to improve our predictions of how the impact of iodine on 

tropospheric chemistry might change with a changing climate. 

  



Bibliography  193 

 

 

Bibliography 

Abrahamsson, K., Lorén, A., Wulff, A., and Wängberg, S.-Å.: Air–sea exchange of 

halocarbons: the influence of diurnal and regional variations and distribution of 

pigments, Deep Sea Research Part II: Topical Studies in Oceanography, 51, 2789-2805,  

2004. 

Aiuppa, A., Federico, C., Franco, A., Giudice, G., Gurrieri, S., Inguaggiato, S., Liuzzo, M., 

McGonigle, A. J. S., and Valenza, M.: Emission of bromine and iodine from Mount Etna 

volcano, Geochem. Geophys. Geosyst., 6,  2005. 

Aiuppa, A., Baker, D. R., and Webster, J. D.: Halogens in volcanic systems, Chem. Geol., 

263, 1-18,  2009. 

Alicke, B., Hebestreit, K., Stutz, J., and Platt, U.: Iodine oxide in the marine boundary 

layer, Nature, 397, 572-573,  1999. 

Allan, B. J., McFiggans, G., Plane, J. M. C., and Coe, H.: Observations of iodine 

monoxide in the remote marine boundary layer, J. Geophys. Res.-Atmos., 105, 14363-

14369,  2000. 

Allan, B. J., Plane, J. M. C., and McFiggans, G.: Observations of OIO in the remote 

marine boundary layer, Geophys. Res. Lett., 28, 1945-1948,  2001. 

Allan, J. D., Topping, D. O., Good, N., Irwin, M., Flynn, M., Williams, P. I., Coe, H., Baker, 

A. R., Martino, M., Niedermeier, N., Wiedensohler, A., Lehmann, S., Müller, K., 

Herrmann, H., and McFiggans, G.: Composition and properties of atmospheric particles 

in the eastern Atlantic and impacts on gas phase uptake rates, Atmos. Chem. Phys., 9, 

9299-9314,  2009. 

Andreae, M. O., and Crutzen, P. J.: Atmospheric aerosols: Biogeochemical sources and 

role in atmospheric chemistry, Science, 276, 1052-1058,  1997. 

Archer, S. D., Goldson, L. E., Liddicoat, M. I., Cummings, D. G., and Nightingale, P. D.: 

Marked seasonality in the concentrations and sea-to-air flux of volatile iodocarbon 

compounds in the western English Channel, J. Geophys. Res.-Oceans, 112,  2007. 



Bibliography  194 

 

 

Arnold, S. R., Spracklen, D. V., Gebhardt, S., Custer, T., Williams, J., Peeken, I., and 

Alvain, S.: Relationships between atmospheric organic compounds and air-mass 

exposure to marine biology, Environ. Chem., 7, 232-241,  2010. 

Ashu-Ayem, E. R., Nitschke, U., Monahan, C., Chen, J., Darby, S. B., Smith, P. D., 

O’Dowd, C. D., Stengel, D. B., and Venables, D. S.: Coastal Iodine Emissions. 1. Release 

of I2 by Laminaria digitata in Chamber Experiments, Environ. Sci. Technol., 46, 10413-

10421,  2012. 

Ayers, G. P., Gillett, R. W., Cainey, J. M., and Dick, A. L.: Chloride and bromide loss from 

sea-salt particles in southern ocean air, J. Atmos. Chem., 33, 299-319,  1999. 

Baidar, S., Oetjen, H., Coburn, S., Dix, B., Ortega, I., Sinreich, R., and Volkamer, R.: The 

CU Airborne MAX-DOAS instrument: vertical profiling of aerosol extinction and trace 

gases, Atmos. Meas. Tech., 6, 719-739,  2013. 

Baker, A. R., Thompson, D., Campos, M., Parry, S. J., and Jickells, T. D.: Iodine 

concentration and availability in atmospheric aerosol, Atmos. Environ., 34, 4331-4336,  

2000. 

Baker, A. R.: Marine Aerosol Iodine Chemistry: The Importance of Soluble Organic 

Iodine, Environ. Chem., 2, 295-298,  2005. 

Bale, C. S. E., Ingham, T., Commane, R., Heard, D. E., and Bloss, W. J.: Novel 

measurements of atmospheric iodine species by resonance fluorescence, J. Atmos. 

Chem., 60, 51-70,  2008. 

Ball, S. M., Hollingsworth, A. M., Humbles, J., Leblanc, C., Potin, P., and McFiggans, G.: 

Spectroscopic studies of molecular iodine emitted into the gas phase by seaweed, 

Atmos. Chem. Phys., 10, 6237-6254,  2010. 

Barrie, L. A., Bottenheim, J. W., Schnell, R. C., Crutzen, P. J., and Rasmussen, R. A.: 

Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic 

atmosphere, Nature, 334, 138-141,  1988. 

Baxter, G. P., and Grose, M. R.: The vapor pressure of iodine between 50 degrees and 

95 degrees, J. Am. Chem. Soc., 37, 1061-1072,  1915. 



Bibliography  195 

 

 

Behnke, W., Kruger, H. U., Scheer, V., and Zetzsch, C.: Formation of atomic Cl from sea 

spray via photolysis of nitryl chloride - determination of the sticking coefficient of N2O5 

on NaCl aerosol, J. Aerosol. Sci., 22, S609-S612,  1991. 

Berner, A., A. C. Lindner, G. P. Reischl & W. Winklmayr: Operating Instructions - 

Electrical Mobility Spectrometer EMS VIE-10, in, tapcon & analysesysteme GmbH, 2006. 

Bichsel, Y., and von Gunten, U.: Hypoiodous acid: Kinetics of the buffer-catalyzed 

disproportionation, Water Res., 34, 3197-3203,  2000. 

Bitter, M., Ball, S. M., Povey, I. M., and Jones, R. L.: A broadband cavity ringdown 

spectrometer for in-situ measurements of atmospheric trace gases, Atmos. Chem. 

Phys., 5, 2547-2560,  2005. 

Bloss, W. J., Lee, J. D., Johnson, G. P., Sommariva, R., Heard, D. E., Saiz-Lopez, A., Plane, 

J. M. C., McFiggans, G., Coe, H., Flynn, M., Williams, P., Rickard, A. R., and Fleming, Z. L.: 

Impact of halogen monoxide chemistry upon boundary layer OH and HO2 

concentrations at a coastal site, Geophys. Res. Lett., 32,  2005. 

Bobrowski, N., Honninger, G., Galle, B., and Platt, U.: Detection of bromine monoxide 

in a volcanic plume, Nature, 423, 273-276,  2003. 

Bobrowski, N., and Platt, U.: SO2/BrO ratios studied in five volcanic plumes, J. Volcanol. 

Geotherm. Res., 166, 147-160,  2007. 

Bobrowski, N., von Glasow, R., Aiuppa, A., Inguaggiato, S., Louban, I., Ibrahim, O. W., 

and Platt, U.: Reactive halogen chemistry in volcanic plumes, J. Geophys. Res.-Atmos., 

112,  2007. 

Bogumil, K., Orphal, J., Homann, T., Voigt, S., Spietz, P., Fleischmann, O. C., Vogel, A., 

Hartmann, M., Kromminga, H., Bovensmann, H., Frerick, J., and Burrows, J. P.: 

Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: 

instrument characterization and reference data for atmospheric remote-sensing in the 

230-2380 nm region, J. Photochem. Photobiol. A-Chem., 157, 167-184,  2003. 

Brechtel, F. J., Kreidenweis, S. M., and Swan, H. B.: Air mass characteristics, aerosol 

particle number concentrations, and number size distributions at Macquarie Island 



Bibliography  196 

 

 

during the First Aerosol Characterization Experiment (ACE 1), Journal of Geophysical 

Research: Atmospheres, 103, 16351-16367,  1998. 

Brewer, A. W., McElroy, C. T., and Kerr, J. B.: Nitrogen dioxide concentrations in the 

atmosphere, Nature, 246, 129-133,  1973. 

Burrows, J. P., Holzle, E., Goede, A. P. H., Visser, H., and Fricke, W.: SCIAMACHY - 

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY, Acta 

Astronaut., 35, 445-451,  1995. 

Butler, J. H., King, D. B., Lobert, J. M., Montzka, S. A., Yvon-Lewis, S. A., Hall, B. D., 

Warwick, N. J., Mondeel, D. J., Aydin, M., and Elkins, J. W.: Oceanic distributions and 

emissions of short-lived halocarbons, Glob. Biogeochem. Cycle, 21,  2007. 

Butz, A., Bosch, H., Camy-Peyret, C., Chipperfield, M. P., Dorf, M., Kreycy, S., Kritten, L., 

Prados-Roman, C., Schwarzle, J., and Pfeilsticker, K.: Constraints on inorganic gaseous 

iodine in the tropical upper troposphere and stratosphere inferred from balloon-borne 

solar occultation observations, Atmos. Chem. Phys., 9, 7229-7242,  2009. 

Caleman, C., Hub, J. S., van Maaren, P. J., and van der Spoel, D.: Atomistic simulation of 

ion solvation in water explains surface preference of halides, Proceedings of the 

National Academy of Sciences of the United States of America, 108, 6838-6842,  2011. 

Carlson, D., Donohoue, D., Platt, U., and Simpson, W. R.: A low power automated MAX-

DOAS instrument for the Arctic and other remote unmanned locations, Atmos. Meas. 

Tech., 3, 429-439,  2010. 

Carpenter, L. J., Sturges, W. T., Penkett, S. A., Liss, P. S., Alicke, B., Hebestreit, K., and 

Platt, U.: Short-lived alkyl iodides and bromides at Mace Head, Ireland: Links to 

biogenic sources and halogen oxide production, J. Geophys. Res.-Atmos., 104, 1679-

1689,  1999. 

Carpenter, L. J.: Iodine in the marine boundary layer, Chem. Rev., 103, 4953-4962,  

2003. 

Carpenter, L. J., Liss, P. S., and Penkett, S. A.: Marine organohalogens in the 

atmosphere over the Atlantic and Southern Oceans, J. Geophys. Res.-Atmos., 108,  

2003. 



Bibliography  197 

 

 

Carpenter, L. J., Fleming, Z. L., Read, K. A., Lee, J. D., Moller, S. J., Hopkins, J. R., Purvis, 

R. M., Lewis, A. C., Müller, K., Heinold, B., Herrmann, H., Fomba, K. W., Pinxteren, D., 

Müller, C., Tegen, I., Wiedensohler, A., Müller, T., Niedermeier, N., Achterberg, E. P., 

Patey, M. D., Kozlova, E. A., Heimann, M., Heard, D. E., Plane, J. M. C., Mahajan, A., 

Oetjen, H., Ingham, T., Stone, D., Whalley, L. K., Evans, M. J., Pilling, M. J., Leigh, R. J., 

Monks, P. S., Karunaharan, A., Vaughan, S., Arnold, S. R., Tschritter, J., Pöhler, D., Frieß, 

U., Holla, R., Mendes, L. M., Lopez, H., Faria, B., Manning, A. J., and Wallace, D. W. R.: 

Seasonal characteristics of tropical marine boundary layer air measured at the Cape 

Verde Atmospheric Observatory, J. Atmos. Chem., 67, 87-140,  2010. 

Chance, K. V., and Spurr, R. J. D.: Ring effect studies: Rayleigh scattering, including 

molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum, 

Appl. Optics, 36, 5224-5230,  1997. 

Chang, W. N., Heikes, B. G., and Lee, M. H.: Ozone deposition to the sea surface: 

chemical enhancement and wind speed dependence, Atmos. Environ., 38, 1053-1059,  

2004. 

Chapman, S.: A theory of upper-atmospheric ozone, Memoirs of the Royal 

Meteorological Society, 3, 103-125,  1930. 

Clifford, D., and Donaldson, D. J.: Direct experimental evidence for a heterogeneous 

reaction of ozone with bromide at the air-aqueous interface, J. Phys. Chem. A, 111, 

9809-9814,  2007. 

Coburn, S., Dix, B., Sinreich, R., and Volkamer, R.: Development and characterization of 

the CU ground MAX-DOAS instrument: lowering RMS noise and first measurements of 

BrO, IO, and CHOCHO near Pensacola, FL, Atmos. Meas. Tech. Discuss., 4, 247-284,  

2011. 

Coleman, L., S. Varghese, O. P. Tripathi, S. G. Jennings, and C. D. O'Dowd: Regional-

Scale Ozone Deposition to North-East Atlantic Waters, Advances in Meteorology,  2010. 

Commane, R., Seitz, K., Bale, C. S. E., Bloss, W. J., Buxmann, J., Ingham, T., Platt, U., 

Pohler, D., and Heard, D. E.: Iodine monoxide at a clean marine coastal site: 



Bibliography  198 

 

 

observations of high frequency variations and inhomogeneous distributions, Atmos. 

Chem. Phys., 11, 6721-6733,  2011. 

Corrigan, A. L., Hanley, S. W., and Haan, D. O.: Uptake of glyoxal by organic and 

inorganic aerosol, Environ. Sci. Technol., 42, 4428-4433,  2008. 

Ćosović, B., Ẑutić, V., Vojvodić, V., and Pleše, T.: Determination of surfactant activity 

and anionic detergents in seawater and sea surface microlayer in the Mediterranean, 

Mar. Chem., 17, 127-139,  1985. 

Courant, R., Friedrichs, K., and Lewy, H.: On the Partial Difference Equations of 

Mathematical Physics, Mathematische Annalen, 100, 32-74,  1928. 

Cox, R. A., Bloss, W. J., Jones, R. L., and Rowley, D. M.: OIO and the atmospheric cycle 

of iodine, Geophys. Res. Lett., 26, 1857-1860,  1999. 

Cunningham, E.: On the Velocity of Steady Fall of Spherical Particles through Fluid 

Medium, Proceedings of the Royal Society of London. Series A, 83, 357-365,  1910. 

Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland, F., and 

Blake, D.: Potential impact of iodine on tropospheric levels of ozone and other critical 

oxidants, J. Geophys. Res.-Atmos., 101, 2135-2147,  1996. 

de Beek, R., Vountas, M., Rozanov, V. V., Richter, A., and Burrows, J. P.: The Ring Effect 

in the cloudy atmosphere, Geophys. Res. Lett., 28, 721-724,  2001. 

Dix, B., Baidar, S., Bresch, J. F., Hall, S. R., Schmidt, K. S., Wang, S., and Volkamer, R.: 

Detection of iodine monoxide in the tropical free troposphere, Proceedings of the 

National Academy of Sciences of the United States of America, 110, 2035-2040,  2013. 

Donguy, J. R., and Henin, C.: Surface conditions in the eastern equatorial Pacific related 

to the intertropical convergence zone of the winds, Deep-Sea Research Part a-

Oceanographic Research Papers, 27, 693-714,  1980. 

Dorf, M., Butz, A., Camy-Peyret, C., Chipperfield, M. P., Kritten, L., and Pfeilsticker, K.: 

Bromine in the tropical troposphere and stratosphere as derived from balloon-borne 

BrO observations, Atmos. Chem. Phys., 8, 7265-7271,  2008. 



Bibliography  199 

 

 

Edblom, E. C., Gyorgyi, L., Orban, M., and Epstein, I. R.: Systematic design of chemical 

oscillators. 40. A mechanism for dynamical behavior in the Landolt reaction with 

ferrocyanide, J. Am. Chem. Soc., 109, 4876-4880,  1987. 

Elderfield, H., and Truesdale, V. W.: On the biophilic nature of iodine in seawater, Earth 

Planet. Sci. Lett., 50, 105-114,  1980. 

Faria, R. D., Lengyel, I., Epstein, I. R., and Kustin, K.: Combined mechanism explaining 

nonlinear dynamics in bromine (III) and bromine (V) oxidations of iodide ion, J. Phys. 

Chem., 97, 1164-1171,  1993. 

Fayt, C., and van Roozendael, M.: QDOAS 1.00. Software User Manual, in, 2011. 

Fickert, S., Adams, J. W., and Crowley, J. N.: Activation of Br2 and BrCl via uptake of 

HOBr onto aqueous salt solutions, J. Geophys. Res.-Atmos., 104, 23719-23727,  1999. 

Finley, B. D., and Saltzman, E. S.: Observations of Cl2, Br2, and I2 in coastal marine air, 

Journal of Geophysical Research: Atmospheres, 113, D21301,  2008. 

Fish, D. J., and Jones, R. L.: Rotational Raman scattering and the Ring effect in zenith-

sky spectra, Geophys. Res. Lett., 22, 811-814,  1995. 

Flagan, R. C.: Differential Mobility Analysis of Aerosols: A Tutorial, KONA Powder Part. 

J., 26, 254-268,  2008. 

Forster, P. M., and Ramaswamy, V.: Changes in Atmospheric Constituents and in 

Radiative Forcing, in: Climate Change 2007: The Physical Science Basis. Contribution of 

Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on 

Climate Change, edited by: S. Solomon, D. Q., M. Manning, Z. Chen, M. Marquis, K.B. 

Averyt, M. Tignor, H.L. Miller, Cambridge University Press, 2007. 

Frew, N. M.: The role of organic films in air-sea gas exchange, in: The Sea Surface and 

Global Change, edited by: Liss, P. S., and Duce, R. A., Cambridge University Press, 

Cambridge, 121-172, 1997. 

Frew, N. M., Bock, E. J., Schimpf, U., Hara, T., Haußecker, H., Edson, J. B., McGillis, W. 

R., Nelson, R. K., McKenna, S. P., Uz, B. M., and Jähne, B.: Air-sea gas transfer: Its 

dependence on wind stress, small-scale roughness, and surface films, Journal of 

Geophysical Research: Oceans, 109, C08S17,  2004. 



Bibliography  200 

 

 

Friedman, A. M., and Kennedy, J. W.: The self-diffusion coefficients of potassium, 

cesium, iodide and  chloride ions in aqueous solutions, J. Am. Chem. Soc., 77, 4499-

4501,  1955. 

Frieß, U., Wagner, T., Pundt, I., Pfeilsticker, K., and Platt, U.: Spectroscopic 

measurements of tropospheric iodine oxide at Neumayer Station, Antarctica, Geophys. 

Res. Lett., 28, 1941-1944,  2001. 

Frieß, U., Deutschmann, T., Gilfedder, B. S., Weller, R., and Platt, U.: Iodine monoxide 

in the Antarctic snowpack, Atmos. Chem. Phys., 10, 2439-2456,  2010. 

Frieß, U., Chipperfield, M. P., Harder, H., Otten, C., Platt, U., Pyle, J., Wagner, T., and 

Pfeilsticker, K.: Intercomparison of measured and modelled BrO slant column amounts 

for the Arctic winter and spring 1994/95, Geophys. Res. Lett., 26, 1861-1864,  1999. 

Frieß, U., Sihler, H., Sander, R., Pohler, D., Yilmaz, S., and Platt, U.: The vertical 

distribution of BrO and aerosols in the Arctic: Measurements by active and passive 

differential optical absorption spectroscopy, J. Geophys. Res.-Atmos., 116,  2011. 

Fuchs, N. A.: The mechanics of aerosols, Pergamon Press, New York, 1964. 

Fumagalli, I., Gimeno, B. S., Velissariou, D., De Temmerman, L., and Mills, G.: Evidence 

of ozone-induced adverse effects on crops in the Mediterranean region, Atmos. 

Environ., 35, 2583-2587,  2001. 

Furneaux, K. L., Whalley, L. K., Heard, D. E., Atkinson, H. M., Bloss, W. J., Flynn, M. J., 

Gallagher, M. W., Ingham, T., Kramer, L., Lee, J. D., Leigh, R., McFiggans, G. B., Mahajan, 

A. S., Monks, P. S., Oetjen, H., Plane, J. M. C., and Whitehead, J. D.: Measurements of 

iodine monoxide at a semi polluted coastal location, Atmos. Chem. Phys., 10, 3645-

3663,  2010. 

Furrow, S.: Reactions of iodine intermediates in iodate hydrogen-peroxide oscillators, J. 

Phys. Chem., 91, 2129-2135,  1987. 

Gallagher, M. W., Beswick, K. M., and Coe, H.: Ozone deposition to coastal waters, Q. J. 

R. Meteorol. Soc., 127, 539-558,  2001. 



Bibliography  201 

 

 

Ganzeveld, L.: Atmosphere-ocean ozone exchange: A global modeling study of 

biogeochemical, atmospheric, and waterside turbulence dependencies, Glob. 

Biogeochem. Cycles, 23, GB4021,  2009. 

Garland, J. A., Elzerman, A. W., and Penkett, S. A.: The mechanism for dry deposition of 

ozone to seawater surfaces, Journal of Geophysical Research-Oceans and Atmospheres, 

85, 7488-7492,  1980. 

Garland, J. A., and Curtis, H.: Emission of iodine from the sea-surface in the presence of 

ozone, Journal of Geophysical Research-Oceans and Atmospheres, 86, 3183-3186,  

1981. 

Ghosal, S., Hemminger, J. C., Bluhm, H., Mun, B. S., Hebenstreit, E. L. D., Ketteler, G., 

Ogletree, D. F., Requejo, F. G., and Salmeron, M.: Electron spectroscopy of aqueous 

solution interfaces reveals surface enhancement of halides, Science, 307, 563-566,  

2005. 

Giauque, W. F., Hornung, E. W., Kunzler, J. E., and Rubin, T. R.: The Thermodynamic 

Properties of Aqueous Sulfuric Acid Solutions and Hydrates from 15 to 300°K.1, J. Am. 

Chem. Soc., 82, 62-70,  1960. 

Gilfedder, B. S., Petri, M., and Biester, H.: Iodine and bromine speciation in snow and 

the effect of orographically induced precipitation, Atmos. Chem. Phys., 7, 2661-2669,  

2007a. 

Gilfedder, B. S., Petri, M., and Biester, H.: Iodine speciation in rain and snow: 

Implications for the atmospheric iodine sink, J. Geophys. Res.-Atmos., 112,  2007b. 

Gilfedder, B. S., Lai, S. C., Petri, M., Biester, H., and Hoffmann, T.: Iodine speciation in 

rain, snow and aerosols, Atmos. Chem. Phys., 8, 6069-6084,  2008. 

Gilfedder, B. S., Chance, R., Dettmann, U., Lai, S. C., and Baker, A. R.: Determination of 

total and non-water soluble iodine in atmospheric aerosols by thermal extraction and 

spectrometric detection (TESI), Anal. Bioanal. Chem., 398, 519-526,  2010. 

Gladich, I., Shepson, P. B., Carignano, M. A., and Szleifer, I.: Halide Affinity for the 

Water-Air Interface in Aqueous Solutions of Mixtures of Sodium Salts, J. Phys. Chem. A, 

115, 5895-5899,  2011. 



Bibliography  202 

 

 

Goldman, J. C., Dennett, M. R., and Frew, N. M.: Surfactant effects on air-sea gas 

exchange under turbulent conditions, Deep Sea Research Part A. Oceanographic 

Research Papers, 35, 1953-1970,  1988. 

Gómez Martín, J. C., Spietz, P., and Burrows, J. P.: Spectroscopic studies of the I2/O3 

photochemistry - Part 1: Determination of the absolute absorption cross sections of 

iodine oxides of atmospheric relevance, J. Photochem. Photobiol. A-Chem., 176, 15-38,  

2005. 

Gómez Martín, J. C., Ashworth, S. H., Mahajan, A. S., and Plane, J. M. C.: 

Photochemistry of OIO: Laboratory study and atmospheric implications, Geophys. Res. 

Lett., 36, L09802,  2009. 

Gómez Martín, J. C., Blahins, J., Gross, U., Ingham, T., Goddard, A., Mahajan, A. S., 

Ubelis, A., and Saiz-Lopez, A.: In situ detection of atomic and molecular iodine using 

Resonance and Off-Resonance Fluorescence by Lamp Excitation: ROFLEX, Atmos. Meas. 

Tech., 4, 29-45,  2011. 

Gómez Martín, J. C., Mahajan, A. S., Hay, T. D., Prados-Román, C., Ordóñez, C., 

MacDonald, S. M., Plane, J. M. C., Sorribas, M., Gil, M., Paredes Mora, J. F., Agama 

Reyes, M. V., Oram, D. E., Leedham, E., and Saiz-Lopez, A.: Iodine chemistry in the 

eastern Pacific marine boundary layer, Journal of Geophysical Research: Atmospheres, 

118, 887-904,  2013. 

Gómez Martín, J. C., Galvez, O., Baeza-Romero, M. T., Ingham, T., Plane, J. M. C., and 

Blitz, M. A.: On the mechanism of iodine oxide particle formation, Phys. Chem. Chem. 

Phys.,  2013. 

Goodsite, M. E., Plane, J. M. C., and Skov, H.: A theoretical study of the oxidation of Hg0 

to HgBr2 in the troposphere, Environ. Sci. Technol., 38, 1772-1776,  2004. 

Graham, M. H., Kinlan, B. P., Druehl, L. D., Garske, L. E., and Banks, S.: Deep-water kelp 

refugia as potential hotspots of tropical marine diversity and productivity, Proceedings 

of the National Academy of Sciences of the United States of America, 104, 16576-

16580,  2007. 



Bibliography  203 

 

 

Grainger, J. F., and Ring, J.: Anomalous Fraunhofer line profiles, Nature, 193, 762-&,  

1962. 

Graves, R., Leigh, R. J., Anand, J., McNally, M., Lawrence, J., and Monks, P. S.: A Tale of 

Two Cities - HSI-DOAS Measurements of Air Quality, in, EGU General Assembly, Vienna, 

Austria, 2013. 

Gromann, K., Frie U., Peters, E., Wittrock, F., Lampel, J., Yilmaz, S., Tschritter, J., 

Sommariva, R., von Glasow, R., Quack, B., Kruger, K., Pfeilsticker, K., and Platt, U.: 

Iodine monoxide in the Western Pacific marine boundary layer, Atmospheric Chemistry 

and Physics Discussions, 12, 27475-27519,  2012. 

Groβmann, K., Frieβ, U., Peters, E., Wittrock, F., Lampel, J., Yilmaz, S., Tschritter, J., 

Sommariva, R., von Glasow, R., Quack, B., Krüger, K., Pfeilsticker, K., and Platt, U.: 

Iodine monoxide in the Western Pacific marine boundary layer, Atmos. Chem. Phys., 

13, 3363-3378,  2013. 

Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., 

Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., 

Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic 

compound emissions, J. Geophys. Res.-Atmos., 100, 8873-8892,  1995. 

Guo, Z., and Roache, N. F.: Overall mass transfer coefficient for pollutant emissions 

from small water pools under simulated indoor environmental conditions, Ann. Occup. 

Hyg., 47, 279-286,  2003. 

Hansell, D. A., Carlson, C. A., Repeta, D. J., and Schlitzer, R.: Dissolved organic matter in 

the ocean: A controversy stimulates new insights, Oceanography, 22, 202-211,  2009. 

Hausmann, M., and Platt, U.: Spectroscopic measurement of bromine oxide and ozone 

in the high Arctic during Polar Sunrise Experiment 1992, Journal of Geophysical 

Research: Atmospheres, 99, 25399-25413,  1994. 

Hay, T. D., Bodeker, G. E., Kreher, K., Schofield, R., Liley, J. B., Scherer, M., and 

McDonald, A. J.: The NIMO Monte Carlo model for box-air-mass factor and radiance 

calculations, Journal of Quantitative Spectroscopy and Radiative Transfer, 113, 721-

738,  2012. 



Bibliography  204 

 

 

Hayase, S., Yabushita, A., Kawasaki, M., Enami, S., Hoffmann, M. R., and Colussi, A. J.: 

Heterogeneous Reaction of Gaseous Ozone with Aqueous Iodide in the Presence of 

Aqueous Organic Species, J. Phys. Chem. A, 114, 6016-6021,  2010. 

Hayase, S., Yabushita, A., and Kawasaki, M.: Iodine Emission in the Presence of Humic 

Substances at the Water's Surface, J. Phys. Chem. A, 116, 5779-5783,  2012. 

Hayes, S. P., McPhaden, M. J., and Wallace, J. M.: The influence of sea-surface 

temperature on surface wind in the eastern equatorial Pacific - weekly to monthly 

variability, J. Clim., 2, 1500-1506,  1989. 

Heintzenberg, J., Covert, D. C., and Van Dingenen, R.: Size distribution and chemical 

composition of marine aerosols: a compilation and review, Tellus B, 52, 1104-1122,  

2000. 

Heue, K. P., Wagner, T., Broccardo, S. P., Walter, D., Piketh, S. J., Ross, K. E., Beirle, S., 

and Platt, U.: Direct observation of two dimensional trace gas distributions with an 

airborne Imaging DOAS instrument, Atmos. Chem. Phys., 8, 6707-6717,  2008. 

Hill, V. L., and Manley, S. L.: Release of reactive bromine and iodine from diatoms and 

its possible role in halogen transfer in polar and tropical oceans, Limnology and 

Oceanography, 54, 812-822,  2009. 

Honninger, G., and Platt, U.: Observations of BrO and its vertical distribution during 

surface ozone depletion at Alert, Atmos. Environ., 36, 2481-2489,  2002. 

Honninger, G., Bobrowski, N., Palenque, E. R., Torrez, R., and Platt, U.: Reactive 

bromine and sulfur emissions at Salar de Uyuni, Bolivia, Geophys. Res. Lett., 31,  2004a. 

Honninger, G., Leser, H., Sebastian, O., and Platt, U.: Ground-based measurements of 

halogen oxides at the Hudson Bay by active longpath DOAS and passive MAX-DOAS, 

Geophys. Res. Lett., 31,  2004b. 

Hore, D. K., Beaman, D. K., and Richmond, G. L.: Surfactant headgroup orientation at 

the air/water interface, J. Am. Chem. Soc., 127, 9356-9357,  2005. 

Hu, J. H., Shi, Q., Davidovits, P., Worsnop, D. R., Zahniser, M. S., and Kolb, C. E.: 

Reactive Uptake of Cl2(g) and Br2(g) by Aqueous Surfaces as a Function of Br- and I- Ion 



Bibliography  205 

 

 

Concentration: The Effect of Chemical Reaction at the Interface, The Journal of Physical 

Chemistry, 99, 8768-8776,  1995. 

Huang, R. J., Seitz, K., Buxmann, J., Pohler, D., Hornsby, K. E., Carpenter, L. J., Platt, U., 

and Hoffmann, T.: In situ measurements of molecular iodine in the marine boundary 

layer: the link to macroalgae and the implications for O3, IO, OIO and NO(x), Atmos. 

Chem. Phys., 10, 4823-4833,  2010. 

Huang, R. J., Thorenz, U. R., Kundel, M., Venables, D. S., Ceburnis, D., Ho, K. F., Chen, J., 

Vogel, A. L., Küpper, F. C., Smyth, P. P. A., Nitschke, U., Stengel, D. B., Berresheim, H., 

O'Dowd, C. D., and Hoffmann, T.: The seaweeds Fucus vesiculosus and Ascophyllum 

nodosum are significant contributors to coastal iodine emissions, Atmos. Chem. Phys., 

13, 5255-5264,  2013. 

Huang, Z., Ito, K., Morita, I., Yokota, K., Fukushi, K., Timerbaev, A. R., Watanabe, S., and 

Hirokawa, T.: Sensitive monitoring of iodine species in sea water using capillary 

electrophoresis: vertical profiles of dissolved iodine in the Pacific Ocean, J. Environ. 

Monit., 7, 804-808,  2005. 

Hunter, K. A., and Liss, P. S.: Input of organic material to oceans: air-sea interactions 

and organic chemical composition of the sea-surface, Mar. Chem., 5, 361-379,  1977. 

Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University Press, 

Princeton, New Jersey, USA, 1999. 

Jacobson, M. Z.: Fundamentals of Atmospheric Modeling, Second ed., Cambridge 

University Press, New York, 2005. 

Jickells, T. D., Boyd, S. S., and Knap, A. H.: Iodine cycling in the Sargasso Sea and the 

Bermuda inshore waters, Mar. Chem., 24, 61-82,  1988. 

Jickells, T. D., An, Z. S., Andersen, K. K., Baker, A. R., Bergametti, G., Brooks, N., Cao, J. J., 

Boyd, P. W., Duce, R. A., Hunter, K. A., Kawahata, H., Kubilay, N., laRoche, J., Liss, P. S., 

Mahowald, N., Prospero, J. M., Ridgwell, A. J., Tegen, I., and Torres, R.: Global iron 

connections between desert dust, ocean biogeochemistry, and climate, Science, 308, 

67-71,  2005. 



Bibliography  206 

 

 

Johnson, M. T.: A numerical scheme to calculate temperature and salinity dependent 

air-water transfer velocities for any gas, Ocean Sci., 6, 913-932,  2010. 

Jones, C. E., Hornsby, K. E., Dunk, R. M., Leigh, R. J., and Carpenter, L. J.: Coastal 

measurements of short-lived reactive iodocarbons and bromocarbons at Roscoff, 

Brittany during the RHaMBLe campaign, Atmos. Chem. Phys., 9, 8757-8769,  2009. 

Jones, C. E., Hornsby, K. E., Sommariva, R., Dunk, R. M., Von Glasow, R., McFiggans, G., 

and Carpenter, L. J.: Quantifying the contribution of marine organic gases to 

atmospheric iodine, Geophys. Res. Lett., 37,  2010. 

Kampa, M., and Castanas, E.: Human health effects of air pollution, Environmental 

Pollution, 151, 362-367,  2008. 

Karlsson, A., Auer, N., Schulz-Bull, D., and Abrahamsson, K.: Cyanobacterial blooms in 

the Baltic — A source of halocarbons, Mar. Chem., 110, 129-139,  2008. 

Kasten, F.: Falling Speed of Aerosol Particles, Journal of Applied Meteorology, 7, 944-

947,  1968. 

Keene, W. C., Khalil, M. A. K., Erickson, D. J., McCulloch, A., Graedel, T. E., Lobert, J. M., 

Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G., Midgley, P., Moore, R. M., 

Seuzaret, C., Sturges, W. T., Benkovitz, C. M., Koropalov, V., Barrie, L. A., and Li, Y. F.: 

Composite global emissions of reactive chlorine from anthropogenic and natural 

sources: Reactive Chlorine Emissions Inventory, J. Geophys. Res.-Atmos., 104, 8429-

8440,  1999. 

Keppler, F., Eiden, R., Niedan, V., Pracht, J., and Scholer, H. F.: Halocarbons produced 

by natural oxidation processes during degradation of organic matter, Nature, 403, 298-

301,  2000. 

Kern, C., Sihler, H., Vogel, L., Rivera, C., Herrera, M., and Platt, U.: Halogen oxide 

measurements at Masaya Volcano, Nicaragua using active long path differential optical 

absorption spectroscopy, Bull. Volcanol., 71, 659-670,  2009. 

Kessler, W. S.: The circulation of the eastern tropical Pacific: A review, Progress in 

Oceanography, 69, 181-217,  2006. 



Bibliography  207 

 

 

Knudsen, M., and Weber, S.: Luftwiderstand gegen die langsame Bewegung kleiner 

Kugeln, Annalen der Physik, 341, 981-994,  1911. 

Knutson, E. O., and Whitby, K. T.: Aerosol classification by electric mobility: apparatus, 

theory, and applications, J. Aerosol. Sci., 6, 443-451,  1975. 

Krol, M., and Lelieveld, J.: Can the variability in tropospheric OH be deduced from 

measurements of 1,1,1-trichloroethane (methyl chloroform)?, J. Geophys. Res.-Atmos., 

108, 11,  2003. 

Kumar, R., Saunders, R. W., Mahajan, A. S., Plane, J. M. C., and Murray, B. J.: Physical 

properties of iodate solutions and the deliquescence of crystalline I2O5 and HIO3, 

Atmos. Chem. Phys., 10, 12251-12260,  2010. 

Küpper, F. C., Carpenter, L. J., McFiggans, G. B., Palmer, C. J., Waite, T. J., Boneberg, E.-

M., Woitsch, S., Weiller, M., Abela, R., Grolimund, D., Potin, P., Butler, A., Luther, G. W., 

Kroneck, P. M. H., Meyer-Klaucke, W., and Feiters, M. C.: Iodide accumulation provides 

kelp with an inorganic antioxidant impacting atmospheric chemistry, Proceedings of 

the National Academy of Sciences, 105, 6954-6958,  2008. 

Lai, S. C., Hoffmann, T., and Xie, Z. Q.: Iodine speciation in marine aerosols along a 

30,000 km round-trip cruise path from Shanghai, China to Prydz Bay, Antarctica, 

Geophys. Res. Lett., 35,  2008. 

Lai, S. C., Williams, J., Arnold, S. R., Atlas, E. L., Gebhardt, S., and Hoffmann, T.: Iodine 

containing species in the remote marine boundary layer: A link to oceanic 

phytoplankton, Geophys. Res. Lett., 38,  2011. 

Lee, C., Kim, Y. J., Tanimoto, H., Bobrowski, N., Platt, U., Mori, T., Yamamoto, K., and 

Hong, C. S.: High ClO and ozone depletion observed in the plume of Sakurajima 

volcano, Japan, Geophys. Res. Lett., 32,  2005a. 

Lee, H., Kim, Y. J., Jung, J., Lee, C., Heue, K. P., Platt, U., Hu, M., and Zhu, T.: Spatial and 

temporal variations in NO2 distributions over Beijing, China measured by imaging 

differential optical absorption spectroscopy, J. Environ. Manage., 90, 1814-1823,  

2009a. 



Bibliography  208 

 

 

Lee, H. M., Kim, C. S., Shimada, M., and Okuyama, K.: Bipolar diffusion charging for 

aerosol nanoparticle measurement using a soft X-ray charger, J. Aerosol. Sci., 36, 813-

829,  2005b. 

Lee, J. D., Moller, S. J., Read, K. A., Lewis, A. C., Mendes, L., and Carpenter, L. J.: Year-

round measurements of nitrogen oxides and ozone in the tropical North Atlantic 

marine boundary layer, Journal of Geophysical Research: Atmospheres, 114, D21302,  

2009b. 

Lee, J. D., McFiggans, G., Allan, J. D., Baker, A. R., Ball, S. M., Benton, A. K., Carpenter, L. 

J., Commane, R., Finley, B. D., Evans, M., Fuentes, E., Furneaux, K., Goddard, A., Good, 

N., Hamilton, J. F., Heard, D. E., Herrmann, H., Hollingsworth, A., Hopkins, J. R., Ingham, 

T., Irwin, M., Jones, C. E., Jones, R. L., Keene, W. C., Lawler, M. J., Lehmann, S., Lewis, A. 

C., Long, M. S., Mahajan, A., Methven, J., Moller, S. J., Müller, K., Müller, T., 

Niedermeier, N., O'Doherty, S., Oetjen, H., Plane, J. M. C., Pszenny, A. A. P., Read, K. A., 

Saiz-Lopez, A., Saltzman, E. S., Sander, R., von Glasow, R., Whalley, L., Wiedensohler, A., 

and Young, D.: Reactive Halogens in the Marine Boundary Layer (RHaMBLe): the 

tropical North Atlantic experiments, Atmos. Chem. Phys., 10, 1031-1055,  2010. 

Leigh, R. J., Ball, S. M., Whitehead, J., Leblanc, C., Shillings, A. J. L., Mahajan, A. S., 

Oetjen, H., Lee, J. D., Jones, C. E., Dorsey, J. R., Gallagher, M., Jones, R. L., Plane, J. M. 

C., Potin, P., and McFiggans, G.: Measurements and modelling of molecular iodine 

emissions, transport and photodestruction in the coastal region around Roscoff, Atmos. 

Chem. Phys., 10, 11823-11838,  2010. 

Lengyel, I., Epstein, I. R., and Kustin, K.: Kinetics of iodine hydrolysis, Inorganic 

Chemistry, 32, 5880-5882,  1993. 

Liss, P. S., and Slater, P. G.: Flux of gases across the air-sea interface, Nature, 247, 181-

184,  1974. 

Liu, Q., Schurter, L. M., Muller, C. E., Aloisio, S., Francisco, J. S., and Margerum, D. W.: 

Kinetics and mechanisms of aqueous ozone reactions with bromide, sulfite, hydrogen 

sulfite, iodide, and nitrite ions, Inorganic Chemistry, 40, 4436-4442,  2001. 



Bibliography  209 

 

 

Logan, J. A.: Tropospheric ozone: Seasonal behavior, trends, and anthropogenic 

influence, Journal of Geophysical Research: Atmospheres, 90, 10463-10482,  1985. 

Louban, I., Bobrowski, N., Rouwet, D., Inguaggiato, S., and Platt, U.: Imaging DOAS for 

volcanological applications, Bull. Volcanol., 71, 753-765,  2009. 

Magi, L., Schweitzer, F., Pallares, C., Cherif, S., Mirabel, P., and George, C.: Investigation 

of the uptake rate of ozone and methyl hydroperoxide by water surfaces, J. Phys. 

Chem. A, 101, 4943-4949,  1997. 

Mahajan, A. S.: Reactive halogen species in the marine boundary layer, PhD, University 

of Leeds, 2009. 

Mahajan, A. S., Oetjen, H., Lee, J. D., Saiz-Lopez, A., McFiggans, G. B., and Plane, J. M. 

C.: High bromine oxide concentrations in the semi-polluted boundary layer, Atmos. 

Environ., 43, 3811-3818,  2009a. 

Mahajan, A. S., Oetjen, H., Saiz-Lopez, A., Lee, J. D., McFiggans, G. B., and Plane, J. M. 

C.: Reactive iodine species in a semi-polluted environment, Geophys. Res. Lett., 36,  

2009b. 

Mahajan, A. S., Plane, J. M. C., Oetjen, H., Mendes, L., Saunders, R. W., Saiz-Lopez, A., 

Jones, C. E., Carpenter, L. J., and McFiggans, G. B.: Measurement and modelling of 

tropospheric reactive halogen species over the tropical Atlantic Ocean, Atmos. Chem. 

Phys., 10, 4611-4624,  2010a. 

Mahajan, A. S., Shaw, M., Oetjen, H., Hornsby, K. E., Carpenter, L. J., Kaleschke, L., Tian-

Kunze, X., Lee, J. D., Moller, S. J., Edwards, P., Commane, R., Ingham, T., Heard, D. E., 

and Plane, J. M. C.: Evidence of reactive iodine chemistry in the Arctic boundary layer, J. 

Geophys. Res.-Atmos., 115, 11,  2010b. 

Mahajan, A. S., Whalley, L. K., Kozlova, E., Oetjen, H., Mendez, L., Furneaux, K. L., 

Goddard, A., Heard, D. E., Plane, J. M. C., and Saiz-Lopez, A.: DOAS observations of 

formaldehyde and its impact on the HOx balance in the tropical Atlantic marine 

boundary layer, J. Atmos. Chem., 66, 167-178,  2010c. 



Bibliography  210 

 

 

Mahajan, A. S., Sorribas, M., Gómez Martín, J. C., MacDonald, S. M., Gil, M., Plane, J. M. 

C., and Saiz-Lopez, A.: Concurrent observations of atomic iodine, molecular iodine and 

ultrafine particles in a coastal environment, Atmos. Chem. Phys., 11, 2545-2555,  2011. 

Mahajan, A. S., Martin, J. C. G., Hay, T. D., Royer, S. J., Yvon-Lewis, S., Liu, Y., Hu, L., 

Prados-Roman, C., Ordonez, C., Plane, J. M. C., and Saiz-Lopez, A.: Latitudinal 

distribution of reactive iodine in the Eastern Pacific and its link to open ocean sources, 

Atmos. Chem. Phys., 12, 11609-11617,  2012. 

Margerum, D. W., Dickson, P. N., Nagy, J. C., Kumar, K., Bowers, C. P., and Fogelman, K. 

D.: Kinetics of the iodine monochloride reaction with iodide measured by the pulsed-

accelerated-flow method, Inorganic Chemistry, 25, 4900-4904,  1986. 

Marquard, L. C., Wagner, T., and Platt, U.: Improved air mass factor concepts for 

scattered radiation differential optical absorption spectroscopy of atmospheric species, 

J. Geophys. Res.-Atmos., 105, 1315-1327,  2000. 

Martinez, M., Arnold, T., and Perner, D.: The role of bromine and chlorine chemistry 

for arctic ozone depletion events in Ny-Ålesund and comparison with model 

calculations, Ann. Geophys., 17, 941-956,  1999. 

Martino, M., Liss, P. S., and Plane, J. M. C.: The photolysis of dihalomethanes in surface 

seawater, Environ. Sci. Technol., 39, 7097-7101,  2005. 

Martino, M., Mills, G. P., Woeltjen, J., and Liss, P. S.: A new source of volatile 

organoiodine compounds in surface seawater, Geophys. Res. Lett., 36,  2009. 

Martino, M., Leze, B., Baker, A. R., and Liss, P. S.: Chemical controls on ozone 

deposition to water, Geophys. Res. Lett., 39,  2012. 

Matveev, V., Peleg, M., Rosen, D., Tov-Alper, D. S., Hebestreit, K., Stutz, J., Platt, U., 

Blake, D., and Luria, M.: Bromine oxide - ozone interaction over the Dead Sea, J. 

Geophys. Res.-Atmos., 106, 10375-10387,  2001. 

McFiggans, G., Plane, J. M. C., Allan, B. J., Carpenter, L. J., Coe, H., and O'Dowd, C.: A 

modeling study of iodine chemistry in the marine boundary layer, Journal of 

Geophysical Research: Atmospheres, 105, 14371-14385,  2000. 



Bibliography  211 

 

 

McFiggans, G., Cox, R. A., Mossinger, J. C., Allan, B. J., and Plane, J. M. C.: Active 

chlorine release from marine aerosols: Roles for reactive iodine and nitrogen species, J. 

Geophys. Res.-Atmos., 107,  2002. 

McFiggans, G., Coe, H., Burgess, R., Allan, J., Cubison, M., Alfarra, M. R., Saunders, R., 

Saiz-Lopez, A., Plane, J. M. C., Wevill, D. J., Carpenter, L. J., Rickard, A. R., and Monks, P. 

S.: Direct evidence for coastal iodine particles from Laminaria macroalgae - linkage to 

emissions of molecular iodine, Atmos. Chem. Phys., 4, 701-713,  2004. 

McTaggart, A. R., Butler, E. C. V., Haddad, P. R., and Middleton, J. H.: Iodide and iodate 

concentrations in eastern Australian subtropical waters, with iodide by ion 

chromatography, Mar. Chem., 47, 159-172,  1994. 

Meinen, J., Thieser, J., Platt, U., and Leisner, T.: Technical Note: Using a high finesse 

optical resonator to provide a long light path for differential optical absorption 

spectroscopy: CE-DOAS, Atmos. Chem. Phys., 10, 3901-3914,  2010. 

Mochida, M., Kitamori, Y., Kawamura, K., Nojiri, Y., and Suzuki, K.: Fatty acids in the 

marine atmosphere: Factors governing their concentrations and evaluation of organic 

films on sea-salt particles, J. Geophys. Res.-Atmos., 107,  2002. 

Moore, R. M., Webb, M., Tokarczyk, R., and Wever, R.: Bromoperoxidase and 

iodoperoxidase enzymes and production of halogenated methanes in marine diatom 

cultures, Journal of Geophysical Research: Oceans, 101, 20899-20908,  1996. 

Nakayama, E., Kimoto, T., Isshiki, K., Sohrin, Y., and Okazaki, S.: Determination and 

distribution of iodide- and total-iodine in the North Pacific Ocean - by using a new 

automated electrochemical method, Mar. Chem., 27, 105-116,  1989. 

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S., Liddicoat, M. I., Boutin, 

J., and Upstill-Goddard, R. C.: In situ evaluation of air-sea gas exchange 

parameterizations using novel conservative and volatile tracers, Glob. Biogeochem. 

Cycle, 14, 373-387,  2000. 

Nitschke, U., Ruth, A. A., Dixneuf, S., and Stengel, D. B.: Molecular iodine emission 

rates and photosynthetic performance of different thallus parts of Laminaria digitata 

(Phaeophyceae) during emersion, Planta, 233, 737-748,  2011. 



Bibliography  212 

 

 

Noxon, J. F.: Nitrogen dioxide in the Stratosphere and Troposphere measured by 

ground-based absorption spectroscopy, Science, 189, 547-549,  1975. 

Noxon, J. F.: Atmospheric nitrogen-fixation by lightning, Geophys. Res. Lett., 3, 463-465,  

1976. 

O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hameri, K., 

Pirjola, L., Kulmala, M., Jennings, S. G., and Hoffmann, T.: Marine aerosol formation 

from biogenic iodine emissions, Nature, 417, 632-636,  2002. 

Oetjen, H.: Measurements of halogen oxides by scattered sunlight differential optical 

absorption spectroscopy, PhD, University of Bremen, 2009. 

Oh, I. B., Byun, D. W., Kim, H. C., Kim, S., and Cameron, B.: Modeling the effect of 

iodide distribution on ozone deposition to seawater surface, Atmos. Environ., 42, 

4453-4466,  2008. 

Ordonez, C., Lamarque, J. F., Tilmes, S., Kinnison, D. E., Atlas, E. L., Blake, D. R., Santos, 

G. S., Brasseur, G., and Saiz-Lopez, A.: Bromine and iodine chemistry in a global 

chemistry-climate model: description and evaluation of very short-lived oceanic 

sources, Atmos. Chem. Phys., 12, 1423-1447,  2012. 

Pak, H., and Zaneveld, J. R.: Equatorial front in the Eastern Pacific Ocean, J. Phys. 

Oceanogr., 4, 570-578,  1974. 

Palmer, C. J., Anders, T. L., Carpenter, L. J., Küpper, F. C., and McFiggans, G. B.: Iodine 

and Halocarbon Response of Laminaria digitata to Oxidative Stress and Links to 

Atmospheric New Particle Production, Environ. Chem., 2, 282-290,  2005. 

Palmer, D. A., Ramette, R. W., and Mesmer, R. E.: Triiodide ion formation equilibrium 

and activity coefficients in aqueous solution, Journal of Solution Chemistry, 13, 673-

683,  1984. 

Pechtl, S., Schmitz, G., and von Glasow, R.: Modelling iodide – iodate speciation in 

atmospheric aerosol: Contributions of inorganic and organic iodine chemistry, Atmos. 

Chem. Phys., 7, 1381-1393,  2007. 

Pedersen, M., Collen, J., Abrahamsson, K., and Ekdahl, A.: Production of halocarbons 

from seaweeds: An oxidative stress reaction?, Sci. Mar., 60, 257-263,  1996. 



Bibliography  213 

 

 

Perliski, L. M., and Solomon, S.: On the evaluation of air mass factors for atmospheric 

near-ultraviolet and visible absorption spectroscopy, J. Geophys. Res.-Atmos., 98, 

10363-10374,  1993. 

Peters, C., Pechtl, S., Stutz, J., Hebestreit, K., Honninger, G., Heumann, K. G., Schwarz, 

A., Winterlik, J., and Platt, U.: Reactive and organic halogen species in three different 

European coastal environments, Atmos. Chem. Phys., 5, 3357-3375,  2005. 

Pfeilsticker, K., and Platt, U.: Airborne measurements during the Arctic Stratospheric 

Experiment - Observation of O3 and NO2, Geophys. Res. Lett., 21, 1375-1378,  1994. 

Plane, J. M. C., and Nien, C. F.: Differential optical absorption spectrometer for 

measuring atmospheric trace gases, Rev. Sci. Instrum., 63, 1867-1876,  1992. 

Plane, J. M. C., and Saiz-Lopez, A.: Differential Optical Absorption Spectroscopy, in: 

Analytical Techniques for Atmospheric Measurement, edited by: Heard, D. E., 

Blackwell Publishing, Oxford, 2006. 

Platt, U., Perner, D., and Patz, H. W.: Simultaneous measurement of atmospheric CH2O, 

O3, and NO2 by differential optical absorption, Journal of Geophysical Research-Oceans 

and Atmospheres, 84, 6329-6335,  1979. 

Platt, U.: Differential optical absorption spectroscopy (DOAS), in: Air monitoring by 

spectroscopy techniques, edited by: Sigrist, M. W., John Wiley, London, 27-83, 1994. 

Platt, U., Meinen, J., Pohler, D., and Leisner, T.: Broadband Cavity Enhanced 

Differential Optical Absorption Spectroscopy (CE-DOAS) - applicability and corrections, 

Atmos. Meas. Tech., 2, 713-723,  2009. 

Pommereau, J. P., and Piquard, J.: Ozone and nitrogen dioxide vertical distributions by 

UV-Visible solar occultation from balloons, Geophys. Res. Lett., 21, 1227-1230,  1994. 

Poschl, U.: Atmospheric aerosols: Composition, transformation, climate and health 

effects, Angew. Chem.-Int. Edit., 44, 7520-7540,  2005. 

Prados-Roman, C., Butz, A., Deutschmann, T., Dorf, M., Kritten, L., Minikin, A., Platt, U., 

Schlager, H., Sihler, H., Theys, N., Van Roozendael, M., Wagner, T., and Pfeilsticker, K.: 

Airborne DOAS limb measurements of tropospheric trace gas profiles: case studies on 

the profile retrieval of O-4 and BrO, Atmos. Meas. Tech., 4, 1241-1260,  2011. 



Bibliography  214 

 

 

Press, W. H., Flannery, T. S., and Vetterlinng, W. T.: Numerical recipes: The art of 

scientific computing, University Press, Cambridge, 1986. 

Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., 

McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and 

Miller, B. R.: Evidence for substantial variations of atmospheric hydroxyl radicals in the 

past two decades, Science, 292, 1882-1888,  2001. 

Puentedura, O., Gil, M., Saiz-Lopez, A., Hay, T., Navarro-Comas, M., Gomez-Pelaez, A., 

Cuevas, E., Iglesias, J., and Gomez, L.: Iodine monoxide in the north subtropical free 

troposphere, Atmos. Chem. Phys., 12, 4909-4921,  2012. 

Read, K. A., Mahajan, A. S., Carpenter, L. J., Evans, M. J., Faria, B. V. E., Heard, D. E., 

Hopkins, J. R., Lee, J. D., Moller, S. J., Lewis, A. C., Mendes, L., McQuaid, J. B., Oetjen, H., 

Saiz-Lopez, A., Pilling, M. J., and Plane, J. M. C.: Extensive halogen-mediated ozone 

destruction over the tropical Atlantic Ocean, Nature, 453, 1232-1235,  2008. 

Read, K. A., Lee, J. D., Lewis, A. C., Moller, S. J., Mendes, L., and Carpenter, L. J.: Intra-

annual cycles of NMVOC in the tropical marine boundary layer and their use for 

interpreting seasonal variability in CO, Journal of Geophysical Research: Atmospheres, 

114, D21303,  2009. 

Reiller, P., Mercier-Bion, F., Gimenez, N., Barre, N., and Miserque, F.: Iodination of 

humic acid samples from different origins, Radiochim. Acta, 94, 739-745,  2006. 

Reischl, G. P.: Measurement of ambient aerosols by the differential mobility analyzer 

method - Concepts and realization criteria for the size range between 2 nm and 500 

nm, Aerosol Sci. Technol., 14, 5-24,  1991. 

Reischl, G. P., Makela, J. M., Karch, R., and Necid, J.: Bipolar charging of ultrafine 

particles in the size range below 10 nm, J. Aerosol. Sci., 27, 931-949,  1996. 

Roberts, J. M., Osthoff, H. D., Brown, S. S., Ravishankara, A. R., Coffman, D., Quinn, P., 

and Bates, T.: Laboratory studies of products of N2O5 uptake on Cl− containing 

substrates, Geophys. Res. Lett., 36, L20808,  2009. 

Rodgers, C. D.: Inverse Methods for Atmospheric Sounding: Theory and Practice, 1st ed 

ed., World Scientific Publishing, Singapore, 2000. 



Bibliography  215 

 

 

Roscoe, H. K., Freshwater, R. A., Wolfenden, R., Jones, R. L., Fish, D. J., Harries, J. E., 

South, A. M., and Oldham, D. J.: Using stars for remote sensing of the Earth's 

stratosphere, Appl. Optics, 33, 7126-7131,  1994. 

Roscoe, H. K., Johnston, P. V., Van Roozendael, M., Richter, A., Sarkissian, A., Roscoe, J., 

Preston, K. E., Lambert, J. C., Hermans, C., Decuyper, W., Dzienus, S., Winterrath, T., 

Burrows, J., Goutail, F., Pommereau, J. P., D'Almeida, E., Hottier, J., Coureul, C., Didier, 

R., Pundt, I., Bartlett, L. M., McElroy, C. T., Kerr, J. E., Elokhov, A., Giovanelli, G., 

Ravegnani, F., Premuda, M., Kostadinov, I., Erle, F., Wagner, T., Pfeilsticker, K., 

Kenntner, M., Marquard, L. C., Gil, M., Puentedura, O., Yela, M., Arlander, D. W., 

Hoiskar, B. A. K., Tellefsen, C. W., Tornkvist, K. K., Heese, B., Jones, R. L., Aliwell, S. R., 

and Freshwater, R. A.: Slant column measurements of O3 and NO2 during the NDSC 

intercomparison of zenith-sky UV-visible spectrometers in June 1996, J. Atmos. Chem., 

32, 281-314,  1999. 

Rothman, L. S., Barbe, A., Benner, D. C., Brown, L. R., Camy-Peyret, C., Carleer, M. R., 

Chance, K., Clerbaux, C., Dana, V., Devi, V. M., Fayt, A., Flaud, J. M., Gamache, R. R., 

Goldman, A., Jacquemart, D., Jucks, K. W., Lafferty, W. J., Mandin, J. Y., Massie, S. T., 

Nemtchinov, V., Newnham, D. A., Perrin, A., Rinsland, C. P., Schroeder, J., Smith, K. M., 

Smith, M. A. H., Tang, K., Toth, R. A., Vander Auwera, J., Varanasi, P., and Yoshino, K.: 

The HITRAN molecular spectroscopic database: edition of 2000 including updates 

through 2001, J. Quant. Spectrosc. Radiat. Transf., 82, 5-44,  2003. 

Rouviere, A., and Ammann, M.: The effect of fatty acid surfactants on the uptake of 

ozone to aqueous halogenide particles, Atmos. Chem. Phys., 10, 11489-11500,  2010. 

Rouviere, A., Sosedova, Y., and Ammann, M.: Uptake of Ozone to Deliquesced KI and 

Mixed KI/NaCl Aerosol Particles, J. Phys. Chem. A, 114, 7085-7093,  2010. 

Roy, R.: Short-term variability in halocarbons in relation to phytoplankton pigments in 

coastal waters of the central eastern Arabian Sea, Estuarine, Coastal and Shelf Science, 

88, 311-321,  2010. 

Saiz-Lopez, A., and Plane, J. M. C.: Novel iodine chemistry in the marine boundary layer, 

Geophys. Res. Lett., 31,  2004a. 



Bibliography  216 

 

 

Saiz-Lopez, A., and Plane, J. M. C.: Recent applications of differential optical absorption 

spectroscopy: Halogen chemistry in the lower troposphere, J. Phys. IV, 121, 223-238,  

2004b. 

Saiz-Lopez, A., Saunders, R. W., Joseph, D. M., Ashworth, S. H., and Plane, J. M. C.: 

Absolute absorption cross-section and photolysis rate of I2, Atmos. Chem. Phys., 4, 

1443-1450,  2004c. 

Saiz-Lopez, A., Shillito, J. A., Coe, H., and Plane, J. M. C.: Measurements and modelling 

of I2, IO, OIO, BrO and NO3 in the mid-latitude marine boundary layer, Atmos. Chem. 

Phys., 6, 1513-1528,  2006. 

Saiz-Lopez, A., Chance, K., Liu, X., Kurosu, T. P., and Sander, S. P.: First observations of 

iodine oxide from space, Geophys. Res. Lett., 34,  2007a. 

Saiz-Lopez, A., Mahajan, A. S., Salmon, R. A., Bauguitte, S. J.-B., Jones, A. E., Roscoe, H. 

K., and Plane, J. M. C.: Boundary Layer Halogens in Coastal Antarctica, Science, 317, 

348-351,  2007b. 

Saiz-Lopez, A., Mahajan, A. S., Salmon, R. A., Bauguitte, S. J. B., Jones, A. E., Roscoe, H. 

K., and Plane, J. M. C.: Boundary layer halogens in coastal Antarctica, Science, 317, 

348-351,  2007c. 

Saiz-Lopez, A., Plane, J. M. C., Mahajan, A. S., Anderson, P. S., Bauguitte, S. J. B., Jones, 

A. E., Roscoe, H. K., Salmon, R. A., Bloss, W. J., Lee, J. D., and Heard, D. E.: On the 

vertical distribution of boundary layer halogens over coastal Antarctica: implications 

for O3, HOx, NOx and the Hg lifetime, Atmos. Chem. Phys., 8, 887-900,  2008. 

Saiz-Lopez, A., Plane, J. M. C., Baker, A. R., Carpenter, L. J., von Glasow, R., Gómez 

Martín, J. C., McFiggans, G., and Saunders, R. W.: Atmospheric Chemistry of Iodine, 

Chem. Rev., 112, 1773-1804,  2011. 

Saiz-Lopez, A., Lamarque, J. F., Kinnison, D. E., Tilmes, S., Ordonez, C., Orlando, J. J., 

Conley, A. J., Plane, J. M. C., Mahajan, A. S., Santos, G. S., Atlas, E. L., Blake, D. R., 

Sander, S. P., Schauffler, S., Thompson, A. M., and Brasseur, G.: Estimating the climate 

significance of halogen-driven ozone loss in the tropical marine troposphere, Atmos. 

Chem. Phys., 12, 3939-3949,  2012. 



Bibliography  217 

 

 

Sakamoto, Y., Yabushita, A., Kawasaki, M., and Enami, S.: Direct emission of I2 molecule 

and IO radical from the heterogeneous reactions of gaseous ozone with aqueous 

potassium iodide solution, J. Phys. Chem. A, 113, 7707-7713,  2009. 

Sander, R.: Compilation of Henry's Law Constants for Inorganic and Organic Species of 

Potential Importance in Environmental Chemistry, in, www.mcph-

mainz.mpg.de/~sander/res/henry.html, 1999. 

Saunders, R. W., and Plane, J. M. C.: Formation pathways and composition of iodine 

oxide ultra-fine particles, Environ. Chem., 2, 299-303,  2005. 

Saunders, R. W., and Plane, J. M. C.: Fractal growth modelling of I2O5 nanoparticles, J. 

Aerosol. Sci., 37, 1737-1749,  2006. 

Saunders, R. W., Kumar, R., Martin, J. C. G., Mahajan, A. S., Murray, B. J., and Plane, J. 

M. C.: Studies of the Formation and Growth of Aerosol from Molecular Iodine 

Precursor, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 224, 1095-1117,  2010. 

Saunders, R. W., Kumar, R., MacDonald, S. M., and Plane, J. M. C.: Insights into the 

Photochemical Transformation of Iodine in Aqueous Systems: Humic Acid 

Photosensitized Reduction of Iodate, Environ. Sci. Technol., 46, 11854-11861,  2012. 

Schaeffer, B. A., Morrison, J. M., Kamykowski, D., Feldman, G. C., Xie, L., Liu, Y. Y., 

Sweet, W., McCulloch, A., and Banks, S.: Phytoplankton biomass distribution and 

identification of productive habitats within the Galapagos Marine Reserve by MODIS, a 

surface acquisition system, and in-situ measurements, Remote Sens. Environ., 112, 

3044-3054,  2008. 

Schmitz, G.: Kinetics and mechanism of the iodate-iodide reaction and other related 

reactions, Phys. Chem. Chem. Phys., 1, 1909-1914,  1999. 

Schmitz, G.: Kinetics of the Dushman reaction at low I- concentrations, Phys. Chem. 

Chem. Phys., 2, 4041-4044,  2000. 

Schmitz, G.: Inorganic reactions of iodine(+1) in acidic solutions, Int. J. Chem. Kinet., 36, 

480-493,  2004. 

http://www.mcph-mainz.mpg.de/~sander/res/henry.html
http://www.mcph-mainz.mpg.de/~sander/res/henry.html


Bibliography  218 

 

 

Schönhardt, A., Richter, A., Wittrock, F., Kirk, H., Oetjen, H., Roscoe, H. K., and Burrows, 

J. P.: Observations of iodine monoxide columns from satellite, Atmos. Chem. Phys., 8, 

637-653,  2008. 

Schönhardt, A.: DOAS measurements of iodine monoxide from satellite, PhD, 

University of Bremen, Bremen, Germany, 2009. 

Schroeder, W. H., and Munthe, J.: Atmospheric mercury - An overview, Atmos. 

Environ., 32, 809-822,  1998. 

Sebok-Nagy, K., and Kortvelyesi, T.: Kinetics and mechanism of the hydrolytic 

disproportionation of iodine, Int. J. Chem. Kinet., 36, 596-602,  2004. 

Seinfeld, J. H., Pandis, S.N.: Atmospheric Chemistry and Physics: from air pollution to 

climate change, 2 ed., John Wiley & Sons, Hoboken, New Jersey, 2006. 

Seitz, K., Buxmann, J., Pohler, D., Sommer, T., Tschritter, J., Neary, T., O'Dowd, C., and 

Platt, U.: The spatial distribution of the reactive iodine species IO from simultaneous 

active and passive DOAS observations, Atmos. Chem. Phys., 10, 2117-2128,  2010. 

Seto, F. Y. B., and Duce, R. A.: Laboratory study of iodine enrichment on atmospheric 

sea-salt particles produced by bubbles, Journal of Geophysical Research, 77, 5339-&,  

1972. 

Shimazaki, T.: Minor Constituents in the Middle Atmosphere, Terra Scientific 

Publishing Company, Tokyo, 1985. 

Simpson, W. R., von Glasow, R., Riedel, K., Anderson, P., Ariya, P., Bottenheim, J., 

Burrows, J., Carpenter, L. J., Friess, U., Goodsite, M. E., Heard, D., Hutterli, M., Jacobi, H. 

W., Kaleschke, L., Neff, B., Plane, J., Platt, U., Richter, A., Roscoe, H., Sander, R., 

Shepson, P., Sodeau, J., Steffen, A., Wagner, T., and Wolff, E.: Halogens and their role 

in polar boundary-layer ozone depletion, Atmos. Chem. Phys., 7, 4375-4418,  2007. 

Sinreich, R., S. Coburn, B. Dix, and R. Volkamer: Ship-based detection of glyoxal over 

the remote tropical Pacific Ocean, Atmos. Chem. Phys., 10, 11359-11371,  2010. 

Sioris, C. E., and Evans, W. F. J.: Filling in of Fraunhofer and gas-absorption lines in sky 

spectra as caused by rotational Raman scattering, Appl. Optics, 38, 2706-2713,  1999. 



Bibliography  219 

 

 

Sive, B. C., Varner, R. K., Mao, H., Blake, D. R., Wingenter, O. W., and Talbot, R.: A large 

terrestrial source of methyl iodide, Geophys. Res. Lett., 34,  2007. 

Smythe-Wright, D., Boswell, S. M., Breithaupt, P., Davidson, R. D., Dimmer, C. H., and 

Eiras Diaz, L. B.: Methyl iodide production in the ocean: Implications for climate change, 

Glob. Biogeochem. Cycle, 20, GB3003,  2006. 

Smythe-Wright, D., Peckett, C., Boswell, S., and Harrison, R.: Controls on the 

production of organohalogens by phytoplankton: Effect of nitrate concentration and 

grazing, Journal of Geophysical Research: Biogeosciences, 115, G03020,  2010. 

Solomon, S., Schmeltekopf, A. L., and Sanders, R. W.: On the interpretation of zenith 

sky absorption measurements, J. Geophys. Res.-Atmos., 92, 8311-8319,  1987. 

Solomon, S., Thompson, D. W. J., Portmann, R. W., Oltmans, S. J., and Thompson, A. M.: 

On the distribution and variability of ozone in the tropical upper troposphere: 

Implications for tropical deep convection and chemical-dynamical coupling, Geophys. 

Res. Lett., 32,  2005. 

Spietz, P., Martin, J. C. G., and Burrows, J. P.: Spectroscopic studies of the I2/O3 

photochemistry - Part 2. Improved spectra of iodine oxides and analysis of the IO 

absorption spectrum, J. Photochem. Photobiol. A-Chem., 176, 50-67,  2005. 

Spokes, L. J., and Liss, P. S.: Photochemically induced redox reactions in seawater .2. 

Nitrogen and iodine, Mar. Chem., 54, 1-10,  1996. 

Steger, J. M., Collins, C. A., and Chu, P. C.: Circulation in the Archipielago de Colon 

(Galapagos Islands), November, 1993, Deep-Sea Res. Part II-Top. Stud. Oceanogr., 45, 

1093-1114,  1998. 

Stull, R. B.: An Introduction to Boundary Layer Meteorology, Kluwer Academic 

Publishers, Dordrecht, 1988. 

Stutz, J., and Platt, U.: Numerical analysis and estimation of the statistical error of 

differential optical absorption spectroscopy measurements with least-squares 

methods, Appl. Optics, 35, 6041-6053,  1996. 

Stutz, J., and Platt, U.: Improving long-path differential optical absorption spectroscopy 

with a quartz-fiber mode mixer, Appl. Optics, 36, 1105-1115,  1997. 



Bibliography  220 

 

 

Stutz, J., Ackermann, R., Fast, J. D., and Barrie, L.: Atmospheric reactive chlorine and 

bromine at the Great Salt Lake, Utah, Geophys. Res. Lett., 29,  2002. 

Stutz, J., Pikelnaya, O., Hurlock, S. C., Trick, S., Pechtl, S., and von Glasow, R.: Daytime 

OIO in the Gulf of Maine, Geophys. Res. Lett., 34, L22816,  2007. 

Stutz, J., Thomas, J. L., Hurlock, S. C., Schneider, M., von Glasow, R., Piot, M., Gorham, 

K., Burkhart, J. F., Ziemba, L., Dibb, J. E., and Lefer, B. L.: Longpath DOAS observations 

of surface BrO at Summit, Greenland, Atmos. Chem. Phys., 11, 9899-9910,  2011. 

Tang, I. N., Munkelwitz, H. R., and Lee, J. H.: Vapor-liquid equilibrium measurements 

for dilute nitric acid solutions, Atmospheric Environment (1967), 22, 2579-2585,  1988. 

Tanner, R. L., and Meng, Z.: Seasonal variations in ambient atmospheric levels of 

formaldehyde and acetaldehyde, Environ. Sci. Technol., 18, 723-726,  1984. 

Tegtmeier, S., Krüger, K., Quack, B., Atlas, E., Blake, D. R., Boenisch, H., Engel, A., 

Hepach, H., Hossaini, R., Navarro, M. A., Raimund, S., Sala, S., Shi, Q., and Ziska, F.: The 

contribution of oceanic methyl iodide to stratospheric iodine, Atmos. Chem. Phys. 

Discuss., 13, 11427-11471,  2013. 

Tervahattu, H., Juhanoja, J., and Kupiainen, K.: Identification of an organic coating on 

marine aerosol particles by TOF-SIMS, J. Geophys. Res.-Atmos., 107,  2002. 

Thalman, R., and Volkamer, R.: Inherent calibration of a blue LED-CE-DOAS instrument 

to measure iodine oxide, glyoxal, methyl glyoxal, nitrogen dioxide, water vapour and 

aerosol extinction in open cavity mode, Atmos. Meas. Tech., 3, 1797-1814,  2010. 

Thiel, M., Macaya, E. C., Acuna, E., Arntz, W. E., Bastias, H., Brokordt, K., Camus, P. A., 

Castilla, J. C., Castro, L. R., Cortes, M., Dumont, C. P., Escribano, R., Fernandez, M., 

Gajardo, J. A., Gaymer, C. F., Gomez, I., Gonzalez, A. E., Gonzalez, H. E., Haye, P. A., 

Illanes, J. E., Iriarte, J. L., Lancellotti, D. A., Luna-Jorquerai, G., Luxoroi, C., Manriquez, P. 

H., Marin, V., Munoz, P., Navarrete, S. A., Perez, E., Poulin, E., Sellanes, J., Sepulveda, H. 

H., Stotz, W., Tala, F., Thomas, A., Vargas, C. A., Vasquez, J. A., and Vega, J. M. A.: The 

Humboldt Current System of northern and central Chile, in: Oceanography and Marine 

Biology, Vol 45, Oceanography and Marine Biology, Crc Press-Taylor & Francis Group, 

Boca Raton, 195-344, 2007. 



Bibliography  221 

 

 

Thompson, A. M.: The effect of clouds on photolysis rates and ozone formation in the 

unpolluted troposphere, J. Geophys. Res.-Atmos., 89, 1341-1349,  1984. 

Thurman, E. M.: Developments in Biogeochemistry: Organic Geochemistry of Natural 

Waters, Thurman, E. M. Developments in Biogeochemistry: Organic Geochemistry of 

Natural Waters. Xii+497p. Kluwer Academic Publishers Warehouse: Fitchburg, Mass., 

USA; Martinus Nijhoff/Dr W. Junk Publishers: Dordrecht, Netherlands; Boston, Mass., 

USA, XII+497P pp., 1985. 

Tokarczyk, R., and Moore, R. M.: Production of volatile organohalogens by 

phytoplankton cultures, Geophys. Res. Lett., 21, 285-288,  1994. 

Truesdale, V. W., Canosamas, C. E., and Luther, G. W.: Disproportionation and 

reduction of molecular iodine added to seawater, Mar. Chem., 51, 55-60,  1995a. 

Truesdale, V. W., Luther, G. W., and Canosa-Mas, C. E.: Molecular iodine reduction in 

seawater: An improved rate equation considering organic compounds, Mar. Chem., 48, 

143-150,  1995b. 

Truesdale, V. W., Bale, A. J., and Woodward, E. M. S.: The meridional distribution of 

dissolved iodine in near-surface waters of the Atlantic Ocean, Progress in 

Oceanography, 45, 387-400,  2000. 

Truesdale, V. W., and Bailey, G. W.: Iodine distribution in the Southern Benguela 

system during an upwelling episode, Continental Shelf Research, 22, 39-49,  2002. 

Truesdale, V. W.: On the feasibility of some photochemical reactions of iodide in 

seawater, Mar. Chem., 104, 266-281,  2007. 

Tsukada, H., Hara, H., Iwashima, K., and Yamagata, N.: The iodine content of 

atmospheric aerosols as determined by the use of a fluorophore filter for collection, 

Bulletin of the Chemical Society of Japan, 60, 3195-3198,  1987. 

Tsunogai, S., and Henmi, T.: Iodine in the surface water of the ocean, Journal of the 

Oceanographical Society of Japan, 27, 67-72,  1971. 

Vandaele, A. C., Hermans, C., Simon, P. C., Carleer, M., Colin, R., Fally, S., Merienne, M. 

F., Jenouvrier, A., and Coquart, B.: Measurements of the NO2 absorption cross-section 



Bibliography  222 

 

 

from 42 000 cm-1 to 10 000 cm-1 (238-1000 nm) at 220 K and 294 K, Journal of 

Quantitative Spectroscopy & Radiative Transfer, 59, 171-184,  1998. 

Vingarzan, R.: A review of surface ozone background levels and trends, Atmos. Environ., 

38, 3431-3442,  2004. 

Vogt, R., Sander, R., von Glasow, R., and Crutzen, P. J.: Iodine chemistry and its role in 

halogen activation and ozone loss in the marine boundary layer: A model study, J. 

Atmos. Chem., 32, 375-395,  1999. 

Volkamer, R., Spietz, P., Burrows, J., and Platt, U.: High-resolution absorption cross-

section of glyoxal in the UV-vis and IR spectral ranges, J. Photochem. Photobiol. A-

Chem., 172, 35-46,  2005. 

Volten, H., Bergwerff, J. B., Haaima, M., Lolkema, D. E., Berkhout, A. J. C., van der Hoff, 

G. R., Potma, C. J. M., Kruit, R. J. W., van Pul, W. A. J., and Swart, D. P. J.: Two 

instruments based on differential optical absorption spectroscopy (DOAS) to measure 

accurate ammonia concentrations in the atmosphere, Atmos. Meas. Tech., 5, 413-427,  

2012. 

von Friedeburg, C., Wagner, T., Geyer, A., Kaiser, N., Vogel, B., Vogel, H., and Platt, U.: 

Derivation of tropospheric NO3 profiles using off-axis differential optical absorption 

spectroscopy measurements during sunrise and comparison with simulations, J. 

Geophys. Res.-Atmos., 107,  2002. 

von Glasow, R., Sander, R., Bott, A., and Crutzen, P. J.: Modeling halogen chemistry in 

the marine boundary layer - 1. Cloud-free MBL, J. Geophys. Res.-Atmos., 107,  2002. 

von Glasow, R., and Crutzen, P. J.: 4.02 - Tropospheric Halogen Chemistry, in: Treatise 

on Geochemistry, edited by: Editors-in-Chief:  Heinrich, D. H., and Karl, K. T., Pergamon, 

Oxford, 1-67, 2003. 

von Glasow, R., and Crutzen, P. J.: Model study of multiphase DMS oxidation with a 

focus on halogens, Atmos. Chem. Phys., 4, 589-608,  2004. 

von Glasow, R.: Atmospheric chemistry: Sun, sea and ozone destruction, Nature, 453, 

1195-1196,  2008. 



Bibliography  223 

 

 

von Gunten, U.: Ozonation of drinking water: Part I. Oxidation kinetics and product 

formation, Water Res., 37, 1443-1467,  2003. 

Vountas, M., Rozanov, V. V., and Burrows, J. P.: Ring effect: Impact of rotational Raman 

scattering on radiative transfer in earth's atmosphere, J. Quant. Spectrosc. Radiat. 

Transf., 60, 943-961,  1998. 

Wada, R., Beames, J. M., and Orr-Ewing, A. J.: Measurement of IO radical 

concentrations in the marine boundary layer using a cavity ring-down spectrometer, J. 

Atmos. Chem., 58, 69-87,  2007. 

Wagner, T., and Platt, U.: Satellite mapping of enhanced BrO concentrations in the 

troposphere, Nature, 395, 486-490,  1998. 

Wagner, T., Otten, C., Pfeilsticker, K., Pundt, I., and Platt, U.: DOAS moonlight 

observation of atmospheric NO3 in the Arctic winter, Geophys. Res. Lett., 27, 3441-

3444,  2000. 

Wagner, T., Leue, C., Wenig, M., Pfeilsticker, K., and Platt, U.: Spatial and temporal 

distribution of enhanced boundary layer BrO concentrations measured by the GOME 

instrument aboard ERS-2, J. Geophys. Res.-Atmos., 106, 24225-24235,  2001. 

Wagner, T., Dix, B., Friedeburg, C. v., Frieß, U., Sanghavi, S., Sinreich, R., and Platt, U.: 

MAX-DOAS O4 measurements: A new technique to derive information on atmospheric 

aerosols—Principles and information content, Journal of Geophysical Research: 

Atmospheres, 109, D22205,  2004. 

Wagner, T., Ibrahim, O., Sinreich, R., Friess, U., von Glasow, R., and Platt, U.: Enhanced 

tropospheric BrO over Antarctic sea ice in mid winter observed by MAX-DOAS on 

board the research vessel Polarstern, Atmos. Chem. Phys., 7, 3129-3142,  2007. 

Wagner, T., Ibrahim, O., Shaiganfar, R., and Platt, U.: Mobile MAX-DOAS observations 

of tropospheric trace gases, Atmos. Meas. Tech., 3, 129-140,  2010. 

Wallace, J. M., Mitchell, T. P., and Deser, C.: The influence of sea-surface temperature 

on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability, J. 

Clim., 2, 1492-1499,  1989. 



Bibliography  224 

 

 

Wayne, R. P., Barnes, I., Biggs, P., Burrows, J. P., Canosa-Mas, C. E., Hjorth, J., Le Bras, 

G., Moortgat, G. K., Perner, D., Poulet, G., Restelli, G., and Sidebottom, H.: The nitrate 

radical: Physics, chemistry, and the atmosphere, Atmospheric Environment. Part A. 

General Topics, 25, 1-203,  1991. 

Wayne, R. P.: Halogen oxides - radicals, sources and reservoirs in the laboratory and in 

the atmosphere - Preface, Atmos. Environ., 29, 2675,  1995. 

Wayne, R. P.: Chemistry of Atmospheres, 3 ed., Oxford University Press, Oxford, 2000. 

Weishaar, J. L., Aiken, G. R., Bergamaschi, B. A., Fram, M. S., Fujii, R., and Mopper, K.: 

Evaluation of specific ultraviolet absorbance as an indicator of the chemical 

composition and reactivity of dissolved organic carbon, Environ. Sci. Technol., 37, 

4702-4708,  2003. 

Wennberg, P.: Atmospheric chemistry - Bromine explosion, Nature, 397, 299-301,  

1999. 

Wesely, M. L., and Hicks, B. B.: A review of the current status of knowledge on dry 

deposition, Atmos. Environ., 34, 2261-2282,  2000. 

Whalley, L., Furneaux, K., Gravestock, T., Atkinson, H., Bale, C. E., Ingham, T., Bloss, W., 

and Heard, D.: Detection of iodine monoxide radicals in the marine boundary layer 

using laser induced fluorescence spectroscopy, J. Atmos. Chem., 58, 19-39,  2007. 

Whalley, L. K., Furneaux, K. L., Goddard, A., Lee, J. D., Mahajan, A., Oetjen, H., Read, K. 

A., Kaaden, N., Carpenter, L. J., Lewis, A. C., Plane, J. M. C., Saltzman, E. S., 

Wiedensohler, A., and Heard, D. E.: The chemistry of OH and HO2 radicals in the 

boundary layer over the tropical Atlantic Ocean, Atmos. Chem. Phys., 10, 1555-1576,  

2010. 

Wilmouth, D. M., Hanisco, T. F., Donahue, N. M., and Anderson, J. G.: Fourier 

transform ultraviolet spectroscopy of the A 2
3/2 <- X 2

3/2 transition of BrO, J. Phys. 

Chem. A, 103, 8935-8945,  1999. 

Winklmayr, W., Reischl, G. P., Lindner, A. O., and Berner, A.: A new electromobility 

spectrometer for the measurement of aerosol size distributions in the size range from 

1 to 1000 nm, J. Aerosol. Sci., 22, 289-296,  1991. 



Bibliography  225 

 

 

Wittrock, F., Muller, R., Richter, A., Bovensmann, H., and Burrows, J. P.: Measurements 

of iodine monoxide (IO) above Spitsbergen, Geophys. Res. Lett., 27, 1471-1474,  2000. 

Wren, J. C., Paquette, J., Sunder, S., and Ford, B. L.: Iodine chemistry in the +1 

oxidation state. 2. A Raman and UV-visible spectroscopic study of the 

disproportionation of hypoiodite in basic solutions, Can. J. Chem.-Rev. Can. Chim., 64, 

2284-2296,  1986. 

Yokouchi, Y., Nojiri, Y., Barrie, L. A., Toom-Sauntry, D., and Fujinuma, Y.: Atmospheric 

methyl iodide: High correlation with surface seawater temperature and its implications 

on the sea-to-air flux, Journal of Geophysical Research: Atmospheres, 106, 12661-

12668,  2001. 

Yokouchi, Y., Osada, K., Wada, M., Hasebe, F., Agama, M., Murakami, R., Mukai, H., 

Nojiri, Y., Inuzuka, Y., Toom-Sauntry, D., and Fraser, P.: Global distribution and 

seasonal concentration change of methyl iodide in the atmosphere, J. Geophys. Res.-

Atmos., 113,  2008. 

Zetzsch, C., and Behnke, W.: Heterogeneous photochemical sources of atomic Cl in the 

troposphere, Ber. Bunsen-Ges. Phys. Chem. Chem. Phys., 96, 488-493,  1992. 

Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and 

oxygenated organic aerosols in Pittsburgh: insights into sources and processes of 

organic aerosols, Atmos. Chem. Phys., 5, 3289-3311,  2005. 

Zingler, J., and Platt, U.: Iodine oxide in the Dead Sea Valley: Evidence for inorganic 

sources of boundary layer IO, Journal of Geophysical Research: Atmospheres, 110, 

D07307,  2005. 

 

 


