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Abstract

The field of synthetic biology has progressed from early concept, to initial demon-
strations of simple genetic parts, and more recently to biological systems com-
posed of functional modules that perform useful and specified tasks. Globally,
there is an expectation that synthetic biology will deliver solutions to challenges,
for instance, in healthcare, food security, and energy production. A key challenge
in synthetic biology is to develop effective methodologies for characterisation of
modular genetic parts in a form suitable for dynamic analysis and design. Dy-
namic analysis will enable the design of genetic parts to achieve robust and exten-

sive functionalities, unlike the more commonly applied static analysis.

In this thesis, improvements and new designs of both experimentation and mod-
elling methods are presented, which were used for the quantitative analysis of
transcriptional regulatory genetic parts and the development of mathematical
models to aid predictive model-based design of higher-order genetic parts, in a
top-down design approach.

A data-driven nonlinear dynamic modelling framework is proposed to identify
dynamic models of genetic parts. The identified models are shown to have com-
pact representation and achieve rapid, accurate prediction of experimental data.
The identification framework was extended by incorporating a computational
Bayesian approach, to estimate the uncertainty of model parameters. The novel
identification framework was used to capture the cell population heterogeneity
observed in experimental data of the systems.

To investigate if a reporter cascade has an influential effect on the dynamics of the
system to which it has been linked to, the identification framework was used to
characterise dynamics of two transcriptional regulatory systems - the same func-
tional module but different reporter cascades. For the first time this provided
evidence that the reporter cascades do have an influential effect on the dynamics
of the systems. Generalised frequency response functions obtained from the iden-
tified dynamic models provided an alternative tool for dynamic characterisation
of genetic parts which could be used for design purposes. In addition, character-
ising only the functional module - BBa_F2620 relative to a reporter cascade was
found to be unachievable using the implemented experimentation. However, with
the identification and analysis tools used, the commonality of the systems under

investigation is retrieved and adequately characterised.
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Chapter 1

Introduction

1.1 Background

The multidisciplinary field - "synthetic biology", has been mentioned several times
in news, documentaries and conferences related to global issues. The field has
been growing in popularity and demand, and is now expected to deliver solu-
tions to global challenges, for instance, in healthcare (Khalil and Collins, 2010, Lu
and Collins, 2009, Weber et al., 2008), food security (Stocker et al., 2003, van der
Meer and Belkin, 2010) and energy production (Alper and Stephanopoulos, 2009,
Atsumi et al., 2008, Keasling and Chou, 2008). The food industry in particular,
has embraced this new field and the technology it brings forward, as there are
ever growing numbers of genetically modified agricultural products. However,
the transparency and reliability of this new technology have been questioned by
several, preventing genetically modified products in most sectors from becoming
marketable (Engel et al., 1995).

So what is synthetic biology and what makes it so promising? Synthetic biol-
ogy can be defined as the engineering of biology, which helps incorporate new
functionalities in living cells that do not naturally occur in nature. The basic ide-
ology of design and build in synthetic biology is to identify the target protein and
construct the genetic network pathway required to produce the required target
protein. This is a challenging task, as it comes with high complexity and uncer-
tainty. However, it is still regarded as the key to solving global challenges. It
attracts the minds of researchers from different disciplines like chemistry, physics,

microbiology, mathematics and engineering (Endy, 2005).

Synthetic biology research is conducted in several laboratories worldwide. An

1
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Figure 1.1: The cost of synthesising genes and oligos (Carlson, 2009).

obvious reason for synthetic biology’s growth is the potential the field holds in
transforming many sectors. However, another key reason behind the rapid growth
is the reduced cost and time over the years, of synthesising genes and oligos (Fig-
ure 1.1). As reported in Carlson (2009),

“the number of bases a single individual can synthesize in a day using commercial
instrument has increased by five orders of magnitude, whereas the per base cost of
synthetic genes has dropped by nearly three orders of magnitude”.

Engineering is gradually emerging to play a key role in synthetic biology (Endy,
2005). The general principles practiced in engineering are transferred to synthetic
biology, especially in the design stages, such as drawing in-depth knowledge (first
principles) which permits computer-based iterative design, implementation of de-
coupling and abstraction which enables individuals of different expertise to work
independently in a hierarchical manner and finally, push the motive of standards

in genetic parts to guarantee compatibility in design.

In this thesis a systems and control engineering approach is introduced to the
field of synthetic biology. Nonlinear system identification, a commonly practiced
approach in systems and control engineering, forms a backbone in adopting a
model-based characterisation of genetic parts. It is demonstrated on application
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Figure 1.2: Design stages envisioned by the synthetic biology community.

that reveals the challenges faced in designing genetic parts.

1.2 Motivation

The approach to the design of genetic parts can be categorised into 2 types,
bottom-up design and top-down design. Designing a higher-order genetic part
by building from the very basic genetic network is termed the bottom-up design,
whereas building using off-the-shelf fabricated genetic parts to obtain the required
functionality is referred to as top-down design. Regardless of the design approach,
the design stages envisioned by the synthetic biology community (Figure 1.2) are
mostly practiced (Chandran et al., 2009).

Datasheets obtained through characterisation (Arkin, 2008, Canton et al., 2008),
serve as catalogues to the characterised genetic parts, which summarises the nec-
essary information needed for design. The information provided helps researchers
build higher-order genetic parts, which are eventually tested on completion. The
design stages: design, build and test are repeated until design specifications are
met. However, there are a number of obstacles to overcome before realising such
effective design in practice. In particular, challenges in characterisation are directly
linked to our ability to derive useful models of genetic parts because the concept

of implementing model-based design to assist the design stages of genetic parts is
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central to the engineering ethos.

Model-based design helps in reducing trial-and-error design practice, saving time
and cost (Ellis et al., 2009). Predictive and optimal characteristics of model-based
design, helps in achieving this. Assuming a higher-order genetic part is set out
to be designed, a knowledge base of specifically selected genetic networks and
already fabricated genetic parts are collected. This permits computer-based ex-
tensive simulation to formulate if, the required functionality of the higher-order
genetic part can be obtained. The predictive nature of the model-based design un-
derpins the methodology. Once the higher-order genetic part is assembled, certain
features of the higher-order genetic part or environmental perturbations are tuned
repeatedly and simultaneously in both in-silico and in-vivo prototypes. This al-
lows for robust design which showcases the desirable attributes of model-based

design.

Existing models in the synthetic biology literature, have provided a shortcom-
ing in the effectiveness of model-based design of genetic parts. Static functions
such as Michealis-Menten, Hill equation etc., which are simple but limited, retain
a fixed model structure regardless of the complexity of the system under investiga-
tion, are mostly used. Dynamic models in the form of ordinary differential equa-
tions (ODEs) and stochastic differential equations (SDEs) have also been explored,
which take predefined model structures that grow in size as the gene network
topology increases. These models encounter large model complexity, constrained
parameters and poor prediction accuracy to experimental data.

In this thesis a methodology is proposed, where a data-driven nonlinear dynamic
modelling framework is developed to derive time-domain models of genetic parts,
which are subsequently transformed to frequency-domain models. These models
should be specified in datasheets as extensions, with the purpose of aiding the de-
sign and synthesis of higher-order genetic parts. The time-domain models used in
this thesis, are a class of the continuous-time (CT) nonlinear autoregressive mov-
ing average model with exogenous input (NARMAX) (Billings, 2013), which will
provide a solution for overcoming the typical problems of models for genetic parts
that are overly complex, unwieldy, and of unknown structure. The generalised
frequency response function (GFRF) is used to represent time-domain models in
frequency-domain (Billings, 2013), enabling spectral analysis that will guide the
identification and interpretation of dominant system characteristics of the genetic

parts.
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The time-domain models are derived to capture the dynamic input-output char-
acterisation of genetic parts, opposed to modelling and characterising each of the
subcomponents and from these predict the whole dynamics of the genetic parts
which is equally consistent (Arkin, 2008). The time-domain models derived in
this thesis are predictive but do not give a biochemical interpretation. However,
input-output characterisation allows for quantitative analysis to be implemented

which are tractable, thereby making re-design of genetic parts less challenging.

In order to achieve its aim (the methodology), this thesis accomplishes the fol-

lowing objectives:

e the implementation of a data-driven nonlinear dynamic modelling frame-
work for the dynamic characterisation of genetic parts. The BBa_T9002
system was used as a case study, a simple quorum sensing composite ge-
netic part. Extending its results in static input-output model characteri-
sation (Canton et al., 2008) to a data-driven nonlinear dynamic model, a
model representation that is compact and performs high accurate prediction
is achieved.

o the development of a computational Bayesian identification framework to
address the lack of qualitative study of variations observed in different cell
population of BBa_T9002 system, which are due to population heterogeneity
and gene noise. The developed identification framework provides the un-
certainty in model parameters by constructing distributions, which captures
the variation in the experimental data.

o the further experimentation of BBa_T9002 and "F2620-RC2" systems. The cell
growth and protein expression measurements of both systems were collected
during lag, exponential, stationary and decay phase of microbial growth.
The implementation of the above proposed methodology towards the newly
collected experimental data, allowed for a more robust dynamic character-
isation of transcriptional regulatory genetic parts. It also paved way for
great insights about the effects of using different ribosome binding sites and
fluorescence proteins for the characterisation of transcriptional regulatory

genetic parts.



6 1.3. Overview of the thesis

1.3 Overview of the thesis

The thesis is structured into 8 chapters, covering: literature on the subjects of
synthetic biology and system identification; development of new experimentation
and mathematical methods; and their application to provide new insights into

model-based predictive design of genetic parts in biological systems.

e Chapter 2 provides an overview of the similarities between synthetic biol-
ogy and engineering. The inherent complexity in designing genetic parts in
biological systems is discussed, and the need of implementing model-based
design to assist design stages of biofabrication. Models of cell growth and

gene expression are reviewed along with their shortcomings.

e Chapter 3 provides an in-depth review of techniques for system identifica-
tion: parameter estimation, model structure detection and model selection.
The need to identify models in continuous-time is emphasised, as key an-
alytical design properties need to be shared with and understood by the
biologists. In the last section, generalised frequency response function used
for the spectral analysis of nonlinear black-box models are introduced.

e Chapter 4 proposes a data-driven framework to identify a nonlinear black-
box model for dynamic characterisation of genetic parts in biological sys-
tems. An enzymatic reaction scheme model and continuous-time nonlinear
autoregressive model with exogenous input are identified to characterise a
transcriptional regulatory genetic part - BBa_T9002 system. The superior
performance of the nonlinear black-box model is demonstrated in real ex-
perimental data. It was established that: (i) additional experimental data
was required to robustly characterise the genetic part, where the experimen-
tal data is required to capture the dynamics (both cell growth and protein
expression measurements) of the system through all phases of the microbial
growth and (ii) a principled method is required to capture the cell popula-

tion heterogeneity observed in biological systems.

e Chapter 5 introduces a computational Bayesian identification framework for
nonlinear continuous-time systems that utilises a simulation approach. The
main contribution of this algorithm to the suite of methodology available for
continuous-time nonlinear system identification is the signal derivative free
approach and the estimation of the model parameter uncertainty by con-
structing a distribution. The identification algorithm uses the approximate
Bayesian computation - sequential Monte Carlo method, which generate pa-

rameter distributions that drive term selection by significance testing.
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e Chapter 6 provides the experimental protocols needed to carry out the bio-
fabrication process of the systems - BBa_T9002 and "F2620-RC2". The exper-
imental setup and procedures used in acquiring the required experimental
data are outlined. The collected experimental data is presented, which: (i)
consist of both cell growth and protein expression measurements of the sys-
tems for longer time period and (ii) will aid in the investigation of whether
a reporter cascade have an influential effect on the dynamics of the whole

system it has been linked to.

e Chapter 7 investigates if reporter cascades are appropriate for characterisa-
tion. It was concluded in the chapter that, the reporter cascades do have
an influence on the "relative" dynamics of both systems and characterising
only the functional module - BBa_F2620 relative to a reporter cascade as an
unachievable task using the implemented investigation in this thesis. How-
ever, with the identification and analysis tools used, the commonality of the
systems under investigation (same functional module linked to two different
reporter cascades) is retrieved and adequately characterised. It was also con-
cluded that, more experiments with systems made of the functional module
- BBa_F2620 and different reporter cascades have to be conducted, to de-
duce if the unique representation in time-domain of the "single-cell" protein
expression dynamics obtained in the chapter can be used to represent a sys-
tem made of the functional module - BBa_F2620 and an arbitrary reporter
cascade to aid model-based design. Therefore, leaving the debate - appropri-
ateness of reporter cascades for the use of characterisation of genetic parts,
open to the synthetic biology community. The results presented hint at the
possibility that dynamic characterisation with predictive ability can lead to
new design tools in synthesising functional bioparts and devices.

e Chapter 8 concludes the work done in this thesis, and provide suggestions
for future directions of research.

1.4 Research outputs arising from this thesis

Material from this thesis has formed the basis for one published paper and a book
sub-chapter from Chapter 4 of this thesis,

e K. Krishnanathan, S. Anderson, S.A. Billings, and V. Kadirkamanathan. A
data-driven framework for identifying nonlinear dynamic models of genetic
parts. ACS synthetic biology, 1(8):375384, 2012. (Krishnanathan et al., 2012)
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e S.A. Billings. Nonlinear System Identification: NARMAX, Methods in the
Time, Frequency, and Spatio-Temporal Domains. Wiley, 2013. (Billings, 2013)

A paper based on the material from Chapter 5 is currently under review,

¢ K. Krishnanathan, S. Anderson, S.A. Billings, and V. Kadirkamanathan. Com-

putational system identification of continuous-time nonlinear systems using
ABC.

A conference poster in SB6.0 based on Chapter 7,

e K. Krishnanathan, S. Jaffe, S. Anderson, P. Wright, S.A. Billings, and V.
Kadirkamanathan. A systems and control approach to synthetic biology.

Finally, a paper is in preparation which uses material from Chapter 6 and 7,

e K. Krishnanathan, S. Jaffe, S. Anderson, P. Wright, S.A. Billings, and V.
Kadirkamanathan. The interpretation of gene reporter signal and key dy-
namic design properties.

1.5 Summary of contributions
The novel contributions coming from the thesis are:

¢ A data-driven nonlinear framework for identifying dynamic models to char-

acterise genetic parts in biological systems (Chapter 4).

e A computational Bayesian identification framework for nonlinear continuous-
time systems, which estimates the model parameter uncertainty by con-
structing a distribution that is used to capture cell population heterogeneity
observed in experimental data (Chapter 5).

e Key design properties of the systems under investigation, which includes
the explicit quantification of usage of cellular resources by the genetic parts
(Chapter 7).

e Evidence that reporter cascades do have an influential effect on the dynam-
ics of the systems under investigation. Also, the common invariant features
in time-domain of the systems under investigation (same functional mod-
ule linked to two different reporter cascades) are retrieved and adequately
characterised (Chapter 6 and 7).



Chapter 2

Synthetic biology as an
engineering problem

2.1 Introduction

The Polish geneticist Szybalski was the first to mention the new emerging field
called synthetic biology in 1974 (Szybalski, 1974). Back then he envisioned that
once the descriptive understanding of molecular biology is achieved, a whole new
challenge in research will start. A research about devising new control genetic
parts, that could be added to existing genomes for several novel ideas. The dis-
covery of constructing recombinant deoxyribonucleic acid (DNA) using restriction
enzymes in 1978, propelled the field of synthetic biology (Szybalski and Skalka,
1978). Recombinant DNA molecules are artificial synthesised DNA which consist
of multiple genetic sequences that are ligated together. The recombinant DNA
molecules are attached to plasmids, which are inserted into naturally occurring
cells known as the host cells. The host cells acquire new functionalities through
the inserted recombinant DNA.

Approximately 30 years after the discovery of recombinant DNA, synthetic bi-
ology has grown rapidly, as synthesised genetic parts have more complex and
diverse functionalities. There are different synthetic biology research projects be-
ing conducted, related to various industrial sectors such as health-care (Khalil and
Collins, 2010, Lu and Collins, 2009, Weber et al., 2008), food (Stocker et al., 2003,
van der Meer and Belkin, 2010) and energy (Alper and Stephanopoulos, 2009, At-
sumi et al., 2008, Keasling and Chou, 2008). In Keasling’s group, the development
of a genetic regulatory network pathway to produce an anti-malarial drug precur-

sor, artemisinic acid in yeast, attracted attention and success (Dueber et al., 2009,

9
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Ro et al., 2006, Shiba et al., 2007). A Paris-based pharmaceutical company Sanofi,
licensed this technology in 2008 and is reported to have successfully produced 39
tonnes of artemisinic acid by 2013 (Peplow and others., 2013). Recent advance-
ment have also seen the emergence of optogenetics, the use of certain wavelengths
of light as an external mode of control towards gene regulation (Milias-Argeitis
et al., 2011, Shimizu-Sato et al., 2002, Toettcher et al., 2011) since the breakthrough
of engineering bacteria to see light in 2005 (Levskaya et al., 2005). This mode of
control proves to be beneficial, as chemical interference with the host cell’s cellular

context is avoided and enables achievement of precise control.

This chapter discusses the engineering concepts shared in synthetic biology and
the analogous design of genetic parts to various computer and electrical systems.
As various similarities between engineering and synthetic biology are reviewed,
the importance of practising classical engineering strategies: standardisation, de-
coupling and abstraction, in synthetic biology is highlighted. Challenges in de-
signing genetic parts are also discussed with links to characterisation. Model-
based design as a solution to these challenges is reflected, and existing models
in the literature for both cell growth and gene expression are reviewed with their

shortcomings.

2.2 An engineering problem with great complexity

Synthetic biology has gone through 3 phases: molecular, modular and system
level, in terms of understanding and designing cellular functions (Hartwell et al.,
1999, Purnick and Weiss, 2009). Presently, designed genetic parts in synthetic
biology are analysed and tested at the system level, where application based syn-
thesised biological systems are evolving from design prototypes (McDaniel and
Weiss, 2005). Cells are made up of several different types of molecules, which in-
teract with one another that enables the cells to perform various functionalities. In
the twentieth century, biologists tried to define cellular functions at the molecular
level, however, this turned out to be very complex (Hartwell et al., 1999). The rea-
son being, each cellular function is not carried out by a single molecule nor does a
single molecule have only one distinct functionality to carry out. Rather, a group
of molecules interact with one another to perform a discrete cellular functionality.
The group of molecules is termed a module. Cellular functions are easier to define
and interpret by module or group of modules. Cells as a whole, exploit the inter-
connectivity of group of modules, to achieve higher level of cellular functions and

operate as a system. Recombinant DNA can be classified as an artificially synthe-
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sised module. The modular and system level understanding of cellular functions,
aid researchers in the twenty-first century to design genetic parts in biological
systems based on physical layers, that constitute a module or group of modules
(Andrianantoandro et al., 2006).

Interactions between molecules in cells occur through the process of biochemi-
cal reactions. There are vast number of different biochemical reactions that take
place inside a cell, which enables the design of biological systems with a variety
of functionalities. Some of the biochemical reactions that take place in a cell are
transcription, translation, protein phosphorylation, allosteric regulation and lig-
and/receptor binding (Andrianantoandro et al., 2006, Burack and Sturgill, 1997,
Jewett et al., 2008). When two or more biochemical reactions are fused together,
a genetic regulatory network is created which gives rise to a functional module.
Some examples of genetic regulatory networks are transcriptional regulation net-
works, protein signalling pathways and metabolic networks. Transcriptional reg-
ulation networks are well studied and implemented (Figure 2.1). By modifying
and tweaking certain properties of a transcriptional module, mechanisms such as
positive and negative feedback, feedforward and multi-transcriptional cascade can
be achieved. By adopting the positive and negative feedback mechanisms, func-
tions such as: (i) cell bistability can be attained - the induction of an activator or a
repressor switches a cell from one stable state to another (Berg, 1988, Maeda and
Sano, 2006, Morgan, 1997, Stricker et al., 2008), (ii) a toggle switch can be con-
structed, by using one of each positive and negative feedback mechanisms (Gard-
ner et al., 2000, Tian and Burrage, 2006) and (iii) an oscillatory dynamics can be
achieved, by the use of several positive and negative feedback mechanisms (Atkin-
son et al., 2003, Elowitz and Leibler, 2000, Garcia-Ojalvo et al., 2004, Stricker et al.,
2008). The feedforward mechanism is built with a single transcriptional module
that is controlled by two transcription factors (Basu et al., 2005, Bleris et al., 2011,
Mangan and Alon, 2003), whereas the multi-transcriptional cascade mechanism
is built by connecting several transcriptional module, side by side, that could be
used in studying delays in signal transmission (Hooshangi et al., 2005, Rosenfeld
and Alon, 2003).

The hierarchical levels in studying and designing genetic parts in biological sys-
tems draws synthetic biology more towards engineering than natural science (An-
drianantoandro et al., 2006, Endy, 2005, Hartwell et al., 1999). In Andrianantoan-
dro et al. (2006), conceptual analogy between computer engineering and synthetic
biology is shown, such as networks to tissues, computers to cells, modules to
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Figure 2.1: Transcription and translation steps in a) prokaryotic cells and b) eukaryotic
cells (image obtained from openstax college free online book - biology). In this thesis,
only bacterial cells are considered, which are prokaryotic cells. During transcription, RNA
copy of a gene sequence is made, called the messenger RNA that is read by ribosomes, in
order to translate it into a sequence of amino-acids during protein synthesis.

pathways etc.. As much comparison is made between engineering and synthetic
biology, there are unique properties that distinguishes biological systems from sys-
tems in other engineering fields. These unique properties are cellular dependency,
replication and evolution (Andrianantoandro et al., 2006, Heinemann and Panke,
2006). Genetic parts are cellular dependent - they typically need cellular resources
to function. They obtain and share the resources from the engineered host cells,
which leads to crosstalk (interference in the genetic regulatory network), thereby
modifying the host cells themselves. There is recent research focusing on building
and testing transcriptional-translational genetic parts in a cell-free environment
(Shin, 2012, Siegal-Gaskins et al., 2013, Tuza et al.).

Replication is a naturally occurring characteristic of cells. Parent cells divide and
multiply into several daughter cells during growth phase. Inserted genetic parts
within the cells also divide and replicate along with the cells. Even though a cell
is engineered to acquire a desired functionality, populations of cells are used to
complete the desired and required tasks. Mostly, the populations of cells exhibit
heterogeneity and variability in their performance causing uncertainty. However,
the effect of unpredictability in the molecular level will be of minimal effect, given
that a significant amount of cells in a particular population perform the desired
tasks.

Evolution can be defined as the modification of the inherited characteristics in cells
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over successive generations. It can be both disadvantageous and advantageous to
the design of biological systems. Disadvantageous because evolution introduces
variability in the characteristics of cells, leading to unpredictability and, it also
optimises the wild strains of the cells to the extent it refuses to be compatible in
an artificial context (Andrianantoandro et al., 2006). Directed evolution is the pro-
cess of implementing related restraints to command natural selection, in order to
produce desirable protein molecules. This serves as an optimisation procedure in
the design of biological systems which is advantageous (Collins et al., 2005, Hasel-
tine and Arnold, 2007, Isaacs et al., 2006, Purnick and Weiss, 2009). Amongst the
synthetic biology community, the designing of genetic parts in biological systems
is approached by practising classical engineering strategies: standardisation, de-
coupling and abstraction, with the consideration of the distinguishing properties
mentioned above (Endy, 2005, Hartwell et al., 1999, Heinemann and Panke, 2006).

2.21 Standardisation, decoupling and abstraction

Standardisation is the definition and implementation of standards in genetic parts.
Standardisation ensures that genetic parts are designed in a defined manner, that
permits the fabrication of higher order genetic parts to be translatable and un-
complicated. This motivates non-experts such as engineers, to get involved in the
design process. In Miiller and Arndt (2012), it states that:

"standardization of the physical composition and the description of each part is required
as well as a controlled vocabulary to aid design and ensure interoperability.”

There are two well renowned establishments which provide standard genetic parts:
(i) registry of standard biological parts (RSBP)

(http:/ /parts.igem.org/Main_Page?title=Main_Page) and (ii) biofab

(http:/ /www.biofab.org/). RSBP was founded at the Massachusetts Institute of
Technology (MIT), its registry holds around 6000 standard genetic parts (Shetty
et al., 2011). The standard genetic parts are annually contributed into the registry
by the international genetic engineering machine (IGEM) teams and laboratories.
IGEM is an annual competition which attracts laboratories and teams from differ-
ent parts of the world to educate and compete, in order to advance the field of
synthetic biology, and develop an open community and collaboration. The stan-
dard of a genetic part in RSBP is defined by the use of a prefix and suffix, in the
beginning and end of a genetic part. The prefix and suffix segments contains re-
striction sites, that could be cut and connected using specific restriction enzymes
and DNA ligase, permitting the assembly of a new genetic part. The assembly also

ensures that the new genetic part maintains the same prefix and suffix segments.
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Figure 2.2: A snapshot of the catalogue in the registry of standard biological parts

The plasmid backbone which propagates the new genetic part, also defines the
standard of the new genetic part it maintains. RSBP holds a diverse catalogue of
genetic parts (Figure 2.2), such as promoters, terminators, ribosome binding sites,
translational units efc..

Synthetic biology requires expertise from different fields, to work together to pro-
duce a functioning whole. Decoupling plays a crucial role in this by separating
a complicated problem into several simpler problems, that can be directed to in-
dividual experts, such that the combination of the resulting work could produce
the required solution (Bashor et al., 2010, Endy, 2005, Tucker and Zilinskas, 2006).
A good example is the DNA synthesis, where certain experts focus on designing
useful pieces of DNA, while others focus on using the DNA pieces to build DNA.

In the engineering of a biological system, when decoupling is achieved, the re-
spective simpler tasks which make up the main goal can be organised across levels
of complexity using abstraction hierarchies. This helps in managing engineering
complexity. Working on each level should be independent and transparent. Some
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current computer design tools support hierarchical design of biological systems,
aiding redesign and simplicity (Chandran et al., 2009).

2.2.2 Characterisation and model-based design

As engineering of biological systems are discussed, the daunting knowledge gap
when it comes to how cells operate is a barrier. The difficulties multiply as the
genetic regulatory networks get larger, limiting the ability to design more com-
plex biological systems. In 2009, the review Purnick and Weiss (2009), shows
that although the number of synthesised genetic parts has risen over the past few
years, the complexity of their genetic regulatory networks has begun to flatten
out. Challenges are encountered in every step of the process, from the charac-
terisation of genetic parts to the fabrication of the biological systems. In Kwok
(2010), five challenges are reported: (i) many genetic parts are undefined, (ii) the
genetic regulatory network is unpredictable, (iii) the complexity is unwieldy, (iv)
many genetic parts are incompatible and (v) variability in the performance of the
genetic parts crashes the biological systems. Due to these challenges, most genetic
parts are built on several trial and error methods. This practice does not guarantee

biological systems to be designed optimally, in a short time scale or into a working

prototype.

As discussed in Chapter 1, it is important to implement a model-based design to
assist the design stages of genetic parts in biological systems which would provide
solutions to some challenges discussed in the above paragraph. For model-based
design to be effective, deriving useful models to characterise genetic parts is cru-
cial. However, what is fully expected from the characterization of a genetic part to
aid design is still a developing process. A good example was set in Canton et al.
(2008), where the emergence and importance of a datasheet, which serves as a
catalogue with adequate information about a genetic part is shown. Also, as prac-
ticed in other engineering disciplines, the development of a model is emphasised
and included in the datasheet. The work shown in Canton et al. (2008), serves
as a benchmark for the characterisation of genetic parts and do need progressive
development, for example the derived model-type (Arkin, 2008): (i) what type of
model is required, (ii) what information should the model provide, (iii) should the
model be static or dynamic, (iv) should the model be deterministic or stochastic,
(v) how parameter constrained is the model and (vi) should it be a single-cell or
population-level model? These are the very questions that the discipline of system
identification tries to answer.
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2.2.3 Variation in gene expression

A derived model, should be able to account for the variability observed due
to population-level heterogeneity and gene noise. Biological systems dynam-
ics are highly stochastic due to the variability, which makes modelling harder
(Cheong et al., 2010, Elowitz et al., 2002, Raser and O’Shea, 2005, Swain et al.,
2002, Wilkinson, 2009). Population-level heterogeneity occurs mostly due to cell
death, crosstalk, mutations and, changing intracellular and extracellular condi-
tions. Gene noise can be categorised into intrinsic and extrinsic noise at single-cell
level. Intrinsic noise can be defined as an intracellular disturbance in a cell due to
variations in cell resources such as RNA polymerase, transcription binding factor,
messenger RNA, efc.. Intrinsic noise is understood to be a transient variation at
the beginning of the cell cycle. Extrinsic noise arises due to cell to cell differences
such as cell cycle stage, spatial chemical concentration, inheritance efc.. Extrinsic
noise is known to last throughout the cell cycle, periodically and in small magni-
tude.

It is only possible to further understand gene noise, if single-cell measurement is
feasible and easily attainable, which is not completely achievable presently. There
are some advances in attenuating noise at single-cell level. Feedbacks and gene
regulations are built as modules into cells to reduce the level of noise expression,
however, the limit of suppression that is possible is very low due to the sacrifice
of cells to preserve cellular resources (Lestas et al., 2008, 2010, Sun and Becskei,
2010). Also when there is sufficient resources present, the feedback signals are

very noisy, which demands more cellular resources for attenuation.

2.3 Biochemical modelling

2.3.1 Cell growth models

Modelling of the microbial cell growth is important. The cell growth model should
be able to capture and predict all four phases of the microbial cell growth (Figure
2.3): (i) lag, (ii) exponential, (iii) stationary and (iv) death. One of the earliest
developed model for cell growth is the Monod model (Monod, 1949),

u(t) = Hmax (kMtsj_tl(t)), (2.1)

where y(t) is the changing growth rate of the microbial culture, yy,y is the maxi-
mum growth rate of the microbial culture, s(t) is the concentration of the limiting
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Figure 2.3: The typical growth of number of cells in a microbial culture

substrate for growth at time t and ks, is the saturation constant. The Monod model
only fits the exponential phase of the microbial cell growth, thereby it is unable
to predict the remaining 3 phases of the microbial cell growth. There have been
efforts to expand the Monod model to capture the growth of microbial cultures
that consist of competitive and noncompetitive substrates and products. Another
widely used model is the Logistic model that relates the changes of growth rate
with changes of cell concentration. The structure of the Logistic model is defined
as (Ai et al., 2003, Fujikawa et al., 2004)

u(t) = pmaxx(t) (1 _ X ) (2.2)

Xmax
where x(t) is the cell concentration and X,y is the maximum cell concentration
at the stationary phase. However, the Logistic model is unable to predict the lag

phase of the microbial cell growth.

The work reported in Lin et al. (2000), develops a cell growth model (called the
Lin’s model in this thesis) based on the time dependent changes of growth rate
1 (t), which is able to predict the lag, exponential and stationary phase of the

microbial culture,

u(t) = ,”max( ! ) ( L ), (2.3)

1 + e_kin(t_tin) 1 —|— ekde(t_tde)
x(t) = u(t)x(t), (2.4)

where the maximum increasing rate of y(t) is kj,, the maximum decreasing rate



18 2.3. Biochemical modelling

of u(t) is kg, the time point when the increasing rate of y(t) equals kj, is t;, and
the time point when the decreasing rate of y(t) equals kg, is f.. The parameters
that govern the Lin’s model can be obtained graphically from experimental data.

2.3.2 Gene expression models

There are several different types of models in the literature used in fitting gene
expression data. Gene expression models can be categorised as either static or
dynamic models. They are derived from reaction schemes and genetic regulatory
networks which describes the underlying properties of the genetic parts under
consideration. Reaction schemes and genetic regulatory networks are well stud-
ied knowledge from biochemistry and microbiology literature (Cornish-Bowden,
2013).

Static gene expression models

Static models are widely used in synthetic biology, in the form of the Michaelis-
Menten and Hill equations (English et al., 2005, Gertz et al., 2008, Houston and
Kenworthy, 2000, Kim et al., 2006). They are used as gray-box models to char-
acterise input-output behaviour of modular genetic parts. Consider the simple

reaction scheme used in deriving both the Michaelis-Menten and Hill equations

kl kz
e+n.skies —e+p
-1

where e denotes enzyme, s substrate, n Hill coefficient, e; enzyme-substrate com-
plex, p product and where the reaction scheme has an associated total enzyme
concentration ep. The parameters ki, k_; and k, defines the rate of reactions.
The ordinary differential equations (ODEs) obeying the law of mass action for the

above reaction scheme can be written as (Palsson, 1987)

$(t) = n(—kie()s"(t) + k_1es(t)), (2.5)
e(t) = —kie(t)s"(t) + (k1 + k2)es(t), (2.6)
65(t) = kie(t)s"(t) — (k1 + k2)es(t), (2.7)

p(t) = kaes(t). (2.8)

By applying assumptions which are discussed in Chapter 4 to the above ODEs,
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the Hill equation can be defined as (Cornish-Bowden, 2013)

n

. S'ss
p(t) = vmax(isnss = kl;), 2.9)
where k‘r} = k’};kz, Umax = koeo(t) and subscript ss refers to steady state. The

Michaelis-Menten equation can be obtained from the Hill equation by equating
n = 1. The regressed output of the Hill equation is the vector of the rate of
product at a single time point for different substrate concentration, hence called
a static model. The Hill equation is modified (as the reaction schemes differ) to
characterise different bimodality functions such as AND, NAND and NOT gates
(Tamsir et al., 2010, Wang et al., 2011).

Dynamic gene expression models

Here, dynamic gene expression models in synthetic biology shall be reviewed by
classifying them as: (i) fine-grained dynamic (FGD) models, modelling every sin-
gle biochemical reactions that take place in a genetic part and (ii) coarse-grained
dynamic (CGD) models, where only the input-output behaviour of a modular ge-

netic part is characterised.

FGD modelling was once a domain mostly practised by experts, but has been an
area of growth over the last decade. There has been a incremental rise in the num-
ber of software tools and open source information, facilitating model exchange
and improvement. In FGD modelling, the following is needed: (i) a detailed un-
derstanding of the genetic part and its biochemical processes and (ii) encoding
the biological knowledge into mathematical forms (mostly as reaction schemes
or ODEs). Thereby, an initial FGD model is normally created which is reason-
ably faithful to the genetic regulatory network structure describing the genetic
part. Mostly when implementing the FGD model of a genetic regulatory network
in computer software, it is done in many logical layers (Figure 2.4B), where the
first layer comprises of interacting molecules such as messenger RNA, RNA poly-
merase, proteins efc.. The final layer comprises of the mathematical expressions
(in form of reaction schemes or ODEs) for describing the biochemical interactions,
and the fluxes in and out of the biological systems.

The extensible markup language (XML) formats for FGD models of genetic regu-
latory networks have enabled the use of different computer programs and tools,
and the two commonly used extensions are systems biology markup language
(SBML) and cellular markup language (CellML) (Hucka et al., 2003, Lloyd et al.,
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2004). These extensions allow the use of own internal representation of a mathe-
matical model (not restricted to ODEs). The scripting language in the extensions
will entitle the following elements such as species, parameters, reactions, rules,
events efc., to describe the genetic regulatory network. Some of the biochemical
and gene regulatory interactions with kinetic parameters can be obtained from
scientific databases (Caspi et al., 2008, Kanehisa et al., 2008, Vastrik et al., 2007).
Unidentified parameters are mostly estimated using a range of global and local
optimisation algorithms offered by COPASI (Hoops et al., 2006) or inspected qual-
itatively by bifurcation analysis (Endler et al., 2009).

CGD modelling in synthetic biology is also widely practised, which involves the
characterisation of input-output behaviour for a modular genetic part. Apart from
the static gene expression models such as Michaelis-Menten and Hill equations
which are used as gray-box models, dynamic gray-box models under CGD mod-
elling are also explored as deterministic and stochastic functions in the form of
ODEs and stochastic differential equations (SDEs) (MacDonald et al., 2011). CGD
models are mostly predefined structural models, which are usually incorporated
with a sigmoidal function to capture the cooperative binding of ligands, however,
their structures largely depend on the genetic part under consideration. Some
good examples of CGD models are the well known repressilator model (Elowitz
and Leibler, 2000) and models reported in (Covert et al., 2008, Karlebach and
Shamir, 2008, Tian and Burrage, 2006, Wilkinson, 2009) (Figure 2.4A). If a statisti-
cal approach is taken, the parameter estimation of the CGD models are done by
maximum likelihood method, whereas, weighted sum of squares or other optimi-
sation algorithms are used for non-statistical approach (De Jong, 2002, MacDonald
et al., 2011) (see Chapter 3). Model selection has been recently explored for CGD
modelling, when competing CGD models are involved. The competing CGD mod-
els are nested and compared using a computational Bayesian method called the
approximate Bayesian computation (ABC) (Barnes et al., 2011, Kirk et al., 2013)
(see Chapter 5).

Shortcomings in gene expression models

The modelling process for gene expression itself allows one to scrutinise not only
the available experimental data, but also the known or assumed models. There-
fore, to conclude this subsection, the shortcomings of existing gene expression
models which have evidently resulted to ineffective model-based design of ge-

netic parts are outlined:
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2.4. Summary

e The static models are shown to have good experimental fit and predictions

whereas most dynamic models are not. However the static models are lim-

ited in terms of design implementation.

Complexity is a major issue in synthetic biology. The dynamic models grow
in number as the genetic regulatory network becomes larger leading to an
explosion in model complexity. High level of detailed resolution in mod-
elling is both computationally intractable and too quantitatively inaccurate
to answer the questions that one is interested in, during the design of genetic
parts.

Most of the static and dynamic models have predefined model structure, that
is not adjusted to the complexity of the genetic part under consideration.
Due to this, most parameters of the models are constrained and leads to

unrepeatability towards another set of experimental data.

24 Summary

This chapter gave an overview of the similarities between synthetic biology and

engineering. It also discussed the inherent complexity involved in engineering

genetic parts in biological systems, and the need of implementing model-based

design to assist the design stages of biofabrication. Cell growth and gene expres-

sion models in the literature were reviewed, with the latter having shortcomings

due to model complexity, poor experimental data prediction and computational

intractability for design.



Chapter 3

System identification and its
literature

3.1 Introduction

As discussed in the previous two chapters, model-based design of genetic parts in
biological systems, has not been effective due to the shortcomings of dynamic gene
expression models in the synthetic biology literature. In this thesis, we address
this problem by introducing nonlinear black-box models in system identification.
Nonlinear black-box models are able to encapsulate and capture all internal func-
tions of a genetic part, thereby characterising it using only the input and output
data. In later chapters, this is shown to be sufficient for knowing how to use this
abstracted genetic part in a larger design. The nonlinear black-box models are sug-
gested to overcome the shortcomings of existing dynamic gene expression models
that are overly complex, unwieldy, and of unknown structure (Kwok, 2010).

The acquisition of input-output data through the design of experiments facilitates
the identification of black-box models, which requires the input signal to persis-
tently excite the system to evoke its full range of dynamics, that is observed in
the output data (Ljung, 1999). There is an abundance of black-box model struc-
tures under different model class: linear, nonlinear, discrete-time, continuous-
time, parametric, non-parametric, time-variant, time-invariant, etc. (Pearson, 2003).
In this chapter, linear and nonlinear in model structure, discrete-time and continuous-
time, time-invariant parametric models that are linear (nonlinear autoregressive
model with exogenous input) and nonlinear (nonlinear output error model) in-

the-parameters are reviewed.

23
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Since parametric models are used, parameter estimation is a key step, least squares
is used in estimating linear parameters (Ljung, 1999) and gradient-based nonlin-
ear optimisation is used in estimating nonlinear parameters (Nelles, 2001). The
experimental data modelled in this thesis is nonlinear, therefore the challenging
task of model structure detection is discussed. The model structure detection to
identify a nonlinear black-box model with parsimonious description can be ap-
proached either by forward or backward selection of model terms from a super-
set of possible candidate model terms. The model structure detection methods
reviewed here are shown to be driven by: (i) the error reduction ratio, either com-
puted from one-step-ahead (Chen et al., 1989) or simulated (Piroddi and Spinelli,
2003) prediction or (ii) using estimates of parameter statistics to selectively in-
clude or exclude model terms (Kukreja et al., 2004). In system identification, the
model identified is expected to have a good generalisation performance, which is
accessed by cross-validating the model with the test data. The parametric non-
linear black-box models can be transformed directly from time domain models
to frequency domain models using the concept of generalised frequency response
function (Billings and Tsang, 1989a), which were introduced to describe the spec-
tral properties of nonlinear dynamical systems.

This chapter deals with the concept of modelling dynamical systems from ob-
served input and output data. Parametric models with a superset of possible
model terms are used, so estimation of the parameter values and detection of cor-
rect model terms is of fundamental importance. The nonlinear black-box models,
modelling techniques and the frequency domain analysis based on generalised
frequency response function presented in this chapter represent a comprehensive
package of tools that are used in the subsequent chapters to model and analyse
the genetic parts of biological systems.

3.2 Model structures

The model structures discussed in this section are formulated in discrete-time
(DT). It should be noted that, the models implemented in this thesis are in CT
(Chapter 4,5 and 7), however, as system identification is much more established
in DT, there is a need to review both DT and CT model structures. In section
3.7, some equivalent CT model structures are later discussed briefly. There is a
wide variety of model structures that are available which are not discussed in this
thesis such as Wiener series, Volterra series efc., as it exceeds the scope of this

overview and the reader is referred to reviews and books available (Billings, 2013,
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1980, Haber and Unbehauen, 1990, Nelles, 2001).

3.2.1 Linear black-box models

The representation of the generic black-box model structure for linear systems,
which is a widely accepted standard in system identification is given in Ljung
(1999),

_ B@ . Cl)
= Fpa@) ™ T DA™ @.1)

where v, € R, ux € R and ¢, are the discretised output, input and noise signal

at time step k respectively. The noise e is assumed to be independent, zero-mean
and white. The operator g denotes the forward shift, i.e., g 'yx = y;_1. The input
and noise transfer functions can be further simplified by representing them with
the filters

__Bl .
0= Faagg 62
00 = oAy 63

The observed output y; normally contains additive noise e, which is mostly in-
herent from the process or due to sampling errors etc.. All extraneous behaviour
is assumed to be included in the disturbance term which consists of a rational

transfer function H(q) driven by e;. Two commonly used noise models are

Y = qu)ek and (3.4)
v = C(q)ex, (3.5)

where eqn(3.4) is the autoregressive (AR) model and eqn(3.5) is the moving aver-
age (MA) model.

Some common linear black-box models are shown in Table (3.1) (Nelles, 2001).
The autoregressive model with exogenous input (ARX) is the simplest linear black-
box model whose prediction error is linear-in-the parameters. The autoregressive
moving average model with exogenous input (ARMAX) allows for adequate flex-
ibility in describing the properties of the noise ¢, as a MA noise model. How-

ever, the ARMAX model is nonlinear-in-the parameters, therefore requires a more
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Table 3.1: Some common linear black-box models

Model structures | Model equations
— Bl 1
ARX Y = Wuk + Wek
ARMAX Y = %uk + %ek
OE Yk = ﬁ(fgguk + ex

computation demanding parameter estimation than expected of the ARX model
(nonlinear parameter estimation). A more straightforward linear black-box model
is the output error (OE) model, where the noise ¢, is assumed to directly disturb
the system process additively at the output y;. This is a mostly assumed to be a
more realistic model to describe real physical systems.

3.2.2 Nonlinear black-box models

The transition from linear to nonlinear black-box model structures is discussed
below. For simplicity, the nonlinear black-box model structures are formulated for
single-input single-output (SISO) systems. The ARX model can be extended to
a nonlinear model structure as a nonlinear autoregressive model with exogenous
input (NARX) model (Leontaritis and Billings, 1985a,b), which can be represented
by the difference equation below

Ye = f(Yk-1, s Yhonys k-1, -oos Uk—n,) + €k, (3.6)

where ny and 7, denote the maximum number of lags in the discrete output and
input signal, and f(.) is a mapping function that describes the dynamics of the
nonlinear process. Normally, the functional structure of f(.) is usually not known,
however, various expansions have been studied that can arbitrary well approxi-
mate f(.). The output y; and input uy signals are time-series data obtained by
sampling continuous-time data y(t) and u(t) at a sampling time T in the interval
ty = kT for k = 0,..., Ny — 1 where N, is the number of data samples.

The nonlinear generalisation of the ARMAX model is the nonlinear autoregres-
sive moving average model with exogenous input (NARMAX) (Leontaritis and

Billings, 1985a,b) that can be represented as
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Y = f(ykfll ceey ykfny/ Uk—17ees Uk—py,s

(3.7)
Ck—1s s ekfng) + ex,

where 1, denotes the maximum number of lag in the noise signal. Similar to
the difference in the linear case (the comparison between the ARX and ARMAX
model), the NARX model does not have a noise model whereas the NARMAX

model does.

The last nonlinear black-box model structure to be reviewed is the nonlinear out-
put error (NOE) model (Nelles, 2001),

Zk = f(Zk1) ovr Zknys Uk—1) ooor Uk—n,, ), (3.8)

Ve = 2k + ek, (3.9)

where z; € R is the undisturbed discretised output signal at time step k and 7,

denotes the maximum number of lag in the undisturbed output signal.

The nonlinear function f(.) can be decomposed and represented by a linear sum of
basis functions ¢;(.), which can have varying forms including wavelet, polynomial

or radial functions,

Ny
f(8) =) 0i0i(8), (3.10)
=1

where Ny is the number of model terms, 6; is the parameter associated with basis
function ¢;(.) and §; is a vector of lagged variables which is dependent on the
nonlinear black-box model structure. In the order of NARX, NARMAX and NOE

models, their corresponding §; vector can be represented as

NARX: §k = (yk,l, ceny yk,ny, Uk—1,+eer uk,nu), (311)

NARMAX: §k = (ykflr ceey yk,ny, Uk—1,+eer uk,nu, (312)
€k—1, s Ck—p,) and

NOE: §k = (Zk,l, ver Zk—nyr Uk—17 s uk,nu) (313)

respectively.
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Advantages of nonlinear black-box models: NARX, NARMAX and NOE

Many of commonly applied models implemented to characterise genetic parts in
synthetic biology have limitations, either on the model representation and com-
plexity, model prediction performance or system design. In contrast, the nonlinear
black-box models (discussed above) provide a general solution that can address
all challenges in modelling of genetic parts in biological systems. The advantages

can be summarised by the following points:

e The reviewed nonlinear black-box models can be used to represent a wide

range of nonlinear dynamical systems.

e The reviewed nonlinear black-box model’s representations are parsimonious,
which is aided by the automated data-driven model structure detection (MSD)
which allow the identification of very sparse system descriptions involving
a small number of parameters (see section 3.4). This is in comparison to al-
ternatives such as the Volterra series and biochemically derived ordinary/s-

tochastic differential equations.

e The reviewed nonlinear black-box models can be directly transformed into
the frequency domain as generalised frequency response functions (GFRFs)
(see section 3.8). Thereby, allowing for an integrated methodology for iden-

tification, analysis and design.

3.2.3 Cascade models

Cascade models are widely used to describe nonlinear systems, more often in bi-
ology (Bai, 2002, Gollisch and Meister, 2008, Westwick and Kearney, 2001), due
to their relative simplicity in physical interpretations and the ability to preserve
the system’s structure (Billings, 1980). Each cascade block consists of elementary
processing units which perform either dynamic linear operations (L) or time inde-
pendent, static nonlinear operations (N); thereby separating the nonlinearity from
the dynamics of the system’s process (Nelles, 2001). The two simplest and perhaps
most commonly used cascade models are the Hammerstein and Wiener models
(Figure 3.1). A Hammerstein model consists of a single N-L cascade blocks, which

can be represented by the equations

v = fi(ug), (3.14)

Y = 2 vx—jhj, (3.15)

j=—0c0
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a)
u ) v .
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Figure 3.1: Cascade models a) Hammerstein model and b) Wiener model.

where f;(.) is the static nonlinearity, which can be represented using either poly-
nomial, radial or wavelet functions (Pearson, 1999), and h]- denotes the filter’s
impulse response function. Whereas the Wiener model corresponds to a single
L-N cascade blocks,

O — Z le_]']’l]‘, (316)
Jj=—00
Y = fs(vk). (3.17)

The estimation of the parameters for each cascade block is done independently
in an iterative procedure. The range of methods available exceeds the scope of
this overview and the reader is referred to reviews available (Giri and Bai, 2010,
Hunter and Korenberg, 1986). The separable least squares (SLS) method which
is reviewed in section 3.3.2, can also be used in estimating parameters of cascade
models, which is shown to have a better performance than the existing iterative
procedures (Westwick and Kearney, 2001).

Simple cascade models can be extended to broader types of cascade models such
as the Hammerstein-Wiener (N-L-N) model (Bai, 2002) and L-N-L cascade model
(Korenberg and Hunter, 1986). A challenging problem in cascade models is that
intermediate signals such as v, are in most cases not available. The estimation
problem in broader cascade models are also nonlinear-in-the parameters which
could be solved numerically by nonlinear optimisation, provided the exact model

structure of each cascade blocks are known (Niven et al., 2003).
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To conclude this section, after an appropriate model structure is chosen to rep-
resent a system’s dynamics accordingly, the following step would be the model
estimation. The model estimation in system identification, is a combined prob-
lem of MSD and parameter estimation. MSD involves identifying a model with
parsimonious representation such that it will fit the training data set well but
also general enough for other experimental datasets. Parameter estimation on
the other hand is the problem of estimating unbiased parameters for the selected

model terms.

3.3 Parameter estimation

In this section, a general introduction to parameter estimation which entails dif-
ferent optimisation methods that allow one to determine the model’s optimal
parameters are discussed. The full literature of parameter estimation available
exceeds the scope of this overview and the reader is referred to books available
(Bar-Shalom et al., 2004, Bishop and Nasrabadi, 2006, Ljung, 1999, Nelles, 2001,
Soderstrom and Stoica, 1988). The optimisation methods discussed here, will be
those that are classed under the supervised learning, supervised learning are im-
plemented based on the knowledge about the input and output data of the system.

The models dealt with in this thesis are both linear and nonlinear -in-the-parameters,
where the parameter themselves are time-invariant. Given the input vector u and
measurement output vector y, parameter estimate # needs to be obtained that best

represent the measurement data y,

T T
u = (uo,m,...,uNy,l) = (u(to),u(tl),...,u(tNy,l)) ’ (318)
T T
y = (yg,yl,...,yNy_l) = (y(to),y(tl),...,y(tNy_1)> , (3.19)
0=(61,...,0n,) . (3.20)

The optimisation methods will be reviewed by breaking it further down to statis-
tical and non-statistical approaches. It is useful and instructive to briefly describe

basic aspects of both approaches and relate them to system identification,

1. Statistical approach: if the assumption that there is an unknown true value
of 0 is taken, maximum likelihood (ML) maximises how likely a parameter

is, given the observation y that have been made. The maximum a posteriori
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(MAP) takes a conceptually different treatment towards parameter estima-
tion which shall be discussed below.

2. Non-statistical approach: this will be discussed under 2 sub-categories, lin-
ear and nonlinear methods. The nonlinear methods discussed here will
be focused on basic nonlinear local optimisation which is related to the
gradient-based techniques. A brief review of SLS is also discussed, which

utilises both linear and nonlinear methods.

If a model with linear-in-the-parameters is assumed, a linear regression model can
be formulated to represent it,

Yk = @ 0+ex, (3.21)

where ¢, is the regression vector containing regressors. For a given estimate 6,

the associated output prediction will be

A TA

Te=¢, 0, (3.22)
therefore the prediction error can be described as

ék =Yk — ﬁk. (323)

3.3.1 Statistical approach
Maximum likelihood
The likelihood function is defined by p(y|6) and the maximum likelihood method

seeks to maximise this likelihood function, such that

Oy = arg max p(yl6). (3.24)

Considering eqn(3.21) and eqn(3.22) again, with the added assumption that e
is normally distributed with variance A2, then

Ny—1
p(y|®;0) = [] puklew6), (3.25)
k=0

where

Pyl 0) ~ N (¢} 6,A%). (3.26)
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Logarithm functions are monotonically increasing functions, therefore minimising
a function is equivalent to minimising its logarithm. In order to simplify eqn(3.26),
logarithms can be taken on both sides and differentiated with respect to 6. The

following equation below provides the solution

Ny—1 1 N1
DL = (k;) 4:,?4;,() (k;) gkayk). (3.27)

Therefore when assuming Gaussian additive noise, maximising the likelihood
function will be equivalent to minimising the sum of errors squared (shown be-

low).

Maximum a posteriori

In a Bayesian framework, the parameters 0 itself are thought of as a random vari-
able. Based on the observation y, which is another random variable that is corre-
lated with the parameters, we may infer information about their value. Assuming
a prior distribution of the parameters 77(60) exists and using Bayes’ rule, the pos-
terior distribution of the parameters p(6|y) can be obtained as

ploly) = EYEE), (3.28)

where p(y) is the marginal likelihood, which in practice is mostly unknown and

impossible to calculate.

The Bayesian framework estimates a distribution over the parameters of a model.
With the distribution over the parameters it is possible to integrate over the pos-
sibilities to get an average prediction for future outcomes of the system and full
sense of the uncertainties that pertain to it. Also from the posterior distribution,
different estimates of 8 can be determined, for example, the parameter set corre-
sponding to the maximum value the distribution attains, which is also referred as
the MAP estimate,

Buiap = argmax(p(y|0)7(6) ). (3.29)
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3.3.2 Non-statistical approach
Linear methods

Considering eqn(3.23), the least squares (LS) estimate 6, is the value of 8 which

minimises the sum of errors squared,

Ny—1
015 =argmin Y &6, . 3.30
LS 24 P k;) kCk ( )
Using eqn(3.21) and eqn(3.22), the cost function to be minimised with respect to 6

can be written as

N,~1

J(8) =Y <]/k — ¢,?9) (yk - ¢,jé) y (3.31)

k=0
which can be expanded, rearranged, differentiated and equated to zero to show

that it is minimised when

Ny—1 1 Nyl
bs= (X oio) (X oiwn) (332)
k=0 k=0
which can also be written in the matrix form as

O = (cp%p) oy, (3.33)

If a more realistic situation is considered, where a system is corrupted by additive
noise that is correlated (such as the OE and NOE models), then the LS will give
biased estimates of the parameters. The generalised least squares (GLS) overcomes
this problem to provide an unbiased estimate of the parameters by

Oors = (@'V o) loTvly, (3.34)

where V is the error correlation matrix. GLS is implemented in an iterative man-

ner, where parameter convergence is monitored and V is updated.

In MSD, where a large number of possible model terms are considered to rep-
resent a system dynamics, obtaining parameter estimates of the superset using LS
could be misleading, as overfitting is highly viable. The probability of poor condi-
tioning increases with the matrix dimension. Therefore regularised least squares

(RLS) is employed in cases like this, where a regularisation parameter a which is
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a positive real number regularises the influence of the data set on the parameter
estimates. The RLS can be defined as

Oris = (al + @ @) @y, (3.35)

where [ is an identity matrix.

Nonlinear methods

If the gradient of a minimising cost function is nonlinear-in-the parameters 0,
eqn(3.21) is no longer valid, therefore a nonlinear optimisation technique is needed

to search for the optimal parameters,

_ dJ(6)
n =g

where g, is the gradient vector of the cost function J(0).

(3.36)

There are various different types of nonlinear optimization techniques classified as
either local or global search. In this thesis, local search is only of interest. The com-
monly used gradient-based methods shall be reviewed. Regarding gradient-based
methods, the gradient g, is assumed to be estimated by analytical calculations
or approximated by finite difference techniques. The gradient-based methods are
generally captured by the following equations (Nelles, 2001)

0 =01y lpJl, (3.37)
po/ 1 =R g1, (3.38)

where 7 is the step size with direction vector pn, which is evaluated based on the
gradient direction vector gn, the direction scaling matrix R, and j is the iteration

number.

The steepest decent (SD) is the simplest form of the gradient-based methods,
which is obtained by replacing the direction scaling matrix R, with an identity
matrix I. SD is easy to implement as the minimisation of the cost function is a first
order derivative and requires only linear computation. However, when little prior
knowledge of the parameter 0 is known, SD would have a slow convergence and
is typically not applied.

Techniques involving second order derivative for the minimisation of the cost



Chapter 3. System identification and its literature 35

function are classed under the Newton’s method (NM). The direction scaling ma-
trix R, is chosen to be the inverse of the Hessian H~!. For robustness issues the
value of 7 is mostly adjusted by the line search. IH is forced to be a positive definite
during initialisation in order to assure decrease in the cost function. NM is more
computational demanding than the SD as it calculates the inverse of the Hessian

matrix, but it is much faster in terms of convergence.

Separable least squares

Separable least squares (SLS) was introduced in 1973 (Golub and Pereyra, 1973),
which is regarded as a method to estimate the model parameters, where it sep-
arates the parameters into linear and nonlinear sets. The advantages of the SLS
method is that it typically converges in fewer iterations, has improved numerical
conditioning and requires initialisation of fewer parameters in comparison to the
full nonlinear optimisation problem (Bruls et al., 1999, Golub and Pereyra, 2003).
The nonlinear parameters are initialised at the beginning and the linear parame-
ters are estimated using linear methods thereby optimising it with respect to the
nonlinear parameters. The nonlinear parameters are then updated using nonlin-
ear methods whose cost function is only based on the nonlinear parameters. This

is repeated until parameter convergence is achieved.

3.4 Model structure detection

A subtle distinction is taken in this thesis between model structure detection
(MSD) and model selection (MS). MSD involves selecting a small number of model
terms (regressors) from a superset of possible candidate model terms (regressors)
to represent a system. Whereas, MS is the scoring of competing models, in order
to evaluate the best model to describe the observed data and also general enough
to predict other experimental datasets. In nonlinear systems, the number of pos-
sible candidate model terms available are usually very large. Therefore a rigorous
and efficient identification of a parsimonious representation for a nonlinear sys-
tem is crucial. As stated earlier, the models dealt with in this thesis are both linear
and nonlinear -in-the-parameters, therefore a brief review on MSD for both lin-
ear and nonlinear regression models shall be discussed. It should be noted that
an overview on linear regression techniques can be found in (Draper et al., 1966,
Montgomery et al., 2012).
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3.4.1 Linear regression

Theoretically, the most optimal MSD is the exhaustive search. It involves the using
of a criterion to evaluate and select the best model formulated from a set consisting
of models which are built from all possible combinations of model terms. This is
closely related to MS which is discussed in the next section. This method is imple-
mented when the number of combinations of model terms are very few. However
in most cases, the number of models to be examined are very large and practi-
cally not efficient due to very high computation. Forward selection and backward
elimination are two other methods in MSD. Forward selection involves adding
model terms incrementally to a model (which was initially empty) based on their
contribution in describing the system’s dynamics. Backward elimination involves
eliminating model terms from a model (which initially consisted of all possible
candidate model terms), which is seen to be spurious in describing the system’s
dynamics. More details about forward selection and backward elimination can be

seen in the review papers mentioned above.

A more effective method is the step-wise regression, which involves an iteration
between adding a significant model term and removing a redundant model term
(that is already included in the model) to and from a model by forward selection
and backward elimination respectively. The redundant model terms arise due to
the contribution provided by the newly added model terms. In (Billings and Voon,
1986), a step-wise method is implemented.

A common regression method, implemented for the MSD of nonlinear models is
the orthogonal least squares (OLS), which selects model terms based on their con-
tribution to the maximisation of an error reduction ratio (ERR) (Korenberg et al.,
1988). The OLS robustly estimates the parameters of the models, as the usual solu-
tion to the ordinary LS can be inaccurate due to the need to compute the inverse of
the information matrix (® ' ®), which is often ill-conditioned. A modified method
of the OLS-ERR, which is known as the forward regression orthogonal (FRO) was
developed in Chen et al. (1989). The FRO circumvents testing the excessive num-
ber of all possible combinations of model terms, whereby it allows a methodical
regressor and thus an efficient MSD. FRO and other related techniques have been
developed and modified over the last 30 years, into a comprehensive and versa-
tile framework for the estimation and validation of the NARMAX models (NARX
model is a subclass of the NARMAX model) (Billings and Aguirre, 1995, Billings
et al., 1988, Chen et al., 1989, Guo and Billings, 2007, Mao and Billings, 1997).
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Most methods applied today are variants of the classical FRO method (Billings
et al., 1988, Korenberg et al., 1988), and in this thesis FRO shall be used as a
benchmark due to the wide body of literature available supporting the method.
In implementing the FRO for the MSD of the NARX model, the process is a linear
regression method. Whereas, when implemented for the NARMAX model the
process becomes a pseudo-linear method, reason because the residual error is not
known initially, but eventually computed in an iterative manner. It can also be
stated that, the NARMAX model is linear-in-the-parameters, if the residual error
is known. The FRO procedure for the MSD of the NARX model shall only be
discussed (the NARMAX model is not implemented in this thesis).

Before describing the FRO procedure, orthogonalisation of the regression matrix
@ and the computation of the ERR shall be reviewed, as they are crucial steps in
the FRO algorithm. Orthogonal decomposition is done by first partitioning the
linear regression model (eqn(3.21) in matrix form)

y =®0+e¢, (3.39)
y=®A A0 + ¢, (3.40)
y=Wg+e, (3.41)

where W = [wy,..., wy,] is a (Ny X Np) orthogonal regression matrix with orthog-
onal columns, A is a (Ny x Np) upper triangular matrix, € is the model residual
error vector, g is the corresponding parameter vector to be estimated and where

W=aoA", (3.42)
g = A0. (3.43)

The QR decomposition of & = WA is normally achieved by using modified Gram-
Schmidt (MGS) algorithm (Chen et al., 1989). The columns in W are uncoupled,
therefore their corresponding parameters in g are also uncoupled. This allows
one to evaluate the individual contribution of each model term (regressor) in W
towards minimising the distance between the observed output and the one-step-
ahead prediction.

The FRO procedure iteratively compares and ranks model terms by their mea-
sured significance. A model term’s (regressor’s) significance is measured by the

contribution of the model term to the observed output based on the one-step ahead
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prediction using ERR,

‘W :
=7 7 (3.44)

where the one-step-ahead prediction of y is given by gjw; and j = 1,..., Np.

The FRO procedure for the MSD of the NARX model can be summarised as fol-
lows:

1. Compute the ERR value of each model term (regressor) and identify the
model term (regressor) with the largest ERR value and move it to the first

column of the regression matrix.

2. Orthogonalise the remaining model terms (regressors) with respect to the se-
lected model terms (regressors) and then compute their ERR values. Choose
the model term (regressor) with the largest ERR value and move it accord-

ingly.

3. Perform step 2 until some threshold of ERR value is reached.

3.4.2 Nonlinear regression

If the residual error of a model appears in the regression matrix, then the MSD
becomes a nonlinear regression process. Here, two methods are reviewed. Firstly,
the work presented in Piroddi and Spinelli (2003), where a NOE model structure
is set to be identified. The LS was implemented as the parameter estimation tech-
nique, which eventually makes the approach inconsistent in the model estimation.
However, the focus will be on the corresponding MSD criterion, which is similar
to the ERR. It differs slightly because a model term’s significance is measured by
the contribution of the model term to the observed output based on the simulation
prediction rather than the one-step-ahead prediction. The simulation approach re-
ported an improved model term selection under some restrictive conditions such
as non-persistently exciting signals and fast sampling (Billings, 2013).

Secondly, the method to be reviewed is the bootstrap MSD developed in Kukreja
et al. (2004). It should be noted that the model structure assumed here is the NAR-
MAX model, however, the method can be easily expanded to other models that are
nonlinear-in-the-parameters (such as the NOE model). The bootstrap MSD natu-
rally generates the parameter statistics which is used for model term selection. It
proceeds as: (i) compute the parameter estimates and the residual errors, (ii) gen-

erate the new bootstrap dataset by sampling the residuals with replacement, (iii)
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form a new measurement using the predicted output and bootstrap dataset, (iv)
estimate the corresponding parameters for the new measurement data, (v) build
the parameter statistics and (vi) remove model terms whose parameter estimates

cannot be distinguished statistically from zero.

3.5 Model selection

There could be several competing models which could be able to fit the observed
data y well enough. However, a scoring criterion is needed to evaluate the best
model which fits the observed data best and also good enough to predict other
experimental datasets. This process is called model selection (MS). Information
criteria are mostly used in MS, which measures a trade-off between model perfor-
mance (prediction power) and model complexity (number of model terms) (Ljung,
1999). The two most commonly used information criteria are Akaike’s information
criterion (AIC) (Akaike, 1974) and Bayesian information criterion (BIC) (Schwarz,
1978), which can be represented as

ONp. 1 Mot
AIC =1log( (1+=2) x — ¢?) and (3.45)
(( Ny) Nykgo k)
Nolog(N,), 1 Na',
BIC = log((1+ —220 Wy o =y (3.46)
g<( N, ) N, k;) k)

respectively. The BIC criterion provides extra penalty to model complexity com-
pared to the AIC criterion. The model with the smallest information criterion
value is selected.

Another well applied MS procedure is the Bayes factor (an alternative to the clas-
sical hypothesis testing), which is derived under the Bayesian framework (Kass
and Raftery, 1995). A benefit of the Bayes factor is, it provides the evidence of a
model for or against a hypothesis which in this case is a competing model (check
Table 3.2). The Bayes factor for comparing evidence supporting two models M;
and M; is

p(Mily)/p(Mily)
p(Mi)/p(M;)

Bs(i,j) = (3.47)
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Table 3.2: Interpretation of the Bayes factor

Bf(i,j) | Evidence against M; and in favour of M;
1-3 very weak
3-20 positive
20-150 strong
>150 very strong

3.6 Model validation

When a model has been estimated to represent a nonlinear system, its structure
and parameters need to be tested to be correct. Prediction accuracy is an intuitive
way of validating a model, however, one-step-ahead prediction do not account
for the accumulation of prediction errors, therefore other prediction methods are
needed to validate a model (Van et al., 1994).

A model is said to be general enough, if it can predict not only the observed data
which is used for the estimation process, but also unseen experimental datasets.
Therefore to test for a model’s generalisation performance, the experimental dataset
including all available data is usually split into two sets, the training data which
is used for the estimation process and the test data which is used for the final
assessment of the model estimated. This process is called cross-validation. For a
more reliable cross-validation process, the simulation prediction is used, where the
mean sum of squared error (MSSE) is computed to assess the model performance

(using eqn(3.23)),

N,—1

MSSE = - (y 7 )2 (3.48)
= k= Yk) - :
Ny k=0

3.7 Continuous-time system identification

As discussed earlier in section 3.2, the nonlinear black-box models implemented
in this thesis are in continuous-time (CT). A brief review about DT system iden-
tification was presented above, as it is much more established in comparison to
CT system identification. Most dynamical systems encountered in practise are
both continuous in time and nonlinear. Naturally in this present "digital world"
with cheap computing power and digital electronics, system identification is dom-
inated by DT techniques (Unbehauen and Rao, 1990). Nevertheless, the relevance

and development of CT system identification especially for linear systems, have
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been increasingly recognised and grown in last 20 years. Distinctly, the advan-
tages of CT system identification towards the work presented in this thesis shall
be outlined (Garnier and Wang, 2008):

e Easy interpretability and better physical understanding of parameters per-
mits system properties to be transparent in the CT form. As this thesis
involves multidisciplinary work, the results and analyses are to be shared
amongst biologist and engineers, therefore the mentioned properties are cru-

cial.

e Biological systems are very complex and intricate. CT models have compact
representation (in comparison to DT) with good predictive power, which
aids rapid and effective design procedures.

e The CT models are independent of the sampling period therefore permit
identification of irregular sampled data. Most experimental data obtained
from biological systems are irregularly sampled.

e CT models are more suitable for fast sampling and less prone to ill-conditioning.

The DT nonlinear black-box models shown in section 3.2.2 can be formulated into
equivalent CT models. The CT-NARX and CT-NOE models are of key interest.
Details for the apparent choice of the model structures can be seen in the respective
chapters it is used in. The CT-NARX model can be represented as

yhi(t) = f(y(t),...,y”i_l(t),u(t),...,u"f_l(t)) +e(t), (3.49)

where y(t) € R, u(t) € R and e(t) are the equivalent CT output, input and noise
signal at time t. The derivative order is #; and the mapping function f(.) consist

of output and input signal derivatives. The CT-NOE model can be represented as

2" (t) = f(z(t),...,z”ffl(t),u(t),...,unffl(t)), (3.50)
y(t) =z(t) +e(t), (3.51)

where z(t) € R is the undisturbed CT output signal at time ¢.

3.7.1 Model estimation for continuous-time system identification

As stated earlier in section 3.3 and 3.4, model estimation is a dual problem of

parameter estimation and MSD. The parameter estimation methods reviewed in
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section 3.3 can be equally applied to CT models (Garnier and Wang, 2008, Garnier
et al., 2003). MSD methods in CT system identification include direct and indirect
methods. Direct methods identify CT models directly from the observed data,
whereas, indirect methods initially identify DT models and then map it into the
CT domain (Billings, 2013, Rao and Unbehauen, 2006, Unbehauen and Rao, 1990).

MSD for nonlinear CT models in system identification is not widely researched
in comparison to the CT linear domain. The majority of the methods available for
nonlinear CT domain are direct methods. They are developed based on DT-MSD
methods permitting regression-based techniques. However, this was only possible
because the estimation of output and input signal derivatives was plausible. The
estimation of signal derivatives is a challenging task, since the observed output is
typically corrupted by high frequency measurement noise and approximating the
derivatives from directly differencing the observed signal amplifies this noise.

In Tsang and Billings (1994), signal derivatives are recovered by using delayed
state-variable filters. It involves passing the input and output signals through mul-
tiple pre-filters with user specified bandpass. In Anderson and Kadirkamanathan
(2007), the delta-operator is used to map DT signals to the delta domain, which in
effect retrieves the signal derivatives. The method developed in Coca and Billings
(1999), will be used as a benchmark in this thesis due to its robustness in esti-
mating signal derivatives compared to the other two methods mentioned earlier.
It employs the FRO as the MSD method and it shall be termed the derivative
continuous-time method (dCTM).

3.7.2 Signal derivative estimation using dCTM

The dCTM recovers signal derivatives using Kalman smoothing. Kalman smooth-
ing is implemented on a state-space model, which is formulated based on the
Taylor-series expansion of the observed signal. The Taylor-series expansion ex-
ploits the regularity of the solutions of differential equations, which was initially
proposed by Fioretti and Jetto (1989). The observed signal’s derivatives can be

represented in the DT state space model as

Xpi1 = Axg + 1/,1, (3.52)
v = Cxg + 12, (3.53)
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where C = (1,0, ...,0) is the measurement matrix, Xy = (Y, Yx, ...,y]’?) € R" is the
state vector at sample time k that contains the vector of observed output and its
derivatives up to order D, n, = D+ 1, vi ~ N(0,Q) and v7 ~ N(0,R) are inde-
pendent zero mean Gaussian white noise signals, and the state transition matrix A

is described using rows that are based on the Taylor series expansion of the signal,

2 D

T L ... L

1 T ... =
A= (D-1)! (3.54)

0 0 - 1
The elements of the state noise covariance matrix Q are given by
2 T2D+3—(i+j)

T (3.55)

M= D+1-)ID+1—))!{2D+3—(i+)))
where 0, is a tuning parameter describing the power of the state noise. In order

to obtain the derivatives in the state vector, Kalman filter and Rauch-Tung-Striebel

smoother was used in this thesis.

3.8 Generalised frequency response functions

The analysis of nonlinear system in the frequency domain can provide important
insights into a system’s nonlinearity and physical behaviour. In comparison to the
linear systems, research on frequency domain methods for nonlinear systems has
received very limited research (Billings, 2013). Generalised frequency response
functions (GFRFs) are higher-order functions that are multi-dimensional, which

are used in representing nonlinear systems in the frequency domain.

The spectral analysis of nonlinear systems can be described by the Volterra se-
ries (Volterra, 2005). The general form of the Volterra series representation of a CT

nonlinear system can be expressed as

Ny
y(t) =) yu,(h), (3.56)
nle

where

) ) ny
Yn,(t) = /_Oo.../_oo hnf(rl,...,Tnf)Hu(t—Ti)dTi, (3.57)
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where hy (11, ..., Tn, ) is the system’s 1sth order Volterra kernel or impulse response
and Ny is the maximum order of system nonlinearities which is finite for a wide
class of nonlinear systems and input excitations according to the analysis by (Boyd
and Chua, 1985).

In George (1959), the nsth order GFRF is defined by the Fourier transform of
the nsth order Volterra kernel ; (T4, e Tn f),

an(jw1,...,jwnf) = /_oo.../_oo

—j(w1T1+...+wnanf) (358)

hnf(Tl,..., Tnf)e dTl...dTnf

where ny =1,2, ...

The first order GFRF H;(jw) is used to explain the linear properties, while the
nonlinear GFRFs H,, ’ (jws, -y jon f) for ny > 1 describes the nonlinear phenomena.
The nonlinear phenomena that can be explained are harmonics, gain compression

and expansion, desensitisation and intermodulation (Billings et al., 1990).

The estimation and computation of the GFRFs can be approached in the para-
metric model-based method. The parametric model-based method is applied to
nonlinear models that are already been derived, by mapping it analytically into
the frequency domain (Billings and Tsang, 1989a,b). This is done by discarding
the noise model and only taking the deterministic part of the parametric model
into account. An advantage of this method is that the relationship between the
time and frequency domain behaviours is not lost, as each model term’s influence
on each GFRF can be clearly seen (Billings, 2013). This helps physical interpre-
tation and design procedures, as certain nonlinear properties are designed in the

frequency domain but implemented in the time domain.

3.8.1 Probing method

The GFRFs of a parametric nonlinear model can be derived analytically using the
probing method. Using a combination of Ny exponentials,

Ny
u(t) =y e, (3.59)
i=1

to excite a nonlinear systems represented by Volterra series, the nth order output

response can be written as,
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Nf' Nf .
. . it tw;, )t
Yn,(t) = Yoo ) an(]wiv""]wz‘nf)e](wl Wing )t (3.60)
=1 iy =1

A recursive algorithm is developed to help automate the process of estimating and
computing GFRFs (Jones and Billings, 1989).

3.9 Summary

Nonlinear black-box models from system identification has been successfully ap-
plied for data-driven modelling and analysing of engineering, financial, medical
and environmental systems. However, despite the versatility of the approach, it is
essentially novel in the field of synthetic biology. In this chapter, a brief introduc-
tion to system identification have been reviewed. The main steps in identifying a
nonlinear model involves parameter estimation, model structure detection, model

selection and model validation.

In relation to the work presented in this thesis, the need to identify data-driven
nonlinear models in continuous-time is emphasised. Which provides a parsimo-
nious representation of the biological systems and a good generalisation perfor-
mance. The concept of generalised frequency response transfer functions was also
introduced as a powerful tool for analysing estimated system dynamics in the fre-
quency domain. To summarise, this chapter has provided ample evidence that
nonlinear black-box models and analysis methodologies provide the robust choice
for characterisation of genetic parts in biological systems. This will be further

demonstrated in later chapters.



Chapter 4

Modelling a transcriptional
regulation

4.1 Introduction

A key challenge in synthetic biology is the development of effective methodolo-
gies for characterisation of genetic parts in biological systems, in a form suitable
for dynamic analysis and design. In the earlier chapter, nonlinear system iden-
tification was introduced, that provides a comprehensive package of tools which
would aid in overcoming this challenge. In this chapter, it is demonstrated by
implementing a data-driven nonlinear dynamic modelling framework that is pop-
ular in the field of control engineering, but is novel to the field of synthetic biology.
The framework is applied to identify a "population-level” nonlinear autoregressive
model with exogenous input (NARX) to represent the transcriptional regulatory
genetic part BBa_T9002 that is obtained from the registry of standard biologi-
cal parts (RSBP), which serves as a case study. The developed "population-level"
NARX model exhibits accurate representation of the system dynamics, a structure
that is parsimonious and consistent across different cell populations. Dynamic
and static biochemical models (from the literature) which are derived from sim-
ple enzymatic reaction scheme (ERS), are used as benchmarking comparisons. The
identified data-driven model is shown to be comparably simple, but exhibits much
greater prediction accuracy on the experimental data.

With the advances in the field of synthetic biology as discussed in Chapter 2, there
are yet a number of obstacles to overcome before biological systems can be trans-
formed from laboratory prototypes to industrial products that would be applicable
to practical problems (Arkin, 2008, Kwok, 2010). Embracing the engineering con-

46



Chapter 4. Modelling a transcriptional regulation 47

cept of model-based design is crucial, as challenges in characterisation and design
can be largely reduced, in particular, to underpin the future success of top-down
biological synthesis using off-the-shelf genetic parts (obtained from repositories)
(Andrianantoandro et al., 2006, Endy, 2005). Here, the recent results in static
input-output characterisation (Canton et al., 2008), is extended by developing a
data-driven framework for describing the dynamic properties (equally static) of
genetic parts in biological systems. The models derived using this framework is
shown to be useful and therefore recommended to be specified in datasheets as-
sociated with genetic parts, with the purpose of aiding in the control design and

synthesis of larger systems.

The data-driven framework presented here differs with the modelling approaches
commonly applied in the field of synthetic biology. Gene expressions (English
et al., 2005, Gertz et al., 2008, Houston and Kenworthy, 2000, Kim et al., 2006) are
mostly modelled using simplifications of ERS, e.g. the Michaelis-Menten (MM)
and Hill equations (Cornish-Bowden, 2013). These models are relatively simple
to implement, but pose limitations, and retain a fixed model structure regardless
of the complexity of the system under consideration. Also, network-based dy-
namic gene expression models that have been explored are in the form of many
coupled ordinary (Covert et al., 2008, Karlebach and Shamir, 2008, Tian and Bur-
rage, 2006) or stochastic (Wilkinson, 2009) differential equations (ODEs and SDEs
respectively). As the genetic regulatory network grows larger, the number of equa-
tions needed for the representation of the biological system increases, leading to
an explosion in model complexity. The models in the literature are mostly either

incapable or intractable for dynamic systems analysis and design.

In this chapter, a data-driven framework to identify a "population-level" NARX
model for a transcriptional regulatory genetic part is undertaken. A framework
is suggested to provide useful models which are able to overcome the typical
problems of existing models used in describing genetic parts in biological sys-
tems, which are overly complex, unwieldy and of unknown structure. The NARX
model, a subclass of the more general NARMAX model which provides a general
nonlinear dynamic system description. The NARX model identified is able to have
a compact representation that: (i) represents both the static and dynamic proper-
ties, (ii) represents both the deterministic and stochastic processes of the system
via noise term and (iii) is flexible and adaptable in its structure and parameters

according to the experimental data (since it is data-driven).



48 4.2. The BBa_T9002 system and its experimental data

o
e LuxR w
30C.HSL
6 :: @B LuxR - HSL complex

_________ T_______L_\ .

' || |

. —’ . T . . I

| BBa_R0040 BBa_B0034 BBa_C0062 BBa_B0015 BBa R0062, |BBa_B0032 BBa_E0040 BBa_B0015
Receiver Reporter
(BBa_F2620) (BBa_E0240)

Figure 4.1: Pictorial description of the BBa_T9002 system with input and output of
30CcHSL and GFP expression respectively.

4.2 The BBa_T9002 system and its experimental data

The genetic part BBa_T9002, is a quorum sensing receiver-reporter composite sys-
tem shown in Figure (4.1): The receiver (BBa_F2620) and reporter (BBa_E0240).
The label - BBa for the genetic parts are identity codes assigned to them in the
RSBP.

Cells, in the absence of tetracycline and TetR, can constitutively express and up-
regulate LuxR on addition of 3-ox-ohexanoyl-L-homoserine lactone (30C¢HSL).
In a ratio of 2 : 2, the LuxR protein forms a complex with the signalling molecule
30CgHSL, which activates the LuxR regulated promoter BBa_R0062 producing the
receiver’s (BBa_F2620) output, quantified as polymerases per second (PoPS). The
activation of the LuxR regulated promoter subsequently prompts the expression
of green fluorescence protein (GFP), which serves as the output for the BBa_T9002
system.

The advantage of using the BBa_T9002 system as a case study is:

e It is effectively a single transcriptional regulatory genetic part (transcription-
translation system). Single transcriptional regulation systems are one of the
most simplistic genetic functional modules and are frequently used as the
foundational modules to design higher-order genetic parts.

e It has been well studied and characterised using alternative modelling tech-
niques (Canton et al., 2008) and the experimental data is available online,
facilitating further comparison and investigation.

The experimental data used in this chapter, which involves the dynamic response
of the genetic part BBa_T9002 was collected by Canton et al. (2008). The genetic
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part, BBa_T9002, was transformed into the Escherichia coli (E. coli) wild-type strain
MG1655, which was streaked onto plates to obtain colonies for experimentation.
The cultures of the colonies were grown in M9 minimal media for 15 hours at 37°C
with shaking at 70 revolution per second (rpm). The absorbance (cell growth) and
fluorescence (GFP) measurements were obtained repeatedly using the Wallac Vic-
tor3 multi-well fluorimeter.

The experimental data can be obtained from the RSBP website for part BBa_F2620
(http:/ /partsregistry.org/Part:BBa_F2620). The experimental data consisted of
time-series recording of GFP expression, which was observed over approximately
180 minutes (77 time steps, sampled at intervals of approximately 141 seconds)
of BBa_T9002 over 8 different 30C¢HSL input concentrations: 0, 1e-10, 1le-9, le-
8, le-7, le-6, 1le-5, 1le-4 molar (M). In this investigation, systems modelling was
performed up to the point of quasi steady state behaviour (see below), which was
defined as the peak of the rate of GFP expression. This truncation resulted in
time-series data that were approximately 150 minutes in length (approximately 60
time samples; the range varied between 50-70 time samples among different ex-
periments). Here, experimental data were analysed from 3 colonies of BBa_T9002
(out of a total of 9 observed by Canton et al. (2008)). There were 3 replicates for
each colony, resulting in 9 experiments in total that are analysed. Experiments 1-3,
4-6 and 7-9 were from colonies 1, 2 and 3 respectively.

4.3 Data pre-processing - signal derivative estimation

All models in this chapter are directly identified in continuous-time (CT). The
derivatives of the GFP expression was estimated using the Kalman smoothing
algorithm as shown in section 3.7.2 - under dCTM, which led to derivative es-
timates that were relatively noise-free compared to directly differenced signals
(Figure 4.2).

The GFP expression signal vector shall be denoted as ¥, therefore eqn(3.53) can

be re-written as

Ur = Cx + 2, (4.1)

where x; = (Jx, Gk, ..., 7). Kalman filter and Rauch-Tung-Striebel smoother was

used in implementation.
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Algorithm 4.1 Kalman filter
Initialise: Pyo and xg|o
fork=1:N,
Predictor equations

Predict state: Xgj_1 = AXg_1jk—1

Predict state covariance: Py_; = APk_l‘k_lAT +Q
Corrector equations
Calculate Kalman gain: K = Pk‘k_lCT(CPk‘k_lCT +R)7!
Correct state: Xy = K1 + K (Fx — CRyji—1)
Correct state covariance: Py = Pyr—1 — KkCDPyp—1
end for

4.3.1 Kalman filter

In order to estimate the signal derivatives, the Kalman filter (KF) recursions can
first be used to retrieve X, for k = 1: N,, the estimate of the state x at time k based
on the measurements up to time k. In 1960 (Kalman and others., 1960), Kalman
filtering was introduced which could be used in predicting and estimating the
present, past and future states of a linear system given its model and observation
data. The KF is an recursive estimator, and it is an optimal estimator for linear
systems with Gaussian noise. The equations of KF fall into two groups, predictor
equations and corrector equations (Welch and Bishop, 1995). The predictor equa-
tions projects the current state estimates ahead of time (using the observation at
current time and the state estimate at previous time step) and the corrector equa-
tions adjusts the projected current state estimate using the actual observation at
that time.

If the Kalman gain, a priori state covariance and a posteriori state covariance are
Ky, Pr_1jk—1 and Pyj_q, then the KF algorithm can be mathematically described as
shown in Algorithm 4.1.

4.3.2 Rauch-Tung-Striebel smoother

The backward recursions to obtain the smoothed state Xy, can be implemented
using the Rauch-Tung-Striebel smoother (RTSS). RTSS was developed in 1965
(Rauch et al., 1965), which can be used in conjunction with KF for smoothing.
Smoothing estimates the current states using all the observation, which is nor-
mally applied after filtering in order to smooth out the filtered state estimates.
KF and RTSS are implemented on a backward-forward framework, where KF is
used for the forward pass and RTSS includes the backward pass. For a linear

state space system with additive Gaussian noise, smoothed state covariance ma-
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Algorithm 4.2 Rauch-Tung-Striebel smoother

Forward pass
Run: Algorithm 4.1
Store filtered states X;; and there corresponding covariances Py
Initialise: Py, |y, and Xy, N, at k= Ny
Backward pass
fork=N,—-1:1
Jk = Pk\kATP;;l”k
Smooth state: f(k\Ny = f(k|k + ]k(kk+1|Ny — Af(k\k)

Smooth covariance: Pk\Ny = P + Jk (Pk+1lNy - Pk+1\k> ]kT
end for

trix Pk\Nyr smoother gain Ji, the RTSS can be described by Algorithm 4.2.

In this investigation, the following values for these parameters were used: num-
ber of derivative terms, D = 6, initial state uncertainty Po\o = 100 x I, state

dimensionny, = D +1 =7 and (75, was set to 107°.

4.4 Identification of dynamic and static biochemical models

Two different approaches to modelling the BBa_T9002 system was taken here: (i)
dynamic and static biochemical models based on a well known description of an
ERS and (ii) a data-driven CT-NARX model. The first approach (in this section) is
shown to have certain drawbacks which the second approach (next section) is able

to provide solutions to.

The work presented in Canton et al. (2008), is used as a foundation to this section
and a benchmarking comparison to the data-driven CT-NARX model presented
in this chapter. Canton et al. (2008), derived a Hill equation model for BBa_F2620
genetic part by indirectly using the experimental data collected for BBa_T9002
(the knowledge of the model for BBa_E(0240 was assumed). In contrast here, the
complete BBa_T9002 system is modelled.

4.4.1 Derivation of dynamic and static biochemical models

The Michealis-Menten and Hill equations are well known models used in describ-
ing enzymatic reactions and are widely applied in the synthetic biology literature
(section 2.3.2). These models are derived by applying assumptions to nonlinear
coupled ODEs used in describing the ERS, thereby simplifying them (see below
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Figure 4.2: The GFP expression signal and its derivatives obtained from the RTS smooth-
ing algorithm (black) in comparison to derivatives from numerically differencing the raw
GFP expression signal (grey).

for derivation). A major drawback of the Michealis-Menten and Hill equations
is that they do not provide a full dynamic description of the system, thereby not
facilitating design procedures; only the static relationship between product deriva-
tive and substrate input is captured. In order to address this drawback, a model
is derived which is used to describe the dynamics of the ERS associated with the
Hill equation, which is denoted as the ERS model.

Considering the reaction scheme in section 2.3.2 and the nonlinear coupled ODEs
used in describing it - eqn(2.5, 2.6, 2.7 and 2.8), the following simplified equations
can be written in terms of substrate and product variables only, where: (i) n =1
and (ii) substrate s and product p are 30C¢HSL and GFP expression respectively,

in this investigation,

S(t) = —kreo(t)s(6) + (1) + Ls(Dp(0), 42)
B(E) = kakreo(D)s(t) — (k-1 + k2)p(t) — kis(Hp(), @3)

where e denotes enzyme, s substrate, n Hill coefficient, e; enzyme-substrate com-
plex, p product and where the reaction scheme has an associated total enzyme
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concentration ep. The parameters ki, k_; and k, defines the rate of reactions. The
eqn(4.2) is obtained from rearranging eqn(2.8), so that es(t) = %, noting that
e(t) = ep(t) — es(t) and substituting for es(f) and e(t) in eqn(2.5); eqn(4.3) is ob-

tained from substituting eqn(2.7) and e(t) = eg(t) — es(t) into P(t) = kaés(t).

Michealis-Menten equation

The assumptions made in deriving the Michealis-Menten equation are: (i) the total
concentration of enzyme ey(t) does not change over time, eg(t) = es(t) + e(t) and
(ii) the rate of change of enzyme-substrate complex es(t) is approximately zero
which is referred to as quasi steady state, €(t) = 0.

For the assumptions to hold, provided that the parameters are not time-varying,
the states mentioned below are at steady state: (i) es(t), €s(t) is equal to zero,
(i) e(t), in order to satisfy assumption (i) above, and (iii) s(¢), in order to satisfy
eqn(2.7).

The Michealis-Menten equation is derived by first equating eqn(2.7) to zero and

substituting, ess = ep(t) — esss (Where subscript ss refers to steady state)

(k,1 +ky + klsss)esss = kleO(t)Sss/ (4.4)
€o()Sss
= 4.
Csss See 1 ko (4.5)
where k,, = % Substituting eqn(4.5) into eqn(2.8), provides the Michealis-

Menten equation (Cornish-Bowden, 2013)

S
P(t) = koesss = Upax (ﬁ) (4.6)

where vy0 = koeo(f).

Enzymatic reaction scheme model and Hill equation

The steps carried out above can be extended to obtain an ERS model and the Hill
equation for n # 1. The corresponding ODEs (in terms of substrate and product

variables only) - the ERS model can be written as
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$(t) = a1s"(t) + axp(t) + azs"(t)p(t), (4.7)
BE) = bis™(t) + bap (1) + bas™ (D (1), 48)
where a = —nkleo(t), ay = %, asz = nTI?’ bl = kzkleo(t), bz = —k1 —kz and
b3 = —k;. For the assumptions mentioned above in deriving the Michealis-Menten

equation, total enzyme concentration and the rate of change of enzyme-substrate
complex to be constant and equal to zero respectively. The more often used Hill
equation, which is a simplification of the full dynamic form described in eqn(4.7
and 4.8), can be derived

. _ s"ss
p(t) = OUmax <Snss T kg > ’ (49)

where ky, = kjj = % and Uy = koeo(t).

Note that the Hill equation should provide a description of the reaction scheme
that is consistent with the dynamic form presented above in eqn(4.7 and 4.8) for
substrate signals that are near constant. Also note that in the case of steady
state substrate, the LHS of eqn(4.7) is by definition equal to zero, i.e., $(t) = 0.
Hence, any dynamic behaviour in the system must be predominantly described
by eqn(4.8).

4.4.2 Parameter estimation of enzymatic reaction scheme model and
Hill equation

Enzymatic reaction scheme model

The following prior information was used in estimating the parameters of the ERS
model: (i) initial 30CHSL level, s(t = 0), and (ii) GFP expression over time, p(t).
The separable least squares SLS algorithm (Bruls et al., 1999, Golub and Pereyra,
2003) was implemented to estimate the model parameters. The SLS algorithm al-
lowed the separation of the complete parameter set into into linear and nonlinear
sets, {1 = (b1, by, b3) and {, = (a1,a2,a3,n) respectively. This is advantageous
because the parameter convergence is much faster, has improved numerical con-
ditioning and fewer parameters are required to be initialised in comparison to the
full nonlinear optimisation problem (Golub and Pereyra, 2003) (as discussed in
section 3.3.2).
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The optimisation cost function for M experimental signals corresponding to dif-
ferent input levels of 30C¢HSL, with N, samples per signal can be defined as

_ 1 b :
= 3| IP - T@al (®.10)

where P = [p) ...p3J", p; = [B;j(1).. Bi(N)I T, T(Gn) = [11(@n) - o vm(@n) T
and

£(1) p(1) L)
7j(Cn) = : : : / (4.11)

é?(Ny) Pj(Ny) é?(Ny)pj(Ny)
and §;(.) is obtained from simulation of eqn(4.7), given the initial condition of

the substrate and the nonlinear parameters {,. The linear parameters {; can be
expressed in terms of the nonlinear parameters (, using the LS solution

21 =T(Ca)'P, (4.12)

-1
where 1 denotes the pseudo-inverse, I'(Z,)" = (r(gn)Tr(gn)) ['(Z,)". Substi-
tuting eqn(4.12) into eqn(4.10) leads to the reduced optimization problem, from
which the linear parameters have been eliminated

min = ||P — T(Z,)T(5) P . (4.13)

5 MN,

The quasi-Newton method was used to implement the nonlinear optimization
(implemented using the MATLAB function fminunc). The initialisation of the
nonlinear parameters were guided by using a grid search, in which the parameters
ranges were ay,az,43 € [—10,—9.9,...,10], and n € [0,05,...,6]. The MATLAB
algorithm used for simulating the ERS model was based on the first order Euler
approximation for computational simplicity (we verified on a subset of the data

that use of higher order numerical integration methods did not alter the results).

Hill equation

The parameters of the Hill equation was estimated using nonlinear optimization
technique - quasi-Newton method (implemented using the MATLAB function fmi-
nunc). The parameters v,,,, and k, were initialised by trial and error as these two

were the sensitive parameters that influenced convergence.
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4.4.3 Results and discussion

In using the observations of the dynamic behaviour of the genetic part BBa_T9002,
the ERS model was identified. By analysing the simulated results of the ERS model
against the experimental data, the following was noted:

e The estimated level of the 30OC¢HSL signal remained constant from the time
of induction to quasi steady state (Figure 4.3A); this may be due to the very
high concentration of 30C¢HSL molecules at the point of induction in com-

parison to the amount used up by the cells.

e The observed GFP expression were not well predicted by the ERS model
(Figure 4.3C and D); the prediction error variance of the GFP signal was
24.3%. Due to the low prediction accuracy, the ERS model demonstrates that
there is missing dynamics (model terms) in it or its model structure is not
appropriate for describing the BBa_T9002 system.

The peak values of the rate of GFP expression (at 150th minute), indicated a sig-
moidal function relationship with the substrate concentration (Figure 4.3B). This
observation indicates cooperative binding is involved in the enzymatic reaction
process (Cornish-Bowden, 2013). The Hill equation was used to fit the peak values
as a function of 30C¢HSL. The prediction of the steady state behaviour by the Hill
equation was more accurate in comparison to the ERS model prediction as shown
in Figure 4.3B.

The Hill equation is generally considered by the synthetic biology community
to be a useful model for describing simple switching properties in biochemical
processes (Canton et al., 2008, Tamsir et al., 2010, Wang et al., 2011). As shown
above, the steady state GFP expression rate is more accurately predicted by the
Hill equation than the ERS model (Figure 4.3B). However, the decay of the steady
state behaviour at high levels of 30CsHSL was not captured by the Hill equation.
This was a common feature across all experiments, which could be a result of tox-
icity to the cells (Canton et al., 2008).

The Hill equation and the ERS model are both derived from the same reaction
scheme (see above). However, it is apparent from these results that the Hill equa-
tion provides a much improved model of the steady state process. The inconsis-
tency between the dynamic and static model raises a question over the link be-
tween the Hill equation and the ERS model on which it is predicated, and hence

the interpretability of the Hill equation parameters. One possible explanation



Chapter 4. Modelling a transcriptional regulation

57

A - B 8= 6000
—_~ o L
g0 = £ 5000
= 10° % E 4000
T $ 3z
= .8 = 2 3000
Q10 g2
S 2 2000
© _-10 = g
10 3 E 1000
0 20 40 60 80100 120140160 O o 3 7 % = 4
C Time (minutes) 30CgHSL (M) - log scale
2" 10°
£ 2l 1500 8000 s
D -~
£ fOEE 1000 5000 '
= 15
52 o0 4000 1
=] 500 2000 0.5
T 500 0
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
5 5, 5 5
5 x10 2510 2510 zx 10
%%\ 2 2 2
£ 15
&% 15 15 15 N
5 2 1
o 1 1 1
BE os 05 0.5 0.5
0 50 100 150 0 50 100 150 0 50 100 150 %0 50 100 150
Time (minutes) Time (minutes) Time (minutes) Time (minutes)
D
A
= £ 4000
£ 250 3000 4000
g 4 200 3000 3000
Fl-}
S 2150 2000
&% 2000 2000
o = 100 1000
EE s 1000 1000
= 0
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
= 55000 5000 5000 5000
£ £ 4000 4000 4000 4000
£ 23000 3000 3000 3000
S 5 2000 2000 2000 2000
=
& 21000 1000 1000 1000
GE o 0
= 7 0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150

Time (minutes)

Time (minutes)

Time (minutes)

Time (minutes)

Figure 4.3: Biochemical model simulation for experiment 1: (A) The simulated model
input signal s(t), (B) Rate of change of GFP expression at the 150th minute (blue), the
Hill equation prediction (green), and the ERS model prediction (red), (C) Comparison of
GFP expression (blue) and the model prediction p(t) (red) and (D) Rate of change of GFP
expression (blue) and model prediction (red). Note that the response corresponding to the
lowest input level 30C¢HSL = 0 in (A) has been omitted because of the log transformation,
and the plots in (C) and (D) corresponds to responses to increasing input level from left

to right - top to bottom.
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could be for the improvement of the Hill equation over the ERS model is, that
the sigmoidal form of the Hill equation is coincidentally well suited to describing
the switching behaviour observed in the experimental data. It could also be sug-
gested that the optimal ERS model parameters were unidentifiable or could not be
obtained here due to the difficulties inherent in nonlinear parameter optimisation

and the richness of the dynamics in the experimental data.

In the context of biosynthesis, model inaccuracies will be problematic: If a model
fails to capture the key properties of a system, then errors will be imposed on the
system design. This motivates the development of alternative modelling strategies

that will solve these challenges.

4.5 Identification of data-driven dynamic model

The data-driven framework allows the identification of a nonlinear dynamic black-
box models. For the identification of the BBa_T9002 system under this framework,
the input and output signals are defined as 30OC¢HSL concentration and rate of
change of GFP expression respectively. The rate of change of GFP expression was
preferred as the output signal rather than GFP expression, because modelling a
stable system is more desirable in a data-driven framework, and the initial growth
in GFP is exponential (unstable), whereas its derivative is stable. The experimental
dataset used here (collected by Canton et al. (2008)), does not have the input signal
observed over time. Accordingly, the input signal is assumed to be constant which
is equivalent to the initial concentration of 30C¢HSL, for the relative short time-
scale of the recording (from the time of induction to quasi steady state). Bioassay
is a popular procedure to measure the concentration of 30CsHSL molecules over
time. However, the measurement could turn out to be insignificant because the
concentration levels are very low and the bioassay procedure itself is wasteful.
Therefore the following hypothesis is suggested, the 30CsHSL molecules disin-
tegrate and become available again after each complex formation with LuxR and

transcriptional activation.

An advantage of the framework to identify a nonlinear black-box model is that
the choice of model structure is data-driven. This is known as the model struc-
ture detection MSD problem, and there are a number of algorithms that can be
used to automate the choices that determine model structure, e.g, dynamic or-
der and basis function selection (Baldacchino et al., 2012, Chen et al., 1989, Wei
et al., 2004). MSD is a powerful asset of the framework because it can highlight
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"missing" dynamic, i.e., terms that are absent from biochemically derived models,
which are required to accurately describe the system. The nonlinear black-box
model structure used here is the CT-NARX model, which has an advantage be-
cause it is linear-in-the-parameters. This is a useful feature, which facilitates rapid
identification and comparison of many different proposed model structures. The
CT-NARX model though predictive do not give a biophysical interpretation.

4.5.1 System description and physical insights

In each experiment, the response to each 30C¢HSL induction approximately over-
lays each other when normalised to its response respectively (see Figure 4.4B). This
is a feature which is well captured by cascade models (see section 3.2.3). Therefore,
in this investigation the BBa_T9002 system is described by a single static and dy-

namic function by taking inspiration from the structure of a Hammerstein model.

In Canton et al. (2008), it is reported that the cell growth (OD600) of each well
in the 96 well plate was similar until they reach quasi steady state (which is only
modelled here). Therefore, including a cell growth variable in the data-driven
model would be uninformative in this case. This led to a model at a "population-
level" (Figure 4.4A) which uses only the input and output data, capturing the GFP
expression for different inductions of 30CsHSL.

The dynamic function in this case was chosen to be the CT-NARX model. There-
fore the noise term e(t) is assumed to capture the process noise - population het-
erogeneity which arises due to variability caused by intrinsic and extrinsic noise.
A more complicated noise model was avoided, so that a simplified model is able
to correctly identify the BBa_T9002 system which is the main focus. Measurement
noise term was not included because smoothing of the experimental data was
carried out.

4.5.2 CT-NARX model representation

Generally, the CT-NARX model is obtained in a data-driven framework from regu-
larly sampled input and output signals. In this investigation, the input and output
signals to the BBa_T9002 system are defined as u(t) € R - 30C¢HSL concentration
and y(t) € R - rate of change of GFP expression (due to its stable nature) respec-
tively. In order to obtain the predicted GFP expression of the identified model, the
output of the CT-NARX model - y(f) is numerically integrated. The structure of a
general CT-NARX model can be defined by (Coca and Billings, 1999)
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Figure 4.4: System representation and physical insight: (A) The model structure represen-
tation of the data-driven model where the dynamic function corresponds to the CT-NARX
model and (B) The individually normalised GFP expression of each response in experi-
ment 1. Normalisation is with respect to the final GFP expressions to remove the static
gain effects.

y(5) = £(8(5) +e(t), (4.14)
§(t) = (y(t),...,y”"’l(t),u(t),..., u”H(t)), (4.15)

where 1; is the differential order, f(§(t)) is some unknown nonlinear function and
§(t) € R?" is the model input vector of system input and output derivatives. The
function f(.) can be described using a basis function decomposition

Ny
yhi(t) = 29j¢j(§(t))/ (4.16)
=

where ¢;(.) is a basis function with associated real valued parameter 6; € R. In
this investigation, polynomial basis functions of maximum order 4 = 3 was used

and second order system dynamics, n; = 2 was assumed.

Alterations to the general form of the CT-NARX model was imposed, in order to
accommodate a specialised form for this investigation by only considering deriva-
tives in the output signal and no cross-product terms between input and out-
put signals. This specialised form was implemented because of the assumption
that the input level of 30C¢HSL was constant over the duration of each experi-
ment, so the derivatives of the input signal were zero and the cross-product terms
were unidentifiable. Constant variables can cause numerical ill-conditioning in

regression equations due to the linear dependence that can arise between model
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terms. Therefore, in this investigation where constant input is assumed, higher
order polynomial input transformations and cross-product terms between input
and output signals are not used. As mentioned above, there appeared to be a
nonlinear gain variation associated with different input levels of 30C¢HSL, which
is described using separate input gain terms k;, for j = 1,..., M, resulting in the
following modification of the CT-NARX model

v () = £ (50, y" 1 0)) + Ky (8) + (), (4.17)

for j = 1,.., M experimental signals corresponding to different constant input
levels of 30CgHSL.

453 CT-NARX model with static input nonlinearity

The function G(.) was used to model the static nonlinear gain variation across
input levels, which mapped the 30C¢HSL input - u(t) to the dynamic model
input - 7(t), and the CT-NARX model was consequently modified to

Y () = F(y(t), oy (0) + () +e(t), (4.18)

where ii(t) = G(u.(t)), u.(t) = logio(gu(t)) (g is a scaling parameter discussed
below). Due to the log spacing in the levels of 30C¢HSL, the log transformation
was applied to the scaled input gu(t). The function G(.) was described by the
basis function decomposition

B
a(t) = ;wjlpj(u*(t)), (4.19)
i

where w; € R is the j" basis function parameter, B is the number of basis func-
tions, and in this investigation the radial basis functions were used, specifically

the squared exponential function,

1
¥y (0) = exp (=5 (1) — g113), (4.20)
)

where ¢; and 0} are the respective centres and widths of the j'" basis function. Ba-
sis functions were centred on the levels of the input data values u.(t) and the cor-

responding width parameters were heuristically tuned in the range ¢; € [1,1.5] Vj.
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4.5.4 Parameter estimation and structure detection of CT-NARX model

The basis function decomposition of the CT-NARX model shown in eqn(4.16) is
advantageous because it is linear-in-the-parameters, hence least squares LS can be
used for parameter estimation. The corresponding linear regression equation can
be defined as

YU = 00+ e (4.21)

where Y" = (y’,...,yy;) " is the model output vector of differential order n;, € is
the model residual error vector, 8 = (kq,...,kym,c1, .- .,cNg_l)T, is the parameter
vector, and ® = [U Y] is the regression matrix where,

uq 0
U= . , (4.22)
0 upm
() G) e )
Y — i (4.23)

(%Hw

T n; n; n; T
where u; = (guj(to),...,guj(tNy - 1)) ,and y;' = (y]. (to),...,yj (tn, — 1)) for
j=1,..., M. The LS estimate of the parameters is

6=atY", (4.24)

where @' = (@' @) @7, In order to improve the numerical conditioning of
the regression matrix ®, the input levels were rescaled using a gain g, where
g=1x10",

The Y matrix contained a superset of model terms composed of polynomial trans-
formations of y(t) and its derivatives. The identification framework detected a
parsimonious model structure composed of a reduced set of those model terms.
In this investigation the number of model terms was relatively small (9 terms) and
so the model structure was detected by an exhaustive search (see section 3.4.1) of

all possible model term combinations (2° = 512).

There are a number of metrics that can be used to guide model selection MS,

which are typically based on quantifying model accuracy, such as the mean sum
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of squared error (MSSE) (shown in eqn(3.48)). The limitations of metrics such as
the MSSE, which only incorporate model terms related to model accuracy, is that
unnecessarily complex models can appear preferable. For example, if the number
of model parameters corresponds to the number of data points, the model will
precisely fit the observed data and will therefore appear preferable, although it is
intuitively obvious that such a model will usually suffer from over-fitting and be
unnecessarily complex. In order to compare models and obtain a parsimonious
model, information criteria (IC) were used to obtain the optimal trade-off between
model accuracy and model complexity - Akaike’s and the Bayesian IC (Ljung,
1999)

2Np, 1 Nt
AIC =log( (1+572) x — e*(t)) and (4.25)
J (( Ny) N, EO )
Nplog(Ny) 1N,
BIC = log( (1 + ——2) 5 — Y &(1) (4.26)
s( N, ) N, t:ZO )

respectively.

It has been suggested that the AIC does not always penalise model complexity
sufficiently and hence the use of the BIC can lead to the selection of more compact

models.

In implementation, the CT-NARX model was simulated using a first order Eu-
ler approximation. The basis function parameters for the static nonlinear input
function G(.) were estimated using LS from the target data @ = (kquy(to),...,
kyun(to)) ", where u]-(to), for j = 1,..., M, corresponded to the rescaled input
levels of 30CgHSL.

4.5.5 Results and discussion
CT-NARX model of BBa_T9002 system

The number of possible candidate terms in a superset is normally very large, and
so the model structure is detected using efficient search algorithms based on, for
instance, the forward regression orthogonal FRO (Chen et al., 1989). The number
of model terms in this investigation is very small (only 9 candidate model terms),
therefore the model structure was detected by an exhaustive search of all possible
models resulting from different model term combinations (a total of 2° = 512).
The AIC and BIC was used to detect the model with the optimal trade-off in terms
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Figure 4.5: CT-NARX structure detection: (A) Mean squared prediction error (MSSE) for
CT-NARX models with an MSSE < 5 and (B) Akaike and Bayesian information criteria
(AIC and BIC respectively), optimal model with minimum AIC and BIC value is model
structure 16. Note in both (A) and (B), the models are ordered by increasing complexity,
i.e, number of model terms.

of maximum accuracy and minimal complexity. For MS, information criteria are
preferable to the use of residual error metrics (e.g. mean sum of squared error,
MSSE) for model comparison. The advantage is due to the ability of the ICs to
penalise model complexity which MSSE cannot. The MSSE normally tends to de-
crease as the number of parameters increase. This is clearly illustrated in Figure
4.5A and B, where the MS result for experiment 1 is shown.

The "population-level" CT-NARX model of BBa_T9002 identified using the AIC
and BIC was

§(t) = () + ey’ () + ey (t) +a(t),

where y(t) was the model output signal rate of GFP expression, with associated
parameters c1, ¢ and c3. The input term #i(t) was obtained from a static transfor-
mation G(.) of the input signal 30C¢HSL, which was primarily used to describe
the static switching effect in dynamics across linearly increasing levels of 30CsHSL
(see above).

The error variance of the identified ERS model was 24.3%, whose prediction by
simulation was shown to be inaccurate (Figure 4.3). However, in contrast, the
CT-NARX model provided a much more accurate description of the BBa_T9002
system (an error variance of 0.2%) while retaining a simple model structure (com-
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pare Figure 4.3 and Figure 4.6). The CT-NARX model was further validated and
tested by predicting responses to additional input concentrations not used in the
identification procedure. The predicted simulation results from using these inter-
mediate inputs (30C¢HSL input concentrations: 1 x 10795, 1 x 10785, 1 x 10775,
1x 10765, 1 x 10752, 1 x 107*°M) demonstrated that the CT-NARX model be-
haved as expected (Figure 4.6B).

The main objective of this investigation is achieved, by identifying a "population-
level" CT-NARX model that seeks to describe the same relationship as part of the
ERS model: the input and output dynamic behaviour between 30C¢HSL and GFP
expression (eqn(4.7)). The model terms y?(t) and y(¢) are nonlinear model terms
identified by the data-driven framework. These model terms have enabled the
CT-NARX model to achieve better prediction power without significantly increas-
ing the model complexity. However, the physical insight to these model terms
biochemically is not yet known, but one for future consideration. In addition, the
lack of interpretability of the model terms is not relevant to the utility of the model
for use in design procedures, in which context it would appear that the identified
CT-NARX model is highly preferable.

Consistency of identified model over a set of colonies

The data-driven framework was applied to each experimental dataset, 3 colonies
with 3 replicates of each colony making a total of 9 experimental datasets: colonies
1 and 2 were used for identification of the CT-NARX model, and colony 3 was re-
served for cross validation. A consistent model structure of the dynamic function
was identified for all 6 experimental datasets across colonies 1 and 2. However, in
4 of the experimental datasets, the model structure of the CT-NARX model had
little or no sensitivity towards the truncation point of the experimental data. While
for the remaining 2 experimental data, there was some sensitivity detected, where
slight differences occurred in the model structure depending on the exact time at
which the experimental data was truncated. This occurrence is not abnormal, as
sensitivity in data-driven modelling is common as time-domain descriptions are

typically non-unique.

The parameters of the CT-NARX model were fairly identical across the experimen-
tal datasets - the variation observed was within an order of magnitude and con-
sistent differences were noticed between colonies (Figure 4.7A-C). The CT-NARX
model simulations were similar in accuracy to those shown in Figure 4.6, as illus-

trated by the similarity in MSSE (Figure 4.7D). The variations in all the parameters
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Figure 4.6: CT-NARX model simulation: (A) CT-NARX input signals, (B) Rate of change
of GFP expression at the 150th minute (blue), the Hill equation prediction (green), the CT-
NARX model prediction at observed input concentration (red stars), and the CT-NARX
model prediction at interpolated input concentrations (red crosses), (C) Comparison of
GFP expression (blue) and the CT-NARX prediction (red) and (D) Rate of change of GFP
expression (blue) and CT-NARX model prediction (red). Note that the response corre-
sponding to the lowest input level 30C¢HSL = 0 in (A) has been omitted because of the
log transformation, and the plots in (C) and (D) corresponds to responses to increasing
input level from left to right - top to bottom.
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Figure 4.7: CT-NARX model identification across colonies and experimental data sets. (A-
C) Estimates of CT-NARX model dynamic parameters c1, c; and c3. (D) CT-NARX model
mean sum of squared error (MSSE) for each of 6 different experimental data sets where
sets are grouped by colony: colony 1 comprises experiments 1-3; colony 2 comprises
experiments 4-6.

Table 4.1: Mean and variability in CI-NARX model parameters across colonies

Parameters o] Co C3
Mean 134 x 107 | —353 x 10719 | —0.1134
Standard deviation | 8.46 x 10~7 | 1.96 x 10~ 10 0.016

of the CT-NARX model is summarised in Table 4.1.

Separate static input transformation functions G]-(.) was estimated, forj =1,...,9,
corresponding to each experimental dataset. They were consistent, with some
variability over scaling (Figure 4.8A) - an average static transformation was also
estimated using all experimental datasets (Figure 4.8B). These variations observed
in both static and dynamic parameters across experimental datasets are most likely
due to population heterogeneity, which is an important characteristic to quantify.
As discussed in Chapter 2, population heterogeneity arises due to variations at
single-cell level - intrinsic and extrinsic noise.
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Figure 4.8: Static model of the input nonlinearity. The CT-NARX dynamic model in-
put 7(t) was obtained from transforming u.(t) = log1o(gu(t)) through a static function
G(u«(t)), where u(t) was the level of 30C¢HSL. (A) Separate estimates of the static func-
tion G(.) (red) across 6 experimental data sets (blue) used for identification purpose and
(B) Single estimate of the static function G(.) (red) using experimental datasets compared
to the average of the experimental data curves in panel (A) (blue dots)

Model validation of a unified model

For design purposes, a single model description for the BBa_T9002 system across
experimental datasets was provided, by using the mean values of the dynamics
parameters in Table 4.1 along with the mean static transformation function shown
in Figure 4.8B. The model prediction of the mean model for both training and
validation experimental datasets, in describing the dynamics of the BBa_T9002
system was similar (Figure 4.9)

4.6 Summary and further discussion

In this chapter, a data-driven framework is proposed to identify a nonlinear black-
box model for dynamic characterisation of genetic parts in biological systems. This
framework has particular advantages for use in a top-down design in higher order
systems. The identified CT-NARX model is compact, data-driven in both structure
and parameters, and is part of a wider toolset of associated design and analysis
methods. The framework was demonstrated on a transcriptional regulatory ge-
netic part - BBa_T9002, for which an accurate dynamic model was obtained. The
CT-NARX model was also benchmarked against dynamic and static biochemical
models, which were based on an enzymatic reaction scheme. The enzymatic re-
action scheme model was shown to be inaccurate and inconsistent with its associ-
ated simplified form - the Hill equation. In contrast to the reaction scheme model,
the CT-NARX model provided an accurate dynamic description of the BBa_T9002
system whilst retaining a simple structure. On the basis of these results, the data-
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Figure 4.9: CT-NARX model prediction on validation data. (A) A single CT-NARX model
with average parameter estimates was simulated (red) and compared to a reserved set of
validation data (blue) and (B) The percentage prediction error variance from the averaged
CT-NARX model using both estimation (blue) and validation (red) datasets.

driven framework offers great promise for use in the characterisation of synthetic

genetic parts and further design procedures.

The observed dynamics of the BBa_T9002 system in this investigation were only
collected up to the quasi steady state. The quasi steady state point in the cell
growth curve is approximately the halfway point in the exponential growth stage
(Figure 2.3). However dynamics beyond the quasi steady state point are also very
important to characterise; in operational prototypes - designed chambers will con-
tain cultures producing proteins at all stages of the growth curve, therefore dy-
namic models should be able to predict gene expression in all stages of the growth
curve. The cell growth curves beyond the quasi steady state point are unlikely to
be similar for different cultures (shown to be similar until quasi steady state in
this investigation). Therefore gathering experimental data in which the dynamics
of the system is observed through all stages of the cell growth is fundamentally
important and the inclusion of the growth variable in the dynamic model becomes
necessary. Observing the separate effects of both the cell growth and gene expres-
sion on the dynamics of the system will be explored in later chapters. Chapter 6
goes through the experimental setup, where the additional experimental data is

collected.
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The CT-NARX model implemented in this chapter, characterises the population
heterogeneity through the noise term e(f). However this does not fully and satis-
factorily quantify and explain the variability phenomenon by different cell popula-
tions. Therefore the need to develop a better noise model or a better quantification
methodology to capture the variability observed is of key interest in this thesis. In
the following chapter (Chapter 5), a identification algorithm for CT systems is de-
veloped, which will be able to quantify the cell population variability that could

be translated into features that would aid design procedures.



Chapter 5

A novel identification framework
for continuous-time non-linear

dynamic systems

5.1 Introduction

In the field of nonlinear system identification, there are many techniques available
for obtaining discrete-time DT models (Baldacchino et al., 2012, Chen et al., 1989,
Kukreja et al., 2004, Li et al., 2006, Piroddi and Spinelli, 2003). There are, however,
far fewer techniques available for the identification of nonlinear continuous-time
CT models. The prevalence of DT methods may be due to the ready availabil-
ity of sampled data that can be directly used in nonlinear system identification
algorithms as well as the typical desire to use the model in design for digital
control systems, even when the process is inherently CT. However, there are a
number of reasons why CT models are attractive for nonlinear system identifi-
cation (see section 3.7): (i) they are easier to interpret and can to some extent
facilitate physical understanding, (ii) they tend to be compact, (iii) they permit
identification for irregularly sampled data and (iv) they exhibit more stability and
less ill-conditioning (Garnier and Wang, 2008).

General approaches to CT nonlinear system identification include both direct and
indirect methods: Either directly identifying the model in CT from sampled data,
or indirectly by first identifying a DT model and then mapping it to the CT domain
(Unbehauen and Rao, 1990). A major difficulty for direct CT system identification
is estimating signal derivatives for use in regression-based parameter estimation

methods (Garnier and Wang, 2008). The few techniques available for CT nonlin-

71
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ear system identification overcome the signal derivative estimation problem in a
variety of ways, e.g.: By use of delayed state-variable filters (Tsang and Billings,
1994), by Kalman smoothing (Coca and Billings, 1999) and by use of the delta-
operator (Anderson and Kadirkamanathan, 2007). Each of these approaches leads
to an efficient regression-based estimation step and conveniently allows one to
easily translate and apply DT model structure detection MSD methods to the CT
nonlinear system identification task. The problem is that derivative estimation
can be extremely difficult due to noise amplification and these methods suffer ac-
cordingly in noisy environments. In the earlier chapter (Chapter 4), the Kalman
smoothing technique was applied to derive a CT nonlinear autoregressive model
with exogenous input NARX. In extension, the need to appropriately quantify the
observed variability in the experimental datasets could be partially achieved by
deriving the CT nonlinear autoregressive moving average model with exogenous
input NARMAYX; inclusive of a more detailed noise model. However, its identifi-
cation will also be hampered by the noisy derivative estimation. Therefore, in this

chapter an alternative identification approach is pursued.

The aim of this chapter is the development of a novel algorithm for direct CT
nonlinear system identification that is more robust to noisy signals. The algorithm
proposed is focused on a simulation approach, making use of the output-error
model structure as opposed to the equation-error structure. The key advantage
of a simulation approach is that parameter estimation and MSD do not require
estimation of signal derivatives. This is because there is no regression-based es-
timation step within the simulation framework. Piroddi and Spinelli (2003) pro-
posed a simulation-based identification algorithm for DT nonlinear systems but
in that case parameter estimation was performed by linear regression, which for
CT system identification would again incur the disadvantage of signal derivative
estimation. Piroddi and Spinelli (2003) reported advantages for the simulation
term selection under some restrictive conditions such as non-persistently exciting
signals and fast sampling (Billings, 2013), that should carry over to the CT case.
However, an entirely new algorithm is required that performs the step of parame-

ter estimation using the simulated signals.

The choice of estimation criterion for nonlinear system identification ranges across
least squares LS, maximum likelihood and Bayesian approaches (Ljung, 1999, Pe-
terka, 1981). In both control engineering and in other areas such as the life sciences
where nonlinear system identification is now more commonly applied (Anderson
et al., 2010, Krishnanathan et al., 2012, Kukreja et al., 2003), systems can have wide
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variation in dynamic behaviour (Chapter 4 is also an example). Hence, obtaining a
parameter distribution is typically of more interest than a single best-fit estimate.
The choice of estimation criterion is therefore guided here by the requirement of

characterising uncertainty, resulting in a Bayesian approach.

Within the area of Bayesian estimation, computational methods are gaining popu-
larity due to advances in computational processing power (Baldacchino et al., 2013,
Ninness and Henriksen, 2010). A particular approach, known as ABC (Beaumont,
2010, Tavare et al., 1997, Toni et al., 2009) is a rejection sampling algorithm well
suited to the nonlinear estimation problem encountered in CT system identifica-
tion. This is because ABC is a likelihood-free Bayesian estimation method, which
bypasses the need to analytically derive the likelihood function - a complicated
task for nonlinear CT models. Instead, the likelihood is numerically approximated
via model simulations that are deemed close, in some sense, to the observed data.
In practice, model simulations are performed with randomly drawn parameter
sets, and these sets are rejected if they lead to simulations that are outside of some
distance threshold.

Given the parameter estimation approach of ABC, the question arises of how
to develop a MSD step for the nonlinear CT model. Firstly, the ABC algorithm
naturally builds a numerical representation of the parameter distributions. Con-
veniently, Kukreja et al. (2004) have developed a NARMAX model term selection
method based on exploiting estimates of parameter distributions (obtained from
bootstrapping). Hence, the inspiration of this chapter’s approach to term selection
comes from Kukreja et al. (2004), where terms are pruned from a model superset
using a significance test: parameter ranges are checked to see if they include zero -
corresponding terms are pruned from the model. This algorithm is extended here
to account for less sensitive terms that fail the basic significance test. The main re-
sult is a new algorithm for CT nonlinear system identification, in a computational

Bayesian framework with a simulation focus.

In this chapter, a system identification framework for CT nonlinear systems is
developed, for the first time using a computational Bayesian approach. The frame-
work has two main advantages over existing comparable techniques: (i) parameter
distributions are naturally generated, giving the user a clear description of uncer-
tainty and (ii) the method is well suited to noisy signals because it avoids the
need to estimate signal derivatives. The ABC algorithm is used to estimate model

parameters in a simulation-based framework. Term selection is performed by
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judging parameter significance using parameter distributions that are naturally
generated as part of the ABC procedure. The results from numerical examples
demonstrate that the method performs well in noisy scenarios, especially in com-

parison to competing techniques that rely on signal derivative estimation.

5.2 Parameter estimation by approximate Bayesian compu-

tation

There are several systems which are very complex and also exhibit high nonlinear-
ity such as biological systems. The need to derive models that could describe these
systems are useful. It is also useful to estimate the parameters of these models in
order to simulate them, and hence obtain simulated predictions of the system dy-
namics under consideration. The simulated predictions could be cross-validated
against observed outputs, allowing the performance assessments of these mod-
els and their parameters respectively. The assessments are preferred to be non-

subjective and clear.

In the Bayesian framework, the inference procedure tends to estimate the prob-
ability of a given set of parameters in order to obtain a observed output, thereby
computing the likelihood function. The computation of the likelihood function in
most cases are very difficult. Typically, Bayesian inference involves the estimation

of a conditional distribution which computes the posterior distribution,

p(y|6)r(6)
p(6ly) = G (5.1)
where p(y|0) is the likelihood function, 77(6) is the prior distribution and p(y) is
the marginal likelihood. However, this is difficult to compute because the marginal
likelihood

p(y) = [ p(yle)r(e)de, 62)

is mostly a high dimensional integral (Beaumont, 2010). To the contrary, coding a
simulation program for a model of the process described by p(y|0) is much more
straightforward and easy. The ABC estimation method exploits this situation by
sampling directly from the posterior distribution to directly obtain an estimate
of the conditional distribution p(6|y) (Beaumont et al., 2002, Tavare et al., 1997).
This allows for a principled way of comparing predicted data and experimental
data, and most importantly avoids the computation of the likelihood function

but still carries all the advantages of the Bayesian framework. In the simplest
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form of ABC, given a model for which parameter values are simulated from a
prior distribution, which is used in simulating the model, and hence the predicted
output is compared with the experimental data using a distance metric. If the
value of the distance metric is below a chosen threshold, the parameter set is

picked as a sample from the posterior distribution.

5.2.1 Rejection sampling

The basic ABC algorithm is termed the rejection sampling (the modified version
presented in (Rubin, 1984)). The rejection sampling algorithm is:

1. Draw 6" ~ 77(6)
2. Simulate y* ~ p(y|6%)
3. Reject 0" if d (S(y*),S(y)) > €

where 5(.) describes summary statistics (that may be vector-valued), d(.) is a dis-
tance measure between simulated and observed values, and € is a threshold value.
There are several ways to visualise the posterior distribution but can be simply
done using a histogram. A smoothed version of the distribution can be achieved
using kernel density methods, that allows the computation of the distribution’s
mode, mean or quantiles. The summary statistic is used to reduce the dimension-
ality of the observed data, when it involves many uni- or multi- variate measure-

ments. This process usually tends to lose information.

5.2.2 Inefficiency of the basic ABC

The basic ABC is very inefficient in practice. It is always desirable that the thresh-
old value, €, is relatively small so that the parameter samples accepted are corre-
spondingly good as far as possible. Moreover, if a small value is assigned to ¢,
a large number of sampled parameters will be rejected. This gives rise to a in-
efficient solution, as there is always a computational limitation of the number of
parameters that could be sampled from the prior realistically. This is even more
so, if the prior distribution is very different from the posterior distribution.

There are modified approaches to the basic ABC algorithm which counter the in-
efficiency problem. The regression-based conditional density estimation approach
was introduced in Beaumont et al. (2002). It introduces a weight for each ac-
cepted parameter sample, in which the sample that corresponds to the lowest
error threshold is weighted higher in comparison to the others. It also applies a
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regression-adjustment step, where each accepted parameter is described by a lin-
ear regression equation that is used to obtain an adjustment, thereby estimating
the marginal posterior distribution of the parameter. Theoretically, the weighting
and adjustment steps increase the efficiency, however, the approach only samples
from the prior distribution therefore the quality of the results highly rely on infor-
mative prior. A Markov chain Monte Carlo approach of the ABC was introduced
in Marjoram et al. (2003). It produces a growing Markov chains of the parameter
samples until a stationary distribution is attained to describe the true posterior
distribution of the parameters. The drawback of this approach is the correlation
of the accepted parameter samples and the possibility of chains being stuck in
low density regions resulting to slow convergence. An alternating and efficient
approach is the ABC-sequential Monte Carlo (SMC) approach. This is discussed
later on and the justification of its efficiency is given.

5.3 Model definition and parameter estimation

5.3.1 Continuous-time nonlinear model representation

The model structure considered in this chapter is CT nonlinear output error NOE

model. The observed output y(f) € R of a CT-NOE process can be represented as

z"(t) = f(8(t)), (5.3)
) +e(t), (5.4)

where z(t) € R is the unknown noise-free system output, u(f) € R is the known
system input, z" (t) € R indicates the n!" derivative of z(t), and the measurement
noise e(t) is assumed to be zero-mean white noise. The function f(.) describes the
dynamics of the nonlinear CT process and §(t) € R?" is the vector of input and
output derivatives,

§(t) = <z(t), R ORTONE .,u”f_l(t)) . (5.5)

The nonlinear function f(§(¢)) can be decomposed and represented by a linear
sum of basis functions ¢;(§(t)) which can have varying forms including wavelet,
polynomial or radial functions,

Np
f(§(t) = Z}ijl’j@(t))/ (5.6)
=
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where Nj is the number of model terms and 0; € R is the parameter associated

with basis function ¢;(.).

5.3.2 Parameter estimation by ABC-SMC

A shortcoming of the basic ABC algorithm is the low acceptance rate when the
prior distribution is very different to the true posterior (as discussed above). A
low acceptance rate would require many simulations to adequately represent the
posterior distribution. To increase the computational efficiency of ABC, therefore,
more sophisticated approaches have been developed (see above for more details)
(Beaumont, 2010). One such method is the ABC-SMC algorithm (Sisson et al.,
2007, 2009, Toni et al., 2009), which has proved effective in dynamic systems mod-
elling (Holmes et al., 2012, Liepe et al., 2012).

The main idea of the ABC-SMC algorithm is to iterate population estimates gen-
erated by ABC, gradually decreasing the error tolerance €; at each iteration I. The
posterior distribution at iteration / becomes the sampled prior distribution at [ + 1.
Hence, the ABC-SMC algorithm reaches the target posterior in a sequential man-

ner.

The error threshold sequence is chosen so that it decreases at each iteration, hence
€1 > ... > €1, where L is the number of iterations. The first and final thresholds
can be tuned by performing the basic ABC estimation algorithm for N; samples
and setting €1 = 2d,,;, and €; = 1.2d,,;,, where d,,;,, denotes the minimum of the
vector of all N;s distance measures. The ABC-SMC algorithm is described for the
nonlinear CT model parameter estimation in Algorithm 5.1. Further details of the

implementation is given in the following subsection.

5.3.3 Implementing ABC-SMC for nonlinear continuous-time model

For the nonlinear CT model, the prior distribution of the parameters was defined
here as a uniform distribution. In the absence of specific information on the prior,
it was scaled using the LS parameter estimate obtained from the method of Coca
and Billings (1999). Hence, the prior distribution was defined as

7t(0) ~ U(—27,27), (5.7)

with range parameter v,

v="'"Y)" ¥y (5.8)
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Algorithm 5.1 Parameter Estimation by ABC-SMC
Require: number of iterations L, number of parameter samples N;,
prior 71(0) and error sequence €1 > ... > €
for/ =1
forj=1:N;
draw 6; ~ 71(0) and simulate y; ~ p(y|6;)
until d(S(y}“),S(y)) < e
end for
set each weight w]l = N%;
end for
for/=2:L
forj=1:N;
sample 6; from 6'~! with probabilities w'~
perturb 6; to obtain 67" ~ L(6(6")
simulate y; ~ p(y|6;") until d(S(y;), S(y)) < &
end for
set each 9;- =0

1

7'[(65-)

set each w! = , and normalise

¥ ol (el 1))
i=1

end for

Note: parameter samples are denoted as 0, and 0" after perturbation. L is a
parameter perturbation kernel (uniform random walk).
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where

¥ = (i), plig)T) (5.9)

() = (900,90, ut), . w0 (D)) (5.10)

G = (Qni(to),...,gni(tNy_l))T (5.11)

where the derivative estimates of y(t) were obtained from a Kalman smoothing
algorithm, described in Coca and Billings (1999). The model simulation step was
performed by deterministic simulation of the model defined in eqn(5.3 and 5.4),
using a fourth order Runge-Kutta method. The distance measure of simulations

from observations was obtained from the sum-of-squared errors,

Ny-1
d=3, () —y"(4)* (512)
j=0
The L, norm used here for d(.) is suited to normally distributed noise but for other
types of noise it would be possible to use an alternative, for example an L; norm
for Laplacian noise or an L., norm for uniform noise.

5.4 Nonlinear continuous-time model identification frame-

work

In this section an identification framework is developed for the nonlinear CT
model. First, a simple one-stage approach to MSD is derived, based on a parame-
ter significance test. The significance test makes use of the parameter distributions
naturally generated as a byproduct of the ABC-SMC algorithm. This works effec-
tively for terms with sensitive parameters (explained in more details below). For
terms with less sensitive parameters, a two-stage algorithm is derived that follows
the significance test with an information criterion test.

5.4.1 One-stage model structure detection

The ABC-SMC algorithm naturally generates parameter distributions as part of
the estimation procedure. Here, this feature is exploited by developing a MSD
algorithm that makes direct use of these distributions. Similarly to the approach
of Kukreja et al. (2004), a significance test is used to prune ‘false” parameters from
a superset of model terms, where significance is determined from the parameter
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Cumulative Density
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Figure 5.1: Term selection via the cumulative density function. The cumulative density
function for a parameter 6 is constructed by the ABC-SMC estimation algorithm. The
model term is rejected if zero lies between the limits corresponding to the 5% and 95%
probability levels, i.e. a <0 < b.

distributions using a quantile test.

The quantile test selects parameter estimates that cannot be distinguished from
zero: The test finds the intervals from the cumulative distribution of the parame-
ters. First, the 5% and 95% intervals are defined

P, =Pr(6 <a) =005 P, =Pr(6 <b) =095 (5.13)

where a2 and b are constants that correspond to the probability levels 0.05 and 0.95
respectively. Then the quantile test is performed by checking if zero lies between
the 5% and 95% intervals, i.e. a < 0 < b (see Figure 5.1). The quantile test is used
here unlike the percentile test used by Kukreja et al. (2004) because the posterior
distributions obtained in the ABC-SMC framework can be skewed.

The algorithm proceeds as follows. An initial superset of model terms is defined,
M, of cardinality Ny = | M|, where model terms correspond to basis functions
¢j in eqn(5.6). All parameters of the model terms in the set M is estimated using
Algorithm 5.1 (ABC-SMC). The terms of model M; is selected by forming quan-
tile intervals a; and b; for each parameter ¢; and pruning the term if zero lies in
the interval. The one-stage MSD algorithm is fully described in Algorithm 5.2.



Chapter 5. A novel identification framework for continuous-time non-linear
dynamic systems 81

Algorithm 5.2 One-stage model structure detection

Require: derivative order n; and polynomial order g
Define: superset of model terms M, where Ny = | M|
Run: Algorithm 1 for M (estimate parameters)
Initialise: M = M
for j = 1: Ny (quantile test)
discard model term ¢; from M;
else
retain model term ¢; in M,
end if
end for
Run: Algorithm 1 for M/ (re-estimate parameters)

5.4.2 Two-stage model structure detection

In this section an enhanced two-stage MSD algorithm is described. To motivate
this enhancement, firstly, it should be noted that an advantage of the one-stage
quantile test is it’s computational efficiency. The quantile test is efficient because
it only requires one pass through the ABC-SMC algorithm. However, a disadvan-
tage of the quantile test is that it does not directly assess the performance of the
model simulations. Therefore, in this section a second stage to the algorithm for
term selection is developed that directly measures simulation performance using
the Bayesian information criterion (BIC).

The two-stage algorithm proceeds as follows. At stage one the set of model terms
M using the quantile test is obtained: The quantile test is only used on terms
that pass an initial sensitivity test, where sensitivity is assessed as a parameter
variance less than some constant B (here p = 1) - defined as pool 1 terms, the set
P1. Terms with parameter variance greater than B are defined as pool 2 terms,
the set P,. Terms in pool 2 have an ambiguous contribution to the model and
therefore require further testing in the second stage. The ambiguity arises because
model terms whose parameters are less sensitive have slow convergence towards
their true parameter values, these model terms could be either correct or spurious
terms. These model terms usually have poor prior initialisation, which tend to
have wide uniform distributions. The wide uniform distribution occurs because:
(i) the initialisation of the prior is done through the LS estimate using (Coca and
Billings, 1999) approach and due to the large number of possible model terms, the
estimation is an ill-conditioned problem, therefore some parameter estimates (for

both correct and spurious model terms) could be misleadingly large in comparison
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Algorithm 5.3 Two-stage model structure detection

Require: derivative order n; and polynomial order g
Define: superset of model terms M, where Ny = | M|
Run: Algorithm 1 for M,
Initialise: P1 =@ and P, = @
for j =1: Ny (determine P; and P)
if variance(0;) <
allocate term ¢ to P4
else
allocate term ¢; to P>
end if
end for
Set: Ny = |Py| and N, = | P|
Initialise: M =P,
for j = 1: Nj (quantile test)
discard model term ¢; from M;
else
retain model term ¢; in M1
end if
end for
Run: Algorithm 1 for M (re-estimate parameters)

Order terms in P, by descending Cha-Srihari metric
Initialise: M) = M,
for j = 1: N (BIC test for ordered ;)
Form model M) by adding term P;(j) to MU~1
Run: Algorithm 1 for M) (re-estimate params)
if BIC(M )y < BIC(MU-1)
retain P, (j) in MU)
else
break
end if
end for

Set: M, = MU)
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to their true value and (ii) the true estimate of the parameters are actually large.
However, the common feature of model terms and their respective parameters (ei-
ther categorised under (i) or (ii)) are their low contribution (less sensitive) towards
the dynamics of the system, hence most samples obtained from their wide prior
are uninformative. Therefore in the second stage, the final set of selected model
terms M is obtained by iteratively testing pool 2 terms using the BIC, after first
ordering pool 2 using the Cha-Srihari metric (defined below) (Cha and Srihari,
2002).

The key step in the two-stage algorithm is the ordering of unselected terms by
use of the Cha-Srihari distance metric (Cha and Srihari, 2002). The purpose of
using Cha-Srihari is to detect which model parameter distributions have evolved
the most from their uniform prior. It is assumed that the estimated parameter dis-
tributions that least resemble their uniform prior contribute the most to describing
system dynamics. The ordering of model terms makes the search through pool 2
much more efficient than taking the unselected terms at random (in a way avoiding
ill-conditioning). The Cha-Srihari distance, D(A, B), measures how much effort it
takes to transform a reference histogram, A (the prior), to a target histogram B
(the posterior),

Nj,
D(A,B) =) si|, fori=1,...,Ny, (5.14)
i=1

where s; = Z;zl ri, fori = 1,...,Ny; v, = A; — B;, A; and B; are bar sizes of
histograms A and B respectively, and Nj, is the number of bars. Here N;, = 4 is
set with bar centers in between the intervals [—27, —v,0,v,27]. The set of pool
2 terms is sorted in descending order of Cha-Srihari measure, which are then
searched in order using the BIC. The two-stage MSD algorithm is fully described
in Algorithm 5.3.

5.4.3 Derivative order model selection

Identifying the correct derivative order, n;, of the nonlinear CT model is an im-
portant issue to address. Here the Bayes factor criterion is used to identify the
correct derivative order, as this naturally fits with the ABC framework. ABC can
be used in model selection by allocating competing models an index, and then
treating this index selection as a parameter estimation problem (Toni et al., 2009).
The Bayes factor for comparing evidence supporting two models with different
derivative order M; and M; is
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p(Mily)/p(Mily)

Bs(i,j) = (5.15)
D)= =M T p(M)

which for uniform priors simplifies to B(i,j) = %. In practice, for derivative
]

order selection, Algorithm 5.3 is run independently for models of different deriva-
tive order and then models are compared using the Bayes factor in a final run of
the basic ABC algorithm.

5.5 Multi-core processing for fast ABC

The most time consuming steps in the ABC algorithm are the model simulations,
which are typically performed many thousands of times. The model simulations
are inherently parallelisable, due to their independence. Therefore, the ready
availability of multi-core desktop machines were exploited to decrease the compu-
tation time. Specifically, custom algorithms in MATLAB was used to implement
the parallelised ABC-based algorithms in conjunction with the Parallel Processing
Toolbox (the parfor function, which automatically divides a task across available
processors). An advantage of this approach is the ease of implementation, which
does not require specialist knowledge of parallel programming. The decrease
in computation time for simulating 1000 simulations is illustrated in Figure 5.2,
which shows a 10 fold decrease in computation time using 12 cores in comparison
to a core. Similar performance enhancements could be obtained with graphics
processing units (GPUs) (Henriksen et al., 2012, Lee et al., 2010), which would

require more specialist implementations.

5.6 Results

This section is divided into the following subsections:

1. The parameter estimation of the Van der Pol oscillator (VDPO) system cor-
rupted by measurement noise - zero-mean Gaussian random noise with SNR
of 20dB and 10dB.

2. The demonstration of the one-stage model structure detection algorithm on
the VDPO system corrupted by measurement noise - zero-mean Gaussian
random noise with SNR of 10dB. The result is compared and benchmarked

against the derivative continuous-time method dCTM approach.

3. The demonstration of the two-stage model structure detection and deriva-
tive order model selection algorithms on a test system with identifiability
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Figure 5.2: Computation time of 4" order Runge-Kutta simulation algorithm. 1000 ran-
dom VDPO simulations were repetitively simulated using the parfor function with varying
processing cores.

problem, which is corrupted by measurement noise - zero-mean Gaussian
random noise with SNR of 20dB and 10dB. The result is also compared and
benchmarked against the dCTM approach.

5.6.1 Case 1: parameter estimation of VDPO system

To investigate the performance of the ABC-SMC algorithm for parameter estima-
tion, it was applied to the well known Van der Pol oscillator (VDPO) system, with

increasing measurement noise. The VDPO system used was

2(t) = O1z(t) + 622(t) + O3u(t) + 0422 (£)2(8), (5.16)
y(t) =z(t) +e(t), (5.17)

where e(t) was defined as zero-mean Gaussian random noise with variance (i)
A% = 0.04 for SNR of 20dB and (i) A> = 0.25 for SNR of 10dB. The parameter
vector was set to 6 = (—1,0.2,1,—0.2). The excitation signal was set to a zero-
mean uniform random sequence in the range (-20,20) band-limited to 20 Hz. In
implementing the parameter estimation the parameter size was set to Ny = 200

and the number of population iterations to L = 10.

If the assumption is that the posterior distributions are unimodal and symmetric,
estimates from a distribution can be made on the basis of the mean in a minimum
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Figure 5.3: Parameter estimation of VDPO system using ABC-SMC (Algorithm 5.1). True
parameters are shown as red stem plots and the black dotted lines indicates the prior. Es-
timated sample distributions are shown over 10 iterations of the ABC-SMC procedure on
VDPO system with measurement noise for SNR of 20dB - (A) and 10dB - (B) measurement
noise. Iteration 1 in grey while iteration 10 in black.

Table 5.1: Estimated parameters of the VDPO system.

SNR=20dB | SNR=10dB
True System ABC-SMC ABC-SMC
—1.00z(t) —1.10z(t) —1.56z(t)
0.2z(t) —0.212(t) —0.392(t)
1.00u(t) 0.72u(t) 0.48u(t)
—0.222(1)z(t) | —0.3622(t)z(t) | —0.392%(t)z(t)
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Table 5.2: Identified models of the VDPO system. ABCI refers to the one-stage ABC
identification method.

True System dCT™M ABC1
—1.00z(t) —1.06z(t) —0.94z(t)
0.2z(t) - 0.192(t)
1.00u(t) 0.49u(t) 1.13u(t)
—0.2z%(t)z(t) | —0.012%(t)z(t) | —0.262%(t)z(t)
- —0.01u(£)z(f) -

mean squared error sense or mode in a maximum a posterior probability sense.
The mode is often considered a more appropriate measure, particularly when it
is used in a Bayesian framework. Mean estimate on the other hand is easier to
compute than the mode. If the distribution is unimodal and symmetric then the

mode and the mean will coincide.

One could observe that the parameter’s posterior distributions of the VDPO sys-
tem whose measurement noise for SNR of 20dB, are much narrower in comparison
to distributions obtained when a SNR of 10dB was used (Figure 5.3). However,
the parameters of the VDPO system was accurately estimated for both measure-
ment noise level (Table 5.1), indicating the robustness of the ABC-SMC procedure
defined in Algorithm 5.1.

5.6.2 Case 2: model structure detection of VDPO system

To investigate the performance of the one-stage model structure detection algo-
rithm, the VDPO system was used (eqn(5.16 and 5.17)) with the same parameter
vector mentioned in the above subsection. However, the results shown below only
entails that of the VDPO system corrupted by measurement noise with SNR of
10dB. The nonlinear order was set to 4 = 3 and the derivative order to n; = 2.
The results were compared to the dCTM approach that uses Kalman smoothing to
estimate signal derivatives developed for CT systems by Coca and Billings (1999).
Note, for the dCTM approach the tuning parameters for smoothing were chosen

as discussed in section 3.7.2.

The contribution of each model term in the VDPO system towards the output
dynamics is fairly high, therefore they do not tend to have identifiability issues.
This could be illustrated by computing the unexplained variance (relative to the
regressed output) of each term: ~ (124.18,126.80,2.64,127.01) that corresponds to
z(t),2(t),u(t) and z%(t)z(t). The z(t) term is one of the terms that contributes the
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Figure 5.4: Model structure detection using one-stage procedure (Algorithm 5.2: L = 3 and N; = 200) for VDPO system. True model terms in
red stem are correctly selected, while false model terms in black stem are correctly not selected. The black dotted and red solid vertical lines
indicates the prior and quantile values respectively.
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Figure 5.5: Comparison of noise free output (blue), dCTM model (green) and one-stage
ABC (red - the shaded region indicates uncertainty from the ABC parameter range). A:
one-stage ABC model based on initial parameter estimation (full model set) and B: one-
stage ABC model based on re-estimation of parameters (only selected model terms).

least, and from Figure 5.4 it can be seen that it narrowly passes the quantile test,
whereas the dCTM approach completely fails to correctly identify it (Table 5.2).
The one-stage model structure detection algorithm performs well when the system
to be identified has little or no identifiability issues. However, it under-performs
when identifiability issues arises (model terms with less sensitive parameters),
which the extended two-stage model structure detection algorithm rectifies. This
is illustrated in the next subsection.

The improved performance of the one-stage model structure detection algorithm
is highlighted by a comparison of simulations (Figure 5.5). It can be seen that
the estimates of the parameters are better when only the correct model terms
are considered (compare uncertainty - red shaded region in Figure 5.5A and B),
this shows the correlative relationship between model terms, that makes the re-

estimation of parameters after structure detection essential.
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5.6.3 Case 3: model structure detection and derivative order model se-
lection of a test system with identifiability problem

To investigate the performance and accuracy of the proposed two-stage model
structure detection algorithm, a test system with identifiability problem is used
with increasing measurement noise. Here again, the results were compared to the
dCTM approach (note, for the dCTM approach, the tuning parameters for smooth-
ing were chosen as discussed in section 3.7.2).

The test system used was
Z(t) = 012(t) + 622(t) + Osu(t) + 0,42°(t)

+ Os5z(H)u(t) + Bu>(t),
y(t) = z(t) +e(t), (5.19)

(5.18)

where e(t) was defined as zero-mean Gaussian random noise with variance (i)
A? = 4 x 107° for SNR of 20dB, (ii) A2 = 4 x 10~* for SNR of 10dB. The param-
eter vector was set to 8 = (—2,—3,1,4,10,2.5). The excitation signal was set to a
zero-mean uniform random sequence in the range (—1,1) band-limited to 20 Hz.
For parameter estimation using ABC-SMC the parameter size was set to N; = 200
and the number of population iterations to L = 10. The nonlinear order was set
to g = 3 and the derivative order to n; = 2 (except for the derivative selection test
described below).

The dCTM and one-stage ABC algorithms performed well at high SNR (20dB)
with the correct model terms being chosen but worsened with increasing noise
levels (SNR=10dB). The two-stage algorithm performed well, however, even at
higher noise levels, correctly identifying all terms (Table 5.3). The much improved
performance of the two-stage ABC algorithm is highlighted by a comparison of
simulations (Figure 5.6E and F).

The one-stage ABC algorithm failed to pick model terms with less sensitive pa-
rameters, unexplained variance (relative to the regressed output) of these terms
are: ~ (2.29,2.22,2.07) that corresponds to z(t),z%(t) and z(t)u(t) (Figure 5.6C).
However, the z(t) term has a low unexplained variance of 2.20, but its contribution
to the dynamics is much more significant thus being correctly picked by the one-
stage ABC algorithm. The robustness and efficiency introduced by the Cha-Srihari

measure can be seen in Figure 5.6A-B and G. In Figure 5.6G, the terms whose pos-
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terior distribution’s variance > 1, captures how much their uniform priors have
evolved into their respective posterior distributions (represented as histograms; it
is assumed that the more the prior evolves, the greater its significance). The Z(t)
and z(t)u(t) terms with corresponding parameters of 6, and 65 are demonstrated
to have evolved the most in comparison to other model terms shown in Figure
5.6G, which the Cha-Srihari measure have correctly identified (Figure 5.6A), thus
granting more importance. This demonstrates that the Cha-Srihari measure is only
used for efficiency purpose, as further computation could be avoided if a required
threshold (prediction accuracy) is achieved. The 2%(t) term with corresponding pa-
rameter 04, has a very low significance towards the dynamics, which contributed
to its lower ranking according to the Cha-Srihari measure. However, the BIC was
still capable of correctly identifying it, which further shows the robustness of the
two-stage ABC algorithm.

To demonstrate the selection of the derivative order, two models of derivative
order n; = (2,3), were obtained using the two-stage ABC algorithm and were
compared as explained in section 5.4.3 (using the 10 dB input-output data) and
the results seen in Figure 5.6D). From 200 samples, the model with n; = 2 was
selected 187 times and the other model with n; = 3 was selected 13 times. The
Bayes factor in this case, B¢(1,2) = % = 14.4, correctly provided strong evidence
in favour of n; = 2 rather than n; = 3, demonstrating the effectiveness of this

model selection approach.

5.7 Summary

In this chapter, a computational Bayesian identification framework for nonlinear
CT systems that utilises a simulation approach as opposed to a regression ap-
proach is developed. The main contribution of this algorithm to the suite of meth-
ods available for CT nonlinear system identification is that the signal derivative
free approach and the estimation of the model parameter uncertainty by construct-
ing a distribution. The identification algorithm uses the ABC-SMC method, which
is a rejection sampling technique for inferring parameters of a model. Parameter
distributions intrinsically generated by ABC-SMC estimation algorithm is used to
drive term selection by significance testing. The simulation results demonstrate
the high fidelity of the ABC approach to increase in noise levels in the measure-
ments.

This developed identification framework will aid the quantification and charac-
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Figure 5.6: Model structure detection using two-stage procedure (Algorithm 5.3: L = 3
and N; = 200) and model selection procedure (A-D and F-G shows results for SNR=10dB).
A. Cha-Srihari measure of the 12 model terms whose variance > 1 (the correct model
terms are indicated), B. The consequent BIC score of models when model terms are added
in order of sensitivity (the correct model terms are indicated and the BIC score under
0 represents the model when no terms from pool 2 are added), C. The variance relative
to zero of each model term in the system is shown, indicating their contribution to the
dynamics (the bar under 0 quantifies that of the system’s output), D. The derivative order
model selection procedure of model order’s n; = (2,3), E and E. Comparison of noise free
output (blue), dCTM model (green) and two-stage ABC (red - shaded region indicates
uncertainty from ABC parameter range): E - SNR = 20dB and F - SNR - 10dB, and G.
The posterior distribution (histogram) of the the 12 model terms whose variance > 1 (the
correct model terms are indicated).
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terisation of variability in gene expression that is observed in different cell popu-
lations, in a principled and rigorous way (as discussed in the earlier chapter). This
is demonstrated in Chapter 7 for the experimental data collected in Chapter 6.



Chapter 6

System fabrication, experimental
design and data acquisition

6.1 Introduction

In this thesis, the focus is not only based on developing a data-driven modelling
framework to derive dynamic models that will enhance the characterisation of
synthesised genetic parts. Rather, the aim was to give equal emphasis on data
acquisition through designed experimentation, which the developed data-driven
modelling framework and analytical tools could be applied to. That will subse-
quently help in providing answers to key questions related to characterisation of
genetic parts, such as the process of characterisation itself. This was made pos-
sible by the cross-departmental collaboration with the "ChELSI group" in the de-
partment of chemical and biological engineering (http:/ /www.shef.ac.uk/chelsi),
including other services provided by the University of Sheffield, such as the de-
oxyribonucleic acid (DNA) sequencing service in the medical school. This col-
laborative opportunity helped to establish a friendly atmosphere for discussions,
knowledge sharing and experimentation related to the research of key fundamen-
tal challenges in achieving effective characterisation of genetic parts.

The need to gather more experimental data of the transcriptional regulatory sys-
tem - BBa_T9002 (http://parts.igem.org/Part:BBa_T9002) was clearly established
in Chapter 4. The experimental data should consist of both cell growth and GFP
measurements starting from lag phase till death phase. Transcriptional regulatory
systems are regarded as one of the most simplistic genetic functional modules
which are frequently used to design higher-order genetic parts. The need to char-
acterise commonly used functional modules robustly, in order to simplify and aid

95
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the design of higher-order genetic parts is crucial. Furthermore, the limitation of
the data-driven dynamic model derived in Chapter 4 using the narrow time-series
experimental data, is its limitation in predicting the dynamics of the BBa_T9002
system beyond the quasi steady state (mid-point in the exponential growth phase).
This is a drawback, as output predictions of a genetic part at all stages of the cell
growth cannot be attained, which a model of an operational prototype will and
should be required to do. Also, the narrow time-series experimental data does
not fully capture the compromising effect of the system’s cell growth and protein
expression on each other. This is taken into account in this thesis and, experimen-
tal data are obtained at all stages of cell growth. This imposes a change in the
model structure of the data-driven dynamic models as will be shown in Chapter

7 in comparison to the derived model in Chapter 4.

As mentioned in the first paragraph, a key question about the process of char-
acterisation is raised in this thesis. What influence does the reporter cascade,
which includes both the ribosome binding site and fluorescence protein, have on
the functional module and vice versa, in addition to the overall dynamics of the
whole system? In this thesis, the dynamics of a system observed is termed the
"relative" dynamics respective to the reporter cascade used. If it does, how much
of an influence is it? Is it quantitatively large and if so, is it appropriate to use
reporter cascade for the characterisation of genetic parts? For BBa_T9002 system,
the functional module is BBa_F2620 (http:/ /parts.igem.org/Part:BBa_F2620) - the
receiver cascade. When higher-order genetic parts are designed, different func-
tional modules are usually synthesised and ligated together, normally excluding
the reporter cascade. The experimental norm for the process of characterisation is
the use of a fluorescence protein to monitor the dynamics of the functional mod-
ules. However, little has been done in the literature to verify the influence of a
functional module and reporter cascade on each other. There are three conclu-
sions that can be drawn from such a study, which are: (i) the reporter cascade
monitors and delivers the exact dynamics exhibited by the functional module (re-
porter cascade does not have its own dynamics), (ii) the reporter cascade exhibits
dynamics of itself which is only being observed in the experimental data or (iii)
both the functional module and reporter cascade dynamics have being observed
in the experimental data, where dynamics of one dominates the other. It can be
argued that option (ii) is an unlikely scenario because there are several different
genetic parts (functional modules) which have been designed, and monitored by
the same native GFP and exhibit different dynamics (Elowitz and Leibler, 2000,
Gardner et al., 2000, Toettcher et al., 2011).
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Here, a novel experimentation is devised to answer some of the questions raised
in the above. This required the design of a new genetic part. Therefore in this
chapter the biofabrication, that exploits the top-down design approach of genetic
parts needed for experimentation are discussed. This was made possible by us-
ing off-the-shelf functional modules which are readily available in the registry of
standard biological parts RSBP. An IGEM laboratory group was created for this
purpose - "Wright Lab" (http://igem.org/Lab.cgi), allowing the order of the 2012
DNA distribution kit (all genetic parts used in this thesis are from the 2012 distri-
bution kit only). The design of a similar system to the BBa_T9002 was undertaken,
in which the functional module - BBa_F2620 was ligated with a different reporter
cascade - BBa_J06702 ( http:/ /parts.igem.org/Part:BBa_]J06702) rather than
BBa_E0240 (http://parts.igem.org/Part:BBa_E0240). By keeping the functional
module the same, the aim was to investigate if the reporter cascades have an
influential effect on the "relative" dynamics of the system, thereby reflecting on
some questions raised in the above paragraph.

In this chapter, a summary of the main experimental protocols carried out to ac-
complish the biofabrication of the genetic parts are detailed. The stage by stage
process in which this experimental protocols are applied is also discussed. The
experimental setup and procedures for the data acquisition of cell growth and
protein expression measurements, for both systems (BBa_F2620 ligated to two dif-
ferent reporter cascades) are outlined. The chapter is concluded by reporting the
various data collected from experiments.

6.2 Experimental protocols

The main experimental protocols practiced during the biofabrication of the genetic
parts are described here. The experimental protocols were practiced to achieve the:
(i) transformation of DNA into host cells, (ii) cloning of DNA samples, (iii) screen-
ing of DNA samples, (iv) cutting and ligation DNA sequences, and (v) preparation
of growth media. The experimental protocols are mentioned and recalled again in
the next section to demonstrate at what stages of the biofabrication process they
were applied. Most experimental protocols used are based on the standard ap-

proaches, unless stated otherwise in which case a website link would be provided.
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6.2.1 Transformation

In order to transform plasmids (with or without DNA inserts) into E. coli strains,
one of the two protocols could be followed: chemical or electrical transformations.
By identifying the fact that the Escherichia coli (E. coli) strain to be used is either
chemically competent (e.g. DH5« strain) or electrically competent (e.g. K12 strain),
will influence which protocol is to be implemented.

It is also important to identify if the E. coli strain is going to be used for cloning
or characterisation purposes. Cloning strains are preferred for having reduced
nuclease activity, while characterisation strains are preferred for having decreased

protease activity.

Chemical transformation

The chemical transformation protocol proceeds as follows:

e Prepare fresh lysogeny broth (LB) plates with ampicillin resistance.

e Streak out chemically competent E. coli strain (e.g. DH5a) onto a LB plate.
This serves as a control (done in parallel), where no growth of bacteria
colonies should be seen overnight, due to the presence of ampicillin resis-
tance. Direction: (i) keep bacteria strain (glycerol stock) in ice at all time, (ii)
streak by dipping in a streaking stick onto the glycerol stock and across the
plate, and (iii) carry out the process close to the flame.

e Add 2 microlitres (#L) of DNA sample (either obtained from miniprep or
maxiprep protocol) to ~ 10 - 20 uL of E. coli strain.

e Leave in ice for 30 minutes.
e Leave in floater at 42 degrees Celsius (°C) for 90 seconds.
e Leave in ice for 3 minutes.

e Add 150 uL of LB medium into it and place it in a floater inside the incubator

at 37°C, 200 revolutions per minute (rpm) for 2 hours.

e Plate out all the solution onto a LB plate with ampicillin resistance using a

plating stick.
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Electrical transformation - electroporation

The electrical transformation protocol proceeds as follows:

Prepare fresh LB plates (no antibiotics).

Streak out electrically competent E. coli strain (e.g. K12 - MG1655) onto the
LB plate and allow it to grow overnight. Direction: (i) keep bacteria strain
(glycerol stock) in ice at all time, (ii) streak by dipping in a streaking stick
onto the glycerol stock and across the plate, and (iii) carry out the process
close to the flame.

On the following day, further procedures outlined below are followed,

Add 10 millilitres (mL) of LB medium into a falcon tube (no antibiotics), slice
a single colony of E. coli strain from the overnight grown plate and add it to
the LB medium in the falcon tube.

Leave the falcon tube in the incubator at 37°C, 200 rpm for overnight.

On the following day, further procedures outlined below are followed,

Prepare a 1:100 dilution of overnight culture (with no antibiotics) in 10 mL
of LB medium.

Leave the diluted culture in the incubator at 37°C, 200 rpm for 2 - 3 hours, un-
til an absorbance measurement (growth level - OD600) of 0.4 - 0.7 is achieved.

Place the falcon tube containing the culture in a centrifuge at 4°C, 4000 rpm

for 15 minutes. Retrieve the falcon tube and discard the supernatant.

Resuspend the cell pellet in 1 mL of chilled MQ water. Note, MQ water is
deionised filtered water.

Suspend the solution into a 2 L eppendorf tube and spin it down using a

centrifuge at 4000 rpm for 1 minute and then discard the supernatant.
Repeat the above 2 steps three times.

Resuspend the sediment in 100 L of MQ water and split the suspension
into 2 solutions (50 uL each).
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Add 5 uL of DNA sample into one of the solution and leave it for 30 minutes.
Set aside the other solution as a control.

Aliquot the suspension (with DNA sample) into a chilled curvette. Direction:
(i) carefully aliquot it near the membrane (without damaging the membrane)
and (ii) carry out the process close to the flame.

Place the curvette into the electroporation device (Figure 6.1E). Choose ap-
propriate settings (e.g. K12 strain and 2 millivolts) and electroporate.

Slowly resuspend the solution in the curvette with 1 mL of LB medium and
leave the solution in the incubator at 37°C, 200 rpm for 2 hours.

Spin the solution down in a centrifuge at 6000 rpm for 1 minute.

Remove 900 uL of the spun down solution, resuspend the rest with 100 uL of
LB medium and pour the solution onto a LB plate with ampicillin resistance.

Plate it out using a plating stick.

6.2.2 Preparation of M9 supplemented media

This protocol is replicated from

http:/ /openwetware.org/wiki/Endy:M9_media/supplemented. For 1 L of M9

supplemented media, combine the following solutions using a sterile technique:

500 mL of 2 x M9 salts.
30 mL of 10 milligramme /millilitre (mg/mL) thiamine hydrochloride.

- Dissolve 10 mg/mL of MQ water.
— Filter sterilise using a 0.22 micrometre filter.

- Light-sensitive, therefore store covered.
10 mL of 40% glycerol.
20 mL of 10% casamino acids.
20 mL of 0.1 molar (M) magnesium sulfate.
200 uL of 0.5 M calcium chloride.

419.8 mL of sterile MQ water.

Some precipitation may be noticed during preparation but precipitate should go

back into solution once volume is brought up to 1 L with sterile water. Filter

sterilise once the media is made up and store under 4°C.
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6.2.3 Colony screening

After each transformation protocol is carried out, colony screening is highly ad-
vised. It helps to determine if most bacteria colonies seen growing on the overnight
LB plate have the required plasmid insert in them.

e Slice out different colonies from the overnight grown LB plate and: (i) mix
it in separate 10 mL of LB medium with ampicillin resistance (100 u/ml
concentration), and (ii) streak out onto separate LB plate with ampicillin

resistance.

e Place: (i) each falcon tube containing the diluted culture in an incubator
at 37°C, 200 rpm for overnight and (ii) each streaked LB plate into a static
incubator at 37°C for overnight.

All the streaked LB plates should have bacteria colonies grown in them the next
day, since the LB plates contain ampicillin resistance. If this is not seen, it indicates

that the transformation protocol carried out was not successful.

6.2.4 Diagnostic gel

The diagnostic gel protocol is carried out to determine the size of a linear DNA
under consideration. The linear DNA has to be linearised (cut both strands of
DNA) in order to determine its size. This protocol could be also used to detect the
presence of a DNA sample as well. This protocol proceeds as follows:

e Add 0.5 grams (g) of agarose in 50 mL 1 x TAE (tris-base, acetic acid and
ethylenediaminetetraacetic acid) and microwave the mixture until all the

powdered agarose has dissolved.
e Add 2 uL of ethium bromide into the solution.
e Setup the compact gel kit (Figure 6.1B) using the 20 uL plastic frame.

e Pour the solution into the compact gel kit and let it set for ~ 10 minutes, and
then pour in the 1 x TAE buffer.

e Add 5 uL of hyperladder 1 (BIOLINE) to the top well.
e Mix 8 uL of MQ water, 2 uL of 5 x loading buffer and 2 L of DNA sample.

e Then add the above solution to one of the wells of the compact gel kit and
set the gel kit for 80 minutes and 50 milliamperes (mA).
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The hyperladder 1 - BIOLINE chart shown in Figure 6.1F, is used to determine
the size of a linear DNA sample which is calculated relative to nanogrammes per
microlitres. This is done by viewing the gel through the ultraviolet imaging system
(Figure 6.1C).

6.2.5 DNA assembly protocols

The three main DNA assembly protocols followed were digestion, dephospho-
rlyation and ligation. The digestion protocol is used to cut linear DNA strand
at specific regions (depending on the restriction enzyme used), the dephospho-
rlyation protocol is used to prevent cut plasmid from relinking again, while the
ligation protocol is used to link ends of two DNA strands together.

Digestion

Always add with order of reactivity:

e Add 4 uL of MQ water, 1 uL of compatible buffer and 4 yL of DNA sample.
In order to determine the appropriate compatible buffer, check the company

website where the restriction enzymes were obtained from.

e Add 0.5 uL of each restriction enzymes needed (ice kept) to the solution
prepared.

e Spin it down and place it inside the incubator using a floater at 37°C, 200

rpm for 2 hours.

A diagnostic gel protocol is carried out to confirm that the correct segment of the
DNA strand is cut or the cut DNA sample is send for sequencing. Sequencing is

the determination of the nucleotide order of a given DNA sample.

Dephosphorlyation

If the digestion protocol is carried out on a DNA strand which is still linked to the
plasmid, then dephosphorlyation protocol is done in order to prevent the plasmid

from relinking its ends together.

e Add 2 uL of alkaline phosphatase to the DNA sample which is linked to the
plasmid (kept in ice).

e Leave for 10 minutes.
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Ligation

The ligation calculator can be used to calculate the reactant ratio. Always add with

order of reactivity.

e Calculate reactant ratio and add appropriate amount of MQ water, DNA
sample, ligase buffer (ice kept) and ligase.

e Leave the solution in 4°C for overnight.

A transformation protocol is carried out the next day, to insert the plasmid into
the E. coli strain. This is normally done with varying ratio of DNA:strain.

6.2.6 Qiagen toolkits

The Qiagen toolkits were used to provide the following protocols: miniprep, max-
iprep and gel extraction. Miniprep is used to purify DNA sample from small
volume ~ 1 —5mL of overnight grown cultures (Qiagen, 2012b). Maxiprep is used
to purify DNA sample from large volume ~ 100mL of overnight grown cultures
(Qiagen, 2012a). While the gel extraction protocol helps in extracting the digested
DNA fragment from the agarose gel (Qiagen, 2010), where the DNA fragment is

excised under the ultraviolet illuminator (Figure 6.1D) using a scalpel.

6.3 Design and assembly of genetic parts

The design and assembly of genetic parts used in this thesis are outlined in this
section. This includes biofabrication procedures and the resulting sequenced data
of the assembled systems. "Finch TV"

(http:/ /www.geospiza.com/Products/finchtv.shtml) is used here to view DNA
sequence traces, which enables one to identify if the sequenced data is good.
"ClustalW2" (http://www.ebi.ac.uk/Tools/msa/clustalw2/) is a multi-sequence
alignment program, which is used to ensure two or more DNA sequences are

identical.

The following were obtained from: (i) genetic parts - IGEM 2012 distribution kit,
(ii) restriction enzymes, ligase, buffers and E. coli strains - "New England Biolabs"
(https:/ /www.neb.com/) and (iii) sequencing primers - "life technologies"
(http:/ /www.lifetechnologies.com/uk/en/home.html).
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Figure 6.1: Equipments and hyperladder 1 chart used during experimental protocols.
A. Large gel kit used for DNA purification or gel extraction, B. Compact gel kit used for
diagnostic gel, C. Ultraviolet imaging system, D. Ultraviolet illuminator, E. Electroporation
device and F. Hyperladder 1 chart - BIOLINE.
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6.3.1 BBa F2620 and BBa T9002

The BBa_F2620 and BBa_T9002 genetic parts were retrieved from the IGEM 2012
distribution kit, which were located in kit plate 2 under well 6E and 9A respec-
tively (the pictorial description of both genetic parts can be seen in Figure 4.1).
The genetic parts were linked to plasmid backbones "pSB1A2" and "pSB1A3" re-

spectively, that includes a ampicillin resistance tag (Figure 6.2A).

Chemical transformation was carried out for both genetic parts using the E. coli
strain "XL1 Blue" (for cloning purposes). 10 mL of cultures were grown using the
successfully transformed strains. Glycerol stocks and miniprep protocol of the
overnight grown cultures were prepared and carried out. Diagnostic gel proto-
col was carried out to confirm the presence of DNA plasmids in the transformed
strains. Using the glycerol stocks, newly streaked LB plates were made to obtain
colonies, from which starter cultures were prepared for growing 2L of cultures.
The 2L cultures were used to carry out the maxiprep protocol, to obtain high con-
centrations of BBa_F2620 and BBa_T9002 DNA samples (Figure 6.2B). The DNA
samples were sent for sequencing, the traces of the DNA sequence can be seen
in Figure 6.2C and D, which shows clearly defined bands indicating good and
clear sequence. ClustalW2 was used to validate the sequenced data obtained for
both BBa_F2620 and BBa_T9002 genetic parts against their actual sequences which
are readily available in RSBP, the comparison showed ~ 70% — 80% match with
automated analysis for both genetic parts and 100% match for targeted regions
(includes sequence obtained from both forward and reverse primers). The DNA
samples obtained from the maxiprep protocol were transformed into the E. coli
strain "K12 MG1655" (for characterisation purposes), in order to preserve the con-
sistency from Chapter 4 and (Canton et al., 2008), from which the experimental

procedures are replicated (see section 6.4 for more details).

6.3.2 BBa_J06702 and newly designed genetic part

The BBa_J06702 genetic part is used here as an alternative reporter cascade, which
consist of a ribosome binding site - BBa_B0034, monomeric red fluorescence pro-
tein (RFP) - BBa_]J06504 (also known as "mCherry") (Shaner et al., 2004) and ter-
minator - BBa_B0015 (Figure 6.3). It was retrieved from kit plate 2 under well 8E
and was linked to the plasmid backbone "pSB1A2".

Chemical transformation was carried out for BBa_J06702 using the E. coli strain

"DH5a" (for cloning purposes). 10 mL of culture was grown using the successfully
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Figure 6.2: The BBa_F2620 and BBa_T9002 constructs. A. The standard plasmid con-
struct (red) of genetic parts in RSBP, where E, X, S and P stands for the restriction sites
EcoRlI, Xbal, Spel and Pstl respectively, and the antibiotic tag is usually ampicillin, B. The
DNA samples obtained from maxiprep protocol is viewed under the ultraviolet imaging
system, BBa_F2620 (1061 base pairs) - yellow circle and BBa_T9002 (1945 base pairs) - red
circle, C. and D. Snapshots from FinchTV showing the DNA sequence traces of BBa_F2620
and BBa_T9002 respectively (top window showcases the sequence obtained using forward
primer, while the bottom window showcases the sequence obtained using the reverse
primer).
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transformed strain. Glycerol stock and miniprep protocol of the overnight grown
culture was prepared and carried out. Diagnostic gel protocol was carried out to
confirm the presence of DNA plasmid in the transformed strain. Using the glyc-
erol stock, newly streaked LB plate was made to obtain colonies, from which a
starter culture was prepared for growing 2L of culture. The 2L culture was used
to carry out the maxiprep protocol, to obtain high concentration of BBa_J06702
DNA sample (Figure 6.4A). The DNA sample was sent for sequencing, the traces
of the DNA sequence can be seen in Figure 6.4B, which shows clearly defined
bands indicating good and clear sequence. ClustalW2 was used to validate the
sequenced data obtained for BBa_J06702 genetic part against its actual sequence
which is readily available in RSBP, the comparison showed ~ 97% — 99% match
and 100% match for targeted regions (includes sequence obtained from both for-

ward and reverse primers).

In constructing the new genetic part, the digestion protocol was carried out on
both BBa_F2620 and BBa_J06702, using restriction enzymes Spel and Pstl, and
Xbal and Pstl respectively. Dephosphorlyation protocol was carried out on the
double digested BBa_F2620 genetic part, to avoid linkage of the plasmid. A large
diagnostic gel was prepared to view the digested genetic parts BBa_F2620 and
BBa_J06702, under the ultraviolet imaging system (Figure 6.4C). Using the ultra-
violet illuminator, the digested DNA samples were excised (Figure 6.4D) and the
gel extraction protocol was carried out. On extracting the digested DNA sam-
ples, the ligation protocol was carried out to link the two digested DNA samples,
BBa_F2620 with BBa_J06702, which resulted to the new genetic part that is labeled
"F2620-RC2" in this thesis (Figure 6.4E). In Figure 6.3, the assembly of "F2620-
RC2" system is illustrated graphically. The new genetic part was then transformed
into the E. coli strain "DH5a" (for cloning purposes), subsequently permitting the
maxiprep protocol to be carried out, in order to obtain high concentration of
"F2620-RC2" DNA sample. The DNA sample was sent for sequencing using only
a reverse primet, as this should retrace the sequence of BBa_]J06702 genetic part.
ClustalW2 was used to validate the sequenced data with the comparison showing
~ 80% — 85% match and 100% match for targeted regions. The "F2620-RC2" DNA
sample was transformed into the E. coli strain "K12 MG1655" (for characterisation
purposes) to be consistent with Chapter 4 and (Canton et al., 2008), from which

the experimental procedures are replicated.
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Figure 6.3: The design steps and construct of the new genetic part - "F2620-RC2" system.
At top, the pictorial description of the BBa_]J06702 genetic part is shown. Below, the design
steps used in constructing the new genetic part is shown, where the restriction sites X -
Xbal and S - Spel have similar sequences thereby complimenting each other.
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Figure 6.4: Gel imaging, sequencing traces of BBa_J06702 and TECAN GENios microplate
reader. A. The DNA sample obtained from maxiprep protocol is viewed under the ultravi-
olet imaging system, BBa_J06702 (869 base pairs) - red circle, B. Snapshots from FinchTV
showing the DNA sequence traces of BBa_J06702 (top window showcases the sequence
obtained using forward primer while the bottom window showcases the sequence ob-
tained using the reverse primer), C. The double digested DNA samples of BBa_J06702
(red) and BBa_F2620 (yellow), D. The gel fragments excised for carrying out gel extrac-
tion, E. The DNA sample obtained from miniprep protocol is viewed under the ultraviolet
imaging system, "F2620-RC2" system (1930 base pairs) - red circle, F. The TECAN GENios
microplate reader and G. A 96 well plate prototype.
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6.4 Experimental setup and data acquisition procedures

In this section the experimental setup and procedures carried out to obtain the
required experimental data are discussed. One should note that the experimental
setup and procedures are replicated from (Canton et al., 2008), providing a guid-
ing platform, whose experimental data was modelled in Chapter 4. The alterations
imposed here are: (i) an extra genetic part - "F2620-RC2" and (ii) simultaneous
measure of cell growth and fluorescence protein in a longer time period of exper-
imentation (lag phase to death phase).

Both BBa_T9002 and "F2620-RC2" systems are transformed into E. coli strain -
"K12 MG1655", for characterisation purposes. The chemical induction input - 3-ox-
ohexanoyl-L-homoserine lactone (30C¢HSL) was obtained from Sigma-Aldrich. It
was dissolved in dimethyl sulfoxide (DMSO) to a stock concentration of 23.55 mM.
Prior to each experiment, the stock concentration was diluted in MQ water to ob-
tain fresh solutions ranging in concentration from 1e-9 M to 1le-3 M. The TECAN
GENios microplate reader (Figure 6.4F) was used to measure the cell growth and
fluorescence protein measurements, where the compatible software "Magellan"

was used to program and control the experimentation.
The experimental procedures are as follows:

e 4 x 50 mL falcon tubes containing 10 mL of M9 supplemented media and 10
uL of 100 mg/mL ampicillin each were prepared.

e 3 single colonies of "K12 MG1655" containing BBa_T9002 or "F2620-RC2" and
a single colony of "K12 MG1655" containing BBa_F2620 were inoculated into

separate falcon tubes.

e The falcon tubes were placed in the incubator at 37°C, 200 rpm for 15 hours
(overnight).

e The cultures were diluted 1:1000 (x2) into fresh 10 mL of M9 supplemented
media and 10 pL of 100 mg/mL ampicillin. One batch was placed into the
incubator at 37°C, 200 rpm for 4.5 hours (until an OD600 of 0.15 is attained).
The other batch was reserved (kept in 4°C) and placed into the incubator 15
hours prior the experimentation the next day (under the same condition).

e In eppendorf tubes, appropriate quantities of cultures and 30C¢HSL in di-

luted solutions were transferred and mixed. This yielded 8 different final



Chapter 6. System fabrication, experimental design and data acquisition 111

concentrations - (0, 1e-10, 1e-9, 1e-8, 1le-7, le-6, 1e-5 and le-4 M) for each
culture.

e The mixed solutions in the eppendorf tubes were transferred into a flat-
bottom 96 well plate. Three replicate wells were filled for each concentrations
of 30CgHSL of each culture.

e The plate was incubated in the TECAN GENios microplate reader at 37°C
and assayed with an automatically repeating protocol of absorbance mea-
surements (595 nanometres (nm)) and shaking (orbital and normal speed for
120 seconds, shake settle time between cycles of 5 seconds). Kinetic time

interval between repeated measurements was 178 seconds.

On the following day, after approximately 15 hours, further procedures out-
lined below are followed,

e Using the other batch (which was reserved), cultures were diluted 1:1000 into
fresh 10 mL of M9 supplemented media and 10 uL of 100 mg/mL ampicillin.
They were placed into the incubator at 37°C, 200 rpm for 4.5 hours (until an
OD600 of 0.15 is attained).

¢ In eppendorf tubes, appropriate quantities of cultures and 30C¢HSL in di-
luted solutions were transferred and mixed. This yielded 8 different final
concentrations - (0, 1e-10, 1e-9, 1e-8, 1le-7, le-6, 1e-5 and le-4 M) for each
culture.

e The mixed solutions in the eppendorf tubes were transferred into a flat-
bottom 96 well plate. Three replicate wells were filled for each concentrations
of 30CgHSL of each culture.

e The plate was incubated in the TECAN GENios microplate reader at 37°C
and assayed with an automatically repeating protocol of fluorescence mea-
surements (BBa_T9002: 485 nm excitation filter, 535 nm emission filter or
"F2620-RC2": 530 nm excitation filter, 610 nm emission filter) and shaking
(orbital and normal speed for 120 seconds, shake settle time between cycles
of 5 seconds). Kinetic time interval between repeated measurements was 145
seconds.
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6.5 Overview of experimentally obtained datasets

The Figures 6.5 and 6.6, shows the experimental data collected for systems BBa_T9002
and "F2620-RC2" respectively.

6.6 Summary

In this chapter, the experimental protocols needed to carry out the biofabrication
process of the systems BBa_T9002 and "F2620-RC2" are outlined. The experimen-
tal setup and procedures used in acquiring the required experimental data are
also outlined. Additionally, pictures of gel imaging, validation of sequenced data
and reporting of the collected experimental data is presented as part of the wet

laboratory work undertaken.

The main reasons for further experimentation was: (i) to collect both cell growth
and fluorescence measurements for longer time period (lag phase to death phase),
in order to capture and model the full range of dynamics exhibited by a tran-
scriptional regulatory system and (ii) to implement a novel experimentation by
assembling a new genetic part "F2620-RC2", which will help to investigate if a re-
porter cascade has an influential effect on the "relative" dynamics of the system it
has been linked to.
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Figure 6.5: Experimental data of BBa_T9002. A. and B. First row - BBa_T9002 colony
1, second row - BBa_T9002 colony 2, third row - BBa_T9002 colony 3, and fourth row -
BBa_F2620 colony 1 (control). Response due to 0 M of 30C¢HSL in light green while
response due to 1le-4 M of 30C¢HSL in dark green.
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Figure 6.6: Experimental data of "F2620-RC2". A. and B. First row - "F2620-RC2" colony
1, second row - "F2620-RC2" colony 2, third row - "F2620-RC2" colony 3, and fourth row
- BBa_F2620 colony 1 (control). Response due to 0 M of 30C¢HSL in light red while

response due to le-4 M of 30C¢HSL in dark red.



Chapter 7

Interpretation of a gene reporter
signal and key dynamic design
properties

7.1 Introduction

The experimental data collected for both BBa_T9002 and "F2620-RC2" systems
were presented in the last chapter. The experimental data of each system con-
sisted of both cell growth and protein expression measurements over time, from
lag phase to death phase. The collected experimental data, will allow the devel-
oped computational Bayesian identification framework in Chapter 5, to capture
and robustly characterise the dynamic properties of the transcriptional regulatory
systems - BBa_T9002 and "F2620-RC2". A novel experimentation is devised, where
a new transcriptional regulatory system is built - "F2620-RC2" system, which al-
lows one to investigate if a reporter cascade has an influential effect on the "rela-
tive" dynamics of the system it has been linked to. The "F2620-RC2" system shares
the same functional module - BBa_F2620 as the BBa_T9002 system, however, has
a different reporter cascade - BBa_]J06702. The "relative" dynamics is the observed
dynamics of the whole system with respect to the reporter cascade used.

The devised investigation could result in any one of three likely outcomes: (i) the
reporter cascade monitors and delivers the exact dynamics exhibited by the func-
tional module, reporter cascade does not have its own dynamics, (ii) the reporter
cascade exhibits dynamics of itself which is only being observed in the experi-
mental data or (iii) both the functional module and reporter cascade dynamics
have been observed in the experimental data, where dynamics of one dominates
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Figure 7.1: Pictorial description of the investigation. The G blocks and H blocks rep-
resent functional modules and reporter cascades respectively. In this investigation Gp -
BBa_F2620, H; - BBa_E0240, H, - BBa_J06702 and G, - arbitrary functional module. A.
and B. is implemented to achieve the characterisation of G; relative to H; and H; respec-
tively, while C. demonstrates the assembly of a arbitrary higher-order genetic part.

the other. This investigation proves to be very important because the experimen-
tal norm in the process of characterisation of a functional module, is the use of
reporter cascade to indirectly (relatively) monitor the dynamics of the functional
module. However, when higher-order genetic parts are designed, different func-
tional modules are usually synthesised and ligated together, while excluding the
reporter cascade. Therefore, if the reporter cascade has an influential effect on the
"relative" dynamics of the characterised system, it would be practically incorrect
to use the characterised properties of the system as that of the functional module,
which would hinder the design of higher-order genetic parts involving the suppos-
edly characterised functional module. The wider question to the synthetic biology
community is, is it appropriate to use reporter cascade for the characterisation of
genetic parts? This chapter tries to provide the answer to this investigation, where
Figure 7.1 gives a pictorial description of the investigation.

Some recent research articles in synthetic biology described below, have reported
some shortcomings in the field and their attempts to provide solutions to the
shortcomings. Firstly, Ellis et al. (2009) demonstrated the design and assembly
of genetic networks (one-order promoter systems) by developing: (i) a library of
components (promoters) and (ii) in-silico modelling techniques. This enabled the
design and assembly of genetic networks through computational tools, which the
early literature in synthetic biology lacked. This was proposed to overcome the
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challenge of engineering genetic networks from modular components, which are
hampered by: (i) lack of suitable components, while available components tend to
have the required functionality but not the quantitative properties needed for de-
sign and (ii) extensive post-hoc tweaking of already assembled genetic networks.
The library of components developed, consisted of synthesised regulatory promot-
ers, built by varying the sequence of the promoters in a systematic way to achieve
diverse promoter strengths. In implementing in-silico modelling, the Hill equation
was used to characterise the promoter’s strength quantitatively, aiding the design
of feed-forward loop networks. By characterising the promoter’s strength quanti-
tatively, in contrast to labelling or stating promoters to be either weak or strong,
is hugely beneficial for model-based design. However, due to the limitation posed
by the Hill equation (only static analysis), as discussed in Krishnanathan et al.
(2012) and Chapter 4, certain design specifications of the genetic network’s dy-
namics cannot be achieved, which could be feasible through dynamic analysis.
This is daunting, as the few applicable genetic parts are inappropriately charac-
terised, hindering the design of more complex functionalities. Ellis et al. (2009),
also reported that the initial characterisation of the promoter’s strength, was not
adequate enough to aid the design of a two-order promoter system. This was re-
solved by acquiring extra experimental data from the two-order promoter system,
which was used to relatively calibrate the characteristic properties of the one-order
promoter system, in order to aid design. This approach is hugely beneficial and
further discussed later, by revealing how this approach could be incorporated into
the work presented in this chapter.

Daniel et al. (2013) proposed the use of analogue computation in genetic parts
rather than digital computation, in order to achieve sophisticated functionalities.
Digital computation refers to the use of the two stable states in a bimodal system,
the "ON" and "OFF" states when viewed on the logarithmic scale, to perform func-
tions. Whereas, the linear transition (in logarithmic scale) between the "ON" and
"OFF" states of a bimodal system, is used to implement analogue computation to
perform functions. Daniel et al. (2013), designed a positive feedback mechanism
to a transcriptional regulatory system, which provided a wider linear transition
range in comparison to that of an open-loop mechanism, thereby allowing for a
much wider input range to be used in perturbing the system. This paves way for
designing more complex functionalities. The diverse functionalities achieved in
Daniel et al. (2013), resulted in diverse static forms, which were modelled either
using Hill equation or logarithmic functions. It is not at all surprising that the Hill

equation fails to capture non-sigmoidal static forms, which makes the data-driven
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identification framework developed in Chapter 5 even more attractive for charac-
terisation, as it is capable of capturing both the static and dynamic properties of
differing time responses. Daniel et al. (2013), proposed the use of analogue com-
putation, in order to build more efficient functionalities in environments of cells,
which have limitation in cellular resources. The limitation of cellular resources in
cells alters the performance of the genetic parts in them, which is usually ignored
or not investigated in the design of higher-order genetic parts. Here, the cellular
burden introduced by genetic parts on the cells are explicitly quantified, in order
to shed some light on how limitations in cellular resources affect the performance

of the biological systems.

Breitling et al. (2013) puts forward the need to develop principled approaches to
obtain parameter uncertainty of dynamic models used in characterising biological
systems, as biological systems will always operate in noisy environments. This
occurs because assay conditions vary in comparison to the in-vivo conditions the
biological systems operate in and the enzymes in synthesised biological systems
have to function in a new cellular environment. Therefore, incorporating the un-
certainty of model parameters early on in the design stages will aid predictions
that come with specified confidence intervals, which could guide robust designs
of genetic parts. In this chapter, the computational Bayesian identification frame-
work developed in Chapter 5 would be implemented to achieve this goal.

The novel experimentation devised in this chapter will enable the investigation
of whether the functional module - BBa_F2620, can be robustly characterised re-
gardless that its dynamics not being directly monitored. This would allow one
to determine if reporter cascades are appropriate for characterisation of genetic
parts. In doing so, the following is achieved in this chapter: (i) "single-cell" mod-
els are derived, to characterise the "single-cell" protein expression of the systems -
BBa_T9002 and "F2620-RC2", which are later transformed into frequency functions
for spectral analysis, (ii) parameters of the cell growth models (for both systems)
are estimated, in order to explicitly quantify cellular burden and (iii) population
heterogeneity observed in the collected experimental data are characterised, using
the parameter distributions naturally generated by the identification framework,
thereby predicting the "population-level" protein expression of both systems in the

process.
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7.2 Biological differences in the reporter cascades

A reporter cascade is made up of a ribosome binding site (RBS) and a fluores-
cence protein. The biological differences in the reporter cascades - BBa_E0240 and
BBa_J06702 of the systems - BBa_T9002 and "F2620-RC2" respectively, are sum-
marised in Table 7.1. The reporter cascade - BBa_E0240 is made up of the RBS -
BBa_B0032 and green fluorescence protein (GFP), whereas the reporter cascade -
BBa_J06702 is made up of the RBS - BBa_B0034 and red fluorescence protein (RFP).

The fluorescence proteins, GFP and RFP have very similar properties. However,
the GFP is a weak dimer, whereas the RFP is a monomer. The effect of this prop-

erty on the "relative" dynamics of the systems they are linked to, are not known.

The RBS - BBa_B0032 of BBa_T9002 system, is shown to have less relative strength
compared to that of the RBS - BBa_B0034 of "F2620-RC2" system. From the lit-
erature, relatively strong RBS are proven to aid higher protein expression (Salis
et al., 2009). However, this cannot be verified here because the protein expressions
of the two systems are monitored using two different fluorescence proteins. The-
oretically, the cellular burden on the cells by the "F2620-RC2" system should be
greater than that of the BBa_T9002 system, since more proteins are expected to be
expressed by the "F2620-RC2" system.

7.3 Modelling BBa_T9002 and "F2620-RC2" systems

Using the collected experimental data for both BBa_T9002 and "F2620-RC2" sys-
tems, the aim is to derive data-driven nonlinear continuous-time (CT) dynamic
models to capture and characterise the "population-level” protein expression prop-
erties of both systems. The novel identification framework which uses a compu-
tational Bayesian approach, demonstrated in Chapter 5 is implemented for this
purpose. The two additional advantages of the novel identification framework
used here are: (i) parameter distributions are naturally generated, giving the user
a clear description of uncertainty and (ii) the method is well suited to noisy signals
because it avoids the need to estimate signal derivatives. For the identification of
the systems under this framework, the input and output signals are defined as
30CcHSL concentration and protein expression respectively, where protein ex-
pression refers to either GFP or RFP for BBa_T9002 or "F2620-RC2" systems re-
spectively. The protein expression is preferred as the output signal due to its

stable nature, which can be seen in Figure 6.5B and 6.6B.
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Table 7.1: Differences in the reporter cascades. The properties with superscript indicated
as i or ii are found from RSBP or (Shaner et al., 2005) respectively.
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7.3.1 Experimental data

The experimental datasets used here are shown in Figure 6.5 (for BBa_T9002 sys-
tem) and 6.6 (for "F2620-RC2" system). The experimental dataset of each system,
consisted of time-series recording of cell growth and protein expression (GFP -
BBa_T9002 system and RFP - "F2620-RC2"), which were observed over approxi-
mately 20 hours for BBa_T9002 system and 30 hours for "F2620-RC2" system, over
8 different 30CcHSL input concentrations: 0, 1le-10, 1e-9, 1e-8, le-7, le-6, le-5,
le-4 molar (M). The experimental dataset of each system were analysed from 3
colonies of the respective system. There were 3 replicates for each colony, result-
ing in 9 experiments in total that are analysed for each system. To summarise,
there are 2 experimental datasets, each dataset has 9 experiments and each experi-
ment consists of cell growth and protein expression measurements over 8 different
30C¢HSL input concentrations.

The assumption of a constant input level over time is taken here (same as Chapter
4). Accordingly, the input signal is assumed to be constant which is equivalent to
the initial concentration of 30C¢HSL, for the full duration of the experimentation
(from the time of induction to death phase). Bioassay is a popular procedure to
measure the concentration of 30CsHSL molecules over time, however, the mea-
surement could turn out to be insignificant because the concentration levels are
very low and the bioassay procedure itself is wasteful. Therefore the following
hypothesis is suggested, the 30C¢HSL molecules disintegrate and become avail-
able again after each complex formation with LuxR and transcriptional activation.
However, 30C¢HSL molecules are likely to degrade over time and the degradation

is assumed to be of very small concentration.

7.3.2 Model representation

The primary aim in the identification problem is to capture and characterise the
"population-level” protein expression properties of both systems, however, cell
growth and "single-cell" protein expression of the systems were required to be
modelled, in order to achieve the primary aim. These insights obtained from the
experimental data, suggests a different representation of both systems.

The cell growth measurements over 8 different 30C¢HSL input concentrations are
different over time (Figure 6.5A and 6.6A), in each experiments in both experimen-
tal datasets corresponding to BBa_T9002 and "F2620-RC2" systems. The number

of cells, which is modelled using a cell growth model, influences the "population-
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System model
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Figure 7.2: System representation. The model structure representation of the system
model - blue dashed box, where the dynamic function (data-driven) corresponds to the
CT-NARX model, the cell growth model corresponds to the modified Lin’s model and the
"single-cell" model is represented in the red dashed box.

level" protein expression of the systems.

It was vital to capture the relationship between the input and output signals
only, to represent the protein expression dynamics of the systems, in order to
aid spectral analysis which is discussed later. This prompted the derivation of
models at the "single-cell" level using only the input and output data to char-
acterise the protein expression dynamics of the systems over different induction
levels of 30C¢HSL. The "single-cell" model describes the average number of pro-
teins expressed in each cell, hence, the input and output signals to the "single-cell"
model are defined as 30C¢HSL concentration and average protein expression re-
spectively. The "relative” dynamics ("population-level" protein expression) of the
systems are obtained by multiplying the average number of proteins expressed in
a single cell by the number of cells present in each well (cell population) as shown
in Figure 7.2.

The "single-cell" protein expression responses of both BBa_T9002 and "F2620-RC2"
systems over 8 different 30C¢HSL input concentrations, approximately overlays
each other when normalised with respect to their corresponding responses (to re-
move the static gain effects). This is a feature which is well captured by cascade
models. Therefore, similar to Chapter 4, the "single-cell" protein expression re-
sponse for both BBa_T9002 or "F2620-RC2" systems are described by a single static
and dynamic function by taking inspiration from the structure of a Hammerstein
model.
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The dynamic function is approximated by a CT nonlinear autoregressive model
with exogenous input (NARX), which captures the deterministic part of the un-
derlying "single-cell" protein expression dynamics of the systems. The noise term
e(t) is assumed to capture the process noise - intrinsic noise which arises due to

cell to cell differences.

Cell growth model

In Lin et al. (2000), a cell growth model (Lin’s model) is developed based on the
time dependent changes of growth rate y(t), which is able to predict the lag,
exponential and stationary phase of a microbial culture,

1 1
F() = pomas (5 R )(5 ki) ) 1)
X(t) = p(t)x(t), (7.2)

where the maximum increasing rate of y(t) is kj,, the maximum decreasing rate
of u(t) is kg, the time point when the increasing rate of y(t) equals k;, is t;; and
the time point when the decreasing rate of j(t) equals kg, is tge.

Here, the Lin’s model is modified in order to capture the decay phase in a micro-
bial growth as well, by including an exponential decay term. For either systems,
a single modified Lin’s model, with identified parameters and varying initial con-
ditions, is used to predict its cell growth measurements over different 30CsHSL
input concentrations in a single experiment. The modified Lin’s model imple-

mented in this chapter can be written as

p(0) = pomr ( (5 n e’}m(ffm)> (5 n eki(ttda) — i), 73)

Xj(t) = u(£)x;(t), (74)

for j = 1,..., M cell growth measurements corresponding to different constant in-
put levels of 30C¢HSL. The constants, k; and t; parameterises the decay dynamics
in the cell growth.

"Single-cell" model

Generally, the CT-NARX model is obtained in a data-driven framework from regu-

larly sampled input and output signals. In this investigation, before the alteration
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explained above is imposed, the input and output signals to the systems are de-
fined as u(t) € R -30CsHSL concentration and y(¢) € R - protein expression (GFP
-BBa_T9002 system and RFP - "F2620-RC2" system) respectively. The structure of
a general CT-NARX model can be defined by (Coca and Billings, 1999)

y"i(t) = f(§(8) +e(t), (7.5)
§(H) = (y(t), ., y" (B, u(t), ., u™ N (t)), (7.6)

where 1; is the differential order, f(§(t)) is some unknown nonlinear function and
§(t) € R?" is the model input vector of system input and output derivatives. The

function f(.) can be described using a basis function decomposition

Ny
y'i(t) = Z%f)jfl’j@(f))/ (7.7)
iz

where ¢;(.) is a basis function with associated parameter, 6; € R. In this investi-
gation, polynomial basis functions of maximum order 4 = 3 was used and second

order system dynamics, n; = 2 was assumed.

Alterations to the general form of the CT-NARX model was imposed, in order to
accommodate a specialised form for this investigation by: (i) assigning the output
signal to be the average ("single-cell") protein expression and (ii) only considering
derivatives in the output signal and no cross-product terms between input and

output signals.

This specialised form was implemented because: (i) the CT-NARX model is used
to represent the dynamic function of the "single-cell" model that captures the de-
terministic part of the underlying "single-cell" protein expression dynamics of the
systems and (ii) of the assumption that the input level of 30CsHSL was con-
stant over the duration of each experiment, so the derivatives of the input signal
were zero and the cross-product terms were unidentifiable (hence, in this inves-
tigation where constant input is assumed, higher order polynomial input trans-
formations and cross-product terms between input and output signals are not
used). As mentioned above there appeared to be a nonlinear gain variation in the
"single-cell" protein expression responses associated with different input levels of
30CeHSL in an experiment, which is described using separate input gain terms
k]-, for j =1,..., M, resulting in the following modification of the CT-NARX model
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yi(t) = X;(t)/ (7.8)

P = FE), w7 () + Kjug(8) + 1), 79)

for j = 1,..., M "single-cell" protein expression signals corresponding to different
constant input levels of 30C¢HSL, where i(t) € R is the average "single-cell"
protein expression.

CT-NARX model with static input nonlinearity

The function G(.) was used to model the static nonlinear gain variation across
input levels, which mapped the 30C¢HSL input - u(t) to the dynamic model
input - ii(t), and the CT-NARX model was consequently modified to

() = F@(), -, 7)) +a(t) +e(t), (7.10)

where 7i(t) = G(us(t)), u«(t) = logio(gu(t)) + 6 (g is a scaling parameter which
improves the numerical conditioning whilst prior estimation and model simula-
tion, where ¢ = 1 x 10°). Due to the log spacing in the levels of 30C¢HSL, the log
transformation was applied to the scaled input gu(t) and the addition of 6 rescales
it to a positive value. The function G(.) was described by the basis function de-

composition

B
i(t) = ;ijj(u*(t)), (7.11)
7=

where w; € R is the j basis function parameter, B is the number of basis func-
tions, and in this investigation the radial basis functions were used, specifically

the squared exponential function,

1
¥y (0) = exp (=5 (1) = g113), (7.12)
)

where ¢; and 0} are the respective centres and widths of the j'" basis function. Ba-
sis functions were centred on the levels of the input data values u.(t) and the cor-

responding width parameters were heuristically tuned in the range ¢; € [1,1.5] Vj.
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7.3.3 Parameter estimation and structure detection of system model

The identification of the system model of both BBa_T9002 and "F2620-RC2" sys-
tems, was undertaken by simultaneously implementing: (i) parameter estima-
tion of the cell growth model and (ii) model estimation (parameter estimation
and model structure detection (MSD)) of the "single-cell" model of each system.
The parameter estimation and MSD was implemented using the two-stage model
structure detection algorithm developed in Chapter 5 (Algorithm 5.3). The MSD
algorithm applies a parameter significance test on the parameter distributions
which are naturally generated as a byproduct of the approximate Bayesian compu-
tation (ABC) - sequential Monte Carlo (SMC) algorithm, followed by an informa-
tion criterion test to obtain an improved model structure. The parameter estima-
tion using ABC-SMC (Algorithm 5.1), is to iterate population estimates generated
by basic ABC, gradually decreasing the error tolerance at each iteration. The pos-
terior distribution at an iteration becomes the sampled prior distribution at the
next iteration. Hence, the ABC-SMC algorithm reaches the target posterior in a

sequential manner.

In implementing the two-stage MSD algorithm for the identification of the sys-
tem models, the parameter size was set to L = 200 and the number of population
iterations to K = 3 for the ABC-SMC parameter estimation step. The parameter
distribution obtained provides the clear description of the uncertainty in model
estimation given the limitation in the experimental data. It also includes the popu-
lation heterogeneity observed due to variability in cell populations. The parameter
vector obtained can be represented as

0= (,umuxr kiVl/ tin/ kdE/ tde/ kd/ td/ A1, eees AM,C1y weey CN@*l)TI (713)

where (Umax, kin, tin, Ko, tae, ka,t4) are parameters of the modified Lin’s model as
shown in eqn(7.3 and 7.4); (a1, ..., ap) are parameters associated with the dynamic
function input to the "single-cell" model (static nonlinear gain) @ = (a1u1(to), ...,
amim(to)) ', where uj(to), for j = 1,..., M, corresponded to the rescaled input
levels of 30C¢HSL; and (cy, ...,cN,—1) are parameters associated with superset of
model terms composed of polynomial transformations of i/(t) and its derivatives
as shown in eqn(7.10). The MSD algorithm detected a parsimonious model struc-
ture composed of a reduced set of those terms in eqn(7.10). In this investigation

the number of model terms in the superset (eqn(7.10)) was 9.

The model simulation step was performed by deterministic simulation of the mod-
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els defined in eqn(7.3 and 7.4) - modified Lin’s model and eqn(7.10) - CT-NARX
model, using a fourth order Runge-Kutta method. The distance measure of simu-

lations from the observations was obtained from the mean-sum-of-squared errors

1 M N 5
d= M Y ) (VG = Yi(.)7, (7.14)
i=1j=1

where J = [y1,..,ym]| is the observed output matrix, y; = (y;(to), ., yj(tn, —
1))T = (gj(to)xj‘(to), ---/gj(tNy - 1)Xj(tNy - 1))T fOI'j =1,...,M and Y* is the sim-

ulated output matrix.

For the system model, the prior distribution of the parameters was defined as
a uniform distribution. The prior of the "single-cell’ model was scaled using
least-squares (LS) parameter estimate obtained from the method of Coca and
Billings (1999), whereas the prior of the cell growth model was scaled by graphi-
cal interpretation of the experimental data. The basis function parameters for the
static nonlinear input function G(.) were estimated using LS from the target data
o = (mui(to), ..., amum(to)) ", where u;j(ty), for j =1,..., M, corresponded to the
rescaled input levels of 30CsHSL.

Experiment 1 of both experimental datasets are used for identification purposes.
In implementation, the experimental data (both cell growth and protein expres-
sion measurements) corresponding to the highest input level 30CsHSL = 1le-4 M
for both systems, was omitted for identification purpose due to the data appearing
to be a design outlier. The "single-cell" model was identified using the normalised
"single-cell" protein expression responses. This was done in order to directly com-
pare the static nonlinear input function G(.) of both BBa_T9002 and "F2620-RC2"

systems.

7.4 Results and discussion

In using the collected experimental data of systems - BBa_T9002 and "F2620-
RC2", the main objective of this chapter is to determine if the functional module -
BBa_F2620 is robustly characterised, regardless of not being able to directly mon-
itor its dynamics. In undertaking this investigation, the identification of system
models for both systems was achieved, which constituted of a "single-cell" model
and a cell growth model. The computational Bayesian identification framework
was chosen to be implemented here, instead of the data-driven framework used
in Chapter 4 because the former is capable of quantifying and explaining the vari-
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ability phenomenon observed in different cell populations robustly, that could aid
design procedures. The "single-cell" models capture the underlying "single-cell"
protein expression dynamics of the systems, which are transformed into frequency
functions for spectral analysis, that characterises the systems under study. Addi-
tionally, the cell growth model is used to provide a solution to explicitly quantify
the cellular burden caused by each system and the parameter distribution natu-
rally generated by the identification framework is used to characterise the popu-

lation heterogeneity observed.

The identification of the system models for both BBa_T9002 and "F2620-RC2" sys-
tems, was undertaken by simultaneously implementing: (i) parameter estimation
of the cell growth model and (ii) model estimation (parameter estimation and
model structure detection) of the "single-cell" model using the two-stage model
structure detection algorithm developed in Chapter 5 (Algorithm 5.3). The cell
growth model predicts the growth responses corresponding to different input lev-
els of 30C¢HSL in a single experiment. The number of parameters governing the
cell growth model is 7 (eqn(7.3 and 7.4)). The MSD of the "single-cell" model was
implemented to detect a parsimonious structure to represent the average protein
expression of a single cell. The number of possible model terms used for rep-
resenting the "single-cell" model is 9 (eqn(7.10)). The "population-level" protein
expressions of the systems, which are the output signals to the system models
and used in the distance measure of the ABC-SMC step, are obtained by multi-
plying the average "single-cell" protein expressions by their corresponding growth
responses. Experiment 1 of both experimental datasets are used for identification
purposes. In implementation, the experimental data (both cell growth and protein
expression measurements) corresponding to the highest input level 30C¢HSL =
le-4 M for both systems, was excluded in the identification step due to it appear-
ing to be an outlier. Hence, the number of parameters associated with the static
nonlinear gain (input signal to the dynamic function of the "single-cell" model)

was 7 (eqn 7.11).

7.4.1 Cell growth properties

The maximum values the growth responses of BBa_T9002 system, when induced
by different input levels of 30OC¢HSL varies between 0.45 - 0.6, which are ini-
tially attained in approximately 6 hours (Figure 6.5A and 7.3A). When higher GFP
expression is observed, as the BBa_T9002 system is induced by higher concentra-
tion of 30OCcHSL, a lower growth response is consequently observed. This is due

to cells prioritising cellular resources for protein expression more than cell divi-
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Table 7.2: Parameters (mean values) of the cell-growth models for both BBa_T9002 and
"F2620-RC2" systems.

Parameters | BBa_T9002 | "F2620-RC2"
Wmax 0.05 0.02
kiy 0.12 0.03
tin 0.02 0.02
ke 26.90 4.11
tae 38.91 149.54
ky 0.01 0.01
tq 983.59 1.21x10°

sion. The maximum values the growth responses of "F2620-RC2" system, when
induced by different input levels of 30C¢HSL varies between 0.6 - 1.2, which
are initially attained in approximately 13 hours (Figure 6.6A and 7.4A). However,
when higher RFP expression is observed, as the "F2620-RC2" system is induced
by higher concentration of 30C¢HSL, a lower growth response is not always con-
sequently observed. The reason for this unusual behaviour cannot be explained
in this investigation. The following is suggested, the difference between the two
systems are their respective reporter cascades and the fluorescence proteins which
make up these reporter cascades, GFP and RFP, have very similar properties (Table
7.1). Therefore the expression of these proteins should not have differing effect on
the cellular resources of the cells. However, the ribosome binding sites (RBSs) of
the respective reporter cascades have varying relative strength, which influences
the amount of proteins expressed. The RBS acts as a control mechanism on the
amount of protein expressed, thereby influencing the cellular resources used in
protein expression and indirectly affecting cell division.

In summary, the BBa_T9002 system has a lower maximum value of growth re-
sponse in comparison to the "F2620-RC2" system when induced by the same
concentration of 30C¢HSL, however, the BBa_T9002 system attains its maximum
value of growth response in a much quicker time than the "F2620-RC2" system.
This is an important feature of the systems, as this effects the "population-level”
protein expression of the systems respectively. In this investigation, the parame-
ters of the cell growth models are used to explicitly quantify the usage of cellular
resources by the systems, which is influenced by their respective RBSs. The mean

parameter values of the cell growth models are shown in Table 7.2.
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Table 7.3: Parameters (mean values) of the "single-cell" models (CT-NARX) for both
BBa_T9002 and "F2620-RC2" systems.

Parameters | BBa_T9002 | "F2620-RC2"
1 -147x107% | -2.64x10°°
o3 -0.03 -
c3 -0.13 -0.04
Cy -0.18 -0.10
Cs 30.84 —

7.4.2 "Single-cell" protein expression properties

The "single-cell" models (CT-NARX) of BBa_T9002 and "F2620-RC2" systems iden-
tified using the two-stage MSD algorithm (Algorithm 5.3) are

§(t) = cai(t) + caf () + csy ()y(£) + cai® ()(1) + s (£) + a(t) and
§(t) = c1i(t) + csy()y(£) + cayf® (1)§(£) + i (t) respectively,

<=

where /(t) was the model output signal - average "single-cell" protein expression,
with associated parameters ¢y, ¢3, c3, ¢4 and cs. The input term 7(t) was obtained
from a static transformation G(.) of the input signal 30C¢HSL, which was primar-
ily used to describe the static switching effect in dynamics across linearly increas-
ing levels of 30C¢HSL (see above). The "single-cell" models were identified using
the normalised "single-cell" protein expression responses. This was done in order
to directly compare the static nonlinear input functions G(.) of both BBa_T9002
and "F2620-RC2" systems. The mean values of the parameters of the "single-cell”
models for BBa_T9002 and "F2620-RC2" systems are summarised in Table 7.3.

Nonlinear static gain properties

The static nonlinear input functions G(.) of both BBa_T9002 and "F2620-RC2" sys-
tems can be directly compared from Figure 7.3B and 7.4B. The extra damping
terms ¥(t) and 1/°(¢) present in the "single-cell" model of the BBa_T9002 system,
compared to the "F2620-RC2" system, helps to capture the BBa_T9002 system’s
faster transient responses and shorter times in achieving steady state, in both
"single-cell" and "population-level" protein expression responses corresponding to
different input levels of 30C¢HSL (Figure 7.3C,D and 7.4C,D). This could be the
reason for higher nonlinear static gains in the BBa_T9002 system, as the identifica-
tion framework is data-driven, higher gains are required to achieve faster transient

responses given a well damped system.
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The spread and variation on the nonlinear static gains corresponding to linearly
increasing levels of 30C¢HSL, for the BBa_T9002 system is wider and spaced out
in comparison to that of the "F2620-RC2" system. This is clearly reflected in Fig-
ure 7.3C and D, as the protein expression responses to increasing input levels of
30CHSL, are distinguishable and gradually increasing. This is not observed for
the "F2620-RC2" system (Figure 7.4C and D), as there is a distinctive bimodality
separation amongst the protein expression responses to increasing input levels of
30CeHSL. This could be due to the prioritised demand imposed on the cellu-
lar resources by the RBS of the "F2620-RC2" system, for the expression of RFP.
Equally, it could be due to the consequence of using less sensitive optical filters

for measuring the RFP expression.

Dynamic function properties

As mentioned above, the extra terms i(t) and #>(t) are present in the "single-
cell" model of the BBa_T9002 system, compared to the "F2620-RC2" system. The
BBa_T9002 system has faster transient responses and shorter times in achieving
steady state, in both "single-cell" and "population-level" protein expression re-
sponses corresponding to different input levels of 30C¢HSL (Figure 7.3C,D and
7.4C,D). In the time domain, the BBa_T9002 system’s "single-cell" protein expres-
sion dynamics is not comparably similar to the "single-cell" protein expression
dynamics of the "F2620-RC2" system by visualisation.

The analysis of nonlinear system in the frequency domain can provide impor-
tant insights into a system’s nonlinearity and physical behaviour. Capturing the
system dynamics using only the input and output signal, to study the relationship
between them using spectral analysis is important, which was achieved by deriv-
ing the "single-cell" (CT-NARX) model. Generalised frequency response functions
(GFRFs) are higher-order functions that are multi-dimensional and used in repre-
senting nonlinear systems in the frequency domain. The probing method is used
to compute the GFRFs of the parametric model - "single-cell" CT-NARX model
by excluding the noise term. The computation of the first-order and second-order
GFRFs of the "single-cell" (CT-NARX) models of both BBa_T9002 and "F2620-RC2"
systems is given in Appendix A and Appendix B respectively.

The bode plots (magnitude and phase) of the first-order GFRFs of both BBa_T9002
and "F2620-RC2" systems are shown in Figure 7.5. The time-domain models

are identified using experimental data with time interval of one data sample.
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Figure 7.3: Mean model simulation for BBa_T9002 system. A. Comparison of growth
response (blue) and the modified Lin’s model prediction (green), B. Static model of the in-
put nonlinearity, estimate of the static function G(.) (green) compared to the experimental
data curves (blue), C. Comparison of "single-cell” GFP expression (blue) and "single-cell"
model prediction (green) and D. Comparison of GFP expression (blue) and system model
prediction (green). Note that the response corresponding to the input levels 30C¢HSL =
0 (in B) and 1e-4 M (all) have been omitted because of the log transformation and outlier
observation respectively.
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Figure 7.4: Mean model simulation for "F2620-RC2" system. A. Comparison of growth
response (blue) and the modified Lin’s model prediction (red), B. Static model of the
input nonlinearity, estimate of the static function G(.) (red) compared to the experimental
data curves (blue), C. Comparison of "single-cell" RFP expression (blue) and "single-cell”
model prediction (red) and D. Comparison of RFP expression (blue) and system model
prediction (red). Note that the response corresponding to the input levels 30C¢HSL = 0
(in B) and 1e-4 M (all) have been omitted because of the log transformation and outlier
observation respectively.
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Therefore it was necessary to rescale the frequency axis (x-axis) from (rad/sec)
to (rad/sec) x +. The magnitude plots of the first-order GFRFs of both BBa_T9002
and "F2620-RC2" systems have unique properties of their own. There is a res-
onance spike noticeable in the "F2620-RC2" system’s magnitude plot, which the
data-driven identification framework would have used to capture the oscillatory-
type "single-cell" protein expression as seen in Figure 7.4C, whereas the dynamics
of the BBa_T9002 system is more like a first-order step response at the "single-cell"
level (Figure 7.3C). The second-order GFRFs of both systems have their first-order
GFRFs repeated across the second frequency axes forming three dimensional plots
(slicing across the second frequency axis provides the two dimensional first-order
GEFREF of the system). The simulated prediction of the "single-cell" protein expres-
sion of the "F2620-RC2" system does not oscillate even though its first-order GFRF
entails a resonance, as the resultant output frequency response (which involves
Hi(w1), Ha(w1,wy) and Hz (w1, ws, w3)) is damped because of the interference of
Hy(w1,wy) and Hz (w1, w2, w3) on the first-order GFRF. This is the attractive prop-
erty of the spectral analysis using GFRFs, the effect on the dynamics of the systems
caused by the model terms and parameters can be interpreted, which aids control
design of systems in control engineering. The full interrogation on how the dif-
ferent frequency orders combine to produce the resulting time-domain response
is not undertaken here (future work), however, the usefulness of the GFRFs for
design purposes is shown thereby permitting another tool for dynamic character-
isation of genetic parts.

From the observation seen in the collected experimental data, the BBa_T9002 sys-
tem has faster transient responses and shorter times in achieving steady state in
"single-cell" protein expression responses corresponding to different input lev-
els of 30C¢HSL, than the "F2620-RC2" system. In the time-domain, the model
structures and parameters of both systems are not very different and can be rep-
resented similarly (taking into account that the parameters c; and cs are zero for
"F2620-RC2" system). This unique representation whose model terms along with
their respective parameters combine nonlinearly to produce the different time re-
sponses of BBa_T9002 and "F2620-RC2" systems (the delay). This indicates that,
when the nonlinear effects introduced by the nonlinear static gain is removed, the
inherent dynamic characteristics of both systems have commonality. This proves
to be a strong and promising result, which shows that the reporter cascades do
influence the "relative" dynamics of the systems and characterising only the func-
tional module - BBa_F2620 relative to a reporter cascade as an unachievable task

using the implemented investigation in this thesis. However, with the identifi-
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Figure 7.5: Bode plots (both magnitude and phase) of the first-order GFRFs of both
BBa_T9002 (green) and "F2620-RC2" (red) systems, using mean values of the parameters.

cation and analysis tools used, the commonality of the systems (same functional
module linked to two different reporter cascades) is retrieved and adequately char-

acterised.

As stated earlier, the RBSs of the reporter cascades act as a control mechanism on
the amount of protein expressed, thereby influencing the cellular resources used
in protein expression and indirectly affecting cell division. Therefore, the reporter
cascade’s influence on the "relative" dynamics of the systems are mostly due to
the RBSs, which in effect is causing the delay observed in the system’s dynamics
and the varying nonlinear switching behaviour. The RBS of the "F2620-RC2" sys-
tem prioritises demand on the cellular resources for protein expression more than
the RBS of the BBa_T9002 system, indirectly causing a delay in the growth of the
"F2620-RC2" system. However, the maximum growth of the "F2620-RC2" system
is greater than that of the BBa_T9002 system. This is due to less protein being
produced by the "F2620-RC2" system, which could be caused by RNA stability or



136 7.4. Results and discussion

codon optimisation (Goodman et al., 2013).

As demonstrated in Ellis et al. (2009), where static analysis is used to quantify the
relative strength of promoters, here dynamic analysis can be used to quantify the
relative strength of RBSs, given the suggestions mentioned in this chapter holds
true: (i) the fluorescence proteins used here do not affect the "relative" dynamics of
the systems and (ii) the unique representation of the "single-cell" protein expres-
sion dynamics in the time-domain captures the "single-cell" protein expression of
a system made up of the functional module - BBa_F2620 and an arbitrary reporter
cascade. This could help to predict dynamic properties the in model-based design.
There is a case for these dynamic properties to be added as an extension to the
datasheets of the respective genetic parts. The two crucial properties needed to
be reported are: (i) the nonlinear static behaviour and (ii) the "single-cell" time-
domain and frequency-domain models along with the parameters ci, ¢, ¢3, c4
and cs. This can only be validated by conducting more experiments with sys-
tems made of the functional module - BBa_F2620 and different reporter cascades
(future work). Until then, the delay effect introduced by the RBS cannot be con-
clusively assured, the commonality of systems made up of the functional module
- BBa_F2620 and different arbitrary reporter cascades is not guaranteed, thereby
leaving the debate - appropriateness of reporter cascades for the use of character-
isation of genetic parts, open to the synthetic biology community.

Also, in this investigation the dynamics of the functional module is not decou-
pled from the "relative” dynamics of the system, the reported properties may be
expected to hold true when the functional module is chosen for building a higher-
order system. Relative calibration using new experimental data of the higher-order
system as shown in Ellis et al. (2009) will be required though (discussed in the in-
troduction).

7.4.3 Model validation of a unified model with parameter uncertainty

The mean model simulation of both systems are shown in Figure 7.3 and 7.4,
which includes the growth, "single-cell" protein expression and "population-level"
protein expression responses. This was achieved by simulating the system models
using the mean values of the estimated parameter distributions (eqn 7.13) which
are shown in Table 7.2 and 7.3 (the mean values of the static nonlinear gains
can be seen in Figure 7.3B and 7.4B). Experiment 1 of both experimental datasets
was used for identification purposes. However, the remaining 8 experiments in

each experimental dataset was reserved for validation purposes. The identified
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Figure 7.6: BBa_T9002 system model variation. Comparison of GFP expression used for
identification purpose (dark green line), GFP expression of other experiments (blue) and
identified system model (light green shaded region - indicates uncertainty from the ABC
parameter range). The plots corresponds to responses to increasing input level from left
to right - top to bottom.

system model of each system, which was achieved using only one experiment, is
simulated using all the parameter samples obtained from the distributions that
were naturally generated by the identification framework. The simulations are
shown in Figure 7.6 and 7.7. One can observe that most experimental data falls
between the shaded region of uncertainty implying confidence in the identified
model and the estimated parameter distribution. This also helps to capture the
population heterogeneity of the cell populations. The variation observed in the
time domain as shown, can be translated into the frequency domain as well to aid
design, which is hugely advantageous, as the computation of the GFRFs are done

from a parametric representation.

7.5 Summary

The novel experimentation in this chapter is carried out to investigate if reporter
cascades are appropriate for characterisation. The reporter cascades are shown
to have influential effect on the "relative" dynamics of both systems under inves-
tigation, which is suggested to be caused by the RBSs. Characterising only the
functional module - BBa_F2620 relative to a reporter cascade was proven to be an
unachievable task using the implemented investigation in this thesis. In addition,
the identification and analysis tools used in this chapter, was capable of retriev-
ing and adequately characterising the invariant features common to both systems
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Figure 7.7: "F2620-RC2" system model variation. Comparison of RFP expression used
for identification purpose (dark red line), RFP expression of other experiments (blue) and
identified system model (light red shaded region - indicates uncertainty from the ABC
parameter range). The plots corresponds to responses to increasing input level from left
to right - top to bottom.

under investigation (same functional module linked to two different reporter cas-
cades). It was also concluded that, more experiments with systems made of the
functional module - BBa_F2620 and different reporter cascades have to be con-
ducted, to deduce if the unique representation in time-domain of the "single-cell"
protein expression dynamics obtained in this chapter can be used to represent a
system made of the functional module - BBa_F2620 and an arbitrary reporter cas-
cade to aid model-based design. Therefore, leaving the debate - appropriateness
of reporter cascades for the use of characterisation of genetic parts, open to the
synthetic biology community. These results hint at the possibility that dynamic
characterisation with predictive ability can lead to new design tools in synthesis-
ing functional bioparts and devices.

Additional dynamic characterisation is also demonstrated such as the estimation
of parameter uncertainty to capture cell population heterogeneity and explicit cel-
lular burden quantification using a cell growth model. Therefore, to design a bi-
ological system efficiently, the following are needed to assist model-based design:
(i) robust characterisation of the genetic part, (ii) quantification of the expected
variability by the cell population and (iii) the prediction of system’s microbial
growth. The work presented in this chapter has shown the approach in doing this
and, the relevant identification and analysis tools needed to achieve this design
goal.



Chapter 8

Conclusions

8.1 Conclusions and summary

Overall, this thesis introduced a new methodology for characterisation and anal-
ysis of the dynamics of genetic parts - using newly designed experimentation,
nonlinear system identification and frequency domain analysis. The models and
analysis presented can provide an extension to the datasheets of the respective

genetic parts to aid model-based design.

This thesis has proposed a nonlinear dynamic modelling framework and devel-
oped another to be used, to achieve robust dynamic characterisation of genetic
parts in biological systems. These frameworks are popular in the field of control
engineering but are novel to the field of synthetic biology. The dynamic character-
isation is demonstrated at the "population-level”, as population of cells are used
to complete the required and desired tasks, even though a cell is engineered to

acquire a certain desired functionality.

The investigation, whether a reporter cascade is appropriate for the characterisa-
tion of genetic parts is also undertaken. This is important to the synthetic biology
community because functional modules can rarely be directly monitored and they
are characterised with respect to reporter cascades used for monitoring the sys-
tem dynamics. However, when higher-order genetic parts are designed, different
functional modules are usually synthesised and ligated together, while excluding

the reporter cascades used during characterisation.

In Chapter 4, a data-driven modelling framework that utilises a regression ap-

proach is proposed to identify nonlinear black-box models for dynamic character-

139
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isation of genetic parts in biological systems. The framework was demonstrated
on a transcriptional regulatory genetic part - BB_T9002, for which a "population-
level" continuous-time (CT) nonlinear autoregressive model with exogenous in-
put (NARX) was obtained, that was compact and had accurate predictions of
the experimental data. The CT-NARX model was also benchmarked against dy-
namic and static biochemical models, which were based on an enzymatic reaction
scheme. The enzymatic reaction scheme model was shown to be inaccurate and in-
consistent with its associated simplified form - the Hill equation. A transcriptional
regulatory system was used as a case study because it is one of the most simplistic
genetic functional module and which is frequently used as the foundational mod-
ule to design higher-order genetic parts. The following was clearly established in
Chapter 4, the need to: (i) gather more experimental data of the BB_T9002 system
and (ii) develop a principled approach to quantify the cell population variability
observed in the experimental data. These were required, in order to robustly char-

acterise a transcriptional regulatory system.

A computational Bayesian identification framework for nonlinear CT systems that
utilises a simulation approach as opposed to a regression approach is developed.
The main contribution of this algorithm to the suite of methods available for CT
nonlinear system identification is the signal derivative free approach and the es-
timation of the model parameter uncertainty by constructing a distribution. The
identification algorithm uses the approximate Bayesian computation (ABC) se-
quential Monte Carlo (SMC) method, which is a rejection sampling technique for
inferring parameters of a model. Parameter distributions intrinsically generated
by ABC-SMC estimation algorithm is used to drive term selection by significance
testing. The simulation results shown in Chapter 5 demonstrate the high fidelity
of the ABC approach to increase in noise levels in the measurements. The devel-
oped identification framework will aid the quantification and characterisation of
variability in gene expression that is observed in different cell populations, in a

principled way.

Further experimentation is demonstrated in Chapter 6 were: (i) a novel investi-
gation is implemented by assembling a new genetic part "F2620-RC2", which will
help to investigate if a reporter cascade has an influential effect on the "relative"
dynamics of the system it has been linked to and (ii) cell growth and protein
expression measurements for longer time period (lag phase to death phase) are
collected for systems - BB_T9002 and "F2620-RC2", in order to capture and model
the full range of dynamics exhibited by transcriptional regulatory systems. The
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BB_T9002 and "F2620-RC2" systems share the same functional module - BB_F2620,
however, they have different reporter cascades - BB_E0240 and BB_J06702 respec-
tively.

The collected experimental data were used to derive dynamic system models of
both BB_T9002 and "F2620-RC2" systems. Each system model, consisted of: (i)
a cell growth model, which captures the growth responses of the respective sys-
tem over 8 different 30C¢HSL input concentrations and (ii) a "single-cell" model,
which describes the average number of fluorescence proteins expressed in each cell
when induced by different 30C¢HSL input concentrations. The parameters of the
cell growth models were used to explicitly quantify the usage of cellular resources
by the systems under investigation. The identified "single-cell" models were trans-
formed into frequency models by computing their generalised frequency response
functions (GFRFs), which serves as an alternative tool for dynamic characterisation
of the genetic parts for design purposes. In the time-domain, the model structures
and parameters of both systems are not very different and can be represented
similarly. This unique representation whose model terms along with their respec-
tive parameters combine nonlinearly to produce the different time responses of
BBa_T9002 and "F2620-RC2" systems. This behaviour is suggested to be caused by
the ribosome binding site (RBS), which imposes a control mechanism on the pro-
tein expression of the system. However, when the nonlinear effects introduced by
the nonlinear static gain is removed, the inherent dynamic characteristics of both
systems have commonality. This indicates that the reporter cascades do influence
the "relative" dynamics of the systems and characterising only the functional mod-
ule - BBa_F2620 relative to a reporter cascade as an unachievable task using the im-
plemented investigation in this thesis. However, with the identification and analy-
sis tools used, the commonality of the systems (same functional module linked to
two different reporter cascades) is retrieved and adequately characterised. More
experiments with systems made of the functional module - BBa_F2620 and differ-
ent reporter cascades have to be conducted, to deduce if the unique representation
in time-domain of the "single-cell" protein expression dynamics obtained in Chap-
ter 7 can be used to represent a system made of the functional module - BBa_F2620
and an arbitrary reporter cascade to aid model-based design. Therefore, leaving
the debate - appropriateness of reporter cascades for the use of characterisation of

genetic parts, open to the synthetic biology community.
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8.2 Future work

This thesis has made an important contribution towards the dynamic characteri-
sation of transcriptional regulatory genetic parts. It also provides a starting point
for further work in the field.

e In this thesis, predictive model-based design is emphasised to overcome
challenges in designing higher-order genetic parts. Two transcriptional reg-
ulatory systems are designed, to demonstrate the effect of reporter cascades
on the "relative" dynamics of the systems. It was concluded that the influ-
ential effect observed in the "relative" dynamics is due to the RBSs. The
time-domain and frequency-domain models which capture the key proper-
ties of the dynamics were presented, that showcases the effect caused by
the RBS. In order to validate this study, additional systems should be built
with the same functional module but different reporter cascades whose RBS
strength varies. The time-domain and frequency-domain models presented
here should be used to predict their dynamics and be validated against ex-
perimental data. This could provide quantification of the relative strengths
of RBSs as discussed in Chapter 7, which will aid model-based design.

e The transcriptional regulatory genetic parts do have simpler dynamics com-
pared to some other existing genetic parts, such as the repressilator (Elowitz
and Leibler, 2000). In order to robustly characterise genetic parts with high
dynamics, the systems are required to be persistently excited, which is presently
unachievable using chemical inputs. However, the recent advancement in
optogenetics allow different wavelengths of light to externally excite the bio-
logical systems consisting of light-active proteins. Additional advantages of
using optogenetics are light travels faster than small molecules which takes
time to diffuse and light can also be directed at specific parts of a cell (Baker,
2012).

e The computational Bayesian identification framework presented in Chapter
5 does model structure detection (MSD) and model selection (MS) based on
derivative order separately. These two algorithms could be merged to pro-
duce one integrated algorithm which solves both challenges. This could be
achieved by assigning weights to both models and parameters as shown in
Toni et al. (2009). The Cha-Srihari measure that is used to detect which model
parameter distributions have evolved the most from their priors, could be
incorporated into the ABC-SMC estimation step to provide an importance
sampling step of the parameters. This could be used to improve the MSD
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procedure computationally. The problem relating to nonlinear system iden-
tification is the large dimension of terms in the model space which has been
highlighted by Ninness (2009). The ABC-SMC needs to run multiple times
to get a final posterior distribution of the model parameters. This implies a
high computational burden, that can be solved using parallelisation, as done
in this thesis using multi-core processing. However, even greater speed can
be achieved by using new graphics based technologies.

Building on the foundations laid in this thesis new design tools on synthesising
functional bioparts and devices can be developed in the future.



Appendix A

GFRFs computation of the
"single-cell" model of BBa_T9002
system

The "single-cell" model (CT-NARX) of BBa_T9002 system identified using the two-
stage MSD algorithm was
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By substituting the frequency transforms into the model (eqn(A.1)) and equating

to e/21it provides the first-order function,
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g(t) — H1(f1)€j2”flt + Hl(fz)e]?nfzt 4 Hz(fllfl)ejZH(Zfl)t
+2H, (fllfz)ejzﬂ(f1+f2)t + Hz(f21f2>ej2n(2f2)t,
y(t) = i2n(fi -l-fz)ZHz(fl,fz)ejzn(flJer)t only required,

. 2 ,
y(t) = <j27'c(f1 +f2)) 2H2(f1,f2)e]2”(f1+f2)t only required.

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
(A.15)

(A.16)

(A.17)

(A.18)

By substituting the frequency transforms into the model (eqn(A.1)) and equating

to 2ei2(fitfa)t provides the second-order function,

0.5¢c3 <H1 (w1 )Hl (CUQ)jan + H; ((Ul )Hl (wz)]wl)

Hy (w1, wr) =
T (j(w1+w2)>2—02<j(w1+w2))—Cl

(A.19)



Appendix B

GFRFs computation of the

"single-cell" model of "F2620-RC2"
system

The "single-cell" model (CT-NARX) of "F2620-RC2" system identified using the
two-stage MSD algorithm was

(t) = caii(t) + sy ()y(t) + cai® (1) (t) + i (t) (B.1)
First order, N = 1

N

a(t) = Zfeﬂ”fff = el27ht, (B.2)
i=1
Ny
y(t) = ) _wi(t) = (t). (B.3)
i=1
Ny Ny i2rt(fi 4.+ fi
=Y ... % Hl-(fz-],...,fiNf)e]z Uit )0 (B.4)
T
1(t) = Hi(f1)e™ . (B.5)
S () = Hi(fr)e>™ M, (B.6)
j(t) = 2mfiHy (fr)e>™, (B.7)
§j(t) = (j2rfr)*Hy(fr)e>™ . (B.8)
(B.9)
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By substituting the frequency transforms into the model (eqn(B.1)) and equating
to e/21it provides the first-order function,

1

Hi(w;) = o (B.10)
where wy = 27t f;.
Second order, Ny =2
Ny o . .
i(t) = Y et = o2Tht y o2Tfat (B.11)
i=1
Ny
i(t) = )_vi(t) = j(t) + i2(t). (B.12)
i=1
Ny Ny .
. 2 (fiy 4t fiy, )t
gty =3 ... Y Hilfufiy )oY, (B.13)
=1 in=1
1(t) = Hi(f1)e”™ M + Hy (f2)e*™ 7, (B.14)

a(t) = H2(f1,f1)ej27r(2f1)t + ZHZ(f1,f2>ej2n(f1+fz)t + Hz(fz,fz)ejzn(2f2)t. (B.15)
g(t) — H1(f1)€j2”flt + Hl(fz)e]?nfzt 4 Hz(fllfl)ejZH(Zfl)t

4 . (B.16
+2H,(f1, f2)elPT AR L Hy (f, fo)e?T R )
(1) = 27t(f1 + f2)2Ha(f1, f2)e?" 172t only required, (B.17)
s 2 ;
y(t) = <j27'((f1 + fz)) 2H, (fy, f2)e? 1)t only required. (B.18)

By substituting the frequency transforms into the model (eqn(B.1)) and equating
to 2ei2m(fitfa)t provides the second-order function,

0.5¢3 (Hl ((Ul )Hl ((U2)jw2 + H; (wl)Hl ((Uz)]wl)

(j(wl + w2)>2 -

Hy (w1, ws) = (B.19)



Acronyms

E. coli Escherichia coli. 49, 98, 99, 103, 105, 107, 110

ABC approximate Bayesian computation. 20, 73-77, 79-81, 83-85, 87, 90, 91, 126,
128, 141, 143, 144

AR autoregressive. 25
ARMAX autoregressive moving average model with exogenous input. 25-27

ARX autoregressive model with exogenous input. 25-27

CT continuous-time. 4, 24, 40-43, 49, 51, 59-65, 67, 68, 70-73, 76, 77, 79, 83, 87, 91,
119, 123-125, 127, 129, 133, 141, 145, 147

dCTM derivative continuous-time method. 42, 49, 84, 85, 87, 89, 90

DT discrete-time. 24, 40-42, 71, 72
ERS enzymatic reaction scheme. 46, 47, 51-56, 58, 64, 65
FRO forward regression orthogonal. 36-38, 42, 63

GFP green fluorescence protein. 48, 49, 56, 58, 59, 65, 95, 96, 119, 121, 124, 128,
129

GFRF generalised frequency response function. 4, 28, 4345, 133, 134, 137, 142
KF Kalman filter. 50
LS least squares. 33, 36, 38, 55, 62, 63, 72, 77, 81, 127

MA moving average. 25

MS model selection. 35, 36, 39, 62, 64, 143
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Acronyms 149

MSD model structure detection. 28, 30, 33, 35-38, 41, 42, 58, 72, 73, 79-81, 83, 126,
128, 129, 143, 145, 147

NARMAX nonlinear autoregressive moving average model with exogenous in-
put. 4, 26, 27, 36-38, 47,72, 73

NARX nonlinear autoregressive model with exogenous input. 26, 27, 36-38, 41,
46,47, 51, 59-65, 67, 68, 70, 72, 123-125, 127, 129, 133, 141, 145, 147

NOE nonlinear output error. 27, 33, 38, 41, 76
OE output error. 26, 33

RFP red fluorescence protein. 105, 119, 121, 124, 129, 131
RSBP registry of standard biological parts. 13, 14, 46, 48, 49, 97, 105, 107

RTSS Rauch-Tung-Striebel smoother. 50, 51

SLS separable least squares. 29, 31, 35, 54

SMC sequential Monte Carlo. 76, 77, 79-81, 85, 87, 90, 91, 126, 128, 141, 143, 144
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