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Abstract 

The failure circumstances of complex aviation systems involving technologies such 
as software are dominated by systematic faults. However systematic faults are often 
poorly resolved by the coupling of software assurance with traditional system safety 

methodologies.    

This paper examines the treatment of systematic faults and failures in a number of 
actual aviation systems, including civil and military Automatic Flight Control Systems 
(AFCS) and Flight Management Systems (FMS). The results of this examination are 
contrasted with the fail safe design criteria underpinning the 14CFR 25.1309 
airworthiness requirements for civil aircraft certification, and commonalities in 
architectural and fault tolerance treatments of systematic faults and failures are 
identified. 

Using the identified commonalities, and examining how architecture and fault 
tolerance contribute to bounding the uncertainty of the effects of systematic failures 
on a system, a framework is proposed for quantifying the assurance of safety 
architecture in aviation systems. The assurance framework provides a direct measure 
of the degree of the system’s fault tolerance against systematic faults and failures, 
and thus infers the system’s suitability for use in the presence of aircraft level failure 
conditions of differing severities. 

Keywords:  Architecture, Assurance, Aviation Systems, Fault Tolerance, Safety, 
Software Assurance, Software Safety, Safety Critical. 

1 Introduction 

In complex aviation systems involving technologies (e.g. software) whose faults are 
dominated by a class of faults referred to as systematic faults, there are substantial 
challenges at providing assurance that these faults do not lead to unacceptable 
aircraft failure conditions. 

Most safety and assurance standards for software systems in the aviation domain 
deal with systematic faults through the identification and allocation of software safety 
requirements and through the specification of software integrity levels or design 
assurance levels. However there are numerous limitations (refer to [JTM07], 
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[McD07], [McK06], [NTS06], [Wea03]) with the mechanisation of the current 
assurance frameworks that limit their effectiveness at providing robust assurance that 
systematic faults do not lead to unacceptable aircraft failure conditions. This is 
primarily because of limitations in the treatment of requirements validity of the system 
and software, as well as in the direct provision of evidence that the behaviours of the 
system and software are acceptable with respect to safety. The current standards are 
also limited in the ability to determine the impact on the aviation system of shortfalls 
against the criteria of the standards. 

This paper examines these challenges for aviation systems and proposes an 
alternative framework for the assurance of systematic faults in aviation systems. The 
framework that is proposed is intended to be compatible with the existing standards’ 
approaches, even if the standard were not to explicitly adopt the architectural 
assurance framework proposed in this paper. 

2 Background 

In order to understand the sources of limitations in the effectiveness of the current 
assurance frameworks for systematic faults in aviation systems, it is necessary to 
understand what systematic faults are, and why their treatment is inherently different 
to that of other sources of failure. The following sub-sections provide insight into 
systematic faults and failures, and then examine in detail the sources of limitations in 
current standards frameworks in this context. 

2.1 Systematic Faults and Failures 

Unlike random failures, which are caused by items and components wearing out, 
systematic failures are produced by requirements, design and implementation faults 
introduced by errors or omissions made by developers and manufacturers (i.e. 
humans, tools, systems or processes) during system development or manufacture, or 
by human error or omission during operation or maintenance. Once such a 
systematic fault is resident within a system, then it will always be activated when the 
particular set of circumstances and system state transpire. Unfortunately it is also 
difficult to predict the occurrence of systematic failures caused by such faults, 
because: 

• complex systems have complex interactions with their operating environment 

• complex systems have significant numbers of internal states both explicit and 
implicit; 

• there is uncertainty as to the number of unknown design faults, and there may be 
limitations in the understanding of the operational environment or context; and 

• as it is generally not possible to predict when a particular set of circumstances 
will occur, in association with the vulnerable transition criteria between system 
states (both temporal and spatial) in existence due to the latent design fault, then 
it is generally not possible to produce statistical information from which to 
determine failure distributions, reliability and probability. 

Thus the typical means of determining likelihood, based on probability of failure for 
random failure, does not translate to systematic failures, and a different approach is 
required. [McD07] distinguishes this as epistemic uncertainty (i.e. imperfect 
knowledge of the system or the stochastic model), rather than aleatoric uncertainty 
(i.e. 'randomness' which can be characterised by a stochastic model). In simple 



 

terms, shortfalls in knowledge of the distribution of systematic failures makes 
predicting a probability of systematic failure worthless. 

Unlike traditional hardware, all failures associated with technologies like software (i.e. 
from faults in requirements, design, or implementation) are systematic (e.g. if the 
fault is present, it is just waiting for the right set of circumstances to activate the 
fault). No element of the software is 'wearing out' in the traditional sense. [McD01] 
identifies that software failures arise most often from: 

• discrepancies between documented requirements specifications and the 
behaviours needed for correct and safe functioning of the system; and 

• misunderstandings by software developers about the software's interface with the 
rest of the system. 

Software-related incidents and accidents have still occurred when the software 
satisfied its specification and when the operational reliability of the software was 
perceived to be very high [McD01]. This is due to: 

• requirements that specify behaviour that is not appropriate from a system 
perspective; 

• requirements that do not specify some particular safety behaviour and therefore 
the developers have made invalid assumptions about those particular 
behaviours; or 

• software that has unintended (and unsafe) behaviour beyond that which is 
specified in requirements. 

Because of these causes, software faults are often observed as being intermittent, 
affected by changing conditions, recurrent under the right conditions, partial (i.e. not 
all software faults activate detectable and identifiable errors, or propagate to 
immediate failures), and all these factors create challenges in assuring that such 
faults and failures can not occur. 

For these reasons, it is not possible to statistically predict the probability of 
systematic failures, and thus for technologies such as software it would seem that we 
are left without a means to quantify the associated risks using traditional risk 
assessment methodologies (i.e. risk being a function of consequence and likelihood).  

2.2 Current Standards Approach 

Instead of providing a structured assessment of the likelihood of systematic failure for 
software (which has been established in Section 2.1 to be difficult), current standards 
employ the concept of assurance. Assurance standards provide confidence in the 
behaviours of the software by examining key product and process attributes and 
evidence across the development and verification life-cycle. The proposition is that 
the more rigorous the exposition of these attributes, and the greater the body of 
evidence supporting these attributes, the more likely it is that software faults are not 
introduced into the software or system, or they are detected and corrected 
throughout the development and verification process. Hence, the assurance 
approach implicitly shapes the distribution of systematic failures such that while the 
distribution is still not known, the likelihood of systematic failure realising a safety 
related failure effect in the system is low within the constraints of the intended (and 
understood) operating context. 



   

However the shortfall with the traditional assurance approach is that the evidence still 
only supports an implicit argument about the likelihood of a systematic failure 
realising a safety related failure effect, and they don’t directly provide any information 
about the behaviour of the software when a systematic fault is activated. The 
following sections examine the specifics of this problem in further detail. 

2.2.1 Existing Software Assurance Frameworks Don’t Address Architecture 

The safety process as described by [ARP4754] is shown in Figure 1. The key steps 
in the process associated with the formation of the system and software architecture 
are: 

• the development of system architecture using architectural requirements 
determined from Preliminary System Safety Assessments (PSSA); and 

• the allocation of item requirements to software based on the system architecture 
and PSSAs. 

 

Figure 1: Safety Assessment Process Model [ARP4754] 

Clearly the PSSAs are a key contributor to the formation of the system architecture 
under [ARP4754]. PSSAs are usually an inter-related set of System, Sub-system and 
Component level Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis 
(FMEA). They are structured around demonstrating the predicted likelihood of system 
level failure conditions identified in the preceding analysis. However, because of the 
probability/likelihood focus of these combined analyses, they are often only capable 
of providing a binary perspective (handled / not handled) on treatments such as fault 
tolerance and architecture on systematic failures.  

Fault tolerance is the ability for a system to detect an error, fault or failure condition 
(as defined by [ALR04]) and then undertake a level of reconfiguration/handling to 
prevent the fault or localised failure propagating to a failure at the sub-system 
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boundary, or a system hazard at the system level. Architecture in this context is used 
to provide these layered detection and handing mechanisms and thus achieve fault 
tolerance. 

Once a treatment is allocated to an item (such as a software component), and the 
assurance level assigned, there are limitations to further consideration of the 
architecture and systematic failures within the objectives of standards such as 
RTCA/DO-178B [Rei08]. For example, RTCA/DO-178B, requires development of 
high level requirements and low level requirements, including derived requirements. 
RTCA/DO-178B also requires that the software architecture is developed, and there 
are also links to architectural assessment.  However, the requirements are not from 
the perspective of the architecture’s contribution to preventing systematic failures. 
There is substantial scope for improvements to be made as to how architecture is 
addressed, particularly from a product behavioural validity perspective. Furthermore, 
redundancy, design diversity, and layered detection and handling mechanisms 
(software, software implemented, hardware implemented, line replaceable unit (LRU) 
and system) within these architectures clearly introduce behaviours in a system that 
are far from merely binary, and require different approaches to assure.  

One notable exception in RTCA/DO-178B with respect to architecture is partitioning 
integrity. However, partitioning integrity is predominately about preventing the effects 
of one software component affecting the function of another software component. It is 
not about providing an appropriate architectural fault tolerant treatment in the 
occurrence of a systematic software failure’s effects propagating within a system’s 
control and data flows. 

Therefore, existing assurance frameworks don’t comprehensively address 
architecture with respect to the behaviour of the system under the occurrences of 
systematic failures. The explicitness of the treatment of systematic faults gets lost in 
the interface between the safety analysis (which is likelihood focussed) and 
traditional assurance methodologies which have limitations in their consideration of 
architecture in this context.  

These limitations have been previously identified by [Pum99] and [Wea03] who 
proposed approaches centred around the explicit provision of evidence with respect 
to an arguably complete taxonomy of software failure conditions, and their associated 
treatments (absence or detection/handling, many of which require architectural 
implementation). However, neither [Pum99] or [Wea03] set out explicitly how their 
approaches might be integrated with the existing assurance standards. 

This paper proposes that assurance frameworks should explicitly integrate 
requirements for architectural treatments to systematic faults along with their more 
traditional objectives. 

2.2.2 Existing Assurance Frameworks Don’t Provide Quantification of the 
Degree of Fault Tolerance within a System and its Software 

Section 2.2.1 established that the existing approaches didn’t provide explicit visibility 
of treatment of systematic faults. Using this context, the extent to which quantification 
of the degree of fault tolerance within a system and its software can be explored. 



   

For example, if a certification authority or aircraft operator was to be given the 
information that their digital flight control system: 

• had several relevant catastrophic failure conditions,  

• was triply redundant to guard against failures (and inevitably support a robust 
likelihood argument with respect to random failures), and  

• each software component was assured to level A (as RTCA/DO-178B requires); 

then how much of this information helps either the certification authority or aircraft 
operator to understand the fault tolerance behaviour of the system under the 
occurrence of faults? Actually, very little!  

While the example is slightly contrived, as the:  

• claimed role of the redundancy would usually be evident to the certification 
authority in the safety analysis, and  

• the flight manual would give some indication of the failure behaviours of the 
system as it reconfigures itself under fault conditions to the operator; 

the certification authority and operator are still missing several quite importance 
pieces of information. The operator and certification authority don’t know: 

• how many systematic faults (known and unknown) the system is tolerant 
against?, 

• which classes of systematic faults the system is tolerant against (under what 
conditions)?, and 

• to what extent any redundancy or other highly publicised fault tolerance 
mechanisms might be violated by the occurrence of systematic faults? 

The certification authority and aircraft operator also have limited knowledge (i.e. 
uncertainty) as to the precise behaviour of the system under these fault conditions, 
which would be necessary in providing the timely operator response to the source of 
the fault. 

This paper asks the question: shouldn’t an assurance framework for aviation systems 
inherently quantify the answers to these questions? Furthermore, the treatments to 
such faults should be quantifiable with respect to the extent of detection and handling 
mechanisms in their failure paths. If a system is truly tolerant against systematic 
faults, then it should be possible to provide a measure of just how many and what 
types of faults it is tolerant against. These factors are then obviously a key 
determiner in the system’s suitability of differing consequences and severities in 
aircraft level failure conditions. 

3 Examination of Actual Aviation Systems 

So far this paper has identified a number of shortfalls with the existing standards 
frameworks with respect to systematic faults and failures. However, irrespective of 
the standard’s framework, it is worth examining the degree of fault tolerance against 
systematic faults actually achieved in a host of representative aviation systems. This 
will permit any commonalities (positive and negative) in the treatment of systematic 
faults to be determined. 



 

Two different types of critical aircraft systems (Automatic Flight Control Systems 
(AFCS) and Flight Management Systems (FMS)) have been considered across a 
range of civil and military aircraft including the B777, A330, C-17, C-130J and  
F/A-18A/B. Information on the architecture and design features employed from these 
systems has mostly been obtained from information in the public domain on these 
systems. Where this has been insufficient, then additional behaviours and treatments 
have been inferred using flight manuals, pilot briefing notes and maintenance 
publications. The main sources of information are identified in the references of this 
paper. 

3.1 Flight Control Systems 

Annex A Table 6 provides an overview of the flight control systems of several civil 
and military aircraft with the purpose of identifying those design features that might 
provide detection and handling of systematic fails and failures within the system. 
Specifically the Boeing 777, A330 / KC-30A, C-17 and F/A-18A/B are considered.  

3.2 Flight Management, Navigation 

Annex A Table 7 provides an overview of the flight management / navigation systems 
of several civil and military aircraft with the purpose of identifying those design 
features that might provide detection and handling of systematic fails and failures 
within the system. Specifically the Boeing 777, A330 / KC-30A, C-130J and F/A-
18A/B are considered. 

3.3 Aviation System Analysis 

Eliciting the fault tolerance design features from Annexes A and B, and classifying 
and consolidating the features according to [HiM01] and [Ham01], Table 1 
summarises the generic classes of fault tolerance mechanisms employed by the 
examined systems. Section 5 examines these features in further detail, however to 
provide context to this examination, it is necessary to firstly introduce the fail safe 
design criteria and consider it for systematic faults. 

4 Fail Safe Design Criteria Applied to Systematic Faults 

The most likely source of many of the fault tolerance design features present in 
actual aviation systems with respect to treating systematic faults and failures, comes 
not from the system safety or software assurance standard framework, but instead 
from the application of the fail safe design criteria. This section examines the fail safe 
design criteria, and its effect on architecture and systematic faults. 

4.1 14 CFR 25.1309  /   AC25.1309 Fail Safe Design Criteria 

[AC25.1309] defines the fail safe design concept as follows: 

“In any system or subsystem, the failure of any single element, component, or 
connection during any one flight (brake release through ground deceleration to stop) 
should be assumed, regardless of its probability. Such single failures should not 
prevent continued safe flight and landing, or significantly reduce the capability of the 
airplane or the ability of the crew to cope with the resulting failure condition.” 

“Subsequent failures during the same flight, whether detected or latent, and 
combinations thereof, should also be assumed, unless their joint probability with the 
first failure is shown to be extremely improbable.” 



   

The fail safe design concept implies the application of fault tolerant design 
approaches including: 

• Redundancy or Backup Systems, Monitors 

• Isolation of Systems, Components, and Elements 

• Designed Failure Effect Limits 

• Designed Failure Path 

• Fault and Error Tolerance 

4.2 Design criteria impact on fault tolerant architecture 

Fault tolerance and architecture inherently underpin the application of the fail safe 
design concept and the aforementioned design approaches. Fault tolerance exists in 
several different guises depending on the level of system abstraction the system is 
being examined from. Broadly, though, fault tolerance mechanisms can be classified 
as one of the following: 

• system level fault tolerance – mechanisms usually provided at a system or line 
replaceable unit (LRU) level to provide tolerance to sub-system faults (noting that 
the sub-system fault may be caused by a factor external to the system); 

• hardware implemented fault tolerance – implementation of system level fault 
tolerance mechanisms by hardware; 

• software implemented fault tolerance – implementation of system fault tolerance 
mechanisms by software; and 

• software fault tolerance – mechanisms provided at software level for containing 
or mediating software errors, faults and failures. 

Table 1 summarises commonly used fault tolerance mechanisms in fault tolerant 
systems as sourced from the examination of actual aviation systems, as well as 
[HiM01] and [Ham01]. 

5 Observations from Examination of Aviation Systems and Fail Safe Design 
Criteria 

This section applies the fail safe design criteria discussed in Section 4 to the actual 
aviation systems examined in Section 3 for the purposes of eliciting the 
commonalities in handling of systematic failures by the actual aviation systems. 
Bringing this into the context of systematic faults such as those identified using 
[Pum99]’s taxonomy and treated using those approaches articulated in [Wea03] (by 
absence or detection/handling), it is evident that the fail safe design criteria heavily 
influences the treatment strategies for systematic faults. 

The following sub-sections examine this in specific detail. 



 

 

System Level Fault 
Tolerance 

Hardware 
Implemented Fault 
Tolerance 

Software Implemented 
Fault Tolerance 

Software Fault 
Tolerance 

• Simplex, no fault 
tolerance 

• Simplex, with 
disengagement 
features 

• Dual standby 

• Self checking pair 
(single or dual) 

• Self checking pair 
with simplex fault 
down 

• Triple modular 
redundancy 

o fault down to 
self checking 
pair or fault 
down to 
simplex 

• Redundancy 

• Dissimilar Hardware 

• Distinct Hardware 

• Command / 
Monitors 

• Voter Comparators 

o Average 

o Middle Value 
Selection 

o 2/3 Majority Vote 

• Watchdog Timers 

 

• Error Detection – 
recognition of the 
incidence of a fault 

o Replication 
Checks 

o Timing Checks 

o Reversal Check 
(Analytical 
Redundancy) 

o Coding Checks 

o Reasonableness 
Checks 

o Structural Checks 

o Diagnostic Checks 

• Damage Confinement 
/ Fault Containment – 
restriction of the 
scope of effects of a 
fault 

• Damage Assessment 
– diagnosis of the 
locus of a fault 

• Error Recovery – 
restoration of a 
restartable service 

• Service Continuation 
– sustained delivery of 
system services 

• Fault Treatment – 
repair of a fault 

• Distributed Fault 
Tolerance 

• Multi-version 
software 

o N-version 
program 

o Cranfield 
Algorithm for 
Fault Tolerance 
(CRAFT) 

o Distinct and 
Dissimilar 
software 

• Recovery Blocks 

o Deadline 
mechanism 

o Dissimilar 
Backup 
Software 

• Exception 
Handlers 

o Hardened 
Kernels 

o Robust Data 
Structures and 
Audit Routines 

o Run Time 
Assertion 

• Hybrid Multi-
version Software 
and Recovery 
Block Techniques 

o Tandem 

o Consensus 
Recovery Block 

Table 1: Summary of Fault Tolerance Mechanisms

5.1 No Single Failure Criterion 

[AC25.1309] effectively states that no single failure of a software or hardware 
component should lead to Major, Hazardous or Catastrophic failure condition. So the 
25.1309 airworthiness requirement requires that consideration is given all single 
failures to show that they cannot directly result in the Major, Hazardous or 
Catastrophic failure conditions. 

Therefore it must be assumed that when dealing with the presence of systematic 
faults, any given absence argument might be invalidated (due to unknown faults, 
irrespective of how well assured it might be), or that any given detection and handling 
argument might also be invalidated (due to unknown faults in the detection and 
handing mechanism, irrespective of how well assured it might be).  



   

5.1.1 Invalidating Absence Arguments 

If an absence argument is invalidated then only a detection and handling argument 
can address the invalidation. This is because once the absence argument is 
invalidated the failure is now assumed to have occurred in the software and it is no 
longer absent. While appropriate system architecture might mask that fault at higher 
levels of abstraction thus making it (or its effects) absent, the system will inevitably 
employ detection and handling to achieving this masking. 

This subsequent detection and handling argument might be made later in the 
software (provided invalidating the absence argument doesn’t also lead to 
invalidation of its detection and handling in software), at a LRU level (hardware or 
software implemented) or system architecture level. 

5.1.2 Invalidating Detection and Handling Arguments 

If a detection and handling argument is invalidated then only a detection and 
handling argument later in the software (provided invalidating the original detection 
and handling argument doesn’t also lead to invalidation of its detection and handling 
in software), or at an LRU level (hardware or software implemented) or system 
architecture level can address the invalidation.  Note it only takes either the detection 
OR the handling argument to at least be invalidated to invalidate the whole detection 
and handling argument. Detection may be at a different level of abstraction to the 
handling – although most often handling is at the same or higher level than the 
detection feature. 

5.1.3 Impact on Argument of No Single Failure Criterion 

The no single failure criterion therefore places serious constraints on the structure of 
the argument for Major, Hazardous and Catastrophic failure conditions. Table 2 
identifies the effect of these constraints on the number of arguments typically 
necessary for any given failure modes – and at what level within the system the 
argument typically addresses the failure mode, as determined from the aviation 
systems considered in Section 3. 

Note that the previous paragraphs have focussed on the Major, Hazardous and 
Catastrophic failure conditions. Implicitly the no single failure criterion also infers that 
a single failure can acceptably lead to a Minor or No Safety Effect failure condition. 
Thus it is also possible to represent these failure conditions in Table 2. 

The software columns in Table 2 both refer to the same configuration item. This is 
because it is possible to make an initial absence or detection/handling claim within 
the software and then provide the detection and handling capability at a later point in 
the functional flow, or architecturally within the software. The second software 
column should not be interpreted as a separate configuration item, perhaps resident 
in a monitor for example. This is considered at the LRU level. 



 

 

Severity Software%  Software  LRU Level  System 
Level 

Detection 
AND 

Handling* 

OR Detection AND 
Handling 

OR Detection AND 
Handling 

Detection* AND Handling OR Handling 

Absence 
(Primary, 
Secondary, 
and Control) 

AND 

- - Detection AND Handling 

Detection 
AND 

Handling# 

OR Detection AND 
Handling 

OR Detection AND 
Handling 

Detection# AND Handling OR Handling 

Catastrophic
, Hazardous 
/ Major 

Detection AND 
Handling 

AND 

- - Detection AND Handling 

- - Detection AND 
Handling 

OR Detection AND 
Handling 

Absence 
(Primary, 
Secondary, 
and Control) 

OR 

- - Detection AND Handling 

- - Detection AND 
Handling 

OR Detection AND 
Handling 

Minor, No 
Safety Effect 

Detection AND 
Handling 

OR 

- - Detection AND Handling 

% - initiating fault invalidates this argument under no single failure criterion 
* - provided invalidating the absence argument doesn’t also lead to invalidation of its detection and 
handling in software 
# - provided invalidating the original detection and handling argument doesn’t also lead in 
invalidation of its detection and handling in software 
Logical conventions: Logical operators and conditions within the same cell assume parenthesis 
Italics – evaluate the logical operator prior to normal type face and bold operators – assume 
parenthesis encapsulates the cells either side of the operator 
Bold – evaluate the logical operator last 

Table 2: No single failure criterion as inferred from actual aviation systems

To illustrate the intent of Table 2, a simple example will be considered. Consider a 
system with a catastrophic failure condition. Table 2 infers that there are two 
approaches the system designer could use to address the no single point of failure 
criterion. The first is to assure both the absence (Table 2 row 2, column B1) or 
direct/immediate detection and handling (Table 2 row 3, column B) of the initiating 
fault and provide a supplemental detection and handling mechanism at a higher 
software level (column D), LRU level (column F) or system level (column H). Thus 
resulting in at least two failures being required to realise the catastrophic failure 
condition.  

However, this is only the first criterion we need to examine, the next section 
considers further constraints on these identified effects, and will likely further 
constrain Table 2. 

5.2 Combinations of Failure Criterion 

[AC25.1309] also effectively states that no additional combinations of failures of 
software and/or hardware components should lead to Major, Hazardous or 
Catastrophic failure unless their joint probability is Extremely Improbable. 

As Extremely Improbable can never be defensibly argued for any single component, 
Extremely Improbable is  traditionally argued by the following combinations of failure 

                                            

1 Row identifiers are positive integer values starting at Row 1 for the Heading row of Table 2. Column 
identifiers are alphabetic values starting at Column A for the Severity Column. 



   

likelihoods -  Extremely Remote AND Remote, Extremely Remote AND Probable, 
Remote AND Remote, Probable AND Probable AND Probable (using 14CFR25.1309 
terminology). All these statements are based on the presumption of independence 
between elements of the design. It is this criterion that typically leads to at least triple 
redundancy in hardware systems with catastrophic failure conditions and dual 
redundancy in most hardware systems with hazardous or major failure conditions (as 
is apparent in the aviation systems examined in Section 3). 

However for software, probability and likelihoods have traditionally had little relevant 
meaning, because software failures are systematic (refer to Section 2.1). Therefore 
we need to resolve an equivalent interpretation for the first sentence of this section 
that doesn’t infer probabilities.  

One way is to speculate that the joint likelihood of no two combinations of software 
initiated failures is ever commensurate with extremely improbable. The hypothesis, 
based on examination of actual systems, is that the burden of demonstrating this 
level of knowledge of the system or the stochastic model would generally be 
unattainable. Section 6 provides further discussion on knowledge and uncertainty. 
Therefore, no two software initiated failures should lead to a catastrophic failure 
condition. This implies that there is at least sufficiently independent detection and 
handling of the initiating software failure mode within the software itself, and at the 
LRU level or system architecture level for catastrophic failure conditions. For major 
and hazardous failure conditions, two software initiated failures may be tolerable 
(because the consequences require another event to be contributory to a 
catastrophic failure condition); provided they are sufficiently independent of each 
other. The independence is most practically achieved by detecting and handling the 
faults at a level outside the software. Overall, the hypothesis is reasonable, and 
broadly comparative to the outcome for probabilistic hardware failure assessments. It 
is also supported by the examination of the aviation systems discussed in Section 3. 

For combinations of three software failure modes, these may be considered 
extremely improbable, provided there is detection and handling of software failure 
modes outside of the software in question (i.e. at either the LRU level or system 
architecture level). With each layer of detection and handling mechanisms, the 
burden of demonstrating this level of knowledge of the system or the stochastic 
model is more reasonably attainable. Again the result is broadly comparative to the 
outcome for hardware failures, and is supported by the examination of the aviation 
systems discussed in Section 3.  

Section 6 examines the effects of layered detection and handling mechanisms on 
uncertainty in the stochastic model in further detail. 

5.2.1 Invalidating the Absence Argument and the Detection/Handling 
Argument – Catastrophic Only 

In this case we are not only going to invalidate the absence argument, but also the 
detection/handling argument that provides the treatment to the invalidation of the 
absence argument. This leads to it being necessary to detect and handle the failure 
mode outside of the software – either by the LRU (e.g. through a monitor) and/or by 
the system architecture level (e.g. through combinations of redundancy, analogue 
backup, diverse system components, etc), or both the LRU and system architecture 
levels. These results are supported by the examination of the aviation systems in 
Section 3. 



 

5.2.2 Impact on Argument of Combinations of Failure Criterion 

The combinations of failures criterion therefore place some further constraints on the 
structure of our argument for Major, Hazardous and Catastrophic failure conditions.  

Table 3 identifies the effect of these constraints on the number of arguments required 
for any given failure modes – and at what level within the system the argument 
typically addresses the failure mode, as determined from the aviation systems 
considered in Section 3. 

Severity is the accident effect if the LRU Level and System Level mechanisms were 
absent, or the software fault was permitted to propagate without intervention at the 
LRU Level and System Level. 

 

Severity Software%  Partitioned 
Software 

 LRU Level  System 
Level 

Detection 
AND 

Handling&* 

OR Detection AND 
Handling& 

AND Detection AND 
Handling& 

Absence 
(Primary, 
Secondary, 
and Control) 

AND 

Detection 
AND 

Handling&* 

AND Detection AND 
Handling& 

OR Detection AND 
Handling& 

Detection 
AND 

Handling&# 

OR Detection AND 
Handling& 

AND Detection AND 
Handling& 

Catastrophic 

Detection AND 
Handling 

AND 

Detection 
AND 

Handling&# 

AND Detection AND 
Handling& 

OR Detection AND 
Handling& 

Absence 
(Primary, 
Secondary, 
and Control) 

AND Detection 
AND 

Handling&* 

OR Detection AND 
Handling 

OR Detection AND 
Handling 

Detection&# AND Handling OR Handling 

Hazardous / 
Major 

Detection AND 
Handling 

AND 

- - Detection AND Handling 

- - Detection AND 
Handling 

OR Detection AND 
Handling 

Absence 
(Primary, 
Secondary, 
and Control) 

OR 

- - Detection AND Handling 

- - Detection AND 
Handling 

OR Detection AND 
Handling 

Minor, No 
Safety Effect 
 

Detection AND 
Handling 

OR 

- - Detection AND Handling 

% - initiating fault invalidates this argument under no single failure criterion 
& - additional faults may invalidate these arguments under combinations of failure criterion 
* - provided invalidating the absence argument doesn’t also lead to invalidation of its detection and 
handling in software 
# - provided invalidating the original detection and handling argument doesn’t also lead in 
invalidation of its detection and handling in software 
Logical conventions: Logical operators and conditions within the same cell assume parenthesis 
Italics – evaluate the logical operator prior to normal type face and bold operators – assume 
parenthesis encapsulates the cells either side of the operator 
Bold – evaluate the logical operator last 

Table 3: Combinations of failure criterion as inferred from actual aviation systems

5.3 Specific Circumstances for Absence Arguments 

Absence arguments (for omission, commission, early, late and value) are never valid 
for input data (data originating outside the software of the LRU) to software within an 
LRU – these types of faults should be detected and handled at the input to the 



   

software, as is done by most aviation systems; or by ensuring that the fault 
propagates to a detectable fault at a higher system level. Detection will usually need 
to be more extensive than simply checking the valid flag provided with the data from 
the sensor because this doesn’t provide detection of timing or omission related 
failures, and because the valid flags coverage of credible value failures is often very 
limited. Typically a combination of range, rate, physical world checks, or comparison 
to a redundant or diverse source are required. 

While the detection and handling of this class of faults may be deferred until later in 
the system functional flow, this is rarely suitable. For example, in Flight Control 
Systems, there are minimal benefits to processing control laws based on invalid input 
data and then attempting to trap the failure at the system’s output or control actuator. 
This is because the vast majority of input data failures are not easily discernible at 
this point in the system. The only times it might be suitable is if through physical 
limiting (e.g. mechanical limiting) the Flight Control System’s authority is limited to a 
worse credible failure severity of minor (clearly not applicable to full authority 
systems). 

6 Bounding Uncertainty 

A key factor in proposing the layering of detection and handling mechanisms at 
different levels of abstraction in a system (e.g. software level, partitioned software 
level, LRU level, system level) is that it permits the uncertainty associated with 
detecting and then providing a suitable handling response to the fault to be bounded 
to an amount that is useful for reasoning about knowledge and the safety of the 
system. This section examines how architecture is used to bound uncertainty. 

6.1 Using Architecture to Bound Uncertainty 

To examine the effect of architecture on uncertainty, consider a series of cascading 
faults in a system with detection and handling mechanisms at the software, LRU and 
system levels. 

At the occurrence of the 1st fault at the software level (i.e. Failure of 1st Absence / 
Detection and Handling Mechanism), the knowledge that there is a valid mechanism 
is a function of the following: 

• the understanding of types of failure that might occur (i.e. to what extent is an 
appropriate mechanism provided to achieve coverage of all classes of the 
taxonomy of potential software failure modes, noting that the lower the level 
faults are examined at, the greater the number of practical classes in the fault 
taxonomy); and 

• the appropriateness of absence / detection and handling mechanisms given the 
specific known fault that has occurred. 

The uncertainty is a function of the following: 

• the extent to which the taxonomy of potential software failures modes is 
incomplete for the specific failures that could occur in the system (i.e. are there 
sources of failure that haven’t been understood?);  

• the immediate effect of failure sources that haven’t understood been (i.e. is the 
effect something that has been left unanticipated, even in a generalised sense?); 
and 



 

• the suitability (or unsuitability) of the extant absence or detection/handling 
mechanisms for these unknown sources of failure (i.e. is the mechanism going to 
do something undesirable in the presence of an unknown fault?). 

Therefore, for the 1st fault with no detection/handling mechanisms, uncertainty is 
unbounded and will tend to infinity. Even if a detection/handling mechanism is 
employed, the ratio of uncertainty to knowledge may still tend to be very large 
depending on the extent of the fault coverage by the mechanism. This poses 
problems for failures with severe consequences. 

At the occurrence of the 2nd fault, this time at the LRU level (i.e. Failure of the 2nd 
Detection/Handling Mechanism), the knowledge that there is the valid detection and 
handling mechanism is a function of the following: 

• the extent to which the taxonomy of failures should resolve the failures of the 1st 
mechanism, which should be finite at this level (the existence of the detection / 
handling mechanism is explicitly having to detect classes of failure of the 1st 
mechanism); 

• the degree to which it is possible for the 2nd detection / handling mechanism to be 
activated from the cascading fault condition; 

• the appropriateness of the absence / detection and handling mechanism at the 
LRU given the specific known fault class that has occurred (i.e. is the behaviour 
of the mechanism valid at this level of abstraction); and 

• the coverage of intended coupling paths between software and LRU level 
mechanisms. 

The uncertainty is a function of the following: 

• the extent to which the cascading faults don’t resolve to the taxonomy of faults 
handled at this layer; 

• the suitability (or unsuitability) of absence or detection/handling mechanisms for 
unknown sources of failure, and its effects; and 

• the extent to which unintended independence violators might be active (but 
should be limited by the degree of physical partitioning). 

At the occurrence of the 3rd fault, this time at the System level (i.e. Failure of the 3rd 
Detection/Handling Mechanism), the knowledge and uncertainty parallel the 
observations listed above for the 2nd mechanism, with the following key differences: 

• the extent to which the taxonomy of failures at the System level resolves the 
failures of the 2nd mechanism should be better than at the 2nd level as the 
number of classes of failures the cascading faults need to resolve to should be 
decreasing (with ultimate convergence at two failures modes – i.e. loss of the 
function and malfunction of the function); 

Thus it is possible to see that ultimately each additional detection and handling 
mechanism layer bounds the uncertainty to the extent to which the cascading faults 
from the lower level resolve to the taxonomy of faults handled at the current layer. 
The effect of abstraction with each layer is that the taxonomy of faults at that each 
higher layer will resolve to a smaller complete set, until at the system boundary we 
are left with just the ‘loss of’ and ‘malfunction’ aircraft failure conditions. It is this 



   

ability of the architecture to resolve faults and failures to a smaller set of practically 
considered failure conditions that bounds uncertainty. 

Summarising the effects of bounding uncertainty, as follows: 

• With no absence or detection/handling mechanisms, uncertainty is unbounded 
and will tend to infinity. Therefore this type of architecture should only ever be 
employed when there is no safety effect. 

• With one (1) absence or detection/handling mechanism, uncertainty may still 
tend to be very large depending on the extent of the fault coverage. Therefore, a 
system with only one mechanism layer must not have severe failure modes. 

• With two (2) layers of mechanisms, uncertainty may be very large, but it is likely 
much less and will often tend towards a finite value depending on the extent to 
which the classes of cascading faults resolve to the taxonomy at the second 
layer. Therefore a system with two mechanism layers is suitable for any system 
except for those with the most severe failure modes, provided the right 
mechanisms are employed at each layer of course. 

• With three (3) layers of mechanisms, uncertainty may be large, but it is likely 
much less and will often tend towards a small finite value depending on the 
extent to which the cascading faults resolve to the taxonomy at the second and 
third layers. Therefore a system with three mechanism layers is suitable for any 
system, even those with severe failure modes, provided the right mechanisms 
are employed at each layer of course. 

• Additional mechanisms may bound the uncertainty further, provided they 
continue to enforce the resolving of fault classes to those analysed and treatable 
at the subsequent mechanisms layer. 

Therefore, the bounding of uncertainty provides conceptually a compelling case for 
structuring specific layers of absence and detection/handling for treating systematic 
faults. Combining this principle with the observations from aviation system permits 
architectural assurance requirements to be inferred. Section 7 examines this 
approach. 

7 Assurance of Architecture 

Based on commonalities in the treatment of systematic faults identified in the 
examination of actual aviation systems (Section 3), the application of the fail safe 
design criteria (Sections 4), the commonalities of the fail safe design criteria in the 
actual systems for systematic failures (Section 5), and examining how these factors 
contribute to bounding the uncertainty of the effects of systematic failures on a 
system (Section 6), this section proposes a framework for quantifying the assurance 
of safety architecture in aviation systems. 

7.1 ASAL concept 

This paper proposes a framework based around the concept of an Architectural 
Safety Assurance Level (ASAL). Note that the ASAL described in this paper is not 
related to any of the architectural related assurance level concepts being proposed 
by the [ARP4754] committee currently undertaking revision of the standard. The 
ASAL provides direct quantification (and benchmarks) of the extent to which the 
system’s architecture is tolerant to systematic faults. The degree of fault tolerance is 



 

directly associable with the normal Aircraft Failure Condition Severities defined by 
standards such as [ARP4754]. Four ASAL levels are proposed at presented in Table 
4. 

  

Failure 
Condition 
Severity

1

  

Architectural 
Safety 
Assurance 
Level (ASAL)  

Systematic Fault Tolerance 

Catastrophic ASAL3 At least three (3) diverse
2
 systematic faults are necessary for the 

aircraft failure condition to be realised 

Hazardous / 
Major  

ASAL2  At least two (2) diverse
2
 systematic faults are necessary for the 

aircraft failure condition to be realised 

Minor  ASAL1  At least one (1) systematic fault is necessary for the aircraft 
failure condition to be realised 

No Safety 
Effect 

ASAL0 Systematic fault tolerance is not required, however the designer 
may choose to incorporate fault tolerance to provide assurance 
of system availability and reliability 

1. The worst credible failure condition severity of loss of and malfunction of the aircraft function with 
which the system and its software is associated. 

2. For a systematic fault to be diverse of another systematic fault, it must be shown that the 
activation of one fault does not automatically lead to the activation of another systematic fault. In 
practice this is achieved by ensuring that the faults must occur in independent components and/or 
at differing layers of abstraction (e.g. software, LRU, system) where the correct functioning of the 
subsequent detection and handling mechanisms can be shown to be independent of the initiating 
fault condition or the detectable class of fault at the next layer is distinct of the initiating class of 
fault. 

Table 4: Architectural Safety Assurance Level 

7.2 Absence and Detection/Handling Mechanism Requirements 

A key factor in providing for diverse systematic faults identified in Table 4 is providing 
detection and handling mechanisms at differing layers of abstraction with a system. 
This allows the independence of the functioning of the detection and handling 
mechanism to be achieved physically in the system design, and it also bounds the 
uncertainty of fault coverage of these mechanisms. 

Using the taxonomy of layers of detection and handling mechanisms identified in 
Section 5, the proposed framework uses the following levels of detection and 
handling mechanisms: 

• Software – at the typical software component level (and software component in 
question), and includes software fault tolerant features and software 
implemented fault tolerance features. 

• Line Replaceable Unit (LRU) – at the typical avionics box level within an aircraft, 
and includes fault tolerant features such as: 

o command/monitors (note additional software in the monitor is considered at 
the LRU level, although the software safety argument for that monitor 
software CSCI would also consider its effects at the software component 
level),  

o voting planes,  



   

o output wraparounds (although the feedback is usually hardware 
implemented, the comparison is usually software implemented),  

o hardware BIT, etc. 

• System Architecture Level – at the typical system architecture level within an 
aircraft and may include redundancy, analogue backup, diverse system 
components, etc. Note that redundant components running the same software 
configuration only provides protection against hardware related failures, or 
failures of independent input sensors. It provides no protection against 
systematic failures of the software. The emphasis here is on system level 
architectural features that provide protections against systematic software 
failures by detection and handling of faults. 

Relating the levels of detection and handling mechanisms to the ASAL concept 
defined in Section 7.1 provides a framework as defined in Table 5. 

 

ASAL   
  

1st Absence/Detection 
and Handling 
Mechanism 

2nd 
Detection/Handling 
Mechanism 

3rd 
Detection/Handling 
Mechanism 

ASAL3 Software Level Partitioned Software 
Level

#
 or LRU Level

*
 

LRU Level
*
 or System 

Level 

ASAL2 Software Level Partitioned Software 
Level

#
 or LRU Level or 

System Level 

Not Required 

ASAL1 Software Level OR LRU 
Level OR System Level 

Not Required Not Required 

# must be independent of the initiating failure and the 1st Absence / Detection and Handling 
mechanism (i.e. through a partitioning mechanism) 

* must be independent of the proceeding detection/handling mechanism 

Table 5: ASAL Architecturally Layered Fault Tolerance 

7.3 Benefits of ASAL concept 

The ASAL concept provides the following perceived benefits to assurance 
frameworks: 

• The ASAL concept explicitly integrates requirements for architectural treatments 
to systematic faults into the traditional assurance approach, and is compatible 
with the existing safety analysis of [ARP4754] and other similar standards.  

• The ASAL concept provides a multidimensional (better than binary) perspective 
on the absence and detection/handling of systematic faults commensurate with 
the worst credible failure condition. 

• The ASAL concept quantifies (in the product context) the degree of fault 
tolerance within a system and its software for each system’s contribution to 
aircraft level failure conditions. Therefore, the ASAL as a level inherently has a 
product meaning. 

• The ASAL concept is simple, and therefore doesn’t burden assurance 
frameworks with complex, non-objective prescriptions. 



 

• The ASAL concept doesn’t prescribe specific architectures, and is therefore, 
inherently flexible. It instead focuses on the treatment of systematic faults by the 
architecture. 

• The ASAL concept encourages fault tolerance architectures for the systems 
whose functions most need fault tolerance (i.e. those with the most severe 
hazards or failure conditions) 

• The ASAL concept is analytically compatible with observations of systematic fault 
tolerance management in actual aviations systems. 

7.4 Limitations of ASAL concept 

The ASAL concept introduces or highlights the following potential limitations: 

• The explicit integration of the ASALs with software assurance standard (e.g. 
RTCA/DO-178B) objectives hasn’t yet been clarified. 

• The ASAL concept sets no benchmarks for the level of evidence required to 
demonstrate that numbers of diverse systematic faults do not contribute to 
identified failure modes. The ASAL concept does not address ‘how much is 
enough?’ for software evidence. 

• The ASAL concept relies on bounding uncertainty, of which a fundamental factor 
is the extent to which faults at one layer of abstraction resolve to a detectable set 
at the next layer of abstraction. However, the ASAL concept doesn’t provide an 
explicit measure of the specific contextual claims about detecting and handling 
systematic faults as they propagate to high levels of system abstraction, and thus 
support inferences about the suitability of the proposed detection and handling 
capabilities of the system architecture. 

Section 8 of this paper provides insight into several approaches being explored as 
part of this research work that are intended to address these limitations. Empirical 
evaluation of the ASAL concept is proposed in later phases of this research. 

7.5 Additional factors 

The following paragraphs provide insight into a number of factors relevant to ASAL. 

7.5.1 Conceptual and Mechanistic Independence 

Conceptual and mechanistic independence have been suggested by [Wea03] as 
playing an important factor in assurance of arguments constructed around [Pum99]’s 
software failure taxonomy. However, how does conceptual and mechanistic 
independence relate to the ASAL concept defined in this paper? The definitions 
within the ASAL concept specify several diverse faults. This implies that there is 
conceptual independence between the initiating software, the LRU level and system 
level detection and handling mechanisms (where relevant). Systems sharing 
common software and/or hardware may be prone to common mode failure conditions 
and are not considered to be diverse. Unless mechanistic independence delivers 
conceptually different architectures during the design process, it does not play a role 
in the ASAL concept directly. Mechanistic independence will be considered in the 
work described at Section 8.  



   

7.5.2 On-demand versus Continuous-demand Systems 

The ASAL concept was largely derived in the context of actual aviation systems that 
are inherently continuous demand systems, although specific functions provided by 
individual safety functions may be deemed as on-demand. Therefore, does the ASAL 
concept apply for on-demand systems versus continuous demand systems? 

On-demand systems (usually used for protection systems) are usually associated 
with an availability requirement (therefore continuous demand) on a related aviation 
system associated with the protection mechanism. Therefore in most cases there is 
little practical difference between an on-demand system and continuous demand 
system with respect to the ASAL concept. 

8 Assurance of Architecture and the Relationship to Software Failure 
Claims/Arguments and Evidence Sufficiency 

This paper has proposed an assurance framework that provides a direct measure of 
the degree of the system’s fault tolerance against systematic faults and failures, and 
thus infers the system’s suitability for use in the presence of aircraft level failure 
conditions of differing severities. However, the extent of discussion in this paper has 
only addressed the architectural effects of layered detection and handling 
mechanisms on bounding uncertainty of systematic faults. This paper has not 
addressed which specific detection and handling mechanisms are most appropriate 
in each context, and how claims to that effect might be assured. Furthermore, this 
paper hasn’t set any benchmarks for the provision of evidence in this regard. 

To address these questions, further papers are being developed which propose a 
Claims (CSAL) and Evidence (ESAL) Safety Assurance Level concept that is 
compatible with the ASAL concept identified in this paper. The core idea behind 
claims assurance is to ensure that any assurance levels used for articulating claims 
assurance in the context of the ASAL have a specific product safety focus (i.e. each 
and every assurance level has a product meaning, not just a top-down process 
interpretation). For evidence assurance, the core idea is to provide a framework that 
is explicit in a product sense of the ‘tolerability of limitations’ in satisfying the 
objectives articulated in the framework. 

9 Summary 

This paper has identified limitations with the current standards’ frameworks with 
respect to architecture and systematic faults and failures. Treatments of systematic 
faults in a number of actual aviation systems have been examined, including civil and 
military Automatic Flight Control Systems (AFCS) and Flight Management Systems 
(FMS). The results of this examination have been contrasted with the fail safe design 
criteria underpinning the 1309 airworthiness requirements for civil aircraft certification, 
and commonalities in the treatment of systematic failures identified. 

Using the identified commonalities, and examining how these factors contribute to 
bounding the uncertainty of the effects of systematic failures on a system, a 
framework has been proposed for quantifying the assurance of safety architecture in 
aviation systems. The assurance framework provides a direct measure of the degree 
of the system’s fault tolerance against systematic faults and failures, and thus infers 
the system’s suitability for use in the presence of aircraft level failure conditions of 
differing severities. 



 

Further papers are being developed which propose a Claims (CSAL) and Evidence 
(ESAL) Safety Assurance Level concept that is compatible with the ASAL concept 
identified in this paper. 
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ANNEX A – EXAMINATION OF AVIATION SYSTEMS 

FLIGHT CONTROL SYSTEMS 

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A 

Primary 
Computers 

Three (3) Flight Control 
Primary Computers 
(FCPC) - digital 

• process Normal, 
Alternate and Direct 
Laws 

• one FCPC is 
selected as Master: 
it processes the 
orders and outputs 
them to the other 
computers which 
will execute them 
on their servo loops 

• Master checks that 
its orders are 
fulfilled by 
comparing them 
with feedback 
received; self 
monitoring of the 
master can detect a 
malfunction and 
cascade control to 
the next computer 

• each FCPC can 
control up to eight 
(8) servo loops and 
provide complete 
aircraft control 
under normal laws. 

 

Secondary 
Computers 

Three (3) Primary 
Flight Computers 
(PFC) – digital 

• process Normal, 
Secondary and 
Direct laws 

• actuation 
commands 
transmitted to 
ACE 

• execution of 
automated 
functions such as 
yaw damper 

• system 
monitoring, crew 
annunciation, and 
onboard 
maintenance 
capabilities 

Four (4) Actuator 
Control Electronics 
(ACE) – analog 

• interface with the 
pilot control 
transducers and to 
control the 
Primary Flight 
Control System 
actuation with 
analog servo 
loops 

• ACEs convert the 
transducer 
position into a 
digital value and 
then transmit that 
value to the PFCs 

• ACEs then 
convert PFC 
commands into 
analog commands 
for each individual 
actuator 

• flight control 
surface servo 
loops are 
distributed among 
the four ACEs. 

Two (2) Flight Control 
Secondary Computers 
(FCSC) - digital 

• Are able to process 
direct laws 

• Either secondary 
can be the master in 
the case of loss of 
all FCPC 

• Each FCSC can 
control up to 10 
servo loops and can 
provide complete 
aircraft control 

Quad redundant digital 
flight control system 
incorporating two (2) 
flight control computers 
with two independent 
channels per computer 
process: 

• control stick, rudder 
pedal and trim 
commands 

• pitot static, rate 
gyro, 
accelerometer, AOA 
probe and fight 
control surface 
position feedback 
signals, and 

• send commands to 
each flight control 
surface actuator. 

 

Quadruplex set of 
digital flight control 
computers 

Four channel 
synchronous operation 

All output hardware, 
signals, and feedback 
are monitored and 
compared to ensure  
failure detection and 
channel output voting. 

Dedicated cross-
channel data link used 
between channels 

Input signal voting 

Actuator loop voting 

 



   

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A 

Additional 
Control 
Computers 

Other systems: 

• Flap Slat 
Electronics Unit 
(FSEU) 

• Proximity Switch 
Electronics Unit 
(PSEU) 

• Engine Data 
Interface Unit 
(EDIU) 

Airplane Information 
Management System 
(AIMS) Data 
Conversion Gateway 
(DCG) maintains 
separation between 
the critical flight 
controls busses and 
the essential systems 
busses. 

High life devices are 
commanded by two 
Slat/Flap Control 
Computers 

Two (2) Flight Control 
Data Concentrators 
(FCDC) acquire the 
outputs from the various 
computers to be sent to 
the ECAM and Flight 
Data Interface Unit to 
provide isolation of the 
flight control computers 
from other systems. 

No additional flight 
computers 

Two dual digital Spoiler 
Control/Electronic Flap 
Computers 

Computer 
Architecture 

Each PFC has three 
identical computing 
‘‘lanes”  

• a voting plane 
scheme is used by 
the PFCs on 
themselves.  

• single computing 
lane within a PFC 
channel is 
declared as the 
‘‘master” lane. 

• all three lanes 
simultaneously 
computing the 
same control laws.  

• the outputs of all 
three lanes are 
compared against 
each other.  

• any failure of a 
lane that will 
cause an 
erroneous output 
from that lane will 
cause that lane to 
be ‘‘failed” by the 
other two lanes. 

• Command Lane, 
Standby Lane, 
Monitor Lane. 

Command/ Monitor 
computer architecture 
for both the FCPC and 
FCSC. 

• Monitor channel 
monitors for health 
of the command 
channel and control 
surface runaway 

• Specific variables 
are permanently 
compared in the two 
channels.  

• sensor inaccuracy, 
rigging tolerances, 
computer 
asynchronisation are 
taken into account 

• errors which are not 
detectable (within 
the signal and timing 
thresholds) are 
assessed in respect 
to their handling 
quality and structural 
loads effect 

• in the event of a 
divergence between 
command and 
monitor solutions, 
the affected 
computer is 
disengaged and the 
next highest priority 
computer takes over 

Two independent 
channels per computer 
processor 

FCC and SCEFC each 
use 3 MIL-STD-1750A 
CPUs.  

• In the FCC one 
processor serves 
as an I/O 
processor, and the 
other two perform 
control law 
computations. 

• In the SFEFC one 
processor serves 
as an I/O 
processor and the 
other two are 
configured as a 
sefl checking pair. 

The AFCS control 
panel is implemented 
with four MIL-STD-
1760A CPU configured 
as two self checking 
pairs. 
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Dissimilarity Dissimilarity between 
the PFC and ACE. 

• PFCs are identical 
digital computers 

• ACE are identical 
analog devices 

 Dissimilarity between 
the Air Data and 
Inertial Reference Unit 
(ADIRU) and Standby 
Attitude and Air Data 
Reference Unit 
(SAARU) 

Dissimilarity between 
FCPC and FCSC digital 
computer designs 

• different processor 
architectures and 
manufacturers 

• different software 
between FCPC and 
FCSC and between 
command and 
monitor channels in 
each FCPC and 
FCSC 

No dissimilarity 
between the Air Data 
and Inertial Reference 
Unit (ADIRU) 

No dissimilarity between 
flight control computers. 

 

No dissimilarity 
between flight control 
computers. 

 

Latent Failure 
Detection 

Built in Test Self-test and peripheral 
tests 

Built in Test Built in Test 

Reconfiguration The outputs from all 
three PFC channels 
are compared.  

• Each PFC 
compares its 
output for each 
particular actuator, 
and with the same 
command that 
was calculated by 
the other two PFC 
channels. 

• Each PFC 
channel does a 
mid-value select 
on the three 
commands, and 
that value is 
output to the 
ACEs. 

When the active 
computer interrupts its 
operation, one of the 
standby computers 
almost instantly 
changes to active mode 
with no or limited jerk 
on the control surfaces. 

Three (3) modes of 
operation 

• Control 
Augmentation 
System (CAS) – full 
digital capability 
including adaptive 
flight controls and 
stability 
augmentation. 

• Direct Electrical 
Link (DEL) – 
provided in the 
event of primary 
CAS failure, no 
longer process input 
from failed rate 
gyros and/or 
accelerometers. 

• Mechanical (MECH) 
– three or more 
channel failures, 
pitch roll sensor 
failures, failure of 
both servo-valves in 
one actuator, 
hydraulic starvation 

All FCS critical inputs, 
processing and outputs 
are quad redundant (fail 
op, fail op, fail passive). 

The FCCs and 
SCEFCs operate as a 
frame synchronous set. 
In the event of loss of 
synchronisation, the 
computers will attempt 
to re-synchronise. 

A sensor selection 
algorithm derives a 
selected value for each 
signal as a function of 
the sensor failure 
states. 

• Average of middle 
two values (four 
valid signals) 

• Midvalue of three 
signals 

• Average of two 
signals 
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Servos Actuators 
arrangements are as 
follows: 

• Elevators, 
ailerons, and 
flaperons are 
controlled by two 
actuators per 
surface, the 
rudder is 
controlled by 
three.  

• Each spoiler panel 
is powered by a 
single actuator. 

• The horizontal 
stabilizer is 
positioned by two 
parallel hydraulic 
motors driving the 
stabilizer 
jackscrew. 

The actuation 
powering the 
elevators, ailerons, 
flaperons, and rudder 
have several 
operational modes: 
Active, Bypassed, 
Damped, Blocked. 

Actuators arrangements 
are as follows: 

• Elevators, ailerons 
are controlled by two 
actuators per 
surface, the rudder 
is controlled by 
three. 

• Each spoiler panel is 
powered by a single 
actuator. 

• The horizontal 
stabiliser is 
positioned by two 
actuators. 

Servo-jacks can 
operate in one of three 
control modes 
depending upon 
computer status and 
type of control surface: 
active, damping, 
centering. Normally one 
servo is active and one 
is damped on each 
control surface 

Dual servo values in 
each actuator fed by 
both flight control 
computers and two 
independent hydraulic 
sources. 

Aileron and twin rudders 
are differentially 
scheduled. 

Trailing Edge Flaps, 
Leading Edge Flaps 
and Stabs are 
scheduled both 
differentially and 
collectively. 

All four FCCs are 
connected to each 
actuator. Outputs from 
each FCC are summed 
at the Electro hydraulic 
Servo Values providing 
a voting node. 

Output signal 
management software 
function in each FCC 
compares local channel 
actuator data with cross 
channel data to detect, 
identify and remove 
local faults 

Envelope 
protection / 
limiting 

Computers provide the 
following protections: 

• Bank angle 
protection 

• Turn 
compensation 

• Stall and 
overspeed 
protection 

• Pitch control and 
stability 
augmentation 

• Thrust asymmetry 
compensation 

Computers will prevent 
excessive manoeuvres 
and exceedance of the 
safe flight envelope. 

• Excessive load 
factors 

• Overspeed 

• Stall 

• Extreme pitch 
angle 

• Extreme bank 
angle 

Conventional envelope 
protections not provided 
in a fighter jet 

The following 
protections are 
provided: 

• Angel of attack 
limiting system 

• Deep stall 
avoidance 

• All engine out 
control 

• Safe go-around 
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Sensors Dual redundant air 
data and inertial 
systems: 

• Air Data and 
Inertial Reference 
Unit (ADIRU) 

• Standby Attitude 
and Air Data 
Reference Unit 
(SAARU)  

• Autopilot Flight 
Director 
Computers 
(AFDC)  

All critical interfaces 
into the Primary Flight 
Control System use 
multiple inputs which 
are compared by a 
voting plane. 

Triple redundant air 
data and inertial: 

• Three air data and 
inertial reference 
units (ADIRUs) 

• Accelerometers and 
rate gyros 

The following sensors 
are used by the Flight 
Control Computers: 

• Pitot Static 

• Rate Gryo 

• Accelerometer, 

• AOA probe 

• And flight control 
surface position 
transducers 

 

 

 

 

Quadruplex sensors 
including: 

• Stick and Peal Force 
Sensors 

• Stick Position 

• Surface Position 

• Air data and 
stabiliser sensors 

• Air Data Computers 

• Inertial Reference 
Unit 

6 AOA sensors 

Remaining sensors are 
dual. 

Inputs are voted, 
monitored, selected 
and sent to each 
processing channel 
before use in output 
signal processing. 

Digital inputs have 
validity bits 

Mechanical 
Backup 

Two spoiler panels and 
alternate stabiliser 
pitch trim are 
mechanically 
controlled 

Mechanical backup: 
rudder and trimmable 
horizontal stabiliser – 
no artificial stabilisation 
required 

Mechanical 
backup/linkage to the 
horizontal stabilators. 

Backup mechanical 
system provides control 
of the ailerons, 
elevators, rudders and 
stabilizer surfaces. 

Table 6: Overview of design features supporting detection and handling of systematic faults in Flight 
Control Systems 
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Flight 
Management 
Computers 

Dual integrated cabinets 
which provide the 
processing and the I/O 
hardware and software 
required to perform the 
following functions: 

• Flight Management 

• Display 

• Central 
Maintenance 

• Airplane Condition 
Monitoring 

• Communication 
Management 
(including flight 
deck 
communication) 

• Data Conversion 
Gateway (ARINC 
429/629 
Conversion) 

The applications hosted 
on AIMS are listed 
below, along with the 
number of redundant 
copies of each 
application per shipset 
in parentheses: 

• Displays (4) 

• Flight 
Management/Thrus
t Management (2) 

• Central 
Maintenance (2) 

• Data 
Communication 
Management (2) 

• Flight Deck 
Communication (2) 

• Airplane Condition 
Monitoring (1) 

• Digital Flight Data 
Acquisition (2) 

• Data Conversion 
Gateway (4) 

Two computers Flight 
Management Guidance 
Computer (FMGC) 

• Flight management 
for navigation, 
performance 
prediction and 
optimisation, 
navigation radio 
tuning and 
information display 
management 

• Flight guidance for 
autopilot 
commands, flight 
director and thrust 
commands – two 
types of guidance 

o Managed – 
lateral and 
vertical flight 
plan data 

o Selected – 
guidance 
targets selected 
on the 
glareshield 
Flight Control 
Unit 

• Flight envelope and 
speed computation 

 

Two AYK-14 Mission 
Computers (MC) 

One MC will be the 
active Bus Controller 
on AVMUX 1 – 6 and 
the other MC will be the 
an RT. 

Communication / 
Navigation / 
Identification – 
Management System 
(CNI-MS) consists of 

• 2 Mission 
Computers (MC) – 
control the 
information 
exchanged 
between airplane 
systems via MIL-
STD-1553 
databuses. One 
MC will be the 
active Bus 
Controller on 
nominated 
databuses and the 
other will be the 
Backup Bus 
Controller for 
those same 
databuses 

• 2 Bus Interface 
Units (BIU) – if 
both MCs fail the 
BIU assume the 
bus controller 
functions for the 
applicable 
databuses 

• 2 CNI System 
Processors(CNI-
SP) – contain the 
operational logic 
that permit crew 
control and 
functioning of the 
communication, 
navigation and 
identification 
equipment.  
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Control Three Multipurpose 
Control and Display 
Units (MCDU) (only two 
at a time) provide: 

• flight plan definition 
and display 

• data insertion 
(speeds, weights, 
cruise level, etc) 

• selection of specific 
functions 

One Flight Control Unit 
on the glareshield 
provides manual entry 
of: 

• speed 

• heading 

• altitude 

• vertical speed 

Two thrust levers linked 
to the FMGCs and 
FADECs provide 
autothrust or manual 
thrust control 

Left and Right Digital 
Display Indicators 
(DDIs) 

Up Front Controller 
(UFC) 

Digital Map Computer 
(DMC) 

Display 

The other flight deck 
hardware elements that 
make up the AIMS 
system are 

• Six flat panel 
display units 

• Three control and 
display units (left, 
centre and right) 

• Two EFIS display 
control panels 

• Display select panel 

• Cursor control 
devices 

• Display remote light 
sensors 

Two Primary Flight 
Displays (PFD) and two 
Navigation Displays 
(NDs) provide visual 
interface with flight 
management and 
guidance related data. 

PFD: 

• FMGC guidance 
targets 

• Armed and active 
modes 

• System 
engagement targets 

ND: 

• Flight plan 
presentation 

• Aircraft position and 
flight path 

• Navigation items 
including radio aids 
and wind) 

Left and Right DDIs 

UFC 

DMC 

Heads Up Display 
(HUD) 

• 3 CNI 
Management Units 
(CNI-MU) – 
primary crew 
interface to the 
CNI-MS. 

• 1 Communications 
/ Navigation / 
Breaker Panel 
(CNBP) 

• 2 Avionics 
Management Units 
(AMU) 

• 2 Heads Up 
Display (HUD) 
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Computer 
Architecture 

Dual cabinets each 
contain four core 
processor modules 
(CPMs) and four input / 
output modules (IOMs), 
with space reserved in 
the cabinet to add one 
CPM and two IOMs to 
accommodate future 
growth. The shared 
platform resources 
provided by AIMS are 

• Common processor 
and mechanical 
housing, 

• Common 
input/output ports, 
power supply, and 
mechanical 
housing, 

• Common backplane 
bus (SAFEbus™) to 
move data between 
CPMs and between 
CPMs and IOMs, 

• Common operating 
system and built-in 
test (BIT) and utility 
software. 

Applications are 
integrated on common 
CPMs. The IOMs 
transmit data from the 
CPMs to other systems 
on the airplane, and 
receive data from these 
other systems for use 
by the CPM 
applications. A high-
speed backplane bus, 
called SAFEbus™, 
provides a 60-Mbit/s 
data pipe between any 
of the CPMs and IOMs 
in a cabinet. 

Communication 
between AIMS cabinets 
is through four ARINC 
629 serial buses. 

Two computers Flight 
Management Guidance 
Computer (FMGC) 

FMGC are identical 
single channel 
computers 

MCDU are identical 
single channel 
computers 

Two AYK-14 Mission 
Computers 

AYK-14 MCs are 
identical single channel 
computers. 

Other AYK-14 modules 
include a core memory 
and MIL-STD - 
1553A/B, Tactical Data 
System, RS-232, and 
discrete Input/Output 
(I/O). 

 

MC are identical single 
channel computers 

CNI-SP are identical 
single channel 
computers 

BIU are identical single 
channel computers 

MC, CNI-SP and BIU 
are all different 
computer architectures 

Dissimilarity No dissimilarity between 
AIMS cabinets 

No dissimilarity 
between FGMCs 

No dissimilarity 
between MCDUs 

No dissimilarity 
between MCs 

No dissimilarity 
between MCs 

No dissimilarity 
between CNI-SPs 

No dissimilarity 
between BIUs 

Latent Failure 
Detection 

Built in Test Built in Test Built in Test MC BIT 

CNI-SP PBIT and IBIT 
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Reconfiguration Hardware fault 
detection and isolation 
is achieved via a lock-
step design of the 
CPMs, IOMs, and the 
SAFEbus™. Each 
machine cycle on the 
CPMs and IOMs is 
performed in lock-step 
by two separate 
processing channels, 
and comparison 
hardware ensures that 
each channel is 
performing identically. If 
a miscompare occurs, 
the system will attempt 
retries where possible 
before invoking the fault 
handling 

and logging software in 
the operation system. 
The SAFEbus™ has 
four redundant data 
channels that are 
compared in real time 
to detect and isolate 
bus faults. 

Selected guidance has 
priority over managed 
guidance mode. 

Normal mode, dual 
mode, single mode 

One MC will be the 
active Bus Controller 
on AVMUX 1 – 6 and 
the other MC will be the 
an RT. 

If the MC BC fails, the 
other MC assumed 
control of all buses. 

One MC is capable of 
performing the 
functions of both MCs 
with no reduction in 
capability 

If one MC fails, the 
other MC assumes 
control of all seven 
buses with no loss of 
system integration 
performance. 

BIU provides backup in 
the event of dual MC 
failures. 

Each CNI-SP 
calculates its own 
solutions 
independently, and 
compares the results 
with the other CNI-SP. 
Either CNI-SP can 
perform all the 
functions alone, should 
the other CNI-SP fail. 
The CNI-SP operates 
in one of three modes: 
dual, single 
active/inactive and 
independent. 

Sensors Redundant Inertial 
Navigation Systems / 
Global Positioning 
Systems 

Radio Navigation (VOR, 
ILS, ADF, DME) 

Each FMGC tunes its 
own side except when 
in single operation 

• One VOR 

• One ILS 

• One ADF 

• 5 DMEs 

3 Inertial Reference 
Systems 

FMGC position is a 
blend of IRS and radio 
position 

Uses GPIRS position in 
priority mode 

Comm #1 and Comm 
#2 (UHF, VHF, HF) 

EGI – INS / GPS 

VOR, ILS, TACAN , 
DME, ADF 

Combined Interrogator 
Transponder (CIT) 

 

The CNI-MS controls 
the following 
equipment: 

• 2 UHF radios 

• 2 VHF radios 

• 2 HF radios 

• 2 Embedded 
GPS/INS (EGI) 

• 2 VOR/ILS/MB 
radios 

• 2 TACAN radios 

• 2 ADF radios 

• 2 IFF 
transponders 

Backup Stand-by navigation 
instruments 

Communications can be 
independently tuned 

Stand-by navigation 
instruments 

Communications can 
be independently tuned 

Stand-by navigation 
instruments 

Communications can 
be independently tuned 

Stand-by navigation 
instruments 

CNBP can independent 
tune radios 

Bus Interface Unit 
(BIU) provides backup 
in the event of MC 
failures 

Table 7: Overview of design features supporting detection and handling of systematic faults in Flight 
Management Systems 

 


