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Abstract 
 

The research presented in this thesis examines the calculation of numerical 

likelihood ratios using phonetic and linguistic parameters derived from a 

corpus of recordings of speakers of Southern Standard British English. The 

research serves as an investigation into the development of the numerical 

likelihood ratio as a medium for framing forensic speaker comparison 

conclusions. The thesis begins by investigating which parameters are claimed to 

be the most useful speaker discriminants according to expert opinion, and in 

turn examines four of these ‘selected/valued’ parameters individually in 

relation to intra- and inter-speaker variation, their capacities as speaker 

discriminants, and the potential strength of evidence they yield. The four 

parameters analyzed are articulation rate, fundamental frequency, long-term 

formant distributions, and the incidence of clicks (velaric ingressive plosives). 

The final portion of the thesis considers the combination of the four parameters 

under a numerical likelihood ratio framework in order to provide an overall 

likelihood ratio. 

The contributions of this research are threefold. Firstly, the thesis 

presents for the first time a comprehensive survey of current forensic speaker 

comparison practices around the world. Secondly, it expands the phonetic 

literature by providing acoustic and auditory analysis, as well as population 

statistics, for four phonetic and linguistic parameters that survey participants 

have identified as effective speaker discriminants. And thirdly, it contributes to 

the forensic speech science and likelihood ratios for forensics literature by 

considering what steps can be taken to conceptually align the area of forensic 
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speaker comparison with more developed areas of forensic science (e.g. DNA) 

by creating a human-based (auditory and acoustic-phonetic) forensic speaker 

comparison system. 
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Chapter 1  Introduction 

The research presented in this thesis explores the calculation of numerical 

likelihood ratios using both phonetic and linguistic features. Articulation rate, 

fundamental frequency, long-term formant distributions, and clicks (velaric 

ingressive plosive sounds) are analyzed with the purpose of considering intra- 

and inter-speaker variation, levels of speaker discrimination, the strength of 

evidence, and the viability of presenting forensic speaker comparison 

conclusions as numerical likelihood ratios. This chapter outlines the 

contribution of the thesis in the field of forensic speech science, and provides a 

short summary of forensic speaker comparison and conclusion frameworks 

used in forensic speaker comparison cases. The research aims are then 

described, and overviews of each chapter are provided. 

1.1 Forensic Speaker Comparison 

Forensic speaker comparison (FSC) is noted as being the most common 

task carried out by forensic phoneticians (Foulkes and French, 2012, p. 558), 

and the majority of research in the field of forensic speech science (hereafter 

FSS) is oriented towards this task. FSC is also referred to by other terms such as 

(forensic) speaker identification, (forensic) speaker recognition, and (forensic) 

voice comparison (Rose, 2002; Rose and Morrison, 2009). However, the term 

‘comparison’ is preferred in this thesis for two reasons. Firstly, it is not possible 

to achieve an ‘identification’ with 100% certainty under a frequentist1 

                                                        
1 The Merriam-Webster dictionary defines frequentist as  [defining] the probability of an event 
(as heads in flipping a coin) as the limiting value of its frequency in a large number of trials” 
<http://www.merriam-webster.com/dictionary/frequentist [Accessed 10 January 2014]. 
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conclusion framework, given that there is always, to some extent, within-

speaker variability. Secondly, under a Bayesian framework the expert should 

not take on the role of trier of fact by providing an identification. Rather, 

his/her responsibility is to express the probability of obtaining the evidence 

under the hypothesis that the samples came from the same person, versus the 

probability of obtaining the evidence  under the hypothesis that two different 

speakers produced the criminal and suspect samples. The term ‘speaker’ is 

preferred over ‘voice’ in this thesis as not all parameters examined in FSC work 

are products of just the voice per se. The manifestation of speech parameters 

can also be a reflection of the social and psychological mind-set of the individual 

(e.g. French et al., 2010). Therefore, forensic speaker comparison is the term 

preferred over other possible naming conventions. 

The analysis in an FSC typically involves the comparison of two (or 

more) recordings: a criminal sample (also referred to as an ‘unknown’, 

‘disputed’, ‘trace’, or ‘questioned’ sample) and a suspect sample (also referred to 

as a ‘known’ or ‘reference’ sample). The criminal sample is a recording adduced 

as evidence that contains the speech of an unknown individual. It is possible for 

the criminal recording to also contain other sounds associated with the crime 

taking place. In the UK, the suspect sample is usually a recording of a police 

interview (Nolan, 1983; Rose, 2002) with the suspect.  The objective of the 

expert forensic phonetician is to provide the trier(s) of fact with an informed 

opinion regarding the probability of obtaining the evidence (the 

similarities/differences between the criminal and suspect samples) under the 

hypothesis that the samples came from the same person, versus the probability 

of obtaining the evidence (the typicality of the analyzed speech parameters) 
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under the hypothesis that two different speakers produced the criminal and 

suspect samples.  This objective can be reached by experts using a variety of 

methods (e.g. acoustic analysis, auditory analysis, acoustic and auditory 

analysis, fully automatic speaker recognition2 (ASRs), or human-assisted ASR); 

however, the most common method employed by experts is the combination of 

auditory phonetic and auditory acoustic analysis of phonetic, linguistic, and 

non-linguistic speech parameters (e.g. laughter, coughs; French et al., 2010). 

1.1.1 Expression of Conclusions 

Just as there is variability in the methodologies preferred for the 

comparison of speakers, variability also exists across analyses with regard to 

the expression of a conclusion at the end of a FSC. Conclusion frameworks can 

include binary decisions (either the two speakers are the same person or they 

are different speakers), classical probability scales (probability of identity 

between the criminal and suspect; Broeders, 1999), the UK Position Statement 

(a potentially two-part decision based on assessing ‘consistency’ and 

‘distinctiveness’ of the samples; French and Harrison, 2007), and likelihood 

ratios (LR, either verbal or numerical, expressing the likelihood of finding the 

evidence given a same-speaker versus different-speaker hypothesis; Morrison, 

2009b; 2009c).  There has recently, however, been a strong promotion of the 

use of the LR framework, as it is advanced as being the only  logically and 

legally correct framework” (Rose and Morrison, 2009, p. 143).  

                                                        
2 Other researchers have use ASR to mean automatic speech recognition (e.g. Goel, 2000). 
However, ASR is used in this thesis to mean automatic speaker recognition. 
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The use of the numerical LR in research literature has been given 

increasing attention, starting with Rose (1999). However, the use of the 

numerical LR in courts in cases involving FSCs is rare (see Rose, 2012; 2013). 

Many reasons exist for the limited representation of the numerical LR in court, a 

number of which are addressed in French et al. (2010). However, the key 

practical limitation cited by French et al. (2010) preventing the implementation 

of numerical LR conclusions lies in the limited availability of population 

statistics and the difficulty of collecting them. If numerical LRs were to be 

calculated with regard to the (very) few parameters for which there are 

available population statistics, French et al. (2010, p. 149) argue that one  runs 

the risk of producing an opinion that could lead to a miscarriage of justice.” This 

is due to the fact that the analysis would fail to consider a large number of other 

available parameters for which there are no population statistics. In turn, this 

could impact the conclusion the expert would arrive at in a FSC case. 

The motivation for this thesis stems directly from the difficulties and 

limitations associated with calculating a numerical LR and the increased desire 

for the field of forensic speech science to align itself with other more developed 

disciplines of forensic science (e.g. DNA). Previous discussions have tended to 

focus simply upon the reasons for or against the implementation of a numerical 

LR. However, far less empirical work has been carried out to examine the 

practicalities associated with the calculation of numerical LRs. The present 

study serves as an exercise in calculating numerical LRs for speech data. The 

data are derived from the speech of a homogeneous group of speakers, while 

assessing the discriminant ability of these parameters in combination. This 

exercise is intended to parallel the methodologies and procedures that would 
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be implemented in a real FSC case, should the analyst choose to utilize a 

numerical LR framework. 

1.2 Research Aims 

The primary aims of this thesis are threefold. The first aim is to provide 

the field of FSS with a comprehensive summary of current FSC practices used 

around the world, which has never been previously available. The survey will 

provide details regarding the types of analysis that are used and their 

frequency, information on the speech parameters employed, experts’ opinions 

of the discriminant value of those parameters, and the conclusion frameworks 

they adopt. The survey will also serve as the primary motivation for the 

selection of the four phonetic and linguistic parameters examined in this thesis. 

The second aim is to expand the breadth of FSS literature by examining 

the actual discriminant value of parameters (individually and in combination) 

identified by expert forensic phoneticians as being good speaker discriminants. 

Irrespective of the expectations and actual level of discrimination potential 

carried by these given parameters, their distributions within the analyzed 

population will nonetheless provide the field of forensic phonetics with useful 

information that can further inform FSC casework. The analysis focuses on 

three intrinsically quantitative phonetic parameters and one ostensibly 

qualitative linguistic parameter, while aiming to increase the number of speech 

parameters that can be considered under a numerical LR. Through this analysis, 

the thesis simultaneously aims to contribute detailed population statistics for 

four phonetic and linguistic parameters in a large, homogeneous group of 
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speakers. As such, this research will address the arguments set forth in French 

et al. (2010) about the limited availability of population statistics. 

The third, and final, aim of the present body of work is to take the 

necessary steps to assess the practical limitations and opportunities associated 

with the implementation of a numerical LR framework in FSCs. This begins by 

examining potential correlations that exist between and within parameters, and 

is then followed by appropriately combining the individual pieces of speech 

evidence. Numerical LRs are then calculated, and strength of evidence and the 

performance of the combined system are considered. Potential pitfalls and 

successes are then acknowledged, as doing so is necessary in contributing to the 

on-going discussion of whether it is practical to adopt a numerical LR 

framework (in part or full) for FSCs. Most importantly, this work aims to 

provide a transparent and objective assessment of the viability of implementing 

a numerical LR framework for FSCs. This assessment will be approached from a 

structured learning (data-driven) perspective, rather than through giving 

subjective theoretical opinions regarding the use of numerical LRs in FSC 

casework. 

1.3 Thesis Outline 

In Chapter 2, an overview is provided of relevant literature relating to the so-

called ‘paradigm shift’ in forensic science, changes in the law  Bayes’ Theorem  

FSCs, the use of likelihood ratios (LRs) in FSCs, and a discussion of the 

limitations relating to these topics. The research questions for this thesis that 

have arisen from previous research reviewed in this chapter are also presented.  
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Chapter 3 reports on the construction, contents, and results of the first 

comprehensive international survey of forensic speaker comparison practices. 

It provides a summary of current practices around the world, commonly-used 

phonetic, linguistic, and non-linguistic parameters in casework, conclusion 

frameworks, and expert opinion about which parameters are believed to be 

highly discriminant. A selection of those parameters found or claimed to be 

useful speaker discriminants by survey participants is chosen for further 

examination in subsequent chapters. They include: articulation rate, long-term 

formant distributions, fundamental frequency, and clicks (velaric ingressive 

plosives).  

The investigation of articulation rate (AR) as a speaker discriminant is 

presented in Chapter 4. A summary of the AR literature is provided, followed by 

an analysis of the distribution of AR in the test population. This chapter 

explores the methodologies used for calculating AR by manipulating the 

minimum syllable length requirement in a speech interval and comparing inter-

pause stretches with memory stretch intervals. The chapter concludes by 

calculating LRs for AR and determining the levels of discrimination, strength of 

evidence, and validity of the system. 

Chapter 5 analyzes long-term formant distributions (LTFD) as a speaker 

discriminant. A summary is provided of research that explores LTFD as a 

parameter for FSC. LTFDs are analyzed individually as well as in combinations 

relevant to forensic casework, while also providing population statistics. The 

chapter investigates the effects that the package length (time intervals) of 

tokens may have on results. Finally, LRs are calculated for individual formants 
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as well as in combination. The levels of discrimination are presented, along with 

strength of evidence and validity of the system. 

Long-term fundamental frequency (F0) as a speaker discriminant is 

explored in Chapter 6. The chapter offers a summary of the relevant literature 

on F0 as well as the external factors known to affect F0. Population statistics are 

offered for F0, and the effects of the package length of tokens are investigated 

for potential differences in the discriminant results for F0. The chapter 

concludes with the calculation of LRs, and examines the levels of discrimination, 

strength of evidence, and validity of F0 as a system. 

Chapter 7 analyzes clicks3 (the final parameter in the thesis) as a speaker 

discriminant. A summary of the literature on clicks in general is provided at the 

beginning of the chapter, as well as clicks in conversation analysis. This chapter 

considers click rate (frequency of velaric ingressive plosives) as a discriminant 

parameter, and provides population statistics for within- and between-speaker 

variability. The effects of accommodation are explored in relation to increases 

in within speaker variation. The chapter concludes by discussing the impeding 

limitation of not being able to calculate LRs for click rate, due to the lack of 

appropriate modeling techniques for the data distribution presented by click 

rate. 

The correlations and combinations of those parameters presented in 

Chapters 4-7 are explored in Chapter 8. The chapter provides a summary of the 

literature on correlations and combinations of parameters in FSC. Correlations 

are calculated between all parameters as well as within parameters. These data 

are used to inform the appropriate methods for the combination of parameters 

                                                        
3 Used as discourse markers in conversation. 
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in order to create a complete system (consisting of the four parameters 

explored in this thesis). Overall likelihood ratios (OLRs) are calculated for the 

complete system as well as ten alternative systems that consist of different 

combinations of LTFD, F0, and AR. The performance of the complete system (in 

terms of strength of evidence and validity) is discussed in comparison to the 

performance of the alternative systems. 

The results presented in Chapters 3-8 are considered collectively and 

discussed in Chapter 9. A comparative analysis of individual parameters is 

offered alongside the combination of parameters as a system, examining levels 

of discrimination between speakers, strength of evidence, and validity. The 

phonetic-linguistic (human-based) system consisting of AR, LTFD, F0, and clicks 

is then compared to the performance of ASRs. To conclude, limitations 

associated with the calculation of numerical LRs are discussed, as well as the 

implications for using a numerical LR framework in casework. 

Finally, Chapter 10 provides a summary of the overall findings of the 

thesis, revisits the thesis’ aims  and identifies opportunities and challenges that 

face the implementation of a numerical LR should practitioners choose to adopt 

such a FSC conclusion framework. 
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Chapter 2  Literature Review 

In this chapter, an overview is presented of the literature surrounding the so-

called ‘paradigm shift’ in forensics  changes in the law  Bayes’ Theorem  forensic 

speaker comparisons (FSCs), the use of likelihood ratios (LRs) in FSCs, and the 

limitations and shortcomings surrounding these topics that have led to the 

research questions of this thesis. All subsequent chapters contain a literature 

review concerning the issue or parameter under focus. 

2.1 The Paradigm Shift  

The term paradigm shift was first introduced by Kuhn in 1962. A paradigm in 

the sciences is defined by Kuhn as a conceptual framework that only members 

of a particular scientific community share. He goes on to describe a paradigm 

shift as a change in these basic assumptions within the ruling theory of science. 

An example of one of the most famous paradigm shifts in science is the 

transition from a Ptolemaic cosmology to a Copernican one, in which the sun is 

the center of the universe rather than the Earth (Kuhn, 1962). Kuhn (1962) 

argues that once a paradigm shift is complete, a scientist is unable to reject the 

new paradigm in favor of the old one. As asserted by Kuhn (1962), paradigms 

exist in all (sub)domains of science, and forensic science is no exception. 

In 2005, Saks and Koehler wrote a review entitled ‘The Coming Paradigm 

Shift in Forensic Identification Science’  in which they argued that traditional 

forensic sciences should  replace antiquated assumptions of uniqueness and 

perfection with a more defensible empirical and probabilistic foundation” (Saks 

and Koehler, 2005, p. 895). They begin their review by describing the state of 
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traditional forensic science that follows a frequentist view of evaluation, 

whereby a decision is made on the probability of a single hypothesis (and 

without considering prior probabilities). Typically that hypothesis would be 

that two evidentially-relevant traces, e.g. recorded speech samples, were made 

by a single object/person (Osterburg, 1969; Stoney, 1991). This form of a 

hypothesis links evidence to a single object or person to  the exclusion of all 

others in the world” (Saks and Koehler, 2005, p. 892) Linking evidence to a 

single object or person is done based on the assumption of uniqueness, whereby 

the idea is that two evidentially-relevant traces produced by different people or 

objects will always be different. Therefore when two pieces of evidence are 

being compared that are not observably different, an expert will conclude that 

they were made by the same object or person (Saks and Koehler, 2005). The 

authors are implicitly drawing attention to the single-hypothesis, frequentist-

paradigm  in which the typicality of a piece of evidence’s characteristics (in a 

given population) has failed to be taken into account (i.e. they reject the 

uniqueness assumption).  

 Saks and Koehler (2005) reveal that in the decade leading up to their 

review, many people had been falsely convicted of serious crimes, only to be 

later exonerated by DNA evidence that had not been previously tested at the 

time of the trial. The authors state that erroneous convictions sometimes occur, 

and surprisingly in an analysis of 86 cases (ones which resulted in false 

convictions), it was found that 63% were due in some part to erroneous forensic 

science expert testimony (Saks and Koehler, 2005, p. 892).  This was the second 

biggest contributing factor to false convictions, after misleading eyewitness 
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identifications4. The authors explicitly state that the criticism does not apply to 

DNA evaluation as it is currently practiced; rather, DNA should serve as a model 

for other forensic science disciplines. The reasoning behind the statement is 

that DNA typing follows three main principles, (1) the  technology [is] an 

application of knowledge derived from core scientific principles”  (2)  the courts 

and scientists [can] scrutinize applications of the technology”  and (3) it offers 

 data-based  probabilistic assessments of the meaning of evidentiary ‘matches’” 

(Saks and Koehler, 2005, p. 893). 

 The authors strongly advise practitioners of other forensic disciplines to 

emulate the approach taken by DNA typing, whereby the courts are provided 

with quantifiable evidence, error rates of the technology, and match 

probabilities being calculated from two competing hypotheses. Without 

explicitly stating it, Saks and Koehler are essentially arguing for the adoption of 

the likelihood ratio (LR; § 1.1.1) as the medium for presenting conclusions to 

the trier(s) of fact (e.g. judge, jury). They are arguing for forensic science to 

move from a  pre-science to an empirically grounded  one ”  that will be 

transparent and properly scientific. In order for other forensic disciplines to 

take on such an approach, Saks and Koehler (2005, p. 892) recommend that 

forensic scientists will need to work closely with experts in other fields to 

develop efficient methods.  

In recent years, following the paper by Saks and Koehler (2005), there 

have also been calls for improvements in the quality of forensic evidence by a 

number of legal and government bodies. It has been argued that all areas of 

                                                        
4 Multiple factors were considered in each false conviction. Therefore, while erroneous forensic 
evidence was a contributing factor in 63% of the false convictions, erroneous eyewitness 
testimony was the only other factor contributing to more false convictions (71%; Saks and 
Kohler, 2005, p. 892). 
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forensic science need to be more transparent, that forensic examinations should 

be based on validated methodologies, and that the results should be replicable 

and expressed in quantitative terms (U.S. National Research Council, 2009; 

House of Commons’ Northern Ireland Affairs Committee  2009; Law 

Commission of England & Wales, 2011). These calls for changes to forensic 

evaluation were made for the same reasons that Saks and Koehler (2005) 

alluded to with respect to false convictions being made from poorly presented 

forensic evidence as well as the changes that have occurred in the law.  

2.2 Changes in the Law 

A number of rulings made in the last century have significantly changed the face 

of expert evidence evaluation and testimony in various countries, especially the 

United States. Starting in 1923, with the ruling of Frye v. United States, courts 

moved away from accepting testimony from expert witnesses on the basis of the 

experts’ academic pedigree. Rather, a change was made by a federal appellate 

court, which rendered expert evidence inadmissible when it was based on 

methods not used by others in the same forensic discipline. The Frye ruling 

(Frye v United States (293 F. 1013 D.C. Cir. [1923])) determined that expert 

testimony was only admissible if the method of analysis used  gained general 

acceptance in the particular field in which it belongs.” (Frye v United States, 

paragraph 5). 

 In 1993, the law changed once again as scientific methods continued to 

improve. In Daubert v. Merrell Dow Pharmaceuticals (509 US 579 [1993]), the 

United States Supreme Court implemented a new ruling with regard to the 

admissibility of forensic evidence, whereby the forensic science in question 
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must demonstrate that it can stand on a dependable (i.e. tested) foundation. The 

ruling challenged those in the field of forensics to show that the forensic 

method in question had been tested, that its error rate has been established, 

and this error rate was acceptably low. The Daubert ruling has since been 

interpreted to mean that forensic sciences should be quantifiable, validated, and 

reliable. The ruling by the United States Supreme Court was intended to lower 

the threshold of admissibility for new and cutting-edge methodologies, which 

would have previously been considered inadmissible under the Frye ruling. At 

the same time, Daubert was meant to raise the threshold for long-established 

methods lacking a proper scientific foundation. Daubert subjected forensic 

sciences to serious methodological scrutiny for the first time. 

 By 1995, in the case of the United States v. Starzecpyzel, a loophole in the 

Daubert ruling was brought to light. The case in question included handwriting 

identification expertise, where a federal district court concluded that 

handwriting identification had no scientific basis, following the Daubert ruling. 

This decision was made even though the field of handwriting analysis had 

dedicated certification programs and professional journals. However, due to the 

loophole in Daubert the handwriting evidence was not excluded. The reason 

given was that since the methods used to collect evidence were found to have no 

scientific basis, Daubert did not apply to handwriting identification as it was not 

viewed as ‘scientific evidence’. The case of Starzecpyzel gave precedent for 

providers of other forensic testimony to find a way around Daubert by lowering 

the threshold for admissibility and declaring weakly-founded forensic 

testimony as non-scientific, thus bypassing the Daubert ruling altogether.  
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 It was not until 1999, in the case of Kumho Tire v. Carmichael, that the 

United States Supreme Court directly addressed whether or not Daubert applied 

to ‘non-sciences’. A brief was put together by a number of law enforcement 

organizations in which they argued that the majority of the expert testimony 

that they offered did not include scientific theories, methodologies, techniques, 

or data (Brief Amicus Curiae of Americans for Effective Law Enforcement, 

1997). This was stated in relation to the testimony of specific fields of 

investigation, such as: accident reconstruction, fingerprint, footprint and 

handprint [identification], handwriting analysis, firearms markings and 

toolmarks, bullets, and shell casings, and bloodstain pattern identification (Brief 

Amicus Curiae of Americans for Effective Law Enforcement et al., 1997). 

Ironically, the practitioners that were initially lobbying for their expertise to be 

admissible on scientific grounds were now denying that they were a ‘science’. 

Despite efforts to maintain the ‘non-science’ loophole of Daubert  the United 

States Supreme Court ruled in Kumho Tire that all expert testimony would be 

required to pass appropriate tests of validity (set forth by Daubert) in order to 

be admissible in court. 

 Although the rulings described in this section pertain to law in the United 

States, these rulings have had a large impact on the legislation in other 

countries.  In the United Kingdom, expert testimony is typically admissible on 

the basis of the qualifications of the expert testifying rather than the methods 

employed by that expert. This principle was influenced by the case of R v. 

Bonython in Australia where the Supreme Court ruled on the admissibility of 

handwriting evidence. They concluded that forensic evidence testimony is 

admissible when (i) a layperson is unable to form a sound judgment on the 



38 

 

matter  without the assistance of the witness possessing special knowledge or 

experience in the area”  and when (ii)  the subject matter of the opinion forms 

part of a body of knowledge or experience which is sufficiently organised or 

recognised to be accepted as a reliable body of knowledge or experience” (R v. 

Bonython, 1984, paragraph 5). This ruling can be interpreted as being 

intermediate between  the Frye and Daubert rulings, where the Bonython ruling 

encompasses the Frye ruling and includes the expectation that the testimony is 

reliable (again, this is usually satisfied with reference to the expert’s academic 

pedigree and the lack of previous miscarriages of justice in relation to the given 

expert testimony). 

In recent years the House of Commons’ Northern Ireland Affairs 

Committee (2009) and the Law Commission of England & Wales (2011) have 

also been influenced by such U.S. rulings, and have urged forensic sciences to 

make changes to their current practices that would align them more closely 

with measures set out in Daubert. With respect to the changes in legislature, the 

developments in presenting DNA typing, the paradigm shift, and the calls made 

by legal and government bodies, all of these factors (explicitly or inexplicitly) 

are convergent in their desire for forensic disciplines to adopt a Bayesian 

framework and to implement likelihood ratios. 

2.3 Bayes’ Theorem 

Bayes’ Theorem was first proposed by Sir Thomas Bayes in the 1740s, then 

updated and published by Richard Price (Bayes and Price, 1763), and later the 

same principles were rediscovered and updated further by Pierre Simon 
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Laplace5 (Laplace, 1781). Laplace is in reality the man who turned Bayes’ 

Theorem into the modern-day scientific application that is currently used 

around the world (Bertsch McGrayne  2012). Bayes’ Theorem was created as a 

way in which to update ones’ beliefs. The theorem has three central 

components: the posterior odds, the prior odds, and the likelihood ratio (LR), as 

illustrated in Equation 1. The components of Equation 1 are explained in detail 

in the subsequent sections with respect to forensic science. 
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Adapted from: Aitken and Taroni (2004, p. 95) 

 

In Equation (1), p represents the probability, where Hp is the prosecution 

hypothesis (e.g. the criminal and suspect are the same person) and Hd is the 

defense hypothesis (e.g. the criminal and suspect are different people). The E in 

Equation (1) is representative of the evidence in question. Bayes’ Theorem 

proposes that the posterior odds (the probability of the prosecution hypothesis 

                                                        
5 The term updated is used here to mean that a prior probability can be adjusted/modified by 
taking into account any new evidence or observation (e.g. likelihood ratio(s) in forensics) to 
arrive at a posterior probability (see Equation 1). 

Posterior Odds        Prior Odds         Likelihood 

         Ratio 
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being correct given the evidence divided by the probability of the defense 

hypothesis being correct, given the evidence) is equal to the prior odds (the 

probability of the prosecution hypothesis being correct divided by the 

probability of the defense hypothesis being correct; see § 2.3.2 for an example) 

multiplied by the likelihood ratio (the probability of obtaining the evidence 

given the prosecution hypothesis divided by the probability of obtaining the 

evidence given the defense hypothesis; see § 2.3.1 for an example).  

2.3.1 Likelihood Ratio 

The likelihood ratio (LR) is a gradient measure of the value of evidence 

(Aitken and Taroni, 2004) or what is also referred to as the strength of evidence 

(Rose, 2002) under a Bayesian framework. An LR is the calculation of the 

probability of obtaining the results of a given forensic examination on the basis 

of the prosecution hypothesis divided by the probability of obtaining those 

same results on the basis of the defense hypothesis. The LR is the only portion 

of the Bayesian framework in which a forensic expert should provide an 

opinion. The opinion that the expert provides on the strength of evidence is 

calculated from two competing probabilities. It should be noted that calculating 

an LR does not constitute a Bayesian exercise in and of itself (i.e. it only 

constitutes one part of the Bayesian framework), as that would imply the 

additional consideration of prior odds (Champod and Meuwly, 2000). 

 The numerator of the LR is the probability of the prosecutor’s 

hypothesis (the evidence being from the same person/object), while the 

denominator is typically the probability of the defense hypothesis (the evidence 

has come from a different person/object). Ideally, the defense hypothesis would 
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be set by the defense (Champod and Meuwly, 2000); however, this is rarely 

done and the responsibility usually falls to the expert, who typically renders the 

hypothesis as  the evidence came from someone/something else in the world”. 

The defense hypothesis has also been referred to as a ‘random match 

probability’ (Champod and Meuwly  2000, p. 195). In the LR equation, when the 

numerator presents a greater value than the denominator, there is support for 

the prosecution hypothesis, and when the denominator is greater than the 

numerator, there is support for the defense hypothesis.  

 The strength or value of evidence in a case is dictated by the magnitude 

of the resulting LR, or rather the distance of the resulting LR from 1. Therefore, 

an LR of 100 means that the probability of the evidence (given the competing 

prosecution and defense hypotheses) is 100 times more likely to have been 

obtained/to have come from the suspect than someone else in the population. If 

in the same case the LR was 1/100, then the evidence is 100 times more likely 

to have been obtained/come from someone in the population other than the 

suspect (Robertson and Vignaux, 1995). The probabilities of the prosecution or 

defense hypothesis can take a value between 0 and 1 (inclusive), while the LR 

can take a value between 0 and ∞ (Aitken and Taroni, 2004). Due to the fact that 

LRs can be extremely small (approaching 0) or extremely large (tending 

towards ∞)  the LR is often converted into a logarithmic scale with a verbal 

translation, which makes it easier for the trier(s) of fact (e.g. judge, jury) to 

interpret (Evett, 1995). If an LR is converted using Log10, a positive value then 

indicates support for the prosecution hypothesis, while a negative value 

indicates support for the defense hypothesis. 
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 The combined LRs from multiple pieces of evidence have been referred 

to as an overall LR (OLR; Alderman, 2004). If multiple pieces of evidence are 

evaluated in a case, individual LRs can be multiplied together (or added 

together in the case of Log10 LRs) in order to continue updating an existing 

probability following Naïve Bayes (Kononenko, 1990; Hand and Yu, 2001). 

Naïve Bayes refers to when there is an assumption of mutual independence 

between the pieces of evidence being combined.  When cases of correlated 

evidence (predicted through theory or shown through empirical research) are 

present, the strength of evidence (resulting LRs) cannot be combined through 

simple multiplication, and other methods need to be employed. There are at 

present three general remedies for the problem of combining correlated 

evidence, (1) the use of an LR algorithm that can handle correlation through 

statistical weightings (e.g. the Multivariate Kernel Density LR algorithm; Aitken 

and Taroni, 2004), (2) Bayesian networking that will account for correlations by 

considering feature distributions and variances and perform statistical 

weightings (Aitken and Taroni, 2004), or (3) a solution proposed in the field of 

automatic speaker recognition referred to as logistic-regression fusion, which 

accounts for correlations in resulting LRs and then applies statistical weightings 

(Brümmer et al., 2007; Gonzalez-Rodriguez et al., 2007; Ramos Castro, 2007). 

 In forensics, an LR can be presented either numerically or verbally. An 

example of a numerical LR statement is   it is 100 times more probable to obtain 

the evidence given the prosecution hypothesis than it is to obtain the evidence 

given the defense hypothesis”. A verbal LR will not include any numbers in its 

statement; instead, different phrases are used to express the strength of 

evidence. For example   it is more probable to that one would obtain the 
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evidence given the prosecution hypothesis than it would be to obtain the 

evidence given the defense hypothesis”. 

2.3.2 Prior Odds 

In Equation 1, the prior odds represent any existing probability of the 

hypothesis being true prior to the consideration of new evidence being 

introduced; they are then updated by the new information, which results in a 

posterior probability (Aitken and Taroni, 2004). For example, suppose a crime 

takes place on an island that is inhabited by 101 people. If the perpetrator is 

known to be one of the 101 inhabiting the island, then the prior odds of the 

suspect being the criminal is 1/100. 6 These prior odds will then be updated by 

the trier(s) of fact as new evidence is presented throughout the case. The prior 

odds are a key factor in the separation between a frequentist way (see § 1.1) of 

approaching a problem and a Bayesian way of approaching a problem. A 

Bayesian approach allows the probability of a hypothesis to be updated by any 

prior probabilities which might affect the posterior probability. 

 When the prior odds are used in research a numerical value is typically 

given, and to incorporate those odds into a Bayesian framework it only requires 

simple multiplication with the likelihood ratio. In practice, the prior odds can be 

problematic.  Robertson and Vignaux (1995, p. 19) state that this is especially 

true since  very large or very small prior odds can give some very startling 

effects.” For example, if there were prior odds in a case of ½, multiplied by an LR 

of 4, the posterior odds would be 2 (i.e. in favor of the prosecution hypothesis). 

If that same case had prior odds of 1/1000, multiplied by the same LR of 4 (e.g. a 

                                                        
6 Prior odds = p(Hp)/p(Hd), which in this case is p(1/101)/p(100/101) = 1/100 
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Hp of 8 divided by a Hd of 2 is equal to 4), the posterior odds would then be 

0.004 (i.e. in favor of the defense hypothesis).  Significant (or even small) 

changes of the prior odds can dramatically change the posterior odds.  This is 

demonstrated in the case above, where large prior odds cause the posterior 

odds to be in favor of the prosecution hypothesis, and much smaller prior odds 

yield posterior odds in favor of the defense hypothesis (despite the LR 

remaining constant). Prior odds can also be problematic in practice, given that 

Bayes Theorem assigns the responsibility of establishing the prior odds to the 

trier(s) of fact. This means that typically the jurors are held to be responsible for 

assigning and understanding priors (Robertson and Vignaux, 1995), a task 

which is in no way simple.  

2.3.3 Posterior Odds 

In Equation 1, the posterior odds are the results of the prior odds after 

being updated by the LR. Numerically, the posterior odds are the multiplication 

of the prior odds by the LR (Aitken and Taroni, 2004). Deriving the posterior 

odds, as with the prior odds, is the responsibility of the trier(s) of fact 

(Robertson and Vignaux, 1995), and it is up to the trier(s) of fact to determine 

the posterior odds by considering the prior odds they had initially established, 

in combination with the evidence provided by expert testimony (the LR(s)). 

Neither the likelihood ratio nor the prior odds on their own constitute a 

Bayesian probability; rather, it is the value of the posterior odds that equates to 

a Bayesian belief of probability. 
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2.3.4 Logical Fallacies 

There are three main fallacies that can be committed in the 

implementation of the Bayesian framework. The first is for the forensic expert 

to report posterior odds, since the expert does not typically have access to the 

prior odds, as they are generally set by the trier(s) of fact and not an expert 

(Rose and Morrison, 2009). Even if the expert were to have access to them, the 

prior odds will vary in accordance with individuals’ personal beliefs about the 

cases, and the beliefs are subject to natural bias. This fallacy of presenting 

posterior odds, as committed by a forensic expert, also means that the expert is 

taking on the role of trier of fact (Robertson and Vignaux, 1995), which in fact 

infringes on what has been called the ‘ultimate issue’. The ‘ultimate issue’ in law 

is the decision about the guilt or innocence of a suspect by the trier(s) of fact. If 

an expert is to present posterior odds, such as an incriminating statement like 

 the suspect made the shoe mark”, the expert then places himself/herself in the 

role of decision maker, rather than an objective party presenting facts relating 

to the case (see Joseph Crosfield & Sons v. Techno-Chemical Laboratories Ltd.). 

 The second fallacy is known as the prosecutor’s fallacy (Thompson and 

Schumann, 1987), also referred to as transposing the conditional (Evett, 1995; 

Lucy  2005) or the inversion fallacy (Kaye  1993). The prosecutor’s fallacy 

occurs when the probability of the evidence given the hypothesis is 

interchanged with the probability of the hypothesis given the evidence (Lucy, 

2005). The inversion of the probabilities gives undue weight to the prosecution 

hypothesis by assuming that the prior odds of a random match (or two pieces of 

evidence found to be similar) are equal to the probability of the defense 
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hypothesis. For example, an expert states that there is a 10% chance the suspect 

 would have the crime blood type if he were innocent. Thus there is a 90% 

chance that he is guilty” (Aitken and Taroni  2004, p. 37). 

The third fallacy is known as the defender’s fallacy (Thompson & 

Schumann, 1987), which occurs when minimal weight is attributed to the 

evidence. This is done by considering the background population statistics for a 

piece of evidence without attention to any associated value (e.g. prior odds). For 

example, a DNA profile has a probability of 1% in a total population of 10,000, 

which the suspect comes from. The defense argues that the DNA profile would 

occur in 100 of these individuals in the population of 10,000, and is therefore of 

very little value. On the contrary, cutting the total population from 1 in 10,000 

to 1 in 100 means that 9,900 people are being excluded, and also it is highly 

unlikely that all of the 100 individuals are equally likely to be the criminal (Evett 

and Weir, 1998, p. 32; Lucy, 2005, p. 157). 

 The three fallacies presented in this section are all flawed in a logical 

sense as the expert takes on responsibility that is not his/hers (e.g. presenting 

posterior odds), or the prosecutor/defender only considers a portion of Bayes’ 

Theorem in order to arrive at posterior odds on behalf of the trier(s) of fact. 

Despite these fallacies having a detrimental effect on the trier(s) of fact’s 

comprehension of the evidence/case with which they have been presented, 

these fallacies nevertheless need to be monitored in case miscarriages of justice 

occur. For other errors in the interpretation of Bayes’ Theorem, see Aitken and 

Taroni (2004, pp. 78-95). 
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2.4 Forensic Speaker Comparison 

Given the current paradigm shift and the logically and legally correct framework 

that Bayes’ Theorem offers, practitioners in the field of FSC are making the 

effort to align themselves with other more conceptually advanced areas of 

forensics (i.e. those using a Bayesian framework, for example, DNA). Acceptance 

of the forensic paradigm shift in FSC has already been acknowledged and 

embraced (French et al., 2010). However, the ease with which an LR approach 

can be adopted is an issue in itself. This is largely due to the challenges that 

speech data in the forensic context present. This section builds upon the 

forensic speaker comparison (FSC) introduction in § 1.1. It provides further 

background information on the complexity of speech data used in FSCs, speech 

parameters that are commonly analyzed in FSCs, and the way in which FSC 

conclusions are currently framed in the UK. This section will situate the 

challenges facing FSC in comparison to other forensic disciplines, while 

demonstrating the current state of the field as it attempts to align itself with 

those more advanced (i.e. those using a Bayesian conclusion framework) 

forensic disciplines. 

FSCs are the most commonly performed task by forensic speech 

scientists (Foulkes and French, 2012). The task of the expert is to provide expert 

opinion on the speech evidence to the trier(s) of fact. The expert opinion in a 

FSC is ideally presented in terms of the likelihood of obtaining the evidence 

(corresponding to the similarities/differences between the criminal and suspect 

samples) under the hypothesis that the samples came from the same person, 

versus the probability of obtaining the evidence (the typicality of the analyzed 
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speech parameters) under the hypothesis that two different speakers produced 

the criminal and suspect samples. The methodologies undertaken by an expert 

in a FSC are varied, unlike DNA where the same techniques are routinely 

applied across cases. That is to say that the methodologies involved in FSCs 

need to be adapted on a case-by-case basis to varying extents. The reasons for 

this are twofold: (1) speech data is complex in nature (confounding factors are 

often present), and (2) there is no single speech parameter that is omnipresent 

and can discriminate all speakers. 

2.4.1 Complexity of Speech Data 

 Speech is inherently variable, so much so that phoneticians often make 

reference to the simple fact that no two speech utterances produced even by the 

same speaker are ever identical. It is this intra-speaker variation that sets 

forensic speech science apart from some other forensic disciplines. DNA is an 

example of forensic evidence where the criminal and suspect samples can be 

identical. For speech, unlike DNA, it will never be the case that the probability of 

obtaining the evidence given the prosecution hypothesis is ever equal to 1. 

Variability within the speech of an individual can be caused by numerous 

factors (e.g. the interlocutor, illness, speaking style, intoxication); however, the 

maximum extent of variation that can be observed within a speaker is not 

completely understood through currently available models in linguistics, 

sociolinguistics, phonetics, or phonology. 

 The variation that is observed between speakers, or inter-speaker 

variation, is also highly conditioned by both biological and anatomical factors 

(e.g. vocal tract length, the rate at which vocal cords vibrate), as well as 
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phonological and social factors (e.g. age, sex, class; Chambers, 2005; Eckert, 

2000; Wardhaugh, 2006).  It is also possible for these variables to interact with 

one another, whereby their effects are manifested in the speech of individuals 

differently. 

 The levels of intra-speaker variation observed in speech recordings are 

typically high; therefore, it is not surprising that many individual linguistic-

phonetic parameters analyzed in FSCs offer only small contributions to 

advancing the task of speaker discrimination. For this reason, a forensic 

phonetician will traditionally consider multiple phonetic-linguistic parameters 

under a combined auditory and acoustic phonetic analysis (French and Stevens, 

2013). As a result, the different phonetic-linguistic parameters in a FSC form 

highly correlated systems and sub-systems owing to the relevant anatomical, 

phonological, and social factors.  The relationships that exist in the data when 

multiple parameters are under consideration must be appropriately taken into 

account in the evidence (as is also the case for other forensic sciences). This is 

so that the conclusion presented in a FSC case is representative of the evidence, 

and does not over- or under-estimate its strength. 

Speech data present a number of challenges to phoneticians looking to 

analyze phonetic-linguistic parameters in FSCs. This is because the probability 

distributions associated with phonetic-linguistic parameters are variable. The 

parameters can be discrete (categorical or qualitative, e.g. impressionistic 

analysis of voice quality), continuous (e.g. formant frequencies), or a 

combination of both (e.g. discrete at one level and continuous at another for the 

same parameter). The continuous parameters are (as a convenient 

simplification) traditionally assumed to be normally distributed. However, an 
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assumption of normality is not always advised as it can lead to miscarriages of 

justice (e.g. believing a speaker to be an outlier when he/she is actually very 

similar to the rest of the population). Algorithms used for calculating LRs (those 

which assume normality in the data distributions) evaluate similarity and 

typicality on the basis of data existing at all areas under the normal distribution 

curve. If a normal distribution curve does not accurately describe the data, the 

LR algorithms will compute similarity and typicality evaluations from 

inaccurate descriptions of the data distributions.  Additionally, it is possible that 

the distribution of values of a parameter for an individual speaker is different 

from the distribution of values of that parameter for a group of speakers.  

 Finally, in addition to the innate factors that make speech generally 

complex is the inevitable reality that speech recordings made under forensic 

conditions are often compromised in terms of quality. Criminal recordings are 

increasingly recorded via cellular phones, and the recording/transmission 

technologies involved may affect the quality of the recording. Telephone 

bandwidth restrictions (Byrne and Foulkes, 2004; Enzinger, 2010b; Künzel, 

2001), the distance (of the speaker) from the microphone (Vermeulen, 2009), 

and cellular phone audio recording codecs (Gold, 2009) have been shown to 

artificially attenuate portions of the speech signal, which in turn causes 

unwanted changes to formant frequencies and the fundamental frequency. 

Furthermore, criminal recordings are also susceptible to low signal-to-noise 

ratios and high levels of background noise and/or overlapping speech. For this 

reason, the task of extraction of the necessary parameters is made more difficult 

in FSC analysis. Despite these problems being prevalent in criminal recordings, 

they are typically not as severe (or not present at all) in direct and high-quality 
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recordings made in a police interviews (e.g. a recording of a suspect) or other 

comparable situations. 

Given that the suspect recording in a FSC case typically comes from a 

police interview, there is often a mismatch in the conditions under which the 

criminal and suspect samples are elicited. The criminal recording is frequently 

made in situations that involve high emotional states, physical activity, or the 

influence of drugs or alcohol. They also tend to be short in duration and limited 

in content. This presents the forensic phonetician with additional complications. 

2.4.2 The Phonetic Shibboleth 

The search for the linguistic or phonetic shibboleth7 for discriminating 

speakers has proved fruitless since research began in the field of FSS. This 

should not come as a surprise, given the inherent complexity of speech data, as 

outlined in § 2.4.1.  Research has shown that the vocal tract is highly plastic, 

that no phonetic/linguistic parameter is omnipresent, that a phonetic/linguistic 

parameter that makes one speaker different does not necessarily make another 

speaker different, and that parameters that make a speaker differ can vary over 

time. It is likely, furthermore, that it is the combination of parameters that 

makes a speaker unique (Nolan, 1983; Rhodes, 2013; Rose, 2013a). 

 There is a large and growing body of literature devoted to identifying 

phonetic and linguistic parameters that have ideal characteristics for FSC. These 

criteria have been outlined by Nolan (1983, p. 11): 

                                                        
7 Shibboleth is used here to refer to a single identifiable parameter that can discriminate 
between all speakers. 
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1. High between-speaker variability: The parameter should show a high 

degree of variation between speakers. If a single parameter cannot 

show this then a set of parameters can be sought 

2. Low within-speaker variability: The parameter should show 

consistency throughout the speech of an individual, and be insensitive 

to external factors (e.g. health, emotion, or interlocutor) 

3. Resistance to attempted disguise or mimicry: The parameter must 

withstand attempts on the part of the speaker to disguise his voice  

4. Availability: Any parameter should provide an ample amount of data 

in both the criminal and suspect samples  

5. Robustness in transmission: The usefulness of a parameter will be 

limited if its information is lost or reduced due to recording or 

transmission technologies   

6. Measurability: The extraction of the parameter must not be 

prohibitively difficult  

Criteria 3-6 are specifically concerned with practical issues that arise in 

casework. Criterion 4 relates to the often limited amount of material an expert is 

given to work with, while criteria 5 and 6 are associated with the recording and 

transmission technologies typically used in forensic recordings. The first two 

criteria suggested by Nolan (1983) identify the true difficulty of the FSC task. 

That is, the expert has to identify and examine phonetic and linguistic 
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parameters that have high inter-speaker variation, but also low intra-speaker 

variation. It is often the case that a phonetic or linguistic parameter meets a 

single criterion, but a phonetic/linguistic shibboleth is yet to be found that 

meets both criteria without exception. 

2.4.2.1 Research Question 1 

 Given the difficulties and limitations in selecting highly discriminant 

phonetic and linguistic parameters for analysis in FSCs, the most obvious 

question is: 

(1) What phonetic and linguistic parameters do practicing forensic 

phoneticians (around the world) typically analyze in a FSC case and 

which parameters do they view as being highly discriminant? 

Before questioning the proper (or logically and legally correct) framework in 

which to make conclusions about FSC evidence, it is important to consider the 

methodologies, practices, and parameter selection that is involved in the actual 

FSC analysis itself. Only after establishing the general expectations of the FSS 

community should one begin to broach the problem of FSC conclusion 

frameworks. For without any analyzed forensic speech evidence, there can be 

no valid conclusion. 

2.4.3 Current Conclusion Framework in the UK 

The current practice for presenting FSC conclusions in a UK court is not 

in the form of an LR as described in § 2.2, but rather is that described in the UK 

Position Statement that was introduced in 2007. The UK Position Statement was 

motivated by concerns about  the framework in which conclusions are typically 
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expressed in forensic speaker comparison cases” (French and Harrison  2007  p. 

137). The UK Position Statement stemmed from ruling of the Appeal Court of 

England and Wales in R v. Doheny and Adams (1996), which showed that the 

interpretation of the DNA evidence at the initial trial had been flawed by the 

prosecutor’s fallacy (French and Harrison  2007). The introduction of the UK 

Position Statement signified a shift in the role of the forensic phonetician when 

presenting speech evidence. The foreword to the UK Position Statement 

suggests that experts in the past were often trying to identify speakers (French 

and Harrison, 2007, p. 138). However, under their new approach an expert 

would not be making identifications per se. Instead, the expert will take on a 

different role (not one of speaker identification), to provide  an assessment of 

whether the voice in the questioned recordings fits the description of the 

suspect” (French and Harrison  2007  p. 138). The UK Position Statement was 

also proposed with the intention of aligning the field of FSC with  more modern 

thinking” forensic sciences (French and Harrison  2007  p. 137). 

The framework laid out in the UK Position Statement diverges from 

previous FSC conclusions by offering a framework which involves a bipartite 

assessment. The conclusion framework set out in French and Harrison (2007) 

potentially involves a two-part decision. The first part concerns the assessment 

of whether the samples are consistent with having been spoken by the same 

person. The second part, which only comes into play if there is a positive 

decision concerning consistency, involves an evaluation of how unusual or 

distinctive the combination of features that are common to the samples may be. 

An illustrated version of the UK Position Statement is provided in Figure 2.1. 
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Figure 2.1: Illustration of the UK Position Statement (Rose and Morrison, 2009, p.141) 

 

The UK Position Statement is illustrated in Figure 2.1, where the decisions of 

consistency and distinctiveness are serially ordered. A consistency decision has 

three possible options: consistent, not-consistent, and no-decision. If a 

conclusion about consistency cannot be made, then the expert concludes with a 

single evaluation (i.e. not consistent, or no decision). In the event that the expert 

finds the two speech samples to be consistent, s/he will then assess the 
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distinctiveness. The degree of distinctiveness is made on a five-point 

impressionistic scale, ranging from  not distinctive” to  exceptionally 

distinctive”. The assessment of distinctiveness in many cases must draw upon 

the experience of the expert so that he/she can provide a statement of the 

typicality of the criminal speech sample. 

 The UK Position Statement framework can be seen as a transitional 

point, or a stepping stone, between a frequentist probability  and an LR, where it 

is not providing a single probability of the hypothesis (e.g. the speaker in the 

criminal sample is likely to be person X), but not quite meeting the logical 

framework of the LR. At first glance the judgments of consistency and 

distinctiveness appear to mirror the numerator and denominator of an LR, as 

the consistency and distinctiveness account for both the similarity and the 

typicality of the speech recordings. However, the inner workings of the Position 

Statement do not hold true to the logical framework of an LR. There are two 

main reasons for this mismatch: (1) assessments are made on different scales, 

and (2) there is no logical procedure for combining (and weighing) constituent 

speech parameter evidence from a single case. 

 Rose and Morrison describe the assessment of consistency in the UK 

Position Statement as being on a three-point scale (Rose and Morrison, 2009, p. 

142). Although Rose and Morrison acknowledge that the decision about 

consistency is categorical, one could argue that the assessment of consistency is 

more accurately described as simply a ternary decision (rather than on a three-

point scale). This is due to the fact that the judgment is wholly categorical, and 

the ternary decision cannot be intuitively placed on a scale. A scale would imply 

some degree of hierarchy, and it is difficult to argue that, for example, no-
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decision should be ranked before inconsistent (or vice versa). Therefore, the 

assessment of consistency is discrete in nature and does not offer a gradient 

assessment of the similarity (through quantification of the speech evidence), as 

the numerical LR would ultimately provide. The assessment of distinctiveness is 

on a scale of one to five; however, this does not follow the same logic as the 

assessments of consistency. Thus, it is difficult to establish a working 

relationship between the two assessments; instead they exist more as two 

separate entities, where practitioners are trying to make a judgment on the 

same piece of evidence. 

 The use of a five-point scale in the UK Position Statement makes the 

framework prone to a cliff-edge effect (Aitken and Taroni, 2004). By imposing 

defined boundaries an expert is faced with a hard decision. So, for example, if a 

criminal sample has an F0 mean of 115 Hz, while the population mean is 90 Hz, 

should the analysis of a speech sample lend itself to a distinctiveness 

assessment of 3 (distinctive) or 4 (highly distinctive)? Should the boundary 

between distinctive and highly distinctive be two standard deviations, or 

perhaps three? Forcibly imposing categorical boundaries could potentially over-

or under-estimate the strength of evidence. Although the UK Position Statement 

is susceptible to the cliff-edge effect, the same can actually be said for the verbal 

LR scale provided by Evett (1998). Although the verbal scale suggested by Evett 

(1998) is associated with Log10 LRs, the cliff-edge effect can still occur for those 

Log10 LRs that lie close to the categorical boundaries. 

 The second inconsistency between the UK Position Statement and the LR 

is the lack of a protocol for combining the strength of evidence of individual 

phonetic-linguistic parameters. Under a Bayesian framework an expert is 
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expected to combine individual LRs for parameters that are mutually 

independent (Kononenko, 1990) by multiplying their LRs. If an expert is to 

naïvely combine correlated parameters without using appropriate statistical 

weightings, s/he then runs the risk of over-or under-estimating the strength of 

evidence (as s/he are essentially considering the same evidence multiple times). 

Under the UK Position Statement, experts make assessments of consistency and 

distinctiveness by informally considering all of the constituent pieces of analysis 

together. As such, they are unlikely to adequately (or transparently) consider 

the degree of correlation between the evidence. Therefore, conclusions made 

under the UK Position Statement framework could over- or under-estimate the 

strength of evidence. 

 Despite the disparity between the UK Position Statement and the LR, the 

UK Position Statement possesses two highly attractive attributes. Firstly, it 

allows the expert to avoid the undesirable and lengthy task of collecting 

(quantitative, data-based) population statistics for all possible relevant 

populations that could ever be required for a FSC case. Secondly, the framework 

allows the expert to avoid the difficulty of calculating numerical LRs for all 

phonetic-linguistic parameter distributions that do not fit into already existing 

LR algorithms. These two attributes are technically part and parcel of the same 

thing, as they together evaluate the denominator of the LR; however, the 

modeling of phonetic-linguistic parameters is also pertinent to the numerator. It 

is safe to argue that no LR algorithm could ever account for or encompass the 

full complexity of speech data; therefore, perhaps the UK Position Statement is 

right to circumvent fully quantitative population statistics and complicated 

models for calculating LRs for all speech parameters. Through experience and 
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education, an expert is able to account for instances of accommodation, channel 

mismatch, intoxication, emotional effects, and social factors. These factors tend 

to manifest themselves differently in the speech of each individual speaker and 

at different times. To create an algorithm that accounts for every individual, in 

every instance, would be near impossible.  

2.5 Likelihood Ratios in Forensic Speech Science 

It is now generally accepted in forensics that the logically and legally correct 

framework for expressing the results of forensic examinations is one in which 

the output is a likelihood ratio (Saks & Koehler, 2005). The domain of forensic 

speech science is no exception to this, and efforts have been made in the last 

decade and a half (starting with Rose, 1999) to incorporate into the LR into 

forensic phonetic- (and linguistic)-based research and casework. In forensic 

phonetics, the LR essentially becomes a test of the similarity and typicality of 

phonetic-linguistic parameters that are extracted from recordings. The 

numerator of the LR contains the probability of obtaining the evidence given the 

hypothesis that the speech came from the same speaker, while the denominator 

is the probability of obtaining the evidence given the hypothesis that the speech 

came from a different speaker (Rose, 2002). The same-speaker hypothesis is 

determined by comparing speech parameters from the criminal and suspect 

samples to establish the degree of similarity. The different speaker hypothesis is 

determined by comparing speech parameters from the criminal speech sample 

to those drawn from a relevant background population so as to establish the 

degree of typicality. The probability obtained from the numerator is then 
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divided by the probability obtained from the denominator, and the result is the 

LR for the given speech evidence. 

 The presence of LRs in FSC is largely confined to the research literature 

with only a single case example of the LR being used in FSC casework to date 

(Rose, 2012; 2013). The research carried out has predominantly had two main 

foci: (1) assessing speaker discrimination using a numerical LR and (2) overall 

improvements in LR methodologies. The next two sections (§ 2.5.1 and § 2.5.2) 

provide an overview of methodological research that has been carried out, as 

well as a review of the application of LRs in practice. 

2.5.1 Likelihood Ratios in the Literature 

This section focuses on the LR literature that investigates the use of 

numerical LRs as a framework for carrying out the assessments of speaker 

discrimination ability using phonetic and linguistic parameters, and the LR 

literature that seeks to improve current methodologies. 

2.5.1.1 Likelihood Ratios for Speaker Discrimination  

The application of the LR framework to FSCs has focused almost 

exclusively on vowels. Vowels can be easy to extract quantitative measurements 

from, and so readily lend themselves to the calculation of numerical LRs. In 

order to improve discrimination rates between speakers, researchers have 

measured vowels with multiple methodologies: using mid-point formant values 

(Alderman, 2004; Rose, 2007a; Rose, 2010a; Rose and Winter, 2010; Zhang et 

al., 2008), formant trajectories of monophthongs and diphthongs (Atkinson, 

2009; Enzinger, 2010a; Kinoshita and Osanai, 2006; Morrison, 2009a; Rose et 
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al., 2006), and long-term formant distributions over vowel mixtures (Becker et 

al., 2008; French et al., 2012; Moos, 2010).  

Comparatively speaking, non-vowel research for speaker discrimination 

purposes has not been given the same amount of attention as vowel-based LR 

research. Those studies that have been carried out on features other than 

vowels have all focused on quantitative, multivariate data that is typically 

normally distributed. The non-vowel parameters that have been investigated 

include fundamental frequency (F0), voice onset time (VOT), nasals, laterals, 

and fricatives (Kavanagh, 2010; 2011; 2013; Kinoshita, 2002; 2005; Kinoshita et 

al., 2009, Coe, 2012). Traditional FSC does not just involve the analysis of vowels 

and the non-vocalic features listed above. For this reason, further empirical 

work is required to evaluate the discriminatory value of additional speech 

parameters using a numerical LR. 

2.5.1.1.1 Research Question 2 

 The current body of literature evaluating the discriminant ability of 

speech parameters is plentiful. However, there are a number of speech 

parameters that have not had their discriminant ability tested. To date, 

parameters have been selected for analysis based principally on their ease of 

measurement. Instead, it is proposed here that parameters should be selected 

on the basis of their discriminatory merit as proposed on the basis of the 

experience of forensic phoneticians. These considerations lead us to ask our 

second research question: 
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(2) If experts are to provide their opinions on the most helpful speaker 

discriminants  are these ‘selected’ parameters going to be good 

speaker discriminants? 

a. Furthermore, do experts’ expectations surrounding the 

discriminant value of certain speech parameters match the 

results of these parameters’ empirically-tested performance? 

A simple hypothesis to test when empirically evaluating parameters that are 

identified as being commonly used in FSCs and which experts propose to be 

useful discriminants is that such parameters will perform better than speech 

parameters selected for analysis arbitrarily (simply because they are easily 

measurable and plentiful). 

2.5.1.2 Improving Likelihood Ratio Methodologies 

In addition to the LR literature that has assessed the discriminant ability 

of phonetic parameters, there is a dedicated body of literature on 

methodological advances in the calculation of LRs in other domains. In 

particular, there have been methodological advances across a range of areas, 

including the development of modeling techniques of data for calculating LRs 

(Kinoshita, 2001; Morrison, 2011; Zhang et al., 2008), exploring the issues 

surrounding correlated parameters (Gold and Hughes, 2012; Morrison et al., 

2010; Rose, 2006c; 2010b; Rose et al., 2004), identifying the relevant population 

for the LR (Hughes, in progress; Hughes and Foulkes, 2012; Morrison et al., 

2012a; 2012b), exploring the amount of data that is preferred for the reference 

population (Hughes, in progress; Hughes and Foulkes, 2012; Ishihara and 

Kinoshita, 2008; Kinoshita and Ishihara, 2012), combining parameters 
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(Morrison et al., 2010; Morrison, 2013; Rose 2010a; 2010b, 2013a; Rose et al., 

2004; Zhang et al., 2008), system calibration (Morrison, 2012; Morrison et al., 

2010; Morrison and Kinoshita, 2008), and measures of system validity and 

reliability (Morrison et al., 2010; Morrison and Kinoshita, 2008). 

Despite these methodological developments, there are numerous 

research questions relating to the calculation of LRs in FSCs that would greatly 

benefit from further empirical study and assistance from forensic statisticians. 

The majority of the previous research has perhaps neglected to acknowledge 

the complexity of speech data and has opted for often convenient but erroneous 

simplifications of basic linguistic principles in order to calculate LRs.  

2.5.1.2.1 Research Question 3 

As previously outlined in § 2.4.2, Nolan (1983) recommended that a set 

of parameters should be sought to show high between-speaker variability where 

a single parameter alone is not sufficient. Given the large body of literature on 

single speech parameters as discriminants and their limited discriminant 

power, it is suggested that further work needs to heed Nolan’s suggestion. 

(3) How well do speech parameters work in combination to discriminate 

between speakers? 

a. What steps need to be taken in order to appropriately 

combine speech parameters? 

b. Is the combination of multiple speech parameters always 

better than individual parameters at discriminating between 

speakers?  
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One would hypothesize that adding ever more parameters would further 

advance the task of FSC, since theory and research tells us that speakers are 

different from one another in a variety of ways. By combining multiple speech 

parameters, it is proposed that a combined system will achieve better 

discrimination performance than those achieved by single parameters.  

2.5.2 Likelihood Ratios in Practice 

The only publications that report the use of LRs for multiple speech 

parameters in FSC casework are those of Rose (2012; 2013b) in connection with 

a fraud case in Australia. The case of R v. Hufnagl (2008) revolved around a 

large-scale telephone fraud of AUS$150 million, where a criminal sent a fax to JP 

Morgan Chase bank, asking to transfer $150 million from the Australian 

Commonwealth Superannuation Scheme to accounts in Switzerland, Greece, and 

Hong Kong. Before the close of business, the criminal called the bank asking for 

confirmation of the details in the fax he had sent. When the Australian 

Commonwealth Superannuation Scheme realized their account was short by 

$150 million, an investigation followed. A suspect was identified, and Rose was 

asked to compare the recording of the fraudulent telephone call with recorded 

telephone calls known to have been made by the suspect. The analysis and 

report were produced five years prior to Rose’s publications about it (2012; 

2013b), so he presents the original analysis that was carried out as well as a 

retrospective critique of his analysis. 

 In the original analysis, he identified many tokens of the word yes in both 

the criminal and suspect recordings, as well as the utterance not too bad in the 

criminal recording and multiple occurrences of the same phrase in the suspect 
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recordings. Therefore, the majority of the analysis and the resulting LR were 

based on phonetic/linguistic parameters measured from these words. In order 

to establish the typicality of the criminal’s speech  Rose defined the relevant 

population to be  adult male speaker[s] of General Australian English” (Rose  

2013b, p. 284). He then collected relevant speech samples from 35 adult males, 

who served as the background population. The analysis of similarity was 

comprised of formant measurements from /je/ in the word yes at three 

designated time-points, the fundamental frequency (F0) in not too bad taken 

from four designated time-points, categorical classification of high and low 

tones in not too bad, formant measurements of the vowels in not too bad, and 

the frequency cut-off in /s/ from the word yes (Rose, 2013b). After 

(intentionally) naïvely combining the individual LRs from the parameters, an 

overall LR (OLR) of around 11 million was calculated. Rose (2013b) explicitly 

states that 11 million was an over-estimation of the strength of evidence, since 

some degree of correlation had to exist between the parameters. For this 

reason, parameters that were assumed to have some degree of correlation with 

one another (e.g. formant measurements for certain vowels) were thrown out, 

and a more conservative LR of 300,000 was reached. 

 Five years after the conclusion of the case, Rose provided a critique of the 

analysis and presentation of the evidence under an LR framework. He notes a 

number of developments made in the field since the R-v-Hufnagl case that could 

have made a significant difference in his analysis. These include vowel (and 

consonant) parameterization (e.g. formant dynamics; McDougall, 2004), 

quantification of accuracy and precision (validity and reliability; e.g. Cllr and 

EER for validity measures), and - most importantly - techniques to handle 
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between-parameter correlations for calculating OLRs (e.g. fusion). If any of 

these developments were to have been implemented in R v. Hufnagl (2008), it 

can confidently be said that the strength of the numerical LR would not be 

identical to that presented in Rose (2013b; also shown through his reanalysis of 

the case material); most likely, the strength of the LR would weaken as 

correlated parameters were accounted for during the combination of speech 

evidence (acknowledged in Rose, 2013b). 

 The final portion of Rose (2013b) commented upon the court’s reaction 

to the presentation of evidence in the form of a numerical LR, which is 

something rarely discussed in forensic phonetics. The expert testimony did not 

include a complete tutorial on the LR approach; rather, it offered a more 

abstract presentation of the strength of evidence (the LR). Rose (2013b) 

condensed his analysis into two main points for the jury, which he emphasized 

on multiple occasions: (1) the LR is for estimating the strength of the evidence 

and not the probability that the suspect is the criminal, and (2) the jury should 

not give much weight to the specific value allocated to the LR, just that it was 

very big. Whether Rose’s testimony made an impression on the triers of fact in 

R-v-Hufnagl is unknown. However, the jury did return a guilty verdict (Rose, 

2013b). Rose also notes that it was perhaps vital to his testimony that the judge 

was encouraging towards his approach and that this helped him (Rose) to 

articulate to the court the strength of the speech evidence. It can be assumed 

that not all judges would act in the same manner, and presenting the same 

testimony in front of a different judge might have been more challenging 

without such support. 
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 Overall, it is encouraging to see an example of a real case in which a 

numerical LR framework was used. The introduction of Rose’s paper provides a 

nice backdrop to the case and the type of speech material Rose chose to analyze. 

The critique at the end of the paper is a positive contribution, as it shows how 

the field has evolved in the past five years since the case analysis was 

completed. The paper also shines light on the reception of the LR in a court, 

which again often goes without attention in the literature. However, the paper 

perhaps brings up more questions (both theoretical and practical) about the 

implementation of the LR framework (as used by Rose) than it answers. For 

instance, how does an expert begin to select parameters for analysis under an 

LR framework? How can an expert argue why s/he has selected certain 

parameters for analysis over other parameters? How is an expert to incorporate 

qualitative/categorical parameters? And how many parameters need to be 

analyzed to consider the evaluation to be complete? 

Despite raising a new set of questions, Rose (2013b) makes three 

pertinent statements with respect to LRs. These statements are particularly 

relevant to the remainder of this thesis. The first is that  real-world cases are 

never the same” and  there is no one-size-fits-all” with regards to methodology 

(Rose, 2013b, p. 318). This means that the LR calculation is not the same in 

every FSC case, or for every phonetic/linguistic parameter selected for analysis. 

Therefore, the analysis that leads to an LR will always have to be adapted on a 

case-to-case basis. The second statement asserted by Rose is that FSC might 

lend itself more readily to a verbal LR over a numerical LR8.  The reason for this 

                                                        
8 A verbal LR is simply a verbal, rather than numerical, statement of the probability of obtaining 
the evidence given the prosecution hypothesis over the probability of obtaining the evidence 
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is that precise figures may be misleading in that numerical LRs may be difficult 

for the trier(s) of fact to interpret9 (Rose, 2013b, p. 305). The final statement 

comes from Judge Hodgson (2002) but is reiterated by Rose (2013b):  since not 

all types of evidence in a trial can be sensibly assigned a LR there is no way of 

mathematically combining à la Bayes the LR-based evidence with the non-

numerically based evidence” (Rose  2013b  p. 316-317).  This leaves one to 

ponder whether there is really an explicit need for speech evidence to be 

represented in numerical LR form. For example, would a phonetician ever be 

able to quantify the exact tongue shape of a speakers’ /ɹ/? In this instance, a 

qualitative description of /ɹ/ will typically be more useful than a quantitative 

one that is not completely transparent in its description. Should these types of 

evidence always be unsuitable for expression in a numerical LR, will it be the 

case that other phonetic-linguistic parameters can be made to fit the mold in the 

form of LR algorithms that dictate specific quantitative forms? It is also 

important to consider that if a numerical LR is used, only a partial assessment of 

the speech evidence is feasible, given that numerical LRs cannot currently be 

calculated for all speech parameters (because of the lack of appropriate 

algorithms and/or the qualitative nature of certain parameters), and the lack of 

population statistics in general. 

2.5.2.1 Research Question 4 

The literature review provided in the previous sections revealed a 

number of limitations and difficulties that can occur when applying the 

                                                                                                                                                             
given the defense hypothesis. For example  the verbal statement could be presented as ‘it is 
extremely more probable to obtain the given evidence under hypothesis x than y.’ 
9 For example, is there really much of a difference between an LR of 1.1 x 1014 and an LR of 1.11 
x 1014? 
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numerical LR framework to FSCs, which are largely due to the complexity of 

speech data. If the field is to continue in its efforts to align itself with more 

advanced forensic disciplines (in terms of conclusion frameworks) that have 

already adopted the LR framework (e.g. DNA), various aspects of the actual 

calculation of an LR in a FSC should be reviewed and improved (e.g. modeling 

techniques, population statistics, combining parameters for OLRs). 

(4) For this reason, it is essential to ask: What are the practical 

limitations/implications that need to be considered when using the 

numerical LR framework in FSCs? 

a. What recommendations, if any, can be provided following 

attempts to implement the numerical LR framework? 

b. What can a human-based (acoustic-phonetic) system tell the 

field in respect of the ease with which a numerical LR can be 

computed for FSCs? 

The practical limitations and implications associated with the implementation 

of a numerical LR will be discussed throughout this thesis. It is only through 

empirical testing that these questions can be addressed. 

2.6 Summary of Research Questions 

This chapter has presented a series of research questions that have been 

motivated by the prior literature and existing legal rulings with regard to 

forensic evidence, while further developing the research aims of the thesis. This 

section reiterates the research questions identified in this chapter, which will be 

explored in the remainder of the thesis. 



70 

 

(1) What phonetic and linguistic parameters do practicing forensic 

phoneticians (around the world) typically analyze in a FSC case 

and which parameters do they recommend as being highly 

discriminant? 

(2) If experts are to provide their opinions on the most helpful 

speaker discriminants  will these ‘selected’ parameters be good 

speaker discriminants? 

a. Furthermore, do experts’ expectations surrounding the 
discriminant value of certain speech parameters match 
these parameters’ empirically-tested performance? 

 
(3) How well do speech parameters work in combination to 

discriminate between speakers? 

a. What steps need to be taken in order to appropriately 
combine speech parameters? 
 

b. Is the combination of multiple speech parameters always 
better at discriminating between speakers? Are more 
parameters better? 

 
(4) What are the practical limitations/implications for using the 

numerical LR framework in FSCs? 

a. What recommendations, if any, can be provided following 
attempts to implement a numerical LR framework? 
 

b. What can a human-based (acoustic-phonetic) system tell 
the field in regards of the ease with which a numerical LR 
can be computed for FSCs? 
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Chapter 3  International Survey of 
Forensic Speaker Comparison 
Practices 

3.1 Introduction 

This chapter presents the results of the first comprehensive international 

survey on forensic speaker comparison (FSC) practices.  

The motivations for the survey were twofold: 

(i) For the first time, to make available to the wider forensic, legal, and 

speech science communities basic information concerning the working 

practices of FSC experts around the world. 

(ii) To draw upon the very considerable collective experience of FSC experts 

worldwide in order to identify current working methods and features of speech 

that are considered to have the greatest potential for discriminating between 

individuals. 

It will become apparent from the results presented below that there is a great 

deal of variation in the methods of analysis, features selected for examination, 

weighting attached to certain features relative to others, and frameworks used 

for expressing the conclusions that arise from the comparisons.  Some of the 

differences found are, undoubtedly, a function of the rules, regulations and laws 

of the institutions and jurisdictions in which the survey participants are 

working.  Others, however, would appear to be simply a matter of local tradition 

or individual intellectual preference.  The results are therefore discussed in the 
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context of the constraints on the admissibility of expert evidence in different 

countries and are related to contemporary debates within forensic speech 

science. 

3.1.1 Background 

While research has been carried out on many facets of FSS and FSCs, 

there has not been any research that has comprehensively surveyed the FSC 

practices employed by experts around the world. The extent to which the FSS 

community had been aware of commonly used FSC practices has been limited to 

the results of an exercise Cambier-Langeveld (2007) conducted using a fictional 

FSC case. The objective of the exercise was not to survey practitioners, but 

rather to observe and assess basic methods that participants chose to employ in 

conducting the fictional FSC case. Cambier-Langeveld’s paper considers reports 

from 10 of 12 participants based in 10 different countries. Her article reports on 

some of the basic methods involved in a FSC case, which were confined to: the 

length of recordings needed for speech samples, formant measurements, 

fundamental frequency, and the formulations of conclusions. The results of the 

exercise revealed inconsistencies in methods amongst the 10 participants. 

However, it usefully relayed fundamental methodological information with 

regard to FSCs that was previously unavailable. 

The exercise conducted by Cambier-Langeveld (2007) was an attempt to 

provide the field of FSS with a body of information relating to FSC methods, but 

not to provide a wide-ranging picture of current practices. However, the study 

did create interest and a platform on which to conduct further research into the 

methodologies employed by the field for FSCs worldwide. 
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Hollien and Majewski (2009) discuss the prevalence of inconsistencies in 

FSS practices with particular attention to FSCs, like those reported by Cambier-

Langeveld (2007). The authors suggest that the field of FSS lacks any real 

consensus in terms of procedures and methods for FSC cases. They argue that it 

is difficult to consider what level of scientific probability is robust enough to 

determine the identity of a speaker, and that without any standards or common 

practices it is difficult to make comparisons across different approaches. They 

offer a protocol for a frequentist conclusion framework that they implement 

(and that other experts could adopt should they wish to), which includes 

confidence levels of their judgments. Despite their efforts to offer their own 

standard and protocol for FSCs, the authors fail to acknowledge alternative 

methodologies that are currently being implemented by experts in FSC cases 

across the globe. I would argue that an understanding of the current state of the 

field is a prerequisite for establishing any form of standards or protocols. 

For a field that came to fruition in the late 1980’s/ early 1990’s (the time 

at which acoustic and auditory phonetic analysis began regularly being used in 

the UK courts at least, (French, p.c.)) little has been done to unify and 

standardize the field over this time. While Cambier-Langeveld  (2007) and 

Hollien and Majewski (2009) argue that there is a lack of consensus in the field 

of FSC and that standards are almost non-existent, I would suggest that the only 

way to remedy such a fault is first to assess the current methodologies and 

practices being used in FSCs by surveying expert forensic phoneticians around 

the world. 
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3.2 The Survey 

The survey was administered online using SurveyGizmo 3.0. It consisted of 78 

questions related to all aspects of forensic speaker comparison casework. All 

participants were kept anonymous and also given the option of answering some 

or all questions. Although every question was answered by at least 30 

participants, the variability in respondent numbers nevertheless dictates that 

the majority of the results must be presented as percentages.  

3.2.1 SurveyGizmo 

 SurveyGizmo is an online survey software tool for designing online 

surveys, collecting data and performing analysis. [The] tool supports a variety 

of online data collection methods including online surveys, online quizzes, 

questionnaires, web forms, and landing pages” (SurveyGizmo  2010). It was 

selected as the medium for the survey over other similar websites for a number 

of reasons: the server is secure, the package offers the ability to save and 

continue (when taking the survey), an inexpensive Student Account with 

enhanced privileges, and an excellent user interface for creating the survey. All 

responses collected from the survey are saved on the SurveyGizmo server, and 

answers can only be accessed by a username and password. 

3.2.2 Methodology: Data Compilation  

To complete the survey, participants were provided with a survey link in 

an email invitation. They were then redirected to the SurveyGizmo website 

where they gave their consent to participate in the survey and agreed to their 

data being used in future research. After giving consent, participants were 

provided with instructions (see Appendix A) as well as an outline of the survey 
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structure. They were allowed to stop the survey at any time and save it, so that 

it could be completed at a later time. Many of the respondents took advantage of 

this feature as the total time (including interruptions) it took most participants 

to complete the survey ranged from 26 minutes to 64 hours. 

 Once all participants had submitted their answers to the survey 

questions, the results were tabulated using Microsoft Excel.  

3.3 Participants 

Potential participants were contacted through their professional and research 

organizations. Emails were sent to the European Network of Forensic Science 

Institutes, the National Institute for Standards and Technology (NIST) for those 

who participate in the NIST Speaker Recognition Evaluations, and the 

International Association for Forensic Phonetics and Acoustics. Some 

individuals working at government laboratories/agencies were contacted 

through their employers. In total, 36 practicing forensic speech scientists 

agreed to participate, and data were collected from July 2010 through March 

2011. 

3.3.1 Countries 

Respondents (23 male; 13 female) were from the following 13 countries: 

Australia, Austria, Brazil, China, Germany, Italy, the Netherlands, South Korea, 

Spain, Sweden, Turkey, UK, and USA. Although the majority of the participants 

were from Europe, a total of five continents were represented in the results. 
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3.3.2 Place of Work 

Respondents identified their place of work 10  or affiliation. 18 

participants represented universities or research institutes, followed by 13 who 

were employed in government laboratories/agencies. 9 of the experts are 

affiliated with private laboratories, and 7 work as individuals. 

3.3.3 Experience 

The total number of cases from respondents’ collective estimates was 

18,221, ranging from 4 to 6,000, with a mean of 506. The respondents had a 

range of 2 to 50 years of experience in FSC analysis, with a mean of 15. 

3.4 Methods of Analysis 

Participants’ responses showed that there is at present no consensus of opinion 

in the scientific community as to how FSC analysis should be carried out. 

Rather, a wide range of methods is employed. Methods may be grouped under 

the following headings: 

Auditory Phonetic Analysis Only (AuPA): 

The expert listens analytically to the speech samples and attends to 

aspects of speech at the segmental and suprasegmental levels. 

Acoustic Phonetic Analysis Only (AcPA): 

The expert analyses and quantifies physical parameters of the speech 

signal using computer software. As with AuPA, this is labor-intensive, 

involving a high degree of human input and judgment. 

 

                                                        
10 Some respondents are associated with multiple places of work. 
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Auditory Phonetic-cum-Acoustic Phonetic Analysis (AuPA+AcPA): 

This combines the preceding two methods. 

Analysis by Automatic Speaker Recognition System (ASR): 

This requires the use of specialist software designed to estimate the 

degree of similarity between speech samples based on statistical 

models of features extracted automatically from the acoustic signal. 

Such systems typically require minimal input from the analyst.   

Analysis by Automatic Speaker Recognition System with Human 
Analysis (HASR): 

This involves the use of an automatic system in conjunction with 

analysis of the auditory and/or acoustic phonetic kind.  The survey 

did not investigate the precise nature or extent of the auditory or 

acoustic examinations experts used to supplement the ASR 

component. The human-based supplementary analysis may range 

from cursory holistic listening to detailed auditory and/or acoustic 

examinations. 

More detailed descriptions of these methods, either individually or relative to 

one another, may be found, inter alia, in Baldwin and French (1990), Drygajlo 

(2007), French (1994), French and Stevens (2013), Greenberg et al. (2010), 

Jessen (2007a; 2008), and Künzel (1987). 

The distribution of these methods across the 13 countries is provided in 

Table 3.1. 
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Table 3.1: Methods of analysis employed by country 

Method Countries 

AuPA Netherlands, USA 

AcPA Italy 

AuPA+AcPA 
Australia, Austria, Brazil, China, Germany, 
Netherlands, Spain, Turkey, UK, USA 

HASR Spain, Germany, South Korea, Sweden, USA 

The distribution of the methods of analysis relative to type of workplace is 

shown below in Table 3.2. 

Table 3.2: Places of work against method of analysis employed 

 
AuPA AcPA AuPA+AcPA HASR 

university or research institute 2 1 13 3 

government laboratory/agency 
  

8 4 

private laboratory 1 
 

7 1 

as an individual 
  

7 
 

 

As is evident in Table 3.2, the HASR method is used most frequently by 

government laboratories/agencies (33% use it), as opposed to only 16% using 

HASR in universities or research institutes. AuPA + AcPA is well distributed 

across all places of work.  

The specific features of speech that are analyzed and considered 

important vary from analyst to analyst within each of the method categories. 

The data relating to this variation are presented in § 3.9. 

3.5 Conclusion Frameworks 

As with method of analysis, there is no consensus within the forensic speech 

science community as to how conclusions are and should be expressed. 
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Currently, there is much debate in the field about the ‘logical’ and ‘legally 

correct’ frameworks (French and Harrison, 2007; Rose and Morrison, 2009; 

French et al., 2010).  

A variety of frameworks for expressing conclusions is currently utilized 

across the world. The conclusion frameworks may be grouped under the 

following headings: 

Binary Decision: 

A two-way choice that either the criminal and suspect are the same 

person or different people. 

Classical Probability Scale (CPS): 

The probability or likelihood of identity between the criminal and 

suspect is stated. Typically, the assessment is a verbal rather than a 

numerical one and it may use such terms as  likely/ very likely to be 

the same (or different) speakers.” These types of judgments are often 

labelled as ‘frequentist’. 

   Different probability scales are used by different experts, 

causing concern amongst practitioners over the lack of clarity caused 

by these different scales used for making conclusions (Broeders, 

1999, p. 229). DNA evidence conclusions (presented using Likelihood 

Ratios) in combination with  the scientific status of forensic 

evidence” in the USA have had a large impact on all fields of forensics 

in  gradually undermining the traditional use of probability scales” 

(Broeders, 1999, p. 231).  Conclusions made using CPSs do not 

(intentionally or otherwise) incorporate any estimate of typicality, 
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and generally fail to acknowledge the defense hypothesis (e.g. the 

evidence came from/was produced by someone other than the 

suspect). 

Likelihood Ratio (LR): 

This expresses the results as the likelihood of finding the degree of 

correspondence or non-correspondence between the samples on the 

basis of the prosecution hypothesis (that they come from the same 

speaker), against the defense hypothesis (that they come from 

different speakers). Some analysts express the likelihood ratio as a 

number; others do so verbally. Both verbal and numerical LRs 

provide a strength of evidence statement (see § 2.3.1 for more 

information) in the form of a verbal or numerical conclusion, 

respectively (Morrison, 2009). 

   Using LRs, unlike CPSs, allows for typicality assessments to 

be made. This requires population statistics or a knowledge of the 

population in question for a given piece of evidence. In light of the 

 paradigm shift” (Morrison  2009)  LRs are thought to be the most 

 logical” way in which to express conclusions. Furthermore, the 

National Research Council (NRC) report to Congress on 

Strengthening Forensic Science in the United States recommends 

Aitken and Taroni (2004), Evett (1990), and Evett et al. (2000), as 

they provide  the essential building blocks for the proper assessment 

and communication of forensic findings” (2009, p. 186). All three are 

proponents of the likelihood ratio framework.  
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UK Position Statement: 

This conclusion framework potentially involves a two-part decision. 

The first part concerns the assessment of whether the samples are 

compatible, or  consistent”, with having come from the same person. 

The second part, which only comes into play if there is a positive 

decision concerning consistency, involves an evaluation of how 

unusual or  distinctive” the features common to the samples may be 

(French and Harrison, 2007). 

Expanded explanations of these various frameworks are to be found in, 

inter alia, Broeders (2001), Champod and Evett (2000), French and Harrison 

(2007), French et al. (2010), Jessen (2008), Morrison (2009c), and Rose and 

Morrison (2009). 

Some methods of analysis lend themselves more readily than others to 

the adoption of certain conclusion frameworks. For example, some automatic 

systems express the results of the comparison as a numerical LR as one of their 

options. A breakdown of methods against conclusion frameworks appears in 

Table 3.3. 

Table 3.3: Methods used for analysis in forensic speaker comparisons against conclusion 
frameworks 

 

 
Binary 

Decision 
CPS 

Numerical 
LR 

Verbal 
LR 

UK Position 
Statement 

Other 

AuPA  1    1 
AcPA   1    

AuPA + AcPA 2 10 1 2 10  
HASR  3 2 1 1  
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As seen in Table 3.3, there is a tendency for participants using AuPA + AcPA to 

adopt the classical probability scale and UK Position Statement conclusion 

frameworks.  

Table 3.4 breaks down conclusion frameworks by country. Some 

countries appear more than once, as there were multiple respondents from the 

same country, with individual experts implementing different conclusion 

frameworks. 

Table 3.4: Conclusion frameworks used by country 

Conclusion Framework Countries 
Binary Decision Brazil, China 

Classical Probability Scale 
Australia, Austria, Brazil, Germany, 
Netherlands, South Korea, Sweden, 
UK, USA 

Numerical LR Australia, Germany, Italy, Spain 
Verbal LR Netherlands, USA 
UK Position Statement Germany, Spain, Turkey, UK, USA 

 

A Likert Scale was used to measure the respondents’ level of satisfaction with 

the conclusion method s/he used. Likert ratings were averaged across 

respondents.  The scale ranged from 1 (extremely dissatisfied) to 6 (extremely 

satisfied). Table 3.5 reports the number of experts responding, mean scores, 

and standard deviations for satisfaction levels by conclusion frameworks.  

Table 3.5: Satisfaction with conclusion framework 

Conclusion Framework 
Mean Likert 

Rating 
Standard 
Deviation 

Number of 
Experts 

Numerical LR 5.00 0.00 4 

UK Position Statement 4.27 0.65 11 

Verbal LR 4.00 0.00 3 

Classical Probability Scale 3.69 0.95 13 

Binary Decision 3.50 2.12 2 
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3.5.1 Population Statistics 

Out of all respondents, 70% reported that they use some form of 

population statistics in arriving at their conclusions. 58% stated that they had 

personally collected population statistics for the incidence of occurrence of one 

or more phonetic or acoustic features.  

The features to which the statistics relate include fundamental frequency 

(used by almost all of the 70%), articulation rate, voice onset time, long term 

formant frequencies, and, where applicable, stammer/stutter. A number of the 

respondents commented that if more population statistics were available they 

would use them.  

3.6 Guidelines 

Respondents were asked whether they followed a protocol/set of guidelines in 

each forensic speaker comparison case and if so whether they had been 

involved in its design. 85% of respondents used some form of a protocol or set 

of guidelines. For those following a protocol or guidelines in casework, 

respondents were asked how their protocol/guidelines came into existence. 

The responses are distributed in Table 3.6. 

Table 3.6: Creation of guidelines/protocols 

Origin Number 
Developed personally 6 
Developed in conjunction with colleagues 17 
Given it by place of work 3 
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3.7 Casework Analysis: Alone or in Conjunction with Others 

When asked whether they worked individually or in conjunction with 

colleagues in carrying out speaker comparisons, participants provided the 

information set out in Table 3.7. 

Table 3.7: Workers involved in a single case 

How Work is Carried Out Number 
All work done individually 13 
Work done with the help of an assistant 4 
Work done in conjunction with other members of a group/team 10 
Work is done individually and checked by someone else 7 

 

3.8 Casework in Foreign Languages  

Besides carrying out casework in their native language, 56% of experts stated 

that they also conduct casework in other languages.  Collectively, these experts 

have worked on cases in over 40 different languages other than their own.  

Of those who work with other languages, 94% require the assistance of a 

native speaker of the language in question, and, of those requiring such 

assistance, 56% deem it necessary for the assistant to have a qualification in 

linguistics and/or phonetics. 

3.9 Features Examined in Detail  

This section reports on the aspects of recorded speech that respondents take 

into account or consider important in FSC cases.  

3.9.1 Phonetic Features 

Respondents were asked whether and with what frequency they 

examined the following features. 
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3.9.1.1 Segmental Features  

All respondents analyze vowel and consonant sounds in the course of 

their examinations. With regard to vowels, 81% invariably carried out some 

form of analysis and 13% routinely did so. 94% of all experts evaluated the 

auditory quality of vowels, 97% carried out some form of formant examinations 

and 58% measured vowel durations.  

Of those undertaking formant examinations, all measure the second 

resonance (F2). 87% of respondents reported measuring F1 and an equal 

percentage reported measuring F3. 17% of respondents stated that they 

measure F4. Only 10% of respondents measuring formants measured F1-F4, 

63% measured F1-F3, and 10% measured either F1 and F2 or F2 and F3. In 

respect of which aspects of formants are examined, 94% reported measuring 

center (i.e. temporal midpoint) frequencies of formants of monophthongs, 71% 

reported measuring formant trajectories of diphthongs and 45% examined 

vowel-consonant or consonant-vowel formant transitions. 35% stated that they 

examine formant bandwidth and 13% reported examining formant densities. 

In relation to consonants, all respondents reported subjecting them to 

some form of examination; 52% invariably did so. For all experts, 88% of 

respondents reported evaluating auditory quality. 82% stated that they 

examined aspects of timing and 48% reported measuring the frequencies of 

energy loci. 

Table 6 reports the frequency with which consonants, broken down by 

manner of articulation, are analyzed in FSC cases. Respondents gave their 

answers using a 6-point Likert Scale ranging from 1 (never) to 6 (always). The 

number of experts responding, mean Likert ratings, and standard deviations are 



86 

 

represented in Table 3.8 for those respondents who are native English speakers 

(and working on English cases only). 

Table 3.8: Frequency of consonant analysis in English 

Manner of 
Articulation 

Mean Likert 
Rating 

Standard 
Deviation 

Number of 
Experts 

Fricatives 4.85 1.21 13 

Plosives 4.73 1.49 11 

Approximants 4.50 1.27 10 

Laterals 4.46 1.13 13 

Nasals 4.08 1.24 12 

Affricates 3.82 1.47 11 

Taps/Flaps 3.70 1.77 10 

Trills 3.18 2.04 11 

3.9.1.2 Suprasegmental Features 

All respondents (excluding those using AuPA only) routinely measure 

fundamental frequency in their comparisons. With respect to what they 

measure, for those conducting some form of AcPA, 94% reported measuring the 

mean, 41% the median, 34% the mode, 72% standard deviation, 25% the 

alternative baseline (the value (in Hz) that falls 7.64% below the F0; Lindh, 

2007), and 6% measure the range. Considering all aspects of fundamental 

frequency listed above, the most common combination for analysis was the 

mean plus the standard deviation (22% of participants), followed by 19% 

examining mean, median, mode and standard deviation together. Only 9% 

measure the mean, median, mode, standard deviation, and alternative baseline. 

Single respondents also reported measuring the coefficient of variation, also 

known as the ‘varco’ (the standard deviation divided by the mean (Jessen et al., 

2005)), the first and third quartiles, and kurtosis/skew. It is important to note 

that although many respondents reported analyzing the fundamental 
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frequency, a large proportion point out that it is usually of little help. One 

respondent stated that    fundamental frequency is] usually used as an 

elimination tool rather than an identification tool.” 

94% of the respondents who include an AuPA stated that they examine 

voice quality as part of their overall procedure, although only 77% of these 

invariably or routinely examine it. Further to this, 61% of those who examine 

voice quality do so using a recognized scheme (e.g. Laver, 1980) or modified 

version of such a scheme, for its description. Of those experts examining voice 

quality the large majority (63%) reported using the Laver Voice Profile Analysis 

Scheme (VPAS) or a modified version of it. 21% of experts perform an auditory 

analysis of voice quality and provide some form of a verbal description. The 

remaining experts use the GRBAS scheme (Grade, Roughness, Breathiness, 

Asthenia, Strain; see Bhuta et al. 2004 for more information) or a modified 

version of it (13%), and a single expert (3%) reported using LTS spectra (long-

term spectra) for examining voice quality. Furthermore, three experts provided 

insightful commentary regarding the discriminant power of voice quality, 

  voice quality  can often be central to the analysis and is best analyzed 

systematically using a detailed scheme such as the Edinburgh VPA.” Another 

respondent states that  voice quality is frequently strongly discriminating  in 

forensic speaker comparisons  ” and the third expert comments that they are 

 increasingly of the view that voice quality is one of the most valuable but least 

well understood” parameters. 

85% of all respondents stated that they examine intonation with one or 

another level of frequency. However, of these only 25% look at intonation 
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invariably. The specific aspects of intonation vary, with tonality11  being 

reported more than tonicity12, 67% vs. 38% of respondents (Ladd, 1996, p. 10). 

Tails of tone units were examined by 46% and heads by 29%. 

93% of respondents stated that they analyze tempo with varying 

degrees of frequency. Of those analyzing tempo, 81% apply a formal measure 

(e.g. speaking rate (SR) or articulation rate; Künzel, 1997). For formal measures, 

articulation rate (AR) was reported most frequently by 47% of respondents 

compared to only 19% that use speaking rate and 16% that use both 

articulation rate and speaking rate. Those using AR were asked how they 

defined a syllable, and 93% of the respondents reported using phonetic 

syllables for AR rather than linguistic ones. 73% stated that they examine 

speech rhythm with varying regularity. 

3.9.2 Non-Phonetic Features 

3.9.2.1 Higher-Order Linguistic Features 

In addition to examining phonetic features, 76% of all respondents 

reported examining discourse features and/or conversational behaviors 

(discourse markers, aspects of turn-taking, telephone opening and closing 

behaviors, patterns of code switching). 88% of all experts stated that they 

examine lexico-grammatical usage. Lexical features were examined most 

frequently, followed by syntax and morphology. 

                                                        
11  Tonality marks one kind of unit of language activity  and roughly where each such unit 

begins and ends  one tone group is as it were one move in a speech act” (Halliday  1967  p. 30). 
12 Tonicity marks the focal point of each such unit of activity: every move has one (major), or 
one major and one minor, concentration point, shown by the location of the tonic syllable, the 
start of the tonic” (Halliday  1967  p. 30). 
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3.9.2.2 Non-Linguistic Features 

94% of the respondents who answered this question reported examining 

non-linguistic features at least some of the time. In descending frequency order, 

specific features were as follows: filled pauses, tongue clicking13, audible 

breathing, throat clearing, and laughter.  

3.10 What is Considered Discriminant 

In addition to being asked about features within the linguistic, phonetic and 

acoustic domains, respectively, participants were given the opportunity to 

identify which feature from any domain they found most useful for 

discriminating speakers. For all respondents together, voice quality was 

reported most often (32%), followed by dialect/accent variants and vowel 

formants (both 28%). 20% reported speaking tempo and fundamental 

frequency as useful parameters. This was followed by rhythm (16%). Lexical 

and grammatical choices, vowel and consonant realizations, phonological 

processes (e.g. connected speech processes) and fluency were all reported by 

13% of the respondents. One respondent went as far as stating that vowel 

formant analysis  is rarely insightful.” 

Interestingly, though perhaps not surprisingly, the vast majority of 

participants alluded to the fact that despite some individual parameters having 

significant weight, it is the overall combination of features that they consider 

crucial in discriminating between speakers. In Aristotelian terms, ‘The whole is 

greater than the sum of the parts” (Aristotle, Metaphysica 10f-1045a). 

                                                        
13 It is perhaps better to classify tongue clicking as a linguistic feature when it is used in a 
inherently functional way, such as that described in Chapter 7. However, at the time of the 
survey, clicks were classified as non-linguistic. 
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3.11 Discussion 

The purpose of this chapter has not been to advance any argument or to 

develop theoretical propositions. Rather, its objective has been the much more 

mundane one answering to the motivations set out in §3.1: laying out basic 

factual information concerning the practice of FSC internationally in the present 

day and drawing upon the collective expertise of FSC experts worldwide so as 

to identify current working methods and features of speech that are considered 

to have the greatest potential for discriminating between individuals. 

Those not directly involved in this specialist field but working, for 

example, in other aspects of phonetics or linguistics, may well be surprised at 

the lack of consensus over such fundamental matters as how speech samples 

are to be analyzed and compared, which aspects of the samples are to be 

assigned greatest importance during the analytic process, and how conclusions 

are to be expressed at the end of it. However, we are assured by those working 

in various other fields of forensic science that the level of dissensus uncovered 

by the present survey is by no means unique to forensic speaker comparison.  

Indeed, some of the practices and preferences found here are undoubtedly 

dictated or constrained by the rules of the institutions and firms in which the 

participants work. Where those organizations include other forensic science 

disciplines, the options, particularly for the framing of conclusions, may be laid 

down unilaterally for all types of casework investigation undertaken under 

their auspices. For instance, the Dutch government forensic science facility, the 

Netherlands Forensic Institute, requires that the outcomes of every 

investigation undertaken by its employees, irrespective of the forensic 

discipline, be expressed within a Bayesian likelihood ratio framework (Meuwly, 
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p. c.).  Likewise, one of the participants in the present study who used a binary 

decision format when expressing conclusions stated that to do so was a 

requirement of his/her employer. 

Over and above the rules laid down by public and private sector 

laboratories, nations may also set down requirements, either by statute or via 

case law.  Some jurisdictions, notably the England and Wales division of the UK, 

have been extremely non-prescriptive in this respect, according the expert a 

very high degree of autonomy and discretion over the methods of analysis 

he/she adopts and the way the outcomes are formulated.  In respect of forensic 

speaker comparison evidence, the England and Wales position was affirmed in 

the Appeal Court ruling R -v- Robb (1991), in which the court ruled that 

whether or not an expert used any acoustic testing was entirely his/her own 

decision, and re-iterated in relation to the same issue in the more recent appeal 

R -v- Flynn and St John (2008). Indeed, the main analytic issues over which the 

higher courts have seen fit to pass down general prohibitions to forensic 

experts concern the use of statistics in representing the strength of evidence (cf. 

R -v- Doheny and Adams (1996); R -v- T (2011)).  Where experts enjoy freedom 

of choice, one might expect their preferences to be influenced by individual 

intellectual commitments.  However, in spite of the latitude allowed by the UK 

legal system, it is of note that all nine UK experts taking part in the study use the 

combined AuPA + AcPA method.  Indeed, this method is the predominant one 

across all countries represented in the survey (25 = AuPA + AcPA; 10 = other – 

see Table 3.3).  Thus, although the results show a wide range of variation in 

methods, there is nevertheless a very large degree of convergence.  
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As for the future, certain trends can be predicted.  One is that as time 

goes on and further improvements are made to the error rates of 

(semi)automatic systems and to their capabilities for handling real case (i.e., 

non-studio) recordings, one would expect to find such systems increasingly 

being incorporated into casework alongside the AuPA + AcPA approach.  This 

development would be particularly apposite in the USA, where the appeal court 

ruling Daubert -v- Merrell Dow Pharmaceuticals Inc. (1993) is taken by many 

lower courts as the benchmark for admissibility of expert evidence, and within 

that ruling is the statement that ‘the court ordinarily should consider the known 

or potential error rate’ of the method. ASRs readily lend themselves to meeting 

this criterion, and, indeed, many systems are subject to such testing as part of 

the annual NIST evaluations (Greenberg et al., 2010).  Further, a number of 

ASRs have an LR as one of their easily selectable options for representing the 

results of speaker comparisons.  As seen in Table 3.3, most experts currently 

express their conclusions in terms of a classical probability scale (14), whilst 

only half as many (7) use some form of LR (3 = verbal LR; 4 = numerical LR).  

The increasing use of ASR software, together with the current ‘paradigm shift’ 

in forensic science towards Bayesian reasoning, and the use of LRs for 

presenting results, would lead one to expect an increase in the number of 

experts using LRs and a corresponding decrease in the use of other conclusion 

frameworks.  

Morrison (2009c, p. 298) suggests that  today we are in the midst of 

what Saks and Koehler (2005) have called a paradigm shift in the evaluation 

and presentation of evidence in the forensic sciences which deal with the 

comparison of the quantifiable properties of objects of known and questioned 
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origin, e.g., DNA profiles, finger marks, hairs, fibres, glass fragments, tool marks, 

handwriting  and voice recordings.” However  he fails to acknowledge the fact 

that not all speech evidence is of the quantifiable type, as demonstrated in the 

survey results from the present study. The Bayesian framework of likelihood 

ratios has been adopted by many fields in the forensic disciplines where 

quantifiable evidence is of the norm and qualitative evidence is something that 

does not necessarily come into question (e.g. DNA or fingerprints). It is 

important to recognize that speech does not consist entirely of measurements. 

There are elements of speech that are best described/analyzed qualitatively (i.e. 

certain aspects of voice quality (e.g. lingual body orientation), lexical, syntactic, 

or morphological choices, audible breathing, laughter). If such features can be 

quantified in some form, then it is plausible that we will one day see an entire 

forensic speaker comparison case completed in a Bayesian framework, but until 

then there will still be experts who will continue to present such features in a 

qualitative form, whether that is alongside a LR conclusion or another form of 

conclusion (e.g. CPS or UK Position Statement). 

 Additionally, in light of the popularity of the Bayesian framework, it can 

be predicted that more research on LRs will be carried out. This can be seen as a 

positive trend, as parameters that experts found to be discriminant in their 

experience (as reported in this survey), may now be tested empirically, and 

general strength of evidence statements can potentially be attributed to certain 

features. Given this, experts and researchers in the field of forensic speech 

science can give appropriate weight in forensic casework to those features 
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found to be most discriminant through intrinsic14 and extrinsic15 likelihood 

ratio testing. 

Finally, those differences that currently exist across practitioners may be 

reduced through blueprints16 and drives for international co-operation and 

cross-border transferability of forensic science evidence (e.g. House of 

Commons Northern Ireland Affairs Committee, 2009).  And, of course, the 

prerequisite for resolution of differences is knowledge of their existence. 

Insofar as the present study lays bare that information, it may be considered to 

be making a modest first step towards international unity. 

3.12 Limitations 

The International Survey on Forensic Speaker Comparison Practices has three 

limitations. The first is the limited number of experts who took part in the 

survey. Ideally, one would like to work with a larger sample size in order to 

represent the total population of forensic speech scientists as accurately as 

possible. Thirty-six is a large proportion of practicing forensic phoneticians. 

However, it would have been preferable to include even more forensic 

phoneticians and to have been able to represent a greater number of countries, 

languages, and methods in order to achieve the most accurate representation of 

current practices in forensic speaker comparison. 

 The second limitation is the lack of representation from those experts 

using ASR alone. As is evident in the NIST speaker recognition evaluations 

                                                        
14 Intrinsic likelihood ratio testing uses the same set of speakers (e.g. from the same speech 
corpus) for both the test and reference samples. 
15 Extrinsic likelihood ratio testing uses different sets of speakers (e.g. from different speech 
corpora) for the test and reference samples. 
16 Blueprint is used here to refer to some form of standards documents. 
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(Campbell et al., 2009), there are a number of experts around the world who 

use ASR alone, and the survey results presented in this chapter fail to represent 

this fact. Despite efforts to recruit participants that utilize ASR alone, no such 

experts responded to the survey.  

 The final limitation is the simple fact that these results have a ‘limited 

shelf life’  meaning that the field is always changing and forever evolving, and 

these results are only a snapshot of the field as it stood in 2010-2011. The 

trends seen in the survey will certainly vary in the future as more research is 

carried out and new methodologies are put into practice.  

3.13 Parameters Chosen for Further Analysis 

As stated in § 1.3, this survey served in part as a hunting ground for identifying 

the speech parameters believed by experts to hold the greatest discriminant 

potential. Based on responses from the practitioners, I now identify four 

parameters from the survey that experts found to be highly discriminant and/or 

analyzed relatively often in casework: articulation rate, long-term formant 

distributions, long-term fundamental frequency, and clicks (velaric ingressive 

stops). The subsequent chapters analyze each of the four parameters in turn, 

while referring to the discriminant expectations of a given parameter. 
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Chapter 4  Articulation Rate 

4.1 Introduction 

Forensic phoneticians have suggested that speech tempo is an important 

parameter for forensic speaker comparisons, with 93% of experts analyzing 

speech tempo and 73% of those doing so with varying regularity (Chapter 3). It 

is also reported that when asked which parameters they found highly 

discriminant in forensic speaker comparisons, 20% of all experts reported that 

they found speech tempo to be the most useful parameter for discriminating 

speakers. Overall, speech tempo was ranked as the third most helpful 

parameter (alongside F0) of all possible parameters used in a forensic speaker 

comparison. Analyzing speech tempo in detail for a large, homogeneous group 

of individuals provides insight into the distribution of and variation within the 

parameter and thereby its ability to discriminate between speakers.  

In forensic phonetics, speech tempo is typically quantified as either 

speaking rate (SR) or articulation rate (AR; Künzel, 1997). Both speaking and 

articulation rate measure the speech tempo of an individual, but the two 

measures capture slightly different aspects of tempo. Speaking rate (SR) can be 

defined as  the rate of speech of the whole speaking-turn. It therefore includes 

all speech material (linguistic or non-linguistic), together with any silent 

pauses, that are contained within the overall speaking-turn” (Laver  1994  p. 

158). Articulation rate (AR) is defined as  the rate at which a given utterance is 

produced. The speech material measured by articulation rate therefore 

excludes silent pauses by virtue of the definition of an utterance, which begins 

and ends with silence” (Laver  1994  p. 158). The difference between speaking 
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rate and articulation rate is that the former includes disfluencies and 

filled/unfilled pauses in the calculation, whereas the latter excludes disfluencies 

and unfilled pauses. Within the field of forensic speech science the majority of 

experts report a preference for measuring articulation rate rather than 

speaking rate in forensic speaker comparison casework (Chapter 3). 

Population statistics for articulation rate on a large, homogeneous scale 

(100+ speakers) exist for German and Chinese, but as yet, there has not been a 

similar study carried out on English. This study presents the analysis for the 

ARs and standard deviations (SD) of 100 Southern Standard British English 

(SSBE) male speakers. The results concern both the inter-speaker and intra-

speaker variation of AR, as well as assessing the evidential value of AR as a 

parameter in forensic speaker comparisons. 

4.2 Literature Review 

Articulation rate has been investigated in British English in small-scale studies. 

Goldman-Eisler (1956) was one of the first to analyze and calculate articulation 

rate in a population. In her study, she examined the spontaneous speech of eight 

British adults in 30- to 60-minute interview-type recordings. AR was calculated 

by counting the number of syllables (the definition of the syllable and interval 

type were undefined in the study) in an utterance, with an utterance defined as 

 periods of speech lasting from a preceding question or utterance of an 

interviewer to the next, which is usually occasioned by the subject having come 

to a natural stop or pause” (Goldman-Eisler, 1956, p. 137). It was found that the 

mean AR across speakers was 4.95 syllables per second, ranging from 4.4 for 
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the slowest to 5.9 for the fastest speakers. The mean standard deviation across 

speakers was 0.91 syllables per second (syll/sec), ranging from 0.54 to 1.48. 

Kirchhübel and Howard (2011) also collected articulation rate figures 

for British English, while investigating properties of speech that could 

potentially be correlated with emotional/psychological stress. The study 

examines the spontaneous speech of a loosely homogeneous group of 10 young 

Southern British males in mock police interviews. Along with the AR and SR 

results for the psychologically-stressed speech of the subjects, Kirchhübel and 

Howard (2011) also provided baseline results for the speakers using interpause 

stretches to obtain AR measurements. The mean AR for speakers was 5.81 

syll/sec with a range of 5.14 to 7.00 and a standard deviation of 0.89 syll/sec 

(range 0.79 to 1.01). 

In a later study, Goldman-Eisler (1968) further examined AR as well as 

SR. However, this study focused on intra-speaker variation. It was observed that 

AR exhibits fairly little intra-speaker variation, whereas there is much more 

variability present in SR. Henze (1953) conducted a similar investigation in 

German using spontaneous speech in the form of story-telling elicited by a film, 

and the same observations were made. It is noted that different speech tasks, 

for example read versus spontaneous speech produced in different emotional 

states, can cause differences in the pauses that speakers use (e.g. number, kind, 

duration), in turn causing variations in speech rate across different speaking 

tasks. Articulation rate differed slightly across the different tasks, but it was 

found to be relatively stable across tasks in these two studies. 

With respect to the implications for forensic speaker comparison, Künzel 

(1997) examined AR, SR, and various pausing parameters in German. He 
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retested claims that intra-speaker variation was lower in AR than SR. He 

confirmed prior results showing that intra-speaker variation is much smaller. 

For the experiment, the read and spontaneous speech of five males and five 

females was analyzed, and SR was found to be higher in read speech than in 

spontaneous speech. This is largely due to the fact that speakers use far fewer 

hesitation pauses (i.e. filled and unfilled) in read speech than in spontaneous. 

AR, on the other hand, was not significantly different between read and 

spontaneous speech, and AR for individual speakers had coefficients of variance 

that were smaller than they were with SR. To further evaluate the possible 

discriminating power of SR and AR, Künzel looked at cumulative distributions 

of both intra- and inter-speaker differences. According to the equal error rates 

(see § 4.6.1) calculated, AR was found to have more speaker-discriminating 

power than SR. 

Following Künzel’s (1997) conclusion that AR is a better discriminator 

than SR, investigators have begun to examine AR in more detail. In keeping with 

Künzel’s conclusion that  AR will have to be interpreted with caution when used 

in forensic speaker recognition until its possibilities and limitations have been 

assessed on the basis of genuine case material and large numbers of speakers” 

(1997, p. 79), additional studies have been conducted in both German and 

Chinese. Jessen (2007b) analyzed the AR of 100 male speakers of German. AR 

was measured for both spontaneous and read speech. It was found that, contra 

Künzel (1997), the mean AR was significantly higher in read speech. Overall, 

Jessen found the mean AR for the 100 speakers was 5.21 syll/sec. In order to 

calculate ARs, he was the first to implement a new methodology in which 

 memory stretches” (Jessen, 2007b, p. 53) were utilized rather than  interpause 
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stretches” and  intonation phrases” (Trouvain  2004, p. 50), which had been 

commonly used in previous studies. Jessen describes the methodology behind 

 memory stretches” as  the phonetic expert  going  through the speech signal 

and [selecting] portions of fluent speech containing a number of syllables that 

can easily be retained in short-term memory.” After listening several times the 

expert then counts the number of syllables that he/she is able to recall from 

memory to be included in this portion of speech (Jessen, 2007b, pp. 54-55). 

Cao and Wang (2011) followed the methodology of Jessen (2007b) and 

examined the ARs for 101 male Mandarin Chinese speakers in spontaneous 

telephone speech. They investigated inter-speaker and intra-speaker variation 

in AR, and found both the global ARs (GAR) and means of local ARs (LARmean) 

to be fairly normally distributed (GAR and LAR mean are explained further in § 

4.3.2). The mean global articulation rate (GAR) was 6.58 syll/sec and the mean 

of the local articulation rates (LARmean) was 6.66 syll/sec. They also report 

that the range of AR for a given speaker is relatively small and stable. However, 

ARs in Mandarin Chinese appeared to be higher than English and German 

studies. The authors attribute the difference to the simpler syllable structure 

found in Chinese. Chinese syllables are largely /CV/ in shape; therefore more 

syllables per second can be produced than is possible with the inherently longer 

syllables in German and English (Cao and Wang, 2011, p. 398). 

Although AR has been examined in large-scale studies of both German 

and Chinese, the greatest number of subjects examined in a previous study of 

English speakers is 50, and many studies examined are based on considerably 

fewer. Table 4.1 provides an overview of AR studies conducted on English.
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Table 4.1: Overview of articulation rate studies 

Study Subjects Task AR mean avg. AR range SD mean avg. SD range 

Goldman-Eisler (1956) British: 8 subjects Interviews: Spontaneous 4.95 4.4-5.9 0.91 0.54-1.48 

Robb et al. (2004) 
American: 20 male and 20 

female adults 
Rainbow Passage: Read 5.27 

 
0.40 

 

 New Zealand: 20 male and 20 
female adults 

Rainbow Passage: Read 5.70 
 

0.47 
 

Doherty & Lee (2009) 
Irish: 22 males 

Read (1st time through 
Rainbow Passage) 

5.68 
   

 
Irish: 22 males 

Read (2nd time through 
Rainbow Passage) 

6.05 
   

 Irish: 22 males Conversation: Spontaneous 5.88 
   

 
Irish: 22 females 

Read (1st time through 
Rainbow Passage) 

5.38 
   

 
Irish: 22 females 

Read (2nd time through 
Rainbow Passage) 

5.67 
   

 Irish: 22 females Conversation: Spontaneous 5.58 
   

Jacewicz et al. (2009) North Carolina: 50 adults Conversation: Spontaneous 5.41 
 

0.48 
 

 North Carolina: 50 adults Sentences: Read 3.27 
 

0.44 
 

 Wisconsin: 44 adults Conversation: Spontaneous 4.81 
 

0.54 
 

 Wisconsin: 44 adults Sentences: Read 3.54 
 

0.34 
 

Kirchhübel & Howard (2011) SSBE: 10 males Interviews: Spontaneous 5.81 5.14-7.00 0.89 0.79-1.01 
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As can be seen in Table 4.1, a number of studies have examined AR for both 

read and spontaneous speech, but to date only two small-scale studies on 

British English have been carried out (Goldman-Eisler, 1956; Kirchhübel and 

Howard, 2011). Combined, the results for ARs from these in respect of 

spontaneous speech have a mean rate of 5.29 syllables per second, with the 

slowest mean at 4.81 syll/sec and the fastest at 5.88 syll/sec. It is important to 

note that these figures are the result of studies of only a few varieties of English, 

and how other varieties and dialects may pattern is unknown. The most recent 

AR study on British English (Kirchhübel and Howard, 2011) has a difference of 

more than 1.00 syll/sec relative to Goldman-Eisler’s (1956) study carried out 

about 55 years earlier. It is hypothesized that the results of the present study 

will pattern more closely with those of Kirchhübel and Howard (2011) than 

those of Goldman-Eisler (1956), as the former is based on a more 

demographically and linguistically homogeneous group of speakers and uses a 

similar methodology to the present study (the methodology in Goldman-Eisler 

(1956) is not transparent and is therefore difficult to compare). 

4.3 Population Statistics for Articulation Rate 

The following section presents the collection of population statistics for 

articulation rate in a large, homogeneous group of 100 male speakers. This data 

serves as the first of its kind in providing detailed information on the 

distribution of and variation in articulation rate for a large group of individuals 

who speak SSBE. 



103 

 

4.3.1 Data 

The data for the current chapter as well as subsequent chapters come 

from the Dynamic Variability in Speech database (DyViS) recorded at the 

University of Cambridge (Nolan et al., 2009). The DyViS database is a large 

speech corpus collected under simulated forensic conditions (de Jong et al. 

2007). It is comprised of recordings of 100 male speakers of Southern Standard 

British English (hereafter referred to as SSBE) aged 18-25. This group of 

speakers is meant to represent a homogeneous population in respect of sex, age, 

and accent group. All speakers were recorded under both studio and telephone 

recording conditions for Task 2 (see below), and under studio recording 

conditions for a number of different speaking styles (i.e. Task 1, Task 3, and 

Task 4). The DyViS recordings include four tasks identified below (adapted 

from de Jong et al., 2007): 

 
Task 1: simulated police interview (studio quality) 
Task 2  telephone conversation with ‘accomplice’ (studio and telephone quality) 
Task 3: reading passage (studio quality) 
Task 4: reading sentences (studio quality) 

 

The first task in DyViS is a simulated police interview, whereby the 

speaker is interrogated in a mock police investigation in relation to a (fictional) 

drug trafficking crime. The speech is spontaneous insofar as speakers were 

given visual stimuli (e.g. pictures of people and places) to prompt the 

construction of their responses to the investigator (interlocutor). There were a 

number of target words from the visual stimuli that were elicited by the 

interlocutor (i.e. the interlocutor asked the speaker specific questions in order 

to elicit the target words). The second task in DyViS is a telephone conversation 
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between the speaker and his accomplice  ‘Robert Freeman’ (the interlocutor is 

the same person for all 100 speakers). Task 2 is recorded from the studio end of 

the telephone call as well as via an intercepted external BT landline. The second 

task, like Task 1, is spontaneous speech, whereby the interlocutor questions the 

speaker in a mock police interview. The interlocutor for Task 2 elicits from the 

speaker the same target words as those used in the police interview, which 

inevitably leads the discussion in Task 1 and Task 2 to be very similar.  

 Tasks 3 and 4 of DyViS are both forms of read speech. Task 3 consists of 

a read news report pertaining to the alleged drug trafficking crime. The same 

target words are included in the read report. Task 4 is read speech from 

controlled sentences that have a large number of SSBE vowels in nuclear non-

final position (i.e. in closed syllables), with six repetitions each. 

The studies carried out in the remainder of this thesis will include only 

data from either Task 1 or Task 2 (studio quality, spontaneous speech) of the 

DyViS database. The current chapter uses Task 2 for calculating articulation 

rate. 

The DyViS studio recordings were all made using a Marantz PMD670 

portable solid state recorder at a sampling rate of 44.1 kHz and 16 bit depth (de 

Jong et al., 2007). All speakers were recorded via a Sennheiser ME64-K6 

cardioid condenser microphone positioned approximately 20 cm from the 

speaker’s mouth. The recordings were made in a sound-treated room in the 

Phonetics Laboratory at the University of Cambridge (Nolan et al. 2009:40). 
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4.3.2 Methodology 

The Task 2 recordings used for the current study were 15 to 25 minutes 

in duration. However, only the relevant amount of material was analyzed in 

order to extract between 26 and 32  memory stretches.” 26 was chosen as the 

lower boundary for  memory stretches”  because it was the maximum number 

of tokens that could be extracted from the shortest of the 100 recordings. The 

upper boundary of 32 was chosen semi-arbitrarily (only to have a large number 

of tokens for calculating likelihood ratios). 

The general methodology employed in this study follows very closely 

that of Jessen (2007b). In measuring AR a number of decisions have to be made 

(Künzel, 1997; Trouvain, 2004). As Jessen (2007b, p. 53) explains, the first 

concern is the  kind of linguistic unit on the basis of which AR is counted.” As 

noted in Chapter 3, the majority of forensic phoneticians use the syllable as a 

unit of measurement, rather than sound segments or words, in turn producing 

AR rates in syll/sec as opposed to words per second (or minute).  As a native 

speaker of a language, one has a fairly reliable intuitive ability to count the 

number of syllables in a specific stretch of speech. In terms of analysis, this 

avoids the need to become involved in examining intensity peaks in the acoustic 

signal on a syllable-by-syllable basis. Jessen also mentions that the syllable is 

 probably more a cognitive/linguistic unit grounded in the physics of speech 

production” (Keating  1988, cited in Jessen, 2007b, p. 53). For these reasons, 

syllables in this study were determined auditorily through careful listening.  

The second important decision for the measurement of AR relates to 

whether one should define syllables phonologically or phonetically. A 

phonological syllable is  defined in terms of the lexicon and grammatical rules 
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of the language”  whereas a phonetic syllable is one that is  manifested in 

phonetic reality” (Jessen  2007b  p. 53). Jessen gives an example using the 

phrase  did you eat yet?” Phonologically we would count this as having four 

syllables; however, in reality the number of syllables may be reduced or in some 

rare cases even increased. If the phrase were to be reduced it might be realized 

as perhaps two syllables as in  jeet yet” (Jessen  2007b). For this reason  the use 

of phonetic versus phonological syllables makes a difference in terms of AR 

counts. In a case where a phrase is phonetically only two syllables, AR will 

obviously be lower than if the same phrase was counted as four phonological 

syllables (see Jessen, 2007b, pp. 53-54 for further discussion). Jessen (2007b) 

suggests that syllables are best defined phonetically, rather than phonologically. 

This is because often in casework, speaker comparisons include speech from 

different dialects or foreign accents, and in certain cases it might be difficult to 

determine what the phonological form should be (Jessen, 2007b). However, 

Jessen (2007b) also notes that: 

[C]ounting actual syllables can lead to curious artefacts when a 

speaker in speaking rapidly deletes [phonetic] syllables, whereas 

another speaker might reduce or delete perhaps the same number 

of [phonetic] sounds but still preserves the number of underlying 

syllables. In such a case the former speaker ends up with lower AR 

than the latter although both would be about equally fast if AR 

were based on canonical rather than actual syllables.  

Given that the present study is based on recordings of a linguistically 

homogeneous population with the same accent and that counting syllables 
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phonetically has been shown to cause  curious artefacts17” (Jessen, 2007b, p. 

54; Koreman, 2006), the current study is based on phonological syllables rather 

than phonetic syllables. 

The third methodological decision, and the one which is perhaps the 

most influential on the results, involves the kind of speech interval that is 

selected for determining AR. The AR can be calculated for the entire duration of 

fluent portions in a recording. This number is known as  global AR”. 

Alternatively, by taking multiple fluent speech stretches within a recording, 

 local ARs” can be calculated (Jessen, 2007b, p. 54). Miller et al. (1984) showed 

that speakers often change their speech tempo over the course of longer 

utterances. Therefore, in order to capture such changes in tempo that may 

occur within a single recording, it is more useful to obtain local ARs. Previously, 

researchers have commonly used interpause stretches and intonation phrases 

to identify speech intervals over which to calculate local ARs (Trouvain, 2004). 

Following Jessen (2007b), in order to avoid possible empirical or 

methodological problems associated with the two aforementioned methods of 

selecting speech intervals, a much simpler and more pragmatic approach was 

chosen for this study. Interpause stretches tend to result in intervals that are 

extremely variable in length due to pausing behaviors (which might reintroduce 

the influence of pausing which AR tries to eliminate; Jessen, 2007b).  Intonation 

pauses are reliant on phonetic and linguistic judgments made by the analyst, 

which result in variation of the interval lengths depending on the expert’s 

interpretation (Jessen, 2007b). Therefore, the speech interval used in the 

                                                        
17 These ‘artefacts’ occur when one speaker may be speaking quickly and as a consequence 
deletes phonetic syllables, whereas another speaker is typically inclined to reduce or 
completely delete the same number of phonetic sounds. However, this speaker is able to 
preserve the number of underlying phonological syllables. 
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current study for computing local ARs is referred to as a  memory stretch” 

(Jessen, 2007b, p. 54). After listening several times to that interval of speech, 

the expert then counts the number of syllables that he/she is able to recall from 

memory being included in this portion of speech. Three examples of memory 

stretches from Speaker 036 are presented in the Table 4.2. 

Table 4.2: Examples of memory stretches for Speaker 036 

 Memory Stretch 
Number of 
Syllables 

Time (in 
seconds) 

(a) I defended you gallantly 8 0.984 

(b) They wanted to know about a car park 10 1.367 

(c) They didn’t elaborate or anything 11 1.161 

Sony Sound Forge Audio Studio 10.0 was used for analysis. Speech intervals 

were only selected at least two minutes into the recording, to allow the speaker 

to become comfortable speaking to his accomplice in the presence of the 

recording equipment. Like Jessen, speech intervals containing fluent speech 

were chosen, and the region marked out. After listening several times, I would 

type out the speech phrase on the region marker tag. Following this, I would 

count the number of syllables included in that interval. After collecting enough 

memory stretches, it was possible to view all recorded regions that listed the 

number of syllables and included the length of the speech segment. Those 

figures were entered into Microsoft Excel and local and global ARs as well as 

standard deviations were computed for all speakers.  

The procedure described above was applied to all 100 recordings 

analyzed in this study. The mean and standard deviation of AR for each speaker 

are used for analysis and are reported in § 4.3.2 below. The maximum number 

of syllables in a memory stretch was 26, but most stretches contained between 
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7 and 11 syllables (in order not to  push the limits18” (Jessen, 2007b, p. 55), and 

avoid mistakes following Jessen (2007b)). In line with the methodology 

implemented by Jessen, four syllables or more per stretch were used. The 

threshold is in place in order to avoid the  inclusion of very short interpause 

stretches that could unduly increase the effect of phrase-final lengthening on 

the calculated articulation rate” (Jessen  2007b, p. 55). It is important to note 

that each memory stretch consisted of only fluent speech (for speech intervals). 

Fluent speech was defined as speech that did not include the following: any kind 

of pauses, either filled or unfilled, repeated syllables, unintelligible speech, and 

any syllable lengthening (judged subjectively) that went beyond canonical non-

hesitation durations in English. The mean number of memory stretches 

measured per speaker was approximately 30, with a standard deviation of 2.1, a 

range of 26-32, and 2,993 total ARs calculated for the 100 speakers. 

4.3.3 Results 

The distributions of the local AR means and the standard deviations for 

individuals are presented in Figures 4.1 and 4.2. The y-axis represents the 

number of speakers that fall within a given range and the x-axis depicts 

articulation rate presented as syllables per second.  

 

                                                        
18 That is in order to avoid trying to remember such an extensive interval of speech that 
mistakes are made when trying to recall it, as this could potentially affect the resulting ARs.  
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Figure 4.1: Distribution of mean articulation rates 

 

There is a roughly normal distribution19 for the mean ARs, as illustrated in 

Figure 4.1. The mean AR for the population is 6.02 syll/sec, with an overall 

range of mean AR from 4.57 to 7.79 syll/sec. The standard deviation of the 

mean is 0.64 syll/sec. The 100 speakers have mean ARs within a 3.22 syll/sec 

window. 

The data were checked for two levels of outliers. This thesis defines 

suspected outliers as falling between 1.5 times the interquartile range (IQR) 

and 3 times the IQR, plus or minus the first or third quartiles. Any outliers that 

fall outside the upper bounds of 3 times the IQR are confirmed as definite or 

extreme outliers in this thesis. The mean AR has six suspected outliers at 7.23 

                                                        
19 Normality was judged visually, and not through statistical testing. 

0

2

4

6

8

10

12

14

16

18

N
u

m
b

er
 o

f 
S

p
ea

k
er

s 

Articulation Rates (syllables/second) 

Mean Articulation Rates 



111 

 

syll/sec, 7.24 syll/sec, 7.47 syll/sec (x2), 7.53 syll/sec, and 7.79 syll/sec. 

However, there were no extreme outliers for mean AR. 

 

Figure 4.2: Distribution of standard deviations in articulation rate 

 

The standard deviations for AR within speakers appear normally 

distributed.  The mean SD is 1.20 syll/sec, with a range of 0.72 and 3.95 syll/sec. 

Those speakers who lie towards the left end of the x-axis are considered 

relatively more consistent in their AR than those speakers who fall towards the 

right end, who are characterized as having a more variable AR. The SDs of the 

100 speakers lie within a range of 3.23 syll/sec, which is a larger range (by 0.01 

syll/sec) than the range of means found for AR (see Figure 4.1). AR has three 

suspected outliers at 1.72 syll/sec, 1.77 syll/sec, and 1.87 syll/sec. There are 

also two extreme outliers at 2.36 syll/sec and 3.95 syll/sec. 
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The cumulative distribution graph of means in Figure 4.3 below shows 

the percentile within which a given AR falls. The y-axis is the cumulative 

percent of the population, and the x-axis  represents AR. 

Figure 4.3: Cumulative percentages for mean articulation rate 

 

The curve in Figure 4.3 is characterized by a steep central portion, but rather 

gentle gradients at both ends. ±1 SD from the mean gives a range of 

approximately 5.3 and 6.6 syll/sec, into which roughly 73% of the population 

falls. The cumulative distribution of individuals’ SDs is illustrated in Figure 4.4, 

which follows the same template as that of Figure 4.3.  
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Figure 4.4: Cumulative percentages for standard deviation in articulation rate 

The curve in Figure 4.4 is similar to the curve seen in Figure 4.3, as it is 

characterized by a steep central portion and gentle gradients at both ends. 

However, the slopes at the ends are not as gradual as the curve of the mean 

distributions (Figure 4.3). ±1 SD from the mean SD gives a range from 

approximately 0.82 to 1.58 syll/sec, a band in which roughly 84% of individuals 

SDs fall.  

Comparing the intra-speaker variation to the inter-speaker variation, it 

is important to note that the mean SD (1.2 syll/sec) for a speaker is about twice 

the SD (0.64 syll/sec) for between-speaker variation. One would be more likely 

to find higher levels of variation within any given speaker of SSBE than between 

that speaker and others. This variability is also shown in the variance ratio, 

which is a calculated by dividing the squared between-speaker SD by the mean 

squared within-speaker SD  (Rose et al., 2006). A value of less than one indicates 
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that there is more variation within speakers than between them. A value 

greater than one indicates that there is more variation between speakers than 

within speakers. The variance ratio for AR is 0.2844, which confirms that there 

is more variation within individuals than there is between them. 

4.3.4 Discussion 

In addition to providing population statistics, there are three main points 

to be drawn from the results reported in § 4.4.0. The first is that the ARs found 

in the current study are very different from those found by older AR studies, 

namely Goldman-Eisler (1956), Robb et al. (2004), and Jacewicz et al. (2009). 

Goldman-Eisler (1956) reported a mean of 4.95 syllables per second, a mean 

range of 4.40 to 5.90, and a standard deviation of 0.91 syllables per second 

(range = 0.54 to 1.48). Her research was based on the spontaneous speech of 

eight British adults recorded in 30- to 60-minute interviews. Her method of 

calculating AR permitted certain disfluencies to be included in the material (e.g. 

unnatural sound prolongations), and this perhaps in part accounts for her lower 

mean AR than that found in the present study. Another reason for higher AR 

results in the present study could also be due to the use of phonological 

syllables rather than phonetic syllables. The use of phonetic syllables could 

potentially lead to lower ARs, as it counts only those syllables which are actually 

articulated by the speaker (see § 4.3.2 for the example of  did you eat yet” (4 

syllables) versus  jeet yet” (2 syllables)). 

The second point is that claims that forensic practitioners who took part 

in the survey reported in Chapter 3 made about AR being a useful speaker 

discriminant appear to be misguided, as AR is a weak discriminator, because 
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there is more variation occurring within speakers than between them. For this 

reason, discriminating between individuals is difficult when a person has a 

typical mean AR. However, this is not to say that the parameter is not helpful 

when discriminating between speakers with lower or higher mean ARs. 

The final point is that forensic phoneticians need to take care when using 

AR or SR in forensic speaker comparison analysis, since SR is even more 

variable within a speaker than between speakers (Künzel, 2007). This 

parameter is best used in combination with other parameters for discriminating 

between speakers, but may carry more weight when AR is used to discriminate 

individuals who fall near the outer boundaries of the distribution.  

4.3.5 Limitations 

A possible limitation of the present study is the selection of memory 

stretches as the speech intervals over which syllables are to be counted. 

Choosing a speech interval is dependent on the short-term memory of the 

analyst calculating the AR. This can potentially lead to high levels of variation in 

AR when measured by different analysts. Ideally, forensic methodologies should 

be robust and easily replicable across many analysts in order to achieve 

comparable results. For this reason it is important to verify the AR results 

calculated from memory stretches by comparing memory stretch interval 

results to those obtained from more commonly defined and objective interval 

(i.e. inter-pause stretches). 

4.4 Redefining the Speech Interval 

The following section compares the results found for memory stretches in § 4.3 

to those found for inter-pause stretches. 
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4.4.1 Methodology 

Twenty-five of the same speakers as those reported on above were 

randomly selected from Task 2 of DyViS, and five minutes of speech from each 

individual was analyzed starting at a point two minutes into each speech 

sample. It is important to note that for comparison purposes, the mean AR for 

an individual using memory stretches was only calculated using intervals from 

the same five-minute speech sample as was used when calculating AR using 

inter-pause stretches. The remaining aspects of the methodology were also kept 

consistent, and syllables were defined phonologically. 

Inter-pause stretches are defined here as both filled and unfilled pauses 

that lasted 130ms or longer (Dankovičová  1997)  but were not stop closures. 

The interval also had to include at least five syllables. The criteria for items that 

were excluded from analysis in an interval were identical to those set by the 

exclusion rules in § 4.3.1. This meant that intervals excluded any kind of pauses, 

either filled or unfilled, repeated syllables, unintelligible speech, and any 

syllable lengthening that went beyond the phonological requirements of 

English. A mean of 40 intervals was measured per speaker, with a range of 26-

58, and amounting to 1,011 ARs in total. The mean number of syllables per 

interval was 9.97, with a range of 5 to 37 syllables across all speakers. 

4.4.2 Results 

 The mean ARs for both memory stretches and inter-pause stretches are 

presented below in Figure 4.5. The y-axis represents the AR in syll/sec and the 

x-axis shows the 25 randomly selected speakers from the 100 speakers in the 

DyViS Database.  
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Figure 4.5: Comparison of mean articulation rate for memory stretches versus inter-pause 
stretches 

 

Figure 4.5 provides mean ARs generated using both methodologies. The means 

for each speaker are displayed above one another to allow for a visual 

comparison of the differences found between them. The two AR methodologies 

prove unpredictable in terms of indicating a trend for whether one 

methodology produces consistently higher or lower ARs than its counterpart, as 

evident in the crossing lines in Figure 4.5. All speakers show relatively small 

differences (especially speakers 031, 050, 056, 063, 075, 078, and 085) in their 

mean ARs. However, some speakers have larger differences (e.g. speakers 016, 

035, 068, 071, 076, and 091) than others. Using the absolute values of the 

differences, the average (mean) AR difference across the 25 speakers is 0.286 

syll/sec, with a range of 0.001 to 0.75 syll/sec.  
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The mean AR for the 25 speakers using inter-pause stretches was 5.98 

syll/sec, compared to the mean AR of the same speakers calculated with 

memory stretches, which was 5.96 syll/sec. The mean AR calculated by the two 

different methodologies differs by two-hundredths of a second. This is a minute 

amount, given that the mean ARs of the speakers are between 5.00 and 7.00 

syll/sec and the mean SD for the 25 speakers (using memory stretches) was 

0.64 (syll/sec). Using a Wilcoxon signed rank test for the two sets of data, the 

null hypothesis is retained (there is no significant difference between the two 

methods), as the p-value is 0.74. This provides a validation of the memory 

stretch method for the calculation of ARs. 

4.4.3 Discussion 

The present study gives rise to two important conclusions. The first is 

that AR results appear to be unaffected by the definition of the speech interval 

as long as the following are kept consistent: the basic unit of speech defined 

here as the phonological syllable, and the exclusion rules. Based on the findings 

in § 4.4.2 and the experience gained from calculating 125 mean ARs, I am now 

of the opinion that mean AR measurements are affected more by the exclusion 

rules than they are by the actual definition of the speech interval (memory 

stretch vs. inter-pause unit). The exclusion rules were described in § 4.3.2 and 

concern what speech can be excluded from analysis, e.g. whether false starts, 

unnatural prolongation, and unintelligible speech are to be included or 

excluded. These  exclusion rules can vary from analyst to analyst, as one might 

find a repetition such as  I-I-I-I am going to the store” should be excluded, but 

something such as  I am I am going to the store” should be included. The 
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judgments made with respect to exclusion in an analysis may be exercised by 

the analyst at a level below his/her conscious awareness. However, speaking 

from experience, an analyst remains relatively consistent working within the 

constraints of the rules. Therefore, the differences that were found among the 

mean ARs for the 25 speakers could more likely be attributed to variability that 

naturally occurs when taking AR measurements (eg. the precise start/stop 

times of intervals), and acoustic measurements in general (Harrison, 2004), 

rather than to a difference caused by the definition of a speech interval (i.e. 

memory stretches vs. inter-pause stretches). 

The final conclusion to be drawn here is that reaffirmation that the 

results found in § 4.3 using memory stretches are valid and reliable 

measurements, since there was no significant difference found between the 

results arrived at using methodologies that incorporate memory stretches 

versus inter-pause stretches. Furthermore, the amount of time it takes to 

calculate ARs using inter-pause stretches is far greater than the time it takes to 

calculate ARs using memory stretches. Therefore, analysts might be advised to 

use memory stretches rather than inter-pause stretches in order to use time 

more efficiently but still calculate reliable results. 

4.5 Manipulating the Syllable Requirements 

Given that the methodology for selecting speech intervals does not appear to 

affect AR figures significantly, it is helpful to consider the effects that the 

syllable requirements of a speech interval have on AR figures. This section 

reports on the manipulation of the number of syllables used in a speech 
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interval. AR was recalculated for 25 speakers using different syllable lengths for 

speech intervals. 

4.5.1 Methodology 

 The data for the first 25 speakers of the study that were presented in § 

4.3 were used to recalculate mean ARs using different minimum syllable 

requirements for speech intervals. There were seven possible minimum syllable 

requirements for the speech interval, ranging from four to ten20. Microsoft Excel 

was used to remove tokens from the speakers’ data for each given requirement 

and mean ARs and SDs for all individuals were recalculated once tokens had 

been removed from each minimum syllable level.  

4.5.2 Results 

 The mean AR and SD results across all speakers for different minimum 

syllable requirements in a speech interval are provided in Table 4.3. The table 

details for each minimum syllable level the mean number of tokens included for 

calculating speakers’ overall AR  as well as the group’s mean AR, and the group’s 

mean SD. 

Table 4.3: Summary of articulation rate statistics when varying the minimum number of 
syllables in the speech interval 

Syllables 
Mean Number of 

Tokens 
Mean AR 
(syll/sec) 

Mean SD of 
Speakers 

4 < 29.96 5.738 1.134 
5 < 29.04 5.762 1.120 
6 < 26.96 5.844 1.105 
7 < 24.40 5.929 1.089 
8 < 20.92 6.024 1.072 
9 < 17.12 6.096 1.072 

10 < 13.32 6.129 0.973 

                                                        
20 This range was chosen based on the number of tokens available for the different syllable 
lengths. 
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There is a prominent trend present in Table 4.3: as the minimum number of 

syllables required for a speech interval increases, the mean AR for speakers also 

increases while the mean SD decreases. This shows that perhaps AR becomes 

slightly more stable within individuals as the minimum syllable count per 

speech interval is increased. However, it is necessary to examine the results for 

changes in within-speaker variation as well as changes in between-speaker 

variation. Table 4.4 shows the mean differences in mean, SD, and the difference 

(Δ) for speakers at different minimum syllable requirement levels. The first 

column indicates the minimum number of syllables required for a speech 

interval  and the second and third columns display the mean Δ for mean AR and 

SD. The Δs in columns two and three are calculated by taking the average value 

(mean AR or SD) at a given syllable level and subtracting the baseline means 

(those values calculated for 4< syllables). Positive values represent an increase, 

while a negative value would indicate a decrease in AR. 

Table 4.4: Within-speaker differences for articulation rate 

 
Within-speaker 

 

Mean Δ for Mean 
AR (syll/sec) 

Mean Δ for SD 
(syll/sec) 

5 < 0.024 -0.013 

6 < 0.106 -0.029 

7 < 0.192 -0.045 

8 < 0.286 -0.062 

9 < 0.359 -0.062 

10 < 0.392 -0.160 

 

Table 4.4 shows that individuals are patterning similarly to the group as a 

whole in that mean AR increases and SD decreases as the minimum number of 

syllables in a speech interval is increased. It appears that the higher the 
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minimum number of syllables in a speech interval the more stable a speaker’s 

AR becomes. This could also be due in part to the decreasing number of tokens 

involved in the calculation at the 10< syllable level. However, the number of 

tokens is still rather robust for syllables at the nine or more level and below, 

across which there is still a demonstrable decrease in within-speaker variation. 

Table 4.5 examines between-speaker differences found for different minimum 

syllable requirements. The first column indicates the minimum number of 

syllables required for a speech interval  and the second presents the mean Δ for 

the SD of the mean ARs. As in Table 4.4, a positive value shows an increase, 

while a negative value shows a decrease in AR. 

Table 4.5: Between-speaker differences for articulation rate 

 
Between-speaker 

 

Mean Δ for SD of AR Means 
(syllables/second) 

5 < -0.022 
6 < -0.004 
7 < -0.002 
8 < 0.014 
9 < -0.006 

10 < 0.028 
 

The overall trend displayed in Figure 4.8 is inconsistent, in that as the minimum 

syllable requirement is increased the SD of the AR means fluctuates (both 

increases and decreases to different degrees). Across all minimum syllable 

requirement levels the mean Δ is 0.001 syll/sec. This means that the variation 

between speakers’ mean ARs remains relatively stable despite the changes 

made to the minimum number of syllables required in a speech interval. 
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4.5.3 Discussion 

 The conclusion to be drawn from the results obtained by increasing the 

minimum number of syllables required in a speech interval is that within-

speaker variation will decrease while the between-speaker variation remains 

rather unchanged. This is important for the use of AR in an approach utilizing 

likelihood ratios and could potentially lead to stronger evidential values for AR 

as a discriminant. In the next section, LRs are calculated for AR, as well as to 

ascertain whether increasing the minimum number of syllables in a speech 

interval improves the strength of evidence for AR. 

4.6 Likelihood Ratios 

LRs provide a framework for the estimation of the strength of evidence under 

competing defense and prosecution hypotheses (see Chapter 2). In order to 

assess the discriminatory power of AR numerically, same speaker (SS) and 

different (DS) LRs are calculated and plotted.  

4.6.1 Methodology 

The LR calculations for AR were performed using a MatLab 

implementation of Aitken and Lucy’s (2004) Multivariate Kernel-Density 

(MVKD) formula (Morrison  2007). MVKD was chosen over Lindley’s (1977) 

univariate LR, because it can account for inter- and intra-speaker variation (i.e. 

using kernel-densities)  whereas Lindley’s (1977) formula makes LR 

calculations based on normally-distributed data (i.e. a single distribution curve) 

for both the LR numerator and denominator. Morrison also suggests that 

because Lindley’s LR formula cannot account for  occasion-dependent within-
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speaker variation” (Morrison  2008  p. 97)  the MVKD approach is more suitable 

for analyzing speech evidence, although it is not ideal. 

 The MVKD formula provided by Aitken and Lucy (2004) assumes that 

within-speaker variability is normally distributed (numerator). The between-

speaker variation, however, is not assumed to be distributed normally and is 

estimated using kernel-density, a measure which accounts for skewed 

distributions. The Gaussian mixture model - universal background model 

(GMM-UBM21; Reynolds et al., 2000) has also been proposed for calculating LRs 

in ASR, and has been used to calculate LRs in phonetic/linguistic-based FSCs 

(Becker et al., 2008; French et al., 2012; Rose and Winter, 2010). GMM-UBM, 

like MVKD, can accommodate multivariate data; however, GMM-UBM models 

the data differently from MVKD. GMM-UBM utilizes GMMs to characterize 

distributions instead of kernel densities (as per MVKD). The most significant 

difference between GMM-UBM and MVKD is that the MAP (maximum a 

posteriori; Reynolds et al., 2000) background model for GMM-UBM is person-

independent and is compared against a model of person-specific parameter 

characteristics when comparing same (SS) and different (DS) speaker pairs 

(Reynolds et al., 2000). Morrison has found that a GMM-UBM, which does not 

assume normal distribution for within- or between-speaker values, performed 

both better and worse than MVKD on different occasions (Lindh and Morrison, 

2011; Morrison, 2011). However, the application of the GMM-UBM has 

predominantly been tested using automatic systems. Despite these findings, 

                                                        
21 GMM refers to the way in which the data are modeled. GMM is a parametric density function 
that is comprised of a number of component functions (Gaussian; Reynolds et al., 2000). UBM 
refers to the way in which the background population in modeled. A UBM is used to represent 
general, person-independent parameters to be compared against a model of person-specific 
parameters (Reynolds et al., 2000). 
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MVKD has been shown to provide reliable and important strength-of-evidence 

results across many studies using more traditional acoustic-phonetic features 

(Hughes, 2011; Morrison, 2008; 2009a; Rose, 2006a; 2007a, 2007b), and will 

therefore be applied here to AR. 

 A MatLab script (ss_ds_lrs.m)22 was used to run multiple same-speaker 

(SS) and different-speaker (DS) LR calculations for AR. The script calls for the 

100 speakers’ samples to be split in half (i.e. 50/50), such that SS comparisons 

may be performed (50 SS comparisons), which in turn results in 2,450 DS 

comparisons (50*49). Speakers 001-050 act as the speaker comparisons, while 

speakers 051-100 act as the background population. The calculated raw LRs 

were transformed using natural and base10 logarithms. The transformation, 

allows zero, rather than one, to act as the center point between the support for 

Hp and Hd. The log transforms are also beneficial in normalizing distributions 

which may be skewed by large and infrequent values. 

 The magnitudes of LRs are discussed and assessed with reference to 

Table 4.6. The verbal scale, adapted from Champod and Evett (2000), is based 

on identifying a Log10 LR that corresponds to a verbal expression representing 

the strength of evidence in favor of the prosecution hypothesis (Hp: same 

speaker) or the defense hypothesis (Hd: different speakers).  

 

 

 

                                                        
22 The script was developed by Phil Harrison from J P French Associates. 
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Table 4.6: Expressions for strength of evidence in terms of Log10 LR and the corresponding 
verbal expression following Champod and Evett’s (2000) verbal scale 

 

Log10 LR Verbal expression 
<-4 Very strong evidence to support Hd 

-4 to -3 Strong evidence to support Hd 
-3 to -2 Moderately strong evidence to support Hd 
-2 to -1 Moderate evidence to support Hd 
-1 to 0 Limited evidence to support Hd 
0 to 1 Limited evidence to support Hp 
1 to 2 Moderate evidence to support Hp 
2 to 3 Moderately strong evidence to support Hp 
3 to 4 Strong evidence to support Hp 

> 4 Very strong evidence to support Hp 

This scale was previously used by the UK Forensic Science Service (Champod 

and Evett, 2000), and will serve as a means of strength-of-evidence evaluation 

for the remainder of the thesis. 

Performance of the system is discussed in respect of log-LR cost (Cllr) 

and equal error rate (EER), which are both metrics of system validity. The term 

 validity” refers to how well a system (in this thesis a system can be an 

individual parameter or multiple parameters combined) can distinguish 

between same-speaker (SS) and different-speaker (DS) pairs. Severity of 

performance error was assessed using Cllr, which is a common assessment used 

in automatic speaker recognition/comparison (Ramos Castro, 2007). The Cllr is 

a Bayesian error metric that quantifies the ability of the system to output LRs 

that align correctly with the prior knowledge of whether speech samples were 

produced by the same or different speakers. The Cllr acts as an error measure 

that captures the  gradient goodness of a set of likelihood ratios derived from 

test data” (Morrison  2009b  p. 6). Previous studies of LRs for forensic speaker 

comparisons have shown that Cllr proves appropriate for measuring errors 
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(Morrison and Kinoshita, 2008; Morrison, 2011). The equation commonly used 

for calculating Cllr is provided in Equation (1). 

(1) 

 

       from Morrison (2009, p. 2391) 

Nss = Number of same speaker pairs 
Nds = Number of different speaker pairs 
LRss = LR from same speaker pairs 
LRds = LR from different speaker pairs 
 
 
Cllr was calculated using Brümmer’s FOCAL toolkit23 function cllr.m with the 

log-LRs as input. Values of Cllr that are closer to zero indicate that error is low. 

For values approaching one the error is considered to indicate poor 

performance, while values above one indicate very poor performance (van 

Leeuwen and Brümmer, 2007, pp. 343-344). 

 EER  unlike Cllr  provides a  hard” (i.e. binary) accept-reject measure of 

validity. This is based on the point at which the percentage of false hits (DS 

pairs that ostensibly offer support for the Hp) and the percentage of misses (SS 

pairs that appear to offer support for the Hd) are equal (Brümmer and du Preez, 

2006, p. 230). 

4.6.2 Results 

 The following sections detail the results of two sets of calculations of the 

discriminant potential of AR. The first investigates the capacity of AR to 

discriminate within a large homogeneous group of 100 males. The second 

                                                        
23 http://sites.google.com/site/nikobrummer/focal (Downloaded: 13 August 2012) 
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considers how the minimum number of syllables in a speech interval may affect 

the strength-of-evidence for AR.  

4.6.2.1 LRs for ARs in 100 SSBE Male Speakers 

 The results for the calculation of LRs on ARs are summarized in Table 

4.7. The second row contains the results from SS comparisons and the third row 

contains DS comparison results. The total percent of correct SS and DS 

comparisons is shown in the second column. Correct LRs are determined by 

whether or not an LLR for SS comparisons is a positive value (providing support 

for the prosecution hypothesis) and whether an LLR for DS comparisons is a 

negative value (providing support for the defense hypothesis). The third 

through fifth columns report on the strength-of-evidence, whereby the third 

column presents the mean LLR for all comparisons (either SS or DS). The 

smallest calculated LLR is in the fourth column, followed by the largest 

calculated LLR. The final two columns provide the EER and Cllr values for the 

entire system. 

Table 4.7: Summary of LR-based discrimination for articulation rate (100 speakers) 

Comparisons % Correct Mean LLR Min LLR Max LLR EER Cllr 

AR SS 90.0 0.18 -1.48 2.06 
.3340 .8981 

AR DS 46.2 -2.94 -8.76 0.82 

 

Table 4.7 shows that AR performs much better with SS comparisons than DS 

comparisons. The results may seem counterintuitive, since there is higher 

within-speaker variability than between-speaker variability for AR, and it might 

be assumed that the high within-speaker variation would cause DS pairs to 

perform better than SS pairs. However, it appears that, because the degree of 
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variation in AR is so high within speakers overall, the system tends to allocate 

higher degrees of similarity if two speakers have similar degrees of (high) 

within-speaker variation. This is evident in the fact that for DS comparisons, the 

system performs slightly worse than chance (which is 50%, since an LLR 

correct/incorrect response is categorized as supporting the Hp or the Hd, 

respectively) as the AR system tends to over-predict pairs being from the same 

speaker rather than different speakers (note the high error rate in correct DS 

judgments) 24. Table 4.7 shows that Cllr is approaching one, but is still under it. 

Following van Leeuwen and Brümmer (2007) this would be classified as a 

‘poor’ performance. The EER is high at 33.4% for AR as a system  and the mean 

SS LR offers only limited evidence to support the prosecution hypothesis (Hp). 

The mean DS LR is slightly stronger, and offers moderate evidence to support 

the defense hypothesis (Hd). 

 The Tippett plot in Figure 4.6 provides a visual measure of the 

performance of AR as a discriminant feature. The x-axis displays log10 LRs 

where zero is the division between support for Hp (>0) and support for Hd (<0). 

The y-axis displays cumulative proportion. Flatter contours indicate a higher 

proportion of pairs that achieve a stronger strength-of-evidence, and contours 

that are steeper indicate a weaker strength-of-evidence.  The results for SS and 

DS comparisons are assessed together. 

                                                        
24 An additional explanation for the poor performance of DS comparisons could be that the 
system is not optimally calibrated (see § 8.5.3). This is evident in the intersection between the 
SS and the DS distributions in Figure 4.6, as the intersection is not at LLR = 0, but further to the 
right into the higher scores. Therefore, many DS comparisons obtain an LLR larger than zero. 
This miscalibration is also potentially the reason for the poor Cllr values. 
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Figure 4.6: Tippett plot of articulation rate 

 

Figure 4.6 shows that error rates are higher for DS comparisons than they are 

for SS comparisons. The SS line is steeper than that of the DS line and provides a 

relatively low strength of evidence. DS, on the other hand, can attain higher 

strength of evidence (a Log10 LR of -5 or even lower), although these values are 

reserved for a very small percentage of DS comparisons. It is important to 

remember when analyzing SS and DS LR results that  two samples cannot get 

more similar for a feature than identical” (Rose et al., 2006, p. 334), and 

therefore DS comparisons will always carry the potential for achieving a higher 

strength of evidence than SS comparisons. The Tippett plot paints an overall 

picture that AR as an individual parameter is relatively weak at discriminating 

between individuals, and only produces higher strength of evidence for a very 

small proportion of DS comparisons. 

— Same speaker comparisons 

— Different speaker comparisons 
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4.6.2.2 LRs for ARs of 25 Speakers with Variation in the Minimum Number 

of Syllables in a Speech Interval 

 
The following section reports on the LRs calculated for the ARs of 25 

speakers while varying the minimum number of syllables required in a speech 

interval. Table 4.8, which has a similar structure to that in Table 4.7, provides 

the results of the different systems. The first column includes a value next to the 

SS or DS lines to indicate the minimum number of syllables required for given 

speech intervals in that system. 

Table 4.8: Summary of LR-based discrimination for mean articulation rate when varying the 
minimum number of syllables in a speech interval (25 speakers) 

Comparisons % Correct Mean LLR Min LLR Max LLR EER Cllr 

4 < Same Speaker 84.6 0.005 -1.800 0.369 
0.2500 1.0260 

4 < Different Speaker 52.6 -0.252 -3.153 0.771 

5 < Same Speaker 76.9 -0.014 -1.703 0.340 
0.3109 1.0326 

5 < Different Speaker 53.2 -0.260 -2.676 0.665 

6 < Same Speaker 69.2 -0.068 -1.73 0.412 
0.3846 1.0976 

6 < Different Speaker 54.5 -0.316 -2.718 0.608 

7 < Same Speaker 53.8 -0.152 -1.908 0.435 
0.4615 1.1780 

7 < Different Speaker 55.1 -0.345 -2.751 0.585 

8 < Same Speaker 69.2 -0.103 -2.731 0.662 
0.3782 1.1104 

8 < Different Speaker 53.8 -0.280 -1.839 0.409 

9 < Same Speaker 61.5 -0.135 -1.243 0.414 
0.4615 0.9958 

9 < Different Speaker 52.6 -0.025 -0.595 0.317 

10 < Same Speaker 53.8 0.024 -1.175 0.322 
0.5385 0.9848 

10 < Different Speaker 39.7 -0.033 -0.234 0.218 

 

Increasing the minimum number of syllables for a speech interval in the 

different systems did not improve the percentage of correct SS or DS 

comparisons; however, it does improve the Cllrs, as seen in the rightmost 

column in Table 4.8. By increasing the minimum number of syllables required 

for a speech interval, the percentage of correct SS comparisons drops by 30.8%. 

For DS comparisons that number drops by 15.4%, with Cllr improving by .0412. 
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EER is more erratic, showing both increases and decreases in its performance 

as the minimum syllable number in an interval is increased (although it is 

mainly an upward trend).  

In comparison to the system discussed in § 4.6.2.1 for 100 speakers, the 

percentage of correct SS comparisons and the Cllr value are worse, while the 

percentage of correct DS comparisons is slightly improved. Overall, EERs for 

minimum syllable lengths above five perform worse than the AR system in § 

4.6.2.1. Caution should be exercised when interpreting these results, however, 

as there were only 13 test speakers and 12 reference speakers, whereas the 

tests described in § 4.6.2.1 included 50 speakers in both test and reference sets. 

4.6.3 Discussion  

Although within-speaker variation can be decreased by increasing the 

minimum number of syllables in a speech sample, it appears that the system 

performs worse overall in terms of the percentage of speaker comparisons 

judged correctly, in spite of the Cllr improving slightly. However, no system 

produced a Cllr better than that seen in § 4.6.2 with all 100 speakers and a 

minimum of four syllables per speech interval. It is important to note that, by 

increasing the minimum number of syllables required in a speech interval for 

the 25 speakers, the number of useable speech intervals available for each 

individual is decreased, potentially affecting the results. This means that 

systems were potentially performing worse due to a decrease in the number of 

speech intervals available; or rather, the change is the result of a combination of 

this along with the increase in the minimum syllables required for a speech 

interval. 



133 

 

Most importantly, by re-redefining the minimum syllable count 

requirement for a speech interval the overall performance of a system is 

susceptible to changes in data collection and methodologies for AR. The need 

for consistency in analysis techniques for all forensic domains, including AR in 

forensic speech science, may be best achieved through prescribed methods 

(based on rigorous empirical testing) for calculation.  

4.7 Conclusion 

Overall, it appears that AR can be classified as a speech parameter that carries 

higher intra-speaker variation than it does inter-speaker variation. In respect of 

the large number of available methodologies for the calculation of AR, it appears 

that the defining of a speech interval (memory stretch vs. inter-pause unit) does 

not have a significant effect on the results. However, in the context of real 

forensic casework if methodologies and analysts are to be kept consistent for 

the analysis of suspect and criminal samples then problems relating to AR 

calculation methods will be minimized. 

AR as a discriminant parameter has proved to be a very poor one25, and 

it is not anywhere close to being as good at discriminating between individuals 

as experts have claimed it to be (Chapter 3). This raises the question as to why 

some analysts are using it at all in casework except for instances of very high or 

low AR. However, exceptions exist for those speakers that are classified as 

outliers. It has been shown that AR offers a very weak strength of evidence for 

SS comparisons, while DS comparisons can potentially offer a higher level of 

strength of evidence. However, this must be traded off against the fact that they 

                                                        
25 At least as these results suggest. 
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produce a very high rate of incorrect DS judgments. Despite all efforts to 

decrease within-speaker variation by increasing the minimum number of 

syllables in a speech interval, the overall system is not improved from the 

original system results shown in § 4.6.2. The Cllr in the best-performing system 

is .8981, which classifies it as performing poorly since the score is close to 1, 

following Brümmer and du Preez (2006). 

 The analysis of AR as a parameter under an LR framework in forensic 

speech science urges caution for casework, in that parameters previously 

thought to be good speaker discriminants might transpire to carry higher intra-

speaker variation than inter-speaker variation, which will generally result in a 

lower strength of evidence for a given parameter. More research on speaker 

discriminants for other commonly-used parameters in forensic casework is 

clearly needed, because there is a risk that some experts in the field are 

analyzing certain features rather blindly. That is to say, they are giving weight 

to features which actually provide little in terms of discrimination power. This 

is shown by the fact that 93% of experts surveyed analyze speech tempo, and 

73% of those do with varying regularity; furthermore, 20% of experts reported 

speech tempo to be the single most useful discriminant. The analysis carried out 

in this chapter provides evidence that AR may be a far from useful discriminator 

in many cases. 

 Although AR may not be the discriminant shibboleth all experts hope for, 

it is important that AR is still considered in forensic speaker comparisons in 

conjunction with other speech parameters. There are instances in which 

speakers may have a very low or high AR, and in which the parameter can be 

considered useful (either as evidence for or against speaker identity). As Rose 
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(2007a, p. 1820) points out   not all speakers differ from each other in the same 

way”.  Therefore  there will be a few individuals for whom AR is potentially a 

good discriminant parameter, as was evident in the small number of high LRs 

for DS comparisons in § 4.6.  
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Chapter 5  Long-Term Formant 
Distributions 

5.1 Introduction 

 Forensic speech science literature is largely characterized by research 

investigating the discriminant power of vowels. In Chapter 3, it was reported 

that 28% of forensic phoneticians found vowels to be the most useful feature in 

discriminating between speakers; overall, this places vowels as the second 

highest-ranked discriminant parameter (along with accent/dialect variants) 

among all possible parameters analyzed for FSCs. Long-term formant 

(frequency) distribution (LTFD) work to date constitutes only a small portion of 

the research carried out. LTFD is the method used to calculate the average 

values for each formant of a speaker over a given speech recording. For a given 

formant (i.e. F1-F4), measurements for all vowels produced by a single speaker 

are averaged across the entire recording or relevant portions of the recording. 

This means that for each formant (F1-F4) of a speaker there is an LTFD value 

and a standard deviation (SD), which will be referred to as LTFD1, LTFD2, 

LTFD3, and LTFD4. LTFDs are frame-by-frame measurements (5 msecs in 

length for the current study); therefore, long vowels carry more weight than 

short vowels in that they yield a greater number of measurements per vowel. A 

positive attribute of LTFDs is that they do not require the categorization of 

individual vowels into phoneme classes, as all vowels are considered in an 

analysis. This results in greater time savings. LTFD also avoids the potential 

correlations between vowel phonemes which would not allow those correlated 
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phonemes to be combined, since combinations of parameters under Bayes’ 

theorem are only allowed if events can be shown to be mutually exclusive. 

 This chapter provides population statistics for LTFD while also 

investigating the discriminant power of LTFD under a likelihood ratio 

framework. Population statistics which consist of LTFD means and SDs are 

reported for F1-F4, in order to give indications of between- and within-speaker 

variation. LRs are calculated for LTFD1-4 individually as well as in different 

combinations relevant for casework. The results of the LRs are presented and 

considered in terms of strength of evidence, Cllr, EER, and proportion of SS and 

DS comparisons that were correctly identified. 

5.2 Literature Review 

 The results of vowel research in forensic phonetics are well documented 

in the literature as a way in which to characterize the speech of an individual. 

Many different methods have been offered for acoustic analysis, the most 

common being temporal mid-point center-frequency measurements of 

formants for different vowels (Jessen, 2008; Rose, 2002; 2006a, b, c; Rose et al., 

2003). Investigations have also been carried out using formant dynamics in 

order to capture the trajectories of specific vowels (McDougall, 2004; 

McDougall and Nolan, 2007; Hughes, 2011; Hughes et al., 2009). Formant 

dynamic research revealed that formants appear to be consistent within 

speakers and that there is variation with respect to formants between speakers. 

This research led to the argument that the development of techniques for 

measuring dynamic features should be given more attention (McDougall, 2006). 

Long-term spectra (LTS) were developed with this in mind, as a means of 
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capturing the average of all spectral slices in a recording. However, LTS 

considers voiced speech as well as voiceless portions which could potentially 

include background noise (Nolan and Grigoras, 2005). LTFD, like LTS, was also 

developed to identify the dynamism of formants, but it is only concerned with 

the vowels and certain voiced portions in a recording (Nolan and Grigoras, 

2005). There have also been a number of analyses concerned with vowels 

under a LR framework (e.g. Alderman, 2004; Kinoshita and Osanai, 2006; Rose, 

2007a; Morrison, 2009). However, only three have considered LTFD (Becker et 

al., 2008; French et al., 2012; Jessen et al., 2013). 

Nolan and Grigoras (2005) were the first to report the use of LTFD for 

forensic speaker comparisons.  In their study, the authors consider analysis of 

LTFD1 and LTFD2 in order to eliminate a suspect who is thought to have made 

some obscene phone calls. The first author carried out an auditory analysis of 

vowels and took mid-point center-frequency measurements of monophthongs. 

Diphthongs were also included in the analysis and the beginning and end points 

of the vowels were measured. In general, the vowel analysis by the first author 

suggested that the speech in the criminal samples and the speech in the suspect 

sample were poorly matched. Each vowel in the suspect samples exhibited 

systematic differences from those found in the criminal samples, thereby 

rendering the criminal and suspect samples incompatible. Given that there were 

other equally valid methods to arrive at acoustic characterization of speakers, 

the second author carried out a re-analysis using alternative approaches.  

The second author had previously developed new techniques for 

speaker comparison (Grigoras, 2001; 2003) that included speaking 

fundamental frequency (SFF), LTS, and LTFD. All three approaches were carried 
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out using Catalina Toolbox26. LTFD was used in the re-analysis of the data in the 

obscene phone call case. This approach considers the  long-term disposition of 

formants” (Nolan and Grigoras, 2005, p. 162), an aspect which LTS fails to 

grasp. Only the voiced frames in the recordings were used for analysis and 

linear prediction was used to estimate LTFD1-4. The results from LTFD1-4 give 

an overall indication of each formant distribution, from which it is clear that 

LTFD2 and LTFD3 in the criminal recordings are considerably lower than in the 

suspect recording. LTFD4 is also shown to be relatively higher in the criminal 

samples than the suspect sample. Given the distribution of LTFD, this analysis 

gave further substance to the argument that there were two different speakers 

involved and that the suspect and criminal were not one and the same person. 

With respect to the approaches employed in the re-analysis, LTFD provided a 

 very clear picture of the average behaviour of each formant” (Nolan and 

Grigoras, 2005, p. 169). It also provides strong insights into the dimensions of a 

speakers’ vocal tract  where these are reflected in the maximum LTFD27. The 

formant frequency values for LTFD are inversely related to the speaker’s vocal 

tract size, whereby a longer vocal tract will result in lower formant values 

(Nolan and Grigoras, 2005; French et al., 2012). LTFD also has the capacity to 

indicate certain habits speakers use, such as palatalization, which are indicated 

by a raised LTFD2 (Nolan and Grigoras, 2005). French et al. (2012) also show 

that voice qualities related to tongue body position are correlated with LTFD. 

Additionally, the shape of the distributions for the estimates of each formant is 

useful in identifying speakers who have either more or less variable formants. 

                                                        
26 Available at http://www.forensicav.ro/download.htm 
27 The maximum LTFD (for LTFD1 and LTFD2) is reflected in the overall area of a speaker’s 
vowel space. 
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This is classified by distributions which are leptokurtic (narrow-peaked) or 

platykurtic (broad-peaked). Although LTFD provides promising 

characterizations of individuals’ speech  it fails to reveal the variation that exists 

in specific vowel segments.  

Moos (2010) utilized the LTFD method detailed in Nolan and Grigoras 

(2005) and analyzed LTFD2 and LTFD3 values of mobile phone speech in both 

read and spontaneous speech of 71 male German speakers from the Pool 2010 

corpus (Jessen et al., 2005). The spontaneous speech was elicited from speakers 

while having them describe objects to another person (their  compatriot”) 

without using certain proscribed words, similar to the strategies in the board 

game  Taboo”. The person who was matched with the speaker feigned 

ignorance in the exchange in order to encourage more thorough descriptions 

and longer stretches of speech. The read speech was produced by speakers 

reading a German version of  The North Wind and the Sun” (Moos  2010). 

Recordings were edited to include only the vocalic portions, where laterals, 

approximants, vocalic hesitations, and creaky voice were part of that stream. 

Nasals, areas of strong nasality, and vowels spoken on a high pitch (where 

individual harmonics were visible in the spectrogram rather than formants) 

were not included. After cutting down the recordings in Wavesurfer, the length 

of the spontaneous speech was between 12 and 83 seconds (mean = 40 sec) and 

the length of the read speech was between 8 and 16 seconds (mean = 12 sec). 

 Moos (2010) found LTFD3 values to be slightly more helpful28 than 

LTFD2 in terms of speaker characterization because, overall, the former had 

                                                        
28 This is also seen in Simpson (2008) and Clermont et al. (2008) with regard to F3 values for a 
number of phonemes that were measured using mid-point center frequencies.  
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smaller intra-speaker variation. The LTFD values from read speech were 

reported as being higher than those in spontaneous speech. However, this could 

be due in part to the fact that the  The North Wind and the Sun” is a tool used in 

phonetic experiments to get an array of phonemes and tokens. For this reason, 

the vowel spaces of speakers could be artificially enlarged, returning a greater 

spread of LTFD values per speaker. It is important to note that details of the 

spontaneous speech that was elicited were not provided, and could have in 

theory given a similar distribution of phonemes and tokens. However, that is 

unlikely, as spontaneous speech tends not to provide as wide of an array of 

phonemes as is usually the case with read speech (of course this is dependent 

on the chosen text). It was also noted by Moos (2010) that it is vital to know 

whether there is a sufficient amount of data in order to analyze LTFD; 6 seconds 

of pure vocalic stream were suggested as a minimum. Overall, Moos (2010) 

classifies LTFD as a valuable measure to include in forensic speaker 

comparisons and identifications. LTFD was also found to be independent of (i.e. 

not correlated to) F0, dialect, and speech rate, making LTFD viable for 

combination with these parameters under an LR conclusion framework. 

Becker et al. (2008) investigated the use of Gaussian Mixture Models for 

LTFD1-3 under an LR framework (see Jessen et al., 2013 for a similar LTFD 

study but using the software Vocalise29). Spontaneous speech was used from 68 

male German speakers from the Pool 2010 corpus recorded in a laboratory 

setting. The speech had been elicited as described above in Moos (2010), and as 

in Moos (2010), the data used in Becker et al. (2008) were transmitted through 

mobile phone connections in order to simulate forensically-relevant recordings. 

                                                        
29 http://www.oxfordwave research.com/j2/products/vocalize [ Accessed: 8 August 2013] 
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These recordings were then edited to remove consonantal information as well 

as portions of speech where formant structures were not clearly visible. 

Formant tracking was then used to identify peaks and LTFD measurements 

were extracted in Wavesurfer. The formant measurements for the first half of 

each recording were used as a training set, and the test set consisted of the 

second half of the formant measurements. Those formant measurements in the 

test set were halved again in order to increase the possible number of 

comparisons. This resulted in recordings from the training set being around 22 

seconds in length, while those in the test set were around 11 seconds long. 

LTFD1-3 as well as their corresponding bandwidths were considered in the 

analysis. 18 speakers’ measurements were used to create the Universal 

Background Model (UBM), and one Gaussian Mixture Model (GMM) was 

estimated for the reference population, using 8 mixtures. The remaining 50 

speakers were used in the test and a total of 100 same-speaker comparisons 

and 4,900 different speaker comparisons were carried out.  

The lowest (i.e. the best performing) EERs were found for combinations 

that included bandwidths (BW), these being 

LTFD1+LTFD2+LTFD3+BW1+BW2+BW3 and LTFD1+LTFD2+BW1+BW2, 

which achieved EERs of 0.030 and 0.042, respectively. The lowest EER in which 

BW was not included was the combination of LTFD1+LTFD2+LTFD3, which had 

an EER of 0.053. Overall, discrimination levels were high, and Becker et al. 

(2008) note that the speaker models created using LTFD can relate directly to 

the configuration of the vocal tract, in turn perhaps revealing speaker-specific 

variations in the distributions. 
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Jessen and Becker (2010) build on Becker et al. (2008) and investigate 

LTFD as a speaker discriminant further. They first consider the relationship 

between LTFD2-3 and body height for 81 male speakers from the Pool 2010 

corpus of telephone transmitted speech. Both LTFD2 and LTFD3 were found to 

have significant negative correlations with stature, where taller individuals 

were associated with lower LTFD2 and LTFD3. The Pearson correlation 

coefficients were both just over 30% (r = -0.316 and -0.339 respectively), but 

were nonetheless significant at the 1% level.  Jessen and Becker (2010) then 

examined the consistency with which analysts measure LTFD. Five phoneticians 

measured LTFD2 and LTFD3 for 20 speakers from the Digs dialect corpus 

(Jessen and Becker, 2010). LTFD means were compared across analysts and it 

was found that LTFD2 had Pearson correlations between 0.84 and 0.95, while 

for LTFD3 these figures were between 0.98 and 0.9930. Consistency across 

analysts was higher for LTFD3 than for LTFD2, but both formants achieved 

highly consistent results overall, showing that the methodology for LTFD 

analysis is easily replicable. It has been posited that LTFD is potentially 

language-independent, as all vowel phonemes are averaged (Nolan and 

Grigoras, 2005). Jessen and Becker (2010) tested this hypothesis using three 

speakers of different German dialects in the Digs dialect corpus, as well as 

Russian and Albanian speakers under analogous recording conditions. They 

found that the different languages did not appear to differ in terms of the LTFD-

space that they occupy (one-way ANOVA [F(4,55) = 0.44; p = 0.77]). 

                                                        
30 It is unclear if these figures refer to r or r2 values. 
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The authors then investigated the effects of Lombard speech31 on LTFD. 

Mean LTFDs from 31 speakers in the Pool 2010 corpus (telephone-transmitted 

speech) were used to analyze possible Lombard effects on LTFD1-3. LTFD1 was 

found to be consistently higher in the Lombard condition than in the modal 

condition, with high levels of intra-speaker variation present. LTFD2 and LTFD3 

were inconsistent in their effects across speakers, and both yielded non-

significant differences. Although LTFD1 was shown to be affected by Lombard 

speech, it is often of limited use in forensic casework, due to the effect of 

telephone transmission on F1 (Byrne and Foulkes, 2004; Jessen and Becker, 

2010; Künzel, 2001). Finally, the authors tested the performance of LTFD 

analysis modeled using GMMs against ASR. They found ASR to outperform LTFD 

analysis, with an EER of 0.107 for ASR as compared to an EER of 0.243 for LTFD. 

Logistic-regression fusion (which accounts for correlations between resulting 

LRs and then applies statistical weightings) was also used to try to improve 

results (EER= 0.108). However, it still performed worse than ASR on its own. 

The results found by Jessen and Becker (2010) were promising for LTFD use in 

forensic casework. LTFD revealed a negative correlation of individual formants 

with body height, a high consistency in measurements across different 

phoneticians, the potential to use LTFD statistics from one language across 

many languages, and the limited effect of Lombard speech on LTFD2 and 

LTFD3. 

Most recently, French et al. (2012) examined LTFD in conjunction with 

Mel-Frequency Cepstral Coefficients (MFCCs; abstract properties of the acoustic 

                                                        
31 Lombard speech is the tendency of speakers to increase their vocal effort when speaking 
(typically due to loud noise; Lombard (1911)). 
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signal, which are reflections of the dimensions of the vocal tract) and voice 

quality (VQ). They considered the efficacy and limitations of the three 

parameters, and correlations among the parameters. The study used the 

recordings from Task 2 of the DyViS database (Nolan et al., 2009). All original 

recordings were 15 to 25 minutes in duration. The recordings were edited to a 

minimum of 50 seconds of vowels per speaker32. The iCAbS (iterative cepstral 

analysis by synthesis) formant tracker (Clermont et al., 2007) was used to 

automatically extract and measure F1-F4 every 5 msec. This yielded between 

10,000 and 30,000 F1-F4 measurements per speaker. LRs for LTFD1-4 were 

calculated using UBM-GMM in the same way as that detailed in Becker et al. 

(2008). In total there were 200 same speaker (SS) comparisons and 9800 

different-speaker (DS) comparisons, as each recording for a speaker was 

divided in half.  French et al. (2012) found LTFD1-4 to perform very well, with 

97.4% of DS comparisons and 94% of SS comparisons identified correctly. In 

comparison with the discrimination levels of the MFCCs and VQ on the same 

data set, LTFD achieved similar error rates to the other methods; one method 

did not significantly outperform another. In terms of correlations between 

LTFD, MFCCs, and VQ, there were correlations found between the LRs produced 

from MFCCs and LRs calculated from the UBM-GMM analysis of LTFDs (r = 

0.39). There was a weak correlation identified between VQ and LTFD globally (r 

= 0.12). However, there were some specific aspects of VQ that were more 

closely correlated with single LTFD measurements (e.g. raised larynx and 

LTFD1, r = 0.40). In conclusion, French et al. (2012) suggest the use of a vocal 

                                                        
32 This was done using Synthesis Toolkit CV software that was adapted by Philip Harrison from J 
P French Associates. 
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tract output measurement (e.g. MFCC, VQ, LTFD) to be used as one of many 

tools in forensic speaker comparisons in order to  examine speech as varying 

human behavior.” 

The research in the studies presented above was carried out using a 

traditional (acoustic) phonetic approach, or an MFCC-based one. The 

discriminant performance of LTFD was tested in previous studies only using the 

GMM-UBM LR framework. At present, no previous studies have provided 

population statistics for LTFD in English or considered LTFD under an MVKD LR 

framework. This chapter will address both gaps. 

5.3 Population Statistics for LTFD1-4 

The following section discusses the collection of population statistics for LTFD 

in a large, linguistically-homogeneous group of 100 male speakers. These data 

serve as the first of their kind in providing detailed information on the 

distribution and variation that occurs in LTFD for a large group of individuals 

who speak Southern Standard British English (SSBE). 

5.3.1 Methodology 

Spontaneous speech recordings of 100 male speakers of SSBE, aged 18-

25, were analyzed. The recordings were from Task 2 (a conversation between 

the speaker and his accomplice) of the DyViS database (Nolan et al., 2009). The 

recordings were automatically segmented to obtain a minimum of 50 seconds of 

concatenated vowels per speaker, and the iCAbS formant tracker (Clermont et 

al., 2007) was used to automatically extract and measure F1-F4 every 5 msec. 
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Population statistics were calculated by averaging all measurements for each 

formant for a single speaker and also taking the SD for each of those formants.  

5.3.2 Results 

 The following section analyzes LTFD1-4 individually. The distributions 

for LTFD1 means and SDs are provided in Figures 5.1 and 5.2. The y-axis 

represents the number of speakers with mean LTFD formant frequencies that 

fall within a given range and the x-axis represents 10Hz-wide formant 

frequency bins, presented in Hertz (Hz). 

 

Figure 5.1: Distribution of mean LTFD1 

 

Figure 5.1 shows a normal distribution with a slight negative skew due to 

suspected outliers (± 1.5 times the interquartile range) at 364.7Hz, 367.1Hz, 

375.6Hz, 386.7Hz and one suspected outlier at 515.6Hz. The overall mean for 

the group LTFD1 is 451Hz, with a range of 364.7Hz to 515.6Hz. The SD of the 

means is 29.9Hz, and all 100 speakers’ SDs fall within a 150.9Hz range.  
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Figure 5.2: Distribution of standard deviation in LTFD1 

 

The standard deviation values for LTFD1 within speakers follows a roughly 

normal distribution. There are three suspected outliers at 201.6Hz, 203.6Hz, 

and 209.8Hz. The mean SD is 131.4Hz, with a range of 64.8Hz to 209.8Hz. The 

SD of the mean SDs is 26.8Hz. All 100 speakers have SDs within 145Hz, which is 

a larger range (by 58.7Hz) than the range of means found in Figure 5.1.  

The cumulative distribution graphs of LTFD1 means and SDs in Figure 

5.3 and Figure 5.4, respectively, show the percentile within which a given 

LTFD1 mean or SD falls within the population. The y-axis is the cumulative 

proportion, and the x-axis represents formant frequencies in Hz. 
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Figure 5.3: Cumulative percentages for mean LTFD1 

 

The curve in Figure 5.3 is characterized by steepness in the central portion and 

gentle gradients in the first and third portions. Despite the steepness of the 

central section, the curve is overall a lot more gradient than was seen for AR in 

Chapter 4. ±1 SD from the mean gives a range between 421.1Hz and 480.9Hz, 

into which roughly 83% of the population tested here falls. The cumulative 

distribution of individual SDs is illustrated in Figure 5.4. 
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Figure 5.4: Cumulative percentages for standard deviation of LTFD1 

 

The curve in Figure 5.4 is slightly steeper than that seen in Figure 5.3, and the 

beginning and end portions are less gradient. ±1 SD from the mean SD gives a 

53.6Hz range between 104.6Hz and 158.2Hz, into which roughly 77% of the 

population falls. Given that the mean LTFD values are representative of the 

variation that occurs between speakers, and the SD values represent within-

speaker variation, a variance ratio (Rose et al. 2006) can be calculated to 

ascertain which variation is higher. The LTFD1 variance ratio is 0.05, which is 

indicative of higher inter-speaker variation than intra-speaker variation. 

 The results for LTFD2 are presented in Figures 5.5 and 5.6. The graphs 

illustrate the population distributions for LTFD2 mean and SD. 
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Figure 5.5: Distribution of mean LTFD2 

 

Figure 5.5 has as a normal distribution with a slight positive skew due in part to 

a suspected outlier at 1633Hz. The overall mean LTFD2 for the group is 

1476.7Hz, with a range of 1363.9Hz to 1633Hz. The SD of the LTFD2 means is 

55.9Hz, and all 100 speakers fall within a 269.1Hz window.  

 

Figure 5.6: Distribution of standard deviation in LTFD2 
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The standard deviation for LTFD2 within speakers is again roughly normally 

distributed. There are two suspected outliers at 425.4Hz and 437.7Hz. The 

LTFD2 mean SD is 322.7Hz, with a range of 249.3Hz to 437.7Hz. The SD of the 

mean SDs is 37.7Hz. All 100 speakers have SDs within 188.4Hz. 

The cumulative distribution graphs of means and SDs in Figure 5.7 and 

Figure 5.8, respectively, show the percentiles at which a given LTFD2 mean or 

SD falls within the population.  

 

Figure 5.7: Cumulative percentages for mean LTFD2 

 

The curve in Figure 5.7 is rather gradual compared to those in Figures 5.3 and 

5.4, which is indicative of the relatively platykurtic distribution seen in Figure 

5.5. ±1 SD from the mean gives a range between 1420.8Hz and 1532.6Hz, into 

which roughly 72% of the sample population falls. The cumulative distribution 

of individual LTFD2 SDs is illustrated in Figure 5.8. 
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Figure 5.8: Cumulative percentages for standard deviation in LTFD2 

 

The curve in Figure 5.8 is similar to that in Figure 5.7; however, the rate of 

increase of the middle portion in Figure 5.8 is much more variable. ±1 SD from 

the mean SD gives a range between 285Hz and 360.4Hz, into which roughly 

71% of the sample population falls. Comparing the intra-speaker variation to 

the inter-speaker variation for LTFD2, there is a variance ratio 0.03. This 

indicates higher levels of variation within speakers than between them. 

 The results for LTFD3 are presented in Figures 5.9 and 5.10 below. The 

graphs represent the population distributions for LTFD3 mean and SD, 

respectively. 
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Figure 5.9: Distribution of mean LTFD3 

 

Figure 5.9 has as a normal distribution with a slight negative skew. This is 

potentially due in part to a suspected outlier at 2824.4Hz. The overall mean 

LTFD3 for the group is 2478.5Hz, with a range of 2212.6Hz to 2824.4Hz. The SD 

of the LTFD3 means is 106.5Hz, and all 100 speakers fall within a 611.8Hz 

window.  
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Figure 5.10: Distribution of standard deviation distribution in LTFD3 

 

The standard deviation for LTFD3 within speakers is roughly normally 

distributed with a slight negative skew. It can be expected that the skew is due 

to the extreme outlier at 516Hz and three suspected outliers at 416.3Hz, 

422.1Hz, and 491.9Hz. The mean SD is 277.9Hz, with a range of 168.2Hz to 

516Hz. The SD of the LTFD3 SDs is 62.8Hz. All 100 speakers have SDs within 

188.4Hz of each other. 

The cumulative distribution graphs of LTFD3 means and SDs in Figure 

5.11 and Figure 5.12, respectively, illustrate the percentile at which a given 

LTFD3 mean or SD falls within the population.  
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Figure 5.11: Cumulative percentages for mean LTFD3 

 

The curve in Figure 5.11 is rather steep in the middle portion, with the 

beginning and end portions of the slope being more gradient. ±1 SD from the 

mean gives a range between 2372Hz and 2585Hz, into which roughly 70% of 

the population falls. The cumulative distribution of individual speakers’ SDs for 

LTFD3 is presented in Figure 5.12. 
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Figure 5.12: Cumulative percentages for standard deviation in LTFD3 

 

The curve in Figure 5.11 is rather steep, with the end portion of the slope, which 

starts around 375Hz, being more gradient than the beginning. ±1 SD from the 

mean gives a range between 215.1Hz and 340.7Hz, into which roughly 68% of 

the sample population falls. The calculated variance ratio for LTFD3 is 0.15. This 

suggests it is more likely that one will find higher levels of variation within a 

speaker than between that speaker and the rest of the population, which was 

also the case for LTFD1 and LTFD2. 

 The results for LTFD4 are presented in Figures 5.13 and 5.14 below. The 

graphs display the population distributions for LTFD4 mean and SD, 

respectively. 
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Figure 5.13: Distribution of mean LTFD4 

 

Figure 5.13 shows that mean LTFD4 has as a fairly normal distribution, though 

with a slight negative skew. However, there are no suspected (1.5 x the 

interquartile range) or definite (3 x the interquartile range) outliers in the data. 

This could simply be the natural distribution of the data or perhaps it is 

revealing measurement errors that occurred for those individuals that appear 

to have lower LTFD4 means. The overall mean LTFD4 for the group is 

3660.9Hz, with a range of 3249.9Hz to 4019.5Hz. The SD of the LTFD4 means is 

170.9Hz, and all 100 speakers fall within a 769.6Hz window.  
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Figure 5.14: Distribution of standard deviation in LTFD4 

 

The standard deviation for LTFD4 within speakers is roughly normally 

distributed. There are three suspected outliers at 633.3Hz, 640.5Hz, and 

649.5Hz. The mean SD is 482.2Hz, with a range of 356.8Hz to 649.5Hz. The SD 

of the LTFD4 SDs is 67.2Hz. All 100 SSBE speakers have SDs within 292.7Hz of 

each other. 

The cumulative distribution graphs of LTFD4 means and SDs in Figure 

5.15 and Figure 5.16, respectively, show the percentile at which a given LTFD4 

mean or SD falls within the population.  
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Figure 5.15: Cumulative percentages for mean LTFD4 

 

The curve in Figure 5.15 is characterized by a rather gradual increase, which is 

more similar to the curve in Figure 5.7 than it is to the curves illustrated in 

Figures 5.3 and 5.11. ±1 SD from the mean gives a range between 3490Hz and 

3831.8Hz, in which roughly 63% of the sample population falls. The cumulative 

distribution of individual SDs for LTFD4 is illustrated in Figure 5.16. 
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Figure 5.16: Cumulative percentages for standard deviation in LTFD4 

 

The curve in Figure 5.16 has a rather gradual, almost linear slope. The graph 

has a similar shape to the curve shown in Figure 5.15. ±1 SD from the mean SD 

gives a range between 415Hz and 549.4Hz, into which roughly 65% of the 

population falls. The variance ratio for LTFD4 is 0.13, which again indicates that 

one will be more likely to find higher levels of variation within a speaker than 

between that speaker and the rest of the population, which we also saw in the 

case of LTFD1-3. Given that variance ratios greater than one indicate that more 

variation occurs within individuals than between them, the LTFDs with higher 

variance ratios discriminate better between individuals than do those with 

lower variance ratios. LTFD3 had the highest ratio at 0.15, followed by LTFD4 at 

0.13, LTFD1 at 0.05, and finally LTFD2 at 0.03. The LR results in the next section 

(§ 5.4) are hypothesized to follow these predictions. 
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5.3.3 LTFD1-4 Results Compiled 

 For simplification purposes the overall LTFD population results are 

displayed in Table 5.1 and 5.2. Table 5.1 compiles LTFD1-4 results for between-

speaker variation, while Table 5.2 presents the compilation of LTFD1-4 results 

for within-speaker variation. The first columns identify the formant, and the 

second through fourth columns contain mean SD, range (of SD), and SD (of SD). 

Table 5.1: Overall between-speaker results for LTFD1-4 

LTFD Mean (Hz) Range (Hz) SD (Hz) 
1 451.0 364.7-515.6 29.9 
2 1476.7 1369.9-1633.0 55.9 
3 2478.5 2212.6-2824.4 106.5 
4 3660.9 3249.9-4019.5 170.9 

 

Table 5.2: Overall within-speaker results for LTFD1-4 

LTFD Mean SD (Hz) Range of SD (Hz) SD of SD(Hz) 
1 131.4 64.8-209.8 26.8 
2 322.7 249.3-437.7 37.7 
3 277.9 168.2-516.0 62.8 
4 482.2 356.8-649.5 67.2 

 

The mean formant measurements for LTFD1-4 in Table 5.1 are very similar to 

those of  ə , where F1 is about 500 Hz, F2 is 1500 Hz, F3 is 2500 Hz, and F4 is 

3500 Hz (Johnson, 2003). Given that LTFD is an average across all vowel 

phonemes, some type of central (with respect to the vowel space) vowel would 

be expected. The results in Table 5.1 and 5.2 also show that LTFD3 and LTFD4 

have the smallest ratios of mean SD to mean formant value (277.9: 2478.5 and 

482.2: 3660.9). This is indicative of the two higher formants being more stable 

within speakers, suggesting that they will be better speaker discriminants than 

the lower formants (this also coincides with the variance ratios from § 5.3.2 

above). 
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5.4 Likelihood Ratios for LTFD  

The discriminant results of LTFD are presented in the following section. In the 

first part, LR results are provided for individual formants as well as in 

combination with other formants. The second part considers the effects that 

‘package length’ (Moos, 2010) has on LR results for LTFD. 

5.4.1 Methodology 

Likelihood ratios (LRs) were computed using a MatLab implementation 

of Aitken and Lucy’s (2004) Multivariate Kernel-Density formula (Morrison, 

2007) for the 100 male speakers in DyViS Task 2.  The MVKD formula was 

originally developed for use with evidence that included repeated measures of a 

given parameter (Aitken and Lucy, 2004). However, LTFD considers evidence 

from all possible vowel categories, resulting in raw data that can be extremely 

varied. For this reason, the raw formant data were averaged over 0.5 sec 

windows (a total of 100 raw data measurements per formant constituted a 

single token) for F1-F4 in order to obtain what Moos refers to as  packages” 

(Moos, 2010). There were 100 to 284 (LTFD1-4) measurements per speaker, 

with a mode of 100 tokens. An intrinsic discrimination method was used to 

calculate LRs, whereby speakers 1-50 acted as the test set and speakers 51-100 

acted as the reference set. LRs are calculated for LTFD1-4 individually as well as 

in combinations relevant to forensic casework. 

These combinations were chosen with respect to common practices in 

the field (§ 3.9.1.1). Traditionally, the two formants most commonly used in 

casework and sociolinguistic studies are F1 and F2, which are measured in 

order to reveal aspects of an individuals’ vowel space (Ash  1988; Milroy and 
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Gordon, 2003). Some FSS experts still analyze only these two formants (§ 

3.9.1.1), and therefore LTFD1 and LTFD2 are considered in combination. 

LTFD research has reported that formants are often prone to variation. It 

is common for a case to involve the comparison of material from a telephone 

recording (cellular phone or landline) against a directly-recorded sample (often 

a police interview).  Due to the limited bandwidth of transmission over the 

telephone (the 340-3700Hz band) there are many acoustic properties of the 

signal that are often affected (Foulkes and French, 2012). The most notable are 

an artificial increase in F1 values and formants close to 3700Hz disappearing. 

Often F4 is missing from the signal altogether (Künzel, 2001; Byrne and 

Foulkes, 2004). A similar effect has also been reported for recordings made 

using the video and voice recorders in cellular phones (Gold, 2009). For this 

reason, some experts avoid F1 and F4 altogether, meaning that only LTFD2 and 

LTFD3 are analyzed. In addition, it is important to note that analysts must be 

aware that the distance between the microphone (of the recording device) and 

the talker (in conjunction with the room acoustics) can also have effects on 

formant measurements (Vermeulen, 2009). 

A majority of experts (63%) reported measuring F1-F3 in casework (§ 

3.9.1.1), and therefore LTFD1-LTFD3 are considered, as they are the most 

commonly-analyzed combination of formants. Finally, LTFD1-4 are considered 

in combination to represent the ideal case where F1-F4 are all measureable. 

This also provides the upper boundary in terms of the maximum number of 

features within a parameter that can be used (for the given data) to achieve the 

best possible performance. All LR results are considered in terms of system 
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performance (EER and Cllr) and the magnitude of strength of evidence 

(Champod and Evett, 2000). 

5.4.2 Results for LTFD1-4:  Individually and in Combination 

 The results for the calculation of LRs on LTFD1-4 individually are 

summarized in Table 5.3. The leftmost column represents the LTFD that was 

analyzed and whether it relates to same-speaker (SS) or different-speaker (DS) 

comparisons. The second column indicates the percentage of SS or DS 

comparisons that were correctly classified. Correct SS comparisons have a log 

likelihood ratio (LLR) above zero, and correct DS comparisons have an LLR of 

less than zero. The mean LLR is in the third column, followed by the minimum 

and maximum LLR in the next two columns. The final two columns present the 

EER and Cllr values. 

Table 5.3: Summary of LR-based discrimination for LTFD1-4 (100 speakers)  

Comparisons % Correct Mean LLR Min LLR Max LLR EER Cllr 

LTFD1 SS 72.0 0.224 -2.158 1.902 
.2806 .8840 

LTFD1 DS 71.7 -4.858 -68.768 1.993 
LTFD2 SS 70.0 0.162 -1.077 1.259 

.3165 .8119 
LTFD2 DS 67.5 -1.939 -27.814 1.602 
LTFD3 SS 88.0 0.288 -8.373 3.743 

.1700 1.0731 
LTFD3 DS 80.6 -11.857 -139.273 1.734 
LTFD4 SS 68.0 0.238 -2.258 1.378 

.2214 .8085 
LTFD4 DS 80.2 -11.574 -124.808 1.301 

 

Table 5.3 shows that, overall, LTFD3 has the lowest EER (.1700) but the highest 

Cllr (1.0731). LTFD4 performed second-best in terms of EER (.2214) and best 

for Cllr (.8085). The highest EER was for LTFD2 at .3165, but it had the second-

lowest Cllr (.8119). Overall, SS comparisons achieved a higher proportion of 

correct results than did DS comparisons, with the exception of LTFD4, where DS 
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comparisons performed 12.2% better. The strength of evidence (i.e. mean LLR) 

is stronger for DS comparisons than SS comparisons; mean LLRs are between     

-11.857 and -1.939. For SS comparisons, the magnitude of the strength of 

evidence is lower, ranging from 0.162 to 0.288. With respect to Champod and 

Evett’s verbal scale (2000  p. 240) the LLR scores for SS would not even 

constitute limited evidence in support of the prosecution hypothesis. However, 

there are some cases where a formant individually achieves a stronger strength 

of evidence, as per LTFD3 with its maximum LLR of 3.743 (moderately strong 

evidence). 

 Examining LTFD1-4 individually, the results in Table 5.3 suggest that 

LTFD3 performs the best overall, followed by LTFD4, LTFD1, and finally LTFD2. 

Despite returning the highest Cllr, LTFD3 has the highest percentage of correct 

SS and DS comparisons. It also offers the lowest EER, while providing the 

strongest strength of evidence for SS and DS. The suspected reason for Cllr 

being at its highest for LTFD3 is that Cllr appears to be greatly affected by 

parameters (e.g. vowels) that produce wider ranges and higher magnitudes of 

LLR.  While producing these correct SS and DS comparisons with significant 

strengths of evidence, it also tends to cause comparisons to yield incorrect SS 

and DS comparisons with high strengths of evidence. For this reason, high Cllrs 

appear to be being calculated for parameters that have the potential to offer 

more in terms of correctness and the magnitude of the strength of evidence. 

This was seen in Chapter 4, where although AR performed very poorly as a 

discriminant, it achieved a lower Cllr than LTFD3, because the magnitude of the 
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AR LLRs overall were smaller. The same is true of LTFD2, which has the lowest 

Cllr and also the smallest magnitude LLRs33. 

 Individually, LTFD1-4 performed relatively well, but the combination of 

the formants can potentially yield even better performances. Table 5.4 below 

follows the same structure as Table 5.3.  

Table 5.4: Summary of LR-based discrimination for different LTFD1-4 combinations (100 
speakers) 

 

Comparisons % Correct Mean LLR Min LLR Max LLR EER Cllr 

LTFD1+2 SS 70.0 0.417 -2.472 2.761 
.2041 .7648 

LTFD1+2 DS 85.0 -7.477 -76.391 1.996 
LTFD2+3 SS 76.0 0.334 -7.828 3.768 

.1392 .9630 
LTFD2+3 DS 89.9 -14.173 -156.130 1.956 

LTFD1+2+3 SS 74.0 0.625 -7.632 3.676 
.1147 1.0161 

LTFD1+2+3 DS 94.3 -19.307 -155.807 3.007 
LTFD1+2+3+4 SS 84.0 1.160 -5.292 5.466 

.0414 .5411 
LTFD1+2+3+4 DS 97.4 -29.228 -162.931 2.854 

 

Four different LTFD combination scenarios are presented in Table 5.4. LTFD1+2 

performed the worst with respect to EER (.2041), but was the best in terms of 

Cllr (.7648). LTFD1+2+3+4 performed the best with respect to EER, which was 

.0414, and had the lowest Cllr (.5411). The highest proportion of correct SS and 

DS comparisons was also returned by LTFD1+2+3+4, with 84% and 97.4%, 

respectively. LTFD1+2 had the lowest proportion of correct SS and DS 

comparisons with 70% and 85%, respectively.  LTFD1+2+3 performed better 

than LTFD2+3 with higher proportions of correct DS comparisons, mean LLR, 

and EER. Overall, the combination of LTFD1+2+3+4 outperformed the other 

three combinations as defined by EER and the proportions of correct SS and DS 

comparisons.   

                                                        
33 An additional explanation for the poor Cllr values could be that the system is not optimally 
calibrated (see § 8.5.3) as was also seen in § 4.6.2.1. 
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The Tippett plots for the four LTFD1-4 combinations are presented in 

Figures 5.17-5.20 below. 

 

Figure 5.17: Tippett plot of LTFD1+2 
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Figure 5.18: Tippett plot of LTFD2+3 

 

 

Figure 5.19: Tippett plot of LTFD1+2+3 
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Figure 5.20: Tippett plot of LTFD1+2+3+4 

 

Figures 5.17-5.20 illustrate the range of LLR values calculated for the four 

LTFD1-4 scenarios. LTFD1+2+3+4 had the largest positive values  for SS LLR 

and the largest negative values for DS LLR (i.e. best strengths of evidence in 

both cases), and the best overall mean LLRs (SS = 1.16, DS = -29.228). LTFD1+2 

had the smallest LLR ranges for both SS and DS, and the weakest mean DS LLR. 
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Overall, LTFD1+2+3+4 was the best combination of formants, followed by 

LTFD1+2+3, LTFD2+3, and finally LTFD1+2. In comparison to the figures for 

LTFDs for individual formants, the four combination scenarios were able to 

significantly lower EER and improve the proportion of correct SS and DS 

comparisons. 
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5.4.3 Results of Package Length 

LTFDs were measured every 5msec in the current study; however, to 

test the discriminant power of LTFD using MVKD34, multiples of 5msec 

packages35 were created from multiple LTFD measurements to create localized 

LTFD tokens (which are equivalent to short-duration portions of the recording). 

The length of the package over which a distribution is calculated can vary. A 

package length of 0.5 seconds was chosen for the study, as it was found to yield 

the lowest EERs. The effects of package length variation can be seen in Table 5.5 

for the LTFD combination of LTFD1+2+3+4. The size of the package length is 

provided in the first column, followed by the percentage of SS and DS 

comparisons that were correct. The mean, minimum, and maximum LLRs for SS 

and DS comparisons are found in columns four through nine, while EER and Cllr 

are provided in the last two columns. 

Table 5.5:  Package length variability 

Package 
Length 

SS % 
Correct 

DS % 
Correct 

Mean 
SS 

LLR 

Mean 
DS 

LLR 

Min 
SS 

LLR 

Min DS 
LLR 

Max 
SS 

LLR 

Max 
DS 

LLR 
EER Cllr 

.25 sec 76 97.96 0.90 -35.58 -6.51 -199.61 5.64 2.93 0.043 0.775 
.5 sec 84 97.43 1.16 -29.23 -5.29 -162.93 5.47 2.85 0.041 0.541 
1 sec 88 96.73 1.34 -24.17 -4.18 -134.33 5.29 2.79 0.042 0.400 

2.5 sec 94 95.76 1.52 -17.67 -3.17 -98.41 4.99 2.88 0.043 0.281 
5 sec 96 94.82 1.60 -13.85 -2.45 -84.60 4.77 2.90 0.042 0.239 

10 sec 98 92.78 1.55 -9.27 -2.59 -62.94 4.41 2.68 0.056 0.257 

 

The results in Table 5.5 suggest that package length affects the discriminant 

performance of LTFD. An increase in package length corresponds to an 

improvement in correct SS comparisons and Cllr, while there is a decrease in 

                                                        
34 LTFDs in their raw form readily lend themselves to a UBM-GMM algorithm for calculating 
LRs. However, in order to test the MVKD formula, LTFDs were put into packages, as the MVKD 
formula is not equipped to handle streams of data.  
35 Package length was also used by Moos (2010) to determine stability within LTFD over 
varying quantities of data. The packages are used in a similar way here, but are evaluated in 
terms of their validity. 
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correct DS comparisons. In general, EER improves with the decrease in package 

length; however, EER appears to have a threshold around 0.5 seconds, above 

which it no longer improves. 

It is important to note that these results apply only to the given study, 

where the total duration of material per speaker was around 50 seconds.  It 

could be the case that package length has different effects on speech samples 

longer or shorter than the 50 seconds used in the current study. However, this 

analysis serves as a starting point for further investigation into the effects of 

variability of package length and the overall length of speech samples on LTFD 

results. 

5.5 Discussion  

The following section considers the discriminant value of higher formants and 

lower formants, and also compares the results from the present study with 

those from previous studies that used GMM-UBM-based LR calculations (Becker 

et al., 2008; French et al. 2012). 

5.5.1 Discriminant Value of Higher Formants 

The results from individual LTFD LRs revealed that LTFD3 and LTFD4 

performed better than the lower formants, LTFD1 and LTFD2, in discriminating 

between speakers. These results suggest that the higher formants carry more 

speaker-discriminatory information than the lower formants (also seen in 

Jessen, 1997; McDougall, 2004; Moos, 2010; Simpson, 2008; Clermont et al., 

2008; Hughes, 2013). Table 5.6 provides an overview of previous studies 



173 

 

investigating the discriminant ability of formants where F3 (a higher formant) 

was also found to outperform lower formants (F1 and F2). 

Table 5.6:  Overview of discriminant formant studies where F3 performs best 

 
 
 The explanation for the better performance of higher formants than 

lower formants (as seen in this study, and those listed in Table 5.6) can be 

obtained by recourse to phonetic theory. The first and second formants are 

responsible for encoding phonetic content (Ladefoged, 2006), where (lower) 

frequencies are related in large part to tongue position: the first formant 

correlates inversely with tongue height and the second formant is associated 

with tongue frontness/backness (Clark and Yallop, 1990, p. 268). The range of 

F1 and F2 values a speaker produces will be relatively constrained by the size 

and shape of his/her vocal tract, while the given configuration of a speaker’s 

vocal tract will determine its F1 and F2 values. In general, the lower formants 

(i.e. F1 and F2) do not encode speaker-specific information; rather, they are 

responsible for conveying phonetic content.  

 Contrastively, higher formants (specifically F3 and F4) have been 

identified as encoding speaker-specific information, which makes sense given 

that they are less affected by behavioral and physiological variation than are 

lower formants (McDougall, 2004). This is because F3 and F4 are associated 

Study Data 
Formants 

Considered 
Measurements 

Most 
Discriminant 

Jessen (1997) German; 20 speakers F1-3 Peaks in spectra F3 

McDougall (2004) 
Australian English; 5 

speakers 
F1-3 Dynamic F3 

Moos (2010) German; 71 speakers F1-3 LTFD F3 
Simpson (2008) 
and Clermont et 

al. (2008) 

British English; 25 
speakers 

F1-3 
temporal 

midpoint of 
formant 

F3 

Hughes (2013) 
British English; 97 

speakers 
F1-3 Dynamic F3 
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with the resonances in the smaller cavities of the vocal tract, which allow for 

less intra-speaker variation (i.e. smaller cavities offer a smaller space in which 

resonances are produced; Peterson, 1959). However, the inter-speaker 

variation of F3 and F4 is limited with respect to variation in the size of the vocal 

tract (which does not show a wide range of variation; Xue and Hao, 2006). It is 

important to note that Stevens and French (2012) have shown F3 to be 

correlated in part to voice qualities that involve the backing of the tongue body, 

an articulatory setting which was adopted by the majority of speakers in the 

accent group they studied (SSBE speakers). The same was also found for 

speakers of American English, where post-vocalic rhoticity results in the 

lowering of F3 (Alwan et al., 1997). This means that although F3 is in part 

responsible for differences in voice quality, which is to a large extent speaker-

specific, to some degree F3 can also encode accent information, specifically that 

associated with tongue-body orientation (e.g. retracted tongue-body and a 

pharyngealized voice quality; Laver, 1994). 

To this extent, the suggestion that higher formants carry more speaker-

discriminant information than lower ones is borne out in the current research, 

and provides an argument in support of the good performance of LTFD3 and 

LTFD4 in the present study. 

5.5.2 Comparison of LTFD, MFCC, MVKD, and GMM-UBM Results 

The results presented in the current study were calculated using the MVKD 

formula. However, GMM-UBM has also been used on the same data (French et 

al. 2012), and LTFD on German data (Becker et al., 2008). The MFCC results 

(French et al., 2012) and the LR results from French et al. (2012) and Becker et 
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al. (2008) for LTFD are compared (Table 5.7) to the results found in the present 

study. 

Table 5.7: Summary of LR-based discrimination for LTFD and MFCC in the current study and 
competing studies 

 
 LTFD1+LTFD2+LTFD3 LTFD1+LTFD2+LTFD3+LTFD4 MFCC 

 SS DS EER SS DS EER SS DS EER 

Current 
study 

74% 94.3% .1147 84% 97.4% .0414 - - - 

French et 
al. (2012) 

- - - 94% 97.4% - 100% 95% - 

Becker et 
al. (2008) 

- - .053 - - - - - - 

 

The LTFD results from all three studies are generally similar36 regardless of 

whether GMM-UBM or MVKD was used. However, given that French et al. 

(2012) and the current study are based on the same recordings, it would be 

expected that SS comparison results were more similar than they are (94% to 

84%, respectively). This could suggest that for LTFD it is preferable to use 

GMM-UBM over MVKD. However, it is important to note that 100 SS 

comparisons were made by French et al. (2012), whereas the current study only 

conducted 50 SS comparisons. Therefore, it is plausible that this 10% difference 

could be due in part to the disparity in sample size (10% is equivalent to five SS 

comparisons). 

The tendency (albeit a small one) is for LTFD to miss SS pairs, and for 

MFCC to mistake DS pairs for SS pairs. In view of this, it could be argued that in 

the context of security, where investigators are working to put together a list of 

potential suspects, MFCCs would be the preferred analysis. This is because 

MFCCs are more likely to include additional suspects (despite their innocence) 

rather than miss them entirely. Additionally, MFCCs tend to over-estimate 

                                                        
36 Becker et al. (2008) also included results using bandwidths. However, those results are not 
presented here. 
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similarity when comparing non-similar speaker pairings. In a judicial context, 

the opposite could be argued: LTFD analysis should be preferred, insofar as it is 

less likely to result in innocent suspects being misidentified as criminals. This is 

because LTFD has the tendency to be under-sensitive when it comes to 

identifying a guilty suspect as the criminal (by making judgments of non-

similarity when the samples are in fact similar by virtue of having been spoken 

by the same talker). 

5.6 Conclusion 

Overall, the results presented in this chapter suggest that LTFD is a good 

speaker discriminant, despite all LTFDs having variance ratios that imply intra-

speaker variation that is higher than inter-speaker variation. The combinations 

of LTFD1-4 in § 5.4.2 achieved higher levels of discrimination than single 

LTFDs. The best combination, LTFD1+2+3+4, had an EER of only 0.0414, which 

is extremely low compared to those found for AR in Chapter 4. Following the 

results of the survey reported in Chapter 3, it appears that experts were correct 

in identifying formants (in one form or another; e.g. LTFD, or for individual 

phonemes) as one of the most useful speaker discriminants. 

A known limitation of LTFD results from the study by Moos (2010), 

where the values of LTFD means were higher in read speech than spontaneous 

speech. It appears that speaking style can have a large impact on LTFD results.  

It is important to consider in casework whether there is enough material 

available to work with, and whether the material in the suspect and criminal 

recordings is comparable, before carrying out an LTFD analysis. 
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The most attractive aspect of LTFD may not be in its successful results, 

but in the fact that LTFD is not correlated with a number of other parameters 

(Moos 2010). Correlation is often a challenge when vowels are analyzed 

individually and later there is a desire to combine results from those multiple 

vowels. This often results in a scenario where certain vowels are inevitably 

correlated, and following  naïve Bayes” (the combination of evidence through 

the multiplication of individual LRs only when pieces of evidence are mutually 

exclusive; Kononenko, 1990) they cannot be considered together as evidence. A 

simple solution to this problem is to average across all vowel phonemes to 

produce a LTFD. The only drawback to this lies in the high level of 

generalization that is entailed when all vowels are averaged, meaning that 

idiosyncrasies in individual phonemes may be overlooked. It appears that both 

LTFD and MFCC analysis can provide insights into the vocal tract; however, 

under an LR framework only one of these vocal tract parameters (LTFD or 

MFCC) would be combined with other pieces of speech evidence into an overall 

LR (owing to the strong correlations between LTFD and MFCC; French et al., 

2012). For this reason, unless a single phoneme can yield more promising LR 

results for different populations, these results suggest that LTFD should be 

considered over individual vowel analysis under the LR framework. 
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Chapter 6  Long-Term Fundamental 
Frequency 

6.1 Introduction 

Long-term fundamental frequency (F0) is a commonly-used feature in forensic 

speaker comparisons. Clark and Yallop (2001, p. 332) define fundamental 

frequency as  the number of times per second that the vocal folds complete a 

cycle of vibration.” Long-term fundamental frequency is the measure of 

fundamental frequency over longer segments of speech, instead of smaller 

intervals (e.g. a phoneme, a word). Clark and Yallop further explain that F0 is 

 controlled by the muscular forces determining vocal fold settings and tensions 

in the larynx, and by the aerodynamic forces of the respiratory system which 

drive the larynx and provide the source of energy for phonation itself” (Clark 

and Yallop, 2001, p. 333).  Speakers are known to differ from one another in the 

distribution of spectral energy (of F0) within their speech, due largely to 

anatomical reasons and the way in which individuals manage their 

phonatory/vocal tract settings (Clark and Yallop, 2001). For this reason, F0 is 

commonly analyzed in forensic speaker comparisons, with the aim of 

identifying those speaker-specific differences found in vocal fold vibrations and 

phonatory and other vocal settings. The survey completed by expert forensic 

phoneticians discussed in Chapter 3 reports that all experts considered F0 in 

casework. Alongside voice quality, F0 was also claimed to be the most useful 

speaker discriminant by experts. The most commonly-measured aspects of F0 

were mean and standard deviation (§ 3.9.1.2). 
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 Despite the popularity of F0, the parameter is not immune to exogenous 

factors such as emotion, disguise, alcohol, drugs, telephone transmission, and 

recording codecs (Braun, 1995; Gold, 2009; Künzel, 2001; Papp, 2008). It is 

already highly variable within speakers and the presence of these factors makes 

it even more so. Regardless of this, however, the experts’ expectations remain 

that it is useful in discriminating between speakers. An example of F0 playing a 

key role in a forensic case is outlined in Nolan (1983, p. 124).  The expectation 

of F0 being a good speaker discriminant may stem from the view that it is  to 

some extent anatomically determined” (Hudson et al.  2007  p. 1809). On a 

positive note, F0 has been shown to be rather robust to background noise and is 

not greatly affected by telephone transmission (Braun, 1995). 

 In order to evaluate experts’ expectations regarding the discriminant 

power of F0 (expressed in terms of mean and standard deviation), empirical 

testing is required on large homogeneous groups of speakers. There have been 

a number of studies examining F0 in English (Hudson et al., 2007; Graddol, 

1986; Loakes, 2006). However, only Hudson et al. (2007) provides statistics for 

a group of English speakers. There is also only one study on English that reports 

on within-speaker variability. However, this is for a set of only eight speakers of 

Australian English (Loakes, 2006). For this reason, the current chapter 

examines inter- and intra-speaker variation in F0, and considers the 

discriminant potential of F0. 

6.2 Literature Review 

Fundamental frequency has previously received a large amount of attention in 

forensic phonetic research. Kinoshita et al. (2009, p. 92) suggest that the 
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popularity of F0  stems from promising results in early speaker recognition 

research” (such as the work by Atal (1972)), as well as F0 fitting three of 

Nolan’s standards for good forensic speaker comparison features  its 

robustness, measurability, and availability (Nolan, 1983). This section brings 

together relevant F0 literature, and divides it into two parts. The first part 

considers F0 in general as a population statistic and a speaker discriminant in 

forensic phonetics, and the second examines exogenous factors that can affect 

F0 and its measurement. 

6.2.1 F0 as a Speaker Discriminant in Forensic Phonetics  

Research on long-term F0 has resulted in a number of published statistics that 

are often cited as reference data, especially in relation to forensic speaker 

comparison casework and research. Fundamental frequency statistics for male 

and female speakers in both read and spontaneous speech, and across multiple 

languages, are provided in Traunmüller and Eriksson (1995). Many new studies 

have been conducted since Traunmüller and Eriksson (1995). The majority of 

those that have had forensic motivations have specifically analyzed F0 in 

spontaneous speech, and among larger and/or more homogeneous groups of 

speakers. 

Rose (2003) reports long-term F0 measurements for non-

contemporaneous read speech (recordings separated by approximately one 

year), produced by six male speakers of Australian English. The six speakers 

had a mean F0 in the first recording of 113.6Hz (range: 101.9-124.8Hz) and a 

mean standard deviation of 21.7Hz (range: 15.24-30.5Hz). The second 

recording had a mean F0 of 114.5 Hz (range: 101.4-127.6Hz) and a mean 
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standard deviation of 17.4Hz (range: 14.3-19.2Hz). Loakes (2006) also presents 

F0 values for male speakers of Australian English. Measurements of F0 were 

taken at the midpoints of vowels in eight-minute recordings. The eight speakers 

had a mean F0 of 105.2Hz, a median F0 of 103.1Hz, a mode F0 of 107Hz, and a 

mean standard deviation of 16.4Hz. The F0 values for spontaneous speech in 

Loakes (2006) were lower than those reported by Rose (2003). However, read 

speech tends to elicit higher F0 values than spontaneous speech (Loakes, 2006).  

Lindh (2006) reports long-term F0 values for 109 young male Swedish 

speakers taken from short samples of spontaneous speech. The male speakers, 

aged 20-30, had a mean F0 of  120.8Hz, a median F0 of 115.8Hz, and an average 

alternative baseline F0 of 86.3Hz. The alternative baseline is the value (in Hz) 

that falls 7.64% below the mean F0 (approximately 1.43 standard deviations; 

see Lindh (2006) for more on alternative baseline). These F0 values are higher 

than those found for Australian English. Rose (2002) suggests that F0 values 

may be language-specific. The findings presented by Lindh (2006) also indicate 

that collecting F0 statistics is necessary for different languages and perhaps 

even different dialects/accents in order to understand the significance of 

specific F0 measurements in forensic casework. 

The study most relevant to the research reported in the current chapter 

is that by Hudson et al. (2007), which investigates long-term F0 in the speech of 

100 male speakers of British English drawn from the DyViS database. The 

authors use Task 1 of DyViS, where individuals are taking part in a simulated 

police interview. Three to five minutes of spontaneous speech per speaker were 

analyzed after all background noises were removed. A Praat script was used to 

extract mean, median, and mode F0 for each speaker. The aim of the research 
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was to gain an understanding of the distribution of F0 in a large homogeneous 

group of English speakers primarily for forensic casework. Hudson et al. (2007) 

report a group mean F0, median F0, and mode F0 of 102.2, 106, and 105 Hz 

respectively. The study provides the population results in a format that is useful 

for interpreting data with respect to between-speaker variation. However, it 

does not offer any analysis of within-speaker variation. Under a numerical LR 

framework it is necessary to provide an analysis of intra-speaker variation in 

addition to the more commonly-studied inter-speaker variation. As such, 

Hudson et al. (2007) cannot attach a numerical value to the level of 

discrimination that can be achieved using only F0 as a discriminant. 

The studies detailed above have reported average F0 values for groups 

of speakers, while ignoring individual speaker variation (aside from Loakes, 

2006 and Rose, 2003, but at a very limited level). Kinoshita (2005) was the first 

to investigate intra- and inter-speaker variation in F0 in conjunction with the 

discriminant power of F0 on a large scale. Kinoshita provides long-term F0 

statistics derived from non-contemporaneous samples of spontaneous speech 

for 90 male speakers of Japanese, reporting a mean F0 of 135.7Hz and a 

standard deviation of 26.4Hz. Likelihood ratios were calculated using Lindley’s 

(1977) formula and synthetic (i.e. invented) criminal and suspect F0s (both 

mean and SD) were created. The 90 male speakers acted as the reference 

population.  The results presented had a small range of LR estimates, and were 

rather close to unity (i.e. not supporting a preference for one hypothesis or the 

other). Kinoshita (2005) therefore suggested that long-term F0 is not a very 

strong speaker discriminant and that it contributes very low strength of 

evidence. 
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6.2.2 Effects of Exogenous Factors on F0 

Intra-speaker variation is caused by numerous factors, such as 

intoxication, emotion, vocal effort, disguise, and recording/transmission 

technology, to varying extents (Braun, 1995; Gold, 2009; Junqua, 1996; Künzel, 

2001; Liénard and Di Benedetto, 1999; Papp, 2009; Zetterholm, 2006). F0 has 

been shown not to be as robust as previously believed, and it is sometimes the 

case in forensic cases that F0 measurements are not robust to the effects of 

these exogenous factors (Peter French, p.c.). 

Braun (1995) draws attention to a number of factors known to affect F0 

and which may have some relevance to forensic situations. An exhaustive list of 

known effects on F0 is presented with relation to technical, physiological, and 

psychological factors. She gives, as examples of technical factors, tape speed, 

electronic voice changers/disguise (Hollien and Michel, 1968; Künzel, 1987), 

and sample size (French, 1990; Horii, 1975; Mead, 1974; Steffan-Battog et al., 

1970). Physiological factors affecting F0 include speaker race (Hudson and 

Hollbrook, 1981), age, a history of smoking (Braun, 1994; Gilbert and Weismer, 

1974; Murphy and Doyle, 1987; Sorensen and Horii, 1982), alcohol 

consumption (Klingholz et, al. 1988; Künzel et al., 1992; Pisoni and Martin, 

1989; Sobell et al., 1982), testosterone drugs and anabolic steroids (Bauer, 

1963; Berendes, 1962; Damasté, 1964; 1967), removal of cysts/nodules/polyps 

(Bouchayer and Cornut, 1992), surgical stripping of the vocal folds after 

edema/tonsillectomy/thyroidectomy (Ardnt, 1963; Fritzell et al., 1982; 

Keilmann and Hülse, 1992), shortening of vocal folds (Oats and Dacakis, 1983), 

and lingual block (e.g. use of anesthesia; Hardcastle, 1975). Finally, Braun 

(1995) identifies a number of psychological factors known to affect F0, which 
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are emotions (sorrow, anger, fear; Williams and Stevens, 1972), stress (Hecker 

et al., 1968, Scherer, 1977), vocal fatigue (Novak et al., 1991), depression 

(Darby and Hollien, 1977; Hollien 1980; Scherer et al., 1976), schizophrenia 

(Hollien, 1980; Saxman and Burk, 1968), time of day (Garrett and Healey, 

1987), and background noise level (Dieroff and Siegert, 1966; Lombard, 1911; 

Schultz-Coulon, 1975; Schultz-Coulon and Fues, 1976). These extensive lists 

detailed by Braun (1995) pose problems that FSC experts are confronted with 

when analyzing F0. Many other studies have been carried out since Braun 

(1995) to examine the effects of external factors on F0. Those studies that are 

most relevant to casework are detailed below. 

Liénard and Di Benedetto (1999) examined the effects of vocal effort on 

F0. They looked at 12 French vowels spoken in isolation by ten speakers (five 

males and five females). Vowels were repeated multiple times to an 

experimenter who stood at varying distances in the room from the speaker 

(close, normal, and far). The distance at which the experimenter stood relative 

to the speaker was intended to induce change in the vocal effort that the 

speaker assumed would be required for the experimenter to hear the speaker 

clearly. Liénard and Di Benedetto (1999) found F0 to increase by around 5Hz.  

Voice disguise is another common cause of variation in F0. Künzel 

(2000) reports that nearly 25% of cases in Germany involve voice disguise, and 

he specifically investigated the effect of such disguise on F0. He analyzed read 

speech from 100 speakers (50 males and 50 females) where they were asked to 

adopt different voice disguises (high, low, and denasalized). Künzel showed that 

speakers were effectively and consistently able to disguise their voices using F0 

modulation, some to extreme levels. Most importantly, he notes that individuals 
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were observed applying different phonatory strategies, which caused difficulty 

in associating the change in F0 with a particular change the speaker has made in 

his/her phonatory setting. Zetterholm (2006) has also examined disguise and 

imitation of voices in relation to changes in F0 using the speech of a single 

individual (a professional impersonator), impersonating 12 different popular 

Swedish TV personalities. She found that the impersonator was able to vary his 

modal F0 voice from its normal average of 118Hz, to anywhere between 97Hz 

and 225Hz.  

The effects of recording and transmission technology on speech has 

received more attention of late, perhaps due in part to the advent of new and 

emerging technologies. This opens new avenues for potential technical effects 

on F0 and on speech in general. Gold (2009) considers one such area, by 

investigating the effects of video and voice recorders in cellular phones. Three 

different cellular phones were used in the experiment. All phones encoded the 

speech signal using an AMR or mpeg4 codec for voice and video recorders 

respectively. A change in the speakers’ F0 was found to result in differences of 

between one and five percent in mean F0, and the SD of F0 changing from 9 to 

63.6% for a single cellular phone. Overall, voice recorders (AMR codec) were 

found to make bigger changes in F0 than video recorders did. It has previously 

been shown that the GSM AMR codec (a speech-encoding codec similar to the 

AMR) has the tendency to change voiced frames into unvoiced frames, and vice 

versa, which in turn affects F0 measurements (Guillemin and Watson, 2008, p. 

216). This could be the case for the AMR codec found in cellular phones, and any 

recording devices in general that incorporate a similar-functioning codec to the 

GSM AMR. 
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Variation in F0 can be caused by numerous exogenous factors, many of 

which (those relevant to casework, at any rate) have been detailed above. The 

variability of F0 due to external factors introduces many difficulties when 

comparing recordings that have been affected by different combinations of 

exogenous factors. For this reason it is important to consider the effects of 

within- and between-speaker variation when investigating the discriminant 

potential of F0. 

6.3 Population Statistics for Fundamental Frequency 

The following section presents population statistics for F0 in a large, 

linguistically homogeneous group of 100 male speakers. These data serve as the 

first of their kind in providing detailed information on intra-speaker variation 

in F0 among individuals who speak Southern Standard British English (SSBE). 

Additionally, population data are provided for between-speaker variability in 

F0, where in the discussion it will be made apparent that the variability is 

similar to that found in Hudson et al. (2007). 

6.3.1 Methodology 

The current study uses the recordings from Task 2 of the DyViS 

database. Each recording for all 100 speakers was used in its entirety. However, 

after the editing of the files, the recordings were between 2:25 minutes and 

11:17 minutes in length, with an average of 6:21 minutes per file. Using Praat 

(version 5.1.35), multiple passes were made through the recordings to ensure 

that there was only speech remaining. The first phase consisted of the removal 

of all the portions where the interlocutor was speaking, and any silent pauses 
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with the talkers’ speech. The second phase removed all intrusive noises in the 

recordings, including background noises, laughter, coughs, and sneezes. A final 

listening phase was used to ensure that everything but the speech of the 

speaker had been properly removed from the recordings. This final phase saw 

only minor edits that typically amounted to the removal of less than one second 

of net speech per speaker. 

As the calculation of LRs requires multiple tokens per speaker, it was 

necessary for all recordings to be divided into segments in order to establish 

within-speaker variability. The amount of net speech necessary for a given F0 

token has not been previously tested. For this study I chose to segment the 

speech into 10-second intervals (see § 6.4.3 for effects of package length).  Each 

file was then annotated using a Praat text grid. The tier represented the package 

length (in seconds) according to which the speech signal was subsequently 

segmented. Starting from the beginning of each recording, intervals were 

marked out in the text grids until the end of each recording. If the final segment 

did not meet the interval length requirement, it was not included in analysis. 

Figure 6.1 depicts an example of the text grid annotations used for all 

recordings.  
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Figure 6.1: Example of a text grid annotation  

 

A Praat script (pitch_mean_results.txt; created by Henning Reetz, 2009) was 

used to extract mean F0 and standard deviation values for each interval. The 

Praat script was set to a frequency range of 50 – 300 Hz (following Hudson et al. 

2007). After reviewing the F0 Praat picture distributions (for octave jumps and 

unwanted pitch artefacts), 64 speakers were found to have reliable F0. The 

remaining 36 speakers’ F0 values contained obvious errors (e.g. octave jumps)  

and were therefore re-run using tailored ranges. The tailored ranges were 

chosen through trial and error, where the range with the least amount of errors 

was chosen as the best possible frequency range. These are detailed in Table 

6.1. 
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Table 6.1: Tailored Frequency Ranges for Selected Speakers 

Frequency Range (Hz) Speaker 

50-150 024, 026, 050, 062 
50-160 074, 081, 099 
50-200 052, 056 
55-160 007, 009, 025, 029, 036, 040, 073, 096 
55-200 045, 049, 055, 065, 075, 078, 082 
75-200 003, 015, 021, 035, 041, 058, 059, 066, 083, 092 
75-160 006, 014 

After the Praat script was re-run using tailored frequency ranges for these 

speakers, all F0 means and standard deviations were imported into Microsoft 

Excel for further analysis. There were a total of 7,447 intervals for all 100 

speakers. On average each speaker had 74 intervals. 

6.3.2 Results 

The distributions of F0 mean and standard deviation for individuals are 

presented in Figures 6.2 and 6.3. The y-axis represents the number of speakers 

that fall within a given range and the x-axis depicts F0 in Hertz (Hz). 
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Figure 6.2: Distribution of mean fundamental frequency 

 

There is a normal distribution in the DyViS corpus for mean F037, as illustrated 

in Figure 6.2. The mean F0 for the population is 103.6Hz, with an overall mean 

F0 range of 79.9Hz-136Hz. The standard deviation of the means is 12.77Hz. 

There are no suspected outliers (as defined in Chapter 4) in the mean F0 data. 

                                                        
37 Technically, this is the mean of the means of the means (i.e. the mean across speakers of the 
means across tokens of each speaker of the means of all the raw F0 values of each token). 
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Figure 6.3: Distribution of standard deviation in fundamental frequency 

 

There is a roughly normal distribution for the SDs of F038 in Figure 6.3, with a 

slight positive skewing due to a number of outliers. There are seven suspected 

higher outliers (22.62Hz (for two speakers), 23.25Hz, 23.29Hz, 24.82Hz, 

25.59Hz, and 27.62Hz) and one extreme outlier at 37.32Hz.  Including the 

outliers, the mean SD for the population is 15.1Hz, with a range of 7.4Hz-

37.3Hz. If those outliers are removed, the distribution becomes more normal 

and the mean SD is then 14.17Hz.  

 The cumulative distribution graphs of mean F0s and F0 SDs in Figures 

6.4 and 6.5 (respectively) show the percentiles at which a given F0 mean or SD 

falls in relation to the population. The y-axis represents the cumulative 

                                                        
38 Technically, this is the mean SD of the mean SD (i.e. the mean SD across speakers of the SDs 
across tokens of each speaker of the means of all the F0 raw values of each token). 
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proportion of the population, and the x-axis presents fundamental frequency 

(Hz). 

 

Figure 6.4: Cumulative percentages for mean fundamental frequency 

 

The curve in Figure 6.4 is characterized by a steep central section but has gentle 

gradients at both ends. The data show that the lowest 20% of the speakers have 

a mean F0 below 93Hz, while the highest 20% have an F0 above 115Hz. This 

leaves only a narrow band of 22Hz in which the remaining 60% of speakers are 

found. This is indicated by the steepest portion of the trajectory. 
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Figure 6.5: Cumulative percentages for standard deviation in fundamental frequency 

 

The first half of the curve in Figure 6.5 is characterized by a steep trajectory, 

while the second half has a fairly long gradient trajectory at the upper end. The 

lengthy gradient to the end of the trajectory is due to the suspected outliers and 

extreme outliers confirmed above in the current section. Observing the spread 

of the SDs, the lowest 20% of speakers have F0 SDs below 12Hz, and the highest 

20% have F0 SDs above 17.5Hz. This leaves a remarkably narrow band of 5.5Hz 

in which the majority of speakers fall (60%). Overall, the F0 data have a 

variance ratio of 0.7152, which indicates that there is more variation occurring 

within speakers than between them. 

6.3.3 Discussion 

The results for the present study are very similar to those reported by 

Hudson et al. (2007), which used Task 1 of DyViS. The difference in the two 
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group means is only 2.4Hz. Results from the present study are also similar to 

those presented in Loakes (2006), who gave a mean F0 of 105.2Hz for the 

spontaneous speech of Australian English-speaking males. For non-English 

languages the results presented in § 6.3 are somewhat dissimilar in that both 

Swedish (Lindh, 2006) and German (Künzel, 1989) report higher mean F0s at 

115.8Hz and 120.8Hz, respectively. 

The lower mean F0 values found for SSBE compared to those found for 

other languages could in fact be a result of F0 being language-specific, as 

suggested by Rose (2002). However, it could potentially be caused by the fact 

that numerous speakers in the DyViS database have creaky voice qualities 

(Hudson et al., 2007), and the creaky voice qualities of speakers were included 

in the current study. This is because the F0 of speakers who use creaky 

phonations a lot tend to result in bimodal distributions, with the first peak 

representing the creaky voice quality and the second peak representing modal 

phonation. In order to calculate a mean F0 for a speaker the two phonation 

types are averaged, which thus results in a lower mean F0 (Hudson et al., 2007). 

As such, it is most likely the case that, as pointed out in Hudson et al. (2007), 

speaker’s modes did not correspond to their means. For this reason it would be 

ideal to find a more accurate way of representing the mean F0 of creaky-voiced 

individuals. Overall, the results also suggest that mean F0 and SD are perhaps 

not the best measures for those speakers with intermittently-present creaky 

voice. 
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6.4 Likelihood Ratios 

The discriminant results for F0 are presented in the following section. The first 

part provides LR results for F0, and the second part considers the effects of 

package length on LR results for F0. 

6.4.1 Methodology 

As seen in § 4.6.1, likelihood ratios were calculated using a MatLab 

implementation of Aitken and Lucy’s (2004) Multivariate Kernel-Density 

(MVKD) formula (Morrison, 2007). An intrinsic methodology was used, 

whereby the test and the reference speakers came from the same population of 

100 speakers. Speakers 1-50 were used as the test speakers, while speakers 51-

100 served as the reference speakers. Mean F0 and SD parameters were both 

used for each token spoken by a given individual in the calculation of the LRs.  

Performance of the system was assessed in terms of both the magnitude of LRs 

(Champod and Evett, 2000) and system validity (Cllr and EER). 

6.4.2 Results for F0 

The results for the calculation of LRs for F0 are summarized in Table 6.2. 

The second row contains the results from same-speaker (SS) comparisons and 

the third row contains the different-speaker (DS) comparison results. The 

second column indicates the percentage of comparisons in which speakers were 

correctly identified, whereby a log likelihood ratio (LLR) above zero was correct 

for a SS comparison and an LLR of less than zero was a correct judgment for DS 

comparisons. The mean LLR is found in the third column, followed by the 

minimum and maximum LLRs. The final two columns present the performance 

of the system in terms of EER and Cllr, respectively. 
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Table 6.2: Summary of LR-based discrimination for F0 (100 speakers) 

Comparison % Correct Mean LLR Min LLR Max LLR EER Cllr 

10 sec SS 92.0 0.958 -3.404 1.936 
0.0849 0.4547 

10 sec DS 89.9 -24.204 -269.159 1.906 
 

Table 6.2 shows that SS comparisons slightly outperform DS comparisons in the 

percentage of correct judgments. The mean LLR for DS offers very strong 

evidence to support the defense hypothesis (Hd; Champod and Evett, 2000), 

while the mean LLR for SS only offers limited evidence to support the 

prosecution hypothesis (Hp). Even the Max LLR for SS does not reach a strength 

of evidence of 2 (instead, only moderate evidence to support Hp is indicated by 

the value of 1.936). The EER for the system is higher than that found for a 

combined LTFD system in Chapter 5 (0.0414; see Table 5.4), but is significantly 

better than that found for AR in Chapter 4 (0.334; see Table 4.7). The Cllr for F0 

as a system is generally better than the Cllrs achieved in Chapters 4 and 5 for 

AR and LTFD. A Cllr closer to zero would nonetheless be desirable.  

 The Tippett plot in Figure 6.6 offers a visual measure of the performance 

of F0 as a discriminant feature. 
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Figure 6.6: Tippett plot of fundamental frequency 

 

Figure 6.6 shows that there is a narrow range in LLR for SS and that most LLRs 

for SS are relatively similar. The DS comparisons have a wider spread of LLRs. It 

is also clear that DS comparisons can achieve very large LLRs, which offers a 

high strength of evidence.   

6.4.3 Results of Package Length 

 In order to establish variability within a speaker under an LR 

framework, multiple tokens of a speech parameter of an individual are needed 

for analysis. This involves dividing the recording into multiple sections (or 

tokens). The most efficacious token length (or referred to here as package 

length) has not been previously established. Therefore, a package length of 10 

seconds was chosen for the study as it was found to yield the lowest EER. 

However, it is possible to vary the size of the package length (similar to that 

seen in Chapter 5). The effects of package length variation can be seen in Table 
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6.3 for F0. The table has the same formatting as that of Table 6.2, although Table 

6.3 is expanded to include additional rows containing the various package 

lengths (5, 10, 15, and 20 seconds).  

Table 6.3: F0 package length variability for LR results 

Comparison % Correct Mean LLR Min LLR Max LLR EER Cllr 

5 sec SS 88.0 0.868 -5.176 2.030 
0.1010 0.5634 

5 sec DS 91.1 -29.879 -308.588 2.031 

10 sec SS 92.0 0.958 -3.404 1.936 
0.0849 0.4547 

10 sec DS 89.9 -24.204 -269.159 1.906 

15 sec SS 92.0 0.970 -2.526 1.999 
0.1016 0.4407 

15 sec DS 89.0 -20.964 -233.785 1.809 

20 sec SS 92.0 0.960 -2.536 1.880 
0.0967 0.4383 

20 sec DS 88.7 -18.620 -206.961 1.717 

 

The results in Table 6.3 suggest that package length affects the discriminant 

performance of F0. However, the increase of package length does not appear to 

be linearly correlated with the overall system performance in terms of EER. For 

Cllr, there does appear to be a direct relationship between the increase in 

package length and the improvement in Cllr. 

 Effects of package length can also be considered from inspection of the 

values shown in Table 6.4, which displays the results for mean F0s, F0 range, 

standard deviations (SD), and range of SDs across the four different package 

lengths.  

Table 6.4: Fundamental frequency across different package lengths 

Package 
Length 

Mean of Means 
(Hz) 

Range of Means 
(Hz) 

Mean of SDs 
(Hz) 

Range of SDs 
(Hz) 

5 sec 103.2 79.7-136.1 14.3 6.9-36.2 

10 sec 103.6 79.9-136.0 15.1 7.4-37.3 

15 sec 103.3 79.8-136.2 15.4 7.6-37.6 

20 sec 103.2 79.9-136.1 15.5 7.8-37.9 
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Table 6.4 shows that there is relatively little difference between F0 results as a 

function of the different package lengths. The biggest difference found in the 

results is in the mean of SDs for 5 seconds (14.3Hz), compared to the mean of 

SDs for the larger package lengths (15.1-15.5Hz). The 5-second package length 

was also found to have the biggest difference in Cllr (Table 6.3) with the longer 

package lengths. On the basis of these results, it could be argued that choosing a 

package length of 10 seconds or above will give an accurate representation of 

the data.  

 It is important to note that like the package length results found for 

LTFD in Chapter 5, the results presented in this section relate specifically to the 

present recordings, in which the total length of material per speaker was 

around six minutes. It could again be the case that package length affects longer 

or shorter speech samples differently. However, this analysis serves as a 

starting point for further investigation into this issue. 

6.5 Discussion 

The results presented in the present study provide a starting point for further 

investigation into the discriminant value of F0. However, the study was limited 

by the highly controlled nature of the recordings, which were relatively free 

from the influences of the exogenous factors that are known to affect F0 values, 

as detailed in § 6.2.2. More studies which incorporate those factors are needed.  

 The results of the present study were produced using only mean and 

standard deviation as discriminant parameters of F0. This choice was dictated 

by opinion given in the survey completed by expert forensic phoneticians. The 

survey also reported that it is not uncommon for experts to use other measures 
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of F0 in their casework. Kinoshita et al. (2009) showed promising results when 

using parameters that described the distribution of F0 more precisely (skew, 

kurtosis, modal F0, and modal density). This points to a need to reassess the 

measures commonly used in relation to F0. Different measures of F0 could lead 

to more detailed descriptions of F0 distributions that also achieve a higher 

strength of evidence.  

6.6 Conclusion 

The results presented in this chapter suggest that F0 is a moderately good 

speaker discriminant overall, and has promise for demonstrating that two 

voices have come from the same speaker (rather than different speakers) in the 

same recording (achieving an EER of 0.0849). However, it is not known how 

well F0 can discriminate between individuals when same-speaker evidence 

comes from different recordings. Previous literature would suggest that its 

discriminant potential will decrease when same-speaker evidence from 

different recordings is introduced (see § 6.2.2). F0 as a speaker discriminant 

showed more variation occurring within speakers than between speakers. 

However, F0 does show there to be more variation present between speakers 

than do AR (Chapter 4) and individual LTFDs (Chapter 5).  

It is difficult to ascertain whether experts responding to the survey were 

correct in identifying F0 as a good speaker discriminant. Results suggest that 

they are correct in that F0 does well discriminating same speakers that come 

from the same recording, but it is uncertain whether that result will hold true 

when same-speaker comparisons involve different recording sessions or 

introduce degrading factors (e.g. disguise, intoxication, background noise). The 
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good recording conditions and high audio quality used for the current study are 

not reflective of those found in real casework.  

Owing to the many exogenous factors detailed in § 6.2.2, the mere 

comparison of mean F0s and SDs is unlikely to advance the methods used for 

the speaker comparison task dramatically on its own. However, as always, 

exceptions are to be made for those individuals who lie towards the margins of 

the distribution curve or who can be classed as outliers, and the case remains 

for using F0 in conjunction with other speech parameters. 
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Chapter 7  Click Rate  

7.1 Introduction  

The survey results presented in Chapter 3 indicated that experts examine many 

non-linguistic features as part of their analysis in FSCs. Those non-linguistic 

features can include patterns of audible breathing, laughter, throat-clearing, 

tongue clicking, and both filled and silent hesitation phenomena. In respect of 

tongue clicking, Chapter 3 shows that 57% of the practitioners questioned 

examined recordings for the presence of velaric ingressive stops (i.e. clicks), 

and 18% considered them to be a highly discriminant feature.  

 Research into the discriminant ability of parameters in forensic speech 

science has focused primarily on vowels, and to some extent consonants and 

fundamental frequency (Gold and Hughes, 2013). However, there remains a gap 

in the literature pertaining to the discriminant ability of non-linguistic 

parameters (e.g. clicks). 

 This chapter investigates the speaker discriminant power of clicks, 

which are defined here as a linguistic parameter rather than a non-linguistic 

parameter (reported in Chapter 3 as non-linguistic). This is because the clicks 

analyzed in this chapter are used by speakers in a discursive manner that can be 

classified as conveying linguistic meaning (i.e. they are used here as a discourse 

marker in conversation). The first part of this chapter investigates the 

discriminant power of clicks by analyzing population statistics for click rate, 

and the second portion analyzes the robustness of clicks in relation to 

accommodation effects. The final limitation section in this chapter is devoted 

entirely to discussion of calculating likelihood ratios for clicks, and the 
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difficulties in attributing a numerical strength of evidence to measure discrete 

data. 

7.2 Literature Review 

Ladefoged (2006, p. 292) defines a click as  a stop made with an ingressive 

velaric airstream, such as Zulu [∥ .” Laver (1994, p. 174) explains further that   a 

major ingredient in the production of the airstream [for clicks] is a complete 

closure made by the back of the tongue against the velum. A second closure is 

also made, further forward in the mouth, either by the tip, blade or front of the 

tongue  or by the lips.” For a lingual click, there is a closure made by the back of 

the tongue coming into contact with the soft palate, and the front portion of the 

tongue is then drawn downwards. This process increases the volume of the 

space occupied by the air trapped in between the two closures  rarefying the 

intra-oral air-pressure. When the more forward of the two closures is released, 

the outside air at atmospheric pressure flows in to fill the partial vacuum” 

(Laver 1994, p. 174). It is at this point that a click is realized. Figure 7.1 below 

illustrates the actions of the vocal organs involved in the production of a click 

sound. 
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Figure 7.1:)  The action of the vocal organs in producing a velaric ingressive voiceless dental 
click  k     (a) first stage  velic and anterior closure; (b) second stage  expansion of the enclosed 

oral space; (c) third stage  release of the anterior closure.” (Laver, 1994, p. 176) 
 

Figure 7.1 provides an illustration of the process involved for the vocal organs 

in the production of a dental click. This is just one of six possible places of 

articulation for clicks as recognized by the International Phonetic Association 

(IPA). The five different click types are provided in the figure below, which is an 

extract from the IPA chart. 

 

Figure 7.2: IPA Chart - Clicks Excerpt 
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The six different clicks presented in Figure 7.2 above are most commonly 

recognized for their existence in a number of African languages (Ladefoged 

2006, p. 139) and extensive research has been carried out to document clicks in 

those languages (e.g. Greenberg, 1950; Herbert, 1990; Jessen and Roux, 2002). 

In African click languages, such as in Xhosa, Zulu, Sandawe, Hadzapi, Bushman, 

Nama, !Xóõ, and !Xũ clicks are used phonemically (Laver, 1994, p. 174). Clicks 

are also found in English, but unlike those in African languages they are not 

used phonemically. According to literature on clicks found in English, they have 

typically been described as functioning on only a paralinguistic level to denote 

the attitudes, intentions (e.g. encouraging a horse to move), and emotional 

states of a speaker.  Previous research suggests that certain clicks are used to 

convey such things as annoyance (Abercrombie, 1967, p. 31; Ball, 1989, p. 10), 

sympathy (Gimson, 1970, p. 34), and disapproval (Crystal, 1987, p.  126). There 

is also evidence to suggest that the phonetic properties of clicks can vary 

depending on their functions in English (Gimson, 1970, p. 34).  

Wright (2005; 2007; 2011a; 2011b) presents an extensive amount of 

research focused on clicks from a non-paralinguistic point of view, specifically 

from a conversation analyst’s view. Wright proposes three different 

classifications of click used in English conversation to index different meanings. 

The first type are clicks that occur in the onset of a new sequence, the second 

are clicks used in the onset of a new and disjunctive sequence, and the third 

type are clicks produced in the  middle of a sequence of talk  when the speaker 

is engaged in the activity of searching for a word” (2005  p.  176). The following 

are three examples from Wright (2005) of click types: 
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Fragment 1: Holt.SO.88.1.2/bath/ 

01: Bil:     Hello: 

02: Gor:   Hi Bill 

03: Bil:     Hi Gordy 

04: Gor:   [ʘ] uh:m (0.4) are you going tonight 

05:      (.) 

06: Bil:     mm 

07: Gor:   .hhh (0.2) would you mind giving me a lif[t 

08:                  no that’s alright 

Fragment 2: Holt.1.8/Saturday/ 

01: Les:     so he had a good inni:ngs did[n't he 

02: Mum:         [I should say so: yes 

03:       (0.2) 

04: Mum: marvellous 

05: Les:     [!]. .hhh anyway we had a very good evening o:n saturday 

06:       (0.2) 

07: Mum: Ye:s 

Fragment 3: Holt.U.88.2.2/natter/  

01  Les  .hhhh and there’s the- the natte- uhm (0.2) ʘ (0.3) !  

02: oh what's it called the natterjack's not so good now 

 

Fragment 1 is an example of a click being used to start a new sequence, as noted 

by the bilabial click in line 4.  A second type of click is used for the onset of a 

new disjunctive sequence in Fragment 2, which is illustrated by the alveolar 

click on line 5. And the final click type is found in Fragment 3, where both 
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bilabial and alveolar clicks are being used to signify the search for a word by the 

speaker in line 1. The three click types above, in combination with clicks being 

used paralinguistically (i.e. to show emotion or affect), are used in the analysis 

of click productions for this chapter. 

In investigating clicks in respect of their speaker-discriminating 

potential one can begin with the assumption that for any aspect of affect or 

interaction management there is no homological function-form relationship. 

For example, while one can signal annoyance, disapproval or sympathy by use 

of clicks, there are many other ways of signaling these states to interlocutors. 

Similarly, although clicks may be used to signal disjunction of conversational 

topic or the fact that one is having difficulty finding a word, other forms – 

semantically empty sounds or lexical expressions – can also fulfil these 

functions. In other words, there is an element of speaker choice in the selection 

of clicks over other possibilities in conveying emotive and attitudinal meaning 

as well as in respect of topic organization and conversational turn management. 

Given that this is so, one might reasonably expect there to be variability across 

speakers in terms of whether clicks or other forms are their preferred option. 

The possibility of such individual preferences provides a plausible theoretical 

motivation for the observation made by the forensic practitioners surveyed in 

Chapter 3 to the effect that clicks have high value as speaker discriminants. 

However, while the proposition is credible and is no doubt based on 

practitioners’ casework experience, it has not to date been subjected to formal, 

empirical testing. The present chapter is an attempt to establish the speaker 

discriminant value of one aspect of clicking behavior, namely frequency of 

clicking, by such testing. 
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7.3 Data 

The recordings analyzed were of 100 male speakers of SSBE aged 18-25 years 

from the Dynamic Variability in Speech (DyViS) corpus (Nolan et al., 2009). Two 

data sets were used, each of unscripted speech from a simulation of a 

forensically-relevant situation. One (Task 1) was a mock police interview. Each 

of the 100 speakers played the role of a criminal suspect and was interrogated 

by one of two project interviewers (Int2 and Int3) who played the role of a 

police officer investigating the interviewee’s supposed involvement in a crime. 

The second set of recordings (Task 2) was of the subjects telephoning an 

‘accomplice’ and explaining what had occurred in the police interview. The role 

of the accomplice in this data set was played by the same project interviewer 

(Int1) throughout. Although these were telephone conversations, the 

recordings used for analysis were made at the subjects’ end of the line  i.e. they 

were of studio rather than telephone quality. 

7.4 Methodology 

For a feature to function as a good speaker discriminant, it must meet two 

criteria: (a) it must vary (ideally quite widely) across speakers; (b) it must be 

relatively stable within the speech production practices of individual talkers. In 

this section, the methods employed to test the intra- and inter-speaker variation 

of click rates are outlined.  Task 2 recordings are used for the first portion of the 

click analysis of the current study. As mentioned above, each speaker conversed 

with a single interlocutor, Int1. 

The first two minutes of each recording were ignored so as to allow for 

speakers to settle into the interaction. All subsequent speech from each subject, 
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up to a maximum of five minutes net – i.e. after excluding long pauses and the 

speech of the interlocutor – was then extracted and divided into one-minute 

intervals (giving a combined total of 499 minutes of net speech). 99 of the 100 

speakers produced enough speech to meet the five-minute target. One speaker 

(speaker 012) fell just short of this, and the analysis was therefore based on 

analysis of just four minutes of his speech. The extracted speech was examined 

auditorily during two listening sessions in Sony Sound Forge (version 10.0; 

analysis done auditorily) and Praat (version 5.1.35; auditory and acoustic 

analysis done simultaneously) for instances of clicks. Any sounds that auditorily 

and visually resembled clicks but were not apparently produced on a velaric 

ingressive airstream were excluded from the analysis. This resulted in the 

exclusion of 293 candidate sounds that were judged to be purely percussive39. 

At the end of this process there were a total of 454 clicks left.  Each click was 

assigned to a functional category: either it functioned to convey affective 

meaning, or fulfilled one of the interactional functions identified by Wright 

(2007; 2011a; 2011b), i.e. initiating a new speaking turn, indicating topical 

disjunction, or signaling that the speaker was searching for a word.  

Illustrations of these interactional functions are provided in the following 

transcribed excerpts from the recordings (clicks are indicated by the symbol !, 

regardless of actual place of articulation): 

 

                                                        
39 Pike (1943  p. 103) says  percussors differ from initiators in several ways  in opening and 
closing they move perpendicularly to the entrance of the air chamber . . . ; they produce no 
directional air current  but merely a disturbance that starts sound waves which are modified by 
certain cavity resonators; they manifest their releasing or approaching percussive timbre only 
at the moments of the opening and closing of some passage . . .” Typical percussives are made by 
the opening and closing of the lips, the tongue making closure at the alveolar ridge, the velum 
closing, the vocal folds making a glottal closure, and the sublaminal percussive of the ‘cluck 
click’ (Ogden 2013  p. 302). The most common percussives found in the current data set were 
related to the opening and closing of the lips. 
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Initiating new speaking turn 

 Int1:  He’s a tour guide now you see 

→ S007:  ! Yeah  yeah  that’s right and 

Int1:  Bear Pub  

S011: Mhm 

Int1:  Do I know it 

→ S011: ! Um it- near Harper Passage 

Indicating topical disjunction 

Int1:  Um wha- did they trace that phone call when you were in the uh 

grotty booth 

→ S033: They asked me about it so I guess they probably have ! um but um 

as I wasn’t  as I was telling them  I didn’t go through Parkville 

Signaling word search 

Int1:  And um did you give her address 

S086: Uh yeah I did 

Int1:  Just, you know, just refresh my memory 

→ S086: Yeah, sorry on Dexter Road !  um in Dixon 

Int1:  Dixon this little village of Dixon 

7.5 Results 

Before addressing the central questions of inter- and intra-speaker variation, 

some general findings on phonetic and functional aspects of the clicks are 

presented.  
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7.5.1 Phonetic Properties of the Clicks 

The scope of the present study did not extend to a detailed analysis of 

the phonetic and acoustic properties of the clicks. However, in terms of their 

place of articulation, approximately 95% were judged to be apical. With regard 

to the passive articulator, they ranged from dental through alveolar to post-

alveolar. Through my own observation, dental clicks are characterized by a 

longer and less well-defined release phase and by a higher-frequency center of 

gravity and lower level of intensity than the other variants. At the other 

extreme, post-alveolar clicks are the highest in intensity, have a relatively short 

release and a greater concentration of energy at the lower frequencies.  Without 

wishing to prejudge the outcome of further work being undertaken on these 

data, it appears that, at this stage at least, place of articulation proved very 

difficult to classify more finely, and that no individual speaker clearly stood out 

from the others in respect of this dimension. It is supposed that because clicks 

are not used phonemically by SSBE speakers, the precise place of articulation 

for clicks does not matter to a speaker or listener when used in sequence 

management. It is rather that the presence of any form of apical click can signify 

sequence management in conversation. Place of articulation, however, does 

play an important role for those clicks used as affective markers, since place of 

articulation for clicks has been shown to signify different emotions (Ball, 1989; 

Crystal, 1987; Gimson, 1970). 

7.5.2 Functional Aspects of the Clicks 

The distributions of clicks against affective function and the three 

interactional functions are represented in Figure 7.3. 
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Figure 7.3: Distribution of click occurrences by functional category 

 

Of the 454 clicks that occur in the combined 499 minutes of speech examined, 

word search accounts for just over half of all clicks (51.32%). Taken together, 

turn initiation and disjunction signaling clicks represent a similar proportion 

(48.24%) to those used to indicate word search.  Affective use represents the 

smallest category, with only two examples (0.44%). Whilst the latter may to 

some extent be accounted for by the fact that the attitudinal stances that clicks 

are used to convey (pity, disapproval) seldom arise in the type of conversation 

represented in the DyViS recordings, it is nevertheless of interest that the least 

frequently-occurring function of clicks in these data is the one that is most 

frequently mentioned in the phonetic literature. 

7.5.3 Results: Inter-Speaker Variation 

The results of inter-speaker variation in click production are presented 

in Table 7.1, looking first at clickers versus non-clickers.  The leftmost column in 
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Table 7.1 presents the length of time over which clicks were analyzed, while the 

second and third columns represent the numbers of speakers who were found 

to be either clickers or non-clickers. A clicker is defined as a speaker who has 

been found to click at least once in the given speech sample, and a non-clicker is 

defined as a speaker who does not click at all in the given speech sample. 

Table 7.1: Number of clickers versus number of non-clickers over varying speech sample 
lengths 

 

 

As seen in Table 7.1, if one considers each sample in its entirety, the proportion 

of clickers to non-clickers is around 3:1 (75:25).  However, this proportion 

could not be arrived at by examining a shorter sample, as the number of non-

clickers decreases as sample length increases, owing to the fact that so many of 

the speakers click very infrequently.  This can be seen in Figure 7.4, in which it 

is apparent that 74% of the DyViS population clicks five times or fewer over the 

five-minute period, i.e. they have a click rate of one click per minute or less.  

Figure 7.4 displays the number of speakers on the y-axis and number of total 

clicks on the x-axis. 

length clicker non-clicker

1 minutes 39 61

2 minutes 56 44

3 minutes 67 33

4 minutes 72 28

5 minutes 75 25
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Figure 7.4: Distribution of click totals over five minutes of speech 
 

 

Approximately 50% of speakers click only once, twice or not at all.  And while 

the mean number of clicks for the group as a whole is 4.26 clicks over five 

minutes of net speech, this is highly skewed by three speakers who produce a 

very high number of clicks (24, 28, and 54). The mean number of clicks per 

speaker drops to 3.4 clicks when the three most extreme clickers are removed. 

Figure 7.5 presents the mean click rates in clicks per minute (clicks/min.), 

rather than as a cumulative number of clicks, as seen in Figure 7.4. The y-axis 

presents the number of speakers that fall within a given range and the x-axis 

depicts click rate in clicks per minute. 

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16… 23 24 25 26 27 28 29… 53 54

N
u

m
b

er
 o

f 
S

p
ea

k
er

s 

Number of Clicks 

Distribution of the Total Number of Clicks  



215 

 

 

Figure 7.5: Distribution of click rate (clicks/minute) in DyViS population 

 

There is an inevitable positive skew to the distribution of mean click rate in 

Figure 7.5. The mean click rate for the population is 0.88 clicks/min, with a 

range of 0.00 clicks/min to 10.8 clicks/min. The standard deviation of the 

means is 1.41 clicks/min. There are two suspected outliers at 3.00 clicks/min 

and 3.50 clicks/min. There are also three extreme outliers at 4.80 clicks/min, 

5.60 clicks/min, and 10.80 clicks/min. 

 The cumulative distribution graph of mean click rates in Figure 7.6 

shows the percentile at which a given click rate falls in relation to the 

population. The y-axis represents the cumulative proportion of the population, 

and the x-axis presents click rates in clicks per minute. 
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Figure 7.6: Cumulative percentages for click rate 

 

The curve in Figure 7.6 starts at 25% for those with a click rate of 0, meaning 

that 25% of the DyViS population have no clicks present in their speech. From 

the first point at 25%, the curve is characterized as having an approximately 

logarithmic growth. Figure 7.6 shows that roughly 70% of the population have 

click rates at or below 0.8 clicks/min, and only 30% have larger click rates. 

7.5.3.1 Discussion 

Clicking, as a measure, has been shown to be highly sensitive to sample 

length (see Table 7.1), and it is not possible to specify a threshold sample 

duration for determining click rate, as the sample duration is dependent upon 

frequency of clicking.  For example, to determine that someone has a click rate 

of, say, 0.2 clicks per minute, it would be necessary to have a sample five 

minutes in length, during which time the speaker clicks only once.  However, to 
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establish that someone had a click rate of, say 10 per minute, all one would need 

is one minute of speech or – indeed – less.  This assumes, of course, that the 

clicks would be evenly distributed across time. And, as will be seen in the 

section below, such an assumption of intra-speaker stability is not supported by 

the data.  For the present, however, it is noted that the low number of click 

totals for the majority of speakers makes the discrimination capacity of clicks 

difficult to establish. Nevertheless, there is potential for clicks to be a good 

discriminant for the handful of speakers who produce high click totals, if these 

speakers are relatively stable and consistent in their clicking behavior. 

7.5.4 Results: Intra-Speaker Variation within an Interaction 

The results for intra-speaker variation are presented in Figure 7.7. 

Speakers are represented on the x-axis and the click rates (clicks per minute) on 

the y-axis. A speaker’s mean click rate is represented by a black dot  and the 

vertical bars indicate the range between the minimum and maximum click rate 

they attained in any individual minute of speech. 



218 

 

 

Figure 7.7: Mean and range of click rates across all speakers 

 

It is clear from Figure 7.7 that intra-speaker stability generally increases as 

mean click rate increases, such that the higher-rate clickers have a greater 

range of variability across the individual minute blocks. Thus, even for those 

speakers for whom clicks might serve as a potentially discriminant feature, the 

clicks tend to occur in localized clusters rather than being evenly spread 

throughout the sample. This effectively means that in order to establish that 

someone has a high click rate, the analyst would need a relatively large amount 

of speech from him/her. In the forensic context, questioned recordings 

containing around one minute of net speech from the target speaker are not 

unusual. Obtaining five minutes of net speech is much less common. Thus, the 

possibility of using clicks as a discriminant feature in forensic casework, even 

for high-rate clickers, is quite limited.  
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There is a limited amount of data with which we can calculate variability. 

Nevertheless, inter-speaker variation is presented for the DyViS population. 

Caution must be exercised when interpreting the SD data. Figure 7.8 presents 

the distributions of standard deviations for the population. 

 

Figure 7.8: Distribution of standard deviation in click rate  

 

Figure 7.8 has a positively skewed distribution, like that seen for mean click 

rate in Figure 7.5. There are two suspected outliers in the population (at 1.95 

clicks/min and 2.07 clicks/min), and one extreme outlier at 5.40 clicks/min. 

The mean SD for click rate in the population is 0.69 clicks/min, with a range of 0 

clicks/min to 5.40 clicks/min. The SD of the SDs for click rate is 0.70, which is 

actually higher than the mean, indicating a large spread in click rate values. 

 The cumulative distribution graph of SD for click rate is presented in 

Figure 7.9. The y-axis shows the cumulative proportion of the population with a 

SD at a given point, and the x-axis presents click rate in clicks per minute. 
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Figure 7.9: Cumulative percentages for standard deviation in click rate 

 

The curve in Figure 7.9 is similar to the curve seen in Figure 7.6, but is slightly 

more gradient than logarithmic in its growth. The data in Figure 7.9 show that 

25% of the speakers have SDs under 0.25 clicks/min., due to the 25% of 

speakers who do not click at all in their five minutes of net speech. The variance 

ratio for click rate is 4.06, which signifies that there is more variation between 

speakers than within speakers for click rate. A variance ratio of 4.06 is the 

highest that has been achieved for any parameter in the current thesis 

(articulation rate, long-term fundamental frequency, and long-term formant 

distributions). Despite a good variance ratio, caution has to be exercised, as it 

must be remembered that there were on average only five click tokens per 

speaker. 
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7.5.4.1 Discussion 

The sporadic distribution of clicks might be accounted for by the 

clustering of click opportunities (i.e. places where clicks can be used as 

discourse markers). There is no reason to assume that the need to express the 

affective meanings and perform the interaction management functions that 

clicks can fulfill should be evenly spread across time. A more detailed analysis 

might therefore address the question of the occurrence of clicks as a proportion 

of  click opportunities”. Clustering of click opportunities can, of course, occur 

across interactions as well as within them, i.e. some types of conversation may 

well present more opportunities than others. For the present, however, another 

aspect of intra-speaker variation in clicking is examined, namely possible 

accommodation effects. 

7.5.5 Results: Intra-Speaker Variation across Different Interactions 

Accommodation, the tendency for speakers to adjust their speech 

towards that of their interlocutor, has been well documented in respect of a 

range of linguistic features (c.f. Giles, 1973; Giles and Ogay, 2007; Shepard, Giles 

and LePoire, 2001; Trudgill, 1981).   

 The click data considered so far were all drawn from the Task 2 

recordings of the DyViS database, where each of the 100 subjects conversed 

with the same interlocutor, Int1. The recorded interviews that make up the 

Task 1 recordings involved two different interlocutors, Int2 and Int3, 

conversing with the 100 subjects. The further work reported in this section was 

triggered by the informal observation that the subjects appeared to be clicking 

more frequently in the Task 1 recordings when speaking with Int2 and Int3 
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than in the Task 2 recordings when speaking with Int1. This observation 

provided the motivation to undertake two further analyses: (a) establishing 

subjects’ actual click rates in the Task 1 recordings relative to the Task 2 

recordings, and (b) examining the click rates of Int2 and Int3 relative to Int1. 

The latter was undertaken with a view to determining whether any increase in 

subjects’ clicking behavior might be accounted for by an interlocutor 

accommodation effect.  

Fifty subjects were selected at random from the Task 1 recordings, 25 

speaking with Int2 and 25 speaking with Int3.  As with the Task 2 sampling 

procedure, the first two minutes of the conversations were excluded from the 

analysis to allow for  settling-in time”. Three minutes of net speech were 

extracted for each subject for comparison with an equivalent three-minute 

sample from the Task 2 recordings. Click rates were then compared across the 

two tasks. The comparisons showed that, although there was no statistically 

significant difference between the numbers of clickers versus non-clickers 

(using a chi-squared test, where p = .7401 (Int1 to Int2) and p = .0880 (Int1 to 

Int3)), clickers did show a marked increase in click rate when speaking to Int2 

and Int3 over when speaking to Int1. The results are summarized in Table 7.2. 

The first column identifies the interlocutor, and the second and third columns 

present the mean and median click rates, respectively, for the given 

interlocutor. 
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Table 7.2: Summary of Speakers’ Mean and Median Click Rates - Int1 versus Int2 and Int3 
 

 

The increase across Int1 to Int2 is significant at the 1% level (using a Wilcoxon 

signed rank test, p = .0034 and n = 25). That between Int1 to Int3 falls just short 

of significance at this level (1%), but achieves it if one speaker whose high click 

rate (speaker 07’s click rate is 14.33 clicks/min for Task 1 and 12 clicks/min for 

Task 2) is excluded as an outlier (Wilcoxon signed rank test, p = .0076 and n = 

24). 

The actual changes – mean, minimum and maximum - for speakers are 

represented in Tables 7.3 and 7.4 (Int1 versus Int2 and Int1 versus Int3). The 

first column identifies the direction of change in click rate. The second column 

in Table 7.3 and 7.4 identifies the number of speakers with a given change in 

click rate, and columns three through five present the mean, minimum, and 

maximum changes in click rate for the group of speakers. 

 

 

interlocutor mean median

Int1 0.72 0.67

Int2 1.60 1.33

Int1 1.53 0.33

Int3 2.16 0.67

Int1* 1.00 0.33

Int3* 1.75 0.67

*denotes rates with outlier excluded
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Table 7.3: Changes in click rate across speaker - Int1 versus Int2 
 

Δ (Int2-Int1) 
Number of 
Speakers 

Mean Δ Minimum Δ Maximum Δ 

Increase 15 1.601 0.003 3.003 
Same 4 — — — 

Decrease 6 -0.334 -0.003 -0.670 

 

Table 7.4: Changes in click rate across speaker - Int1 versus Int3 
 

Δ (Int3-Int1) 
Number of 
Speakers 

Mean Δ Minimum Δ Maximum Δ 

Increase 17 1.264 -2.333 4.333 
Same 0 — — — 

Decrease 5 3.444 -0.003 -0.333 

 

In attempting to account for the increases in click rates when subjects spoke to 

Int2 and Int3, click rates for Int2 and Int3 were calculated from three randomly-

selected Task 1 recordings. The sampling procedure entailed extracting three 

minutes of net speech after the settling-in period, thus providing a total net 

sample of nine minutes for each interlocutor.  For Int1 an equivalent portion of 

post-settling-in speech was extracted from the Task 2 recordings with the same 

three subjects selected for Int2 and Int3, thereby providing a total net sample of 

18 minutes.  The mean click rates for the three interlocutors are set out in Table 

7.5. The first column identifies the interlocutor and the second column presents 

the mean click rate for the given interlocutor. 

Table 7.5: Mean click rates of the three interlocutors 
 

 

interlocutor mean click rate (clicks/minute)

Int1 1.44

Int2 3.67

Int3 4.56
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Given the click rates established for subjects from the Task 2 recordings, Int1 

might be seen as a relatively  average” clicker. Int2 and Int3, however, would be 

considered relatively high-rate clickers. In view of this, a plausible explanation 

for the increased click rates of the subjects when conversing with Int2 and Int3 

would be that they are accommodating their clicking behavior towards that of 

their interlocutors. It is, of course, entirely possible that the accommodation 

effect is bilateral and that interviewers also adjust their click rates towards 

those of the subjects. The data to test this view are not available within the 

present study, however. Nor is it possible to assess whether interviewer gender 

is a factor40; it may or may not be significant that Int1 is a young male, while 

Int2 and Int3 are young women. An alternative, or indeed additional, 

explanation of the differences might be that the Task 1 interactions offer more 

clicking opportunities, these being mock police interviews in which the subjects 

are asked questions that might well have them searching for words in 

answering. However, this would not account for the relatively high click rates of 

Int2 and Int3, and although there are currently no formal findings to present on 

this, the clear impression is that there are no obvious differences amongst click 

opportunities. 

7.6 Likelihood Ratios 

 The overriding limitation when analyzing the discriminatory power of 

clicks is the unfeasibility to calculate a numerical LR and evaluate the strength 

of evidence. The absence of an LR calculation for clicks is due entirely to the fact 

that a model does not currently exist with which it might be calculated. 

                                                        
40 Accent may also be a factor, since only one of the interlocutors was also an SSBE speaker.  
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However, there are a number of mathematical procedures that can be used to 

arrive at a numerical LR. In forensics the different procedures are selected in 

relation to the characteristics of the data distributions. Aitken and Taroni 

(2004  p. 37) state that  for any particular type of evidence the distribution of 

the characteristic [parameter] is important. This is so that it may be possible to 

determine the rarity or otherwise of any particular observation.” Therefore  it is 

important to use the model that best fits the distribution of data in order to 

represent the strength of evidence as accurately as possible. 

Clicks are a particularly complicated form of speech evidence to work 

with when used to calculate numerical LRs, as they are discrete in nature. Aside 

from DNA profiling (which works with discrete data), there is a lack of methods 

when data are discrete rather than continuous. In forensic speech science, there 

has not been any LR research that has carried out a comprehensive analysis of 

discrete data. LR research in FSS has previously focused on continuous data 

(Gold and Hughes, 2013), for which it is possible to assume normality. Once an 

assumption of normality is made   theory then allows for multivariate 

continuous data to be modeled using the means and covariances only” (Aitken 

and Gold, 2013, p. 148). However, for discrete data a description of the 

distribution as normal is not possible. 

In this particular case, where there is a desire to calculate LRs for 

clicking rate in speakers, there are two main issues to consider when seeking 

how to model the data appropriately. The first is the possibility for each 

discrete data entry (e.g. the 5-minute recording) to have multiple levels of 

response (e.g. a click count for each minute in the recording). For example, in 

the present data, multiple levels of response are represented by the multiple 
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click counts over a given amount of time. More specifically, Speaker A may have 

5 minutes of net speech, where each minute of net speech yields an individual 

count (e.g. 0,0,1,2,0).  The second issue is the correlation that exists between 

counts. Given that 25% of the population was found not to click at all over 5 

minutes of net speech, it is apparent that correlations exist between counts, and 

these must be accounted for in a model.  

The work in Aitken and Gold (2013) explores the issues and limitations 

involved in calculating LRs for discrete data. A Poisson distribution and 

bivariate Bernoulli model are proposed for evaluating clicks and any other 

discrete data that act in a similar way to clicks.  The models proposed in Aitken 

and Gold are basic models;  however  they illustrate issues that need to be 

considered in the analysis of discrete data and provide a foundation on which 

other models may be built” (Aitken and Gold  2013  p. 154). Likelihood ratios 

are provided in Aitken and Gold (2013, p. 153). However, they are based on a 

limited data set  whereby α and β (set distributions of the population) were not 

based on structural learning41 but intuitive guesses about the population 

distribution. The LR results for clicks were between 0.30 and 3.35 (i.e. giving 

very limited evidence for support)  which are small but  intuitively sensible” 

(Aitken and Gold, 2013, p. 154). More practical work is needed to further 

develop the models. However, it is hoped that further testing will also produce 

smaller LRs. Intuitively, this would align with there being a finite number of 

possible clicks produced over the course of a minute, high intra-speaker 

variation, and low inter-speaker variation. 

                                                        
41 Structural learning makes decisions based on the data at hand, and uses those data to inform 
a given model/algorithm/framework (Porwal et al., 2013) 
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Given the limited strength of evidence reported for clicks in Aitken and 

Gold (2013), the lack of models for calculating click-rate LRs may not be all that 

devastating. This is due to the general lack of capacity of click rate to 

discriminate between speakers of English. As always, exceptions are to be 

made, however, for those individuals who lie towards the margins of the 

distribution curve and who can be classified as outliers with respect to click 

rate. 

7.7 Conclusion 

While it would be dangerous to generalize beyond the variety of English 

analyzed in this study, the view of those forensic practitioners surveyed in 

Chapter 3 who considered tongue clicking to be a highly discriminant feature of 

speaker behavior is largely unsupported by the present data for young male 

speakers of SSBE. Firstly, there is insufficient variation across the majority of 

speakers analyzed for the variable to provide a reliable index of speaker 

individuality.  Secondly, even for the high-rate clickers who stand apart from 

the majority, there is within-conversation instability to the extent that one 

would need speech samples of a length seldom encountered in questioned 

forensic recordings in order to reliably establish an overall click rate.  Thirdly, 

intra-speaker variation also occurs across interactions, apparently as a result of 

accommodation towards the clicking behavior of interlocutors.  This suggests 

that rate of clicking  rather than being solely a property of an individual’s 

speech production practices, might usefully be viewed as resulting from an 

interaction between speaker and interlocutor. The question remains, then, of 

whether it is worth considering clicking at all when conducting speaker 
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comparison casework. In spite of these findings, it is suggested that, in certain 

cases, it may well be. Studies such as those of Wright (2007; 2011a; 2011b) and 

Ogden (2013) on the interactional functions of clicks, as well as the general 

observations of phoneticians on the functions of clicks in conveying attitudinal 

and affective meanings, provide normative data and descriptions. For this 

reason, these studies allow forensic practitioners to assess the speech samples 

they examine for the occurrence of non-normative, i.e. idiosyncratic, usage.  

Such occurrences may be of assistance in the comparison task, and in this 

respect forensic phoneticians are indebted to their non-forensic counterparts 

for providing valuable resources. This is, in fact, just a further instance of a 

more general indebtedness of the forensic speech community to work in 

mainstream academic research in linguistics and phonetics. As noted in French 

and Stevens (2013), sociophoneticians and dialectologists have provided 

normative descriptions of language varieties that serve as backcloths for the 

evaluation of findings in speaker comparison cases.  

Unless it were to transpire that patterns of clicking behavior are 

different for other varieties of English or (for example) differ in accordance with 

speaker age or gender - and nothing has been found in the sociolinguistic 

literature on English to support that view - the mere comparison of click rates 

across samples is in the overwhelming majority of cases unlikely to advance the 

speaker comparison task, for the reasons outlined above.   
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Chapter 8  Overall Likelihood Ratios 

8.1 Introduction 

  The whole is greater than the sum of the parts.” - Aristotle  

 

The survey of FSC practices (Chapter 3) revealed that for the vast 

majority of expert forensic phoneticians, it is the overall combination of 

parameters that they consider crucial in discriminating between speakers 

(despite some parameters having greater weight than others). For this reason, 

the current chapter addresses the issue of combining parameters for speaker 

discrimination through empirical testing. 

The combination of phonetic, linguistic, and non-linguistic parameters in 

an FSC has traditionally been carried out by experts through implicit ‘mental’ 

calculations. That is to say, an expert creates a mental representation of the 

properties of an individual’s speech and makes a judgment about the likelihood 

that the speakers in the suspect and criminal samples are the same person 

(based on the combined weight of the evidence). The process by which an 

expert ‘mentally’ combines parameters to arrive at a conclusion is not 

transparent. As such, it has been argued that different experts will weigh certain 

parameters more highly than others, based purely on personal opinions (Rose 

and Morrison, 2009). For this reason, the traditional method of parameter 

combination in FSCs is highly subjective and is difficult to replicate. 

Bayes’ theorem  on the other hand  offers a more explicit and transparent 

alternative for the combination of parameters. A simple combination procedure, 

known as ‘naïve Bayes’ (Kononenko  1990)  involves multiplying the individual 
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LRs (or equivalently, the addition of individual LLRs) assuming that there is 

mutual independence between parameters (i.e. the parameters are not 

correlated). The combination of correlated parameters is a problem for the LR 

framework, because unless parameters are mutually independent there is a risk 

of over-estimating the strength of evidence by considering the same parameter 

more than once. Alternative methods such as logistic-regression fusion, MVKD, 

and Bayesian Networks  have been put forward to circumvent the problem 

whilst maintaining a Bayesian approach (Aitken and Lucy, 2004; Brümmer et 

al., 2007; Gonzalez-Rodriguez et al., 2007; Morrison et al., 2010). However, 

given the lack of appropriate testing, it is unclear whether logistic-regression 

fusion or MVKD adequately take account of correlations in the data. 

The aim of the present chapter is to amalgamate the individual speech 

parameters from Chapters 4-7 into a complete system42, whereby discriminant 

power, strength of evidence, and validity can be tested for all analyzed speech 

parameters in combination. Previous research has developed methods to 

facilitate the combination of individual speech parameters into some form of a 

combined system. However, the blend of approaches taken in this chapter has 

never been used before. The chapter begins by exploring the existing 

relationships between LTFD, AR, F0, and click rate to check for potential 

correlations. The correlation coefficients are then used to inform appropriate 

combination methods given the (in)dependencies that exist amongst the given 

                                                        
42 A system is defined by the Oxford English Dictionary (http://www.oxforddictionaries.com/ 
definition/english/system) as  a set of things working together as parts of a mechanism or an 
interconnecting network; a complex whole”. The term ‘system’ is often used in the ASR 
literature to refer to a ‘complex whole’ that is well-suited to providing a response to two 
competing hypotheses being tested (the evidence given the prosecutor’s hypothesis divided by 
the evidence given the defense’s hypothesis). The term system is extended in this thesis to both 
individual speech parameters and speech parameters in combination that can also provide the 
basis for an evaluation of the two competing hypotheses. 
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parameters. After the combination of individual parameters into a complete 

working system, the discriminant ability, strength of evidence, and validity are 

tested for the combined parameters. The integration of methodological 

approaches employed in this chapter is a first for calculating overall likelihood 

ratios (OLRs). This approach is intended to demonstrate how an analyst would 

go about using these methods in order to avoid an over- or under-estimation of 

the strength of evidence for calculating OLRs for the data under scrutiny. 

8.2 Literature Review 

The combination of forensic speech evidence under a numerical LR framework 

has received a reasonable amount of attention in the literature (Alderman, 

2004; Kinoshita, 2002; Rose et al., 2003; Rose et al., 2004; Rose and Winter, 

2010). The main focus of this earlier research is the issue of combining 

parameters that are potentially correlated. Early studies evaluating traditional 

linguistic phonetic parameters often recognized this problem but did nothing to 

try to ameliorate it. For example, Kinoshita (2002) used naïve Bayes to combine 

LRs based on the best-performing set of formant predictors from /m/, /ʃ/, and a 

set of short vowels into a single expression of posterior probability. Similarly, 

Alderman (2004) generated an OLR from different vowel formant predictors 

using naïve Bayes in order to compare the speaker-discriminatory performance 

of different combinations of parameters (and individual features of 

parameters).  

Rose et al. (2003) displayed a more overt awareness of the issues 

surrounding correlation within and between parameters. In their study, they 

compared the discriminatory performance of formants using segmental cepstra 
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from /ɔ: ɕ ɴ/ in Japanese. Linear regression was applied to the parameters to 

assess the degree of correlation only within individual parameters (i.e. the 

formants). The individual LRs were combined into an OLR using an assumption 

of independence, although between-parameter correlation was never explicitly 

tested because  it was assumed that  given the very different phonetic nature of 

the three segments used, there was unlikely to be much correlation between all 

but their highest formants” (Rose et al.  2003  p. 195). Rose et al. (2003) make a 

good attempt at accounting for within-parameter correlation, but fail to go one 

step further to test the between-parameter correlations. Phonetic theory would 

predict that the parameters are not correlated. However, without further 

testing, correlations may go unexposed (and unrealized). Rose et al. (2003) also 

note that linguistic theory leads them to believe that the higher formants may 

be correlated, yet nothing is done to account for it. Therefore, it is probable that 

the results produced for the study were over- or under-estimations of the 

strength of evidence. 

The development of LR modeling techniques has brought with it the 

capability of dealing more appropriately with the complexities of correlation. 

Aitken and Lucy’s (2004) MVKD formula treats the set of data from which LRs 

are computed as multivariate data, and as such is able to account for within-

segment correlation. Rose et al. (2004) investigated the comparative 

performance of the multivariate LR approach and the naïve Bayes assumption 

of independence. The naïve Bayes approach was shown to overestimate the 

strength of SS and DS LRs compared with the more conservative MVKD model. 

The proportion of errors was also better when independence was assumed, 

which led Rose et al. (2004) to conclude that  the ‘correct’ formula is still not 
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exploiting all the discriminability in the speech data and (as such) the Idiot’s 

approach  naïve Bayes  is still preferable” (Rose et al.  2004  p. 496). However  

the study fails to discuss the fact that naïve Bayes produces misrepresentative 

estimates of the strength of evidence when parameters are correlated, which 

could lead to a miscarriage of justice in a real case. 

 Another recently-adopted technique to account for potential correlation 

between phonetic-linguistic parameters in LR-based FSC is the logistic 

regression fusion approach. Fusion is a form of  back-end processing” (Rose 

and Winter, 2010, p. 42) which attaches weights to parameters based on 

correlations between LRs from individual parameters. This contrasts with 

 front-end processing”  which considers correlations in the raw data. Fusion 

was developed within the field of ASR (Brümmer et al., 2007; Gonzalez-

Rodriguez et al., 2007; Ramos Castro, 2007) and has since been applied in a 

number of studies using traditional phonetic parameters (Morrison, 2009; 

Morrison et al., 2010; Rose, 2010b; Rose, 2011) leading Rose and Winter (2010, 

p. 42) to claim that fusion is one of the  main advances” to have emerged from 

automatic methods. 

 Fusion is currently the only alternative to a naïve Bayes approach for LR-

based forensic phonetic analysis. However, there are a number of potential 

problems with fusion. Firstly, back-end processing, as the name suggests, deals 

with correlations after the generation of numerical LRs has been performed. 

Therefore, as suggested by Rose,  it is … possible … that two segments which 

are not correlated by virtue of their internal structure and which therefore 

should be naively combined  nevertheless have LRs which do correlate” (Rose  

2010, p. 32). Equally, the reverse is possible, whereby correlated parameters 
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generate non-correlated LRs. More broadly, there is also an issue of efficiency. 

Since fusion is implemented after the generation of LRs, the original analysis 

may unnecessarily include a number of highly-correlated parameters, which 

when combined provide a limited strength of evidence. 

8.3 Data 

The present study does not introduce any new data, as it works with the data 

presented in Chapters 4-7. The parameters under consideration are mean long-

term formant frequency distributions (for F1-4), mean articulation rate, long-

term mean fundamental frequency, and click rate.  

8.4 Correlations 

This section considers potential correlations that exist within and between 

parameters. Correlations are calculated for the speakers as a group, as opposed 

to individual speakers. Therefore, it could be the case that the correlations 

found for the group of 100 speakers do not exhibit the same patterns as those 

calculated for an individual speaker. 

8.4.1 Methodology 

 Correlations were calculated to identify potential relationships or 

mutual independencies within and between parameters. Two groups of 

correlations were calculated for the data: those within LTFD (i.e. LTFD1, LTFD2, 

LTFD3, LTFD4) and those between parameters (LTFD1-4, AR, F0, click rate). 

The formants within LTFD are treated as individual parameters for correlation 

testing, given that phonetic theory has established that individual formant 
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measurements represent different physiological aspects of a vowel (e.g. 

frontness/backness of the tongue, height of the tongue, voice quality; 

Ladefoged, 2006; Laver, 1994). Correlation coefficients were calculated for 

individual LTFD comparisons by selecting two LTFD measurements at a given 

data point, resulting in hundreds of data points per formant comparison. 

Calculating correlation coefficients between parameters required a single data 

point per person  so a mean value was calculated for each speaker’s LTFD1-4, 

AR, and F0 (i.e. three separate means). The data for click rate already existed as 

a single data point for each speaker, so no additional mean calculations were 

required. 

All correlations in this section were calculated using Spearman’s rank 

correlation coefficient. This method was preferred over Pearson correlation 

coefficients, as the latter assesses how well the relationship between two 

variables can be described using a monotonic function.  The Pearson correlation 

coefficient is calculated on the assumption that the relationship between two 

variables is linear. Because the pair-wise relationships between variables under 

consideration are not known (nor can they be assumed to be linear), the 

Spearman’s rank correlation coefficient was the logical choice.  

MatLab (version R2012a) was used to create scatterplots and to 

calculate the correlation coefficients for all pairs of parameters. Table 8.1 

presents all six possible pairing combinations for the LTFD parameter, and 

Table 8.2 presents all 15 possible pairing combinations between parameters. 
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Table 8.1: Formant pairings within LTFD 

Parameter 1 Parameter 2 
Long-term Formant Distributions 
LTFD1 LTFD2 
LTFD1 LTFD3 
LTFD1 LTFD4 
LTFD2 LTFD3 
LTFD2 LTFD4 
LTFD3 LTFD4 

 

Table 8.2: Between-parameter pairings 

Parameter 1 Parameter 2 

LTFD1  Mean F0 

LTFD1 AR 

LTFD1 Click Rate 

LTFD2 Mean F0 

LTFD2 AR 

LTFD2 Click Rate 

LTFD3 Mean F0 

LTFD3 AR 

LTFD3 Click Rate 

LTFD4 Mean F0 

LTFD4 AR 

LTFD4 Click Rate 

Mean F0 AR 

Mean F0 Click Rate 

AR Click Rate 

 

Tables 8.1 and 8.2 are complete lists of all 21 parameter pairings. The first and 

second columns simply identify the parameters that are being compared against 

each other. 

 The point at which two parameters can be deemed to be correlated is a 

matter of subjective judgment, in that there is no specific correlation coefficient 

that explicitly signifies dependence between two parameters. The decision of 
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independence is made by the expert, which in turn can result in different 

opinions regarding the threshold at which correlations are implied (ultimately, 

this can cause variation in the LR results). For the purpose of this study, 

correlations were considered through structural learning (see § 7.6), which is 

informed by the data rather than theoretical considerations. Final correlation 

judgments were made by me after examining scatterplots in conjunction with 

correlation coefficients for each pair-wise comparison. My judgments relating to 

correlations were also confirmed by a forensic statistician (Marjan Sjerps, p.c.). 

8.4.2 Within-Parameter Correlation Results 

 The scatterplots for all pair-wise comparisons within LTFD are 

presented in Figures 8.1 - 8.6. The y-axis presents one LTFD parameter, while 

the x-axis represents another.  

 

 

 

Figure 8.1: LTFD1 versus LTFD2 

 

r = -0.16 

LTFD1 (Hz) 
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Figure 8.2: LTFD1 versus LTFD3 
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Figure 8.3: LTFD1 versus LTFD4 
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Figure 8.4: LTFD2 versus LTFD3 

 

 

 

Figure 8.5: LTFD2 versus LTFD4 
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Figure 8.6: LTFD3 versus LTFD4 

 

The scatterplots in Figures 8.1 - 8.3 do not exhibit any strong relationships 

between the variables, and graphically suggest that there are no correlations. 

Figures 8.4 and 8.6 are characterized as having moderate positive correlations, 

while Figure 8.5 has a slightly weaker positive correlation. The correlation 

present in Figure 8.5 (LTFD2 vs. LTFD4) is most likely representative of indirect 

correlation, given that LTFD2 correlates with LTFD 3, and LTFD3 correlates 

with LTFD4.  

The correlation coefficients for within-LTFD comparisons are presented 

in Table 8.3. The intersection of a column and row indicates a given comparison, 

and the value within the box is Spearman’s rank correlation coefficient (r). A 

value closer to 1 or -1 suggests that two parameters are correlated, while a 

value close to 0 suggests the two parameters are not correlated. 

 

 

 

r = 0.41 

LTFD3 (Hz) 
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Table 8.3: Correlation coefficients within LTFD  

 LTFD1 LTFD2 LTFD3 LTFD4 
LTFD1 1.00 -0.16 0.05 -0.03 
LTFD2  1.00 0.43 0.20 
LTFD3   1.00 0.41 
LTFD4    1.00 

 

 Based on the results seen in Figure 8.1 - 8.6 and Table 8.3, an informed 

judgment can be made with regard to which parameters appear to be correlated 

within LTFD1-4. The results suggest that LTFD2 is correlated with LTFD3, 

LTFD3 is correlated with LTFD4, and LTFD2 is indirectly correlated with LTFD4 

(they have a transitive relationship by way of LTFD3; this also referred to as a 

partial correlation). LTFD1 and LTFD2 have a correlation coefficient of -0.16. 

However, this correlation was not deemed to be significant (r is less than 0.25; 

confirmation also given by Marjan Sjerps, p.c.). Therefore, LTFD1 is reasoned to 

be independent from LTFD2-4.  

8.4.3 Between-Parameter Correlation Results 

The scatterplots for all pair-wise comparisons between parameters are 

presented in Figures 8.7 - 8.12. The y-axis represents the first parameter, and 

the x-axis represents the second parameter. 
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Figure 8.7: Mean AR versus LTFD1-4
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Figure 8.8: Click rate versus mean AR 
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Figure 8.9: Click rate versus mean F0
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Figure 8.10: Click rate versus LTFD1-4
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Figure 8.11: Mean F0 versus LTFD1-4
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Figure 8.12: Mean F0 versus mean AR 

 

The scatterplots in Figures 8.7 - 8.12 do not exhibit any signs of strong (or even 

moderate) correlations between any of the parameter pairings. Because the 

scatterplots have a limited number of data points (only 100 in this case) 

compared with the number of data points for Figures 8.1 - 8.6, the calculation of 

correlation coefficients is necessary (as was also seen in Table 8.3) to quantify 

the levels of correlation between parameters. 

The results of the correlation coefficients are presented in Table 8.4.  

 

Table 8.4: Correlation coefficients within- and between-parameters 

 LTFD1 LTFD2 LTFD3 LTFD4 AR F0 Click 
Rate 

LTFD1 1.00 -0.16 0.05 -0.03 0.15 0.08 0.10 
LTFD2  1.00 0.43 0.20 -0.13 0.19 -0.22 
LTFD3   1.00 0.41 -0.14 -0.06 -0.13 
LTFD4    1.00 -0.12 -0.07 -0.20 

AR     1.00 -0.06 -0.04 
F0      1.00 -0.03 

Click Rate       1.00 

 

r = -0.06 

AR (syllables/second) 
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In terms of between-parameter correlations, Table 8.4 does not present any 

new strong correlations (those within LTFD have already been discussed in § 

8.4.2). The strongest relationships found between parameters are those for 

LTFD2 vs. click rate (-0.22), LTFD4 vs. click rate (-0.20), and LTFD2 vs. mean F0 

(0.19). Linguistics literature and phonetic theory do not give any reason to lead 

one to believe that these parameters should be related to one another43. 

Therefore, the very weak correlations seen in Table 8.4 have most likely 

happened by chance. Correlation does not imply causality, and these three cases 

appear to be good examples of this. 

8.4.3.1 Discussion 

Based on the results seen in Figures 8.7-8.12 and Table 8.4, an informed 

judgment can be made with respect to the parameter correlations for the data 

set. The results suggest that there is no parameter correlation between LTFD, 

mean AR, mean F0, and click rate (confirmation given by Marjan Sjerps, p.c.). As 

such, these parameters are deemed to be mutually independent from one 

another for this particular data set.  

8.5 Overall Likelihood Ratios 

Based on the interdependencies and conditional dependencies found in § 8.4, 

OLRs can be calculated for the system. A model does not currently exist with 

                                                        

43 However, it is possible that F0 and F2 could be related. High F2 values are associated with 
tongue fronting, and as the tongue body fronts, it pulls on the hyoid bone, from which the larynx 
is suspended. Laryngeal tension of this sort would promote higher F0, because of tension on the 
vocal folds. Therefore, it is possible that one might anticipate a correlation between high F2 
values and high F0 values. 
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which calculate numerical LRs for click rate, and therefore the OLRs calculated 

in this section exclude this parameter from analysis. 

8.5.1 Methodology 

 The OLRs presented in this section were calculated in multiple stages. 

Individual LRs were calculated for LTFD1, AR, and F0 using a MatLab 

implementation of Aitken and Lucy’s (2004) MVKD formula (Morrison  2007), 

and a separate LR was calculated for LTFD2-4 together using the same MVKD 

formula. This was done in order for the algorithm to take into account the 

correlations that exist between these three parameters (LTFD2-4). An intrinsic 

methodology, whereby the test and the reference speakers came from the same 

population of 100 speakers, was used for all LR calculations. Speakers 1-50 

were used as the test speakers, while speakers 51-100 served as the reference 

speakers. 

 The results from the individual LRs and the LR from LTFD2-4 were then 

multiplied together following Naïve Bayes (given that § 8.4 demonstrated that 

AR, F0, LTFD1, and LTFD2-4 were independent of one another) to form a 

complete system. Additional variations of the system were also computed in the 

same manner as for the complete system, whereby the LR for LTFD2-4 is always 

calculated together (in the MVKD formula) and multiplied by the other 

individual LRs in different combinations. A MatLab script44 was then used to 

calculate basic statistics, EER, and Cllr for the OLR system and variations on this 

system. 

                                                        
44 This script was developed by Phil Harrison of J P French Associates. 
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 Logistic-regression calibration was also applied to the complete system 

in two different orders using a MatLab script45. Logistic-regression calibration 

(see § 8.5.3 for further discussion) was applied in the first instance to individual 

parameters before combination, and applied in the second instance to the 

complete system after the parameters had been combined in order to compare 

the effectiveness of the calibration (in terms of EER and Cllr). 

8.5.2 Overall Likelihood Ratio Results: Uncalibrated 

 The results of the OLR for the complete system are provided in Table 8.5. 

The complete system is composed of LTFD1, LTFD2-4, F0 (mean and standard 

deviation), and AR (mean). The first column in Table 8.5 presents the 

comparison type (SS or DS pairs), followed by the percentage of correct pairs, 

mean LLR, minimum LLR, and max LLR. The final two columns report on the 

complete system’s validity  where the sixth column provides the EER and the 

final column presents Cllr. 

Table 8.5: Summary of LR-based discrimination for the complete system (100 speakers) 

Comparison % Correct Mean LLR Min LLR Max LLR EER Cllr 

Complete System SS 92.00 5.673 -3.082 7.316 
.0607 .3793 

Complete System DS 93.27 1.560 -infinity 3.963 
 

Table 8.5 shows that the combination of all parameters into the complete 

system provides an EER of 0.0607, and a Cllr of 0.3793. It appears that the 

complete system is good at identifying SS pairs, and slightly better at identifying 

DS pairs. The strength of evidence that the system offers is considerably 

stronger than that seen in the tests reported in Chapters 4-6. Figure 8.13 

                                                        
45 This script was created by Niko Brümmer, modified by Geoffrey Morrison, and edited by 
Vincent Hughes. 
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presents the Tippett plot of the complete system, and Figure 8.14 is a zoomed-in 

version of Figure 8.13. 

  

 

Figure 8.13: Tippett plot of the complete system 

— Same speaker comparisons 

— Different speaker comparisons 
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Figure 8.14: Zoomed-in Tippett plot of the complete system 

 

Figures 8.13 and 8.14 illustrate the distribution of SS and DS pairs. The strength 

of evidence of the DS pairs is higher than the strength of evidence offered by the 

SS pairs. Following Champod and Evett (2000), the system has the potential to 

offer strength of evidence (either for the prosecution or defense hypotheses) 

that is considered very strong support. Figure 8.14 shows that the crossover 

between the curves representing the comparison of SS and DS pairs is very 

close to the zero threshold, but not on it, and it is possible that calibration of the 

system might improve its validity (see § 8.5.3 for analysis). 

Although the complete system in Table 8.5 includes all available 

parameters it is necessary to consider the possible performance of other 

— Same speaker comparisons 

— Different speaker comparisons 
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combined systems should they outperform the complete system. Table 8.6 

provides ten alternative systems to the complete system from Table 8.5. The 

organization of Table 8.6 follows that of Table 8.5. 

 

Table 8.6: Summary of LR-based discrimination for alternative systems (100 speakers) 

Comparison % Correct Mean LLR Min LLR Max LLR EER Cllr 

LTFD1+LTFD2-4+F0 SS 92.00 5.691 -3.517 7.348 
.0631 .4322 

LTFD1+LTFD2-4+F0 DS 92.82 1.528 -infinity 4.151 

LTFD1+LTFD2-4+AR SS 98.00 3.811 -1.423 5.380 
.1310 .6101 

LTFD1+LTFD2-4+AR DS 73.06 1.311 -infinity 4.082 

LTFD1+LTFD2-4 SS 94.00 3.807 -1.618 5.426 
.1361 .6348 

LTFD1+LTFD2-4 DS 71.43 1.387 -infinity 4.508 

LTFD1+F0+AR SS 86.00 2.432 -3.900 3.594 
.0709 .4780 

LTFD1+F0+AR DS 95.43 0.134 -infinity 2.373 

LTFD1+F0 SS 82.00 2.150 -4.335 3.353 
.0771 .5266 

LTFD1+F0 DS 94.41 0.096 -infinity 2.306 

LTFD1+AR SS 76.00 1.046 -1.967 2.143 
.2284 .7873 

LTFD1+AR DS 77.14 0.083 -infinity 2.101 

LTFD2-4+F0+AR SS 96.00 5.220 -2.149 6.887 
.0647 .4160 

LTFD2-4+F0+AR DS 89.22 1.469 -infinity 3.848 

LTFD2-4+F0 SS 96.00 5.249 -2.585 6.933 
.0707 .4742 

LTFD2-4+F0 DS 88.20 1.465 -infinity 3.817 

LTFD2-4+AR SS 100.00 3.319 0.457 4.951 
.0929 .8413 

LTFD2-4+AR DS 60.20 0.789 -infinity 3.213 

F0+AR SS 88.00 1.625 -2.959 2.457 
.0855 .4197 

F0+AR DS 91.47 0.048 -268.938 2.143 
 

None of the alternative systems in Table 8.6 outperforms the complete system 

in terms of validity.  The next best performing system in terms of EER (after the 

complete system) is that of LTFD1+LTFD2-4+F0 with an EER of 0.0631 and Cllr 

of 0.4322. This second-best system is identical to the complete system minus 

the inclusion of AR, which suggests that the inclusion of more parameters 

improves the system’s validity. 
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8.5.3 Overall Likelihood Ratio Results: Calibrated 

 Calibration is a procedure for improving a system’s precision  whereby a 

well-calibrated system is considered to be more reliable (DeGroot and Fienberg, 

1983). Calibration was first utilized by weather forecasters (DeGroot and 

Fienberg, 1983), but has since made its way into automatic speaker comparison 

(Ramos-Castro et al., 2006), and phonetic/linguistic-based FSCs (Morrison, 

2012). Ramos-Castro et al. (2006, p. 6) have shown the importance of the 

calibration of LR values computed by an automatic system, arguing that  highly 

discriminant likelihood ratios might achieve a high performance in terms of 

probability of error of the posterior probabilities. However, a high calibration 

loss46 in the computed LR values may lead to arbitrarily high errors.” For this 

reason, logistic-regression calibration (using a cross-validation method) has 

been applied here to the complete system in two different orders to compare 

calibrated results. Figures 8.15 and 8.16 illustrate the first method, in which 

parameters were calibrated individually and then combined. Figure 8.17 

illustrates the results of the second method, where individual parameters were 

combined and the complete system was then calibrated. 

 

                                                        
46 Quantified according to the degree to which LR values incorrectly support a hypothesis. 
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Figure 8.15: Tippett plot of the complete system - parameters calibrated individually and then 
combined 

— Same speaker comparisons 

— Different speaker comparisons 
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Figure 8.16: Zoomed-in Tippett plot of the complete system - parameters calibrated 
individually and then combined (-6 to 6 LLR) 

— Same speaker comparisons 

— Different speaker comparisons 
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Figure 8.17: Zoomed-in Tippett plot of the complete system- system calibration after 
combination of parameters (-10 to 10 LLR) 

 

The calibration of individual parameters before combination (see Figures 8.15 

and 8.16) resulted in an EER of .0554 and a Cllr of .2831. There was an 

improvement in both the EER and Cllr from the uncalibrated system of .0053 

and .0962, respectively. The calibration of the complete system after the 

combination of parameters in Figure 8.17 resulted in an increase (i.e. a higher 

value) of EER of .0011, and an improvement (i.e. a lower value) of Cllr of .1408. 

Results show that for the complete system, calibration before combination 

provides the best EER, while calibration after combination provides the best 

Cllr. The differences between the two methods are minimal. However, one 

improves the gradient result for incorrect/correct judgments (Cllr) while the 

other improves the hard detection error rate (EER). In forensic speaker 

— Same speaker comparisons 

— Different speaker comparisons 
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comparison, a protocol for the order in which the application of calibration 

should take place has not been previously discussed. Therefore, more research 

is needed on the effects of the order of operations in which calibration is 

applied. It is also entirely possible that calibration could be applied twice, once 

before combination and once after. However, that was not tested here. 

8.6 Discussion  

This section focuses on three key discussion points: whether clicks can help 

improve the performance of the complete system, the comparison of results 

from all systems combinde to the results found for the individual parameters, 

and potential limitations of a combined system.  

8.6.1 Do Clicks Improve the Complete System? 

 The uncalibrated complete system achieved an EER of .0607, while 

correctly identifying 92% of SS pairs and 93.27% DS pairs. The complete 

system, however, did not include click rate as one of the combined parameters, 

as click rate did not lend itself to the calculation of numerical likelihood ratios. 

The system should now consider whether click rate has the potential to help in 

discriminating between the SS and DS pairs that were judged incorrectly.  

 A total of 165 DS pairs (out of a possible 2450 DS pairs) were judged 

incorrectly by the complete system. Four SS pairs were judged incorrectly. 

When those 169 incorrectly-judged pairs are extracted, it is possible to identify 

those pairs that include any of the speakers that had extreme outlying click 

rates (see § 7.5.3). The three extreme outliers in terms of click rate (speakers 

007, 024, and 033) form one half of the pairings in 20 DS pairs. If those extreme 
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click rates were considered within the complete system, one could propose that 

those 20 DS pairs would then be judged correctly. This would then increase the 

percentage of correct DS pairs to 94.08% (an additional increase of 0.81%). The 

extreme click rate outliers are not a part of any of the incorrectly-judged SS 

pairs, so click rate will not help further the comparison in these pairings.  

 The small increase in correctly-identified DS pairs would be unlikely to 

improve the EER or Cllr dramatically. However, it is possible that it would 

improve the system performance to some degree. Although click rate could be 

used to help discriminate those SS and DS pairs that were incorrectly identified, 

there is the potential for click rate to also decrease the system performance. If 

click rate were to make the correctly-identified SS pairs significantly more 

dissimilar and the correctly-identified DS pairs significantly more similar, the 

performance of the complete system would be decreased further. However, it is 

important to note that this discussion of system performance (where click rate 

is included) remains hypothetical without including all of the click rate data. As 

we saw in Chapter 7, click rate appears to be highly variable within and 

between speakers, which in turn characterizes click rate as an unstable 

parameter (to a higher extent than AR, even). The inclusion of this unstable 

parameter could cause more variation in OLRs, which could in turn weaken the 

system. It is also important to consider that Aitken and Gold (2013) showed 

that the LRs produced for click rate were associated with relatively weak 

strength of evidence. Therefore, perhaps the inclusion of click rate in all 2500 SS 

and DS comparisons may not contribute significantly to the OLRs, leaving the 

performance of the complete system relatively unchanged. 
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8.6.2 Comparing Individual Parameters to the Systems 

 The uncalibrated complete system in § 8.6.2 performed relatively well in 

respect of the system’s validity  with a number of the alternative systems’ 

performances following closely behind. The extent of their achievements is best 

shown in juxtaposition with the performance of the individual parameters prior 

to their being placed into a combined system. Table 8.7 contains all the 

individual parameters’ performances. The organization of Table 8.7 is identical 

to that of Table 8.5 and 8.6. 

 

Table 8.7: Summary of LR-based discrimination for individual parameters (100 speakers) 

Comparison % Correct Mean LLR Min LLR Max LLR EER Cllr 

LTFD1 SS 72.00 0.224 -2.158 1.902 
.2806 .8840 

LTFD1 DS 71.70 -4.858 -68.768 1.993 

LTFD234 SS 74.00 0.649 -8.461 4.996 
.0798 .9023 

LTFD234 DS 95.31 -25.812 -166.915 3.046 

F0 SS 92.00 0.958 -3.404 1.936 
.0849 .4547 

F0 DS 89.90 -24.204 -269.159 1.906 

AR SS 90.00 0.180 -1.480 2.060 
.3340 .8981 

AR DS 46.20 -2.940 -8.760 0.820 
 

Table 8.7 shows that LTFD234 has the lowest EER at .0798, followed by F0 at 

.0849. LTFD1 and AR both have EERs around .30. The best-performing 

individual parameter in terms of Cllr is F0 at .4547, with the remaining three 

parameters close to .90. The results for the individual parameters would 

suggest that a system including LTFD234 and F0 will have the best opportunity 

of performing well in terms of system validity. It also appears that a system that 

includes AR will benefit from SS comparisons, but will potentially be weakened 

by its DS comparisons. 
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 Table 8.8 provides a summary of the improvements and deteriorations 

in the complete system performance compared to the best-performing 

individual parameter for a given LR statistic. The first column identifies the LR 

statistic, and the second column indicates whether or not the complete system 

improved, deteriorated, or stayed the same in comparison to the best-

performing individual parameter (i.e. LTFD1-4, AR, or F0). The final column 

indicates the degree of the change identified in the second column. 

 

Table 8.8: Performance comparison between individual parameters and the complete system 

Results Change Degree of Change 
EER Improve .0191 
Cllr Improve .0754 

SS % Correct Same 0.00 
DS % Correct Deteriorate 2.04% 
SS Mean LLR Improve 4.715 
DS Mean LLR Deteriorate 27.380 
SS Min LLR Deteriorate 1.602 
DS Min LLR Improve Infinity 
SS Max LLR Improve 2.32 
DS Max LLR Deteriorate 3.143 

 

Table 8.8 shows that the complete system outperformed any individual 

parameter in terms of EER, Cllr, SS Mean LLR, DS Min LLR, and SS Max LLR 

(highlighted in light blue). The complete system deteriorated in performance 

with respect to DS % Correct, DS Mean LLR, SS Min LLR, and DS Max LLR 

(highlighted in dark blue). There was no change observed between the 

complete system and best-performing individual parameter in the performance 

of SS % Correct (highlighted in mid-blue). Overall, Table 8.8 shows that the 

complete system has (most importantly) the best system validity as well as the 

most improvement in terms of strength of evidence for SS. The strength of 
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evidence for a single parameters tends to be very limited for SS (see Table 8.7), 

despite the DS strength of evidence being relatively strong. Therefore an 

improvement in strength of evidence for SS comparisons is highly desired. 

 The same LR statistics presented in Table 8.8 are also considered with 

respect to the best overall performing system or individual parameter in Table 

8.9. Table 8.9 presents the LR statistic in the first column and identifies which 

system or individual parameter performed the best in that respect. 

 

Table 8.9: Best-performing system or individual parameter in relation to LR statistics 

Results Best System/Individual Parameter 
EER Complete System 
Cllr Complete System 

SS % Correct LTFD234+AR System 
DS % Correct LTFD1+F0+AR System 

SS Mean LTFD1+LTFD234+F0 System 
DS Mean LTFD234 
SS Min LTFD234+AR System 
DS Min Complete System 
SS Max LTFD1+LTFD234+F0 System 
DS Max AR 

 

Table 8.9 identifies whether the complete system (light blue), an alternative 

system (mid-blue), or an individual parameter (dark blue) performed best for 

the given LR statistic. The complete system remains the best in terms of system 

validity (which is the most important of the statistics). The alternative systems 

achieve the best performance for five of the LR statistics, while individual 

parameters are the best performing for two of the LR statistics. The results in 

Table 8.9 confirm the opinions set out by experts in § 3.10 that the inclusion of 

more parameters results in better overall speaker discrimination (i.e. EER). 

However, the level at which ‘more is better’ is not all-encompassing with 
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respect to all the LR statistics. It is the case that there are smaller systems and 

two individual parameters that outperform the complete system in some 

respects. Therefore, the general opinion of experts - that more parameters are 

better for discriminating between speakers - needs to be redefined insofar as it 

does not appear to be the case that the more parameters that are used for 

speaker discrimination, the better the system validity.  

8.6.3 Limitations  

Despite the relatively good performance of the complete system in terms 

of validity it still has four important limitations to consider. The first limitation 

is that the complete system is not outperforming alternative systems and 

individual parameters in relation to all of the LR statistics. As discussed in § 

8.7.2, the inclusion of more parameters does not necessarily correspond to 

better performance in all respects. Results suggest that the addition of the 

‘right’ parameters could increase performance  but the addition of poorly-

performing individual parameters may not improve the overall system. This 

poses a dilemma regarding which parameters to include in the FSC analysis. 

Should the expert only select the best-performing parameters, in terms of EER, 

or should he/she try to include all parameters that characterize an individual’s 

speech? Additionally, the expert must recognize that with the addition of 

parameters comes the (potential) additional uncertainty introduced in the 

system. This issue also needs to be addressed in respect of some type of 

confidence interval, and it may be the case that the confidence interval’s 

measure of credibility will be what sets the complete system apart from an 

alternative system or individual parameter. 



264 

 

 The second limitation to the complete system lies in the steps taken 

before the combination of parameters, in which dependencies are tested 

between and within parameters. In general, pairs of parameters that had 

correlation coefficients of less than 0.25 were considered to be independent of 

one another. It is possible that the complete system is limited in respect of the 

combination of parameters that exhibit some small levels of correlation that go 

unaccounted for. An example is the naïve LR calculation approach taken in 

Chapter 5 for LTFD1-4. MVKD was used to calculate LRs for LTFD1-4. However, 

the current chapter found LTFD1 to be independent of LTFD234. This would 

dictate treating LTFD1 separately from LTFD234 (as was seen in § 8.6.2), and 

the LRs from the two sets to be multiplied following naïve Bayes. The EER for 

the MVKD combination was 0.0414, while the current chapter reports an EER 

for LTFD1+LTFD234 of 0.1361. The two methods for combining LTFD1-4 lead 

to a dramatic difference in EER. It appears that perhaps not taking small 

correlations into account when working with the given data has caused EER to 

increase. 

The third limitation is the application of calibration. There is no set 

protocol for when calibration is to be applied. In § 8.6.3 it was demonstrated 

that different results can be achieved when the individual parameters are 

calibrated separately and then combined (yielding an EER of 0.0618), compared 

to the combination of parameters followed by the application of calibration 

(giving an EER of 0.0554). One could plausibly consider the calibration of 

parameters separately before combination, and the calibration of the system in 

a second phase after the combination of parameters has been carried out. More 
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research is needed in order to make an educated decision on the order in which 

combination and calibration are performed. 

The final limitation is very basic, but it is perhaps the most important. It 

concerns the threshold at which two parameters are deemed to be dependent 

on one another. A threshold of 0.25 was selected, but this was somewhat 

arbitrary. A better understanding is needed through a combination of empirical 

testing and theory to allow for more reliable decisions to be made on the 

(in)dependence of parameters. To some extent this is being explored in the 

International Association of Forensic Phonetics and Acoustics-funded grant 

entitled ‘Identifying correlations between speech parameters for forensic 

speaker comparisons’ (Gold and Hughes, 2013). However, further research is 

still needed on the relationships between speech parameters in other accents 

and languages. 

8.7 Conclusion 

The results of this study have shown that the combination of parameters into a 

complete system improves system performance in terms of validity (EER and 

Cllr). It is not necessarily the case that more parameters will improve all aspects 

of the system, but where it matters most - in terms of validity - the addition of 

more parameters prevails. The combination of the parameters central to this 

thesis (AR, LTFD, F0, and to some extent clicks) raises the question of what will 

happen when other parameters are added to the system. Following expert 

opinion in this respect (see Chapter 3), one would expect validity to further 

improve. However, it could be the case that there will be a threshold at which 

the addition of parameters can no longer improve validity. It is also possible 
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that the addition of unstable (highly variable) parameters will make the 

performance of the system deteriorate. Extrapolating from the current results it 

is expected that the strength of evidence for SS pairs will only increase as 

parameters are added, while the strength of evidence will remain similar for DS 

pairs (as it is already very strong). 

 It is difficult to predict the performance of a system that includes 

additional parameters that may exhibit different variation characteristics from 

the current parameters. It is also difficult to extrapolate the performance of the 

system while considering parameters (here, click rate) which cannot be 

incorporated into a numerical LR. For this reason, the current complete system 

can only serve as a building block contributing towards a larger system that will 

incorporate a much wider range of linguistic and phonetic parameters, and 

which will possibly improve the discrimination level of speakers in FSCs. 
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Chapter 9  Discussion 
 

In this chapter, the results from the previous six chapters (3-8) are summarized 

and discussed. The results of the first international survey of FSC practices are 

evaluated with respect to four of the valued phonetic and linguistic parameters 

selected by expert forensic phoneticians. The four parameters are then 

considered individually with regards to their speaker discriminant ability, 

strength of evidence, and validity. Finally, the combination of the four 

parameters into a human-based speaker comparison system is discussed and 

compared with those used in ASR analysis. 

9.1 Summary of the Forensic Speaker Comparison Practices 
Survey 

The results of the first international survey of forensic speaker comparison 

practices showed a fundamental lack of consensus on the methods employed in 

FSCs. Although the finding might come as a surprise to phoneticians and 

linguists working outside FSS, the degree of variation in methods will not be 

surprising to those working in various other fields of forensic science (see the 

journals Science and Justice or Forensic Science International for a plethora of 

articles debating forensic methodologies). Most importantly, the survey gave an 

insight into which parameters experts identified as being the most helpful 

speaker discriminant parameters above all others. The following are the top five 

ranked parameters (in order): 

1.    Voice quality 

2.    Dialect/ accent variants and vowel formants 

3.    Speaking tempo and fundamental frequency 
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4.    Rhythm 

5. Lexical/grammatical choices, vowel and consonant realizations, 

phonological processes, and fluency 

 

The majority of experts indicated that despite some individual 

parameters being good speaker discriminants, it is the combination of 

parameters that hold the most discriminant power in FSCs. The discriminant 

potential of speech parameters in combination rather than on their own is not 

often addressed in the research literature. 

9.2 Summary of Phonetic/Linguistic and Forensic Findings for 
Individual Parameters 

Four parameters identified by survey participants as having a high discriminant 

value were investigated, namely articulation rate (AR), long-term formant 

frequencies (LTFD), fundamental frequency (F0), and clicks.  This involved 

assessments of the individual parameters as speaker discriminants (percentage 

of correctly-classified SS and DS pairs, strength of evidence, and validity), how 

well expert expectations of the parameters matched the results, and whether 

the results were similar to those reported in previous studies. 

9.2.1 Articulation Rate 

Speaking tempo, and particularly AR, was identified by 20% of experts in 

Chapter 3 as one of the most helpful speaker discriminants (ranked 3rd in § 9.1).  

The high expectations surrounding the discriminant capacity of AR motivated 

empirical testing. Three key observations can be made in relation to the 

influence methodology has on the calculation of AR: (1) the definition of the 

speech interval does not significantly affect results, (2) varying the minimum 

number of syllables in a speech interval does not make AR significantly more 
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stable, and (3) testing suggests that the exclusion of speech segments, and 

perhaps the definition of the syllable (i.e. phonetic versus phonological) may 

have more effect on ARs than other factors. 

The findings tell a different story from that predicted by expert opinion, 

suggesting that there are misconceptions about the discriminant capacity of AR. 

Under an LR framework, SS pairs were correctly identified 90% of the time, 

while DS pairs were correctly identified at a rate less than chance (46.2%). 

Articulation rate contributed weak strength of evidence for SS pairs, and only 

moderate strength of evidence for DS pairs. AR had an EER of 0.3340 (the 

highest EER of the three parameters tested under the LR framework, i.e. AR, 

LTFD, and F0) and a Cllr of 0.8981. AR as an individual speaker discriminant 

was found to be rather weak. A simple impressionistic determination of 

speaking tempo, rather than a tedious and potentially unnecessary quantitative 

analysis of AR, may be sufficient in most forensic cases. Despite apparent 

misconceptions about the discriminant power of AR, it should nevertheless 

remain a tool in a forensic phonetician’s toolbox as there will always be the 

possibility of outlying speakers for which AR may be extremely valuable. 

9.2.2 Long-Term Formant Distributions 

Vowel formants, including long-term formant distributions (LTFD), were 

identified by 28% of experts (Chapter 3) as being among the most useful 

speaker discriminants (ranked 2nd in § 9.1).  This provided the motivation for 

further discriminant testing. The results from the analysis of LTFD provide both 

phonetically- and forensically-relevant results. In terms of the phonetic findings, 

there are two pertinent observations in relation to methodology and speaker 
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specificity: (1) small changes in the package length for LTFD have only a small 

effect on results, and (2) higher formants (LTFD3 and LTFD4) are suggested to 

carry a greater amount of speaker-specific information than lower ones. 

The forensic findings confirm experts’ expectations regarding the 

discriminant potential of vowel formants. Under an LR framework, the 

combination of LTFD1-4 correctly identified SS pairs 84% of the time, while DS 

pairs were correctly identified 97.4% of the time. As a system, LTFD1-4 had an 

EER of 0.0414 (the lowest EER of the three parameters tested under the LR 

framework: AR, LTFD, and F0) and a Cllr of 0.5411. Despite the promising 

findings of LTFD1-4 as a combined system, § 8.4.2 unexpectedly revealed that 

LTFD1 was statistically independent of LTFD2-4, and should technically be 

treated separately (as an independent parameter). If LTFD1 is treated 

separately, the combined LTFD2-4 system still achieves a low EER of .0798 and 

a Cllr of 0.9023, where SS pairs and DS pairs are correctly identified 74% and 

95.3% of the time, respectively. These findings, in combination with previous 

findings from Becker at al. (2008), Moos (2010), French et al. (2012), and Jessen 

et al. (2013), suggest that LTFDs perform very similarly to MFCCs under 

comparable data conditions, and, as an individual speaker discriminant, LTFD is 

rather strong. The only potential limitation of LTFD is that it averages across all 

vowels, which in turn eliminates idiosyncrasies and habituations of certain 

vowels that relate accent information. Unless a single vowel phoneme can yield 

more promising results, the evidence suggests that LTFD should be considered 

over individual vowel analysis under the LR framework47. 

                                                        
47 Including both could be seen as doubling evidence, insofar as LTFD measurements encompass the 
multiple formant measurements made for individual vowel phonemes. 
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9.2.3 Long-Term Fundamental Frequency 

Fundamental frequency (F0) was identified by 20% of experts (Chapter 

3) as being one of the most helpful speaker discriminants (ranked 3rd in § 9.1).  

This motivated empirical testing of the parameter. The results from the analysis 

of F0 provide both phonetically- and forensically-relevant results. In terms of 

the phonetic findings, there are two main observations. Firstly, small changes to 

the package length of F0 only have a small effect on the results (as we saw with 

LTFD). Secondly, it was reported in § 8.4.3 that, unexpectedly, F0 did not 

correlate with LTFD1-4. Given previous research (Narang et al., 2012; Syrdal 

and Steele, 1985) it might have been expected that F0 and LTFD1 would be 

correlated, especially since using Lombard speech it has been shown that F1 

increases as F0 increases (Kirchhübel, 2010). The independence of F0 and 

LTFD1 was also reported by Moos (2010), and may be an indication that F0 and 

F1 correlations can only be found when vowels are analyzed individually as 

phonemes (Narang et al., 2012; Syrdal and Steele, 1985). However, once F0 is 

compared to an LTFD that relationship is lost, perhaps because (i) F0 and F1 are 

not correlated for all phonemes (and an averaging of phonemes eliminates any 

strong correlation present in the data), or more likely (ii) there is non-vowel 

information included in the acoustic signal which suppresses any correlation 

that might be present. 

The forensic findings confirm experts’ general expectations regarding the 

discriminant power of F0. Under an LR framework, F0 correctly identified SS 

pairs 92% of the time, and DS pairs 89.9% of the time. F0 contributed a rather 

weak strength of evidence for SS pairs, while DS pairs had a much stronger 

strength of evidence. As a system, F0 had an EER of 0.0849 (the second highest 
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of the three parameters tested under the LR framework: AR, LTFD, and F0) and 

a Cllr of 0.4547. Given the findings and the plethora of previous LR research on 

F0, it is suggested that F0 as an individual speaker discriminant is rather strong 

within a contemporaneous recording. However, it is not entirely clear how well 

F0 can discriminate between individuals when same-speaker evidence comes 

from non-contemporaneous recordings. Previous literature would suggest that 

F0’s discriminant power will decrease when same-speaker evidence from 

different recordings is introduced in addition to any deletrious (external) 

factors (e.g. disguise, recording transmission, vocal effort; see § 2.2 for more 

factors). The study by Boss (1996) gave an example of F0 mismatch in a real 

forensic case. The difference between the F0 in the criminal and suspect 

recording was 88Hz, due in large part to situational differences in the 

recordings (the suspect sounded more nervous in the criminal recording than 

the suspect recording (Boss, 1996, p. 156)). Unless it were to transpire that F0 is 

robust to many of the factors detailed in § 2.2, the mere comparison of mean F0s 

and SDs is on its own unlikely to advance the speaker comparison task 

dramatically. However, as always exceptions are to be made for those 

individuals who can be classed as outliers, and using F0 in conjunction with 

other speech parameters for FSCs is suggested. 

9.2.4 Click Rate 

 Non-linguistic parameters (which include clicks) were identified by 18% 

of experts (Chapter 3) as being amongst the most useful speaker discriminants. 

Again, this motivated empirical testing. The results from the analysis of click 

frequency provide both phonetically- and forensically-relevant results. In terms 
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of the phonetic findings, there are two pertinent observations: (1) discourse 

analysis classifications can lend themselves to the quantification and 

categorization of speech parameters (Wright, 2005), and (2) accommodation 

effects are present in clicks, in that the rate of clicking, rather than being solely a 

property of an individual’s speech production practices  might arise from an 

interaction between speaker and interlocutor. 

 The forensic findings suggest that there are misconceptions surrounding 

the discriminant capacity of clicks. While it would be dangerous to generalize 

beyond the variety of English analyzed in this thesis, the view of those forensic 

practitioners surveyed in Chapter 3 who considered tongue clicking to be a 

highly discriminant feature of speaker behavior is largely unsupported by the 

present data for young male speakers of SSBE. Click data is positively skewed 

and discrete, and there is currently no method available for deriving an LR from 

them (although see Aitken and Gold (2013) for current developments in 

proposed algorithms for calculating the LRs of clicks). For this reason, the 

discriminant capacity can only be assessed qualitatively and with reference to 

the population statistics. Further, there is insufficient variation across the 

majority of speakers analyzed for the variable to provide a reliable index of 

speaker individuality.  Additionally, even for the high-rate clickers who stand 

apart from the majority, there is within-conversation instability to the extent 

that one would need speech samples of a length seldom encountered in criminal 

forensic recordings in order to reliably establish an overall click rate.  Given the 

high degree of intra-speaker variation and restricted inter-speaker variation, 

clicking frequency is a rather weak parameter. Unless it were to transpire that 

patterns of clicking behavior are different for other varieties of English or differ 
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in accordance with speaker age or gender - and nothing has been found in the 

sociolinguistic literature on English to support that view - the mere comparison 

of click rates across samples is, in the overwhelming majority of cases, unlikely 

to advance the speaker comparison task.  However, as with AR, it is advised that 

clicks remain a tool in an expert’s toolbox for those speakers identified as 

outliers. 

9.3 Summary of Discrimination Performance by the Overall 
System 

This section has outlined the main forensic findings for articulation rate (AR), 

long term formant frequencies (LTFD), fundamental frequency (F0), and clicks 

as a combined, overall system.  The forensic findings are assessed with respect 

to the overall system’s success at discriminating between speakers (percentage 

of SS and DS pairs correct, strength of evidence, and validity), how well expert 

expectations of the parameters corresponded with the results, and if the results 

are similar to those found in previous studies. 

A large majority of the experts discussed in Chapter 3 indicated that it is 

the combination of speech parameters that makes for better performance at 

speaker discrimination than individual parameters. Therefore, the combination 

of the parameters in this thesis was motivated by expert opinion and the lack of 

human-based systems that test speaker discrimination of parameters in 

combination. Under an LR framework, the complete system (LTFD1, LTFD2-4, 

AR, F0) correctly identified SS pairs 92% of the time, and DS pairs 93.3% of the 

time. The combined system contributed very good strength of evidence for SS 

pairs, and even stronger strength of evidence for DS pairs. Overall, the combined 
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system had an EER of 0.0607 and a Cllr of 0.3793. After the complete system 

was calibrated, the EER and Cllr decreased to 0.0554 and 0.2831, respectively. 

The combination of parameters into a complete system therefore improves 

system performance (in comparison to individual parameters) in terms of 

validity (EER and Cllr). It is not necessarily the case that the inclusion of more 

parameters (e.g. SS % correct, DS % correct, mean SS LLR) improves all aspects 

of the system, but where it matters most (validity) the addition of parameters 

does result in an improvement. The results of the complete system are almost as 

good as those from ASRs under similar conditions (French et al., 2012). Table 

9.1 compares the results of the research presented in this thesis against those 

from the ASR in French et al. (2012). 

 

Table 9.1: Human-based results against ASR (Batvox) results from French et al. (2012) on 
studio quality data 

 Same Speaker Different Speaker 

Current study 92% 94.1% 

French et al. (2012) 100% 95% 

 

The percentages presented in Table 9.1 indicate the proportion of SS and DS 

comparisons judged correctly where studio-quality recordings were used. Given 

that the system developed in this thesis only incorporates three parameters 

under an LR framework, the incorporation of more speech parameters might 

improve system performance further.  

Out of all the views advanced by experts that were reported in Chapter 3, 

perhaps the most valuable and the most accurate is that the combination of 

parameters results in the best speaker discrimination performances. The 
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current system serves as a starting point from which to expand. Additional 

research needs to be carried out on the discriminant power of parameters in 

combination.  

9.4 Overall Findings 

There are two principal findings that emerge from the present research: (1) the 

performance of the human-based system created in this thesis is comparable to 

ASR performances on the same studio-quality recordings, and (2) the FSS 

community is faced with many obstacles if they wish to continue to align 

themselves with other, more developed, forensic sciences by implementing an 

LR framework for FSCs.  

9.4.1 Human-Based System versus ASR  

The research conducted for this thesis was not intended to provide a 

comparison of the efficacy of human-based systems and their ASR counterparts. 

Nevertheless, through the development of this human-based system over the 

course of the current research project, the methodologies employed have made 

quantitative comparisons between the human-based system and ASRs possible. 

ASRs used for FSCs are typically known for demonstrating their validity through 

error rates, and the testing of these ASRs is easily replicable. ASR error rates are 

typically presented in terms of the frequencies of false negatives and false 

positives. A false negative is the classification of a target trial as a non-target 

trial, and a false positive is a non-target trial classified as a target trial (van 

Leeuwen and Brümmer, 2007). The human-based methodology (using phonetic 

and linguistic parameters) for FSCs has become known for not providing error 

rates and for a lack of replicability. However, it is shown that by adopting a 
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numerical LR framework, a human-based system can also provide validated 

results, while fostering tests that are easily replicable. 

The performance of the human-based system, consisting of LTFD, AR, F0, 

and click rate, is comparable to that of an ASR tested on the same type of data 

(high-quality studio recordings). The human-based system created for this 

thesis reported false positive errors (different-speaker comparisons = LR > 1) of 

5.9%48 and false negative errors (same-speaker comparisons = LR < 1) of 

8.0%49. An ASR system tested on the same data (French and Harrison, 2010) 

reported false positive errors of 4.5%, and achieved zero false negatives.  

 It is important to note here that the performance of a human-based 

system is dependent upon the expertise of the analyst. It is likely that some 

degree of cross-analyst variation would be observed. For the present human-

based system, LTFD and F0 would be least susceptible to inter-analyst variation 

given that the methodology for extracting data is relatively automatic50. AR and 

click rate calculations are more dependent on the analyst. For example, when 

calculating AR the analyst must decide which speech to include in an interval 

and what to ignore, and for clicks the analyst must decide whether s/he is 

hearing a click rather than a percussive. For this reason, caution should be 

exercised so as not to overestimate the replicability of results. 

9.4.1.1 A Fair Comparison? 

 The comparison of the human-based system and an ASR investigated by 

French et al. (2012) showed that the ASR only minimally outperformed the 

                                                        
48 This includes click rate. 
49 This does not include click rate. 
50 See Jessen and Becker, 2010 (discussed in § 5.2) and Konrat and Jessen, 2013 for variation in 
LTFD and F0 results when measured by multiple analysts. 
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human-based system on studio-quality data. However, such a comparison puts 

the human-based system at a considerable disadvantage. ASRs have consistently 

been shown to perform well under high-quality data conditions (Campbell, 

1997; French and Harrison, 2010; Reynolds, 2002; Reynolds et al., 2000). The 

ASR, however, is susceptible to degradation in system performance as the data 

quality gets worse.  French and Harrison (2010) tested an ASR on real case data 

where the outcomes of the cases were known to the authors (i.e. guilty/not 

guilty verdicts). For the 767 comparisons undertaken, the ASR achieved an EER 

of 24.2%. When the ASR was tested on the cases in which the system judged the 

technical quality of the data to be adequate, it accepted 171 of the 767 

comparisons and produced an EER of 5.4%. When the ASR was further tested on 

recordings that the system judged to be only marginally adequate, an EER of 

15.1% was returned for the 369 comparisons. The results indicate a steep fall in 

performance for the ASR when processing less than ideal quality recordings.  

 A human-based system may be able to offer a better performance than 

ASRs when testing lower-quality recordings. For example, the 767 real forensic 

comparisons used for testing with an ASR by French and Harrison, 2010 had 

previously been analyzed by the authors using a phonetically- and linguistically-

based methodology. None of those 767 comparisons resulted in a known 

miscarriage of justice, and for all comparisons their conclusions were in 

agreement with those made by the trier of fact.  

In real forensic cases where recordings are of poor quality or short 

duration, in conclusion, a human analyst may be better equipped to extract data 

and make conclusions than an ASR.   
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9.4.1.2 Scope for Improvements in the Human-Based System 

The human-based system created for this thesis was limited to four 

parameters owing to the inherent time restrictions of the research. Given the 

analysis presented in § 8.6 and § 8.7, it is reasonable to assume that the addition 

of good speaker discriminants would increase the validity of the system. With 

enough additional parameters it is possible that the human-based system could 

eventually outperform an ASR on high-quality studio data. The addition of 

parameters should not be done ad hoc, but should involve phonetically- and 

linguistically-informed choices. This would involve: (i) selecting parameters 

that are good speaker discriminants (e.g. voice quality, VOT, or those 

parameters reported by experts in § 3.9 or § 3.10,), and (ii) not selecting 

parameters that are significantly correlated with others (but if they are, 

weighting the correlations appropriately).  

Additionally, it is appropriate to consider the integration of this human-

based system with ASRs. This could potentially be similar to the Vocalise51 

software package created by Oxford Wave Research Ltd (Vocalise, 2013) that 

measures MFCCs in addition to traditional phonetic parameters (e.g. F0 and 

LTFD; see § 10.2 for further discussion of Vocalise). Given the good performance 

of the ASR on the data tested, and the good performance achieved by the 

human-based system, a combination of the two could result in an even better 

overall performance. If integration was to be done it would probably be best to 

choose between the inclusion of MFCCs or LTFDs, as they effectively analyze the 

same aspects of a speaker (i.e. vocal tract resonances). LTFD analysis provides 

the analyst with an indication of the speaker’s habitual use of the vowel space, 

                                                        
51 http://www.oxfordwave research.com/j2/products/vocalise [Accessed 8 August 2013] 
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which is strongly correlated with the dimensions of the vocal tract (Moos, 2010; 

French et al., 2012). MFCC analysis reports on approximately the same aspect, 

as MFCCs are essentially abstract representations of the dimensions of the vocal 

tract. For this reason, LTFDs and MFCCs are highly correlated (French et al., 

2012) and the inclusion of both parameters would result in the doubling of 

evidence, which in turn could lead to a miscarriage of justice. Therefore, given 

that MFCCs (marginally) outperform LTFDs (as shown in § 5.2), it is suggested 

that MFCCs should be selected over LTFDs. An integrated system could then 

consist of ASR analysis, F0, AR, and click rate, which again is entirely possible if 

ASR (MFCC) data are found to be independent of the other parameters included 

in the integrated system. Without testing this integrated system it is difficult to 

say with certainty that discriminant performance would improve. However, 

with the exchange of LTFD for MFCC that is likely to be so.  

9.4.1.3 The Trade-Off 

When comparing the performance of the human-based system with 

ASRs, it is important to consider a trade-off that occurs when human 

intervention is involved. The ‘human intervention’ is the analysis and 

examination undertaken by an analyst for a given comparison (e.g. through 

sound file editing, time taken for an analysis). Irrespective of methodology 

(human or ASR) the level of human intervention typically needs to be 

increased52 as the quality of the recordings (or duration) being compared 

decreases. In turn, the level of human intervention utilized in a FSC creates a 

                                                        
52 In ASR analysis more time would be required of the analyst for the editing of recordings 
(cleaning them up, for example, with a bandpass filter), and for human-based analysis more 
time would be required for the analysts to extract measurements and additional data from the 
poor quality recordings. 
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trade-off with the variation that may be present in the FSC results. The more 

human intervention required, the more cross-analyst variability may be present 

in results. For example, if an FSC comparison was vital to a criminal case, rather 

than having an ASR completely reject a case that was of poor recording quality 

(or offer a conclusion with a very high EER associated with it), a human-based 

analysis could be attempted in an effort to extract any relevant conclusion.  

9.4.2 Obstacles Facing the Implementation of an LR Framework 

The exercise of creating a human-based system for this thesis has 

revealed a number of difficulties that surround the LR framework and its 

application to FSCs. Those shortcomings are as follows: 

1.   Subjective elements of the methodological process 

2.   Delimiting the relevant population 

3.   Availability of population statistics 

4.   Lack of models available to calculate LRs 

5.   Appropriate combination of parameters 

The LR framework is intended to create a separation between an expert’s bias 

and the facts of the evidence; however, within FSCs the application of the LR 

framework still has elements of subjectivity. It is possible to alter methodologies 

(e.g. package lengths of LTFD or F0, as seen in § 5-6) in order to achieve a more 

desirable strength of evidence. For this reason, it is argued that the LR 

framework is not completely objective. However, the levels of subjectivity are 

far less under an LR framework than with other frequentist frameworks. 

 The present study did not address the debate surrounding the 

delimitation of the relevant population, as intrinsic LRs were carried out on the 

known optimal population (i.e. the test and reference sets of speakers came 

from the same linguistically homogeneous corpus). However, the delimitation of 
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the relevant population will remain a difficulty facing FSCs, as was also argued 

in French et al. (2010). For this reason, a mutually agreed protocol or 

methodology would need to be proposed in order for the continuing debate to 

subside. See Hughes (in progress) for further information and discussion on the 

issue of the relevant population. 

 The lack of population statistics, as previously mentioned by French and 

Harrison (2007) and French et al. (2010), is a very real problem for the 

implementation of a numerical LR. The time, effort, and resources needed to 

collect a sufficient quantity of population statistics are almost limitless. As a 

testament to this, for the present study it took nearly three years to collect 

population statistics for just four parameters for 100 speakers in a single and 

very specific population (and, moreover, these data were extracted from a 

previously-collected database). All things being equal, following a conservative 

number of possible parameters to analyze in a FSC of around 60 (just for 

example), the collection of sufficient population statistics for a delimited 

population would take approximately 45 years53  to complete by a single 

person. At that point, given the occurrence of sound change, it would be time to 

scrap the collected population statistics and start again. Such a feat hardly 

seems practical. Therefore, in order to continue the development of the LR 

framework for FSCs, alternatives need to be put in place. 

 The lack of appropriate models is currently one of the biggest challenges 

faced by the FSS community, because as it stands only certain parameters can 

be included in a numerical LR framework. A FSC does not simply consist of a few 

vowel formant measurements, and phoneticians would argue that it takes a 

                                                        
53 45 years = 60 parameters at 4 parameters collected every 3 years 
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number of parameters beside vowels to play a role in characterizing an 

individual’s speech.  For this reason, more linguistically-motivated models are 

required to enable the incorporation of previously unrepresented 

phonetic/linguistic parameters in an LR framework (see Aitken and Gold, 2013 

for the proposal of a new, linguistically-motivated model). 

 Finally, further research should focus on the identification and testing of 

appropriate methods for combining speech evidence. There are currently 

multiple options for this, but little testing has been done to compare such 

methods. It is also the case that only three of these methods (i.e. fusion, MVKD, 

GMM, and naïve Bayes) are ever really implemented in FSC. If the numerical LR 

framework is to become the way of the future, then research should consider 

the use of Bayesian Networks for combining speech evidence; these have 

already been successfully implemented in more developed forensic disciplines 

(e.g. DNA; Evett et al., 2002). 

9.5 Methodological Limitations  

As with most empirical research, methodological shortcomings are often 

inevitable, and the research presented in this thesis is no exception. This section 

outlines and discusses three general methodological limitations: (1) the absence 

of non-contemporaneous data, (2) the use of intrinsic LR testing, and (3) using 

only speakers 1-50 for all the same-speaker comparisons when calculating LRs.  

The recordings used in the present study were all obtained from single 

recording sessions, as there were no non-contemporaneous data available for 

any of the 100 speakers. Non-contemporaneous speech samples have been a 

frequent topic of discussion in previous research, with an increasing number of 
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studies citing the importance of incorporating recordings that are made several 

days, weeks, months, or even years apart (see Enzinger and Morrison, 2012; 

Loakes, 2006; Morrison et al., 2012b; Nolan et al., 2009; Rhodes, 2013). 

However, I would argue that there are a number of other external factors that 

have more of an impact on results than the separation of recordings by a mere 

few days (such as the effects of accommodation reported in § 7.5.5). In any case, 

the results presented here, despite the fact that they are based on the use of 

contemporaneous recordings, nevertheless provide a general baseline in 

relation to the discriminant abilities and practicalities of a human-based system. 

 The second methodological shortcoming is the absence of extrinsic 

criminal samples on which to test the human-based system. The LRs calculated 

in the present study were based on the DyViS data set of recordings of 100 

speakers, whereby the first 50 speakers always acted as the test samples and 

the second set of 50 speakers always acted as the reference samples. This means 

that the 100 speakers were in some way a part of either the test or reference 

sample, and that tests were not conducted using outside data sets. As a result, 

the testing is susceptible to over- or under-estimation of the strength of 

evidence as proposed in Rose et al. (2006c, p. 329). However, if an additional 

relevant database existed, extrinsic testing would be possible, as the population 

statistics for DyViS are now available. 

 The final limitation is the way the data (i.e. speakers) were divided for 

calculating LRs. It is probable that assigning different speakers to act as either 

the suspect/criminal or background population would cause variation in the 

resulting LRs. For empirical testing purposes, the calculation of intrinsic LRs 

typically requires a set of speakers to act as both the criminal and the suspect, 
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while an additional set of speakers must act as the reference population. The 

number of speakers chosen to act as the criminal/suspect or the reference 

population can vary  and is entirely at the analyst’s discretion. For convenience  

this thesis divided the data set evenly. As such, the calculation of LRs produced 

50 SS comparisons and 2450 DS comparisons. However, it is entirely feasible for 

the speakers to have been divided in a number of alternative ways, which might 

have produced different outcomes.  

9.6 Implications for Forensic Speaker Comparisons 

For forensic phoneticians, the population statistics presented in Chapters 4-7 

may serve as a helpful tool for casework. It is also suggested that all forensic 

phoneticians should consider the inclusion of LTFDs in their analysis. The 

relative ease of extracting LTFDs from speech recordings means that this 

parameter could be easily utilized and potentially offers a large contribution to 

FSCs. 

 As things currently stand, not all speech parameters can be incorporated 

into a numerical LR. Therefore, the use of a complete54 numerical LR is 

impossible. For this reason, experts are faced with a number of decisions, 

should they choose to continue to develop methodologies in an effort to align 

with other forensic disciplines. Judge Hodgson from Australia argues that not all 

types of evidence can be sensibly assigned an LR, and that therefore there is no 

way of mathematically combining all evidence under a Bayesian framework 

(Hodgson, 2002). Should the field of FSS agree on this statement, it is worth 

considering whether all speech evidence can be sensibly assigned a numerical 

                                                        
54 By  complete”  it is meant that all possible analyzable speech parameters are included. 
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LR.  If all speech evidence can be forced into a numerical LR model then an 

expert’s job is done. However, this does not seem a plausible possibility, given 

the complexity of speech evidence. For this reason, it is my view that experts are 

left with three options for the future: they must take the first two if they wish to 

align with other forensic disciplines, and the third, a default option, if they are 

content with the status quo: 

1.    Adopt a verbal form of the likelihood ratio framework 

2.   Present evidence in the form of numerical LRs (for those parameters 

that readily lend themselves to such a framework) and present the 

remaining speech parameters using a different conclusion 

framework. 

3.   Continue presenting evidence as they do currently. 

Although practitioners of forensic phonetics have accepted that the LR is the 

logically and legally correct framework within which to present evidence, the 

practicalities of the framework will inevitably contribute to the direction taken 

by the majority of experts in the future. A large role in the adoption of an LR 

framework will also be played by regulations under the country of practice and 

simply practicality issues. All countries and institutions are constrained by the 

laws, rules, and regulations in which they work. In § 3.11, an expert from China 

reported that s/he was required to use a binary conclusion framework by 

his/her government employer. If forensic phoneticians have the luxury of being 

able to choose their conclusion framework, their decision will come down to a 

practicality factor.  Given the results of this thesis, I believe that the implications 

for the field of FSCs are such that a complete numerical LR is unrealistic, and 

that alternatives should be explored (such as 1 and 2 presented above). 
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Chapter 10  Summary & Conclusion 

The following chapter reviews the empirical results and discussion detailed in 

Chapters 3-9 by relating them back to the four research questions introduced in 

Chapter 2. The chapter concludes with suggestions for future work that would 

expand upon the research aims of this thesis.  

10.1 Research Questions Revisited 

(1) What phonetic and linguistic parameters do practicing forensic 
phoneticians (around the world) typically analyze in a FSC case and which 
parameters do they recommend as being highly discriminant? 
 
Chapter 3 provided insight into parameters commonly used in FSCs. Those 

reported parameters were as follows: vowels (formants), consonants (timing 

aspects, frequencies of energy loci, auditory quality), F0 (mean, median, mode, 

SD, range, alternative baseline), voice quality, intonation, speech tempo (AR and 

SR), rhythm, linguistic features (aspects of turn-taking, patterns of code 

switching, discourse markers (including clicks), telephone opening and closing 

behaviors, lexico-grammatical usage), and non-linguistic features (filled pauses, 

audible breathing, laughter, throat clearing).  

 Out of all the possible parameters analyzed in FSCs, the experts’ top 

ranked parameters (the first three) in terms of the expected discriminant ability 

were: (1) voice quality, (2) dialect/accent variants and vowel formants, and (3) 

speaking tempo and F0. Three of these parameters (LTFD, AR, F0) and clicks 

were chosen for analysis in subsequent chapters. 
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(2) If experts are to provide their opinion on the most helpful speaker 
discriminants, will these ‘selected’ parameters be good speaker 
discriminants? 

 
Chapters 4-7 presented the results of the discriminant ability of AR, LTFD, F0, 

and clicks. LTFD and F0 showed promising results, with EERs of less than .1. AR 

and clicks were not as good at discriminating between speakers. AR had an EER 

of .33, and although LRs were not calculated for clicks, the results suggested that 

click frequency was a very unstable parameter and unlikely to be a useful 

discriminant for the majority of speakers. 

 

a. Do experts’ expectations surrounding the discriminant value of 
certain speech parameters match the parameters’ empirically tested 
performance? 
 
The results presented in Chapters 4-7, in combination with the results from the 

survey in Chapter 3, suggest that disparities exist between expert opinions and 

empirical findings with regard to AR and clicks. However, expert expectations 

appear to be accurate for LTFD and, to a lesser extent, F0. 

 

(3) How well do speech parameters work in combination to discriminate 
between speakers? 

 

Table 8.5: Summary of LR-based discrimination for the complete system (100 speakers) 

Comparison % Correct Mean LLR Min LLR Max LLR EER Cllr 

Complete System SS 92.00 5.673 -3.082 7.316 
.0607 .3793 

Complete System DS 93.27 1.560 -infinity 3.963 

 

Table 8.5 (from Chapter 8) presents a summary of the uncalibrated LR results 

for LTFD, F0, and AR in combination. The system combining these three 
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parameters produces a lower EER and Cllr than any individual parameter. The 

results supported the view expressed by survey participants, i.e. that the 

combination of parameters is more successful in discriminating between 

speakers than any of the parameters individually. 

 

a. What steps need to be taken in order to appropriately combine 
speech parameters? 
 
The proper combination of speech evidence will vary depending on the given 

data set. However, for all cases, correlations should be tested in order to 

establish whether there are dependent relationships amongst speech 

parameters in order to avoid miscarriages of justice (through the doubling of 

evidence). For the given data set, dependent relationships were identified 

amongst LTFD2-4, and MVKD was used to account for the existing correlations 

(by applying statistical weightings). The remaining parameters were found to be 

mutually exclusive and the speech evidence was therefore combined using 

Naïve Bayes.  

 

b. Are multiple speech parameters in combination always better than 
individual parameters at discriminating between speakers? Are more 
parameters better? 
 
Chapter 8 revealed that for the given data set, the addition of more parameters 

improved system validity. However, this did not improve all of the LR statistics 

(e.g. exceptions included SS and DS percent correct, SS and DS Mean LLR, and SS 

and DS Max LLR). 

 
(4) What are the practical limitations/implications of using the numerical 
LR framework in FSCs? 
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Chapter 9 discussed the limitations and implications of using a numerical LR 

framework that arose during the development of the system created for this 

thesis. Those limitations include, but are not confined to: subjective elements of 

the methodological process, difficulties in delimiting the relevant population, 

the limited availability of population statistics, the lack of models to calculate 

LRs for complex speech data distributions, and the range of methods used to 

combine speech evidence. 

 
a. What recommendations, if any, can be provided by attempting to 
implement a numerical LR framework? 
 
Chapter 9 concluded that two fundamental factors – the amount of time needed 

to collect enough data to create a human-based system consisting of just four 

parameters, and the inherent complexity of speech evidence - inhibit the 

implementation of a numerical LR framework. Although it has been done, it is 

difficult to implement a completely numerical LR framework if one is to do it 

properly/responsibly. Chapter 9 therefore recommended that practitioners 

wishing to use a Bayesian framework should consider adopting a verbal LR 

framework or a combination of a verbal and numerical LR framework, instead 

of a purely numerical one. 

 
b. What can a human-based (acoustic-phonetic) system tell the field 
regarding the ease with which a numerical LR can be computed for FSCs? 
 

The algorithms with which a human-based system can calculate a numerical LR 

are the same as those used by an ASR. However, the time needed to collect and 

analyze the data for the actual LR calculation is much more intensive for a 

human-based system. Time constraints aside, Chapter 9 suggested that the 
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human-based system was capable of producing results comparable to those of 

ASRs. It also proposed that with real forensic material (e.g. degraded or shorter 

criminal recordings), the human-based system could potentially outperform an 

ASR. 

10.2 Opportunities for Future Research 

Successful application of the numerical LR framework will require a large 

amount of additional research if the presentation of FSC conclusions in such a 

framework is to become an everyday reality. The work presented in this thesis 

would benefit from future investigations in two prominent areas of research: 

(1) the integration of ASRs and phonetic-linguistic parameters, and (2) research 

into more transparent and successful ways for combining correlated speech 

evidence (e.g. fusion). 

 As discussed in § 9.4.1.2, there is potential for improvements in speaker 

discrimination through the integration of ASR techniques and phonetic-

linguistic parameters. Future research in this area may benefit from the 

availability of systems such as Vocalise (Vocalise, 2013) which allows for   

(semi-)automatic analysis and comparison of samples using LTFDs as well as 

MFCCs.  

 The second challenge – how to combine correlated speech parameters in 

a transparent and appropriate manner – could be explored through the use of 

Bayesian Networks. Other, more developed, forensic disciplines (e.g. DNA 

analysis) rely on Bayesian Networks (Aitken and Taroni, 2004) as an explicit 

and logical method for combining evidence (see Evett et al., 2002). In forensics, 

the use of Bayesian Networks for the derivation of FSC LRs enables any 
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correlations that exist between (or within) parameters to be weighted 

appropriately. A Bayesian Network therefore avoids over- or under-estimation 

of the evidence, by accounting for the correlations through a front-end 

processing technique.  An example of a Bayesian Network (using the 

parameters analyzed in this thesis) is provided in Appendix B. 

10.3 Conclusion 

This thesis set out to explore viability of aligning the field of FSC with other, 

more developed, forensic sciences that are currently implementing a numerical 

LR framework. The research has highlighted a number of difficulties that face 

the FSS community if experts are to continue in their efforts to align themselves 

with advanced forensic disciplines. At the present time, the application of a 

completely numerical LR framework is fundamentally impractical, insofar as 

the numerical LR is unable to incorporate all pieces of speech evidence that 

 count” (those which are discrete rather than continuous, and which cannot be 

adequately quantified). In the process of addressing the main aims of this thesis, 

additional findings were presented, including: the survey of FSC practices, the 

discriminant capacity of individual parameters (AR, LTFD, F0, clicks) and those 

parameters in combination. It is hoped that the findings of the thesis will 

encourage discussion leading towards the solution of problems involved in 

adopting a numerical LR framework for FSCs.  It is also hoped that this research 

will prompt forensic phoneticians to consider implementing a verbal LR 

framework (or a combination of verbal and numerical LRs) in order to mitigate 

the practical limitations associated with completely numerical LRs. 
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Appendix A 

Survey Instructions: 

Each participant was emailed a unique, secured web-link that directed them to 

the survey. The survey had general instructions on the first page, which read: 

‘Please keep in mind that there are no right or wrong answers. This survey is 

meant to serve as a tool to gain insight into the general practices in forensic 

speaker comparisons around the world as well as finding out which features 

forensic phoneticians identify as useful speaker discriminants. 

All answers will be kept anonymous and names of participants will never be 

revealed, so please answer honestly.’ 

Before each of the 9 sections of the survey there were additional instructions to 

remind the participants to generalize to the best of their ability across all cases 

they had worked on rather than always responding that the given feature was 

case-dependent. The instructions for the 9 sections read as below, with X 

representing the number of questions in the section of questions that the 

instructions preceded, as detailed in the survey content section of this thesis: 

‘The following section consists of X questions. Please answer the following 

questions with regards to all speaker comparison cases you have worked on. I 

understand that many features and analyses are case dependent, so please do 

your best to make generalizations where applicable.’ 
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There were some participants who gave the predicted  it depends on the case” 

answer for questions, but for the most part the majority did an excellent job at 

generalizing across cases.  

  



295 

 

Appendix B 

Example of a Bayesian Network for Speech Evidence: 

 Bayesian Networks have never been used in FSS before, yet they offer a 

method for combining evidence that is both transparent and readily accepted 

by other forensic communities (Evett et al., 2002). For this reason, further 

research exploring the development of Bayesian Networks for FSC casework 

would be worthwhile. A hypothetical example (using the parameters analyzed 

in this thesis) is provided below as an illustrative example of a Bayesian 

Network using speech evidence, where H represents the hypothesis. 

 

Figure 11.1: Hypothetical Bayesian Network of speech parameters 

 

     

 

 

Bayesian Networks, such as the figure above, can be used to calculate Overall 

LRs (OLRs) provided that probability densities and variances exist for each 

LTFD1 

LTFD3 LTFD2 LTFD4 

Articulation 

Rate 
F0   Click Rate 

H 
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parameter. If a case does not account for evidence from a certain parameter in 

the figure above, it is possible to simply leave that node out and the remaining 

portions of the Network will still be functional for calculating OLRs. 
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List of Abbreviations 

 
Δ   change or difference 

AR    articulation rate 

ASR   automatic speaker recognition system 

AcPA   acoustic phonetic analysis    

AuPA   auditory phonetic analysis 

AuPA + AcPA  auditory phonetic-cum-acoustic phonetic analysis 

Cllr   cost log likelihood ratio 

CPS   classical probability scale 

DS   different speaker 

DyViS   Dynamic Variability in Speech 

EER   equal error rate 

F0   fundamental frequency 

FSC   forensic speaker comparison 

FSS   forensic speech science 

GMM-UBM  Gaussian mixture model – universal background model 

HASR   human-assisted automatic speaker recognition 

IQR   interquartile range 

LTFD   long-term formant distributions 

LTFD1-4  long-term formant distributions one through four 

LR   likelihood ratio 

LLR   log10 likelihood ratio 

LTS   long-term spectrum 
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MFCC   Mel-frequency cepstral coefficient 

OLR   Overall likelihood ratio 

SD   standard deviation 

SS   same speaker 

SSBE   Southern Standard British English 

VOT   voice onset time 

VQ   voice quality 
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