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Abstract

The thesis consists of the following chapters:

1. Springer theory.

For any projective map E → V , Chriss and Ginzburg de�ned an algebra structure

on the (Borel-Moore) homology Z := H∗(E ×V E), which we call Steinberg algebra.

(Graded) Projective and simple Z-modules are controlled by the BBD-decomposition

associated to E → V . We restrict to collapsings of unions of homogeneous vector

bundles over homogeneous spaces because we have the cellular �bration technique and

for equivariant Borel-Moore homology we can use localization to torus-�xed points.

Examples of Steinberg algebras include group rings of Weyl groups, Khovanov-Lauda-

Rouquier algebras, nil Hecke algebras.

2. Steinberg algebras.

We choose a class of Steinberg algebras and give generators and relations for them.

This fails if the homogeneous spaces are partial and not complete �ag varieties, we

call this the parabolic case.

3. The parabolic case.

In the parabolic cases, we realize the Steinberg algebra ZP as corner algebra in a

Steinberg algebra ZB associated to Borel groups (this means ZP = eZBe for an

idempotent element e ∈ ZB).

4. Monoidal categories.

We explain how to construct monoidal categories from families of collapsings of ho-

mogeneous bundles.

5. Construct collapsings.

We construct collapsing maps over given loci which are resolutions of singularities or

generic Galois coverings. For closures of homogeneous decomposition classes of the

Kronecker quiver these maps are new.

6. Quiver �ag varieties.

Quiver �ag varieties are the �bres of certain collapsings of homogeneous bundles. We

investigate when quiver �ag varieties have only �nitely many orbits and we describe

the category of �ags of quiver representations as a ∆-�ltered subcategory for the

quasi-hereditary algebra KQ⊗KAn.

7. An-equioriented.

For the An-equioriented quiver we �nd a cell decompositions of the quiver �ag vari-

eties, which are parametrized by certain multi-tableaux.
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Chapter 1

A survey on Springer theory

Summary. A Springer map is for us a union of collapsings of (complex) homogeneous

vector bundles and a Steinberg variety is the cartesian product of a Springer map with

itself. Chriss and Ginzberg constructed on the (equivariant) Borel-Moore homology and

on the (equivariant) K-theory of a Steinberg variety a convolution product making it an

associative algebra, we call this a Steinberg algebra (cp. [CG97],2.7, 5.2 for the nonequiv-

ariant case). The decomposition theorem for perverse sheaves gives the indecomposable,

projective graded modules over the Steinberg algebra. Also this convolution yields a mod-

ule structure on the respective homology groups of the �bres under the Springer maps,

which we call Springer �bre modules. In short, for us a Springer theory is the study

of a Steinberg algebra together with its graded modules.

We give two examples: Classical Springer theory and quiver-graded Springer theory.

(1) De�nitions and basic properties.

(2) Examples

(a) Classical Springer theory.

(b) Quiver-graded Springer theory.

(3) We discuss literature on the two examples.

1.1 De�nition of a Springer theory

Roughly, following the introduction of Chriss and Ginzburg's book ([CG97])1, Springer

theory is a uniform geometric construction for a wide class of (non-commutative) algebras

together with families of modules over these algebras. Examples include

(1) Group algebras of Weyl groups together with their irreducible representations,

(2) a�ne Hecke algebras together with their standard modules and irreducible represen-

tations,

1We take a more general approach, what usually is considered as Springer theory you �nd in the example
classical Springer theory. Nevertheless, our approach is still only a special case of [CG97], chapter 8.
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(3) Hecke algebras with unequal parameters,

(4) Khovanov-Lauda-Rouquier-algebras (or shortly KLR-algebras) and alternatively called

quiver Hecke algebras

(5) Quiver Schur algebras

For an algebraic group G and closed subgroup P (over C) we call G→ G/P a principal

homogeneous bundle. For a given P -variety F we have the associated bundle de�ned

by the quotient

G×P F := G× F/ ∼ , (g, f) ∼ (g′, f ′) : ⇐⇒ there is p ∈ P : (g, f) = (g′p, p−1f ′)

and G×P F → G/P, (g, f) 7→ gP . Given a representation ρ : P → Gl(F ), i.e. a morphism

of algebraic groups, we call associated bundles of the form G×P F → G/P homogeneous

vector bundles (over a homogeneous space).

De�nition 1. The uniform geometric construction in all cases is given by the following:

Given (G,Pi, V, Fi)i∈I with I some �nite set,
(∗) G a connetcted reductive group with parabolic subgroups Pi.

We also assume there exists a maximal torus T ⊂ G which is contained in every Pi.

(∗) V a �nite dimensional G-representation, Fi ⊂ V a Pi-subrepresentation of V, i ∈ I.

We identify V, Fi with the a�ne spaces having the vector spaces as C-valued points. Let

Ei := G×Pi Fi, i ∈ I and consider the following morphisms of algebraic varieties2:

E :=
⊔
i∈I Ei

π

yyttttttttttt
µ

''OOOOOOOOOOO
[(g, fi)]8

{xxxxxxxxx �

#GGGGGGGGG

V
⊔
i∈I G/Pi gfi gPi

Then, E → V ×
⊔
i∈I G/Pi, [(g, fi)] 7→ (gfi, gPi) is a closed embedding (see [Slo80b],

p.25,26), it follows that π is projective. We call the algebraic correspondence3 (E, π, µ)

Springer triple, the map π Springer map, its �bres Springer �bres. Via restriction

of E → V ×
⊔
i∈I G/Pi to π

−1(s)→ {x} ×
⊔
i∈I G/Pi one sees that all Springer �bres are

via µ closed subschemes of
⊔
i∈I G/Pi.

2algebraic variety = separated integral scheme of �nite type over a �eld

3two scheme morpisms X Z
poo q // Y are called algebraic correspondence, if p is proper and q

is �at
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We also have another induced roof-diagram

Z := E ×V E
p

yysssssssssss
m

**UUUUUUUUUUUUUUUU

V (
⊔
i∈I G/Pi)× (

⊔
i∈I G/Pi)

with p : E×VE
prE−−→ E

π−→ V projective andm : E×VE
(prE ,prE)−−−−−−→ E×E µ×µ−−−→ (

⊔
i∈I G/Pi)×

(
⊔
i∈I G/Pi). Observe, by de�nition

Z =
⊔
i,j∈I

Zi,j , Zi,j = Ei ×V Ej .

We call the roof-diagram (Z, p,m) Steinberg triple, the scheme Z Steinberg variety

(even though as a scheme Z might be neither reduced nor irreducible). But in view of our

(co-)homology choice below we only study the underlying reduced scheme and look at its

C-valued points endowed with the analytic topology.

If all parabolic groups Pi are Borel groups, the Steinberg variety Z is a cellular �bration

over
⊔
i∈I G/Pi via the map

Z
m−→
⊔
i∈I

G/Pi ×
⊔
i∈I

G/Pi
pr1−−→

⊔
i∈I

G/Pi

(see de�nition of cellular �bration in [CG97], 5.5 or subsection 8.3.5 in the Appendix.) We

choose a (co-)homology theory which can be calculated for spaces with cellular �bration

property and which has a localization to the T -�xed points theory. Let HA
∗ , A ∈ {pt, T,G}

be (A-equivariant) Borel-Moore homology. We could also choose (equivariant) K-

theory, but we just give some known results about it.

There is a natural product ∗ on HA
∗ (Z) called convolution product constructed by Chriss

and Ginzburg in [CG97].

∗ : HA
∗ (Z)×HA

∗ (Z)→ HA
∗ (Z)

(c, c′) 7→ c ∗ c′ := (q1,3)∗(p
∗
1,2(c) ∩ p∗2,3(c′))

where pa,b : E×E×E → E×E is the projection on the a, b-th factors, qa,b is the restriction

of pa,b to E ×V E ×V E, then p∗a,b(c) ∈ HA
∗ (p−1

a,b(E ×V E)) and ∩ : HA
p (X) × HA

q (Y ) →
HA
p+q−2d(X ∩ Y ) is the intersection pairing which is induced by the ∪-product in relative

singular cohomology for X,Y ⊂ M two A-equivariant closed subsets of a d-dimensional

complex manifold M (cp. [CG97], p.98, (2.6.16)).

It holds

HA
p (Zi,j) ∗HA

q (Zk,`) ⊂ δj,kHA
p+q−2ek

(Zi,`), ek = dimCEk.

We call (HA
∗ (Z), ∗) the (A-equivariant) Steinberg algebra for (G,Pi, V, Fi)i∈I . It is

naturally an graded module over HA
∗ (pt), see Appendix section ??, (6). We denote by

11



Db
A(V ) the A-equivariant derived category of V de�ned by Bernstein and Lunts in [BL94].

There is a the following identi�cation.

Theorem 1.1.1. ([CG97], chapter 8) Let A ∈ {pt, T,G} we write ei = dimCEi. There is

an isomorphism of C-algebras

HA
∗ (Z)→ Ext∗

DbA(V )
(
⊕
i∈I

(πi)∗C[ei],
⊕
i∈I

(πi)∗C[ei]),

where C is the constant sheaf associated to C on the appropriate spaces. If we set

HA
[p](Z) :=

⊕
i,j∈I

HA
ei+ej−p(Zi,j)

then HA
[∗](Z) is a graded module over H∗A(pt) = HA

−∗(pt). It is even a graded algebra over

H∗A(pt). The right hand side is naturally a graded algebra over H∗A(pt) = Ext∗
DbA(pt)

(C,C)

and the isomorphism is an isomorphism of graded H∗A(pt)-algebras. Furthermore, the

Verdier duality on Db
A(V ) induces an anti-involution on the algebra on the right hand

side.

On the left hand side the anti-involution is given by pullback along the swapping-the-

two-factors map. The proof is only given for A = pt, but as Varagnolo and Vasserot in

[Var09] observed, the same proof can be rewritten for the A-equivariant case.

1.2 Convolution modules

Compare [CG97], section 2.7. Given two subsets S1,2 ⊂ M1 ×M2, S2,3 ⊂ M2 ×M3 the

set-theoretic convolution is de�ned as

S1,2 ◦ S2,3 := {(m1,m3) | ∃ m2 ∈M2 : (m1,m2) ∈ S1,2, (m2,m3) ∈ S2,3} ⊂M1 ×M3.

Now, let Si,j ⊂ Mi ×Mj be A-equivariant locally closed subsets of smooth complex A-

varieties, let pi,j : M1 ×M2 ×M3 → Mi ×Mj be projection on the (i, j)-th factors and

assume q1,3 := p1,3|p−1
12 (S1,2)∩p−1

2,3(S2,3) is proper. Then we get a map

∗ : HA
p (S1,2)×HA

q (S2,3)→ HA
p+q−2 dimCM2

(S1,2 ◦ S2,3)

c1,2 ∗ c2,3 := (q1,3)∗(p
∗
1,2c1,2 ∩ p∗2,3c2,3).

This way we de�ned the algebra structure on the Steinberg algebra, but it also gives a

left module stucture on HA
∗ (S) for any A-variety S with Z ◦ S = S and a right module

structure when S ◦ Z = S.

(a) We choose M1 = M2 = M3 = E and embed Z = E ×V E ⊂ E × E,E = E × pt ⊂
E × E, then it holds Z ◦ E = E. If we regrade the Borel-Moore homology (and the

12



Poincare dual A-equivariant cohomology) of E as follows

HA
[p](E) :=

⊕
i∈I

HA
ei−p(Ei) (=

⊕
i∈I

Hei+p
A (Ei) =: H

[p]
A (E))

then HA
[∗](E) and H [∗](E) carry the structure of a graded left HA

[∗](Z)-module.

(b) We choose M1 = M2 = M3 = E and embed E ⊂ E ×E diagonally, then E ◦E = E,

it holds HA
(∗)(E) = H∗A(E) as graded algebras where HA

(p)(E) :=
⊕

iH
A
2ei−p(Ei) and

the ring structure on the cohomology is given by the cup product. If we take now

Z = E ×V E ⊂ E × E then E ◦ Z = Z and we get a structure as graded left

H∗A(E)-module on HA
[∗](Z).

(c) We choose M1 = M2 = M3 = E, A = pt and embed Z = E×V E ⊂ E×E, π−1(s) =

π−1(s)× pt ⊂ E × E, then it holds Z ◦ π−1(s) = E. If we regrade the Borel-Moore

homology and singular cohomology of π−1(s) as follows

H[p](π
−1(s)) :=

⊕
i∈I

Hei−p(π
−1
i (s)), H [p](π−1(s)) :=

⊕
i∈I

Hei+p(π−1
i (s))

then H[∗](π
−1(s)) and H [∗](π−1(s)) are graded left H[∗](Z)-module.

We call these the Springer �bre modules.

Similarly in all examples one can obtain a right module structure (the easy swaps are

left to the reader). Independently, one can de�ne the same graded module structure on

H∗(π
−1(s)), H∗(π−1(s)) using the description of the Steinberg algebra as Ext-algebra and

a Yoneda operation (for this see [CG97], 8.6.13, p.448 ).

There is also a result of Joshua (see [Jos98]) saying that all hypercohomology groups

H∗A(Z,F •), F • ∈ Db
A(Z) carry the structure of a left (and right) HA

∗ (Z)-module.

1.3 The Steinberg algebra

1.3.1 The Steinberg algebra HA
[∗](Z) as module over H−∗A (pt).

We set W̃ :=
⊔
i,j∈IWi,j with Wi,j := Wi \W/Wj where W is the Weyl group for (G,T )

and Wi ⊂ W is the Weyl group for (Li, T ) with Li ⊂ Pi the Levi subgoup. We will �x

representatives w ∈ G for all elements w ∈ W̃ .

Let Cw = G · (ePi, wPj) be the G-orbit in G/Pi ×G/Pi corresponding to w ∈Wi,j .

Lemma 1. (1) p : Cw ⊂ G/Pi × G/Pj
pr1−−→ G/Pi is G-equivariant, locally trivial with

�bre p−1(ePi) = PiwPj/Pj.

(2) PiwPj/Pj admits a cell decomposition into a�ne spaces via Schubert cells

xBjx
−1vwPj/Pj , v ∈Wi

13



where Bj ⊂ Pj is a Borel subgroup and x ∈ W such that xBj ⊂ Pi. In particular,

Hodd(PiwPj/Pj) = 0 and

H∗(PiwPj/Pj) =
⊕
v∈Wi

Cbi,j(v), bi,j(v) := [xBjx−1vwPj/Pj ].

It holds that deg bi,j(v) = 2`i,j(v) where `i,j(v) is the length of a minimal coset

representative in W for x−1vwWj ∈W/Wj.

(3) For A ∈ {pt, T,G} it holds HA
odd(Cw) = 0 and since G/Pi is simply connected

HA
n (Cw) =

⊕
p+q=n

Hp
A(G/Pi)⊗Hq(PiwPj/Pi),

HA
∗ (Cw) =

⊕
u∈W/Wi,v∈Wi

H∗A(pt)bi(u)⊗ bi,j(v),

where bi(u) = [BiuPi/Pi]
∗ is of degree 2 dimCG/Pi − 2`i(u) with `i(u) is the length

of a minimal coset representative for u ∈W/Wi and bi,j(v) as in (2).

Proof: See lemma 80 in the Appendix.

This implies using degeneration of Serre cohomology spectral sequences (see section in

the Appendix) the following properties for the homology of Z.

Corollary 1.3.0.1. (1) Z has a �ltration by closed G-invariant subvarieties such that

the successive complements are Zw := m−1(Cw), w ∈ W̃ and the restriction of m to

Zw is a vector bundle over Cw of rank dw (as complex vector bundle). Furthermore,

HA
n (Z) =

⊕
w∈W̃

HA
n (Zw) =

⊕
w∈W̃

HA
n−2dw(Cw)

=
⊕
i,j∈I

⊕
w∈Wi,j

⊕
u,v

H∗A(pt)bi(u)⊗ bi,j(v)

where the index set of the last direct sum is

{u ∈W/Wi, v ∈Wi | 2 dimG/Pi − 2`i(u) + 2`i,j(v) = n− 2dw}.

(2) We have Hodd(Z) = 0, Hodd(Z) = 0.

(3) Z is equivariantly formal (for T and G, for Borel-Moore homology and cohomology).

In particular, for A ∈ {T,G} the forgetful maps HA
∗ (Z)�H∗(Z) and H∗A(Z) →

H∗(Z) are surjective algebra homomorphisms. It even holds the stronger isomorphism

of C-algebras
H∗(Z) = HA

∗ (Z)/HA
<0(pt)HA

∗ (Z)

H∗(Z) = H∗A(Z)/H>0
A (pt)H∗A(Z)

14



As a consequence we get the following isomorphisms.

1) HA
∗ (Z) = H∗(Z)⊗C H

A
∗ (pt) of HA

∗ (pt)-modules

2) H∗A(Z) = H∗(Z)⊗C H
∗
A(pt) of H∗A(pt)-modules

We can see that HA
[∗](Z) has �nite dimensional graded pieces and the graded pieces

are bounded from below in negative degrees.

1.3.2 The Steinberg algebra HA
∗ (Z) and H∗A(E)

Recall from a previous section that H∗A(E) is a graded left (and right) HA
[∗](Z)-module

and that H∗A(E) has a H∗A(pt)-algebra structure with respect to the cup product, the

HA
[∗](Z)-operation is H∗A(pt)-linear.

Remark. Let qi : Ei → pt, i ∈ I, there is an isomorphism of algebras

EndH∗A(pt)(H
∗
A(E)) = HA

∗ (E × E) = Ext∗DA(pt)(
⊕
i∈I

(qi)∗C[ei],
⊕
i∈I

(qi)∗C[ei]),

the �rst equality follows from [CG97], Ex. 2.7.43, p.123, for the second: Use the Thom

isomorphism to replace E × E by a union of �ag varieties, then use theorem 1.1.1 for the

Springer map given by the projection to a point.

Furthermore, under the identi�cations, the following three graded HA
∗ (pt)-algebra homo-

morphisms are equal.

(1) The map HA
∗ (Z)→ EndH∗A(pt)(H

∗
A(E)), c 7→ (e 7→ c ∗ e).

(2) i∗ : HA
∗ (Z)→ HA

∗ (E × E) where i : Z → E × E is the natural embedding.

(3) Set Aπ :=
⊕

i∈I (πi)∗C[ei].

Ext∗DA(V )(Aπ,Aπ)→ Ext∗DA(pt)(a∗(Aπ), a∗(Aπ)),

f 7→ a∗(f)

where a : V → pt.

We do not prove this here.

Lemma 2. ([VV11], remark after Prop.3.1, p.12) Assume that T ⊂
⋂
i Pi is a maximal

torus and ZT = ET × ET , ET =
⊔
i∈I(G/Pi)

T . Let A ∈ {T,G}. The map from (1)

HA
∗ (Z)→ EndH∗A(pt)(H

∗
A(E)), c 7→ (e 7→ c ∗ e)

is an injective homomorphism of H∗A(pt)-algebras. Let t be the Lie algebra of T , then it

holds H∗G(E) ∼= C[t]⊕I , where C[t] is the ring of regular functions on the a�ne space t.

15



Proof: For G-equivariant Borel-Moore homology we claim that the following diagram is

commutative

HT
∗ (ZT )⊗C K // HT

∗ (ET × ET )⊗C K

HT
∗ (Z) //

OO

HT
∗ (E × E)

OO

HG
∗ (Z) //

OO

HG
∗ (E × E)

OO

where K = Quot(H∗T (pt)) The commutativity of the lowest square uses functoriality of

the forgetful maps. By assumption ZT = (E × E)T , the highest horizontal map is an

isomorphsim. Now, since HT
∗ (Z), HT

∗ (E × E) are free H∗T (pt)-modules, we get that the

maps HT
∗ (Z)→ HT

∗ (Z)⊗K, HT
∗ (E × E)→ HT

∗ (E × E)⊗K are injective. By the local-

ization theorem see Appendix, theorem 8.3.1 or [Bri00], lemma 1, we get the isomorphisms

HT
∗ (Z)⊗K ∼= HT

∗ (ZT )⊗K, HT
∗ (E×E)⊗K ∼= HT

∗ (ET ×ET )⊗K. That implies that the

middle horizontal map has to be injective, together with (2) from the previous remark it

implies the claim for T -equivariant Borel-Moore homology. But by the splitting principle,

i.e. the identi�cation of the G-equivariant Borel-Moore homology with the W -invariant

subspace in the T -equivariant Borel-Moore homology, the forgetful maps become the in-

clusion of the W -invariant subspace. This means the two vertical maps in the lower square

are injective. This implies that the lowest horizontal map is injective. Together, with (2)

of the previous remark the claim follows for A = G. �

The main ingredient to the previous lemma is a weak version of Goretzky's, Kottwitz'

and MacPherson's localization theorem (see [GKM98]). Similar methods are currently

developed by Gonzales for K-theory in [Gon].

The previous lemma is false for not equivariant Borel-Moore homology as the following

example shows.

Example. Let G be a reductive group with a Borel subgroup B and u be the Lie algebra

of its unipotent radical. Z := (G×B u)×g (G×B u), then it holds that the algebra H∗(Z)

can under the isomorphism in Kwon (see [Kwo09]) be identi�ed with C[t]/IW#C[W ] where

IW ⊂ C[t] is the ideal generated by the kernel of the map C[t]W → C, f 7→ f(0). The

skew ring C[t]/IW#C[W ] is de�ned as the C-vector space C[t]/IW ⊗C C[W ] with the

multiplication (f ⊗w) · (g⊗v) := fw(g)⊗wv. Furthermore, we can identify EndC(H∗(E))

via the Thom-isomorphism and the Borel map with EndC−lin(C[t]/IW ). The canonical

map identi�es with

C[t]/IW#C[W ]→ EndC−lin(C[t]/IW )

f ⊗ w 7→ (p 7→ fw(p))

This map is neither injective nor surjective. For example
∑

w∈W 1⊗ w 6= 0 in

C[t]/IW#C[W ] but its image (p 7→
∑

w∈W w(p)) is zero because
∑

w∈W w(p) ∈ IW . Be-

cause both spaces have the same C-vector space dimension, it is clear that it is also not

surjective.
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Furthermore, HA
∗ (Z) is naturally a H∗A(E)-module. In fact let ei,j := e ∈ Wi,j be the

double coset of the neutral element, then H∗A(E) ∼= HA
∗ (
⊔
i,j∈I Z

ei,j ) is even a subalgebra

of HA
∗ (Z).

Corollary 1.3.0.2. In the situation of the previous lemma, i.e. T ⊂
⋂
i Pi is a maximal

torus and ZT = ET × ET , ET =
⊔
i∈I(G/Pi)

T and let A ∈ {T,G}. There are injective

homomorphism of H∗G(pt)-algebras

HA
∗ (pt) ⊂ HA

∗ (E) ⊂ HA
∗ (Z)→ EndH∗A(pt)(H

∗
A(E)),

where the �rst inclusion is given by the pullback along the map E → pt. In particular,

H∗A(pt) is contained in the centre of HA
∗ (Z) (we only know examples where it is equal to

the centre).

Let w ∈ W̃ . Observe, that H∗A(E) already operates on HA
∗ (Zw) and the compo-

sition HA
∗ (Z) =

⊕
wH

A
∗ (Zw) is a direct sum composition of H∗A(E)-modules. Using

the Thom-isomorphism (see Appendix, subsection ??, (5)), up to a degree shift we can

also study HA
∗ (Cw) as module over H∗A(

⊔
i∈I G/Pi). Now, let ei be the idempotent in

H∗A(
⊔
i∈I G/Pi) =

⊕
i∈I H

∗
A(G/Pi) which corresponds to the projection on the i-th di-

rect summand. Since for w ∈ Wi,j it holds HA
∗ (Cw) = H∗A(G/Pi) ⊗C H∗(PiwPj/Pj)

also as H∗A(G/Pi)-module, we conclude that HA
∗ (Cw) is always a projective module over

H∗A(
⊔
i∈I G/Pi). In other words this discussion yields.

Lemma 3. (1) Let w ∈Wi,j. Each HA
∗ (Zw) is a projective graded H∗A(E)-module of the

form ⊕
v∈Wi

(H∗A(E)ei)[2dw + deg bi,j(v)],

where [d] denotes the degree shift by d. In particular, HA
∗ (Z) is a projective graded

H∗A(E)-module.

(2) If all Pi = Bi are Borel subgroups of G, then

HA
∗ (Z) =

⊕
w,j∈W×I

(
⊕
i∈I

(H∗A(E)ei)[dw,i,j ])

as graded H∗A(E)-module for certain dw,i,j ∈ Z. In particular, if we forget the grading

HA
∗ (Z) is a free H∗A(E)-module of rank #W ·#I.

1.4 Indecomposable projective graded modules over HA
[∗](Z)

and their tops for a di�erent grading

Let X be an irreducible algebraic variety, we call a decomposition X =
⋃
a∈A Sa into

�nitely many irreducible smooth locally closed subsets a weak strati�cation. Since π : E =⊔
i∈I Ei → V is a G-equivariant projective map, there exists (and we �x it) a weak strati-
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�cation into G-invariant subsets V =
⊔
a∈A Sa such that π−1(Sa)

π−→ Sa is a locally trivial4

�bration with constant �bre Fa := π−1(sa) where sa ∈ Sa one �xed point, for every a ∈ A.
(For projective maps of complex algebraic varieties one can always �nd such a weak strat-

i�cation, see [Ara01], 4.4.1-4.4.3)5

Recall that for any G-equivariant projective map of complex varieties, the decomposition

theorem holds (compare [BBD82] for the not equivariant version and [BL94] for the equiv-

ariant version). Let t run over all simple6 G-equivariant local systems Lt on some stratum

St = Sat , at ∈ A, we write ICAt := (iSt)∗(IC
A(St,Lt)[dSt ] with dSt = dimC St for the sim-

ple perverse sheaf in the category of A-equivariant perverse sheaves PervA(V ) ⊂ Db
A(V ),

see again [BL94], p. 41. Let ei = dimCEi, i ∈ I, then CEi [ei] is a simple perverse sheaf in

Db
A(E). For a graded vector space L =

⊕
d∈Z Ld we de�ne L(n) to be the graded vector

space with L(n)d := Ln+d, n ∈ Z. We see C as the graded vector space concentrated in

degree zero. For an element F • ∈ Db
A(X) for an A-variety X we write F •[n] for the (class

of the) complex (F •[n])d := F d+n, n ∈ Z. Now given F • ∈ Db
A(X) and a �nite dimensional

graded vector space L :=
⊕r

i=1 C(di) we de�ne

L⊗gr F • :=
r⊕
i=1

F •[di] ∈ Db
A(X)

The A-equivariant decomposition theorem applied to π gives⊕
i∈I

(πi)∗CEi [ei] =
⊕
t

Lt ⊗gr ICAt ∈ Db
A(V )

where the Lt :=
⊕

d∈Z Lt,d are complex �nite dimensional graded vector spaces.

Let D be the Verdier-duality on V , it holds D(π∗(C[d])) = π∗(C[d]),D(ICAt ) = ICAt∗ where

we de�ne for t = (S,L) the associated dual local system as t∗ = (S,L∗), L∗ := Hom(L,C).

This implies Lt = Lt∗ for all t.

1.4.1 Indecomposable projectives in the category of graded left HA
[∗](Z)-

modules

We set

PAt := Ext∗
DbA(V )

(ICAt ,
⊕
i∈I

(πi)∗C[ei]).

4with respect to the analytic topology
5If the image of π is irreducible, by [Ara01], theorem 1.9.10 we can re�ne this strati�cation to a (�nite)

Whitney strati�cation, but it is not clear if we can �nd a Whitney strati�cation into G-invariant subsets.
6a local system is simple if the by monodromy associated representation of the fundamental group has

no nontrivial subrepresentation. Usually this is called irreducible.
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It is a graded (left) HA
[∗](Z)-module. It is indecomposable because ICAt is simple. Clearly

it holds as left graded HA
[∗](Z)-modules

HA
[∗](Z) =

⊕
d∈Z,t

Lt,d ⊗ [
⊕
n∈Z

Extn+d
DbA(V )

(ICAt ,
⊕
i∈I

(πi)∗C[ei])]

=
⊕
d∈Z,t

Lt,d ⊗C P
A
t [d]

=
⊕
t

Lt ⊗gr PAt

that implies that PAt is a projective module and that (PAt )t is a complete set of isomorphism

classes up to shift of indecomposable projective graded HA
[∗](Z)-modules.

Lemma 4. Assume that H∗A(pt) is a graded subalgebra of the centre of HA
[∗](Z). The

elements H>0
A (pt) operate on any graded simple HA

[∗](Z)-module S by zero. In particular,

by lemma 1.3.0.1 we see that S is a graded simple modules over H[∗](Z). Any graded simple

module is �nite-dimensional and there exists up to isomorphism and shift only �nitely many

graded simple modules.

For any graded simple module S there is no nonzero degree zero homomorphism S →
S(a), a 6= 0.

Proof: By assumption that H∗A(pt) is central, we obtain that H>0
A (pt) ·S is a graded left

HA
[∗](Z)-module, clearly it is a submodule of S. Since S is simple it holds H>0

A (pt) · S is

zero or S. Assume it is S, then there exists x ∈ Hd
A(pt) for a d > 0 such that x · S 6= 0.

Since x is central, this is a submodule of S and we have x · S = S. Let y ∈ S, y 6= 0,

homogeneous. Then, it holds S = HA
[∗](Z) · y = HA

[∗](Z) · xy contradicting the fact that

there is a uniquely determined minimal nonzero degree for S. Therefore H>0
A (pt) · S = 0.

By [NO82], II.6, p.106, we know that the graded simple modules considered as modules over

the ungraded rings HA
∗ (Z), H∗(Z) are still simple modules. Since the �nite-dimensional

algebra H∗(Z) has up to isomorphism only �nitetly many simples, the claim follows.

Any nonzero degree 0 homomorphism φ : S → S(a) has to be an isomorphism. Let S =

HA
[∗](Z) ·y as before, set deg y = m. Then S(a) = HA

[∗](Z) ·φ(y), deg φ(y) = m which gives

a contradiction when considering the minimal nonzero degrees of S and S(a). �

Corollary 1.4.0.3. There is a bijection between isomorphism classes up to shift of

(1) indecomposable projective graded HA
[∗](Z)-modules

(2) indecomposable projective graded H[∗](Z)-modules

(3) simple graded H[∗](Z)-modules.

The bijection between (1) and (2) is clear from the decomposition theorem, it maps P 7→
P/H>0

A (pt)P . We pass from (3) to (2) by taking the projective cover and we pass from (2)

to (3) by taking the top (which is graded because for a �nite dimensional graded algebra the

radical is given by a graded ideal).
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Example. (due to Khovanov and Lauda, [KL09]) Let G ⊃ B ⊃ T be a reductive group

containing a Borel subgroup containing a maximal torus, Z = G/B × G/B. Then, it is

known that HG
∗ (Z) = EndC[t]W (C[t]) =: NH where W is the Weyl group associated to

(G,T ) and t = Lie(T ).

The G-equivariant pushforward (to the point) of the shift of the constant sheaf is a direct

sum of shifts of copies of the constant sheaves on the point, therefore there exist precisely

one indecomposable projective graded HG
[∗](Z)-module up to isomorphism and shift. It is

easy to see that P := C[t] is an indecomposable projective module and P/H>0
G (pt)P =

C[t]/IW is the only graded simple NH-module which is the top of P . Also, one checks

that H[∗](Z) = EndC(C[t]/IW ) is a semi-simple algebra which has up to isomorphism and

shift only the one graded simple module C[t]/IW .

In the following subsectionwe equip the Steinberg algebra with a grading by positive

integers which leads to a description of graded simple modules in terms of the multiplicity

vector spaces Lt in the BBD-decomposition theorem.

1.4.2 Simples in the category of graded �nitely generated left HA
<∗>(Z)-

modules

Given a graded vector space L, we write 〈L〉 :=
⊕

d∈Z Ld for the underlying (ungraded)

vector space. If we regrade HA
∗ (Z) as follows

HA
<n>(Z) :=

⊕
s,t

HomC(〈Lt〉, 〈Ls〉)⊗C Extn
DbA(V )

(ICAt , IC
A
s )],

in other words

HA
<∗>(Z) = Ext∗(

⊕
t

〈Lt〉 ⊗C IC
A
t ,
⊕
t

〈Lt〉 ⊗C IC
A
t )

as graded algebra. This is as an ungraded algebra isomorphic to HA
∗ (Z). With the same

arguments as in the previous section one sees that PAt := Ext∗
DbA(V )

(ICAt , π∗C) are a com-

plete representative system for the isomorphism classes of the indecomposable projective

graded HA
<∗>(Z)-modules.

We claim that there is a graded HA
<∗>(Z)-module structure on the (multiplicity-)vector

space 〈Lt〉 such that the family {〈Lt〉}t is a complete set of the isomorphism classes up to

shift of graded simple modules. Using Hom(ICAt , IC
A
s ) = Cδs,t, Extn(ICAt , IC

A
s ) = 0 for

n < 0 we get

HA
<∗>(Z) =

⊕
t

End(〈Lt〉)︸ ︷︷ ︸
deg=0

⊕
⊕
s,t

Hom(〈Lt〉, 〈Ls〉)⊗C Ext>0(ICAt , IC
A
s ).

Now, the second summand is the graded radical, i.e. the elements of degree > 0 (with
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respect to the new grading). It follows

HA
<∗>(Z)�HA

<∗>(Z)/(HA
<∗>(Z))>0 =

⊕
t

EndC(〈Lt〉).

This gives 〈Lt〉 a natural graded HA
<∗>(Z)-module structure concentrated in degree zero

(the positive degree elements in HA
<∗>(Z) operate by zero). Observe, that 〈Lt〉 does not

depend on A, i.e. in fact they are modules over HA
<∗>(Z) via the forgetful morphism

HA
<∗>(Z)→ H<∗>(Z).

That means we can instead look for the simple graded modules of H<∗>(Z).

Remark. Let H∗ be a �nite dimensional positively graded algebra such that

H0 = H∗/H>0 =
⊕
t

End(Lt)

is a semi-simple algebra. Then H>0 is the set of nilpotent elements, i.e. Jacobson radical

of H∗. Furthermore all simple and projective H∗-modules are graded modules.

* (Lt)t is the tuple of (pairwise distinct isomorphism classes of all) simple modules.

* For each t pick an et ∈ End(Lt) ⊂ H0 which corresponds to projection and then

inclusion of a one dimensional subspace of Lt.

(Pt := H∗ · et)t is the tuple of (pairwise distinct isomorphism classes of all) indecom-

posable projective modules.

We can apply this remark to H = H<∗>(Z). As a consequence we see that up to

shift (〈Lt〉)t is the tuple of (pairwise distinct isomorphism classes of all) simple graded

HA
∗ (Z)-modules.

From now on, the case where the two gradings coincide will play a special role.

Remark. The following conditions are equivalent

(1) HA
[∗](Z) = HA

<∗>(Z) as graded algebra for every A ∈ {pt, T,G}.

(1)′ HA
[∗](Z) = HA

<∗>(Z) as graded algebra for at least one A ∈ {pt, T,G}.

(2) (πi)∗C[ei] is A-equivariant perverse for every i ∈ I for every A ∈ {pt, T,G}.

(2)′ (πi)∗C[ei] is A-equivariant perverse for every i ∈ I for at least one A ∈ {pt, T,G}.

(3) πi : Ei → V is semi-small for every i ∈ I, this means by de�nition dimZi,i = ei for

every i ∈ I.

In this case, we say the Springer map is semi-small. Also, π semi-small is equivalent to

Htop(Zi,i) = H[0](Zi,i), i ∈ I. Observe, that H[0](Z) is always a subalgebra of H[∗](Z)

and in the semi-small case isomorphic to the quotient algebra H[∗](Z)/(H[∗](Z))>0. As-

sume π semi-small, then it holds 2 dimπ−1
i (s) ≤ ei − dS , i ∈ I where x ∈ S belongs to

the strati�cation and Htop(π
−1(s)) :=

⊕
i : 2 dimπ−1

i (s)=ei−dS H2 dimπ−1
i (s)(π

−1
i (s)) is a left

H[0](Z)-module via the restriction of the convolution. If I consists of a single element,

Htop(Z) = H[0](Z) and H2 dimπ−1(s)(π
−1(s)) is a H[0](Z)-module.
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Remark. If one applies the decomposition theorem to πi, i ∈ I one gets that Lt =⊕
i∈I L

(i)
t (as graded vector space) where L

(i)
t is the multiplicity vector space for ICt in

(πi)∗C[ei]. It holds {L(i)
t | L

(i)
t 6= 0} is the complete set of isomorphism classes of simple

H∗(Zi,i)-modules.

Remark. In fact, Syu Kato pointed out that the categories of �nitely generated graded

modules over HA
[∗](Z) and HA

<∗>(Z) are equivalent. This has been used in [Kat13].

Remark. Now, we know that the forgetful (=forgetting the grading) functor from �nite

dimensional graded H[∗](Z)-modules to �nite dimensional H∗(Z)-modules maps graded

simple modules to simple modules. We can use the fact that we know that simples and

graded simples are parametrized by the same set, to see: Every simple H∗(Z)-module

Lt has a grading such that it becomes a graded simple H[∗](Z)-module and every graded

simple is of this form.

For the decomposition matrix for the �nite dimensional algebra H∗(Z), there is the

following result of Chriss and Ginzburg.

Theorem 1.4.1. ([CG97], thm 8.7.5) Assume Hodd(π
−1(s)) = 0 for all x ∈ V . Then, the

following matrix multiplication holds

[P : L] = IC ·D · ICt

where all are matrices indexed by s = (S,L), t = (S′,L′) such that Lt 6= 0, Ls 6= 0 and ()t

denote the transposed matrix.

[P : L]s,t := [Ps : Lt] =
∑
k

dim Extk(ICt, ICs)

ICs,t :=
∑
k

[Hk(i∗S(ICt)) : L]

Ds,t := δS,S′
∑
k

(−1)k dimHk(S, (L′)∗ ⊗ L)

According to Kato in [Kat13], the whole theory of these algebras is reminiscent of quasi-

hereditary algebras (but we have in�nite dimensional algebras). He introduces standard

and costandard modules for HG
<∗>(Z) in [Kat13], thm 1.3, under some assumptions7.He

shows that under these assumptions, HG
<∗>(Z) has �nite global dimension (see [Kat13],

thm 3.5).

1.4.3 Springer �bre modules in the category of graded HA
? (Z)-modules

Recall, that Springer �bre modules H[∗](π
−1(s)), H [∗](π−1(s)), s ∈ V are naturally graded

modules over H[∗](Z), but if we forget about the grading and we can show that they

are actually semi-simple in H∗(Z)-mod, then, we can see them as semi-simple graded

HA
<∗>(Z)-modules for A ∈ {G,T, pt} by the previous section.

7= �nitely many orbits with connected stabilizer groups in the image of the Springer map, HG
<∗>(Z)

and the in the decomposition theorem occurring ICt are pure of weight zero

22



Let A = pt. Since the map π is locally trivial over S := Sa we �nd that

i∗S(
⊕
i∈I

Rk(πi)∗C[ei]), i!S(
⊕
i∈I

Rk(πi)∗C[ei]

are local systems on S, via monodromy they correspond to the π1(S, s)-representations

H [k](π−1(s)) =
⊕
i∈I

Hei+k(π−1
i (s)),

⊕
i∈I

Hei−k(π
−1
i (s)) = H[k](π

−1(s))

with ei := dimCEi respectively (for a �xed point s = sa ∈ S, cp. [CG97], Lemma 8.5.4).

Now, let us make the extra assumption that the image of the Springer map is irreducible

and the strati�cation {Sa}a∈A is a Whitney strati�cation (every algebraic strati�cation of

an irreducible variety can be re�ned to a Whitney strati�cation see [Ara01], thm 1.9.10,

p.30), which is totally ordered by inclusion into the closure. Let S ⊂ S′ be an incusion for

two strata S, S′, we write IndSS′(L) := i∗S ◦ H∗(IC(S′,L)), i.e. we consider the functors for

k ∈ [−dS′ ,−dS ]

IndSS′(−)k : LocSys(S′)→ LocSys(S)

L → IndSS′(L)k := i∗S ◦ Hk(IC(S′,L))

where LocSys(S) is the category of local systems on S, i.e. locally constant sheaves on S

of �nite dimensional vector spaces (for other k ∈ Z this is the zero functor). If we apply the

functor i∗S ◦Hk on the right hand side of the decomposition theorem we notice the following

(for the cohomology groups of IC-sheaves, see [Ara01], section 4.1, p.41), let t = (S′,L).

i∗SHk(ICt) =


L, if dS = dS′ , k = −dS

IndSS′(L)k if dS < dS′ , k ∈ [−dS′ ,−dS − 1]

0 else.

and

i!SHk(ICt[d]) = Hk+d(DSi∗SICt∗) = i∗SH−k−d−2dS (ICt∗)

implies

i!SHk(ICt[d]) =


L∗, if dS = dS′ , k + d = −dS

IndSS′(L∗)−k−d−2dS if dS < dS′ ,−k − d− 2dS ∈ [−dS′ ,−dS − 1]

0 else.
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where dS = dimC S. This implies

H [k](π−1(s)) =
⊕
t

⊕
d∈Z

Lt,d ⊗C i
∗
SHk+d(ICt)

=
⊕

t=(S,L)

Lt,−dS−k ⊗C L ⊕
⊕

t=(S′,L),dS<dS′

−dS−1⊕
r=−dS′

Lt,r−k ⊗C IndSS′(L)r︸ ︷︷ ︸
=:H[k](π−1(s))>S

and

H[k](π
−1(s)) =

⊕
t

⊕
d∈Z

Lt,d ⊗C i
!
SHi+d(ICt∗)

=
⊕

t=(S,L)

Lt,−dS−k ⊗C L∗ ⊕
⊕

t=(S′,L),dS<dS′

−dS−1⊕
r=−dS′

Lt,−r−2dS−k ⊗C IndSS′(L∗)r︸ ︷︷ ︸
=:H[k](π

−1(s))>S

as π1(S, s)-representations. We call the direct summands isomorphic to IndSS′(L)r, r ∈
[−dS′ ,−dS − 1] the unwanted summands. Now we can explain how you can recover from

the π1(S, s)-representations H [k](π−1(s)), k ∈ Z the data for the decomposition theorem

(i.e. the local sytems and the graded multiplicity spaces). If dS is the maximal one, it

holds

H [∗](π−1(s)) =
⊕
k∈Z

⊕
t=(S,L)

Lt,−dS−k ⊗C L

and we can recover the graded multiplicity spaces Lt with t = (S, ?) for the dense stratum

ocurring in the decomposition theorem. For arbitrary S we consider

H [∗](π−1(s))/H [∗](π−1(s))>S ∼=
⊕
k∈Z

⊕
t=(S,L)

Lt,−dS−k ⊗C L

and by induction hypothesis we know the π1(S, s)-representation H [∗](π−1(s))>S , therefore

we can recover the Lt with t = (S, ?) from the above representation.

Now assume that π is semi-small. Then, we know that Lt,d = 0 for all t = (S,L)

whenever d 6= 0. We can also restrict our attention on a direct summand (πi)∗C[ei]

for one i ∈ I and �nd the decomposition into simple perverse sheaves. That means we

only need Hei−dS (π−1
i (s)) to recover the data for the decomposition theorem. It also holds

2 dimπ−1
i (s) ≤ ei−dS , i ∈ I and sinceHei−dS (π−1

i (s)) = 0 whenever 2 dimπ−1
i (s) < ei−dS ,

we only need to consider the strata S with 2 dimπ−1
i (s) = ei − dS , then

Hei−dS (π−1
i (s)) = Htop(π−1

i (s)) 6= 0

and we call S a relevant stratum for i (∈ I). We call a stratum relevant if it is relevant

for at most one i ∈ I.
Analogously, one can replace H [k](π−1(s)) by H[−k](π

−1(s)) and stalk by costalk.
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Let s ∈ V be arbitrary. By a previous section we know thatH[∗](π
−1(s)) andH [∗](π−1(s))

are left (and right) graded H[∗](Z)-modules. The following lemma explains their special

role. Unfortunately, the following statement is only known if all strata S contain a G-orbit

G · s := O ⊂ S such that π1(O, s) = π1(S, s). For local systems on the strata this is by

monodromy the same as the assumption that all strata are G-orbits. Let C be a �nite

group, we write Simp(C) for the set of isomorphism classes of simple CC-modules and

denote by 1 ∈ Simp(C) the trivial representation8.

Lemma 5. ([CG97], Lemma 8.4.11, p.436, Lemma 3.5.3, p.170) Assume that the image

of the Springer map contains only �nitely many G-orbits.

(a) Let O = Gs ⊂ V be a G-orbit. There is an equivalence of categories between

{G-equivariant local systems on O} ↔ C(s)−mod

where C(s) = StabG(s)/(StabG(s))o is the component group of the stabilizer of s.

In particular, via monodromy also the π1(O, s)-representations which correspond to

G-equivariant local systems on O are equivalent to C(s)−mod.

(b) The C(s)-operation and the H[∗](Z)-operation on H[∗](π
−1(s)) (and on H [∗](π−1(s)))

commute.

The semi-simplicity of C(s)−mod implies that

H[∗](π
−1(s)) =

⊕
k∈Z

⊕
χ∈Simp(C(s))

(H[k](π
−1(s)))χ ⊗C χ

where Simp(C(s)) is the set of isomorphism classes of simple C(s)-modules and for any

C(s)-module M we call Mχ := HomC(s)−mod(χ,M) an isotypic component. Since the

two operation commute it holds (H[∗](π
−1(s))χ naturally has the structure of a graded

H[∗](Z)-module. But we will from now just see it as a module overH∗(Z). AsH∗(Z)−C(s)-

bimodule decomposition we can write the previous decomposition as

H[∗](π
−1(s)) =

⊕
χ∈Simp(C(s))

H∗(π
−1(s))χ � χ

where H∗(π
−1(s))χ � χ is the obvious bimodule H∗(π

−1(s))χ ⊗ χ. As an immediate con-

sequence of this we get, if Gs is a dense orbit in the image of the Springer map, then

Lt,−∗(−dGs) = H[∗](π
−1(s))χ, for t = (s, χ), χ ∈ Simp(C(s)),

in particular, H[∗](π
−1(s)) is a semisimple H∗(Z)-module (graded and not graded), even

a semisimple H∗(Z) − C(s)-bimodule. For more general orbits, we do not know if it is

semisimple. In the case of a semi-small Springer map we have the following result.

8In the literature this is called Irr(C), we use the word irreducible only for a property of topological
spaces
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Theorem 1.4.2. Assume the image of the Springer map π has only �nitely many orbits

and π is semi-small. There is a bijection between the following sets

(1) {(s, χ) | O = Gs, χ ∈ Simp(C(s)), H[dO](π
−1(s))χ 6= 0} where the s in V are in a

�nite set of points representing the G-orbits in the image of the Springer map.

(2) Simp(H<0>(Z)−mod) := simple H<0>(Z)-modules up to isomorphism

(3) Simp(HA
<∗>(Z)−modZ) := simple graded HA

<∗>(Z)-modules up to isomorphism and

shift for any A ∈ {pt, T,G}.

Between (1) and (2), it is given by (s, χ) 7→ H[dO](π
−1(s))χ. We call this bijection the

Springer correspondence.

For a relevant orbit O (for at least one i ∈ I) it holds

H[dO](π
−1(s))1 =

⊕
i : 2 dimπ−1

i (s)=ei−dO

Htop(π
−1
i (s))C(s) 6= 0

and C(s) operates on the top-dimensional irreducible components of π−1
i (s) by permutation.

This implies we get an injection

{relevant G-orbits in Im(π)} ↪→Simp(H<0>(Z)−mod)

O = Gs 7→ H[dO](π
−1(s))C(s)

sketch of proof: For k = dO look at the decomposition for H[k](π
−1(s)) and use that

Lt,d = 0 whenever d 6= 0 to see that the unwanted summands vanish. Then show that

the decomposition coincides with the second decomposition (with respect to the irre-

ducible characters of C(s)) of H[k](π
−1(s)) which gives the identi�cation of the Lt with

the H[dO](π
−1(s))χ. �

It is an open question to understand Springer �bre modules more generally. Also,

Springer correspondence hints at a hidden equivalence of categories. This functorial point

of view we investigate in the next subsection.

1.5 The Springer functor

We consider HA
[∗](Z) again with the grading from the theorem 1.1.1. Let projZHA

∗ (Z) be

the category of �nitely generated projective Z-graded left HA
[∗](Z)-modules, morphisms are

the module homomorphisms which are homogeneous of degree 0. Let PA ⊂ Db
A(X) be the

full subcategory closed under direct sums and shifts generated by ICAt , t = (S,L) be the

tuple of strata with simple local system on it which occur in the decomposition theorem

(with nonzero multiplicity spaces Lt).

The following lemma is in a special case due to Stroppel and Webster, see [SW11].
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Lemma 6. The functor

projZHA
[∗](Z)→ PA

M 7→
⊕
i∈I

(πi)∗CEi [ei]⊗HA
[∗](Z) M

is an equivalence of semisimple categories mapping PAt 7→ ICAt . We call this the Springer

functor 9.

Proof: By theorem 1.1.1 we knowHA
[∗](Z) ∼= Ext∗

DbA(V )
(
⊕

i∈I(πi)∗CEi [ei],
⊕

i∈I(πi)∗CEi [ei])
is an isomorphism of graded algebras. This makes the functor well-de�ned. The direct

sum decomposition of
⊕

i∈I(πi)∗CEi [ei] by the decomposition theorem in PA corresponds

to idempotent elements in HA
[0](Z), which correspond (up to isomorphism and shift) to

the indecomposable projective graded modules, let for example Pt = HA
[∗](Z)et. Shifts of

graded modules are mapped to shifts in PA, therefore the functor is essentially surjective.

It is fully faithful because of the mentioned equality

HomprojZHA
[∗](Z)(Pt, Ps(n)) = esH

A
[n](Z)et = HomDbA(V )(ICt, ICs[n])

�

Let PA(V ) ⊂ Db
A(V ) be the category of A-equivariant perverse sheaves on V . Assume

for a moment that the map π is semi-small. Then, we know that
⊕

i∈I(πi)∗CEi [ei] is an
object of PA(V ). In this situation the two gradings of the Steinberg algebra coincide. The

top-dimensional Borel-Moore homology Htop(Zi,i) coincides with the degree zero subalge-

bra H[0](Zi,i). We want the Springer functor to go to a category of perverse sheaves, i.e.

we do not want to allow shifts of the grading for modules. Therefore, we pass to

H[0](Z) = H<∗>(Z)/(H<∗>(Z))>0 = HA
<∗>(Z)/(HA

<∗>(Z))>0, A ∈ {pt, T,G}

and replace projective graded modules over HA
[∗](Z) by the additive category of simple

modules over H[0](Z), this equals the category H[0](Z)−mod of �nite dimensional (un-

graded) modules over H[0](Z) because the algebra is semi-simple.

In particular, it holds

H[0](Z) = Ext0
DbA(V )

(
⊕

i∈I(πi)∗CEi [di],
⊕

i∈I(πi)∗CEi [di]) = EndPA(V )(
⊕

i∈I(πi)∗CEi [di]),
A ∈ {pt, T,G}.

The following lemma is for classical Springer theory due to Dustin Clausen, cp. Thm

1.2 in [Cla08].

Lemma 7. If the Springer map π is semi-small, we have the following version of the

9This name is due to Dustin Clausen in his thesis.
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Springer functor

S : H[0](Z)−mod→ PG(V )

M 7→
⊕
i∈I

(πi)∗CEi [ei]⊗H[0](Z) M.

It holds that S is an exact functor (between abelian categories) and it is fully faithful. If ei+

ej is even for all i, j ∈ I then S identi�es H[0](Z)−mod with a semi-simple Serre subcategory

of PG(V ) (i.e. it is an exact subcategory which is also extension closed and closed under

direct summands). Furthermore it is invariant under Verdier duality on PG(V ).

Remark. Assume that the Springer map is semi-small, the image of the Springer map

contains only �nitely many G-orbits and each G-orbit is relavant and simply connected,

then the Springer functor from above induces an equivalence of categories

S : H[0](Z)−mod→ PG(Im(π)).

(The only known example for this is the classical Springer map for G = Gln, see later.)

Proof: A similar proof as in the lemma above shows that the Springer functor induces

an equivalence on the full subcategory of PG(V ) generated by �nite direct sums of direct

summands of
⊕

i∈I(πi)∗CEi [ei]. This is a semi-simple category. Assume that ei + ej is

even for all i, j ∈ I, we have to see that it is extension closed. By composition with the

forgetful functor we get a functor

H[0](Z)−mod
S−→ PG(V )

F−→ Ppt(V ) =: P(V ),

by [Cla08] the forgetful functor F is fully faithful. Now, by [Ara01], 4.2.10 the category

P(V ) of Db(V ) is closed under extensions and admissible because it is the heart of a t-

structure. By the Riemann Hilbert correspondence there exists an abelian category A (=

regular holonomic D-modules on V ) and an equivalence of triangulated categories (= the

de Rham functor)

DRV : Db(A)→ Db(V )

such that the standard t-structure onDb(A) is mapped to the perverse t-structure and it re-

stricts to an equivalence of categoriesA → P(V ). This implies that forX ∼= DRV (X ′), Y ∼=
DRV (Y ′) in P(V ) and n ∈ N0

ExtnP(V )(X,Y ) = ExtnA(X ′, Y ′) = HomDb(A)(X
′, Y ′[n]) = HomDb(V )(X,Y [n])

where the �rst and the third equality follows from the de Rham functor and the second

equality holds because it is the standard t-structure, cp. for example [GM03], p.286.
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Now, since we know

HomDb(V )(
⊕
i∈I

(πi)∗CEi [ei], (
⊕
i∈I

(πi)∗CEi [ei])[1]) = H<1>(Z) =
⊕
i,j∈I

Hei+ej−1(Z) = 0

because Hodd(Z) = 0 by lemma 1.3.0.1 and the assumption that ei + ej is even for every

i, j ∈ I. We obtain that

Ext1
P(V )(

⊕
i∈I

(πi)∗CEi [ei],
⊕
i∈I

(πi)∗CEi [ei]) = 0,

i.e. the semi-simple category generated by the direct image of the Springer map is extension

closed. �

The next section consists of concepts of classical Springer theory in the context of a

more general collapsing of a homogeneous bundle.

1.6 Orbital varieties, Springer �bres and strata in the Stein-

berg variety

In this section we work over an arbitrary algebraically closed �eld K. In the example of

classical Springer theory (see later) orbital varieties have been introduced by Spaltenstein

in [Spa77]. He proved them to be in bijection to irreducible components of Springer �bres.

This idea has been further applied by several authors (for example Reineke [Rei03], Vargas

[Var79], Melnikov and Pagnon [MP06]). We give the analogue here to an arbitrary collaps-

ing of a homogeneous bundle under the (reasonable) assumptions on the orbits Ov ⊂ V

to be isomorphic to the quotients G/Stab(v), where Stab(v) = {g ∈ G | gv = v} is the
stabilizer of v. This property can be characterized as follows.

We think this lemma is well-known (but we do not have a source for it).

Lemma 8. Let G be an algebraic group over an algebraically closed �eld K. Let V be a

G-scheme of �nite type over K. Let v ∈ V (K) and denote by Ov ⊂ V the orbit endowed

with the reduced subscheme structure. Let m : G→ Ov, g 7→ gv be the multiplication map.

Then, the following are equivalent.

1) m induces an isomorphism Ov ∼= G/Stab(v).

2) m is separable.

3) Tem : TeG→ TvOv is surjective where e ∈ G(K) is the neutral element.

Furthermore, if one of the conditions is ful�lled the map m is open and closed.

Example. In characteristic zero, the map m is always separated. Also in the example of

quiver-graded Springer theory (see a later section), for Gld-orbits in RQ(d) the property

3) is true over any algebraically closed �eld because of Voigt's lemma [Gab75], Prop. 1.1
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De�nition 2. Let (G,P, V, F ) be the construction data for a Springer theory (i.e. we

assume the �nite set I consists of a single element). Then the irreducible components of

Ov ∩ F are called orbital varieties (for v).

Lemma 9 (Reineke, [Rei03], Lemma 3.1). There is an isomorphism

G×Stab(v) π−1(v) ∼= π−1(Ov) ∼= G×P (Ov ∩ F ).

Proof: The �rst isomophism follows from lemma 77. Looking at π

π : G×P F → V, (g, f) 7→ gf

gives

π−1(Ov) = {(g, f) ∈ G×P F | gf ∈ Ov}

= {(g, f) ∈ G×P F | f ∈ Ov}

= G×P (Ov ∩ F )

�

We get the immediate corollary.

Corollary 1.6.0.1. There is an isomorphism of equivariant Chow groups tensored with Q

A
Stab(v)
j+dim Stab(v)(G× π

−1(v))⊗Z Q ∼= APj+dimP (G× (Ov ∩ F ))⊗Z Q,

where equivariant Chow groups are meant in the sense of Edidin and Graham (see [EG98a]).

Secondly, there is a more intimate relation between the topology of associated �bre

bundles and their �bres, we cite from Bongartz the following

Lemma 10. ([Bon98], Lemma 5.16) Let G be a connected algebraic group with a closed

subgroup P . Let F be a quasi-projective P -variety. Then, the map

U 7→ G×P U

induces a bijection between P -invariant subvarieties of F and G-invariant subvarieties of

G×P F . The bijection respects inclusions, closures and geometric properties like irreducibil-

ity, smoothness and normality.

This induces the bijection between the Stab(v)-invariant subvarieties of π−1(v) and

P -invariant subvarieties of Ov ∩ F .

De�nition 3. Let (G,P, F, V ) be the construction data for a Springer theory. A dense

P -orbit in F will be called a Richardson orbit.

Corollary 1.6.0.2. Let (G,P, F ) be as in the previous lemma. Then the following are

equivalent.

(1) G×P F has a dense G-orbit.
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(2) F has a dense P -orbit.

If furthermore, V is a G-representation with F ⊂ V a P -subrepresentation and there exists

v ∈ V such that GF = Ov ⊂ V , then (1) and (2) are also equivalent to

(3) π−1(v) has a dense Stab(v)-orbit.

We will see later that condition (1) in quiver-graded Springer theory can be restated

in terms of representation theory to an existence statement for a tilting module of a given

dimension vector over a certain tensor algebra (KQ ⊗KAν , see chapter 6). There is one
important case where we can always �nd a Richardson orbit.

Corollary 1.6.0.3. Let (G,P, V, F ) be the construction data for a Springer theory with

G connected. Assume that there is v ∈ V such GF = Ov and π−1(v) consists of a single

point. Then F ∩ Ov is a Richardson orbit.

Proof: Obviously (3) in the previous corollary is ful�lled, therefore also (1) and (2). As

π−1(v) is a single Stab(v)-orbit, it follows that F ∩ Ov is a single P -orbit. �

A special case of the previous corollary is the Richardson orbit theorem, cp. Carter

[Car85a], 5.2, p.132.

Coming back to the lemma 10, we can realize this bijection between the Stab(v)-invariant

subvarieties of π−1(v) and P -invariant subvarieties of Ov∩F alternatively via the following

construction given by Melnikov and Pagnon in [MP06], section 2.

Corollary 1.6.0.4. Let (G,P, V, F ) the construction data for a Springer theory. Let v ∈ V
be an element such that Stab(v) is connected. Let Gv := {g ∈ G | gv ∈ F} and

Gv

f1{{wwwwwwwww

f2 ##GGGGGGGG
g

�

�????????A

���������

Ov ∩ F π−1(v) gv gP

Then, the map U 7→ Φ(U) := f1(f−1
2 (U)) realizes the bijection between Stab(v)-invariant

subvarieties of π−1(v) and P -invariant subvarieties of Ov ∩ F respecting inclusion. It

restricts to bijections

1) between the irreducible components of π−1(v) and the irreducible components of Ov ∩
F . Furthermore, for any irreducible components C of π−1(v) it holds

dim Φ(C) = dimC + dimP − dim Stab(v).

2) Given two irreducible components C,C ′ of π−1(v) and r ∈ N0, there is an induced

bijection between the irreducible components of C ∩ C ′ of �xed codimension r in C

and irreducible components in Φ(C) ∩ Φ(C ′) of codimension r in Φ(C).

3) between Stab(v)-orbits in π−1(v) and P -orbits in Ov ∩F respecting the degeneration

order.
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Remark. In the later example of quiver-graded Springer theory, the stabilizers coincide

with the groups AutKQ(M). The algebraic group AutKQ(M) is connected since it is open

in the a�ne space EndKQ(M).

Relation between the Steinberg variety and orbital varieties

We �x (G,P, P ′, V, F, F ′) construction data for a Springer theory. We consider (Z :=

(G ×P F ) ×V (G ×P ′ F ′),m, p) with m : Z → G/P × G/P ′, p : Z → V de�ned as before.

Assume furthermore that G operates on the image of p with �nitely many orbits

Ov1 , . . . ,Ovr and the stabilizers of v1, . . . , vr are irreducible and reduced. The image of p

is the closure of the unique maximal dimensional orbit. Furthermore, the point {0} ⊂ V

is always the unique minimal dimensional orbit. We write

ZO := p−1(O), O ∈ {Ov1 , . . . ,Ovr}

Then, for O = Ov, we have ZO = G ×Stab(v) (π−1(v) × (π′)−1(v)) with π : G ×P F →
V, π′ : G ×P ′ F ′ → V the collapsing maps, together with the bijection between orbital

varieties and irreducible components of the Springer �bre we have

Remark. There are bijections between the following three sets

(1) Pairs Y1, Y2 of orbital varieties in O ∩ F and O ∩ F ′ respectively.

(2) C1 × C2 irreducible components of π−1(v)× (π′)−1(v)

(3) Irreducible components of ZO.

We keep the notation of the previous subsections. Observe that we have a G-equivariant

roof diagram

ZO ∩ Zw
pO,w

zzvvvvvvvvvv mO,w

$$IIIIIIIII

O Cw

where pO,w := p|ZO∩Zw ,mO,w := m|ZO∩Zw . Then by lemma 77, we directly get for O = Ov

Lemma 11.

G×Stab(v) [(π−1(v)× (π′)−1(v)) ∩ Cw] ∼= ZO ∩ Zw ∼= G×P∩w(P ′) [F ∩ w(F ′) ∩ O]

We get the immediate corollary.

Corollary 1.6.0.5. There is an isomorphism of equivariant Chow groups tensored with Q

A
Stab(v)
j+dim Stab(v)(G× [(π−1(v)× (π′)−1(v)) ∩ Cw])⊗Z Q

∼= A
P∩w(P ′)
j+dim[P∩w(P ′)](G× [F ∩ w(F ′) ∩ O])⊗Z Q,

where equivariant Chow groups are meant in the sense of Edidin and Graham (see [EG98a]).
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As in the previous subsection, we get an inclusion preserving bijection between the

Stab(v)-invariant subvarieties of (π−1(v) × (π′)−1(v)) ∩ Cw, G-invariant subvarieties of

ZO ∩ Zw and P ∩ w(P ′)-invariant subvarieties of F ∩ w(F ′) ∩ O.

1.7 What is Springer theory ?

One possible de�nition:

Springer theory (for (G,Pi, V, Fi)i∈I and a choice of H) is to understand

the Steinberg algebra together with its graded modules.

But I think today it is sensible to say Springer theory is the study of all categories

and algebras (and modules over it) which have a construction originating in some Springer

theory data (G,Pi, V, Fi)i∈I . Then, this includes

(1) Monoidal categories coming from multiplicative families of Steinberg algebras and

their Grothendieck rings. In particular, this includes Lusztig's categories of perverse

sheaves (see [Lus91] and the example quiver-graded Springer theory later).

(2) Noncommutative resolutions10 corresponding to the Springer map. In particular,

this includes Bezrukavnikov's noncommutative counterparts of the Springer map in

[Bez06] and Buchweitz, Leuschke and van den Bergh's articles [BLB10] and [BLB11].

(3) Categories of �ags of (KQ-)submodules for given quivers because their isomorphism

classes parametrize orbits of (quiver-graded) Springer �bres. This includes for exam-

ple Ringel's and Zhang's work on submodule categories and preprojective algebras

[RZ12]. Also certain ∆-�ltered modules studied in [BHRR99], [BH00b].

An (of course) incomplete overview can be found in the �owchart at the end of this

article.

We would also like you to observe that in the two examples we explore connections

between objects roughly related to the following triangle

Steinberg algebras

TTTTTTTTTTTTTTTT

jjjjjjjjjjjjjjj

Quantum groups Perverse sheaves

10here: This means just a tilting vector bundle on E, because this gives t-structures in the category of
coherent sheaves on E
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1.8 Classical Springer theory

This is the case of the following initial data

(∗) G an arbitrary reductive group,

(∗) P = B a Borel subgroup of G, denote its Levi decomposition by B = TU

with T maximal torus, U unipotent.

(∗) V = g the adjoint representation,

(∗) F = n := Lie(U).

We set N := Gn, i.e. the image of the Springer map, and call it the nilpotent cone. We

consider the Springer map as π : E = G×B n→ N . Explicitly, we can write the Springer

triple as

E = {(n, gB) ∈ N ×G/B | n ∈ gb := Lie(gBg−1)}

π=pr1

sshhhhhhhhhhhhhhhhhhhhhhhh

µ=pr2
++WWWWWWWWWWWWWWWWWWWWWWWW

N G/B

For G = Gln we identify Gln/B with the variety Fln of complete �ags in Cn and

E = {(A,U•) ∈ EndC(Cn)× Fln | An = 0, A(Uk) ⊂ Uk, 1 ≤ k ≤ n}.

It turns out, π can be identi�ed with the moment map of G, in particular, E ∼= T ∗(G/B)

is the cotangent bundle over G/B and π is a resolution of singularities for N . But most

importantly, this makes the Springer map a symplectic resolution of singularities and one

can use symplectic geometry to study it (see for example [CG97]).

The Steinberg variety is given by

Z = {(n, gB, hB) ∈ N ×G/B ×G/B | n ∈ gb ∩ hb}

p=pr1

ssgggggggggggggggggggggggg

m=pr2,3
++XXXXXXXXXXXXXXXXXXXXXXX

N G/B ×G/B

For G = Gln we can write it as

Z = {(A,U•, V •) ∈ EndC(Cn)× Fln × Fln |

An = 0, A(Uk) ⊂ Uk, A(V k) ⊂ V k, 1 ≤ k ≤ n}.

Recall, that we had the strati�cation by relative position Zw := m−1(G·(eB,wB)), w ∈
W where W is the Weyl group of G with respect to a maximal torus T ⊂ B. Since
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Zw → G · (eB,wB) is a vector bundle, we can easily calculate its dimension

dimZw = dimG · (eB,wB) + dim n ∩ wn

= dimG− dimB ∩ wB + dim n ∩ wn = dimG− dimT

= dimE.

We conclude that Z is equidimensional of dimension e := dimE, in particular the Springer

map is semi-small. Also we see that the irreducible components of Z are given by Zw, w ∈
W , that implies that the top-dimensional Borel-Moore homology group Htop(Z) has a C-
vector space basis given by the cycles [Zw]. In the semi-small case we know H[0](Z) =

H<0>(Z) = Htop(Z) is a sub- and quotient algebra of H∗(Z).

Example. G = Sl2, B = {
(
a b
0 a−1

)
| b ∈ C, a ∈ C \ {0}}. Then N = {(x, y, z) ∈ C3 |

x2 + zy = 0} and

E = {(A,L) ∈ N × P1 | L ⊂ kerA}

= {(
( x y
z −x

)
, [a : b]) ∈M2(C)× P1 | x2 + zy = 0, xa+ yb = 0, za− xb = 0},

the Springer map can be seen as the following picture

....
......

.......................

................
......

............

��������������������������

//////////////////////////....
....
...............

•//

This is well-known to be the crepant resolution of the A2-singularity from the MacKay

correspondence. In general, if G is semisimple of type ADE, then there exists a slice of the

nilpotent cone such that the restricted map is the crepant resolution of the corresponing

type singularity, see [Slo80b] for more details.

Theorem 1.8.1. (roughly Springer [Spr76]) There is an isomorphism of C-algebras

Htop(Z) ∼= C[W ]

[Zs] 7→ s− 1

The Springer functor (due to Clausen, [Cla08]) takes the form

CW−mod→ PG(N )

M 7→ π∗C[e]⊗CW M

and identi�es CW−mod with a semi-simple Serre subcategory of PG(N ). This implies an
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injection on simple objects, which are in PG(N ) the intersection cohomology complexes

associated to (O,L) with L a simple G-equivariant local system on an G-orbit O ⊂ N . As

a consequence we get the bijection called Springer correspondence from thm 1.4.2

Simp(W )↔ {t = (O,L) | Lt 6= 0}

= {(s, χ) | s ∈ N rep of G-orbits , χ ∈ Simp(C(s)), (Htop(π
−1(s)))χ 6= 0}

where Lt =
⊕

d Lt,d is the multiplicity vector space in the BBD-decomposition of π∗C and

Simp(W ) is the set of isomorphism classes of simple objects in CW−mod. The inverse of

the map is given by (s, χ) 7→ (Htop(π
−1(s)))χ. For this Springer map all orbits in N are

relevant, i.e. we also have an injection

{G-orbits in N} → Simp(W )

Gs 7→ Htop(π
−1(s))C(s)

Remark. We remark that there are several alternative constructions of the group opera-

tion of W on the Borel-Moore homology/ singular cohomology of the Springer �bres. In

[Ara01], section 5.5 you �nd an understandable treatment of Lusztig's approach to this

operation using intermediate extensions for perverse sheaves and Arabia provides a list of

other authors and approaches to this (�rst Springer [Spr76],[Spr78], then Kazhdan-Lusztig

[KL80], Slodowy [Slo80a], Lusztig [Lus81], Rossmann [Ros91]) and these operations di�er

between each other by at most multiplication with a sign character (see [Hot81]).

Also, Springer proves with taking (co)homology of Springer �bres with rational coe�-

cients that the simple W -representations are all even de�ned over Q, a result which our

approach does not give because the simple C(s)-modules are not necessarily all de�ned

over Q (cp. [CG97], section 3.5, p.170). In Carter's book [Car85a], p. 388, you �nd

for simple adjoint groups the component groups C(s), s ∈ N are one of the following list

(Z/2Z)r, S3, S4, S5, r ∈ N0 as a consequence he gets that the simple modules over the

group ring are already de�ned over Q.

In the introduction of the book [BBM89] you �nd for a semisimple group G a triangle

simple CW -modules

primitive ideals in U(g)

44iiiiiiiiiiiiiiiii
// G-orbits in the nilpotent cone

kkVVVVVVVVVVVVVVVVVVVV

They explain it as follows (i.e. this is a summary of a their summary).

* There is an injection of G-orbits in N into simple CW -modules by the Springer

correspondence.

* A primitive ideal in U(g) is a kernel of some simple U(g)-representation. The classi�-

cation of primitive ideals is archieved as a result of the proof of the Kazhdan-Lusztig

conjectures (see Beilinson-Bernstein [BB81], Brylinski-Kashiwara [BK81]). Any ideal
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in U(g) has an associated subvariety of g. The associated variety of a primitive ideal

is the closure of an orbit in N , this was �rst conjectured by Borho and Jantzen.

* Joseph associated to a primitive ideal a W -harmonic polynomial in C[t] (=Goldie

rank polynomial) which is a basis element of one of the simple CW -modules.

We also have to mention the following important results which use K-theory instead

of Borel-Moore homology.

1.8.1 Parametrizing simple modules over Hecke algebras.

This �eld goes back to the work of Kazhdan and Lusztig on the proof of the Deligne-

Langlands conjecture for Hecke algebras, see [KL87]. They realize simple modules over

Iwahori Hecke algebra as Grothendieck groups of equivariant (with respect to certain

groups) coherent sheaves on the Springer �bres. This is now known as Deligne-Langlands

correspondence and we call similar results which come later for di�erent Hecke algebras

still DL-correspondence.

Let G be an algebraic group and X a G-variety, let KG
0 (X) := K0(cohG(X)) be the

Grothendieck group of the category of G-equivariant coherent sheaves on X. The group

C∗ operates on the (classical) Steinberg variety Z via (n, gB, hB) · t := (t−1n, gB, hB), the

convolution product construction gives a ring structure on KG×C∗
0 (Z).

Recall, for a reductive group we �x a maximal torus and a Borel subgroup T ⊂ B ⊂ G

and call (W,S) the associated Weyl group with set of simple roots. We write X(T ) =

Hom(T,C) as an additive group and have for Y (T ) = Hom(C∗, T ) the natural perfect

pairing 〈−,−〉 : X(T ) × Y (T ) → Z, (λ, σ) 7→ m with λ ◦ σ(z) = zm, z ∈ C∗. For the

de�nition of the dual roots α∗s ∈ Y (T ), s ∈ S see [CG97], chapter 7.1, p.361.

Theorem 1.8.2. ([CG97], thm 7.2.5, thm 8.1.16 - DL-corresp. for a�ne Hecke algebras)

Let G be a connected, simply connected semi-simple group over C.

(a) It holds KG×C∗
0 (Z) ∼= H where H is the a�ne Hecke algebra associated to (W,S), i.e.,

the Z[q, q−1]-algebra generated by {eλTw | w ∈W,λ ∈ X(T ), e0 = 1} with relations

(i) (Ts+ 1)(Ts− q) = 0, s ∈ S, and TxTy = Txy for x, y ∈W with `(xy) = `(x)`(y).

(ii) The Z[q, q−1]-subalgebra spanned by eλ is isomorphis to (Z[q±])[X±1 , . . . , X
±
n ],

n = rk(T ).

(iii) For 〈λ, α∗s〉 = 0 it holds Tseλ = eλTs.

For 〈λ, α∗s〉 = 0 it holds TseλTs = qeλ.

(b) The operation of H on a simple module factors over H∗(Za), with a = (g, t) ∈ G×C∗

a semisimple element, in particular is H∗((π−1(s))g) via the convolution construction

a H- module. The operation of the component group

C(a) = StabG×C∗(a)/(StabG×C∗(a))o on H∗(π
−1(s)g) commutes with the H∗(Za)-
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operation and gives

H∗(π
−1(s)g) =

⊕
χ∈Simp(C(a))

Ka,x,χ ⊗ χ

for some H∗(Za)-modules Ka,x,χ which are called standard modules.

If t ∈ C is not a root of unity, then there is a(n explicit) bijection between

(1) {G− conj. cl. of (g, x, χ) | g ∈ Gss, gxg−1 = tx, χ ∈ Simp(C(g, t)),K(s,g),x,χ 6=
0},
where Gss ⊂ G denote the semisimple elements.

(2) Simple H-modules where q acts by multiplication with t.

All simples are constructed from the standard modules, in general it is di�cult to

determine when the candidates are nonzero. For t a root of unity there is an injection

of the set (2) in (1).

1.9 Quiver-graded Springer theory

Let Q be a �nite quiver with set of vertices Q0 and set of arrows Q1. Let us �x a dimension

vector d ∈ NQ0
0 and a sequence of dimension vectors d := (0 = d0, . . . , dν =: d), dki ≤ dk+1

i

for all i ∈ Q0. Quiver-graded Springer theory arises from the following initial data

(∗) G = Gld :=
∏
i∈Q0

Gldi ,

(∗) P = P (d) :=
∏
i∈Q0

P (d•i ) where P (d•i ) is the parabolic in Gldi �xing a

(standard) �ag V •i in Cdi with dimensions given by d•i ,

(∗) V = RQ(d) :=
∏

(i→j)∈Q1

Hom(Cdi ,Cdj) with the operation (gi)(Mi→j) = (gjMi→jg
−1
i )

is called representation space.

(∗) F = F (d) := {(Mi→j) ∈ RQ(d) | Mi→j(V
k
i ) ⊂ Vk

j , 0 ≤ k ≤ ν}

Given d and an (arbitrary) �nite set I := {d = (0 = d0, . . . , dν) | ν ∈ N, dν = d}, we
can describe the quiver-graded Springer correspondence explicitly for d ∈ I via

Ed = {(M,U•) ∈ RQ(d)× Fld | i
∀α−→ j ∈ Q1 : Mα(Uk

i ) ⊂ Uk
j , 1 ≤ k ≤ ν}

Ed

pr1

||xxxxxxxx
pr2

  BBBBBBBB

RQ(d) Fld

where Fld =
∏

i∈Q0
Fldi

and Fldi
is the variety of �ags of dimension (0, d1

i , d
2
i , . . . , d

ν
i = di)
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inside Cdi and we set E :=
⊔

d∈I Ed,

Zd,d′ := Ed ×RQ(d) Ed′

{(M,U•, V •) ∈ RQ(d)× Fld × Fld′ | i
∀α−→ j ∈ Q1 : Mα(Uk

i ) ⊂ Uk
j ,Mα(Vk

i ) ⊂ Vk
j }

Zd,d′

pr1

{{wwwwwwwww pr2,3

%%KKKKKKKKK

RQ(d) Fld × Fld′

and the Steinberg variety is Z :=
⊔

d,d′∈I Zd,d′ . This description goes back to Lusztig (cp.

for example [Lus91]). It holds

dimEd = dim Fld + dim F(d) =
∑
i∈Q0

ν−1∑
k=1

dk
i (dk+1

i − dk
i ) +

∑
(i→j)∈Q1

ν∑
k=1

(dk
i − dk−1

i )dk
j ,

We de�ne 〈d,d〉 := dimGld − dimEd and when Q is without oriented cycles this is the

Tits form for the algebra CQ⊗ CAν+1 (cp. [Wol09], Appendix)

〈d,d〉 =
ν∑
k=0

〈dk, dk〉CQ −
ν−1∑
k=0

〈dk, dk+1〉CQ.

Let {di | i ∈ I} be the set of complete dimension �ltrations of a given dimension vector

d. The (Gld-equivariant) Steinberg algebra is the quiver Hecke algebra (for Q, d). If the

quiver Q has no loops, the image of the injective map from lemma 2 has been calculated

by Varagnolo and Vasserot in [Var09]. With generators and relations of the algebra they

check that this is the same algebra as has been introduced by Khovanov and Lauda in

[KL09] (which was previously conjectured by Khovanov and Lauda). Independently, this

has been proven by Rouquier in [Rou11].

Theorem 1.9.1. (quiver Hecke algebra, [Var09], [Rou11]) Let Q be a quiver without loops

and d ∈ NQ0
0 be a �xed dimension vector. The (Gld-equivariant) quiver-graded Steinberg

algebra for complete dimension �ltrations RGd := HG
∗ (Z) for (Q, d) is as graded C-algebra

generated by

1i, i ∈ I, zi(k), i ∈ I, 1 ≤ k ≤ d, σi(s), i ∈ I, s ∈ {(1, 2), (2, 3), . . . , (d− 1, d)} =: S,

where d :=
∑

a∈Q0
da, I := Id := {(i1, . . . , id) | ik ∈ Q0,

∑d
k=1 ik = d} and we see S ⊂ Sd

as permutations of {1, . . . , d}, we also de�ne

hi((`, `+ 1)) = hi`+1,i` = #{α ∈ Q1 | α : i`+1 → i`}
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and let

deg 1i = 0, deg zi(k) = 2, deg σi((`, `+ 1)) =

2hi((`, `+ 1))− 2 , if i` = i`+1

2hi((`, `+ 1)) , if i` 6= i`+1

For s = (k, k + 1), i = (i1, . . . , id) we write is := (i1, . . . , ik+1, ik, . . . , id).

The following relations hold.

(1) ( orthogonal idempotents)

1i1j = δi,j1i,

1iσi(s)1is = σi(s)

1izi(k)1i = zi(k)

(2) (polynomial subalgebras)

zi(k)zi(k
′) = zi(k

′)zi(k)

(3) For s = (k, k + 1), i = (i1, . . . , id) we set

αs := αi,s := zi(k)− zi(k + 1)

if it is clear from the context which i is meant.

σi(s)σis(s) =

0, if is = i

(−1)his(s)α
hi(s)+his(s)
s , if is 6= i.

(4) ( straightening rule)

For s = (`, `+ 1) we set

s(zi(k)) =


zi(k + 1), if k = `

zi(k − 1), if k = `+ 1

zi(k), else.

σi(s)zis(k)− s(zis(k))σi(s) =


−1i, if is = i, s = (k, k + 1)

1i, if is = i, s = (k − 1, k)

0, , if is 6= i.

(5) (braid relation)

Let s, t ∈ S, st = ts, then

σi(s)σis(t) = σi(t)σit(s).
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Let i ∈ I, s = (k, k+1), t = (k+1, k+2). We set s(αt) := (zi(k)−zi(k+2)) =: t(αs)

σi(s)σis(t)σist(s)− σi(t)σit(s)σits(t) =

Ps,t if ists = i, is 6= i, it 6= i

0, else.

where

Ps,t := αhi(s)s

α
his(s)
t − (−1)his(s)α

his(s)
s

αs + αt
− αhis(s)t

α
hi(s)
s − (−1)hi(s)α

hi(s)
t

αs + αt

is a polynomial in zi(k), zi(k + 1), zi(k + 2).

We call this the quiver Hecke algebra for Q, d.

Using the degeneration of the spectral sequence argument from lemma 1.3.0.1 we get

Corollary 1.9.1.1. Let Q be a quiver without loops and d ∈ NQ0
0 . The not-equivariant

Steinberg algebra Rd := H[∗](Z) is the graded C-algebra generated by

1i, i ∈ I, zi(k), i ∈ I, 1 ≤ k ≤ d σi(s), i ∈ I, s ∈ {(1, 2), (2, 3), . . . , (d− 1, d)}

with the same degrees and relations as RGd and the additional relations

P (zi(1), . . . , zi(n)) = 0, i ∈ I, for all P ∈ C[x1, . . . xd]
Sd .

where Sd = Sdi1 × · · · × Sdin with Q0 = {i1, . . . , in} is the Weyl group of G = Gld

What about Springer �bre modules and the decomposition theorem?

This is not investigated yet. We make some remarks on it.

Remark. (1) If Q is a Dynkin quiver11, the images of all quiver-graded Springer maps

have �nitely many orbits. For all quiver Q and dimension vector d ∈ NQ0
0 all Gld-

orbits in RQ(d) are connected, i.e. C(s) = {e} for all x ∈ RQ(d).

(2) In the case of �nitely many orbits in the image of the Springer map, semi-smallness

of the Springer map (associated to a dimension �ltration d of a dimension vector d)

is equivalent to for every s ∈ RQ(d) it holds

2 dimπ−1
d (s) ≤ dim Ext1

CQ(s, s) = codimRQ(d)Gs.

It is very rarely ful�lled.

(3) If Q is a Dynkin quiver and d ∈ NQ0
0 a complete set of the isomorphism classes of

simple modules for the quiver Coxeter algebra Rd is parametrized by the G := Gld-

orbits in RQ(d). For s ∈ RQ(d) we have a simple module of the form

LGs :=
⊕
d

L
(d)
Gs

11i.e. the underlying graph is a Dynkin diagram of type An, Dn, E6/7/8.
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where d runs over all complete dimension �ltrations of d and L
(d)
Gs is the multiplicity

vector space occurring in the decomposition of (πd)∗C[ed]. By the work of Reineke

(see [Rei03]) there exists for every s ∈ RQ(d) a complete dimension �ltration d

such that Gs is dense in the image of πd. This implies by the considerations from

subsection 1.4.3 that

L
(d)
Gs,−∗(−dGs) = H[∗](π

−1
d (s)) ( 6= 0),

as graded vector spaces, where dGs = dimGs. In fact, Reineke even shows that there

exists a d for every x such that the Springer map is a bijection over Gs, in which

case dimL
(d)
Gs = 1.

For Q Dynkin, there are parametrizations of indecomposable graded projective modules

in terms of Lyndon words, see [HMM12], which are not yet understood in the context of

the decomposition theorem.

1.9.1 Monoidal categori�cations of the negative half of the quantum

group

Again let Q be a �nite quiver without loops. First Lusztig found the monoidal categori-

�cation of the negative half of the quantum group via perverse sheaves, then Khovanov

and Lauda did the same with (f.g. graded) projective modules over quiver Hecke algebras.

In the following theorem's we are explaining the following diagrams of isomorphisms of

twisted Hopf algebras over Q(q).

K0(projZ
⊕
HG
∗ (Z))⊗Q(q)

ttiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUU

U− := U−q (Q) K0(P)⊗Q(q)oo

In all three algebras there exists a notion of canonical basis which is mapped to each other

under the isomorphisms. Also, there is a triangle diagram with isomorphisms de�ned over

Z[q, q−1] which gives the above situation after applying −⊗Z[q,q−1] Q(q).

The negative half of the quantum group.

The negative half U− := U−q (Q) of the quantized enveloping algebra (de�ned by Drinfeld

and Jimbo) associated to the quiver Q is de�ned via: Let ai,j := #{α ∈ Q1 | α : i →
j, or α : j → i}, i 6= j ∈ Q0. It is the Q(q)-algebra generated by Fi, i ∈ Q0 with respect to

the (quantum Serre relations)

N+1∑
p=0

[p,N + 1− p]F pj FiF
N+1−p
j = 0, N = aij , i 6= j
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where

[n]! :=
n∏
k=1

qk − q−k

q − q−1
, [n,m] :=

[n+m]!
[n]![m]!

.

Lusztig calls this ′f

A Hopf algebra is a bialgebra (i.e. an algebra which also has the structure of a coalgebra

such that the comultiplication and counit are algebra homomorphisms) which also has

an antipode, i.e. an anti-automorphism which is uniquely determined by the bialgebra

through commuting diagrams. A twisted Hopf algebra di�ers from the Hopf algebra by:

The comultiplication and the antipode are only homomorphisms if you twist the algebra

structure by a bilinear form (see the example below). For more details on the de�nition

see [LZ00]. The twisted Q(q)-Hopf algebra structure is given by the following, it is by

de�nition a Q(q)-algebra which is NQ0-graded and it has

(1) (comultiplication)

If we give U− ⊗Q(q) U− the algebra structure

(x1 ⊗ x2)(x′1 ⊗ x′2) := q|x2|·|x′1|x1x
′
1 ⊗ x2x

′
2

where for x ∈ U− we write |x| ∈ NQ0
0 for its degree and the symmetric bilinear form

· : ZQ0
0 × ZQ0 → Z, i · i := 2, i · j := −ai,j for i 6= j

Then the comultiplication is the Q(q) algebra homomorphism

U− → U− ⊗ U−, Fi 7→ Fi ⊗ 1 + 1⊗ Fi

(2) (counit) ε : U− → Q(q), Fi 7→ 0

(3) (antipode)

Let U−tw be the algebra with the multiplication x ∗ y := q|y|·|x|xy

The antipode is the algebra anti-homomorphism

U− → U−tw, Fi 7→ −Fi

Lusztig's category of perverse sheaves.

Lusztig writes complete dimension �ltrations as words in the vertices i = (i1, . . . , id),

it ∈ Q0. We set d :=
∑d

t=1 it and de�ne

Li := (πi)∗C[ei]

where πi : Ei := Gld×Pi Fi → RQ(d) is the quiver-graded Springer map and ei = dimCEi.

Let us call PQ0 the additive category generated by shifts of the Li, i = (i1, . . . , id), it ∈ Q0.

The set Hom(Li, Lj [n]) in this category is zero unless d =
∑
it =

∑
jk and then it is given

by 1j ∗ H
Gld
[n] (Z) ∗ 1i. The category can be endowed with the structure of a monoidal
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category via

Li ∗ Lj := Lij

where ij is the concatenation of the sequence i and then j.

Lemma 12. (Lusztig, [Lus91], Prop. 7.3) Let Q be a quiver without loops. Let P be

the idempotent completion of PQ0 (i.e. we take the smallest additive category generated

by direct summands of the Li in Db
Gld

(RQ(d)) and their shifts). It carries a monoidal

structure and the inclusion induces

K0(PQ0) = K0(P)

where the Grothendieck group has the ring structure from the monoidal categories and a

Z[q, q−1]-module structure via the shift, i.e. q · [M ] := [M [1]], M an object in P.

Remark. We call the monoidal category P Lusztig's category of perverse sheaves.

Even though these are not perverse sheaves since we allow shifts of them and Lusztig

originally de�ned them inside
⊔
Db(RQ(d)) which of course gives a di�erent category (for

example in his category Hom(Li, Lj [n]) = 1j ∗H[n](Z) ∗ 1i if
∑
it =

∑
jk and zero else).

Nevertheless the two categories have the same Grothendieck group. In the view of the

context here we think it is more apropriate to de�ne it in the equivariant derived categories.

Remark. The previous lemma is no longer true if you allow your quiver to have loops.

For example if Q is the quiver with one loop. Then, let Zn be the Steinberg algebra

associated to (G = Gln, Bn, gln, nn) with Bn ⊂ Gln the upper triangular matrices, nn the

Lie algebra of the unipotent radical of Bn. We claim

K0(P) =
⊕
n∈N0

K0(f.d. proj. graded H[∗](Zn)−modules)

=
⊕
n∈N0

K0(f.d. simple graded H[0](Zn)−modules)

=
⊕
n∈N0

K0(f.d. graded CSn −modules)

=

⊕
n∈N0

K0(f.d.CSn −modules)

⊗Z Z[q, q−1]

= (Symmetric functions)⊗Z Z[q, q−1]

The �rst isomorphism is implied by the Corollary 1.4.0.3. The second equality is implied

by semi-smallness of the classical Springer maps. For the third result see the section on

classical Springer theory. The last equality is well-known, it maps the simple module Sλ

(=Specht module) corresponding to a partition λ to the Schur function corresponding to

λ.

But the category PQ0 corresponds to the submonoidal category given by �nite direct sums

of shifts of �nite-dimensional free modules. This is a monoidal category generated by

direct sums of shifts of one object E = S1 and an arrow s : E2 := E ⊗E → E2 of degree 0
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with the relation (sE) ◦ (Es) ◦ (sE) = (Es) ◦ (sE) ◦ (Es) (see also [Rou11]). In this case

K0(PQ0) = Z[q, q−1, T ], [E] 7→ T which is much smaller than K0(P).

Now, let again be Q without loops. K0(P) has the structure of a twisted Z[q, q−1]-Hopf

algebra. The algebra structure is given by the monoidal structure on P which is de�ned

by induction functors. A restriction functor for the category P de�nes the structure of a

coalgebra. For the geometric construction of these functors see [Lus91].

Theorem 1.9.2. (Lusztig, [Lus91], thm 10.17) Consider the map

λQ : U− → K0(P)⊗Z[q,q−1] Q(q)

Fi 7→ [Li]⊗ 1, i ∈ Q0

where we see i ∈ Q0 as a sequence in the vertices of length 1. This de�nes an isomorphism

of twisted Q(q)-Hopf algebras.

De�nition 4. We call B := {[Li] ⊗ 1 | i = (i1, . . . , id), it ∈ Q0} canonical basis for

K0(P)⊗Q(q).

We also call λ−1
Q (B) canonical basis in U−.

Also the image in K0(projZ
⊕
R

Gld
d )⊗Q(q) is called canonical basis.

There are two intrinsic alternative de�nitions of the canonical basis for U− given by

again Lusztig in [Lus90] for the �nite type case and in general by Kashiwara's crystal basis,

see [Kas91].

Generators and relations for PQ0.

This is due to Rouquier (cp. [Rou11]), it is the observation that the generators and relations

of the quiver Hecke algebra rather easily give generators and relations for the monoidal

category PQ0 . In the category, we use the convention: Instead of E → E′(n) we write

E → E′ is a morphism of degree n. A composition g ◦ f of a morphism f : E → E′ of

degree n and g : E′ → E′′ of degree m is the homomorphism E → E′′ of degree n + m

given by E
f−→ E′(n)

g(n)−−→ E′′(n+m).

Let Q be a quiver without loops. Let B be the monoidal category generated by �nite

direct sums of shifts of objects Ea =: Ea(0), a ∈ Q0 and arrows

za : Ea → Ea, σa,b : EaEb → EbEa, a, b ∈ Q0

of degrees

deg za = 2, deg σa,b =

−2 , if a = b

2hb,a , if a 6= b

where as before ha,b := #{α ∈ Q1 | α : a→ b}, a, b ∈ Q0, and assume relations
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(1) (s2 = 1)

σab ◦ σba =

(−1)hb,a(Ebza − zbEa)ha,b+hb,a , if a 6= b

0 , if a = b

(2) (straightening rule)

σab ◦ zaEb − Ebza ◦ σab =

0 , if a 6= b,

EaEa , if a = b,

σab ◦ Eazb − zbEa ◦ σab =

0 , if a 6= b,

−EaEa , if a = b,

(3) (braid relations) for a, b, c ∈ Q0 we have the following inclusion of C-algebras. Let

C[αs, αt] be the set of polynomials in αs, αt.

Ja,b,c : C[αs, αt]→ EndB(EaEbEc)

αs 7→ EazbEc − zaEbEc

αt 7→ EaEbzc − EazbEc,

we set t(αhs ) := (αs + αt)
h =: s(αht ) ∈ C[αs, αt], h ∈ N0. Then, the relation is

σabEc ◦ Eaσcb ◦ σcaEb − Ebσca ◦ σcbEa ◦ Ecσab

=

Jbab(α
ha,b
s

α
hb,a
t −(−1)

hb,aα
hb,a
s

αs+αt
− αhb,at

α
ha,b
s −(−1)

ha,bα
ha,b
t

αs+αt
) , if a = c, a 6= b,

0 , else.

for i = (i1, . . . , in), it ∈ Q0 we set Ei := Ei1Ei2 · · ·Ein . Let Id := {i = (i1, . . . , in) |∑
t it = d}. Then, by construction there is an isomorphism of algebras

R
Gld
d →

⊕
i,j∈Id

HomB(Ei, Ej)

1i 7→ idEi

zi(t) 7→ Ei1Ei2 · · ·Eit−1zitEit+1 · · ·Ein
σi(s) 7→ Ei1 · · ·Ei`−1

σi`+1,i`Ei`+2
· · ·Ein , , if s = (`, `+ 1) ∈ Sn

Theorem 1.9.3. ([Rou11]) There is an equivalence of monoidal categories

PQ0 → B

Li 7→ Ei

which is on morphisms the isomorphism of algebras from above.

Since we have not more knowledge on the decomposition theorem for quiver-graded

Springer maps, we can not expect to �nd a similar easy description for the category P.
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Khovanov and Lauda's categori�cation of the negative half of the quantum

group.

Many years later Khovanov and Lauda have a di�erent approach to the same monoidal

categori�cation as Lusztig. Instead the category P they consider the category of projective

graded (f.g.) modules over quiver Hecke algebras RGd := R
Gld
d , d ∈ NQ0

0

projZ
⊕
d∈NQ0

0

RGd .

It is easy to see that we have natural injective maps µ : RGd ⊗RGe → RGd+e compatible with

the algebra multiplication. We write 1d,e := µ(1 ⊗ 1). From this there are (well-de�ned

see [KL09],section 2.6) induction and restriction functors

Ind
d+e
d,e : projZ(RGd ⊗RGe )→ projZ(RGd+e), X 7→ RGd+e1d,e ⊗RGd ⊗RGe X

Res
d+e
d,e : projZ(RGd+e)→ projZ(RGd ⊗RGe ), Y 7→ 1d,eY

The induction functor gives projZ
⊕

d∈NQ0
0
RGd the structure of a monoidal category via

X ◦X ′ := Ind
d+e
d,e X �X ′ where X �X ′ is the natural graded RGd ⊗RGe -module structure.

Obviously, it is a Z[q, q−1]-algebra with q operating as the shift (1) on the graded modules,

i.e. q · [M ] := [M(1)]. The comultiplication is given by [Res][P ] :=
∑

d,e : d+e=f [Res
f

d,e(P )].

It even de�nes a twisted Z[q, q−1]-Hopf algebra structure on K0(projZ
⊕

d∈NQ0
0
R

Gld
d ).

Theorem 1.9.4. (Khovanov, Lauda, [KL09]) The map

κQ : U− → K0(projZ
⊕
d∈NQ0

0

R
Gld
d )⊗Q(q)

Fi 7→ [RGl1
i ]⊗ 1, i ∈ Q0

where we consider i ∈ Q0 as an element in NQ0
0 , is an isomorphism of twisted Q(q)-Hopf

algebras.

Khovanov and Lauda invented the quiver Hecke algebra, which later had been proven

in [Var09] to be the same as the Steinberg algebra of quiver-graded Springer theory. The

explicit description (generators and relations for the algebra) and diagram calculus (which

we leave out in this survey) are a major step forward from Lusztig's description. Their

work sparked a big interest in this subject.

Remark. Let Q be a Dynkin quiver. Then, the objects of the category P are direct

sums of shifts of ICO where O ⊂ RQ(d) is a Gld-orbit (we do not write a local system

if the trivial local system is meant). These are in bijection with isomorphism classes of

CQ-modules. The monoidal structure on P is constructed such that K0(P)⊗Q(q) is the

twisted Ringel-Hall algebra (over Q(q)). The isomorphism between the twisted Ringel-Hall

algebra and the negative half of the quantum group associated to the underlying graph of

the quiver is a theorem of Ringel, see for example [Rin93].
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Table 1.1: List of known Steinberg algebras.

Htop(Z,C) H∗(Z,C) HG
∗ (Z,C) KG×C∗

0 (Z)⊗Z C
(G,B, g, u) CW C[t]/IW#C[W ] C[t]#C[W ] a�ne
classical ST degenerate a�ne Hecke algebra

Hecke algebra

(G,B, {0}, {0}) C EndC−lin(H∗(G/B)) EndH∗G(pt)(H
∗
G(G/B))

nil ST (a�ne) nil Hecke ?
i.e. Z = G/B ×G/B algebra

quiver-graded ST ? Rd quiver Hecke algebra ?
(complete dim �ltrations) (= KLR-algebra)

Further known examples are:

(1) There is an exotic Springer theory (by Kato [Kat09], [Kat11], Achar and Henderson [AH08]). The Steinberg algebra K
G×(C∗)3
0 (Z)⊗ZC is isomorphic

to the Hecke algebra with unequal parameters of type C
(1)
n . Also Kato gave an exotic Deligne-Langlands correspondence.

(2) Quiver-graded Springer theory for the oriented cycle quiver (allowing only nilpotent representations) gives that HG
∗ (Z) is isomorphic to the quiver

Schur algebra (compare the work of Stroppel and Webster, [SW11].)
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Figure 1.1: Springer theory and related �elds
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1.9.2 Literature review

Collapsings of homogeneous vector bundles are quite ubiquitous (for example see [Kem76]).

(1) Classical Springer theory (cp remark 1.8):

Classical Springer theory is usually de�ned for semi-simple algebraic groups and

goes back to �rst Springer [Spr76],[Spr78], then Kazhdan-Lusztig [KL80], Slodowy

[Slo80a], Lusztig [Lus81], Rossmann [Ros91]) and the de�ned convolution opera-

tions di�er between each other by at most multiplication with a sign character (see

[Hot81]).

Also relevant is the earlier work on the topology of Springer �bres of Spaltenstein

(see [Spa76], [Spa77]) and Vargas (see [Var79]) and the Springer map already occurrs

in Steinberg's work (for example [Ste74]). A book on classical Springer theory is

written by Borho, Brylinski and Mac Pherson [BBM89]. A comprehensive treatment

can be found in chapter 3 of [CG97] and a short one using perverse sheaves in [Ara01]

if you speak French. I apologize to the many other authors who I do not mention.

(2) Quiver-graded Springer theory:

First considered by Lusztig, see [Lus91]. Later, Reineke started to look at it as an

analogue of the classical Springer theory, see [Rei03], also see [Wol09].

The quiver Hecke algebras as Steinberg algebras �rst occurred in the work of Varag-

nolo and Vasserot, cp. [Var09], and independently also in Rouquier's article [Rou11].

Open problems/ wild speculations:

(O1) Are Springer �bre modules always semi-simple modules over the Steinberg algebra?

(O2) Which Steinberg algebras are a�ne cellular algebras?

Which have �nite global dimension?

Partial answers: Brundan, Kleshchev and McNamara showed that KLR-algebras for

Dynkin quivers are a�ne cellular (see [BKM12]).

Certain Steinberg algebras (including KLR-algebras for Dynkin quivers) have been

shown to have �nite global dimension (see [Kat13]). In [BKM12], the authors write

that they expect that KLR-algebras have �nite global dimension if and only if the

quiver is Dynkin.

(O3) Are there Kazhdan-Lusztig polynomials and even a theory of canonical basis for

Steinberg algebras?

Do we have Standard modules for Steinberg algebras?

Partial answers: Standard modules have been de�ned in [Kat13] under some assump-

tions (�nitely many orbits in the image of the Springer map,...).

The original de�nition of Kazhdan-Lusztig polynomials has been inspired by study-

ing a base change between two bases in the Steinberg variety associated to classical

Springer theory.
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(O4) Can we describe noncommutative resolutions of singularities corresponding to

Springer maps?

Can we adapt the notion of a noncommutative resolution of singularities using con-

structible instead of coherent sheaves?

Partial answers exists for the coherent sheaf theory: Bezrukavnikov studied it for clas-

sical Springer theory (see [Bez06]). For quiver-graded Springer theory with Q = A2

noncommutative resolutions have been studied by Buchweitz, Leuschke and van den

Bergh (see [BLB10], [BLB11]).

(O5) Does there exist a Schur-Weyl theory relating classical and quiver-graded Springer

theory (for example via Morita equivalences of the associated Steinberg algebras)?

Partial answers only for type A-situations i.e. the quiver and the reductive group is

of type A (so maybe it only exists in this case): due to Brundan, Kleshchev [BK09],

see also for example [Web13].
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Chapter 2

Generalized quiver Hecke algebras

Summary. We generalize the methods of Varagnolo and Vasserot, [Var09] and partlially

[VV11], to generalized quiver representations introduced by Derksen and Weyman in

[DW02]. This means we have a general geometric construction of an interesting class

of algebras (the Steinberg algebras for generalized quiver-graded Springer theory) contain-

ing skew group rings of Weyl groups with polynomial rings, (a�ne) nil Hecke algebras

and KLR-algebras (=quiver Hecke algebras). Unfortunately this method works only in the

Borel case, i.e. all parabolic groups in the construction data of a Springer theory are Borel

groups. Nevertheless, we try to treat also the parabolic case as far as this is possible here.

This is a short reminder of Derksen and Weyman's generalized quiver representations from

[DW02].

De�nition 5. A generalized quiver with dimension vector is a triple (G, G, V ) where G is

a reductive group, G is a centralizer of a Zariski closed abelian reductive subgroup H of

G,i.e.
G = CG(H) = {g ∈ G | ghg−1 = h ∀h ∈ H}

(then G is also reductive, see lemma below) and V is a representation of G which de-

composes into irreducible representations which also appear in G := Lie(G) seen as an

G-module.

A generalized quiver representation is a quadruple (G, G, V,Gv) where (G, G, V ) is a gen-

eralized quiver with dimension vector, v in V and Gv is the G-orbit.

Remark. Any such reductive abelian group is of the form H = A×S with A �nite abelian

and S a torus, this implies that there exists �nitely many elements h1, . . . , hm such that

CG(H) =
⋂m
i=1CG(hi), see for example Humphreys' book [Hum75], Prop. in 16.4, p.107.

We would like to work with the associated Coxeter systems, therefore it is sensible to

assume G connected and replace G by its identity component Go. There is the following

proposition

Proposition 1. Let G be a connected reductive group and H ⊂ G an abelian group which

lies in a maximal torus. We set G := CG(H)o = (
⋂m
i=1CG(hi))

o. Then it holds

(1) For any maximal torus T ⊂ G, the following three conditions are equivalent:
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(i) T ⊂ G.

(ii) H ⊂ T .

(iii) {h1, . . . , hm} ⊂ T .

(2) G is a reductive group.

(3) If Φ is the set of roots of G with respect to a maximal torus T with H ⊂ T , then

Φ := {α ∈ Φ | α(h) = 1 ∀h ∈ H} is the set of roots for G with respect to T , its

Weyl group is 〈sα | α ∈ Φ〉 and for all α ∈ Φ the weight spaces are equal gα = Gα
(and 1-dimensional C-vector spaces).

(4) There is a surjection

{B ⊂ G | B Borel subgroup, H ⊂ B} → {B ⊂ G | B Borel subgroup }

B 7→ B ∩G

If Φ+ is the set of positive roots with respect to (G,B, T ) with H ⊂ T , then Φ+ :=

Φ ∩ Φ+ is the set of positive roots for (G,G ∩ B, T ) .

proof: Ad (1): This is easy to prove directly.

(2)-(4) are proven if G = CG(h)o for one semisimple element h ∈ G in Carters book

[Car85b], section 3.5. p.92-93. In general G = (
⋂m
i=1CG(hi)

o)o for certain hi ∈ H, 1 ≤
i ≤ m. The result follows via induction on m. Set G1 := CG(h1)o. It holds G =

(
⋂m
i=2CG1(hi)

o)o = CG1(H)o ⊂ G1 and G1 is a connected reductive group. By induction

hypothesis, all statements are true for (G,G1), so in particular G is a reductive group. The

other statements are then obvious. �

Notational conventions

We �x the ground �eld for all algebraic varieties and Lie algebras to be C.
For a Lie algebra g we de�ne the k-th power inductively by g1 := g, gk = [g, gk−1]. If

we denote an algebraic group by double letters (or indexed double letters) like G,B,U, ...
(or G′, PJ , etc.) we take the calligraphic letters for the Lie algebras, i.e. G,B,U , ... (or
G′,PJ , etc) respectively. If we denote an algebraic group by roman letters (or indexed

roman letters) like G,B,U, ... (or G′, PJ , etc.) we take the small frakture letters for the

Lie algebras, i.e. g, b, u, .. (or g′, pJ) respectively.

If we habe a subgroup P ⊂ G of a group and an element g ∈ G we write gP := gPg−1 for

the conjugate subgroup.

We also recall the following.

Remark. Let (W,S) be a Coxeter system, J ⊂ S. Then (WJ := 〈J〉, J) is again a

Coxeter system with the length function is the restriction of the length function of (W,S)

to elements in WJ . Then, the set W
J of minimal length coset representatives W J ⊂W for

W/WJ is de�ned via: An element w lies in W J if and only if for all s ∈ J we have l(ws) >
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l(w). Also there is a factorization W = W JWJ and if w = xy with x ∈W J , y ∈WJ , their

lengths satisfy l(w) = l(x) + l(y). We will �x the bijection cJ : W J → W/WJ , w 7→ wWJ .

The Bruhat order of (W,S) can be restricted to W J and transferred via the bijection to

W/WJ .

For two subsets K,J ⊂ S de�ne KW J := (WK)−1∩W J , the projection W →WK\W/WJ

restricts to a bijection KW J →WK\W/WJ .

Let (G,B, T ) be a reductive group with Borel subgroup and maximal torus and (W,S)

be its associated Coxeter system. We �x for any element in W a lift to the group G and

denote it by the same letter.

2.1 Generalized quiver-graded Springer theory

We de�ne a generalized quiver-graded Springer theory for generalized quiver represen-

tations in the sense of Derksen and Weymann. Given (G,PJ ,U , H, V ) (and some not

mentioned H ⊂ T ⊂ B ⊂ PJ) with

* G is a connected reductive group, H ⊂ T is a subgroup of a maximal torus in G, we
set G = CG(H)o (then G is also reductive with T ⊂ G is a maximal torus in G).

* T ⊂ B ⊂ G a Borel subgroup, then B := B ∩G is a Borel subgroup of G,

We write (W,S) for the Coxeter system associated with (G,B, T ) and (W,S) for

the one associated to (G,B, T ). Observe, that W ⊂ W. For any J ⊂ S we set

PJ := B〈J〉B and call it a standard parabolic group.

* Now �x a subset J ⊂ S. We call a PJ -subrepresentation U ′ ⊂ G = Lie(G) (of the

adjoint representation which we denote by (g, x) 7→ gx, g ∈ G, x ∈ G) suitable if

• (U ′)T = {0},

• U ′ ∩ sU ′ is PJ -stable for all s ∈ S.

Let U =
⊕r

k=1 U (k) a PJ -representation with each U (k) is suitable. (Examples of

suitable PJ -representations are given by U ′ = U tJ ′ where J ⊂ J ′ ⊂ S, UJ ′ = Lie(UJ ′)
with UJ ′ ⊂ PJ ′ is the unipotent radical and U tJ ′ is the t-th power, t ∈ N). We

de�ne WJ := 〈J〉 and WJ be the set of minimal coset representatives in W/WJ ,

IJ := W\WJ ⊂W\W and ⊔
J⊂S

IJ

We call I := I∅ the set of complete dimension �ltrations. Let {xi ∈W | i ∈ IJ}
be a complete representing system of the cosets in IJ . Every element of the Weyl

groups W (and W ) we lift to elements in G (and G) and denote the lifts by the same

letter. For every i ∈ IJ we set

Pi := xiPJ ∩G,
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Observe that H ⊂ T = wT ⊂ wPJ for all w ∈ W, therefore wPJ ∩ G is a parabolic

subgroup in G for any w ∈W.

* V =
⊕r

k=1 V
(k) with V (k) ⊂ G is a G-subrepresentation.

Fi =
⊕r

k=1 F
(k)
i with F

(k)
i := V (k) ∩ xiU (k) is a Pi-subrepresentation of V (k).

We de�ne

Ei := G×Pi Fi
πi

yyrrrrrrrrrrrr
µi

&&NNNNNNNNNNN (g, f)

}}{{{{{{{{

""EEEEEEEE

V G/Pi gf gPi.

Now, there are closed embeddings ιi : G/Pi → G/PJ , gPi 7→ gxiPJ with for any i 6= i′ in

IJ it holds Im ιi ∩ Im ιi′ = ∅. Therefore, we can see
⊔
i∈IJ Gi/Pi as a closed subscheme of

G/PJ . It can be identi�ed with the closed subvariety of the �xpoints under theH-operation

(G/PJ)H = {gPJ ∈ G/PJ | hgPJ = gPJ for all h ∈ H}.

EJ :=
⊔
i∈IJ Ei

πJ

yyrrrrrrrrrrr
µJ

''NNNNNNNNNNN

V G/PJ

We also set

Zij := Ei ×V Ej
pij

xxqqqqqqqqqqqq
mij

))SSSSSSSSSSSSSS

V G/Pi ×G/Pj

ZJ :=
⊔
i,j∈IJ Zij

pJ

xxqqqqqqqqqqqq
mJ

))RRRRRRRRRRRRR

V G/PJ ×G/PJ .

In an obvious way all maps are G-equivariant. We are primarily interested in the

following Steinberg variety

Z := Z∅.

The equivariant Borel-Moore homology of a Steinberg variety together with the convo-

lution operation (de�ned by Ginzburg) de�nes a �nite dimensional graded C-algebra. We

set

ZG := HG
∗ (Z)

which we call (G-equivariant) Steinberg algebra. The aim of this section is to describe

ZG in terms of generators and relation (for J = ∅). This means all Pi are Borel subgroups

of G.
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If we set

HG
[p](Z) :=

⊕
i,j∈I

HG
ei+ej−p(Zi,j), ei = dimCEi

then HG
[∗](Z) is a graded H∗G(pt)-algebra Then, we denote the right W-operation on I =

W \W by (i, w) 7→ iw, i ∈ I, w ∈W. We prove the following.

Theorem 2.1.1. Let J = ∅ and Ei = C[t] = C[xi(1), . . . , xi(n)], i ∈ I. Then ZG ⊂
EndC[t]W−mod(

⊕
i∈I Ei) is the graded C-subalgebra generated by

1i, i ∈ I, zi(t), 1 ≤ t ≤ n = rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I

de�ned as follows for k ∈ I, f ∈ Ek.

1i(f) :=

f, if i = k,

0, else.

zi(t)(f) :=

xi(t)f, if i = k,

0, else.

σi(s)(f) :=


qi(s)

s(f)−f
αs

, (∈ Ei) if i = is = k,

qi(s)s(f) (∈ Ei) if i 6= is = k,

0, else.

where

qi(s) :=
∏

α∈ΦU ,s(α)/∈ΦU ,xi(α)∈ΦV

α ∈ Ei.

and ΦU =
⊔
k ΦU(k), ΦU(k) ⊂ HomC(t,C) ⊂ C[t] is the set of T -weights for U (k) and

ΦV =
⊔
k ΦV (k), ΦV (k) ⊂ HomC(t,C) is the set of T -weights for V (k).

Furthermore, it holds

deg 1i = 0, deg zi(k) = 2, deg σi(s) =

2(deg qi(s))− 2, if is = i

2 deg qi(s), if is 6= i

where deg qi(s) refers to the degree as homogeneous polynomial in C[t].

The generality of the choice of the U in the previous theorem is later used to understand

the case of an arbitrary J as a an algebra of the form eJZGeJ for an associated Borel-case

Steinberg algebra ZG and eJ an idempotent element (this is content of a later article called

parabolic Steinberg algebras).

For J = ∅,U = Lie(U)⊕r for U ⊂ B the unipotent radical we have the following result which

generalizes KLR-algebras to arbitrary connected reductive groups and allowing quivers with

loops.

Corollary 2.1.1.1. Let J = ∅,U = Lie(U)⊕r, U ⊂ B the unipotent radical and Ei = C[t] =
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C[xi(1), . . . , xi(n)], i ∈ I. Then

ZG ⊂ EndC[t]W−mod(
⊕
i∈I
Ei)

is the graded C-subalgebra generated by

1i, i ∈ I, zi(t), 1 ≤ t ≤ n = rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I.

Let f ∈ Ek, k ∈ I, αs ∈ Φ+ be the positive root such that s(αs) = −αs. It holds

σi(s)(f) :=


α
hi(s)
s

s(f)−f
αs

, if i = is = k,

α
hi(s)
s s(f) if i 6= is = k,

0, else.

where

hi(s) := #{k ∈ {1, . . . , r} | xi(αs) ∈ ΦV (k)}

where V =
⊕

k V
(k) and ΦV (k) ⊂ Φ are the T -weights of V (k).

(1) If Wxi 6= Wxis then

hi(s) = #{k | V (k) ⊂ R, xi(αs) ∈ ΦV (k)}.

We say that this number counts arrows.

(2) If Wxi = Wxis, then

hi(s) = #{k | V (k) ⊂ g, xi(αs) ∈ ΦV (k)}.

We say that this number counts loops.

In the case of the previous corollary we call the Steinberg algebra ZG generalized

quiver Hecke algebra. It can be described by the following generators and relations.

For a reduced expression w = s1s2 · · · sk we set

σi(s1s2 · · · sk) := σi(s1)σis1(s2) · · ·σis1s2···sk−1
(sk)

Sometimes, if it is understood that the de�nition depends on a particular choice of a

reduced expression for w, we write σi(w) := σi(s1s2 · · · sk). Furthermore, we consider

Φ:
⊕
i∈I

C[xi(1), . . . xi(n)] ∼=
⊕
i∈I

C[zi(1), . . . zi(n)], xi(t) 7→ zi(t)

as the left W-module IndW
W C[t], we �x the polynomials

ci(s, t) := Φ(σi(s)(xi(t))) ∈
⊕
i∈I

C[zi(1), . . . zi(n)], i ∈ I, 1 ≤ t ≤ n, s ∈ S.
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Now, we can describe under some extra conditions the relations of the generalized

quiver Hecke algebras.

Proposition 2. Let S ⊂ W = Weyl(G, T ) be the simple re�ections. Under the following

assumption for the data (G,B,U = (Lie(U))⊕r, H, V ), J = ∅ : We assume for any s, t ∈ S

(B2) If the root system spanned by αs, αt is of type B2 (or stst = tsts is the minimal

relation), then for every i ∈ I such that is = i = it it holds hi(s), hi(t) ∈ {0, 1, 2}.

(G2) If the root system spanned by αs, αt is of type G2 (or ststst = tststs is the minimal

relation), then for every i ∈ I such that is = i = it it holds hi(s) = 0 = hi(t).

Then the generalized quiver Hecke algebra for (G,B,U = (Lie(U))⊕r, H, V ), J = ∅ is the
graded C-algebra with generators

1i, i ∈ I, zi(t), 1 ≤ t ≤ n = rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I

in degrees

deg 1i = 0, deg zi(k) = 2, deg σi(s) =

2hi(s)− 2, if is = i

2hi(s), if is 6= i

and relations

(1) ( orthogonal idempotents)

1i1j = δi,j1i,

1izi(t)1i = zi(t),

1iσi(s)1is = σi(s)

(2) (polynomial subalgebras)

zi(t)zi(t
′) = zi(t

′)zi(t)

(3) ( relation implied by s2 = 1)

σi(s)σis(s) =


0 , if is = i, hi(s) is even

−2α
hi(s)−1
s σi(s) , if is = i, hi(s) is odd

(−1)his(s)α
hi(s)+his(s)
s , if is 6= i

(4) ( straightening rule)

σi(s)zi(t)− s(zi(t))σi(s) =

ci(s, t), , if is = i

0 , if is 6= i.

(5) (braid relations)

Let s, t ∈ S, st = ts, then

σi(s)σis(t) = σi(t)σit(s)
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Let s, t ∈ S not commuting such that x := sts · · · = tst · · · minimally, i ∈ I. There

exists explicit polynomials (Qw)w<x in αs, αt ∈ C[t] such that

σi(sts · · · )− σi(tst · · · ) =
∑
w<x

Qwσi(w)

(observe that for w < x there exists just one reduced expression).

The proof you �nd in the end, see Prop. 5.

2.2 Relationship between parabolic groups in G and G

For later on, we need to understand the relationship between parabolic subgroups in G and

in G. Recall that a parabolic subgroup is a subgroup which contains a Borel subgroup,

every parabolic subgroups is conjugated to a standard parabolic subgroup. The standard

parabolic subgroups wrt (G,B, T ) are in bijection with the set of subsets of S, via J 7→
B〈J〉B =: PJ . As a �rst step, we need to study the relationship of the Coxeter systems

(W,S) and (W, S).

Lemma 13. It holds G ∩W = W . It holds W ∩ S ⊂ S. Let lS be the length function with

respect ot (W,S) and lS be the length function with respect to (W, S). For every w ∈W it

holds lS(w) ≤ lS(w).

proof: NG(T ) ∩ G = NG(T ) implies G ∩ W = W . The inculsion Φ+ ∩ s(−Φ+) ⊂
Φ+ ∩ s(−Φ+) for any s ∈ S implies W ∩ S ⊂ S.
Let w = t1 · · · tr ∈ W , ti ∈ S reduced expression and assume lS(w) < r. It must be

possible in W to write w as a subword of t1 · · · t̂i · · · tr for some i ∈ {1, . . . , r}. But then

r = lS(w) ≤ lS(t1 · · · t̂i · · · tr) < r. �

De�nition 6. We call J ⊂ S. We say that J is S-adapted if for all s ∈ S with s = s1 · · · sr
a reduced expression in (W,S) such that there exists i ∈ {1, . . . , r} with si ∈ J then it also

holds {s1, . . . , sr} ⊂ J .

Lemma 14. (a) Intersection with G de�nes a map

{PJ | J ⊂ S is S − adapted} → {PJ | J ⊂ S}

PJ 7→ PJ ∩G = PS∩WJ

(b) Let G ∩ xB is a Borel subgroup of G with B ⊂ G a Borel subgroup and x ∈ W. Let

s ∈ S, then it holds

(1) If Wxs 6= Wx then G ∩ xsB = G ∩ xB.

(2) If Wxs = Wx, then xs ∈W and G ∩ xsB =
xs[G ∩ xB].

This gives an algorithm to �nd for any x ∈W a z ∈W such that G∩ xB = z[G∩B].

Also, for every J ⊂ S it then holds G∩ xPJ = z[G∩ PJ ] and W ∩ xWJ = z[W ∩WJ ]
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where x ∈W, z ∈W as before and for every S-adapted J ⊂ S

G ∩ xPJ = zPS∩WJ
.

proof:

(a) It holds by the previous lemma G ∩WJ = W ∩WJ and because J is S-adapted it

holds W ∩WJ = 〈S ∩WJ〉, to see that:

Let w = t1 · · · tr ∈ WJ with ti ∈ S an S-reduced expression, we need to see ti ∈
WJ , 1 ≤ i ≤ r. Wlog assume t1 /∈ WJ . As J is S-adapted, there exists a S-reduced
expression with elements in J of w which is a subword of t2 · · · tr. But this means a

word of S-length r is a subword of a word of S-length r − 1, therefore t1 ∈WJ .

Now, the following inclusion is obvious

PS∩WJ
= B〈G ∩WJ〉B ⊂ G ∩ PJ .

Because B ⊂ PJ ∩G there has to exist (WJ ∩ S) ⊂ J ′ ⊂ S such that PJ ∩G = PJ ′ ,

we need to see (S ∩WJ) = J ′. Let s ∈ J ′, then s ∈ PJ = BWJB implies s ∈WJ .

(b) Let s ∈ S, xs /∈W , then ±x(αs) /∈ Φ and this implies

Φ ∩ xs(Φ) = Φ ∩ [x(Φ) \ {x(αs)} ∪ {−x(αs)}] = Φ ∩ x(Φ).

Therefore, the Lie algebras of the Borel groups G ∩ xB and G ∩ xsB have the same

weights for T , this proves they are equal.

The point (2) is obvious.

�

Remark. In the setup of the beginning, we can always �nd unique representatives xi ∈
W, i ∈ I for the elements in W \W which ful�ll

Bi = G ∩ xiB = G ∩ B = B.

This follows because for every i ∈ I there is a bijection

Wxi → { Borel subgroups of G containing T}

vxi 7→ v[G ∩ xiB]

Then, there exists a unique v ∈ W such that v[G ∩ xiB] = G ∩ B, replace xi by vxi as a
representative for Wxi.

We will call these representatives minimal coset representatives1. Observe for is 6= i

it holds xis = xis by lemma 14, (b), (2).

1if G is a Levi-group in G they are the minimal coset representatives, in this more general situation the
notion is not de�ned.
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But since the images of G/Bi, i ∈ I inside G/B are disjoint, we prefer not to identify all

Bi, i ∈ I.
In general, in the parabolic setup, it holds Pi 6= Pj for i 6= j.

Lemma 15. (factorization lemma) Let J,K ⊂ S be S-adapted and set L := S ∩WJ ,M :=

S ∩WK .

(1) It holds WL = W ∩WJ and for every element in w ∈W the unique decomposition as

w = wJwJ , wJ ∈WJ , wJ ∈WJ ful�lls wJ ∈WL = W ∩WJ , wJ ∈WL = W ∩WJ .

(2) It holds JWK ∩W = LWM . In particular, every double coset WJwWK with w ∈W
contains a unique element of LWM .

proof:

(1) It holds WL(W ∩WJ) = W = W ∩WJWJ ⊃ (W ∩WJ)(W ∩WJ), the uniqueness

of the factorization in W implies (W ∩WJ) ⊂WL.

Now take a ∈ WL, we can factorize it in W as a = aJaJ with aJ ∈ WJ , aJ ∈ WJ .

We show that aJ ∈ W . Write a = t1 · · · tr S-reduced expression, assume aJ 6= e,

then there exists a unique i ∈ {1, . . . , r} such that aJ is a subword of ti · · · tr but

no subword of ti+1 · · · tr. Then, ti must have a subword contained in WJ , as J is

S-adapted we get ti ∈ WJ . Continue with t
−1
i aJ being a subword of ti+1 · · · tr. By

iteration you �nd aJ = ti1 · · · tik ∈ W for certain i = i1 < · · · < ik, ij ∈ {1, . . . , r}.
This implies aJ = e and a = aJ ∈W ∩WJ .

(2) By de�nition JWK ∩W = (WJ)−1 ∩WK ∩W = (WL)−1 ∩WM = LWM .

�

2.3 The equivariant cohomology of �ag varieties

Lemma 16. (The (co)-homology rings of a point)

Let G be reductive group, T ⊂ P ⊂ G with P a parabolic subgroup and T a maximal torus,

we write W for the Weyl group associated to (G,T ) and X(T ) = HomGr(T,C∗) for the

group of characters. Let ET be a contractible topological space with a free T -operation from

the right.

(1) For every character λ ∈ X(T ) denote by

Sλ := ET ×T Cλ

the associated T -equivariant line bundle over BT := ET/T to the T -representation

Cλ which is C with the operation t · c := λ(t)c. The �rst chern class de�nes a

homomorphism of abelian groups

c : X(T )→ H2(BT ), λ 7→ c1(Sλ).
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Let SymC(X(T )) be the symmetric algebra with complex coe�cients generated by

X(T ), it can be identi�ed with the ring of regular function C[t] on t = Lie(T ) (with

doubled degrees), where X(T )⊗Z C is mapped via taking the di�erential (of elements

in X(T )) to t∗ = HomC−lin(t,C) ⊂ C[t] (both are the degree 2 elements).

The previous map extends to an isomorphism of graded C-algebras

C[t]→ H∗T (pt) = H∗(BT )

In fact this is a W -linear isomorphism where the W -operation on C[t] is given by,

(w, f) 7→ w(f), w ∈W, f ∈ C[t] with

w(f) : t→ C, t 7→ f(w−1tw).

We can choose ET such that it also has a free G-operation from the right (i.e. ET :=

EG), then BT = ET/T has an induced Weyl group action from the right given by

xT · w := xwT , w ∈ W,x ∈ ET . The pullbacks of this group operation induce a left

W -operation on H∗T (pt).

(2) H∗T (pt) = HT
−∗(pt), H

∗
G(pt) = (H∗T (pt))W = (HT

−∗(pt))
W = HG

−∗(pt).

proof:

(1) For the isomorphism see for example and the explanation of the W -operation see (L.

Tu; Characteristic numbers of a homogeneous space, axiv, [Tu03])

(2) Use the de�nition and Poincare duality for the �rst isomorphism, for the second also

use the splitting principle.

�

Lemma 17. (The cohomology rings of homogeneous vector bundles over G/P )

Let G be reductive group, T ⊂ B ⊂ P ⊂ G with B a Borel subgroup, P parabolic and T a

maximal torus.

(1) For λ ∈ X(T ) we denote be Lλ := G ×B Cλ the associated line bundle to the B-

representation Cλ given by the trivial representation when restricted to the unipotent

radical and λ when restricted to T . Let µ : E → G/B be a G-equivariant vector

bundle. Then, µ∗(Lλ) is a line bundle on E and

Kλ := EG×G µ∗(Lλ)→ EG×G E

is a line bundle over EG×G E. There is an isomorphism of graded C-algebras

C[t]→ H∗G(E) = H∗(EG×G E)

X(T ) 3 λ 7→ c1(Kλ).
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with degλ = 2 for λ ∈ X(T ).

(By de�nition, equivariant chern classes are de�ned as cG1 (µ∗Lλ) := c1(Kλ)).

(2) Let µ : E → G/P be a G-equivariant vector bundle, then there is an isomorphism of

graded C-algebras
H∗G(E)→ (H∗T (pt))WL .

proof:

(1) Arabia proved that H∗G(G/B) ∼= H∗T (pt) as graded C-algebras (cp. [Ara85]), the

composition with the isomorphism from the previous lemma gives an isomorphism

c : C[t]→ H∗G(G/B), : λ 7→ c1(EG×G Lλ) =: cG1 (Lλ)

Now, we show that for a vector bundle µ : E → G/P with P ⊂ G parabolic, the

induced pullback map

µ∗ : H∗G(G/P )→ H∗G(E), cG1 (Lλ) 7→ cG1 (µ∗Lλ)

is an isomorphism of graded H∗G(pt)-algebras. We already know that it is a morphism

of graded H∗G(pt)-algebras, to see it is an isomorphism, apply the de�nition and

Poincare duality to get a commutative diagram

Hk
G(G/P )

µ∗ //

∼=
��

Hk
G(E)

∼=
��

HG
2 dimG/P−k(G/P )

µ∗ // HG
2 dimE−k(E)

the lower morphism µ∗ is the pullback morphism which gives the Thom isomorphism,

therefore the upper µ∗ is also an isomorphism.

(2) By the last proof, we already knowH∗G(E) ∼= H∗G(G/P ). Then apply the isomorphism

of Arabia see [Ara85], this gives H∗G(G/P ) ∼= H∗P (pt). Now, P homotopy-retracts

on its Levy subgroup L, this implies H∗P (pt) = H∗L(pt), together with the (2) in the

previous lemma we are done.

�

Lemma 18. (The cohomology ring of the �ag variety as subalgebra of the Stein-

berg algebra)

Let G be reductive group, T ⊂ P ⊂ G with P parabolic and T a maximal torus. Let V be a

G-representation and F ⊂ V be a P -subrepresentation, let E := G×P F and Z := E×V E
be the associated Steinberg variety. The diagonal morphism E → E ×E factorizes over Z

and induces an isomorphism E → Ze which induces an isomorphism of algebras

H∗G(G/P )→ HG
2 dimE−∗(Ze),
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recall that the convolution product on HG
∗ (Ze) maps degrees (i, j) 7→ i+ j − 2 dimE.

proof: Obviously you have an isomorphism

H∗G(G/B)
µ∗−→ H∗G(E) ∼= H∗G(Ze)→ HG

2 dimE−∗(Ze)

where the last isomorphism is Poincare duality. But we need to see that this is a morphism

of algebras where HG
∗ (Ze) is the convolution algebra with respect to the embedding Ze ∼=

E
diag−−→ E × E. This follows from [CG97], Example 2.7.10 and section 2.6.15.

�

We observe that the algebra C[t] with generators t ∈ t∗ in degree 2 plays three di�erent

roles in the last lemmata. It is the T -equivariant cohomology of a point, it is the G-

equivariant cohomology of a complete �ag variety G/B, it can be found as the subalgebra

HG
∗ (Ze) ⊂ HG

∗ (Z).

2.4 Computation of �xed points

Recall the following result, for example see [Här99], satz 2.12, page 13.

Lemma 19. Let T ⊂ P ⊂ G be reductive group with a parabolic subgroup P and a maximal

torus T . LetW be the Weyl group associated to (G,T ) and Stab(P ) := {w ∈W | wPw−1 =

P}. For w = xStab(P ) ∈W/Stab(P ) we set wP := xP ∈ G/P . Then, it holds

(G/P )T = {wP ∈ G/P | w ∈W/Stab(P )}

Lemma 20. Let P1, P2 ⊂ G be a reductive group with two parabolic subgroup, F1, F2 ⊂ V
a G-representation with a P1 and P2-subrepresentation. Assume (GFi)

T = {0}. We write

(Ei = G×Pi Fi, µi : Ei → G/Pi, π : Ei → V ) for the associated Springer triple and

Z := E1 ×V E2,m : Z → (G/P1)× (G/P2) for the Steinberg variety.

Then, there are induced a bijections µTi : ETi → (G/Pi)
T ,mT : ZT → (G/P1)T × (G/P2)T .

More explicit we have

ETi = {φw := (0, wPi) ∈ V ×G/Pi | w ∈W/Stab(Pi)} ⊂ Ei

ZT = {φx,y := (0, xP1, yP2) ∈ V ×G/P1 ×G/P2 | x ∈W/Stab(P1), y ∈W/Stab(P2)}

⊂ Z.

Furthermore, for any w ∈W/Stab(P2) let Zw := m−1(G · (P1, wP2)) and

mw := m|Zw : Zw → G · (P1, wP2)

be the induced map. There is an induced Bruhat order ≤ on W/Stab(P2) by taking the
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Bruhat order of minimal length representatives.

(Zw)T = {φx,xw = (0, xP1, xwP2) ∈ V ×G/P1 ×G/P2 | x ∈W}

Zw
T

= {φx,xv | x ∈W, v ≤ w} =
⋃
v≤w

(Zv)T

There is a bijection W/(Stab(P1) ∩ wStab(P2))→ (Zw)T , x 7→ φx,xw.

proof Obviously, it holds ETi ⊂ V T × (G/Pi)
T = {0} × (G/Pi)

T . But we also have

a zero section s of the vector bundle π : Ei → G/Pi which gives the closed embedding

G/Pi → Ei ⊂ V × (G/Pi), gPi 7→ (0, gPi).

It holds ZT ⊂ V T × (G/P1)T × (G/P2)T = {0} × (G/P1)T × (G/P2)T . But using the

description of Z = {(v, gP1, hP2) ∈ V × G/P1 × G/P2 | (v, gP1) ∈ E1, (v, hP2) ∈ E2}, we
see that {0} × (G/P1)T × (G/P2)T ⊂ Z and these are obviously T -�xed points.

We have (Zw)T ⊂ Zw ∩ ZT = {φx,xw | x ∈ W} and one can see the other inclusion, too.

Also, we have Zw
T ⊂ (

⋃
v≤w Z

v)T =
⋃
v≤w(Zv)T . Consider the closed embedding

s : G/P1 ×G/P2 → Z, (gP1, hP2) 7→ (0, gP1, hP2).

Clearly s(G(P1, wP2)) ⊂ Zw ⊂ Zw, but since s is a closed embedding we have

⋃
v≤w

(Zv)T ⊂ s(G(P1, wP2)) = s(G(P1, wP2)) ⊂ Zw

which yields the other inclusion. �

2.4.1 Notation for the �xed points

Now, in the set-up of the beginning this gives the following:

Observe, that (
⊔
i∈IJ Gi/Pi)

T = ((G/PJ)H)T = (G/PJ)T , and (G/PJ)T = {wPJ | w ∈
WJ}. For any w ∈WJ there exists a unique i ∈ IJ such that xi := wx−1

i ∈W , this implies

wPJ = xi(xiPJ) = ιi(x
iPi) ∈ (G/Pi)

T . Therefore, we write

(
⊔
i∈IJ

Gi/Pi)
T = (G/PJ)T =

⊔
i∈IJ

{wxiPJ | w ∈W/xiWJ ⊂W/xiWJ}

ETJ = {φwxi = (0, wxiPJ) | i ∈ IJ , w ∈W/xiWJ}

ZTJ =
⊔

i,j∈IJ

{φwxi,vxj = (0, wxiPJ , vxjPJ) | w ∈W/xiWJ , v ∈W/xjWJ}.

Let w, v ∈ WJ and i, j ∈ IJ such that wi := wx−1
i ∈ W, vj := vx−1

j ∈ W . We then set

φw := φwixi , φw,v = φwixi,vj ,xj .

As we have bijections (0, wxiPJ) 7→ wxiPJ , (0, wxiPJ , vxjPJ) 7→ (wxiPJ , vxjPJ) between

ET and (G/PJ)T , ZT and (G/PJ ×G/PJ)T , we denote the T -�xed by the same symbols.
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2.4.2 The �bres over the �xpoints

Remember, by de�nition we have Fi = µ−1
J (φxi). For any w = wixi ∈WJ , wi ∈W We set

Fw := µ−1
J (φw) = µ−1

i (φwixi) = wiFi =

r⊕
k=1

V (k) ∩ wU (k)

and if also x ∈ W/(WJ ∩ wWJ) (i.e. the de�nition does not depend on the choice of a

representative in the coset)

Fx,xw := m−1
J (φx,xw) = Fx ∩ Fxw

=

r⊕
k=1

V (k) ∩ x[U (k) ∩ wU (k)]

For J = ∅,U = Lie(U)⊕r : We choose V =
⊕t

k=1 V
(k)⊕

⊕r
k=t+1 V

(k) with V (k) ⊂ R, 1 ≤
k ≤ t, V (k) = g(k) with g(k) ⊂ g is a direct summand, t+ 1 ≤ k ≤ r. The �bres look like

Fw =

t⊕
k=1

V (k) ∩ w Lie(U)⊕
r⊕

k=t+1

V (k) ∩ wu(k)

where u(k) is the Lie subalgebra spanned by the weights > 0 in g(k).

Fx,xw =

t⊕
k=1

Vk ∩ x[(Lie(U)) ∩ w(Lie(U))]⊕
r⊕

k=t+1

Vk ∩ x[u(k) ∩ wu(k)]

Lemma 21. Assume J = ∅,U = Lie(U)⊕r. Let x ∈W, s ∈ S we set

hx(s) := #{k ∈ {1, . . . r} | x(αs) ∈ ΦV (k)}

where V =
⊕r

k=1 V
(k) and ΦV (k) ⊂ Φ are the T -weights of V (k). If x = xixi with xi ∈W ,

then hx(s) = hxi(s) =: hi(s). It holds

Fxi/Fxi,xis = (Gxi(αs))
⊕hi(s).

(1) If xs /∈W then

hi(s) = #{k | V (k) ⊂ R, xi(αs) ∈ ΦV (k)}.

(2) If xs ∈W , then

hi(s) = #{k | V (k) ⊂ g, xi(αs) ∈ ΦV (k)}.

proof: Without loss of generality V ⊂ G,U = Lie(U), set x := xi, we have a short exact

sequence

0→ V ∩ x[U ∩ sU ]→ V ∩ xU → V ∩ Gx(αs) → 0

Now, V ∩ Gx(αs) = 0 if and only if x(αs) /∈ ΦV .
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(1) If xs /∈W then x(αs) /∈ Φ where Φ are the T -weights of g. That means, if V ⊂ g we

get hi(s) = 0.

(2) If xs ∈W , then x(αs) ∈ Φ. This means, if V ⊂ R we get hi(s) = 0.

�

2.5 Relative position strati�cation

2.5.1 In the �ag varieties

Let J ⊂ S, w ∈ JWJ , i, j ∈ IJ . We de�ne

Cw := Gφe,w ∩

⊔
i∈IJ

Gi/Pi ×
⊔
i∈IJ

Gi/Pi


C≤w := Gφe,w ∩

⊔
i∈IJ

Gi/Pi ×
⊔
i∈IJ

Gi/Pi


Cwi,j := Cw ∩ (G/Pi ×G/Pj)

C≤wi,j := C≤w ∩ (G/Pi ×G/Pj)

For an arbitrary w ∈ W there exists a unique v ∈ JWJ such that WJwWJ = WJvWJ ,

we set Cw := Cv, Cwi,j := Cvi,j , C
≤w := C≤v, C≤wi,j := C≤vi,j . We remark that C≤w, C≤wi,j

are closed (but not necessary the closure of Cw, Cwi,j , because it can happen that Cwi,j =

∅, C≤wi,j 6= ∅, see next lemma (3)).

Let i, j ∈ IJ , Ci,j := {Cwi,j | w ∈ JWJ , Cwi,j 6= ∅}, Orbi,j := {G-orbits in G/Pi × G/Pj}, we
have the following commutative diagram

Orbi,j

Φ
��

rp //W ∩ xiWJ \W/W ∩ xjWJ

Ψ
��

Ci,j
rpW // {(xiWJ)w(xjWJ) | w ∈W}

de�ned as follows

rp(Gφxi,wxj ) := (W ∩ xiWJ)w(W ∩ xjWJ),

rpW(Cwi,j) := xiWJ(xiwx
−1
j )xjWJ

Φ(Gφxi,wxj ) := C
x−1
i wxj

i,j (⊃ Gφxi,wxj )

Ψ((W ∩ xiWJ)w(W ∩ xjWJ)) := (xiWJ)w(xjWJ),

rp, rpW are bijections and Φ,Ψ are surjections. We will from now on assume that Φ,

Ψ are bijections as well, i.e. for every nonempty Cwi,j there is a w0 ∈ W such that

WJx
−1
i w0xjWJ = WJwWJ and Cwi,j = Gφxi,w0xj ⊂ G/Pi ×G/Pj , this implies

Cwi,j
∼= G/(Pi ∩ w0Pj ∩G).
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Lemma 22. Let J ⊂ S, s ∈ S \ J, i, j ∈ IJ .

(1) C≤s is smooth, it equals Cs ∪ Ce.

(2) C≤sij = ∅ unless WxjWJ ∈ {WxiWJ ,WxisWJ}.

(3) Assume that WxiWJ 6= WxisWJ and let j ∈ IJ such that xisx
−1
j ∈W , then it holds

ιi(G/Pi) 6= ιj(G/Pj), C≤si,j = Csi,j , C≤si,i = Cei,i

and G ∩ xi [PJ ∩ sPJ ] = G ∩ xiPJ∩sJ , Csij = G/(G ∩ xiPJ∩sJ).

(4) Assume that WxiWJ = WxisWJ = WxjWJ , then it holds i = j, in particular

ιi(G/Pi) = ιj(G/Pj), Cwi,j = Cwi,i, for all w

and the �rst equality implies (xiPJ) ∩ G 6= (xisPJ) ∩ G, there is an isomorphism of

G-varieties

G×Pi
(
(xiPJ∪{s} ∩G)/Pi

)
→ C≤si,i , (g, hPi) 7→ (gPi, ghPi).

proof:

(1) The variety
⊔
i∈IJ Gi/Pi is a smooth subvariety of G/PJ because each G/Pi, i ∈ IJ

is smooth. It is known that Gφe,s = Gφe,s ∪ Gφe,e is smooth in G/PJ , therefore its
intersection (i.e. pullback) is smooth in (G/PJ)H .

(2) Now, C≤si,j = Csi,j∪Cei,j and Csi,j 6= ∅ i� it contains a T -�xed point φxi,vxj for a v ∈W ,

that implies x−1
i vxjPJ = sPJ , i.e. there is an f ∈ PJ such that vxjf = xis, therefore

f ∈ PJ ∩W = WJ and WxjWJ = WxisWJ . Similar Cei,j 6= ∅ i� WxjWJ = WxiWJ .

(3) The intersection (G/Pi) ∩ (G/Pj) is a G-equivariant subset of G/PJ , therefore it is
nonempty i� it contains all T -�xed points vxiPJ = wxjPJ with v, w ∈ W . But this

is equivalent to WxiWJ = WxjWJ .

As we have seen before WxisWJ = WxjWJ implies Cei,j = ∅, Csi,i = ∅ and therefore

C≤si,j = Csi,j , C
≤s
i,i = Cei,i.

Let WxiWJ 6= WxisWJ , we need to show G ∩ xi [PJ ∩ sPJ ] = G ∩ xiPJ∩sJ Let

Φ = Φ+ ∪ Φ− be the set of roots for (G,B, T ) decomposing as positive and negative

roots, let ∆J ⊂ Φ+ be the simple roots corresponding to J ⊂ S and let Φ be the

roots for (G,T ). It is enough to prove that the T -weights on Lie(G ∩ xi [PJ ∩ sPJ ])

equal the T -weights on Lie(G ∩ xiPJ∩sJ).

Now,WxiWJ 6= WxisWJ implies xis /∈W or equivalently xi(αs) /∈ Φ where αs ∈ Φ+

is the simple root negated by s. We have the T -weights of Lie(xiPJ) are {xi(α) | α ∈
Φ+ ∪ −∆J},
the T -weights of Lie(xisPJ) are {xi(α) | α ∈ Φ+ \ {αs} ∪ −s(∆J) ∪ {−αs}}.
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It follows that the T -weights of Lie(G ∩ xiPJ ∩ xisPJ) are

{xi(α) | α ∈ (Φ+ ∪ [−∆J ∩ −s(∆J)]) ∩ Φ}

= {xi(α) | α ∈ (Φ+ ∪ −∆J∩sJ) ∩ Φ}

and these are the T -weights of Lie(G ∩ xiPJ∩sJ).

(4) The �rst part is by de�nition. Assume WxiWJ = WxisWJ implies xisx
−1
i = ab

with a ∈ W, b ∈ xiWJ . Now xiPJ ∩ G is a parabolic subgroup of G conjugated to

PJ∩S , therefore

xisPJ ∩G = (xisx
−1
i (xiPJ)) ∩G = a(xiPJ) ∩G = a((xiPJ) ∩G)

and assume that this is equal xiPJ ∩G that implies a ∈ xi〈J ∩S〉x−1
i , then xisx

−1
i =

ab ∈ xiWJ that implies s ∈ J contradicting our assumption s /∈ J .
Finally, consider the closed embedding G×Pi

(
(xiPJ∪{s} ∩G)/Pi

)
→ G×PiG/Pi and

compose it with the G-equivariant isomorphism

G×Pi G/Pi → G/Pi ×G/Pi, (g, hPi) 7→ (gPi, ghPi).

The image is precisely Csi,i ∪ Cei,i.

�

2.5.2 In the Steinberg variety

Let w ∈WJ , i, j ∈ IJ , recall that we have a map mJ : ZJ → G/PJ .

Zwi,j := m−1
i,j (Cwi,j)

Zw = ZwJ :=
⊔

i,j∈IJ

Zwi,j

Z≤w = Z≤wJ =
⋃

v≤w,v∈WJ

ZvJ

Z≤wi,j :=
⋃

v≤w,v∈WJ

Zvi,j

Lemma 23. (a) If Cwi,j 6= ∅, the restriction mi,j : Zwi,j → Cwi,j is a vector bundle with

�bres isomorphic to Fi ∩ xiwx
−1
j Fj, it induces a bijection on T -�xed points. In partic-

ular, all nonempty Zwi,j are smooth.

(b) For any s ∈ S the restriction m : Zs → C≤s is a vector bundle over its image, in

particular Zs is smooth. More precisely, it is a disjoint union Zsi,j → C≤si,j with

(1) Zsi,j 6= ∅ implies WxjWJ = WxisWJ .

(2) Assume that WxiWJ 6= WxisWJ , then Zsi,j = Zsi,j and Z
s
i,i = ∅.

(3) Assume that WxiWJ = WxisWJ , then it holds Zsi,i → C≤si,i is a vector bundle.
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proof:

(a) As Cwi,j is assumed to be a diagonal G-orbit in G/Pi × G/Pj , it is a homogeneous

space and the statement easily follows from a wellknown lemma, cp. [Slo80b], p.26,

lemma 4.

(b) (1) If Zsi,j 6= ∅, then Csi,j 6= ∅ and by the proof of the previous lemma 22, (2), the

claim follows.

(2) If WxiWJ 6= WxisWJ , then by lemma 22, (3), C≤si,j = Csi,j is already closed,

therefore Zsi,j is closed as well. Also, C≤si,i = Cei,i is already closed, therefore Zei,i

is closed as well.

(3) IfWxiWJ = WxisWJ , then C
≤s
i,i is the closure of the G-orbit Csi,i and by lemma

22, (4) we have G ×Pi
(
(xiPJ∪{s} ∩G)/Pi

)
→ C≤si,i , (g, hPi) 7→ (gPi, ghPi) is

an isomorphism. We set X :=

X := {(gf, gPi, ghPi) ∈ G(Fi ∩
xisFi)×G/Pi ×G/Pi |

g ∈ G, f ∈ Fi ∩ xisx
−1
i Fi, h ∈ xiPJ∪{s} ∩G}

and we claim Zsi,i = X. First, observe that X ⊂ Zi,i because gf = gh(h−1f)

with h−1f ∈ Fi ∩ xisx
−1
i Fi. One can easily check the following steps.

(*) X → C≤si,i is a vector bundle with �bre over Fi ∩ xisx
−1
i Fi. In particular, we

get that X is smooth irreducible and dimX = dimZsi,i.

(*) Zsi,i ⊂ X.

(*) X is closed in Zi,i because we can write it as X = p−1(G(Fi ∩ xisx
−1
i Fi)) ∩

m−1(C≤si,i ). Since Fi ∩ xisx
−1
i Fi is (by de�nition) Bi = xiB-stable, we get

G(Fi ∩ xisx
−1
i Fi) is closed in V . This implies X is closed.

2.6 A short lamentation on the parabolic case

From the next section on we assume that all Pi = Bi are Borel subgroups. What goes

wrong with the more general assumption (which we call the parabolic case)?

(1) We do not know whether Cwi,j (see previous section) is always a G-orbit. That is

relevant for Euler class computation in Lemma 14.

(2) The cellular �bration property has to be generalized because Cw := {gP, gwP ′ | g ∈
G} ⊂ G/P ×G/P ′ pr1−−→ G/P is not a vector bundle (its �bres are unions of Schubert

cells). This complicates Lemma 12.

(3) We do not know what is the analogue of lemma 13, i.e. what can we say about

Z≤x ∗ Z≤y ?

(4) The cycles [Zsi,j ] are not in general multiplicative generators. If we try to understand

more generally [Zwi,j ], the multiplicity formular does not give us as much information
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as for [Zsi,j ] because Z
s
i,j is even smooth. Also understanding the [Zwi,j ] is not enough,

since they do not give a basis as a free E-module because the rank is wrong (cp.

failing of cellular �bration lemma).

The point (4) is the biggest problem. Even for HG
∗ (G/P ×G/P ) we do not know a set

of generators and relations (see next chapter).

So, from now on we assume J = ∅.

2.7 Convolution operation on the equivariant Borel-Moore

homology of the Steinberg variety

De�nition 7. Let H ∈ {pt, T,G} with T ⊂ G where T is a maximal torus.

We de�ne the H-equivariant algebra of a point to be H∗H(pt) with product equals the

cup-product, we will always identify it with HH
∗ (pt) := H−∗H (pt). It is a graded C-algebra

concentrated in negative even degrees.

We de�ne the H-equivariant Steinberg algebra to be the H-equivariant Borel-Moore homol-

ogy algebra of the Steinberg variety, the product is the convolution product, see [CG97],

[Var09].

We say (H-equivariant)company algbra to the H-equivariant cohomology algebra of E,

the product is the cup-product.

ZH := HH
∗ (Z) for the H-equivariant Steinberg algebra,

EH := H∗H(E) for the H-equivariant company algebra.

For H = pt we leave out the adjective H-equivariant and leave out the index H.

Recall, that ZH and EH are left graded modules over ΛH . Furthermore, EH is a left

module over ZH . This follows from considering M1 = M2 = M3 = E smooth manifolds

and Z ⊂M1×M2, E = E ×{(e, 0)} ⊂M2×M3. Then the set-theoretic convolution gives

Z ◦ E = E, which implies the operation.

Also, ZH is a left module over EH . This follows from considering M1 = M2 = M3 = E

smooth manifolds (dimCE =: e) and E ↪→M1 ×M2 diagonally, Z ⊂ M2 ×M3, then the

set-theoretic convoltion gives E ◦ Z = Z, that implies that we have a map

HH
2ei−p(Ei)×H

H
ei+ej−q(Zi,j)→ HH

ei+ej−(p+q)(Zi,j)

Using Poincare duality we get HH
2ei−p(E) ∼= Hp

H(E) and the grading

HH
[q](Z) :=

⊕
i,j H

H
ei+ej−q(Z) the previous map gives an operation of the H∗H(E) on HH

[∗](Z)

which is HH
∗ (pt)-linear. We denote the operations by

∗ : ZH × EH → EH

� : EH ×ZH → ZH
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Furthermore, there are forgetful algebra homomorphisms

H∗G(pt)→ H∗T (pt) → H ∗ (pt) = C,

ZG → ZT → Z,

EG → ET → E .

Let us investigate some elementary properties of the convolution operations. From

[VV11], section 5, p.606, we know that the operation of ZG on EG is faithful, i.e. we get

an injective C-algebra homomorphism

ZG ↪→End(EG).

We have the following cellular �bration property. We choose a total order ≤ re�ning

Bruhat order on W. For each i, j ∈ I we get a �ltration into closed G-stable subsets of

Zi,j by setting Z≤wi,j :=
⋃
v≤w Z

v
i,j , w ∈ W. Via the �rst projection pr1 : Cvi,j → G/Bi is

a G-equivariant vector bundle with �bre BivBj/Bj , we call its (complex) dimension dvi,j ,

also Zvi,j → Cvi,j is a G-equivariant vector bundle, we de�ne the complex �bre dimension

fvi,j . By the G-equivariant Thom isomorphism (applied twice) we get

HG
m(Zvi,j) = HG

m−2dvi,j−2fvi,j
(G/Bi).

In particular, it is zero when m is odd and HG
∗ (Zvi,j) is a free HG

∗ (pt)-module with basis

bx, x ∈W, deg bx = 2 dim(BixBi)/Bi + 2dvi,j + 2fvi,j .

Using the long exact localization sequence in G-equivariant Borel-Moore homology for

every v ∈ W, we see that Zvi,j is open in Z≤vi,j with an closed complement Z<vi,j . We con-

clude inductively using the Thom isomorphism that HG
odd(Z

≤v
i,j ) = 0 and that HG

∗ (Z≤wi,j ) =⊕
v≤wH

G
∗ (Zvi,j). We observe, that #{w ∈ W | Zwi,j 6= ∅} = #W for every i, j ∈ I.

It follows that HG
∗ (Zi,j) is a free HG

∗ (pt)-module of rank #(W × W ), and that every

HG
∗ (Z≤vi,j )

i∗−→ HG
∗ (Zi,j) is injective.

We can strengthen this result to the following lemma.

Lemma 24. Let ≤ be a total order re�ning Bruhat order on W. For any w ∈ W set

Z≤w := m−1(
⋃
v≤w C

v) =
⋃
v≤w Z

v. The closed embedding i : Z≤v → Z gives rise to an

injective morphism of H∗G(E)-modules i∗ : Z≤vG := HG
∗ (Z≤v) → ZG. We identify in the

following Z≤vG with its image in ZG. For all v ∈W we have

Z≤wG =
⊕
v≤w
EG � [Zv] as EG-module

1i ∗ Z≤wG ∗ 1j =
⊕
v≤w
Ei � [Zvi,j ] as Ei-module

where Ei = H∗G(Ei). Each [Zv] is nonzero (and not necessarily a homogeneous element).

In particular, ZG (as ungraded module) is a free left EG-module of rank #W.
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proof: Now �rst observe that set-theoretically we have E ◦ Zv = Zv (where we use

the diagonal embedding for E again). This implies that the direct sum decomposition

HG
∗ (Z) =

⊕
v∈WHG

∗ (Zv) is already a decomposition of H∗G(E)-modules.

Now we know that we have by the Thom-isomorphism algebra isomorphims

H∗G(E) ∼= H∗G(
⊔
i∈I

G/Bi) ∼= H∗G(Zv),

using that #{(i, j) | Zvi,j 6= ∅} = #I. Now, Poincare duality is given by Hq
G(Zvi,j) →

HG
2 dimZvi,j−q

(Zvi,j), α 7→ α · [Zvi,j ] the composition gives

Hp
G(Ei)→ HG

2 dimZvi,iv−q(Z
v
i,iv), c 7→ c · [Zvi,iv].

�

Lemma 25. For each x, y ∈W with l(x) + l(y) = l(xy) we have

Z≤xG ∗ Z≤yG ⊂ Z≤xyG

proof: By de�nition of the convolution product, it is enough to check that for all w ≤
x, v ≤ y it holds for the set theoretic convolution product

Zwi,j ◦ Zvj′,k ⊂

∅, j 6= j′

Z≤xyi,k , j = j′

for i, j, j′, k ∈ I, because by de�nition Z≤x ◦ Z≤y =
⋃
w≤x,v≤y Z

w ◦ Zv. Now, the case

j 6= j′ follows directly from the de�nition. Let j = j′. Let Cw := G(B, wB) ⊂ G/B×G/B.
According to Hinrich, Joseph [HJ05], 4.3 it holds Cw ◦ Cv ⊂ Cwv for all v, w ∈ W. Now,

we can adapt this argument to prove that Cwi,j ◦ Cvj,k ⊂ Cwvj,k as follows:

Since Cwi,j 6= ∅, Cvj,k 6= ∅ we have that w0 = xiwx
−1
j ∈W, v0 = xjvx

−1
k ∈W and

Cwi,j = G(Bi, w0Bj), C
v
j,k = G(Bj , v0Bk). We pick M1 = G/Bi,M2 = G/Bj ,M3 = G/Bk

for the convolution and get

p13(p−1
12 C

w
i,j ∩ p−1

23 C
v
j,k) = {g(Bi, w0bv0Bk) | g ∈ G, b ∈ Bj}.

Now since the length are adding one �nds Biw0Bjv0Bk = Bi(w0v0)Bk , as follows

w0Bjv0Bk = xi[w(x
−1
j G ∩ B)v(x

−1
k G ∩ B)]x−1

k

⊂ xi[wBvB]xk ∩G ⊂ xi[BwvB]x−1
k ∩G

= [xiB(xiwvx
−1
k )xkB] ∩G = Biw0v0Bk

For the last equality, clearly Biw0v0Bk ⊂ [xiB(xiwvx
−1
k )xkB] ∩G. Assume

[xiB(xiwvx
−1
k )xkB] ∩G =

⋃
BitBk
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for certain t ∈ W , then clearly BitBk ⊂ [xiB(xiwvx
−1
k )xkB] ∩ G ∩ [xiBtxkB] ∩ G as this

intersection is empty if t 6= (xiwvx
−1
k ), the last equality follows.

Then using Zwi,j = {g(fi = w0fj , Bi, w0Bj) ∈ V ×G/Bi ×G/Bj | g ∈ G, fi ∈ Fi, fj ∈ Fj}
one concludes by de�nition that Zwi,j ◦ Zvj,k ⊂ Zwvj,k �

We have the following corollary whose proof we have to delay until we have introduced

the localization to the T -�xed point.

Corollary 2.7.0.2. For s ∈ S, w ∈W with l(sw) = l(w) + 1,

[Zs] ∗ [Zw] = [Zsw] in Z≤swG /Z<swG .

Since [Zv] =
∑

s,t∈I [Z
v
s,t] for all v ∈W, this is equivalent to i, j, l, k ∈ I we have

[Zsi,j ] ∗ [Zwl,k] = δl,j [Z
sw
i,k ] in Z≤swG /Z<swG .

2.8 Computation of some Euler classes

De�nition 8. (Euler class) Let T be a torus and t := Lie(T ). LetM be a �nite dimensional

complex t-representation. Then, we have a weight space decomposition

M =
⊕

α∈HomC(t,C)

Mα, Mα = {m ∈M | tm = α(t)m}.

We de�ne

eu(M) :=
∏

α∈Hom(t,C)

αdimMα ∈ C[t] = H∗T (pt)

For a T -variety X and a T -�xed point x ∈ X, we de�ne the Euler class of x ∈ X to be

eu(X,x) := eu(TxX),

where the t-operation on the tangent space TxX is the di�erential of the natural T -action.

Observe, that eu(T ∗xX) = (−1)dimTxX eu(TxX).

Recall from an earlier section the notation Zw := m−1(Cw). We are particularly

interested in the following Euler classes, let w = wkxk, x = xixi, y = yjxj ∈W, wk, xi, yj ∈
W

Λw := eu(E, φw) = eu(Tφ
wkxk

Ek), ∈ H∗T (pt)

eu(Zw, φx,y) = (eu(Tφ
xixi,y

jxj
Zwij))

−1, ∈ K := Quot(H∗T (pt))

Remember Fw := µ−1(φw) = µ−1
k (φwkxk) = wkFk, Fx,y := m−1(φx,y) = xiFi ∩ yjFj =

Fx∩Fy. In particular, we can see them as t-representations. We also consider the following

t-representations

nw := TwkPkG/Pk = g ∩ wU− = wk [g ∩ xkU−]

mx,y :=
nx

nx ∩ ny
= g ∩

xU−
xU− ∩ yU−
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where U− := Lie(U−) with U− ⊂ B− := w0B is the unipotent radical where w0 ∈W is the

longest element. Some properties can easily be seen.

(1) nx =
∏
α∈Φ∩x−1Φ− α.

(2) If s ∈ S, x ∈W such that xs ∈W , then

eu(nx) = − eu(nxs), eu(mx,xs) = − eu(mxs,x) = x(αs)

(3) If s ∈ S, x ∈W such that xs /∈W , then

nx = nxs, eu(mx,xs) = eu(mxs,x) = 0

Furthermore, for s ∈ S, x ∈W, i ∈ I we write set as a shortage

Qx(s) := eu(Fx/Fx,xs),

Qi(s) := Qxi(s),

qi(s) :=
∏

α∈ΦU ,s(α)/∈ΦU ,xi(α)∈ΦV

α.

for x = xixi with x
i ∈W it holds Qx(s) = xi(Qi(s)), Qi(s) = xi(qi(s)), i.e.

Qx(s) = x(qi(s))

Lemma 26. Let J = ∅, it holds

(1) for w ∈W
Λw = eu(Fw ⊕ nw)

(2) If s ∈ S, x ∈W, αs ∈ Φ+ with s(αs) = −αs and xs ∈W

eu(Zs, φx,xs) = eu(Fx,xs ⊕ nx ⊕mx,xs) = x(αs) Qx(s)−1 Λx

eu(Zs, φx,x) = eu(Fx,xs ⊕ nx ⊕mxs,x) = − eu(Zs, φx,xs).

(3) If s ∈ S, x ∈W and xs /∈W

eu(Zs, φx,xs) = eu(Fx,xs ⊕ nx) = Qx(s)−1Λx

(4) Let x,w ∈W. Then

eu(Zw, φx,xw) = eu(Fx,xw ⊕ nx ⊕mx,xw)

proof:

(1) We know µk : Ek → G/Bk, Bk = G ∩ xkB is a vector bundle, therefore we have a
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short exact sequence of tangent spaces

0→ Tφwµ
−1
k (wkBk)→ TφwEk → TwkBkG/Bk → 0

which is a split sequence of T -representations implying the �rst statement.

ad (3,2) Let i, j ∈ IJ such that xi := xx−1
i , yj := xsx−1

j ∈W .

(2) If xs ∈ W we have that i = j and Zsi,i → C≤si,i
∼= G ×Bi (G ∩ xiP{s})/Bi is a vector

bundle. For x′ ∈ {x, xs} we have a short exact sequence on tangent spaces

0→ Fx,xs → Tφx,x′Z
s
i,i → Tφx,x′C

≤s
i,i → 0

Using the isomorphism G ×Bi [(xiP{s} ∩ G)/Bi] → C≤si,i , (g, hBi) 7→ (gBi, ghBi) we

get

eu(Tφx,x′C
≤s
i,i ) =eu(T

(xi,Bi)
G×Bi [(xiP{s} ∩G)/Bi]) = eu(nx) · eu(mxs,x), x′ = x

eu(T
(xi,xisBi)

G×Bi [(xiP{s} ∩G)/Bi]) = eu(nx) · eu(mxs,x), x′ = xs

It follows eu(Zs, φx,x) = eu(Fx,xs) · eu(nx) · eu(mxs,x) and eu(Zs, φx,xs) = eu(Fx,xs ⊕
nx ⊕mx,xs).

(3) If xs /∈W we get i 6= j and Zsi,j is closed and a vector bundle over Csi,j = G/(G∩xB),

we get a short exact sequence on tangent spaces

0→ Fx,xs → Tφx,xsZ
s
i,j → Tφx,xsC

s
i,j → 0.

We obtain eu(Zs, φx,xs) = eu(Fx,xs) eu(nx).

(4) Pick i, j ∈ I such that x ∈Wxi, xw ∈Wxj . We have the short exact sequence

0→ Fx,xw → Tφx,xwZ
w
i,j → Tφx,xwC

w
i,j → 0

Then, recall the isomorphism

Cwi,j = Gφx,xw → G/(G ∩ xB ∩ xwB)

φx,xw 7→ e := e(G ∩ xB ∩ xwB)

Again we have a short exact sequence

0→ Te(G ∩ xB)/(G ∩ xB ∩ xwB)→ TeG/(G ∩ xB ∩ xwB)→ TeG/(G ∩ xB)→ 0

Together it implies eu(Zwi,j , φx,xw) = eu(Fx,xw) eu(nx/(nx ∩ nxw)) eu(nx).

�
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Corollary 2.8.0.3. Let J = ∅,U = Lie(U)⊕r, it holds

(1) If s ∈ S, x ∈W and xs ∈W , then hx(s) = hxs(s) and

Λx = (−1)1+hxs(s)Λxs

eu(Zs, φx,xs) = (x(αs))
1−hx(s)Λx

(2) If s ∈ S, x ∈W and xs /∈W

eu(Zs, φx,xs) = x(αs))
−hx(s)Λx

proof: This follows from qx(s) = x(αs)
hx(s) and

if xs ∈W we have that i = j and hx(s) = hxs(s). Therefore we get

eu(Fx) = x(αs)
hx(s) eu(Fx,xs)

= (−1)hxs(s)(xs(αs))
hxs(s) eu(Fxs,x)

= (−1)hxs(s) eu(Fxs)

Using that eu(nx) = − eu(nxs) we obtain Λx = (−1)1+hxs(s)Λxs �

2.9 Localization to the torus �xed points

Now, we come to the application of localization to T -�xed points. We remind the reader

that Z is a cellular �bration and E is smooth, therefore in both cases the odd ordinary

(=singular) cohomology groups vanish for Z and E. This implies in particular that E,Z

are equivariantly formal, which is (in the case of �nitely T -�xed points) equivalent to ZG
and EG are free modules over H∗G(pt).

If we denote by K the quotient �eld of H∗G(pt) and for any T -variety X

HT
∗ (X)→ H∗(X) := HT

∗ (X)⊗H∗T (pt) K, α 7→ α⊗ 1.

Lemma 27. (1)

H∗(E) =
⊕
w∈W

Kψw, H∗(Z) =
⊕
x,y∈W

Kψx,y

where ψw = [{φw}]⊗ 1, ψx,y = [{φx,y}]⊗ 1.

(2) For every i ∈ I, w ∈ Wxi we have a map w· : Ei := H∗G(Ei) → C[t], via taking the

forgetful map composed with the pullback map under the closed embedding iw : {φw} →
Ei

Ei = H∗G(Ei)→ H∗T (Ei)
i∗w−→ H∗T (pt) = C[t],

we denote the map by f 7→ w(f), f ∈ Ei, w ∈ W. Furthermore, composing the
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forgetful map with the map from before we get an injective algebra homomorphism

Θi : Ei → H∗T (Ei) ↪→H∗T (Ei)⊗K ∼=
⊕

w∈Wxi

Kψw

c 7−→
∑

w∈Wxi

w(c)Λ−1
w ψw.

We set Θ =
⊕

i∈I Θi : EG →
⊕

w∈WKψw.

proof:

(1) This is GKM-localization theorem for T -equivariant cohomology, for a source also

mentioning the GKM-theorem for T -equivariant Borel-Moore homology see for ex-

ample [Bri00], Lemma 1.

(2) This is [EG98b], Thm 2, using the equivariant cycle class map to identi�y T -equivariant

Borel-Moore homology of E with the T -equivariant Chow ring.

�

2.9.1 The W-operation on EG :

Recall that the ring of regular functions C[t] on t = Lie(T ) is a left W -module and a left

W-module with respect to w ·f(t) = f(w−1tw), w ∈W(⊃W ). The from W to W induced

representation is given by

IndW
W C[t] =

⊕
i∈I

x−1
i C[t],

for w ∈W, i ∈ I the operation of w on x−1
i C[t] is given by

x−1
i C[t]→ x−1

iw−1C[t]

x−1
i f 7→ wx−1

i f

where we use that wx−1
i W = x−1

iw−1W .

Now, we identify EG =
⊕

i∈I Ei with the left W-module IndW
W C[t] via Ei = x−1

i C[t].

Furthermore, we have the (left) W-representation on
⊕

x∈WK(Λ−1
x ψx) de�ned via

w(k(Λ−1
x ψx)) := k(Λxw−1ψxw−1), k ∈ K,w ∈W.

Lemma 28. The map Θ: EG →
⊕

x∈WK(Λ−1
x ψx) is W-invariant.

proof: Let w ∈W, we claim that there is a commutative diagram

EG
Θ //

w·
��

⊕
x∈WK(Λ−1

x ψx)

w

��

c //

��

∑
x∈W i∗x(c)Λ−1

x ψx

��
EG

Θ //
⊕

x∈WK(Λ−1
x ψx) w · c //

∑
x∈W i∗xw(c)Λ−1

x ψx
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We need to see i∗x(w · c) = i∗xw(c). Let xw ∈ Wxi, x ∈ Wxiw−1 This means that the

diagram

Ei

i∗xw ""FFFFFFFFF
w· // Eiw−1

i∗x

zzuuuuuuuuu

H∗T (pt)

is commutative. But it identi�es with

x−1
i C[t]

xw·
##FFFFFFFFF
w· // x−1

iw−1C[t]

x·

zzvvvvvvvvv
x−1
i f //

$$IIIIIIIII
wx−1

i f

yyttttttttt

C[t] xwx−1
i f.

The diagram is commutative. �

Remark. From now on, we use the following description of the W-operation on EG. We

set Ei = C[t], i ∈ I. Let w ∈W

w(Ei) = Eiw−1 , Ei = C[t] 3 f 7→ w · f ∈ C[t] = Eiw−1 .

The isomorphism p :=
⊕

i∈I pi de�ned by

pi : C[t]→ x−1
i C[t]

f 7→ x−1
i (xif)

gives the identi�cation with the induced representation IndW
W C[t] which we described be-

fore.

2.9.2 Calculations of some equivariant multiplicities

In some situation one can actually say something on the images of algebraic cycle under

the GKM-localization map, recall the

Theorem 2.9.1. (multiplicity formular, [Bri00], section 3) Let X equivariantly formal

T -variety with a �nite set of T -�xpoints XT , by the localization theorem,

[X] =
∑
x∈XT

ΛXx [{x}] ∈ HT
∗ (X)⊗K

where ΛXx ∈ K. If X is rationally smooth in x, then ΛXx 6= 0 and (ΛXx )−1 = eu(X,x) ∈
HT

2n(X), n = dimC(X).

Remark. It holds for any w ∈W

[Zw] =
∑
i,j∈I

[Zwi,j ].

Especially 1 = [Ze] =
∑

i∈I [Z
e
i,i] is the unit and 1i = [Zei,i] are idempotent elements,
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1i ∗ 1j = 0 for i 6= j, [Zi,j ] = 1i ∗ [Z] ∗ 1j . In particular, for s ∈ S by lemma 11, we have

[Zs] =
∑

i∈I : is=i

[Zsi,i] +
∑

i∈I : is 6=i
[Zsi,is].

By the multiplicity formula we have

[Zsi,is] =


∑

x∈W Λsxxi,xxisψxxi,xxis + Λsxxi,xxiψxxi,xxi , if i = is∑
x∈W Λsxxi,xxisψxxi,xxis , if is 6= i

with Λsy,z = (eu(Zsi,j , φy,z))
−1, for all y, z ∈W as above

[Zwi,j ] =


∑

x∈W Λwxxi,xxiwψxxi,xxiw +
∑

v<w Λwxxi,xxivψxxi,xxiv , if iw = j

0 , if iw 6= j

with Λwxxi,xxiw = (eu(Zwi,iw, φxxi,xxiw))−1 for all x ∈W,

2.9.3 Convolution on the �xed points

The following key lemma on convolution products of T -�xed points

Lemma 29. For any w, x, y ∈W it holds

ψx,w ∗ ψw = Λwψx, ψx,w ∗ ψw,y = Λwψx,y

proof: We take M1 = M2 = M3 = E and Z1,2 := {φx,w = ((0, xB), (0, wB))} ⊂
E × E,Z2,3 := {φw′,y} ⊂ E × E, then the set theoretic convolution gives

{φx,w} ◦ {φw′,y} =

{φx,y}, if w = w′

∅, if w 6= w′

Similar, take M1 = M2 = E,M3 = pt, Z12 := {φx,w}, Z23 = φw′ × pt, then

{φx,w} ◦ {φw} =

{φx} if w = w′

∅, else

To see that we have to multiply with Λw, we use the following proposition

Proposition 3. (see [CG97], Prop. 2.6.42, p.109) Let Xi ⊂ M, i = 1, 2 be two closed

(complex) submanifolds of a (complex) manifold with X := X1 ∩X2 is smooth and TxX1 ∩
TxX2 = TxX for all x ∈ X. Then, we have

[X1] ∩ [X2] = e(T ) · [X]

where T is the vector bundle T∗M/(T∗X1 + T∗X2) on X and e(T ) ∈ H∗(X) is the (non-

equivariant) Euler class of this vector bundle, ∩ : HBM
∗ (X1)×HBM

∗ (X2)→ HBM
∗ (X) is the

intersection pairing (cp. Appendix, or [CG97], 2.6.15) and · on the right hand side stands

for the H∗(X)-operation on the Borel-Moore homology (introduced in [CG97], 2.6.40)
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Set ET := E×T ET, (φx)T := {φx}×T ET (∼= ET/T = BT ). We apply the proposition

for M = E3
T , X1 := (φx)T × (φw)T ×ET , X2 := ET × (φw)T × (φy)T , X1∩X2

∼= {φx,y}T (∼=
BT ), then T = (TφwE)×T ET and the (non-equivariant) Euler class is the top chern class

of this bundle which is the T -equivariant top chern class of the constant bundle TφwE on

the point {φx,y}. Since TφwE =
⊕

λCλ for one-dimensional T -representations Cλ with

t · c := λ(t)c, t ∈ T, c ∈ C = Cλ. It holds

cTtop(TφwE) =
∏
λ

cT1 (Cλ) =
∏
λ

λ = Λw.

Secondly, apply the proposition with M = E2
T × (pt)T , X1 = (φx)T × (φw)T × (pt)T , X2 :=

ET × (φw)T × (pt)T , to see again e(T ) = Λw.

�

Now we can give the missing proof of Corollary 2.7.0.2

proof of Corollary 2.7.0.2: By the lemma 25 we know that there exists a c ∈ EG such

that [Zsi,j ] ∗ [Zwj,k] = c � [Zswi,k ] in Z≤swG /Z<swG . We show that c = 1. We pass with the

forgetful map to T -equivariant Borel-Moore homology and tensor over K = Quot(HT
∗ (pt))

and write [Zxs,t], x ∈ W, s, t ∈ I for the image of the same named elements. Let i, j, k ∈ I
with xjwx

−1
k ∈W .

[Zsi,j ] ∗ [Zwj,k] = (
∑
x∈W

Λsxxi,xxisψxxi,xxis + Λsxxi,xxiψxxi,xxi)∗

(
∑
x∈W

Λwxxj ,xxjwψxxj ,xxjw +
∑
v<w

Λwxxj ,xxjvψxxj ,xxjv)

=
∑
x∈W

Λsxxi,xxisΛ
w
xxis,xxiswΛxxisψxxi,xxisw + · · ·︸︷︷︸

terms in Z<swG

Now, this has to be equal to c
∑

x∈W Λxxi,xxiswψxxi,xxisw in Z≤swG /Z<swG . Comparing

coe�cients at x gives

c =
eu(Ej , φxxis) eu(Zswi,k , φxxi,xxisw)

eu(Zsi,j , φxxi,xxis) eu(Zwj,k, φxxis,xxisw)

=
eu(g ∩ xxisU− ⊕ g ∩ xxiU− ⊕ g ∩ xxi( U−

U−∩swU− ))

eu(g ∩ xxiU− ⊕ g ∩ xxi( U−
U−∩sU− )⊕ g ∩ xxisU− ⊕ g ∩ xxi(

sU−
sU−∩swU− ))

·
r∏
l=1

eu(V (l) ∩ xxi(sU (l))⊕ V (l) ∩ xxi(U (l) ∩ swU (l)))

eu(V (l) ∩ xxi(U (l) ∩ sU (l))⊕ V (l) ∩ xxi(sU (l) ∩ swU (l)))

=
eu(x[g ∩ xi( U−

U−∩swU− )])

eu(x[g ∩ xi( U−
U−∩sU− )⊕ g ∩ xi(

sU−
sU−∩swU− )])

·
r∏
l=1

eu(x[V (l) ∩ xi(
sU(l)

U(l)∩sU(l) )⊕ V (l) ∩ xi(
swU(l)

sU(l)∩swU(l) )])

eu(x[V (l) ∩ xi(
swU(l)

U(l)∩swU(l) )])
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That for each x and each l ∈ {1, . . . , r} the big two fraction in the product are equal to 1

is a consequence of the following lemma. �

Lemma 30. Let T ⊂ B ⊂ G a maximal torus in a Borel subgroup in a reductive group

(overC), F ⊂ Lie(G) = G a B-subrepresentation. Let (W,S) be the Weyl group for (G, T ).

Let w ∈W, s ∈ S such that l(sw) = l(w) + 1, then it holds for any x ∈W

x(
sF

F ∩ sF
⊕ s(

wF

F ∩ wF
)) ∼= x(

swF

F ∩ swF
).

In particular, this holds also for F = u−.

proof: Let ΦF := {α ∈ Hom(t,C) | Fα 6= 0} ⊂ Φ, Φ+(y) := Φ+ ∩ y(Φ−), Φ+
F (y) :=

ΦF ∩ Φ+(y), y ∈ W where Φ,Φ+,Φ− are the set of roots (of T on G), positive roots,

negative roots respectively.

The assumption l(sw) = l(w) + 1 implies Φ+
F (sw) = sΦ+

F (w) t Φ+
F (s) and for Φ−F (y) :=

−Φ+
F (y), ΦF (y) := Φ+

F (y)∪Φ−F (y) = ΦF \ (ΦF ∩ yΦF ) it holds ΦF (sw) = sΦF (w)tΦF (s)

and for any x ∈W it holds xΦF (sw) = x(sΦF (w)tΦF (s)). Now, the weights of x(
swF

F∩swF )

are xΦF (sw), the weights of x(
sF

F∩sF ⊕
s(

wF
F∩wF )) are x(sΦF (w) t ΦF (s)). �

2.10 Generators for ZG

Let J = ∅. Recall, we denote the right W-operation on I = W \ W by (i, w) 7→ iw,

i ∈ I, w ∈W.

For i ∈ I we set Ei := H∗G(Ei) = C[t] = C[xi(1), . . . , xi(m)], we write

w(αs) = w(αs(xiw−1(1), . . . , xiw−1(m))) ∈ Eiw−1

for the element corresponding to the root w(αs), s ∈ S, w ∈W without mentioning that it

depends on i ∈ I.
We de�ne a collection of elements in ZG

1i := [Zei,i]

zi(t) := xi(t) ∈ Z≤eG (⊂ ZG)

σi(s) := [Zsi,j ] ∈ Z
≤s
G , where is = j

where we use that Ei ⊂ Z≤eG ⊂ ZG and the degree of xi(t) is 2 in HG
[∗](Z), see Lemm 6

and the de�nition of the grading (just before theorem 2.1) . It is also easy to see that

1i ∈ HG
[0](Z) because deg 1i = 2ei − 2 dimZei,i = 0. Furthermore, the degree of σi(s) is

eis + ei − 2 dimZsi,is =

2 deg qi(s)− 2, if is = i

2 deg qi(s), if is 6= i.
.
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Recall ZG ↪→End(EG) = End(
⊕

i∈I Ei) from [VV11], remark after Prop.3.1, p.12. Let us

denote by 1̃i, z̃i(t), σ̃i(s) be the images of 1i, zi(t), σi(s).

Proposition 4. Let k ∈ I, f ∈ Ek, αs ∈ Φ+ be the positive root such that s(αs) = −αs.
It holds

1̃i(f) := 1i ∗ f =

f, if i = k,

0, else.

z̃i(t)(f) := zi(t) ∗ f =

xi(t)f, if i = k,

0, else.

σ̃i(s)(f) :=


qi(s)

s(f)−f
αs

, if i = is = k,

qi(s)s(f) if i 6= is = k,

0, else.

for U = Lie(U)⊕r this looks like

σ̃i(s)(f) :=


α
hi(s)
s

s(f)−f
αs

, if i = is = k,

α
hi(s)
s s(f) if i 6= is = k,

0, else.

We write δs := s−1
αs

, it is the BGG-operator from [Dem73], i.e. for is = i, f ∈ Ei,
σi(s)(f) = qi(s)δs(f).

proof: Consider the following two maps

Θ: EG → ET → ET ⊗K →
⊕
w∈W

Kψw

Ek 3 f 7→
∑

w∈Wxk

w(f)Λ−1
w ψw

C :
⊕
w∈W

Kψw →
⊕
w∈W

Kψw, ψw 7→ [Zsi,is] ∗ ψw =

(
∑

x∈W Λsxxi,xxiψxxi,xxi + Λsxxi,xxisxiψxxi,x
xisxi) ∗ ψw

= Λsw,wΛwψw + Λsws,wΛwψws, if w ∈Wxi, i = is

(
∑

x∈W Λsxxi,xxisxiψxxi,x
xisxi) ∗ ψw

= Λsws,wΛwψws, if w ∈Wxis, i 6= is

0, if w /∈Wxis

To calculate [Zsi,is] ∗ f, f ∈ Ek it is enough to calculate [Zsi,is] ∗Θ(f) = C(Θ(f)) because Θ

is an injective algebra homomorphism.

CΘ(f) =

δis,k
∑

w∈Wxi
[w(f)Λsw,w + w(sf)Λsw,ws]ψw, if i = is

δis,k
∑

w∈Wxi
[w(sf)Λsw,ws]ψw, if i 6= is
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Now, recall,

(1) If i = is = k

CΘ(f) =
∑

w∈Wxi

w[qi(s)
s(f)− f

αs
]Λ−1
w ψw

= Θ(qi(s)
s(f)− f

αs
)

Once we identify Ek = C[t], k ∈ I, we see that σi(s) : EG → EG is the zero map on

the k-th summand, k 6= i and on the i-th summand

C[t]→ C[t]

f 7→ qi(s)
s(f)− f

αs

(2) If i 6= is = k,

CΘ(f) =
∑

w∈Wxi

[w(sf)Λsw,ws]ψw

= Θ(qi(s)s(f))

Once we identify Ek = C[t], we see that σi(s) : EG → EG is the zero map on the k-th

summand, k 6= is and on the is-th summand it is the map

C[t]→ C[t]

f 7→ qi(s)s(f)

�

Lemma 31. The algebra ZG is generated as ΛG-algebra by the elements

1i, i ∈ I, zi(t), 1 ≤ t ≤ rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I.

proof: It follows from the cellular �bration property that ZG is generated by 1i, i ∈
I, zi(t), 1 ≤ t ≤ rk(T ), i ∈ I, [Zwi,j ], w ∈ W. By corollary 2.7.0.2 it follows that one can

restrict to the case w ∈ S, more precisely as free H∗G(E)-module it can be generated by

σ(w) := σ(s1) ∗ · · ·σ(st), w ∈W, w = s1 · · · st reduced expression , σ(s) :=
∑
i∈I

σi(s),

and this basis has a unitriangular base cange to the basis given by the [Zw].

�

2.11 Relations for ZG

Furthermore, we consider

Φ:
⊕
i∈I

C[xi(1), . . . xi(n)] ∼=
⊕
i∈I

C[zi(1), . . . zi(n)], xi(t) 7→ zi(t)
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as the left W-module IndW
W C[t], we �x the polynomials

ci(s, t) := Φ(σi(s)(xi(t))) ∈
⊕
i∈I

C[zi(1), . . . zi(n)], i ∈ I, 1 ≤ t ≤ n, s ∈ S.

Proposition 5. Let S ⊂ W = Weyl(G, T ) be the simple re�ections. Under the following

assumption for the data (G,B,U = (Lie(U))⊕r, H, V ), J = ∅ : We assume for any s, t ∈ S

(B2) If the root system spanned by αs, αt is of type B2 (i.e. stst = tsts is the minimal

relation), then for every i ∈ I such that is = i = it it holds hi(s), hi(t) ∈ {0, 1, 2}.

(G2) If the root system spanned by αs, αt is of type G2 (i.e. ststst = tststs is the minimal

relation), then for every i ∈ I such that is = i = it it holds hi(s) = 0 = hi(t).

Then the generalized quiver Hecke algebra for (G,B,U = (Lie(U))⊕r, H, V ) is the graded

C-algebra with generators

1i, i ∈ I, zi(t), 1 ≤ t ≤ n = rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I

in degrees

deg 1i = 0, deg zi(k) = 2, deg σi(s) =

2hi(s)− 2, if is = i

2hi(s), if is 6= i

and relations

(1) ( orthogonal idempotents)

1i1j = δi,j1i,

1izi(t)1i = zi(t),

1iσi(s)1is = σi(s)

(2) (polynomial subalgebras)

zi(t)zi(t
′) = zi(t

′)zi(t)

(3) ( relation implied by s2 = 1)

σi(s)σis(s) =


0 , if is = i, hi(s) is even

−2α
hi(s)−1
s σi(s) , if is = i, hi(s) is odd

(−1)his(s)α
hi(s)+his(s)
s , if is 6= i

(4) ( straightening rule)

σi(s)zi(t)− s(zi(t))σi(s) =

ci(s, t), , if is = i

0 , if is 6= i.
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(5) (braid relations)

Let s, t ∈ S, st = ts, then

σi(s)σis(t) = σi(t)σit(s)

Let s, t ∈ S not commuting such that x := sts · · · = tst · · · minimally, i ∈ I. There

exists explicit polynomials (Qw)w<x in αs, αt ∈ C[t] such that

σi(sts · · · )− σi(tst · · · ) =
∑
w<x

Qwσi(w)

(observe that for w < x there exists just one reduced expression).

proof: For the convenience of the reader who wants to check the relations for the gener-

ators of ZG, we include the detailed calculations. (1), (2) are clear. Let always f ∈ C[t] ∼=
Eis. We will use as shortage δs(f) := s(f)−f

αs
and use that these satisfy the usual relations

of BGG-operators (cp. [Dem73]).

(3) If is = i, then

σi(s)σi(s)(f) = αhi(s)s δs(α
hi(s)
s δs(f))

= αhi(s)s δs(α
hi(s)
s )δs(f) = [(−1)hi(s) − 1]αhi(s)−1

s σi(s)(f).

If is 6= i, then

σi(s)(f)σis(s) = αhi(s)s s(αhis(s)s )s(s(f)) = (−1)his(s)αhi(s)+his(s)s f.

(4) (straightening rule)

The case is 6= i is clear by de�nition. Let is = i, then the relation follows di-

rectly from the product rule for BGG-operators, which states δs(xf)) = δs(x)f +

s(x)δs(f), x, f ∈ C[t].

(5) (braid relations)

s, t ∈ S, st = ts, f ∈ C[t], to prove

σi(s)σis(t)(f) = σi(t)σit(s)(f)

we have to consider the following four cases. We use the following:

t(αs) = αs, s(αt) = αt, hi(s) = hit(s), hi(t) = his(t), δs(α
hi(t)
t ) = 0 = δt(α

hi(s)
s ).

1. is = i, it = i, use δsδt = δtδs

σi(t)σi(s)(f) = α
hi(t)
t δt(α

hi(s)
s δs(f)) = αhi(s)s α

hi(t)
t δsδt(f)

= αhi(s)s α
hi(t)
t δtδs(f)

= αhi(s)s δs(α
hi(t)
t δt(f)) = σi(s)σi(t)(f)

.

86



2. is = i, it 6= i, use δst = tδs

σi(t)σit(s)(f) = α
hi(t)
t t(αhit(s)s δs(f)) = α

hi(t)
t αhi(s)s tδs(f)

= α
his(t)
t αhi(s)s δs(t(f))

= αhi(s)s δs(α
his(t)
t t(f)) = σi(s)σi(t)(f)

.

3. is 6= i, it = i, follows by symmetry from the last case.

4. is 6= i, it 6= i.

σi(t)σit(s)(f) = α
hi(t)
t t(αhit(s)s s(f)) = αhi(s)s s(α

his(t)
t t(f))

= σi(s)σis(t)(f).

Let st 6= ts. There are three di�erent possibilties, either

(A) sts = tst (type A2)

(B) stst = tsts (type B2)

(C) ststst = tststs (type G2)

We write Stabi := {w ∈ 〈s, t〉 | iw = i}. For each case we go through the subgrou-

plattice to calculate explicitly the polynomials Qw.

(A) sts = tst : 〈s, t〉 ∼= S3, s(αt) = t(αs) = αs+αt. We have �ve (up to symmetry

between s and t) subgroups to consider. Always, it holds

his(t) = hit(s), hist(s) = hi(t), hits(t) = hi(s)

which implies an equality which we use in all �ve cases

αhi(s)s s(α
his(t)
t )st(αhist(s)s ) = αhi(s)s (αs + αt)

hit(s)α
hist(s)
t

= α
hi(t)
t t(αhit(s)s )ts(α

hits(t)
t )

A1. Stabi = 〈s, t〉, this implies hi(s) = hi(t) =: h by de�nition (xi(αs) ∈ ΦV (k) if

and only if xit(αs) = xi(αs + αt) = xis(αt) ∈ ΦV (k) ⇔ xi(αt) ∈ ΦV (k)) and as a

consequence we get

αhδs(α
h
t t(α

h
s )) = 0. This simpli�es the equation to

σi(s)σi(t)σi(s)− σi(t)σi(s)σi(t) = δs(α
h
t δt(α

h
s ))σi(s)− δt(αhs δs(αht ))σi(t)

note that Qs := δs(α
h
t δt(α

h
s )), Qt := −δt(αhs δs(αht )) are polynomials in αs, αt.

A2. Stabi = 〈s〉 (analogue Stabi = 〈t〉). It holds itst = its. We use in this case
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his(t) = hi(t), hist(s) = hit(s) = hi(t), hits(t) = hi(s).

σi(s)σi(t)σit(s)(f)− σi(t)σit(s)σits(t)(f)

= αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(f))− αhi(t)t t(αhit(s)s )ts(α

hits(t)
t )tsδt(f)

= αhi(s)s δs(α
his(t)
t t(αhist(s)s ))ts(f) + αhi(s)s s(α

his(t)
t )st(αhist(s)s )δs(ts(f))

= −αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(f) = 0

Since stδs = δtst and δs(α
h
t t(αs)

h) = 0.

A3. Stabi = 〈sts〉, then ist = is, its = it.

σi(s)σis(t)σis(s)(f)− σi(t)σit(s)σit(t)(f)

= αhi(s)s s(α
his(t)
t δt(α

his(s)
s s(f)))− αhis(s)t t(αhis(t)s δs(α

hi(s)
t t(f)))

= [αhi(s)s s(α
his(t)
t )s(δt(α

his(s)
s ))− αhis(s)t t(αhis(t)s )t(δs(α

hi(s)
t ))] · f

using tδst = sδts.

A4. Stabi = {1} (and the same for Stabi = 〈st〉)

σi(s)σis(t)σist(s)− σi(t)σit(s)σits(t)

= αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts− αhi(t)t t(αhit(s)s )ts(α

hits(t)
t )tst

= 0

(B) stst = tsts : < s, t >∼= D4(order is 8),

t(αs) = αs + αt, st(αs) = αs + αt, tst(αs) = αs

s(αt) = 2αs + αt, ts(αt) = 2αs + αt, sts(αt) = αt.

Here we have to consider ten di�erent cases because D4 has ten subgroups. It always

holds the following

hitst(s) = hi(s), hits(t) = his(t), hit(s) = hist(s), hists(t) = hi(t)

which implies

αhi(s)s s(αt)
his(t)st(αs)

hist(s)sts(αt)
hists(t) = α

hi(t)
t t(αs)

hit(s)ts(αt)
hits(t)tst(αs)

hitst(s)

This will be used in all cases, it is particular easy to see that for

Stabi = {1}, Stabi = {1, ts, st, stst}, Stabi = {1, stst}

we obtain that the di�erence is zero from the above equality. Let us investigate the

other cases. Furthermore, the following is useful to notice

δs(t(αs)
h) = 0, δt(s(αt)

h) = 0
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B1. Stabi = 〈s, t〉. We prove the following

σi(s)σi(t)σi(s)σi(t)(f) = Qstσi(s)σi(t)

+ αhi(s)s s(αt)
hi(t)st(αs)

hi(s)sts(αt)
hi(t)δstst(f)

+ αhi(s)s s(α
hi(t)
t )st(αhi(s)s )δsts(α

hi(t)
t )δt

with Qst = δs(α
hi(t)
t )δt(α

hi(s)
s )+s(α

hi(t)
t )δst(α

hi(s)
s )+ t(α

hi(s)
s )δts(α

hi(t)
t ) = Qts is

a polynomial in αs, αt. By a long direct calculation (applying the product rule

for the δs) several times

σi(s)σi(t)σi(s)σi(t)(f) = αhi(s)s δs(α
hi(t)
t δt(α

hi(s)
s δs(α

hi(t)
t )))δt(f)

+ [αhi(s)s s(α
hi(t)
t )sδt(α

hi(s)
s δs(α

hi(t)
t )) + αhi(s)s δs(α

hi(t)
t δt(α

hi(s)
s s(α

hi(t)
t )))]δst(f)

+ αhi(s)s δs(α
hi(t)
t t(αhi(s)s )ts(α

hi(t)
t ))δtst(f)

+ αhi(s)s s(αt)
hi(t)st(αs)

hi(s)sts(αt)
hi(t)δstst(f)

We have a look at the polynomials occurring in front of the δw:

w = t : by the product rule

αhi(s)s δs(α
hi(t)
t δt(α

hi(s)
s δs(α

hi(t)
t ))) = αhi(s)s δs(α

hi(t)
t )2δt(α

hi(s)
s )

+ αhi(s)s s(α
hi(t)
t )δs(α

hi(t)
t )δst(α

hi(s)
s ) + αhi(s)s t(αhi(s)s )δs(α

hi(t)
t )δts(α

hi(t)
t )

+ αhi(s)s s(α
hi(t)
t )st(αhi(s)s )δsts(α

hi(t)
t )

w = st :
αhi(s)s s(α

hi(t)
t )sδt(α

hi(s)
s δs(α

hi(t)
t ))

+ αhi(s)s δs(α
hi(t)
t δt(α

hi(s)
s s(α

hi(t)
t )))

= αhi(s)s s(α
hi(t)
t )sδs(α

hi(t)
t )sδt(α

hi(s)
s )

+ αhi(s)s s(α
hi(t)
t )st(αhi(s)s )δts(α

hi(t)
t )

+ αhi(s)s s(α
hi(t)
t )δs(α

hi(t)
t )δt(α

hi(s)
s )

+ αhi(s)s s(α
hi(t)
t )δs(s(α

hi(t)
t ))sδt(α

hi(s)
s )

+ αhi(s)s s(α
hi(t)
t )2δst(α

hi(s)
s )

= αhi(s)s s(α
hi(t)
t )[δs(α

hi(t)
t )δt(α

hi(s)
s )

+ s(α
hi(t)
t )δst(α

hi(s)
s )

+ t(αhi(s)s )δts(α
hi(t)
t )]

= αhi(s)s s(α
hi(t)
t )Qst

using s(δs(α
h
t )) = δs(α

h
t ) and δs(s(αt)

h) = −δs(αht ).

w = tst :

αhi(s)s δs(α
hi(t)
t t(αhi(s)s )ts(α

hi(t)
t )) = 0

Now, look at σi(s)σi(t)(f) = α
hi(s)
s δs(α

hi(t)
t )δt(f) + α

hi(s)
s s(α

hi(t)
t )δst(f), which
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implies

αhi(s)s s(α
hi(t)
t )Qstδst(f) = Qstσi(s)σi(t)(f)− αhi(s)s δs(α

hi(t)
t )Qstδt(f)

replace the previous expression and compare coe�cients in front of δt(f) again

gives the polynomial

αhi(s)s δs(α
hi(t)
t δt(α

hi(s)
s δs(α

hi(t)
t )))− αhi(s)s δs(α

hi(t)
t )Qst =

αhi(s)s s(α
hi(t)
t )st(αhi(s)s )δsts(α

hi(t)
t )

We conclude

σi(s)σi(t)σi(s)σi(t)− σi(t)σi(s)σi(t)σi(s) = Qstσi(s)σi(t)−Qstσi(t)σi(s)

+ αhi(s)s s(α
hi(t)
t )st(αhi(s)s )δsts(α

hi(t)
t )δt − αhi(t)t t(αhi(s)s )ts(α

hi(t)
t )δtst(α

hi(s)
s )δs

Since δsts(α
h
t ) = 0 = δtst(α

k
s) for h, k ∈ {0, 1, 2} since the maps δsts, δtst map

polynomials of degree d to polynomials of degree d− 3 or to zero, the claim fol-

lows. In general, if we localize to C[t][α−1
t , α−1

s ] we could still have the analogue

statement.

B2. Stabi = 〈s〉 (analogue Stabi = 〈t〉) and use δs(α
his(t)
t t(α

hist(s)
s )ts(α

hists(t)
t )) = 0

to see
σi(s)σis(t)σist(s)σists(t)− σi(t)σit(s)σits(t)σitst(s)

= αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(f))

− αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tstδs(f)

= αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )δstst(f))

− αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tstδs(f)

= 0

because tstδs = δstst.

B3. Stabi = {1, sts} (analogue Stabi = {1, tst}). It holds its = itst, is = ist. We

have

[σi(s)σis(t)σist(s)σists(t)− σi(t)σit(s)σits(t)σitst(s)](f)

=αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s s(α

hists(t)
t )st(f))

− αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(f))

=αhi(s)s s(α
his(t)
t )[sδt(α

hist(s)
s s(α

hists(t)
t ))t(f) + st(αhist(s)s )sts(α

hists(t)
t )sδt(st(f))]

− αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )[tsδt(α

hitst(s)
s )t(f) + tst(αhitst(s)s )tsδt(s(f))]

=[αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s )− t(αhit(s)s )ts(α

hits(t)
t )tsδt(α

hitst(s)
s )]σi(t)(f)

using sδtst = tsδts and sδt(α
hist(s)
s s(α

hists(t)
t )) = α

hi(t)
t sδt(α

hist(s)
s ).

B4. Stabi = {1, s, tst, stst} (analogue Stabi = {1, t, sts, stst}). It holds i = is, it =
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its, ist = sts, itst = itsts.

[σi(s)σis(t)σist(s)σists(t)− σi(t)σit(s)σits(t)σitst(s)](f)

=αhi(s)s δs(α
his(t)
t t(αhist(s)s )tδs(α

hists(t)
t t(f)))

−αhi(t)t t(αhit(s)s )tδs(α
hits(t)
t t(αhitst(s)s )tδs(f))

=[αhi(s)s δs(α
his(t)
t t(αhist(s)s )tδs(α

hists(t)
t ))]f

+[t(αhit(s)s )[s(α
his(t)
t )stδs(α

hists(t)
t )− αhi(t)t tδs(α

hits(t)
t ))]σi(s)(f)

using δstδst = tδstδs.

This �nishes the investigation of the ten possible cases. We also like to remark that

in the example in chapter 5 the case B4 only occurs for Stabi = {1, t, sts, stst}, i.e.
the other stabilizer never occurs.

(C) ststst = tststs : 〈s, t〉 ∼= D6,

t(αs) = αs + αt, st(αs) = 2αs + αt, tst(αs) = st(αs),

s(αt) = 3αs + αt, ts(αt) = 3αs + 2αt, sts(αt) = ts(αt).

It holds
hitstst(s) = hi(s), hitsts(t) = his(t), hitst(s) = hist(s)

hits(t) = hists(t), hit(s) = histst(s), hi(t) = histsts(t).

this implies

αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stst(αhistst(s)s )ststs(α

histsts(t)
t ) =

α
hi(t)
t t(αhit(s)s )ts(α

hits(t)
t )tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstst(αhitstst(s)s )

Now, D6 has 13 subgroups. In the following cases the above equality directly implies

that σi(ststst)− σi(tststs) = 0:

Stabi = {1}, Stabi = {1, tst}, Stabi = {1, sts},

Stabi = {1, ststst}, Stabi = 〈st〉 = 〈ts〉

C1. Stabi = 〈s, t〉. By assumption we have hi(s) = 0 = hi(t) in this case, therefore

σi(s)σi(t)σi(s)σi(t)σi(s)σi(t)− σi(t)σi(s)σi(t)σi(s)σi(t)σi(s) =

δsδtδsδtδsδt − δtδsδtδsδtδs = 0

because that is known for the divided di�erence operators, cp [Dem73].
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C2. Stabi = {1, s} (analogue Stabi = {1, t}). Then, is = i, itstst = itststs.

[σi(s)σis(t)σist(s)σists(t)σistst(s)σiststs(t)

− σi(t)σit(s)σits(t)σitst(s)σitsts(t)σitstst(s)](f)

=αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(αhistst(s)s )tsts(α

histsts(t)
t )tstst(f))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstst(αhitstst(s)s )tststδs(f)

=αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(αhistst(s)s )tsts(α

histsts(t)
t ))tstst(f)

=0

using δststst = tststδs and

δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(αhistst(s)s )tsts(α

histsts(t)
t )) = 0

because

s(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(αhistst(s)s )tsts(α

histsts(t)
t ))

=α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(αhistst(s)s )tsts(α

histsts(t)
t ).

C3. Stabi = {1, tstst} (analogue Stabi = {1, ststs}). Then its = itst, ists = istst.

[σi(s)σis(t)σist(s)σists(t)σistst(s)σiststs(t)

− σi(t)σit(s)σits(t)σitst(s)σitsts(t)σitstst(s)](f)

=αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stsδt(α

histst(s)
s s(α

histsts(t)
t )st(f))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(α

hitsts(t)
t )st(αhitstst(s)s )sts(f))

=αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stsδt(α

histst(s)
s s(α

histsts(t)
t ))s(f)

+αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stst(αhistst(s)s )ststs(α

histsts(t)
t )stsδtst(f)

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(α

hitsts(t)
t )st(αhitstst(s)s ))s(f)

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstst(αhitstst(s)s )tsδtsts(f)

=[s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stsδt(α

histst(s)
s s(α

histsts(t)
t ))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(α

hitsts(t)
t ))]σi(s)(f)

using tsδtsts = stsδtst.

C4. Stabi = {1, s, tstst, ststst} ( analogue Stabi = {1, t, ststs, ststst}). Then is =

i, itst = its. Observe, in this case

hi(t) = hit(t), and hit(s) = hits(s)
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and it holds

[σi(s)σis(t)σist(s)σists(t)σistst(s)σiststs(t)

− σi(t)σit(s)σits(t)σitst(s)σi(tsts)σitstst(s)](f)

=αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tsδt(α

histst(s)
s s(α

histsts(t)
t )st(f)))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(α

hitsts(t)
t )st(αhitstst(s)s )stδs(f))

=αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tsδt(α

histst(s)
s s(α

histsts(t)
t ))) · f

+αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stsδt(α

histst(s)
s s(α

histsts(t)
t ))δs(f)

+αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tst(αhistst(s)s )tsts(α

histsts(t)
t ))tsδtst(f)))

+αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stst(αhistst(s)s )ststs(α

histsts(t)
t )

· δstsδtst(f)

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(α

hitsts(t)
t )st(αhitstst(s)s ))δs(f))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstst(αhitstst(s)s )

· tsδtstδs(f))

=[αhi(s)s δs(α
his(t)
t t(αhist(s)s )ts(α

hists(t)
t )tsδt(α

histst(s)
s s(α

histsts(t)
t )))]f

+[s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stsδt(α

histst(s)
s s(α

histsts(t)
t ))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tsδt(α

hitst(s)
s s(α

hitsts(t)
t ))]σi(s)(f)

using δstsδtst = tsδtstδs.

C5. Stabi = {1, sts, tst, ststst}. Then is = ist, it = its. Observe, in this case

hi(s) = his(s), and hi(t) = hit(t)
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and it holds

[σi(s)σis(t)σist(s)σists(t)σistst(s)σiststs(t)

− σi(t)σit(s)σits(t)σitst(s)σitsts(t)σitstst(s)](f)

=αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s s(α

hists(t)
t )st(αhistst(s)s )stδs(α

histsts(t)
t t(f)))

−αhi(t)t t(αhit(s)s )tδs(α
hits(t)
t t(αhitst(s)s )ts(α

hitsts(t)
t )tsδt(α

hitstst(s)
s s(f)))

=αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s s(α

hists(t)
t )st(αhistst(s)s )stδs(α

histsts(t)
t )) · f

+αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stst(αhistst(s)s )ststδs(α

histsts(t)
t )sδts(f)

+αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s s(α

hists(t)
t )st(αhistst(s)s )sts(α

histsts(t)
t ))tδst(f)

+αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stst(αhistst(s)s )ststs(α

histsts(t)
t )

· sδtstδst(f)

−αhi(t)t t(αhit(s)s )tδs(α
hits(t)
t t(αhitst(s)s )ts(α

hitsts(t)
t )tsδt(α

hitstst(s)
s )) · f

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstsδt(α

hitstst(s)
s )tδst(f)

−αhi(t)t t(αhit(s)s )tδs(α
hits(t)
t t(αhitst(s)s )ts(α

hitsts(t)
t )tst(αhitstst(s)s ))sδts(f)

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstst(αhitstst(s)s )

· tδstsδts(f)

=Pef + [αhi(s)s s(α
his(t)
t )st(αhist(s)s )sts(α

hists(t)
t )stst(αhistst(s)s )ststδs(α

histsts(t)
t )

−αhi(t)t t(αhit(s)s )tδs(α
hits(t)
t t(αhitst(s)s )ts(α

hitsts(t)
t )tst(αhitstst(s)s ))]sδts(f)

+[αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s s(α

hists(t)
t )st(αhistst(s)s )sts(α

histsts(t)
t ))

−αhi(t)t t(αhit(s)s )ts(α
hits(t)
t )tst(αhitst(s)s )tsts(α

hitsts(t)
t )tstsδt(α

hitstst(s)
s )]tδst(f)

using sδtstδst = tδstsδts where Pe is a polynomial in αt, αs. Then we look at

σi(s)σis(t)σist(s)(f) = αhi(s)s s(α
his(t)
t )sδt(α

hist(s)
s ) · f

+ αhi(s)s s(α
his(t)
t )st(αhist(s)s )sδts(f)

σi(t)σit(s)σits(t)(f) = α
hi(t)
t t(αhit(s)s )tδs(α

hits(t)
t ) · f

+ α
hi(t)
t t(αhit(s)s )ts(α

hits(t)
t )tδst(f)

and we observe for the coe�cient in front of sδts(f) that it is divisible by

α
hi(s)
s s(α

his(t)
t )st(α

hist(s)
s ) and the one in front of tδst is divisible by

α
hi(t)
t t(α

hit(s)
s )ts(α

hits(t)
t ). Observe hist(s) = hi(s), hits(t) = hi(t). Use the

94



following simpli�ctaions

tδs(α
hits(t)
t t(αhitst(s)s )ts(α

hitsts(t)
t )tst(αhitstst(s)s ))

=tδs(α
hi(t)
t t(αhi(s)s )ts(α

his(t)
t )tst(αhi(s)s ))

=s(α
his(t)
t )tδs(α

hi(t)
t t(αhi(s)s )st(αhi(s)s ))

=s(α
his(t)
t )[tδs(α

hi(t)
t t(αhi(s)s ))tst(αhi(s)s ) + ts(α

hi(t)
t )tst(αhi(s)s )tδsst(α

hi(s)
s )]

=s(α
his(t)
t )st(αhi(s)s )[αhi(s)s tδs(α

hi(t)
t ) + ts(α

hi(t)
t )tδst(α

hi(s)
s )

− ts(αhi(t)t )tδst(α
hi(s)
s )]

=αhi(s)s s(α
his(t)
t )st(αhi(s)s )tδs(α

hi(t)
t )

and analogously

sδt(α
hist(s)
s s(α

hists(t)
t )st(αhistst(s)s )sts(α

histsts(t)
t ))

=sδt(α
hi(s)
s s(α

hi(t)
t )st(αhit(s)s )sts(α

hi(t)
t ))

=α
hi(t)
t t(αhit(s)s )ts(α

hi(t)
t )sδt(α

hi(s)
s )

Then a simple substitution gives that the di�erence above is of the form

Qef +Qstsσi(s)σis(t)σist(s)(f) +Qtstσi(t)σit(s)σits(t)

for some polynomials Qe, Qsts, Qtst in αs, αt.

Now, let A be the algebra given by generator 1̃i, z̃i(t), σ̃i(s) subject to relations (1)-(5).

Then, by the straightening rule and the braid relation it holds that if w = s1 · · · sk = t1 · · · tk
are two reduced expressions then

˜σ(t1 · · · tk) ∈
∑

v≤s1···sk reduced subword

E ∗ σ̃(v).

Therefore, once we have �xed one (any) reduced expression for each for w ∈W, it holds

A =
∑
w∈W
E ∗ σ̃(w).

Since the generators of ZG ful�ll the relations (1)-(5), we have a surjective algebra homo-

morphism

A→ ZG

mapping 1̃i 7→ 1i, z̃i(t) 7→ zi(t), σ̃i(s) 7→ σi(s). Since ZG =
⊕

w∈W E ∗ σ(w) and the map is

by de�nition E-linear it follows that

A =
⊕
w∈W
E ∗ σ̃(w)

and the map is an isomorphism. �
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Chapter 3

Parabolic Nil Hecke algebras and

parabolic Steinberg algebras

Summary. Let G be a reductive group (over C). For us a Steinberg variety Z = E×V E
is a cartesian product of a collapsing of a union of homogeneous vector bundles over

G-homogeneous spaces with itself. The most popular example of such a collapsing is the

Springer map. The equivariant Borel-Moore homologyHG
∗ (Z,C) has an associative algebra

structure, we call it a Steinberg algebra. We call it parabolic/of Borel type if all the

homogeneous spaces are of the form G/P for parabolic/Borel subgroups P ⊂ G. We realize

parabolic Steinberg algebras as corners in Steinberg algebras of Borel type. As starting

point, we study parabolic (a�ne) nil Hecke algebras, then we generalize this result. For

�nding generators and relations these observations are not helpful. We revisit an example

by Markus Reineke to illustrate this. We ignore the gradings of these algebras.

3.1 The parabolic (a�ne) nil Hecke algebra

For any complex algebraic variety X with an action of an algebraic group G, we set (as

always) H∗G(X) := H∗G(X,C), HG
∗ (X) := HG

∗ (X,C) for G-equivariant cohomology/ Borel-

Moore homology with complex coe�cients. We will denote by Db
G(X) the G-equivariant

derived category introduced by Bernstein and Lunts [BL94].

Let G be a reductive group over C and B ⊂ G be a Borel subgroup. The (a�ne) nil

Hecke algebra1 is the Steinberg algebra NH := HG
∗ (G/B×G/B), .

We write

NHP := HG
∗ (G/P×G/P)

and call it parabolic (a�ne) nil Hecke algebra. It carries a structure as graded algebra

(see [CG97], chapter 8), we ignore the grading in this article.

Lemma 32. It holds

NHP ∼= EndH∗G(pt)(H
∗
G(G/P)).

1the adjective is been left out more recently
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Recall that H∗G(pt) = (H∗T (pt))W = C[t]W where T ⊂ P is a maximal torus, t its Lie

algebra and W the Weyl group for (G,T ). Also we know that H∗G(G/P ) ∼= C[t]WP where

WP is the Weyl group of (L, T ) for the Levi subgroup L ⊂ P . We write WP ⊂W for the

minimal coset representatives of the cosets W/WP .

proof: Let EG be a contractible free G-space (or an appropriate approximation of it in

the sense of [BL94]). Let X := G/P, π : XG := X ×G EG → BG the map obtained from

X → pt by applying − ×G EG. By [CG97], chapter 8, we know HG
∗ (G/P × G/P ) ∼=

Ext∗
DbG(pt)

(π∗C, π∗C) as H∗G(pt)-algebras (but not as graded ones). Since π is a proper

submersion, we have (by [CM07], p.14 3rd Example)

π∗C =
⊕
i∈Z

Riπ∗C[−i]

in Db
G(pt). Since all �bres of π are isomorphic to X and BG is simply connected, we get

that

π∗C =
⊕
w∈WP

C[−2`(w)],

where `(w) is the length of w. Let r = dimCH
∗(X) = #WP . We know, that C[t]WP is a

free module over C[t]W of rank r. Therefore, to prove the lemma, it is enough to show

Ext∗
DbG(pt)

(C,C)→ EndH∗G(pt)(H
∗
G(pt)) = H∗G(pt)

f 7→ H(f)

is an isomorphism of algebras, where H : Db
G(pt) → H∗G(pt)− mod is the functor F 7→

H∗(F ) = H∗(BG,F ) is the sheaf cohomology of the complex of constructible sheaves F

(which is by de�nition a hypercohomology group). By [BL94], Thm 12.7.2 (i), there exists

an equivalence of triangulated categories

Db
AG
→ Db

G(pt),

where AG = (H∗G(pt), d = 0) is the (trivial) dg-algebra structure on H∗G(pt) and Db
AG

is

the bounded derived category of dg-modules over AG. This equivalence commutes with a

functor H : (−) → H∗G(pt)− mod which is for (−) = Db
G(pt) the functor just mentioned

and for (−) = Db
AG

it is the functor taking cohomology of the complex. We prove the

claim in two steps.

(1) The triangulated equivalence induces an isomorphism of algebras

Ext∗
DbG(pt)

(C,C)→ Ext∗
DbAG

(AG, AG).

First note that C is quasi-isomorphic to the de Rham complex Ω∗BG, we can calculate

its Ext-algebra instead. Let ABG be the dg-algebra Γ(Ω∗BG). The derived equiva-

lence is by de�nition factoring over the global section functor Γ: Db
G(pt) → Db

ABG
.
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Notice that H∗(ABG) = AG. By [BL94], Prop. 12.4.4, there is a quasi-isomorphism

φ : AG → ABG which induces an equivalence φ∗ : Db
AG
→ Db

ABG
. The �rst func-

tor gives an isomorphism of algebras Ext∗
DbG(pt)

(C,C)→ Ext∗
DbABG

(ABG, ABG). The

second functor (is basically tensoring via φ) induces an isomorphism of algebras

Ext∗
DbABG

(ABG, ABG)→ Ext∗
DbAG

(AG, AG).

(2) The functor H de�nes an isomorphism Ext∗
DbAG

(AG, AG) → EndH∗G(pt)(H
∗
G(pt)) =

H∗G(pt).

This is a direct application of [BL94], Prop. 11.3.1 (i) since AG is a dg-module with

zero di�erential.

�

Observe that we have a natural H∗G(pt)-module homomorphism

Θ: NHP = EndH∗G(pt)(H
∗
G(G/P))→ NH = EndH∗G(pt)(H

∗
G(G/B))

f 7→ I ◦ f ◦Av

where I : C[t]WP ⊂ C[t] is the natural inclusion and

Av : C[t]→ C[t]WP , f 7→ 1

#WP

∑
w∈WP

w(f)

is the averaging map. It holds Av ◦ I = idC[t]WP , the element eP := I ◦Av = Θ(1) ∈ NH is

an idempotent element, Θ(fg) = Θ(f)Θ(g) for all f, g ∈ NHP. We let WP ×WP operate

on NH via graded H∗G(pt)-module homomorphisms de�ned by

(v, w) · h(f) := v(h(w−1(f))), v, w ∈WP , h ∈ NH, f ∈ C[t].

Lemma 33. (1) The map Θ impies NHP ∼= ePNHeP as H∗G(pt)-algebras), we call this a

corner algebra in NH.

(2) NHP = NHWP×WP as H∗G(pt)-modules. Furthermore, NHW×W = C[t]W = H∗G(pt).

(3) Let s = #WP . We have an isomorphism of C[t]W -algebras

NH ∼= Ms(NHP),

in particular it is a free module over NHP of rank s2.

(4) Let r = #WP . We have an isomorphism of C[t]W -algebras

NHP ∼= Mr(C[t]W),

in particular it is a free module over C[t]W of rank r2.

A basis is given by cv,w, v, w ∈ WP with cv,w is a lift of [BvP/P × BwP/P ] ∈
H∗(G/P ×G/P ) to HG

∗ (G/P ×G/P ), i.e. elements in the �bres of the forgetful map
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(which is a surjective ring homomorphism),

HG
∗ (G/P ×G/P ) ∼= Mr(C[t]W )�Mr(C) ∼= EndC(C[t]WP /IW ) ∼= H∗(G/P ×G/P ),

(fi,j)i,j 7→ (fi,j(0))i,j

where IW is the ideal generated by the W -invariant polynomials of degree ≥ 1

proof:

(1) Θ is injective: Let f ∈ EndC[t]W (C[t]WP ) with Θ(f) = I ◦ f ◦Av = 0 then f ◦Av = 0

and also f = (f ◦ Av) ◦ I = 0. Therefore we have an H∗G(pt)-algebra isomorphism

NHP ∼= Θ(NHP), where the neutral element in Θ(NHP) is Θ(1) = eP . Now clearly,

the following map also is an H∗G(pt)-algebra isomorphism.

Θ(NHP)→ ePNHeP

g = I ◦ f ◦Av 7→ Av ◦ g ◦ I = eP feP .

(2) More precisely, we show NHWP×WP = Θ(NHP). Each element I ◦f ◦Av ∈ NH, f ∈
NHP is WP ×WP -invariant, therefore NHWP×WP ⊂ Θ(NHP). On the other hand,

given h ∈ NH with v(h(w−1(P ))) = h(P ), P ∈ C[t], v, w ∈ WP , then it holds

h ◦ I ◦ Av = I ◦ Av ◦ h which implies h(C[t]WP ) ⊂ C[t]WP , therefore restriction

induces an element h ∈ NHP and by de�nition h = I ◦ h ◦Av.

(3) Let s = #WP , it is the rank of C[t] as module over C[t]WP and therefore

NH ∼= EndC[t]W((C[t]WP)⊕s) ∼= Ms(NHP).

(4) Let r := #WP , it is the rank of C[t]WP as module over C[t]W and the dimension as

C-vector space of C[t]WP /IW . The rest follows as in (3).

�

Also recall the following well-known result.

Proposition 6. Let G ⊃ B ⊃ T be a connected reductive group with a Borel subgroup and

a maximal torus, we write (W,S) for the Weyl group of (G,T ) with its simple re�ections.

The a�ne nil Hecke algebra NH = HG
∗ (G/B × G/B) = EndC[t]W(C[t]) is the C[t]-algebra

generated by

δs : C[t]→ C[t], s ∈ S

f 7→ sf − f
αs

where αs ∈ Φ+ (=positive roots associated to G,B, T ) is the positive root with s(αs) = −αs.
Choose generators C[t] = C[x1, . . . , xn], we set ci,s := δs(xi) ∈ C[t]. Then, the algebra NH

is the C-algebra generated by x1, . . . , xn, δs, s ∈ S with relations

(1) xixj = xjxi,
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(2) (nil Coxeter relations)

δ2
s = 0, δsδtδs · · · = δtδsδt · · · whenever sts · · · = tst · · ·

(3) (straightening rule)

δsxi − s(xi)δs = ci,s

The previous proposition also is a corollary of [Sau13], Theorem 2.1.

Remark. Our elements δs, s ∈ S correspond to the cycles [Zs] ∈ HG
∗ (G/B ×G/B), they

are called (BGG)-divided di�erence operators or Demazure operators and have

been introduced by Beilinson, Bernstein, Gelfand and Demazure ([BGG73a] and [Dem73]).

Observe, that in the proof of [Sau13], Thm 2.1 we have seen how these operators look like

after localizing to the T -�xpoints, i.e. as operators on H∗T (G/B)⊗K, K = Quot(H∗T (pt)),

they are given by

δs :
⊕
w∈W

Kψw →
⊕
w∈W

Kψw, δs(λψw) =
λψws − λψw

w(αs)
, λ ∈ K.

This coincides with divided di�erences operators onH∗T (G/B) de�ned by Arabia in [Ara01],

thm 3.3.1.

There are other very similar looking types of divided di�erence operators using the GKM-

graph description (cp. J. Tymoczko, [Tym09])

H∗T (G/P ) = {p = (pw)w∈WP ∈ C[t]⊕#WP | pw − psw ∈ (αs), s ∈ S,w ∈WP }.

(1) Following Kostant and Kumar in [KK86], section (4.17):

δKKs : H∗T (G/B)→ H∗T (G/B)

p 7→ (
psw − pw
w−1αs

)w∈W

(2) Following J. Tymoczko in [Tym09] (this is the only version de�ned for partial �ag

varieties):

δTs : H∗T (G/P )→ H∗T (G/P )

p 7→ (
pw − s(pw)

αs
)w∈WP

Now, observe that following [Bri97], p.258, one has a identi�cation as H∗G(pt)-modules of

NHP = HG
∗ (G/P×G/P) with (H∗T (G/P ))WL up to a degree shift. It is an open question, if

Tymoczko's divided di�erence operators can be helpful to �nd generators for the parabolic

nil Hecke algebra.

Recall, Schubert polynomials are elements cw ∈ C[t], w ∈W in the �bre over [BwB/B], w ∈
W under the forgetful map H∗G(G/B) = C[t]�C[t]/IW = H∗(G/B). Any choice of

such lifts gives a basis of C[t] as C[t]W -module, cp. [Hil82], section II.3, proof of Thm

3.1(Sheppard-Todd, Chevalley), p.77 .
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Usually the interest in divided di�erence operators comes from that they provide a con-

struction tool for Schubert polynomials or more generally a �ow-up basis (cp. [Tym09]).

A G-equivariant version of it says there exists a polynomial p ∈ C[t] such that

C[t] =
⊕
v∈WP

δv(p)C[t]WP

as C[t]WP -module, where for v = s1 · · · sr reduced expression δv := δs1 ◦ · · · ◦ δsr . See again
[Tym09].

Remark. We know that

NH =
⊕
w∈W

δwC[t],

(as C[t]-module) which implies

NHP = ePNHeP =
∑

w∈W

ePδwC[t]eP∑
w∈W

∑
v∈WP

eP δw ◦ (δv(p)·)ePC[t]WP

It is easy to see that for all s ∈WP ∩S, it holds δs ◦ eP = 0, this implies that if w = w1s ∈
W, s ∈WP , `(w) = `(w1) + 1, we have

eP δw ◦ (δv(p)·)eP = eP δw1 ◦ (δsv(p)·)eP ,

therefore we can write

NHP =
∑

w∈WP

∑
v∈WP

ePδw ◦ (δv(p)·)ePC[t]WP .

By lemma 33, (4), we know that NHP is a free module over C[t]W of rank r2, r = #WP .

Since C[t]WP is a free module over C[t]W of rank r, we have the following

Open question: Is NHP a free module over C[t]WP of rank r, with basis given by

δPw := epδweP , w ∈ WP ? To prove this, it is enough to show that
∑

w∈WP δPwC[t]WP =⊕
w∈WP δPwC[t]WP .

3.2 On parabolic Steinberg algebras

De�nition 9. Let (G,Pi, V, Fi)i∈I be a tuple with G a reductive group with parabolic

subgroups Pi, i ∈ I (where I is some �nite set) such that
⋂
Pi contain a maximal torus

T and V a G-representation with Pi-subrepresentations Fi ⊂ V . We associate to this the

Steinberg variety

ZP :=
⊔
i,j∈I

(G×Pi Fi)×V (G×Pj Fj
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and call ZA := HA
∗ (Z), A ∈ {pt, T,G} Steinberg algebra associated to the data (where the

product is given by a convolution construction de�ned by [CG97], section 2.7).

The (a�ne) nil Hecke algebra is the Steinberg algebra in the special case #I = 1,

V = {0}. We ask for the realtionship of parabolic Steinberg algebras to Steinberg algebras

where all the parabolic groups are Borel subgroups. More precisely consider the following

situation:

Let (G,Pi, V, Fi)i∈I be construction data as above, we denote all associated data with

()P , we set EPi := G ×Pi Fi, EP :=
⊔
EPi , π

P : EP → V, (g, f) 7→ gf . Choose T ⊂ Bi ⊂
Pi, i ∈ I Borel subgroups of G (where T ⊂

⋂
i∈I Pi) and consider Fi as Bi-representation,

then (G,Bi, V, Fi)i∈I can be used to de�ne EBi , E
B, πB, ZB analogously.

We want to compare HA
∗ (ZP ) with HA

∗ (ZB) for A ∈ {pt, T,G}.
Consider the following commutative triangle

EBi = G×Bi Fi
αi //

πB
&&MMMMMMMMMMM

EPi = G×Pi Fi

πP
xxqqqqqqqqqqq

V

Observe, that the �bres of α :=
⊔
i∈I αi over E

P
i are all isomorphic to α−1

i ((e, 0)) ∼= Pi/Bi

and that the Weyl group Wi of (Li, T ) where Li ⊂ Pi operates on them topologically via

choosing a compact form for Ki ⊂ Li, then there exists a maximal torus Ti ⊂ Ki such that

Pi/Bi = Li/(Bi ∩ Li) ∼= Ki/Ti, W (Ki, Ti) = W (Li, T ) =: Wi.

The groups Wi operates on Ki/Ti via nTi · kTi = kn−1Ti, n ∈ NKi(Ti), k ∈ Ki without

�xpoints. We have the following lemma using the left Wi-operation on α−1
i ((e, 0)) ∼=

Li/(Bi ∩ Li).

Lemma 34. Given B ⊂ P a Borel inside a parabolic subgroup in a reductive group G, and

let F be a P -representation. We write α : EB := G ×B F → EP := G ×P F, (g, f)
B 7→

(g, f)
P
for the canonical map. For the constant sheaf C on EP the adjunction map C →

Rα∗α
∗C is a monomorphism in Db

A(EP ), furthermore it factorizes over an isomorphism

C→ (Rα∗C)WP where WP is the Weyl group of a Levi subgroup in P .

proof: For any variety we write XA := X ×A EA where EA is a contractible space with

a free A-operation. We denote α := αA : (EB)A → (EP )A the associated map. It is a

proper submersion with �bres all isomorphic to P/B. The decomposition theorem (in the

more speci�c version for a proper submersion, see [CM07],p.14 3rd Example) implies

Rα∗C =
⊕
i∈Z

Riα∗C[−i].

Since Riα∗C is the sheaf associated to the presheaf

U 7→ H i(α−1(U))
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this implies (Riα∗C)x = H i(α−1(x)) ∼= H i(P/B) for all x ∈ (EP )A. Therefore, Riα∗C
is a local system on (EP )A and since π1((EP )A, x0) (for any x0 ∈ (EP )A) is trivial, it

is the constant local system
⊕

w∈WP
C[−2`(w)] because H∗(P/B) = H∗(L/(L ∩ B) =

C[t]/IWP
where the last isomorphism is graded algebras and as WP -representations by the

Borel isomorphism. But since (C[t]/IWP
)WP = C in degree 0, it holds (Rα∗C)WP ∼= C.

Furthermore, it is easy to see that the unit of the adjunction is a monomorphism (since α

is locally trivial). By taking the trivial WP -operation on C, we can make the unit of the

adjunction a WP -linear map (because the map is locally trivial and WP operates only on

the �bre), then taking WP -invariants proves the lemma. �

Back to the more general situation from before. Since it is shorter we write α∗ instead

of Rα∗ even though the second is meant. For the constant sheaf C the adjunction map

C→ α∗α
∗C is a monomorphism in DA

c (
⊔
i∈I E

P
i ). The previous lemma implies

C =
⊕
i∈I

CEPi
∼=
⊕
i∈I

[(αi)∗α
∗
iCEPi ]Wi ↪→α∗α

∗C.

We set πPi := πP |EPi , π
B
i := πB|EBi and we can apply the functor πP∗ and get an inclusion

Inc : πP∗ CEP ∼= πP∗ (
⊕
i∈I

[(αi)∗α
∗
iCEPi ]Wi) =

⊕
i∈I

[(πPi )∗(αi)∗α
∗
iCEPi ]Wi

↪→πP∗ α∗α
∗CEP = πB∗ CEB

Also we can de�ne an averaging map

Av : πB∗ CEB =
⊕
i∈I

(πBi )∗CEBi �
⊕
i∈I

[(πPi )∗(αi)∗α
∗
iCEPi ]Wi ∼= πP∗ C

which is given by the Reynolds operator for the �nite group Wi (the Reynolds opera-

tor exists for arbitrary reductive groups (representations in characteristic zero), for �nite

groups it is equal to the averaging map.) It holds Av ◦ Inc = id and Inc ◦Av =: eP is an

idempotent endomorphism.

Proposition 7. The map

ΨB
P : HA

∗ (ZP ) = Ext∗
DAb (V )

(πP∗ C, πP∗ C)→ Ext∗
DAb (V )

(πB∗ C, πB∗ C) = HA
∗ (ZB)

f 7→ Inc ◦ f ◦Av

induces an isomorphism of HA
∗ (pt)-algebras

HA
∗ (ZP ) ∼= ePH

A
∗ (ZB)eP ,

where eP = Inc ◦Av is an idempotent element in HA
∗ (ZB).

proof: Completely analogue to the proof of lemma 2, (1). �

Recall EB :=
⊔
i∈I E

B
i , E

P :=
⊔
i∈I E

P
i and we have a commutative diagram
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HA
∗ (ZB)

ΦB // EndHA
∗ (pt)(H

∗
A(EB))

HA
∗ (ZP )

ΦP //

ΨBP

OO

EndHA
∗ (pt)(H

∗
A(EP ))

ΘBP

OO

with algebra homomorphisms ΦB,ΦP given by applying the global section functor and

corner inclusions ΨB
P , ΘB

P as de�ned before. Since the maps ΦB,ΦP are given by taking

global sections, we see that the element eP ∈ HA
∗ (ZB) maps under ΦB to the idempotent

element εP ∈ EndHA
∗ (pt)(H

∗
A(EB)) (also de�ned by εP = Av◦Inc). We know that the map

ΨB
P can be identi�ed with the corner inclusion ePH

A
∗ (ZB)eP → HA

∗ (ZB), the map ΘB
P with

the corner inclusion εP EndHA
∗ (pt)(H

∗
A(EB))εP → EndHA

∗ (pt)(H
∗
A(EB)). Therefore, we see

that we can have an identi�cation of algebras

HA
∗ (ZP ) = εPΦB(HA

∗ (ZB))εP .

Now, using theorem [Sau13], thm 2.1 combined with the previous consideration, we

can calculate (in theory) parabolic Steinberg algebras. Practically, the corner description

makes it even in easy cases di�cult to �nd generators and relations, we do not know an

example for it. Let us revisit an example from Markus Reineke using our description of

the parabolic Steinberg algebra.

3.2.1 Reineke' s Example (cp. end of [Rei03])

Let Q be the quiver (1→ 2) and let (d1, d2) ∈ NQ0
0 . A directed partition of the Auslander-

Reiten quiver of CQ is given by I1 := {E2 := (0 → C)}, I2 := {E1,2 := (C id−→ C)}, I3 :=

{E1 := (C → 0)}, i.e. it is a partition of the vertices of the Auslander-Reiten quiver

{It}t such that Ext1(It, It) = 0 and ∀t < u Hom(Iu, It) = 0 = Ext1(It, Iu). Let M =

Ed22 ⊕E1,2⊕Ed11 . Then, M. Reineke proved that quiver-graded Springer map corresponding

to the dimension �ltration (0, (d1 − 1, 0), (d1 − 1, 1), (d1, 1), (d1, d2)) gives a resolution of

singularities (i.e. birational projective map) for the orbit closure of M . Yet, we will

consider the even easier dimension �ltration d := (0, (d1, 1), (d1, d2)). The associated

Steinberg variety is

Z := {(A,L1, L2) ∈Md2×d1(C)× Pd2(C) | Im(A) ⊂ Li, i = 1, 2},

it carries an operation of Gld := Gld2 ×Gld1 via

(A,L1, L2) 7→ (g−1
2 Ag1, g

−1
2 L1, g

−1
2 L2), (g2, g1) ∈ Gld.

We want to describe the Steinberg algebra H
Gld
∗ (Z) with our method. We set

G := Gld, d := d1 + d2,

T := invertible diagonal matrices,
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B := invertible upper triangular matrices,

P := invertible upper block matrices with diagonal block sizes (1, d− 1),

U = LieUP, where UP is the unipotent radical of P,

G := Gld2 ×Gld1 diagonally embbeded into G,

V = Md2×d1 embedded into the right upper corner of G = gld.

as usual set B := B ∩G,P := P ∩G, F := U ∩ V .
The algebra HG

∗ (ZB), ZB := (G×B F )×V (G×B F ) can by theorem [Sau13], thm 2.1

be described as the the algebra 1e ∗ Z ∗ 1e for Z be the Steinberg algebra associated to

(G,B,U , V ) and e ∈W \W be the coset of the neutral element. If we set si := (i, i+1) ∈ Sd
and

δi := δsi : C[t1, . . . , td]→ C[t1, . . . , td], f 7→ si(f)− f
ti − ti+1

Then, H∗G(ZB) is the subalgebra of EndC[t1,...,td]
Sd2
×Sd1

(C[t1, . . . , td]) generated by

(tj ·), 1 ≤ j ≤ d, δi, i ∈ {2, . . . d2 − 2, d2, . . . , d− 1},

θ :=
d∏

j=d1+d2+1

(t1 − tj)δ1.

Now, Reineke's variety equals Z = (G ×P F ) ×V (G ×P F ), by the previous section we

conclude it is the corner algebra of ePH
G
∗ (ZB)eP where

eP : C[t1, . . . , td]→ C[t1, . . . , td], f 7→
1

(d2 − 1)!d1!

∑
w∈<s2,...sd2−2,sd2 ,...,sd−1>

w(f).

Remark. Since

* δieP = 0 for i 6= 1

* δiθ = qδ1δi for i 6= 2 some q ∈ C[t]

* θδ2θ = q1θ + q2δ2θ for some q1, q2 ∈ C[t]

* there are straightening rules to bring polynomial elements in the beginning of the

element,

we think that HG
∗ (Z) is as C[t]WP -module generated by products of

eP θ
reP , eP δ2θ

teP , r, t ∈ N0. I have no idea on the relations.

3.2.2 Literature

For the classical Springer map a description of the parabolic Steinberg algebra as a corner

in the Steinberg algebra of Borel type has been investigated by Douglas and Röhrle in

[DR09] and earlier by Borho, MacPherson [BM83].

105



Chapter 4

From Springer theory to monoidal

categories

Summary. Here: Springer theory is a construction of a graded algebra (called Steinberg

algebra) from a collapsing of a union of homogeneous vector bundles over homogeneous

spaces. We de�ne I-graded Springer theory (for a monoid I) as a collection of certain

Springer Theories parametrized by the elements of I. Associated to this we study the

following monoidal categories.

(1) We sometimes have a new product on the associated Steinberg algebras, called hor-

izontal product. The projective graded modules for such a multiplicative family of

algebras are a monoidal category. In this case, there is a di�erent description of the

monoidal category in terms of Lusztig 's perverse sheaves1.

(2) If there is no horizontal product, we embed the Steinberg algebra in a bigger Steinberg

algebra which has a horizontal product and extend the Steinberg algebra by the

images under the horizontal map of the bigger Steinberg algebra. Then projective

graded modules over this new algebra have a monoidal category structure.

Of course, we would like to understand their Grothendieck rings but as the de�nitions of

these categories are very long, we just recall the known results here. The main example due

to Lusztig is quiver-graded Springer theory and the horizontal product is constructed with

varieties of short exact sequences of KQ-representation in the spirit of the Hall algebra

product. The Grothendieck group of the projective graded modules over the Steinberg

algebra is a twisted Hopf algebra which can be identi�ed by the negative half of the

quantum group associated to the quiver.

We consider as a second example symplectic quiver-graded Springer theory in analogy to

quiver-graded Springer theory. Here we describe the monoidal category of type (2).

1They are not perverse sheaves because we allow shifts of them
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4.1 (I-)Graded Springer theory

De�nition 10. Let (I,+) be a semi-group, not necessarily commutative. By an I-graded
variety (over C) we mean

(1) For every i ∈ I a �nite-dimensional variety (Xi, pi) over C together with a base point

pi ∈ Xi.

(2) For every i, j ∈ I a closed embedding mi,j : Xi ×Xj → Xi+j which maps (pi, pj) to

pi+j with mi,j+k ◦ (idXi ×mj,k) = mi+j,k ◦ (mi,j × idXk) for i, j, k ∈ I.

We say an I-graded variety is irreducible/connected if all Xi, i ∈ I are
irreducible/connected.

Remark. Let (Xi, pi,mi,j) be an I-graded variety. The set X =
⋃
i∈IXi where we consider

Xi ⊂ Xi+j via Xi
∼= Xi × {pj}

mi,j |Xi×{pj}−−−−−−−−→ Xi+j gives X the structure of an ind variety

(with respect to the partial order on I which is induced by the addition).

A morphism of I-graded varieties f : (Xi, pi,mi,j)→ (Yi, qi, ni,j) consists of a collection

of pointed morphisms fi : Xi → Yi such that for all i, j ∈ I the the following diagram is

commutative:

Xi ×Xj
mi,j //

fi×fj
��

Xi+j

fi+j
��

Yi × Yj
ni,j // Yi+j

We call X := (Xi, pi,mi,j) an I-graded subvariety of Y := (Yi, qi, ni,j) if there exists

a morphism f : X → Y with fi is a closed embedding for all i ∈ I.

De�nition 11. We say an I-graded variety G is an I-graded group if all Gi are algebraic

groups, pi = e are the unit elements, and all mi,j are morphisms of algebraic groups.

We call a morphism of I-graded varieties f : G→ H a morphism of I-graded groups if all fi

are algebraic group homomorphisms. We call an I-graded subvariety G ⊂ H an I-graded
subgroup if all Gi ⊂ Hi, i ∈ I are algebraic subgroups. We say G operates on an I-graded
variety X if there is a morphism of I-graded varieties f : G × X → X such that fi is an

operation of the algebraic group Gi on Xi, i ∈ I.
If in addition, all Xi are C-vector spaces and fi de�nes a linear operation of Gi on Xi,

then we call X a linear G-representation.

For example, let V = (Vi, 0,mi,j)i,j∈I be an I-graded variety with all Vi �nite dimen-

sional C-vector spaces and all mi,j linear maps which come from a restriction of an isomor-

phism Vi⊕ Vj ⊕Xi,j
∼= Vi+j . In particular, the complements have to ful�ll Xi,j ⊕Xi+j,k =

Xi,j+k ⊕Xj,k, i, j, k ∈ I. Then, Gl(V ) = (Gl(Vi), ni,j) is an I-graded group (the choice of

the complements Xi,j gives homomorphisms ni,j : Gl(Vi) ×Gl(Vj) → Gl(Vi+j)) and V is

a Gl(V )-representation.

If ρ : G→ Gl(V ) is an I-graded group homomorphism, then V is a G-representation via ρ.
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We say an I-graded group G is reductive if all Gi are reductive groups. We say an

I-graded subgroup H ⊂ G is a parabolic/ Borel subgoup/ maximal torus if all ιi : Hi → Gi

are inclusion of a parabolic/ Borel subgroup/ maximal torus. This is up to taking products

the list of parabolics which we consider.

Example. (1) I = N0, Gn := Gln, the map Gln×Glm → Gln+m is blockwise inclusion

(where we place Gln in the left upper corner, Glm in the right lower corner). Let

Bn ⊂ Gln be the upper triangular matrices, then this de�nes a Borel subgroup of

the I-graded group Gl := (Gln)n∈N0 .

(2) I := {i = (n1, . . . , nr) | r ∈ N0, ni ∈ N0}, the composition is concatenation of

sequences. We write |i| :=
∑r

t=1 nt and de�ne Gi := Gl|i|, i ∈ I with the same

embeddings as in (1). We de�ne Pi to be the standard parabolic in Gi = Gl|i| (i.e.

upper triangular block matrices) with block sizes from the left upper corner to the

right bottom corner given by the sequence i = (n1, . . . , nr). Then the block diagonal

embedding Gl|i| ×Gl|j| → Gl|i+j| restricted to Pi × Pj gives a map Pi × Pj → Pi+j .

This de�nes a parabolic subgroup of the I-graded group (Gi)i∈I.

(3) I = N0, Gn := Sp2n, we de�ne J = Jn :=

(
0 En

−En 0

)

Sp2n = {g ∈ Gl2n | tgJg = J}

= {

(
A B

C D

)
∈ Gl2n | tAC = tCA, tDB = tBD, tAD − tCB = En}

The block diagonal embedding Sp2n × Sp2m → Sp2(n+m) is given by the map

(
A B

C D

)
,

(
A′ B′

C ′ D′

)
7→


A 0 B 0

0 A′ 0 B′

C 0 D 0

0 C ′ 0 D′

 .

The standard Borel in Sp2n is

Bn := {

(
A S

0 (A−1)t

)
∈ Gl2n | A upper triangular, A−1S symmetric},

this de�nes a Borel subgroup of the I-graded group Sp := (Sp2n)n∈N0 .

(4) I := {i = (n1, . . . , nr) | r ∈ N0, ni ∈ N0}, |i| :=
∑r

t=1 nt (as in (2)).

We de�ne Gi := Sp2|i| with the block diagonal embedding. We set n := |i|

Pi := {

(
A S

0 (A−1)t

)
∈ Sp2n | A ∈ Gln in a standard parabolic,

block sizes i = (n1, . . . , nr)}
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This de�nes a parabolic subgroup of the I-graded group (Gi)i∈I.

Observe, that Levi-subgroups of Sp2n have at most one direct factor (or summand)

which is a symplectic group. The Pi, i ∈ I have a product of Glt's as Levi group and

there can not exist a parabolic subgroup of Gi, i ∈ I which has symplectic groups as

Levi factors (because of the map P ′i × P ′i → P ′i+i we would get a parabolic with two

symplectic Levi factors).

We should keep in mind that parabolic subgroups of I-graded groups are a seldom

species.

De�nition 12. We call (G,P, V, F ) an I-graded Springer theory if

(1) G is a reductive I-graded group, P is a parabolic subgroup of G. We always denote

by T a maximal torus in P and we assume Ti × Tj = Ti+j , i, j ∈ I. We also assume,

if Gi = Gk, Gj = Gl then mi,j = mk,l.

(2) V is a G-representation and F = (Fi, 0, ni,j) ⊂ V is P -subrepresentation. We also �x

C-vector space complementsmi,j : Fi⊕Fj⊕Xi,j → Fi+j , i, j ∈ I withmi,j |Fi×Fj×{0} =

ni,j and mi,j is Pi × Pj-linear.

Observe, that if we assume that V is a T -subrepresentation of a Lie algebra of a

connected reductive group with maximal torus T , then all Ti-weight (=root) spaces are

1-dimensional, i ∈ I, and the complement of Fi⊕Fj in Fi+j can be chosen to be the unique

Ti+j-equivariant complement.

I-graded Steinberg algebras. Let (G,P, V, F ) be an I-graded Springer theory. We

de�ne an equivalence relation on I via i ∼ j if and only if Gi = Gj and Vi = Vj as Gi-

representations. We write |i| for the equivalence class. Assume we have |i|+ |j| := |i+ j|
is wellde�ned and gives |I| := I/ ∼ the structure of a quotient semi-group of I.
Now, for i ∼ j set Zi,j := Ei ×Vi Ej , Ei = Gi ×Pi Fi Zi,j := HGi

∗ (Zi,j). We call

Z|i| := HGi
∗ (

⊔
i,j∈|i|

Zi,j) =
⊕
i,j∈|i|

Zi,j

the Steinberg algebra for |i|, the algebra product is given by the convolution product

de�ned by Chriss and Ginzburg in [CG97], chapter 3. The I-graded Steinberg algebra

is de�ned as

ZG :=
⊕
|i|∈|I|

HGi
∗ (

⊔
i,j∈|i|

Zi,j).

We want to �nd two multiplications as follows.

(1) The vertical product is the direct sum of the algebra products on Z|i|, i ∈ |I|

(2) The horizontal product

∗ : Z|i| ×Z|j| → Z|i|+|j|
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which respects the algebra multiplication but not necessarily maps the unit element

to the unit element.

We tried to give a geometric construction of the horizontal product but as since in the

symplectic quiver-graded Springer theory it does not exist in some cases (see later), this

construction can not exist in general.

Instead, we will give the horizontal map in each case where we can �nd it explicitly. In the

quiver-graded Springer theory it always exists and in the symplectic quiver-graded Springer

theory we often have to enlarge the Steinberg algebras to de�ne the horizontal multipli-

cation. At least, I want to mention two examples which work for all N0-graded reductive

groups. These groups are families of products of groups of type An, Bn, Cn, Dn, n ∈ N.

Example. Let G be a N0-graded reductive group with a Borel subgroup B, a maximal

torus T and Weyl group W = (Wn)n∈N.

(1) (Nil Springer theory)

We consider the N0-graded Springer theory (G,B, {0}, {0}). It holds

HGn
∗ (Gn/Bn ×Gn/Bn) = EndC[tn]Wn−lin(C[tn]) =: NHn,

with C[tn] = C[x1, . . . , xn]. The Steinberg algebra is by de�nition

⊕
n∈N0

NHn

Next: We explain that there is a graded algebra homomorphism

NHn ⊗C NHm → NHn+m,

which we denote by (f, g) 7→ f ⊗ g. It is known that NHn is as a graded C-algebra
generated by

zk := xk· : C[tn]→ C[tn], f 7→ xkf

which has degree 2 and the divided di�erence operators δs, s ∈ S(n) of degree −2

de�ned by

f 7→ δs(f) =
s(f)− f

αs

where S(n) is the set of simple re�ections associated to Gn, Bn, Tn. Recall that we

have natural maps i : Wn×Wm →Wn+m. We can extend the de�nition of the divided

di�erence operator for a general re�ection t = wsw−1, s ∈ S(n+m), w ∈ W (n+m) by

∆t(f) := t(f)−f
w(αs)

, f ∈ C[tn+m]. Then we de�ne

zk ⊗ 1 7→ zk, 1⊗ z` 7→ zn+`

δs ⊗ 1 7→ ∆i(s), 1⊗ δs 7→ ∆i(s).

(For G = Gl this is quiver-graded Springer theory with quiver Q = •. )
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(2) (Classical Springer theory)

We consider the N0-graded Springer theory (G,B,LieG,LieU) where LieG is the

adjoint representation of G and U ⊂ B is the unipotent radical.

It holds Zn = C[tn]#Wn is the skew group ring de�ned by (f ⊗ w) · (g ⊗ v) :=

fw(g)⊗ wv, f, g ∈ C[tn], w, v ∈Wn.

The inclusion i : Wn ×Wm ⊂ Wn+m and C[tn]⊗C C[tm] = C[tn+m] induce the hori-

zontal product

C[tn]#Wn × C[tm]#Wm → C[tn+m]#Wn+m

(f ⊗ w, g ⊗ v) 7→ (f ⊗ g)⊗ i(w, v)

(For G = Gl this is quiver-graded Springer theory for the Jordan quiver (or 1-loop

quiver).)

4.2 Monoidal categori�cation of a multiplicative sequence of

algebras

De�nition 13. A monoidal category C = (C0,⊗, E, a, l, r) consists of a category C0, a

functor ⊗ : C0×C0 → C0, an object E of C0 and natural isomorphisms aXY Z : (X⊗Y )⊗Z →
X ⊗ (Y ⊗ Z), lX : E ⊗ X → X, rX : X ⊗ E → X, subject to the commutativity of the

following diagrams

((W ⊗X)⊗ Y )⊗ Z a //

a⊗1
��

(W ⊗X)⊗ (Y ⊗ Z)
a //W ⊗ (X ⊗ (Y ⊗ Z))

(W ⊗ (X ⊗ Y ))⊗ Z a //W ⊗ ((X ⊗ Y )⊗ Z)

1⊗a

OO

(X ⊗ E)⊗ Y a //

r⊗1

''OOOOOOOOOOO
X ⊗ (E ⊗ Y )

1⊗l

wwooooooooooo

X ⊗ Y

We only want to study examples of additive C-linear monoidal categories. We recall

a way of constructing them which is a slight modi�cation of the de�nition of a monoidal

categori�cation associated to a multiplicative sequence of algebras from A. Davidov and A.

Molev (see [DM11]). Given a sequence of associative unital C-algebras A∗ = {Ai | i ∈ I}
for a monoid (I,+) with A0 := C equipped with collections of multiplicative maps (i.e.

they respect the algebra product but are not necessarily mapping the unit to the unit)

µi,j : Ai ⊗C Aj → Ai+j , i, j ∈ I

satisfying the following associativity axiom: For all i, j, k ∈ I the following diagram com-
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mutes

Ai ⊗Aj ⊗Ak
id⊗µj,k

��

µi,j⊗id // Ai+j ⊗Ak
µi+j,k

��
Ai ⊗Aj+k µi,j+k

// Ai+j+k.

We call such a sequence multiplicative.

Example. (see loc. cit.) Assume all mi,j are algebra homomorphisms, one can �nd a so

called (strict) monoidal categori�cation of A∗ as follows: Let C = C(A∗) be the category

with objects by [i], i ∈ I. And morphisms are de�ned as EndC([0]) =: C, HomC([i], [j]) = 0

for i 6= j in I and EndC([i]) := Ai. The tensor product is given by [i]⊗ [j] := [i+j], i, j ∈ I.
The multiplicative structure on A∗ yields the tensor product structure on morphisms.

Example. (Main example) Assume that I is monoid generated by a �nite set Q0. Let I
be the free monoid in the set Q0, we have a surjective map I→ I, i 7→ |i| of monoids. We

assume for every d ∈ I the algebra Ad is a Z-graded algebra and the maps µd,e respect the

grading.

Then, for every d ∈ I we have a set of idempotent elements 1i ∈ Ad, i ∈ I, |i| = d given

by the iterated images of 1 of the multiplicative maps. We de�ne the monoidal category

C := C(A∗) to have objects �nite direct sums of [i](n), i ∈ I, n ∈ Z and

⊕
n∈Z

HomC([i](0), [j](n)) :=

1iAd1j , if |i| = |j| = d

0, else.

determines all homomorphisms in the category C. The monoidal structure is given by

[i](n)⊗ [j](m) := [i+ j](n+m).

Notational convention. When we describe categories later, we will write for an element

x ∈ HomC([i](0), [j](n)) a homomorphism x : [i] → [j] of degree n. If y : [j] → [k] is a

homomorphism of degree m, we write y ◦ x : [i] → [k] for the homomorphism of degree

n+m given by y(n) ◦ x ∈ HomC([i](0), [k](n+m)).

Example. (Steinberg algebra) Back to our previous situation. Let (G,P, V, F ) be an I-
graded Springer theory. Assume that there exist the horizontal product map, that implies

that Z|i|, i ∈ |I| is a multiplicative sequence, Z∅ := C with the structure maps µ|i|,|j|

respecting the grading and mapping 1i⊗1j to 1i+j , i.e. µ|i|,|j|(1⊗1) =
∑

i∈I|i|,j∈I|j| 1i+j =:

1|i|,|j| is just an idempotent element. Then we de�ne C := C(Z) with objects �nite direct

sums of [i](n), i ∈ I, n ∈ Z and

⊕
n∈Z

HomC([i](0), [j](n)) :=

Zj,i, if |i| = |j|

0, else.

The tensor product is given by [i](n)⊗ [j](m) := [i+j](n+m). Apart from the assumption
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on I being a free monoid in a set of generator of I, this is just a special case of the main

example.

We are going to see.

* Quiver-graded Springer theory is a special case of the previous example and the main

example.

* Symplectic quiver-graded Springer theory gives a special case of the main example.

4.2.1 Alternative description of C as category of projective graded mod-

ules

We study the situation of the main example (it also applies to the last example, i.e. a

Steinberg algebra with a horizontal product).

Let d, e be in I, we set 1d,e := µd,e(1⊗ 1). We see Ad ⊗C Ae as a Z-graded algebra via the

degree r elements are
⊕

k+`=r(Ad)k ⊗C (Ae)`. For a Z-graded ring R we write R −modZ

for the category of �nitely generated Z-graded left R-modules. There are the following

induction and restriction functors:

Indd+e
d,e : (Ad ⊗Ae) modZ → Ad+e modZ

X 7→ Ad+e1d,e ⊗Ad⊗Ae X

Resd,ed+e : Ad+e modZ → (Ad ⊗Ae) modZ

Y 7→ 1d,eY

Remark. Let A − modZ be the category of �nitely generated Z-graded left Ad-modules

, d ∈ I with homomorphisms are maps of degree zero if both are graded Ad-modules and

zero else. The induction functor de�nes a monoidal structure on A−modZ as follows

M ◦N := Indd+e
d,e (M �N)

where M �N is the vector space M ⊗C N with the obvious Ad ⊗Ae-module structure, it

is in fact a Z-graded module with degree r part given by
⊕

k+`=rMk ⊗C N`. The object

E is given by C = A0 which is a Z-graded algebra concentrated in degree zero.

Let Bd ⊂ A − modZ be the full subcategory of �nitely generated projective graded

Ad-modules.

Let B ⊂ A−modZ be the full subcategory with objects in Bd, d ∈ I.
Let BI be the full subcategory subcategory of �nite direct sums of shifts of projective

graded modules of the form

Pi := Ad1i, i ∈ I, |i| = d.

Lemma 35. The functor Ind respects projective graded modules. Then B has the structure

of a monoidal category and BI is monoidal subcategory and it holds

Pi(n) ◦ Pj(m) = Pi+j(n+m).
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proof: This follows from the obvious observation that Indd+e
d,e (Ad ⊗ Ae) = Ad+e1d,e is a

projective module. The rest is by de�nition of the functors ful�lled. �

Remark. There is an obvious equivalence of monoidal categories

C(A∗)→ BI

[i](n) 7→ Pi(n)

Grothendieck rings

We assume we are in the situation from the previous section. Observe, that the induction

functors on B induce a |I|-graded multiplication on the abelian group

K0(B) =
⊕
d∈I

K0(Bd).

It has the structure of a Z[q, q−1]-module where q operates as the graded shift q·M := M(1).

Remark. With the restriction functor one can sometimes de�ne a coproduct as follows

K0(B)→ K0(B)⊗Z[q,q−1] K0(B), Bd 3 P 7→
∑

e,f : e+f=d

Resde,fP

For example, the following has to be full�lled

(1) 1d,eAd+e is a projective Ad⊗Ae-module (because then the restriction of the restriction

functor to projective modules is well-de�ned).

(2) A version of Mackey's induction restriction theorem holds (see for example [KL09]

in the case of quiver-graded Springer theory). This is needed to see that the comul-

tiplication is a twisted algebra homomorphism.

So a natural question is:

When is the algebra K0(B) part of a twisted Z[q, q−1]-Hopf algebra structure ?

We do not discuss this here further.

There is some more algebraic structure in the examples which we are not discussing

like anti-involutions, nondegenerate bilinear forms and graded dimension vectors. For

quiver-graded Springer theory you �nd de�nitions in [Lus91], for symplectic quiver-graded

Springer theory look in [VV11].

4.3 Lusztig's perverse sheaves

Now, we assume Z to be the Steinberg algebra of an I-graded Springer theory (G,P, V, F ).

We write πi : Ei = Gi ×Pi Fi → GiFi(⊂ Vi), (g, f) 7→ gf for the collapsing map. By the

equivariant decomposition theorem, we get that (πi)∗C[ei] with ei = dimCEi is a direct

sum of shifts of simple perverse sheaves on Vi.
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The equivariant decomposition theorem takes place in Db
Gi

(Vi) which is the equivariant de-

rived category in the sense of Bernstein and Lunts, for both see [BL94]2. Let P|i| ⊂ Db
Gi

(Vi)

be the full subcategory given by �nite direct sums of shifts of direct summands of (πi)∗C[ei],

i ∈ I|i|.
We de�ne a category P called Lusztig's perverse sheaves with objects in P|i|, i ∈ I. Mor-

phisms are given by morphisms in the equivariant derived category Db
Gi

(Vi) if both objects

are from this category, otherwise it is zero.

Let PI ⊂ P be the monoidal category generated by �nite direct sums of shifts of Li :=

(πi)∗(C[ei]), i ∈ I.

Lemma 36. The following are equivalent.

(1) There exists a monoidal structure on P mapping P|i| × P|i| → P|i+j|
which restricts to a monoidal structure on the category PI de�ned by Li(n)∗Lj(m) :=

Li+j(n+m).

(2) There exists a monoidal structure on B mapping B|i| × B|i| → B|i+j|
which restricts to a monoidal structure on the category BI de�ned by Pi(n)∗Pj(m) :=

Pi+j(n+m).

(3) There exists a horizontal product on Z.

and in this case it holds

PI ∼= BI ∼= C(Z).

proof: By [Sau13], lemma 7, P|i| is equivalent to B|i| for every i ∈ I mapping Li to Pi.

A consequence of the equivalence is (1) ⇔ (2).

Now, assume that horizontal products exist for Z, then (2) holds true by the previous

section. The existence of a monoidal structure on the category BI de�ned by Pi(n) ∗
Pj(m) := Pi+j(n+m) induces on homomorphisms the structure of a multiplicative sequence

on (Z|i|, i ∈ I), i.e. a horizontal product on Z. �

Remark. In the case of a Steinberg algebra Z with horizontal product, we get K0(P) =

K0(B) and K0(PI) = K0(BI) as Z[q, q−1]-algebras.

Let us look at one of the examples from before.

Example. (1) (nil Springer theory) The only indecomposable projective graded NHn-

module is Pn := C[tn]. To see this, it is given by Pn = NHne for e : C[tn]
Av−−→

C[tn]Wn ↪→C[tn] where Av(f) := 1
#Wn

∑
w∈Wn

w(f)

(it is easy to see that NHne ∼= HomC[tn]Wn (C[tn]Wn ,C[tn]) = C[tn] as left NHn-

module).

Since C[tn] =
⊕

w∈Wn
C[tn]Wn · bw as graded module with deg bw = 2`Wn,S(n)(w)

2Lusztig used the usual derived categories, but his constructions work also equivariantly and give the
same Grothendieck group.
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(bw is a so called Schubert polynomial), it gives

NHn =
⊕

w∈Wn

HomC[tn]Wn (C[tn]Wn ,C[tn](−2`(w))) =
⊕

w∈Wn

Pn(−2`(w))

That means that B is generated by �nite direct sums of shifts of Pn, n ∈ N0. It holds

Pn ◦ Pm = HomC[tn+m]Wn+m (C[tn+m]Wn×Wm ,C[tn+m]). Since

C[tn+m]Wn×Wm =
⊕

x∈(Wn×Wm\Wn+m)

C[tn+m]Wn+mbx

with using the notation deg bx =: 2nx we conclude

Pn ◦ Pm =
⊕

x∈(Wn×Wm\Wn+m)

Pn+m(−2nx).

One can express nx as the length of a minimal coset generator3. We conclude that

K0(B) is as Z[q, q−1]-algebra not �nitely generated (but if we tensor −⊗Z[q,q−1] Q(q)

we see it is �nitely generated as an algebra by [P1]).

On the other hand BI is the monoidal subcategory generated by free modules and

it holds NHn ◦ NHm = NHn+m. We conclude that K0(BI) = (Z[q, q−1])[T ] for

T = [NH1].

For G = Gl, Khovanov describes in [Kho99] the category of �nite dimensional mod-

ules over a n-NilCoxeter algebra, n ∈ N0 as a categori�cation of the Weyl algebra.

Recall, that the n-NilCoxeter algebra is the quotient algebra obtained from NHn

when passing from equivariant to not equivariant Borel-Moore homology. I think it

would be interesting to ask if one can extend this for other N0-graded groups and

say something on the Nil Hecke algebras as well.

In the examples we will be interested in the following questions:

(Q1) Can we �nd explicit generators and relations for the monoidal categories C(Z)?

If Z has no horizontal product, we would like to �nd a minimal multiplicative se-

quence A∗ containing Z and describe C(A∗) instead.

(Q2) Can we describe K0(BI) in terms of generators and relations? In the examples we

think of K0(BI) as an analog of the extension monoid, which is how we call the

subalgebra of a Hall algebra generated by the simple modules without self-extensions,

see for example [Wol09].

We did not manage to study the second question.

3this notion is also de�ned if Wn ×Wm is not necessarily a parabolic subgroup of Wn+m, see remark
on page 59
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4.4 Example: Quiver-graded Springer theory

Let Q = (Q0, Q1) be a �nite quiver. We write NQ0
0 for the dimension vectors. A word in

dimension vectors is a �nite sequence (a1, . . . , ar), ai ∈ NQ0
0 . We set

I := {(a1, . . . , ar) | aj ∈ NQ0
0 , r ∈ N0} → |I| := NQ0

0

i := (a1, . . . , ar) 7→
r∑
j=1

aj =: |i|

where the semi-group structure on I comes from word concatenation. Then, an I-ind
Springer theory (G,P, V, F ) is given by the following data for i = (a1, . . . ar), |i| = (dk)k∈Q0

(1) Gi = G|i| :=
∏
k∈Q0

Gldk

(2) Pi ⊂ Gi be at factor k the standard parabolic with diagonal block sizes (from left

upper corner to right bottom corner) given by ((a1)k, . . . , (ar)k).

(3) Vi = V|i| =
∏

(α : k→l)∈Q1
HomC−lin(Cdk ,Cdl)

(4) Fi ⊂ Vi be stabilizer of a standard �ag of type i (i.e. such that Pi is the stabilizer of

that �ag).

The de�nition of the representations (Vi, Fi) goes back to Reineke in [Rei03]. This is

not a generalized Springer theory in the sense of [Sau13]. But the Borel case is.

4.4.1 Quiver-graded Springer theory - Borel case

The Borel case of quiver-graded Springer theory is de�ned by Lusztig, see for example

[Lus91]. We set

I := {(i1, . . . , ir) | ij ∈ Q0, r ∈ N0} → |I| := NQ0
0

i := (i1, . . . , ir) 7→
r∑
j=1

ij =: |i|

We can see this naturally as a sub-semigroup of the same named set from before, but for

i in this smaller set we have

* We �x a numbering of the points of Q0 = {k1, . . . , kt}. Then, the group G|i| is a

Levi-group LJ|i| in Gln, n := ||i||. We �x the following identi�cation

J|i|Sn → I|i| := {j ∈ I | |j| = |i|}

which comes from the transitive right operation of Sn on I|i| given by the following:

See i as a function i : {1, . . . , n} → Q0 with
∑n

j=1 i(j) = |i|, w ∈ Sn, then iw :=

i ◦ w. Then the stabilizer of every point is isomorphic to
〈
J|i|
〉
. Therefore, any

choice of a point gives an isomorphism as above. We choose the element i :=

(k1, k1, . . . , k2, . . . , k3, . . .) ∈ I|i|.
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* Let Bn ⊂ Gln, n = ||i|| be the invertible upper-triangular matrices and B|i| := G|i| ∩
Bn. Then we can assume that Pj = B|i| for all j ∈ I|i| More precisely, if w(j) ∈ J|i|Sn

is the element corresponding to j, we have Pj = G|i| ∩ w(j)Bn = G|i| ∩ Bn = B|i|.

* Furthermore, in the above notation

Fj = V|j| ∩ w(j)Un, j ∈ I

where Un = Lie(Un), Un ⊂ Bn is the unipotent radical. This is the same Fj de�ned

in the quiver-graded Springer theory from before.

For a quiver without loops Varagnolo and Vasserot [Var09] and independently Rouquier

in [Rou11] calculated the associated Steinberg algebra in terms of generators and relations

and identi�ed it with the quiver-Hecke algebra (or KLR-algebra) which was introduced in

the simply laced case by Khovanov and Lauda in [KL09]. This is the version with loops

(cp. main thm in [Sau13]), the version without loops is due to Varagnolo and Vasserot,

cp. [Var09].

Theorem 4.4.1. Let Q be a quiver. Set I := I|i| = {j = (j1, . . . , jn) | jk ∈ Q0,
∑
jk = |i|},

S ⊂ Sn the set of positive roots. We de�ne hi(s) := #{α ∈ Q1 | for V := (V|i|)α, xi(αs) ∈
ΦV } with ΦV is the set of Tn-weights of V . It holds for i = (i1, . . . , in) ∈ I and s` =

(`, `+ 1) ∈ Sn

hi(s`) = hi`+1,i` := #{α ∈ Q1 | α : i`+1 → i`}

We consider
⊕

i∈I C[zi(1), . . . zi(n)] as the left W := Sn-module IndW
W C[tn] via

f ∈
⊕

i∈I C[zi(1), . . . zi(n)], w ∈ W map to w(f) ∈ C[ziw−1(1), . . . ziw−1(n)]. For every

i ∈ I, s = (`, `+ 1) ∈ S we have αs := zi(`)− zi(`+ 1) without mentioning the dependence

on i if that is clear from the context. Then Z|i| is the graded C-algebra with generators

1i, i ∈ I, zi(t), 1 ≤ t ≤ n = rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I

of degrees

deg 1i = 0, deg zi(t) = 2 deg σi((`, `+ 1)) =

2hi`,i` − 2 , if i` = i`+1

2hi`+1,i` , if i` 6= i`+1

subject to the relations

1i1j = δi,j1i,

1izi(t)1i = zi(t),

1iσi(s)1is = σi(s)

zi(t)zi(t
′) = zi(t

′)zi(t)
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σi(s)σis(s) =


0 , if is = i, hi(s) is even

−2α
hi(s)−1
s σi(s) , if is = i, hi(s) is odd

(−1)his(s)α
hi(s)+his(s)
s , if is 6= i

Let s = s` = (`, `+ 1)

σi(s)zis(t)− s(zis(t))σi(s) =


α
hi(s)
s , , if is = i, t = `+ 1

−αhi(s)s , , if is = i, t = `

0 , if is 6= i or is = i, t /∈ {`, `+ 1}

Let s = s` = (`, `+ 1), t = s`+1

σi(s)σis(t)σist(s)− σi(t)σit(s)σits(t)

=


α
hi(s)
s s(α

his(t)
t )s(δt(α

his(s)
s ))− αhis(s)t t(α

his(t)
s )t(δs(α

hi(s)
t )) , if ists = i,

is 6= i, it 6= i

0 , else.

We can now write down the horizontal product

µ|i|,|j| : Z|i| ⊗Z|j| → Z|i+j|
1i ⊗ 1j 7→ 1i+j

zi(k)⊗ 1j 7→ zi+j(k)

1i ⊗ zj(`) 7→ zi+j(n+ `)

σi((t, t+ 1))⊗ 1j 7→ σi+j((t, t+ 1))

1i ⊗ σj((r, r + 1)) 7→ σi+j((n+ r, n+ r + 1))

the condition that it respects the algebra product de�nes it in general. This explicitly

de�nes a multiplicative sequence of algebras.

Furthermore, Rouquier de�ned in [Rou11] a monoidal category which is equivalent to

the monoidal subcategory of the category P generated by the perverse sheaves Lk corre-

sponding to the dimension vectors εk, k ∈ Q0. This construction can easily be extended to

our slightly di�erent situation: Because we are allowing loops in the quiver, we have some

more relations to consider, cp. the article Generalized quiver Hecke algebras [Sau13].

Remark. Lusztig studied the category P for a quiver without loops. He proved the

following.

(1) ([Lus91], Prop. 7.2, p.390) There is geometric construction of the monoidal product

∗ on the category P. Let i = (i1, . . . , in) ∈ I, it holds

Li1 ∗ Li2 ∗ · · · ∗ Lin = (πi)∗C[ei] =: Li.
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(2) In particular, the inclusion PI ⊂ P induces an equivalence of monoidal categories

(PI)i → P

where ()i is the idempotent completion functor, see for example [Rou11], section 3.3.

For Q a Dynkin quiver it even holds PI = P.

(3) There is an ismorphism of Z[q, q−1]-algebras

K0(PI) = K0(P).

Furthermore, K0(P) also has the structure of a twisted Z[q, q−1]-Hopf algebra. The

main result in [Lus91] is that after tensoring with Q(q), it can be identi�ed with the

negative half of the quantized enveloping algebra associated to the quiver.

Following Rouquier's constructions in [Rou11] we de�ne the following category. Let

C be the monoidal category generated by �nite direct sums of shifts of objects Ea =

Ea(0), a ∈ Q0, we write Ea(n) for the shift, n ∈ Z, and arrows

za : Ea → Ea, of degree 2

σa,b : EaEb → EbEa, of degree

2ha,a − 2, if a = b

2hb,a, if a 6= b

where ha,b := #{α ∈ Q1 | α : a → b} for a, b ∈ Q0. We write Ea also for idEa and

EaEb := Ea ⊗ Eb. They are subject to relations

(1) (s2 = 1)

σab ◦ σba =


(−1)hb,a(Ebza − zbEa)ha,b+hb,a , if a 6= b

−2(zaEa − Eaza)ha,a−1 ◦ σa,a , if a = b, ha,a odd

0 , if a = b, ha,a even

(2) (straightening rule)

σab ◦ zaEb − Ebza ◦ σab =

0 , if a 6= b,

(Eaza − zaEa)ha,a , if a = b,

σab ◦ Eazb − zbEa ◦ σab =

0 , if a 6= b,

−(Eaza − zaEa)ha,a , if a = b,

(3) (braid relations) for a, b, c ∈ Q0 we have the following inclusion of C-algebras. Let
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C[αs, αt] be the set of polynomials in αs, αt.

Ja,b,c : C[αs, αt]→ EndB(EaEbEc)

αs 7→ zaEbEc − EazbEc

αt 7→ EazbEc − EaEbzc,

we set t(αhs ) := (αs + αt)
h =: s(αht ) ∈ C[αs, αt], h ∈ N0. Then, the relation is

σabEc ◦ Eaσcb ◦ σcaEb − Ebσca ◦ σcbEa ◦ Ecσab

=



Ja,a,a(δs(α
ha,a
t δt(α

ha,a
s ))) ◦ σaaEa

−Ja,a,a(δt(α
ha,a
s δs(α

ha,a
t ))) ◦ Eaσaa , if a = b = c

Jb,a,b(α
ha,b
s s(α

hb,b
t )sδt(α

hb,a
s )− αhb,at t(α

hb,b
s )tδs(α

ha,b
t )) , if b = c, a 6= b,

0 , else.

For i = (i1, . . . , in) ∈ I we set Ei := Ei1Ei2 · · ·Ein . Let Z|i| be the Steinberg algebra

for the quiver-graded Springer theory of dimension vector |i| ∈ Γ. Then, by construction

there is an isomorphism of algebras

Z|i| →
⊕
i,j∈I|i|

HomB(Ei, Ej)

1i 7→ idEi

zi(t) 7→ Ei1Ei2 · · ·Eit−1zitEit−2 · · ·Ein
σi(s) 7→ Ei1 · · ·Ei`−1

σi`+1,i`Ei`+2
· · ·Ein , , if s = (`, `+ 1) ∈ Sn

Theorem 4.4.2. ([Rou11]) There is an equivalence of monoidal categories

PI → C

Li 7→ Ei

which is on morphisms the isomorphism of algebras from above.

4.5 Example: Symplectic quiver-graded Springer theory

This construction works in general for (general) symplectic and (special) orthogonal groups

(and products of them) rather analogously to the quiver-graded Springer theory. We study

only the Borel-case and we make the choice to only treat the symplectic group case because

the orthogonal group is not connected (nevertheless one can treat the Steinberg algebras

in the situation with orthogonal groups with Varagnolo's and Vasserot's methods, see

[VV11]).

To emphasize the analogy we use mostly the same notation as in the previous subsubsection.

Before we start we recall some basics about the symplectic group.
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The root system of the symplectic group The group Sp2n (cp. example (3) from

earlier) has the following maximal (split) torus

Tn := {

(
t 0

0 t−1

)
| t =


t1

. . .

tn

 , ti ∈ C∗}

Its Lie algebra is

sp2n := Lie(Sp2n) = {A ∈M2n×2n | AtJ = −JA} → {A ∈M2n×2n | A = At} = S2C2n

A 7→ JA

which maps the adjoint representation on the left hand side to B ·A := BABt on the right

hand side. Let us determine the roots, i.e. T -weights of sp2n. A general element of the Lie

algebra is

(
X Y

Z −Xt

)
with Y, Z symmetric.

(
t 0

0 t−1

)(
X Y

Z −Xt

)(
t−1 0

0 t

)
=

(
(tixijt

−1
j )ij (tiyijtj)ij

(t−1
i zijt

−1
j )ij (−t−1

i xjitj)ij

)

If we denote by εi : T → C∗ the projection on the i-th diagonal entry 1 ≤ i ≤ n, for

two maps λ, µ : T → C∗ we write λ + µ : T → C∗, t 7→ λ(t)µ(t),−λ : T → C∗, t 7→
λ(t)−1, 0: T → C∗, t 7→ 1, we have found the roots

0, εi − εj , εi + εj , −εi − εj , 2εi, −2εi, 1 ≤ i, j ≤ n, i 6= j

with weight spaces (write g := sp2n and Ekl to be the basic matrix with 1 at position (k, l)

and zero else)

g0 = Lie(T ), gεi−εj = C(Eij − Ej+n,i+n), gεi+εj = C(Ei,j+n + Ej,i+n),

g−εi−εj = C(Ei+n,j + Ej+n,i), g2εi = CEi,i+n, g−2εi = CEi+n,i

The root system is of type Cn, the Weyl group is de�ned as W = NSp2n
(T )/T ∼= Sn n

(Z/2Z)n, we �x the following set of elements in NSp2n
(T ) whose left cosets generate W :

For τ ∈ Sn we write τ :=

(
Pτ 0

0 Pτ

)
with Pτ = (eτ(1), . . . , eτ(n)) ∈ Gln,

for σi = (0, . . . , 0, 1, 0, . . . , 0) ∈ (Z/2Z)n we write σi =

(
En − Eii Eii

−Eii En − Eii

)
, 1 ≤ i ≤ n.

The positive roots are 0, εi+εj , εi−εj with i < j and 2εi, the simple roots are εi−εi+1, 1 ≤
i ≤ n − 1, 2εn. Let S ⊂ W be the set of re�ections de�ned at the simple roots, it gives a

generating set of W . As usually we identify S = {(1, 2), . . . , (n − 1, n), σn} ⊂ Sp2n. The

Borel subgroup whose Lie algebra equals the sum of the positive weights is our standard

Borel subgroup from example (3).
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De�nition 14. A symmetric quiver (Q, σ) consists of a �nite quiver Q and two maps

σ : Q0 → Q0, σ : Q1 → Q1 with σ2 = id such that σ(k → `) is an arrow σ(k)→ σ(l).

We call the vertices Qσ0 = {k ∈ Q0 | σ(k) = k} black vertices and we set Q0 \ Qσ0 =

Q′0 t σ(Q′0) for one �xed subset Q′0 ⊂ Q0 and call Q0 \Qσ0 the white vertices.

For a, b ∈ Q0 we write

ha,b := #{α ∈ Q1 | α : a→ b, σ(α) 6= α}

ha,σ := #{α ∈ Q1 | α : a→ σ(a), σ(α) = α}

and we will always assume that the symmetric quiver (Q0, σ) ful�lls

ha,σ = ha,σ(a), ∀a ∈ Q0.

Furthermore, we de�ne

Γ := {a ∈ NQ0
0 | ak = aσ(k), for k ∈ Qσ0 ak ∈ 2N0}.

Observe, that Γ is a sub-semigroup of (NQ0
0 )σ. For a sequence i = (i1, . . . , ir), ij ∈ Q0 we

de�ne |i| :=
∑r

j=1(ij + σ(ij)). We de�ne

I := {(i1, . . . , ir) | ij ∈ Q0} → |I| := Γ

i := (i1, . . . , ir) 7→ |i|

Then we have an I-graded Springer theory as follows

(1) Let |i| =
∑

k∈Q0
ak · k ∈ Γ, we de�ne

G|i| :=
∏
k∈Qσ0

Sp2
ak
2
×
∏
k∈Q′0

Glak .

When we have �xed a numbering of the vertices Q0 we can de�ne an inclusion

G|i| → Gn := Sp2n, n = ||i||
2 via

Φ: G|i| → Sp2n, (

(
Aj Bj

Cj Dj

)
)1≤j≤r, (ai)1≤i≤l 7→



a1
. . .

al
A1 B1

. . .
. . .

Ar Br
(at1)

−1

. . .
(atl)
−1

C1 D1

. . .
. . .

Cr Dr


(which is for r > 1 not a standard Levi subgroup.)
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(2) We write Q1 \Qσ1 = Q′1 t σ(Q′1) for one (�xed) subset Q′1 ⊂ Q1.

V|i| :=
⊕

(α : k→σ(k))∈Qσ1

S2Cak ⊕
⊕

(α : k→`)∈Q′1

Ma`×ak(C)

where S2Ca := {A ∈ Ma×a(C) | A = tA}. This is (roughly) Derksen and Weyman's

representation space (see [DW02]). For k ∈ Qσ0∪Q′0 we writeGk for the corresponding
factor of G|i| and Gσ(k) := Gk. On each direct summand the operation of G|i| is given

by

1. For α : k → σ(k) ∈ Qσ1 it is gvgt, v ∈ S2Cak , g ∈ Gk.

2. For α : k → ` ∈ Q′1 it is g−1
` vgk, v ∈Ma`×ak(C), g` ∈ G`, gk ∈ Gk.

The assumption ha,σ = ha,σ(a) ensures that we have for every type of arrow in Q0 an

associated indecomposable G = (G|i|)-direct summand of sp which we used to de�ne

the representation space above. To understand this remark look at the schematic

picture below.

(3) Let Wn
∼= Sno (Z/2Z)n be the Weyl group of Gn with respect to the diagonal torus.

The embedding gives an inclusion of the Weyl group W|i| of G|i| into Wn. We �x a

bijection

W|i| \Wn → I|i| := {j ∈ I | |j| = |i|}

Using the transitive right operation on I|i| de�ned as follows:

See i as a function i : {1, . . . n} t {1∗, . . . , n∗} → Q0 with
∑n

j=1(i(j) + i(j∗)) = |i|
with the property i(j) = v ⇔ i(j∗) = σ(v). Then the operation of w ∈ Sn is given

by iw := i ◦ (w t w) and the operation of (Z/2Z)n is given by swapping k and k∗,

1 ≤ k ≤ n. Then the stabilizer of every point is isomorphic to W|i|. We choose the

point which is given by the numbering of Q0 := {k1, k2, . . .} which is of the form

i := (k1, k1, . . . , k2, . . .) ∈ I|i|.
Let Bn ⊂ Gn the upper-triangular standard Borel in the symplectic group, B|i| :=

G|i| ∩ Bn. We will choose the unique representatives xi ∈ Wn, i ∈ I|i| of the right

cosets W|i| \Wn which satisfy G|i| ∩ xiBn = B|i|.

We set Bi := B|i| as our parabolic subgroup.

(4) Fi := V|i| ∩ xiUn where Un = Lie(Un),Un ⊂ Bn is the unipotent radical. There is

a di�erent description of Fi in terms of elements of Vi which stabilize a complete

isotropic �ag (given by xi applied to the standard �ag).

124



Schematic pictures of the G|i|-subrepresentations of sp2n associated to the ar-

rows

σ(◦) ◦
∈Qσ1 //

•

σ(◦)

•

◦

◦ • σ(◦) •

∗=∗t

◦′ ◦
∈Q′1 //

σ(◦′)

σ(◦)

◦′

◦

◦ ◦′ σ(◦) σ(◦′)

?

−?t

• ◦
∈Q′1 //

•

σ(◦)

•

◦

◦ • σ(◦) •

?1

−?t1

?2

?t2 • •′
∈Q′1 //

•

•′

•

•′

•′ • •′ •

?2

?t2

?3

?t3

?1

−?t1

?4

−?t4

◦ ∈ Q′1<

•

σ(◦)

•

◦

◦ • σ(◦) •

?

−?t

• ∈ Qσ1<

•

σ(◦)

•

◦

◦ • σ(◦) •

∗2
=∗t2

∗3
=∗t3

∗1

−∗t1

Remark. Using the examples of nil Springer theory and classical Springer theory we can

easily see: If (Q, σ) is such that Q has at most one loop at each vertex and no arrows

between di�erent vertices we can write down the horizontal product. Alternatively, a

closer examination of the equations (1a-b), (2a-c) for the later de�ned elements τi(er)

show you that they are in Z|i| if and only if Q is of the described form. This is precisely

the obstruction for the horizontal product being de�ned for Z.

Remark. This remark is why I think there is no horizontal product. For example at

the case that (Q, σ) consists of two σ-invariant loops at a black vertex i. Then, Z2n·i is

generated by zk := xk·, 1 ≤ k ≤ n, α2
sδs, s ∈ S := {(r, r + 1), en}. This equals the algebra

generated by zk, 1 ≤ k ≤ n, αss, s ∈ S. Now since Z2ni ⊂ NHn, we want a horizontal

product which comes from a restriction of the horizontal product of the nil Hecke algebra.

This means (en, 1) must map to (2xn)en ∈ EndC(C[x1, . . . xn+m]), but this element is not
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contained in Z2(n+m)i.

I do not think that there exists a horizontal product on Z which is not the restriction of

the one from the Nil Hecke algebra but of course a proof of this is di�cult.

But as a compromise for readability I will from now on assume that the quiver Q does

not contain any loops. This reduces the number of case distinctions and the length of the

equations.

4.5.1 The Steinberg algebra and its horizontal product.

Theorem 4.5.1. Let (Q, σ) be a symmetric quiver. Set I := I|i| = {j = (j1, . . . , jn) | jk ∈
Q0,

∑
jk + σ(jk) = |i|}, S ⊂ Sn n (Z/2Z)n the set of positive roots.

(1) (explicitly)

For i ∈ I we set Ei := C[xi(1), . . . , xi(n)]. We consider
⊕

i∈I C[xi(1), . . . xi(n)] as

the left W := Sn n (Z/2Z)n-module IndW
W C[tn] via f ∈ C[xi(1), . . . xi(n)], w ∈ W

maps to w(f) ∈ C[xiw−1(1), . . . xiw−1(n)]. In particular, we write αs ∈ Ei for the

polynomial corresponding to the simple re�ection s ∈ S and w(αs) =∈ Eiw−1 , w ∈W
without mentioning that it depends on i ∈ I when this is clear from the context.

Then Z|i| ⊂ EndC−lin(
⊕

i∈I Ei) is the C-subalgebra generated by

1i, zi(t), σi(s), i ∈ I, 1 ≤ t ≤ n, s ∈ S

de�ned by:

Let k ∈ I, f ∈ Ek. It holds

1i(f) :=

f, if i = k,

0, else.

zi(t)(f) :=

xi(t)f, if i = k,

0, else.

σi(s)(f) :=


s(f)−f
αs

, if i = is = k,

α
hi(s)
s s(f) if i 6= is = k,

0, else.

where hi(s) = #{α ∈ Qσ1 tQ′1 | for V := (V|i|)α, xi(αs) ∈ ΦV } with ΦV is the set

of T -weights of V . It holds for i = (i1, . . . , in) ∈ I and s` = (`, ` + 1) ∈ Sn, en =

(0, . . . , 0, 1) ∈ (Z/2Z)n

hi(s`) = hi`+1,i` , hi(en) = hσ(in),σ
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Observe, that there is a natural grading on Z|i| by

deg 1i = 0, deg zi(n) = 2, deg σi(s) =

−2 , if is = i

2hi(s) , if is 6= i

(2) (in terms of generators and relations)

Let W be the Weyl group of (G|i|, T|i| = Tn). We consider
⊕

i∈I C[zi(1), . . . zi(n)] as

the left W := Sn n (Z/2Z)n-module IndW
W C[tn] de�ned as before. Then Z|i| is the

Z-graded C-algebra with generators

1i, i ∈ I, zi(t), 1 ≤ t ≤ n = rk(T ), i ∈ I, σi(s), s ∈ S, i ∈ I

of the degree as in (1) and relations

1i1j = δi,j1i,

1izi(t)1i = zi(t),

1iσi(s)1is = σi(s),

zi(t)zi(t
′) = zi(t

′)zi(t),

σi(s)σis(s) =

0 , if is = i,

(−1)his(s)α
hi(s)+his(s)
s , if is 6= i

If is 6= i : σi(s)zis(t)− s(zis(t))σi(s) = 0 for all t

Let s = s` = (`, `+ 1), is = i

σi(s)zi(`)− zi(`+ 1)σi(s) = −1i,

σi(s)zi(`+ 1)− zi(`)σi(s) = 1i,

σi(s)zi(t)− zi(t)σi(s) = 0, if t /∈ {`, `+ 1}

Let s = en, is = i

σi(s)zi(n) + zi(n)σi(s) = −1i,

σi(s)zi(t)− zi(t)σi(s) = 0, if t 6= n

For s, t ∈ S : σi(s)σis(t) = σi(t)σit(s) whenever st = ts

Let s = s` = (`, `+ 1), t = s`+1

σi(s)σis(t)σist(s)− σi(t)σit(s)σits(t)

=

α
hi(s)
s s(δt(α

his(s)
s ))− αhis(s)t t(δs(α

hi(s)
t )), if ists = i, is 6= i, it 6= i

0 , else.
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Let s = (n− 1, n), t = en

σi(s)σis(t)σist(s)σists(t)− σi(t)σit(s)σits(t)σitst(s)

=



Ptσi(t), if ists = i, is 6= i, it 6= i

Psσi(s), if itst = i, it 6= i, is 6= i

Rtσi(t) +Re, if it = i = ists, is 6= i

0, else.

where
Pt = αhi(s)s sδt(α

hist(s)
s )− t(αhit(s)s )tsδt(α

hitst(s)
s )

Ps = α
hi(t)
t tδs(α

hits(t)
t )− s(αhis(t)t )stδs(α

hists(t)
t )

Rt = t(αhit(s)s )tsδt(α
hitst(s)
s )− αhi(s)s sδt(α

hist(s)
s )

Re = δt(α
hit(s)
s )sδt(α

hitst(s)
s )

Remark. Let (Q, σ) be a symmetric quiver and (Q′, σ′) be another symmetric quiver, such

that Q′ is a subquiver of Q, Q0 = Q′0 and σ|Q′1 = σ′|Q′1 . Then, the explicit description

of the Steinberg algebras shows that Z(Q,σ)
|i| ⊂ Z(Q′,σ′)

|i| is a subalgebra. In particular,

if we set Nil(Q, σ) := (Q′ := (Q0, ∅), σ|Q0), we get a symmetric subquiver and Z :=

Z(Q,σ) ⊂ ZNil(Q,σ) =: ZNil. Since ZNil has a horizontal product, it is natural to look at

the restriction to Z, see below.

The restriction to the Steinberg algebras is the map

µ|i|,|j| : Z|i| ×Z|j| → ZNil|i+j| ⊂ EndC−lin(
⊕

k∈I|i+j|

Ek)

(1i, 1j) 7→ 1i+j

(zi(k), 1j) 7→ zi+j(k)

(1i, zj(`)) 7→ zi+j(n+ `)

(σi((t, t+ 1)), 1j) 7→ σi+j((t, t+ 1))

(1i, σj((r, r + 1))) 7→ σi+j((n+ r, n+ r + 1))

(1i, σj(em)) 7→ σi+j(en+m)

(σi(en), 1j) 7→ σi(en)⊗ 1j /∈ Z|i+j| (!!)

We write τi+j(en) := σi(en) ⊗ 1j , for j the empty word j = ∅ ∈ I, it holds τi(en) =

σi(en). It is not necessarily contained in Z|i+j|. Let f ∈ Ek and recall (i + j)en =

(i1, . . . , in−1, σ(in), j1, . . . , jm)

τi+j(en)(f) :=


en(f)−f
2xi(n) , if (i+ j)en = (i+ j) = k,

(2xi(n))hσ(in),σen(f) if (i+ j) 6= (i+ j)en = k,

0, else.

To de�ne a multiplicative sequence we can assume wlog. m = 1, i.e. j = in+1 ∈ Q0,
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we set now i := (i1, . . . , in, in+1). Then we have to distinguish �ve cases, we will use the

shortage s = (n, n+ 1), t = en+1

αs := (zi(n)− zi(n+ 1)), t(αs) := (zi(n) + zi(n+ 1)), αt := 2zi(n+ 1), s(αt) = 2zi(n)

and we leave out the dependence of i if it is clear which is meant. In each case there exists

αk(in,in+1)
s t(αs)

`(in,in+1)α
m(in,in+1)
t τi(en)

= P (in, in+1) σi(s)σis(t)σist(s) +Q(in, in+1) σi(s)σis(t)

+R(in, in+1) σis(t)σist(s) + S(in, in+1)σi(t) + T (in, in+1)

with k(in, in+1), `(in, in+1) ∈ N0 and

P (in, in+1), Q(in, in+1), R(in, in+1), S(in, in+1), T (in, in+1) ∈ C[zi+j(n), zi+j(n + 1)] =

C[αs, αt] are homogeneous polynomials. We choose k(in, in+1), `(in, in+1),m(in, in+1) ∈ N0

minimal such that such an equation is ful�lled, then the polynomials X(in, in+1), X ∈
{P,Q,R, S, T} are unique and if we see αs, αt as variables, then they only depend on the

two vertices in, in+1. This can be explicitly seen as follows.

(1a) in = σ(in), in = in+1. It holds f 7→ τi(en)(f) = en(f)−f
2xi(n) =: δen(f). It holds

τi(en) = s ◦ δt ◦ s = (αsσi(s) + 1i)σi(t)(αsσi(s) + 1i) ∈ Z|i|
= αst(αs)σi(s)σi(t)σi(s) + αsσi(s)σi(t) + t(αs)σi(t)σi(s) + σi(s) + 1i

(This case is much easier due to our assumption that Q has no loops.)

(1b) in = σ(in) 6= in+1. It holds

τi(en) = s σi(t) s

= α
−hin+1,in
s σi(s) σi(t) α

−hin,in+1
s σis(s)

= α
−hin+1,in
s t(αs)

−hin,in+1σi(s)σi(t)σis(s)

+ α−1
s t(αs)

−hin,in+1

∑
r+u=hin,in+1

(−1)rt(αs)
rαus

(2a) in 6= σ(in), in = in+1. Using en = sts we have

τi(en) = s(αt)
hσ(in),σ(αsσi(s) + 1i) α

−hσ(in),σ

t σi(t) α
−hin,σ
s σit(s)

= t(αs)
−hin,σαsσi(s)σi(t)σit(s) + t(αs)

−hin,σα
−hσ(in),σ

t

· [s(αhσ(in),σ

t )− 2

hσ(in),σ−1∑
k=0

s(αt)
hσ(in),σ−1−kαkt ]σi(t)σit(s)]
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(2b) in 6= σ(in), σ(in) = in+1

τi(en) = α
−hin+1,in
s σi(s)σis(t)(αsσist(s) + 1ist)

= α
−hσ(in),σ
s t(αs)σi(s)σis(t)σist(s) + α

−hσ(in),σ
s σi(s)σis(t)

(2c) in 6= σ(in), in 6= in+1, σ(in) 6= in+1

τi(en) = α
−hin+1,in
s t(αs)

−hin,in+1σi(s)σis(t)σist(s)

Let Z ′|i| be the the subalgebra of EndC−lin(
⊕

i∈I|i| Ei) generated by Z|i| and τi(er), i ∈
I|i|, 1 ≤ r ≤ n, where n is the length of the sequence i (and τi(en) = σi(en)). We can see

this as an iterative extension by the unique solutions τi(er) of equations of the form (∗)i,r

α
`(ir,ir+1)
(r,r+1) er+1(α

k(ir,ir+1)
(r,r+1) )(2zi(r + 1))m(in,in+1)τi(er)

= P (ir, ir+1) σi(s)τis(er+1)σist(s) +Q(ir, ir+1) σi(s)σis(t)

+R(ir, ir+1) σis(t)σist(s) + S(ir, ir+1)σi(t) + T (ir, ir+1)

where you replace αs by α(r,r+1), αt by 2zi(r+1) in the polynomials X(ir, ir+1). The right

hand side is a homogeneous element in the algebra generated by Z|i| and by the previously

discussed map (Z ′|i|)i∈|I| is a multiplicative sequence. We write Z ′ :=
⊕
Z ′|i|.

Proposition 8. Z ′|i| is the C-algebra generated by the symbols

1i, zi(t), σi(s`), τi(er), i ∈ I|i|, t, r ∈ {1, . . . , n}, ` ∈ {1, . . . , n− 1}

subject to the relations

(1) which they full�ll in Z|i| from theorem 4.5.1 (setting σi(en) := τi(en)),

(2) all relations which the σi1,...,ir(er) full�ll in Z|(i1,...ir)| hold after applying −⊗1ir+1,...,in

for the τi(er).

(3) τi(er) commutes with 1i1,...,ir ⊗ x where x is a generator of Z|(ir+1,...,in)| given in

theorem 4.5.1,

(4) the relations (∗)i,r for each i = (i1, . . . , in) ∈ I|i|, r ∈ {1, . . . , n− 1} hold.

proof: Let A|i| be the algebra with generators and relations as in the proposition. There

is a natural surjective graded C-algebra homomorphism φ|i| : A|i| → Z ′|i| mapping elements

with the same names to each other, we claim that this is an isomorphism. Let ∆ :=∏
s∈S,w∈Ww(αs) where S = {(r, r + 1), en, 1 ≤ r ≤ n− 1}, α(r,r+1) =

∑
i∈I|i| zi(r)− zi(r +

1), αen =
∑

i∈I|i| 2zi(n),W = Snn(Z/2Z)n. This is an element of the center of A|i| because

it is W-invariant.

Let A ∈ {A|i|,Z ′|i|}. Since in case (1a) the element τi(er) ∈ Z we will replace these by

the righthand side of the equation and exclude them if we mention elements τi(er). Let ≤
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be the Bruhat order on W and w ∈W, we write A≤w for the x in A such that there exists

N ∈ N0 such that

∆Nx ∈ Z≤w :=
⊕
v≤w
Zv

where Zw consists of all sums of elements of the form 1j p σ(w) 1i, i, j ∈ I|i| with
p =

∑
i pi, pi ∈ C[zi(1), . . . , zi(n)] and σ(w) :=

∑
i σi(w) where σi(w) is a product of

σi(s1)σis1(s2) · · ·σis1···sk−1
(sk) with s` ∈ {((r, r+1)) | 1 ≤ r ≤ n−1}∪{en}. It holds A≤w is

a two-sided ideal. We de�ne Aw to be the C-span of x = p ρi(t1)ρit1(t2) · · · ρit1···tk−1
(tk), ρ ∈

{σ, τ} with p homogeneous monic polynomial (monic for a �xed total monomial odering)

in
⊕

i∈I|i| C[zi(1), . . . , zi(n)] such that there exist n ∈ N0 with y := ∆Nx ∈ Z≤w, yw 6= 0,

we call these spanning elements w-monomials 4. It follows that A≤w =
⊕

v≤w Av =⊕
d∈Z,v≤w Av ∩ Ad as vector spaces because w-monomials are homogeneous. We say two

elements m,m′ ∈ A≤w are w-equivalent if there is an element in a ∈ A<w such that

m = m′ + a.

The relations (∗)i,r are equivalent to relations ∆mτi(er) = Pσi(s)τis(er+1)σiser+1(s)) + R

with s = (r, r + 1), P ∈
⊕

iC[zi(1), . . . , zi(n)], R ∈ A<er with ∆ does not divide P,R.

We say a presentation in the generators for x ∈ A is ∆-reduced (or shortly x is ∆-reduced)

if x is a sum of pρi(t1)ρit1(t2) · · · ρit1···tk−1
(tk) with p ∈

⊕
iC[zi(1), . . . , zi(n)], ρ ∈ {σ, τ}

such that the following is full�lled: If ∆N is a divisor of p and ∆N+1 is not, then for the

every τi(er) in the product ρi(t1) · · · ρit1···tk−1
(tk) it holds ∆Nτi(er) /∈ Z(r) where Z(r) is

the subalgebra of A generated by Z|i| and τi(en), . . . , τi(er+1), i ∈ I|i|. Since every element

has a ∆-reduced presentation we will from now on only consider these.

From every equivalence class of (∆-reduced) w-monomials we �x one representative

ct,w = pρi(t1)ρit1(t2) · · · ρit1···tk−1
(tk), w ∈W.

We claim: Every x ∈ A can be written uniquely as a sum
∑

certain λt,wct,w, λt,w ∈ C.
(In other words, the representatives ct,w of degree d form a C-vector space basis of the

�nite dimensional vector space Aw ∩ Ad.) The generating part is easy to see. We prove

be induction wrt the length on w for every given degree d. If the length in zero, w = e, it

holds A≤e = Ze and A≤e ∩Ad is spanned by monic polynomials, homogeneous of degree d
2

if d is even, zero else. They are linearly independent.

Let w be of a given length and d ∈ Z, let

∑
(t,w)|ct,w∈Ad

λt,wct,w = 0, λt,w ∈ C

We want to prove λt,w = 0 for all (t, w) such that ct,w ∈ Ad. It is enough to show this for any

choice of representatives ct,w of the equivalence classes. If there is a representative ct,w in

an equivalence class ending on an element of the form ρi(t) ∈ {σi(s), is 6= i, τi(er), ier 6= i}
we assume that we chose that one, then we compose the whole equation from the right with

ρit(t), the ct,w ending in ρi(t) will full�ll that ct,wρit(t) is w
′-equivalent to a w′-monomial

with w′ < w 5. By induction hypothesis the coe�cients of those ct,w must be zero.

4It is not necessarily w = t1 · · · tk. For example in case (2b) it holds τi(er)σien((r, r + 1)) is in Aer
5The case where this is not true is (2b) where τi(er)σier (s) , s = (r, r + 1) and τi(er) are in Aer , but
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Now because of the braid relations, we are left summing over w-monomials

ct,w = pρi(t1)ρit1(t2) · · · ρit1···tk−1
(tk) with it` = i, ∀`. If ρi(tk) = σi((r, r + 1)) or τi(er)

we multiply the whole equation by zi(r) (in the second case r = n is allowed) from the

right and use iteratively the straightening rule to write ct,wzi(r) as a sum of ∆-reduced

w′-monomials w′ ≤ w and at least one w′ < w. We proceed applying the straightening

rules to all other ct′,wzi(r) to write them also as a sum of ∆-reduced w′-monomials w′ ≤ w.
Again by induction hypothesis the coe�cients in front of these have to be zero.

Now since we conclude that dim(Z ′|i|)w∩(Z ′|i|)d = dim(A|i|)w∩(A|i|)d, we get that the map

φ|i| is injective. �

Remark. (from Bill Crawley-Boevey) For a Z-graded algebra A with �nite dimensional

components, the category of �nitely generated graded left A-modules with degree zero

graded maps is abelian and has �nite dimensional Hom-spaces. Therefore it is a Krull-

Schmidt category.

Then, the full subcategory of �nitely generated projective graded left A-modules is also

Krull-Schmidt and every object is a direct summand of a �nite direct sum of shifts of A,

so is a direct sum of shifts of direct summands of A. Now, direct summands of A are given

by idempotents in Hom(A,A) = A0, so are induced up from projective A0-modules.

Remark. Let B′|i| be the category of projective graded modules over Z ′|i|. The functor

− ⊗Z|i| Z ′|i| : B|i| → B′|i| is not always essentially surjective, consider for example: Let

i = (i1, . . . , in) with σ(ir) = ir, it follows that τi(er) = δer and therefore e := 1ier1i is an

idempotent element in Z ′|i| which, if for example ir 6= ir+1, hir,ir+1 ≥ 1, is not contained in

Z|i|.
Also the induced map K0(B|i|) → K0(B′|i|) is in general not injective. For example take

i = (i1, . . . , in) with ir 6= σ(ir), ir 6= ir+1 and hir,ir+1 ≥ 1, hir,σ = 0 then τi(er) = 1ier1ier /∈
Z|i| and therefore we get

P ′i := Z ′|i|1i
·τi(er)−−−−→ Z ′|i|1ier = P ′ier

an isomorphism with inverse given by ·τier(er). But Pi is not isomorphic to Pier in B|i|.

4.5.2 Lusztig's Perverse sheaves/Projective modules corresponding to

the vertices of the symmetric quiver.

Let us consider the following shifts of perverse sheaves.

Lk, k ∈ Q0 ⊂ I.

They correspond to the projective graded modules Pk = Z|k|1k, k ∈ Q0. Furthermore we

set P ′k := Pk ⊗Z ′|k| = Pk because Z|k| = Z ′|k|. Let us �rst describe these sheaves and their

endomorphism algebras a bit more in detail.

since iers = ier it is not a counterexample
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(1) k = σ(k), |k| = 2k, ||k|| = 2.

We have the Springer theory data (G|k|, Bk, V|k|, Fk) and generalized Springer theory

data (G||k||,B||k||, ,U , H, V|k|) de�ned as follows:

G|k| = Sp2 = Sl2 = G||k|| (i.e. H = {e}), the set I|k| = {1}.

Bk = B||k|| ⊂ Sl2 is the upper triangular matrices, let U := {

(
0 x

0 0

)
∈ M2×2(C) |

x ∈ C},
V|k| = sl

⊕hk,σ
2 = {A ∈M2×2 | Tr(A) = 0}⊕hk,σ ,

where hk,σ is the number of σ-invariant loops at k. Fk = U⊕hk,σ and πk : Ek :=

Sl2 ×Bk U⊕hk,σ → sl
⊕hk,σ
2 = Vk.

We then know, by the previous section that

Z|k| := HGk
∗ (Ek ×Vk Ek) ⊂ EndC[x]Z/2Z(C[x]),

where 1 6= t ∈ Z/2Z maps x 7→ −x. It is the subalgebra generated by the elements

x·, σk(t) with σk(t)(f(x)) := (2x)hk,σ f(x)−f(−x)
2x . By Chriss and Ginzburg's result (cp

[CG97], chapter 8) we know

Z|k| = Ext∗
DbGk

(Vk)
((πk)∗C, (πk)∗C) =

⊕
n∈Z

EndP(Lk, Lk[n]).

But since we also know, that Z|k| is a free (left) C[x]-module of rank 2, it follows it is

a free C[x]Z/2Z-module of rank 4. Since we know by the decomposition theorem that

Lk is a direct sum of shifts of perverse sheaves it follows that it can contain at most

two summands. For hk,σ ≥ 1, πk is semi-small and it is small if and only if hk,σ ≥ 2:

In general for h := hk,σ ≥ 1 let N (h) = Sl2 · U⊕h = {(λ1n, . . . , λhn) | λi ∈ C, n ∈
M2(C), n2 = 0}, this is a h+1-dimensional variety with 0 is the only singularity. The

map πk : Sl2×B2 U⊕h → N (h) is easy to be seen an isomorphism over N (h)\{0} and
π−1
k (0) ∼= P1, take as strati�cation S1 := N (h) \ {0}, S0 = {0} and let d1 = 0, d0 = 1

be the complex dimensions of the �bres over S1, S0 respectively. Semi-smallness is

the inequality 2di ≤ dimN (h)− dimSi, i = 0, 1 which is always full�lled. Smallness

is the extra condition that there exists a unique stratum where the inequality is an

equality, it is ful�lled if and only if h ≥ 2.

Semi-smallness implies that the shifts in the decomposition theorem are zero, i.e. Lk

is a semi-simple perverse sheaf. Smallness (i.e. hk,σ ≥ 2) implies that

Lk = IC(N (h),CN (h)\{0})

is a simple perverse sheaf (see Appendix, section ??).

For hk,σ ∈ {0, 1} we �nd the idempotent element e := 1√
2
(2xδt) in the endomorphism

ring, which implies that Lk is a direct sum of two simple perverse sheaves (namely

for h = 1 we write N := N (1) it holds Lk == IC(N (h),CN (h)\{0})
⊕ IC({0},C) where

IC({0},C) = i∗C{0} with i : {0} → N the inclusion).
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For hk,σ = 0

Lk = C{0}[−2]⊕ C{0}

and therefore

P ′k = Pk =
(
Z|k|e

)
[−2]⊕Z|k|e

and Z|k|e is up to shift and isomorphism the only indecomposable object in B|k| =

B′|k|. (In the monoidal categori�cation we will give the generating endomorphisms

di�erent names x· ↔ zk, σk(t)↔ tk.)

(2) k 6= σ(k), |k| = k + σ(k), ||k|| = 2.

G|k| = T ⊂ Sl2 =: G||k|| and I|k| ↔ {1, t =

[
0 1

−1 0

]
}.

Bk = T = Bσ(k)

V|k| = U⊕h with U = {

(
0 x

0 0

)
∈ M2×2(C) | x ∈ C}, h = hσ(k),σ is the number of

σ-invariant arrows σ(k)→ k in Q1.

Fk = V|k| = U⊕h, Fσ(k) = Fkt = V|k| ∩ t(U⊕h) = {0}.
It follows πk = idU⊕h , πσ(k) = i : {0} → U⊕h is the inclusion. Then

Lk = CU⊕h [h] = IC(U⊕h,C), Lσ(k) = i∗C{0} = IC({0},C)

are simple perverse sheaves. We know

Z|k| = HT
∗ (Fk t {0} t {0} t {0}) ↪→EndH∗T (pt)(H

∗
T (pt)⊕H∗T (pt))

= EndC[x](C[xk]⊕ C[xσ(k)])

is the subalgebra generated by 1a, a ∈ {k, σ(k)} (=projections on the a-summands),

xa·, a ∈ {k, σ(k)} (multiplication with xa on the a-summand), σa(t), a ∈ {k, σ(k)}
this is given by C[xσ(a)]→ C[xa], f(xσ(a)) 7→ (2xa)

hf(−xa) and is zero on the other

direct summand.

It holds
⊕

n∈Z HomP(Lk ⊕ Lσ(k), Lk ⊕ Lσ(k)[n]) = Z|k|. (In the monoidal categori�-

catoin we will see σσ(a)(t)↔ ta, a ∈ {k, σ(k)}.)
We conclude from the decomposition theorem

P ′k = Pk = Z|k|1k, P ′σ(k) = Pσ(k) = Z|k|1σ(k)

are up to isomorphism and shift the only indecomposable objects in B|k| = B′|k|.

We give one example of a monoidal category based on signed symmetric groups which

is an important inspiration for later.

Example. Let C be the strict monoidal C-linear category generated by shifts of one object

E = E(0), such that HomC(E,E(n)) = C[τ ]/(τ2 − 1) if n = 0 and zero else, and by an
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arrow s : E2 → E2 of degree 0 subject to relations

s2 = E2, s ◦ (τE) = (Eτ) ◦ s, (Es) ◦ (sE) ◦ (Es) = (sE) ◦ (Es) ◦ (sE).

Then, the objects of this category are En(r), n ∈ N0, r ∈ Z. The homomorphisms

are HomC(E
n, Em(r)) = 0 for m 6= n and

⊕
r∈Z HomC(E

n, En(r)) ∼= C[Sn o (Z/2Z)n]

where the right hand side is a graded algebra concentrated in degree 0. Recall that

Sn n (Z/2Z)n =< s1, . . . , sn−1, en > subject to relations

s2
i = 1, 0 ≤ i ≤ n− 1 ensn−1ensn−1 = sn−1ensn−1en,

sisi+1si = si+1sisi+1, 1 ≤ i ≤ n− 2, sksj = sjsk, |k − j| > 1,

the isomorphism is given by en 7→ En−1τ, si 7→ Ei−1sEn−i−1, 1 ≤ i ≤ n− 1.

4.5.3 Monoidal categori�cation

Following Rouquier's construction in [Rou11] we de�ne the following. Let C be the monoidal

category generated by direct sums of shifts of objects Ea, a ∈ Q0, we write Ea(n) for the

shifted object by n ∈ Z, and arrows (and their shifts)

za : Ea → Ea of degree 2

ta : Ea → Eσ(a) of degree na :=

−2 , if a = σ(a)

2hσ(a),σ , if a 6= σ(a)

σa,b : EaEb → EbEa of degree ma,b =

−2 , if a = b,

2hb,a , if a 6= b

for a, b ∈ Q0, subject to the following relations (where we write Ea also for the endomor-

phism idEa and we always set EaEb := Ea ⊗ Eb)

(1) (s2 =?)

σba ◦ σab =

(−1)ha,b(Ebza − zbEa)ha,b+hb,a , if a 6= b

0 , if a = b

tσ(a) ◦ ta =

(−1)ha,σ(2za)
ha,σ+hσ(a),σ , if a 6= σ(a)

0 , if a = σ(a)
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(2) (straightening rule)

σab ◦ zaEb − Ebza ◦ σab =

0 , if a 6= b,

EaEa , if a = b,

σab ◦ Eazb − zbEa ◦ σab =

0 , if a 6= b,

−EaEa , if a = b,

ta ◦ za − zσ(a) ◦ ta =

0 , if a 6= σ(a),

−Ea , if a = σ(a),

(3) (braid relations)

* Type A2: For a, b, c ∈ Q0 we have the following inclusion of C-algebras. Let

C[αs, αt] be the set of polynomials in αs, αt.

Ja,b,c : C[αs, αt]→ EndB(EaEbEc)

αs 7→ zaEbEc − EazbEc

αt 7→ EazbEc − EaEbzc,

we set t(αhs ) := (αs + αt)
h =: s(αht ) ∈ C[αs, αt], h ∈ N0. Then, the relation is

σabEc ◦ Eaσcb ◦ σcaEb − Ebσca ◦ σcbEa ◦ Ecσab

=

Jbab(α
ha,b
s sδt(α

hb,a
s )− αhb,at tδs(α

ha,b
t )) , if b = c, a 6= b,

0 , else.

* Type B2 = C2 for a, b ∈ Q0 we consider the following inclusion of C-algebras

Ja,b : C[αs, αt]→ EndB(EaEb)

αs 7→ zaEb − Eazb

αt 7→ 2Eazb,

s(αht ) := (2αs+αt)
h, s(αhs ) := (−1)hαhs , t(α

h
s ) := (αs+αt)

h, t(αht ) := (−1)hαht ∈
C[αs, αt],

h ∈ N0. the relations are

σba ◦ Ebtσ(a) ◦ σσ(a)b ◦ Eσ(a)tσ(b) − Eatσ(b) ◦ σσ(b)a ◦ Eσ(b)tσ(a) ◦ σσ(a)σ(b)

=



Ja,b(Pt) ◦ Eatσ(b), if a = σ(a), a 6= b, b 6= σ(b)

Ja,σ(a)(Ps) ◦ σσ(a),a, if a = σ(b), a 6= b

Ja,b(Rt) ◦ Eatb + Ja,b(Re), if a = σ(a), b = σ(b), a 6= b

0, otherwise,
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where
Pt = α

hb,a
s sδt(α

ha,b
s )− t(αha,bs )tsδt(α

hb,a
s )

Ps = α
ha,σ
t tδs(α

hσ(a),σ
t )− s(αhσ(a),σt )stδs(α

ha,σ
t )

Rt = t(α
hb,a
s )tsδt(α

ha,b
s )− αhb,as sδt(α

ha,b
s )

Re = δt(α
hb,a
s )sδt(α

ha,b
s )

* (The extra relations for Z ′) Let a, b ∈ Q0.

(1a) a = σ(a) = b

taEa = Ja,a(αst(αs)) ◦ σaa ◦ Eata ◦ σaa + Ja,a(αs) ◦ σaa ◦ Eata

+ Ja,a(t(αs)) ◦ Eata ◦ σaa + σaa + EaEa

(1b) a = σ(a), a 6= b

Ja,b(α
hb,a
s t(αs)

ha,b) ◦ taEb = σba ◦ Ebta ◦ σab

+ Ja,b(α
hb,a−1
s

∑
r+u=ha,b

(−1)rt(αs)
rαus )

for hb,a ≥ 1, if hb,a = 0 it is the relation

Ja,b(αst(αs)
ha,b) ◦ taEb = Ja,b(αs) ◦ σba ◦ Ebta ◦ σab

+ Ja,b(
∑

r+u=ha,b

(−1)rt(αs)
rαus )

(2a) a 6= σ(a), a = b

Ja,a(α
hσ(a),σ
t t(αs)

ha,σ) ◦ tσ(a)Ea = Ja,a(αs) ◦ σaa ◦ Eatσ(a) ◦ σσ(a),a

+ Ja,a(s(αt)
hσ(a),σ − 2

hσ(a),σ−1∑
k=1

s(αt)
hσ(a),σ−1−kαkt ) ◦ Eatσ(a) ◦ σσ(a)a

(2b) a 6= σ(a), σ(a) = b

Ja,σ(a)(α
hσ(a),σ
s ) ◦ tσ(a)Eσ(a)

= Ja,σ(a)(t(αs)) ◦ σσ(a),a ◦ Eσ(a)tσ(a) ◦ σσ(a),σ(a) + σσ(a),a ◦ Eσ(a)tσ(a)

(2c) a 6= σ(a), a 6= b, b 6= σ(a)

Ja,b(α
hb,a
s t(αs)

ha,b) ◦ tσ(a)Eb = σba ◦ Ebtσ(a) ◦ σσ(a),b

for i = (i1, . . . , in) ∈ I we set Ei := Ei1Ei2 · · ·Ein .

Lemma 37. The following maps de�ne an isomorphism of multiplicative sequences of
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algebras (i.e. they are compatible with the tensor product).

Φ: Z ′|i| →
⊕
i,j∈I|i|

HomC(Ei, Ej)

1i 7→ idEi

zi(t) 7→ Ei1Ei2 · · ·Eit−1zitEit+1 · · ·Ein

σi(s) 7→

Ei1 · · ·Ei`−1
σi`+1,i`Ei`+2

· · ·Ein , , if s = (`, `+ 1) ∈ Sn

Ei1 · · ·Ein−1tσ(in), , if s = en

τi(er) 7→ Ei1 · · ·Eir−1tσ(ir)Eir+1 · · ·Ein

proof: We check that the map is well-de�ned and that the obvious inverse map is also

well-de�ned. �

Corollary 4.5.1.1. There is an equivalence of monoidal categories

B′I → C

Pi 7→ Ei

which is on homomorphisms given the map Z|i| ⊂ Z ′|i| →
⊕

i,j∈I|i| HomB(Ei, Ej) from the

previous lemma.

proof: see previous lemma. �

Example. Assume for simplicity ha,b + hb,a ≤ 1, ha,σ + hσ(a),σ ≤ 1 for all a, b ∈ Q. Let us
describe the Z ′|i| in terms of Khovanov and Lauda's diagrams (in [KL09]). In the diagrams

we write a∗ instead of σ(a), a ∈ Q0. If the diagram has as bottom sequence i and as top

sequence j, then it corresponds to an element in End(
⊕

i Ei) mapping Ei to Ej and zero on

the other summands.

The generators correspond to

i1 ik−1 ik ik+1 in

i1 ik−1 ik ik+1 in

· · · · · ·
←→ 1i

i1 ik−1 ik ik+1 in

i1 ik−1 ik ik+1 in

•· · · · · ·
←→ zi(k)

i1 ik−1ik+1 ik in

i1 ik−1 ik ik+1 in
������� ///////

· · · · · ·
←→ σi((k, k + 1))

i1 ik−1 i
∗
k ik+1 in

i1 ik−1 ik ik+1 in

?· · · · · ·
←→ τi(ek)

subject to the following relations.
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The relations implied by s2 = 1.

a b

=



a b a b

− ••
, if a 6= b, ha,b = 1

a b a b

− ••
, if a 6= b, hb,a = 1

a b
, if a 6= b,

hb,a+ha,b=0

0 , if a = b

a

?

?

=



a

•−2
, if a 6= σ(a), ha,σ = 1

a

•2
, if a 6= σ(a), hσ(a),σ = 1

a , if a 6= σ(a),

ha,σ+hσ(a),σ=0

0 , if a = σ(a)

Straightening Rules.

a b

���������

?????????• −
a b

���������

?????????

•
=


0 , if a 6= b

a a , if a = b

a b

���������

?????????• −
a b

���������

?????????

•
=


0 , if a 6= b

a a

−
, if a = b

a

•

?

−

a

?

•
=


0 , if a 6= σ(a)

a , if a = σ(a)
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Type A2-braid relations.

c a b

���������

?????????

−

c a b

?????????

���������

=



b a b
, if b = c, hb,a = 1

b a b

−
, if b = c, ha,b = 1

0 , otherwise.

Type B2 braid relations.

a∗ b∗

F

F

−

a∗ b∗

F

F

=



a b∗
− ?

, if a = σ(a), b 6= σ(b), hb,a = 1

a b∗
?

, if a = σ(a), b 6= σ(b), ha,b = 1

a∗ a

�����

:::::2
, if a = σ(b), hσ(a),σ = 1

a∗ a

�����

:::::−2
, if a = σ(b), ha,σ = 1

0 , otherwise

The extra relations for Z ′

1a)

a a

? =

a a

F

••

−

a a

F

••

+

a a

���������

?????????

•
? −

a a

���������

?????????

•
? +

a a

���������

?????????

• ?
+

a a

���������

?????????

•
?

+

a a

���������

????????? +

a a
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1b)

a b

?
•

−
a b

? • =

a b

F +

a b

, if a = σ(a), hb,a = 1

a b

?
•• −

a b

? •
•

=

a b

F

•

−

a b

F

•

− 2

a b

• , if a = σ(a), ha,b = 1

a b

?
•

−
a b

? • =

a b

F

•

−

a b

F

•

, if a = σ(a), ha,b = hb,a = 0

2a)

2

a∗ a

•? =

a∗ a

F

•

−

a∗ a

F

•

+ 2

a∗ a

���������

?????????

• ?
, if hσ(a),σ = 1

a∗ a

?
•

+

a∗ a

? • =

a∗ a

F

•

−

a∗ a

F

•

, if ha,σ = 1

a∗ a

? • =

a∗ a

F

•

−

a∗ a

F

•
, if a 6= σ(a),

ha,σ = hσ(a),σ = 0
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2b)

a∗ a∗

•
? −

a∗ a∗

•? =

a∗ a∗

F

•

+

a∗ a∗

F

•

+

a∗ a∗

���������

?????????? , if hσ(a),σ = 1

a∗ a∗

? =

a∗ a∗

F

•

+

a∗ a∗

F

•

+

a∗ a∗

���������

?????????? , if a 6= σ(a), hσ(a),σ = 0

2c)

a∗ b

•
? −

a∗ b

•? =

a∗ b

F , if a 6= σ(a), b 6= σ(a), hb,a = 1

a∗ b

•
? +

a∗ b

•? =

a∗ b

F , if a 6= σ(a), b 6= σ(a), ha,b = 1

a∗ b

? =

a∗ b

F , if a 6= σ(a), a 6= b, b 6= σ(a), ha,b = hb,a = 0

Originally my interest was to relate the Grothendieck group of this monoidal category

to Hall algebras for symmetric quivers representations.

4.6 A discussion on the search for Hall algebras for symmet-

ric quiver representations

This has been a discussion with A. Hubery and W. Crawley-Boevey. So far, there is no

de�nition of this Hall algebra. These are some partial answers/ algebras (and modules)

which should be related to it.

(1) The Hall module. Instead of a Hall algebra we just �nd a module structure over the

Hall algebra associated to Q̃ := (Qσ0 tQ′0, Qσ1 tQ′1), this de�nition is for example in

[You12].

The geometric construction by Springer theory is the same as we discussed before
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we extended to Z ′. The problem was to �nd an image for (σi(en), 1j), just leave out

σi(en) as generator for the �rst factor and you get a map ZQ̃×Z(Q,σ) → Z(Q,σ). On

the Grothendieck ring of projective graded modules/ Lusztig's perverse sheaves this

gives the module structure from before. The geometric construction of this operation

is due to Varagnolo, Vasserot in [VV11].

(2) Our construction of the Z[q, q−1]-algebra K0(B′I). We want to see it as an analogue

of the geometric construction of the composition algebra.

It is not understood yet if there is any justi�cation for it being in this list.

(3) Restrict the choices of symmetric quivers (for example without black vertices) and

�nd an exact category structure on symmetric quiver representations.

As a mini-example take (Q, σ) = (a→ σ(a)) and consider the category with objects

are symmetric matrices representing linear maps V → V ∗ of �nite dimensional vector

spaces V over a �xed �nite �eld and homomorphisms Hom(A,B) are commutative

diagrams

V
C //

A
��

W

B
��

V ∗ W ∗
C∗
oo

(for the representing matrices this says A = CtBC). Then it is easy to write down

short exact sequences (by just requiring the restriction V → W → U is a short

exact sequence of vector spaces). If this is an exact structure, then there exists an

associated Hall algebra.

(4) The generic extension monoid/algebra and other geometric constructions (for exam-

ple with constructible function). The generic extension monoid is de�ned by Reineke

for quiver representations see [Rei02], its relationship to Hall algebras is investigated

in [Wol09].

We explain this for N0-graded classical Springer theory. Let i, j ∈ N0 and Fi := Ui is
the Lie algebra of the unipotent radical of the Borel subgroup. Recall that we had

�xed Ti+j-equivariant complements Xi,j of Fi × Fj in Fi+j . In fact, Xi,j is even a

Gi ×Gj-subrepresentation of Lie(Gi+j). The maps

Fi × Fj Fi × Fj ×Xi,j //oo Fi+j

induce a diagram

(Gi ×Gj) · (Fi × Fj ×Xi,j)

S×Q

ttiiiiiiiiiiiiiiii
M

))SSSSSSSSSSSSSSS

GiFi ×GjFj Gi+jF

where S = pr1,Q = pr2 are locally free with �bre isomorphic to Xi,j and M is a

Gi ×Gj-equivariant closed immersion.
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proof: Set X := Xi,j . As m : Fi × Fj ×X → Fi+j is an isomorphism, consider

(Gi ×Gj)(Fi × Fj ×X)→ I(Gi ×Gj)F,

(gi, gj), (fi, fj , x) 7→ I(gi, gj)m(fi, fj , x)

where I : Gi × Gj → Gi+j is the structure map from the No-graded group G. The

map in the display is a closed immersion, because Fi×Fj ×X → Fi+j is I(Pi×Pj)-
equivariant closed immersion and I(Pi × Pj) is a parabolic subgroup of I(Gi ×Gj).
We know that I(Gi × Gj)Fi+j is a closed subvariety of Gi+jFi+j , because we have

the commutative diagram

(Gi ×Gj)×(Pi×Pj) Fi+j
J //

**TTTTTTTTTTTTTTTT
Gi+j ×Pi+j Fi+j

uullllllllllllll

Vi+j = Lie(Gi+j)

where the maps to Vi+j are collapsings of homogeneous bundles.

Since the images of the collapsing maps are both closed subvarieties of Vi+j and by the

commutativity we get I(Gi×Gj)Fi+j is a closed subvariety of Gi+jFi+j . Composing

the �rst map with this closed immersion we get a closed immersion (Gi ×Gj)(Fi ×
Fj ×X)→ Gi+jFi+j . �

Then, one can de�ne a monoid structure on the set ofGi-orbit closures onGiFi, i ∈ N0

as follows If O ⊂ GiFi is a Gi-orbit, O′ ⊂ GjFj is a Gj-orbit then de�ne

O ∗ O′ := Gi+jM(S ×Q)−1(O ×O′)

To see that the right hand side is an orbit closure, notice: It is irreducible because

of the properties, it is closed and Gi+j-equivariant by de�nition.

The associativity follows from the properties the complements X, we do not discuss

this further.

This de�nes the composition monoid MG, the composition algebra is the associated

algebra KMG with coe�cients in some commutative ring K.
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This is the middle of the phd

Here starts a second part of the phd. In pages it is not the middle but I spend my �rst

1,5 years with these topics. Essentially everything which comes from here on is concerned

with quiver graded Springer maps and in particular their �bres. At that time I had not

yet heard of KLR algebras.
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Chapter 5

Constructing collapsings of

homogeneous bundles over quiver loci

Summary. We look at orbit closures, closures of Segre classes and decomposition classes

(de�ned by [BD01]) in various situations. We construct Springer maps (i.e. collapsings of

homogeneous bundles) having these as their images and which are resolutions of singulari-

ties (or generically Galois coverings) and revisit the known results on this. First we explain

a method how to get the equations for the image of a Springer map (which is in practice

too une�cient). We then state the orbit lemma which deals with Springer maps which are

resolutions of singularities of an orbit closure. The images of quiver-graded Springer maps

for Dynkin and tame quivers are known to be the elements in the composition monoid

which are described by results of Wolf and Deng, Du, here you �nd the quiver-graded

Springer maps. (Apart from some remarks on decomposition classes, they are all known,

cp. citation)

H
HHH

HHHH
C = GF

Q
Dynkin oriented

cycle
acyclic,
tame

separated orbit 5.2.3 and [Rei03] 5.2.4 and [DD05] 5.2.5

decomposition classes ∅ (open) 5.2.5

γ = (M, ((1), . . . , (1))),

M separated

The main new result is an analogue of the classical Springer map for closures of arbitrary

homogeneous decomposition classes of the Kronecker quiver. We also review the classical

Springer map forGln, i.e. the Jordan quiver case.

Q Jordan Kronecker

regular homogeneous orbit Lemma 49 Lemma 52

homogeneous decomposition class Lemma 51 Lemma 53

We would like to understand the situation for arbitrary closures of decomposition classes

but so far we could not �nd collapsing constructions.
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In this section we will consider algebraic varieties over an algebraically closed �eld K and

identify the variety as a scheme with its K-valued points.

5.0.1 Explicit equations for the image of the Springer map

Let G be a reductive group with a Borel subgroup B and F a B-subrepresentation of a

G-representation V . Let B = UT be the Levi decomposition with T the maximal torus

and U the unipotent subgroup and let w0 be a representative in NG(T ) ⊂ G for the longest

element in the Weyl group NG(T )/T . We have G = Uw0B because the big Bruhat cell

Bw0B = Uw0B is dense in G. Then, also w0Uw0B = w0UB is dense in G, it follows

GF = GF = w0UF.

But as w
0
U and F are a�ne space, let us say of dimension r and f respectively, one can

use elimination theory to calculate the equations for GF . More precisely, consider the

restriction of the multiplictaion map, let V = Kn it holds

ρ : w0U × F → V

x = (u, v) 7→ ρ((u, v)) =: (f1(x), . . . , fn(x))

Now, consider inside K[A1, . . . , Ar, X1, . . . , Xf , Z1, . . . , Zn] the ideal

I := (f1 − Z1, . . . , fn − Zn).

To �nd generators for the ideal J = I∩K[Z1, . . . , Zn] one can use elimination theory: Find

a Gröbner basis C for I with respect to a monomial order such that Ai, Xi are bigger than

Zj for all i, j. Let C ∩K[Z1, . . . , Zn] = {q1, . . . , qm}, then J = (q1, . . . , qm), in other words

GF = {x ∈ An | q1(x) = · · · = qm(x) = 0}

see [CLO92], Chap.3, 3, Thm 2. Unfortunately, this algorithm is very une�ective. Popov

gives more general algorithms to calculate the equations for GF with G a linear algebraic

group with a G-representation V and F = a + L ⊂ V an a�ne linear subspace, i.e. a

translate of a linear subvector space, cp. [Pop09].

Example. Let 1⇔ 2 be the Kronecker quiver, let d := (2, 2), we have the G = Gl2×Gl2-

representation M2×2 × M2×2. Let us take B ⊂ G be the product of invertible lower

triangular matrices, take F := {

(
0 0

x 0

)
,

(
0 0

y 0

)
| x, y ∈ K}. We look at the following

ideal I in K[a, b, x, y, z11, z12, z21, z22, s11, s12, s21, s22] generated by the coe�cients of the

matrices
( 1 a

0 1 ) ( 0 0
x 0 )

(
1 b
0 1

)
− ( z11 z12z21 z22 ) ,

( 1 a
0 1 )

(
0 0
y 0

) (
1 b
0 1

)
− ( s11 s12s21 s22 )

Now we have to eliminate x, y, a, b, i.e. calculate J = I∩K[z11, z12, z21, z22, s11, s12, s21, s22].
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First eliminate x, y by substituting x = z21, y = s21, then assume z21 6= 0, s21 6= 0 and

substitute a = z11
z21

= s11
s21

and b = z22
z21

= s22
s21

to obtain

J = (z11z22 − z12z21, s11s22 − s12s21, z11s21 − s11z21, z22s21 − s22z21)

5.1 The orbit lemma

As always we assume that all schemes are of �nite type over an algebraically closed �eld. If

we talk about orbits Gv, we always assume that the multiplication map G→ Gv, g 7→ gv

is separated.

De�nition 15. We call a scheme morphism π : T → S a resolution of singularities of

S if T is smooth, π is projective, dominant and there is U ⊂ S open and dense such that

the restriction π−1(U)→ U is an isomorphism.

This lemma is a generalization of [Wol09], thm. 5.32.

Lemma 38. Let G be a connected algebraic group, P ⊂ G a closed subgroup, V a G-variety

with a smooth P -subvariety F . Assume GF ⊂ V has a dense G-orbit O. Then, the �bres

of π : G ×P F → GF, (g, f) 7→ gf over O are smooth, pairwise isomorphic, irreducible of

dimension dimG×P F − dimO.

Proof: There is an open subset U ⊂ GF such that U ⊂ O, let U ′ =
⋃
g∈G gU be an open

G-invariant subset contained in O, so O = U ′ is open in GF . As G ×P F is smooth and

irreducible, it follows, π−1(O) is open, irreducible of dimension dimG ×P F and smooth.

Then for v ∈ O the �bre π−1(v) is smooth, irreducible of dimension dimG×P F − dimO
because π−1(O) ∼= G×Stab(v) π−1(v). �

Lemma 39. (Orbit lemma) Let G be a connected reductive group, P ⊂ G a parabolic

subgroup, V a G-variety with a closed irreducible smooth P -subvariety F . Fix v ∈ V and

denote by O ⊂ V its G-orbit. The following are equivalent

(1) The collapsing map π : G×P F → GF, (g, f) 7→ gf is a resolution of singularities

for O (i.e. G×P F irreducible, smooth, GF = O, π is projective and an isomorphism

over O).

(2) π−1(v) 6= ∅ and dimG×P F = dimO.

Proof: Clearly (1) implies (2). So, assume (2) holds. We already now that π is projective

and G ×P F smooth and irreducible. By assumption it holds O ⊂ GF . This implies

dimO ≤ dimGF ≤ dimG×P F and by assumption all are equalities. It follows GF = O
and dimGF = dimG ×P F . By the previous lemma we know that the �bres over the

open O ⊂ GF are smooth, irreducible and zero-dimensional again. So, the morphism is

generically etale, i.e. it induces a �nite separable �eld extension on function �elds. But as

the �bres are connected over an open set, the �eld extension has to have degree zero and

π is birational. �
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5.2 Quiver-graded Springer maps

The images of complete quiver-graded Springer maps carry a monoid structure, we call

this the generic composition monoid, in the following we review the known results on it.

A short reminder on quiver-graded Springer maps. Let Q = (Q0, Q1) be a �nite

quiver and d = (0 = d0, d1, . . . , dν =: d) be a sequence of dk ∈ NQ0
0 , 0 ≤ k ≤ ν. We

associate a 4-tuple (G,P, V, F ) as follows.

* G = Gld :=
∏
i∈Q0

Gldi and let P = P (d) :=
∏
i∈Q0

P (d•i ) where P (d•i ) ⊂ Gldi is a

standard parabolic stabilizing a �ag U•i of dim d•i = (0, d1
i , . . . , d

ν
i = di), i ∈ Q0.

* V = RQ(d) :=
∏

i→j∈Q1
Mat dj×di

with G operates by conjugation and F = {f =

(fα)α : i→j ∈ RQ(d) | fα(Uk
i ) ⊂ Uk

j , 1 ≤ k ≤ ν} is a P -subrepresentation.

The collapsing map of the associated �bre bundle π : RF(d) := G×P F → V, (g, f) 7→ gf

is called a quiver-graded Springer map.

Also, we use the following conventions: We de�ne the Euler form for d, e ∈ ZQ0 as

〈d, e〉 :=
∑
i∈Q0

diei −
∑

(i→j)∈Q1

diej ∈ Z.

For M,N two �nite dimensional KQ-modules we write

[M,N ] := dimK HomKQ(M,N), [M,N ]1 := dimK Ext1
KQ(M,N).

5.2.1 The generic composition monoid

We recall Reineke's de�nition of the composition monoid.

De�nition 16. Let Q be a �nite quiver, let d, e ∈ NQ0
0 and X ⊂ RQ(d) a Gld-equivariant

subset and Y ⊂ RQ(e) a Gle-invariant subset, we de�ne

X ∗ Y := {M ∈ RQ(d + e) | ∃ ses 0→ y→ M→ x→ 0, with y ∈ Y, x ∈ X}

If X,Y are additionally closed in RQ(d), RQ(e) respectively and irreducible, then X ∗Y is

closed in RQ(d+e), irreducible and Gld+e-equivariant. This de�nes an associative product

on

M =M(Q) :=
⋃

d∈NQ0
0

{X ⊂ RQ(d) | X Gld − equivariant, closed, irreducible }.

We write d for the element RQ(d) ∈ M(Q), the unit is given by 1 := 0 ∈ NQ0
0 . For a

KQ-module M we write [M ] := OM ∈ M(Q). For i ∈ Q0 let Ei be the simple module

supported at i and all maps are zero, for these modules we leave out the brackets, we write

Ei := OEi ∈M(Q), sometimes we write ei := dimEi for the same element.
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One can now look at the submonoid CM(Q) generated by the simple modules without

self-extensions.

Theorem 5.2.1. ([Rei02]) Let charK = 0. Let X ⊂ RQ(d),Y ⊂ RQ(e) be closed irre-

ducible subvarieties, X Gld-equivariant, Y Gle-equivariant. Then

codimX + codimY − 〈e, d〉KQ ≤ codimX ∗ Y ≤ codimX + codimY + [Y,X]1

where [Y,X]1 := min{[y, x]1 | x ∈ X, y ∈ Y }. If [X,Y ]1 = 0, or X = RQ(d) and

Y = RQ(e), the second inequality is equality.

If [Y,X] := min{[y, x] | y ∈ Y, x ∈ X} = 0, then the �rst inequality is equality.

By de�nition quiver loci are precisely the products of elements of the form d ∈ M(Q)

with d ∈ NQ0
0 , more precisely for a dimension �ltration d = (d0, . . . , dν) it holds

GldFd = (dν − dν−1) ∗ · · · ∗ (d2 − d1) ∗ d1.

For acyclic quivers it holds d ∈ CM(Q) for all d ∈ NQ0
0 . More precisely, let us call a repre-

sentationM nilpotent, if there is an N ≥ 2 such that for all sequences (α1, · · · , αN ) ∈ QN1
with start point of αi is the end point of αi−1, 2 ≤ i ≤ N , it holdsMαNMαN−1 · · ·Mα1 = 0.

Now, the elements of the composition monoid for Q an oriented cycle, of Dynkin or

extended Dynkin type are described by the next result (of Stefan Wolf). We need some

knowledge on the AR-quiver of an extended Dynkin quiver Q.

For an extended Dynkin quiver Q, there exist a unique δ ∈ NQ0
0 which is minimal such

that 〈δ, δ〉 = 0. For a KQ-module M we call the value δ(M) := 〈δ, dimM〉 the defect of
M.

A (�nite-dimensional) indecomposable KQ-module M is either preprojective if δ(M) <

0, preinjective if δ(M) > 0 or regular if δ(M) = 0. So each moduleM can be written as

M = MP ⊕MR ⊕MI . The full subcategory of regular modules (i.e. objects are modules

M with MP = 0 = MI) is an abelian category that breaks into a direct sum R(α) with

α ∈ P1(K). We say that R(α) is homogeneous if the category has only one simple, else

we say it is inhomogeneous. There are at most three points α ∈ P1(K) such that R(α)

is inhomogeneous, let H ⊂ P1(K) be their complement.

For α ∈ H and t ∈ N there is a unique indecomposable module U(α, t) in R(α) such that

its length is t (here length is the length of a �ltration in R(α) with simple subquotients). A

partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λr > 0) of n is a sequence of r decreasing positive integers

λi such that |λ| =
∑r

i=1 λi = n. A Segre symbol σ = (λ(1), . . . , λ(s)) of n is sequence of

partitions λ(i) = (λ
(i)
1 ≥ λ

(i)
2 ≥ · · · ≥ λ

(i)
ri > 0) such that (

∣∣λ(1)
∣∣ ≥ ∣∣λ(2)

∣∣ ≥ · · · ≥ ∣∣λ(s)
∣∣)

is a partition of n. A decomposition symbol γ = (M,σ) is a pair with M is (the

isomorphism class of) a module without homogeneous direct summands and σ is a Segre

symbol. The decomposition class D(γ) to a decomposition symbol γ consists of all

modules N such that there exists α1, . . . , αs ∈ H pairwise di�erent elements such that N
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it is isomorphic to

M ⊕
s⊕
i=1

ri⊕
j=1

U(αi, λ
(i)
j ).

We will consider D(γ) ⊂ RQ(d) for the appropriate choice of a dimension vector. Bongartz

and Dudek prove in [BD01], thm 1, that the various decomposition classes in RQ(d) form

a strati�cation into irreducible smooth Gld-invariant that have smooth rational geometric

quotients.

Remark. Let γ = (M = P ⊕ L⊕ I, σ) be a decomposition symbol with P preprojective,

I preinjective and L inhomogeneous regular. Using that certain extension groups vanish it

holds D(γ) = OP⊕L ∗D((0, σ))∗OI . We use Reineke's theorem above (the �rst inequality

is equality). Let d = dim(P ⊕ L), D((0, σ)) ⊂ RQ(e), dim I = f we get

codimD(γ) = [P ⊕ L,P ⊕ L]1 + codimD((0, σ)) + [I, I]1 − 〈d, e〉 − 〈d, f〉 − 〈f, e〉.

If σ = ((1), (1), . . . , (1)︸ ︷︷ ︸
`−times

), then codimD((0, σ)) = 0.

Now, in an inhomogeneous R = R(α) we have have E0, . . . , En−1, n ≥ 1 pairwise

orthogonal simple modules, we calculate in the indices modulo n, i.e. for m = qn+ r, r ∈
{0 . . . , n− 1} we set Em := Er. Each indecomposable module in R has the form Ei[`] for

one i ∈ {1, . . . , n}, ` ∈ NQ0
0 it is unquely characterized by a �ltration

0 = Ei[0] ⊂ Ei = Ei[1] ⊂ Ei[2] ⊂ · · · ⊂ Ei[`]

with Ei[s+1]/Ei[s] ∼= Ei+s for 0 ≤ s ≤ `−1. We have a bijection between the isomorphism

classes of objects in R and the set

Π := {π := (π(0), . . . , π(n−1)) | π(j) = (π
(j)
1 ≥ · · ·π(j)

tj
) partition, 0 ≤ j ≤ n− 1},

given by π 7→ E[π] :=
⊕n−1

j=0

⊕tj
i=1Ej [π

(j)
i ]. We call an element M ∼= E[π], π ∈ Π sep-

arated if for each k ≥ 0 there is an jk ∈ {0, . . . , n − 1} such that π
(jk)
i 6= k for all

i ∈ {1, . . . , tjk}.
We call a regular module separated if it is a direct sum of separated modules (for possibly

di�erent inhomogeneous tubes).

Theorem 5.2.2. (1) Let Q be an oriented cycle of type Ãn (with n+ 1 vertices). Then

CM(Q) = {[M ] | M ∈ RQ(d),d ∈ NQ0
0 ,M nilpotent and separated }.

(2) Let Q be of Dynkin type. Then

CM(Q) = {[M ] | M ∈ RQ(d), d ∈ NQ0
0 }.
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(3) Let Q be of extended Dynkin type and acyclic and δ is the dimension vector of one

(and all) simple regular representation. Then

CM(Q) = {D(γ) | γ = (M,σ = ((1), (1), . . . , (1)︸ ︷︷ ︸
`−times

),MR separated, ` ∈ NQ0
0 )}.

Proof: (1) and (2): It is wellknown that for each dimension vector d ∈ NQ0
0 there are only

�nitely Gld-orbits of nilpotent elements in RQ(d) (in (2) all representations are nilpotent).

Therefore each closed irreducible Gld-equivariant subset is the closure of an orbit. Now, it

is a result of Deng and Du, cp. [DD05], that the orbit closures of separated elements are

precisely the orbit closures. (3) In [Wol09], corollary 4.29. Stefan Wolf proved that each

element of the composition monoid can be written asOP⊕L∗δ∗`∗OI with P preprojective, L

inhomogeneous regular, I preinjective. The description as the closure of the decomposition

class follows easy from remark 5.2.1. The claim that MR has to be separated follows from

the normal form from Stefan Wolf, see [Wol09]. �

Remark. Let Q be an extended Dynkin quiver.

a) Closures of decomposition classes D(γ) with

γ = (M,σ = ((1), (1), . . . , (1)︸ ︷︷ ︸
`−times

),MR separated are unions of decomposition classes.

To see this: Observe that if D(γ) ∩GldFd 6= ∅ then D(γ) ⊂ GldFd. Set γ′ ≤ γ if

D(γ′)∩D(γ) 6= ∅. If D(γ) = GldFd, then
⋃
γ′≤γ D(γ′) ⊂ D(γ) and clearly the other

inclusion holds.

b) Let d = (d0, . . . , dν = d), dk ∈ NQ0
0 , dki ≤ dk+1

i , then GldFd is a union of decomposi-

tion classes and a closure of one.

To see this: Let d′ run through all complete dimension �ltrations such that d can

be obtained by d′ by omitting some elements in the sequence, then

GFd =
⋃
d′

GFd′

because every decreasing �ltration of modules 0 ⊂ M1 ⊂ · · · ⊂ Mν = M can be

re�ned to a composition series. Then use remark a).

Questions: Let Q be a Dynkin or extended Dynkin quiver and given an element in

CM(Q), how do we �nd a dimension �ltration d such that the orbit closure / closure of

decomposition class is dense? Can we �nd one such that the Springer map Gld ×Pd Fd →
GFd has nice properties, i.e. generically �nite or even a resolution of singularities?

5.2.2 When is the quiver-graded Springer map a resolution of singular-

ities of an orbit closure?

We use the orbit lemma to �nd answers for Dynkin and extended Dynkin quivers. In the

end of this subsection, we also look at the quiver-graded Springer maps with closures of
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decomposition classes as the image.

Remark. Let M ∈ RQ(d)(K) and d = (0, d1, . . . , dν =: d) with dk ∈ NQ0
0 , dki ≤ dk+1

i .

Then, obviously GldFd = OM if and only if the following two conditions hold

(i) FlQ
(
M
d

)
6= ∅.

(ii) [M,M ]1 = codim(dν − dν−1) ∗ · · · ∗ (d2 − d1) ∗ d1.

For both statements there are (partial) earlier results which one can apply for Dynkin

quivers, more generally for preprojective or preinjective modules.

ad (i) In [Wol09] Stefan Wolf introduced re�ection functors in the setting of quiver �ags

and used them to give for a preprojective representation M an equivalent purely

combinatorial condition for FlQ
(
M
d

)
6= ∅ (see Cor. 6.22 in [Wol09]), we recall his

result. After the choice of an admissible ordering (a1, . . . , an) of Q0 one can de�ne

the Coxeter-transform C+. Take r ∈ N0 such that (C+)rM = 0. Let d be a �ltration

of dimM . Then, FlQ
(
M
d

)
6= ∅ if and only if the following two condition are ful�lled.

1) (C+)rd = 0.

2) For every intermediate sequence w of admissible sinks, S+
wd is a �ltration of

dimS+
wM where S+

w is a composition of re�ection functors (for details see loc.

cit).

ad (ii) In [Rei02] Markus Reineke gives a formula to calculate codimensions of products in

the composition monoid, in general that is di�cult. In the special case of two factors

([Rei02] Thm 2.7), d, e ∈ NQ0
0

codim d ∗ e = [e, d]1,

there is an algorithm to calculate [e, d]1 := [RQ(e),RQ(d)]1 (I do not know where to

�nd this in the literature).

Let us recall what the orbit lemma for the quiver-graded Springer maps says.

Lemma 40. (a) (cp. [Wol09], thm. 5.32) Assume that GldFd = OM . Then, the quiver

�ag varieties FlQ
(
N
d

)
with N ∈ OM (K) are pairwise isomorphic smooth and irre-

ducible of dimension

dim RF(d)− dim RQ(d) + [M,M]1.

(b) Let M ∈ RQ(d)(K) and d a �ltration of d. Then, it holds π : RF(d) → GldFd is

a resolution of singularities of OM if and only if the following two conditions are

ful�lled:

(D1) FlQ
(
M
d

)
6= ∅;

(D2) [M,M ]1 = dim RQ(d)− dim RF(d)
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It follows [M,M ]1 = codim(dν − dν−1) ∗ · · · ∗ (d2 − d1) ∗ d1 and the restriction

π−1(OM )→ OM is an isomorphism.

The condition (D2) is equivalent to

[M,M ] = 〈d,d〉KQ⊗KAν+1 :=
ν∑
k=0

〈dk, dk〉KQ −
ν−1∑
k=0

〈dk, dk+1〉KQ

which is often easier to check. When Q is without oriented cycles the right hand side

de�nes the Tits form for the algebra KQ⊗ CAν+1 (cp. [Wol09], Appendix).

Remark. Take a sequence of submodules 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nν = M of dimension

vector d and de�ne Mν−k := Nk+1/Nk, M
′ := M1 ⊕ · · · ⊕Mν . We have

[M ′,M ′]1 =
∑
k≤l

[Mk,Ml]
1 +

∑
k>l

[Mk,Ml]

−
ν−1∑
l=1

[
∑
i∈Q0

(

ν−l∑
k=1

dimiMk+l) dimiMl −
∑

(i→j)∈Q1

(

ν−l∑
k=1

dimiMk+l) dimjMl]

=
∑
k≤l

[Mk,Ml]
1 +

∑
k>l

[Mk,Ml]−
ν−1∑
l=1

〈dl, dl+1 − dl〉

=
∑
k≤l

[Mk,Ml]
1 +

∑
k>l

[Mk,Ml] + 〈d, d〉 − 〈d,d〉

=
∑
k≤l

[Mk,Ml]
1 +

∑
k>l

[Mk,Ml]− (dim RQ(d)− dim RF(d))

So we can replace (D2) by:

(D2)′ There is a �ltration of M of dimension d such that for the associated direct sum of

subquotients M ′ :

[M ′,M ′]1 − [M,M ]1 =
∑
k≤l

[Mk,Ml]
1 +

∑
k>l

[Mk,Ml].

De�nition 17. Let M ∈ RQ(d)(K) and d a �ltration of d = dimM . Then we call (M,d)

a resolution pair if (D1) and (D2) are ful�lled. We call a resolution pair (M,d) split if

there is a �ltration of M of dimension d such that [M,M ]1 = [M ′,M ′]1, where M ′ is the

associated direct sum of subquotients.

From the previous remark, we get the following which is inspired by Reineke's obser-

vation in [Rei03], Lemma 2.3.

Lemma 41. Let M ∈ RQ(d)(K),d a �ltration of dimM . The following are equivalent:

(i) (M,d) is a split resolution pair.

(ii) There is a direct sum decomposition M = M1 ⊕M2 ⊕ · · · ⊕Mν with

• dimMν−k = dk+1 − dk, 0 ≤ k ≤ ν − 1,
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• ∀k ≤ l : [Mk,Ml]
1 = 0, ∀k > l : [Mk,Ml] = 0.

In this case, we say that M has a directed decomposition.

5.2.3 Resolution pairs for Dynkin quivers

Reineke gave a method in [Rei03], how to �nd such decompositions. Assume that Q is a

quiver, M a KQ-module. Then the indecomposable nonzero direct summands (without

multiplicities) are contained in a �nite subset RM of the Auslander Reiten quiver of KQ.

We assume, one can �nd a directed partition I∗ = (I1, . . . , Is) of RM =
⋃s
t=1 It, i.e. it

holds

(dP1) ∀t,X, Y ∈ It : [X,Y ]1 = 0.

(dP2) ∀t < u,X ∈ It, Y ∈ Iu : [Y,X] = 0 = [X,Y ]1.

For M ∈ RQ(d)(K) we have a decomposition M =
⊕

1≤t≤s
⊕

X∈It X
aX with aX ∈ N0.

De�ne Mt :=
⊕

X∈It X
aX , then M = M1 ⊕M2 ⊕ · · · ⊕Mν gives an example of a directed

decomposition.

If M is a directing module, it is always possible to �nd such an RM .

In particular for any preprojective or preinjective module M there is a �ltration d (de-

pending on M), such that (M,d) is a split resolution pair, where we take rigid modules as

their own directed decomposition.

Also one can use Reineke's result 5.2.1 to �nd resolution pairs, as follows.

Lemma 42. Let Q be a �nite quiver, K an algebraically closed �eld of characteristic zero.

Assume it holds [M ] = Ermim ∗ · · · ∗ E
r1
i1

with pairwise di�erent i1, . . . , im ∈ Q0, then

(M,d := (0, r1ei1 , r1ei1 + r2ei2 , . . . ,
m∑
j=1

rjeij ))

is a resolution pair.

Proof: It holds

〈d,d〉 =

m∑
k=1

〈
k∑
j=1

rjeij ,

k∑
j=1

rjeij 〉 −
m−1∑
k=1

〈
k∑
j=1

rjeij ,

k+1∑
j=1

rjeij 〉

= [M,M ]− [M,M ]1 −
m−1∑
k=1

〈
k∑
j=1

rjeij , rk+1eik+1
〉

therefore 〈d,d〉 = [M,M ] if and only if codimOM = [M,M ]1 = −
∑

1≤j<k≤m〈rjeij , rkeik〉.
Now, it holds [Erkik , E

rm
im
∗ · · · ∗ Erk+1

ik+1
] = 0 because the vertices i1, . . . , im are pairwise
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di�erent. We can apply the �rst equality in 5.2.1 successively

codimOM = codimErmim ∗ · · · ∗ E
r2
i2
− 〈r1ei1 ,

m∑
k=2

rkeik〉

= codimErmim ∗ · · · ∗ E
r3
i3
− 〈r2ei2 ,

m∑
k=3

rkeik〉 − 〈r1ei1 ,
m∑
k=2

rkeik〉

= · · · = −
m−1∑
j=1

〈rjeij ,
m∑
k=2

rkeik〉 = −
∑

1≤j<k≤m
〈rjeij , rkeik〉

�

5.2.4 Resolution pairs for the oriented cycle

For this subsubsection we assume Q is the following quiver

1 // 2

��;;;;;;;;

n = 0

::tttttttttt

n− 1

ddJJJJJJJJJ
oo

The Auslander-Reiten quiver of the nilpotent representations of Q is a tube of rank n, the

simples are E0, . . . , En−1, we will calculate modulo n in the vertices, i.e. Q0 = Z/n. For
i ∈ Z/n and ` ∈ N we denote by Ei[`] the unique indecomposable with length l and socle

Ei. It holds [Ei, Ei+1]1 = 1 and topEi[`] = Ei−`+1. Then we can easily �nd resolution

pairs for Ei[`].

Example. Let E1, . . . , En be the simple modules in the mouth of a tube of rank n ≥ 2

(for KQ with Q extended Dynkin quiver and K algebraically closed). Let Ei[`] be the

unique indecomposable regular module with a �ltration

0 = Ei[0] ⊂ Ei = Ei[1] ⊂ Ei[2] ⊂ · · · ⊂ Ei[`]

with Ei[s+ 1]/Ei[s] ∼= Ei+s for 0 ≤ s ≤ `− 1. Then,

(Ei[`],d := (dimEi[0],dimEi[1], . . . ,dimEi[`]))

is a resolution pair that is not split. We check condition (D2). It holds

[Ei[`], Ei[`]] = 1 + b`− 1

n
c

which can be seen by looking at nonzero path from Ei[l] to itself in the Auslander-Reiten
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quiver of the tube. It also holds

〈d,d〉 =
∑̀
s=0

〈dimEi[s], dimEi[s]〉 −
`−1∑
s=0

〈dimEi[s],dimEi[s+ 1]〉

= 〈dimEi[`],dimEi[`]〉 −
`−1∑
s=0

〈dimEi[s],dimEi+s〉

= 1 + b l − 1

n
c

to see the last equality use the following

〈dimEi[`],dimEi[`]〉 =

1 , ` 6≡ 0 mod n

0 , ` ≡ 0 mod n
,

〈dimEi[s], dimEi+s〉 =

−1 , s ≡ n− 1 mod n

0 , s 6≡ n− 1 mod n

see [Rin84], 3.1, p.119. Therefore (D2) holds.

Remember, that we associated to a sequence π = (π(0), · · · , π(n−1)) with π(i) = (π
(i)
1 ≥

π
(i)
2 ≥ · · · ≥ π

(i)
ti

) partitions a module M(π) :=
⊕n−1

i=0

⊕ti
k=1Ei[π

(i)
k ]. Now, we de�ne the

submodule of top = Ei summands as

Mi(π) :=
⊕

(j,k)|j=i+π(j)
k −1

Ej [π
(j)
k ].

Furthermore let λ(i) := (λ
(i)
1 ≥ λ

(i)
2 ≥ · · ·λ

(i)
si ) be the partition obtained from a reordering

the sequence (π
(j)
k : j = i+ π

(j)
k − 1).

If there exists ri := max{k | λ(i)
k > λ

(i+1)
1 }, write M(π) = L⊕

⊕
k≤ri Ei−λ(i)k −1

[λ
(i)
k ], then

[M(π)] = Erii ∗ [L⊕
⊕
k≤ri

E
i−λ(i)k −1

[λ
(i)
k − 1]] ∈M(Q)

this follows from [DD05], Prop. 3.7 directly. According to loc. cit., thm 4.1, for every

separatedM(π) there exist i1, . . . , im ∈ Z/n and ri ∈ N such that [M(π)] = Ermim ∗ · · · ∗E
r1
i1

obtained by the method from before. But then by loc. cit. , thm 5.5, there is a unique �ag

0 ⊂M1 ⊂ · · · ⊂Mm−1 ⊂Mm = M(π)

such that Mj/Mj−1
∼= E

rj
ij
, 1 ≤ j ≤ m. This together with the factorization of [M(π)]

imply that

(M(π),d = (0, r1ei1 , r1ei1 + r2ei2 , . . . ,
m∑
j=1

rjeij ))

is a resolution pair. A priori this produces a lot of resolution pairs for M(π), if we take

in every step of the factorization the minimal i ∈ {0, . . . , n} such that ri exists, then we
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can produce an algorithm to get a uniquely determined dimension �ltration for M(π). Of

course this works as well for any inhomogeneous tube of rank n, but then the Ei are simples

in the mouth and not equal to the simples indexed by the vertices of the quiver.

Example. n = 3 and π = (π(0) = (1, 1), π(1) = (3), π(2) = (2, 1)), this means M(π) =

E2
0⊕E1[3]⊕E2[2]⊕E2. The partitions at the tops are λ

(0) = (1, 1), λ(1) = (2), λ(2) = (3, 1).

We �nd r2 = 1, i.e. we replace E1[3] by E1[2],

M(π) = E2 ∗M((1, 1), (2), (2, 1)).

Then, the sequence of tops for M((1, 1), (2), (2, 1)) is λ(0) = (2, 1, 1), λ(1) = (2), λ(2) = (1),

we �nd r1 = 1, i.e. we replace E2[2] by E2,

M(π) = E2 ∗ E1 ∗M((1, 1), (1), (2, 1)).

The sequence of tops for M((1, 1), (1), (2, 1)) is λ(0) = (2, 1, 1), λ(1) = ∅, λ(2) = (1, 1), we

�nd r0 = 3 and replace E1[2]⊕ E2
0 by E1 and

M(π) = E2 ∗ E1 ∗ E3
0 ∗M(∅, (1), (1, 1)).

The sequence of tops of M(∅, (1), (1, 1)) is λ(0) = ∅, λ(1) = (1), λ(2) = (1, 1), we �nd r2 = 2

and

M(π) = E2 ∗ E1 ∗ E3
0 ∗ E2

2 ∗ E1.

and (M(π),d = (0, e1, e1+2e2, e1+2e2+3e0, 2e1+2e2+3e0, 2e1+3e2+3e0)) is a resolution

pair.

5.2.5 Resolution pairs for extended Dynkin quivers

We de�ne two additions for dimension �ltrations d = (0 = d0, d1, . . . , dν =: d),

e = (0 = e0, e1, . . . , eµ =: e)

d + e :=

(d0, d1 . . . , dν−µ, dν−µ+1 + e1, . . . , dν + eµ) ν ≥ µ

(e0, e1 . . . , eµ−ν , eµ−ν+1 + d1, . . . , eµ + dν) ν < µ

d⊕ e := (d0, d1, . . . , dν , dν + e1, . . . , dν + eµ)

Observe Gld+eFd⊕e = GleFe ∗GldFd.

Lemma 43. Assume (M,d), (N, e) are resolution pairs.

(1) Then (M⊕N,d+e) is a resolution pair if and only if 〈d, e〉+〈e,d〉 = [M,N ]+[N,M ]

(see corollary 40). In particular, (M⊕n, nd = (nd0, nd1, . . . , ndν)), n ∈ N are also

resolution pairs.

(2) Then (M ⊕N,d⊕ e) is a resolution pair if and only if [M,N ] = 0 = [N,M ]1.
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Proof: It holds [M ⊕N,M ⊕N ] = 〈d,d〉+ 〈e, e〉+ [M,N ] + [N,M ].

For (1) just use 〈d+ e,d+ e〉 = 〈d,d〉+ 〈e, e〉+ 〈d, e〉+ 〈e,d〉 and the claim follows from

lemma 40.

For (2) use 〈d⊕ e,d⊕ e〉 = 〈d,d〉+ 〈e, e〉+ 〈eµ, dν〉KQ and the claim follows from lemma

40. �

As a special case of the previous lemma one obtains: Let M , N KQ-modules and assume

[M,N ] = 0 = [N,M ]1 and let M = M1 ⊕ · · · ⊕Mν , N = N1 ⊕ · · · ⊕ Nµ directed decom-

positions. Then, the decomposition N ⊕M = N1 ⊕ · · · ⊕Nµ ⊕M1 ⊕ · · · ⊕Mν is directed

again.

Corollary 5.2.2.1. Let Q be an acyclic extended Dynkin quiver and let M = P ⊕ L ⊕ I
with P preprojective, I preinjective and L regular inhomogeneous separated. Then, by

subsection 5.2.3 we �nd dimension �ltrations dP and dI such that (P,dP ) and (I,dI) are

resolution pairs. By subsection 5.2.4 we �nd a dimension �ltration dL such that (L,dL) is

a resolution pair.

It holds [I, L] = 0 = [L, I]1, [L ⊕ I, P ] = 0 = [P,L ⊕ I]1 and then by lemma 43 we get

(M, (dI ⊕ dL)⊕ dP ) is a resolution pair.

What about decomposition classes?

Example. Let Q be an extended Dynkin quiver and δ ∈ NQ0
0 the dimension vector of one

(and all) regular simple modules. It is easy to �nd a nice Springer map for the closure of

the decomposition class D(γ) with γ = (0, σ = ((1), . . . , (1))). Set d = (0, δ, . . . , `δ =: d),

then πd : Gld ×Pd Fd → D(γ) = GldFd restricts over D(γ) to a S`-Galois covering.

(proof: It holds D(γ) is dense in RQ(d) and obviously every element in D(γ) has a �ltration

of submodules of dimension d, therefore D(γ) = GldFd. Now, every element in D(γ) is a

direct sum of ` regular simple modules of dimension vector δ, it has the obvious `-points

in the �bre which are given by leaving out one of the direct summands in each step. We

need to see that there is no preprojective submodule of dimension rδ, 1 ≤ r ≤ ` − 1, but

such a submodule would have defect zero, therefore all its direct summands have defect

zero and have to be regular. )

Lemma 44. Let d = (0 = d0, . . . , dν =: d), e := (0 = e0, . . . , eµ =: e) be two dimension

�ltrations. If πd : Gld ×Pd Fd → GldFd, πe : Gle ×Pe Fe → GleFe are generically quasi-

�nite (i.e. over an open subset the �bres are �nite sets) and [GldFd,GleFe] = 0, then

πd⊕e : Gld+e ×Pd⊕e Fd⊕e → Gld+eFd⊕e is also generically quasi-�nite.

Proof: The assumption of generically quasi-�niteness gives

dim RQ(d)− dim RF = codimGldFd,dim RQ(e)− dim RF(e) = codimGleFe

and the assumption [GldFd,GleFe] = 0 implies by Reineke's result in 5.2.1 that

codimGld+eFd⊕e = codimGldFd + codimGleFe − 〈d, e〉.
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Then we have

dim RQ(d + e)− dim RF(d⊕ e) = −〈d+ e, d+ e〉KQ + 〈d⊕ e,d⊕ e〉

= −〈d, d〉KQ + 〈d,d〉 − 〈e, e〉KQ + 〈e, e〉 − 〈d, e〉KQ

= (dim RQ(d)− dim RF(d)) + (dim RQ(e)− dim RF(e))− 〈d, e〉KQ

= codimGld+eFd⊕e

implying dim RF(d⊕ e) = dimGld+eFd⊕e which gives πd⊕e is generically �nite. �

Corollary 5.2.2.2. Let Q be an extended Dynkin quiver. Let γ = (M,σ = ((1), (1), . . . , (1))

with MR separated be a decomposition symbol. Then, there exists a dimension �ltration d

such that πd : Gld ×Pd Fd → GldFd = D(γ) is �nite over D(γ).

Proof: The existence of a dimension �ltration d such that πd is quasi-�nite over D(γ) is

an immediate consequence, therefore it is enough to prove that the morphism is projective

over D(γ). F := Fd∩D(γ) is a closed Pd-equivariant subset of D(γ), this implies that the

collapsing map Gld ×Pd F → GldF = D(γ) is projective but it is also clear that it is just

the restriction of πd over D(γ). �

This �nishes our investigation of quiver-graded Springer theory in this chapter.

If we want to �nd resolutions of singularities for closures of decomposition classes, we need

di�erent set-ups, let us start with the easiest ones which are the well-studied Segre classes.

As in most of this subsection, we restrict to the case that the reductive group is a (Levi

subgroup in a) general linear group. Before we start we need a technical tool, the tube

polynomial.

5.3 Springer maps for homogeneous decomposition classes

5.3.1 Tube polynomials

Let Q be an a�ne quiver (i.e. of type Ã, D̃ or Ẽ) and K an algebraically closed �eld. We

writeK[RQ(d)] for the ring of regular functions on the a�ne space RQ(d), recall that this is

a polynomial ring (in
∑

i→j∈Q1
didj variables). We call a polynomial t ∈ (K[RQ(d)])[S,T]

tube polynomial if

(T1) for any not regular homogeneous module M ∈ RQ(d)(K) it holds tM = 0 ∈ K[S, T ],

(T2) for a regular homogeneous module M ∼=
⊕r

i=1(
⊕ri

j=1 Uαi [λ
(i)
j ]), where αi = [si : ti] ∈

P1(K), λ
(i)
j ∈ N and Uαi [λ

(i)
j ] is the indecomposable module in the tube Tαi of length

λ
(i)
j , it holds

tM = cM

r∏
i=1

(siT − tiS)
∑ri
j=1 λ

(i)
j ∈ K[S, T ]

for some cM ∈ K \ {0}.

If a tube polynomial t exists, then tM (i.e. the evaluation as M) is unique up to multipli-

cation by a constant cM ∈ K \ {0} for all M ∈ RQ(d)(K), we usually speak of the tube
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polynomial for M . This is inspired by the following example.

Example. Let Q be the 1-loop (or Jordan) quiver. Every module is regular homogeneous

and K = {[x : 1] ∈ P1(K) | x ∈ K} as the parametrizing set for the tubes, i.e. the

isomorphism class is given by U[x:1][n] ∼= xEn+Jn ∈Mn(K) where Jn = (0, e1, e2, . . . , en−1)

with e1, . . . , en the standard (or any) basis in Kn. Then, for M ∈ RQ(d)(K) = Md(K)

we set tM := det(MT − EnS) ∈ K[S, T ], using that tM = tSMS−1 for all S ∈ Gld and

then looking at the Jordan normal form of M gives that this function t ∈ K[RQ(d)][S,T]

de�nes a tube polynomial. (In the a�ne chart {T = 1} the characteristic polynomial is a

tube polynomial.)

Recall the following

Remark. Let Q be a quiver of type Ãm, i.e. a cyclic quiver with m+ 1 vertices and p ≥ 0

arrows in one direction and q ≥ 1 in the other direction, p ≤ q. The homogeneous tubes

are parametrized by the following sets

(0) If m = 0 (Jordan quiver) by HQ := P1(K) \ {[0 : 1]}.

(1a) If m = 1 and Q the Kronecker quiver by HQ := P1(K),

(1b) If m = 1 and Q the oriented cycle by HQ := P1(K) \ {[0 : 1], [1 : 0]}

(2a) If m ≥ 2 and p = 1 by HQ := P1(K) \ {[0 : 1]},

(2b) If m ≥ 2 and p ≥ 2 or p = 0 by HQ := P1(K) \ {[0 : 1], [1 : 0]}.

Recall that the adjoint matrix for A ∈ Mn(K) is a matrix Aa ∈ Mn(K) with AAa =

AaA = det(A)En.

Lemma 45. Let Q be a quiver of type Ãm, m ≥ 1, and p ≥ 0 arrows in one direction

and q ≥ 1 in the other direction, p ≤ q. We number the vertices clockwise (by Z/(m+ 1)).

If m ≥ 2 and M ∈ RQ(d)(K), we write Mi,j = Mj,i for the linear map associated to the

arrow between two neighboring points i and j. We set ε : Z/(m+ 1)→ {1, a}

ε(i) :=

1 , if i→ i+ 1 is clockwise,

a , if i+ 1→ i is counterclockwise.

The following de�ne tube polynomials for the given Q and d.

(1) For m = 1, d = (n, n), for M = (L,R) ∈ RQ(d)(K) = Mn(K)×Mn(K) we set

tM =

det(LT −RS), if Q is Kronecker,

det(LR) det(LRT − S), if Q is an oriented cycle,

(2a) If m ≥ 2, p = 1 wlog let 1→ 2 be the arrow with opposite orientation to the other(s)

and d = (n+ c, n+ c, n, . . . , n) for some n ∈ N, c ∈ N0, where
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cM := det(M1,2) det(M1,m+1M
a
1,2M3,2M4,3 · · ·Mm+1,m)

tM := cM det(M3,2M4,3 · · ·Mm+1,mM1,m+1T −M1,2S)

(2b) For m ≥ 2, p ≥ 2, d = (n, n . . . , n)

cM :=
∏

i : ε(i)=1

detMi,i+1

tM := cM det(M
ε(m+1)
m+1,1 M

ε(m)
m,m+1 · · ·M

ε(1)
1,2 T − (

∏
i : ε(i)=a

detMi,i+1)EnS)

These are the all dimension vectors of regular homogeneous modules for quivers of type

Ãm.

Proof:

(1a) Let Q be the Kronecker quiver 1 ⇒ 2. First, recall that for every r ∈ N0 there

exists up to isomorphism one preprojective indecomposable module Pr of dimension

(r+1, r) and one preinjective indecomposable module Ir of dimension (r, r+1) given

by

Pr := (Lr :=
(
Er 0

)
, Rr :=

(
0 Er

)
), Ir := (

(
Er

0

)
,

(
0

Er

)
).

For any r ∈ N there are isomorphism classes of regular indecomposables of dimension

(r, r) given by

U[x:y][r] ∼=

(xEr + Jr, yEr), y 6= 0

(xEr, Jr), y = 0

where Jr = (0, e1, e2, . . . , er−1) ∈Mr(K) and [x : y] ∈ P1(K).

(T2) If (L,R) is regular, then it is isomorphic to a module of the form (L′, R′) ∈
Bd = Bn(K)×Bn(K) and clearly tL,R = tL′,R′ is a homogeneous polynomial of

degree n.

(T1) Assume (L,R) is not regular, i.e. it has at least one indecomposable preprojec-

tive direct summand (and also a preinjective one for dimension reason). Wlog we

assume L =
(
Lr 0
0 X

)
, R =

(
Rr 0
0 Y

)
we get LT −RS =

(
TEr−SJr −Ser 0

0 0 TX−SY
)
.

Then, in the ring Mn(K(S, T )) where K(S, T ) is the quotient �eld of K[S, T ]

multiply the whole matrix by 1
T , then apply the following column operations:

S
T -times the r-th to the r + 1-th, S2

T 2 -times the (r − 1)-th to the (r + 1)-th,...,
Sn

Tn -times the �rst to the (r + 1)-th. The result is a matrix with the r + 1-th

column is zero, therefore det(LT −RS) = 0 in Mn(K(S, T )), but then it is also

zero in the subring Mn(K[S, T ]).

(1b) Now, let Q be the oriented cycle with two vertices.

(T1) A module (L,R) is regular regular homogeneous if and only if

(L,R) ∈ Gln(K)×Gln(K). Therefore (T1) holds.
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(T2) If (L,R) is homogeneous regular, then it is isomorphic to a module (E,A) with

A ∈ Bn, it follows that tM is homogeneous of degree n. The zeroes are the

supporting tubes.

(2a) (T2) If M is regular homogeneous it is isomorphic to one of the form with M1,2 =

En+c,M3,2 =

(
A

0

)
∈ M(n+c)×n(K),M4,3 = En, . . . ,Mm,m−1 = En,Mm+1,m =

En,M1,(m+1) =
(
En 0

)
∈ Mn×(n+c)(K), for some A ∈ Bn with diagonal

entries (s1, . . . , s1︸ ︷︷ ︸
n1

, s2, . . . , s2︸ ︷︷ ︸
n2

, . . . , sr, . . . , sr︸ ︷︷ ︸
nr

). Then

tM = det(A) det(
(
A 0
0 0

)
T − En+cS) = (−1)cSs det(AT − EnS)

= [(−1)c det(A)]Sc
r∏
i=1

(siT − S)ni ,

this shows (T2).

(T1) Let M be not regular homogeneous and assume tM 6= 0, then

M1,2, M3,2, . . . ,Mm+1,m,M1,m+1 and M1,m+1M
a
1,2M3,2 are invertible matrices.

In particular, it implies that we get a submodule N of dimension vector

(n, . . . , n) which is homogeneous regular supported on tubes {[1 : si] | 1 ≤ i ≤
r, si ∈ K \ {0}}. The quotient M/N is regular homogeneous supported in {[0 :

1]}, as there is no extension between the di�erent tubes, we getM = N ⊕M/N

is regular homogeneous. This shows (T1).

(2b) (T1) A module is regular homogeneous if and only if all matricesMi,i+1 are invertible.

This implies (T1). If Mi+1,i is not invertible, then Ma
i,i+1 is not invertible

and it follows by de�nition that tM = 0 for all modules which are not regular

homogeneous.

(T2) Now, assume M is regular homogeneous, as all matrices Mi,i+1 are invertible.

We see that for all M ′ ∼= M there is a c ∈ K \ {0} such that tM = ctM ′

for an c ∈ K \ {0}. We can assume wlog M1,2 = A ∈ Bn,Mα = En, for all

α 6= 2 → 1, α 6= 1 → 2 and we have tM = det(A) det(AT − EnS) and we see

that (T2) is ful�lled.

�

Tube polynomials for arbitrary tame quivers.

This paragraph is following a suggestion of M. Reineke (on 10th of December 2012).

Let Q be a quiver, d ∈ NQ0
0 , A := KQ. We recall from [CB92], for every N ∈ RQ(d) we

have a standard resolution by projective modules given by

0→
⊕

(i→j)∈Q1

Aej ⊗K eiN →
⊕
i∈Q0

Aei ⊗K eiN → N → 0
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We can apply the functor (−,M) = HomKQ(−,M) and obtain a four term exact sequence

of �nite dimensional K-vector spaces

0→ (N,M)→

⊕
i∈Q0

Aei ⊗K eiN,M

 φN,M−−−→

 ⊕
(i→j)∈Q1

Aej ⊗K eiN,M

→ (N,M)1 → 0

If 〈dimN, dimM〉 := [N,M ]− [N,M ]1 = 0, we consider φN,M as a vector space endomor-

phism of a, let us say, r-dimensional vector space.

Now, assume Q is a tame quiver and N = U[s : t][1] is a simple regular homogeneous

module in a tube parametrized by [s : t] ∈ P1(K), up to isomorphism N is the only mod-

ule with this property. For M regular homogeneous module supported on a single tube

parametrized by [s′ : t′] 6= [s : t], then it holds [N,M ] = [N,M ]1 = 0, which means φN,M is

an isomorphism.

Now we replace [s : t] in N by the indeterminants S and T , then

Φ(S, T ) := φN,− : RQ(d)→ Mr(K[S,T]), M 7→ φN,M.

Since det Φ(S, T ) is a polynomial map RQ(d)→ K[S,T], we can see the coe�cients of the

polynomial as regular functions, so detΦ(S, T ) ∈ (K[RQ(d)])[S,T], we write

detΦM (S, T ) := detφN,M . It is clear that detΦM (S, T ) is a homogeneous polynomial in

S, T .

Lemma 46. Let Q be a tame quiver and let n ∈ NQ0
0 be with 〈n, n〉 = 0, let

t := c · det(Φ(S, T )) ∈ (K[RQ(d)])[S,T]

where c ∈ K[RQ(d)] given by cM :=
∏
α∈Q1

∏
I,J det ((Nα)I,J) where for α : i → j the

sets I ⊂ {1, . . . ni}, J ⊂ {1, . . . nj} with #I = max(0, ni − nj),#J = max(0, nj − ni) and

(Mα)I,J is the minor matrix of Mα given by deleting the rows in I and the columns in J .

Then, t is a tube polynomial for Q and n.

Proof:

(T1) If M has a regular inhomogeneous summand, it holds cM = 0 (this can be seen case

by case). We claim: If M is a direct sum of preprojectives and or preinjectives,

then detΦM (S, T ) = 0. Equivalently, there exist an in�nite set of [s : t] such that

[N,M ] + [N,M ]1 > 0 where N is the simple regular homogeneous module N in the

tube parametrized by [s : t].

It is enough to see that indecomposable preinjective or indecomposable preprojective

M full�ll it.
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Assume M = Aei, we know dim eiM = ni 6= 0, then since the standard resolution

is a minimal we conclude [M,N ] > 0 for every N as before. If M is preprojective,

not projective, we have M = (τ−1)kAei for some k ∈ N and τ−1 is the inverse of

the Auslander-Reiten transpose and [M,N ] =
[
τkM,N

]
= [Aei, N ] > 0, the �rst

equality is because the maps are not factorizing through a projective.

We use the Auslander-Reiten formula (see [ASS06b], Thm 2.13, p.117) to see

[N,M ]1 = [M, τN ] = [M,N ] > 0

If M is injective, the same argument with the standard resolution by injectives (ob-

tained from the standard resolution by projectives) gives [N,M ] > 0. If M is inde-

composable preinjective, we have M = τkI for an indecomposable injective I and

[N,M ] =
[
N, τkM

]
= [N, I] > 0, where the �rst equality is because the map does

not factor over a projective.

(T2) Let M be a regular homogeneous module in RQ(d), M ∼=
⊕r

i=1(
⊕ri

j=1 Uαi [λ
(i)
j ]),

where αi = [si : ti] ∈ P1(K), λ
(i)
j ∈ N and Uαi [λ

(i)
j ] is the indecomposable module in

the tube Tαi of length λ
(i)
j . We claim

tM = cM

r∏
i=1

(siT − tiS)
∑ri
j=1 λ

(i)
j ∈ K[S, T ]

It holds cM 6= 0 (by a case distinction) and det ΦM (S, T ) 6= 0 because it is not zero

when we evaluate S, T at a point [s : t] /∈ {αi | 1 ≤ i ≤ r}. In fact, it is easy to see

that {αi | 1 ≤ i ≤ r} are the only zeroes of this function (because the dimension of

the kernel of the four term short exact sequence is [Uαi [1],M ] > 0). The rest follows

from the observation that for a regular homogeneous module M1 ⊕M2 = M

detΦM (S, T ) = (detΦM1(S, T )) · (detΦM2(S, T )),

this can be seen by using φN,M1⊕M2 = φN,M1 ⊕ φN,M2 by de�nition of the maps. �

Example. (from Markus Reineke). Let Q be

1

��>>>>>>> 2

���������

0

3

@@�������
4

^^>>>>>>>

, and n :=
(
n n

2n
n n

)
.

We name the coordinates of a representation as follows

Kn

A

""EEEEEEEE Kn

B

||yyyyyyyy

M = K2n

Kn

C
<<yyyyyyyy

Kn

D
bbEEEEEEEE
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We have P0 = S0, dimP1 =
(

1 0
1

0 0

)
, dimP2 =

(
0 1

1
0 0

)
, dimP3 =

(
0 0

1
1 0

)
, dimP4 =

(
0 0

1
0 1

)
determine the indecomposable projective modules. Then the tube polynomial is given by

c · detΦ(S, T ) with detΦ(S, T ) =

det((P1 ⊕ P2 ⊕ P3 ⊕ P4,M)
φ[S : T ]−−−−→

(
P 2

0 ,M
)
) = det

(
A 0 C TD

0 B C SD

)
∈ (K[(Ai,j), (Bi,j), (Ci,j), (Di,j)])[S, T ]

5.3.2 Springer maps for the Jordan quiver

Let us shortly recall Grothendieck's simultaneous resolution of singularities.

Let G be a reductive group, T be a maximal torus contained in a Borel subgroup

B ⊂ G and Lie(B) = b ⊂ g = Lie(G) its Lie algebras considered as G-representation with

a B-subrepresenation via the adjoint operation. Let gsr, bsr be the sets of regular semi-

simple elements and W the Weyl group associated to (G,T ). It holds gsr is G-equivariant

and dense open in g and it carries a natural operation of W . Let B = TU with U the

unipotent radical and n = Lie(U) its Lie algebra. We call N = Gn ⊂ g the nilpotent

cone, N contains a unique dense G-orbit O consisting of smooth points. Recall, that a

resolution of singularities is a projective, dominant, birational map from a smooth variety

to a possibly not smooth variety.

Theorem 5.3.1. ([CG97], sections 3.1, 3.2) The Springer map π : g̃ := G×B b→ g is a

G-equivariant, projective map which restricts to

(1) a W -Galois covering πrs : π−1(gsr) = G×B bsr → gsr, i.e. the morphism is etale and

a principle W -bundle, and

(2) a resolution of singularities πnil : π−1(N ) = G×B n→ N for N , i.e. µ−1(O)→ O is

an isomorphism. Also π−1(N ) ∼= T ∗(G/B) and µ can be identi�ed with the moment

map.

We can then look at the following more general situation. Let S ⊂ W be the simple

re�ections determined by G,B, T . For any J ⊂ S we set PJ := B〈J〉B. Let PJ = LJUJ be

its Levi-decomposition and uJ := Lie(UJ) be the Lie algebra of the unipotent part. There

exists G-orbit OJ ⊂ g such that OJ = GuJ and every point in OJ is smooth in GuJ .

(1) Are all nilpotent orbits of the form OJ for some J ⊂ S?

(2) Is the map πJ : G×PJ uJ → OJ a resolution of singularities?

I do not know the general answer, a partial answers for (1) is given by Carter in his book

[Car85a], section 5.7-5.9, by showing all distinguished nilpotent orbits are of the form OJ .
He also gives a classi�cation of nilpotent orbits in terms of weighted Dynkin Diagrams,

cp. section 5.6. A di�erent way of putting (1) is asking for Richardson orbits, because

a generator for the dense PJ -orbit in uJ will also be a generator for the dense G-orbit in

GuJ .
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We will at this point restrict to G = Gln, B = Bn where we will see that the πJ give a

resolutions of singularities for all nilpotent orbit closures (see lemma 47 and 48).

Let S := {(1, 2), . . . , (n− 1, n)} for any subset J ⊂ S we have

PJ = {A ∈ Gln | ∀i > j :

aij = 0 whenever there is k ∈ {j, j + 1, . . . , i} s.t. (k, k + 1) /∈ J},

obviously, we can instead determine J by the sizes of the diagonal blocks in PJ .

Recall, that the nilpotent orbits in Mn(K) are in bijection with the partitions of n, via

λ = (λ1 ≥ · · ·λs > 0) maps to GlnNλ =: Oλ where Nλ : Kn → Kn, eλ1 7→ eλ1−1 7→ · · · 7→
e1 7→ 0, eλ1+λ2 7→ eλ1+λ2−1 7→ · · · 7→ eλ1+1 7→ 0, . . . , en 7→ en−1 7→ · · · 7→ e1+

∑s−1
i=1 λi

7→ 0.

For any nilpotent endomorphism N we write JNF (N) = λ for the partition λ such that

GlnN = Oλ. Recall that for any partition λ there is a dual partition λt given by the

partition associated to the transposition of the Young diagram of λ (i.e. the i-th row is

the i-th column in the transposed, i ≥ 1). For a sequence J = (n1, . . . , nr) with
∑

i ni = n

we write q(J) for the partition obtained from reordering J . We have maps

Π: {J ⊂ S}� {λ = (λ1 ≥ · · ·λs > 0) |
∑

λi = n} : J

with Π(J) := (q(J))t and J maps a partition λ to the set J(λ) such that PJ(λ) has block

sizes given by (λt1, . . . , λ
t
r) where λ

t is the dual partition of λ. Obviously it holds Π◦J = id,

in particular Π is surjective and J is injective.

Lemma 47. It holds GlnuJ = OΠ(J) and therefore also Oλ = GlnuJ(λ).

Proof: We look at J = (n1, . . . , nr), wlog. n1 ≥ n2 ≥ · · · ≥ nr because a permutation

of the blocks does not change GlnuJ . Let λ = (λ1 ≥ · · · ≥ λs) be the dual partition for

(n1, . . . , nr), we also set mi := maximal rank of an element in uiJ , it is easy to see mi =∑r
k=i+1 nk. The dense nilpotent orbit in GlnuJ is ON with N ∈ Mn(K), rk(N i) = mi.

We need to see that Nλ ful�lls that, i.e. to see rkN i
λ = mi for 1 ≤ i ≤ n. We know

ni = dim kerN i
λ − dim kerN i−1

λ , 1 ≤ i ≤ r that implies dim kerN i
λ =

∑i
k=1 nk. It follows

mi =

r∑
k=i+1

nk = n−
i∑

k=1

nk = rkN i
λ

�

Lemma 48. The collapsing map πJ : Gln×PJ uJ → GlnuJ is a resolution of singularities.

Proof: Let Nλ be the dense orbit in GlnuJ where the block sizes of uJ are given by

λt = (n1 ≥ n2 ≥ · · · ≥ nr). We will see Gln/PJ as the set of partial �ags U• =

(0 = U0 ⊂ U1 ⊂ · · ·U r = Kn) with dimU i =
∑i

k=1 ni, and Gln ×PJ uJ = {(x, U•) ∈
Mn(K) ×Gln/PJ | x(U i) ⊂ U i−1, 1 ≤ i ≤ r}. By lemma 6.3.0.2 it is enough to see that
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the �bre over Nλ is precisely one point, more precisely we will prove

π−1
J (Nλ) = {(0 ⊂ kerNλ ⊂ kerN2

λ ⊂ · · · ⊂ kerN r
λ = Kn)}.

So, take any �ag U• ∈ π−1
J (Nλ), obviously Nλ(U1) = {0},dimU1 = dim kerNλ implies

U1 = kerNλ, Nλ(U2) ⊂ U1 = kerNλ, dimU2 = dim kerN2
λ implies U2 = kerN2

λ , etc. �

Now, we want a similar result for arbitrary orbit closures. Let σ = (λ(1), . . . , λ(r)) such

that λ(i) = (λ
(i)
1 ≥ · · · ≥ λ

(i)
ti

) partitions and
∣∣λ(1)

∣∣ ≥ · · · ≥ ∣∣λ(r)
∣∣ such that∑r

i=1 |λ(i)| = n,

we call σ a Segre symbol. We write mi :=
∣∣λ(i)

∣∣ , 1 ≤ i ≤ r and set

J(σ) = ((λ(1))t1, (λ
(1))t2, . . . , (λ

(1))ts1 , (λ
(2))t1, . . . , (λ

(r))tsr),

as usual PJ(σ) for the associated standard parabolic. Let a1, . . . , ar ∈ K be pairwise

di�erent.

Fa1,...,ar;σ := {


A1 ∗ ··· ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 ··· 0 Ar

 ∈Mn(K) | Ai − aiEmi ∈ uJ(λ(i)), 1 ≤ i ≤ r}

Fa1,...,ar;σ is an an a�ne space and a PJ(σ)-subvariety of Mn(K).

Lemma 49. Let A ∈ Mn(K) with characteristic polynomial χA =
∏r
i=1(T − ai)mi where

ai 6= aj for i 6= j, m1 ≥ m2 ≥ · · · ≥ mr and JNF (A|ker(A−aiEn)mi − ai idker(A−aiEn)mi ) =

λ(i), 1 ≤ i ≤ r. Then, it holds GlnFa1,...,ar;σ = OA and πa1,...,ar;σ : Gln ×PJ(σ) Fa1,...,ar;σ →
GlnFa1,...,ar;σ is a resolution of singularities.

Proof: Obviously OA ⊂ GlnFa1,...,ar;σ and GlnFa1,...,ar;σ is closed it holds

OA ⊂ GlnFa1,...,ar;σ. If B ∈ GlnFa1,...,ar;σ, then obviously χB = χA and also from the

de�nition it follows

dim ker(B − aiEn)j ≥ dim ker(A− aiEn)j for all 1 ≤ i ≤ r, j ∈ N,

that implies B ∈ OA. We can identify

Gln ×PJ(σ) Fa1,...,ar;σ = {(B,U•) ∈Mn(K)×Gln/PJ(σ) | (B − aiEn)(U j) ⊂ U j−1

∀
i∑

k=1

sk < j ≤
i−1∑
k=1

sk, 1 ≤ i ≤ r − 1}

Then one can see that π−1
a1,...,ar;σ(A) is just the single �ag

0 ⊂ ker(A− a1E) ⊂ ker(A− a1E)2 ⊂ · · · ⊂ ker(A− a1E)m1

⊂ ker(A− a1E)m1 + ker(A− a2E) ⊂ ker(A− a1E)m1 + ker(A− a2E)2 ⊂ · · · ⊂ Kn.

Then apply lemma 6.3.0.2 �

Now we want to forget about the particular eigenvalues but keep the sizes of the par-
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titions, for a Segre Symbol σ = (λ(1), . . . , λ(r)) we de�ne the Segre class to be

S(σ) := {A ∈Mn(K) |χA =
r∏
i=1

(T − ai)ni , ai 6= aj , ∀i 6= j, ni =
∣∣∣λ(i)

∣∣∣ ,
JNF (A|ker(A−aiEn)ni ) = λ(i)}.

It is known that S(σ) is a locally closed, irreducible smooth subvariety of Mn(K), admit-

ting rational quotients and that the set of all Segre classes in Mn(K) gives a Whitney

strati�cation (see [HTT08] for the de�nition and [BD01] for Segre classes being one) which

implies in particular that the boundary property holds, which says that the closure of any

stratum is a union of strata. We write σ ≤ σ′ if S(σ) ⊂ S(σ′). What was the nilpotent

cone Nn for orbits will be replaced by the so called equipotent cone En for Segre classes,

we de�ne it via

Fn := {A = (aij)i,j ∈Mn(K) | aij = 0, aii = ajj ∀i > j}

En := GlnFn ⊂Mn(K),

Fn is a Bn-subrepresentation of Mn(K), En is a closed and irreducible subset of Mn(K).

The map projection on its eigenvalues up to reorder is an algebraic morphism χ : Mn(K)→
Cn/Sn, see for example [CG97], 3.1.14, p.132-135 for the Sln-case. Therefore by restric-

tion we have an algebraic map χ : En → C mapping an equipotent matrix on its only

eigenvalue. Thus, we �nd a morphism φ : En → Nn × A1, A 7→ (A − χ(A)En, χ(A))

which is Gln-equivariant when you empose the trivial operation on A1. As the morphism

Nn × A1 → En, (N, a) 7→ N + aEn is an inverse, we see that φ is an isomorphism of

Gln-varieties.

Let us �rst look at equipotent Segre classes, i.e. Segre classes S(σ) ⊂ En equivalently σ =

(λ) for a single partition λ. Let Oλ ⊂ Nn be the Gln-orbit consisting of nilpotent matrices

with JNF = λ (for λ = (n) we have Oλ = Nn, S((λ)) = En). Under the isomorphism φ we

obviously have S((λ)) = A1×Oλ. Now, for σ = (λ(1), . . . , λ(r)) and a := (a1, . . . , ar) ∈ Kr

we de�ne

qσ(a) :=


a1Em1+N

λ(1)
0 ··· 0

0
. . .

. . .
...

...
. . .

. . . 0
0 ··· 0 arEmr+N

λ(r)

 .

Let U = {a ∈ Kr | ai 6= aj ∀i 6= j}, we have a dominant morphism Gln × U →
S(σ), (g, a) 7→ gqσ(a). As StabGln(qσ(a)) = StabGln(qσ(b)) =: H for all a, b ∈ U we get

an induced morphism

Φ: Gln/H × U → S(σ), (gH, a) 7→ gqσ(a),

it is Gln-equivariant where the Gln-operation on Gln × U is g · (h, a) := (gh, a).

Lemma 50. Φ is a I-Galois covering, where Iσ := 〈(i, i + 1) ∈ Sr | λ(i) = λ(i+1)〉.
Therefore S(σ) is smooth of dimension dimGln − dimH + r and for Iσ = {e} it holds Φ
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is an isomorphism.

Proof: It is easy to see that Φ−1(qσ(a)) = Iσ · a ⊂ Kr where Sr operates on Kr via

permuting the coordinates. That implies that Φ has constant �bres with a simply transitive

Iσ-operation. �

This leads to the de�nition

F(λ) := {A ∈Mn(K) | ∃ a ∈ K : A− aEn ∈ uJ(λ)}

which is a PJ(λ)-subrepresentation of Mn(K) and more generally for a Segre symbol σ =

(λ(1), . . . , λ(r)),

Fσ := {


A1 ∗ ··· ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 ··· 0 Ar

 ∈Mn(K) | ∃a1, . . . , ar ∈ K : Ai − aiEmi ∈ uJ(λ(i)), 1 ≤ i ≤ r},

which is a PJ(σ)-subrepresentation of Mn(K).

Lemma 51. Let σ = (λ(1), . . . , λ(r)) be a Segre symbol, Iσ := 〈(i, i+1) ∈ Sr | λ(i) = λ(i+1)〉,
it holds GlnFσ = S(σ) and πσ : Gln×PJ(σ) Fσ → GlnFσ restricts over S(σ) to a Iσ-Galois

covering.

Proof: Obviously, S(σ) ⊂ GlnFσ and therefore S(σ) ⊂ GlnFσ.

Let B ∈ GlnFσ with r di�erent eigenvalues, then there exists A ∈ S(σ) such that B ∈
OA ⊂ S(σ) (see proof of lemma 49). As {B ∈ GlnFσ | B r di�erent eigenvalues} is dense
in GlnFσ we get GlnFσ = S(σ).

Now, it holds

Gln ×PJ(σ) Fσ = {(A,U•) ∈Mn(K)×Gln/PJ(σ) | ∃ a1, . . . , ar ∈ K :

(A− aiEn)(U j) ⊂ U j−1 ∀
i∑

k=1

sk < j ≤
i+1∑
k=1

sk, 1 ≤ i ≤ r − 1}

For A ∈ S(σ) let χA =
∏r
i=1(T − ai)mi , JNF ((A− aiEn)|ker(A−aiEn)mi ) = λ(i), 1 ≤ i ≤ r,

then

π−1
σ (A) =

⊔
b∈Iσa

π−1
b1,...,br;σ

(A)

consists of Iσ-points U
•
A,b ∈ Gln/PJ(σ), b ∈ Iσ · a. Now, a morphism of algebraic varieties

is generically smooth, therefore this one is generically etale. To see that it is etale over

S(σ) we show that π−1
σ (S(σ))→ S(σ) is surjective on tangent spaces. Recall H,U,Φ from

Lemma 50. Observe that for a, b ∈ U it holds U•qσ(a),a = U•qσ(b),b. We de�ne a morphism

Ψ: Gln/H × U → π−1
σ (S(σ)), (g, a) 7→ (gqσ(a), gU•qσ(a),a), then we have a commutative
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diagram

Gln/H × U
Φ

%%LLLLLLLLLL
Ψ

wwooooooooooo

π−1
σ (S(σ)) πσ

// S(σ)

As Φ is surjective on tangent spaces, therefore πσ|π−1
σ (S(σ)) is surjective on tangent spaces,

that implies the smoothness. It also follows that Ψ is an isomorphism. �

Remark. The maps Ψ,Φ gives the following dimension identity, using

dimFσ = dim uJ(σ) + r gives

dimS(σ) = dimGln − dimH + r = dimGln − dimPJ(σ) + dimFσ

= dimGln − dimLJ(σ) + r = n2 + r −
r∑
i=1

si∑
s=1

[(λ(i))ts]
2

where LJ(σ) is the Levi part of PJ(σ). It also gives the (curious) dimension identity dimH =

dimLJ(σ), even though the two groups H and LJ(σ) look quite di�erent.

5.3.3 Springer maps for homogeneous decomposition classes of the Kro-

necker quiver

Let n ∈ N, we �x d = (n, n) and Gld = Gln ×Gln, Bd = Bn × Bn operating on RQ(d) =

Mn(K) ×Mn(K) via (g, h) · (L,R) := (gLh−1, gRh−1). There is also a Gl2-operation on

RQ(d) given by

(L,R) · ( a cb d ) := (aL+ bR, cL+ dR),

for A = ( a cb d ) ∈ Gl2, (g, h) ∈ Gld it holds [(g, h)(L,R)]A = (g, h)[(L,R)A]. The Gl2-

operation maps homogeneous decomposition classes to itself. We will introduce now an

open covering which will allow us to reduce to the Jordan quiver considerations. For

A ∈ Gl2(K) we de�ne

UE := Gln(K)×Mn(K), UA := {(L,R) ∈ RQ(d) | (L,R)A−1 ∈ UE} = (UE)A.

Then, {UA}A∈Gl2 is an open Gld-invariant covering of the regular homogeneous locus

Regd ⊂ RQ(d). We have a maps

ΦE : UE � Gln(K)×Mn(K) : ΨE ΦA : UA � Gln(K)×Mn(K) : ΨA

ΦE(L,R) := (L,L−1R) ΦA(L,R) := ΦE((L,R)A−1)

ΨE(X,Y ) := (X,XY ) ΨA(X,Y ) := [ΨE(X,Y )]A

Obviously ΦA and ΨA are inverse isomorphisms of varieties. We consider the right hand side

Gln(K)×Mn(K) with the following (Gln)2-operation (g, h) ? (X,Y ) := (gXh−1, hY h−1),

orbits under this operation are of the form Gln × OY where OY ⊂ Mn(K) is a Gln-

orbit under the conjugation operation. On UA we have restriction of the Gld-operation on
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RQ(d). Then, it holds

ΦE((g, h) · (L,R)) = (gLh−1, hL−1Rh−1) = (g, h) ? ΦE(L,R)

ΨE((g, h) ? (X,Y )) = (gXh−1, gXY h−1) = (g, h) ·ΨE(X,Y )

So, for M = (L,R) ∈ UA we have ΦA(OM ) = Gln×O(rL+sR)−1(tL+uR) where A
−1 = ( r ts u )

and for any homogeneous decomposition class we have ΦE(D(0, σ) ∩ UA) = Gln × S(σ).

Now for σ = (λ(1), . . . , λ(r)), recall that we had de�ned J(σ) = ((λ(1))t, . . . , (λ(r))t), let

pJ(σ) = LiePJ(σ)), we will always write elements L ∈ pJ(σ) as

L =


L1 ∗ ··· ∗

0
. . .

. . .
...

...
. . .

. . . ∗
0 ··· 0 Lr

 , Li ∈ pJ(λ(i)).

For [x : y] := ([x1 : y1], . . . [xr : yr]) ∈ (P1(K))r with [xi : yi] 6= [xj : yj ] for all i 6= j we set

F[x : y];σ := {(L,R) ∈ pJ(σ) × pJ(σ) | xiLi − yiRi ∈ uJ(λ(i)), 1 ≤ i ≤ r}

It holds F[x : y];σ is a (PJ(σ))
2-subrepresentation of RQ(d).

Lemma 52. Let d = (n, n). Let σ = (λ(1), . . . , λ(r)) be a Segre symbol with
∑r

i=1 |λ(i)| = n.

For [x1 : y1], . . . [xr : yr] ∈ P1(K) pairwise di�erent points set

M =
⊕
i=1

ri⊕
j=1

U[xi:yi][λ
(i)
j ].

Then, GldF[x : y];σ = OM ⊂ RQ(d) and the map

π[x : y];σ : Gld ×(PJ(σ))
2
F[x : y];σ → GldF[x : y];σ

is a resolution of singularities.

Proof: Obviously, it holds OM ⊂ GldF[x : y];σ. There exists an A ∈ Gl2 such that

M ∈ UA, i.e. pick A = ( a cb d ) ,det(A) = 1 such that yid − xic 6= 0, 1 ≤ i ≤ r and set

ai := xia−yib
xic−yid . It is enough to see that OM is dense in UA∩GldF[x : y];σ = Gld(F[x : y];σ∩UA).

It holds ΦA(F[x : y];σ ∩ UA) = PJ(σ) × Fa1,...,ar;σ,ΦA(GldF[x : y];σ) = Gln × (GlnFa1,...,ar;σ)

and ΦA(OM ) = Gln×O(dL−bR)−1(−cL+aR) is dense in Gln× (GlnFa1,...,ar;σ). This implies

that OM is dense in UA ∩GldF[x : y];σ.

To see the rest of the lemma we de�ne an Gld-equivariant isomorphism Φ̃A such that the

following diagram, where we set a = (a1, . . . , ar)

π−1
[x : y];σ(UA) = Gld ×(PJ(σ))

2
(F[x : y];σ ∩ UA)

Φ̃A //

π[x : y];σ

��

Gln × [Gln ×PJ(σ) Fa;σ]

id×πa;σ
��

Gld(F[x : y];σ ∩ UA)
ΦA

// Gln ×GlnFa;σ
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commutes, then the claim follows from lemma 49.

It holds

Gld ×(PJ(σ))
2

(F[x : y];σ ∩ UA) = {(L,R), (U•, V •) ∈ UA ×Gld/(PJ(σ))
2 |

L(V j) ⊂ U j , R(V j) ⊂ U j , (xiL− yiR)(V j) ⊂ U j−1,

i∑
k=1

sk < j ≤
i+1∑
k=1

sk, 0 ≤ i ≤ r − 1}

Gln ×PJ(σ) Fa1,...,ar;σ = {(A,U•) ∈Mn(K)×Gln/PJ(σ) |

(aiEn −A)(U j) ⊂ U j−1,

i∑
k=1

sk < j ≤
i+1∑
k=1

sk, 0 ≤ i ≤ r − 1}.

We de�ne Φ̃A((L,R), (U•, V •)) := (ΦA(L,R), V •) , the inverse is given by Ψ̃A(X,Y, U•) :=

(ΨA(X,Y ), U•, XU•). �

Now for homogeneous decomposition classes, the natural thing to look at is

F(σ) := {(L,R) ∈ (pJ(σ))
2 | ∃ [x : y] ∈ (P1(K))r : xiLi − yiRi ∈ uJ(λ(i)), 1 ≤ i ≤ r}

F reg(σ) := F(σ) ∩Regd.

both are (PJ(σ))
2-invariant subsets of RQ(d), obviously

F(σ) = A× F((λ(1))) × · · ·F((λ(r))), F reg(σ) = A× F reg
((λ(1)))

× · · ·F reg
((λ(r)))

,

where A := {(L,R) ∈ (pJ(σ))
2 | Li = 0, Ri = 0, 1 ≤ i ≤ r} and F((λ(i))) is F(σ) for the

Segre symbol σ = (λ(i)). Observe, that Glr2 operates from the right on (pJ(σ))
2 by right

multiplictaion on the r diagonal blocks. Now consider the following Br
2-subrepresentation

of (pJ(σ))
2

F ′(σ) := A× F[1 : 0];(λ(1)) × · · · × F[1 : 0];(λ(r)) = uJ(σ) × pJ(σ).

Then it holds F(σ) = F ′σ ·Glr2 is closed and irreducible subset of (pJ(σ))
2. But it is not

smooth, therefore Gld ×(PJ(σ))
2
F(σ) is not smooth, to overcome this we can either restrict

to a smooth subvariety or �nd an iterated �bre bundle which is smooth. We have the

following results.

Lemma 53. Let d = (n, n). Let σ = (λ(1), . . . , λ(r)) be a Segre symbol with
∑r

i=1 |λ(i)| = n,

Iσ := 〈(i, i+ 1) ∈ Sr | λ(i) = λ(i+1)〉.

(1) Consider the Springer map associated to (Glr2, B
r
2, (pJ(σ))

2, F ′(σ))

π′ : F ′(σ) ×
Br2 Glr2 → F(σ)

It holds π′ is an isomorphism over F reg(σ) , in particular F reg(σ) is smooth. Observe that

π′ is also (PJ(σ))
2-equivariant.
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(2) It holds GldF(σ) = D(0, σ) and the map π(σ) : Gld ×PJ (σ)2 F(σ) → GldF(σ) is a

Iσ-Galois covering over D(0, σ). It restricts to

πreg(σ) : π−1
(σ)(Regd) = Gld ×(PJ(σ))

2
F reg(σ) → GldF

reg
(σ) ⊂ Regd

and GldF
reg
(σ) = (GldF(σ)) ∩Regd is the closure of D(0, σ) in Regd.

(3) We set π′(σ) := Gld ×(PJ(σ))
2
π′ : Gld ×(PJ(σ))

2
[F ′(σ) ×

Br2 Glr2] → Gld ×PJ (σ)2 F(σ). It

holds Gld ×(PJ(σ))
2

[F ′(σ) ×
Br2 Glr2] = (Gld ×Glr2)×(PJ(σ))

2×Br2 F ′(σ) and the Springer

map

Π(σ) : (Gld ×Glr2)×(PJ(σ))
2×Br2 F ′(σ) → GldF

′
σGl2 = D(0, σ)

is the composition Π(σ) = π′(σ) ◦π(σ) and therefore a Iσ-Galois covering over D(0, σ).

Proof:

(1) F ′(σ) ×
Br2 Glr2 = {(L,R), [x : y] ∈ (pJ(σ))

2 × (P1)r | xiLi − yiRi ∈ uJ(λ(i)), 1 ≤ i ≤ r},
(L,R) ∈ F reg(σ) implies that (Li, Ri) is equitubular, 1 ≤ i ≤ r. The map from the

equitubular modules to its one supporting tube is regular, we denote it by (X,Y ) 7→
t(X,Y ) ∈ P1(K). Then, we have a regular map F reg(σ) → F ′(σ) ×

Br2 Glr2, (L,R) 7→

(L,R), (t(L1, R1), . . . , t(Lr, Rr)), this is the inverse to (π′)−1(F reg(σ) )
π′−→ F reg(σ) .

(2) This follows from intersecting down with the charts UA, A ∈ Gl2, very similar to the

proof of the previous lemma.

(3) (Gld ×Glr2)×(PJ(σ))
2×Br2 F ′(σ) =

{
(
(L,R), (U•, V •), [x : y]

)
∈ RQ(d)×Gld/(PJ(σ))

2 × (P1)r |

L(V j) ⊂ U j , R(V j) ⊂ U j , (xiL− yiR)(V j) ⊂ U j−1,

i∑
k=1

sk < j ≤
i+1∑
k=1

sk, 0 ≤ i ≤ r − 1}

and Π(σ) is just the projection on the �rst factor
(
(L,R), (U•, V •), [x : y]

)
7→ (L,R),

that obviously factorizes as
(
(L,R), (U•, V •), [x : y]

)
7→ ((L,R), (U•, V •)) 7→ (L,R),

which is precisely the claimed factorization.

�

We shortly review some known results on the singularities which occur in the orbit

closures.

Classical Springer Theory: Let G be a connected reductive group, O ⊂ N the closure

of a G-orbit in the nilpotent cone (in LieG).

The singularity is locally factorial, normal Cohen Macaulay, Gorenstein with rational sin-

gularities, Springer resolution is crepant, Grothendieck's slice conjecture holds (i.e. if you

slice down the the Springer maps over a subregular orbit, you obtain the known crepant

ADE-singularity resolution of the same type as the group.)
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Quiver-graded Springer Theory: Zwara and Bobinski together with Zwara investi-

gated the geometric properties of orbit closures in the representation space RQ(d): For

arbitrary �nite quivers, orbit closures are regular in codimension one (cp. [Zwa05b]).

• For Dynkin quiver of type A or D orbit closures are normal Cohen Macaulay and

have rational singularities in typeA and rational singularities in characteristic zero in

type D (cp. [BZ02], [BZ01]). In type E only unibranch is proven yet (cp. [Zwa02b]).

Orbit closures are regular in codimension two ([Zwa05a]).

They are not locally factorial, as the following example shows

Q = A2,M = ( 0 1
0 0 ) .

The orbit closure is Spec K[a, b, c, d]/(ad − bc). This is not a factorial ring. The

factorization into irreducible elements is not unique, ad = −bc are two factorizations.
(There is a result of Mehta that for locally factorial rings it holds Gorenstein is

equivalent to normal and Cohen-Macaulay.)

• For extended Dynkin quiver, the singularities of orbit closures in codimension two

are either regular, Kleinian of type A or an a�ne cone over a rational normal curve.

For the oriented cycle the singularities are regular or Kleinian of type A. For the

Kronecker quiver Zwara gave an example (without restrictions on char K) of a rep-

resentation M = P ⊕ I with P indecomposable projective and I indecomposable in-

jective such that the orbit closure has worse singularities than normal (cp. [Zwa03]),

the Springer map of the directed decomposition P ⊕ I is a resolution of singularities

which is not crepant because the singularities in the orbit closure are not Gorenstein

(as they are not normal).

If Q is extended Dynkin and M indecomposable not in a tube of rank ≥ 2, then OM
is normal Cohen Macaulay (cp. [BZ06]).

Open problems: Of course, we would like to �nd collapsings onto closures of arbitrary

decomposition classes (for tame quivers) and use this to study their singularities and if they

are unions of decomposition classes. This certainly needs di�erent methods from what we

know at the moment.

When is OM Gorenstein and the collapsing map crepant? Are there general conditions

ensuring that?

In case there is a crepant resolution found:

The slice theorem does not make sense for Dynkin quiver, but is interesting for extended

Dynkin quivers.

In general of course we would like to �nd explicit instances for the decomposition theorem,

so how does the decomposition of π∗C look like for the constructed maps? Can we say

something on Steinberg varieties (this is a parabolic case), can we �nd an example of an

I-graded Springer theory?
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Chapter 6

Quiver �ag varieties of �nite type

Summary. Our aim in this section is to investigate quiver �ag varieties for Dynkin

quivers and in particular those with �nitely many orbits. We start with a locally trivial

�bre bundle over them and review some geometric properties. For studying irreducible

components, we use tangent space method, more precisely we detect the generically smooth

irreducible components by looking at dimensions of tangent spaces. It is then applied in

di�erent situations, such as for orbits, Reineke strata (de�nition see later on) and in the

last subsection for a simple version of canonical a decomposition for quiver �ag varieties.

We conjecture that Dynkin quiver �ag varieties are generically smooth, so the tangent

method would detect all irreducible components.

Notation and de�nitions:

K an algebraically closed �eld,

Q a �nite quiver with vertices Q0 and arrows Q1,

KQ its path algebra,

d an element in NQ0
0 ,

d := (d0 = 0, d1 . . . , dν) with dk ∈ NQ0
0 , dki ≤ dk+1

i for i ∈ Q0.

RQ(d) the representation space, de�ned to be
∏

(i→j)∈Q1
Adjdi ,

Gld the linear algebraic group (over K), de�ned as
∏
i∈Q0

Gldi ,

operating on RQ(d) as follows: For any K-algebra R,

M = (M(i→j))i→j ∈
∏
i→j HomR(Rdi , Rdj ), g = (gi) ∈ Gld(R)

we have gM := (gjMi→jg
−1
i )i→j

Aν the equioriented quiver 1→ 2→ · · · → ν,

Λ := KQ⊗K KAν+1

For any K-algebra Λ and Λ-modules M,N, we will use the following notation

(M,N)iΛ := ExtiΛ(M,N),

[M,N ]iΛ := dim ExtiΛ(M,N),
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For M ∈ RQ(d)(K) we de�ne FlQ
(
M
d

)
on K-valued points as

FlQ

(
M

d

)
(K) := {U = (0 ⊂ U1 ⊂ · · · ⊂ Uν = M) |

Uk ⊂ Uk+1 inclusion of KQ-modules, dimUk = dk};

in fact one can de�ne a scheme FlQ
(
M
d

)
of �nite type over K which has FlQ

(
M
d

)
(K) as

K-valued points (cp. [Wol09]). Except for the tangent spaces we will only work with the

K-valued points, i.e. in that case we study the underlying reduced subscheme FlQ
(
M
d

)
red

.

If M = {0} ∈ RQ(d)(K) is the unique semisimple KQ-module, i.e. all linear maps are

zero, we set

F(d) := FlQ

(
M

d

)
.

6.0.4 A locally trivial �bre bundle

An Aν-representation in KQ-modules is a sequence of KQ-module morphism

M1
A1−−→M2 → · · ·

Aν−1−−−→Mν .

Speci�cally Ms = (Mis)i∈Q0

As=(Ais)i∈Q0−−−−−−−−−→ Ms+1 = (Mi,s+1)i∈Q0 and for i
α−→ j ∈ Q1 we

have Mα,s : Mi,s → Mj,s and Mα,s+1Ai,s = Aj,sMα,s, 1 ≤ s ≤ ν − 1. That is the same as

a representation of the quiver Qν := (Q × Aν , I) with the relations given by commuting

squares.

Fix M ∈ RQ(d)(K) and a �ltration d of d.

XQ⊗ν+1

(
M

d

)
(K) := {(Mα,s)α∈Q1,1≤s≤ν , (Ai,s)i∈Q0,1≤s≤ν−1 ∈ RQ×Aν (d)(K) |

Mν = M,Mα,s+1Ai,s = Aj,sMα,s, rk(Ai,ν−1Ai,ν−2 · · ·Ai,s) = dsi}.

The condition on the ranks in the de�nition ensures that all Ai,s are injective. We de�ne

φ : XQν

(
M

d

)
(K)→ FlQ

(
M

d

)
(K)

(M1
A1−−→M2 → · · ·

Aν−1−−−→Mν) 7→ (0 = U0 ⊂ U1 ⊂ · · · ⊂ Uν = M)

where Us := Im(Aν−1Aν−2 · · ·As).

Let G(K) :=
∏

1≤s≤ν−1 Glds(K), it operates on XQν

(
M
d

)
(K) via (gs)s ·N = N ′ if there is

a commutative diagramm

N1
//

g1
��

N2
//

g2
��

· · · // Nν−1
//

gν−1

��

M

idM

��
N ′1

// N ′2
// · · · // N ′ν−1

//M

We observe that two points in XQ⊗ν+1

(
M
d

)
(K) have the same image under φ if and only if
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they are in the same G(K)-orbit.

The G-operation is free. The explicit de�nitions of the scheme structures of XQ⊗ν+1

(
M
d

)
and FlQ

(
M
d

)
are given later (see subsection 6.4.2).

Lemma 54. The previously de�ned map φ : XQν

(
M
d

)
→ FlQ

(
M
d

)
is a principal G-bundle

(of schemes).

Proof: For Q = A1, this is already known, see for example [Hub13], section 7.1 and 8.

Therefore it is true for M = {0}. But we have a cartesian diagram where the vertical

arrows are closed embeddings:

XQν

(
M
d

)
φ

��

// XQν

({0}
d

)
φ0

��
FlQ
(
M
d

)
// F(d)

As φ0 is a principal G-bundle, φ is as well. �

Remark. The map φ induces a bijection of the irreducible components of XQν

(
M
d

)
and of

FlQ
(
M
d

)
. This follows from the next lemma and the property that for a principal G-bundles

images of G-invariant closed subsets are closed.

Lemma 55. Let G be an irreducible group scheme. Let X be a noetherian scheme with

G-operation and f : X → Y a dominant morphism with:

1) The �bres of f are G-orbits, i.e. for x ∈ X we have f−1(f(x)) = G · x.

2) The images of closed G-invariant sets are closed.

Then, there is a bijection

{ irreducible components of X} → { irreducible components of Y }

C 7→ f(C)

with inverse Z 7→ f−1(Z).

Proof: The irreducible components of X are G-invariant (for an irreducible component

C, the closure of the image of the map G × C → X is an G-invariant irreducible closed

subset containing C, so it equals C). Let Z be an irreducible component of Y ; as f

is dominant there is an irreducible component C of X dominating Z. By assumption

2) it follows that Z = f(C). Now, suppose C ′ is another irreducible component of X

with f(C ′) ⊂ Z. Take x′ ∈ C ′, then there is an x ∈ C with f(x′) = f(x). Therefore,

x′ ∈ G · x′ = G · x ⊂ C, proving that C ′ = C. �
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6.1 Categories of �ags

6.1.1 What is a �ag?

De�nition 18. Let C be an abelian category with a forgetful functor to sets and ν ∈ N.
A sequence of monomorphisms in C

U• = (0 = U0
i0−→ U1

j1−→ · · · iν−1−−−→ Uν = M)

is called �ag in C with �agpole M of length ν if the monomorphisms under the forgetful

functor are the subset inclusions.

A sequence of epimorphisms in C

V• = (M = V0
j0−→ V1

j1−→ · · · jν−1−−−→ Vν = 0)

is called dual �ag in C with �agpole M if the induced monomorphisms

M/Vi →M/Vi+1,1 ≤ i ≤ ν − 1 under the forgetful functor are just subset inclusions.

We de�ne a series of categories. For shortness we leave out the phrase "`of length ν"'.

• Let (Aν+1, C) be the category of functors from the small category Aν+1 to C, i.e. an
abelian category whose objects we denote by

(T, f) = (T0
f0−→ T1

f1−→ · · · fν−1−−−→ Tν)

for objects Ti, 0 ≤ i ≤ ν and morphisms fi, 0 ≤ i ≤ ν − 1 in C.

• Let X be the full subcategory of (Aν+1, C) whose objects are of the form (T, f) with

all fi are monomorphism. We call it category of monos in C.
Let Y be the full subcategory of (Aν+1, C) whose objects are of the form (T, f) with

all fi are epimorphism. We call it category of epis in C.

• Let X be the full subcategory of X whose objects are �ags of length ν, we call X the

category of �ags in C. Let Y be the full subcategory of Y whose objects are dual

�ags of length ν. We call Y the category of dual �ags in C.

• Let M be an object in C.
We de�ne XM to be the full subcategory of X with objects (T, f) such that Tν = M ,

XM be the full subcategory of XM whose objects are in X , and call them respectively

category of monos to M , category of �ags in M .

(Analogously you could de�ne the dual versions YM , YM .)

For M an object in C, the object M = (M = M = · · · = M) will be considered as a

�nal object of XM and XM . There are equivalences of categories X → Y,X → Y,XM →
YM ,XM → YM de�ned via U• 7→ coker(U• →M), where M = Uν .

Furthermore, there is the functor which project on the �agpole fp : X→ C, (T, f) 7→ Tν .
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From now on let C be the category KQ−mod of �nite-dimensional left modules over

the ring KQ. The dimension vectors of objects in X will be denoted as a �ltration d.

Remark. We see these categories in an obvious way as categori�cations of varieties and

regular maps in the following way (where we are sloppy with the length ν).

(1) There is a bijection between Aut(M)-orbits on FlQ
(
M
d

)
, d dimension �ltration of

dimM , and isomorphism classes in XM .

(2) There is a bijection between Aut(M)-orbits on XQ⊗ν+1

(
M
d

)
, d dimension �ltration of

dimM , and isomorphism classes in XM .

(3) The map φ : XQ⊗ν+1

(
M
d

)
→ FlQ

(
M
d

)
from the previous section corresponds to the

inclusion XM → XM which is an equivalence of categories (up to the issue with

starting �ags with 0).

(4) We de�ne

RF(d) := {(U,M) ∈
∏
i∈Q0

Fl(di)×RQ(d) | M(i→j)(U
k
i ) ⊂ Uk

j , for i→ j ∈ Q1, 1 ≤ k ≤ ν}.

There is a bijection between Gld-orbits in RF(d), d ∈ Nd0 and isomorphism classes

of objects in X .

(5) There is a bijection between Gld-orbits on RQ×Aν ,I(d) and isomorphism classes of

X, where I is the ideal such that KQ⊗KAν+1 = K(Q× Aν+1)/I.

There are also versions of re�ection functors for FlQ
(
M
d

)
(and XQ⊗ν+1

(
M
d

)
), see [Wol09]

and analogously for XM (and XM ).

To understand the categories X and XM it is enough to study the categories

(Aν+1, C),X,XM . We identify KQ−mod with the category of functors (Q,K−vs), where
Q is seen as a small category andK−vs denotes the category of �nite dimensionalK-vector

spaces. Then there is an equivalence of categories

(Aν+1,KQ−mod)→ (KQ⊗K KAν+1)−mod.

In the next subsection we have a look at the representation type of the tensor algebra

KQ⊗K KAν+1.

6.1.2 On the tensor product KQ⊗KAn

Fix numberings An := (1 → 2 → · · · → n). Let A be a �nite dimensional K-algebra. We

de�ne the K-algebra of upper triangle n× n-matriceswith coe�cients in A to be

Tn(A) :=


A A · · · A

0 A
...

...
. . .

. . .
...

0 · · · 0 A
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An isomorphism Tn(K) ∼= KAn induces an isomorphism Tn(A) ∼= A ⊗K KAn.The next

lemma has essentially already been seen in the beginning of the last section, therefore we

leave out the proof.

Lemma 56. Let Q be a quiver bound by an ideal I ⊂ KQ. Tn(KQ/I) ∼= K∆/J, where

∆ = (∆0,∆1) is the following quiver:

• ∆0 := Q0 × {1, . . . , n},

• For each α : i → j ∈ Q1, s ∈ {1, . . . , n} there is an arrow α(s) : (i, s) → (j, s) ∈ ∆1

and for each i ∈ Q0, t ∈ {1, . . . , n− 1} there is an arrow ι(i,t) : (i, t)→ (i, t+ 1) ∈ ∆1

and where the generators of J are ρ(s), α(t+1)ι(i,t)−ι(j,t)α(t) with ρ ∈ I, s ∈ {1, . . . , n}, (α : i→
j) ∈ Q1, t ∈ {1, . . . , n− 1}.
In particular, if KQ/I is the incidence algebra of a poset1 (Σ,≤) then Tn(KQ/I) is the

incidence algebra of the poset (Σ× {1, . . . , n},4) with (x, s) 4 (y, t) i� s ≤ t and x ≤ y.

Notation. In the situation of the previous lemma, we de�ne

(Q, I)⊗n := (∆, J), Q⊗n := (Q, 0)⊗n.

Remark. As we are not the �rst having a look at this algebras, I give a short collection

of some results from the literature about them.

(a) In [Ass06a] one can �nd the following properties and results. Assume that A = KQ/I

is the incidence algebra of a poset. Then

1. A is schurian 2, triangular 3 and semi-commutative 4,

2. one easily sees that π1(Tn(A)) ∼= π1(A) using [Ass06a], section 4.1,

3. If A is a tree algebra, then Tn(A) contains no crowns 5. This is not true for more

general algebras, for example KA⊗3
2 contains a crown. By [Ass06a], section 7.2,

the following are equivalent for the incidence algebra A of a poset:

∗ A does not contain any crowns6

1This is the case i� Q has no oriented cycles and I is the ideal generated by all v − w with (v, w)
contour (i.e. v, w ∈ Q∗ with the same source and target). Examples are given by KQ with the underlying
graph of Q is a tree.

2KQ/I schurian : ⇐⇒ ∀ v, w ∈ Q∗ with same source and target there is (λ, µ) ∈ K2 \ {(0, 0)} with
λv + µw ∈ I

3KQ/I triangular :⇐⇒ Q has no oriented cycles.
4A schurian triangular algebra KQ/I is semi-commutative if, for every v, w ∈ Q∗ with same source

and target, we have v ∈ I if and only if w ∈ I.
5Let Σ = (S0,≤) a �nite poset and A = KΣ. A crown is a cyclic sequence (x1, . . . , xn+1 = x1) in S0

with

(i) The only ≤-relations in the sequence are given between neighbours and they are all comparable, i.e.
it holds either xi ≤ xi+1 ≥ xi+2 or xi ≥ xi+1 ≤ xi+2 for all i ∈ Z/nZ.

(ii) In the associated quiver it holds for all i ∈ Z/nZ: If z is a point on a path with end points {xi, xi+1}
and on a path with endpoints {xi+1, xi+2}, then z = xi+1.

6By [Dou98], section 3.3, this is for an incidence algebra of a poset equivalent to be called completely
separated. This property we will need later on.
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∗ A is strongly simply connected. 7

Furthermore, if these properties are ful�lled the following holds:

∗ A admits a preprojective component, i.e. its Auslander-Reiten quiver con-

tains no oriented cycles and has a preprojective component which is a com-

ponent which is a union of τ -orbits of projectives. In this case there is a

preprojective component such that the τ -orbit quiver is a tree, see [Bon84a].

(b) There is also an isomorphism of (non graded) K-algebras

Tn(KQ) ∼= T ((KQ)(An)0 , (KQ)(An)1), where the right hand side is a tensor algebra

considered in [Wol09], Appendix B. There he has also shown that its global dimension

is ≤ 2. So, in particular, Tn(KQ) is quasi-hereditary (see de�nition 19 later).

Theorem 6.1.1. Let Q be a connected quiver without relations, Q 6= A1, n ∈ N≥2 and K

an algebraically closed �eld.

(i) Tn(KQ) is of �nite representation type i� one of the following conditions hold.

1) n = 2 and Q is Dynkin with graph in {A2, A3, A4}.

2) n = 3 and Q is Dynkin with graph A2.

3) n = 4 and Q is Dynkin with graph A2.

We have (obviously) T3(KA2) ∼= T2(KA3), T4(KA2) ∼= T2(KA4).

(ii) Tn(KQ) is tame of in�nite representation type i� one of the following hold.

1. n = 2 and Q is Dynkin of type A5 or D4.

2. n = 3 and Q is Dynkin of type A3.

Remark. One can even prove the following: If Q is a Dynkin quiver with graph A2, A3, A4,

then T2(KQ) is tilted of type D4, E6, E8. According to [Hap87], theorem 5. 12, they are

tilted of this type if and only if they are derived equivalent to an algebra of this type. If

Q is equioriented, this derived equivalence is part of the ADE-chain folklore, see for the

homepage [ADE08]. For the other orientations it is some work to go through the cases (A.

Hubery suggests the following: First check that the associated cluster tilted algebras are

mutation equivalent to path algebras of Dynkin quivers of these types. Then show that

the Grothendieck group does not change when passing to the cluster tilted algebras and

use one of the other equivalences in Happel's result loc. cit. again to get the result.).

Remark. Before we discuss the proof, we give a short recall that in certain cases the Tits

form is dominating the representation type of an algebra:

We see an algebra A = KQ/I as a category whose objects are the idempotents ei of A,

i ∈ Q0, and morphisms from ei to ej are given by ejAei. A (full) subcategory of A is then of

the form C = eAe, where e =
∑

i∈J ei for some J ⊂ Q0; it is called convex subcategory

7we call a schurian triangular algebra strongly simply connected if every full convex subcategory
(see remark 6.1.2) is simply connected. This is justi�ed by [Ass06a], section 6.1.
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if J is path-closed, i.e. for any path in Q with endpoints in J every vertex on the way is

in J .

(a) (see [HV83] and [Bon84b]) Let A be an algebra which admits a simply connected

preprojective component. Then, the following are equivalent:

* A is representation-�nite.

* A does not contain a convex subcategory which is n-Kronecker (n ≥ 2) or tame

concealed8

* qA is weakly positive.

In this case, there is a bijection between the vertices of the Auslander-Reiten quiver

of A and the positive roots of qA. The second point can be checked explicitly with

the list in [HV83].

(b) (see [Sko97], thm 4.1, corollary 4.2) Let A be a strongly simply connected algebra

having no convex pg-critical9 subcategory. Then, the following are equivalent:

* A is tame.

* A has a directed Auslander-Reiten quiver.

* qA is weakly non-negative.

The quivers with relations of pg-critical algebras are listed in [NS97] explicitly.

(c) (see [Drä94], section 4.3) Let A be a completely separating algebra. Then, the

following are equivalent:

* qA is weakly inde�nite.

* A has a convex hypercritical10 subalgebra.

In this case, it follows that A is wild. The second point can be checked explicitly

using the list in [Ung90].

Proof of 6.1.1:

ad (i) A direct consequence of the main theorem in [LS79] is the following:

T2(KQ) is of �nite representation type i� 1) holds true. Therefore, we just need to

determine the representation type for n ∈ {3, 4} and Q Dynkin of type ∈ {A3, A4}.
For n = 3, Q of type A3 one can �nd the quiver of a tame concealed algebra (cf.

[HV83]) as a subquiver, the same argument works for n = 3, Q of type A4.

8An algebra B is called tame concealed if there exists a tame connected hereditary algebra and a
tilting module TA which is preprojective (or preinjective) such that B = EndA(T ).

9pg-critical= minimal wrt. convex subcategories such that it is not a polynomial-growth algebra, see
de�nition in [Sko97].

10hypercritical = minimal wild wrt. convex subcategories
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ad (ii) Looking at the list in [Ung90] one �nds that in the following cases there is a hyper-

critical subcategory:

* n ≥ 2 and Q contains a subquiver of type A6 or D5,

* n ≥ 3 and Q contains a subquiver of type A4 or D4,

* n ≥ 4 and Q contains a subquiver of type A3.

Therefore, these cases are wild.

For n = 2 and Q Dynkin of type A5 or D4, and for n = 3 and Q Dynkin of type A3,

we can neither �nd pg-critical subcategories nor hypercritical subcategories inside,

see [NS97] and [Ung90]. Therefore, using c) of the previous remark, we get that their

Tits forms are not inde�nite which implies it is weakly non-negative. Then by b), all

of them have to be tame.

�

Remark. Let Λ be a basic connected �nite-dimensional algebra of �nite global dimension

with Gabriel quiver (Q, I) and d ∈ NQ0
0 . If qΛ(d) ≤ 0, then there are in�nitely many orbits

in R(Q,I)(d) (where R(Q,I)(d) ⊂ RQ(d) is the closed variety of representations ful�lling the

relations in I). In [Bon83] (see also introduction of [PS99]) the following inequality is

proven

qΛ(d) ≥ dimGld − dim R(Q,I)(d).

Then by assumption dimGld ≤ dim R(Q,I)(d), so for any module M ∈ R(Q,I)(d)(K) we

have:

dimOM ≤ dim R(Q,I)(d)− [M,M] < dim R(Q,I)(d),

and as there are no dense orbits there have to be in�nitely many.

6.1.3 Categories of monomorphisms

Let Λ = KQ⊗KAν+1. Now, we have a look at the categories X = XQ⊗ν+1 and Y = YQ⊗ν+1

as subcategories of Λ-mod. We consider, often without mentioning, the full embedding

KQ−mod→ Λ−mod,

M 7→ (M = M = · · · = M).

Lemma 57. The following conditions hold.

(i) X is closed under subobjects, Y is closed under images. In particular both are closed

under direct summands.

(ii) X and Y are closed under extensions.

(iii) X and Y have the Krull-Schmidt property. Indecomposable objects in X and Y are

also indecomposable in Λ-mod.
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(iv) X contains all projective Λ-modules, Y contains all injective Λ-modules.

(v) For all objects U,U ′ in X with �agpoles Uν = M,U ′ν = M ′, V, V ′ in Y with �agpoles

V0 = N,V ′0 = N ′ it hold

(a) (V,U) = 0 and (U,U ′) = (M,M ′), (V, V ′) = (N,N ′).

(b) (U,M ′)1 = (M,M ′)1
KQ, (N,V ′)1 = (N,N ′)1.

(c) (U,U ′)2 = (V, V ′)2 = (U, V )2 = 0.

(vi) X and Y are functorially �nite so they have relative almost split sequences11.

Proof: (i),(ii),(iii) are straight-forward to see.

(iv) Follows from the description of the projective and injective modules given in [ASS06b],

III, 2.4 and 2.6, applied to the quiver described in the previuous section.

(v) Follows from projective and injective dimensions of M,M ′, N,N ′ being less or equal

1.

(vi) One can directly write down the left- and right-approximations.

�

6.1.4 Description as ∆-�ltered modules over the quasi-hereditary alge-

bra Λ = KQ⊗KAν

The literature background for this paragraph is [Rin91]. We assume that Q is a quiver

without loops. Again, by forgetting the zero we see XQ⊗ν+1 as a full subcategory KQ⊗Aν-
mod. For every (i, s) ∈ Q0 × {1, . . . , ν} = (Q⊗ν)0 we de�ne a Q⊗ν-representation θi,s via

(θi,s)j,t =

K, if i = j, s ≤ t,

0, otherwise.

and the condition that all morphisms are the identity whenever possible. If i is a sink in Q,

then all θi,s are projective Λ-modules. Denote by qij the number of α ∈ Q1 with α : i→ j,

it holds

[θi,s, θj,t]
1 =

qi,j , if s ≤ t

0, else

(For example we can use [ASS06b], III, Lemma 2.12 to see this.)

[θi,s, θj,t] =

1, if i = j, s ≤ t

0, otherwise.

11see [Rin91] for the de�nitions of functorially �nite and relative almost split sequence.
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(This is easy to see directly.)

Let θ = {θi,s | i ∈ Q0, s ∈ {1, . . . , ν}}. We denote by F(θ) the full subcategeory of Λ-

mod having a �ltration in θ. Thus, M belongs to F(θ) if and only if M has submodules

0 = M0 ⊂M1 ⊂ · · · ⊂Mt = M with Ms/Ms−1 is isomorphic to a module in θ.

Lemma 58. Assume that Q is without oriented cycles, then

X = F(θ).

Proof: For a KQ-module M we call the support subquiver QM to be the maximal

subquiver with Mi 6= 0 for all i ∈ (QM )0. For a module U = (U1
i1−→ . . .

iν−1−−−→ Uν) in X
take a source i in the support subquiver for Uν . Let Vi ⊂ Ui,ν be a codimension 1 subvector

space. Then, we can de�ne a subrepresentation U ′ ∈ X of U via

(U ′)j,s :=

Uj,s, if j 6= i,

(iν−1 · · · is+1is)
−1(Vi), if j = i,

with morphisms such that U ′ is a subrepresentation of U . Let s := min{k ∈ {1, . . . , ν} |
(iν−1 · · · ik+1ik)

−1(Vi) 6= Ui,k}, then we have a short exact sequence

0→ U ′ → U → θi,s → 0,

induction on the dimension vector gives then a �ltration of U with subquotients in θ.

For the other inclusion observe that Λ-modules can be written as M = (Mi
fα−→ Mj)α∈Q1

where the Mi are KAν-modules and the fα are KAν-linear maps. Then, M is in X if

and only if Mi is a projective KAν-module for each i ∈ Q0. Let now M = (Mi
fα−→

Mj)α∈Q1 , N = (Ni
gα−→ Nj)α∈Q1 be in F(θ) and let

0→ N →M → θai,s → 0

be a short exact sequence. At the vertex i we get a short exact sequence of KAν-modules

0→ Ni →Mi → P (s)a → 0.

As P (s)a is projective the sequence is split, this implies Mi
∼= Ni ⊕ P (s)a. Fixing a

numbering θ1, . . . , θn of the set θ such that [θj , θi]
1 = 0 for all j ≥ i ensures that we can

�nd a �ltration 0 = Xn+1 ⊂ Xn ⊂ · · · ⊂ X1 = M such that Xi/Xi+1
∼= θmii . Now, using

this �ltration we see with the previous argument that each Mi is projective, so M is in X.
�

De�nition 19. Lett A be an artin algebra with (representatives of the isomorphism classes
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of the ) simple modules S1, . . . , Sn and their projective covers P1, . . . , Pn. Then, one de�nes

∆(i) := Pi/

∑
j>i

Im(Pj → Pi)


where the sum goes over all A-linear maps Pj → Pi. The algebra A is called quasi-

hereditary with respect to the ordering S1, . . . , Sn if the following two conditions hold:

(1) A ∈ F(∆), where ∆ = {∆(i) | 1 ≤ i ≤ n}

(2) For all i ∈ {1, . . . , n}: Si occurs with multiplicity one in a composition series of ∆(i).

If A is quasi-hereditary wrt. S1, . . . , Sn, we call ∆(i), 1 ≤ i ≤ n the standard modules

for A.

Remark. If Q has no oriented cycles, the set Θ has a partial ordering such that [θi, θj ]
1 = 0

whenever i ≥ j, and for all elements θ, θ′ ∈ Θ, all homomorphism between θ and θ′

are zero or invertible. Let us �x a total ordering re�ning this partial ordering, wlog.

Θ = {θ1, . . . , θn} and the total ordering is the natural one on {1, . . . , n}. By [DR92],

theorem 2, p.14: There exists a quasi-hereditary algebra A such that F(Θ) = X is the

category of ∆-�ltered modules.

Remember that we have �xed a numbering θ1, . . . θn in the previous remark. This means

that we have chosen a numbering of the vertices of the quiver associated to KQ⊗KAν .

Lemma 59. Let Q be without oriented cycles. The algebra A = KQ ⊗ KAν has the

structure as quasi-hereditary algebra with respect to the previously �xed numbering of the

vertices.

The category X is the category of ∆-�ltered modules with respect to this quasi-hereditary

structure.

Proof: Set Λ := KQ ⊗ KAν . It is enough to prove that all projective Λ-modules are

in X, because then one can take in the proof of theorem 2, [DR92] the projective covers

of Pi → θi for the Pθ(i). By the theorem we get an identi�cation of X with ∆-�ltered

modules for Aop = EndA(A) = EndA(
⊕n

i=1 Pi) via the functor

A−mod→ Aop −mod, X 7→ HomA(A,−).

But then clearly, applying the functor with exchanged roles of A and Aop again implies the

claim of the lemma.

One can use the explicit recipe given in [ASS06b], III, lemma 2.4, to see that the indecom-

posable projectives P (i, s), i ∈ Q0, s ∈ {1, . . . , s} ful�ll: For each α : (j, t) → (j, t + 1) we

consider the map

P (i, s)α : P (i, s)(j,t) → P (i, s)(j,t+1), w + I 7→ wα+ I
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where I is the ideal given by the commuting squares and w runs through path from (i, s)

to (j, t) in the quiver Q⊗ν . It holds that wα ∈ I implies w ∈ I. In other words P (i, s)α is

a monomorphism. Therefore, P (i, s) is in X. �

6.1.5 When is X representation-�nite?

We say X is representation-�nite if it has up to isomorphism only �nitely many indecom-

posable objects.

Theorem 6.1.2. The category X is representation-�nite i� the pair Q, ν is one of the

following

(i) Q is of type A2, ν arbitrary, and the indecomposables of X are

(P (i)→ P (j)), (P (s)→ 0), (0→ P (t)), with i ≤ j and i, j, s, t ∈ {1, . . . , ν}

where P (i) denotes the projective KAν-module corresponding to i.

(ii) Q is of type A3, ν = 3,

(iii) Q = A3, ν = 4,

(iv) Q is of type A4, ν = 2.

(v) Q is of type A5 equi-oriented or exactly one source or sink not in outer points or the

middle , ν = 2. 12

The answers for type A2 and type A3 have kindly been explained to me by W. Crawley-

Boevey.

Sketch of proof: As X is equivalent to Y which is by reversing all arrows equivalent to

X for the opposite quiver, we can ignore the opposite quivers.

• Positive answers: We write ↪→ (or �) in a quiver when we mean the category of

representations with this linear map injective (or surjective). There is an equivalence

between the categories of representations of

(1, 1) � � //

G
G

G
G

��

(1, 2)

G
G

G
G
� � //

��

(1, 3) � � //

��

· · · � � // (1, ν)

��
(2, 1) � � // (2, 2) � � // (2, 3) � � // · · · � � // (2, ν)

and this quiver, where the dotted arcs are zero-relations

1, 1 � � //
m l k j i h g f e d c b a ` _ ^ ] \ [ Z Y X W V U T S R Q

1, 2 � � //
m l k j i h g f e d c b a ` _ ^ ] \ [ Z Y X W V U T S R Q

· · · � � // 1, ν−1 � � //
m l k j i h g f e d c b a ` _ ^ ] \ [ Z Y X W V U T S R Q

1, ν // 2, ν // // 2, 1 // // 2, 2 // // · · · // // 2, ν−1

12In this case I was not able to �nd a dimension vector with Tits form is zero, I do not really have a
proof that they belong to this list.
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A representation of the �rst quiver is a linear map f : Xν → Yν mapping a �ag of

subspaces X1 ⊂ · · · ⊂ Xν to another �ag of subspaces Y1 ⊂ · · · ⊂ Yν . The functor to
obtain a representation of the second quiver is to replace the second �ag by its dual

�ag Y �Y/Y1� · · ·�Y/Yν−1, then the condition that f(X•) ⊂ Y• translates into

the zero-relations. As the category of representations of the last quiver is well-known

to be representation-�nite (i) follows.

With a similar argument we substitute the quivers

aoo b // // c // // // // d // eoo oo oo f //

?�

OO

oo ?�

OO

//

�
�

�
�

?
?

?
?

?�

OO �
�

�
� //?�

OO

//?�

OO �
�

�
� ?�

OO

//?�

OO �
�

�
� //?�

OO �
�

�
� //?�

OO �
�

�
� //?�

OO �
�

�
� ?�

OO

?�

OO

oo ?�

OO?
?

?
?
oo ?�

OO?
?

?
?
oo ?�

OO?
?

?
?

//

�
�

�
� ?�

OO

?�

OO

oo ?�

OO

//

�
�

�
�

?
?

?
?

?�

OO �
�

�
� //?�

OO

//?�

OO �
�

�
� ?�

OO

�
�

�
� //?�

OO

//?�

OO �
�

�
� ?�

OO

by the following (the dotted lines are the zero relations):

oooo oooo aoo b // // // // // // c // // // // // // //

?�

OO

//?�

OO �
�

�
� ?�

OO

?�

OO

//?�

OO �
�

�
� ?�

OO

//?�

OO �
�

�
� ?�

OO

// // // d // // // oooo eoo oo oo f // // //

//?�

OO �
�

�
� //?�

OO �
�

�
� //?�

OO �
�

�
� ?�

OO

?�

OO

oo ?�

OO?
?

?
?
oo ?�

OO?
?

?
?

All algebras described by the last four quivers (consider the arrows� as usual arrows)

are quotients of incidence algebras of posets not containing any crowns. By results

in [Ass06a],[Drä94] these algebras admit a preprojective component whose τ -orbit

quiver has as underlying graph a tree, which implies the preprojective component is

simply connected and we can apply 6.1.2 (a).

The quivers do not contain a convex subcategory which is m(≥ 2)-Kronecker, nor

one that can be found in the list [HV83], this gives a proof of �nite representation

type.

• negative answers: We give a list of dimension vectors written on the vertices of the

quivers Q⊗ν , which give negative answers for all quivers not in the list (i)-(v). We will

choose in�nite families of indecomposable D̃4-representations and Ẽ6-representations

of the form

1
α

<< 1β
��

1
ε

2
ζ

3
ι

η
2
κ

1

2 2
θ

1
γ

��
1

δ<<

1

(the direction of the arrows are speci�ed in the examples) subject to the condition
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βα 6= 0, εζηθ 6= 0 if the composition is wellde�ned. It might help to use for the outer

points of the quiver which are sinks the previous technique of rolling out an arm.

2
=

= 3
ι //ζoo 2

�
�

2
ζ // 3

ι //

�
�

2

�
�

2

OO

=
= 2 //oo

η
OO

2

OO

�
�

1

ε
OO

// 3

OO

//

�
�

2

OO

�
�

2

OO

=
= 1 //oo

θ
OO

2

OO

�
�

0 //

OO

2

η
OO

//

�
�

2

OO

�
�

1

ε
OO

0 //oo

OO

1

κ
OO

0

OO

// 1
θ
OO

//

�
�

2

OO

�
�

0

OO

// 0

OO

// 1

κ
OO

1
=

= 2
=

=
oo 2

=
=

oo 1
γoo 1

α // 2

�
�

=
= 2

=
=

oo 1
δoo 1

δ // 2

�
�

=
= 2oo β // 1

�
�

1

OO

=
= 2

=
=

βoo

OO

1
=

=

δ
OO

oo 0oo

OO

0 //

OO

2

�
�

=
=

OO

1
=

=

γ
OO

oo 0oo

OO

0 //

OO

2

�
�

=
=

OO

1

α
OO

oo // 1

�
�

OO

1

OO

1

α
OO

oo 0

OO

oo 0oo

OO

0

OO

// 1

β
OO

0

OO

oo 0oo

OO

0

OO

// 1

γ
OO

0

OO

oo // 0

OO

,

1
α // 2 //

�
�

2
=

=
�

�
2oo

=
= 1
δoo 1

α // 2

�
�

=
= 2 //oo 2

�
�

=
= 1
δoo

0 //

OO

1 //
β
OO

2

OO

1oo
γ
OO

0oo

OO

0 //

OO

1

β
OO

0 //oo

OO

1

γ
OO

0oo

OO

1
=

= 2
εoo

=
= 3
ζoo

=
= 3oo

=
= 2
ιoo

=
= 1
κoo 1

ε // 2

�
�

=
= 3
ζoo

=
= 3oo

=
= 2
ιoo

=
= 1
κoo

1

OO

2

OO

oo 2oo
η
OO

1
θoo

OO

0oo

OO

0oo

OO

0 //

OO

2

OO

2oo
η
OO

1
θoo

OO

0oo

OO

0oo

OO

Example. An explicit example for the previously discussed indecomposables.

Q = 1 // 2 // 3 4oo 5oo

and ν = 2 (ignoring the zero representation). One can see XQ⊗ν+1 as a subcategory of

(Aν , C). It holds KQ⊗KA2 = KQ⊗2 with

Q⊗2 = • // •

~
~

~
~

// •

~
~

~
~

@
@

@
@ •oo

@
@

@
@ •oo

• //

OO

• //

OO

•

OO

•

OO

oo •oo

OO

Then, according to [HV83], case Ẽ7, the dimension vector d = ( 1 2 2 2 1
0 1 2 1 0 ) is a root spanning

the radical. There are in�nitely many isomorphism classes of indecomposable KQ⊗2-

modules of dimension vector d.

For example, we can �nd the following family of pairwise non isomorphic indecomposable

modules, for λ ∈ K \ {0} de�ne

Xλ := K
( 1

1 )
// K2 id // K2 K2

id
oo K

( 1
0 )
oo

0 //

OO

K

(
1
λ

)
//

(
1
λ

) OO
K2

id

OO

K

( 0
1 )

OO

( 0
1 )
oo 0oo

OO
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Remark. For Q = A2 we saw that the associated category X is representation �nite. One

can also check directly that the Tits form is positive de�nite on this category.

For any ν ∈ N, and d =
(
d0=0 d1 ··· dν
e0=0 e1 ··· eν

)
6= 0 with dk ≤ dk+1, ek ≤ ek+1 for all k ∈

{0, . . . , ν − 1}, we have
〈d,d〉 > 0.

Furthermore, if X in XA⊗ν+1
2

is a module with 〈dimX,dimX〉 ≤ 1, then it holds that

dν , eν ∈ {0, 1}. Especially, all bricks ful�ll this.
For the proof just consider.

〈d,d〉 =

ν∑
k=0

dkdk +

ν∑
k=0

ekek −
ν−1∑
k=0

dk+1dk −
ν−1∑
k=0

ek+1ek −
ν∑
k=0

dkek +

ν−1∑
k=0

dkek+1

=
ν−1∑
k=0

dk+1(dk+1 − dk) +
ν−1∑
k=0

ek+1(ek+1 − ek)−
ν−1∑
k=0

dk(ek+1 − ek)− dνeν

=

ν−1∑
k=0

dk+1(dk+1 − dk) +

ν−1∑
k=0

ek+1(ek+1 − ek)−
ν−1∑
k=0

(dν − dk)(ek+1 − ek)

We set xk := dk+1 − dk, yk := ek+1 − ek, 0 ≤ k ≤ ν − 1, A := (aij)ij with aij = 1 if j ≥ i,

aij = 0 if j < i, then it holds that

〈d,d〉 =
∑
k

xk
∑
l≤k

xl +
∑
k

yk
∑
l≤k

yl −
∑
k

yk
∑
l≥k

xl

= txtAx+ tytAy − tyAx

= t(x− y)A(x− y) + txAy

It holds B = 1
2(A + tA) is positive de�nite. This is easy to see using the fact that main

minors all have the same form as B and detB =
∏ν
k=1

k+1
2k > 0. So, if x 6= y the �rst

summand is positive; if x = y the second summand is positive.

6.2 Tangent methods

Tangent spaces of the (not necessarily reduced) scheme FlQ
(
M
d

)
of �nite type over K have

been described by Stefan Wolf ([Wol09], Lemma 5.23 ). He showed that for U ∈ FlQ
(
M
d

)
(K)

the tangent space at U is

TUFlQ

(
M

d

)
= (U,M/U)Λ

where M is considered as Λ-module via M
id−→M

id−→ · · · id−→M .

Here it is important to let the �ags start at 0 because then

M/U =
(
M�M/U1�M/U2� · · ·�M/Uν = 0

)
.

Remark. We set GrΛ

(
M
d

)
(K) := {U | U Λ− submodule of M, dimU = d}.

In his proof of [Wol09], Lemma 5.23, Stefan Wolf found an isomorphism (very similar to
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the map φ below)

GrΛ

(
M

d

)
→ FlQ

(
M

d

)
, (U0

i1−→ · · · iν−→ Uν) 7→ (U0 ⊂ U1 ⊂ · · · ⊂ Uν = M),

it is wellde�ned as the maps ij are restrictions if idM .

6.2.1 An example of a not generically reduced quiver �ag variety

The quiver �ag variety FlQ
(
M
d

)
is a closed subscheme of F(d) which is just a product

of #Q0 �ag varieties. These have well-known a�ne charts given by matrices in column

echolon form with 1 at pivot positions and the other nonzero entries are the coordinates

of the a�ne space and row permutation of these, see example below. We can pull them

back to FlQ
(
M
d

)
to get a family of a�ne schemes which glue together to FlQ

(
M
d

)
, We still

call them charts even though they are not a�ne spaces in general.

We use this to give an example of a generically not reduced FlQ
(
M
d

)
.

Example. The six a�ne charts of the Grassmannian Gr(2, 4) are given by

A1 :=

(
1 0
0 1
X Y
Z U

)
, A2 =

(
1 0
R S
0 1
Z U

)
, A3 :=

(
1 0
R S
X Y
0 1

)
,

A4 =

(
V W
1 0
0 1
Z U

)
, A5 :=

(
V W
1 0
X Y
0 1

)
, A6 =

(
V W
R S
1 0
0 1

)
.

Let Q be the Jordan quiver. Let R be a K-algebra and d := (0, 2, 4) we consider

R2
Ai // R4 M :=

(
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
bb

The charts UAi of the quiver �ag variety are then given by the closed condition

M(Im(Ai)) ⊂ Im(Ai) ⇐⇒ rk(Ai,MAi) ≤ rk(Ai) = 2

A short check shows that UA2 = UA3 = UA5 = UA6 = ∅.
For UA1 we calculate

rk

(
1 0 0 0
0 1 X Y
X Y Z U
Z U 0 0

)
≤ 2 ⇐⇒ rk

(
1 X Y
Y Z U
U 0 0

)
≤ 1

and this holds if and only if UX = 0, UY = 0, Z = Y X, Y 2 = U . So we �nd

UA1 = Spec K[X,Y,Z,U]/(YX2,Y3,Z−YX,U−Y2) = Spec K[X,Y]/(YX2,Y3).

Set I1 := (Y X2, Y 3), we see
√
I1 = (Y ), so UA1 is a thickened a�ne line, in particular in

it is generically not reduced.

For UA4 we calculate

rk

(
V W 0 0
1 0 0 1
0 1 Z U
Z U 0 0

)
≤ 2 ⇐⇒ rk

(
V W 0
−U 1 Z
Z U 0

)
≤ 1
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and this is equivalent to ZW = 0, UZ = 0, V = −UW,Z = −U2. So we �nd

UA4 = Spec K[V,W,Z,U]/(−U2W,−U3,V + UW,Z + U2) = Spec K[W,U]/(U2W,U3)

We conclude FlQ
(
M
d

)
= UA1 ∪ UA4 is not generically reduced, we see it as a thickened P1.

6.2.2 Detecting irreducible components

Lemma 60. Let X be a locally noetherian scheme, Z ⊂ X be a locally closed, irreducible

subset.

a) The following are equivalent:

(i) Z is an irreducible component.

(ii) Z contains an open subset of X.

b) Let X be a scheme of �nite type over an algebraically closed �eld. We give Z the

reduced subscheme structure. Then the following are equivalent

(i) There is a closed point x ∈ Z such that dimTxX = dimZ.

(ii) Z is an irreducible component that is generically smooth in X, which means by

de�nition OX,z is regular, where z is the generic point of Z.

Proof: ad a):

Let U ⊂ Z such that U is open in Z. Let Z ⊂ Y ⊂ X such that Y is an irreducible

component of X.

(i)⇔ (ii) Obviously, U open in Y ⇐⇒ U = Z = Y .

Replacing U by U ′ = U ∩ (
⋃
T irred compX \ T ) gives an open in X, the other implication

is clear.

ad b):

(i) ⇒ (ii) Suppose Z is not an irreducible component, then Z � � | // Y with dimZ <

dimY . Then for all x ∈ X dimZ < dimTxY ≤ dimTxX.

We have shown by contraposition that condition (i) implies that Z is an irreducible com-

ponent.

Also condition (i) ensures dimZ = dimTxZ, so that Z is generically smooth. But that is

not enough because we do not know that X is smooth in z yet (it could be that OX,z is
not reduced).

Since i : Z → X is an immersion, it induces an isomorphism on tangent spaces at x. As

Z is smooth at x it follows that Z → X is etale at x and therefore X is smooth at x. As

the locus of smooth points is open in X it follows that there exists an open neighbourhood

U ⊂ Z such that i|U is etale. Since it is also an immersion, it follows that it has to be an

open immersion and therefore Z contains as an open subscheme an open subscheme of X

and the condition for the local ring follows.

(ii) ⇒ (i) Suppose Z is an irreducible component. Let U ⊂ Z such that U is open in X
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with all points in U are smooth in X and Z. So the induced subscheme structures from Z

and from X coincide on U and for all x ∈ U it holds that

dimTxX = dimTxU = dimTxZ = dimZ.

Corollary 6.2.0.1. Let M ∈ RQ(d)(K) with K algebraically closed, C ⊂ FlQ
(
M
d

)
a locally

closed irreducible subset. Then the following are equivalent:

(i) C is an irreducible component that is generically smooth in FlQ
(
M
d

)
.

(ii) dimC = [C,M/C] where [C,M/C] := min{[U,M/V ]Λ | U, V ∈ C(K)}.

Proof: Follows from the tangent space calculation for quiver �ag varieties and the pre-

vious lemma b).

6.3 Strati�cations

De�nition 20. Let X be a scheme. A strati�cation of X is a family Xi ⊂ X, i ∈ I of

locally closed subsets with X =
⋃
i∈I Xi and Xi ∩ Xj = ∅ for all i 6= j in I. We say a

strati�cation (Xi)i∈I

• is �nite if I is �nite.

• has property P ∈ {smooth, a�ne, irreducible } if for all i ∈ I : Xi has property P.

• ful�lls the boundary condition if ∀i ∈ I there is a Ji ⊂ I : Xi =
⋃
j∈Ji Xj

We recall the well-known fact.

Lemma 61. If X is a scheme with a �nite, irreducible (not necessarily disjoint) strati�-

cation of X, then every irreducible component is the closure of a stratum.

Proof: As we have a �nite strati�cation, a highest dimensional irreducible component

C must be a closure of a stratum. Then look at the complement U = X \ C with the

strati�cation (Xi ∩ U)i∈I . If Xi ∩ U 6= ∅, it is irreducible with Xi ∩ U = Xi. So, we can

repeat the initial argument. �

6.3.1 Strati�cation in orbits

We look at H = (AutKQ(M)) operating on FlQ
(
M
d

)
. Recall that H ⊂ EndKQ(M) is

open in an a�ne space, therefore H is irreducible and smooth. The strati�cation in orbits

is smooth, irreducible, and ful�lls the boundary condition but unfortunately, unless the

quiver is quite small, we can not expect it to be a �nite strati�cation. For U ∈ FlQ
(
M
d

)
set

OU := H · U ⊂ FlQ
(
M
d

)
. We �rst have a look at
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Lemma 62. Applying (U,−)Λ to the short exact sequence 0 → U → M → M/U → 0

yields a 6-term exact sequence

0→ (U,U)→ (M,M)
p−→ (U,M/U)→ (U,U)1 i−→ (M,M)1 → (U,M/U)1 → 0.

Proof: For the vanishing of the higher Ext-groups and (M,M)1
Λ
∼= (M,M)1

KQ

see [Wol09], proof of Thm 5.27. The isomorphism (M,M) ∼= (U,M) is clear, and for the

map (M,M)1 = (M,M)1
KQ → (U,M)1 the map X = (X1 → · · · → Xν) 7→ Xν is an

inverse (where Xs ∈ (U s,M)1
KQ). �

Corollary 6.3.0.2. For a point U ∈ FlQ
(
M
d

)
(K), the following are equivalent:

(i) OU is an irreducible component of FlQ
(
M
d

)
and U is a smooth point.

(ii) p surjective (⇐⇒ i injective).

(iii) [M,M ]− [U,U ] = [U,M/U ] (⇐⇒ [M,M ]1 − [U,U ]1 = [U,M/U ]1).

In particular, if [U,U ]1 = 0, then U is smooth and OU is an irreducible component.

Proof: The inclusion coker((U,U) → (M,M)) → (U,M/U) can be identi�ed with the

inclusion TUOU → TUFlQ
(
M
d

)
. The rest follows from the lemma above and lemma 60. �

6.3.2 Reineke's strati�cation

We use this name because Reineke introduced the strati�cation in [Rei03].

We denote by [N ] the isomorphism class of a representation N . For a sequence of iso-

morphism classes of representations N∗ = ([N0], . . . [Nν−1], Nν = M) Markus Reineke (see

[Rei03]) considered the following subsets of FlQ
(
M
d

)
F[N∗] := {U = (0 = U0 ⊂ U1 ⊂ · · · ⊂ Uν = M) ∈ FlQ

(
M

d

)
| U s ∈ [Ns], 0 ≤ s ≤ ν}.

He showed that they are nonempty if and only if dimNs = ds, 0 ≤ s ≤ ν and there exist

monomorphisms Nk → Nk+1 for k ∈ {0, . . . , ν − 1}.
Furthermore, if they are nonempty he showed that they are locally closed, irreducible,

smooth of dimension
ν∑
k=1

([Nk−1, Nk]KQ − [Nk−1, Nk−1]KQ),

and FlQ
(
M
d

)
is a disjoint union of these subsets. Obviously, if U ∈ F[N∗], then it holds

F[N∗] = F[U∗]. I will call them Reineke strata and the collection Reineke strati�cation.

We reprove his result in the following remark:

Remark. Consider U :=
∏ν
k=1 Inj(Nk−1, Nk) ⊂ XQν

(
M
d

)
and H :=

∏ν−1
k=1 AutKQ(Nk).

Then H operates freely on U (it follows for all orbits dimH ·x = dimH), and the restricted

map

φ|U : U → F[N∗]
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is constant on H-orbits, surjective, and has the H-orbits as �bres. We also have a cartesian

diagram

U

φ

��

//∏ν
k=1

∏
i∈Q0

InjK(Kdk−1
i ,Kdki )

φ0

��
F[N∗]

// F(d)

Therefore, φ|U is a locally trivial �bration. It follows that it is a principal H-bundle. As

U is smooth and irreducible, it follows F[N∗] is smooth irreducible of dimension

dimF[N∗] = dimU − dimH.

Remark. Stefan Wolf constructed also the following exact sequence as a generalization of

the standard sequence for KQ-modules (see [Wol09], Appendix B ):

Let U = (U0 → · · · → Uν), V = (V 0 → · · · → V ν = M) be two Λ-modules.

0→ (U, V )→
ν∏
k=0

(Uk, V k)KQ
ϕU,V−−−→

ν∏
k=1

(Uk−1, V k)KQ

→ (U, V )1 ηU,V−−−→
ν∏
k=0

(Uk, V k)1
KQ →

ν∏
k=1

(Uk−1, V k)1
KQ → (U, V )2 → 0

If U ∈ FlQ
(
M
d

)
(K) and V ∈ {U,M,M/U}, then (U, V )2 = 0 (see [Wol09], proof of thm

5.27).

Let U ∈ FlQ
(
M
d

)
(K). The following conditions are equivalent:

(i) OU is dense in F[U∗].

(ii) ϕU,U is surjective ( equivalently ηU,U injective ).

(iii) [U,U ]−
∑ν

k=0[Uk, Uk]KQ +
∑ν

k=1[Uk−1, Uk]KQ = 0

(⇐⇒ [U,U ]1 −
∑ν

k=0[Uk, Uk]1KQ +
∑ν

k=1[Uk−1, Uk]1KQ = 0.)

Just compare dimensions of tangent spaces and use lemma 60.

Remark. Recall that for every d ∈ NQ0
0 , N,L ∈ RQ(d)(K) we write L ≤ N if N ∈ OL

where OL ⊂ RQ(d) is the Gld-orbit of L. We call this the degeneration order, it is a partial

order on RQ(d). Let N∗ = ([N0], . . . , [Nν ] = [M ]) such that F[N∗] 6= ∅ with for all other

L∗ with F[L∗] 6= ∅ it holds for all k ∈ {0, . . . , ν} : Either Nk ≤ Lk, or Nk and Lk are not

comparable in the degeneration order.

Then if the Reineke strati�cation is �nite, F[N∗] is an irreducible component of FlQ
(
M
d

)
and F[N∗] is open in FlQ

(
M
d

)
.

(Proof: Assume F[N∗] ⊂ F[L∗], then F[N∗] ∩ F[L∗] 6= ∅. This implies for all k ∈ {0, . . . , ν}
: Lk ≤ Nk, so by assumption Lk ∼= Nk and F[N∗] = F[L∗].

We also proved that F[N∗] has empty intersection with closures of other strata, therefore

it follows that F[N∗] is open if the Reineke strati�cation is �nite.)

Corollary 6.3.0.3. The following conditions are equivalent.

196



(i) F[N∗] is an irreducible component of FlQ
(
M
d

)
that is generically smooth inside FlQ

(
M
d

)
.

(ii) There is U ∈ F[N∗] such that dimTUFlQ
(
M
d

)
= dimF[N∗], i.e.

[U,M/U ] =
ν∑
k=1

([Uk−1, Uk]KQ − [Uk−1, Uk−1]KQ).

(iii) There is U ∈ F[N∗] such that

[U,M/U ]1 =
ν∑
k=1

([Uk−1, Uk]1KQ − [Uk−1, Uk−1]1KQ).

If the Reineke strati�cation is �nite, this detects all irreducible components that are gener-

ically smooth inside FlQ
(
M
d

)
.

Proof: By lemma 60, it remains to show (ii) ⇐⇒ (iii). But using lemma 62 and remark

6.3.2 we obtain two formulas for [U,U ] − [U,U ]1. The resulting equality easily shows the

claim. �

6.4 A conjecture on generic reducedness of Dynkin quiver

�ag varieties

We introduce scheme structures de�ned by rank conditions on orbits and Reineke strata,

following the work of Zwara in [Zwa02a].

6.4.1 Schemes de�ned by rank conditions

Let Mu×v be the Z-scheme of u × v-matrices with the operation of the following group

G = Glu ×Glv via

(g1, g2) ? x := g1 · x · g−1
2

for any g = (g1, g2) ∈ G(S), x ∈Mu×v(S) and commutative ring S. Let s ≤ min(u, v), we

de�ne Ys to be the closed subscheme of Mu×v given by the condition that all determinants

of (s + 1) × (s + 1)-minors vanish. Let Vs be the open subscheme of Ys given as the

complement of Ys−1. For any �eld K, it is easy to see that Vs(K) = {x ∈ Mu×v(K) |

rk(x) = s} = G(K) ·

(
Es 0

0 0

)
. Furthermore, it is known that

Vs(R) := {x ∈Mu×v(R) | Im(x) ⊂ Ru is a direct R−module summand of rank s}

= {x ∈Mu×v(R) | ker(x) ⊂ Rv is a direct R−module summand of rank (v − s)}

for any commutative ring R ([Wol09], Prop.5.4 for the �rst description, the second equality

is easy to prove). We want to calculate its tangent spaces, therefore the following lemma

is useful, it is due to Zwara .
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Lemma 63. ( [Zwa02a], Lemma 3.2, 3.3) Let K be a �eld and S a local commutative ring

such there exist ring homomorphisms idK : K ↪→S�K, set m := ker(S�K).

(i) For any x ∈Mu×v(S) there is a g ∈ G(S) such that

g ? x =

(
Et 0

0 z

)

for some t ≤ min(u, v) and some z ∈M(u−t)×(v−t)(m).

(ii)

Vs(S) = G(S) ·

(
Es 0

0 0

)

If dimK S = h < ∞, then Vs(S) = {x ∈ Mu×v(S) | rk(x) = s, rk(x) = sh} where
Mu×v(S) → Mu×v(K), x 7→ x is the map induced by S�K, and x : Sv → Su is

considered as a K-linear map between �nite dimensional vector spaces.

Recall that for a scheme X of �nite type over a �eld K and x ∈ X(K) the tangent

space TxX is de�ned to be the preimage of x under the canonical map

X(K[T ]/(T 2))→ X(K).

As a shortcut we will set K[ε] := K[T ]/(T 2), ε 7→ T . Using the previous lemma we can

describe now the tangent space of Vs.

Corollary 6.4.0.4. Let x ∈ Vs(K) with x = g ? e for g = (g1, g2) ∈ G(K), e =

(
Es 0

0 0

)
,

then

TxVs = {(g1 ·

(
T 0

A 0

)
, g2 ·

(
−T B

0 0

)
) ∈Mu×u(K)×Mv×v(K) | T ∈Ms×s(K)}.

Its dimension is s(u+ v − s). Furthermore, seeing x : Kv → Ku as a linear map, we �nd

an identi�cation

TxVs ∼= {ϕ ∈ HomK(Kv,Ku) | ϕ(kerx) ⊂ Imx}

explicitly given by
(
g1

(
T 0
A 0

)
, g2

(−T B
0 0

))
7→ g1

(
T B
A 0

)
g−1

2

Proof: Using the description given by the previous lemma (ii) it is not di�cult to see

that TxVs = g · TeVs, so wlog x = e. Again by the previous lemma (ii)

Vs(K[ε]) = G(K[ε]) · e ∼= G(K[ε])/ StabG(K[ε])(e).

Now, we have

StabG(e) := {(

(
Z X

0 Y

)
,

(
Z−1 0

V W

)
) ∈ Glu ×Glv | Z ∈ Gls}
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is the closed subscheme whose K-valued and K[ε]-valued points are the stabilizers of e.

We �nd a short exact sequence of pointed sets

0

��

0

��

0

��
0 // r−1

S (1) //

��

StabG(e)(K[ε])
rS //

��

StabG(e)(K)

��

// 0

0 // r−1
G (1) //

��

G(K[ε])
rG //

��

G(K)

��

// 0

0 // r−1
V (e) //

��

Vs(K[ε])
rV //

��

Vs(K)

��

// 0

0 0 0

where it is easy to the check that the induced �rst column is exact, for example for r−1
G (1)→

r−1
V (e) surjective just note that for g ? e ∈ r−1

V (e) with g = (g0 + εg1, h0 + εh1) we have

g ? e = (1 + εg1g
−1
0 , 1 + εh−1

0 h1) ? e. Now, (1 + εg1g
−1
0 , 1 + εh−1

0 h1) ∈ r−1
G (1) and maps to

g ? e. Thus, by de�nition we have a short exact sequence

0→ T1 StabG(e)→ T1G→ TeVs → 0.

which gives TeVs ∼= {(
(
T 0
A 0

)
,
(−T B

0 0

)
) ∈Mu×u(K)×Mv×v(K) | T ∈Ms×s(K)}.

The vector space isomorphism is easy to check. �

6.4.2 Quiver-related schemes de�ned by rank condition

Let Q be a �nite quiver, K be a �eld. We assume the reader knows RQ(d). We start with

two very basic constructions. Let N,L be two �nite-dimensional KQ-modules. Let R be

a commutative K-algebra. We de�ne

1)

(InjKQ(N,L))(R) := {(fi)i∈Q0 ∈ HomRQ(N ⊗R,L⊗R) |

fi split monomorphism for all i ∈ Q0}.

This de�nes an open subscheme of the a�ne space de�ned by R 7→ HomRQ(N ⊗
R,L⊗R).

2) Fix t ∈ N and choose a free representation (KQ)p
χ−→ (KQ)q → L → 0 with χ =

(aij) ∈ Mq×p(KQ). Assume that the underlying graph of Q has no oriented cycles.

Every N ∈ RQ(d)(R) can be considered as an R-algebra homomorphism

N : RQ→
⊕

(k,l)∈Q0×Q0

Mdl×dk(R) = Md×d(R)
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with d =
∑

i∈Q0
di via

ei 7→ (δ(k,l)(i,i) idRdi )(k,l)∈Q0×Q0
, (α : i→ j) 7→ (δ(k,l),(i,j)Nα)(k,l)∈Q0×Q0

.

Then we can de�ne f : RQ(d)→ Mqd×pd on R-valued points via

N 7→ (N(aij ⊗K 1R))1≤i≤q,1≤j≤p

Then we de�ne RQ(d)[L, t] as the pullback in the following diagram

RQ(d)[L, t] //

��

Vqd−t

��
RQ(d)

f //Mqd×pd

or explicitly on R-valued points

RQ(d)[L, t](R) = {N ∈ RQ(d)(R) | Im((N(aij ⊗K 1R)) : Rpd → Rqd)

is a direct R−module summand of Rqd of rk qd− t}

= {N ∈ RQ(d)(R) | HomRQ(L⊗ R,N)

is a direct R−module summand of Rpd of rank t}

Zwara proved that for S an n-dimensional commutative localK-algebra with idK : K →
S → K,

RQ(d)[L, t](S) = {N ∈ RQ(d)(S) |

dimK HomKQ(L,N) = tn, dimK HomKQ(L,N ⊗S K) = t},

and the functor RQ(d)[L, t] is uniquely determined by the isomorphism class of L

and the integer t ≥ 0.

There is an obvious generalization of Zwara's scheme structure: Given L := (L1, . . . , Lr),

a sequence of �nite dimensional KQ-modules, t := (t1, . . . , tr) ∈ Nr0, and a choice of free

resolution

(KQ)pi → (KQ)qi → Li → 0

we �nd

RQ(d)[L, t](R) := {N ∈ RQ(d)(R) | HomRQ(Li ⊗ R,N)

is a direct R−module summand of Rpid of rank ti, 1 ≤ i ≤ r}

by de�nition RQ(d)[L, t] = RQ(d)[L1, t1]×RQ(d) · · · ×RQ(d) RQ(d)[Lr, tr], so it is a scheme.

Orbits de�ned by rank conditions

From now on, let Q be a connected Dynkin quiver and L1, . . . , Lr be a complete set of

isomorphism classes of indecomposable �nite dimensional KQ-modules.
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Let N ∈ RQ(d)(K) be a module. We write

tN := (t1, . . . , tr), tk := dim Hom(Lk, N), 1 ≤ k ≤ r

and de�ne

ÕN := RQ(d)[L, t] = RQ(d)[L1, t1]×RQ(d) · · · ×RQ(d) RQ(d)[Lr, tr];

this is a subscheme of RQ(d), the morphism ÕN → RQ(d) is an immersion. It holds that

ÕN (K) = Gld(K) · N . If ÕN is reduced, then it is equivalent to the orbit scheme ON ,
which is de�ned as the reduced subscheme with ON (K) = Gld(K) ·N . In general, we do

not know when this is reduced. We call the scheme ÕN the orbit by rank condition.

For the reduced scheme structure, we remark the following lemma, which is a special

case of [Hub13], Prop. 5.7.

Lemma 64. Let Q be a quiver, d ∈ NQ0
0 , N ∈ RQ(d)(K), G = Gld and we write O ⊂

RQ(d) for the Gld-orbit. Then it holds

ON (K[ε]) = G(K[ε]) ·N

Proof: Let p : ON (K[ε]) → ON (K) be the map induced from K[ε]�K, ε 7→ 0. By

de�nition it holds p−1(L) = TLON for L ∈ ON (K). Recall that by Voigt's Lemma we

know that for the standard exact sequence

0→ EndKQ(L)→
∏
i∈Q0

Mdi(k)
φ−→

∏
i→j∈Q1

Mdj×di(K)→ Ext1
KQ(L,L)→ 0

with φ is given by (xi)i 7→ (xjLi→j−Li→jxi)i→j it holds that Im(φ) = TLON . For the free
K[ε]-moduleK[ε]n, we �x aK-vector space basis e1, · · · , en, εe1, . . . , εen, that means that ε

operates on K[ε]n by the nilpotent operator
(

0 0
E 0

)
. Now a K[ε]-linear map K[ε]n → K[ε]m

corresponds in the basis to a matrix
(
X 0
Y X

)
∈ M2m×2n(K) with X,Y ∈ Mm×n(K). In

particular, we have

G(K[ε]) =
∏
i∈Q0

Gldi(K[ε]) =
∏
i∈Q0

{
(
Ti 0
xi Ti

)
∈ Gl2di(K) | Ti ∈ Gldi(K), xi ∈Mdi(K)}

and we write

Uε :=
∏
i∈Q0

{
(
E 0
xi E

)
∈ Gl2di(K) | xi ∈Mdi(K)}.

We can see

TLON = {A := (
(
Li→j 0
Ai→j Li→j

)
)i→j ∈ R2d(Q)(K) | A ∼= N ⊕N as KQ−module}.
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We set Lε := L ⊗K K[ε] = (
(
Li→j 0

0 Li→j

)
)i→j . We claim that as a consequence of Voigt's

Lemma we directly get

TLON = Uε · Lε

where the operation is the restriction of the operation of Gl2d(K) on R2d(Q)(K). To see

this the diagram

K2di

(
Li→j 0

0 Li→j

)
//

(
E 0
xi E

)
��

K2dj

(
E 0
xj E

)
��

K2di (
Li→j 0
Ai→j Li→j

)// K2dj

commutes if and only if Ai→j = xjLi→j − Li→jxi which is how we discribe all points in

the tangent space by Voigt's Lemma.

Now, it holds by de�nition of the scheme structure on ON that G(K[ε]) ·Nε ⊂ ON (K[ε]).

But we also know ON (K[ε]) =
⋃
L∈ON (K) p

−1(L). If T ∈ p−1(L), we �x an isomorphism

f : L → N in Gld(K), then f ⊗ 1 =
(
f 0
0 f

)
=: Nε → Lε is in G(K[ε]). By the previous

discussion it holds that there is a g ∈ Uε such that

T = g · Lε = g · ((f ⊗ 1) ·Nε) ∈ G(K[ε]) ·Nε.

�

Reineke strati�cation de�ned by rank conditions

We consider N1, · · · , Nν := M �nite dimensional KQ-modules,

d := (d1 := dimN1, . . . , d
ν := dimNν). For any KQ-module N we de�ne t[N∗] :=

(tN1
, . . . , tNν ).

Let R be a commutative K-algebra. Let (∆, I) be the the quiver with the relations such

that KQ⊗KAν = K∆/I. We de�ne the following
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XQ⊗ν+1

(
M

d

)
(R) := {U = (0→ U1

f1−→ U2
f2−→ · · · fν−2−−−→ Uν−1

fν−1−−−→M)

∈ R(∆,I)(d)(R) | (fk)i split monom. , 1 ≤ k ≤ ν − 1, i ∈ Q0}

FlQ

(
M

d

)
(R) := {U = (0→ U1 ⊂ U2 ⊂ · · · ⊂ Uν−1 ⊂M) |

�ag of KQ−mods, dimU = d}

X̃[N∗](R) := {U = (0→ U1
f1−→ U2

f2−→ · · · fν−2−−−→ Uν−1
fν−1−−−→M) ∈ XQ⊗ν+1

(
M

d

)
(R) |

Ui ∈ RQ(d)[L, rkL(Ni)](R), 1 ≤ i ≤ ν − 1}

F̃[N∗](R) := {U = (0 ⊂ U1 ⊂ · · · ⊂ Uν−1 ⊂M) ∈ FlQ

(
M

d

)
(R) |

HomRQ(Lj ⊗R,Ui) is a free direct R−module summand of Rpjdi

of rank dimK HomKQ(Lj , Ni), 1 ≤ j ≤ r, 1 ≤ i ≤ ν − 1}

Lemma 65. All of these functors are represented by schemes. There is a cartesian com-

mutative diagram

X̃[N∗]
//

��

XQ⊗ν+1

(
M
d

)
��

F̃[N∗]
// FlQ

(
M
d

)
de�ned on R-valued points for a commutativeK-algebra R by XQ⊗ν+1

(
M
d

)
(R)→ FlQ

(
M
d

)
(R)

(0→ U1
f1−→ · · · fν−1−−−→M) 7→ (0 ⊂ Im(f1 · · · fν−1) ⊂ · · · Im(fν−1) ⊂M)

and the left vertical map is its restriction to X̃[N∗](R)→ F̃[N∗](R). The vertical morphisms

are principal G-bundles with G =
∏

1≤s≤ν−1 Glds, the vertical morphisms are immersions.

We call F̃[N∗] a Reineke stratum as rank scheme.

Proof: The principal G-bundle XQ⊗ν+1

(
M
d

)
→ FlQ

(
M
d

)
is the one from the beginning of

this chapter. That X̃[N∗] de�nes a scheme is because it is an iterated pullback of a rank

scheme as de�ned before (left to the reader). Then, by [Hub13], Lemma 4.7 there exists

the geometric quotient X̃[N∗]/G. It follows that this has to be F̃[N∗]. �

Remark. If F̃[N∗] is reduced, then it equals the smooth scheme F[N∗] which we called a

Reineke stratum.

Lemma 66. Let Q be a quiver, d = (0, d1, . . . , dν) ∈ NQ0
0 and 0 → N1 → · → Nν = M

a Λ-module in XQ⊗ν+1

(
M
d

)
(K) such that ÕNk = ONk is reduced 1 ≤ k ≤ ν. Then, the

Reineke stratum F̃[N∗] ⊂ FlQ
(
M
d

)
as rank scheme is smooth, i.e. F̃[N∗] = F[N∗].

Proof: It is enough to show that X̃[N∗] is smooth, where X̃[N∗] ⊂ XQ⊗ν+1

(
M
d

)
is the

pullback of F̃[N∗] by the principal G :=
∏

1≤s≤ν−1 Glds-bundle XQ⊗ν+1

(
M
d

)
→ FlQ

(
M
d

)
.
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We have a natural map

φ :
ν∏
k=1

InjKQ(Nk−1, Nk)×G→ X̃[N∗]

which induces a morphism

φ :
ν∏
k=1

InjKQ(Nk−1, Nk)×H G→ X̃[N∗]

with H =
∏

1≤k≤ν−1 Aut(Nk). It holds that φ(K) is an isomorphism. Since∏ν
k=1 InjKQ(Nk−1, Nk) ×H G is smooth, irreducible of the same dimension as X̃[N∗] it is

enough to show that

φ(K[ε]) :

ν∏
k=1

InjKQ(Nk−1, Nk)(K[ε])×G(K[ε])→ X̃[N∗](K[ε])

is surjective, because it implies that φ(K[ε]) is surjective, and that implies that the tangent

space dimensions on
∏ν
k=1 InjKQ(Nk−1, Nk)×HG are greater or equal to the tangent space

dimensions on X̃[N∗]. For every x ∈
(∏ν

k=1 InjKQ(Nk−1, Nk)×H G
)

(K) that gives us

dim X̃[N∗] = dimTx

ν∏
k=1

InjKQ(Nk−1, Nk)×H G ≥ dimTφ(x)X̃[N∗] ≥ dim X̃[N∗],

i.e. the tangent spaces have all dim X̃[N∗] which implies that X̃[N∗] is smooth.

But that φ(K[ε]) is onto follows directly from the lemma 64 because a point in X̃[N∗] is of

the form

L := (0→M1
f1−→M2 → · · ·

fν−1−−−→Mν = Mε)

with Mi is in ONi(K[ε]) and fi is a KQ⊗K[ε]-linear map which is an injective K-vector

space homomorphism. Then, by the previous lemma there exist gi ∈ Gldi(K[ε]) such that

Mi = gi · (Ni)ε. This implies

L = φ((g2f1g
−1
1 , g3f2g

−1
2 , . . . , gν−1fν−2g

−1
ν−2, fν−1gν−1), (gi)1≤i≤ν−1).

�

The conjecture

Conjecture. Every Dynkin quiver �ag variety is generically reduced. This follows from

(1) and (2).

(1) For every representation M ∈ RQ(d)(K), it holds that ÕM = OM .

(2) For every F̃[N∗] ⊂ FlQ
(
M
d

)
such that

F[N∗](K) is an irreducible component of FlQ
(
M
d

)
(K), there is an open subscheme
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U ⊂ FlQ
(
M
d

)
such that U(K) ⊂ F[N∗](K) and for all x ∈ U(K)

TxF̃[N∗] = TxFlQ

(
M

d

)
.

In fact, ad (2): Let F[L∗,−]≤ t the open subscheme such that F[L∗,−]=t(K) = F[N∗](K)

and assume F[N∗](K) is an irreducible component C(K) of FlQ
(
M
d

)
(K). In [Hub13], Hu-

bery describes a natural generic scheme structure on C coming from the primary ideal

decomposition. Observe that C(K)∩F[L∗,−]≤ t(K) = F[N∗](K) is an open subset of C(K).

We conjecture that

F̃[N∗] = C ×FlQ(Md ) F[L∗,−]≤ t,

this would implies (2).

Corollary 6.4.0.5. Let Q be a Dynkin quiver and FlQ
(
M
d

)
generically reduced. For all

non-empty Reineke strata F[N∗] ⊂ FlQ
(
M
d

)
we �x a Λ = KQ ⊗ KAν+1-module N :=

(0 ↪→N1 ↪→N2 ↪→· · · ↪→Nν = M) in X. Then the irreducible components of FlQ
(
M
d

)
are

{F[N∗] ⊂ FlQ

(
M

d

)
| [N,M/N ] = dimF[N∗]}.

6.4.3 Canonical decomposition

This is a review of a result due to Hubery saying that irreducible components of quiver �ag

varieties admit canonical decompositions analogously to Crawley-Boevey's and Schröer's

article Irreducible components of varieties of modules, see [CBS02].

Notation of this subsection: K is an algebraically closed �eld. Let d1 , . . . , dt be di-

mension �ltrations of length ν,M1 ∈ RQ( dν1 )(K), . . . ,Mt ∈ RQ( dνt )(K) beKQ-representations

and C1 ⊂ FlQ
(
M1

d1

)
, . . . , Ct ⊂ FlQ

(
Mt

dt

)
locally closed irreducible subsets. We de�ned locally

trivial �brations ϕi : XQ⊗ν+1

(
Mi
di

)
→ FlQ

(
Mi
di

)
, 1 ≤ i ≤ t in the �rst subsection of this

chapter and we call D1 ⊂ XQ⊗ν+1

(
M1

d1

)
, . . . , Dt ⊂ XQ⊗ν+1

(
Mt

dt

)
the preimages of C1, . . . Ct.

We set

M :=

t⊕
i=1

Mi, d :=

t∑
i=1

di ,

the groups H := Aut(M),
∏

1≤s≤ν−1 Glds operate on XQ⊗ν+1

(
M
d

)
by Λ-module isomor-

phism,

the groups Hi := Aut(Mi),
∏

1≤s≤ν−1 Gl dsi operate on XQ⊗ν+1

(
Mi
di

)
, 1 ≤ i ≤ t by Λ-

module isomorphism.

Furthermore, we consider the map

a : Aut(M)× C1 × · · ·Ct → FlQ

(
M

d

)
,

de�ned via ã : Aut(M)×D1×· · ·×Dt → XQ⊗ν+1

(
M
d

)
, (h, x1, . . . , xt) 7→ h · (

⊕t
i=1 xi), then

check that ϕ ◦ ã is constant on orbits under the group action of
∏

1≤s≤ν−1 Gl ds1
× · · · ×
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∏
1≤s≤ν−1 Gl dst . We set Im(a) := C1 ⊕ · · · ⊕ Ct, then

C1 ⊕ · · · ⊕ Ct

is an irreducible closed subset of FlQ
(
M
d

)
.

Furthermore, we call the projection on the sink functor fp : Λ−mod→ KQ−mod, (U0 →
· · · → Uν) 7→ Uν and the regular mapping fp := πϕ : XQ⊗ν+1

(
M
d

)
→ RQ(d) as a shortage

for �agpole (even though Λ-modules are no �ags).

Theorem 6.4.1. Let C ⊂ FlQ
(
M
d

)
be an irreducible component, then

C = C1 ⊕ · · · ⊕ Ct

for some irreducible components Ci ⊂ FlQ
(
Mi
di

)
, with the property that the general module

in each Di = ϕ−1
i (Ci) is indecomposable. Moreover, C1, . . . , Ct are uniquely determined by

this, up to reordering.

Lemma 67. ([Hub13], Lemma 6.5) Let d and e be two �ltrations of length ν, M ∈
RQ(dν)(K),N ∈ RQ(eν)(K). The functions

FlQ

(
N

e

)
× FlQ

(
M

d

)
→ Z, XQ⊗ν+1

(
N

e

)
×XQ⊗ν+1

(
M

d

)
→ Z

de�ned by (U, V ) 7→ [U,M/V ]1 are wellde�ned and upper semicontinuous. In particular,

in the notation from above, the following conditions are equivalent:

1) for i 6= j : [Ci, Cj ]− [Mi,Mj ] + [Ci,Mj/Cj ] = 0,

2) for i 6= j : ∃ U ∈ Ci, V ∈ Cj with [U, V ]− [Mi,Mj ] + [U,Mj/V ] = 0,

3) for i 6= j : ∃ U ∈ Ci, V ∈ Cj with dim ker((U, V )1 → (N,M)1) = 0.

Using the equivalence of 1) and 3) we can reformulate the main theorem.

Theorem 6.4.2. (A. Hubery, [Hub13], Thm 6.7) If Ci ⊂ FlQ
(
Mi
di

)
, 1 ≤ i ≤ t are irreducible

components, then C1 ⊕ · · · ⊕ Ct ⊂ FlQ
(
M
d

)
is an irreducible component if and only if for

all i 6= j :

[Ci, Cj ]− [Mi,Mj ] + [Ci,Mj/Cj ] = 0.

To show that these are basically rewrites of results of Crawley-Boevey and Schröer we

include the proofs of theorem 6.4.1 and lemma 67. A proof of theorem 6.4.2 following

[CBS02] is also possible. Of course, you �nd more general proofs in [Hub13].

Proof of theorem 6.4.1: This is nearly a copy of [CBS02], theorem 1.1., but the situa-

tion is slightly di�erent.

Let D = ϕ−1(C), D ⊃ Dind be the constructible subset of indecomposable d-dimensional

Λ-modules. Every d-dimensional module U ∈ D is isomorphic to a direct sum of inde-

composables, so lies inside a set S = Dind
1 ⊕ · · · ⊕ Dind

t for some irreducible components
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Di ⊂ XQ⊗ν+1

(
Mi
di

)
. Since all S are locally closed and there are only a �nite number of

possible S inside D covering D, there has to be one containing a dense open in D. Fixing

this set S we get for it

S = Dind
1 ⊕ · · · ⊕Dind

t = D1 ⊕ · · · ⊕Dt = D,

and therefore C = C1 ⊕ · · · ⊕ Ct. The set ã−1(S) has to be Aut(M) ×Dind
1 × · · · ×Dind

t

by Krull-Remark-Schmidt theorem. As S contains an open of D, it follows for 1 ≤ i ≤ t

Dind
i contains an open of Di and C

ind
i contains an open of Ci. This �nishes the proof of

the existence statement.

The proof of the uniqueness statement is entirely the same as in [CBS02] mostly just using

the Krull-Remark-Schmidt theorem. �

Proof of lemma 67: We use the symbol � � | // for closed immersions. In [CBS02],

proof of thm 1.3(i), the authors construct for any algebra Λ and dimension vectors d1 , d2

schemes V ses
Λ

� � | // RQ⊗ν+1( d1 + d2 ) × Vses( d1 , d2 ). It comes together with two regular

maps (for the existence, see loc.cit.):

V ses
Λ

s

%%LLLLLLLLLL
t

yyrrrrrrrrrr

RQ⊗ν+1( d1 ) RQ⊗ν+1( d2 )

Now, assume that d1 is a �ltration, d1 + d2 = (d, . . . , d) and consider

RQ(d) � � | // RQ⊗ν+1((d, . . . ,d)) via M 7→ (M = M = · · · = M). We then can de�ne a

closed subscheme Z � � | // V ses
Λ on K-valued points via

Z(K) = {(m, θ, φ) ∈ V ses
Λ ∩ RQ(d)×Vses( d2 , d1 ) |

(m, θ, φ) = E : 0→ U → (M = · · · = M)→ V → 0 in Λ−mod,

fp(E) = M
id−→M → 0}

As before, if it is clear from the context, we will just write M instead of (M = · · · = M).

Then, the mapping roof restricts to

Z
s

��???????
t

����������

X Y,

where X(K) := {(U0 = 0 ↪→U1 ↪→· · · ↪→Uν) ∈ RQ⊗ν+1( d1 )},
Y (K) := {(V0�V1� · · ·�Vν = 0) ∈ RQ⊗ν+1( d2 )}. Let R,P be the Q⊗ν+1

0 -graded K-

vector spaces underlying the points of RQ⊗ν+1((d, . . . ,d))(K), RQ⊗ν+1( d2 )(K) respectively,

let G be the automorphism group of P and W be the variety whose K-rational points are

given by the K-linear surjections R → P . It has a transitive G-operation via θ 7→ gθ,

g ∈ G, θ ∈ W . Then using the description from loc. cit., we get a closed embedding
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V ses
Λ

� � | // X×W , describing V ses
Λ as {(U, θ) ∈ X×W | θ(U) = 0}, we get a factorization

of s in the following way

s : Z � � | // V ses
Λ

� � | // X ×W pr1−−→ X.

The �rst two closed embeddings areG-stable, therefore s is mapping closedG-stable subsets

to closed subsets.

Now, have a look at the following commuting diagram:

X × Z
1×s

%%KKKKKKKKKK
1×t

yyssssssssss

X ×X

[−,fp(−)/−]1 %%LLLLLLLLLLL X × Y

[−,−]1yysssssssssss

Z

with [−, fp(−)/−]1 : X × X → Z, (U,U′ = (0 = U′0 ↪→· · · ↪→U′ν = M′)) 7→ [U,M′/U′]1 and

[, ]1 : X × Y → Z, (U, V ) 7→ [U, V ]1, the second map is known to be upper semicontinuous

by [CBS02]. Let e ∈ Z, it follows that

(1× t)−1{(U, V ) ∈ X × Y | [U, V ]1 ≥ e} =

{(U, 0→ U ′ →M → V → 0) ∈ X × Z | [U, V ]1 ≥ e}

is a closed subset of X × Z. Letting G operate just on the second factor of X × Z, the
subset is also G-stable. Now, as s maps G-stable closed subsets to closed subsets, it is easy

to see that 1× s does the same, and it follows that

{(U,U ′ = (0 = U ′0 ↪→· · · ↪→U ′ν = M ′)) ∈ X ×X | [U,M ′/U ′]1 ≥ e}

is a closed subset of X ×X. Then also the following map is upper-semicontinuous κ : X ×
X → Z, (U,U ′) 7→

[U,U ′]− [M,M ′] + [U,M ′/U ′] = [U,U ′]1 − [M,M ′]1 + [U,M ′/U ′]1

which is the same as dim ker((U,U ′)1 → (M,M ′)1). So the equivalence is trivial as the

intersection of the open locus, where [, fp()/]1 is minimal with the open locus, where

[−,−]1 : X ×X → Z is minimal has to be the open locus where the map κ is minimal.

�

Corollary 6.4.2.1. If Ci ⊂ FlQ
(
Mi
di

)
, 1 ≤ i ≤ t are irreducible components that are generi-

cally smooth and generically indecomposable Λ-modules inside FlQ
(
Mi
di

)
, and C1 ⊕ · · · ⊕ Ct ⊂

FlQ
(
M
d

)
is an irreducible component, then it is also generically smooth in FlQ

(
M
d

)
.

208



Proof: The irreducible component C is generically smooth if and only if

dimC = [C,M/C]. By studying �bres of the map a from the beginning one can prove

dimC =

t∑
i=1

dimCi +
∑
i 6=j

[Mi,Mj ]− [Ci, Cj ],

(this is analogue to [CBS02], page 3). Then using the generically smoothness of the Ci and

the condition from theorem 6.4.2 the claim follows. �

We call an irreducible component of C ⊂ FlQ
(
M
d

)
an orbit closure if it is of the form

C = C1 ⊕ · · · ⊕ Ct with the property that the general module in each Di = ϕ−1
i (Ci) is

indecomposable Λ-module U with

[U,U ]− [fp(U), fp(U)] + [U, fp(U)/U ] = 0.

Since orbit closures are generically smooth, we see that all quiver �ag varieties FlQ
(
M
d

)
with only �nitely many Aut(M)-orbits are generically smooths. For example, we see later

that the quiver Grassmannians for quivers of type A2, A3 and A4 have only �nitely many

orbits. An open question is whether all irreducible components C ⊂ FlQ
(
M
d

)
with

[C,C]− [M,M ] + [C,M/C] = 0

are orbit closures.

6.5 An example of a closure of a Reineke stratum which is

not a union of Reineke strata

This is very detailed, please leave out parts of it.

6.5.1 A2-Grassmannians

The quiver and the Auslander-Reiten quiver for KA2 ⊗KA2

Let (Q, I) be the quiver given by the following square

2

��

1oo

���
�

�
�

4 3oo

with I given by the relation (1→ 2→ 4) = (1→ 3→ 4).

Its Auslander-Reiten quiver is given by
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1 0
1 0
1 0
1 0
1 0
1 0

  AAAAAAAA
0 0
0 1
0 0
0 1
0 0
0 1

  AAAAAAAA
oo_ _ _ _ _ _ _ 1 1

0 0

  AAAAAAAA
oo_ _ _ _ _ _ _

0 0
1 0
0 0
1 0
0 0
1 0

>>}}}}}}}}

��0
00000000000000

1 0
1 1
1 0
1 1
1 0
1 1

>>}}}}}}}}

  AAAAAAAA

��0
000000000000000

oo_ _ _ _ _ _ _ 1 1
0 1

>>}}}}}}}}

��0
000000000000000

oo_ _ _ _ _ _ _ 0 1
0 0

oo_ _ _ _ _ _ _

1 1
1 1
1 1
1 1
1 1
1 1

>>}}}}}}}}

0 0
1 1
0 0
1 1
0 0
1 1

FF���������������
1 0
0 0

FF����������������
oo_ _ _ _ _ _ _ 0 1

0 1
0 1
0 1
0 1
0 1

FF����������������
oo_ _ _ _ _ _ _

where the bold indecomposables are the indecomposables having monomorphisms at the

verticals
2
↓
4
,

1
↓
3
. As A := KQ/I is representation-�nite, the dimension vector determines an

indecomposable (right) A-module up to isomorphism, see [ASS06b]. In the following we

identify the indecomposables with their dimension vectors.

Degenerations for modules with vertical monos

As A := KQ/I is representation-�nite, the degeneration order of A-modules is given by

the Hom-order, i.e. for A-modules M,N it holds that

M ≤deg N :⇔ [S,M ] ≤ [S,N ] for all indecomposable S,

see [Bon98].

As the category of (right) A-modules is Krull-Schmidt, every A-module M determines a

multiplicity function

[M ] : {vertices of the AR-quiver} → N0, S 7→ mM
S .

From now on, we assume M and N to have monomorphisms at the vertical arrows
2
↓
4
,

1
↓
3
,

i.e. the support of their multiplicity function is contained in the set of bold vertices of the

Auslander Reiten quiver.

[−,−] =? and degeneration inequalities: writing down a table
S′

S [S, S′]
with S an

indecomposable and S′ a bold indecomposable:
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0 0
1 0
0 0
1 0
0 0
1 0

1 0
1 0
1 0
1 0
1 0
1 0

0 0
1 1
0 0
1 1
0 0
1 1

1 0
1 1
1 0
1 1
1 0
1 1

1 1
1 1
1 1
1 1
1 1
1 1

0 0
0 1
0 0
0 1
0 0
0 1

0 1
0 1
0 1
0 1
0 1
0 1

0 0
1 0
0 0
1 0
0 0
1 0 1 1 1 1 1 0 0

1 0
1 0
1 0
1 0
1 0
1 0 0 1 0 1 1 0 0

0 0
1 1
0 0
1 1
0 0
1 1 0 0 1 1 1 1 1

1 0
1 1
1 0
1 1
1 0
1 1 0 0 0 1 1 1 1

1 1
1 1
1 1
1 1
1 1
1 1 0 0 0 0 1 0 1

0 0
0 1
0 0
0 1
0 0
0 1 0 0 0 0 0 1 1

0 1
0 1
0 1
0 1
0 1
0 1 0 0 0 0 0 0 1

1 0
0 0 0 0 0 0 0 0 0

1 1
0 1 0 0 0 0 0 0 1

1 1
0 0 0 0 0 0 0 0 0

0 1
0 0 0 0 0 0 0 0 0

For M ∼=
⊕

S indecmSS,N ∼=
⊕

S indec nSS, M ≤deg N is equivalent to the following seven

inequalities:

1) 0 0
1 0
0 0
1 0
0 0
1 0 : m0 0

1 0
0 0
1 0
0 0
1 0

+m1 0
1 0
1 0
1 0
1 0
1 0

+m0 0
1 1
0 0
1 1
0 0
1 1

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1
≤ n0 0

1 0
0 0
1 0
0 0
1 0

+ n1 0
1 0
1 0
1 0
1 0
1 0

+ n0 0
1 1
0 0
1 1
0 0
1 1

+ n1 0
1 1
1 0
1 1
1 0
1 1

+ n1 1
1 1
1 1
1 1
1 1
1 1

2) 1 0
1 0
1 0
1 0
1 0
1 0 : m1 0

1 0
1 0
1 0
1 0
1 0

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1
≤ n1 0

1 0
1 0
1 0
1 0
1 0

+ n1 0
1 1
1 0
1 1
1 0
1 1

+ n1 1
1 1
1 1
1 1
1 1
1 1

3) 0 0
1 1
0 0
1 1
0 0
1 1 : m0 0

1 1
0 0
1 1
0 0
1 1

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

+m0 0
0 1
0 0
0 1
0 0
0 1

+m0 1
0 1
0 1
0 1
0 1
0 1
≤ n0 0

1 1
0 0
1 1
0 0
1 1

+ n1 0
1 1
1 0
1 1
1 0
1 1

+ n1 1
1 1
1 1
1 1
1 1
1 1

+ n0 0
0 1
0 0
0 1
0 0
0 1

+ n0 1
0 1
0 1
0 1
0 1
0 1

4) 1 0
1 1
1 0
1 1
1 0
1 1 : m1 0

1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

+m0 0
0 1
0 0
0 1
0 0
0 1

+m0 1
0 1
0 1
0 1
0 1
0 1
≤ n1 0

1 1
1 0
1 1
1 0
1 1

+ n1 1
1 1
1 1
1 1
1 1
1 1

+ n0 0
0 1
0 0
0 1
0 0
0 1

+ n0 1
0 1
0 1
0 1
0 1
0 1

5) 1 1
1 1
1 1
1 1
1 1
1 1 : m1 1

1 1
1 1
1 1
1 1
1 1

+m0 1
0 1
0 1
0 1
0 1
0 1
≤ n1 1

1 1
1 1
1 1
1 1
1 1

+ n0 1
0 1
0 1
0 1
0 1
0 1

6) 0 0
0 1
0 0
0 1
0 0
0 1 : m0 0

0 1
0 0
0 1
0 0
0 1

+m0 1
0 1
0 1
0 1
0 1
0 1
≤ +n0 0

0 1
0 0
0 1
0 0
0 1

+ n0 1
0 1
0 1
0 1
0 1
0 1

7) 0 1
0 1
0 1
0 1
0 1
0 1 : m0 1

0 1
0 1
0 1
0 1
0 1
≤ n0 1

0 1
0 1
0 1
0 1
0 1

Isomorphism classes of quiver �ags

Let M as above a (Q, I)-represenation with vertical monomorphisms. We �x

d := dimM := (d1, . . . , d4) and r := rk(M4 ← M3). We describe the isomorphism
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classes of (Q, I)-representations with vertical monomorphisms, dimension vector d and

rk(4 ← 3) = r. By de�nition these are given by the solutions (in N7
0) of the following

equations

1. m1 1
1 1
1 1
1 1
1 1
1 1

+m0 1
0 1
0 1
0 1
0 1
0 1

= d1

2. m1 0
1 0
1 0
1 0
1 0
1 0

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

= d2

3. m0 0
1 1
0 0
1 1
0 0
1 1

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

+m0 0
0 1
0 0
0 1
0 0
0 1

+m0 1
0 1
0 1
0 1
0 1
0 1

= d3

4. m0 0
1 0
0 0
1 0
0 0
1 0

+m1 0
1 0
1 0
1 0
1 0
1 0

+m0 0
1 1
0 0
1 1
0 0
1 1

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

= d4

5. m0 0
1 1
0 0
1 1
0 0
1 1

+m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

= r

Its solutions in N7
0 are given by

{


d4−d2−r+d1

d2−d1
r−d1

0
d1
d3−r

0

+ λ


−1
1
1
−1
0
0
0

+ µ


1
−1
−1
0
1
1
−1

 | λ, µ ∈ Z} ∩ N7
0

In other words a solution is given by (λ, µ) ∈ Z2 such that the following seven inequalities

are ful�lled

(1) m0 0
1 0
0 0
1 0
0 0
1 0

:= d4 − d2 − r + d1 − λ+ µ ≥ 0

(2) m1 0
1 0
1 0
1 0
1 0
1 0

:= d2 − d1 + λ− µ ≥ 0

(3) m0 0
1 1
0 0
1 1
0 0
1 1

:= r − d1 + λ− µ ≥ 0

(4) m1 0
1 1
1 0
1 1
1 0
1 1

:= −λ ≥ 0

(5) m1 1
1 1
1 1
1 1
1 1
1 1

:= d1 + µ ≥ 0

(6) m0 0
0 1
0 0
0 1
0 0
0 1

:= d3 − r + µ ≥ 0

(7) m0 1
0 1
0 1
0 1
0 1
0 1

:= −µ ≥ 0

equivalent to

(4),(7) (λ, µ) ∈ (−N0)× (−N0),

(5),(6) µ ≥ max(−d1, r − d3),

(2),(3) µ ≤ min(d2 − d1, r − d1) + λ ,

(1) µ ≥ −d4 + d2 + r − d1 + λ
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Degenerations of quiver �ags

We describe the degeneration order on isomorphism classes of (Q, I)-representations with

vertical monomorphisms, dimension vector d and rk(4 ← 3) = r. The degeneration

inequalities 1),2),3),5) are then redundant as the dimension vector is �xed. From the

equation 4.,5. (i.e. the equality at d4 and r) it follows that inequality 6) is an equality.

Using this we can simplify 4) to m1 0
1 1
1 0
1 1
1 0
1 1

+ m1 1
1 1
1 1
1 1
1 1
1 1
≤ n1 0

1 1
1 0
1 1
1 0
1 1

+ n1 1
1 1
1 1
1 1
1 1
1 1

. Again by the equality for

the rank this is equivalent to m0 0
1 1
0 0
1 1
0 0
1 1
≥ n0 0

1 1
0 0
1 1
0 0
1 1

. So, we conclude that for M , N with all the

imposed properties, the following are equivalent

(a) M ≤deg N ,

(b) m0 0
1 1
0 0
1 1
0 0
1 1
≥ n0 0

1 1
0 0
1 1
0 0
1 1

, m0 1
0 1
0 1
0 1
0 1
0 1
≤ n0 1

0 1
0 1
0 1
0 1
0 1

(c) dim Im(M3 →M4) ∩ Im(M2 →M4) ≤ dim Im(N3 → N4) ∩ Im(N2 → N4),

dim ker(M1 →M2) ≤ dim ker(N1 → N2)

The equivalence (b)⇔ (c) follows from dim Im(M3 →M4)∩Im(M2 →M4) = m1 0
1 1
1 0
1 1
1 0
1 1

+m1 1
1 1
1 1
1 1
1 1
1 1

and dim ker(M1 →M2) = m0 1
0 1
0 1
0 1
0 1
0 1

.

In other words, if [M ] corresponds to (λ, µ) ∈ Z2, [N ] to (γ, δ) ∈ Z2 as in the previous

subsection 2.1, then (a) ⇔ (b) says

M ≤deg N ⇔ λ− µ ≥ γ − δ, µ ≥ δ

In this case I also write (λ, µ) ≤deg (γ, δ) and set

(λ, µ) :=
⋃

(λ,µ)≤deg(γ,δ)

(γ, δ) = {(γ, δ) | (γ, δ) an isom. class , λ− µ ≥ γ − δ, µ ≥ δ}.

Reineke's strati�cation

Again look at quiver representations with vertical monomorphisms, �xed dimension vector

and rank at (3→ 4). For s ∈ {0, . . . ,min(d1, d2, r)} de�ne the Reineke stratum

Fs := union of isomorphism classes with rk(1→ 2) = s.

Observe s = m1 1
1 1
1 1
1 1
1 1
1 1

= d1 + µ0 for one µ0 ∈ −N0 and, therefore, the Reineke stratum Fs is
the set Its solutions in N7

0 are given by

{


d4−d2−r+d1

d2−d1
r−d1

0
d1
d3−r

0

+ λ


−1
1
1
−1
0
0
0

+ µ0


1
−1
−1
0
1
1
−1

 | λ, µ ∈ Z} ∩ N7
0

We set Fs :=
⋃

(λ,µ)∈Fs (λ, µ) and look for the relative to inclusion maximal Fs, an easy

way to see this is with a picture, see next subsection.
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Visualization

The grey area is the set described in subsection 2.1 by the inequalities (1),...,(7). The

darker grey area is (l,m).

-8

-10

420-2

2

0

-4

-2

-4

-6

-6

max(-d_1, r-d_3)

-d_4+d_2+r-d_1

-8

min(d_2-d_1, r-d_1)

(0,0)

(l,m)

-10

The points in the dotted square are the orbits in the Reineke stratum to s, the darker grey

area is its closure.

-10

420-2

2

0

-4

-2

-4

-6

-6

-8

-8

s-d_1

max(-d_1, r-d_3)

-d_4+d_2+r-d_1

min(d_2-d_1, r-d_1)

-10

(0,0)

,

-10

420-2

2

0

-4

-2

-4

-6

-6

-8

-8

s-d_1

max(-d_1, r-d_3)

-d_4+d_2+r-d_1

min(d_2-d_1, r-d_1)

-10

(0,0)

The left hand side is not maximal relative to inclusion of closures, the right hand side is

maximal.

We conclude that the closures of Reineke strata maximal relative to inclusion are the ones

with s−d1 ∈ {min(0,min(d2−d1, r−d1)),min(0,min(d2−d1, r−d1))−1, . . . ,min(0,−d4 +

d2 +r−d1)}. We see that the Reineke strati�cation does not ful�ll the boundary condition.

There is only one irreducible component if and only if −d4 + d2 + r − d1 ≥ 0 or

min(d2 − d1, r − d1) = −d4 + d2 + r − d1.

6.5.2 Open problems

It would be nice to have a better understanding of the AR-theory of the category X
which might also leed to a better understanding of the decomposition graph for irreducible

214



components of quiver �ag varieties. At the moment, Q = A2 is the only understood

example. The �nite type investigation for the categories X has a similar result as for

preprojective algebras, which is not surprising when using covering theory, is there more

in this connection?

Also, the tame types could be investigated, the case of the Jordan quiver is contained in

[BH00a]. In the spirit of [BHRR99] one can investigate a bijection between dense orbits

in quiver �ag varieties and tilting modules in X. This might be related to the Richardson

orbit lemma from the �rst section. It could be that the category X is already a special

case of [BH00b], but I am not sure of this.
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Chapter 7

An-equioriented quiver �ag varieties

Summary. We study varieties of complete �ags in quiver representations for the quiver

An-equioriented. We refer to the classical case as the same constructions with the Jordan

quiver.

* We stratify them by the isomorphism classes of the submodules, we call this Reineke

strati�cation (see [Rei03]). To each stratum we associate a multi-tableau which we

call root tableau.

* Then we re�ne Reineke strati�cation into a strati�cation parametrized by multi-

tableau with relaxed rules which we call row root tableau. We prove that this gives

an a�ne cell decomposition. As a corollary we can describe the Betti numbers of

complete An-equioriented quiver �ag varieties. In the classical case similar methods

have been used by Lukas Fresse, [Fre09].

* We give some conjectural results which we did not prove for time reasons: The hook

case can be analogously investigated to Fungs work, see [Fun03].

Remark. These methods can be generalized to uniserial algebras or categories but it is

not obvious how they can be extended to other Dynkin quivers.

7.0.3 Notation and basic properties for An-equioriented representations

If not stated otherwise in this article, Q := An-equioriented with the following numbering

1→ 2→ · · · → n. Let K be a �eld.

For 1 ≤ i ≤ n we write Si for the simple left KQ-module supported in the vertex i.

Recall that by Gabriel's theorem the set of (positive) roots can be identi�ed with the

set of dimension vectors of indecomposable KQ-modules which is given by R+ = {αij =∑j
k=i ek ∈ Nn0 | i ≤ j}. We also write αij = (ij) and for a root α we denote by Eα (or

Eij) an indecomposable module with dimension vector α. By the Krull-Schmidt theorem,

an isomorphism class of a �nite dimensional left KQ-module M is determined by its

multiplicities mM = (mM
α )α∈R+ i.e. M ∼=

⊕
α∈R+ mM

α Eα.
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We denote by socEij = Sj
s−→ Eij the inculsion of the socle and by radEij = Ei+1,j

r−→ Eij

if i < j and radSi = 0 ⊂ Eij the inclusion of the radical.

Simple submodules

The following easy lemma has been observed by Reineke in [Rei03], Prop. 4.9 and Example

on p.16.

Lemma 68. Any short exact sequence 0 → Sj → M → N → 0 is isomorphic to short

exact sequence

0→ Sj

0

s


−−−→ B ⊕ Eij → B ⊕ Ei,j−1 → 0

where s is the inclusion of the socle.

Let M be a representation of Q, by Krull-Schmidt theorem we �nd a direct sum de-

composition into submodules

M =
⊕
α

[M1
α ⊕ · · · ⊕Mmα

α ]

with M t
α
∼= Eα, 1 ≤ t ≤ mα, α ∈ R+, we call the projection on direct summands always

pr.

Please note that we do not look at the isomorphism class of the module, so the numbering

of the (isomorphic) direct summands is important information for us. We call this a root

blocked decomposition (or rb-decomposition) because in di�erence to an arbitrary

direct sum decomposition we require that our decomposition is a re�nement of an isotypic

decomposition.

Let U ∼= Sj be a simple submodule of M , then clearly U ⊂
⊕j

k=1

⊕m(kj)

t=1 M t
(kj) ⊂M .

By lemma 68, we �nd (i, j) and a module B such that M ∼= B ⊕ Eij ,M/U ∼= N :=

B ⊕ Ei,j−1.

How do arbitrary simple submodules U of M with M ∼= B⊕Eij ,M/U ∼= N := B⊕Ei,j−1

look like?

The isomorphisms M ∼= B ⊕ Eij and M/U ∼= N := B ⊕ Ei,j−1 are equivalent to the

following two conditions on U

a) U ⊂
⊕i−1

t=0M
1
(i−t,j) ⊕ · · · ⊕M

m(i−t,j)
(i−t,j)

b) the composition U ⊂
⊕i−1

t=0[M1
(i−t,j)⊕· · ·⊕M

mM
(i−t,j)

(i−t,j) ]
pr−→M1

(i,j)⊕· · ·⊕M
m(i,j)

(i,j) is not

the zero map.

Therefore, any simple submodule U of M determines a unique α = (i, j) and

a ∈ {1, . . . ,mα} such that M ∼= B ⊕ Eij ,M/U ∼= B ⊕ Ei,j−1 and U → M
pr−→ Ma

α is not

zero and U → M
pr−→ M t

α, t < a is zero. We write (α, a)[U ] := (α, a) and call it the �rst
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relevant summand with respect to rb-decomposition M∗.

Furthermore, there an is an isomorphism determined by U ⊂M

φU : M/U →M1
(1,1) ⊕ · · · ⊕M

a−1
(i,j) ⊕

(
Ma

(i,j)/(socMa
(ij))

)
⊕Ma+1

(ij) ⊕ · · · ⊕M
m(n,n)

(n,n) .

After a slight reordering this gives a rb-decomposition for M/U ,

M/U =
⊕
α

m
M/U
α⊕
t=1

(M/U)tα

with
(M/U)t(i,j) = M t+1

(i,j), if t ≥ a

(M/U)
m
M/U
(i,j−1)

(i,j−1) = Ma
(i,j)/(socMa

(ij)), if i 6= j

(M/U)tα = M t
α, for all other α, t.

We call this the from M induced rb-decomposition on the quotient M/U . Observe,

that the multiplicity function of M/U can be obtained from the multiplicity function of

M and vice versa.

We can reformulate this to

Corollary 7.0.0.2. Let M by a KQ-module. There is a function

{Simples ⊂M} → R+

mapping the simple U to the indecomposable (ij) such thatM ∼= B⊕Eij ,M/U ∼= B⊕Ei,j−1.

For a given rb-decomposition M∗ of M , there is a function

{Simples ⊂M} → R+ × N0, U 7→ (α, a)[U ]

mapping a simple U to the �rst relevant summand with respect to the rb-decomposition M∗

(see above).

This implies that we �nd for any simple submodule U ⊂M a function

{ rb-dec of M} → { rb-dec of M/U}.

de�ned by the from M induced rb-decomposition on M/U (see above).

7.1 Reineke strata and root tableaux

Now, let K be an algebraically closed �eld.

De�nition 21. Let Q = (Q0, Q1) be a quiver,M be a KQ-module of dimension dimM =:

d ∈ NQ0
0 and d := (0 = d0, d1, . . . , dr = d) with dt ∈ NQ0

0 be a sequence with dti ≤ dt+1
i , 1 ≤
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t ≤ r − 1, i ∈ Q0. We de�ne

FlQ

(
M

d

)
:= {U = (0 ⊂ U1 ⊂ · ⊂ U r = M) | U t KQ-module, dimU t = dt}

where ⊂ means submodule in the category of KQ-modules. This de�nes a projective K-

variety, we call it the quiver �ag variety associated to M and the dimension �ltration

d and its (K-rational) points quiver �ags of dimension d. Recall, for i ∈ Q0, we have

a simple module Si with dimSi =: ei is supported on the vertex i. If dt+1 − dt = eit for

an element it ∈ Q0, 1 ≤ t ≤ r − 1, then we call the quiver �ags of dimension d complete

�ags and FlQ
(
M
d

)
a variety of complete quiver �ags.

We also have the following strati�cations of FlQ
(
M
d

)
.

De�nition 22. LetM,d as before. Pick N∗ := (N1, . . . , Nr−1) a sequence ofKQ-modules.

(1) We de�ne

F[N∗] := {U = (0 ⊂ U1 ⊂ · · · ⊂ U r = M) ∈ FlQ

(
M

d

)
|

U t ∼= Nt in KQ-mod, 1 ≤ t ≤ r − 1}.

If Q is a Dynkin quiver, this de�nes a strati�cation of FlQ
(
M
d

)
into locally closed

irreducible smooth subsets see [Rei03]. We call this strati�cation Reineke strati�-

cation.

(2) We de�ne

S[N∗] := {U = (0 ⊂ U1 ⊂ · · · ⊂ Uν = M) ∈ FlQ

(
M

d

)
|

M/U t ∼= Nt in KQ-mod, 1 ≤ t ≤ r − 1}.

If Q is Dynkin, this is a strati�cation into �nitely many locally closed irreducible

smooth subsets. We call this strati�cation Spaltenstein strati�cation because it

has been studied for the Jordan quiver in [Spa76].

Remark. The two strati�cations are mapped to each other under the following isomor-

phism

D̂ : FlQ

(
M

d

)
→ FlQop

(
DM

e

)
,

U 7→ (D̂(U))t := ker(DM → DU t) = D(M/Ut)

where e = (e0, e1, . . . , er), er−t = dr − dt and D := HomK(−,K), cp. [Wol09], de�nition

6.11, p.64. Therefore, it is enough to investigate one of the two strati�cations.

We will investigate Spaltenstein strata for Q := 1 → 2 → · · · → n and Reineke strata

for Q := 1← 2← · · · ← n.

We associate to a Reineke stratum a combinatorial object called root tableau, this is the

analogue of Spaltenstein's strati�cation of classical Springer �bres with respect to standard
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tableau, [Spa76].

Let us stick for a moment with Reineke strata and Q = 1 ← 2 ← · · · ← n and leave

the dual situation to the reader.

De�nition 23. Let M be a �nite dimensional representation of Q. A root diagram

of type Q is a sequence of Y = (Y1, . . . , Yn) of possibly empty Young diagrams with the

numbers of columns in Yi is less or equal n− i+ 1, 1 ≤ i ≤ n.
Let Y ′ = (Y ′1 , . . . , Y

′
n), Y = (Y1, . . . , Yn) be two root diagrams of type Q, the we write

Y ′ ⊂ Y if Y ′i is a Young subdiagram of Yi, 1 ≤ i ≤ n (recall one Young diagram S′ is a

Young subdiagram of another S if for each row the length in S′ is shorter than in S.)

A root tableau for Q is a sequence T = (T1 ⊂ T2 ⊂ · · · ⊂ Tr) with Ti root diagram of

type Q, 1 ≤ i ≤ r.
We visualize a root tableau of type Q via writing down the sequence of Young diagrams

(Y1, . . . , Yn) of Tr.

Here, we renumber the columns as follows: The k-th column of Yi is from now on in the

(i + k − 1)th column of Yi and we start with Y1, write Y2 under it, . . . , write Yn under

it (respecting the numbering of the columns), we end up with a skew diagram with n

columns.

Then put 1 in all boxes lying inside the subdiagram T1, put 2 inside all boxes inside T2

not in T1, . . . , put r in all boxes not inside Tr−1.

De�nition 24. For a root diagram Y = (Y1, . . . , Yn) with Yi a Young diagram with rows

of lengths `
(i)
1 ≥ `

(i)
2 ≥ · · · ≥ `

(i)
ri , 1 ≤ i ≤ n, we associate a module

MY :=

n⊕
i=1

ri⊕
s=1

E
i,i+`

(i)
s −1

and we set dimY := dimMY ∈ Nn0 .
For a root tableau T = (T1 ⊂ . . . ⊂ Tr) we associate a Spaltenstein stratum

ST := S[0,MT1
,...,MTr=:M ] ⊂ FlQ

(
MTr

dT

)
and a Reineke stratum

FT := F[MT1
,...,MTr ] ⊂ FlQ

(
MTr

dT

)
with dT := (0,dimMT1 ,dimMT2 , . . . ,dimMTr).

By the previous considerations we get.

Lemma 69. (1) There is a bijection between Spaltenstein strata in FlQ
(
M
d

)
and root

tableau T = (T1, . . . , Tr) with MTr
∼= M and dT = d.

(2) There is a bijection between Reineke strata in FlQ
(
M
d

)
and root tableau

T = (T1, . . . , Tr) with MTr
∼= M and dT = d.
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Proof: Ad (2), we map T 7→ FT . For N1, . . . Nr−1, Nr = M the Reineke stratum is

nonempty if and only there exist monomorphisms Nk → Nk+1, 1 ≤ k ≤ r − 1, cp. [Rei03]

. Let Ti be the root diagram corresponding to the isomorphism class of Ni, since there are

these monomorphisms we get a sequence T = (T1 ⊂ T2 ⊂ · · · ⊂ Tr), i.e. we obtain a root

tableau.

Ad (1), follows from the bijection described in the �rst remark in this section. �

7.1.1 Swapping numbered boxes in row root tableaux

De�nition 25. Let Q = An and let T = (T1, . . . , Tr) be a root tableu for Q. We call

a connected subset of numbered boxes in one Young tableau Ti of T a brick. We call it

row brick if b lies in one row, column brick if b lies in one column. Let c be another brick

obtained by translating b some rows up or down. We say that (b, c) is admissible for T

if the skew tableau obtained by swapping b and c is again a root tableau. In case b, c are

admissible for T , then we write δbcT for the root tableau obtained from T by swapping the

boxes b and c. In this case we say (b, c) decomposable if there are admissible pairs (b′, c′)

for T and (b′′, c′′) for δb′,c′T such that δb,cT = δb′′c′′δb′c′T , we say (b, c) is indecomposable

if it is not decomposable.

Example. If the bricks in admissible pair is just a single boxes, then it is indecomposable.

Here are further examples of indecomposable admissible pairs, b is the red (=dark grey)

brick and c is the green (=light grey) brick. They can have arbitrary shape.

1 2 3 6

4 5

1 1 1 1 1 1

2 2

2 2 2 2

1 7

2 8

3 9

4

5

6

1 3 4

2 5

6 7

8

An admissible pair (b, c) for T is indecomposable if and only if the maximal number within

one of the bricks b, c is strictly smaller than the minimal number within the other brick.

Remark. Observe, that there might be boxes b which might not be part of any admissible

pair. We call this the �xed boxes of T . When looking at the boxes �xed in all T with the

same dT = d (i.e. in all columns are the same numbers just permuted in order) we call

them the �xed boxes. Then, the boxes in the �rst column of (any) T will be �xed. If b, c

are admissible for T and its shape is a root diagram Y = (Y1, . . . , Yn), then b and c belong

to di�erent Yi.

7.1.2 Dimension of root tableau

Let Q = 1← 2← · · · ← n. For a Reineke stratum de�ned by 0 ⊂ N1 ⊂ · · · ⊂ Nr = M we

de�ne

ak := dim Hom(Nk−1, Nk)− dim End(Nk−1), 1 ≤ k ≤ r.
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In [Rei03], thm 4.2 Reineke proved dimF[N∗] =
∑r

k=1 ak. In particular,

ak = dimF[0,Nk−1,Nk] where F[0,Nk−1,Nk] ⊂ Gr
(

Nk
dimNk−1

)
is the Reineke stratum in the

quiver Grassmannian.

We want to read this number from the root tableau. Even though it is enough to understand

the Grassmannian case, we start with understanding the case of complete �ags and then

afterwards we look at the Grassmannian case. Recall that for Reineke strata in complete

�ags there is for every k ∈ {1, . . . , r} an isomorphism of short exact sequences

0 // Nk−1
//

��

Nk
//

��

// Ejk //

��

0

0 // B ⊕ Eik,jk−1 // B ⊕ Eik,jk //// Ejk // 0

for a module B and some ik < jk in {1, . . . , n}. It follows

ak = dim Hom(B ⊕ Eik,jk−1, B ⊕ Eikjk)− dim Hom(B ⊕ Eik,jk−1, B ⊕ Eik,jk−1)

= dim Hom(B,Eikjk)− dim Hom(B,Eik,jk−1)

Recall, that dim Hom(Eab, Eij) = 1 if and only if a ≤ i ≤ b ≤ j implying that for B = Eab

we have ak ∈ {0, 1} and

ak = 1 ⇐⇒ a ≤ ik and b = jk.

Now, observe for B =
⊕

a≤b babEab we have bab = n
(k−1)
ab for all (a, b) 6= (ik, jk − 1),

therefore we proved the following

Lemma 70. Let Nk =
⊕

a≤b n
(k)
ab Eab, 1 ≤ k ≤ r be de�ning a Reineke stratum of complete

�ags, suppose Nk−1 → Nk is isomorphic to id⊕(Eik,jk−1 → Eik,jk) . Then, it holds

ak =
∑
a≤ik

n
(k−1)
ajk

.

In the case of partial �ags, we know for all k ∈ {1, . . . , r} by [Lus91], Lemma 1.8 that

there exists a complete �ag of submodules in Nk/Nk−1 this means that every Reineke

stratum has a re�nement to a Reineke stratum in a complete �ag. Using our knowledge

on complete �ags this implies that there exists an injection N → M if and only if there

exists direct sum decompostions N = B⊕S,M = B⊕S+x⊕R such that S =
⊕

i≤j sijEij

and S+x =
⊕

i≤j
⊕sij

s=1Ei,j+x(ij)s
for certain integers 1 ≤ x

(ij)
1 ≤ x

(ij)
2 ≤ · · · ≤ x

(ij)
sij . The

B =
⊕

a≤b babEab is the largest common direct summand of N and M . There might be

more than one choice of S+x and R, but the root tableau gives us unique choices (up to
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isomorphism), see later. We get that the number

aNM := dim Hom(N,M)− dim Hom(N,N)

= dim Hom(B ⊕ S,B ⊕ S+x ⊕R)− dim Hom(B ⊕ S,B ⊕ S)

= [dim Hom(B,S+x)− dim Hom(B,S)] + dim Hom(N,R)

= [
∑
i≤j

sij∑
s=1

(dim Hom(B,E
i,j+x

(ij)
s

)− dim Hom(B,Eij))] + dim Hom(N,R)

We have dim Hom(Eab, Ei,j+x(ij)s
) − dim Hom(Eab, Eij) = 1 if and only if a ≤ i and b ∈

{j + 1, . . . , j + x
(ij)
s }. So, we get

aNM = [
∑
i≤j

sij∑
s=1

∑
a≤i

(ba,j+1 + · · ·+ b
a,j+x

(ij)
s

)] + dim Hom(N,R)

Now, in terms of root tableau, N injects to M if and only if the root diagram of N is a

subdiagram of M , let`s �ll the boxes of the root diagram for N with 1 and the remaining

boxes of the root diagram of M we �ll with 2. The largest common direct summand B is

given by the the rows completely �lled with 1, R is given by the rows completely �lled wit

2, S+x is given by the rows containing 1 and 2, S is given by the subdiagram of S+x just

�lled with 1.

Then, the previous formula gives an easy recipe to calculate aNM . The reader is encouraged

to try an example on its own.

Example. Example for A5-equioriented oo oo oo oo ,

M = E14 ⊕ 3E13 ⊕ E25 ⊕ 3E2 ⊕ E45 ⊕ 3E5,

we give two root tableau de�ning Reineke strata in the same �ag variety, i.e. they have in

each column the same numbers written (up to permutation). I take complete �ags, so we

can identify boxes with their numbers within. The �xed boxes are colored red (=grey) for

the convenience of the reader.

T = 3 5 6 25

10 11 15

12 13 18

14 19 24

1 8 17 21

7

9

16

2 22

4

20

23

T ′ = 3 7 8 25

10 13 15

12 16 18

14 19 24

1 6 17 23

5

9

11

2 4

20

21

22
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We can try to use this now to calculate the dimension change when we do an admissible

swap within on root tableau-

How do we calculate the maximal dimension of a Reineke stratum? Actually, I

do not know, but I present my thoughts here.

We de�ne for any root diagram and dimension �ltration d, s.t. there exists at least one

root tableau T with dT = d, a root diagram Tmax with dTmax = d in the following way.

Go through the columns from left to right. Go downwards through each column �lling in

not �xed boxes always the smallest of all possible choices from the still free numbers for

that column (possible choice means that there exists a root tableau containing the �lling

until that point).

We call it themaximal root tableau associated to a root diagram and a dimension �ltration

d. In particular we can associated to a quiver �ag variety FlQ
(
M
d

)
a maximal root tableau

Tmax.

Then, FTmax is often the highest dimensional Reineke stratum but not always. Also we

have no control of the dimension of a Reinke stratum after wapping an admissible pair.

Here is an example where it is not the highest dimensional stratum.

Example.

Tmax = 1 2

3

4

5

6

T = 1 5

3

4

2

6

T ′ = 1 6

3

4

2

5

Then, using the formular we calculate

(1) For Tmax it holds a1 = a2 = a3 = 0, a4 = a5 = 1, a6 = 2, therefore dimFTmax = 4.

(2) For T it holds a1 = a2 = 0, a3 = 1, a4 = 2, a5 = 0, a6 = 2, therefore dimFT = 5.

(3) For T ′ it holds a1 = a2 = 0, a3 = 1, a4 = 2, a5 = 1, a6 = 0, therefore dimFT ′ = 4.

These are the only Reineke strata in that quiver �ag variety, it follows that its maximal

dimension is 5.

7.2 rb-strata and row root tableaux

This implies, if we have a point in a complete quiver �ag variety (0 ⊂ U1 ⊂ · · · ⊂ U r =

M) ∈ FlQ
(
M
d

)
, then a rb-decomposition on M induces an rb-decomposition on M/Uk,

1 ≤ k ≤ r − 1.

De�nition 26. Fix a direct sum decomposition of M indexed as before. Fix a complete

dimension �ltration d of dimM . For a sequence α, a := (α1, a1), (α2, a2), . . . (αr, ar) with
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αt roots, 1 ≤ t ≤ r and at ∈ N0 we de�ne the set

Sα,a := {(0 ⊂ U1 ⊂ · · · ⊂ U r = M) ∈ FlQ

(
M

d

)
|(αk, ak) = (α, a)[Uk/Uk−1]

wrt to the induced rb-dec on M/Uk−1

and call it the rb-stratum for α, a.

We see later that this de�nes a locally closed subset of FlQ
(
M
d

)
, see corollary 7.3.0.3.

The rb-strati�cation is not Aut(M)-invariant. Choosing another direct sum decomposition

gives rise to a strati�cation which can be obtained by applying an element of Aut(M).

De�nition 27. Let Y be a root diagram (of type An-equioriented) with r boxes. We call

a �lling τ of the boxes in Y by 1, . . . , s (s ≤ r) row root tableau of shape Y if the

numbering is weakly increasing in the rows.

Each row root tableau τ has an associated root tableau T (τ) = (T1, . . . , Ts), where Ti is

the root diagram which you get when looking at the boxes �lled by 1, . . . , i and permute

the rows.

rb-strati�cation is �ner than Spaltenstein strati�cation because it is not only �xing the

isomorphism type of the module where the simple is mapping to but the module itself. So,

if there are two isomorphic modules, it is saying into which one the simple is mapping. This

is re�ected in the row root tableau, where �lling in the numbers sees every indecomposable

submodule of M as a row of boxes and in each step you �ll in the number in the row

corresponding to the root where the simple is mapping to. In other words.

Lemma 71. Let M be a representation of Q = An-equioriented, d be a complete dimen-

sion �ltration. Let Y = YM be the root diagram of M and T be a root tableau of shape Y

and dimension �ltration dT = d.

Then, there is a bijection between rb-strata S(a) inside the Spaltenstein stratum correspond-

ing to T and row root tableau τ with T (τ) = T .

Open questions: Are closures of rb�strata unions rb-strata? Is there a good formula for

its dimension and or codimension in the Spaltenstein stratum? What is the right de�nition

of the inversion number and can we give a formula for it as Fresse did?

Our main aim in the next section is to show that rb-strata are a�ne spaces. We �rst

�nd a special point within each rb-stratum, a so called split module, see next subsection.

7.2.1 Split Modules

For a moment allow Q to be an arbitrary �nite quiver. Let Λ = KQ⊗K KAn. Let X ⊂ Λ

mod be the subcategory of An-monomorphisms.
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De�nition 28. A Λ-module 0 ⊂ U1 ⊂ · · · ⊂ Un = M in X is called split with respect to

a direct sum decomposition M = M1 ⊕ · · · ⊕Mr in indecomposable submodules if

Us = (Us ∩M1)⊕ · · · ⊕ (Us ∩Mr), 1 ≤ s ≤ n− 1.

We call a Λ-module in X split if there exists a direct sum decomposition of its �agpole

such that it is split with respect to this direct sum decomposition. Fix an additive family

of modules with for each isomorphism type precisely one module. The full subcategory (of

X) of split modules with respect to this family de�nes an additive subcategory SX of X.

Remark. Let U := (0 ⊂ U1 ⊂ · · · ⊂ Un = M) be a split module with respect to

M = M1 ⊕ · · · ⊕ Mr, we set (U ∩ Mi) := 0 ⊂ (U1 ∩ Mi) ⊂ · · · ⊂ (Un ∩ Mi) = Mi,

then U = (U ∩M1) ⊕ · · · ⊕ (U ∩Mr) is a direct sum decomposition into indecomposable

Λ-submodules.

We recall some notions from [Rei03], section 4. A quiver is called co-special, if for all

indecomposable Eα and all simples Si, we have dim Hom(Si, Eα) ≤ 1. We call a vertex

i ∈ Q0 thick if there exists a root α such that dimi α ≥ 2. Then, Reineke proved that a

quiver is co-special if and only if no thick vertex is a sink ([Rei03], Prop. 4.8).

Lemma 72. If Q is co-special, then SX is representation-�nite. In particular, this holds

for Q Dynkin of type A.

Proof: We need to see that the number of Λ-modules with �agpole equal an indecom-

posable M is �nite up to Aut(M)-isomorphism. If M has a dimension vector in {0, 1}Q0

it has only a �nite number of submodules, so there is nothing to prove in this case.

In general, let 0 ⊂ U1 ⊂ · · · ⊂ Un = M . If dim Hom(U ′j ,M) = 1 for all indecomposable

direct summands U ′j of Uj , then there exists a unique submodule of isomorphism type Uj

inside M . But as Q is co-special this is automatically ful�lled. �

Example. Also, for Q arbitrary Dynkin and K a �nite �eld the category SX is represen-

tation �nite, for trivial reason. But if K is in�nte, SX is representation in�nite for Q (not

co-special) Dynkin quiver of type D4. Consider the following family of indecomposable

Λ-modules

0

""EEEEEEEEE 0

��

K

( 1
0 )   AAAAAAAA K

( 0
1 )
��

Im ( 1
a )

⊂ // K2

0

OO

K,

( 1
1 )

OO

a 6= 0, 1 in K. They are pairwise non-isomorphic.

From now on we investigate the case Q = An-equioriented more closely. Recall that r + 1

is the length of the sequence of the �ag. Let i ≤ j in {1, . . . , n}. We de�ne a Λ-modules

as follows
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(1) For Q = 1 ← · · · ← n let λ = (λ0, λii, λi,i+1, . . . , λi,j) be a sequence λ0, λi,i+k ∈
N≥1, λ0 +

∑j−i
k=0 λi,i+k = r + 1 we de�ne

Eij(λ) :=

0 = · · · = 0︸ ︷︷ ︸
λ0−times 0

⊂ Si = · · · = Si︸ ︷︷ ︸
λii−times Si

⊂ Ei,i+1 = · · · = Ei,j−1 ⊂ Eij = · · ·Eij︸ ︷︷ ︸
λij−times Eij

 .

(2) For Q = 1 → · · · → n let λ = (λ0, λjj , λj−1,j , . . . , λi,j) be a sequence λ0, λj−k,j ∈
N≥1, λ0 +

∑j−i
k=0 λj−k,j = r + 1 we de�ne

Eij(λ) :=

0 = · · · = 0︸ ︷︷ ︸
λ0−times 0

⊂ Sj = · · · = Si︸ ︷︷ ︸
λjj−times Sj

⊂ Ej−1,j = · · · = Ei+1,j ⊂ Eij = · · ·Eij︸ ︷︷ ︸
λij−times Eij

 .

As always we write Si(λ) instead of Eii(λ). Obviously, the Eij(λ) are indecomposable

Λ-modules.

Lemma 73. The category SX is Krull-Schmidt. The isomorphism classes of indecompos-

able objects in SX are given by the Eij(λ) de�ned above. It holds EndΛ(Eij(λ), Eij(λ)) =

K.

Proof: It is Krull-Schmidt because it is closed under taking direct summands. Clearly,

the Eij(λ) are the indecomposable objects. �

Lemma 74. Any rb-stratum containes precisely one split module. There is a bijection

between isomorphism classes of split modules and row root tableau.

Proof: Let Q = 1 ← · · · ← n. Let U = (0 ⊂ U1 ⊂ · · · ⊂ Uν = M) be a split module.

Recall that U t, U t+1 have an induced direct sum decomposition which is respected be the

inclusion. Then, U t is the image of a KQ-linear map
⊕

k φk where φk is on all but one

summand the identity and on the last one it is a nonzero si,j : Ei,j−1 → Eij , i < j or

si : 0 → Si for some i, j ∈ Q0. The data on which direct summand the non-identity map

occurs is given by the row root tableau because the direct summands correspond to the

rows in the tableau. We illustrate this with an example. �

Example. Let us write down the split module corresponding to

2 5

1

3

6 7

4

Q = 1← 2← 3 and r + 1 = 8 is the length of the �ag. It is a Λ-module of the form

V = (0→ V1
f1−→ V2

f2−→ · · · f6−→ V7 =: M)
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with
V1 = S1, V2 = S2

1 , V3 = S3
1 , V4 = S3

1 ⊕ S2,

V5 = E12 ⊕ S2
1 ⊕ S2, V6 = E12 ⊕ S2

1 ⊕ S2
2 , V7 = E12 ⊕ S2

1 ⊕ S2 ⊕ E23.

and

f1 = s1 ⊕ idS1 , f2 = idS2
1
⊕s1, f3 = idS3

1
⊕s2

f4 = s12 ⊕ idS2
1
⊕ idS2 , f5 = idE12 ⊕ idS2

1
⊕s2 ⊕ idS2 , f6 = idE12 ⊕ idS2

1
⊕s23 ⊕ idS2 .

It holds

V = E12(2, 3, 3)⊕ S1(1, 7)⊕ S1(3, 5)⊕ S2(4, 4)⊕ E23(6, 1, 1)

Example. Assume we have a semisimple KQ-representation M . We �x a root blocked

decomposition

M = S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
m1−times

⊕ · · · ⊕ Sn ⊕ · · · ⊕ Sn︸ ︷︷ ︸
mn−times

by choosing a basis e
(1)
1 , . . . , e

(1)
m1 , e

(2)
1 , . . . , e

(n)
mn such that the k-th summand in the Si-block

is Ke
(i)
k . We let a torus T = (K∗)m1 × · · · × (K∗)mn act by rescaling the basis vectors.

Every complete quiver �ag variety FlQ
(
M
d

)
(for an arbitrary dimension �ltration d) is

isomorphic to Glm1/B1×· · ·×Glmn/Bn for the upper triangular matrices Bi ⊂ Glmi , 1 ≤
i ≤ n. This can be seen as follows: The dimension �ltration corresponds to a word in

the vertices i = (i1, . . . , ir), ij ∈ Q0. This induces a permutation of the basis vectors as

above (for example i = (1, 2, 1, 1) then the reordering is e
(1)
1 , e

(2)
1 , e

(1)
2 , e

(1)
3 ). This gives an

element σ ∈ SN with N =
∑n

k=1mk. If we see the quiver �ag naturally embedded into

GlN/B with B upper triangular, then conjugation with π−1 gives the identi�cation with

Glm1/B1 × · · · ×Glmn/Bn.

The described torus is (also after the permutation) the diagonal torus. We leave it to

the reader to see that the T -�xed points on them are precisely the split modules and the

rb-strata are the products of Schubert cells.

7.3 rb-strati�cation as a�ne cell decomposition

Spaltenstein's �bration

In [Spa76], Spaltenstein's main tool to proof the equi-dimensionality of the classical

Springer �bres is that the taking Spaltenstein strata map is locally trivial when restricted

to certain Schubert cells. We show here that we have the analogue in the case of an

equioriented An-quiver, even though Spaltenstein strata are not equi-dimensional. As a

corollary we obtain that the quiver �ag varieties admit a a�ne cell decomposition. As we

made the choice to work with Reineke strata instead of Spaltenstein strata, we stick with

it and remark here that with applying the isomorphism D̂ one can rewrite everything in

this section in terms of Spaltenstein strata; instead of characteristic �ags you would de�ne

co-characteristic �ags, in the examples all kernels and images (or socles and radicals) would

be swapped, instead projecting onto the Grassmannian of hyperplanes you would project
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onto the projective space. We write down both versions because in the literature both are

common.

Short recall on relative position Let Fl(d) :=
∏

i∈Q0
Fl(di),Fl(e) :=

∏
i∈Q0

Fl(ei)

with di = (0 = d0
i ≤ d1

i ≤ · · · ≤ dνi ), ei = (0 = e0
i ≤ e1

i ≤ · · · ≤ eµi ) with dνi = eµi for all

i ∈ Q0.

Then we de�ne the relative position map to be

rp: Fl(d)× Fl(e)→
∏
i∈Q0

Mat
(
(ν + 1)× (µ+ 1),N0

)
(U•i , V

•
j )i,j∈Q0 7→

(
(dimUki ∩ V l

i )0≤k≤ν,0≤l≤µ
)
i∈Q0

Given w ∈
∏
i∈Q0

Mat
(
(ν + 1)× (µ+ 1),N0

)
,V ∈ FlQ

(
M
e

)
we call

Fl(d)V,w := {U ∈ Fl(d) | rp(U,V) = w}

generalized Schubert cell. This is an orbit under the diagonal Gld :=
∏
i∈Q0

Gldνi -

operation. For another point in V ′ ∈ FlQ
(
M
e

)
we get an isomorphic Schubert cell.

Let M ∈ RQ(d) be a representation, then we set

FlQ

(
M

d

)
V,w

:= FlQ

(
M

d

)
∩ Fl(d)V,w

For a �xed V this gives the strati�cation by relative position (with V ) in FlQ
(
M
d

)
.

We leave out the index V if it clear which is meant.

De�nition 29. Let Q be any quiver and M be a representation of Q.

(1) We call a �ag FM of Q0-graded vector spaces inside the underlying Q0-graded vector

space M of M characteristic �ag for (M,d = (d1, . . . , dν)) if for all N,N ′ ∈
GrQ

(
M
di
)

: rp(N ⊂ M,FM) = rp(N′ ⊂ M,FM) implies N,N ′ de�ne the same Reineke

strata (i.e. N ∼= N ′ as KQ-modules).

We call it characteristic �ag for M if it is a characteristic �ag for all �ltration d.

We call it characteristic �ag for cosimples in M if it is a characteristic �ag for

all d with d+ ei = dimM for some i ∈ Q0.

(2) We call FM co-characteristic �ag for (M,d = (d1, . . . , dν)) if for all N,N ′ ∈
GrQ

(
M
di
)

: rp(N ⊂ M,FM) = rp(N′ ⊂ M,FM) implies N,N ′ de�ne the same Spal-

tenstein strata (i.e. M/N ∼= M/N ′ as KQ-modules). We call it co-characteristic

�ag for M if it is a co-characteristic �ag for all �ltration d. We call it co-

characteristic �ag for simples in M if it is a co-characteristic �ag for all ei

for some i ∈ Q0.

We start with some preparation for the main result.

Remark. * FM is a characteristic �ag for (M,d = (d1, . . . , dν)) if and only if FM is a

co-characteristic �ag for (D(M), e = (e0, e1, . . . , eν)), eν−i = dν − di.
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* Any re�nement of a (co-)characteristic �ag for (M,d) is a again a (co-)characteristic �ag

for (M,d).

* A �ag is characteristic for (M,d = (d1, . . . , dν)) if the associated strati�cation by rel-

ative position is �ner than the Reineke strati�cation in FlQ
(
M
d

)
. It is co-characteristic

for (M,d = (d1, . . . , dν)) if the associated strati�cation by relative position is �ner than

Spaltenstein strati�cation in FlQ
(
M
d

)
.

(1) Assume FM is characteristic �ag for M,dν−1 in a dimension �ltration

d = (d0, . . . , dν = dimM). Let e := (d0, . . . , dν−1). Let us denote by p : FlQ
(
M
d

)
→

GrQ

(
M

dν−1

)
the forgetting all other than the (ν − 1)-th subspace map. For every

U,U ′ ∈ GrQ

(
M

dν−1

)
w
seen as submodules of M it holds U ∼= U ′ as KQ-modules,

so �x one submodule N in this isomorphism class. Then, the �bres p−1(U) over a

relative position stratum GrQ

(
M

dν−1

)
w
are isomorphic to FlQ

(
N
e

)
. Therefore, we get a

commutative diagram

FlQ
(
N
e

)
//

(rs,[N ])
''PPPPPPPPPPPPPP

p−1(GrQ

(
M

dν−1

)
w

)
pw //

rs

��

GrQ

(
M

dν−1

)
w

R

where rs : FlQ
(
M
d

)
→ R := {Reineke strata in FlQ

(
M
d

)
}, (0 ⊂ U1 ⊂ · · · ⊂ Uν =

M) 7→ ([U1], . . . , [Uν−1]) and pw is the restriction of p.

(2) Assume FM is co-characteristic �ag for M,d1 in a dimension �ltration

d = d0, . . . , dν = dimM). Let e := (d1 − d1, d2 − d1, . . . , dν − d1). Let us denote by

p : FlQ
(
M
d

)
→ GrQ

(
M
d1

)
the forgetting all other than the 1-st subspace map. For every

U,U ′ ∈ GrQ

(
M
d1

)
w
seen as submodules of M it holds M/U ∼= M/U ′ as KQ-modules,

so �x one quotient module N in this isomorphism class. Then, the �bres p−1(U) over

a relative position stratum GrQ

(
M

dν−1

)
w
are isomorphic to FlQ

(
N
e

)
. Therefore, we get

a commutative diagram

FlQ
(
N
e

)
//

([N ],sp)
''OOOOOOOOOOOOO

p−1(GrQ

(
M
d1

)
w

)
pw //

sp

��

GrQ

(
M
d1

)
w

S

where sp : FlQ
(
M
d

)
→ S := {Spaltenstein strata in FlQ

(
M
d

)
}, (0 ⊂ U1 ⊂ · · · ⊂ Uν =

M) 7→ ([M/U1], . . . , [M/Uν−1]) and pw is the restriction of p.

The morphism p is Aut(M)-equivariant but the relative position stratum GrQ

(
M
d1

)
w
is only

Aut(M)-invariant if the �ag FM isM -invariant, in that case pw is also Aut(M)-equivariant.

Our main result is that for some choices of Q,d, FM we get that pw is isomorphic to the

projection map GrQ

(
M
d1

)
w
× FlQ

(
N
e

)
→ GrQ

(
M
d1

)
w
.

Example. Let Q be 1 → 2 → · · · → n. Let M = (Kd1 A1−−→ Kd2 → · · · → Kdn−1 An−1−−−→
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Kdn).

(i) a characteristic �ag :

is given by the underlying Q0-graded �ag of the following �ag of submodules

0 ⊂ soc1(M) ⊂ soc2(M) ⊂ · · · ⊂ socn(M) = M

where

soci(M) =
(
ker(AiAi−1 · · ·A1)→ ker(Ai+1Ai · · ·A2)→ · · · →

ker(An−1 · · ·An−i)→ ker(An−1 · · ·An−i+1)→ · · · → ker(An−1)→ Kdn
)
.

Here we even get that the relative position strati�cation equals the Reineke strati�-

cation.

(ii) a co-characteristic �ag:

is given by the underlying Q0-graded �ag of the following �ag of submodules

0 ⊂ radn(M) ⊂ radn−1(M) ⊂ · · · ⊂ rad1(M) ⊂M

where
radi(M) =

(
0→ · · · → 0→ Im(Ai · · ·A1)→ Im(Ai+1 · · ·A2)

→ · · · → Im(An−1 · · ·An−i)
)
.

Again, here we even get that the relative position strati�cation equals the Spal-

tenstein strati�cation.

(iii) characteristic �ag for cosimples:

is given by the underlying Q0-graded �ag of the following �ag of submodules

0 ⊂ rad(M) ∩ soc(M) ⊂ rad(M) ∩ soc2(M) ⊂ · · · ⊂ rad(M) ∩ socn−1(M)

⊂ rad(M) ⊂M

where rad(M) ∩ soci(M) is given by

ker(Ai · · ·A1)→ Im(A1) ∩ ker(Ai+1 · · ·A2)→ Im(A2) ∩ ker(Ai+3 · · ·A3)

→ · · · → Im(An−i−1) ∩ ker(An−1 · · ·An−i)→ Im(An−i) ∩ ker(An−1 · · ·An−i+1)

→ · · · → Im(An−2) ∩ ker(An−1)→ Im(An−1)

(iv) co-characteristic �ag for simples:

is given by the underlying Q0-graded �ag of the following �ag of submodules

0 ⊂ soc(M) ∩ radn(M) ⊂ · · · ⊂ soc(M) ∩ rad2(M) ⊂ soc(M) ∩ rad(M)

⊂ soc(M) ⊂M
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where as in the previous examples soc(M) ∩ radi(M) equals

ker(A1)→ ker(A2)→ · · · → ker(Ai)

→ ker(Ai+1) ∩ Im(Ai · · ·A1)→ ker(Ai+2) ∩ Im(Ai+1 · · ·A2)→ · · ·

→ ker(An−1) ∩ Im(An−2 · · ·An−i−1)→ Im(An−1 · · ·An−i)

In example (iii) and (iv) there is a recursive relation to Reineke/Spaltenstein strati�-

cation, and for (iv) for complete �ags to rb-strati�cation. We focus on example (iv).

The special property for example (iii) and (iv) are that they allow us to pass from

quiver-graded to usual Grassmannians:

Just recall the following for a module M we have

1) For a hyperplane H ⊂M it holds:

H is M − invariant ⇐⇒ rad(M) ⊂ H

this is saying for a dimension vector e with d−e = ei for one i ∈ Q0, r := dim rad(M)

we have an isomorphism gr : GrQ

(
M
e

) ∼= Gr
(
di−ri
di−ri−1

)
.

2) For a line L ⊂M it holds:

L is M − invariant ⇐⇒ L ⊂ soc(M)

this is saying for a dimension vector e with e = ei for one i ∈ Q0, s := soc(M) we

have an isomorphism gr : GrQ

(
M
e

) ∼= Gr
(
si
1

)
= Psi−1.

Then, we can prove the following analogue of a result of Spaltenstein [Spa76], Lemma on

page 453.

Proposition 9. (Spaltenstein's �bration) For Q = An-equioriented, and

d = (d0, d1, . . . , dν = d) a complete dimension �ltration ( i.e. for every k ∈ {1, . . . , ν} there
is i ∈ Q0 such that dk = dk−1+ei). LetM ∈ RQ(d) and FM be a complete co-characteristic

�ag for simples re�ning the �ag

0 ⊂ soc(M) ∩ radn(M) ⊂ · · · ⊂ soc(M) ∩ rad2(M) ⊂ soc(M) ∩ rad(M)

⊂ soc(M) ⊂M.

Then, for every w ∈
∏
i∈Q0

Mat (1× (ν+1)) there is an isomorphism of algebraic varieties

f : p−1(GrQ

(
M

d1

)
w

)→ GrQ

(
M

d1

)
w

× FlQ

(
N

e

)

with e := (d1 − d1, d2 − d1, . . . , dν − d1), p : FlQ
(
M
d

)
→ GrQ

(
M
d1

)
the forgetting all other

than the 1-st subspace map, N = M/U0 with (U0 ⊂ M) ∈ GrQ

(
M
d1

)
w
arbitrary, such that
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the following diagram is commutative

GrQ

(
M
d1

)
w

p−1(GrQ

(
M
d1

)
w

)

p
77ppppppppppp

f //

sp

''PPPPPPPPPPPPP
GrQ

(
M
d1

)
w
× FlQ

(
N
e

)
pr1

hhPPPPPPPPPPPP

([N ],sp)◦pr2
vvlllllllllllllll

S.

Proof: Let L ∈ GrQ

(
M
d1

)
w

= {[0 : · · · : 0 : 1 : x1 : . . . : xr] ∈ Psj−1 | xi ∈ K, 1 ≤ i ≤ r}.
Then we can de�ne an automorphism φL ∈ Aut(M) such that φL(L) = U0. We de�ne

f : p−1(GrQ

(
M

d1

)
)w → GrQ

(
M

d1

)
w

× FlQ

(
N

e

)
U = (U1 ⊂ · · · ⊂ Uν = M) 7→ (U1, φU1(U)/U0).

This is a morphism of algebraic maps. To �nd the inverse, we consider π : M →M/U0 = N

the canonical projection and de�ne

GrQ

(
M

d1

)
w

× FlQ

(
N

e

)
→ p−1(GrQ

(
M

d1

)
w

)(
L, V = (V 1 ⊂ · · · ⊂ V ν−1 = N)

)
7→ (L ⊂ φ−1

L π−1(V 1) ⊂ φ−1
L π−1V 2 ⊂ · · · ⊂ φ−1

L π−1V ν−1 = M).

�

Corollary 7.3.0.3. Every Sa,α ⊂ FlQ
(
M
d

)
is a locally closed subsets and is an a�ne space.

Proof: Using the Spaltenstein �bration iteratively one can write Sα,a as a pullback of

locally closed subset, so they are locally closed themselves. Also the Spaltenstein map

shows that they are a�ne spaces. Let us shortly recall the induction step. We consider

GrQ

(
M
d1

)
) = Psj−1 = { lines in M1

j,j ⊕ · · · ⊕M
m1,j

1,j } and the restriction of the map p from

the previous lemma

Sα,a → Psj−1

U 7→ U1.

We consider the Schubert cell Cα1,a1 := {[0 : · · · : 0 : 1 : x1 : · · · : xr] ∈ Psj−1 | xi ∈ K, 1 ≤
i ≤ r} where the �rst nonzero entry is in position a1 in the root block corresponding to

α1. Let a
′ = (a2, . . . , aν), α′ = (α2, . . . , αr). Then, the map p restricts as follows

Sα,a
p // Psj−1

Sα′,a′ × Cα1,a1

f ′

OO

pr2
//→ Cα1,a1

⊂

OO
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where the map f ′ is an isomorphism, it is the restriction of the map f−1 from the previous

lemma. �

Now, let us come to the split modules. Let M =
⊕

α

⊕
kM

k
α be a root blocked

decomposition,

T := {
⊕
α

⊕
k

λkα idMk
α
| λkα ∈ K∗} =

⊕
α

⊕
k

Aut(Mk
α) ⊂ Aut(M)

Lemma 75. Let FlQ
(
M
d

)
a complete An-equioriented quiver �ag variety. The split modules

in FlQ
(
M
d

)
are precisely the T -�xed points.

Proof: By de�nition split modules are �xed under the torus operation. On the other

hand, �x a vector space basis adapted to the root blocked decomposition. A �ag of sub-

modules �xed by the torus action is a split module because each subspace of the �ag has

to have up to scalar multiples a subset of the base vectors of the bigger space. �

7.3.1 Betti numbers for complete An-equioriented quiver �ag varieties

We explain the notion of an a�ne cell decomposition and why this is a desireable property

by giving applications on calculating (co)homology. More precisely, for schemes with an

a�ne cell decomposition we state

De�nition 30. Let X be a scheme. An a�ne cell decomposition is a �ltration

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

by closed subschemes, with each Xi \Xi−1 is a disloint union of �nitely many schemes Uij

isomorphic to a�ne spaces Anij . We call Vij the closure of Uij in X.

Properties of Chow groups

This is a citation of results of [Ful98].

Let A∗(X) the (graded) Chow group.

1) [Ful98], Example 19.1.11, p.378

Let X be a complex algebraic variety. Let H∗(X) be Borel-Moore homology.

It is stated that for a scheme with an a�ne cell decomposition, the cycle class map

clX : A∗(X)→ H∗(X)

is an isomorphism. All odd homology groups vanish.

2) [Ful98], Example 1.9.1 on page 23

If X has an a�ne cell decomposition as in the de�nition. Then the [Vij ] form a basis

for A∗(X).
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Betti numbers

This is a citation of a citation taken from [Fre09], section 4.

Let X be an algebraic variety. Let H∗(X,Q) denote the sheaf cohomology for the constant

sheafQX , letH
∗
c (X,Q) denote the sheaf cohomology with compact support for the constant

sheaf QX .

Let X be a complex algebraic variety with an a�ne cell decomposition as in the de�nition,

i.e. X =
⋃
i,j Ui,j with Uij ⊂ X locally closed and isomorphic to an a�ne space. For

m ∈ N0 let rm be the number of m-dimensional cells. Then it holds

a) H l
c(X,Q) = 0 for l odd and H2m

c (X,Q) = rm for any m ∈ N0.

b) If X is projective, then H l(X,Q) = 0 for l odd and H2m(X,Q) = rm for any m ∈ N0.

Recall that we have found an a�ne cell decomposition for any complete An-quiver �ag
variety FlQ

(
M
d

)
which is parametrized by the set of row root tableau of the shape YM ,

where YM is the root diagramm associated to the representation M .

Let K = C.

Corollary 7.3.0.4. Let Q be the quiver 1→ · · · → n, let M be any �nite dimensional CQ-
module and d be a dimension �ltration of dimM . Let T := {τ | τ rr-tableau of shape YM ,dT (τ) =

d} and let ci := #{τ ∈ T | dim τ = i}, i ∈ N0. Then, the following holds true for FlQ
(
M
d

)
(1) There is a C-vector space basis of A∗(FlQ

(
M
d

)
) parametrized by T .

(2) There is a C-vector space basis of HBM
∗ (FlQ

(
M
d

)
) parametrized by T .

(3) The Betti numbers are given by

hmBetti(FlQ

(
M

d

)
) =

cm2 , if m is even

0, if m is odd.

7.4 Conjectural part

From here on, proofs are incomplete. It was planned as part of the chapter but had been

forgotten.

7.4.1 Canonical decomposition for An-equioriented quiver �ag varieties

Any rb-stratum is contained in a Reineke stratum and a Spaltenstein stratum. We want

to show the following.

Lemma 76. Let Sτ ⊂ FlQ
(
M
d

)
be the rb-stratum corresponding to a row root tableau τ and

let Vτ be the unique split module in Sτ . It holds

[Sτ ,Sτ ] = [Vτ , Vτ ]

[Sτ ,M/Sτ ] = [Vτ ,M/Vτ ]

235



It has the following corollaries.

Corollary 7.4.0.5. Let Sτ ⊂ FlQ
(
M
d

)
be the rb-stratum corresponding to a row root tableau

τ and let Vτ be the unique split module in Sτ . Assume that FlQ
(
M
d

)
is generically reduced.

Then

(1) It holds that Sτ is an irreducible component of FlQ
(
M
d

)
if and only if

[Vτ ,M/Vτ ]Λ =

r∑
k=0

[V k−1
τ , V k

τ ]− [V k−1
τ , V k−1

τ ].

Recall, that the right hand side is the formular for dimT (τ).

(2) We consider for a moment arbitrary An-equioriented quiver �ag varieties. Let C1 =

Sτ1 ⊂ FlQ
(
M
d

)
, C2 = Sτ2 ⊂ FlQ

(
N
e

)
, then the following are equivalent

(i) C1 ⊕ C2 is an irreducible component of FlQ
(
M⊕N
e+d

)
.

(ii) For i 6= j it holds

[Vτi ,Mj/Vτj ]Λ =
r∑

k=0

[V k−1
τi , V k

τj ]− [V k−1
τi , V k−1

τj ].

(iii) We call an irreducible component C = C1 ⊕ · · · ⊕ Ct with Ci is an irreducible com-

ponent such that

[Ci, Ci]− [Mi,Mi] + [Ci,Mi/Ci] = 0, 1 ≤ i ≤ t

preprojective. It holds

(1) Every preprojective component is the orbit closure of a split Λ-module VC .

(2) The canonical decompostion for preprojective irreducible components in the sense

of [Hub13] is determined by the composition into indecomposables in SX. This
means if V = V1⊕· · ·⊕Vt is the decomposition into indecomposable in SX, then
the orbit closure of V is an irreducible component if and only if

[Vi, Vj ]− [Mi,Mj ] + [Vi,Mj/Vj ] = 0

for all i 6= j.

In particular, the indecomposable preprojective irreducible components are orbit

closures of indecomposables Eij(λ) (see previous paragraph).

7.4.2 Submodules in terms of matrix normal forms

Let N ⊂ M be a submodule, we call M(j) = sum of all direct summands with socle j,

1 ≤ j ≤ n. Then we haveM = M(1)⊕· · ·⊕M(n), N = N(1)⊕· · ·⊕N(n) and (N(i),M(j)) = 0
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for i < j. Let Inj(N,M) ⊂ (N,M) be denote the subset of monomorphisms. Then, we

have

Inj(N,M) =



Inj(N(1),M(1)) (N(2),M(1)) (N(n),M(1))

0

(N(n),M(n−1))

0 0 Inj(N(n),M(n))


We �x direct sum decompositions for

N =

n⊕
j=1

j−1⊕
t=0

[N1
j−t,j ⊕ · · · ⊕N

nj−t,j
j−t,j︸ ︷︷ ︸

N(j−t,j)

]

︸ ︷︷ ︸
:=N(j)

with N t
kj
∼= Ekj and respectively for M and we �x a graded vector space basis for N,M

adapted to the direct sum decompositions. For a monomorphism φ : N → M we denote

by A(ij)[k] the matrix (wrt to the �xed basis) of the induced morphism N(j) → M(i) at

the vertex k and by A(i,s),(j,t)[k] the matrix of N(j,t) → M(i,s) at the vertex k. Observe,

A(ij)[k] = 0 for k > i

A(ij)[k] =


A(k,i),(k,j)[k] 0 · · · 0

A(k−1,i),(k,j)[k]
...

A(1,i),(k,j)[k] A(ij)[k − 1]

 , for k ≤ i

so, A(ij)[k − 1] is just a minor of A(ij)[k] for k ≤ i, all are lower triangular block matrices.

The map φ is given by n matrices A[1], . . . , A[n] for the vertices 1, . . . , n respectively with

A[i] =


A(i,i)[i] · · · A(i,n)[i]

. . .
...

0 A(n,n)[i]

 , 1 ≤ i ≤ n
Amonomorphism φ : N(j) →M(j) is determined by its induced morphism soc(φ) : socN(j) →
socM(j), i.e. A[j]. More precisely, φ is given by j matrices A[1], . . . , A[j] with

A[k] = A(jj)[k] =


0

Ak

A[k − 1]

 , A[1] =: A1
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so A[j] = soc(φ) determines φ. Now, we can use Gauss-elimination on A[j], but we

only allow elemtary column operation which are socles of automorphisms of N(j), that

is arbitrary elementary column operation within the columns of A[j] where At lies plus

addition of a multiple of a column where At lies to any column where As lies, s > t. Then

we �nd an automorphism κ : N(j) → N(j) such that soc(φ ◦ κ) is given (in the previous

basis) by a matrix of the form B[j] with

B[t] =


0

Bt

B[t− 1]


with each Bt is a column echolon form same number of columns and rows as At

Bt =



0 . . . 0
...

...

0 . . . 0

1 0

∗ 0
...

...

∗ 0

0 1 0

∗ ∗ 0
...

...
. . .

0 0 0 0 1 0

∗ . . . ∗ ∗ ∗ 0
...

...
...

...

∗ . . . ∗ ∗ ∗ 0

0 0 0 0 0 1

∗ . . . ∗
...

...

∗ . . . ∗


with (row-)pivot positions a1

tj < a2
tj < · · · < a

ntj
tj where

∑j
s=t+1msj < a1

tj , a
ntj
tj <

∑j
s=1msj

and eTr B
t = 0 for any r ∈ {axsj | s < t, 1 ≤ x ≤ nsj}. We say, the matrices B[1] =

B1, B[2], . . . , B[j] are in normal form.

Now, back to the general case. We �nd an automorphism κ of N such that all diagonal

block matrices A(jj)[k] in any A[k] are in normal form.

Again with Gauss-elimination corresponding to composing with automorphism of N we

can assume all entries in each pivot-row (i.e. a row containing a pivot position) are zero
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except in the pivot position in all A[1], . . . , A[n], that means for 1 ≤ k ≤ i < j

A(ij)[k] =


0

Ak(ij)

A(ij)[k − 1]


with eTr A

k
(ij) = 0 for r ∈ {axsi | s ≥ k, 1 ≤ x ≤ nsi}. Under this assumptions we say that

A[1], . . . , A[n] are in normal form. Once, we have �xed the basis (for n and M) every

monomorphism has a unique associated normal form and any submodule X ⊂M,X ∼= N

is image of a monomorphism in normal form.

7.4.3 Remarks on partial An-quiver �ags

We look at quiver Grassmannians and use the normal forms for matrices describing sub-

modules.

De�nition 31. Let N ⊂ M be a submodule and �x a basis for N and M adapted to

direct sum decompositions as before, d := dimM, e := dimN . Then, for a := (axsj)s,j,x we

consider the subset of the Reineke stratum F[N∗] ⊂ GrQ

(
M
e

)
de�ned by

Sa := {(U ⊂M) ∈ F[N∗] | U = Imφ, φ ∈ Inj(N,M) in normal form, with pivot positions a}

This is the natural generalization of rb�strati�cation in this situation, so we continue to

call it rb�strati�cation.

We do not work with this but if one is interested in this strati�cation, one can work on

the following.

(i) Each Sa is a locally closed subset of GrQ

(
M
e

)
.

(ii) Sa is isomorphic to an a�ne space of dimension ??

(iii) The closure of Sa is a union of other rb�strata.

(iv) The tangent dimension dimTxGrQ

(
M
e

)
is constant for any x ∈ Sa.

(v) Find explicit formulas for Hall numbers.

7.5 Root tableau of hook type

We translate all of Fung's result on classical Springer �bres of hook type to the An-

equioriented quiver �ags of hook type. The literature we use is in most part [Fun03].

Also a reference is [Var79].

De�nition 32. M is called of hook type if it is isomorphic to E1i⊕S with S semisimple

for some i ∈ {1, . . . , n}. We call a root diagram of of hook type if it is associated to a

module of hook type.
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We remark that for a root diagram of hook type all sub-root diagrams are of hook type.

This a complete �ag example.

Example.

1 6 7

2

3

4

8

9

5

10

11

Remark. LetM be a representation, we �x b ∈ N0 such that radb(M) = 0, radb−1(M) 6= 0.

Then, it holds rad(soci+1(M)) ⊂ rad(M) ∩ soci(M). If M is of hook type, we have

rad(M) ∩ soci(M) = radb−i(M), which implies

rad(soci+1(M)) ⊂ radb−i(M).

This property we use usually in the following way: Given a �ag of Q0-graded vector spaces

0 = W0 ⊂W1 ⊂ · · · ⊂Ws = M such that

radb−1(M) ⊂ Wi1 ⊂ soc1(M)

radb−2(M) ⊂ Wi2 ⊂ soc2(M)

...

rad(M) ⊂ Wib−1
⊂ socb−1(M).

for certain 1 ≤ i1 < i2 < · · · < ib−1, then each Wk is M -invariant, 0 ≤ k ≤ s.

Let us assume M is not semi-simple of hook type, then a root tableau for with un-

derlying root diagram YM is uniquely determined by the entries in the long root. Let us

associate for a sequence 1 ≤ i1 < i2 < · · · < ib−1, set jk := n+ 1− ik, a root tabeaux

Ti :=
1 jb−1 jb−2 . . . j1

...

...

. . .

The assumption for having the 1 in the left corner is just for convenience, else there

would be an entry x and the numbers 1, . . . , x− 1 would be �xed points corresponding to
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a semi-simple direct summand, when we pass to the quotient we get a root tableau in the

form above with 1 in the upper left corner box. Let us recall Fung's de�nitions.

De�nition 33. A space X is an iterated �bre bundle of base type (B1, . . . , Bn) if there

exists spaces X = X1, B1, X2, B2, . . . , Xn, Bn, Xn+1 = pt and maps p1, p2, . . . , pn such that

pj : Xj → Bj is a �bre bundle with typical �bre Xj+1.

For simpli�cations of the computations of the intersection homology polynomials it is

convenient to de�ne for d, k ∈ N0, d := (d1, . . . , dn) ∈ Nn0

[d] := T−(d−1)(1 + T 2 + T 4 + · · ·+ T 2(d−1)), [0] := 1, [d] := [d1][d2] · · · [dn],

[d]! := [1] [2] · · · [d], [d]! := [d1]![d2]! · · · [dn]!,(
[d]

[k]

)
:=

[d]!

[k]![d− k]!
,

(
[d]

[k]

)
:=

(
[d1]

[k1]

)(
[d2]

[k2]

)
· · ·
(

[dn]

[kn]

)
For a scheme of �nite type over the C, we write IP(X) to denote the intersection homology

Poincare polynomial of X.

This is Fung's main example, compare [Fun03], corollary 3.1.

Example. Let V be an d-dimensional Q0-graded vector space over C and Fl(V) be the

variety of complete �ags in V (i.e. the product of complete �ag varieties in each Vi,

i ∈ Q0). Fix a choice of a complete dimension �ltration d of d, this gives an embedding of

Fl(V) into the variety of (not graded) complete �ags in the vector space ⊕i∈Q0Vi, we will

always use such an embedding to write down an element of Fl(V) as a �ag of Q0-graded

subvectorspaces 0 ⊂W1 ⊂ · · · ⊂Wr = V with dimWi = i. It holds

IP(Fl(V)) = [d]!.

Let GrQk(V ) be the Grassmannian variety of k-dimensional Q0-graded subvector spaces

in V , then

IP(GrQk(V )) =

(
[d]

[k]

)
.

Let I be an a-dimensional Q0-graded subvector space of V . We �x as before a complete

dimension �ltration d = (d0, . . . , dr = d). Let Xi(I) ⊂ Fl(V) be the subvariety given by

�ags 0 ⊂W1 ⊂ · · · ⊂Wr = V with I ⊂Wi. Then

IP(Xi(I)) =

(
[d− a]

[di − a]

)
[di]![d− di]!.

We �rst state all our main results and prove some corollaries, then give the proofs at

the end of this subsection.

Theorem 7.5.1. Let M be a module of hook type, let d be a complete dimension �ltration

of dimM and Ti be a root tableux of shape YM with dTi = d.

The closure of the Spaltenstein stratum STi ⊂ FlQ
(
M
d

)
is given by Q0-graded �ags (0 =
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W0 ⊂W1 ⊂ · · · ⊂Ws) ∈ F(d) such that

radb−1(M) ⊂ Wi1 ⊂ soc1(M)

radb−2(M) ⊂ Wi2 ⊂ soc2(M)

...

rad(M) ⊂ Wib−1
⊂ socb−1(M).

Corollary 7.5.1.1. In the situation of the previous theorem, set ib := dimM , i0 := 0.

Then, STi is an iterated �bre bundle with

B2j+1 = GrQdij+1−dij−eb−j
(soc(M/Uij )/radb−1−j(M/Uij ))

B2j+2 = Fl(Wij+1/Wij)

with j = 0, . . . , b− 1 and . In particular, it is smooth. Its intersection homology Poincare

polynomial is

IP(STi) =[di1 ]!

(
[d− (

∑b
t=1 et)]

[di1 − eb]

)
[di2 − di1 ]!

(
[d− di1 − (

∑b−1
t=1 et)]

[di2 − di1 − eb−1]

)
[di3 − di2 ]!

(
[d− di2 − (

∑b−2
t=1 et)]

[di3 − di2 − eb−2]

)
· · · [dib−1 − dib−2 ]!

(
[d− dib−2 − (

∑2
t=1 et)]

[dib−1 − dib−2 − e2]

)
· [d− dib−1 ]!

Proof of corollary: We de�ne

p1 : X1 := STi → GrQdi1−r(b−1)(soc(M)/radb−1(M)) =: B1, W• 7→ Wi1/radb−1(M)

p2 : X2 := p−1
1 (Wi1/radb−1(M))→ Fl(Wi1) =: B2, W• 7→W0 ⊂· · ·⊂Wi1

where p2 is wellde�ned because two Q0-graded subvector spaces Wi1 ,W
′
i1
containing

radb−1(M) having the same quotient are equal. It is easy to check that both are �bre

bundles. Now, it holds

radd(M/Ui1) = (radd(M) + Ui1)/Ui1

socd(M/Ui1) = socd+1(M)/Ui1

for any d and Ui1 ⊂M with Ui1 = Wi1 . Then, X3 := p−1
2 (W0 ⊂W1 ⊂ · · · ⊂Wi1) ∼=

{0 ⊂ Wi1+1/Wi1
⊂ · · · ⊂ M/Wi1

|

radb−2(M/Ui1) ⊂ Wi2/Wi1
⊂ soc1(M/Ui1)

radb−3(M/Ui1) ⊂ Wi3/Wi1
⊂ soc2(M/Ui1)

...

rad(M/Ui1) ⊂ Wib−1/Wi1
⊂ socb−2(M/Ui1)

}
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by the previous theorem this is the STi−i1 ⊂ FlQ
(M/Ui1
d−di1

)
where Ti−i1 is root tableau of shape

YM/Ui1
associated to the sequence i2− i1 < i3− i1 < · · · < ib−1− i1. Using multiplicativity

of IP in locally trivial �bre bundles we get

IP(STi) = IP(Fl(Wi1))IP(GrQdi1−r(b−1)(
soc(M)

radb−1(M)
))IP(STi−i1

)

= [di1 ]!

(
[d− (

∑b
t=1 et)]

[di1 − eb]

)
IP(STi−i1 )

The rest follows by induction. �

Theorem 7.5.2. Let M be a module of hook type, let d be a complete dimension �ltration

of dimM and Ti, Ti′ be root tableu of shape YM with dTi = dTi′ = d.

Then, the intersection STi ∩ STi′ is nonempty if and only if

βj := max(ij , i
′
j) < min(ij+1, i

′
j+1) =: αj+1 (β0 := 0), in which case it is given by Q0-

graded �ags (0 = W0 ⊂W1 ⊂ · · · ⊂Ws) ∈ F(d) such that

radb−1(M) ⊂ Wα1 ⊂ Wβ1 ⊂ soc1(M)

radb−2(M) ⊂ Wα2 ⊂ Wβ2 ⊂ soc2(M)
...

rad(M) ⊂ Wαb−1
⊂ Wβb−1

⊂ socb−1(M).

Corollary 7.5.2.1. In the situation of the previous theorem. If STi ∩ STi′ is nonempty it

is an iterated �bre bundle with

B2j+1 = GrQdβj+1−dβj−eb−j
(soc(M/Uβj )/radb−1−j(M/Uβj ))

B2j+2 = Xαj+1−βj (radb−1−j(M/Uβj )) (⊂ Fl(Wβj+1/Wβj
)),

where αb = βb = dimM,α0 = β0 = 0, j = 0, . . . , b − 1. In particular, it is smooth. Its

intersection homology Poincare polynomial is

IP(STi ∩ STi′ ) =

(
[dβ1 − eb]
[dα1 − eb]

)
[dα1 ]![dβ1 − dα1 ]!

(
[d− (

∑b
t=1 et)]

[dβ1 − eb]

)
(

[dβ2 − dβ1 − eb−1]

[dα2 − dβ1 − eb−1]

)
[dα2 − dβ1 ]![dβ2 − dα2 ]!

(
[d− dβ1 − (

∑b−1
t=1 et)]

[dβ2 − dβ1 − eb−1]

)
· · ·
(

[dβj+1 − dβj − eb−j ]
[dαj+1 − dβj − eb−j ]

)
[dαj+1 − dβj ]![dβj+1 − dαj+1 ]!

(
[d− dβj − (

∑b−j
t=1 et)]

[dβj+1 − dβj − eb−j ]

)
· · ·
(

[dβb−1 − dβb−2 − e2]

[dαb−1 − dβb−2 − e2]

)
[dαb−1 − dβb−2 ]![dβb−1 − dαb−1 ]!

·
(

[d− dβb−2 − (
∑2

t=1 et)]

[dβb−1 − dβb−2 − e2]

)
[d− dβb−1 ]!

Proof of corollary: We de�ne

p1 : X1 = STi ∩ STi′ → GrQdβ1−eb(
soc(M)/radb−1(M)) =: B1, W• 7→ Wβ1/radb−1(M)

p2 : X2 = p−1
1 (Wβ1/radb−1(M))→ Xα1(radb−1(M)) =: B2, W• 7→W0 ⊂· · ·⊂Wβ1
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where Xα1(radb−1(M)) ⊂ Fl(Wβ1) is de�ned as in the example. Both maps de�ne �bre

bundles. Then, X3 := p−1
2 (W0 ⊂W1 ⊂ · · · ⊂Wi1) ∼=

{ 0 ⊂ Wβ1+1/Wβ1
⊂· · ·⊂ M/Wβ1

|
radb−2(M/Uβ1) ⊂ Wα2/Wβ1

⊂ Wβ2/Wβ1
⊂ soc1(M/Uβ1)

radb−3(M/Uβ1) ⊂ Wα3/Wβ1
⊂ Wβ3/Wβ1

⊂ soc2(M/Uβ1)
...

rad(M/Uβ1) ⊂ Wαb−1/Wβ1
⊂ Wβb−1/Wβ1

⊂ socb−2(M/Uβ1)

},

this is isomorphic to STi−β1 ∩ STi′−β1 , where Ti−β1 , Ti′−β1 are the root tableau of shape

YM/Uβ1
associated to the sequences i2 − β1 < i3 − β1 < . . . < ib−1 − β1 and i′2 − β1 <

i′3 − β1 < . . . < i′b−1 − β1 respectively. By multiplicativity of the intersection homology

polynomial we get

IP(STi ∩ STi′ ) = IP(Xα1(radb−1(M)))IP(GrQdβ1−eb(
soc(M)/radb−1(M)))IP(STi−β1 ∩ STi′−β1 )

=

(
[dβ1 − eb]
[dα1 − eb]

)
[dα1 ]![dβ1 − dα1 ]!

(
[d− (

∑b
t=1 et)]

[dβ1 − eb]

)
IP(STi−β1 ∩ STi′−β1 ).

The rest follows by induction. �

Theorem 7.5.3. Let M be a module of hook type, let d be a complete dimension �ltration

of dimM . Then, there are �nitely many Aut(M)-orbits in FlQ
(
M
d

)
. The orbits in STi for

1 ≤ i1 < · · · < ib−1 are in bijection with sequences

αβ : 0 ≤ α1 ≤ i1 ≤ β1 < α2 ≤ i2 ≤ β2 < · · · < αb−1 ≤ ib−1 ≤ βb−1.

The corresponding Aut(M)-orbit Oαβ is given by (0 = W0 ⊂W1 ⊂ · · · ⊂Ws) ∈ F(d) such

that
radb−jM ⊂Wαj ⊂Wβj ⊂ socjM

radb−jM *Wαj−1, Wβj+1 * socjM.

The closure of the orbit Oαβ is given by (0 = W0 ⊂W1 ⊂ · · · ⊂Ws) ∈ F(d) such that

radb−jM ⊂Wαj ⊂Wβj ⊂ socjM.

The orbit which is dense in STi is given by

0 ≤ α1 = i1 = β1 < α2 = i2 = β2 < · · · < αb−1 = ib−1 = βb−1.

Open problems:

• We would like to see the structure as modules for the KLR-algebra Rd for Q = An on
the Springer �bre modules

⊕
dH

BM
∗ (FlQ

(
M
d

)
) where d runs through all dimension

�ltration of a given dimension vector d. It should be possible to write this down with

the vector space basis which we have found for them. We conjecture/ would like to

prove:
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Conjecture. The KLR-algebras for linear oriented An-quiver are cellular algebras,

the cell modules are given by the Springer �bre modules.

• In Fung's work [Fun03], he investigates a connection to Kazhdan-Lusztig theory.

What is the analogue here?

• Does the cell decomposition of FlQ
(
M
d

)
have a corresponding decomposition for OM ∩

Fd?
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Chapter 8

Appendix on equivariant

(co)homology

Summary. These are the topics treated shortly in this chapter:

Slodowy's Lemma. Equivariant cohomology and splitting principle, Localization Theo-

rem. Equivariant Borel-Moore homology and convolution product. Equivariant derived

categories and duality. The Serre cohomology spectral sequence applied to prove some

lemmata from the survey on Springer theory and to study the equivariant cohomology of

�ag varieties. Equivariant perverse sheaves.

8.0.1 A Lemma from Slodowy's book

Let us recall the slightly more general version of a lemma from Slodowy's book, which I

sometimes refer to as Slodowy's lemma (because I do not know its origin).

Lemma 77. (Slodowy's lemma, [Slo80b], p.26, lemma 4) Let X be a G-scheme of �nite

type over K and φ : X → G/P be a G-equivariant morphism, we denote by F := φ−1(eP )

the scheme-theoretic �bre. Then, F is a P -scheme and if G ×P F exists we have a com-

mutative diagram

G×P F
ψ //

$$IIIIIIIII X

φ}}{{{{{{{{
(g, f) � /

�

"EEEEEEEE
gf=

~}}}}}}}}

G/P gP

with ψ is a G-equivariant isomorphism.

Proof: There is a G-equivariant isomorphism G×P X → G/P ×X, (g, x) 7→ gx because

X is already a G-scheme. Now, we compose the closed immersion G×P F → G×P X with

this isomorphism and get the map ψ as the composition

G×P F τ−→ G/P ×X p2−→ X

(g, f) 7→ (gP, gf) 7→ gf,
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where τ is a closed immersion. We identify G ×P F with Im(τ). Therefore, it su�ces to

�nd a G-equivariant section γ : X → G/P × X of p2 onto the image of τ which is the

identity restricted on F .

We consider γ(x) := (φ(x), x), which is obviously a G-equivariant section of p2, therefore it

is a closed immersion. Using [DG70], chapter III, remember that G/P is the shea��cation

of the functor onK-algebrasX : R 7→ T (R) := G(R)/P (R) and G×PF the shea��cation of

the functor S : R 7→ S(R) := (G(R)×F (R))/P (R). Denote by s : T → G/P, s : S → G×P

F the canonical natural transformations into the shea��cation, we factorize X → G/P×X
into X

r−→ T × X s−→ G/P × X as indicated above. We call τ̃ : S → T × X the functor

which shea��es to τ . Then it is obviously im(r) ⊂ im(τ̃). Let R be a K-algebra; the

commutative diagram

X(R)
r //

(φ,id) ))SSSSSSSSSSSSSSSS T (R)×X(R)

s

��

S(R)

s
��

τ̃oo

G/P (R)×X(R) G×P F (R)
τoo

shows that Im(φ, id) = s(Im(r)) ⊂ s(Im(τ̃)) = Im(τ ◦ s) ⊂ Im(τ).

�

8.1 Equivariant cohomology

We follow the lecture notes of Fulton on this topic, notes taken by Anderson and can be

found for example in [And11]. Let G be a topological group. A G-space X is a topological

space endowed with a continous G-action. Let EG be a contractible G-space with a

topologically free G-action, i.e.

(1) the stabilizers of all points are trivial.

(2) the quotient map is a locally trivial �bration.

Such a space always exists and is uniquely determined up to homotopy (see for example

[Die91]). For any G-space X we de�ne

p : XG := EG×G X → BG := EG/G

(e, x) 7→ eG

and call XG the homotopy quotient.

De�nition 34. The equivariant cohomology of X with respect to G is the singular

(ordinary) cohomology of XG

H i
G(X) := H i(XG).

It carries the structure of a ring via the cap product on singular cohomology. In particular,

H∗G(pt) = H∗(BG)
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and H∗G(X) is a H∗G(pt)-module via pullback along p.

Remark. This de�nition is independent of the choice of EG. Usually the spaces EG are

in�nite dimensional manifolds, to remain in the categories of algebraic varieties one writes

them as limits of �nite dimensional manifolds (or varieties). For more details and examples

look at [And11].

In the older literature it is often assumed that the group is compact. The standard way

to apply these results more generally is: By Homotopy invariance of singular cohomology

one can substitute a reductive group G by a maximal compact subgroup to which it is

homotopy equivalent because of the Iwasawa decomposition.

We assume G to be a reductive group over C, T ⊂ G is a maximal torus and W is the

Weyl group of (G,T ).

Theorem 8.1.1. (Splitting principle) Let X be a quasi-projective G-variety, then

H∗G(X) ∼= (H∗T (X))W .

For a proof see [Bri98].

We denote by K the quotient �eld of H∗T (pt) and for any T -variety X by

H∗T (X)→ H∗(X) := H∗T (X)⊗H∗T (pt) K,α 7→ α⊗ 1

the equivariant homology tensored over K. According to [Bri00], Lemma 2, a complex

variety X with �nitely many T -�xed points is T -equivariantly formal for cohomology if

and only of Hodd(X) = 0.

Theorem 8.1.2. (Localization Theorem - weaker version) Let X be a equivariantly formal

T -variety for cohomology (see later remark 8.4.3 for the de�nition) with �nitely many

T -�xed points. Then the pullback along i : XT → X induces an isomorphism

i∗ ⊗ idK : H∗(X)→ H∗(XT ) =
⊕
x∈XT

K · x

of K-algebras.

In fact, the stronger statement would be that the pullback is injective and becomes an

isomorphism after inverting the Euler classes of the T -�xed points (see below) which occur

as factors in formulas for push-forwards to T -�xed points.

With stronger assumption on the varieties (also assuming �nitely many 1-dimensional T -

orbits) there is an explicit description of the image of the injective map i∗, this is the

main theorem of Goretzky, Kottwitz, MacPherson see [GKM98]. The application of this

theorem is called GKM-theory.

De�nition 35. (see [And11]) If F is a G-equivariant complex vector bundle on X, then

it has equivariant Chern classes

cGi (F ) ∈ H2i
G (X),
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de�ned as follows. Since F is equivariant, FG = EG ×G F → XG is a vector bundle on

XG and one de�nes

cGi (F ) := ci(FG).

The Euler class at an isolated G-�xed point x ∈ XG is by de�nition

eG(x,X) := cGtop(TxX) ∈ H∗G({x}) = HG(pt).

Following [CG97], 2.6.42, p.107, we also call the top Chern class cGtop(F ) the equivariant

Euler class of F .

The inverses of Euler classes of T -�xed points occur in formulas for pushforwards to

T -�xed points and in multiplicity formulas for cycles after tensoring −⊗K and using the

isomorphism from theorem 8.1.2.

The Euler class for a vector bundle occurs in the Thom isomorphism later.

8.2 Equivariant Borel-Moore homology

De�nition 36. Let X be a complex algebraic G-variety embedded into a complex man-

ifold M , which is equi-dimensional dimCM = m. Pick a G-representation Y and an

G-equivariant open subset U ⊂ Y with G operates freely on U and the (complex) codi-

mension of Y \ U in Y is greater or equal dimX − i
2 . In particular U ×G X exists as

an algebraic variety and can be embedded into the (equi-dimensional) manifold U ×GM .

Then, we de�ne the i-th G-equivariant Borel-Moore homology group of X with

coe�cients in C via

HG
i (X) := HBM

i+2 dimU−2 dimG(U ×G X) := H2m−i
ord (U ×GM, (U ×GM) \ (U ×G X))

We shorten XG := U ×G X always assuming that U is chosen appropriately and call it

an approximation to the homotopy quotient of X. For G-equivariant maps f : X → Y , we

write fG := U ×G f where U is chosen appropriately for X and Y .

In particular, we have that HG
i (pt) is zero for all i > 0. Furthermore, HG

∗ (X) =⊕
i∈ZH

G
i (X) is a graded H∗G(X)-module via the cap product

Hj
G(X)×HG

i (X)→ HG
i−j(X), (c, d) 7→ c ∩ d

In particular, as H∗G(X) is a H∗G(pt)-module, HG
∗ (X) is a H∗G(pt)-module with Hj

G(X) ·
HG
i (X) ⊂ HG

i−j(X).

8.2.1 Basic properties

Basic properties which we get from the properties of Borel-Moore homology (cp. [CG97])

(1) (proper pushforward) Let f : X → Y be a G-equivariant proper morphism of complex

varieties. Then, the induced map fG := U×Gf is proper and we de�ne f∗ : HG
i (X)→
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HG
i (Y ) to be the map

(fG)∗ : HBM
i+2 dimU−2 dimG(XG)→ HBM

i+2 dimU−2 dimG(YG)

(2) (localization property) For any open G-equivariant subset j : A ⊂ X we have

jG : AG ⊂ XG is open. There exists a natural restriction morphism j∗ : HG
∗ (X) →

HG
∗ (A) de�ned as the natural restriction morphism

(jG)∗ : HBM
i+2 dimU−2 dimG(XG)→ HBM

i+2 dimU−2 dimG(AG).

Set i : F := X \ A ⊂ X, it is proper, therefore i∗ is wellde�ned. Then, there is a

natural long exact sequence in equivariant Borel-Moore homology

· · · → HG
p (F )

i∗−→ HG
p (X)

j∗−→ HG
p (A)→ HG

p−1(F )→ · · ·

(3) (smooth pullback) Let p : X̃ → X be a G-equivariant morphism of complex algebraic

varieties, where X has a G-equivariant covering such that the restriction of p is trivial

over every open with smooth �bre F of complex dimension d. Then the induced map

X̃G
pG−−→ XG is a locally trivial �bre bundle with typical �bre F as well and we can

de�ne the pullback p∗ : HG
i (X)→ HG

i+2d(X̃) as the map

p∗G : HBM
i+2 dimU−2 dimG(XG)→ HBM

i+2 dimU−2 dimG+2d(X̃G)

(4) (intersection pairing) Let M be a G-equivariant complex manifold, equidimensional

with dimCM = m. Let X,Y ⊂ M be two G-equivariant closed subsets, then

XG, YG ⊂MG are closed subsets. There is the map

∩ : HG
i (X)×HG

j (Y )→ HG
i+j−2m(X ∩ Y )

de�ned via the ∪-product in relative singular cohomology

∪ : H2m−i
ord (MG,MG \XG)×H2m−j

ord (MG,MG \ YG)

→ H4m−j−i
ord (MG, (MG \XG) ∪ (MG \ YG)).

(5) (Thom isomorphism) Given a G-equivariant vector bundle µ : E → X of rank r (i.e.

the complex dimension of the �bre is r) with a zero section i : X → E. Then, the

Gysin pullback morphisms i∗, µ∗ give mutually inverse isomorphims in equivariant

Borel-Moore homology

µ∗ : HG
∗ (X)→ HG

∗+2r(E), i∗ : HG
∗ (E)→ HG

∗−2r(X).

( For any real vector bundle π : E → X of rank r, A ⊂ X any subset, we get an

isomorphism H i(X,X\A) ∼= H i+r(E,E\π−1(A)). Now given a G-equivariant vector
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bundle E → X of real rank r, assume that there exists a smooth E ⊂ E, X ⊂ X,
e = dimR E, dimRX = x = e − r and a vector bundle π : E → X with π−1(X) = E.

Then, EG → XG is still a real rank r vector bundle, the preimage of XG is EG and

HG
i (E) = H2e−i(EG,EG\EG) ∼= H2e−i−r(XG,XG\XG) = H2x−(i−r)(XG,XG\XG) =

HG
i−r(X) .)

Furthermore for any c ∈ HG
∗ (X) one has i∗i∗(c) = e(E) ∪ c where e(E) ∈ Hr

G(X) is

the equivariant Euler class of the vector bundle.

(6) (equivariant cycle) Any G-stable closed subvariety Y ⊂ X has a fundamental class

[Y ]G ∈ HG
2 dimY (X). This yields an equivariant Poincare duality map

H i
G(X)→ HG

2 dimX−i(X), c 7→ c ∩ [X]G,

which is an isomorphism if X is smooth (even if it is rationally smooth). In particular

HG
i (pt) = H−iG (pt), this makes HG

∗ (pt) = H−∗G (pt) a ring and the equivariant homol-

ogy HG
∗ (X) for any G-variety X is a module over HG

∗ (pt) where HG
i (pt) ·HG

j (X) ⊂
HG
i+j(X).

8.2.2 Set theoretic convolution

Let M1,M2,M3 be connected G-equivariant complex manifolds. Let

Z12 ⊂M1 ×M2, Z23 ⊂M2 ×M3, pij : M1 ×M2 ×M3 →Mi ×Mj

be two G-equivariant locally closed subsets and pij be the projection on the i-th and j-th

factor. We de�ne the set theoretic convolution of Z12 and Z23 via

Z12 ◦ Z23 := p13(p−1
12 (Z12) ∩ p−1

23 (Z23))

= {(m1,m3) ∈M1 ×M3 | ∃m2 ∈M2 : (m1,m2) ∈ Z12, (m2,m3) ∈ Z23}

= Z12 ×M2 Z23

8.2.3 Convolution in equivariant Borel-Moore homology

Let M1,M2,M3, Z12 ⊂M1 ×M2, Z23 ⊂M2 ×M3, pij : M1 ×M2 ×M3 →Mi ×Mj de�ned

as before. Additionally assume Z12 ⊂M1×M2, Z23 ⊂M2×M3 closed and the restriction

of p13 denoted also by p13

p13 : p−1
12 (Z12) ∩ p−1

23 (Z23)→M1 ×M3

is proper. Then, we de�ne the convolution product ∗ as follows

HG
i (Z12)×HG

j (Z23)→ HG
i+j−2m2

(Z12 ◦ Z23)

(c12, c23) 7→ c12 ∗ c23 := (p13)∗(p
∗
12c12 ∩ p∗23c23),
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8.3 Duality between equivariant cohomology and equivariant

Borel-Moore homology

8.3.1 Equivariant derived category of sheaves after Bernstein and Lunts

This is based on Bernstein-Lunts [BL94]. I also used Fiebig's and Williamson's article

[Fie11].

As in the subsection on equivariant cohomology, let G be a topological group and EG

be a contractible G-space with a topologically free G-action (i.e. trivial stabilizers and the

quotient map is a locally trivial �bration). Consider

EG×X
q

((QQQQQQQQQQQQQ
p

{{vvvvvvvvvv

X XG := EG×G X

where q is the quotient map and p is the projection on the second factor.

Let k be any commutative ring with unit. For any topological space Y we denote byD(Y, k)

the derived category of sheaves of k-modules on Y and by Db(Y, k) the full subcategory

of objects with bounded cohomology. For any continous map f : Y → Y ′ we have a

pushforward and a pullback functor

f∗ : D(Y, k)→ D(Y, k), f∗ : D(Y ′, k)→ D(Y, k)

De�nition 37. The equivariant derived category of sheaves of X with coe�cients in k

is the full subcategory DG(X, k) of D(XG, k) consisting of all objects F such that there

exists FX ∈ D(X, k) such that q∗F ∼= p∗FX .
We denote byDb

G(X, k) the full subcategory ofDG(X, k) consisting of objects with bounded

cohomology.

Remark. The categories DG(X, k) and Db
G(X, k) are independent of the choice of a con-

tractible space EG.

Since p : EG × X → X is a trivial �bration with contractible �bre EG, the functor

p∗ : D(X, k) → D(EG × X, k) is a full embedding, in particular the sheaf FX appear-

ing in the de�nition is unique up to unique isomorphism. We get a forgetful functor

For : DG(X, k)→ D(X, k), F 7→ FX

Remark. DG(X, k) is not the derived category of equivariant sheaves, which often is

not sensible to consider. DG(X, k) is constructed in such a way that its properties are

analogous to the derived category of equivariant sheaves, i.e. has a six-functor formalism

which commutes with the forgetful functor and it is a triangulated category with its heart

isomorphic to the category of equivariant sheaves.

For any complex G-variety X, the constant sheaf CX and the dualizing object DX := p!Cpt

for the morphism p : X → pt are always objects in Db
G(X, k), see [BL94], example 3.4.2
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(1).

8.3.2 The functor formalism

In order to ensure existence of all the functors we restrict to the following situation. Let

G be a complex Lie group and let f : X → Y be a G-equivariant morphism of (algebraic)

G-varieties. There exist functors

f∗, f! : D
b
G(X, k)→ Db

G(Y, k)

f∗, f ! : Db
G(Y, k)→ Db

G(X, k)

Hom,⊗ : Db
G(X, k)×Db

G(X, k)→ Db
G(X, k)

D := Hom(−, DX) : Db
G(X, k)→ Db

G(X, k)

they are basically de�ned as the functors associated to fG = EG ×G f : XG → YG, but

these spaces are not locally compact in general, so the problem is overcome by considering

them as direct limits of locally compact spaces, see [BL94], chapter 3. For G = {e}, they
coincide with the non-equivariant functors given by the same symbol.

(1) (see [BL94], Thm 3.4.1, Thm 3.5.2) The functors f∗, f!, f
∗, f !,Hom,⊗ and D com-

mute with the forgetful functor.

(2) (see [BL94], 1.4.1-1.4.3, thm 3.4.3)

(i) f∗ is naturally left adjoint to f∗, in particular, there is a natural transformation

1→ f∗f
∗,

(ii) f! is naturally left adjoint to f !, in particular, there is a natural transformation

f!f
! → 1,

(iii) There are natural isomorphisms of functors

(fg)∗ = g∗f∗, (fg)! = g!f !, (fg)∗ = f∗g∗, (fg)! = f!g!,

(iv) There are natural functorial isomorphisms

Hom(A⊗B,C) = Hom(A,Hom(B,C)), f∗(A⊗B) = f∗A⊗ f∗B.

(v) For f : X → pt we de�ne Γ := f∗ and Γc := f! to be the global section functor

and the global section functor with support, respectively.

(3) (see [BL94], Thm 1.6.2, thm 3.5.2) For any morphism of complex algebraic varieties

there exist canonical functorial isomorphisms

Df! = f∗D, f !D = Df∗,DD = id .

Remark. Warning, we denote the derived functors with the same symbol as the functors

f∗, f
∗, f! themselves. The functor f ! is constructed to be the right adjoint of f!, it is not

the derived functor of a functor of the same name.
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The following properties are commonly used, see [CG97], (8.3.13)-(8.3.16) on p.428.

The properties transfer to the equivariant functors.

(1) If f is G-equivariant proper, then f∗ = f!. In particular, this holds for any closed

embedding.

(2) If f is G-equivariant, �at with smooth �bers of complex dimension d, then f ! =

f∗[2d]. In particular, for an open G-equivariant embedding f∗ = f !. Also, for

f : X → pt smooth, G-equivariant, we get DX = CX [2d].

(3) For any cartesian square

X ×Z Y
f̃ //

g̃

��

Y

g

��
X

f // Z

of G-equivariant varieties it holds g!f∗ = f̃∗g̃
! : Db

G(X)→ Db
G(Y )

(4) Let i∆ : X → X ×X be the diagonal embedding of a G-variety. Recall that we can

de�ne the tensor product to be A ⊗ B := i∗∆(A × B) for A,B ∈ Db
G(X). We de�ne

a second derived tensor product via A⊗! B := i!∆(A×B). It holds

A⊗ CX = A, A⊗! DX = A, Hom(A,B) = D(A)⊗! B

8.3.3 Duality

Let us �rst recall the appearence of equivariant cohomology in the context of the equivariant

derived category.

De�nition 38. Let F ∈ Db
G(X, k). The equivariant cohomology H∗G(X,F) of X with

coe�cients in F is de�ned as

H∗G(X,F) := H∗ord(BG, π∗F)

where π : X → pt, π∗F ∈ Db
G(pt, k) ⊂ Db(BG, k) with BG = EG/G and the right hand

side is ordinary sheaf cohomology, i.e. the i-th cohomology group is the i-th hypercoho-

mology of the complex π∗F of sheaves on BG. This is naturally a graded module over

H∗G(pt, k), so we have a functor

H∗G : Db
G(X, k)→ H∗G(pt, k)−modgr

The following is the link to the equivariant cohomology and equivariant Borel-Moore

homology from the previous two sections.

Lemma 78. ([CG97], (8.3.6) on page 426 for not equivariant) Let X be a complex G-

variety. Then:

H i
G(X) = Hi

G(X,CX), HG
i (X) = H−iG (X,DX)
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Remark. There is a sheaf theoretic convolution product de�ned on the equivariant coho-

mology using the functor formalism. This is just a rewrite of [CG97], chapter 8 where the

non-equivariant case has been treated.

8.3.4 Localization for equivariant Borel-Moore homology

Let T be an algebraic torus over the complex numbers. We use the notion T -equivariantly

formal for Borel-Moore homology which we de�ne later. We only need the following remark:

If the odd Borel-Moore homology vanishes for a variety, then it is T -equivariantly formal

for Borel-Moore homology.

Theorem 8.3.1. (Localization - weak version, [Bri00], Lemma 1) Let X be a complex

T -variety which is T -equivariantly formal for the Borel-Moore homology (see de�nition 40

later). Assume XT is �nite and let i : XT → X be the inclusion of T -�xed points. Then

the pushforward induces an isomorphism

i∗ ⊗K : HT
∗ (XT )⊗C K → HT

∗ (X)⊗C K

of K = HT
∗ (pt)-vector spaces.

Theorem 8.3.2. (multiplicity formula, [Bri00], section 3) In the situation as above and

assume that X is compact. Then, it holds

[X]T =
∑
x∈XT

eT (x,X)[x]T ∈ HT
∗ (XT )⊗C K.

8.3.5 Cellular �bration for equivariant Borel-Moore homology

We rewrite [CG97], section 5.5 for equivariant Borel-Moore homology. That is straightfor-

ward since all properties which are needed to get the analogue of [CG97], lemma 5.5.1 are

full�lled (i.e. Thom isomorphism and localization property).

De�nition 39. Let G be a complex algebraic group. Let π : Z → X be a dominant

morphism of complex G-varieties. We call Z a cellular �bration over X if Z is equipped

with a �nite desreasing �ltration

Z = Zn ⊃ Zn−1 ⊃ · · · ⊃ Z1 ⊃ Z0 = ∅

such that for any i = 1, . . . , n the following hold

(a) Zi−1 ⊂ Zi is G-equivariant closed immersion. The restriction

π|Zi : Zi → X

is G-equivariant and locally trivial.

(b) Set Ei := Zi \ Zi−1. The restriction πi = π|Ei : Ei → X is a vector bundle (in

particular also dominant).
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Lemma 79. ([CG97], Lemma 5.5.1, p.270) In the setup of the previous de�nition.

(a) Assume HG
odd(X) = 0. For each i = 1, . . . , n it holds HG

odd(Z
i) = 0 and there is a

canonical exact sequence

0→ HG
∗ (Zi−1)→ HG

∗ (Zi)→ HG
∗ (Ei)→ 0

of H∗G(pt)-modules.

(b) If HG
odd(X) = 0 and HG

∗ (X) is a free HG
∗ (pt)-module with basis c1, . . . , cm, then

all the short exact sequences in (a) are (non-canonically) split and HG
∗ (Z) is a free

HG
∗ (pt)-module of rank n ·m with basis (εi)∗πi

∗cj , 1 ≤ i ≤ n, 1 ≤ j ≤ m where

X Eiπi
oo

εi
// Z

with Ei the closure of Ei, πi the restriction of π and εi the closed embedding.

Sketch of proof:

1) Use the localization property and the Thom isomorphism to prove �rst the odd

vanishing inductively and obtain this way the short exact sequences.

2) Again by induction on n. For n = 1 it holds Z = E1 → X is a vector bundle and

the claim follows from the Thom isomorphism. For the induction step use that the

freeness of HG
∗ (Ei) and HG

∗ (Zi−1) implies the freeness of HG
∗ (Zi) and the statement

on the rank. The explicit basis statement comes from the splittings of the sequences.

�

8.4 The Serre cohomology spectral sequence with arbitrary

coe�cients

This has been explained to me by Greg Stevenson.

Let X → B a �bration of complex algebraic varieties over C with typical �bre F . We look

at the diagram

F
f //

��@@@@@@@ X
g //

q

��

B

p��~~~~~~~

pt .

The Grothendieck spectral sequence gives for any F ∈ D(X) a spectral sequence

Eij2 = Rip∗(R
jg∗F) =⇒ Ri+1q∗F

Now, Rjg∗F is the sheaf associated to the presheaf

U 7→ Hj(g−1(U),F|g−1(U))
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We are interested in the two special cases

(1) F = AX is the complex concentrated in degree zero, where it is the trivial local

system for a commutative ring A. In this case, for an open, contractable subset

U ⊂ B such that g−1(U) ∼= F × U , we have

Hj(g−1(U), AX) = Hj
ord(F × U,A) ∼= Hj

ord(F,A)

where Hj
ord denotes ordinary (= singular) cohomology and the second isomorphism

uses the Künneth formula. The spectral sequence is

Eij2 = H i(B,Hj(F,A)) =⇒ H i+j
ord (X,A)

where Hj(F,A) is a local system with stalks Hj
ord(F,A) and H i(B,−) is the sheaf

cohomology. If the local system Hj(F,A) is trival and Hj
ord(F,A) is a free A-module,

then the spectral sequence simpli�es to

Eij2 = H i
ord(B,A)⊗A Hj

ord(F,A)) =⇒ H i+j
ord (X,A)

Furthermore, if Hodd
ord (F,A) = 0, the spectral sequence degenerates at E2 and we get

an isomorphism of H∗ord(B,A)-modules

H∗ord(X,A) ∼= H∗ord(B,A)⊗A H∗ord(F,A)

(more precisely, there exists a �ltration of the graded ring R := H∗ord(X,A)

Ru = F 0Ru ⊃ F 1Ru ⊃ · · · ⊃ F uRu ⊃ F u+1Ru = 0

by H∗ord(B,A)-submodules such that the subquotients are free and F pRu · F qRv ⊂
F p+qRu+v and the associated graded ring grF (H∗ord(X,A)) is isomorphic as bigraded

ring to H∗ord(B,A)⊗A H∗ord(F,A).)

Also, the two edge maps of the spectral sequence are morphisms of A-algebras

H∗ord(X,A)�H∗ord(F,A) = E0,∗
2

E∗,02 = H∗ord(B,A) ↪→H∗ord(X,A)

(2) If F = DX is the dualizing sheaf and we assume B to be a manifold of (real)

dimension 2n, then for Cn ∼= U ⊂ B open such that g−1(U) ∼= F × U it holds that

Hj(g−1(U), DX |g−1(U)) = HBM
−j (F × U,C) ∼= HBM

−j−2n(F,C)

where HBM
j is the j-th Borel-Moore homology and the last isomorphism is given

by the Künneth formula for Borel-Moore homology (cp. [CG97], p.99). Therefore

Rjg∗DX is a local system with stalks isomorphic to HBM
−j−2n(F,C). If we asume that

it is the trivial local system and use the fact that HBM
−j−2n(F,C) is automatically a
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free C-vector space, we get a spectral sequence

Eij2 = H i
ord(B,C)⊗C H

BM
−j−2n(F,C) =⇒ HBM

−i−j(X,C)

Furthermore, if HBM
odd (F,C) = 0, the spectral sequence degenerates at E2 and we get

an isomorphism of C-vector spaces

HBM
m (X,C) ∼=

⊕
−i−j=m

H i
ord(B,C)⊗C H

BM
−j−2n(F,C)

Now, let X be a complex G-variety where G is a connected algebraic group over C.
Then, the previous spectral sequence applied to the �bration XG → BG can be written as

Epq2 = Hp
G(BG)⊗C H−q−2n(X) =⇒ H−p−q(XG) = HG

−p+(−q−2n)(X)

because BG is simply connected (whenever G is connected, you get as part of the long exact

sequence for homotopy groups 0 = π1(EG, x)→ π1(BG, y)→ π0(G) = pt). Remembering

that Hp
G(BG) = Hp

G(pt) = HG
−p(pt), then after reindexing s = −p, t = −q−2n the spectral

sequence can be written as

Es,t2 = HG
s (pt)⊗C Ht(X) =⇒ HG

s+t(X)

De�nition 40. If the above spectral sequence degenerates, we say X is G-equivariantly

formal for Borel-Moore homology.

Now, let us come to the Steinberg variety, recall that Z =
⊔
i,j∈I Zi,j , Zi,j = Ei ×V Ej

with Ei = G×Pi Fi and G is a connected reductive group. We know that Hodd(Z) = 0 and

that H∗(Z) has a basis as C-vector space given by algebraic cycles. We set ei := dimEi =

dimG+ dimFi − dimPi. Then, H∗(Z) and HG
∗ (Z) become graded rings by the following

de�nition (see [CG97], p.481)

H[p](Z) :=
⊕
i,j∈I

Hei+ej−p(Z), HG
[p](Z) :=

⊕
i,j∈I

HG
ei+ej−p(Z).

It holds that H[p](Z) ∗H[q](Z) ⊂ H[p+q](Z). For any i, j ∈ I, we have a degenerate (at E2)

spectral sequence

E
−s,ei+ej−t
2 = H−sG (pt)⊗C Hei+ej−t(Zi,j) =⇒ HG

ei+ej−(s+t)(Zi,j)

Taking the direct sum, we get a (degenerate at E2) spectral sequence

E−s,t2 = H−sG (pt)⊗C H[t](Z) =⇒ HG
[s+t](Zi,j)

Now, E2 =
⊕

s,tH
G
s (pt) ⊗C H[t](Z) is a bigraded ring. This is a spectral sequence which

is compatible with the graded ring structure (i.e. dr(ab) = dr(a)b+ (−1)s+tadr(b) because
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dr = 0), cp. for example Stricklands notes [Str08]. It implies

HG
∗ (Z) = HG

∗ (pt)⊗H∗(Z)

as HG
∗ (pt)-modules (more precisely: There exists a a �ltration of the graded ring R :=

HG
∗ (Z)

Ru = F 0Ru ⊃ F 1Ru ⊃ · · · ⊃ F uRu ⊃ F u+1Ru = 0

by HG
∗ (pt)-submodules such that the subquotients are free and F pRu ·F qRv ⊂ F p+qRu+v

and the associated graded ring grF (HG
∗ (Z)) is isomorphic as bigraded ring to HG

∗ (pt) ⊗
H∗(Z).)

Also the two corner maps of the spectral sequence are morphisms of graded C-algebras

HG
∗ (Z)�H∗(Z) = E0,∗

2

E∗,02 = HG
∗ (pt)⊗H[0](Z) ↪→HG

∗ (Z)

8.4.1 A lemma from the survey on Springer theory

As an application of the previously discussed Leray spectral sequences, we include the two

lemmata and their proofs from the �rst chapter.

We set W̃ :=
⊔
i,j∈IWi,j with Wi,j := Wi W/Wj where W is the Weyl group for (G,T )

and Wi ⊂ W is the Weyl group for (Li, T ) with Li ⊂ Pi is the Levi subgoup. We will �x

representatives w ∈ G for all elements w ∈ W̃ .

Let Cw = G · (ePi, wPj) be the G-orbit in G/Pi ×G/Pi corresponding to w ∈Wi,j .

Lemma 80. (1) p : Cw ⊂ G/Pi × G/Pj
pr1−−→ G/Pi is G-equivariant, locally trivial with

�bre p−1(ePi) = PiwPj/Pj.

(2) PiwPj/Pj admits a cell decomposition into a�ne spaces via Schubert cells

xBjx
−1vwPj/Pj , v ∈Wi

where Bj ⊂ Pj is a Borel subgroup and x ∈ W such that xBj ⊂ Pi. In particular,

Hodd(PiwPj/Pj) = 0 and

H∗(PiwPj/Pj) =
⊕
v∈Wi

Cbi,j(v), bi,j(v) := [xBjx−1vwPj/Pj ].

It holds that deg bi,j(v) = 2`i,j(v) where `i,j(v) is the length of a minimal coset

representative in W for x−1vwWj ∈W/Wj.

(3) For A ∈ {pt, T,G} it holds HA
odd(Cw) = 0 and since G/Pi is simply connected

HA
n (Cw) =

⊕
p+q=n

Hp
A(G/Pi)⊗Hq(PiwPj/Pi),

HA
∗ (Cw) =

⊕
u∈W/Wi,v∈Wi

H∗A(pt)bi(u)⊗ bi,j(v),
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where bi(u) = [BiuPi/Pi]
∗ is of degree 2 dimCG/Pi − 2`i(u) with `i(u) is the length

of a minimal coset representative for u ∈W/Wi and bi,j(v) as in (2).

Proof:

(1) Since p : Cw ⊂ G/Pi×G/Pj → G/Pi isG-equivariant andG/Pi a homogeneous space,

we can apply Slodowy's lemma (see lemma 77) which implies there is an isomorphism

of G-varieties Cw ∼= G×Pi p−1(ePi) over G/Pi. If the Levi group for Pi is a product

of special algebraic groups, then Pi is special as well, this implies that any principal

Pi-bundle is locally trivial in the Zariski topology. For the analytic topology it is

locally trivial because it is a smooth map. It is easy to see p−1(ePi) = PiwPj/Pj .

(2) Now, let Bj ⊂ Pj be a Borel subgroup of G, x ∈ W such that xBj ⊂ Pi. It

holds PiwPj/Pj =
⋃
v∈Wi

xBjx
−1vwPj/Pj , xBjx

−1vwPj/Pj is isomorphic to an

a�ne space. The dimension of a Schubert cell xBjx
−1yPj/Pj can be found as fol-

lows: Let (x−1y)j be the minimal coset representative of x−1yWj ∈ W/Wj . Then

it holds dimxBjx
−1yPj/Pj = `((x−1y)j). It is well-known that the Schubert cells

give a cellular decomposition of PiwPj/Pj . It follows that Hodd(PiwPj/Pj) = 0

and H∗(PiwPj/Pj) has a C-vector space basis given by the cycles [xBjx−1vwPj/Pj ]

where deg[xBjx−1vwPj/Pj ] = 2`((x−1vw)j).

(3) Consider the Serre cohomology spectral sequence for the �bration in (1)

Ep,q2 = Hp(G/Pi,H−q−2fi(PiwPj/Pj))⇒ H−p−q(Cw)

where H−q−2fi(PiwPj/Pj) is a local system with stalk H−q−2fi(PiwPj/Pj) and fi =

dim(G/Pi). Since Hodd(PiwPj/Pj) = 0 we obtain that the spectral sequence de-

generates, which implies that Hodd(Cw) = 0. Since G/Pi is simply connected the

local system H−q−2fi(PiwPj/Pj) is trivial and Hp(G/Pi,H−q−2fi(PiwPj/Pj)) =

Hp(G/Pi)⊗C H−q−2fi(PiwPj/Pj). Then the degeneration gives

Hm(Cw) =
⊕

q−p=m−2fi

Hp(G/Pi)⊗C Hq(PiwPj/Pj)

Now, for A ∈ {T,G} we have the Serre spectral sequence associated to the �bration

(Cw)A → BA

Ep,q2 := HA
p (pt)×C Hq(Cw)⇒ HA

p+q(Cw)

which degenerates because Hodd(Cw) = 0, therefore we have

HA
m(Cw) =

⊕
p+q=m

HA
p (pt)⊗C Hq(Cw)

=
⊕

p+s−t=m−2fi

HA
p (pt)⊗C H

s(G/Pi)⊗C Ht(PiwPj/Pj)

and HA
odd(Cw) = 0.
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8.4.2 The cohomology rings of �ag varieties.

We review some known results.

Let G be a connected reductive group over C and P ⊂ G a parabolic subgroup. We write

H∗(−,C) for the ordinary cohomology ring (wrt the cap product) and for any algebraic

group H we write H∗H(−,C) for the H-equivariant cohomology ring (wrt. cap product).

As usual, if we leave out the coe�cients in (co)homology groups, they are assumed to be

the complex numbers.

Furthermore, �x T ⊂ P a maximal torus and let W be the Weyl group associated to

(G,T ). Let WP ⊂W be the subgroup stabilizing P . Let us �rst remark the following

Remark. Let IW ⊂ C[t] and I
(P )
W ⊂ C[t]WP be the ideals generated by the kernel of the

algebra homomorphism C[t]W → C, f 7→ f(0). Then it holds

I
(P )
W = IW ∩ C[t]WP = IWP

W ⊂ C[t]WP .

Furthermore, it holds that

(C[t]/IW )WP = C[t]WP /I
(P )
W

This follows because ()WP is an exact functor on �nite dimensional complex WP -modules

and since WP operates by graded vector space maps on C[t] and IW , we can restrict on

the graded parts to use the exactness.

Theorem 8.4.1. There are isomorphisms

H∗(G/P ) = (C[t]/IW )WP = C[t]WP /I
(P )
W as C− algebras,

H∗T (G/P ) = C[t]⊗C[t]W C[t]WP as H∗T (pt) ∼= C[t]− algebras,

H∗G(G/P ) = C[t]WP as H∗G(pt) ∼= C[t]W − algebras,

where the degree of the elements in HomC−vs(t,C) ⊂ C[t] is 2.

Proof: Let B ⊂ P be a Borel subgroup. Recall that the Borel homomorphism c : C[t]→
H∗(G/B) is a surjective algebra W -linear algebra homomophism with kernel IW . Let

α : G/B → G/P be the natural map. We write α∗ for the pullback map in the di�erent

cohomology groups. Recall from [BGG73b] that α∗ : H∗(G/P ) → H∗(G/B) = C[t]/IW

is a monomorphism of �nite dimensional C-algebras which identi�es H∗(G/P ) with the

subalgebra of WP -invariants in H
∗(G/B).

The third identity H∗G(G/P ) = C[t]WP follows from [Bri00], rem. 3), page 4, which is

originally due to Arabia (cp. [Ara85] ). In our situation it states as

H∗G(G/P ) ∼= H∗P (pt).
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Now let L be the Levi group in P , by de�nition WP is the Weyl group of (L, T ). The Levi-

decomposition shows that L is homotopy equivalent to P . This implies H∗P (pt) = H∗L(pt),

then the splitting principle gives H∗L(pt) = (H∗T (pt))WP .

Finally H∗T (G/P ) is calculated with the knowledge of H∗G(G/P ) also in [Bri00], Prop 1

(iii), page 6 for the isomorphism as H∗G(pt)-modules. To see that the ring structure is also

the same one uses a localization to the T -�xed points, for the case P = B see the example

on p.14 in [Bri00]. �.

8.4.3 Forgetful maps

Recall that by the forgetful maps the commutative diagrams of C-algebras

H∗G(G/P ) //

&&NNNNNNNNNNN
H∗T (G/P )

xxppppppppppp

H∗(G/P )

is given by the ring homomorphisms

C[t]WP = C[t]W ⊗C[t]W C[t]WP

incl
//

π **TTTTTTTTTTTTTTT
C[t]⊗C[t]W C[t]WP

??

vvmmmmmmmmmmmmm

C[t]WP /I
(P )
W .

where π : C[t]WP → C[t]WP /I
(P )
W is the canonical surjection. The map ?? is a surjective

ring homomorphism which makes the diagram commutative but I do not know it explicitly.

The claim that the forgetful maps to usual cohomology are surjective is equivalent to the

degeneration of the Serre spectral sequence which we discuss in the following.

Remark. (The Serre cohomology spectral sequence from ordinary to equivariant coho-

mology)

This is another special case of Serre cohomology spectral sequence, this time for singular

cohomology.

Let X be a complex algebraic variety with an action of an algebraic group G and let

c ∈ H∗(X). We say that c̃ ∈ H∗G(X) lifts c to H∗G(X) if it maps under the forgetful map

H∗G(X)→ H∗(X) to c.

The Serre cohomology spectral sequence for the �bration XG := X×GEG→ BG with

�bre X is of the form

Epq2 = Hp(BG,Hq(X))⇒ Hp+q(XG)

The second sheet of the spectral sequence is the tensor product is Epq2 = Hp(BG)⊗CH
q(X).

because π1(BG) is trivial.The following statements are equivalent

(1) The Serre cohomology spectral sequence degenerates at E2.

(2) The forgetful ring homomorphism H∗G(X)→ H∗(X) is surjective.
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(3) H∗G(X) = H∗G(pt)⊗C H
∗(X) as HG(pt)-modules.

(4) H∗G(X) is a free H∗G(pt)-module and every lift of every C-vector space basis of H∗(X)

under the forgetful map is a basis of H∗G(X) as H∗G(pt)-module.

If one of the equivalent condition is ful�lled we say that X is G-equivariantly formal

for cohomology.

Now, for G/P seen as T -variety the previous remark applies, in particular H∗T (G/P ) ∼=
H∗T (pt) ⊗ H∗(G/P ) = C[t] ⊗C (C[t]/IW ) as C[t]-module. The basis of Schubert cycles in

H∗(G/P ) can be lifted to the basis of (T -equivariant) Schubert cycles in H∗T (G/P ) (recall

that all these cycles are invariant under T , the cellular �bration method can be applied to

see this).

For G/P as G-variety the previous remark applies, the Serre spectral sequence degen-

erates at E2 because the odd cohomology of G/P vanishes (which implies Hq(G/P ) = 0

for q odd). In other words we know

Hn
G(G/P ) =

⊕
p+q=n

Hp(BG,Hq(G/P ))

and since π1(BG) = {pt} because G is connected we get Hq(G/P ) is the trivial local

system. Hence we see

H∗G(G/P ) ∼= H∗(G/P )⊗C H
∗
G(pt) as H∗G(pt)-module.

Using the statement (4) in the remark we obtain the following corollary.

Corollary 8.4.1.1. (1) H∗G(G/B) = C[t] is a free module over H∗G(G/P ) = C[t]WP of

rank #WP .

A basis is given by a set bw, w ∈WP where bw is a lift of [BLwBL/BL] ∈ H∗(L/BL)

to H∗L(L/BL) = C[t] where L ⊂ P is the Levi subgroup and BL = B ∩ L.

(2) H∗G(G/P ) = C[t]WP is a free module over H∗G(pt) = C[t]W of rank #WP .

A basis is given by a set cw, w ∈ WP where cw is a lift of [BwP/P ] ∈ H∗(G/P ) to

H∗G(G/P ) = C[t]WP .

Sketch of proof:

(1) Consider the locally trivial �bre bundle G/B → G/P with typical �bre P/B. Use

the degeneration of a Serre cohomology spectral sequence to get

Hn
G(G/B) =

⊕
p+q=n

Hp(P/B)⊗C H
q
G(G/P ).

Identify this with the degeneration of the Serre cohomology spectral sequence for the
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map (L/BL)L → BL with typical �bre L/BL, i.e. with

Hn
L(L/BL) =

⊕
p+q=n

Hp(L/BL)⊗C H
q
L(pt).

to get the statement of the corollary.

(2) Use the degeneration of the Serre cohomology spectral sequence for the map (G/P )G →
BG with typical �bre G/P .

�

8.5 Equivariant perverse sheaves

We will only consider the middle perversity function. We use the convention of Arabia for

the perverse t-structure (compare [Ara01]).

8.5.1 Perverse sheaves

Let X be an algebraic variety over C of complex dimension dX . Recall that we have Verdier

duality D on the category of derived category of constructible sheaves Db(X). Also we set

the support of a sheaf to be the set of points where the stalks are nonzero. We denote

the shift functor by F • 7→ F •[d] de�ned via (F •[d])n := Fn+d (and on cohomology by

Hn(F •[d]) = Hn+d(F •)).

De�nition 41. We de�ne the perverse t-structure on Db(X) via

F • ∈ pD≥ 0 ⇐⇒ ∀S ⊂ X : Hn(i!SF
•) = 0, n > −dS

where S ⊂ X runs through all locally closed analytic subsets, dS is its complex dimension

and iS : S → X the inclusion.

We say a F • ∈ Db(X) is a perverse sheaf if it is in the heart of the perverse t-structure,

i.e. if the supports of Hn(F •) and Hn(DX(F •)) have dimension ≤ −n. In particular, for

a perverse sheaf F • it holds that Hn(F •) = 0,Hn(DXF •) = 0 for n > 0.

We denote by P(X) ⊂ Db(X) the category of perverse sheaves on X.

For example, if X is smooth, the constant sheaf CX [dX ] (i.e. the complex concentrated

in degree −dX) is a perverse sheaf, where we use DX(CX [dX ]) = CX [dX ]. More generally

for any local systems L on a smooth variety X, the shifted complex L[dX ] is perverse

sheaf, it holds that DX(L[dX ]) = L∗[dX ] where L∗ := Hom(L, CX) is the dual local sys-

tem. We call a local system L simple if the via monodromy associated representation

π1(X,x)→ Gl(Lx) of the fundamental group is simple.

Let X again be an arbitrary complex variety. Let U ⊂ X be a dense smooth subset and

L a local system on U , then there exists a complex IC(X,L) ∈ Db(X) called the minimal

(or intermediate) extension1 uniquely determined by the properties

1it is de�ned by applying Deligne's minimal extension functor
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1) IC(X,L)[dX ] ∈ P(X)

2) i∗UIC(X,L) = L

It holds that IC(X,L) = IC(X,L′) for a local system L on U ⊂ X,L′ on U ′ ⊂ X if and

only if there exists an open smooth subset V ⊂ U ∩ U ′ with L|V = L′|V .

For every closed irreducible subset Z
iZ−→ X of dimension dZ (as complex variety) and

a local system L on an open smooth subset U ⊂ Z we get a perverse sheaf

IC(Z,L) := (iZ)∗ (IC(Z,L)[dZ ]) ∈ P(X).

Theorem 8.5.1. (for this version see [Ara01], but it is due to [BBD82].)

(a) The category P(X) is an abelian category.

(b) It is stable under DX ,

(c) It is admissible (i.e. for every 0 → E•
a−→ F •

b−→ G• → 0 with ba = 0 it holds: (a, b)

short exact sequence in P(X) if and only if E•
a−→ F •

b−→ G•
[+1]−−→ is a distinguished

triangle.),

(d) it is extension closed (i.e. for any distinguished triangle E•
a−→ F •

b−→ G•
[+1]−−→ with

E•, G• ∈ P(X) it holds F • ∈ P(X).).

(e) The simple objects of P(X) are precisely IC(Z,L) for Z ⊂ X closed and L a simple

local system on an open in Z.

(f) Every perverse sheaf has a composition series (i.e. �ltration with simple subquotients)

of �nite lengths. We say that P(X) is a �nite length category. (In the literature this

is referred to saying that: P(X) is artinian and noetherian.)

Theorem 8.5.2. (BBD-Decomposition theorem, [BBD82]) Let π : X → Y be a proper G-

equivariant map between complex algebraic varieties. Then, π∗ICG(X,C) ∈ D
b
G(Y ) is a direct

sum of shifts of simple objects.

8.5.2 Equivariant perverse sheaves

Here we follow the de�nition of [BL94], p.41.

Let G be an algebraic group operating on a complex algebraic variety X. Recall that we

have a forgetful functor

For : Db
G(X)→ Db(X), F 7→ FX .

De�nition 42. We de�ne the category of G-equivariant perverse sheaves PG(X) to be the

following full subcategory of Db
G(X)

PG(X) := {F ∈ Db
G(X) | FX ∈ P(X)}.
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By de�nition we get through restriction a forgetful functor

For : PG(X)→ P(X), F 7→ FX .

Remark. ([BL94], loc cit) It follows from the properties of P(X) that the category PG(X)

has the following properties:

It is the heart of the perverse t-structure on Db
G(X) and therefore abelian. Every object

in PG(X) has �nite length, and we can describe the simple objects as IC-sheaves in the

following way.

Recall that we shortly mentioned the following result: By de�nition Db
G(X) is a full

triangulated subcategory of Db(XG). The heart of the natural t-structure (i.e. the one

de�ned by the truncation functors) is the category of G-equivariant constructible sheaves

on X, we denote this by ShG(X), cf. [BL94], Prop: 2.5.3, p.25.

With the analogue de�nition using truncation functors one can de�ne minimal (or inter-

mediate) extension functors in the equivariant situation. It can be characterized as before:

Let j : U → X be the inclusion of a locally closed irreducible G-invariant smooth dense

subset of complex dimension dU . Let L ∈ ShG(U) be a G-equivariant local system. There

exists j!∗L = ICG(X,L) ∈ Db
G(X), called the intermediate extension, uniquely deter-

mined by the following properties

1) ICG(X,L)[dV ] ∈ PG(X)

2) j∗ICG(X,L) = L.

Then for every closed irreducible G-equivariant subset Z
iZ−→ X of dimension dZ and a

G-equivariant local system L on an open smooth subset of Z we get a perverse sheaf

ICG(Z,L) := (iZ)∗
(
ICG(Z,L)[dZ ]

)
∈ PG(X).

The analogue of theorem 8.5.1 holds in the equivariant situation. Furthermore, we have

the following.

Lemma 81. (Folklore, see also [CG97], p.438, also used in [Kat13]) The forgetful functor

For : PG(X) → P(X) ful�lls ICG(Z,L) 7→ IC(Z,L). It induces an equivalence of categories

between the semisimple category spanned by the simple objects in PG(X) and full additive

subcategory of P(X) generated by IC(Z,L) where Z is G-invariant and L is G-equivariant.

In the Appendix of [Cla08], it is stated that the forgetful functor in the previous lemma

is even fully faithful.

Theorem 8.5.3. (equivariant BBD-decomposition theorem, [BL94], p.42) Let π : X → Y

be a proper, G-equivariant map of complex algebraic varieties. Then, π∗ICG(X,C) ∈ D
b
G(Y )

is a direct sum of shifts of simple objects.
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Remark. Since the forgetful functor commute with pushforward, the direct summands in

the BBD-decomposition theorem are the same after applying the forgetful functor as in

the equivariant BBD-decomposition theorem.

Also observe that if X is smooth, then IC(X,C) = CX [dX ]. In fact, the BBD-decomposition

theorem and its equivariant version hold true not just for the pushforward of IC(X,C) but

for the pushforward of IC(X,L) with L local system of geometric origine, see [BBD82] for

the de�nition. We do not use this here.
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