

ASSURING AGAINST SYSTEMATIC FAULTS

USING ARCHITECTURE AND FAULT TOLERANCE

IN AVIATION SYSTEMS

Squadron Leader D.W. Reinhardt

Royal Australian Air Force
Deputy Senior Design Engineer

Avionics C-130H/J
RAAF Richmond, NSW 2755, Australia

derek.reinhardt@defence.gov.au

Professor J.A. McDermid OBE FREng

Head of Department of Computer Science
University of York
United Kingdom

john.mcdermid@cs.york.ac.uk

Abstract

The failure circumstances of complex aviation systems involving technologies such
as software are dominated by systematic faults. However systematic faults are often
poorly resolved by the coupling of software assurance with traditional system safety

methodologies.

This paper examines the treatment of systematic faults and failures in a number of
actual aviation systems, including civil and military Automatic Flight Control Systems
(AFCS) and Flight Management Systems (FMS). The results of this examination are
contrasted with the fail safe design criteria underpinning the 14CFR 25.1309
airworthiness requirements for civil aircraft certification, and commonalities in
architectural and fault tolerance treatments of systematic faults and failures are
identified.

Using the identified commonalities, and examining how architecture and fault
tolerance contribute to bounding the uncertainty of the effects of systematic failures
on a system, a framework is proposed for quantifying the assurance of safety
architecture in aviation systems. The assurance framework provides a direct measure
of the degree of the system’s fault tolerance against systematic faults and failures,
and thus infers the system’s suitability for use in the presence of aircraft level failure
conditions of differing severities.

Keywords: Architecture, Assurance, Aviation Systems, Fault Tolerance, Safety,
Software Assurance, Software Safety, Safety Critical.

1 Introduction

In complex aviation systems involving technologies (e.g. software) whose faults are
dominated by a class of faults referred to as systematic faults, there are substantial
challenges at providing assurance that these faults do not lead to unacceptable
aircraft failure conditions.

Most safety and assurance standards for software systems in the aviation domain
deal with systematic faults through the identification and allocation of software safety
requirements and through the specification of software integrity levels or design
assurance levels. However there are numerous limitations (refer to [JTM07],

Copyright © 2010. This paper is to be presented at the Improving Systems and Software Engineering Conference

23 - 26 August 2010. Reproduction for academic, not-for profit purposes permitted provided this text is included.

[McD07], [McK06], [NTS06], [Wea03]) with the mechanisation of the current
assurance frameworks that limit their effectiveness at providing robust assurance that
systematic faults do not lead to unacceptable aircraft failure conditions. This is
primarily because of limitations in the treatment of requirements validity of the system
and software, as well as in the direct provision of evidence that the behaviours of the
system and software are acceptable with respect to safety. The current standards are
also limited in the ability to determine the impact on the aviation system of shortfalls
against the criteria of the standards.

This paper examines these challenges for aviation systems and proposes an
alternative framework for the assurance of systematic faults in aviation systems. The
framework that is proposed is intended to be compatible with the existing standards’
approaches, even if the standard were not to explicitly adopt the architectural
assurance framework proposed in this paper.

2 Background

In order to understand the sources of limitations in the effectiveness of the current
assurance frameworks for systematic faults in aviation systems, it is necessary to
understand what systematic faults are, and why their treatment is inherently different
to that of other sources of failure. The following sub-sections provide insight into
systematic faults and failures, and then examine in detail the sources of limitations in
current standards frameworks in this context.

2.1 Systematic Faults and Failures

Unlike random failures, which are caused by items and components wearing out,
systematic failures are produced by requirements, design and implementation faults
introduced by errors or omissions made by developers and manufacturers (i.e.
humans, tools, systems or processes) during system development or manufacture, or
by human error or omission during operation or maintenance. Once such a
systematic fault is resident within a system, then it will always be activated when the
particular set of circumstances and system state transpire. Unfortunately it is also
difficult to predict the occurrence of systematic failures caused by such faults,
because:

• complex systems have complex interactions with their operating environment

• complex systems have significant numbers of internal states both explicit and
implicit;

• there is uncertainty as to the number of unknown design faults, and there may be
limitations in the understanding of the operational environment or context; and

• as it is generally not possible to predict when a particular set of circumstances
will occur, in association with the vulnerable transition criteria between system
states (both temporal and spatial) in existence due to the latent design fault, then
it is generally not possible to produce statistical information from which to
determine failure distributions, reliability and probability.

Thus the typical means of determining likelihood, based on probability of failure for
random failure, does not translate to systematic failures, and a different approach is
required. [McD07] distinguishes this as epistemic uncertainty (i.e. imperfect
knowledge of the system or the stochastic model), rather than aleatoric uncertainty
(i.e. 'randomness' which can be characterised by a stochastic model). In simple

terms, shortfalls in knowledge of the distribution of systematic failures makes
predicting a probability of systematic failure worthless.

Unlike traditional hardware, all failures associated with technologies like software (i.e.
from faults in requirements, design, or implementation) are systematic (e.g. if the
fault is present, it is just waiting for the right set of circumstances to activate the
fault). No element of the software is 'wearing out' in the traditional sense. [McD01]
identifies that software failures arise most often from:

• discrepancies between documented requirements specifications and the
behaviours needed for correct and safe functioning of the system; and

• misunderstandings by software developers about the software's interface with the
rest of the system.

Software-related incidents and accidents have still occurred when the software
satisfied its specification and when the operational reliability of the software was
perceived to be very high [McD01]. This is due to:

• requirements that specify behaviour that is not appropriate from a system
perspective;

• requirements that do not specify some particular safety behaviour and therefore
the developers have made invalid assumptions about those particular
behaviours; or

• software that has unintended (and unsafe) behaviour beyond that which is
specified in requirements.

Because of these causes, software faults are often observed as being intermittent,
affected by changing conditions, recurrent under the right conditions, partial (i.e. not
all software faults activate detectable and identifiable errors, or propagate to
immediate failures), and all these factors create challenges in assuring that such
faults and failures can not occur.

For these reasons, it is not possible to statistically predict the probability of
systematic failures, and thus for technologies such as software it would seem that we
are left without a means to quantify the associated risks using traditional risk
assessment methodologies (i.e. risk being a function of consequence and likelihood).

2.2 Current Standards Approach

Instead of providing a structured assessment of the likelihood of systematic failure for
software (which has been established in Section 2.1 to be difficult), current standards
employ the concept of assurance. Assurance standards provide confidence in the
behaviours of the software by examining key product and process attributes and
evidence across the development and verification life-cycle. The proposition is that
the more rigorous the exposition of these attributes, and the greater the body of
evidence supporting these attributes, the more likely it is that software faults are not
introduced into the software or system, or they are detected and corrected
throughout the development and verification process. Hence, the assurance
approach implicitly shapes the distribution of systematic failures such that while the
distribution is still not known, the likelihood of systematic failure realising a safety
related failure effect in the system is low within the constraints of the intended (and
understood) operating context.

However the shortfall with the traditional assurance approach is that the evidence still
only supports an implicit argument about the likelihood of a systematic failure
realising a safety related failure effect, and they don’t directly provide any information
about the behaviour of the software when a systematic fault is activated. The
following sections examine the specifics of this problem in further detail.

2.2.1 Existing Software Assurance Frameworks Don’t Address Architecture

The safety process as described by [ARP4754] is shown in Figure 1. The key steps
in the process associated with the formation of the system and software architecture
are:

• the development of system architecture using architectural requirements
determined from Preliminary System Safety Assessments (PSSA); and

• the allocation of item requirements to software based on the system architecture
and PSSAs.

Figure 1: Safety Assessment Process Model [ARP4754]

Clearly the PSSAs are a key contributor to the formation of the system architecture
under [ARP4754]. PSSAs are usually an inter-related set of System, Sub-system and
Component level Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis
(FMEA). They are structured around demonstrating the predicted likelihood of system
level failure conditions identified in the preceding analysis. However, because of the
probability/likelihood focus of these combined analyses, they are often only capable
of providing a binary perspective (handled / not handled) on treatments such as fault
tolerance and architecture on systematic failures.

Fault tolerance is the ability for a system to detect an error, fault or failure condition
(as defined by [ALR04]) and then undertake a level of reconfiguration/handling to
prevent the fault or localised failure propagating to a failure at the sub-system

Certification

boundary, or a system hazard at the system level. Architecture in this context is used
to provide these layered detection and handing mechanisms and thus achieve fault
tolerance.

Once a treatment is allocated to an item (such as a software component), and the
assurance level assigned, there are limitations to further consideration of the
architecture and systematic failures within the objectives of standards such as
RTCA/DO-178B [Rei08]. For example, RTCA/DO-178B, requires development of
high level requirements and low level requirements, including derived requirements.
RTCA/DO-178B also requires that the software architecture is developed, and there
are also links to architectural assessment. However, the requirements are not from
the perspective of the architecture’s contribution to preventing systematic failures.
There is substantial scope for improvements to be made as to how architecture is
addressed, particularly from a product behavioural validity perspective. Furthermore,
redundancy, design diversity, and layered detection and handling mechanisms
(software, software implemented, hardware implemented, line replaceable unit (LRU)
and system) within these architectures clearly introduce behaviours in a system that
are far from merely binary, and require different approaches to assure.

One notable exception in RTCA/DO-178B with respect to architecture is partitioning
integrity. However, partitioning integrity is predominately about preventing the effects
of one software component affecting the function of another software component. It is
not about providing an appropriate architectural fault tolerant treatment in the
occurrence of a systematic software failure’s effects propagating within a system’s
control and data flows.

Therefore, existing assurance frameworks don’t comprehensively address
architecture with respect to the behaviour of the system under the occurrences of
systematic failures. The explicitness of the treatment of systematic faults gets lost in
the interface between the safety analysis (which is likelihood focussed) and
traditional assurance methodologies which have limitations in their consideration of
architecture in this context.

These limitations have been previously identified by [Pum99] and [Wea03] who
proposed approaches centred around the explicit provision of evidence with respect
to an arguably complete taxonomy of software failure conditions, and their associated
treatments (absence or detection/handling, many of which require architectural
implementation). However, neither [Pum99] or [Wea03] set out explicitly how their
approaches might be integrated with the existing assurance standards.

This paper proposes that assurance frameworks should explicitly integrate
requirements for architectural treatments to systematic faults along with their more
traditional objectives.

2.2.2 Existing Assurance Frameworks Don’t Provide Quantification of the
Degree of Fault Tolerance within a System and its Software

Section 2.2.1 established that the existing approaches didn’t provide explicit visibility
of treatment of systematic faults. Using this context, the extent to which quantification
of the degree of fault tolerance within a system and its software can be explored.

For example, if a certification authority or aircraft operator was to be given the
information that their digital flight control system:

• had several relevant catastrophic failure conditions,

• was triply redundant to guard against failures (and inevitably support a robust
likelihood argument with respect to random failures), and

• each software component was assured to level A (as RTCA/DO-178B requires);

then how much of this information helps either the certification authority or aircraft
operator to understand the fault tolerance behaviour of the system under the
occurrence of faults? Actually, very little!

While the example is slightly contrived, as the:

• claimed role of the redundancy would usually be evident to the certification
authority in the safety analysis, and

• the flight manual would give some indication of the failure behaviours of the
system as it reconfigures itself under fault conditions to the operator;

the certification authority and operator are still missing several quite importance
pieces of information. The operator and certification authority don’t know:

• how many systematic faults (known and unknown) the system is tolerant
against?,

• which classes of systematic faults the system is tolerant against (under what
conditions)?, and

• to what extent any redundancy or other highly publicised fault tolerance
mechanisms might be violated by the occurrence of systematic faults?

The certification authority and aircraft operator also have limited knowledge (i.e.
uncertainty) as to the precise behaviour of the system under these fault conditions,
which would be necessary in providing the timely operator response to the source of
the fault.

This paper asks the question: shouldn’t an assurance framework for aviation systems
inherently quantify the answers to these questions? Furthermore, the treatments to
such faults should be quantifiable with respect to the extent of detection and handling
mechanisms in their failure paths. If a system is truly tolerant against systematic
faults, then it should be possible to provide a measure of just how many and what
types of faults it is tolerant against. These factors are then obviously a key
determiner in the system’s suitability of differing consequences and severities in
aircraft level failure conditions.

3 Examination of Actual Aviation Systems

So far this paper has identified a number of shortfalls with the existing standards
frameworks with respect to systematic faults and failures. However, irrespective of
the standard’s framework, it is worth examining the degree of fault tolerance against
systematic faults actually achieved in a host of representative aviation systems. This
will permit any commonalities (positive and negative) in the treatment of systematic
faults to be determined.

Two different types of critical aircraft systems (Automatic Flight Control Systems
(AFCS) and Flight Management Systems (FMS)) have been considered across a
range of civil and military aircraft including the B777, A330, C-17, C-130J and
F/A-18A/B. Information on the architecture and design features employed from these
systems has mostly been obtained from information in the public domain on these
systems. Where this has been insufficient, then additional behaviours and treatments
have been inferred using flight manuals, pilot briefing notes and maintenance
publications. The main sources of information are identified in the references of this
paper.

3.1 Flight Control Systems

Annex A Table 6 provides an overview of the flight control systems of several civil
and military aircraft with the purpose of identifying those design features that might
provide detection and handling of systematic fails and failures within the system.
Specifically the Boeing 777, A330 / KC-30A, C-17 and F/A-18A/B are considered.

3.2 Flight Management, Navigation

Annex A Table 7 provides an overview of the flight management / navigation systems
of several civil and military aircraft with the purpose of identifying those design
features that might provide detection and handling of systematic fails and failures
within the system. Specifically the Boeing 777, A330 / KC-30A, C-130J and F/A-
18A/B are considered.

3.3 Aviation System Analysis

Eliciting the fault tolerance design features from Annexes A and B, and classifying
and consolidating the features according to [HiM01] and [Ham01], Table 1
summarises the generic classes of fault tolerance mechanisms employed by the
examined systems. Section 5 examines these features in further detail, however to
provide context to this examination, it is necessary to firstly introduce the fail safe
design criteria and consider it for systematic faults.

4 Fail Safe Design Criteria Applied to Systematic Faults

The most likely source of many of the fault tolerance design features present in
actual aviation systems with respect to treating systematic faults and failures, comes
not from the system safety or software assurance standard framework, but instead
from the application of the fail safe design criteria. This section examines the fail safe
design criteria, and its effect on architecture and systematic faults.

4.1 14 CFR 25.1309 / AC25.1309 Fail Safe Design Criteria

[AC25.1309] defines the fail safe design concept as follows:

“In any system or subsystem, the failure of any single element, component, or
connection during any one flight (brake release through ground deceleration to stop)
should be assumed, regardless of its probability. Such single failures should not
prevent continued safe flight and landing, or significantly reduce the capability of the
airplane or the ability of the crew to cope with the resulting failure condition.”

“Subsequent failures during the same flight, whether detected or latent, and
combinations thereof, should also be assumed, unless their joint probability with the
first failure is shown to be extremely improbable.”

The fail safe design concept implies the application of fault tolerant design
approaches including:

• Redundancy or Backup Systems, Monitors

• Isolation of Systems, Components, and Elements

• Designed Failure Effect Limits

• Designed Failure Path

• Fault and Error Tolerance

4.2 Design criteria impact on fault tolerant architecture

Fault tolerance and architecture inherently underpin the application of the fail safe
design concept and the aforementioned design approaches. Fault tolerance exists in
several different guises depending on the level of system abstraction the system is
being examined from. Broadly, though, fault tolerance mechanisms can be classified
as one of the following:

• system level fault tolerance – mechanisms usually provided at a system or line
replaceable unit (LRU) level to provide tolerance to sub-system faults (noting that
the sub-system fault may be caused by a factor external to the system);

• hardware implemented fault tolerance – implementation of system level fault
tolerance mechanisms by hardware;

• software implemented fault tolerance – implementation of system fault tolerance
mechanisms by software; and

• software fault tolerance – mechanisms provided at software level for containing
or mediating software errors, faults and failures.

Table 1 summarises commonly used fault tolerance mechanisms in fault tolerant
systems as sourced from the examination of actual aviation systems, as well as
[HiM01] and [Ham01].

5 Observations from Examination of Aviation Systems and Fail Safe Design
Criteria

This section applies the fail safe design criteria discussed in Section 4 to the actual
aviation systems examined in Section 3 for the purposes of eliciting the
commonalities in handling of systematic failures by the actual aviation systems.
Bringing this into the context of systematic faults such as those identified using
[Pum99]’s taxonomy and treated using those approaches articulated in [Wea03] (by
absence or detection/handling), it is evident that the fail safe design criteria heavily
influences the treatment strategies for systematic faults.

The following sub-sections examine this in specific detail.

System Level Fault
Tolerance

Hardware
Implemented Fault
Tolerance

Software Implemented
Fault Tolerance

Software Fault
Tolerance

• Simplex, no fault
tolerance

• Simplex, with
disengagement
features

• Dual standby

• Self checking pair
(single or dual)

• Self checking pair
with simplex fault
down

• Triple modular
redundancy

o fault down to
self checking
pair or fault
down to
simplex

• Redundancy

• Dissimilar Hardware

• Distinct Hardware

• Command /
Monitors

• Voter Comparators

o Average

o Middle Value
Selection

o 2/3 Majority Vote

• Watchdog Timers

• Error Detection –
recognition of the
incidence of a fault

o Replication
Checks

o Timing Checks

o Reversal Check
(Analytical
Redundancy)

o Coding Checks

o Reasonableness
Checks

o Structural Checks

o Diagnostic Checks

• Damage Confinement
/ Fault Containment –
restriction of the
scope of effects of a
fault

• Damage Assessment
– diagnosis of the
locus of a fault

• Error Recovery –
restoration of a
restartable service

• Service Continuation
– sustained delivery of
system services

• Fault Treatment –
repair of a fault

• Distributed Fault
Tolerance

• Multi-version
software

o N-version
program

o Cranfield
Algorithm for
Fault Tolerance
(CRAFT)

o Distinct and
Dissimilar
software

• Recovery Blocks

o Deadline
mechanism

o Dissimilar
Backup
Software

• Exception
Handlers

o Hardened
Kernels

o Robust Data
Structures and
Audit Routines

o Run Time
Assertion

• Hybrid Multi-
version Software
and Recovery
Block Techniques

o Tandem

o Consensus
Recovery Block

Table 1: Summary of Fault Tolerance Mechanisms

5.1 No Single Failure Criterion

[AC25.1309] effectively states that no single failure of a software or hardware
component should lead to Major, Hazardous or Catastrophic failure condition. So the
25.1309 airworthiness requirement requires that consideration is given all single
failures to show that they cannot directly result in the Major, Hazardous or
Catastrophic failure conditions.

Therefore it must be assumed that when dealing with the presence of systematic
faults, any given absence argument might be invalidated (due to unknown faults,
irrespective of how well assured it might be), or that any given detection and handling
argument might also be invalidated (due to unknown faults in the detection and
handing mechanism, irrespective of how well assured it might be).

5.1.1 Invalidating Absence Arguments

If an absence argument is invalidated then only a detection and handling argument
can address the invalidation. This is because once the absence argument is
invalidated the failure is now assumed to have occurred in the software and it is no
longer absent. While appropriate system architecture might mask that fault at higher
levels of abstraction thus making it (or its effects) absent, the system will inevitably
employ detection and handling to achieving this masking.

This subsequent detection and handling argument might be made later in the
software (provided invalidating the absence argument doesn’t also lead to
invalidation of its detection and handling in software), at a LRU level (hardware or
software implemented) or system architecture level.

5.1.2 Invalidating Detection and Handling Arguments

If a detection and handling argument is invalidated then only a detection and
handling argument later in the software (provided invalidating the original detection
and handling argument doesn’t also lead to invalidation of its detection and handling
in software), or at an LRU level (hardware or software implemented) or system
architecture level can address the invalidation. Note it only takes either the detection
OR the handling argument to at least be invalidated to invalidate the whole detection
and handling argument. Detection may be at a different level of abstraction to the
handling – although most often handling is at the same or higher level than the
detection feature.

5.1.3 Impact on Argument of No Single Failure Criterion

The no single failure criterion therefore places serious constraints on the structure of
the argument for Major, Hazardous and Catastrophic failure conditions. Table 2
identifies the effect of these constraints on the number of arguments typically
necessary for any given failure modes – and at what level within the system the
argument typically addresses the failure mode, as determined from the aviation
systems considered in Section 3.

Note that the previous paragraphs have focussed on the Major, Hazardous and
Catastrophic failure conditions. Implicitly the no single failure criterion also infers that
a single failure can acceptably lead to a Minor or No Safety Effect failure condition.
Thus it is also possible to represent these failure conditions in Table 2.

The software columns in Table 2 both refer to the same configuration item. This is
because it is possible to make an initial absence or detection/handling claim within
the software and then provide the detection and handling capability at a later point in
the functional flow, or architecturally within the software. The second software
column should not be interpreted as a separate configuration item, perhaps resident
in a monitor for example. This is considered at the LRU level.

Severity Software% Software LRU Level System
Level

Detection
AND

Handling*

OR Detection AND
Handling

OR Detection AND
Handling

Detection* AND Handling OR Handling

Absence
(Primary,
Secondary,
and Control)

AND

- - Detection AND Handling

Detection
AND

Handling#

OR Detection AND
Handling

OR Detection AND
Handling

Detection# AND Handling OR Handling

Catastrophic
, Hazardous
/ Major

Detection AND
Handling

AND

- - Detection AND Handling

- - Detection AND
Handling

OR Detection AND
Handling

Absence
(Primary,
Secondary,
and Control)

OR

- - Detection AND Handling

- - Detection AND
Handling

OR Detection AND
Handling

Minor, No
Safety Effect

Detection AND
Handling

OR

- - Detection AND Handling

% - initiating fault invalidates this argument under no single failure criterion
* - provided invalidating the absence argument doesn’t also lead to invalidation of its detection and
handling in software
- provided invalidating the original detection and handling argument doesn’t also lead in
invalidation of its detection and handling in software
Logical conventions: Logical operators and conditions within the same cell assume parenthesis
Italics – evaluate the logical operator prior to normal type face and bold operators – assume
parenthesis encapsulates the cells either side of the operator
Bold – evaluate the logical operator last

Table 2: No single failure criterion as inferred from actual aviation systems

To illustrate the intent of Table 2, a simple example will be considered. Consider a
system with a catastrophic failure condition. Table 2 infers that there are two
approaches the system designer could use to address the no single point of failure
criterion. The first is to assure both the absence (Table 2 row 2, column B1) or
direct/immediate detection and handling (Table 2 row 3, column B) of the initiating
fault and provide a supplemental detection and handling mechanism at a higher
software level (column D), LRU level (column F) or system level (column H). Thus
resulting in at least two failures being required to realise the catastrophic failure
condition.

However, this is only the first criterion we need to examine, the next section
considers further constraints on these identified effects, and will likely further
constrain Table 2.

5.2 Combinations of Failure Criterion

[AC25.1309] also effectively states that no additional combinations of failures of
software and/or hardware components should lead to Major, Hazardous or
Catastrophic failure unless their joint probability is Extremely Improbable.

As Extremely Improbable can never be defensibly argued for any single component,
Extremely Improbable is traditionally argued by the following combinations of failure

1 Row identifiers are positive integer values starting at Row 1 for the Heading row of Table 2. Column
identifiers are alphabetic values starting at Column A for the Severity Column.

likelihoods - Extremely Remote AND Remote, Extremely Remote AND Probable,
Remote AND Remote, Probable AND Probable AND Probable (using 14CFR25.1309
terminology). All these statements are based on the presumption of independence
between elements of the design. It is this criterion that typically leads to at least triple
redundancy in hardware systems with catastrophic failure conditions and dual
redundancy in most hardware systems with hazardous or major failure conditions (as
is apparent in the aviation systems examined in Section 3).

However for software, probability and likelihoods have traditionally had little relevant
meaning, because software failures are systematic (refer to Section 2.1). Therefore
we need to resolve an equivalent interpretation for the first sentence of this section
that doesn’t infer probabilities.

One way is to speculate that the joint likelihood of no two combinations of software
initiated failures is ever commensurate with extremely improbable. The hypothesis,
based on examination of actual systems, is that the burden of demonstrating this
level of knowledge of the system or the stochastic model would generally be
unattainable. Section 6 provides further discussion on knowledge and uncertainty.
Therefore, no two software initiated failures should lead to a catastrophic failure
condition. This implies that there is at least sufficiently independent detection and
handling of the initiating software failure mode within the software itself, and at the
LRU level or system architecture level for catastrophic failure conditions. For major
and hazardous failure conditions, two software initiated failures may be tolerable
(because the consequences require another event to be contributory to a
catastrophic failure condition); provided they are sufficiently independent of each
other. The independence is most practically achieved by detecting and handling the
faults at a level outside the software. Overall, the hypothesis is reasonable, and
broadly comparative to the outcome for probabilistic hardware failure assessments. It
is also supported by the examination of the aviation systems discussed in Section 3.

For combinations of three software failure modes, these may be considered
extremely improbable, provided there is detection and handling of software failure
modes outside of the software in question (i.e. at either the LRU level or system
architecture level). With each layer of detection and handling mechanisms, the
burden of demonstrating this level of knowledge of the system or the stochastic
model is more reasonably attainable. Again the result is broadly comparative to the
outcome for hardware failures, and is supported by the examination of the aviation
systems discussed in Section 3.

Section 6 examines the effects of layered detection and handling mechanisms on
uncertainty in the stochastic model in further detail.

5.2.1 Invalidating the Absence Argument and the Detection/Handling
Argument – Catastrophic Only

In this case we are not only going to invalidate the absence argument, but also the
detection/handling argument that provides the treatment to the invalidation of the
absence argument. This leads to it being necessary to detect and handle the failure
mode outside of the software – either by the LRU (e.g. through a monitor) and/or by
the system architecture level (e.g. through combinations of redundancy, analogue
backup, diverse system components, etc), or both the LRU and system architecture
levels. These results are supported by the examination of the aviation systems in
Section 3.

5.2.2 Impact on Argument of Combinations of Failure Criterion

The combinations of failures criterion therefore place some further constraints on the
structure of our argument for Major, Hazardous and Catastrophic failure conditions.

Table 3 identifies the effect of these constraints on the number of arguments required
for any given failure modes – and at what level within the system the argument
typically addresses the failure mode, as determined from the aviation systems
considered in Section 3.

Severity is the accident effect if the LRU Level and System Level mechanisms were
absent, or the software fault was permitted to propagate without intervention at the
LRU Level and System Level.

Severity Software% Partitioned
Software

 LRU Level System
Level

Detection
AND

Handling&*

OR Detection AND
Handling&

AND Detection AND
Handling&

Absence
(Primary,
Secondary,
and Control)

AND

Detection
AND

Handling&*

AND Detection AND
Handling&

OR Detection AND
Handling&

Detection
AND

Handling&#

OR Detection AND
Handling&

AND Detection AND
Handling&

Catastrophic

Detection AND
Handling

AND

Detection
AND

Handling&#

AND Detection AND
Handling&

OR Detection AND
Handling&

Absence
(Primary,
Secondary,
and Control)

AND Detection
AND

Handling&*

OR Detection AND
Handling

OR Detection AND
Handling

Detection&# AND Handling OR Handling

Hazardous /
Major

Detection AND
Handling

AND

- - Detection AND Handling

- - Detection AND
Handling

OR Detection AND
Handling

Absence
(Primary,
Secondary,
and Control)

OR

- - Detection AND Handling

- - Detection AND
Handling

OR Detection AND
Handling

Minor, No
Safety Effect

Detection AND
Handling

OR

- - Detection AND Handling

% - initiating fault invalidates this argument under no single failure criterion
& - additional faults may invalidate these arguments under combinations of failure criterion
* - provided invalidating the absence argument doesn’t also lead to invalidation of its detection and
handling in software
- provided invalidating the original detection and handling argument doesn’t also lead in
invalidation of its detection and handling in software
Logical conventions: Logical operators and conditions within the same cell assume parenthesis
Italics – evaluate the logical operator prior to normal type face and bold operators – assume
parenthesis encapsulates the cells either side of the operator
Bold – evaluate the logical operator last

Table 3: Combinations of failure criterion as inferred from actual aviation systems

5.3 Specific Circumstances for Absence Arguments

Absence arguments (for omission, commission, early, late and value) are never valid
for input data (data originating outside the software of the LRU) to software within an
LRU – these types of faults should be detected and handled at the input to the

software, as is done by most aviation systems; or by ensuring that the fault
propagates to a detectable fault at a higher system level. Detection will usually need
to be more extensive than simply checking the valid flag provided with the data from
the sensor because this doesn’t provide detection of timing or omission related
failures, and because the valid flags coverage of credible value failures is often very
limited. Typically a combination of range, rate, physical world checks, or comparison
to a redundant or diverse source are required.

While the detection and handling of this class of faults may be deferred until later in
the system functional flow, this is rarely suitable. For example, in Flight Control
Systems, there are minimal benefits to processing control laws based on invalid input
data and then attempting to trap the failure at the system’s output or control actuator.
This is because the vast majority of input data failures are not easily discernible at
this point in the system. The only times it might be suitable is if through physical
limiting (e.g. mechanical limiting) the Flight Control System’s authority is limited to a
worse credible failure severity of minor (clearly not applicable to full authority
systems).

6 Bounding Uncertainty

A key factor in proposing the layering of detection and handling mechanisms at
different levels of abstraction in a system (e.g. software level, partitioned software
level, LRU level, system level) is that it permits the uncertainty associated with
detecting and then providing a suitable handling response to the fault to be bounded
to an amount that is useful for reasoning about knowledge and the safety of the
system. This section examines how architecture is used to bound uncertainty.

6.1 Using Architecture to Bound Uncertainty

To examine the effect of architecture on uncertainty, consider a series of cascading
faults in a system with detection and handling mechanisms at the software, LRU and
system levels.

At the occurrence of the 1st fault at the software level (i.e. Failure of 1st Absence /
Detection and Handling Mechanism), the knowledge that there is a valid mechanism
is a function of the following:

• the understanding of types of failure that might occur (i.e. to what extent is an
appropriate mechanism provided to achieve coverage of all classes of the
taxonomy of potential software failure modes, noting that the lower the level
faults are examined at, the greater the number of practical classes in the fault
taxonomy); and

• the appropriateness of absence / detection and handling mechanisms given the
specific known fault that has occurred.

The uncertainty is a function of the following:

• the extent to which the taxonomy of potential software failures modes is
incomplete for the specific failures that could occur in the system (i.e. are there
sources of failure that haven’t been understood?);

• the immediate effect of failure sources that haven’t understood been (i.e. is the
effect something that has been left unanticipated, even in a generalised sense?);
and

• the suitability (or unsuitability) of the extant absence or detection/handling
mechanisms for these unknown sources of failure (i.e. is the mechanism going to
do something undesirable in the presence of an unknown fault?).

Therefore, for the 1st fault with no detection/handling mechanisms, uncertainty is
unbounded and will tend to infinity. Even if a detection/handling mechanism is
employed, the ratio of uncertainty to knowledge may still tend to be very large
depending on the extent of the fault coverage by the mechanism. This poses
problems for failures with severe consequences.

At the occurrence of the 2nd fault, this time at the LRU level (i.e. Failure of the 2nd
Detection/Handling Mechanism), the knowledge that there is the valid detection and
handling mechanism is a function of the following:

• the extent to which the taxonomy of failures should resolve the failures of the 1st
mechanism, which should be finite at this level (the existence of the detection /
handling mechanism is explicitly having to detect classes of failure of the 1st
mechanism);

• the degree to which it is possible for the 2nd detection / handling mechanism to be
activated from the cascading fault condition;

• the appropriateness of the absence / detection and handling mechanism at the
LRU given the specific known fault class that has occurred (i.e. is the behaviour
of the mechanism valid at this level of abstraction); and

• the coverage of intended coupling paths between software and LRU level
mechanisms.

The uncertainty is a function of the following:

• the extent to which the cascading faults don’t resolve to the taxonomy of faults
handled at this layer;

• the suitability (or unsuitability) of absence or detection/handling mechanisms for
unknown sources of failure, and its effects; and

• the extent to which unintended independence violators might be active (but
should be limited by the degree of physical partitioning).

At the occurrence of the 3rd fault, this time at the System level (i.e. Failure of the 3rd
Detection/Handling Mechanism), the knowledge and uncertainty parallel the
observations listed above for the 2nd mechanism, with the following key differences:

• the extent to which the taxonomy of failures at the System level resolves the
failures of the 2nd mechanism should be better than at the 2nd level as the
number of classes of failures the cascading faults need to resolve to should be
decreasing (with ultimate convergence at two failures modes – i.e. loss of the
function and malfunction of the function);

Thus it is possible to see that ultimately each additional detection and handling
mechanism layer bounds the uncertainty to the extent to which the cascading faults
from the lower level resolve to the taxonomy of faults handled at the current layer.
The effect of abstraction with each layer is that the taxonomy of faults at that each
higher layer will resolve to a smaller complete set, until at the system boundary we
are left with just the ‘loss of’ and ‘malfunction’ aircraft failure conditions. It is this

ability of the architecture to resolve faults and failures to a smaller set of practically
considered failure conditions that bounds uncertainty.

Summarising the effects of bounding uncertainty, as follows:

• With no absence or detection/handling mechanisms, uncertainty is unbounded
and will tend to infinity. Therefore this type of architecture should only ever be
employed when there is no safety effect.

• With one (1) absence or detection/handling mechanism, uncertainty may still
tend to be very large depending on the extent of the fault coverage. Therefore, a
system with only one mechanism layer must not have severe failure modes.

• With two (2) layers of mechanisms, uncertainty may be very large, but it is likely
much less and will often tend towards a finite value depending on the extent to
which the classes of cascading faults resolve to the taxonomy at the second
layer. Therefore a system with two mechanism layers is suitable for any system
except for those with the most severe failure modes, provided the right
mechanisms are employed at each layer of course.

• With three (3) layers of mechanisms, uncertainty may be large, but it is likely
much less and will often tend towards a small finite value depending on the
extent to which the cascading faults resolve to the taxonomy at the second and
third layers. Therefore a system with three mechanism layers is suitable for any
system, even those with severe failure modes, provided the right mechanisms
are employed at each layer of course.

• Additional mechanisms may bound the uncertainty further, provided they
continue to enforce the resolving of fault classes to those analysed and treatable
at the subsequent mechanisms layer.

Therefore, the bounding of uncertainty provides conceptually a compelling case for
structuring specific layers of absence and detection/handling for treating systematic
faults. Combining this principle with the observations from aviation system permits
architectural assurance requirements to be inferred. Section 7 examines this
approach.

7 Assurance of Architecture

Based on commonalities in the treatment of systematic faults identified in the
examination of actual aviation systems (Section 3), the application of the fail safe
design criteria (Sections 4), the commonalities of the fail safe design criteria in the
actual systems for systematic failures (Section 5), and examining how these factors
contribute to bounding the uncertainty of the effects of systematic failures on a
system (Section 6), this section proposes a framework for quantifying the assurance
of safety architecture in aviation systems.

7.1 ASAL concept

This paper proposes a framework based around the concept of an Architectural
Safety Assurance Level (ASAL). Note that the ASAL described in this paper is not
related to any of the architectural related assurance level concepts being proposed
by the [ARP4754] committee currently undertaking revision of the standard. The
ASAL provides direct quantification (and benchmarks) of the extent to which the
system’s architecture is tolerant to systematic faults. The degree of fault tolerance is

directly associable with the normal Aircraft Failure Condition Severities defined by
standards such as [ARP4754]. Four ASAL levels are proposed at presented in Table
4.

Failure
Condition
Severity

1

Architectural
Safety
Assurance
Level (ASAL)

Systematic Fault Tolerance

Catastrophic ASAL3 At least three (3) diverse
2
 systematic faults are necessary for the

aircraft failure condition to be realised

Hazardous /
Major

ASAL2 At least two (2) diverse
2
 systematic faults are necessary for the

aircraft failure condition to be realised

Minor ASAL1 At least one (1) systematic fault is necessary for the aircraft
failure condition to be realised

No Safety
Effect

ASAL0 Systematic fault tolerance is not required, however the designer
may choose to incorporate fault tolerance to provide assurance
of system availability and reliability

1. The worst credible failure condition severity of loss of and malfunction of the aircraft function with
which the system and its software is associated.

2. For a systematic fault to be diverse of another systematic fault, it must be shown that the
activation of one fault does not automatically lead to the activation of another systematic fault. In
practice this is achieved by ensuring that the faults must occur in independent components and/or
at differing layers of abstraction (e.g. software, LRU, system) where the correct functioning of the
subsequent detection and handling mechanisms can be shown to be independent of the initiating
fault condition or the detectable class of fault at the next layer is distinct of the initiating class of
fault.

Table 4: Architectural Safety Assurance Level

7.2 Absence and Detection/Handling Mechanism Requirements

A key factor in providing for diverse systematic faults identified in Table 4 is providing
detection and handling mechanisms at differing layers of abstraction with a system.
This allows the independence of the functioning of the detection and handling
mechanism to be achieved physically in the system design, and it also bounds the
uncertainty of fault coverage of these mechanisms.

Using the taxonomy of layers of detection and handling mechanisms identified in
Section 5, the proposed framework uses the following levels of detection and
handling mechanisms:

• Software – at the typical software component level (and software component in
question), and includes software fault tolerant features and software
implemented fault tolerance features.

• Line Replaceable Unit (LRU) – at the typical avionics box level within an aircraft,
and includes fault tolerant features such as:

o command/monitors (note additional software in the monitor is considered at
the LRU level, although the software safety argument for that monitor
software CSCI would also consider its effects at the software component
level),

o voting planes,

o output wraparounds (although the feedback is usually hardware
implemented, the comparison is usually software implemented),

o hardware BIT, etc.

• System Architecture Level – at the typical system architecture level within an
aircraft and may include redundancy, analogue backup, diverse system
components, etc. Note that redundant components running the same software
configuration only provides protection against hardware related failures, or
failures of independent input sensors. It provides no protection against
systematic failures of the software. The emphasis here is on system level
architectural features that provide protections against systematic software
failures by detection and handling of faults.

Relating the levels of detection and handling mechanisms to the ASAL concept
defined in Section 7.1 provides a framework as defined in Table 5.

ASAL

1st Absence/Detection
and Handling
Mechanism

2nd
Detection/Handling
Mechanism

3rd
Detection/Handling
Mechanism

ASAL3 Software Level Partitioned Software
Level

#
 or LRU Level

*

LRU Level
*
 or System

Level

ASAL2 Software Level Partitioned Software
Level

#
 or LRU Level or

System Level

Not Required

ASAL1 Software Level OR LRU
Level OR System Level

Not Required Not Required

must be independent of the initiating failure and the 1st Absence / Detection and Handling
mechanism (i.e. through a partitioning mechanism)

* must be independent of the proceeding detection/handling mechanism

Table 5: ASAL Architecturally Layered Fault Tolerance

7.3 Benefits of ASAL concept

The ASAL concept provides the following perceived benefits to assurance
frameworks:

• The ASAL concept explicitly integrates requirements for architectural treatments
to systematic faults into the traditional assurance approach, and is compatible
with the existing safety analysis of [ARP4754] and other similar standards.

• The ASAL concept provides a multidimensional (better than binary) perspective
on the absence and detection/handling of systematic faults commensurate with
the worst credible failure condition.

• The ASAL concept quantifies (in the product context) the degree of fault
tolerance within a system and its software for each system’s contribution to
aircraft level failure conditions. Therefore, the ASAL as a level inherently has a
product meaning.

• The ASAL concept is simple, and therefore doesn’t burden assurance
frameworks with complex, non-objective prescriptions.

• The ASAL concept doesn’t prescribe specific architectures, and is therefore,
inherently flexible. It instead focuses on the treatment of systematic faults by the
architecture.

• The ASAL concept encourages fault tolerance architectures for the systems
whose functions most need fault tolerance (i.e. those with the most severe
hazards or failure conditions)

• The ASAL concept is analytically compatible with observations of systematic fault
tolerance management in actual aviations systems.

7.4 Limitations of ASAL concept

The ASAL concept introduces or highlights the following potential limitations:

• The explicit integration of the ASALs with software assurance standard (e.g.
RTCA/DO-178B) objectives hasn’t yet been clarified.

• The ASAL concept sets no benchmarks for the level of evidence required to
demonstrate that numbers of diverse systematic faults do not contribute to
identified failure modes. The ASAL concept does not address ‘how much is
enough?’ for software evidence.

• The ASAL concept relies on bounding uncertainty, of which a fundamental factor
is the extent to which faults at one layer of abstraction resolve to a detectable set
at the next layer of abstraction. However, the ASAL concept doesn’t provide an
explicit measure of the specific contextual claims about detecting and handling
systematic faults as they propagate to high levels of system abstraction, and thus
support inferences about the suitability of the proposed detection and handling
capabilities of the system architecture.

Section 8 of this paper provides insight into several approaches being explored as
part of this research work that are intended to address these limitations. Empirical
evaluation of the ASAL concept is proposed in later phases of this research.

7.5 Additional factors

The following paragraphs provide insight into a number of factors relevant to ASAL.

7.5.1 Conceptual and Mechanistic Independence

Conceptual and mechanistic independence have been suggested by [Wea03] as
playing an important factor in assurance of arguments constructed around [Pum99]’s
software failure taxonomy. However, how does conceptual and mechanistic
independence relate to the ASAL concept defined in this paper? The definitions
within the ASAL concept specify several diverse faults. This implies that there is
conceptual independence between the initiating software, the LRU level and system
level detection and handling mechanisms (where relevant). Systems sharing
common software and/or hardware may be prone to common mode failure conditions
and are not considered to be diverse. Unless mechanistic independence delivers
conceptually different architectures during the design process, it does not play a role
in the ASAL concept directly. Mechanistic independence will be considered in the
work described at Section 8.

7.5.2 On-demand versus Continuous-demand Systems

The ASAL concept was largely derived in the context of actual aviation systems that
are inherently continuous demand systems, although specific functions provided by
individual safety functions may be deemed as on-demand. Therefore, does the ASAL
concept apply for on-demand systems versus continuous demand systems?

On-demand systems (usually used for protection systems) are usually associated
with an availability requirement (therefore continuous demand) on a related aviation
system associated with the protection mechanism. Therefore in most cases there is
little practical difference between an on-demand system and continuous demand
system with respect to the ASAL concept.

8 Assurance of Architecture and the Relationship to Software Failure
Claims/Arguments and Evidence Sufficiency

This paper has proposed an assurance framework that provides a direct measure of
the degree of the system’s fault tolerance against systematic faults and failures, and
thus infers the system’s suitability for use in the presence of aircraft level failure
conditions of differing severities. However, the extent of discussion in this paper has
only addressed the architectural effects of layered detection and handling
mechanisms on bounding uncertainty of systematic faults. This paper has not
addressed which specific detection and handling mechanisms are most appropriate
in each context, and how claims to that effect might be assured. Furthermore, this
paper hasn’t set any benchmarks for the provision of evidence in this regard.

To address these questions, further papers are being developed which propose a
Claims (CSAL) and Evidence (ESAL) Safety Assurance Level concept that is
compatible with the ASAL concept identified in this paper. The core idea behind
claims assurance is to ensure that any assurance levels used for articulating claims
assurance in the context of the ASAL have a specific product safety focus (i.e. each
and every assurance level has a product meaning, not just a top-down process
interpretation). For evidence assurance, the core idea is to provide a framework that
is explicit in a product sense of the ‘tolerability of limitations’ in satisfying the
objectives articulated in the framework.

9 Summary

This paper has identified limitations with the current standards’ frameworks with
respect to architecture and systematic faults and failures. Treatments of systematic
faults in a number of actual aviation systems have been examined, including civil and
military Automatic Flight Control Systems (AFCS) and Flight Management Systems
(FMS). The results of this examination have been contrasted with the fail safe design
criteria underpinning the 1309 airworthiness requirements for civil aircraft certification,
and commonalities in the treatment of systematic failures identified.

Using the identified commonalities, and examining how these factors contribute to
bounding the uncertainty of the effects of systematic failures on a system, a
framework has been proposed for quantifying the assurance of safety architecture in
aviation systems. The assurance framework provides a direct measure of the degree
of the system’s fault tolerance against systematic faults and failures, and thus infers
the system’s suitability for use in the presence of aircraft level failure conditions of
differing severities.

Further papers are being developed which propose a Claims (CSAL) and Evidence
(ESAL) Safety Assurance Level concept that is compatible with the ASAL concept
identified in this paper.

10 References

The following documents, papers and publications are referenced throughout this
paper. A number of these documents are not available in the public domain for
propriety or confidentiality reasons. Readers wishing to seek further information
should direct their queries to the author of this paper, or the relevant standards body.

[A330] Airbus A330 Flight Deck and Systems Briefing for Pilots, STL 472.755/92
issue 4, March 1999.

[AAP7211.031-1] Australian Air Publication, “Flight Manual C-130J-30”, Royal
Australian Air Force, 29 Nov 2005.

[AC25.1309] Federal Aviation Administration (FAA) Advisory Circular AC25.1309-1A,
“System Design and Analysis”, 21 Jun 1988.

[ALR04] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and
Taxonomy of Dependable and Secure Computing”, IEEE Transactions on
Dependable and Secure Computing, Vol 1, No. 1, Jan-Mar 2004.

[ARP4754] SAE International, “Aerospace Recommended Practice 4754 –
Certification Considerations for Highly Integrated or Complex Aircraft Systems”,
November 1996.

[ARP4761] SAE International, “Aerospace Recommended Practice 4761 –
Guidelines and Methods for Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment”, December 1996.

[BMO95] H. Buus, R. McLees, M. Orgun, E. Pasztor, L. Schultz, “777 Flight Controls
Validation Process, IEEE 0-7803-3050-1/95, 1995.

[BrT93] D. Briere, P. Traverse, “AIRBUS A320/A330/A340 Electrical Flight Controls –
A Family of Fault Tolerant Systems”, IEEE 0731-3071/93, 1993.

[DeJ88] M.K. DeJonge, “Time Controlled Navigation and Guidance for 737 Aircraft”,
IEEE CH2596-5/88/0000-0546, 1988.

[DO178B] RTCA Inc., “RTCA/DO-178B: Software Considerations in Airborne
Systems and Equipment Certification”, Washington D.C.: RTCA Inc., 1992.

[DO248B] RTCA Inc., “RTCA/DO-248B: Final Report for Clarification of DO-178B –
Software Considerations in Airborne Systems and Equipment Certification”,
Washington D.C.:RTCA Inc., 2001.

[DrH92] K. Driscoll, K. Hoyme, “The Airplane Information Management System: An
Integrated Real-time Flight-deck Control System”, IEEE 1052-8725/92, 1992.

[GiS99] M. Girard, P. Sharpe, “F/A-18A Testing of Flight Control System Reversion to
Mechanical Backup”, IEEE, 1999.

[Ham01] R. Hammett, “Design by Extrapolation – An Evaluation of Fault Tolerant
Avionics”, The Charles Stark Draper Laboratory, Inc., Cambridge,
Massachusetts, 2001.

[HiM01] E.F. Hitt, D. Mulcare, “Fault-Tolerant Avionics” Chapter 28 in “Digital
Avionics Handbook”, Edited by Cary R. Spitzer, CRC Press, 2001.

[Hor94] R. Hornish, “777 Autopilot Flight Director System”, IEEE 0-7803-2425-0/94,
1994.

[JTM07] D. Jackson, M. Thomas, L Millet, Editors, “Software for Dependable
Systems: Sufficient Evidence?”, Committee of Certifiably Dependable Software
Systems, National Research Council, National Academy of Sciences, USA,
2007.

[KSQ92] B.W. Kowal, C.J. Scherz, R. Quinlivan, “C-17 Flight Control System
Overview”, IEEE AES Magazine, pp24-31, July 1992

[Mar08] P. Marks, “Flight of the Software Bugs”, in New Scientist, pp26-26, 9 Feb
2008.

[McD01] J.A. McDermid, “Software Safety: Where’s the Evidence?”, Department of
Computer Science, University of York, 2001.

[McD07] J.A. McDermid, “Risk, Uncertainty, Software and Professional Ethics”, 20
August 2007.

[McK06] J. McDermid, T. Kelly, “Software in Safety Critical Systems: Achievement
and Prediction”, Nuclear Future, Volume 03, No. 03, 2006.

[McP01] J. McDermid, D. Pumfrey, “Software Safety: Why is there no Consensus?”,
Department of Computer Science, University of York, 2001.

[NTS06] National Transportation Safety Board, “Safety Report on the Treatment of
Safety-Critical Systems in Transport Airplanes”, Safety Report NTSB/SR-06/02,
Washington, D.C., USA, 2006.

[PoK92] D.J. Pop, R.L. Kahler, “C-17 Flight Control Systems Software Design”, IEEE
0-7803-0820-4/92, 1992.

[Pum99] D.J. Pumfrey, “The Principled Design of Computer System Safety
Analyses”, PhD Thesis, Department of Computer Science, University of York,
1999.

[Rei08] D.W. Reinhardt, “Considerations in the Preference for and Application of
RTCA/DO-178B in the Australian Military Avionics Context”, presented at the
13th Australia Workshop on Safety Critical Systems and Software, Aug 2008.

[Sch95] J. Schruer, “B737 Flight Management Computer Flight Plan Trajectory
Computation and Analysis”, in Proceedings of the American Control Conference,
June 1996.

[Spi01] C. Spitzer, “The Avionics Handbook”, AvioniCon, Inc. Williamsburg, Virginia,
CRC Press, 2001.

[Ucz95] J.S. Uczekaj, “Reusable Avionics Software – Evolution of the Flight
Management System, IEEE 0-7803-3050-1/95, 1995.

[Wea03] R.A. Weaver, “The Safety of Software – Constructing and Assuring
Arguments”, PhD Thesis, Department of Computer Science, University of York,
2003.

[Wei92] P. Weindorf, “The C-17 Multifunction Display – A Building Bock for Avionic
Systems”, IEEE AES Magazine, pp32-39, July 1992.

[Wit95] B. Witwer, “Systems Integration of the 777 Airplane Information Management
Systems (AIMS): A Honeywell Perspective, IEEE 0-7803-3050-1/95, 1995.

[Yea96] Y.C. Yea, “Triple-Triple Redundant 777 Primary Flight Computer”, IEEE 0-
7803-3196-6/96, 1996.

[Yea01] Y.C. Yea, “Safety Critical Avionics for the 777 Primary Flight Controls
System”, IEEE 0-7803-7034-1/01, 2001.

ANNEX A – EXAMINATION OF AVIATION SYSTEMS

FLIGHT CONTROL SYSTEMS

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A

Primary
Computers

Three (3) Flight Control
Primary Computers
(FCPC) - digital

• process Normal,
Alternate and Direct
Laws

• one FCPC is
selected as Master:
it processes the
orders and outputs
them to the other
computers which
will execute them
on their servo loops

• Master checks that
its orders are
fulfilled by
comparing them
with feedback
received; self
monitoring of the
master can detect a
malfunction and
cascade control to
the next computer

• each FCPC can
control up to eight
(8) servo loops and
provide complete
aircraft control
under normal laws.

Secondary
Computers

Three (3) Primary
Flight Computers
(PFC) – digital

• process Normal,
Secondary and
Direct laws

• actuation
commands
transmitted to
ACE

• execution of
automated
functions such as
yaw damper

• system
monitoring, crew
annunciation, and
onboard
maintenance
capabilities

Four (4) Actuator
Control Electronics
(ACE) – analog

• interface with the
pilot control
transducers and to
control the
Primary Flight
Control System
actuation with
analog servo
loops

• ACEs convert the
transducer
position into a
digital value and
then transmit that
value to the PFCs

• ACEs then
convert PFC
commands into
analog commands
for each individual
actuator

• flight control
surface servo
loops are
distributed among
the four ACEs.

Two (2) Flight Control
Secondary Computers
(FCSC) - digital

• Are able to process
direct laws

• Either secondary
can be the master in
the case of loss of
all FCPC

• Each FCSC can
control up to 10
servo loops and can
provide complete
aircraft control

Quad redundant digital
flight control system
incorporating two (2)
flight control computers
with two independent
channels per computer
process:

• control stick, rudder
pedal and trim
commands

• pitot static, rate
gyro,
accelerometer, AOA
probe and fight
control surface
position feedback
signals, and

• send commands to
each flight control
surface actuator.

Quadruplex set of
digital flight control
computers

Four channel
synchronous operation

All output hardware,
signals, and feedback
are monitored and
compared to ensure
failure detection and
channel output voting.

Dedicated cross-
channel data link used
between channels

Input signal voting

Actuator loop voting

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A

Additional
Control
Computers

Other systems:

• Flap Slat
Electronics Unit
(FSEU)

• Proximity Switch
Electronics Unit
(PSEU)

• Engine Data
Interface Unit
(EDIU)

Airplane Information
Management System
(AIMS) Data
Conversion Gateway
(DCG) maintains
separation between
the critical flight
controls busses and
the essential systems
busses.

High life devices are
commanded by two
Slat/Flap Control
Computers

Two (2) Flight Control
Data Concentrators
(FCDC) acquire the
outputs from the various
computers to be sent to
the ECAM and Flight
Data Interface Unit to
provide isolation of the
flight control computers
from other systems.

No additional flight
computers

Two dual digital Spoiler
Control/Electronic Flap
Computers

Computer
Architecture

Each PFC has three
identical computing
‘‘lanes”

• a voting plane
scheme is used by
the PFCs on
themselves.

• single computing
lane within a PFC
channel is
declared as the
‘‘master” lane.

• all three lanes
simultaneously
computing the
same control laws.

• the outputs of all
three lanes are
compared against
each other.

• any failure of a
lane that will
cause an
erroneous output
from that lane will
cause that lane to
be ‘‘failed” by the
other two lanes.

• Command Lane,
Standby Lane,
Monitor Lane.

Command/ Monitor
computer architecture
for both the FCPC and
FCSC.

• Monitor channel
monitors for health
of the command
channel and control
surface runaway

• Specific variables
are permanently
compared in the two
channels.

• sensor inaccuracy,
rigging tolerances,
computer
asynchronisation are
taken into account

• errors which are not
detectable (within
the signal and timing
thresholds) are
assessed in respect
to their handling
quality and structural
loads effect

• in the event of a
divergence between
command and
monitor solutions,
the affected
computer is
disengaged and the
next highest priority
computer takes over

Two independent
channels per computer
processor

FCC and SCEFC each
use 3 MIL-STD-1750A
CPUs.

• In the FCC one
processor serves
as an I/O
processor, and the
other two perform
control law
computations.

• In the SFEFC one
processor serves
as an I/O
processor and the
other two are
configured as a
sefl checking pair.

The AFCS control
panel is implemented
with four MIL-STD-
1760A CPU configured
as two self checking
pairs.

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A

Dissimilarity Dissimilarity between
the PFC and ACE.

• PFCs are identical
digital computers

• ACE are identical
analog devices

 Dissimilarity between
the Air Data and
Inertial Reference Unit
(ADIRU) and Standby
Attitude and Air Data
Reference Unit
(SAARU)

Dissimilarity between
FCPC and FCSC digital
computer designs

• different processor
architectures and
manufacturers

• different software
between FCPC and
FCSC and between
command and
monitor channels in
each FCPC and
FCSC

No dissimilarity
between the Air Data
and Inertial Reference
Unit (ADIRU)

No dissimilarity between
flight control computers.

No dissimilarity
between flight control
computers.

Latent Failure
Detection

Built in Test Self-test and peripheral
tests

Built in Test Built in Test

Reconfiguration The outputs from all
three PFC channels
are compared.

• Each PFC
compares its
output for each
particular actuator,
and with the same
command that
was calculated by
the other two PFC
channels.

• Each PFC
channel does a
mid-value select
on the three
commands, and
that value is
output to the
ACEs.

When the active
computer interrupts its
operation, one of the
standby computers
almost instantly
changes to active mode
with no or limited jerk
on the control surfaces.

Three (3) modes of
operation

• Control
Augmentation
System (CAS) – full
digital capability
including adaptive
flight controls and
stability
augmentation.

• Direct Electrical
Link (DEL) –
provided in the
event of primary
CAS failure, no
longer process input
from failed rate
gyros and/or
accelerometers.

• Mechanical (MECH)
– three or more
channel failures,
pitch roll sensor
failures, failure of
both servo-valves in
one actuator,
hydraulic starvation

All FCS critical inputs,
processing and outputs
are quad redundant (fail
op, fail op, fail passive).

The FCCs and
SCEFCs operate as a
frame synchronous set.
In the event of loss of
synchronisation, the
computers will attempt
to re-synchronise.

A sensor selection
algorithm derives a
selected value for each
signal as a function of
the sensor failure
states.

• Average of middle
two values (four
valid signals)

• Midvalue of three
signals

• Average of two
signals

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A

Servos Actuators
arrangements are as
follows:

• Elevators,
ailerons, and
flaperons are
controlled by two
actuators per
surface, the
rudder is
controlled by
three.

• Each spoiler panel
is powered by a
single actuator.

• The horizontal
stabilizer is
positioned by two
parallel hydraulic
motors driving the
stabilizer
jackscrew.

The actuation
powering the
elevators, ailerons,
flaperons, and rudder
have several
operational modes:
Active, Bypassed,
Damped, Blocked.

Actuators arrangements
are as follows:

• Elevators, ailerons
are controlled by two
actuators per
surface, the rudder
is controlled by
three.

• Each spoiler panel is
powered by a single
actuator.

• The horizontal
stabiliser is
positioned by two
actuators.

Servo-jacks can
operate in one of three
control modes
depending upon
computer status and
type of control surface:
active, damping,
centering. Normally one
servo is active and one
is damped on each
control surface

Dual servo values in
each actuator fed by
both flight control
computers and two
independent hydraulic
sources.

Aileron and twin rudders
are differentially
scheduled.

Trailing Edge Flaps,
Leading Edge Flaps
and Stabs are
scheduled both
differentially and
collectively.

All four FCCs are
connected to each
actuator. Outputs from
each FCC are summed
at the Electro hydraulic
Servo Values providing
a voting node.

Output signal
management software
function in each FCC
compares local channel
actuator data with cross
channel data to detect,
identify and remove
local faults

Envelope
protection /
limiting

Computers provide the
following protections:

• Bank angle
protection

• Turn
compensation

• Stall and
overspeed
protection

• Pitch control and
stability
augmentation

• Thrust asymmetry
compensation

Computers will prevent
excessive manoeuvres
and exceedance of the
safe flight envelope.

• Excessive load
factors

• Overspeed

• Stall

• Extreme pitch
angle

• Extreme bank
angle

Conventional envelope
protections not provided
in a fighter jet

The following
protections are
provided:

• Angel of attack
limiting system

• Deep stall
avoidance

• All engine out
control

• Safe go-around

 Boeing 777 A330 / KC-30A F/A-18A/B C-17A

Sensors Dual redundant air
data and inertial
systems:

• Air Data and
Inertial Reference
Unit (ADIRU)

• Standby Attitude
and Air Data
Reference Unit
(SAARU)

• Autopilot Flight
Director
Computers
(AFDC)

All critical interfaces
into the Primary Flight
Control System use
multiple inputs which
are compared by a
voting plane.

Triple redundant air
data and inertial:

• Three air data and
inertial reference
units (ADIRUs)

• Accelerometers and
rate gyros

The following sensors
are used by the Flight
Control Computers:

• Pitot Static

• Rate Gryo

• Accelerometer,

• AOA probe

• And flight control
surface position
transducers

Quadruplex sensors
including:

• Stick and Peal Force
Sensors

• Stick Position

• Surface Position

• Air data and
stabiliser sensors

• Air Data Computers

• Inertial Reference
Unit

6 AOA sensors

Remaining sensors are
dual.

Inputs are voted,
monitored, selected
and sent to each
processing channel
before use in output
signal processing.

Digital inputs have
validity bits

Mechanical
Backup

Two spoiler panels and
alternate stabiliser
pitch trim are
mechanically
controlled

Mechanical backup:
rudder and trimmable
horizontal stabiliser –
no artificial stabilisation
required

Mechanical
backup/linkage to the
horizontal stabilators.

Backup mechanical
system provides control
of the ailerons,
elevators, rudders and
stabilizer surfaces.

Table 6: Overview of design features supporting detection and handling of systematic faults in Flight
Control Systems

FLIGHT MANAGEMENT SYSTEMS, NAVIGATION

 Boeing 777 A330 / KC-30A F/A-18A/B C-130J

Flight
Management
Computers

Dual integrated cabinets
which provide the
processing and the I/O
hardware and software
required to perform the
following functions:

• Flight Management

• Display

• Central
Maintenance

• Airplane Condition
Monitoring

• Communication
Management
(including flight
deck
communication)

• Data Conversion
Gateway (ARINC
429/629
Conversion)

The applications hosted
on AIMS are listed
below, along with the
number of redundant
copies of each
application per shipset
in parentheses:

• Displays (4)

• Flight
Management/Thrus
t Management (2)

• Central
Maintenance (2)

• Data
Communication
Management (2)

• Flight Deck
Communication (2)

• Airplane Condition
Monitoring (1)

• Digital Flight Data
Acquisition (2)

• Data Conversion
Gateway (4)

Two computers Flight
Management Guidance
Computer (FMGC)

• Flight management
for navigation,
performance
prediction and
optimisation,
navigation radio
tuning and
information display
management

• Flight guidance for
autopilot
commands, flight
director and thrust
commands – two
types of guidance

o Managed –
lateral and
vertical flight
plan data

o Selected –
guidance
targets selected
on the
glareshield
Flight Control
Unit

• Flight envelope and
speed computation

Two AYK-14 Mission
Computers (MC)

One MC will be the
active Bus Controller
on AVMUX 1 – 6 and
the other MC will be the
an RT.

Communication /
Navigation /
Identification –
Management System
(CNI-MS) consists of

• 2 Mission
Computers (MC) –
control the
information
exchanged
between airplane
systems via MIL-
STD-1553
databuses. One
MC will be the
active Bus
Controller on
nominated
databuses and the
other will be the
Backup Bus
Controller for
those same
databuses

• 2 Bus Interface
Units (BIU) – if
both MCs fail the
BIU assume the
bus controller
functions for the
applicable
databuses

• 2 CNI System
Processors(CNI-
SP) – contain the
operational logic
that permit crew
control and
functioning of the
communication,
navigation and
identification
equipment.

 Boeing 777 A330 / KC-30A F/A-18A/B C-130J

Control Three Multipurpose
Control and Display
Units (MCDU) (only two
at a time) provide:

• flight plan definition
and display

• data insertion
(speeds, weights,
cruise level, etc)

• selection of specific
functions

One Flight Control Unit
on the glareshield
provides manual entry
of:

• speed

• heading

• altitude

• vertical speed

Two thrust levers linked
to the FMGCs and
FADECs provide
autothrust or manual
thrust control

Left and Right Digital
Display Indicators
(DDIs)

Up Front Controller
(UFC)

Digital Map Computer
(DMC)

Display

The other flight deck
hardware elements that
make up the AIMS
system are

• Six flat panel
display units

• Three control and
display units (left,
centre and right)

• Two EFIS display
control panels

• Display select panel

• Cursor control
devices

• Display remote light
sensors

Two Primary Flight
Displays (PFD) and two
Navigation Displays
(NDs) provide visual
interface with flight
management and
guidance related data.

PFD:

• FMGC guidance
targets

• Armed and active
modes

• System
engagement targets

ND:

• Flight plan
presentation

• Aircraft position and
flight path

• Navigation items
including radio aids
and wind)

Left and Right DDIs

UFC

DMC

Heads Up Display
(HUD)

• 3 CNI
Management Units
(CNI-MU) –
primary crew
interface to the
CNI-MS.

• 1 Communications
/ Navigation /
Breaker Panel
(CNBP)

• 2 Avionics
Management Units
(AMU)

• 2 Heads Up
Display (HUD)

 Boeing 777 A330 / KC-30A F/A-18A/B C-130J

Computer
Architecture

Dual cabinets each
contain four core
processor modules
(CPMs) and four input /
output modules (IOMs),
with space reserved in
the cabinet to add one
CPM and two IOMs to
accommodate future
growth. The shared
platform resources
provided by AIMS are

• Common processor
and mechanical
housing,

• Common
input/output ports,
power supply, and
mechanical
housing,

• Common backplane
bus (SAFEbus™) to
move data between
CPMs and between
CPMs and IOMs,

• Common operating
system and built-in
test (BIT) and utility
software.

Applications are
integrated on common
CPMs. The IOMs
transmit data from the
CPMs to other systems
on the airplane, and
receive data from these
other systems for use
by the CPM
applications. A high-
speed backplane bus,
called SAFEbus™,
provides a 60-Mbit/s
data pipe between any
of the CPMs and IOMs
in a cabinet.

Communication
between AIMS cabinets
is through four ARINC
629 serial buses.

Two computers Flight
Management Guidance
Computer (FMGC)

FMGC are identical
single channel
computers

MCDU are identical
single channel
computers

Two AYK-14 Mission
Computers

AYK-14 MCs are
identical single channel
computers.

Other AYK-14 modules
include a core memory
and MIL-STD -
1553A/B, Tactical Data
System, RS-232, and
discrete Input/Output
(I/O).

MC are identical single
channel computers

CNI-SP are identical
single channel
computers

BIU are identical single
channel computers

MC, CNI-SP and BIU
are all different
computer architectures

Dissimilarity No dissimilarity between
AIMS cabinets

No dissimilarity
between FGMCs

No dissimilarity
between MCDUs

No dissimilarity
between MCs

No dissimilarity
between MCs

No dissimilarity
between CNI-SPs

No dissimilarity
between BIUs

Latent Failure
Detection

Built in Test Built in Test Built in Test MC BIT

CNI-SP PBIT and IBIT

 Boeing 777 A330 / KC-30A F/A-18A/B C-130J

Reconfiguration Hardware fault
detection and isolation
is achieved via a lock-
step design of the
CPMs, IOMs, and the
SAFEbus™. Each
machine cycle on the
CPMs and IOMs is
performed in lock-step
by two separate
processing channels,
and comparison
hardware ensures that
each channel is
performing identically. If
a miscompare occurs,
the system will attempt
retries where possible
before invoking the fault
handling

and logging software in
the operation system.
The SAFEbus™ has
four redundant data
channels that are
compared in real time
to detect and isolate
bus faults.

Selected guidance has
priority over managed
guidance mode.

Normal mode, dual
mode, single mode

One MC will be the
active Bus Controller
on AVMUX 1 – 6 and
the other MC will be the
an RT.

If the MC BC fails, the
other MC assumed
control of all buses.

One MC is capable of
performing the
functions of both MCs
with no reduction in
capability

If one MC fails, the
other MC assumes
control of all seven
buses with no loss of
system integration
performance.

BIU provides backup in
the event of dual MC
failures.

Each CNI-SP
calculates its own
solutions
independently, and
compares the results
with the other CNI-SP.
Either CNI-SP can
perform all the
functions alone, should
the other CNI-SP fail.
The CNI-SP operates
in one of three modes:
dual, single
active/inactive and
independent.

Sensors Redundant Inertial
Navigation Systems /
Global Positioning
Systems

Radio Navigation (VOR,
ILS, ADF, DME)

Each FMGC tunes its
own side except when
in single operation

• One VOR

• One ILS

• One ADF

• 5 DMEs

3 Inertial Reference
Systems

FMGC position is a
blend of IRS and radio
position

Uses GPIRS position in
priority mode

Comm #1 and Comm
#2 (UHF, VHF, HF)

EGI – INS / GPS

VOR, ILS, TACAN ,
DME, ADF

Combined Interrogator
Transponder (CIT)

The CNI-MS controls
the following
equipment:

• 2 UHF radios

• 2 VHF radios

• 2 HF radios

• 2 Embedded
GPS/INS (EGI)

• 2 VOR/ILS/MB
radios

• 2 TACAN radios

• 2 ADF radios

• 2 IFF
transponders

Backup Stand-by navigation
instruments

Communications can be
independently tuned

Stand-by navigation
instruments

Communications can
be independently tuned

Stand-by navigation
instruments

Communications can
be independently tuned

Stand-by navigation
instruments

CNBP can independent
tune radios

Bus Interface Unit
(BIU) provides backup
in the event of MC
failures

Table 7: Overview of design features supporting detection and handling of systematic faults in Flight
Management Systems

