
1

ASSURANCE OF CLAIMS AND EVIDENCE

FOR AVIATION SYSTEMS

Squadron Leader D.W. Reinhardt

Royal Australian Air Force
Deputy Senior Design Engineer – Avionics C-130H/J
Building 108, RAAF Richmond, NSW 2755, Australia

derek.reinhardt@defence.gov.au

Professor J.A. McDermid OBE FREng

Head of Department of Computer Science
University of York
United Kingdom

john.mcdermid@cs.york.ac.uk

Abstract1

The failure circumstances of complex aviation systems
involving technologies such as software are dominated by
systematic faults. However, systematic faults are often poorly
resolved by the coupling of software assurance with
traditional system safety methodologies. This paper examines
an alternative approach to the assurance of software against
systematic faults in aviation systems.

Earlier work in this body of research (refer to [ReM10])
proposed an assurance framework that provides a direct
measure of the extent of a system’s fault tolerance against
systematic faults and failures. Central to the assurance
framework was the concept of an Architectural Safety
Assurance Level (ASAL) which was a product measure of the
number of systematic failures a system is resilient against in a
given context. The ASAL framework can be used to infer a
system’s architectural suitability for use in the presence of
aircraft level failure conditions of differing severities.

However, the extent of discussion in the earlier research has
so far only addressed the architectural effects of layered
detection and handling mechanisms on bounding the
uncertainty of systematic faults. The earlier research did not
address which specific detection and handling mechanisms
are most appropriate in each context, and how claims to that
effect might be assured. Furthermore, the framework hasn’t
yet set any benchmarks for the provision of evidence in this
regard.

Furthering the earlier research, this paper proposes a Claims
Safety Assurance Level (CSAL) and Evidence Safety
Assurance Level (ESAL) concept that is compatible with the
ASAL concept. The core idea behind claims assurance is to
ensure that any assurance levels used for articulating claims
assurance in the context of the ASAL have a specific product
safety focus (i.e. each and every assurance level has a product
meaning, not just a top-down or bottom up process
interpretation). For evidence assurance, the core idea
introduces the concept of ‘tolerability of limitations’. The
‘tolerability of limitations’ is intended to be a product

1Copyright © 2010, University of York. This paper is proposed for
presentation at the IET System Safety Conference October 2010.
Reproduction for academic, not-for-profit purposes is permitted
provided this text is included.

behavioural measure of the ‘tolerability’ in the provision of
suitable evidence, while explicitly taking into account any
limitations / shortfalls in the provision of evidence. The
‘tolerability of limitations’ also takes into account any known
product shortfalls/limitations. The intent of evidence
assurance is to provide a framework that is explicit with
respect to the ‘tolerability of limitations’ of evidence with
respect to safety.

Keywords: Architecture, Assurance, Aviation Systems, Fault
Tolerance, Safety, Software Assurance, Software Safety,
Safety Critical.

1 Introduction

In complex aviation systems involving technologies (e.g.
software) whose faults are dominated by a class of faults
referred to as systematic faults, there are substantial
challenges to providing assurance that these faults do not lead
to unacceptable failure conditions.

Most safety and assurance standards for software systems in
the aviation domain deal with systematic faults through the
identification and allocation of software safety requirements
and through the specification of software integrity levels or
design assurance levels. However there are numerous
limitations (refer to [JTM07], [McD07], [McK06], [NTS06],
[Wea03]) with the mechanisation of the current assurance
frameworks that limit their effectiveness at providing robust
assurance that systematic faults do not lead to unacceptable
aircraft failure conditions. This is primarily because of
limitations in the treatment of requirements validity of the
system and software, as well as in the direct provision of
evidence that behaviours of the system and software are
acceptable with respect to safety. The current standards are
also limited in their ability to determine the impact on the
aviation system of shortfalls against the criteria of the
standards.

This paper extends earlier work in this body of research (refer
to [ReM10]) that proposed an assurance framework that
provides a direct measure of the extent of a system’s fault
tolerance against systematic faults and failures. Central to the
assurance framework was the concept of an Architectural
Safety Assurance Level (ASAL) which was a product
measure of the number of systematic failures a system is
resilient against in a given context. The ASAL framework
proposed the use of layered absence or detection/handling

 2

mechanisms at the Software, LRU and System levels for
treating sources of systematic faults, as is evident in the
implementation of numerous actual aviation systems. The
ASAL framework can be used to infer a system’s architectural
suitability for use in the presence of aircraft level failure
conditions of differing severities.

This paper extends the earlier research by examining an
approach to defining assurance levels for claims and evidence
associated with layers of absence or detection/handling
mechanisms defined in the ASAL concept. The framework
proposed in this paper is intended to be compatible with
existing assurance standards’ approaches, even if the existing
standard were not to explicitly adopt the claims and evidence
assurance framework proposed in this paper.

2 Background

In order to provide an explicit basis for establishing the
CSAL and ESAL concepts described in this paper, the
approach chosen in this research was to define a set of key
principles for assurance levels in assurance standards that is
consistent with the themes developed in the ASAL concept.

To derive these key principles for assurance levels in
assurance standards, it is necessary to understand the role of
assurance standards, the limitations in the effectiveness of the
current assurance frameworks with respect to claims and
evidence in aviation systems, and how the sufficiency of
claims and evidence might be measured. The following sub-
sections elaborate on these topics, and identify key principles
of assurance frameworks that assurance standards should
uphold.

2.1 Roles of assurance standards

Understanding the roles of assurance standards is vital to
defining frameworks within assurance standards that are
compatible with those roles. The following subsections,
describe several factors in relation to the role of assurance
standards.

2.1.1 Standardisation of acceptable practice

One of the most important roles for standards is to standardise
acceptable practice. The word ‘standard’ in general English
language definition can imply the following:

• “anything taken by general consent as a basis of
comparison”

• “a level of quality which is regarded as normal, adequate,
or acceptable”

The key points here are the basis of comparison, usually
expressed by a set of criteria, against a measure of
acceptability (i.e. the passmark). Therefore, applying these
key points to the concept of an assurance standard should lead
to requirements on the assurance standard for providing a
basis of comparison between a resulting product and its
assurance evidence, and the desired outcomes of the standard
– in the case of an assurance standard the goal might be

safety. For example posing the question rhetorically, what are
the structured set of properties of the product and its evidence
that permits a conclusion to be directly established that the
behaviours are appropriate with respect to safety?

Unfortunately many of the frameworks underpinning
assurance standards that exist today confuse premises for
conclusions/outcomes and thus prescribe a basis of
comparison focussed around the means of development or
assessment, rather than about the suitability of the behaviours
with respect to safety. The authors of this paper in general
raise no objection to the many valid premises (all reflecting
acceptable practices) that underpin these standards, but the
inference that they lead to the right conclusions is usually
implicit, if not missing altogether. There are also limited
instances where it is questionable that some standard’s
premises even link to an appropriate conclusion. While, this is
certainly a limitation to existing frameworks, the developers
of these frameworks were not entirely at fault for this
circumstance.

When acceptable practice is established based on premises
(things practitioners become very familiar with through
practical experience), then the acceptable practice will focus
on the means (e.g. what test method should I use, how should
I write my requirements, etc). This is acceptable where
premises lead directly to conclusions. However for assurance
standards involving technologies, whose failures are
dominated by systematic failures, rarely does a premise lead
directly to a conclusion. Furthermore, the technologies
involved, plethora of techniques and methods, architectural
options and implementation possibilities, all lead to numerous
approaches to any one design problem. This creates a
challenging conundrum. Should the assurance standard define
the preferred combination of the means (or those premises
with which practitioners are most familiar), or should the
assurance standard focus on how the premises link to
conclusions? The authors reason that the focus should be on
the latter, rather than the former.

2.1.2 Benchmarks for contractual or regulatory

compliance

In addition to the standardisation of acceptable practice, a
related role of standards which is wholly applicable to
assurance standards is providing consistent benchmarks for
contractual or regulatory compliance. While the concept of
benchmarks is relatively straightforward, which benchmarks
are suitable, and how best to articulate them, is substantially a
more challenging question to the question of benchmarks
itself.

Often regulators will publish documents that specify ‘one
means but not the only means’. This is an approach to
documenting a set of premises established from the means
(with which it is hoped the industry will use or employ), and
providing a worked example, acceptable to the regulator, of
how these premises satisfy the conclusions/outcomes of the
assurance standard in question.

3

These benchmarks per se, are very important for documenting
practical understanding of the regulator’s interpretation of the
application of the outcomes/conclusions specified in an
assurance standard.

For contractual compliance, however, such guidance
documents, are much less frequently available, particularly
where the role of the regulator may be divorced from the
contractual compliance substantiation. In these cases is it very
important that the assurance standard is self standing.
Therefore, a key factor for any assurance standard is ensuring
that the means of satisfaction be made explicit, without overly
constraining the means (or set of premises) with respect to the
conclusions/objectives of the standard.

2.1.3 Compliance assurance and managing risk

Inevitably the compliance assurance programs of regulators
will eventually find non-compliances with respect to the
impact of any standard. The important thing is that the
meaning of these non-compliances can be established. For
product standards, the meaning is usually fairly
straightforward – i.e. the product is unsafe because it doesn’t
have a particular property. However, for assurance standards,
which have historically had large process associations, the
impact of the non-compliance might be less certain.

Therefore, it is very important that the definition of objectives
and outcomes in an assurance standard be explicit with
respect to their product meaning, so the safety impact of any
non-compliance can be determined. This provides the
regulator with a much better basis for managing the
tolerability of any risk associated with non-compliance, rather
than being uncertain as to the specific risk. There are also
benefits to this approach if shortfalls are learned about
retrospectively, and the regulator is faced with reassessing
risk and promulgating interim risk treatments until the non-
compliance can be properly resolved.

2.2 Suitability of claims and sufficiency of evidence

[ReM10] identified that one of the limitations with existing
software assurance standards is with the direct provision of
evidence that the behaviours of the system and software are
acceptable with respect to safety. This limitation exists
because:

• the assurance levels used in existing standards don’t have
any inherent product meaning; and

• the objectives (where used) are all expressed as outcomes
of the software lifecycle, rather than in terms of their
contribution to assuring behaviours of the software
product with respect to safety.

Therefore it is important that any assurance framework used
for claims ensures that the relevance of the claims to the
assurance of behaviours of the software with respect to safety
remains explicit. The assurance framework should also be
explicit in how much (and of what strength) of evidence is
necessary to make the claims compelling and bound the
uncertainty of the claim being violated.

2.3 Key principles of assurance level definitions

Based on the discussion in sections 2.1 and 2.2, key principles
of assurance level definitions are established as follows:

• assurance levels should inherently have a product
meaning – i.e. they should be a measure of some physical
property of the product and its behaviours, and non-
satisfaction of the assurance level should directly infer a
product behavioural difference;

• assurance levels should focus on outcomes rather than
activities – i.e. they should not concern themselves with
specific techniques or methods, but instead set objective
benchmarks for properties of the product that should be
established;

• the assurance framework should make explicit the
relevance of the claims underpinning the assurance level
definition;

• the assurance level framework should include a
mechanism for inferring the relationship between any
given technique and method, and the outcomes or
objectives they satisfy by ensuring that the
factors/properties underpinning each objective are
explicit; and

• the assurance framework should be goal setting in terms
of outcomes and objectives of the framework, and only as
prescriptive in premises as necessary to ensure explicit
benchmarking for compliance with respect to product
related behaviours of the software.

The frameworks proposed in this paper are intended to satisfy
these principles.

2.4 Relationship to architectural assurances

The ASAL concept, discussed in [ReM10], uses layers of
absence and detection/handling mechanisms to provide
assurance that systematic faults do not lead to unacceptable
failure conditions. Within the scope of this paper, each of the
absence or detection and handling mechanisms shall be
considered a ‘constraint’ on the behaviour of the system and
its software. Therefore, irrespective of the specific absence or
detection/handling mechanism being considered, the claims
made with respect to assuring the ‘constraint’ can be
considered from a common basis. This also permits the
claims and evidence for each ‘constraint’ to be developed to
inherently argue that the specific absence or detection and
handling mechanisms (i.e. the ‘constraint’) is appropriate in
the given system wide context.

For example, for an omission failure mode whose primary
absence mechanism is “All feasible control paths through
CSF include a unique output statement” (refer to [Wea03]);
this behaviour would be annotated as a ‘constraint’ in the
framework defined by this paper.

For each ‘constraint’ it is necessary to establish the degree to
which the ‘constraint’ should be assured, and also what the
degree of assurance actually means in a product sense.

 4

Assurance of the claims and evidence with respect to the
‘constraint’ is the topic of this paper.

2.4.1 Non interference of constraints

Since the assurance approach relies on layers of absence and
detection / handling mechanisms to provide assurance that
systematic faults do not lead to unacceptable failure
conditions, it is important that the non-interference of these
mechanisms is addressed, so the reader can understand the
relationships to the concepts outlined in this paper.

[Wea03] addressed this by including elements of the
argument that address failures of other software components
which could lead to the specific software failure mode.
Further levering off the ‘constraint’ approach described
above, the framework described in this paper would also
consider the mechanisms that provide this non-interference as
‘constraints’. For example, such ‘constraints’ should address
non-interference of both intended and unintended coupling
paths between software components.

Defining ‘constraints’ for intended coupling paths to show
that these do not lead to a violation of the initiating constraint
will usually involve addressing all intended coupling paths
such as control and data flows, intentionally shared resources,
etc. Each coupling path then inherently implies a potential
software failure mode that requires treatment by an absence
or detection/handling mechanism, and thus a ‘constraint’.

Defining ‘constraints’ for unintended coupling paths to show
that these also do not lead to a violation of the initiating
constraint will usually involve addressing all feasible spatial
and temporal coupling paths. For example ‘constraints’ can
be defined that use containment and/or mediation
mechanisms for spatial interference paths. Such ‘constraints’
might include such mechanisms as the application of
protected modes, virtual machines, memory management
units, data wrappers, cache management, and software
instruction run time evaluation. ‘Constraints’ for mediation
mechanisms of temporal interference paths might include
execution time monitors, and real time software scheduling
mechanisms (earliest deadline first, rate monotonic, cyclic
executive with interrupts, etc).

Ultimately each of these containment and or mediation
mechanisms can in turn be dealt with as a ‘constraint’ under
this framework, for assuring those mechanisms. In many
cases, it will be most convenient to identifying logical pieces
of software to group together as ‘constraints’ for the purposes
of providing a collective absence mechanism (i.e. collective
behaviours are acceptable with respect to safety), with
detection and handling mechanisms provided for those
software failure modes that are distinctly resolvable for
treatment at the software level, or at higher levels of
abstraction, such as at the LRU or system level.

3 Claims Safety Assurance Level

This paper proposes a framework for assuring ‘constraints’
based around the concept of a Claims Safety Assurance Level

(CSAL). The CSAL provides direct quantification of the
extent to which the ‘constraint’ (refer to Section 2.4) is
assured based on a taxonomy of factors that might transpire to
violate the constraint. These factors include intended and
unintended behaviours, the degree to which the behaviours
are systematically accounted for, the certainty in sources of
faults that might violate the constraint, etc. The degree to
which these sources of violations are considered underpins
the definition or category of assurance. The CSAL levels are
presented in Table 1 (over page), along with their definition
and relationship to applicable claims.

The reader of this paper is encouraged to examine the content
of Table 1 before reading the following sub-sections, which
provide further elaboration on the motivation for the context
and structure of Table 1.

3.1 Systematically accounting for the intended and

unintended behaviours

The core idea behind claims assurance is providing a
quantification of the degree to which both the intended and
unintended behaviours of the ‘constraint’ are accounted for
with respect to safety. The extent to which there is
systematised coverage of potential sources of violations is a
key determiner in the level of assurance provided. The degree
to which assurance is achieved is distinguished by the amount
of uncertainty remaining that could lead to violation of the
constraint. Potential sources of violations of the ‘constraint’
might include faults with the ‘constraint’ that would lead to
its intended behaviours not being satisfied, circumstances that
would lead to the ‘constraint’ being invalid, or other
behaviours of the software or system that might interfere with
the ‘constraint’.

The uncertainty differences between the CSAL levels are
expressed as follows:

• the remaining uncertainty would unlikely lead to a
violation of the constraint under any circumstances
(CSAL 3)

• the remaining uncertainty would only lead to a violation
of the constraint under unexpected circumstances
(CSAL 2)

• the remaining uncertainty could lead to a violation of the
constraint, but this would not be expected under normal
operating conditions that would exercise the constraint
(CSAL 1)

Therefore, the substantiation of claims with respect to the
‘constraint’, and ultimately the provision of evidence
(covered later in this paper) are structured to bound the
uncertainty that the ‘constraint’ could be violated. Refer to
[ReM10] for a discussion on how layers of relatable
mechanisms contribute to bounding uncertainty. For CSALs,
the same concepts apply, but rather than layers of absence or
detection and handling mechanisms for ASALs, instead there
are layers of examination of potential source of confirmation
or violation of the constraint.

5

Claims
Safety
Assurance
Level
(CSAL)

Category Definition Guiding principles for the substantiation of
claims and provision of evidence with
respect to satisfaction of attributes of
software lifecycle products

Claims are to address suitability of:

CSAL 4
(not used)

Absolute
Assurance

Intended and unintended
behaviours of the absence or
detection and handling constraint
are absolutely assured with respect
to safety, such that there is no
uncertainty in behaviour

Not practicable (or affordable) to make this
argument compelling – Near Absolute
Assurance provides sufficient control of
the uncertainty

CSAL 3 Near
Absolute
Assurance

All reasonably practical and
effective steps have been taken to
systematically account for the
intended and unintended
behaviours of the absence or
detection and handling constraint
with respect to safety, such that the
remaining uncertainty would
unlikely lead to a violation of the
constraint under any circumstances

• Specified behaviours with respect to
the constraint

• Refined behaviours with respect to the
constraint

• Implementation behaviours with
respect to the constraint

• Introduced or generated behaviours
(e.g. from translation or code
generation toolsets) that may violate
the constraint

• Target Computer behaviours that may
violate the constraint

• Conditions or behaviours external to
the constraint, but internal to the
system, that may violate the constraint

• Conditions or behaviours external to
the system that may violate the
constraint

CSAL 2 Nominal
Assurance

Steps have been taken to
systematically account for the
intended functional behaviours of
the absence or detection and
handling constraint with respect to
safety, such that the remaining
uncertainty would only lead to a
violation of the constraint under
unexpected circumstances

• Specified behaviours with respect to
the constraint

• Refined behaviours with respect to
constraint

• Implementation behaviours with
respect to constraint

• Target Computer behaviours with
respect to the constraint

• Conditions or behaviours external to
the constraint, but internal to the
system, that may violate the constraint

CSAL 1 Limited
Assurance

Claims broadly account for the
intended functional behaviours of
the absence or detection and
handling constraint with respect to
safety, such that the remaining
uncertainty could lead to a
violation of the constraint, but this
would not be expected under
normal operating conditions that
would exercise the constraint

• Specified behaviours with respect to
the constraint

• Implementation behaviours with
respect to the constraint

CSAL 0 No
Assurance

No evidence exists to assure the
absence or detection and handling
constraint with respect to safety

No evidence

Table 1: Claims Safety Assurance Level (CSAL)

 6

3.2 Guiding principles for the substantiation of

claims

Table 1 also specifies guiding principles for the substantiation
of claims and provision of evidence with respect to the
satisfaction of attributes of software lifecycle products
(described further in Section 6). The intention of this column
is to capture the top level relationships between the potential
layers and sources of uncertainty and the associated
conditions under which this uncertainty may be a potential
source of confirmation or violation to the constraint. The
guiding principles for the substantiation of the claims with
respect to the constraint describe a set of claims that provides
a level of certainty consistent with the qualitative CSAL level
definition.

Subsections 3.2.1 through 3.2.7 summarise each of these
claim topics.

3.2.1 Specified behaviours with respect to

constraint

At the highest level, a set of behaviours must be specified for
the ‘constraint’ that captures the intended function of the
‘constraint’ in the system, taking into account whether the
‘constraint’ is applied at the software level, LRU level or
system level (see ASAL definition). These behaviours will be
a function of the circumstances under which the ‘constraint’
is necessary to achieve safety (e.g. initiating circumstances),
and the resultant behaviour to ensure a safe system response
to the initiating circumstances (e.g. the effects). Internally,
these behaviours should be consistent with each other, and the
behaviours should resist violation from external factors.

3.2.2 Refined behaviours with respect to the

constraint

As the specified behaviours at Section 3.2.1 are generally
specified at a level of abstraction commensurate with their
role at providing the ‘constraint’ at the necessary absence or
detection/handling layer (because at that level it is possible to
directly reason about system safety, and is unbiased by
implementation specifics) it is generally necessary for these
behaviours to be refined. The context to the refinement is the
levels of abstraction at which important technology specific
architectural properties and relationships can be accurately
specified. Hence the concept of refined behaviours is
introduced to account for the additional behavioural
refinements and the suitability of presenting evidence at this
level.

Like the specified behaviours, these refined behaviours will
be a function of the circumstances under which the
‘constraint’ is necessary to achieve safety, and the resultant
behaviour to ensure a safe response. However the context of
the refined behaviours is the level of abstraction at which they
are expressed, and no longer the ‘constraint’ layer level. For
example, software architectural behaviours and their
relationship to the ‘constraint’ are usually best reasoned about
as refined behaviours. Refined behaviours should be logically

equivalent to the specified behaviours, be consistent with
each other, and resist violation from external factors.

3.2.3 Implementation behaviours with respect to

the constraint

As the behaviours specified at both the top ‘constraint’ level
and refined levels are usually unable to address the specifics
of the implementing language (e.g. source code) and the
development environment, the implementation behaviours
must be accounted for with respect to the ‘constraint’.

Like the refined behaviours, the implementation behaviours
will be a function of the circumstances under which the
‘constraint’ is necessary to achieve safety, and the resultant
behaviour to ensure a safe response. However the context of
the implementation behaviours is the implementation
language and the chosen design. For example, software
language properties, including language constructs,
vulnerabilities, and their relationship to the ‘constraint’ are
usually best reasoned about as sources of violation to
implementation behaviours. Implementation behaviours
should be logically equivalent to the specified and refined
behaviours, be consistent with each other, and resist violation
from external factors.

3.2.4 Introduced or generated behaviours (e.g.

from translation or code generation toolsets)

that may violate the constraint

As a translation is inevitably required to produce executable
object code from the source code, it is necessary to account
for any additional behaviours introduced by the translation
and whether these additional behaviours might violate the
constraint. For example the behaviours of the run time
machine of various language implementations are one source
of potential violations that would require reasoning about
with respect to the constraint. Introduced or generated
behaviours should be logically equivalent to the specified,
refined and implementation behaviours, be consistent with
each other, and resist violation from external factors.

3.2.5 Target Computer behaviours that may

violate the constraint

The unavoidable execution of the implementation (i.e.
executable object code) on the target computer exposes the
implementation (source code) level behaviours of the
‘constraint’ to a potential set of violators caused by the target
computer. For example, the target computer might have
initialisation properties, memory management or arithmetic
handling behaviours that are incompatible with the intended
behaviour of the ‘constraint’. The result might be the
introduction of unintended implementation behaviours caused
by the target computer, or target computer behaviours that are
invalid with respect to the constraint. Target computer
behaviours should be logically equivalent to the specified,
refined and implementation behaviours, be consistent with
each other, and resist violation from external factors.

7

3.2.6 Conditions or behaviours external to the

constraint, but internal to the system, that

may violate the constraint

The consideration of conditions or behaviours external to the
constraint, but internal to the system, is intended to ensure
that all credible sources of violation of the constraint external
to the system are considered, such that the remaining
uncertainty would only lead to a violation of the constraint
under unexpected circumstances. The notion here is to
eliminate the factors that might violate the context of any of
the previous sets of the claims that would be caused by
incompatibility between behaviours of the system
components. For example, interrelated constraints that have
unacceptable interference might be a source of violation of the
‘constraint’.

3.2.7 Conditions or behaviours external to the

system that may violate the constraint

The consideration of conditions or behaviours external to the
system is intended to ensure that all credible sources of
violation of the constraint external to the system are
considered, such that the remaining uncertainty would
unlikely lead to a violation of the constraint under any
circumstances. The notion here is to eliminate the factors that
might violate the context of any of the previous sets of the
claims. For example, the system operating environment
(including failure environment) might be a source of violation
of the ‘constraint’.

4 Relationship between ASALs and CSALs

The ASAL concept, discussed in [ReM10], uses layers of
absence or detection/handling mechanisms to provide
assurance that systematic faults do not lead to unacceptable
failure conditions. The ASAL quantifies the number of
systematic faults that are necessary for the failure condition of
a given severity to be realised.

Each ‘constraint’ as it is defined in this paper will be
associated with a specific layer of absence and
detection/handling mechanisms in the context of the system
or software architecture. Therefore, the degree of claims
assurance, as expressed by the CSAL is related to the role of
the constraint in the architecture, as expressed by the ASAL.
Implicitly, CSAL is also related to the severity of failures
associated with the system through the ASAL definition.

Table 2 describes the relationship between ASAL and
CSALs. The basic principle behind the definition is that the
CSAL is commensurate with the ASAL, noting that the
ASAL is already defined in terms of the severity of failures of
the system. Therefore, the stronger the architectural necessity
for the system to resolve systematic faults, the stronger the
motivation for claims assurance and evidence. While one
might argue that claims assurance might also be used to
provide additional strength for one layer of mechanism to
mitigate the need for one or more requisite layers, this is not
the intent of this approach. The architectural benefits of
resolving faults at differing layers of abstraction and the
impact of this on bounding uncertainty are an important facet
of this framework, which should not be overridden by the
properties of claims assurance.

Additional
Detection/Handling
Mechanisms

ASAL

1st Absence/Detection
and Handling
Mechanism

2nd Detection/Handling
Mechanism

3rd Detection/Handling
Mechanism

Potentially
Interfere1

Can’t
Interfere2

ASAL3 Software
Level

CSAL3 Partitioned
Software
Level# or
LRU Level*

CSAL3 LRU Level*
or System
Level

CSAL3 CSAL2$ CSAL0

ASAL2 Software
Level

CSAL2 Partitioned
Software
Level# or
LRU Level
or System
Level

CSAL2 CSAL2$ CSAL0

ASAL1 Software
Level OR
LRU Level
OR System
Level

CSAL1 Not Required

Not Required

CSAL1 CSAL0

1 Potentially interfere with subsequent detection and handling
2 Can’t Interfere with subsequent detection and handling
must be independent of the initiating failure and the 1st Absence / Detection and Handling mechanism (i.e. through a
partitioning mechanism
* must be independent of the preceding detection/handling mechanism
$ additional mechanisms behaviour must be assured to reason that it won’t interfere with the main mechanisms

Table 2: ASAL to CSAL relationships

 8

Recognising that some systems might include additional
layers of absence or detection/handling mechanisms (over and
beyond the requisite layers); Table 2 also defines the CSAL
associated with additional layers. The key factor in specifying
the CSAL for addition layers is the extent to which the
additional layer might potentially interfere with the required
layers.

Careful consideration is required when assigning layers of
detection/handling mechanism as either the primary
mechanisms, or the additional mechanisms. Depending on the
layer’ role in the architectural hierarchy of fault
detection/handling, some mechanisms might be more suitable
defined as primary layers (and subject to non-reduced claims
assurance) rather than additional layers due to their potential
for interference.

5 Linking Claims Assurance to Evidence

Section 3.2 introduced the guiding principles for the
substantiation of claims. Specifically, the following were
described:

• Specified behaviours with respect to the constraint

• Refined behaviours with respect to the constraint

• Implementation behaviours with respect to the constraint

• Introduced or generated behaviours (e.g. from translation
or code generation toolsets) that may violate the constraint

• Target Computer behaviours that may violate the
constraint

• Conditions or behaviours external to the constraint, but
internal to the system, that may violate the constraint

• Conditions or behaviours external to the system that may
violate the constraint

Each of these claim sets, in conjunction with the CSAL
benchmark for intended behaviours, unintended behaviours
and uncertainty of the ‘constraint’, sets the expectations for
the provision of evidence with respect to the ‘constraint’.

This section further examines how the requirements for the
provision of evidence with respect to the ‘constraint’ might be
established in this framework based on these guiding
principles.

5.1 Associating Attributes of Software Lifecycle

Products with Claims

If the typical software lifecycle products are examined (noting
that at this point it doesn’t matter if the lifecycle model is
waterfall, spiral, etc. because holistically the individual
lifecycle products are similar), it is evident that the typical
lifecycle products include:

• requirements

• refined and design requirements (perhaps at various
levels)

• source code (in one or more languages)

• executable object code / binary code

• verification results of executable object code with respect
to:

o source code

o refined and design requirements

o requirements

• validation results of:

o executable object code

o source code

o refined and design requirements

o requirements

Each of these products is generally self standing in its
physical definition. For example requirements are usually
described in a Software Requirements Specification (SRS) or
similar artefact, refined requirements are often captured in
subordinate SRS parts, or in the Software Design Description
(SDD), Interface Design Document (IDD), etc.

Therefore, it is possible to specify attributes of each lifecycle
product (i.e. a set of outcomes associated with the lifecycle
product) that have direct relevance to the claims proposed in
Section 3.2. Each of these attributes will also have a general
alignment (and commensurate fidelity) to specific evidence
types, which can be exploited in providing evidence
assurance.

This paper proposes that attributes based on outcomes/results
of software lifecycle products (rather than the techniques or
methods that produced the results) can be defined as a basis
of an assurance framework.

6 Attributes of Software Lifecycle Products

Annex A lists each of the necessary attributes, details the
impact of the attribute not being satisfied, and specifies the
relationship to the CSAL. The following paragraphs elaborate
on the key principles and reasoning used in establishing the
attributes and expressing their relationship to the CSAL.

6.1.1 Coverage of properties relevant to assuring

the constraint

Each of the attributes was determined by ensuring that each
potential source of violation with respect to specified
requirements, refined requirements, implemented
requirements, target computer, executable object code, etc, in
the context of the specific lifecycle product, had a set of
attributes that provides coverage of:

• requirements validity

• requirements satisfaction

• requirements traceability

9

The observant reader will note that many of the attributes
share a striking resemblance to the objectives of RTCA/DO-
178B. There is some truth in this observation, as many of the
attributes have been specified consistently with established
DO-178B terminology, however the key differences are as
follows:

• in this framework they are referred to as attributes of
software lifecycle products – which differs in
interpretation from DO-178B objectives;

• each of the attributes in this framework is with respect to
the ‘constraint’ being considered – in DO-178B the
objectives relates to the entirety of the software;

• each of the attributes is organised in a set with respect to a
software lifecycle product (i.e. with respect to evidence) –
in DO-178B the objectives are organised around software
lifecycle phases and integral processes;

• each of the attributes is focussed on behaviours of the
software with respect to the constraint – DO-178B has
objectives related entirely to process, such as the planning
objectives; and

• additional attributes have been developed to address
behavioural interferences (or non-interference as should
be the goal) between constraints.

6.1.2 Discriminating tolerability

For each attribute to CSAL relationship expressed at Annex
A, a measure of the tolerability of not satisfying the attribute
is presented. Three levels of tolerability are used: Intolerable,
Constrained and Tolerable. These levels are elaborated further
in Section 7.

The tolerability of each attribute with respect to the CSAL is
inferred by:

• application of the guiding principles specified in Table 1
to each criteria,

• the impact of not satisfying the attribute, as listed at
Annex A, and

• consideration of accounting for intended behaviours,
unintended behaviours and uncertainty in behaviours.

The expression of tolerability can be broadly partitioned into
two categories, those that are specified in a binary fashion
(e.g. Intolerable – Tolerable) and those that are specified in a
graduated fashion (Intolerable – Constrained – Tolerable).
The binary specification is used when assurance of an
attribute is clearly either achieved or not, and that any
graduation in assurance has little meaning with respect to the
constraint. Attributes related to requirements traceability are a
good example of a binary attribute, as there is little purpose to
establishing traceability to products for which no further
properties are going to be established (for lower levels of
assurance). For attributes where the graduation is less
explicit, the graduated specification is used, permitting the
developer to express arguments about the ‘tolerability of

limitations’ with respect of the assurance of the specific
attribute.

6.2 The inherent argument in claims and

attributes

Inherently Annex A provides a template (pattern) software
safety case for each ‘constraint’ based on the extent to which
potential violations of the ‘constraint’ could be tolerated.
When coupled with the tolerability of limitations approach
described in Section 7, this framework provides explicitness
in the top and bottom level claims of a software safety case,
along with the inherent relationships of how these claims
combine.

The advantage of this approach is that there is inherent
consistency in software safety cases without unduly limiting
or constraining the software products. It also ensure the
emphasis is on the software products, and their evidence,
without burdening the developer with the difficultly of
architecting holistically unique software safety cases for each
development.

7 Tolerability of Limitations

For each attribute to CSAL relationship in Annex A, a
measure of the tolerability of limitations to not satisfying the
attribute is presented. Tolerability is expressed as either
Intolerable, Constrained or Tolerable, which are described by
the ESAL concept.

[Wea03] describes two properties between related claims and
evidence types:

• Relevance (directness and coverage)

• Trustworthiness

At an evidence level, relevance (directness and coverage) can
be argued distinctly from trustworthiness. This is because,
relevance is to do with the strength of the result of a
technique or methods with respect to an associated attribute
(and ultimately the claim being made) of the software
lifecycle product, whereas trustworthiness is the extent to
which the results of the evidence are correct. This distinction
is reflected in the ESAL concept.

7.1 ESAL concept

This paper proposes a framework that includes the concept of
an Evidence Safety Assurance Level (ESAL). The ESAL
provides a direct quantification of the tolerability of
limitations to assuring the applicable attribute of the software
lifecycle product. The ESAL serves two functions. The first is
to set benchmarks for the importance of specific attributes in
assuring the specific ‘constraint’, as disclosed at Annex A.
The second is to provide qualitative argument prescriptions
(i.e. benchmarks for argument construction based on evidence
claims) for the:

• relevance of evidence (and the combination of methods or
techniques used to present evidence) with respect to the

 10

attribute of the software lifecycle product in the context of
the constraint,

• trustworthiness of the evidence (i.e. to what extent can the
results of the evidence be tolerated to be incorrect?), and

• the outcome of the evidence (i.e. what the evidence
actually shows?) to ensure that the presence of counter
evidence is appropriately treated.

Three ESALS are proposed as presented in Table 3.

Tolerability of
Limitations to
Assuring Attribute

Relevance of Evidence Trustworthiness of Evidence Results of Evidence

Intolerable (ESAL3)
– limitations in

evidence would be

intolerable

No limitations to the collective
relevance of the method or
methods’ with respect to the
attribute

Limitations of each method or
technique are systematically
identified and treated by the
application of complementary
methods and techniques.

No limitations to the evidence’s
trustworthiness with respect to
the attribute.

Limitations of the
trustworthiness of evidence are
systematically identified and
treated by the application of
appropriate competencies,
reviews and inspections, and
independence.

The results of the method or
methods provides evidence of
satisfying the attribute AND
there is no counter evidence or
potential source (uncertainty) of
counter evidence to satisfying
the attribute

Constrained
(ESAL2) –
limitations in

evidence would be

tolerable provided

those limitations are

constrained with

respect to relevance,

trustworthiness and

results

Constrained limitations to the
method/s relevance with respect
to the attribute

Limitations of each method or
technique are systematically
identified and treated where
practicable by the application of
complementary methods and
techniques. Non-treatment of a
limitation should not introduce
uncertainty grossly
disproportionate to the limitation
such that it would likely lead to a
violation of the constraint

Constrained limitations to the
evidence’s trustworthiness with
respect to the attribute.

Limitations of the
trustworthiness of evidence are
systematically identified and
where practicable treated by the
application of appropriate
competencies, reviews and
inspections, and independence.

Non-treatment of a limitation
should not introduce uncertainty
grossly disproportionate to the
limitation such that it would like
lead to a violation of the
constraint

Results of the method or
methods provides evidence of
satisfying the attribute AND
counter evidence to satisfying
the attribute is limited such that
it would not likely lead to
violation of the constraint

Uncertainty is constrained such
that counter evidence is unlikely.

Tolerable (ESAL1) –
limitations in

evidence would be

tolerable

Notable limitations to the
method or method’s relevance
with respect to the attribute.

Limitations of each method or
technique may not be
systematically identified and
treated where practicable by the
application of complementary
methods and techniques.

Notable limitations to the
evidence’s trustworthiness with
respect to the attribute.

Results of the method or
methods may provide evidence
of non-satisfaction of the
attribute and/or violation of the
constraint OR counter evidence
indicates possible violation of
the constraint OR uncertainty
may be substantial

Table 3: ESAL Definitions

7.2 Relevance of Evidence

[Wea03] states that relevance (including both directness and
coverage) is the “extent to which an item of evidence directly
fulfils or entails the requirement for evidence.” Thus the
relevance of the evidence (and the combination of methods or
techniques used to present the evidence) with respect to the
attribute of the software lifecycle product in the context of the
constraint, is based on identifying and treating any limitations
to the directness and coverage of evidence with respect to the
attribute.

As almost all methods and techniques have limitations to the
directness and extensiveness of the evidence produced by the
method or technique, the framework is explicit in identifying
and addressing these limitations. These limitations exist
because almost all methods and techniques are defined based
on a model of the problem they are intended to solve, and
almost invariably, this model has limitations. An example of
this is the application of formal methods to proving
behaviours about software. Formal methods are very
powerful at showing the correctness and internal consistency
of a formally defined model, but to make the models
manageable, associated behaviours (e.g. target computer

11

behaviours) are almost always simplified, or even left out. For
this reason, formal models are often used in a way which is
complementary to testing on the target computer. Likewise
there are limitations to testing, such as the impost to
exhaustively test all combinations of input and output data, or
states for problems that suffer state explosion, and thus
complementary approaches (such as formal methods and
static code analysis) are necessary to overcome the limitations
of testing.

Therefore the ESAL proposes an approach based on being
explicit in the treatment of the limitations of each method or
technique. This is achieved by ensuring the assurance
framework systematically identifies and treats the limitation
by the application of complementary methods and techniques.
Depending on the tolerability of limitations in the evidence,
the extent to which these limitations are treated varies. The
framework defines three general tolerability categories
(ESAL 1 through 3), which are based on the extent to which:

• the limitations of each method or technique are
systematically identified and treated where practicable by
the application of complementary methods and
techniques; and

• non-treatment of a limitation should not introduce
uncertainty disproportionate to the limitation such that it
would likely lead to a violation of the constraint.

The higher the ESAL, the less any limitations are tolerable.
The key measure that separates the tolerability is the extent to
which a limitation might introduce uncertainty in the
applicability of the results.

7.3 Trustworthiness of Evidence

[Wea03] states that trustworthiness is the “perceived ability to
rely on the character, ability, strength or truth of the

evidence.” Thus the trustworthiness of evidence is
characterised by the extent to which the results of the
evidence be tolerated to be incorrect.

Unfortunately, compared with the relevance of evidence and
the results of evidence, the trustworthiness of evidence is
highly subjective and derivative of human involvement in the
production of evidence. Therefore it is much more difficult to
develop an approach that parallels the approach for ‘relevance
of evidence’ and that reasons about the limitations of human
involvement in developing evidence, in reviews and
inspections, and the impact of independence being
systematically identified and treated. This is because the
limitations might vary significantly depending on the specific
people involved throughout – something that is exceptionally
difficult to use as any basis of comparison with benchmarks,
even within competency frameworks.

Therefore, trustworthiness of evidence may be an aspect of
the framework that benefits from an increased level of
prescription over other parts of the framework.

Tables 4 and 5 presents an example approach as to how the
regulator might set benchmarks for measures of
trustworthiness. This approach has been derived from an
analysis of evidence trends from real world systems, such as
those described in [ReM10]. The approach is to intended to
set benchmarks that take into account the variability of human
involvement and thus avoid the need to systematically model
the resultant limitations of human involvement, which are
exceptionally hard to model. Conceptually, this approach is
not different to what current assurance standards prescribe.

Reviews and Inspections (Minimum) Trustworthiness Developer

Competency

(Minimum)
Approach Competency Independence

Mechanistic

Independence

Conceptual

Independence

ESAL3 –
Intolerable

Expert Systematic
Inspection
OR
Criteria
Review%

Expert Organisational
OR
Intellectual*

None OR
Applied (Expert,
Organisational)*

None OR
Applied
(Expert,
Organisational)*
%

ESAL 2 -
Constrained

Practitioner Criteria
Review OR
Adhoc
Review#

Expert OR
Practitioner#

Peer None OR
Applied (Expert,
Intellectual)#

None OR
Applied
(Expert,
Intellectual)#

ESAL 1 –
Tolerable

Supervised
Practitioner

Adhoc
Review

Practitioner None None None

ESAL 0 – No
Assurance

No more than
Supervised
Practitioner

None N/A None None None

Table 4: Trustworthiness

 12

% - Conceptual Independence de-obligates the requirement for the review and inspection to be a Systematic Inspection (which
inherently contains conceptual independence)
* - Organisational Independence of Mechanistic Independence or Conceptual Independence de-obligates the requirement for the
review and inspection to have Organisational Independence (as organisational independence is achieved mechanistically or
conceptually).
- Intellectual Independence of Mechanistic Independence or Conceptual Independence de-obligates the requirement for the review
and inspection to have Intellectual Independence (as intellectual independence is achieved mechanistically or conceptually).
Developer Competency – Expert, Practitioner, Supervised Practitioner

Reviews and Inspections – Systematic Inspection, Criteria Review, Adhoc Review

 Competency – Expert, Practitioner, Supervised Practitioner

Independence – Organisational Independence, Intellectual Independence, Peer Independence, None

Mechanistic Independence – Applied, None

Conceptual Independence – Applied, None

Note – organisational independence assumes intellectual independence

No independent approach (review and inspection, mechanistic, or conceptual) is ever applied by a lesser competency.

Table 5: Trustworthiness table notes and definitions

7.4 Results of Evidence

In addition to the relevance and trustworthiness of the
evidence, the final property of evidence is the results of the
evidence itself. The results of the evidence are important for
several reasons, as follows:

• evidence may provide positive evidence of the behaviour
of the software being appropriate with respect to the
constraint and the safety of the system,

• evidence may provide direct counter evidence of a
behaviour of the software that would violate the constraint
with respect to safety; or

• evidence may disclose uncertainty based counter evidence
(bounded or unbounded) which may raise questions with
respect to the relevance and trustworthiness arguments.

Incorporating the results of evidence into the framework also
avoids a common misconception that an absence of evidence
infers evidence of absence of faults in a system.

Two types of counter evidence have been identified above –
direct counter evidence or uncertainty based counter
evidence. For systems with severe failure modes, uncertainty
based counter evidence is equally as limiting as direct counter
evidence, as either are not positive evidence of appropriate
behaviours. For systems with less severe failure modes,
reasoning about uncertainty (through tolerability of
limitations in attributes being satisfied) is built into the
framework. Therefore, the focus changes to ensuring the
uncertainty would not likely lead to a presence of a violation
to within some level of confidence.

8 Relationship to the Assurance Deficit

The ‘tolerability of limitations’ approach proposed in this
paper has similarities to the Assurance Deficit concept also
being proposed by the University of York, albeit developed
independently. The ‘tolerability of limitations’ approach has
several key advantages approach over the Assurance Deficit
approach. Namely the ‘tolerability of limitations’ approach

addresses several key limitations of the Assurance Deficit
concept (as it is currently described). These are as follows:

• ‘tolerability of limitations’ sets benchmarks for where an
assurance deficit would be tolerable or intolerable – and is
explicit in the rationale behind the tolerability;

• ‘tolerability of limitations’ provides fidelity of assurance
claims and attributes of software products at a level that is
sufficiently low to provide a clear taxonomy of software
evidence; and

• ‘tolerability of limitations’ clearly distinguishes between
attributes with binary tolerability constraints
(predominantly traceability, configuration consistency,
and development of requirements for behaviours) and
those where there is greater potential for justified
tolerability in satisfaction.

As the ‘tolerability of limitations’ and Assurance Deficit
concepts are being developed independently, further
examination of the strengths and weaknesses of these
approaches is an ongoing part of this research. The authors
note that the Assurance Deficit approach is intended to be
completely general (i.e. independent of domain or
application), whereas this framework proposed in this paper
has the benefit of focusing more narrowly on avionics
systems with well-defined architectural approaches, which
gives the basis for the ASAL foundation for this work.

9 Application to software with limited design

disclosure

One important property of an assurance framework is that it
must be cognisant that the context to its application may not
always be for a new development. Frequently, an existing
software system may be examined for employment in a new
context or application. Therefore, an additional property of an
assurance framework is seamless application to these
circumstances.

Unlike assurance frameworks that apply to the whole piece of
software (e.g. DO-178B), the framework described in this
paper targets those behaviours that relate to the specific

13

architectural ‘constraints’ and the mechanisms in the software
that might assist with assuring provision of the ‘constraints’
behaviours under specified circumstances. Therefore, a major
advantage of this assurance framework is that complete
design disclosure is probably not required in some instances.
Instead, targeted questions can be posed to the developer
(who has not agreed to relinquish the intellectual property
rights, or has federal government arms restrictions in the case
of military developments) to build a case against the attributes
of this framework. These targeted questions will almost
always relate to fault detection and handling, rather than
capability, which improves the circumstances in the military
aviation context.

For agencies that elect to retrospectively generate safety
evidence, such as through analysis of source code, or reverse
engineering of binary code, this framework is also
advantageous. It permits those important behaviours for
safety to be examined as primary focus, rather than requiring
comprehensive re-engineering of a totality of evidence. The
framework will help these agencies determine when the
uncertainty becomes sufficiently bounded, and thus provides
of means of determining when and if it is possible to bound
the uncertainty, and if these limitations would be tolerable.

10 Summary

This paper has extended earlier research (refer to [ReM10])
that targets limitations with the current standards’ frameworks
with respect to assuring against systematic faults and failures.
[ReM10] proposed an assurance framework that provides a
direct measure of the extent of a system’s fault tolerance
against systematic faults and failures. Central to the assurance
framework was the concept of an Architectural Safety
Assurance Level (ASAL) which was a product measure of the
number of systematic failures a system is resilient against in a
given context.

Furthering the earlier research, this paper proposes a Claims
Safety Assurance Level (CSAL) and Evidence Safety
Assurance Level (ESAL) concept that is compatible with the
ASAL concept. The core idea behind claims assurance is to
ensure that any assurance levels used for articulating claims
assurance in the context of the ASAL have a specific product
safety focus (i.e. each and every assurance level has a product
meaning, not just a top-down or bottom up process
interpretation). For evidence assurance, the core idea is to
provide a framework that is explicit in a product sense of the
‘tolerability of limitations’ in satisfying the objectives

articulated in the framework. The ‘tolerability of limitations’
is intended to be a product behavioural measure of the
‘tolerability’ of either known product shortfalls/limitations, or
limitations/shortfalls in the provision of suitable evidence.

Further evaluation of the concepts and approaches described
by this paper and [ReM10] are being undertaken as part of
this body of research.

11 References

The following documents, papers and publications are
referenced throughout this paper. A number of these
documents are not available in the public domain for
propriety or confidentiality reasons. Readers wishing to seek
further information should direct their queries to the author of
this paper, or the relevant standards body.

 [DO178B] RTCA Inc., “RTCA/DO-178B: Software
Considerations in Airborne Systems and Equipment
Certification”, Washington D.C.: RTCA Inc., 1992.

 [JTM07] D. Jackson, M. Thomas, L Millet, Editors,
“Software for Dependable Systems: Sufficient Evidence?”,
Committee of Certifiably Dependable Software Systems,
National Research Council, National Academy of Sciences,
USA, 2007.

 [McD01] J.A. McDermid, “Software Safety: Where’s the
Evidence?”, Department of Computer Science, University
of York, 2001.

[McK06] J. McDermid, T. Kelly, “Software in Safety Critical
Systems: Achievement and Prediction”, Nuclear Future,
Volume 03, No. 03, 2006.

 [NTS06] National Transportation Safety Board, “Safety
Report on the Treatment of Safety-Critical Systems in
Transport Airplanes”, Safety Report NTSB/SR-06/02,
Washington, D.C., USA, 2006.

[ReM10] D.W. Reinhardt, J.A. McDermid, “Assuring
Against Systematic Faults Using Architecture and Fault
Tolerance in Aviation Systems”, Department of Computer
Science, University of York, to be presented (paper
accepted) at the Improving Systems and Software
Engineering Conference 23 – 26 August 2010.

[Wea03] R.A. Weaver, “The Safety of Software –
Constructing and Assuring Arguments”, Department of
Computer Science, University of York, 2003.

 A-1

ANNEX A - ATTRIBUTES OF SOFTWARE LIFECYCLE PRODUCTS

Specified Constraint Level Requirements

(specified at the level of the architectural constraint, and at the level at which requirements are allocated to software)

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Developed and Defined Specified Constraint Level Requirements for
constraint {constraint} do not exist – therefore
there is no basis for the relevant behaviour
existing in the software

Intolerable Intolerable Intolerable Tolerable

Valid – Accurate /
Consistent / Complete

Specified Constraint Level Requirements for
constraint {constraint} exists but the specification
of the constraint is invalid – therefore, there is
potential for other lifecycle products or
translations to refine or implement the behaviour
erroneously

Intolerable Constrained Constrained Tolerable

Unambiguous / Precise Specified Constraint Level Requirements for
constraint {constraint} exists but the specification
of the behaviour is ambiguous and/or imprecise –
therefore, there is potential for other lifecycle
products or translations to misinterpret the
constraint

Intolerable Constrained Constrained Tolerable

Satisfiable / Verifiable Specified Constraint Level Requirements for
constraint {constraint} exists but the behaviour
cannot be verified (analytically or empirically) –
therefore verification evidence for the constraint
will not exist or be irrelevant

Intolerable Constrained Constrained Tolerable

Compatible with Target
Computer

Specified Constraint Level Requirements for the
constraint {constraint} exists, but the constraint is
not compatible with the target computer –
therefore, the specification of the constraint is
unsatisfiable and additional behaviours that
violate the constraint may be initiated from the
target computer

Intolerable Constrained Constrained Tolerable

Traceable to Lower
Level Requirements
(Refined Requirements

or Low Level

Requirements)

Specified Constraint Level Requirements for the
constraint {constraint} exists, but there is no
traceability to a lower level refinement of the
behaviour – therefore, there is no traceable basis
for the refinement of the relevant Specified
Constraint Level Requirements existing in the
software design or code

Intolerable Intolerable Tolerable Tolerable

Inadequacies in
Specified Constraint
Level Requirements are
identified and resolved

Compliance, robustness, traceability and
verification may identify inadequacies in
Specified Constraint Level Requirements –
therefore the behaviours implemented by the
software may not be consistent with the
constraint

Intolerable Intolerable Constrained Tolerable

 A-2

Refined Abstract Level Requirements (optional in totality)

(refined from Specified Constraint Level Requirements, while still being abstract from Low Level Requirements, and used to

provide a means making claims from evidence that cannot be produced directly against Specified Constraint Level

Requirements or Low Level Requirements)

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Developed and Defined Refined Abstract Level Requirement for
constraint {constraint} does not exist – therefore
there is no basis for the relevant behaviour
existing in the software

Intolerable Intolerable Tolerable Tolerable

Traceable to Higher
Level Requirements

(Specified Constraint

Level Requirements or

high level Refined

Abstract Level

Requirements)

Refined Abstract Level Requirements exist, but
there is no traceability to the higher level
Requirements associated with the constraint
{constraint} – therefore, the behaviours specified
by this Refined Abstract Level Requirements may
not be consistent with the constraint

Intolerable Intolerable Tolerable Tolerable

Valid – Accurate,
Consistent, Complete

Refined Abstract Level Requirement for
constraint {constraint} exists but the specification
of the constraint is invalid – therefore, there is
potential for other lifecycle products or
translations to refine or implement the behaviour
erroneously

Intolerable Constrained Tolerable Tolerable

Satisfiable / Verifiable Refined Abstract Level Requirement for
constraint {constraint} exists but the behaviour
cannot be verified (analytically or empirically) –
therefore verification evidence for the constraint
will not exist or be invalid

Intolerable Constrained Tolerable Tolerable

Unambiguous / Precise Refined Abstract Level Requirements for
constraint {constraint} exists but the specification
of the behaviour is ambiguous and/or imprecise –
therefore, there is potential for other lifecycle
products or translations to misinterpret the
constraint

Intolerable Constrained Tolerable Tolerable

Compatible with Target
Computer

Refined Abstract Level Requirement for the
constraint {constraint} exists, but the constraint is
not compatible with the target computer –
therefore, the specification of the constraint is
unsatisfiable and additional behaviours that
violate the constraint may be initiated from the
target computer

Intolerable Constrained Tolerable Tolerable

Traceable to Lower
Level Requirements
(lower level Refined

Abstract Level

Requirements or Low

Level Requirements)

Refined Abstract Level Requirement for the
constraint {constraint} exists, but there is no
traceability to a lower level refinement of the
behaviour – therefore, there is no basis for the
refinement of the relevant Abstract Level
Requirement existing in the software design

Intolerable Intolerable Tolerable Tolerable

Compliant with Higher
Level Requirements
(Specified Constraint

Level Requirements or

high level Refined

Abstract Level

Requirements)

Refined Abstract Level Requirements exist for
the constraint {constraint}, but this abstraction of
requirements are not compliant with the Higher
Level Requirements – therefore, the behaviours
specified by the Refined Abstract Level
Requirements are not consistent with the
constraint

Intolerable Constrained Tolerable Tolerable

 A-3

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Robust with Higher
Level Requirements
(Specified Constraint

Level Requirements or

high level Refined

Abstract Level

Requirements)

Refined Abstract Level Requirements exist for
the constraint {constraint}, but this abstraction of
requirements is not robust with the Higher Level
Requirements – therefore, the behaviours
specified by the Refined Abstract Level
Requirements may not be resilient to sources of
faults that might violate the constraint

Intolerable Constrained Tolerable Tolerable

Inadequacies in
Refined Abstract Level
Requirements are
identified and resolved

Compliance, robustness, traceability and
verification may identify inadequacies in Refined
Abstract Level Requirements – therefore the
behaviours implemented by the software may not
be consistent with the constraint

Intolerable Constrained Tolerable Tolerable

 A-4

Low Level Requirements

(specified at a level that no additional refinement is required to develop source code and that all behaviours of the source code

are described by the Low Level Requirements)

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Developed and Defined Low Level Requirements for constraint
{constraint} do not exist – therefore there is no
basis for relevant behaviour existing in software

Intolerable Intolerable Tolerable Tolerable

Traceable to Higher
Level Requirements
(Specified Constraint

Level or Refined

Abstract Level)

Low Level Requirements exist, but there is no
traceability to Higher Level Requirements
associated with {constraint} – therefore,
behaviours specified by Low Level Requirements
may not be consistent with the constraint

Intolerable Intolerable Tolerable Tolerable

Valid – Accurate /
Consistent / Complete

Low Level Requirements for constraint
{constraint} exist but the specification of the
constraint is invalid – therefore, there is potential
for other lifecycle products or translations to
refine or implement the behaviour erroneously

Intolerable Constrained Tolerable Tolerable

Satisfiable / Verifiable Low Level Requirements for constraint
{constraint} exist but the behaviour cannot be
verified (analytically or empirically) – therefore
verification evidence for the refinement of the
constraint will not exist or be invalid

Intolerable Constrained Tolerable Tolerable

Unambiguous / Precise Low Level Requirements for constraint
{constraint} exist but the specification of the
behaviour is ambiguous or imprecise – therefore,
there is potential for other lifecycle products or
translations to misinterpret the constraint

Intolerable Constrained Tolerable Tolerable

Compatible with Target
Computer

Low Level Requirements for the constraint
{constraint} exist, but the constraint is not
compatible with the target computer – therefore,
therefore, the specification of the constraint is
unsatisfiable and additional behaviours that
violate the constraint may be initiated from the
target computer

Intolerable Constrained Tolerable Tolerable

Traceable to Source
Code

Low Level Requirements for the constraint
{constraint} exist, but there is no traceability to
an implementation level refinement of the
behaviour – therefore, there is no basis for the
refinement of the Low Level Requirements
existing in the software source code

Intolerable Intolerable Tolerable Tolerable

Compliant with Higher
Level Requirements
(Specific Constraint

Level Requirements or

Refined Abstract Level

Requirements)

Low Level Requirement exist for the constraint
{constraint}, but the low level requirements are
not compliant with the Higher Level
Requirements – therefore, the behaviours
specified by the Low Level Requirements are not
consistent with the constraint

Intolerable Constrained Tolerable Tolerable

Robust with Higher
Level Requirements
(Specific Constraint

Level Requirements or

Refined Abstract Level

Requirements)

Low Level Requirements exist for the constraint
{constraint}, but are not robust with the Higher
Level Requirements – therefore, therefore, the
behaviours specified by the Low Level
Requirements may not be resilient to sources of
faults that might violate the constraint

Intolerable Constrained Tolerable Tolerable

Inadequacies in Low
Level Requirements are
identified and resolved

Compliance, robustness, traceability and
verification may identify inadequacies in Low
Level Requirements – therefore the behaviours
implemented by the software may not be
consistent with the constraint

Intolerable Constrained Tolerable Tolerable

 A-5

Software Source Code

(compiler or assembler readable code)

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Developed and Defined Source Code for constraint {constraint} does not
exist – therefore no basis for the relevant
behaviour existing in the software

Intolerable Intolerable Intolerable Tolerable

Traceable to Low Level
Requirements

Source Codes exists, but there is no traceability to
the Low Level Requirements associated with the
constraint {constraint} – therefore, the
behaviours implemented by the Source Code may
not be consistent with the constraint

Intolerable Intolerable Tolerable Tolerable

Valid – Accurate /
Consistent / Complete

Source Code for the constraint {constraint} exist
but the implementation of the constraint is
incorrect – therefore, the executable object code
will contain an erroneous behaviour

Intolerable Intolerable Constrained Tolerable

Satisfiable / Verifiable Source Code for constraint {constraint} exists but
the behaviour cannot be verified (analytically or
empirically) – therefore verification evidence for
the implementation of the constraint will not exist
or be invalid

Intolerable Intolerable Constrained Tolerable

Unambiguous / Precise Source Code for constraint {constraint} exists but
the implementation of the behaviour is
ambiguous or imprecise – therefore, there is
potential for implementation of other software
components or compiler/linker translations to
misinterpret the constraint and introduce
vulnerabilities that violate the constraint

Intolerable Intolerable Constrained Tolerable

Compatible with Target
Computer

Source Code for the constraint {constraint}
exists, but the constraint is not compatible with
the target computer – therefore, the
implementation of the constraint is invalid and
additional behaviours that violate the constraint
may be initiated from the target computer

Intolerable Constrained Constrained Tolerable

Traceable to Executable
Object Code

Source Code for the constraint {constraint}
exists, but there is no traceability to a target
computer level refinement of the behaviour in
object code – therefore, there is no basis for the
complete refinement of the relevant Source Code
existing in the Executable Object Code

Intolerable Constrained Tolerable Tolerable

Compliant with Low
Level Requirements

Source Code exists for the constraint
{constraint}, but the Source Code is not
compliant with the Low Level Requirements –
therefore, the behaviours implemented by the
Source Code are not consistent with the
constraint

Intolerable Constrained Tolerable Tolerable

Robust with Low Level
Requirements

Source Code exist for the constraint {constraint},
but are not robust with the Higher Level
Requirements – therefore, the behaviours
implemented by the software may not be resilient
to sources of faults that might violate the
constraint

Intolerable Constrained Constrained Tolerable

Inadequacies in Source
Code are identified and
resolved

Compliance, robustness, traceability and
verification may identify inadequacies in Source
Code – therefore the behaviours implemented by
the software may not be consistent with the
constraint

Intolerable Intolerable Constrained Tolerable

 A-6

Executable Object Code

(target computer readable binary code)

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Produced Executable Object Code for constraint
{constraint} does not exist – therefore no basis
for the refinement of the relevant behaviours of
the constraint existing in the software

Intolerable Intolerable Intolerable Tolerable

Integrated onto Target
Computer

Executable Object Code for constraint
{constraint} exists, but it didn’t integrate/load
onto the target computer – therefore, there is no
basis for the refinement of the relevant
behaviours of the constraint existing in the
software on the target computer

Intolerable Intolerable Intolerable Tolerable

Compatible with Target
Computer

Executable Object Code for the constraint
{constraint} exists, but the constraint is not
compatible with the target computer – therefore,
the implementation of the constraint is invalid
and additional behaviours that violate the
constraint may be initiated from the target
computer

Intolerable Intolerable Constrained Tolerable

Traceable to Source
Code

Executable Object Code exists, but there is no
traceability to the Source Code associated with
the constraint {constraint} – therefore, the
behaviours implemented by the Executable
Object Code may not be consistent with the
constraint

Intolerable Constrained Tolerable Tolerable

Compliant with
Specified Constraint
Level Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not
compliant with the Specified Constraint Level
Requirements – therefore, the behaviours
implemented by the software are not consistent
with the constraint

Intolerable Intolerable Constrained Tolerable

Robust with Specified
Constraint Level
Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not robust
with the Specified Constraint Level Requirements
– therefore, the behaviours implemented by the
software may not be resilient to sources of faults
that might violate the constraint

Intolerable Intolerable Constrained Tolerable

Verification Coverage
of Specified Constraint
Level Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not verified
against all applicable Specified Constraint Level
Requirements – therefore, the behaviours
implemented by the software may not be
consistent with the constraint

Intolerable Intolerable Intolerable Tolerable

Compliant with Refined
Abstract Level
Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not
compliant with the Refined Abstract Level
Requirements – therefore, the behaviours
implemented by the software are not consistent
with the constraint

Intolerable Constrained Tolerable Tolerable

Robust with Refined
Abstract Level
Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not robust
with the Refined Abstract Level Requirements –
therefore, the behaviours implemented by the
software may not be resilient to sources of faults
that might violate the constraint

Intolerable Constrained Tolerable Tolerable

 A-7

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0

Verification Coverage
of Refined Abstract
Level Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not verified
against all applicable Refined Abstract Level
Requirements – therefore, the behaviours
implemented by the software may not be
consistent with the constraint

Intolerable Constrained Tolerable Tolerable

Compliant with Low
Level Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not
compliant with the Low Level Requirements –
therefore, the behaviours implemented by the
software are not consistent with the constraint

Intolerable Constrained Tolerable Tolerable

Robust with Low Level
Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not robust
with the Low Level Requirements – therefore, the
behaviours implemented by the software may not
be resilient to sources of faults that might violate
the constraint

Intolerable Constrained Tolerable Tolerable

Verification Coverage
of Low Level
Requirements

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not verified
against all applicable Low Level Requirements –
therefore, the behaviours implemented by the
software may not be consistent with the
constraint

Intolerable Constrained Tolerable Tolerable

Compliant with Source
Code

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not
compliant with the Source Code – therefore, the
behaviours implemented by the software are not
consistent with the constraint

Intolerable Constrained Tolerable Tolerable

Robust with Source
Code

Executable Object Code exists for the constraint
{constraint}, but the Object Code is not robust
with the Source Code – therefore, the behaviours
implemented by the software may not be resilient
to sources of faults that might violate the
constraint

Intolerable Constrained Tolerable Tolerable

Verification Coverage
of Source Code
Structure

Source Code exists for the constraint
{constraint}, but the verification has not
exercised all behaviours of the Source Code
relevant to the constraint – therefore, there may
be additional behaviours of the source code
which violate the constraint

Intolerable Constrained Tolerable Tolerable

Verification Coverage
of Executable Object
Code Structure

Executable Object Code exists for the constraint
{constraint}, but the verification has not
exercised all behaviours of the Executable Object
Code relevant to the constraint – therefore, there
may be additional behaviours of the Executable
Object Code which violate the constraint

Intolerable Constrained Tolerable Tolerable

Inadequacies in
Executable Object Code
are identified and
resolved

Compliance, robustness, traceability and
verification may identify inadequacies in
Executable Object Code – therefore the
behaviours implemented by the software may not
be consistent or complete with the constraint

Intolerable Constrained Tolerable Tolerable

