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Abstract 

Agricultural expansion and logging are resulting in habitat degradation and 

fragmentation, especially in tropical regions. In Southeast Asia oil palm 

agriculture and commercial logging are the main threats to rainforest 

biodiversity, and I assessed the impacts of forest disturbance and land-use 

change on species composition and ecosystem functioning. I explored the 

role of the High Conservation Value (HCV) approach for biodiversity 

conservation in tropical agricultural landscapes and concluded that better 

knowledge exchange between scientists and HCV users is needed to 

improve biodiversity conservation in managed landscapes. I carried out a 

meta-analysis to examine the responses of birds, ants and beetles to the 

conversion of rainforest to oil palm which revealed that species in 

plantations were generally small-bodied species from lower trophic levels 

that had low abundances in forest. I collected new field data from Sabah 

(Malaysian Borneo) on dung beetle diversity and ecosystem functioning in 

undisturbed forest, selectively logged forest and forest fragments (5-3,529 

ha). Dung beetle diversity was adversely affected by forest fragmentation, 

but not by selective logging. Larger fragments with better quality forest 

supported similar species assemblages to continuous forest, including 

functionally important dung beetle species. Dung removal, seed burial and 

seed dispersal were maintained in selectively logged forest, but were 

reduced by >50% in forest fragments. Dung removal in forest fragments was 

dependent on a few large, disturbance-tolerant species, which resulted in 

highly variable rates of functioning in fragments. Consistently high rates of 

dung removal and seed dispersal required high species richness as well as 

high biomass of dung beetles. Overall, forest fragmentation adversely 

affected diversity and ecosystem functioning, although fragments >100 ha 

maintained some dung beetle diversity and ecosystem functions. By 

contrast, degraded logged forest was functionally similar to undisturbed 

forest and thus should receive higher protection. 
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Chapter 1 - Introduction 

1.1 Biodiversity 

1.1.1 Defining and measuring biodiversity 

The term ‘biodiversity’ is now firmly established in ecological parlance, 

and an ISI Web of Knowledge search reveals that in 2013 alone 1,060 papers 

contained the word in their title. However, biodiversity is a relatively 

recent term that was first used in the 1980s as an abbreviation of 

‘biological diversity’ (Wilson & Peter 1988; Magurran 2004). The most 

widely used definition is that of the United Nations Environmental 

Programme (UNEP) (Heywood 1995; www.cbd.int): 

“The variability among living organisms from all sources including, inter 

alia, terrestrial, marine, and other aquatic systems, and the ecological 

complexes of which they are part; this includes diversity within species, 

between species and of ecosystems” 

This broad definition encompasses variation ranging from individuals  to 

ecosystems, but the term is most commonly used in reference to species 

richness (Hubbell 2001). Species richness is the number of species in a 

given area and was used for a long time by conservationists as a criterion to 

identify high diversity areas worthy of protection (Prendergast et al. 1993; 

Gotelli & Colwell 2001). However, species richness is now rarely used on its 

own as it does not capture the full variation in species diversity, endemism 

and abundance in space and time (e.g. Petchey & Gaston 2002).  

In all ecosystems, individual species vary greatly in their relative 

abundances at a given point in time and space (Fisher et al. 1943a), and 

even more so across space and time (Preston 1960). Therefore, species 

diversity can be separated into alpha, beta and gamma diversity to 

represent diversity measured at increasingly large spatial scales (Anderson 

et al. 2011), or can be broken down into richness and evenness components 

to compare the rarity of different species (Magurran 2004). Considering 

these different components of diversity improves our understanding of 
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species distribution patterns and of how different species use resources in 

space and time. Assessing species’ resource use improves our knowledge of 

ecosystem functioning and measures of functional diversity have been 

developed to explain how species traits relate to their potential roles in 

ecosystem functioning (Petchey & Gaston 2002, 2006). Functional diversity 

can be measured either using quantitative indices representing a range of 

functional traits or by directly analysing the relationship between 

individual functional traits and ecosystem functioning (Bello et al. 2010). 

Trait analyses can then be used to assess the impacts of biodiversity losses 

on ecosystem function, and different measures of diversity to better 

understand the consequences of disturbances for conservation. 

1.1.2 Global biodiversity 

Along with efforts to define different components of diversity, much 

ecological research has also focussed on quantifying global diversity 

patterns (Stork 1993; Mora et al. 2011; Costello et al. 2012). Recent 

estimates suggest that there may be 8.7 million terrestrial and marine 

eukaryotic species (Mora et al. 2011), although only around 1.5 million of 

these have been described to date (May 2011). The taxonomic distribution 

of these species is uneven and is dominated by the class Insecta, which 

represent 50-90% of all species (Gaston 1991). Diversity patterns also vary 

spatially across the globe. The greatest spatial pattern is the latitudinal 

richness gradient, which leads to an increase in species richness from the 

poles to the equator (Willig et al. 2003; Brown 2014). Different hypotheses 

have been proposed for this gradient, including the suggestion that low soil 

fertility and high humidity drive high diversity in the tropics (Rohde 1992). 

However, there is a growing consensus that this gradient is caused by high 

tropical temperatures driving faster metabolic and evolutionary rates, and 

leading to rapid speciation and greater competition (Brown 2014).  

However, the extraordinarily high diversity in the tropics is under 

increasing threat from human activity, leading to research seeking to 

identify and prioritise areas most in need of protection. For example, 

‘biodiversity hotspots’ are areas with high rates of vertebrate and plant 
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endemism that are undergoing severe habitat loss, such as the ‘Sundaland’ 

hotspot in Southeast Asia (Myers et al. 2000). 

1.1.3 Southeast Asian biodiversity 

Biodiversity in Southeast Asia is generally lower than in the Neotropics, but 

the ‘Sundaland’ biodiversity hotspot supports 5% of global plant species and 

3% of vertebrate species (Myers et al. 2000). This high diversity and 

endemism is the result of the latitudinal temperature gradient and a 

regional biogeographic history involving shifting species distributions in 

response to changing rainfall and sea levels (Woodruff 2010). The dominant 

lowland ecosystem in Southeast Asia is tropical rain forest. Tropical rain 

forests are defined by a climate where mean monthly temperatures exceed 

18oC, annual rainfall is greater than 2000 mm and there are fewer than four 

months with less than 100 mm rainfall (Richards 1996). These conditions 

mean that the biomass and diversity of tropical rain forests is unrivalled, 

and 50 ha of forest in Pasoh, Malaysia supports over 800 tree species, 

compared to just 50 species across the whole of Europe (Whitmore 1998). 

The dominant forest type in Southeast Asia is lowland mixed Dipterocarp 

forest (LMDF). LMDF is a type of tropical rain forest and is the dominant 

lowland (<500 m a.s.l.) forest type on Borneo, especially on clay and loam 

soil types (Whitmore 1984; Richards 1996). This forest is dominated by tree 

species of the Dipterocarpaceae family. Dipterocarp species comprise up to 

75% of all trees and 45% of basal area within these forests, although this 

dominance varies across the island (Richards 1996). In the undisturbed, 

continuous forest sites considered in this thesis, Dipterocarps make up 

around 88% of the timber volume of large trees and 49% of basal area 

(Marsh & Greer 1992; Newbery et al. 1992). These large Dipterocarp trees 

dominate the canopy and emergent strata of undisturbed forest, resulting 

in these forests being the tallest tropical rain forests globally, with the 

canopy reaching 30-40 m and emergent trees up to 50-70 m (Richards 

1996). These Southeast Asian rainforests are also characterised by 

intermittent mass flowering events of Dipterocarps, and many other tree 

families, at intervals of multiple years (Appanah 1985; Sakai 2002). Canopy 
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trees, such as Dipterocarps, have evolved long, straight boles, as an 

effective evolutionary strategy to maximise tree height and so increase 

access to photosynthetically active radiation. However, these long, 

branchless boles and the hardwood qualities of many Dipterocarps that 

make them so functionally dominant also means that they are of high 

commercial timber value (Meijaard et al. 2006; Basuki et al. 2009).  

1.2 Ecosystem functioning 

Functional ecology aims to understand longer term consequences of 

biodiversity losses and impacts on ecosystem services (Reiss et al. 2009; 

Peh & Lewis 2012). Functional ecology assesses the contribution of 

individual species to ecosystem functions or processes and ecosystem 

functioning, where ecosystem functions are “changes in matter and energy 

over time through biological activity” and all functions combined are 

required to sustain overall ecosystem functioning (Millennium Ecosystem 

Assessment 2005; Reiss et al. 2009). Products of ecosystem functioning that 

are of value to humanity are referred to as ecosystem services, and can be 

broken down into provisioning, regulating, supporting and cultural services 

(Millennium Ecosystem Assessment 2005). For example, nutrient cycling, 

primary productivity and decomposition are ecosystem processes that 

contribute to regulating and supporting ecosystem services such as flood 

control, climate regulation and soil formation (Millennium Ecosystem 

Assessment 2005). Ecosystem functions, and ultimately ecosystem services, 

result from individual species interacting with biotic and abiotic ecosystem 

components (Reiss et al. 2009). As species grow and reproduce, their use of 

biotic and abiotic resources leads to the transfer of energy or matter 

through ecosystems. 

The dependence of ecosystem functioning on the activity of individual 

species means that studying the relationship between biodiversity and 

functioning is crucial. It was originally proposed that there may be a linear 

positive relationship between species richness and ecosystem function, as a 

result of the complementary use of resources by species with non-

overlapping niches (Schulze & Mooney 1994). A strict linear relationship is 
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rarely true in reality, where species interactions, trait variation, resource 

use efficiencies and abundances in space and time all lead to interspecific 

differences in contributions to ecosystem functions (Hooper et al. 2005; 

Yachi & Loreau 2007; Bello et al. 2010). For example, common and large-

bodied species can be competitively and functionally dominant (Smith & 

Knapp 2003; Woodward et al. 2005). However, increased species richness 

does lead to increased ecosystem functioning, especially over broader 

spatial and temporal scales and following disturbance. For example, 

although domesticated honey bees can be efficient pollinators in typical 

weather conditions, a high diversity of wild pollinator species leads to 

increased flower visitation and pollination of almond trees under high wind 

conditions (Brittain et al. 2013). 

1.3 Dung beetles  

Dung beetles are not an especially speciose group, numbering 

approximately 5,000 species globally in the main subfamily Scarabaeinae 

(Family Scarabaeidae), and 120 species on the island of Borneo (Davis & 

Scholtz 2001). Nonetheless, they have long been of ecological interest 

because of their specialisation on vertebrate dung, parental care, resource 

competition and reliance on ephemeral resources (Hanski & Cambefort 

1991; Davis & Scholtz 2001). Intense competition for ephemeral resources 

has led to the evolution of large variation in dung beetle morphologies and 

behaviour (Monaghan et al. 2007). This variation is characterised by the 

nesting behaviour of dung beetles, which splits them into four main groups: 

tunnellers (paracoprids), rollers (telecoprids), dwellers (endocoprids) and 

kleptoparasites (Hanski & Cambefort 1991). Tunnellers and rollers are 

considered ‘true’ dung beetles because they form nests and make brood 

balls and comprise the dominant groups in biomass and species richness, 

especially in the tropics (Hanski & Cambefort 1991). Tunnellers bury their 

brood ball directly underneath the dung pile, whilst rollers form a ball that 

is rolled away from the dung pile before being buried at a shallower depth 

than is the case for tunnellers. Rollers are characterised by more compact, 

rounded body shapes, curved hind tibia and longer femurs (Figure 1.1) than 

tunnellers that have broader and longer bodies with short hind tibia and 
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broader ‘spade-like’ fore tibia (Figure 1.2; Inward et al. 2011). Neither 

dwellers nor kleptoparasites are abundant or functionally important in 

Southeast Asia and so receive little attention in this thesis (Hanski & 

Cambefort 1991).  

 

Figure 1.1. Roller dung beetle (Paragymnopleurus sparsus Sharp). Note the 

long hind legs that aid dung ball-rolling, and the flatter and more circular 

body shape than the tunneller in Figure 1.2. 

 

 

Figure 1.2. Tunneller dung beetle (Catharsius dayacus Lansberge). Note the 

shorter limbs and broad ‘spade-like’ fore tibia evolved for digging. 
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In addition to diverse nesting behaviour, dung beetles also exhibit diet and 

habitat specialisation. Southeast Asian dung beetle assemblages include 

carrion and fruit-feeding specialists, but omnivore dung attracts most 

species and can be removed by beetles within a few hours (Hanski 1983; 

Hanski & Cambefort 1991). More species are typically associated with 

abundant dung resources, such as omnivore and herbivore dung, where 

competitive exclusion is rare (Hanski & Cambefort 1991). Forest dung 

beetle species are commonly stenotopic (confined to a narrow range of 

environmental conditions). For example, riverine and edge forest habitats 

in Sabah, Malaysia support different species assemblages to interior forest, 

and the assemblages of selectively logged forest resemble those found in 

riverine and edge habitats (Davis et al. 2001). Furthermore, the study of a 

savannah-forest ecotone in Bolivia revealed only two shared species 

between the habitats (Spector & Ayzama 2003). This habitat specialisation 

and reliance on vertebrate dung means dung beetles can be used as 

indicators of habitat disturbance and the mammalian fauna (Spector 2006; 

Nichols et al. 2009).  

In recent decades there has been a growing interest in the functional 

ecology of dung beetles, because of their roles in nutrient cycling, parasite 

suppression and secondary seed dispersal (Nichols et al. 2008). As a by-

product of burying their brood balls, dung beetles bury dung and seeds in 

the soil which returns nitrogen to the soil and can aid seedling germination 

(Andresen & Feer 2005; Nichols et al. 2008). For example, dung burial by 

beetles makes nitrogen available to plants through mineralisation (Nichols 

et al. 2008) leading to increased plant productivity and growth (Bang et al. 

2005), and seed burial reduces seed predation and increases seedling 

establishment (Andresen 2001). Dung beetles can also reduce the density of 

seedlings (Lawson et al. 2012), which is crucial for reducing density-

dependent seed and seedling mortality and maintaining seedling diversity 

(Bagchi et al. 2014). These functional roles and the ecological responses of 

dung beetles to spatially and temporally patchy dung resources makes them 

an excellent focal taxon for assessing the impacts of land use change on 

biodiversity and ecosystem function. 
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1.4 Threats to tropical biodiversity 

Human population growth and rising per capita consumption are increasing 

demand for food, fuel and timber (Butchart et al. 2010; Pereira et al. 

2010). This is driving habitat and biodiversity losses, especially in the 

tropics where biodiversity is highest and development fastest (Gibson et al. 

2011; Phalan et al. 2013). Within the tropics, Southeast Asia has 

experienced the highest rates of habitat and biodiversity loss driven 

primarily by commercial logging and oil palm (Elaeis guineensis Jacq) 

expansion (Sodhi et al. 2010). For example, oil palm plantations in Malaysia 

and Indonesia expanded from 2.4 million ha in 1990 to 7.2 million ha in 

2012, and 55-59% of this expansion replaced native tropical forest (Koh & 

Wilcove 2008). Furthermore, of the remaining 18.6 million ha of native 

forest in Malaysia in 2010, only 3.8 million ha were undisturbed primary 

forest, less than the area under oil palm cultivation (4.4 million ha) (FAO 

2010). This pattern of land-use change is typical of Southeast Asia, where 

the majority of lowland forest has been subject to commercial selective 

logging (Edwards et al. 2011b).  

Commercial selective logging and oil palm expansion cause forest 

degradation, habitat fragmentation and habitat conversion, all of which 

have adverse impacts on Southeast Asian biodiversity (Fahrig 2003; 

Fitzherbert et al. 2008; Edwards et al. 2011b). All of these disturbances 

cause reductions in species richness and abundance, and changes in species 

composition in relation to intact primary forest (Fahrig 2003; Gibson et al. 

2011). However, selective commercial logging is generally less detrimental 

than forest fragmentation, which in turn is less damaging to biodiversity 

than conversion of forest to agriculture (Fitzherbert et al. 2008; Berry et 

al. 2010; Edwards et al. 2010). In fact, analyses of multiple taxa revealed 

that ~90% of primary forest species persist after one logging rotation, and 

>75% after two rotations of high-intensity selective logging (Berry et al. 

2010; Edwards et al. 2011b). The value of forest fragments for biodiversity 

depends greatly on their size and isolation from continuous forest, but even 

relatively small fragments <300 ha in oil palm plantations have been shown 

to protect range-restricted populations of forest dependent butterfly and 
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bat species (Benedick et al. 2006; Struebig et al. 2008). Conversely, oil 

palm plantations support highly depauperate species assemblages 

(Fitzherbert et al. 2008). The impacts of logging, fragmentation and oil 

palm conversion on species richness and abundance, are now well 

established, but studies are lacking on their effects on functionally 

important taxa, such as dung beetles. 

1.4.1 Land use change in Sabah, Malaysia 

The Malaysian state of Sabah is the country’s most easterly State and is 

situated on the island of Borneo (Figure 4.1). In 2010, Sabah had a 

population of 3.2 million people at a density of ~40 people km-2, making it 

relatively sparsely populated by Southeast Asian standards (Reynolds et al. 

2011). The majority of the population lives in the cities of Kota Kinabalu, 

Sandakan and Tawau, with much of the state remaining largely rural, with 

51% (3.8 million ha) of the State covered by forest and 19% (1.4 million ha) 

by oil palm plantations (Reynolds et al. 2011). However, approximately 73% 

of Sabah’s forested area has been selectively logged at least twice and is 

now highly degraded. Much of the remaining undisturbed primary forest 

now persists in the highlands of Sabah and it is estimated that only 70,000 

ha of undisturbed primary lowland forest remain in the State (Reynolds et 

al. 2011). Sabah’s three main lowland conservation areas, Danum Valley, 

Imbak Canyon and Maliau Basin, account for about 50,000 ha of the 

remaining primary lowland forest and the rest persists almost entirely in 

the State’s other protected areas, including Virgin Jungle Reserves 

(Reynolds et al. 2011). This loss of primary lowland forest started in 1890 

when the British North Borneo company began logging the area’s forests for 

timber, and converting forest to expand tobacco and rubber plantations. 

This logging and agricultural expansion continued following Malaysia’s 

independence in 1963, and at a higher intensity associated with the 

increasing mechanisation of logging. Timber production in Sabah plateaued 

in the 1970s and 1980s, and subsequent declining timber yields led to 

increased forest conversion for oil palm plantations. Some oil palm 

expansion replaced existing rubber and cocoa plantations, but the vast 

majority (~80%) replaced natural forest (McMorrow & Talip 2001; Reynolds 
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et al. 2011). Consequently, virtually all lowland forest in Sabah is now 

either heavily degraded or persists in forest fragments within landscapes 

dominated by oil palm plantations. 

1.4.2 Oil palm agriculture and the Roundtable on Sustainable Palm Oil 

The African oil palm (Elaeis guineensis Jacq) is by far the highest yielding 

commercial vegetable oil crop, producing ~3.7 tonnes of oil ha-1 y-1, which 

is over six times the yield of soybean, sunflower or rapeseed oil (Basiron 

2007). This remarkable productivity means that palm oil is now the 

cheapest and most used vegetable oil and it represents 35% of global 

vegetable oil production (USDA 2014). Two oil types are extracted from the 

African oil palm: palm oil from the fruit mesocarp and palm kernel oil from 

the kernel (Corley & Tinker 2008). Palm oil is used primarily for food whilst 

the kernel oil is used in cosmetics and toiletries (Basiron 2007). The African 

oil palm has been used by humans for thousands of years, but the first large 

plantations of oil palm were developed in Indonesia and Malaysia as early 

as 1911 and major expansion of the industry occurred in Southeast Asia 

after 1970 (Corley & Tinker 2008). Consequently, Malaysia and Indonesia 

are responsible for approximately 86% of current oil palm production, but 

the crop’s profitability has led to continuing global expansion with an 

increasing focus on West Africa and Latin America (Butler et al. 2009; 

Phalan et al. 2013).  

Over the last 15 years, as the oil palm industry has become increasingly 

global, concerns have been raised over the industry’s environmental 

impact. Consumer groups highlighted the widespread loss of tropical forests 

and biodiversity associated with oil palm expansion (Edwards et al. 2012b). 

As a result, the Roundtable on Sustainable Palm Oil (RSPO) was formally 

established in 2004 to address these negative environmental impacts, as 

well as adverse social impacts such as land grabbing, low wages and 

minimal labour rights (Paoli et al. 2010; RSPO 2012a). The RSPO is a multi-

stakeholder membership organisation formed of oil palm growers, 

processors, traders and retailers, social and environmental NGOs and 
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investors. It aims to ensure the sustainable economic, social and 

environmental production of palm oil (RSPO 2012b).  

A key component of the RSPO’s principles and criteria for sustainability is 

the requirement for certified plantations to maintain and enhance areas of 

High Conservation Value (HCV). The HCV approach consists of six values 

that aim to protect unique and threatened biodiversity, ecosystems and 

social sites or resources (www.hcvnetwork.org). New oil palm plantations 

seeking certification by the RSPO must carry out an HCV assessment prior 

to developing the land (Brown et al. 2013). However, the effectiveness of 

the HCV approach for biodiversity conservation has been questioned 

because of inconsistent HCV assessments and doubts as to whether HCV 

areas will protect biodiversity in the long term (Paoli & Harjanthi 2011; 

Edwards et al. 2012b). There are also few studies which consider the 

effectiveness of the HCV approach, and so further research is required to 

compare strategies for biodiversity conservation within oil palm plantations 

and to improve the evidence base of the HCV approach. 

1.5 Understanding and addressing the ecological impacts of 
land use change 

Commercial selective logging, forest fragmentation and conversion of 

forest to oil palm plantations have different impacts on biodiversity and 

comparing the ecological mechanisms behind these impacts can help to 

minimise losses of functionally important species and species of 

conservation value. 

1.5.1 Habitat fragmentation 

The effects of fragmentation on biodiversity are underpinned by 

established ecological concepts, including the Species-Area Relationship 

(SAR) and the Theory of Island Biogeography. First proposed by Preston in 

the 1960s, the SAR describes the concave, curvilinear increase in the 

number of species found in increasingly larger areas of habitat (Preston 

1960, 1962). Subsequently, ecologists have to sought to understand the 

mechanisms behind the SAR, and the Theory of Island Biogeography was 

http://www.hcvnetwork.org/
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one of the first mechanisms proposed by MacArthur and Wilson (MacArthur 

& Wilson 1967). This theory proposes that the number of species on an 

oceanic island is determined by the rate at which species go extinct versus 

colonise the island. The number of species present on an island becomes 

constant over time as extinction and colonisation rates reach equilibrium. 

Therefore, larger and less isolated islands support more species because 

they have higher rates of colonisation and lower rates of extinction.  

This theory is supported by numerous empirical datasets (e.g. Simberloff & 

Wilson 1969), and has evolved to incorporate habitat islands and single 

species’ metapopulation dynamics (Levins 1969). It is now established that 

individual species vary greatly in their dispersal and colonisation ability, 

which affects their ability to survive in fragmented landscapes (e.g. Warren 

et al. 2001). Furthermore, the quality of matrix habitat and time-since-

isolation also affect the species that can persist in isolated habitat 

fragments. For example, extinction debt means that some species can take 

hundreds of years to go extinct following fragmentation (Brook et al. 2003), 

but relaxation times can be less than 25 years in forest fragments smaller 

than 100 hectares (Gibson et al. 2013). Matrix quality is crucial for dung 

beetle communities in Amazonian forest fragments, with fragments 

surrounded by regenerating secondary forest supporting species 

assemblages similar to those in continuous forest, whereas fragments 

surrounded by pasture support impoverished species communities (Quintero 

& Roslin 2010).  

1.5.2 Habitat quality and complexity 

The quality of habitat within fragments, in addition to fragment size and 

isolation, is important for species persistence. High quality habitat prevents 

species populations declining, and stable population trends can be a 

prerequisite for species dispersal (Mair et al. 2014). However, forest 

fragmentation can reduce habitat quality through edge effects and 

increased encroachment, such as illegal logging (Laurance et al. 2002). 

Edge effects alter vegetation structure in forest fragments by increasing 

ground cover, tree mortality and temperatures, and these changes have 
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been shown to greatly alter the abundance of tropical forest insects, such 

as beetles (Didham et al. 1998; Didham & Lawton 1999). These changes to 

habitat quality can have considerable impacts in tropical forests given their 

high habitat heterogeneity, both vertically through the forest strata and 

horizontally in relation to natural disturbance and topography (Williams et 

al. 2002; Dent & Wright 2009).  

Selective logging and conversion to oil palm alters habitat quality. 

Selective logging removes large canopy trees, but it has collateral impacts 

resulting from climbers bringing down other trees, transporting timber and 

access trails. For example, in Bornean Dipterocarp forests, logging alters 

plant diversity, increases the frequency of canopy gaps and linear gaps, 

such as skid trails, and reduces canopy height and cover (Okuda et al. 

2003). Such changes to habitat structure have been shown to alter 

assemblages of multiple forest taxa, such as dung beetles, butterflies and 

ants, and can lead to the loss of primary forest specialists that are 

dependent on closed canopy forest (Davis et al. 1998; Dumbrell & Hill 2005; 

Woodcock et al. 2011). The conversion of forest to oil palm leads to a much 

greater loss in habitat heterogeneity than selective logging (Foster et al. 

2011). Oil palm plantations are highly ordered monocultures, and although 

the palm trunks and understory layers provide some habitat variability this 

is very low in comparison with logged and unlogged tropical forest (Foster 

et al. 2011; Luskin & Potts 2011). This habitat simplification in plantations 

also leads to changes in microclimate, with oil palm plantations ~4oC hotter 

and less humid than Dipterocarp forest (Luskin & Potts 2011). Therefore, 

forest fragments, logged forests and oil palm plantations have altered 

habitat structures and microclimates compared to unlogged forest, and this 

affects the type of species able to persist in these habitats. 

1.5.3 Conservation strategies 

There has been much debate about the best strategies for conserving 

biodiversity in tropical agricultural landscapes in the face of land scarcity 

and the need to maximise agricultural yields. This debate is largely 

focussed on comparing land sharing and land sparing conservation 
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strategies. Land sharing conservation is when low-intensity agriculture is 

combined with conservation strategies, such as small riparian buffers or 

forest fragments, in the same landscape. Conversely, land sparing is when 

high-intensity agriculture is kept separate from fewer but larger blocks of 

conservation land (Phalan et al. 2011). These strategies have evolved from 

the “SLOSS” debate on whether conservation strategies should spread risks 

across multiple sites with smaller, potentially more vulnerable species 

populations, or focus on fewer, larger sites that support larger populations 

(Fischer et al. 2014). Multiple studies in tropical ecosystems, including 

forest-oil palm landscapes, have shown that land sparing strategies support 

more species of birds, beetles, trees and ants than land sharing strategies 

(Phalan et al. 2011; Edwards et al. 2014). However, these studies have 

focussed on measures of species richness and abundance, and generally 

ignored practical difficulties of implementing these different land 

sparing/sharing strategies (Fischer et al. 2014). Research is needed to 

assess how these strategies will affect ecosystem functioning, a critical 

concern in agricultural landscapes (Foster et al. 2011). There is also a need 

for analyses that specifically address the quality and size of shared and 

spared conservation areas, i.e. the size of fragments in shared landscapes 

or ‘continuous’ forest in spared areas.  

1.6 Thesis rationale and objectives 

This thesis aims to improve our understanding of biodiversity and 

ecosystem functioning in oil palm dominated landscapes, and to provide an 

evidence-base for conservation strategies in tropical landscapes. The 

relative impacts of selective logging, forest fragmentation and oil palm 

conversion on biodiversity and ecosystem functioning are compared using 

dung beetles as a focal taxon. 

Chapter 2 discusses the role of the HCV approach for biodiversity 

conservation in tropical agricultural systems. The chapter describes the 

origins, advantages and disadvantages of the HCV approach and the steps 

involved in an HCV assessment. It concludes by identifying strategies for 

improving the scientific evidence base of the HCV approach. 
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Chapter 3 assesses the impacts of converting tropical forest to oil palm 

plantations on birds, ants and beetles in relation to their feeding guild, 

body size, population size and geographic range. I test the hypothesis that 

locally rare, range-restricted, predatory and large-bodied species show the 

greatest declines in abundance following conversion. The results are 

related to resource availability in oil palm plantations and potential 

conservation and functional consequences are discussed. 

Chapter 4 introduces the study sites in Sabah, Malaysia and explains how 

fieldwork methods used in subsequent chapters were developed in order to 

sample dung beetles and quantify their ecosystem functions in this thesis. 

It presents analyses assessing inter-annual variation in dung beetle 

assemblages and compares assemblages sampled with cattle and human 

dung baits. 

Chapter 5 analyses the impacts of selective logging and forest 

fragmentation on dung beetle species richness, abundance, biomass and 

species composition. Separate analyses are conducted to examine diversity 

changes in functionally important roller and tunneller species, and it tests 

the hypothesis that species richness, abundance and biomass decline and 

species assemblages are altered following fragmentation, but not selective 

logging. I also test the hypothesis that large-bodied species decline more in 

abundance and biomass following fragmentation than small-bodied species. 

Chapter 6 compares rates of dung beetle ecosystem functions (dung 

removal, seed burial and seed dispersal) in unlogged continuous forest, 

twice-logged continuous forest and forest fragments. It tests the hypothesis 

that dung beetle functions are reduced in fragments compared to 

continuous forest, but are little affected by selective logging. Among 

fragments, I test the hypothesis that seed dispersal, but not dung removal 

or seed burial, declines with fragment area. 

Chapter 7 relates changes in dung beetle composition with ecosystem 

functioning to assess the roles of species richness and biomass in 

maintaining dung beetle ecosystem functions. It also considers the 
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potential importance of a few dominant species for functioning following 

fragmentation. It tests the hypothesis that biomass is a more important 

predictor of dung beetle functions than species richness. 

Chapter 8 summarises findings from Chapters 2-7. It compares the value of 

unlogged continuous forest, logged continuous forest and forest fragments 

of different size, quality and isolation for dung beetle diversity and 

functioning. I discuss the wider implications of my results for the 

maintenance of ecosystem functioning and conservation in tropical 

agricultural landscapes.
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Chapter 2 - Improving the effectiveness of the ‘High 

Conservation Value’ (HCV) process for biodiversity 

conservation in managed tropical landscapes 

2.1 Abstract 

Land-use change is a major driver of tropical biodiversity declines, 

associated with crops such as oil palm and soya, and with commercial 

logging. A common feature of many voluntary sustainability standards for 

mitigating the negative impacts of land-use change within production 

landscapes is the ‘High Conservation Value’ (HCV) approach for protecting 

exceptional environmental and social values. The HCV approach is widely 

used for land management and land-use planning, in certification schemes 

(e.g. FSC, RSPO), and by companies with responsible sourcing policies. 

However, the HCV approach is little known in academia and the scientific 

evidence-base supporting it is not well developed. By raising the profile of 

the HCV approach, we hope to instigate new research to examine and 

enhance the impact of the HCV process on biodiversity conservation. We 

argue for better knowledge exchange between scientists, policy makers and 

HCV users, sharing of existing information and consideration of the 

practical constraints within which HCV users and commodity producers 

operate. Given the continuing loss and degradation of tropical rainforests, 

such strategies are required urgently to reduce biodiversity losses in 

managed landscapes.  
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2.2 Introduction 

Agricultural expansion and timber extraction account for 80% of global 

deforestation and 70% of global forest degradation respectively (Kissinger 

et al. 2012). In turn this habitat loss and degradation drives biodiversity 

loss, particularly in the tropics (e.g. Green et al. 2005; Fitzherbert et al. 

2008; Gibson et al. 2011). As a result of this habitat degradation, and social 

concerns about human rights breaches, the past few decades have seen 

increasing public concern about the production of timber and crops, such as 

oil palm and soy. Resulting consumer pressure has led to the development 

of voluntary sustainability standards (e.g. the Forestry Stewardship Council 

(FSC) and the Roundtable on Sustainable Palm Oil (RSPO)) aimed at 

mitigating the negative environmental and social impacts associated with 

timber and crop production. Given that there are over 49 million km2 of 

crop land and 12 million km2 of production forest globally (“FAOSTAT” 

2012), these standards offer opportunities for biodiversity conservation. 

A key component of the major sustainability standards (FSC, RSPO, 

Roundtable on Responsible Soy (RTRS), Bonsucro) is the High Conservation 

Value (HCV) approach, a tool designed to maintain and enhance critical 

environmental and social values that may be affected by agricultural or 

forestry developments (Figure 2.1). Most of these schemes require that new 

agricultural and forestry developments carry out an HCV assessment to 

identify any areas of HCV that should be conserved before land 

development begins. Management and monitoring to maintain and enhance 

these HCV areas must then be implemented. 
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Figure 2.1. The six High Conservation Values (taken from Brown et al. 

2013). 

HCV 1: Species diversity.   
Concentrations of biological diversity including endemic species and 
rare, threatened or endangered species, that are significant at 
global, regional or national levels. 
 
HCV 2: Landscape-level ecosystems and mosaics.  
Large landscape-level ecosystems and ecosystem mosaics that are 
significant at global, regional or national levels, and that contain 
viable populations of the great majority of the naturally occurring 
species in natural patterns of distribution and abundance. 
 
HCV 3: Ecosystems and habitats.  
Rare, threatened or endangered ecosystems, habitats or refugia. 
 
HCV 4: Critical ecosystem services.  
Basic ecosystem services in critical situations, including protection of 
watercatchments and control of erosion of vulnerable soils and 
slopes. 
 
HCV 5: Community needs.  
Sites and resources fundamental for satisfying the basic necessities 
of local communities or indigenous peoples (for livelihoods, health, 
nutrition, water, etc.), identified through engagement with these 
communities or indigenous peoples. 
 
HCV 6: Cultural values.  
Sites, resources, habitats and landscapes of global or national 
cultural, archaeological or historical significance, and/or of critical 
cultural, ecological, economic or religious/sacred importance for the 
traditional cultures of local communities or indigenous peoples, 
identified through engagement with these local communities or 
indigenous peoples. 

 



 

39 

 

Many conservation practitioners and commodity producers see the HCV 

approach as a practical and accessible tool for mitigating the negative 

impacts of crop and timber production. However, as the scope of the 

approach has expanded from its original use in forestry to include 

agricultural land uses, its effectiveness for biodiversity conservation has 

come under scrutiny, particularly in relation to the palm oil sector 

(Edwards et al. 2010, 2012b; Paoli & Harjanthi 2011). This scrutiny is vital 

for ensuring that the HCV approach fulfils its aim of identifying critical 

environmental and social values and, more widely, for assessing the 

robustness of voluntary sustainability standards, an issue rarely covered in 

the scientific literature (Blackman & Rivera 2011). Criticism of the HCV 

approach has also come from HCV users such as agricultural producers and 

HCV assessors themselves (e.g. Paoli & Harjanthi 2011). In fact, discussions 

between NGOs and private sector representatives about the inconsistent 

application of the HCV approach in agricultural landscapes led to the 

formation of the HCV Resource Network (HCVRN) in 2006 

(www.hcvnetwork.org), to support the continued use and robust application 

of the HCV approach.  

Yet despite being so widely used, the HCV approach is rarely discussed in 

academic literature in relation to biodiversity conservation. Furthermore, 

the few papers that do consider the HCV approach in tropical agricultural 

landscapes (Edwards et al. 2010, 2011a, 2012b; Edwards & Laurance 2012) 

conclude that the HCV approach provides insufficient protection for 

biodiversity. Thus there is an apparent disconnect between HCV users and 

academics; the HCV approach continues to be widely used as a 

conservation tool in production landscapes and yet there is little scientific 

investigation of its effectiveness. Given the urgent need to improve 

biodiversity conservation in managed landscapes, we argue for increased 

engagement of scientists with the HCV assessment process.  

First, we describe the HCV approach, discuss its scope, and the steps 

involved in an HCV assessment. We highlight the advantages that have led 

to it being so widely used and argue that the HCV approach remains one of 

http://www.hcvnetwork.org/
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the best practical tools for biodiversity conservation in agricultural 

landscapes, but that improvements are vital. We then consider evidence 

for the effectiveness of the HCV approach for conserving tropical 

biodiversity, and conclude that continued improvements to the guidance 

and monitoring of the HCV assessment process and a stronger scientific 

evidence-base are required. We conclude by suggesting new solutions for 

strengthening the scientific evidence-base, focused on increasing 

knowledge exchange between HCV users, researchers and policy makers, 

increasing research and data sharing, and improving the communication of 

research findings and their implications. We consider those aspects of the 

HCV approach pertinent to biodiversity conservation, and focus particularly 

on oil palm, as this is a heavily scrutinised sector, although many of the 

issues we discuss also apply to other sectors.  

2.3 What is the HCV approach? 

The HCV approach is based on six values that aim to protect exceptional 

biodiversity, social and cultural identity, and ecosystem services (Figure 

2.1). The approach was first developed in the context of sustainable 

forestry, and incorporated into the Forest Stewardship Council (FSC) 

standard in 1999. It has since been adopted by major agricultural 

sustainability standards (RSPO, RTRS, Bonsucro), as well as in a number of 

corporations’ purchasing and investment policies (see 

http://www.hcvnetwork.org/about-hcvf/hcv-in-natural-resource-certification 

for a more detailed list of uses).  The HCVs that incorporate biodiversity 

conservation (the focus of this paper) are HCVs 1-4, which aim to protect 

sites with high species diversity (HCV 1), landscape-level ecosystems and 

mosaics (HCV 2), rare, threatened or endangered (‘RTE’) habitats (HCV3), 

and critical ecosystem services (HCV 4). HCV values 5 and 6 cover 

community needs and cultural values, and so not all HCV areas are 

intended to protect biodiversity. HCVs can be terrestrial, freshwater or 

marine values likely to be affected by a development.  

http://www.hcvnetwork.org/about-hcvf/hcv-in-natural-resource-certification
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The HCV assessment process identifies values and recommends 

management and monitoring plans for a particular development (see 

Appendix A1.1 for definitions). The first step is to identify if any of the six 

values (Figure 2.2) are present at a site before any development or land 

clearance starts. If any HCVs are identified then an HCV area is defined as 

the area required to maintain these values. To qualify as an HCV area, 

there must be at least one value that is nationally, regionally or globally 

significant, or critically important at the local level. Throughout the HCV 

assessment process, assessors are expected to consider the scale and 

context of the proposed development, how this might affect threats to the 

identified HCVs, as well as potential conflict between HCVs, for example if 

subsistence hunting threatens an endangered species (Edwards & Laurance 

2012; Brown et al. 2013). Final decisions on which HCVs are present and 

their management and monitoring follow consultation with stakeholders 

(e.g. communities, NGOs, research institutions, local authorities), and 

consider the wider landscape affected by the development. They are also 

guided by the precautionary principle (Brown et al. 2013) in recognition of 

difficulties in detecting many tropical species (Meijaard & Sheil 2012), and 

so assessments take longer for higher risk developments.  
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Figure 2.2. The steps in an HCV assessment. This should apply to any use 

of the HCV approach although the steps here are specific to the HCV 

assessment process for RSPO certification. An HCV assessment should 

always be conducted prior to any land clearance or development (see 

Brown et al. 2013 for more details). 

Form an assessment team. 
Either company employees or independent assessors, with 
social and environmental experience relevant to the area. 

Identify HCVs: Initial desk-based research. 
Identify HCVs that are likely to occur in area using remote-

sensing, existing data and literature sources, consultation with 
local biodiversity (and social) experts from NGOs and HCV NIs (if 

available). 

Identify HCVs: Field survey. 
For HCVs 1-4, may involve transects for faunal and floral sampling 

(record sightings, signs, vocalisations) and 'ground-truthing’ of 
desk-based research.  See Meijaard & Sheil 2012 for examples of 

time taken for HCV assessments. 

Recommend management  and monitoring plans. 
Recommend management plans to maintain and enhance 

identified HCVs, and plans to monitor management effectiveness 
over time. E.g. management: buffers around HCVs to minimise 

encroachment, and monitoring: population counts/estimates of 
an endangered species. 

Reporting and verification. 
Varies between sustainability standards, but RSPO requires review 

by an approved RSPO certification body and public reporting.  



 

43 

 

The HCV approach was first developed in a production context and so does 

not prohibit development. It is not intended to be a policy for zero 

deforestation or zero local biodiversity loss, rather a tool for protecting 

exceptional social and environmental values. An HCV assessment is only 

one of many steps for achieving sustainable certification, and depending on 

the certification standard, producer companies may need to comply with 

additional requirements that go beyond protecting HCV areas (e.g. 

environmental best practice such as erosion control). After initial 

certification, companies also have to undergo regular audits to retain their 

certification status, during which the management and monitoring of HCV 

areas are a key consideration (see Appendix A1.2). 

2.4 Advantages of the HCV approach 

The HCV approach is widely supported by environmental and social NGOs 

and members of the private sector, who jointly developed the approach. 

This cross-sector collaboration means that the HCV approach included 

values important to a wide range of stakeholders. It aims to be inclusive, 

practical and affordable, compared to comprehensive biodiversity or social 

assessments that can take years to carry out (Meijaard & Sheil 2012). By 

allowing land development with safeguards that protect exceptional 

environmental and social values, the HCV approach has been widely 

adopted by voluntary sustainability standards such as the RSPO, who wish 

to encourage producers and users to participate (Meijaard & Sheil 2012). As 

a consequence of being used by certification standards and being 

monitored by the HCVRN, the HCV approach also has the advantage of 

added scrutiny and robustness. FSC certified forests and plantations cover 

>180 million ha (www.fsc.org), and RSPO certified plantations cover >1 

million ha (www.rspo.org).  

The widespread application of the HCV approach highlights its potential 

importance for conservation, the importance of evaluating the robustness 

of the HCV process, and ensuring its effectiveness in conserving tropical 

biodiversity is maximised. However, the HCV assessment process is little 

http://www.fsc.org/
http://www.rspo.org/
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known in the scientific community and research on the effectiveness of 

HCV areas for protecting biodiversity is lacking. Also, the HCV approach has 

only been used in agricultural contexts for <10 yrs, and has often been 

misapplied, leading to poor quality HCV assessments (Paoli & Harjanthi 

2011). This makes it difficult to separate criticism of the approach from 

criticism of its application.  

2.5 Improving the HCV approach for conserving tropical 
biodiversity 

Both HCV users (Paoli & Harjanthi 2011) and academics (Edwards et al. 

2012b) have criticised the inconsistency of HCV assessments. This 

inconsistency has been attributed to ambiguous and subjective terms used 

in HCV guidance documents, that depend too heavily on the discretion of 

individual assessors (Edwards et al. 2012b). For example, to qualify as HCV 

1 the “concentration of endemic or RTE species must be globally, 

regionally or nationally significant”, yet guidelines for assessing 

significance are not always clear (but see page 27 of Brown et al. 2013 for 

more detail). Definitions for the HCV approach need to be broad if they are 

to be applied across ecosystems, countries and sectors, but this has led to 

their misinterpretation by HCV assessors (Paoli & Harjanthi 2011).  

Guidance and monitoring of the HCV assessment process have been 

introduced to address problems of misinterpretation. Firstly, HCV national 

interpretations (NIs) provide greater detail to be used in local contexts (see 

Appendix A1.1 for more detail). However, not all countries have HCV NIs 

and, of those that do, many are outdated, specific to just one commodity 

or insufficiently detailed. Furthermore, many NIs still contain ambiguous 

language, e.g. leaving assessors to decide what classifies as a nationally 

significant population of species. Whilst setting thresholds for significant 

populations is not straightforward, lessons may be learned from previous 

experiences of setting thresholds for other conservation tools, such as the 

IUCN Red List. Setting clearer thresholds could help to clarify the ‘critical 

values’ that the HCV approach is designed to identify and protect, thus 
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helping to eliminate criticism resulting from differing expectations of the 

approach. Overall, there is a need to develop more, and better, HCV NIs 

that provide more specific information for all countries. 

Secondly, a peer review process allows independent evaluation of HCV 

assessments (see Appendix A1.1 for more detail). These reviews are 

conducted by HCV experts recognised by the HCVRN and allow serious 

methodological flaws in HCV assessments to be identified prior to 

development, preventing developments that are environmentally or 

socially irresponsible from getting certified by sustainability standards. In 

principle, this should require companies seeking certification to conduct 

new HCV assessments and agree to appropriate HCV management 

practices. However, peer reviews are relatively rare in practice and are 

limited by cost. 

Finally, the HCVRN is introducing an independent HCV Assessor Licensing 

Scheme, to ensure quality control of HCV assessor qualifications and to 

promote consistency in HCV assessment reporting. This new scheme aims to 

eliminate much of the inconsistency in the quality of HCV assessments. The 

RSPO has endorsed the scheme and their ultimate aim is for all HCV 

assessment team leaders to be licensed.  

2.6 Knowledge sharing between HCV users, scientists and 
policy makers 

There is a lack of information on the effectiveness of HCV areas for 

protecting biodiversity. HCV assessors require information to help guide 

and improve their ability to identify HCV areas and to make robust 

management recommendations (Meijaard & Sheil 2012). At the same time, 

many scientists are unaware of the HCV assessment process and of the 

practical constraints faced by assessors. For example, HCV assessors often 

have to carry out assessments and make management recommendations 

based on limited data that are supplemented with expert opinion and rapid 

field surveys (Edwards & Laurance 2012; Meijaard & Sheil 2012). Locally, 
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some easily accessible guidance has been produced by NGOs to help HCV 

assessors and oil palm managers manage and monitor areas of HCV (e.g. 

ZSL 2011, 2013), but increasing knowledge exchange between researchers 

and assessors would ensure that scientific findings contribute towards 

improving the HCV process and help to identify knowledge gaps where 

more research is needed. For example, data are lacking on whether or not 

HCV areas are sufficiently large to conserve HCV species in the long term 

(e.g. Wearn et al. 2012), whether HCV areas can act as stepping stone 

habitats connecting larger tracts of forest (Saura et al. 2013), or whether 

areas intended to maintain HCVs 5 or 6 could also benefit biodiversity.  

Transparency and data sharing by plantation companies and assessors is 

improving the HCV process, but more research is needed. Improvements to 

the reliability of species’ detection rates in HCV assessments are required, 

and new technologies such as drones (http://conservationdrones.org/) or 

acoustic monitoring (Depraetere et al. 2012) might aid the development of 

quick but reliable measures of diversity for some taxa in megadiverse and 

remote tropical areas.  

Existing research is of relevance to HCV assessors. For example, much 

research has been done on the impact of rainforest fragmentation and 

disturbance on biodiversity, but this information is often not in a suitable 

form for use by HCV assessors. The many dimensions of biodiversity 

research mean that there may be few simple and universally applicable 

rules, but rules of thumb could be developed. For example, if assessors are 

interested in particular threatened vertebrate species then range size and 

population viability estimates may already exist (e.g. for orang-utan Pongo 

pygmaeus, Singleton et al. 2009). Similarly, data on the proportion of 

primary forest species protected in different sized fragments are available 

for many taxa (e.g. for birds in SE Asia, Edwards et al. 2010). These data 

could be used to inform management recommendations on the minimum 

size of HCV areas for conserving particular species or communities, and in 

different agricultural contexts. The SAFE (www.safeproject.net) and SEnSOR 

(http://sensorproject.net/) research programmes are providing added 

http://conservationdrones.org/
http://www.safeproject.net/
http://sensorproject.net/
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momentum in this area and will provide independent evidence relevant to 

maintaining HCVs in oil palm landscapes. Similar projects are needed for 

other commodities in other geographic regions. 

It is vital that research findings are communicated to practitioners through 

appropriate channels and in appropriate language (Sutherland et al. 2004). 

This could involve existing web resources 

(www.ConservationEvidence.com, www.ibatforbusiness.org), or new, more 

targeted approaches that feed into HCV NIs or a dedicated HCVRN working 

group. This knowledge exchange needs to include scientists, HCV users and 

also policy makers. It must also be flexible, with different strategies for 

small-holders and large, private companies. Small-holders make up over 

40% of oil palm production area in Malaysia and Indonesia (FSG 2010), but 

often lack the technical expertise and funds to carry out comprehensive 

HCV assessments or to effectively manage HCV areas.  

Policy makers have a key role in the promotion of larger scale and longer 

term conservation goals (such as landscape corridors), which fall outside 

the control of individual producers (especially smallholders), but can be 

influenced by national or regional planning (Edwards & Laurance 2012). 

Better knowledge exchange would help scientists communicate their 

findings with HCV users and policy makers, and HCV users and producers to 

share HCV management challenges with scientists and policy makers. 

Scientists and HCV users also need to be aware of legislative barriers and 

corruption that may prevent or slow implementation of policy changes in 

some countries (Smith et al. 2003; Rands et al. 2010). 

Improving the relevance of scientific research will benefit from access to 

HCV management data. Data sharing and transparency are part of the HCV 

assessment process and the requirements of sustainability standards. For 

example, RSPO Criterion 1.2 states that management documents on HCV 

(including monitoring reports) are publicly available (RSPO 2013), and HCV 

assessment reports for new RSPO plantings must be posted online for public 

consultation, but there is currently no repository for monitoring reports. 

http://www.conservationevidence.com/
file:///C:/Documents%20and%20Settings/mjms501/My%20Documents/Downloads/www.ibatforbusiness.org
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The data currently contained in HCV monitoring reports are often of 

limited use to academic researchers; monitoring reports will need to 

contain more detailed, long-term data, including population estimates and 

details of monitoring protocols, if the effectiveness of HCV areas for 

biodiversity conservation is to be assessed.  

2.7 Solutions to improve the HCV evidence base  

We suggest the following practical solutions: to identify knowledge gaps, 

carry out research to fill gaps, and disseminate information to 

stakeholders. We hope that a better understanding of the HCV assessment 

process will stimulate further knowledge exchange, ensure that HCV 

assessments are based on the best possible scientific evidence and that 

scientists are aware of key management questions. Possible solutions might 

be to have more scientists on the HCVRN Technical Panel, or to set up an 

HCV ‘science evidence base’ working group to engage researchers with HCV 

users.  

Greater sharing of HCV management and monitoring data would allow the 

overall benefits of the HCV approach to be quantified. This would not be 

constrained by commercial sensitivities of producers, given current trends 

for increasing transparency within standards such as the RSPO. There are 

likely to be financial and logistical limits to the quality and quantity of 

data that producers and HCV assessors can collect, but current data 

already collected for HCV assessments and during HCV monitoring could be 

useful for academic research if coupled with remote-sensing or modelling 

data. A starting point could be to share details of existing HCV areas in 

repositories hosted either by the HCVRN or by individual certification 

schemes (for the RSPO this could be an extension of the existing report 

repository for new plantings). Agreements would be needed in terms of 

reuse of data, metadata standards, and quality control of the data 

deposited, but such data could be used to examine the importance of HCV 

areas for species persistence across the wider landscape, and to assess the 
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long term viability of HCV management areas under future land use or 

climate changes.  

Finally, improving communication of research findings would ensure that 

the implications of the research reach both policy makers and the HCV user 

community in appropriate, non-technical language. This could begin with 

workshops that bring together HCV users, scientists and policy makers to 

discuss knowledge gaps, management and policy challenges and stimulate 

necessary policy changes. A repository could include findings from 

published peer-reviewed studies as well as information from reports and 

the grey literature. Such a database could be used directly by HCV 

assessors when carrying out assessments, as well as informing the 

development of thresholds and more refined definitions in HCV NIs of use 

to assessors. We suggest that these measures would make the HCV 

evidence-base more robust and lead to improvements in the assessment 

process. It is vital that the overall effectiveness of the HCV approach is 

evaluated to improve the conservation of tropical biodiversity in 

production landscapes. 
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Chapter 3 - Trait-dependent declines of species 

following conversion of rain forest to oil palm 

plantations  

3.1 Abstract 

Conversion of natural habitats to agriculture reduces species richness, 

particularly in highly diverse tropical regions, but its effects on species 

composition are less well-studied.  The conversion of rain forest to oil palm 

is of particular conservation concern globally, and we examined how it 

affects the abundance of birds, beetles, and ants according to their local 

population size, body size, geographical range size, and feeding guild or 

trophic position. We re-analysed data from six published studies 

representing 487 species/genera to assess the relative importance of these 

traits in explaining changes in abundance following forest conversion. We 

found consistent patterns across all three taxa, with large-bodied, 

abundant forest species from higher trophic levels, declining most in 

abundance following conversion of forest to oil palm.  Best-fitting models 

explained 39%-66% of the variation in abundance changes for the three 

taxa, and included all ecological traits that we considered. Across the 

three taxa, those few species found in oil palm tended to be small-bodied 

species, from lower trophic levels, that had low local abundances in forest. 

These species were often hyper-abundant in oil palm plantations.  These 

results provide empirical evidence of consistent responses to land-use 

change among taxonomic groups in relation to ecological traits. 

 
 
 
 
 
 
 
 
 
 
 
 



 

51 

 

3.2 Introduction 

Agriculture is the main driver of tropical deforestation (Kissinger et al. 

2012), and the expansion of oil palm plantations threatens tropical forests 

in Asia, Latin America and Africa (Butler & Laurance 2008; Laurance et al. 

2010; Wilcove & Koh 2010). Conversion of forest to oil palm plantation 

reduces species richness and abundance, and alters species composition in 

a range of taxa (Fitzherbert et al. 2008; Danielsen et al. 2009; Sodhi et al. 

2010). Previous studies have suggested that habitat- and diet-specialist, 

and restricted-range species may be most at risk from conversion of 

tropical forest to oil palm (Danielsen & Heegaard 1995; Aratrakorn et al. 

2006; Khen 2006; Peh et al. 2006; Fitzherbert et al. 2008), but it is unclear 

whether there is any consensus in such patterns among major taxonomic 

groups. Integrated analyses of existing data provide the potential to obtain 

new insights, and to examine ecological and phylogenetic variables known 

to be important for explaining species’ responses to land-use change 

(McKinney 1997; Henle et al. 2004).  

Ecological response traits (henceforth termed ‘ecological traits’), such as 

body size and feeding guild, group species together according to shared 

responses to environmental disturbances and are often strongly associated 

with functional effect traits (henceforth termed ‘functional traits’), which 

classify species based on their shared effects on particular ecosystem 

functions (Lavorel & Garnier 2002). Consequently, assessing how different 

ecological traits are affected by land-use changes can reveal concurrent 

impacts on ecosystem functioning (Hooper et al. 2005; Bello et al. 2010). 

More directly, response traits can help to understand mechanisms driving 

species declines and aid conservation efforts by predicting species groups 

at greatest risk from land-use changes (McGill et al. 2006; Williams et al. 

2010). For example, studies have demonstrated that certain feeding guilds 

are more sensitive to habitat disturbance than others (Gray et al. 2007; 

Attwood et al. 2008), and predatory species, particularly large-bodied or 

specialist predators, are especially sensitive to disturbance and land-use 

changes (e.g. Kareiva 1987; McKinney 1997). Other species traits associated 
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with vulnerability to extinction following habitat fragmentation, land-use 

change and disturbance include local rarity, large body size, and small 

geographic range size (e.g. Terborgh 1974; McKinney 1997; Henle et al. 

2004). Conversely, omnivores tend to be more resilient to land-use changes 

(e.g. McKinney 1997; Henle et al. 2004). Mechanisms underlying these trait 

sensitivities include a reliance on highly specialised resources, and greater 

energy requirements resulting in low population densities and the need for 

larger home ranges (e.g. Damuth 1981; Henle et al. 2004). 

In cases where ecological traits are associated with functional traits, it is 

possible to infer direct relationships between declining traits and 

ecosystem processes. For example, Larsen et al. (2005) showed that larger-

bodied dung beetles were more susceptible to extinction following habitat 

loss and were more functionally efficient than smaller-bodied beetles. 

Declines in larger-bodied beetles following habitat loss reduced rates of 

dung burial, an important ecosystem function. The same study also showed 

that declines in bee abundance and species richness following habitat 

disturbance reduced pollination rates (Larsen et al. 2005b). For 

vertebrates, long-distance seed dispersal depends disproportionately on a 

few larger-bodied frugivorous birds and mammals, with decreased 

abundances of frugivorous birds directly reducing rates of seed dispersal 

(Moran et al. 2009; Velho et al. 2012). Furthermore, the loss of top 

predators can cause trophic cascades through food-webs, leading to a 

hyper-abundance of seed predators and herbivores, and subsequent 

reductions of seedling and sapling density (Terborgh et al. 2001). 

Comparison of species responses across different taxonomic and functional 

groups may thus help to predict ecological consequences of land-use 

change for ecosystem functioning (Lewis 2009; Morris 2010; Sodhi et al. 

2010).  

Ecological traits have been widely used to study land-use changes, but very 

few studies have used them to assess the impacts of converting rain forest 

to oil palm, and none of these have considered multiple ecological traits 

across several taxonomic groups. In this study, we assess (i) the relative 
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importance of different ecological traits for explaining changes in 

abundance following conversion to oil palm, and (ii) the congruence of 

trait-specific responses across different taxonomic groups. We use a multi-

taxon approach, focusing on birds, ants and beetles, which provides 

greater insight into community level effects than would a single taxon 

study (Fazey et al. 2005). We use abundance data extracted from published 

studies to test the hypothesis that, across the three taxonomic groups, 

species vary in their sensitivity to the conversion of forest to oil palm, and 

that locally rare, range-restricted, predatory, and large-bodied species 

show the greatest declines in abundance following the conversion of forest 

to oil palm. For birds, we account for potential confounding effects of 

phylogeny (Sibley & Ahlquist 1990) by using phylogenetically independent 

analyses, but suitable phylogenetic information is not currently available 

for ants or beetles.  

3.3 Methods 

We focused on birds, ants and beetles as three ecologically diverse taxa, 

thereby including vertebrates and invertebrates, social and non-social 

insects, and taxa representing a range of different feeding groups. We 

excluded taxa which contain only a single feeding group (e.g. herbivorous 

Lepidoptera), as it is not possible to quantitatively compare changes in 

abundance between guilds in such taxa. We searched ISI Web of Knowledge 

(WoK) for studies examining changes in abundance in forest and large-

scale, mature (>10 years) oil palm habitats. We used the following key 

words: (‘oil palm’) AND ((‘biodiversity’) OR (‘bird(s)’) OR (‘avian’) OR 

(‘ant(s)’) OR (‘beetle(s)’) OR (‘coleoptera’) OR (‘species richness’) OR 

(‘composition’) OR (‘abundance’) OR (‘forest’)). We also searched 

reference lists and citations of studies found from these searches. To 

ensure our quantitative analyses were robust, we limited our search to 

peer-reviewed literature. Four otherwise suitable studies had to be 

excluded from analyses because abundance data for individual species or 

genera were unavailable (Danielsen & Heegaard 1995; Aratrakorn et al. 

2006; Turner & Foster 2009; Bruhl & Eltz 2010).  
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The final dataset used for analysis was from six published studies which 

compared extensive tracts of selectively logged, or in one case unlogged, 

forest with oil palm sites in SE Asia (Malaysia). Studies were limited to 

those from SE Asia to avoid biogeographical differences in species 

responses (e.g. Gray et al. 2007). Studies comparing forest and oil palm at 

more than one location contributed more than one dataset to the analyses 

(Peh et al. 2006) and so these studies provided a total of seven datasets for 

analysis; four for birds (total of 188 species), two for ants (207 species) and 

one for beetles (91 genera). For those studies with unequal sampling effort 

in different habitats, we randomly selected an equal number of samples 

from each habitat for analysis (Peh et al. 2006; Sheldon et al. 2010). We 

excluded species or genera recorded only as singletons from the analyses to 

avoid errors due to insufficient sampling. This cut-off value was chosen to 

maximise the number of species/genera analysed, and followed sensitivity 

analyses that showed that findings were qualitatively similar for thresholds 

of two, five or ten individuals per species or genus.  

We analysed ant data averaged across the two studies comparing oil palm 

to unlogged forest (Fayle et al. 2010) and to logged forest (Lucey & Hill 

2012). To examine whether combining data from logged and unlogged 

forest sites affected our findings, we compared final parameter estimates 

from analyses of the combined ant dataset (n=207 species) with those from 

just the selectively logged forest dataset (n=92 species). The parameter 

estimates were not qualitatively different between these analyses, and so 

the combined dataset was used to maximise the number of ant species 

analysed. This approach of combining the two studies is supported by 

recent studies showing little difference between species assemblages in 

unlogged and selectively logged forest (Berry et al. 2010; Edwards et al. 

2011b; Woodcock et al. 2011).  

Bird names were assigned according to Sibley and Monroe (1990), ants 

according to Bolton et al. (2006), and beetles according to Bouchard et al. 

(2011) and the Universal Biological Indexer and Organizer project 

(www.ubio.org). Ant analyses included morphospecies that represent 
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unique species, but that have not yet been ascribed to known species. 

However, because morphospecies were not named consistently across 

studies, we analysed morphospecies data from only the most species-rich 

dataset (Fayle et al. 2010) to avoid pseudoreplication. 

3.3.1 Traits examined and guild classification 

We examined the traits of body size, local population size, geographic 

range size, and trophic position or feeding group classifications of species 

(hence forth termed ‘feeding guild’). Data on bird body mass and ant body 

size were from Dunning (2009) and antweb.org, respectively and average 

values by genus were used if species-level values were unavailable (birds: 

6/188 species, and ants 175/207 species); data on bird geographic range 

sizes were from Birdlife International (2010); local population size was 

calculated as the mean total abundance of species/genera in forest sites. 

Our measure of ant abundance (see ‘Analyses’ below) gives a robust 

measure of population size that is independent of colony size. There were 

no data available for ant or beetle geographical range sizes, or for beetle 

body sizes. 

Birds were assigned to one of six feeding guilds based on Wong (1986), 

Lambert (1992), Jeyarajasingam & Pearson (1999), Mackinnon & Phillipps 

(1999), Cleary et al. (2007) and Phillipps & Phillipps (2009) (Table 3.1). 

Beetles were assigned to guilds based on classifications in Hunt et al. 

(2007). Three bird species and 14 beetle genera were excluded from 

analyses, due to a lack of consensus in feeding guild assignment (birds), or 

where feeding guild was unknown (beetles).  

 



 

 

5
6
 

Table 3.1. Species were assigned to feeding guilds based on information in published studies. aLambert (1992) was not used to 

classify granivores or frugivores as it did not differentiate between seed and fruit eaters, classifying both as frugivores. bHunt et al. 

(2007) included moss-feeding Byrrhidae, genera of which are included in the beetle dataset from this study, in the algivore guild. 

Feeding guild Description Food source 

Birds   
Carnivore Carnivore, raptor Vertebrates (inc. fish), carrion 
Frugivorea Frugivore  Fruit, berries 
Granivorea Granivore, seed eater Seeds, grain (not fruit) 
Insectivore Insectivore  Insects, invertebrates 
Nectarivore Nectarivore Nectar, pollen 
Omnivore Omnivore, opportunist Combination of other guilds, with no 

single primary food source 

Beetles   
Algivoreb Algivores, bryophages Algae, lichen, and mosses 
Fungivore Fungivore Fungi 
Herbivore Herbivore, xylophage Any living plant matter 
Saprophage Saprophage, coprophage Dung, carrion, dead organisms but not 

fungi 
Predator Predator Living invertebrates (and vertebrates) 
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Assigning species or genera to feeding guilds is possible for well-studied 

groups, such as birds. However, for hyper-diverse and poorly studied 

rainforest taxa, assigning guilds is challenging and often impractical 

(Blüthgen et al. 2003), particularly given that feeding habits of many 

species do not fall into discrete categories (Petchey & Gaston 2002). 

However, it is possible to examine the feeding habits of species using 

analysis of stable isotope ratios (Layman et al. 2007). Nitrogen isotope 

ratios (15N:14N, expressed as δ15N values) are particularly useful in 

determining trophic positions because δ15N values increase by 

approximately 2.5-3.5% during each trophic transfer (Vanderklift & Ponsard 

2003). δ15N values can therefore be converted into direct measures of 

trophic position (Post 2002), with trophic positions of approximately 2 

indicating a plant-based diet and a trophic position ≥4 likely to indicate an 

entirely carnivorous diet. Ants were assigned trophic positions according to 

stable isotope data from Woodcock (2011a), based on ants sampled from 

continuous primary forest in Sabah, Malaysia (see Woodcock et al. 2012 for 

details on methodology). Differences in morphospecies classifications 

meant that for most ants (178/207 species) species-level data on trophic 

position were not available, and so species were assigned average values by 

genus, following Gibb & Cunningham (2011). Six ant species were excluded 

from analyses because data were not available for any members of the 

genus. This genus-averaging approach is supported by the observation that, 

for adequately sampled taxa, the standard deviation of trophic level for 

different species within each genus (mean σ = 0.31) was only fractionally 

higher than the standard deviation for different colonies of each species 

(mean σ = 0.27) (Woodcock 2011).  

3.3.2 Analyses 

Analyses were conducted separately for bird species (four datasets), ant 

species (two datasets), and beetle genera (one dataset). Ants may form 

large nests of thousands of individuals, and so individuals sampled at the 

same sampling point are unlikely to provide independent data. We thus 

analysed the incidence of species at sites (henceforth termed 

‘abundance’), based on their presence or absence at individual sampling 
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points within sites (e.g. Woodcock et al. 2011). Beetle analyses were 

conducted at the genus level, in line with the predominantly genus level 

identification in the original study (Chung et al. 2000). We computed 

changes in the abundance of species (birds and ants) or genera (beetles) 

between sampling locations in forest and oil palm. Following Gray et al. 

(2007), the mean change in abundance per guild was calculated as: 
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Equation 3.1. Mean change in abundance per guild. 

where S = number of species/genera in the guild, g, and n = abundance of a 

species/genus (i) in oil palm (op) and forest (f). For 29 bird species and 20 

ant species recorded in multiple studies, we computed the average change 

in abundance across studies. Data were then standardised according to 

total abundance of species/genera in forest and oil palm. Thus equation 

3.1 weights all species/genera equally according to abundance with 

possible values ranging from +1, when all individuals are found only in oil 

palm, to -1 when all individuals are found only in forest.  

We conducted separate analyses for the three taxa, containing the 

following variables; for birds: feeding guild (categorical), local population 

size (continuous), body mass (continuous) and geographical range size 

(continuous); for ants: trophic position, local population size and body size 

(all variables continuous); for beetles: feeding guild (categorical), and local 

population size (continuous).  

We employed an information-theoretic approach to identify and select the 

best models for explaining changes in abundance in each of our three taxa. 

For each taxon, we constructed models with all possible combinations of 

the variables described above. We then fitted general linear models to the 

data for ants and beetles and phylogenetic generalised linear models 
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(PGLS, see Freckleton et al. 2002) to the data for birds. The PGLS analysis 

was carried out using the most extensive estimate of avian phylogeny 

(Sibley & Ahlquist 1990). It is based on Pagel's (1999) measure of 

phylogenetic independence (λ), which unlike many other statistical 

phylogenetic approaches, allows continuous and categorical variables to be 

analysed together (Pagel 1999). The PGLS method determines a maximum 

likelihood value for λ, which is then used to correct for phylogenetic non-

independence in the data. λ ranges from 0 to 1, where 0 indicates the 

relationship between traits to be independent of phylogeny and 1 signifying 

that more closely related species are more likely to have the same trait 

values. 

Prior to final analyses, model diagnostic plots were checked for 

homogeneity of variance and normality of residuals, following Faraway 

(2006). Non-homogeneous variances and non-normal residuals were 

corrected by the following transformations: log10 (bird geographical range 

size and body mass, ant body size and population size, and beetle 

population size), log10 square-root (ant change in abundance) and cube root 

transformation (bird population sizes). After transformation, all continuous 

predictor variables were standardised to equivalent scales by subtracting 

the mean value and dividing by twice the standard deviation (Grueber et 

al. 2011). This means that effect sizes can be used to directly compare the 

relative importance of each predictor variable for explaining changes in 

abundance, and that main effect estimates are still interpretable for 

models that included interaction terms (Schielzeth 2010; Grueber et al. 

2011). 

Models were ranked according to their AICc, values (Burnham & Anderson 

2002; Mazerolle 2006), which are commonly used for model selection and 

account for potential biases due to small sample sizes. The smaller the AICc 

value, the better the model’s fit (Burnham & Anderson 2002). We 

calculated the difference in AICc, value between each model and the best 

model (delta AIC: Δi). Best models were selected as those with Δi values <2. 

If there were multiple models with Δi values <2, we carried out model-

averaging across these models or, if no other model had a Δi value <2, we 
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used the parameters estimates from the single best model (Burnham & 

Anderson 2002). This allowed estimation of effect sizes and confidence 

intervals (CIs) for each predictor variable: effect sizes for continuous 

variables were slope estimates, whereas estimates for categorical feeding 

guilds were mean changes in abundance for each guild. To assess the 

overall goodness-of-fit of best models, adjusted R2 values are presented. 

3.4 Results 

From six published studies we extracted seven datasets, allowing us to 

analyse responses of 188 bird species, 207 ant species, and 91 beetle 

genera, which ranged from endemic to ubiquitous taxa. Birds and beetles 

spanned 10 feeding guilds, and ant species ranged from herbivorous species 

(trophic position=2.0) to entirely carnivorous species (trophic position=4.7). 

Ant body lengths varied from 0.5 – 8.0 mm and bird body masses from 5.6 g 

– 2.9 kg. 

For birds, overall species richness in forest declined by 43% following 

conversion to oil palm (175 species in forest versus 99 in oil palm), and 

abundance declined by 18% following conversion (3,812 individuals in forest 

versus 3,122 in oil palm). For ants, both species richness and abundance 

declined by 61% following conversion (190 species and 1,003 incidences in 

forest versus 74 species and 388 incidences in oil palm) and for beetles 

there was a 52% decline in generic richness (85 genera in forest versus 41 in 

oil palm) and a 54% decline in abundance (984 individuals in forest versus 

450 in oil palm) following conversion. 

3.4.1 Selection of best models and model confidence 

All the ecological variables we examined were present in the best models 

for all three taxa (Table 3.2). For birds, the model with the lowest AICc, 

value contained the ecological predictor variables of feeding guild, body 

size, local population size, and geographical range, without any 

interactions. Both of the best ant models contained all three predictor 

variables of trophic position, body size, and local population size, as well 

as an interaction between trophic position and body size. The best beetle 
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model also contained both predictor variables of feeding guild and local 

population size. Overall model confidence was high for all three taxa, with 

43% of the variation in the data set explained in the best bird model, 39% in 

the best ant model and 66% in the best beetle model ( Table 3.2). 
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Table 3.2. Best models were selected based on AICc values. We computed parameter estimates by using model-averaging across the 

best models listed below. For each taxon, best models were those with Δi <2. Column headings are defined as follows: Log-likelihood 

= the overall model fit with no adjustment for the number of parameters, K = the number of parameter estimates in the model, wi = 

the Akaike weight, representing the model’s relative strength compared to other best models, and wj = the evidence ratio of the 

best models compared to the top-ranked model. AICc and Δi are explained in METHODS. Abbreviations as follows: mass: body mass, 

pop: local population size, range: geographic range, trophic: trophic position, and size: body size. 

Model Log-lik K AICc Δi Rank exp(-Δi/2) wi wj Adj R2 

Birds 
        

 

Mass + pop + range + guild -144.53 9 308.07 0.0 1 1.00 0.31 1.00 0.43 

Guild + pop + range -145.72 8 308.25 0.2 2 0.91 0.28 1.10 0.42 

Mass + guild + pop*range -144.01 10 309.27 1.2 3 0.55 0.17 1.82 0.43 

Guild + pop*range -145.44 9 309.88 1.8 4 0.40 0.12 2.47 0.42 

Guild + range + mass*pop  -144.33 10 309.91 1.8 5 0.40 0.12 2.50 0.43 

Ants 
        

 

Pop + trophic*size -115.81 4 241.91 0.0 1 1.00 0.65 1.00 0.39 

Trophic*size + trophic*pop -115.36 5 243.13 1.2 2 0.54 0.35 1.84 0.39 

Beetles 
        

 

Guild + pop -11.29 6 37.94 0.0 1 1.00 1.00 1.00 0.66 
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3.4.2 Best predictors of sensitivity to conversion 

Presented below are effect sizes and 95% confidence intervals for each 

variable included in best models. Effect sizes for continuous variables are 

slope estimates of the variable against change in abundance, whereas 

estimates for categorical feeding guilds are mean changes in abundance for 

each guild. Parameter estimates from bird analyses indicated that different 

feeding guilds varied in their sensitivity to the conversion of forest to oil 

palm, although some guilds had low sample sizes (Figure 3.1). Insectivores 

(effect size: -0.48; 95% CIs: -0.63, -0.34) and frugivores (effect size: -0.55; 

CIs: -0.76, -0.34) declined most in abundance following forest conversion, 

whilst nectarivores showed smaller declines (effect size: -0.40; CIs: -0.77, -

0.026). In contrast, omnivores (effect size: -0.21; CIs: -0.46, 0.045) showed 

no significant decline in abundance following conversion of forest to oil 

palm. 

Local population size, body mass and geographical range size all had 

significant effects on the change in abundance of bird species following 

conversion to oil palm. Local population size had by far the greatest 

relative impact, with an estimated effect size of -0.75 (CIs: -0.92, -0.59), 

followed by geographic range size with an estimated effect size of 0.36 

(CIs: 0.20, 0.53), and body mass had the smallest relative impact on change 

in abundance with an estimated effect size of -0.19 (CIs: -0.37, -0.010). 

Therefore, in decreasing order of importance, bird species with large local 

population sizes in forest, small geographic ranges, and large bodies 

declined most in abundance following conversion to oil palm (Figure 3.1).  
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Figure 3.1. Model-averaged effect sizes of different predictor variables for 

abundance change of (A) birds, (B) ants, and (C) beetles between forest 

and oil palm. We present model-averaged effect sizes for all variables 

included in the best models. Effect sizes for continuous variables and 

interactions are estimated slope values of standardised 

variables/interactions against abundance change. Effect sizes for 

categorical feeding guilds are estimated mean abundance changes of each 

bird and beetle feeding guild. N.B. Ants were not classified into trophic 

categories and so the effect size plotted is for the continuous variable 

trophic position. Sample sizes for the number of species/genera in each 

feeding guild are shown. For all estimates, error bars give model-averaged 

95% confidence intervals. Abbreviations as follows: Trophic: trophic 

position, Pop: population size, Mass: body mass, Range: geographic range, 

M*R: body mass*geographic range, M*P: body mass*population size, T*S: 

trophic position*body size and T*P: trophic position*population size, Carn: 
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carnivores, Ins: insectivores, Omn: omnivores, Frug: frugivores, Gran: 

granivores and Nect: nectarivores, Pred: predators, Fung: fungivores, Alg: 

algivores, Sapr: saprophages, and Herb: herbivores 

 

In ant analyses, trophic position and local population size both had 

significant impacts on change in abundance. In addition, the highly 

significant positive interaction between trophic position and body size 

(effect size: 1.23, CIs: 1.01, 1.46) was by far the most important factor 

explaining changes in ant abundance, suggesting that large-bodied, 

carnivorous ants declined most in oil palm (Figure 3.1). Trophic position 

was the second best predictor of change in abundance (effect size: -0.50, 

CIs: -0.66,-0.33), followed by local population size (effect size: -0.26, CIs: -

0.41, -0.11). The effect of body size on its own was not significantly 

different from zero (effect size: -0.03, CIs: -0.22, 0.16). Therefore, in 

decreasing order of importance, large-bodied ants with more carnivorous 

diets, carnivorous ants in general, and ants with large local population sizes 

in forest were particularly vulnerable to conversion to oil palm.  

The beetle analyses suggest that feeding guild was not as important for 

predicting abundance change as for birds and ants, with all guilds except 

for algivores declining similarly in oil palm. Algivores appear to be more 

abundant in oil palm than in forest but there were only two genera in this 

guild, resulting in large confidence intervals (effect size: 0.20, CIs: -0.71, 

1.73). All other guilds declined in abundance following conversion. The 

largest decline was for predators with an effect size of-0.80 (CIs: -0.91, -

0.64), followed by saprophages (effect size: -0.73; CIs: -0.88, -0.53), 

fungivores (effect size: -0.69; CIs: -0.83, -0.50) and herbivores (effect size: 

-0.69; CIs: -0.91, -0.35). Whilst this suggests that predators may have 

declined slightly more than other guilds following conversion, population 

size appeared to be a better predictor of vulnerability for beetles 

(estimate: -0.25, CIs: -0.37, -0.13). Therefore, genera with large local 

population sizes in forest declined most in abundance in oil palm. 
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3.4.3 Similarity of responses among taxa 

Across taxonomic groups, there were consistent declines in the abundance 

of large-bodied and locally abundant forest species, and of species from 

higher trophic levels following conversion of forest to oil palm. Therefore, 

species occurring at highest abundances in oil palm plantations tended to 

be small-bodied species, from lower trophic levels, that are locally rare in 

forest. Following land-use conversion, relative abundance patterns of 

species/genera were also less evenly distributed within the three taxa.  In 

each taxon, a small number of species/genera were dominant and became 

hyper-abundant in oil palm (See Appendix 2, Figure A2.1). 

3.4.4 Influence of phylogeny 

Comparison of phylogenetic and non-phylogenetic bird analyses revealed 

little difference in estimated variable parameters (Figure 3.2). Model 

selection in the non-phylogenetic analyses identified a set of three best 

models, which were the first, third and fifth best models in the 

phylogenetic analyses. In the phylogenetic bird analyses, the maximum 

likelihood value of λ for each of the five best models deviated significantly 

from 1 (p<0.0001 in all cases) but not from 0 (p>0.16 in all cases). Thus, 

there was little evidence that any of the traits considered were related to 

phylogeny. Although caution is required when extrapolating trends across 

taxa, the phylogenetic independence of bird analyses may lend support to 

the validity of the non-phylogenetically adjusted ant and beetle analyses. 
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Figure 3.2. Effect sizes of predictor variables from bird analyses with (dark 

grey bars), and without (light grey bars) adjustment for phylogeny. Effect 

sizes and CIs for continuous and categorical variables, number of species in 

each guild, and guild abbreviations as in Figure 3.1. 
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3.6 Discussion 

3.6.1 Conserved trait declines 

Our results showed consistent responses across taxa in terms of which 

ecological traits were most affected by conversion of forest to oil palm. 

The most abundant species in oil palm tended to occur at very low 

abundances or be absent in forest, and large-bodied species and those from 

higher trophic levels also occurred at much lower abundances in oil palm 

than in forest. This study provides quantitative evidence for consistent 

patterns in the sensitivity of ecological traits across different taxonomic 

groups following the conversion of forest to oil palm.  Our results show that 

across three ecologically diverse taxonomic groups, species found in oil 

palm plantations consistently tend to be small-bodied species, from lower 

trophic levels, that are locally rare in forest. 

3.6.2 Drivers of trait declines 

Our results on consistent patterns of declines in traits in different taxa 

following conversion of forest to oil palm suggest that there may be 

consistent extinction drivers acting across taxonomic groups. In tropical 

forest habitats, very high plant diversity supports high structural diversity, 

which underpins high animal diversity (Novotny et al. 2006).  The 

structurally simple oil palm environment with very low non-palm plant 

diversity (largely restricted to herbaceous ground cover and epiphytic ferns 

e.g. Foster et al. 2011) may drive many specialised species extinct and 

favour more generalist and disturbance-tolerant species that occur at only 

low abundances in forest. This shift from habitat complexity to simplicity 

could explain the declines in frugivorous and insectivorous birds. These 

were the most species rich guilds in our analyses (insectivores: 107 species, 

frugivores: 35 species) and, thus might be expected to exhibit the greatest 

niche specialisation in forest (e.g., to avoid competition). The declines of 

these guilds following habitat conversion may be explained by this 

specialisation, and by the lack of suitable fruit-bearing trees and 

invertebrate-rich vegetation layers in the homogenous oil palm 

environment. Declines of large-bodied and higher trophic level species in 
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oil palm may be explained by cascading bottom-up effects of reduced 

resource availability disproportionally affecting the species with greater 

energy requirements and lower population densities (e.g. Damuth 1981).  

Our finding that abundant forest species decline most in oil palm does not 

agree with previous studies showing high vulnerability of rare species (e.g. 

McKinney 1997; Henle et al. 2004), but this is likely to be explained by two 

factors. Firstly, the scale at which rarity is defined is critical in explaining 

whether “rare” species are shown to be more or less vulnerable to 

extinction following habitat disturbances (McKinney 1997). For example, 

whilst you would expect high vulnerability of rare species defined by 

restricted geographic distributions or IUCN Red Listings, our definition of 

rare species as those with small local population sizes in forest may include 

geographically widespread, disturbance-associated taxa that occur at low 

abundances in forest. Indeed, this is supported by our results showing that 

bird species with smaller geographic ranges declined more in abundance 

following conversion of forest to oil palm.  

Secondly, much of the earlier evidence on the vulnerability of rare species 

is from studies of forest disturbance and fragmentation (McKinney 1997; 

Henle et al. 2004), which compare the same habitats under varying levels 

of disturbance. By contrast, forest and oil palm are distinct habitats, and 

our results demonstrate that many relatively common forest species cannot 

persist in oil palm habitats.  

We maximised the number of species in our analyses by including all 

species occurring more than once. However, when only forest species were 

included in analyses we still found declines of abundant forest species 

following conversion. Given that the majority of species declined in 

abundance following conversion, the slope of the relationship between 

population size and change in abundance is likely to be driven by those few 

species that increase in abundance in oil palm and so our findings do not 

preclude the loss of rare forest species, as well as the loss of more 

abundant forest species, in plantations. In oil palm, the small-bodied 

species from lower trophic levels, that tended to be locally rare in forest, 
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but that dominated these agricultural sites were probably able to exploit 

the few crop-associated resources found in the plantations. Similarly, 

widespread and omnivorous bird species that are not reliant on a single 

food source were also more abundant in plantations (Gregory & Gaston 

2000; Walker 2006). 

3.6.3 Hyper-abundance of species on plantations 

We observed a few species reaching very high abundances in oil palm sites 

in all three taxa (see Appendix 2, Figure A2.1). For example, most 

insectivorous and frugivorous bird species declined in plantations, although 

some species, such as Macronous gularis (Striped Tit-babbler), Orthotomus 

sericeus (Rufous-tailed tailorbird), and Psitticula longicauda (Long-tailed 

parakeet) were highly abundant in oil palm plantations. Similar patterns 

have also been shown in butterflies (Lucey & Hill 2012), moths (Khen 2006), 

termites (Hassall et al. 2006), rats (Wood & Fee 2003; Bernard et al. 2009), 

and frugivorous bats (Danielsen & Heegaard 1995), whereby oil palm 

plantations typically support a small number of species that occur at much 

higher abundances than observed in forest habitats. For example, Lucey 

and Hill (2012) showed that plantations support just 54% of forest species, 

yet overall butterfly abundance was >3.5 times higher in plantations than in 

forest.  The same trends have also been observed following other land-use 

changes (e.g. Terborgh et al. 2001; Laurance et al. 2002; Feeley & 

Terborgh 2006; Gardner et al. 2007; Nichols et al. 2007). Oil palm 

monocultures can provide a hyper-abundance of just a few resources (e.g. 

palm fruit and palm fronds) that can be exploited by a few species, which 

can subsequently achieve very high abundances. However, the restricted 

range of resources present in plantations means that most resources 

required to support forest species are absent. 

Our results illustrate substantial turnover of species with different 

ecological traits between forest and oil palm. Many of the traits considered 

are also functional traits (e.g. body size, feeding guild), implying inherent 

differences in the way that the forest and plantation systems function 

ecologically. Essential ecosystem functions in forest may not be important 
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in oil palm plantations, either because they are replaced by plantation 

management practices, for example the addition of  fertilisers in place of 

natural nutrient cycling, or because there is little requirement for them in 

monoculture plantations (e.g. seed dispersal). However, in plantations, 

there may still be risks associated with a reliance on a few numerically 

dominant species for ecosystem functioning, and more data are required on 

whether or not a few dominant species in oil palm plantations can 

compensate for the loss of many specialised forest species (e.g. Loreau et 

al. 2001; Foster et al. 2011; Peh & Lewis 2012).  

3.6.4 Conclusions 

Our results show that across three ecologically diverse taxonomic groups 

there were consistent patterns in the sensitivity of species to land-use 

change, and that species occurring in oil palm plantations were more likely 

to be small-bodied species, from lower trophic levels that are present at 

very low abundances in forest. All three taxonomic groups contained a few 

species that were hyper-abundant in oil palm, presumably because they 

could exploit the few highly abundant crop-associated resources present in 

plantations. Observed declines of large-bodied, higher trophic level, forest 

species may be a response to the low diversity of available resources in 

homogenous plantations.  Consistent responses to land-use change among 

the three taxonomic groups in relation to species’ ecological traits imply 

that similar mechanistic drivers affect species’ responses to land-use 

conversion, and infer differences in ecosystem functioning between forest 

and oil palm habitats.  
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Chapter 4 - Sampling dung beetles and their 

ecosystem functions in fragmented and degraded 

rainforest 

4.1 Abstract 

Dung beetles can be sampled efficiently using baited traps and have key 

functional roles within ecosystems, making them an excellent study taxon 

for assessing the impacts of tropical forest fragmentation and degradation 

on ecosystem functioning and species diversity. This chapter provides 

information about my study sites and their disturbance history, and 

describes methods for quantifying forest quality across sites. In this thesis, 

dung beetles were sampled with human dung-baited pitfall traps and data 

are presented to show that 48 hours of sampling effort was sufficient to 

characterise dung beetle assemblages at each site. Annual variation in dung 

beetle richness and abundance from surveys of three sites over three years 

was low, indicating that comparisons of dung beetle samples and ecosystem 

functioning measurements between different years were robust. I 

developed novel methods to measure dung removal and seed dispersal by 

tunneller and roller dung beetles, which are outlined. Dung removal and 

seed dispersal were measured using cattle dung rather than human dung 

which was used for beetle sampling. However, both baits attracted similar 

species assemblages, including all functionally important large roller and 

tunneller species, supporting the use of different bait types for species 

richness and functioning investigations. 
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4.2 Study location  

Fieldwork was carried out from May to August 2011, from March to August 

2012, and from June to September 2013 in eastern Sabah, Malaysia (Figure 

4.1). I sampled at 18 field sites consisting of two continuous forest sites 

and 16 forest fragments within oil palm plantations (Figure 4.2). All of 

these sites were in lowland mixed Dipterocarp forest below 300 m 

elevation. The forest fragments ranged in size from 5 to 3,529 ha and had 

been isolated within oil palm plantations for at least 19 years at the time 

of sampling, and possibly much longer (see Table 4.1 and section for 4.2.3 

full details). Fragments were between 0.2 and 46.7 km from the nearest 

stretch of continuous forest and varied considerably in vegetation quality 

and management histories (see sections 4.2.3 and 4.3.6). The two 

continuous forest sites were unlogged forest in Danum Valley Conservation 

Area and twice-logged forest in the Ulu-Segama Malua Forest Reserve 

(Table 4.1). Both of these continuous forest sites are within Sabah’s largest 

remaining block of continuous forest of approximately 1 million ha (Figure 

4.1). This large area of forest is managed by the Yayasan Sabah Foundation 

on behalf of the Sabah Forestry Department (Reynolds et al. 2011). 

At least 12 of the forest sites sampled in this study had been selectively 

logged >7 years prior to this study (Table 4.1), and exhibited differences in 

plant species composition and vegetation structure when compared to 

undisturbed forest (Figure 4.7). These differences in forest structure are 

described in greater detail in section 4.3.6. Dipterocarp forest is the 

predominant forest type in Borneo, but there are also tracts of Kerangas 

forest and limestone forest in Sabah that were represented in some of the 

forest sites sampled in this study (Table 4.1). In order to prevent 

confounding the effects of fragmentation with differences in forest type, 

transects sampled only Dipterocarp forest. 
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Figure 4.1. Land cover map of Sabah showing study site locations. Land 

cover classifications are for 2010 and are simplified categories based on 

Miettinen et al. 2011. The ‘native forest/mangrove’ category combines 

degraded and intact mangrove, peatswamp, and lowland-upper montane 

forest categories, and ‘oil palm/cleared land’ combines mosaic and open 

habitats, large scale palm plantations and plantation/regrowth categories. 

 
Figure 4.2. Higher resolution map of field site locations in eastern Sabah, 

Malaysia.  
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Table 4.1. Field sites. Site numbers are ranked by forest size and numbers are subsequently used throughout the thesis when 

referring to individual sites. Site locations are shown on Figure 4.2. *See section 4.2.3 for full details on logging intensity and 

isolation history. Abbreviations and sites names as follows: U = unlogged, L = logged, 1 = Danum Valley Conservation Area, 2 = Ulu-

Segama Malua Forest Reserve, 3 = Lungmanis VJR, 4 = Ulu Sapa Payau VJR, 5 = Sungai Sapi C VJR, 6 = Materis VJR, 7 = Keruak VJR, 8 

= ‘Watercatchment’ HCV area, 9 = Labuk Road VJR, 10 = ‘Sabahsar’ HCV area, 11 = ‘Rekasar’ HCV area,  12 = ‘Yongpeng’ HCV area, 

13 = Sungai Sapi A VJR, 14 = Pin Supu forest, 15 = Meranti’ HCV area, ‘16 = ‘Jatu’ HCV area, 17 = ‘Lunpadas’ HCV area, and 18 = 

‘Delilah’ HCV area. HCV = High Conservation Value; VJR = Virgin Jungle Reserve. 

Site no. Size (ha) Isolation 
distance (km) 

Years since isolation 
at time of study* 

Logging 
history* 

Number of 
sampling stations 

Shortest distance from 
station to forest edge (m) 

1 - - - U 10 100 
2 - - - L 10 100 
3 3,529 10.1 28  L 10 100 
4 720 3.3 28  U 10 100 
5 500 13 28  U 10 100 
6 250 34.3 28 L 10 100 
7 225 32.6 28 L 10 100 
8 120 12.6 21 L 10 100 
9 120 46.7 28 U 10 100 
10 88 2.2 19 L 8 100 
11 85 15.1 21 L 7 100 
12 57 3.9 19 L 10 100 
13 45 10.8 28 U 10 100 
14 39 21.9 28 U 5 100 
15 30 14.5 21 L 3 60 (1 of 3 traps) 
16 12 8.8 21 L 3 100 
17 11 5 19 L 4 40 (2 of 4 traps) 
18 5 0.2 19 L 3 40 (all 3 traps) 
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4.2.1 Local Fauna 

There are over 200 native land mammal species in Borneo, including at 

least 90 bat species (Payne et al. 1998), and at least 120 mammal species 

have been recorded in the unlogged continuous forest site sampled in this 

study (site 1: Danum Valley Conservation Area) (Marsh & Greer 1992; 

Hazebroek et al. 2013). Both the unlogged and twice-logged (site 2: Ulu-

Segama Malua Forest Reserve) continuous forest sites sampled in this study 

support the vast majority of Borneo’s larger species, including at least 9 

primate species, all of Borneo’s five felid species and populations of 

Borneo’s largest mammal species, Bornean elephants (Elephas maximus 

borneensis) and Banteng (Bos javanicus lowi). Danum Valley Conservation 

Area is also thought to support some of the last surviving individuals of the 

Sumatran rhinoceros (Dicerorhinus sumatrensis) (Goossens et al. 2013). 

There has been little quantitative research on Borneo’s mammal species in 

forest fragments, but it is likely that the 16 forest fragments sampled in 

this study support an impoverished mammalian community compared to 

that of the continuous forest sites of Danum Valley and Ulu-Segama Malua. 

Large-bodied species, wide ranging species and those susceptible to hunting 

often go extinct in forest fragments (Michalski & Peres 2007) and are 

unlikely to persist in the fragments surveyed in this study. For example, 

Bornean elephants (Elephas maximus borneensis) and Banteng (Bos 

javanicus lowi) are known to be absent from the forest fragments in Sabah 

(Timmins et al. 2008; Alfred et al. 2010). However, a number of generalist 

and disturbance-tolerant species, such as Long-tailed macaques (Macaca 

fascicularis), Sambar deer (Rusa unicolor) and Bearded pigs (Sus barbatus), 

persist even in the smallest forest fragments sampled in this study (pers. 

obs.).  

4.2.2 Climate 

Eastern Sabah experiences a largely aseasonal moist tropical climate, with 

mean daily temperatures throughout the year of between 24 and 28 oC and 

mean monthly rainfall consistently in excess of 100 mm (Hazebroek et al. 

2013). Climatic records from a small meteorological station at the Danum 

Valley Field Centre, dating back to 1985, represent typical climatic 
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patterns for the region, indicating that mean annual rainfall is 

approximately 2800 mm and mean daily temperature is approximately 27 oC 

(Figure 4.3). There is some weak seasonal variation in rainfall and 

temperature in Sabah with a slightly drier and hotter season that typically 

extends from March-September (Hamer et al. 2005), and for this study, all 

sampling was conducted during this “drier season”. El Niño-Southern 

Oscillation (ENSO) events also affect the climate of Borneo, leading to 

reduced rainfall and droughts, especially in Eastern Borneo (Richards 1996). 

However, no strong ENSO events occurred between 2011 and 2013 when the 

fieldwork for this study was conducted (NOAA/National Weather Service 

2014). 

 

Figure 4.3. Plot showing mean monthly rainfall (blue line) and 

temperature (red bars) at Danum Valley Field Centre, averaged across 

years 1985-2011. Data are taken from http://www.searrp.org/danum-

valley/the-conservation-area/climate/. 

http://www.searrp.org/danum-valley/the-conservation-area/climate/
http://www.searrp.org/danum-valley/the-conservation-area/climate/
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Climatic conditions are broadly similar across eastern Sabah, where my 

study sites were located, although the east coast of the State receives 

slightly lower annual rainfall than the central area around the Danum 

Valley Conservation Area (Sites 1 and 2) (Marsh & Greer 1992). To account 

for potential variation in climate across study sites, temperature and soil 

moisture data were recorded. Soil moisture was used as a proxy for relative 

humidity (see section 4.3.6 for methodological details). These data 

revealed no relationship of soil moisture or temperature with site longitude 

or fragment area (regression output: t1,14 < 1.74, p > 0.1). However, 

temperature was significantly negatively related to ‘forest quality’ 

(regression output: t1,14 = -3.16, p < 0.01), and more disturbed sites were 

hotter (see section 4.3.6 for definition of forest quality) (Figure 4.4). 

Overall, these analyses showed little evidence of climatic differences 

among sites in relation to their geographic locations, but revealed the 

potential impacts of fragmentation and disturbance on local microclimate. 

It should also be noted that the temperatures reported for the Danum 

Valley Field Centre meteorological station are higher than those recorded 

during this study, probably because the Danum meteorological station is in 

a clearing whilst the dataloggers used for this study were placed in the 

forest. 
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Figure 4.4. Scatter plots of mean daily temperature and mean soil 

moisture content against forest quality. Error bars show standard 

deviations. Line of best fit is shown for the significant relationship 

between temperature and forest quality. There was no significant 

relationship between forest quality and soil moisture content. Data were 

collected during sampling at each site (see section 4.3.6 for methods for 

measuring forest quality). Triangles and green fill represent undisturbed 

continuous forest sites/stations, triangles and yellow fill represent twice-

logged continuous forest sites/stations, and circles and black fill represent 

forest fragments. Soil moisture content is measured in millivolts. Millivolts 

are an appropriate measurement unit for soil moisture when detailed soil 

type data are unavailable, as was the case here (Delta-T Devices Ltd 2013).  
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4.2.3 Management history 

Both of the continuous forest sites sampled in this study (sites 1 and 2) 

were listed as protected forest reserves at the time of sampling. Danum 

Valley Conservation Area (site 1) has never been logged and has been 

officially protected in some capacity since 1980 (Figure 4.5). It is currently 

listed as a Class I Protection Forest Reserve, which is designed to maintain 

watershed, climatic and environmental stability (McMorrow & Talip 2001). 

This is the highest level of forest protection in Sabah (Marsh & Greer 1992; 

Reynolds et al. 2011). Ulu Segama-Malua (USM) Forest Reserve (site 2) was 

formerly production forest and classified as a Class II Commercial Forest 

Reserve, but in 2007 was set-aside as an area of sustainable forest 

management to rehabilitate the forest. USM Forest Reserve was selectively 

logged twice, between 1976 and 1991 and then again between 2001 and 

2007. The first logging rotation in the area was of an extremely high 

intensity, with ~120 m3 ha-1 of timber removed, focussed on Dipterocarps 

larger than 60 cm diameter at breast height (dbh). At the time, this volume 

of timber extraction was higher than in any other tropical forest globally 

(Marsh & Greer 1992) and left the forest highly degraded, especially on 

steep slopes, with a high frequency of skid trails, secondary haulage roads 

and log-landing sites. The second logging rotation extracted timber above a 

cutting limit of 40 cm dbh, and focussed on a wider range of target species, 

including non-Dipterocarps. Approximately 35 m3 ha-1 of timber were 

extracted in this second rotation and, after completion, the forest canopy 

in the USM Forest Reserve consisted primarily of pioneer species and very 

few Dipterocarps (Reynolds et al. 2011). 
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Figure 4.5. Undisturbed primary dipterocarp forest in Danum Valley 

Conservation Area (site 1). The three large trees are Dipterocarps. 

 

Eight of the fragments sampled in this study were Virgin Jungle Reserves 

(VJRs) owned and managed by the Sabah Forestry Department (39-3,529 

ha). The remaining eight fragment sites were owned and managed as High 

Conservation Value (HCV) areas within plantations owned by PPB Group 

Berhad (Wilmar International) (5-120 ha, henceforth termed ‘plantation 

fragments’).These PPB plantations are RSPO certified and so PPB are 

required to protect HCV species and habitats in their concessions. These 

HCV study areas were established before 2005, and requirements are more 
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stringent for newer plantations established after 2005 that have to carry 

out an HCV assessment prior to any forest conversion and then actively 

protect and manage any HCVs found. However, plantations established 

before 2005 had typically already cleared forest in their concessions 

without any assessments and only retained natural forest in areas that were 

not economically viable to plant with oil palms, such as on steep slopes or 

waterlogged areas. Therefore, the plantation fragments (HCVs) sampled in 

this study may not be comparable with HCV areas in new post-2005 

plantings. 

VJRs were set aside in the 1980s for research purposes and conservation of 

plant genetic resources, and logging is prohibited, although at least three 

of the VJRs sampled in this study had been previously logged to some 

extent prior to gazettement as VJRs in the 1980s (McMorrow & Talip 2001; 

Sabah Forestry Department 2005). Detailed logging histories were not 

available for the VJRs considered in this study, but sites 3, 6 and 7 

(Lungmanis, Materis and Keruak VJRs) had all been subject to low-intensity 

selective logging prior to gazettement as VJRs (Sabah Forestry Department 

2005). Illegal, small-scale timber extraction was also observed whilst 

sampling in site 7 during this study. By contrast, all eight plantation 

fragments were heavily-logged production forest prior to fragmentation in 

the 1990s (Mr Frederick Chok (manager of Sabahmas estate) and Mr Foo Koh 

Fei (manager of Reka Halus estate) pers. comm.). There was heterogeneity 

in forest quality among fragments (Figure 4.6), but in general the intensity 

of logging in plantation fragments greatly exceeded that in the twice-

logged continuous forest site and VJRs, and very few large trees remained 

(Figure 4.7).  
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Figure 4.6. High resolution satellite imagery (© ESRI) of site 10, a 

plantation fragment surrounded by an oil palm plantation. Note the 

degree of habitat heterogeneity within the fragment with the central area 

containing relatively intact, closed-canopy forest compared to parts of the 

fragment’s periphery where few trees remain. 



 

85 

 

Figure 4.7. Low canopy with tangled vines in site 8 (120 ha), showing 

vegetation structure typical of plantation fragments. Photo courtesy of 

Benny Yeong. 
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All of the fragments sampled in this study were first isolated at least 19 

years prior to dung beetle sampling in 2012 (Table 4.1). Isolation year is 

defined as the year when the forest surrounding the site was converted to 

agriculture. The plantation fragments were first isolated between 1991 and 

1993, when the surrounded land was leased to oil palm growers and cleared 

for planting (Frederick Chok & Foo Koh Fei pers. comm.). Precise isolation 

dates were not available for the VJR fragments, but VJRs probably became 

isolated fragments shortly after 1984, when they received their final 

gazettement as VJRs. This estimation is supported by the fact that the 

majority of VJRs sampled were surrounded by mature oil palms (>20 years 

old) (pers. obs.). 

4.3 Sampling protocols 

At all 18 study sites dung beetles and their ecosystem functions were 

sampled at 3-10 sampling stations per site, with stations placed at 100 m 

intervals along 0.3-1 km linear transects (1 transect per site). The number 

of sampling stations and transect lengths varied among sites because it was 

not possible to fit 1 km transects into some small fragments (Table 4.1). 

Establishing transects up to 1 km in length was designed to ensure sampling 

of the range of habitat heterogeneity present within sites. Spacing between 

sampling stations was kept constant at 100 m to retain trap independence 

among stations (Larsen & Forsyth 2005). Sampling stations were placed at 

least 100 m from the edge of the fragment to avoid edge effects (Laurance 

et al. 2002), although this was not possible in three of the smallest 

fragments due to their shape and size. In these fragments sampling stations 

were at least 40 m from the forest edge (Table 4.1).  

4.3.1 Dung beetle sampling 

Dung beetles (Coleoptera, Scarabaeidae: Scarabaeinae) were sampled at all 

18 study sites between April and August 2012 using human dung-baited 

pitfall traps (Figure 4.8). Human dung is similar to the dung of other 

omnivorous species, including other primates, and so attracts a wide range 

of species including generalists and more specialist species attracted to 

herbivore dung and carrion (Davis et al. 2001). Pitfall traps consisted of a 
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500 ml plastic cup buried flush with the soil surface. To prevent traps from 

being flooded by rain, soil around traps was elevated slightly to prevent 

water from flowing into the trap and traps were covered with a polystyrene 

plate. Approximately ~20 g of fresh human dung was suspended above the 

trap in muslin cloth (Figure 4.8). Traps were filled with ~200 ml of salt 

water with a small amount of detergent. The salt water acted as a killing 

fluid and as a mild preservative while the detergent reduced surface 

tension to prevent beetles from climbing out of the traps. Traps were left 

out for 48 hours at each site, and were emptied and re-baited daily. 

 

Figure 4.8. Human dung-baited pitfall trap. 

4.3.2 Species identification and biomass calculations 

Dung beetles were sorted and identified whilst in Sabah using an optical 

microscope (Figure 4.9), and species identities were determined based on 

reference collections of Felicity Edwards (Department of Biology, University 

of Leeds) and Trond Larsen (Conservation International). Species 

nomenclature was verified by Darren Mann (Oxford University Museum of 

Natural History). All individuals were identified to species level, and if the 

species name was not known a unique morphospecies ID was given. Only 
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beetle species in the Scarabaeinae subfamily (‘true dung beetles’) were 

subsequently considered in analyses. Species identities were used to 

calculate dung beetle abundance, biomass and species richness at each 

sampling station. 

 

Figure 4.9. Example of a sample of beetles caught in one pitfall trap in 24 

hours in unlogged continuous forest. 

Biomass estimates for each sampling station were calculated as the number 

of individuals of each species trapped at a sampling station multiplied by 

the mean dry mass of that species. It was not feasible to dry individuals 

from all 60 beetle species collected and so the majority of species’ dry 

masses were estimated based on extrapolation from a regression of species 

length (elytra and pronotum, excluding head; Figure 4.10) against dried 

mass calculated for 10 species (n = 15-25 individuals per species).  The 

individuals from these 10 species were dried to constant mass (to the 

nearest 0.0001 g) in an oven at 60oC, and their lengths were measured (to 

the nearest 0.1 mm) using callipers. A linear regression was then fitted for 

loge length against loge dry mass that gave a very strong relationship (Adj-

R2 = 0.94; Figure 4.11). The dry masses of the remaining 50 species were 

then estimated by incorporating data from the measured lengths of each of 

the species (n=1-25 individuals per species) into this regression. To avoid 

potential size differences associated with different habitats affecting 
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estimates of biomass, where possible the individuals used for this 

regression were taken from undisturbed forest samples.  

 

Figure 4.10. Diagram of basic dung beetle anatomy showing how body 

length was measured. 
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Figure 4.11. Regression of log length (mm) against log dry mass (g) for 10 

beetle species. The different species are plotted in different colours, with 

means for each species plotted as large triangles. Regression line was 

fitted to individual data. 

4.3.3 Robustness of sampling 

The completeness of dung beetle sampling at each site was tested by 

examining species accumulation curves. Furthermore, species assemblages 

of some tropical insect taxa exhibit large temporal variation (e.g. Hamer et 

al. 2005) and because dung beetles in the main study were sampled in a 

single year I tested for potential inter-annual variation in dung beetle 

species assemblages. To do this, dung beetles were sampled in each of 

three years (2011, 2012 and 2013) at a sub-set of three sites (sites 1, 6 and 

13) using human dung-baited pitfall traps spaced by 100-200 m along 0.5-1 

km transects. In order to span the range of fragment sizes of sites used in 
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Chapters 5-7, the three sites chosen included two forest fragments (45 and 

250 ha) and one unlogged continuous forest site. In all three years, the 

three sites were sampled during the drier months from April and August, to 

avoid potential intra-annual variation in climate. Rainfall records from site 

1 showed that there were climatic differences between years, with 2011 

(3899.7 mm yr-1) being 22% wetter than 2012 (3188.2 mm yr-1) and 17% 

wetter than 2013 (3332.6 mm yr-1), which may have affected beetle 

assemblages although all three years were wetter than average for the site 

(2880.7 mm yr-1). 

Generalised Linear Mixed Models (GLMMs) were used to test for differences 

in species richness, abundance and biomass between years. The use of 

GLMMs accounted for unequal trap spacing and trap numbers across years 

by fitting site as a random effect. Significant differences in species 

richness, abundance or biomass across years were defined as when 95% 

confidence intervals of yearly richness, abundance or biomass values were 

non-overlapping. Large rollers and large tunnellers are key functional 

groups for seed dispersal and dung removal, and so I separately tested for 

differences in the biomass of these groups between years using GLMMs. 

Non-Metric multiDimensional Scaling (NMDS) and linear vector fitting were 

used to examine differences in beetle assemblage composition among 

years. NMDS was fitted using the Bray-Curtis similarity index which clusters 

sites closer together if they support more similar species assemblages. 

Linear vector fitting used 100 Monte Carlo permutations to test for 

significant differences in species assemblages between years.  

For all sites, species accumulation curves were increasing only slightly at 

the end of sampling and for the majority of sites, species richness appeared 

to be reaching an asymptote (Figure 4.12). Curves were more asymptotic in 

the larger sites, and more individuals were collected from these sites. The 

relatively low rates of species accumulation observed across sites suggest 

that curves would have been unlikely to intersect with further sampling and 

that two days of sampling was sufficient to compare dung beetle 

assemblages across sites. 
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Figure 4.12. Species accumulation curves for all 18 study sites. Species are plotted against the number of individuals sampled. The y-

axes for all plots are on the same scale but x-axes are on different scales representing large differences in beetle abundance among 

sites. Blue lines represent recorded species richness and grey shading show 95% confidence intervals. 
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Analyses of inter-annual variation revealed no significant differences in 

species richness, abundance, biomass, large roller biomass, or large 

tunneller biomass across the 3 years (Figure 4.13; GLMM output: 95% CIs for 

all variables overlapping across years). Vector fitting also revealed little 

difference in species assemblages across the 3 years (Figure 4.14; Goodness 

of fit: R2 = 0.0297, p = 0.92). Overall, variation in dung beetle assemblages 

among sites was consistently greater than variation among years, showing 

little evidence for inter-annual variation in dung beetle assemblages. This 

was despite rainfall being ~20% higher in 2011 than in the other years. 

There was some variation in roller and tunneller biomass between years, 

but this was exceeded by differences in biomass between the three sites 

(Figure 4.13). For example, site 6 had consistently lower biomass than 

either site 1 or 13, perhaps as a result of low mammal abundance and 

limited dung resources in this fragment. There may be temporal variation 

in dung beetle assemblages between wet and dry seasons, as observed for 

butterflies in Sabah (Hamer et al. 2005), but I avoided this possibility by 

collecting the data for Chapters 5-7 in the drier months from March to 

September. Thus I conclude that comparing data sets collected in different 

years in this study is likely to be robust. 
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Figure 4.13. Barplots comparing species richness, abundance, total 

biomass, roller biomass and large tunneller biomass in three years (2011-

2013) at three sites (1 (unlogged continuous forest), 6 (250 ha) and 13 (45 

ha)). Values shown are means per sampling station and standard 

deviations. Darker to lighter fill bars represent samples from 2011 to 2013. 
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Figure 4.14. NMDS plot (Bray-Curtis method) comparing species 

assemblages across three years in sites 1 (triangles in the green circle), 6 

(circles in the blue circle) and 13 (squares in the red circle). Each data 

point represents a site in a given year and points that are closer together 

support more similar species assemblages. Samples from 2011 have black 

fill, from 2012 have grey fill and from 2013 have white fill. In this 

analysis, the stress value for the NMDS ordination was approaching zero, 

indicating a very reliable configuration of sites and no effect of year (Zuur 

et al. 2007). 
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4.3.4 Comparing bait types in assessment of dung beetle assemblages 

At all 18 field sites, dung removal and secondary seed dispersal by dung 

beetles were measured between July and September 2013. These functions 

were measured at the same sampling stations at which dung beetles were 

sampled in 2012, to allow analyses comparing dung beetle assemblage 

composition with rates of ecosystem function (Chapter 7). 

Dung beetle ecosystem functioning measurements were conducted using 

cattle dung for logistical reasons, because it was much easier to obtain in 

the larger quantities needed for these experiments (~7.5 kg dung needed 

per study site per day). Previous studies in Sabah have shown that cattle 

dung baits can attract similar dung beetle species assemblages to human 

dung baits (Slade et al. 2011; Gray et al. 2014), and I compared species 

assemblages sampled with human versus cattle dung-baited pitfall traps in 

unlogged, continuous forest (site 1; n= 10 traps per bait type).  To avoid 

differences due to forest type, traps were placed at the same sampling 

stations that were 100 m apart along the same 1 km transect used in the 

main study. Samples with the cattle baits were collected a month before 

those with human baits to avoid interference and possible trapping out 

effects. All other aspects of trap design were the same for the two bait 

types (4.3.1; Figure 4.8), with ~20 g baits used for each bait type. Traps 

were left out for 48 hrs and emptied and re-baited daily. Species richness, 

abundance and biomass collected with the two bait types were compared 

using one-way ANOVA fitted as a linear model, with data analysed by 

station/trap. Separate one-way ANOVAs were also conducted for 

functionally important rollers and large tunnellers to compare abundance 

and biomass of these species sampled with human and cow dung baits. 

Species assemblages sampled with the two baits were compared using 

NMDS and vector fitting. 

Cattle dung attracted 15% fewer species and 50% lower biomass of beetles 

(for both species richness and biomass: t1,18 >2.35, p < 0.05), but a similar 

abundance to human dung (Figure 4.15; t1,18 = -0.9, p = 0.38). Species 

assemblages were significantly different between baits (Goodness of fit: R2 
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= 0.27, p < 0.01), but functionally important large rollers and large 

tunnellers, were caught with equal abundance in both bait types (Figure 

4.16). The biomass collected with the two baits did differ, primarily 

because cattle dung attracted fewer large tunneller species. However, 

these differences are likely to be less marked for functioning experiments 

where larger cattle dung piles are used, because previous studies have 

shown that larger cattle dung piles attract very similar species assemblages 

to human dung-baited pitfall traps (Gray et al. 2014). Furthermore, cattle 

and human dung both attracted all functionally important large tunneller 

and roller species, suggesting that functioning experiments will be 

comparable to species composition samples. 
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Figure 4.15. Barplots comparing species richness, biomass and abundance 

of dung beetles sampled with cattle (dark bars) and human dung (light 

bars). Values plotted are means per sampling station and error bars show 

standard deviation. Brackets and asterisks indicate significant differences 

between cow and human dung-baited samples, based on ANOVA fitted as 

linear models. Species richness of large tunnellers and rollers are not 

plotted (NA written instead) because there are very few species in these 

functional groups and all species were collected with both baits.  
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Figure 4.16. NMDS plot (Bray-Curtis method) comparing species 

assemblages sampled in unlogged continuous forest with cow dung (black 

circles) and human dung (grey squares). Each data point represents an 

individual site and points that are closer together support more similar 

species assemblages. This analysis included all species occurring at ≥2 sites 

as ≥2 individuals, but results were very similar when different abundance 

thresholds were used. The scores of key functional species have been 

plotted, with large tunnellers in green font and large rollers in pink font. 

Note that 5/7 key functional species are plotted in the middle of cattle 

and human dung samples suggesting they were equally abundant in the two 

baits.  In this analysis, the stress value for the NMDS ordination was 0.089, 

indicating a very reliable configuration of points (Zuur et al. 2007). 
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4.3.5 Measuring ecosystem functions of dung beetles 

4.3.5.i Dung removal 

At all 18 study sites, dung removal was measured using 630g treatment 

piles of fresh cattle dung placed at each sampling station (3-10 piles per 

site, Figure 4.17). Two 630g evaporation control dung piles were also 

placed at the first two sampling stations at each site (Figure 4.18) to 

control for effects of evapotranspiration on dung wet mass. Dung piles of 

630 g were used as this was the maximum amount of dung removed in 24 

hours across six study sites during dung removal trials in 2012, and this size 

is broadly consistent with the size of dung piles produced by the study 

region’s large herbivores, such as Banteng (Bos javanicus lowi). Fresh cattle 

dung was collected the night before sampling and stored overnight in an 

icebox. The evaporation control piles were enclosed within 1 mm wire 

mesh cage that excluded all beetles from accessing the dung, but allowed 

water loss by evaporation. Dung piles were placed on a raised mound of 

earth and covered with polystyrene plates (~15 cm above the dung) to 

protect them from rain. All treatment and control dung piles were 

collected after 24 hours and change in wet masses of treatment piles were 

estimated relative to control dung piles after 24 hours to account for mass 

changes due to water loss: 

    ( )  
      (                                 )

                 
  

Equation 4.1. Equation for calculating the percentage of dung removed at 

each sampling station (i). All mass values used are those after 24 hours. DR 

= dung removed.  
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Figure 4.17. Example of a dung removal and seed dispersal replicate at the 

start of the experiment. The polystyrene plate above the dung pile 

protected the dung from rain. Dung pile contained 300 x 0.5 cm aluminium 

balls as seed mimics. The aluminium fence was 10cm high with another 5 

cm buried into the soil to prevent rollers digging underneath. The fence 

formed a circle of 40 cm radius around the dung pile. 
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Figure 4.18. The evaporation control apparatus (2 per transect). The mesh 

was opened at the top to allow dung piles to be inserted and removed, and 

this opening was then sealed with fishing line during sampling. The mesh 

prevented access to the dung by beetles and so allowed estimates of dung 

mass loss due to evaporation. The apparatus was covered with a 

polystyrene plate to protect against rain and left in the field during the 

experiments. 

4.3.5.ii Secondary seed dispersal 

Secondary seed dispersal was measured at the same time and stations as 

dung removal. This was done by placing 300 aluminium beads (0.5 cm 

diameter) inside each treatment dung pile as seed mimics. Beads were 

mixed thoroughly into the dung to ensure an even distribution. Beads of 0.5 

cm diameter were chosen as seed mimics because this was the minimum 
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size detectable by a handheld metal detector (Garrett Pro-pointer P/N 

1166000), and because seeds of this size are consumed and excreted by a 

range of frugivorous mammals (primary dispersers) in the region (Corlett 

1998). After 24 hours, I then counted the number of beads that: 1) 

remained unburied on the soil surface or in dung on the soil surface, 2) had 

been dispersed horizontally by roller dung beetles, and 3) were buried in 

the soil by tunneller dung beetles (Figure 4.19): 

1) Unburied beads were defined as any beads still in the dung pile or that 

were visible on the soil surface. Beads in the dung were recovered by wet 

sieving the dung after weighing, and beads on the soil surface were located 

by eye and using a handheld metal detector. 

2) Horizontally dispersed beads were defined as those moved to the 

circular fence of sheet aluminium (radius 40 cm, height 10 cm) placed 

around each treatment dung pile (Figure 4.19). These beads were 

recovered by eye and with the assistance of a handheld metal detector. To 

prevent rolled beads being lost, the fence was buried into the soil to a 

depth of 5 cm and secured with metal pegs to prevent beetles from digging 

underneath. A radius of 40 cm was chosen as the optimal distance for 

detecting beads moved by large roller species, but excluding beads buried 

by tunnellers. Separate trials with no aluminium fence showed that large 

roller species rolled their dung balls on average 1.35 m (SD: 0.45, minimum 

= 0.55 m, n = 17), indicating that rollers would abandon their dung balls at 

the fence. This confirmed that all beads moved by rollers should be left at 

the aluminium fence. The action of large tunneller species, especially when 

they are highly abundant, can result in dung being scattered from its initial 

dung pile but separate trials at the site with highest abundance of large 

tunnellers showed that tunnellers never moved dung more than 30 cm from 

the dung pile on flat ground. Hence, the placement of the aluminium fence 

allowed beads moved by rollers and by tunnellers to be distinguished. To 

prevent beads from accidentally rolling or being moved downhill by 

tunnellers the soil within the aluminium fence was levelled. Trials revealed 

that tunneller species sometimes stole and buried roller dung balls 

abandoned next to the fence, and so to account for this I dug down to the 
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bottom of any burial tunnels near the fence to recover any beads. These 

were counted as horizontally dispersed beads, because they would have 

been buried by rollers in the absence of the aluminium fence. 

3) Beads buried by tunnellers were defined as those remaining after the 

unburied and rolled beads had been recovered, which by a process of 

elimination had to have been buried. 

 

Figure 4.19. Example of dung removal from a dung pile after 24 hours, 

with rolled and unburied dung highlighted. Some unburied aluminium 

beads can be seen. 

4.3.5.iii Experimental exclusion of Catharsius species 

Across all 18 study sites, the large tunneller genus Catharsius spp. made up 

a large proportion of total dung beetle biomass (Figure 4.20). The two 

species in this genus are the largest dung beetle species at the study site 

with body length averaging 27 mm (Figure 4.21). This varied across sites 

from about 50% of biomass in continuous forest sites to 0 - 95% of biomass 

in fragment sites (Figure 4.20). This dominance of Catharsius spp. is 
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supported by Slade et al (2007), and suggests that these species are likely 

to be extremely important for dung removal. 

 

Figure 4.20. Barplot showing the proportion of total dung beetle biomass 

made up by Catharsius spp (grey), other large tunnellers (maroon), small 

tunnellers (orange), large rollers (dark blue) and small rollers (light blue) 

across study sites. Error bars are not plotted for ease of interpretation. 
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Figure 4.21. Picture of a Catharsius dayacus male. Body length of this 

individual is ~27 mm. 

To assess the importance of Catharsius spp. for dung removal in Chapter 7, 

additional dung removal experiments were set up but with Catharsius spp. 

excluded. The experimental protocol was identical to that outlined in 

section 4.3.5, except that a 60 x 60 cm square of wire mesh (1.2 cm mesh 

size) was placed under treatment dung piles (Figure 4.22). Trials showed 

that this size of mesh allowed all species, except those in the Catharsius 

genus, to access the dung pile and bury (other tunnellers) or roll (rollers) 

dung. As with the main dung removal experiment, polystyrene plates were 

used to protect the dung from rainfall, evaporation controls were used, and 

dung piles were collected after 24 hours (Figure 4.23).  
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Figure 4.22. Example of Catharsius spp. exclusion experiment, showing the 

wire mesh underneath the dung pile. 
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Figure 4.23. Example of a Catharsius spp. exclusion replicate after 24 

hours in the forest showing that some dung was removed by non-Catharsius 

spp. The aluminium fence was not used for this experiment which focussed 

on dung removal, not seed dispersal and burial. 

4.3.6 Vegetation structure and microclimate measurements 

Vegetation structure and microhabitat can influence dung beetle faunal 

composition (Davis et al. 1998; Feer 2008; Slade et al. 2011) and so 

vegetation variables were recorded within a circle of 30 m radius, centred 

on each sampling station and divided into four quadrants based on the 

cardinal compass bearings (modified from Hamer et al. 2003).  

In each quadrant I measured 10 variables (Table 4.2). I measured the girth 

(to nearest cm), point of inversion (POI; by eye to nearest metre), and 

identity (Dipterocarpaceae or not) of the two closest trees (≥60 cm gbh) 

and the girth of the two closest saplings (10-60 cm gbh) in each quadrant. 

The total number of saplings (within 10m radius of the sampling station) 

and trees (within 30m radius of the sampling station) in each quadrant 

were counted to estimate tree and sapling density. Leaf litter depth (to 

nearest 0.5 cm) was measured at each station using a ruler, based on the 
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mean of 10 readings (on random compass bearings) at one (n=5) and two 

(n=5) metres from the sampling station.  Percentage ground cover (by eye 

to nearest 5%) and canopy cover (both by spectral densiometer (henceforth 

called ‘vegetation cover’) and by eye (henceforth called ‘canopy cover’) to 

nearest 5%) were estimated for an area of 10 m radius around each 

sampling station. Canopy and ground cover estimates were based on the 

mean of four readings on the cardinal compass bearings. Canopy cover was 

estimated by eye and provided a different measure to densiometer 

readings which recorded all vegetation cover above the recorder, from all 

forest strata, whereas estimates by eye are specific to the canopy level. 

Estimates by eye of POI, canopy cover, and ground cover were taken by the 

same recorder to avoid recorder biases. Means per sampling station were 

then taken for each of these 10 vegetation variables. 

Air temperature and soil moisture (as a proxy for humidity) were recorded 

at each sampling station because abiotic variables can influence dung 

beetle activity (Landin 1968). Soil moisture was used as a proxy for relative 

air humidity, because transpiration and evapotranspiration rates drive 

relative humidity and are correlated with soil water availability (Richards 

1996). Furthermore, relative humidity varies depending on the time of day, 

whilst soil moisture shows less daily variation (e.g. Roxy et al. 2010). A 

HOBO® Pendant Temperature Data Logger data logger (Onset Computer 

Corporation) was fastened to a sapling at approximately 1m height and out 

of direct sunlight at each sampling station. Data loggers recorded 

temperature every 30 minutes during the 48 hour sampling period. Soil 

moisture was recorded at each sampling station at the start of the sampling 

period using an HH2 Moisture Meter (Delta-T Devices Ltd). Soil moisture 

measures were taken at 15 cm soil depth to exclude the influence of recent 

rain in surface soil and to estimate overall site humidity. Soil moisture was 

the mean of five measurements: one at the sampling station and four (on 

random compass bearings) at 1 m from the sampling station. 
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Table 4.2. Summary of mean vegetation measurements across sites. Mean values averaged across sampling stations are 

presented. Tree and sapling density are stems per hectare. Column headings with grey shading show variables used to quantify 

forest quality in Principal Components Analysis. Abbreviations as follows: GBH = girth at breast height, mV = millivolts, Prop. = 

proportion and Veg. = vegetation. 

Site 

Leaf litter 
depth 
(cm) 

Veg. 
cover 
(%) 

Canopy 
cover 
(%) 

Ground 
cover 
(%) 

Tree 
GBH 
(cm) 

POI 
(m) 

Tree 
density 

Prop. of 
Dipterocarps 

Sapling 
GBH 
(cm) 

Sapling 
density 

Temp. 
(OC) 

Soil 
moisture 
(mV) 

1 2.4 92.2 59.3 55.4 123.6 13.4 110.4 0.3 21.7 1241.4 25.1 747.6 

2 1.3 93.3 62.1 28.9 104.0 12.3 109.3 0.2 17.9 1279.6 24.6 633.3 

3 1.8 90.4 35.8 37.0 109.6 10.0 87.0 0.4 15.5 1098.2 25.2 508.1 

4 2.1 92.8 64.1 29.1 106.2 10.3 72.5 0.4 18.1 1276.4 24.9 766.8 

5 1.5 91.5 49.4 51.3 97.1 10.3 93.7 0.4 14.8 751.8 25.0 536.8 

6 1.0 94.1 30.3 27.4 78.2 7.3 54.1 0.1 14.7 604.7 26.0 618.8 

7 1.0 95.4 29.4 27.6 78.4 7.3 53.1 0.2 15.0 1196.9 26.6 734.2 

8 1.5 88.3 4.1 47.6 81.9 6.5 61.2 0.0 21.2 738.5 26.4 492.7 

9 1.8 92.9 59.9 31.8 132.5 12.4 119.9 0.3 19.4 1687.0 25.7 523.6 

10 0.6 86.0 17.2 32.8 121.5 8.3 37.1 0.1 18.2 923.1 25.6 576.9 

11 1.5 88.9 45.5 38.8 91.6 8.3 193.0 0.0 19.0 1828.0 26.0 519.5 

12 0.5 84.3 51.6 47.4 70.9 4.6 79.9 0.0 16.4 811.7 27.2 563.8 

13 1.4 91.3 42.5 48.0 89.6 11.7 66.5 0.4 15.3 1126.8 25.7 516.0 

14 2.8 94.3 65.1 39.4 95.0 10.4 87.7 0.4 14.5 853.1 26.7 388.7 

15 2.1 90.8 44.6 33.3 87.1 7.7 143.8 0.0 16.5 1114.1 25.9 473.5 

16 2.0 91.9 24.6 48.3 110.3 10.2 82.5 0.2 17.8 1135.3 25.1 422.8 

17 0.6 91.6 0.0 42.2 71.1 4.0 20.3 0.0 16.0 827.6 26.5 458.6 

18 0.5 94.1 0.0 21.7 76.1 3.8 23.6 0.0 23.5 1082.3 26.3 665.1 
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4.3.6.i Quantifying forest quality 

To quantify forest quality at each of the study sites the 10 non-independent 

vegetation variables outlined above were combined into a single 

independent measure of forest quality for each sampling station. This was 

done using a Principal Components Analysis (PCA), to combine non-

independent vegetation variables into an independent factor (Principal 

Component) representing forest quality. Examination of a correlation 

matrix showed that most of the variables were at least weakly correlated 

(Figure 4.24) and so all of the vegetation variables were incorporated into 

the PCA. Environmental variables (temperature and soil moisture; Table 

4.2) were not included in the PCA, however, these data are used to inform 

discussion and are plotted in relation to forest quality in Figure 4.4. To 

ensure normality and homogeneity of error of vegetation variables prior to 

carrying out the PCA, they were transformed as follows: square root (leaf 

litter depth, tree density, and sapling density), logged (ground cover, POI, 

and sapling GBH), double logged (tree GBH), arcsine transformed (canopy 

cover, and proportion of Dipterocarps), and logit transformed (vegetation 

cover). As the variables were measured on different scales the PCA was 

conducted on the correlation matrix of standardised variables (mean = 0, 

SD = 1) (Kenkel 2006).  
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Figure 4.24. Correlation matrix of all vegetation variables included in the 

Principal Components Analysis. Top right panels show scatter plots and 

bottom left give Pearson’s correlation coefficients and 95% confidence 

intervals. LL = leaf litter, VC = vegetation cover, CC = canopy cover, GC – 

ground cover, TCBH = tree girth, POI = point of inversion, Tden = tree 

density, PD = proportion of Dipterocarps, SCBH = sapling girth and Sden = 

sapling density. 

The first principal component (PC) of the analysis explained 33% of 

variation in the data set and was characterised by a high density of large, 

tall Dipterocarps, a high canopy cover and deep leaf litter (Table 4.3). This 

PC score was therefore used as an index of forest quality because these 

attributes are associated with undisturbed forest (Figure 4.25). Sensitivity 

analyses of the PCA excluding each of the 10 vegetation variables in turn 

produced similar principal component scores for each site, and did not 
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qualitatively change the final results, suggesting that differences in forest 

quality between sites were robustly captured by the PCA and that 

individual vegetation variables were not biasing the PCA. 

Table 4.3. Contribution of the 10 vegetation variables to all principal 

components with eigenvalues >1. Only PC1 was used as a measure of 

quality and so the largest loadings for this are printed in bold. Larger 

loadings (+ or -) indicate a larger contribution to the first principal 

component. 

 
 

PC1 PC2 PC3 PC4 

Eigenvalue  1.35 1.14 1.06 1.00 

Variable Leaf litter 0.37 0.04 0.22 -0.17 

 Vegetation cover 0.07 -0.60 0.02 0.11 

 Canopy cover 0.39 -0.10 -0.10 -0.30 

 Ground cover -0.03 0.46 0.31 -0.53 

 Tree girth 0.42 0.26 0.02 0.34 

 POI 0.47 0.07 0.17 0.20 

 Tree density 0.35 0.01 -0.33 -0.48 

 Proportion of 
Dipterocarps 

0.34 -0.18 0.47 0.20 

 Sapling girth 0.05 0.54 -0.30 0.42 

 Sapling density 0.25 -0.12 -0.63 0.00 
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Figure 4.25. Barplot comparing mean forest quality (PC1) scores in 

unlogged continuous forest sites (UL), twice-logged continuous forest sites 

(2L), VJR fragment sites and plantation fragment sites (OPF). Values shown 

are mean and standard deviations. Dotted line separate continuous and 

fragmented sites 

4.4 Statistical Analyses 

4.4.1 Calculating site characteristics 

Chapters 5, 6 and 7 assess differences in dung beetle assemblages and 

ecosystem functions between continuous forest and fragments and among 

fragments in relation to fragment size, forest quality and isolation 

distance. The forest fragment sizes were taken from Sabah Forestry 

Department (Sabah Forestry Department 2005) and PPB Group Berhad 

(Wilmar International) statistics. Isolation distances were defined as the 
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straight-line distance from the edge of the fragment to the boundary of the 

nearest tract of continuous forest (non-mangrove forest >10,000 ha). Forest 

quality was defined as outlined above (section 4.3.6.i). 

4.4.2 Measures of species richness 

In Chapters 5-7 raw species richness per station is used to measure dung 

beetle species diversity at sites. To ensure that raw species richness 

represented the diversity of species assemblages at each study site, I 

compared species richness results to those of two other commonly used 

diversity indices, Simpson’s 1/D and Fisher’s alpha. Comparison of these 

measures revealed that all indices were highly positively correlated (Figure 

4.26), suggesting that raw species richness is a robust and unbiased 

measure of diversity. Simpson’s 1/D and Fisher’s alpha also gave 

qualitatively similar results to species richness in subsequent analyses. 

Therefore, raw species richness was used in preference to the two other 

indices, as it was the simplest and most interpretable measure of species 

diversity, representing the number of species recorded.  
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Figure 4.26. Scatterplots comparing species richness to Simpson’s evenness 

and Fisher’s alpha at the site level. Best lines are plotted for both highly 

significant relationships based on linear regression (for both regressions, 

t1,14 > 4.9, p < 0.001). Green triangles represent unlogged continuous 

forest, orange triangles twice-logged continuous forest and circles forest 

fragments. 

4.4.3 Information theory and linear mixed models 

In this thesis, analyses examining the effects of fragmentation on dung 

beetles and their functions are carried out primarily using an information 

theoretic approach, rather than a traditional frequentist (null hypothesis 

testing) approach (Burnham & Anderson 2002). The frequentist approach 

uses single models to test hypotheses against a 95% probability threshold. 
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Conversely, information theory ranks a series of models, using an 

information criterion such as Akaike’s Information Criterion (AIC), to give a 

weighted quantitative assessment of various competing hypotheses. 

Information theory does not use p-values for model inference (Grueber et 

al. 2011). The information theoretic approach incorporates uncertainty 

from multiple models, as opposed to just one as is typical of the 

frequentist approach, and so allows better estimation of model parameters 

and their uncertainty (Burnham & Anderson 2002; Grueber et al. 2011). 

Throughout this thesis, AICc is used to rank models and the best models are 

defined as those within 2 AICc values of the best model with the lowest AICc 

value (Burnham & Anderson 2002). In cases where model ranking identifies 

more than one ‘best’ model, then parameter estimates and uncertainty are 

extracted by averaging across the ‘best models’. AIC assesses the goodness 

of model fit while adjusting for the number of model parameters and AICc 

is a variant of AIC that accounts for biases due to small sample size (Bolker 

et al. 2009). Following model ranking using AIC, model inferences were 

made using parameter estimates and 95% confidence intervals based on the 

best models (Burnham & Anderson 2002; Bolker et al. 2009). Confidence 

intervals (CIs) can be broadly used to assess the importance of a 

parameter. For example, important continuous variables are those whose 

95% CIs do not overlap zero, and for categorical variables when the CIs of 

factor levels are non-overlapping.  

In Chapters 5-7 I applied the information theoretic approach with 

generalised linear mixed models. Linear mixed models (LMMs) allow 

researchers to account for unbalanced sampling designs and for non-

independent replicates. LMMs use pseudo Generalised-Least Squares 

methods for parameter estimation and so provide less biased estimates 

than linear models for unbalanced data (Bolker et al. 2009). Generalised 

linear mixed models (GLMMs) are an extension of LMMs that can include 

non-normal data distributions (Bolker et al. 2009). Ecological datasets are 

commonly non-normal, as was the case in this thesis. For example, count 

data are typically Poisson distributed or overdispersed and other data, such 

as percentage dung removal, are proportional. Traditional linear models 

deal with non-normality by transforming data, or by using non-parametric 
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statistics. However, non-parametric analyses and transformations are not 

suitable for all data distributions and often ignore random effects (Bolker 

et al. 2009). GLMMs can incorporate random effects and use link functions 

and diverse error distributions, so addressing both of the problems 

described above. GLMMs are used in this thesis because sampling stations at 

a site may not be strictly independent of one another, but data from all 

stations can be used in GLMMs to inform model fit without 

pseudoreplication. Throughout Chapters 5-7 GLMMs were fitted with study 

site as a random effect, to account for the unbalanced number of sampling 

stations per site. Thus analyses were effectively conducted at the site level 

but using variation among sampling stations to inform model fitting. 
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Chapter 5 - The response of dung beetle assemblages 

to forest fragmentation: effects of fragment area, 

forest quality and isolation 

5.1 Abstract 

Expansion of crops is a major driver of tropical deforestation and initiatives 

such as the Roundtable on Sustainable Palm Oil (RSPO) have been 

developed to mitigate environmental impacts. RSPO certified companies 

are expected to reduce biodiversity losses by maintaining High 

Conservation Value (HCV) forest areas within their concessions. I assessed 

how the size, forest quality and isolation of these forest fragments affected 

biodiversity by collecting data on dung beetle assemblages from 16 forest 

fragments and two continuous forest ‘control’ sites in eastern Sabah 

(Malaysian Borneo). Dung beetle species richness, abundance and 

assemblage composition were very similar in pristine and twice-logged 

continuous forest, but forest fragments (5 ha – 3,529 ha) supported over 

50% fewer species and individuals than did continuous forest sites. Among 

fragments, fragment area had the greatest impact on dung beetle species 

richness, but differences in species turnover between sites were best 

explained by differences in forest quality. Overall abundance and biomass 

of dung beetles varied little among fragments, but the abundance and 

biomass of rollers (a group important for secondary seed dispersal) declined 

with fragment area and large rollers were absent from the smallest 

fragments. The abundance and biomass of large (>10 mm) tunnellers, the 

group most important for dung burial, was not affected by fragment area or 

forest quality, but decreased slightly with isolation. Avoiding the 

conversion of continuous forest to fragments is key to reducing biodiversity 

losses. However, following fragmentation, maximising the size of HCV areas 

will support more species and maintain populations of functionally 

important large rollers and large tunnellers. Improving forest quality in 

smaller HCV areas could allow these sites to support similar species 

assemblages to continuous forest.  
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5.2 Introduction 

Across the tropics, agricultural expansion is a major cause of deforestation 

(Kissinger et al. 2012). This deforestation and concurrent biodiversity losses 

have led to negative publicity for tropical agricultural commodities, such as 

palm oil (Elaeis guineensis Jacq.). In response to this, initiatives such as the 

Roundtable on Sustainable Palm Oil (RSPO) and the Roundtable on 

Responsible Soy have been developed to mitigate the environmental and 

social impacts of agricultural expansion. In the case of oil palm agriculture, 

the RSPO uses the High Conservation Value (HCV) approach to reduce 

biodiversity losses associated with oil palm expansion. Plantations 

established before 2005 and seeking RSPO-certification are required to 

identify, maintain, and enhance areas of HCV habitat within their 

concessions, and new oil palm concessions seeking certification cannot 

convert HCV forest (RSPO 2013). 

Recent research has questioned the use of the HCV approach for 

biodiversity conservation in oil palm plantations (Edwards et al. 2010, 2012) 

suggesting that HCV areas tend to be small forest fragments supporting low 

species richness and abundances. Significantly though, this criticism 

focussed on small (<100 ha in size), logged forest patches in plantations 

established before 2005 and the patches that were studied were not 

originally identified as HCV areas. The requirement for new oil palm 

plantings is that HCV areas are identified in concessions before the land is 

cleared for planting, and these areas should be as large as is necessary to 

maintain any identified HCVs (Chapter 2, Brown et al. 2013). However, HCV 

assessors are in need of guidance to help them identify HCV areas and to 

develop appropriate management plans (Chapter 2, Meijaard & Sheil 2012), 

and so there is an urgent need to measure biodiversity and ecosystem 

functioning in fragments and to examine the importance of fragment size 

and forest quality. There is also a need to move beyond measures of 

species richness and abundance, to assessing the maintenance of key 

ecosystem functions, such as decomposition and seed dispersal (Reiss et al. 

2009) in HCV areas. These functions underpin the functioning of the entire 

ecosystem by maintaining abiotic conditions and biotic processes necessary 
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for species persistence (Millennium Ecosystem Assessment 2005; Hooper et 

al. 2012). Given that oil palm agriculture is continuing to expand (Butler et 

al. 2009; Laurance et al. 2010), it is vital to assess the effectiveness of HCV 

areas for maintaining both biodiversity and ecosystem functioning within oil 

palm landscapes. 

HCV assessments for new oil palm concessions identify HCV areas to be 

protected from conversion and maintained over time. However, 

concessions often replace continuous, albeit highly degraded, forest and so 

these HCVs are identified in continuous forest, but then typically protected 

as isolated HCV areas within the concession area. The fragmentation 

literature can provide insight into the value of these fragments for 

conservation. Fragmentation can affect biodiversity through habitat loss 

and the breaking apart of habitat, such as changes in the isolation, size and 

shape of habitat patches (Fahrig 2003). Habitat loss causes species 

extinctions, as explained by the theory of island biogeography (MacArthur & 

Wilson 1967), and the independent impacts of the breaking apart of habitat 

(henceforth ‘fragmentation’) are also becoming clearer. For example, 

fragmentation causes invasion of non-native species, increased edge effects 

and increased prevalence of hunting, fires and logging (Turner 1996; 

Laurance et al. 2013). These pressures mean that equivalent areas of 

continuous and fragmented forest support very different species 

assemblages, irrespective of the size and distribution of the fragmented 

forest (e.g. Nichols et al. 2007). These effects of fragmentation are also 

key arguments in favour of a ‘land sparing’ approach to conservation, 

which focuses on protecting larger, pristine natural habitats separately to 

areas of intensive agriculture, in place of the ‘land sharing’ approach that 

integrates conservation and agriculture in the same landscape using 

wildlife-friendly farming (Phalan et al. 2011). Therefore, comparing 

biodiversity in continuous and fragmented forest is crucial to assessing 

whether identified HCVs can be maintained in forest fragments, and also to 

identify the attributes of forest fragments that will best protect 

biodiversity values found in continuous forest. 
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Based on evidence from island biogeography and metapopulation dynamics, 

the effectiveness of HCV areas for biodiversity conservation is likely to 

depend on their size, isolation from other forest habitat, and the quality of 

forest they comprise. Species richness and abundance tend to be positively 

correlated with fragment size, and weakly negatively correlated with 

fragment isolation across a variety of taxa (e.g. Laurance et al. 2002; 

Watling & Donnelly 2006; Benedick et al. 2006; Nichols et al. 2007; Edwards 

et al. 2010). Furthermore, forest fragments are prone to changes in 

vegetation structure through disturbance, such as logging, increased human 

encroachment, and edge effects; these changes can alter species richness, 

abundances and composition through the loss of interior forest specialists, 

or increases in disturbance-tolerant species (Laurance et al. 2002; Ewers et 

al. 2007). Independent of fragmentation, changes in forest quality 

following logging have also been shown to reduce species richness and 

abundance (Edwards et al. 2011b). Despite these impacts, forest quality is 

considered in fragmentation studies far less frequently than area or 

isolation (Nichols et al. 2007), perhaps because of the challenges of 

separating the confounding impacts of these variables on biodiversity 

(Ewers & Didham 2006). Nonetheless, comparison of fragment area, 

isolation and forest quality within the same study could provide greater 

insight into the effects of fragmentation on biodiversity.  

Additionally to the effects of fragmentation, logging is also a widespread 

threat to biodiversity, especially in the timber-rich forests of Southeast 

Asia (Edwards et al. 2011b). Logging can reduce forest quality by changing 

vegetation structure, altering microclimates and reducing habitat 

heterogeneity, which can in turn influence species richness, abundance and 

assemblage composition (Hamer et al. 2003). For example, microhabitats 

such as forest gaps are more common in logged forest and some species of 

dung beetle and butterfly are associated with particular microhabitats, 

such as forest gaps or riverine vegetation (Davis et al. 1998; Hamer et al. 

2003). Previous research in Southeast Asia has revealed that species 

richness and abundance decline after two, but not one, logging rotations, 

but one logging rotation is enough to cause significant changes in species 

composition (Hamer et al. 2003; Benedick et al. 2006; Edwards et al. 
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2011b; Woodcock et al. 2011). However, in Southeast Asia the impacts of 

logging and fragmentation on biodiversity have not been considered 

together in the same study. Doing this will allow the relative impacts of 

logging and fragmentation on different aspects of diversity to be compared. 

Changes in the composition of species assemblages is a less-studied aspect 

of diversity in fragmentation studies, but may be crucial for determining 

effects of fragmentation on ecosystem functioning and species of 

conservation concern (Tilman et al. 1997). In pristine habitats, protecting 

sites that maximise beta diversity by protecting the most complementary 

set of species may enable more efficient use of limited conservation 

resources (Margules & Pressey 2000). However, most ecosystems are 

subject to disturbances, such as logging and fragmentation, which may 

drive species extinctions, and so conservation often focusses on supporting 

species assemblages most similar to those in pristine ecosystems (Holloway 

et al. 1992; Dent & Wright 2009). Logging and fragmentation cause distinct 

changes in forest quality, fragment area or isolation, that can have 

differing impacts on species assemblages. For example, reduced forest 

quality and altered microclimate in response to logging adversely affects 

forest specialists (Edwards et al. 2013), declining fragment area negatively 

affects species with larger ranges, and increased fragment isolation 

negatively impacts dispersal-limited species (Hill et al. 2011). Therefore, 

assessing turnover in species assemblages in response to changes in forest 

quality, area and isolation can help to identify extinction mechanisms, and 

also to evaluate whether the size, quality or isolation of HCV areas has the 

greatest impact on species assemblages. Similarity indices are widely used 

to assess spatial turnover in species assemblages and identify sites of 

conservation value (Su et al. 2004), and when coupled with gradient 

analysis, can be used to relate turnover in species assemblages to 

environmental gradients, such as forest quality, fragment area and 

isolation (R. H. Jongman, C. J. F. ter Braak 1995). Such analyses can also 

be used to assess how changes in species assemblages following logging and 

fragmentation affect ecosystem functioning. 
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Within a taxon, species’ traits can be defined as functional effect traits 

(henceforth termed ‘functional traits’) which group species together based 

on their shared effects on certain ecosystem functions, and/or as ‘response 

traits’ that group species together based on shared responses to 

disturbances (Lavorel & Garnier 2002). If a functional trait is not a response 

trait then this suggests that the ecosystem function performed by species 

with that trait will be robust to disturbance. However, if species have traits 

that are both functional and response traits then assessing species’ 

responses to disturbance can be used to predict changes in functioning in 

response to disturbance (Larsen et al. 2005b). Dung beetles have crucial 

roles in ecosystem functions such as nutrient cycling, and seed dispersal, 

and exhibit large trait variation in relation to their dung processing 

behaviour and body size (Chapter 1 and 4, Nichols et al. 2008). Both dung 

processing behaviour and body size are functional traits for dung beetles, 

with large tunnellers being especially important for dung burial and hence 

nutrient cycling (Larsen et al. 2005b; Slade et al. 2007b; Dangles et al. 

2012), and large rollers for horizontal secondary seed dispersal (henceforth 

‘secondary seed dispersal’) (Andresen & Feer 2005). Therefore, assessing 

whether dung beetle functional group type and body size are response 

traits to logging and fragmentation will help predict changes in nutrient 

cycling and seed dispersal. 

There is currently no evidence that dung beetle functional group is a key 

response trait to fragmentation (Larsen et al. 2008), but dung beetle size is 

an important response trait, with larger species being particularly 

vulnerable to extinction in fragments (Larsen et al. 2005b). Neither 

functional group nor body size are important response traits to logging or 

declining forest quality (Slade et al. 2011; Edwards et al. 2013). Thus in 

this study, rollers and tunnellers might be expected to show similar 

responses to fragmentation, but large species of dung beetles would be 

expected to show greater declines compared with small species.   

I sampled dung beetles in Sabah, Malaysia from 16 forest fragments, and 

twice-logged and pristine continuous forest. In addition to their functional 

importance, dung beetles are also useful ecological indicators of 
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mammalian assemblages and forest quality because of their reliance on 

dung resources and habitat specialisation (Davis et al. 2001; Spector 2006; 

Nichols et al. 2009). This habitat specificity and their reliance on spatially 

and temporally patchy resources (Feer & Hingrat 2005) also makes them an 

excellent focal taxon for studying extinction dynamics. This chapter 

compares dung beetle diversity in pristine and twice-logged continuous 

forest sites (Hypothesis 1), in continuous forest sites and forest fragments 

(Hypothesis 2), and among forest fragments in relation to fragment area, 

forest quality and isolation (Hypothesis 3). I also compared turnover in 

species assemblages across all fragments and continuous forest sites 

(Hypothesis 4). These hypotheses are as follows: 

Hypothesis 1. Dung beetle species richness, abundance and biomass are 

lower in twice-logged than pristine continuous forest. 

There is no difference in the response of species in 

relation to functional group or body size. 

Hypothesis 2. Dung beetle species richness, abundance and biomass are 

lower in forest fragments than in continuous forest. 

Large-bodied species decline more than small species, 

whilst there is no difference in the response of rollers 

and tunnellers. 

Hypothesis 3. In fragments, dung beetle species richness, abundance 

and biomass decline in relation to fragment area, forest 

quality and isolation. Larger species show greater 

declines than smaller species, but roller and tunneller 

species show similar responses. 

Hypothesis 4. Species assemblages in continuous forest are significantly 

different from those in forest fragments, and among 

fragments are more similar in sites with similar area, 

forest quality and isolation.  
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5.3 Methods 

5.3.1 Study sites 

Dung beetles were sampled in two continuous forest ‘control’ sites and 16 

forest fragments in eastern Sabah, Malaysia (5 °N, 117 °E, Chapter 4). All 

sampling took place during the ‘drier’ season between April and August 

2012. The continuous forest sites were in undisturbed, primary forest 

(Danum Valley Conservation Area) and in twice-logged production forest 

(Ulu-Segama Malua Forest Reserve). Ulu-Segama Malua Forest Reserve was 

first logged between 1976 and 1991 (~120 m3 ha-1 of timber removed), and 

then again between 2001 and 2007 (~35 m3 ha-1 of timber removed) 

(Edwards et al. 2011b; Reynolds et al. 2011). The forest fragments varied in 

size from 5 to 3,529 ha, and varied in degree of isolation from the nearest 

continuous forest by 0.2 to 46.7 km. All fragments had been isolated within 

oil palm plantations for at least 15 years at the time of sampling. The 

fragments varied in their history of disturbance and forest management, 

with at least 11 of the fragments having been selectively logged prior to 

study (Chapter 4). Eight fragments were managed by the Sabah Forestry 

Department (38-3,529 ha, Sites 3-7, 9, 13-14) and eight fragments by PPB 

(Wilmar International) oil palm plantations (5-120 ha, Sites 8, 10, 12, 15-

18).  I quantified forest quality at each site by recording ground cover, 

canopy cover, vegetation cover (above 2m), leaf litter depth, tree density, 

girth, identity (Dipterocarpaceae or not) and point of inversion, sapling 

density and girth at each station (see Chapter 4 for more details). These 

non-independent variables were combined into independent measures of 

forest quality for each forest site using a Principal Components Analysis 

(PCA), and the first principal component was extracted as a measure of 

forest quality (Figure 5.1). This principal component explained 33% of 

variation in vegetation variables, revealed large differences in forest 

quality among sites (Figure 5.1), and was characterised by a high density of 

large, tall Dipterocarp trees, a high canopy cover and deep leaf litter 

(Chapter 4 Table 4.2). Fragment areas were taken from Sabah Forestry 

Department and PPB plantations statistics, and isolation distances 

calculated in ArcMap as the straight-line distance from the edge of the 

fragment to the boundary of the nearest tract of continuous forest (defined 
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as non-mangrove forest >10,000 ha). Fragment area, isolation and forest 

quality were considered together in this study after correlation matrices 

revealed no significant relationships between the variables (Figure 5.2). 

 

Figure 5.1. Plot of log10 area against forest quality (PC1 scores) with 

standard error. Green triangles are continuous forest sites, black circles 

are fragments managed by the Sabah Forestry Department, and blue 

circles are fragments managed by PPB oil palm plantations. There was no 

significant relationship between area and forest quality (Pearson’s R = 

0.47 (-0.03,0.78)). 
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Figure 5.2. Correlation matrix comparing fragment area, forest quality 

and isolation for the 16 forest fragments. Area values are log10 

transformed and isolation values square root transformed. Pearson’s 

correlation coefficient (R) and 95% confidence intervals are shown.  

5.3.2 Dung beetle sampling 

At each site, dung beetles were sampled with pitfall traps at stations 

placed at 100 m intervals along transects 0.3-1 km in length (1 transect per 

site, 3-10 stations per transect depending on fragment size and shape, n = 

143 stations in total: 123 in fragments, 20 in continuous forest sites). Trap 

spacing of 100 m has been shown to be sufficient to ensure independence 

of samples in tropical forests (Larsen & Forsyth 2005). Pitfall traps were 

placed at each station (1 per station), and baited with human dung. Pitfall 

traps were left out for 48 hours and were emptied and re-baited daily. 

Beetles were sorted and identified whilst in Sabah using an optical 
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microscope. I identified species based on reference collections of Felicity 

Edwards (University of Leeds) and Trond Larsen (Conservation 

International), and species identifications were verified by Darren Mann 

(Oxford University Museum of Natural History). For more details on 

locations of study sites, sampling methods and species identification see 

Chapter 4. 

5.3.3 Analysis 

Following species identification, I calculated species richness, abundance 

and biomass (dry mass, g) of all species for each station at all sites (see 

Chapter 4 for details). Biomass was included in analyses as well as 

abundance as it is more directly related to rates of dung burial than is 

abundance (Doube 1990; Larsen et al. 2005b). Raw species richness was 

used as the measure of diversity after sensitivity analyses comparing this to 

Fisher’s Alpha diversity, and Simpson’s 1/D yielded qualitatively similar 

results (full comparison in Chapter 4). I separately calculated abundance 

and biomass of small rollers, small tunnellers, large rollers and large 

tunnellers, to assess how dung beetle functional group and body size 

affected responses to fragmentation. In Sabah, the dweller functional 

group comprises only a very small proportion of the community (<1% of all 

individuals collected in this study) and so was removed from subsequent 

analyses. I examined the effect of body size by splitting rollers and 

tunnellers into large and small species. In Sabah, there is only one genus of 

large rollers (Paragymnopleurus), comprising three species 13 - 17 mm in 

length, and two small roller genera (Sisyphus and Ochicanthon) 3.5 - 6 mm 

in length. These data were used to define large and small species as those 

larger or smaller than 10 mm in length. Furthermore, species smaller than 

10 mm make only negligible contributions to dung removal (Slade et al. 

2007b), and so this size threshold also separates beetles according to their 

functional importance. 
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5.3.3.i Differences in dung beetle diversity between twice-logged and 

pristine continuous forest (Hypothesis 1) 

T-tests were used to compare dung beetle species richness, abundance and 

biomass in pristine and twice-logged continuous forest sites. Separate tests 

were also conducted for the abundance and biomass of small rollers, large 

rollers, small tunnellers and large tunnellers. Data from the 20 sampling 

stations (ten per habitat) were used as replicates in this analysis.  

5.3.3.ii Differences in dung beetle diversity between continuous forest 

and fragments (Hypothesis 2) 

I used Generalised Linear Mixed Models (GLMMs) to examine differences in 

species richness, abundance and biomass between continuous forest sites 

and forest fragments. Data from all 143 sampling stations across the two 

continuous forest sites (20 stations) and 16 fragments (123 stations) were 

analysed, with forest type (continuous or fragment) as a categorical fixed 

effect and site as a random effect, meaning that analyses were effectively 

conducted at the site level but using the variation between sampling 

stations to inform model fitting. Fitting site as a random effect accounted 

for the unbalanced number of sampling stations at each site and also 

prevented pseudoreplication. GLMMs use pseudo Generalised-Least Squares 

methods for parameter estimation and so provide less biased estimates 

than linear models for unbalanced data, they can also account for non-

normal data distributions (Bolker et al. 2009).  

Seven separate analyses (for seven response variables) were conducted to 

compare differences between continuous forest and forest fragments in 

total species richness, total abundance, total biomass, small roller biomass, 

large roller biomass, small tunneller biomass and large tunneller biomass. I 

also analysed differences in the abundance of the four functional groups 

between fragments and continuous forest, but for brevity these results are 

presented only in the Appendix (Appendix 3 tables A3.1-2). For each of the 

seven analyses, models containing ‘forest type’ were compared to models 

containing just the random effect of ‘site’ (‘null model’) using AICc values, 

to test whether differences between forest types exceeded those within 
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sites and so assessing variation within sites. In each analysis, the model 

with the lowest AICc value was the best fitting. Means and 95% confidence 

intervals of the seven response variables were extracted for continuous 

forest and fragment sites. A significant difference between habitat types 

was assumed if confidence intervals of continuous forest sites and fragment 

sites did not overlap, and if the ‘null model’ had a higher AICc value than 

the model containing forest type.  

Before carrying out analyses, parametric assumptions of data were tested 

and appropriate error distributions chosen to ensure assumptions were met 

(Table 5.1). I also tested for the influence of outliers by calculating Cook’s 

distances, to identify individual points with large residuals and high 

leverage in the model. I removed data points with Cook’s distance values 

greater than 4/N (i.e. 4/143 = 0.026) (Bollen & Jackman 1990), and so for 

analyses of large roller abundance and biomass models 11 data points were 

removed from analyses (all ten stations from one outlying site and one 

outlying station from a different site). To assess the overall goodness-of-fit 

of models I also calculated marginal (fixed effects only) and conditional 

(fixed and random effects) R2 values for each model (sensu Nakagawa & 

Schielzeth 2013). It is not currently possible to calculate R2 values for 

models with negative-binomial distributions and so R2 values are not 

presented for these models. The conditional R2 value quantified variation 

within sites, relative to the variation explained by forest type. GLMMs were 

fitted with R package “lme4” using the function ‘(g)lmer’. 
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Table 5.1. List of response variables analysed, along with the data 

distribution family, and transformation of the response variable used in 

analyses. The abundance of each of the four functional groups was also 

analysed, and is presented in Appendix 3 (Tables A3.1,2,5). 

Response variable Distribution family (and 
link) 

Transformation 

Species richness Poisson (log) None 
Abundance Negative-binomial (log) None 
Biomass Gaussian (identity) Log10 
Small roller biomass Poisson (log) Log10 
Large roller biomass Poisson (log) Log10 
Small tunneller biomass Poisson (log) None 
Large tunneller biomass Poisson (log) None 

 

5.3.3.iii Effects of fragment area, forest quality, and isolation on dung 

beetle diversity (Hypothesis 3) 

GLMMs were also used to examine differences in species richness, 

abundance and biomass among fragments in relation to fragment area, 

forest quality and isolation. Continuous forest sites were excluded from 

these analyses because they cannot be given area or isolation values. Data 

from all 123 sampling stations across the 16 forest fragment sites were 

analysed. Fragment area, forest quality and isolation were fitted as fixed 

effects and site was fitted as a random effect, meaning that analyses were 

effectively conducted at the site level but using the variation among 

sampling stations to inform model fitting. The same 11 outlying stations 

were removed and the same error distributions fitted as described in 

section 5.3.3.ii (Table 5.1).  

Seven separate analyses (for seven response variables) were conducted to 

compare differences in total species richness, total abundance, total 

biomass, small roller biomass, large roller biomass, small tunneller biomass 

and large tunneller biomass among forest fragments. For each of these 

response variables, models were constructed with all possible combinations 

of fragment area, forest quality and isolation (explanatory variables) as 

well as two-way interactions and second-order polynomials (to test for 

curvilinear relationships and threshold effects). Three-way interactions 
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were excluded from models to avoid over-fitting. A ‘null model’ was also 

included containing just the random effect of site, to test the overall 

goodness of fit of the models and to test whether differences among sites 

exceeded those within sites. For each of the response variables, all models 

were then ranked according to their AICc values to compare the relative 

importance of forest fragment area, forest quality and isolation. The best 

model was defined as that with the lowest AICc value, and the best model 

set as any models with AICc values within 2 units (Δi < 2) of the best model 

(Bolker et al. 2009). Coefficients and 95% confidence intervals were then 

extracted from the single best model, or averaged across the set of best 

models. A significant relationship was assumed if 95% confidence intervals 

did not overlap zero. Conditional and marginal R2 values were calculated. 

5.3.3.iv Turnover of dung beetle species assemblages among sites 

(Hypothesis 4) 

To examine differences in the turnover of species assemblages among all 

sites (continuous and fragment sites), I used Non-Metric multiDimensional 

Scaling (NMDS). Mixed model structures accounting for the unbalanced 

number of sample stations across sites are not possible in multivariate 

analyses and so NMDS analyses were carried out on mean species 

abundances per site (i.e. total number of individuals of the species at a 

site/number of stations at a site). This also reduced incidences of shared 

“double zero” species abundances between stations that complicate the 

interpretation of multivariate analysis output (Zuur et al. 2010).  I 

conducted two analyses, one including data from all sites (n=18 sites) and 

one only with data from fragments (n=16 sites). NMDS was carried out using 

the Bray-Curtis dissimilarity index, after sensitivity analyses comparing this 

with Morisita Horn and Chao-Jaccard revealed no qualitative differences 

(see Appendix 3 Table A3.6). In NMDS, species scores at sites are calculated 

as weighted averages of their abundances at each site (Oksanen et al. 

2007). These species scores can be plotted on NMDS plots allowing species 

associations with particular sites to be identified graphically. Linear vector 

fitting methods and significance tests based on 1000 Monte Carlo 

permutations were used to test for significant differences in species 
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assemblages explained by fragment area, isolation and forest quality in the 

analysis of fragments, and differences explained by forest quality and 

forest type (continuous versus forest fragment) in the analysis of all sites. 

NMDS with vector fitting was chosen over constrained ordination analyses 

because it allows a range of similarity indices to be used and it is better 

able to handle species abundance data that are typically non-normally 

distributed (R. H. Jongman, C. J. F. ter Braak 1995; Zuur et al. 2007).  

Species found only at a single site are of little use for comparing species 

assemblages across sites and so highly localised species sampled only at one 

site were removed from these analyses (Cao et al. 2001). Furthermore, to 

ensure that incompletely sampled rare species did not unduly influence 

these analyses, species were included only if two or more individuals were 

sampled at a site (n = 42/60 species (analysis of all sites), n = 35/60 species 

(analysis of fragments)). In order to test the sensitivity of results to this 

selection criterion, I also repeated analyses with more stringent selection 

criteria, by restricting analyses to only those species where five or more 

individuals were recorded at a site (n = 34/60 species (analysis of all sites), 

n = 24/60 species (analysis of fragments)), and to species with at least two 

individuals at ≥5 sites (n = 22/60 species for both analyses). However, there 

was no qualitative difference between these three analyses and so I only 

present results of the analysis using 42 (all sites) and 35 (fragments) species 

to maximise the sample size of species analysed (see Table A3.6 in 

Appendix 3). 

Sites that are closer together geographically tend to have more similar 

species assemblages than those that are further apart, as a result of 

environmental filtering and dispersal limitation (Ramage et al. 2013). 

Therefore, the impacts of area, forest quality, and isolation could be 

masked by spatial autocorrelation and similarities in species assemblages 

that were present prior to fragmentation. Partial Mantel tests were used to 

assess whether differences in species assemblages explained by area, forest 

quality, and isolation were present after accounting for geographic 

proximity of sites. Partial Mantel tests extract residuals of any correlation 

between geographic Euclidean distance and species abundance matrices 
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(including only those species with >2 individuals recorded at sites; n = 

35/60 species). The residuals were then used to test for any remaining 

correlation between species abundances and matrices of area, forest 

quality and isolation differences between sites. Significance values of 

correlations between the different matrices were calculated based on 1000 

permutation tests.  Pearson’s correlation coefficients were also calculated. 

The matrix of species assemblages was based on the Bray-Curtis 

dissimilarity index. Sensitivity analyses comparing this with Morisita Horn 

and Chao-Jaccard indices revealed qualitatively similar relationships (see 

Appendix 3, Table A3.6 for comparison). All of the above analyses on 

turnover in species assemblages were conducted in R using the package 

“vegan” (Oksanen et al. 2013). 

5.4 Results 

Across all 18 sites I collected a total of 6,706 individuals from 60 species in 

288 trap days. Across all sites, the mean capture rate per trap day was 23.4 

individuals (SD = 20.5), with small tunnellers making up 70% (n=48 species, 

mean length = 6.9 mm, SD = 2.6), small rollers 14% (n=4 species, mean 

length= 5.2 mm, SD= 1.06), large tunnellers 11% (n=5 species, mean length= 

20.3 mm, SD= 5.4), and large rollers 6% (n=3 species, mean length= 16.2 

mm, SD= 2.2) of all individuals. Dwellers made up <1% of all individuals 

collected and so were not considered in subsequent functional analyses 

(tables of raw data of species richness, abundance and biomass in Appendix 

3, Table A3.3 & A3.4). 

5.4.1 Differences in dung beetle diversity between twice-logged and 
pristine continuous forest (Hypothesis 1) 

There was little difference in dung beetle diversity between pristine and 

twice-logged continuous forest sites. T-tests revealed no significant 

differences in species richness, abundance, total biomass, small tunneller 

biomass or large tunneller biomass between pristine and twice-logged 

continuous forest (t-test, t < 1.31, df = 18, p > 0.26). Large and small roller 

biomass were slightly higher in twice-logged continuous forest than pristine 

continuous forest, and t-tests revealed this difference to be close to 
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significance (large rollers: t= 1.97, df = 18, p = 0.06, small rollers: t= 1.94, 

df = 18, p = 0.07). This similarity of pristine and twice-logged continuous 

forest sites is probably because the forest was of higher quality in the 

twice-logged continuous site than in the majority of fragments, despite two 

logging rotations (Figure 5.1). Overall, dung beetle diversity and species 

composition (Figure 5.8) were similar in pristine and twice-logged 

continuous forest, and so data from the two continuous forest sites were 

combined for subsequent analyses comparing continuous forest with forest 

fragments. 

5.4.2 Differences in dung beetle diversity between continuous forest 
and forest fragments (Hypothesis 2) 

Dung beetle species richness, abundance and biomass were significantly 

higher in continuous forest than in fragments (Table 5.2, Figure 5.3). Thus 

there were considerable impacts of fragmentation, and mean species 

richness, abundance and biomass was 250-500% higher in continuous forest 

than in fragments and over 30% higher than in the fragments with the 

highest biomass, abundance and species richness (Sites 13 and 11). Large 

roller and large tunneller biomass were also significantly higher in 

continuous forest than in fragments (700% and 300% higher respectively), 

although there was no significant difference in small roller and small 

tunneller biomass between continuous forest and fragments (Table 5.2, 

Figure 5.4).  
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Table 5.2. Table comparing means and 95% confidence intervals of species 

richness, abundance and biomass in continuous forest and fragments. Non-

overlapping confidence intervals indicate a significant difference between 

means, and are indicated by an asterisk (*). The means and confidence 

intervals presented are back-transformed to their original scales. 

Response variable 
               Mean (and 95% CIs) 

Continuous forest Fragments 

Species richness* 19.1 (13.1,27.9) 7.8 (6.7,9.0) 

Abundance* 119.1 (56.8,247.6) 28.8 (22.1,37.7) 

Biomass* 6.5 (2.1,20.4) 1.0 (0.7,1.5) 

Large roller biomass (g)* 0.8 (0.4,3.1) 0.1 (0.1,0.1) 

Small roller biomass (g) 0.02 (0.005,0.6) 0.004 (0.003,0.007) 

Large tunneller biomass (g)* 4.6 (1.3,16.4) 0.73 (0.4,1.2) 

Small tunneller biomass (g) 1.0 (0.7,1.6) 0.5 (0.4,0.7) 
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Figure 5.3. Mean species richness, abundance and biomass in continuous 

forest (n = 2 sites) and fragments (n =16 sites). To account for different 

numbers of stations sampled at each site, values plotted are mean values 

per site averaged across forest type with standard errors. Mean values for 

continuous forest were significantly higher for all variables according to 

GLMMs, as indicated by the asterisks (*). Cont = continuous forest and Frag 

= forest fragments. Error bars show standard error. 
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AICc values of GLMMs containing forest type were at least two points lower 

than models without forest type for all response variables analysed, except 

for small roller biomass (Appendix 3 table A3.1). Therefore, differences 

between continuous forest and fragment sites exceeded differences within 

sites for all variables, except for small roller biomass. For example, the 

mean within-site range in species richness was 6.4 species, versus the mean 

difference in species richness between continuous forest and fragments of 

11.3 species, whereas for small roller biomass the mean within site range 

was 0.076 g, compared to the mean difference of 0.072 g between 

continuous forest and fragments. Therefore, with the exception of small 

roller biomass, differences between continuous forest and fragments were 

more important determinants of dung beetle diversity than within site 

variation (e.g. in resource availability, microhabitat or habitat 

heterogeneity).   
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Figure 5.4. Comparisons of large (≥10 mm length) and small (<10 mm 

length), roller and tunneller biomass in continuous forest (n = 2 sites) and 

fragments (n =16 sites). To account for different numbers of stations 

sampled at each site, values plotted are mean values per site averaged 

across forest type, with standard errors. Mean values for continuous forest 

were significantly higher than those for forest fragments for large rollers 

and tunnellers, but not for small rollers and tunnellers according to 

GLMMs. Asterisks (*) indicate significant difference and “NS” no significant 

difference. Cont = continuous forest (green shading) and Frag = fragments 

(black shading). Note that y axes are scaled differently. The maximum 

number of species in each functional group was as follows: small rollers: 

n=4, small tunnellers: n=54, large rollers: n=3, large tunnellers: n=5. 

 

5.4.3 Effects of fragment area, forest quality, and isolation on dung 
beetle diversity (Hypotheses 3) 

Overall, the decline in dung beetle abundance and biomass following 

fragmentation far exceeded any subsequent effects of declining fragment 

area, forest quality or isolation among fragments. Dung beetle abundance 
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and biomass were about 70% lower in fragments (mean abundance per 

station = 33 individuals, mean biomass = 1.8 g) than in continuous forest 

(mean abundance per station = 119 individuals, mean biomass = 6.9 g), but 

there was no further decline as fragment size decreased (Figure 5.5). 

Species richness declined following fragmentation, but also decreased 

significantly with decreasing forest area (Figure 5.5; slope estimate= 0.31, 

95% CIs 0.12, 0.50). Species richness in the largest fragment was about 40% 

lower (11 species per station) than in continuous forest (mean = 19 species 

per station), and on average one species was lost for every 500 ha 

reduction in fragment area. Neither species richness, abundance nor 

biomass were significantly affected by changes in isolation of fragments, 

and only biomass was significantly related to forest quality, with a 

significant positive quadratic relationship (slope estimate= 2.40, 95% CIs 

0.24, 4.55). Plots revealed that dung beetle biomass was highest in 

fragments with the worst and best forest quality, but lower in fragments of 

intermediate forest quality. However, this relationship only became 

significant in models containing fragment area, where variation due to area 

was already accounted for (Figure 5.5). Total biomass varied little in 

response to changing fragment area, quality and isolation, but separate 

analyses of the biomass of the four functional groups revealed differing 

responses to fragment area. 
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Figure 5.5. Abundance, biomass and species richness in relation to 

fragment area. Area values are logged (log10). Line of best fit for species 

richness is taken from GLMM and is only plotted when the slope is 

significantly different from zero. Hollow symbols are individual station-

level values, whilst filled symbols are mean values for each site. Error bars 

for mean values show standard errors. Triangles and green fill represent 

undisturbed continuous forest sites/stations, triangles and yellow fill 

represent twice-logged continuous forest sites/stations, and circles and 

black fill fragment sites/stations. 
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Large and small roller biomass declined significantly with declining 

fragment area, with the decline being slightly steeper for large rollers than 

for small rollers (large rollers, slope estimate = 1.70, CIs 0.36, 3.04; small 

rollers, slope = 0.51, CIs 0.11, 0.92). Large rollers occurred in only one 

fragment smaller than 100 ha. By contrast, small rollers were present in 

the smallest fragments although their biomass was generally only about 10% 

of that in the largest fragments (Figure 5.6). Small roller biomass also 

showed a weak but significant positive linear relationship (slope estimate= 

0.18, CIs 0.09, 0.34) and negative curvilinear relationship (slope estimate= 

-3.37, CIs -6.65, -0.09) with isolation, suggesting that small roller biomass 

slightly increased initially with increasing fragment isolation, but then 

remained constant in more isolated sites. However, this relationship was 

only significant when the strong relationship with area was already 

accounted for. Neither large nor small roller biomass was significantly 

related to changes in forest quality. 
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Figure 5.6. Relationships between fragment size and biomass of roller and 

tunneller guilds. Both graphs show log10 biomass and are plotted on the 

same scale for ease of interpretation. Error bars show standard errors. 

Line of best fit for rollers is taken from a GLMM where the slope was 

significantly different from zero. This best fit line is based on a model 

excluding one outlying site (plotted as a large hollow circle above) and 

another outlying station. Triangles and green fill represent undisturbed 

continuous forest sites/stations, triangles and yellow fill represent twice-

logged continuous forest sites/stations, and circles and black fill fragment 

sites/stations. 
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By contrast with rollers, fragmentation had little effect on tunneller 

biomass. Small tunneller biomass was not significantly affected by 

fragment area, forest quality or isolation, and large tunneller biomass 

showed only weak curvilinear relationships with area (slope estimate = -

4.18, CIs -7.76, -0.61) and isolation (slope estimate = 4.73, CIs 1.03, 8.43). 

This suggests that in the smallest fragments large tunneller biomass 

initially increased with increasing area, but then did not show any further 

increase in larger fragments. Fragment area only had an effect on biomass 

when isolation was also included in the model, suggesting a relatively weak 

effect. Large tunneller biomass declined with increasing fragment 

isolation, but more steeply for less isolated sites and was significant even 

when it was the only explanatory variable, suggesting that large tunneller 

biomass was more strongly affected by changes in isolation than by 

fragment area. Analyses were also carried out on the abundance of the 

four functional groups but did not reveal any new findings and so for 

brevity are reported in Appendix 3 (Table 5, Figure A3.1). Overall, biomass 

of both large and small rollers decreased with decreasing fragment area, 

but biomass of tunnellers was generally not affected by fragmentation 

(Figure 5.6).  

A comparison of best models sets for all seven response variables revealed 

that fragment area was significantly related to 4/7 response variables and 

was in the best model sets (as a linear predictor or second-order 

polynomial) for all seven response variables (Figure 5.7,Table 5.3). By 

contrast, isolation and forest quality occurred in the best models for 6/7 

and 5/7 response variables respectively, but explained significant 

relationships for only 2/7 and 1/7 response variables. This indicates that 

fragment area was a more important predictor of changes in species 

richness, abundance and biomass (overall and by functional group), than 

either forest quality or isolation.  
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Figure 5.7. Plot of effect sizes (regression slope values) of explanatory 

variables (x axis) against all seven response variables (y axis). Effect sizes 

are plotted only for variables included in best models according to AICc 

model ranking and where confidence intervals do not overlap zero. For 

linear predictors, positive effect sizes indicate positive relationships 

between the predictor and response variables, negative effect sizes 

indicate negative relationships. For curvilinear predictors, a positive 

effect size indicates a convex relationship (i.e. multiplicatively increasing 

gradient), whilst a negative effect size indicates a concave relationship 

(i.e. multiplicatively decreasing gradient) between the response and 

predictor variable. Errors bars show 95% confidence intervals. Numbers in 



 

147 

brackets indicate the maximum number of species in the analysis. 

Abbreviations as follows: LR = large rollers, SR = small rollers, LT = large 

tunnellers, ST = small tunnellers. 
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Table 5.3. Table of best models (Δi < 2) for all response variables. K= the number of parameter estimates in the model, AICc= model 

fit measure corrected for sample size, Δi= the difference between that model’s AICc value and that of the best model, ωi= the Akaike 

weight, giving the model’s relative strength compared to other best models,  LL= Log-likelihood, the overall model fit with no 

adjustment for the number of parameters, and R2 (M; C)= Marginal (M) and conditional (C) R2-values. *Abundance data were fitted 

using a negative-binomial distribution, for which there is currently no way of calculating R2 values, so R2 values are not shown. 

Biom= biomass, LR= large roller, SR= small roller, LT= large tunneller and ST= small tunneller. 

Response variable  Model K AICc Δi ωi LL R2 (M; C) 

Species richness      
 Area 3 113.55 0 0.21 -53.7 0.18; 0.40  

 Area+Iso 4 114.93 1.37 0.1 -53.3 0.20; 0.40 

 Area+Veg 4 115.13 1.57 0.09 -53.4 0.19; 0.41 

 Area2 4 115.37 1.82 0.08 -53.5 0.18; 0.40 

Abundance       

 Area 4 1023.8 0 0.12 -507.7 NA* 

 Area2 5 1023.9 0.15 0.11 -506.7 NA* 

 1  3 1024 0.24 0.1 -508.9 NA*  

 Area2+Veg2 7 1024.5 0.72 0.08 -504.8 NA* 

 Area2+Iso 6 1024.6 0.77 0.08 -505.9 NA* 

 Area2+Veg2 + Iso 8 1024.8 1.03 0.07 -503.8 NA* 

 Area2+Veg 6 1025.1 1.34 0.06 -506.2 NA*  

 Area+Veg 5 1025.5 1.67 0.05 -507.5 NA* 

       

Biomass       
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 Area2+Iso2 7 112.13 0 0.58 -48.6 0.21; 0.62 

 Area2+Veg2 7 112.76 0.63 0.42 -48.9 0.16; 0.61 

LR biom            

 Area 3 21.21 0 0.29 -7.5 0.31; 0.31 

 Area2 4 23.08 1.87 0.12 -7.4 0.50; 0.50 

SR biom        

 Area+Iso2 5 83.07 0 0.13 -36.3 0.12; 0.12 

 Area+Veg + Iso2 6 83.21 0.14 0.12 -35.2 0.13; 0.13 

 Area2+Iso2 6 83.55 0.48 0.1 -35.4 0.14; 0.14 

 Area2+Veg+Iso2 7 84.15 1.08 0.07 -34.6 0.14; 0.14 

 Area+Iso 4 84.35 1.28 0.07 -38 0.08; 0.08 

 Area+Veg2+Iso 6 84.47 1.41 0.06 -35.9 0.12; 0.12 

 Area+Veg2+Iso2 7 84.83 1.76 0.05 -34.9 0.13; 0.13 

LT biom        

 Area2+Iso2 6 145.2 0 0.28 -66.3 0.35; 0.48 

 Iso2 4 147.1 1.94 0.11 -69.4 0.22; 0.47 

ST biom        

 1 2 31.95 0 0.17 -13.9 0; 0 

 Veg 3 32.3 0.35 0.14 -13.1 0.03; 0.03 

 Veg+Iso 4 33.54 1.59 0.08 -12.6 0.04; 0.04 

 Veg2 4 33.7 1.75 0.07 -12.7 0.03; 0.03 

 Area 3 33.73 1.78 0.07 -13.8 0.00; 0.00 

  Iso 3 33.88 1.93 0.07 -13.8 0.00; 0.00 
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5.4.4 Turnover of dung beetle species assemblages among sites 
(Hypothesis 4) 

Analyses including all forest sites revealed highly significant turnover in 

species assemblages in relation to forest quality (R2 = 0.65, p < 0.001), thus 

sites with more similar forest quality supported more similar species 

assemblages. Vector fitting showed a marginally non-significant difference 

in species assemblages between fragments and continuous forest sites (R2 = 

0.16, p = 0.063). This was because species assemblages in some of the 

larger, higher quality fragments were similar to those in continuous forest 

sites, although the majority of forest fragments supported distinct 

assemblages of dung beetles compared with those of continuous forest sites 

(Figure 5.8). These patterns may be linked to the similarity of forest quality 

in some of the larger, better-quality fragments to that in continuous forest 

sites (Figure 5.1). This similarity of species assemblages in large, high 

quality fragments to those in continuous forest contrasts contrasted with 

the analyses of total species richness, abundance and biomass, where even 

the ‘best’ fragments showed at least 30% reductions in total species 

richness, abundance and biomass compared to continuous forest sites 

(Figure 5.8). Inspection of species associations revealed that all of the large 

roller species were associated with large, high quality sites (species names 

in pink, Figure 5.8). However, for large tunnellers, one of the five species 

appeared strongly associated with poor quality, small sites (species name in 

green, Figure 5.8). These observations support the previous findings that 

rollers are more vulnerable to extinction following fragmentation than are 

tunnellers. 
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Figure 5.8. NMDS plot (Bray-Curtis method) comparing dung beetle species 

assemblages in forest fragments and continuous forest. Each data point 

represents a site and points that are closer together support more similar 

species assemblages. NMDS ordination was fitted for all species recorded 

at least twice at a site (n = 2 individuals) and at ≥2 sites, and based on 

Wisconsin double standardised abundance values (where species are 

standardised by their maximum value, then by sites and by site totals). 

Environmental vector correlations are plotted as blue arrows and are only 

plotted for significant variables (p < 0.05 based on Monte Carlo 

permutations). The longer the arrow, the stronger the correlation, but 

arrow length is scaled to fit the plot window meaning that arrow length 

cannot be compared across plots. To aid interpretation, sites larger than 

the mean log10 fragment size (1.95 on log10 scale) are plotted as large 

circles and those smaller than the mean as small circles, and sites with 

forest quality higher than the mean quality score are plotted as solid 

circles and those with forest quality lower than the mean as hollow 

circles. The two continuous forest sites are plotted as triangles, with 
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green the unlogged and yellow the twice-logged site. The scores of key 

functional species have been plotted, with large tunnellers in green font 

and large rollers in pink font.  In this analysis, the stress value for the 

NMDS ordination was 0.067, indicating a very reliable configuration of sites 

(Zuur et al. 2007).  

In the analysis of forest fragments, there was marked turnover in species 

assemblages among sites (Figure 5.9). Vector fitting revealed that changes 

in forest quality (R2 = 0.79, p < 0.001), and to a lesser degree area (R2 = 

0.43, p < 0.05), but not isolation (R2 = 0.23, p = 0.18) were correlated with 

turnover in species assemblages. The importance of forest quality, in 

particular, for explaining turnover in species assemblages contrasts with 

analyses of dung beetle species richness, abundance and biomass where 

fragment area was the most important variable, suggesting that effects of 

forest quality and area may affect different aspects of diversity. 

Nonetheless, the turnover of tunneller and roller species among fragments 

was consistent with preceding analyses (Figure 5.6), with larger rollers 

strongly associated with larger, better quality fragments, and large 

tunnellers more widely distributed across sites regardless of fragment area 

or forest quality (Figure 5.9).  

Mantel tests revealed that similarity in species assemblages was 

significantly correlated with the geographic proximity of sites (Mantel r = 

0.44, p < 0.001), showing that sites that were closer together tended to 

support more similar species assemblages. Partial Mantel tests showed that 

after accounting for spatial autocorrelation, species composition was 

significantly correlated with forest quality (Mantel r = 0.24, p < 0.05) and 

isolation (Mantel r = 0.27, p < 0.05) but not area (Mantel r = 0.05, p = 

0.34).These Mantel test results support the NMDS analyses, showing that 

forest quality explained the most variation in turnover of species 

assemblages among sites. However, the significant effect of area on 

turnover from the NMDS analyses was not apparent in the partial Mantel 

test, and the non-significant relationship of isolation from the NMDS 

analyses was significant in the partial Mantel test. The relationship with 

isolation was probably masked in the NMDS analyses by spatial 
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autocorrelation, given that sites that are close together spatially will also 

be similar distances from continuous forest (Mantel test of geographic 

distance versus fragment isolation matrices; Mantel r = 0.44, p < 0.001). 

However, the loss of the significant relationship between fragment area 

and species turnover in the partial Mantel tests is unlikely to be the result 

of fragment area being confounded by spatial autocorrelation (Mantel test 

of fragment area versus geographic distance; Mantel r = 0.07, p = 0.31). 

Instead this may be the result of species abundances being non-normally 

distributed, something that NMDS is able to cope with but for which the 

effectiveness of Mantel tests has yet to be tested (Borcard & Legendre 

2012). Overall, forest quality was more important in explaining turnover in 

species composition among sites than was fragment area or isolation. 
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Figure 5.9. NMDS plot (Bray-Curtis method) comparing dung beetle species 

assemblages in forest fragments (excluding continuous forest sites). Each 

data point represents a site and points that are closer together support 

more similar species assemblages. NMDS ordination was fitted for all 

species recorded at least twice at a site (n = 2 individuals) and at ≥2 sites, 

and based on Wisconsin double standardised abundance values (where 

species are standardised by their maximum value, then by sites and by site 

totals). Environmental vector correlations are plotted as blue arrows and 

are only plotted for significant variables (p < 0.05 based on Monte Carlo 

permutations). The longer the arrow, the stronger the correlation, but 

arrow length is scaled to fit the plot window meaning that arrow length 

cannot be compared across plots. To aid interpretation, sites larger than 

the mean log10 fragment size (1.95 on log10 scale) are plotted as large 

circles and those smaller than the mean as small circles, and sites with 

forest quality higher than the mean quality score are plotted as solid 

circles and those with forest quality lower than the mean as hollow 

circles. The scores of key functional species have been plotted, with large 
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tunnellers in green font and large rollers in pink. The stress value for this 

NMDS ordination was 0.061, indicating a very robust site configuration 

(Zuur et al. 2007). 
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5.5 Discussion 

5.5.1 Differences in dung beetle assemblages between continuous 
forest and fragments 

There was little difference in dung beetle species richness, abundance or 

biomass between undisturbed primary forest and twice-logged forest. 

Despite sampling only one pristine and one twice-logged continuous forest 

site, the relatively small differences between these sites reported here 

concurs with previous work (Edwards et al. 2011b; Slade et al. 2011). These 

small differences are probably because twice-logged continuous forest in 

Sabah still supports the majority of large mammal species found in pristine 

forest (Ancrenaz et al. 2010; Clements et al. 2010), and because forest 

quality in the twice-logged site still exceeded that in the majority of 

fragments (Figure 5.1). Thus, it seems that fragmentation had a much 

larger effect than commercial selective logging on dung beetle 

assemblages. A substantial reduction in dung beetle species richness, 

abundance and biomass occurred following fragmentation, with pristine 

and twice-logged continuous forest sites both having over twice the number 

of species as forest fragments, and over three times the abundance and 

biomass of all species, rollers and tunnellers. There was an especially large 

difference in large roller biomass, which was eight times higher in 

continuous forest sites than in fragments.  

Previous studies comparing dung beetle assemblages in continuous forest 

and fragments show little consistency in reported findings. For example, 

the reduction in species richness in fragments compared to continuous 

forest in previous studies varies from 0-60% and the decline in abundance 

from 40-70% (Klein 1989; Estrada & Coates-Estrada 2002; Feer & Hingrat 

2005). This suggests that the 60% decline in species richness and 70% 

decline in abundance recorded in this study are comparatively large, 

especially as the previous studies compared continuous forest to fragments 

smaller than 80 ha, as opposed to 5-3,500 ha in this study. One explanation 

for these differences is the greater length of time since fragmentation in 

this study, resulting in more time for species to go extinct and reduced 

extinction ‘debt’ (Tilman et al. 1994; Gibson et al. 2013). In this study, 
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fragmentation occurred at least 15 years before sampling, and probably 

longer, whereas fragments sampled by Klein (1989) and Feer & Hingrat 

(2005) were formed only 2-6 years prior to sampling. Given that it can take 

15 years for fragments smaller than 100 ha to lose half of all species 

(Gibson et al. 2013), it highly unlikely that the full relaxation period had 

elapsed in the previous studies. Whilst there may still be a residual 

extinction debt in the fragments in this study, the greater time since 

fragmentation means that the assemblages sampled are likely to be closer 

to community relaxation than in other studies. Conversely, Estrada & 

Coates-Estrada  (2002) conducted their study in sites fragmented over 25 

years ago and so differences to this study may more likely be linked to 

ecological differences between the two study localities. 

A major ecological difference between Southeast Asia and the Neotropics is 

in the large mammal faunas. The continuous forest sampled in this study 

supports large herds of Asian elephants (Elephas maximus borneensis), and 

other large herbivores such as Banteng (Bos javanicus lowi), that are 

subject to very low hunting pressure (Ancrenaz et al. 2005), leading to 

abundant dung resources in these sites. By contrast, there are fewer large 

mammalian herbivores in Neotropical rain forests (Cristoffer & Peres 2003), 

and there is also greater hunting pressure (Nichols et al. 2009). Elephants 

and Banteng are absent from the forest fragments sampled in this study 

(Timmins et al. 2008; Alfred et al. 2010), suggesting a greater decline in 

dung resource availability following fragmentation in this study than would 

be expected in the Neotropics, which may in turn explain the much greater 

decline in dung beetle diversity and abundance reported here. 

In contrast to the large declines in species richness and biomass, turnover 

in species assemblages between continuous forest and fragments was more 

variable. Larger, higher quality fragments supported similar assemblages to 

continuous forest sites, but smaller, lower quality sites supported distinct 

species assemblages. Therefore, the larger, higher quality fragments 

supported some species characteristic of continuous forest sites, albeit at 

much lower abundances. Forest quality was the best predictor of turnover 

in species assemblages and so the similarity of species assemblages in 
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better quality fragments and continuous forest sites probably results from 

environmental filters, such as soil and vegetation type, that are known to 

influence dung beetle distributions (Doube 1983; Davis et al. 2001). These 

filters can also explain turnover in species assemblages among forest 

fragments, which are discussed below. 

5.5.2 Differences in dung beetle assemblages among forest fragments 

Differences in dung beetle assemblages among fragments were less marked 

than those between continuous forest and fragments. Nonetheless, 

decreasing fragment area resulted in further declines in dung beetle 

species richness, although abundance and biomass were not related to 

fragment area. The decrease in dung beetle species richness with fragment 

area is widely supported by studies on a large range of taxa in oil palm 

landscapes (Eltz et al. 2003; Benedick et al. 2006; Struebig et al. 2008; 

Edwards et al. 2010; Hill et al. 2011), and other systems (e.g. Laurance et 

al. 2002; Nichols et al. 2007). Indeed, the slope coefficients of log10 species 

richness against log10 area from this study, as well as the R2 value 

(coefficient = 0.30; R2: Marginal = 0.18, Conditional = 0.40) were within the 

range of values reported in other studies (e.g. coefficient = 0.048-0.81 (Hill 

et al. 2011), R2 = 0.30 (Nichols et al. 2007)). The theory of island 

biogeography and metapopulation dynamics explain the decline in species 

richness with fragment area, although isolation distance was less important 

in this study (MacArthur & Wilson 1967; Hanski & Ovaskainen 2000). This 

greater impact of fragment area than isolation on species richness fits with 

previous dung beetle studies (Nichols et al. 2007), suggesting that selective 

extinction is more important than selective colonisation in determining 

dung beetle species richness (Hill et al. 2011). This extinction is often 

considered to be stochastic if accompanied by declines in abundance (Klein 

1989; Struebig et al. 2008), but abundance and biomass did not decline 

with decreasing fragment area in this study suggesting that extinctions may 

have been deterministic. Commonly proposed deterministic drivers of 

selective dung beetle extinctions include their patchy occurrence in space 

and time, their often restricted habitat preferences, and their dependence 

on mammal species and dung resources that are susceptible to 
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fragmentation (Davis et al. 2001; Feer & Hingrat 2005). It is possible that 

these factors disproportionately affected the larger number of forest-

specialist dung beetle species, but not the few generalist, disturbance-

tolerant species in the community. This hypothesis could also explain the 

turnover in species assemblages reported in this study. 

Turnover in species assemblages among fragments was better explained by 

forest quality than either area or isolation. Sites of better forest quality 

supported species assemblages more similar to those found in continuous 

forest sites (Figure 5.8). This turnover may be the result of forest-

dependent species becoming extinct in sites of lower forest quality (and 

smaller size), and being replaced by more disturbance-tolerant and 

generalist species. This explanation is supported by the similarity of species 

assemblages in the smallest, lowest quality sites to the assemblage of a 

sample collected in an oil palm plantation (Appendix 3 figure A3.2). Oil 

palm and Eucalyptus plantations tend to be dominated by populations of 

widespread, disturbance-tolerant species (Gardner et al. 2007; Chapter 

3/Senior et al. 2012; Edwards et al. 2013), that are often strong dispersers 

capable of increasing in abundance in fragments following the decline of 

more specialised competitors (Larsen et al. 2008). This effect of forest 

quality was not observed in continuous forest sites, suggesting that 

fragmentation effects, such as human encroachment and edge effects 

(Tabarelli et al. 2004), further reduced forest quality in fragments beyond 

the impacts of two selective logging rotations. Forested areas allocated for 

conversion to oil palm are typically logged prior to conversion (Swarna 

Nantha & Tisdell 2008), and so the timing of fragmentation just after 

logging is likely to have exacerbated declines in forest quality by combining 

the adverse impacts of logging and edge effects. Partial Mantel tests 

showed that forest quality remained an important predictor of species 

turnover after accounting for spatial autocorrelation of study sites and 

differences present prior to fragmentation. Thus, despite rarely being 

considered in studies of fragmentation, forest quality may be a significant 

driver of species compositional changes following fragmentation. 
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In contrast to turnover and species richness results, abundance and biomass 

of dung beetles were not affected by changes in area, quality or isolation. 

This resilience may be linked to the hyper-abundance of some mammal 

species, such as Bearded pigs (Sus barbatus) and Sambar deer (Rusa 

unicolor), in even very small forest fragments. These species are thought to 

persist in fragments by supplementing their diets with oil palm fruit from 

neighbouring plantations (Ickes 2001; Danielsen et al. 2009) and may be 

contributing to high dung availability in small fragments. However, large 

reductions in dung beetle abundance, biomass and species richness 

following fragmentation suggests that the occurrence of some mammal 

species within fragments does not compensate for the loss of large 

herbivores and other mammal species dependent on continuous forest (e.g. 

Damuth 1981). 

Overall, fragment area was more important than forest quality or isolation 

for explaining changes in species richness among fragments. This finding is 

unlikely to be the result of fragment area showing greater variation and 

having more explanatory power in analyses than either forest quality or 

isolation, because variation in these variables was of a similar magnitude 

(see section 5.3.1). Furthermore, this study shows that isolation and forest 

quality still explained key changes in species turnover and large tunneller 

biomass respectively, suggesting that conservation efforts addressing 

fragment area, isolation and quality could yield different conservation 

benefits.  

5.5.3 Conservation management implications 

Compared to continuous forest, fragments supported significantly fewer 

species and individuals of dung beetle species, including fewer functionally 

important rollers and tunnellers. Consequently for dung beetle diversity 

and functioning, protecting forest fragments is no substitute for protecting 

continuous forest, even when continuous forest has been twice-logged. This 

implies that conservation efforts should be directed towards the protection 

of continuous forest sites, supporting suggestions that land sparing is better 

than land sharing for biodiversity conservation in oil palm landscapes 
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(Edwards et al. 2010; Phalan et al. 2011). Oil palm concessions often 

replace continuous, albeit highly degraded, forest, which means that HCV 

assessments for new oil palm plantings have to identify areas of HCV in 

continuous forest, that subsequently tend to be protected as isolated HCV 

areas within the concession area. Best practice encourages the use of 

buffer areas around HCV areas to maximise their protection, but this 

chapter shows that even very large fragments are unable to support the 

same species richness and abundance as continuous forest. Therefore, 

isolated HCV areas may be highly unlikely to maintain HCVs over time, and 

the effectiveness of connecting forest fragments to areas of continuous 

forest, for example by using corridors or riparian buffers (Beier & Noss 

2008), should be examined. Designing landscapes in this way will require 

coordination among companies to link up conservation areas across 

concessions (Edwards & Laurance 2012).  

Connecting HCV fragments to continuous forest may not be possible in all 

contexts because oil palm managers often have limited land and resources 

available for conservation (Meijaard & Sheil 2012). Therefore, advice is also 

needed on how to maximise the conservation benefit from HCV fragments 

in existing plantations and in new concessions. Among fragments, area was 

more important than either forest quality or isolation for maintaining 

species richness, evenness, and roller biomass. However, sites of higher 

forest quality supported species assemblages similar to those found in 

continuous forest. Therefore, for existing HCV areas, if it is not possible to 

connect areas to continuous forest, the best strategy for biodiversity 

conservation may be to improve forest quality in existing HCVs. Such 

management actions might increase the similarity of species assemblages in 

these sites to those in continuous forest, helping to protect forest-

dependent species threatened by habitat loss and fragmentation. This 

assumes that these forest-dependent species still persist in or are able to 

recolonize these improved HCV areas.  

Findings from this study suggest that the best strategy for promoting the 

effectiveness of HCV areas in new concessions is to maximise their size and 

maintain or enhance their forest quality. This study suggests that fragments 
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larger than 100 ha can still support functionally important rollers (and 

tunnellers), as well as up to 50% of the species richness of continuous forest 

sites. Oil palm managers are often unwilling to give up extra land for 

conservation because of the loss of crop yield, but the protection of HCV 

areas of 100-500 ha should be a realistic target in large concessions 

(>15,000 hectares, Ruysschaert et al. 2011). Furthermore, the smallest 5-10 

ha fragments sampled in this study supported just 20% of the species found 

in continuous forest, no large rollers, and species assemblages more similar 

to oil palm plantations than continuous forest (Figure 5.9). This suggests 

that protecting fewer, large fragments is likely to protect more forest-

dependent and functionally important species than protecting more small 

fragments of equivalent total area. 

5.5.4 Possible impacts on ecosystem functioning 

Compared with continuous forest, forest fragments supported a greatly 

reduced biomass and abundance of tunnellers and rollers, particularly 

larger-bodied species. However, following fragmentation rollers and 

tunnellers responded differently to further declines in fragment area. 

Rollers showed large abundance and biomass declines in relation to 

fragment area, but large roller species did not markedly differ from small 

roller species in their responses. By contrast, tunneller abundance and 

biomass were not sensitive to decreasing fragment area, but did decline 

with increasing isolation distance. Thus, rollers were more adversely 

affected by decreasing fragment size and were almost entirely absent in 

fragments smaller than 40 ha, whereas tunnellers persisted in even the 

smallest fragments, although less well in more isolated fragments.  

The sensitivity of rollers, and especially large species, to fragmentation 

corresponds with other findings showing that rollers are also absent in oil 

palm plantations (Edwards et al. 2013). Their decline in small fragments 

may be linked to altered microclimate and soil structure in smaller 

fragments, with increased soil surface temperatures and soil compaction 

potentially reducing both the ability of rollers to bury brood balls and also 

the survival of larvae in the soil (Edwards et al. 2013). These changes may 
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not affect tunnellers to the same extent because they are stronger 

burrowers than rollers and their larvae develop deeper in the soil (Hanski & 

Cambefort 1991; Edwards et al. 2013). Instead, large tunneller populations 

are probably maintained in small fragments by the high availability of 

Bearded pig (Sus barbatus) and Sambar deer (Rusa unicolor) dung in these 

sites. 

Large tunnellers are disproportionately important for dung removal and 

hence decomposition (Larsen et al. 2005b; Slade et al. 2007b), whereas 

rollers are less important for dung burial (Slade et al. 2007b), but are 

important for secondary seed dispersal (Andresen & Feer 2005). 

Consequently, the different responses of these two functional groups to 

fragmentation could have implications for dung removal and secondary 

seed dispersal following fragmentation. The findings from this study suggest 

that both dung burial and seed dispersal will be significantly reduced in 

fragments compared to continuous forest, but among fragments dung burial 

is predicted to remain constant in different sized fragments whereas 

secondary seed dispersal by rollers is likely to decrease with fragment size. 

Furthermore, there may be no secondary seed dispersal in the smallest 

fragments. This could have consequences for seedling recruitment in these 

fragments (Shepherd & Chapman 1998; Andresen 2002). 

5.5.5 Conclusion 

This chapter showed that forest fragmentation resulted in large declines in 

dung beetle species richness, abundance and biomass, and that declining 

fragment area caused further declines in species richness and roller 

biomass. Fragment forest quality and isolation had less impact, but 

differences in forest quality were strongly correlated with turnover in 

species assemblages among sites. The effects of fragmentation on dung 

beetle communities are likely to be linked to availability of dung resources, 

and the extinction of key mammal species following fragmentation. 

Maximising the size and quality of HCV areas within plantations may help to 

conserve dung beetle assemblages that are most similar to continuous 

forest and which support functionally important species of large rollers and 
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tunnellers. These results imply that dung beetle ecosystem functions may 

respond idiosyncratically to fragmentation, with dung burial being 

maintained in small fragments, but secondary seed dispersal decreasing 

with decreasing fragment area. Experiments that directly measure dung 

burial and secondary seed dispersal are needed to test these predictions, 

and are considered in the next Chapter.
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Chapter 6 - Ecosystem functioning in fragmented 

rainforest 

6.1 Abstract 

Oil palm companies certified by the Roundtable on Sustainable Palm Oil 

aim to reduce biodiversity losses by protecting High Conservation Value 

(HCV) forest, but it is not known whether these forest fragments can 

maintain ecosystem functions. I studied 18 forest sites (16 fragments, range 

5-3,529 ha, and 2 continuous forest sites) in Sabah, Malaysia and assessed 

the impacts of fragmentation on ecosystem functions performed by dung 

beetles: dung removal, seed burial (by tunnellers), and seed dispersal (by 

rollers). There were only minor differences in dung removal, seed burial 

and seed dispersal between undisturbed and twice-logged continuous forest 

sites, but these ecosystem functions were at least 50% lower in forest 

fragments. This decline was largest for secondary seed dispersal with only 

4/16 forest fragments having any seeds rolled at all, whereas 13/16 

fragments had some dung removed or seeds buried. Among fragments, 

functions varied little in response to changing fragment area, forest quality 

or isolation, although dung removal, seed burial and secondary seed 

dispersal were highest in larger fragments. These ecosystem functions are 

likely to have key roles in maintaining the viability of plant species 

populations and so should be considered in HCV management plans. 

Continuous forest sites maintained far higher rates of these ecosystem 

functions than did fragments, even when heavily degraded (twice-logged), 

and degraded continuous forest should be a high priority for conservation. 

However, if only fragments can be maintained, then they need to be at 

least 100 ha in size to support key dung beetle functions. 
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6.2 Introduction 

The detrimental impacts of deforestation and forest fragmentation on 

species richness and abundance are now well documented (Nichols et al. 

2007; Gibson et al. 2011; Bregman et al. 2014). However, ecosystems 

consist of more than just static collections of species and individuals. They 

are dynamic systems reliant on interactions between species and the 

transfer of resources and energy (Morris 2010). For example, processes such 

as seed dispersal and decomposition result from individual species 

consuming resources, growing, reproducing and transferring energy (Reiss 

et al. 2009). These ecosystem processes are vital for the maintenance of 

the abiotic and biotic conditions essential for longer term species 

persistence (Millennium Ecosystem Assessment 2005; Hooper et al. 2012), 

but species extinctions can lead to declines in key ecosystem processes 

(Hooper et al. 2012). Therefore, it is vital to understand how deforestation 

and forest fragmentation influence ecosystem functioning. 

Sustainability initiatives such as the Roundtable on Sustainable Palm Oil 

(RSPO) aim to mitigate the negative environmental impacts of 

deforestation and forest fragmentation by protecting HCV areas within 

plantations. However, methods for conserving forest areas with High 

Conservation Values (HCVs) do not explicitly consider ecosystem 

functioning, except in cases where it provides crucial ecosystem services in 

critical situations, such as flood and erosion prevention (HCV 4, Brown et 

al. 2013a). This subset of ecosystem services overlooks the important 

supporting and regulating services/processes that maintain abiotic and 

biotic conditions essential for species persistence, which could influence 

the maintenance of HCVs over time (Millennium Ecosystem Assessment 

2005; Hooper et al. 2012). HCV assessors cannot be expected to 

comprehensively measure ecosystem functions during brief HCV 

assessments (Meijaard & Sheil 2012, Chapter 2), and so research is needed 

to quantify how the size and quality of HCV areas affects the maintenance 

of ecosystem functions. This research can be used by HCV assessors to 

inform management recommendations that ensure HCVs are maintained 

over time. 
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HCV areas tend to be isolated forest fragments within oil palm plantations 

(Edwards et al. 2010, Chapter 4). Differences in forest fragment area, 

forest quality and isolation can alter ecosystem functions either through 

impacts on species that mediate the functions (Larsen et al. 2005a), or 

through changes in abiotic conditions that directly affect functions. Whilst 

changes in abiotic conditions could directly impact ecosystem functions 

such as leaf litter decomposition, reliant on chemical decomposition 

(Meentemeyer 1978), previous studies have shown little change in leaf 

litter decomposition rates following selective logging or habitat 

fragmentation (Vasconcelos & Laurance 2005; Barlow et al. 2007). 

However, abiotic changes can have strong indirect effects on ecosystem 

functions by altering the abundance and behaviour of functionally 

important species (e.g. Doube 1990). For example, disturbed riverine and 

logged forest habitats show increased canopy openness and reduced 

heterogeneity of canopy habitats that support different assemblages of 

ants and dung beetles that are better able to tolerate these more exposed 

microhabitats (Davis et al. 1998; Klimes et al. 2012). Vegetation structure 

and abiotic conditions can be highly altered in forest fragments in response 

to edge effects (Laurance et al. 2002; Ewers & Didham 2007; Ewers et al. 

2007) and human disturbances, such as logging, that increase canopy 

openness and so increase temperature and decrease humidity below the 

canopy (Hamer et al. 2003; Laurance et al. 2011; O’Brien et al. 2013). 

Therefore, these abiotic changes in response to fragmentation and logging 

could alter provision of ecosystem functions. 

In addition to impacts on microclimate and vegetation structure, 

fragmentation affects species richness and abundance by reducing habitat 

availability and changing the structure of remaining habitat patches (i.e. 

number/shape of patches, distance between patches) (Fahrig 2003; Ewers 

& Didham 2006; Hanski et al. 2013). Habitat loss leads to local species 

extinctions in line with Species-Area Relationships (MacArthur & Wilson 

1967), and altered patch network structure can change extinction and 

colonisation dynamics and reduce the viability of species’ populations 

(Hanski et al. 2013). How these changes in biodiversity affect ecosystem 

functions will depend on the response of functionally important taxa to 
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changes in fragment area, forest quality and isolation. Studies of 

functionally important dung beetles, birds, bees, ants and termites have 

reported decreasing species richness and abundance with declining 

fragment area (Chapter 5, Klein 1989; Laurance et al. 2002; de Souza & 

Brown 2009; Hill et al. 2011; Bregman et al. 2014). However, effects of 

these species declines on ecosystem functions such as pollination, dung and 

litter decomposition can only be inferred in the absence of direct 

measurements of the functions (Reiss et al. 2009). Slade et al (2011) 

reported reduced dung and seed removal following high-intensity 

commercial selective logging, but measurements of the response of 

multiple ecosystem functions to disturbance and fragmentation gradients 

are lacking (Loreau et al. 2001; Peh & Lewis 2012). 

Dung beetles have critical roles in nutrient cycling and secondary seed 

dispersal, suppression of mammalian parasites and bioturbation (the mixing 

of soil and dung particles) (Nichols et al. 2008), making them an excellent 

taxon for measuring multiple ecosystem functions. Nutrient cycling and 

secondary seed dispersal influence soil fertility, plant productivity, seedling 

survival and plant composition and so are likely to be particularly important 

for overall ecosystem functioning (Nichols et al. 2008). Dung beetles 

separate into different functional groups in relation to their nesting 

behaviour, with tunnellers burying dung directly under the dung pile, 

rollers moving dung horizontally away from the dung pile and dwellers 

using dung in situ in the dung pile (Hanski & Cambefort 1991). These 

functional groups contribute to different ecosystem functions, with 

tunnellers being important for dung burial (nutrient cycling) and rollers for 

secondary seed dispersal (Estrada & Coates-Estrada 1991; Andresen & Feer 

2005; Larsen et al. 2005a; Slade et al. 2007b). Dwellers contribute little to 

dung or seed removal (Slade et al. 2007b). In roller and tunneller groups 

larger species are especially important for these functions (Slade et al. 

2007b; Dangles et al. 2012). Tunnellers’ importance for dung burial is likely 

to be because they are the most speciose and abundant functional group 

(~85% of total dung beetle biomass and species richness in continuous 

forest), and because the group contains some disproportionately efficient 

larger species (e.g. Catharsius sp., Andresen & Feer 2005; Slade et al. 
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2007). Rollers remove fewer seeds in total than tunnellers, but by moving 

seeds horizontally away from the dung pile where seed density is high, 

rollers may reduce density-dependent seedling mortality and, by burying 

seeds at shallow depths, rollers may promote seedling germination 

(Andresen & Feer 2005; Nichols et al. 2008). Reducing density-dependent 

seed and seedling mortality is crucial for seedling recruitment and the 

maintenance of seedling diversity (Bagchi et al. 2014). However, secondary 

seed dispersal by rollers has been largely overlooked in previous studies 

recording just the proportion of seeds removed from a site without 

separating those moved by rollers and tunnellers (Andresen & Feer 2005; 

Slade et al. 2007b, 2011). These separate measurements can also improve 

understanding of how different species’ responses to fragmentation can 

impact different ecosystem functions, given that rollers decline more in 

abundance that tunnellers following fragmentation (Chapter 5). To address 

this knowledge gap, seed burial (by tunnellers) and secondary seed 

dispersal (by rollers) are measured separately in this chapter. 

In Chapter 5, I showed there was little difference in large tunneller and 

roller biomass between twice-logged and pristine forest, but that biomass 

of both groups was significantly lower in forest fragments. These results 

suggest that there will be little difference in dung removal, seed burial or 

secondary seed dispersal between undisturbed and twice-logged continuous 

forest but that these ecosystems functions may be reduced in forest 

fragments compared to continuous forest sites. Results from Chapter 5 

showed that among forest fragments, tunneller biomass showed little 

further decline with decreasing area, implying that dung removal and seed 

burial may still be maintained in even the smallest fragments. By contrast, 

roller biomass declined with decreasing fragment area suggesting that 

horizontal seed dispersal is likely to decline with decreasing fragment size. 

Previous studies have reported declines in seed dispersal and dung removal 

following forest fragmentation, but most research has been focussed in the 

Afro- and Neo-tropics in the context of small-scale, low-intensity 

agriculture or cattle pasture (Andresen 2003; Chapman et al. 2003). Oil 

palm agriculture is one of the most dominant crops in tropical landscapes, 

especially in Southeast Asia (Wilcove & Koh 2010), and so research is 
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needed to assess how ecosystem functions are affected in oil palm 

dominated landscapes. This research can inform the management of HCV 

areas in oil palm plantations, and more widely help to evaluate whether 

forest fragments in intensive agricultural landscapes can maintain key 

ecosystem functions. 

I measured rates of dung removal, seed burial and horizontal seed dispersal 

in 16 forest fragments, one heavily disturbed (twice-logged) continuous 

forest site and one unlogged continuous forest site in Sabah, Malaysia. This 

allowed me to assess differences in dung removal, seed burial and 

horizontal seed dispersal between unlogged and twice-logged continuous 

forest sites (Hypothesis 1), between continuous forest sites and forest 

fragments (Hypothesis 2), and among forest fragments in relation to 

fragment area, forest quality and isolation (Hypothesis 3). These 

hypotheses were as follows: 

Hypothesis 1. There is no difference in dung removal, seed burial or 

secondary seed dispersal between twice-logged and unlogged 

continuous forest sites. 

Hypothesis 2. Ecosystem functions (dung removed, seed burial and 

secondary seed dispersal) are lower in forest fragments than 

in continuous forest sites. 

Hypothesis 3. Among forest fragments, dung removal and seed burial does 

not change in relation to fragment area, forest quality and 

isolation. Secondary seed dispersal declines with decreasing 

fragment area, but does not change in relation to forest 

quality or isolation. 

6.3 Methods 

6.3.1 Study sites 

Dung removal, seed burial and horizontal seed dispersal were measured in 

two continuous forest sites and 16 forest fragments in eastern Sabah, 

Malaysia (5 °N, 117 °E, Chapter 4). The study took place during the ‘drier’ 

season between July and September 2013 (see Chapter 4 for detailed 



 

171 

climatic information). The two continuous forest sites were in undisturbed, 

primary forest (Danum Valley Conservation Area) and in twice-logged forest 

(Ulu-Segama Malua Forest Reserve). Ulu-Segama Malua Forest Reserve was 

first logged between 1976 and 1991 (~120 m3 ha-1 of timber removed), and 

then again between 2001 and 2007 (~35 m3 ha-1 of timber removed) 

resulting in very highly degraded forest (Chapter 4; Edwards et al. 2011; 

Reynolds et al. 2011). The forest fragments varied in size from 5 to 3,529 

ha, and so included larger fragments than in many Neotropical studies (e.g. 

Laurance et al. 2002a). Fragments were located between 0.2 and 46.7 km 

from continuous forest and had been isolated within oil palm plantations 

for at least 19 years at the time of sampling. The fragments varied in their 

history of disturbance and forest management, with at least 11 of the 

fragments having been selectively logged prior to fragmentation (Chapter 

4). Eight fragments were managed by the Sabah Forestry Department (38-

3,529 ha) and eight fragments by PPB (Wilmar International) oil palm 

plantations (5-120 ha). I quantified forest quality at each sampling station 

by recording ground cover, canopy cover, vegetation cover (above 2m), 

leaf litter depth, tree density, girth, identity (Dipterocarpaceae or not) and 

point of inversion, sapling density and girth (see Chapter 4 for more 

details). Principal Components Analysis (PCA) was used to combine these 

vegetation variables into an independent measure of forest quality for each 

forest site, and the first principal component (PC1) was extracted as a 

measure of forest quality. PC1 explained 33% of variation in vegetation 

variables and was characterised by a high density of large, tall 

Dipterocarps, a high canopy cover and deep leaf litter (Chapter 4 Table 

4.2). PC1 characterised clear differences in forest quality among sites, 

identifying forest in undisturbed continuous forest as of highest quality 

(Chapter 5 Figure 5.1). Fragment areas were taken from Sabah Forestry 

Department and PPB plantations statistics, and isolation distances 

calculated in ArcMap as the distance to the closest continuous forest 

(defined as non-mangrove forest >10,000 ha). There were no significant 

correlations among fragment area, forest quality and isolation (Chapter 5 

Figure 5.2). 
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6.3.2 Dung removal 

At all 18 sites dung removal was measured at sampling stations placed at 

100 m intervals along transects of 0.3-1 km in length (1 transect per site, 3-

10 stations per transect depending on fragment size and shape, 143 stations 

in total, 123 in fragments, 20 in continuous sites). Between 8 and 11 am, 

630 g ‘treatment’ piles of fresh cow dung were placed at each sampling 

station, and two 630 g ‘control’ dung piles were placed at the first and 

second stations along transects. After 24 hours, all dung piles were 

collected and weighed to calculate wet masses (g). Control dung piles were 

placed inside cages of 1 mm wire mesh that excluded all dung beetles, but 

allowed water loss by evaporation (Chapter 4). The percentage of dung 

removed from the treatment pile at each station was calculated relative to 

the mean of the two control piles. 

6.3.3 Seed burial and horizontal seed dispersal 

Seed burial and horizontal seed dispersal were measured at the same 

sampling stations where dung removal was studied. In each of the 

treatment dung piles I placed 300 aluminium beads (0.5 cm diameter) as 

seed mimics. After 24 hours, I recorded the percentage of beads that: 1) 

remained unburied, 2) had been dispersed horizontally by rollers, and 3) 

were buried under the dung pile by tunnellers. See Chapter 4 for full 

methodological details. 

6.3.4 Analysis 

6.3.4.i Differences in ecosystem functions between unlogged continuous 

forest, twice-logged continuous forest and forest fragments 

(Hypothesis 1 & 2) 

To examine differences in dung removal, seed burial and horizontal seed 

dispersal (response variables) between unlogged continuous forest, twice-

logged continuous forest and forest fragments I used Generalised Linear 

Mixed Models (GLMMs). Data from all 143 sampling stations across the two 

continuous forest sites (20 stations) and 16 fragments (123 stations) were 

analysed, with forest type (“unlogged continuous”, “twice-logged 
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continuous” or “fragment”) as a categorical fixed effect and site as a 

random effect. Fitting site as a random effect accounted for the 

unbalanced number of sampling stations at each site and prevented 

pseudoreplication. GLMMs use pseudo Generalised-Least Squares methods 

for parameter estimation and so provide less biased estimates than linear 

models for unbalanced data, they can also account for non-normal data 

distributions (Bolker et al. 2009). Including site as a random effect meant 

that analyses were conducted at the site level, but using the variation 

between sampling stations to inform model fitting. Models were fitted with 

R package “lme4” using the function ‘(g)lmer’. Using AICc values, models 

containing ‘forest type’ were compared to models containing just the 

random effect of ‘site’ (‘null model’), to test whether differences between 

forest types exceeded those within sites and so assess variation within 

sites. Means and confidence intervals of the three response variables were 

extracted for unlogged continuous forest, twice-logged continuous forest 

and fragment sites. Differences between the three habitat types were 

considered significant if confidence intervals did not overlap, and if the 

‘null model’ had a higher AICc value than the model containing forest type. 

This was repeated for each of the three response variables (dung removal, 

seed burial and seed dispersal). 

Parametric assumptions of data were tested prior to final analyses and 

appropriate error distributions chosen to ensure assumptions were met 

(Negative-binomial distribution for dung removal and seed burial, Poisson 

distribution for horizontal seed dispersal). Outlying points were detected 

by calculating Cook’s distances, to identify points with large residuals and 

high leverage in the model. Data points with Cook’s distance values greater 

than 4/N (i.e. 4/143 = 0.026) were excluded from analyses (Bollen & 

Jackman 1990), and so for dung removal and seed burial models all three 

sampling stations from one outlying site (site 18: 5 ha fragment) were 

removed. There is currently no method for calculating R2 values for models 

with negative-binomial distributions, but for the horizontal dispersal model 

fitted with a poisson distribution I present marginal (fixed effects only) and 

conditional (fixed and random effects (sampling station)) R2 values of each 

model (sensu Nakagawa & Schielzeth 2013). The conditional R2 value allows 
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for variation within sites to be quantified, relative to the variation 

explained by forest type. 

6.3.4.ii Effects of fragment area, forest quality, and isolation on 

ecosystem functions (Hypothesis 3) 

GLMMs were also used to examine differences in dung removal, seed burial 

and horizontal seed dispersal (response variables) among 16 fragments in 

relation to changes in fragment area, forest quality and isolation. 

Continuous forest sites were excluded from these analyses because they 

cannot be given area or isolation values. Data from all 123 sampling 

stations across the 16 forest fragment sites were analysed. Fragment area, 

forest quality and isolation were fitted as fixed effects and site was fitted 

as a random effect. Therefore, as for analyses of differences between 

continuous forest and fragments, analyses were effectively conducted at 

the site level but using the variation between sampling stations to inform 

model fitting. I tested for assumptions and outliers as described above 

(Section 6.3.4.i). The same outlying site was removed and the same error 

distributions were fitted as described in section 6.3.4.i.  

For each of the three response variables, models were constructed with all 

possible combinations of fragment area, forest quality and isolation as well 

as two-way interactions and second-order polynomials (to test for 

curvilinear relationships or possible thresholds). I excluded three-way 

interactions from models to avoid over-fitting. A ‘null model’ was also 

included containing just the random effect of site, to test the overall 

goodness of fit of the models and to test whether differences among sites 

exceeded those within sites. These models were then ranked according to 

their AICc values to compare the relative importance of forest fragment 

area, forest quality and isolation for explaining differences in dung 

removal, seed burial and horizontal seed dispersal. The best model was 

defined as that with the lowest AICc value, and the best model set as any 

models with AICc values within 2 units of the best model (Bolker et al. 

2009). Coefficients and 95% confidence intervals were then extracted from 

the single best model, or averaged across the set of best models. A 
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significant relationship was assumed if 95% confidence intervals did not 

overlap zero. Conditional and marginal R2 values were calculated. 

6.4 Results 

6.4.1.i Differences in ecosystem functions between unlogged continuous 

forest, twice-logged continuous forest and forest fragments 

(Hypothesis 1 & 2) 

There were no significant differences in dung removal, seed burial or seed 

dispersal between unlogged and twice-logged continuous forest sites, 

although seed dispersal was slightly higher in unlogged forest and 

approached significance (Figure 6.2, Table 6.1). By contrast, dung removal 

and seed dispersal, but not seed burial, were significantly higher in both 

unlogged and twice-logged continuous forest sites than in forest fragments 

(Figure 6.1, Figure 6.2). Therefore, differences between continuous forest 

sites and fragments generally exceeded those between unlogged and twice-

logged continuous forest sites.  

The percentage of dung removed was on average 75% lower in forest 

fragments than in either unlogged or twice-logged continuous forest (Figure 

6.1, Table 6.1). The highest percentage of dung removed in any fragment 

was 33% (site 14), whilst the lowest in continuous forest was 74% (site 2: 

twice-logged continuous forest). The percentage of seeds rolled was 

significantly lower in fragments than in both unlogged and twice-logged 

continuous forest, with over 90% fewer seeds rolled horizontally in 

fragments than in the continuous forest sites (Figure 6.2, Table 6.1). The 

percentage of seeds buried was not significantly different between 

fragments and continuous sites, probably because of large variation within 

sites (Figure 6.2, Table 6.1), but was on average 34% and 64% lower in 

fragments than in unlogged and twice-logged forest, respectively (Figure 

6.2, Table 6.1).  
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Table 6.1. Table comparing means and 95% confidence intervals of dung 

removal, seed burial and seeds rolled in unlogged continuous forest, twice-

logged continuous forest and fragments. Non-overlapping confidence 

intervals indicate a significant difference. The means and confidence 

intervals presented are back-transformed to the original variable scales 

from the log link functions used in the GLMMs explaining the asymmetrical 

95% CIs shown here. 

Response 
variable 

Estimate (and 95% CIs) 

Unlogged  Twice-logged  Fragments 

Dung removed 85.1(59.0,122.8) 73.8 (49.8,109.4) 17.0 (13.5,21.5) 

Seeds buried 24.4 (2.08,290.0) 44.3 (3.8,528.5) 4.8 (2.5,9.3) 

Seeds rolled 1.5 (0.9,2.5) 0.3 (0.1,0.9) 0.02 (0.004,0.07) 
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Figure 6.1. A comparison of dung removal in unlogged continuous forest (n 

= 1 site, 10 stations), twice-logged continuous forest (n = 1 site, 10 

stations) and fragments (n =16 sites, 123 stations). Values plotted are 

mean values per sampling station, i.e. on average 85% of dung was 

removed at each sampling station in unlogged continuous forest. Letters 

indicate significant differences between sites, based on GLMMs. Error bars 

show standard errors. 
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Figure 6.2. A comparison of the percentage of seeds removed in total, 

buried and rolled in unlogged continuous forest (n = 1 site), twice-logged 

continuous forest (n = 1 site) and fragments (n =16 sites). Values plotted 

are mean values per sampling station, i.e. on average 26% of seeds were 

removed in total at each sampling station in unlogged continuous forest. 

The inset shows a close up of the percentage of seeds rolled. Different 

letters above bars indicate significant differences between forest types, 

according to GLMMs. UL = unlogged continuous forest, 2L = twice-logged 

continuous forest and F = fragments. Error bars show standard errors. 
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For dung removal and horizontal seed dispersal, models containing ‘forest 

type’ as a fixed effect as well as ‘site’ as a random effect, had lower AICc 

values than models containing just ‘site’ (Δi > 2.84), showing that forest 

type explained more variation in the data set than did within site variation 

for these functions (Table 6.2). Conversely, for seed burial the model 

containing just ‘site’ had a lower AICc value than the model containing 

‘forest type’, indicating that there was more variation in seed burial within 

sites than between forest types (Table 6.2), and probably explaining the 

absence of a significant difference in seed burial between forest types.  
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Table 6.2. Table of models comparing ecosystem functions between 

unlogged continuous forest, twice-logged continuous forest and forest 

fragments. For each response variable two models are presented, one 

including forest type and site as random effect (‘Type’) and one just 

containing the random effect of site (‘1’). K: the number of parameter 

estimates in the model, AICc: a measure of model fit corrected for sample 

size, Δi: the difference between that model’s AICc value and that of the 

best model, ωi: the Akaike weight, representing the model’s relative 

strength compared to other best models,  LL: Log-likelihood, the overall 

model fit with no adjustment for the number of parameters, and R2 (M; 

C): Marginal (M) and conditional (C) estimated R2-vaues, based on 

Nakagawa & Schielzeth (2013). *Data were fitted using a negative-binomial 

distribution to account for overdispersion. There is currently no way of 

calculating R2 values for this distribution, and so R2 values are not shown 

for these models. These models also excluded one site (site 18) as it was 

an outlier. 

Response variable Model K AICc Δi ωi LL R2 (M,C) 

Dung removal* 
       

 
Type 5 1085.2 0 0.81 -537.4 - 

 
1 3 1088.0 2.84 0.19 -540.9 - 

Seed burial* 
       

 
1 3 928.8 0 0.64 -461.3 - 

 
Type 5 929.9 1.14 0.36 -459.7 - 

Seed dispersal 
       

 
Type 4 33.91 0 1 -12.8 0.30,0.30 

 
1 2 48.58 14.67 0 -22.3 0,0.50 

 

6.4.1.ii Effects of fragment area, forest quality, and isolation on 

ecosystem functions (Hypothesis 3) 

Differences in dung removal, seed burial and horizontal seed dispersal 

between continuous forest and fragments generally exceeded differences 

among fragments. For example, when outlying site 18 was excluded dung 

removal and horizontal seed dispersal were more than 50% lower in the 

‘best’ fragments (Site 14 for dung removal, Site 9 for seed dispersal) 
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compared with continuous forest sites (Figure 6.3). Among forest fragments 

there was no significant decline in horizontal seed dispersal in relation to 

fragment area, quality or isolation. Very few seeds were dispersed 

horizontally in fragments, although there was no horizontal dispersal in any 

fragments smaller than 120 ha. Dung removal significantly declined with 

increasing isolation of fragments (Figure 6.3, slope estimate: -0.34, 95% CIs 

-0.57, -0.11), and was significantly positively correlated with the quadratic 

of forest quality (Figure 6.3, slope estimate: 3.92, 95% CIs 0.15, 7.68), and 

significantly negatively correlated with the quadratic of area (Figure 6.3, 

slope estimate: -9.20, 95% CIs -13.56, -4.85). This meant that dung removal 

increased in medium sized fragments but decreased in small and large 

fragments (Figure 6.3), and this relationship was significant even when 

fragment area was the only explanatory variable. Dung removal increased 

with forest quality but more steeply in better quality sites, and also 

declined with increasing isolation distance. However, these relationships 

were only significant in models also containing area, indicating relatively 

weak relationships between dung removal and both forest quality and 

isolation. This showed that, among fragments, area had a stronger effect 

on dung removal than isolation and forest quality, but differences among 

fragments were far smaller than those between continuous forest and 

fragments. 

Differences in seed burial across all sites were smaller than differences in 

dung removal. Seed burial was not significantly lower in fragments than in 

continuous forest, although seed burial in twice-logged continuous forest 

was higher than in all fragments (except for outlying site 18), and seed 

burial in unlogged continuous forest was higher than in 12/15 fragments 

(excluding site 18). In analyses of fragments, seed burial was significantly 

negatively related to the quadratic of area (Figure 6.3, seed burial: slope 

estimate: -9.20, 95% CIs -16.33,-2.06) and significantly positively related to 

the quadratic of forest quality (Figure 6.3, seed burial: slope estimate: 

7.01, 95% CIs 1.50, 12.53). The relationship of seed burial with isolation 

(linear and quadratic) neared significance with confidence intervals only 

just overlapping zero, suggesting a possible decline in seed burial with 

increasing isolation, and a steeper decline in less isolated sites. As with 
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dung removal, seed burial was highest in intermediate-sized fragments and 

lowest in the smallest and largest fragments. Seed burial increased with 

increasing vegetation quality, and more steeply in better quality 

fragments. However, the relationships of seed burial with area and forest 

quality were only significant in models also containing isolation distance, 

indicating relatively weak relationships and little overall difference in seed 

burial among fragments. 
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Figure 6.3. A comparison of dung removal, seed burial and seed dispersal 

in relation to log10 fragment area, forest quality and isolation distance 

(sqrt). Large and coloured symbols show means and standard error for each 

site, hollow symbols are values for each sampling station. Green and 

upward pointing triangles represent undisturbed continuous forest sites 

and stations; orange and downward pointing triangles represent twice-

logged continuous forest sites and stations; and black and hollow circles 

represent fragment sites and stations. In plots of dung removal and seed 

burial the hollow circle is site 18 that was excluded from these models as 

it was an outlier.
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Figure 6.4. Plot of effect sizes (regression slope values) of explanatory 

variables (x axis) against response variables (y axis). Effect sizes are 

plotted only for variables included in best models according to AICc model 

ranking and where confidence intervals do not overlap zero. For linear 

predictors, positive effect sizes indicate positive relationships between 

the predictor and response variables, negative effect sizes indicate 

negative relationships. For curvilinear predictors, a positive effect size 

indicates a convex relationship, whilst a negative effect size indicates a 

concave relationship between the response and predictor variable. Errors 

bars show 95% confidence intervals. Veg = vegetation quality and Iso = 

isolation distance. There were no significant interactions. 
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Fragment area, isolation and forest quality were in the best model sets for 

all ecosystem functions (Figure 6.4, Table 6.3). Dung removal and seed 

burial increased significantly with area and forest quality, whilst isolation 

distance was only significantly related to dung removal, suggesting that 

area and forest quality were more important variables than isolation. 

However, for seed burial and horizontal seed dispersal the ‘null model’ 

containing just ‘site’ as a random effect was either the best (seed burial) 

or second best (horizontal seed dispersal) model (Table 6.3), showing that 

within fragment variation exceeded variation between fragments for these 

functions. Inspection of Figure 6.3 also shows substantial within fragment 

variation in dung removal, suggesting that other factors beyond fragment 

area, forest quality and isolation may also be important predictors of the 

three dung beetle functions measured in this study. Overall, following large 

declines in dung beetle functions from continuous forest to fragments, 

there was little difference in dung removal, seed burial and horizontal seed 

dispersal among fragments, although sites ≥120 ha supported both dung 

removal and some very low rates of horizontal dispersal.  
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Table 6.3. Table of best models (Δi < 2) explaining differences in 

ecosystem functions among forest fragments. K: the number of parameter 

estimates in the model, AICc: a measure of model fit corrected for sample 

size, Δi: the difference between that model’s AICc value and that of the 

best model, ωi: the Akaike weight, representing the model’s relative 

strength compared to other best models,  LL: Log-likelihood, the overall 

model fit with no adjustment for the number of parameters, and R2 (M; 

C): Marginal (M) and conditional (C) estimated R2-values, based on 

Nakagawa & Schielzeth (2013). *Models excluded outlying site 18 and fitted 

with a negative-binomial distribution to account for overdispersion. There 

is no current way of calculating R2 values for this distribution.  

Response 
variable 

Model K AICc Δi ωi LL R2 (M,C) 

Dung removal* 
       

 
Area2+Veg2+Iso 8 850.6 0 0.36 -416.6 - 

 
Area2+Veg+Iso 7 851.1 0.6 0.26 -418.1 - 

 
Area2+Iso 6 851.4 0.9 0.23 -419.4 - 

 
Area2+Veg2+Iso2 9 852.2 1.66 0.16 -416.3 - 

Seed burial* 
       

 
1 3 729.5 0 0.27 -361.7 - 

 
Iso2 5 729.9 0.4 0.22 -359.7 - 

 
Iso 4 730.5 1 0.16 -361.1 - 

 
Area2+Iso 6 731.1 1.61 0.12 -359.2 - 

 
Area2+Veg2+Iso 8 731.2 1.65 0.12 -356.9 - 

 
Veg 4 731.5 1.94 0.1 -361.6 - 

Seeds rolled 
       

 
Veg 3 17.0 0 0.18 -5.4 0.34,0.34 

 
1 2 17.1 0.08 0.17 -6.5 0,0 

 
Iso 3 17.6 0.6 0.13 -5.7 0.17,0.17 

 
Area 3 18.6 1.62 0.08 -6.2 0.06,0.06 

 
Area+Iso 4 18.7 1.67 0.08 -5.2 0.44,0.44 

 
Veg+Iso 4 18.7 1.69 0.08 -5.2 0.29,0.29 

 
Veg2 4 18.7 1.72 0.08 -5.2 0.21,0.21 

 
Iso2 4 19.0 1.92 0.07 -5.3 0.15,0.15 

 
Area+Veg 4 19.0 1.93 0.07 -5.3 0.40,0.40 

 
Area+Iso2 5 19.0 1.94 0.07 -4.2 0.62,0.62 
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6.5 Discussion 

6.5.1 Impacts of fragmentation on dung beetle functions 

There was no significant difference in dung removal, seed burial or seed 

dispersal between unlogged and twice-logged continuous forest sites, 

supporting the prediction of hypothesis 1 that dung beetle functions would 

vary little between these sites (Hypothesis 1). There have been no previous 

studies specifically assessing the impact of two rotations of selective 

logging on dung beetle functions, although Slade et al (2011a) showed that 

dung removal and seed burial declined after high-intensity, but not low-

intensity, selective logging in Sabah, Malaysia. The high-intensity logged 

sites used by Slade et al. (2011) were in the same forest management area 

as the twice-logged site used in this study, but were sampled prior to the 

second logging rotation. This suggests that the twice-logged forest site in 

this study was more degraded than the high-intensity sites sampled by 

Slade et al. (2011), yet contrary to their findings, shows that dung beetle 

functions can be maintained in highly degraded forest. I only sampled at 

one twice-logged and one unlogged continuous forest site and so it is 

possible that differences in dung beetle functions would emerge with 

greater replication. Nonetheless, these findings indicate a resilience of 

dung beetle functions to forest degradation and these high rates of 

functioning in degraded forest may help to promote forest regeneration in 

degraded forest sites, given that dung and seed burial can increase plant 

growth and seedling establishment (Andresen 2001; Bang et al. 2005). 

In contrast to the negligible impacts of selective logging, forest 

fragmentation led to large declines in all dung beetle functions. Dung 

removal, seed burial and seed dispersal were all at least 50% lower in forest 

fragments than in continuous forest, supporting hypothesis 2. Declining 

dung removal and seed burial are consistent with Neotropical and 

Afrotropical studies (Klein 1989; Andresen 2003; Chapman et al. 2003), 

although fragments in this study were much larger (<3,529 ha) than those in 

the previous studies (<100 ha) suggesting that the impacts of fragmentation 

may be stronger than previously thought. Horizontal seed dispersal has not 

yet been measured separately to seed burial and so its decline in fragments 
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is a novel finding that may have implications for plant recruitment. In 

unlogged forest, the percentage of seeds dispersed horizontally (~1-2%) was 

low compared to the number buried (~30%) showing that these horizontal 

dispersal events are relatively rare even in undisturbed sites. However, the 

ratio of seeds dispersed horizontally to those buried declined markedly in 

fragments compared to continuous forest sites with a relatively minor, and 

non-significant, decline in seed burial and a significant, almost total, 

decline in seed dispersal in fragments, suggesting that the decline of seed 

dispersal was not an artefact of insufficient sampling. Secondary seed 

dispersal by rollers and tunnellers lead to distinct seed dispersal 

distributions and so could have different impacts on seed fate and seedling 

germination (Andresen & Feer 2005; Lawson et al. 2012). Therefore, the 

different responses of seed burial and seed dispersal to fragmentation 

reported in this chapter indicate the importance of measuring these 

functions separately. 

There was little difference in dung beetle functions among fragments of 

different size, forest quality and isolation distance. Horizontal seed 

dispersal was not affected by changes in area, quality or isolation, but dung 

removal and seed burial were apparently slightly higher in intermediate-

sized, less isolated and better quality fragments. The weak effect of 

fragment area on dung removal contrasts to large declines with declining 

fragment area reported previously (Klein 1989; Andresen 2003).  However, 

the fragments sampled in this study were much larger (up to 3,529 

hectares) than those considered in the previous studies of ≤100 hectares. 

An equivalent comparison using the smallest fragments sampled in this 

study reveals a similar trend with very low rates of dung removal in 

fragments ≤40 hectares. Furthermore, no seed dispersal was recorded in 

fragments smaller than 100 hectares in this study, suggesting that smaller 

fragments support very low rates of dung beetle ecosystem functions. Low 

rates of horizontal seed dispersal were recorded in fragments larger than 

100 hectares, but whether this seed dispersal is maintained over time will 

depend on residual extinction debt in these sites that could drive species 

extinctions for decades after fragment isolation (Turner et al. 1996; Wearn 

et al. 2012; Gibson et al. 2013). The large declines in ecosystem 
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functioning in small fragments reported here have been shown elsewhere 

(Klein 1989; Andresen 2003), but this study also shows that fragments much 

larger than 100 hectares support greatly reduced rates of dung beetle 

ecosystem functions compared to continuous forest, showing that even 

large fragments are no substitute for continuous forest. Overall, there was 

little variation in dung beetle functions in relation to fragment area, forest 

quality or isolation, but seed dispersal and seed burial showed large within 

site variation which suggests that other factors may be important 

predictors of these functions. 

6.5.2 Within site variation in dung beetle functions 

Among forest fragments, dung removal, seed burial and seed dispersal were 

characterised by large within site variation (Figure 6.3), which generally 

exceeded variation among fragments (Table 6.3). This within site variation 

also appeared to be greater in fragments than in continuous forest sites. 

For example, within four of the fragments sampled (sites 5, 10, 12 and 14) 

the percentage of seeds buried per sampling station varied hugely from <1% 

to >60%, in contrast to variation from 17-38% among unlogged continuous 

forest sampling stations and 27-61% among twice-logged forest sampling 

stations. This suggests that localised abiotic and biotic factors may be 

important predictors of dung beetle functions, especially in forest 

fragments. It is possible that the microclimate at individual sampling 

stations influences bait detectability. For example, dung piles may dry out 

and lose attractiveness faster in more open, hotter and drier locations 

(Spector & Ayzama 2003; Larsen & Forsyth 2005). Open sites such as these 

were probably more common in fragments than in continuous forest sites, 

given that fragments had lower canopy cover and higher temperatures than 

continuous forest (Chapter 4). This could explain the variation in dung 

beetle functions in fragments. Higher temperatures in fragments could also 

lead to soil desiccation and compaction, which has been shown to reduce 

dung beetle abundances (Doube 1983) and could explain the reduction of 

rollers and seed dispersal in fragments (Edwards et al. 2013). Alternatively, 

the within site variation in functions could be the result of patchier dung 

beetle distributions in fragments. For example, reduced dung availability in 
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fragments may mean that dung beetles have to disperse further to find 

dung, leading to patchier beetle distributions and more sporadic discovery 

of dung piles. If this were the case then species occurring in forest 

fragments would be expected to be species with good dispersal abilities. 

However, little is known about the dispersal ability of dung beetle species 

in Borneo and so research is required to assess the movement of different 

dung beetle species within fragmented landscapes and consequences of this 

for ecosystem functioning.  

6.5.3 Altered functional requirements in forest fragments  

The ultimate cause of both reduced dung beetle species richness and 

biomass, and reduced ecosystem functions following forest fragmentation 

may be due to reduced dung availability in fragments. Asian elephants 

(Elephas maximus borneensis), and other large herbivores such as Banteng 

(Bos javanicus lowi) found in continuous forest were absent in the forest 

fragments sampled in this study (Timmins et al. 2008; Alfred et al. 2010). 

These species produce the largest dung deposits and are likely to provide 

the majority of dung resources in natural forest, meaning that the 

availability of dung resources is probably greatly reduced in forest 

fragments. Cattle are occasionally kept in 7-15 year old oil palm 

plantations (Corley & Tinker 2008), but were not kept in plantations 

surrounding the fragments in this study and so unlike studies of fragments 

in cattle pasture matrices there was no supplement of cattle dung to 

substitute for the loss of native mammal dung (Amézquita & Favila 2010). 

Reduced dung availability can lead to reduced dung beetle biomass, 

especially of functionally important large-bodied species (Lumaret et al. 

1992; Nichols et al. 2009), which could in turn explain the reduction in 

dung removal and seed burial in fragments. This means that the decline in 

dung removal in fragments may have occurred because there is less dung to 

decompose in forest fragments (Gregory & Gaston 2000). If this is the case, 

then declines in dung removal may not necessarily lead to an overall 

decline in nutrient cycling or loss of nutrients from forest fragments. For 

example, if there is a decline in herbivore dung availability in fragments 

and mammals are the dominant herbivores, then the amount of herbivory 
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may also have declined and so leaf litter production and leaf litter 

decomposition may have increased. In this hypothetical example, the 

reduction in dung decomposition may be compensated for by increased leaf 

litter decomposition meaning that nutrients remain within the ‘closed-loop’ 

of the fragment ecosystem. Further research is needed to quantify 

potential shifts in different nutrient cycling components to assess whether 

other saprotrophic taxa are able to compensate for declines in dung 

removal. 

There may be a reduced requirement for dung removal in forest fragments 

compared to continuous forest, but the same is unlikely to be true for 

secondary seed dispersal by dung beetles. Fragmentation can alter plant 

species composition and abundance (Benitez-Malvido & Martinez-Ramos 

2003), but assuming that remaining species are reproductively active, one 

would expect the requirement for seed dispersal to be maintained in 

fragments. Secondary seed dispersal will remain a vital process to enhance 

the reproductive success and promote seedling establishment of animal-

dispersed plant species in forest fragments (Vander Wall & Longland 2004). 

However, secondary seed dispersal by dung beetles is a by-product of dung 

removal, and so it is ultimately controlled by the availability of dung and 

not the availability of seeds. Therefore, a decline in dung availability in 

fragments could lead to reduced secondary seed dispersal even if seed 

production remains constant.  

6.5.4 Plant composition and the viability of HCV fragments 

Climax canopy tree composition in Southeast Asian forests is dominated by 

species of the Dipterocarpaceae family that are primarily gravity dispersed 

(Kettle 2012). However, in Bornean lowland rain forests Dipterocarps only 

account for ~22% of all trees, and up to 34% of plant species are animal 

dispersed (Sakai et al. 1999; Slik et al. 2003). Gibbons and other frugivores 

regularly consume and defecate seeds up to 2 cm in length from a range of 

plant species (McConkey 2009), and recruitment of these animal-dispersed 

species in fragments could be directly affected by reduced seed dispersal 

and seed burial. Declining seed burial may alter plant composition by 
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increasing seed and seedling mortality through density-dependent mortality 

and seed predation (Andresen 2001; Terborgh et al. 2001; Bagchi et al. 

2014). Rollers move fewer seeds in total than tunnellers, but these 

movements can reduce density-dependent seedling mortality and seed 

predation by moving seeds away from the dung where density is highest, 

and by burying them at shallower depths than tunnellers that are better 

suited to seedling germination and establishment (Andresen & Feer 2005; 

Nichols et al. 2008). Seed predation is often elevated in forest fragments 

(Terborgh et al. 2001; Andresen 2003), suggesting that secondary seed 

dispersal will be important for seedling recruitment in Southeast Asian 

forest fragments.  

This chapter shows that wherever possible, HCV areas in plantations should 

protect continuous forest to maximise dung beetle ecosystem functions. 

This tallies with recommendations on how to minimise species extinctions 

following fragmentation (Pimm & Brooks 2013). Best practice in HCV 

identification and management indicates that buffers should be established 

around HCV areas to try and minimise encroachment and edge effects 

(Brown et al. 2013). However, this chapter shows that large fragments of 

500-3,000 hectares do not support the same rate of dung beetle functions 

as logged or unlogged continuous forest, suggesting that even large buffer 

zones may be insufficient to ensure the maintenance of HCVs over time. 

Furthermore, given that many HCV areas consist of logged forest (section 

6.3.1), and seed dispersal and decomposition can directly affect plant 

recruitment, reductions in these functions could inhibit forest regeneration 

in fragments, especially in the smallest fragments where no seed dispersal 

was recorded. This could hinder efforts by oil palm companies to enhance 

HCVs over time, and suggests that forest management interventions, such 

as enrichment planting, may be required to retain natural regeneration and 

species composition over time. Such management could also improve dung 

beetle functions given that dung removal and seed burial were higher in 

better quality sites.  

Enrichment planting and climber cutting could increase recruitment of 

canopy tree species, canopy cover and vertical vegetation complexity in 
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less disturbed sites (Chapter 4). However, the fragments with highest forest 

quality in this study had lower rates of dung removal than continuous forest 

sites, suggesting that improvements in forest quality in fragments will 

never restore rates of this function to the levels found in continuous forest 

sites (Figure 6.3). Furthermore, whilst studies have shown that dung 

beetles and other invertebrates can quickly re-colonise areas of 

rehabilitated forest contiguous with less disturbed forest areas (Edwards et 

al. 2012a; Barnes et al. 2014), this has not been demonstrated in 

fragmented habitats and would only be feasible if functionally important 

species still persist in fragments prior to rehabilitation or can recolonize 

after rehabilitation. Research is needed in this respect to assess the 

dispersal abilities of functionally important dung beetle species.  

6.5.5 Conclusion 

Secondary seed dispersal and dung removal by dung beetles were greatly 

reduced in forest fragments compared to continuous forest. Horizontal seed 

dispersal was most adversely affected and was only recorded in 4/16 forest 

fragments whereas dung removal and seed burial were maintained in the 

smallest forest fragments, albeit at reduced rates compared to continuous 

forest. Continuous forest, even when twice-logged, is irreplaceable for the 

maintenance of dung beetle ecosystem functions and so oil palm managers 

and HCV assessors should focus on protecting unlogged and degraded 

continuous forest wherever possible. If only fragments can be protected 

then their size should be maximised to maintain some horizontal seed 

dispersal and dung removal. This chapter investigated how dung beetle 

ecosystem functions responded to forest fragmentation, and Chapter 5 

revealed major changes in dung beetle species richness and roller and 

tunneller biomass in response to fragmentation. Analyses are needed to link 

changes in dung beetle species richness and functional group biomass to 

changes in ecosystem functions, and are considered in Chapter 7. This can 

help us understand mechanisms underpinning changes in function, and 

hence to better predict changes in function in response to future land-use 

changes.
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Chapter 7 - Relating species richness to ecosystem 

function in fragmented tropical landscapes: the 

importance of functionally dominant species 

7.1 Abstract 

Biodiversity declines have been linked to changes in ecosystem functioning 

based on highly-controlled experiments, but there is little evidence for how 

species losses affect ecosystem functioning in natural ecosystems. I 

analysed the relationship between dung beetle biomass and species 

richness and three ecosystem functions (dung removal, seed burial and 

seed dispersal). I used data collected from 16 forest fragments and two 

continuous forest sites, which provided a natural gradient of species 

richness and biomass in response to habitat fragmentation and degradation. 

Biomass was a more important predictor of dung removal and seed burial 

functions than was species richness. A single genus of large tunnellers 

(Catharsius spp.) was responsible for 77% of dung removal in forest 

fragments, compared to ~33% in continuous forest, demonstrating the 

importance of disturbance-tolerant species for maintaining ecosystem 

functioning in degraded landscapes. However, dung removal rates in 

fragments were highly variable compared with continuous forest where the 

combination of high species richness and high biomass led to consistently 

high rates of dung removal. Species richness of rollers was also the best 

predictor of seed dispersal in fragments, showing that high dung beetle 

species richness is needed for multiple dung beetle functions. Maximising 

the size of forest fragments in oil palm plantations could increase dung 

beetle species richness and biomass and improve the stability of dung 

beetle functions in these agricultural landscapes. 
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7.2 Introduction 

Biodiversity underpins the functioning of ecosystems and the provision of 

ecosystem services (Millennium Ecosystem Assessment 2005; Hooper et al. 

2012). However, anthropogenic loss, fragmentation and degradation of 

natural habitats are causing global declines in biodiversity and widespread 

species extinctions (Pimm et al. 1995; Green et al. 2005; Kissinger et al. 

2012). These biodiversity losses are altering ecosystem functioning and the 

delivery of ecosystem services, such as decomposition and pollination, 

required for stable ecosystems and provision of natural resources 

(Cardinale et al. 2012; Hooper et al. 2012). Consequently, it is crucial to 

understand how biodiversity contributes to ecosystem functioning in order 

to predict changes in function resulting from habitat degradation and 

fragmentation. 

Initial theoretical research into the biodiversity and ecosystem functioning 

(BEF) relationship proposed a positive linear relationship between species 

richness and ecosystem functioning (Schulze & Mooney 1994). Several 

decades of research have subsequently shown that this strict linear 

relationship is too simplistic for most taxa and ecosystem functions , but 

that there is strong evidence for a positive relationship between the 

number of species and the rate of ecosystem functioning (Loreau et al. 

2001; Hooper et al. 2012). Key mechanisms that have been proposed to 

support this positive relationship are the ‘complementarity effect’ and the 

‘selection effect’ (Loreau & Hector 2001). ‘Complementarity’ suggests that 

niche partitioning and facilitation among species leads to more efficient 

resource use and functioning when more species are present, and broadly 

supports a linear positive relationship whereby each additional species 

increases ecosystem functioning. Complementarity can occur spatially or 

temporally and includes the buffering role that different species play in 

providing ecosystem functions under different environmental conditions 

(e.g. Brittain et al. 2013). The ‘selection effect’ argues that certain species 

tend to be functionally dominant and that increasing species richness 

merely increases the probability of these functionally dominant species 

being present. The selection effect supports a saturating relationship 
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between species richness and function whereby only the addition of 

functionally dominant species leads to any substantial increase in function 

(Naeem et al. 2009). In reality, the relative importance of these two 

mechanisms varies depending on the scale of study, ecosystem function and 

study taxon, but both mechanisms have important roles in ecosystem 

functioning (Hooper et al. 2005), and consideration of these mechanisms 

helps in understanding the contribution of species richness and composition 

to ecosystem functioning. 

The ‘selection effect’ is derived from the fact that individual species vary 

greatly in their contribution to different ecosystem functions. For example, 

research from tropical forests in Mexico and Malaysia showed that just 13% 

of tree and dung beetle species provided 90% of carbon storage and 50% of 

dung removal, respectively (Balvanera et al. 2005; Slade et al. 2007a). This 

functional dominance generally occurs when species have key functional 

traits or when they are highly abundant (Bengtsson 1998; Jaillard et al. 

2014). All ecosystems, including highly diverse tropical ecosystems are 

characterised by uneven species abundances, whereby some species are far 

more common than others (Fisher et al. 1943b), and studies in marine and 

terrestrial systems have shown that the most common species can be 

functionally dominant in terms of productivity, bioturbation and carbon 

storage (Solan et al. 2004; Gaston 2010). Key functional traits vary 

depending on the taxon and function considered, but body size is a 

universally important functional trait because large-bodied species 

consume more resources and are more functionally efficient (White et al. 

2007). For example, larger plants contribute more to primary productivity 

and larger dung beetles bury more dung (Doube 1990; Huston 1997a; Larsen 

et al. 2005b). Many BEF experiments are carried out in controlled 

conditions where species biomass or abundance is held constant and 

species richness is varied, and yet biomass compensation often outweighs 

any impacts of species richness on functioning in the field (Reiss et al. 

2009). Therefore, given the potential importance of species traits and 

biomass in determining rates of ecosystem functioning (Bengtsson 1998), 

more studies are needed that directly compare the effects of species 
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richness and biomass on ecosystem functions, especially under natural 

levels of diversity in the field.  

Forest fragmentation can provide natural gradients of species richness, 

because species richness declines with decreasing fragment size in line with 

Species-Area Relationships (MacArthur & Wilson 1967). However, species 

extinctions following fragmentation are typically non-random (Hill et al. 

2011) and so they can lead to non-random impacts on ecosystem 

functioning (Petchey & Gaston 2002). In cases when ‘response traits’ to 

fragmentation are also ‘functional effect traits’ (Chapter 5; Lavorel & 

Garnier 2002) then the loss of species with these traits will lead to changes 

in functioning in response to habitat fragmentation. For example, large-

bodied frugivorous birds are vital for long-distance seed dispersal but are 

vulnerable to extinction following fragmentation (Moran et al. 2009). 

Alternatively, if functional traits are not response traits then functioning 

may be maintained in fragments. This can occur if functionally important 

species are resilient to fragmentation or if other disturbance tolerant 

species can compensate for the loss of functionally important species found 

only in undisturbed forest (Schwartz et al. 2000; Smith & Knapp 2003). For 

example, invasive black rats (Rattus rattus) and colonist silvereyes 

(Zosterops lateralis) were able to pollinate three native plant species 

following the loss of endemic pollinators in New Zealand (Pattemore & 

Wilcove 2012). Furthermore, Schleuning et al. (2011) showed that leaf 

litter decomposition increased following fragmentation whilst antbird 

predation decreased in response to respective increases and declines in 

isopod and antbird abundance in fragments compared to continuous forest. 

These idiosyncratic effects of species loss and fragmentation on ecosystem 

function highlight the importance of measuring species responses to 

fragmentation and their functional contributions. There is an urgent need 

for more studies in fragmented natural ecosystems. 

Expansion of oil palm agriculture over the last 40 years has caused 

widespread forest loss and fragmentation in Southeast Asia and increasingly 

in Africa and the Neotropics (Butler et al. 2009; Garcia-Ulloa et al. 2012). 

Research is needed to assess the impacts of tropical forest fragmentation 
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on functionally important species and their ecosystem functions. Dung 

beetles are an excellent study group for addressing this question, because 

they have key functional roles in tropical forests, contributing to dung 

removal and secondary seed dispersal (Nichols et al. 2008), and they 

exhibit different interspecific responses to forest fragmentation (Chapter 5; 

Larsen et al. 2005).  

In Chapter 5, I showed that dung beetle species richness and biomass 

declined following fragmentation, and that species richness declined 

further with declining fragment area, whilst biomass showed no further 

declines beyond those of fragmentation per se. However, biomass 

responses to fragment area varied depending on functional group, with 

large tunneller biomass (species important for dung removal and seed 

burial) showing no decline with fragment area but roller biomass (species 

important for seed dispersal) declining with fragment area. Reflecting 

these patterns, dung removal and seed burial varied little in response to 

fragment area whereas seed dispersal declined weakly with fragment area, 

suggesting that biomass of functionally important rollers and tunnellers 

determined responses of these ecosystem functions, rather than declines in 

species richness. I test this hypothesis in this chapter. However, the 

resilience of large tunneller biomass and dung removal to declining 

fragment area, in spite of declining species richness, suggests that large 

tunnellers may become increasingly more important for dung removal in 

fragments compared with continuous forest sites, where other species may 

contribute to dung removal in these highly species diverse sites. I showed in 

Chapter 4 that large tunneller biomass was dominated by two species from 

a single genus, Catharsius spp.. Therefore, to test the relative importance 

of large tunnellers for dung removal in continuous forest and fragment sites 

I used exclusion treatments to compare dung removal across 18 study sites 

when Catharsius spp. were present and absent. By doing this, I was also 

able to assess whether a single, disturbance-tolerant species (Catharsius 

renaudpauliani) can maintain functioning following the loss of other species 

in response to fragmentation, and compare the importance of Catharsius 

spp. relative to other functional groups for dung removal. This chapter 

tests the following hypotheses: 
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Hypothesis 1. Biomass is a more important predictor of dung removal, seed 

burial and seed dispersal than species richness. 

Hypothesis 2. Dung beetle biomass and dung removal is dominated by 

Catharsius spp. across all sites, and excluding Catharsius 

spp. leads to large reductions in dung removal. 

Hypothesis 3. Catharsius spp. are responsible for a greater proportion of 

dung removal in fragments than in continuous forest sites. 

Dung removal is supplemented by high biomass of species 

other than Catharsius spp. in continuous forest sites. 

7.3 Methods 

Dung beetles and their ecosystem functions (dung removal (with and 

without Catharsius spp.), seed burial and seed dispersal) were sampled in 

an unlogged continuous forest site (site 1), a twice-logged continuous 

forest site (site 2) and 16 forest fragments (sites 3-18; 5-3,529 ha) in Sabah, 

Malaysia between April and September 2012 and 2013 (Chapter 4). All 

forest fragments were isolated within oil palm plantations, and were 

situated between 0.2 and 46.7 km from continuous forest. There was 

considerable variation in forest quality among sites (Chapter 4) which 

broadly increased with fragment area, and was highest in continuous forest 

sites. Dung beetles and ecosystem functions were sampled in different 

years, but at the same sampling stations, which were spaced at 100 m 

intervals along transects of 0.3-1 km (1 transect per site). Dung beetles 

were sampled using human dung-baited pitfall traps and ecosystem 

functions were measured using fresh cattle dung. Previous analyses 

revealed little difference in species assemblages between dung types or 

years (Chapter 4), supporting the robustness of this experimental design. 

Beetles collected during dung-baited pitfall trapping were identified to 

species level in Sabah using an optical microscope. Species richness and 

biomass were calculated for each sampling station as the number and dry 

mass of species, respectively. It was not possible to obtain accurate dry 

mass (g) estimates of biomass for all species collected from sampling 

stations in the field and so biomass for each sampling station was estimated 
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based on extrapolation of a regression of body length against dry mass for 

10 species. The body lengths of all sampled species were measured and 

their dry mass estimated based from the regression (Chapter 4). Dung 

removal (with and without Catharsius spp.) was measured as the change in 

dung wet mass over 24 hours, after accounting for mass changes due to 

evaporation. It was not logistically possible to obtain sufficient cattle dung 

to record dung removed with and without Catharsius spp. on the same day, 

and so measurements at the same sampling stations were taken on 

different days. Catharsius spp. were excluded using a 60 x 60 cm grid of 12 

mm wire mesh placed under the dung pile that allowed all species except 

for Catharsius spp. to remove dung (see Chapter 4). Seed burial and seed 

dispersal were measured using aluminium beads placed inside the dung pile 

as seed mimics. After 24 hours, beads that had been moved by rollers (seed 

dispersal), left unburied or buried by tunnellers (seed burial) were 

counted. For full methodological details see Chapter 4. 

7.3.1 Comparing the impacts of biomass and species richness on dung 
removal, seed burial and seed dispersal (Hypothesis 1) 

Three analyses were carried out to compare the impacts of biomass and 

species richness on: 1) dung removal, 2) seed burial and 3) seed dispersal. 

Species richness and biomass estimates used in each of these analyses 

represented the number and biomass of species involved in each of the 

functions, i.e. because all species contribute to dung removal, this analysis 

used biomass and species richness of all species. However, seed burial and 

seed dispersal are functions of tunnellers and rollers respectively and so 

these analyses used biomass and species richness of tunnellers and rollers 

respectively. For all three functions, data from all 143 sampling stations 

across unlogged continuous forest (10 stations), twice-logged continuous 

forest (10 stations) and forest fragments (123 stations) were analysed in 

Generalised Linear Mixed Models (GLMMs) with ‘site’ fitted as a random 

effect. Fitting this random effect accounted for non-independent sampling 

stations within each site and for the unequal number of sampling stations 

across sites.  
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To compare the importance of biomass and species richness, five GLMMs 

were fitted for each of the three ecosystem functions, examining: 1) a 

‘null’ model containing just the random effect ‘site’, 2) biomass, 3) species 

richness, 4) species richness and biomass, and 5) the full model including 

the interaction between species richness and biomass. The interaction was 

included to assess whether complementarity or facilitation between species 

led to a non-linear increase in function compared to the additive model of 

species richness and biomass. The ‘null’ model was included to test 

whether within site differences exceeded those between sites. These five 

models were then ranked using AICc values and coefficients and 95% 

confidence intervals were extracted from the best model(s). The best 

model was that with the lowest AICc value and best models were those 

within 2 AICc values of the single best model. Relationships between each 

function (response variable) and biomass, species richness or their 

interaction (explanatory variables) were defined as significant if the 

explanatory variable was present in the best model set and if 95% CIs did 

not overlap zero. Prior to analyses, biomass values were logged (base 10) to 

ensure normality, and then species richness and log10 biomass were 

standardised (mean subtracted and then divided by the standard deviation) 

to allow direct comparison of the slope of the relationship between 

biomass, species richness and function. Dung removal models were fitted 

using a binomial error distribution, but seed burial and dispersal data were 

highly overdispersed and so were fitted using a negative-binomial error 

distribution. 

7.3.2 Comparing the importance of Catharsius spp. for dung removal in 
unlogged continuous forest, twice-logged continuous forest and 
forest fragments (Hypotheses 2-3) 

To assess the importance of Catharsius spp. for dung removal in different 

forest types, GLMMs were used to compare the percentage of dung 

removed with and without Catharsius spp. in unlogged continuous forest 

(10 stations), twice-logged continuous forest (10 stations) and forest 

fragments (123 stations). The following two models were compared using 

AICc values: 1) a ‘null’ model containing just ‘site’ fitted as a random 

effect and, 2) a model containing the interaction between ‘forest type’ and 
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the ‘presence of Catharsius spp.’ as well as ‘site’ as a random effect. 

‘Forest type’ and ‘presence of Catharsius spp.’ were both categorical 

variables with three (unlogged continuous, twice-logged continuous and 

fragment) and two levels (with and without Catharsius spp.) respectively 

meaning that the interaction had six levels. The ‘null’ model was included 

to assess whether within site variation in dung removal exceeded 

differences between forest types. Means and 95% CIs were extracted for 

dung removal with and without Catharsius spp. in each of the three forest 

types. Differences between the three habitat types and Catharsius 

treatments were considered significant if confidence intervals did not 

overlap, and if the ‘null model’ had a higher AICc value than the alternative 

model. Dung removal data were overdispersed and so were fitted using a 

negative-binomial error distribution. This analysis was conducted only for 

dung removal, and not for seed burial or seed dispersal because these 

functions were not expected to be dependent on Catharsius spp. 

presence/absence.  

The above analysis compared the absolute percentage of dung removed 

with and without Catharsius spp., but I also wanted to compare the 

relative contribution of Catharsius spp. to dung removal in the three forest 

types. Therefore, the relative percentage of dung removed was calculated 

as: 

 
      (                              ⁄                )

                       
 

Equation 7.1. Equation for calculating the relative proportion of dung 

removed (DR) by Catharsius spp. at each sampling station after 24 hours 

(i). 

The aim of this analysis was to assess the contribution of Catharsius spp to 

dung removal and so stations where little dung removal occurred (<10%) 

were excluded from analyses. This meant that data from 81 stations and 

three fragment sites (sites 11, 15 and 16) were excluded from analyses, and 

the final analysis was carried out using data from 62 sampling stations at 15 

study sites (42 stations from fragments, 10 from twice-logged continuous 
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forest, and 10 from unlogged continuous forest). GLMMs were fitted to 

compare the relative percentage of dung removed by Catharsius spp. 

(Equation 7.1) in the three forest types. A ‘null’ model with ‘site’ as a 

random effect and a second model containing ‘forest type’ and the random 

effect were again compared using AICc values and means and 95% CIs were 

extracted. For this analysis, the response variable was fitted using a 

negative-binomial error distribution to account for overdispersion. 

Sensitivity analyses were conducted where stations were excluded from 

analyses when <5% and <20% of dung was removed and these analyses 

produced the same qualitative differences between forest types as in the 

analysis using the 10% threshold (Appendix 4, Table A4.1). 

7.3.3 Assessing the contribution of non-Catharsius spp. to dung removal 
(Hypothesis 3) 

The final analysis in this chapter sought to examine which other dung 

beetle functional groups were also important contributors to dung removal, 

after accounting for the dominant role of Catharsius spp. To assess this I 

analysed dung removal without Catharsius spp. in relation to the biomass of 

non-Catharsius large tunnellers (n = 3 species >10 mm in length, 20% of 

biomass in continuous forest, 7% in fragments), small tunneller biomass (n = 

54 species < 10 mm in length, 15% of biomass in continuous forest, 43% in 

fragments), large roller biomass (n = 3 species > 10 mm, 16% of biomass in 

continuous forest, 5% in fragments) and small roller biomass (n = 4 species 

< 10 mm in length, 2% of biomass across all sites). Using data from all 143 

sampling stations, 15 GLMMs were fitted with the percentage of dung 

removal (w/o Catharsius spp) as the response variable and all possible 

combinations of the four functional beetle groups (large and small 

tunnellers and rollers) as fixed, continuous, explanatory variables. ‘Site’ 

was included as a random effect in all 15 models and in a 16th model, the 

‘null’ model, without any of the fixed effects. The 16 models were then 

ranked using AICc values and slope estimates and 95% CIs extracted from 

the best model set. Slopes and 95% CIs were model-averaged if the best 

model set contained more than one model. All 16 models were fitted with 

binomial error distributions and the biomass of each functional group was 

logged (base 10) to ensure normality and then standardised (mean 



 

204 

subtracted and then divided by the standard deviation) prior to analyses to 

allow direct comparison of slope coefficients. The analysis was also 

repeated without continuous forest sites (using data from 123 sampling 

stations across 16 fragments) to assess whether the potential role of these 

important functional groups differed in continuous forest versus fragments.  

7.4 Results 

Dung-baited pitfall trapping recorded large variation in species richness and 

biomass across the 18 study sites. Average biomass in fragments was about 

2 g per sampling station (range: 0.1-11 g per sampling station) compared to 

7 g per sampling station in the two continuous forest sites (range: 3-11 g 

per sampling station) and on average 8 species were sampled from each 

sampling station in fragments (range: 2-20 species), compared to 20 species 

in continuous forest (range: 13-23 species; Table 7.1). Across all sites, 

small tunnellers made up ~80% of species and individuals, but large 

tunnellers were dominant in terms of biomass, with the five large tunneller 

species comprising on average 50% of biomass, and the two Catharsius spp. 

making up on average 44% of all biomass (Table 7.1). This dominance of 

large tunnellers and Catharsius spp. was even higher when sites with very 

low biomass were excluded (excluding stations with <1 g beetle biomass, n 

= 5 fragment sites), with Catharsius spp. making up 60% and other large 

tunnellers 2% of biomass in the remaining 11 fragments, and 48% and 19% of 

biomass, respectively, in the two continuous forest sites. There was also 

large variation in dung removal, seed burial and seed dispersal across study 

sites. For example, ~20% of dung was removed from fragment sampling 

stations (range: 0-100% dung removed per sampling stations) compared to 

80% dung removal in continuous forest (range: 30-100% dung removal per 

sampling stations). All three functions were higher in continuous forest 

than in fragments and tended to show greater within site variation in 

fragments than in continuous forest (Table 7.1). 

Table 7.1. Summary table showing mean species richness, guild biomass (% 

of total) and rates of ecosystem functions (%) in unlogged continuous 
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forest (UL), twice-logged continuous forest (2L) and forest fragments. LT = 

large tunnellers. 

Forest type UL 2L Fragments 

Species richness 19.4 19 7.8 

Biomass Catharsius spp. 52.9 42.5 43.3 

 
Other LT 19.5 19.6 6.6 

 
Large rollers 10.9 22.3 5.2 

 
Small rollers 0.8 2.0 2.4 

 
Small tunnellers 15.9 13.5 42.5 

Function Dung removal 85.1 73.8 17.0 

 
Seed burial 24.4 44.3 4.8 

 
Seed dispersal 1.5 0.3 0.02 
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7.4.1 Comparing the impacts of biomass and species richness on dung 
removal, seed burial and seed dispersal (Hypothesis 1) 

Biomass was a better predictor of dung removal and seed burial than 

species richness, but roller species richness was a better predictor of seed 

dispersal than roller biomass. On average, <5% of dung was removed and 

<10% of seeds were buried at sampling stations with beetle biomass of ≤1 g, 

and dung and seed burial at these sampling stations never exceeded 20% 

(Figure 7.1). Conversely, dung removal and seed burial varied from 0-100% 

among sampling stations with fewer than 10 species, suggesting that dung 

removal and seed burial were sometimes high at species-poor sampling 

stations. However, dung removal and seed burial at stations with high 

biomass (>1 g) was more variable than at stations with high species richness 

(>15 species), suggesting that high species richness provides more stable 

rates of dung removal and seed burial than high biomass. Dung removal and 

seed burial were positively correlated with total biomass and tunneller 

biomass, respectively (Figure 7.1, dung removal, slope estimate: 1.68, 95% 

CIs 0.83, 2.52; seed burial, slope estimate: 0.63, 95% CIs 0.41, 0.86). 

Species richness was not included in the best model for seed burial (Table 

7.2), but it was for dung removal. There was no significant relationship 

between species richness and dung removal when the relationship with 

biomass had been accounted for (slope estimate: -0.14, 95% CIs -1.03, 

0.74), but there was a significant positive interaction between species 

richness and biomass (slope estimate: 0.86, 95% CIs 0.10,1.62) indicating 

that stations with high species richness and high biomass had the highest 

rates of dung removal. 

Virtually no seeds were dispersed horizontally at sampling stations where 

biomass was <1 g or where fewer than three roller species occurred (Figure 

7.1). However, as with dung removal and seed burial, there was less 

variation in seed dispersal at stations with high roller species richness (≥5 

species) than at stations with high roller biomass (≥1 g), with many stations 

with high biomass having no seed dispersal whilst all stations with high 

species richness had some seeds dispersed. Seed dispersal was positively 

correlated with roller species richness (slope estimate: 0.72, 95% CIs 0.39, 

1.07). Roller biomass was present in the best model set for seed dispersal, 
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but was not significantly related to seed dispersal (slope estimate: -0.93, 

95% CIs -1.90, 0.04). However, seed dispersal was only recorded at 18 

sampling stations, suggesting that these results may be less robust than 

those for dung removal and seed dispersal. Thus I conclude that seed 

dispersal is a relatively rare dung beetle function in this study system. 
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Figure 7.1. Plot showing the relationships of species richness (right 

column) and biomass (left column) with dung removal (top row), seed 

burial (middle row) and seed dispersal (bottom row). Upward pointing 

triangles and green fill represent unlogged continuous forest stations and 

sites, downward pointing triangles and orange fill represent twice-logged 

continuous forest stations and sites and circles and black fill represent 

fragment stations and sites. Error bars show standard error. Best fit lines 

are taken from GLMMs fitted to station data and are only plotted for 

significant relationships of variables present in the best model set for each 

function. Plotted biomass values are log10 transformed. Site means are 

plotted to show general trends.
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The relative importance of biomass and species richness varied depending 

on the ecosystem function, with biomass being more important than 

species richness for dung removal and seed burial but roller species 

richness being most important for seed dispersal. However, both species 

richness and biomass appeared in the best models for dung removal and 

seed dispersal suggesting that both have important roles in determining 

rates of dung beetle functions (Table 7.2). For all three functions, there 

appeared to be considerable within site variation (Figure 7.1), but the 

‘null’ model had the highest AICc value for all functions (Table 7.2) showing 

that within site variation always explained less variation than species 

richness and biomass. 
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Table 7.2. Table of all fitted models comparing the effects of species 

richness and biomass on dung removal, seed burial and seed dispersal. Best 

models are shown in bold font. K: the number of parameter estimates in 

the model, AICc: a measure of model fit corrected for sample size, Δi: the 

difference between that model’s AICc value and that of the best model, 

ωi: the Akaike weight, representing the model’s relative strength 

compared to other best models,  LL: Log-likelihood, the overall model fit 

with no adjustment for the number of parameters, and R2 (M; C): Marginal 

(M) and conditional (C) estimated R2-vaues, based on Nakagawa & 

Schielzeth (2013). *Models fitted with a negative-binomial distribution to 

account for overdispersion. There is no current way of calculating R2 

values for this distribution. Bio = biomass, Sp = species richness. 

Function Model K AICc Δi ωi LL R2 (M,C 

Dung removal 
      

 

 
Bio*Sp 5 112.7 0 0.7 -51.1 0.48,0.48 

 
Bio+Sp 4 115.3 2.6 0.2 -53.5 0.51,0.51 

 
Biomass 3 116.7 4.0 0.1 -55.3 0.44,0.51 

 
Species 3 124.7 11.9 0.0 -59.2 0.24,0.41 

 
1 2 132.2 19.5 0.0 -64.1 0,0.47 

Seed burial 
      

 

 
Biomass* 4 116.2 0 0.6 -54.0 -,- 

 
Bio+Sp* 5 118.4 2.1 0.2 -54.0 -,- 

 
Bio*Sp* 6 119.9 3.7 0.1 -53.7 -,- 

 
Species* 4 120.5 4.3 0.1 -56.1 -,- 

 
1* 3 122.1 5.9 0.0 -57.9 -,- 

Seed dispersal 
      

 

 
Species* 4 79.3 0 0.4 -35.5 -,- 

 
Bio+Sp* 5 80.1 0.8 0.3 -34.8 -,- 

 
Bio*Sp* 6 81.4 2.2 0.1 -34.4 -,- 

 
Biomass* 4 82.7 3.4 0.1 -37.2 -,- 

 
1* 3 83.8 4.5 0.0 -38.8 -,- 
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7.4.2 Comparing the importance of Catharsius spp. for dung removal in 
unlogged continuous forest, twice-logged continuous forest and 
forest fragments (Hypotheses 2-3) 

Exclusion of Catharsius spp. resulted in >50% reduction in dung removal 

across all sites, demonstrating the importance of this genus for dung 

removal. However, the impact of excluding Catharsius spp. varied 

depending on the forest type (Table 7.3; Figure 7.2). In continuous forest 

sites (twice-logged and unlogged; sites 1 and 2) excluding Catharsius spp. 

did not cause a significant reduction in dung removal, in contrast to forest 

fragments where there was a significant reduction in dung removal when 

Catharsius spp. were absent. Despite there being no significant effect of 

Catharsius spp. exclusion in continuous forest sites, dung removal was still 

on average 25% lower in continuous forest in the absence of Catharsius spp. 

and Catharsius spp. removed more dung in absolute terms in continuous 

forest than in fragments (average dung removal, continuous forest: 163 g; 

fragments: 73 g). Within-site variation in dung removal explained far less 

variation than was explained by differences between either forest type or 

the presence of Catharsius spp. (Table 7.4). 

Table 7.3. Table comparing means and 95% confidence intervals of dung 

removal with or without Catharsius spp. in unlogged continuous forest 

(UL), twice-logged continuous forest (2L) and fragments. Non-overlapping 

confidence intervals indicate a significant difference. The means and 

confidence intervals presented are back-transformed to the original 

variable scales from the log link functions used in the GLMMs explaining 

the asymmetrical 95% CIs shown here. 

Dung removed 
Estimate (and 95% CIs) 

UL  2L  Fragments 

Catharsius spp  85.2 (64.1,113.1) 74.1 (54.4,100) 17.0 (14.2,20.4) 

No Catharsius spp 51.3 (35.6,74.0) 56.0 (39.5,79.5) 5.8 (4.2,7.8) 
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Figure 7.2. Plot comparing dung removal with (darker bars) and without 

Catharsius spp. (lighter bars) in unlogged continuous forest, twice-logged 

continuous forest and forest fragments. Means and standard errors are 

plotted and are calculated for all 143 sampling stations. Letters indicate 

significant differences between bars based on whether 95% CIs from 

GLMMs are overlapping. 
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Exclusion of Catharsius spp. led to greater, but non-significant declines in 

absolute dung removal in continuous forest than in forest fragments, but 

analyses of relative dung removal revealed that Catharsius spp. were 

responsible for relatively more dung removal in fragments than in either 

unlogged or twice-logged continuous forest. Restricting analysis to sampling 

stations where >10% of dung was removed showed that Catharsius spp. 

were responsible for 77% (95% CIs 70.8, 83.4) of dung removal in fragments 

compared to 24% (95% CIs 17.9, 32.6) and 42% (95% CIs 33.1, 52.3) of dung 

removal in twice-logged and unlogged continuous forest sites (Figure 7.3). 

Catharsius spp. also contributed significantly less to dung removal in twice-

logged continuous forest than in unlogged continuous forest. The ‘null’ 

model had an AICc value of just 0.5 higher than the model containing forest 

type, showing that there was also large within-site variation in dung 

removal by Catharsius spp., but this explained less variation in the data 

than differences between forest types (Table 7.4). Therefore, dung 

removal in forest fragments was predominantly by Catharsius spp., whilst 

other species contributed to dung removal in continuous forest sites. 

However, large within-site variation in dung removal by Catharsius spp. 

suggested that reliance on this genus for dung removal can lead to high 

local variation in dung removal at sites. Furthermore, non Catharsius 

species contributed more to dung removal in twice-logged continuous 

forest than in unlogged continuous forest, suggesting that other species 

may help to maintain dung removal following disturbance in continuous 

forest sites. 
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Figure 7.3. Barplot comparing the relative percentage of dung removed by 

Catharsius spp. in unlogged continuous forest, twice-logged continuous 

forest and forest fragments. Means and standard errors are plotting and 

are calculated based only on sampling stations where >10% dung was 

removed. Letters indicate significant differences between bars based on 

whether 95% CIs from GLMMs are overlapping. 
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7.4.3 Assessing the contribution of non-Catharsius spp. to dung removal 
(Hypothesis 3) 

In continuous forest sites, 67% of dung that was removed was removed by 

species other than Catharsius spp., whilst in forest fragments only 23% of 

dung was not removed by Catharsius spp. (Figure 7.2). In analyses of all 

sites, dung removal in the absence of Catharsius spp. showed a strong 

positive correlation with the biomass of other large tunnellers (Figure 7.4, 

slope estimate: 1.72, 95% CIs 0.74, 2.70) and a weaker positive relationship 

with small roller biomass (slope estimate: 0.92, 95% CIs 0.18, 1.65). 

Biomass of small tunnellers and large rollers were also included in the best 

model set, but neither variable was significantly correlated with dung 

removal in the absence of Catharsius spp. (Table 7.4). Therefore, across all 

sites it was mainly other large tunneller species and to a lesser extent small 

roller species that provided most dung removal when Catharsius spp. were 

not present. 
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Figure 7.4. Plot showing the relationship between the biomass of non-

Catharsius large tunnellers and dung removal when Catharsius spp. are 

excluded. Plot shows that non-Catharsius large tunnellers are able to 

provide high dung removal rates in the absence of Catharsius spp., but only 

in continuous forest sites. Upward pointing triangles and green fill 

represent unlogged continuous forest stations and sites, downward 

pointing triangles and orange fill represent twice-logged continuous forest 

stations and sites and circles and black fill represent fragment stations and 

sites. Best fit line is taken from a GLMM fitted to data from stations, with 

site as a random effect. Site means are plotted to show general trends. 

Error bars show standard error and biomass values are log10 transformed. 
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However, analysis of just the 16 fragment sites revealed that other large 

tunneller species and small rollers had little contribution to dung removal 

in the absence of Catharsius spp., implying the effect evident in Figure 7.4 

was primarily due to continuous forest sites. In the analysis of fragments, 

the ‘null’ model best explained variation in dung removal, indicating that 

dung removal was highly spatially variable within individual fragment sites 

when no Catharsius spp. were present (Table 7.4). This finding is intuitive 

given that large tunneller biomass in fragments was dominated by 

Catharsius spp. and that the three non-Catharsius large tunneller species 

were largely confined to continuous forest sites (Figure 7.5). Furthermore, 

Catharsius spp. biomass in fragments was increasingly dominated by the 

disturbance-tolerant species Catharsius renaudpauliani as fragment size 

decreased, because Catharsius dayacus declined in abundance with 

fragment size. This shows that large tunneller biomass, and dung removal, 

in fragments was essentially dominated by one species (Figure 7.5). 

Therefore, these analyses revealed evidence of redundancy in dung 

removal in continuous forest sites, with other species of large tunneller and 

small rollers able to contribute to dung removal in the absence of 

Catharsius spp. However, in fragments dung removal appeared almost 

wholly reliant on Catharsius spp., particularly C. renaudpauliani, with only 

weak evidence that small tunnellers contributed to dung removal and so 

dung removal was highly variable in fragments in the absence of Catharsius 

spp. 
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Figure 7.5. Scatterplots showing log10 biomass of all large tunnellers and 

that of the five large tunneller species in relation to log10 area. Green 

triangles represent unlogged continuous forest, orange triangles twice-

logged continuous forest and black circles forest fragments. Error bars 

show standard error. The best fit line is plotted for the only significant 

relationship of Catharsius dayacus biomass against area based on a linear 

model containing the 16 fragment sites. Abbreviations as follows: Cath. = 

Catharsius, day = dayacus, r-p = renaudpauliani, Cop. = Copris, agn = 

agnus, sini = sinicus, P = Proagaderus and watan = watanabei. 
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Table 7.4. Table of fitted models for three separate analyses: 1) 

comparing dung removal in different forest types with and without 

Catharsius spp (‘Catharsius exclusion’), 2) comparing dung removal in 

different forest types by Catharsius spp only (‘Catharsius only’), and 3) 

comparing contributions of different dung beetle guilds to dung removal in 

the absence of Catharsius spp. (‘No Catharsius’). For the first two 

analyses two models are presented, the ‘global’ model (see section 7.3.2 

for detail) and null model. For the final analysis, best models are shown 

for an analysis containing all 18 study sites and an analysis of just forest 

fragments (16 sites). For these analyses, only the best models (Δi <2) are 

presented for the sake of brevity. Best model(s) are shown in bold font. K: 

the number of parameter estimates in the model, AICc: a measure of 

model fit corrected for sample size, Δi: the difference between that 

model’s AICc value and that of the best model, ωi: the Akaike weight, 

representing the model’s relative strength compared to other best models,  

LL: Log-likelihood, the overall model fit with no adjustment for the 

number of parameters. *Models fitted with a negative-binomial 

distribution to account for overdispersion. There is no current way of 

calculating R2 values for this distribution. 

 Model K AICc Δi ωi LL 

1) Catharsius exclusion      
 Forest type*Catharsius* 8 237.2 0 1.0 -110.3 
 1* 3 251.8 14.6 0.0 -122.9 

2) Catharsius only      
 Forest type* 5 110.9 0 0.56 -49.9 
 1* 3 111.4 0.5 0.44 -52.5 

3) No Catharsius      

All sites       

 OLT+SR* 4 48.0 0 0.5 -19.8 

 OLT+ST+SR* 5 49.5 1.5 0.3 -19.5 

 OLT+LR+SR* 5 49.9 2.0 0.2 -19.8 

Fragments       

 1* 3 54.0 0 0.7 -23.9 

 ST* 4 55.9 2.0 0.3 -23.8 
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7.5 Discussion 

7.5.1 The biodiversity-ecosystem function relationship 

Dung beetle biomass was a better predictor of dung removal than species 

richness, and tunneller biomass a better predictor of seed burial than 

tunneller species richness. This meant that some sampling stations with 

very low species richness could support extremely high rates of dung 

removal and seed burial, because of the biomass of a few highly abundant 

species. These findings broadly support hypothesis 1, and strongly support 

previous suggestions that biomass compensation may be a crucial and 

overlooked component of the BEF relationship (Bengtsson 1998; Reiss et al. 

2009). Most controlled experiments assessing the BEF relationship keep 

biomass constant across diversity treatments (Bengtsson 1998), but my 

findings suggest that increased biomass can compensate for declining 

species richness in real ecosystems. Therefore, the ‘selection effect’ 

appeared to be a key driver of dung beetle functions in this system, 

whereby a small number of functionally dominant species were able to 

maintain high rates of dung removal at some sampling stations with low 

species richness (Figure 7.1). However, the best model for dung removal 

also contained a significant positive interaction between biomass and 

species richness, showing evidence of ‘complementarity’ and challenging 

hypothesis 1. This result was probably driven by the fact that dung removal 

at sampling stations with high beetle biomass was highly variable, with no 

dung removal at some stations and almost complete removal at others, 

whereas the stations with high biomass and high species richness had 

consistently high dung removal. Therefore, dung removal was consistently 

higher when there was a high biomass of more species, suggesting that 

higher species richness increased the stability of dung removal. Possible 

mechanisms for this species richness effect could include higher detection 

of dung piles when more species are present, or facilitation between 

nocturnal and diurnal species, as suggested by Slade et al. (2007), whereby 

diurnal species spread out dung leading to more efficient removal by 

nocturnal species. 
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Contrary to dung removal and seed burial results, seed dispersal findings 

did not support hypothesis 1, and seed dispersal rates were more closely 

correlated with roller species richness than roller biomass. This identifies 

some idiosyncrasy in species contributions to functioning, depending on the 

function considered. The relationship of seed dispersal with roller species 

richness may be related to community assembly. Smaller roller species 

were more resistant to fragmentation than larger species, occurring in most 

forest fragments whilst large rollers were absent from smaller fragments 

(Chapter 5). Therefore, the species found at sampling stations with few 

roller species are likely to have been small rollers rather than large rollers, 

and these small species are less functionally important than the larger 

species (Slade et al. 2007a). This could explain why seed dispersal was only 

recorded at stations with ≥3 roller species, when large rollers were more 

likely to be present. The further increase in seed dispersal as roller species 

richness increased from 3-5 species (Figure 7.1) could be explained by the 

fact that the three large roller species in this study system exhibit 

stratified diel activity, with two diurnal and one nocturnal species. This 

means that functionally important large roller species are active 

throughout the 24 hour diel period, which may explain higher rates of seed 

dispersal when all species are present (Slade et al. 2007a). This temporal 

niche complementarity may be more important for seed dispersal than 

dung removal and seed burial, because the most functionally important 

large tunneller species for these functions are all nocturnal (Slade et al. 

2007a; Edwards et al. 2013). This highlights the need for high functional 

diversity with both roller and tunneller functional groups if seed dispersal is 

to be maintained along with dung removal and seed burial. However, seed 

dispersal was a rare function in undisturbed continuous forest accounting 

for ~2% seeds moved and was not recorded in the majority of fragments, so 

these analyses had limited statistical power. Further sampling could help 

clarify the importance of this secondary seed dispersal for plant 

recruitment, given the rarity of the function. There was also considerable 

within-site variation in seed dispersal, roller biomass and roller species 

richness, that may have been reduced with further sampling effort. 
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7.5.2 Interspecific differences in dung beetle functional contributions 

Catharsius spp. were responsible for ~ 50% of dung removal across all sites, 

and ~77% in forest fragments, strongly supporting hypothesis 2 which 

predicted that this genus was disproportionately important for dung 

removal. Catharsius spp. are the largest dung beetle species in this study 

system and so their functional importance fits with numerous studies 

documenting the importance of large dung beetles for dung removal (Doube 

1990; Larsen et al. 2005b; Slade et al. 2007a). Studies on plant productivity 

and marine nutrient fluxes have also identified a dominant role of larger 

individuals for these functions (Huston 1997b; Norkko et al. 2013), showing 

that higher metabolic rates and energy demands of large species are crucial 

determinants of species’ functional contributions (Reiss et al. 2009). The 

functional dominance of a few species of large tunneller aligns strongly 

with the finding that biomass rather than species richness best explained 

dung removal, given that large tunnellers were the majority of dung beetle 

biomass.  

A key finding of this study was that Catharsius spp. contributed more to 

biomass and dung removal in fragments than in continuous forest sites, 

suggesting that biomass compensation can help to bolster ecosystem 

functioning following disturbance in natural ecosystems. Functional 

contributions in both undisturbed and twice-logged continuous forest sites 

were much more evenly distributed across species than in forest fragments, 

with Catharsius spp. contributing only ~33% of dung removal in continuous 

forest. This could be indicative of higher competition for dung resources in 

continuous forest sites, given that species richness was highest in these 

sites and included other large-bodied, highly competitive species. Large-

bodied rollers and tunnellers are strong competitors, able to quickly 

remove dung resources compared with many smaller species (Doube 1990). 

These large-bodied species were present at high abundances in continuous 

forest sites and were largely absent from most forest fragments and it is 

likely that they were able to compete with Catharsius spp., so preventing 

this genus from being competitively and functionally dominant in 

continuous forest. Conversely, because Catharsius spp. were among the 
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only large-bodied species to persist in forest fragments it is likely that their 

functional dominance extended from their ability to outcompete most 

other smaller species in these sites. The Catharsius genus consists of two 

morphologically and functionally similar species that appear to have 

different disturbance tolerances, with the disturbance-intolerant C. 

dayacus that dominates in continuous forest and the disturbance-tolerant 

C. renaudpauliani that appears to replace C. dayacus in forest fragments 

(Figure 7.5). It is unclear why C. renaudpauliani thrives in fragments when 

C. dayacus and all other large species decline following fragmentation, but 

its resilience to fragmentation means that this species is almost individually 

responsible for maintaining dung removal in fragments. 

7.5.3 Resilience of ecosystem functioning following disturbance 

Catharsius spp. were responsible for ~77% of dung removal in forest 

fragments, suggesting that species in this genus were able to compensate 

for the loss of other large-bodied and functionally important species 

following fragmentation. This result shows that single, disturbance tolerant 

species can play key roles in maintaining ecosystem functioning following 

species losses. Theoretical and experimental research has highlighted the 

potential importance of dominant and common species for the maintenance 

of ecosystem functioning following species loss (Smith & Knapp 2003; 

Gaston 2010), but this is one of the first examples from a real-world 

disturbance gradient in highly diverse ecosystem. Peters et al. (2009) 

showed that a disturbance-tolerant army ant species (Dorylus molestus) 

was able to compensate for the loss of a disturbance-intolerant species 

(Dorylus wilverthi) following fragmentation of an African rainforest. 

However, that compensation was a replacement of one dominant species in 

continuous forest with another dominant species in fragmented forest. In 

this study dung removal was reliant on multiple species and dung beetle 

guilds in continuous forest and compensation by Catharsius renaudpauliani 

was unable to fully compensate for loss of these other species. Therefore, 

my findings highlight the need for high diversity to maintain stable rates of 

ecosystem function following disturbance. Much previous evidence for this 

has been from controlled experiments in low-diversity grassland ecosystems 
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(e.g. Tilman et al. 2006). This study reveals that diversity is also crucial for 

maintaining consistent rates of ecosystem functioning under natural 

conditions in high-diversity tropical ecosystems. Further research into 

whether diversity is more important to ecosystem functioning in more 

diverse and less even tropical ecosystems (e.g. Wright 2002), than in 

temperate communities is required, especially given the rapid current 

biodiversity losses in the tropics (Phalan et al. 2013). 

7.5.4 Conclusion 

Biomass was generally a better predictor of dung beetle ecosystem 

functions than species richness. However, high species richness may led to 

more stable provision of dung removal, seed burial and seed dispersal 

functions by increasing the chance of species assemblages containing a 

greater number of functionally important, large-bodied species. In 

continuous forest sites, species contributions to dung removal were more 

even than in forest fragments, but were still reliant on a suite of large 

tunnellers. In forest fragments dung removal was heavily reliant on 

Catharsius spp. for providing 77% of dung removal at dung piles that they 

located. However, the discovery of dung piles by Catharsius spp. was highly 

variable leading to less stable dung removal in forest fragments. This shows 

that disturbance tolerant, large-bodied species can be crucial for 

ecosystem functioning following forest fragmentation, but that dung beetle 

ecosystem functions are more stable when species richness is high.
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Chapter 8 - General discussion 

8.1 Summary of thesis findings 

This thesis assessed biodiversity and ecosystem functioning in tropical 

landscapes dominated by oil palm plantations, using dung beetles as a focal 

taxon. It discussed conservation strategies used in oil palm landscapes and 

compared the impacts of selective logging and forest fragmentation on the 

maintenance of ecosystem functioning. Here I review the key findings from 

each Chapter, discuss further work and the wider implications of my results 

for ecosystem functioning and conservation within managed tropical 

landscapes.  

Chapter 2 summarised how the High Conservation Value (HCV) approach 

can contribute to conserving biodiversity in managed tropical landscapes. 

The HCV approach is widely used in voluntary sustainability standards for 

oil palm and soya production, and it can contribute to biodiversity 

conservation in these systems. The Chapter discussed how a lack of a 

robust scientific evidence base may be hindering the effectiveness of the 

HCV approach for conservation. Strategies for improving the evidence base 

are considered, with an emphasis on the need for relevant academic 

research combined with a strong appreciation of practical challenges faced 

by HCV assessors. I recommend better knowledge exchange between 

scientists and HCV users based on multi-stakeholder meetings and the 

construction of databases of easily-accessible information in order to 

improve the effectiveness of the HCV approach. 

Chapter 3 re-analysed data from 6 published studies on 487 bird, ant and 

beetle species to assess how the conversion of logged tropical forest to oil 

palm plantations affects species based on their feeding guild, body size, 

local population size and geographic range. Large bodied, abundant forest 

species and species from higher trophic levels declined most in abundance 

following conversion to oil palm plantations. The most abundant species in 

oil palm plantations were small bodied, lower trophic level species that had 

low abundances in forest, and were often hyper-abundant in plantations. 
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The proportion of omnivorous species in oil palm plantations also increased 

compared to logged forest. These results revealed consistent responses of 

different taxa to the reduced resource heterogeneity in oil palm 

plantations. I recommended increasing the structural complexity and 

habitat heterogeneity of plantations, in order to increase functional and 

species diversity within plantations.  

Chapter 4 described the unlogged continuous forest site, twice-logged 

continuous forest site and 16 forest fragments sampled for dung beetles 

and their ecosystem functions in this thesis. It described the development 

of robust protocols for dung beetle sampling and quantification of dung 

removal, seed burial and seed dispersal functions. Dung beetle sampling 

over two days was sufficient to compare assemblages across sites as shown 

by low rates of new species accumulation at the end of sampling. Data 

revealed little inter-annual variation in species assemblages or in relation 

to bait type, supporting subsequent analyses in Chapter 7 comparing 

samples of dung beetle composition and measurements of their ecosystem 

functions from different years and using different dung baits.  

Chapter 5 assessed dung beetle species richness, abundance, biomass and 

species composition in unlogged continuous forest, twice-logged continuous 

forest and forest fragments of different size, isolation and forest quality. 

High intensity selective logging of continuous forest had no significant 

impact on any aspect of dung beetle diversity. However, species richness, 

abundance and biomass were significantly lower in forest fragments than in 

continuous forest sites, and this decline was greatest for functionally 

important large rollers and tunnellers. Differences among fragments were 

relatively small, but species richness and roller biomass declined with 

decreasing fragment size whereas tunneller biomass showed no significant 

change with fragment size. Turnover patterns in species assemblages 

among sites were best explained by changes in forest quality. I concluded 

that larger, higher quality fragments can be of conservation value for dung 

beetles, because they support similar species assemblages to continuous 

forest sites and support functionally important rollers and tunnellers. 
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Chapter 6 investigated the impacts of selective logging, forest 

fragmentation and changes in fragment area, quality and isolation on dung 

removal, seed burial and seed dispersal by dung beetles. Heavily logged 

continuous forest supported similar rates of these ecosystem functions to 

unlogged continuous forest, but dung removal, seed burial and seed 

dispersal in forest fragments was >50% lower than in continuous forest 

sites. Among forest fragments there was little further change in dung 

beetle functions, but seed dispersal was not recorded in fragments smaller 

than 100 ha, whereas dung removal and seed burial were still maintained in 

the smallest fragments. These results showed that even heavily disturbed 

continuous forest can maintain dung beetle ecosystem functions and that 

these areas should be a conservation priority. By contrast, forest fragments 

supported greatly reduced rates of dung beetle ecosystem functions, and I 

concluded that fragments needed to be at least 100 ha to support dung 

removal and secondary seed dispersal functions. 

Chapter 7 compared the importance of dung beetle biomass and species 

richness for dung removal, seed burial and seed dispersal. It also assessed 

the role of functionally dominant Catharsius spp. for dung removal 

following forest fragmentation. Biomass was a better predictor of dung 

removal and seed burial than species richness, because these functions 

were largely dependent on large-bodied Catharsius spp. This single genus 

was responsible for 77% of dung removal in forest fragments, compared to 

~33% in continuous forest sites, but reliance on this single genus led to 

highly variable dung removal and seed burial among forest fragments. In 

contrast, high species richness and high biomass in continuous forest sites 

led to consistently high rates of these functions. Across study sites, species 

richness was a better predictor of changes in seed dispersal. These findings 

illustrate the importance of disturbance-tolerant species for ecosystem 

functioning following fragmentation, but reveal that high species richness is 

needed to maintain consistently high rates of ecosystem functioning. 
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8.2 Impacts of selective logging, fragmentation and oil palm 
expansion on biodiversity 

In this thesis, I examined the impacts of three types of land-use change on 

biodiversity and ecosystem functioning: selective logging, fragmentation 

and conversion of forest to oil palm. Chapters 5-7 compared dung beetle 

diversity and functioning in unlogged and logged continuous forest with 

forest fragments of different size, forest quality and isolation. Chapter 3 

quantified the impacts of converting logged forest to oil palm plantations 

on birds, ants and beetles in relation to their species traits.  Here I 

synthesise the relative impacts of these different disturbances and consider 

possible ecological mechanisms for these impacts. 

Chapters 5 and 6 showed that forest fragmentation was far more 

detrimental to dung beetle diversity and functioning than selective logging. 

The relatively small impacts of selective logging on tropical forest species 

has been shown previously for a range of vertebrate, invertebrate and plant 

taxa, suggesting that this is a conserved pattern (Berry et al. 2010; Edwards 

et al. 2011b), even when timber extraction rates are very high. A meta-

analysis by Nichols et al. (2007) also showed that fragmentation was more 

detrimental to dung beetle communities than selective logging. In Chapter 

5, I suggested that this detrimental effect of fragmentation could be linked 

to reduced mammal abundance in fragments compared to continuous 

forest, and the loss of large herbivores in fragments. There is limited 

research on the impacts of fragmentation on mammal communities, 

especially in Southeast Asian oil palm-dominated landscapes, and less 

research still that directly links dung beetle assemblages to mammal 

assemblages (Nichols et al. 2009; Culot et al. 2013). Such studies should be 

a research priority.  

Dung beetle assemblages are known to respond to changes in vegetation 

structure and habitat quality (Davis et al. 1998, 2001), and logging has 

been shown to cause changes in dung beetle community composition 

(Edwards et al. 2013). This thesis revealed that compositional changes in 

response to selective logging, even when logging was high intensity 

(Chapter 4), are smaller than those caused by fragmentation. Importantly, 
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it also showed that selective logging led to little change in the biomass of 

functionally important rollers and tunnellers, supporting the finding that 

logging has little impact on functional diversity (Edwards et al. 2013). This 

result could partly be explained by the fact that the twice-logged 

continuous forest site sampled in this study was still of higher forest quality 

than the majority of fragments. Many of the fragments were formed from 

forest that had also been heavily logged, but it is likely that fragmentation 

caused further changes to forest quality that were more detrimental than 

high intensity selective logging.  It is well documented that forest 

fragmentation interacts synergistically with other types of disturbance, 

such as logging and fire (Barlow et al. 2006; Laurance & Useche 2009). 

Furthermore, edge effects such as elevated tree mortality and wind 

disturbance have been shown to penetrate as far as 400 m into forest 

fragments (Laurance et al. 2002). Therefore, it is highly likely that these 

synergistic disturbances further reduced forest quality in the fragments 

sampled in this thesis, which consequently altered dung beetle 

assemblages.  

Reduced forest quality as a result of disturbances, such as logging and edge 

effects, often leads to reduced habitat complexity and altered vegetation 

structure (Okuda et al. 2003), and these changes can be even more 

extreme following conversion of forest to oil palm plantations (Foster et al. 

2011; Luskin & Potts 2011). This habitat simplification might explain the 

loss of some forest specialist species following fragmentation and oil palm 

conversion, given that high structural diversity is crucial for high animal 

diversity in tropical forests (Novotny et al. 2006). In Chapter 3 I discussed 

how structural diversity is lost following the conversion of forest to oil palm 

which can lead to declines of the most species-rich and specialist groups. I 

also showed that disturbance tolerant omnivores, that may be rare in 

forest, can thrive in structurally simple oil palm plantations. These 

structural patterns led to consistent turnover in assemblages of birds, ants 

and beetles following conversion of forest to oil palm, and could also 

explain turnover in dung beetle assemblages following fragmentation. In 

fact, dung beetle species assemblages in small, low quality fragments were 

very similar to those sampled in oil palm plantations (Chapter 5). 
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Furthermore, better quality and larger fragments supported species 

assemblages more similar to continuous forest sites. Therefore, it seems 

highly likely that simplification of habitat structure leads to the loss of a 

higher number of more niche specialised species and an increase in the 

abundance of a few generalist species following either forest fragmentation 

or forest conversion. In fragments, species turnover of beetles was coupled 

with a strong negative effect of declining fragment area on species 

richness, driven by increased rates of extinction in small fragments.  

Forest fragment area and forest quality were the most important 

determinants of dung beetle diversity, but less isolated fragments had 

higher large tunneller biomass and dung removal. I showed in Chapter 7 

that dung removal in fragments was almost entirely dependent on 

Catharsius renaudpauliani. This species also persists in oil palm plantations 

(Edwards et al. 2013) so it is unlikely that effects of isolation are a result of 

its limited dispersal through the oil palm matrix. Instead, apparent effects 

of isolation may instead be linked to mammal dispersal and dung resources 

in the matrix and fragments. Many mammal species use forest fragments, 

and are more abundant in areas that are closer to continuous forest (Azhar 

et al. 2014). In particular, more generalist mammals such as Bearded pigs 

(Sus barbatus) and Sambar deer (Rusa unicolor), can be more abundant in 

oil palm landscapes than in forest, feeding on oil palm fruit in plantations 

by night and resting in adjacent forested areas during the day (Ickes 2001; 

Danielsen et al. 2009). Therefore, dung availability in less isolated 

fragments could be increased by the presence of generalist mammals in 

fragments, and the supplementary spill-over of more forest-dependent 

species. Assuming beetles are not dispersal limited and that their 

population sizes respond rapidly to increased resources, high dung 

availability may lead to high rates of dung removal in these sites. This 

effect in less isolated sites is also supported by the extremely high dung 

removal and seed burial rates in site 18 that was the least isolated 

fragment, being only 0.2 km from continuous forest, and ≥2 km closer to 

continuous forest than any other fragment (Chapter 6). This site was 

included in the study primarily to maximise variation in areas of fragments 

studied, rather than any consideration of isolation distance. More studies 
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are needed in less isolated fragments and in the oil palm matrix to assess 

spill-over of dung beetles or mammals over these shorter distances from 

continuous forest. Such research could test whether this spill-over can 

maintain higher dung removal and seed burial in less isolated fragments 

and also in the matrix, where dung burial could improve soil fertility and 

potentially improve palm oil yield. It would be interesting to assess 

whether Catharsius renaudpauliani also plays a dominant role in dung 

removal in oil palm plantations, as it does in fragments (Chapter 7). This 

research would build on findings from Chapter 3 and Chapter 7 to assess 

the role of numerically dominant, disturbance-tolerant species for 

maintaining ecosystem functioning in plantations. 

8.3 Maintaining ecosystem functioning following land-use 
change 

A key finding from my thesis was the reliance of dung removal in forest 

fragments on Catharsius renaudpauliani (a large tunneller species), and the 

fact that this resulted in highly variable dung removal in fragments 

compared to continuous forest (Chapter 7). High species richness combined 

with high biomass in continuous forest sites led to consistently high rates of 

dung removal, and high roller species richness was also important for high 

rates of secondary seed dispersal. Firstly, this finding illustrates the 

importance of high species richness for increasing the stability of 

ecosystem functioning, and for the provision of multiple ecosystem 

functions. Secondly, the key role of Catharsius renaudpauliani illustrated 

the importance of functional compensation by disturbance-tolerant species 

in maintaining ecosystem functioning following habitat disturbance. Both 

functional compensation and the role of biodiversity in stabilising 

ecosystem functioning are crucial to understanding the maintenance of 

ecosystem functioning following disturbance and biodiversity losses. 

However, evidence for these processes from diverse, natural ecosystems is 

scarce making the findings in Chapter 7 novel and important (Gonzalez & 

Loreau 2009; de Mazancourt et al. 2013). 

The concept of compensatory dynamics is long established in ecology, and 

Crowell defined the term ‘ecological release’ in 1962 to describe the 
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increase in abundance of weakly competitive bird species on the Bermudas 

when more competitive species were absent (Crowell 1962). Competing 

species often evolve variable and asynchronous strategies to be able to co-

exist and this means that different species will be more abundant under 

different abiotic conditions (Gonzalez & Loreau 2009). From an ecosystem 

functioning perspective, these divergent strategies to avoid interspecific 

competition may result in the maintenance of functions under different 

abiotic conditions, for example, following disturbances (Gonzalez & Loreau 

2009). It is plausible that ecological release explains the importance of 

Catharsius renaudpauliani for dung removal in forest fragments, because 

this species was not recorded in continuous forest sites and appears to be 

disturbance-tolerant. Catharsius renaudpauliani may be outcompeted in 

relatively undisturbed continuous forest sites but appears to be adapted to 

more open habitats, possibly including forest gaps. However, Catharsius 

renaudpauliani did not fully compensate for the loss of other functionally 

important species in this study following fragmentation, and dung removal 

rates were highly variable in fragments (Chapter 7). This variability could 

either be because fewer dung resources in fragments led to a reduced 

requirement for dung removal, or because reliance on this single species 

led to reduced resource use efficiency.  

Niche divergence or expansion typically leads to reduced resource use 

efficiency by species, because traits required to adapt to one abiotic 

condition may alter other aspects of behaviour (Gonzalez & Loreau 2009). 

For example, if Catharsius renaudpauliani is a gap species then it may also 

be highly dispersive in order to find patchily distributed gap habitats, which 

could lead to more stochastic discovery of these gap habitats and dung 

resources therein. This behaviour could explain the highly variable rates of 

dung removal in forest fragments, and may lead to slower rates of dung 

burial. Slower dung burial could increase nitrogen volatilisation and reduce 

nitrogen mineralisation in the soil if dung remains on the soil surface for 

longer in fragments (Nichols et al. 2008). Reduced nitrogen mineralisation 

could be exacerbated in forest fragments because the fragments in this 

study were hotter and drier than continuous forest sites which would 

increase nitrogen volatilisation (Chapter  4; Nichols et al. 2008). 
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Reduced resource use efficiency of single species is a prevailing argument 

behind the importance of diversity for stable ecosystem functioning, 

particularly across space and time (Loreau & Hector 2001; Gonzalez & 

Loreau 2009), and has led to a focus on ‘response diversity’ for maintaining 

ecosystem functioning following disturbance (Mori et al. 2013). Advocates 

of response diversity argue that it enables species communities to maintain 

functioning following disturbance, and that more research is needed on 

how functions are maintained following realistic species losses in response 

to disturbance (Mori et al. 2013). My findings show that there is a degree of 

response diversity within the dung beetles assemblages in this study 

system, because Catharsius renaudpauliani was able to partially 

compensate for the loss of other species following forest fragmentation. 

However, forest fragments did not have the full response diversity of 

continuous forest sites needed to provide consistently high rates of dung 

removal. By contrast, highly degraded twice-logged continuous forest still 

retained substantial response diversity and was able to maintain high rates 

of ecosystem functioning.  

Previous studies have shown declines in the temporal stability of parasitism 

and pollination in response to declining diversity (Balvanera et al. 2005; 

Tylianakis et al. 2006), whereas research on antbird foraging and army ant 

swarming showed that single disturbance-tolerant species can partially 

compensate for species losses following fragmentation (Peters et al. 2009; 

Touchton & Smith 2011). My findings suggest that single species cannot 

always compensate for species losses following fragmentation and that a 

greater focus is needed on research addressing the issue of maintaining 

response and functional diversity in fragmented landscapes. This topic 

would benefit from further research that specifically investigated the 

spatial and temporal variability of ecosystem functions in tropical 

agriculture landscapes. 

8.4 Wider applicability of findings  

This thesis primarily used dung beetles as a focal taxon to study impacts of 

fragmentation on biodiversity and ecosystem functioning, but many of the 
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findings provide important indicators of wider taxonomic and functional 

impacts. Dung beetles have been proposed as ecological indicator species, 

because they can be cheaply sampled and accurately represent patterns of 

other taxonomic groups and habitat patterns (Spector 2006; Gardner et al. 

2008). The congruent responses of dung beetles with other species groups 

probably results from their habitat specialisation and relatively small range 

sizes (Davis et al. 2001; Spector & Ayzama 2003; Spector 2006). This means 

that dung beetles show diverse responses to environmental change and 

disturbance, including subtle disturbances from canopy loss to major 

impacts from habitat conversion (Davis et al. 1998; Nichols et al. 2008), 

and can be used to monitor the impacts of disturbance for management 

purposes (Spector 2006). I have already discussed the findings from Chapter 

3 which revealed consistent ecological responses of three divergent taxa to 

the conversion of forest to oil palm, and here I discuss the wider 

applicability of findings from Chapters 5-7 based on analyses of dung beetle 

diversity and functions. 

In Chapter 5 I showed that forest fragment size was generally a better 

predictor of dung beetle diversity than habitat quality or isolation. This 

supports findings from other studies of dung beetles as well as studies on 

other taxa such as plants, birds, butterflies and mammals (Hill & Curran 

2003; Benedick et al. 2006; Michalski & Peres 2007; Nichols et al. 2007; 

Bregman et al. 2014). These findings suggest that Species-Area 

Relationships and extinction dynamics are consistently important drivers of 

species responses to fragmentation. However, forest quality was also 

crucial for explaining turnover in species assemblages among fragments. 

Forest quality is commonly overlooked in fragmentation studies (Nichols et 

al. 2007; Bregman et al. 2014) and my findings show that its inclusion is 

vital for understanding the ecological impacts of tropical forest 

fragmentation. Dung beetle functions were generally less affected by 

fragment characteristics than was species diversity (Chapter 6), although 

seed dispersal was not recorded in fragments smaller than 100 ha. In fact, 

fragmentation itself had the greatest impact on functioning, and even large 

fragments (500-3,529 ha) had far lower rates of dung removal, seed burial 

and seed dispersal than continuous logged forest sites. There has been 
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relatively little research into the impacts of fragmentation on ecosystem 

functioning, although one study in Kenyan forest fragments revealed 

idiosyncratic responses of different ecosystem functions to fragmentation 

(Schleuning et al. 2011). However, the largest forest block in that study 

was 9,500 ha and so fragmentation effects cannot be directly compared to 

this study, and it is clear that further research is needed to assess 

ecosystem functioning in fragmented landscapes. 

Findings from Chapter 7 on the importance of disturbance-tolerant species 

for ecosystem functioning provides real-world support for previous 

experimental research from species-poor grassland systems (Smith & Knapp 

2003; Jaillard et al. 2014). The necessity for high species richness to 

maintain stable dung beetle functions (Chapter 7), provides evidence from 

a high diversity tropical forest system to support extensive studies on the 

role of diversity in maintaining plant productivity in low diversity grassland 

systems and experimental species manipulations (Tilman et al. 2006; de 

Mazancourt et al. 2013). The role of species richness for dung removal and 

plant productivity suggests that common mechanisms may be important for 

a range of different ecosystem functions. Plant productivity and dung 

removal are distinct functions, but it appears that both can be maximised 

through interspecific competition and niche partitioning of various 

resources. For example, plant productivity through species’ partitioned use 

of resources such as light, nitrogen, phosphorus and micronutrients, and 

dung removal by niche partitioning of species in relation to dung type, soil 

structure, soil type and forest quality (Doube 1983, 1990; Davis et al. 

1998). Species’ morphological and behavioural adaptations for exploiting 

these resource gradients can explain how species respond and provide 

ecosystem functions following disturbance. Therefore, a clear knowledge of 

species’ responses to disturbance is crucial for understanding the provision 

of different ecosystem functions, and the maintenance of multi-

functionality following land-use change (Maestre et al. 2012; Pasari et al. 

2013). 
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8.5 Conservation in managed tropical landscapes 

Chapters 5 and 6 showed that continuous forest, even after high-intensity 

selective logging, had far greater conservation value for dung beetles and 

their functions than large forest fragments (up to 3,529 ha). I conclude that 

conserving degraded continuous forest should be a higher priority, not just 

because it can support a large number of species found in unlogged 

continuous forest (Berry et al. 2010; Edwards et al. 2011b; Woodcock et al. 

2011), but also because it appears to be functionally similar to unlogged 

continuous forest. Protection of continuous forest in oil palm landscapes 

has been promoted, for example through ‘biobanking’ (Edwards et al. 2010; 

Edwards & Laurance 2012). The idea of ‘biobanking’ stems from the land-

sparing conservation strategy and allows oil palm companies to clear small 

forest patches in their concessions if an area of equivalent land area is 

protected elsewhere as part of a larger forest reserve (Edwards & Laurance 

2012). This landscape-level conservation does not fit the current 

certification requirements of the Roundtable on Sustainable Palm Oil 

(RSPO) which, through the use of the High Conservation Value approach, 

focuses on conservation measures within individual oil palm concessions. In 

Chapter 2, I briefly discussed the difficulty of landscape-level conservation 

under the current HCV approach. For example, landscape-scale 

conservation measures such as forest corridors would typically span 

multiple oil palm concessions and so can only be effective if all of these 

concessions are RSPO-certified and the companies agree to coordinate 

conservation efforts. Such strategies can be even more challenging if 

plantations are owned by small-holders who rarely have the resources to 

commit to conservation (Chapter 3). These practical barriers to 

implementation mean that national level conservation planning and 

landscape-scale HCV assessment may be essential for effective 

conservation in oil palm, and other tropical agricultural landscapes 

(Edwards & Laurance 2012). It is imperative that scientists working in these 

systems increase efforts to communicate their findings with HCV assessors 

and government policy makers in order to move towards landscape-level 

conservation measures in tropical agricultural landscapes.  



 

237 

In the immediate term, conservation strategies in plantations will continue 

to focus on the protection of isolated natural forest fragments for reducing 

biodiversity losses. Therefore, it is vital that these fragments provide 

maximum conservation benefit. Chapters 5 and 6 showed that the 

fragments sampled in my study varied in their conservation value in 

relation to their size, and to a lesser extent in relation to their forest 

quality and degree of isolation. Larger fragments supported higher dung 

beetle species richness and higher abundance of functionally important 

large tunnellers and rollers. Furthermore, larger and better quality 

fragments supported species assemblages more similar to those found in 

continuous forest sites. Therefore, I conclude that fragments should be at 

least 100 ha in size to maintain some level of dung beetle diversity, dung 

removal and seed dispersal. This recommendation is broadly supported by 

research from the Amazon which showed that fragments larger than 100 ha 

were able to support some large mammal species 30 years after isolation 

(Michalski & Peres 2007). However, there is a lack of evidence on the 

conservation value of larger forest fragments, because most large-scale 

fragmentation studies only consider fragments up to 100 ha in size 

(Laurance et al. 2002; Ewers et al. 2011). Extinction debt and synergistic 

disturbances could lead to further biodiversity losses in large fragments 

centuries after isolation (Turner et al. 1996; Laurance & Useche 2009; 

Wearn et al. 2012), and even if forest fragments can maintain current 

diversity, they may not be able to preserve species under climate change if 

species are required to shift their distributions (Brodie et al. 2012). 

Therefore, continued research is needed into whether tropical forest 

fragments can increase habitat connectivity and help species disperse or 

shift their distributions through agricultural landscapes. 

8.6 Conclusions 

Species assemblages in oil palm plantations are dominated by small-bodied 

species from lower trophic levels that are rare or absent in closed-canopy 

rainforest. Heavily-logged continuous tropical forest supports greater 

diversity of dung beetles and much higher rates of ecosystem functioning 

than forest fragments. Large and better-quality fragments support species 
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assemblages more similar to continuous forest and support some dung 

beetle functions. Dung removal in forest fragments is dependent on a few 

large-bodied, disturbance-tolerant dung beetle species that partially 

compensate for the loss of other species, but this dependence leads to 

highly variable rates of dung removal in fragments.
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Appendix 1 

A1.1 Glossary of key terms 

HCV National Interpretation (NI): documents designed to give country-

specific detail to broad HCV definitions. Typically developed by members of 

national environmental and social NGOs. They may provide some specific 

recommendations, e.g. what defines a significant population of key 

species, or the size required to qualify for HCV 2. HCV NIs are not endorsed 

by the HCV Resource Network or peer reviewed. Not all countries have NIs 

and of those that do, the quality is highly variable. 

Peer review of HCV assessments: During public consultation of HCV 

assessments, anyone can request a peer review if they deem the 

assessment insufficient or inaccurate; e.g. insufficient community or expert 

consultation or inadequate management plans. The peer review can be 

done by members of the HCV Resource Network Technical Panel, which 

consists of HCV international experts on HCV, such as members of 

environmental and social NGOs. Peer reviews can also be done by third 

parties. The review examines whether the HCV assessment was carried out 

in line with HCV ‘best practice’ (Brown et al. 2013). Whoever requests the 

peer review must cover the cost. 

Significant values: “those recognised as being either unique, or 

outstanding relative to other examples in the same region, because of their 

size, number, frequency, quality, density or socio-economic importance, on 

the basis of existing priority frameworks, data or maps, or through field 

studies and consultations undertaken during the HCV assessments (Brown et 

al. 2013).” 

The HCV approach/concept: the broad concept designed to protect critical 

environmental and social values using six high conservation values. 

The HCV (assessment) process: the activity of identifying HCVs, and 

suggesting management and monitoring plans for a proposed development 

area. 
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A1.2. Requirements for certification, beyond an HCV assessment.  

 

Legality. The first step in any certification process is to comply with local 

and international laws, such as environmental protection laws. 

Environmental and Social Impact Assessments. Legally required in many 

countries. May be combined with HCV assessment, but tend to be more 

limited in scope. 

Secure tenure, customary rights and consent. Ensures the company have 

rights to the land. Any development should not affect local communities 

without their free, prior and informed consent (FPIC). 

Certification scheme requirements. The requirements typically include 

those listed above, as well as additional requirements. For example, the 

RTRS rules that new soy plantings cannot replace any native forest.
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Appendix 2 

 

 

Figure A2.1. Rank abundance curves for birds, ants, and beetles in forest 

(dark grey lines) and oil palm (light grey lines) habitats. Values plotted are 

log relative abundances of each species/genera across all studies. X-axes 

labels are suppressed to aid interpretation, but total number of ranks in 

each taxa is listed on each panel.
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Appendix 3 

Table A3.1. Table of models comparing all response variables between 

continuous forest and forest fragments. For each response variable two 

models are presented, one including forest type (and site as random 

effect) and one just containing the random effect (site). K: the number of 

parameter estimates in the model, AICc: a measure of model fit corrected 

for sample size, Δi: the difference between that model’s AICc value and 

that of the best model, ωi: the Akaike weight, representing the model’s 

relative strength compared to other best models,  LL: Log-likelihood, the 

overall model fit with no adjustment for the number of parameters, and 

R2 (M; C): Marginal (M) and conditional (C) estimated R2-vaues, based on 

Nakagawa & Schielzeth (2013). *Abundance data were fitted using a 

negative-binomial distribution to account for overdispersion. There is 

currently no way of calculating R2 values for this distribution, and so R2 

values are not shown for these models. R: roller, T: tunneller, S: small and 

L: large. 

Response variables Model K AICc Δi ωi LL R2 (M;C) 

Species richness 
       

 
Type 3 713.1 0 0.99 -353 0.35;0.60 

 
1 2 722.8 9.7 0.01 -359 0;0.60 

Abundance* 
       

 
Type 4 1246.8 0 0.97 -619 NA 

 
1 3 1253.8 7 0.03 -624 NA 

Biomass 
       

 
Type 4 118.7 0 0.93 -55 0.28;0.68 

 
1 3 124.0 5.3 0.07 -59 0;0.67 

Simpsons 
       

 
1 3 148.1 0 0.54 -71 0;0.48 

 
Type 4 148.4 0.3 0.46 -70 0.06;0.48 

Alpha 
       

 
Type 4 617.3 0 0.98 -304 0.19;0.34 

 
1 3 625.0 7.7 0.02 -309 0;0.32 

Biomass R 
       

 
Type 3 83.3 0 0.89 -39 0.18,0.41 

 
1 2 87.5 4.24 0.11 -42 0;0.48 

Biomass T 
       

 
Type 3 146.2 0 0.92 -70 0.22,0.57 

 
1 2 151.0 4.76 0.08 -73 0,0.58 

Biomass LR 
       

 
Type 3 31.5 0 1 -13 0.28;0.28 

 
1 2 47.8 16.3 0 -22 0;0.50 
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Biomass SR 
       

 
Type 3 81.2 0 0.67 -37 0.07;0.25 

 
1 2 82.6 1.4 0.33 -39 0;0.28 

Biomass LT 
       

 
Type 3 178.8 0 0.86 -86 0.21;0.62 

 
1 2 182.5 3.7 0.14 -89 0;0.62 

Biomass ST 
       

 
Type 3 41.0 0 0.88 -17 0.05;0.05 

 
1 2 45.0 4.1 0.12 -20 0;0.01 

Abundance R 
       

 
Type 3 63.8 0 0.86 -29 0.10,0.21 

 
1 2 67.4 3.64 0.14 -32 0,0.27 

Abundance T* 
       

 
Type 4 1193.0 0 0.94 -592 NA 

 
1 3 1198.7 5.68 0.06 -596 NA 

Abundance LR 
       

 
Type 3 34.4 0 1 -14 0.25;0.25 

 
1 2 48.6 14.2 0 -22 0;0.45 

Abundance SR 
       

 
Type 3 70.4 0 0.75 -32 0.07;0.18 

 
1 2 72.6 2.2 0.25 -34 0;0.21 

Abundance LT 
       

 
Type 3 56.2 0 0.95 -25 0.10;0.13 

 
1 2 62.2 6 0.05 -29 0;0.19 

Abundance ST 
       

 
1 2 15.1 0 0.5 -6 0;0 

 
Type 3 15.2 0 0.5 -4 0.02;0.02 

Sp. rich. (forest sp.) 
       

 
Type 3 124.8 0 1 -59 0.38;0.58 

 
1 2 136.7 11.9 0 -66 0;0.60 

Abund. (forest sp.)* 
       

 
Type 4 1238.0 0 0.97 -615 NA 

 
1 3 1245.1 7.1 0.03 -619 NA 

Biomass (forest sp.) 
       

 
Type 3 28.2 0 0.98 -11 0.07;0.07 

 
1 2 35.9 7.8 0.02 -16 0;0.04 

 

 

 

 

 

 



 

244 

Table A3.2. Table of coefficients (means) and confidence intervals of 

functional group abundances in continuous forest and fragments. Values 

are not in the original abundance scale, see Chapter 5 table 5.1 for details 

of links or transformations. 

Variable Mean (Cont, 
Frag) 

Confidence intervals 
(Cont; Frag) 

Roller abundance 0.29, -0.76 (-0.35,0.93); (-1.09,-0.42) 
Tunneller abundance 4.48, 3.19 (3.72,5.23): (2.92,3.46) 
Large roller abundance 0.01, -2.71 (-0.43,0.44); (-3.43,-1.99) 
Small roller abundance 0.07, -0.80 (-0.61,0.75); (-1.14,-0.48) 
Large tunneller 
abundance 

0.18, -0.87 (-0.30,0.67); (-1.17,-0.58) 

Small tunneller 
abundance 

0.57, 0.30 (0.24,0.90); (0.15,0.45) 
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Table A3.3. Total number of individuals of each species caught at each site, separated by guild, with sites ranked from largest to 

smallest (left to right). Abbreviations as follows: Ca. = Catharsius, C. = Copris, Inda. = Indachorius, M. = Microcopris, Micronth. = 

Micronthophagus, Oc. = Ochicanthon, O. = Onthophagus, P. = Paragymnopleurus, Pr. = Proagaderus, S. = Sisyphus, 1 = Danum Valley 

Conservation Area, 2 = Ulu-Segama Malua Forest Reserve, 3 = Lungmanis VJR, 4 = Ulu Sapa Payau VJR, 5 = Sungai Sapi C VJR, 6 = 

Materis VJR, 7 = Keruak VJR, 8 = ‘Watercatchment’ HCV area, 9 = Labuk Road VJR, 10 = ‘Sabahsar’ HCV area, 11 = ‘Rekasar’ HCV 

area,  12 = ‘Yongpeng’ HCV area, 13 = Sungai Sapi A VJR, 14 = Pin Supu forest, 15 = Meranti’ HCV area, ‘16 = ‘Jatu’ HCV area, 17 = 

‘Lunpadas’ HCV area, and 18 = ‘Delilah’ HCV area. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Large tunnellers                   

Ca. dayacus 73 54 8 16 5 10 - - 17 1 - - 1 7 - - - - 

Ca. renaudpauliani  - - 3 14 17 - - 1 2 41 4 98 12 1 - - 7 13 

C. agnus  31 25 - 61 - - - - - - - - - - - - - - 

C. sinicus 21 33 - 1 - 2 - - - - - - - - - - - - 

Pr. watanabei 60 45 1 8 - 0 2 18 - 2 1 3 3 - - 1 - - 

Small tunnellers                   

C. ramosiceps 8 6 - 3 1 - - - - - - - - - - - - - 

M. doriae 9 6 - 71 - - 1 - - - - - - - - - - - 

M. hidakai 6 2 14 - - - - - - 4 - 10 1 - - - - 1 

O. pastillatus - 1 - 1 6 - - - 38 - - - - - - - - - 

O. (Inda.) sp 1 1 - - - 1 - - - 1 - - - - - - - - - 

O. (Inda.) aff. - - - - - - - 1 - - - - - - - - - - 
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semidanumensis 

O. (Inda.) aff. 
paramasaoi  

- - - - - - - 1 - - - - - - - - - - 

O. (Inda.) aff. 
Pseudoworoae  

- - - - 2 - - - - - - - 2 - 1 - - - 

O. (Micronth.) sp 4 1 - 8 - 4 5 1 - - - - - 16 - - - - - 

O. sp aff cf 
batillifer 

2 - - - - - - - - - - - - 1 - - - - 

O. sp aff deliensis - 4 - - - - - - - - - - - - - - - - 

O. angustatus 3 3 - 2 3 - - - 1 - - - - 43 - - - - 

O. aphodioides 3 5 1 - 10 3 - - - - - - - - - - - - 

O. sp aff 
aphodioides 

- - - - - - - - - - - 1 - - - - 1 - 

O. arayai 1 4 2 - - 5 - - - 11 - 7 - 2 - - 2 2 

O. borneensis 15 23 13 9 3 2 1 - 59 - - - - - - - - - 

O. agg. cervicapra 530 345 15 34 5 2 10 45 - 95 9 186 52 - - - 53 2 

O. cf batillifer 1 - - - - - - - - - 1 - 1 - - - - - 

O. cf quasijohkii - - - 32 13 - - - 2 - - - 1 1 - - - - 

O. cf rutilans - - - - - 1 1 - - 10 - - - - - - - 2 

O. deflexicollis 1 - - - - - - - - - - - - - - - - - 

O. dux 6 - - 5 - - - - - - 6 - - 8 1 - - - 

O. fuji - 12 2 25 - 2 - - - 1 2 - 2 3 - 3 - - 

O. hidakai - - - 1 - - - - - - - - - - - - 1 - 

O. incises 9 14 3 - 11 31 19 1 - 2 - 11 2 1 - - 2 - 

O. laevis laevis 1 - - - - - - - 1 - - - - - - - - - 
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O. mulleri 15 - 7 - - 3 - 5 27 10 - 49 5 4 - - 9 - 

O. agg. obscurior 26 133 5 12 10 122 14 6 - 91 4 68 46 8 1 - 12 4 

O. agg. ochromerus 7 5 - - - - - - - - - - - - - - - - 

O. agg. pacificus 2 2 - 9 1 - - - - - - - - - - - - - 

O. pavidus - - - - - 1 - - - - - - - - - - - - 

O. rorarius 1 2 - 1 - - - - - - - - - - - - - - 

O. rudis 8 19 5 - 1 1 - - - 1 - 2 1 - - - - - 

O. rugicollis 11 31 22 - - 51 12 - - 25 1 42 - - - 2 52 1 

O. sarawacus 2 1 - 42 - - - - 97 - - - - 3 - - - - 

O. agg. semiaureus 10 2 125 - 10 50 30 46 9 44 119 54 17 147 33 12 3 - 

O. semicupreus 2 2 13 1 1 2 - 14 8 39 10 70 6 - 1 2 4 6 

O. sp aff borneensis 5 - - 4 2 - - - - - - - - 1 - - - - 

O. taeniatus - - 1 1 2 2 - - - - - - 1 - - - - - 

O. vulpes 52 35 32 31 95 11 1 30 - - 8 - 95 8 2 - - - 

O. waterstradti 30 - 2 6 10 4 1 - - - - - 7 2 - - - - 

O. sp A - - - - 3 - - 3 1 - - - - - - - - - 

O. sp B - - - - 1 - - 1 - - - 1 - - - - 1 - 

O. sp C - - - - - - - - 2 - - 1 - - - - - - 

O. sp D - - - - - - - - - - - 1 - - - - - - 

O. aff sp D - - - - - - - - - - - 1 - - - - - - 

O. sp M - - - - - - - - - - - - - 1 - - - - 

Large rollers                   

P. maurus 10 28 2 - - - 1 - 113 - - - - 2 - - - - 
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P. sparsus 66 106 12 - 1 3 1 5 1 - - - - - - - - - 

P. striatus 9 17 - 4 - - - - 14 - - - - - - - - - 

Small rollers                   

S. thoracicus 103 252 41 10 3 71 50 22 11 1 2 10 9 1 - - 2 1 

Oc. danum 3 1 - - - - - - 2 - - - - - - - - - 

Oc. dytiscoides 7 - - - - 73 10 - - - - - - - - - - - 

Oc. masumotoi 4 7 15 17 41 5 - 28 11 - 16 - 85 2 2 - - - 

Dwellers                   

Oniticellus 
tessellatus 

- - - - - 1 - - - - - - - - - - - - 

Total 1095 1225 352 421 262 463 155 227 417 378 183 615 365 246 41 20 149 32 
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Table A3.4. Summary data of species richness, abundance and biomass at each forest site. Means and standard deviations per 

sampling station at each site are shown. Biomass values are all in grams (g) and are presented for all species and by functional 

group. Site numbers are as defined in legend of Table A5.3. 

Site 
Species 
richness Abundance Biomass 

Large roller 
biomass 

Small roller 
biomass 

Large tunneller 
biomass 

Small tunneller 
biomass 

 
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 

1 19.4 3.1 115.5 62.0 7.2 2.4 0.79 0.5 0.06 0.1 5.23 2.2 1.15 0.8 

2 19 2.9 122.5 52.7 6.7 2.5 1.48 1.0 0.13 0.1 4.14 2.0 0.90 0.3 

3 11.3 2.5 35.2 12.4 1.3 0.7 0.12 0.1 0.03 0.0 0.57 0.6 0.57 0.3 

4 11.6 4.5 42.1 20.9 3.3 2.3 0.06 0.1 0.02 0.0 2.33 2.1 0.87 0.6 

5 9.1 2.7 26.2 13.5 1.4 0.9 0.01 0.0 0.03 0.0 1.05 0.9 0.33 0.2 

6 10.2 1.9 46.3 18.8 1.2 0.5 0.02 0.0 0.09 0.1 0.55 0.4 0.50 0.3 

7 5.7 1.4 15.5 6.1 0.3 0.1 0.02 0.1 0.03 0.0 0.03 0.1 0.21 0.1 

8 7.6 2.4 22.7 9.3 0.6 0.3 0.04 0.1 0.03 0.0 0.27 0.2 0.28 0.1 

9 8.9 1.5 41.7 20.1 3.7 2.8 1.95 1.9 0.01 0.0 0.98 0.8 0.73 0.3 

10 8.5 1.3 47.3 18.2 3.0 1.9 0 0 0 0 2.47 1.9 0.56 0.3 

11 6.3 1.8 26.1 12.0 0.9 0.7 0 0 0.02 0.0 0.28 0.4 0.55 0.4 

12 9.2 2.3 61.5 24.9 5.4 3.1 0 0 0.01 0.0 4.58 3.0 0.77 0.4 

13 12.4 2.7 73 15.9 2.2 1.0 0 0 0.12 0.1 1.29 1.1 0.76 0.1 

14 6.2 1.8 24.6 4.0 1.1 0.4 0.03 0.1 0 0 0.41 0.4 0.62 0.1 

15 3.7 1.2 13.7 8.0 0.3 0.2 0 0 0 0 0 0 0.33 0.2 

16 3 0 6.7 4.6 0.2 0.1 0 0 0 0 0.04 0.1 0.13 0.1 

17 7.5 3 37.3 15.5 1.3 0.9 0 0 0 0 0.81 1 0.51 0.3 

18 5 2 10.7 6.0 2.1 2.7 0 0 0 0 2.01 2.7 0.06 0.0 
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Table A3.5. Table of best models (Δi < 2) of abundance by body size and 

functional group. K: the number of parameter estimates in the model, 

AICc: a measure of model fit corrected for sample size, Δi: the difference 

between that model’s AICc value and that of the best model, ωi: the 

Akaike weight, representing the model’s relative strength compared to 

other best models,  LL: Log-likelihood, the overall model fit with no 

adjustment for the number of parameters, and R2 (M; C): Marginal (M) and 

conditional (C) estimated R2-vaues, based on Nakagawa & Schielzeth 

(2013). 

Response 
variable 

(by body size and 
functional group) 

K AICc Δi ωi LL R2 (M; C) 

Large roller abundance 
      

 
Area 3 23.37 0 0.25 -8.6 0.29; 0.29 

 
Area + Veg 4 24.35 0.98 0.15 -8.0 0.41; 0.41 

 
Area + Iso 4 25.2 1.84 0.1 -8.4 0.34; 0.34 

 
Area2 4 25.34 1.97 0.09 -8.5 0.41; 0.41 

Small roller abundance 
     

 
Area + Iso2 5 58.9 0 0.11 -24.2 0.25; 0.25 

 
Area + Veg + Iso2 6 59.01 0.11 0.1 -23.1 0.23; 0.23 

 
Area + Veg2 + Iso 6 59.36 0.46 0.08 -23.3 0.22; 0.22 

 
Area + Veg + Iso 5 59.39 0.49 0.08 -24.4 0.17; 0.17 

 
Area2 + Iso2 6 59.64 0.75 0.07 -23.5 0.33; 0.33 

 
Area + Iso 4 59.66 0.77 0.07 -25.7 0.16; 0.18 

 
Area2 + Veg + Iso2 7 60.56 1.67 0.05 -22.8 0.28; 0.28 

 
Area + Veg2 + Iso2 7 60.77 1.88 0.04 -22.9 0.24; 0.24 

Large tunneller abundance 
     

 
Iso 3 46.54 0 0.16 -20.2 0.14; 0.14 

 
Area2 + Iso 5 47.14 0.6 0.12 -18.3 0.16; 0.16 

 
Area2 + Iso2 6 47.2 0.66 0.12 -17.2 0.16; 0.16 

 
Iso2 4 47.61 1.07 0.1 -19.6 0.11; 0.11 

 
Area2 + Veg2 + Iso 7 48.17 1.62 0.07 -16.6 0.19; 0.19 

 
Area + Iso 4 48.37 1.83 0.07 -20.0 0.14; 0.14 

Small tunneller abundance 
     

 
1 2 12.25 0 0.3 -4.1 0; 0 

 
Iso 3 14.12 1.87 0.12 -4.0 0; 0 
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Figure A3.1. A comparison of effect sizes from abundance and biomass 

models by body size and functional group. Effect sizes are regression slope 

values of explanatory variables (x axis) against response variables (y axis). 

Effect sizes are plotted only for variables included in best models 

according to AICc model ranking and where confidence intervals do not 

overlap zero. For linear predictors, positive effect sizes indicate positive 

relationships between the predictor and response variables, negative 

effect sizes indicate negative relationships. For curvilinear predictors, a 

positive effect size indicates a convex relationship, whilst a negative 

effect size indicates a concave relationship between the response and 

predictor variable. Errors bars show 95% confidence intervals. Numbers in 

brackets indicate the maximum number of species in the analysis. 
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Abbreviations as follows: Iso = isolation distance. Dark grey bars show 

effect sizes for biomass and light grey for abundance. 
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Table A3.6. Comparison of analyses of turnover in species assemblages, with different dissimilarity indices and species subsets. I 

present results for analyses of all sites and only fragments. Species subsets are as follows: all species occurring at least twice AND at 

≥2 sites (n = 46 species), on species occurring at least five times AND at at ≥2 sites (n = 38 species), and on species occurring at least 

twice AND at at ≥5 sites (n = 22 species). Dissimilarity indices are Morisita Horn (MH), Bray-Curtis (BC) and Chao-Jaccard (CJ). Stress 

values are taken from Non-metric Multi Dimensional Scaling analysis, and significant variables and R2 values estimated using vector 

fitting. 

N species Analysis Index Stress Significant variables MNS variables R2: Veg R2: Area R2: Iso R2: Type 

46 Fragments MH 0.06 Veg, Area - 0.78 0.50 0.29 NA 
46 Fragments BC 0.06 Veg, Area - 0.79 0.43 0.23 NA 

46 Fragments CJ 0.07 Veg Area 0.77 0.33 0.21 NA 

46 All sites MH 0.07 Veg Type 0.75 NA NA 0.15 

46 All sites BC 0.07 Veg Type 0.68 NA NA 0.16 

46 All sites CJ 0.06 Veg Type 0.63 NA NA 0.15 

38 Fragments MH 0.06 Veg - 0.79 0.29 0.28 NA 

38 Fragments BC 0.05 Veg, Area - 0.81 0.38 0.29 NA 

38 Fragments CJ 0.06 Veg Area 0.79 0.36 0.32 NA 

38 All sites MH 0.05 Veg Type 0.78 NA NA 0.15 

38 All sites BC 0.04 Veg Type 0.67 NA NA 0.16 

38 All sites CJ 0.04 Veg Type 0.72 NA NA 0.16 

22 Fragments MH 0.07 Veg Area 0.85 0.33 0.32 NA 

22 Fragments BC 0.07 Veg Area, Iso 0.81 0.35 0.33 NA 

22 Fragments CJ 0.06 Veg Area 0.79 0.32 0.22 NA 

22 All sites MH 0.07 Veg - 0.71 NA NA 0.14 

22 All sites BC 0.06 Veg Type 0.68 NA NA 0.13 

22 All sites CJ 0.06 Veg - 0.63 NA NA 0.08 
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Figure A3.2. A comparison of dung beetle species assemblages in all forest 

sites and an oil palm plantation. In the plot points (sites) that are closer 

together support more similar species assemblages. NMDS plot (Bray-Curtis 

method) fitted for all species recorded at least twice (n = 2 individuals) 

and in at least 2 stations within a site. NMDS ordination was based on 

Wisconsin double standardised abundance values. To aid interpretation, 

sites larger than the mean fragment size are plotted as large circles and 

those smaller than the mean as small circles, and sites with vegetation 

quality higher than the mean quality score of all sites are plotted as black 

circles and those with vegetation quality lower than the mean as hollow 

circles. The two continuous forest sites are plotted as large, black 

triangles, and the oil palm site as a small red square. 
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Appendix 4 

Table A4.1. Comparison of the percentage of dung removed by Catharsius 

spp. in fragments, twice-logged continuous forest and unlogged continuous 

forest. Values shown are 95% confidence intervals for analyses excluding 

stations where < 5% of dung was removed (n = 77 stations), <10% of dung 

was removed (n = 62 stations) and <20% of dung was removed (n = 53 

stations). 2L = twice-logged continuous forest, UL = unlogged continuous 

forest. 

Site 5% 10% 20% 

Fragments 59.8, 74.4 70.8, 83.5 72.3, 86.7 

2L 15.6, 37.3 17.9, 32.6 17.9, 32.6 

UL 29.9, 57.9 33.1, 52.3 33.1, 52.3 
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