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Abstract

Density functional theory and its extension in the nonequilibrium regime,

time-dependent density functional theory, are powerful tools for predicting

the structures, energies and dynamics of electronic systems. Their useful-

ness derives from the Kohn-Sham scheme whereby a system of real, inter-

acting particles is replaced by a fictitious system of non-interacting parti-

cles subject to an effective external potential instead of a pairwise particle-

particle interaction. The Kohn-Sham universe yields the same observable

phenomena as that predicted by standard quantum mechanics so long as

the effective external potential is known. However, for the vast majority

of systems it is not known, and the usually local (in time and space) func-

tional approximations employed do not capture the physics of true nonlocal

interactions.

In this thesis, the exact charge and current densities of model quantum

transport devices described by nonlocal potentials are studied and meth-

ods for reverse-engineering the corresponding exact Kohn-Sham effective

external potential for time-dependent and steady- state density functional

theory approaches to the same systems are presented, as well as the resulting

exact potentials themselves. Features of improved functionals for calculat-

ing approximate Kohn-Sham systems are demonstrated. These functionals

are suggested to be very different from existing functionals employed, de-

scribing not potentials but electric and magnetic fields, and have a strong

dependence on the local and semilocal charge and current density.
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Chapter 1

Introduction

The miniaturisation of electronic systems took a giant leap forward in the late 1950’s

with the introduction of the integrated circuit (IC), a semiconductor chip containing

all of the elements of electronic systems integrated into an indivisible single piece.

Since then, the number of elements manufacturers have been able to fit onto a chip has

approximately doubled every two years: a trend known as Moore’s law [12]. Factors that

have perpetuated this trend, beyond the invention of the IC itself, include the invention

of the complementary metal-oxide-semiconductor (CMOS) technology for constructing

dense ICs and the advent of photolithography [13].

Processor chips today may contain tens of millions of transistors: this is the culmi-

nation of decades of top-down miniaturisation of electronic components, an approach

based on manufacturing the same elements at smaller and smaller scales. The in-

evitable conclusion of such a venture is the fabrication of devices on the molecular and

atomic scales, at which point it becomes necessary to take a bottom-up approach to

miniaturisation: to build electronic devices atom-by-atom and molecule-by-molecule.

The bottom-up approach has been suggested since even before the advent of the

integrated circuit: an idea known as molecular engineering [14] and, in its application

to electronics, molecular electronics. Throughout the decades to follow and much re-

search into the possibility of fabricating circuits on this scale, the top-down approach

continued to achieve beyond expectations, with modern chip features having lengths

on the nanoscale, or nanometre scale.

Recent perpetuation of Moore’s law beyond this has, however, taken on a different

character, with a focus on techniques such as multi- and hyper-threading and the inte-

gration of previously specialised processors such as graphics processing units. Rather

than a continuation of the miniaturisation of components, it has become necessary to
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consider instead making circuits larger, more layered and more efficient. One limit-

ing factor is that, at the nanoscale, quantum mechanical effects begin to emerge more

dominantly, and phenomena such as quantum tunnelling will begin to undermine the

operation of electronic circuits as, for instance, electrons leak out of devices.

Rather than limiting such behaviour, the bottom-up approach to molecular elec-

tronics on the nanoscale, or nanoelectronics, attempts an incorporation of quantum

mechanical effects into the functional design of electronic components. The field of na-

noelectronics concerns the electron and phonon transport properties of devices on the

nanometre scale, for instance electronic devices as small as a single molecule, and wires

as narrow as one atom thick. A quintessential question of electronic transport concerns

the current-response of an electronic system to the switching on of an externally-applied

electrochemical bias.

Quantum mechanics is a natural tool to answer such questions. In the single-

particle (noninteracting) picture, a quantum mechanical description of a system is given

completely by the wavefunction solution of the time-dependent Schrödinger equation

which, in atomic units (here as throughout this thesis unless otherwise stated), is

i
∂

∂t
ψ(r, t) =

{
1
2 [p̂ + A(r, t)]2 + v(r, t)

}
ψ(r, t). (1.1)

The Schrödinger equation encodes all effects of the external potentials v(r, t) and A(r, t)

in the wavefunction, and from this wavefunction we can determine any physical property

of interest, including the charge density

n(r, t) = |ψ(r, t)|2 (1.2)

and the current density

j(r, t) =
1

2i
[ψ∗(r, t)∇ψ(r, t)− ψ(r, t)∇ψ∗(r, t)] (1.3)

which are related via the continuity equation

∂

∂t
n(r, t) +∇ · j(r, t) = 0. (1.4)

This can be extended to systems of many interacting particles by the inclusion of

interaction terms in the Schrödinger equation, leading to a single many-body wavefunc-

2



tion for the whole system:

i
∂

∂t
Ψ(r, r2, . . . , rN , t) =

N∑
j=1

1
2 [p̂j + A(rj , t)]

2 + v(rj , t) +
N∑
k>j

1

|rj − rk|

. (1.5)

The kinds of devices we would be interested in modelling are already being con-

structed experimentally. The invention of the scanning tunnelling microscope has pro-

vided a powerful tool not just for the probing of material surfaces with atomic-scale

precision, but also for the manipulation of objects at the atomic scale. Alongside the

invention of the atomic force microscope (AFM) and the development of mechanically

controllable break-junction (MCBJ) techniques, this paved the way for the fabrication

of molecular junctions, atomic-sized point contacts between electronic leads and single-

atom-thick nanowires [15]. Examples of molecular junction and nanowires are shown

in Fig. 1.1 below.

Figure 1.1: Fabricated molecular electronics devices: Schematic of a molecular junction of
benzene-1,4-dithiolate formed between gold electrodes using the mechanically-controlled break-junction
technique [1] (left) and TEM images of gold nanowires of decreasing thickness formed and manipulated
with a STM (right) [2]

Fig. 1.2 below demonstrates a purely quantum-mechanical effect in electronics: the

quantisation of conductance. Classically, electrical conductance is given by Ohm’s law

in terms of the voltage across a device and the current passing through it:

G =
1

R
=

I

V
, (1.6)

where R is the resistance of the device, I the current and V the applied voltage. What is

clear from Fig. 1.2, and other experimental evidence [16; 17; 18], is that, in reflectionless
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Figure 1.2: Experimental verification of the quantisation of conductance (a) evident in 0-, 1-, 2-
and 4-atom-thick gold chains connected to leads. TEM images, corresponding intensity profiles [3] and
schematic models of the 1- and 2-atom thick chains are shown in (b)-(d). Image from Nature (1998)
[4]

media, the conductance increases in discrete steps of 2e2/h (in S.I. units, or 4π in atomic

units). The number of quanta is determined by the width of the contact, hence for the

two-atomic-thick chain of gold atoms in Fig. 1.2 the conductance is twice that of the

one-atom-thick chain.

Experimental research and fabrication of realistic nanoscale electronic devices con-

tinues to develop at a rate that outstrips progress in the computational modelling of

such large (in terms of particle numbers) structure, from how one might connect single-

molecule devices to metallic leads [19; 20; 21; 22], through the measurement of atomic

and electronic structures and conduction of molecular junctions [23; 24], and how the

conductance of a molecule can be changed or tuned for precise functionalisation [25; 26].

The computational barrier in modelling such devices and phenomena is the scaling

of Eq. 1.5 with increasing particle number. As the number of particles N increases, the

number of interaction terms in the Schrödinger equation grows as 1
2(N2 − N). Even

without coupling to leads, the number of particles in a molecular junction renders an

exact many-body solution unsolvable: the so-called quantum-mechanical many-body

problem.

Approaches for applying quantum theory to transport problems are described in

the rest of this section. Secs. 1.1 and 1.2 describe the seminal theories for quantum

transport that treat particles as noninteracting but rather as tunnelling through and

reflecting from a single effective barrier or scatterer. Sec. 1.4 describes other approaches

to quantum transport such as the statistical description for the electron gas and linear

response theory.

In terms of accuracy, the theoretical state-of-the-art is the quasiparticle approach
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based on equilibrium and nonequilibrium Green’s function approaches described in

Sec. 1.6. These approaches incorporate, in principle, all of the quantum-mechanical

many-body effects absent in earlier approaches; however, the computational resource

required to apply them in practice limits them to small, simple or model systems.

The incorporation of many-body effects in a mean-field way is the goal of density-

functional theory and time-dependent density-functional theory, a natural extension of

noninteracting quantum transport theories, and is described in Chapter 2.

1.1 Two-terminal transport and the Landauer formula

The quantisation of conductance was already a feature in the theory of quantum trans-

port formulated initially by Rolf Landauer in 1957 [27] which is discussed as standard

in quantum transport literature, e.g. [15; 28; 29]. Landauer’s approach in formulating a

theory of quantum transport was to treat it as a scattering problem: that conductance

is transmission.

Consider a device connected to two identical, semi-infinite ideal leads of some small

cross section such that they act as waveguides, in turn connected to infinite source and

sink electron reservoirs held at chemical potentials µL and µR respectively. Traditional

viewpoints on the electric fields in current-carrying systems held that the electric field

E(r) due to an applied bias across a device was the source of the motion of the electrons

in it, which accelerated in response to the field as eE(r). The energy required to add

an electron to the device from the source reservoir and the energy required to remove

it from the device into the sink reservoir differ by the chemical potential difference

between the reservoirs [29]:

V =
µL − µR

e
. (1.7)

For this reason, Landauer maintained the opposite viewpoint [30]: that the establishing

of a bias by holding the reservoirs at different chemical potentials is the mechanism by

which the charge carriers move, and the aggregation of fluxing charges through the

ends of the wires gives rise to the electric field E(r) = ∇ (µR(r)− µL(r)) /e.

Landauer treats the electrons in the junction connecting the left and right leads as

noninteracting. This seemingly crude approximation has some justification: quantum

transport is concerned with the behaviour of electrons in devices of very small length

scales, and therefore of very low conductance. For conductances large compared with

the conductance quantum, electrons are weakly localised (or strongly delocalised) and

therefore interact strongly. This is the domain of classical and semiclassical transport.
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For conductances very small compared with the conductance quantum, particularly at

high energies, conducting electrons are strongly localised. This localisation makes the

conducting electrons weakly interacting with each other [28]. (More accurately, the

electron quasiparticles, accounting for the interaction of the electron with the rest of

the non-conducting elements in the wire, are weakly interacting.)

This leaves the interaction with the wire itself: the ions and bound and valence

electrons through which the conduction electrons pass. For metals, the screening of

the ion lattice by the bound and valence electrons is typically very high, such that the

axial variance of the conduction electrons is well approximated by free-space solutions.

The wavefunctions in the leads are of the form

φm,n,kx(r) =
1√
V
fm,n(y, z)eikxx (1.8)

where V is the volume the electron occupies, and the dimension x runs along the wire.

The function fm,n(y, z) depends on the nature of the cross-sectional confinement and

the subband the electron occupies, while the plane-wave term in x is due to the electron

being unconfined in that direction. The possible plane wave states form a continuum,

each contribution energy

E(kx) = 1
2k

2
x. (1.9)

For an infinite square well confining potential, for instance, we have

fm,n(y, z) = 2 cos(kmy) cos(knz) (1.10)

with integer m,n corresponding to the distinct subbands of the system, and energy

E = 1
2

(
k2
y + k2

z

)
yielding a total energy

E = 1
2

(
k2
x + k2

m + k2
n

)
= 1

2k
2. (1.11)

These waves form a complete and orthonormal set [31].

The solution of the time-independent Schrödinger equation

Eψ(r) =
{

1
2 [p̂ + A(r, t)]2 + v(r, t)

}
ψ(r) (1.12)

can then be expanded in terms of incident and outgoing waves in the left and right

leads either side of the junction, plus tunnelling waves in the junction itself. If the
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junction occupies the region 0 ≤ x ≤ L, then the solutions are

ψL(r) =
1√
V

∑
n,m,kx

{
cL+
m,n,kx>0φ

L
m,n,kx>0(r) + cL−m,n,kx<0φ

L
m,n,kx<0(r)

}
for x < 0

(1.13)

ψR(r) =
1√
V

∑
n,m,kx

{
cR−m,n,kx<0φ

R
m,n,kx<0(r) + cR+

m,n,kx>0φ
R
m,n,kx>0(r)

}
for x > L

(1.14)

ψT (r) =
1√
V

∑
n,m,kx

{
cT+
m,n,ikx<0φ

T
m,n,ikx<0(r) + cT−m,n,ikx>0φ

T
m,n,ikx>0(r)

}
for 0 ≤ x ≤ L

(1.15)

where L,R, T denote the left and right leads and the tunnelling region respectively,

and +,− denotes the direction of the wave propagation. Generally, we are interested

in the current passing through the device and not the nature of what happens inside

it. As such, one solves the above equations for the left and right coefficients.

The coefficients cL+, cL−, cR+, cR− are related via the scattering matrix(
cL−

cR+

)
=

(
r t′

t r′

)(
cL+

cR−

)
(1.16)

where r, t are the reflection and transmission coefficients for waves incident from the

left lead and r′, t′ for those incident from the right.

Generally, transmission through and reflection from a scattering barrier depend on

the subband (or ‘channel’): an electron in subband n (where, for convenience, we denote

both y and z subband parameters with a single index) incident upon a scatterer may

be transmitted or reflected to a different subband m. The wavefunction coefficients will

also be subband-dependent, and thus(
cL−m

cR+
m

)
=

(
rm,n t′m,n

tm,n r′m,n

)(
cL+
n

cR−n

)
. (1.17)

The reflection and transmission coefficients, rm,n and tm,n may be measured by holding

the chemical potential of the sink reservoir such that no electrons flow from the right
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in the right-hand region of a given subband. In this case, cR−n = 0, and we have

rm,n =
cL−m
cL+
n

∣∣∣∣
cR−n =0

(1.18)

tm,n =
cR+
m

cL+
n

∣∣∣∣
cR−n =0

. (1.19)

For each subband m in the left lead, the fraction of the current from the left reservoir

that is transmitted through the junction is the sum of the fractions transmitted from

that channel to each of the channels in the right lead:

Tm =
∑
n

|tm,n|2 ; (1.20)

the remainder
∑

n |rm,n|
2 is reflected back into the left lead. The current per mode

is 2e/h in S.I. units, where the factor arises due to each mode may be occupied by

both spin-up and -down electrons, and thus the current through the system is then the

current carried by the electrons transmitted through the junction minus the cancelling

current carried by the electrons incoming from the right-hand reservoir:

I =
2e

h

∑
m,n

∫ ∞
0

dE
[
fL(E) |tm,n(E)|2 − fR(E)

∣∣t′m,n(E)
∣∣2] (1.21)

where fL(E) and fR(E) are the Fermi-Dirac distributions for the left and right leads

respectively.

The transmission eigenvalues Tm(E) =
∑

n |tm,n(E)|2 are typically energy-dependent.

However, for chemical potential differences that are small compared with the scale of

the energy-dependence, they may be evaluated at the Fermi energy [28]. Thus at zero

temperature, where the Fermi-Dirac distribution is a step function at the Fermi energy,

δI =
2e

h

∑
m,n

|tm,n(µ)|2 δµ (1.22)

and thus

G =
δI

δV
= e

δI

δµ
= G0

∑
m,n

|tm,n|2 (1.23)

where G0 = 2e2/h is the quantum of conductance. Eq. 1.23 is known as the Landauer

formula.

For a system consisting only of source and sink reservoirs, a scattering device and
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two leads connecting them, the actual chemical potential across the device is not well

defined [32]. It was soon noted [33]-[34] that real current-carrying devices are connected

to multiple leads, rather than just two (measuring the current or voltage across a circuit,

for instance, requires additional terminals connected to the measuring device) and that

a multi-terminal quantum transport theory was required. While this thesis will focus on

two-terminal nanowires, generally one is interested in multi-terminal transport which

we will describe in the following section.

1.2 Multi-terminal transport and the Büttiker formalism

The classical current through a device with more than two terminals is given by the

generalisation of Ohm’s law

Im =
∑
n

Gm,n (Vn − Vm) , (1.24)

where Im and Vm are the current and voltage across the mth terminal, and Gm,n are the

elements of the conductance matrix. In a quantum mechanical description, a structure

acting as a scattering region is once again connected to ideal leads acting as waveguides,

in turn connected this time to N electron reservoirs.

The extension of the Landauer approach to four terminals was first achieved by En-

gquist and Anderson [35] and was generalised to any number of terminals by Buttiker

(1985) [36; 37]. The wavefunctions in each of these waveguides are once again plane

waves along the leads within discrete modes or subbands due to the transverse confine-

ment of the leads of finite cross-section.

It is convenient still to refer to the direction of propagation along the leads as the

x-direction, with a label denoting which lead a given electron is propagating in, likewise

for the corresponding y- and z-directions:

ψ(rα) =
1

Vα

∑
n

fn(yα, zα)
[
cα+eikx,αxα + cα−e−ikx,αxα

]
(1.25)

where α+ is taken to be propagating from the reservoir to the junction. n once again

denotes the subband that the electron is in, and fn(yα, zα) is the transverse component

of the wavefunction in terminal α, determined by the cross-sectional confinement in

that terminal. Each of the reservoirs is held at a chemical potential µα, and the leads

connected to them have Fermi-Dirac distributions of fα(E).

The fraction of electrons propagating to reservoir α then consists of contributions
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from all of the leads, including reflections in lead α. If we index with n the channels of

lead α and m those of an arbitrary lead β, then we may define a transmission tensor

Tα,β(E) =
∑
β,m

∑
α,n

Tm,n(E) (1.26)

where Tm,n(E) is defined as in the two-terminal case [29]. The current passing through

the α lead is then

I =
∑
β

2e

h

∫ ∞
0

dE [fα(E)Tα,β(E)− fβ(E)Tβ,α(E)] . (1.27)

A more rigorous proof of the Landauer-Büttiker formula has been derived [38] and

the application of the formula to quantum transport has been remarkably successful

compared to experiment in its description of mesoscopic systems, including of course the

prediction of the quantisation of conductance, but also good agreement with experiment

on the quantum Hall effect [39; 40; 41; 42], universal conductance fluctuations [43] and

the Aharonov-Bohm effect [44; 45].

Figure 1.3: Schematic representation of a quantum dot used as a Coulomb blockade device by
connecting it to two reservoirs by ideal leads (left), and a representation of the blockade in it’s open
state. Electrons incident from the leads cannot tunnel through the barrier into the island unless the
applied bias between them is sufficiently high. Once tunnelling occurs, the electron in the island will
repel other electrons from tunnelling in unless a sufficiently higher bias is applied. Image from [5]

While the approach of treating the details of the device as negligible to determine

the current through otherwise noninteracting leads is well-justified, if one wishes to

know how the current flows through the actual device, for instance for the creation

of functional molecular electronics devices, one needs to know about the electric and

electrochemical potentials within the device itself. Details of the actual potentials
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outside and inside perfectly conducting devices with currents driven by a perfect battery

have been examined for various geometries by Payne [46], and the application of density-

functional theory (see Sec. 2.1 and Chapter 2) to quantum transport for interacting

systems of electrons largely concerns the study and calculation of potentials within the

device itself.

Another issue with the Landauer-Büttiker formalism is that it does not take into

account many-body effects. It has been shown by Vignale and Di Ventra [47] that such

effects cannot be included in the single-particle transmission probabilities employed in

the scattering approach to transport and yet have a direct effect on the conductance of

transport devices. Dissipative electron-electron interactions within the device lead to

small increases in its resistivity [48; 49] which were identified by Vignale and Di Ventra

as arising from the viscosity of the electron fluid.

Thus a full treatment of quantum mechanical systems must take into account such

electron-electron (as well as electron-phonon) interactions which are absent in the

Landauer-Büttiker approach. Such effects are often substantial, as seen for instance in

the Coulomb blockade (Fig. 1.3). The Coulomb blockade, or single-electron transistor

(SET) consists of a small island connected to leads in such a way as to form a potential

barrier between the island and the leads. For sufficiently small applied biases, elec-

trons in the leads do not have enough energy to tunnel through the barriers and the

conductance of the device is zero (Fig. 1.4).

Figure 1.4: STM image of a functioning single-electron transistor (SET) consisting of a molecule
of

[
Co

(
tpy− (CH2)5 − SH

)
2

]
connected to two leads and its conductance as a function of applied

voltage for gate voltages between −0.4V (red) and −1V (black). For sufficiently low voltages at low
gate voltages for which the tunnelling rate is lower, the device does not conduct. [6]

With increased bias, the tunnelling rates of the incident electrons are higher and
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thus higher-energy electrons may tunnel through a barrier and occupy the island. The

Coulomb repulsion of the occupied barrier then seen by the other electrons in the

system then lowers the probability of other electrons tunnelling, again reducing the

conductance of the device until the occupying electron tunnels back out. This way, one

may control the flux of electrons through a device on a particle-by-particle level.

Without electron-electron interactions, the Coulomb blockade phenomena cannot

be observed. Many different methods for incorporating interactions within the Lan-

dauer approach of treating the device as a scatterer have been investigated since the

inception of quantum transport theory including density-functional approaches, Green’s

function methods and others. Density-functional methods for quantum transport will

be discussed in Chapter 2. The remainder of this Chapter will discuss other theoretical

methods for modelling quantum transport.

1.3 The interaction picture of quantum mechanics

In addition to the Schrödinger picture of quantum mechanics, in which operators are

treated as time-independent and thus all time-dependence originates from the wave-

functions, and the Heisenberg picture, in which the state of the system is considered

as time-independent with all of the time-dependence attributed to the operators, it

is often convenient in treating perturbations, such as in Sections 1.4 and 1.6.5 below,

to let both operators and wavefunctions as carrying part of the time-dependence of a

system.

As in many-body perturbation theory, in the interaction (or Dirac) picture of quan-

tum mechanics, the Hamiltonian in the Schrödinger picture is typically decomposed

into a solvable part (for instance: noninteracting terms) and a perturbation (e.g. in-

teraction terms):

ĤS(t) = Ĥ0(t) + V̂ (t). (1.28)

The interaction picture states and operators are then defined in terms of their Schrödinger

picture counterparts as

|ΨI(t)〉 = eiH0t |ΨS(t)〉 = eiĤ0te−iĤt |ΨS(0)〉 (1.29)

ÔI(t) = eiH0tÔSe
−iH0t. (1.30)
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Expectation values of operators are unchanged by this transformation:

〈O〉 =

〈
ΨI

∣∣∣ÔI

∣∣∣ΨI

〉
〈ΨI | ΨI〉

=

〈
ΨS

∣∣∣ÔS

∣∣∣ΨS

〉
〈ΨS | ΨS〉

, (1.31)

and likewise the solvable part of the Hamiltonian is unchanged:

eiH0tĤ0(t)e−iH0t = Ĥ0(t). (1.32)

From Eq. 1.29, the time-dependence of the wavefunction is then

i
∂

∂t
|ΨI(t)〉 = eiĤ0t

(
Ĥ − Ĥ0

)
|ΨS(t)〉 = V̂I(t) |ΨI(t)〉 (1.33)

meaning that only the time-dependence of the perturbation is included in the wave-

function. This is now the Schrödinger equation of the interaction picture: all of the

remaining time-dependence is now included in the operators.

We can take the perturbation V̂ (t) to be, for instance, the many-electron inter-

action and switch this on perturbatively at t = −∞. If we denote the unperturbed

wavefunction as |Ψ0〉, this yields the time-dependent operator (for instance, pertaining

to a measurement) expectation values

〈O〉 =

〈
Ψ0

∣∣∣ÛI(−∞, t)ÔIÛI(t,−∞)
∣∣∣Ψ0

〉
〈

Ψ0

∣∣∣ÛI(−∞, t)ÛI(t,−∞)
∣∣∣Ψ0

〉 (1.34)

where ÛI(t, t0) is the time-evolution operator that propagates the wavefunction from

time t0 to time t, related to the time-evolution operator of the Schrödinger picture by

Eq. 1.30.

1.4 Other quantum transport methods

1.4.1 The Boltzmann equation

In formulating a quantum-mechanical description of transport, it was natural to take

the prevailing statistical theory of classical transport and apply it to quantum-mechanical

systems. Macroscopic fluids out of equilibrium are amenable to description by the

Boltzmann equation wherein the traditional notions of known positions and momenta

of particles in the fluid is replaced by a statistical description, i.e. the probability of the

system containing a particle with position r(t) and momentum p(t) at time t.
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The possible values of r and p for particles in a system is the phase space of the

system, and the statistical probabilities of a particle having a 6-dimensional coordinate

(r(t),p(t)) is the probability density function f(r,p, t) which obeys∫ ∞
−∞

dr

∫ ∞
−∞

dp f(r,p, t) = N, (1.35)

where N is the number of particles in the system.

The classical Liouville equation relates the derivatives of this function with respect

to its coordinates and in terms of the velocity and force fields across the system:

df

dt
=
∂f

∂t
+ v · ∂f

∂r
+ F · ∂f

∂p
= 0, (1.36)

assuming that any scattering of the particles is elastic.

While, due to the Heisenberg uncertainty principle, a given particle cannot be de-

scribed by a position r and a momentum p simultaneously, a statistical ensemble of

quantum particles is a function of these coordinates. Thus the Boltzmann equation

can be used to describe time-dependence of a nonequilibrium quantum-mechanical sys-

tem [28] where, in terms of a system described by N single-particle wavefunctions, the

Wigner function is

f(r,p) =
1

(2π)3

N∑
n=1

∫ ∞
−∞

dr′ ψ∗n(r + ~
2r′)ψn(r− ~

2r′)eip·r
′
. (1.37)

Generally, f(r,p) is the Wigner transform of the density matrix (see next section)

f(r,p) =
1

(2π)3

∫ ∞
−∞

dr′
〈
r + ~

2r′ |ρ̂| r− ~
2r′
〉
e−ip·r

′
(1.38)

and correctly has the properties that, when integrated over momentum, yields the

probabilities of finding electrons at particular positions and, when integrated over space,

yields the probabilities of finding electrons with particular momenta [50].

In the presence of inelastic scattering, the probabilities of scattering between states

of different momenta must be included explicitly. If the rate at which particles with mo-

mentum p are scattered into states with momentum p′ is Wp,p′ , then the full Boltzmann

equation is

∂f

∂t
= −v · ∂f

∂r
− F · ∂f

∂p
+

∫ ∞
−∞

dp′
1

2π

[
Wp′,pfp′ −Wp,p′fp

]
. (1.39)
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Generally, the scattering rates must be calculated using quantum mechanics, for in-

stance using Fermi’s golden rule for a given impurity potential. However, if the scatter-

ing potential is nearly constant, the scattering is characterised by the relaxation time

τ : the characteristic time it takes for the system to relax into an equilibrium state 〈f〉
through inelastic scattering which is directly related to the weighted probabilities of

scattering angles: generally, the higher the scattering angle, the shorter the relaxation

time and the faster the system attains equilibrium [51].

For such “white noise scattering”, the Boltzmann equation reads

∂f

∂t
= −v · ∂f

∂r
− F · ∂f

∂p
− f − 〈f〉

τ
. (1.40)

This form of the Boltzmann equation will be used when we come to study the decay of

nonequilibrium “quasiparticle” states in Chapter 5.

1.4.2 Linear response and density matrices

An alternative method of calculating the time-dependent properties of a quantum me-

chanical system is by the use of density matrices. Density matrices are used to describe

systems in mixed states: a ensemble of states each with an associated statistical likeli-

hood as opposed to a particular eigenstate or linear combination of eigenstates of the

Hamiltonian. The one-particle density matrix of a state |Ψ(t)〉 is

ρ̂(r, r′, t) = |Ψ(t)〉 〈Ψ(t)| =
∫ ∞
−∞

dr2...

∫ ∞
−∞

drN Ψ(r, r2, ..., rN , t)Ψ
∗(r′, r2, ..., rN , t)

(1.41)

where N is the number of particles in the system. In a statistical ensemble of such

systems, each having a state vector |Ψn(t)〉 where n labels the system, the density

matrix is

ρ̂(r, r′, t) =
∑
n

pn |Ψn(t)〉 〈Ψn(t)| (1.42)

where pn > 0 is the probability that the state n is occupied such that∑
n

pn = 1. (1.43)

Using the density matrix, the expectation value of any operator is

〈O(t)〉 =
1

Z0
Tr
[
ρ̂(t)Ô

]
=
∑
n

pn

〈
Ψ(t)

∣∣∣Ô∣∣∣Ψ(t)
〉

(1.44)
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where Z0 = Tr [ρ̂] is the partition function.

If the system is described by a time-independent Hamiltonian plus a perturbation,

Ĥ(t) = Ĥ0 + V̂ (t), (1.45)

then in the interaction picture, the system state may be written as

|Ψn(t)〉 = eiĤ0tÛ(t, t0)e−iĤ0t0 |Ψn(t0)〉 (1.46)

= ÛI(t, t0) |Ψn(t0)〉 .

To linear order in V̂ (t), the time-evolution operator is

ÛI(t, t0) = 1− i
∫ t

t0

dt′ V̂I(t
′) (1.47)

where V̂I(t) = eiĤ0tV̂ (t)e−iĤ0t0 .

Inserting 1.46 into Eq. 1.44 yields

〈O〉 (t) = 〈O〉0 − i
∫ t

t0

dt′
1

Z0

∑
n

pn

〈
Ψn(t0)

∣∣∣Ô(t)V̂I(t
′)− V̂I(t

′)Ô(t)
∣∣∣Ψn(t0)

〉
= 〈O〉0 − i

∫ t

t0

dt′
〈[
Ô, V̂I(t

′)
]〉
, (1.48)

where V̂I(t) = eiĤ0te−iĤ(t)tV̂ (t)eiĤ(t)te−iĤ0t is the perturbation operator in the inter-

action picture (see Sec. 1.3 below),
[
Ô, V̂I

]
= ÔV̂I − V̂IÔ is the commutator of Ô and

V̂I, and 〈O〉0 is defined for Hamiltonian Ĥ0 as per Eq. 1.44.

Eq. 1.48 is the Kubo formula, a linear-response formula yielding the response of

a measurable to an external perturbation to first order, and thus is suited to slowly-

varying or small perturbations. Prior to the formulation of multi-terminal Landauer-

Büttiker theory, the Kubo formula was the foremost theory of quantum transport, and

it has been shown [52; 53] that the Landauer formula can be derived from the Kubo

approach, and indeed early multi-terminal extensions to the Landauer approach were

based on derivations from the Kubo formula.

While we will not study the Kubo formula any further here, density matrices to de-

scribe statistical ensembles can be used in conjunction with the Boltzmann equation for

studying the time-evolution of nonequilibrium systems, particularly those undergoing
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relaxation, which, for a system governed by the Hamiltonian Ĥ, is

i
∂ρ̂

∂t
=
[
Ĥ, ρ̂

]
. (1.49)

Eq. 1.49 is called the Liouville-von Neumann equation and can be derived directly from

the Schrödinger equation [54]. The Liouville-von Neumann equation is the quantum-

mechanical analogue of the Liouville equation for classical statistical mechanics in which

the time-evolution of the probability density function f(r,p, t) is

∂f

∂t
= −

n∑
i=1

(
vi ·

∂f

∂ri
+ Fi ·

∂f

∂pi

)
= 0 (1.50)

where ri,pi are the positions and momenta of the ith particle.

In general, the Hamiltonian in Eq. 1.49 will be the full Hamiltonian of the system,

including scattering potentials. From Eq. 1.40, we know that, under certain conditions,

the scattering potential can be treated separately as

i
∂ρ̂

∂t
=
[
Ĥ0, ρ̂

]
− ρ̂− ρ̂0

τ
, (1.51)

where Ĥ0 now is the Hamiltonian minus the terms responsible for inelastic scattering, ρ̂0

is the average equilibrium ensemble to which the system relaxes and τ is the relaxation

time to reach equilibrium. We will investigate the effects of Eq. 1.51 in Chapter 5.

1.5 Limitations of noninteracting models

In the absence of particle-particle interactions and neglecting the spin degrees of free-

dom, the Hamiltonian of a system with external potential v may be written in terms

of creation and annihilation operators as

Ĥ0 =
∑
ij

ĉ†i tij ĉj + Ĥv (1.52)

where ĉj removes an electron from state j and ĉ†i adds an electron to state i, together

describing a “hopping” event. (Generally, the creation operator is defined by the re-

quirement that ĉ†i |1, 2, ..., i, ...〉 = 0 and ĉ†i |1, 2, ..., 0, ...〉 = 1 where i indexes a particular

state. The annihilation operator is the Hermitian conjugate of the creation operator

and acts in the opposite manner.) The probability amplitude of this hopping occurs

is tij : the hopping parameter. Ĥv is the potential energy term of the Hamiltonian. In
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direct space, for instance, the potential term is Ĥv =
∑

i v(ri)ĉ
†
i (r)ĉi(r).

In the presence of electron-electron interactions, the probability of an electron hop-

ping from one state to another can be greatly affected by the presence of other electrons

on those sites. The interacting Hamiltonian is

Ĥ =
∑
ij

ĉ†i tij ĉj +
∑
ijkl

Uijklĉ
†
i ĉ
†
j ĉk ĉl, (1.53)

where

Uijkl =
1

2

∫ ∞
−∞

dr

∫ ∞
−∞

dr′ ψ∗i (r)ψ∗j (r
′)Û(r, r′)ψk(r

′)ψl(r) (1.54)

and Û(r, r′) is the usual Coulomb interaction operator.

This is called the tight-binding representation, and in the position basis has the

Hamiltonian

Ĥ =
∑
ij

ψ̂†(ri)tijψ̂(rj) +
∑
i

viĉ
†
i ĉi +

∑
ijkl

Uijklψ̂
†(ri)ψ̂

†(rj)ψ̂(rk)ψ̂(rl), (1.55)

where ψ†(r) and ψ(r) are the field creation and annihilation operators which add and

remove respectively one electron to and from site (r).

Typically, one approximates the Coulomb term by limiting the number of nonzero

elements of U to nearest neighbour interactions or, in the case of the Hubbard model,

on-site interactions only, suited to describe systems with a large interatomic spacing

such that the Coulomb interaction is negligible between sites [55].

The tight-binding method has been employed within the field of quantum transport

theory to study one-atom contacts, single-atom chains and stacking faults [56], the

effects of impurities on conductance in quantum wires [57]

Relatively recently, Kurth et al [7] applied the tight-binding model to the Coulomb

blockade (described in Sec. 1.2 above) to determine if the often assumed notion that

systems driven out of equilibrium eventually achieve a microscopic steady state. They

simulated a quantum dot with an on-site charging energy connected to two ideal leads

with an externally-controlled gate voltage across the dot. The system was prepared in

equilibrium then perturbed from t > 0 by an external potential bias.

Fig. 1.5 shows the time-dependent charge and current densities of the system for

varying applied biases. As can be seen, the system does not tend to a steady state with

time, but rather continues to undergo current oscillations as electrons hop into and out

of the Coulomb blockade. Only away from the quantum dot does the current, after

transient effects have subsided, diminish with time.
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Figure 1.5: Time-dependent Coulomb blockade: The time-dependent charge density (top)
and current density (middle three) of a quantum dot connected to reservoirs via ideal leads for three
different externally-applied biases. Also shown (bottom) is the time-dependent current density in the
lead five sites from the dot. The dot does not settle to a steady-state with time, but rather undergoes
perpetual current oscillations as the dot charges and discharges, however the current away from the dot
does diminish with time. The KS potential required to reproduce the system in a TDDFT calculation
is also shown (middle three) and contains discontinuous steps as the dot charges and discharges due to
the local change in electron number. [7]

This discovery illuminates something of the nature of electrons in quantum trans-

port systems, that even when a circuit as a whole is varying little with time, the precise

nature of the current through the circuit depends on highly dynamic behaviour in some

of its components, which in turn depends on the precise nature of the device. The vary-

ing of the state of the quantum dot with time, as it charges and discharges, is evident

in the dynamics of the effective time-dependent potential of a single-particle (nonin-

teracting) representation required to reproduce the same time-dependent charge and

current density.

This single-particle picture is based on the idea that we can replace particle-particle

interactions with additional fictitious external fields acting on independent electrons.

As we can see in Fig. 1.5, these effective potentials can be rather complex: in the

case of the quantum dot, the local field discontinuously jumps up or down whenever

the dot is charging or discharging, i.e. when the integer number of electrons in the

dot changes. This is a consequence of the derivative discontinuity in the energy with

increasing electron number in the noninteracting model [58], and will be discussed

further in Sec. 2.2.4.
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1.6 Green’s function approaches to quantum transport

1.6.1 Quantum-mechanical Green’s functions

Green’s functions are mathematically defined as the inverses of differential operators.

Since the Hamiltonian is a differential operator, one can solve it (in principle) by means

of Green’s functions:

EG(r, r′, E)−
∫ ∞
−∞

Ĥ(r, r′′)G(r′′, r′, E) dr′′ = δ(r− r′). (1.56)

Eq. 1.56 will generally have multiple solutions depending on the boundary conditions

of the problem. For instance, the free-electron solutions are

Gr(r, r′, E) = − eik·|r−r
′|

4π |r− r′|
(1.57)

Ga(r, r′, E) = − e
−ik·|r−r′|

4π |r− r′|
= Gr† (1.58)

where k =
√

2E.

The first of these solutions is called the retarded Green’s function and in many-body

perturbation theory may be employed to represent an electron added to the system.

The second is the advanced Green’s function and represents an electron removed from

the system, or, equivalently, a “hole” added to it. One can select which of the two

solutions one wishes to find by adding a small, imaginary infinitesimal to the energy:

limη→0 [E ± iη]Gr,a(r, r′, E)−
∫ ∞
−∞

ĤGr,a(r′′, r′, E)dr′′ = δ(r− r′). (1.59)

The Green’s function for interacting electrons is generally difficult to solve directly,

and the typical approach is to calculate an noninteracting Green’s function exactly

and self-consistently calculate perturbations to it due to interactions. From the closure

relation ∑
n

|ψn〉 〈ψn| = Î , (1.60)

where Î is the identity operator, and the noninteracting time-independent Schrödinger

equation Ĥ0 |ψn〉 = εn |ψn〉, one can write the noninteracting Green’s function in terms
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of the single-particle solutions of Ĥ0:

Gr,a0 (E) =
∑
n

|ψn〉 〈ψn|
E − εn ± iη

. (1.61)

Defining the fully perturbed Hamiltonian as

Ĥ = Ĥ0 + Σ(r, r′, E), (1.62)

the interacting Green’s function is then given by

Gr,a(r, r′, E) = Gr,a0 (r, r′, E)

+

∫ ∞
−∞

dr2

∫ ∞
−∞

dr′2 G
r,a
0 (r, r2, E)Σr,a(r2, r

′
2, E)Gr,a(r′2, r

′, E), (1.63)

or, in shorthand notation of (1) = r1, t1, etc. andA(1, 2)B(1, 3) =
∫∞
−∞A(1, 2)B(1, 3)d1,

Gr,a(1, 1′) = Gr,a0 (1, 1′) +Gr,a0 (1, 2)Σr,a(2, 2′)Gr,a(2′, 1′). (1.64)

Eq. 1.64 is called the Dyson equation, and the perturbation that incorporates inter-

action is called the self-energy operator. The noninteracting Green’s function can be

calculated from a DFT calculation (see Sec. 2.1) with either no interaction terms (in

which case the self-energy (SE) will include all interaction) or with only the Hartree

potential (in which case the SE will be defined to provide exchange-correlation effects).

The two unknowns – the interacting Green’s function and the self-energy – may

be calculated self-consistently (via Hedin’s equations [59]). The self-energy operator

describes all of the exchange and correlation many-body quantum mechanical effects

and is generally too complicated a quantity to calculate exactly: it is nonlocal in space,

energy-dependent and non-Hermitian, and one usually terminates the calculation at a

given order of the perturbation expansion.

A similar equation relates the screened two-particle Coulomb interactionW (1, 1′, 2, 2′)

to the polarisation operator P (1, 1′, 2, 2′) and the usual (unscreened) Coulomb operator,

here denoted V (1, 1′, 2, 2′):

W (1, 1′, 2, 2′) = V (1, 1′, 2, 2′) +W (1, 1′, 3, 3′)P (3′3, 4′4)V (4, 4′, 2, 2′). (1.65)

Three further equations relate the polarisation operator to the Green’s function and

the self-energy operator, resulting in a set of five equations which, in principle, may be

solved self-consistently.
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In practise, solution of the full Hedin equations is rarely computationally feasible.

However, the equations permit an order expansion of the self-energy operator about

the screened Coulomb expansion. In real spacetime, this is

Σ(rt, r′t′) = iG(rt, r′t′)W (rt+ iδ, r′t′)−
∫ ∞
−∞

dr′′dt′′ dr′′′dt′′′ G(rt, r′′t′′)G(r′′t′′, r′′′t′′′)

×G(r′′′t′′′, r′t′)W (rt, r′′′t′′′)W (r′′t′′, r′t′) + ... (1.66)

where W (E) is the screened Coulomb potential. The usual approximation for the self-

energy terminates the expansion after the first term so that Σ = iGW : the so-called

GW approximation [60]. From the quantum mechanical Green’s function, all properties

of interest concerning the excitation can then be calculated.

1.6.2 Quasiparticle theory

By means of Green’s functions, one is able to calculate the electronic properties of

systems excited by the addition, removal or excitation of an electron to, from or within

a system that may be modelled by other means. Such elementary excitations are called

quasiparticles, so-called because they share properties such as charge, spin and crystal

momentum with elementary particles. However, other properties such as their mass

and the electric fields they produce may differ strikingly from, for instance, those of an

electron.

The benefit of the quasiparticle approach to excited systems is that, while individual

electrons strongly interact with each other, quasiparticles are usually weakly interact-

ing. The elementary electron in a material repels other electrons around it, creating

around itself a positively-charged cloud of polarisation that screens the quasiparticle

from others around it by effectively reducing the Coulomb interaction between them.

The residual interaction between the quasiparticle and its surroundings is the self-

energy; as such, the quasiparticle is governed by a wave equation similar to the non-

interacting Schrödinger equation which, with the inclusion of the self-energy, provides

an effective single-particle theory of excitations:

εQPψQP(r) = Ĥ0ψQP(r) +

∫ ∞
−∞

Σ(r, r′, E)ψQP(r′) dr′. (1.67)

The quasiparticle energies appear as peaks in the spectral function, which is related

to the Green’s function as

A(E) =
1

π
|Im Gr,a(E)| (1.68)
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such as is shown for an electron and a hole in Fig. 1.6 below.

Figure 1.6: Quasiparticle peaks in spectral functions. Spectral functions near Fermi energy of
nearly-empty band (left) and nearly-full band (right) corresponding to electron and hole quasiparticles
respectively. (Illustration from [8].)

The combined approach of the quasiparticle concept and the quantum-mechanical

Green’s function formalism have been found to predict features of excited systems that

are qualitatively different or sometimes completely absent in other approximations that

implement no or only partial many-body effects (e.g. [60; 61; 62; 63; 64]) that agree

better with experimental than predictions based on DFT band structures. However,

such systems are typically very small compared to the sizes of systems that DFT can,

in principle, cope with.

1.6.3 Embedded nonequilibrium Green’s functions

A quintessential test of the Green’s function technique for quantum transport is that

of a molecular junction coupled to semi-infinite leads. If we take the simplest case of

a single-energy-level junction and assume that the two leads do not interact with each

other, we can write down the Hamiltonian in the tight-binding approach [15; 65] which,

in equilibrium, is (neglecting spin):

Ĥ = ĤL + ĤR + εĉ†CcC + tL

(
ĉ†CcL + ĉ†LcC

)
+ tR

(
ĉ†CcR + ĉ†RcC

)
(1.69)

where the first three terms on the right-hand side are the uncoupled Hamiltonians of the

left lead, right lead and junction respectively, and ĉ† and ĉ are once again the creation

and annihilation operators respectively (see Sec. 1.5). The couplings are introduced

by the hopping parameters tL and tR which give the probabilities of electrons moving

between the junction and the left and right leads respectively. One can see that the

probability of hopping from a lead to the junction are the same as hopping from the

junction to the lead, as required in equilibrium.

The unperturbed Hamiltonian is then taken to be Ĥ0 = ĤL + ĤR + εĉ†CcC, and the
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perturbation is therefore

Σ = tL

(
ĉ†0cL + ĉ†Lc0

)
+ tR

(
ĉ†CcC + ĉ†RcC

)
. (1.70)

The Dyson equation then yields the Green’s function for the junction

GCC(E) = gC(E) + gC(E)tLGLC(E) + gC(E)tRGRC(E) (1.71)

where gC is the uncoupled Green’s function of the central junction,

GLC(E) = gL(E)tLGCC(E) (1.72)

GRC(E) = gR(E)tRGCC(E), (1.73)

and gL(E) and gR(E) are the surface Green’s function matrix elements of the uncoupled

left and right leads respectively.

Substituting Eqs. 1.72 and 1.73 into Eq. 1.71 gives the self-energy operator as

ΣC(E) = t2LgL(E) + t2RgR(E) (1.74)

from which we obtain the Green’s functions

Gr,aCC(E) =
1

E − ε− ΣC(E)
(1.75)

from which we can calculate the energy, charge density and density of states of the

system.

Due to the quantum transport approach of treating the leads as noninteracting,

the procedure is a remarkably straightforward extension of Green’s function methods,

and even simple approaches such as embedding the GW self-energy in the central

region and employing a local DFT exchange-correlation potential for the rest of the

self-energy shows considerable improvement over pure DFT calculations in comparison

with experiment [66]. Extending the range of the interaction to include the connections

to the leads is more computationally difficult, however, and the approach still neglects

dynamic many-body effects and we have seen that, even in a macroscopic steady state,

electron transport is a fundamentally dynamic phenomenon. As such, a full Green’s

function approach to quantum transport must incorporate time-dependence.

One aspect of the self-energy operator that incorporates many-body effects difficult

to incorporate in any other many-body quantum theory is its non-Hermitian nature:
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electron quasiparticles corresponding to excited state generally have a finite lifetime

due to scattering events between the added electron and the rest of the system (for

instance, via Auger transitions). It is only as ε→ EF, where EF is the Fermi energy of

the ground-state system, that the quasiparticle lifetime tends toward infinite and these

finite lifetime effects vanish.

While the Green’s function determines how the quasiparticle decays, it does not

contain information about what happens to the added electron as it de-excites, for

instance: what happens to the elementary charge of quasiparticle? To access this sort

of information, we need to know how the system as a whole evolves with time.

1.6.4 Time-dependent Green’s functions

The energy-dependence of the equilibrium Green’s function demonstrates that they are

generally time-dependent quantities, as can be seen by taking the Fourier transform

of G(r, r′, E) into real time. The definition of the time-dependent Green’s function

is broader than that of the equilibrium functions discussed above. It is usual (e.g.

[15; 29]) to define the time-dependent Green’s function in the Heisenberg picture of

quantum mechanics wherein all of the time-dependence of a system is incorporated

into the operators rather than the wavefunction. In this representation, the causal

Green’s function for a system is defined in the position basis as

Gc(xt, x′t′) = −i
〈

Ψ0

∣∣∣T̂ ψ̂(xt)ψ̂†(x′t′)
∣∣∣Ψ0

〉
(1.76)

where |Ψ0〉 is the N -body system’s ground-state wavefunction, ψ̂† is the field creation

operator, ψ̂ is the field annihilation operator, and T̂ the time-ordering operator that

will order the field operators depending on the sign of t−t′. The retarded and advanced

components are

Gr(xt, x′t′) = −iθ(t− t′)
〈

Ψ0

∣∣∣{ψ̂(xt), ψ̂†(x′t′)
}∣∣∣Ψ0

〉
(1.77)

Ga(xt, x′t′) = iθ(t′ − t)
〈

Ψ0

∣∣∣{ψ̂(xt), ψ̂†(x′t′)
}∣∣∣Ψ0

〉
(1.78)

where

θ(t− t′) =

{
1 for t > t′

0 for t < t′
(1.79)

and vice versa for θ(t′ − t), and
{
Â, B̂

}
= ÂB̂ + B̂Â is the anticommutator of Â and

B̂.
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Two other types of Green’s function – the lesser and greater Green’s functions – are

also useful quantities insofar as they are directly associated with physical observables

such as the current density. They are defined as

G<(xt, x′t′) = ±i
〈

Ψ0

∣∣∣ψ̂†(x′t′)ψ̂(xt)
∣∣∣Ψ0

〉
(1.80)

G>(xt, x′t′) = −i
〈

Ψ0

∣∣∣ψ̂(xt)ψ̂†(x′t′)
∣∣∣Ψ0

〉
(1.81)

and are related to the retarded and advanced Green’s functions via the relations

Gr(xt, x′t′) = θ(t− t′)
(
G>(xt, x′t′)−G<(xt, x′t′)

)
(1.82)

Ga(xt, x′t′) = −θ(t′ − t)
(
G>(xt, x′t′)−G<(xt, x′t′)

)
. (1.83)

Including spin, the coordinate x = (r, σ) with σ =↑, ↓ the spin coordinate. All

instantaneous properties can then be calculated from the system’s Green’s functions,

including the spin-up, spin-down and total charge densities

nσ(r, t) = −iG<(rσt, rσt) (1.84)

current density

jσ(r, t) = 1
2 limr′→r

(
∇′ −∇

)
G<(rσt, r′σt), (1.85)

total energy

E =
1

2

∫ ∞
−∞

[
∂

∂t
− ih(x)

]
G(xt, xt+ η) dx, (1.86)

and spectral function

A(x, x′, ω) =
1

π

∣∣Im Gr(x, x′, ω)
∣∣ (1.87)

where h(x) is the part of the Hamiltonian that is independent of the charge density,

and G(ω) is the Fourier- transform (in time) of the Green’s function.

The evolution of fully time-dependent Green’s functions was first formulated by

Kadanoff and Baym [67], who derived the time-evolution of the Green’s functions as[
i
∂

∂t
− h(t)

]
Gr,a(t, t′) = δ(t− t′)Î +

∫
C
dt′′ Σr,a(t, t′′)Gr,a(t′′, t′) (1.88)[

i
∂

∂t
− h(t)

]
G>,<(t, t′) =

∫
C
dt′′ Σr(t, t′′)G>,<(t′′, t′) + Σ>,<(t, t′′)Ga(t′′, t′), (1.89)

the so-called Kadanoff-Baym equations. This approach has been used to determine

properties of stable excitations such as optical spectra of semiconductors [68; 69] and
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quantum wells [70].

An alternative formulation for nonequilibrium Green’s functions was proposed inde-

pendently and shortly after the Kadanoff-Baym approach by Keldysh which has enjoyed

considerable success in quantum transport theory. This approach – called the Keldysh

formalism – is the subject of the next section.

1.6.5 The Keldysh formalism

Eq. 1.34 is certainly too convoluted to evaluate directly, replacing as it does one time-

evolution operator with, effectively, several. However Keldysh [71] showed that one

can evaluate the expression if one adopts a novel time line over which one evolves the

system.

Exploiting the fact that, as well as switching on the perturbation at t = −∞, we

may also switch it off again at t =∞, Keldysh proposed a time contour for propagation

in which runs from −∞ to ∞ along a real time axis in one branch before running back

from∞ to −∞ in a parallel branch. This is known as the Keldysh contour and is shown

in Fig. 1.7 below. Further, if the perturbation V̂ (t) = 0 for t < t0 and t > t′1, then one

can perform the evolution between these finite times.

Figure 1.7: The Keldysh contour. Evolution from some initial time t0 to some desired time t1
runs via the upper branch to some final time t′1 before making a U-turn back to t1. If the perturbation
is always on, then t0 = −∞ and t′1 =∞. Image from Rev. Mod. Phys. (1986) [9].

Expectations values at some time t1 may then be written in terms of time-evolution

from some initial, unperturbed state, along the Keldysh time contour to the desired

time. The exact expression for the expectation value depends on whether the desired
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time is on the upper or lower branch of the contour:

〈O〉 =

〈
Ψ0

∣∣∣Û−(−∞,∞)Û+(∞, t)ÔI(t)Û+(t,−∞)
∣∣∣Ψ0

〉
〈

Ψ0

∣∣∣Û−(−∞,∞)Û+(∞, t)Û+(t,−∞)
∣∣∣Ψ0

〉 if t in upper branch (1.90)

〈O〉 =

〈
Ψ0

∣∣∣Û−(−∞, t)ÔI(t)Û−(t,∞)Û+(∞,−∞)
∣∣∣Ψ0

〉
〈

Ψ0

∣∣∣Û−(−∞, t)Û−(t,∞)Û+(∞,−∞)
∣∣∣Ψ0

〉 if t in lower branch (1.91)

where Û+ propagates along the upper branch and Û− propagates along the lower branch.

This may be written more succinctly using the time-ordering operator:

〈O〉 =

〈
Ψ0

∣∣∣T̂c

[
ÔI(t)Ûc(∞,−∞)

]∣∣∣Ψ0

〉
〈

Ψ0

∣∣∣Ûc(∞,−∞)
∣∣∣Ψ0

〉 (1.92)

where Ûc(∞,−∞) = Û−(−∞,∞)Û+(∞,−∞).

From Eq. 1.92, one can calculate the causal Green’s function:

Gc(rt, r′t′) = −i
〈

Ψ0

∣∣∣T̂c

[
Ψ̂(rt)Ψ̂†(r′t′)

]∣∣∣Ψ0

〉
. (1.93)

There are four distinct solutions to this equation corresponding to which of the two

branches each of the two time coordinates is evaluated at.

G++(rt, r′t′) = −i
〈

Ψ0

∣∣∣T̂ [Ψ̂(rt)Ψ̂†(r′t′)
]∣∣∣Ψ0

〉
if t = t+ and t′ = t′+ (1.94)

G+−(rt, r′t′) = i
〈

Ψ0

∣∣∣Ψ̂†(r′t′)Ψ̂(rt)
∣∣∣Ψ0

〉
if t = t+ and t′ = t′− (1.95)

G−+(rt, r′t′) = −i
〈

Ψ0

∣∣∣Ψ̂(rt)Ψ̂†(r′t′)
∣∣∣Ψ0

〉
if t = t− and t′ = t′+ (1.96)

G−−(rt, r′t′) = −i
〈

Ψ0

∣∣∣T̂-

[
Ψ̂(rt)Ψ̂†(r′t′)

]∣∣∣Ψ0

〉
if t = t− and t′ = t′− (1.97)

where T̂− time-orders its arguments in reverse.

The full Green’s function may then be written as

G(rt, r′t′) =

(
G++(rt, r′t′) G+−(rt, r′t′)

G−+(rt, r′t′) G−−(rt, r′t′)

)
. (1.98)

This obeys a Dyson equation of the same form as for the equilibrium Green’s function:

G = g + gΣG (1.99)
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where

Σ =

(
Σ++ Σ+−

Σ−+ Σ−−

)
. (1.100)

In application to electron transport, one scheme that is frequently employed was

introduced by Caroli et al in 1971 [72; 73] in which the leads are initially disconnected

and in equilibrium with the chemical potentials of their respective reservoirs. The

part of the Hamiltonian describing the junction is then turned on adiabatically and a

steady-state is allowed to form, a scheme later extended [74] to include electron-electron

interactions. A second approach was introduced by Cini in 1980 [75] in which the leads

and junction are initially connected but the whole system is in equilibrium, with the

perturbation then taking the form of a time-dependent external potential. It has been

shown [76] that, for noninteracting electrons, both schemes yield the same long-term

steady-state currents.

The current through an interacting scattering region connected to noninteracting

leads has been calculated in terms of the NEGFs [74] and has been shown to exhibit

peaks in the conductance around the Fermi energy due to resonant tunnelling that

do not appear in the Landauer theory but have been established [77] as necessary

to conform to experimental trends in temperature-dependence. More recently [78], it

was seen that the NEGF current can be thought of consisting of a Landauer term

plus additional many-body terms, and that peaks in the conductance are typically

underestimates by the Landauer formula.

The Keldysh formalism has been successfully applied to a broad variety of dynamic

systems, including fully-correlated transport through nanojunctions [79; 80], equilib-

rium and nonequilibrium electronic properties in vibron coupling in molecular junctions

[81; 82], spin transport through quantum dots [83], and phonon transport and scatter-

ing in resonant-tunnelling diodes [84] and carbon nanotubes [85]. Typically, however,

such calculations do not consider full electron-electron interactions in the device, but

rather treat the NEGF scheme as a means of embedding the device to ideal leads by

use of self-energy operators that handle only the device-lead coupling (see e.g. [86])

and not fully interacting many-body effects such as exchange and correlation.

It is only more recently that computational resources have allowed for the calcula-

tion of fully interacting, dynamic systems using the Kadanoff-Baym equations [87; 88],

and such models are typically constrained to be small, finite and approximate.

The treatment of exchange and correlation (XC) effects in both ground-state and

time-dependent systems has had a long and difficult history. It has been established

that the XC energy of a system is uniquely determined by its charge density (see Sec.
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2.1 below), but the precise nature of the relationship is nonanalytic and good approxi-

mations to it in the nonequilibrium regime have proven generally elusive. One could, in

principle, do without the computational complexities of time-dependent Green’s func-

tion approaches altogether, and indeed move beyond the necessary approximations of

NEGF approaches to quantum transport, if one had access to exact or good approx-

imations to the XC energy as a functional of the system density. This constitutes a

major part of the active research within time-dependent density-functional theoretical,

which shall be introduced in the next chapter.

While considerably more tractable than solving the many-body Schrödinger equa-

tion directly for systems of more than a few particles (even with the additional time co-

ordinate), Green’s functions approaches are still much more computationally expensive

than density-functional approaches, both in terms of the numbers of coordinates of the

fundamental variables and the computational effort required to calculate them. How-

ever, for sufficiently small systems or under suitable approximations that preserve the

important physical features of an excited system, Green’s functions and quasiparticle

calculations can provide a useful basis by which to construct and test density-functionals

for DFT and TDDFT calculations. Since this thesis concerns the calculations of exact

density-functional potentials for quantum transport that include such physics, this is

the approach I adopt in this research.
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Chapter 2

Density and current-density

functional theories

2.1 Density-functional theory

Density functional theory (DFT) dates back to the 1920’s albeit without a rigorous

theoretical foundation. Thomas-Fermi (TF) theory [89; 90] neatly sidestepped the

problem of the many-body Schrödinger equation by taking as its basic variable the

electronic density n(r) which is a function of only 3 (rather than 3N as is the case with

the N -body wavefunction) spatial coordinates.

Density-functional theory was given a firm theoretical footing by Hohenberg and

Kohn [91] who demonstrated that, for a given electron-electron interaction strength,

there exists both a one-to-one relationship between the external potential and the charge

density of a ground-state system, and a variational procedure for finding the correct

ground-state charge density for its corresponding potential.

If we consider a system of N electrons in their ground state configuration in an

external scalar potential vext(r), the system is uniquely defined by the many-body

Hamiltonian which, in atomic units, is:

Ĥ =

N∑
i=1

−1

2
∇2
i + vext(ri) +

1

2

N∑
j 6=i

1

|ri − rj |

 . (2.1)

The ground-state energy of this system is

E0 =
〈

Ψ0

∣∣∣Ĥ∣∣∣Ψ0

〉
(2.2)
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where |Ψ0〉 is the ground-state N -particle wavefunction which, for fermionic systems

such as the electronic systems under consideration, is exchange-antisymmetric.

From the Rayleigh-Ritz variational principle [92], it follows that any arbitrary,

exchange-antisymmetric N -electron state |Ψ〉 must obey

E0 ≤
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 (2.3)

For systems of more than a few particles, the number of wavefunction coordinates

makes such a minimisation procedure impractical however.

2.1.1 The Hohenberg-Kohn theorems

The DFT of Hohenberg and Kohn [91] (HK) still involves a minimisation procedure,

but because it takes as its basic variable the charge density rather than the many-body

wavefunction, it is a much smaller procedure than that involved in solving the ground

state of the time-independent many-body Schrödinger equation.

The HK theorems are:

1. For a nondegenerate ground-state system subject only to a time-independent

scalar potential, all physical quantities are unique functionals of the ground-state

charge density.

2. For a given external scalar potential, the ground-state density is that which min-

imises the system energy.

Proving the first of these relies on establishing a unique mapping between the density

and potential. This is shown via unique maps with an intermediate quantity: the

ground-state many-body wavefunction. The HK hypothesis can be summarised as:

v(r) n(r)

|Ψ0〉

A
A−1 B−1

B

HK

(2.4)

Maps A and B follow from the definitions of nondegeneracy and the many-body

charge density. The inverse of map A is proven to within an additive constant in v(r),

since if two potentials v1(r) and v2(r) yield the same ground-state wavefunction |Ψ0〉
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with energies E1 and E2 respectively, it follows that

(E1 − E2) |Ψ0〉 =
(
Ĥv1 − Ĥv2

)
|Ψ0〉 = (v1(r)− v2(r)) |Ψ0〉 (2.5)

and thus that v1(r)− v2(r) equals a constant.

The inverse of map B follows from the Rayleigh-Ritz variational theorem. If two

different ground-state wavefunctions |Ψ1〉 and |Ψ2〉 have the same density n(r), then

the ground-state energies of each obey the inequalities

E1 <
〈

Ψ2

∣∣∣Ĥv1

∣∣∣Ψ2

〉
= E2 +

∫ ∞
−∞

dr n(r) [v1(r)− v2(r)] (2.6)

E1 <
〈

Ψ1

∣∣∣Ĥv2

∣∣∣Ψ1

〉
= E1 +

∫ ∞
−∞

dr n(r) [v2(r)− v1(r)] . (2.7)

Summing over the two inequalities yields

E1 + E2 < E2 + E1 (2.8)

and thus the unique mapping between v(r) and n(r) is proven reductio ad absurdum.

The potential may then be written as:

v(r) = v [n] (r), (2.9)

i.e. as a functional of the density, and thus the Hamiltonian and its ground-state

wavefunction are also uniquely defined by the density:

|Ψ0〉 = |Ψ0〉 [n] . (2.10)

All other physical quantities of interest can be derived from these two functionals, and

thus, in principle, from the charge density. The energy of a system with charge density

n(r) subject to a scalar potential v(r) is

Ev [n] = F [n] +

∫ ∞
−∞

dr n(r)v(r) (2.11)

where F [n] is a universal (insofar as it does not depend on the external potential)

functional of the density:

F [n] =
〈

Ψ0 [n]
∣∣∣T̂ + Û

∣∣∣Ψ0 [n]
〉

(2.12)
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where T̂ and Û are once again the kinetic-energy and electron-electron interaction

operators.

The second theorem of a variational procedure to find the ground-state charge

density n0 of a given external potential vext also follows from Eq. 2.3 and 2.4:∫ ∞
−∞

n(r)vext(r) dr + F [n] ≥
∫ ∞
−∞

n0(r)vext(r) dr + F [n0(r)] , (2.13)

thus the total energy density-functional for a given external potential v has its minimum

when the density is the ground-state density of that potential:

∂E

∂n(r)

∣∣∣∣
n=n0

= 0. (2.14)

The variational procedure above is limited insofar as the n we are varying must

be V -representable (or “interacting V -representable”), i.e. it must be the ground-state

charge density of some external potential v′ext. There are densities for which no such

ground-state wavefunction exists, for instance certain excited atomic state densities

having nodes, and densities of statistical ensembles encountered in G-fold degenerate

systems with density matrices

ρ(r, r′) =
G∑
i

pi |Ψi〉 〈Ψi| (2.15)

where pi is the statistical likelihood of measuring each state in the ensemble such that∑
i pi = 1, and with ensemble densities

ne(r) = ρ(r, r). (2.16)

The variational theorem was therefore extended by Levy [93] and Lieb [94] to accept

searches over all wavefunctions and ensembles having charge density n. This variational

procedure is then over

E [n] = inf
Ψ→n

〈
Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉+

∫ ∞
−∞

dr n(r)v(r), (2.17)

where Ψ → n indicates that the infimum is to be taken over all N -particle states

having density n. (For all intents and purposes, the infimum is the global minimum.

For infinite sets, it does not generally hold that a minimum exists. The infimum of〈
Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉 is the largest number inside or outside the set of integrals that is less
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than or equal to the all of the values in the set. Since the ground-state energy is given

by one of the integrals in the set, the infimum is the minimum [95]. However, it does

not follow that there are not other minima satisfying ∂nE |n0 = 0.)

While the procedure is simple in principle, in practice the universal functional F [n]

is unknown and must be approximated. Finding good approximations to F , both in

this density-functional theory and its extensions, has formed a large part of the research

into its applications and efficacy [96]. The next section will look at the most popular

scheme in which to make such approximations.

2.1.2 The Kohn-Sham formulation of DFT

While the HK proofs establish a unique relationship between the external potential

and its N -electron ground-state density, and allows us in principle to find the correct

ground-state density for a given potential for a given approximate universal functional,

it does not offer any guidance on how one might construct the approximate functional,

without which the variational procedure is effectively useless.

The Kohn-Sham (KS) formulation of DFT [97] resolves this beautifully. It relies

in part on the HK theorem being insensitive to the Coulomb strength of the true

electron-electron interaction that is within the universal functional F [n]. While the

unique relationship between external potential and charge density holds only for a

given Coulomb strength, a choice of different strength simply yields a different universal

functional and so a different potential.

Thus KS realised that one may construct an auxiliary system of noninteracting

electrons subject to an effective external potential – the KS potential – with the same

charge density as the interacting system it represents. Since the universal functional is a

unique functional only of the density, it may be calculated as the sum of single-particle

densities of the noninteracting system.

First, the universal functional is decomposed into three separate components

F [n] = TS [n] + EH [n] + Exc [n] (2.18)

where

EH [n] = 1
2

∫ ∞
−∞

dr

∫ ∞
−∞

dr′
n(r)n(r′)

|r− r′|
(2.19)

is the classical electron-electron interaction energy (the Hartree energy), Exc is the

exchange-correlation (XC) energy, and TS is the noninteracting kinetic energy of an
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auxiliary system of noninteracting electrons having ground-state density

n(r) =

N∑
k=1

|ψk|2 (2.20)

where {ψk} are the solutions of the single-particle time-independent wave equation

Ĥψk =
(
T̂ + vext(r) + vH [n] (r) + vxc [n] (r)

)
ψk = εkψk (2.21)

where vxc[n](r) = δExc[n]/δn(r) by definition.

Equations (2.20) and (2.21) are the Kohn-Sham equations, whose self-consistent

solution for a known external potential vext(r) and an appropriate approximate XC

functional vxc [n] (r) is equivalent to the minimisation of the total energy of the inter-

acting system. The XC potential is, like the universal functional, generally unknown.

The usual approximations employed for ground-state electronic structure calculations

are local or semilocal functionals of the density, such as the local density approximation

(LDA)

ELDA
xc [n] =

∫ ∞
−∞

dr n(r)εxc (n(r)) (2.22)

which takes the potential at position r to be that of a ground-state homogeneous

electron gas whose density is everywhere equal to n(r) [98], or the generalised gradient

approximation (GGA) which incorporates the spatial variation of the charge density

via an explicit functional dependence of the density gradient [99; 100; 101; 102].

Generally, the XC potential is not a local or semilocal functional of the ground-state

density, except in the limit of the density gradient going to zero, i.e. the homogeneous

electron gas, and for high densities at short wavelengths [103]. Despite the seeming

crudeness of local and semilocal functional approximations, density-functional theory

in the Kohn-Sham scheme has enjoyed a great deal of success in the calculation of

ground-state energy and electronic structure calculations [96].

However, the theory is concerned with nondegenerate ground states subject only to

a scalar potential, and such systems are not generally current-carrying. To be applied

to quantum transport, a density-functional theory must account for the current in

steady-state and nonequilibrium systems. Density-functional theory for ground-state

current-carrying systems will be studied in Sec. 2.3 and Chapter 3. For nonequilibrium

systems, the current density can be decomposed into two parts: a longitudinal part
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and a transverse part whose sum is the total physical current:

j(r, t) = jL(r, t) + jT(r, t), (2.23)

with each part defined via the identities

∇× jL(r, t) = 0 (2.24)

∇ · jT(r, t) = 0. (2.25)

From the continuity equation

∂

∂t
n(r, t) +∇ · j(r, t), (2.26)

we see that the time-dependent density fully determines the longitudinal current for

given boundary conditions. An extension of DFT to the time-dependent regime there-

fore would provide a theory that explicitly accounts for the current, so long as the

current is longitudinal. In Sec. 2.2 we shall see that such an extension exists and is

called time-dependent density-functional theory. There are also multiple extensions of

density-functional theory to ground-state systems subject to both external scalar and

vector potentials, which will be discussed in depth in Sec. 2.3 and Chapter 3.

2.2 Time-dependent density-functional theory

2.2.1 Uniqueness in the time-dependent regime

The success of density functional theory in the ground state made it appealing to extend

to excited systems and, in particular, to time-dependent systems. Clearly the proofs

of the Hohenberg-Kohn theorems have no application here since for any given excited

system |Ψ〉 time-evolving under an external potential v(r, t) at time t, one can generally

construct an alternative system at that time that has a lower energy, most especially

the ground-state of v at t.

But in 1984, Runge and Gross (RG) [104] detailed an equivalent existence theorem

for time-dependent systems described by the N -body Schrödinger equation:

i
∂

∂t
Ψ(r1, r2, ..., rN , t) =

N∑
k=1

−1

2
∇2
k + vext(rk) +

1

2

∑
j 6=k

1

|rk − rj |

Ψ(r1, r2, ..., rN , t).

(2.27)
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If the system begins in some initial state |Φ0〉 (which, if a ground state, can be found

by via the time-independent Schrödinger equation for v(t = 0)), then the Schrödinger

equation uniquely defines a map – map A – from the time-dependent external poten-

tial of the system vext(r, t) and the time-dependent many-body wavefunction |Ψ(t)〉.
Likewise for a given time-dependent state, the instantaneous time-dependent charge

density is uniquely defined (map B):

n(r, t) = 〈Ψ |n̂(r)|Ψ〉 |t (2.28)

where

n̂(r) =

N∑
i=1

δ(r− ri) (2.29)

is the number density operator.

The Runge-Gross theorem states that maps A and B are invertible. They hypoth-

esise that

v(r, t) (n(r, t), |Φ0〉)

|Ψ(r, t)〉

A
A−1 B−1

B

RG

(2.30)

and demonstrated that this was true so long as the system under study is finite and

external potential is Taylor-expandable in time its initial time. Within these restric-

tions, the initial state and time-dependent density were shown reductio ad absurdum

to uniquely define the external electric field Eext(r, t) = −∇vext(r, t), and thus the

external scalar potential up to a time-dependent constant which affects only on the

time-dependent phase of the wavefunction and does affect any physical quantity.

The necessity that the external potential be Taylor-expandable arises due to the

fact that one could consider two external potentials v1(r, t) and v2(r, t) which are dis-

tinct and nonetheless equal for some unlimited duration. Likewise, their first time-

derivatives, second time-derivatives, and so on may also be identical. However, so long

as the two potentials do diverge at some time, the Taylor expansions of each must

contain terms that differ at some order of the expansion. This is a vital component of

the RG uniqueness proof.

Within the linear response regime, where the rate of change of the system is

small, proof of uniqueness has since been extended to finite intervals of time-evolution

under small but arbitrary perturbations [105], and to potentials that are Laplace-
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transformable in time when the initial state of the system is the ground state [106].

Maitra, Todorov, Woodward and Burke [107] have demonstrated a proof of uniqueness

for non-Taylor-expandable potentials and densities via nonlinear formulations of the

Schrödinger equation consisting of the coupled equations:

i
∂

∂t
|Ψ(t)〉 = Ĥv(t) |Ψ(t)〉 (2.31)

∇ · [n(r, t)∇v(r, t)] =
∂2

∂t2
n(r, t) +∇ · a [Ψ(t)] (2.32)

where a [Ψ(t)] = −i
〈

Ψ(t)
∣∣∣[̂jp, Ĥ0

]∣∣∣Ψ(t)
〉

is the stress-momentum tensor functional,

Ĥ0 = T̂ + Û , and one solves Eq. 2.32 iteratively for v(r, t) for a given time-dependent

charge density.

Ruggenthaler and van Leeuwen [108] replaced the Taylor expansion with an it-

erative procedure by which one approaches the unique potential for a given time-

dependent density and initial state. Nonlinear Schrödinger equation approaches to both

the Taylor-expandability and noninteracting-V -representability problems have been as-

sessed for both TDDFT and time-dependent current-density-functional theory (see Sec.

2.2.5).

No general uniqueness proof exists that does not replace the condition of Taylor-

expandability with another limitation; however, taken as a whole, the uniqueness proofs

established cover most physical situations of interest.

2.2.2 Variational theorem and the action functional

Since there exists no variational procedure for excited systems to find the correct time-

dependent charge density by minimisation of the energy, an alternative quantity is

required: the quantum-mechanical action. This is defined for an interval of time t2− t1
as:

Q(t1, t2) =

∫ t2

t1

dt

〈
Ψ(t)

∣∣∣∣i ∂∂t − Ĥ(t)

∣∣∣∣Ψ(t)

〉
(2.33)

and has a stationary point when |Ψ(t)〉 is precisely the wavefunction being time-evolved

from an initial state |Φ0〉 with the Hamiltonian Ĥ. To be able to find the correct time-

dependent charge density, then, one must be able to write the action as a functional of

the density such that its stationary points may be found by varying that density:

δ

δn′
Q
[
n′
]∣∣∣∣
n′=n

= 0. (2.34)
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At first glance, it would seem, since the density only defines the wavefunction up to

a time-dependent phase factor, there should be an infinite number of possible actions

all corresponding to the same density. However, this phase factor is caused by a time-

dependent constant in the scalar potential, and these two quantities exactly cancel. If

we define v0(r, t) such that vext(r, t) = v0(r, t) + c(t), then:

Q(t1, t2) =

∫ t2

t1

dt

〈
e−ic(t)Ψ(t)

∣∣∣∣i ∂∂t − T̂ − Û − vext(r, t)

∣∣∣∣ e−ic(t)Ψ(t)

〉
=

∫ t2

t1

dt

〈
Ψ(t)

∣∣∣∣i ∂∂t − T̂ − Û − v0(r, t)− c(t) + c(t)

∣∣∣∣Ψ(t)

〉
. (2.35)

Thus Q(t1, t2) is a unique functional of the density and, since only the term involving

the potential depends on the nature of the system, the remainder forms part of a

universal action functional:

Q [n] = B [n]−
∫ t2

t1

dt

∫ ∞
−∞

dr n(r, t)v(r, t). (2.36)

A trial time-dependent density can then be varied until equation 2.34 holds at which

point the exact density has been found.

2.2.3 TDDFT in the Kohn-Sham scheme

The Kohn-Sham scheme can be extended to the time-dependent regime so long as there

exists a mapping from interacting densities n(r, t) to KS potentials vKS(r, t) for some

given initial many-body state |Ψ(t = 0)〉. The proof of the existence of this mapping was

provided by van Leeuwen in 1999 [109] for Taylor-expandable potentials that vanish

at infinity, while the existence proof for broader classes of potentials was provided

alongside the proof of uniqueness in 2011 [108]. To this extent, the Kohn-Sham scheme

as applied to time-dependent densities has a much stronger theoretical foundation than

for the ground-state systems originally considered by KS for which there is no general

proof of noninteracting-V -representability.

The conditions on the initial states of the interacting and noninteracting systems

are reasonable. First, they must yield the same initial charge density:

〈Φ0 |n̂(r)|Φ0〉 = 〈Ψ0 |n̂(r)|Ψ0〉 = n(r, 0), (2.37)

where |Ψ0〉 is the initial interacting state and |Φ0〉 the initial noninteracting state. That

they must be the same is already necessitated by the fact that the two share the same
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time-dependent density at all times.

Second, the time-derivatives of the two initial densities must be the same which,

from the continuity equation, yields〈
Φ0

∣∣∣∇ · ĵ(r)
∣∣∣Φ0

〉
=
〈

Ψ0

∣∣∣∇ · ĵ(r)
∣∣∣Ψ0

〉
= ∇ · j(r, 0). (2.38)

This implies that the longitudinal parts of the current densities of the two representa-

tions must also be the same.

In the case of Taylor-expandable external potentials, van Leeuwen showed that one

can evaluate the difference between the two external potentials and the differences

between their time-derivatives for the two interaction strengths at the initial time t0

and construct the time-dependent noninteracting potential from its Taylor series.

The universal action functional can then be expressed in terms of single-particle

wavefunctions as:

B [n] =

∫ t1

t0

dt

〈
Φ(t)

∣∣∣∣i ∂∂t − T̂S − vH(r, t)− vxc(r, t)

∣∣∣∣Φ(t)

〉
(2.39)

where

vxc(r, t) =
∂Qxc [n]

∂n(r, t′)

∣∣∣∣
n=n(r,t)

(2.40)

is now defined to be the time-dependent exchange-correlation potential.

The time-dependent XC potential has been shown to have a nonlocal functional

dependence on the charge density in both space and time, not least because of its

intrinsic and important dependence on the initial state [110] and, as such, it is a much

more difficult quantity to approximate than the XC potential functional of ground-state

DFT. The simplest approximation is the adiabatic approximation:

vadiabatic
xc [n] (r, t) = vxc [n] (r)|n=n(r,t) (2.41)

where vxc [n] (r) is the XC potential of the ground-state system having charge density

n(r) = n(r, t). Since even the ground-state potential is not generally known, it must be

approximated. Just as in ground-state DFT the most frequently used approximation

is the local density approximation, as is the case here. The resulting approximation for

the time-dependent XC potential:

vALDA
xc [n] (r, t) = vLDA

xc [n(r, t)] (2.42)

41



is the adiabatic local density approximation (ALDA). As can be seen from equation

2.42, the ALDA has a local functional dependence in time as well as in space on the

charge density, and so does not incorporate any memory effects in the exact time-

dependent XC potential such as initial state dependence.

Likewise one can construct adiabatic GGA and adiabatic meta-GGA approxima-

tions [111] which re-introduce some spatial nonlocality, the latter with some success, and

adiabatic exact-exchange potentials (or “optimised effective potentials” [112]). How-

ever, all of these approximations yield XC functionals that are local in time.

2.2.4 Density-functional theory for quantum transport

The application of density functional theory for quantum transport simulations was

pioneered by Hirose & Tsukada in 1994 for tunnelling junctions [113] and by Lang in

1995 for nanojunctions [114]. Lang used the formalism to calculate the single-particle

wavefunctions of noninteracting leads subject to a potential bias. These wavefunctions

and the Green’s function for the scattering device were then used to calculate the

single-particle wavefunction for the whole system as the solution of, in the Lippmann-

Schwinger [115] form,

ψ(r) = ψleads(r) +

∫ ∞
−∞

dr′
∫ ∞
−∞

dr′′ Gleads(r, r′)v(r′, r′′)ψ(r′′), (2.43)

where

v(r, r′) = vps(r, r
′)+δ(r−r′)

{
vH

[
n− nleads

]
(r) + vxc [n] (r)− vxc

[
nleads

]
(r)
}

(2.44)

and vps(r, r
′) is the sum of nonlocal pseudopotentials representing the electric potential

of the underlying ions or atomic cores.

Typical approximations such as LDA and GGA (see Sec. 2.1) are continuous in

n(r) and ∇n(r), but we have seen in Fig. 1.5, the true XC energy has a discontinuous

dependence on the local electron number (see Fig. 2.1). The necessity of incorporating

derivative discontinuities is very apparent in the case of the Coulomb blockade, and

it has been noted in the past by Toher et al [10] that the usual approximations for

exchange and correlation cannot be applied to quantum transport. One consequence of

the lack of a derivative continuity in the XC potential is that a Kohn-Sham description

of even a ground-state system does not predict the correct band structure of the material

it represents, for instance yielding metallic band structures for semiconductor densities

[116]. Toher et al proposed a scheme that reintroduced an approximation to the correct
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derivative discontinuity by removing the self-interaction introduced by the Hartree

potential which, for each KS electron, is

vSIC,i(r) = −1

2

∫ ∞
−∞

dr′
ni(r

′)

|r− r′|
. (2.45)

Figure 2.1: The derivative discontinuity: The dependence of the energy of a state, such as
the single-level transport region shown here, has a step-like dependence on the number of electrons in
that state. Usual DFT approximations such as the LDA have a continuous dependence on the electron
density. [10].

Derivative discontinuities play a major role in open quantum systems such as those

studied in quantum transport. Since the particle number in a device is allowed to

vary with time, the total electron number passes through an integer continuously. The

need to deal with fractional particle numbers in density-functional theory was treated

by Perdew et al [117]. They found that the dependence of the total energy E on

the electron number N is linear in N , but goes through a discontinuous change in

the coefficient of proportionality whenever N passes through an integer. Likewise for

applications of density-functional theory they argued that the XC potential must be

dependent on the energy of the single-particle state it is acting on [118].

Another difficulty of applying density-functional theory to quantum transport prob-

lems is that of dealing with the infinite quantum systems required to maintain a cur-

rent (or else the even less appealing modelling of infinite electron reservoirs or a fully

quantum-mechanical description of a battery). How one deals with this problem comes

down to a choice of the boundary conditions of the system being simulated.

The application of time-dependent density functional theory to nonequilibrium

quantum transport was performed by Kurth et al in 2005 [119]. They took as their

point of departure the NEGF scheme of Cini [75] and so, like in the Cini approach,
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one begins for t < 0 with the system in equilibrium and carrying no current, i.e. in its

ground state which is amenable to a density-functional description as demonstrated by

the Hohenberg-Kohn theorem.

This provides an unambiguous initial state for a TDDFT calculation, wherein it

has been shown that the time-dependent potential is a functional of both the time-

dependent charge density and the initial state. For t ≥ 0, the system is driven out of

equilibrium by the turning on of an externally-applied electric potential bias.

Generally, since the system being described is infinite, the spatial extent of the

electron wavefunctions and the Hamiltonian governing them will also be infinite. An

approach that had been commonly employed for NEGF treatments of steady-state

transport (e.g. [120]) was to partition the system into left- and right-lead components

and the central scattering region, which includes the device and the portions of the

leads that couple to it. Rather than attempt to calculate the wavefunction for the

entire system, one instead calculates a finite wavefunction equal to the exact within the

region of interest: the so-called transparent boundary condition [121].

The Hamiltonian and electron wavefunctions, partitioned into the left-lead, central

region and right-lead components, with the two lead components noninteracting, yields

the time-dependent Schrödinger equation:

i
∂

∂t

 ψL

ψC

ψR

 =

 ĤLL + ÛL(t) ĤLC 0

ĤCL ĤCC(t) ĤCR

0 ĤRC ĤRR + ÛR(t)


 ψL

ψC

ψR

 , (2.46)

where UL(t)−UR(t) is the time-dependent potential drop across the central region that

perturbs the system.

The components of the Hamiltonian are generally dependent on position as well as

time. Because the KS potential is local in space, Ûα can depend on only one spatial

coordinate. Further, the potentials of the left and right leads may differ, but for metallic

leads the potential is constant within each one, thus

Ûα(r, t) = Uα(t)1α (2.47)

where 1L = 1 for coordinates in the left lead and 0 otherwise, and 1R = 1 for coordinates

in the right lead and 0 otherwise.

From an initial state determined in DFT, the time-evolution of the KS wavefunction
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in the central region of the wire then yields

ψC(r, t) = Ûeff(t, t0)ψC(r, t0) + S +M, (2.48)

where S is a source term describing the injection of electrons into the central region

and M is a memory term that must be calculated recursively. The propagator Ûeff is

that for an effective central Hamiltonian that incorporates the time-varying left and

right lead wave functions and the coupling thereto. Generally the on-site Hamiltonian

ĤCC(t) depends on the KS potential that yields ψC(r, t) which itself depends on the

effective Hamiltonian, thus ĤCC(t) too must be calculated iteratively.

2.2.5 Time-dependent current density functional theory

Since the current density is proportional to the gradient of the wavefunction, a density-

functional theory based on the current density instead of or as well as the charge density

would introduce a more spatially nonlocal dependence on the charge density itself. In

the time-dependent regime, the current density also encodes temporally nonlocal infor-

mation about the charge density via the continuity equation. Since adiabatic approxi-

mations to the XC potential are blind to the time-evolution of the charge density, there

is a strong case for a time-dependent current-density functional theory. An illustration

of how important such a theory might be is the slab of electric charge moving back and

forth in a confining potential referred to in the Introduction.

Figure 2.2: Any local or semilocal functional of the time-dependent charge density such as the ALDA
or adiabatic GGA will be unable to see the direction of the current in the centre of the slab. A practical
functional of the charge density must therefore be very long-ranged. However, a local functional of the
current density will capture the correct physics. (Illustration from [11].)
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In the centre of the moving slab, the charge density is time-independent: ∂n/∂t = 0.

However, the slab as a whole is moving with time with j 6= 0. Taking the current density

as well as or instead of the charge density will make more information accessible to local

and adiabatic functional approximations.

Time-dependent current-density functional theory (TDCDFT) was originally for-

mulated by Ghosh and Dhara in 1988 [122]. The hypothesis they prove is that there

exists a one-to-one relationship between the time-dependent (physical) current density

and the time-dependent external scalar and vector potentials v(r, t) and A(r, t) for a

given initial state |Φ0〉 of the system:

(v(t),A(t)) (j(t), |Φ0〉)

|Ψ(t)〉

A
A−1 B−1

B

RG

(2.49)

The choice of the physical current as a basic variable was a logical one: first, because

the uniqueness relation between external scalar potentials and current densities was

already established in part by Runge and Gross in their uniqueness proof for TDDFT;

second, because the current density contains information not available to the time-

dependent charge density (namely the transverse part of the time-dependent current);

and third, because it allowed for the extension of TDDFT to time-dependent systems

subject to both electric and magnetic fields via scalar and vector potentials.

The action functional for a system evolved from a given initial state by time-

dependent external scalar and vector potentials may be written as

Q [j] = B [j] +

∫ t2

t1

dt

∫ ∞
−∞

dr
{
n(r, t)

(
v(r, t)− 1

2A
2(r, t)

)
+ A(r, t) · j(r, t)

}
(2.50)

where n(r, t) is accessible via the continuity equation from j(r, t) and the initial state,

and B [j] is the same universal functional as in Eq. 2.36, now uniquely identified by the

current. For a given set of external potentials (v(r, t),A(r, t)), this allows one, with a

suitable approximation for B, to find the stationary point of the action, i.e. δQ/δj = 0,
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by varying j. Defining instead the action functional as

Q [n, j] = B [j] +

∫ t2

t1

dt

∫ ∞
−∞

dr
{
n(r, t)

(
v(r, t)− 1

2A
2(r, t)

)
+ A(r, t) · j(r, t)

}
,

(2.51)

one can vary n(r, t) and j(r, t) independently, loosening the constraints on the choice

of current density which may then be reintroduced via a constrained search.

Ghosh and Dhara further derived a unique equation of motion for the current density

∂

∂t
j(r, t) = −i

〈
Ψ(t)

∣∣∣[̂jp, Ĥ0

]∣∣∣Ψ(t)
〉

+ E(r, t)n(r, t) + B(r, t)× j(r, t) (2.52)

where the first term on the RHS is the stress-momentum tensor, Ĥ0 = T̂ + Û , and

E(r, t) and B(r, t) are the external electric and magnetic fields, related to the external

scalar and vector potentials as

E(r, t) = −∇v(r, t)− ∂

∂t
A(r, t) (2.53)

B(r, t) = ∇×A(r, t). (2.54)

That the above uniqueness and minimisation theorems hold true regardless of the

interaction strength of the many-body system allows us to consider the construction

of noninteracting approximations to the universal action functional, so long as time-

dependent currents are generally noninteracting-V -representable.

2.2.6 TDCDFT in the Kohn-Sham scheme

The universal action functional B [j] is unknown without access to the many-body wave-

function. As with earlier versions of DFT, then, one still has to calculate the wave-

function explicitly in order to exploit the unique relation between the time-dependent

current density and the external potentials and, also as before, one may do so in a

system of noninteracting Kohn-Sham particles.

As van Leeuwen achieved within the TDDFT framework, Vignale [123] estab-

lished that, under similar mild restrictions of the densities and potentials noted by

van Leeuwen for TDDFT, the time-dependent current density j(r, t) of an interacting

system subject to external potentials (v(r, t),A(r, t)) could always be reproduced by

a noninteracting Kohn-Sham system subject to a different set of external potentials

(vKS(r, t),AKS(r, t)).
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The self-consistent KS equations for a N -electron system are:

i
∂

∂t
φk(r, t) =

{
1

2
[−i∇+ AKS(r, t)]2 + vKS(r, t)

}
φk(r, t) (2.55)

j(r, t) =

N∑
k=1

1

2i
(φ∗k(r, t)∇φk(r, t)− φk(r, t)∇φ∗k(r, t)) + AKS(r, t)n(r, t)

(2.56)

where φk(r, t) is the single-particle wavefunction of the kth electron in the KS system.

The KS scalar and vector potentials are the effective external potentials which repro-

duce the N -electron charge and current density of a real interacting system subject

to physical external potentials vext(r, t) and A(r, t). The forms of the effective KS

potentials are determined by Ghosh and Dhara to be:

AKS(r, t) = Aext(r, t) + ABS(r, t) +
δExc

δj
, (2.57)

vKS(r, t) = vext(r, t) + vH(r, t) +
δExc

δn
+

1

2

(
A2

KS(r, t)−A2
ext(r, t)

)
. (2.58)

The term vH(r, t) is the time-dependent Hartree potential:

vH(r, t) =

∫ ∞
−∞

dr′
n(r′, t)

|r− r′|
, (2.59)

and δExc/δA and δExc/δn define the exchange-correlation vector and scalar potentials

respectively. The new term, ABS(r, t), is the Biot-Savart vector potential

ABS(r, t) =

∫ ∞
−∞

dr′
j(r′, t)

|r− r′|
. (2.60)

associated to the Biot-Savart magnetic field, and is usually included within the XC vec-

tor potential as, for instance, by Vignale and Rasolt [124] in time-independent current-

density functional theory (CDFT). The explicit introduction of it by Ghosh and Dhara

is by way of analogy with the explicit introduction of the Hartree potential: the clas-

sical electric potential due to a charge density n(r). In this thesis, the convention of

including the Biot-Savart vector potential in the definition of the XC vector potential

a la Vignale and Kohn [125] will be adopted.

As in TDDFT, the exchange-correlation scalar and vector potentials are unknown

and must be approximated. The most widely used approximation for the scalar po-

tentials remains the adiabatic LDA. For the vector potential, the most widely-used
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approximation is the Vignale-Kohn functional [125]. The general expression for the

vector potential is long and complex, and it will not be employed in this research, but

for systems where the velocity field u(r, t) = j(r, t)/n(r, t) is a constant in space, the

Fourier transform (in time) of the VK vector potential simplifies to:

A(r, ω) = − 1

ω2
∇
[
fhxc,L(r, r′, ω)∇ · j(r, ω)− δfhxc,L(r, r′, ω)∇n(r, ω) · u(r, ω)

]
, (2.61)

where fhxc is the exchange-correlation kernel for the homogeneous electron gas, fhxc,L is

its longitudinal part, and

δfhxc,L(ω) = fhxc,L(ω)− fhxc,L(0). (2.62)

The general form of the XC kernel is

fxc(r, r
′, t, t′) =

δvxc(r, t)

δn(r′, t′)
. (2.63)

The reliance on this kernel limits the VK functional to systems that are slowly-varying

in time, while the use of the kernel of the homogeneous gas limits it to systems that are

slowly-varying in space, but it nonetheless introduces effects that have some nonadia-

batic dependence on the charge density and that are completely absent in the ALDA.

As per the treatment of TDDFT uniqueness by Maitra et al, an alternative formula-

tion of TDCDFT yields the external potential functionals from a nonlinear Schrödinger

equation [126]. Noting first that the time-dependent scalar potential may be imple-

mented instead as a time-dependent vector potential via the gauge transformation

v(r, t)→ v(r, t)− ∂

∂t
λ(r, t) (2.64)

A(r, t)→ A(r, t) +∇λ(r, t), (2.65)

with ∂tλ(r, t) = v(r, t), the vector potential of the system is then

A(r, t) =
1

n(r, t)

(
j(r, t)−

〈
Ψ(t)

∣∣∣̂jp(r)
∣∣∣Ψ(t)

〉)
. (2.66)

The nonlinear Schrödinger equation is then constructed by inserting Eq. 2.66 into the

Schrödinger equation

i
∂

∂t
Ψ(t) = 1

2

∑
k

[p̂k + A(rk, t)]
2 Ψ(t). (2.67)
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As in the special case of A(r, t) = 0 for TDDFT, no general proof of uniqueness for

arbitrary external potentials yet exists for TDCDFT. However, the various treatments

of potentials beyond the Taylor-expandable cover most physical situations of interest.

2.3 Current-density functional theory

Density-functional theory as formulated by Hohenberg and Kohn, and developed by

Kohn and Sham, applies only to ground-state systems free from external magnetic

fields. The inclusion of such fields introduces additional terms in the total energy of

the system due to the ways the magnetic field can couple to the charge density, any

ground-state current density, and the net spin density of the system.

The Hamiltonian for such systems is the Pauli Hamiltonian

Ĥ =
1

2
[σ̂ · (p̂ + A(r))]2 + v(r) (2.68)

which, in the absence of spin-orbit coupling, may be rewritten as

Ĥ =
1

2
[p + A(r)]2 + v(r)− µBσ̂ ·B(r) (2.69)

where µB is the Bohr magneton (which is equal to 1/2 is atomic units), σ̂ = (σx, σy, σz)

is the spin vector, the components of which are the two-by-two Pauli matrices, and

B(r) = ∇×A(r) (2.70)

is the corresponding external magnetic field. The first two terms of Eq. 2.69 is the

Schrödinger equation for a spinless massive charged particle in external electromagnetic

fields, while the final term describes the coupling of the external magnetic field to the

spin and is thus known as the Stern-Gerlach term.

The total energy of the ground-state system is then given by

E =
〈

Ψ0

∣∣∣Ĥ∣∣∣Ψ0

〉
=
〈

Ψ0

∣∣∣T̂ + Û
∣∣∣Ψ0

〉
+

∫ ∞
−∞

dr jp(r) ·A(r) +

∫ ∞
−∞

dr n(r)

(
v(r) +

1

2
A2(r)

)
−
∫ ∞
−∞

dr m(r) ·B(r) (2.71)

=
〈

Ψ0

∣∣∣T̂ + Û
∣∣∣Ψ0

〉
+

∫ ∞
−∞

dr j(r) ·A(r) +

∫ ∞
−∞

dr n(r)

(
v(r)− 1

2
A2(r)

)
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where j is the physical current density:

j(r) = jp(r) + jd(r) + jm(r) (2.72)

comprising the paramagnetic term jp, the diamagnetic term jd and the magnetisation

term jm:

jp(r) =
1

2i

〈
Ψ0

∣∣∣∣∣
N∑
k=1

∇kδ(rk − r) + δ(rk − r)∇k

∣∣∣∣∣Ψ0

〉
jd(r) = A(r)n(r)

jm(r) = ∇×m(r), (2.73)

with

m(r) = 〈Ψ0 |m̂(r)|Ψ0〉 , (2.74)

where

m̂(r) = −µB

N∑
i=1

σiδ(r− ri) (2.75)

is the magnetisation density operator and µB = 1
2 is the Bohr magneton in atomic

units.

By extending DFT to include magnetic fields as well as electric fields, one can no

longer consider the charge density alone as a basic variable, since the energy functional

of any current-carrying or magnetised system will contain couplings between the mag-

netic field and the current density and magnetisation which therefore must be included

as basic variables.

2.3.1 The paramagnetic current as basic variable

The first proposal for a theoretical basis of a current-density functional theory for

systems subject to both external scalar and vector potentials was by Vignale and Rasolt

(VR) in 1988 [124], which, incorporating spin, consisted of eight basic potentials and

eight basic densities.
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The hypothesis they sought to prove was:

(v↑,↓,A↑,↓) (n↑,↓, jp,↑,↓)

(|Φ0〉↑,↓)

A
A−1 B−1

B

HK

(2.76)

where the ↑ and ↓ indices denote the spin-up and spin-down elements of the associated

quantity. The external scalar potential is given by

v(r) = 1
2 [v↑(r) + v↓(r)] , (2.77)

the magnetic field by

B(r) = 1
2 [v↑(r)− v↓(r)] , (2.78)

and the external vector potential by

A(r) = A↑(r) = A↓(r). (2.79)

The total charge density is the sum of its spin-dependent components:

n(r) = n↑(r) + n↓(r) (2.80)

while the magnetisation is the difference:

m(r) = n↑(r)− n↓(r). (2.81)

Since the spin-up, -down and total vector potentials are identical, each of the spin-

components of the paramagnetic current density couple to their corresponding vector

potentials in the same way.

The uniqueness theorem Eq. 2.76 appears to hold because of the assumption that

two sets of external potentials (v1,A1) and (v2,A2) will necessarily yield different

ground-state wavefunctions |Φ1〉 and |Φ2〉. However, as discovered by Capelle and

Vignale in 2002 [127], this isn’t necessarily the case.

Capelle and Vignale provide a counterexample in which a system of N electrons is

subject to an external, uniform magnetic field B = Bêz and a scalar potential v(r), a

version of which [95] will be detailed next. For the case where the Stern-Gerlach term
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vanishes, the Hamiltonian may be written as:

Ĥ = T̂ + Û +

∫ ∞
−∞

dr

{
n̂(r)

(
v(r) +

1

2
A2(r)

)
+ ĵp(r) ·A(r)

}
(2.82)

where n̂ is the number density operator as before,

ĵp = −1
2 i

N∑
i=1

∇iδ(r− ri) + δ(3)(r− ri)∇i (2.83)

is the paramagnetic current density operator, and B = ∇×A as always. The ground

state of this Hamiltonian is |Φ0〉.
They consider next a second N -electron system subject to a uniform magnetic field

B′(r) = (B + ∆B)êz and scalar potential v′(r), and ask: is it possible to choose a v′

such that the ground state solution of the corresponding Hamiltonian Ĥ ′ = Ĥ + ∆Ĥ

is still |Φ0〉? The answer is yes, so long as ∆Ĥ commutes with Ĥ such that:

∆Ĥ |Φ0〉 = ∆E0 |Φ0〉 , (2.84)

where ∆E0 is the difference in ground-state energies of Ĥ and Ĥ + ∆Ĥ.

One example of an operator that commutes with the Hamiltonian is the angular

momentum operator:

L̂z = m

∫ ∞
−∞

dr (êz × r) · ĵp(r). (2.85)

Vector and scalar potentials in the second system which differ from those in the first

by:

∆A′(r) =
1

2
∆B (êz × r) (2.86)

∆v′(r) = −1

2

(
(∆A(r))2 + 2∆A(r) ·A(r)

)
(2.87)

will then have |Φ0〉 as an eigenstate. If we call |Φ′0〉 and |Φ′1〉 the ground and first

excited states of Ĥ ′ respectively, then so long as:

∆E0 �
〈

Φ′1

∣∣∣Ĥ ′∣∣∣Φ′1〉− 〈Φ0

∣∣∣Ĥ∣∣∣Φ0

〉
, (2.88)

this eigenstate must also be the ground-state.

This counterexample to the bijectivity of external potentials and charge and param-

agnetic current densities applies to both interacting and Kohn-Sham systems, therefore
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even if the external potentials of a real system are uniquely defined by its densities, it

does not follow that the auxiliary Kohn-Sham system used to calculate the universal

functional in the minimisation procedure is uniquely determined.

This exemplifies the problem in the choice of basic variables for CDFT. The charge

and paramagnetic current densities do not contain all of the physical information about

a system subject to external electromagnetic fields, thus we cannot expect that all

combinations of those fields will yield unique densities. Another issue is that the para-

magnetic current density isn’t a measurable quantity in the regime in which CDFT

applies, since the presence of the nonzero vector potential A(r) will necessarily yield a

diamagnetic current density jd(r) = A(r)n(r), and it is only the total current density

that can be measured.

It is precisely within the diamagnetic part of the current density that one could

account for the different vector potentials in the two systems described above, since:

j′d(r) = jd(r) +
1

2
∆B (êz × r)n(r) 6= jd(r). (2.89)

Thus for a full uniqueness proof, and a firm theoretical foundation for CDFT, one must

have a theory that incorporates diamagnetism.

2.3.2 The physical current as basic variable

A second theoretical basis for CDFT in the absence of Stern-Gerlach coupling was

proposed by Pan and Sahni (PS) in 2010 [128] and is in terms of the physical current

density

j(r) = jp(r) + n(r)A(r) (2.90)

and will thus be referred to hereafter as “physical CDFT” to differentiate it from

Vignale and Rasolt’s formulation of the theory. The hypothesis PS seek to prove is:

(v,A) (n, j)

|Φ0〉

A
A−1 B−1

B

HK

(2.91)

The PS proof is applied to a given gauge, characterised by the scalar function α(r)

defined by the gauge transformation

A′(r) = A(r) +∇α(r), (2.92)
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with respect to some reference gauge but which otherwise plays no part in the proof.

Vignale et al [129] pointed out that the mapping in Eq. 2.91, which includes within

it the map:

|Φ0〉 → (n, j). (2.93)

cannot possibly be true. From [124] and [127], it is clear that this is map is not unique

in the case of nonzero diamagnetic current, and indeed this would be the case with

any CDFT that incorporates either explicitly or implicitly the diamagnetic current.

However, it does not necessarily spell the end of a CDFT based on the physical current,

since |Φ0〉 is only an intermediate quantity: it does not appear in the ultimate mapping

that one wishes a HK proof to confirm. This suggests that any HK proof that goes

beyond the paramagnetic current must also go beyond the ground-state wavefunction

as an intermediate quantity.

A second and far more terminal criticism came from Tellgren et al [130]: the proof

of the uniqueness theorem contained mathematical errors that, when eliminated, meant

that the reductio ad absurdum was not achieved. The PS proof relied on the Hohenberg-

Kohn-like approach of considering two sets of external potentials, (v1,A1) and (v2,A2)

that yield ground states |Φ1〉 and |Φ2〉 with the same densities (n, j). The ground-state

energies are then

E1 = F [|Φ1〉] +

∫ ∞
−∞

dr
{
j ·A1 + n

(
v1 − 1

2A
2
1

)}
(2.94)

E2 = F [|Φ2〉] +

∫ ∞
−∞

dr
{
j ·A2 + n

(
v2 − 1

2A
2
2

)}
(2.95)

where F is the usual universal part of the energy.

PS evaluated the excited energies of each state subject to the potentials of the other

as

E′1 = F [|Φ1〉] +

∫ ∞
−∞

dr
{
j ·A2 + n

(
v2 − 1

2A
2
2

)}
(2.96)

E′2 = F [|Φ2〉] +

∫ ∞
−∞

dr
{
j ·A1 + n

(
v1 − 1

2A
2
1

)}
, (2.97)

however, this is not the case, since when subject to (v2,A2), the state |Φ1〉 has physical

current density

j′1(r) =
〈

Φ1

∣∣∣̂jp

∣∣∣Φ1

〉
+ n(r)A2(r) = j(r) + n(r) [A2(r)−A1(r)] , (2.98)
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and similarly for the current of |Φ2〉 subject to (v1,A1).

When the appearance of the vector potential in the energy functional is properly

account for, the PS proof under the assumption of two sets of potentials having the

same ground-state densities yields the inequality

E1 + E2 < E1 + E2 +

∫ ∞
−∞

dr n(r) [A2(r)−A1(r)]2 . (2.99)

Since the last term must necessarily be positive everywhere for two different vector

potentials, the inequality is perfectly sensible, and the hypothesis that two sets of

external potentials can yield the same physical densities has not been disproven.

Indeed, one should not expect the ground-state physical densities of a system to

uniquely determine the external potentials that yielded them at all. While PS state that

the proof is intended to hold within a chosen gauge, there is nothing in the mathematics

of their HK-like proof that distinguishes between sets of potentials that differ by a gauge

transform (having ∇×∆A = 0) and those that differ due to differing magnetic fields

(having ∇ ·∆A = 0).

However, it was precisely for the removal of the tricky integral of n(r)∆A2(r) term

in Eq. 2.99 that Diener [131] formulated his version of physical CDFT, although almost

20 years earlier.

Writing the expectation value of the energy of an arbitrary wavefunction subject to

fields (v,A) as

〈
Ψ
∣∣∣Ĥv,A

∣∣∣Ψ〉 =

〈
Ψ

∣∣∣∣∣T̂ + Û −
∑
k

1
2a

2(rk)

∣∣∣∣∣Ψ
〉

+

∫ ∞
−∞

dr {j(r) ·A(r) + n(r)v(r)}+ 1
2

∫ ∞
−∞

dr n(r) [A(r)− a(r)]2

(2.100)

one can see that, when

a =
j−
〈

Ψ
∣∣∣̂jp

∣∣∣Ψ〉
n

(2.101)

the right-hand side of Eq. 2.100 is identical to Eq. 2.82.

Given a set of external potentials, this allows one, in principle, to set up a variational

procedure by which one can vary trial charge and physical current densities (n′, j′) by

ensuring that a pair of trial densities (n′, j′p) has, by definition, the correct trial physical

current density. When the trial density corresponds to the minimum of the energy –

56



the ground state – then it follows that a = A.

Since a is entirely defined by the trial wavefunction |Ψ〉 and the trial current density

j′, it does not depend at all on the external potentials of the system, rather it is an

inference about the external potentials of the system that has |Ψ〉 as its ground state

and (n′, j′) as its corresponding ground-state physical densities.

Diener thus defines a universal functional, independent of the external fields, as

F [n, j] = inf
Ψ→n,j

〈
Ψ
∣∣∣Ĥa

∣∣∣Ψ〉 , (2.102)

where

Ĥa = T̂ + Û − 1
2

N∑
k=1

a2(rk), (2.103)

and an energy functional

Ev,A [n, j] = F [n, j] +

∫ ∞
−∞

dr {j(r) ·A(r) + n(r)v(r)} (2.104)

which, Diener finds, leads to the inequality

Ev,A [n, j] ≤
〈

Ψ
∣∣∣Ĥv,A

∣∣∣Ψ〉− 1
2

∫ ∞
−∞

dr n(r) [A(r)− a(r)]2 . (2.105)

It should be noted here that the energy functional Eq. 2.105 is not minimised

by the ground-state densities (in fact it is generally unbounded) but rather yields the

stationary point
δEv,A [n, j]

δn, j

∣∣∣∣
n0,j0

= 0. (2.106)

Diener then proposed a HK-like theorem of bijectivity between the physical densities

(n, j) and the external potentials (v,A). He first considered the opposite scenario: that

two systems with the same ground-state charge density and physical current density

could be yielded by different sets of external potentials (v1,A1) 6= (v2,A2). One can

note here that such a scenario, should it exist, demands that the two systems be

described by two different ground-state wavefunctions |Ψ1〉 and |Ψ2〉: were they the

same, the resulting charge and paramagnetic current densities of the two systems must

also be the same, thus for the physical currents to also be the same, it follows that

A2 = A and thus this reduces the problem to the original Hohenberg-Kohn proof.
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Starting from Eq. 2.105, we find that

E1 <
〈

Ψ2

∣∣∣Ĥ1

∣∣∣Ψ2

〉
−
∫ ∞
−∞

dr n [A1 − a]2

= E2 +

∫ ∞
−∞

dr
{
j · [A1 −A2] + n

[
v1 − v2 + 1

2

(
A2

1 −A2
2

)]}
(2.107)

E2 <
〈

Ψ1

∣∣∣Ĥ2

∣∣∣Ψ1

〉
−
∫ ∞
−∞

dr n [A2 − a]2

= E1 +

∫ ∞
−∞

dr
{
j · [A2 −A1] + n

[
v2 − v1 + 1

2

(
A2

2 −A2
1

)]}
, (2.108)

where the universal functionals in the integral
〈

Ψ
∣∣∣Ĥa − Ĥb

∣∣∣Ψ〉 have cancelled, as

have the integrals over n [A− a]2. Summing the two inequalities yields the reductio ad

absurdum of the HK proof:

E1 + E2 < E2 + E1 (2.109)

thus disproving the possibility of two systems with the same charge and physical current

densities being the ground states of two different sets of external potentials.

It is surprising that both the Diener and the Pan and Sahni formulations of CDFT

both take as their basic variables the charge and physical current densities, both em-

ploy a Hohenberg-Kohn-like approach to proving the bijectivity of those variables with

the external potentials of which they are the ground-state properties, and yet both

yield very different results, especially considering that the expressions considered in

the Diener case are simple algebraic rearrangements of those employed in the PS case.

While the energy functional of Diener is written differently, all occurrences in some

Hamiltonian Ĥv,A of a vector potential different to A cancel when properly accounted

for. Once again, this is a matter of accounting properly for the vector potential, and

this issue will be investigated again in the next chapter.

It remains to be seen if there exists another method of proving the uniqueness the-

orem for a physical CDFT, beyond a Hohenberg-Kohn-like proof. Restricting ourselves

to the question: ’What can a HK proof show?’, it is apparent that, if any CDFT proof

exists:

1. it must have key current quantities that go beyond the paramagnetic current

density;

2. it must have intermediate quantities that go beyond the ground-state wavefunc-

tion;
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3. it cannot deal with the physical current directly as a fundamental quantity.

In the next chapter and the Appendix, uniqueness proofs for alternative formulations

of CDFT will be detailed that meet the above three criteria.

2.3.3 The exchange-correlation vector potential

The new quantity in CDFT is the exchange-correlation vector potential which, from

considerations of gauge-invariance and the steady-state condition, Vignale and Rasolt

provided much insight into. Under a gauge transform:

A(r)→ A(r)−∇Λ(r), (2.110)

the paramagnetic current becomes:

j′p(r)→ j′p(r) +∇Λ(r)n(r) (2.111)

and the wavefunction:

|Ψ〉
[
n′, j′p + n′∇Λ

]
= exp

(
i

N∑
k=1

Λ(rk)

)
|Ψ〉

[
n′, j′p

]
. (2.112)

The universal functional is then

F
[
n′, j′p + n′∇Λ

]
=
〈

Ψ
∣∣∣T̂ + Û + 1

2 [p̂,∇Λ] + 1
2∇Λ2

∣∣∣ |Ψ〉〉
= F

[
n′, j′p

]
+

∫ ∞
−∞

dr

{
j′p · ∇Λ +

1

2
n′ |∇Λ|2

}
(2.113)

and likewise a single-particle kinetic energy functional:

Ts

[
n′, j′p + n′∇Λ

]
= Ts

[
n′, j′p

]
+

∫ ∞
−∞

dr

{
j′p · ∇Λ +

1

2
n′ |∇Λ|2

}
(2.114)

and thus the XC energy functional must remain unchanged after gauge transform:

Exc

[
n′, j′p + n′∇Λ

]
= Exc

[
n′, j′p

]
. (2.115)

This means that Exc cannot depend on the longitudinal part of the vector potential:

only any transverse parts.

Furthermore, in the real, interacting system, the continuity equation demands that,
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for a steady-state system,

∇ · [jp(r) + n(r)Aext(r)] = 0 (2.116)

where n(r)Aext(r) is the diamagnetic current. In the KS scheme, this becomes:

∇ · [jp(r) + n(r)Aext(r)] +∇ · [n(r)Axc(r)] = 0. (2.117)

From the previous equation, we know the left-hand term must be zero, and thus:

∇ · [n(r)Axc(r)] = 0. (2.118)

Thus Exc can only depend on the charge density and the quantity:

∇×
j′p(r)

n(r)
. (2.119)

In application to a homogeneous electron gas carrying a small steady-state current,

Vignale and Rasolt calculated expressions for the XC potentials based on a second-order

expansion of the universal functional about the paramagnetic current density j′p(r) and

linear response theory for small currents. The approximations they derive [124; 132]

are

Axc(r) =
b

n(r)
∇×

[
∇× jp(r)

n(r)

]
(2.120)

vxc(r) = vLDA
xc (r)−Axc(r) · jp(r)

n(r)
, (2.121)

where b is a constant of proportionality that depends on the magnetic susceptibility of

the gas, and vLDA
xc (r) is the usual XC scalar potential of DFT.

Because of the success of ab initio KS DFT in predicting the ground-state prop-

erties on non-magnetic systems, it has become common to employ the Kohn-Sham

scheme beyond the minimisation principle by modelling physical, interacting systems

with KS noninteracting ones from first principles. The two approaches, while equivalent

in DFT, are very different in CDFT. The KS representation in paramagnetic CDFT

is constructed to yield the same charge and paramagnetic current density as a real

interacting system. The presence of the exchange-correlation vector potential dictates

that the KS diamagnetic current must differ from its interacting counterpart:

jKS,d(r) = [Aext(r) + Axc(r)]n(r) 6= jd(r). (2.122)
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Since the KS and interacting paramagnetic currents are the same and their diamagnetic

currents differ, it follows that the KS physical current is not that of the interacting

system:

jKS(r) = jp(r) + jKS,d(r) 6= j(r). (2.123)

The KS system employed in the minimisation procedure is physical different to the

interacting system it stands in for in the calculation of the universal functional. This

is not a problem with the minimisation procedure itself so long as the XC energy is

chosen to yield the correct universal functional, but it does mean that the KS system

cannot be used to model the interacting system accurately. Alternatively, one could

choose a KS system which has the same physical current density as the interacting

system and a different XC functional, since the varying physical current is well defined

by the charge and paramagnetic current being varied and the fixed vector potential.

However, there are more fundamental issues with this formulation of CDFT that

render the construction of a unique KS system for a given combination of charge and

paramagnetic current densities not generally possible, as we will see in the next sub-

section.

This thesis will focus on the calculation of exact KS potentials for excited and

degenerate nanowires without an applied electric potential and for time-independent

electrochemical potentials. This simplifies the many of the complications described in

Sec. 2.2.4. Rather than studying finite nanowires attached to infinite ideal leads, this

research will instead treat the nanowire itself as being infinitely long, and coupled to

reservoirs only at infinity. The simplifications to the calculations this yields are twofold:

first, one may replace the transparent boundary conditions typical of quantum transport

theory with periodic boundary conditions; second, one may remove terms coupling the

wavefunction in the central region to the leads such that, for instance, the quasiparticles

of the nanowire may be described by the isolated quasiparticle equation (Eq. 1.67).
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Chapter 3

Unique and exact KS fields in

current-carrying systems

Steady-state currents pose a particular problem for density functional theory. Whereas

in time-dependent DFT the longitudinal part of the time-dependent current density

is accessible from the time-dependent charge density via the continuity equation, and

there are many systems where this is sufficient, steady-state currents are not defined

by the charge density beyond the fact that they must be divergence-free.

However, even before one can consider the external potentials that are necessary

to yield particular charge and current densities in the steady-state regime, one needs

to establish a uniqueness relation between the potentials and the densities. Secs. 2.3.1

and 2.3.2 in the previous chapter reviewed three existing formulations of ground-state

current-density functional theory, one based on the paramagnetic current density, the

other two based on the physical current density.

Both approaches appear to have their strengths and weaknesses. A CDFT based

on the paramagnetic current has a uniquely-determined ground-state wavefunction, but

it has been demonstrated that different sets of potentials can yield that wavefunction,

with the difference accounted for in the diamagnetic part of the physical current density.

A CDFT based on the physical current avoids this problem since the diamagnetic

part is included; however, the chosen basic densities do not uniquely determine the

ground-state wavefunction and, worse, the ground-state wavefunction does not uniquely

determine the densities.

Tellgren et al concluded that there is no functional that both is universal and admits

a practical minimisation procedure (as distinct from a proof of a variational theorem

in principle). This research has concluded that such a theory does exist, so long as one
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is suitably flexible regarding the definition of the basic and intermediate variables of a

Hohenberg-Kohn-like proof.

Peculiarly, one formulation of CDFT based on the physical current appears to ac-

cept both a uniqueness proof and a minimisation scheme, and does so by algebraic

manipulation of the Hamiltonian. The minimisation scheme, however, is unbounded.

Furthermore, the breakdown of equivalence to the Pan and Sahni approach has yet to

be examined. This will be the subject of the next section.

Sec. 3.2 will make a case for new choices of basic variables, and Sec. 3.3 will

demonstrate a proof of a uniqueness theorem for a particular choice of basic densities.

Sec. 3.4 provides a proof of a variational procedure, and Sec. 3.5 will detail and prove a

practical energy-minimisation scheme. Once we have determined which basic densities

a set of potentials is a unique functional of, we will examine the question of how one

might calculate these potentials exactly for a given charge (and current) density. 3.6

will provide a means to calculate those potentials in the steady-state regime where

the charge and current density are known, and 3.7 will extend this procedure to the

nonequilibrium regime.

For interest, Secs. A.2.1 and A.2.2 will extend the theory to magnetised and degen-

erate ground-state systems respectively. The remainder of the Appendix is dedicated

to an alternative CDFT formulation that has equal numbers of basic potentials and

basic densities.

3.1 Does the physical current determine the system?

As a test of their uniqueness theorem, Pan and Sahni [128] considered the possibility of

two different sets of external potentials (v1,A1) and (v2,A2) having the same ground-

state densities (n, j), where the physical current for a system with zero net spin density

is

j(r) =
〈

Ψ
∣∣∣̂jp

∣∣∣Ψ〉+ A(r)n(r). (3.1)

When one accounts properly for the appearance of the vector potential in the energy

functional, Tellgen et al [130] found that one arrives at the perfectly sensible inequality

E1 + E2 < E2 + E1 +

∫ ∞
−∞

dr n(r) [A2 −A1]2 . (3.2)

In order to avoid the appearance of the difficult final term, Diener [131] had already

derived a new inequality that is stated as being more strict than the Rayleigh-Ritz
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principle:

E0 [v,A] = Fa [|Ψ0〉 , j] +

∫ ∞
−∞

dr j ·A ≤
〈

Ψ
∣∣∣Ĥv,A

∣∣∣Ψ〉− 1
2

∫ ∞
−∞

dr n (A− a)2 , (3.3)

where E0 is the ground-state energy of the system having scalar potential v(r), vector

potential A(r) (indexed here by subscript A), charge density n(r), current density j(r)

and wavefunction |Ψ0〉, and |Ψ〉 is some trial wavefunction and a(r) (indexed here by

subscript a) is a vector quantity defined by the trial wavefunction and the ground-state

current density to yield the current physical current under any ambient vector potential

a [|Ψ〉 , j] (r) =
1

n(r)

[
j(r)−

〈
Ψ
∣∣∣̂jp(r)

∣∣∣Ψ〉] , (3.4)

where ĵp(r) is the usual paramagnetic current density operator.

Nominally, in accordance with the definition Eq. 3.4 and the fact that the final

term on the right-hand side of inequality 3.3 arises due to being subtracted from both

sides, a(r) should be defined in terms of the ground-state wavefunction and current,

yielding a = A, and thus the final term vanishes.

On the other hand, allowing a(r) to differ from A, i.e. to be defined in terms of

the trial wavefunction and current, ensures that the final term is not generally zero (it

is zero when the trial wavefunction is the true ground state) and that, since the term

is positive semidefinite, the inequality always holds. However, it is clear that, in this

case, the quantity on the left-hand side of the inequality is no longer the ground-state

energy, but is a lesser quantity which henceforth we shall denote

E′0 = E0 − 1
2

∫ ∞
−∞

dr n(r) [A(r)− a(r)]2 . (3.5)

As such, this is not a more strict inequality than the Rayleigh-Ritz inequality: it

is simply the Rayleigh-Ritz theorem with a positive semidefinite quantity subtracted

from both sides.

Diener then employs the usual Hohenberg-Kohn approach to proving that the as-

sumption of nonunique potentials leads to a contradiction. Assuming two different

ground-state wavefunctions |Ψ1〉 and |Ψ2〉 for the two sets of potentials (v1,A1) and
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(v2,A2), one has a pair of inequalities for each:

E′1 <
〈

Ψ2

∣∣∣Ĥ2

∣∣∣Ψ2

〉
+
〈

Ψ2

∣∣∣Ĥ1 − Ĥ2

∣∣∣Ψ2

〉
− 1

2

∫ ∞
−∞

dr n [A1 −A2]2 (3.6)

E′2 <
〈

Ψ1

∣∣∣Ĥ1

∣∣∣Ψ1

〉
+
〈

Ψ1

∣∣∣Ĥ2 − Ĥ1

∣∣∣Ψ1

〉
− 1

2

∫ ∞
−∞

dr n [A2 −A1]2 (3.7)

where Ĥi is the Hamiltonian defined by external potentials (vi,Ai).

The first terms on the right-hand sides of inequalities 3.6 and 3.7 are the true

ground-state energies E2 and E1 respectively, independent of the appearance of any

vector quantities a(r) within the definition of the Hamiltonians. To arrive at Diener’s

reductio ad absurdum, the universal functionals in the second terms must cancel, i.e.

the same vector quantity a1,2 = A2,1 must appear in each. This yields

E′1 < E2 +

∫ ∞
−∞

dr
{

j · [A1 −A2] + n
(
v1 − v2 + 1

2 [A1 −A2]2
)
− 1

2n [A1 −A2]2
}

(3.8)

E′2 < E1 +

∫ ∞
−∞

dr
{

j · [A2 −A1] + n
(
v2 − v1 + 1

2 [A2 −A1]2
)
− 1

2n [A2 −A1]2
}
.

(3.9)

As desired, the integrals over n(∆A)2 cancel, and summing up over both inequalities

yields

E′1 + E′2 < E2 + E1. (3.10)

Diener finds that there is a contradiction here because he identifies the primed en-

ergies with the unprimed ones. This is, however, incorrect: if the primed and unprimed

quantities were the same, this would yield the equality

E′ =
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉− ∫ ∞

−∞
dr n [A− a]2 =

〈
Ψ
∣∣∣Ĥ∣∣∣Ψ〉 = E (3.11)

which holds only for a(r) = A(r), leaving nothing to cancel with the tricky integrals

over n(r) (∆A)2. In fact substituting Eq. 3.5 into inequality 3.10 yields

E1 + E2 −
∫ ∞
−∞

dr n(r) [A2 −A1]2 < E1 + E2, (3.12)

which is exactly equivalent to the inequality 3.2 which Tellgren et al arrived at in the

Pan-Sahni approach.

In summary, while it remains unproven that two different sets of external potentials
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may yield the same ground-state charge and physical current densities, the converse

also remains unproven. The choice of the physical current as a basic density, while

logical, cannot be justified by a Hohenberg-Kohn proof. This is an expected problem

so long as the HK proof does not distinguish between vector potentials that differ by a

transverse component corresponding to a different magnetic field and those that differ

by a longitudinal component corresponding merely to a change in gauge, since there

are of course an infinite number of pairs of external potentials which yield the same

ground-state charge and physical current densities in the latter case.

In the following sections and the Appendix, we shall see which unique mappings

the Hohenberg-Kohn approach can determine for CDFT. Clearly, in order to resolve

the nonuniqueness in Vignale-Rasolt theory, such a formulation must go beyond the

paramagnetic current density, and yet to resolve the nonuniqueness of Pan-Sahni and

Diener theories, it cannot rely on the physical current density, i.e. the choice of ba-

sic variables must be gauge-variant in order to uniquely determine the gauge-variant

potentials.

3.2 The choice of basic variables in CDFT

A vital decision in any density functional theory therefore is the choice of basic vari-

ables. Once the basic variables are chosen, we may proceed with a Hohenberg-Kohn-like

theorem based on those variables. The purpose of a HK theorem like Eq. 3.13 is to

uniquely map density quantities to external potentials and vice-versa: V ↔ N . In the

original HK proof of this theorem for DFT, and in the two varieties of CDFT, this is

achieved via an intermediate quantity G which is always chosen to be the ground-state

wavefunction.

V N

G

A
A−1 B−1

B

HK

(3.13)

If one can show, as Hohenberg and Kohn did, that V ↔ G and that N ↔ G , then one

has fully proven that V ↔ N . To this extent, the inclusion of G in the maps is purely

utilitarian, and G may, in principle, be anything at all so long as it yields a unique

map.

Let us then consider the content of G first. The uniqueness theorem of paramagnetic

CDFT fails when two different sets of potentials (v2 6= v1,A2 6= A1) corresponding to
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two different sets of electromagnetic fields (E2 6= E1,B2 6= B1) share the same ground-

state wavefunction:

(v1(r),A1(r))→ |Ψ0〉 ← (v2(r),A2(r)) . (3.14)

This map is not invertible, i.e. the ground-state wavefunction alone does not uniquely

define the external potentials. The question then is: what further information must G

contain in order to make the map invertible without destroying it?

If we define G as

G = {(|Ψ0〉 ,A)} , (3.15)

it is nothing more than a truism to state that (v,A) uniquely defines the A, and that it

also uniquely defines |Ψ0〉 is necessary from the condition of nondegeneracy, thus map

A is still unique. Likewise, it is a truism to state that (|Ψ0〉 ,A) uniquely defines A.

This reduces map A−1 to the standard HK proof of ground-state DFT, the proof of

which will be demonstrated in section 3.3.

We can use a similar procedure to suggest a choice of basic densities. One immediate

observation is that V and G are gauge-variant sets, and so N should also be a gauge-

variant set if a unique relationship is to be established. Since |Ψ0〉 alone determines

the charge and paramagnetic current density, these two density quantities cannot fully

determine the vector potential. To achieve this, the density set needs to include more

information about the physical current density. Given that we cannot replace jp with

j, the physical current, the explicit diamagnetic current density is required.

This yields two possible choices of basic densities: N = {n, jd}, and N = {n, jp, jd}.
The first of these does uniquely determine the external potentials, since n(r) and jd(r)

together uniquely determine the external vector potential, after which the uniqueness

problem reduces to the first theorem of Hohenberg and Kohn. Further, it admits a

minimisation procedure, once again that of the second HK theorem since jd(r) may not

be varied independently of n(r) under fixed external vector potential A(r).

Another advantage of the choice of (n, jd) as basic densities is that the mapping

(v,A)↔ (n, jd) (3.16)

is balanced: neither set overdefines or underdefines the other.

However, any practical minimisation scheme employing auxiliary Kohn-Sham sys-

tems of noninteracting electrons relies on a mapping of some choice of ground-state

properties – typically the basic densities – between the interacting and Kohn-Sham
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systems. Since we should not expect the noninteracting vector potential to be generally

identical to the interacting external vector potential, if follows that the KS diamagnetic

current will differ from the interacting system under study.

For this reason in this chapter we shall focus on the second choice of basic densities:

(n, jp, jd) with the understanding that trial densities are not chosen independently and

are restricted to those that are interacting-V -representable (V -representability here

implying the ground state of some set of external potentials (v,A)). While this makes

the uniqueness and variational theorems more cumbersome, it is more suited to practical

minimisation and self-consistent calculations.

The proofs of uniqueness and variational theorems, along with some recommenda-

tions about how one would practically implement them, for the minimal set of basic

densities (n, jd) are given in the Appendix. In this chapter, the uniqueness theorem for

the larger set of densities is proven in Sec. 3.3, the corresponding variational theorem is

proven in Sec. 3.4, and a practical minimisation and self-consistent Kohn-Sham scheme

is described in Sec. 3.5.

3.3 A proof of uniqueness for CDFT

The theorem we wish to prove in this section is that all physical ground-state properties

of interest are unique functionals of the set of V -representable, nondegenerate ground-

state densities (n, jp, jd). In particular, we wish to prove that the external potentials

(v,A) (of which the densities are the ground-state densities) are uniquely determined,

from which all other properties may, in principle, be derived.

This map is broken down into maps to an intermediate quantity consisting of the

ground-state wavefunction |Ψ〉 and the vector potential A(r). Proving these interme-

diate one-to-one relationships implies a one-to-one relationship between the densities

and the potentials. We aim to prove, therefore, that

(v,A)
(
n, jp, jd

)

(|Ψ0〉 ,A)

A
A−1 B−1

B

HK

(3.17)

Map A : (v,A)→ (|Ψ0〉 ,A) is immediately evident from the solution of the Schrödinger

equation for nondegenerate systems, while map B : (|Ψ0〉 ,A) → (n, jp, jd) is immedi-
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ately evident from the definitions of the charge and current densities:

n(r) = 〈Ψ |n̂(r)|Ψ〉 (3.18)

jp(r) =
〈

Ψ
∣∣∣̂jp(r)

∣∣∣Ψ〉 (3.19)

jd(r) = A(r) 〈Ψ |n̂(r)|Ψ〉 . (3.20)

This leaves the inverse maps A−1 and B−1 to be proven.

The vector potential in both V and G is uniquely determined by the charge and

diamagnetic current densities as

A(r) = A [n, jd] (r) =
jd(r)

n(r)
, (3.21)

thus if mapping B−1 is nonunique, there must exist two ground-state wavefunctions

defined by the same vector potential but different scalar potentials that yield the same

charge density. The original HK proof demonstrates otherwise. Let there be two sets

of potentials (v1,A1) and (v2,A2) such that:

v2(r) 6= v1(r) + constant (3.22)

A2(r) = A1(r) = A(r) (3.23)

whose corresponding Hamiltonians Ĥ1 and Ĥ2 yield ground-state wavefunctions |Ψ1〉
and |Ψ2〉 with corresponding ground-state energies:

E1 = F1 [Ψ1] +

∫ ∞
−∞

dr jp(r) ·A(r) +

∫ ∞
−∞

dr n(r)
(
v1(r) + 1

2A
2(r)

)
(3.24)

E2 = F2 [Ψ2] +

∫ ∞
−∞

dr jp(r) ·A(r) +

∫ ∞
−∞

dr n(r)
(
v2(r) + 1

2A
2(r)

)
. (3.25)

From the Ritz principle we know that:

E′1 =
〈

Ψ1

∣∣∣Ĥ2

∣∣∣Ψ1

〉
=
〈

Ψ1

∣∣∣Ĥ1

∣∣∣Ψ1

〉
+
〈

Ψ1

∣∣∣Ĥ2 − Ĥ1

∣∣∣Ψ1

〉
(3.26)

= E1 +

∫ ∞
−∞

dr n(r) [v2(r)− v1(r)] > E2. (3.27)

Likewise:

E2 +

∫ ∞
−∞

dr n(r) [v1(r)− v2(r)] > E1. (3.28)
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Summing the two inequalities together yields the contradiction of the HK proof:

E1 + E2 > E2 + E1, (3.29)

and thus the uniqueness of the ground-state wavefunction for a given set of densities

(n, jp, jd) and the invertibility of map B has been proven reductio ad absurdum.

The remaining part of the proof, that of map A−1, concerns two different sets

of potentials (v1,A1) and (v2,A2 = A1) as per equations 3.22 that share the same

ground-state wavefunction |Ψ0〉 with different ground-state energies E1 and E2. Then:

[
Ĥ1 − Ĥ2

]
|Ψ0〉 = [v1(r)− v2(r)] |Ψ0〉 = (E1 − E2) |Ψ0〉 . (3.30)

It follows that the two scalar potentials differ by only a constant.

Thus it has been shown that the external potentials uniquely determine and are

uniquely determined by (n, jp, jd):

(v,A)↔ (n, jp, jd) . (3.31)

The number of scalar fields on each side of the map is uneven, reflecting the fact that the

paramagnetic current was not required in the proof of uniqueness (rather we require it

for minimisation), and that the densities together are constrained to be V -representable

(see Appendix).

The issue of V -representability is less of a concern for uniqueness proofs than for

variational procedure proofs where, ideally, one wishes to be free to vary the trial basic

densities independently and still evaluate the resulting energy. We shall see in the

next section that the diamagnetic current density, so vital to the proof of uniqueness,

is maximally constrained in the variational procedure, and the balance between the

number of basic potentials and basic densities is restored.

3.4 Proof of variational theorem

The theorem to be proven in this section is that, for a given set of external potentials

(v,A), we may construct an energy functional of the basic densities (n, jp, jd) (for

brevity denoted by the seven-component quantity N) which has its minimum for the

ground-state densities (n0, jp,0, jd,0) (denoted N0).

We first make use of the uniqueness theorem proven in the previous section to show

that the ground-state energy is a unique functional of the ground-state densities. Since
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the densities uniquely determine their corresponding external potentials, the potentials

may be used to construct the Hamiltonian operator

Ĥ[N] = 1
2 (p̂ + A[N0])2 + v[N0]. (3.32)

The ground-state wavefunction |Ψ0〉 was also proven to be a unique functional of the

densities, thus the ground-state energy is

E0 [N0] |Ψ0 [N0]〉 = Ĥ[N0] |Ψ0 [N0]〉 . (3.33)

From the Rayleigh-Ritz theorem, it follows that any arbitrary wavefunction |Ψ〉 that

is uniquely determined by a set of densities N must, when subject to the same external

potentials, have an energy greater than or equal to that yielded by the ground-state

densities:

E0 [N0] ≤
〈

Ψ[N]
∣∣∣Ĥ[N0]

∣∣∣Ψ[N]
〉

= Ev,A [N] . (3.34)

The right-hand side of Eq. 3.34 can be expanded as a functional of the external poten-

tials and input densities as

Ev,A[N] = F [N] +

∫ ∞
−∞

dr
{
jp(r) ·A(r) + n(r)

[
v(r) + 1

2A
2(r)

]}
(3.35)

where

F [N] =
〈

Ψ[N]
∣∣∣T̂ + Û

∣∣∣Ψ[N]
〉

(3.36)

is a universal functional of N that does not depend directly on the external potentials.

One can note already from the form of Eq. 3.35 that the energy functional under

fixed (v,A) does not depend on the diamagnetic current density as an independent

variable. Thus we may write

E0 [n0, jp,0] ≤ Ev,A [n, jp] . (3.37)

This follows from the fact that, under a fixed vector potential A(r), the trial charge

density fully determines the trial diamagnetic current density, i.e. the diamagnetic

current is maximally constrained. This alleviates part of the problem of restricting

ourselves to V -representable trial densities.

The remainder of the problem concerns the V -representability of combinations of

n and jp. There are some densities which cannot be yielded from a single ground-state

wavefunction, such as certain excited states of atoms containing nodes, and density
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ensembles of, for instance, degenerate ground-states. Furthermore, there are constraints

on the selection of densities concerning electron number and the continuity equation.

For any density n(r) that is non-negative and normalisable, there generally exists

an antisymmetric, normalisable function |Ψ〉 [133; 134; 135; 136] such that

n(r) = 〈Ψ |n̂(r)|Ψ〉 . (3.38)

It follows from the Rayleigh-Ritz theorem that any such densities must therefore obey

inequality 3.37, freeing the constraint of the densities being those of ground states. The

energy functional then obeys

Ev,A [N] = inf
Ψ→n,jp

〈
Ψ[N]

∣∣∣T̂ + Û
∣∣∣Ψ[N]

〉
+

∫ ∞
−∞

dr
{
j ·A + n

[
v − 1

2A
2
]}

≥ Ev,A [N0] . (3.39)

The search may be extended to density ensembles following the approach of Levy

[93] for ensembles, such as densities of statistical combinations of degenerate ground

states. We may consider a density matrix

ρ(r, r′) =
∑
k

pk |Ψk〉 〈Ψk| (3.40)

with an associated ensemble charge and paramagnetic current densities

n(r) = ρ(r, r) (3.41)

jp(r) =
1

2i
(∇r′ −∇r′′) ρ(r′, r′′)

∣∣
r′′=r′=r

. (3.42)

We can then construct an energy functional for the density matrix when subject to

external potentials (v,A):

E [n(r), jp] = F [ρ] +

∫ ∞
−∞

dr
{
jp ·A + n

[
v + 1

2A
2
]}
. (3.43)

where

F [ρ] = Tr
[
ρ
(
T̂ + Û

)]
(3.44)

is a universal functional of the density matrix, and therefore the densities. As pointed

out by Lieb [94], F [ρ] = F [n] and thus likewise has its minimum at ρ0(r, r′) where

ρ0(r, r) = n0(r).
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The above procedures for finding the ground-state densities of a set of external

potentials rely on knowledge of the universal functional. Generally, the universal func-

tional is unknown and must be approximated. A practical scheme for doing so will be

discussed in the next section. This scheme is markedly different from previous practical

minimisation schemes for current-density functional theories.

3.5 Practical minimisation scheme

The proof of a variational procedure is only useful if we may construct a practical

scheme for performing it. In all previous ground-state density-functional theories, this

has been achieved by decomposing the universal part of the energy functional into parts

that may be expressed in terms of an auxiliary system of noninteracting electrons – the

Kohn-Sham system – having the same basic variables and yielding the correct universal

functional value by definition.

In the Vignale-Rasolt formulation of CDFT, this held even when the basic variable

was a gauge-dependent variable, resulting in the construction of KS systems that were

not physically identical to the real systems they represented. As such, the CDFT of

Vignale and Rasolt is not approached by time-dependent current-density functional

theory in the limit of ω → 0. For this reason, such an approach is not desired here.

Further, it has been proven that the charge density, paramagnetic current density

and diamagnetic current density together, ((n0(r), jp,0(r), jd,0(r), ) uniquely determines

the set of external scalar and vector potentials (v(r),A(r)) that yield those densities

as a nondegenerate ground state, and vice versa.

We have also seen that, in an ideal minimisation scheme under fixed external po-

tentials where an expression (or at least a good approximation) for the universal func-

tional F [n(r), jp(r), jd(r)] is known, it is sufficient to vary only n(r) and jp(r) since,

under fixed A(r), the choice of a trial density n fixes the diamagnetic current density

jd(r) = A(r)n(r).

Adopting the conventions

(a(r) | b(r)) =

∫ ∞
−∞

dr a(r)b(r) (3.45)

(A(r) | B(r)) =

∫ ∞
−∞

dr A(r) ·B(r), (3.46)

the energy functional of some set of trial densities subject to a fixed set of external
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potentials can be written as

Ev,A[n, jp, jd] = F [n, jp, jd] + (jp | A) + (jd | A) + (n | u) (3.47)

= F [n, jp, jd] + (j | A) + (n | u) (3.48)

where u(r) = v(r)− 1
2A

2(r). Here jd(r) is the diamagnetic current density of the system

when subject to the ambient vector potential A(r).

Since, under fixed external vector potential, varying n(r) is equivalent to varying

jd(r), the ideal minimisation scheme quickly reduces to that of Vignale and Rasolt

[124] discussed in Sec. 2.3. However, it has been seen that, in the usual practical

(Kohn-Sham) scheme of calculating the universal functional F via an auxiliary system

of noninteracting electrons subject to effective external scalar and vector potentials

(vKS,AKS(r)) and having the same charge and paramagnetic current density, those

effective external potentials are not uniquely determined: we need knowledge also of

the diamagnetic current density of the interacting system.

Generally, the KS vector potential will not be that of the interacting system, and

therefore we cannot choose

(nKS(r), jp,KS(r), jd,KS(r)) = (n(r), jp(r), jd(r)) . (3.49)

As such, we need an alternative scheme for mapping the densities of interacting systems

onto their KS representations.

Recalling the definition of the basic seven-component density vector as

N(r) = (n(r), jp(r), jd(r)) (3.50)

and defining the physical density and external potential four-component vectors as

N(r) = (j(r), n(r)) (3.51)

V(r) = (A(r), u(r)) , (3.52)

then because the basic density uniquely determines the physical density, the variational

theorem for a given external potential may be rewritten as

F [N] + (N | V) ≥ F [N0] + (N0 | V) (3.53)

where N(r) = N[N].
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Because the diamagnetic current is fixed by n(r) and A(r), a unique choice of N

is equivalent to a unique choice of N(r). (Note, this is only true under fixed A(r):

generally, there are multiple wavefunctions that yield the same N(r).)

The general energy functional may then be written as

EV [N] = F [N] + (N[N] | V) . (3.54)

Defining the four-component density operators as

N̂1(r) =
(
ĵp(r), n̂(r)

)
(3.55)

N̂2(r) = (n̂(r)A(r), 0) (3.56)

and noting that the first of these and the universal functional F [N] do not depend on

the external potential, the functional derivative of the energy functional with respect

to the external potential is evaluated as

δEV
δV(r)

=
δF

δV(r)
+

δ

δV(r)

(
N̂1(r′) | V(r′)

)
+

δ

δV(r)

(
N̂2(r′) | V(r′)

)
=

(
N̂1(r′) | δV(r′)

δV(r)

)
+

δ

δV(r)

(
n̂(r′) | 1

2A(r′) ·A(r′)
)

=
(
N̂1(r′) | δ(r, r′)

)
+
(
N̂2 | δ(r, r′)

)
= (jp(r), n(r)) + (jd(r), 0)

= N(r). (3.57)

Thus we see that the conjugate variable to the external potential is the four-component

physical density, making it a sensible choice for the variable in a minimisation scheme.

Rearranging Eq. 3.54, we have

F [N] = EV ′ [N]−
(
N(r′) | V′(r′)

)
, (3.58)

where V′(r) is the potential which has N(r) as its ground-state density, and its func-
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tional derivative with respect to the physical density is

δF

δN(r)
=

δEV
δN(r)

−
(
δ(r, r′) | V′(r′)

)
−
(

N(r′) | δV
′(r′)

δN(r)

)
=

(
δEV
δV′(r′)

| δV
′(r′)

δN(r)

)
−V′(r)−

(
N(r′) | δV

′(r′)

δN(r)

)
=

(
N(r′) | δV

′(r′)

δN(r)

)
−V′(r)−

(
N(r′) | δV

′(r′)

δN(r)

)
= −V′(r). (3.59)

The universal functional may then be decomposed as

F = TS + EH + Exc (3.60)

where TS is the single-particle kinetic energy, EH the Hartree energy as usual, and Exc

the exchange-correlation (XC) energy (i.e. remainder of the universal energy).

In standard DFT, TS is defined as the kinetic energy of a system of noninteract-

ing particles having the same charge density as the interacting system and as such is

uniquely determined by the density, while in the CDFT of Vignale and Rasolt, it is

the kinetic energy of a noninteracting system having the same charge and paramag-

netic current density as the interacting system. In both cases, since the noninteracting

system is chosen to have the same basic densities as the interacting system, TS is a

unique functional of those densities. Here, however, the noninteracting and interacting

systems do not share the same basic densities.

We may note that the universal functional F [N] is always exactly equal to a non-

universal functional FA[N] during energy minimisation:

FA[N] = F [N]|jd=nA , (3.61)

where A uniquely indexes the external vector potential A, since knowledge of N(r) and

A(r) yields jd(r). Decomposing the A-dependent functional as before, we have

FA = TAS + EH + EAxc. (3.62)

We consider now a system of an equal number N of noninteracting electrons whose

density NKS(r) satisfies the identity

NKS(r) = N(r) (3.63)
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via the equations {
1
2 [p̂ + AKS(r)]2 + vKS(r)

}
φi(r) = εiφi(r) (3.64)

nKS(r) =
N∑
i=1

〈φi(r) |n̂(r)|φi(r)〉 (3.65)

jKS(r) = AKS(r)nKS(r) +
N∑
i=1

〈
φi

∣∣∣̂jp(r)
∣∣∣φi〉 (3.66)

NKS(r) = (jKS(r), nKS(r)) . (3.67)

For the noninteracting system subject to the effective external field

VKS(r) = (AKS(r), uKS(r)) , (3.68)

we require that

FAKS [N] = TAS [N]. (3.69)

Applying the Hellman-Feynman [137]-[138] theorem and taking the functional deriva-

tive of Eq. 3.62 with respect to the physical density as before, we have that

δFA

δN
=
δFAKS

δN
+
δEH

δN
+
δEAKS

xc

δN
= −V′(r)

= −VKS(r) + (0, vH(r)) + Vxc(r) (3.70)

= −V(r),

where we have defined

Vxc(r) =
δEAKS

xc

δN
. (3.71)

Thus we have an expression for the noninteracting potential

VKS(r) = V(r) + (0, vH(r)) + Vxc(r) (3.72)

which, from Eq. 3.52, has scalar and vector components which defined the exchange-

correlation potentials

AKS(r) = A(r) + Axc(r) (3.73)

uKS(r) = u(r) + vH(r) + vxc(r) (3.74)
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and thus

vKS(r) = v(r) + vH(r) + vxc(r) + 1
2

[
A2

KS(r)−A2(r)
]
. (3.75)

This is the KS scalar potential of the physical current-density-functional theory of

Pan and Sahni, rather than that of the paramagnetic CDFT of Vignale and Rasolt,

arising as a consequence of our insistence that the KS system have the same physical

charge and current densities as the interacting system it represents, rather than the

same charge and paramagnetic current densities as in paramagnetic CDFT.

From the stationary property of the ground-state energy of the interacting system,

the definition of the universal functional, and the condition∫ ∞
−∞

δN(r)dr = 0 (3.76)

we obtain∫
δN(r)

δEv,A
δN(r)

=

∫
δN(r)

{
δF

δN(r)
+ u(r)

}
=

∫
δN(r)

{
δ

δN(r)
[TS + EH + Exc] + u(r)

}
=

∫
δN(r)

{
δTS

δN(r)
+ vH(r) + vxc(r) + u(r)

}
>= 0. (3.77)

From the definition of the KS system we obtain∫
δN(r)

{
δTS

δN(r)
+ uKS(r)

}
≥ 0. (3.78)

From the Hohenberg-Kohn theorem, this is equivalent to solving the ground-state,

many-body Schrödinger equation self-consistently for a noninteracting system of elec-

trons subject to external fields uKS(r) and AKS(r), i.e. the Kohn-Sham equations Eq.

3.64-3.67. The Kohn-Sham equations and the definitions of the KS potentials allow one

to take a self-consistent approach equivalent to the minimisation procedure, and the

resulting KS system (with the appropriate XC functionals) is approached by TDCDFT

as the perturbation of the ground-state goes to zero.

It should be noted that, while VKS(r) is a unique functional of

NKS(r) = (n(r), jp,KS(r), jd,KS(r)) , (3.79)

it is not a unique functional of N(r). The single-particle kinetic energy is only uniquely
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defined for a specific definition of Exc and the condition that

FA[N]− EH[N] = TAS [N] + EAxc[N]. (3.80)

Such a condition allows for a gauge-dependence in the XC functional. One can eliminate

this entirely by implementing the further conditions that

∇ ·Axc(r) = 0 (3.81)

and that vxc go to zero infinitely far from the system. This ensures that ∇ ·AKS(r) =

∇ ·A(r) and that vxc(r) does not add an arbitrary constant to the energy of the trial

density.

Beyond gauge-dependence, if there exist multiple choices of Vxc[N] that yield the

same universal functional, all are equivalent since they do not effect energy minimisa-

tion. On the other hand, the XC functional must be constructed (e.g. from ab initio

calculations) in such a way as that, if multiple choices of Vxc[N] exist that yield the

same physical densities but different universal functionals, the correct one is selected.

Further, by taking the physical current of the system into account, one explicitly

avoids the problems described by Capelle and Vignale [127] and Engel and Dreizler [95]

since two sets of external potentials that share the same ground-state wavefunction, and

thus the same ground-state charge and paramagnetic current densities, will not share

the same physical current density. Likewise no two sets of KS potentials yielding the

same ground-state wavefunction may yield the same physical densities. It is important

to remember, though, that it is the gauge-variant KS current densities that determine

the KS wavefunction. Nonetheless, minimising the system energy with respect to the

physical current is equivalent to minimising with respect to the paramagnetic current,

and thus it falls to the precise form of the XC potentials to ensure the correct j(r) is

achieved in self-consistency.

Other approaches to the problem of a practical minimisation scheme for a CDFT

founded on a proven uniqueness theorem and which makes contact with TDCDFT in

the adiabatic limit as outlined in the Appendix.
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3.6 Reverse-engineering algorithm for steady-state sys-

tems

Section 3.3 demonstrated that, for any fixed interaction strength, the external poten-

tials are unique functionals of the charge and paramagnetic and diamagnetic current

densities. However, the effective external potentials of the KS representation will gen-

erally differ from those of the real systems they represent, and thus the KS diamagnetic

current will also vary from its real-world counterpart.

The only measurable current quantity is the physical current, but a CDFT in terms

of the physical current density has already been discounted. Thus a scheme is required

whereby the measurable physical densities of a real system can be reproduced in a KS

system whose effective potentials are uniquely defined for the charge and gauge-variant

components of the current density.

Let us consider a KS system of N electrons subject to an effective external scalar

potential, found either approximately by a functional such as the LDA or by an exact

method such as the van Leeuwen-Baerends procedure [139] or similar (e.g. [140], [141]),

and an effective external vector potential which might be simply the external vector

potential of the interacting system, that reproduces the charge density of a real system

of N interacting electrons but does not reproduce the physical current density.

vKS(r) = v
(0)
KS(r)

AKS(r) = A
(0)
KS(r)

nKS(r) = n(r) (3.82)

jKS(r) 6= j(r) (3.83)

jd,KS(r) = j
(0)
d,KS(r). (3.84)

What is required is a procedure by which the KS potentials can be varied to yield the

exact physical densities of the real system. For now, we will consider small variations

that leave the KS charge density approximately unchanged. In order to reproduce the

physical current density, the KS vector potential at least must be modified, and this

will yield a correction to the KS diamagnetic current:

A(i+1)(r) = A
(i)
KS(r) + ∆A

(i+1)
KS (r)

j
(i+1)
d,KS (r) = j

(i)
d,KS(r) + n(r)∆A

(i+1)
d,KS (r).
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If the paramagnetic current remained unchanged after such a correction, then the

reverse-engineering of the exact KS vector potential would require only one iteration

with

AKS(r) = A
(0)
KS(r) +

j(r)− j
(0)
KS(r)

n(r)
. (3.85)

However, the presence of the corrected vector potential will generally lead to changes

in both the paramagnetic current density and (if the correction to the vector potential

has a transverse component) the charge density. The former is accounted for by making

the procedure iterative:

A
(i+1)
KS (r) = A

(i)
KS(r) +

j(r)− j
(i)
KS(r)

n(r)
. (3.86)

After each correction, one can recalculate the KS eigenstates and thus the KS

physical charge and current densities and repeat to find further corrections, so long as

the KS charge density is held approximately constant from iteration to iteration which

may require a recalculation of the scalar potential for each recalculation of the vector

potential.

Generally, however, the KS charge density will also respond to the presence of a

revised KS potential. For this reason, it is necessary to correct both the vector and

scalar potentials when tuning a KS system to reproduce exact physical densities. This

is because the initial KS system, with A(r) = A(0)(r) is still only an approximate KS

system even if it reproduces the charge density of the interacting system exactly, and

thus the scalar potential it is subject to is also only an approximation. As A(i) → AKS,

i.e. the exact KS vector potential, one must ensure, via the van Leeuwen-Baerends

procedure or similar, that the scalar potential v(i)(r) is also allowed to approach the

exact KS scalar potential.

Fig. 3.1 shows a schematic diagram of the iterative reverse-engineering algorithm for

steady-state systems. In this scheme, the algorithm only proceeds to make corrections

to the KS current density when the KS charge density nKS(r) is exactly that of the

interacting system n(r). Each time the vector potential is corrected by (j − jKS)/n,

both the charge and the current density of the KS system are recalculated. If the

revised KS charge density has diverged from that of the interacting system, the KS

scalar potential must be recalculated once more. This would typically be done by some

iterative scheme, such as the van Leeuwen-Baerends procedure or other optimisation

algorithm, which will have its own termination criteria for the main algorithm. Due

to the fact that the KS charge density is constantly updated in this way, the replacing
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nKS =∑
k ψ∗

kψk

Solve
Ĥv,Aψk = εkψk

nKS = n?

Recalculate
vKS

jKS =∑
k jp,k +AKSn

jKS = j?

AKS ← AKS +
(j − jKS)/n

Done

No

Yes

No

Yes

Figure 3.1: A schematic diagram of a reverse-engineering algorithm for the calculation of exact KS

potentials that reproduce the physical charge and current densities of a real system. The details of the

calculation of the scalar potential are not covered, but there are existing algorithms that are compatible

with this approach such as the van Leeuwen-Baerends procedure.
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of the KS charge density with the exact charge density in the corrections to the vector

potential is justified.

The KS vector potential and current are uniquely determined by the charge density

(found via methods such as the van Leeuwen-Baerends procedure) and the diamagnetic

current density (see previous sections of this chapter and the Appendix). Thus, even

while we may not know the target diamagnetic current density, we know that, as we

approach it, we also approach the exact KS vector potential so long as the charge

density is held fixed to that of the interacting system.

The steady-state reverse-engineering algorithm allows us to scan the space of (n, jd)

limited in range by the difference between the true current density and that of a trial

or partially-converged KS system. While the corrections to the KS vector potential will

have an inconsequential longitudinal component

∇ ·∆Ai+1
KS (r) =

∆ji(r) ·∇n(r)

n2(r)
, (3.87)

it is guaranteed to have a transverse component

∇×∆Ai+1
KS (r) =

n(r)∇×∆ji(r)−∇n(r)×∆ji(r)

n2(r)
(3.88)

since any steady-state current is purely transverse from the continuity equation, and

thus any difference between the true and unconverged KS current densities will also be

purely transverse, and thus yield a correction to the KS magnetic field BKS(r).

3.7 Reverse-engineering in the nonequilibrium regime

As in the steady-state case, we now seek a means of calculating time-dependent po-

tentials for Kohn-Sham systems defined to have the same physical charge and current

densities as a real interacting system.

Let us consider a real ground-state system |Ψ(0)〉 of interacting electrons with charge

and current densities n(r) and j(r) whose corresponding KS representation |ΨKS(0)〉
can be calculated from the reverse-engineering algorithm of the previous section. This

ground-state system is then perturbed by a time-dependent external vector potential

A(r, t) at t = 0. Assuming the KS scalar potential is likewise static, we can time-evolve

our initial KS state with the initial KS Hamiltonian ĤKS using the time-evolution

operator:

|ψKS,k(t)〉 = Û(t, 0) |ψKS,k(0)〉 (3.89)
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If the time over which the system is evolving is not small, the time-evolution can be

broken down into finite intervals:

ψKS,i(r, t+ ∆t) = e−iĤKS∆tψ(r, t). (3.90)

This will yield a (undoubtedly incorrect) set of gauge-invariant and gauge-variant den-

sities:

n(0)(r, t) =
∑
k

|ψKS,k(r, t)|2 6= n(r, t) (3.91)

j(0)
p (r, t) =

1

2i

∑
k

(
ψ∗KS,k(r, t)∇ψKS,k(r, t)− ψKS,k(r, t)∇ψ∗KS,k(r, t)

)
(3.92)

j
(0)
d (r, t) = A(0)(r, 0)n(0)(r, t) (3.93)

j(0)(r, t) = j(0)
p (r, t) + j

(0)
d (r, t) 6= j(r, t). (3.94)

One can improve on the KS physical current density if one could force the system

to carry an additional diamagnetic current ∆j
(1)
d (r, t). If this improvement could be

performed in one iteration, then the associated vector potential must be:

A(1)(r, t) =
∆j

(0)
d (r, t)

n(r, t)
. (3.95)

Recalculating the time-evolution of the KS system from time 0 to time t with this vector

potential should then reproduce the charge and current density of the real system, so

long as t is sufficiently small that the KS vector potential and charge density are

approximately constant.

After calculating the exact vector potential for t = ∆t, one may then begin the

reverse-engineering algorithm once again, using the KS Hamiltonian ĤKS(∆t), to de-

termine the exact vector potential that reproduces the time-dependent current density

at time 2∆t. From the continuity equation, as long as the time-dependent current

density is correct, it follows that the time-derivative of the charge density must also be

correct and, since the initial charge density is known and is exact, the time-dependent

charge density of the KS system is that of the real, interacting system.

Generally, an improvement of the KS vector potential by ∆jd/n will lead to a

different paramagnetic current density at time t, meaning that the total KS physical

current is yet again different to the real system. Successive improvements to the KS

physical current, via additions to the diamagnetic current with associated corrections to
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the KS vector potential, will lead to successive improvements to the KS charge density.

When, after the ith iteration, j(i)(r, t) = j(r, t), the procedure is complete and can start

again for the next stage of the time-evolution.

However, systems subject to a time-dependent vector potential and static scalar

potential are very limited, and even if the external scalar potential of the interacting

system were static, the KS effective scalar potential would not be: it includes the

Hartree and XC potentials which are necessarily time-dependent for time-dependent

densities. However, one has the gauge-freedom in a time-dependent system to include

time-dependent electric and magnetic fields either via a scalar potential or a vector

potential. This holds true in both the interacting and KS descriptions.

Thus, if our interacting system has time-dependent potentials v(r, t) and A(r, t),

we may choose a scalar field Λ(r, t) such that:

v′(r, t) = v(r, t) +
∂

∂t
Λ(r, t) = v0(r) (3.96)

A′(r, t) = A(r, t)−∇Λ(r, t) (3.97)

where v0(r) = v(r, t = 0). Substituting these potentials into the time-dependent many-

body Schrödinger equation will yield the same time-dependent physical charge and

current densities, but different gauge-dependent component densities.

The same can be applied to the KS representation. Since, in our considerations

above, we knew the initial scalar and vector potentials of the KS system, we may choose

a gauge such that all of the time-dependence – including the Hartree and XC potentials

– occurs in the vector potential. This makes the time-dependent reverse-engineering

approach described above generally valid.

Furthermore, a vector potential calculated in this way need not be used in the same

way to time-evolve the KS system: one need only be aware of what the time-dependent

vector potential would be in this gauge to continue calculating corrections to it, but

one still has the freedom to make an additional gauge-transform when time-evolving

the KS system. A schematic representation of the reverse-engineering algorithm for

time-dependent systems in this gauge is shown in Fig. 3.2.

An alternative choice of gauge is the Coulomb gauge, having ∇ · A(r, t) = 0. In

this gauge, the time-dependent vector potential is uniquely determined by the scalar
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t → t + ∆t
Initialise
A

(0)
KS(t)

ψ
(i)
KS,k(t) =

ÛψKS,k(t−∆t)

Construct
propagator Û

i → i + 1
Calculate
n(i) and j(i)

j(i) = j?

∆j = j − j(i)
A

(i+1)
KS =

A
(i)
KS + ∆j/n

Yes

No

Figure 3.2: The time-dependent reverse-engineering algorithm. An initial guess for the
KS vector potential is iteratively corrected by calculating the resultant KS physical current density
and taking the difference with the exact physical current. The difference is the new correction to the
diamagnetic current density which has associated with it a correction to the vector potential. This
procedure is repeated until the physical current density, and thus the charge density, is that of the
interacting system.

potential and the electric and magnetic fields via

E(r, t) = −∇v(r, t)− Ȧ(r, t) (3.98)

B(r, t) = ∇×A(r, t). (3.99)

Further, it is possible to make a gauge transformation between scalar and vector poten-

tial implementations of the electric field via Eq. 3.96-3.97. For instance, for a system

subject to scalar and vector potentials (v(r, t),AL(r, t) + AT(r, t)) where AL(r, t) is

a longitudinal vector potential and AT(r, t) the transverse, one may make a gauge

transformation

v(r, t)→ v(r, 0)

AL(r, t)→ AL(r, t) +

∫ t

−∞
dt′ ∇v(r, t) (3.100)
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to implement the electric field entirely via the vector potential, or alternatively

v(r, t)→ v(r, t) +

∫ r

−∞
dr′ ȦL(r′, t) (3.101)

AL(r, t)→ 0 (3.102)

to implement the electric field entirely via a scalar potential alone. Fig. 3.3 illustrates

this algorithm schematically for the latter case.

t → t + ∆t
Initialise

A′(0)(t),v
(0)
KS(t)

ψ
(i)
KS(t) =

ÛvψKS(t −∆t)

Construct
propagator Ûv

i → i + 1
Calculate
n(i) and j(i)

j(i) = j?

A′(i+1) =
A′(i) + ∆j/n

v(i+1) = v(i) +∫ r
dr′·∂tA′(i+1)

Yes

No

Figure 3.3: Electric field reverse-engineering algorithm. An initial guess for the KS vector
potential is iteratively corrected by calculating the error in the resultant KS current density. Where
the ratio of the error to the charge density is purely longitudinal, the result can be gauge-transformed
to yield a corrected scalar potential. The vector potential in this case is an auxiliary quantity for
calculation purposes only, and is not included in the time-propagation. This is particularly useful for
1D calculations where there can be no KS magnetic fields.

In conclusion, an iterative scheme for the calculation of the exact time-dependent

KS potentials that reproduce the charge and current densities of a nonequilibrium

interacting system has been formulated. This reverse-engineering algorithm has the

correct stop-condition and is, in principle, applicable to all systems in the absence of

magnetic fields. Both this and the steady-state reverse-engineering algorithm will be

employed to calculate the exact KS potentials of different kinds of interacting current-
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carrying system in the following two chapters.
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Chapter 4

Steady-state quantum transport

A steady-state electronic system is one whose physical properties, including the charge

and the current density, are not changing with time:

∂n

∂t
= 0 (4.1)

∂j

∂t
= 0, (4.2)

either because the system is in its ground state, or else because all transient effects due

to a preceding perturbation or disturbance have since decayed.

The steady-state current density is thus limited to being time-independent and, via

the continuity equation, in being divergence-free:

∇ · j(r) = −∂n(r)

∂t
= 0. (4.3)

The actual current density can be given by the boundary conditions for finite systems,

but for periodic structures we can gain no information about the current density without

calculating it directly from the electronic wavefunction, which is not practically solvable

for systems of more than a few particles. However, because of the time-independence

of a steady-state system, which removes the possibility of excitation or de-excitation

without external stimulus, the particular case of steady-state systems where the net

current is carried by one or two electrons lends itself to representation in quasiparticle

theory: the (in principle) exact calculation of elementary excitations of ground-state

systems. In this chapter, the excitation we shall study is the addition of a single electron

to the lowest-energy unoccupied state of a ground-state N -electron periodic nanowire.

The model self-energy operator governing the quasiparticle will be described in Sec.
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4.1 and will be employed throughout. Section 4.2 will study the steady-state quantum

wire in 1D and identify a major obstacle of DFT for 1D quantum transport. Section 4.3

will study a three-dimensional nanowire wherein these obstacles may be overcome. The

reverse-engineering algorithm for steady-state system described in the previous chapter

will be applied to the 3D nanowire where it will be found that the physics involved in

exact KS system are strikingly different from those involved in the interacting systems

they represent.

4.1 The model self-energy operator

The self-energy operator Σ(r, r′, ω) remains a difficult quantity to calculate from first

principles due to its complexity. Typically, one would begin with a DFT calculation in

the local density approximation and employ the resulting wavefunctions and energies

as an initial guess for a full GW calculation.

An alternative approach is to model the self-energy operator directly for use in the

quasiparticle equation. Godby et al [142] found that the difference between LDA-DFT

energies and GW quasiparticle energies for silicon and diamond are energy-dependent

and take the approximate form of a step function. However, the inclusion of the energy

dependence acted only to slightly reduce the band gaps of the two materials, thus they

deduced that the most significant character of the self-energy operator that led to band

gap errors [143] between GW and DFT calculations of band structures was its nonlocal

dependence on position: while Σ(r, r′, ω) is a function of pairs of spatial coordinates,

the exchange-correlation potential vxc(r) is a function of only one. Indeed, it is typical

that DFT potentials that reproduce the correct charge density of a ground-state system

do not reproduce also the correct band structure [116].

They further found that the self-energy operators for silicon and diamond were

dominated by approximately spherically-symmetric exchange holes centred around r′ =

r whose amplitude was position-dependent. Based on these findings, they proposed the

following model form of the operator:

Σ(r, r′, ω) =
f(r, ω) + f(r′, ω)

2
g(
∣∣r− r′

∣∣) (4.4)

where f(r) is chosen to reproduce the correct symmetry. The function g(|r− r′|) was

shown to be approximately that of the corresponding function for a homogeneous elec-

tron gas with the same average electronic density, while f introduces the position-

dependence. This hole was found to account for the majority of the nonlocality of the
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self-energy operator.

Godby et al also found that, to good approximation, the energy-dependence of the

self-energy is separable from its nonlocal spatial dependence, such that 4.4 may be

further decomposed into

Σ(r, r′, ω) =
f(r) + f(r)

2
g(
∣∣r− r′

∣∣)h(ω). (4.5)

One of the benefits of the model self-energy operator is that, whereas the Σ derived

from a GW or even full many-body calculation is done so purely numerically, here its

physical ingredients are apparent in the construction.

The use of the model self-energy in the GKS scheme was examined by Sanchez-Friera

and Godby (2000) [144] and found to improve in many respects on LDA DFT calcu-

lations, for instance in linear response theory of the homogeneous electron gas. They

demonstrated that the calculation overheads of a GKS calculation using an energy-

independent (h(ω) = 1) model self-energy operator were small, with the matrix ele-

ments of the operator in reciprocal space given very simply as

〈
k |Σ|k′

〉
= f(k− k′)

g(|k|) + g(|k′|)
2

, (4.6)

where f(k) and g(k) are the spatial Fourier transforms of the real-space functions

f(r) and g(r) above. These matrix-elements will be employed later in calculating the

self-energy operator for steady-state and nonequilibrium current-carrying systems from

whose densities the exact potentials of their Kohn-Sham representations will be reverse-

engineered.

In the following study, we consider an infinite wire connected to sink and source

electron reservoirs at z = ±∞ held at the same chemical potential at zero temperature

such that the wire has zero current. We raise the chemical potential of the source

reservoir slightly with respect to the sink such that an electron propagates through the

wire. We model one supercell of this wire, close to the source, via the addition of an

electron quasiparticle into the lowest-energy unoccupied state.

Since the electron is added to the lowest-energy state above the Fermi energy,

one expects no possibility of inelastic scattering of the electron. Furthermore, in the

absence of any time-dependence, while the true self-energy for such a system would

be energy-dependent, one would not expect any qualitative difference in the resultant

charge and current densities, only small quantitative differences due, for instance, to the

modified band gap. As such, we make the approximation that the self-energy operator
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is Hermitian and energy-independent, and has a position-dependent nonlocal spatial

dependence of the form of Eq. 4.5.

4.2 The one-dimensional nanowire

A nanowire is a structure whose thickness is of the order of the nanometre (10−9 m) but

whose length is unconfined. As such, all of the current of such a system is constrained

to be directed along the axial direction (along the length of the wire) in a steady-state

system.

If one ignores or suppresses subband excitations such that all current-carrying elec-

trons are in the lowest subband of the system, nanowires are pseudo-one-dimensional

systems which are amenable to approximation in one-dimensional calculations. For the

purpose of reverse-engineering Kohn-Sham systems, we may consider that the addi-

tional degrees of freedom are common between the interacting and the KS systems.

To obtain the charge and current densities of the interacting system from which we

may reverse-engineer a Kohn-Sham system, we consider the model self-energy operator

of Sec. 4.1 whose matrix elements are given by Eq. 4.6 for a supercell of 10 unit cells

of a periodic semiconductor based on silicon, with a self-energy amplitude F0 = 4.1 eV,

nonlocal range w = 2 a.u and periodicity a = 4 a.u.

Σ(z, z′) = 1
2

(
f(z) + f(z′)

)
g
(∣∣z − z′∣∣) (4.7)

f(z) = −F0 [1− cos(2πz/a)] (4.8)

g(x) =
e−(x2/w2)

√
πw

. (4.9)

Since the external potential due to the silicon lattice and the Hartree potential will be

the same in both the interacting and KS systems, we take (vext + vH = 0). Periodic

boundary conditions are applied such that the coupling to the reservoirs occurs at

x = ±∞ and has no effect on the dynamics of the supercell under study other than the

injection of the quasiparticle electron. While the system constitutes an open quantum

system, insofar as electrons are passing into and out of the supercell, the rate at which

electrons enter and exit the supercell are identical and the electron number remains

fixed throughout.

The quasiparticle energies and wavefunctions are given by(
−1

2

∂2

∂z2
− εQP,i

)
ψQP,i(z) +

∫ ∞
−∞

dz′ Σ(z, z′)ψQP,i(z
′) = 0. (4.10)
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The quasiparticle band structure for these parameters, sampled at the Γ-point (which,

here, are integer multiples of 2π/L where L = 10 × a = 40 a.u.), for the supercell is

shown in Fig. 4.1.
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Figure 4.1: Band structure of 1D model semiconductor. The ground-state density of Fig. 4.2
is found by summing over all of the single-particle densities for electrons occupying states below the
dashed line. The system is filled beyond the band gap, and as such is in a metallic state.

On a discretised grid, the energy spacing between the QP and the Fermi energy will

be finite, corresponding to the chemical potential difference between the two reservoirs,

µ, which nominally gives the QP a finite, if very long, lifetime. However, on such a

grid there are no states for which the QP to decay into, and it is sufficient to note that

as the characteristic grid spacing ∆→ 0, the state the electron is added to approaches

the Fermi energy.

Fig. 4.2 shows the ground-state charge density of the 1D supercell, where each unit

cell contributes one spin-up and one spin-down electron to the ground-state density,

with two additional (spin-up and -down) electrons occupying the standing wave at the

bottom of the conduction band, giving a total of N = 22 electrons in the ground state.

To this ground-state system, an electron quasiparticle is added to the right-going

(positive z-direction), lowest-energy unoccupied state. Because of the symmetry of the

band structure, this is one of a pair of degenerate 23-electron ground states, the other

being the left-propagating (negative z-direction) state. All of the current through the

system is then carried by the additional quasiparticle ψQP.

The current density of a quasiparticle is given by the continuity equation and the

93



 0.45

 0.5

 0.55

 0.6

 0.65

 0  4  8  12  16  20  24  28  32  36  40

n(
z)

 (
a.

u.
)

z (a.u.)

Figure 4.2: Electron density of one-dimensional ground-state quantum wire. The supercell
consists of 10 unit cells, each contributing 2 electrons (one spin-up, one spin-down) in addition to the
two electrons occupying the standing state at the bottom of the conduction band, giving a total of
N = 22 electrons in the ground state.

quasiparticle equation [145; 146]:

∂

∂t
n(z) =

∂

∂t
ψ∗QP(z)ψQP(z) = ψ∗QP(z)

∂

∂t
ψQP(z) + ψQP(z)

∂

∂t
ψ∗QP(z)

= i

(
ψQP(z)

{
−1

2

∂2

∂z2

}
ψ∗QP(z)− ψ∗QP(z)

{
−1

2

∂2

∂z2

}
ψQP(z)

)
+

∫ ∞
−∞

dz′
(
−iψ∗QP(z)Σ(z, z′)ψQP(z′) + c.c

)
= − ∂

∂z
j(z). (4.11)

The first bracketed term is the divergence of the standard paramagnetic current density;

the second is unique to the self-energy operator. Integrating both sides yields

j(z) =
1

2i

(
ψ∗QP(z)

∂

∂z
ψQP(z)− ψQP(z)

∂

∂z
ψ∗QP(z)

)
+

∫ z

−∞
dz′

∫ ∞
−∞

dz′′
(
iψ∗QP(z′)Σ(z′, z′′)ψQP(z′′) + c.c.

)
. (4.12)

The resultant current density of the model wire is 0.0234 a.u., and the charge density

is shown in Fig. 4.3.

To calculate the Kohn-Sham scalar potential which reproduces the 23-electron

charge density of the model interacting system, we employ the van Leeuwen-Baerends

procedure [139] in which one begins with an initial guess v
(0)
KS(r) which is everywhere
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greater than zero and then iteratively corrects it by solving the Kohn-Sham equations:

εkφk(r) =
{
−1

2∇
2 + v

(i)
KS(r)

}
φk(r) (4.13)

n(i)(r) =
∑
k

|φk(r)|2 (4.14)

v
(i+1)
KS (r) =

n(i)(r)

n(r)
v

(i)
KS(r) (4.15)

until the error in the KS charge density n(i)(r) falls below a desired tolerance. Since

vext + vH = 0 for the ground state for both the interacting and KS systems, total KS

scalar potential required is comprised of the additional Hartree potential ∆vH due to

the presence of the electron quasiparticle, and the exchange-correlation potential of the

whole system:

vKS(z) = ∆vH(z) + vxc(z). (4.16)

Using the above procedure, the accuracy of the KS charge density is such that, for any

position z, the error is never in excess of 5× 10−5 %.

Since there is no external vector potential in the model system, one might expect

that the KS representation would also have no KS vector potential, in which case the

DFT calculation above would be exact. In fact, this is not the case. Fig. 4.4 shows the

current density carried by the quasiparticle and by the KS systems. As can be seen,

the physical current density predicted by the DFT calculation falls short of the physical

quasiparticle current density by 2.5%, which is very large compared with the typical

10−5 % error in the charge density, and is due to the fact that even exact density-

functional theory fails to reproduce the semiconductor band structure [118] and thus

the electron group velocities.

We can assure ourselves that the error arises from the nonlocality of the self-energy

operator by allowing the nonlocal range, w, of the operator to go to zero. Fig. 4.5

shows that, as the nonlocal range is reduced, the error in the DFT current is also

reduced. The DFT KS system becomes exact when the nonlocal range is zero and the

interacting and KS bands are identical.

Thus the QP system cannot be reproduced by a KS scalar potential alone: if it

can be reproduced at all, a vector potential is also necessary, even though there is no

equivalent phenomenon in the interacting nanowire. Fig. 4.4 shows the exact vector

potential which, within the traditional paramagnetic current-based CDFT of Vignale

and Rasolt, along with the DFT scalar potential of Fig. 4.3, reproduces both the charge

density and paramagnetic current density (also shown) of the model system. (In the
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Figure 4.3: The electron density of the model 1D nanowire with the current-carrying electron
quasiparticle added (top), and the exact DFT scalar potential which reproduces it (middle). The
exact DFT scalar potential was determined by applying the van Leeuwen-Baerends procedure for 250
iterations, with the resulting spatially-dependent percentage error shown (bottom).

absence of an external vector potential, the physical and paramagnetic QP current

densities are identical.) However, the physical current density of the KS-CDFT system

remains that of the KS-DFT system: nothing physical has actually changed because

the vector potential corresponds to nothing more than a gauge-transform.

This must always be the case for one-dimensional steady-state systems, since any

1D vector potential may always be written as

AKS(z) = − ∂

∂z
λ(z) (4.17)

and thus has no nonzero divergence-free contributions. For this reason, steady-state

Kohn-Sham systems in one-dimension are unlikely to be accurate when there is any

significant difference between the KS band structure and that of the interacting system

being modelled, as is often the case. This could potentially make the 1D approximation,

which one might expect to capture most of the physics of a pseudo-1D interacting

system, very poor in steady-state density-functional theories.

96



 0.0225

 0.023

 0.0235

 0.024

 0  4

j(z
) 

(a
.u

.)

z (a.u.)

Quasiparticle current
DFT current

CDFT paramagnetic
CDFT total

-0.0012

-0.0011

-0.001

-0.0009

 0  4  8  12  16  20  24  28  32  36  40

A
K

S
(z

) 
(a

.u
.)

z (a.u.)

Figure 4.4: Quasiparticle and DFT steady-state current densities: The total current densities
(left) carried by the quasiparticle (black squares) and the exact KS-DFT system (red circles). The
current predicted by exact DFT – which yields the correct charge density – underestimates the true
current. Applying the CDFT of Vignale and Rasolt, the paramagnetic current (blue solid) in the
presence of a vector potential (right) reproduces the QP paramagnetic current, but the physical current
(green dashed) remains unimproved: the vector potential corresponds only to a change of gauge, not
to any physical electric or magnetic fields.

4.3 The three-dimensional nanowire

Whereas in a one-dimensional wire there can be no divergence-free nonzero vector

potentials, the same is not true in two- and three-dimensional systems. This section

will consider a cylindrically-symmetric three-dimensional nanowire similar to the one-

dimensional case above but confined radially by a strong but finite r6 external potential.

We consider again the model self-energy operator, this time of the form

Σ(r, r′) = 1
2

(
f(r) + f(r′)

)
g(
∣∣r− r′

∣∣) (4.18)

f(r) = −F0 (1− cos(2πz/a)) (4.19)

g(r) =
e−(r2/w2)

√
πw

. (4.20)

The model self-energy operator is defined for all three dimensions but the periodic part

depends only on the axial dimension z. For the nanowire under study, the parameters

F0 = 4.1 eV and a = 4 a.u. are chosen once again to resemble a silicon nanowire,

but a smaller nonlocality of w = 0.5 a.u.: approximately the Wigner-Seitz radius

rs = (3/4πn)1/3 given by the average charge density of the wire.

Mirroring the 1D wire, a supercell of 10 unit cells is defined, each contributing two

electrons (one spin-up, one spin-down) with an additional two electrons in the standing

state at the bottom of the conduction band, yielding a ground state of N = 22 electrons.

As with the 1D wire, we assume that the longitudinal variation of the external
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Figure 4.5: Current effects of the DFT band-gap error: The error in the current density
predicted by exact DFT. As the nonlocal range, w, of the self-energy operator is reduced, the error in
the DFT current density is likewise reduced. At w = 0, the two bands converge.

potential will be approximately screened by the electronic charge, and any variation that

does exist will be the same in both the interacting system and the KS representation:

since we are only interested in the differences between the two representations, any

contributions to the scalar potential that are the same in both may be ignored. The

stronger, confining part of the external potential will not be expected to be cancelled

completely by the Hartree potential, and thus the sum of the external and Hartree

potentials of the ground-state system is taken to be of the form vext(r) + vH(r) = Hr6,

where H is a parameter controlling the strength of the confinement. H is chosen to

high enough to ensure that neither the 22 ground-state electrons, nor the additional

quasiparticle, are in any subband other than the lowest: H = 2eV/a.u.6 suffices.

As in the 1D case, the electron quasiparticle is added to the lowest-energy, right-

propagating unoccupied state. The resulting charge and physical current densities of

the model system are shown in Fig. 4.6. As can be seen, the r6 confining potential

0481216 00.511.522.5

0

0.05

0.1

0.15

n
(a

.u
.)

z (a.u.) r (a.u.)

n
(a

.u
.)

0481216 00.511.522.5

0

0.001

0.002

0.003

0.004

j(
a.

u.
)

z (a.u.) r (a.u.)

j(
a.

u.
)

Figure 4.6: The charge (left) and physical current (right) density of a 3D nanowire comprised
of a current-carrying electron quasiparticle added to a ground-state wire. The wire is cylindrically-
symmetric, and the outward radial direction is parallel to the arrow.
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ensures that the charge and current density decay quickly to zero with increasing radial

distance r from the centre of the wire such that we may focus on the region r ≤ 2 a.u.

The Kohn-Sham scalar potential which reproduces the model nanowire electron

density is found again by the van Leeuwen-Baerends procedure, starting from an initial

guess that is equal to the self-energy operator when the nonlocal range w = 0. Because

the charge densities of both the model and KS systems decay to zero, convergence

with the van Leeuwen-Baerends procedure alone is more difficult, so the procedure

is augmented by a simple, practical iterative scheme which gives corrections to the

potential of

v
(i+1)
KS (r) = v(i) + µ

(
n

(i)
KS(r)− n(r)

)
, (4.21)

where µ is a controllable parameter, n(r) is the exact charge density of the model

system, and n
(i)
KS(r) is the charge density of the KS system having zero vector potential

and a scalar potential v(i)(r). The algorithm behaves asymptotically convergent for

a fixed µ, but gives much better convergence when used in conjunction with the van

Leeuwen-Baerends procedure, taking us sufficiently close to the exact DFT potential.

The two procedures described above were applied iteratively until the maximum

spatially-dependent error in the KS charge density was reduced to 0.005%. The KS

scalar potential which reproduces the model system electron density is shown in Fig.

4.7.
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Figure 4.7: The KS scalar potential which, in the absence of a KS vector potential, reproduces the
model system’s electron density to an accuracy of, at worst, 0.005%.

The error in the KS charge density at each iteration of the calculation of the KS

scalar potential can be quantified as

εn =

√√√√∫ dr
(
n(r)− n(i)

KS(r)
)2

V
. (4.22)
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where V is the volume of the supercell. Fig. 4.8 shows a logarithmic plot of how this

quantity changes with each iteration, first via the van Leeuwen-Baerends procedure,

then, from i = 133 onwards, via Eq. 4.21. One can see that, whereas in the 1D case the

van Leeuwen-Baerends procedure was quickly convergent for all iterations, the fact that

the charge density is finite in the radial direction and the procedure depends inversely

on this quantity limits the improvements made by it very early on, at about i = 10.

The resultant KS current density again falls short of the current density of the

model system governed by the nonlocal self-energy operator by 5%, an even larger

error than in the one-dimensional case. This is again due to the differences in the band

structures of the two systems: the gradient of the band structure in vicinity of the

electron quasiparticle determines the group velocity of the quasiparticle and thus the

current density (see Fig. 4.9).

Applying the steady-state reverse-engineering algorithm to the nanowire we can now

find corrections to the KS vector potential that have divergence-free contributions,

corresponding to a magnetic field, with the aim of reproducing the physical current

density of the nanowire.

Once again, we can quantify the error in the KS current density at each iteration

of the reverse-engineering algorithm as

εj =

√√√√∫V dr
(
j(r)− j

(i)
KS(r)

)2

V
. (4.23)

This error is shown in Fig. 4.10 for each iteration of, first, the DFT calculation and,

from i = 150, the CDFT reverse-engineering calculation. During the DFT calculation,

the current density very quickly becomes insensitive to any improvement in the charge

density. The reverse-engineering algorithm, on the other hand, provides sudden and

exponential improvement to the current density, and the final accuracy of the KS

current density is 10−4 %.

Fig. 4.11 shows the vector potential calculated via this procedure that ensures that

both the charge and physical current density are those of the model system, along with

the corresponding magnetic field∇×A. (In general, it would be necessary to recalculate

the scalar potential as well, since the presence of a magnetic field will change the charge

density of the system. As it happens, in this case the deformation of the charge density

due to the magnetic field is very small, and the scalar potential of the DFT calculation

is correct to a very good approximation, with εn = 1.3× 10−7, compared to the exact

DFT value of 2.6× 10−8.)
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Figure 4.8: The error ε in the KS charge density as the exact DFT calculation converges to within
the accepted error. The van Leeuwen-Baerends procedure becomes limited very quickly (around i = 10)
but does not diverge. At i = 130, the calculation switches from the van Leeuwen-Baerends procedure
to that of Eq. 4.21 to bring us sufficiently close to the exact DFT potential.
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Figure 4.10: The error εj for each iteration of the DFT calculation (i < 150) and of the CDFT
reverse-engineering algorithm (i ≥ 150). As can be seen, the current density quickly becomes insensitive
to corrections in the scalar potential in the absence of an XC vector potential, and converges suddenly
and exponentially toward the desired accuracy as that vector potential is calculated.

Like the interacting nanowire, the exact KS state which reproduces its charge and

current density is degenerate: there is a left-propagating KS state that has the same

energy subject to the same KS external potentials. However, unlike the interacting

nanowire, this left-propagating degenerate state does not have the same current density

with the opposite sign: that is, it is not the corresponding left-propagating state of the

interacting nanowire itself. The degeneracy of the nanowire has been lifted by the

current-sensitivity of the KS vector potential, but the vector potential has introduced

a new KS degeneracy (see Fig. 4.12).

This can be compared to the XC vector potential which is given by the Vignale-

Rasolt functional in Eq. 2.120 by fitting the magnetic susceptibility of the functional

to yield the best approximation to the actual current density. Finding an approximate

susceptibility of b = 0.35 a.u., the resulting VR vector potential is shown in Fig. 4.13.

While the VR functional correctly predicts that the vector potential is parallel to the

current density, and fitting the magnetic susceptibility ensures that the potential will

be on a similar scale to the exact, it is qualitatively very different to the potential

yielded by the reverse-engineering algorithm, demonstrating a much stronger radial

dependence that would have a much stronger associated XC magnetic field. However,

the VR functional was derived from considering the homogeneous electron gas and, as

such, is ill-suited to finite systems, particularly due to the inverse square relationship

to the charge density which very quickly goes to zero with increasing radius.

While the individual electrons in a KS system have no physical meaning in and

of themselves, properties of the electronic states, such as the energy level differences

probed in absorption and emission calculations, are often taken to be analogous to
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Figure 4.11: The exchange-correlation vector potential of the exact KS-CDFT representation of
the model nanowire (top left). Only the axial (z-) component of the vector potential is nonzero. This
corresponds to a purely azimuthal XC magnetic field (top right). The field resembles a Biot-Savart
magnetic field arising due to the current, but is oppositely-directed (bottom) and increases radially
outward. The radial increase in the strength of the field is due to the similarly radially-increasing
electric field of the confining potential.

their real, interacting counterparts. Given that there were no external magnetic fields

in the model system, it is striking how different the KS electrons are to those of the

model system, engaging as they do in qualitatively different phenomena. Two cases in

point are the sources of the physical KS current density and the electrons involved in

carrying it. In the interacting nanowire, the net current was purely paramagnetic and

carried only by the quasiparticle. In the KS representation of the same system, part

of the current is paramagnetic and part of it is diamagnetic. Furthermore, electrons in

all of the KS energy levels carry some of the paramagnetic current density, not just the

highest-energy occupied state, as can be seen in Fig. 4.14 which plots the total current

density jz,val(r) of the 22 lowest-energy electrons.

The distribution of the current across the electrons in the system is not the only
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Figure 4.12: Degeneracies in interacting systems and their Kohn-Sham representations.
Certain external potentials have multiple ground-state solutions with the same energies but different
ground-state densities. In their KS representations, systems that are degenerate in the interacting world
are not necessarily degenerate with each other in the KS world, but may be degenerate with other KS
states. For example, the external potentials v1,A1 yield two degenerate states in the set Nint[v1,A1].
The KS representations of these states are not degenerate with each other, however are yielded by KS
potentials, here vKS,1,AKS,1 and vKS,3,AKS,3 that themselves have degenerate KS ground states.

major qualitative difference between the KS electrons and those of the model system.

In the model system, the ground state to which the electron quasiparticle is added

consists of equal numbers of spin-up and spin-down electrons yielding, in the absence

of any external magnetic fields, no net magnetisation. The electron quasiparticle then

carries all of the net magnetisation of the system. Since there are no external magnetic

fields coupling to quasiparticle spin via a Stern-Gerlach interaction, and in the absence

of spin-orbit interactions, the nanowire is spin-degenerate: the spin does not enter into

the quasiparticle equation.

In the KS representation, there is both a net magnetisation and an external magnetic

field. Thus if the quasiparticle magnetisation is such that B ·m is nonzero, there will be

a Stern-Gerlach interaction in the KS system: a phenomenon completely absent in the

interacting system. (Because Bxc is purely azimuthal, the radial and axial components

of the spin will not couple to it and may be neglected.) The KS equations for the
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Figure 4.13: Comparison of the exact vector potential and the VR approximation. The
XC vector potential (top) predicted by the Vignale-Rasolt functional for a fitted magnetic susceptibility
of b = 0.35 a.u. over a single unit cell with the reverse-engineered potential also shown for comparison.
The predicted vector potential is qualitatively different from the exact, showing much more radial
dependence corresponding to a much stronger XC magnetic field, dwarfing the radial variation of the
exact potential. The VR functional is based on the homogeneous electron gas and is ill-suited to finite
systems, especially strongly-confined ones. As a result, it does not predict the correct charge density
for the system (bottom).

system are now(
1
2 [p̂ + AKS(r)]2 + vKS(r) + µBBKS(r) · σ̂

)
ψKS,i(r) = εiψKS,i(r) (4.24)

n(r) =
N∑
i=1

|ψKS,i(r)|2 (4.25)

jKS,d(r) = AKS(r)n(r) (4.26)

m(r) = µB

N∑
i=1

ψ∗KS,i(r)σ̂ψKS,i(r), (4.27)

where m(r) is the magnetisation of the KS system, equal to that of the quasiparticle.

Thus the KS Hamiltonian that has, as itsN -electron ground state, a charge and physical

current density equal to that of the model nanowire must have spin-dependent terms

in order to cancel the effect of the Stern-Gerlach interaction. Since the vector potential

is fixed via the charge and diamagnetic current densities, the presence of a nonzero
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Figure 4.14: The physical current (top) of both the quasiparticle (squares) and exact KS (red
solid line) systems. While the quasiparticle current is purely paramagnetic, in the KS system which
reproduces it the current is composed of both paramagnetic (green dashed) and diamagnetic (blue
dotted) components. A small part of the net KS paramagnetic current density is now also carried by
the electrons that carried no net current in the model system or the ground-state KS or current-carrying
KS-DFT representations (bottom).

Stern-Gerlach term must be accompanied by an additional contribution to the KS

scalar potential that depends both on the net KS spin and the current density, as well

as the charge density.

Generally, any nonzero contribution to the Stern-Gerlach interaction will depend

on the spatial position, however for a simple illustration we will take the magnetisation

of the quasiparticle to be such that the total spin of the KS system has an azimuthal

component that is independent of position and with a value of sKS,θ = 1
2 . Figure 4.15

shows the resulting additional KS scalar potential required to counteract the effects of

the Stern-Gerlach interaction, leaving the ground-state KS physical densities as per the

interacting model system.

As can be seen, the effect is small because the magnetisation of the nanowire and

the XC magnetic field are small, and therefore in this case can be neglected with

little loss of accuracy. For more highly magnetised systems or those requiring stronger
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Figure 4.15: Exchange-correlation Stern-Gerlach effects: The additional KS scalar potential
required for sKS,θ = 1

2
due to a spin-dependent Stern-Gerlach interaction in the presence of the effective

external KS vector potential AKS. The XC scalar potential has an intrinsic functional dependence on
the current density and the magnetisation, as well as the charge density.

XC magnetic fields due to greater DFT underestimates (or, possibly, overestimates)

in Kohn-Sham current density, the effect will be proportionally larger, meaning that

the XC scalar potential has a potentially strong functional dependence on the current

density and magnetisation, as well as the charge density.

In conclusion, the exact KS system which reproduces the charge and current den-

sity (and, more generally, the magnetisation) of an interacting steady-state system is

qualitatively and strikingly different from that interacting system even in a very simple

case. In the absence of external magnetic fields, the KS representation will generally

require an effective external magnetic field that depends on both the charge and the

current density. Degenerate interacting systems where different states will correspond

to different current densities will therefore not yield likewise-degenerate states of the

same KS Hamiltonian. Furthermore, the presence of the intrinsic KS magnetic field will

yield a Stern-Gerlach interaction that may be entirely absent in the interacting system.

In order to reproduce the correct charge and current density in the presence of such an

effective Stern-Gerlach interaction, a spin- and current-dependent KS scalar potential

is required and thus spin-degenerate states in the interacting system have KS represen-

tations that are not degenerate states of the same KS Hamiltonian. The Stern-Gerlach

interaction gives XC scalar potential a potentially strong functional dependence on the

current density and magnetisation, as well as the charge density.

All of this is in stark contrast to the approach one would take in simply matching

the paramagnetic current densities of the interacting and KS systems which, as we have

seen, might result in nothing more than a gauge-transformation of a DFT calculation.

The above study demonstrates the consequences of the scheme by which we map Kohn-

Sham potentials onto densities. The XC energy functional, for instance, is gauge-
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invariant [124] and thus the XC vector potential functional Eq. 2.120 is likewise gauge-

invariant, and yet the choice of mapping gauge-variant densities onto KS potentials

may yield XC vector potentials that are purely longitudinal.

This contradiction is removed when we map physical, gauge-invariant densities to

KS potentials, since longitudinal vector potentials do not enter into such maps. This

does introduce an ambiguity into the KS potentials: for a given KS system such as the

one calculated above there exists an infinitum number of alternatives which yield the

same physical densities and XC energy, analogous to the additive constant in the scalar

potential. It remains unshown, however, whether there might exist an alternative set of

KS electromagnetic fields that yield the same physical densities but different ground-

state wavefunctions, a question that has been shown in the previous two chapters to

be immune to a Hohenberg-Kohn-like treatment.
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Chapter 5

Time-dependent quantum

transport

In the previous chapter we saw that, even for interacting systems free from magnetic

fields, a Kohn-Sham magnetic field is generally required to describe them exactly using

the KS scheme. We also saw the application of the time-independent form of the

reverse-engineering algorithm to the realm of steady-state current-carrying systems,

and found that it was very quickly convergent and highly accurate.

This chapter will focus on the description of systems that are time-dependent with-

out being subject to time-dependent external fields, extending the studies of the one-

dimensional steady-state nanowire which was found to be not describable exactly in

the KS scheme. Because 1D steady-state currents cannot be reproduced exactly in 1D

KS systems, we shall only consider the longitudinal part of the current density.

The systems under study will once more be based on quasiparticle calculations

employing the model self-energy operator. To ensure that the current density has

no nonzero time-independent parts, and that the system will be in the nonequilib-

rium regime even in the absence time-dependent external potentials, we will consider

localised quasiparticle wavepackets with positive crystal momentum added to a ground-

state infinite, semiconducting wire, again based on the properties of silicon. The quasi-

particle wavepacket will be able to propagate through the wire due to its intrinsic

momentum and in the absence of applied fields.

In an exact calculation, a quasiparticle added to a ground-state system should

be in an eigenstate of the time-independent quasiparticle equation, a criterion which

yielded the steady-state systems studied in the previous chapter. However, the electron

wavepacket is a more realistic description of electrons in devices. In order to construct
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a nonequilibrium system based on the addition of a quasiparticle wavepacket, we relax

this restriction slightly and construct the wavepacket as a weighted sum over a small

range of pure quasiparticle states. So long as the range of eigenstates summed over is

small, the quasiparticle still approximately has the crystal momentum of a pure state

and we remain in the quasiparticle approximation.

The criteria of time-independent fields and time-dependent densities also necessi-

tates that we choose an initial time t = 0 at which the system is already in an excited

state. This is fully consistent with the Runge-Gross theorem, which states that the

time-dependent external potential is a unique functional of the time-dependent charge

density and the initial wavefunction of the system which need not be a ground state.

As has been demonstrated by Maitra and Burke [110], the full wavefunction at any

given time t1 encodes within it all memory of the history of the system from t < t1: if

we consider a system described by an initial states Ψ(t0) and a time-dependent charge

density n(t ≥ t0), the time-dependent potential is uniquely defined for t ≥ t0. If that

system passes through the state Ψ(t1) at time t1, we could also uniquely define the

time-dependent potential over t ≥ t1 from that state and the charge density n(t ≥ t1)

without access to the wavefunction at times t < t1.

This freedom to choose an initial state with the correct charge density will be ex-

ploited here. However, in not starting from a ground state, this freedom also introduces

an initial-state dependence for our potentials: a different initial state with the same

density will yield a different time-dependent potential. That said, the choice of a ground

state for our system at t = t0 is hardly less arbitrary unless we wish to study transient

effects in perturbed ground states (which, here, we do not) since the freedom of choice

of an initial state at t1 corresponds to the myriad ways we might time-evolve a t0 system

into that state, including a potentially infinite number of means by which one could

reach that state from a ground state system.

The self-energy operator employed in the steady-state calculation was nonlocal but

Hermitian, appropriate for a quasiparticle added to the lowest unoccupied energy level

above the Fermi energy. The nonequilibrium quasiparticle will not occupy the lowest

available energy level but a range of states. As such, one would expect such a QP to

have a finite lifetime, however large. In order to separate out the effects of the nonlocal

dependence of the SE and those pertaining to correlations, we will first investigate the

behaviour of QP under the assumption of approximately infinite lifetime.

This will then be compared to a more realistic QP model that incorporates finite-

lifetime effects. Within the restrictions of conservation of energy, momentum and elec-

tron number, we can calculate the final state to which the system tends with time
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as a statistical distribution, i.e. an ensemble represented by a density-matrix, given

by Fermi-Dirac statistics. Separating out the Hermitian and non-Hermitian parts of

the self-energy operator, we can then calculate the equation of motion for the time-

dependent density matrix, from which we can calculate the time-dependent charge and

current densities as inputs to the time-dependent reverse-engineering algorithm.

First, in Sec. 5.1, we will introduce the stable but nonlocally-interacting system

being modelled using quasiparticle theory, including the ground-state system the quasi-

particle will be added to. Then in Sec. 5.2 we will examine the means by which we

can, in the Kohn-Sham scheme, reproduce the ground and initial states of the model

wire, the latter of which, as has been discussed above, has multiple solutions. We will

also see that the KS system will be unable to reproduce the correct time-dependent

charge density of the interacting system, which is itself free from time-dependent exter-

nal fields, without a time-dependent KS potential. In Sec. 5.3 we will investigate how

the time-dependent form of the reverse-engineering algorithm operates in the nonequi-

librium regime, what obstacles there are to overcome, how it converges. Sec. 5.4 will

look at the resultant time-dependent KS scalar potentials for a given initial KS state,

its physical meaning (in the Kohn-Sham universe), which aspects are captured by ex-

isting functionals and how it might be approximated by future functionals as well as a

cursory examination of the initial-state-dependence of the potential.

In Sec. 5.5, we will calculate the time-dependent charge and current densities of a

QP subject to a non-Hermitian, nonlocal but energy-independent self-energy operator.

The KS potentials required to reproduce these densities will be separated into two

kinds: the first, studied in Sec. 5.7, will be based on a QP that is already decaying

at t = 0 with a corresponding initial KS state, and the time-dependent KS potentials

required to ensure the wavepacket decays with the correct time-dependence; the second,

studied in Sec. 5.6, will study a QP that is decaying infinitesimally after t = 0 with a

corresponding KS state, the KS potential that is required to induce the correct decay,

and the initial-state-dependence of the time-dependent KS potential.

A modified version of this work appeared in Ramsden and Godby, 2012 [147].

5.1 The nonequilibrium quasiparticle

The work in this chapter will focus on the study of a single time-dependent system

comprised of a localised quasiparticle wavepacket added to a ground-state, 1D semi-

conducting nanowire modelled on silicon. We employ once more the model self-energy
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operator used in the previous chapter

Σ(x, x′) =
f(x) + f(x′)

2
g(
∣∣x− x′∣∣) (5.1)

where

f(x) = −F0 [1− cos(2πx/a)] (5.2)

g(x) =
1

w
√
π

exp

(
−
( x
w

)2
)
. (5.3)

f(x) introduces the periodicity of the self-energy operator present in periodic systems,

with amplitude F0 = 4.1 eV and unit cell length a = 4 a.u., and g(x) introduces

the nonlocality of the self-energy via a Gaussian broadening function of average range

w = 2 a.u.

The model nanowire consists this time of a supercell of 20 unit cells, modelling an

infinite wire via the use of periodic boundary conditions, each contributing one spinless

electron to the total ground-state charge density. The system is sampled at the Γ-point,

thus each electron is normalised to a region the size of the supercell, and the occupied

states exactly fill the semiconductor valence band. The single-particle electronic states

of the system are given by the quasiparticle equation which is, once again,

[
−1

2∇
2 + vext(x) + vH(x)− εk

]
φk(x) +

∫ ∞
−∞

dx′ Σ(x, x′)φk(x). (5.4)

As before, since the external and Hartree terms are the same in both the QP and KS

systems, we take vext + vH = 0.

The band structure of this system is identical to that of the 1D steady-state system

shown in 4.1. However, the longer supercell length and the choice of spinless electrons

in the ground state being employed here yield a different charge density (more precisely,

exactly half the ground-state density of the steady-state system for twice as many unit

cells), which is shown in Fig. 5.1.

Into the centre of the supercell, the quasiparticle wavepacket is injected and allowed

to propagate under its own finite crystal momentum. The wavepacket is constructed

as a weighted sum over the right-propagating states of the first excited band of the

semiconductor. Sampling at the Γ-point for a 20-atom supercell gives a choice of nine

such available unoccupied states. The occupation numbers for the quasiparticle were

selected via numerical optimisation using Powell’s conjugate direction method [148],

minimising the density of the resulting wavepacket for only the first two and last two
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Figure 5.1: Charge density of the ground-state semiconducting nanowire. The ground
state is defined over a supercell of 20 unit cells with periodic boundary conditions, each unit cell
corresponding to a silicon ion which contributes one spinless electron to the total density.

unit cells of the supercell. This allows the quasiparticle to nbe localised enough to ensure

a localisation of the current density, but large enough to ensure the quasiparticle has a

well-defined crystal momentum. The coefficients of the right-going pure quasiparticle

states are shown in Fig. 5.2 and yield the wavefunction

ψQP(x, t0) =
∑
k

ckφk(x). (5.5)

The density of the initial quasiparticle wavepacket is shown in Fig. 5.3 below.
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Figure 5.2: The quasiparticle wavepacket coefficients of pure Bloch states. The quasi-
particle wavepacket is constructed as a weighted sum of pure Bloch-wave quasiparticle states whose
coefficients, shown here, are calculated by minimising the quasiparticle density in the first and last two
unit cells of the supercell.

Thus constructed, only the wavepacket need be time-evolved via the time-dependent
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Figure 5.3: The initial quasiparticle wavepacket density. The quasiparticle wavepacket is
constructed as a weighted sum over right-propagating eigenstates of the quasiparticle equation for the
chosen self-energy operator. The wavepacket begins in the centre of the supercell and is allowed to
propagate freely.

quasiparticle equation

i
∂ψQP(x, t)

∂t
= −1

2∇
2ψQP(x, t) +

∫ ∞
−∞

dx′ Σ(x, x′)ψQP(x′, t) = ĤQPψQP(x) (5.6)

since the electrons in the valence band are already in eigenstates of the quasiparticle

equation and, as such, will only change in time by a physically meaningless phase.

The Crank-Nicolson method [149; 150; 151] is employed to solve the time-dependent

quasiparticle equation such that, for a known wavefunction at time t, the unknown

wavefunction at time t+ ∆t is given by(
1 +

(
1
2 i∆tĤQP

)
)
)
ψQP(x, t+ ∆t) =

(
1−

(
1
2 i∆tĤQP

)
)
)
ψQP(x, t). (5.7)

The Crank-Nicolson method was chosen for its unconditional stability [152] and norm-

conservation. It is also second-order in time, and thus can be made highly accurate

with a sufficiently small time-step ∆t. In this calculation, ∆t = 4×10−3 a.u. is chosen.

A second benefit of using such a small time-step is that, with such a fine discretisation

of the timeline, the continuity equation still holds to good approximation.

The charge density of the time-dependent quasiparticle at a given time t is, as usual,

the absolute square of the quasiparticle wavefunction |ψQP|2, while the physical current
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density of the quasiparticle, as in Sec. 4.2, is

jQP(x, t) =
1

2i

(
ψ∗QP(x, t)∂xψQP(x, t)− ψQP(x, t)∂xψ

∗
QP(x, t)

)
+

∫ x

−∞
dx′

∫ ∞
−∞

dx′′ iψ∗QP(x′, t)Σ(x′, x′′)ψQP(x′′, t) + c.c.. (5.8)

Snapshots of the resulting time-dependent charge density of the quasiparticle, as well

as the corresponding time-dependent current density, after 1, 75 and 150 time-steps is

shown in Fig. 5.4. Over this small amount of time, the quasiparticle has not propagated

very far, but the manner by which it does so is already evident. The wavepacket does

not move as a rigid mass, or even approximately so; rather the propagation arises due

to the density to the right of the centre of mass growing and the density to the left

attenuating with time. The current density, on the other hand, maintains its shape at

all times and simply translates along the wire rigidly with time.
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Figure 5.4: Time-dependence of the quasiparticle wavepacket. The quasiparticle wavepacket
is time-evolved under fixed conditions and the density is captured at snapshots (above) in time at
t = ∆t (red solid), 75∆t (greed dashed) and 150∆t (blue dotted). The construction of the wavepacket,
over only right-propagating eigenstates of the quasiparticle equation (inset) ensures that quasiparticle
remains localised and propagates in the positive x-direction. The density propagates not by rigid
translation but by growing to the right of the centre of mass and receding to the left. The current
density (bottom) on the other hand propagates rigidly across the wire, and is shown here at the same
snapshots in time.

Having propagated across one unit cell, the dispersion of the quasiparticle wavepacket

is sufficiently small (see Fig. 5.6 below) that the charge and current densities of the
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system are almost identical to those at t = t0 except for a translation by one unit cell

spacing. As such, we can focus on the behaviour of the system within this interval.

The calculations above then provide the time-dependent charge and current densities

that, along with some specified initial Kohn-Sham state, we need to uniquely identify

the corresponding KS potentials.

The supercell is sufficiently large compared with the unit cell length and the wave-

packet width that the number of electrons in the sampled part of the system does not

change over the simulation time: at all times, there are 21 electrons in the supercell.

Further, due to the periodic boundary conditions of the quasiparticle calculation, there

will remain 21 electrons even after the studied quasiparticle wavepacket has started to

propagate out of the supercell. (To this extent, we may consider the infinite wire as

comprised of an infinite number of supercells to each of which an identical quasiparticle

wavepacket is added at t = 0. Each of the quasiparticles are expected to act very

weakly with one another [28] and so are treated as noninteracting. This is consistent

with the application of quasiparticle theory to quantum transport, described in Sec.

1.1.)

As such, there is never a change in the number of electrons in the supercell as

a whole. However, we have seen in Sec. 1.5 that derivative discontinuities in the

XC energy occur even when local regions of the system have time-dependent electron

numbers that pass through integers. As such, while problems of fractional charges

associated with open quantum systems [153] do not pose a problem in our study, one

might expect localised discontinuities as the number of electrons per unit cell passes

through integers.

If so, one cannot assume periodic boundary conditions in the Kohn-Sham system

even if all physical quantities of interest are periodic, since the dynamics of the Kohn-

Sham electrons may very well depend on a difference between the potential either side

of the wavepacket. This poses a challenge to the KS representation of the system: the

structure is periodic and therefore not necessarily amenable to a real-space represen-

tation, and yet the potentials may be non-periodic and therefore not amenable to a

reciprocal-space representation. We shall investigate this problem further in Sec. 5.3

below.

5.2 The initial Kohn-Sham state

As was discussed in the introduction to this chapter, the choice of initial Kohn-Sham

state with the correct initial charge density will affect which time-dependent KS po-

116



tential will be required to reproduce the time-dependent charge density. An immediate

choice to be made is whether, in the initial state, only the KS electron wavepacket

(corresponding to the quasiparticle wavepacket) is in an excited state or whether there

are other electrons in excited states. It is certainly possible to construct such a system,

however a localised quasiparticle wavepacket was chosen as a more realistic represen-

tation of an added electron: i.e. we consider at t = 0 the electron to be added to the

ground-state supercell.

In a TDDFT representation of the system, such an addition will have an immediate

(at t = 0) effect on the KS potential, but the KS electrons won’t yet have been affected

by it, thus it is reasonable to construct the initial state such that the valence band is

unperturbed. For this reason, we shall choose to assign all of the initial quasiparticle

charge and current density to the conduction electron. Nonetheless, this is only one of

an infinite number of ways of preparing the KS system, and an alternative approach

will be studied later in this section.

Because the initial KS state has been chosen to have the density of the quasiparticle,

t0 KS potential in the regions of the wire away from the quasiparticle is identical to the

ground-state KS potential. The KS potential which reproduces the 20-electron ground-

state density of the model wire, calculated once more using the van Leeuwen-Baerends

procedure, is shown in Fig. 5.5.
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Figure 5.5: KS potential of the ground-state semiconducting nanowire. The KS potential,
found using the val Leeuwen-Baerends procedure, that reproduces the N = 20 electron ground-state
wire of Fig. 5.1.

Since the KS wavepacket has the same charge and current density as the QP

wavepacket ∆n(x, t0), its wavefunction may be written as

ψKS,WP(x, t0) =
√

∆n(x, t0) exp (iλ(x)) (5.9)
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where

λ(x) =

∫ x

−∞
dx′

j(x′, t0)

∆n(x′, t0)
. (5.10)

The
√

∆n(x, t0) term carries no current but gives the wavepacket the correct density,

while the position-dependence complex phase function modifies the real part to yield

the correct current at time t0.

Generally, one would have to be careful that the constructed KS wavepacket does

not have contributions from the already fully occupied electronic states in the ground

state. However, because the ground state exactly fills the valence band while the

electron wavepacket occupies the conduction band with approximately the same crystal

momentum as the QP wavepacket it represents, the wavepacket is inhibited from having

significant contributions from states below the band gap, with the total overlap between

the KS wavepacket and the valence band of 0.0002 a.u. As such, the KS electron

wavepacket is still a weighted sum over excited states of the ground-state KS potential:

ψKS,WP(x, t0) =
∑
k

cKS,kφKS,k(x). (5.11)

These are not, however, the same weightings as used in the QP construction; indeed,

the KS wavepacket may be comprised of a larger or different range of eigenstates of

the ground-state Hamiltonian. As such, while the KS system has the same charge and

current density as the model nanowire at time t0, we might expect the dynamics of

the two systems to differ during time-evolution under fixed fields such that their time-

dependent charge and current densities diverge thereafter. This is indeed the case, as

can be seen in Fig. 5.6 below.

Very shortly after the two systems have been time-evolved, it becomes clear that the

KS electron wavepacket propagates with a lower group velocity than its QP counterpart.

Thus, interestingly, even when the interacting system being modelled is free from time-

dependent fields, the KS system that represents it cannot reproduce its time-dependent

charge and current density without time-dependent KS potentials. The next question

is: What are those time-dependent potentials? How we may calculate these using the

time-dependent reverse-engineering algorithm is the subject of the next section.

5.3 Reverse-engineering in the nonequilibrium regime

For systems described by a time-dependent external potential that is Taylor-expandable

in time acting on a system of N interacting electrons, it was proven by van Leeuwen
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Figure 5.6: QP and KS wavepacket densities for time-independent external fields. The
QP and KS wavepackets are constructed such that they have the same charge and current density
at time t0. The remaining electrons have no net current and yield the same charge densities in the
two representations. Time-evolving both systems according to their ground-state external fields gives
rise to deviations in the two time-dependent charge (and therefore current) densities. It is clear that,
having moved three unit cells along the wire, the KS wavepacket is substantially falling behind its QP
counterpart. This is because the band structures of the two systems differ in their gradients in the
vicinity of the wavepacket.

[109] that there exists an effective external potential – the Kohn-Sham potential –

which produces the same time-dependent density when acting on a system of N nonin-

teracting electrons. In the model interacting system described in the previous section,

the external potential is zero at all times, thus we can be confident that there exists a

Kohn-Sham potential that reproduces its density history.

A proposed method of calculating the exact time-dependent KS potentials for a

given time-dependent density was detailed in Sec. 3.7, particularly Fig. 3.3. One

crucial ingredient is the time-dependent current density, which may either be provided

in addition or, if the current has no nonzero, divergence-free components, may be

calculated from the charge density via the continuity equation.

The time-dependent KS potential, as was proven in Chapter 2, is uniquely defined

by the time-dependent charge density n(x, t ≥ t0), which, along with the corresponding

current density j(x, t ≥ t0), was calculated in Sec. 5.1 for the quasiparticle wavepacket,
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and the initial KS wavefunction |ΨKS(t0)〉, which was calculated in Sec. 5.2.

The reverse-engineering algorithm is applied to calculate the KS potential that is

required to propagate the KS system for one time-step ∆t, from state |ΨKS(t0)〉 to the

state |ΨKS(t0 + ∆t)〉 which has the correct current density j(x, t0 + ∆t).

Once the state |ΨKS(t0 + ∆t)〉 is found, the algorithm may be applied once again

to find the state |ΨKS(t0 + 2∆t)〉 having the correct current density j(x, t0 + 2∆t) and

so on. In this calculation, the Coulomb gauge has been chosen and, since this is a 1D

calculation, no KS magnetic fields can be yielded by the algorithm. As such, the KS

vector potential is always zero.

The reverse-engineering algorithm employed was limited to 1000 iterations per

timestep and remained convergent throughout. The corrections found by the algo-

rithm diminished in size with each iteration, so one might employ far fewer iterations

in practice – generally the correct potential to within around 0.001 % was found within

20 iterations, but the algorithm was allowed to continue to improve upon it, by however

small a correction, for the full 1000 for every time-step. The errors in the KS charge

and current densities were quantified as

εn(t) =

√∫ L

0
dx (n(x, t)− nKS(x, t))2 /L (5.12)

εj(t) =

√∫ L

0
dx (j(x, t)− jKS(x, t))2 /L (5.13)

and are shown in Fig. 5.7 below.

The error in the time-dependent charge, approximately linear in time, is to be ex-

pected from the numerical methods employed to calculate it, namely the discretisation

of the both the spatial axis and time-line of the system, and the Crank-Nicolson prop-

agation scheme. Errors associated with discretised propagation are cumulative and, as

such, the total error tends to increase linearly with time. More pathological are the

small and periodic gains and losses in accuracy of the current density. These occur

because, if the reverse-engineering algorithm can find an improvement, it will, even if

it is simply making corrections due to earlier losses in accuracy associated with the

propagation scheme. As such, the error associated with the current density will tend to

decrease even as the error in the charge increases. Since, from the continuity equation,

it is not possible for the current density to be arbitrarily and highly accurate while the

charge density loses accuracy linearly with time, one cannot expect the algorithm to

maintain that level of accuracy indefinitely. On average, however, the current density
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Figure 5.7: Quantified errors in time-dependent charge and current densities. The error
quantities εn (red solid) associated with the charge density, and εj (green dashed) associated with the
current density as a function of time for t ≤ 125∆t. Both are, on average linear with time which is to
be expected from any numerical scheme for propagation based on a discretised grid. One pathological
element is the alternate gains and losses in accuracy the current density attains due to the reverse-
engineering algorithm’s focus on that quantity. If an improvement can be made to the current density
via a correction to the potential, the algorithm will do so, even if the error it is correcting is due to
numerical errors in the propagation scheme rather than missing elements of the scalar potential.

loses accuracy approximately linearly with time, mirroring the accuracy of the charge

density.

Fig. 5.8 shows snapshots of the additional time-dependent KS scalar potential

∆vKS(x, t) which, in addition to the ground-state KS potential of Fig. 5.5, reproduces

the time-dependent charge and current density of the model nanowire. The snapshots

are taken at the same times as the charge and current densities of the corresponding

QP in Fig. 5.4.

The potential is observed to have three main features:

1. a small potential barrier;

2. a time-dependent periodic component;

3. a time-dependent potential step.

The small potential barrier is localised with the charge and current density of the

wavepacket and corresponds to the Hartree potential of the quasiparticle. (Since the

external potential is unchanged by the addition of the electron wavepacket, the total

potential vext + vH is no longer zero, and indeed is time-dependent. This effect is in-

cluded in the self-energy operator of the quasiparticle and so was not explicitly included

in the quasiparticle equation.) The time-varying periodic component superposed onto

the barrier is also localised with the wavepacket density: note that the periodicity of
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Figure 5.8: The time-dependent KS potential of the semiconducting nanowire. The
additional time-dependent KS potential required, in addition to the ground-state KS potential, to
reproduce the dynamic charge and current densities of the nonequilibrium semiconducting nanowire at
snapshots in time of ∆t (red solid), 75∆t (green dashed) and 150∆t (blue dotted) with ∆t = 4× 10−3

a.u. The potential consists of three main components: a small Hartree-like potential barrier, a time-
dependent periodic component that tunes the local band structure, and a time-dependent potential
step which has an ultranonlocal functional dependence on the charge and current density.

the potential in the vicinity of wavepacket is not fixed, essentially locally modifying the

nature of the underlying semiconductor lattice and so tuning the local band structure.

Since the gradient of the band structure determines the group velocity of the eigen-

states (see Fig. 5.9 below), this changes, in a position- and time-dependent way, the

group velocity of the wavepacket.

The third and most striking component is the time-dependent potential differ-

ence between the left and right sides of the wavepacket, equivalent to having a time-

dependent potential bias across the entire (infinite) wire. Away from the localised

wavepacket, the charge density is time-independent and remains that of the ground-

state system. Despite this, the relative values of the potential behind and ahead of

the propagating wavepacket differ, and in a time-dependent way, creating a dynamic

effective exchange-correlation electrochemical potential across the wavepacket.

The step, like the rest of the KS potential, is sensitive to the initial conditions

of the simulation. However, at later times, the potential step appears to obey an

approximately periodic time-dependence, as shown in Fig. 5.10. It is not possible to

state whether the deviation from periodicity, appearing here as a small attenuation of

the step amplitude, is numerical or physical: on the one hand, the periodic deviations

from a smoothly-varying step, approximately coincident with the afore-mentioned steps
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Figure 5.9: Band structures of the QP and ground-state KS systems in the vicinity of the
wavepacket. The QP (solid black) and ground-state KS (dashed blue) systems have band structures
with different gradients in the region where the wavepacket is defined (shaded region), yielding Bloch
states with different group velocities. Since the localised conduction electrons are composed of similar
weighted sums over these states, the resulting wavepackets have different velocities. The periodic part
of the time-dependent KS potential (see Fig. 5.8) “tunes” the local band structure in the wavepacket
region such that, in conjunction with the other features of the potential, the KS wavepacket obtains
the correct velocity.

in the current density error, while small, generally increase in duration over time; on

the other, the wavepacket is dispersing as it propagates, thus one would not expect

a temporally periodic potential. Importantly, however, the step does not increase in

size indefinitely – consistent with the approximate periodicity of the system in the

wavepacket’s frame of reference – nor does it settle to a constant size, i.e. it is not a

transient effect but a genuine dynamic one.
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Figure 5.10: Long-time alternation of the time-dependent potential step: Time-dependence
of the potential step after initial transient effects have subsided. The step amplitude appears approxi-
mately periodic, as one might expect as the quasiparticle moves from one unit cell to the next.

It is the interplay between these three components which force the wavepacket
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to propagate with the correct group velocity: the barrier acting as a local source of

resistance, the periodic part raising and lowering the group velocities of the underlying

Bloch states of which the wavepacket is comprised and thus raising and lowering the

group velocity of the wavepacket itself in a position- and time-dependent way, and the

time-dependent potential step in turn accelerating and decelerating the KS wavepacket

externally.

The correct physics clearly cannot be captured with an approximate potential that

is a local and adiabatic functional of the charge density: a functional such as the

ALDA or the adiabatic GGA would predict that the regions ahead of and behind the

wavepacket would have exactly the same potential and fail to predict the necessary

time-dependent potential step.

A related difficulty to overcome in employing KS schemes to realistically model

quantum transport phenomena is that, quite clearly, systems whose time-dependent

charge and current densities obey periodic boundary conditions have corresponding

KS potentials do not: enforcing periodic boundary conditions in the KS description

of the nanowire would destroy the time-dependent potential step and lose some of

the necessary physics. While the quasiparticle description that produced the input

densities was calculated in reciprocal space, the KS system here had to be calculated in

real space which, for a periodic system, introduces significant computational difficulties

in applying the Crank-Nicolson method of propagation.

One saving grace is that, while the KS potential is nonperiodic, the electron wavepacket

is zero at the edges of the supercell and thus the KS wavefunctions still obey the Bloch

condition there such that, add the edges of the supercell,

φKS,k(x+ a, t) = eiαφKS,k(x, t). (5.14)

This allows one to adopt a mixed approach: here, we perform the time-evolution of

the wavefunctions in real space as we would a finite system, but we enforce the correct

periodicity without destroying the potential step by, at each time-step, extending the

supercell beyond the simulation region (0 ≤ x ≤ L) with left and right “buffer regions”

extrapolated from the Bloch condition. This allows one to propagate the KS system

on the larger grid, with any errors associated with the finite difference scheme of the

Crank-Nicolson method remaining within the buffer regions which are then discarded.

This approach holds for as long as the KS wavepacket remains zero at the edges of the

supercell which, since we are studying a sufficiently small interval of time, in this case

it will. (For longer times, one may extend the buffer region further to the right of the
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supercell and discard unit cells to the left.)

The Coulomb gauge employed in the above calculation highlights is not the only sen-

sible choice of gauge, nor is it the most computational efficient. The reverse-engineering

algorithm calculates corrections to the Kohn-Sham electric field initially in the form of

a stored but unused vector potential ∆A′KS(x, t), yielding an additional electric field

EKS(x, t) = −∂tA′KS(x, t) which is then implemented as a scalar potential

∆vKS(x, t) = −
∫ x

−∞
dx′ EKS(x′, t), (5.15)

effectively calculating the fields in the velocity gauge and then gauge-transforming to

the Coulomb gauge. This gauge transform requires an additional integral over space

which can be avoided by performing the whole calculation in the velocity gauge.

However, while the spatially ultranonlocal behaviour of the KS scalar potential

is removed (since we are no longer integrating over the electric field), the transform

introduces nonlocal temporal behaviour in the vector potential and its relationship

to the charge density. Figure 5.11 shows the time-dependent charge density at five

fixed positions for times 0 ≤ t ≤ 125∆t and the corresponding vector potential which

reproduces it.
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Figure 5.11: The time-dependent vector potential and charge density. An alternative KS
description incorporates the time-dependence of the exact KS electric field as a vector, rather than
scalar potential. While this removes the specific ultranonlocalities of the scalar potential, arising due
to a spatial integral over the electric field, it introduces a temporal nonlocality, as evidenced here by,
for example, the time-dependence of the vector potential at x = 40 a.u. where the density remains
approximately time-independent.

One striking feature of the time-dependent vector potential is evident at position

x = 40 a.u., where the charge density remains relatively constant for the first 125

timesteps, and yet the vector potential is gradually increasing with time. This is specific

to the vector potential and can be explained by considering an approximately static

but position-dependent scalar potential v(x, t) ≈ v(x) being gauge-transformed to a
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vector potential:

A(x, t) = −
∫ t

−∞
dt′ E (x, t′) ≈

∫ t

0
dt′ ∂xv(x) ≈ ∂xv(x, t)t. (5.16)

Thus we have traded one ultranonlocality for another. The question of how we might

proceed to construct approximate functionals of the time-dependent charge and current

density that implement the ultranonlocal behaviour of the exact KS potential is the

subject of the next section.

5.4 The Kohn-Sham electric field

To date, all approximate functionals for modelling systems in the KS scheme are func-

tionals for either the KS scalar potential or vector potential directly, since these are

the quantities employed in the Schrödinger equation and thus the Kohn-Sham equa-

tions. As we have seen, local and even semilocal functionals of the charge and/or

current density are unable to capture the correct physics of even a simple quantum

transport scenario such as a single localised conduction electron propagating through a

model semiconducting wire. In the Coulomb gauge, the exact scalar potential has been

seen to have a spatially-ultranonlocal functional dependence on the densities, while in

the velocity gauge the exact vector potential has a temporally-ultranonlocal functional

dependence.

What these quantities have in common is that both are integrals (over the dimension

they are nonlocal in) of the KS electric field:

EKS(x, t) = − ∂

∂x
vKS(x, t)− ∂

∂t
AKS(x, t). (5.17)

The additional KS electric field (relative to the ground state) associated with the scalar

potential of Fig. 5.8 is shown in Fig. 5.12.

Examining the KS electric field, it is clear why the corresponding scalar potential has

a time-dependent step: the electric field generally has a time-dependent nonzero average

due to a relatively long-range spatial variation across the width of the quasiparticle.

The field itself, however, is localised with the quasiparticle and, as such, is much more

amenable to local or semilocal approximation in its functional dependence on the charge

and current density.

In calculating the electric field, the reverse-engineering algorithm depended on both

the local and semilocal charge and current density explicitly, suggesting that a local or
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Figure 5.12: The exact time-dependent KS electric field for the semiconducting nanowire.
The KS electric field required in addition to the ground-state KS electric field in order to reproduce
the time-dependent charge and current density of the semiconducting nanowire exactly, corresponding
to the additional KS scalar potential in Fig. 5.8, shown at the same snapshots in time: ∆t (red solid),
75∆t (greed dashed) and 150∆t (blue dotted). The KS electric field is localised with the wavepacket
and thus is more amenable to local or semilocal approximation than the scalar potential itself.

semilocal approximate functional may need to depend on both of these quantities. In

fact, the functional dependence of the electric field is still strongly dominated by the

charge density, having a smaller but certainly nonzero semilocal functional dependence

on the current density.

The proof of the Runge-Gross theorem [104] employs the equation of motion of the

current density of an electronic system which, in the absence of external magnetic fields

and in one dimension, is given by

∂j(x, t)

∂t
− E (x, t)n(x, t) + P [n, |Ψ(t0)〉] = 0, (5.18)

thus we expect (1/n)∂j/∂t to be a term in the electric field functional.

P [n, |Ψ(t0)〉] is the stress-momentum [106] of the system which is generally un-

known but proven to be a unique functional of the time-dependent charge density and

the initial state of the system, since all other quantities in Eq. 5.18 are also unique

functionals of these quantities. The stress-momentum cannot depend entirely on the

current density, since it is nonzero for all many-electron systems. The exact functional

dependence of the quantity is not known; however, if we consider a generalised gradient

approximation to it, one would expect terms that are local in n(r) and its first spatial

derivative. We find below that the gradient ∇n(r) is sufficient to, along with ∂j/∂t,

uniquely determine the KS electric field.
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Fig. 5.13 shows the local and instantaneous dependence of the total (including

ground-state) KS electric field on the quantities (∂xn(x, t)) /n(x, t) and (∂tj(x, t)) /n(x, t)

for four snapshots in time: 25∆t, 50∆t, 75∆t and 100∆t. (For ease of reading, the 3D

plot lines that pass through all data points are shown, rather than the data points

themselves which clutter the figure.) What is striking is that, for the evolutionary

history described above, the field EKS ((∂tj)/n, (∂xn)/n) is single-valued and lies al-

most on a plane. The strong dependence of the electric field on the former is seen to

dominate, especially in the central region where the gradient of the density is at its

lowest, i.e. in the region of the system where the density is that of the ground state, as

expected since ∂j/∂t is zero and unvarying in this region. However, in the region of the

wavepacket, the dependence of the electric field on the time-derivative of the current

density becomes more clearer. Moreover, the electric field is largely independent of

time: all four time-steps chosen have electric fields with almost identical dependence

on these quantities. This suggests once again that the time-dependent KS electric field

might be much more amenable to local and semilocal functional approximation than

the KS scalar potential itself.
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Figure 5.13: The functional dependence of the KS electric field. The total KS electric field
−∂xv(x, t) (top) is shown in atomic units at four snapshot in time: 25∆t (red solid), 50∆t (greed long-
dashed), 75∆t (blue short-dashed) and 100∆t (purple dotted) as a local functional of (∂xn(x, t)) /n(x, t)
and (∂tj(x, t)) /n(x, t). This semilocal functional dependence on the charge and current densities is
approximately independent of time. Away from the wavepacket region, the dominant dependence is
on the gradient of the charge density, but in the wavepacket region (where the current is nonzero) the
dependence on the time-derivative of the current density becomes more important.

In conclusion, for the evolutionary history studied, KS functionals of the electric

field rather than potentials appear to be much more amenable to local and semilocal

approximation without losing some of the vital physics we have seen demonstrated

in a simple quantum transport scenario. Unlike the scalar and vector potentials, the

corresponding electric field is localised in both space and time, and in one dimension
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is shown to have, to good approximation, a local and unique dependence on three

quantities derivable from the time-dependent charge density: the charge density itself,

the gradient of the charge density, and the time-derivative of the current density.

5.5 Finite lifetime effects

The true self-energy operator governing the nonequilibrium quasiparticle is generally

complex, and the imaginary part of this energy is responsible for QP decay. Quasipar-

ticle decay results from inelastic scattering between electrons in the system, wherein

the initial QP energy is gradually lost to heating the electrons it interacts with as

it propagates through the nanowire. This is generally a highly nonequilibrium and

statistical situation; as such, we shall make several assumptions, simplifications and

approximations.

First, in real excitations, the exponential character of the quasiparticle decay is seen

to occur at times t > εQP/εF, where εQP is the quasiparticle energy and εF is the Fermi

energy [154]. In our study, it is the long-time behaviour we are interested in, and so

we approximate the decay as being exponential in character at all times.

Second, we assume that the excited state decays toward a Fermi-Dirac statistical

distribution:

f(ε) =
1

e(ε−µ)/kT + 1
, (5.19)

where f(ε) is the average number of electrons occupying the state with energy ε, µ is

the total chemical potential, k is Boltzmann’s constant, and T is the temperature of

the final state. The precise distribution can be obtained by physical considerations,

namely conservations of energy, momentum and electron number.

Third, we model the decay of the quasiparticle into the background in the relaxation

time approximation (RTA) [155; 156] for a homogeneous electron gas, i.e. we approx-

imate the rate of this decay as being independent of where the quasiparticle is in the

supercell. (One can include a localising correction to the RTA such that the decay rate

attenuates with distance from the quasiparticle. However, for a moving quasiparticle

wavepacket, conserving electron number in such a scheme would introduce so many

complexities that differentiating the effects on the KS potential of the arbitrary means

of doing so from those that we are interested in – namely exponential decay effects –

would not be clear.) However, we specify only that the decay is uniform across the

supercell under consideration, thus the transparent boundary conditions of the super-

cell must match those of a periodic system. (Once again, we may consider the infinite
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wire to consist of an infinite number of such supercells, each of which has, at t = 0,

an identical quasiparticle wavepacket added to it which decays identically toward the

same Fermi-Dirac distribution.

Fourth, we shall include an additional ground-state electron in the lowest energy

level of the conduction band, putting the system in a metallic (but periodic) state.

Further, if necessary to conserve energy, momentum and electron number, excitations

will be allowed across the band gap. As such, we shall approximate the one-dimensional

dielectric function of the system as an all-electron function of a degenerate homogeneous

electron gas in the random phase approximation.

Finally, in the evaluation of the quasiparticle lifetime, it is necessary to construct

an approximate Coulomb interaction for a one-dimensional system that does not con-

tain singularities, i.e. a softened Coulomb operator. We shall derive an approximate

softening parameter from physical considerations. In addition, we shall evaluate the

lifetime based on a linear response approach based on the random phase approximation

(RPA).

The decay toward a statistical Fermi-Dirac ensemble demands a density matrix,

where the initial matrix is given by

ρ(x, x′, 0) = |Ψ(0)〉 〈Ψ(0)| , (5.20)

the Liouville-von Neumann equation of motion in the RTA is

∂

∂t
ρ(x, x′, t) = −i

[
Ĥ, ρ

]
+
ρfinal(x, x

′)− ρ(x, x′, t)

τ
, (5.21)

where τ is the QP lifetime.

5.5.1 The quasiparticle background

Once the QP is injected into the system, the total system energy is

E0 = EGS + EQP. (5.22)

We take the zero of our energy scale to be the bottom of the valence band. For a

supercell of 20 “atoms” of atomic separation 4 a.u. subject to the nonlocal self-energy

operator described above and sampled at the Γ-point, the 21-electron ground-state

energy is 79.95 eV. The additional electron quasiparticle wavepacket, constructed as

a weighted sum over right-going Bloch states in the conduction band with the same
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weightings as before, has energy 21.9 eV yielding a total system energy of E = 101.85

eV.

At t = 0, all of the momentum of the system is carried by the QP:

〈p0〉 = 〈ψQP |p̂|ψQP〉 = 1.16a.u., (5.23)

where p̂ = −i∂x in one dimension, and the total electron number is 22.

The final distribution of the electrons in the system is an ensemble described in

terms of a density matrix as

ρ(x, x′) =
∑
k

f(εk) |Ψk〉 〈Ψk| (5.24)

in which the system has a probability f(εk) of being measured in state |Ψk〉. The

distribution must ensure that energy, momentum and electron number are conserved

on the discretised grid:

〈Efinal〉 = Tr
[
ρ̂Ĥ
]

=
∑
k

f(εk)εk = E0 (5.25)

〈pfinal〉 = Tr [ρ̂p̂] =
∑
k

f(εk) 〈Ψk |p̂|Ψk〉 = 〈p0〉 (5.26)

Nfinal = Tr [ρ̂] =
∑
k

f(εk) 〈Ψk | Ψk〉 = 22. (5.27)

Via numerical optimisation using Basin’s hopping technique [157] in conjunction

with Powell’s conjugate gradient method [148], we find the values of chemical potentials

for the source and sink reservoirs and the final system temperature that yields the global

minimum of

ε = α
∣∣〈E′final

〉
− E0

∣∣+ β
∣∣〈p′final

〉
− p0

〉
+ γ

∣∣N ′final − 22
∣∣ , (5.28)

where β > γ > α are adjustable parameters to aid convergence, to be

µL = 12.7 eV,

µR = 12.4 eV,

kBT = 2.35 eV,

with the residual error ε = 0.01 for α = 0.2, β = 1, γ = 0.1, corresponding approx-

imately to a 0.3% error in the energy, 0.8% error in the momentum, or 0.5% error
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in electron number assuming all of the error to be in one of those quantities. The

Fermi-Dirac distribution for µ = µL − µR and T is shown in Fig. 5.14 below.
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Figure 5.14: Fermi distributions of final state: The final Fermi-Dirac distributions of the
left-going (red) and right-going (green) eigenstates of the interacting system after the added electron
quasiparticle has decayed. The distributions are given by the left- and right-going chemical potentials
and the final temperature of the supercell whose values are fixed by conservation of energy, momentum
and electron number. The blue line denotes the top of the valence band, the purple line the bottom of
the conduction band, and the dashed line is the Fermi energy.

5.5.2 Quasiparticle lifetime

The lifetime can be approximated on physical grounds. Starting with the imaginary

part of the correlation energy for the homogeneous electron gas, calculated from GW

theory in Ref. [158],

Im Ec(p) =

∫
0≤E′≤E

dk

(2π)3

4π

k2
Im

1

ε(k, E − E′ + iδ)
, (5.29)

where p is the momentum of the electron in the gas, E its energy, E′ = 1
2 [p− k]2, and

ε(p, E) is the dielectric function, we construct a 1D approximation

Im Ec(p) =

∫
0≤E′≤E

dk

2π
W (k) Im

1

ε1D(k,E − E′ + iδ)
, (5.30)

where W (k) is the softened 1D Coulomb interaction in reciprocal space, and ε1D is a

suitable approximate 1D dielectric function.

The 1D dielectric function in Eq. 5.29 needs to account for exchange and correlation
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effects, and so we choose the 1D Lindhard function [159; 160] for the RPA [161]:

ε(k,E) = 1−W (k)χ(k) (5.31)

where W (k) is the Coulomb interaction in Fourier space and the imaginary part of the

electron response function is

Im χ(k) =

{
− 1

2k for k2 − 2k ≤ E ≤ k2 + 2k,

0 otherwise.
(5.32)

where kF is the Fermi momentum of the electron gas [160].

For the softened Coulomb interaction, we seek the constant parameter C of

W (x, x′) =
1√

(x− x′)2 + C2
(5.33)

for the centre of a pseudo-one-dimensional waveguide modelled as a rotationally-invariant

infinite potential well of diameter d. Evaluated at x = x′, this interaction is

1

C
=

∫ d/2

0
dr

∫ 2π

0
dθ r

1

r
= πd. (5.34)

The value of d is chosen to be as large as possible within the constraint that all electronic

states consider are within the lowest-energy subband of the waveguide. Taking the top

of the second conduction band as the highest considered energy Emax ' 1.5 Ha, we

require that d = 1
2π

√
2Emax, yielding

C =
√
Emax/2 ' 0.866 a.u. (5.35)

In reciprocal space, the interaction is then

W (k) =

√
2

π
K0 (C|k|) (5.36)

where K0(x) is the zeroth-order modified Bessel function of the second kind.

Inserting Eqs. 5.36, 5.31 and 5.32 into Eq. 5.30 and integrating numerically gives

an imaginary 1D correlation energy of Ec = 0.009 35 Ha, yielding a QP lifetime of

τ ' 107 a.u.

This is considerably larger than the simulation time of the wavepacket studied

earlier in this chapter, and so one would not expect to see significant decay during

133



the study. However, due to the exponential character of the decay, we expect to see

some significant effects on the time-dependent charge and current densities and on the

Kohn-Sham potentials which reproduce them.

5.5.3 Quasiparticle decay

Fig. 5.15 shows the initial charge and current densities of the interacting system under

two distinct approximations: the first, that decay occurs infinitesimally after the injec-

tion of the electron at t = 0 whereby the current density of the QP is identical to the

system studied in the previous sections; the second, that decay begins at t = 0.
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Figure 5.15: Initial charge and current densities: The initial charge density (left) of the
interacting system with the additional electron occupying the lowest-energy state of the conduction
band, and the current densities (right) with decay starting infinitesimally after t = 0 (red, solid) and
decay starting exactly at t = 0 (green, dashed).

Fig. 5.16 shows snapshots of the QP density and Fig. 5.17 the current density

calculated from the continuity equation and Eq. 5.21 at increments of 20∆t, with ∆t =
1
2∆x2 and ∆x = 0.2 a.u. Periodic boundary conditions are maintained throughout the

calculation.

The charge density is seen to attenuate with time in the region of the wavepacket

and aggregate in the regions either side of it at a position-independent rate. The current

density is qualitatively different from that which we have seen in the absence of decay

due to the fact that the density is changing, however slowly, in the regions to the sides

of the wavepacket. Furthermore, since the decay is exponential, the rate of change of

the density is highest at t = 0, assuming the decay begins at this time. In the next two

sections, we will look at the effects of this behaviour on the Kohn-Sham potential, and

the implications for initial-state-dependence on the choice of when the decay begins.
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Figure 5.16: Density of decaying quasiparticle: Snapshots of the quasiparticle density as it
decays with lifetime τ = 107 a.u. (left) at multiples of 20∆t. Decay can be seen most at the wavepacket
peak (right, top) and the increasing charge at the edges (right, bottom).
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5.6 Incorporating decay in KS calculations

Due to the addition of the electron in the lowest-energy state of the conduction band

in the ground state, the ground-state KS potential is calculated again using the van

Leeuwen-Baerends procedure, this time with the additional occupied state at the bot-

tom of the conduction band, and is shown in Fig. 5.18 for the first 10 unit cells along

with the ground-state charge density. The first 21 eigenstates of this system are then

occupied.
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Figure 5.18: Ground-state Kohn-Sham system: The ground-state potential (left) and 21-
electron charge density of the Kohn-Sham system reproducing the ground state of the interacting
system to which the quasiparticle is added.

The 22nd electron is constructed as before to have the same charge and current

density as the QP before decay:

φN+1(z, 0) = eiλ(z)
√
nQP(z, 0) (5.37)

with ∂zλ(z) = j(z, 0)/n(z, 0).

We assume that the quasiparticle decay begins infinitesimally after the injection of

the QP wavepacket at t = 0. By constructing the system in this way, we can study the

manner of KS potential that is required to induce exponential decay.

The time-dependent KS potential and electric field required to reproduce the time-

dependent charge and current densities shown in Figs. 5.16 and 5.17 above are cal-

culated via the nonequilibrium reverse-engineering algorithm of Sec. 3.7. The fields,

including the ground-state contributions, at t = ∆t = 1
2∆x2 with ∆x = 0.2 a.u. are

shown in Fig. 5.19 below.

As one can see, the fields required to induce decay in a QP system are very large,
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Figure 5.19: Decay-inducing fields: The first five timesteps of the additional (to the ground-
state) time-dependent scalar potential (top left) and electric field (top right) that reproduce the time-
dependent density of Fig. 5.16. The large potentials that induce decay quickly give way to smaller
potentials that ensure the correct time-dependence thereafter, shown here in full (centre left) and in
detail (bottom). The localised electric fields (centre right) are shown for fewer timesteps for visual
clarity.
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even compared with the ground-state potential. They consist of a very large potential

barrier in the region of the wavepacket which pushes the quasiparticle density outward,

and large x2 potential wells either side of the wavepacket with a relative potential step

in between.

The amplitudes of the large decay-inducing potential increases with decreasing time-

step and decreasing quasiparticle lifetime τ . While the former makes the precise po-

tential calculation-specific, it is an inevitable consequence of the exponential decay on

any discretised timeline: the smaller ∆t, the closer to t = 0 we sample the system

at the first timestep, and the larger the rate of exponential decay. Further, from the

reverse-engineering algorithm employed, the size of the corrections to the potential are

proportional to the time-derivative of the current density. The assumption that de-

cay begins infinitesimally after t = 0 means that the onset of the current density in

the outer regions of the supercell is non-adiabatic, hence the electric fields required to

reproduce that sudden onset are very large.

Despite the long-range behaviour, the associated XC electric field displays a semilo-

cal functional dependence on the current density. Away from the wavepacket, the

charge density is still periodic in space with a period equal to the unit cell length while

the potential is very long range, demonstrating that it has an ultranonlocal dependence

on the charge. The x2 form of the potential wells can be understood in terms of the

locally linear-in-x dependence of the current on position, yielding an electric field that

is also linear in x and therefore a potential that goes as x2.

Fig. 5.19 also shows the time-evolution of the KS potential after the larger per-

turbing field of the first few timesteps has attenuated, leaving four main features whose

amplitudes are similar to the ground-state potential or smaller:

1. a small time-dependent potential step between the left and right regions of the

supercell;

2. a small, long-range −x2 component either side of the wavepacket;

3. increasingly large, asymmetric, periodic “buckets”;

4. a large potential step in the central region of the supercell.

Feature 1 can be identified with the time-dependent potential step of the previous

study, arising from the effects of the nonlocal hole and required to yield the correct

wavepacket velocity, along with the spatial variance within the large potential step of

feature 4, corresponding to the time-dependent potential barrier also seen in Fig. 5.8
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Both from the start of the time-evolution, the long-range x2 potential barriers on

either side of the wavepacket are required to move charge density from the wavepacket

itself to the outer regions. The largest of these potentials begins at t = ∆t, and the

potentials at subsequent times gradually reduce the amplitude of this initial potential

as the system evolves toward a steady-state.

The presence of this long-range field would be expected to polarise the system,

moving the electrons present in the N -electron ground-state away from their equilib-

rium positions. This unwanted polarisation is corrected by the asymmetric periodic

“buckets” which act to “tilt” the electrons back into their equilibrium coordinates and

with the correct shape.

The final feature – the large potential step in the region of the wavepacket – is

necessary due to the asymmetry of the current density: since the QP is already moving

to the right, a potential step is required to yield sufficient reflection to move some

charge to the left region of the supercell, as well as allowing some tunnelling so as to

aggregate charge in the right region. This step is distinct from the types of steps seen in

stable quasiparticle case [147] and elsewhere in the literature (e.g. [162], [163]); whereas

in those instances the step varies in sign and magnitude with time, the decay step is

slowly varying (the variation of the step with time arises from the time-dependent step

seen even in the absence of decay), and must decay to zero as the system approaches

its final state.

As can be seen, the potential step is comparable to the band gap in size, as is

required to excite the valence electrons of the ground-state wire into the conduction

band as per the final QP state. It is also this band gap which stops the current-response

of such a large potential step from generating large currents: close to the band gap,

the current as a function of momentum decays quickly to zero.

Broadly, the KS potential consists of a component which governs the propagation

of the decaying electron wavepacket along the wire as in the previous study, and one

which governs the decay of the quasiparticle into the background. The second of these

is exponential in character, i.e. at its most dominant at shortest times. At short

times, therefore, this component is approximately independent of the relaxation time

τ . (More generally, if one changes the relaxation time by a factor γ and correspondingly

the timestep by a factor of γ, this component of the potential remains unchanged at

all times. This has been confirmed computationally.) As such, the KS potential under

varying relaxation time differs only in the relative phases of the time-dependent XC

bias (along with the features local in the density, rather swamped here by the decay

step) and the decay of the large central step (along with the growth of the buckets and
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the decay of the small quadratic potential). As such, these features of the KS potential

for a decaying QP wavepacket are highly robust.

5.7 Memory in quasiparticle decay

In the previous section, we studied the time-dependent KS potential that reproduces a

quasiparticle wavepacket that is added to a ground-state system at t = 0 and, due to

the non-Hermitian self-energy operator it is governed by, begins to decay exponentially

infinitesimally after. In this section, we will assume that the QP decay begins at

t = 0, and investigate the history-dependence of the time-dependent KS potential

when describing QP decay.

In Sec. 5.6, as in Sec. 5.3, the initial KS wavepacket was injected into the system

with the same charge and current densities as the QP itself. In this present study,

the nonzero current density away from the wavepacket necessitates that some of the

electron wavefunctions apart from the wavepacket carry some of the initial current

density. One could still include all of the initial current in the conduction band due to

the additional ground-state electron therein.

However, the fields responsible for inducing decay, calculated in Sec. 5.6, are felt

by all electrons in the KS system. As such, it is sensible to share the initial current

density of the QP across all of the electrons in the initial KS system. As such, the KS

wavepacket is constructed as before, carrying the full current density of the nondecaying

QP system, and yielding a putative current density of j′KS(z) as in Fig. 5.15 (red curve).

Thus the entire KS system, including the valence band, is then further transformed

as

φk(z, 0)→ eiλ(z)φk(z, 0) (5.38)

with
∂

∂z
λ(z) =

jQP(z, 0)− j′KS(z)

n(z, 0)
, (5.39)

and thus the whole KS system at t = 0 is in an excited state with respect to the ground

state.

The time-dependent KS scalar potential and electric field are calculated using the

nonequilibrium reverse-engineering algorithm of Sec. 3.7 and shown in Fig. 5.20.

The time-dependent step between the left and right boundaries of the supercell, seen

earlier for the non-decaying quasiparticle, remains significant in the presence of electron

correlations.

As one would expect, the time-dependent KS potentials required to reproduce the
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Figure 5.20: Time-dependent KS potentials and electric fields: The time-dependent KS
potentials for the first five timesteps (left) and at intervals of ten timesteps (right) yielded from initial
KS states already constructed to reproduce quasiparticle decay. The qualitative form of the long-
time potential of Fig. 5.19 is established immediately, and the two time-dependent potentials become
identical within a small number of timesteps.

interacting charge and current densities are markedly different at the earliest times.

The very large barriers and x2 wells of Fig. 5.19 do not appear at all here, since the

KS potential is no longer required to induce the dynamics representing quasiparticle

decay. However, within the first few timesteps the potentials becomes insensitive to

the history of the system and the potential at later times, shown in Fig. 5.20 at the

same snapshots at intervals of 10∆t, is identical to the potential at those snapshots in

Fig. 5.19.

Using the nonequilibrium implementation of the reverse-engineering algorithms pre-

sented in Chapter 3, we have calculated the exact time-dependent Kohn-Sham poten-

tials required to reproduce the time-dependent charge and current densities of four

related but distinct systems. We have observed the characteristics of the potential

required to introduce the nonlocality of the self-energy operator governing a quasipar-

ticle wavepacket added to a semiconductor. Most notably, these potentials contain a

time-dependent potential step either side of the wavepacket that is ultranonlocal in its

functional dependence on the charge and current density.

We have found that such effects that are ultranonlocal for the KS scalar potential

are semilocal for the KS electric field, strongly suggesting that future functionals should

be in terms of the XC electric field rather than the XC potential. These effects are

seen to be a robust feature of all calculations, independent of the precise nature of

the self-energy operator or the initial interacting or Kohn-Sham states, so long as the
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quasiparticle is localised and the self-energy operator nonlocal.

We have also studied the KS potentials that reproduce the effects of a decaying

quasiparticle, governed by a self-energy operator that is energy-independent, but non-

local and non-Hermitian. Once again, the potentials have an ultranonlocal dependence

on the charge and current densities, but the corresponding electric fields are seen to

depend only semilocally on the densities. The potentials required to induce decay

are very large and vary very quickly. However, such the duration of such features in

the potential is very short, and the potential demonstrates a remarkably short-ranged

memory-dependence.

In conclusion, the central results of these studies, and those of the previous chapter

are:

1. the reverse-engineering algorithms presented in Chapter 3 are successful at yield-

ing the exact KS potentials required to describe both steady-state and nonequi-

librium systems;

2. steady-state systems subject only to an external scalar potential are not generally

noninteracting-V -representable without the inclusion of an exchange-correlation

magnetic field. This magnetic field is observed to be uniquely determined by the

charge and current densities of the interacting system;

3. the exact time-dependent KS potential that incorporates nonequilibrium many-

body effects is generally ultranonlocal in its functional dependence on the charge

and current density, however the KS electric field is much more amenable to

approximation using semilocal density functionals;

4. excitation decay can be induced in a KS system with very large but simple po-

tentials that depend on the target current density, and these potentials are short-

lived;

5. we have seen that memory effects due to the differences in the initial charge

distribution of the KS system can persist throughout the simulation time, while

those that arise due to the differences in the initial current distribution may be

short-lived, even if the potentials are initially qualitatively different. Furthermore,

the main qualitative features of the exact time-dependent potential found in this

study are robust.

The reverse-engineering algorithms of Chapter 3 may be employed to study a

broader variety of systems and initial states, and these studies will be invaluable in
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the construction of future approximate functionals. The particular systems studied in

this Chapter already provide much insight into what form improved functionals may

take, include the explicit definition of an exchange-correlation electric field functional

that incorporates important many-body effects.
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Chapter 6

Summary & Conclusions

The purpose of this research was to develop methods for calculating exact Kohn-Sham

(KS) effective fields for systems of interest to quantum transport theory, both in the

steady-state and nonequilibrium regimes. The investigation of the steady-state systems

first required a more firm theoretical foundation for current-density functional theory

(CDFT), including a choice of basic variables that yields unique external potentials

and a method of constructing auxiliary KS systems that allows an energy-minimisation

procedure, summarised in Sec. 6.1 below.

With a theoretical basis in place, a means of calculating exact KS potentials in

the steady-state regime was formulated and extended to the nonequilibrium regime, as

summarised in Sec. 6.2. These methods were then applied to steady-state and time-

dependent current-carrying systems of both one and three dimensions whose charge

and current densities were calculated from model self-energy operators that capture

the nonlocal behaviour of quantum-mechanical electron-electron interactions. The KS

potentials that reproduce these densities exactly were calculated and their functional

dependencies on those densities were studied, as summarised in Sec. 6.3.

Sec. 6.4 will discuss how we may use the information gained from these studies in

the construction of better density functionals, and Sec. 6.5 will discuss the applicability

of these methods to ongoing and future studies.

6.1 Current-density functional theory

Existing formulations of CDFT have not been based on rigorous proofs of the bijectivity

between the basic potentials and the basic variables of the theory. In the theory of

Vignale and Rasolt (VR), the chosen basic variables (the charge and paramagnetic
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current densities) do not reflect all of the physical consequences of a choice of basic

potentials (scalar and vector), while in the theory of Pan and Sahni (PS) the gauge-

invariance of the basic variables (the physical charge and current densities) does not

allow for a Hohenberg-Kohn (HK) proof of uniqueness of the gauge-variant potentials.

The approach employed in this thesis took the necessary aspects of both previous

formulations as its point of departure: the necessity of reflecting the gauge-dependence

of the external potentials in the basic densities chosen to characterise the system of

paramagnetic CDFT, and the necessity of reflecting all physical qualities in the chosen

densities arising from the external electromagnetic fields.

That the basic variables need to reflect both gauge-variant and gauge-invariant phe-

nomena means that they contain both the paramagnetic current density jp(r) and the

diamagnetic current density jd(r) from which the physical current may be derived. Fur-

ther, so long as the external vector potential does not vanish where the charge density

is nonzero, the vector potential and diamagnetic current density uniquely determine

the charge density, thus it need not be included as a basic variable.

The resulting HK theorem was

(v,A)
(
n, jp, jd

)

(|Ψ0〉 ,A)

A
A−1 B−1

B

HK

(6.1)

Chapter 3 contains the mathematical details of the proof, while the Appendix contains

its extension to spin-polarised and degenerate ground-state systems (Sec. A.2). There

is an additional uniqueness theorem that utilises equal numbers of density and poten-

tial variables, albeit at the expense of a straightforward minimisation procedure, also

detailed in the Appendix, Sec. A.1.3.

One has some degree of choice in how one constructs a KS scheme, and Sec. 3.5

demonstrated that one could perform the minimisation procedure for a CDFT based

on the paramagnetic and diamagnetic currents even when the KS system was defined

to have the same physical charge and current densities as the interacting system and

therefore, generally, different gauge-dependent densities. This allowed the construc-

tion of a scheme to calculate the ground-state densities of an interacting system by

minimising its total energy with the use of a KS system with identical n and j.

This research then established a practical scheme for calculating the densities of
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interacting ground-state, current-carrying systems via an auxiliary system of noninter-

acting KS electrons subject to the effective external potentials

AKS(r) = Aext(r) + Axc(r) (6.2)

vKS(r) = vext(r) + vH(r) + vxc(r) + 1
2

[
A2

KS(r)−A2
ext(r)

]
(6.3)

where Axc(r) and vxc(r) are the exchange-correlation vector and scalar potentials re-

spectively.

This formal basis is necessary for the calculation of exact KS systems that reproduce

the charge and current densities of real, interacting systems, methods for which, both

in the steady-state and nonequilibrium regimes, were derived in Chapter 3 and will be

summarised in the next section. Other advantages of this approach is they it makes

a connection with time-dependent current-density functional theory in the adiabatic

limit, and employs Kohn-Sham systems that give predictions about physical densities.

6.2 The reverse-engineering algorithms

As discussed in the previous section, the auxiliary KS system is defined to have the

same physical charge and current density as the real interacting system it represents,

and yet neither interacting nor noninteracting potentials are uniquely defined by these

quantities. In particular, AKS and vKS are unique functionals of the Kohn-Sham gauge-

variant current densities jp,KS and jd,KS, which will generally differ from those of the

interacting system.

The reverse-engineering algorithm for steady-state systems allows one to calculate

corrections to the KS diamagnetic current density directly (and the paramagnetic cur-

rent indirectly) in order to construct KS systems with the correct physical properties.

The iterative scheme for calculating such potentials was detailed in Sec. 3.6, and was

found to be convergent and have the correct stop-condition.

The algorithm was also simple to extend to the nonequilibrium regime, as was

detailed in Sec. 3.7, which allows one to calculate the exact time-dependent KS scalar

and vector potentials that reproduce the charge density of a nonequilibrium interacting

system. The algorithm was tested for one-dimensional time-dependent systems subject

to external scalar potentials only for which, once again, it has the correct stop-condition

and was seen to be convergent.

This thesis has introduced two universal and tested schemes of calculating exact KS
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potentials, including the XC term, for systems of known charge and current densities.

These methods provide gain insight into the vital physics of exact KS systems, necessary

for the future construction of better functionals.

6.3 Exact KS potentials for quantum nanowires

The time-independent form of the reverse-engineering algorithm was employed to study

one-dimensional ground-state quantum wires to which current-carrying electron quasi-

particles are added into the lowest-energy unoccupied state. The system under study

was chosen to be free from any external magnetic fields for a variety of spin densities.

This algorithm was applied to a three-dimensional nanowire with the same electron

occupancies and periodicity in the axial direction but strongly confined in the radial

direction and with imposed cylindrical symmetry. It demonstrated rapid convergence to

the potentials which reproduced the correct charge and current density. From studying

the resulting time-dependent KS potential, it was concluded that:

• It is not generally possible to construct a 1D ground-state Kohn-Sham system

that reproduces the charge and current density of a 1D ground-state interacting

system as was found in Sec. 4.2;

• We can, however, calculate the exact KS scalar and vector potentials required to

construct 2D and 3D ground-state Kohn-Sham systems that exactly reproduce

the charge and current densities of interacting systems using the ground-state

form of the reverse-engineering algorithm;

• Such KS systems were found in Sec. 4.3 to be subject to effective external mag-

netic fields or properties entirely, even if the interacting system they model is free

from magnetic fields. These exchange-correlation magnetic fields are intrinsic to

KS steady-state systems;

• The XC magnetic field can couple to the charge, current and magnetisation of

the KS system. In particular, fields coupling to the magnetisation of the KS

system can deform the charge density unless an additional KS scalar potential

is included. This potential depends functionally on the charge, current and spin

density of the system.

In time-dependent regime, we studied one-dimensional quantum wires based on

silicon to which were added localised quasiparticle wavepackets with nonzero crystal
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momentum, in the first instance governed by a nonlocal but Hermitian and energy-

independent self-energy operator, as detailed in Sec. 5.1, and in the second case

incorporating the quasiparticle decay associated to non-Hermitian self-energy opera-

tors implemented in the relaxation time approximation, as detailed in Sec. 5.5. The

wavepacket was allowed to propagate through the wire due to its intrinsic momentum

without the application of driving fields.

The algorithm was found to yield highly accurate KS systems very quickly and was

indefinitely convergent. The following conclusions were drawn from the data produced

in the first wavepacket study:

• The exact KS scalar potential contains a Hartree-like localised potential barrier,

plus a periodic component that “tunes” the local band structure in the vicinity

of the wavepacket

• The potential also contains a persistent time-dependent step demonstrating an

ultranonlocal functional dependence of the potential on the charge and current

density (see Sec. 5.3);

• It is the interplay of these three effects which is necessary to yield the correct

wavepacket group velocity, a vital aspect of the time-dependent charge density;

• The potential demonstrates a strong and persistent functional dependence on the

initial state of the KS system: two KS systems with the same time-dependent

charge and current densities with only slightly different initial states were seen to

have starkly different time-dependent KS potentials.

The reverse-engineering algorithm performed equally well for time-dependent quasi-

particles undergoing exponential decay. In this case it was found that

• The time-dependent step due to the nonlocal (but Hermitian) part of the self-

energy operator persists when the quasiparticle is allowed to decay;

• In addition, a much larger and more slowly-varying potential step arises across the

quasiparticle width, allowing density to reflect and tunnel from the wavepacket

region and aggregate across the wire;

• The potential also contains long-range components aiding the build-up of charge

density in the quasiparticle background. These long-range potentials alone would

polarise the charge density; as such, the potential was found to contain tilted

“buckets” that forces the Kohn-Sham electron density to localise around the

atomic sites;
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• As well as describing its time-dependence correctly, it is possible to induce decay

in Kohn-Sham systems with the use of exponentially large potentials whose spatial

variation is nonetheless indicated by the semilocal charge and current density;

• In testing initial-state-dependence, it was found that the Kohn-Sham potential is

very quickly insensitive as to whether the system is prepared in a state of decay

or else the decay is induced afterwards.

One important conclusion of both studies of the one-dimensional time-dependent

nanowire is that it is not feasible to construct local or semilocal functionals of the

charge and/or current density for the scalar potential that capture the correct physics of

nonequilibrium quantum transport, and that new types of functionals are required that

allow for the introduction of nonlocal behaviours into the scalar potential. What kind

of functionals one might seek to construct has been considered and will be summarised

in the next section.

6.4 The KS electric and magnetic fields

In Chapter 4, the KS electric fields corresponding to the KS scalar potentials calcu-

lated for the nonequilibrium system were studied. It was found that the electric field

∆EKS needed in addition to the ground state was localised with the additional electron

wavepacket, and that the nonlocal step in the potential was a consequence of the electric

field having a time-dependent average. It was concluded that the electric field is much

more amenable to local and semilocal approximation than the scalar potential itself,

and indeed it was seen that the functional dependence of the electric field on the local

quantities (∂xn(x, t)) /n(x, t) and (∂tj(x, t)) /n(x, t) was remarkably linear and local in

time for the quasiparticle wavepacket scenario, as Sec. 5.4 demonstrates.

In the steady-state limit, j̇ = 0, and the correct KS current density can no longer

be achieved with an electric field alone. It was observed in Chapter 4 that a purely

exchange-correlation magnetic field is required in order to yield KS systems with the

correct physical densities, even in the absence of any external magnetic fields, and that

mapping KS gauge-dependent densities onto their interacting counterparts does not

introduce the correct physics. Generally, therefore, systems consisting of both steady-

state and nonequilibrium components require both electric and magnetic XC fields,

above that which is necessary to describe the steady-state charge density.

The usefulness of the electromagnetic fields as opposed to their corresponding po-

tentials is two-fold: first, when mapping physical KS densities to their interacting
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counterparts, the fields correctly lack the gauge-variance of the potentials which would

be reflected in gauge-dependent densities; second, because the potentials are related

to their corresponding fields via intergrals over space and/or time, the choice of the

KS potential as a functional introduces ultranonlocalities that make local or semilocal

functionals of the densities unfeasible or inaccurate. Thus the electromagnetic fields

make for a logical choice for the construction of future functionals.

6.5 Ongoing and future developments

In order to construct improved functionals for current-density-functional and time-

dependent density-functional approaches to quantum transport, one would need to

calculate the exact KS potentials for many more systems to gather a more complete set

of data upon which to base an analysis. The electric field’s dependence on the gradient

of the charge density suggests that more investigation of more rapidly-varying densities

would be particularly important, and the data for the magnetic field strength in the

central regions of current-carrying ground-state nanowires is presently limited.

The reverse-engineering algorithms should be employed once again to calculate the

exact potentials and fields for systems with a broader range of parameters. Quasipar-

ticle theory remains a highly effective and efficient method for studying systems where

conduction is due to the introduction of a single electron, however at present we have

studied only the spatially-nonlocal and non-Hermitian characteristics of the self-energy

operator. The true self-energy operator is also energy-dependent: a property whose ef-

fect on the KS potential is not yet investigated. More realistic self-energy operators can

be constructed from GW theory and employed in simulations of steady-state transport

in a similar way.

For time-dependent transport, modifications to the model self energy operator

should be considered to include energy-dependence and consider a broader range of

nonequilibrium models. Beyond the one-electron approximation, much headway has

already been made in exact continuum solutions of the time-dependent Schrödinger

equation for two and three electrons and exact Hubbard model solutions for larger

chains and electron numbers [141; 164] focusing on tunnelling transport absent in the

research described in this thesis, the former employing the time-dependent reverse-

engineering algorithm here.

Ultimately, suggested functionals must be tested with respect to experiment or

experimentally-verified calculations, and it is the predictive power of functionals that
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is of highest importance. Collaboration with other experimental and theory groups

would provide a productive means of testing any new functional.

6.6 Concluding remarks

The purpose of this research was to develop methods for the calculation of exact Kohn-

Sham potentials for quantum transport systems of known charge and current densities,

particularly in the time-dependent regime. The result of these investigations was the

reverse-engineering algorithms. So far, these algorithms have been found to be generally

applicable, highly accurate for large numbers of time-steps and convergent, and we can

propose their use as tools for calculating exact potentials with high confidence.

This provides a method for studying quantum transport (and, indeed, electronic

systems in general), and not a means of calculating quantum transport systems from

first principles. The ultimate aim of any such research is the construction of better,

more accurate functionals. Some insight for how such functionals might be constructed

has already been discovered, and a logical progression of this research would be to study

the functional relationship between KS electromagnetic fields and the electronic charge

and current densities in greater detail to advise the construction of such functionals.

The particular case of ground-state current-carrying systems has been put on a

much firmer theoretical footing by the proof of unique relationships between partic-

ular ground-state densities (the paramagnetic and diamagnetic current densities) and

the external potentials that yield them, and a practical scheme for the calculation of

ground-state densities employing auxiliary Kohn-Sham systems of noninteracting elec-

trons that have the same physical qualities as the interacting systems they represent.

This approach can be employed to study the exact KS potentials for a broader range

of systems and advise the construction of relevant approximate functionals.
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Appendix A

Additional proofs

A.1 CDFT of balanced components

A.1.1 Hohenberg and Kohn revisited

Let us consider once more the proof of the Hohenberg-Kohn theorem with one minor

and (as we shall see) inconsequential modification. One can consider ordinary DFT as

a special case of any CDFT wherein A(r) = 0 always. We may consider now different

special cases where A is similarly fixed in all instances, but is nonzero.

Let us state, then, that there exists two sets of external potentials (v1,A) and

(v2,A) (where v2(r) 6= v1(r) + C with C constant) that yield the same ground-state

wavefunction:

(v1,A)→ |Ψ0〉 ← (v2,A). (A.1)

The unique mapping between the potentials and their ground-state wavefunctions still

holds as if A(r) = 0 since the Hamiltonians of the two systems differ only by the term

v1(r)− v2(r), giving

(Ev1 − Ev2) |Ψ0〉 =
(
Ĥv1 − Ĥv2

)
|Ψ0〉 = (v1(r)− v2(r)) |Ψ0〉 (A.2)

and thus the two potentials are constrained to differ by no more than a constant equal

to the differences in their respective ground-state energies.

Likewise the proof of a unique map between the potentials and the densities quickly
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reduces to that of ordinary DFT. If (v1,A) and (v2,A) yield ground states |Ψ1〉 and |Ψ2〉
respectively, both having the same charge density, then their respective ground-state

energies are

Ev1 [|Ψ1〉] = F [|Ψ1〉] + (j1 | A) +
(
n | v1 − 1

2A
2
)

(A.3)

Ev2 [|Ψ2〉] = F [|Ψ2〉] + (j2 | A) +
(
n | v2 − 1

2A
2
)
. (A.4)

From the variational principle, we have

Evi [|Ψi〉] <
〈

Ψj

∣∣∣Ĥvi

∣∣∣Ψj

〉
= Ej + (n | vi − vj) (A.5)

where i = 1, 2 6= j = 2, 1. Summing up over i yields the usual HK contradiction

E1 + E2 < E2 + E1. (A.6)

Thus we see that the HK proof of DFT holds for any fixed vector potential, not

just A(r) = 0.

A.1.2 Aims and terminology

The ideal scheme is one in which the number of basic densities and the number of

basic potentials is balanced. In terms of uniqueness theorems, we are forced to dismiss

(n, j) and (n, jp) as possible candidates. The remaining possibility is a CDFT that

takes (n, jd) as its basic densities. The previous section shows that such a choice

of basic densities will yield a uniqueness theorem, since (n, jd) together determine the

external vector potential completely. What it did not show, however, is that a universal

functional may be written in terms of (n, jd).

First, we define the sets of data we wish to work with and the maps between them

we wish to invert. The set N is the set of all possible combinations of V -representable

charge densities n(r) (ground-state densities of some external potentials (v,A)) and

diamagnetic current densities jd(r) related to the charge density as jd(r) = n(r)A(r):

N = {n(r), jd(r)} . (A.7)

This is a subset of the set J of all possible combinations of charge and diamagnetic
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current densities and whose elements are (n, jd).

The set S is the set of all possible wavefunctions, together with any vector field

a(r):

S = {Ψ,a(r)} . (A.8)

Subsets of this set include the set G of all possible ground-state wavefunctions and any

vector field:

G = {Ψ0,a(r)} , (A.9)

and the set GA which is the set of all possible ground-state wavefunctions and the vector

potential they are subject to:

GA = {Ψ0,A(r)} (A.10)

whose elements are (Ψ0,A).

The set V is the set of all possible combinations of scalar and vector potentials:

V = {v(r),A(r)} (A.11)

whose elements are (v,A).

A.1.3 Uniqueness theorem

The formal uniqueness theorem we wish to prove may be written as

(v,A)
(
n, jd

)

(|Ψ0〉 ,A)

A
A−1 B−1

B

HK

, (A.12)

that is: a chosen element of N uniquely maps to an element of V , and that element of

V uniquely maps to the chosen element of N . We establish this by first establishing

unique and invertible maps between each of the elements in both sets and the elements

of the intermediate set GA.

The map A is the solution of the time-independent Schrödinger equation and the
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identity of the vector potential:

[
Ĥ [v,A]− E0 [v,A]

]
Ψ0 = 0. (A.13)

The map B is

n(r) = 〈Ψ0 |n̂(r)|Ψ0〉 (A.14)

jd(r) = A(r) 〈Ψ0 |n̂(r)|Ψ0〉 . (A.15)

Map A−1 has been demonstrated in Sec. A.1.1, in particular Eq. A.2. We therefore

need only to show that map B is invertible.

The energy of a state |Ψ〉 subject to external fields (v,A) may be written as

Ev,A =
〈

Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉+

∫
jp [Ψ] · jd + 1

2j
2
d

n
dr + (n | v) . (A.16)

We suppose that there exist two different elements in GA – (Ψ1,A1) and (Ψ2,A2) –

corresponding to two different elements in V , that yield the same (n, jd) via map B.

Map B demands that

A1 = A2 =
jd

n
. (A.17)

Defining

E′1,2 =
〈

Ψ1,2

∣∣∣Ĥ2,1

∣∣∣Ψ1,2

〉
1,2

=
〈

Ψ1,2

∣∣∣Ĥ1,2

∣∣∣Ψ1,2

〉
+
〈

Ψ1,2

∣∣∣Ĥ2,1 − Ĥ1,2

∣∣∣Ψ1,2

〉
1,2

= E1,2 + (n | v2,1 − v1,2)

> E2,1

and summing over both indices yields the usual contradiction

E1 + E2 > E2 + E1, (A.18)
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thus we have proved reductio ad absurdum that

|Ψ0〉 = |Ψ0〉 [n, jd] (A.19)

v(r) = v [n, jd] (r) (A.20)

which, together with the identity A(r) = jd(r)/n(r), ensures that all ground-state

properties, including the paramagnetic current density jp(r), are unique functionals of

(n, jd).

A.1.4 Variational theorem

A uniqueness proof, the Rayleigh-Ritz theorem and Eq. A.16 allow us to construct a

variational theorem

E0 [n, jd] ≤ Ev,A
[
n′, j′d

]
, (A.21)

where v denotes v [n, jd] (r), A denotes A [n, jd] (r), and j′d is once again defined in

terms of A. This follows from the fact that

E0 [n, jd] ≤
〈

Ψ′
[
n′, j′d

] ∣∣∣Ĥv,A

∣∣∣Ψ′ [n′, j′d]〉 . (A.22)

The variational theorem allows us, in principle, to construct an energy minimization

scheme for finding the ground-state density n of a set of external potentials (v,A).

(Under fixed A, once n is found, jd is once again fully determined.)

The second term on the right-hand side of Eq. A.16 is now a universal functional

of our basic densities, thus we may define our energy in terms of a new functional

Ev,A
[
n′, j′d

]
= G

[
n′, j′d

]
+
(
n′ | v

)
(A.23)

where

G
[
n′, j′d

]
= F

[
n′, j′d

]
+

∫
j′p [n′, j′d] · j′d(r) + 1

2j
′2
d (r)

n′(r)
dr (A.24)

The sole functional derivative of Eq. A.23 is then

δEv,A
δn′

=
δG

δn′
+ v(r). (A.25)
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While the functional dependence of j′p on n′ (for fixed A) must be accounted for, such

terms cancel and the minimization procedure quickly reduces to that of ordinary DFT:

δG

δn′
=

δF

δn′
+ A ·

δj′p
δn′

+ 1
2A

2

=

(
δF

δn′

)
j′p

+
δj′p
δn′
·
(
δF

δj′p

)
n′

+ A ·
δj′p
δn′

+ 1
2A

2

= −v′ − 1
2A
′2 −A′ ·

δj′p
δn′

+ A ·
δj′p
δn′

+ 1
2A

2

yielding
δEv,A
δn

= v(r)− v′
[
n′, j′d

]
(r), (A.26)

which gives the desired behaviour as n′ → n.

Thus we have shown that one may construct a CDFT with the same number of

basic densities and basic potentials. The choice of (n, jd) as basic densities is a counter-

intuitive one, especially since, when minimizing the system energy under fixed external

potentials, one does not consider the current density at all in this particular current-

density functional theory.

Such a formulation is less an alternative approach to those of VR, Diener and PS,

and more an extension of the original HK approach for ground-state DFT for a given

vector potential. While jd is not a measurable quantity, it is the current component

that uniquely determines the external potentials, and the issue of non-physicality holds

also for a choice of jp as a basic density in nondegenerate systems. Further, since one

does not actually employ jd at all in the minimisation scheme beyond the evaluation

of the universal functional, this is equivalent to dividing the universal functional into

A-dependent functionals, each uniquely defined by n only. Since A is always known in

a minimization procedure, this is not problematic.

A.1.5 Practical minimisation and self-consistency schemes

It has been proven that a given ground-state charge and diamagnetic current den-

sity (n0(r), jd,0(r)) uniquely determines the set of external scalar and vector potentials

(v(r),A(r)) that yield those densities as a nondegenerate ground state, and vice versa.

We have also seen that, in an ideal minimisation scheme under fixed external poten-

tials where an expression (or at least a good approximation) for the universal functional

F [n(r), jd(r)] is known, it is sufficient to vary only n(r), since under fixed A(r), the
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choice of a trial density n fixes the diamagnetic current density jd(r) = A(r)n(r).

For an interacting system, the energy functional of some set of trial densities subject

to a fixed set of external potentials can be rewritten as

Ev,A[n(r), jd(r)] = F [n(r), jd(r)] +

∫ ∞
−∞

dr
j′[n(r), jd(r)](r) · jd(r)

n(r)

+

∫ ∞
−∞

dr n(r)u(r) (A.27)

where u(r) = v(r) − 1
2A

2(r). Nominally, the second term does not directly reference

the external potentials. Here j′(r) = j′p(r) + A(r)n(r), where j′p(r) is the paramagnetic

current density of the system whose ground-state basic densities are (n, jd), and thus

is uniquely determined by those densities.

As we can see, the reduction of the number of variable densities in a current-density

functional theory to one (the charge) comes at the expense of increased complexity of

the universal functional, and thus an increase of the number of terms therein that must

be approximated: in addition to approximating the kinetic and Coulomb terms of the

energy functional, one need also approximate how the current couples to the external

fields.

However, the variational theorem of the previous section may easily be extended

to include trial wavefunctions that are not the ground states of some set of external

potentials (u′,A′). Consider the external potentials (u,A) for which a ground-state

solution is desired and for which, for conciseness, we define a (nonrelativistic) four-

component vector

V(r) = (A(r), u(r)) . (A.28)

We then vary a trial wavefunction Ψ in order to find a minimum in the energy of the

wavefunction when subject to V(r). By definition of the ground-state wavefunction,

we have 〈
Ψ
∣∣∣ĤV

∣∣∣Ψ〉 ≥ 〈Ψ0

∣∣∣ĤV

∣∣∣Ψ0

〉
(A.29)

irrespective of whether Ψ is itself the ground state of some other external potential

V′(r).

The wavefunction Ψ uniquely determines the trial charge density n(r) and the trial

paramagnetic current density jp(r) and therefore defines, under fixed V, the physical
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current of the trial system. Defining basic and physical four-component vectors as

Nd(r) = (jd(r), n(r)) (A.30)

N(r) = (j(r), n(r)) , (A.31)

Eq. A.29 may be rewritten as

〈
Ψ
∣∣∣T̂ + Ŵ

∣∣∣Ψ〉+ (N[Ψ,A] | V) >=
〈

Ψ0

∣∣∣T̂ + Ŵ
∣∣∣Ψ0

〉
+ (N0[Ψ0,A] | V) (A.32)

where Ψ0 is the ground state of V and N0 the corresponding density, and we have

adopted the conventions

(a(r) | b(r)) =

∫ ∞
−∞

dr a(r)b(r) (A.33)

(A(r) | B(r)) =

∫ ∞
−∞

dr A(r) ·B(r). (A.34)

Because the diamagnetic current is fixed by n(r) and A(r), a unique choice of

Ψ is equivalent to a unique choice of N(r). (Note, this is only true under fixed A(r):

generally, there are multiple wavefunctions that yield the same N(r).) As such, we may

simultaneously move beyond the restriction that trial densities be the ground states of

some external potential and incorporate aspects of the universal functional into the

variation scheme.

The general energy functional may then be written as

EV [Nd] = F [Nd] + (N[Nd] | V) . (A.35)

Defining the four-component density operators as

N̂1(r) =
(
ĵp(r), n̂(r)

)
(A.36)

N̂2(r) = (n̂(r)A(r), 0) (A.37)

and noting that the first of these and the universal functional F [Nd] do not depend on

the external potential, the functional derivative of the energy functional with respect
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to the external potential is evaluated as

δEV
δV(r)

=
δF

δV(r)
+

δ

δV(r)

(
N̂1(r′) | V(r′)

)
+

δ

δV(r)

(
N̂2(r′) | V(r′)

)
=

(
N̂1(r′) | δV(r′)

δV(r)

)
+

δ

δV(r)

(
n̂(r′) | 1

2A(r′) ·A(r′)
)

=
(
N̂1(r′) | δ(r, r′)

)
+
(
N̂2 | δ(r, r′)

)
= (jp(r), n(r)) + (jd(r), 0)

= N(r). (A.38)

Thus we see that the conjugate variable to the external potential is the four-component

density, making it a sensible choice for the variable in a minimisation scheme.

Rearranging Eq. A.35, we have

F [Nd] = EV ′ [Nd]−
(
N(r′) | V′(r′)

)
, (A.39)

where V′(r) is the potential which has N(r) as its ground-state density, and its func-

tional derivative with respect to the physical density is

δF [Nd]

δN(r)
=
δEV [Nd]

δN(r)
−
(
δ(r, r′) | V′(r′)

)
−
(

N(r′) | δV
′(r′)

δN(r)

)
=

(
δEV
δV′(r′)

| δV
′(r′)

δN(r)

)
−V′(r)−

(
N(r′) | δV

′(r′)

δN(r)

)
=

(
N(r′) | δV

′(r′)

δN(r)

)
−V′(r)−

(
N(r′) | δV

′(r′)

δN(r)

)
= −V′(r). (A.40)

The universal functional may then be decomposed as

F = TS + EH + Exc (A.41)

where TS is the single-particle kinetic energy, EH the Hartree energy as usual, and Exc

the exchange-correlation (XC) energy (i.e. remainder of the universal energy).

In standard DFT, TS is defined as the kinetic energy of a system of noninteract-

ing particles having the same charge density as the interacting system and as such is
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uniquely determined by the density, while in the CDFT of Vignale and Rasolt, it is

the kinetic energy of a noninteracting system having the same charge and paramag-

netic current density as the interacting system. In both cases, since the noninteracting

system is chosen to have the same basic densities as the interacting system, TS is a

unique functional of those densities. Here, however, the noninteracting and interacting

systems do not share the same basic densities.

We may note that the universal functional F [n, jd] is always exactly equal to a

non-universal functional FA[N] during energy minimisation:

FA[N] = F [Nd]|jd=nA , (A.42)

where A uniquely indexes the external vector potential A, since knowledge of N(r) and

A(r) yields Nd(r). Decomposing the A-dependent functional as before, we have

FA[N] = TAS [N] + EH[N] + EAxc[N]. (A.43)

We consider now a system of an equal number N of noninteracting electrons whose

density NKS(r) satisfies the identity

NKS(r) = N(r) (A.44)

via the equations

{
1
2 [p̂ + AKS(r)]2 + vKS(r)

}
φi(r) = εiφi(r) (A.45)

nKS(r) =
N∑
i=1

〈φi(r) |n̂(r)|φi(r)〉 (A.46)

jKS(r) = AKS(r)nKS(r) +

N∑
i=1

〈
φi

∣∣∣̂jp(r)
∣∣∣φi〉 (A.47)

NKS(r) = (jKS(r), nKS(r)) . (A.48)

For the noninteracting system subject to the effective external field

VKS(r) = (AKS(r), uKS(r)) , (A.49)
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we require that

FAKS [N] = TAS [N]. (A.50)

Applying the Hellman-Feynman [137]-[138] theorem and taking the functional deriva-

tive of Eq. A.43 with respect to the physical density as before, we have that

δFA

δN
=
δFAKS

δN
+
δEH

δN
+
δEAKS

xc

δN
= −V′(r)

= −VKS(r) + (0, vH(r)) + Vxc(r) (A.51)

= −V(r),

where we have defined

Vxc(r) =
δEAKS

xc

δN
. (A.52)

Thus we have an expression for the noninteracting potential

VKS(r) = V(r) + (0, vH(r)) + Vxc(r) (A.53)

which, from Eq. A.28, has scalar and vector components which defined the exchange-

correlation potentials

AKS(r) = A(r) + Axc(r) (A.54)

uKS(r) = u(r) + vH(r) + vxc(r) (A.55)

and thus

vKS(r) = v(r) + vH(r) + vxc(r) + 1
2

[
A2

KS(r)−A2(r)
]
. (A.56)

It should be noted that, while VKS(r) is a unique functional of

Nd,KS(r) = n(r) (AKS(r), 1) , (A.57)

it is not a unique functional of N(r). The single-particle kinetic energy is only uniquely

defined for a specific definition of Exc and the condition that

FA[N]− EH[N] = TAS [N] + EAxc[N]. (A.58)
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Such a condition allows for a gauge-dependence in the XC functional. One can eliminate

this entirely by implementing the further conditions that

∇ ·Axc(r) = 0 (A.59)

and that vxc go to zero infinitely far from the system. This ensures that ∇ ·AKS(r) =

∇ ·A(r) and that vxc(r) does not add an arbitrary constant to the energy of the trial

density.

Beyond gauge-dependence, if there exist multiple choices of Vxc[N] that yield the

same universal functional, all are equivalent since they do not effect energy minimisa-

tion. On the other hand, the XC functional must be constructed (e.g. from ab initio

calculations) in such a way as that, if multiple choices of Vxc[N] exist that yield the

same physical densities but different universal functionals, the correct one is selected.

A.2 Extensions to CDFT

A.2.1 Spin-polarised systems

The proof of uniqueness in Sec. 3.3 is valid for one-component ground-state wavefunc-

tions, but does not generally hold for spinors. There are two approaches for incorpo-

rating spin into the theory. In paramagnetic CDFT, the charge and current densities

are decomposed into their spin-up and spin-down components, as are the scalar and

vector potentials that couple to them. All physical quantities can then be derived from

the nonphysical spin-dependent components. An equivalent approach is to introduce

the magnetization as a basic quantity, the benefit being that this is a physical quantity.

The magnetization of a system of N electrons is defined as

m(r) = 〈Ψ0 |m̂(r)|Ψ0〉 (A.60)

where m̂(r) is the magnetization operator

m̂(r) = µB

N∑
i=1

σ̂iδ(r− ri). (A.61)

where µB is the Bohr magneton. σ̂ is the spin operator, a vector operator whose three
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spatial components are the Pauli spin matrices

σ̂x =

[
0 1

1 0

]
, σ̂y =

[
0 −i
i 0

]
, σ̂z =

[
1 0

0 −1

]

The ground-state wavefunction is now a two-component spinor:

|Ψ0〉 =

[
|Φ0,↑〉
|Φ0,↓〉

]
(A.62)

and is the lowest-energy solution of the Pauli Hamiltonian

Ĥ = 1
2 (σ̂ · [p̂ + A(r)])2 + v(r) (A.63)

which, in the absence of spin-orbit coupling, can be decomposed into the standard

Hamiltonian for charges in external electromagnetic fields, plus a spin-dependent Stern-

Gerlach term

Ĥ = 1
2 [p̂ + A(r)]2 + v(r)− µBσ̂ ·B(r) (A.64)

where the external magnetic field, as usual, is given by B(r) = ∇×A(r).

The ground-state energy of a system subject to potentials (v,A) may then be writ-

ten in several different ways:

E0 =
〈

Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉+

∫
dr
{
jp ·A + n(v + 1

2A
2)−m ·B

}
(A.65)

=
〈

Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉+

∫
dr
{
j ·A + n(v − 1

2A
2)
}

(A.66)

=
〈

Ψ
∣∣∣T̂ + Û

∣∣∣Ψ〉+

∫
dr
{

(jp +∇×m) ·A + n(v + 1
2A

2)
}

(A.67)

The number of external potentials has not changed from the current-density func-

tional theory of Chapter 3, but the number of degrees of freedom the vector potential

has to couple with the system has, due to the way that, via the associated magnetic

field, it can couple to the magnetisation. For this reason, it is frequently the case that

the external magnetic field is treated is independent of the external vector potential, a

situation that is mathematically sound but physically only approximate. In Vignale-

Rasolt theory [124], for instance, the imbalance is addressed first by noting that only
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the scalar product of the magnetic field and magnetisation define the system, and sec-

ond by decomposing the scalar and vector potentials into (nonphysical) spin-up and

-down components, with

v(r) = v↑(r) + v↓(r) (A.68)

Bz(r) = v↑(r)− v↓(r) (A.69)

A(r) = A↑(r) = A↓(r). (A.70)

The densities are then also decomposed into spin-up and -down components, with

n(r) = n↑(r) + n↓(r) (A.71)

mz(r) = n↑(r)− n↓(r) (A.72)

jp(r) = jp,↑(r) + jp,↓(r) (A.73)

with no spin-dependent coupling to the current. This yields a current- and spin-density

functional theory (CSDFT) based on eight scalar potentials and eight scalar densities,

wherein the magnetic field is introduced via the scalar potentials (and is independent

of A) and the magnetisation via the spin densities.

An alternative approach is to introduce the magnetisation as a vector via the current

densities, exploiting the fact that the full physical current density is

j(r) = jp(r) + jd(r) +∇×m(r). (A.74)

The magnetic interaction is then introduced as the coupling of the last term in Eq. A.74

with the vector potential [95], with the true association between the vector potential

and magnetic field intact.

It has already been proved [124] that the ground-state spinor of an N -electron

system uniquely determines and is uniquely determined by the charge density n(r) and

the full paramagnetic current for magnetised systems

jg(r) = jp(r) +∇×m(r) (A.75)
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thus one can rewrite the uniqueness theorem of Sec. 3.3 as

(v,A)
(
n, jg, jd

)

(|Ψ0〉 ,A)

A
A−1 B−1

B

HK

(A.76)

Maps B and B−1 have already been discussed. As usual, map A is trivially proven

by the definition of the Pauli Hamiltonian and the nondegeneracy of the system, and

map B is given by the definitions of the charge density, diamagnetic current density

and now the magnetisation in terms of the ground-state wavefunction and the vector

potential. Map A−1 follows exactly as per current-density functional theory, since the

magnetisation depends only on the wavefunction.

The energy functional of a set of trial densities N = {n, jg, jd} in terms of the

physical current remains unchanged

Ev,A [N] = F [N] +

∫
dr
{
j(r) ·A(r) + n(r)

[
v(r)− 1

2A
2(r)

]}
(A.77)

≥ Ev,A [N0] = F [N0] +

∫
dr
{
j0(r) ·A(r) + n0(r)

[
v(r)− 1

2A
2(r)

]}
where N0 = {n0, jg,0, jd,0} and j0(r) = jg,0(r) + jd,0(r).

Functional derivatives of the universal functional are then taken with respect to the

current density jg(r) to yield a practical Kohn-Sham scheme for energy minimisation.

Thus current-density functional theory may be extended to include spin polarisation

with no increase in the number of basic potentials or basic densities. Only the number

of intermediate variables has changed, since |Ψ〉 is now a two-component spinor.

A.2.2 Degenerate ground states

As with standard ground-state DFT (i.e. for systems in the absence of a vector po-

tential), the HK-like proof for a CDFT based on the paramagnetic and diamagnetic

current densities relies on the Ritz variational procedure such that if |Ψ0〉 is the ground

state of Hamiltonian Ĥ, any state |Ψ′〉 6= |Ψ0〉 obeys the inequality

〈
Ψ′
∣∣∣Ĥ∣∣∣Ψ′〉 > 〈Ψ0

∣∣∣Ĥ∣∣∣Ψ0

〉
, (A.78)
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i.e. it only holds for nondegenerate systems. For a Hamiltonian that has more than

one ground state, the above inequality does not hold and the HK theorems remain

unproven.

There are two distinct types of state that might have a different wavefunction but

the same energy when subject to a given set of potentials: pure states, where the

wavefunction is any linear combination of degenerate ground states, and mixed states,

where the system is in a statistical ensemble of unmixed ground states. We have

discussed the representation of mixed-state ensembles in Chapter 3. In this section, we

shall concern ourselves with pure states only.

Defining the set of all possible potentials V as before:

V : {v(r),A(r)} (A.79)

then from the set of all ground states, G , we can define the particular set of degener-

ate ground states, together with their corresponding vector potential, for a particular

combination of scalar and vector potentials as

Gv :

{
|Ψ0〉 =

G∑
i=1

ci |Ψ0,i〉 ,A

}
(A.80)

where {|Ψ0,i〉} are the G degenerate ground states of the fixed scalar and vector po-

tentials v(r) and A(r). We can likewise define, from the set of all ground-state basic

densities N , the set of densities

Nv : {n, jp(r), jd(r)} . (A.81)

The maps we then wish to prove unique are shown schematically in Eq. A.82.

V Nv

Gv

A
A−1 B−1

B

HK

(A.82)

If map A is false, then there exist other ground-state solutions of the Hamiltonian

specified by potentials v and A that are not in Gv, since the vector potential in Gv is
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that of V by definition. This existence of other ground states is not possible since Gv

is defined from the complete set of degenerate ground states of that Hamiltonian. Map

B is also trivially shown to be true from the definition Nv in Eq. A.81.

If map A−1 is false, then there exists a state |Ψ0〉 that can be constructed from the

degenerate ground states of two different sets of potentials (v1,A1) and (v2,A2) with

corresponding Hamiltonians Ĥ1 and Ĥ2 and energies given by

E1 |Ψ0〉 = Ĥ1 |Ψ0〉

E2 |Ψ0〉 = Ĥ2 |Ψ0〉 ,

thus

(E1 − E2) |Ψ0〉 =
[
Ĥ1 − Ĥ2

]
|Ψ0〉 . (A.83)

Since the set Gv determines the vector potential A by definition, we have that A2 = A1

and thus

(E1 − E2) = [v1 − v2] |Ψ0〉 (A.84)

which holds for all positions only if

v1(r)− v2(r) = E1 − E2, (A.85)

i.e. if the two potentials differ only by a constant. Thus map A−1 is unique up to an

additive constant in v(r).

Finally, if map B−1 is false, then two sets of degenerate ground states and corre-

sponding vector potentials can yield the same basic densities:

(|Ψ1〉 ,A1)→ (n, jp, jd)← (|Ψ2〉 ,A2) . (A.86)

Again, the set Gv uniquely determines the vector potential:

A2(r) = A1(r) = A(r) (A.87)

where jd(r) and n(r) are as defined in Eq. A.81. The proof of map A means that the

two states |Ψ1〉 and |Ψ2〉 must be constructed from the degenerate ground states of two
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different sets of external potentials. From the Ritz variational principle, we have that

E′1 =
〈

Ψ1

∣∣∣Ĥ2

∣∣∣Ψ1

〉
=
〈

Ψ1

∣∣∣Ĥ1

∣∣∣Ψ1

〉
+
〈

Ψ1

∣∣∣Ĥ2 − Ĥ1

∣∣∣Ψ1

〉
= E1 +

∫
dr n(r) [v2 − v1] > E2 (A.88)

E′2 = E2 +

∫
dr n(r) [v1 − v2] > E1. (A.89)

Summing the two inequalities leads to the contradiction

E1 + E2 > E2 + E1 (A.90)

and thus map B−1 has been proven reductio ad absurdum. Thus there exists a one-to-

one relationship between the external potentials (v,A) and the degenerate ground-state

densities (n, jd), although not individual degenerate combinations of particular charge

and diamagnetic current densities. Thus we may write the external scalar and vector

potentials as unique functionals of the densities:

v(r) = v [n, jp, jd] (r)

A(r) = A [n, jp, jd] (r). (A.91)
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