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Abstract

The main aim of this thesis is the de�nition of CellCx, the category of relative
cell complexes generated from a given small category of generating maps. We
establish su�cient conditions for this de�nition to work and give us a category
that we can prove is equivalent to the left map category for the algebraic weak
factorisation system (AWFS for short) generated by Garner's small object ar-
gument applied to the same generating maps. These su�cient conditions take
the form of a special kind of nerve functor on the underlying category, and some
properties the generating maps are required to satisfy with respect to that nerve
functor. In particular, they isolate a special class of inclusion maps which we
call typical inclusions; every cell complex will have an underlying map which is
a typical inclusion.

We also give a survey of the current understanding of the semantic structure
(left and right maps) that an AWFS determines. This includes a theorem that
left and right map structures are always determined entirely by their lifting
structures; this establishes that any AWFS is a �xed point for an adjunction
which can be viewed as a higher order Galois connection.

Additionally, we prove that computads for globular operads are a special
case of cell complexes. This is a result that has been present in the folklore for a
while, but could not be fully formalised without the de�nition of cell complexes
we establish here. Finally we consider the question of when cell complexes can
themselves be expressed as presheaves; we prove a number of results for di�erent
examples and �nd some positive and some negative cases of this property. At
the end we will connect this to the work of Batanin (see [Bat02]) in which he
establishes conditions for this property to hold for computads.
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Introduction

In this introduction we will �rst spend some time describing the general land-
scape of the subject and where this thesis sits in that picture. We will then turn
to an overview of what is done in each chapter and how the di�erent sections
�t together. Hopefully this brief explanation will provide su�cient detail for a
busy reader to get a quick understanding of the main features of the work, or
to more e�ciently navigate the rest of the thesis.

Background Context.

Despite the fact that this is certainly a thesis contained within the subject of
category theory, most of the ideas we explore have their genesis somewhere
in the �eld of homotopy theory. This is probably not that unusual; as we
will see, homotopy theory and category theory have an illustrious history of
mutual assistance and inspiration. The central and eponymous de�nition of
coalgebraic cell complexes is essentially a more categorical version of the relative
cell complexes that appear in Quillen's small object argument. The algebraic
weak factorisation systems that we study here were �rst de�ned by Grandis and
Tholen (see [GT06]) as a stricter version of the weak factorisation systems that
are ubiquitous in model category theory.

We could continue listing the ideas that are derived from homotopy theory
for some time; for this reason this context section will �rstly concern itself with
a survey of model category theory as developed by Quillen in [Qui67, Qui69] and
presented in a very accessible form by Hovey in [Hov99]. We will then describe
how the subject of algebraic factorisation systems grew out of model category
theory, originally with Grandis and Tholen and then later in the work of Garner
and Riehl. Finally we will quickly sketch the related �eld of higher category
theory as one of the �nal aims of this thesis is to show how cell complexes and
factorisation systems can be applied in this area.

Model Categories. The theory of model categories developed from the ob-
servation that the subject of homotopy theory can be studied mostly through
the prism of three special classes of maps in the category of spaces: the �bra-
tions, the co�brations, and the weak equivalences. We will not formally de�ne
these, since we can actually make di�erent choices depending on exactly what
type of homotopy theory we wish to do. It su�ces to say that �brations are
surjective maps that behave especially nicely, co�brations are injective maps
that behave especially nicely, and weak equivalences are maps that preserve all
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2 Introduction

the homotopical information of a space (formally, they induce isomorphisms on
homotopy groups).

The `especially nice' behaviour that we mentioned above is de�ned in terms
of lifting properties. A morphism f has the left lifting property with respect to
a morphism g if, given any commutative square

• •

• •,

//

f

��

g

��
//

;;

there exists some dotted arrow as shown that makes both triangles commute.
A sensible homotopy theory will demand that every co�bration has the left
lifting property with respect to every trivial �bration, and dually every trivial
co�bration should have the left lifting property with respect to every �bration
(a trivial (co)�bration is one that it is also a weak equivalence).

Originally, homotopy theory was studied solely in the category of topological
spaces. As the emphasis on �brations, co�brations and weak equivalences be-
came more and more important, the subject gradually shifted towards the more
general context of a model category. This concept was �rst explicitly de�ned by
Quillen in the �rst chapter of [Qui67] as a way of expressing the connections be-
tween homotopy theory and homological algebra. In a model category we have
two weak factorisation systems which determine between them the three classes
of maps we care about; thus any morphism can be factorised into a co�bration
followed by a trivial �bration, or a trivial co�bration followed by a �bration.

The basic aim of the de�nition of model categories is to provide su�cient
structure to perform localisation with respect to the weak equivalences. The
idea is that weakly equivalent spaces can be seen as `the same up to homotopy',
and one wishes to work with spaces in a way which only cares about homotopical
di�erences. To localise with respect to the weak equivalences means to replace
them freely with isomorphisms and obtain what we call the homotopy category.
In general, the localisation process is a construction fraught with foundational
di�culties; the model category axioms are designed to provide a way of avoiding
these problems.

While the de�nition of a model category comes with a number of axioms
which the factorisation systems must satisfy, in many examples the most di�cult
thing to establish is simply the existence of the factorisations themselves. The
most common approach to the problem of constructing such factorisations is a
somewhat daunting trans�nite induction known as the small object argument ;
it appears originally in the second chapter of [Qui67].

The small object argument works for model categories that are de�ned in a
speci�c way; we begin with two sets of morphisms J and J ′, which we call the
generating co�brations and the generating trivial co�brations. We then use these
sets to generate the classes of �brations and trivial �brations using the lifting
properties. We also consider a special class of morphisms called the relative
J-cell complexes: these are de�ned as all the morphisms that can be obtained
from J using only the operations of pushout, composition (including trans�nite
composition) and coproducts. The relative J-cell complexes are important be-
cause they turn up very naturally in the small object argument. It constructs
a factorisation by building a cell complex (which will be the left hand side of
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the factorisation) in a trans�nite sequence of pushouts; at each stage we are
explicitly adding new lifts to the right hand map, until after some ordinal num-
ber of steps (this number depends on the smallness conditions which give the
argument its name) the right hand map has become a �bration. Since the class
of (trivial) co�brations is closed under pushout, composition and coproducts we
can see that any J-cell complex is also a trivial co�bration�so the factorisation
we have built is of the sort we require.

The small object argument allows us to construct standard model category
structures on topological spaces, simplicial sets, chain complexes, and many
other categories which seem to contain some notion of homotopy. One of the im-
portant early achievements of the subject was the proof that topological spaces
and simplicial sets are Quillen equivalent. This is a formal way of expressing
the fact that the homotopical information in each model category is essentially
the same; in particular the localisations obtain equivalent homotopy categories.

The author's understanding of model categories is based primarily on the
exposition in [Hov99]. Another good source for the basic material is [DS95].

Algebraic Weak Factorisation Systems. Historically speaking, the �rst
type of factorisation system studied was the orthogonal factorisation system.
This is a very strict structure, involving two classes of maps which have lifts (as
de�ned above) against one another; however (in contrast to the weak factori-
sation systems used in model categories) for an orthogonal factorisation these
lifts must be unique. See [FK72] for an early reference on orthogonal factorisa-
tion systems; the idea may originally have appeared in an unpublished article of
Barr or in the related concept of regular D-pairs introduced by Ringel in [Rin70].
The next type of factorisation system was the weak factorisation system which
became an integral part of model category theory. The paper [Bou77] was one
of the �rst publications to discuss these factorisation systems, though they are
also present (slightly less explicitly) in [Qui67].

Weak factorisation systems are great for doing homotopy theory, but the
non-uniqueness of lifts has some undesirable consequences from a categorical
perspective. In an orthogonal factorisation system, the left and right map classes
have the nice property of being closed under all colimits and limits, respectively.
In the weak case one loses this; some colimits and limits exist, but important
cases (like coequalisers and equalisers) are not guaranteed. This was the original
consideration which led Grandis and Tholen to propose (see [GT06]) a new type
of factorisation system which would combine the best features of both orthogonal
and weak factorisation systems. They called it the natural weak factorisation
system; the name was gradually changed to algebraic weak factorisation system
as the theory developed.

In an algebraic weak factorisation system, the lifts are not unique�instead,
they are speci�ed by an explicit choice of lifts for every left map and right map
pair. A necessary complication arises because of this: the left and right maps
are no longer simply classes of morphisms but categories of morphisms. We will
view them as categories equipped with `forgetful' functors to the arrow category,
such as U : L-Map→ C2. A single morphism in C may have many left or right
map structures and di�erent structures will give di�erent lifts between pairs.
This extra complexity comes in a very satisfying package, however, because
the algebraic weak factorisation system can be neatly expressed as a pair of
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endofunctors (L,R) on C2 where L is a comonad and R is a monad. The
comonad is the left hand side of the factorisation, and the left maps are simply
its coalgebras; the de�nition is entirely symmetric so the monad is the right
hand side and the right map category is its category of algebras.

Given a commutative square between a left map and a right map, the coal-
gebra and algebra structures can be used to construct a lift in an extremely
natural way. In the case of a weak factorisation system the lifts had to be part
of the de�nition, so it is a very pleasing feature of algebraic weak factorisation
systems that everything drops out automatically from the algebraic structure.
Another thing worth pointing out is the fact that orthogonal factorisation sys-
tems can now be viewed as a special case; if the comonad and monad are both
required to be idempotent then the left and right map structures become unique
and their lifts must also be so.

The discovery that really attracted interest to this new type of factorisation
system was the adaptation of the small object argument to the new algebraic
de�nition. Due to Garner (see [Gar07, Gar12b]) this algebraic small object
argument made a number of improvements (at least from the categorical point
of view) on the original argument. It showed how the construction was related
to many other general trans�nite constructions (studied in [Kel80], for example)
and it forced the trans�nite sequence to converge, thus eliminating the necessity
of making an arbitrary choice of ordinal number at which to stop. Furthermore,
it extended the possible input data from a set of generating co�brations to a
small category of generating co�brations. Finally, with the new argument the
resulting algebraic weak factorisation system possesses a reasonable universal
property with respect to the original category of generators, making the whole
construction much more natural from a category theoretic perspective.

Some applications of these factorisation systems in homotopy theory were
developed by Riehl, who de�ned the notion of an algebraic model structure in
which the weak factorisation systems are replaced with two algebraic ones. She
developed this theory in [Rie11a], and went on to explore monoidal algebraic
model structures in [Rie13b] (see also her Ph.D. Thesis [Rie11b]). She also
worked together with Barthel in using the algebraic understanding of factori-
sation systems to help construct weak factorisation systems and hence model
structures that had proved hard to construct using the regular small object ar-
gument (see [BR13]). Another good source for Riehl's approach to homotopy
theory, including her use of algebraic factorisation systems, is her book [Rie13a].

Algebraic factorisation systems have also been used by Garner to help under-
stand weak morphisms between higher categories (see [Gar08]) and, in computer
science, to express the syntax of operation sequencing in an abstract mathemat-
ical framework (see [Gar12a]). The author's own contribution to the subject be-
gan with [Ath12], which proved a conjecture of Garner regarding the left maps
for the standard algebraic factorisation system on the category Top. That pa-
per provides the starting point for the work contained in this thesis; the content
of Chapter 3 will be a generalisation of the conjecture and proof contained in
the paper.

Higher Category Theory. The subject of higher category theory studies
structures that are similar to categories in the sense that they have various
types of arrows that can be composed together. However, these structures are
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more complicated because they are in some sense higher dimensional; a set is a
0-dimensional object because it consists only of points, and similarly a category
can be viewed as 1-dimensional because there are morphisms connecting those
points together. Higher categories take this further by introducing 2-morphisms
between the morphisms, 3-morphisms between those, and so on as far as you
wish to go.

We should �rst of all mention the deep and long-standing connection between
higher category theory and homotopy theory. When one moves from the world
of sets to the world of categories, one adds morphisms, which can be seen as
paths between points. Following this philosophy, a 2-morphism in a 2-category
is a `path between paths', or, in other words, a homotopy. This continues to
the higher dimensional morphisms, and can be made formal in the de�nition
of the fundamental n-groupoid of a space. This is an n-category which has
as objects the points of the space, as morphisms the paths between points, as
2-morphisms the homotopies between those, as 3-morphisms the homotopies
between homotopies, and so on. Identities are de�ned as constant homotopies
and composition is de�ned by concatenation. At the top dimension, we can
quotient out the n-dimensional homotopies by the equivalence relation given by
(n+ 1)-dimensional homotopies.

This example illustrates the central challenge of higher category theory: most
of the morphisms in this n-category do not satisfy the associativity and unit
axioms. They do, however, satisfy these axioms up to homotopy�or rather,
up to morphisms in the next dimension up, called coherence morphisms. The
existence of the coherence morphisms acts as a `weakened' version of the normal
axioms of category theory and hence we call such a higher category a weak n-
category. Basically every actual example of a higher category that appears
in practise is weak, so clearly to understand higher category theory we must
understand weak n-categories.

Unfortunately, as we go up in dimension it becomes increasingly intractible
to de�ne the coherence morphisms and the axioms they must themselves satisfy;
explicit hands-on de�nitions exist for dimension two [Lei98, Ben67], dimension
three [Gur07, Gur13, GPS95] and even dimension four in a less complete, unpub-
lished, form [Tri95]. Trimble's tetracategories are, however, more of an exercise
in making a point than a serious attempt at a usable de�nition�by the time we
are at dimension four the coherence data is so complex that it is a nightmare
to simply write down, let alone work with! Thus more recently the main thrust
of higher category theory has been to try �nding clever ways to make general
de�nitions that work for any dimension n.

We will not describe the di�erent de�nitions in very much detail here; two
good sources for a good overview and comparison are [Lei02] and [CL04]. As
Leinster points out, the de�nitions can broadly be classi�ed into two types,
which we call algebraic and non-algebraic. In the non-algebraic de�nitions, an
n-category is some kind of geometric data (such as a simplicial set, or multisim-
plicial set) that is required to satisfy the property that certain cells�composites,
coherence cells, and so on�must exist. In the algebraic de�nitions, on the other
hand, the composites and coherence cells are explicitly chosen by the algebraic
structure of the n-category. Hence a pair of composable morphisms in a non-
algebraic n-category may have several valid composites; but in an algebraic
version we are given a particular choice which we could call the composite. This
is philosophically very similar to the relation between (non-algebraic) weak fac-
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torisation systems and algebraic weak factorisation systems.
The de�nition that we care about most for the purposes of this thesis is

the one due to Batanin [Bat98b], and re�ned by Leinster [Lei04a, Lei04b]. It
involves the use of globular operads, which are a kind of operad de�ned using the
presheaf category of globular sets (which is a generalisation to higher dimensions
of the directed graphs that underly the usual notion of category). A globular
operad essentially speci�es all the operations possible in an n-category; this
rather elegantly includes compositions, identities and coherence cells in a single
notion of `operation'. A fully weak n-category is de�ned as an algebra for the
globular operad that is initial in the category of globular operads equipped with
an extra piece of structure called a contraction�this is exactly the structure
necessary to ensure that algebras behave su�ciently like categories.

The decision to use the initial object of the category of globular operads
with contraction means that we end up with the `weakest possible' notion of
n-category based on globular operads. This is good in that it gives us the
most general case, but also has a downside; generally speaking, the weaker a
de�nition is the harder it will be to use in practise. In the two-dimensional world,
bicategories are much harder to work with than strict 2-categories; similarly for
three dimensions, strict 3-categories are not too bad, but tricategories are very
complicated indeed. The di�culties in these low dimensional examples can be
mitigated by the use of what are called coherence theorems which show that
any weak bicategory or tricategory is equivalent (in some appropriate sense)
to a stricter type of 2 or 3-category. In the case of bicategories, this takes
us all the way to strict 2-categories, while for tricategories there are some weak
behaviours the strict world cannot model; instead we use the intermediate notion
of Gray-category which is only slightly weaker than the fully strict de�nition.
The interested reader can consult [Gur13] for a complete picture of coherence
theorems at dimensions 2 and 3.

Based on the situation for low-dimensional examples, one current problem
in higher category theory is to prove some kind of general coherence theorem
that works for any dimension n. The �rst question this suggests is to ask what
sort of n-category would play the role that Gray-categories play at n = 3.
Batanin coins the term semi-strict n-category, and makes a conjecture about
the existence and de�nition of such a notion, in [Bat02]. He also conjectures
that di�erent levels of strictness in globular operads are related to the behaviour
of computads for those globular operads. A computad is a generalised piece of
generating data for an n-category; they were introduced by Street in [Str76]
but extended by Batanin in [Bat98a] (see also [Gar08] for a cleaner de�nition).
Computads are of particular interest here because they can be seen as a special
sort of cell complex (this is the main point of Chapter 4) and at the end of
Chapter 5 we will discuss the results of [Bat02].

Another ongoing subject of research is the problem of comparing the di�erent
de�nitions of higher category. Some comparisons at low dimensions can be found
in [Lei02] and [Gur09]. There exist a few results for general n that deal with
non-algebraic de�nitions; the situation for algebraic de�nitions is less good and
there are very few known results that compare an algebraic de�nition with a
non-algebraic de�nition. The Ph.D. Thesis of Cottrell [Cot13] demonstrates a
comparison nerve functor between the de�nition of Penon (which is algebraic)
and that of Tamsamani and Simpson (which is non-algebraic); it also includes in
its introduction a good summary of the currently known comparison theorems.
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The present thesis may contribute to this project indirectly; in it we suggest that
cell complexes provide a logical generalisation of computads. Computads have
helped us understand some of the algebraic de�nitions, so it could be valuable
to �nd ways of de�ning analogous objects for the non-algebraic de�nitions.

We should end this discussion of higher category theory by mentioning a very
active area of research�the subject of homotopy type theory. This is an area that
builds upon Martin-Löf type theory to create a formal theory of homotopy types.
The most natural models for this formal theory are so-called∞-groupoids, which
are ω-categories (de�ned in a non-algebraic way) such that all cells have inverses.
This area demonstrates again the extremely close ties between higher category
theory and homotopy theory; the axioms of homotopy type theory include some
which imply the existence of a factorisation system similar to the ones found
in model category theory. A good introduction for the interested reader is the
recent book [UFP13].

Overview of Thesis.

In the rest of the introduction we will summarise the main points of each chapter
in this thesis, and explain how they �t together. The �rst two chapters consist
mainly of known background material. There is a little bit of original work
here which we will point out; but for the most part these two chapters are an
exposition of existing work. Some of it may not have been presented in quite
this form before, and there are some parts that are so much part of the `folklore'
that it is very hard to �nd references!

The third chapter contains the essential core of the thesis�the de�nition of
cell complexes and the proof of the main result, Theorem 3.5.1, which states that
cell complexes are (given certain conditions) the left maps for a known algebraic
weak factorisation system. This chapter can be viewed as analogous to the
author's paper [Ath12], with everything being done in much greater generality.
The fourth chapter is all about connecting the de�nition of cell complexes to
the visibly similar de�nition of computads (as given in [Gar08]). In it we prove
some general results about comparing alternative de�nitions of the category of
cell complexes and we explain how computads �t into this framework.

The �nal chapter discusses the property of corporeality which expresses when
we can prove that the category of cell complexes is equivalent to a presheaf cat-
egory. In it we consider a number of di�erent examples, including any presheaf
category, various categories of spaces and, in the �nal section, n-categories ac-
cording to the globular operad de�nition. In this �nal case we discuss the close
links to [Bat02].

Chapter 1: Background Theory. This chapter is a tour of a number of
di�erent pieces of theory that will be used throughout the thesis. The �rst
is the nerve-realisation adjunction, which is a standard (and very much part of
the folklore) way of constructing an adjunction between a presheaf category and
any cocomplete category. Section 1.1 provides the details of this construction.
Section 1.2 is, as far as the author is aware, original work. We study some
conditions that are su�cient to imply that the nerve-realisation adjunction is
comonadic. One of the results in this section (Proposition 1.2.5) will be useful
in Chapter 3. The rest is included for completeness and as a kind of warm-up
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or foreshadowing of the result in Chapter 3�the nerve-realisation adjunction
can in fact be seen as a very special case of the cell complexes construction, and
the result of Chapter 3 is also about checking an adjunction is comonadic.

Next we discuss the topic of Galois connections. These are also often seen
as part of categorical folklore; a Galois connection is really just an adjunction
between two pre-ordered sets, though they are often studied as an interesting
type of structure in their own right. In particular we will consider how a Galois
connection can be generated from a relation between two sets. This construction
turns out to provide an illuminating perspective on factorisation systems of all
three types.

In Section 1.4 we turn to the subject of factorisation systems, �rst consid-
ering orthogonal and then algebraic weak factorisation systems. This section is
really just a brief introduction; algebraic weak factorisation systems are such a
central concept that they are covered in much more detail in Chapter 2. The
�nal section provides an introduction to the parts of higher category theory that
will be necessary for the work in Chapters 4 and 5.

Chapter 2: Syntax and Semantics. In this chapter we home in on what is
perhaps the most important concept for this thesis�the concept of an algebraic
weak factorisation system. There are essentially two sides to such a factorisa-
tion system: the syntax is the monad and comonad that make up the actual
factorisation data, while the semantics is the two categories of left and right
maps that appear as the coalgebras and algebras.

We begin this chapter by focusing on the semantics side. In Section 2.1 we
discuss the main properties and structures that the left and right map categories
must have. Most importantly we describe the three `colimit-like' constructions
possible with left maps: colimits, pushouts along arbitrary maps and composi-
tion. In Section 2.2 we continue studying the semantics by proving that all of
the (co)algebraic structure of a left or right map is captured by the solutions to
lifting problems. This is an interesting result because it shows how a construc-
tion similar to generating a Galois connection from a relation can be used to
construct an adjunction (which we call the liftings adjunction) that expresses
the correspondence between left and right map categories. This allows us to
view algebraic weak factorisation systems through the lens of lifting structures
in the same way that we often view orthogonal or weak factorisation systems
through the lens of lifting properties.

In the third section we consider another aspect of the semantics for an al-
gebraic weak factorisation system. This is the construction of weak morphisms
that the factorisation system allows; it is a su�ciently important part of the
structure given by the factorisation system that the author feels this chapter
would not be complete without this discussion. The work in this section is due
to John Bourke (as far as the author is aware it is unpublished, though it is
very closely related to the di�erent sorts of morphisms studied in [Bou14]) and
based on work by Garner (see [Gar08], and also [Gar12a]).

The �nal two sections are really the business end of this chapter since they
discuss results that are vital for the work in Chapter 3. Section 2.4 is an ex-
position of the algebraic small object argument due to Garner, and as such all
the material in it can be found in [Gar12b] (or in [Gar07], in a less developed
form). The �nal section is spent proving Theorem 2.5.3, an adaptation of Beck's
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Monadicity Theorem (see Chapter VI of [ML98]) to the special case of categories
of left maps. Thus it gives a useful characterisation of when a category over
C2 is the left map category for some algebraic weak factorisation system. This
�nal section is original work, though the theorem was also stated and proved
independently by John Bourke; the two approaches are mostly the same, except
for one small point of departure which we discuss at the end of the section.

Chapter 3: Cell Complexes. In the �rst two sections of this chapter we
make the de�nition of CellCx, the category of cell complexes. We do this in two
stages, of increasing sophistication; Section 3.1 restricts its attention to the case
where the generating maps form a set, whereas Section 3.2 extends the de�nition
to cases where the generating maps are considered as a small category over C2.
In each case, CellCx is de�ned using a trans�nitely recursive iteration of the
comma category construction on presheaves over the category of cell types SJ ;
given any cell complex A we de�ne TA, called the terminal layer on A, to be
the presheaf of all possible new cells that could be added to A. Then the data
of an extra layer of cells on A is given by a presheaf of cells σ ∈ ŜJ together
with a natural transformation g : σ → TA that tells us how those cells are glued
onto A. This is an object of the comma category (ŜJ ↓ T ).

Section 3.3 introduces an axiomatisation of a structure on a category called
a typical nerve. This is a nerve functor (in the sense of Section 1.1) that satis�es
certain properties, and in particular induces a special class of inclusion maps
called the typical inclusions. This is the structure on a category we require for
the construction of CellCx to work properly with the small object argument;
we �nally describe some conditions a category of generating maps can satisfy
with respect to the typical nerve, called the typical conditions, that are su�cient
to prove the main result of this chapter. At the end of this section we prove
two useful preliminary lemmas implied by the typical conditions: �rstly Propo-
sition 3.3.6, which says that any cell complex or subcomplex inclusion map is
guaranteed to be a typical inclusion, and secondly Lemma 3.3.11 (the `pullback
lemma') which says that any cell complex morphism gives rise to a pullback
square in C.

Section 3.4 establishes a few properties of the category CellCx. The main
aim here is to show it is complete and cocomplete; we do this by �rst observing
that the functor ∂ which takes a cell complex to its base object is a bi�bra-
tion. Finally, in Section 3.5 we check each of the conditions necessary to apply
Theorem 2.5.3�most importantly, that U : CellCx → C2 is conservative and
preserves all equalisers. Once these checks have been done, we prove Theorem
3.5.1, the main result of the chapter (and indeed the thesis), which says that
CellCx is exactly the category of left maps for the algebraic weak factorisation
system given by the small object argument of Section 2.4.

Chapter 4: Computads. This is a shorter chapter in which we give the
de�nition of computads for any globular operad, and show how they �t into the
theory of Chapter 3. The �rst section simply states the de�nition, in much the
same form as [Gar08] (a slightly neater presentation than [Bat98a], upon which it
is based). The only novelty here is a note on the concept of relative computads;
if a computad is viewed as a cell complex it will have a base space, which
classically is always the empty n-category. In order to make the comparison
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with the de�nition of CellCx in Chapter 3 we will need to extend the usual
notion of computad by allowing other base objects.

The only di�culty in comparing computads with cell complexes is that in
a computad cells are adjoined strictly dimension by dimension, whereas the
de�nition of CellCx simply adds as much as possible at each layer. This is
not a genuine problem�it is really a question of adding the same cells but in
a di�erent order. To clarify this idea, in Section 4.2 we introduce the notion
of a strati�cation on a category of cell complexes, which is a kind of `normal
form'; we prove a comparison theorem (Theorem 4.2.9) which works for any
strati�cation and then establish that computads are a special case.

Chapter 5: Corporeality. In this �nal chapter we turn to a speci�c question
one can ask about the category CellCx: when are all the �bres of ∂ (the
subcategories of complexes which all have the same base object) equivalent to
presheaf categories? This question is inspired by the interest there has been in
the analogous question for the category of computads (which is, as we showed
in Chapter 4, equivalent to the �bre of ∂ over the empty n-category). The
question of when computads are presheaves has been studied, for example, in
[Che12, Bat02].

Section 5.1 introduces the notion of classifying complexes and proves how
the existence of su�ciently many classifying complexes implies that the �bres of
CellCx are equivalent to presheaf categories. We use the term corporeal speci�-
cally to refer to a category, typical nerve and generating maps such that su�cient
classifying complexes exist. This property says something rather strong about
the geometric nature of colimits in that category; we spend a lot of this chapter
seeing examples that are corporeal or that fail to be corporeal�in general, cor-
poreality seems to imply a kind of rigidity or physicality of colimits that makes
this property rather intriguing.

In Section 5.2 we prove that presheaf toposes are always corporeal. This is
not surprising, but is a useful test case. The next section deals with topological
spaces �rst, which fail to be corporeal for an interesting reason to do with in�nite
intersections of open sets. We then extend our attention to a general notion of
space-like category, and come up with a simple condition that makes a space-
like category corporeal; unfortunately the author is not currently aware of any
actual examples of this, but we discuss the condition and conjecture that some
nice category of corporeal spaces should exist.

The �nal section deals with categories of algebras for globular operads, and
hence returns to the question of when computads are equivalent to presheaves.
This problem has already been largely solved by Batanin (see [Bat02]) so there
are no new theorems in this section. Instead, we discuss Batanin's results from
the cell complexes perspective and hopefully shed some light on his approach.
In particular, Batanin uses the notion of strong regularity for theories on the
category of sets, and we prove in Lemma 5.4.2 that the condition of strong
regularity is precisely equivalent to corporeality for a simple choice of generating
map on the category of algebras.
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Chapter 1

Background Theory

In this chapter we will describe various pieces of standard category theory which
make up the background for the results presented later in this thesis. There is a
small amount of original work in Section 1.2. Besides that section, the chapter
is entirely expository.

The �rst section introduces the nerve-realisation adjunction, which is fun-
damental to the de�nition of cell complexes in Chapter 3. The second section
contains a few results about this construction, speci�cally regarding the ques-
tion of when it produces a comonadic adjunction. This essentially foreshadows
the results proved in the bulk of Chapter 3, which is also about checking that an
adjunction is comonadic. That adjunction is constructed in a similar (though
more complicated) way to the simple one presented here.

The next two sections are basically intended to introduce the notion of an al-
gebraic weak factorisation system, which we will generally abbreviate to AWFS.
The concept of a Galois connection, which is very interesting in its own right,
will ultimately provide a rather nice conceptual approach to AWFS�though
this will not become entirely clear until Chapter 2. Then, in the �nal section,
we give some background in higher category theory (speci�cally the operadic
de�nitions of higher categories) that will be useful in Chapter 5.

1.1 The Nerve-Realisation Adjunction

We begin by describing a very fundamental construction. It has been around
for a long time and it underlies many other ideas in category theory; it will
appear several times, in di�erent contexts, in this thesis. It is one of most
basic examples of a Kan extension; however, here we will discuss it from �rst
principles without invoking too much abstract theory. We refer the reader to
Chapter X of [ML98], which is devoted to Kan extensions in their full generality.

The nerve-realisation adjunction is now so entrenched in category theorists'
general knowledge that it tends to be considered `part of the folklore'. However,
we should note that it was �rst introduced by Kan in [Kan58], while another
important paper in the development of the idea is [DK84]. It was also studied
by Isbell through the related concept of adequacy of subcategories�see [Isb60].

The nerve construction is about taking an arbitrary category and comparing
it with some presheaf category; we obtain a functor which we think of as �nding

13



14 CHAPTER 1. BACKGROUND THEORY

presheaf `approximations' for objects in the original category. The realisation
functor is the left adjoint to this approximation functor, which exists whenever
the category in question has su�cient colimits.

The construction. We begin with an arbitrary category C, the category we
are interested in, and we consider any small category S together with a functor
I : S → C. We will sometimes call S the category of shapes. From this, we
can determine a canonical functor N : C → Ŝ. (We will use the notation Ŝ
throughout to refer to the category of presheaves on S�in other words, Ŝ =
[Sop,Set].) To de�ne N , we must �rst give a presheaf NA for each A ∈ C. The
formula

NA(j) = C(Ij, A)

de�nes the sets that make up these presheaves. We must also de�ne the re-
striction maps in each NA and see how N is itself a functor; this is easily done
using precomposition and postcomposition functions. A morphism a : j → j′

gives a function NA(j′)→ NA(j) by precomposition with Ia, and a morphism
f : A→ B gives a function NA(j)→ NB(j) for any j by postcomposition with
f . We call NA the nerve of the object A; the name comes from the example of
nerves of categories, which we will see in a moment.

The left adjoint to N , when it exists, is called the realisation functor and
will be written

∐
. There is a good reason for this coproduct notation; the

realisation functor takes a presheaf σ to the colimit of the diagram

Iσ : Eσ → C

where Eσ is the category of elements of σ and Iσ is de�ned by composing the
projection functor onto S with the functor I. One can think of σ as contain-
ing instructions for building an object of C; the realisation functor takes these
instructions and uses a colimit to actually build the object. Of course,

∐
only

exists when C has su�cient colimits.

A `geometric' intuition. In category theory, we take mathematical concepts
such as groups and topological spaces that are traditionally studied as sets with
structure, and replace them with abstract, structureless objects in a category.
In this new way of thinking we cannot reason about the points in a space, or
the elements in a group; instead we must reason about the continuous functions
between spaces and the homomorphisms between groups.

For this reason, category theory is often described as mathematics done
`pointlessly'. However, this is not quite true; consider spaces viewed as objects
of Top and you will see that the points are very much still there�they appear
as the morphisms to a space from the terminal space. The di�erence is that now
these points are joined by many other �gures of di�erent shapes, because we
can reason in just the same way about morphisms to a space from the interval,
or the circle, or any other space you choose!

It is a common technique to study an object in a category by considering
the �gures in it of certain shapes. Moreover, because these �gures may intersect
non-trivially, we should keep track of that information too. The construction
above is exactly this idea made formal. We could call NA the presheaf of
�gures in A. It gives us a set of �gures for each shape we are interested in, and
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furthermore it gives functions between these sets that tell us how the �gures
intersect. Let us see how this works with some explicit examples.

Representables. The simplest non-trivial example we could choose would be
to make S the one-object category with a single morphism, and thus have I
simply choose an object A of C. Then the category Ŝ is just Set itself, and the
functor N , which takes an object of C to its set of A-�gures, is more usually
written as C(A,−). Thus we see that representable functors are a special case
of nerve functors�or perhaps it is more true to say that a nerve functor is a
kind of generalised representable functor.

Simplicial approximation. It is fascinating to think about all the possible
choices of �gure shapes in Top and the presheaves of �gures they produce.
Sometimes they capture very nearly all the information in a space, sometimes
they can lose a lot�particularly in the case of the many pathological spaces
encountered in point-set topology. The following example is the most commonly
used approximation to topological spaces.

The simplicial category, ∆, is the category of �nite, totally ordered sets (ex-
cept for the empty set) and order preserving functions between them. We write
n for the object of ∆ with n + 1 elements; this may seem odd, but the reason
will become clear soon.

0 oo
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3 . . .

The arrows shown in this picture are the generating arrows of ∆�the order-
preserving maps that either miss exactly one element, or double-up exactly one
element. We call the former coface maps and the latter codegeneracy maps.

Now we de�ne the functor I : ∆ → Top. It takes the object n to the n-
dimensional simplex�that is the n dimensional disc, thought of as a polytope
made out of the lower dimensional simplices; so I(0) is the point, I(1) the
interval, I(2) a triangle, I(3) a tetrahedron and so on. In general we can write
these explicitly as subsets of Euclidean space:

I(n) = {(xi) ∈ Rn+1 |
∑

xi = 1, xi ≥ 0}.

The n+ 2 coface maps n→ n + 1 get mapped by I to the ways of including
I(n) in I(n + 1) as a face; explicitly, the jth one of these face maps acts by
inserting a 0 in the jth coordinate. The degeneracy maps (the images of the n+1
codegeneracy maps under I) are slightly harder to describe. The jth degeneracy
map squashes the jth face of I(n + 1) down into a single lower dimensional face
of I(n), while acting linearly on the rest of the space; explicitly we can write
this map as

(x1, x2, . . . xn+1) 7→ (x1, x2, . . . xj−1, xj + xj+1, xj+2, . . . xn+1),

where we have reduced the dimension by one by adding together the jth and
(j + 1)th coordinates.
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The category ∆̂ is called the category of simplicial sets and often written
SSet, and the functor N : Top → SSet is called the singular simplicial set
functor. In this case it has a left adjoint (Top is cocomplete) and this functor∐

: SSet→ Top is called the geometric realisation functor. This is the example
that gave us the name `realisation functor'.

What the singular simplicial set functor does is to look at all the simplex-
shaped �gures in a space, and consider how they join together as faces and
degeneracies of one another. For most spaces, the number of such �gures is
uncountable, so the resulting simplicial set is very complicated.

The geometric realisation functor is somewhat easier to �nd simple �nite
examples for. If we consider an arbitrary simplicial set P , what

∐
does is to

use P as the `speci�cation' to build a colimit in Top. Each element of P (0)
speci�es a point, each element of P (1) speci�es a line, and each element of P (n)
speci�es an n-simplex. If we were simply to take the coproduct of this collection
of points, lines, and so on, we would get a fractured realisation of P as a disjoint
union of all these building blocks. But P also speci�es, by way of the face and
degeneracy maps, the instructions for gluing the points, lines and so on together;
when we include all these functions in the diagram, the colimit will contain all
the �gure shapes speci�ed, but glued together to make a geometric model of the
simplicial set P . This adjunction is the underlying motivation for the idea that
simplicial sets provide a combinatorial model for topological spaces; it is this
that makes them one of the most important tools in modern algebraic topology.

The density comonad. It is worth considering brie�y that when the left
adjoint

∐
exists, we obtain an endofunctor N

∐
: C → C. Because of the ad-

junction, it has the structure of a comonad. It is known as the density comonad
for the functor I.

We are particularly interested in the case when S → C is a full subcategory.
One can then view the density comonad as a way of measuring how good the
approximation is, and thus how well the objects in the subcategory can `see'
the whole category. In some cases, N

∐
is actually the identity functor on C;

then we can see that the approximation was perfect, in the sense that it lost no
information. In this case we say that S is a dense subcategory or an adequate
subcategory. This is the notion studied in [Isb60].

Some examples involving Cat. One can de�ne a simplicial approximation
functor for Cat in a very similar way to that for Top.

De�ne a functor I : ∆→ Cat that takes n to the category freely generated by
n morphisms in a chain. Since the morphisms of ∆ are order-preserving maps,
we can have them act on the objects of the categories I(n). The resulting maps
on objects can be seen to be functors because of the existence of composites and
identities.

This functor results in an adjunction
∐
a N between Cat and SSet; but

this case di�ers from the topological simplicial approximation in a number of
ways. Firstly, I is in fact the inclusion of ∆ in Cat as a full subcategory.
Furthermore, the density comonad N

∐
is the identity, so ∆ is an adequate

subcategory of Cat. Hence the simplicial set NA for a small category A is
a perfect representation of the category, which has historically been called the
nerve of A. However, it is interesting to note that using the entire category ∆
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is actually unnecessary. Let us consider some much smaller subcategories.
Firstly, if we use only the object 0 of ∆, we get a functor Cat → Set.

Since I(0) is the one-object category, the only �gures our approximation sees
are the object-shaped �gures. Hence the functor we get takes a category to its
underlying set of objects. This is an approximation of sorts, but it forgets all
about the morphisms�so it loses rather a lot of information!

Next, consider using just the �rst two objects 0 and 1 of ∆ and the three
morphisms between them; presheaves on this two-object category are the same
as digraphs (directed graphs) equipped with identities, known as re�exive di-
graphs. Our approximation will see object-shaped �gures and arrow-shaped
�gures, and it will see how to get the identity arrow of an object. Thus the
functor we get is the underlying re�exive digraph functor�it forgets the com-
position rule of a category, but remembers everything else.

Finally, what if we use the �rst three objects? Then we can see three di�erent
shapes of �gures�object-shaped �gures, arrow-shaped �gures and composable
pair-shaped �gures. Most importantly, we can see how to compose a composable
pair into an arrow. So in this case the approximation is perfect and the three-
object subcategory in question is adequate.

1.2 Comonadicity of Nerve-Realisation

If from now on we assume that C is cocomplete, we can consider the nerve-
realisation construction described above as an operation done on categories over
C. It extends S by freely adding all colimits�this gives the presheaf category
Ŝ�and it replaces I with the realisation functor

∐
, which is the universal

colimit preserving functor generated from I. One could view this as an attempt
to freely generate a category of coalgebras over C from S and I. If we were
to take any actual category of coalgebras for a comonad on C and choose a
coalgebra structure for each object of S, these choices would extend canonically
to coalgebra structures for all presheaves in Ŝ using colimits in the coalgebra
category.

Following this philosophy, it is then very natural to ask when the attempt
succeeds: when is the nerve-realisation adjunction actually comonadic? This is
the question we will answer in this section; it turns out that there are a few nice
properties of I that will tell us when this happens. We will also consider the
case when the adjunction is not itself comonadic, but can be made comonadic
by restriction to a re�ective subcategory of Ŝ. The results in this section will
become relevant later on because they provide a nice microcosm for the theorem
in Section 3.5.

We will now introduce some more notation: we will write [s] for the repre-
sentable presheaf given by applying the Yoneda embedding to s ∈ S. By the
Yoneda lemma, an element a of shape s in a presheaf σ can be thought of as a
natural transformation a : [s]→ σ. Applying

∐
to this gives the inclusion map

of a into the colimit, and so we will generally write each such inclusion as

s
∐
σ.

∐
a //

There are three conditions that the choice of shapes in C will be required to
satisfy. In order for these to make sense, the category C needs to have pullbacks,
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so from now on this will be assumed; generally in the examples C is complete
so this will not be a problem. The �rst condition is a basic requirement of
consistency between colimits built out of the chosen shapes and pullbacks. We
will need it to prove that the realisation functor preserves equalisers.

De�nition 1.2.1. Suppose σ is a presheaf on S and we have a morphism into
the colimit

P
∐
σ.

p //

We form a new diagram in C by pulling back every inclusion map into
∐
σ along

p; this is a diagram Eσ → C de�ned by taking an element a to the object (p|a)
given by

P
∐
σ.

(p|a) s//

p
//

��

∐
a

��

We say that (for this choice of S) colimits commute with pullbacks if P , together
with the arrows on the left of each pullback square, is a colimit cone for the new
diagram.

The second condition is one we will need to show that
∐

is conservative. It
will ensure that the shapes are chosen in such a way that every colimit is `non-
degenerate'; every element must contribute something distinct to the colimit.

De�nition 1.2.2. We say a choice of shapes in C satis�es the repeated element
condition if there does not exist any presheaf σ on S with two elements a and
a′ of the same shape in σ such that

∐
a =

∐
a′ as objects of the slice category

C/
∐
σ.

The �nal condition will be used in the proof that
∐

preserves equalisers;
what it says is that

∐
preserves a very small (and easy to check) class of

equalisers:

De�nition 1.2.3. A simple equaliser in any presheaf category Ŝ is one with a
diagram of the form

[s] σ.
a //
b

//

where σ is any presheaf and a and b are any two elements of the same shape in
σ.

De�nition 1.2.4. We will say that the functor
∐

preserves simple equalisers if
every equaliser of a diagram of the above form is mapped by

∐
into an equaliser

in C.

Now that we know the appropriate conditions we will go ahead and prove
the two main results of this section.

Proposition 1.2.5. Suppose that C is cocomplete and has all pullbacks, and that
the choice of shapes I : S → C satis�es the repeated element condition. Then
the realisation functor

∐
is conservative.
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Proof. Suppose that f : σ → τ is any natural transformation between two
presheaves on S, and suppose that the morphism

∐
f in C is an isomorphism,

with inverse g. We wish to show that this means that f itself must be an iso-
morphism. For a morphism in a presheaf category, this means showing that f
is bijective on elements.

First suppose f is not injective. So there are distinct elements a and a′ in σ
such that f(a) = f(a′). This implies that

∐
f ◦
∐
a =

∐
f ◦
∐
a′. Composing

each side with the inverse g shows that
∐
a =

∐
a′, which contradicts the

repeated element condition.
Now suppose that f is not surjective. So there exists some b in τ such that

there is no a in σ with f(a) = b. We will construct a new presheaf τ ′ which is
essentially the same as τ but with an extra copy of b freely adjoined. We de�ne
τ ′ using

τ ′(s) = {(t, c) | t ∈ τ(s), c : Eτ (t, b)→ {0, 1}}

where Eτ (t, b) is the set of morphisms in the category of elements, so the function
c speci�es a set of choices between the two copies of b. A morphism α : s′ → s
in S acts in τ ′ as

α(t, c) = (α(t), α∗c)

where α∗c is constructed by applying c to the obvious composite t→ α(t)→ b
in Eτ .

Now observe that we have a few morphisms in the category of presheaves

σ τ τ ′
f //

i0

%%

i1

99
goo

where i0 and i1 are the natural inclusions b 7→ b0 and b 7→ b1 respectively, and
g is the natural map that projects both copies back onto the original b. Since
b is not in the image of f , we have i0f = i1f , which implies that

∐
i0 =

∐
i1

because
∐
f is an isomorphism. But then∐

b0 =
∐
i0 ◦

∐
b =

∐
i1 ◦

∐
b =

∐
b1

and this contradicts the repeated element condition.

Proposition 1.2.6. Suppose that C is cocomplete and has all pullbacks, and
that the choice of shapes I : S → C gives colimits that commute with pullbacks.
Suppose also that the realisation functor

∐
preserves simple equalisers. Then it

preserves all equalisers.

Proof. Consider some pair of parallel morphisms in the presheaf category, f and
g, and suppose that they have equaliser (ε, e) as shown below:

ε σ τ.
e //

f //
g

//

We wish to show that (
∐
ε,
∐
e) is the equaliser of

∐
f and

∐
g in the category

C. We know exactly what ε is in set-theoretic terms; its elements are exactly
the elements of σ that satisfy f(a) = g(a), and e is just the inclusion map. Now



20 CHAPTER 1. BACKGROUND THEORY

suppose we have some other morphism in C that equalises
∐
f and

∐
g, such

as p in the diagram

∐
ε

P

∐
σ

∐
τ.

∐
e //

∐
f //∐
g

//

p

;;wwwwwwwwww

OO

We need to construct the dotted morphism, and show it is unique.
We are going to approach this (using the assumption that colimits commute

with pullbacks) by `deconstructing' the object P as the colimit of the (p|a) for
all elements a in σ. When a has the property that f(a) = g(a), we can consider
it as an element of ε so we have the morphism

(p|a) s
∐
ε.

πs //
∐
a //

What about an element a of σ which is not in the equaliser? Then we have
two distinct maps

∐
fa : s→

∐
τ and

∐
ga : s→

∐
τ . The equaliser of the two

maps

[s] τ
fa //
ga

//

in Ŝ is a simple equaliser, which we will write [fa, ga]. The composite

[fa, ga] [s] σ// a //

equalises f and g, and hence induces a map (fa, ga) : [fa, ga]→ ε.
By assumption,

∐
preserves simple equalisers, so

∐
[fa, ga] is the equaliser

of
∐
fa and

∐
ga. The projection map πs : (p|a)→ s equalises

∐
fa and

∐
ga

because p equalises
∐
f and

∐
g, so we obtain a map into

∐
[fa, ga] and then

compose

(p|a)
∐

[fa, ga]
∐
ε//

∐
(fa,ga) //

to get a map into
∐
ε. We note that in the case that f(a) = g(a) we have

[fa, ga] ∼= [s], so this map�which is de�ned for all a in σ�reduces to the map
we de�ned earlier in this special case.

For any map α : t → s in S there is an induced map (p|α(a)) → (p|a), and
we wish to check that these commute with the maps into

∐
ε. To do this we

observe there is also an induced map of presheaves [fαa, gαa]→ [fa, ga], which
commutes (via the inclusions) with [α] : [t]→ [s].

By assumption, the diagram consisting of the (p|a) has P as its colimit, and
we have just constructed a cone from this diagram to

∐
ε. Thus the colimit

condition induces a morphism

P
∐
ε//

which commutes with
∐
e since each of the maps from (p|a) does. This is

the dotted arrow we need in the original equaliser diagram; we must check it is
unique. If we had some other map with the same property we could `deconstruct'
it into its action on the (p|a); but each of these is uniquely determined by the
equaliser condition on

∐
[fa, ga].
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Corollary 1.2.7. Suppose that C is cocomplete and has all pullbacks, and that
the choice of shapes I : S → C gives colimits that commute with pullbacks. Sup-
pose also that the realisation functor

∐
preserves simple equalisers, and that the

repeated element condtion is satis�ed. Then the nerve-realisation adjunction is
comonadic.

Proof. The two propositions above give the necessary conditions to apply (the
dual of) Beck's monadicity theorem.

Failure of the repeated element condition. It turns out that when the
repeated element condition fails, but the other two conditions remain true, there
is an interesting characterisation of the coalgebra category. In fact, it is the
subcategory of sheaves for a particular Grothendieck topology on S.

De�nition 1.2.8. A sieve on s ∈ S is a subpresheaf of the representable
presheaf [s], say c : C � [s]. We say a sieve is an I-cover if the image

∐
C Is

∐
c //

is an isomorphism in C.

Proposition 1.2.9. The collection of sieves that are I-covers, as de�ned above,
forms a Grothendieck topology on S. This means the following three axioms are
satis�ed:

1. for each s ∈ S the maximal sieve on s is a cover,

2. given α : t→ s in S and a cover C on s, the pullback sieve de�ned as

α∗C = {β : u→ t | α ◦ β ∈ C}

is a cover,

3. if C is a cover on s and Q is any sieve on s such that for all α ∈ C, α∗Q
is a cover, then Q is a cover too.

Proof. We check each axiom in turn. The �rst one holds trivially, because the
maximal sieve is just the identity on [s].

We will use simple equalisers for the second and third axioms. First we note
that for any sieve C � [s] we can form the pushout of this inclusion with itself

[s] JC

C [s]
c //

a
//

c

��
b

��

which will construct a presheaf JC that has two speci�ed elements, a and b,
of shape s. One can easily see that (C, c) is the equaliser of a and b, as it is
precisely the subpresheaf of elements α ∈ [s] such that a(α) = b(α). We call
a and b the cokernal pair of C. Note that because of the assumption that

∐
preserves simple equalisers, and that fact that the cokernal pair of a sieve is
always a simple equaliser diagram, C is a cover if and only if

∐
a =

∐
b.
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Now to check the second axiom, �rst form the cokernal pair for C, and also
observe that the pullback sieve is de�ned by an actual pullback in the presheaf
category

C [s] JC

α∗C [t]//

c
//

��
[α]

�� a //
b

//

so α∗C can also be thought of as the equaliser of a ◦ [α] and b ◦ [α]. But
∐

identi�es these, so by the preservation of simple equalisers α∗C is a cover.
For the third axiom, let a and b be the cokernal pair of the sieve Q. We have

that the pullback P in the diagram

Q [s] JQ

C

P [t]//

q
//

��

x
��

c
�� a //

b
//

is a cover on t for any t-shaped element x of C. Thus P is the equaliser of acx
and bcx. By preservation of simple equalisers this implies that for all elements
x ∈ C,

∐
a ◦
∐
c ◦
∐
x =

∐
b ◦
∐
c ◦
∐
x.

Since
∐
C is de�ned as a colimit, this being true for every inclusion map∐

x implies that
∐
a ◦
∐
c =

∐
b ◦
∐
c. We are given that C is a cover on s, so∐

c is an isomorphism. This tells us that
∐
a =

∐
b and therefore Q is a cover

as required.

Remark. The link between sieves and pairs of elements established by the coker-
nal pair construction and the preservation of simple equalisers shows that non-
trivial covers correspond precisely to examples of the repeated element condition
failing. Therefore in the case that the repeated element condition holds, we ob-
tain the trivial Grothendieck topology on S where every presheaf is a sheaf and
a coalgebra.

De�nition 1.2.10. A presheaf σ on S is called a sheaf if for every cover C on
s, every presheaf morphism f : C → σ has a unique extension

C σ

[s]

f //

c

��

;;

such that the diagram commutes. The sheaves form a full subcategory of Ŝ
which we write ShC(S).

This is the usual de�nition of a sheaf over a category with a Grothendieck
topology. There is a large literature of standard results about this situation;
all the results we will actually use can be found, for example, in the second
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half of the third chapter of [MLM92]. The �rst thing we will note is the fact
that ShC(S) is a re�ective subcategory of Ŝ�or, in other words, the inclusion
functor has a left adjoint which we call the associated sheaf functor.

The next thing we should observe is that the right adjoint to
∐
, the functor

N : C → Ŝ, factors through the subcategory ShC(S). Indeed, given A ∈ C and
some cover c : C � [s], clearly C(

∐
C,A) and C(Is,A) are in bijection because

of the isomorphism
∐
c. But then applying the adjunction

∐
a N , presheaf

morphisms C → NA are in bijection with those [s]→ NA, which says precisely
that NA is a sheaf. With this in mind, we will now write N as a functor
C → ShC(S).

Composing
∐

with the inclusion functor will give the functor U below

ShC(S) C
U //
N

oo

and this gives an adjunction U a N . We will now prove that this adjunction is
comonadic. Since the comonad UN on C is the same as the original comonad,
this means that ShC(S) is the category of coalgebras for the nerve-realisation
(or density) comonad generated by I : S → C.

Proposition 1.2.11. Suppose that C is cocomplete and has all pullbacks, and
that the choice of shapes I : S → C gives colimits that commute with pullbacks.
Suppose also that the realisation functor

∐
preserves simple equalisers. Then

the above construction gives a comonadic adjunction between the Grothendieck
topos ShC(S) and C.

Proof. It is known that any sheaf category is closed under limits in its presheaf
category. This means that U preserves equalisers as a trivial consequence of∐

preserving equalisers. So all that remains to check, in order to apply Beck's
comonadicity theorem, is the fact that U is conservative.

In order to prove this, suppose we have a sheaf σ, and are given two elements
a and b of shape s in σ. If

∐
a =

∐
b then the equaliser of a and b is a cover

on s, say c : C � [s], such that ac = ab. By the uniqueness of the extensions
speci�ed by the sheaf property, this implies that a = b. What this tells us is that
while not every presheaf satis�es the repeated element condition, those that are
sheaves do satisfy it. We can now apply exactly the reasoning of Proposition
1.2.5 to show that U is conservative.

Notes on examples. Many of the common examples of nerve-realisation ad-
junctions are quite easily seen to be comonadic. When we consider a repre-
sentable nerve functor, the conditions become a lot simpler to check and in
particular the preservation of simple equalisers is trivial whenever S is discrete.
So it is straightforward to see that Set is comonadic over both Top and Cat
with the discrete object functors acting as forgetful functors. It is not much
harder to check the conditions for ∆ → Top and see that simplicial sets are
comonadic over topological spaces.

Things do not work as well for categories. The moment we include the free-
living morphism in our shape category, we can �nd colimits that don't commute
with pullback. The colimit of two morphisms joined end to end contains the
free composite of the two; we can de�ne P →

∐
σ where P contains just one
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morphism that lives over that composite, as shown in the diagram

( a b
f // ) ( x y z

h // g // ).
f 7→g◦h //

Then decomposing P and sticking it back together again will destroy this mor-
phism and show that this is a counter-example. Hence directed graphs (and by
the same logic, simplicial sets) are not comonadic over Cat using this particular
realisation functor.

1.3 Galois Connections

In this section we will discuss a very nice piece of category theory that will
provide an illuminating way to think about the factorisation systems in the
following section. Recall that a partially ordered set can be viewed as a category
with the property that every hom-set is either empty or a singleton. It is always
interesting to consider concepts in category theory when we restrict to this world
of posets. The idea of a Galois connection is exactly an adjunction between
posets. These were studied extensively before category theory even appeared
on the scene, the motivating example being the correspondence between �eld
extensions and Galois groups obtained in Galois Theory.

Whenever we have an adjunction we want to know about its associated
monad and comonad. In the world of posets, the idea of a monad is much
simpler, but equally ubiquitous; a monad on a poset is called a closure operation.
A closure operation is an order preserving map c : P → P that is increasing and
idempotent, meaning that for any x ∈ P , x ≤ c(x) and c(c(x)) = c(x).

A closure operation on a poset gives a subposet P c consisting of the elements
of P that are �xed by c; these are called the closed elements. (All the names
are inspired by the basic example of closed sets in a topological space.) The
poset of closed elements has the nice property that it is closed under arbitrary
meets (or intersections). In the categorical sense, P c is the category of algebras
for the monad c.

The material in this section is often considered part of the folklore and can
be found in many textbooks on category theory (see, for example, [ML98]) and
on lattice theory. For an introduction which covers everything in this section
from an entirely non-categorical perspective, the reader can consult [EKMS93].

The Galois connection generated by a relation. A rather nice way of
making Galois connections is the following: begin with two sets A and B and a
relation ρ between them. We will construct a galois connection

PA
ρ∗ //

oo
ρ∗

PBop

where PA and PB are the power sets of A and B, as follows:

ρ∗(X) = {b ∈ B | ρ(a, b),∀a ∈ X}

ρ∗(Y ) = {a ∈ A | ρ(a, b),∀b ∈ Y }
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These functions are both order-reversing, and we have X ⊆ ρ∗ρ∗(X) and
Y ⊆ ρ∗ρ

∗(Y ) for all X ⊆ A and Y ⊆ B, which means they constitute an
adjunction between PA and PBop. This gives us closure operations on both
PA and PB, and the poset of closed subsets of A is isomorphic to the poset of
closed subsets of B�a Galois connection restricts to an isomorphism between
the posets of closed elements.

There are many great examples, from many di�erent �elds of mathematics.
Here are just a few.

Points and lines. A fun example: let A be the set of points in the plane and
let B be the set of directed lines. Consider the relation �the point p is on
the left of the line l�. Then the closure operation gives the convex hull of
any set of points.

Syntax and semantics. Here is a more serious example, from model theory.
Consider a set of sentences in some language, and a set of structures
which the language can describe. Let us say we have a relation v telling
us whether or not a given sentence is true in a given structure. Then v∗(A)
is the set of structures in which the sentences of A hold. On the other
hand, v∗(B) is a maximal set of axioms which hold for all the structures
in B. The closure operation on sets of sentences generates all theorems
implied by a set of axioms, while the closed sets of structures are exactly
those which are axiomatisable.

Algebra and geometry. Another serious example, which is fundamental to
algebraic geometry, is this: consider n-dimensional a�ne space on one
hand, and the set of n-variable polynomials on the other. There is a
relation between a point p and a polynomial f given by f(p) = 0. The
generated Galois connection has a�ne algebraic sets as its closed sets of
points, paired to their ideals of vanishing functions.

Möbius transformations. Here is another fun example. Consider the Rie-
mann sphere and the set of Möbius transformations. There is a relation
that tells us when a given transformation �xes a given point on the sphere.
The closed subsets of the sphere in the resulting Galois connection are sin-
gle points, pairs of points, circles and of course the whole sphere.

Weak factorisation systems. In the theory of model categories, one is in-
terested in certain classes of morphisms that have lifting properties with
respect to one another. These lifting properties can be expressed as a
relation between the class of all morphisms in a category and itself. Given
two morphisms, f and g, the relation is satis�ed between them if for any
square

A C

B D

//

f

��

g

��
//

;;

such a dotted arrow exists (such that the two triangles both commute).

This relation can of course be used to construct a Galois connection, and
the resulting �xed points are pairs of classes of morphisms (L,R) with
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the property that L is precisely the class of morphisms that lift against
everything in R, and R is precisely the class of morphisms that everything
in L lifts against. Such a pair is exactly the underlying data required for
a weak factorisation system�the only extra requirement is the property
that any morphism can be factorised somehow as a map in L followed by
a map in R.

`Categorifying' the construction. A relation between two sets can always
be viewed as a subset R ⊆ A × B. Consider that, instead of sets, we have
categories, and an arbitrary functor R : R → A × B. The entire construction
above can be made to work with categories over A and B.

Given any functor F : C → A, de�ne a category R∗C over B as follows: an
object will be an object of B, together with a choice of rc ∈ R for every c ∈ C,
so that R(rc) = (F (c), b), and suitable choices for the morphisms in C. This can
be expressed as a functor C → R satisfying certain conditions. The morphisms
of R∗C will be morphisms of B that make the choices consistent.

We can de�ne R∗ similarly so as to obtain an adjunction

Cat/A ⊥
R∗ //

oo
R∗

Catop/B.

In the next section, we will see how we can construct such a `categori�ed' version
of the weak factorisation systems example above.

1.4 Factorisation Systems

In the last section we brie�y mentioned weak factorisation systems, the main
type of factorisation system studied in homotopy theory. Weak factorisation
systems are historically very important and an absolutely vital building block
of model category theory; despite this, they will not appear much in this thesis.
Instead, it is the much stricter and more categorical notion of an algebraic weak
factorisation system which takes centre stage. From now on, for the sake of
brevity, we will use the abbreviation AWFS, which can be either singular or
plural.

For a good background on weak factorisation systems and model categories,
[Hov99] is probably the best source. The de�nition and motivation of AWFS is
covered very well in the work of Emily Riehl; see [Rie13a] for general material
and [Rie11a, Rie11b, Rie13b] for her work on using AWFS to build an algebraic
version of model category theory. A lot of the material in this section can also
be found in [Gar12b], or in the author's own [Ath12].

We begin by discussing yet another sort of factorisation system, the orthogo-
nal factorisation system, which will be a very useful concept in its own right. It
will also lead us naturally into the de�nition of an AWFS. Orthogonal factorisa-
tions systems are a much older idea than AWFS; the material here can be found
in most textbooks on category theory. The paper [Kel80] includes the de�nition
at the start and is also important due to its extensive use of the concept.

De�nition 1.4.1. Given two morphisms f and g, we say that f is orthogonal
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to g if for any square
A C

B D

//

f

��

g

��
//

;;

the dotted arrow not only exists, but is unique.

De�nition 1.4.2. An orthogonal factorisation system is a �xed point (E ,M)
for the Galois connection generated by the relation of orthogonality, with the
additional property that every morphism can be factorised as a morphism in E
followed by one inM.

When working with orthogonal factorisation systems it is always useful to
have the prototypical example in mind: the example on the category Set where
E is epimorphisms and M is monomorphisms. This example leads to similar
examples on many other categories; in particular in any topos or pretopos we
can de�ne an epi-mono factorisation system in precisely the same way, and in
any regular category we can do the same but replace E with the class of regular
epimorphisms. Practically every example of an orthogonal factorisation system
at least `feels like' some kind of inclusion coupled with some kind of projection.
We even use the term proper to refer to orthogonal factorisation systems where
E contains only epimorphisms andM contains only monomorphisms.

Let us consider some consequences of the de�nition above. First we'll con-
sider the factorisations that are possible; by assumption every morphism has at
least one factorisation m ◦ e with e ∈ E and m ∈ M. However, if one assumes
a second such factorisation m′ ◦ e′ it is immediate from the liftings in the two
orthogonality squares produced that the two factorisations are isomorphic. So
the factorisation rules are in fact determined up to isomorphism. A similar
consideration of unique lifts allows us to show that this rule for factorising any
morphism is actually functorial.

If 2 is the category with a single morphism and 3 is the category freely
generated from two composable morphisms, there is a functor D : C3 → C2 that
de�nes composition in the category C. A nice way to say that a factorisation
system is functorial is to express it as a section for this composition functor�
that is, a functor C2 → C3 which gives the identity on C2 when composed with
D. Given such a functorial factorisation system we can de�ne the two halves of
the factorisation as functors L and R : C2 → C2, so that for any morphism f we
have f = Rf ◦Lf . There is also a functorM : C2 → C that gives the new object
that appears in the `middle' of the factorisation; the whole picture is given by
the diagram, which shows how applying the functorial factorisation system to a
morphism (a, b) : f → g in C2 gives a morphism (a,M(a, b), b) in C3:

A Mf B.

C Mg D.

Lf
//

Rf
//

f

''

Lg // Rg //

g

77

a

��
M(a,b)

��
b

��
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Notice that R is automatically a pointed endofunctor, where the natural
transformation 1 ⇒ R is given on f by (Lf, 1B) : f → Rf , and similarly L is
a copointed endofunctor. Another consequence of the fact that factorisations
must be unique up to isomorphism is that when we start with a morphism
that is already in one of the two classes and factorise it, what we get must be
(up to isomorphism) just the original morphism and an identity. This implies
that the functors L and R are essentially idempotent, and furthermore that
the two classes E and M are exactly their �xed points. This means that R
is an idempotent monad whose category of algebras is M, and dually L is an
idempotent comonad whose category of coalgebras is E .

AWFS. The last observation, that R and L are respectively an idempotent
monad and comonad on C2, leads us to consider a possible generalisation: we
could remove the requirement of idempotence and see what happens. This is
one way of motivating the de�nition of an algebraic weak factorisation system;
we will see some other motivations later in this section.

De�nition 1.4.3. An algebraic weak factorisation system on a category C is a
pair (L,R) where L = (L,~ε, ~δ) is a comonad on C2, R = (R, ~η, ~µ) is a monad
on C2, the copointed endofunctor (L,~ε) together with the pointed endofunctor
(R, ~η) make up the data of a functorial factorisation system, and the pair satis�es
the distributivity axiom, explained below.

The �nal condition will ensure that the monad and comonad behave properly
with respect to one another. It follows from the monad laws that ~δ must have
trivial domain component and ~µmust have trivial codomain component, so their
components take the forms (1, δf ) and (µf , 1):

•

Lf

��
~δf

•

LLf

��

MRf
µf //

RRf

��
~µf

Mf

Rf

��
Mf

δf

// MLf • •

for some δf and µf . Then we can de�ne a natural transformation ∆: LR→ RL
with components given by (δf , µf ) as shown in the square

Mf MLf

MRf Mf.

δf //

LRf

��
RLf

��
µf

//

The distributivity axiom says that this is a distributive law of the comonad over
the monad, meaning that it commutes with the unit, counit, multiplication and
comultiplication transformations.

The two types of factorisation system we introduced earlier were both de�ned
as �xed points for certain Galois connections, together with the property that
some factorisations exist. In the de�nition above, things have switched around,
since the factorisation functors themselves have become the primary data of the
de�nition. This makes sense because an AWFS is, after all, an algebraic object;
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we would expect the monad and comonad to assume the leading roles in the
de�nition. However, the other approach is still very much possible; in the next
chapter we will consider these two philosophies in some detail.

De�nition 1.4.4. We write L-Map for the category of coalgebras for the
comonad L and we write R-Map for the category of algebras for the monad R;
we call the algebras right maps and the coalgebras left maps.

As always, a coalgebra is an object of C2, f : A → B, equipped with a
structure map f → Lf , which appears in this case as a map such as α in the
following:

A
Lf

// Mf
Rf

// B,

α
zz

which is a kind of `partial inverse' to f . The map α must satisfy the three
equations α ◦ f = Lf , Rf ◦ α = 1B and M(1, α) ◦ α = δf ◦ α; notice that the
coalgebra axioms also force the domain part of the structure map to be the
identity on A, and this is why we can represent the left map structure with just
one morphism of C. Since the notion of an AWFS is entirely symmetrical, the
right maps can be described in exactly the same way, simply dualised.

From now on we will use a notational shorthand where instead of explicitly
writing a map and its factorisation, we draw arrows going to and from the
middle of an arrow to mean morphisms to and from the central object of that
arrow's factorisation. Thus a left map will be drawn as

A
f

// B

α

��

and the image of a morphism (a, b) in C2 under the factorisation will be drawn
as

A

a

��

f //

M(a,b)

��

B

b

��
C g

// D.

Arrows to and from the one quarter point or three quarters point of an arrow
mean the obvious thing, where the left or right part of a factorisation has been
factorised again.

In order to justify the language we are using when we refer to algebras as
`right maps' and coalgebras as `left maps', we would like to see what kind of
lifting properties the left maps have with respect to the right maps. Interest-
ingly, now that we have moved into the `algebraic' world of AWFS, it is no
longer appropriate to talk about lifting properties; what we have now are lifting
structures instead. To see what this means, notice that given a left map (f, α),
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a right map (g, β) and any lifting problem between them

A C

B D,

a //

b
//

f

��

g

��
α

<<

β

^^

M(a,b) //

the three dotted arrows compose to give a lifting. This is not just an assertion
that such a lifting exists; it is an explicit choice. If we were to choose a di�erent
left or right map structure on f or g, we would very possibly end up with a
di�erent solution to the lifting problem.

Morphisms of AWFS. There is a nice notion of morphism between two
AWFS on the same category C. We will de�ne a morphism α : (L,R)→ (L′,R′)
to be a natural transformation between the central functors α : M →M ′ which
induces a comonad map (1, α) : L → L′ and a monad map (α, 1) : R → R′.
Basically, for each f : X → Y , we get

Mf

αf

��

Rf

((QQQQQQ

X

Lf 66mmmmmm

L′f
((PPPPPP Y

M ′f R′f

66nnnnnn

and everything that you would want to commute commutes. It is particularly
useful to note that α lifts to αl : L-Map → L′-Map, a morphism in Cat/C2,
and that dually it also lifts to αr : R′-Map→ R-Map.

Replacement functors. If the underlying category C has an initial object
and a terminal object, then we can construct the left and right replacement
functors, Q and S, by factorising the unique maps to and from the initial and
terminal object�in exactly the same way as we construct the co�brant and
�brant replacement functors for model categories. So 0 → X factorises as
0 → QX → X and X → 1 factorises as X → SX → 1. Because the functor L
is a comonad, Q : C → C is a comonad too; similarly, S will be a monad.

Examples. We will �nish this section by giving a quick tour of a few easily
described examples of AWFS. Unfortunately, all the most interesting examples
tend to require a bit of machinery to describe; the machinery in question is
introduced in Section 2.4 so the more meaty examples cannot be considered
until then.

For the moment, it is worthwhile considering a few extremely simple exam-
ples. For a given base category C we shall write AWFS(C) for the category of
all AWFS on C. We will now see how this category always has an initial object
and a terminal object. While they are both trivial examples, it will shed some
light on AWFS in general to consider them and their categories of left maps.
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The initial AWFS on C is shown in the diagram

X

X

Y,

ttttttt

ttttttt

f

$$JJJJJJJ

f
//

and clearly satis�es the comonad and monad requirements. It is also easy to
see that it is initial�the unique morphism to any other AWFS is given by the
left hand maps of that other AWFS!

It is, however, a bit more interesting to consider the left map structures;
a left map structure on f is given by a map g : Y → X making the necessary
diagrams commute. If you work it out, this means that fg = 1Y and gf = 1X : f
has exactly one left map structure if and only if it is an isomorphism. This tells
us another useful fact about left maps for any AWFS: there are always trivial
left map structures on isomorphisms, de�ned as the images of the left maps of
the initial AWFS under the induced functor between the left map categories.

The terminal AWFS is the symmetrically opposite one, given by

X

Y

Y,

f
::ttttttt JJJJJJJ

JJJJJJJ

f
//

which is again clearly an AWFS. The unique morphism from any other AWFS
is given by the right maps. In this case there is a unique left map structure for
every morphism of C; this left map category is exactly the terminal object of
Cat/C2.

One can check that

A

A×B

B

(1A,f)
::ttttttt

πB

$$JJJJJJJ

f
//

is an AWFS for any category with all �nite products; the multiplication is a
projection map and the comultiplication involves the diagonal ∆A : A→ A×A.
Here a left map structure on f is a choice of retract α : B → A. Right map
structures for this AWFS are a little more subtle; one needs to consider the
interaction with the multiplication. If we are dealing with the category Set,
then it turns out that a right map is a surjection together with a consistent
system of isomorphisms between �bres.

A similar game can be played with coproducts:

A

A+B

B

iA
::ttttttt

(f,1B)

$$JJJJJJJ

f
//

is an AWFS in a dual manner�now the multiplication will involve the codiago-
nal ∇B : B+B → B while the comultiplication is a simple coproduct inclusion.
A right map structure on f is a choice of section. In the category of sets, there is
precisely one left map structure on every injection. However, it is worth point-
ing out that a commutative square between injections is a left map morphism
only when it is a pullback square.
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Finally, we can consider a way of generalising the product-based example.
Given any monad T on a category with all �nite products we can de�ne an
AWFS which acts as

A

TA×B

B.

(ηA,f)
::ttttttt

πB

$$JJJJJJ

f
//

This is interesting as it allows us to produce an AWFS whose right replacement
monad is T ; in fact, it is terminal among the AWFS which have this property.

1.5 Higher Categories

In this �nal section we turn away from factorisation systems for a moment and
consider the subject of higher category theory, which provides us with the main
examples we will be working with later in Chapters 4 and 5. The material in
this section can all be found in [Lei04a] which is one of the best introductions to
the subject. Other worthwhile references include [CL04] and [Lei02] which give
a more general survey of the di�erent de�nitions of higher categories. Two good
sources speci�cally dealing with low dimensional examples (especially dimension
three and questions of coherence) are [Gur07] and [Gur13].

The simplest notion of a higher dimensional category is that of a strict n-
category. Strict 2-categories are categories enriched in Cat, strict 3-categories
are categories enriched in 2Cat; continuing this is a simple way of de�ning the
category nCat of strict n-categories as a result of iterated enrichment. Since the
theory of enriched categories is well understood (see [Kel80] for a comprehensive
overview), and there is nothing particularly pathological about any of these
examples, it follows that we actually understand strict n-categories extremely
well.

However, these very strict objects are not all that useful. It turns out that
in almost all `real world' examples, some of the axioms will not hold in the strict
sense. Instead, they hold in the weak sense that, rather than a simple equality,
we obtain an isomorphism between the two cells we wish to compare. This
weakness in examples forces us to consider subtler de�nitions of higher category
which allow such behavior, and these turn out to be vastly more complicated
and therefore less well understood than the strict version. In this section we
consider one particular approach�the one we will be working with in Chapters
4 and 5�though there are many other de�nitions and it is not necessarily clear
how they relate to one another.

De�nition 1.5.1. A globular set is de�ned to be a presheaf on the category
Glob, which has the natural numbers as its objects and morphisms as shown
in

0 1 2 3 ... ,
s //
t

//
s //
t

//
s //
t

//
s //
t

//

where the identities ss = ts and st = tt hold wherever they are well-de�ned. We
write GlobSet for the category of globular sets. Note that the category Glob
can be restricted to just the natural numbers up to n; we call a presheaf on this
restricted category an n-globular set and we write nGlobSet for the category
of such. If X is a globular set, we call the elements of X(n) the n-cells of the
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globular set, and given an n-cell α we call s(α) and t(α) the source and target
of α.

The reason we care about this particular collection of presheaf categories
is that they are an obvious �rst answer to an interesting question: most ob-
jects in mathematics are naturally thought of as sets with structure, and this
is formalised by the notion of monads and algebras; what should one replace
the category of sets with in order to work with n-categories in the same way?
Indeed, there is a natural forgetful functor from nCat to nGlobSet�as sug-
gested by the terminology of `n-cells', `sources' and `targets'. Furthermore, this
forgetful functor has a left adjoint and the adjunction is monadic; we will write
Tn : nGlobSet → nGlobSet for this monad, which we call the free strict n-
category monad.

We note now that for any m < n there is a natural functor nGlobSet →
mGlobSet called a truncation functor, which simply removes all cells of di-
mension higher than m. Note also that GlobSet itself is exactly the categorical
limit of the diagram formed by all the categories nGlobSet and all the trunca-
tion functors. Furthermore, the truncation functors commute with the monads
Tn�if you form a free strict n-category and then remove cells of dimension
higher than m you get the same result as you would if you �rst removed the
cells and then generated the free strict m-category. This all means that we can
extend the functors Tn to a monad T on the category GlobSet, which we call
the free strict ω-category monad. In the proceeding discussion, we will use the
monad T because it is obviously the most general case; for any n, the �nite
dimensional Tn can be obtained just by truncating the action of T .

Collections and operads. Recall that an operad (when the term is used
without quali�cation) has as its underlying data a collection of sets P (n) indexed
by the natural numbers, where the elements of P (n) are considered to represent
operations of arity n. The globular operads that we will see in a moment are
an example of generalised operads; one can use any monad with certain nice
properties to provide a di�erent collection of arities, and then de�ne a type of
operad with operations of those arities. To see this done in full detail the reader
should consult [Lei04a]; here we will focus on this particular example where we
start with the free strict ω-category monad T .

For general notions of higher category, the arities we care about are diagrams
of cells which are all composable. So for example, in dimension one we have
arities such as

• • • , • • • • ,// // // // //

and any other sequence of a �nite number of morphisms, including the empty
sequence (this allows the possibility of the `nullary' operation that gives rise to
identity morphisms). In dimension two, the arities must include both vertical
and horizontal sequences of 2-cells, as well as more general combinations of
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horizontal and vertical such as

• • • • • .
⇓

⇓

⇓

⇓

⇓

⇓
��// FF // ��""

<< JJ
""
<<

These arities can be seen to form a globular set themselves, and this object
(while a bit �ddly to describe) is very straightforward to de�ne: it is precisely
the globular set T1, in other words the free strict ω-category generated by the
terminal globular set. We call the cells of this globular set pasting diagrams.

De�nition 1.5.2. A globular collection is a globular set over T1, in other words
simply a globular set P and a morphism p : P → T1.

The �rst thing we should note is that the category of globular collections
(which is really just the slice category GlobSet/T1) is a monoidal category;
the unit is the collection speci�ed by the unit of the monad, η1 : 1 → T1, and
given two collections (P, p) and (Q, q) we can de�ne their tensor product as the
left hand composite in the diagram

P ⊗Q

TP Q

T1T 21

T1.

��������

��??????

Tp

��������

T ! ��???????

q��������

µ1

��������

??��

There are a few diagram chases involved in showing that unit and associativity
axioms hold up to isomorphism; a vital piece of information involved in this
is the fact that T is a cartesian monad, meaning that it preserves small limits
and the natural transformations η and µ have pullbacks for all their naturality
squares.

A globular collection is the primary data we need to de�ne a globular operad,
since it contains a set of operations living over each pasting diagram, together
with choices of sources and targets that are consistent with the arities. However,
there is more to an operad than the sets of operations; one also needs rules for
composing the operations. This is the point of the monoidal structure.

De�nition 1.5.3. A globular operad is a monoid in the monoidal category of
globular collections.

Taking this de�nition apart, we have some globular collection p : P → T1
together with morphisms of collections i : 1→ P and m : P ⊗P → P . Since the
terminal globular set 1 has exactly one cell at each dimension, the morphism i
tells us that P contains a speci�ed trivial `unary' operation at each dimension.
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A cell of P⊗P is an element of the pullback in the diagram above; it involves an
element of TP (which is a pasting diagram labelled with P -operations) together
with another P -operation. The map m tells us how to compose this data into
one big operation.

We need also to describe how the category of algebras for a globular operad
is obtained�since the operad is meant to be some syntactic description of a
theory of higher categories, we need to be able to extract the semantics and
de�ne the weak n-categories that arise. The simplest way to do this is to show
how any globular operad gives rise to a monad on GlobSet.

Given any globular set A, we form TPA as the pullback

TPA TA

P T1,

pA //

��
T !

��
p

//

which also de�nes a natural transformation p : TP ⇒ T . One can see that
our original morphism p : P → T1 is actually the component of this natural
transformation at the object 1, since TP 1 is just P . One can check that this
endofunctor TP is a cartesian monad on GlobSet, and the transformation p
is a cartesian monad morphism. This can be used as an alternative de�nition
of a globular operad; however, the one we gave above has a certain conceptual
advantage in that it explicitly contains a globular set of operations.

De�nition 1.5.4. Given a globular operad P the category of algebras for P ,
which we will write P-Alg, is exactly the category of algebras for the associated
cartesian monad TP .

One particular thing we should point out about algebras for a globular op-
erad is that there is always a functor T-Alg→ P-Alg, obtained via the monad
map p : TP ⇒ T . A T -algebra structure α : TA → A is taken to the composite
α◦pA, which one can check is indeed a valid P -algebra structure. When P is an
operad for some notion of weak n-category, this functor expresses the fact that
every strict category can be considered as a weak category that just happens to
satisfy some extra axioms.

Contractible operads. The last sentence of the previous paragraph may
prompt the question: what does it mean for an operad to describe some notion
of weak n-category? It is certainly clear that we can build pathological globular
operads that hardly behave like categories at all�adding extra operations at
dimension zero is a good way to start! Therefore we do have to be careful about
which operads we consider. We will now describe a way of characterising when
the algebras behave like weak higher categories.

To begin with, it seems reasonable that in a weak category there should be
at least one way of composing any pasting diagram of cells. In other words, if
you can compose a collection of cells in a strict category you should be able
to compose them in a weak category�though there may no longer be a unique
choice of composition operation. To �x this possibility of non-uniqueness, we
have a second reasonable request: given two di�erent composites of the same
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pasting diagram at dimension k, there should be at least one (k + 1)-cell con-
necting them. The notion of a contraction on a globular operad beautifully
combines both requests into a single natural piece of data.

The next de�nition will use some important notation which we will end up
using a great deal later on. We write Gk for the special globular set that is the
representable object on the kth object of Glob�it contains a single k-cell and
two cells of every dimension lower than k. We call it the k-glob. Another special
globular set is the boundary of the k-glob, which we write ∂k. It is just Gk with
the single k-cell removed. The natural inclusion of the boundary into the glob
is written ik : ∂k → Gk; the diagram shows the inclusion of ∂2 into the 2-glob:

• •
!!
== • •⇓

!!
== .

i2 //

The 0-glob G0 is just a single 0-cell and its boundary ∂0 is simply taken to be
the empty globular set.

De�nition 1.5.5. A contraction on a globular operad p : P → T1 is a choice
of lifting for every square

∂k P

Gk T1.

a //

ik

��
p

��

b
//

;;

Let us consider how the existence of a contraction on an operad P forces
both of our requests to be satis�ed. An induction on dimension shows how the
�rst request is obtained: given any choice of pasting diagram in T1, this can be
written as a map a : Gk → T1. The source and target of a can be lifted to P
by the induction assumption, and then a square can be formed so that a itself
lifts. Thus we see that a contraction forces P to contain at least one operation
for every pasting diagram, which was the �rst of our requests.

The second requests pertains to the existence of what are known as coher-
ence cells�in other words, cells (usually isomorphisms or some weaker sort
of equivalence) that compare composites which would have been forced to be
equal in a strict category. Given a parallel pair of cells a0 and a1 in P such
that p(a0) = p(a1), the contraction lifts the identity on p(a0) to a cell between
a0 and a1. This cell is another P -operation which has the e�ect of adding a
coherence cell between every a0-composite and its corresponding a1-composite.

When we are dealing with a �nite dimensional example there is a slight
problem at the top dimension; you cannot compare two n-cells in an n-category
without simply asking them to be equal. A nice little adaptation of the de�nition
�xes this without really needing any extra ideas at all. For an n-dimensional
globular operad P → Tn1, a contraction is de�ned exactly as above, except that
we include in+1 : ∂n+1 → Gn+1 in the set of maps we lift against: ∂n+1 is the
two parallel n-cells you would expect, and Gn+1 is de�ned to be a single n-cell.
The (n + 1)-cell, which obviously cannot exist in an n-dimensional world, has
been turned into an equality:

• •⇓ ⇓
!!
== • •⇓

!!
== .

in+1 //
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The following proposition can be found in [Lei04a].

Proposition 1.5.6. De�ne OC to be the category of globular operads equipped
with contractions and globular operad morphisms that preserve the contractions.
Then OC has an initial object that we will write as (L, λ). Similarly, if OCn

is n-dimensional globular operads with contractions, an initial object exists and
we will call it (Ln, λn).

The initial operad with contraction serves as our default de�nition of weak
n-category; we will sometimes refer to Ln-algebras as fully weak n-categories
to distinguish them from the various partially weakened notions one can also
consider. These objects, due to the fact that the operad is initial, are as weak
as one could possibly want; in fact, they are generally speaking weaker than is
desirable (most of the time, the weaker a de�nition is, the harder it will be to
work with). A lot of work has been done with the aim of �nding other globular
operads that are neither fully weak nor fully strict, and asking how much of the
behaviour of fully weak categories can be captured by such semi-strict objects.
We will return to this question in Chapter 5.

Low dimensional examples. We end this section with a quick tour of some
low dimensional examples; since it is often hard to say anything explicit about
weak n-categories in general, often considering n = 2 or n = 3 is the best way
of seeing how something works in practice.

We may as well quickly consider n = 1 �rst of all. One could create an operad
with contraction by adding extra (unary) operations at dimension zero which
are then required to be isomorphic to the trivial one. However, the contraction
then forces all morphisms to compose with strict associativity and unit axioms,
so there is no way of obtaining anything really di�erent to strict categories at
this dimension.

At n = 2 things are still basically quite straightforward. We have strict
2-categories, and we have fully weak 2-categories given as the algebras for L2.
There is also the notion of bicategories�a de�nition of weak 2-category that
was put together `by hand' long before anyone tried to do anything clever for
general n. Thankfully, L2-algebras and bicategories turn out to be relatively
similar; the only di�erence lies in the question of bias. Bicategories are called
biased because they treat a single binary composition operation as primary.
The algebras of L2 are unbiased because the operad automatically includes a
primary operation of composition for each natural number.

At dimension two, this is all made moot by the fact that in a very real
sense, all notions of 2-category are basically the same: the coherence theorem
for bicategories tells us that for B any bicategory (or fully weak 2-category) we
can form a strict 2-category B′ which is biequivalent to B. Hence one can study
the weakest version of 2-categories using only fully strict 2-categories, which are
much easier to work with.

The world begins to be rather more complicated at n = 3. Again, of course,
we have the extremes of fully strict and fully weak 3-categories; but now there
are rather a lot of possibilities in between. As we had bicategories at dimension
two, there is the notion of tricategory in dimension three. Tricategories are
biased, but essentially just as weak as L3-algebras. However, there are other
notions of 3-category that are neither as weak as tricategories nor as strict
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as strict 3-categories: these include Gray-categories and a number of di�erent
notions of weak-unit 3-categories.

At dimension three the obvious coherence theorem no longer works; one can
�nd tricategories that exhibit behaviour that is impossible in a strict 3-category.
Another coherence theorem applies instead. While we cannot go all the way from
tricategories to strict 3-categories, we can go most of the way�replace `strict
3-category' with `Gray-category' and the coherence theorem is true. This is
one reason why Gray-categories are considered interesting. All in all, they are
pretty strict, and therefore not too bad to work with; but they manage to be
weak enough to capture the weakest possible behaviour at dimension three.



Chapter 2

Syntax and Semantics

In the �rst chapter we mentioned two ways of thinking about factorisation sys-
tems. One is in terms of the two types of morphism involved. In the case of a
weak factorisation system or an orthogonal factorisation system these are simply
two classes of morphisms�a �xed point for a certain Galois connection�and
this is the approach usually taken. The other approach is to think primarily
about the factorisation operation itself; this approach becomes more important
as we move to the world of AWFS, since the factorisation functors contain the
algebraic information. However, the old approach is still possible, and in many
respects is even more important; the left and right maps now appear as the
categories of coalgebras and algebras for our comonad and monad.

In general category theoretic parlance (championed by Lawvere in [Law63])
these two approaches correspond to what we call semantics and syntax. When-
ever we consider an algebraic theory we view its category of algebras as the
semantic realisation of the theory, and we call whatever algebraic data made up
the theory in the �rst place the syntax; this is usually a monad, or some slightly
more speci�c notion such as an operad or a Lawvere theory. For an AWFS, the
relationship between syntax and semantics is especially interesting due to the
richness of the algebraic structure we are working with.

In this chapter, we explore several aspects of this relationship. In the �rst
section we will establish some important properties and structures that exist for
the left and right maps of any AWFS. We will see that the semantics always
�ts certain patterns and in fact very di�erent AWFS will seem to behave quite
similarly from a su�ciently general point of view. In the second section we will
follow these ideas further by describing how the semantic side of an AWFS is
a �xed point for a certain adjunction. This links back to the world of weak
factorisation systems, where we had a �xed point for a Galois connection.

The remaining sections are all about how to obtain the syntactic data of an
AWFS if you start with some semantics in mind. In Section 2.4 we describe
the small object argument, which generates an AWFS freely from a generating
category of left maps. Section 2.5 is built around the theorem that describes
how to apply the usual monadicity (or comonadicity) theorems in the context
of an AWFS. Obviously one has to check a few extra properties to make sure
that you are dealing with a genuine category of left or right maps, not just
the algebras or coalgebras of some arbitrary monad or comonad on an arrow
category.

39
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A large part of this chapter is further background theory, though much more
specialised than that in Chapter 1. The material in Section 2.2 is new in the
sense that to the best of the author's knowledge it is previously unpublished (at
least in this level of detail); it is based on conversations between the author and
Richard Garner. The material in Section 2.5 is also new; it seems to have been
discovered independently by both the author and John Bourke. There are a few
points where the approaches are slightly di�erent; we have hopefully made it
clear what is the author's and what is Bourke's.

2.1 Left and Right Map Categories

For the whole of this section we will work with some arbitrary AWFS (L,R) on
a category C. We are going to study the categories L-Map and R-Map, both
of which are categories over C2 in the sense that there are forgetful functors
UL : L-Map → C2 and UR : R-Map → C2. Mostly we will focus on L-Map
and we will just call the forgetful functor U�everything that holds for L-Map
will have a dual that is automatically true for R-Map due to the fact that the
de�nition of an AWFS is entirely symmetric. Our choice to consider the left
maps �rst may surprise some readers, as in the general literature the right maps
(i.e. �brations) are usually given more attention; we have a good reason though,
as the category of cell complexes will be a left map category.

Let us �rst of all recall the de�nition of the left map category. L-Map is
the Eilenberg-Moore category for the comonad L, and hence we have the usual
free-forgetful adjunction,

L-Map C2,
U //
K

oo

where the composite UK is the endofunctor part of L. This characterisation of
L-Map immediately forces a few interesting properties.

Proposition 2.1.1. A diagram D in L-Map has a colimit whenever the image
of the diagram UD in C2 has a colimit, and the functor U preserves all colimits
that exist. Furthermore, U is faithful and conservative.

The �rst part of this proposition is usually described by saying that U creates
all colimits. It essentially means that L-Map has as many colimits as is possible,
given a colimit preserving functor to C2. For all the examples we care about
C will be cocomplete, so this is actually an extremely academic point; given C
cocomplete, which we will assume from now on, we can just say that L-Map is
also cocomplete and U colimit-preserving. The second part of the proposition
expresses the fact that a left map is a morphism with structure, so a morphism
of left maps is given by a morphism in C2 which happens to preserve the left
map structures.

So far we have established that L-Map has all colimits, in the regular sense
of building a colimit out of the objects and morphisms of L-Map. As a category
of maps in C, however, there are a few other colimit-like constructions available:
these are pushforwards along arbitrary maps in C and composites, which we
explore now. These constructions can all be found in [Ath12], and earlier in the
work of Riehl [Rie11a].
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Proposition 2.1.2. Given a morphism f : A→ B with a left map structure α,
and any other morphism p : A → A′, the pushout of f along p, which we write
as p∗f , has a canonical left map structure called the pushforward of α along p
and written as p∗α. It is given by considering

A
f //

p

��
M(p,f∗p)

��

||
α

B

f∗p

��
A′

p∗f
//bb

p∗α

B′

and specifying the structure map p∗α as [Lp∗f,M(p, f∗p)◦α]. It has the univer-
sal property that given any left map morphism (p, q) from (f, α) to some (g, β)
with g : A′ → C, the induced square (1′A, [g, q]) is also a left map morphism.

Remark. It is worthwhile to note (it will reappear later) that the universal
property of the pushforward left map makes the left map morphism (f, α) →
(p∗f, p∗α) into a weakly cocartesian map with respect to the boundary functor
∂ : L-Map→ C that gives the domain of a left map. The fact that pushforwards
along all maps in C exist implies that the functor ∂ is actually a Grothendieck
op�bration. Making a choice of pushforwards corresponds to choosing an op-
cleavage for this op�bration.

It is worth reminding ourselves that the dual results will apply to R-Map.
In other words, the codomain functor on right maps is a Grothendieck �bration
as long as all pullbacks exist in C.

Proposition 2.1.3. Suppose we are given a pair of left maps (f, α) and (g, β)
where f and g are composable. Then gf has the composite left map structure
shown by the dotted arrows in the following diagram

A
gf //

µgf

zz
C

A
f

//

M(1,g)

NN

B
α

dd
g

//

M(M(1,g)◦α,1)

OO

C.

β

ee

We will write this left map structure as (gf, β•α). This composition operation is
associative, and unital with respect to the trivial left map structures on identities.

Remark. Recall that the trivial left map structure on any isomorphism was
de�ned in Section 1.4 using the initial AWFS. We are now able to give an
alternative de�nition: a trivial left map structure is any pushforward of an
initial object in L-Map. The proof of the proposition is a rather extravagant
diagram chase which is done fully in [Ath12], though the proposition was proved
earlier by both Richard Garner and Emily Riehl�see [Gar12b] and [Rie11a].

One can view the category of left maps as a double category whose objects
are the objects of C, whose vertical maps are the ordinary morphisms of C,
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whose horizontal maps are left maps and whose 2-cells are left map morphisms
such as (a, b) : (f, α)→ (g, β) shown here:

• •

• •.

f //

a

��
g

//

b

��

α

��

β

__

��

Note that it is an extra proposition to prove that this gives a full double category
structure, since 2-cells have to be able to compose both vertically and horizon-
tally. Vertical composition is just the usual composition of morphisms of left
maps, but horizontal composition is an extra structure that one can check with
a diagram chase. With this double category point of view the forgetful func-
tor becomes a double functor from the double category of left maps to Sq(C),
the double category of squares in C, which has normal morphisms for both its
horizontal and vertical maps, and simply commutative squares for its 2-cells.

Now that we have established the three main colimit-like operations that
exist in L-Map, there is a �nal very important axiom that expresses how the
three operations behave with respect to one another. The property they satisfy is
called the stacking property and it is the basic principle underlying the de�nition
of coalgebraic cell complexes. The proof can be found in [Ath12].

Proposition 2.1.4. The composition rule in L-Map is well behaved with re-
spect to coproducts and pushforwards in the following way: given f : A → A′

and g : B → B′ equipped with left map structures α and β, and maps a : A→ X
and b : B → X, there is an isomorphism of left maps(

[a, b]∗(f + g), [a, b]∗(α+ β)
) ∼= ((a∗f ◦ b)∗g ◦ a∗f, (a∗f ◦ b)∗β • a∗α).

Remark. The proposition basically says that f and g can be `glued on' to X
in any order, or simultaneously by taking a coproduct �rst, and it makes no
di�erence to the resulting left map. In the form of a picture:

•
•

•
•

_ _ _�
�
�
�
�
�

�
�
�
�
�
�_ _ _

oo

oo

oo

oo

X A′ +B′

[a,b] ∼= •
•

•
•

_ _ _ _ _ _ _ _�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�_ _ _ _ _ _ _ _

oo

oo

oo

oo

X

A′

B′

a

(α∗f)◦b

This property immediately suggests the idea of expressing a left map in a normal
form where it is decomposed into atoms (left maps that cannot be decomposed
further) which are then expressed in layers, where each atom appears in the
lowest layer possible. This normal form is precisely expressed in the de�nition
of cell complex given in Chapter 3.

Of course, if we start with an arbitrary AWFS it is possible that there are
no atoms. In this case the normal form will not work�this situation, in which
objects have no smallest parts, is known in mereology by the lovely name gunk.
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We have now built up a reasonably good picture of the category of left maps
(and dually the category of right maps). Left maps can always be glued together
in various ways so they always behave like cell complexes to some extent; this
intuition will be very useful going forward. What we are currently missing,
however, is arguably the most de�nitive behaviour of left and right maps: for a
given AWFS, the left and right map categories determine one another completely
because of the strict choice of liftings of every left map against every right map.
This is the subject of the next section.

2.2 The Liftings Adjunction

Recall from Section 1.4 that for any AWFS if (f, α) is a left map and (g, β) is a
right map, these structures give us a canonical choice of solution to every lifting
problem between f and g. In other words, given any commutative square (a, b)
between f and g we can construct a diagonal morphism as shown by the dotted
arrows

A C

B D,

a //

b
//

f

��

g

��
α

<<

β

^^

M(a,b) //

and this is a lifting in the sense that it causes both `triangles' to commute (by
which we mean a = δ ◦f and g ◦δ = b, where δ denotes the `diagonal' composite
β ◦M(a, b) ◦ α). What we will see in this section is that a kind of converse
is true. Basically, given any morphism f together with such choices of liftings
against every right map, those choices themselves determine a left map structure
on f . There are some subtleties involved, as the liftings have to be consistent
with one another in various ways, but ultimately we will be able to de�ne an
adjunction�the liftings adjunction of the title�for which any AWFS is a �xed
point.

First attempt. We make a �rst attempt to construct the liftings adjunction
which is based on the construction described at the end of Section 1.3 as a
`categori�ed' Galois connection generated by a relation. For this construction
we require the analogue of a relation between two sets; if we have two categories
A and B we ask for a category over the product A× Bop. In this case, the two
categories in question are two copies of the arrow category C2, and we have

L C2 × (C2)op.//

The category L has as objects triples (f, g, φ) where f and g are maps in C and
φ is a function which associates a lift φ(a, b) to every square between f and g. A
morphism in L is given by (a, b, c, d) : (f, g, φ)→ (f ′, g′, φ′) where (a, b) : f → f ′

and (c, d) : g′ → g are commutative squares (morphisms of C2), and for any
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(p, q) : f → g as in

• • • •

• • • •

a // p // c //

f

��

f ′

��

φ′(p,q)

99

g′

��

g

��
b

//
q

//
d

//

we have φ(cpa, dqb) = c ◦ φ′(p, q) ◦ b. This is essentially saying a morphism of L
is a morphism in C2 × (C2)op that commutes with the lifting choices given by φ
and φ′.

The construction uses this L, which acts a bit like a relation between the
arrow category and itself, to generate an adjunction

Cat/C2 (Cat/C2)op
L∗ //
L∗

oo

in a way analogous to the usual method of generating a Galois connection from a
relation between sets. Thus if we start with some J → C2 on the left hand side
of the adjunction, we apply the adjoint to get L∗(J )→ C2, a category of maps
with chosen liftings against everything in J�liftings that are also required to
be preserved by morphisms of J . So far this appears to work very well as the
algebraic version of the Galois connection used for weak factorisation systems.

However, a problem arises when we think about applying this adjunction to
the left or right maps of an AWFS. Ideally, we would like L∗(R-Map) to be
isomorphic to L-Map. This does not always happen; it is possible to have a
map with a choice of lifting against all the right maps that is not a left map.
One can construct such a counterexample by noticing that the retract of a left
map inherits liftings from that left map but is not necessarily a left map itself.
This comes down to the di�erence between a coalgebra for the comonad and a
coalgebra for the underlying copointed endofunctor: the latter is a more general
class of objects�but they still have liftings against right maps, de�ned in the
same way as above.

Fixing the problem. To sort this out we have to demand a little bit more
consistency in our chosen liftings. What it is that sets apart the copointed
endofunctor coalgebras that are also left maps? This is related to the question:
what exactly does the comultiplication of the comonad do? The answer is
hidden in the previous section, in the de�nition of composition of right and left
maps. The comultiplication tells right maps how to compose. This suggests
that the special feature of a `genuine' left map is that it chooses liftings that are
compatible with right map composition.

Lemma 2.2.1. Given a left map (f, α) and two composable right maps (g, β)
and (h, γ), there are two ways of de�ning the lift of f against hg: one can take
the lift of (f, α) against the composite (hg, γ • β), or one can lift in two steps,
�rst lifting against (h, γ) and then against (g, β). These two alternative lifts are
equal.

Proof. The single essential ingredient used by the proof is the comultiplication
axiom for the coalgebra structure α. Let (a, b) : f → hg be the commutative
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square for which we want to solve the lifting problem. The `one-step' approach
de�nes the lift as the composite of the dotted arrows in

•

•

•

•

•

•

•.

�

f

��
hg

��

g

��

h

��

a

44jjjjjjjjjjjjjjjj

b **TTTTTTTTTTTTTTTT

α

__

δhg

bb

β

__

γ

__

δf

aa
M(1,α)

==

M(a,b)
//

M(1,γM(g,1)) //M(a,M(a,b)) 22ddddddddddddddddd

M(g,1)
''OOOOOOOOOOOOOOO

Using the naturality square for δ (marked with a diamond in the diagram)
and the coalgebra axiom that δf ◦ α = M(1, α) ◦ α, we can turn this into the
composite

β ◦M(1, γM(g, 1)) ◦M(a,M(a, b)) ◦M(1, α) ◦ α.

Then we use functoriality of M a few times to see that this is equal to

β ◦M(a, γM(ga, b)α) ◦ α

which is the result we would have obtained using the alternative `two-step'
approach.

With this in mind, we will construct a new adjunction that includes a re-
quirement that the lifting functions φ obey the compatibility with composition
established in the lemma. First we need to establish the input data for either
side of the adjunction, which is a category over C2 that may come with some
compositions de�ned.

De�nition 2.2.2. A category of partially composable maps (which we will ab-
breviate CPCM) over C is a category over C2, say

D C2,U //

with a choice of identities 1A in D for some A ∈ C such that U1A = 1A,
and a choice of composites d • d′ for some composable pairs in D such that
U(d • d′) = Ud ◦ Ud′. These compositions and identities satisfy associativity
and unit axioms wherever those axioms can be de�ned.

We will write CPCM(C) for the category of CPCMs over C. A morphism
of CPCM(C) is a functor over C2 which preserves all identities and composites
which exist.

De�nition 2.2.3. If a CPCM has all composites and identities we refer to
it simply as a category of composable maps. These form a full subcategory of
CPCM(C) which we will denote using CCM(C).
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We note thatCat/C2 can also be viewed as a full subcategory ofCPCM(C)�
the one containing just those CPCMs which happen to have no composites or
identities at all.

We now obtain the liftings adjunction

CPCM(C) CPCM(C)op
L∗ //
L∗

oo

where L∗(D) is the category of maps with chosen liftings against D that are
consistent with whatever compositions and identities D has. The easiest way to
de�ne this formally is as a full subcategory of the result of the earlier adjunction:
an object of L∗(D) is a pair (g,Λ) with g any morphism of C and Λ: D → L a
functor that chooses lifts against all the objects of D as shown:

• •

• •,

Ud

��

g

��

p //

q
//

φd(p,q)

;;

so we must have that Λd = (Ud, g, φd) for each d ∈ D. The fact that Λ is
a functor makes these lifts compatible with morphisms of D. To make them
compatible with the composition structure on D we add the condition that for
any composite d • d′ in D we have

φd(φd′(p, q ◦ Ud), q) = φ(d•d′)(p, q)

which is shown in the diagram below; either side of the equation could label the
lower dotted arrow

•

•.

•

•

•

Ud′

��

Ud

��

g

��

p

**TTTTTTTTTTTTTTTT

q

44jjjjjjjjjjjjjjjj

φd′ (p,q◦Ud)

77 CC

We will observe a number of special properties that both L∗(D) and L∗(D)
will have for any input D. First of all, the forgetful functor L∗(D)→ C2 is always
faithful, since a morphism in L∗(D) is de�ned to be a morphism of C2 with the
property of preserving liftings. Secondly, if we are given two composable maps
with lifting structures, we can de�ne a lifting structure on the composite just
by lifting one after the other; hence L∗(D) is always fully composable�it is a
CCM over C.

In fact we can go a little further. Recall that in Section 2.1 we pointed out
that any category of left or right maps can be given the structure of a double
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category over Sq(C). It is easy to see that this is true also for L∗(D). It will be
useful later to have a name for this property of a faithful CCM:

De�nition 2.2.4. If U : Q → C2 is a CCM over C such that U is faithful, we
say that it has the double category property if, for any two composable pairs q,
q′, p and p′ in Q, if (a, b) : Uq → Up and (b, c) : Uq′ → Up′ as shown

• • •

• • •Uq // Uq′ //

Up
//

Up′
//

a

��

b

��

c

��

are given by Uφ and Uφ′ for φ : q → p and φ′ : q′ → p′ in Q, then the entire
square (a, c) : Uq′ ◦Uq → Up′ ◦Up is given by U(φ′ •φ) for a map φ′ •φ : q′ •q →
p′ • p in Q.

We will now prove the main result of this section, cementing the connection
between AWFS and the liftings adjunction.

Theorem 2.2.5. For any AWFS (L,R) the pair (L-Map,R-Map) is a �xed
point for the liftings adjunction.

Proof. This simply amounts to showing that L∗(L-Map) ∼= R-Map, since the
other side will then follow as it is precisely dual. We have already seen, in the
previous section and then in Lemma 2.2.1, that any right map has consistent
liftings against all left maps. To show the converse, let us assume that (f, φ)
is some object of L∗(L-Map); in other words φ is some function that gives a
lifting φ((g, α), a, b) for every commutative square from a left map to f .

We will use the data contained in φ to construct a right map structure on
f . The factorisation Rf ◦ Lf yields a commutative square

• •

• •

Lf

��

f

��
Rf

//
β

;;

and β = φ((Lf, δf ), 1, Rf) is our prospective algebra structure for f . The two
triangles in the diagram are the �rst two right map axioms; so far so straight-
forward.

The remaining axiom is β ◦ µf = β ◦M(β, 1). To check this is a slightly
tricky diagram chase; in fact it will be much easier if we �rst establish that
the other lifts given by φ can all be derived from β in the usual way. For
any commutative square (a, b) from a left map (g, α) to f , we consider that
(1, α) : (g, α) → (Lg, δg) is a left map morphism (using the coalgebra axioms)
and (a,M(a, b)) : (Lg, δg)→ (Lf, δf ) is clearly also a left map morphism. So in
the diagram below the �rst two squares are both left map morphisms

• • • •

• • • •a //

α
//

M(a,b)
//

Rf
//

g

��

Lg

��

Lf

��

f

��
β

;;
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and the fact that φ is consistent with left map morphisms tells us that

φ((g, α), a, b) = φ((Lf, δf ), 1, Rf) ◦M(a, b) ◦ α = β ◦M(a, b) ◦ α

which implies that β determines φ in the usual way.
Now we check the multiplication axiom. This works by considering the two

ways of lifting the composite left map (LRf ◦ Lf, δRf • δf ) against f . First we
do this with a single application of φ

• • •

•

• • •

�

RRf
//

Lf

��

LRf

��

LRf◦Lf

��

f

��

M(1,RRf) //

//

β

FF

µf

bbbb

δRf

ee

δf

^^

11

M(1,LRf)

//

and the lift we obtain is

β ◦M(1, RRf) ◦ µ(LRf◦Lf) ◦M(M(1, LRf)δf , 1) ◦ δRf .

Using a naturality square for µ (marked with a diamond in the diagram), this
simpli�es to

β ◦ µf ◦M(M(1, Rf)δf , RRf) ◦ δRf ,

which, with the two immediate applications of one of the unit laws for the
comonad, becomes β ◦ µf . On the other hand the original lift can alternatively
be constructed using two applications of φ, lifting Lf �rst, and then LRf . This
alternative approach gives

β ◦M(β,RRf) ◦ δRf

as shown in the diagram

• •

•

• •

RRf
//

Lf

��

LRf

��

f

��

β

EE

δRf

ee

β

<<

M(β,RRf)

55

which, using the same unit law as before, simpli�es to β ◦M(β, 1).
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This completes the process of checking that (f, β) is a bona �de object of
R-Map. We also established that the lifting function φ was entirely deter-
mined by the algebra structure β it produces. This makes it easy to check
that lift-preserving morphisms are the same as morphisms of right maps, so we
have functors going either way. These form an isomorphism of categories; on
both sides we have a strict equality of either algebra structure maps or lifting
functions.

This theorem immediately tells us that the liftings adjunction has a lot of
interesting �xed points; it is an intriguing question whether the adjunction is
in fact idempotent. Certainly for a large class of inputs it reaches a �xed point
(which also happens to be an AWFS) after a single step�we will see how to prove
this in Section 2.4. However, we can also �nd examples of CPCMs which do
not generate AWFS and therefore may not generate �xed points for the liftings
adjunction; thus we cannot rule out the existence of some counterexample to
idempotence.

2.3 Weak Morphisms

There is a �nal piece of `semantic structure' that one can obtain from a general
AWFS that we should brie�y describe before continuing. There are two ways of
getting at this structure, motivated by di�erent philosophies, but the ultimate
result is equivalent either way. Appealingly, one way uses the left hand side
of the AWFS and the other way uses the right hand side, so there is a lovely
balance to this section!

The idea is to construct a new notion of morphism on the category C based
on the data of an AWFS on C. There are a number of intuitions we should
have in mind. Firstly, the construction is a little bit like the homotopy cate-
gory of a model category; it is similar to the localisation obtained by asking
that all right maps become isomorphisms. However, the right maps are only
partially inverted�instead of becoming isomorphisms, they will become split
epimorphisms. This gives the construction a rather di�erent and subtler �avour
to the construction of localisation.

Another perspective is that the new morphisms are some kind of `weakened'
version of normal morphisms; in the higher categorical examples in particular
they behave very much like the various notions of weak functors between weak
n-categories. A weak functor is still a morphism of the underlying globular sets,
but it is not expected to preserve compositions precisely�only up to isomor-
phism.

Left approach. The approach that uses the left hand side of the AWFS is due
to Garner, and is used in [Gar08] to de�ne homomorphisms of higher categories.
The idea is that a weak map from A → B is the same thing as a strict map
from QA → B, where QA is a kind of `loosened' version of A. Of course, an
AWFS gives us a formal notion for this `loosening'�the left map replacement
comonad.

De�nition 2.3.1. Given any AWFS on a category C with an initial object, we
de�ne the left weak maps category, denoted by Cw, to be the coKliesli category
for the left map replacement comonad given by the AWFS.
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It is clear that any strict map (ordinary morphism of C) can be viewed as
merely a special sort of weak map, by precomposing with the weak identity map
(the counit of the comonad, ε : QA → A). Secondly, notice that the left map
replacement comonad preserves the initial object of C�this follows from the
functoriality of the factorisation. Based on this, we see that Cw has the same
initial object as C. In many examples this is exactly what we should expect; the
initial object is usually empty, so there is not really any room for weakness in
the maps out of it.

Right approach. The other way of de�ning the weak maps category uses
the intuition that we are trying to (at least partially) formally invert the right
maps for the AWFS. If we simply formally adjoin inverses for all the objects
of R-Map we immediately run into some problems with size; however, let us
imagine the result anyway. A morphism in our new category is a zig-zag of
morphisms where every second morphism is a right map pointing backwards.
One could take some pullbacks and use the fact that right maps are composable
to reduce this zig-zag to a single span in which the left hand map is a right map.
This motivates our next de�nition.

This second approach is due to Bourke; as far as the author is aware, he has
not published the material yet, but similar ideas can be found in [Gar12a] and
in [Bou14] where they have some applications to 2-categorical algebra.

De�nition 2.3.2. Given any AWFS on a category C with pullbacks, we de�ne
the bicategory of right map spans, denoted by SpanR, to be the bicategory with
the same objects as C, with morphisms from A to B given by spans such as

•

A B

f
�����������

g

��?????????α --

and with 2-morphisms given by morphisms of spans that are also right map
morphisms. Composition in SpanR can be de�ned by pullback, and this works
due to the properties of the category of right maps.

De�nition 2.3.3. The right weak maps category, denoted by Cw′ , is the result
of quotienting SpanR out by all of its 2-morphisms.

Theorem 2.3.4. There is an identity on objects isomorphism of categories
between Cw and Cw′ .

Proof. We need to construct an isomorphism

Cw(A,B) Cw′(A,B)
φ //
ψ

oo

for every pair of objects in C, and then check that these isomorphisms preserve
identities and composition. The map φ is very easy to construct: we are given
a map QA → B and we always have εA : QA → A, which is a right map. This
pair is a right map span from A to B with QA at its apex.
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To construct ψ we will use the liftings structure as shown in the diagram

QA

0

A

•

B

!

������� !

��??????

εA ��?????

f������� g

��?????
//

where the dotted arrow is the lift of ! : 0 → QA against f , and the image of ψ
is de�ned to be the composite of the dotted arrow with g.

It follows from the algebra and coalgebra axioms that the lift in the square
(Lf,Rf) : Lf → Rf is always the identity map 1Mf . This implies that ψφ is
trivial, since the dotted arrow in the above diagram will be 1QA. To check that
φψ is trivial we have to check that the two spans in the above diagram are in the
same equivalence class. This follows from the fact that the dotted arrow gives a
right map morphism from εA to f . This is a short diagram chase involving the
comultiplication axiom for f .

The fact that the isomorphisms preserve identities is immediate: notice that
the spans (A, 1A, 1A) and (QA, εA, εA) are both valid representatives for the
identity equivalence class in SpanR(A,A). It is a little more involved to check
that they preserve composition, though we only have to show this for one of the
isomorphisms; we will do ψ. We take two composable spans and �rst form the
pullback shown in the diagram

A

D

B

P

E

C
�����������

m

��?????????

�����������
k

��?????????
�����������

m′

��?????????

α

NN

β

NN

β′

NN

in which β′ is the pullback right map structure obtained from β. We then apply
ψ to each span separately, using the axiom M(1, Rf) ◦ δf = 1Mf in each case
to simplify things:

QA

A

D

B

P

E

C.

QB

�����������

m

��?????????

�����������
k

��?????????
�����������

m′

��?????????

��???

__???

α

NN

β

NN

β′

NN

M(!D,1A)//

M(!E ,1B)

OO

Now we want to show that composing these two maps in the coKleisli cat-
egory gives the same result as applying ψ to the pullback span. Both of these
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are shown in the diagram

QA

QQA

A

D

B

P

E

C

QB

�����������

m

��?????????

�����������
k

��?????????
�����������

m′

��?????????

��???

��????????

__???

α

NN

β

NN

β′

NN

M(m′,m)

��M(!D,1A)//

M(!P ,αM(!D,1A)) //

M(!E ,1B)

OO
Q(mαM(!D,1A))

66

δA

gg

as the two ways of getting from QA to C; they both begin with δA and end
with k ◦ β. The coKleisli composition is given by the lower dotted arrows
while the upper dotted arrows show the result of applying ψ to the whole span.
So the problem comes down to proving that the square of dotted arrows is
commutative, which follows by expressing Q(mαM(!D, 1A)) in terms of M and
using functoriality a few times.

It is interesting to take particular note of one major asymmetry in the two
de�nitions of weak maps: the left approach uses only the replacement comonad,
whereas the right approach uses the entire category of right maps. There are
examples where two di�erent AWFS have the same replacement comonad, in
which case the category of weak maps is the same for both. However, the
categories of right maps will be di�erent, so SpanR will also be di�erent in
either case. The quotienting out of SpanR potentially loses a vast amount of
information.

We can also comment brie�y on the dual construction, which demonstrates
an isomorphism between the Kleisli category of a right map replacement monad
and a category of cospans. It is tempting to speculate that it may be of interest
to computer scientists that the Kleisli category can be given this alternative
expression. Especially so if the left maps can be thought of as cell complexes�
arguably a kind of abstract syntax for sequencing operations, some of which can
be done in parallel and some of which need to happen in a speci�c order. Some
related applications of AWFS in computer science have already been explored
in [Gar12a].

2.4 The Algebraic Small Object Argument

The original small object argument of Quillen is the cornerstone of the theory
of weak factorisation systems, as it is how practically all of the interesting
examples are constructed. One begins with a small set of morphisms J in a
cocomplete category C in which one wishes to construct a weak factorisation
system. Applying the Galois connection described in Section 1.3, one obtains
a �xed point consisting of two classes of maps LJ and RJ . Now one wishes to
show that this �xed point constitutes a weak factorisation system: that there
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exists a factorisation for every morphism of C into a member of LJ followed by
a member of RJ .

The set J also generates a class of maps CellJ called the relative J-cell
complexes, which are de�ned as all maps in C that can be obtained from J using
only coproducts, composition and pushouts along any other morphism in C. It
follows from a straightforward argument that you can construct liftings of any
relative cell complex against any map in RJ , and thus CellJ ⊂ LJ . The small
object argument is a trans�nite construction that takes any morphism f of C
and factorises it into a relative cell complex followed by a member of RJ . This
demonstrates that (LJ ,RJ) is a weak factorisation system.

Because the ordinary small object argument only really cares about demon-
strating the existence of some factorisation, it does not need to worry about
constructing the factorisation in a particularly controlled way. Therefore it is
rather wasteful; the relative cell complex constructed ends up being much larger
than it needs to be, the trans�nite recursion does not converge (so it has to be
terminated at an arbitrary su�ciently large ordinal number), and there is no
universal property. The algebraic small object argument which was described
by Richard Garner in [Gar12b] was originally suggested as a way of �xing these
unsatisfactory features; the fact that it happens to produce an AWFS was an
interesting side-e�ect. For us, however, this is the key feature!

Now we will give a quick description of this revised small object argument.
As before, we have a complete and cocomplete category C. Now, instead of a
set of maps in C we will consider a small category J together with a functor
I : J → C2. The objects of J are the generating left maps. Already this is
more general than the original small object argument; there may be morphisms
between generating left maps and there may be more than one generating left
map structure on a given morphism of C.

We also call the objects of J cells�the name comes from the basic examples
in topological spaces, where they will be the inclusions of spheres into discs.
Following this intuition futher, we will sometimes refer to the domains of these
maps as their boundaries.

Step 1: the density comonad. The �rst step in our construction of the
factorisation is simply to form the density comonad on C2 that is created by
J�this was de�ned in section 1.1. We will describe it explicitly here though,
since it is not obvious exactly what it does.

Given a morphism of C, f : X → Y , we consider the category S of squares
from generating left maps to f�in other words, objects are commuting squares

A X

B Y

//

Ij

��
f

��
//

where j is some object of J . Morphisms between squares are morphisms in J
that commute with the squares. The category S is small because J is small,
and it comes with a functor S → C2. We take the colimit of this functor in C2;
this is the image of the density comonad on f . Write it as Df . In most of the
cases we consider, J will be discrete, so Df will be a huge coproduct built out
of all the J -shaped cells in f .
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Step 2: normalise the domain. In step 1 we created Df , which is (usually)
a very disjoint colimit of all the cells possible in f . The domain ofDf is a disjoint
collection of boundaries, which is not much good as we want Df to be the left
hand side of a factorisation�we want its domain to be X.

Fortunately, this can be easily arranged! The counit of the comonad D gives
a commutative square from Df to f , which we can abuse as follows:

dom(Df) X X

cod(Df) M0f Y.

//

Df

��
L0f

��
f

��
//

R0f
//

It is straightforward to show that L0 is also a comonad. It has the advantage
of being domain preserving, but aside from that it looks very much like D�all
the cells are still there, but their boundaries have been squashed back together
to make X. The factorisation of f into L0f and R0f is our �rst approximation
to the �nal factorisation.

Step 3: iterate, carefully. We have constructed a functor R0 : C2 → C2,
and we can see that it is a pointed endofunctor. There is a general technique
in category theory to construct the free monad on a pointed endofunctor; this
is done by iterating the functor. In the case of R0, it is possible to show that
the property that the other half of the factorisation is a comonad is preserved
by this iteration process�hence we end up with a factorisation consisting of a
comonad and a monad.

We will brie�y explain this iteration more explicitly. For some ordinal num-
ber α assume Rα, Lα and Mα are all already de�ned. In the diagram

X
Lαf //

f

��

Mα

L0Rαf //
Mα(Lαf,1Y )

//

Rαf

��

M0Rαf

R0Rαf

��

// Mα+1f

Rα+1f

��
Y Y Y Y,

Mα+1f is de�ned as the coequaliser of the two canonical maps Rαf → R0Rαf .
We can then de�ne Lα+1f as the composite of the entire top row in the diagram.

The coequaliser we take here has the e�ect of removing the redundancies
that were a problem in the normal small object argument. The object M0Rαf
has two copies of a lot of cells that we only need one copy of; the two maps of the
coequaliser match up these doubles perfectly, so when we take the coequaliser
we get a new version ofM0Rαf with the unnecessary cells removed. In the case
of a limit ordinal λ, the factorisation (Lλ, Rλ) is de�ned in the obvious way
using trans�nite composition.

In the presence of certain smallness conditions, similar to those required for
the usual small object argument to work, the sequence of factorisations that we
have constructed converges. We call the resulting functors L, M and R. They
form an AWFS, in which the objects of J have canonical left map structures.

Expression as a universal property. This construction, while obviously
very close in spirit to the original small object argument, is now so natural that
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we would hope to be able to express the properties of the resulting AWFS in a
single universal property. This is exactly what we will now do!

De�nition 2.4.1. Given a small category over C2, say I : J → C2, and an
AWFS (L,R) on C, we say that (L,R) is free on J if there is a functor η : J →
L-Map over C2 with the property that, given any other AWFS (L′,R′) and a
functor F : J → L′-Map, there is a unique morphism of AWFS φ : (L,R) →
(L′,R′) for which F = φl ◦ η.

It is a theorem (see [Gar12b] for the full details) that the AWFS generated
from J by the revised small object argument is free on J ; in fact we end up
with a partial adjunction between the category of AWFS and Cat/C2.

There is another nice property an AWFS can have with respect to J : we
say that (L,R) is algebraically free if there is a functor η : J → L-Map over C2

that induces an isomorphism of categories between R-Map and L∗(J ), which
we de�ned in Section 2.2. This is exactly saying that if we begin with J , viewed
as a CPCM with no compositions or identities, and apply the liftings adjunction,
we obtain (L-Map,R-Map). Algebraically free implies free, but the converse
may not be true. However, in the case of the small object argument above, the
AWFS produced is both free and algebraically free.

2.5 Characterising Left Maps

In this section we conclude our exploration of the relationship between seman-
tics and syntax by asking an obvious question: if you start with some possible
semantics, how can you tell that there is some syntax for which it is the seman-
tics? More speci�cally, given a category of composable maps over C, what are
su�cient and necessary conditions for it to be equivalent to the category of left
maps for some AWFS? The answer to this question extends Beck's Monadicity
Theorem to the world of AWFS.

For the rest of this section we will now assume that we have a category of
composable maps over C which we will write

Q C2.
U //

There are essentially two parts of the theorem. The �rst part is checking that
Q is equivalent to a category of coalgebras for a comonad on C2, and this part
is basically a simple application of the dual of the monadicity theorem. The
second part, in which we will �nd a few subtleties, involves making sure that
the comonad in question forms part of an AWFS. The second part rests upon
the following lemma due to Richard Garner, which can be found (in its dual
form) in [BR13].

Lemma 2.5.1. If L is a domain preserving comonad on C2, whose category of
coalgebras has a given CCM structure with the double category property, then
there is an AWFS (L,R) where R is de�ned using the counit of L, and the
composition structure of left maps for (L,R) coincides with the one given.

One can see from this lemma that there are two small obstacles to simply
sticking the two existing results together and calling it a theorem. The �rst
obstacle is the requirement that the comonad be domain preserving; the second
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obstacle is the necessary CCM structure on the coalgebras�we will have to
check that the CCM structure on Q can be satisfactorily moved across the
equivalence.

We will now give a complete list of all the conditions the theorem requires.
The �rst three will be recognisable as exactly the requirements for the dual of
the monadicity theorem. The remaining three are extra conditions required to
overcome the obstacles we mentioned above. They are extremely easy to check;
in most examples they are practically automatic.

L1 The functor U has a right adjoint.

L2 The functor U is conservative.

L3 The category Q has, and U preserves, all equalisers of U -split pairs.

L4 The identities for the CCM structure on Q have the following universal
property: for any q ∈ Q and commutative square such as

B C,

A A
U1A=1A

Uq
//

a

�� ��

there is a unique morphism 〈a〉 : 1A → q in Q living over the square.

L5 The domain functor ∂ : Q → C, which takes an object q ∈ Q to the domain
of its image under U , is an iso�bration. This means that given q ∈ Q
and an isomorphism a : ∂q ∼= A in C, there exists a unique isomorphism
ψ : q ∼= q′ in Q such that the domain part of Uψ is a.

L6 The CCM structure on Q has the double category property given in De�-
nition 2.2.4.

The following lemma will allow us to ensure that the comonad we are dealing
with satis�es the condition of being domain preserving.

Lemma 2.5.2. Given conditions L1, L4 and L5 we can choose a right adjoint
K in such a way that the comonad UK is strictly domain preserving.

Proof. From condition L1, we know that a right adjoint exists; let K ′ be some
right adjoint for U . Given any morphism f : A→ B in C, we have UK ′f : A′ →
B′ and a commutative square εf : UK ′f → f . For any X ∈ C, we know from L4
that morphisms X → A′ are in bijection with morphisms 1X → K ′f in Q. By
the adjunction, morphisms 1X → K ′f in Q are in bijection with commutative
squares 1X → f , which are really just morphisms X → A in C. Thus we see
that the domain part of εf induces a bijection C(X,A′) ∼= C(X,A) for every
X ∈ C, which means it is an isomorphism. We will denote it using ef : A′ ∼= A
for clarity.

Now we can de�ne a new functor K : C2 → Q using the condition L5. Take
the object K ′f and use the iso�bration structure to transfer it along the isomor-
phism ef ; the result of this is what we will callKf . We de�ne the action ofK on
morphisms by composition with the isomorphisms; it is straightforward to see
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that this is well-de�ned, using the naturality of ε. Functoriality is similarly very
quick to check. It is immediate that UK is a domain preserving endofunctor on
C2.

Note that the isomorphism ψf : K ′f ∼= Kf , given to us by the iso�bration
structure, is the unique isomorphism of that form which has ef as its boundary
part. Using ψf , one can de�ne a unit and counit that make U and K adjoint;
furthermore, both of these natural tranformations have trivial domain parts,
meaning that UK is strictly domain preserving as a comonad.

Having carefully chosen a particular right adjoint in this way, we can proceed
with the application of the monadicity theorem. Conditions L1, L2 and L3 are
exactly the conditions required by the standard theorem to show that the functor
M induced by the universal property of an Eilenberg-Moore category is one half
of an equivalence between Q and UK-Coalg.

Q

UK-Coalg

C2

M ''

N

gg

U ′

wwooooooooooo

K′

77ooooooooooo

U

��

K

OO

It is important to note that while M is necessarily a functor over C2, meaning
that U ′M = U , the other half of the equivalence, N , need not have that prop-
erty. In fact it is generally to be expected that there may be morphisms of C
which have no Q-map structures, but which do have coalgebra structures; the
equivalence does not necessarily restrict to an equivalence between the �bres
over each object of C2.

Now we must de�ne a CCM structure on UK-Coalg using the one on Q.
Identities are very easy; we just apply M to each of the identities in Q. For
composition, suppose we are given a pair of composable coalgebras (f, α) and
(g, β). First we need to apply N to both, giving two Q-maps. However, these
are only composable up to isomorphism, so we use L5 to change the domain
of N(g, β), obtaining a new Q-map p which we can compose with N(f, α).
Applying M to the result gives some coalgebra (h, γ), such that h is isomorphic
to g ◦ f , so we can transfer the coalgebra structure γ across the isomorphism to
obtain (g ◦ f, β • α). This is shown in the diagram

•

•

•

•

•

•

•

•

f

��

g

��

UN(f,α)

��''''''''''

UN(g,β)

��'''''''''' Up

��:::::::::::

h

��

tt
44

ss
33 CC

��
jj

**

kk
++ zz

::
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where the dotted arrows represent isomorphisms.
Finally we must check that this composition structure is associative and

unital, and that it satis�es the double category condition. The general strat-
egy for all three of these is the same; in each case we obtain two new maps
with coalgebra structures (h, γ) and (h′, γ′), and we want to check that a given
commutative square between h and h′ is a coalgebra morphism. This follows
from L6 each time. For the double category condition this coalgebra morphism
(h, γ) → (h′, γ′) then induces a coalgebra morphism between the two compos-
ites themselves. In checking associativity and unitality the given commutative
square is an isomorphism, so the fact that it is a coalgebra morphism shows that
(h, γ) and (h′, γ′) are isomorphic as coalgebras. This implies that the coalgebra
structures they induce on the composites are equal.

Theorem 2.5.3 (Characterisation of left map categories.). Let U : Q → C2 be
a CCM over C that satis�es the six conditions L1 to L6. Then there exists an
AWFS (L,R) such that there is an equivalence

Q L-Map
M

//
Noo

where the functor M is a morphism of CCMs over C.

Note on an alternative approach. There is an alternative way of handling
the question of making sure that UK is a domain preserving comonad. This
approach is due to John Bourke, who proved the theorem independently of the
author; his proof is largely very similar to the author's, but we will quickly
remark on this one aspect where the two proofs diverge. In Bourke's approach
we replace conditions L4 and L5 with a single alternative condition:

L4/5 The functor U is a discrete pushout-op�bration. This means that Q has
pushforwards in the same sense that we showed for left map categories in
Section 2.1.

Bourke's proof that UK is domain preserving uses the orthogonal factori-
sation system on C2 given by (E ,M) where E is all pushout squares and M
is all squares with isomorphisms for their domains. It is generally true that if
the forgetful functor on a category of coalgebras for a comonad is a discrete
E-op�bration for some orthogonal factorisation system (E ,M), then the counit
maps εA for that comonad are all elements of M. Specialising this result to
the case at hand, it implies that given L4/5, the comonad is essentially domain
preserving.

Both L4 and L5 can be derived as special cases of L4/5. While the converse,
that L4 + L5 ⇒ L4/5, is clearly true in the presence of the other conditions,
one can easily construct a counterexample that shows it is not necessarily true
in general. For instance, let Q be a CCM on C such that there is only one
non-trivial Q-map up to isomorphism; this Q-map can have pushouts along
isomorphisms (to satisfy L5) without needing to have all pushouts (as L4/5
would imply).
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Categories of lifting structures. We end this chapter by considering D →
C2 to be an arbitrary CPCM and looking at the properties of L∗(D). How close
do we come to being able to apply the theorem in this extremely general case?

The conditions L4 and L5 are easy to see, and we have already noted the
fact that L6 and L2 hold�see Section 2.2. We will not give the proofs here, but
one can also establish L2, and similarly that L∗(D) has all small colimits and
the forgetful functor preserves them too; it also has pushforwards. Essentially,
L∗(D) has all the properties and structures you would expect from a category
of left maps, apart from one very important exception: the existence of a right
adjoint.

This observation demonstrates the importance of the small object argument.
The small object argument �lls this gap by constructing the factorisation system,
and hence the right adjoint (or, from the dual perspective, it constructs a left
adjoint for the forgetful functor L∗(J )→ C2).
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Chapter 3

Cell Complexes

In this chapter we reach the main core of this thesis�the de�nition of the
category of cell complexes generated by some category of morphisms. This
generalises the work in the paper [Ath12], in which cell complexes were de�ned
for a single set of generating maps in the category of topological spaces. Here we
extend the de�nition so that it works in any complete and cocomplete category
equipped with some simple structure. In the paper the de�nition was set up in
a way that depended on the generating maps forming a set; here we will give
a more complicated de�nition that works for any small category of generating
maps that satisfy some conditions described in Section 3.3. We will prove that
when those conditions hold, the resulting category of cell complexes satis�es
the requirements of Theorem 2.5.3 and hence is equivalent to a category of
left maps; furthermore we will see that these are the left maps for the AWFS
generated from the same category of generating maps using Garner's algebraic
small object argument.

The �rst two sections of this chapter approach the de�nition at two levels of
sophistication: the �rst deals merely with a set of generating maps, the second
extends this to a category of generating maps. The de�nition in Section 3.2
is the main one which we will use in the rest of this chapter and beyond, and
Section 3.1 can easily be recovered as a special case of it. It is worth doing
the simpler case �rst, however, as it seriously improves the readability of the
chapter.

In the third section we introduce some structure and conditions on the un-
derlying category and the choice of generating maps. We de�ne the notion of
a typical nerve which is a nerve functor on a category with special properties;
it leads us to identify a class of maps which we call typical inclusions. This is
the structure we need to de�ne certain conditions on a category of generating
maps called the typical conditions. When these conditions hold it will allow us
to prove an important lemma called the pullback lemma (Lemma 3.3.11) which
is necessary to make the de�nitions in the �rst two sections work; formally
speaking the recursive de�nition of CellCx is not completed until we prove this
lemma. In the fourth section we establish a few basic properties of the cate-
gory of cell complexes, and in the �fth we will prove the main result, applying
Theorem 2.5.3.

61
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3.1 A Set of Generators

The special case where we have a category of generating maps which is discrete
(and can therefore be viewed simply as a set) is one that includes most of
the examples we are interested in. It also allows a rather simpler de�nition of
cell complexes, and as such it provides a useful warm-up to the more general
de�nition in the next section. The basic approach is the same in both de�nitions,
so the intuitions introduced in this section are worth keeping in mind later in
the chapter.

Recall the observations made in Section 2.1, where we saw how a category of
left maps always has pushouts, composites and colimits�and that these three
ways of joining left maps together behave consistently with one another accord-
ing to the stacking property (see Proposition 2.1.4). Given any left map, it is
natural to ask how it can be decomposed into simpler left maps. In general
there may not be a canonical way to do this; but in the case of cell complexes
the generating maps form a collection of simplest possible complexes and ev-
ery complex can be decomposed into some combination of these. The stacking
property tells us that this decomposition can be performed in layers and this
observation is the central intuition behind the de�nition in this section.

Single-layer cell complexes. A cell complex with only one layer is one that
can be formed by taking a base space and gluing a set of cells onto it �all in one
go�. This concept of simultaneous gluing can be formalised by expressing the
complex as the pushout of a coproduct of generating maps.

We will work over some cocomplete category C, and consider some discrete
category of generating maps I : J → C2. In a single-layer cell complex, the cells
are all entirely independent of one another, so one can describe the complex
simply using a set of cells together with instructions for how they are each
glued onto the base space. If Ij : ∂j → j is a generating map and a is a cell
of shape j in a single-layer cell complex over the base object X, the necessary
information to see how a is glued onto X is just a morphism ga : ∂j → X which
we call the binding map of a.

The set of cells we consider in the paragraph above is really a presheaf over
J since each cell has a shape given by an object of J . We want to capture
the notion of such a presheaf together with a bit of extra information (the
binding map) attached to each cell. This data is all very nicely encapsulated
in the formalism of a comma category (or Artin gluing) of a certain functor
T : C → Ĵ .

De�nition 3.1.1. The terminal layer functor T : C → Ĵ takes an object X to
the presheaf of possible binding maps into X. This means that

TX(j) = C(∂j,X),

and this is made into a functor in the obvious way by postcomposition.

De�nition 3.1.2. The category of height one cell complexes generated by J ,
which we write as CellCx1, is de�ned to be the comma category (Ĵ ↓ T ).

Let us unpack this de�nition and recall what the comma category construc-
tion does. An object of CellCx1 is given by a triple (X,σ, g) where X is an
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object of C (the base object), σ is a presheaf of sets over J (which speci�es a
set of cells of each shape), and g is a presheaf morphism g : σ → TX. Hence
g is a collection of functions that assign to every cell a ∈ σ(j) an element of
TX(j)�it speci�es the binding maps of cells. Given a cell a ∈ σ, we will write
sa for the shape of a (the object of J which a lives over) and ga for the binding
map.

De�nition 3.1.3. The underlying map functor U1 : CellCx1 → C2 is de�ned
using pushouts. Given a height one complex (X,σ, g), we de�ne U1(X,σ, g) to
be the bottom morphism in the pushout square

X (X,σ, g)

∐
a∈σ ∂sa

∐
a∈σ sa

∐
a∈σ Isa //

//

〈g〉

�� ��

in which the map 〈g〉 is the map out of the coproduct induced by the collection
of maps ga : ∂sa → X. A morphism of CellCx1 is a morphism of base objects
together with a function between the sets of cells. This function induces a map
between the upper parts of the pushout squares for each complex, and this
induces a commutative square between the images under U1 which makes U1 a
functor.

Finally we can quickly note that U1 has a right adjoint, which we call the
free cell complex functor and write K1. For any morphism f : A → B in C,
the free cell complex K1f has base object A. For its presheaf part it has the
presheaf of all commutative squares

j B,

∂j A//

//

Ij

��
f

��

and we can specify that the binding map of each square is the top morphism
∂j → A.

Now, any map from another cell complex (X,σ, g) into K1f gives a function
from σ to the presheaf of such commutative squares; this determines a map
sa → B for each a ∈ σ, which gives a morphism in C2 of the form U(X,σ, g)→ f .
Furthermore, this is a bijective correspondence since any such map U(X,σ, g)→
f determines precisely the morphisms sa → B for each of its cells, and thus
speci�es a unique cell complex morphism (X,σ, g) → K1f . Hence we can see
that U1 and K1 form an adjunction.

Multiple-layer cell complexes. To build an appropriate category of cell
complexes (and create a category that has some chance of being a category of
left maps) we must be able to compose our maps. Since composing two single-
layer complexes may result in some cells that are joined onto other cells, we will
end up with some cell complexes that cannot be described by a single layer. For
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full generality (depending on the choice of generating maps) we may need to
consider complexes with any trans�nite number of layers.

For this reason the de�nition now becomes recursive. We assume that we
have de�ned height α complexes, where α can be any ordinal number, and
we will construct another terminal layer functor Tα : CellCxα → Ĵ . Then
we can de�ne height α + 1 complexes using the same kind of comma category
construction as we used previously.

Considering this iterated comma category construction, we will end up think-
ing of a cell complex as a base object followed by a sequence of presheaves. The
length of the sequence is the height of the complex; in particular we should
point out that the initial case of the recursion is just a base object and an empty
sequence�in other words, CellCx0

∼= C. We will generally write a cell complex
over X in the form (X,~σ) where ~σ represents the sequence of presheaves.

Another piece of notation we should introduce immediately is the following:
if β is some ordinal less than the height of (X,~σ), we will write (X,~σ|β) for
the β-abbreviation of (X,~σ), by which we mean the height β cell complex we
get by removing layers from (X,~σ). The abbreviation (X,~σ|β) is naturally a
subcomplex of (X,~σ) so there is an inclusion morphism which we will denote by

(X,~σ|β) (X,~σ).
iβα //

We will see how this is formally de�ned in the following paragraphs; it is worth-
while introducing the notation up front since the de�nition is highly recursive.

De�nition 3.1.4. The terminal layer functor Tα : CellCxα → Ĵ takes a com-
plex (X,~σ) to the presheaf of possible new binding maps into the object (X,~σ).
This means that if we start with the presheaf C(∂(−), (X,~σ)), then Tα(X,~σ)
is the subpresheaf of this consisting of only the binding maps which cannot be
factored through any lower layer of the complex. So formally

Tα(X,~σ)(j) =
{
g : ∂j → (X,~σ)

∣∣∣∀β < α, ∀k : ∂j → (X,~σ|β), g 6= iβα ◦ k
}
.

Again, this is made into a functor in the obvious way by postcomposi-
tion; we must check that postcomposition with any cell complex morphism
(f, ~θ) : (X,~σ) → (Y, ~τ) preserves the set of binding maps that cannot be fac-
tored through any lower layer. To do this we use the pullback lemma (Lemma
3.3.11) which we will prove later. It implies that if the composite

∂j (X,~σ) (Y, ~τ)
g // (f,~θ) //

factors through a lower layer of (Y, ~τ) then the binding map g itself factors
through a lower layer of (X,~σ).

The fact that we have used a lemma from the end of Section 3.3 to make sure
this de�nition makes sense may seem rather strange; in fact, it is just part of the
recursion. There is an induction hypothesis that we have proved the pullback
lemma for height α complexes before we move on to de�ning height α+ 1, and
this is not a problem because everything in Section 3.3 will work exactly the
same for the category of complexes up to any ordinal height.
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There is a good reason for the extra condition that the binding maps do not
factor through any lower layer. If we relaxed this condition we could have cells
in the third layer of a complex that could really be moved into the second layer
using the stacking property; this condition enforces the `normal form' we are
working with where every cell has to be in the lowest layer it can be in.

De�nition 3.1.5. The category of height α + 1 cell complexes, which we will
write CellCxα+1, is de�ned to be the comma category (Ĵ ↓ Tα).

De�nition 3.1.6. The underlying map functor Uα+1 : CellCxα+1 → C2 is
de�ned in a similar way to U1 above. Let (X,~σ) be a height α+ 1 complex. Its
image under Uα+1 is constructed using the composite

X (X,~σ|α) (X,~σ)
Uα(X,~σ|α) // ψ //

where the map ψ is the result of treating the top layer of (X,~σ) as if it were a
single-layer complex over (X,~σ|α) and then applying U1.

The inclusion map iα(α+1) is de�ned to be equal to ψ above. Each other
inclusion map iβα is de�ned as a composite (possibly trans�nite) of these `single-
step' inclusion maps.

Again, we wish to check that Uα+1 has a right adjoint which we will denote
by Kα+1. This is not hard to construct; given any map f : A → B in C, the
�rst step is to apply Kα to f to obtain a height α complex. We must then
add one new layer to this in order to get Kα+1f . Our immediate instinct is
to apply the functor K1 to the map ε : Kαf → B given by the counit of the
α-level adjunction. This is the right kind of idea, but one can see that the result
contains cells that disobey our important rule�they have binding maps that
can be factored through abbreviations of Kαf .

The solution to this is not particularly subtle; we just take the subcomplex
of K1ε that contains only the legal cells. This is now a valid extra layer we can
add to Kαf , and doing so provides our de�nition of Kα+1f . Since any map
from a height α+ 1 complex into Kα+1f will only be able to hit the cells in K1ε
that are legal anyway, it is not hard to see that we have a right adjoint to Uα+1.

The limit ordinal case. The case of a cell complex of limit ordinal height λ
is very straightforward. First of all, note that for each ordinal α the category
CellCxα has an inclusion functor into CellCxα+1, which we will denote by

CellCxα CellCxα+1.
Iα(α+1) //

This is de�ned simply by taking each height α complex (X,~σ) to the initial (in
other words, empty) presheaf in Tα(X,~σ). Basically, every height α complex can
be thought of as a height α+ 1 complex whose top layer is empty; we will also
compose these inclusion functors together to get Iβα : CellCxβ → CellCxα for
any pair of ordinals β < α. Then the category CellCxλ is just the colimit of
the sequence of inclusion functors Iβα for all β < α < λ.

To de�ne the underlying map of a height λ complex (X,~σ), we �rst obtain
the underlying maps Uα(X,~σ|α) of the abbreviations for every α < λ. For any
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pair of these abbreviations given by β < α < λ there is the inclusion map
iβα : (X,~σ|β)→ (X,~σ|α) such that Uα(X,~σ|α) is equal to the composite

X (X,~σ|β) (X,~σ|α).
Uβ(X,~σ|β) // iβα //

This shows that sequence of abbreviations gives a colimit diagram that de�nes
a trans�nite composite of the inclusion maps. We de�ne the underlying map
of the entire complex, Uλ(X,~σ) : X → (X,~σ), to be this trans�nite composite.
The right adjoint of this is de�ned simply as the limit of the sequence of right
adjoints for each ordinal less than λ: the free height λ complex on f is the object
of CellCxλ de�ned by the sequence (Kαf)α<λ.

The total category of cell complexes. So far we have treated cell com-
plexes of di�erent heights as entirely di�erent cases; for our de�nition to make
sense we will need to have a single category that contains all cell complexes of
all heights. This is itself rather easy, but we do run into complications when
we try to extend the functors Kα into a free total cell complex functor K. The
problem is that some choices of generating maps may lead to complexes which
can be arbitrarily high�and since Kf must be universal it has to be as high as
any of them, so it cannot exist! For this reason, we care a lot about the existence
of a maximum height for cell complexes; this property of the generating maps
is analogous to the smallness conditions required for the small object argument
to work.

De�nition 3.1.7. We de�ne the total category of cell complexes, which we de-
note by CellCx. It has as its objects all cell complexes of any height. The
morphisms (A,~σ) → (B,~τ), where these are complexes of height α and β re-
spectively, are the morphisms in CellCxα from (A,~σ) to (B,~τ |α) if α ≤ β, or
(A,~σ) to Iβα(B,~τ) if β < α.

One can clearly use the sequence of functors Uα to obtain a single underlying
map functor U : CellCx → C2 in such a way that they commute with the
inclusion functors CellCxα → CellCx. As we observed above, this functor U
does not necessarily have a right adjoint. The following condition is enough to
ensure that it does.

De�nition 3.1.8. We say that a (discrete) category of generating maps J has
λ as a height ceiling if Tλ is the constant functor that takes every object in
CellCxλ to the empty presheaf.

Having λ as a height ceiling implies that any higher ordinal is also a height
ceiling. It also forces layers above λ in any complex to be trivial, and hence tells
us that every complex is isomorphic to one of height λ or lower. This means
that the categories CellCxλ and CellCx are equivalent, and in turn implies
that we can construct the total right adjoint K simply by using Kλ.

Basically any example we care about in practice will have a height ceiling;
the classic example on topological spaces has ω as a height ceiling�this follows
from the usual smallness conditions that are part of the small object argument
(see [Hov99] for detail). Similarly, all the n-categorical examples we will be in-
terested in will have ω as a height ceiling, because any cell in a free n-category
is the composite of a �nite number of generating cells. One can also construct
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examples with 1 as a height ceiling�this happens, for example, if every gener-
ating map has empty domain. In this case the entire construction reduces to
the nerve-realisation adjunction discussed in Section 1.1.

3.2 A Category of Generators

We will now repeat the work in the previous section without the requirement
that J be a discrete category�so the initial data we begin with is any small
category over C2 which we will always write as I : J → C2. The case where J
is not discrete proves to be rather more complex and potentially confusing than
the simpler case; hopefully the framework we established in the last section will
serve as a reference point and keep an overall picture of the de�nition accessible.

Single-layer cell complexes. Again we begin by considering cell complexes
that can be described using only one pushout of a single colimit of generating
maps. For the case of complexes with only one layer of cells, the fact that J is a
category does not really change the de�nition. Instead of just a set of cells with
di�erent shapes we have a set of cells together with some data telling us how
they �t together using the morphisms of J ; but this data is still all captured
perfectly by the notion of a presheaf.

De�nition 3.2.1. The terminal layer functor T : C → Ĵ takes an object X to
the presheaf of possible binding maps into X. This means that

TX(j) = C(∂j,X),

and this is a presheaf over J by precomposition with the boundary part of each
map α : j → k. As before, T is made into a functor by postcomposition.

De�nition 3.2.2. The category of height one cell complexes generated by J ,
which we write as CellCx1, is de�ned to be the comma category (Ĵ ↓ T ).

At this point in the de�nition, everything works just as it did in the previous
section. We continue using the same notation and terminology; so if (X,σ, g) is
a complex we call X the base object and the natural transformation g : σ → TX
gives each cell a a binding map ga. Now we also have restriction maps�for any
cell a and morphism α : j → sa in J there is a cell α(a) of shape j which we
call the restriction of a along α.

The adjunction between the underlying map functor U1 and the free cell
complex functor K1 is de�ned almost exactly as before. The pushout square
to de�ne U1 uses colimits rather than coproducts, and the set of commutative
squares

j B,

∂j A//

//

Ij

��
f

��

is made into a presheaf over J by de�ning restriction maps using precomposi-
tion.

We should point out that for a given base object X, the slice category over
TX (which is the subcategory of single-layer complexes on X) is itself a presheaf
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category with one object for every element of TX. From this perspective, U1

and K1 can be constructed as a nerve-realisation adjunction. This alternative
approach to de�ning CellCx1 might seem easier as it makes the adjunction fall
out trivially; however, the approach we are taking has the advantage that all
complexes are de�ned as presheaves over the same category, which will make
life simpler later on.

Downward cell functions. The main subtlety we will now have to contend
with as we de�ne cell complexes with multiple layers is the fact that restriction
maps do not necessary respect the layers. One can easily visualise the situation
where a cell has a binding map ga : ∂j → (X,~σ) that only factors through layer
one, but when restricted along α we get gα(a) given by the composite

∂k ∂j (X,~σ)
∂α // ga //

which can easily factor through X if ∂k is a subobject of ∂j (which will generally
be the case). In this case, we cannot represent layer two as a presheaf in Ĵ
because the restriction α(a) is not in layer two�it must be in layer one by the
rule saying cells must be in the lowest possible layer.

To solve this issue, we encode some of the restriction maps (the ones that
change layer) with an extra piece of information called the downward cell func-
tion (which will be formally de�ned in De�nition 3.2.4). Note that, as the name
would suggest, these `layer traversing' restriction maps can only go downwards
in the complex. The downward cell function is encoded in the same way as the
binding map of a cell, using the presheaf T (X,~σ) and the natural transforma-
tion g. We also need to change the category over which we take presheaves so
that it is more �exible�since some restriction maps are missing from its point
of view�and to do this we can use the notion of a sieve.

De�nition 3.2.3. For any small category J we de�ne the category of sieves
on J , which we will write SJ , as follows:

� an object of SJ is a strict subobject of a representable in the presheaf
category Ĵ ,

A→ [s],

� a morphism between two such sieves is a pullback square

B [t]

A [s]//

//
��

[α]��

in the presheaf category, for any morphism α : s→ t in J .

It is tempting to think of this construction as some kind of completion�one
considers the canonical inclusion map J : J → SJ which takes each object s in
J to the initial sieve, ∅→ [s]. However, it is easily seen that the construction
is not idempotent; the category SSJ is not equivalent to SJ . For example, it
contains a new copy of every sieve in the original sieve category. A better way
to think about SJ is as a category of `J -objects with structure'; an object of
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SJ is an object of J together with the structure of a sieve on that object. This
makes the de�nition of morphisms in SJ less opaque�a morphism between two
sieves is a `structure preserving' morphism between their carrier J -objects.

The category SJ is exactly the right one to consider as a general category
of cell shapes. When a cell is simple and has a trivial downward cell function,
it is represented as an element over one of the trivial sieves in the image of
J : J → SJ . However, when a cell has some non-trivial downward cell function,
this de�nes a collection of cells inside it that are really in lower layers of the
complex. This collection of cells is precisely a sieve, so we represent the cell as
an element over that sieve. The sieve tells us exactly which restriction maps are
missing.

Multiple-layer cell complexes. We are now equipped to make the recursive
de�nition of cell complexes with any trans�nite number of layers. As before, we
assume everything is done for some ordinal number α, and proceed to make the
necessary de�nitions for α+ 1. We will de�ne the terminal layer functor again;
though this time it takes values in ŜJ rather than Ĵ .

The same intuition�and notation�as before can be used for this de�nition.
A cell complex consists of a base object followed by a sequence of presheaves,
where each element represents a single cell and comes with the extra information
of a binding map and downward cell function given by the natural transforma-
tion g : σα → Tα(X,~σ|α). Again we can talk about the β-abbreviation of a
height α complex for any β < α, and again we will have inclusion maps

(X,~σ|β) (X,~σ|α)
iβα //

for any pair of ordinals β < α both less than or equal to the height of (X,~σ).

De�nition 3.2.4. The terminal layer functor Tα : CellCxα → ŜJ takes a
complex (X,~σ) to the presheaf of possible cells in the next layer�it encodes the
data of binding maps and downward cell functions. This means that an element
of Tα(X,~σ)(A→ [j]) is given by a pair (g, κ). The binding map g is a morphism
∂j → (X,~σ) such that

∀β < α, ∀k : ∂j → (X,~σ|β), g 6= iβα ◦ k,

just as in the previous section. The downward cell function κ assigns to each
morphism φ : k → j in the sieve A → [j] a cell κ(φ) of shape k in some lower
layer of the complex; we can write it as

κ : A→
∑
β≤α

σβ

where the sum on the right represents the set of all cells in the complex so far.
Both sides of the arrow above can be seen as presheaves on J (A by def-

inition, the set of all cells using Proposition 3.2.6 below) so we ask κ to be
a morphism of presheaves on J . This implies that if ψ : h → k is another
morphism of J , then

κ(ψ ◦ φ) = ψ(κ(φ)),



70 CHAPTER 3. CELL COMPLEXES

where ψ(κ(φ)) is the restriction of κ(φ) along ψ, de�ned using Proposition 3.2.6.
We also require κ to respect the binding maps in the sense that

gκ(φ) = g ◦ ∂φ.

Now we can easily make Tα(X,~σ) into a presheaf on ŜJ ; the restriction of
(g, κ) along some morphism in SJ given by the morphism φ in J has binding
map g ◦∂φ and downward cell function that takes ψ to κ(φ◦ψ). Finally, we can
see that Tα is a functor: if (f, ~θ) : (X,~σ) → (Y, ~τ) is a morphism in CellCxα

then Tα(f, ~θ) takes (g, κ) to an element with binding map (f, ~θ)◦g and downward
cell function ~θ ◦ κ. Again, we must use the pullback lemma (Lemma 3.3.11) to
check that the new binding map is still legal; this works in exactly the same
way as in Section 3.1.

De�nition 3.2.5. The category of height α+1 cell complexes, which we denote
by CellCxα+1, is de�ned to be the comma category (ŜJ ↓ Tα).

For any morphism φ in J we can talk about the restriction φ(a) of a cell a
along φ, and this will sometimes mean a cell in the same layer using the presheaf
structure and sometimes mean a cell in a lower layer using the downward cell
function; see the following Proposition.

Proposition 3.2.6. Given a height α cell complex (X,~σ), we can partition all
of its cells into sets

S(j) =
∑
β≤α

(A→[j])∈ŜJ

σβ(A→ [j])

of cells with the same underlying shape in J . Then S is a presheaf over J ,
where restriction maps are de�ned either using the presheaf structures at each
layer or using the downward cell functions.

Proof. First we check that these restriction maps are well de�ned; given a cell
whose shape in SJ is A → [j], the maps φ : k → j into j are split into two
disjoint sets. Some are in A, in which case they do not produce morphisms
of sieves because when we pullback along an element of the sieve we get the
identity morphism on [k] which is not a strict subobject of [k]. Those that are
not in A, however, do produce morphisms in SJ . Thus the restriction maps for
our presheaf structure are well-de�ned, because we can always use either the
downward cell function or the presheaf structure, but never both.

After this check all that is left to see is the functoriality part of being a
presheaf. For those restriction maps that stay in one layer this follows imme-
diately from the presheaf structure of the layer. For those that go downwards
in the cell complex functoriality is one of the two conditions on downward cell
functions given in the de�nition above.

The next step in our de�nition is as usual to construct the underlying map
functor Uα+1 : CellCxα+1 → C2. This is made slightly more complicated by
the downward cell functions, since when we add a cell there may be parts of it
that are really in lower layers�so we need to make our pushout in such a way
that we do not add on an extra copy of some earlier cells.

In order to do this, consider some object of SJ that we will write A → [j].
We will begin by thinking about exactly what a cell of that shape adds to the
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underlying object (A,~σ) of a cell complex. The overall shape of this cell is j,
so we begin with the map Ij : ∂j → j. However, for each φ : k → j which is
in A, we get a piece of j (given by φ : k → j) that must already appear in the
complex. We must somehow put these k shaped pieces in the boundary of our
map.

De�nition 3.2.7. If A → [j] is a sieve over j ∈ J , de�ne the underlying map
of the sieve to be the dotted arrow induced by the pushout square

∂j ∂A

∐
(φ : k→j)∈A

∂k
∐

(φ : k→j)∈A

k

j,

∐
Ik //

//

〈∂φ〉

�� �� 〈φ〉

��111111111111111111

Ij

++WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

##

in which the coproduct symbols represent colimits taken over the diagram that
contains an object for each φ : k → j in A, and a morphism from φ : k → j to
φ′ : k′ → j is simply any morphism ψ : k → k′ in J such that φ = φ′ ◦ ψ. The
triangular brackets represent maps out of these colimits induced by cocones.
We will denote the underlying map of the sieve by I(A→ [j]) : ∂A→ j.

We now observe that any morphism of sieves gives us a morphism of pushout
diagrams like the one above, and hence a commutative square

∂B k.

∂A j//

//
��

α

��

Furthermore, the functor Tα gives exactly the data needed to de�ne a map
∂A → (X,~σ) for each element of Tα(X,~σ)(A → [j]). The binding map is a
morphism g : ∂j → (X,~σ), while the downward cell function gives us

〈ικ(φ)〉 :
∐

(φ : k→j)∈A

k → (X,~σ)

in which ιa represents the inclusion map of sa into the colimit (X,~σ). These two
morphisms induce a map h(g,κ) : ∂A → (X,~σ) using the pushout square that
de�nes ∂A.

De�nition 3.2.8. We de�ne the underlying map functor Uα+1 : CellCxα+1 →
C2 using a pushout square to construct the new layer and composing this with
the result of Uα applied to the α-abbreviation. Given a height α+1 cell complex
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(X,~σ) we use the following pushout

(X,~σ|α) (X,~σ)

∐
a∈σα ∂Sa

∐
a∈σα sa

∐
a∈σα I(Sa→[sa])

//

λ
//

〈h(ga,κa)〉

�� ��

to construct λ, the map underlying the top layer of (X,~σ). Note that we use
the notation Sa to mean the sieve that gives the shape of a in SJ , while we have
continued using sa to mean the shape of a in J . Also note that the coproduct
signs are being used to denote colimits de�ned in the same way as for single-
layer complexes; one considers the category of elements of σα as a diagram in
C2 using the underlying maps of sieves.

Having de�ned λ, the morphism Uα+1(X,~σ) is de�ned as the composite

X (X,~σ|α) (X,~σ).
Uα(X,~σ|α) // λ //

We can make this into a functor in the same way as we did the underlying map
functor in the previous section; a function between the presheaves of cells induces
maps between the colimits and this gives a morphism of pushout squares.

We will now construct the right adjoint to this underlying map functor,
which we write as Kα+1 and call the free cell complex functor. If f : X → Y is
any morphism in C, we begin by applying Kα to obtain a height α cell complex
Kαf . Now we must de�ne a new layer on this complex. Consider the presheaf
σ on SJ with σ(A→ [j]) given by the set of commutative squares

j Y,

∂A Kαf//

//

I(A→[j])

��
ε

��

where as before ε : Kαf → Y is the map given by the counit of the adjunction
between Uα and Kα. For each element of σ we consider the top morphism
∂A→ Kαf . In some cases, this can be speci�ed by a binding map and downward
cell function; we take the subpresheaf consisting of such cases together with the
obvious natural transformation to TαKαf . This de�nes Kα+1f .

A similar argument to those used in previous sections will show that this
Kα+1 is �rst of all a functor C2 → CellCxα+1 and secondly the right adjoint
to Uα+1. Basically, any morphism of cell complexes into Kα+1 can only hit the
`legal' elements that are contained in the subpresheaf.

Completing the de�nition. The remaining steps necessary to complete the
de�nition of the total category of cell complexes CellCx are performed in exactly
the same way as in the previous section. The inclusion functors

CellCxβ CellCxα
Iβα //
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are once again de�ned by adding empty layers to the shorter cell complex. The
limit ordinal case once again uses the colimit of this sequence of inclusion func-
tors for β < α < λ and the trans�nite composite of morphisms in C. Similarly,
the total category de�nition is precisely the same as De�nition 3.1.7.

Again, the existence of a total right adjoint K : C2 → CellCx depends on
the condition of a height ceiling, an ordinal number at which the functors Tα
become trivial. This is formalised in precisely the same manner as that given
in De�nition 3.1.8.

3.3 Typical Inclusions

In the previous two sections we were slightly vague in our assumptions; we
worked with a category C which we asked to be cocomplete and we also assumed
that we could prove the pullback lemma. It turns out that proving the pullback
lemma requires quite a few conditions and some special structure on C, which
we will introduce in this section. These conditions will also allow us to check
that CellCx has the basic properties we would expect, and ultimately they
will let us prove that we have de�ned the category of left maps for the AWFS
generated by J .

The main source of issues that can prevent us from being able to prove the
pullback lemma is the inclusion of generating maps that are not su�ciently
injective; for example, simply considering the generating map {a, b} → {∗} in
Set will provide a rather pathological example. The basic point is that for cell
complexes to behave as one would expect the process of adding a cell should
mean strictly adding to the complex's underlying object; if we have non-injective
generators then sometimes adding a cell actually means reducing the underlying
object by identifying parts of it. This really messes up our geometric intuition
about cell complexes and (usually) causes the pullback lemma to fail; for this
reason, the main substance of this section will be to establish a characterisation
of inclusion maps that are `su�ciently injective'.

It is worth saying that throughout this section there are two main examples
to have in mind. The �rst is topological spaces, where the `nice' inclusions
we care about are the subspace inclusions. The second is categories, or some
globular de�nition of higher categories, where the nice inclusions are simply all
the subcategory inclusions. These are the examples we actually want to use
later on, and they serve as the archetypes for the de�nitions we make here.

De�nition 3.3.1. We call a subcategory N of the arrow category C2 a category
of typical inclusions if

� any equaliser morphism in C is in N (or equivalently N contains the
regular monomorphisms),

� N is a category of composable maps over C, as in Section 2.1,

� N is closed under pushout and pullback,

� if we have an equaliser

E X Y,
e //

f //
g

//



74 CHAPTER 3. CELL COMPLEXES

together with a morphism m : E → E′ that is in N , taking the pushout
of the whole equaliser diagram along m, as shown below

E X Y

E′ X ′ Y ′,

e //
f //
g

//

e′ //
f ′ //
g′

//

m

�� �� ��

where the rightmost map is de�ned as the pushout of m along fe (or ge)
and the maps f ′ and g′ are induced by the universal property of X ′, gives
another equaliser diagram,

� any small diagram in C2 which contains only objects and morphisms in N
has a colimit which is also an object of N , and �nally,

� given any morphism (a, b) : n→ m in N , in the diagram

A B

C E

D

n //

//

a

�� ��

m ++WWWWWWWWWWWWWWW
b

��------------

##

the dotted arrow is also an object of N .

This de�nition gives the basic axioms of the class of inclusions we want
to choose our generating maps from. They are mostly pretty sensible things
for a class of inclusions to have; the fourth bullet point is a special case of
limits commuting with colimits that will be necessary to prove that U preserves
equalisers in Section 3.5. We might observe that the �nal bullet point is similar
in some respects to the pushout-product axiom which appears as De�nition 4.2.1
in [Hov99], though the author is not aware of any real connection.

We also need the typical inclusions we use to be characterised in a particular
way. Recall that if S is a small category with a functor S → C we can form a
nerve functor V : C → Ŝ. If S and its inclusion functor are chosen nicely, this
nerve functor can behave in some respects like the underlying set functor on
topological spaces, and it will induce a category of typical inclusions.

De�nition 3.3.2. A nerve functor V : C → Ŝ is called a typical nerve if it
induces a class of typical inclusions, which we will write NV , as follows

� a monomorphism m : A → B in C is an object of NV if it is terminal
among the monomorphisms into B that are mapped to V m by V ;

� a square between two such monics in C is a morphism of NV if it satis�es
the �nal bullet point in De�nition 3.3.1;

and furthermore, we have two extra conditions:

� any pushout square between two typical inclusions is also a pullback
square, and
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� the functor V preserves trans�nite composites.

Remark. Firstly, we should note that the �rst of the two extra conditions implies
that any morphism of NV is a pullback square, because it can be written as a
composite of a pushout between two typical inclusions and a triangle of typical
inclusions (which we consider as a square whose top morphism is an identity).
This is shown in the following diagram, where typical inclusions are denoted by
7→ arrows:

• •

• •

•

•.

//
_

��

_

��

_

��// � //

The fact that the latter square is a pullback follows simply from the properties
of monomorphisms.

Secondly, it is worth pointing out that in order to check the �rst of the two
conditions we only need to check that the square is a pullback when V is applied
to it. One can use a combination of the fact that V preserves limits (it is a right
adjoint) and the universal property of any typical inclusion to see that V re�ects
pullback squares between typical inclusions.

The following property of typical inclusions will be very useful in Proposition
3.3.9.

Proposition 3.3.3. Given a typical nerve V and any object X, the counit
map εX :

∐
V X → X has the left lifting property with respect to every typical

inclusion: that is, for any square∐
V X A

X B

//

//

εX

��

_

m

��

::

in which m is a typical inclusion, there exists a unique dotted arrow as shown
such that the two triangles commute.

Proof. This is partly a consequence of the universal property of typical inclu-
sions, but also requires the fact that typical inclusions are preserved by pullback.
First we take the pullback inside the square given above to get∐

V X

P A

X B.

//

//

_

p

��

_

m

��

$$

εX

��////////////////

++XXXXXXXXXXXXXXXXXXXXXX

Then we consider the nerve functor V applied to the left hand side of the
diagram; the map V p : V P → V X is an injective map of presheaves. But even
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more than this, each element s→ X of V X appears inside
∐
V X and can hence

be factored through P�this implies that V p is surjective as well, and hence it
is an isomorphism.

We have seen that the typical inclusion p : P → X is mapped to an isomor-
phism by V . Together with the universal property of typical inclusions, this tells
us that p itself is an isomorphism, allowing us to construct the dotted arrow
X → A. The uniqueness requirement is given by the fact that m is a typical
inclusion and hence a monomorphism.

From now on, we will work over a pair (C, V ) consisting of a complete and
cocomplete category C equipped with a typical nerve V . One can quite easily
verify that in the category of topological spaces the forgetful functor to Set
is a typical nerve, whose typical inclusions are exactly the subspace inclusions.
Similarly, for categories the underlying graph functor is the typical nerve that
we wish to use. For higher categories the generalisation of the underlying graph
functor, the underlying globular set functor, will also in general be a typical
nerve.

We must now consider what conditions a category of generating maps J →
C2 should satisfy with respect to the typical nerve. First of all, we need every
generating map to be a typical inclusion. We also need the morphisms between
generating maps to be morphisms of typical inclusions. This is very easy to
formalise simply by asking that the functor J → C2 factor through the inclusion
NV → C2; however, this is not quite enough to prove Proposition 3.3.6.

De�nition 3.3.4. A category of generating maps J → C2 is distinguishable
with respect to the typical nerve V if the underlying map functor I : SJ → C2
on the category of sieves factors through the category NV , and no sieve A→ [j]
has an underlying map that is an isomorphism.

Note that as J → C2 can be factored through the category of sieves using
the trivial sieves, distinguishability implies that each generating map is itself a
non-trivial typical inclusion. Proposition 3.3.6 is now almost automatic; �rst
we should de�ne exactly what we mean by a subcomplex.

De�nition 3.3.5. A subcomplex of a complex (A,~σ) is a subobject of (A,~σ)
in the category CellCx(A). This is the subcategory of CellCx consisting just
of complexes over A and morphisms with 1A as their base object part. (Recall
that a subobject of some object X in any given category is an isomorphism class
of monomorphisms into X.)

One could simply consider all monomorphisms in CellCx as subcomplexes,
but this would introduce annoying complications because of subcomplexes that
only contain part of the base object; the de�nition above will make life a great
deal simpler later on. Any subcomplex is determined by some subset of the set
of all cells in a complex; this follows from the fact that a morphism of presheaves
is a monomorphism if each of its components is an injection of sets. Of course,
not every subset gives a subcomplex, since some subsets will not de�ne valid
cell complexes.

Proposition 3.3.6. Given the assumption that J → C2 is distinguishable with
respect to V , any strict subcomplex inclusion map is a non-trivial typical inclu-
sion.
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Proof. Any subcomplex inclusion map can clearly be de�ned as a trans�nite
composite of pushouts of underlying maps for sieves. To add some extra cell a
which is not in the subcomplex, the pushout we use is

(A,~τ) (A,~τ + a)

∂A sa
I(A→[sa]) //

//

(ga,〈ιφ(a)〉φ∈A)

�� ��

where A → [sa] is the sieve of parts of a that are in the subcomplex already.
A simply induction argument will show that each layer can be �lled in using
a sequence of such pushouts, and then a trans�nite composition will allow us
to do each layer in turn. Since NV is closed under pushout and closed under
trans�nite composition, the proposition follows immediately.

Remark. It follows straight away from this proposition that the underlying mor-
phism of any complex (or any individual layer of a complex) is a typical inclusion,
as these are just special cases of subcomplex inclusions.

The following de�nition will provide a very useful way to study maps into
cell complexes. It is also vital to de�ning the �nal condition we will ask our
generating maps to satisfy.

De�nition 3.3.7. We consider some cell complex (A,~σ), and any morphism
x : P → (A,~σ) in C. The subcomplexes of (A,~σ) form a poset, so we can ask if
there is a initial object in the subposet of subcomplexes with the property that
x factors through their inclusion maps. If this exists, we call it the minimal
subcomplex determined by x. We will denote it by µ(x).

We do not need all minimal subcomplexes to exist and behave well; it is
simpler to restrict our attention to certain maps into (A,~σ). Recall that the
nerve V is constructed from the category of shapes S and its functor into C.
We call the objects in the image of this functor shape objects, and it is only
morphisms from these into (A,~σ) that we actually worry about. Any morphism
from a shape object into (A,~σ) corresponds to an element in the typical nerve
V (A,~σ), so it makes sense to focus on these particular morphisms.

De�nition 3.3.8. Given a category of generating maps, we say that it has
consistent subcomplexes whenever

� any morphism x : X → (A,~σ) into a cell complex has a minimal subcom-
plex,

� given any morphism of complexes as in the diagram

B (B,~τ)

A (A,~σ)

X

U(A,~σ) //

U(B,~τ)
//

f

��

(f,~θ)

��

xkkWWWWWWW
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with a morphism from X as shown, we have

µ((f, ~θ) ◦ x) = ~θ(µ(x))

where we can demand strict equality by considering them both as sub-
complexes of (B,~τ).

The following proposition will make the condition of having consistent sub-
complexes much easier to check in practice, by allowing us to restrict our atten-
tion to a small set of objects in C.

Proposition 3.3.9. A weaker (and somewhat easier to check) alternative to
the above is the condition that a category of generating maps has consistent
subcomplexes with respect to shape objects. This is the same as the condition
in De�nition 3.3.8 above, except that we only consider morphisms x : s→ (A,~σ)
out of objects s in the image of the typical nerve V . In fact, when the category
of generating maps is distinguishable with respect to V , these two conditions are
equivalent.

Proof. Assume that some category of generating maps J → C2 is distinguish-
able with respect to the typical nerve V , and that it has consistent subcomplexes
with respect to shape objects. We simply have to check the conditions of De�-
nition 3.3.8 for a morphism out of any object

X (A,~σ).
x //

The �rst thing we can do is apply the nerve functor to X to obtain a presheaf
V X over the category of shape objects S. We will write EV X for the category
of elements of this presheaf.

Notice �rst of all that there is a natural functor D : EV X → C/X, since each
element of V X speci�es a shape object s together with a map s → X. Com-
posing each of these maps with x gives morphisms from the shape objects into
(A,~σ), and by assumption such morphisms have consistent minimal subcom-
plexes. This constructs a functor EV X → SubCx(A,~σ) into the poset of sub-
complexes of (A,~σ). We can form the colimit of this diagram in SubCx(A,~σ)�
it is given by taking the union of all the subsets of cells that determine each
subcomplex.

Call this colimit subcomplex µ(x). We will show that it is indeed the minimal
subcomplex of x. We can form a square∐

V X µ(x)

X (A,~σ)

//

x
//

εX

��

_

n

��

::

in which n is the subcomplex inclusion map for µ(x) and the morphism at the
top is induced by the maps s → µ(x) for each element in the presheaf V X.
We note that because of Proposition 3.3.6 the map n is a typical inclusion; this
means we must have a unique dotted arrow X → µ(x) as shown in the diagram,
using Proposition 3.3.3.
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To see that µ(x) is indeed the minimal subcomplex with such a map out of
X, suppose we had another: X → M 7→ (A,~σ). Then we have a map s → M
for any element a : s → X in V X, and this induces a subcomplex inclusion
µ(ax) → M . Since µ(x) is the colimit of these subcomplexes, this induces the
required map µ(x)→M and gives it the necessary uniqueness property.

We must also show that these minimal subcomplexes are consistent. For any
morphism of cell complexes (f, ~θ) the identity

µ((f, ~θ) ◦ x) = ~θ(µ(x))

holds by assumption for each of the shape objects given by elements of V X.
Since the minimal subcomplexes we care about are formed as unions of these,
their consistency follows because any morphism of cell complexes preserves
unions (since it is simply a function of sets of cells).

De�nition 3.3.10. Assume we are working over the pair (C, V ). We say a
category of generating maps satis�es the typical conditions or is typical if it is
distinguishable and has consistent subcomplexes with respect to V .

The typical conditions will prove to be su�cient for our needs. They ensure
that CellCx behaves roughly according to our intuitions. Most importantly,
they are enough to �nally prove the vital pullback lemma (and thus actually
complete the recursive de�nition that we started in Section 3.1).

Lemma 3.3.11 (Pullback Lemma). Given any morphism (f, ~θ) : (A,~σ) →
(B,~τ) in CellCx, every square in C of the form

(B,~τ |α) (B,~τ)

(A,~σ|α) (A,~σ)//

//

(f,~θ|α)

��
(f,~θ)

��

for some ordinal α, where the top and bottom are the natural inclusion maps, is
a pullback square in C.

Proof. Consider a pair of morphisms from a shape object s as shown below

(B,~τ |α) (B,~τ)

(A,~σ|α) (A,~σ)

s

//

//

(f,~θ|α)

��

(f,~θ)

��

x

++XXXXXXXXXXXXXXXXXXXXXX

y

��////////////////

$$

such that the outer square commutes. The diagram shows that (f, ~θ) ◦x factors
through the subcomplex (B,~τ |α), meaning that its minimal subcomplex has
height α or less. By the consistency of minimal subcomplexes,

µ((f, ~θ) ◦ x) = ~θ(µ(x)),
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so we can see that µ(x) is also height α or less. But x factors through µ(x) by
de�nition, so x must factor through (A,~σ|α) as shown in the diagram by the
dotted arrow. The fact that the bottom arrow is a typical inclusion for a typical
nerve (and hence a monomorphism�see De�nition 3.3.2) shows that this dotted
arrow commutes with y, and the same argument for the top arrow (which is also
a typical inclusion) shows that it is unique.

This shows that the square is mapped to a pullback square by the nerve
functor; and as we showed in the remark after De�nition 3.3.2 this implies it is a
pullback square in C, because of the universal property of typical inclusions.

3.4 Basic Properties

In this section we will take the de�nition of CellCx and establish some of the
basic properties this category possesses. From now on, we work with the as-
sumption that C comes equipped with a typical nerve V , and that J satis�es the
typical conditions. The �rst aim is to show that CellCx is complete and cocom-
plete. On the way to showing this, we will examine the functor CellCx → C
that gives the base object of a complex; this functor turns out to be a bi�-
bration and this structure involves useful adjunctions between di�erent �bres
(categories of cell complexes with a given base object). The second aim will be
to describe the composition structure on CellCx.

Bi�bration structure. As we mentioned in the paragraph above, we are
interested in the functor that gives the base object of a complex, which we call
the base object functor (or sometimes the boundary functor) on CellCx, and
denote using the boundary symbol that we already use for single cells

∂ : CellCx→ C.

We will write CellCx(A) for the �bre of ∂ over A�the category of complexes
with base object A and morphisms with boundary part 1A. Recall the following
de�nition:

De�nition 3.4.1. A functor P : A → B is a Grothendieck �bration if for every
map f : A→ B in B and E ∈ A such that PE = B there exists some cartesian
morphism f ′ : F → E in A such that Pf ′ = f .

A

B

P

��

G

F E∃!g′ ))
f ′

//

k

''

PG

A B
g ))RRRRRR

f
//

Pk

''

A morphism f ′ : F → E is cartesian if for every k : G → E and g : PG → A
such that f ◦ g = Pk there exists an unique g′ : G → F in A, as shown by the
dotted arrow in the digram, such that Pg′ = g and f ′ ◦ g′ = k.
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We will show that ∂ is a bi�bration, meaning it is both a Grothendieck
�bration and op�bration, the dual concept. In order to do this, we are going to
de�ne an adjunction

CellCx(A) CellCx(B)
f∗ //
f∗

oo

for every morphism f : A → B in C, and then check that these adjunctions
compose functorially up to isomorphism. It is a classical result that there is
an equivalence of 2-categories between the 2-category of (cloven) Grothendieck
�brations on C and the 2-category of pseudofunctors from Cop to the 2-category
of categories. Section 2.1.4 (and in particular Proposition 2.1.25) of [Mic10] ex-
tend this classical result by considering (bicloven) bi�brations and pseudofunc-
tors from C into the 2-category of categories with adjunctions as the morphisms.
For our purposes all we really need to know is that the structure with adjunc-
tions f∗ a f∗ for every morphism in C is an alternative way of demonstrating a
bi�bration structure on ∂.

Pushforwards. We will construct the functor f∗ : CellCx(A)→ CellCx(B)
�rst and we will usually call it the pushforward functor along f . Recall that
for any category of left maps, pushforwards must exist; the pushforwards we
construct now will turn out to be the same ones that the general theory of
left maps provides in the case that CellCx is a category of left maps. This
means, in particular, that when composed with the underlying map functor U ,
f∗ becomes the usual pushout functor in the category C2. In fact, the domain
functor C2 → C is also a bi�bration, and the functor U preserves all of the
bi�bration structure.

Given a cell complex over A, say (A,~σ), the pushforward complex f∗(A,~σ)
is de�ned quite straightforwardly layer by layer. The presheaf part of each layer
in f∗(A,~σ) is exactly the same as that in the original; we simply change the
binding maps. At the �rst layer this is simply a case of composing each binding
maps with f to get the new binding map into B. Thus if (A, σ, g) is an object
of CellCx1, expressed fully as an object in the comma category (ŜJ ↓ T0), we
can write

f∗(A, σ, g) = (B, σ, T0f ◦ g),

since the functor T0 applied to the morphism f has the e�ect of composing each
binding map with f . Note that (1σ, T0f) is a canonical cell complex morphism
(A, σ, g)→ f∗(A, σ, g) and its action on the cells is trivial in the sense that it is
represented by the identity on σ.

At subsequent layers we can inductively assume we already have a canonical
cell complex morphism φα : (A,~σ|α) → f∗(A,~σ|α) with this trivial action on
cells. We can thus obtain a new binding map for each cell a ∈ σα by composing
ga with φα, and note that we do not need to change the downward cell functions.
Formally, we write this in precisely the same way as above: if ((A,~σ|α), σα, gα)
is an object of the comma category (ŜJ ↓ Tα), we write

f∗((A,~σ|α), σα, gα) = (f∗(A,~σ|α), σα, Tαφα ◦ gα),

since the functor Tα applied to φα will compose each binding map with φα
while not changing the downward cell functions (since φα acts trivially on the
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presheaves of cells). Again, (1σα , Tαφα) is the canonical cell complex morphism
we want for our next φα+1.

One can see that a morphism of complexes (A,~σ) → (B,~τ) which has f as
its boundary part consists of exactly the same data as a morphism f∗(A,~σ)→
(B,~τ) which has 1B as its boundary part. In both cases we are specifying a
function from the set of cells of (A,~σ) to the set of cells of (B,~τ) such that the
binding maps commute with f .

Pullbacks. The pushforward functor creates a new complex with a set of
cells that is isomorphic to the set of cells of the original complex. The pullback
functor is rather di�erent however; the new complex may contain a large number
of cells, or no cells at all, that correspond to a single cell in the original complex.
One can view the pullback as containing one copy of every possible cell that can
be mapped into the original complex along f .

To formalise this, let (B,~τ) be a complex over B. Again we will de�ne
f∗(B,~τ) layer by layer. Working inductively, assume we have done so up to
some α, so (f, ~θ|α) is a cell complex morphism from f∗(B,~τ |α) to (B,~τ |α). A
cell in the next layer of the pullback complex is given by a triple (a, g, κ) where
a is a cell in the next layer of (B,~τ), g is any legal binding map such that

(f, ~θ|α) ◦ g = ga,

and κ is any legal downward cell function such that

~θ ◦ κ = κa.

This clearly gives a presheaf on SJ�we lift the restriction maps from (B,~τ)�
and we obviously have a natural transformation to Tαf∗(B,~τ |α). The next layer
of θ is then given by the obvious map (a, g, κ) 7→ a.

Again, consider a morphism of complexes (A,~σ) → (B,~τ) which has f as
its boundary part. Now we claim this consists of precisely the same data as a
morphism (A,~σ) → f∗(B,~τ) with 1A as its boundary part; such a morphism
takes a cell a in (A,~σ) and chooses a triple (b, g, κ) as in the de�nition above.
But the g and the κ part of this triple are actually completely determined by
the binding map and downward cell function of the cell a, so we end up with
just the data of a function between the sets of cells such that binding maps
commute with f .

We have now basically established the adjunction between f∗ and f∗, since
we have shown that

CellCx(B)(f∗P,Q) ∼= CellCx(P, f,Q) ∼= CellCx(A)(P, f∗Q),

where the notation CellCx(P, f,Q) is used to mean the subset of morphisms
in CellCx(P,Q) mapped to f by ∂. The remaining naturality conditions are
straightforward to check.

Limits and colimits. When it comes to showing that CellCx is a category
of left maps, we only really need colimits�there is no necessity for a category of
left maps to possess limits. However, in the case of cell complexes, both limits
and colimits exist and are rather nicely behaved; furthermore, the processes
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involved in constructing them are basically the same (though obviously dual to
one another). For this reason, we may as well discuss both at the same time.

To help prove that CellCx is complete and cocomplete, we will use the
following general result about bi�brations.

Lemma 3.4.2. Given a bi�bration A → C, the category A is cocomplete if C
is cocomplete and each �bre is cocomplete. Dually, the same result holds for
completeness.

Proof. Suppose we are given a diagram functor D → A; write each object in
the image as (Ad, σd) for d ∈ D. We will show that the colimit of the diagram
is given by ∐

d∈D

(Ad, σd) = (
∐
d∈D

Ad,
∐
d∈D

(id)∗σd),

where for each d ∈ D, id is the inclusion Ad →
∐
d∈D Ad. Note we are using the

symbol
∐

as notation for any colimit, not just for coproducts, as indicated by
the fact that d ranges over a category rather than a set.

This colimit works by �rst taking the colimit of the underlying objects Ad
in C. Then each σd, which is an object in the �bre over Ad, is canonically
transferred to the �bre over

∐
Ad using the adjunction i∗ a i∗ that lives over

the inclusion map. Now that all the σd have been `moved' into the same category,
we can take their colimit, and we are done.

We must also specify the inclusion maps into this colimit, which have the
form

(Ac, σc) (
∐
d∈D Ad,

∐
d∈D(id)∗σd)

(ic,lc) //

where lc : σc → (ic)
∗(∐

d∈D(id)∗σd
)
is a morphism in the �bre over the object

Ac, which we de�ne as the composite

σc (ic)
∗(ic)∗σc (ic)

∗(∐
d∈D(id)∗σd

)ησc // (iC)∗(nσc ) //

in which nσc is the inclusion of (ic)∗σc into the colimit in the �bre category.
Suppose now that we have another cocone over the diagram, which is given

by its vertex object (Q, τ) and a collection of morphisms (fd, φd) : (Ad, σd) →
(Q, τ). We immediately get a unique map 〈f〉 :

∐
d∈D Ad → Q induced by the

colimit in C. To show our de�nition of the colimit is correct, we also exhibit the
composite∐

d(id)∗σd
∐
d(id)∗f

∗
d τ

∐
d(id)∗(id)

∗〈f〉∗τ 〈f〉∗τ
∐
d(id)∗φd // ∼= // 〈ε〉 //

which we will call α. We claim α is the unique such map in the �bre over the
colimit that produces a morphism in the bi�bred category that commutes with
the cocones. To check the commutativity is a straightforward diagram chase.
To see that the morphism is unique, let us suppose that there were some other
morphism β :

∐
d(id)∗σd → 〈f〉∗τ that also commuted with the cocones. When

we write out explicitly what this commutativity means, we see that it implies
that

(ic)
∗(β ◦ nσc) ◦ ησc = (ic)

∗(α ◦ nσc) ◦ ησc
for all c ∈ D. Via the adjunction, this is equivalent to β ◦ nσc = α ◦ nσc , and
since the nc are the inclusions for a colimit in the �bre category, this implies
that α = β.
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We know (by assumption) that C is complete and cocomplete, so in order
to apply the lemma above we just have to check that each �bre is complete
and cocomplete. In fact, we can use the lemma repeatedly to do an induction
argument on the height of our cell complexes. Extending this argument to the
total category CellCx is easy for colimits, but requires an extra condition in
order for all limits to exist.

Proposition 3.4.3. The category CellCxα is complete and cocomplete for any
ordinal number α. The global category CellCx will also have all small colimits;
it possesses all small limits if and only if it has a height ceiling.

Proof. We will use a slight generalisation of the fact that ∂ is a bi�bration. If ∂α
is the functor that takes any cell complex and returns the α-abbreviation of that
complex, ∂α is also a bi�bration; this can be seen using the same construction
that we made above for ∂. Note in particular that ∂ itself is just the special
case ∂0.

If we have a height α cell complex (A,~σ), consider the �bre of CellCxα+1

over (A,~σ). This category is complete and cocomplete since it is equivalent
to the slice category ŜJ /Tα(A,~σ) (the �bres of any comma category are slice
categories). This allows us to use Lemma 3.4.2 to do an induction step; if
CellCxα is complete and cocomplete then so is CellCxα+1 because of the
bi�bration ∂α. For the case of a limit ordinal we see that the limits and colimits
can be de�ned pointwise, so we have proved the �rst part of the proposition.

To extend this to the total category, in CellCx we have all colimits because
they can also be de�ned pointwise. The only possible issue is the height of the
result; for colimits this is not a problem as clearly the colimit will have height
no greater than the maximum height of the diagram complexes. However, for
limits when we de�ne the pointwise limit of a diagram of cell complexes there
is nothing to limit the height of the result. Indeed, it is easy to �nd examples
(consider, for instance, the terminal object of CellCx) where the result needs
to have height greater than or equal to any other complex. This gives the only
if part of the proposition.

Composition of cell complexes. We will now �nish this section by showing
how to compose cell complexes. Given two cell complexes (A,~σ) and (B,~τ)
where B = (A,~σ), we will see how to create a composite complex (A,~σ • ~τ).
This essentially works by going through the cells of (B,~τ) and looking at the
binding map of each, deciding which is the lowest layer of the new complex we
can put it in, and adding it to that layer of (A,~σ). To do this formally we will
use induction on the height of the second complex.

To begin with, assume that (B,~τ) has height one. Then it is given by a single
presheaf τ ∈ Ĵ of cells equipped with binding maps. For each cell b ∈ τ , let γb be
the height of the smallest abbreviation of (A,~σ) that the binding map gb : ∂sb →
(A,~σ) can be factored through. We add each b to the layer σγb of (A,~σ). For each
layer this is achieved simply using coproducts of presheaves; the restriction maps
between the new cells are induced by restriction maps in τ , and in some places
this will involve downward cell functions. To see that the underlying map of the
new composite complex is isomorphic to the composite of the underlying maps
of the two original complexes is a straightforward equivalence of two colimits.

Now consider the case that (B,~τ) has some ordinal height α + 1, and in-
ductively assume that we have de�ned composites for complexes up to height
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α. The �nal layer, τα, is a presheaf on SJ with binding maps into (B,~τ |α),
which is by an induction hypothesis isomorphic to (A,~σ • ~τ |α). Therefore we
can perform the same construction on the presheaf τα; for each b ∈ τα let γb be
the height of the shortest abbreviation of (A,~σ • ~τ |α) that gb factors through.
Again we can add each b to the layer given by γb using coproducts of presheaves,
and we get restriction maps and downward cell functions induced from the ones
in (B,~τ).

Proposition 3.4.4. The de�nition of composite cell complexes described in
the paragraphs above gives U : CellCx → C2 the structure of a category of
composable maps over C.

Proof. Identities are given by trivial cell complexes in which all layers are empty.
The associativity and unit axioms are straightforward to check.

3.5 Cell Complexes are Left Maps

We are now ready to prove the main result of this chapter and show thatCellCx
is equivalent to the category of left maps for the AWFS generated from J
using the algebraic small object argument. This will be a simple application of
Theorem 2.5.3. The �rst condition for that theorem to hold is the existence of a
right adjoint for U , which we have already constructed (provided that CellCx
has a height ceiling). We will now check each of the other �ve conditions in
turn.

Preservation of equalisers. Consider an equaliser of complexes of the form

(E,~γ) (X,~σ) (Y, ~τ),
(e,~ε) //

(f,~θ) //

(g,~λ)

//

and suppose we have some x : s→ (X,~σ), such that (f, ~θ) ◦x = (g,~λ) ◦x. Then
using the consistency of subcomplexes, we have

~θ(µ(x)) = ~λ(µ(x)),

which means that every cell in µ(x) equalises ~θ and ~λ. This means that µ(x) is
contained in the subcomplex e∗(E,~γ) of (X,~σ). Thus x can be factored through
e∗(E,~γ), and this factorisation is unique because the subcomplex inclusion is a
typical inclusion.

Now notice that the diagram

(E,~γ) e∗(E,~γ) f∗e∗(E,~γ) ∼= g∗e∗(E,~γ),
(e,1) //

(f,1) //

(g,1)

//

is itself an equaliser�because it can be expressed as the pushout of an equaliser
along the typical inclusion E → (E,~γ) we can use the fourth bullet point in
De�nition 3.3.1. The factorisation of x through e∗(E,~γ) must equalise (f, 1)
and (g, 1), so we can see that x factors uniquely through (E,~γ).

We have demonstrated the equaliser property holds for maps into (X,~σ) out
of shape objects, which implies that V maps the original diagram to an equaliser
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in the presheaf category Ŝ. Since (e,~ε) is a typical inclusion (it is the composite
of a regular monomorphism and a subcomplex inclusion), it is terminal amongst
monomorphisms that V maps to V (e,~ε). But V preserves limits, so the actual
equaliser gets mapped to V (e,~ε) too; this implies that (E,~γ) is isomorphic to
the actual equaliser, and hence an equaliser itself.

Equalisers in the arrow category C2 are de�ned pointwise and we already
know that E is the equaliser of f and g. So we have proved that U preserves
all equalisers in CellCx.

Conservativity. Given some ordinal α and any height α cell complex (A,~σ)
we will write CellCxα+1(A,~σ) for the �bre of ∂α : CellCxα+1 → CellCxα over
(A,~σ). This is the category of extra layers we can add to (A,~σ). We will write

U(A,~σ) : CellCxα+1(A,~σ)→ (A,~σ)/C

for the functor that gives the underlying map of just the �nal layer. Now
CellCxα+1(A,~σ) is equivalent to ŜJ /Tα+1(A,~σ), which is a presheaf category
itself; furthermore, it is apparent that U(A,~σ) is actually a realisation functor.

This means we can apply Proposition 1.2.5; what we need to show is simply
that U(A,~σ) satis�es the repeated element condition. To this end, let a and b be
two distinct cells with the same shape, binding map and downward cell function
in some object X of CellCxα+1(A,~σ). Considering a and b as morphisms from
a representable into X, we can take their equaliser. Because they are distinct,
this is a strict subobject of the representable, so Proposition 3.3.6 means it is
mapped by U(A,~σ) to a strict typical inclusion. But as we just showed, U(A,~σ)

must preserve equalisers, so the fact this is not an isomorphism implies that
a and b have distinct images under U(A,~σ), and this is precisely the repeated
element condition. This proves conservativity for the single-layer functor U(A,~σ).

It is now straightforward to use the pullback lemma to extend this result
to U : CellCx → C2. Suppose we have a morphism (f, ~θ) of cell complexes

such that U(f, ~θ) is an isomorphism. This means that f and (f, ~θ) are certainly
isomorphisms; but using the lemma it also implies that every `intermediate' map

(f, ~θ|α) is also an isomorphism, since it is a pullback of one. Now we can see
that each θα is realised as an isomorphism, so the conservativity for layers we
just proved tells us that each θα is itself an isomorphism of presheaves. This is
exactly what it means for (f, ~θ) to be an isomorphism of cell complexes.

Remaining conditions. There are three remaining conditions we must check
in order to apply Theorem 2.5.3, but each of these will be very simple. The
condition written as L4 in Section 2.5 is trivial to see just by looking at the
de�nition of cell complex morphism�a morphism out of a trivial complex is
just a boundary part and nothing else. The condition L5, which says that ∂ is
an iso�bration, follows immediately from the bi�bration structure.

The condition L6 asks that CellCx satisfy the double category property.
We have now proved U is conservative, so it is also faithful (using the fact that it
has a right adjoint and that C is complete). Since the set of cells in a composite
complex is the disjoint union of the two sets of cells, it is clear how we should
de�ne the horizontal composite of two morphisms. One has to check that the
binding maps work properly, but this is straightforward.
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Theorem 3.5.1. Let I : J → C2 be a small category of generating maps sat-
isfying the typical conditions with respect to some typical nerve on C and such
that a height ceiling exists for the category of J -cell complexes. Let (L,R) be
the AWFS generated from J using the algebraic small object argument. Then
there is a morphism of CCMs over C

CellCx L-Map//

which is also an equivalence of categories.

Proof. Based on the conditions that we have checked in this section, we can
apply Theorem 2.5.3 to see that the claim holds with respect to some AWFS on
C. We have only to check that this AWFS is the one generated from J using the
algebraic small object argument. This is basically proof by examination�we
look at the comonad UK on C2 and it is clearly equivalent to the comonad L.

Another way to check this is to demonstrate that the AWFS corresponding
to CellCx has the same universal property as (L,R). This universal property
of being free with respect to J (see De�nition 2.4.1) says that any functor
J → L′-Map over C2 into another category of left maps extends uniquely
to a morphism of AWFS that has as its left map part a functor CellCx →
L′-Map. This universal property holds for CellCx because every cell complex
is canonically expressed as a composite of pushouts of colimits of maps in J .
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Chapter 4

Computads

We now return to the subject of higher category theory and globular operads.
In this chapter, we will examine the de�nition of what are called computads, a
generalisation of globular sets designed to capture the best kind of data from
which one can generate a n-category. It will be immediately clear that this de�-
nition is rather similar in many respects to the de�nition of cell complexes in the
previous chapter; we will make this intuition formal by showing how computads
are equivalent to cell complexes given by a speci�c choice of generating maps in
a category of n-categories.

The notion of a computad was �rst introduced by Ross Street, who de�ned
computads for strict 2-categories (see [Str76]). They were generalised to higher
dimensions in the strict case, and then Michael Batanin extended the concept
so that it would work for any globular operad whatsoever. Batanin's de�nition
was �rst given in [Bat98a] and can be found in [Bat02]. However, the de�nition
we give here is closer to the approach of Richard Garner's simpler reformulation,
which can be found in [Gar08].

4.1 De�nition

Recall that given a globular operad P , for any n-globular set A we can generate
a P -algebra freely from A. The basic observation that leads us to the concept of
a computad is that the `free' categories obtained from the globular sets are not
quite as general as we would like. Notice that the source and target of a gen-
erating cell in such a free category are always generating cells themselves�this
comes from the globular set structure we started with. What if we want some
generating cells whose source and target are composites of lower dimensional
generating cells? There is no reason why we cannot have such generators; a
computad is a piece of data in which we give generators of this more general
type.

Before we proceed with the de�nition let us establish some useful pieces of
notation. From now on, P is assumed to be some globular operad, which we will
generally take to be contractible�note however that the whole of this chapter
works for any globular operad at all. With P assumed, when we talk about
n-categories (unless we qualify by saying strict or weak n-categories) we will
mean algebras for the n-truncation of P , which is the composite tr ◦ P ◦ I as
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shown below

nGSet GSet
I //
tr

oo P__

where tr is the truncation functor that forgets cells above dimension n and I
is the obvious inclusion functor that creates a globular set with no cells above
dimension n. Of course, for a given P we usually only care about a speci�c
dimension.

In Chapter 1 we used ik : ∂k → Gk to represent certain morphisms of globular
sets. From now on we will use this notation to represent morphisms of n-
categories instead�precisely the n-categories we get by freely generating from
the globular sets we had before. So previously we wrote Gk for the representable
presheaf on the kth object of Glob; now it will denote the n-category freely
generated from that globular set. Similarly ∂k denoted the globular set obtained
by taking the representable presheaf Gk and removing its single k-cell; from
now on ∂k denotes the n-category freely generated from that globular set. One
cannot really give a formal description of the precise cells in these n-categories
because they depend entirely on the choice of globular operad P�some choices
of P will add many identity cells onto the globular sets we have started with,
while others will leave them almost unchanged.

In particular, G0 is the free n-category on a single object and ∂0 will be the
empty n-category. As an example, the morphism i2 : ∂2 → G2 looks like

• • • •

s

��

t

@@

i2(s)

��

i2(t)

@@
��

� i2 //

together with all the extra composites and identities that will be determined by
the choice of P .

We are now ready to give the de�nition of a computad. It is recursive on
dimension, so we begin with a 0-computad, the data necessary to generate a
0-category. This �rst step is obviously entirely trivial; but it is the absolutely
vital foundation for the rest of the recursion.

De�nition 4.1.1. A 0-computad is a set. We write 0Comp for the category of
0-computads, which is isomorphic to the category of sets. There is an adjunction

0Comp nCat
F0 //
U0

oo

where F0A is the n-category freely generated by the set of objects A, and U0B
is the underlying set of objects of the n-category B.

We now need to describe the successor step of the recursion. For this
we must imagine that we have already de�ned the category (k− 1)Comp of
(k − 1)-computads, and that we have given an adjunction Fk−1 a Uk−1 like the
one above. Based on this, a k-computad must be the most general possible data
to build an n-category up to dimension k. The �rst part of such data should
clearly be a choice of some (k − 1)-computad; the whole point of computads is
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that one can build an n-category one dimension at a time, so to build up to
dimension k we start by building up to dimension (k − 1).

We now merely have to give generating data at dimension k. This should
take the form of some generating k-cells, and since we do not want to limit
ourselves in any way, these generating cells should be attached onto the n-
category we have built so far in any way possible. This means we need to use
the free functor Fk−1 to give us our n-category so far; then a cell is `attached
on' using a morphism from its boundary, which is why the maps ik : ∂k → Gk
will prove to be important.

De�nition 4.1.2. A k-computad is given by a triple (A,Sk, γk) where A is a
(k− 1)-computad, Sk is a set we call the set of k-cells, and γk is a function that
gives for every element s ∈ Sk a morphism

∂k Fk−1A
γk(s) //

which we call the binding map for s. We write kComp for the category of
k-computads, where a morphism is given by a morphism of (k − 1)-computads
and a function between the sets of k-cells such that the binding maps commute.

There is a very apparent similarity to the de�nition of cell complexes in the
last chapter. We should note in particular that the category kComp de�ned
above can easily be expressed as the comma category Set/Tk where

TkA = nCat(∂k, Fk−1A).

To complete the recursion we must also give the free functor to n-categories.
While we are at it we may as well de�ne the whole adjunction

kComp nCat.
Fk //
Uk

oo

Firstly, UkB is given by (Uk−1B, σkB, λkB) where σkB is simply the set of
all k-cells in B, and λkB takes a k-cell s to the composite map

∂k B Fk−1Uk−1B
gs // ηB //

where gs is the map specifying the actual source and target of s in B. Secondly,
to de�ne Fk(A,Sk, γk) we have to somehow freely adjoin the new cells onto
Fk−1A. Clearly this should involve a pushout; to be speci�c, the following one:

Sk ·Gk Fk(A,Sk, γk).

Sk · ∂k Fk−1A
γk //

//

Sk·ik

�� ��

The dots represent coproducts indexed by the set Sk and the map γk is obtained
from γk using the bijection

Set[Sk,nCat(∂k, Fk−1A)] ∼= nCat(Sk · ∂k, Fk−1A).

We will not reproduce here a full proof that Fk a Uk is an adjunction.
It follows fairly quickly from the universal property of the pushout and the
induction hypothesis of the adjunction for (k − 1)-computads.
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Some low dimensional examples. Let us unpack the �rst few steps of this
de�nition for some speci�c choices of P . First of all, we shall note that for any
reasonable globular operad the category 1Comp is nothing new. Considering
that ∂1 is just a pair of objects, the function γ1 will assign a single source and
a single target object to each 1-cell, yielding exactly the structure of a directed
graph or 1-globular set. This should not be a surprise, since it is pretty clear
that we will not �nd any more general data than this from which to generate a
category of the usual 1-dimensional sort.

When we move to dimension two we have to decide between strict and weak.
For both of these, the category 2Comp can be described as a presheaf category;
we will primarily discuss the strict version as it is a little simpler. A 2-computad
consists of a 1-computad, which we know to be a directed graph, together with
some 2-cells. The function γ2 speci�es source and target of each 2-cell, and these
are any two parallel morphisms in the free category generated by the directed
graph. So we see that the set of 2-cells can be partitioned into a collection of sets
indexed by pairs of natural numbers (n,m) where n is the number of generating
morphisms composed in the source, and m the number composed in the target.

This gives us a presheaf category description of 2Comp. Each pair of nat-
ural numbers is considered a di�erent `shape' for this presheaf category�these
shapes are sometimes called computopes. The author is not aware who �rst intro-
duced the notion of computopes, though it may have been Makkai (see [Mak05]).
As well as the pairs of natural numbers that constitute the 2-dimensional com-
putopes, there is a single 0-dimensional computope 0 and a single 1-dimensional
computope 1. The category of computopes has two morphisms 1 → 0 and for
natural numbers n and m, it has n+m morphisms (n,m)→ 1.

We can attempt to extend this notion of computopes to dimension three,
hoping to describe 3Comp as a presheaf category, and for weak 3-categories
this will be successful. However, we run into di�culties in the strict case. To see
why, we will consider a particular 3-computad that ought to be a 3 dimensional
computope, but observe that it exhibits behaviour that cannot be modelled in
a presheaf category.

Let us describe this 3-computad, which we will call A. We specify that A0,
the set of objects or 0-cells, is the singleton set {a}. The set of 1-cells, A1, is
de�ned to be the empty set. For A2 we take a two element set, {α, β}, and note
that both α and β have to have the identity morphism 1a as their source and
target. Finally, we prescribe a single 3-cell, χ, whose source is the horizontal
composite α∗β, and whose target is the identity on 1a, which we will write 11a .
Here is a diagram showing the computad A up to dimension 2.

a

1a
α

oo

β
__

Now the key observation is that since this is a strict 3-computad, the source
and target of χ are de�ned by morphisms into the strict 3-category generated by
A0, A1 and A2. In this strict 3-category, an Eckmann-Hilton argument shows
that the horizontal composites α ∗β and β ∗α are equal. This means that when
we try to consider A as a computope, we �nd ourselves unable to de�ne the
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`boundary' morphisms from A to the 2-computope which describes both α and
β. Of course, this does not constitute a proof that strict 3-computads are not
a presheaf category; it merely highlights where the problem arises. For a full
proof, one can consult [Che12] or [MZ08].

Relative computads. Before we begin the comparison of computads and
cell complexes, we have to make another quick observation about the de�nition
above. Recall that a cell complex is built by adjoining cells to some starting
object in the category C; this `boundary' is free to be any object whatsoever.
In model category theory, the class of maps with cell complex structure is often
called the class of relative cell complexes due to this arbitrary choice of boundary.
On the other hand the de�nition of computads, as it is usually given, always
begins with the empty set.

It is very simple remove this limitation, and obtain a de�nition of a relative
computad. However, we will not make a formal de�nition now, since the abstract
theory presented in the next section will do it for us.

4.2 Comparison of Normal Forms

We will now attack the question: in what sense is the de�nition of computads
a special case of the de�nition of cell complexes? There are very obvious simi-
larities in the de�nitions; they are both recursive and each step in the recursion
is de�ned as a comma category over the previous step. They both involve a
nerve-realisation adjunction at each step. They both come with left adjoints
that are constructed using a sequence of pushouts.

However, the de�nition of a computad is not just a special case of a cell com-
plex. There is something very di�erent about the way the layers of a computad
work�in a cell complex, each layer contains cells of all the same shapes; in a
computad, the shapes available change fundamentally at each layer. In a cell
complex one cannot have a cell in layer �ve whose binding map factors through
layer two; in a computad one can easily construct such an example by creating
a 5-cell whose source and target are identity maps generated from 2-cells.

Despite these di�erences, with a bit of thought it seems intuitively obvious
that k-computads are `equivalent', in some sense, to cell complexes on nCat gen-
erated by the discrete category of maps containing im : ∂m → Gm for 0 ≤ m ≤ k.
One can quite easily check that the underlying class of maps in both cases is
the same. The central observation is that one can �nd a computad with ex-
actly the same cells as a given cell complex�the only thing that changes in this
construction is that they end up expressed in a di�erent order. In this section
we will show how this works in a very general context using a theory of normal
forms for cell complexes.

We begin by showing how one can take any cell complex and de�ne a partial
order on the set of cells. This order will capture the intuitive notion that
some pairs of cells have to be added to the complex in a speci�c order while
other pairs are completely independent of one another. The de�nition will
depend heavily on the idea of subcomplexes; recall that a subcomplex of (A,~σ) is
another complex (A,~σ′) with a monomorphism (1A,~ι) : (A,~σ′)→ (A,~σ). Every
subcomplex is determined by the subset of cells it contains; however, there are
clearly some subsets that do not constitute subcomplexes.
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De�nition 4.2.1. For any two cells a and b we say that a depends on b, which
we will write b < a, if b is an element of every subcomplex which ga, the binding
map of a, factors through.

Proposition 4.2.2. The relation a ≤ b, which holds when either b depends on a
or they are equal, gives a partial ordering on the set of all cells in a cell complex.
Furthermore we can use the Pullback Lemma from Section 3.5 to show that this
partial ordering de�nes a functor P : CellCx→ Poset.

Proof. First, note that this means a (strict) partial ordering rather than a pre-
order structure. Consider that gb always factors through the abbreviation of the
cell complex just below b; this is the subcomplex (A,~σ|l(b)) where we use l(b)
to mean the layer of b. Using this observation we see that a < b implies that
l(a) < l(b) (the layer of a is strictly lower than that of b). The antisymmetry of
the relation a ≤ b follows immediately.

To prove transitivity we will use the fact that a < b implies that a is in
every subcomplex that b is in. To see this, assume a < b and suppose b is in
the subcomplex (A,~σ′). Then (A,~σ′|l(b)) is also a subcomplex, and gb factors
through it, implying that it contains a. But then the original subcomplex (A,~σ′)
must also contain a.

We have now shown that ≤ is a partial order; we must check that this gives
a functor P : CellCx → Poset. We have the action of P on objects, and the
action on morphisms is clearly given by the function between the sets of cells.
Hence all we need to do is check that for any cell complex morphism the cell
function θ preserves the dependence structure.

Let (f, ~θ) : (A,~σ)→ (B,~τ) be a cell complex morphism; given a < b we must
show that θ(a) < θ(b). Suppose we have a subcomplex (B,~τ ′) → (B,~τ) which
gθ(b) factors through. We take the preimage θ−1(B,~τ ′) of this subcomplex. By
the Pullback Lemma, the square shown in the diagram

(B,~τ ′) (B,~τ)

θ−1(B,~τ ′) (A,~σ)

∂sθ(b)

∂sb

//

//
��

(f,~θ)

��

gb

))SSSSSSSSSSSSSSSSSSS

gθ(b)

��99999999999999 ��
����

����

is a pullback, and therefore the dotted map induced by the universal property
shows that gb factors through the preimage. Therefore, since b depends on a,
we know that a is in the preimage; this implies that θ(a) is in the subcomplex
(B,~τ ′), and we have shown that θ(b) depends on θ(a). So θ preserves the order
relation and therefore P is a functor as promised.

We should not allow ourselves to become confused by the fact that there
is another related partial order on the set of cells. We call it the subcomplex
partial order and we will write it as a ≤s b; it holds whenever every subcomplex
containing b also contains a. We showed in the proof of the last proposition that
a ≤ b implies a ≤s b, but the converse is de�nitely not true. The set of cells
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of a cell complex always has the structure of a presheaf on J , the category of
generating maps. If a = φ(b) for some morphism φ of J , then a ≤s b. On the
other hand, a = φ(b) does not tell us anything about whether b depends on a
or not.

We now make the main de�nition of this section, which uses the order rela-
tion of dependence to formalise the idea of a normal form for cell complexes.

De�nition 4.2.3. A strati�cation or normal form on a category of cell com-
plexes CellCx is a collection of conservative order preserving maps

λ(A,~σ) : P (A,~σ)→ Ord

into the ordered class of ordinal numbers that satis�es the naturality condition
λ(A,~σ) = λ(B,~τ) ◦ P (f, ~θ) for any cell complex morphism (f, ~θ) : (A,~σ)→ (B,~τ).
In this context conservative means what it does if we consider the posets as
categories; that is, if a ≤ b and λ(a) = λ(b), then a = b.

We begin by remarking that there is a natural pointwise partial order on
the class of strati�cations. This partial order structure has an initial object,
which is clearly the strati�cation given by the function l that speci�es which
layer a cell is in. We call this the standard strati�cation, since it is one we have
used so far in all our treatment of cell complexes. The point of this section is
basically to demonstrate that one could have started with any strati�cation at
all and de�ned cell complexes using it instead; any such choice will lead to an
equivalent category. When cell complexes are viewed as left maps for an AWFS
the choice of strati�cation is entirely a matter of convention and notation.

Suppose we have some strati�cation λ on CellCx. We will give an alterna-
tive de�nition of what we will call λ-cell complexes. Fortunately we do not have
to start all over again; we can use the de�nition of CellCx that we already have
to give us a leg up.

De�nition 4.2.4. The category of height zero λ-cell complexes, which we write
CellCxλ0 , is isomorphic to C. We de�ne the functor

V λ0 : CellCxλ0 → CellCx

by taking the height zero cell complex on the given object of C.

De�nition 4.2.5. Given any ordinary cell complex (A,~τ), de�ne the presheaf
of extra cells on (A,~τ), which we will write as E(A,~τ), as a presheaf on SJ
de�ned as follows:

� an element of E(A,~τ)(U → [j]) is an isomorphism class of subcomplex
inclusions

(A,~τ)→ (A,~τ+)

such that if we consider the sets of cells as J -presheaves (as described in
Proposition 3.2.6), ~τ+ is isomorphic to a pushout

~τ ~τ+

U [j]//

//
�� ��

for some morphism of presheaves U → ~τ ,
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� given a morphism of sieves

φ : (U → [j])→ (V → [k])

and an element of E(A,~τ)(V → [k]), one can see there is a unique element
of E(A,~τ)(U → [j]) such that the pushout squares of the two elements
commute with the map φ. This de�nes the restriction along φ.

In the following de�nitions we are establishing the successor step in the
recursive de�nition of λ-cell complexes. So we assume throughout that for some
ordinal α we already have the category CellCxλα of height α λ-cell complexes,
and also the functor

V λα : CellCxλα → CellCx

which allows us to convert any λ-cell complex (so far) into a normal cell complex.

De�nition 4.2.6. For any height α λ-cell complex (A,~σ), de�ne the terminal
λ-layer Tλα (A,~σ) as the subpresheaf of the presheaf of extra cells EV λα (A,~σ)
consisting of elements such that all the `new' cells which are not in the subobject
V λα (A,~σ) get mapped to α by the strati�cation map λ. Formally speaking
Tλα (A,~σ)(U → [j]) is the subset of EV λα (A,~σ)(U → [j]) that contains elements
with the property that, given any representative subcomplex inclusion (A,~σ)→
(A,~σ+), every cell x in ~σ+ satis�es (λ(x) = α+ 1) ∨ (x ∈ ~σ).

The naturality of λ tells us that this is a valid subpresheaf, and that it de�nes
a functor

Tλα : CellCxλα → ŜJ .

De�nition 4.2.7. The category of height (α + 1) λ-cell complexes, written
CellCxλα+1, is de�ned as the comma category (ŜJ ↓ Tλα ).

De�nition 4.2.8. We will de�ne the functor

V λα+1 : CellCxλα+1 → CellCx.

Let (A,~σ) be any object of CellCxλα+1. Recall that for any sieve U → [j]
an element of Tλα (A,~σ|α)(U → [j]) is an isomorphism class of morphisms of
ordinary cell complexes out of V λα (A,~σ|α). Thus given the top layer of (A,~σ)�a
presheaf σα over Tλα (A,~σ|α)�we can construct a diagram using a representative
of the isomorphism class for each element in each σα(U → [j]). The diagram
contains V λα (A,~σ|α) together with a morphism out of it for each cell in σα;
constructing the colimit of this diagram in CellCx is essentially taking a large
many-legged pushout. We de�ne V λα+1(A,~σ) to be this colimit.

We can handle limit ordinals in exactly the same way that we did for the
original de�nition of CellCx, and we de�ne CellCxλ similarly. The following
theorem gives us the result we want�that all strati�cations lead to equivalent
categories of cell complexes.

Theorem 4.2.9. For any strati�cation λ on CellCx, the functor

V λ : CellCxλ → CellCx

is one half of an equivalence of categories.
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Proof. The other half of the equivalence will be the functor Wλ : CellCx →
CellCxλ, which is de�ned as the colimit of a recursively constructed ordinal
sequence of functors Wλ

α . We will construct these functors at the same time as
proving inductively that for each ordinal α, we have

V λ(Wλ
α (A,~σ)) ∼= (A,~σ|λ<α)

where the notation on the right hand side means the subcomplex containing all
cells x with λ(x) < α, and similarly

Wλ
α (V λ(B,~τ)) ∼= (B,~τ |α).

Now assume these have been de�ned for some ordinal α. To de�neWλ
α+1(A,~σ)

we take the set of cells a in (A,~σ) such that λ(a) = α and partition it into a
collection of sets with the structure of a presheaf on SJ together with a mor-
phism to Tλα (Wλ

α (A,~σ)). This is straightforward to do, because Tλα (Wλ
α (A,~σ))

is de�ned using complexes containing V λ(Wλ
α (A,~σ)) as a subcomplex; by the

induction hypothesis V λ(Wλ
α (A,~σ)) is isomorphic to (A,~σ|λ<α), so each cell

with λ(a) = α gives us exactly what we need�a complex with (A,~σ|λ<α) as a
subcomplex containing all cells except some new ones given by the pushout of
a sieve.

We must then check that

V λ(Wλ
α+1(A,~σ)) ∼= (A,~σ|λ<α+1).

The left hand side is de�ned as a colimit in CellCx. The colimit diagram
includes a morphism out of (A,~σ|λ<α) for each cell a such that λ(a) = α, and
it contains a morphism for each pair of such cells with a = φ(a′) for some φ in
J . Therefore it is clear that this colimit reconstructs a cell complex isomorphic
to (A,~σ|λ<α+1).

The other identity,

Wλ
α+1(V λ(B,~τ)) ∼= (B,~τ |α+1),

is straightforward when we consider the de�nition of Wλ
α+1. The left hand side

is given by a presheaf over Tλα (Wλ
α (V λ(B,~τ))) which is isomorphic to Tλα (B,~τ |α)

by the induction hypothesis; the elements of this presheaf are given by the cells
in V λ(B,~τ) that λ maps to α, and these are in bijection with the cells in τα.

For a limit ordinal we de�neWλ
α as the colimit of the functorsWλ

β for β < α.
Then the two identities follow immediately from the induction hypotheses for all
such β. Finally, Wλ is de�ned by taking colimits that go su�ciently far along
the ordinal numbers in each case. When the two identities are extended to Wλ,
they become a straightforward assertion that Wλ and V λ form an equivalence
between CellCx and CellCxλ.

Now that we are equipped with the notion of strati�cations and the alter-
native de�nitions of CellCx that they give, the case of computads becomes a
simple example of the general theory. We will consider J to be the discrete
category of maps im : ∂m → Gm for 0 ≤ m ≤ k in the category of n-categories.
This satis�es the conditions necessary for the Pullback Lemma, so it gives a well
de�ned category of cell complexes with a functor P : CellCx→ Poset.
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De�nition 4.2.10. For J as given above, we write λd for the dimension strat-
i�cation, which is given by de�ning λd(a) to be the dimension of the cell a�in
other words, if the shape sa ∈ J is im, then λd(a) = m.

To see that λd is a valid strati�cation, consider two cells a and b in (A,~σ)
such that a < b. No matter which globular operad we are using, it is a fact that
adjoining a cell of dimension m will not add any cells of dimension lower than
m to an n-category. Therefore it makes sense to consider the λd(b)-skeleton
of (A,~σ), which is the subcomplex of cells with dimension lower that b. Fur-
thermore, the fact tells us that the map gb factors through this subcomplex,
implying that it contains a. Hence λd(a) < λb(b). The naturality condition is
an immediate consequence of the fact that cell complex morphisms preserve the
shapes of cells.

Proposition 4.2.11. The category CellCxλd is what we will take as our formal
de�nition of the category of relative k-computads. This makes sense: the �bre
of CellCxλd over the empty n-category is isomorphic to kComp.

Proof. At each stage of the recursion, Tλdn (A,~σ) contains elements of the shape
in only, and it contains exactly one such element for every morphism ∂n →
(A,~σ). Based on this observation, the de�nition of a k-computad is clearly a
special case of De�nition 4.2.7.

Corollary 4.2.12. The category of relative k-computads is equivalent to the
category CellCx generated from the maps im : ∂m → Gm for 0 ≤ m ≤ k.



Chapter 5

Corporeality

In the last chapter, we considered the category of computads for some globular
operad, showing that it is equivalent to the category of cell complexes for the
natural category of generating maps in the category of n-categories. This ob-
servation forms the starting point for the investigation of this chapter, where
we will consider some more general theory about cell complexes and then apply
it to the particular case of computads. A question of particular interest in the
study of computads is the one considered by Batanin in [Bat02]: when is the
category of computads a presheaf category, and what does this tell us about the
globular operad in question? (We should point out that this question was also
studied earlier for particular cases by Makkai [MZ08]; also see [Che12]). Batanin
answers the �rst part of the question by giving a simple characterisation that
uses the concept of slices of an operad; we will see how this works in detail later
in this chapter.

For an answer to the second part of the question he makes a conjecture;
essentially, he suggests that a globular operad has the property that its com-
putads form a presheaf category precisely when it has algebras that are weak
enough to model homotopy n-types. This conjecture seems to work for all the
examples we understand well enough to be able to tell. For instance, strict 3-
categories are too strict and strict 3-computads are not presheaves. Meanwhile,
Gray-categories are weak enough and Gray-computads do form a presheaf cat-
egory. The conjecture also has a strong intuitive appeal; in cases where both
properties fail, the counterexamples that show this are constructed in a very
similar way.

In this chapter we will consider the obvious generalisation of the �rst part
of the question to the world of cell complexes. We will ask when the category
of cell complexes is locally a presheaf category�that is, the cell complexes over
a particular base object form a presheaf category. This is property we refer
to as corporeality. In the �rst section we will consider a general method of
checking when a category of cell complexes is corporeal. The second section will
then apply this theory to a particularly simple example; we will prove that any
presheaf category gives cell complexes that are presheaves themselves. In Section
5.3 we will �nd that cell complexes on topological spaces fail to be presheaves,
though for a very di�erent sort of reason than the reason 3-computads fail. We
will see that this pathological behaviour is to do with a particular part of the
de�nition of topological spaces, and we will go on to discuss a general notion

99
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of space-like category, isolating a condition that is su�cient to make such a
space-like category corporeal.

In the last section we return to the world of relative computads. We will
study the results of [Bat02] through the lens of cell complexes and hopefully
shed some light on his main theorem using our new language. There are no
new results in this �nal section, but it will discuss Batanin's work from a novel
angle; in many respects the approach he takes and the condition his result
requires appear extremely natural from the cell complexes perspective.

5.1 Cell Classi�ers

We should begin by observing how the category of cell complexes over a given
base space A, which we will denote by CellCx(A), is already very similar in
many respects to a presheaf category. A cell complex consists of a set of cells
which have di�erent shapes and can be joined together in di�erent ways. Within
a single layer of the complex the relationships between cells are exactly those
between the elements of a presheaf. The di�culty we encounter concerns the
relationship between cells in di�erent layers.

Recall the discussion of computopes in Section 4.1. A 2-dimensional com-
putope was given by a pair of natural numbers; this approach works because
a 2-dimensional cell is determined by a binding map g : ∂2 → FA where A is
a 1-computad, and the set of such maps can be partitioned into a collection
of sets indexed by pairs of natural numbers. This partitioning is performed by
composing with the unique map to the terminal computad,

∂2 FA F1,
g // F ! //

and noticing that the set of maps ∂2 → F1 is isomorphic to the set of pairs of
natural numbers. We will call the resulting map into F1 the pattern of g.

The important property of 2-computads that leads to the realisation as a
presheaf category is the fact that every such pattern has a classifying computad.
This is a computad χ(g) such that morphisms of computads χ(g) → B are
in bijection with maps ∂2 → FB which have the same pattern as g, where B
can be any other computad. Because such maps correspond to all possible 2-
cells in any computad, we can immediately construct a set of computads called
2-cell classi�ers such that any 2-cell in a computad B corresponds to a map
from a 2-cell classi�er into B. It is then straightforward to check that these
2-cell classi�ers (together with the obvious 1-cell and 0-cell classi�ers) are the
representable objects in a presheaf category structure on 2Comp.

Generalising this approach. We will now see how we can de�ne the con-
cepts in the paragraph above for any category of cell complexes, and the ex-
istence of su�ciently many classifying complexes will be enough to prove that
CellCx(A) is a presheaf category. While ultimately we will only care about
morphisms into a cell complex that come from a boundary ∂j for some gener-
ating map j, we could theoretically have any object appear as such a boundary.
Hence the �rst few de�nitions will operate with a morphism x : X → (A,~σ) for
any object X ∈ C whatsoever.
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De�nition 5.1.1. Given some cell complex (A,~σ) and a morphism x : X →
(A,~σ), the pattern of x, which we will write π(x), is the composite morphism

X (A,~σ) (A, 1),
x // ! //

where we have used the unique morphism of cell complexes into the terminal
complex over A.

The terminal complex over A is given by the sequence of terminal layers�its
�rst layer is T0A, and each subsequent layer is de�ned by applying Tα to the
complex so far (just as for any comma category (Ŝ ↓ T ) the terminal object of
the �bre over A is the identity map 1TA : TA→ TA viewed as an object of the
comma category). One can imagine the terminal complex over A in the same
way one thinks about the terminal object of a presheaf category; it has precisely
one cell in every possible position.

The pattern of a map x tells us how x behaves on each sort of cell�the only
additional information we need to determine the map completely is data telling
us which cells it chooses to do that behavior on. It follows from the de�nition
that if there exists a morphism between two cell complexes that commutes with
morphisms x and x′ out of X, then they must have the same pattern�we have
π(x) = π(x′). Hence the notion of pattern is a way of decomposing the category
of maps from X into its connected components.

The following de�nition can be viewed as a natural follow-on from the def-
inition of minimal subcomplexes in Section 3.5. The minimal subcomplex was
the initial object of the poset of subcomplexes that a given map into a complex
factors through; now we will de�ne the classifying complex as the initial object
of a category which is analogous to the poset of subcomplexes: the slice category
of cell complex morphisms into the particular cell complex we are studying.

De�nition 5.1.2. We will write P(x) for the category of maps from X pos-
sessing the same pattern as x; this is one connected component of the category
mentioned in the paragraph above. An object is a map k : X → (A,~τ) such
that π(k) = π(x). A morphism between k : X → (A, τ) and k′ : X → (A, τ ′) is
a morphism of cell complexes β : (A,~τ)→ (A,~τ ′) such that in the diagram

X

(A,~τ)

(A,~τ ′)

(A, 1)

k
55lllllllllll

!
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!

55lllllllll

β

��

both triangles commute. If the category P(x) has an initial object we write it
as θx : X → χ(x) and we call χ(x) the classifying complex of x.

If the classifying complex for some pattern p exists, then every map from
X to a cell complex which has this pattern is determined by a cell complex
morphism out of χ(p). The existence of classifying complexes is a very powerful
property to have.

De�nition 5.1.3. Suppose we have a complete and cocomplete category C, a
typical nerve V : C → Ŝ and a category of generating maps J which satis�es
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the typical conditions. If X is any object of C, we say that the triple (C, V,J )
is corporeal with respect to X if the category CellCx generated by J has clas-
sifying complexes for all maps from X. Often we can say that a pair (C, V )
is universally corporeal with respect to X, meaning that it is corporeal for any
choice of J that satis�es the typical conditions.

The property of being corporeal with respect to X tells us that when viewed
through the object X the category C behaves with a kind of rigidity; we will
now sketch a simple example in a category that fails to be corporeal to try and
illustrate this point and motivate the name `corporeal'. Consider the category
of abelian groups, and the object Z. A simple category of cell complexes here
is generated by the single homomorphism that adjoins one new element to a
group freely. In this case the number 1 is a height ceiling for CellCx and any
complex is given by a group G and a set A; its underlying morphism is then the
inclusion map from G into the abelian group generated by freely adjoining A
new elements to G. A very simple complex is given by starting with the trivial
group and adjoining two elements a and b. Clearly we obtain the free abelian
group on two letters; now consider the homomorphism Z→ F ({a, b}) given by
1 7→ ab. We claim that this map has no classifying complex.

The reason the category we get in this case has no initial object is that one
can switch the cells a and b without changing the morphism 1 7→ ab. If we think
about this example for a few moments we realise that there is something ex-
tremely non-physical about this behaviour�from the perspective of the element
ab, the two cells have somehow been mixed together to the extent that they are
indistinguishable. When a category is corporeal with respect to an object X
such confusing mixing of cells is impossible (or at least, not detectable by X).
In a corporeal category every cell knows its place. We would remark�for any
reader who wishes to see this example done more rigorously�that it is a special
case of Lemma 5.4.2.

The following theorem could be proved as a straightforward corollary of
general results that are in the literature, since it is basically founded on the
fact that a comma category (Ŝ ↓ T ) is a presheaf category when T is familially
representable. The interested reader can consult [CJ95]. For our purposes now
we will give a hands-on proof, since it will not take too long and is probably
more illuminating.

Theorem 5.1.4. Suppose we have a complete and cocomplete category C and
a typical nerve V : C → Ŝ. Let J be a category of generating maps satisfying
the typical conditions. If (C, V,J ) is corporeal with respect to every object that
appears as a boundary ∂j for some j ∈ J , then CellCx(A) is equivalent to a
presheaf category for any object A in C.

Proof. We �x some object A of C. We will construct the category of cell clas-
si�ers that makes CellCx(A) into a presheaf category. First we consider the
terminal object ofCellCx(A), which is denoted by (A, 1). Now de�ne a presheaf
P on J , which we call the presheaf of patterns, by setting

P (j) = C(∂j, (A, 1)),

and de�ning restriction maps by precomposition.
For any pattern p ∈ P (j), the complex χ(p) has a canonical map θp : ∂j →

χ(p). We de�ne the cell classi�er χ(p)+ by adjoining a single extra cell of shape
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j onto χ(p) along the map θp�formally this can be done using pushforward and
then composition of cell complexes which was explored in Section 3.4. Further-
more, the map θp clearly cannot be factored through any abbreviation of χ(p),
since if it could that abbreviation would be a counterexample to the universal
property of a classifying complex. This means that the height of χ(p)+ is ex-
actly one more than the height of χ(p), and that the top layer of χ(p)+ is given
by a representable presheaf in SJ .

There is a cell in the top layer of χ(p)+ which acts as the apex of the entire
complex; nothing in χ(p)+ exists that is not necessary for the existence of this
apex cell. We call the apex cp, and note that the previous sentence can be
formalised using the order relation of dependence that we used in Section 4.2;
we can say that for every cell a ∈ χ(p)+, either cp depends on a, or a is the
restriction of cp along some map in J .

We de�ne the category of cell classi�ers, which we will write as K(A), simply
by taking the full subcategory of CellCx(A) containing χ(p)+ for every pattern
p. Since these are the objects that will end up being the representables of
our presheaf category of complexes it makes sense for us to de�ne K(A) as
a full subcategory of CellCx(A)�the inclusion map K(A) → CellCx(A) will
ultimately be a Yoneda embedding. We will now show directly that the category
of presheaves on K(A) is isomorphic to the category CellCx(A). We already
have a subcategory inclusion K(A)→ CellCx(A) that is given by the de�nition
of K(A). This induces a nerve-realisation adjunction

[K(A)op,Set] CellCx(A)

∐
A //

NA

oo

in the usual manner; we require to show that NA and
∐
A form an equivalence

of categories in this case.
First, consider any cell complex (A,~σ) containing some cell a of shape j.

The pattern of a is given by composing the binding map ∂j → (A,~σ) with the
unique complex morphism to (A, 1), and we will write it p(a). There is a cell
complex morphism χ(p(a)) → (A,~σ) induced by the binding map of a. This
extends to a morphism â : χ(p(a))+ → (A,~σ) which takes cp(a) to a, and this
morphism â is unique with this property. This justi�es the name `cell classi�er';
cell complex morphisms out of χ(p)+ are in bijection with cells whose pattern
is p.

This tells us that the nerve functor applied to a cell complex gives a presheaf
NA(A,~σ) whose elements are in bijection with the cells of (A,~σ) partitioned
according to their patterns. Applying the realisation functor to this gives us∐

ANA(A,~σ) (A,~σ),
εA //

which we must show to be an isomorphism of cell complexes. We write the
element of NA(A,~σ) that corresponds to a cell a as â; the map εA is clearly
surjective, because every cell a is in the image of â.

Furthermore, assume that a is in the image of some other part of the colimit,
say a = b̂(d), for some cell d ∈ χ(p(b))+; then d is itself classi�ed by a map
d̂ : χ(p(a))+ → χ(p(b))+ (d has the same pattern as a because cell complex
morphisms preserve patterns of cells). This d̂ is a morphism of K(A), and we
now get that â = d̂(b̂) in the presheaf NA(A,~σ). So a copy of d̂ appears in
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the colimit diagram which puts d in the same equivalence class as cp(a); this
reasoning shows that εA is also injective, and this is enough to make it an
isomorphism.

Given any presheaf X on K(A), we want to show that

X NA
∐
AX

ηA //

is an isomorphism of presheaves. If x and y are elements ofX(χ(p)+), the colimit∐
AX has two distinct copies of χ(p)+ corresponding to x and y; furthermore,

the uniqueness part of the universal property of cell classi�ers shows that any
pair of morphisms in the colimit diagram out of these two copies of χ(p)+ must
take the apex of each to a di�erent cell. This shows that ηA(x) and ηA(y) are
distinct, so ηA is an injection.

On the other hand, any cell a in the colimit must arise from some cell b in
some χ(p)+ in the colimit diagram; then applying the restriction map for b̂ in X
we �nd an element x ∈ X such that ηA(x) = â. This proves ηA is surjective, so
it is an isomorphism, and we have shown that this nerve-realisation adjunction
is really an equivalence.

Remark. We note that the converse of this theorem is very straightforward.
Given the assumption that CellCx(A) is a presheaf category, one immediately
obtains cell classi�ers as they are the representables. Then every morphism
x : ∂j → (A, σ) gives a new cell on (A, σ), which has a cell classi�er, and this
cell classi�er can be beheaded to obtain the classifying complex of x.

This theorem gives us a very clear strategy for proving that a given category
of cell complexes is locally a presheaf category. In the next two sections we
will apply this technique to some categories we are interested in, with varying
degrees of success.

5.2 Corporeality of Presheaf Toposes

We begin our investigation of corporeality with the simplest choice possible�
that of letting C itself be a presheaf category and then using the obvious typical
nerve given by the identity map. In this case it is still not obvious that universal
corporeality holds, but it will not be very di�cult to prove. Furthermore, this
section will allow us to introduce a few general methods for checking corporeal-
ity; we begin with two very useful lemmas.

Lemma 5.2.1. If a triple (C, V,J ) is corporeal with respect to every object in a
(small) diagram, it is also corporeal with respect to the colimit of the diagram.

Proof. Let D : D → C be some small diagram in C, and let
∐
D be its colimit.

We assume that for each d ∈ D, the category C is corporeal with respect to the
object D(d). Now consider some map x :

∐
D → (A,~σ) into any cell complex

generated from J . We will show that x has a classifying complex and hence
that C is corporeal with respect to

∐
D too.

For each d ∈ D, the inclusion map id : D(d) →
∐
D is part of the colimit

data. By the assumption of corporeality with respect to D(d), we can construct
a classifying complex χ(x ◦ id) for each part of the colimit. Furthermore, for
any map φ : d → d′ in D, the morphism D(φ) : D(d) → D(d′) induces a cell
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complex morphism χ(x ◦ id) → χ(x ◦ id′). This gives us a D-shaped diagram
Dx : D → CellCx(A) in the category of cell complexes over A.

The obvious approach is now to take the colimit
∐
Dx of this diagram; this

is the classifying complex χ(x) which we want. To see this, one simply considers
the colimit property. Any object of the category P(x) is the apex of a unique
cocone out of the diagram Dx such that everything commutes; hence there is a
unique map from

∐
Dx to any other object of P(x).

The next lemma establishes an inductive approach to proving that any cat-
egory is universally corporeal. The point is that it is generally easier to check
the existence of classifying complexes for height one cell complexes than it is for
general cell complexes. Fortunately, we can use Theorem 5.1.4 to `bootstrap'
this restricted existence property up into full corporeality; the trick is to use the
presheaf expression of CellCx(A) to express any cell complex as a height one
cell complex for a di�erent category of generating maps. This method usually
only works when we want to show universal corporeality, since changing the
category of generating maps may change the boundary objects. We will how-
ever see one example, Proposition 5.3.1, where this approach can be used with
a subclass of objects rather than all objects.

Lemma 5.2.2. Suppose any map into a height one complex from any object of
C has a classifying complex. Then the category C is universally corporeal with
respect to all objects.

Proof. We �x a category of generating maps J and proceed by induction. Sup-
pose that the corporeality property is satis�ed for cell complexes up to some
ordinal height α. Then, if we choose a base object A, we can use the proof
of Theorem 5.1.4 to construct a category of cell classi�ers up to height α + 1.
We write this category as K(A)α+1 and note that it is naturally viewed as a
category over C2.

Furthermore, we note that the category K(A)α+1 → C2 inherits the typical
conditions for a category of generating maps from J . Firstly, any map in the
image of K(A)α+1 is a J -cell complex so it is a typical inclusion; this also applies
to all subcomplex inclusions so K(A)α+1 is distinguishable with respect to the
typical nerve (see De�nition 3.3.4). Secondly, K(A)α+1-cell complexes have
minimal subcomplexes because J -cell complexes have minimal subcomplexes,
and these are consistent by the same reasoning (see De�nition 3.3.8).

Finally, we remark that any J -cell complex of height α + 1 or less can be
expressed as a presheaf on K(A)α+1, and therefore as a height one K(A)α+1-cell
complex with the rather strange property that every binding map is the identity
on A. Conversely, any height one K(A)α+1-cell complex with that property
determines a J -cell complex of height α + 1 or less. Since any map into a
height one complex has a classifying complex this equivalence shows that the
corporeality property is satis�ed up to height α+ 1.

The limit case of the induction is a straightforward colimit argument. The
classifying complex of a map x : X → (A,~σ) into a complex of height λ is
the colimit of the sequence of classifying complexes of pullbacks of x along the
abbreviation inclusions (A,~σ|β)→ (A,~σ) for all β < λ.

The two lemmas we have just proved lead very naturally to the main result
of this section:



106 CHAPTER 5. CORPOREALITY

Theorem 5.2.3. Given a presheaf category Ŝ and the typical nerve given by
the identity functor on it, this pair (Ŝ, 1Ŝ) is universally corporeal with respect
to any presheaf.

Proof. Using Lemma 5.2.1 it will be su�cient to show universal corporeality
with respect to the representable presheaves. Using Lemma 5.2.2 we only need
to check the existence of classifying complexes for height one cell complexes.
Given a presheaf A on S we will consider CellCx1(A); these are themselves
simply presheaves on a category we will write JA which has an object for every
morphism ∂j → A from the boundary of some generating map to A.

Consider such a cell complex (A, σ) together with a morphism x : [s]→ (A, σ)
from a representable into it. As usual we can use the Yoneda lemma to consider
this map x as a shape-s element of the presheaf (A, σ). We also have the typical
conditions on the category of generating maps, so we can form the minimal
subcomplex µ(x). Now either µ(x) is empty, in which case we trivially have
a classifying complex which is also empty, or we can use our understanding of
colimits in presheaf categories to see that x must factor through the inclusion
map of some cell a ∈ µ(x) into the colimit µ(x).

We will write sa for the shape of this cell in the category JA, and then sa
is the result of a single pushout of one cell glued onto A. We will see that this
choice of factorisation is unique and that it is determined by the subcomplex
µ(x). Firstly, the map a : [sa] → µ(x) is surjective in the category ĴA since
if it were not we could �nd a smaller minimal subcomplex for x by taking
the subcomplex of µ(x) given by its image. Secondly, there can only be one
surjective map into µ(x) from a representable object; if two existed we could
consider them as elements of µ(x), and each being surjective would show we
could factor either one through the other. This would result in an isomorphism;
but JA cannot contain any isomorphisms due to the typical conditions. So our
choice of a is determined entirely by µ(x).

If we had two di�erent ways to factorise x through the same cell sa → µ(x)
that would give us two elements a and b of the presheaf sa with the same
image under ιa. But this would imply, based on our understanding of colimits
in presheaf categories, that a and b appear in di�erent cells of [sa] which are
mapped to the same cell in µ(x); this would allow us to construct a smaller
minimal subcomplex. Hence the factorisation of x through the cell a is unique.

Now we consider composing with the unique map into the terminal cell
complex (A, 1). Consistency of minimal subcomplexes implies that µ(!x) is the
image of µ(x) under the presheaf morphism !, which means the pattern of x
factors through a cell in (A, 1) of the same shape sa. A similar argument can
be used for any map into a cell complex with the same pattern to see that all
such maps factor uniquely through the representable complex [sa]. Hence, this
is clearly the classifying complex of the map x.

5.3 Failure of Corporeality for Spaces

In this section we attempt to apply the methods introduced in the last section
to the category Top of topological spaces and continuous maps. Interestingly,
we will not get very far. We will see why this is, and it will show us another
fundamentally di�erent way in which a category can fail to be corporeal. We will
then spend a bit of time discussing space-like categories that behave similarly to
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Top; we will see that in general we can come very close to proving that they are
universally corporeal. We will also present a condition on a space-like category
to make it corporeal�this condition will be easy to state, but unfortunately
the author does not know of many examples; we will see one example, which is
quite interesting but perhaps rather strange as a category of `spaces'.

Topological spaces. The strongest proposition we can prove for topological
spaces is one that applies only with respect to discrete spaces and generating
maps with discrete spaces as their boundaries. We will discuss afterwards how
the property fails for non-discrete spaces.

Proposition 5.3.1. The triple (Top, U,J ) is corporeal with respect to all dis-
crete spaces, for J any category of generating maps that satis�es the typical
conditions and the condition that all of its boundaries are discrete.

Proof. By Lemma 5.2.1, it is su�cient to prove corporeality with respect to the
one point space. We can also use a slightly altered form of Lemma 5.2.2 to see
that it is su�cient to show that classifying complexes exist for maps into height
one complexes�this works because any J -cell complex can be expressed as the
pushforward of a complex whose base space is discrete.

The vital observation that makes this proof work is the fact that the under-
lying set functor U : Top → Set is colimit preserving. Given any category of
generating maps in Top we can apply U to get a category of generating maps
in Set; one can check that this new category of generating maps also satis�es
the typical conditions. The fact that U preserves colimits means that any cell
complex over Top is mapped by U to the underlying map of precisely the same
cell complex over Set. We use Theorem 5.2.3 to get classifying complexes in
the world of sets; since we are considering only maps out of discrete spaces, this
gives us classifying complexes in the world of topological spaces too.

Let us now consider why topological spaces fail to be any more corporeal than
this. We will create a simple counterexample that uses only the closed interval�
not a space which is generally known for its pathology! First, let J be the one
object category of generating maps containing only the map {∗} → [0, 1] which
takes ∗ to one end point, say 0, of the closed interval. We will �nd a continuous
map [0, 1]→ ({∗}, 1) which has no classifying complex.

First we note that the complex ({∗}, 1) has a single cell, so ({∗}, 1) is iso-
morphic to [0, 1]. The endomorphism on [0, 1] which we want is given by

f(x) = (1− x) ·
∣∣∣ sin(π log2

( 1

1− x

))∣∣∣
which when plotted appears as a sequence of sinusoidal bumps which get faster
and faster, but also smaller and smaller, as we approach 1. We have chosen to
use the base 2 logarithm in order to ensure that each bump is half the size of the
previous one�this makes the rest of the counterexample easier. We claim that
the morphism f has no classifying complex. If it had one we would expect a
countably in�nite set of cells, since each of the bumps in f could, theoretically,
appear in a di�erent cell of χ(f). Thus simply considering limits in the category
of sets indicates that the classifying complex must be ({∗}, ω). (There is only
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one possible binding map, so ω is really just a set of cells, one for every natural
number.) Furthermore,

θf : [0, 1]→ ({∗}, ω)

must be the function which behaves exactly like f except that it jumps to the
next cell every time it passes a point of the form 1

2n .
This would be a lovely classifying complex were it not for the small issue of

θf failing to be continuous. We see this by constructing an open neighbourhood
U around the point ∗ as follows: for any cell cn given by a natural number
n ∈ ω, the intersection U ∩ cn is the half open interval [0, 1

2n+1 ); this completely
determines U . The preimage of U under θf can be seen to be missing a part
of every bump; therefore there are points arbitrarily close to 1 which are not in
θ−1
f (U). But 1 is contained in θ−1

f (U), which means it cannot be an open set.
Therefore, θf is not continuous.

The key aspect of the category of topological spaces which makes this coun-
terexample possible is the fact that topological spaces have no scale. The way
we de�ned the open set U was basically to say �for each cell, include half as much
in U as we did of the last cell�. The issue arises because from the perspective of
topological spaces there is no such notion of size�since the intersections U ∩ cn
are disjoint (except at the point 0) they cannot be compared. For the original
function f we can say that the bumps get smaller as we approach 1, but for the
function θf we cannot say such a thing because we no longer have any way of
comparing the sizes of the bumps.

Generalised spaces. Based on the reasoning of the last paragraph the sug-
gestion is that we should consider some other sort of `spaces'�perhaps metric
spaces or something similar. Instead of focusing on a speci�c example, we will
consider a general notion of space-like category and see what conditions will en-
sure corporeality. What we mean by `space-like' in this context is captured by a
typical nerve to the category of sets which satis�es a straightforward property.

De�nition 5.3.2. A space-like category is a complete and cocomplete category
C equipped with a typical nerve U : C → Set that is faithful and preserves
colimits.

This is immediately enough to prove the analogue of Proposition 5.3.1. We
de�ne the discrete spaces to be the objects in the image of the realisation functor
from Set; then C is automatically corporeal with respect to any discrete space
and category of generating maps with discrete boundaries.

Note that the requirement that U be faithful allows us to view spaces strictly
as `sets with structure', since a morphism between two spaces is determined
entirely by its action on the points of the spaces (the elements of the underlying
sets). We should also point out that one could use a stronger notion of space-like
that replaces the colimit preserving property with the requirement that U has
a right adjoint�this would essentially be asking for the existence of indiscrete
spaces. For the purposes of this section, however, the weaker condition is strong
enough so we will stick to it.

We will now proceed to try and prove that an arbitrary space-like category C
is universally corporeal. Along the way we will discover the single problematic
step and establish the extra condition to �x it. Assume we are given an arbitrary
category of generating maps J in C satisfying the typical conditions and we must
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demonstrate that all classifying complexes exist for height one J -cell complexes
(we are using Lemma 5.2.2). Recall that a classifying complex is by de�nition the
initial object of a certain category P(x). The strategy we take is straightforward;
we will �rst de�ne a natural core�ective subcategory of the category P(x). Then
we will attempt to show that this subcategory is a poset, that it is complete
and that it is small�if these three things were true it would have an initial
object formed by taking the limit of the entire category (formally, the limit of
the diagram given by the identity functor from the category to itself).

The subcategory. First of all, let x : X → (A,~σ) be any map into the body
of some height one cell complex. Recall that P(x) is de�ned as the category
of such maps with the same pattern as x. So an object of P(x) is any map
k : X → (A,~τ) such that π(k) = π(x), and a morphism in P(x) is a morphism
of cell complexes such that the maps out of X commute. Obviously, one can
create new objects in this category by simply adding extra cells to the complex
that have absolutely nothing to do with the morphism from X. These objects
tell us nothing new; they are just unhelpful�so we will consider the subcategory
of P(x) we get by avoiding such unnecessary cells.

To de�ne this subcategory we can make use of the notion of minimal sub-
complexes which come as part of the typical conditions (see De�nitions 3.3.7 and
3.3.8). Given any object of P(x) one can take the minimal subcomplex of the
map out ofX and this gives a new object of P(x). We write this operation asM .
The consistency of these minimal subcomplexes shows that M is an endofunc-
tor, and clearly it is idempotent. Furthermore, the fact that it is a subcomplex
means that there is an inclusion map i(k,(A,~τ)) : M(k, (A,~τ)) → (k, (A,~τ)) for
any object of P(x).

This is su�cient to see that M is an idempotent comonad. We write P ′(x)
for its category of �xed points; this is the subcategory we wish to consider. An
object of P ′(x) is a map k : X → (A,~τ) such that µ(k) is the whole of (A,~τ).
Hence it is an object of P(x) with no super�uous cells, which is exactly the type
of object we care about. If we prove that P ′(x) has an initial object it follows
immediately that it is also an initial object for P(x).

Showing P ′(x) is a poset. Suppose that θ and θ′ are any two morphisms of
the form

(k, (A,~τ))→ (h, (A,~γ))

in the category P ′(x). For any cell a in the complex (A,~τ) we can take the
smallest subcomplex containing a which we will write ν(a); every cell in this
subcomplex is either a or the result of some restriction map, φ(a). Now we
claim that any single point (by which we mean an element of the set U(A,~τ),
which can be written as a morphism {∗} → (A,~τ) where {∗} is the one shape
object for the typical nerve U) has a subcomplex of the form ν(a) for its minimal
subcomplex. This follows from the assumption that C is space-like, because each
subcomplex inclusion is injective and U preserves colimits.

The minimal subcomplex µ(k) can be expressed as the union of the µ(k(p))
for all p ∈ UX. Hence, for any cell a ∈ (A,~τ) we can �nd a point p ∈ UX
such that a is in the subcomplex µ(k(p)), using the fact that (k, (A,~τ)) is in
the subcategory P ′(x) and therefore µ(k) is the whole complex. Now we use
the result of the last paragraph to see that µ(k(p)) is equal to ν(b) for some cell
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b ∈ (A,~τ), and therefore there is a map φ in J such that a = φ(b). We have
θ ◦ k = h = θ′ ◦ k, so by consistency of subcomplexes,

θ(µ(k(x))) = µ(θ(k(x))) = µ(h(x)) = µ(θ′(k(x))) = θ′(µ(k(x))),

which implies that θ(b) = θ′(b). Since a = φ(b), this further implies that
θ(a) = θ′(a), and since a was chosen arbitrarily, we have shown that θ = θ′.
Hence there is at most one morphism between any two objects of P ′(x), meaning
it is a pre-ordered set.

Showing P ′(x) is small. Let (k, (A,~τ)) be an object of P ′(x). Since it has no
super�uous cells, (A,~τ) is the union of the subcomplexes µ(k(p)) for all p ∈ UX.
Each of these subcomplexes can be written as ν(a) for a cell a ∈ (A,~τ) and the
cardinality of ν(a) is limited by the cardinality of the representable presheaf
[sa] where sa is the shape of the cell a. Since there is only a set of points in
X�that is, UX is a set�this argument gives a maximum cardinal number of
cells in any object of P ′(x). Hence it is a small category.

Showing P ′(x) is complete. Because we know that P ′(x) is a poset, it
is su�cient to check that all small products exist. Given any set of objects
{(ki, (A, σi)) | i ∈ I} in P ′(x), this gives us a set of objects (A, σi) in CellCx(A).
We can form the product of this set; since all the cell complexes involved have
height one we are really just taking the product of a set of presheaves. Hence
a cell in this product is just a choice of cells, one in each σi, with the same
shapes and binding maps. For any point p ∈ UX, we get a minimal complex of
the form ν(ai) for some ai ∈ σi. These ai all have the same shape and binding
map since they all live over the same cell in (A, 1); hence they correspond to
a single cell a in the product. We do this for each point in X and it allows
us to construct a function of underlying sets k : UX → U

(
(A,
∏
σi)
)
into the

product.
This is where we encounter the problem that causes this argument to fail

for topological spaces (and probably many other space-like categories): there
is no way to show that this function k is actually the underlying function of
some map of spaces. In the case of Top one can form a countably in�nite
product and construct k which fails to be continuous (in much the same way
that θf in the counterexample we gave earlier failed to be continuous). In the
last paragraph we showed that (A,

∏
σi) has the same underlying set as the

limit in C of the diagram with each of the (A, σi) and their maps to (A, 1). We
need to show, however, that they are the same space, not just that they have
the same underlying set.

De�nition 5.3.3. We say that a space-like category C is docile if for any re-
alisation functor

∐
: T̂ → C and any small diagram of presheaves D : D → T̂ ,

if
∐

(lim(D)) and lim(
∐
◦D) have the same underlying set then they are also

isomorphic as objects of C.

The space (A,
∏
σi) can be constructed as the realisation of a limit of

presheaves in exactly the way speci�ed by the de�nition above; hence if C is
docile we can show that k does indeed de�ne a morphism of spaces. This gives
a new object of P(x). It may contain super�uous cells, however, so the next step
is to apply the comonad M to obtain an object of P ′(x). A standard argument
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for re�ective subcategories con�rms that this object has the universal property
of a product with respect to morphisms from objects of the subcategory; thus
we have shown that P ′(x) is complete.

Theorem 5.3.4. A space-like category that is docile is universally corporeal
with respect to every object.

Clearly this property of docility has just been invented in a very ad hoc
manner. To suggest that it is not just some completely bizarre requirement we
would brie�y observe that while Top clearly fails to be docile in general, the
equivalent property does hold for �nite limit diagrams; the failure for in�nite
diagrams corresponds to the fact that an in�nite intersection of open sets is not
necessarily open.

This suggests that we could consider the subcategory of topological spaces
which have the extra property that every intersection of open sets is open, rather
than just the �nite intersections. This subcategory has in fact been studied
quite a lot; these spaces are called Alexandrov spaces. It is a very standard
result that the category of Alexandrov spaces is equivalent to the category of
pre-ordered sets (see for example [Joh86])�this works by observing that the
upwardly closed sets in a poset form a topology. One can easily check that the
category of Alexandrov spaces (or pre-ordered sets) is space-like and docile, so
it is an example of the theorem above�although it is a bit strange as a category
of spaces.

One could also consider the category of metric spaces and short maps, which
is space-like and seems at �rst like another possible solution to the problem
encountered with Top. However, upon some re�ection it is not hard to �nd a
counterexample that shows this is not docile�and once you know where to look
it is then trivial to construct a category of generating maps which causes metric
spaces to fail to be corporeal. This time the problem arises because of metric
spaces with points that are in di�erent connected components but which are
not in�nitely far apart. Based on this, one might conjecture that some docile
category of geodesic metric spaces exists.

5.4 Corporeal Globular Operads

In this section we will consider the corporeality of categories of higher categories
given by globular operads. As already discussed, di�erent globular operads
will give di�erent results to the question of whether computads are presheaves;
therefore some types of n-category will be corporeal and some will not. The
question of which globular operads turn out to be corporeal has already been
answered in the work of Batanin�see [Bat02]. He proves that computads for a
globular operad are presheaves (and therefore the category is corporeal) exactly
when the operad has a strongly regular theory for each of its slices.

This terminology will be explained, and we will see how this characterisation
appears quite natural when viewed through the language of cell complexes.
In particular the property of a theory being strongly regular is equivalent to
a certain category being corporeal in a speci�c context. Thus the approach
Batanin takes can be seen as restricting the problem to proving corporeality in
a few very special cases.



112 CHAPTER 5. CORPOREALITY

There are no new theorems in this section. The aim here is rather to study
the existing work of Batanin through the lens of cell complexes and hopefully see
how his theorem can be more intuitively understood when seen in this general
context.

Strongly regular theories. We begin by studying the essential link between
corporeality and the property of strong regularity. This is extremely simple and
really involves nothing more than unpacking the de�nition of strong regularity,
which we will give �rst. This theory of strong regularity and its connection
to another property called familial representability can be found in [CJ95]�
Lemma 5.4.2 below is an immediate corollary of results found in that paper,
but we will give a full proof here for the sake of clarity.

De�nition 5.4.1. A theory on the category of sets is strongly regular if it can
be presented using only relations in which the same variables appear on both
sides, in the same order, without repetition.

For example, the theory of monoids is strongly regular, since (ab)c = a(bc),
a1 = a and 1a = a clearly satisfy the property described. On the other hand,
the theory of abelian groups requires relations such as ab = ba and aa−1 = 1,
both of which fail the test. It turns out that strongly regular theories are exactly
those that can be given by (non-symmetric) operads on Set�see [Lei04a] for
more detail on this subject.

Lemma 5.4.2. A theory F on Set is strongly regular if and only if the triple
(F-Alg, U, {0→ F1}), in which U is the underlying set functor, is corporeal
with respect to the one point set.

Proof. A cell complex generated from this single generating morphism is just an
F -algebra with a set of new elements freely adjoined. Therefore each element
of a cell complex can be expressed as an operation in F applied to a set of
elements, some from the original F -algebra, and some which are new ones that
have been adjoined by the cell complex. However, this expression may not be
unique�there may be two or more such expressions with a chain of relations in
the theory connecting them.

The condition of F being strongly regular implies that this sequence of re-
lations cannot alter the set of elements that go into the operation; neither can
they change the order of the set�in other words, no matter how many di�erent
expressions of the element there may be, they all use the same set of cells in the
same order. This immediately gives a classifying complex for the element.

The converse is very straightforward to show, since if (F-Alg, U, {0→ F1})
is corporeal with respect to the singleton set we can construct a strongly regular
presentation of F as follows: �rst, there is an operation for every pattern {∗} →
(0, 1), and the arity of each operation is given by the cardinality of its classifying
complex. Then to compose n operations φ1 to φn of arities m1 to mn with one
operation ψ of arity n we form the morphism

{∗} F{a1, a2, . . . , an}

F{bij | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}

ψ(a1,a2,...,an) //

ai 7→φi(bi1,bi2,...,bimi )
��
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and use its pattern to de�ne the composite operation ψ(φ1, φ2 . . . φn). What we
have is a non-symmetric operad, and hence a strongly regular theory which we
can easily see gives the same monad as F .

This lemma suggests how Batanin's condition might be connected to the
notion of corporeality. In order to see how this works, we �rst have to establish
the terminology of slices of a globular operad.

De�nition 5.4.3. Given a globular operad P , de�ne the kth slice of P to be
the monad on Set given by the composite

Set nGSet nGSet Set.
Σk // Pk // nGSet(Gk,−) //

The �rst step Σk means suspending k times (the suspension functor replaces an
n-globular set X with an (n+ 1)-globular set that has a single 0-cell and higher
cells given by moving everything in X up one dimension). The second step is
just the kth truncation of P which we de�ned near the beginning of Section 4.1.
The �nal step returns the set of k-cells in the resulting n-category (which is
trivial up to dimension k). It is not particularly hard to show this is a monad;
the interested reader will �nd more detail in [Bat02].

We can now see how Batanin's condition�that all the slices of the operad up
to the (n− 1)th slice are strongly regular�translates directly into a statement
about corporeality in nCat for a very restricted class of cell complexes. If
we consider cell complexes over the terminal n-category CellCx(1), and we
restrict ourselves to the single generating map ∂k → Gk, we �nd that each
cell complex is just given by a set of k-cells. Furthermore, the n-categories
generated by these cell complexes are given by algebras for the kth slice of P .
So Batanin's condition is equivalent to saying that CellCx{∂k→Gk}(1) has all
classifying complexes. His theorem can be restated as follows:

Theorem 5.4.4 (Equivalent to Theorem 5.2 in [Bat02]). Suppose that for a
globular operad P the cell complex category CellCx{∂k→Gk}(1) has all classify-
ing complexes for 0 ≤ k ≤ n− 1. Then (nCat, U, {∂i → Gi}0≤i≤n) is corporeal
with respect to any n-category that contains no non-trivial cells at the top di-
mension.

For practical purposes we only care about being corporeal with respect to
the globs Gk for k ≤ n− 1, but Lemma 5.2.1 gives us the rest at no extra cost.
It is not surprising that the corporeality fails when we introduce a non-trivial
cell at the top dimension; the top dimension of an n-category is always strict by
necessity, so the kind of behaviour we saw earlier for strict 3-categories can easily
occur. However, this does not matter from the point of view of computads, since
the boundaries of the generating maps do not involve any top-dimension cells.
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