
Mass Spectrometric Applications for the 
Quantitative Analysis of Dried Blood Spot 
and Capillary Micro-Sampling Techniques 

 

 

Ranbir Singh Mannu 

 

MSc by Research in Chemistry 

University of York 

Department of Chemistry  

 

 

 

February 2014 



i) Abstract  

A reversed phase UHPLC-MS/MS method for the quantitative analysis of pioglitazone in 

dried blood spots (DBS) has been used to validate two new novel techniques to analyse 

sample concentrations that lie above a particular calibration range. The first of the two 

techniques is mass spectrometer signal dilution (MSSD) which consists of lowering the 

signal which reaches the detector, which is achieved by lowering the collision energy 

applied in the collision cell. The second technique designated isotope signal ratio 

monitoring (ISRM) looks at [M+2]+1 ions (caused by natural occurring isotopes) for 

samples above the limit of quantification. For both techniques the requirements for 

reanalysis of above range samples can be eliminated.   

A reversed phase UHPLC-MS/MS method for the quantitative analysis of a 

phosphorothioate oligonucleotide in human plasma capillary micro-sampling samples has 

been developed and validated, to demonstrate the compatibility of capillary micro-

sampling (CMS) with an analytically challenging class of compounds. 
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Chapter 1 – Introduction 
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1.0 Introduction  

The modern day drug development process involves many different elements. Bioanalysis 

is one critical aspect of the drug development process and involves the accurate and 

quantitative analysis of xenobiotics in biological samples.   

The aim of bioanalysis is to provide accurate quantitative measurements in 

pharmacokinetic, toxicokinetic or bioequivalence studies. Scientific decisions in drug 

development are often based on the quantitative analysis provided by a bioanalyst. 

Pharmaceutical companies invest heavily in the drug development process, hoping to find 

a therapeutic compound that will improve lives and generate a profit. Animal testing is a 

critical part of drug development and there is now a lot of pressure to ensure that the 

minimum numbers of animals are used in drug development studies. Much time and 

money have been invested to reducing the usage of animals. 

1.1 Micro-sampling 

 Micro-sampling has increased in popularity over the last decade. The most prominent 

advantage of micro-sampling is the reduction in blood sample volume required. The 

potential to utilize smaller blood volumes is particularly beneficial for pharmacokinetic and 

toxicokinetic studies. Currently extra animals known as satellite groups have to be dosed 

to evaluate toxicokintic effects, as main study animals are used for clinical pathology 

evaluation. 

Conventionally, toxicokinetic studies require blood volumes between 100-500 µL to be 

collected from a single animal at each sampling time point. Given the physiology of 

rodents, composite sampling (combining samples taken from different animals at different 

time points to create 1 full profile) is routinely employed, as the total circulating blood 

volumes are too low. The reduction in the volume of blood required for micro-sampling 

makes serial sampling from the same animal possible and consequently micro-sampling is 

ethically more favourable, as fewer animals are required (Spooner et al 2009). 

Dried blood spot (DBS) and capillary micro-sampling are two micro-sampling techniques 

that have recently increased in popularity. These two techniques simplify the handing and 
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bioanalysis of small plasma and blood volumes. Handling and extracting small sample 

volumes by the convention method (sample placed into a small plastic tube) is not 

practical because accurately removing a small volume of plasma or blood required for 

analysis is not always possible.   

1.1.1 Dried blood spot 

The DBS technique is well established and consists of collecting blood samples onto 

paper or card and leaving them to dry at room temperature (Guthrie et al 1963). A core is 

taken from the DBS card and placed into an extraction plate, for extraction and 

subsequent analysis.  Historically, DBS samples have been used in screening for 

phenylketonuria, congenital hypothyroidism, sickle cell disorders and HIV infection 

(Guthrie et al 1963). Due to the ethical, financial, and practical advantages of DBS 

analysis, this methodology has increased in uptake over the past 5 years. Other 

advantages include stability; DBS samples are generally stable at room temperature 

partially due to the fact that enzyme activity is effectively inhibited as a result of removing 

the aqueous component of the sample, which eliminates the requirement for freezers and 

temperature controlled shipping (Barfield et al 2008). DBS samples also pose less of a 

biohazard than blood/plasma samples due to the antimicrobial properties of some DBS 

cards and therefore the use of this technique is also an attractive proposition for clinical 

studies.  

Quite recently, some disadvantages of DBS have been highlighted. The haematocrit 

levels (the amount of red blood cells present) can vary in blood samples from subject to 

subject and have been demonstrated to affect the size of the spot which can lead to 

inaccurate drug concentrations detected and reported. Haematocrit levels have an effect 

on the experimental recovery of the analyte (Malvagia et al 2009). As a result, the majority 

of micro-sampling interest has now turned to capillary micro-sampling (CMS).  

1.1.2 Capillary micro-sampling 

CMS is technique used for the collection and handling of biological fluid samples. CMS is 

not a new technique for handling biological samples but its use in bioanalysis is a new 



concept (Jonsson, European Bioanalysis forum (EBF) presentation 2012, provided by 

Astra Zeneca). Blood is drawn into a glass tube by capillary action. The glass tube can be 

either transferred to a bio-analytical test site or centrifuged to produce a smaller plasma 

capillary sample, as shown in figure 1  

Figure 1 Method of producing a plasma capillary from a whole blood sample 

 

CMS has the same ethical advantages as DBS without the haematocrit level or variable 

recovery issues. However the robustness of the technique has not been investigated as 

much as that of DBS and its use in regulated studies has to date been low. CMS also 

does not have the additional sample stability advantages of DBS and therefore CMS 

cannot be stored at room temperature, as a result freeze thaw stability will have to be 

investigated. 
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1.2 Antisense oligonucleotide  

The interest in antisense oligonucleotides has increased significantly since the FDA 

approved for drug use the first of such molecules, Vitravene, in 1998 (Roehr et al 1998). 

Antisense oligonucleotides are short single stranded RNA or DNA molecules, which 

typically contain 15-35 nucleotides.  A nucleotide is made up of a nitrogen base, ribose (a 

monosaccharide) and a phosphate group (figure 2), and are joined together by 

phosphodiester bonds.   

Figure 2 Basic structure of anphosphodiester oligonucleotide.  

 

 The suffix ‘mer’ is used to indicate that these molecules are polymers (from the Greek 

word meros meaning part); an oligonucleotide containing 18 nucleotides may be referred 

to as an 18mer. Antisense oligonucleotides are designed to prevent or moderate the 

protein translation of messenger RNA (Sahu et al 2007). This is achieved by base-pairing 

of the antisense oligonucleotide with complementary messenger RNA (mRNA) via the 

Watson-Crick base pairing (figure 3) and hence physically obstructing translation of the 

transcript because the complementary sequence can no longer be decoded (Agrawal et al 

2000).  
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Figure 3 Watson-Crick base pairing between nitrogen bases   

 

1.2.1 Modified Oligonucleotides 

Native oligonucleotides (with phosphodiester bonds) are rapidly degraded by intracellular 

endonucleases and exonucleases (Wickstrom et al 1986). Exonucleases are enzymes 

that cleave nucleotides from the ends of the molecule; the loss of a few nucleotides can 

dramatically reduce its selectivity for targeting messenger RNA. Endonucleases are 

enzymes that cleave phosphodiester bonds. Endonucleases and exonucleases could 

potentially break down antisence oligonucleotides and therefore various modifications 

have been tested to improve stability, to enable them to be used as therapeutic agents. 

The first modification tested by researchers was to replace the non-bridging oxygen of the 

phosphodiester group with a methyl group to produce methlyphosphonate 

oligonucleotides (shown in figure 4). Although these have excellent stability, the removal 

of charge reduces their solubility and cellular uptake (Agrawal et al 1981). By replacing 

the non-bridging oxygen with a sulfur atom (figure 4), the solubility is not affected but the 
  ‐ 6 ‐ 



oligonucleotide’s stability is improved (Stein et al 1993), so that phosphorothioate 

oligonucleotides are currently being actively developed as therapeutic molecules.  

Figure 4 Different modified oligonucleotide  

 

The delivery of oligonucleotides to their site of action is also a challenge. Most 

oligonucleotides would rapidly degrade in the stomach due to nucleases therefore oral 

administration would not be feasible. Instead, therapeutic oligonucleotides are 

administered via IV injection (Crooke et al 2008).  

1.2.2 Vitravene (also known as Fomivirsen) 

Vitravene is a 21 base oligonucleotide containing phosphorothioate linkages (shown in 

figure 5) and was the first antisence oligonucleotide approved by the FDA. Vitravene is 

used to treat human cytomegalovirus (CMV) retinitis. CMV retinitis is a viral infection that 

can lead to blindness if not treated.   
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Figure 5 Vitravene structure (Roehr et al 1998) 
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The production of proteins which are essential for the productions of infectious CMV is 

inhibited because Vitravene binds to the complementary sequence of the mRNA (Roehr et 

al 1998).  

1.3 Extraction procedure  

Sample preparation is required in the majority of bioanalytical methods. Biological 

samples such as plasma, blood and DBSs cannot easily be analysed using analytical 

techniques like LC-MS/MS without sample preparation. Matrices such as plasma have a 

high protein content which would rapidly compromise the performance of an HPLC 

column and mass spectrometer. The most frequently applied sample extraction 

techniques are protein precipitation, liquid-liquid extraction and solid phase extraction 

(Chang et al 2005).  

1.3.1 Protein precipitation  

Protein precipitation is the simplest sample preparation technique used. The objective of 

this technique is to reduce the solubility of the proteins in a given sample, causing the 

proteins to form a precipitate that can be removed by filtration or centrifugation. The 

electrostatic repulsion between protein molecules is at its lowest at the isoelectric point 

(PI), which is the pH at which any given protein has an equal number of positive and 

negative charges and so is overall neutral. Therefore less solvent molecules cluster 

around the proteins, allowing the proteins to aggregate.  The main methods of protein 

precipitation in use involve the use of organic solutions, acids, metal ions or salts 

(Hagerman et al 1978).  

Organic solvents are less polar than aqueous solvents. Therefore the addition of organic 

solvents decreases the dielectric constant of the plasma protein solution. Lowering the 

polarity of a solution results in less cluster formation around the proteins, causing an 

increase in the electrostatic interactions between the proteins. Typical solvents used are 

methanol, acetonitrile and ethanol, at a minimum ratio of 1:3 (plasma: solvent). 
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Acid reagents such as trichloroacetic acid form insoluble salts with the positively charged 

amino acid groups on the protein at a pH below their PI. Neutralising the charge on 

proteins lowers the amount of solvent clusters formed around the proteins leading to 

precipitation. 

Another method is to add a solution of salt. High salt content lowers the availability of 

water molecules, therefore the proteins become de-hydrated. This allows the hydrophopic 

parts of the proteins to come together, leading to precipitation.  

Metal ions replace protons by binding to the amino groups, which lowers the PI. This 

lowers the tendency of a polar solvent layer forming around proteins resulting in 

precipitation. 

The precipitated proteins are removed by centrifugation or filtration, leaving the 

supernatant that can be directly injected onto an LC-MS/MS system or evaporated and 

then reconstituted in a solvent that is compatible with the liquid chromatography mobile 

phase. 

One advantage of this technique is the ability to automate the extraction procedure on 

liquid handling robots, enabling high throughput sample preparation (Watts et al 2000). 

The main disadvantage of the technique is the limited sample clean-up which potentially 

could cause matrix effects such as ion suppression in the mass spectrometer source and 

add stress to analytical systems such as the pumps (Lagerwerf et al 2000). Due to the 

lack of selectivity protein precipitation provides, a more selective extraction procedure 

may be required for some assays, particularly where a lower limit of quantification is 

required. Analytes which bind to proteins will be lost by co-precipitation.   

1.3.2 Liquid-liquid extractions 

Liquid-liquid extractions (LLEs) are routinely used in bioanalysis because they are fast, 

simple and easy to automate. LLE is a separation technique which involves the use of two 

immiscible solvents, one aqueous and the other organic.  In bioanalysis, LLE methods 

involve the addition of aqueous solvent to plasma, urine or blood samples. The pH of the 

aqueous solution can be adjusted to ensure the analyte is unionised. An immiscible 



organic solvent is then added (Loos et al 1997). The two solutions are mixed to form an 

emulsion and then centrifuged to break the emulsion. The analyte is separated from polar 

interferents because the polar interferents partition into the aqueous phase (shown in 

figure 6). The polarity of the analyte and the pH determines the phase into which the 

analyte partitions.   

The organic phase can be removed and then either evaporated and reconstituted in more 

suitable solvent for LC-MS analyses or undergo a further extraction procedure.  Methanol 

or acetonitrile cannot be used in LLE because they have the ability to form hydrogen 

bonds or have dipole dipole interaction with aqueous solvents and so are miscible with 

aqueous systems. The lipophilicity, pH of the solvent and the type of solvent used 

determines the degree of partitioning. Lipophillicanalytes partition into the non-polar 

solvent (organic phase), whereas polar compounds generally partition into polar solvents 

(aqueous phase) (Wieling et al 1993). 

Figure 6 Liquid-liquid extraction procedure.  

 

For acidic analytes, the general approach is to adjust the pH to be two units below the 

pKa of the analyte to ensure it is not ionized and as a result partitions into the non-polar 

solvent. For bases, adjusting the pH to two units above the pKa ensures the analyte is not 

ionised. The solvents used in LLE must be chosen with care; for example, highly lipophilic 
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analytes extract well into a nonpolar solvent such as hexane. More polar analytes partition 

well into polar solvents like ethyl acetate. A solvent with a low boiling point is desirable to 

facilitate evaporation. If the analyte partitions into the organic phase it is wise to choose 

an organic solvent which has a lower density than water for ease of removal as the upper 

layer once the emulsion is broken.  

1.3.2.1 Phenol-chloroform liquid-liquid extraction. 

In 1953 Defner and co first described the use of phenol in extracting proteins from 

aqueous solutions (Kirby et al 1956). Sacchi and co used both chloroform and phenol 

because this combination is more efficient at denaturing proteins. Sacchi used phenol-

chloroform to separate RNA from proteins.  Without the addition of chloroform, phenol 

would retain 10% of the aqueous solvent and therefore 10% of RNA would also be lost to 

the phenol phase. Chloroform stops phenol from retaining water and thus improving the 

extraction efficiently (Sacchi et al 1987). The addition of isoamyl alcohol prevents foaming 

and is typical added at a ratio of 1:24 isoamyl alcohol: chloroform v/v.  

Phenol has a higher density than either chloroform or water. Therefore the chloroform 

layer separates the aqueous and phenol layers simplifying the removal of the top aqueous 

layer. 

Oligonucleotide analysis can be challenging because nucleotides may be strongly bound 

to proteins. Oligonucleotides partition into the upper aqueous phase because of the 

negatively charged phosphate backbone. Whereas the proteins partition into the lower 

phenol phase, as the hydrophobic region of the proteins interact with phenol (Zhang et al 

2007). The aqueous phase can be removed and undergo a secondary extraction 

procedure.  

1.3.3 Solid phase extraction  

Solid phase extraction involves the retention of the analyte on a solid sorbent. SPE gained 

popularity in bioanalyisis in the late 1980s because of its compatibility with polar 

compounds and zwitterions (Hennion et al 1999). The first step in SPE is to pre-treat the 

sample which could involve the addition of a reagent to adjust the pH, centrifugation to 
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remove particulates or a dilution step to reduce the viscosity of the sample. Once the 

sample has been pre-treated, the SPE plate or cartridge is conditioned by passing water-

miscible organic solvent (typically methanol or acetonitrile) through the SPE material. This 

wets the phase creating a suitable environment for retention of the analyte (Rossi et al 

2000). The next step is to equilibrate the sorbent, which is achieved by passing a solvent 

through the SPE material with a similar polarity and pH to the treated analyte-containing 

solution. Once the sorbent has been equilibrated, the pre-treated sample can be loaded 

onto the SPE material under conditions that result in retention of the analyte. One or more 

washing steps remove interferences, and are then followed by an elution step which 

removes the analyte from the sorbent.  

Reversed phase and ion exchange are the two main retention mechanisms used in SPE 

in drug development. Reversed phase SPE involves hydrophobic interactions between the 

sorbent (typically a C8 or C18 chain bound to silica) and the analyte (Martin et al 1998). 

Non-polar solvents are used to elute the analyte.  

The retention mechanism in ion exchange is electrostatic interaction between the analyte 

and the sorbent (Martin et al 1998). For basic compounds, cation exchange is used, while 

anion exchange is used for acidic compounds. For weakly basic compounds a strong 

cation exchange (SCX) sorbent is used. The analyte is generally eluted from the sorbent 

by pH manipulation; the pH of the elution solution is designed to remove the charge from 

the analyte, and as a result the electrostatic interactions are disrupted. For strong bases, 

weak cation exchange sorbents (WCX) are used. The pH of the elution solution is 

designed to neutralise the sorbent thus disrupting the electrostatic interactions.     

1.4 High performance liquid chromatography 

 High performance liquid chromatography (HPLC) is a form of liquid chromatography 

which involves the separation of compounds in solution. Mobile phase containing analytes 

and impurities passed over an absorbent stationary phase which is typical contained 

within a stainless steel column. The physical and molecular properties of the analyte and 

potential interferants will determine their affinity for the mobile phase or stationary phase. 

The migration of the analyte can only occur if the analyte is dissolved in the mobile phase, 
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therefore analytes which have a high distribution into the stationary phase will elute later 

than those which have a higher affinity for the mobile phase (Huber et al 1967).  

The molecular forces involved in the retention of the analyte in LC are Van der waal, 

dipole-dipole interactions, hydrogen bonding, dielectric interactions and electrostatic 

interactions (Brown et al 1989).   

A typical HPLC system consists of two solvent reservoirs, two high performance pumps, a 

solvent mixer, an injector to introduce the sample and a column oven (shown in figure 7) 



 

Figure 7 Schematic of an HPLC system (Modified from principles and practice of 

bioanalysis page 44) 

 

Mobile phase A (typically an aqueous solution) is placed into reservoir A and an organic 

solution is placed in reservoir B and is typically known as mobile phase B. The pumps 

ensure that the delivery of solvent is pulseless, avoiding unnecessary variations in 

detection. The pumps are typically capable of operating at 6000 psi.  Mobile phase A and 

mobile phase B are combined in the solvent mixer. An injector is used to introduce the 

analyte into the mobile phase flow, which then passes through a stainless steel column 

containing an absorbent stationary phase. The column is placed within a column oven 

which heats the column to reduce back pressure. This ensures that no variations of 

retention times are observed due to variations in ambient temperature. Also increasing the 

temperature tends to increase the solubility of the analyte in the mobile phases resulting in 

faster run times. The viscosity of the mobile phases is reduced at higher temperatures 

resulting in less pressure within the system.  
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1.4.1 Distribution  

The degree of separation of components by LC is dependent on the differences in their 

equilibrium distribution coefficient (K).  

Equation 1 Calculation for equilibrium distribution coefficient (K) 

 

 Solutes with higher K values will elute from the LC column later than those with a lower K 

value (Hendriks et al 2009). 

1.4.2 Retention 

The degree to which an analyte is retained on a column is known as retention factor (k’). 

Equation 2 can be used to determine the k’ (provided the flow rate remains unchanged). 

Equation 2 Calculation for retention factor (k’). 

 

Analytes with high k’ values have higher retention times. 

1.4.3 Selectivity  

The separation of various analytes and impurities is vital in quantitative bioanalysis. In 

order to separate two analytes, their respective k’ values must be different. The selectivity 

factor (α) is a ratio of the respective k’ values and be calculated using the formula 3. 

Ideally the retention factor for an analyte is between one and five.  
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Equation 3 Calculation for selectivity factor (α) 

 

1.4.4 Theoretical plate theory  

Theoretical plate theory suggests that a column is made up of a series of theoretical 

plates. Within each of these plates the analyte is said to be fully equilibrated between the 

mobile phase and the stationary phase. The greater the number of theoretical plates (N) 

the greater resolution between two analytes can be achieved. The smaller the plate height 

(HETP, Height equivalent to a theoretical plate) the better efficiency is observed. Equation 

4 can be used to calculate HETP (Hendriks et al 2009). 

Equation 4 Calculation for height equivalent to a theoretical plate 

 

The number of theoretical plates can be estimated experimentally by using the equation 5.   

The number of theoretical plates is used to access the column efficiency. 
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Equation 5 Calculation for the number of theoretical plates 

 

 

1.4.5 Rate theory  

The rate theory takes into account the time taken for the analyte to fully equilibrate 

between the mobile phase and the stationary phase. Unlike plate theory which presumes 

that equilibration occurs instantly, therefore rate theory provides a more accurate model of 

the inner workings of a column. Rate theory also takes into account factors which affect 

the band width of the chromatographic peak, such as the eddy diffusion (the analyte will 

take different  routes through the column), longitudinal diffusion (the concentration of the 

analyte will be greater at the centre of the band than the edges) and resistance to mass 

transfer (the analyte will take time to equilibrate between the stationary phase and the 

mobile phase if the velocity of the mobile phase is high and the analyte has a strong 

affinity for the stationary phase, then the analyte in the mobile phase will have a greater 

velocity than the analyte in the stationary phase). Van Deemter equation takes these 

factors into account (shown in equation 7) (Van Deemter et al 1956). 
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Equation 7 Van Deemter equation for plate height 

 

 

The relationship between the plate height and the mobile phase velocity is described by 

the Van Deemter plot (shown in figure 8). The Van Deemter plot can be used to find the 

optimal mobile phase velocity. 

 

Figure 8 Typical Van Deemter plot  
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1.4.6 Reversed phase chromatography  

Reversed-phase chromatography is a LC separation technique predominantly used in 

bioanalysis.  Reverse-phase stationary phase is typically made up of carbon chains 

(Typically C8 or C18) on a silica support. Silica is used because it is stable under the high 

pressure observed in LC and it does not swell or shrink when exposed to organic 

solvents. In reversed-phase the stationary phase is non-polar and as a result non-polar 

analytes will interact with the stationary phase more than polar compounds. Polar 

compounds will have a lower retention time than non-polar compounds. When the mobile 

phase is predominantly aqueous, polar compounds will have little retention whereas non-

polar compounds will be well retained. Increasing the percentage of organic solvent (non-

polar solvent) in the mobile phase, the interaction between the mobile phase and non-

polar analyte will increase resulting in a decrease in retention.  

1.4.7 Isocratic and gradient separation  

Isocratic separation is when the ratio of aqueous and organic solvent in the mobile phase 

remains the same throughout the analytical run (Tiler et al 2002). No equilibration step 

between sample injections is required in isocratic separation. Gradient elution is when the 

ratio of aqueous and organic solvents changes throughout an analytical run. Typically 

gradient elution starting conditions have a high percentage of aqueous solvent present to 

remove polar interferants, followed by an increase in organic solvent to separate the 

analyte from potential interferants with similar polarity. Non-polar interferant are removed 

by a wash step which involves using high percentage of organic solvent, shown in figure 

9.  

 

 

 

 

 



 

Figure 9 Typically gradient in LC  

 

 Increasing the slope of the gradient will result in the analyte eluting faster. If multiple 

analytes are present the resolution between analytes will decrease with a steeper slope 

(shown in Figure 10). A shallower gradient will result in greater resolution but could cause 

peak broadening. Maintaining a balance between resolution, peak shape and over all run 

time is vital in quantitative analysis (Horvath et al 1967).  
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Figure 10 the effect of slope steepness on resolution and peak shape 

 

 

1.4.8 Ion-pair reversed phase chromatography  

Ion-pair reversed-phase is the chromatographic separation technique often used for 

oligonucleotide quantitative analysis (Apffel et al 1997). Due to the highly polar and ionic 

nature of oligonucleotides very little resolution and retention is achieved by standard 

reverse phase. The addition of a positive ion pairing modifier trethylammonium (TEA) to 

mobile phases results in the positive charged TEA forming ion-pair with the 

oligonucleotides (Lin et al 2007).  

The oligonucleotide affectively becomes a neutral analyte and therefore resolution and 

retention is achieved in reversed-phase. The main issue with this approach is poor mass 

spectrometer sensitivity (analytes must be charged for mass spectrometer detection). 

Increasing the pH is favourable for dissociation of the oligonucleotide-TEA (oligo-TEA) ion 

pair, therefore 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also added to the mobile 

phase. HFIP lowers the pH of the mobile phase which strengths the oligo-TEA ion pair 

resulting in retention, however HFIP ready evaporates in the mass spectrometer source, 

as a result the pH of the remaining solvent increase sufficiently to dissociate the oligo- 

TEA ion pair (Van Dongen et al 2011).  
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1.5 Mass spectrometry in bioanalysis 

Mass spectrometers are a common feature in pharmaceutical and contract research 

laboratories all around the world. They are the preferred method of quantitation of small 

and large compounds including oligonucleotides. Mass spectrometry is an analytical 

technique which involves ionisation of molecules followed by separation according to their 

mass to charge ratio.  The recent improvement in mass spectrometer sensitivity has had a 

great impact in the bioanalysis world. One good example is the increased interest in 

micro-sampling which is only possible due to the advances in mass spectrometer 

sensitively.   

A mass spectrometer consists of a sample inlet, ion source, mass analyser, detector and 

data recorder/ processor. There are a number of technologies that exist for each 

component.  The requirements of the analysis define which components are used. 

1.5.1 Ionisation techniques  

The use of atmospheric pressure ionisation (API) sources coupled with liquid 

chromatography systems was first reported by Horning in 1974 (Horning et al 1974). API 

sources are widely used for both qualitative and quantitative analysis in all stages of drug 

development. Electrospray ionisation (ESI) and atmospheric pressure chemical ionisation 

(APCI) are two ionisation techniques which operate at atmospheric pressure. ESI is a 

liquid phase ionisation technique, whereas in ACPI the ionisation occurs in the gas phase. 

1.5.1.1 Electrospray Ionisation  

ESI was first described by Dole in the late 1960s (Dole et al 1968). However the first ESI 

source for mass spectrometers was first introduced by Fenn in1985 (Fenn et al 1985). 

Fenn was awarded a share of Nobel prize in Chemistry in 2002 for his work on ESI. There 

are three major steps in ESI 1: production of charged droplets, 2: solvent evaporation and 

3: production of charged ions in the gas phase. 

The solvent containing the analyte, often from a liquid chromatography system, is pumped 

through a stainless steel or fused silica capillary to which a high voltage is applied. The 

high voltage on the capillary causes an electrochemical reaction. 



There is a potential gradient difference within the mass spectrometer source, due to the 

charged capillary and the counter electrode (typically located 1-2 cm from the capillary 

tip), as shown in figure 11. There is also a pressure gradient caused by the atmospheric 

pressure within the source and the vacuum within the mass spectrometer 

In positive mode the electrons from molecules within the solvent are drawn towards the 

positive capillary producing positive ions (oxidation of the solvent). The positive ions are 

repelled by the capillary and accumulate at the capillary tip, as shown in figure 11. The 

opposite occurs in negative mode (reduction of the solvent) (Fenn et al 1984). 

Figure 11.Accumulation of positively charged ions at the tip on application of 

voltage to ESI capillary. 

 

 

As the positive ions accumulate, the repulsion between the positive ions deforms the 

liquid at the tip of the capillary. As the force that is exerted on the liquid by the electric field 

approaches the same force of the surface tension, a convex cone formed. As a threshold 

voltage is reached the convex cone inverts (Taylor cone) and emits a jet of liquid, resulting 

in a plume of charged droplets, as shown in figure 12.  The Taylor cone was first 

theoretically described by Sir Geoffrey Taylor in 1964 (Taylor et al 1964), well before the 

invention of ESI.  
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Figure 12 Jet of liquid emitted from the Taylor cone in ESI source 

 

A nebulising gas (typically N2) is pumped around the outside of the needle to direct the 

electrospray towards the mass spectrometer; it also assists in desolvation of the charged 

droplets (Zhou et al 2001). 

The density of charged ions within the droplets increases as the solvent is evaporated. 

When the electrostatic repulsion of the charged ions is greater than the surface tension of 

the solvent (as the Rayleigh limit is exceeded), columbic fission (explosion) occurs. The 

smaller droplets produced on this explosion have 2% of the mass and 15% of the charge 

of the original droplet. Therefore they have a much higher charge to volume ratio, as 

shown in figure 13 (Tu et al 2005).   
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Figure 13 Columbic fission of charged droplets in ESI source. 

 

There are two theories behind the electrospray production of charged ions in the gas 

phase from these charged droplets: the charged residue model and the ion evaporation 

model. In the charge residue model it is postulated that there are multiple fission steps 

until only single ions remain, which are draw in to the mass spectrometer via the counter 

electrode, as shown in figure 14 (Dole et al 1968). 

In the ion evaporation model it is proposed that once the droplets reaches a radius smaller 

than 10 nm, the surface field strength becomes large enough to overcome solvation 

forces.  At this point ions are ejected from the surface of the droplets into the gas phase, 

as shown in figure 14 (Thomson et al 1979). 
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Figure 14 Ion evaporation model and charged residue model of ESI ion production. 

 

 

The majority of ESI sources used in modern mass spectrometers have introduced a 

nebulizer gas (typically nitrogen) to assist in generating the droplets. Pneumatically-

assisted electrospray ionisation can handle higher flow rates than traditional ESI sources. 

As a result they have become very popular in high throughput bioanalysis.  

It is important to consider the effects of the mobile phases on ESI.  Polar solvents such as 

methanol, acetonitrile and water are very susceptible to electrochemical reaction and 

therefore are a good choice for liquid chromatography mobile phases when LC is to be 

coupled with ESI. Organic solvents such as methanol and acetonitrile have a lower 

surface tension and boiling point than water, and as a result the desolvation and solvent 

evaporation (especially when high flow rates are used) will be more efficient. The addition 

of acid or base to the mobile phase can assist in the production of positive or negative 

ions, although this will have an impact on chromatography.   

ESI can produce either singly or multiply charged ions and therefore ESI can be used as 

an ionisation technique in the analysis of large molecules such peptides, oligonucleotides 
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and proteins (Fenn et al 1989). The mass to charge ratio (m/z) of a singly charged large 

molecule such as an oligonucleotide would fall outside the m/z limits of a mass 

spectrometer.   

 

1.5.1.2 Atmospheric pressure chemical ionisation 

Atmospheric pressure chemical ionisation (APCI) is a gas phase ionisation process, which 

consists of a capillary (used to introduce the liquid from a LC system), a heated 

nebulization system and a high voltage corona discharge needle, as shown in figure 5. 

The corona discharge was first used in mass spectrometry ionisation in 1975 by Horning 

(Horning et al 1975).   

The HPLC eluent is passed through the capillary into the nebulizer, where a nebulizer gas 

(typical nitrogen) is used to create a spray of neutral droplets.   The nebulizer gas forces 

the droplets through a heated tube and as a result the solvent in the droplets is 

evaporated leaving solvent and analyte molecules.  The nebulizer gas forces the solvent 

and analyte molecules into the region of the corona discharge.  The nebulizer gas also 

assists in stabilising the corona discharge region.  

 

 

 

 

 

 

 

 

 



Figure 15 Atmospheric pressure chemical ionisation source 
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Chemical ionisation is the method of ionisation in APCI. The electrons emitted by the 

corona discharge needle initiate the chemical reaction process. The nebulizer gas 

(nitrogen) is ionised by electron ionisation which initiates the chemical reactions. 

In positive mode, the ionised nitrogen molecules collide with water or mobile phase 

molecules resulting in charge transfer. Further collisions produce different charged 

molecules which ultimately collide with the analyte molecules resulting in proton transfer 

producing analyte ions.  

ACPI is not suitable for very polar compounds, thermally labile analytes, or compounds 

which are typically charged in solution (proteins or oligonucleotides). Thermally labile 

compounds may decompose in the heated nebuliser.  Multiply charged ions are not 

produced in APCI. 

1.5.2 Movement of ions from atmospheric pressure to a vacuum 

The ions produced in the API source are drawn into the mass spectrometer by the 

potential and pressure difference within the source. Within an AB SCIEX API 4000 or 

5000 mass spectromters. The ions first pass through a curtain plate into region A shown 

in figure 16. This region contains a curtain gas (typically nitrogen) which is used to stop 

solvent entering the mass spectrometer. It also assists in declustering analyte ions from 

solvent molecules or ions. Region A is still at atmospheric pressure. The ions and the 

remaining solvent molecules are drawn into region B because of the difference in 

pressure. In region B a pump is used to remove solvent molecules. The remaining ions 

are drawn into the mass analyser region by the potential difference between the orifice 

plate and the skimmer cone. 

(http://www.absciex.com/Documents/Downloads/Literature/mass-spectrometry.pdf). 

http://www.absciex.com/Documents/Downloads/Literature/mass-spectrometry.pdf


 

Figure 16 Mass spectrometer-AP ionisation source interface schematic.  

 

1.5.3 Mass analysers  

Mass analysers are used to separate ions based on their mass to charge ratio (m/z). They 

can be used to separate ions produced in the ion source or collision cell. Quadrupole 

mass analysers are predominantly used in quantitative bioanalysis, due to their selectivity 

as mass filters.  

1.5.3.1 Quadrupole mass analysers  

Paul and colleagues developed the quadrupole mass analyser in parallel with the 

quadrupole ion trap (Paul et al 1953). Paul was awarded the Nobel prize for physics in 

1989 for his work.  Quadrupole mass analysers (also known as mass filters) consist of 

four electrically conducting parallel rods.  The rods are arranged symmetrically and ideally 

the cross sectional shape is hyperbolic, helping to achieve a hyperbolic field. The rods 

have a fixed direct current and an altering radio frequency voltage applied.  Diagonally 

opposing rods (the X rods make one pair and the Y rods another) are electrically 

connected, shown in figure 17.   
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Figure 17 Quadrupole mass analyser schematic.  

 

 

Due to the alternating RF voltage, the polarity of the rod switches over time, however the 

overall polarity of the rod remains the same as the polarity of the DC voltage for a greater 

length of time.  If we consider the X rods only, positive ions are repelled by the rods when 

the overall polarity of the rods is positive and attracted to the rods as the polarity switches 

to negative. Small ions have the ability to change direction more quickly than large ions, 

ultimately resulting in the small ions colliding with the rods during their negatively charged 

phase (shown in figure 18). Therefore the X rods can be described as a low mass filter, 

while the opposite holds for the Y rods, which act as a high mass filter.  
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Figure 18.  Pair of rods acting as a low mass filter  
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In 1868 Mathieu was able to describe regions of stability and instability after his 

investigation into the mathematics of vibrating stretched skins (Mathieu et al 1868). The 

motion of ions within a quadrupole can be described by the solutions to the Mathieu 

equations. By using the Mathieu equations, the voltage required for a stable oscillating 

trajectory through the quadrupole can be achieved for ions with a given m/z.  By the 

combined effect of the two pairs of rods, only ions with a certain m/z ratio will have a 

stable trajectory through the whole quadrupole for a given RF/DC voltage. 

Quadrupoles are used as a scanning mass analyser and as a result have a poor duty 

cycle. Duty cycle is the fraction of time that a particular m/z is monitored versus the total 

time spent on monitoring the m/z range.  

  1.5.3.2 Triple quadrupole mass spectrometry 

The first triple quadrupole mass spectrometer was developed in the late 1970s by Yost 

(Yost et al 1978). A triple quadrupole mass spectrometer typically consists of two mass 

filters Q1, Q3 and a collision cell. The collision cell is a quadrupole to which only RF 

voltage is applied. The ions leaving Q1 are accelerated into the collision cell which 

contains a neutral or inert gas typically nitrogen or argon (known as the collision induced 

dissociation (CID) or collision activated dissociation (CAD) gas). The collisions with the 

CAD gas results in fragmentation of the ion.  

There are various scan modes that can be performed with a triple quadrupole mass 

spectrometer. These include product ion scan, precursor ion loss, neutral loss and 

multiple reaction monitoring (MRM) (shown in figure 19). 



 

Figure 19 Different scan modes in tandem mass spectrometry 

 

In product ion scan mode, Q1 only transmits ions at one m/z into the collision cell, where 

they are fragmented. Q3 scans for all the products produced (shown in figure 19). 

In precursor ion scan mode all the ions generated in the source are transmitted into the 

collision cell, where they are fragmented to produce various product ions. Q3 transmits a 

selected product ion. Neutral loss involves Q1 and Q3 scanning for fixed mass differences 

between them (shown in figure 19).   

In MRM mode, Q1 is set to transmit ions with only one m/z into the collision cell, where 

various product ions are formed due to fragmentation caused by collisions between ions 

and collision gas. Q3 is set to transmit product ions with only one m/z into the detector.  
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1.5.4 Detectors  

There are a variety of devices that can be used to detect the ions leaving the mass 

analyser, such as electron multipliers and faraday cups. Electron multipliers are the most 

commonly used detector in bioanalysis due to their low response time, sensitivity and 

accuracy. 

Electron multipliers in the majority of current instruments are of the continuous dynode 

type. The ion beam from Q3 enters the detector and hits the resistive coated wall. As a 

result of the collision, secondary electrons are released. The secondary electrons move 

deeper into the horn (shown in figure 20). As these secondary electrons impact the wall, 

further secondary electrons are released, multiplying the amount of electrons by a factor 

of 2, this process is repeated until the electrons reach the preamplifier. 

Figure 20 Electron multiplier horn diagram. 
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1.6 Validation  

Before an analytical method can be used on a regulated study the method must first be 

validated. The foremost objective of method validation is to demonstrate the reliability of 

the method for the quantification of an analyte in a given biological matrix. The method 

must be rigorously tested to ensure that it generates accurate, precise and reliable data. 

The fundamental parameters for method validation are accuracy, precision, selectivity, 

sensitivity, recovery, reproducibility and stability (Guidance for industry:  bioanalytical 

method validation, FDA 2001). 

1.6.1 Internal standards 

Internal standards are compounds which account for variations in sample extraction, 

chromatographic separation and ionisation efficiencies of individual samples. Either a 

structural analogue or a stable isotope labelled internal standard can be used. The 

internal standard response for a given sample (Sample X) is compared to the mean 

internal standard response of all the samples injected onto the LC-MS/MS system. If the 

internal standard response of sample X is 10 % lower than the mean response, then 

sample X has lost 10% of the internal standard and therefore also lost 10 % of analyte at 

some point during the analysis. As a result the analyte concentration is automatically 

corrected by 10%. Therefore any variations during analysis have been compensated for 

(Shah et al 2000).  

A stable isotope labelled internal standards is the most effective because they have 

extremely similar extraction recovery, response and chromatographic retention time. 

Stable isotopes used are 13C, 15N and Deuterium. It is essential that the stable isotope 

labelled internal standard contains sufficient isotopes to increase the overall mass above 

that of the natural mass distribution of the analyte, otherwise the analyte could contribute 

to the internal standard mass spectrometer response. 
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1.6.2 Calibration curve  

Known concentrations of an analyte are spiked into aliquots of the sample matrix to 

produce calibration standards. The calibration standards are then subjected to the same 

sample preparation and extraction procedure as the test samples. The detector response 

for the analyte is divided by the detector response of the internal standard to produce an 

area ratio. A calibration curve is then generated by plotting the area ratio against the 

concentrations of the analyte in the calibration standards. The calibration curve is used to 

determine the concentration of analyte in quality control samples containing defined 

analyte concentrations and the test samples (unknown analyte concentration). The range 

of the calibration curve is determined by the expected analyte concentrations in the study 

samples. The lower limit of quantification (LLOQ) should have a detector response five 

times greater than the background signal to noise ratio (Shah et al 2000). 

1.6.3 Quality control samples  

Quality control samples (QCs) are produced by adding known amounts of analyte into the 

sample matrix and they are used to assess the performance of a method.  QCs are stored 

and handled in the same manner as the test samples. A calibration curve is only deemed 

acceptable if the QC concentrations determined using the calibration curve are within +/- 

15% of the analyte concentration in the QCs (+/- 20 % at the LLOQ) (Shah et al 2000).    

1.6.4 Selectivity  

A bioanalytical method must be able to quantify the analyte in a sample which contains 

many other components from which the analyte must be distinguishable. The method 

validation must demonstrate that the substance being quantified is indeed the analyte and 

not a peak originating from the control matrix. This is achieved by analysing blank matrix 

from at least six different sources, for matrix-derived interference at the retention time of 

the analyte and its internal standard (Shah et al 2000).   
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1.6.5 Accuracy  

The closeness of the mean test result obtained by a method on analysis of the QCs to the 

concentration of the analyte in those QCs allows the accuracy of an analytical method to 

be defined. Accuracy is determined by analysing replicates of quality control samples at 

three concentrations levels within the calibration range and also at the lowest limit of 

quantification (LLOQ) .The mean concentration determined for the analyte in the quality 

control samples should be within +/- 15% of the nominal values for analyte concentration 

in these samples (20 % for the LLOQ QC) (Shah et al 2000).  

1.6.6 Precision  

Precision of an analytical method is the variation in concentrations determined for 

replicate QCs. Multiple QCs aliquots are taken from a single homogeneous aliquot and 

individually measured. The precision test is repeated for all QC concentration levels and 

the coefficient of variation [(standard deviation / mean concentration)*100] should not 

exceed +/- 15% (20% for LLOQ QC) (Shah et al 2000).  

1.6.7 Dilution  

Successful dilution of samples with concentrations above the upper limit of quantification 

must be demonstrated during the validation. Dilution QCs prepared at a concentration 

higher than the upper limit of quantification (generally fivefold) are diluted with blank 

matrix prior to addition of internal standard, so that the response falls with the calibration 

range.  The accuracy and precision of the dilution process should be within +/- 15% 

nominal value (Shah et al 2000). 

1.6.8 Sensitivity  

Sensitivity is the lowest concentration that can be measured with acceptable accuracy, 

reproducibility and precision. The measured response should be at least five times greater 

than the background noise (Shah et al 2000). 
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1.6.9 Recovery  

Recovery is measured by comparing the detector response of an extracted QC sample 

with the detector response of an extracted control matrix sample into which the analyte 

has subsequently been spiked to yield the same analyte concentration as in the QC, using 

a solution of pure standard. The recovery test is done at low, medium and high analyte 

concentrations and should be precise and reproducible across the concentration range 

(Shah et al 2000).   

1.6.10 Stability  

The stability of the analyte in primary, diluted working stock solutions, and matrix must be 

evaluated to ensure that the data generated using the method are valid. Stability 

experiments test room temperature stability, bench-top stability, freeze/thaw stability and 

stock solution stability. Freeze/thaw experiments are conducted to mimic the handling of 

test samples. Freeze/thaw stability is assessed after a minimum of three freeze/thaw 

cycles. Freeze thaw stability samples are initially stored frozen for a period of 24h before 

being thawed at room temperature for a minimum 1 hour period. The QC samples are 

then returned to the freezer for 12 hours. Bench-top stability experiments with frozen QC 

samples are conducted over the length of time that the samples will be at room 

temperature during the test sample analyte extraction procedure.  Long-term stability 

whilst frozen experiments are also conducted to cover the sample storage duration 

between sample generation and subsequent analysis (Shah et al 2000). 

1.7 Aims 

The overall aim of this research was to increase the popularity and use of micro-sampling 

within the bioanalysis arena. At the start of this research in 2011 DBS analysis was 

increasing in popularity and therefore the first part of this MSc research is focused on DBS 

analysis. The aim of the research was to develop techniques which limit the requirements 

for reanalysis of samples, which fall outside the calibration range for any given method.  



  ‐ 41 ‐ 

Concerns surrounding DBS analysis were brought to light midway through the project 

(discussed in section 1.1). Therefore my research was broadened to also include CMS. 

The aim of this research was to develop a bioanalytical method for the quantification of a 

phosphorothioated oligonucleotide in human plasma capillary micro-samples using LC-

MS/MS and in doing so demonstrate the compatibility of capillary micro-sampling (CMS) 

with a challenging class of compounds. 
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Chapter 2: 

Alternative strategies for on-line mass 
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2.1Introduction  

Over the past 10 years there have been rapid advances in automated sample extraction 

used in the analysis of bioanalytical samples. Instruments such as the Flexus®, Tomtec 

Quadra ® and Hamilton Star® robots are now a regular feature in laboratories around the 

world (Watt et al 2000). With the use of such robots it is possible to automate the majority 

of the sample analysis preparation procedure, but in the case of dried blood spot (DBS) 

sample dilution is impossible due to the fact that the samples are solid rather than liquid. 

Therefore solvent is first added to the DBS to remove the analyte and the solvent 

containing the analyte is then diluted. Given that it is not always possible to predict which 

samples will require diluting, reanalysis of plasma or DBS samples is generally required 

for a portion of the samples, with associated cost implications to the pharmaceutical 

industry; in addition, the limited sample size may hinder the ability to perform a repeat 

analysis. Samples which have a higher concentration than the calibration range must 

currently be diluted, re-extracted (where extracted mean the sample has been processed 

to produce extracts, which are ready to be injected on to a LC-MS/MS system) and 

reanalysed. The original sample extracts often cannot be diluted and re-injected because 

of stability and evaporation issues). 

In the case of dried blood spot samples, there is no simple automated technique for 

sample dilution. In the past, DBS analysis could be labour intensive, as each sample 

would require manual punching which is a laborious and repetitive process. The 

introduction of DBS punching instruments and newly developed on-line extraction systems 

has alleviated this issue (Ganz et al 2012). Combining punching instruments with liquid 

handling systems enables the entire sample extraction process to be fully automated 

(Mess et al 2012). However there is currently no process by which repeat extraction of 

samples which are above the limit of quantification during initial analysis can be fully 

avoided or drastically reduced. The AB Sciex “SignalFinderTM”algorithm can compensate 

for detector saturation at high concentrations, which can help increase the quantitative 
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linear range, resulting in fewer samples that require diluting (Absciex website. 

http://www.absciex.com/Documents/Downloads/Literature/mass-spectrometry-

Multiquant.pdf).  Signal finder algorithm uses the unsaturated portion (the portion of the 

peak not effected by detector saturation) of the peak to extrapolate the actual response. 

2.1.2 Current method of analysing DBS-derived sample which fall outside the 
calibration range 

One current method of diluting DBS-derived samples consists of punching a disk from a 

sample spot and from a spot of a matrix blank (control blood), extracting the disks using a 

solvent containing an appropriate concentration of internal standard, then diluting the 

supernatant from the sample disk with that from the matrix blank disk. An alternative 

method of dilution for DBS samples is ‘internal standard tracked’ dilution (Liu et al 2011). 

This method consists of the addition of a ‘dilution factor–adjusted’ internal standard 

solution to the sample requiring dilution. For a tenfold dilution, an internal standard 

solution ten times higher in concentration than that added to undiluted samples is added 

to the sample requiring a tenfold dilution; the sample is then diluted 10 fold with matrix 

blank supernatant. The dilution factor adjusted internal standard tracks the dilution 

process, as the final internal standard concentration should match the internal standard 

concentration added to undiluted samples.  

2.1.3 Pioglitazone  

Pioglitazone is used to treat type 2 diabetes mellitus and was the tenth best-selling drug in 

the US in 2008. As a result, Pioglitazone has been previously used to demonstrate 

successful quantitative analysis from DBS samples (Turpin et al 2008). Pioglitazone 

(structure in figure 21) contains atoms which have naturally occurring isotopes. This could 

be used in any mass spectrometer based signal reduction techniques. 

http://www.absciex.com/Documents/Downloads/Literature/mass-spectrometry-Multiquant.pdf
http://www.absciex.com/Documents/Downloads/Literature/mass-spectrometry-Multiquant.pdf


 

Figure 21 Pioglitazone structure. 

 

2.1.4 Aim  

The aim of this research is to develop and demonstrate the use of alternative techniques 

for the analysis of sample that fall outside the calibration/linear concentration range. An 

LC-MS/MS assay for the quantitative analysis of pioglitazone in DBS samples over the 

calibration range of 10-10000 ng/mL has been chosen as a model assay to generate 

limited validation data for the alternative techniques and to compare this data to those 

generated using a more conventional sample dilution procedure. As the aim of the 

research is to demonstrate the successful analysis of sample which falls outside the 

calibration/linear concentration range, it is not necessary to fully validate the method 

because not all the experiments conducted in a full validation are required to demonstrate 

the successful use of any new techniques developed (for example stability, matrix effects 

and recovery experiments are not required). Therefore a partial/limited validation will be 

conducted. The compatibility of the new techniques developed with plasma sample 

analysis will also be investigated. 
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2.2 Experimental 

2.2.1 Chemicals and reagents  

HPLC grade methanol, 2-propanol and acetone were obtained from Rathburn Chemicals 

(Walkerburn, UK). HPLC grade acetonitrile was obtained from Fisher Scientific 

(Loughborough, UK). Isotopically labelled internal standard [2H4]-pioglitazone and 

unlabelled pioglitazone were obtained from Toronto Research Chemicals (Toronto, 

Canada). Ultra-pure water was produced in-house using a Millipore Super-Q™ osmosis 

system. All other chemicals were supplied by Sigma-Aldrich (Poole, UK). Human blood 

was obtained fresh in-house. 

2.2.2 Equipment 

DMPK B® blood spot cards and desiccant sachets were supplied by GE Healthcare Life 

Sciences. The Flexus® liquid handling system was supplied by Anachem. The BSD600 

DBS card punching instrument was supplied by BSD Robotics and 96-well sample plates 

were obtained from Corning.  

2.2.3 Analysis by UHPLC-MS/MS 

A Waters Acquity UPLC system attached to a Sciex API-4000 mass spectrometer made 

up the UHPLC-MS/MS system (using Sciex Analyst 1.5.1 software). After acquisition, the 

UHPLC-MS/MS data were processed using Sciex Analyst 1.5.1 software. UHPL 

chromatographic and MS conditions are detailed in Tables 1-3. Mobile phase A was 0.1% 

formic acid in 10 mM ammonium acetate (aq) and Mobile phase B was 0.1% formic acid 

in methanol. The analytical column was a Waters Acquity BEH C18, 50 x 2.1 mm, 1.7 µm 

and the column oven temperature was nominally set to 40°C. Auto-sampler weak wash 

solvent was 0.1% formic acid in 10 mM ammonium acetate: methanol (80:20 v/v). The 

auto-sampler strong wash solvent was methanol: acetone: water: trifluoroacetic acid 

(50: 40: 10: 0.1 v/v/v/v).  

 



 

Table 1 Liquid chromatography conditions 

 

An API 4000 mass spectrometer using an atmospheric pressure chemical ionisation APCI 

source was used in positive ion mode to quantify Pioglitazone. Pioglitazone was infused at 

500 ng/mL, at a flow rate of 20 µL/min, tables 2 and 3 list the mass spectrometer 

parameters and the various MS/MS transitions used, respectively.  
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Table 2 Mass spectrometer parameters 

 

 

Table 3 Mass spectrometer transitions for Pioglitazone and internal standard  

 

 

Figure 21 indicates the potential fragment observed (m/z of 134.1). The expected intensity 

of the 358.1-134.1 and 358.1-135.1 transitions would be similar, given that the 134.1 

fragment contains 9 out the 19 carbons available. The observed intensity for both 

transitions was very similar.   
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2.2.4. Limited DBS validation and analysis procedures 

2.2.4.1 Dried blood spot analysis 

Partial validation to FDA guidelines was carried out for the DBS method.  This included 

determination of assay selectivity, determination of precision and accuracy on three 

occasions, and determination of several dilution factors. Stock solutions of pioglitazone (1 

mg/mL) and [2H4]-pioglitazone (0.1 mg/mL) internal standard were prepared in methanol. 

Before use, all the solutions were brought to room temperature after storage at nominal 

5°C.  

Calibration standards were prepared by diluting the stock solutions into appropriate 

concentration working solutions with methanol, then spiking into blank whole human blood 

to be used to generate a single calibration line with standards at 10, 20, 50, 200, 1000, 

2000, 4500, 8500 and 10000 ng/mL. It was ensured that the volume of the working 

solution used for spiking remained less than 5% of the total standard volume. A second 

stock solution from an independent weighing was used to prepare quality control (QC) 

samples, (which will be used to assess the calibration line accuracy throughout the 

validation) by diluting the stock solution into appropriate concentration working solutions 

with methanol. The diluted working solutions were then spiked into blank whole human 

blood to give quality control samples  at 10 (LLOQ, lowest limit of quantification is lowest 

calibration standard), 30 (LoQC level, three times the concentration of the LLOQ), 500 

(MeQC level, the geometric mean of the calibration range), 8000 (HiQC level, 80% of the 

upper limit of quantification, highest calibration standard concentration) and 50000 (DiQC 

level, 5 times higher than the highest calibration standard concentration) ng/mL. LLOQ, 

LoQC, MeQC, HiQC and DiQC are known as QC levels (Section 1.6). For DBS analyses, 

20 µL of calibration standards and QC samples were spotted onto DMPK B ® Elute cards. 

The spotted cards were left for at least 2 hours to dry at room temperature and then 

analysed or stored at room temperature in a polypropylene bag containing a desiccant 

sachet. 
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To analyse the DBSs, a 3.2 mm diameter disk was punched from the centre of the dried 

blood spot into a 2 mL 96 well plate using a BSD600 instrument. Analyte extraction was 

performed by adding 200 µL of methanol containing 50 ng/mL of the internal standard 

([2H4]-pioglitazone). After vortex mixing for approximately 30 minutes the plate was then 

centrifuged at 3000 g for 5 minutes. A 100 µL aliquot of supernatant was transferred to a 

1.2 mL 96-well plate using a Flexus robot. 100 µL of 10 mM ammonium acetate/ formic 

acid (100: 0.1 v/v) was added to the 1.2 mL 96-well plate and the plate vortex mixed. 10 

µL was injected on the UHPLC-MS/MS system.  

The DiQC is at a concentration above the calibration range and so is normally diluted into 

the range of the calibration line for analysis. The dilution of unknown samples in a 

particular analytical experiment is verified by the successful dilution of the DiQC. In this 

research, the DiQC will be used to assess the successful use of alternative techniques for 

the analysis of sample that fall outside the calibration/linear concentration range. 

2.2.4.2 Plasma sample analysis 

Calibration standards were prepared fresh on the day of analysis by diluting stock 

solutions into appropriate concentration working solutions with methanol, then spiking into 

blank whole human plasma to give the following  calibration standards at 10, 20, 50, 200, 

1000, 2000, 4500, 8500 and 10000 ng/mL. It was ensured that the volume of the working 

solution used for spiking remained less than 5% of the total standard volume. QC samples 

were prepared from a second stock solution by diluting the stock solution into appropriate 

concentration working solutions with methanol, then spiking into blank whole human 

plasma to give QCs at 10, 30, 5000, 8000 and 50000 ng/mL. 

A 50 µL aliquot of plasma was pipetted into a 2 mL 96 well plate and 200 µL of methanol 

containing 50 ng/mL internal standard ([2H4]-pioglitazone) was added. The plate was 

vortex mixed for approximately 30 minutes then centrifuged at 3000g for 5 minutes. A 100 

µL aliquot of supernatant was transferred to a clean 1.2 mL 96-well plate using a Flexus 

robot and 200 µL of 10 mM ammonium acetate/ formic acid (100:0.1 v/v) plus 100 µL of 
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methanol was added to each well and the plate vortex mixed. A 10 µL volume was then 

injected onto the UHPLC-MS/MS system. 

2.2.5 Dilution Evaluation 

2.2.5.1 Conventional dilution procedure  

In both DBS and plasma extractions, QC solutions that were outside the calibration range 

were diluted using a traditional method to enable comparison of the performance of the 

new signal ‘dilution’ procedures to be made with the traditional technique. For the DBS 

samples this was done by punching a disk from a DiQC blood spot and from a control 

matrix blood spot, extracting as detailed above with an appropriate concentration of 

internal standard present in both, and then diluting 20 µL of supernatant from the QC 

sample with 180 µL of supernatant from the control matrix, to generate a 10-fold dilution. 

For the plasma sample analysis validation, 20 µL of the DiQC sample was added to 180 

µL of blank plasma, vortex mixed and then a 50 µL aliquot taken for analysis.  

2.2.6 Proposed alternative dilution techniques 

Mass Spectrometer Signal Dilution (MSSD) and Isotope Signal Ratio Monitoring (ISRM) 

are two new mass spectrometer signal reduction techniques developed. Both techniques 

require no repeat extraction of samples that fall outside the calibration/linear concentration 

range. Given that LC-MS/MS is already the favoured method for analysing bioanalytical 

samples, these two new MS/MS based signal dilution techniques can be applied with 

existing standard equipment. 

2.2.6.2Mass spectrometer signal dilution procedure.  

MSSD consists of lowering the collision energy settings for samples that fall outside the 

calibration/linear concentration range. Lowering the collision energy brings the product ion 

signal for an over range sample into the calibration range, by altering the collision energy 

for the analyte only. Calibration standards and quality control samples (LLOQ, Lo, Me, Hi) 

were injected onto the LC-MS/MS system using an optimum ‘collision energy’ setting of 

37 V. Six replicates of DiQCs and HiQCs were also analysed using three different 



‘collision energy’ settings of 20.6 V, 22 V and 23 V to generate varying signal responses. 

The difference in the signal response for the HiQC at optimum and lowered collision 

energy setting, is used to generate a correction factor (using equation 8). The correction 

factor is then applied to the DiQC.   

Equation 8 Correction factor calculation for MSSD 

 

2.2.6.3 Extended calibration curve procedure  

A calibration line with a concentration range of 0.5-100,000 ng/mL (200,000 fold increase 

in concentration over the range) was prepared in methanol and the collision energy was 

lowered for the internal standard and analyte (the collision energy is lowered for both 

internal standard and analtye in this experiment only) as follows: 

0.5 to 1000 ng/mL analysed using a collision energy setting V of 37 for internal standard 

and analyte. 

2000 to 10000 ng/mL analysed using a collision energy setting V of 26 for internal 

standard and analyte. 

20000 to 100000 ng/mL analysed using a collision energy setting V of 22 for internal 

standard and analyte. 

The above reduction in collision energy setting was based on figure 22 (on the following 

page). 
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2.2.6.4 Isotope signal ratio monitoring (ISRM).  

The ISRM dilution technique consists of monitoring the 13C isotopic peak (or other suitable 

isotope) for over range samples only. The ISRM approach is appropriate for the majority 

of therapeutic compounds because they contain atoms which have naturally occurring 

isotopes.  Calibration and quality control samples (LLOQ, Lo, Me, Hi) were analysed using 

the LC-MS/MS system and the Pioglitazone content monitored using the m/z 357.2 to 

134.1 transition (12C). Six replicates of DiQCs and HiQCs were also analysed using the 

m/z 358.2 to 134.1 and m/z 358.2 to 135.1 transitions (13C).The difference in the signal 

response for the 12C and 13C transition for the HiQC is used to generate a correction factor 

(using equation 9). The correction factor is then applied to the DiQC.   



 

Equation 9 Correction factor calculation for ISRM 

 

2.2.6.5 Experiements to be conducted in the partial validation  

On three separate occasions, the following experiments will be conducted : accuracy and 

precision, selectively  (see section 1.6) and the successful analysis of the DiQC samples 

using MSSD, ISRM and convential dilution process methodologies. The same calibration 

line will be used to assess MSSD, ISRM and convential dilution process. Each occasion is 

known as a batch or analytical run. For the accuracy and precision experiments six 

replicates of the LoQC, MeQC and HiQC will be analysed. Selectivety experiments 

consists of the analysis of matrix blank (matrix blank contains no analyte), reagent blank   

(water is added in the place of a DBS sample) and matrix blank containing internal 

standard samples.  
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2.3. Results and Discussion 

The objective of this investigation was to develop and perform a limited validation for two 

new techniques that get around the need for physical dilution of precious and difficult to 

dilute samples, to analyse sample concentrations that lie above the calibration range, 

without the need to re-extract the samples. An LC-MS/MS method for the quantitative 

analysis of pioglitazone in DBSs was selected to investigate the two new techniques of 

MSSD and ISRM, which lower the signal that reaches the detector for chosen samples. 

2.3.1. Mass spectrometer signal dilution 

The advantage of the MSSD method over the ISRM signal reduction (‘dilution’) method is 

that it can be applied to any compound for which varying the collision energy setting 

varies the response produced, and so can generate a large range of signal attenuations 

that can be treated as virtual dilution factors. The effect of altering the collision energy 

setting on the mass spectrometer response for pioglitazone is shown in Figure 22.Signal 

attenuations ranging from 13.6 to 42.0 fold were achieved. Given that a calibration curve 

is created by using analyte/internal standard peak area ratios, by lowering the collision 

energy for analyte only, the analyte/IS peak area ratios for samples which are above the 

limit of quantification are lowered, so that they fall within the calibration range. A unique 

virtual dilution (correction) factor was determined by monitoring the HiQCs (HiQCs were 

chosen because there analyte concentration lie at the top end of the calibration curve), 

once with the collision energy set at the optimum value, as it was when measuring the 

calibration standards and a second time at reduced collision energy, as for the samples 

which would typically require diluting. The calculated correction factor for (calculated by 

using equation 8) is then applied to the DiQCs and above range study samples to 

generate concentration values. 



 

Figure 22.Effect of collision cell ‘collision energy’ setting on detector 

response for pioglitazone. 

 

In a validation all three batches (analytical runs) must demonstrate acceptable accuracy 

and precision for the method to be acceptable for use.  The intra- and inter-assay 

precision and accuracy data are presented in Tables 4 and 5.  The mean calculated 

concentration, accuracy (%) and precision (RDS %) are detailed for all three batches 

(mean intra assay data is also shown).  As table 4 shows all QC levels were within the 

pre-defined 15% limits (described in section 1.6.2). Therefore the analytical method can 

be used to assess MSSD technique.  The DiQC was diluted 10 fold using the traditional 

method (data presented in table 4). The mean inter-assay calculated concentration of the 

DiQC is with 3% of nominal value (nominal value is the actual concentration of analyte 

added to plasma to prepare the DiQC).  The mean intra- and inter-assay data for DiQC 

analysed using MSSD technique (also shown in table 4) are within 15% of nominal value).  
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Table 4. Intra- and inter-assay precision and accuracy data for QC containing pioglitazone in human dried blood spots and 
comparison of a traditional dilution technique withMSSD using a variable collision energy setting 

                 
Intra-assay  QC 10 ng/mL 

(LLOQ QC) 
 QC 30 ng/mL 

(LoQC) 
  QC 500 

ng/mL 
(MeQC) 

  QC 8000 
ng/mL 
(HiQC) 

  QC 50000 ng/mL 
(DiQC) 

Traditional method 
diluted 10-fold with 

extracted blank 
human blood spots 

  QC 50000 ng/mL 
(DiQC) 
MSSD 

CE = 20.6 V 
42.0-fold dilution 

  QC 50000 ng/mL 
(DiQC) 
MSSD 

CE = 22 V 
19.9-fold dilution 

 QC 50000 ng/mL 
(DiQC) 
MSSD 

CE = 23 V 
13.6-fold dilution 

Batch 1                 
Mean (ng/mL)  9.82  28.9  478   7300  47100  56700    56000 
Accuracy (%)  98.2   96.3   95.6   91.3  94.2  113.4    112.0 
RSD (%)  11.5   6.8   6.7   5.8  3.8  6.2    7.3 
n  6  6  6  6  6  6    6 
Batch 2                 
Mean (ng/mL)  9.18  28.1  478  7900  49100  55400  54000  54200 
Accuracy (%)  91.8  93.7  95.6  98.8  98.2  110.8  108.0  108.4 
RSD (%)  7.1  3.5  4.7  5.6  2.8  3.8  5.1  7.3 
n  6  5  6  6  6  6  6  6 
Batch 3                 
Mean (ng/mL)  9.35   26.4   462   7760   49600   56200   56300   56200 
Accuracy (%)  93.5   88.0   92.4   97.0   99.2   112.4   112.6   112.4 
RSD (%)  7.7   2.4   6.1   5.0   6.6   4.3   2.8   3.2 
n  6  6  6  6  6  6  6  6 
Inter-assay                 
Mean (ng/mL)  9.45   27.8   473   7660   48600   56100   55200   55500 
Accuracy (%)  94.5   92.7   94.6   95.8   97.2   112.2   110.4   111.0 
RSD (%)  9.0   6.0   5.7   6.2   5.0   4.7   4.4   6.1 
n  18  17  18  18  18  18  12  18 
 
 
DiQC: Diluted QC; QC: Quality control; LLOQ: Lower limit of quantification QC; LoQC: LowQC; MeQC: Medium QC; HiQC: High QC; RSD: Relative standard deviation; CE: Collision energy. 
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Table 5.Inter-assay precision (RSD) and accuracy for calibration standards 

containing pioglitazone in human DBSs prepared when comparing the 

traditional dilution technique to that of MSSD and ISRM 

    concentrations (ng/mL) 

  Calibration standard concentration (ng/mL) 

    10 20 50 200 1000 2000 4500 8500 10000 

Mean (ng/mL) 9.92 20.0 52.5 190 1020 1940 4120 8320 10100 

Standard deviation (n-1) 0.186 1.19 2.78 6.06 52.1 69.0 243 154 343 

RSD (%)   1.9 6.0 5.3 3.2 5.1 3.6 5.9 1.9 3.4 

Accuracy (%) 99.2 100.0 105.0 95.0 102.0 97.0 91.6 97.9 101.0 

n  3 3 3 3 3 3 3 3 3 

Quadratic fit (y = ax2 + bx + c) 

 

2.3.1.2 Extending the calibration curve  

Given that the quality of data generated is dependent on the quality of the calibration 

curve that is used in any given assay, a linear regression with either a 1/x or 1/x2 

weighting is the most commonly applied model used for generating a calibration curve in 

small molecule bioanalysis, with a typical calibration range of 500 to 1000 fold increase in 

concentration. Saturation of the mass spectrometer detector is a limiting factor when it 

comes to the range of calibration that can be used on a given assay. Lowering the 

collision energy for both analyte and internal standard enables a calibration range of 0.5 to 

100,000 ng/mL (200,000 fold range) to be used with a linear response (Figure 23). Figure 

24 shows the results obtained from the same calibration standards, without altering the 

collision energy setting; a limited linear calibration range of 0.5- 1000 ng/mL (2,000 fold 

range) was achieved. 



 

Figure 23   A 200,000-fold (linear 1/x2) calibration curve for pioglitazone (0.5 

to 100000 ng/mL) demonstrating that lowering the collision energy for both 

pioglitazone and internal standard can extend the linearity of the calibration 

range achieved 
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Figure 24.   A 200,000-fold (linear 1/x2) calibration curve for pioglitazone (0.5-

100000 ng/mL), demonstrating that using a singlecollision energy setting for 

pioglitazone and internal standard results in a limited linear calibration 

range 
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2.3.2 Isotope signal ratio monitoring 

This technique can be applied to any compound with naturally occurring isotopes. 

Pioglitazone (Figure 21) has a 22.5% relative abundance of naturally occurring isotopes 

with a mass one dalton above that of the precursor [Table 6]. The greater the relative 

abundance of naturally occurring isotopes a compound has, the lower the virtual dilution 

factor that results, when using the signal one dalton above the precursor ion. However 

higher dilution factors can be achieved by monitoring a signal two daltons above the 

precursor ion, caused by multiple isotopes.  

Table 6 Isotope abundance in pioglitazone 

(www.sisweb.com/mstools/isotope.htm.) 

   % 

abundance 

of M+1 

isotope 

Number of atoms in 

Pioglitazone 

Relative intensity of M+1 signal (% 

Isotope abundance * Number of 

atoms in pioglitazone) 

N  0.3613  2  0.7226 

S  0.7893  1  0.7893 

C  1.0816  19  20.5499 

O  0.0401  3  0.1203 

H  0.0160  20  0.320 

Total      22.50 

 

The intra- and inter-assay precision and accuracy data are presented in Tables 5 and 7.  

The mean calculated concentration, accuracy (%) and precision (RDS %) are detailed for 

all three batches (mean inter assay data is also shown).  As table 4 shows all QC levels 

were within the pre-defined 15% limits. Therefore the analytical method can be used to 

assess ISRM technique. In all three validation batches the DiQC passed in accordance to 

international recognised acceptance criteria, with ISRM and the conventional method of 

diluting samples giving results which were within 15% of the nominal concentration.  
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Plasma data is represented in table 8. The DiQC analysed using ISRM technique are 

within 8% of nominal value.  



Table 7. Intra- and inter-assay precision and accuracy data for QC containing Pioglitazone in human dried blood spots and 
comparison of the traditional dilution technique to that ofIsotope Signals Ratio Monitoring 

               
Intra-assay  QC 10 ng/mL 

(LLOQ QC) 
 QC 30 

ng/mL 
(LoQC) 

  QC 500 
ng/mL 

(MeQC) 

  QC 8000 
ng/mL 
(HiQC) 

  QC 50000 ng/mL 
(DiQC) 

Traditional method 
diluted 10-fold with 

extracted blank 
human blood spots 

  QC 50000 ng/mL 
(DiQC) 
ISRM 

358.1 → 134.1 
Average 7.35-Fold 

dilution 

  QC 50000 ng/mL 
(DiQC) 
ISRM 

358.11 → 135.1 
Average  7.92-Fold 

dilution 
Batch 1                
Mean (ng/mL)  9.82   28.9   478   7300   47100   47500   47300 

Accuracy (%)  98.2   96.3   95.6   91.3   94.2   95.0   94.6 

RSD (%)  11.5   6.8   6.7   5.8   3.8   6.7   6.4 

n  6  6  6  6  6  6  6 

Batch 2               
Mean (ng/mL)  9.18   28.1   478   7900   49100   50100   50200 
Accuracy (%)  91.8   93.7   95.6   98.8   98.2   100.2   100.4 
RSD (%)  7.1   3.5   4.7   5.6   2.8   4.3   4.4 
n  6  5  6  6  6  6  6 
Batch 3               
Mean (ng/mL)  9.35   26.4   462   7760   49600   48900   49100 
Accuracy (%)  93.5   88.0   92.4   97.0   99.2   97.8   98.2 
RSD (%)  7.7   2.4   6.1   5.0   6.6   3.1   3.4 
n  6  6  6  6  6  6  6 
Inter-assay               
Mean (ng/mL)  9.45   27.8   473   7660   48600   48800   48900 
Accuracy (%)  94.5   92.7   94.6   95.8   97.2   97.6   97.7 
RSD (%)  9.0   6.0   5.7   6.2   5.0   4.7   4.7 

n  18  17  18  18  18  18  18 

               

DiQC: Diluted QC; QC: Quality control; LLOQ: Lower limit of quantification QC; LoQC: Low QC; MeQC: Medium QC; HiQC: High QC; RSD: Relative standard deviation 
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Table 8.Intra-assay precision and accuracy data for QC levelsdata for 

pioglitazone in human plasma (Isotope Signals Ratio Monitoring). 

           
Intra-assay  QC 30 

ng/mL 
(LoQC) 

  QC 500 
ng/mL 

(MeQC) 

  QC 8000 
ng/mL 
(HiQC) 

  QC 50000 
ng/mL 
(DiQC) 
ISRM 

358.1 → 
134.1 

 7.69-Fold 
dilution 

  QC 50000 
ng/mL 
(DiQC) 
ISRM 

358.11 → 
135.1 

8.35-Fold 
dilution 

           
Mean 
(ng/mL) 

 30.8   5230   8950   53800  54200 

Accuracy 
(%) 

 102.7   104.6   111.9  107.6   108.4 

RSD (%)  6.3   4.6   6.7  3.7   3.4 

n  6  6  6  6  6 

           

 

2.3.3 Response for DBS partial validation. 

A representative chromatogram is presented in Figure 25 demonstrating an excellent 

signal to noise ratio at the LLOQ and lack of significant interference at the retention time 

of Pioglitazone shown in Figure 27.  The internal standard peak shape is represented in 

Figure 26. The analyte response (peak height) at the LLOQ was greater than five times 

the blank blood spot response. The response of the detector to Pioglitazone was 

quadratic over the concentration range 10 to 10000 ng/mL with a weighted 1/x2 quadratic 

regression applied to the data. 



 

Figure 25. Representative UHPLC-MS/MS selective reaction monitoring 

chromatogram of Pioglitazone spiked into a human DBS sample at the LLOQ 

(10 ng/mL) 
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Figure 26. Representative UHPLC-MS/MS selective reaction monitoring 

chromatogram of a human DBS sample spiked with the internal standard ([2H4]-

pioglitazone) 
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Figure 27. Representative UHPLC-MS/MS selective reaction monitoring 

chromatogram of a blank human DBS sample  
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2.3.4 Selectivity for DBS partial validation 

There were no significant interfering peaks at the retention time of either Pioglitazone or 

the internal standard response) detected in reagent blanks, matrix blanks or the highest 

concentration calibration standard (without internal standard) in the retention window of 

Pioglitazone and its internal standard respectively. This showed that no carryover from the 

LC system or contamination during the sample extraction was observed and therefore the 

data generated had not been compromised. 

2.4. Conclusions 

Two new mass spectrometer-based sample dilution concepts were successfully 

developed and partially validated on dried blood spot samples for the analysis of 

Pioglitazone. Both Mass Spectrometer Signal Dilution and Isotopic Signal Ratio 

Monitoring dilution techniques have shown comparable results to the traditional method of 

sample dilution. In each case, sample analysis time and cost attributed to reanalysis of 

samples with analyte concentrations above the calibration range was significantly 

decreased. Either of the methods can be implemented in laboratories around the world 

with minimal additional cost implications. The two techniques have been demonstrated to 

be compatible with DBS and plasma analysis. Given the level of interest in and 

development of supporting technology for automated DBS analyses, these two new virtual 

dilution techniques may help to alleviate the issues involved with manually diluting DBS 

samples. The newly developed dilution methods have the potential to simplify the analysis 

of the majority of bioanalytical samples for which previously a physical dilution of the 

sample was required to bring analytes within the calibration range of an assay used for 

quantification. 

A potential limitation of the new methodologies is that for highly concentrated samples the 

assay in use might encounter mass spectrometer ionisation saturation, and as a result 

only sample concentrations below that of the DiQC should be accepted. However, 

ionisation saturation for the pioglitazone assay described here was not observed but is a 
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factor to take into account when implementing the new methodologies. Some manual data 

processing was required for the new techniques, but this could be eliminated by future 

changes to mass spectrometer instrument software. 

Another limitation of a large dynamic range or in this case analyte concentrations above 

the upper limit of quantification is auto-sampler carry over.  However, with the 

improvements in liquid chromatograph systems and the addition of extra blanks within the 

analytical run, carry-over can be reduced; whether these additional precautions are 

needed should be investigated during validation. 
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Chapter 3: 
Development of a bioanalytical method for the 

quantification of a phosphorothioated oligonucleotide in 
human plasma capillary micro-sample using LC-MS/MS 
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3.0 Introduction  

The aim of this research was to develop a bioanalytical method for the quantification of a 

phosphorothioate oligonucleotide in human plasma samples made available following 

capillary micro-sampling (CMS), using LC-MS/MS, and in doing so demonstrate the 

compatibility of CMS with an analytically challenging and novel class of compounds. 

There has to date been no method published which demonstrates the successful analysis 

of oligonucleotide CMS samples by LC-MS/MS. 

3.1 Method development challenges 

The method development challenges faced when developing CMS or oligonucleotide 

methods have been discussed in chapter 1. However, additional challenges arise when 

combining this particular class of compound with this sampling technique. To enable 

adequate monitoring of exposure to dosed oligonucleotides during clinical trials, the 

routinely desired lower limit of quantification (LLOQ) is low ng/mL levels. This is typically 

achieved by processing 50-200 µL of plasma sample, whereas CMS would only provide 4-

20 µL. Additionally, oligonucleotides, like many polar or charged molecules, are prone to 

adsorb to glass and therefore adsorption to the glass capillary during sample collection 

and storage could be an issue.  Using silanised glass would alleviate this problem 

because the interactions between the polar oligonucleotides and the glass surface is 

reduced. Silanised glass is produced by treating a hydrophilic surface with a reactive 

silane (dimethyldichlorosilane), this converts the hydrophilic silanols (found on the glass 

surface) into lipophilic alkylsiloxane moieties. Not all glassware used during quantitative 

analysis is available in silanised form.  

3.1.2 Test oligonucleotides  

Two oligonucleotides with phosphorothioate linkages have been chosen as test reference 

materials, due to that fact the phosphorothioate oligonucleotide therapeutics are currently 

the most studied and tested oligonucleotides. The oligonucleotide containing 18 

nucleotides was used as the analyte and the oligonucleotide containing 15 nucleotides 
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was used as the internal standard. The sequence and masses of the chosen 

oligonucleotides are shown in figure 28. 



 

Figure 28 Analyte and internal standard sequence 

 

3.2 Experimental 

3.2.1 Chemicals and reagents 

The reference materials were custom synthesised for the work by Biomers 

(Ulm,Germany). Methanol and 2-propanol of HPLC grade were obtained from Rathburn 

Chemicals (Walkerburn, UK).Acetonitrile of HPLC grade was obtained from Fisher 

Scientific (Loughborough, UK).Ultra-pure grade water was produced in-house using a 

Millipore Super-Q™ osmosis system (Bedford, USA). All other chemicals were supplied 

by Sigma-Aldrich (Poole, UK). Human blood was obtained fresh from in-house volunteers, 

with full written consent. 10 mg HLB SPE plates were obtained from Waters. 

  3.2.2 Equipment 

CoStar 96-well sample plates were obtained from Corning. Centrifuge (Rotanta 460R 

model) was supplied by Hettich. Glass capillaries (20 µL, 2.9 cm, part number 19.447, lot 

1511538) were obtained from Vitex. The API4000 MS/MS system was obtained from AB 

Sciex (Warrington, uk). The Acquity® autosampler, binary solvent manager, column and 

column oven were obtained from Waters. 
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3.2.3 Oligonucleotide solution preparation  

The water content of oligonucleotide reference standards may be particularly high and can 

increase during storage or with repeated use. Therefore it is necessary to determine the 

oligonucleotides stock solution concentration experimentally.    

Separate primary-stock solutions of the analyte and internal standard were prepared by 

dissolving a weighed portion of the oligonucleotide reference material in water: acetonitrile 

(90:10 v/v) to a concentration of 500 µg/mL (assuming that the reference material supplied 

is 100% pure). From these primary-stock solutions, intermediate solutions were prepared 

at 30 µg/mL in the same solvent. Triplicate absorbance readings at 260 nm using a UV 

spectrophotometer were performed for both analyte and internal standard intermediate 

solutions. The mean absorbance reading was used to determine the accurate 

concentration of the intermediate solution (demonstrated in calculation 1) and therefore 

the accurate primary stock solution concentration could be calculated.  

Calculation 1 Calculation for percentage purity of oligonucleotides  

 

Using the calculation above it was determined that the analyte primary-stock 

concentration was 457.5 µg/mL and the internal standard concentration was 476.5 µg/mL. 
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3.2.4 Direct infusion into the mass spectrometer 

A solution containing each oligonucleotide at 50 µg/mL in water/ methanol/ HFIP/ TEA 

(70/ 30/ 1/ 0.1 v/v/v/v) was infused directly into a flow of mobile phase matching the 

starting chromatographic mobile phase and flow rate (Figure 29). This is an unusually high 

analyte infusion solution concentration for an MS/MS infusion solution but was necessary 

due to the adsorption losses of a large amount of the analyte and internal standard to the 

glass infusion syringe. 

Tables 9 and 10 show the optimised transitions for the analyte and internal standard. The 

different charged states were identified by a full scan of precursor ion and the product ions 

were identified by using MRM mode. Not all product ions observed were fully optimised 

(the most abundant product ions for all observed charge states were fully optimised).   

Table 9 Mass spectrometer transitions and source and mass analyser parameters 

for the analyte oligonucleotide 

 

  Analyte 
  Charge 

state 
Precursor 

m/z 
Product 
ion m/z 

DP 
Setting 

(V) 

CE 
setting 

(V) 

CXP 
setting 

(V) 

EP 
setting 

(V) 

  [M-6H]-6 968.7 94.9 -130 -100 -20 -10 
    134.0 -130 -60 -20 -10 
    318.9 -130 -33 -20 -10 
  * [M-7H]-7 830.2 94.9 -150 -135 -20 -10 
    134.0 -150 -70 -20 -10 
    319.0 -150 -53 -20 -10 
  [M-8H]-8 726.3 94.9 -135 -125 -11 -10 
    134.0 -135 -85 -11 -10 
    319.0 -135 -40 -11 -10 
  [M-9H]-9 645.45 94.9 -125 -110 -11 -10 
    134.1 -125 -72 -11 -10 
        
    

 DP = Declustering potential, CE = collision energy, CXP =Collision cell exit 
potential, EP = Entrance potential  
 
*Transition used in analysis   
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Table 10 Mass spectrometer transitions and parameters for the internal standard 

 

   Internal standard 

   Charge 
state 

Precursor 
m/z 

Product 
ion m/z 

DP 
setting 

(V) 

CE 
setting 

(V) 

CXP 
setting 

(V) 

EP 
setting 

(V) 
   [M-6H]6- 804.4 94.9 

319.0 
344.0 

-150 
-150 
-150 

-130 
-47 
-50 

-20 
-20 
-20 

-10 
-10 
-10 

          

          
   [M-7H]7- 689.3 94.9 

319.0 
344.0 

 
 

-125 
-125 
-125 

-140 
-40 
-40 

-25 
-25 
-25 

-10 
-10 
-10 

                

               
    DP = Declustering potential,  CE = collision energy, CXP =Collision cell exit 

potential ,  EP = Entrance potential  
 
*Transition used in analysis   

 

 

 3.2.5 Analysis by UHPLC-MS/MS 

An Acquity UPLC system attached to an AB-Sciex API-4000 mass spectrometer 

comprised the LC-MS/MS system. After acquisition, the UHPLC-MS/MS data were 

processed using Analyst 1.5.1 version software. The chromatographic conditions are also 

shown in Table 11 and Figure 29. 
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Table 11 LC setup details  

 

Column  Acquity BEH C18, 100 x 2.1 mm, 1.7 µm 

Mobile phase A Water/ HFIP/ TEA (100/ 1/ 0.1 v/v/v) 

Mobile phase B Methanol/ HFIP/ TEA (100/ 1/ 0.1 v/v/v) 

Column temperature  50 º C 

Injection volume 35 µL  

 

The percentage of mobile phase B (organic solvent) was increased linearly from 10% to 

30% over 6 minutes with an LC flow rate of 0.25 mL/min (figure 29). The percentage of 

organic solvent was then rapidly increased to 98% and the flow rate increased to 0.4 

mL/min to remove non-polar impurities from the LC column (for example heavily retained 

lipids). Due to observed column carryover of the analyte between injections during method 

development, an additional rapid increase in the percentage of organic was introduced 

after the column flush which eliminated this effect. The measured pH of mobile phase A 

was 8.5, mobile phase B was 9.2.  



 

Figure 29 LC gradient conditions  

 

3.2.6 Quality control and calibration standard  

Calibration standards were prepared by diluting the stock solutions into appropriate 

concentration working solutions with methanol: water (10:90 v/v), then spiking into blank 

human plasma to give a calibration series with standards at 5, 10, 25, 50, 100, 500, 1000, 

1500, 2250 and 2500 ng/mL. The volume of the working solution used for spiking 

remained less than 5% of the total standard volume. A second, independently prepared 

stock solution was used to prepare QC (quality control) samples, by diluting the stock 

solution into appropriate concentration working solutions with methanol: water (10:90 v/v). 

The diluted working solutions were then spiked into blank human plasma to give QC 

samples at 5 ng/mL (LLOQ), 15 ng/mL (LoQC), 175 ng/mL (MeQC), 2000 ng/mL (HiQC) 

and 10000 (DiQC) ng/mL (The DiQC is 5 times higher in concentration then the highest 

calibration standard, therefore a dilution of this sample is required). QC samples were 

drawn into a 20 µL glass capillary; each capillary was placed into a 1.5 mL plastic 

microfuge tube (Eppendorf, Stevenage, UK) which was stored at -20 °C. CMS calibration 

standards were prepared fresh on the day of analysis. 
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3.2.7 CMS plasma analysis extraction procedure 

20µL of internal standard solution (500 ng/mL) was added to all plastic microfugetubes 

(which already contain glass capillaries with either QC or calibration standards in them) 

with the exception of capillaries which contain matrix and water blank (blank refers to a 

sample which contains no analyte). 500 µL of water: 30% NH4OH solution (95:5 v/v) was 

then added to each microfuge tube (to wash the sample out of the capillary). The 

microfuge tubetubes were gently mixed for 10 min (to ensure the plasma and washout 

solution has fully equilibrated with the microfuge tube).  100 µL of phenol: chloroform: 

isoamyl alcohol (25: 24: 1, v/v/v) was then added to all microfuge tubes. The microfuge 

tubes were gently mixed for a further 20 min and then centrifuged at 3000 g for 5 min 

(nominal 5 °C). A 600 µL aliquot was taken from the aqueous layer and placed into a 2 mL 

96 well plate. 600 µL of water: HFIP: TEA (100: 2: 0.2, v/v/v) was added to each well and 

the entire well plate was vortex mixed for 10 min.  

An HLB 10 mg 96 well SPE plate was primed with 1 mL of acetonitrile followed by 1 mL of 

water: HFIP: TEA (100: 1: 0.1, v/v/v). The entire sample was transferred to the SPE plate. 

The SPE plate was then washed with water: HFIP: TEA (100: 1: 0.1, v/v/v). 600 µL of 

acetonitrile: water: TEA (60: 40:1, v/v/v) was used to elute the samples into a 96 well 

plate. The contents of 96 well plate was then evaporated to dryness under a stream of 

nitrogen (approximately 2 hours). 150 µL of methanol: water: HFIP: TEA (10: 90: 2: 0.2, 

v/v/v/v) was added to re-dissolve the sample. The 96 well plate was then capped, vortex 

mixed for 2 min and centrifuged at 3000 g for 5 min (nominal 5 °C) and then 35 µL 

injected on the LC-MS/MS system.  

3.2.8 Experiments conducted in validation  

The following aspects were determined during method validation: accuracy and precision,  

selectively , sensitivity, freeze thaw stability, 24 hour room temperature stability, matrix 

effects, dilution process and recovery (section 1.6). 



  ‐ 80 ‐ 

For the accuracy and precision experiments six replicates of the LoQC, MeQC and HiQC 

were analysed on three separate occasions (each occasion is known as a batch or an 

analytical run).  Selectivity was assessed by the analysis of matrix blank (glass capillary 

containing blank plasma, no internal standard will be added to this sample), reagent blank 

(glass capillary containing water) and matrix blank containing internal standard (only blank 

sample to which internal standard is added) and six blank matrix individual samples for 

interference. Freeze-thaw stability was assessed by storing MeQC frozen for a period of 

24 h before thawing at room temperature for a minimum 1 hour period. The MeQC 

samples were then returned to the freezer for 12 hours, before repeating the process 

twice more. Room temperature stability was assessed by analysising MeQC samples 

which have been stored at room temperature for a period of 24 hours. 

Extraction recovery was assessed by comparing the detector response of an extracted 

QC sample with the detector response of an extracted control matrix sample into which 

the analyte has subsequently been added to yield the same analyte concentration as in 

the QC, using a solution of pure standard. The recovery test was done at LoQC, MeQC 

and HiQC analyte concentrations. 

The dilution of CMS samples was assessed. 500 µL of water: NH4OH (30% solution) (95:5 

v/v) was added to tube 1 (which contains DiQC plasma sample in a glass capillary) and 

tube 2 (which contains blank plasma in a glass capillary).  The microfuge tubes was gently 

mixed by shaking sideways for 10 min. Tenfold dilution was achieved by adding 10 µL out 

of tube 1 to 90 µL of the contents of tube 2. 

Matrix effects can be defined as the variation in the amount of analyte detected in the 

presence of plasma produced from different donors. The different components found in 

plasma can interfere with ionisation in the mass spectrometer source resulting in analyte 

suppression or enhancement. Therefore the FDA guidelines for bioanalytical studies 

(Shah et al 2000) require the assessment of matrix effects. 
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Matrix effects were assessed by extracting (extracting means the sample has gone 

through the sample extraction procedure and is ready to be injected onto the LC-MS/MS. 

Described in section 3.2.7) six different individual lots of matrix and three water samples. 

Once fully extracted a pure standard solution (at the same concentration as an extracted 

LoQC level and internal standard, assuming 100% recovery) was added to all samples. 

These samples were then injected on a LC-MS/MS system.  LoQC were prepared in six 

different individual lots of matrix. These LoQC samples will be extracted and analysed 

(also to test for matrix effects). 

Recovery was assessed by extracting blank matrix (n=3) and then adding analyte at the 

same concentration as an extracted LoQC level and internal standard, assuming 100% 

recovery. The mean area of these samples is compared to the mean peak area of the 

extracted MeQC.  

3.3 Results  

3.3.1 Method development 

The first stage in developing an analytical method is to optimise the mass spectrometer 

for the detection of the analyte and internal standard. Once this is achieved LC separation 

is developed, followed by development of the extraction procedure. 

3.3.1.1 Mass spectrometer Infusion  

The internal standard and analyte mass spectrometer parameters were originally 

determined by direct infusion (10 µL/ min) into the mass spectrometer. However this 

approach did not provide adequate sensitivity for pure standards.  Therefore both analyte 

and internal standards were re-infused under LC flow. This approach allows one to fully 

optimise the mass spectrometer parameters under the conditions which best mimic a true 

analytical run. The response for both compounds dramatically decreased after the first 

minute of infusion, due to absorption to the glass infusion syringe. Therefore the 

concentration of the infusion solution was increased by tenfold to compensate for the 

absorption.  
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The same product ions were observed for the analyte and internal standard (not all 

product ions observed were fully optimised). Although the base sequences are different 

for the analyte and internal standard, as oligonucleotides, they contain the same bases 

and linkages. The product ion at m/z 94.9 is a phosphoric acid fragment, m/z 134.1 

corresponds to a fragment of adenine, m/z 319 to thymidine fragment phosphate and m/z 

344 to guanosine phosphate fragment (Zhang et al 2007).  Multiple charge states were 

observed for analyte and internal standard (figure   30). For each charge state multiple 

peaks were observed, caused by naturally occurring isotope and salt adducts (figure 31).  

The m/z 830.2 – 94.9 transitions provided the best sensitivity for the analyte. However the 

internal standard [M-6H]6-plus a salt/ metal ion adduct also had a precursor ion at  m/z 

830 and given that the same product ions were observed, an additional peak caused by 

the  internal standard was present in the analyte chromatography (due to the amount of 

adducts observed this phenomenon was observed for all charge states). Therefore 

adequate LC separation was essential. All phosphorophioate oligonucleotides would have 

the same Q3 fragment ions because they contain the same base and linkages (but 

different sequence), therefore any method monitoring more than one oligonucleotide 

would likely encounter the problem described above. All transitions monitored during 

method development (listed in table 10) for the internal standard cause an additional peak 

in the analyte trace.   



 

Figure 30 Q1 full scan of a 50 µg/mL infusion solution containing the analyte.  

 

 

Figure 31 Q1 scan showing Isotope pattern and salt or metal ion adducts.  
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3.3.1.2 LC separation  

Various analytical columns of various chemistries and lengths were tested during the 

method development stage. Table 12 lists the various columns tested and their effects on 

separation of the analyte and internal standard. However these did not significantly alter 

the achievable separation between the analyte and internal standard, with Acquity BEH 

C18, 100 x 2.1 mm, 1.7 µm the only column achieving slight separation. 

 

Table 12 Different column effects on separation between analyte and internal 

standard 

 

Column Effect on separation  

Acquity BEH C8, 50 x 2.1 mm, 1.7 µm No separation achieved 

Acquity BEH C18, 50 x 2.1 mm, 1.7 

µm 

No separation achieved 

Acquity BEH C8, 100 x 2.1 mm, 1.7 

µm 

No separation achieved 

Acquity BEH C18, 100 x 2.1 mm, 1.7 

µm 

Slight separation 

achieved.  

 

The main factors which affected separation were flow rate, run time and the concentration 

of TEA and HFIP in the mobile phase. The addition of a positive ion pairing modifier 

trethylammonium (TEA) to mobile phases results in the positive charged TEA forming ion-

pair with the oligonucleotides (Lin et al 2007).  
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The oligonucleotide affectively becomes a neutral analyte and therefore resolution and 

retention is achieved in reversed-phase. The main issue with this approach is poor mass 

spectrometer sensitivity (analytes must be charged for mass spectrometer detection). 

Increasing the pH is favourable for dissociation of the oligonucleotide-TEA (oligo-TEA) ion 

pair, therefore 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) is also added to the mobile 

phase. HFIP lowers the pH of the mobile phase which strengths the oligo-TEA ion pair 

resulting in retention, however HFIP ready evaporates in the mass spectrometer source, 

as a result the pH of the remaining solvent increase sufficiently to dissociate the oligo- 

TEA ion pair (Van Dongen et al 2011).  Increasing the concentration of TEA decreased 

the sensitivity (figure 32) with 0.1 % TEA providing the best separation versus sensitivity. 

Therefore more emphasis was placed on altering the flow rate and elution time to achieve 

the desired separation between the internal standard and analyte. An increase in the 

elution time was achieved by increasing the gradient run time run (section 1.4), however a 

significant increase in the length of the gradient time resulted in poor peak shape for both 

analyte and internal standard (peak broadning was observed).  The optimum gradient time 

versus peak shape was 6.5 min with a flow rate of 0.25 mL/ min, as increasing the flow 

rate further resulted in a decrease in separation.  

 

 

 

 

 

 

 



Figure 32 Graph showing the effects of increasing TEA concentration on 

peak height 

Auto sampler or column carryover during development was assessed by injecting a matrix 

blank (plasma matrix containing no analyte) after the highest calibration standard. The 

observed carryover was originally 30% of the lowest calibration standard. To resolve the 

carryover it was essential to identify the cause of the carryover (column or auto sampler). 

The cause of the carryover was identified by injecting the highest calibration standard, 

then changing the column before injecting a matrix blank. No carryover was observed 

therefore the carryover was a result of analyte sticking to the column.  This issue was 

resolved by adding an additional rapid decrease and then increase in the amount of 

organic solvent (see figure 29) to flush the column. 
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3.3.2 Extraction procedure  

It was decided that first developing a conventional plasma extraction method which could 

then be modified to incorporate CMS would be the simplest approach. The first stage in 

the development of the extraction procedure was a simple solid phase extraction using a 

HLB SPE plate. However, poor sensitivity (Lowest limit of quantification was 5 ng/mL) was 

observed. One reason for this was believed to be the oligonucleotides binding to proteins. 

Therefore a phenol-choroform liquid-liquid extraction (to separate the analyte and internal 

standard from proteins, section 1.40) followed by solid phase extraction was tested. This 

approach increased the achieved sensitively (0.5 ng/mL) and used a plasma volume of 

200 µL.  

Modifying the plasma method to incorporate CMS exploited the fact that the first step in 

the phenol chloroform extraction was the addition of 5% ammonia in water which was also 

determined to be a good washout solution for the capillaries because 5% ammonia in 

water was observed to not precipitate the proteins within the glass tube and 

oligonucleotides are soluble in aqueous solution, this was a suitable first step.  Therefore, 

the only significant modification made to the convention plasma extraction methodology 

was the introduction of a 20 minute mixing step to ensure that the contents of the capillary 

had fully equilibrated into the washout solution. The plasma volume used in the CMS 

methodology was 10 fold lower than the conventional methodology; as a result the 

achieved lower limit of quantification was 5 ng/mL. 

3.3.3 Validation results 

A developed analytical method must be validated prior to use on known samples. The 

following experiments are requirements for a full validation; accuracy and precision,  

selectively , sensitivity, freeze thaw stability, 24 hour room temperature stability, matrix 

effects, dilution process and recovery. 
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For the accuracy and precision experiments six replicates of the LLoQC, LoQC, MeQC 

and HiQC were analysed on three separate occasions. Intra- and inter-assay precision 

and accuracy data are presented in table 5. All QC (LoQC, MeQC, HiQC) have a mean 

accuracy within 15% of their nominal values (nominal value is the concentration of analyte 

added to plasma). The mean precision (RSD) is less than 15% for LLOQ, LoQC, MeQC 

and HiQC.  

The successful dilution of samples must be demonstrated in the validation. For this 

method a tenfold dilution was assessed. Table 5 also shows accuracy and precision data 

for the DiQC (which was diluted tenfold). The mean accuracy of the DiQC is within 4% of 

nominal value and the precision is 3.6%.  



 

Table 13 QC intra- and inter-assay precision and accuracy data 

            
Intra-assay  QC 5ng/mL 

(LLOQ QC) 
 QC 15 ng/mL 

(LoQC) 
  QC 175 

ng/mL 
(MeQC) 

  QC 2000 
ng/mL 
(HiQC) 

  QC 10000 ng/mL 
(DiQC) 

 

  

Batch 1            
*Mean (ng/mL)  5.76  14.0  184   1970  10400  
Accuracy (%)  115.2   93.3   105.1   98.5  104.0  
RSD (%)  11.3   11.1   4.5   2.7  3.6  
n  6  6  6  6  6  
Batch 2            
*Mean (ng/mL)  5.86  14.7  199  1900    
Accuracy (%)  117.2  98.0  113.7  95.0    
RSD (%)  4.7  6.2  4.4  6.5    
n  6  6  6  6    
Batch 3            
*Mean (ng/mL)  5.26   14.0   192   1980      
Accuracy (%)  105.2   93.3   109.7   99.0      
RSD (%)  6.7   5.6   2.8   1.5      
n  6  6  6  6    
Inter-assay            
Mean (ng/mL)  5.62   14.3   192   1950      
Accuracy (%)  112.4   95.3   109.7   97.5      
RSD (%)  9.0   7.9   5.0   4.3      
n  18  18  18  18    
 
 
DiQC: Diluted QC; QC: Quality control; LLOQ: Lower limit of quantification QC; LoQC: LowQC; MeQC: Medium QC; HiQC: High QC; 
RSD: Relative standard deviation;. 
*Mean of the calculated concentration  
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3.3.3.1 Response  

The analyte response (peak height) at the LLOQ was greater than five times the blank 

matrix response. A representative chromatogram is presented in figure 33 demonstrating 

an excellent signal to noise ratio at the LLOQ.A lack of significant interference at the 

retention time of the analyte from a blank human CMS sample is shown in figure 34. The 

internal standard response is shown in figure 35. 



 

Figure 33. Representative UHPLC-MS/MS selective reaction monitoring 

chromatogram of a human CMS sample spiked with analyte at the LLOQ (5 ng/mL) 
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Figure 34. Representative UHPLC-MS/MS selective reaction monitoring 

chromatogram of a blank human CMS sample  

. 
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Figure 35. Representative UHPLC-MS/MS selective reaction monitoring 

chromatogram of a human CMS sample spiked with internal standard at 500 ng/mL. 
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3.3.3.2 Carryover  

Auto-sampler carryover was assessed by injecting a matrix blank (plasma matrix 

containing no analyte) after the highest calibration standard. No significant peak was 

observed in this or any other matrix blank (an insignificant peak is less than 20% of the 

lowest calibration standard response).  

3.3.3.3 Matrix effects  

Matrix effects are variation in the amount of analyte detected in the presence of plasma 

produced from different donors. The different components found in plasma can interfere 

with ionisation in the mass spectrometer source resulting in analyte suppression or 

enhancement. Therefore the FDA requires that matrix effects are assessed. Matrix effects 

were assessed by extracting six different individual lots of matrix and three water samples. 

Once fully extracted a pure standard solution (at the same concentration as an extracted 

LoQC level and internal standard, assuming 100% recovery) was added to all samples. 

These samples were then injected on a LC-MS/MS system.   

A ratio of analyte response detected in the presence of matrix to the analyte response in 

the absence of matrix provides a matrix factor.  A matrix factor of 1 indicates that no 

matrix effects are effecting the analyte response. Matrix factor less than 1 suggests 

suppression (matrix components competing for ionisation within the mass spectrometer 

source). A matrix factor greater than 1 suggest enhancement (ionisation efficiency 

increased due to matrix components). A normalised matrix factor for analyte takes into 

account any matrix effects observed for the internal standard.  

The matrix effects data for the analyte are presented in table 15 and internal standard 

data in table 16. The matrix factors for both the analyte and internal standard range from 

0.91 to 1.04 (normalised matrix factor for the analyte range from 0.88 to 1.03). These 

results suggest little or no matrix effect were observed for both oligonucleotides. 



  ‐ 95 ‐ 

Another experiment to assess matrix effects is to spike six different lots of plasma with 

analyte at the LoQC level. Variations in response between LoQC could be a result of 

matrix effects. Table 14 shows the data obtained from six different lots of matrix spiked 

with analyte at the LoQC. All six individual lots of matrix at the LoQC level are within 15% 

of nominal concentration.   

 

 

 



 

 

Table 14LoQC sample in six different lots of matrix data 

LoQC level (ng/mL) Matrix sample number Observed concentration 
(ng/mL) 

Accuracy (%) 

    
15 Individual 1 14.7 97.9 

 Individual 2 15.0 99.8 

 Individual 3 14.2 94.8 

 Individual 4 14.4 96.0 

 Individual 5 12.9 85.9 

 Individual 6 14.5 96.6 
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Table 15 Quantification of matrix effects for analyte 

 

LoQC level (ng/mL) Peak area of water 
blank spiked post 

extraction 

Mean peak area of 
pure standard 

(RSD%) 

Matrix sample number Peak area of 
individual matrix 

sample spiked post 
extraction 

Matrix Factor Matrix Factor 
Normalised* 

Mean Matrix 
Factor Normalised 

(RSD%) 

        
15 10280.5 10992.7 Individual 1 10742.7 0.98 1.02 0.98 

 11519.2 (5.8) Individual 2 11014.0 1.00 1.03 (5.1) 

 11178.3  Individual 3 10517.0 0.96 0.98  

   Individual 4 11261.5 1.02 0.99  

   Individual 5 10038.5 0.91 0.88  

   Individual 6 10566.0 0.96 1.00  

        
                

* Calculated using the Internal Standard Matrix Factor from table 16      
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Table16 Quantification of matrix effects for internal standard 

 

Quality control level 
(ng/mL) 

IS peak area of 
pure standard 

Mean peak area of 
pure standard  

(RSD%) 

Matrix sample number IS Peak area of 
sample spiked post 

extraction 

Matrix Factor Mean Matrix 
Factor (RSD%) 

       
15 53498.6 51822.0 Individual 1 49861.9 0.96 0.99 

 51417.2 (2.9) Individual 2 50067.4 0.97 (4.0) 

 50550.1  Individual 3 50536.8 0.98  

   Individual 4 53365.3 1.03  

   Individual 5 53660.1 1.04  

   Individual 6 49702.5 0.96  
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3.3.3.4 Selectivity 

An insignificant peak is anything below 20 % of the lowest limit of quantification (the 

lowest calibration standard) or below 5% of the mean internal standard response. There 

were no significant interfering peaks detected in reagent, matrix blanks and ULOQ 

calibration standard (without internal standard) in the retention window of analyte and 

internal standard respectively. All six different lots of matrix showed no interference at the 

retention time of either the analyte or internal standard (figure 6-8).  

3.3.3.5 Short-term stability in matrix  

Room temperature stability was assessed by storing MeQC samples on an open bench at 

room temperature for 24 hours. These were then analysed (six replicates) using a freshly 

prepared series of calibration standards and QC samples that had been stored at -20 °C. 

The accuracy and precision of the results of the 24 hour room temperature samples are 

presented in table 17. The accuracy and precision of these measurements conform to 

internationally recognised acceptance criteria (accuracy of +/- 15% and precision (RSD) 

less than 15%). However, the accuracy of the data for the 24 hour stability samples was 

noticeably higher than those stored at -20 °C.   

Freeze-thaw stability (three cycles) data are presented in table 18. These samples failed 

acceptance criteria (acceptance criteria was +/- 15 of the actual concentration of the 

analyte added to plasma (Section 1.6), with the average accuracy of 116%. Further 

investigation is required to fully understand why the freeze-thaw samples showed an 

increase in analyte response. Possible reasons for the observed results could be a 

chemical change in the matrix caused by repeated freezing and thawing or breaking of the 

analyte-protein bonds.  
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Table 17 Room temperature 24 hour stability at medium quality control 

concentration level. 

    QC 175 ng/mL     

Replicate  (MeQC)   

    Observed concentration 
(ng/mL) 

    

     
1  211   

2  195   

3  190   

4  198   

5  198   

6  189   

     
Mean 
(ng/mL) 

  197     

Standard deviation (n-1) 7.94     

RSD (%)   4.0     

Accuracy (%)   112.6     

 

Table 18 Three freeze-thaw cycle stability data at medium quality control 

concentration level. 

    QC 175 ng/mL     

Replicate  (MeQC)   
    bserved concentration (ng/mL)     

    
1  209   
2  200   
3  211   
4  176   
5  210   
6  209   

    
Mean (ng/mL) 203     

Standard deviation (n-1) 13.6     

RSD (%)   6.7     

Accuracy (%) 116.0     
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3.3.3.6 Recovery  

The recovery of the analytical method for the analyte was assessed by comparing the 

detector response of an extracted MeQC against post spiked (analyte added to an 

extracted matrix blank sample) matrix blank samples at a concentration to simulate MeQC 

with 100% recovery.  The recovery of the assay was 83 %, indicating that the complex 

extraction procedure used was working well. 
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3.4 Conclusions 

A bioanalytical method for the quantification of a phosphorothioted oligonucleotide in 

human plasma capillary micro-sample using LC-MS/MS has been successfully developed 

and validated. The compatibility of CMS in oligonucleotide analysis has been successfully 

demonstrated. The accuracy and precision, dilution process, room temperature stability, 

selectivity and matrix effects are within international recognised acceptance criteria and 

therefore the developed method is a robust analytical method.  

The main difficulty faced during the method development stage was creating a sensitive, 

selective and reproducible extraction and quantification method. It was relatively simple to 

modify the developed plasma method for CMS analysis. Therefore using CMS for 

oligonucleotide analysis does not dramatically increase the amount of method 

development time required. One main drawback is that the extraction time for capillary 

samples is increased by 20 minutes due to the equilibration of the washout solution and 

the CMS (a shorter mixing time was not tested). Another issue with using CMS is that 

currently it is difficult to physically handle small glass tubes. The amount of interest 

surrounding CMS means it may only be a matter of time before new handling equipment 

is developed (equipment such as capillary holders, 96-well plates large enough to place 

CMS samples into and automation robots). 
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4.0 Conclusion 

The overall aim of this research was to increase the use and popularity of micro-sampling. 

The first stage of this research focused on developing techniques which limit the 

requirements for re-analysis of samples, which fall outside the calibration range for any 

given method. The two techniques developed and partially validated (MSSD and ISRM) 

have the potential to drastically reduce the amount of re-analysis required for all matrices. 

The limit sample volume provided by micro-sampling means that reanalysis is not always 

possible. However, MSSD and ISRM would alleviate these issues. Also, the reduction in 

repeat analysis would result in a saving in cost and time.  

Concerns surrounding DBS analysis were brought to light midway through the research 

(discussed in section 1.1). As a result, the use and popularity of DBS has decreased. 

Industry attention has switched in the direction of CMS because the same reduction of 

animals used for research can be achieved.  

Therefore, my research also switched to CMS. The aim of the second part of my research 

was to develop a bioanalytical method for the quantification of a phosphorothioted 

oligonucleotide in human plasma capillary micro-samples using LC-MS/MS and in doing 

so demonstrate the compatibility of CMS with a challenging class of compounds. A 

sensitive, robust and precise method was successfully developed to quantify 18 mer 

oligonucleotide using CMS. This research was presented at the European Bioanalysis 

Forum (November 2013, in Barcelona), attended by 500 influential individuals in 

bioanalysis. CMS featured heavily in the discussion and presentation signalling the 

industries intention to implement CMS in the majority of pre-clinical studies. The 

oligonucleotide method developed in this research has been modified and successfully 

used on actual pre-clinical and clinical discovery studies (analysing a total of 30 study 

samples).  
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Further work 

Covance laboratories have recently set up a global team to research and implement CMS.  

As a member of this team I can build on the research conducted in this thesis. The next 

step is to dose actual animals and collect CMS, to compare the data generated with that 

of conventional sampling methods (currently this has been scheduled for June and I will 

be the responsible scientist for the bioanalysis). I will also be visiting GlaxoSmithKline 

(Ware, UK) for a two week secondment to build on my experience in analysing micro- 

samples. This will enable me to share this research and develop it further.  
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