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Abstract 

 

 

Human transport of species around Earth has led to the intentional and accidental 

introduction of many species into new regions. Introduced species can have significant 

impacts outside their native ranges, with a range of positive and negative ecological effects 

on native biota, community productivity and nutrient cycling. Climate and land use are 

major determinants of non-native species distributions, with climate setting the broad 

limits to plant distribution and productivity, and with human activity associated with 

different land uses affecting the dispersal and success of introduced species. There is 

potential for future changes in land use and climate to have an impact on distributions of 

non-native species, due to possible changes to transport, establishment and spread. This 

thesis uses records of plant species in Britain to determine patterns of non-native species 

richness with climate and land use, predict possible changes with climate change, quantify 

establishment of non-native species and to examine levels of establishment for groups of 

non-native species with different traits (Plant Functional Types). Models were used to 

examine the relationship between species richness of non-natives and natives with climate 

variables and land cover types, and projected climate data was used to predict possible 

future changes. An establishment index was calculated to quantify establishment of non-

native species; it was found that date of introduction and range size are not necessarily 

good predictors of level of establishment and that well established species are less likely to 

be associated with urban areas than poorly established species. Distributions and 

establishment of Plant Functional Types were examined, showing that some groups have 

distinct patterns with land cover related to where they are most likely to be introduced. 

The least established groups show greater associations with land cover than with climate. 

Climate and land use changes have the potential to allow new species to establish and to 

allow already established species to spread due to shifts or expansions in their potential 

climatic ranges. Future studies of non-native species should attempt to distinguish between 

time since arrival and the level of establishment because the two may not be associated. 
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Chapter 1:  General introduction 

 

 

1.1 Rationale 

 

Human transport of species around Earth is homogenising Earth's biota, intentionally or 

accidentally introducing many species into new areas (Vitousek et al., 1997; Hulme, 2009a). 

Non-native plants are introduced into new regions for a variety of reasons, including 

intentionally for use as crops or as ornamentals, and accidentally as seed contaminants and 

with raw materials such as timber, ballast and wool (Clement and Foster, 1994). A 

proportion of introduced species will appear in the wild, but will not necessarily form self-

perpetuating populations; some of these species will become established by reproducing 

and spreading successfully in the wild, and a smaller proportion will spread more widely 

(e.g. Kowarik, 1995; Williamson and Fitter, 1996; Aikio et al., 2010). A limited number of 

introduced species may be considered to be invasive, defined as those which have a 

detrimental impact in their area of introduction either ecologically, socially or economically 

(GB Non-native species secretariat, 2011a). Impacts of invasive non-native species can 

include effects on biodiversity, survival of resident biota, activity of animals, community 

productivity, fire frequency and nutrient cycling in their areas of introduction (e.g. Pysek et 

al., 2012). 

 

Climate and land use are major determinants of non-native species distributions (Carboni 

et al., 2010; Pyšek et al., 2010; Albuquerque et al., 2011; Polce et al., 2011). Climate sets 

the broad limits to plant distribution and productivity (e.g. Box, 1995; Chapin et al., 1996), 

and can cause a newly introduced species to fail to survive or establish depending on 

climate similarity between the areas of origin and introduction (Sakai et al., 2001). Non-

native species are more likely to be introduced into areas with high levels of human activity 

(Pyšek, 1998; Botham et al., 2009) and may be more likely to establish and spread in areas 

with a high anthropogenic influence (Burke and Grime, 1996; Williamson et al., 2003; 

Williamson et al., 2005; Pyšek and Hulme, 2005). Previous studies have shown that the 

general pattern for non-native species richness is greater species richness associated with 

urban areas and other habitats with high levels of human activity, with higher 

temperatures in cooler regions of the world, and with higher rainfall in warm regions (e.g. 
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Lambdon et al., 2008; Carboni et al.,2010; Pyšek et al., 2010; Albuquerque et al., 2011; 

Polce et al., 2011). Studies examining non-native species distributions in relation to climate 

and land use or level of anthropogenic influence have shown different variables to be of 

main importance, with some finding climatic variables to be the main determinant of non-

native species richness (e.g. Albuquerque et al., 2011; Carboni et al., 2010) while others 

have shown anthropogenic influence to be more important (Pyšek et al., 2010; Polce et al., 

2011). 

 

There is potential for future changes in land use and climate to have an impact on 

distributions of non-native species. Climate change may favour invasions due to possible 

changes to transport, establishment and spread of non-native species (Theoharides and 

Dukes, 2007; Burgiel and Muir, 2010). Non-native species may be imported into new areas 

(Raghu et al., 2006; Barney and Ditomaso, 2008; Burgiel and Muir, 2010), have shifts in 

climatic range restrictions (e.g. Simberloff, 2000; Kriticos et al., 2003) and may be able to 

survive and/or spread where previously unable (Simberloff, 2000). They could also 

potentially show greater adaptability (Schweitzer and Larson, 1999) or dispersal ability 

(Rejmanek, 1996; Simberloff, 2000) than native species.  

 

Non-native species are an important part of the British flora, with non-native species 

currently accounting for 44% of species in the flora (Preston et al., 2002; see Figure 1.1).  

Britain has a long history of botanical recording and is well-recorded (Perring and Walters, 

1962; Preston et al., 2002). The Botanical Society of the British Isles (www.bsbi.org.uk) 

holds a large number of records of vascular plant species allowing study of distributions 

and establishment of species over time. This thesis uses data provided by the Botanical 

Society of the British Isles to determine patterns of non-native species richness with 

climate and land use, predict possible changes with climate change, quantify establishment 

of non-native species and to examine levels of establishment for different groups of non-

native species in relation to environmental variables. The rest of this chapter provides a 

review of relevant background literature and an outline of remaining chapters. 
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1.2 Non-native plant species  

 

Non-native species are species introduced into an area by human activity, either 

intentionally or accidentally (e.g. Richardson et al., 2000b; Rejmánek et al., 2005). 

Introduced plant species are often classified into archaeophytes and neophytes (Preston et 

al., 2002). An archaeophyte is defined as a species which has become naturalised in the 

wild, meaning spreading vegetatively or reproducing by seed, before 1500AD. A neophyte 

is a species which was first introduced after 1500AD, or which was only present as a casual 

prior to this date. There is some uncertainty in defining some species as a native or an 

archaeophyte, with separation of introduced from native species relying on a variety of 

historical evidence. Archaeophytes are defined as having been introduced from the 

Neolithic to 1500AD (Preston et al., 2004) and are expected to be absent from the fossil 

record in the last glacial, late glacial and early glacial periods (Preston et al., 2002). There 

are few botanical records before 1500AD, but most archaeophytes have been recorded 

before 1700AD. Non-native species make up a large proportion of the British flora (Figure 

1.1): 1728 species which have been recorded in the wild are non-native (166 archaeophytes 

and 1562 neophytes) out of a total of 3948 species in the flora, including 2220 native 

species. The total species richness has increased over time, with additions greater than 

losses due to extinctions; however, this is likely to underestimate turnover further back in 

time as it is not possible to be certain of the number of 'failed' introductions of non-natives 

i.e. species which have been introduced and appeared in the wild, but have not been 

recorded prior to their subsequent extinction. The proportion of non-native species has 

increased over time, with non-native species currently accounting for 44% of species in the 

flora following a dramatic increase from 1500AD onwards due to large numbers of 

neophyte introductions.  
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Figure 1.1.  Cumulative plant species richness in Britain over time for natives, 

archaeophytes (non-native species established before 1500AD) and neophytes (non-native 

species introduced after 1500AD or not established before this date) included in the New 

Atlas of the British and Irish Flora (Preston et al., 2002). Established neophytes are those 

which have been recorded as reproducing and spreading in the wild, while casual 

neophytes have been recorded in the wild but not as reproducing or spreading. Numbers of 

extinct and endangered species are taken from Cheffings and Farrell (2005). Non-native 

species make up a large proportion of the flora (44%), leading to an increase in total 

species richness over time. Refer to Chapter 2 for a description of the data used. 
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Impact of non-native species 

 

Non-native species can have significant impacts outside their native ranges (e.g. Millenium 

Ecosystem Assessment, 2005; Defra, 2008; Pysek et al., 2012). 'Invasive' non-natives have 

been defined as those which have a detrimental impact in their area of introduction either 

ecologically, socially or economically (GB Non-native species secretariat, 2011a). 

Quantifying impacts of non-native species depends on their range, abundance and the per 

capita or unit of biomass effect of the invader in the region they have been introduced to 

(Parker et al., 1999). The impacts of individual non-native species are very variable (Pyšek 

and Richardson, 2010), depending on: the identity of the introduced species; the 

characteristics of the community they have been introduced into in terms of structure, 

composition and functioning; the environment they are introduced into (e.g. soil, climate); 

and the interactions between these three factors over space and time. Pysek et al. (2012) 

carried out a global overview of studies of ecological impacts of 167 non-native plant 

species considered to be invasive, and found that in the majority of cases reviewed the 

presence of an invasive plant species caused a significant change in a variety of observed 

outcomes including survival of resident biota, activity of animals, community productivity, 

fire frequency and nutrient cycling. However, both positive and negative impacts were 

found for different species. 

 

Negative impacts of non-native plant species can include loss of native biodiversity, with 

invasive non-native species of flora and fauna considered to be the second biggest threat 

to global biodiversity after habitat loss and destruction (Millenium Ecosystem Assessment, 

2005; Defra, 2008). Invasive plants have been shown to have negative effects on native 

plant species richness and diversity (e.g. Vilà et al., 2006; Hedja et al., 2009) and abundance 

(e.g. Standish et al., 2001; Vilà et al., 2011) in areas they have been introduced to. They 

have also been shown to have a negative impact on species richness and abundance of 

other taxonomic groups e.g. invertebrates (Gerber et al., 2008). Non-native plant species 

can cause disruption of plant reproductive mutualisms, such as pollination and seed-

dispersal mutualistic interactions (Traveset and Richardson, 2006). For example, the 

introduction of Lythrum salicaria1 in the U.S.A. has been shown to have altered the plant-

pollinator mutualism between the native species Lythrum alatum and native insects  

                                                           
1
 Nomenclature follows Stace (1997). 
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(Brown et al., 2002). The presence of the non-native species, with comparatively showy 

flowers, reduced pollinator visitation and seed set in the native species. Impacts on 

ecosystem functioning which could be considered negative include changes to nutrient 

cycling such as an increase in nitrogen fixation and availability (Vitousek and Walker, 1989; 

Ehrenfeld, 2003; Liao et al., 2007), potentially leading to feedbacks which can accelerate or 

stabilise the invasion of the non-native species (Liao et al., 2007). Changes in fire frequency 

can also occur due to increases in biomass accumulation by non-native grass species 

(D'Antonio and Vitousek, 1992), which can have detrimental effects on native communities 

by e.g. suppressing growth of woody species. Other negative impacts include economic 

costs associated with attempted control and eradication of species considered problematic; 

for example, the total annual cost of Fallopia japonica to the British economy has been 

estimated at over £165 million (Williams et al., 2010). This figure includes costs of survey 

and removal on development sites, road and railway networks, riparian habitats and 

research into biological control methods. Fallopia japonica has been shown to cause 

reductions in local biodiversity by out-competing native flora (Gerber et al., 2008), and can 

cause structural damage by pushing through tarmac, concrete and drains.   

 

However, some non-native species can also be considered to have positive economic and 

ecological impacts in areas they are introduced into (e.g. Schlaepfer et al., 2010). Many 

non-native species are deliberately introduced as they are economically valuable for 

agriculture, horticulture or forestry (Gozlan and Newton, 2009; Pejchar and Mooney, 

2009). Ecosystem effects which could be considered beneficial include increased net 

primary productivity, biomass accumulation and changes in nutrient cycling associated with 

the presence of invasive non-native species, which have been shown to increase carbon 

stocks in the vegetation, meaning some invaded communities can sequester more carbon 

than native communities (Liao et al., 2007). Changes to plant-pollinator interactions 

associated with the presence of non-native plant species can lead to positive impacts on 

insects, by providing increased food resources (Schweiger et al., 2010). Presence of non-

native species may lead to the loss of species diversity on a local scale in some situations by 

out-competing native species, but can lead to an increase in total species richness, 

including non-native species, on a larger scale (as shown in Figure 1.1). There is also 

potential for increased species richness due to hybridisation between native and non-

native species and the possibility of the appearance of new and endemic taxa (Schlaepfer 

et al., 2010; Thomas, 2013). One example is the new species Senecio eboracensis  
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(Lowe and Abbott, 2003, 2004), a self-pollinating hybrid between a native and non-native 

species which is reproductively isolated from its parents and was discovered in York, U.K., 

in 1979. 

 

 

1.3 Pathways of introduction 

 

Non-native plants are introduced into new regions intentionally or accidentally for a variety 

of reasons. Species have been introduced intentionally for use as crops or as ornamentals, 

and accidentally as seed contaminants and with raw materials such as timber, ballast and 

wool (Clement and Foster, 1994). Table 1.1 shows the main introduction pathways for 1376 

non-native plant species considered established in Great Britain (Roy et al., 2012). The 

majority of species have been introduced intentionally as ornamentals (70.6%), with 

smaller numbers introduced accidentally as contaminants (10.5%) or intentionally for 

agricultural uses (6.4%). However, reasons for introduction have changed over time, with 

earlier introductions more likely to be associated with agriculture and later introductions 

more associated with the horticultural trade. Out of 133 archaeophytes with known 

primary reasons for introduction, 20% of introductions were as crops, 44% were related to 

agriculture e.g. as seed contaminants, but only 7% were introduced as ornamentals (GB 

Non-native species secretariat, 2011b). More recently introduced non-native plant species 

in Britain have mainly been introduced for ornamental purposes, usually as garden plants 

and for landscape planting (Dehnen-Schmutz et al., 2007; Roy et al., 2012). Only 4% of 

neophytes were primarily introduced intentionally for agricultural purposes, with an 

additional 5% related to agriculture e.g. as agricultural seed contaminants, while 74% were 

introduced as ornamentals (GB Non-native species secretariat, 2011b). 
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Table 1.1. Number of non-native plant species arriving in Great Britain by different 

pathways (from Roy et al., 2012). 
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Total 

Terrestrial 88 1  145 11 29 955 54 67 1350 

Freshwater   7    14  2 23 

Terrestrial 

- Marine 
     1 2   3 

Total 88 1 7 145 11 30 971 54 69 1376 

% of total 6.4 0.1 0.5 10.5 0.8 2.2 70.6 3.9 5.0 100 

 

 

 

Numbers of established non-native plant species introduced to Britain from different areas 

are shown in Table 1.2 (Roy et al., 2012). The largest proportion is of European origin 

(48.5%), followed by Asia (16.5%) and North and South America (16.2%). Region of origin 

has varied through time, with the majority of earlier introductions coming from Europe: 

94% of archaeophytes have been introduced from Europe, while only 47% of neophytes are 

of European origin with 20% from Asia and 22% from North and South America (GB Non-

native species secretariat, 2011b). This is related to patterns of human movement and 

trade through time (Hulme, 2009a), with movement mainly within Europe prior to 1500AD. 

From the late 15th century to the beginning of the 16th century was the start of major 

changes to patterns of global trade, with establishment of a sea route from Europe to India, 

increasing trade with Asia, and the European rediscovery of the Americas with the first 

British colonisation in North America early 1600s (Andrews, 1984). Associated with this 

increased travel was a dramatic increase in the number of species introduced after around 

1500AD (as shown in Figure 1.1), with higher numbers from areas outside Europe through 

time (Roy et al., 2012). From around 1800AD there was a progressive increase in the 

movement of species between continents, coinciding with the Industrial Revolution and 

subsequent increased international trade and continuing globalisation (Hulme, 2009a). 
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Table 1.2. Number of non-native plant species arriving in Great Britain from different areas 

(from Roy et al., 2012). 

 

A
fr

ic
a 

A
si

a 
- 

Te
m

p
er

at
e

 

A
si

a 
- 

Tr
o

p
ic

al
 

A
u

st
ra

la
si

a 

Eu
ro

p
e 

N
o

rt
h

 

A
m

er
ic

a 

P
ac

if
ic

 

So
u

th
 

A
m

er
ic

a 

N
o

 d
at

a 

Total 

Terrestrial 44 197 28 49 666 153  52 161 1350 

Freshwater 2 2  1 2 13  3  23 

Terrestrial- 

Marine 
     2   1 3 

Total 46 199 28 50 668 168  55 162 1376 

% of total 3.3 14.5 2.0 3.6 48.5 12.2 0 4.0 11.8 100 

 

 

 

1.4 Establishment of non-native plant species 

 

When a new species has been introduced into an area, three main phases can be identified: 

escape, establishment and spread (e.g. Williamson, 1993; Kowarik, 1995; Williamson and 

Fitter, 1996; Aikio et al., 2010). A proportion of introduced species will appear in the wild, 

but will not necessarily become established; a 'casual' can be defined as a species which is 

present only as individuals which fail to persist as wild populations for periods of more than 

approximately five years, and such a species is therefore dependent on constant re-

introduction (Macpherson et al., 1996; Preston et al., 2002). Some species will become 

established i.e. a species which has been present in the wild for at least five years and is 

spreading vegetatively or reproducing effectively by seed (Macpherson et al., 1996; Preston 

et al., 2002), but will not necessarily spread far from where they have been introduced. A 

smaller proportion of species will spread more widely, including into semi-natural or 

natural habitats, and some of these may be considered to be invasive. Studies which have 

tried to assess the number of species which become established and spread out of the total 

introduced have suggested that approximately 1 in 10 of those imported are likely to 

appear in the wild (Williamson, 1993), 1 in 10 are likely to become established and 1 in 10 

are likely to become a pest (Williamson and Brown, 1986). Kowarik (1995) tested this 

10:10:10 rule for non-native woody species in Brandenburg, Germany and found that less 

than 10% of species appeared in the wild, 2% become established and 1% may successfully 

invade the natural vegetation.  
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Factors influencing survival and establishment 

 

To become established in a new area, a non-native species must colonise a site and 

develop self-sustaining populations. Factors affecting whether a species can survive in the 

wild and become established in a new area include climate, soil type, resource availability, 

disturbance, biotic interactions and propagule pressure (e.g. D'Antonio et al., 2001; 

Theoharides and Dukes, 2007). Climate sets the broad limits to plant distribution and 

productivity (e.g. Box, 1995; Chapin et al., 1996), and can cause a newly introduced species 

to fail to survive or establish depending on climate similarity between the areas of origin 

and introduction (Sakai et al., 2001). For example, if an introduced species from the tropics 

is frost sensitive or unable to reproduce due to low temperatures it is unlikely to become 

established in the wild in a cool temperate region and will be reliant on repeated 

introductions. The aquatic species Eichhornia crassipes, native to South America, has been 

widely introduced as an ornamental plant and is now found in more than 50 countries 

(ISSG, 2006). It is a very fast growing plant, with populations known to double in as little as 

12 days, and causes significant economic and ecological impacts in many regions it has 

been introduced into. However, although it has been introduced to Britain and found at 

several locations in the wild it does not appear to survive the winter and is therefore 

currently unlikely to become established (GB Non-native species secretariat, 2011b). Non-

native species which are already adapted to a new area or are bred for adaptation are 

more likely to become established:  for example, crop plants are selected to be able to 

grow well in the area they are introduced to for cultivation and are therefore more likely to 

appear in the wild as casuals or become established (Williamson and Fitter, 1996).  

 

Non-native species have been shown to be more likely to be successful in areas of high 

resource availability (light, moisture and soil nutrients) or under fluctuating resource 

conditions (e.g. Huenneke et al., 1990; Burke and Grime, 1996; Davis et al., 2000; Leishman 

and Thompson, 2005). For example, non-native species have show limited success in 

California grasslands on serpentine soils, while establishing successfully in adjacent areas 

with other soil types (McNaughton, 1968; D'Antonio et al., 2001). This is thought to be due 

to low levels of available nutrients and soil moisture, as addition of nitrogen and 

phosphorus fertilisers has been shown to allow invasion by non-native species with non-

native species responding more strongly than native species (Huenneke et al., 1990), and 
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invasions of these grasslands by non-native species have also been reported to increase 

following wet years (Hobbs and Mooney, 1991).  

 

The importance of disturbance in facilitating establishment of non-native species has been 

widely recognised (Elton, 1958; Crawley, 1987; Lodge, 1993; Burke and Grime, 1996; Davis 

et al., 2000). Closed cover of native species has often been suggested as a major barrier to 

successful establishment (e.g. Crawley, 1987; Rejmánek, 1989). Disturbance can facilitate 

invasions by reducing competition and thereby increasing available resources: an 

experimental study on the effect of disturbance on the susceptibility of a native community 

to invasion (Burke and Grime, 1996) showed that invasion was strongly related to 

availability of bare ground. It was concluded that this was due to the related release of light 

and mineral nutrient resources for invading plants. Plant community diversity also has an 

influence on invasibility: communities with high species richness are thought to be less 

likely to be invaded as they are highly competitive and resist invasion (e.g. Kennedy et al., 

2002) and experimental reductions in plant species richness have been shown to increase 

vulnerability to invasions (Knops et al., 1999). However, Hooper et al. (2005) argued that 

although susceptibility to invasion by non-native species generally decreases with 

increasing species richness, other factors such as disturbance regime and resource 

availability also have a strong influence and can often override the effects of species 

richness. 

 

Other biotic factors influencing establishment include facilitation interactions between 

introduced species which can encourage invasion by other non-natives (Simberloff and Von 

Holle, 1999); for example, non-native species which change soil nutrients, such as an 

increase in nitrogen fixation and availability (Vitousek and Walker, 1989; Ehrenfeld, 2003; 

Liao et al., 2007), can then facilitate invasion of other non-native species previously limited 

by nitrogen availability (Yelenik et al., 2004). Allelopathic agents produced by non-native 

species may also facilitate establishment by reducing competition (e.g. Callaway and 

Ridenour, 2004; Stinson et al., 2006). Callaway and Ridenour (2004) argued that root 

exudates, which may be relatively ineffective against plant species in native regions due to 

adaptation, may be highly inhibitory to newly encountered plants in invaded communities. 

Stinson et al. (2006) suggested that an introduced species in North American forests 

(Alliaria petiolata) successfully invades relatively undisturbed forest habitat by disrupting 
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mutualistic associations between native species and mycorrhizal fungi, suppressing native 

plant growth.  

 

The presence or absence of species which are pests or mutualists in a new region will have 

an effect on survival and establishment. It has been suggested that escape from herbivory 

or disease present in native ranges may increase growth rates or likelihood of 

establishment in new areas (Elton, 1958) and that, in the absence of predators, selection 

shifts resource allocation to growth rather than defence (Blossey and Notzold, 1995). There 

is evidence that some non-native species can grow larger and reproduce more successfully 

in new areas (e.g. Daehler, 2003; Leger and Rice, 2003); however, other factors such as 

reduction in competition (Leger and Rice, 2003) and increased resource availability 

(Blumenthal, 2006) in the introduced ranges compared to the native ranges are also likely 

to be having an influence. Species with mutualistic relationships with soil biota, pollinators 

or dispersers may be unlikely to establish if a necessary species is not present in a new 

region and no substitute is present; however, species which are e.g. pollinated by 

generalists, can reproduce vegetatively or are self-compatible may have advantages 

(Richardson et al., 2000a; Theoharides and Dukes, 2007). 

 

Propagule pressure, the combined measure of the number of individuals reaching a new 

area in any one release event and the number of discrete release events, strongly 

influences whether a species will become established in a new area (Williamson, 1996; 

Lockwood et al., 2005; Theoharides and Dukes, 2007). In an environment with suitable 

abiotic conditions and reduced competition with native species due to e.g. disturbance, it is 

possible that low propagule pressure may lead to the establishment of a non-native 

species; however, high propagule pressure may be required with harsher climatic 

conditions or high levels of competition in the native vegetation (D'Antonio et al., 2001; 

Lockwood et al., 2005; Theoharides and Dukes, 2007). Non-native species which are widely 

introduced may have a higher chance of finding suitable locations (Lockwood et al., 2005) 

and repeated introductions may increase genetic variation, increasing the probability that 

the population will persist (Ellstrand and Elam, 1993; Newman and Pilson, 1997; Sakai et 

al., 2001) and potentially allowing increased adaptation to novel environmental conditions 

(Sakai et al., 2001; Lockwood et al., 2005).  
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Lag phases and rates of spread 

 

After a new species has been introduced into an area and has become established, initial 

establishment may remain at a low frequency or in a restricted area for some time before 

any change in occurrence or range size (Elton, 1958; Kowarik, 1995; Pyšek and Hulme, 

2005; Aikio et al., 2010). A variety of reasons have been suggested for the presence of a  

'lag phase' between initial establishment and exponential growth (Sakai et al., 2001; Pyšek 

and Hulme, 2005), including time taken for evolutionary change allowing adaptation to a 

new environment or evolution of life history characteristics allowing rapid spread (Hobbs 

and Humphries, 1995; Sakai et al., 2001). However, the possibility that it may be an artefact 

has also been suggested, due to difficulties distinguishing between a single exponential 

phase of increase and one that has both a lag and exponential phase (Williamson et al., 

2005, Pyšek and Hulme, 2005) or that the pattern is due to changes in recorder effort over 

time or is dependent on scale of observation (Pyšek and Hulme, 2005). 

 

Previous studies have shown wide variations in lag times between first establishment in the 

wild and spread for non-native species in different areas (Kowarik, 1995; Caley et al., 2008; 

Daehler, 2009; Aikio et al., 2010). Kowarik (1995), for example, found a wide range of lag 

times in the spread of woody plant species in Brandenburg, Germany, with 6% beginning to 

spread within 50 years of their first cultivation, three-quarters doing so within 200 years, 

and the remainder taking more than 200 years to spread. Kowarik also concluded that the 

most successful invaders were not necessarily the fastest to initiate their invasions.  Aikio 

et al. (2010) looked at the time interval between first naturalisation to invasive spread for 

105 introduced species in New Zealand and found that a lag phase of several decades was 

common for New Zealand weeds. Lags averaged 20-30 years, but were greater than 40 

years for about 5% of species. About 9% of species had no detectable lag phase. This 

average lag phase is shorter than for similar studies for Germany (Kowarik, 1995) and 

Australia (Caley et al., 2008), but longer than for Hawai'i (Daehler, 2009).  

 

Studies looking at rates of spread have also shown wide variations (Williamson et al., 2003; 

Williamson et al., 2005; Pyšek and Hulme, 2005). Williamson et al. (2003) examined rates of 

spread of non-native plants in Britain, comparing data from two time periods 30 years 

apart and calculating frequencies of increase, stasis and decrease for 118 species. A wide 

variation in rates of spread was found: some had spread up to 10km per year, many had 



28 

 

not spread detectably, and a smaller number had retreated. A review by Pyšek and Hulme 

(2005) found average rates of local dispersal of invasive species ranging from 2 to 370 m 

per year reported in the literature, while average rates of long distance dispersal were 

found to be at least two orders of magnitude greater than estimates of local dispersal, with 

a maximum average rate of long distance dispersal of 167 km per year (Batianoff and 

Franks, 1997).  

 

Reasons for these variations in rates of spread between species and in different areas are 

not certain. Traits which have been found to influence invasion success could be expected 

to be important in determining rate of spread, including length of juvenile period, 

frequency of reproduction, mode of dispersal and seed size (e.g. Hamilton et al., 2005; 

Lloret et al., 2005; Theoharides and Dukes, 2007). However, several studies have found few 

patterns between biological factors and rates of spread, and have concluded that factors 

relating to human dispersal (such as human population density and economic activity) may 

be more important (Williamson et al., 2003; Williamson et al., 2005; Pyšek and Hulme, 

2005). Williamson et al. (2003) suggested that important factors in rates of spread of non-

natives in Britain include methods of human transport, available habitat at different scales 

and details of biology at the generic level, and it was concluded that consistent characters 

relating to rate of spread are unlikely to be found for all species. Williamson et al. (2005) 

considered taxonomy, life form, strategy, breeding system and propagule size for non-

native species in the Czech Republic and found that none appeared to influence the rate of 

spread significantly; it was concluded that non-biological factors, such as economic and 

landscape factors, may have more influence. Pyšek and Hulme (2005) concluded that 

although species traits may be important in determining species establishment, the 

available literature does not provide evidence of a close relationship between the rates of 

spread and traits of invading species.  

 

 

Invasive species 

 

There has been much research on identifying traits of non-native species which have 

successfully established or which are considered invasive (e.g. Noble, 1989; Roy, 1990; 

Rejmánek and Richardson, 1996; Goodwin et al., 1999; Kolar and Lodge, 2001). Baker 

(1974) outlined characteristics which an 'ideal weed' could be expected to possess, 
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including  tolerance to a wide range of environmental conditions, rapid growth, self-

compatibility or pollination by wind or unspecialised pollinators, high seed output, 

vegetative reproduction and adaptations for short and long distance dispersal. Baker 

proposed that species with many of these characteristics were more likely to be highly 

weedy than those with none or very few. However, studies attempting to distinguish 

successful or invasive non-natives from unsuccessful non-native or native species have 

generally found no definitive set of traits describing successful non-native species (e.g. 

Pyšek et al., 1995; Kolar and Lodge, 2001; Tecco et al., 2010). It has been suggested that 

traits historically associated with invasive species (e.g. weeds) may be related to initial 

colonisation (Sakai et al., 2001), with traits required for successful establishment  

dependent on habitat (e.g. Grime, 1974, 2001; Thompson et al., 1995, Pyšek et al., 1995). 

Frequently disturbed communities would be expected to favour non-native species which 

produce seeds and have high dispersal ability, while closed communities would favour 

those with high competitive ability and which are capable of vegetative reproduction 

(Thompson et al., 1995).  Pyšek et al. (1995) found that successful invaders of man-made 

habitats are more likely to be annuals, using a competitor-ruderal strategy (with high 

reproduction with rapid seedling establishment and growth), while successful invaders of 

semi-natural habitats are more likely to be perennials with high vegetative growth rate. 

 

The absence of a universal set of traits associated with species which are likely to be most 

successful in a new area creates difficulties with attempts to identify the small proportion 

of introduced species which may cause problems. Risk assessments can be used to identify 

potentially problematic species before they are introduced, or to select species which have 

already been introduced which need to be prioritised for management (GB Non-native 

species secretariat, 2011c). Factors which need to be considered on a case-by-case basis 

are the potential for escape, establishment, spread, hybridisation with natives, ecological 

consequences, and potential for control and risk management (e.g. Manchester and 

Bullock, 2000; Baker et al., 2008). Current frameworks for risk assessment in the U.K. 

include the GB Non-native Species Risk Analysis Mechanism (GB Non-native species 

secretariat, 2011c) and Pest Risk Analysis (EPPO, 2013) at the European scale. Current 

legislation relating to the prevention of spread of species known to cause problems 

includes some species already relatively widely established. The Wildlife and Countryside 

Act 1981 (available from legislation.gov.uk) is the principal legislation dealing with non-

native species in Britain: it is illegal to plant or otherwise cause to grow in the wild, sell, 
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offer for sale, or possess or transport for the purposes of sale any plant listed in Schedule 9 

to the Act, which lists 54 plant species or groups for England and Wales and/or Scotland. 

There is also legislation relating to disposal of waste containing viable propagules of 

invasive non-native plant species as controlled waste under the Environmental Protection 

Act 1990 (available from legislation.gov.uk). 

 

 

1.5 Climate and land use  

 

Land use changes in Britain have had a major influence on the distributions of non-native 

plant species (Preston et al., 2002; Braithwaite et al., 2006). The development and 

expansion of arable farming has led to the introduction of some non-native species, either 

as crops or contaminants, which have subsequently become widely established (Preston et 

al., 2004). However, there have also been declines of some previously common species 

associated with changes in agricultural practices (Preston et al., 2002; Braithwaite et al., 

2006). A number of previously frequent arable weed archaeophytes underwent declines 

between c. 1880 and 1970, due to changes in agricultural practices including intensification 

of arable farming, involving increased use of agrochemicals and increased density of 

modern crops, improved seed cleaning and shifts from spring to winter sown crops 

(Preston et al., 2002). Some of these species are now considered UK Biodiversity Action 

Plan priority species, identified as being the most threatened and requiring conservation 

action under the UK Biodiversity Action Plan (JNCC, 2007). Arable weed archaeophytes 

which are listed as UK BAP priority species are Adonis annua, Arnoseris minima, Bupleurum 

rotundifolium, Centaurea cyanus, Filago pyramidata, Galeopsis angustifolia, Galium 

tricornutum, Ranunculus arvensis, Scandix pecten-veneris, Silene gallica, Torilis arvensis and 

Valerianella rimosa.  

 

Increasing human population densities and associated urbanisation have also had an 

impact on the introduction, establishment and spread on non-native species (Burke and 

Grime, 1996; Pyšek, 1998; Williamson et al., 2003; Pyšek and Hulme, 2005; Williamson et 

al., 2005; Botham et al., 2009). There was a rapid increase in population in Britain starting 

around the time of the Industrial Revolution in the late 18th century, with the population of 

England having more than doubled from 8.3 million in 1801 to 16.8 million in 1851. By 

1901, it had nearly doubled again to 30.5 million and by 2001 the population was nearly six 
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times higher than 200 years earlier (Jeffries, 2005). This was associated with increasing 

urbanisation and extension of transport networks, including building of railways, roads and 

canals. Non-native species are more likely to be introduced in areas with higher population 

densities, as accidental introductions are more likely in areas of high human activity and 

urban areas are associated with gardens and parks where many non-native species are 

grown and may escape (Pyšek, 1998; Botham et al., 2009). Non-native species may be more 

likely to establish in habitats with a high anthropogenic influence, as disturbance associated 

with human activities can facilitate invasions (e.g. Burke and Grime, 1996) and human 

activity disperses many non-native species allowing range expansion (Williamson et al., 

2003; Williamson et al., 2005; Pyšek and Hulme, 2005). 

 

Studies examining patterns of non-native species richness or individual species have 

generally found both land use and climate variables to be important factors in determining 

distributions (Carboni et al., 2010; Pyšek et al., 2010; Albuquerque et al., 2011; Polce et al., 

2011). Climate sets the broad limits to plant distribution and productivity (e.g. Box, 1995; 

Chapin et al., 1996) and climatic conditions of a new area will influence survival and 

reproduction of an introduced species depending on similarity to conditions in its native 

range (Sakai et al., 2001). Previous studies have shown that the general pattern for non-

native species richness is greater species richness associated with urban areas and other 

habitats with a large anthropogenic influence, with higher temperatures in cooler regions 

of the world, and with higher rainfall in warm regions (e.g. Lambdon et al., 2008; Carboni et 

al., 2010; Pyšek et al., 2010; Albuquerque et al., 2011; Polce et al., 2011). Some studies 

have suggested climate is most important in determining species richness of non-native 

species. For example, when examining the impact of climate and human factors such as 

population density on non-native species richness, Albuquerque et al. (2011) found a 

positive relationship with temperature and Carboni et al. (2010) showed a positive 

relationship with rainfall, with both studies suggesting climate variables were more 

important than anthropogenic influence on species richness. Other studies have suggested 

that anthropogenic influence is more important; Pyšek et al. (2010) and Polce et al. (2011) 

found that climate was less important in determining distributions of non-native species 

than factors such as human population density, wealth and human disturbance.  
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Climate change  

 

There has been an increase in global mean surface temperature of 0.74°C over the last 

century (IPCC, 2007) and eleven of the twelve years between 1995-2006 ranked among the 

twelve warmest years in the instrumental record of global surface temperature (since 

1850). There is evidence that native species are already shifting their ranges in response to 

on-going changes in regional climates (e.g. Parmesan and Yohe, 2003; Kelly and Goulden, 

2008), that species are altering their phenology (e.g. Fitter and Fitter, 2002; Parmesan and 

Yohe, 2003; Franks et al., 2007) and that some species are facing extinction or have 

become extinct (e.g. Thomas et al., 2004). Evidence that non-native species are responding 

to climate change is more limited. In northern Italy and southern Switzerland, a new type 

of warm temperate forest has established (Klötzli, 1988 and Klötzli et al., 1996; see Walther 

et al., 2003). Changes in climate have pushed an area from conditions suitable for 

deciduous broad-leaved vegetation towards conditions suitable for evergreen broad-leaved 

vegetation. As there are few evergreen broad-leaved species indigenous to the area, the 

newly opened ecological niche has been occupied preferentially by introduced species. 

There has also been establishment of non-native thermophilous species in the native flora 

in Spain, with the appearance of tropical and sub-tropical species from South Africa and 

South America (Sobrino et al., 2001; see Walther et al., 2003), and new species of 

bryophytes and vascular plants establishing in sub-Antarctic regions (Kennedy, 1995; 

Convey and Smith, 2006). 

 

Climate change may favour invasions due to potential changes to transport, establishment 

and spread of non-native species (Theoharides and Dukes, 2007; Burgiel and Muir, 2010). 

Non-native species may be imported into new areas; for example, new crops and 

horticultural species which could be able to survive in new areas with climate change. It has 

been suggested that increasing interest in renewable energy sources and the possibility of 

growth in biomass derived energy will lead to new species being cultivated as biofuels 

(Raghu et al., 2006; Burgiel and Muir, 2010). Species used as biofuel crops are likely to be 

selected, bred, or engineered from non-native taxa to have few resident pests, to be able 

to tolerate poor growing conditions, and to have rapid growth to produce competitive 

monospecific stands (Raghu et al., 2006; Barney and Ditomaso, 2008); these are 

characteristics of some invasive non-natives and could potentially cause problems where 

they are introduced.  Some non-native species that have hitherto been unable to establish 
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in climatically unsuitable areas may in future be able to survive and/or spread (Simberloff, 

2000). Climatic range restrictions will shift with climate change causing increases or 

decreases in potential ranges of non-native species with changes in rainfall or temperature, 

and shifts in latitude or elevation in response to temperature increases (e.g. Simberloff, 

2000; Kriticos et al., 2003). Some traits of non-natives could mean they may be more 

adaptable to change than natives: for example, invasive non-natives which have greater 

phenotypic plasticity than natives may be more adaptable to changing conditions 

(Schweitzer and Larson, 1999). There is also the possibility of increased dispersal of non-

natives compared to natives, with some invasives possessing 'weedy' traits which have 

been associated with effective dispersal e.g. small seed mass, short juvenile period, and 

short interval between large seed crops (Rejmanek, 1996; Simberloff, 2000). It has been 

suggested that dispersal limitations will not impede the movement of many established 

non-natives, and some species may be able to migrate more rapidly than non-invasive non-

natives or natives (Simberloff, 2000). However, there is uncertainty over how climate 

change may affect distribution changes due to variation in climate model projections and 

many possible direct and indirect effects of climate change on the dispersal process (e.g. 

Bullock et al., 2012; Travis et al., 2013). 

 

Climate projections for the UK for 2100, averaged over 21 climate models, predict 

temperature increases of up to around 3°C in the south and 2.5°C further north from a 

1960-1990 baseline (Met Office, 2011). Precipitation is also generally predicted to increase, 

with projected increases of up to 10%, though some southern parts of the UK may 

experience decreases of up to 5% (Met Office, 2011). These changes in climate will have 

the potential to make some areas of Britain more (or less) suitable for non-native species 

already here, possibly changing the proportion of non-native species in the flora depending 

on impacts on native species. Species present as ornamentals in gardens which have not 

yet been recorded in the wild may be able to become established or spread with changes in 

climate. Non-native species which are currently casuals could become established, already 

established species could spread due to shifts or expansions in their potential climatic 

ranges and some species which currently do not cause problems could become invasive.   
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1.6 Plant Functional Types 

 

Plant Functional Types (PFTs) can be defined as groups of plants that show similar 

responses to an environment (Diaz and Cabido, 1997; Duckworth et al., 2000; Lavorel and 

Garnier, 2002; Lavorel et al., 2007). A variety of classifications have been proposed based 

on differences in plant morphology, life history or method of regeneration (e.g. Grime et 

al., 1997; Lavorel and Garnier, 2002). Global vegetation is often grouped into broad PFTs 

(e.g. Box, 1981, 1996; Diaz and Cabido, 1997) which are used in Dynamic Global Vegetation 

Models (DGVMs) when simulating changes in vegetation composition and associated 

hydrological and biogeochemical processes in response to changes in climate (e.g. Smith et 

al., 2001; Malcolm et al., 2002). Smith et al. (2001) used a broad life form based 

classification consisting of five PFTs in their models of terrestrial ecosystems within 

European climate space. The PFTs used were boreal/temperate needle-leaved evergreen, 

temperate shade-tolerant broadleaved summergreen, boreal/temperate shade-intolerant 

broadleaved summergreen, temperate broadleaved evergreen and a grass type.   

 

PFTs have also been used to study non-native species (e.g. Pyšek et al., 1995; Hulme, 

2009b; Smith, 2010; Marini et al., 2012), as way of grouping species with similar traits 

which would be expected to show predictable patterns with climate and land use variables. 

PFT classifications based on life form (e.g. Raunkiaer, 1934) capture variation in several 

important functional traits, with life forms having been shown to have predictable 

responses to changes in climate (e.g. Chapin et al., 1996; Diaz and Cabido, 1997) and 

disturbance (e.g. McIntyre et al., 1995). Hulme (2009b) compared the distributions of 

different life forms of native species in Britain with distributions of a limited number of 

alien species, to examine patterns in relation to climate and land use categories. PFTs have 

also been used to study which groups of non-native species are most successful in man-

made habitats compared to semi-natural vegetation (Pyšek et al., 1995) and to study the 

impacts of invasive alien plants on native biota by looking at differences in structural 

composition between invaded and uninvaded plots (Smith, 2010). 
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1.7 Theoretical framework 

 

Community ecology theory can be used to understand biological invasions by applying 

niche concepts to non-native species and the communities that they invade (Shea and 

Chesson, 2002). Ecological niches are defined by the relationships between organisms and 

physical factors (e.g. climate, soil type, disturbance regime) and biological factors (e.g. 

resource availability, biotic interactions). These ideas lead to the concept of ‘niche 

opportunity’, which defines conditions that can promote invasions in terms of resources, 

natural enemies, the physical environment, interactions between these factors, and the 

way in which they vary in time and space. Factors which can increase the likelihood of non-

native invasion of a native community by providing niche opportunities include high 

resource availability or greater competitive ability of non-natives compared to native 

species (e.g. Huenneke et al., 1990; Burke and Grime, 1996; Davis et al., 2000; Leishman 

and Thompson, 2005), natural enemy escape opportunities where an introduced species 

might not be affected by specialist natural enemies in an invaded community (e.g. Elton, 

1958; Blossey and Notzold, 1995), and disturbance which can create niche opportunities by 

disrupting communities (e.g. Elton, 1958; Crawley, 1987; Lodge, 1993; Burke and Grime, 

1996; Davis et al., 2000). The physical environment can promote or decrease invasions; 

favourable conditions can increase opportunities for invasion and unfavourable conditions 

can decrease opportunities, but as both non-natives and natives respond to this, it is the 

difference in response that influences success (Shea and Chesson, 2002). Species richness 

in a native community can modify opportunities for invasion, with low niche opportunities 

(invasion resistance) having been shown to result from high species diversity (e.g. Kennedy 

et al., 2002), although this effect is also modified by covarying external factors (Shea and 

Chesson, 2002; Hooper et al., 2005).  

 

Other studies have made a distinction between level of invasion and invasibility: the 

number or proportion of non-native species in an area compared to habitat susceptibility 

to invasion (Perrings et al., 2010). Successful invasion of a habitat requires dispersal, 

establishment, and survival, with number of species determined by the balance between 

extinction and immigration (Williamson, 1996; Lonsdale, 1999). The number of non-native 

species existing in a habitat is given by the number of species introduced modified by their 

survival rate, which differs in individual habitats based on their properties. The survival rate 

depends on constraints to invasion, due to competition with species already present, the 
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effects of herbivores and pathogens, chance events, and maladaption. To invade, a species 

must survive all these factors. A habitat is more prone to invasions if the survival rate of 

non-native species, introduced by means of propagule pressure, is higher than in another 

habitat. 

 

Therefore, it would be expected that level of invasion by non-native species would be 

higher in areas with higher propagule pressure, with a resident community with low 

species richness, higher levels of disturbance, and high resource availability. Lower levels of 

invasion would be expected in areas with low propagule pressure, with a resident 

community with high species richness, low levels of disturbance, and low resource 

availability. Habitats with high human influence would be expected to have a higher 

propagule pressure, due to increased introduction and transport of non-native species, 

higher disturbance, and potentially higher resource availability due to fertilisation etc. 

Higher species richness of non-natives would be expected to be present in areas with 

favourable climate (warmer, wetter), and habitats with high levels of human activity such 

as urban and arable, as they are more likely to be introduced and potentially more likely to 

be able to survive, compete and reproduce.  
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1.8 Thesis overview  

 

This thesis examines the establishment of non-native plant species in relation to climate 

and land use in Britain. The primary aims of this thesis are: 

1) to determine patterns of non-native species richness with climate and land use; 

2) to quantify the level of establishment of non-native species; and 

3) to examine the distributions and establishment of Plant Functional Types. 

Therefore, this thesis will provide information on climate and land use variables which 

influence distributions and establishment of non-native plant species and which factors are 

most important for different groups. Determining current patterns will allow prediction of 

possible future changes, helping to identify groups of species which may increase with 

climate or land use change. Further detail on Chapters 3-5 is given below. 

 

1) Non-native species richness with climate and land use 

 

Climate and land use are both important factors in determining the distributions of non-

native species (e.g. Pyšek et al., 2010; Albuquerque et al., 2011). Given that some published 

studies emphasise the importance of level of anthropogenic influence and land use (e.g. 

Pyšek et al., 2010; Polce et al., 2011) and others climate (e.g. Albuquerque et al., 2011; 

Carboni et al., 2010) on the distributions of non-native species, examination of the 

importance of climate and land use variables for non-native plant species richness is 

needed.  

 

Chapter 3, therefore, examines non-native plant species richness in relation to climate and 

land use. Models were used to examine the relationship between species richness of non-

natives, natives, neophytes and archaeophytes with climate variables and land cover types. 

Variation in recorder effort was examined by comparing modelled and recorded species 

richness for different groups. Projected climate data was used to look at possible changes 

in native and non-native species richness and proportion of non-natives in the flora with 

climate change. This tested the hypotheses that: 1) different groups (natives, non-natives, 

neophytes and archaeophytes) show distinct patterns with climate and land use variables; 

and 2) current species richness can be modelled from climate and land use variables. 
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2) Establishment of non-native species 

 

There is support for the observation that the distribution sizes of well-established species 

tend to increase following introduction (e.g. Wilson et al., 2007; Williamson et al., 2009; 

Gassó et al., 2010); however, the link between time and the level of establishment is not 

guaranteed due to variations in lag times between date of introduction and establishment 

or spread (e.g. Kowarik, 1995; Caley et al., 2008; Daehler, 2009; Aikio et al., 2010) and in 

rates of spread (e.g. Williamson et al., 2003; Williamson et al., 2005; Pyšek and Hulme, 

2005). Therefore, the relationships between time since introduction, range size and 

establishment are not certain and require investigation. 

 

Chapter 4 develops a measure for the extent to which each species has established in the 

wild, and examines the relationship between establishment of non-native species with time 

since introduction. An establishment index was calculated for each species, based on the 

population performance of each introduced species, ranging from planted non-reproducing 

individuals through to fully self-sustaining wild populations (using records assigned a status 

by each recorder).  This was used to test the hypotheses that:  1) level of establishment 

increases with greater time since introduction; and 2) range size increases with level of 

establishment. Current distributions were modelled to determine the importance of 

different climate and land cover variables for non-native species with different levels of 

establishment.  It was predicted that the well-established flora would show richness 

patterns more closely related to climate, while poorly established species might be 

expected to show patterns of higher species richness in areas with high human activity, 

such as urban areas. Models were used to test the hypotheses that: 1) species richness of 

poorly established species is more associated with urban land use than for well-established 

species; and 2) well-established species richness is more associated with climate than land-

use. 

 

3) Distribution and establishment of Plant Functional Types 

 

Analyses using traits show that Plant Functional Type classifications are useful as they can 

capture variation in several important functional traits, with life forms having been shown 

to have predictable responses to changes in environmental variables such as water 

availability and temperature (e.g. Chapin et al., 1996; Diaz and Cabido, 1997) and 
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disturbance (e.g. McIntyre et al., 1995). Previous studies attempting to distinguish 

successful or invasive non-natives from unsuccessful non-native or native species using 

traits have generally found no definitive set of traits describing successful non-native 

species (e.g. Noble, 1989; Roy, 1990; Pyšek et al., 1995; Tecco et al., 2010). Therefore, 

patterns in the distribution and establishment of life forms of non-native species in relation 

to climate and land use require examination. 

 

Chapter 5 uses the establishment index from Chapter 3 to examine the distribution and 

establishment of Plant Functional Types (PFTs) based on life form. Non-native plant species 

were classified into two PFTs: Raunkiaer life forms, using position of over-wintering buds, 

and a second life form classification similar to those used in vegetation modelling, dividing 

groups based on leaf-type and evergreen/deciduous. These two classifications were chosen 

as they have been shown to be useful when using PFTs in climate modelling, and different 

groups would be expected to show distinct responses to projected climate changes. Species 

richness of PFTs was modelled in relation to climate and land cover variables, as 

successfully modelling current species richness from environmental variables would allow 

prediction of future changes with climate and land use change, showing which groups may 

be most likely to increase in future. Levels of establishment for each group were compared 

using the calculated establishment index, to examine which groups are most successful in 

relation to climate and land use variables. Analyses were used to test the hypotheses that: 

1) non-native PFTs are forming distinct patterns with climate and land use variables; and 2) 

PFTs with more well-established species are forming patterns associated with climate, 

while PFTs with more poorly established species are more associated with land use due to 

methods of introduction.  
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Chapter 2:  Materials and methods 

 

 

This chapter provides descriptions of the data and analyses used in Chapters 3-5. Reasoning 

behind the selection of methods of analysis and limitations and possible biases related to 

the data and methods used are discussed. Further detail on methods relating to a specific 

data chapter are given in those chapters (e.g. calculation of level of establishment in 

Chapter 4 and classification of species into Plant Functional Types in Chapter 5). 

 

 

2.1 Data 

 

2.1.1 Botanical data 

 

Plant records 

 

Britain has a long history of botanical recording and is well-recorded (Perring and Walters, 

1962; Preston et al., 2002). The Botanical Society of the British Isles (www.bsbi.org.uk) 

holds a large number of records of vascular plant species allowing study of distributions 

and establishment of species over time. Records are from a variety of sources, including 

recording by members of the BSBI, and more targeted recording for vice-county floras and 

the New Atlas of the British and Irish Flora (Preston et al., 2002). Interest in recording non-

native species has increased over time as the importance of documenting new arrivals and 

their spread has become more apparent. Non-native species were not covered 

systematically during recording for the first Atlas of the British Flora (Perring and Walters, 

1962): all generally accepted native British species and most well-established introductions 

were mapped, but less common non-native species or those which had been recently 

introduced at the time were not included. The New Flora of the British Isles (Stace, 1991) 

was the first flora to try to deal systematically with non-natives, including all vascular plants 

and with coverage of intoduced taxa as thorough and consistent as possible. The revised 

second edition published in 1997 provided the list of taxa recorded for and mapped in the 

New Atlas of the British and Irish Flora (Preston et al., 2002). The New Atlas covered 

vascular plants including all native species (except microspecies in the genera Hieracium, 



41 

 

Rubus and Taraxacum), all naturalised introductions or frequently recurrent casuals, all 

field crops, forestry crops and ornamental trees planted on a large scale, the more 

distinctive native and introduced subspecies, and all hybrids listed in Stace (1997). The third 

edition of Stace (2010) has more detail on many more recently introduced species, making 

it possible to identify more non-native species easily in the field. It includes more non-

native species than previous floras, but some traditionally included in others are omitted. 

For inclusion, a non-native must either be naturalised (i.e. permanent and competing with 

other vegetation, or self-perpetuating) or, if casual, frequently recurrent so that it can be 

found in most years. Cultivated species are included if they are field or forestry crops, or 

tree ornamentals planted on a large scale. Exclusively garden plants are not covered, but 

most of the commoner taxa are included anyway because of their occurrence as escapes or 

throw-outs. This new edition aimed to include all the taxa that a recorder might reasonably 

be able to find ‘in the wild’ in any one year. 

 

The plant data used were records on a hectad (10 x 10 km grid square) scale, provided by 

the Botanical Society of the British Isles. There are some limitations relating to the data set 

of plant records held by the BSBI, including variation in recorder effort in different areas of 

Britain (Preston et al., 2002). Recorder effort in Britain will have been influenced by 

recording for the two Atlases (Perring and Walters, 1962; Preston et al., 2002) and will also 

have varied by vice-county depending on which areas have had additional recording for 

local floras. It has been shown that recorder effort can bias the species richness cited in 

plant distribution atlases (e.g. Petřík et al., 2010). Factors which can affect variation in 

species richness include: duration of mapping projects, with longer projects recording 

higher species richness (Petřík et al., 2010); spatial scale, with larger biases in smaller 

mapping projects (Petřík et al., 2010); and resolution (size of grid cells) of the studies, with 

more accurate results for smaller grid cells (Graham and Hijmans, 2006). Other factors 

influencing reported species richness include the use of different taxonomic concepts, 

including splitting or joining of taxa and subtaxa (Gaston, 1996) and areas of high sampling 

activity (“botanical hotspots") which can mean that some species are more likely to be 

recorded than others (e.g. Moerman and Estabrook, 2006). 

 

Methods of correcting for recorder effort when analysing data include calculating recorder 

effort by analysing species richness in neighbouring grid cells and taking this into account 

with analysis (e.g. Hill, 2012) or using methods of analysis which are likely to give accurate 
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results for presence-only data and less likely to be affected by pseudo-absences (e.g. 

Phillips et al., 2009). However, there are specific problems relating to recorder effort of 

non-native species which do not necessarily apply to native species (Preston et al., 2002). 

Vice-counties which have had additional recording for flora will have varied in which non-

native species have been included (e.g. excluding species which are considered casual or 

planted), with some vice-county recorders identifying and recording more non-natives 

species than others. Some groups are also more likely to be recorded than others; for 

example, urban non-native species are known to be better recorded than forestry conifers 

due to recorder bias. There has also been an increase in recording of non-natives over time 

e.g. records of species like Acer pseudoplatanus have increased, but the distribution on a 

hectad scale has remained relatively stable for a long time. 

 

This study used a subsample of well-recorded 10 x 10 km grid squares for statistical model 

building, with a systematic recording system, to minimise differences in recorder effort. 

These are the BSBI Monitoring Scheme (or Local Change) grid squares (Braithwaite et al., 

2006): 291 squares regularly arranged in a systematic grid of 1 in 9 which have had 

additional recording in 1987/1988 and 2003/2004, and thereby have a higher number of 

non-native species recorded than surrounding squares (Figure 2.1). These high intensity 

repeat-survey squares minimise recording variation associated with unsystematic botanical 

surveying across the remainder of Britain (Preston et al., 2002). 

 

Details of the BSBI Monitoring Scheme and Local Change recording methods are given in 

Braithwaite et al. (2006). In 1987-88 members of the BSBI recorded the vascular plants in a 

series of tetrads (2 x 2 km squares) throughout Britain and Ireland. The British tetrads were 

re-surveyed in 2003-2004. The original survey was the ‘BSBI Monitoring Scheme’ and the 

resurvey in 2003-2004 was the ‘BSBI Local Change’ project, to look at changes between the 

two time periods. Local Change project instructions to BSBI recorders were to record three 

tetrads (A, J and W) within one-in-nine hectads. Non-native taxa to be recorded were those 

recorded for the New Atlas plus planted field-crops, with species that were planted or 

casuals to be recorded as such. There was a target of ten hours per tetrad (except in 

uplands), typically divided into three or four visits at different times of the year of two or 

three hours each. For upland tetrads, one comprehensive visit in summer may have been 

all that was appropriate. Recorders were aiming to visit a representative selection of 

habitats and produce a list of species present.  
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Figure 2.1. Blue squares are BSBI Monitoring Scheme grid squares which have had 

additional recording in 1987/1988 and 2003/2004. Missing squares are those which were 

inadequately sampled according to the method in Braithwaite et al. (2006) or were not 

recorded in both time periods. 

 

 

Record statuses 

 

Non-native species have been classified into different groups based on whether or not they 

are considered to be established or naturalised in the wild, generally defined as successfully 

reproducing and forming self-perpetuating populations. Stace (1997, 2010) separated 

introduced (non-native) species into three sub-categories: naturalised, casual or survivor, 

where naturalised is a non-native plant that has become established and self-perpetuating, 

casual is a non-native plant not naturalised, persisting only for a short time, and a survivor 
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is a non-native plant which is not naturalised, but can be long-persistent and is usually a 

relic of planting. The recording for the New Atlas (Preston et al., 2002) also sought to 

classify records of non-natives as to whether they were established/naturalised, surviving, 

casual or planted, as defined by Macpherson et al. (1996) and Macpherson (1997) (Table 

2.1).  

 

Table 2.1. Definitions of the status of non-native species used by the Botanical Society of 

the British Isles plant recorders (Macpherson et al., 1996; Macpherson, 1997). 

Record status Definition 

Established Established in the wild (i.e. outside areas of habitation) for at least five years and 

spreading vegetatively or reproducing effectively by seed 

Casual Present briefly i.e. for less than five years, often for just one season, or 

intermittently 

Surviving Present in the wild for at least five years but neither spreading vegetatively nor 

reproducing effectively from seed 

Planted Deliberately planted in a wild situation but not established 

 

 

Recorders assigning a status to a record follow the status definitions and make an informed 

decision based on a number of factors including population size, evidence of regeneration, 

available habitat, and how a species was likely to have been introduced into the area. In 

some cases, assigning plants to a particular status in the field may be difficult as not all 

cases are clear-cut. In guidance for recorders provided in Macpherson (1997), an example is 

given relating to problems of interpretation with trees and shrubs whose presence is due to 

their having been planted initially. A taxon which has been planted remains in that category 

for the whole of its life, even when it has grown into a mature tree or shrub. If it produces 

progeny, this is initially labelled as ‘casual’, but if persistent for more than 5 years then 

comes into the ‘surviving’ category. If this progeny then spreads either vegetatively or 

effectively by seed, then the record for the site is ‘established’. If more than one of these 

categories applies to the same taxon in the same site, only the status of the highest priority 

applies (in the order ‘established’, ‘surviving’, ‘casual’, down to ‘planted’). Where a 

recorder experiences difficulty assigning a taxon to a status, it can be recorded simply as 

‘alien’. 
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Records with information regarding whether or not a species is reproducing in the wild 

were used to estimate the extent of establishment of each species. An ‘establishment 

index’ was calculated for each species for Britain using BSBI records with status, showing 

the proportion of records considered to be established for each species (see Chapter 4 for 

more detail).  

 

Date of introduction and first record in the wild 

 

Date of introduction and date of first record in the wild were used for species in some of 

the analyses (see Chapter 1: Figure 1.1 and Chapter 4). These dates are taken from 

information collated for the GB Non-native Species Information Portal project (GB Non-

native species secretariat, 2011b). For most recently introduced neophyte species, 

reasonably accurate dates are known from information on when species were first 

imported to be sold or grown and from botanical records in the wild. For archaeophytes 

and neophytes introduced further back in time, dates have been estimated from a variety 

of sources including fossil evidence, pollen records, records of plants grown in medieval 

gardens and herbarium specimens. Some detail relating to problems in estimating historical 

dates of introduction are discussed below; however, for a more complete discussion of 

difficulties see Preston et al. (2004).  

 

The study of fossil plant remains has provided much evidence relating to the history of the 

probable archaeophytes in Britain before 1500 AD (Godwin, 1975; West, 2000; Preston et 

al., 2004). Pollen records are often used in studies of past vegetation communities; 

however, macrofossils (include fruits, seeds, wood, charcoal and leaves) are more useful 

for identification and dating of individual species, as pollen is rarely identifiable to species 

level (Birks and Birks, 2000). If a species was present in previous interglacial periods, this 

cannot be taken as evidence that they are natives in the current interglacial: it means that 

they were capable of spreading to Britain without the assistance of modern man under the 

specific conditions of earlier periods, but does not necessarily mean they are natives in the 

current interglacial. For example, Azolla filiculoides and Rhododendrum ponticum are 

considered to be neophytes as they have been introduced by humans after 1500 AD 

(Preston et al., 2002), but are known to have been present as natives during previous 

interglacials (Preston et al., 2004). Medieval documents containing references to garden 

plants predate the taxonomic treatment of plants which developed from the 16th century 
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onwards, resulting in difficulties equating medieval names to their modern equivalents 

(Harvey, 1981); however, in most cases the species are also known as fossils from the 

medieval period. There are some difficulties with determining if a species was established 

in the wild; with remains of edible fruits or medicinal plants, it is more likely that they have 

been cultivated or imported. In these cases archaeological records simply establish 

presence of material of a species in Britain, and the possibility that it might have become 

naturalised. Species introduced later can be dated form early botanical records, and in 

some cases based on herbarium specimens. There are few botanical records before 

1500AD, but most archaeophytes have been recorded before 1700AD. Where there is 

uncertainty relating to the exact date of introduction and ranges have been given, the 

latest estimated date of introduction has been used for all species as this gives the length 

of time a species has definitely been present in the area.  

 

2.1.2 Climate data 

 

Environmental variables which have previously been shown to be useful when analysing 

vegetation distributions were chosen (e.g. Box 1981, 1995, 1996; Sykes and Prentice 1995). 

Climate variables used were annual averages over the time period 1960-1990 for mean 

summer (June to August) precipitation in mm (SPRE), mean winter (December to February) 

precipitation in mm (WPRE), growing degree days over 5°C (GDD5), mean temperature 

warmest month in °C (MTWA)  and mean temperature of the coldest month in °C (MTCO). 

Details relating to the recording and calculation of these long-term climate averages are 

available from the UK Met Office (www.metoffice.gov.uk/climate/uk/averages). The ratio 

of actual to potential evapotranspiration (APET) was also used, which is estimated using 

soil moisture accounting models and gives an index of effective drought (Prentice et al., 

1992; Huntley et al., 1995).  

 

2.1.3 Land use data 

 

Proportions of each 10 x 10 km grid square associated with different land cover 

classifications were estimated from the Land Cover Map 2000 (Fuller et al., 2002): arable, 

urban, improved grassland, neutral grassland, acid grassland, calcareous grassland, 

broadleaved woodland, coniferous woodland, heath, inland rock and standing water. Some 

description of the methods used to produce the Land Cover Map 2000 (LCM2000) data set 
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and associated problems are given here; for a more complete description see Fuller et al. 

(2002). The LCM2000 used summer and winter satellite images and the pixels which make 

up the image were grouped into areas or segments broadly equivalent to land parcels (e.g. 

individual fields), with small segments excluded. Ground reference data from field surveys 

were used to identify image segments of known land cover (‘training areas’). Segments 

were classified into land categories using a maximum likelihood algorithm; for segments 

classified with low confidence, knowledge based corrections were used to allocate an 

alternative class label.  

 

The LCM2000 project compared classifications assigned to the satellite images with the 

Countryside Survey 2000 field data survey (www.countrysidesurvey.org.uk) to check the 

accuracy of designated categories. The largest differences were found to be in upland areas 

where field and satellite-based mapping were most problematic. Differences in resolution, 

the data-model and timing of surveys contributed to the differences between LCM2000 

and the field survey. Comparison as a whole suggests that LCM2000 may record classes 

with around 85% success; however, individual classes differ in their level of agreement 

between the field survey and LCM2000, with some problems with specific classes. For 

example, for ‘broadleaved woodland’ there were problems with mapping small areas, as 

many woodlands and clearings are at or below the minimum mappable unit of LCM2000. 

For arable land, apparent confusions with improved grassland related mainly to rotation 

farming in squares where field and satellite survey years differed. Improved grassland was 

the most extensive single cover class, and distinction between improved from semi-natural 

types could be difficult and controversial. Assigning semi-natural grasslands to neutral, 

calcareous and acid grasslands was difficult as there was no consistent spectral 

characteristic by which to determine soil acidity, and external data was found to be of 

limited value. The LCM2000 does not attempt to distinguish inland standing water from 

flowing water, therefore the category standing water used in this study is an aggregate of 

standing open water and canals and rivers and streams. For the urban category, the field 

survey treated urban land as continuous without recording open spaces in the urban zone 

while LCM2000 recorded open spaces greater than 0.5 ha. 

 

The LCM2000 data shows that more than half of the UK is used for intensive agriculture or 

is developed, with the remainder largely semi-natural. Woodland occupies a quarter of the 

semi-natural land, with most of the rest consisting of heath and semi-natural grasslands. 
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The 291 BSBI Monitoring Scheme grid squares used for analyses in this study include a 

range of land covers with both rural and highly urban squares sampled, from a proportion 

of 0 to 0.628 urban land cover, mean 0.072 (compared with a range from 0 to 0.875, mean 

0.067, for the 2499 grid squares not belonging to the BSBI Monitoring Scheme). 

 

2.1.4 Projected data 

 

Projected climate data were used to predict possible future changes in natives and non-

native species richness (using the 'predict' function in the 'stats' package in R), and change 

in proportion of non-natives in the flora was calculated. Mean projections for 2071-2100 

from three emission scenarios and three climate models were used to look at variation in 

predictions. Projections from three different emissions scenarios (IPCC, 2000; IPCC, 2007) 

were used for one climate model (Hadley Centre: HadCM3; IPCC, 2012), a high emission 

scenario (A1, see Jiang et al., 2000), a moderate emission scenario (A2, see Sankovski et al., 

2000) and a low emission scenario (B1, see de Vries et al., 2000). Two additional climate 

models were also used for the moderate emission scenario, NCAR: CSM and NCAR: PCM 

(IPCC, 2012). 

 

There are also projected land use change data available (Rounsevell et al., 2006) based on 

interpretation of the global storylines presented in the IPCC report on emissions scenarios 

(IPCC, 2000). However, obtaining data with corresponding time periods and at a similar 

scale to the projected climate data used was difficult at the time of this study, therefore 

only climate data were used to assess possible future changes (see Chapter 3). Possible 

implications of future land use change are discussed in Chapter 6.  
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2.2 Analyses  

 

2.2.1 Species' distribution modelling 

 

There is evidence that native species are shifting their distributions in response to climate 

change (e.g. Parmesan and Yohe, 2003; Kelly and Goulden, 2008). Evidence that non-native 

species are responding to climate change is more limited (Kennedy, 1995; Walther et al., 

2003; Convey and Smith, 2006), although it has been suggested that climate change may 

favour invasions due to potential changes to transport, establishment and spread of non-

native species (Theoharides and Dukes, 2007; Burgiel and Muir, 2010; see Introduction for 

more detail). It has become increasingly popular in recent studies to relate presences or 

absences of species, species richness or species abundances to current climatic conditions, 

then predict these models onto predicted future climate surfaces to look at possible future 

changes in distributions (e.g. Berry et al., 2002; Bradley et al., 2009; Bradley et al., 2010): 

this is known as ‘climate envelope modelling’. This technique has been used with native 

species, to help determine which species are most at risk and focus conservation efforts 

(e.g. Berry et al., 2002), and also with non-native species  in order to predict which areas 

might be more or less affected by invasions under climate change (e.g. Bradley et al., 2009; 

Bradley et al., 2010).  

 

General steps in species distribution modelling include: gathering relevant data (predictor 

and response data), assessing the completeness and comprehensiveness of the data, 

selecting an appropriate modelling algorithm, fitting the model to a training data set, and 

evaluating the model performance  including fit to data, characteristics of residuals and 

predictive performance on test data (Elith and Leathwick, 2009). Many different statistical 

modelling techniques have been developed and used depending on the type of data and 

the question being addressed. Early numerical distribution models used envelope models 

to describe species’ ranges in relation to a set of environmental predictors (e.g. Box, 1981). 

Regression based models extend envelope approaches by modelling variation in species 

occurrence or abundance within occupied environmental space, and selecting predictors 

according to their observed importance. Generalised Linear Models (GLMs) can be used 

with presence-absence or count data and simple additive combinations of linear terms; 

however, as nonlinear species’ responses to the environment were recognised (Austin et 

al., 1990), more studies included quadratic, cubic or other parametric transforms. General 
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Additive Models (GAMs) are similar to GLMs, although use data-defined, scatter plot 

smoothers to describe nonlinear responses (Guisan et al., 2002; Elith and Leathwick, 2009). 

Many alternative methods are regression-like, assuming that species’ occurrence or 

abundance can be modelled using additive combination of predictors. Bayesian alternatives 

can incorporate process-based information (such as rates of spread), but require more 

specialized mathematics and programming than simpler techniques such as GLMs and 

GAMs (Latimer et al., 2006; Hooten et al., 2007). Many complex methods have been 

developed more specifically for prediction e.g. multivariate adaptive regression splines (e.g. 

Moisen and Frescino, 2002), regression trees (e.g. Elith et al., 2008) and maximum entropy 

models (e.g. Philips et al., 2006). Data sets consisting of presence-only data, where 

occurrences are known but information about known absences is lacking, has led to the 

development of methods for comparison of presence records with background or 

pseudoabsence points: examples include regression methods, GARP and MaxEnt (Elith et 

al., 2006; Franklin, 2009; Phillips et al., 2009). There are also a wide variety of model 

selection and evaluation techniques available. Commonly used model selection methods 

include statistical techniques based on p-values for model selection, AIC (Akaike’s 

Information Criterion) or multimodel inference (Burnham and Anderson, 2002; Elith and 

Leathwick, 2009). Methods of model evaluation include summaries of performance based 

on kappa, area under the receiver operating curve (AUC) and correlation coefficients (Elith 

and Leathwick, 2009). 

 

The use of climate envelope methods for modelling and prediction of species’ distributions 

with climate change has been criticised as ecologically and statistically naïve (e.g. Pearson 

and Dawson, 2003; Beale et al., 2008). Key assumptions include species being at 

equilibrium with their environments and that relevant gradients have been adequately 

sampled (Elith and Leathwick, 2009). Use in non-equilibrium conditions, such as with 

invasions and under climate change, usually involves species records unrepresentative of 

new conditions and prediction in novel environments. Predictions to new geographic areas 

or past/future climates (extrapolation or forecasting) are inherently risky as there are no 

observations of occurrence to directly support predictions. Problems with extrapolation to 

new areas or environmental conditions include the possibility that different environmental 

factors may limit distributions, biotic interactions may change, outcomes may be 

influenced by factors not included such as genetic variability, phenotypic plasticity and 

evolutionary changes and that dispersal pathways are difficult to predict (Brooker et al., 
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2007; Dormann, 2007; De Marco et al., 2008; Elith and Leathwick, 2009). Beale et al. (2008) 

investigated the effectiveness of climate envelope methods for European bird species and 

found that associations were no better than chance for 68 out of 100 species, concluding 

that many published climate associations for different species and groups may be 

unreliable. It was suggested that other factors may be more important than climate (such 

as land use or historical factors) and should also be considered, and that caution should be 

used when interpreting results from climate envelope modelling to inform policy. However, 

climate envelope models have been shown to successfully ‘retrodict’ population trends 

(Green et al., 2008) and can predict responses of far-dispersing species fairly well (Zurell et 

al., 2009), suggesting some use in predicting future responses. Models for prediction need 

to balance specific fit to the model building data set against generality that allows reliable 

prediction to new cases; information criteria such as AIC help to address this balance by 

trading off explained variation against model complexity (Elith and Leathwick, 2009). Model 

performance can also be tested by using a subset of data to build models and assessing 

model performance on held out data, both within the model–fitting process, and for model 

evaluation. 
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2.2.2 Selection of statistical techniques 

 

All analysis was carried out using R (version 2.13.1). Mainly non-parametric tests were used 

due to limitations of the data sets used and difficulties transforming data to conform to a 

normal distribution. Spearman’s rank correlations (function 'cor.test', method =  

’spearman’, in the package 'stats'), Wilcoxon signed rank tests (function 'wilcox.test', paired 

= ‘true’, in the package 'stats'), Wilcoxon rank sum tests (function 'wilcox.test', paired = 

‘false’, in the package 'stats') and Kruskal-Wallis rank sum test (function 'kruskal.test', in the 

package 'stats') and multiple comparison test after Kruskal-Wallis (function 'kruskalmc', in 

the package 'pgirmess') were used. Generalised Linear Models, Hierarchical Partitioning 

and Moran's I were also used; further detail on these methods is given in the sections 

below. 

 

Generalised Linear Models 

 

There has been much debate surrounding the ‘best’ modelling technique when relating 

climate variables to records of species’ occurrence (Tsoar et al., 2007; Elith and Graham, 

2009). Regression-based methods are widely used by ecologists and can be extended to 

model complex data types, including abundance data with many zeros and records with 

imperfect detection of presence (Elith and Leathwick, 2009). Generalised linear models 

(GLMs) are used extensively in species’ distribution modelling because of their strong 

statistical foundation and ability to realistically model ecological relationships (Austin 2002; 

Elith et al., 2006). GLMs are relatively well understood by the majority of ecologists and are 

useful in a variety of situations: dependent variables can include presence/absence, 

proportion or abundance, and additive combinations of linear terms can be used or they 

can include quadratic, cubic or other parametric transforms to represent non-linear 

responses. GLMs have been found to perform less well than other techniques when 

discriminating between areas of likely presence and absence of a species; however, they 

are more appropriate for generalisation to other geographical areas than non-parametric 

techniques such as GAMs as they do not tend to over-fit to the sample dataset (Randin et 

al., 2006). 
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 Generalised Linear Models (GLMs) were used to determine the relationships between 

species richness, climate variables and land use. GLMs were carried out using the 'glm' 

function in the 'stats' package in R. Distribution of the count data (species richness) used as 

the response variable was tested using the function ‘goodfit’ in the package ‘vcd’ to 

determine family (Poisson, binomial or negative binomial) specified in the GLMs. Climate 

variables and proportions of land cover were used as the predictor variables. The climate 

and land use predictor variables were standardised (using function ‘std.data’ in the package 

‘smoothSurv’) to give a mean of 0 and a standard deviation of 1, allowing comparison of 

the slope estimates from the models. Where non-linear responses gave a better fit to the 

data, second order polynomials were used. Predictor variables were removed using the 

Akaike information criterion (AIC). Assumptions of GLMs include normality and 

homoscedasticity of residuals: model residuals were tested for normality (using ‘ad.test’ in 

the package ‘nortest’ and ‘shapiro.test’ in the package ‘stats’) and dispersion parameters 

were used to correct for overdispersion of residuals. Spatial autocorrelation in residuals 

was checked using Moran’s I; see section on spatial autocorrelation below for more detail.  

 

The BSBI Monitoring Squares (Figure 2.1) were used to create the models, which were then 

used to predict species richness for the rest of the grid squares from their climate and land 

use data (using the 'predict' function in the 'stats' package). These predictions were 

compared with numbers of species actually recorded for these grid squares (using 

Spearman’s rank correlations and Wilcoxon signed rank tests) to test the model accuracy 

and look for patterns in recorder effort.  

 

Hierarchical Partitioning 

 

Hierarchical Partitioning (HP) analyses were used to calculate the independent contribution 

of each predictor to the species richness for different groups of non-native species. This 

method was used in addition to GLMs as it shows the importance of different 

environmental variables used in the models and confirms the patterns shown by the GLMs. 

HP was carried out using the 'hier.part' package in R (MacNally and Walsh, 2004). HP 

involves measuring the increase of goodness-of-fit of all models with a particular variable 

compared with the equivalent model without that variable. The improvement in fit is then 

averaged across all possible models in which that variable occurs to produce a measure of 
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its independent effects. A Poisson distribution with the default goodness-of-fit measure 

(RMSPE, Root-mean-square ‘prediction’ error) was specified.  

 

Spatial autocorrelation 

 

Spatial autocorrelation is an important part of the relationship between environmental and 

geographic space. The response of species to spatially autocorrelated environmental 

factors can result in geographic clustering of species; however, this can also be due to the 

effects of factors operating primarily in geographic space (Legendre, 1993; Elith and 

Leathwick, 2009). Where the distribution of a species is largely determined by 

environmental factors, a properly specified model fitted using an adequate set of 

predictors will display minimal spatial autocorrelation in its residuals. Methods for testing 

for spatial patterns in both data used to build models and in model residuals include 

Moran’s I or Geary’s c to measure the amount of spatial autocorrelation. This study used a 

subset of data in model building (Figure 2.1) which meant model building data was less 

positively spatially autocorrelated than if all squares used. Residuals of all models were 

checked for positive spatial autocorrelation: if this was not found to be significant, it was 

assumed not to be a major issue. Significance of spatial autocorrelation was tested for 

using Moran’s I using function 'Moran.I' in the 'ape' package in R (Paradis, 2009). A 

significant positive value indicates a distribution is more clustered than expected and a 

significant negative value indicates a distribution is more dispersed than expected. 
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Chapter 3:  Non-native plant species richness in relation to climate  

  and land use 

 

 

3.1 Abstract 

 

Analyses of the spatial distributions of non-native species richness or individual species 

have generally found both land use and climate variables to be important factors in 

determining distributions. However, the relative importance of climate and land use 

variables for non-native species distributions is less clear. The main aims of this study were 

to determine how general patterns of non-native species richness vary with climate and 

land use; to test whether current distributions could be modelled using climate and land 

use variables, so that future distributions can be predicted from projected changes in 

climate; and to determine the importance of different environmental variables for native, 

non-native, archaeophyte (non-native species introduced before 1500AD) and neophyte 

(non-native species introduced after 1500AD) species richness. 10 x 10 km grid square 

records of 1728 non-native plant taxa recorded in Britain between 1987 and 2009 were 

used for analyses. Generalised Linear Models (GLMs) were used to model species richness 

and the importance of different climate and land use variables for different groups were 

examined using results from GLMs and Hierarchical Partitioning. Projected climate data 

was used to predict possible changes in native and non-native species richness, and the 

proportion of non-native species in the flora. Higher non-native species richness is found in 

warmer, drier, more urban areas of Britain. Current species richness of different groups can 

be predicted well. Urban land cover shows the clearest pattern when comparing species 

richness for different groups. Non-natives, natives, neophytes and archaeophytes all show 

positive relationships with proportion of urban land cover; however, non-native species are 

more often associated with urban areas than natives and neophytes are more urban than 

archaeophytes. Comparisons between predicted and recorded species richness suggests 

variation in recorder effort on a vice-county level, with higher recorder effort in vice-

counties with recent recording for floras. Using projected climate data suggests future 

increases in the proportion of non-native species in the flora in upland areas in the north 

and west of Britain. 
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3.2 Introduction 

 

Analyses of the spatial distribution of non-native species richness or individual species have 

generally found both land use and climate variables to be important factors in determining 

distributions (e.g. Pyšek et al., 2010; Albuquerque et al., 2011). Previous studies have 

shown that non-native species richness generally increases with higher temperatures in 

cool regions of the world, with higher rainfall in warm regions, and with the area of urban 

land and other anthropogenic habitats, such as arable land (e.g. Polce et al., 2011; 

Lambdon et al., 2008). Successful colonisations by non-native species are likely to be 

greater in mesic environments, with moderate temperate or moisture levels, as these 

conditions provide greater suitability for establishment and survival of a larger pool of 

species (Rejmánek, 1989). It has been shown that non-native species are more likely to be 

found in locally warm sites in cool regions and in cool microclimates in hot regions (Polce et 

al., 2011), and higher non-native species richness is found with high rainfall in warm 

regions (Carboni et al., 2010). 

 

Higher non-native species richness in habitats with a large anthropogenic influence is 

caused by increased likelihood of introduction in these habitats with human activities 

aiding dispersal and levels of disturbance creating suitable habitats for colonisation. Non-

native species are more likely to be introduced in urban areas due to gardens and amenity 

planting where many non-native species are grown and may escape (Pysek, 1998; Dehnen-

Schmutz et al., 2007; Botham et al., 2009; Roy et al., 2012), and sources of non-native 

species in farmland include as escapes from crops and as grain contaminants (Preston et 

al., 2002; Clement and Foster, 1994). Disturbance associated with anthropogenic activities 

provides suitable habitats for non-native species, with urban habitats favouring species 

that can tolerate irregularly disturbed sites (e.g. Buddleja davidii, Conyza canadensis and 

Oenothera glazioviana), while habitats such as arable farmland have species with more 

annual associates, either crops or arable weeds, as disturbance is more regular (Hill et al., 

2002). The spread of non-native species is also facilitated by railways and roads, as 

associated disturbance and habitat fragmentation makes colonisation easier and vehicle 

traffic can aid dispersal (e.g. Hansen and Clevenger, 2005; von der Lippe et al., 2013).  

 

However, the relative importance of climate and land use variables for non-native species 

distributions is less clear, with previous studies reaching different conclusions on the main 
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variables influencing species richness. Studies indicating that climatic variables are most 

important in determining non-native species richness include Albuquerque et al. (2011), 

who found that human alteration of ecosystems is far less important for variation in 

richness than climate, with richness primarily and positively associated with temperature 

and showing a much weaker positive relationship with the human footprint. Carboni et al. 

(2010) looked at the relative effects of environmental and human factors on the abundance 

of native and non-native plant species on the Italian coast. Non-native species richness was 

also found to be strongly related to climatic factors, with more non-natives found in areas 

with high rainfall. Secondarily, non-native introductions appear to be related to recent 

urban sprawl and associated gardening. Studies concluding land use to be the most 

important factor with climate secondary include Pyšek et al. (2010), when examining the 

role of environmental and human pressures on biological invasions across Europe.  Human 

population density and wealth were found to be most important when analysed jointly 

with environmental factors such as climate, geography and land cover. Polce et al. (2011) 

also tested whether the distribution and cover of non-native plant species in Europe was 

related to human disturbance and microclimate. The role of temperature was found to be 

weaker overall than land use in explaining the pattern of non-native species in Europe.  

 

It would therefore be expected that in Britain, higher non-native species richness would 

occur in warmer, more urban areas. Previous studies examining the relationships between 

non-native plant species richness and climate and land use in Britain have found higher 

species richness in warmer, drier areas of Britain when compared to native species richness 

(Maskell et al., 2006; Hulme, 2009b; Albuquerque et al., 2011). The majority of studies have 

also found positive associations between non-native species richness and habitats with a 

large anthropogenic influence such as urban areas (Maskell et al., 2006; Hulme, 2009; 

Pearman and Walker, 2009; Albuquerque et al., 2011). However, negative associations with 

urban areas have also been found for non-native species when looking at individual 

species, with analysis showing that a large percentage of non-native plant species were not 

strongly associated with urban land cover or were negatively associated with such habitats 

(Botham et al., 2009). Studies of non-native species richness in Britain have also reached 

different conclusions relating to the relative importance of different factors, with 

Albuquerque et al. (2011) concluding that climate is a more important determinant of non-

native species richness than human factors and others finding a strong association of non-

native species with anthropogenic habitats, suggesting that land-use change is a major 



58 

 

factor determining the change in relative distribution of these species (Maskell et al., 2006; 

Hulme, 2009b). These studies have used different numbers of non-native species; Hulme 

(2009b) used the limited number of non-native species included in PLANATT (Hill et al., 

2004), while Albuquerque et al. (2011) used all non-native species in Britain included in the 

New Atlas of the British and Irish Flora (Preston et al., 2002) excluding those considered 

casual. Different climate and land use variables were also studied, either considering 

associations with a large number of land cover variables (Hulme, 2009b) or only including a 

measure of anthropogenic influence on habitats (Albuquerque et al., 2011). 

 

Non-native species are frequently separated into archaeophytes, non-native species which 

have been introduced before 1500AD, and neophytes, non-native species introduced after 

1500AD, for analysis (e.g. Hulme, 2009b; Botham et al., 2009). In Britain, archaeophyte 

species have mainly been introduced intentionally as crops, for medicinal reasons, or 

unintentionally as seed contaminants or with raw materials (Clement and Foster, 1994; 

Preston et al., 2002). The majority of more recent introductions have been intentionally 

brought to Britain as ornamentals for planting in gardens and parks (Roy et al., 2012). As 

archaeophytes have been introduced further back in time and have therefore had more 

time to become established and to colonise a range of semi-natural habitats, it could be 

expected that they are more likely to have formed distributions related to climate than 

neophytes. Archaeophytes have also historically been introduced into habitats away from 

urban areas as many species are arable crop species or weeds. Neophytes have been more 

recently introduced and have had less time to establish, and it would therefore be 

expected that patterns of neophyte species richness are more related to where they are 

most likely to be introduced. Urban areas are associated with gardens and amenity planting 

where many non-native species are grown and may escape (Pysek, 1998; Dehnen-Schmutz 

et al., 2007; Botham et al., 2009; Roy et al., 2012). Therefore, a higher neophyte than 

archaeophyte species richness would be expected in urban areas, with archaeophyte 

distribution more likely to be related to climate.  

 

Previous studies contrasting neophyte and archaeophyte distributions in Britain have not 

shown consistent patterns with climate and land use. Hulme (2009b) found that non-native 

species in general are strongly associated with habitats with more human influence 

(boundary, built-up and arable habitats) and that numbers of neophytes and 

archaeophytes found in different broad habitats were significantly correlated. This does not 



59 

 

suggest that neophytes are more likely to be found in anthropogenic habitats than 

archaeophytes. Botham et al. (2009) showed that archaeophytes were less associated with 

urban habitats than neophytes, with analysis at the individual species level showing that a 

large percentage of archaeophytes were not strongly associated or were negatively 

associated with urban land cover, indicating neophytes are more likely to be associated 

with urban areas than archaeophytes. Albuquerque et al. (2011) found that archaeophyte 

species richness had a larger proportion of variation explained by climate than for 

neophytes, however, archaeophytes and neophytes had a similar proportion of variation 

explained by human factors. These studies varied in the number of non-native species 

included and in the climate and land use variables considered. To resolve these 

discrepancies, this study uses all non-native species in Britain included in the New Atlas of 

the British and Irish Flora (Preston et al., 2002) and a subset of grid squares that are well-

recorded are used to build models, which are then tested against the remaining grid 

squares to minimise differences in recorder effort. 

 

The main aims of this chapter were to determine how general patterns of non-native 

species richness vary with climate and land use; to determine the importance of different 

variables for native, non-native, archaeophyte and neophyte species richness; and to test 

whether current distributions could be modelled using climate and land use variables so 

that future distributions could be predicted from projected changes in climate. This tested 

the hypotheses that: 1) different groups (natives, non-natives, neophytes and 

archaeophytes) show distinct patterns with climate and land use variables; and 2) current 

species richness can be modelled from climate and land use variables. 

 

 

3.3 Methods 

 

3.3.1. Data 

 

Plant species data 

 

Records of plant species in 10 x 10 km grid squares were provided by the Botanical Society 

of the British Isles (BSBI). Analyses of non-native plants used all 1728 non-native plant 

species, included in the New Atlas of the British and Irish Flora (Preston et al., 2002), that 
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had been recorded in Britain between 1987 and 2009. This includes both neophytes (non-

native species introduced after 1500) and archaeophytes (non-native species introduced 

before 1500). Comparative analyses using native species richness used records of all native 

taxa from the same time period. 

 

All statistical model building was based on a subset of 10 x 10 km grid squares which are 

known to have been consistently recorded for non-native species. These are the BSBI 

Monitoring Scheme (or Local Change) grid squares (Braithwaite et al., 2006): 291 squares 

regularly arranged in a systematic grid of 1 in 9 which have had additional recording in 

1987/1988 and 2003/2004, and thereby have a higher number of non-native species 

recorded than surrounding squares (Figure 2.1). These high intensity repeat-survey squares 

minimise recording variation associated with unsystematic botanical surveying across the 

remainder of Britain (Preston et al., 2002). 

 

Climate and land use data 

 

Environmental variables which have previously been shown to be useful when analysing 

vegetation distributions were chosen (e.g. Box 1981, 1995, 1996; Sykes and Prentice 1995). 

Climate variables used were annual averages over the time period 1960-1990 for mean 

summer (June to August) precipitation in mm (SPRE), mean winter (December to February) 

precipitation in mm (WPRE), growing degree days over 5°C (GDD5), mean temperature 

warmest month in °C (MTWA)  and mean temperature of the coldest month in °C (MTCO). 

The ratio of actual to potential evapotranspiration (APET) was also used, which is estimated 

using soil moisture accounting models and gives an index of effective drought (Prentice et 

al., 1992; Huntley et al., 1995). Proportions of each 10 x 10 km grid square associated with 

different land cover classifications were estimated from the Land Cover Map 2000 (Fuller et 

al., 2002): arable, urban, improved grassland, neutral grassland, acid grassland, calcareous 

grassland, broadleaved woodland, coniferous woodland, heath, inland rock and standing 

water. 

 

3.3.2 Analyses 

 

Spearman’s rank correlations, Wilcoxon signed rank tests, Wilcoxon rank sum tests, 

Moran's I, Generalised Linear Models and Hierarchical Partitioning were used to examine 
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relationships between different variables. All analysis was carried out using R (version 

2.13.1). 

 

Generalised Linear Models 

 

Generalised Linear Models (GLMs) were used to determine the relationships between 

species richness, climate variables and land use.  GLMs were carried out using the 'glm' 

function in the 'stats' package in R, specifying the family 'Poisson' as the response variable 

was count data (species richness). Climate variables and proportions of land cover were 

used as the predictor variables. Dispersion parameters were used to correct for 

overdispersion of residuals and predictor variables were removed using the Akaike 

information criterion (AIC). The climate and land use predictor variables were standardised 

to give a mean of 0 and a standard deviation of 1, allowing comparison of the slope 

estimates from the models. Second order polynomials were used for climate variables. The 

BSBI Monitoring Squares (Figure 2.1) were used to create the models, which were then 

used to predict species richness for the rest of the grid squares from their climate and land 

use data (using the 'predict' function in the 'stats' package in R). These predictions were 

compared with numbers of species actually recorded for these grid squares (using 

Spearman’s rank correlations and Wilcoxon signed rank tests) and also to test the model 

accuracy and look for patterns in recorder effort. If recorded number of species minus 

predicted number of species is a negative value, this indicates over-prediction by the model 

or lower recorder effort. If it is a positive value, this indicates under-prediction by the 

model or higher recorder effort. To determine if differences are due to variation in 

recording of non-native species in different vice-counties, spatial autocorrelation in 

recorded minus predicted species richness was calculated for natives, non-natives, 

neophytes and archaeophytes and correlations between mean values for each vice county 

were examined. Figure 3.1 gives a map of the vice-counties of Britain, with vice-county 

names in Table 3.1. 

 

Projected climate data were used to predict possible future changes in natives and non-

native species richness (using the 'predict' function in the 'stats' package in R), and change 

in proportion of non-natives in the flora was calculated. Mean projections for 2071-2100 

from three emission scenarios and three climate models were used to look at variation in 

predictions. Projections from three different emissions scenarios (IPCC, 2000; IPCC, 2007) 
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were used for one climate model (Hadley Centre: HadCM3; IPCC, 2012), a high emission 

scenario (A1), a moderate emission scenario (A2) and a low emission scenario (B1). Two 

additional climate models were also used for the moderate emission scenario, NCAR: CSM 

and NCAR: PCM (IPCC, 2012). 

 

 

 

Figure 3.1. Map of vice-counties in England, Wales, Scotland and Isle of Man. Names of 

vice-counties are given in Table 5. 
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Table 3.1. Vice-counties in England, Wales, Scotland and Isle of Man. 

1 West Cornwall with 

Scilly 

29 Cambridgeshire 57 Derbyshire 85 Fife 

2 East Cornwall 30 Bedfordshire 58 Cheshire 86 Stirlingshire 

3 South Devon 31 Huntingdonshire 59 South Lancashire 87 West Perthshire 

4 North Devon 32 Northamptonshire 60 West Lancashire 88 Mid Perthshire 

5 South Somerset 33 East Gloucestershire 61 South-east Yorkshire 89 East Perthshire 

6 North Somerset 34 West Gloucestershire 62 North-east Yorkshire 90 Angus 

7 North Wiltshire 35 Monmouthshire 63 South-west Yorkshire 91 Kincardineshire 

8 South Wiltshire 36 Herefordshire 64 Mid-west Yorkshire 92 South 

Aberdeenshire 

9 Dorset 37 Worcestershire 65 North-west Yorkshire 93 North 

Aberdeenshire 

10 Isle of Wight 38 Warwickshire 66 Durham 94 Banffshire 

11 South Hampshire 39 Staffordshire 67 South Northumberland 95 Moray 

12 North Hampshire 40 Shropshire 68 North Northumberland 96 Easterness 

13 West Sussex 41 Glamorgan 69 Westmoreland with 

Furness 

97 Westerness 

14 East Sussex 42 Breconshire 70 Cumberland 98 Main Argyll 

15 East Kent 43 Radnorshire 71 Isle of Man 99 Dunbartonshire 

16 West Kent 44 Carmarthenshire 72 Dumfriesshire 100 Clyde Isles 

17 Surrey 45 Pembrokeshire 73 Kircudbrightshire 101 Kintyre 

18 South Essex 46 Cardiganshire 74 Wigtownshire 102 South Ebudes 

19 North Essex 47 Montgomeryshire 75 Ayrshire 103 Mid Ebudes 

20 Hertfordshire 48 Merioneth 76 Renfrewshire 104 North Ebudes 

21 Middlesex 49 Caernarvonshire 77 Lanarkshire 105 West Ross 

22 Berkshire 50 Denbighshire 78 Peebleshire 106 East Ross 

23 Oxfordshire 51 Flintshire 79 Selkirkshire 107 East Sutherland 

24 Buckinghamshire 52 Anglesey 80 Roxburghshire 108 West Sutherland 

25 East Suffolk 53 South Lincolnshire 81 Berwickshire 109 Caithness 

26 West Suffolk 54 North Lincolnshire 82 East Lothian 110 Outer Hebrides 

27 East Norfolk 55 Leicestershire with 

Rutland 

83 Midlothian 111 Orkney 

28 West Norfolk 56 Nottinghamshire 84 West Lothian 112 Shetland 

 

 

Hierarchical Partitioning 

 

Hierarchical Partitioning (HP) analyses were used to calculate the independent contribution 

of each predictor to the species richness for different groups of non-native species.  HP was 

carried out using the 'hier.part' package in R (MacNally and Walsh, 2004). HP involves 

measuring the increase of goodness-of-fit of all models with a particular variable compared 
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with the equivalent model without that variable. The improvement in fit is then averaged 

across all possible models in which that variable occurs to produce a measure of its 

independent effects. A Poisson distribution with the default goodness-of-fit measure 

(RMSPE, Root-mean-square ‘prediction’ error) was specified.  

 

Spatial autocorrelation 

 

Significance of spatial autocorrelation was tested for using Moran’s I (using function 

'Moran.I' in the 'ape' package in R). A significant positive value indicates a distribution is 

more clustered than expected and a significant negative value indicates a distribution is 

more dispersed than expected.  

 

 

 

3.4 Results  

 

3.4.1. Patterns of species richness with climate variables and land use 

 

Non-native plant species richness shows a positive correlation with temperature 

(Spearman’s rank correlation coefficients for GDD5, MTCO and MTWA are 0.77, 0.38 and 

0.83 respectively, all N = 291, all P <0.001; all correlations are shown in Appendix 1, Table 

A1.1). Figure 3.2 shows maps of mean temperature of the warmest month and non-native 

species richness. Non-native plant species richness is negatively correlated with rainfall 

(Spearman’s rank correlation coefficients for APET, SPRE and WPRE are -0.78, -0.63 and -

0.61 respectively, all N = 291, all P <0.001). Figure 3.3 shows maps of the ratio of actual to 

potential evapotranspiration and non-native species richness. The strongest correlation 

with a land cover variable is with proportion of urban land cover (Spearman’s rank 

correlation coefficient 0.82, N = 291, P <0.001). Figure 3.4 shows maps of the relationship 

between the proportion of urban land cover and non-native species richness. 
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Figure 3.2. Mean temperature of the warmest month in °C (MTWA) and non-native plant 

species richness using records from 1987 to 2009. Significant positive correlation 

(Spearman’s rank correlation coefficient 0.83, N = 291, P < 0.001). 
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Figure 3.3. Ratio of actual to potential evapotranspiration (APET) and non-native plant 

species richness using records from 1987 to 2009. Significant negative correlation 

(Spearman’s rank correlation coefficient -0.78, N = 291, P < 0.001). 
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Figure 3.4. Proportion of urban land cover and non-native plant species richness using 

records from 1987 to 2009. Significant positive correlation (Spearman’s rank correlation 

coefficient 0.82, N = 291, P < 0.001). 
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3.4.2.Modelling species richness 

 

Comparison of predicted and recorded species richness for non-natives and natives 

 

Non-native species. Using the models based on the BSBI Monitoring Scheme grid squares 

(Table 3.2), non-native species richness was predicted for all other squares using values for 

climate and land use variables (Figure 3.5). This predicted species richness was then 

compared to actual recorded species richness, showing a significant positive correlation 

between predicted and recorded species richness (Figure 3.6). However, predicted species 

richness is significantly higher than recorded (Figure 3.6), indicating that the model is over-

predicting species richness, which suggests that recorder effort may be lower in other grid 

squares. 

 

 

Table 3.2. GLMs for native and non-native species richness. Slope estimate, standard error, 

Z value and significance are shown for each climate and land cover variable included (after 

elimination using AIC). Predictor variables were standardised to allow comparison of 

relative importance. 

 Native Non-native 

 Slope  S.E. Z P Signif. Slope  S.E. Z P Signif. 

poly(GDD5, 2)1 8.42 6.26 1.35 0.1788  2.84 12.94 0.22 0.8265  

poly(GDD5, 2)2 0.72 0.86 0.84 0.4007  5.37 2.30 2.34 0.0195 * 

poly(MTCO, 2)1 -3.37 1.75 -1.93 0.0541 . -2.50 3.64 -0.69 0.4925  

poly(MTCO, 2)2 -0.74 0.63 -1.17 0.2437  -2.82 1.56 -1.80 0.0713 . 

poly(MTWA, 2)1 -3.68 5.06 -0.73 0.4672  7.19 10.56 0.68 0.4956  

poly(MTWA, 2)2 -1.49 0.64 -2.35 0.0191 * -6.65 1.73 -3.85 0.0001 *** 

poly(APET, 2)1 -1.51 0.76 -2.00 0.0451 * -2.69 1.47 -1.82 0.0683 . 

poly(APET, 2)2 -0.54 0.30 -1.78 0.0754 . -0.70 0.56 -1.25 0.2132  

poly(SPRE, 2)1 1.00 1.22 0.81 0.4155  0.33 3.18 0.10 0.9173  

poly(SPRE, 2)2 -1.23 0.63 -1.96 0.0495 * -4.18 1.91 -2.19 0.0285 * 

poly(WPRE, 2)1 0.08 1.13 0.07 0.9431  0.30 2.91 0.10 0.9181  

poly(WPRE, 2)2 0.71 0.63 1.13 0.2600  3.09 1.75 1.76 0.0777 . 

acid 0.05 0.02 2.35 0.0186 * 0.05 0.04 1.23 0.2179  

arable 0.05 0.03 1.58 0.1136  0.24 0.05 4.70 0.0000 *** 

bwood 0.06 0.01 4.60 0.0000 *** 0.09 0.02 4.04 0.0001 *** 

calc 0.01 0.01 0.73 0.4664       

cwood 0.05 0.02 3.41 0.0007 *** 0.16 0.03 4.93 0.0000 *** 

heath 0.05 0.03 1.70 0.0893 .      

improved 0.10 0.02 4.46 0.0000 *** 0.22 0.04 5.68 0.0000 *** 

inrock 0.03 0.01 2.20 0.0277 * 0.05 0.04 1.42 0.1565  

neutral 0.04 0.02 2.56 0.0104 * 0.10 0.03 3.08 0.0021 ** 

swater           

urban 0.08 0.02 4.63 0.0000 *** 0.25 0.03 9.18 < 2e-16 *** 
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Figure 3.5. The map on the left shows non-native species richness predicted by the GLM 

from climate and land use variables. White squares are BSBI Monitoring Scheme squares 

used to make the model. The map on the right shows recorded species richness of non-

native species.  
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Figure 3.6. Relationship between the predicted number of non-native species per 10 x 10 

km square and the recorded number of non-native species.  Significant positive correlation 

(Spearman’s rank correlation coefficient 0.863, N = 2499, P < 0.0001). Wilcoxon signed rank 

test V=1026069, N = 2499, P < 0.0001 (mean of predicted = 151.5, mean of recorded = 

137.0). 
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Native species. Using the models based on the BSBI Monitoring Scheme grid squares (Table 

3.2), native species richness was predicted for all other squares using values for climate and 

land use variables (Figure 3.7). This predicted species richness was then compared to actual 

recorded species richness, giving a significant positive correlation between predicted and 

recorded species richness (Figure 3.8). However, predicted species richness is significantly 

higher than recorded, with means of 495.6 and 460.1 respectively (Figure 3.8). This 

indicates that the model is over-predicting species richness and that recorder effort may be 

lower in other grid squares. 

 

 

 

Figure 3.7. The map on the left shows native species richness predicted by the GLM from 

climate and land use variables. White squares are BSBI monitoring scheme squares used to 

make the model. The map on the right shows recorded species richness of native species. 
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Figure 3.8. Relationship between the predicted number of native species per 10 x 10 km 

square and the recorded number of native species.  Significant positive correlation 

(Spearman’s rank correlation coefficient 0.755, N = 2499, P < 0.0001). Wilcoxon signed rank 

test V=975466, N = 2499, P < 0.0001 (mean of predicted = 495.6, mean of recorded = 

460.1). 
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Comparison of predicted and recorded species richness for neophytes and archaeophytes 

 

Neophytes. Using the models based on the BSBI Monitoring Scheme grid squares (Table 

3.3), neophyte species richness was predicted for all other squares using values for climate 

and land use variables (Figure 3.9). This predicted species richness was then compared to 

actual recorded species richness, giving a significant positive correlation between predicted 

and recorded species richness (Figure 3.10). However, predicted species richness is 

significantly higher than recorded, with means of 99.8 and 89.9 respectively (Figure 3.10). 

This indicates that the model is over-predicting species richness and that recorder effort 

may be lower in other grid squares. 

 

 

Table 3.3. GLMs for neophyte and archaeophyte species richness. Slope estimate, standard 

error, Z value and significance are shown for each climate and land cover variable included 

(after elimination using AIC). Predictor variables were standardised to allow comparison of 

relative importance. 

 Neophyte Archaeophyte 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 3.64 15.56 0.23 0.8152  -7.78 2.25 -3.47 0.0005 *** 

poly(GDD5, 2)2 7.34 2.85 2.57 0.0101 * 2.46 0.89 2.78 0.0054 ** 

poly(MTCO, 2)1 -2.49 4.37 -0.57 0.5689       

poly(MTCO, 2)2 -4.05 1.91 -2.12 0.0337 *      

poly(MTWA, 2)1 6.01 12.74 0.47 0.6368  16.74 2.61 6.43 0.0000 *** 

poly(MTWA, 2)2 -7.93 2.20 -3.61 0.0003 *** -4.73 0.94 -5.01 0.0000 *** 

poly(APET, 2)1 -2.88 1.76 -1.63 0.1029  -2.59 1.11 -2.34 0.0193 * 

poly(APET, 2)2 -0.80 0.69 -1.16 0.2470  -0.54 0.41 -1.33 0.1833  

poly(SPRE, 2)1 1.35 3.77 0.36 0.7202  -0.83 2.37 -0.35 0.7265  

poly(SPRE, 2)2 -4.90 2.24 -2.19 0.0288 * -3.02 1.57 -1.93 0.0535 . 

poly(WPRE, 2)1 -0.07 3.44 -0.02 0.9832  0.34 2.24 0.15 0.8807  

poly(WPRE, 2)2 3.74 2.08 1.80 0.0718 . 1.95 1.43 1.36 0.1734  

acid 0.08 0.06 1.43 0.1542       

arable 0.31 0.08 4.13 0.0000 *** 0.15 0.04 3.89 0.0001 *** 

bwood 0.12 0.03 4.40 0.0000 *** 0.04 0.02 2.28 0.0225 * 

calc           

cwood 0.21 0.04 5.33 0.0000 *** 0.06 0.03 2.09 0.0366 * 

heath 0.08 0.09 0.87 0.3832  -0.11 0.05 -2.07 0.0384 * 

improved 0.29 0.06 4.87 0.0000 *** 0.12 0.03 3.98 0.0001 *** 

inrock 0.05 0.04 1.19 0.2348  0.06 0.03 1.96 0.0503 . 

neutral 0.13 0.04 2.89 0.0039 ** 0.07 0.03 2.69 0.0071 ** 

swater           

urban 0.33 0.04 8.72 < 2e-16 *** 0.11 0.02 4.93 0.0000 *** 
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Figure 3.9. The map on the left shows neophyte species richness predicted by the GLM 

from climate and land use variables. White squares are BSBI Monitoring Scheme squares 

used to make the model. The map on the right shows recorded species richness of 

neophyte species. 
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Figure 3.10. Relationship between the predicted number of neophytes per 10 x 10 km 

square and the recorded number of neophytes.  Significant positive correlation 

(Spearman’s rank correlation coefficient 0.832, N = 2499, P < 0.0001). Wilcoxon signed rank 

test V=1051477, N = 2499, P < 0.0001 (mean of predicted = 99.8, mean of recorded = 89.9). 
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Archaeophytes. Using the models based on the BSBI Monitoring Scheme grid squares 

(Table 3.3), archaeophyte species richness was predicted for all other squares using values 

for climate and land use variables (Figure 3.11). This predicted species richness was then 

compared to actual recorded species richness, showing a significant positive correlation 

between predicted and recorded species richness (Figure 3.12). However, predicted species 

richness is significantly higher than recorded, with means of 51.8 and 47.1 respectively 

(Figure 3.12). This indicates that the model is over-predicting species richness and that 

recorder effort may be lower in other grid squares. 

 

 

 

Figure 3.11. The map on the left shows archaeophyte species richness predicted by the 

GLM from climate and land use variables. White squares are BSBI Monitoring Scheme 

squares used to make the model. The map on the right shows recorded species richness of 

archaeophyte species. 
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Figure 3.12. Relationship between the predicted number of archaeophytes per 10 x 10 km 

square and the recorded number of archaeophytes.  Significant positive correlation 

(Spearman’s rank correlation coefficient 0.905, N = 2499, P < 0.0001). Wilcoxon signed rank 

test V=960486, N = 2499, P < 0.0001 (mean of predicted = 51.8, mean of recorded = 47.1). 
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3.4.3 Recorder effort 

 

Variations in recording effort between native and non-native species 

 

Comparing recorded number of species minus predicted number of species for natives and 

non-natives, the same grid squares are over- or under-predicted by the model with a 

significant positive correlation (Figure 3.13). This suggests that the same grid squares are 

well-recorded and under-recorded for native and non-native species. 

 

 

Figure 3.13. Relationship between native and non-native recorded minus predicted species 

richness.  Significant positive correlation (Spearman’s rank correlation coefficient 0.710, N = 

2499, P < 0.0001).  
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Variations in recording effort between neophytes and archaeophytes 

 

Comparing recorded number of species minus predicted number of species for neophytes 

and archaeophytes, the same grid squares are over- or under-predicted by the model, with 

a significant positive correlation (Figure 3.14). This suggests that the same grid squares are 

well-recorded and under-recorded for neophyte and archaeophyte species. 

 

 

Figure 3.14. Relationship between archaeophyte and neophyte recorded minus predicted 

species richness.  Significant positive correlation (Spearman’s rank correlation coefficient 

0.788, N = 2499, P < 0.0001).  
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Variation of recorder effort between vice-counties 

 

There is significant positive spatial autocorrelation in recorded minus predicted for natives 

and non-natives (Figure 3.15), meaning values are more clustered than would be expected. 

There is a significant positive correlation (Figure 3.16) between mean native and mean non-

native recorded minus predicted species richness for each vice-county. This suggests that 

for native and non-native species, the same areas are over- and under-predicted by the 

models and that this may be related to variations in vice-county recorder effort.  

 

Vice-counties with recent floras (published after 2000), which means they have had 

additional recording during the period 1987-2009, were identified. The mean recorded 

minus predicted species richness for vice-counties with floras and without floras were 

compared, and found to be higher for vice-counties with floras for natives (Wilcoxon rank 

sum test W=902, N with flora = 32, N without flora = 80,  P < 0.02; mean with flora = -6.0, 

mean without flora = -37.9) and for non-natives (Wilcoxon rank sum test W=865, N with 

flora = 32, N without flora = 80, P < 0.01; mean with flora = 5.9, mean without flora = -17.7).  
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Figure 3.15. Maps showing recorded minus predicted number of species for non-native 

species and native species.  Light blue indicates high negative values and dark blue high 

positive values. Significant positive spatial autocorrelation in recorded minus predicted for 

non-natives: Moran’s I observed = 0.03634, expected -0.00040, N = 2499, P < 0.0001; and 

for natives: Moran’s I observed = 0.03863, expected = -0.00040, N = 2499, P < 0.0001. 

 



82 

 

 

Figure 3.16. Relationship between mean native and mean non-native recorded minus 

predicted species richness for each vice-county.  Significant positive correlation 

(Spearman’s rank correlation coefficient 0.734, N = 112, P < 0.0001). Table 3.1 gives vice-

county names. 
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There is significant positive spatial autocorrelation in recorded minus predicted for 

neophytes and archaeophytes (Figure 3.17), meaning values are more clustered than would 

be expected. There is a significant positive correlation between mean neophyte and mean 

archaeophyte recorded minus predicted species richness for each vice-county (Figure 3.18). 

This suggests that for neophytes and archaeophytes, the same areas are over- and under-

predicted by the models and that this may be related to variations in vice-county recorder 

effort. 

 

Vice-counties with recent floras (published after 2000), which means they have had 

additional recording during the period 1987-2009, were identified. The mean recorded 

minus predicted species richness for vice-counties with floras and without floras were 

compared, and found to be higher for vice-counties with floras for neophytes (Wilcoxon 

rank sum test W=836, N with flora = 32, N without flora = 80, P < 0.005; mean with flora = 

7.5, mean without flora = -13.0), although this was not significant for archaeophytes 

(Wilcoxon rank sum test W=1023, N with flora = 32, N without flora = 80, P < 0.1; mean 

with flora = -1.5, mean without flora = -4.9). 
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Figure 3.17. Maps showing recorded minus predicted number of species for neophytes and 

archaeophytes. Light blue indicates high negative values and dark blue high positive values.  

Significant positive spatial autocorrelation in recorded minus predicted for neophytes: 

Moran’s I observed = 0.03399, expected = -0.00040, N = 2499, P < 0.0001; and for 

archaeophytes: Moran’s I observed = 0.03498, expected = -0.00040, N = 2499, P < 0.0001. 
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Figure 3.18. Relationship between mean archaeophyte and mean neophyte recorded minus 

predicted species richness for each vice-county.  Significant positive correlation 

(Spearman’s rank correlation coefficient 0.885, N = 112, P < 0.0001). Table 2.1 gives vice-

county names. 
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3.4.4 Importance of climate and land use variables  

 

Figure 3.19 shows the urban slope estimates from GLMs for natives, non-natives, 

neophytes and archaeophytes (Table 3.2 and Table 3.3). All urban slope estimates are 

positive, indicating species richness for all groups is positively associated with urban land 

cover. However, non-native species have a higher slope value than for native species, 

showing that non-natives are more associated with urban land cover than natives. Within 

non-native species, neophytes are more associated with urban land cover than 

archaeophytes. 

  

 

Figure 3.19. Urban slope estimates from GLMs for natives, non-natives, neophytes and 

archaeophytes (all N=291, p<0.0001). Error bars give ± standard error.   
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Figure 3.20 shows the percentage of variance explained by climate and land use variables 

for native, non-native, neophyte and archaeophyte species from Hierarchical Partitioning 

(see Appendix 1, Table A1.2 for full table of results). These results show a similar pattern to 

the results for urban land cover from the GLMs, with neophytes more associated with 

urban land cover than archaeophytes. For non-natives and neophytes, urban land cover 

explains the largest proportion of variation explained by land use (with 11.7% for non-

natives and 12.6% for neophytes), and other variables including arable, broadleaved 

woodland and coniferous woodland explaining smaller proportions. For native species, 

broadleaved woodland is the most important land use variable at 18.5%, with urban 

second at 10.5%. Heathland (16.7%) and arable (8.1%) are the most important land use 

variables for archaeophytes, with urban third at 4.9%. 

 

No clear pattern was found when comparing percentage of variance explained by all 

climate variables and percentage of variance explained by all land use variables, with non-

natives and natives having similar results for climate and land use (47.8% and 41.2% for 

climate and 52.2% and 58.8% for land use respectively). Archaeophytes had a slightly 

higher percentage variance explained by climate (54.5%) than for land use (45.5%) when 

compared to neophytes, with 47.8% explained by climate and 52.2% explained by land use. 

Archaeophytes also had the highest percentage explained by temperature (MTCO, MTWA, 

GDD5) at 44.0% compared to other groups (all <21%) and the lowest proportion explained 

by rainfall (SPRE, WPRE, APET) at 10.5% compared to other groups (all >20%). 
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Figure 3.20. Results from hierarchical partitioning showing percentage of variance 

explained by temperature (MTCO, MTWA, GDD5), rainfall (SPRE, WPRE, APET), urban land 

cover and other land uses for natives, non-natives, neophytes and archaeophytes.  
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3.4.5 Predicted changes using projected climate data 

 

Projected change in species richness 

 

Figures 3.21 to 3.25 show modelled current (1987-2009) species richness for natives and 

non-natives, predicted future (2071-2100) species richness and change in species richness 

(predicted minus modelled) for five SRES and climate model combinations. 

 

All show similar patterns, with a predicted increase in species richness of natives and non-

natives in the west and north and the greatest decrease in the south and east. Native 

species show a predicted increase in a slightly higher percentage of grid squares for all sets 

of climate data used (mean number of grid squares showing increase for natives = 45.4%, 

mean number showing increase for non-natives = 42.1%). 
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Native species 

 

Non-native species 

 

Figure 3.21. Modelled current species richness and predicted future species richness using 

B1 Hadley climate data. Change in species richness (predicted minus modelled): 40.3% of 

grid cells show an increase in species richness for natives and 39.6% show an increase for 

non-natives. 
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Native species 

 

Non-native species 

 

Figure 3.22. Modelled current species richness and predicted future species richness using 

A1 Hadley climate data. Change in species richness (predicted minus modelled): 46.9% of 

grid cells show an increase in species richness for natives and 41.5% show an increase for 

non-natives. 
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Native species 

 

Non-native species 

 

Figure 3.23. Modelled current species richness and predicted future species richness using 

A2 Hadley climate data. Change in species richness (predicted minus modelled): 45.9% of 

grid cells show an increase in species richness for natives and 43.6% show an increase for 

non-natives. 
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Native species 

 

Non-native species 

 

Figure 3.24. Modelled current species richness and predicted future species richness using 

A2 PCM climate data. Change in species richness (predicted minus modelled): 44.6% of grid 

cells show an increase in species richness for natives and 42.3 % show an increase for non-

natives. 
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Native species 

 

Non-native species 

 

Figure 3.25. Modelled current species richness and predicted future species richness using 

A2 CSM climate data. Change in species richness (predicted minus modelled): 49.5% of grid 

cells show an increase in species richness for natives and 43.5% show an increase for non-

natives. 
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Projected change in proportion of non-natives 

 

Figures 3.26 to 3.30 show modelled current (1987-2009) proportion of non-natives in the 

flora, predicted future (2071-2100) proportion of non-natives and change in proportion of 

non-natives (predicted minus modelled) for five SRES and climate model combinations. 

 

All show similar patterns, with a predicted increase in proportion of non-natives in upland 

areas in the north and west and a decrease in the east and south. The mean number of grid 

squares showing an increase in the proportion of non-natives is 42.7%. 

 

 

 

 

Figure 3.26. Modelled current proportion non-natives, predicted future proportion using B1 

Hadley climate data and change in proportion (predicted minus modelled). 43.8% of grid 

cells show an increase in the proportion of non-native species. 
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Figure 3.27. Modelled current proportion non-natives, predicted future proportion using A1 

Hadley climate data and change in proportion (predicted minus modelled). 42.6% of grid 

cells show an increase in the proportion of non-native species. 

 

 

Figure 3.28. Modelled current proportion non-natives, predicted future proportion using A2 

Hadley climate data and change in proportion (predicted minus modelled). 44.8% of grid 

cells show an increase in the proportion of non-native species. 
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Figure 3.29. Modelled current proportion non-natives, predicted future proportion using A2 

PCM climate data and change in proportion (predicted minus modelled). 44.6% of grid cells 

show an increase in the proportion of non-native species. 

 

 

Figure 3.30. Modelled current proportion non-natives, predicted future proportion using A2 

CSM climate data and change in proportion (predicted minus modelled). 37.7% of grid cells 

show an increase in the proportion of non-native species.
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3.5 Discussion 

 

3.5.1 Patterns of non-native species richness with climate and land use 

 

Non-native species richness and neophyte species richness show the strongest 

relationships with urban land cover (Table 3.2 and 3.3; highest Z value, positive slope). 

Natives and archaeophytes are also positive with urban land cover, but show weaker 

relationships. Native species richness and archaeophyte species richness show the 

strongest relationship with temperature, with greater species richness in warmer areas of 

Britain (Table 3.2 and 3.3; for natives, the highest Z value is for a positive first order 

polynomial slope with GDD5, and for archaeophytes, the highest Z value is for a positive 

first order slope with MTWA). GDD5 and MTWA are also positive for all non-native species 

and neophytes (first order polynomial slopes), but these groups show weaker relationships 

with temperature. Significant relationships with rainfall variables (APET, SPRE and WPRE) 

are negative for all groups. Thus, non-native species richness is higher in warmer and drier, 

more urban areas of Britain, with neophytes more associated with urban land cover and 

archaeophytes more associated with temperature. These results are consistent with the 

general patterns in previous studies, which showed positive associations with temperature 

(Hulme, 2009b; Albuquerque et al., 2011) and anthropogenic habitats (Maskell et al., 2006; 

Hulme, 2009b; Albuquerque et al., 2011) and negative associations with rainfall (Hulme, 

2009b; Albuquerque et al., 2011). 

 

The results from Hierarchical Partitioning (HP) showed no clear pattern when proportion of 

total variance explained by climate variables was compared to land use variables (Figure 

3.20, Table A1.2), with a similar proportion of variance explained by climate and land use 

for native and non-native species. Natives have a slightly higher proportion of variance 

explained by land use than non-natives; climate could be expected to be more important 

for non-natives than natives as many species have been introduced from warmer regions of 

the world, some of which may not be frost tolerant or will have less time to complete their 

life cycles and reproduce with lower growing degree days than in their native regions. 

There is a large proportion of non-native plant species in Britain from Europe (48.5%) and 

Asia (16.5%) (Table 1.2; GB Non-native species secretariat, 2011b), which may come from 

native climates which are warmer and drier than in Britain. For natives, variation in soil 

type and habitat heterogeneity may be more important than climate, with squares with 



99 

 

more variation being more species rich (e.g. Tscharntke et al., 2012). Within non-native 

species, archaeophytes had a slightly higher percentage variance explained by climate 

(54.5%) than for land use (45.5%) when compared to neophytes, with 47.8% explained by 

climate and 52.2% explained by land use. Archaeophytes also had the highest percentage 

explained by temperature (MTCO, MTWA, GDD5) at 44.0% compared to other groups (all 

<21%) and the lowest proportion explained by rainfall (SPRE, WPRE, APET) at 10.5% 

compared to other groups (all >20%). As archaeophytes have been introduced further back 

in time and have therefore had more time to become established and to colonise a range 

of semi-natural habitats, it could be expected that they are more likely to have formed 

distributions related to climate than neophytes. 

 

 

3.5.2 Importance of urban land cover 

 

Consistent results for the importance of urban land cover for different groups were found 

using both GLMs (Figure 3.19, Tables 3.2 and 3.3) and HP (Figure 3.20, Table A1.2). All 

urban slope estimates from GLMs are positive, indicating species richness for all groups is 

positively associated with urban land cover. However, non-native species have a higher 

slope and Z value than for native species showing non-natives are more associated with 

urban land cover than natives. For non-natives, the results from HP show that urban land 

cover explains the largest proportion of variation explained by land use (with 11.7% for 

non-natives), with other variables including arable, broadleaved woodland and coniferous 

woodland explaining smaller proportions. This is as expected, with higher non-native 

species richness in habitats with a large anthropogenic influence due to increased 

likelihood of introduction in these habitats, levels of disturbance creating suitable habitats 

for colonisation and human activities aiding dispersal (e.g. Pyšek, 1998; Hill et al., 2002; 

Hansen and Clevenger, 2005). For native species, broadleaved woodland is the most 

important land cover variable at 18.5%, with urban second at 10.5%. Heterogeneity of 

habitats in squares with land cover types such as broadleaved woodland and urban may be 

important for native species richness, compared to squares where the majority of land 

cover consists of homogeneous species poor habitats such as arable or heathland (e.g. 

Tscharntke et al., 2012). It is also possible that the same factors leading to increases in non-

native species richness with higher proportions of urban land cover could cause increased 

native species richness; for example, introductions of non-native species due to deliberate 
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planting and escape from habitats such as gardens and parks (e.g. Dehnen-Schmutz et al., 

2007) could also provide a source for native species.  

 

Within non-native species, neophytes are more associated with urban land cover than 

archaeophytes. The results from HP (Figure 3.20, Table A1.2) show a similar pattern to the 

results from the GLMs (Table 3.3), with neophytes more associated with urban land cover 

than archaeophytes. Heathland (16.7%) and arable (8.1%) are the most important land use 

variables for archaeophytes, with urban third at 4.9%. Heathland has a negative 

relationship with archaeophytes species richness in the GLM; grid squares with the highest 

proportion of heathland are in the north-west of Britain, while archaeophytes show the 

highest species richness in the south-east. Arable land use is expected to be important in 

determining the distributions of archaeophytes, as many species are arable crop species or 

weeds, and has a positive relationship in the GLM. The positive association of 

archaeophytes with urban land use in this study can be explained due to the decline of 

many arable weed species due to changes in farming practices (Preston et al., 2002; 

Braithwaite et al., 2006); some arable weeds species now occur only as casuals and many 

are seeded or deliberately planted, for example Agrostemma githago and Centaurea 

cyanus (for more detail relating to establishment see Chapter 4).  

 

For neophytes, urban land cover explains the largest proportion of variation explained by 

land use (12.6% for neophytes), with positive relationships with other variables including 

arable, broadleaved woodland and coniferous woodland explaining smaller proportions. 

Urban land cover was expected to be the most important land use variable for neophytes, 

as the majority of more recent introductions have been intentionally brought to Britain as 

ornamentals for planting in gardens and parks (Roy et al., 2012). Urban areas are 

associated with gardens and amenity planting where many non-native species are grown, 

providing foci from which they may escape (Pyšek, 1998; Dehnen-Schmutz et al., 2007; 

Botham et al., 2009; Roy et al., 2012). Therefore, a higher neophyte than archaeophyte 

species richness would be expected in urban areas.  

 

Previous studies have shown variable results related to the importance of urban land use 

for non-native species introduced at different times. Albuquerque et al. (2011) showed 

weak relationships with human influences compared to climate for non-native species 

introduced at different times, whereas other studies have shown both neophytes and 
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archaeophytes to be strongly associated with anthropogenic influences (e.g. Hill et al., 

2002; Hulme, 2009b). Botham et al. (2009) found that archaeophytes had a mainly negative 

association with urban land cover over time, with only 19 out of 140 species positively 

associated with urban land cover, while neophytes were more likely to be positively 

associated with urban. The results from this study, using high quality distributional data, 

indicate that both neophytes and archaeophytes have positive relationships with urban 

land cover; however, there is a stronger relationship for neophytes and a weaker 

relationship for archaeophytes.  

 

 

3.5.3 Predicting distributions using models 

 

Non-native species recently introduced to an area would be expected to be expanding their 

ranges to colonise all suitable habitats within their climatic range. Therefore, it would be 

expected that modelling distributions from climate and land use variables would be more 

difficult than for recently introduced species than for those which have had longer to 

establish. The time taken for neophytes to reach their maximum range has been calculated 

in several studies. Kowarik (1995) looked at time lags of non-native species in Germany 

over the past 400 years. Time lags were found to have a broad range: 6% began to spread 

within 50 years after their first cultivation, 25% lagged up to 100 years, 51% up to 200 

years, 14% up to 300 years and 4% invaded only after more than three centuries. On 

average, there was a delay in range expansion of 147 years after a species was first 

recorded in the wild. It was established that successful invaders are not necessarily quicker 

in starting invasions than less successful species and that less than 10% of introduced 

species escape and appear in the wild, 2% become established and 1% may successfully 

invade the natural vegetation. Other studies have calculated the average time taken for 

neophytes to achieve the same average range sizes as natives, using the relationship 

between residence time and the geographical range of non-native species in European 

countries (Williamson et al., 2009; Gassó et al., 2010). Times of 151, 177, 145, 141 and 143 

years were found for Ireland, Britain, Germany, the Czech Republic and Spain respectively, 

suggesting that it takes about 150 years on average for neophytes to reach their maximum 

range in European countries. Albuquerque et al. (2011) suggests a threshold mean 

residence time of greater than 200 years for a non-native species to reach its maximum 
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distribution in Great Britain, and that equilibrium of richness with climate may take longer 

than 500 years.  

 

Current species richness of different groups can be predicted well using climate and land 

use variables (Figures 3.5 to 3.12), indicating non-native species have formed patterns with 

these variables either through where they are able to establish or where they have been 

introduced. The correlation between predicted and recorded species richness for all non-

natives is 0.863 (Figure3.6), while for natives it is 0.755 (Figure 3.8). The correlation 

between predicted and recorded species richness for archaeophytes is better than for 

neophytes (0.905 and 0.832 respectively; Figures 3.10 and 3.12). As expected, it is easier to 

predict species richness for archaeophytes, as they have had longer to form patterns 

related to climate and land use rather than only occurring where they happen to be 

introduced.  

 

 

3.5.4 Changes in species richness with projected climate data 

 

Modelled current (1987-2009) species richness for natives and non-natives, predicted 

future (2071-2100) species richness and change in species richness (predicted minus 

modelled) for five SRES and climate model combinations all showed similar patterns, with a 

predicted increase in species richness of natives and non-natives in the west and north and 

the greatest decrease in the south and east (Figures 3.21 to 3.25). Native species show a 

predicted increase in a slightly higher percentage of grid squares for all sets of climate data 

used (mean number of grid squares showing increase for natives is 45.4%, while mean 

number showing increase for non-natives is 42.1%). Modelled current (1987-2009) 

proportion of non-natives in the flora, predicted future (2071-2100) proportion of non-

natives and change in proportion of non-natives (predicted minus modelled) for five SRES 

scenario and climate model combinations also showed similar patterns, with a predicted 

increase in proportion of non-natives in upland areas in the north and west and a decrease 

in the east and south (Figures 3.21 to 3.25). The mean number of grid squares showing an 

increase in the proportion of non-natives is 42.7%. 

 

This does not indicate a predicted increase in the proportion of non-native species in the 

flora for much of Britain, as native species richness is also predicted to increase. Northern 
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and upland areas are predicted to become more like the relatively species-rich south, with 

increases in temperature leading to an increase in species richness of both natives and non-

natives. However, the climate in the south, which was not included in the original models, 

is shown to lead to a decline in native species richness but could potentially lead to a 

greater increase in non-native species than shown. The species richness of natives in 

southern areas will depend on adaptability to new climatic conditions, while new 

introductions from regions of the world with warmer climates and spread of species 

already present which have not become established or expanded their ranges due to 

constraints such as frost intolerance may lead to an increase in non-native species richness 

(e.g. Simberloff, 2000; Theoharides and Dukes, 2007). All changes in species richness are 

dependent on dispersal and habitat availability which have not been considered here; the 

predictions of species richness are based only on projected changes in climate. Potential 

future increases in urbanisation are also likely to favour higher non-native species richness 

due to the positive association between non-native species and urban land cover (Figure 

3.19, Table 3.2).  

 

 

3.5.5 Recorder effort 

 

The models based on the BSBI monitoring squares over-predict species richness in the rest 

of the grid squares; this suggests that recorder effort may be lower in other grid squares. 

When comparing differences between predicted and recorded species richness for native 

and non-native species and for neophytes and archaeophytes, the same grid squares 

appear to be over- or under-predicted (Figures 3.13 and 3.14).  Comparing means of 

recorded minus predicted species richness for each vice-county, the same areas are over- 

and under-predicted by the models for non-native and native species (Figure 3.16) and for 

neophytes and archaeophytes (Figure 3.18). This appears to be related to variations in vice-

county recorder effort rather than any environmental variables not included in the models. 

Vice-counties which have had recording for floras in the time period used have higher than 

predicted species richness relative to those without additional recording for floras; 

examples with recent floras include Dunbartonshire, Cardiganshire, Somerset, Dorset, 

Bedfordshire and Berkshire. 
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3.5.6 Implications and conclusions 

 

Non-native species richness was found to be higher in warmer, drier, and more urban areas 

of Britain. Current species richness of different groups can be predicted well using climate 

and land cover variables. Differences between predicted and recorded species richness 

appear to be related to recorder effort at the vice-county level, with similar patterns for all 

groups. Urban land cover shows the clearest pattern when comparing species richness for 

different groups. Non-natives, natives, neophytes and archaeophytes all show positive 

relationships with proportion of urban land cover; however, non-native species are more 

associated with urban areas than natives and recently introduced non-natives are more 

urban than those introduced further back in time. Results from using projected climate 

data do not indicate a predicted increase in the proportion of non-native species in the 

flora for much of Britain, as native species richness is also predicted to increase. However, 

the species richness of natives in areas predicted to have the greatest climatic changes will 

depend on adaptability to a new environment, while non-native species which are not well 

suited to current climatic conditions may be able to establish and spread potentially 

leading to greater non-native species richness than shown in some areas. 
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Chapter 4:  Establishment of non-native plant species  

 

 

4.1 Abstract 

 

Studies of the arrival of non-native species commonly use residence time as proxies for the 

extent to which they have become established in new regions, given that the longer a 

species is present, the greater the opportunity for it to spread from the point of 

introduction to all parts of the region that are climatically suitable for it, and to colonise all 

available habitats. Whilst there is support for the observation that the distribution sizes of 

well-established species tend to increase in the decades and centuries following 

introduction, the link between time and the level of establishment is not guaranteed. The 

aim of this study was to examine whether non-native plant species that have been present 

in Britain for the longest time show the strongest tendencies to have established self-

perpetuating wild populations, and to determine whether species with different levels of 

establishment are associated with particular climatic conditions and land uses.  Records of 

1728 non-native plant species in Britain were analysed at 10 x 10 km grid resolution, from 

1987 to 2009. An establishment index was calculated for each species, based on the 

population performance of each introduced species, ranging from planted non-reproducing 

individuals through to fully self-sustaining wild populations (using records assigned a status 

by each recorder). Current distributions were modelled using Generalised Linear Models, 

constructed using a subsample of well-recorded grid squares and then used to predict 

species richness of different groups for the rest of Britain. Hierarchical partitioning was 

used to determine the importance of different climate and land use variables for different 

groups of non-native species. The establishment of self-sustaining populations of non-

native plant species in Britain showed no relationship with length of time since 

introduction. Species with all levels of establishment were present in archaeophytes 

(introduced before 1500), older neophytes (introduced between 1500 and 1800), 

intermediate neophytes (introduced between 1800 and 1900) and recent neophytes 

(introduced since 1900). Statistical models showed a good capacity to explain the current 

species richness of well-established non-native plants using climatic and land use predictor 

variables. The least established species were poorly predicted, and typically associated with 

urban areas. Non-native plant species in Britain have become integrated into the flora, 
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responding to climatic and land use variables, but their establishment is not predictable on 

the basis of their time since introduction. The less well-established species are likely to 

continue to be directly reliant on human activities to persist, whereas the best-established 

species are limited by climate and habitat. Future studies of non-native species should 

attempt to distinguish between time since arrival and the level of establishment because 

the two may not be associated. 

 

 

4.2 Introduction 

 

Studies of the arrival of non-native species throughout the world commonly use “time since 

introduction” or “time since first observation in the wild” as proxies for the extent to which 

they have become established in new regions, given that the longer a species is present, 

the greater the opportunity for it to spread from the point of introduction to all parts of the 

region that are climatically suitable for it, and to colonise all available habitats. Previous 

studies have shown that longer residence times of introduced species leads to greater 

range sizes in the area they have been introduced into. Wilson et al. (2007) investigated the 

range sizes of invasive plant species in relation to residence time in South Africa and found 

that species introduced earlier and those with larger potential climatic ranges have current 

larger range sizes. Williamson et al. (2009) and Gassó et al. (2010) looked at residence time 

and range sizes in neophytes (non-native species introduced after 1500AD) in five 

European countries: Ireland, Britain, Germany, Czech Republic and Spain.  Longer residence 

time led to larger range size, neophytes taking an average of around 150 years to reach 

their maximum range in these European countries. Haider et al. (2010) used residence time 

when studying species richness along altitudinal gradients in Spain and found that the 

altitudinal range of species tended to increase with time since introduction, and that the 

species reaching the highest altitudes were mostly old introductions. Huang et al. (2010) 

used time since introduction when studying invasiveness of non-native species in China, 

showing that the number of provinces occupied by an invader is significantly related to the 

time since introduction. Albuquerque et al. (2011) studied the extent to which arrival times 

of non-native species in Britain are associated with range sizes and found that mean range 

size increased with residence time. 
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Whilst there is support for the observation that the distribution sizes of well-established 

species tend to increase in the decades and centuries following introduction, the link 

between time and the level of establishment is not guaranteed. Previous studies have 

shown wide variations in lag times and rates of spread for non-native species in different 

areas. Kowarik (1995), for example, found a wide range of lag times in the spread of woody 

plant species in Brandenburg, Germany, with 6% beginning to spread within 50 years of 

their first cultivation, three-quarters doing so within 200 years, and the remainder taking 

more than 200 years to spread. Kowarik also concluded that the most successful invaders 

were not necessarily the fastest to initiate their invasions.  Aikio et al. (2010) looked at the 

time interval between first naturalisation to invasive spread for 105 introduced species in 

New Zealand and found that a lag phase of several decades was common for New Zealand 

weeds. Lags averaged 20-30 years, but were greater than 40 years for about 5%. About 9% 

of species had no detectable lag phase. This average lag phase is shorter than for similar 

studies for Germany (Kowarik, 1995) and Australia (Caley et al., 2008), but longer than for 

Hawai'i (Daehler, 2009). Williamson et al. (2003) examined rates of spread of alien plants in 

Britain, comparing data from two time periods 30 years apart and calculating frequencies 

of increase, stasis and decrease for 118 species. A wide variation in rates of spread was 

found: some had spread up to 10km per yr, many had not spread detectably, and a smaller 

number had retreated. None of the factors tested to explain variation in rate was 

significant, and it was concluded that species-and location-specific factors may need to be 

considered to explain rates of spread. Therefore, the relationship between time since 

arrival and the level of establishment requires formal examination, and should not be 

assumed. Indeed, many fully-established native plant species also have small ranges, so 

range size may also not be a sensible metric of establishment, although range size may still 

be a useful proxy for the likely impact (invasiveness) of a non-native species. 

 

Analyses of the spatial distribution of non-native species richness or individual species have 

generally found both land use and climate variables to be important factors in determining 

distributions. Previous studies have shown that the general pattern for non-native species 

richness is greater species richness in urban areas and other habitats with a large 

anthropogenic influence, greater species richness associated with higher temperatures in 

cooler regions of the world, and greater species richness in areas of higher rainfall in warm 

regions (e.g. Lambdon et al. 2008; Polce et al., 2011). However, there is disagreement on 

the relative importance of major factors determining species richness such as climate and 
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land use. Some studies have indicated that climatic variables are most important. For 

example, Albuquerque et al. (2011) concluded that human alteration of ecosystems is far 

less important for variation in non-native richness than climate in Britain, with richness 

primarily and positively associated with temperature. Carboni et al. (2010) found that non-

native plant species richness was strongly related to climatic factors on the Italian coast, 

with more non-natives found in areas with high rainfall. Secondarily, non-native 

introductions appear to be related to recent urbanisation and associated gardening. In 

contrast, other studies have concluded that land use and other human factors are most 

important with climate secondary.  Pyšek et al. (2010), for example, found that human 

population density and wealth were the most important determinants of biological 

invasions across Europe when analysed jointly with environmental factors such as climate, 

geography and land cover. Polce et al. (2011) also tested whether the distribution and 

cover of non-native plant species in Europe was related to human disturbance and 

microclimate. The role of temperature was found to be weaker overall than land use in 

explaining the pattern of non-native species in Europe. However, in none of these cases 

was the level of establishment of the different species considered, other than by using 

residence time or range size as a proxy. Hence, the extent to which the importance of 

climate and land use varies amongst species that show different levels of establishment in 

a region is largely unknown. 

 

Exact dates of introduction are not always known, so non-native species have often been 

separated into groups for analysis based on date of introduction. In Europe, they are often 

divided into archaeophytes (species introduced before 1500) and neophytes (species 

introduced after 1500) for analysis (e.g. Hulme, 2009b), although Albuquerque et al. (2011) 

also distinguished older neophytes (minimum residence time 200 to 500 years), 

intermediate neophytes (minimum residence time 100 to 200 years) and recent neophytes 

(minimum residence time less than 100 years). Interpretation of the effects of introduction 

date on range size or establishment are complicated by the fact that the biogeographical 

regions of origin of non-native species are correlated with their dates of arrival e.g. the 

majority of species introduced pre 1500AD are of Mediterranean origin, while species of 

Asian and American origin make up a larger proportion of introductions post 1500AD (GB 

Non-native species secretariat, 2011b). However, although Albuquerque et al. (2011) found 

that mean range sizes increased with residence time, no strong effect of region of origin on 

range size was detected. The “time since arrival” hypothesis for establishment would 
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predict that archaeophyte species would be well established, with their distributions 

related to climate and broad patterns of land use, whereas neophyte species would still be 

spreading, such that their distributions would be related to human activity and urban land 

use.  

 

Examination of whether time since arrival is, in reality, a good predictor of population 

establishment is still needed. The first aim of this study was, therefore, to develop an index 

of establishment for each species that is independent of date of introduction and to 

examine whether it is related to the date of introduction. The establishment index was 

developed by examination of the proportion of records of each species directly associated 

with human activities (deliberately planted in the wild or reliant on repeated introductions) 

compared to proportion of records indicating a species is reproducing and spreading on its 

own.  This was used to test the hypotheses that:  1) level of establishment increases with 

greater time since introduction; and 2) range size increases with level of establishment. The 

second aim was to determine whether the species richness of non-native plant species with 

different levels of establishment showed different levels of association with geographic 

variation in the climate and land use in Britain. It was predicted that well-established flora 

would show richness patterns more closely related to climate, while poorly established 

species might be expected to show patterns of higher species richness in areas with high 

human activity, such as urban areas. Models were used to test the hypotheses that: 1) 

species richness of poorly established species is more associated with urban land use than 

for well-established species; and 2) well-established species richness is more associated 

with climate than land-use. 

 

 

4.3 Methods 

 

4.3.1 Data 

 

Plant species data 

 

Records of plant species in 10 x 10 km grid squares were provided by the Botanical Society 

of the British Isles (BSBI). Analyses of non-native plants used all 1728 non-native plant 

species, included in the New Atlas of the British and Irish Flora (Preston et al., 2002), that 
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had been recorded in Britain between 1987 and 2009. Date of introduction and date of first 

record in the wild were used (collated for the GB Non-native Species Information Portal 

project: GB Non-native species secretariat, 2011b).  

 

All statistical model building was based on a subset of 10 x 10 km grid squares which are 

known to have been consistently recorded for non-native species. These are the BSBI 

Monitoring Scheme (or Local Change) grid squares (Braithwaite et al., 2006): 291 squares 

regularly arranged in a systematic grid of 1 in 9 which have had additional recording in 

1987/1988 and 2003/2004, and have a higher number of non-native species recorded than 

surrounding squares (Figure 2.1). These high intensity repeat-survey squares minimise 

recording variation associated with unsystematic botanical surveying across the remainder 

of Britain (Preston et al., 2002). 

 

 Climate and land use data 

 

Environmental variables which have previously been shown to be useful when analysing 

vegetation distributions were chosen (e.g. Box 1981, 1995, 1996; Sykes and Prentice 1995). 

Climate variables used were annual averages over the time period 1960-1990 for mean 

summer (June to August) precipitation in mm (SPRE), mean winter (December to February) 

precipitation in mm (WPRE), growing degree days over 5°C (GDD5), mean temperature 

warmest month in °C (MTWA)  and mean temperature of the coldest month in °C (MTCO). 

The ratio of actual to potential evapotranspiration (APET) was also used, which is estimated 

using soil moisture accounting models and gives an index of effective drought (Prentice et 

al., 1992; Huntley et al., 1995). Proportions of each 10 x 10 km grid square associated with 

different land cover classifications were estimated from the Land Cover Map 2000 (Fuller et 

al., 2002): arable, urban, improved grassland, neutral grassland, acid grassland, calcareous 

grassland, broadleaved woodland, coniferous woodland, heath, inland rock and standing 

water. 
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4.3.2 Calculation of an establishment index 

 

An establishment index was calculated for each species for Britain using BSBI records. A 

subset of records for each species is assigned a status, which gives additional information 

related to whether a plant is reproducing in the wild. Recorders placed records of 

introduced plants into the categories shown in Table 4.1, as defined by Macpherson et al. 

(1996) and Macpherson (1997). The percentage of all records with an assigned status 

considered to be established (out of those recorded as casual, surviving, established and 

planted) was calculated.  

 

Establishment value for a species =  

100 x No. of records established ÷ Total no. of records (casual + planted + surviving + 

established)  

 

 

Table 4.1. Definitions of the status of non-native species used by the Botanical Society of 

the British Isles plant recorders (Macpherson et al., 1996; Macpherson, 1997), used for 

calculating the establishment index. 

Record status Definition 

Established Established in the wild (i.e. outside areas of habitation) for at least five years and 

spreading vegetatively or reproducing effectively by seed 

Casual Present briefly i.e. for less than five years, often for just one season, or 

intermittently 

Surviving Present in the wild for at least five years but neither spreading vegetatively nor 

reproducing effectively from seed 

Planted Deliberately planted in a wild situation but not established 

 

 

An establishment index was calculated for 1109 species out of 1728, as not all species had 

sufficient records with status; species with fewer than 10 records were excluded. Example 

species were chosen to show the range of establishment with time since introduction. Four 

different time periods were used (following Albuquerque et al., 2011): archaeophytes 

(introduced before 1500AD), older neophytes (introduced between 1500 and 1800), 

intermediate neophytes (introduced between 1800 and 1900) and recent neophytes 
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(introduced after 1900). A poorly established species (with an establishment index value of 

less than 15%) and a well established species (with an establishment index greater than 

85%) were chosen for each time period. Classification of species into archaeophyte and 

neophyte follows the New Atlas of the British and Irish Flora (Preston et al., 2002) and 

nomenclature follows Stace (1997). 

 

4.3.3 Analyses 

 

Species were classified into 21 percentile groups based for analyses: 0% establishment, >0 

and ≤5% establishment, >5% and ≤10%, etc. up to >95%.  Species shown as having 0% 

establishment using the calculated establishment index (160 species) were excluded from 

further analyses as these species are not reproducing in the wild, having solely been 

planted or are casuals entirely dependent on reintroductions, and would not be expected 

to provide information on where species are likely to persist or spread in relation to climate 

or land use. Spearman’s rank correlations, Moran's I, Generalised Linear Models and 

Hierarchical Partitioning were used to examine relationships between different variables. 

 

Generalised Linear Models 

 

Generalised Linear Models (GLMs) were used to determine the relationships between 

species richness, climate variables and land use.  GLMs were carried out using R version 

2.13.1 (using the 'glm' function in the 'stats' package in R), specifying the family 'Poisson' as 

the response variable was count data (species richness). Climate variables and proportions 

of land cover were used as the predictor variables. Dispersion parameters were used to 

correct for overdispersion of residuals and predictor variables were removed using the 

Akaike information criterion (AIC). The climate and land use predictor variables were 

standardised to give a mean of 0 and a standard deviation of 1, allowing comparison of the 

slope estimates from the models. Second order polynomials were used for climate 

variables.  The BSBI Monitoring Scheme grid squares (Figure 2.1) were used to create the 

models, which were then used to predict species richness for the rest of the grid squares 

from their climate and land use data (using the 'predict' function in the 'stats' package in R). 

These predictions were compared with numbers of species actually recorded for these grid 

squares (using Spearman’s rank correlations and Wilcoxon signed rank tests) to test the 

model accuracy and to examine patterns in recorder effort. 
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Hierarchical Partitioning 

 

Hierarchical Partitioning (HP) analyses were used to calculate the independent contribution 

of each predictor to the species richness for different groups of non-native species.  HP was 

carried out using the 'hier.part' package in R (Mac Nally and Walsh, 2004). HP involves 

measuring the increase of goodness-of-fit of all models with a particular variable compared 

with the equivalent model without that variable. The improvement in fit is then averaged 

across all possible models in which that variable occurs to produce a measure of its 

independent effects. A Poisson distribution with the default goodness-of-fit measure 

(RMSPE, Root-mean-square ‘prediction’ error) was specified.  
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4.4 Results 

 

4.4.1 Relationship between time since introduction and establishment 

 

There was no relationship between the establishment index values of introduced plants 

and their dates of introduction to Britain, and a weak relationship with the dates they were 

first recorded in the wild (Figure 4.1): date of introduction and first observation in the wild 

are not good predictors of the level of establishment of wild populations.   

 

 

 

Figure 4.1. Relationships between the level of establishment of non-native species against 

their date of first introduction (Spearman's rank correlation coefficient -0.031, N = 949, p = 

0.3478) and date they were first recorded in the wild (Spearman's rank correlation 

coefficient -0.167, N = 949, p < 0.0001).  
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Figure 4.2. Exemplar species chosen to illustrate the range of establishment of species 

introduced in four different time periods. Black squares indicate 10 x 10 km presence 

recorded between 1987 and 2009. Maps a, c, e and g show poorly established species, with 

a calculated establishment index <15%, and maps b, d, f and h show well established 

species, with a calculated establishment index >85%. 
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The lack of association between establishment and time since introduction is illustrated in 

Figure 4.2, which shows the current distributions in Britain of four poorly established 

species (with an establishment index value of less than 15%) and four well established 

species (with an establishment index greater than 85%), one each from four different 

periods of introduction. 

 

 The two archaeophyte examples given are Adonis annua and Geranium dissectum (Figure 

4.2a and b). The date of introduction for Adonis annua was between 700BC and 0043AD, 

with the date of first record in the wild 1548AD. Geranium dissectum was introduced 

between 0043 and 0410AD, with date of first record in the wild 1629AD. Both species are 

annual weeds; however, Adonis annua has an establishment index of 1.0% (calculated from 

207 records) while Geranium dissectum has an establishment index of 99.3% (calculated 

from 1532 records). Adonis annua is a cornfield weed with has low seed production and is 

thought to have declined in distribution due to changes in farming, with many recent 

records being deliberate introductions (Preston et al., 2002).  

 

The two older neophyte examples (introduced between 1500 and 1800) are Berteroa 

incana and Pentaglottis sempervirens (Figure 4.2c and d). Berteroa incana was introduced 

in 1640, with date of first record in the wild in 1798, and Pentaglottis sempervirens was 

introduced in 1597, with date of first record in the wild in 1724. The poorly established 

Berteroa incana (establishment index 4.8%, calculated from 207 records) is a mainly casual 

biennial (occasionally annual/perennial) herb with a few naturalised populations (Stace, 

2010). Pentaglottis sempervirens is a well established perennial herb (establishment index 

91.8%, calculated from 2090 records) that has spread from gardens via seed and root 

fragments.  

 

The intermediate neophyte examples (introduced between 1800 and 1900) are Vicia villosa 

and Calystegia silvatica (Figure 4.2e and f). Vicia villosa was introduced in 1815, with date 

of first record in the wild 1857. Calystegia silvatica was also introduced in 1815, with date 

of first record in the wild 1863. Vicia villosa is mainly a casual annual, introduced from 

grain, bird-seed and wool (Clement and Foster, 1994) and has an establishment index of 

14.8% (calculated from 115 records). Calystegia silvatica is a well-established perennial 

climber of hedgerows and disturbed habitats, with an establishment index of 98.8%.  
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The two recent neophytes (introduced after 1900) are Nothofagus obliqua and Soleirolia 

soleirolii (Figure 4.2g and h). Nothofagus obliqua was introduced in 1902 with date of first 

record in the wild in 1956. Soleirolia soleirolii was introduced in 1905, with date of first 

record in the wild in 1917. Nothofagus obliqua is a deciduous tree, which sets seed and 

regenerates (Preston et al., 2002; Stace, 1997) but is currently poorly established as wild 

populations, with most recorded individuals having been planted (establishment index 

4.8%, calculated from 62 records). Soleirolia soleirolii is a perennial herb which, although it 

can be frost sensitive, is well established where it occurs (Preston et al., 2002) with an 

establishment index 89.5%, calculated from 831 records.  

 

 



118 

 

4.4.2 Relationship between range size and establishment 

 

Figure 4.3 shows the relationship between level of establishment of non-native species 

against current range size, measured as the number of 10 x 10 km grid squares a species 

has been recorded in between 1987 and 2009. Range size has a weak positive correlation 

with establishment (Spearman's rank correlation coefficient 0.423, N = 1158, p<0.0001). 

 

 

 

Figure 4.3. Relationship between level of establishment of non-native species and their 

current range size, using the number of 10 x 10 km grid squares a species has been 

recorded in between 1987 and 2009 (Spearman's rank correlation coefficient 0.423 (N = 

949, p<0.0001). 
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Species with high establishment (>90%) and a large range (>2000 grid squares) are very 

common species which occur in a variety of habitats such as the neophytes Matricaria 

discoidea and Acer pseudoplatanus and the archaeophytes Aegopodium podagraria and 

Capsella bursa-pastoris.  

 

Species with low establishment (<10%) and a small range (<50 grid squares) include species 

formerly cultivated which are now rarely grown and occur mainly as garden escapes and as 

bird seed aliens, such as the neophytes Anchusa azurea and Dipsacus sativus  and the 

archaeophyte Isatis tinctoria (Clement and Foster, 1994; Preston et al., 2002). This group 

also includes trees occasionally planted as ornamentals or in plantations which regenerate 

in some areas, such as Abies nordmanniana and Alnus rubra (Stace, 1997). 

 

Species with high establishment (>90%) and a small range (<50 grid squares) are mainly 

neophytes introduced for ornamental reasons, which are found occasionally as garden 

escapes or relics of cultivation and are well established where they occur. Examples include 

Geum macrophyllum, Senecio smithii, Scilla liliohyacinthus, Narcissus minor and Genista 

aetnensis (Preston et al., 2002).  

 

Species with low establishment (<10%) and a large range (>800 grid squares) include tree 

species widely planted as ornamentals or in plantations which are occasionally self-sown, 

such as Picea abies and Larix kaempferi  (Stace, 1997), and species widely grown as crops  

which frequently occur as crop relics or escapes from cultivation such as Solanum 

tuberosum and Linum usitatissimum (Preston et al., 2002). 
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4.4.3 Modelling species with different levels of establishment 

 

Comparison of predicted and recorded species richness for different levels of establishment 

 

The results of the GLMs (Appendix 2, Table A2.1) indicate that the species richness of fully 

(>95%) established species is predicted better than that of poorly (≤5%) established species 

(Figure 4.4); Figure 4.5 shows that there is a significant positive correlation between 

predicted and recorded species richness, but that predictions are somewhat stronger 

(Spearman's rank correlation = 0.892) for established species (>95%) than for poorly 

established species (Spearman's rank correlation = 0.778). The correlation coefficients (as 

in Figure 4.5) for all 20 percentile groupings of establishment show that the predictive 

capacity of species richness GLMs increases with the level of establishment of the species 

considered (Figure 4.6). Graphs and correlations between predicted and recorded species 

richness for all establishment groups are shown in Appendix 2, Figure A2.1. 

 

 

 

 
Figure 4.4. Modelled and recorded species richness for the least (≤5% establishment index) 

and most established species (>95% establishment index). White squares in a grid pattern 

on the predicted maps are BSBI monitoring scheme squares used to construct the model. 

Recorded species richness maps use all records from 1987 to 2009. 
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Figure 4.5. Relationships between modelled species richness and recorded species richness 

for each 10 x 10 km grid square (excluding model-building squares), for species with ≤5% 

establishment (Spearman’s rank correlation 0.778, N = 2499, p<0.0001) and for those with 

>95% establishment (Spearman’s rank correlation 0.892, N = 2499, p<0.0001). 
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Figure 4.6. Correlation coefficients between species richness predicted from GLMs and 

recorded species richness, using species grouped by level of establishment (excluding 

model-building squares). The relationship between the two (Spearman’s rank correlation 

coefficient 0.762, N = 20, p<0.001) indicates that GLMs are better at predicting the species 

richness of more established species.
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4.4.4 Establishment with climate and land use 

 

The proportion of urban land cover showed the clearest relationship with the level of 

establishment out of all climate and land cover variables used in the models. The urban 

slope estimate is always positive, indicating that non-native species richness is positively 

associated with urban land cover for all levels of establishment; but this relationship is far 

stronger for poorly established species than for those that are well established (Figure 4.7). 

This pattern can also be seen in the clustering of observed and predicted richness of poorly 

established (≤5%) species around London and other major urban areas, but not in the well 

established (>95%) species (Figure 4.4). The full results of the GLMs are shown in Appendix 

Table A2.1 (Appendix 2). 

 

 

Figure 4.7. Urban slope estimates (± standard error) from GLMs of species richness, 

grouped by level of establishment. The urban slope estimate declines significantly with the 

level of establishment (Spearman's rank correlation -0. 914, N = 20, p<0.0001), showing 

that more established species are less associated with urban land cover. 
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Hierarchical Partitioning shows a similar pattern for the importance of urban land cover. 

Species richness for the most established species has a lower percentage of total variance 

explained by urban land cover than for the least established species, with a significant 

negative correlation between level of establishment and percentage of variance explained 

by urban land cover (Figure 4.8); more established species are less associated with urban 

land cover. Figure 4.9 shows the proportion of variance explained by climate variables for 

different levels of establishment. As predicted, there is a positive correlation between level 

of establishment and percentage of variance explained by climate, suggesting that more 

established species are more associated with climate; however, this relationship is not 

significant. Percentages for climate and all land cover variables are given in Appendix 2, 

Table A2.2. 

 

 

 

Figure 4.8. Percentage of variance from Hierarchical Partitioning explained by urban land 

cover for groups of species with different levels of establishment. The variance declines 

significantly with the level of establishment (Spearman's rank correlation coefficient -0.627, 

N = 20, p<0.005), showing that more established species are less associated with urban 

land cover. 
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Figure 4.9. Percentage of variance from Hierarchical Partitioning explained by climate 

variables for groups of species with different levels of establishment. The variance shows a 

positive correlation with the level of establishment; however, this relationship is not 

significant (Spearman's rank correlation coefficient 0.435, N = 20, p=0.05692). 
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4.5 Discussion 

 

4.5.1 Time since introduction, range size and establishment 

 

The residence time of non-native species has been used to group species when examining 

their distributions in relation to climate and land use (e.g. Albuquerque et al., 2011), either 

implicitly or explicitly assuming that time is related to the extent to which a species is 

established as self-sustaining wild populations in the region of introduction. However, the 

relationships between time since introduction and time first recorded in the wild with the 

calculated establishment index reported here (Figure 4.1) suggest that residence time is 

not necessarily a good predictor of level of establishment. This is consistent with previous 

studies which have shown that there is a wide variation in lag phases between introduction 

and the establishment of species (e.g. Kowarik, 1995; Aikio et al., 2010) and in rates of 

spread (Williamson et al., 2003), meaning that some species take much longer to become 

established and spread after introduction. It is also possible for the level of establishment 

to reverse, after an initial period of establishment and range expansion. Some 

archaeophyte species and older neophytes were once well established, but have since 

declined due to changes in land use and farming methods (Preston et al., 2002). Arable 

weed species such as Adonis annua, Agrostemma githago and Centaurea cyanus suffered 

major declines from c. 1880 to 1950 due to improved seed cleaning methods, increased use 

of agrochemicals and the density of modern crops, with their current distributions reliant 

on deliberate introductions.  

 

Range size is also not necessarily a good predictor of level of establishment of non-native 

species (Figure 4.3). Studies which show a relationship between residence times and range 

size often only consider invasive species, the most established introductions; which may 

show a different relationship to those with less vigorous naturalised populations. Wilson et 

al. (2007) found that invasive plant species that were introduced early into South Africa 

(and those with large potential climatic ranges) have the largest current range sizes.  

Wilson et al. (2007) only included the successful alien species that have invaded natural 

and semi-natural habitats, the subset of species that could be expected to have short lag 

times and fast rates of spread, until they have expanded to fill all available habitats within 

their maximum suitable range. Huang et al. (2010) used time since introduction when 

studying invasiveness of non-native species in China and found that time since introduction 
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is significantly related to the number of provinces occupied by an invader; this study also 

used only non-native species considered to be invasive. The inclusion of this subset of 

species with strong relationships between time and range size may drive all-species 

correlations found in some studies on all non-native species (cf. Albuquerque et al., 2011).  

 

Some species may have a relatively large range and not be well established, reliant on 

repeated introductions, while others may have a small range due to climatic or habitat 

requirements but are relatively well-established within that area. Species with a large range 

and low establishment includes tree species frequently planted for forestry (e.g. Picea abies 

and Larix kaempferi) and commonly grown crop species (e.g. Solanum tuberosum and 

Linum usitatissimum). Species with a small range and high establishment includes many 

ornamental garden plants (e.g. Senecio smithii, Narcissus minor and Geum macrophyllum) 

which are not widely introduced, but can be persistent where they occur.  Recently 

introduced species which are well-established with a small range could be considered most 

at risk of spreading in the future. These species may be recent arrivals which have not yet 

had time to expand their ranges, or may currently be restricted by poor natural dispersal or 

by climate and habitat requirements, such as low frost tolerance or poor ability to 

compete; increases in human dispersal or changes to climate or land use could allow these 

species to spread in the future. 

 

 

4.5.2 Predicting distributions using models 

 

The relationship between model prediction and level of establishment (Figure 4.6) indicates 

that models are better at predicting distributions of more established species than for less 

established species. This is likely to reflect the capacity of well established species to 

achieve distributions in the wild that are set by their climatic and land use limits (niches), 

while occurrence of poorly established species is related to where they are introduced. This 

is consistent with the strong association between urban areas and the species richness of 

established species in the GLM and Hierarchical Partitioning analyses (Figures 4.7 and 4.8); 

accidental introductions are more likely to occur in areas with high levels of human activity, 

especially in urban areas that contain gardens and parks, from which many non-native 

species may escape (Pysek, 1998; Dehnen-Schmutz et al., 2007; Botham et al., 2009; Roy et 

al., 2012).
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4.5.3 Establishment with climate and land use 

 

It was found that species richness of poorly established species is more associated with 

urban land use than for well-established species, with a stronger positive relationship 

(Figure 4.7) and a larger proportion of variance explained by urban land cover (Figure 4.8) 

for poorly established species compared to well-established species. However, 

relationships with other land cover and climate variables were less clear (Tables A2.1 and 

A2.2). It was predicted that well-established species would be more associated would 

climate than with land use; a positive relationship between level of establishment and 

proportion of variance explained by climate was found, although this was not significant 

(Figure 4.9).  

 

Previous studies separating species into archaeophytes and neophytes have found that 

archaeophytes are less associated with urban land use than neophytes (e.g. Hulme, 2009b; 

Botham et al., 2009). One explanation is that species may be introduced and establish wild 

populations in urban areas, and subsequently spread into the surrounding countryside, but 

it is equally plausible that there has been a shift in the modes of introduction. 

Archaeophytes may be more likely to grow away from urban areas due to the routes of 

introduction in the past. For example, arable weeds that were introduced over 500 years 

ago would predominantly have arrived as grain contaminants and with wool shoddy, or 

intentionally as crop species. In contrast, neophytes introduced in the last 200 years are 

more likely to have been introduced as garden plants, as amenity planting, from food waste 

etc., all activities that are more frequent in urban areas. It appears that both processes - 

shifts in modes of arrival, and expansions away from the points of arrival - are at play. For 

example, there are well-established neophyte species which have spread into semi-natural 

habitats despite their initial introduction through horticulture; Impatiens capensis, a 

neophyte originally introduced as an ornamental, has shown a steady expansion into semi-

natural habitats since it was first recorded outside of cultivation in 1822 (Preston et al., 

2002; GB Non-native species secretariat, 2011b). However, some of the poorly established 

archaeophytes have become restricted to habitats with greater human influence where 

they rely on the ongoing release of propagules; Agrostemma githago and Adonis annua are 

both previously well established species which now mainly occur as deliberate 

introductions (Preston et al., 2002).  
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4.5.4 Implications and conclusions 

 

The establishment index used has been calculated from records given a status (established, 

casual, planted and surviving) by recorders. Botanical recorders are asked to score records 

of non-native species according to the definitions of establishment listed in Table 4.1, but 

there is a degree of subjectivity in assigning records to these categories. Recorders 

assigning a status make an informed decision based on a number of factors including 

population size, evidence of regeneration, available habitat, and how a species was likely to 

have been introduced into the area. However, there will always be examples where it is 

very difficult to tell. There may be a more objective way of classifying records in the future: 

The Botanical Society of the British Isles is currently developing a new method to classify 

records by status, by classifying species in relation to the degree of regeneration and the 

extent to which they are invading semi-natural habitats (with suggested categories being 

survivor, casual, ruderal, established and transforming). However, using the status of 

records to quantify the level of establishment of non-native species does give clear 

patterns, and provides an alternative to using date of introduction when examining 

patterns with climate and land use.  

 

The relationships of time since introduction and time first recorded in the wild with the 

calculated establishment index used in this study suggests that residence time is not a good 

predictor of level of establishment (Figure 4.1). Range size is also not necessarily a reliable 

indicator of level of establishment (Figure 4.3), except for the most established species with 

long residence times. As expected, models are better at predicting distributions of well 

established species than for poorly established species and poorly established species are 

more associated with urban land cover than well established species. Level of 

establishment is not necessarily related to residence time, meaning that newly arrived 

species can be as invasive as long established species; this warns against complacency in 

dealing with newly arrived species, especially if they have been shown to be a problem 

elsewhere. Recently introduced species which are well-established within a small area 

could be expected to be more likely to expand their ranges and become more abundant, 

potentially changing the composition of native communities, than poorly-established 

species with larger ranges. More informative ways of quantifying establishment of non-

native species in the future could involve a classification which takes into account whether 

a species is producing seed or seedlings, population size, distance from point of origin and 
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method of introduction; better recording of habitats would also give information on where 

non-native species are most likely to become frequent. Future studies of non-native species 

should attempt to distinguish between time since arrival and the level of establishment 

because the two may not be associated. 
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Chapter 5:  Distribution and establishment of Plant Functional Types 

 

 

5.1 Abstract 

 

Plant Functional Types (PFTs) can be defined as groups of plants exhibiting similar 

responses to an environment. Analyses using traits show that classifications based on life 

form capture variation in several important functional traits, with life forms having been 

shown to have predictable responses to changes in environmental variables such as water 

availability, temperature and disturbance. PFTs of non-native species were used to examine 

species richness in relation to climate and land use, as successfully modelling current 

species richness from environmental variables would allow prediction of future changes 

with climate and land use change, showing which groups may be most likely to increase in 

future. The level of establishment of different groups was also examined to determine 

which groups are most successful in relation to climate and land use variables. 1728 non-

native plant species were classified into two PFTs: Raunkiaer life forms, using position of 

over-wintering buds, and a second life form classification similar to those used in 

vegetation modelling, dividing groups based on leaf-type and evergreen/deciduous. 

Generalised Linear Models (GLMs) were used to model species richness of PFTs in relation 

to climate and land use variables. The importance of different climate and land use 

variables were examined using results from GLMs and Hierarchical Partitioning. Levels of 

establishment for each group were compared using a calculated establishment index. 

General patterns with climate and land use show that species richness of all PFTs appears 

to have similar results with climate, with positive relationships with temperature variables 

and negative relationships with rainfall. Species richness of all groups is also positively 

associated with urban land cover; however, some PFTs are less associated with urban areas 

than with other land cover types. The least established groups (annuals and needle-leaved 

evergreens) show greater associations with land cover than with climate, with patterns 

related to where they are likely to be introduced. More established groups (chamaephytes, 

geophytes and hemicryptophytes) show a greater association with climate. Positive 

relationships with temperature and urban suggests all groups have potential to increase 

with future urbanisation and climate change.  
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5.2 Introduction 

 

Plant Functional Types (PFTs) can be defined as groups of plants exhibiting similar 

responses to an environment (Diaz and Cabido, 1997; Duckworth et al., 2000; Lavorel and 

Garnier, 2002; Wang and Ni, 2005; Lavorel et al., 2007). Functional classifications of plant 

species include classifications according to plant morphology, life history and regeneration 

traits (Grime et al., 1997; Lavorel and Garnier, 2002). Many different classifications have 

been proposed based on the study area: previous work ranges from classifications of global 

vegetation into broad functional types for models (Box, 1981, 1996; Diaz and Cabido, 1997; 

Malcolm et al., 2002) to much more detailed classifications for specific communities of an 

area such as semi-arid woodland (Westoby and Leishman, 1997) or arctic tundra (Chapin et 

al., 1996).   

 

PFT classifications based on life form (e.g. Raunkiaer, 1934) have been used to study 

distributions of non-native species in relation to climate and land use (Pyšek et al., 1995; 

Hulme, 2009b; Smith, 2010; Marini et al., 2012). Analyses using traits show that 

classifications based on life form are useful, as they capture variation in several important 

functional traits, with life forms having been shown to have predictable responses to 

changes in environmental variables such as water availability and temperature (e.g. Chapin 

et al., 1996; Diaz and Cabido, 1997) and disturbance (e.g. McIntyre et al., 1995). 

Raunkiaer's life form classification (Raunkiaer, 1934) groups plants according the position 

of dormant meristems over the unfavourable season. Raunkiaer argued that height of the 

renewal bud allowed prediction of a plant's tolerance for the likelihood, duration and 

severity of an unfavourable season, typically low temperature or drought or both. Species 

are divided into seven main categories (Figure 5.1): trees (phanerophytes), shrubs 

(nanophanerophytes) and sub-shrubs (chamaephytes), which survive the unfavourable 

season with buds at various heights above ground; rosette plants (hemicryptophytes), 

which survive with buds at or near soil surface; plants with bulbs, rhizomes, corms or 

tubers (geophytes), which survive below the ground; aquatic plants (hydrophytes) which 

survive under water; and annuals (therophytes) that survive as seeds. Later classifications 

used in models for studying response of vegetation to global climate are mostly based on 

subdivisions of life forms (e.g. Box, 1981, 1995; Chapin et al., 1996), including  traits such as 

leaf type (e.g. broad, narrow/needle, absent) and seasonal photosynthetic habit (e.g. 

summer-green). 
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Figure 5.1. Raunkiaer life forms (Raunkiaer, 1934): 1 = phanerophyte (tree), 2 = 

nanophanerophyte (shrub), 3 = chamaephyte  (sub-shrub), 4 = hemicryptophyte (rosette 

plant), 5 and 6 =  geophytes (plants with rhizomes, corms, tubers or bulbs), 7, 8 and 9 = 

hydrophytes  (aquatic plants), and therophyte (annual plant) (not shown).  

 

 

If climate is having a greater effect than land use on the distributions of non-native plant 

species in Britain, species richness of PFTs would be expected to vary in a predictable way 

based on climatic variables. A previous study examining the distributions of life forms in a 

small sample of non-native species in Britain (Hulme, 2009b) found some relationships 

between life form and climatic variables, with chamaephytes more associated with cooler, 

wetter areas and geophytes and therophytes more associated with warmer, drier areas. 

Recurring drought or low temperatures would be expected to favour species with their 

renewal buds protected by the seed coat, as in all annual species, or by their position 

progressively near, at or below the soil surface (Raunkiaer, 1934). Therophytes have been 

found to be dominant in dry regions, with areas with Mediterranean climates or deserts 

being characterised by a high proportion of annuals that survive the dry season as seeds 

(e.g. Danin and Orshan, 1990). Growth forms with buds below or near the soil surface 

(geophytes, hemicryptophytes and chamaephytes) are replaced by nanophanerophytes 

and phanerophytes with increasing temperatures in cold regions (Chapin et al., 1996; 

Kaplan et al., 2003) or increasing rainfall in dry regions (Danin and Orshan, 1990). Within 
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phanerophytes, tolerance to drought and cold are dependent on leaf type and phenology, 

with broad-leaved evergreen species most susceptible to drought and cold temperatures, 

and deciduous and needle-leaved species better adapted to adverse conditions. For 

example, Box (1995) described dominant plant forms in biome types. In warm, wet regions, 

evergreen broad-leaved trees with a continuous growing season are the dominant plant 

form. In temperate regions, broad-leaved deciduous and winter-dormant trees are 

dominant, and in cool temperate or boreal regions they are more likely to be needle-leaved 

evergreen or needle-leaved deciduous and winter-dormant. 

 

However, PFTs are also likely to be forming patterns based on land use.  Marini et al. (2012) 

found an absence of life form dependent responses among non-native species along an 

elevation gradient in Italy, with non-native species richness showing a consistent positive 

relationship with temperature across all life forms, and concluded distribution of non-

native plant species richness was more related to propagule pressure and availability of 

habitats created by human activities than to climatic filtering. If climate is not creating 

distinct patterns of different non-native life forms, it is also likely that traits associated with 

different life forms are likely to mean some are over-represented in certain habitats. 

Studies looking at the distribution of life forms in man-made habitats have found some life 

forms are over-represented. Knapp et al. (2008) compared plant traits in urbanised with 

rural areas and found clear differences in the proportion of trait states. Therophytes were 

found to be over-represented in more urban areas, as cities have a high proportion of 

unstable habitats (e.g. urban brownfields) that favour annuals and biennials and 

reproduction by seeds. Well-drained habitats and the urban heat island effect (e.g. Oke, 

1982) also favour plants either able to cope with drier, warmer conditions (e.g. plants with 

succulent or scleromorphic leaves), or that avoid drought e.g. annuals that complete their 

life cycle in a temporal niche like springtime, when temperatures and drought stress are 

low.  

 

Previous studies attempting to distinguish successful or invasive non-natives from 

unsuccessful non-native or native species using traits have generally found no definitive set 

of traits describing successful non-native species (e.g. Noble, 1989; Roy, 1990; Pyšek et al., 

1995; Tecco et al., 2010). Characteristics of successful non-native species appears to be 

dependent on habitat, as different traits are more important in different habitats (e.g. 

Grime, 1974, 2001; Thompson et al., 1995). It would be expected that frequently disturbed 
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communities would favour seed production and high dispersal ability, while closed 

communities would favour competitive ability and vegetative reproduction. Pyšek et al. 

(1995) found that successful invaders of man-made habitats are more likely to be 

therophytes or geophytes, using a competitor or competitor-ruderal strategy (with high 

vegetative growth rate or high reproduction with rapid seedling establishment and 

growth), while successful invaders of semi-natural habitats are more likely to be 

hemicryptophyte or geophyte with high vegetative growth rate. 

 

This study used Raunkiaer life forms and a classification incorporating phenology/leaf type 

similar to global models to examine the species richness of non-native plant species in 

relation to climate and land use variables. These two classifications were chosen as they 

have been shown to be useful when using PFTs in climate modelling, and different groups 

would be expected to show distinct responses to projected climate changes. The main aims 

were to determine if non-native species with different Plant Functional Types are assuming 

distributions related to climate and land use, to allow prediction of future distributions, and 

to evaluate the level of establishment (using the establishment index calculated in Chapter 

4) of different Plant Functional Types to determine which groups are most successful in 

relation to climate and land use variables. Analyses were used to test the hypotheses that: 

1) non-native PFTs are forming distinct patterns with climate and land use variables; and 2) 

PFTs with more well-established species are forming patterns associated with climate, 

while PFTs with more poorly established species are more associated with land use due to 

methods of introduction.  

 

 

5.3 Methods 

 

5.3.1. Data 

 

Plant species data 

 

Records of plant species in 10 x 10 km grid squares were provided by the Botanical Society 

of the British Isles (BSBI). Analyses of non-native plants used all 1728 non-native plant 

species, included in the New Atlas of the British and Irish Flora (Preston et al., 2002), that 

had been recorded in Britain between 1987 and 2009. This includes both neophytes (non-
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native species introduced after 1500) and archaeophytes (non-native species introduced 

before 1500).  

 

All statistical model building was based on a subset of 10 x 10 km grid squares which are 

known to have been consistently recorded for non-native species. These are the BSBI 

Monitoring Scheme (or Local Change) grid squares (Braithwaite et al., 2006): 291 squares 

regularly arranged in a systematic grid of 1 in 9 which have had additional recording in 

1987/1988 and 2003/2004, and thereby have a higher number of non-native species 

recorded than surrounding squares (Figure 2.1). These high intensity repeat-survey squares 

minimise recording variation associated with unsystematic botanical surveying across the 

remainder of Britain (Preston et al., 2002). 

 

Climate and land use data 

 

Environmental variables which have previously been shown to be useful when analysing 

vegetation distributions were chosen (e.g. Box 1981, 1995, 1996; Sykes and Prentice 1995). 

Climate variables used were annual averages over the time period 1960-1990 for mean 

summer (June to August) precipitation in mm (SPRE), mean winter (December to February) 

precipitation in mm (WPRE), growing degree days over 5°C (GDD5), mean temperature 

warmest month in °C (MTWA)  and mean temperature of the coldest month in °C (MTCO). 

The ratio of actual to potential evapotranspiration (APET) was also used, which is estimated 

using soil moisture accounting models and gives an index of effective drought (Prentice et 

al., 1992; Huntley et al., 1995). Proportions of each 10 x 10 km grid square associated with 

different land cover classifications were estimated from the Land Cover Map 2000 (Fuller et 

al., 2002): arable, urban, improved grassland, neutral grassland, acid grassland, calcareous 

grassland, broadleaved woodland, coniferous woodland, heath, inland rock and standing 

water. 

 

Classification of species into functional types 

 

1728 non-native plant species were classified into two plant functional type classifications, 

a broad PFT classification and a modified Raunkiaer classification (Table 5.1).  These two 

classifications were chosen as they have been shown to be useful when using PFTs in 

climate modelling (e.g. Box, 1981, 1995; Chapin et al., 1996; Diaz and Cabido, 1997), and 
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different groups would be expected to show distinct responses to projected climate 

changes. The broad PFT classification, based on life form and phenology, is similar to those 

used in many vegetation models (e.g. Smith et al., 2001). Species were classified into 

Raunkiaer life forms using the classification given in PLANTATT (Hill et al., 2004). This 

system is based on the Raunkiaer system of life forms set out by Clapham et al., (1962), and 

looks at the position of overwintering buds.  

 

 

Table 5.1. Plant functional types  

 Broad PFT Raunkiaer PFT 

Herbaceous Herbaceous annual (HA) 

Herbaceous perennial (HP), 

including biennials 

Therophyte (Th), passing unfavourable 

season as seeds 

Bulbous geophyte (Gb), with wintering 

buds below ground (bulb) 

Non-bulbous geophyte (Gn), with buds 

below ground (rhizome, corm or tuber) 

Hemicryptophyte (hc), with buds at soil 

surface 

Herbaceous 

or woody 

 Chamaephyte(Ch), with wintering buds 

at 3-39 cm above ground 

Woody Succulent evergreen (SE) 

Broad-leaved deciduous (BLD) 

Broad-leaved evergreen (BLE) 

Needle-leaved deciduous (NLD) 

Needle-leaved evergreen (NLE) 

Nanophanerophyte (Pn), with wintering 

buds 40-399 cm above ground 

Phanerophyte (Ph), with wintering buds 

400 cm above ground 

Aquatic Aquatic (AQ) Hydrophyte (Hy), perennial with buds 

under water 
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5.3.1. Analyses 

 

Spearman’s rank correlations, Moran's I, Generalised Linear Models, Hierarchical 

Partitioning , Kruskal-Wallis rank sum test and multiple comparison test after Kruskal-Wallis 

(function 'kruskalmc', in the package 'pgirmess') were used to examine relationships 

between different variables. All analysis was carried out using R (version 2.13.1).   

 

Generalised Linear Models 

 

Generalised Linear Models (GLMs) were used to determine the relationships between 

species richness, climate variables and land use.  GLMs were carried out using the 'glm' 

function in the 'stats' package in R, specifying the family 'Poisson' as the response variable 

was count data (species richness). Climate variables and proportions of land cover were 

used as the predictor variables. Dispersion parameters were used to correct for 

overdispersion of residuals and predictor variables were removed using the Akaike 

information criterion (AIC). The climate and land use predictor variables were standardised 

to give a mean of 0 and a standard deviation of 1, allowing comparison of the slope 

estimates from the models. Second order polynomials were used for climate variables. The 

BSBI Monitoring Squares (Figure 2.1) were used to create the models, which were then 

used to predict species richness for the rest of the grid squares from their climate and land 

use data (using the 'predict' function in the 'stats' package in R). These predictions were 

compared with numbers of species actually recorded for these grid squares (using 

Spearman’s rank correlations) to test the model accuracy.  

 

Hierarchical Partitioning 

 

Hierarchical Partitioning (HP) analyses were used to calculate the independent contribution 

of each predictor to the species richness for different groups of non-native species.  HP was 

carried out using the 'hier.part' package (MacNally and Walsh, 2004). HP involves 

measuring the increase of goodness-of-fit of all models with a particular variable compared 

with the equivalent model without that variable. The improvement in fit is then averaged 

across all possible models in which that variable occurs to produce a measure of its 

independent effects. A Poisson distribution with the default goodness-of-fit measure 

(RMSPE, Root-mean-square ‘prediction’ error) was specified. 
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5.4 Results   

 

5.4.1 Patterns of PFTs with climate and land use 

 

Figures 5.2 and 5.3 show maps of species richness for Raunkiaer life forms and for broad 

PFT species richness. Correlations with climate and urban land cover and number of species 

within each group are given in Appendix 3 (Tables A3.1 and A3.2).  

 

 

 

 

Figure 5.2. Species richness for Raunkiaer life forms using records from 1987 to 2009.  
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Figure 5.3. Species richness for broad PFTs using records from 1987 to 2009.  

 

 

 

5.4.2 Modelling PFT species richness 

 

The models of the GLMs built on the BSBI Monitoring Squares (Table 5.2) were used to 

predict richness in all other 10 km grid squares. The species richness of each Raunkiaer life 

form can be predicted well using these models (Figure 5.4); all Spearman's rank 

correlations between modelled and recorded species richness are over 0.741 (N = 2499, 

p<0.0001). Nanophanerophytes have the weakest correlation between modelled and 

recorded species richness (Spearman's rank correlation coefficient 0.741, N = 2499, 
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p<0.0001), while therophytes have the strongest correlation (Spearman's rank correlation 

coefficient 0.890, N = 2499, p<0.0001). Results for all life forms are shown in Figure 5.4; 

hydrophytes were not modelled due to too few species in this category. 

 

 

Figure 5.4. Relationships between modelled (predicted) species richness and recorded 

species richness for each 10 x 10 km grid square (excluding model-building squares) for 

Raunkiaer life forms. Results from Spearman's rank correlation shown on graphs (N=2499 

for all groups). 
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The results of the GLMs for broad PFTs (Table 5.3) give a range of correlations between 

modelled and recorded species richness (Figure 5.5) from 0.545 to 0.890 (N = 2499, 

p<0.0001). Needle-leaved evergreen have the weakest correlation between modelled and 

recorded species richness (Spearman's rank correlation coefficient 0.545, N = 2499, 

p<0.0001), while herbaceous annuals have the strongest correlation (Spearman's rank 

correlation coefficient 0.890, N = 2499, p<0.0001). Results for all broad PFTs are shown in 

Figure 5.5; needle-leaved deciduous species, succulent evergreens and aquatics were not 

modelled due to small numbers of species in these categories. 

 

 

Figure 5.5. Relationships between modelled (predicted) species richness and recorded 

species richness for each 10 x 10 km grid square (excluding model-building squares) for 

broad PFTs. Results from Spearman's rank correlation shown on graphs (N=2499 for all 

groups). 
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Table 5.2. GLMs for Raunkiaer life form species richness. Slope estimate, standard error, Z value and significance are shown for each climate and land cover 

variable included (after elimination using AIC). Predictor variables were standardised to allow comparison of relative importance. 

 Ch Gb Gn hc 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 -31.04 18.25 -1.70 0.0890 . -27.36 27.85 -0.98 0.3259  -7.04 20.52 -0.34 0.7316  5.60 14.64 0.38 0.7019  

poly(GDD5, 2)2 10.62 3.50 3.04 0.0024 ** 14.30 5.25 2.73 0.0064 ** 9.20 3.74 2.46 0.0140 * 7.72 2.66 2.90 0.0037 ** 

poly(MTCO, 2)1 5.68 5.22 1.09 0.2767  8.14 7.93 1.03 0.3042  3.79 5.80 0.65 0.5136  -4.61 4.11 -1.12 0.2625  

poly(MTCO, 2)2 -1.82 2.31 -0.79 0.4303  -5.01 3.51 -1.43 0.1531  -5.76 2.59 -2.22 0.0262 * -4.13 1.77 -2.33 0.0199 * 

poly(MTWA, 2)1 40.76 14.92 2.73 0.0063 ** 24.73 22.93 1.08 0.2808  9.30 16.77 0.55 0.5793  5.69 11.94 0.48 0.6341  

poly(MTWA, 2)2 -13.04 2.70 -4.84 0.0000 *** -14.50 4.05 -3.58 0.0003 *** -8.07 2.79 -2.90 0.0038 ** -8.74 1.99 -4.40 0.0000 *** 

poly(APET, 2)1 -4.41 2.07 -2.13 0.0331 * -11.13 3.22 -3.45 0.0006 *** -4.91 2.34 -2.09 0.0362 * -2.74 1.67 -1.64 0.1013  

poly(APET, 2)2 -0.95 0.78 -1.22 0.2240  -2.41 1.22 -1.98 0.0480 * -1.96 0.95 -2.06 0.0390 * -0.90 0.65 -1.39 0.1634  

poly(SPRE, 2)1 -0.32 4.64 -0.07 0.9457  -1.41 7.60 -0.19 0.8527  9.29 4.92 1.89 0.0587 . -1.27 3.58 -0.35 0.7232  

poly(SPRE, 2)2 -5.35 2.80 -1.91 0.0560 . -15.30 5.12 -2.99 0.0028 ** -2.84 2.70 -1.05 0.2919  -5.66 2.23 -2.54 0.0112 * 

poly(WPRE, 2)1 2.99 4.20 0.71 0.4770  0.03 6.72 0.00 0.9965  -6.22 4.58 -1.36 0.1749  1.64 3.24 0.51 0.6127  

poly(WPRE, 2)2 4.15 2.54 1.64 0.1016  8.68 4.17 2.08 0.0371 * 2.04 2.65 0.77 0.4417  3.91 2.01 1.94 0.0521 . 

acid 0.07 0.06 1.12 0.2644            0.03 0.05 0.64 0.5207  

arable 0.23 0.07 3.23 0.0013 ** 0.42 0.11 3.85 0.0001 *** 0.22 0.08 2.67 0.0077 ** 0.18 0.06 3.13 0.0018 ** 

bwood 0.07 0.03 2.40 0.0164 * 0.15 0.05 3.32 0.0009 *** 0.14 0.03 3.89 0.0001 *** 0.09 0.03 3.71 0.0002 *** 

calc                     

cwood 0.20 0.05 4.26 0.0000 *** 0.31 0.06 4.87 0.0000 *** 0.21 0.05 4.31 0.0000 *** 0.11 0.04 3.09 0.0020 ** 

heath                     

improved 0.31 0.06 5.48 0.0000 *** 0.41 0.08 4.81 0.0000 *** 0.29 0.06 4.86 0.0000 *** 0.19 0.04 4.37 0.0000 *** 

inrock                0.05 0.04 1.13 0.2585  

neutral 0.13 0.05 2.53 0.0113 * 0.13 0.08 1.62 0.1053  0.06 0.06 1.04 0.2964  0.10 0.04 2.66 0.0078 ** 

swater                     

urban 0.27 0.04 7.05 0.0000 *** 0.37 0.06 6.22 0.0000 *** 0.31 0.04 7.17 0.0000 *** 0.25 0.03 8.25 < 2e-16 *** 
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  Table 5.2. (continued) GLMs for Raunkiaer life form species richness. 

 Ph Pn Th 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 -1.28 13.95 -0.09 0.9269  16.31 21.04 0.78 0.4382  14.32 12.30 1.16 0.2444  

poly(GDD5, 2)2 4.79 2.40 2.00 0.0460 * 4.22 3.64 1.16 0.2462  1.51 2.14 0.71 0.4795  

poly(MTCO, 2)1 -3.22 3.86 -0.84 0.4040  -2.50 5.94 -0.42 0.6743  -4.96 3.47 -1.43 0.1535  

poly(MTCO, 2)2 -2.06 1.53 -1.34 0.1805  -3.86 2.59 -1.49 0.1357  -1.88 1.46 -1.29 0.1979  

poly(MTWA, 2)1 11.80 11.66 1.01 0.3113  -8.04 17.24 -0.47 0.6412  -1.96 10.05 -0.20 0.8453  

poly(MTWA, 2)2 -5.52 1.82 -3.03 0.0024 ** -6.80 2.73 -2.49 0.0129 * -3.43 1.66 -2.07 0.0382 * 

poly(APET, 2)1      -2.79 2.38 -1.18 0.2398  -2.88 1.42 -2.03 0.0428 * 

poly(APET, 2)2      -0.43 0.92 -0.46 0.6455  -0.73 0.52 -1.39 0.1637  

poly(SPRE, 2)1 2.15 0.98 2.20 0.0281 * 5.58 4.95 1.13 0.2592  -2.18 3.25 -0.67 0.5023  

poly(SPRE, 2)2 -0.24 0.74 -0.33 0.7433  -3.92 2.86 -1.37 0.1696  -5.04 2.04 -2.47 0.0137 * 

poly(WPRE, 2)1      -3.42 4.55 -0.75 0.4525  0.53 2.97 0.18 0.8573  

poly(WPRE, 2)2      3.02 2.72 1.11 0.2681  3.56 1.82 1.96 0.0500 . 

acid 0.10 0.05 2.02 0.0429 * 0.08 0.07 1.24 0.2158  0.06 0.05 1.28 0.1995  

arable 0.37 0.07 5.01 0.0000 *** 0.24 0.09 2.65 0.0080 ** 0.20 0.05 3.99 0.0001 *** 

bwood 0.12 0.03 4.75 0.0000 *** 0.15 0.04 4.12 0.0000 *** 0.05 0.02 2.07 0.0383 * 

calc                

cwood 0.19 0.04 5.12 0.0000 *** 0.20 0.05 4.10 0.0000 *** 0.09 0.03 2.75 0.0060 ** 

heath 0.10 0.08 1.23 0.2206       -0.05 0.07 -0.72 0.4699  

improved 0.28 0.06 4.86 0.0000 *** 0.23 0.07 3.50 0.0005 *** 0.18 0.04 4.19 0.0000 *** 

inrock 0.06 0.04 1.57 0.1167  0.06 0.05 1.13 0.2572  0.06 0.03 1.64 0.1016  

neutral 0.10 0.04 2.28 0.0225 * 0.13 0.05 2.46 0.0139 * 0.10 0.03 3.10 0.0020 ** 

swater                

urban 0.28 0.04 7.60 0.0000 *** 0.40 0.05 8.77 < 2e-16 *** 0.18 0.03 6.47 0.0000 *** 
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Table 5.3. GLMs for broad PFT species richness. Slope estimate, standard error, Z value and significance are shown for each climate and land cover variable 

included (after elimination using AIC). Predictor variables were standardised to allow comparison of relative importance. 

 BLD BLE HA HP 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 7.25 14.97 0.48 0.6281  -6.46 23.55 -0.27 0.7838  14.32 12.30 1.16 0.2444  -3.30 15.26 -0.22 0.8289  

poly(GDD5, 2)2 5.30 2.72 1.95 0.0513 . 8.15 4.41 1.85 0.0643 . 1.51 2.14 0.71 0.4795  8.41 2.79 3.01 0.0026 ** 

poly(MTCO, 2)1 -3.85 4.21 -0.91 0.3610  4.71 6.83 0.69 0.4904  -4.96 3.47 -1.43 0.1535  -1.42 4.29 -0.33 0.7412  

poly(MTCO, 2)2 -3.93 1.84 -2.14 0.0328 * -4.33 3.00 -1.44 0.1487  -1.88 1.46 -1.29 0.1979  -3.75 1.87 -2.01 0.0445 * 

poly(MTWA, 2)1 3.64 12.25 0.30 0.7662  15.22 19.17 0.79 0.4272  -1.96 10.05 -0.20 0.8453  12.04 12.46 0.97 0.3341  

poly(MTWA, 2)2 -6.81 2.04 -3.34 0.0008 *** -9.62 3.34 -2.88 0.0040 ** -3.43 1.66 -2.07 0.0382 * -9.32 2.10 -4.45 0.0000 *** 

poly(APET, 2)1 -1.56 1.68 -0.93 0.3508  -4.41 2.65 -1.66 0.0964 . -2.88 1.42 -2.03 0.0428 * -3.79 1.74 -2.18 0.0295 * 

poly(APET, 2)2 -0.18 0.66 -0.27 0.7856  -1.19 0.99 -1.19 0.2327  -0.73 0.52 -1.39 0.1637  -1.14 0.67 -1.70 0.0893 . 

poly(SPRE, 2)1 5.27 3.62 1.46 0.1455  4.23 5.80 0.73 0.4661  -2.18 3.25 -0.67 0.5023  0.62 3.75 0.17 0.8680  

poly(SPRE, 2)2 -2.54 2.10 -1.21 0.2265  -5.53 3.39 -1.63 0.1026  -5.04 2.04 -2.47 0.0137 * -5.50 2.31 -2.38 0.0174 * 

poly(WPRE, 2)1 -4.24 3.35 -1.27 0.2051  1.22 5.25 0.23 0.8162  0.53 2.97 0.18 0.8573  0.46 3.41 0.14 0.8922  

poly(WPRE, 2)2 1.34 2.01 0.67 0.5044  4.34 3.09 1.40 0.1603  3.56 1.82 1.96 0.0500 . 3.76 2.10 1.79 0.0733 . 

acid 0.06 0.05 1.19 0.2359       0.06 0.05 1.28 0.1995  0.03 0.05 0.63 0.5260  

arable 0.27 0.06 4.39 0.0000 *** 0.26 0.10 2.63 0.0087 ** 0.20 0.05 3.99 0.0001 *** 0.21 0.06 3.50 0.0005 *** 

bwood 0.10 0.03 3.78 0.0002 *** 0.14 0.04 3.59 0.0003 *** 0.05 0.02 2.07 0.0383 * 0.10 0.03 3.88 0.0001 *** 

calc      -0.07 0.05 -1.29 0.1984            

cwood 0.15 0.04 4.28 0.0000 *** 0.24 0.06 3.93 0.0001 *** 0.09 0.03 2.75 0.0060 ** 0.15 0.04 3.89 0.0001 *** 

heath           -0.05 0.07 -0.72 0.4699       

improved 0.22 0.05 4.87 0.0000 *** 0.26 0.07 3.59 0.0003 *** 0.18 0.04 4.19 0.0000 *** 0.24 0.05 5.09 0.0000 *** 

inrock 0.04 0.04 0.90 0.3691  0.11 0.06 1.98 0.0479 * 0.06 0.03 1.64 0.1016  0.04 0.04 1.01 0.3110  

neutral 0.09 0.04 2.30 0.0216 * 0.15 0.06 2.43 0.0153 * 0.10 0.03 3.10 0.0020 ** 0.10 0.04 2.51 0.0122 * 

swater                     

urban 0.29 0.03 9.31 < 2e-16 *** 0.41 0.05 8.15 0.0000 *** 0.18 0.03 6.47 0.0000 *** 0.27 0.03 8.33 < 2e-16 *** 
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      Table 5.3. (continued) GLMs for broad PFT species richness. 

 NLE 

 Slope S.E. Z P Signif. 

poly(GDD5, 2)1 -28.62 23.26 -1.23 0.2186  

poly(GDD5, 2)2 1.43 3.64 0.39 0.6945  

poly(MTCO, 2)1 4.48 6.42 0.70 0.4850  

poly(MTCO, 2)2 3.07 2.44 1.26 0.2082  

poly(MTWA, 2)1 29.67 19.29 1.54 0.1241  

poly(MTWA, 2)2 -1.96 2.70 -0.73 0.4661  

poly(APET, 2)1      

poly(APET, 2)2      

poly(SPRE, 2)1      

poly(SPRE, 2)2      

poly(WPRE, 2)1 3.03 1.46 2.08 0.0380 * 

poly(WPRE, 2)2 0.51 1.11 0.46 0.6433  

acid 0.26 0.08 3.19 0.0014 ** 

arable 0.63 0.15 4.30 0.0000 *** 

bwood 0.25 0.05 5.36 0.0000 *** 

calc      

cwood 0.32 0.06 5.25 0.0000 *** 

heath 0.33 0.13 2.47 0.0134 * 

improved 0.48 0.11 4.22 0.0000 *** 

inrock 0.10 0.06 1.79 0.0738 . 

neutral 0.16 0.08 2.07 0.0389 * 

swater      

urban 0.29 0.08 3.70 0.0002 *** 
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5.4.3 Importance of climate and land use variables 

 

The results from GLMs (Tables 5.2 and 5.3) show that all groups have positive relationships 

with urban land cover and the majority of groups have the highest z value with urban land 

cover out of all climate and land cover variables used. Needle-leaved evergreens are the 

only exception, with broadleaved woodland and coniferous woodland the most important 

land cover types. All groups have similar significant results with climate variables, showing 

positive first order effects with MTWA and negative with APET. 

 

Results with urban land cover from GLMs 

 

The GLM urban slope estimate is positive for all Raunkiaer life forms and all broad PFTs, 

indicating that non-native species richness is positively associated with urban land cover for 

all modelled groups (Figures 5.6 and 5.7). The Raunkiaer life form with the weakest 

association between species richness and urban land cover is therophytes (slope estimate 

0.18, N=291, p<0.001) and with the strongest associations are nanophanerophytes (slope 

estimate 0.40, N=291, p<0.001) and bulbous geophytes (slope estimate 0.37, N=291, 

p<0.001). The broad PFT with the weakest association between species richness and urban 

land cover is herbaceous annuals (slope estimate 0.18, N=291, p<0.001) and with the 

strongest association is broad-leaved evergreens (slope estimate 0.41, N=291, p<0.001). 
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Figure 5.6.  Urban slope values (± S.E., all N=291, p<0.001) from GLMs for Raunkiaer PFTs 

(Ch = Chamaephyte, Gb = Bulbous geophyte, Gn = Non-bulbous geophyte, hc = 

Hemicryptophyte, Hy = Hydrophyte, Ph = Phanerophyte, Pn = Nanophanerophyte, Th = 

Therophyte). 
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Figure 5.7. Urban slope values (± S.E., all N=291, p<0.001) from GLMs for broad PFTs (AQ = 

Aquatic, BLD = Broad-leaved deciduous, BLE = Broad-leaved evergreen, HA = Herbaceous 

annual, HP = Herbaceous perennial, NLE = Needle-leaved evergreen).  

 

 

 

Results with climate and land cover from Hierarchical Partitioning 

 

Results from hierarchical partitioning showing percentage of variance explained by 

temperature (MTCO, MTWA, GDD5), rainfall (SPRE, WPRE, APET), urban land cover and 

other land types of land cover for Raunkiaer life forms are shown in Figure 5.8. Percentages 

for all climate and land cover variables are shown in Appendix 3, Tables A3.3 and A3.4. 

Species richness of phanerophytes and nanophanerophytes has a higher proportion of 

variance explained by land cover than climate, while chamaephyte species richness has a 
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higher proportion explained by climate. Urban land cover is the most important land cover 

variable for the majority of the Raunkiaer life forms; the exception is therophytes. Details 

for each life form are given below. 

 

A larger proportion of total variance is explained by climate variables than land cover 

variables (61.1% compared to 38.9%) for chamaephytes. Climatic variables relating to 

temperature are more important than variables relating to rainfall, with 45.9% compared 

to 15.1%. The most important land cover variable is urban land cover (8.7%). 

Nanophanerophytes have a larger proportion of variance explained by land cover 

compared to climate (61.2% compared to 38.8%). Temperature and rainfall explain similar 

proportions (21.8% and 17.0%), and urban land cover is the most important land cover 

variable (13.9%). A larger proportion of total variance for species richness of 

phanerophytes is explained by land cover (67.1%) compared to climate (32.9%). 

Temperature is slightly more important than rainfall (19.8% for temperature and 13.1% for 

rainfall), and the most important land cover variable is urban land cover at 11.8%, with a 

similar proportion explained by broad-leaved woodland at 11.4%. 

 

Climate and land cover explain similar proportions of variation for bulbous geophytes, at 

49.7% for climate and 50.3% for land cover. Rainfall is more important than temperature 

(37.4% compared to 12.4%) and urban land cover is the most important land cover variable 

(at 10.7%). For non-bulbous geophytes, climate explains a slightly larger proportion of 

variation than land cover (at 58.8% for climate variables and 41.2% for land cover 

variables). Within climate, rainfall explains more variation than temperature (40.0% 

compared to 18.8%), and within land cover, urban explains the most variation at 11.9%. 

Hemicryptophytes have a similar amount of variation explained by climate and land cover 

variables (with 47.3% for climate and 52.7% for land cover). Rainfall explains slightly more 

variation than temperature (at 26.8% compared to 20.5%) and urban land cover is the most 

important land cover classification at 12.3%. Land cover explains a larger proportion of 

variance than climate for therophytes, with 55.9% for land cover and 44.1% for climate. 

Rainfall explains a larger proportion of variance than temperature (30.0% compared to 

14.1%), and the most important land cover variables are arable (12.3%) and urban (10.0%).  
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Figure 5.8. Results from hierarchical partitioning showing percentage of variance explained 

by temperature (MTCO, MTWA, GDD5), rainfall (SPRE, WPRE, APET), urban land cover and 

other land uses for Raunkiaer life forms (Ch = Chamaephyte, Gb = Bulbous geophyte, Gn = 

Non-bulbous geophyte, hc = Hemicryptophyte, Ph = Phanerophyte, Pn = 

Nanophanerophyte, Th = Therophyte). 

 

 

Results from hierarchical partitioning showing percentage of variance explained by 

temperature (MTCO, MTWA, GDD5), rainfall (SPRE, WPRE, APET), urban land cover and 

other land types of land cover for broad functional types are shown in Figure 5.9. Species 

richness of needle-leaved evergreens has a higher proportion of variance explained by land 

cover than climate, while the other types have similar proportions explained by climate and 

land cover. Urban land cover is the most important land cover variable for half of the broad 

functional type categories, with other land cover variables explaining more variation than 

urban for needle-leaved evergreens and herbaceous annuals.  Details for each broad 

functional type are given below. 
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Land cover and climate variables explain similar proportions of variance for broad-leaved 

deciduous species richness (51.6% for climate and 48.4% for land cover). Within climate, 

variables related to rainfall explain a larger proportion than temperature (31.8% compared 

to 19.8%). The most important land cover variables are urban (12.0%) and broad-leaved 

woodland (9.6%). Slightly more variance is explained by land cover variables than climate 

variables for broad-leaved evergreen species richness (59.3% compared to 40.7%). 

Temperature and rainfall give similar results (21.5% and 19.1%), and the most important 

land cover variables are urban (14.0%) and broad-leaved woodland (10.1%). Land cover 

explains more variance than climate for needle-leaved evergreens (72.2% compared to 

27.8%). Within climate, temperature is more important than rainfall variables (22.3% 

compared to 5.6%) and within land cover the most important variables are broad-leaved 

woodland (24.6%) and heath (16.0%), with urban land cover only explaining 5.0%.  

 

Land cover and climate explain similar proportions of variance for species richness of 

herbaceous perennials (52.8% and 47.2%). Rainfall explains a slightly higher percentage 

than temperature (27.1% compared to 20.2%), and urban land cover is the most important 

land cover variable at 12.1%. Land cover explains a larger proportion of variance than 

climate for herbaceous annuals, with 55.9% for land cover and 44.1% for climate. Rainfall 

explains a larger proportion of variance than temperature (30.0% compared to 14.1%), and 

the most important land cover variables are arable (12.3%) and urban (10.0%).  
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Figure 5.9. Results from hierarchical partitioning showing percentage of variance explained 

by temperature (MTCO, MTWA, GDD5), rainfall (SPRE, WPRE, APET), urban land cover and 

other land uses for broad PFTs (AQ = Aquatic, BLD = Broad-leaved deciduous, BLE = Broad-

leaved evergreen, HA = Herbaceous annual, HP = Herbaceous perennial, NLE = Needle-

leaved evergreen). 

 

 

5.4.4 Establishment of PFTs 

 

The Raunkiaer life forms with species with the highest establishment indices (Figure 5.10) 

are hydrophytes (mean establishment index = 72.1%) and bulbous geophytes (mean 

establishment index = 54.8%). Hydrophytes and bulbous geophytes are significantly 

different from the two least established groups, therophytes and phanerophytes (multiple 

comparison test after Kruskal-Wallis, Table 5.4). The least established groups, therophytes 

(mean establishment index = 21.8%) and phanerophytes (mean establishment index = 

24.4%), are significantly different from all six other groups, chamaephytes, bulbous 

geophytes, non-bulbous geophytes, hemicryptophytes, hydrophytes and 

nanophanerophytes (multiple comparison test after Kruskal-Wallis, Table 5.4). 
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Figure 5.10. Establishment index of species within each Raunkiaer PFT (Ch = Chamaephyte, 

Gb = Bulbous geophyte, Gn = Non-bulbous geophyte, hc = Hemicryptophyte, Hy = 

Hydrophyte, Ph = Phanerophyte, Pn = Nanophanerophyte, Th = Therophyte). Significant 

differences between groups (Kruskal-Wallis chi-squared = 260.1, N=8, p < 0.0001). 
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Table 5.4. Comparisons of establishment index values for Raunkiaer life form with 

significant differences from multiple comparison test after Kruskal-Wallis (Kruskal-Wallis 

chi-squared = 260.1, N=8, p < 0.0001). Raunkiaer life form abbreviations are: Ch = 

Chamaephyte, Gb = Bulbous geophyte, Gn = Non-bulbous geophyte, hc = Hemicryptophyte, 

Hy = Hydrophyte, Ph = Phanerophyte, Pn = Nanophanerophyte, Th = Therophyte. 

Comparison N Observed difference Critical difference Significance 

Ch-Ph Ch=113, Ph=188 278.8 166.5 p<0.05 

Ch-Th Ch=113, Th=484 367.2 146.2 p<0.05 

Gb-Ph Gb=72, Ph=188 391.6 193.9 p<0.05 

Gb-Th Gb=72, Th=484 480.0 176.7 p<0.05 

Gn-Ph Gn=76, Ph=188 315.7 190.2 p<0.05 

Gn-Th Gn=76, Th=484 404.1 172.6 p<0.05 

hc-Ph hc=431, Ph=188 280.9 122.3 p<0.05 

hc-Th hc=431, Th=484 369.2 92.7 p<0.05 

Hy-Ph Hy=19, Ph=188 597.5 336.8 p<0.05 

Hy-Pn Hy=19, Pn=168 374.6 338.6 p<0.05 

Hy-Th Hy=19, Th=484 685.9 327.2 p<0.05 

Ph-Pn Ph=188, Pn=168 222.9 148.5 p<0.05 

Pn-Th Pn=168, Th=484 311.3 125.3 p<0.05 

 

 

 

The broad plant functional types with species with the highest establishment indices 

(Figure 5.11) are aquatics (mean establishment index = 72.1%), succulent evergreens (mean 

establishment index = 56.4%) and herbaceous perennials (mean establishment index = 

48.3%). Aquatics and herbaceous perennials are both significantly different from three 

other groups, herbaceous annuals, broad-leaved deciduous and needle-leaved evergreens, 

while succulent evergreens are significantly different from herbaceous annuals and needle-

leaved evergreens (multiple comparison test after Kruskal-Wallis, Table 5.5). The least 

established groups are needle-leaved evergreens (mean establishment index = 12.3%), 

needle-leaved deciduous (mean establishment index = 14.9%) and herbaceous annuals 

(mean establishment index = 21.8%). Herbaceous annuals and needle-leaved evergreens 

are significantly different from five other groups, broad-leaved evergreens, broad-leaved 
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deciduous, herbaceous perennials, succulent evergreens and aquatics (multiple comparison 

test after Kruskal-Wallis, Table 5.5). 

 

 

 

Figure 5.11. Establishment index of species within each broad PFT (AQ = Aquatic, BLD = 

Broad-leaved deciduous, BLE = Broad-leaved evergreen, HA = Herbaceous annual, HP = 

Herbaceous perennial, NLD = Needle-leaved deciduous, NLE = Needle-leaved evergreen, SE 

= Succulent evergreen). Significant differences between groups (Kruskal-Wallis chi-squared 

= 256.2, N=8, p < 0.0001). 
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Table 5.5. Comparisons of establishment index values for broad plant functional types with 

significant differences from multiple comparison test after Kruskal-Wallis (Kruskal-Wallis 

chi-squared = 256.2, N=8, p < 0.0001). Broad PFT abbreviations are: AQ = Aquatic, BLD = 

Broad-leaved deciduous, BLE = Broad-leaved evergreen, HA = Herbaceous annual, HP = 

Herbaceous perennial, NLE = Needle-leaved evergreen, SE = Succulent evergreen. 

Comparison N Observed difference Critical difference Significance 

AQ-BLD   AQ=19, BLD=218 467.2 334.7 p<0.05 

AQ-BLE   AQ=19, BLE=128 423.5 344.0 p<0.05 

AQ-HA    AQ=19, HA=484    685.9 327.2 p<0.05 

AQ-NLE   AQ=19, NLE=40   767.2 389.8 p<0.05 

BLD-HA   BLD=218, HA=484   218.6 114.1 p<0.05 

BLD-HP   BLD=218, HP=648   170.4 109.5 p<0.05 

BLD-NLE BLD=218, NLE=40 299.9 240.7 p<0.05 

BLE-HA   BLE=128, HA=484  262.4 139.1 p<0.05 

BLE-NLE BLE=128, NLE=40   343.7 253.4 p<0.05 

HA-HP    HA=484, HP=648    389.0 84.1 p<0.05 

HA-SE    HA=484, SE=10    491.4 447.0 p<0.05 

HP-NLE   HP=648, NLE=40     470.3 227.9 p<0.05 

NLE-SE   NLE=40 , SE=10   572.7 494.6 p<0.05 

 

 

 

Establishment and importance of climate and land use 

 

The most established PFTs have the largest proportion of variance in species richness 

explained by climate variables and the least established groups by land cover variables. 

Figure 5.12 shows the proportion of total variance explained by climate variables from 

hierarchical partitioning against mean establishment index of species for each PFT; the 

relationship between the two (Spearman’s rank correlation coefficient 0.672, N = 11, 

p<0.028) indicates that climate is more important for more established groups. However, 

caution should be taken in interpretation of the significance because the plot includes both 

types of functional group, and some individual species are represented in more than one of 

the data points. 
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Figure 5.12. Proportion of total variance explained by climate variables from hierarchical 

partitioning against mean establishment index of species for each PFT (Ch = Chamaephyte, 

Gb = Bulbous geophyte, Gn = Non-bulbous geophyte, hc = Hemicryptophyte, Ph = 

Phanerophyte, Pn = Nanophanerophyte, Th/HA = Therophyte/ Herbaceous annual, BLD = 

Broad-leaved deciduous, BLE = Broad-leaved evergreen, HP = Herbaceous perennial , NLE = 

Needle-leaved evergreen).  
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5.5 Discussion 

 

5.5.1 Patterns of PFTs with climate and land use 

 

General patterns with climate and land use show that species richness of all Plant 

Functional Types appear to have similar results with climate and all groups are positively 

associated with urban land cover; however, some PFTs are less associated with urban areas 

than with other land cover types.  

 

Species richness of all PFTs is greater in warmer, drier, more urban parts of Britain, 

reflecting the overall species richness gradients of introduced plants in Britain. The results 

from the GLMs (Table 5.2 and 5.3) show all groups have a positive slope with urban land 

cover and with the majority of groups having the highest z value with urban land cover (all 

N=291, p<0.001) out of all climate and land cover variables used in the models. Significant 

results with climate variables show positive 1st order effects with MTWA and negative with 

APET. Marini et al. (2012) found an absence of life-form-dependent responses among non-

native species along an elevation gradient, with non-native species richness showing a 

consistent positive relationship with temperature across all life forms. However, Hulme 

(2009b) found some distinct patterns for life forms when looking at a limited number of 

non-native species, with chamaephytes associated with cool, wet areas and bulbous 

geophytes and therophytes more associated with warm and dry areas. Results of this study 

indicate that species richness of different PFTs is not forming distinct patterns with climate 

variables and urban land cover, but are forming some patterns with other types of land 

cover, suggesting species richness is related to where species are likely to be introduced 

and can become established, rather than to climatic filtering.  

 

The importance of different land cover variables varies for predicting species richness of 

different PFTs. The GLM urban slope estimate is positive for all Raunkiaer life forms and all 

broad PFTs, indicating that non-native species richness is positively associated with urban 

land cover for all modelled groups (Figures 5.6 and 5.7). Accidental introductions of non-

native species are more likely to occur in areas with high levels of human activity, especially 

in urban areas that contain gardens and parks, from which many non-native species may 

escape (Pyšek, 1998; Dehnen-Schmutz et al., 2007; Botham et al., 2009; Roy et al., 2012). 

The PFTs with the strongest associations between species richness and urban land cover 



 

160 

 

are broad-leaved evergreens (slope estimate 0.41, N=291, p<0.001) and 

nanophanerophytes (slope estimate 0.40, N=291, p<0.001). The results from Hierarchical 

Partitioning also support the importance of urban land cover for these two groups, with 

broad-leaved evergreens and nanophanerophytes having the largest proportions of 

variance explained by urban land cover out of all groups (at 13.99 and  13.86% 

respectively). Many broad-leaved evergreen and nanophanerophyte species are introduced 

as ornamentals and are grown in urban areas; examples include Cotoneaster spp., Hebe 

spp., Cornus spp., Symphoricarpos spp., Berberis spp. and Hypericum spp., which are 

frequently used in amenity planting and grown in gardens (Stace, 1997; Preston et al., 

2002). Shrubs and species with mesomorphic leaves  (those adapted to moist conditions) 

have been found to be over-represented among introduced neophytes in a study of an 

urban flora in Germany (Knapp et al., 2010), and it was suggested that this was due to 

species likely to be chosen for planting in parks and gardens. 

 

Other studies have predicted that species which are herbaceous annuals or therophytes 

are most likely to benefit from urban environments (e.g. Knapp et al., 2008), due to a high 

proportion of unstable habitats such as brownfield sites and warmer and drier conditions 

associated with well-drained substrates and the 'urban heat island' effect (e.g. Oke, 1982). 

Urban land cover is positively associated with annuals in this study (GLM slope estimate 

0.18, N=291, p<0.001); however, a positive association with arable land cover also 

important, explaining the most variation in HP (arable 12.3%, urban 10.01%). Therophytes 

are expected to be associated with urban environments as habitats are often dry and 

disturbed and this would favour species with short life-cycle and reproduction by seed; 

arable land could be predicted to favour this group for similar reasons, as also subject to 

disturbance from human activities such as ploughing etc. Examples of species which occur 

in both urban and arable areas are Matricaria discoidea, Veronica persica, Coronopus 

didymus and Conyza canadensis, which are weeds of cultivated land that occur in open, 

disturbed ground found in urban areas (Clement and Foster, 1994; Preston et al., 2002). 

However, more annual species are likely to have been introduced in agricultural areas in 

Britain: out of 530 annual non-natives in Britain, 317 (59.8%) have been intentionally 

introduced as an agricultural crop or unintentionally as an agricultural seed contaminant, 

while 130 (24.5%) have been intentionally introduced as an ornamental or unintentionally 

as an ornamental seed contaminant (GB Non-native species secretariat, 2011b). This 
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indicates more annual species are likely to have been introduced into arable areas than 

into urban areas as garden plants.  

 

Another group with urban land cover less important than other land cover types is needle-

leaved evergreens. The results from the GLM (Table 5.3) and from Hierarchical Partitioning 

(Figure 5.9 and Table A3.4) indicate that broad-leaved woodland, coniferous woodland and 

heathland are more important than urban land cover. This is likely to be related to where 

deliberate planting may occur, as introduced needle-leaved evergreen species are 

frequently used for forestry and grown plantations (Preston et al., 2002), and are therefore 

less likely to be introduced in urban areas than other groups. This is shown in the map of 

species richness (Figure 5.3), with higher species richness most frequent in the north and 

west with urban areas less obvious than for other PFTs. However, there is still a positive 

relationship with urban areas for this group, as species are also planted as ornamentals in 

parks and gardens and may also establish from these areas. 

 

 

5.5.2 Establishment of PFTs 

 

The PFTs with the most established species on average are hydrophytes (mean 

establishment index 72.1%), succulent evergreens (56.4%), bulbous geophytes (54.8%) and 

non-bulbous geophytes (49.3%) (Figure 5.10 and Figure 5.11). These groups all contain 

species which can reproduce vegetatively (Hill et al., 2004): previous studies have 

suggested that non-native species which can spread clonally are more likely to be able to 

invade semi-natural vegetation, with clonal growth becoming more important as the 

invaded habitat becomes more isolated, colder, wetter and less influenced by man (e.g. 

Thompson et al., 1995). Species able to spread vegetatively are more likely to be 

competitive in semi-natural vegetation, as they are less reliant on being able to reproduce 

by seed in a climate possibly less suitable for growth than in their native region. 

Hydrophytes can frequently regenerate from fragments; for example, Myriophyllum 

aquaticum, Elodea canadensis and E. nuttallii, or can produce specialised buds or turions in 

some genera. Succulent evergreens can spread from creeping and rooting at nodes, like 

Carpobrotus edulis and Disphyma crassifolium, and from fragments e.g. in some Sedum 

species. Geophytes can reproduce from bulbs, rhizomes, corms and tubers, with non-

bulbous geophytes such as Fallopia japonica and F. sachalinensis having far-creeping 
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rhizomes and being able to regenerate from rhizome fragments, while bulbous geophytes 

such as Allium species regenerate by slowly cloning by offsets of below-ground bulbs and 

also by detaching ramets on inflorescences in some species. 

 

The PFTs with the least established species are needle-leaved evergreen (12.3%), needle-

leaved deciduous (14.9%) and therophytes (21.8%). Needle-leaved evergreen and 

deciduous species with low establishment (<10%) include tree species widely planted as 

ornamentals or in plantations which are only occasionally self-sown, such as Picea abies, 

Abies nordmanniana and Larix kaempferi (Stace, 1997). Therophytes with low 

establishment (<10%) include crops such as Brassica spp., Triticum spp., Pisum sativum, 

Raphanus sativus, Linum usitatissimum and Cucurbita spp., and other annual species grown 

in gardens and amenity areas as e.g. bedding plants, such as Nigella damascena, 

Limnanthes douglasii and Nicotiana alata. Dehnen-Schmulz et al.  (2007) found that 

ornamental species with an annual life form are more likely to escape from gardens than 

other life forms, but were less likely to become established than other garden plants. This 

was suggested to be because many annuals have a ruderal or competitive ruderal strategy 

(Grime, 1979), which may give them an advantage in finding suitable habitats outside 

cultivation but may also explain why they are less likely to establish in the wild than non-

annual species grown in gardens. In contrast to the most established groups (hydrophytes, 

succulent evergreens, bulbous geophytes and non-bulbous geophytes), species within 

needle-leaved evergreen and deciduous and therophyte groups reproduce by seed. This 

may cause difficulties if the climate is less suitable for growth than in native regions e.g. 

lower growing degree days resulting in less time to complete life cycles in Britain compared 

to Mediterranean climates for annuals, or insufficient winter chilling for some boreal 

needle-leaved evergreen or deciduous species. 

 

The most established PFTs have the largest proportion of variance in species richness 

explained by climate variables and the least established groups by land cover variables 

(Figure 5.12). The most established life forms modelled are chamaephytes, geophytes and 

hemicryptophytes. Life forms found to be more likely to be successful invaders in semi-

natural and man-made habitats in the Czech flora were geophytes, hemicryptophytes and 

therophytes (Pyšek et al., 1995), with geophytes and hemicryptophytes more likely to be 

successful in semi-natural vegetation and therophytes in man-made habitats. Geophytes 

and hemicryptophytes were found to be more likely to be established, but therophytes 
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were not; a large number of annual species which occur in the wild are casual escapes from 

crops or accidental introductions which do not necessarily become established.  

 

 

5.5.3 Predicting distributions using models 

 

The results of the GLMs indicate that the species richness of Raunkiaer life forms can be 

predicted well; all Spearman's rank correlations between modelled and recorded species 

richness are over 0.741 (N = 2499, p<0.0001). Therophytes have the strongest correlation 

(Spearman's rank correlation coefficient 0.890, N = 2499, p<0.0001). The results of the 

GLMs for broad PFTs give a wider range of correlations between modelled and recorded 

species richness from 0.545 to 0.890 (N = 2499, p<0.0001). Needle-leaved evergreen have 

the weakest correlation between modelled and recorded species richness (Spearman's rank 

correlation coefficient 0.545, N = 2499, p<0.0001). These two groups are among the least 

established groups (Figures 5.10 and 5.11), and are both have more variance explained by 

land cover than by climate variables (Figure 5.12). Annuals are intentionally introduced as 

crops or ornamentals, or unintentionally introduced as seed contaminants or with raw 

material such as wool shoddy, and are therefore more likely to be associated with arable 

and urban habitats. Needle-leaved evergreens are introduced into urban areas as 

ornamentals, but also deliberately planted in plantations; it is possible that models are less 

able to predict this group due to deliberate planting in a range of land cover types. 

 

 

5.5.4 Implications and conclusions 

 

In conclusion, the distributions of different groups in Britain appear predictable, in relation 

to climatic patterns and land use, but not in a way that was predicted a priori by the 

characteristics of the functional groups directly.  Rather, all groups are more diverse in 

warmer, drier and more urban areas. This reflects species richness gradients and means of 

introduction, with the distributions of the groups then modified relative to this overall 

pattern, depending on the species’ characteristics. Some PFTs are less associated with 

urban areas than with other land cover types: annual species are positively associated with 

arable and urban land cover, with this pattern likely to be due to where species are 

introduced and to the occurrence of suitable habitats. The majority of annual species have 
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been introduced as intentionally as crops or accidentally as arable weeds, with a smaller 

number of species introduced as ornamentals, and arable and urban land cover also 

provide disturbed habitats that favour reproduction by seed. Species richness of needle-

leaved evergreens is positively associated with heath, acid grassland, broad-leaved 

woodland and coniferous woodland. These species are frequently used for forestry, and 

would therefore be less likely to be associated with urban. The least established groups 

show greater associations with land cover than with climate (therophytes and needle-

leaved evergreens), while more established groups (chamaephytes, geophytes and 

hemicryptophytes) show a greater association with climate. Positive relationships with 

temperature and urban suggests all groups have potential to increase with future 

urbanisation and climate change. 
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Chapter 6:  General discussion 

 

 

6.1 Summary of findings 

 

This thesis has examined the establishment of non-native plant species in relation to 

climate and land use in Britain. The primary aims of this thesis were: 

1) to determine patterns of non-native species richness with climate and land use; 

2) to quantify the level of establishment of non-native species; and 

3) to examine the distributions and establishment of Plant Functional Types. 

 

Chapter 3 examined patterns of non-native species richness with climate and land use, to 

test whether different groups (natives, non-natives, neophytes and archaeophytes) show 

distinct patterns with climate and land use variables and whether current species richness 

can be modelled from climate and land use variables. It was found that current species 

richness of different groups can be predicted well using climate and land use variables. 

Non-native species richness is positively related to temperature and urban land cover, and 

negatively related to rainfall. Patterns for archaeophytes and neophyte species richness 

show that archaeophytes are less associated with urban areas than neophytes, with 

patterns more related to climate variables, although a negative association with heathland 

and a positive association with arable land cover are also important. Neophytes show the 

strongest positive association with urban land cover. Comparing differences in predicted 

and recorded species richness suggests that patterns are related to recorder effort at the 

vice-county level, with similar patterns for native and non-natives, and is related to 

additional recording for floras. Models using projected climate data do not suggest large 

increases in the proportion of non-native species in the flora; however, as the models are 

predicting climates not represented in the original data in the south, non-native species 

previously unable to survive or reproduce may become established compensating for the 

loss of native species in some areas.  

 

In Chapter 4, an establishment index was calculated to quantify establishment of non-

native species; this was used to test whether level of establishment increases with greater 

time since introduction and whether range size increases with level of establishment. It was 
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found that date of introduction and range size are not necessarily good predictors of level 

of establishment, with no significant relationship between establishment and time since 

introduction and a weak significant relationship between establishment and range size. 

Models were used to test the hypothesis that species richness of poorly established species 

is more associated with urban land use than for well-established species and that well-

established species are more associated with climate than land use. It was found that well 

established species are less likely to be associated with urban areas than poorly established 

species; however, patterns with other land cover variables and climate were less clear. 

 

In Chapter 5, distributions and establishment of Plant Functional Types were examined. 

Analyses were used to test whether non-native PFTs are forming distinct patterns with 

climate and land use variables. It was found that distributions of different groups in Britain 

appear predictable in relation to climate and land use; however, all groups are most diverse 

in warmer, drier, more urban areas. It was predicted that PFTs with more well-established 

species are forming patterns associated with climate, while PFTs with more poorly 

established species are more associated with land use due to methods of introduction. The 

least established groups (therophytes, needle-leaved evergreen and needle-leaved 

deciduous) show greater associations with land cover than with climate. More established 

groups (chamaephytes, geophytes and hemicryptophytes) show a greater association with 

climate. Positive relationships with temperature and urban land cover suggests all groups 

have potential to increase with future urbanisation and climate change. 

 

Therefore, this thesis has provided information on climate and land use variables which 

influence distributions and establishment of non-native plant species and on which factors 

are most important for different groups. Determining current patterns allows prediction of 

possible future changes, helping to identify groups of species which may increase with 

climate or land use change. Discussion of specific issues and possible further work are 

presented below. 

 

 

6.2 Botanical recording 

 

The plant data used were records on a hectad (10 x 10 km grid square) scale, provided by 

the Botanical Society of the British Isles. There are some limitations relating to the data set 
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of plant records used, including variation in recorder effort in different areas of Britain 

(Preston et al., 2002). Records are from a variety of sources, including recording by 

members of the Botanical Society of the British Isles (www.bsbi.org.uk), and more targeted 

recording for vice-county floras and the New Atlas of the British and Irish Flora (Preston et 

al., 2002). This study used a subsample of well-recorded grid squares for statistical model 

building, with a systematic recording system, to minimise differences in recorder effort. 

These are the BSBI Monitoring Scheme (or Local Change) grid squares (Braithwaite et al., 

2006): 293 squares regularly arranged in a systematic grid of 1 in 9 which have had 

additional recording in 1987/1988 and 2003/2004 (Figure 2.1). Comparing predicted and 

recorded species richness for other grid squares (Figures 3.13 and 3.14) indicates that 

recorder effort varies on a vice-county level (Figures  3.15 and 3.17), and is related to 

whether additional recording was undertaken for County Floras in the time period studied. 

Analysis showed similar patterns for non-native and natives for the time period studied, 

indicating that the same areas are well recorded for both groups (Figure 3.16). 

 

There has been an increase in interest in recording non-natives over time, with some 

recent schemes to encourage wider recording in order to help determine if new non-native 

species are appearing in the wild or if species are spreading to new areas. This is also to aid 

monitoring of species considered to be problematic and to help with targeting 

management. For example, the Recording Invasive Species Counts project (GB Non-native 

species secretariat, 2011d), a web-based scheme with online recording starting in 2010, 

requests records for a list of species considered to be invasive. The species were selected 

based on criteria such as level of invasiveness, ease of identification for the general public 

and usefulness of the extra data to the recording scheme. Other more general schemes to 

encourage recording allow submission of records with photos to help with identification 

and verification of records; examples include iSpot (www.ispotnature.org) and iRecord 

(www.brc.ac.uk/irecord). 

 

This study looked at large scale associations with land cover and climate data. The records 

used are presence on a 10 x 10 km grid scale; this means that when looking at land cover, 

species richness associations are with the proportion of broad land cover types present in 

each grid square, or related to the heterogeneity/homogeneity of squares. It would be 

necessary to use data on finer scale (e.g. records with GPS coordinates or tetrad data) or 

quadrat data to look at individual species associations with land cover types or habitats. 
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There are some large scale data sets with quadrat or habitat association data; for example, 

quadrat data assembled for projects such as the National Vegetation Classification 

(Rodwell, 1991 to 2000) and the vegetation plots recorded for the Countryside Survey 

(www.countrysidesurvey.org.uk). There is also information on habitat preferences for a 

limited number of non-native species included in PLANTATT (Hill et al., 2004). Finer scale 

data or information on habitat preferences could be used to study the level of 

establishment of species within different habitat types, which may help to identify habitats 

which could potentially have greater increases in non-native species. 

 

Records used to calculate the establishment index used in this study were those assigned a 

status (Macpherson et al., 1996; Macpherson, 1997) by recorders: established, casual, 

planted or surviving (Table 4.1). Recorders assigning a status follow the status definitions 

and make an informed decision based on a number of factors including population size, 

evidence of regeneration, available habitat, and how a species was likely to have been 

introduced into the area. The Botanical Society of the British Isles is currently developing a 

new scheme to classify records by status, to allow more information on the degree of 

regeneration and the extent to which they are invading semi-natural habitats to be 

collected. The potential new categories are: survivor, casual, ruderal, established and 

transforming. More informative ways of quantifying establishment of non-native species in 

the future could include classifying species establishment while taking into account 

whether a species is producing seed or seedlings, population size, distance from point of 

origin and method of introduction. Recording habitats will also give additional information 

on where non-native species may be most likely to spread or become invasive. 

 

 

6.3 Climate and land use 

 

Climate and land use variables are important determinants for non-native species richness. 

Climatic conditions of a new area will influence the survival and reproduction of an 

introduced species, depending on similarity between the native and introduced ranges (e.g. 

Sakai et al., 2001). Land use influences where species are likely to be introduced in a new 

area, whether they can establish and can also affect rate of spread. Non-native species are 

known to be more likely to be introduced in areas with higher human population densities, 

as accidental introductions are more likely with high levels of human activity and many 
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non-native species are grown in habitats associated with urban areas (Pyšek, 1998; 

Dehnen-Schmutz et al., 2007; Botham et al., 2009; Roy et al., 2012). Human disturbance 

can facilitate establishment and invasion (e.g. Burke and Grime, 1996), and human activity 

can aid dispersal allowing range expansion (e.g. Pyšek and Hulme, 2005). Previous studies 

analysing the spatial distributions of non-native species richness or individual species have 

generally found both land use and climate variables to be important factors in determining 

distributions (e.g. Pyšek et al., 2010; Albuquerque et al., 2011).  

 

When examining patterns of species richness with climate and land cover in this study, all 

non-native species in Britain included in the New Atlas of the British and Irish Flora (Preston 

et al., 2002) were used. Well-recorded 10 x 10 km grid squares with a systematic sampling 

strategy were used to build the GLMs to minimise variation in recorder effort, and the 

models were then tested against the rest of the grid cells.  Hierarchical Partitioning was 

also used to compare patterns with those from the GLMs. When the results from this study 

are compared to other studies examining non-native species distributions in relation to 

environmental variables (Hulme, 2009b; Albuquerque et al., 2011), the general patterns are 

similar with higher non-native species richness in warmer, drier, more urban areas of 

Britain. Previous studies have also shown that the distributions of archaeophytes are more 

likely to be related to climate and less likely to be related to urban land cover than 

neophytes (Hulme, 2009b;  Albuquerque et al., 2011), with negative associations with 

urban having been shown for some archaeophytes when examining patterns for individual 

species (Botham et al., 2009). In this study, neophyte and archaeophyte species richness 

were both found to have positive relationships with proportion of urban land cover, with 

neophytes more associated with urban land cover than archaeophytes. 

 

However, archaeophytes and neophytes vary in their levels of establishment, with some 

archaeophytes being poorly established while some neophytes are very well established 

(Figures 4.1 and 4.2). The reasons for this include wide variations in lag times (Kowarik, 

1995; Caley et al., 2008; Daehler, 2009; Aikio et al., 2010) and rates of spread (Williamson 

et al., 2003; Williamson et al., 2005; Pyšek and Hulme, 2005), with some species taking 

many years between introduction or establishment and then spreading widely and others 

spreading almost immediately. Land use changes have also had an impact on the level of 

establishment of many archaeophytes, with changes in agricultural practices causing some 

previously well established species to become reliant on deliberate introductions to 
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maintain their populations (Preston et al., 2002; Braitwaite et al., 2006). This is reflected in 

the patterns with date of introduction and establishment index, with little relationship 

between the two (Figure 4.1). This suggests that using date of introduction to separate 

species when studying patterns with climate and land use will not necessarily produce 

groups of species with similar characteristics. Well established species are less associated 

with urban areas than poorly established species (Figures 4.7 and 4.8); however, 

archaeophyte and neophyte categories contain both well and poorly established species, 

potentially giving different patterns with climate and land use depending on the number 

and subset of species being studied. 

 

 

6.4 Establishment  

 

Non-native species are frequently separated into 'casual' and 'established', with casual 

species not reproducing or spreading in the wild and remaining dependent on repeated 

introductions (Preston et al., 2002). The establishment index calculated for this study 

attempts to further quantify level of establishment for introduced species using records 

assigned a status (Macpherson et al., 1996; Macpherson, 1997) by recorders: established, 

casual, planted or surviving (Table 4.1). Using this establishment index gave some clear 

patterns with urban land use, with poorly established species more associated with urban 

land cover than well established species (Figures 4.7 and 4.8). The relationships of time 

since introduction and time first recorded in the wild with the calculated establishment 

index used in this study suggests that residence time is not a good predictor of level of 

establishment (Figure 4.1), due to factors such as wide variations in lag times (Kowarik, 

1995; Caley et al., 2008; Daehler, 2009; Aikio et al., 2010), rates of spread (Williamson et 

al., 2003; Williamson et al., 2005; Pyšek and Hulme, 2005) and declines caused by land use 

changes (Preston et al., 2002; Braitwaite et al., 2006). Range size is also not necessarily a 

reliable indicator of level of establishment (Figure 4.3) as this will be dependent on factors 

such as dispersal ability and availability of suitable habitat; a species can be well-

established (reproducing successfully in the wild) within a small range, or occupy a large 

range but be entirely dependent on planting or repeated introductions. 

 

Although only a small proportion of introduced species are likely to invade semi-natural 

vegetation and become problematic (Williamson and Brown, 1986; Williamson, 1993; 
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Kowarik, 1995), identifying which species they are likely to be is challenging. Previous 

studies attempting to distinguish successful or invasive non-natives from unsuccessful non-

native or native species using traits have generally found no definitive set of characteristics 

describing successful non-native species (e.g. Noble, 1989; Roy, 1990; Pyšek et al., 1995; 

Tecco et al., 2010). Risk assessments are used to identify potentially problematic species 

before they are introduced, or to select species which have already been introduced which 

need to be prioritised for management (GB Non-native species secretariat, 2011c). The 

potential for escape, establishment, spread, hybridisation with natives, ecological 

consequences, and potential for control and risk management all need to be considered 

(e.g. Manchester and Bullock, 2000; Baker et al., 2008). Quantifying establishment in this 

way could help to identify recently introduced species which could potentially spread and 

cause problems. Species which have only recently been introduced or have been recorded 

in only a few places in the wild and are established in all locations may be likely to be ones 

that will spread widely and will require monitoring or management.  

 

 

6.5 Plant Functional Types  

 

PFT classifications based on life form (e.g. Raunkiaer, 1934) have been used to study 

distributions of non-native species in relation to climate and land use (Pyšek et al., 1995; 

Hulme, 2009; Smith, 2010; Marini et al., 2012). Life forms have been shown to have 

predictable responses to changes in environmental variables such as water availability and 

temperature (e.g. Chapin et al., 1996; Diaz and Cabido, 1997) and disturbance (e.g. 

McIntyre et al., 1995). It was expected that different life forms would show predictable 

patterns with climate; a small study looking at non-native life forms with climate found 

some associations (Hulme, 2009b). However, in this study all groups were found to be 

more diverse in warmer, drier and more urban areas, with some differences in association 

with types of land cover for a few groups, mainly related to where species are likely to be 

introduced.  

 

Using the calculated establishment index, the least established groups show greater 

associations with land cover than with climate (therophytes and needle-leaved 

evergreens), while more established groups (chamaephytes, geophytes and 

hemicryptophytes) show a greater association with climate (Figure 5.12). Positive 
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relationships with temperature and urban land cover suggests all groups have potential to 

increase with future urbanisation and climate change. However, the more established 

groups (chamaephytes, geophytes and hemicryptophytes) may have more potential to 

cause problems. Further study on traits related to establishment for these groups may be 

beneficial; these groups all contain species capable of vegetative spread or multiple 

methods of reproduction (Hill et al., 2004), while the least established groups rely on seed 

to reproduce (therophytes and needle-leaved evergreens). Examination of traits such as 

method of reproduction or dispersal mechanisms in relation to establishment may help to 

identify species which may spread from man-made habitats to semi-natural vegetation.  

 

 

6.6 Climate change 

 

Projected climate data was used to predict possible changes in species richness for natives 

and non-natives; all five SRES and climate model combinations showed similar patterns, 

with a predicted increase in species richness of natives and non-natives in the west and 

north and the greatest decrease in the south and east (Figures 3.21 to 3.25). Similar 

patterns were also shown when studying potential changes in the proportion of non-native 

species in the flora, with a predicted increase in proportion of non-natives in upland areas 

in the north and west and a decrease in the east and south (Figures 3.21 to 3.25). This does 

not indicate a predicted increase in the proportion of non-native species in the flora for 

much of Britain, as native species richness is also predicted to increase. Northern and 

upland areas are predicted to become more like the relatively species-rich south, with 

increases in temperature leading to an increase in species richness of both natives and non-

natives. However, the climate in the south, which was not included in the original models, 

is shown to lead to a decline in native species richness but could potentially lead to a 

greater increase in non-native species than shown. Non-natives which are currently not 

able to become established may be able to establish and spread in these areas (e.g. 

Simberloff, 2000; Theoharides and Dukes, 2007), while species richness of natives in 

southern areas will depend on adaptability to new climatic conditions. Change in species 

richness will depend on many other factors, including land use change, habitat availability 

and fragmentation (e.g. Theoharides and Dukes, 2007) and dispersal ability of these species 

(Bullock et al., 2012; Travis et al., 2013). Potential future increases in urbanisation are also 
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likely to favour higher non-native species richness due to the positive association between 

non-native species and urban land cover (Figure 3.19, Table 3.2).  

 

Introduced species can have significant ecological impacts outside their native ranges (e.g. 

Millenium Ecosystem Assessment, 2005; Defra, 2008) on survival of resident biota, activity 

of animals, community productivity, fire frequency and nutrient cycling (Pysek et al., 2012). 

'Invasive' non-natives have been defined as those which have a detrimental impact in their 

area of introduction either ecologically, socially or economically (GB Non-native species 

secretariat, 2011a). Future climate and land use changes could lead to increased problems 

with some invasive species, or allow some established species to become invasive. 

However, only a small proportion of introduced species are likely to invade semi-natural 

vegetation and become problematic (Williamson and Brown, 1986; Williamson, 1993; 

Kowarik; 1995). Some non-native species also have positive impacts; many species are 

intentionally introduced as they are economically valuable for agriculture, horticulture or 

forestry (Gozlan and Newton, 2009; Pejchar and Mooney, 2009). Positive ecological 

impacts can include increased carbon stocks in the vegetation, meaning some invaded 

communities can sequester more carbon than native communities (Liao et al., 2007) and 

provision of increased food resources for native invertebrate populations (Schweiger et al., 

2010). Presence of some non-native species may lead to the loss of species diversity on a 

local scale but can lead to an increase in total species richness on a larger scale: non-native 

species are an important part of the British flora, providing a significant contribution to 

overall biodiversity at 44% of the British Flora (Figure 1.1; Preston et al., 2002).  

 

 

6.7 Further work 

 

This study used records assigned statuses giving information on whether or not a species is 

reproducing in the wild to quantify level of establishment (Chapter 4). Identifying species 

when they first become established in the wild and monitoring their level of establishment 

may help to give an indication of which species might become invasive or spread. Species 

which have only recently been introduced or have been recorded in only a few places in the 

wild and are established in all locations may be likely to be ones that will spread widely and 

will require monitoring or management. More informative ways of quantifying 

establishment of non-native species in the future could include classifying species’ 
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establishment while taking into account whether a species is producing seed or seedlings, 

population size, distance from point of origin and method of introduction. Recording 

habitats or using data on a finer scale or quadrat data to look at individual species 

associations with land cover types or habitats could be used to study the level of 

establishment of species within different habitat types, which may help to identify habitats 

which could potentially have greater increases in non-native species. Examination of traits 

such as method of reproduction or dispersal mechanisms in relation to level of 

establishment may also aid identification of species which may spread from man-made 

habitats to semi-natural vegetation.  

 

Projected climate data were used to examine possible future changes in species richness in 

native and non-native species (Chapter 3). However, climate in the south, which was not 

included in the original models, is shown to lead to a decline in native species richness but 

could potentially lead to a greater increase in non-native species than shown. Non-natives 

which are currently not able to become established may be able to establish and spread in 

these areas (e.g. Simberloff, 2000; Theoharides and Dukes, 2007), while species richness of 

natives in southern areas will depend on adaptability to new climatic conditions. More 

accurate prediction with climate envelope modelling would have to include species not 

currently in the wild that are likely to increase based on climate of native areas i.e. garden 

plants: this would involve looking at potential future levels of establishment based on 

climates in their native ranges. PFT classifications used in Chapter 5 were selected based on 

those shown to be useful for climate modelling; current distribution can be modelled well, 

however, examining predicted changes with projected climate data could indicate which 

groups are most likely to increase in the future. Analyses showed land cover to be 

important, particularly urban land cover, suggesting predictions with projected land cover 

change would be valuable as further urbanisation is likely to cause increases in non-native 

species richness. This would require examining possible  changes in species richness with 

projected land use change data (e.g. Rounsevell et al., 2006) based on interpretation of the 

global storylines presented in the IPCC report on emissions scenarios (IPCC, 2000). 

However, obtaining data with corresponding time periods and at a similar scale to the 

projected climate data used was difficult at the time of this study, therefore only climate 

data were used to assess possible future changes (see Chapter 3). Comparing these 

predictions with those using projected climate data, in addition to both together, could 
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help to determine the relative importance and potential impacts of future changes in 

different environmental variables. 

 

 

6.8 Concluding remarks 

 

Non-native species are an important part of the British flora with non-native species 

currently accounting for 44% of species in the flora following a dramatic increase from 

1500AD onwards due to large numbers of neophyte introductions (Figure 1.1). Non-native 

species are often viewed negatively, with a societal and scientific bias (e.g. Schlaepfer et al., 

2010), and can have significant negative impacts outside their native ranges (e.g. Millenium 

Ecosystem Assessment, 2005; Defra, 2008; Pysek et al., 2012). However, most impacts can 

be potentially positive or negative, including effects on survival of resident biota, activity of 

animals, community productivity, fire frequency and nutrient cycling (Pysek et al., 2012). 

Many non-native species have been introduced due to their economic importance as crops 

or ornamental species, and some non-native species are considered to be of conservation 

concern with many arable weed archaeophytes identified as priority species requiring 

conservation action under the UK Biodiversity Action Plan (JNCC, 2007).  

 

Climate and land use are major determinants of non-native species distributions (Carboni 

et al., 2010; Pyšek et al., 2010; Albuquerque et al., 2011; Polce et al., 2011) and there is 

potential for future changes in land use and climate to have an impact on distributions of 

non-native species. Future environmental conditions may favour invasions due to possible 

changes to transport, establishment and spread of non-native species (Theoharides and 

Dukes, 2007; Burgiel and Muir, 2010). This thesis has used data provided by the Botanical 

Society of the British Isles to determine patterns of non-native species richness with 

climate and land use, predict possible changes with climate change, quantify establishment 

of non-native species and to examine levels of establishment for different groups of non-

native species in relation to environmental variables.  

 

Non-native species richness is positively related to temperature and urban land cover, and 

negatively related to rainfall. Patterns for archaeophytes and neophyte species richness 

show that archaeophytes are less associated with urban areas than neophytes, with 

patterns more related to climate variables. Models using projected climate data do not 
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suggest large increases in the proportion of non-native species in the flora; however, as the 

models are predicting climates not represented in the original data in the south, non-native 

species previously unable to survive or reproduce may become established compensating 

for the loss of native species in some areas. Date of introduction and range size are not 

necessarily good predictors of level of establishment, with no significant relationship 

between establishment and time since introduction and a weak significant relationship 

between establishment and range size. It was found that well established species are less 

likely to be associated with urban areas than poorly established species; however, patterns 

with climate were less clear. Distributions of different PFTs in Britain appear predictable in 

relation to climate and land use; however, all groups are most diverse in warmer, drier, 

more urban areas. The least established groups show greater associations with land cover 

than with climate while more established groups show a greater association with climate. 

Positive relationships with temperature and urban land cover suggests all groups have 

potential to increase with future urbanisation and climate change.  
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Appendix 1 

 

 

Table A1.1. Spearman's rank correlation coefficients between species richness and climate 

and land cover variables using BSBI monitoring squares (n=291). All significant (p<0.05) 

except those indicated by brackets. 

 Native Non-native Neophytes Archaeophytes 

GDD5 0.63 0.77 0.71 0.84 

MTCO 0.33 0.38 0.34 0.43 

MTWA 0.66 0.83 0.77 0.90 

APET -0.57 -0.78 -0.71 -0.87 

SPRE -0.36 -0.63 -0.56 -0.75 

WPRE -0.33 -0.61 -0.55 -0.71 

Standing water -0.13 -0.22 -0.19 -0.25 

Heath -0.51 -0.72 -0.66 -0.81 

Broad-leaved woodland 0.67 0.62 0.64 0.55 

Coniferous woodland (-0.01) -0.20 -0.13 -0.32 

Improved grassland 0.41 0.34 0.35 0.31 

Neutral grassland 0.14 (0.00) (0.02) (-0.03) 

Calcareous grassland 0.52 0.55 0.52 0.57 

Acid grassland -0.33 -0.58 -0.53 -0.65 

Arable 0.39 0.65 0.59 0.75 

Urban 0.64 0.82 0.81 0.79 

Inland rock 0.13 (0.11) 0.13 (0.06) 
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Table A1.2. Percentage of total variance explained from Hierarchical Partitioning using 

climate and land cover variables from GLMs.  

Climate and land cover variables Natives 
Non-

natives Neophytes Archaeophytes 

GDD5  6.33 6.72 17.13 

MTCO 7.31 7.12 7.53  

MTWA 5.66 6.31 6.71 26.83 

Temperature (total GDD5, MTCO, 
MTWA) 12.97 19.76 20.95 43.97 

APET 22.95 15.30 13.31 10.53 

SPRE 5.25 6.35 6.76  

WPRE  6.39 6.77  

Rainfall (total APET, SPRE, WPRE) 28.21 28.03 26.84 10.53 

Total for all climate  41.18 47.79 47.79 54.50 

Acid grassland 7.66    

Arable  9.14 8.05 8.08 

Broad-leaved woodland 18.54 10.58 10.62 4.76 

Calcareous grassland     

Coniferous woodland 5.04 7.62 7.27 4.66 

Heath    16.74 

Improved grassland 8.06 6.52 6.66 3.78 

Inland rock 4.52    

Neutral grassland 4.55 6.68 6.99 2.56 

Standing water     

Urban 10.46 11.67 12.61 4.92 

Total for all land cover 58.82 52.21 52.21 45.50 
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Appendix 2 

 

 

Figure A2.1. Relationships between modelled species richness and recorded species 

richness for each 10 x 10 km grid square (excluding model-building squares), using species 

grouped by level of establishment (5% to 60%). 
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Figure A2.1. (continued) Relationships between modelled species richness and recorded 

species richness for each 10 x 10 km grid square (excluding model-building squares), using 

species grouped by level of establishment (65% to 100%). 
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Table A2.1. GLMs for groups with different levels of establishment (2 to 20%). Slope estimate, standard error, Z value and significance are shown for each climate and land 

cover variable included (after elimination using AIC). Predictor variables were standardised to allow comparison of relative importance. 

 5 10 15 20 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 20.93 24.62 0.85 0.3952  -16.26 4.86 -3.35 0.0008 *** -2.18 4.65 -0.47 0.6386       

poly(GDD5, 2)2 1.90 4.85 0.39 0.6952  6.40 1.88 3.41 0.0006 *** 3.01 1.81 1.66 0.0969 .      

poly(MTCO, 2)1 -7.07 7.12 -0.99 0.3205            -4.07 1.51 -2.71 0.0068 ** 

poly(MTCO, 2)2 -3.46 2.84 -1.22 0.2218            1.04 1.14 0.91 0.3622  

poly(MTWA, 2)1 3.26 21.02 0.16 0.8769  18.76 5.53 3.39 0.0007 *** 8.95 5.48 1.63 0.1023  12.76 3.12 4.10 0.0000 *** 

poly(MTWA, 2)2 -5.41 4.09 -1.32 0.1857  -6.53 1.97 -3.32 0.0009 *** -3.72 1.98 -1.88 0.0601 . -3.63 1.45 -2.51 0.0122 * 

poly(APET, 2)1      -5.02 2.34 -2.15 0.0316 * -3.59 2.35 -1.53 0.1263  -3.68 2.34 -1.58 0.1147  

poly(APET, 2)2      -1.36 0.90 -1.52 0.1294  -0.54 0.89 -0.61 0.5436  -0.31 0.98 -0.32 0.7496  

poly(SPRE, 2)1 1.76 2.20 0.80 0.4228  2.75 4.59 0.60 0.5498  5.98 4.53 1.32 0.1869  3.76 1.75 2.15 0.0313 * 

poly(SPRE, 2)2 -1.28 1.77 -0.72 0.4700  -4.81 2.68 -1.80 0.0720 . -4.89 2.61 -1.87 0.0609 . -1.06 1.40 -0.75 0.4508  

poly(WPRE, 2)1      0.84 4.27 0.20 0.8436  -3.54 4.24 -0.84 0.4031       

poly(WPRE, 2)2      4.06 2.50 1.62 0.1047  4.69 2.49 1.88 0.0600 .      

acid 0.11 0.11 1.06 0.2878  0.11 0.07 1.59 0.1113  0.18 0.07 2.54 0.0111 * 0.18 0.08 2.18 0.0296 * 

arable 0.51 0.13 3.96 0.0001 *** 0.51 0.09 5.48 0.0000 *** 0.44 0.11 3.93 0.0001 *** 0.44 0.13 3.49 0.0005 *** 

bwood 0.06 0.04 1.33 0.1836  0.12 0.04 3.21 0.0013 ** 0.16 0.04 4.07 0.0000 *** 0.13 0.04 3.00 0.0027 ** 

calc                     

cwood 0.33 0.07 4.62 0.0000 *** 0.26 0.05 5.38 0.0000 *** 0.30 0.05 5.90 0.0000 *** 0.26 0.06 4.38 0.0000 *** 

heath 0.20 0.19 1.05 0.2930       0.22 0.12 1.84 0.0663 . 0.29 0.14 2.08 0.0377 * 

improved 0.36 0.10 3.55 0.0004 *** 0.38 0.07 5.43 0.0000 *** 0.38 0.09 4.25 0.0000 *** 0.39 0.10 3.97 0.0001 *** 

inrock 0.09 0.07 1.31 0.1902  0.10 0.05 1.77 0.0767 . 0.09 0.05 1.80 0.0719 .      

neutral 0.11 0.08 1.36 0.1727  0.15 0.06 2.63 0.0085 ** 0.16 0.06 2.53 0.0113 * 0.14 0.07 2.01 0.0443 * 

swater                     

urban 0.41 0.06 6.55 0.0000 *** 0.40 0.05 8.16 0.0000 *** 0.39 0.06 7.01 0.0000 *** 0.43 0.06 6.82 0.0000 *** 
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Table A2.1. (continued) GLMs for groups with different levels of establishment (25 to 40%). 

 25 30 35 40 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 -19.47 26.06 -0.75 0.4550  1.68 28.36 0.06 0.9527  31.84 20.91 1.52 0.1278  27.91 20.66 1.35 0.1766  

poly(GDD5, 2)2 14.44 5.65 2.55 0.0106 * 11.52 5.12 2.25 0.0244 * 2.05 3.72 0.55 0.5814  11.10 4.24 2.62 0.0088 ** 

poly(MTCO, 2)1 3.53 7.53 0.47 0.6391  -0.26 8.26 -0.03 0.9753  -8.22 6.02 -1.37 0.1717  -9.28 6.04 -1.54 0.1242  

poly(MTCO, 2)2 -8.05 3.43 -2.35 0.0190 * -5.31 3.29 -1.61 0.1065  -4.21 2.33 -1.81 0.0705 . -9.61 2.49 -3.87 0.0001 *** 

poly(MTWA, 2)1 31.53 21.62 1.46 0.1448  13.31 23.52 0.57 0.5714  -15.15 17.54 -0.86 0.3878  -3.48 17.55 -0.20 0.8427  

poly(MTWA, 2)2 -16.38 4.46 -3.67 0.0002 *** -12.57 4.04 -3.11 0.0019 ** -3.87 2.89 -1.34 0.1808  -12.06 3.35 -3.60 0.0003 *** 

poly(APET, 2)1 -7.12 2.84 -2.51 0.0121 * -0.20 0.14 -1.47 0.1423            

poly(APET, 2)2 -1.64 1.06 -1.55 0.1217                 

poly(SPRE, 2)1 -7.25 7.40 -0.98 0.3271  -10.81 8.07 -1.34 0.1802  -0.12 0.10 -1.29 0.1974  -9.70 6.33 -1.53 0.1256  

poly(SPRE, 2)2 -12.59 4.60 -2.74 0.0061 ** -16.93 5.25 -3.22 0.0013 **      -11.06 3.56 -3.11 0.0019 ** 

poly(WPRE, 2)1 8.03 6.54 1.23 0.2199  7.58 7.03 1.08 0.2808       6.45 5.56 1.16 0.2463  

poly(WPRE, 2)2 10.41 3.85 2.71 0.0068 ** 11.26 4.20 2.68 0.0074 **      9.77 3.29 2.97 0.0030 ** 

acid      0.14 0.11 1.29 0.1981            

arable 0.35 0.11 3.26 0.0011 ** 0.44 0.12 3.68 0.0002 *** 0.34 0.09 3.79 0.0002 *** 0.24 0.08 2.84 0.0045 ** 

bwood 0.08 0.04 1.99 0.0462 * 0.10 0.05 2.06 0.0390 * 0.09 0.04 2.40 0.0162 * 0.09 0.03 2.61 0.0091 ** 

calc 0.08 0.05 1.47 0.1415       -0.10 0.05 -1.87 0.0622 .      

cwood 0.34 0.07 4.98 0.0000 *** 0.28 0.07 3.73 0.0002 *** 0.18 0.06 2.76 0.0057 ** 0.18 0.06 3.05 0.0023 ** 

heath                     

improved 0.31 0.08 3.79 0.0002 *** 0.37 0.10 3.89 0.0001 *** 0.26 0.07 3.97 0.0001 *** 0.26 0.07 3.99 0.0001 *** 

inrock 0.14 0.07 2.16 0.0306 *      0.08 0.06 1.38 0.1683       

neutral 0.17 0.08 2.24 0.0251 * 0.19 0.08 2.41 0.0161 * 0.12 0.06 2.01 0.0449 * 0.18 0.06 3.01 0.0026 ** 

swater 0.07 0.06 1.31 0.1912  0.07 0.06 1.19 0.2356            

urban 0.35 0.05 6.34 0.0000 *** 0.46 0.06 7.52 0.0000 *** 0.34 0.05 7.35 0.0000 *** 0.31 0.04 7.33 0.0000 *** 
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Table A2.1. (continued) GLMs for groups with different levels of establishment (45 to 60%). 

 45 50 55 60 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1           -16.22 22.11 -0.73 0.4632  -7.74 21.01 -0.37 0.7127  

poly(GDD5, 2)2           12.50 4.42 2.83 0.0047 ** 9.72 4.03 2.41 0.0159 * 

poly(MTCO, 2)1           2.03 6.32 0.32 0.7488  1.63 5.95 0.28 0.7836  

poly(MTCO, 2)2           -6.09 2.79 -2.18 0.0291 * -5.09 2.65 -1.92 0.0544 . 

poly(MTWA, 2)1 7.49 1.93 3.89 0.0001 *** 11.54 3.64 3.17 0.0015 ** 23.94 18.20 1.32 0.1885  14.50 17.36 0.84 0.4036  

poly(MTWA, 2)2 -3.61 0.98 -3.70 0.0002 *** -4.41 1.72 -2.57 0.0103 * -12.73 3.42 -3.73 0.0002 *** -10.46 3.16 -3.31 0.0009 *** 

poly(APET, 2)1 -4.03 1.57 -2.57 0.0102 * -7.08 3.39 -2.09 0.0368 * -9.76 2.54 -3.85 0.0001 *** -5.28 2.38 -2.22 0.0264 * 

poly(APET, 2)2 -1.03 0.70 -1.48 0.1397  -0.87 1.16 -0.75 0.4541  -2.12 0.94 -2.26 0.0238 * -1.12 0.92 -1.22 0.2224  

poly(SPRE, 2)1 1.03 1.31 0.79 0.4315  5.09 8.27 0.62 0.5383  -2.50 6.13 -0.41 0.6832  0.43 5.31 0.08 0.9354  

poly(SPRE, 2)2 -2.51 1.28 -1.97 0.0493 * -12.28 6.24 -1.97 0.0493 * -16.11 4.19 -3.84 0.0001 *** -9.70 3.41 -2.84 0.0045 ** 

poly(WPRE, 2)1      -9.32 7.39 -1.26 0.2071  1.45 5.38 0.27 0.7872  0.29 4.79 0.06 0.9510  

poly(WPRE, 2)2      2.91 4.84 0.60 0.5469  9.08 3.35 2.71 0.0067 ** 7.02 2.98 2.36 0.0185 * 

acid                     

arable 0.33 0.07 4.99 0.0000 *** 0.23 0.12 1.96 0.0502 . 0.29 0.09 3.37 0.0008 *** 0.33 0.09 3.46 0.0005 *** 

bwood 0.10 0.03 3.57 0.0004 *** 0.10 0.04 2.23 0.0260 * 0.10 0.04 2.83 0.0047 ** 0.15 0.04 4.20 0.0000 *** 

calc      -0.10 0.06 -1.50 0.1332            

cwood 0.21 0.04 4.92 0.0000 *** 0.24 0.07 3.40 0.0007 *** 0.23 0.05 4.25 0.0000 *** 0.24 0.05 4.56 0.0000 *** 

heath                0.13 0.12 1.11 0.2691  

improved 0.23 0.05 4.58 0.0000 *** 0.16 0.09 1.85 0.0649 . 0.33 0.07 5.02 0.0000 *** 0.31 0.07 4.22 0.0000 *** 

inrock                0.08 0.06 1.38 0.1664  

neutral 0.13 0.04 2.97 0.0030 ** 0.11 0.08 1.29 0.1969  0.16 0.06 2.72 0.0066 ** 0.15 0.06 2.47 0.0137 * 

swater                     

urban 0.32 0.04 8.71 < 2e-16 *** 0.38 0.06 6.45 0.0000 *** 0.32 0.04 7.12 0.0000 *** 0.34 0.05 7.01 0.0000 *** 
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Table A2.1. (continued) GLMs for groups with different levels of establishment (65 to 80%).  

 65 70 75 80 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 -9.83 20.83 -0.47 0.6370  16.42 16.05 1.02 0.3062       2.21 14.52 0.15 0.8792  

poly(GDD5, 2)2 11.43 4.18 2.74 0.0062 ** 8.39 3.03 2.77 0.0056 **      6.00 2.62 2.29 0.0220 * 

poly(MTCO, 2)1 3.00 5.97 0.50 0.6147  -6.44 4.63 -1.39 0.1645       -1.93 4.09 -0.47 0.6370  

poly(MTCO, 2)2 -6.58 2.63 -2.50 0.0124 * -5.67 1.90 -2.99 0.0028 **      -3.68 1.72 -2.15 0.0318 * 

poly(MTWA, 2)1 17.10 17.35 0.99 0.3243  3.58 13.45 0.27 0.7901  7.38 1.60 4.61 0.0000 *** 9.18 12.13 0.76 0.4492  

poly(MTWA, 2)2 -11.22 3.30 -3.39 0.0007 *** -11.30 2.32 -4.87 0.0000 *** -3.02 0.82 -3.70 0.0002 *** -7.93 1.99 -3.98 0.0001 *** 

poly(APET, 2)1 -5.27 2.33 -2.26 0.0239 *      -2.21 1.37 -1.61 0.1080       

poly(APET, 2)2 -1.01 0.86 -1.17 0.2410       -0.37 0.61 -0.61 0.5409       

poly(SPRE, 2)1 -1.21 5.70 -0.21 0.8319  -5.22 4.39 -1.19 0.2343  2.77 0.97 2.86 0.0043 **      

poly(SPRE, 2)2 -9.50 3.72 -2.55 0.0107 * -6.52 2.50 -2.61 0.0091 ** -0.66 0.88 -0.76 0.4496       

poly(WPRE, 2)1 0.39 5.13 0.08 0.9394  3.41 4.03 0.85 0.3976            

poly(WPRE, 2)2 4.76 3.16 1.51 0.1316  5.39 2.42 2.22 0.0261 *           

acid                     

arable 0.26 0.08 3.12 0.0018 ** 0.15 0.06 2.47 0.0134 * 0.28 0.06 4.95 0.0000 *** 0.26 0.05 4.87 0.0000 *** 

bwood 0.12 0.03 3.68 0.0002 *** 0.06 0.03 2.30 0.0214 * 0.12 0.02 4.72 0.0000 *** 0.08 0.03 3.17 0.0015 ** 

calc                     

cwood 0.22 0.05 4.36 0.0000 *** 0.18 0.04 4.33 0.0000 *** 0.19 0.04 5.32 0.0000 *** 0.14 0.04 3.36 0.0008 *** 

heath -0.19 0.14 -1.38 0.1680                 

improved 0.17 0.07 2.49 0.0130 * 0.13 0.05 2.78 0.0055 ** 0.23 0.04 5.40 0.0000 *** 0.22 0.04 4.86 0.0000 *** 

inrock           0.08 0.04 2.01 0.0442 *      

neutral 0.11 0.06 1.92 0.0546 . 0.09 0.05 1.95 0.0518 . 0.13 0.03 3.91 0.0001 *** 0.15 0.04 3.94 0.0001 *** 

swater                     

urban 0.32 0.04 7.38 0.0000 *** 0.19 0.03 5.65 0.0000 *** 0.28 0.03 8.83 < 2e-16 *** 0.24 0.03 7.65 0.0000 *** 
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Table A2.1. (continued) GLMs for groups with different levels of establishment (85 to 100%).  

 85 90 95 100 

 Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. Slope S.E. Z P Signif. 

poly(GDD5, 2)1 3.01 12.86 0.23 0.8146  -7.74 14.50 -0.53 0.5936  -1.08 10.00 -0.11 0.9141  -8.65 1.35 -6.39 0.0000 *** 

poly(GDD5, 2)2 5.53 2.28 2.43 0.0152 * 9.92 2.48 4.00 0.0001 *** 6.36 1.76 3.61 0.0003 *** 3.23 0.56 5.82 0.0000 *** 

poly(MTCO, 2)1 -2.58 3.61 -0.71 0.4751  -1.49 4.08 -0.37 0.7153  -2.30 2.79 -0.83 0.4096       

poly(MTCO, 2)2 -3.47 1.49 -2.34 0.0196 * -3.61 1.66 -2.17 0.0302 * -3.35 1.17 -2.87 0.0041 **      

poly(MTWA, 2)1 8.14 10.70 0.76 0.4466  17.79 11.86 1.50 0.1337  10.91 8.31 1.31 0.1893  16.68 1.56 10.71 < 2e-16 *** 

poly(MTWA, 2)2 -6.40 1.71 -3.74 0.0002 *** -10.61 1.85 -5.74 0.0000 *** -7.46 1.31 -5.70 0.0000 *** -5.00 0.57 -8.75 < 2e-16 *** 

poly(APET, 2)1      -0.13 0.07 -1.88 0.0604 .           

poly(APET, 2)2                     

poly(SPRE, 2)1      6.18 3.34 1.85 0.0644 .           

poly(SPRE, 2)2      -3.93 2.05 -1.92 0.0546 .           

poly(WPRE, 2)1      -5.37 3.10 -1.73 0.0830 .           

poly(WPRE, 2)2      1.29 1.95 0.66 0.5065            

acid      0.07 0.04 1.58 0.1146  0.07 0.03 2.22 0.0262 *      

arable 0.20 0.05 4.26 0.0000 *** 0.22 0.05 4.15 0.0000 *** 0.20 0.04 5.13 0.0000 *** 0.09 0.02 3.57 0.0004 *** 

bwood 0.09 0.02 3.91 0.0001 *** 0.13 0.02 5.64 0.0000 *** 0.11 0.02 5.73 0.0000 *** 0.03 0.01 2.64 0.0084 ** 

calc                     

cwood 0.14 0.03 3.92 0.0001 *** 0.12 0.03 3.58 0.0003 *** 0.07 0.03 2.42 0.0156 * 0.05 0.02 2.68 0.0073 ** 

heath                -0.06 0.03 -1.82 0.0690 . 

improved 0.19 0.04 4.83 0.0000 *** 0.22 0.04 5.29 0.0000 *** 0.20 0.03 6.24 0.0000 *** 0.07 0.02 3.58 0.0003 *** 

inrock      0.06 0.04 1.57 0.1162       0.04 0.02 2.09 0.0363 * 

neutral 0.08 0.03 2.41 0.0161 *      0.10 0.03 3.95 0.0001 *** 0.03 0.02 1.70 0.0884 . 

swater                -0.03 0.02 -1.60 0.1090  

urban 0.19 0.03 6.69 0.0000 *** 0.19 0.03 6.24 0.0000 *** 0.14 0.02 5.79 0.0000 *** 0.06 0.01 3.75 0.0002 *** 
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Table A2.2. Percentage of total variance explained from Hierarchical Partitioning using 

climate and land cover variables from GLMs for species grouped by level of establishment 

(5% to 50%). 

Climate and land 
cover variables 

Level of establishment (%) 

>0, 
≤5 

>5, 
≤10 

>10, 
≤15 

>15, 
≤20 

>20, 
≤25 

>25, 
≤30 

>30, 
≤35 

>35, 
≤40 

>40, 
≤45 

>45, 
≤50 

GDD5  18.19   6.74 7.64 18.25 7.17   

MTCO 13.77   5.94 7.83 7.12 15.75 17.75   

MTWA 7.75 23.57 6.93 23.13 7.14 7.95 6.81 7.92 22.79 21.40 

Temperature 
(total GDD5, 
MTCO, MTWA) 21.53 41.75 6.93 29.06 21.71 22.72 40.81 32.83 22.79 21.40 

APET  1.26   16.63 13.84   18.37 9.67 

SPRE  5.53 7.16 9.30 6.22 6.75  6.77 17.44 6.28 

WPRE   6.67  6.51 6.74  7.59  1.94 

Rainfall  (total 
APET, SPRE, 
WPRE)  6.79 13.83 9.30 29.36 27.33  14.35 35.80 17.90 

Total for all 
climate 21.53 56.87 20.61 38.27 51.04 48.61 40.81 46.65 58.10 48.04 

Acid grassland 12.32  9.63 7.84       

Arable 7.84 7.88 7.58 6.77 9.35 7.58 8.43 8.79 7.11 7.29 

Broad-leaved 
woodland 7.55 7.75 9.94 8.04  8.71 7.57 9.68 7.89 8.22 

Calcareous 
grassland       6.18   6.14 

Coniferous 
woodland 6.81 5.68 6.21 5.77 7.59 8.24 7.50 8.84 5.89 6.30 

Heath 16.01  14.84 11.35       

Improved 
grassland 5.79 5.33 6.40 4.99 6.58 6.61 5.79 6.11 5.62 5.85 

Inland rock 5.06  5.73  6.00  5.95    

Neutral grassland 5.54 5.37 6.00 5.26 6.68 7.08 5.65 6.88 5.21 5.52 

Standing water           

Urban 11.56 11.12 13.07 11.70 12.75 13.16 12.12 13.04 10.19 12.64 

Total for all land 
cover 78.47 43.13 79.39 61.73 48.96 51.39 59.19 53.35 41.90 51.96 
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Table A2.2. (continued) Percentage of total variance explained from Hierarchical 

Partitioning using climate and land cover variables from GLMs for species grouped by level 

of establishment (55% to 100%). 

Climate and land 
cover variables 

Level of establishment (%) 

>50, 
≤55 

>55, 
≤60 

>60, 
≤65 

>65, 
≤70 

>70, 
≤75 

>75, 
≤80 

>80, 
≤85 

>85, 
≤90 

>90, 
≤95 

>95, 
≤100 

GDD5 6.26 6.65 6.66 6.41  2.73 21.36 5.12 4.22 18.97 

MTCO  7.56 7.33 18.15  12.88 12.42 5.77 11.29  

MTWA 6.83 6.61 6.84 6.57 24.46 26.87 27.95 4.99 33.55 28.27 

Temperature 
(total GDD5, 
MTCO, MTWA) 13.09 20.83 20.84 31.13 24.46 42.48 61.73 15.88 49.05 47.24 

APET 24.96 13.46 14.57  1.48   12.26   

SPRE 6.12 6.70 6.59 6.58 16.60   17.74   

WPRE 6.26 6.66 6.55 6.83    12.97   

Rainfall  (total 
APET, SPRE, 
WPRE) 37.34 26.82 27.72 13.41 18.08   42.98   

Total for all 
climate 50.38 47.56 48.46 44.53 50.59 59.70 61.73 58.77 48.85 47.24 

Acid grassland         11.60  

Arable 8.54 8.11 8.18 10.95 6.90 8.03 7.89 7.44 9.04 8.73 

Broad-leaved 
woodland 9.47 11.07 10.15 11.24 9.51 7.32 7.84 12.33 9.85 6.06 

Calcareous 
grassland           

Coniferous 
woodland 7.51 7.24 7.58 8.27 5.82 5.92 5.17 5.29 5.26 4.11 

Heath          19.44 

Improved 
grassland 6.08 6.62 6.30 6.23 5.71 5.22 5.00 6.33 4.85 3.81 

Inland rock     5.67     3.24 

Neutral grassland 6.41 6.85 6.92 6.89 4.94 4.53 4.12  3.65 2.37 

Standing water           

Urban 11.62 12.55 12.41 11.90 10.87 9.28 8.25 9.83 6.89 5.00 

Total for all land 
cover 49.62 52.44 51.54 55.47 49.41 40.30 38.27 41.23 51.15 52.76 
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Appendix 3 

 

 

 Table A3.1. Spearman's rank correlation coefficients for species richness of Raunkiaer life 

forms with climate and urban land cover using BSBI monitoring squares. All correlation 

coefficients are significant at P < 0.0001(N = 291 grid cells in each case).  

 GDD5 MTCO MTWA APET SPRE WPRE Urban 

Therophyte 

(503 species) 
+0.836 +0.438 +0.892 -0.857 -0.736 -0.708 +0.804 

Hemicryptophyte 

(501 species) 
+0.723 +0.335 +0.783 -0.720 -0.577 -0.566 +0.822 

Bulbous geophyte 

(80 species) 
+0.659 +0.373 +0.680 -0.663 -0.530 -0.508 +0.677 

Non-bulbous 

geophyte 

(89 species) 

+0.660 +0.384 +0.684 -0.624 -0.474 -0.456 +0.729 

Chamaephyte 

(121 species) 
+0.764 +0.432 +0.792 -0.733 -0.556 -0.510 +0.771 

Nanophanerophyte 

(196 species) 
+0.595 +0.332 +0.618 -0.548 -0.401 -0.400 +0.729 

Phanerophyte 

(219 species) 
+0.650 +0.251 +0.725 -0.664 -0.532 -0.540 +0.757 

Hydrophyte 

(19 species) 
+0.729 +0.382 +0.771 -0.703 -0.559 -0.525 +0.749 

All non-natives 

(1728) 
+0.773 +0.384 +0.829 -0.776 -0.631 -0.613 +0.824 
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Table A3.2. Spearman's rank correlation coefficients for species richness of broad PFTs with 

climate and urban land cover using BSBI monitoring squares. Correlation coefficients 

significant (N = 291, P < 0.001) except where given.  

 GDD5 MTCO MTWA APET SPRE WPRE Urban 

Herbaceous annual  

(503 species) 
+0.836 +0.438 +0.892 -0.857 -0.736 -0.708 +0.804 

Herbaceous perennial 

(742 species) 
+0.732 +0.365 +0.781 -0.723 -0.568 -0.550 +0.808 

Aquatic 

(19 species) 
+0.729 +0.382 +0.771 -0.703 -0.559 -0.525 +0.749 

Succulent evergreen 

(10 species) 
+0.259 +0.267 

+0.154 

p=0.008 

-0.179 

p=0.002 

-0.048 

p=0.410 

+0.052 

p=0.376 

+0.137 

p=0.019 

Needle-leaved deciduous 

(5 species) 

+0.062 

p=0.292 

-0.159 

p=0.006 

+0.113 

p=0.054 

-0.047 

p=0.42 

+0.072 

p=0.221 

+0.005 

p=0.926 
+0.237 

Needle-leaved evergreen 

(43 species) 
+0.248 

-0.012 

p=0.835 
+0.312 -0.274 

-0.157 

p=0.007 

-0.186 

p=0.001 
+0.313 

Broad-leaved deciduous 

(256 species) 
+0.693 +0.301 +0.762 -0.699 -0.581 -0.592 +0.819 

Broad-leaved evergreen 

(150 species) 
+0.684 +0.418 +0.696 -0.623 -0.442 -0.403 +0.752 

All non-natives 

(1728) 
+0.773 +0.384 +0.829 -0.776 -0.631 -0.613 +0.824 
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Table A3.3. Percentage of total variance explained from Hierarchical partitioning using 

climate and land cover variables from GLMs for Raunkiaer life forms (Ch = Chamaephyte, 

Gb = Bulbous geophyte, Gn = Non-bulbous geophyte, hc = Hemicryptophyte, Hy = 

Hydrophyte, Ph = Phanerophyte, Pn = Nanophanerophyte, Th = Therophyte). 

Climate and land cover variables Raunkiaer life form 

Ch Gb Gn hc Ph Pn Th 

GDD5 20.22 6.12 6.12 6.57 6.10 7.08  

MTCO   6.67 7.45 7.63 7.61 8.28 

MTWA 25.70 6.24 6.06 6.49 6.10 7.08 5.84 

Temperature (total GDD5, 
MTCO, MTWA) 

45.93 12.36 18.85 20.51 19.83 21.76 14.13 

APET 10.47 25.14 19.28 13.64  9.95 18.42 

SPRE 4.67 6.17 10.32 6.58 13.06 7.08 5.54 

WPRE  6.04 10.38 6.60   6.04 

Rainfall (total APET, SPRE, 
WPRE) 

15.14 37.35 39.97 26.81 13.06 17.03 30.00 

Total for all climate 61.07 49.72 58.82 47.32 32.89 38.80 44.13 

Acid grassland     11.12 9.32  

Arable 6.45 8.69 7.28 8.30 8.55 7.35 12.32 

Broad-leaved woodland 7.18 9.87 9.93 10.77 11.41 9.92 8.88 

Calcareous grassland        

Coniferous woodland 5.61 6.54 5.77 7.92 6.34 7.13 8.50 

Heath        

Improved grassland 6.15 7.20 6.27 6.61 6.13 6.51 5.50 

Inland rock     5.71  5.22 

Neutral grassland 4.79 7.26  6.75 6.05 7.13 5.44 

Standing water        

Urban 8.75 10.72 11.93 12.33 11.80 13.86 10.01 

Total for all land cover 38.93 50.28 41.18 52.68 67.11 61.20 55.87 
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Table A3.4. Percentage of total variance explained from Hierarchical partitioning using 

climate and land cover variables from GLMs for broad PFTs (AQ = Aquatic, BLD = Broad-

leaved deciduous, BLE = Broad-leaved evergreen, HA = Herbaceous annual, HP = 

Herbaceous perennial, NLE = Needle-leaved evergreen). 

Climate and land cover variables Broad PFT 

BLD BLE HA HP NLE 

GDD5 6.21 7.10  6.49  

MTCO 7.43 7.29 8.28 7.21 4.64 

MTWA 6.17 7.14 5.84 6.45 17.63 

Temperature (total GDD5, MTCO, MTWA) 19.81 21.53 14.13 20.15 22.27 

APET  12.08 18.42 14.02  

SPRE 18.55 7.07 5.54 6.53  

WPRE 13.24  6.04 6.51 5.56 

Rainfall (total APET, SPRE, WPRE) 31.79 19.14 30.00 27.07 5.56 

Total for all climate 51.61 40.67 44.13 47.22 27.82 

Acid grassland     3.69 

Arable 7.82 7.23 12.32 8.31 6.50 

Broad-leaved woodland 9.64 10.12 8.88 10.84 24.55 

Calcareous grassland      

Coniferous woodland 6.92 7.38 8.50 7.72 5.44 

Heath     16.05 

Improved grassland 5.60 7.18 5.50 6.91 5.20 

Inland rock  6.54 5.22  2.62 

Neutral grassland 6.42 6.88 5.44 6.88 3.16 

Standing water      

Urban 12.00 13.99 10.01 12.11 4.98 

Total for all land cover 48.39 59.33 55.87 52.78 72.18 
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