
1 

CONTRACTING FOR ARCHITECTURAL, CLAIMS AND 
EVIDENCE ASSURANCE FOR MILITARY AVIATION 

SYSTEMS  

Squadron Leader D.W. Reinhardt 

Royal Australian Air Force 
Deputy Senior Design Engineer 

Avionics C-130H/J 
RAAF Richmond, NSW, Australia 

derek.reinhardt@defence.gov.au 

Professor J.A. McDermid OBE FREng 

Head of Department of Computer Science 
University of York 
United Kingdom 

 

john.mcdermid@cs.york.ac.uk 

 

Abstract 

Contracts are instruments which provide a legally binding agreement for the 
purchase/exchange of goods or services. While both civilian and military aviation systems are 
acquired by contract, there are key differences in the role of contracts between the military 
circumstance and the civilian circumstance.  

Civilian aviation system acquisition contracts are typically for the prospective owner of the 
aircraft to purchase an aircraft or modification that is separately subject to civilian National 
Airworthiness Authority certification under nationally legislated regulation. Therefore, in the 
civil context, the contract is usually not responsible for communicating, managing or 
enforcing of the activities of airworthiness certification; other than perhaps requiring that 
successful contract completion and payment be contingent on successful airworthiness 
certification with the relevant authority. 

However, as many militaries are not just owners and operators but are also 
regulators/airworthiness authorities, then the use of contracts for the acquisition and 
modification of aviation systems means that the contract also becomes the proxy by which 
the regulatory functions are achieved. In simple terms, aircraft Type or system certification is 
managed via the contract, rather than via legal means such as nationally legislated 
regulation. This places additional requirements on contracts for military aviation systems.  

In previous papers, the authors have proposed a framework for the assurance of software in 
aviation systems that involve an architecturally centric product approach to claims and 
evidence safety assurance. This framework differs from some other contemporary 
approaches in that it specifically requires that evidence and claims be established with 
respect to the suitability of specific product behaviours; thus any contract using this 
framework, must include enablers for these behaviours (and associated claims and evidence) 
to be communicated for the purposes of safety evaluation. The contract must also enable the 
findings of the safety evaluation to influence the product outcomes of the system at a phase 
of the lifecycle when this brings most benefit (usually earlier rather than later). This is 
somewhat different from the more prescriptive process oriented standards, which may be 
more concerned with process compliance and activity completion. 

This paper examines the means by which the proposed assurance framework might be 
contracted for in the acquisition or modification of military aviation systems. Contracting 
paradigms including the preparation and execution of open tenders, restricted tenders, and 
sole source contracts are examined to determine how contracting for the proposed 
assurance framework might differ between these circumstances. Guidance is provided on 
contracting for architectural, claims and evidence assurance. 

Keywords:  Architecture, Assurance, Aviation Systems, Contracts, Fault Tolerance, Safety, 
Software Assurance, Software Safety, Tender. 



 2  

1 Introduction 

In complex aviation systems involving technologies (e.g. software) whose faults are 
dominated by a class of faults referred to as systematic faults, there are substantial 
challenges at providing assurance that these faults do not lead to unacceptable aircraft 
failure conditions. Because of these challenges, there have been limitations with traditional 
approaches to providing assurance of the suitability of the product behaviours of software in 
aviation systems (refer to [JTM07], [McD07], [McK06], [NTS06], and [Wea03]).  

To provide an alternative to the traditional approaches that is more resilient with respect to 
the identified limitations, the authors have proposed a framework for the assurance of 
software in aviation systems. The framework involves an architecturally centric approach to 
coordination of claims and evidence with respect to safety assurance (refer to [ReM10] and 
[RMc10]. It differs from other contemporary approaches in that it specifically requires that 
evidence and claims be established with respect to the suitability of specific software 
behaviours with relationships to architecture and the fail safe design criteria. The framework 
is summarised in Section 2.4 of this paper. 

An aspect of the suitability of the proposed framework that has not yet been considered is 
the extent to which it is compatible with the means by which regulatory outcomes and safety 
objectives are achieved in the military aviation circumstance. For reasons which shall be 
elaborated in Section 2.1 of this paper, the mechanism by which airworthiness regulatory 
outcomes are achieved for many military aviation systems during initial purchase or for 
modifications is via the contract rather than via legislation. This means that it is vital that any 
proposed assurance framework be compatible with the contracting paradigms used in 
military acquisitions, but without undermining the effectiveness of the assurance framework. 
In this context, there are numerous factors which might constitute success from both 
perspectives. In the contracting space, contracts which provide cost and schedule certainty 
are preferred by both suppliers and acquirers. Of course suppliers will also have a vested 
interest in profitability and acquirers in value for money. In the assurance space, acquirer’s 
regulatory authorities will strive for achievement of an acceptable level of safety without 
significant or out of scope rework to treat risks, or without the retention of risks. 

This paper examines the means by which the proposed assurance framework might be 
contracted for in the acquisition or modification of military aviation systems. Contracting 
paradigms including the preparation and execution of open tenders, restricted tenders, sole 
source contracts will be examined.  

2 Background 

Contracts are instruments which provide a legally binding agreement for the 
purchase/exchange of goods or services. A contract normally consists of terms and 
conditions, and is supported by technical annexes to define the goods/services and scope of 
work. For aviation systems, contracts are used for the acquisition and/or modification of these 
systems between the developer/manufacturer (i.e. supplier) and the owner or operator (i.e. 
acquirer). While both civilian and military aviation systems are acquired by contract, there are 
key differences in the role of contracts between the military circumstance and the civilian 
circumstance. The following section examines the origin and effect of these differences with 
respect to contracts, and provides emphasis why specific evaluation in the context of the 
military contracting environment is necessary. 

2.1 Civilian versus Military Certification Environments 

2.1.1 Civilian Certification Environment 

Firstly, let’s consider the civil aviation certification environment. The Federal Aviation 
Administration (FAA), the civil aviation airworthiness regulator in the United States of 
America, issues certification for new and modified aircraft that include software. This largely 



3 

independent certification is relied upon by the customers (owners and operators) who 
purchase and operate the aircraft. The FAA regime is also largely common to other civil 
aviation National Airworthiness Authorities (NAAs) around the world (e.g. Australia – Civil 
Aviation Safety Authority CASA, UK – Civil Aviation Authority CAA, Europe – European 
Aviation Safety Agency EASA). In this environment the roles of the developer, manufacturer, 
owner, operator and regulator are typically separated amongst different organisations or 
entities. This separation affords each of these entities some opportunity for independence in 
their function. For example, the owner and operator might be the same organisation (e.g. 
Qantas), whereas the supplier/developer/manufacturer might be Airbus or Boeing, and the 
regulator is a government agency (e.g. Civil Aviation Safety Authority (CASA) or the Federal 
Aviation Administration (FAA)). In addition, the prime developer and manufacturer are 
supported by a suite of sub-contractors that develop and manufacture aircraft systems and 
subcomponents. 

Important to note is that the regulator is supported by regulations that are indoctrinated in 
law, and are therefore legally enforceable by the regulator onto those to which they apply 
(developer and manufacturer). For example, in Australia the Air Navigation Act 1920 
[ANA20], and the Civil Aviation Act 1988 [CAA88] that define ‘Australian’ aircraft for which 
Civil Aviation Safety Regulations (CASRs) are promulgated and enforced by CASA. A similar 
arrangement exists within the US environment (Code of Federal Regulations (CFR), Title 14 
Aeronautics and Space, Volume 1-5 defines aviation regulations [14CFR]). 

Civilian aviation system acquisition contracts are typically for the prospective owner of the 
aircraft (e.g. Qantas) to purchase an aircraft or modification that is separately subject to 
civilian aviation airworthiness authority certification under nationally legislated regulation that 
has been outlined above. For example, the aircraft may already be type certified by a 
National Airworthiness Authority such as the FAA or CASA, or the aviation system has been 
subject to supplemental type certification (by similar authorities) or equivalent certification for 
minor modifications. Therefore, in the civil contracting context, the contract is usually not 
responsible for communicating, managing or enforcing of the activities of airworthiness 
certification; other than perhaps requiring that successful contract completion and payment 
be contingent on successful airworthiness certification with the relevant authority. In simple 
terms, in the civil context, the contract is not usually the means by which airworthiness 
certification is achieved.  

Note though that the use of subcontractors to develop systems for an civil aircraft prime 
manufacturer does differ from the circumstances outlined above and would require elements 
of the certification to be achieved by the contract, however, such contracts are still not 
required (or necessary) to communicate detailed requirements for conduct of regulatory 
functions by the acquirer. While responsibility to achieve certification rests with the developer, 
and is certainly in the acquirer’s interest, the regulator functions are managed by regulated 
interfaces to a separate independent authority (e.g. the FAA, as regulated by [14CFR21]). 

2.1.2 Military Aviation Certification Environment 

There are however other certification regimes where the regulator is not so overtly 
independent of the acquirer. Unlike civilian aviation arrangements, many militaries around 
the world are owners, operators and regulators; and to some extent developers and 
manufacturers.  

The militaries are their own regulators (or airworthiness authorities) because they require 
flexibility to do things civilian operators would never need, such as: low flying, combat, close 
proximity flying, special modifications, stores clearances, contingency maintenance, battle 
damage repair, and operational imperatives involving safety versus capability tradeoffs; none 
of which are regulated by the civil authorities. These military airworthiness authorities 
typically define regulations that govern the conduct of their activities, however unlike the civil 
regulations, these regulations are open to discretion by the military regulator/authority to 



 4  

allow tradeoffs between providing capability and safety based on the current military climate 
(e.g. war operations, peace support, counter terrorism, humanitarian assistance, peacetime 
training, etc [AAP1000-D]) 

For example, in Australia the Air Navigation Act of 1920 [ANA20] defines ‘State’ aircraft and 
designates the Chief of the Air Force (CAF) as the Australian Defence Force (ADF) 
Airworthiness Authority for Air Force, Army and Navy aircraft. Through internal Defence 
Instructions (DI(G) OPS 2-2 ADF Airworthiness Management [OPS2-2]), airworthiness 
management is separated into technical and operational responsibilities. The instruction also 
distinguishes the functions of the airworthiness regulators (i.e. the entities that write the 
technical and operational regulations) versus the airworthiness authorities (i.e. the entities 
that are responsible for interpreting the regulations and making the discretionary tradeoffs 
(via risk treatment or retention) between capability and safety). 

Unlike the civil airworthiness regulations, the military airworthiness regulations are typically 
described in military publications which constitute lawful orders to those military and civilian 
government staff applying them. However, they are not necessarily legally binding to those 
developers and manufactures supplying equipment to the military. Table 1 identifies the 
military airworthiness regulations applicable to airworthiness certification in the ADF, UK 
MoD and USAF. 

 

Australian Defence Force United Kingdom Ministry of 
Defence 

United States Air Force 

DI(G) OPS 2-2 ADF Airworthiness 
Management 
AAP7001.048 – ADF Airworthiness 
Manual 
AAP7001.053 – Technical 
Airworthiness Management Manual 
AAP7001.054 – Airworthiness 
Design Requirements Manual 
AAP8000.010 – ADF Operational 
Airworthiness Manual  
 

UK JSP 318B (Regulation of the 
Airworthiness of MoD Aircraft)* 
UK JSP 553 (Military Airworthiness 
Regulations)* 
DEF STAN 00-970 Design and 
Airworthiness Requirements for 
Service Aircraft 
 

US Air Force Policy Directive 62-6 
USAF Airworthiness 
MIL-HDBK-516B Airworthiness 
Certification Criteria 

*Note: The UK has established a Military Airworthiness Authority (MAA), and is undertaking re-development of 
airworthiness regulations. 

Table 1: Military Airworthiness Regulations 

Therefore, it is apparent that there are differences between the role of the civil airworthiness 
authorities, and some military regulators and airworthiness authorities. The differences are 
particularly notable with respect to the level of independence of the regulator from the other 
entities in the certification environment (owner, and operator), and the potential for legal 
enforcement of their requirements. Outside the scope of airworthiness, separate provisions 
apply to safety in society, as well as the regulation of technologies that are not aircraft. 
However, similar parallels can be drawn with regards to the regulation of these other 
technologies (e.g. Ships, Vehicles, Weapons, etc), as well as other safety-related regulations 
(e.g. Occupational/Workplace Health and Safety Provisions) that have been identified in the 
aviation case. 

Because many militaries are not just owners and operators, but are also regulators (in the 
capacity as an airworthiness authority), then the use of contracts for the acquisition and 
modification of aviation systems means that the contract also becomes the proxy by which 
the systems certification elements of regulatory functions are achieved. In simple terms, type 
or system airworthiness certification is managed via the contract, rather than via other legal 
means. This places additional requirements on contracts for military aviation systems. 



5 

2.1.3 Acquisition, Contracts, Certification and the Provision of Assurance 
Evidence 

In the civil aviation environment, when an applicant (usually the developer and manufacturer 
of an aircraft) applies for Type certification (or minor or major changes to the Type design), 
the regulations require that the applicant provide the civil authority with sufficient evidence to 
enable the regulator to conduct certification. The regulator does not have to contract for or 
purchase the evidence required to conduct certification, as it is wholly within the applicant’s 
interest to achieve certification. While it is useful from a cost and schedule perspective for the 
applicant to wholly understand the regulator’s evidence requirements prior to commencing a 
program, the regulator has means to obtain additional evidence if required to demonstrate 
the safety of the system at any time throughout the program. As a last resort the regulator 
may even with-hold certification of the system in question. 

However in the military system, aircraft and other defence equipment is typically acquired 
through contract by the same overall entity that is the regulator (e.g. the Australian Defence 
Force (ADF), the Commonwealth – owner, operator and regulator). While within the ADF, 
different organisations are responsible for the acquisition (e.g. Defence Material 
Organisation), and the regulation functions in support of certification (e.g. Airworthiness 
Coordination and Policy Agency, and Directorate General Technical Airworthiness) these 
different organisations are considered by the contractor, and the law, as a single entity – the 
Commonwealth. Hence, the contract is not only responsible for defining the functional or 
capability requirements, it is also responsible for leveraging airworthiness and safety 
requirements onto the contractor. The contract is the top level instrument that must require 
the production and the purchase of/access to the evidence necessary to achieve certification. 
Where any ambiguity exists, or there is a shortfall in evidence, it is open to contractual 
negotiation or dispute, rather than being bound by legal obligations of contractors to the 
military regulations. 

Thus the key conclusion reached from examining the differences in civil and military contract 
circumstances is the requirement for the military contract to facilitate the provision of 
evidence supporting the assurance framework, and management of shortfalls or limitations in 
the provision of the evidence.  

2.2 Contracting Paradigms 

Many different contracting paradigms exist including fixed price, cost plus, time and 
materials, performance or outcome based frameworks, cost and schedule risk sharing 
arrangements such as accords or alliances, etc. Contracts also exist that incorporate 
elements of several of these paradigms into one single contract. Within these paradigms, 
contracts may be offered via open tender, restricted tender or sole source, depending on the 
customers needs/wants to limit the market place for a solution in exchange for some other 
perceived benefit (usually time, as a suitable solution from an existing supplier with respect 
to the capability requirements may already be available). 

When it comes to the acquisition of largely non-developmental aircraft or aircraft systems, 
the Australian Defence Material Organisation prefers fixed price contracts. Fixed price 
contracts facilitate straightforward budgeting arrangements through their cost certainty, and 
transfer some cost and schedule management responsibility to the contractor. Highly 
developmental systems are less cost effective to contract for under fixed priced 
arrangements, as the unknowns underpinning the developmental aspects usually translate 
into significant cost and schedule risk margins costed in by the contractor, if it is possible to 
cost at all. In these cases cost plus, risk sharing arrangements such as accords or alliances, 
or just a really well managed time and materials contract can be more cost effective in the 
long run. However, there are still numerous examples of developmental systems being 
acquired under fixed price arrangements for the ADF. Irrespective of the contract type, the 
better the contractor’s understanding of the provision of evidence requirements before 



 6  

contract signature, and the better their understanding of how shortfalls in evidence are to be 
resolved within the contract, the better the likelihood of a favourable contractual outcome. A 
favourable contractual outcome both the supplier and acquirer is generally a pre-requisite for 
a favourable capability outcome also. For the purposes of relevance to the Australian 
Defence Acquisition environment and the types of contracts preferred, this paper focuses on 
fixed price contract arrangements.  

2.3 Contracting for Assurance of Evidence 

A value for money and on-time/on-budget fixed price contract will only be possible when both 
the acquirer’s and contractor’s views on the product and evidence requirements are closely 
aligned prior to contract signature. While this proposition also underlies many other 
contracting paradigms, and there will be potential read across to these frameworks, these 
additional frameworks will not be considered directly. 

Evidence requirements in contracts are typically articulated through the Statement of 
Requirement (SOR), Statement of Work (SOW) and Contract Data Requirements List 
(CDRL) which references applicable Data Item Descriptors (DIDs) for each piece of evidence 
the acquirer (in the capacity as an owner, operator and regulator) requires to conduct 
acceptance and certification. If an element of evidence or relevant design standard is not 
articulated through the contract, then it is unlikely that the developer or manufacturer will 
make this evidence available. In some cases the developer may not even produce the 
evidence on the understanding that it is not required by the acquirer. In the event that there 
are evidence shortfalls, and the contract does not cater for this circumstance, the acquirer 
will usually be required to seek an amendment to the contract (e.g. through a Contract 
Change Proposal (CCP)), which will usually incur a significant associated cost (and schedule 
impost). In addition, although DIDs are referenced which define the content requirements for 
evidence (i.e. DIDs are generally structural), DIDs do not necessarily define the quality of the 
information that underlies the required content (e.g. forms of argument, defensibility of the 
argument, quality of evidence, etc.). An acquirer review and acceptance cycle is usually the 
means of assuring the quality of the content of artefacts delivered against DIDs, but are 
usually constrained by the activities described in approved plans from earlier in the system or 
software engineering lifecycle. On this basis, it is possible to infer that contract DIDs need to 
be accompanied by material on the quality of argument and evidence, and compliance with 
the framework. 

Ultimately, the acquirer needs a means to assure that the provision of sufficient (“enough”) 
evidence is articulated through the contract, prior to contract signature, to ensure successful 
certification. Where there are shortfalls, these would ideally be minor in nature, and 
resolvable without addition or amendment to the contract. Furthermore, it is in the acquirer’s 
interest to ensure that the contractor fully understands the evidence requirements throughout 
the tender/proposal process, to assure the accuracy of bids, and through contract 
negotiations where this understanding is refined and the final cost and schedule agreed. 
Similarly, the contractor requires a clear understanding of the evidence requirements in 
formulating their associated cost and schedule estimates. 

Under the prescriptive software standards, this was relatively straightforward, as a software 
assurance standard and relevant SIL or DAL could be specifically called out in the contract, if 
required; or at least an agreeable framework for determining SIL and DAL assignment could 
be defined. The processes typically assured the acquirer of the provision (or at least the 
generation) of a certain known body of software evidence (analysis and test) from the 
activities prescribed in the standards. Recognising numerous limitations of current software 
assurance standards, some frameworks also contract for the provision of additional plans 
(e.g. software safety program plan) to provide for further insight into the contractors software 
activities. It is preferred that such plans are provided as part of tender responses, to allow 
maximum insight into whether the contractor is capable of meeting the required software 
safety and assurance objectives. As these plans typically only mature subsequent to contract 



7 

signature, there is often limited leverage for the acquirer to substantially vary any of these 
additional activities if they are subsequently assessed as insufficient. 

However, under approaches such as those suggested by [Kel98], [Wea03] and [CAP670]; 
the concept of SILs or DALs is removed in favour of the flexibility of a contextually dependent 
safety argument, including the software system safety argument. While these approaches tie 
evidence to arguments, and [Wea03] and other subsequent work has made some steps to 
defining assurance requirements for safety arguments, these approaches predominantly rely 
on consultative arrangements to ensure the provision and quality of argument and evidence 
throughout the development lifecycle. Such an approach thus tends to be incompatible in its 
current maturity with fixed price contracting arrangements which force the consultative 
elements of the work to pre-contract signature, rather than throughout the whole contract. 
While it is possible for the acquirer (regulator) to articulate how well assured the software 
safety argument should be (e.g. valid/near valid, high, medium, low as defined in [Wea03]), 
or that complementary forms of evidence are required (e.g. Analysis and Test requirements 
from [CAP670]), neither of these frameworks associated specific evidence sufficiency 
requirements with the assurance of the argument in such as way it could be compatible with 
a fixed price contract.  

In response to the limitations identified with approaches such as [Kel98], [Wea03], [CAP670] 
and other argument based approaches, the authors of this paper developed an alternative 
framework that sought to merge the product argument approach with some of the benefits of 
prescription evidence in the traditional software assurance and safety standards. The 
framework utilises Architectural [ReM10], Claims and Evidence [RMc10] assurance levels to 
provide a product focused suite of assurance criteria for aviation systems. In doing so, it was 
a goal to define a framework that could potentially be subject to contracting under fixed price 
contracting arrangements. To do this, the framework and associated contract mechanisms 
must include enablers for the product behaviours of the system and software (and associated 
claims and evidence) to be communicated for the purposes of safety evaluation. The contract 
must also enable the findings of the safety evaluation to influence the product outcomes and 
resolve shortfalls, but such that these would be unlikely and minor in nature (and minimal 
cost/schedule impact) if encountered post contract signature. The framework should also 
enable an appropriate amount of architectural definition and assurance evaluation pre-
contract signature, to support refinement of the contract to resolve deficiencies so far as is 
reasonably practicable. 

2.4 Assurance Framework 

The following sub-sections summarise the key elements of the framework described by 
[ReM10] and [RMc10]. Sections 3 through 8 of this paper then examine how the framework 
might be contracted to address the factors indicated in Section 2.2 and 2.3. 

2.4.1 Architectural Assurance 

Through the examination of several actual aviation systems, and the 25.1309 / AC 25.1309 
Fail Safe Design Criteria, [ReM10] proposed that architectural assurances be commensurate 
with the degree of fault tolerance against systematic faults. This implied that at the top level 
of the frame work, assurance (Architectural Safety Assurance Level (ASAL)) is based on the 
architectural relationships between systematic faults and failures, and the aircraft level failure 
conditions (and associated severity) as shown in Table 2. 

  



 8  

Failure 
Condition 
Severity

1

  

Architectural 
Safety Assurance 
Level (ASAL)  

Systematic Fault Tolerance 

Catastrophic ASAL3 At least three (3) diverse
2
 systematic faults are necessary for the aircraft 

failure condition to be realised 

Hazardous / 
Major  

ASAL2  At least two (2) diverse
2
 systematic faults are necessary for the aircraft 

failure condition to be realised 

Minor  ASAL1  At least one (1) systematic fault is necessary for the aircraft failure 
condition to be realised 

No Safety 
Effect 

ASAL0 Systematic fault tolerance is not required, however the designer may 
choose to incorporate fault tolerance to provide assurance of system 
availability and reliability 

1. The worst credible failure condition severity of loss of and malfunction of the aircraft function with which the 
system and its software is associated. 

2. For a systematic fault to be diverse of another systematic fault, it must be shown that the activation of one 
fault does not automatically lead to the activation of another systematic fault. In practice this is achieved by 
ensuring that the faults must occur in independent components and/or at differing layers of abstraction (e.g. 
software, LRU, system) where the correct functioning of the subsequent detection and handling mechanisms 
can be shown to be independent of the initiating fault condition or the detectable class of fault at the next layer 
is distinct of the initiating class of fault. 

Table 2: Architectural Safety Assurance Level 

Recognising that architecture, and the fault tolerance features exhibited by the architecture, 
are fundamental to providing protection against systematic faults, the ASAL concept provides 
the following criteria for the extent to which architectural components should provide for the 
absence or detection/handling of systematic faults as per Table 3. 

 

ASAL   
  

1st Absence/Detection 
and Handling 
Mechanism 

2nd Detection/Handling 
Mechanism 

3rd Detection/Handling 
Mechanism 

ASAL3 Software Level Partitioned Software 
Level

#
 or LRU Level

*
 

LRU Level
*
 or System 

Level 

ASAL2 Software Level Partitioned Software 
Level

#
 or LRU Level or 

System Level 

Not Required 

ASAL1 Software Level OR Line 
Replaceable Unit (LRU) 
Level OR System Level 

Not Required Not Required 

# must be independent of the initiating failure and the 1st Absence / Detection and Handling mechanism (i.e. 
through a partitioning mechanism) 

* must be independent of the proceeding detection/handling mechanism 

Table 3: ASAL Architecturally Layered Fault Tolerance 

2.4.2 Claims Assurance 

Having established the presence or requirements for the introduction of layers of absence or 
detection/handling mechanisms per the architectural assurance criteria in Section 2.4.1, each 
of these mechanisms is now considered in generic form as a ‘constraint’ on the behaviour of 
the software or system. For each constraint, a Claims Safety Assurance Level (CSAL) is 
determined, through its relationship to the previously defined ASAL (refer to Table 4).  



9 

ASAL 

1
st
 Absence/Detection 
and Handling 
Mechanism 

2
nd
 

Detection/Handling 
Mechanism 

3
rd
 Detection/Handling 

Mechanism 

Additional 
Detection/Handlin
g Mechanisms 
Potentially 
Interfere

1
 

Can’t 
Interfere

2
 

ASAL3 Software 
Level 

CSAL3 Partitioned 
Software 
Level

#
 or 

LRU Level
*
 

CSAL3 LRU Level
*
 

or System 
Level 

CSAL3 CSAL2
$
 CSAL0 

ASAL2 Software 
Level 

CSAL2 Partitioned 
Software 
Level

#
 or 

LRU Level 
or System 
Level 

CSAL2 Not Required CSAL2
$
 CSAL0 

ASAL1 Software 
Level OR 
LRU Level 
OR System 
Level 

CSAL1 Not Required CSAL1 CSAL0 

1 Potentially interfere with subsequent detection and handling 
2  Can’t Interfere with subsequent detection and handling 
# must be independent of the initiating failure and the 1st Absence / Detection and Handling mechanism (i.e. 
through a partitioning mechanism 
* must be independent of the preceding detection/handling mechanism 
$ additional mechanisms behaviour must be assured to reason that it won’t interfere with the main mechanisms 

Table 4: ASAL to CSAL relationship 

The CSAL is a measure of the degree to which uncertainty in the behaviour of the constraint 
might exist, and provides guiding principles for the provision of evidence with respect to the 
‘constraint’ (refer to Table 5). 

Claims 
Safety 
Assurance 
Level 
(CSAL) 

Category Definition Guiding principles for the substantiation of 
claims and provision of evidence with 
respect to satisfaction of attributes of 
software lifecycle products 
 
Claims are to address suitability of: 

CSAL 4 
(not used) 

Absolute 
Assurance 

Intended and unintended behaviours 
of the absence or detection and 
handling constraint are absolutely 
assured with respect to safety, such 
that there is no uncertainty in 
behaviour 

Not practicable (or affordable) to make this 
argument compelling – Near Absolute Assurance 
provides sufficient control of the uncertainty 

CSAL 3 Near 
Absolute 
Assurance 

All reasonably practical and effective 
steps have been taken to 
systematically account for the 
intended and unintended behaviours 
of the absence or detection and 
handling constraint with respect to 
safety, such that the remaining 
uncertainty would unlikely lead to a 
violation of the constraint under any 
circumstances 

• Specified behaviours with respect to the 
constraint 

• Refined behaviours with respect to the 
constraint 

• Implementation behaviours with respect to 
the constraint 

• Introduced or generated behaviours (e.g. 
from translation or code generation 
toolsets) that may violate the constraint 

• Target Computer behaviours that may 
violate the constraint 

• Conditions or behaviours external to the 
constraint, but internal to the system, that 
may violate the constraint 

• Conditions or behaviours external to the 
system that may violate the constraint 



 10  

CSAL 2 Nominal 
Assurance 

Steps have been taken to 
systematically account for the 
intended functional behaviours of the 
absence or detection and handling 
constraint with respect to safety, such 
that the remaining uncertainty would 
only lead to a violation of the 
constraint under unexpected 
circumstances 

• Specified behaviours with respect to the 
constraint 

• Refined behaviours with respect to 
constraint 

• Implementation behaviours with respect to 
constraint 

• Target Computer behaviours with respect 
to the constraint 

• Conditions or behaviours external to the 
constraint, but internal to the system, that 
may violate the constraint 

CSAL 1 Limited 
Assurance 

Claims broadly account for the 
intended functional behaviours of the 
absence or detection and handling 
constraint with respect to safety, such 
that the remaining uncertainty could 
lead to a violation of the constraint, but 
this would not be expected under 
normal operating conditions that would 
exercise the constraint 

• Specified behaviours with respect to the 
constraint 

• Implementation behaviours with respect to 
the constraint 

CSAL 0 No 
Assurance 

No evidence exists to assure the 
absence or detection and handling 
constraint with respect to safety 

No evidence 

Table 5: Claims Safety Assurance Level 

A set of attributes is defined that underpins the CSAL concept (refer to Annex A). Attributes 
are defined with respect to each of the key lifecycle products associated with software 
including: 

• specified constraint level requirements (related to the absence or detection/handling 
mechanism associated with the ASAL),  

• refined abstract level requirements (where relevant to design 
refinement/decomposition),  

• low level requirements (requirements from which no further information or 
decomposition is required to develop source code for the nominated target 
computer),  

• software source code, and  

• executable object code.  

Table 6 shows an extract of attributes from the specified constraint level requirements set. 
The table also details the impact of the attribute not being satisfied, and specifies the 
relationship to the CSAL. The relationship to the CSAL is expressed in terms of ‘tolerability of 
limitations’ which is elaborated in the subsequent section on evidence assurance. 

 

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Developed and 
Defined 

Specified Constraint Level Requirements for 
constraint {constraint} do not exist – therefore there 
is no basis for the relevant behaviour existing in the 
software 

Intolerable Intolerable Intolerable Tolerable 

Valid – Accurate /  
Consistent / Complete 

Specified Constraint Level Requirements for 
constraint {constraint} exists but the specification of 
the constraint is invalid – therefore, there is potential 
for other lifecycle products or translations to refine or 
implement the behaviour erroneously 

Intolerable Constrained Constrained Tolerable 

Table 6: Example of CSAL attributes for Specified Constraint Level (refer to Annex A) 



11 

2.4.3 Evidence Assurance 

Having specified the tolerability of limitations in evidence per Annex A, the sufficiency of 
evidence (Evidence Safety Assurance Level (ESAL)) based on relevance, trustworthiness 
and the results of the evidence can be determined using Table 7. This provides a measure of 
the sufficiency of evidence from methods and techniques applied with respect to each 
attribute (from Table 6). 

Tolerability of 
Limitations to 
Assuring Attribute 

Relevance of Evidence Trustworthiness of 
Evidence 

Results of Evidence 

Intolerable (ESAL3) 
– limitations in 
evidence would be 
intolerable 

No limitations to the 
collective relevance of the 
method or methods’ with 
respect to the attribute 
 
Limitations of each method 
or technique are 
systematically identified and 
treated by the application of 
complementary methods 
and techniques. 

No limitations to the 
evidence’s trustworthiness 
with respect to the attribute. 
 
Limitations of the 
trustworthiness of evidence 
are systematically identified 
and treated by the 
application of appropriate 
competencies, reviews and 
inspections, and 
independence. 

The results of the method 
or methods provides 
evidence of satisfying the 
attribute AND there is no 
counter evidence or 
potential source 
(uncertainty) of counter 
evidence to satisfying the 
attribute 
 
 

Constrained 
(ESAL2) – 
limitations in 
evidence would be 
tolerable provided 
those limitations are 
constrained with 
respect to 
relevance, 
trustworthiness and 
results 

Constrained limitations to 
the method/s relevance with 
respect to the attribute 
 
Limitations of each method 
or technique are 
systematically identified and 
treated where practicable 
by the application of 
complementary methods 
and techniques. Non-
treatment of a limitation 
should not introduce 
uncertainty grossly 
disproportionate to the 
limitation such that it would 
likely lead to a violation of 
the constraint 
 
 

Constrained limitations to 
the evidence’s 
trustworthiness with respect 
to the attribute. 
 
Limitations of the 
trustworthiness of evidence 
are systematically identified 
and where practicable 
treated by the application of 
appropriate competencies, 
reviews and inspections, 
and independence. 
 
Non-treatment of a limitation 
should not introduce 
uncertainty grossly 
disproportionate to the 
limitation such that it would 
like lead to a violation of the 
constraint 

Results of the method or 
methods provides evidence 
of satisfying the attribute 
AND counter evidence to 
satisfying the attribute is 
limited such that it would 
not likely lead to violation of 
the constraint 
 
Uncertainty is constrained 
such that counter evidence 
is unlikely. 

Tolerable (ESAL1) – 
limitations in 
evidence would be 
tolerable 

Notable limitations to the 
method or method’s 
relevance with respect to 
the attribute. 
 
Limitations of each method 
or technique may not be 
systematically identified and 
treated where practicable 
by the application of 
complementary methods 
and techniques.  

Notable limitations to the 
evidence’s trustworthiness 
with respect to the attribute. 

Results of the method or 
methods may provide 
evidence of non-
satisfaction of the attribute 
and/or violation of the 
constraint OR counter 
evidence indicates possible 
violation of the constraint 
OR uncertainty may be 
substantial 

 Table 7: ESAL Definitions 

Ultimately, for each ‘constraint’ provided to establish architectural fault tolerance, evidence 
and argument should be provided at the specified CSAL for each ‘attribute’ to demonstrate 
the ‘tolerability of limitations’ with respect to the ‘relevance’, ‘trustworthiness’ and ‘results’ of 
evidence produced from the methods and techniques used by the developer. The case for 
tolerability is then subject to evaluation by an independent (from development) representative 



 12  

on behalf of the certification authority and the impact of the top level product assurances 
evaluated from the tolerability of limitations with respect to each constraint. 

3 Acquisition Paradigms 

As introduced earlier, the three most common acquisition paradigms are the open tender, 
restricted tender or sole source acquisition. The three approaches offer a different means to 
getting on contract with a chosen supplier, depending on the following factors: 

• the extent to which the solution will be developmental or off-the-shelf; 

• the extent to which a supplier or suppliers are known prior to the acquisition; 

• the extent to which engaging a larger market improves competition and value for 
money in solutions offered; and  

• the extent to which engaging a narrower market improves contractual response times 
and introduction to service. 

Consideration of these factors amongst others permits the determination of the acquisition 
approach. The following sub-sections elaborate the three different approaches. 

3.1 Open Tender 

The Open Tender involves the release of a Request for Tender (RFT) to the whole market, a 
potentially large number of prospective tenderers. The RFT typically contains a version of the 
contract Statement of Work, and Statement of Requirement (usually referred to as a Tender 
SOW and Tender SOR respectively) for the purposes of tendering against. The RFT 
responses would then be evaluated and a preferred tenderer identified, with which contract 
negotiations would commence. At the time of contract negotiations a draft contract is 
prepared based on the original tender documents, and refined based on the preferred 
tenderers RFT response. Presuming the contract negotiations are successful, contract 
signature would be achieved. 

Note that some tender processes involve an initial release of a Call for Expressions of 
Interest to identify the market, and then release of the RFT to only suitable responses to the 
EOI. This approach is really a hybrid of the open tender and restricted tender, but with the 
luxury that the actual tender SOW and SOR can be refined based on the initial look to the 
market under the Call for Expressions of Interest. 

3.2 Restricted Tender 

The Restricted Tender involves the release of the Request For Tender (RFT) to a restricted 
number of market participants. This subset of market participants will have been pre-
determined either by a market selection activity (such as a Call for Expressions of Interest, 
Request for Proposals, etc), or through market research. For example, for very specialised 
technologies and systems, it may be possible for the acquirer to know that the only 
organisations capable of working with such technologies and systems, may be those that 
they’ve identified via market research. This may only be an assumption though and may 
benefit from periodic re-examination of the market, perhaps by the Open Tender process 
described above. The key factor that distinguishes this approach from the Open Tender is 
that the tender is restricted to a nominated number of two or more tenders. Otherwise the 
RFT release, tender evaluation, contract negotiations, contract signature and contract 
execution all follow very similar processes to the Open Tender. 

3.3 Sole Source Acquisition 

The Sole Source Acquisition involves confining the acquisition to a single supplier, usually 
because the supplier has been predetermined to provide an off-the-shelf solution, or because 
through prior determination, the supplier has been assessed as the most suitable entity to 



13 

provide the system within the circumstances of the acquisition. Examples of some 
circumstances include rapid acquisitions due to operational imperatives, and intellectual 
property restrictions that prevent the work being contracted to another supplier. 

For the Sole Source Acquisition, the Request For Tender (RFT) is usually replaced by a 
Request For Quote (RFQ) or Request for Proposal (RFP) to reflect the more definite nature 
of the acquisition. In some cases the proposal request should be very similar in nature to an 
RFT, as all the same information needs to be communicated. However, the authors’ 
experience is that sometimes this step is overlooked by the project authority, because of 
perceptions that the project scope is already defined by the solution. While this perception 
may be true for physical tangibles, it is less applicable to the body of evidence needed to 
form the safety case. Regardless of the cause, the outcome is that for the Sole Source 
Acquisition, the proposal evaluation and contract negotiations phase usually wears a much 
greater burden for resolving evidence requirements into the SOW and SOR than for the 
Open Tender and Restricted Tender paradigms. If it is overlooked then the contract will likely 
be inadequate, and result in certification challenges. Provided the evidence requirements are 
resolved pre-contract signature, then once on contract, there should be limited differences 
between the Sole Source approach and the Open and Restricted Tender approach. 

4 Project Definition and Approval 

Project Definition and Approval is the project lifecycle phase that precedes any Tender 
Preparation and RFT Release. The intent of this lifecycle phase is to define the acquisition 
requirements, either based on a capability requirement, or a known market solution that has 
already been established to fulfil a capability requirement. In addition to the 
functional/capability requirements for the acquisition, the project definition and approval 
phase also estimates the project costs and schedule. These additional factors are important, 
because they are key determiners in project approval by the project approval authority. For 
example, the Australian Government uses a two pass process for acquisition approvals, with 
the first pass providing some preliminary funding and time allocation to permit solutions 
(including costs and schedule) to be explored under RFT and RFQ processes prior to second 
pass approval. Second pass approval sets the project scope, costs and schedule, and 
provides approval to proceed to contract signature. The emphasis of the first pass phase is 
to increase the confidence in the project, cost and schedule estimates, such that the risk of 
proceeding into contract signature is constrained to a level deemed tolerable by the project 
approval authority (which is usually Government, for major capital Defence acquisitions). 

So what does this process mean for Architectural, Evidence and Claims assurance 
approach? The project definition and approval phase is therefore the timeframe when the 
Rough Order of Magnitude (ROM) or notional costs for evidence to be provided in support of 
the safety case should be determined. These ROM costs are important to define, because 
they set expectations for the cost of achieving safety in the acquisition, which is in addition to 
more material acquisition costs (such as the delivery of equipment and/or services). 

From the Architectural, Evidence and Claims assurance perspective, the project definition 
and approval phase is where the notional costs should be determined for: 

• system architecture and software architecture to meet ASAL requirements – what 
level of redundancy, diversity and fault tolerance is likely to be required? And how 
much will this likely cost? 

• quantity and type of constraints – how many constraints are required to provide the 
requisite determinism regarding the knowledge of behaviours of the system and its 
software under normal and failure circumstances? How critical are these constraints? 

• likely breadth and depth of evidence to meet ESAL criteria for constraints at notional 
CSALs – how much time and money will be required for evidence generation, both 
proactively and retrospectively (when circumstances dictate)? 



 14  

The intent of having relative certainty as to these factors is to ensure that notional funding 
can be established and sought from the funding authority prior to tender release. 
Understanding of these factors helps to set Government, acquirer and ultimately supplier 
expectations on the realistic costs of the project. When realistic costs are known, more 
realistic project scope and solutions can be established. In an environment where part of the 
sell to establish and get approved a project will be to emphasise the substantial capability it 
provides, often there will be down-playing the real cost and schedule implications. Some 
contractors also use contractual tactics that seek to downplay costs prior to contract 
signature, knowing there may be opportunities to recover costs and profit outside the initial 
contract (e.g. through Contract Change Proposals or separate sustainment contracts). It is 
the certainty during project definition and approval in these costs that can help combat such 
tactics. 

To elaborate the usefulness of this information, let’s consider several simple acquisition 
examples. Consider for example the acquisition of a fixed-wing aircraft that includes a 
simplex digital automatic flight control system providing stability augmentation with limited 
fault tolerance. Say for example also that, during certain phases of flight, a malfunction of the 
simplex digital AFCS leads to an erroneous deflection of control surfaces requiring 
exceptional pilot recovery. This scenario is credible failure scenario for a simplex system, 
and one that would normally require consideration under the fail safe design criteria. 
Knowledge of the importance of the system during those phases of flight should prompt pre-
emptive examination of the suitability of the simplex AFCS architecture and its level of fault 
tolerance before contract signature. A second example might be a flight management system 
on the same aircraft type that interfaces to dual air data sensors, but for which there is no 
software, LRU or system level treatment of erroneous air data which is flagged valid. Again, 
knowledge of the suitability of this proposed architecture and constraints is useful in 
establishing if it is even possible that the design would meet safety objectives. Even if it 
would turn out that these architectures and constraints would be suitable following 
appropriate analysis, verification and validation; then at least the project risk costs could be 
accurately modelled in determining the viability of the acquisition. Both these examples imply 
a level of insight into the design early in the project lifecycle and sometimes even before 
suppliers are engaged. However, in envisaging a potential solution (even in an entirely 
capability requirement focussed acquisition), estimation of the suitable solution space 
provides useful means of establishing the suitability of solutions proposed under tender or 
proposal phases. 

Project Definition Funding (PDF), a type of funding in the ADF for enabling pre-first pass 
definition of capability options provides one means for engaging prospective suppliers and 
establishing the suitability of their design solutions before official tender/proposal 
mechanisms are pursued. This funding might be used to develop specific insight into the 
architectural, claims and evidence assurance of perspective options, the shortfalls in this 
regard, and the viability of resolving these under more formal contractual instruments. 

The imposition of requiring the knowledge specified above however is that the team 
responsible for project definition and approval submissions needs to have team members 
with skills sets that allow them to estimate the aforementioned factors. Alternatively, they 
should be able to access specialists that can provide the input. Capability and project 
definition authorities should examine the practicality of having architectural and assurance 
specialists at ready access. Their role should not be to constrain solutions at the expense of 
novelty or innovation, but to set expectations for the types of solutions that might be 
acceptable with respect to safety. However, as the skills in safety assurances will always be 
in short supply, project definition authorities would be aided by estimation tools and 
techniques to provide greater certainty and repeatability in these estimates for lesser skilled 
staff. The development of accurate estimation tools will only be possible once the more 
quantitative data on the costs of these architectural and assurance approaches is obtained. 



15 

This paper recommends that project authorities establish means of collecting this information 
on both legacy and new projects. 

With the project scope defined and expectations established, the execution of the acquisition 
depends on the acquisition paradigm chosen. Sections 5, 6, and 7 detail the approaches for 
Open Tender, Restricted Tender and Sole Source Acquisition respectively. 

Note that this paper primarily considers the contract relationship between the acquirer and 
the system integrator / prime software developer, and thus proposed Statement of 
Requirement (SOR) and Statement of Work (SOW) clauses have been established for that 
context. These clauses will require adaption for inclusion in contracts with lower tier 
contractors or vendor level contracts, although the intent of the clauses should remain 
similar. 

5 Open Tender Acquisition 

The following sub-sections outline the key elements of implementing the ASAL/CSAL/ESAL 
framework for each lifecycle phase of an open tender.  

5.1 Tender Preparation 

The tender preparation lifecycle phase is where the tender documentation is prepared. 
Tender documentation usually consists of a set of covering Tender explanation, draft terms 
and conditions (T&Cs), the Tender Statement of Requirement (SOR), and Tender Statement 
of Work (SOW). 

One key trade off a tender must make is between the level of detail required from 
prospective tender responses and the impost this might place on prospective bidders in 
actually providing a tender response. As only a small percentage of tender responses are 
actually successful, and tenderers invest substantial resources in preparing them, the 
acquirer must be cognisant of avoiding deterring potential tenderers due to the level of effort 
required to tender. Therefore, in establishing the SOR and SOW clauses for the tender to 
implement the ASAL/CSAL/ESAL framework, the solution must provide for sufficient 
disclosure and understanding to achieve the objectives of the framework, but while ensuring 
the minimum impost of tenders. This is a difficult balance. 

Where the acquisition or modification is of substantial complexity, then the single phase 
tendering process may not incentivise suppliers to invest a level of effort to develop their 
solution to a level that permits preliminary evaluation against the ASAL/CSAL/ESAL 
framework. In these cases a two-phase tender may be more suitable. The first phase would 
identify holistic solutions that accord with the safety objectives of the program and use a 
normal tender construct. The second would be a partially funded tender phase, where 
funding is provided to a restricted set of tenderers to further develop the tender artefacts 
supporting evaluation against the ASAL/CSAL/ESAL framework. The second phase would 
be more synonymous with a Restricted Tender, but include provision for funding. 

5.1.1 Tender SOR Clauses 

The Tender SOR nominally forms the document that lays down the capability, functional, 
safety, etc requirements for the system to be acquired. Its role is to set measurable product 
outcomes/requirements, and communicate them to the tenderer. The SOR usually consists 
of a set of both goal based and prescriptive requirements, depending on the acquirers 
requirements on flexibility/novelty in the design solution. 

For the ASAL, CSAL and ESAL framework, the Tender SOR is where the top level ‘product’ 
hooks of the framework should be articulated. As the primary goal of the ASAL/CSAL/ESAL 
framework is safety assurance, the Tender SOR clauses for the framework should be located 
in the safety assurance section of the SOR. 



 16  

The following are example SOR clauses to demonstrate how this might be achieved. The 
rationale for these clauses is provided in Section 5.2. Note the top level safety objective 
clauses have also been included to provide context to the ASAL/CSAL/ESAL framework 
clauses, and were adapted from clauses existing in the Australian Defence Force 
Contracting Templates [ASDEFCON] and [AAP7001.054].  

Top-level Safety Goal 

The [System Name] shall not cause a hazard to safety when operating in the intended roles, 
configurations and operating environments of the [Acquirer]. 

Criteria for Risk Treatment and Retention 

The [System Name] shall meet the requirements of 14CFR25.13091, and all associated 
Advisory Circulars, Orders, and Notices. 

The risk of the [System Name] causing a hazard to safety when operating in the intended 
roles, configurations and operating environments of the [Acquirer] shall be: 

• tolerable to the [Acquirer] per a risk management framework agreed by the [Acquirer; 
and 

• explicitly documented and communicated to the [Acquirer]. 

Architectural Safety Requirements 

The [System Name] design shall employ the fail safe design criteria of AC25.13092 to provide 
protection against both random and systematic classes of faults and failures, regardless of 
their origin. 

The [System Name] architecture and mechanisms for achieving fault tolerance against 
systematic faults shall meet the Architectural Safety Assurance Level (ASAL) requirements 
defined in Table 2 of this paper.  

The [System Name] shall meet the ASAL Architecturally Layered Fault Tolerance 
Requirements as defined in Table 3 of this paper; or be shown to provide an equivalent level 
of fault tolerance by alternative means.3 

5.1.2 Tender SOW Clauses 

The role of the Tender SOW is to define the contractor scope of work to produce evidence 
deliverable to the acquirer to show compliance with the aforementioned Tender SOR 
clauses. It sets the expectations for the level of evidence generation by the contract and 
delivery to the acquirer. 

The following are example Tender SOR clauses to demonstrate how this might be achieved. 
Elaboration for the reasoning behind their inclusion is discussed in Section 5.2. 

Informing Architectural Suitability 

The [Tenderer] shall prepare a [Conceptual System and Software Architecture Suitability 
Document] to describe how the [System Name] architecture and mechanisms for achieving 
fault tolerance against systematic faults meets the Architectural Safety Assurance Level 
(ASAL) requirements defined in [Table 2 of this paper]. 

                                                
1
 [14CFR25] Subpart F – Equipment §25.1309 Equipment, systems, and installations sets the acceptable risk 
criteria for civil transport category airplanes.  

2
 [AC25.1309] describes the acceptable means of compliance with 14CFR25.1309 

3
 An alternative means may be appropriate where the system architecture does not conform to the software, LRU 
and system level model used for expressing protection mechanisms against systematic faults in Table 3. 



17 

The [Tenderer] shall prepare a [Conceptual System and Software Architecture Suitability 
Document] to describe how each proposed constraint (i.e. absence/detection and handling 
mechanism) is proposed to achieve the ASAL Architecturally Layered Fault Tolerance 
Requirements as defined in [Table 3 of this paper]; or be shown to provide an equivalent 
level of fault tolerance by alternative means. 

Assurance of Constraints using Claims Assurance (CSAL) 

The [Tenderer] shall prepare a [Software Assurance Plan] to describe the Claims Safety 
Assurance Level (CSAL) proposed for each constraint described in the [Conceptual System 
and Software Architecture Suitability Document] as per [Table 4 of this paper]. 

Assurance of Evidence (ESAL and Tolerability of Limitations) 

Defining the Evidence 

The [Tenderer] shall prepare a [Software Development Plan] to describe the methods and 
techniques proposed to be used throughout the software development lifecycle, including 
description of techniques or methods used prior to this development but for which evidence 
is relevant.  

The [Tenderer] shall prepare a [Software Development Plan] to describe how all evidence, 
both new and existing, or produced from the application of [Tenderer] proposed methods and 
techniques will be documented, stored, and retrievable. 

The [Tenderer] shall prepare a [Software Development Plan] to describe how CDRLs [refer 
list below] will be produced per the schedule X. 

Assessing the Evidence 

The [Tenderer] shall prepare a [Software Assurance Plan] to describe how the evidence 
produced from the application of the [Tenderer] proposed methods and techniques is 
proposed to achieve the Evidence Safety Assurance Level (ESAL) requirements for 
tolerability of limitations as defined in [Table 7 to this paper]; for each attribute of each 
software lifecycle product [per Annex A to this paper], at the CSAL [defined per Table 5] and 
as described in the [Conceptual System and Software Architecture Suitability Document] for 
each proposed constraint. 

The [Tenderer] shall prepare a [Software Assurance Plan] to describe the means, either via 
provision of evidence or via access provisions to tenderer facilities and data, for the 
[Acquirer] to inspect or review all evidence, both new and existing, from the application of 
[Tenderer] proposed methods and techniques for the purposes of certification evaluation by 
the [Acquirer]. 

Exemplar Elements of the Software Aspects of the Safety Case 

The [Tenderer] shall prepare an [Exemplar Safety Case] to show the implementation of the 
ASAL, CSAL and ESAL framework for at least one constraint in each generalised category, 
type or class of constraint proposed. The [Tenderer] shall describe the set of categories, 
types or classes by which they have categorised the proposed constraints. 

The secondary element of the Tender SOW is the Tender Data Requirement List (TDRL), 
and the associated Data Item Descriptors (DIDs). The following TDRL items relating to the 
aforementioned SOW clauses should be listed for delivery in the TDRL: 

• Conceptual System and Software Architecture Suitability Document 

• Software Development Plan 

• Software Assurance Plan 

• Exemplar Safety Case 

Additional TDRLs may be listed per any additional acquirer’s requirements. 



 18  

Further, there will be additional CDRLs (and thus DIDs) that won’t be deliverable under the 
Tender, but may be included in the Tender SOW to be costed as part of tender response but 
delivered or accessed under the contract. With respect to the implementation of this 
framework, these are as follows (refer to latter parts of the paper for information on their 
contents): 

• Safety Case to summarise how the architectural fault tolerance contributes to 
mitigation of systematic failure modes 

• Software Configuration Index / Software Version Description to summarise the 
configuration of software to which the evidence relates 

• Software Assurance Summary to summarise the tolerability of limitations for evidence 
shortfalls with respect to software lifecycle product attributes CSAL and associated 
ESAL requirements. 

The following additional DIDs (non-exhaustive list) may be listed in the CDRL depending on 
the acquirer’s requirements to obtain intellectual property rights. These are optional with 
respect to this framework, and the acquirer’s contracting policy and certification guidance 
documents should be sought for specific requirements regarding deliverables. 

• System Development Specification 

• Sub-System Design Document 

• Software Requirements Specification 

• Software Design Document 

• Source Code Repository 

• Toolset Repository 

• Software Lifecycle Data Repository 

• Software Verification Plan 

• Software Verification Plan 

• Software Verification Results 

• System Verification Results 

5.2 Tender Responses 

The tender response is the phase of the tender process where the tenderer prepares their 
response documentation to the Tender SOR and SOW clauses defined above. While the 
onus of this activity is on each contractor, the section will elaborate the rationale for the 
inclusion of the aforementioned SOR and SOW clauses to assist tenderers in preparing their 
responses. 

The Tender SOW requires the preparation of a Conceptual System and Software 
Architecture Suitability document to meet ASAL requirements including conceptual 
identification of absence and detection/handling mechanisms – i.e. constraints. The purpose 
of the tender requesting this information is to permit evaluation of the extent to which the 
holistic safety and software architecture requirements are costed into the tender response. 
The retrospective incorporation of constraints to treat systematic failure modes is rarely 
straightforward, particularly when it affects architecture. Therefore, it is in the acquirer’s 
interests to establish the extent to which the contractor has determined an architecture based 
on the types of constraints required to meet safety objectives. While it is recognised that 
many sub-system architectures may not be well defined for large system acquisitions, the 
absence of this information in a tenderer’s response will permit the acquirer to adjust the 
contractors proposed costing by a risk figure based on the amount of uncertainty (or extent of 



19 

suitability) in the tenderers proposed architecture to provide a normalised evaluation of 
tenderers responses that do include the relevant information. This paper hasn’t defined the 
implementation of costing adjustments, and this is recommended as further work. 

The Tender SOW also requires that, through the provision of the Software Development 
Plan, all evidence that has been or will be produced is documented, along with the methods 
and techniques used to product the evidence. This information has been distinguished from 
the Software Assurance Plan, as it already resembles existing Software Development Plan 
content requirements under existing frameworks. 

More specifically for this framework the Tender SOW requires, through the provision of a 
Software Assurance Plan, the preliminary CSAL assignment for each constraint, along with 
the proposal of methods and techniques to satisfy ESAL criteria with respect to attributes at 
assigned CSALs (generic). The purpose of requesting this information to permit the 
certification authority to evaluate in the tender evaluation the breadth and depth of evidence 
proposed with respect to the general tolerability of limitations concept. It provides the 
acquirer a measure of the extent to which the proposed evidence is likely to meet with 
acquirer evidence benchmarks. It also permits contract authority determination during the 
tender evaluation as to whether the tender adequately costs the evidence, and what any 
evidence shortfalls might notionally cost.   

The final element of the Tender SOR is the provision of exemplar attribute satisfaction for at 
least one constraint in each general class of constraint. The exemplar safety case population 
is intended to assist in establishing the contractor understands the application of the 
ASAL/CSAL/ESAL framework with respect to the objectives of the framework and the 
benchmarks for evidence that should be produced under the framework. It permits the 
certification authority to evaluate during the tender evaluation whether the exemplar attribute 
satisfaction is acceptable, and thus establish if the tenderer understands the tolerability of 
limitations in evidence provision. 

5.3 Tender Evaluation 

The tender evaluation is the phase of the tender lifecycle where the tender responses are 
evaluated against a set of pre-determined tender criteria that includes measures of: 

• compliance with the Tender SOR, and SOW 

• contractor costs estimates 

• contractor schedule estimates 

• adjusted cost and schedule estimates based on shortfalls or limitations in tenderer 
responses 

With respect to the ASAL/CSAL/ESAL framework, the tender evaluation should include an 
evaluation of architectural suitability, and also the ‘tolerability of limitations’ to assuring 
attributes of proposal of methods and techniques to satisfy ESAL criteria with respect to 
attributes at conceptually assigned CSALs. It will also include an evaluation of ‘tolerability of 
limitations’ to assuring attributes of exemplar attribute satisfaction in the exemplar safety 
case. This part of the tender evaluation should be carried out of specialists with both system 
domain and safety and software assurance experience, all of who are familiar with the fault 
tolerance principles that underpin the ASAL/CSAL/ESAL framework. 

The aim of the tender evaluation is establishment of the following: 

• Certification Authority understanding of each tenderers’ approach, including 
architecture, fault tolerance and provision of assurance evidence; 

• the ‘Tolerability of Limitations’ in proposed evidence; 



 20  

• the scope, as well as cost and schedule impost, of additional evidence required to 
resolve intolerable architecture or evidence deficiencies; and 

• the final ranking of tenderers on the above factors. 

On the basis of the established ranking, a preferred tenderer will be identified with which 
contract negotiations can commence. 

5.4 Contract Preparation 

The contract preparation lifecycle phase is where the contract documentation is prepared. 
Tender documentation usually consists of the covering contract explanation, terms and 
conditions (T&Cs), the Contract Statement of Requirement (SOR), and Contract Statement 
of Work (SOW). The following sections examine the clauses necessary to contract for the 
ASAL/CSAL/ESAL framework. 

5.4.1 Contract SOR Clauses 

The following are example SOR clauses, and are consistent with the SOR clauses issues at 
Tender phase (repeated for convenience only, and note the top level safety objective clauses 
have also been included to provide context to the ASAL/CSAL/ESAL framework clauses): 

Top-level Safety Goal 

The [System Name] shall not cause a hazard to safety when operating in the intended roles, 
configurations and operating environments of the [Acquirer]. 

Criteria for Risk Treatment and Retention 

The [System Name] shall meet the requirements of 14CFR25.13094, and all associated 
Advisory Circulars, Orders, and Notices. 

The risk of the [System Name] causing a hazard to safety when operating in the intended 
roles, configurations and operating environments of the [Acquirer] shall be: 

• tolerable to the [Acquirer] per a risk management framework agreed by the [Acquirer; 
and 

• explicitly documented and communicated to the [Acquirer]. 

Architectural Safety Requirements 

The [System Name] design shall employ the fail safe design criteria of AC25.13095 to provide 
protection against both random and systematic classes of faults and failures, regardless of 
their origin. 

The [System Name] architecture and mechanisms for achieving fault tolerance against 
systematic faults shall meet the Architectural Safety Assurance Level (ASAL) requirements 
defined in Table 2 of this paper.  

The [System Name] shall meet the ASAL Architecturally Layered Fault Tolerance 
Requirements as defined in Table 3 of this paper; or be shown to provide an equivalent level 
of fault tolerance by alternative means.6 

                                                
4
 [14CFR25] Subpart F – Equipment §25.1309 Equipment, systems, and installations sets the acceptable risk 
criteria for civil transport category airplanes.  

5
 [AC25.1309] describes the acceptable means of compliance with 14CFR25.1309 

6
 An alternative means may be appropriate where the system architecture does not conform to the software, LRU 
and system level model used for expressing protection mechanisms against systematic faults in Table 3. 



21 

5.4.2 Contract SOW Clauses 

Unlike the Contract SOR clauses which have not been changed for the product 
implementation of the ASAL/CSAL/ESAL framework between tender and contract SORs, the 
contract SOW should now include clauses which reflect the acquisition of the system and its 
evidence, and not just simply the acquisition of the information to support a tender evaluation 
of the system. To achieve this, the following example SOW clauses are provided: 

Architectural Assurance 

The [Contractor] shall prepare a [System and Software Architectural Assurance Document] 
per CDRL XX to describe how the [System Name] architecture and mechanisms for 
achieving fault tolerance against systematic faults achieves the Architectural Safety 
Assurance Level (ASAL) requirements defined in [Table 2 of this paper].  

The [Contractor] shall prepare a [System and Software Architectural Assurance Document] 
per CDRL XX to describe how each proposed constraint (i.e. absence/detection and handling 
mechanism) is proposed to meet the ASAL Architecturally Layered Fault Tolerance 
Requirements as defined in [Table 3 of this paper]; or be shown to provide an equivalent 
level of fault tolerance by alternative means. 

Assurance of Constraints using Claims Assurance (CSAL) 

Proposal of CSAL 

The [Contractor] shall prepare a [Software Assurance Plan] per CDRL XX to describe the 
Claims Safety Assurance Level (CSAL) proposed at commencement of development for 
each constraint described in the [(Preliminary) System and Software Architecture Document] 
as per [Table 4 of this paper]. 

Achievement of CSAL 

The [Contractor] shall prepare a [Software Assurance Summary] per CDRL XX to describe 
the Claims Safety Assurance Level (CSAL) established each constraint described in the 
[System and Software Architecture Document] as per [Table 4 of this paper]. 

Provision of Evidence (ESAL and Tolerability of Limitations) 

Defining the Evidence 

The [Contractor] shall prepare a [Software Development Plan] per CDRL XX to describe the 
methods and techniques proposed to be used throughout the software development lifecycle, 
including description of techniques or methods used prior to this development but for which 
evidence is relevant.  

The [Contractor] shall prepare a [Software Development Plan] to describe how all evidence, 
both new and existing, or produced from the application of [Contractor] proposed methods 
and techniques will be documented, stored, and retrievable. 

The [Contractor] shall prepare a [Software Development Plan] to describe how CDRLs XX-
XX [refer list below] will be produced per the schedule [at Table 8]. 

Assessing the Evidence 

The [Contractor] shall prepare a [Software Assurance Summary] to describe how the 
evidence produced from the application of the [Contractor] proposed methods and 
techniques achieves the Evidence Safety Assurance Level (ESAL) requirements for 
tolerability of limitations as defined in [Table 7 to this paper]; for each attribute of each 
software lifecycle product [per Annex A to this paper], at the CSAL [defined per Table 5] and 
as described in the [System and Software Architectural Assurance Document] for each 
constraint. 



 22  

The [Contractor] shall prepare a [Software Configuration Index] to describe the configuration 
of the [System] and [Software] relevant to the evidence, claims and architecture described by 
the [Software Assurance Summary] 

Software System Safety Case 

The [Contractor] shall prepare a [Safety Case] per CDRL XX to describe how the safety 
objective, and safety assurance requirements of the contract SOR have been achieved for 
[System] and [Software], and to provide the argument and evidence to show the satisfaction 
of ASAL/CSAL/ESAL criteria for each constraint.  

Certification Evaluation 

The [Contractor] shall prepare a [Software Assurance Plan] to describe the means, either via 
provision of evidence or via access provisions to tenderer facilities and data, for the 
[Acquirer] to inspect or review all evidence, both new and existing, from the application of 
[Contractor] proposed methods and techniques for the purposes of certification evaluation by 
the [Acquirer]. 

The [Contractor] shall provide evidence or access to evidence as described in the [Acquirer] 
approved [Contractor]’s [Software Assurance Plan] for the purposes of certification 
evaluation by the [Acquirer]. 

Intolerable Limitations in Evidence, Claims or Architecture 

Where the [Acquirer]’s certification evaluation establishes that the [Contractor] has not 
achieved the requirements of the ASAL/CSAL/ESAL framework, or there are shortfalls in the 
‘Tolerability of Limitations’ of evidence then the [Contractor] shall undertake one or more of 
the following remediation actions to resolve the shortfalls to the satisfaction of the 
certification authority: 

• engineering change to architectural constraints,  

• engineering change to implementation of architectural constraints, or 

• additional analysis, verification and validation by further or supplementary application 
of methods or techniques.  

The [Contractor] shall amend all relevant deliverables per the CDRL to incorporate the 
engineering changes and additional evidence. 

Note to Contractors 

The above clause provides the means for the certification authority to address shortfalls 
against the ASAL/CSAL/ESAL framework. While this clause may be interpreted to result 
in unbounded programmatic risk for the contractor, the intent is to focus both acquirer and 
contractor efforts at establishing unambiguous consensus during the tender process and 
contract negotiations. The contractor should not sign the contract if they believe there 

remains substantial uncertainty regarding the provision of evidence against the 
ASAL/CSAL/ESAL framework, and instead request further clarification during contract 

negotiations. 

The Contractor shall prepare the following deliverables and deliver them in accordance with 
the document delivery schedule defined in the CDRL: 

• [System and Software Architectural Assurance Document] [CDRL XX] 

• [Software Development Plan] [CDRL XX] 

• [Software Assurance Plan] [CDRL XX] 

• [Software Configuration Index] / [Software Version Description] [CDRL XX] 

• [Safety Case] [CDRL XX] 



23 

The following additional DIDs (non-exhaustive list) may be listed in the CDRL depending on 
the acquirer’s requirements to obtain intellectual property rights. These are optional with 
respect to this framework, and the acquirer’s contracting policy and certification guidance 
documents should be sought for specific requirements regarding deliverables. 

• System Development Specification 

• Sub-System Design Document 

• Software Requirements Specification 

• Software Design Document 

• Source Code Repository 

• Executable Code Repository 

• Toolset Repository 

• Software Lifecycle Data Repository 

• Software Verification Plan 

• Software Verification Plan 

• Software Verification Results 

• System Verification Results 

Note that where contractor format documents were shown during the tender evaluation to 
meet the intent of the contract DIDs, then the contractor format documents may be listed 

instead. 

Contract Data Requirements List (CDRL) 

Table 8 provides an example CDRL listing contract data items related to the above SOW 
clauses. 

CDRL Title Delivery Schedule 

Drafts (Preliminary) Final 

#1 Software Development Plan ED ED+60 
#2 System and Software Architectural Assurance 

Document 
System PDR -14,  
System CDR-14 
Software FQTRR-14 

GTRR)14 

#3 Software Assurance Summary Software PDR-14,  
Software CDR-14 
Software FQTRR -14 

GTRR-14 

#4 Software Configuration Index / Software Version 
Description 

Software FQTRR-14 
GTRR-14 

FTRR-14 

#5 Safety Case System PDR-14 
Software PDR-14 
System CDR-14 
Software CDR-14 
Software FQTRR-14 
GTRR-14 

FTRR-14 

ED = Effective Date, PDR = Preliminary Design Review, CDR = Critical Design Review,  
FQTRR = Formal Qualification Test Readiness Review, GTRR = Ground Test Readiness Review,  
FTRR = Flight Test Readiness Review 
Note that the lead and lag timeframes specified above are notional for illustration purposes and may be adjusted pre-contract 
signature by the contract preparer to suit specific project lifecycle requirements. 

Table 8: Contract Data Requirements List (CDRL) Details 

Table 9 provides an example CDRL listing for additional documents that may be acquired 
depending on intellectual property requirements, and are provided to show the preparation 
and delivery lifecycle relationship to the CDRL at Table 8. 



 24  

CDRL Title Delivery Schedule 

Drafts Final 

#A System Development Specification System PDR-14,  
System CDR-14, 
System FQTRR-14, 
GTRR-14 

FTRR-14 

#B Sub-System Design Document System PDR-14,  
System CDR-14, 
System FQTRR-14, 
GTRR-14 

FTRR-14 

#C Software Requirements Specification Software PDR-14 
Software CDR-14 
Software FQTRR -14 

GTRR-14 

#D Software Design Document Software CDR-14 
Software FQTRR -14 

GTRR-14 

#E Software Verification Plan Software PDR-14 
Software CDR-14 

Software FQTRR -14 

#F Software Verification Results 
 

GTRR-14 FTRR-14 

#G System Verification Plan System PDR-14 
System CDR-14 

System FQTRR-14 

#H System Verification Results GTRR-14, 
FTRR-14 

Final Delivery 

#I Source Code Repository 
Executable Code Repository 
Toolset Repository 
Software Lifecycle Data Repository 

N/A Final Delivery 

Table 9: Additional Contract Data Requirements List (CDRL) Details (Project Specific) 

The DIDs for these CDRL line items have not been provided in this paper, and are the 
subject of ongoing work. However, the SOR and SOW clauses proposed above are 
suggestive of the content of the CDRL DIDs of Table 8. The key focus of these documents is 
that the architectural assurance, satisfaction of attributes and tolerability of limitations in 
evidence should be presented in addition to references to the raw evidence. The safety case 
will sensibly include a summary of the overall argument and evidence in this regard, and 
should include traceability to the ASAL/CSAL/ESAL framework as necessary. The software 
aspects of the safety case might also take into consideration related work such as the 
guidance regarding evidence selection, evidence deficits, and assurance cases provided at 
[SSEI09]. 

With respect to the CDRL DIDs at Table 9, for the purposes of understanding this paper, they 
may be considered to be consistent with artefacts specified by standards such as RTCA/DO-
178B [DO-178B], MIL-STD-492, and other similar standards. 

5.5 Contract Negotiation 

The contract negotiations phase of the open tender lifecycle is where fine tuning of the 
contract is made based on the preferred tenderer’s tender evaluation results, with an aim to 
ensure an acceptable contract for both acquirer and contractor. In many respects, contract 
negotiation is an extension of the contract preparation, as it provides the means to negotiate 
and fine tune the contract preparation. 

The key aspects that are sought with respect to the ASAL/CSAL/ESAL framework during 
contract negotiation are as follows: 

• agreed refinement of preliminary system architecture and software architecture to 
meet ASAL requirements including agreement on the extent and types of: 

o absence assurance against systematic failure modes; and 

o detection/Handling mechanisms 

• agreed conceptual CSAL re-assignment for each constraint where the tenderers 
proposed assignment did not meet certification authority expectations;  



25 

• agreed refined proposal of methods and techniques to satisfy ESAL criteria with 
respect to attributes at conceptually assigned CSALs, to limit the extent to which 
evidence shortfalls under the contract might not be tolerable; and 

• agreed mechanisms for resolving shortfalls in any of the above through the contract 
SOW 

Agreement should be reached through refinement of tender provided artefacts, either during 
contract negotiations, or through the draft/final approval process for CDRLs provided under 
the contract. Which option is pursued is dependent on the complexity and impact of the 
issue, and the degree to which certainty would or would not be achieved prior to contract 
signature. 

Resolving evidence shortfalls under the contract SOW is difficult because it is very difficult to 
cost for the contractor as a specific line item. The difficulty in costing it may cause some 
contractors to increase the contract cost dramatically as a risk mitigation against the clause 
being invoked. Therefore it is in both the acquirer’s and contractor’s interests to use contract 
negotiations effectively to bound so far is reasonably practical, the costs of rework by 
effective evaluation of proposed approaches prior to final contract negotiations and contract 
signature. 

6 Restricted Tender Acquisition 

From the ASAL/CSAL/ESAL framework implementation perspective, the Restricted Tender is 
really no different to the Open Tender scenario. Two or more tenderers will still be engaged, 
and mechanisms will still be required to establish the suitability (both in terms of architecture 
and evidence) of the proposed solutions. Therefore, the approach outlined in Section 5 is 
recommended for the Restricted Tender. 

In cases where a funded Restricted Tender is used to provide funding for further 
development of the tender artefacts (e.g. a second phase of tender after preferred suppliers 
have been identified in the first phase), minor revision to the tender SOR and SOW clauses 
is requires to reflect the revised starting point for tender artefacts and alternative funding, 
delivery and payment schedules. Otherwise, the level of disclosure sought should be at least 
that proposed in Section 4.1. Such a funded tender phase provides more mature tender 
artefacts and design solutions thus enabling more detailed evaluation against the 
ASAL/CSAL/ESAL framework. It may be used as a mean of reducing project risk for highly 
developmental programs. 

7 Sole Source Acquisition 

In many respects the Sole Source Acquisition can be the most difficult acquisition paradigm 
to contract for assurance. This is because the acquisition may be dominated by perceptions 
(from both supplier and acquirer) that the solution is already safe and fit for purpose. This is 
particularly the case where a version of the system is already fielded with another customer, 
and has some in-service history. The following sub-sections outline the key elements of 
implementing the ASAL, CSAL and ESAL framework for each lifecycle phase of a sole 
source acquisition. 

7.1 Request for Proposal Preparation 

The Request for Proposal (RFP) preparation lifecycle phase is where the proposal request is 
prepared. RFP’s usually consist of a covering proposal explanation, draft terms and 
conditions (T&Cs), an abridged Statement of Requirement (SOR) focusing on the product to 
be acquired, and a Statement of Work (SOW) to detail product and evidence requirements. 
There are two broad cases for a Sole Source Acquisition: those where a product (and its 
evidence set) will already exist; and those where the basis of a sole source acquisition is due 



 26  

to some more abstract factor that ties the acquisition to the sole supplier (e.g. existing 
intellectual property, only supplier capable of working with the nominated technology, etc).  

Ideally for both cases, the proposal should be as robust a document as the Open and 
Restricted Tender documents already discussed in Sections 5 and 6. This is the approach 
recommended for implementing the ASAL/CSAL/ESAL framework for a sole source 
acquisition. However, it may be possible for an existing product, or one where the product 
and evidence set already exists, there may be pressures not to enforce differing assurance 
requirements onto the product. In these cases many project authorities will want proposal 
documentation that focuses on what the supplier has done for the product (rather than will 
do). This is where one of the key advantages of the ASAL/CSAL/ESAL frameworks is 
highlighted. The ASAL/CSAL/ESAL framework can be use retrospectively as a means of 
assembling existing evidence to determine: 

• the extent to which the product behaviours may be appropriate for the acquirers 
intended application; and 

• the extent to which any identified limitations in the existing evidence suite will be 
tolerable. 

Therefore, despite the different perceptions surrounding the sole source acquisition, the sole 
source approach for implementing the ASAL/CSAL/ESAL framework should be holistically 
the same as the Open Tender and Restricted Tender. The key difference is when the product 
and evidence already exists, the wording of the SOW will require adjustment to capture the 
retrospective application of the framework, and use of it to inform the acquirer about the 
products behaviours and sufficiency of evidence. The following are example SOR clauses to 
demonstrate how this might be achieved (the changes from the Tender SOW clauses are 
very subtle to indicate the retrospective nature of the assessment): 

Informing Architectural Suitability 

The [Proposer] shall prepare a [System and Software Architecture Suitability Document] to 
describe how the [System Name] architecture and mechanisms for achieving fault tolerance 
against systematic faults meets the Architectural Safety Assurance Level (ASAL) 
requirements defined in [Table 2 of this paper]. 

The [Proposer] shall prepare a [System and Software Architecture Suitability Document] to 
describe how each proposed constraint (i.e. absence/detection and handling mechanism) is 
proposed to achieve the ASAL Architecturally Layered Fault Tolerance Requirements as 
defined in [Table 3 of this paper]; or be shown to provide an equivalent level of fault tolerance 
by alternative means. 

Assurance of Constraints using Claims Assurance (CSAL) 

The [Proposer] shall prepare a [Software Assurance Summary] to describe the Claims Safety 
Assurance Level (CSAL) proposed for each constraint described in the [System and 
Software Architecture Suitability Document] as per [Table 4 of this paper]. 

Assurance of Evidence (ESAL and Tolerability of Limitations) 

Defining the Evidence 

The [Proposer] shall prepare a [Software Development Plan], or equivalent document, to 
describe the methods and techniques that are proposed or were used throughout the 
software development lifecycle, including description of techniques or methods used prior to 
this development but for which evidence is relevant.  

The [Proposer] shall prepare a [Software Development Plan], or equivalent document, to 
describe how all evidence, both new and existing, or produced from the application of 
[Proposer] proposed methods and techniques are/will be documented, stored, and 
retrievable. 



27 

The [Proposer] shall prepare a [Software Development Plan] to describe how CDRLs [refer 
list] will be produced per the schedule [at Table 8]. 

Assessing the Evidence 

The [Proposer] shall prepare a [Software Assurance Summary] to describe the extent to 
which the evidence produced from the application of the [Proposer] proposed methods and 
techniques achieves the Evidence Safety Assurance Level (ESAL) requirements for 
tolerability of limitations as defined in [Table 7 to this paper]; for each attribute of each 
software lifecycle product [per Annex A to this paper], at the CSAL [defined per Table 5] and 
as described in the [System and Software Architecture Suitability Document] for each 
identified constraint. 

The [Proposer] shall prepare a [Software Assurance Summary] to describe the means, either 
via provision of evidence or via access provisions to tenderer facilities and data, for the 
[Acquirer] to inspect or review all evidence, both new and existing, from the application of 
[Proposer] proposed methods and techniques for the purposes of certification evaluation by 
the [Acquirer]. 

Exemplar Elements of the Software Aspects of the Safety Case 

The [Proposer] shall prepare an [Exemplar Safety Case] to show the safety assessment 
outcomes of the ASAL, CSAL and ESAL framework for at least one constraint in each 
generalised category, type or class of constraint proposed. The [Proposer] shall describe the 
set of categories, types or classes by which they have categorised the proposed constraints. 

7.2 Proposal Response 

The proposal response is the phase of the process where the proposer prepares their 
response documentation to the Proposal SOR and SOW clauses defined above. While the 
onus of this activity is on the proposer, the section will elaborate the rationale for the 
differences of the aforementioned SOR and SOW clauses for the existing product 
circumstances to assist proposers in preparing their responses. 

The proposal SOW requires the preparation of a Preliminary System and Software 
Architecture document to meet ASAL requirements including conceptual identification of 
absence mechanisms and detection/handling mechanisms – i.e. constraints. The purpose of 
the proposal requesting this information is to permit evaluation of the extent to which the 
existing product is likely to achieve the objectives and benchmarks set by the 
ASAL/CSAL/ESAL framework. That way, if holistic safety and software architecture shortfalls 
are identified, their resolution can be costed into the proposal response; or dealt with prior to 
contract signature during contract negotiations. It should be noted that the retrospective 
incorporation of constraints to treat systematic failure modes is rarely straightforward, 
particularly when it affects architecture; and the emphasis for the proposer at this point will 
be to inform the acquirer of potential architectural shortfalls and how the proposer intends to 
overcome them. 

The proposal SOW also requires the preliminary CSAL assignment for each constraint, along 
with the identification of evidence from the application of methods and techniques to satisfy 
ESAL criteria with respect to attributes at assigned CSALs (generic). The purpose of 
requesting this information to permit the certification authority to evaluate the existing breadth 
and depth of evidence with respect to the general tolerability of limitations concept. It 
provides the acquirer a measure of the extent to which the proposed evidence is likely to 
meet with acquirer evidence benchmarks. It also permits the contract authority determination 
during the proposal evaluation as to whether the proposal adequately costs the production of 
any additional evidence, and what any evidence shortfalls might notionally cost in addition to 
the product cost.  

The final element of the proposal request is the provision of exemplar attributes satisfaction 
for at least one constraint in each general class of constraint. The exemplar safety case 



 28  

population is intended to assist in establishing the proposers understanding of the application 
of the ASAL/CSAL/ESAL framework (even if retrospectively) with respect to the objectives of 
the framework and the benchmarks for evidence defined by the framework. It permits the 
certification authority to evaluate whether the proposer’s product and its evidence is likely to 
be acceptable and the extent to which any product or evidence shortfalls (versus the 
tolerability of limitations) will require resolution under the contract. 

7.3 Proposal Evaluation 

The proposal evaluation is the phase where the proposal response is evaluated against the 
set of pre-determined criteria that includes measures of: 

• compliance with the SOR, and SOW 

• suitability of the product in terms of fitness for purposes as well as safety  

• proposer cost estimates 

• proposer schedule estimates 

• adjusted cost and schedule estimates based on shortfalls or limitations in the 
proposers response 

With respect to the ASAL/CSAL/ESAL framework, the proposal evaluation should examine 
the architectural suitability, as well as the ‘tolerability of limitations’ to assuring attributes 
using the extant evidence against ESAL criteria with respect to attributes at conceptually 
assigned CSALs. It should also include an evaluation of ‘tolerability of limitations’ to assuring 
attributes of attribute satisfaction in the exemplar safety case. This part of the proposal 
evaluation should be carried out of specialists with both system domain, and safety/software 
assurance experience; all of who are familiar with the fault tolerance principles that underpin 
the ASAL/CSAL/ESAL framework. 

The aim of the proposal evaluation is establishment of the following: 

• Certification Authority understanding of the proposers product and evidence, 
including architecture, fault tolerance and provision of assurance evidence; 

• the suitability of the architecture and the level of fault tolerance it provides; 

• potential treatments to architectural and fault tolerance shortfalls; 

• the Tolerability of Limitations in existing evidence; 

• the scope, as well as cost and schedule impost, of additional evidence required to 
resolve intolerable evidence deficiencies; and 

• the degree to which the above factors make the acquisition suitable. 

On the basis of the establishing the suitability of the product and its evidence, contract 
negotiations will be entered with the proposer. 

7.4 Contract Preparation 

The contract preparation lifecycle phase is where the contract documentation is prepared for 
use in contract negotiations and for contract signature. Contract documentation usually 
consists a set of covering contract explanation, terms and conditions (T&Cs), the Contract 
Statement of Requirement (SOR), and Contract Statement of Work (SOW). Suitable Contract 
SOR and SOW clauses have already been established in Section 5.4 on contract 
preparation. While minor wording changes might be required to reflect the retrospective 
nature of some of the evidence, the holistic intent is consistent. The following sections 
examine possible additional clauses necessary to contract for the ASAL/CSAL/ESAL 
framework for the sole source acquisition of an existing product, where a certain amount of 
evidence already exists. 



29 

7.4.1 Contract SOR Clauses 

The contract SOR clauses are the same as for the Open Tender and Restricted Tender. 
Additional clauses may be added to do either of the following: 

• specify specific architectural mechanisms to resolve ASAL framework and associated 
fault tolerance deficiencies - these will be product specific, and so it is not possible to 
provide templates for these.  

• require that the contractor resolve the shortfalls by proposing suitable architectural 
mechanisms. 

The inclusion of which approach is adopted will be at the discretion of the contracting 
authority, and dependent on the results of the proposal evaluation and contract negotiations. 

7.4.2 Contract SOW Clauses 

The contract SOW clauses are the same as for the Open Tender and Restricted Tender. 
Additional clauses may be added to do either of the following: 

• specify specific architectural mechanisms work scope to resolve ASAL framework 
and associated fault tolerance deficiencies - these will be product specific, and so it is 
not possible to provide templates for these.  

• require that the contractor resolve the shortfalls by proposing suitable architectural 
mechanisms. 

• specify specific additional evidence work scope to resolve ESAL/CSAL framework 
deficiencies – these will be product specific, and so it is not possible to provide 
templates for these. 

The inclusion of which approach is adopted will be at the discretion of the contracting 
authority, and dependent on the results of the proposal evaluation and contract negotiations. 

7.5 Contract Negotiation 

The contract negotiations phase is where fine tuning of the contract is made based on the 
proposal evaluation results. The aim is to ensure an acceptable contract to both acquirer and 
contractor. In many respects, contract negotiation is an extension of the contract preparation, 
as it provides the means to negotiate and fine tune the contract preparation. 

The key aspects that are sought with respect the ASAL/CSAL/ESAL framework during 
contract negotiation are as follows: 

• agreed refinement of the established system architecture and software architecture to 
meet ASAL requirements including agreement on the extent and types of: 

o Absence assurance against systematic failure modes; and 

o Detection/Handling mechanisms 

• agreed conceptual CSAL assignment/re-assignment for each constraint where the 
proposers assignment did not meet certification authority expectations;  

• agreed supplementation to previously applied methods and techniques to provide 
additional evidence to shore up shortfalls in satisfaction of ESAL criteria with respect 
to attributes at conceptually assigned CSALs; and 

• agreed means for resolving shortfalls in any of the above through the contract SOW 

Agreement should be reached through refinement of proposer provided artefacts, either 
during contract negotiations, or through the draft/final approval process for CDRLs provided 
under the contract. Which option is pursued is dependent on the complexity and impact of 



 30  

the issue, and the degree to which certainty would or would not be achieved prior to contract 
signature. 

Resolving evidence shortfalls under the contract SOW is difficult because it is very difficult to 
cost for the contractor as a specific line item. The difficulty in costing it may cause some 
contractors to increase the contract cost dramatically as a risk mitigation against the clause 
being invoked. Therefore it is in both the acquirer and contractors interests to use contract 
negotiations effectively to bound so far is reasonably practical, the costs of rework by 
effective evaluation of proposed approaches pre-contract signature. 

8 Contract Execution 

The contract execution phase of the project lifecycle is where the onus is now on the 
contractor to develop an architecture and body of evidence inline with the ASAL/CSAL/ESAL 
framework benchmarks. 

Focus will now move to progressively establishing achievement of the objectives of the 
ASAL/CSAL/ESAL framework over the project lifecycle. The recommended approach is 
through ongoing visibility through a series of systems engineering reviews, such as Design 
Reviews (Conceptual, Preliminary, Critical at System and Sub-system levels), and through 
progressive delivery of evidence via drafts at these reviews. Table 8 provided an example of 
how this might be achieved. 

The key goals of the certification authority during the contract execution will be early visibility 
of potential shortfalls against the ASAL/CSAL/ESAL framework such that these can be 
addressed in the most cost effective manner for the contractor under the already established 
terms of the contract. The following types of shortfalls should be monitored: 

• Evidence shortfalls that inform product suitability against ASAL benchmarks 

• Product shortfalls against ASAL benchmarks 

• Shortfalls against CSAL benchmarks, leading to limitations in ESAL evidence scope 

• Evidence shortfalls against ESAL benchmarks 

The key goals of the contractor during the contract execution will be to achieve contract 
milestones within costs and schedule constraints, while meeting the requirements of the 
contract SOR and SOW. Early visibility of prospective shortfalls will be essential to keeping 
the project within cost and schedule constraints. It is recommended that the contractor 
employ specialists with safety and software assurance skills sets that understand fault 
tolerance and the principles on which the ASAL/CSAL/ESAL framework is based, in order to 
minimise potential of ASAL/CSAL/ESAL framework ignorance based rework. These 
specialists are also recommended to have direct line of influence to the contractor project 
manager in order to ensure technical assurance aspects of the project are held in regard 
during project management and resourcing decisions. 

9 Evaluation 

The approach proposed in this paper for implementing ASAL/CSAL/ESAL framework in the 
open tender, restricted tender and sole source paradigms, including the definition of Tender 
and Contract SOR and SOW clauses, have been established analytically by drawing upon 
observations from and the author’s prior experience with Australian Defence Force project 
contracts and tenders. The proposed implementation is yet to be subject to empirical 
evaluation, and this is proposed in future phases of this work. As results of the evaluation 
cannot be summarised as yet, this paper will instead propose how the evaluation is intended 
to be conducted.  

The true validation of the approach proposed in this paper for contracting for the 
ASAL/CSAL/ESAL assurance framework would be to actually contract one or more real 



31 

projects to this framework, and evaluate the effects of this contracting approach against 
historical projects that used other approaches for contracting for assurance. A real project 
would provide the most representative indication if the contracting approach drives supplier 
and acquirer behaviours in a way that is consistent with the intent of the ASAL/CSAL/ESAL 
framework. However, it is unlikely that any real program would be willing to undertake such 
an endeavour without some preliminary validation evidence first. Therefore, the initial 
evaluate of this work needs to be by alternative means to application to a real project. 

The following evaluation approach is proposed (Table 10): 

Method Agency or Project Evaluation Approach / Objective 

Peer Review Research staff, project coordination, 
project support staff from 
organisations such as Australian, 
United Kingdom Defence research 
establishments (e.g. DSTO, DSTL), 
and technical specialist contractors 
working for Defence organisations. 

Qualitative evaluation of more detailed questions 
derived from the following high level questions: 

Are the motivations for the contracting approach 
representative of historical project issues? 

Does the proposed approach provide a possible 
solution to the historical issues? Effectiveness, 
limitations, gaps? 

Are their fundamental assumptions of the contracting 
approach while might be invalid in practice? 

Would this contracting approach lead to the 
acceptance of acceptable designs and rejection of 
unacceptable designs without undue cost and schedule 
impost on the contract? 

Survey 
Review 
including 
workshops 

Project managers, contract officers of 
suppliers and acquirers including the 
Defence Materiel Organisation (DMO) 
(Australian Department of Defence), 
the United Kingdom Ministry of 
Defence (UK MoD), and Defence 
Contractors from Australian, UK and 
USA. 

Detailed qualitative evaluation via structured question 
set and workshop facilitation of questions (of which the 
survey/workshops will provide substantial elaboration 
of the above questions) 

Review of 
Historical 
Project 
Contracts / 
Evidence 

Historical Australian Defence Force 
projects involving software 
development of aviation systems 

Quantitative evaluation of historical evidence to 
establish? 

What are the historical project issues regarding 
contracting for assurance? What are they? What are 
their likely causes? 

Are these issues traceable and consistent with the 
motivations for contracting approach proposed in this 
paper? 

If this contracting approach would have been applied at 
the outset of the project, would in retrospect it appear 
to help? 

If the project encountered significant assurance issues, 
would the retrospective application of this contracting 
approach help? 

Anti-
hypothesis 
Evaluation 

All previous evaluation evidence.  Establishment of anti-hypothesis and assessment of 
previous evaluations for presence of evidence 
supporting anti-hypothesis (i.e. show that the opposite 
of the underlying hypothesis can be correlated to 
known problems – and thus that this proposed 
approach will not be prone to the same issues) 

Table 10: Evaluation Proposal 

As this work proposed in this paper is tightly coupled to the underlying ASAL/CSAL/ESAL 
framework, the evaluation of the contracting approach is not independent of the evaluation of 



 32  

the framework. In addition to the above evaluation approaches, the ASAL/CSAL/ESAL 
framework will be evaluated by application to: 

• a constructed example by the authors; and  

• retrospective application to several real system developments as an approach for 
structuring and ordering the examination (via audit) of evidence produced within the 
development. 

Pending the conduct, analysis of the results of the proposed evaluation, the longer term 
aspiration is to identify a real project to which to apply this framework to. 

10 Summary 

This paper has examined the means by which the proposed ASAL/CSAL/ESAL assurance 
framework might be contracted for in the acquisition or modification of military aviation 
systems. Contracting paradigms including the preparation and execution of open tenders, 
restricted tenders, sole source contracts have been examined to determine how contracting 
for the proposed assurance framework might differ between these circumstances. The paper 
presents draft examples of Tender SOR, Tender SOW, Contract SOR and Contract SOW 
clauses to implement the ASAL/CSAL/ESAL framework. Furthermore, guidance is provided 
on contracting for architectural, claims and evidence assurance across the tender/contract 
lifecycle, including project definition and approval, tender preparation, tender responses, 
tender evaluation, contract preparation, contract negotiation and contract execution. 

The approach chosen to implement the ASAL/CSAL/ESAL framework is based upon 
establishing the minimum necessary understanding of architectural fault tolerance and 
assurance during the tender/proposal phase, to enable effective tender/proposal evaluation, 
and to support bound-able contract negotiations and contract signature. 

An approach to evaluating the contracting approach for the ASAL/CSAL/ESAL framework 
has been proposed to provide validation evidence to support future application to a real 
project. 

11 References 

The following documents, papers and publications are referenced throughout this paper. A 
number of these documents are not available in the public domain for propriety or 
confidentiality reasons. Readers wishing to seek further information should direct their 
queries to the author of this paper, or the relevant standards body. 

[14CFR] Title 14 Aeronautical and Space, Code of Federal Regulations. 

[14CFR21] Title 14 Aeronautical and Space, Code of Federal Regulations Chapter I Federal 
Aviation Administration, Department of Transportation, Subchapter C – Aircraft, Part 21 
Certification Procedures for Products and Parts 

[14CFR25] Title 14 Aeronautical and Space, Code of Federal Regulations Chapter I Federal 
Aviation Administration, Department of Transportation, Subchapter C – Aircraft, Part 25 
Airworthiness Standards: Transport Category Airplanes 

[AAP1000-D] Australian Air Publication (AAP) AAP1000-D Australian Air Power Manual, 
Australian Department of Defence 

[AAP7001.054] Australian Air Publication (AAP) 7001.054 Airworthiness Design 
Requirements Manual, Directorate General Technical Airworthiness, Australian Defence 
Force 

[ANA20] Australian Government, Air Navigation Act, 1920. 



33 

[ASDEFCON] Australian Government, Department of Defence, Australian Standard for 
Defence Contracting (ASDEFCON) (Strategic Materiel) Version 2.3, Defence Materiel 
Organisation Procurement and Contracting, Effective 01 Oct 2009. 

[CAA88] Australian Government, Civil Aviation Act, 1988. 

[DO178B] RTCA Inc., RTCA/DO-178B: Software Considerations in Airborne Systems and 
Equipment Certification, Washington D.C.: RTCA Inc., 1992. 

[JTM07] D. Jackson, M. Thomas, L Millet, Editors, Software for Dependable Systems: 
Sufficient Evidence?, Committee of Certifiably Dependable Software Systems, National 
Research Council, National Academy of Sciences, USA, 2007. 

[McD07] J.A. McDermid, Risk, Uncertainty, Software and Professional Ethics, 20 August 
2007. 

[McK06] J. McDermid, T. Kelly, Software in Safety Critical Systems: Achievement and 
Prediction, Nuclear Future, Volume 03, No. 03, 2006. 

[NTS06] National Transportation Safety Board, Safety Report on the Treatment of Safety-
Critical Systems in Transport Airplanes, Safety Report NTSB/SR-06/02, Washington, 
D.C., USA, 2006. 

[OPS2-2] Defence Instruction General (DI(G)) Operations (OPS) 2-2 ADF Airworthiness 
Management. 

[ReM10] D.W. Reinhardt, J.A. McDermid, Assuring Against Systematic Faults Using 
Architecture and Fault Tolerance in Aviation Systems, presented at the Improving 
Systems and Software Engineering Conference (ISSEC), Aug 2010. 

[RMc10] D.W Reinhardt, J.A. McDermid, Assurance of Claims and Evidence for Aviation 
Systems, presented at the 5th IET Conference, Oct 2010. 

[SSEI09] R. Hawkins, J. McDermid, Software Systems Engineering Initiative, SSEI-TR-
0000041, Software Safety Evidence Selection and Assurance, Issue 1, University of 
York, October 2009. 

[Wea03] R.A. Weaver, The Safety of Software – Constructing and Assuring Arguments, PhD 
Thesis, Department of Computer Science, University of York, 2003. 

 



 34  

ANNEX A - ATTRIBUTES OF SOFTWARE LIFECYCLE PRODUCTS 

Specified Constraint Level Requirements  

(specified at the level of the architectural constraint, and at the level at which requirements 
are allocated to software) 

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Developed and 
Defined 

Specified Constraint Level Requirements for 
constraint {constraint} do not exist – 
therefore there is no basis for the relevant 
behaviour existing in the software 

Intolerable Intolerable Intolerable Tolerable 

Valid – Accurate /  
Consistent / 
Complete 

Specified Constraint Level Requirements for 
constraint {constraint} exists but the 
specification of the constraint is invalid – 
therefore, there is potential for other lifecycle 
products or translations to refine or 
implement the behaviour erroneously 

Intolerable Constraine
d 

Constraine
d 

Tolerable 

Unambiguous / 
Precise 

Specified Constraint Level Requirements for 
constraint {constraint} exists but the 
specification of the behaviour is ambiguous 
and/or imprecise – therefore, there is 
potential for other lifecycle products or 
translations to misinterpret the constraint 

Intolerable Constraine
d 

Constraine
d 

Tolerable 

Satisfiable / Verifiable Specified Constraint Level Requirements for 
constraint {constraint} exists but the 
behaviour cannot be verified (analytically or 
empirically) – therefore verification evidence 
for the constraint will not exist or be 
irrelevant 

Intolerable Constraine
d 

Constraine
d 

Tolerable 

Compatible with 
Target Computer 

Specified Constraint Level Requirements for 
the constraint {constraint} exists, but the 
constraint is not compatible with the target 
computer – therefore, the specification of the 
constraint is unsatisfiable and additional 
behaviours that violate the constraint may be 
initiated from the target computer 

Intolerable Constraine
d 

Constraine
d 

Tolerable 

Traceable to Lower 
Level Requirements 
(Refined 
Requirements or Low 
Level Requirements) 

Specified Constraint Level Requirements for 
the constraint {constraint} exists, but there is 
no traceability to a lower level refinement of 
the behaviour – therefore, there is no 
traceable basis for the refinement of the 
relevant Specified Constraint Level 
Requirements existing in the software design 
or code 

Intolerable Intolerable Tolerable Tolerable 

Inadequacies in 
Specified Constraint 
Level Requirements 
are identified and 
resolved 

Compliance, robustness, traceability and 
verification may identify inadequacies in 
Specified Constraint Level Requirements – 
therefore the behaviours implemented by the 
software may not be consistent with the 
constraint 

Intolerable Intolerable Constraine
d 

Tolerable 



35 

Refined Abstract Level Requirements (optional in totality) 

(refined from Specified Constraint Level Requirements, while still being abstract from Low 
Level Requirements, and used to provide a means making claims from evidence that cannot 
be produced directly against Specified Constraint Level Requirements or Low Level 
Requirements) 

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Developed and 
Defined 

Refined Abstract Level Requirement for 
constraint {constraint} does not exist – 
therefore there is no basis for the relevant 
behaviour existing in the software 

Intolerable Intolerable Tolerable Tolerable 

Traceable to Higher 
Level Requirements 

(Specified Constraint 
Level Requirements 
or high level Refined 
Abstract Level 
Requirements) 

Refined Abstract Level Requirements exist, 
but there is no traceability to the higher level 
Requirements associated with the constraint 
{constraint} – therefore, the behaviours 
specified by this Refined Abstract Level 
Requirements may not be consistent with the 
constraint 

Intolerable Intolerable Tolerable Tolerable 

Valid – Accurate,   
Consistent, Complete 

Refined Abstract Level Requirement for 
constraint {constraint} exists but the 
specification of the constraint is invalid – 
therefore, there is potential for other lifecycle 
products or translations to refine or 
implement the behaviour erroneously 

Intolerable Constraine
d 

Tolerable Tolerable 

Satisfiable / Verifiable Refined Abstract Level Requirement for 
constraint {constraint} exists but the 
behaviour cannot be verified (analytically or 
empirically) – therefore verification evidence 
for the constraint will not exist or be invalid 

Intolerable Constraine
d 

Tolerable Tolerable 

Unambiguous / 
Precise 

Refined Abstract Level Requirements for 
constraint {constraint} exists but the 
specification of the behaviour is ambiguous 
and/or imprecise – therefore, there is 
potential for other lifecycle products or 
translations to misinterpret the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Compatible with 
Target Computer 

Refined Abstract Level Requirement for the 
constraint {constraint} exists, but the 
constraint is not compatible with the target 
computer – therefore, the specification of the 
constraint is unsatisfiable and additional 
behaviours that violate the constraint may be 
initiated from the target computer 

Intolerable Constraine
d 

Tolerable Tolerable 

Traceable to Lower 
Level Requirements 
(lower level Refined 
Abstract Level 
Requirements or Low 
Level Requirements) 

Refined Abstract Level Requirement for the 
constraint {constraint} exists, but there is no 
traceability to a lower level refinement of the 
behaviour – therefore, there is no basis for 
the refinement of the relevant Abstract Level 
Requirement existing in the software design 

Intolerable Intolerable Tolerable Tolerable 

Compliant with 
Higher Level 
Requirements 
(Specified Constraint 
Level Requirements 
or high level Refined 
Abstract Level 
Requirements) 

Refined Abstract Level Requirements exist 
for the constraint {constraint}, but this 
abstraction of requirements are not 
compliant with the Higher Level 
Requirements – therefore, the behaviours 
specified by the Refined Abstract Level 
Requirements are not consistent with the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 



 36  

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Robust with Higher 
Level Requirements 
(Specified Constraint 
Level Requirements 
or high level Refined 
Abstract Level 
Requirements) 

Refined Abstract Level Requirements exist 
for the constraint {constraint}, but this 
abstraction of requirements is not robust with 
the Higher Level Requirements – therefore, 
the behaviours specified by the Refined 
Abstract Level Requirements may not be 
resilient to sources of faults that might violate 
the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Inadequacies in 
Refined Abstract 
Level Requirements 
are identified and 
resolved 

Compliance, robustness, traceability and 
verification may identify inadequacies in 
Refined Abstract Level Requirements – 
therefore the behaviours implemented by the 
software may not be consistent with the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

 



37 

Low Level Requirements  

(specified at a level that no additional refinement is required to develop source code and that 
all behaviours of the source code are described by the Low Level Requirements) 

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Developed and 
Defined 

Low Level Requirements for constraint 
{constraint} do not exist – therefore there is 
no basis for relevant behaviour existing in 
software 

Intolerable Intolerable Tolerable Tolerable 

Traceable to Higher 
Level Requirements 
(Specified Constraint 
Level or Refined 
Abstract Level) 

Low Level Requirements exist, but there is 
no traceability to Higher Level Requirements 
associated with {constraint} – therefore, 
behaviours specified by Low Level 
Requirements may not be consistent with the 
constraint 

Intolerable Intolerable Tolerable Tolerable 

Valid – Accurate /  
Consistent / Complete 

Low Level Requirements for constraint 
{constraint} exist but the specification of the 
constraint is invalid – therefore, there is 
potential for other lifecycle products or 
translations to refine or implement the 
behaviour erroneously 

Intolerable Constraine
d 

Tolerable Tolerable 

Satisfiable / Verifiable Low Level Requirements for constraint 
{constraint} exist but the behaviour cannot be 
verified (analytically or empirically) – 
therefore verification evidence for the 
refinement of the constraint will not exist or 
be invalid 

Intolerable Constraine
d 

Tolerable Tolerable 

Unambiguous / 
Precise 

Low Level Requirements for constraint 
{constraint} exist but the specification of the 
behaviour is ambiguous or imprecise – 
therefore, there is potential for other lifecycle 
products or translations to misinterpret the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Compatible with 
Target Computer 

Low Level Requirements for the constraint 
{constraint} exist, but the constraint is not 
compatible with the target computer – 
therefore, therefore, the specification of the 
constraint is unsatisfiable and additional 
behaviours that violate the constraint may be 
initiated from the target computer 

Intolerable Constraine
d 

Tolerable Tolerable 

Traceable to Source 
Code 

Low Level Requirements for the constraint 
{constraint} exist, but there is no traceability 
to an implementation level refinement of the 
behaviour – therefore, there is no basis for 
the refinement of the Low Level 
Requirements existing in the software source 
code 

Intolerable Intolerable Tolerable Tolerable 

Compliant with Higher 
Level Requirements 
(Specific Constraint 
Level Requirements 
or Refined Abstract 
Level Requirements) 

Low Level Requirement exist for the 
constraint {constraint}, but the low level 
requirements are not compliant with the 
Higher Level Requirements – therefore, the 
behaviours specified by the Low Level 
Requirements are not consistent with the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 



 38  

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Robust with Higher 
Level Requirements 
(Specific Constraint 
Level Requirements 
or Refined Abstract 
Level Requirements) 

Low Level Requirements exist for the 
constraint {constraint}, but are not robust 
with the Higher Level Requirements – 
therefore, therefore, the behaviours specified 
by the Low Level Requirements may not be 
resilient to sources of faults that might violate 
the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Inadequacies in Low 
Level Requirements 
are identified and 
resolved 

Compliance, robustness, traceability and 
verification may identify inadequacies in Low 
Level Requirements – therefore the 
behaviours implemented by the software 
may not be consistent with the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 



39 

Software Source Code  

(compiler or assembler readable code) 

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Developed and 
Defined 

Source Code for constraint {constraint} does 
not exist – therefore no basis for the relevant 
behaviour existing in the software 

Intolerable Intolerable Intolerable Tolerable 

Traceable to Low 
Level Requirements 

Source Codes exists, but there is no 
traceability to the Low Level Requirements 
associated with the constraint {constraint} – 
therefore, the behaviours implemented by 
the Source Code may not be consistent with 
the constraint 

Intolerable Intolerable Tolerable Tolerable 

Valid – Accurate /  
Consistent / 
Complete 

Source Code for the constraint {constraint} 
exist but the implementation of the constraint 
is incorrect – therefore, the executable object 
code will contain an erroneous behaviour 

Intolerable Intolerable Constraine
d 

Tolerable 

Satisfiable / Verifiable Source Code for constraint {constraint} exists 
but the behaviour cannot be verified 
(analytically or empirically) – therefore 
verification evidence for the implementation 
of the constraint will not exist or be invalid 

Intolerable Intolerable Constraine
d 

Tolerable 

Unambiguous / 
Precise 

Source Code for constraint {constraint} exists 
but the implementation of the behaviour is 
ambiguous or imprecise – therefore, there is 
potential for implementation of other software 
components or compiler/linker translations to 
misinterpret the constraint and introduce 
vulnerabilities that violate the constraint 

Intolerable Intolerable Constraine
d 

Tolerable 

Compatible with 
Target Computer 

Source Code for the constraint {constraint} 
exists, but the constraint is not compatible 
with the target computer – therefore, the 
implementation of the constraint is invalid 
and additional behaviours that violate the 
constraint may be initiated from the target 
computer 

Intolerable Constraine
d 

Constraine
d 

Tolerable 

Traceable to 
Executable Object 
Code 

Source Code for the constraint {constraint} 
exists, but there is no traceability to a target 
computer level refinement of the behaviour in 
object code – therefore, there is no basis for 
the complete refinement of the relevant 
Source Code existing in the Executable 
Object Code 

Intolerable Constraine
d 

Tolerable Tolerable 

Compliant with Low 
Level Requirements 

Source Code exists for the constraint 
{constraint}, but the Source Code is not 
compliant with the Low Level Requirements 
– therefore, the behaviours implemented by 
the Source Code are not consistent with the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Robust with Low 
Level Requirements 

Source Code exist for the constraint 
{constraint}, but are not robust with the 
Higher Level Requirements – therefore, the 
behaviours implemented by the software 
may not be resilient to sources of faults that 
might violate the constraint 

Intolerable Constraine
d 

Constraine
d 

Tolerable 



 40  

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Inadequacies in 
Source Code are 
identified and 
resolved 

Compliance, robustness, traceability and 
verification may identify inadequacies in 
Source Code – therefore the behaviours 
implemented by the software may not be 
consistent with the constraint 

Intolerable Intolerable Constraine
d 

Tolerable 



41 

Executable Object Code  

(target computer readable binary code) 

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Produced Executable Object Code for constraint 
{constraint} does not exist – therefore no 
basis for the refinement of the relevant 
behaviours of the constraint existing in the 
software 

Intolerable Intolerable Intolerable Tolerable 

Integrated onto 
Target Computer 

Executable Object Code for constraint 
{constraint} exists, but it didn’t integrate/load 
onto the target computer – therefore, there is 
no basis for the refinement of the relevant 
behaviours of the constraint existing in the 
software on the target computer 

Intolerable Intolerable Intolerable Tolerable 

Compatible with 
Target Computer 

Executable Object Code for the constraint 
{constraint} exists, but the constraint is not 
compatible with the target computer – 
therefore, the implementation of the 
constraint is invalid and additional 
behaviours that violate the constraint may be 
initiated from the target computer 

Intolerable Intolerable Constraine
d 

Tolerable 

Traceable to Source 
Code 

Executable Object Code exists, but there is 
no traceability to the Source Code 
associated with the constraint {constraint} – 
therefore, the behaviours implemented by 
the Executable Object Code may not be 
consistent with the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Compliant with 
Specified Constraint 
Level Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not compliant with the Specified Constraint 
Level Requirements – therefore, the 
behaviours implemented by the software are 
not consistent with the constraint 

Intolerable Intolerable Constraine
d 

Tolerable 

Robust with Specified 
Constraint Level 
Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not robust with the Specified Constraint 
Level Requirements – therefore, the 
behaviours implemented by the software 
may not be resilient to sources of faults that 
might violate the constraint 

Intolerable Intolerable Constraine
d 

Tolerable 

Verification Coverage 
of Specified 
Constraint Level 
Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not verified against all applicable Specified 
Constraint Level Requirements – therefore, 
the behaviours implemented by the software 
may not be consistent with the constraint 

Intolerable Intolerable Intolerable Tolerable 

Compliant with 
Refined Abstract 
Level Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not compliant with the Refined Abstract 
Level Requirements – therefore, the 
behaviours implemented by the software are 
not consistent with the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Robust with Refined 
Abstract Level 
Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not robust with the Refined Abstract Level 
Requirements – therefore, the behaviours 
implemented by the software may not be 
resilient to sources of faults that might violate 
the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 



 42  

Attribute Impact of NOT Satisfying CSAL3 CSAL2 CSAL1 CSAL0 

Verification Coverage 
of Refined Abstract 
Level Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not verified against all applicable Refined 
Abstract Level Requirements – therefore, the 
behaviours implemented by the software 
may not be consistent with the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Compliant with Low 
Level Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not compliant with the Low Level 
Requirements – therefore, the behaviours 
implemented by the software are not 
consistent with the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Robust with Low 
Level Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not robust with the Low Level 
Requirements – therefore, the behaviours 
implemented by the software may not be 
resilient to sources of faults that might violate 
the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Verification Coverage 
of Low Level 
Requirements 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not verified against all applicable Low 
Level Requirements – therefore, the 
behaviours implemented by the software 
may not be consistent with the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Compliant with 
Source Code 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not compliant with the Source Code – 
therefore, the behaviours implemented by 
the software are not consistent with the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Robust with Source 
Code 

Executable Object Code exists for the 
constraint {constraint}, but the Object Code 
is not robust with the Source Code – 
therefore, the behaviours implemented by 
the software may not be resilient to sources 
of faults that might violate the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Verification Coverage 
of Source Code 
Structure 

Source Code exists for the constraint 
{constraint}, but the verification has not 
exercised all behaviours of the Source Code 
relevant to the constraint – therefore, there 
may be additional behaviours of the source 
code which violate the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Verification Coverage 
of Executable Object 
Code Structure 

Executable Object Code exists for the 
constraint {constraint}, but the verification 
has not exercised all behaviours of the 
Executable Object Code relevant to the 
constraint – therefore, there may be 
additional behaviours of the Executable 
Object Code which violate the constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

Inadequacies in 
Executable Object 
Code are identified 
and resolved 

Compliance, robustness, traceability and 
verification may identify inadequacies in 
Executable Object Code – therefore the 
behaviours implemented by the software 
may not be consistent or complete with the 
constraint 

Intolerable Constraine
d 

Tolerable Tolerable 

 



  

 


