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Abstract

Cooperative communications and multiple-input multiple-output (MIMO) communica-

tion systems are important topics in current research that will play key roles in the future

of wireless networks and standards. In this thesis, the various challenges in accurately

detecting and estimating data signals and allocating resources in the cooperative systems

are investigated.

Firstly, we propose a cross-layer design strategy that consists of a cooperative max-

imum likelihood (ML) detector operating in conjunction with link selection for a coop-

erative MIMO network. Two new link selection schemes are proposed, along with an

iterative detection and decoding (IDD) scheme that utilises channel coding techniques.

Simulation results show the performance and potential gains of the proposed schemes.

Secondly, a successive interference cancellation (SIC) detector is proposed for a

MIMO system that has dynamic ordering based on a reliability ordering (RO), and an

alternative multiple feedback (MF) candidate cancellation method. The complexity of

these schemes is analysed and a hard decision feedback IDD system is also proposed.

Results show that the proposed detector can give gains over existing schemes for a mini-

mal amount of extra complexity.

Lastly, a detector is proposed that is based upon the method of widely linear (WL) fil-

tering and a multiple branch (MB) SIC, for an overloaded, multi-user cooperative MIMO

system. The use of WL methods is explained, and a new method of choosing cancellation

branches for an MB detector is proposed with an analysis of the complexity required. A

list-based IDD system is developed, and simulation results show that the proposed detec-

tor can operate in an overloaded system and provide improved performance gains.
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Chapter 1

Introduction

1.1 Overview

In recent years, advances in wireless communications technology for the business and

consumer sectors have led to the exponential growth of data consumption via wireless

communications, which results in increasing demand for the rate of data transmission and

large numbers of users attempting to transmit and receive data simultaneously, while still

maintaining signal coverage and accurately receiving data.

One solution to increasing the rate of data transmission and reception is multiple-input

multiple-output (MIMO) systems, where each device transmits several streams of data

simultaneously, but this presents new challenges for wireless system engineers that have to

devise efficient techniques for power allocation, parameter estimation and data reception

and detection. Thus, different considerations for this expanded system have to be made

as compared with a simpler single data stream system, and the design of algorithms to

exploit the full potential of MIMO systems is a rich and extensive field of research.

However, focus on communications research has also turned to the problem of reliably

transmitting signals in cluttered or obstructed environments, such as built-up urban areas

[1–3]. In such situations, line of sight (LOS) transmissions are heavily attenuated or

otherwise impossible to receive without a significant amount of errors in the detection
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and decoding of the signal. To address this problem, cooperative communication systems

have been proposed, where the original transmission is received by relay devices, which

then retransmit the received signal to the destination device. As the signal does not need

to be transmitted directly to the destination device, use of relay(s) can provide alternative

paths for the signal to the destination, thus increasing the likelihood that the signal is

received correctly. But this also presents challenges for both the detection of the data at

the destination, and for resource allocation and management of the relays.

In this thesis, a number of detection and resource allocation algorithms are proposed

for cooperative MIMO systems, with the aim of decreasing the bit error rate (BER) of the

received data at the destination as compared with previously proposed methods. Firstly,

a cross-layer design which introduces a cooperative maximum likelihood (ML) detector

with power adjustment and relay selection is proposed for a multiple-relay MIMO system

utilising amplify-and-forward (AF) relays, with consideration given for the data available

in the system. The system has a global power constraint, and the channels are modelled

with path loss fading and log normal shadowing (LNS) large scale fading, which attempts

to describe the effects of distance-based signal attenuation and slow signal fading due

to random objects partially obstructing the signal transmission. Two relay link selection

techniques based upon the idea of relay channel sets are proposed with complexity anal-

ysis, and are shown to provide a superior BER performance as compared with previously

proposed methods. Iterative detection and decoding (IDD) methods are also considered

and implemented using a list based maximum a posteriori detector and convolutional

channel encoding.

Secondly, an interference cancellation detector is proposed which considers the use

of multiple-feedback (MF) techniques and reliability-ordering (RO) methods to produce

a successive interference cancellation (SIC) detector, with the algorithm developed in

such a manner as to reduce the computational complexity of the proposed detector. IDD

techniques based on convolutional codes are applied to the system with the proposed

detector. The results show that the proposed detection strategy can obtain significant

gains over standard SIC algorithms.

Lastly, an overloaded multiple user system is considered, where there are more trans-

mitters than receive antennas in the system, with a small number of relays in a cooperative

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

16

2014



scenario. Using widely linear (WL) filtering and multiple-branch (MB) detection, a de-

tector is proposed to improve the BER at the destination, demonstrating the ability to

successfully detect a greater number of transmitting devices than previous methods, with

only a small number of relays available. Also proposed is a method of dynamically choos-

ing the branch permutations to use, reducing the average computational complexity for

the system, whilst maintaining performance. An IDD implementation is also presented,

along with a study of different detection techniques in an overloaded system.

1.2 Contributions

• The extension of a cooperative ML detector from the single relay case to the multi-

ple relay case, with the substitution of an approximation for the second transmission

phase received signal and a summated channel, in order to accommodate the system

information available to the destination device. The cooperative detector is derived

by expanding the ML detection rule for the first and second transmission phases,

and then collapsing the expansion into an equivalent single cooperative ML rule,

using a matrix square root.

• Two relay link selection techniques are proposed, based upon the powers of the

channels associated with each relay, but by also considering the powers of the com-

bined channels in the second phase, expanding the possible selection set space be-

yond the individual relay links. This is to avoid the possibility of destructive inter-

ference cancellation for the second transmission phase within the set of relay links

selected. This principle is applied to the maximum minimum criterion for relay link

selection, and also the maximum harmonic mean selection method.

• A cross-layer design strategy is also proposed that integrates the cooperative ML

detection and the relay link selection techniques to produce a method that also con-

siders a global power constraint.

• The development of a SIC detection algorithm for MIMO systems, incorporating

the concepts of log likelihood ratio (LLR) based cancellation reliability ordering for

dynamic cancellation orders, which is derived using a Gaussian probability distri-

bution function (PDF) approximation for the output of a linear filter, and alternative

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

17

2014



cancellation candidate MF techniques, which rely on the concept of an unreliable

shadow area in the modulation scheme’s constellation diagram, defined by a shad-

owing parameter and Voronoi regions. These methods are integrated into a single

algorithm, with improvements and optimisations discussed for the reduction of the

computational complexity.

• A new SIC detector is proposed for heavily overloaded multiple-user cooperative

relay MIMO systems with non-circular symbol modulation schemes, using WL fil-

tering techniques for interference cancellation. The proposed SIC detector is an

extension to traditional linear schemes, and takes advantage of the covariance and

pseudo-covariance matrix of the received signal. Furthermore, MB alternative can-

cellation orders are introduced, which follows several parallel detection orders to

obtain a list of detection candidates, with decisions on the final detected symbols

made using an Euclidean distance rule. The proposed list-based WL SIC algorithm

is shown to perform very close the optimum ML detector.

• Discussion and investigation on the methods of obtaining the ordering branches

used, involving predetermined patterns and cancellation order shuffling are con-

sidered. A proposed dynamic branching based upon the constellation shadowing

area utilised in MF techniques is developed, and a study of the trade-off between

the number of branches used, computational complexity and BER performance is

carried out.

1.3 Thesis Outline

The structure of the thesis is as follows:

• Chapter 2 presents an overview of the theory relevant to this thesis and introduces

the system models that are used to present the work in this thesis. The topics of

MIMO systems, cooperative networks, relay link selection, ML detection, SIC de-

tection and WL filtering are covered, with an outline of previous work in these

fields.
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• Chapter 3 presents the cooperative ML detector for a multiple-relay cooperative

two-phase MIMO system, with relay link selection strategies proposed and stud-

ied for several scenarios of interest. IDD techniques are also utilised, alongside a

complexity analysis of the relay link selection strategies used.

• Chapter 4 presents a novel interference cancellation detector, based upon the meth-

ods of MF and RO, with the development of the algorithm organised around reduc-

ing the computational complexity required. The effects of altering the parameter

values of the algorithm are investigated, which include IDD results.

• Chapter 5 presents the application of WL techniques to a multiple-user multiple-

relay system, with the added technique of MB processing. Methods of determining

the WL branch orders are presented, including a permutation based selection, and

a dynamic branching algorithm, alongside the application of IDD.

• Chapter 6 presents the conclusions of this thesis, and suggests directions in which

further research could be carried out.

1.4 Notation

Throughout this thesis, lowercase non-bold letters represent scalar values, whilst bold

lowercase and uppercase letters represent vectors and matrices, respectively. The super-

scripts (·)∗,(·)−∗, (·)T and (·)H denote the complex conjugate, the inverse complex conju-

gate, the standard transpose and the Hermitian transpose, respectively. The absolute value

of a scalar is denoted by | · |, the Euclidean norm of a vector or matrix is given by ‖ · ‖, the

Frobenius norm of a vector or matrix is given by ‖ · ‖F , whilst the expectation of a vector

is given by E[·]. The factorial of a scalar is shown by ·!, and for a cooperative system, the

first and second subscripts denote the source and destination of the transmission, i.e. from

a relay to the destination is denoted by ·rd. Identity matrices of size N are denoted by the

representation IN .
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Chapter 2

Literature Review

Contents
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Introduction

This section presents an introduction to the fields of research in wireless communication

systems, and the principles and techniques from which the contents of this thesis are based

upon. Firstly, an overview of the system setups and models on which the work presented

is based upon is provided, namely MIMO systems, two-phase cooperative systems, mod-

ulation schemes, channel modelling and channel coding. Secondly, estimation techniques

for the determination of system parameters and algorithms that can be applied to resource

allocation within the system are reviewed. Finally, detection techniques for the recovery

of the transmitted data symbol at the receiver will be presented, covering the topics of

linear filtering, WL filtering, SIC techniques, ML detection and iterative decoding tech-

niques.
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Tx Rx

Figure 2.1: 4x4 antenna MIMO model

2.2 System Setup and Modelling

The system in which an algorithm or technique is presented within is an important part

of the design of communication techniques, and may influence the derivation and design

of the techniques through the conditions and challenges present in the scenario. In this

section, MIMO and cooperative system setups are highlighted, the modelling of channel

and noise effects is discussed and a brief introduction into channel coding is given.

2.2.1 MIMO Systems

MIMO systems use multiple antennas at both the transmitter and receiver in a commu-

nications system, which enables multiple data streams to be transmitted per time slot, as

shown by Figure 2.1 [4], [5], [6], [7]. The antennas provide transmit diversity in space, i.e.

different paths for the signal to travel from the source to the destination, which is known

as spatial diversity. This can potentially increase the rate of data successfully transmitted

in a system due to the additional data streams [8]. The MIMO system in Figure 2.1 can

be represented by the following equation:

y = Hx + n, (2.1)

where y is a vector of length Nr, which represents the received signal at the receiver, x is

a vector of length Nt, which represents the transmitted data symbols from the transmitter,

H is an Nr × Nt matrix which represents the fading channel that the data is transmitted

through, and n is a vector of length Nr, which represents the noise at the receiver. Nr is
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the number of antennas at the receiver and Nt is the number of antennas at the transmitter.

A downside to MIMO transmission is that the simultaneously transmitted signals from

each antenna will potentially interfere with each other, which can make the detection and

decoding process at the destination more difficult, and increase the error rate. However,

by transmitting multiple data streams via the multiple antennas available in the system,

the channel capacity (i.e. the upper bound on the amount of information that can be re-

liably transmitted through the channel) is increased by min(Nt, Nr), as compared with a

single antenna system, assuming that there is uncorrelated fading between the different

transmission paths [9]. This increase in channel capacity due to the MIMO system setup

can be referred as the multiplexing or diversity gain [10] of the system.

2.2.2 Cooperative Systems

A cooperative system is an extension of the point-to-point system described in the previ-

ous section, where the transmission of data signals from the source to destination is aided

by relays [11], [12], [13], [14], [15]. The relays receive the signal from the source device

in the same time instant that the destination receives the data signal, and then the relays

forward the received signal onwards to the destination. The destination therefore receives

two different copies of the signal transmitted by the source, as the fading channels asso-

ciated with the relays will be different than the direct transmission channel, so the relays

can give an extra form of spatial diversity, known as cooperative diversity.

Figure 2.2 illustrates a two-phase cooperative MIMO system with a single relay where

the transmission takes place over two time instances, the first phase consisting of the

source transmission, followed by the transmission by the relay in the second phase.

How the relay forwards the received signal data from the source depends on the for-

warding scheme being used, the primary two being Amplify and Forward (AF) [16], [17],

[18] and Decode and Forward (DF) [19], [20]. In AF, the relay simply amplifies the

received signal from the source by a scalar factor, and retransmits the result to the desti-

nation. In DF, the relay uses a detector to decode the signal into estimated data bits, then

re-encodes the estimated bits into a signal and transmits this to the destination. AF has

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

22

2014



S D

R

1st Phase

2nd Phase

Figure 2.2: MIMO two-phase single relay system model

an advantage in that the processing at the relay is simple, as only the amplification factor

and the multiplication of the received signal are required, whereas for DF the relay needs

to detect and decode the received signal, which can introduce estimation errors, and is

generally more complex to calculate than AF at the relay. DF can also be much more

complex to calculate analytically than AF due to the possibility of errors being introduced

in the decoding stage at the relay, and an analytical function would be needed for the de-

tection algorithm used. However, for DF the destination does not require the knowledge

of the channel between the source and relay to decode the data transmitted by the relay,

whereas for AF the destination does require the source to relay channel knowledge as this

channel affects the received signal at the destination directly, which means there must be

a method in place for the destination to acquire this information.

The first phase of transmission in a cooperative system can be described as follows:

ysr = Hsrx + nr, (2.2)

ysd = Hsdx + n
(1)
d . (2.3)

The subscripts on y and H denote the devices associated with the values, with the first

subscript denoting the originating device, and the second subscript denoting the endpoint

device. e.g. Hsr is the MIMO channel between the source and relay. In the case of just one

subscript, e.g. for noise n, the subscript denotes the device which the value is associated

with. The superscript (1) or (2) shows which phase of transmission the receive antenna

noise is associated with, where it may need to be differentiated.

Depending on the relay forwarding scheme being used, the second phase transmission
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Figure 2.3: MIMO two-phase multiple relay system model

from the relay changes. For AF, the second phase transmission is described as:

yrd = Hrdγrysr + n
(2)
d (2.4)

where the scalar γr is the AF amplification factor calculated at the relay. There are a

number of ways of calculating the amplification factor in literature, but the commonly

used method designed to normalise the average power output of the relay to unity power

is as follows:

γr =

√
1

‖Hsr‖2
F + σn2

, (2.5)

where σ2
n is the variance of the random noise, which is often modelled as complex Gaus-

sian random variables with zero mean.

For DF systems, the amplification factor and the received signal are replaced by an

estimate of the data symbols transmitted from the source, estimated by the detection and

decoding algorithm used at the relay which is described by:

yrd = Hrdx̃r + n
(2)
d , (2.6)

where x̃r is the vector of the estimated data symbols at the relay. An extension of the

single relay system is the multiple relay system, where there are M relays receiving the

signal transmitted from the source device in the first phase, which all transmit the for-

warded signal simultaneously to the destination in the second phase, as shown in Figure

2.3.
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This system’s transmission phases can be described similarly to the single relay sys-

tem, but now most symbols with the r subscript have an extended subscript to take into

account the extra relays, by means of a relay numberm that the symbol is associated with.

In effect, the individual receive vectors, channel matrices and noise vectors for each relay

can be stacked or summed to produce the same form of equations as for a single vector.


ysr1

...

ysrM

 =


Hsr1

...

HsrM

x +


nr1

...

nrM

 (2.7)

yrd =
M∑
m=1

Hrdmγrmysrm + n
(2)
d (2.8)

Eq. (2.7) and Eq. (2.8) describe the form of the signal vectors for the first and second

phases of transmission involving the relays for an AF system. The direct transmission

from the source to the destination remains the same.

2.2.3 Channel and Noise Modelling

In previous sections, the quantities H and n have been used to represent the channel (i.e.

the medium in which the signal travels through) and the noise at the receive antennas

respectively. These values, or the parameters that dictate these values, are important to

model in a relatively realistic way, as these quantities can affect the performance of the

whole system to a great degree. The values that make up the channel and noise quantities

at each time instant are usually randomly generated, but the parameters governing the

generation of these values can vary.

Channel values are defined by statistical probability distributions, which have param-

eters such as mean and variance that will affect the properties and form of the proba-

bility functions. The channel values are represented by a complex number within the

system model, as are most other values such as the transmitted and received signals and

the noise values, and typically distribution of the magnitude of the complex values, and

the distribution of the separate real and imaginary components are dictated by statistical
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probability distributions. The most common channel distribution for the magnitude of

the channel coefficients is the Rayleigh distribution [21] and occurs when the real and

imaginary components have Gaussian distributions. Rayleigh fading is considered for

systems in which the line-of-sight (LOS) propagation between the source and destination

is not significant. Alternative probability distributions that can be considered include the

Rician [22], Weibull [23], Nakagami [26] and log-normal distributions [27].

A Rician channel distribution can be used to model a scenario where a particular path

of transmission in a multiple path channel has much more power than the other channel

paths, typically the LOS path. A Weibull probability distribution can be used in modelling

dispersion of signals in a channel due to significant amounts of clutter in the transmission

area, and can approximate the Normal distribution for certain parameter definitions. A

Weibull distribution has also been shown to provide good fits to empirically measured

channel measurements in some scenarios [24], [25]. The Nakagami distribution is related

to a gamma distribution in mathematics, and has been used to approximate environments

with multiple signal propagation effects. The Log-normal distribution is useful in that any

quantity that has a normal distribution on a linear scale will have a log-normal distribution

in a logarithmic scale.

However, choosing a distribution only defines the characteristics of a single overall

effect on the channel. Other factors may affect the overall channel value, such as distance-

based fading and shadowing. Distance based fading (or path loss) is a representation of

how a signal is attenuated the further it travels in the medium the system operates within,

and can be heavily affected by the signal environment [28], [25]. An exponential based

path loss model can be described by:

α =

√
L√
dρ
, (2.9)

where α is the distance based path loss, L is the known path loss at a base distance D,

d is the distance of interest relative to D and ρ is the path loss exponent, which can be

varied to account for the environment. ρ is typically set between 2 and 5, with a lower

value representing a clear and uncluttered environment which has a slow attenuation and

a higher value describing a cluttered and highly attenuating environment [29].
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Shadow fading describes the phenomenon where objects can obstruct the propagation

of the signal, and thus attenuate the signal further. Shadowing can also be described as

a random variable with a probability distribution, and for the case of large scale fading

(where the random variables change slowly over time), a common function used is the

log-normal probability distribution given by:

β = 10

(
σsN (0, 1)

10

)
(2.10)

where β is the shadowing variable, N (0, 1) represents a Gaussian distribution with mean

zero and unit variance and σs is the shadowing spread in dB. The shadowing spread repre-

sents the severity of the attenuation of the shadow fading, and is typically given between

0-9dB. A channel model which has Rayleigh fading, with path-loss and shadowing can

thus be described as:

H = αβHo, (2.11)

where Ho is the base Rayleigh distributed channel.

Noise in communication systems is normally modelled as additive white Gaussian

noise (AWGN) in both the real and imaginary parts of a signal, which represents the

random noise that the receiving device receives in addition to the signal that has been

modified by the channel. AWGN is modelled as a complex Gaussian process with a mean

of zero and a variance of σ2
n, with the variance defining the power of the noise, as below:

n =

(
σn√

2

)
CN (0, 1), (2.12)

where CN (0, 1) represents a complex normal or Gaussian distribution with mean zero

and unit variance, and σn is given by:

σn =

√
1

SNR
(2.13)

Typically, a system’s performance is measured over a range of signal-to-noise ratio (SNR),

with the signal’s power remaining the same, and the variance (and thus power) of the

noise values being varied to determine the performance of the system in different SNR

conditions. Other noise models that can be considered are brown noise and pink noise, so

called ’coloured’ noise models [30], [31], [32].

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

27

2014



2.2.4 Channel Coding

Channel coding is a process operating at the transmitter and the receiver, manipulating

the raw bit data to be transmitted at the transmitter before conversion to symbols, and

attempting to undo that manipulation at the receiver after demodulation to reconstruct the

original data bits [33], [34]. Channel coding is designed to add redundancy in the form

of extra parity bits to a transmission, thus reducing the efficiency of the transmission, but

with the objective of reducing the BER at the receiver. There are two types of functions

associated with channel coding, automatic repeat-request (ARQ) and forward error cor-

rection (FEC). ARQ is designed to just detect errors, and if errors are detected the receiver

sends a message back to the transmitter requesting that the last transmission is repeated,

in an effort to correct the transmitted data a second time. FEC techniques actually try and

correct errors with the received data transmission, requiring less retransmission of data,

but they generally need a greater complexity in design and processing than ARQ.

For error correction codes (ECC), a common type of codes are convolutional codes

[35], [36] which are constructed such that the output of b bits are dependent on the previ-

ous a bits, where a is the memory length of the code (as well as the order of the generator

polynomial that defines the code) and where b ≥ a, giving the rate of the code as a
b
.

Convolutional codes encode the input data as a stream, and a convolutional code has a

length of c input bits that are used for encoding at every a bit instance(s). Associated with

convolutional codes is the generator polynomial, which determines how the c input bits

are added together with modulo-2 addition, and is typically defined as b row vectors of

length c.

The decoding of convolutional codes is implemented through the use of trellis style

decoders, based upon Markov modelling and state based transitions, the most common of

which that implement maximum likelihood decoding is the Viterbi algorithm [37], [38],

but other decoders are available, such as the BCJR algorithm [39], which operates using

the maximum a posteriori (MAP) criterion.

Iterative detection and decoding (IDD) methods are techniques which refine the es-

timates of the transmitted bits several times per time instance by iteratively passing in-

formation between the detector and decoder at the receiver, improving the accuracy of
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the estimates with each iteration. Two high-performance classes of FEC codes are turbo

codes [40, 41], and low-density parity check (LDPC) codes [42], which are implemented

in current commercial wireless communication systems [43, 44].

2.3 Parameter Estimation

During the operation of a communications system, some algorithms and processes that

are used in the system will require knowledge of quantities or values within the system

which may not be available to the device computing the algorithms. Examples of these

values include the channel state information (CSI), noise variance, shadowing parameters

and relay locations, or for other parameters that may not be known a priori such as the

receive filters at the destination device, which may be required for the operation of the

system.

Channel estimation techniques are designed to determine accurately the current values

of the channel that the system is transmitting through, and can be crucial to the successful

operation of a communication system setup, as a large amount of detection techniques

for the recovery of transmitted data require accurate knowledge of the channel to perform

well. It is unlikely that the system will have any prior knowledge of the channel values in

a real system, and also the likelihood is that the channel will randomly change between

or during the transmission of signals.

A common set of methods of determining the channel values are data-aided methods,

where the transmitter and receiver have prior knowledge of a set of data called pilot data

[45]. Pilot data are perfectly known to both devices, and as such the receiver can use the

received signal to determine how the data have been altered by the channel, and thus the

channel values. Pilot data can be transmitted immediately before the information data is

transmitted as to provide the most accurate representation of the channel values at that

time, assuming the channel does not change significantly during the transmission of the

information data.

For cooperative systems, it is generally required that the channels for each transmission

link in the system (source to destination, source to relays and relays to destination) are
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known, and so when channel estimation techniques are applied, each channel needs to

be estimated [46], [47]. For a DF system, the destination only requires the source to

destination and relays to destination channel knowledge for the purposes of detection

algorithms, with the relays requiring the source to relays channel knowledge, but for AF,

the destination requires knowledge of all the channels in the system for detection methods.

Firstly, the simplest method of channel estimation is the least squares (LS) channel

estimation technique [48], [49], [50], but the mean square error (MSE) performance of

this method is typically not adequate in low SNR regions. The LS channel estimation

method in a MIMO system is derived as follows from an initial cost function:

E = E[‖Y − ĤG‖2],

= E[(Y − ĤG)(Y − ĤG)H ]

= E[YYH ]− E[ĤGYH ]− E[YGHĤH ] + E[ĤGGHĤH ],

∂E
∂ĤH

= −E[YGH ] + E[ĤGGH ] = 0,

Ĥ = YG†.

(2.14)

where † represents the MoorePenrose pseudoinverse, G is the pilot data transmitted that

forms the received signal matrix Y and Ĥ is the estimated channel matrix of the MIMO

system that G has been transmitted through.

A refinement of the LS method is the minimum mean square error (MMSE) channel

estimation method [51], [52], [53] which takes into account the noise at the receive an-

tennas, improving performance over the LS method at low SNR regions and is derived as

follows by substituting Ĥ with a filter matrix WCE multiplied by the received matrix Y:
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E = E[‖H− Ĥ‖2],

= E[‖H−WCEY‖2],

= E[(H−WCEY)(H−WCEY)H ],

= E[HHH ]− E[WCEYHH ]− E[HYHWH
CE] + E[WCEYYHWH

CE],

∂E
∂WH

CE

= −E[HYH ] + E[WCEYYH ] = 0,

E[HYH ] = E[WCEYYH ],

RHHGH = WCE(GRHHGH + Iσ2
n),

WCE = RHHGH(GRHHGH + Iσ2
n)−1,

Ĥ = WCEY,

(2.15)

where RHH is the auto-correlation matrix of H, also defined as:

RHH = E[HHH ] (2.16)

Although the MMSE channel estimation method can offer gains over the LS method,

RHH and σn need to also be estimated, but it is possible to estimate these during the

pilot data transmission. Figure 2.4 shows a plot of the MSE performance of the LS and

MMSE channel estimators for a QPSK 4x4 MIMO system, and it can be seen that the

MMSE channel estimator has a lower MSE than the LS method, especially in the low

SNR region.

2.4 Resource Allocation

In a MIMO system there are a number of resources available which the communication

system can use or exploit, but in a given environment there are many ways in which the

resources can be distributed, and this distribution could be optimised in order to max-

imise and minimise particular metrics such as BER, capacity, throughput etc. Examples

of resources that can be allocated in a cooperative system include the transmission power

allocated to each antenna on a device, and between the relays in the system considering

any transmission power constraints imposed, the partitioning of bandwidth between de-
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Figure 2.4: Comparison of MSE performance of LS and MMSE channel estimators in a
4x4 QPSK point-to-point MIMO system

vices or users in the system, the selection of relays within the system to cooperate with

from a prospective pool of relay devices etc [54–56].

The transmission power of a device is defined as the total power that the device uses

to transmit in a time instant, but for a fair comparison with MIMO systems with different

numbers of antennas, or with single antenna systems, it can be necessary to set the power

of each antenna on a MIMO system to a fraction of the overall power to ensure the trans-

mission power remains constant over the different scenarios. A simple way of distributing

power is to share the power equally across the antennas, but BER gains can be obtained by

altering the individual transmit power of each antenna based upon the scenario the system

is operating in. For a cooperative system, the transmission power can be defined differ-

ently, as the total power that is transmitted in the system, or as the transmission power

per device in the system, with it being possible that the source and relay devices have

different transmission power limitations. If any of the devices in the cooperative system

have multiple antennas, then the transmission power per antenna may vary between the

different devices also.
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Similar to channel estimation techniques, it is possible to use pilot data to create a

data aided method of determining a better power distribution across antennas. One such

method is the least mean squares (LMS) method, which is a stochastic gradient (SG)

descent technique [57]. If we assume a MIMO system as below, considering the power

allocation vector a, where each value of the vector corresponds to a different antenna and

it’s transmission power:

y = HXda + n, (2.17)

where Xd represents diag(x) which consists of pilot data, we can define a cost function

to minimise the error between the received signal and the transmitted data through the

channel:
â = arg min

a∈CNt×1
‖y −HXda‖2,

E = (y −HXda)H(y −HXda),

∂E
∂aH

= −XH
d HHy + XH

d HHHXda,

= XH
d HHe,

(2.18)

where E is the mean squared error, and e is the estimation error vector, calculated as:

e = y −HXda. (2.19)

With a minimised error expression defined, it is possible to use this as a correction factor

with a small step size µ, in order to update the estimate â at every time instance i, forming

the SG method that is designed to converge on a local optimum, thus giving:

â[i+ 1] = â[i] + µXH
d HHe. (2.20)

However, in the case of â is restricted to a maximum transmit power, the returned value

from the SG method must be normalised to a maximum transmit power P as follows:

ân =
â
√
P√

tr(ââH)
, (2.21)

where ân is the normalised power allocation vector. For a cooperative system, the power

across different relay can be distributed in a similar fashion, if a is the result of stacking

each relay’s power vector with the source antenna power vector, and y is the stacked

received signal at the destination from both the source and relay’s in the two phases of
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transmission.

Relay selection or link selection can be interpreted as a form of power allocation,

but in this case the relay can be assigned no power, and so effectively is not present

in the system in that scenario. This allows the system to be designed to select relays in

cooperative system according to an algorithm with which to cooperate. This can be crucial

to a system’s performance, as this allows the system to discard relays which may be in a

disadvantageous position, which can cause performance loss if included, and also to free

up relays for other potential users in the system for which the relay may be useful [90–94].

2.5 Detection Techniques

Detection techniques are the methods by which a device can attempt to recover or recon-

struct the transmitted data from a received signal, through the use of filtering, searches

and algorithmic processes. The main detection techniques areas that will be highlighted

here are the linear techniques that rely on a filter [58], [59], [60], the extension of lin-

ear techniques for certain types of signals known as Widely Linear (WL) techniques [61],

[62], [63], [64], Successive Interference Cancellation (SIC) detection which is based upon

the cancellation of multiple data streams as interference [65], [66], and the concept of ML

detection [67], [68].

2.5.1 Linear Detection

Linear detection techniques are derived from cost functions designed to reduce the dif-

ference between two values. The two commonly used linear detection techniques are the

zero forcing (ZF) [58], [59] and MMSE detectors [60], [69], [70]. The ZF method is

derived from the cost function:

E = E[‖y −Hx̂‖2], (2.22)
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where E is the cost function error and x̂ is the estimated transmitted symbols. From this

cost function, the ZF solution can be derived as a filter WZF :

E = E[‖y −Hx̂‖2],

= E[(y − Ĥx̂)H(y − Ĥx̂)]

= E[yHy]− E[yHĤx̂]− E[x̂HĤHy] + E[x̂HĤHĤx̂],

∂E
∂x̂H

= −E[HHy] + E[ĤHĤx̂] = 0,

x̂ = (HHH)−1HHy = H†y = WZFy.

(2.23)

The ZF solution is simple to calculate and only requires the knowledge of the channel,

but the accuracy of x̂ suffers as compared to other detectors, especially at lower SNR

values, as there is no attempt to compensate for the noise at the receiver.

The MMSE filter detector is also derived from a cost function, but instead focuses on

the optimisation of a filter matrix WM , which is applied to the received signal to produce

x̂, as follows:

E = E[‖x− x̂‖2],

= E[‖x−WH
My‖2],

= E[(x−WH
My)(x−WH

My)H ],

= E[xxH ]− E[WH
MyxH ]− E[xyHWM ] + E[WH

MyyHWM ],

∂E
∂WH

M

= −E[yxH ] + E[yyH ]WM = 0,

E[yxH ] = E[yyH ]WM ,

H = (HHH + Iσ2
n)WM ,

WM = (HHH + Iσ2
n)−1H,

x̂ = WH
My,

(2.24)

It can be seen that the ZF and MMSE filter solutions have similar forms, with the MMSE

filter incorporating the variance of the receive antenna noise. The addition of this variance

value improves the accuracy of the MMSE detector at low SNR values, but it should be
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noted that at high SNR values, σn → 0, and so the MMSE filter tends to the ZF filter.

2.5.2 WL Filtering

WL filtering [71], [72], [73] is an extension of the linear filtering discussed in the pre-

vious section, and is applicable in systems where the received signal is non-circular, i.e.

the received signal has an imbalance between the average in-phase and quadrature am-

plitudes. The more extreme examples of this include modulation schemes that only use

either the in-phase of quadrature components, such as BPSK or amplitude shift-keying

(ASK) schemes. WL filtering takes advantage of the extra potential diversity present in

the I-Q imbalance to improve the accuracy of the estimated data by introducing a sec-

ond filter that operates on the complex conjugate of the received signal in addition to the

standard linear filter.

The cost function of the WL filter follows the same form as the MMSE filter is:

E = E[‖x− FHy −GHy∗‖2], (2.25)

where F and G are the WL filters. The derivation of the WL filters is more complex

than that of the linear filters, and so the derivation will be detailed here. The objective

is to choose F and G such that E is minimised. If E is expanded, and the partial deriva-

tive of the expansion is taken with respect to FH and GH separately, the following two

expressions are formed:

∂E
∂F

= E[yyH ]F + E[yyT ]G− E[yxH ] = 0, (2.26)

∂E
∂G

= E[y∗yH ]F + E[y∗yT ]G− E[y∗xH ] = 0. (2.27)

It is assumed that x has entries that are independent, but identically distributed, that n

has independent but identically distributed entries also, with x and n being statistically

independent from each other. From these assumptions, we can also assume that:

E[xxH ] = Iσ2
x,E[nnH ] = Iσ2

n (2.28)
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E[xnH ] = 0,E[nxH ] = 0 (2.29)

Using the above defined expectations, we can now expand and calculate the expecta-

tion results in Eq.(2.26) as follows:

E[yyH ] = E[(Hx + n)(Hx + n)H ] = HHH + Iσ2
n (2.30)

E[yyT ] = E[(Hx + n)(Hx + n)T ] = HHTσ2
x (2.31)

E[yxH ] = E[(Hx + n)xH ] = Hσ2
x (2.32)

Similarly, we can expand the expectations from Eq.(2.27) as below:

E[y∗yH ] = E[(Hx + n)∗(Hx + n)H ] = (HHT )∗σ2
x (2.33)

E[y∗yT ] = E[(Hx + n)∗(Hx + n)T ] = (HHHσ2
x + Iσ2

n)∗ (2.34)

E[y∗xH ] = E[(Hx + n)∗xH ] = H∗σ2
x (2.35)

Note that if the modulation scheme used is circular, such as QPSK, then E[xxT ] = 0, in

which case Eqs.(2.31),(2.33) and (2.35) are reduced to zero.

Now, if Eq.(2.26) and Eq.(2.27) are rearranged to isolate F and G respectively, we get:

F = (HHH + I
σ2
n

σ2
x

)−1(H−HHTG) (2.36)

G = (HHH + I
σ2
n

σ2
x

)−∗(H∗ −H∗HHF) (2.37)

Then, solving Eq.(2.36) and Eq.(2.37) as simultaneous equations to isolate F and G, we

get the final result:

F = (Rhh −RhtR
−∗
hhR∗ht)

−1(H−RhtR
−∗
hhH∗) ∈ CRxK (2.38)

G = (Rhh −RhtR
−∗
hhR∗ht)

−∗(H∗ −R∗htR
−1
hhH) ∈ CRxK (2.39)

where

Rhh = HHHσ2
x + Iσ2

n ∈ CKxK (2.40)

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

37

2014



0 5 10 15
10

−5

10
−4

10
−3

10
−2

10
−1

SNR(dB)

B
E

R

 

 
MMSE

WL−MMSE

Figure 2.5: Comparison between linear and WL detector in a 4x4 BPSK point-to-point
MIMO system

Rht = HHTσ2
x ∈ CKxK (2.41)

As can be seen, the calculation of these filters is more complex than the standard linear

filters, but the performance gain over linear techniques in the presence of non-circular

data can be significant. Figure 2.5 shows a comparison plot of the BER performances of a

linear MMSE and a WL MMSE detector operating in a 4x4 BPSK MIMO system. It can

be seen that the WL method gives large SNR gains over the linear detector in this system,

even in the low SNR region, which can make the adoption of WL methods in this type of

system desirable, despite the increased complexity cost associated with WL methods as

compared to linear techniques.

2.5.3 SIC Detection

The method of SIC [6], [74], [75], [76], [77] is based upon the theory that if in a system

where multiple signals are interfering with each other, if each signal is estimated individ-

ually serially, then the interference effects of an estimated signal can be removed from the

signals that have yet to be estimated, thus increasing the reliability of estimation of the

remaining signals. The SIC process can increase the accuracy of the transmitted data es-
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Table 2.1: Successive Interference Cancellation Algorithm

Initialisation: y0 = y,H0 = H

for i = 1→ Nt do
Wi = (HiHi

H + Iσ2
n)
−1Hi

x̂i = WH
i yi−1

x̃i = Q[x̂i]
yi = yi−1 − x̃ihi
Hi = H′i−1

〈i〉

end for

hi represents the ith column of H

H′〈i〉 represents H with the ith column removed
Q[•] represents the quantise function

timate x̂ as compared with the linear methods. The linear MMSE filter detection method

is commonly used within this process to estimate the symbols in the received signal of

a MIMO system, the estimate is then quantised appropriately for the modulation scheme

being used in the system. Table 2.1 and Figure 2.6 describe the algorithm used for the

SIC process.

However, if the quantised estimate x̃i is estimated incorrectly within the process, the

cancelled interference in the process will be incorrect, and so can increase the likelihood

that the subsequent quantised estimates will also be incorrect. This effect is known as

error propagation in the SIC algorithm, and can detrimentally affect the performance of

the SIC algorithm considerably.

A common method to reduce the likelihood of error propagation occurring is to cancel

the signal with the highest received power first, and then the second most powerful and so

on. The principle of this method is to remove the signal that causes the most interference

first, so that the subsequent estimates have a greater chance of being estimated correctly,

and also the signal with the highest power is less likely to be estimated incorrectly due to

the interference form the other signal present. The signal with the highest average power

can be found by taking the magnitude of the associated channel h for each signal, and then

sorting from the largest to the smallest. This method is known as the ordered SIC (OSIC)

or associated with the vertical bell labs space-time architecture (VBLAST) method [78],

and can be shown to improve the BER performance of the SIC.
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Figure 2.7: Comparison of BER performance of different detectors in a QPSK 4x4 point-
to-point MIMO system

2.5.4 ML Detection

ML detection [67], [68] is a high-complexity high-performance technique that is typically

used as a benchmark for BER performance when assessing the performance of another

detection algorithm in an uncoded hard decision system. ML estimation is a search al-

gorithm that compares every possibility in a set space in a cost function, and returns the

possibility that satisfies the cost function to the greatest degree.

In the case of a MIMO communications system, this means testing every possible
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symbol combination (and thus bit combination) on every antenna that could have been

transmitted, and finding the Euclidean distance of the received signal to the symbol com-

bination multiplied by the channel matrix, as seen below:

x̂ = arg min
xc∈Z

(‖y −Hxc‖2), c = 1 . . . NtM (2.42)

where xc is the transmission possibility being tested, M is the number of bits per symbol

as according the modulation scheme being used and Z is the set space containing all

possible symbol combinations. The symbol combination with the smallest Euclidean

distance in the above cost function is then returned as the transmitted symbol estimate.

This method can produce very high accuracy as compared with the other detection

methods in this chapter, however the computational complexity of ML estimation is by

far the highest of the methods discussed due to having the test every possibility, and the

complexity scales exponentially higher when additional bits per symbol are used, or the

number of receive antennas is increased, making it impractical to use [79]. Figure 2.7

shows a plot comparing the BER performances of the different detectors discussed in a

4x4 point-to-point MIMO QPSK system (except the WL detector, as the QPSK modula-

tion is a circular signal method, and so the WL method reduces to the linear method). It

can be seen that the ML detector has a superior BER performance to the other detectors,

but at the cost of a much higher complexity. Also, the gain of the MMSE linear method

over the ZF method is clear, and the gain of the SIC method over the linear methods can

shows the advantage of the interference cancellation techniques.
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Chapter 3

Joint Maximum Likelihood Detection

and Link Selection for Cooperative

MIMO Relay Systems

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 System Setup and Modelling . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Resource Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Detection Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1 Introduction

In environments where the point-to-point transmission of signals can be difficult, such

as heavily built up urban areas, outages can occur frequently due to shadowing effects,

multipath fading and path loss. Through the use of relay nodes, power consumption,

outage rates and BER performance can be improved in comparison to the single point-

to-point link, as the relay nodes form different transmission paths and increase spatial

diversity. Cooperative diversity [13], is a technique that allows transmissions travelling
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by multiple routes simultaneously to be combined in an optimal fashion at the destination,

increasing the likelihood of the transmission being successfully received [11], [80].

There are three main cooperative strategies at relays that are used for forwarding the

transmitted signal, amplify-and-forward (AF) [16], decode-and-forward (DF) [19], [20]

and compress-and-forward (CF) [81], each method having its own advantages and disad-

vantages. However, with the destination receiving many different copies of the same

transmitted signal, each with different fading and noise effects applied, the destina-

tion needs to use detection techniques that can take advantage of the extra information

available, and combine this to reduce the probability of errors as compared to the non-

cooperative transmission.

There are many different existing detection techniques in order to perform this combi-

nation of signals at the receiver, but the method highlighted in this chapter is based upon

the maximum likelihood (ML) receiver, which extends the cooperative ML detector orig-

inally proposed by Amiri and Cavallaro [82], [83]. The original cooperative ML detector

of Amiri and Cavallaro is limited in the fact that it is formulated for the single relay case,

with [84] extending this to the multiple relay case, but within this formulation it is re-

quired that the destination have perfect knowledge of each relays retransmission (i.e. be

able to receive each relays transmission separately from the other relays with no noise or

interference), which could not be easily obtained in the system if the relays retransmit si-

multaneously. In [85] a method was proposed for adapting the multiple relay cooperative

ML detector with information that was available within the system, along with a stochas-

tic gradient (SG) [17] power allocation technique that could optimise the global power

distribution within the system to the source and relay nodes and their antennas. However,

it was seen that the system performance was heavily dependent on the fact that the relays

were close to the source and destination and had good channel links to both. If the re-

lays were badly positioned and so had weak channel links to the source and destination

nodes, the cooperation at the destination node could actually decrease the performance of

the system as compared to the non-cooperative case. It was also shown that if a simple

linear detector was used at the DF relay nodes, then the system performance would also

degrade.

In this chapter, the AF relay case will be considered in a model that represents multiple
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relays with different path loss, and with large scale shadowing effects. A cross-layer

cooperative ML detector is derived based upon the expansion and reduction of the ML

rules that describe the transmission of signals within the two phase cooperative MIMO

system, with considerations and approximations made to utilise the information available

to the system effectively. The cooperative ML detector is designed with a summation

based simplification of the link channels, which creates an approximation of the combined

channels by a simple sum operation, and this is used as a basis for a cross-layer design

consideration for link selection in the system.

Techniques for selecting which relays within the system to cooperate with are then

considered, with two new link selection strategies proposed, which are based upon the

idea of the combination of relay channels as a summation set, in comparison to the prior

strategies detailed in this chapter, which only considers the relays individually. The link

selection techniques use the power of the channels (i.e. the sum of the magnitude of the

complex channel values) associated with the links and combination of relays considered,

and so can be calculated on a per-packet basis for a quasi-static channel model. The cross-

layer design also considers the constraints of a global power limit, in which the available

power over the two phases of cooperative transmission is divided between the source and

available relays, with the link selection deciding which relays are active within the system,

and so which relays are allocated power for transmission. The link selection techniques

are also analysed for the computational complexity cost, and how the complexity varies

across the number of antennas utilised in the MIMO cooperative system, as well as how

the number of relays selected affects the complexity required.

Channel coding and iterative detection are also considered, with a soft information

sphere decoder for the cooperative system considered, which is based upon the combi-

nation of a list sphere decoder (LSD), which outputs multiple solutions to the ML prob-

lem, and maximum a posteriori (MAP) bit detection. The iterative detection process

can be seen to use a posteriori, a priori and extrinsic information between the inner

soft-information LSD and MAP detector combination and an outer convolutional code

decoder, in order to improve the BER performance of the system. The main contributions

of this chapter are:

• A cross-layer cooperative ML detection rule is derived for a multiple MIMO relay
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two-phase cooperative communication system, with considerations for complexity

and available information in the system.

• Two link selection techniques are proposed based upon the idea of the summation

of a set of relay channels in different combinations.

• The performance and complexity of the proposed link selection techniques is com-

pared with existing link selection techniques.

• An iterative detection and decoding scheme is integrated into the cross-layer coop-

erative ML detector with convolutional channel encoding.

In this chapter, the system model being used is described, with the modelling of the

various channel effects and how the AF scheme operates, next the Sphere Decoder (SD)

ML detector is reviewed, as well as a description of the cooperative ML detector, then

the two sets of link selection proposed and used in this system are presented. Then the

use of soft decision iterative decoding for the system is described, with the final sections

detailing the simulation results and summarising the results of this chapter.

3.2 System Model

The system under consideration is a two-phase MIMO relay system, with a single source

node (S), a single destination node (D) and M multiple relay nodes (R). The source node

transmits the data in the first phase of the system, which are received by the destination

node and the relay nodes, and in the second phase the relay nodes retransmit the received

data, through an Amplify-and-Forward (AF) technique, to the destination node. The des-

tination node can use both sets of received signals from each phase to recover the original

transmitted data from the source node. For relays using AF, the received signal is not de-

coded, but instead simply amplified by a determined factor γ before being retransmitted.

Using AF eliminates the need for detectors at the relays, but requires the destination to

have knowledge of all the channels in the system for both phases of transmission.

Assumptions made in this system are that each node has the same number of antennas

per device (Nt), that the system is under a total power constraint, that all relays trans-

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

45

2014



mit simultaneously in the second phase, the channels are assumed to be quasi-static for

transmissions and so unchanged during a single packet transmission and that nodes that

require channel knowledge have this information a priori and error-free. Also, the relays

are assumed to be linear and the channels are assumed to be frequency independent, and

so the amplified noise can be treated as being white Gaussian noise. In the system model,

relays are modelled as being at variable distances away from the source and destination

nodes, and so path loss is factored into the model, as are large scale shadowing effects,

which are modelled by Log-Normal Shadowing (LNS) losses to the power of the received

signal.

The first phase (S → R and S → D) of the system model can be represented as

follows:

ysd = αsdβsdHsdAsx + n
(1)
d (3.1)

ysrm = αsrmβsrmHsrmAsx + n(1)
rm ,m = 1, . . . ,M (3.2)

where Hsd and Hsrm are Nt × Nt matrices denoting the S → D and S → R channels,

where the m subscript denotes the relay number that the value is associated with up to M

relays and x is the vector of length Nt that denotes the data symbols that are transmitted

from the source. Note that the size of the channel matrices is Nt×Nt instead of Nt×Nr.

For simplification in the following chapter, the scenario being considered is where the

number of receive antennas is equal to the number of transmit antennas, and so Nr = Nt.

The matrix As is the Nt ×Nt diagonal matrix representing the power allocation on each

antenna of the source node. The scalars αsd, αsrm represent the path loss in the channel

due to distance and the scalars βsd and βsrm are the LNS fading channel losses. The Nt

length vectors ysd and ysrm represent the received signal at the nodes, and nd and nrm

represent the noise at the receive antennas of the nodes. The superscript (1) on each n

indicates the transmission phase in which the noise vector is applied.

For AF relays, we can describe the second phase of transmission as:

yrd =
M∑
m=1

(αrdmβrdmHrdmArmγrmysrm) + n
(2)
d . (3.3)

The vector yrd is the sum of the relay transmissions in the second phase plus the additive

noise contribution at the destination receiver in the second phase.
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Figure 3.1: MIMO cooperative multiple relay two-phase system model

Fig. 3.1 gives a representation of this system in a block diagram. It is assumed that

the statistics of the channels in the system are complex Gaussian distributed with fading

applied on a block basis. The distance dependent path loss variable α for the relay links

is defined by the relative distances of R from S and D, and so relative to the path loss of

the S to D link, similarly to [86]:

αsd =
√
L, (3.4)

αsrm =
αsd√

(dsrm)ρ
,m = 1, . . . ,M, (3.5)

αrdm =
αsd√

(drdm)ρ
,m = 1, . . . ,M, (3.6)

where L is the power path loss of the S to D link, dsrm and drdm are the relative distances

of eachR from the S andD as compared to the S toD link and ρ is the path loss exponent,

usually between 2 and 4 depending on the environment.

The channel LNS is modelled by a log-normal random distribution [87], produced

from the logarithmic representation of a normal distribution with a standard deviation of

σs, which is known as the shadowing spread, given in dB. βp,q is a linear log-normal

variable, representing shadowing between generic transmitter p and generic receiver q,

calculated by:

βp,q = 10

(
σsN (0, 1)

10

)
(3.7)
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where N (0, 1) represents a normal distribution with mean 0 and variance 1, and it is

assumed that each channel LNS is characterised by the same shadowing spread.

The AF amplification factor γrm for relay m is chosen as to normalise the received

signal to unit power 1, [88], [89], in order to keep the AF relay at a mean transmission

power over time and this can be expressed as:

γrm =

√
1

‖αsrmβsrmHsrmAs‖2
F +Ntσ2

n

,m = 1, . . . ,M, (3.8)

where ‖•‖F is the Frobenius norm and σ2
n is the noise variance.

3.3 Cooperative ML Detection and Sphere Decoding

In this section an overview of the Sphere Decoder (SD) ML detection algorithm for

MIMO systems is provided and how we can adapt our cooperative system to efficiently

operate using the SD is discussed. For convenience, the scalar terms αp,q and βp,q will be

grouped into a single term along with the channel matrix Hp,q, as in practice a channel

estimation technique will estimate these values as part of the channel matrix. The overall

channel matrix will be represented by H̃p,q = αp,qβp,qHp,q.

3.3.1 Sphere Decoder

The SD is designed to give the ML solution to the search problem

x̂ = arg min
x∈X
||y − H̃x||2 (3.9)

where y is the Nt length observation column vector of the Nt transmitted symbol column

vector x through the Nt × Nt channel matrix, and where X is the set of every possible

permutation of the symbol vector x with x̂ as the ML estimate of x. The ML solution

involves testing every x in X to find the optimum solution of the ML rule, and for large

values ofNt or a complex modulation scheme with multiple bits per symbol, testing every
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solution quickly becomes computationally prohibitive.

The SD operates on the idea of a constrained search set, instead of the full vector

set X , pruning away poor decision options through the algorithm before they get fully

processed. Firstly, the ML rule is factorised, so that the solution set relies on an upper-

triangular channel matrix equivalent, simplifying the multiplications of the lower values

in the column vector y. This factorisation can be done by means of a Cholesky factori-

sation or a QR decomposition. For the purposes of this description, we shall use the QR

decomposition. The QR decomposition of H̃ produces:

QR = H̃ (3.10)

where Q is an orthogonal matrix (such that QHQ = I, and R is an upper-triangular

matrix. Given this decomposition, the ML solution in Eq.(3.9) can be rewritten as:

x̂ = arg min
x∈X
||z−Rx||2 (3.11)

where the effective observation vector z = QHy.

The SD effectively searches within a multi-dimensional sphere (a hypersphere) of Eu-

clidean distance radius r in the set space X around the observation vector z, by checking

the ML distance between each partial solution at each layer sequentially, with partial so-

lutions falling outside the Euclidean distance radius r being discarded, along with the

subset of solutions that include the discarded partial solution.

The partial Euclidean distance solution can be found as below:

dn,c,b =

∣∣∣∣∣z(n)−
Nt∑
η=n

R(n, η)χn,c,b(η)

∣∣∣∣∣
2

+ dn+1,b, c = 1, ..., C, n = Nt, ..., 1, (3.12)

where dn,c,b is the partial Euclidean distance for the bth possible solution branch (i.e. a

candidate solution for x̂), on the nth signal layer for the cth constellation point, dn+1,b is

the previous partial Euclidean distance (as n decrements fromNt → 1) for the bth possible

solution branch, and χn,c,b is the solution set being considered, expressed as below:

χn,c,b =
[
Z(c) χ(n+1,b)

]T
, (3.13)
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where χ(n+1,b) is the partial solution set from the previous layer in the solution set b and

Z(c) is the cth symbol of the constellation set Z being considered for the SD solution.

If a partial solution is found to satisfy the radius constraint, then the partial solution is

stored, so that for the next layer, the partial solution can have the next solution possibilities

appended to it and tested again under the radius constraint. This continues until the last

layer, when the complete solution that has the lowest Euclidean distance (if there is more

than one solution at this layer) is taken as the ML solution.

Layer 2 (n = 3)

Layer 3 (n = 2)

Layer 4 (n = 1)

0

0

0

0

0

0 0 0 0 0 0

0 0

0

1

11

1

11

1

11

1

11 1 1

1

Layer 1 (n = Nt = 4)

Figure 3.2: SD example tree diagram for Nt = 4 and BPSK modulation. Solid lines are
branches processed by the SD, dotted lines are pruned branches that are not processed

Fig.3.2 represents the SD process as a tree diagram for a Nt = 4 antenna BPSK mod-

ulation system, with the permutations of χ represented as a single branch from the top

downwards. However, it is possible that the SD will discard every possible solution be-

fore the end of the algorithm, in which case the SD has failed to find a solution. This is

usually due to the radius r being set too small. However, if the radius is too large, then an

unnecessary amount of solutions will be tested, increasing the computational complexity

without gain. Also, whilst the SD has a lower computational complexity than the com-

plete ML search, it is generally time-variant for each transmission, and the complexity

is high O(N3
t ), with also the modulation scheme affecting complexity, as the amount of

possible symbols per transmission directly affects the number of branches the SD has in

the tree diagram.
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3.3.2 Cooperative ML Detection

As detailed in the previous subsection, the SD is less complex to solve than the ML

search, but the complexity still scales greatly with the number of information streams

transmitted. One method of potentially adapting the receive signals at the destination

node in the cooperative system considered in Section II is to simply stack the received

transmissions from the source and relays as below:

yt = H̃tx + ntysd

yrd

 =

 H̃sdAs∑M
m=1 H̃rdmArmγrmH̃srmAs

x +

 n
(1)
d∑M

m=1(H̃rdmArmγrmnrm) + n
(2)
d

 .
(3.14)

However, the stacked received vector yt is a 2Nt length column vector, which appears

as an overloaded system (i.e. more transmit antennas than receive antennas), and this is

a problem for the standard SD. In the SD algorithm, the QR factorisation of the channel

takes place, which is now part of an overloaded system, which means the channel matrix

doesn’t have full column rank. When a matrix doesn’t have full column rank, the QR fac-

torisation for that matrix doesn’t exist, and so the SD would not be able to operate on this

overloaded scenario. So instead we manipulate the incoming signals and the knowledge

of the channel matrices into a form suitable for the cooperative ML detector.

In prior work by Amiri and Cavallaro [82], [83], a cooperative version of the ML

detector is designed by pre-processing the received signals and communication channels

into a single ML rule form that the SD can easily operate on. However, this is only

formulated for the case of a single DF relay. The multiple relay case is described in [84],

including AF relays, but does not consider how the information required for this expansion

may be obtained from the system information available.

The cooperative ML AF detection problem can be described as the following optimi-

sation:

x̂ = arg min
xn∈Z

(‖ysd − H̃sdAsx‖2 +
∑
mεΩs

‖yrdm − H̃rdmArmγrmysrm‖2) (3.15)
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where Z represents the constellation set for the modulation scheme used, Ωs is the relay

set which is selected by a link selection method, such as in Section IV, and xn is the nth

element of x, n = 1, ..., Nt.

The proposed ML rule that is desired is formed by combining the two ML rules of the

first and second phase transmissions to the destination, to produce an equivalent ML rule

of the form:

x̂ = arg min
xn∈S
‖ye − H̃eAex‖2, (3.16)

where ye is the Nt length equivalent received signal column vector, H̃e is the equivalent

Nt × Nt channel matrix and Ae is the Nt × Nt equivalent power allocation matrix. The

quantities ye and HeAe can be found as below, noting that HeAe are jointly estimated

and substituted in ysrm from Eq.(3.2):

H̃eAe = (AH
s H̃H

sdH̃sdAs +
∑
mεΩs

AH
s H̃H

srmγ
H
rmAH

rmH̃H
rdmH̃rdmArmγrmH̃srmAs)

1/2

(3.17)

ye = (H̃eAe)
−1(AH

s H̃H
sdysd +

∑
mεΩs

AH
s H̃H

srmγ
H
rmAH

rmH̃H
rdmyrdm) (3.18)

Unfortunately, since the system will only have knowledge of the summed second phase

received signal yrd and not the individual relay transmissions yrdm , we need to reformu-

late the equations to use the available information. By defining the summed channel

relation S

S =
∑
mεΩs

H̃rdmArmγrmH̃srmAs, (3.19)

an approximation of the equivalent ML rule can be derived (See the Appendix for details):

H̃eAe ≈ (AH
s H̃H

sdH̃sdAs + SHS)1/2 (3.20)

ye ≈ (H̃eAe)
−1(AH

s H̃H
sdysd + SHyrd) (3.21)
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3.4 Link Selection

There have been some proposed link selection techniques in the literature [90], [91], [92],

[93], [94] that are employed to improve the BER performance of the system, however

these link selection techniques only consider each relay link individually. By considering

the relay links as sets instead we can use this extra knowledge to make better selections,

and we can propose two new link selection strategies based upon the combination of

relay channels sets instead of individual relays. The application of these techniques to the

cooperative MIMO system will be examined in the case of the destination node having

knowledge of all channels in the system, and in the case of the destination node having

only H̃sd and H̃rdm channel knowledge.

3.4.1 Limited Channel Knowledge

In the limited channel knowledge scenario, a simple scheme is to choose the relays with

the greatest second phase channel power prdm . This channel power (CP) link selection, if

given the number of relays to be selected (RL), chooses the relay set Ω̂s associated with

the RL greatest prdm .

prdm =

j=Nt∑
j=0

k=Nt∑
k=0

(H̃rdmH̃H
rdm)j,k,m = 1, . . . ,M (3.22)

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈[1,M ]⊂Z
prdm , (3.23)

where m̂1 is the value of m that returns the largest value of prdm and similarly m̂RL
is the

value of m that returns the RLth largest value of prdm . Using the assumption that H̃rdm is

static over a single packet, this link selection can be performed once before each packet

transmission. Another advantage is that it only requires knowledge of the second phase

of the cooperative channels, which is useful for scenarios of limited system knowledge,

such as DF systems.
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3.4.2 Knowledge of All Channels

If the system has knowledge of all the channels associated with the relays in the sys-

tem, there are a number of link selection strategies that can be utilised, based upon the

channel’s powers, as in Eq.(3.22), with the source to relay channel power psrm defined as:

psrm =

j=Nt∑
j=0

k=Nt∑
k=0

(H̃srmH̃H
srm)j,k,m = 1, . . . ,M (3.24)

The maximum sum channel power (MS-CP) link selection strategy uses the summation

of the channel powers from both the first and second phase channels, giving the set:

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈[1,M ]⊂Z
(psrm + prdm) (3.25)

The maximum minimum channel power (MM-CP) link selection strategy [90], [91], [92]

finds the least powerful channel associated with each relay and places these channel pow-

ers into a set, as the least powerful channel will be the performance limiter for each link,

then finds the link with the most powerful channel from this set, as below:

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈[1,M ]⊂Z
(min(psrm , prdm)) (3.26)

The maximum harmonic mean channel power (MH-CP) selection strategy [93], [94] relies

on taking the modified harmonic mean of the two channels associated with a relay as the

link metric as below:

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈[1,M ]⊂Z
((p−2

srm + p−2
rdm

)−1) (3.27)

This metric can however be rearranged so that the amount of division required is reduced,

as division operations typically are computationally expensive in a real system as com-

pared to addition and multiplication. The rearrangement of the maximum harmonic mean

is below:

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈[1,M ]⊂Z

(
psrmprdm
psrm + prdm

)
(3.28)
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3.4.3 Proposed Combinatorial Link Selection Strategies

The link selection strategies discussed above consider the power of the channels asso-

ciated with the relays in the system, but do not take into account the structure of the

individual values in the MIMO channel. This would be adequate for selecting a single

link or relay within the system, but in this work multiple relays can be utilised together as

part of the summation approximation in the cross-layer ML detector in Section II.

As the system model described in Section II shows, the second phase of the coop-

erative system has the relays transmitting simultaneously, and so the signals from each

relay will interfere. It is then possible that the signals from different relays will interfere

destructively, producing a small signal at the destination, even if the individual channels

have large powers.

The cooperative ML detector in Section III also makes use of a summed channel ap-

proximation in Eq.(3.19), and so it is logical to apply the idea of summing the channels

into the link selection strategies. Therefore, we define the sum of the relay to destination

channels H̃rdt of a set of considered relays Ωc as:

H̃rdt =

RL∑
k=1

H̃rdΩc(k)
, (3.29)

where Ωc(k) is the kth relay of the considered relay set, and the power of this summed

channel is described as:

prdt =

j=Nt∑
j=0

k=Nt∑
k=0

(H̃rdtH̃
H
rdt)j,k,m = 1, . . . ,M (3.30)

Using these definitions we can now propose link selection strategies based upon the com-

bination of relays, not just individual relays.

Firstly, we propose a maximum minimum combinatorial channel power (MMC-CP)

link selection strategy for combinations of relays, that considers the relay sets Ωc which

contain relay combinations of RL relays in every possible unique combination. The num-

ber of possible Ωc sets for RL of M relays being selected is M !
(M−RL)!RL!

, where ! denotes

the factorial function.
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The channel powers to consider for a single Ωc using the summed second phase chan-

nel can then be described as:

pΩc = [psrΩc(1), ..., psrΩc(RL), prdt], (3.31)

and so the maximum minimum criteria becomes:

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈
[
1, M !

(M−RL)!RL!

]
⊂Z

(min(pΩcm
)) (3.32)

Similarly, we can propose a maximum harmonic mean combinatorial channel power

(MHC-CP) selection strategy, using a generalised form of the modified harmonic mean

for multiple values:

Ω̂s = {m̂1, ..., m̂RL
} = argmax

m∈
[
1, M !

(M−RL)!RL!

]
⊂Z


RL+1∏
k=1

p2
Ωc

(k)

RL+1∑
j=1

RL+1∏
l=1
l 6=j

p2
Ωc

(l)

 (3.33)

Table 3.1 summarises the complex multiplication and addition operations required for

each relay selection algorithm, and Fig. 3.3a shows how the number of complex oper-

ations varies with the number of available relays, with each complex addition or multi-

plication counted as 1 unit. It can be seen that the CP link selection that uses limited

channel information requires much less complexity than the link selection strategies that

require all channel information associated with the relays, but the CP link selection strat-

egy performance will be reduced as compared to the other link selection strategies due to

the limited information available. It should also be noted that the proposed combinatorial

variants of the link selection strategies have a complexity also reliant on RL, not just Nt

and M as with the other link selection strategies, as shown in Fig.3.3b.
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Table 3.1: Link Selection Strategies Complexity

Selection Method Complex Additions Complex Multiplications

CP M(N3
t − 1) MN3

t

MS-CP 2(M(N3
t − 1)) +M 2MN3

t

MM-CP 2(M(N3
t − 1)) 2MN3

t

MH-CP 2(M(N3
t − 1)) +M 2MN3

t + 3M

MMC-CP
(

M !

(M −RL)!RL!
+M

)
N3

t

M !(N3
t +N2

t (RL − 1)− 1)

(M −RL)!RL!
+

M(N3
t − 1)

MHC-CP
(

M !

(M −RL)!RL!
+M

)
N3

t +

R2
L + 3RL + 2

M !(N3
t +N2

t (RL − 1)− 1)

(M −RL)!RL!
+

M(N3
t − 1) +RL

3 4 5 6 7 8 9 10

10
2

10
3

 

 

Number of Relays

S
u

m
 o

f 
C

o
m

p
le

x
 A

d
d

it
io

n
s
 a

n
d

 C
o

m
p

le
x
 M

u
lt
ip

lic
a

ti
o

n
s CP Link Selection

MS−CP Link Selection

MM−CP Link Selection

MH−CP Link Selection

MMC−CP Link Selection

MHC−CP Link Selection

(a) RL = 2, variable M

1 2 3 4 5 6 7
10

2

10
3

10
4

Number of Relays Selected

S
u

m
 o

f 
C

o
m

p
le

x
 A

d
d

it
io

n
s
 a

n
d

 C
o

m
p

le
x
 M

u
lt
ip

lic
a

ti
o

n
s

 

 
CP Link Selection

MS−CP Link Selection

MM−CP Link Selection

MH−CP Link Selection

MMC−CP Link Selection

MHC−CP Link Selection

(b) M = 8, variable RL

Figure 3.3: Number of complex operations for each link selection strategy, with Nt = 2

3.5 Iterative and Cooperative Detection and Decoding

Here a brief overview of a simple convolutional code soft-input soft-output (SISO) de-

coder [33], [95–98] and detector incorporating a List Sphere Decoder (LSD) will be cov-

ered, for use in comparing how the proposed iterative cooperative detection and decoding

scheme performs with an iterative processing detector at the destination node. The sub-

scripts 1 and 2 will be used in this section to denote the variables associated with the

inner mapping and detection operations, and the outer encoding and decoding sections,

respectively.
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3.5.1 Iterative Processing

The transmission of the individual data symbols is as described in Section II, but the

data symbols themselves are not directly converted from the binary data (b) source by

the constellation mapper. A channel encoder is applied to the data which encodes them

into λ2, according to the code chosen to be used in the system, adding redundant and

correlated data bits, then the data are interleaved to λ1, before mapping to data symbols

by the constellation set chosen. It will be assumed that the relays operate as described

in Section II, with the major difference being in the destination node, which consists

of a detector and a decoder that exchange soft information between each other in an

iterative manner of fashion, refining the estimate of the transmitted symbols for a number

of iterations.

Binary Data Encoder Interleaver Constellation

Soft Detector+Deinterleaver

Interleaver+

Decoder

Estimated

Mapping

Binary Data

-

-

b λ2 λ1

x1

H

y1ΛD1ΛE1ΛA2

ΛE2

ΛD2

ΛA1

ΛO

b̂

Bit Decision

Figure 3.4: Iterative Decoding System Layout

Fig. 3.4 illustrates the SISO iterative processing model, with the following definitions:

ΛD represents the a posteriori log-likelihood ratio value (LLRV) of the bit bk of the bit

vector b, ΛA is the a priori LLRV of bk, ΛE is the extrinsic information LLRV and the

output LLRV ΛO, which is the output of each iteration that is used for the bit estimation.

An iteration of the iterative decoder starts with the soft detector producing the inner

a posteriori LLRV of the estimated solution ΛD1. If the inner a priori LLRV of bc,n,

ΛA1 is available, this is taken into consideration by the LSD. The estimated LLRV is
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then deinterleaved and decoded into the output LLRV ΛO. The difference between the

outer a posteriori LLRV ΛD2 from the decoder and the outer a priori LLRV ΛA2 is then

interleaved into the inner a priori LLRV ΛA1, for use in the next iteration of detection.

For the purposes of the cooperative ML detector, an ML detector that uses and outputs

soft information is needed, to take the place of the soft detector in Fig. 3.4. The List

Sphere Decoder [99] can be used for this purpose, which outputs a set of most likely

solutions to the ML rule, rather than a single solution as in the hard decision SD, and

calculates the LLRVs for each solution in the set. The set size can be varied to increase

performance, but this has the trade-off of increasing the detection complexity. As the LSD

operates on the same ML rule as the hard decision SD, Eq.(3.16-3.21) are usable in the

iterative detection system, as the manipulation involved takes place before the detection

process takes place.

3.5.2 MAP Detection for an Iterative Cooperative Detector

For maximum a posteriori (MAP) bit detection, maximising the a posteriori probability

(APP) for a given bit reduces the probability of making an incorrect detection decision

on that bit. The APP is usually expressed as a LLRV, which is convenient to use, as the

iterative detection process in Fig. 3.4 uses LLRVs to describe the iterative algorithm. The

LLRVs are used in detection to determine the bit decision, the sign of the LLRV is used

to determine whether the bit is a one or zero, and the magnitude of the LLRV indicates

the reliability of this decision, the larger the magnitude, the more confident the estimation

is. Correspondingly, LLRVs with a magnitude near zero are considered unreliable. The

cth bit of the nth symbol in a symbol vector b for n = 1, ..., Nt, c = 1, ..., C (where C

is the number of bit per symbol for the modulation scheme used), will be referenced as

bn,c in this chapter, and the logical zero is represented by an amplitude level of bn,c = −1,

with the logical one amplitude level described as bn,c = +1. The assumption is also made

that although the bits in the system are encoded in the encoder block with a channel code,

the interleaver will randomly shuffle the bits such that we can assume that the bits are

statistically independent from each other.

The inner APP LLRV (ΛD1) of the bit bn,c, given the received signal symbol vector y
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can be expressed as:

ΛD1(bn,c|y) = ln
P (bn,c = +1|y)

P (bn,c = −1|y)
, n = 1, ..., Nt, c = 1, ..., C, (3.34)

which describes the ratio of the probability that the bit bn,c is a logical one to the probabil-

ity that the bit bn,c is a logical zero. Using Bayes theorem, and using the bit independence

assumption to split up the joint probabilities into probability products, Eq.(3.34) can be

expressed as:

ΛD1(bn,c|y) = ΛA1(bn,c) + ln

∑
b∈X+1

(
p(y|b) exp

∏
j∈Jb

P (bj)

)
∑

b∈X−1

(
p(y|b) exp

∏
j∈Jb

P (bj)

)
︸ ︷︷ ︸

ΛE1(bn,c|y)

, (3.35)

where X+1 is the set of possible transmitted bit vectors b where bn,c = +1, and likewise

X−1 is the set of possible transmitted encoded bit vectors where bn,c = −1, as below:

X+1 = {b|bn,c = +1},X−1 = {b|bn,c = −1}, (3.36)

and Jb is the set of indices that can reference every bit in the bit vector set b, except the

bit under consideration bn,c, as below:

Jb = {j|j = 0, ..., NtC − 1, bj 6= bn,c}. (3.37)

Also, the inner a priori probability LLRV of a bit, ΛA1(bn,c) can be expressed as:

ΛA1(bn,c) = ln
P (bn,c = +1)

P (bn,c = −1)
, (3.38)

which is usually obtained from the previous iteration of processing in the iterative detec-

tor, or if the current iteration is the first, the inner a priori probability LLRV of a bit is

set to zero. It is also shown that the second half of Eq.(3.35) is referred to as the inner

extrinsic information LLRV (ΛE1(bn,c|y)), giving the result that the inner APP LLRV is

the sum of the inner a priori probability LLRV and the inner extrinsic information LLRV.
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If the a priori probability of bj is expressed as a function of the LLRV ΛA1(bj) then:

P (bj) =
exp(±ΛA1(bj))

exp(1 +±ΛA1(bj))

=

(
exp(−ΛA1(bj)/2)

1 + exp(−ΛA1(bj))

)
exp(ΛA1(bj)bj/2)

= Fexp(ΛA1(bj)bj/2).

(3.39)

It is possible to rewrite Eq.(3.35) with the right side summation as a vector multiplication

with some manipulation, to give:

ΛD1(bn,c|y) = ΛA1(bn,c) + ln

∑
b∈X+1

(
p(y|b) exp

(
1

2
b[n,c]TΛ

[n,c]
A1

))
∑

b∈X−1

(
p(y|b) exp

(
1

2
b[n,c]TΛ

[n,c]
A1

))
︸ ︷︷ ︸

ΛE1(bn,c|y)

, (3.40)

where b[n,c] is the bit vector b with the bit bn,c removed, and Λ
[n,c]
A1 is the vector of all a

priori probability LLRV ΛA1 values associated with b, also excluding the ΛA1 of the bit

bn,c. Note that as F is reliant solely on the a priori LLRV ΛA1(bj), it can be factorised

out of the product and summation, and so cancelled in the LLRV ΛE1.

3.5.3 Obtaining the MAP Detection Values

In Eq.(3.40), the function (p(y|b) is required to be known, and this is found with the

following definition:

p(y|b) =
exp

(
− 1

2σ2
n
‖|y −Hx||2

)
(2πσ2

n)Nt
, (3.41)

where H is the equivalent channel matrix that through which x is transmitted with x

representing the bit vector b mapped to constellation points governed by the modulation

scheme used in the system. However, it should be noted that the denominator of the

equation will be cancelled out during the calculation of the LLRV, and so can be discarded

from the calculation of p(y|b).

It can also be seen that the numerator and denominator of the inner extrinsic informa-
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tion ΛE1(bn,c|y) might be computationally complex to calculate, due to the large amount

of exponential values that must be calculated, but this can be avoided by using a Max-log

approximation. The Max-log approximation is a simplification of a sum of exponentials

within a logarithm, and can be expressed as:

ln

(∑
i

exp(ai)

)
≈ max

i
(ai), (3.42)

and so this simplification can be used to reduce the computational complexity of the inner

extrinsic information LLRV calculation ΛE1(bn,c|y) to give:

ΛE1(bn,c|y) ≈ 1

2
max
b∈X+1

(
− 1

σ2
n

‖|y −Hx||2 + b[n,c]TΛ
[n,c]
A1

)
− 1

2
max
b∈X−1

(
− 1

σ2
n

‖|y −Hx||2 + b[n,c]TΛ
[n,c]
A1

) (3.43)

Unfortunately, despite the complexity reductions given above, for each bn,c there 2NtC−1

possible encoded bit vectors b to test, which can result in a high complexity for higher

order modulation schemes and a large number of antennas.

3.5.4 Cooperative List Sphere Decoder

The cooperative LSD is a variant of the SD, which instead of attempting to reach a single

ML optimal solution, produces a list of the most likely ML solutions, as the solution to

Eq.(3.11) may not be the optimal solution to satisfy Eq.(3.34). If we are given a desired

list size L of list L, then the LSD needs to return L solutions. To this end, we can alter the

procedure of the SD so that if a partial solution satisfying the radius constraint is found,

it is added to L if L is not full, and if L is full, the partial Euclidean distance of the partial

solution is compared to the largest partial Euclidean distance in L, replacing the existing

partial solution if the new partial Euclidean distance is smaller.

When the cooperative LSD has completed its processing, L contains the ML solution

(given that the radius constraint is appropriately large), and theL−1 next closest solutions.

The list L can then be used as a constrained set for Eq.(3.43), reducing the search size for
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the max function:

ΛE1(bn,c|y) ≈ 1

2
max

b∈L∩X+1

(
− 1

σ2
n

‖|y −Hx||2 + b[n,c]TΛ
[n,c]
A1

)
− 1

2
max

b∈L∩X−1

(
− 1

σ2
n

‖|y −Hx||2 + b[n,c]TΛ
[n,c]
A1

) (3.44)

If the size of the list L is set to the maximum possible size 2NtC , then this is equivalent

to full MAP detection, and if L = 1, then this is equivalent to ML detection, as the LSD

will only return the ML solution (assuming appropriate constraint radius size).

It should be noted that for iterations of the iterative MAP detection process, the coop-

erative LSD only relies on the observed received signal vector y and the channel matrix

H, and does not use any extra information from the iterative process, such as the a priori

LLR ΛA1, and so the listLwill not change between iterations on the same y, consequently

the list L can be generated once for the first iteration using the LSD, and used for each

iteration without reprocessing.

3.6 Simulations

In this section, the results of the simulations performed using the techniques set out in

this chapter are presented. In the simulation environment, the assumption is made that

the relays are arranged pseudo-randomly in an area defined by a set of polar coordinates,

i.e. a radius length and an angle, that is centred on the source node which is defined as

being a relative distance of unit 1 for the S to D link for the purposes of the path loss

fading calculations in Eqs.(3.4)-(3.6). The radius length of the polar positioning dsrmis

determined as a uniform random variable between a minimum rmin and maximum radius

rmax limit, and the angular component θsrm is a uniform random angle between 0 and

2π. The distance of the relay nodes to the destination node drdm is then calculated using

trigonometrical identities, as below:

drdm =
√
d2
srm + 1− 2dsrm cos(θsrm) (3.45)

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

63

2014



0 5 10 15 20

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
No Relays

1 Relay

2 Relays

4 Relays

6 Relays

(a) System model used in this chapter

0 5 10 15 20
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
No Relay

1 Relay

2 Relays

4 Relays

6 Relays

(b) Rayleigh system model commonly used in lit-
erature

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
No Relays

1 Relay

2 Relays

4 Relays

6 Relays

(c) System model used in [82]

0 5 10 15 20

10
−3

10
−2

10
−1

10
0

SNR(dB)

B
E

R

 

 
No Relays

1 Relay

2 Relays

4 Relays

6 Relays

(d) System model used in [86]

Figure 3.5: 2x2 MIMO System, QPSK modulation with a variable number of relays

For the numerical results, rmin is set to 0.1 and rmax is set to 0.9. For the power allo-

cation matrices As, the system allocates half of the global power constraint (across both

phases) to the source node, and the other half spread evenly across the relay nodes. The

global power constraint is set to 1 for the obtained results, and so the source node power

allocation matrix As is set as:

As =

√
0.5

Nt

I (3.46)

and the relay power allocation matrices Arm are set as:

Arm =

√
0.5

NtRL

I (3.47)

If the system is operating without using relay selection (i.e. all relays are used), then the

number of selected relays value RL in Eq.(3.47) is replaced with the number of relays in

the system M . For the fading effects associated with the channel H̃, the path loss fading
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for the channels associated with each relay is defined by the distances dsrm and drdm , and

the base power loss of the S to D link, L. For the simulations, L is set as a 20dB power

loss. The large scale LNS is randomised per packet according to a log-normal random

distribution, with the shadowing spread set at 6dB for all channels.

Within the system, we assume that the channel values are perfectly known at the relay

and destination nodes, and that the relays in the second phase all transmit with perfect

synchronisation. Fig.3.5a shows the results of a 2x2 MIMO system with no channel cod-

ing or link selection, with a hard decision ML SD detector at the destination, using a

QPSK modulation scheme with Gray coding to minimise bit errors when adjacent sym-

bols are incorrectly detected. The system model used is the model described in Section

II. The number of relays in the system is varied, from no relays (non-cooperative case), to

6 relays (cooperative case). It can be seen that the addition of a single relay to the system

can improve BER performance by up to 7dB at a BER of 10−2, but the gains of adding

extra relays quickly diminish. Adding two relays to the system gives approximately an

extra 2dB of BER gain at the same BER level, but four relays only give another ∼1dB of

gain.

Increasing the number of relays beyond four appears to give no gains, and it can be

observed that for six relays, there is actually a BER performance loss at high values of

SNR as compared to the four relay case. This can be attributed to the relays causing

destructive interference amongst each other, and the power constraint causing the relays

to have less and less transmission power as the number of relays increases. So it can

be seen that if the extra relays do not contribute gains to the BER performance, then a

method of selecting relay links that are beneficial whilst discarding relay links that do

not contribute gains may save resources in the system (such as freeing up relays for other

potential users), and possibly increase the BER gains.

Fig.3.5b represents the BER results for a similar system to Fig.3.5a, but with the sys-

tem model instead having Rayleigh channel modelling, with no path loss or LNS fading,

as is common in literature on cooperative systems. Only the channel modelling is changed

for fair comparison with the system described in this chapter. It can be seen that unlike

Fig.3.5a, adding relays to the system does not appear to contribute much BER gain, until

a high SNR value, and at that point, adding more than one relay does not give much BER
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gain.

Fig.3.5c shows the BER results for the channel model and relay placement scheme

from [82], which proposed the single relay cooperative ML detector. This model takes

into account path loss, but the relay(s) are placed very close to the source node, and so is

in an advantageous position. Adding the relays to the system gives a very large BER gain

as the relays are well placed and fixed in position, and so the performance is much greater

than Fig.3.5a.

Fig.3.5d shows the BER results for a system with path loss and 8dB of shadowing,

which is similar to the system model described in this chapter, but the relays are fixed

in position midway between the source and destination nodes, and so are well placed

for relaying signals. The performance is similar to Fig.3.5a, due to the similarity of the

system model used, but the static, well placed relays give this system reliability and a

slight performance gain over Fig.3.5a.

The system models compared and contrasted in Fig.3.5a-d show that the system mod-

els in previous literature tend to not take into account all the features of the system model

described in this chapter, such as the path loss or LNS, or for considering non-static relays,

that may not be well placed for relaying signals.

Fig.3.6 shows the comparison of the different relay link selection schemes in a system

with no channel coding or soft information, using the hard decision ML SD for detection

at the destination. The 2x2 MIMO system is using a QPSK modulation scheme with Gray

coding, with 6 relays available in the system. The scenarios presented in Fig.3.6 show the

BER versus SNR for 1,2 and 3 relay links being selected from the 6 relays available in

the system. It can be seen that the MH-CP and MM-CP link selection strategies perform

much better than the MS-CP and CP link selection strategies, and the proposed MHC-

CP and MMC-CP outperforms the other link selection strategies. For the single relay

selected case, the proposed combinatorial strategies are seen to perform exactly as the

non-combinatorial versions, as with only 1 relay being selected, there are no combinations

as such, and so the combinatorial schemes reduce to the non-combinatorial cases. For

2 relays selected in the system, the gains of the combinatorial strategies over the non-

combinatorial strategies are seen to be 2-3dB at a BER level of 10−3, and similarly for
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(c) 3 relay links selected

Figure 3.6: BER vs S → D SNR for the 2x2 MIMO relay system with QPSK modulation
and no channel coding with a hard-decision SD, 6 relays, with 1,2 or 3 relay links selected
for different relay selection schemes

3 relays selected, the difference between the non-combinatorial and the combinatorial is

∼3dB at a BER level of 10−3. This is expected for the CP link selection, as this only uses

limited channel information from the system, but the MS-CP strategy has full knowledge,

and still has very little gain over the simpler CP strategy. The performance of the MH-

CP and MM-CP link selection strategies is extremely similar for this setup, and so the

MM-CP link selection could be seen as preferable, as it has a lower cost than the MH-CP.

The proposed combinatorial MHC-CP and MMC-CP are seen to provide superior BER

performance in the system as compared to the other link selection strategies considered,

but at a higher computational complexity.

Fig.3.7a shows the system with an iterative detection and decoding scheme at the des-
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Figure 3.7: BER vs S → D SNR for the 2x2 channel coded MIMO relay system with
QPSK modulation and iterative detection and decoding, 6 relays, 2 relay links selected
and 3 iterations of detection and decoding with a list size of 8 for the LSD

tination and convolutional channel coding at rate 1/2. The 2x2 MIMO system is using

Gray coded QPSK, 6 relays, with 2 relays selected by the link selection methods. The

presented plots are the numerical results from the 3rd iteration of decoding in the iterative

detection and decoding scheme, with a list size of 8 for the LSD. It can be seen that the

CP link selection is not very effective in this system setup, with a slight performance loss

over no link selection scheme being implemented. However, the MH-CP and MHC-CP

schemes have up to 7.5dB and 9dB of SNR gain at a BER level of 10−2.5 respectively over

no link selection scheme being used. At higher SNR values, the MHC-CP link selection

method has up to 3.5dB of gain over the non-combinatorial MH-CP link selection scheme

at a BER level of 10−4. Comparing the coded system from Fig.3.7a with the uncoded sys-

tem from Fig.3.6(b), the MH-CP link selection scheme can been seen to have a decade

of BER gain in the coded system over the equivalent uncoded system at 15dB SNR, and

similarly the MHC-CP link selection scheme in the coded system can be seen to have a

decade and a half of BER gain over the MHC-CP link selection scheme in the uncoded

system at 15dB SNR. Fig.3.7b represents the results for the same system setup, but with

a rate 1/3 code. The rate 1/3 code can be seen to give up to 2dB of gain over the rate 1/2

code for the MHC-CP link selection, with the gains between the different link selection

techniques being similar to that for the rate 1/2 code.

In the case of the system setup being simulated for these numerical results, it can be

seen that selecting more than 2 relays out of the 6 available reduces the BER performance
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of the harmonic channel power and maximum minimum channel channel power link se-

lection, whilst channel power and sum channel power link selection strategies slightly

increase in performance. This suggests that on average for the relay setup considered,

that only 1-2 relays will be in a position that benefits the transmission from the source to

the relay in terms of BER performance.

3.7 Summary

In this chapter, we have defined a two phase cooperative system incorporating path-loss

based and large scale shadowing based fading, with variable positioning of MIMO AF

relays for a MIMO source and destination under a power constraint. In this system we

have demonstrated cooperative ML detection that incorporates both phases of the received

signal from the source and relays expressed as a single cooperative ML rule that can

be processed by a SD detector, taking into account available information in the system

and making appropriate substitutions so that the results can be numerically calculated.

Also considered is the use of soft decision information and iterative processing for MAP

detection, utilising the LSD as a soft decision detector that can be incorporated into a

channel coded iterative processing detector. Several relay link selection strategies are also

considered for the system, with limited channel information and full channel information

scenarios considered. The proposed combinatorial link selection strategies have been

shown to have BER performance gains over existing link selection schemes in both coded

and uncoded cooperative MIMO systems. It has also been shown that adding relays to

the system may not necessarily give BER gains, depending on the positioning and the

number of relays present in the system model, and so the relay link selection strategies

can be shown to give gains in BER performance over a full relay case, even when using

less relays. It is also shown that some relay link strategies do not necessarily give BER

gains, but it can be considered that the relay link selection can still maintain the BER

performance, whilst releasing some relay resources that could be used by other potential

users.
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Chapter 4

Multi-Feedback Successive Interference

Cancellation with Dynamic Reliability

Ordering
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4.1 Introduction

The SIC detector is a well-known technique for the detection of data symbols at the re-

ceiving device in a multi-user or MIMO system, and typically to improve the performance

of the SIC detector, the data streams with the greatest power are cancelled first, thus re-
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moving the greatest source of interference first, which is known as the VBLAST tech-

nique [100], and is implemented by considering the powers of the channels associated

with each user or antenna. However, as shown in [103], although the VBLAST cancella-

tion order within the SIC is the optimal for the vast majority of detected symbols, other

cancellation orders can outperform the VBLAST ordering on a given occasion, which

could result in performance gains.

In this chapter, dynamic reliability ordering (RO) based upon log-likelihood-ratios

(LLR) [70] is considered in conjunction with a method of multiple-feedback (MF), [104],

[105, 106] which is designed to provide alternative cancellation candidates for data sym-

bols, to compensate for and correct potentially erroneous detected symbols. These meth-

ods are integrated into the proposed MF-RO-SIC detector, which utilises both methods

and makes considerations for reducing the computational complexity associated with

these methods, whilst increasing the BER performance. A discussion on the complexity

of the proposed detector with comparisons to existing methods, and a method for integrat-

ing the proposed detector with iterative detection and decoding in a channel coded system

is also considered.

This chapter is organised as follows, firstly the point-to-point MIMO system model

on which this chapter’s work is based will be described, followed by an in-depth look at

interference cancellation techniques, including SIC, RO and MF techniques, and an ex-

planation of Voronoi diagrams. In the next section, the proposed MF-RO-SIC detector is

detailed, and the integration of the methods involved is developed to produce an algorithm

with reduced computational complexity. After this, an iterative detection and decoding

system for the proposed MF-RO-SIC detector is detailed, which includes a method of hard

decision feedback. Finally, the results of simulations in the point-to-point system model

are presented, for both the proposed detector and the iterative detection and decoding

methods, ending with a summary of this chapters main results.
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4.2 System Model

The system under consideration is a point-to-point spatial multiplexing MIMO link, con-

sisting of Nt transmit antennas and Nr receive antennas. At each time instant, the Nt

length column vector x consisting of Nt data symbols taken from the constellation set

V that is appropriate for the modulation scheme being used, is transmitted through the

Nr ×Nt channel matrix H. At the Nr receive antennas at the destination, the transmitted

signal vector is received, processed and organised as the Nr length column vector y. This

can be described as:

y = Hx + n, (4.1)

where n is the circular complex additive white Gaussian noise (AWGN) vector represent-

ing noise at the receive antennas with a variance given by

σ2 = 1/(2γ), (4.2)

where γ is the signal-to-noise ratio (SNR) per antenna. The channel H is modelled as a

complex Rayleigh distributed channel, and can be expressed as the horizontal concatena-

tion of the individual channel vector associated with each transmit antenna,

H = [h1, ...,hi, ...,hNt ]. (4.3)

The linear MMSE detection technique described in Chapter 2 will be used in this

chapter as the basis for the proposed interference cancellation method developed in this

chapter. The MMSE filter detection can be described as below:

x̂ = WH
MMSEy, (4.4)

where x̂ is the Nt length vector of the estimated transmitted data, which can also be

described as per-antenna values [x̂1, . . . , x̂i, . . . , x̂Nt ]. It is possible to estimate the distri-

bution of the bits (bi ∈ {−1,+1}) of the elements of x̂ as Gaussian random variables, as

shown in [60], with a probability density function (PDF) of:

f(x̂i|bi) =
1√

2πσi
exp

[
−(x̂i −mi)

2

2σ2
i

]
, i = 1, ..., Nt, (4.5)
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where mi and σ2
i are the mean and variance, respectively,

mi =
γ̄i

1 + γ̄i
bi, (4.6)

σ2
i =

γ̄i
2(1 + γ̄i)2

, (4.7)

with γ̄i representing the instantaneous SINR of receive antenna i. The fact that the ele-

ments of x̂ can be accurately modelled as Gaussian random variables is important as this

makes the analysis of the MMSE detection output convenient, thus making it easier to

derive useful results for determining cancellation ordering in later sections.

4.3 Interference Cancellation Techniques

In this section, we shall review the interference cancellation techniques that are involved

in our proposed MF-RO-SIC detector, with an overview of the importance of the order of

interference cancellation, a look at the idea of dynamic ordering and a method of order-

ing based on the reliability of estimated symbols using the LLR values of the estimated

symbols. Finally the technique of MF is discussed with consideration for computational

complexity.

4.3.1 Cancellation Order

The order in which a SIC process cancels the estimated signals can make a significant dif-

ference to the overall error rate performance of the detection algorithm, as some signals

will have a greater effect on the level of interference than others. If the signal being esti-

mated has a high level of interference, the symbol estimate produced has a greater chance

of being inaccurate. If this inaccuracy is then used for cancellation in the algorithm, this

may cause the other signals to also be estimated incorrectly, in an effect known as error

propagation.

To reduce the impact of this effect, we can order the signals by the greatest associated

channel power first, and the weakest last, as this ensures that the signals with a good SINR
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are estimated first, and are thus less likely to be unreliably estimated. This also means the

interferer with the greatest power is cancelled first, improving the SINR of the remaining

signals by the greatest amount, and this is known as Ordered SIC (OSIC) or the VBLAST

algorithm. In a quasi-static channel environment, this can be calculated once per packet,

and the resultant ordering used for every time instant in that packet.

4.3.2 Log Likelihood Ratio Based Reliability Ordering

As the well-known VBLAST technique is based on the average channel power per an-

tenna, which does not consider the received signal and the effect of noise in a given time

instant, it does not take into consideration the per-time instant values of SINR at the re-

ceive antennas, which will vary over time around the average SINR due to the random

properties of the values used to calculate it, like noise. The SINR at each antenna is af-

fected by multiple factors, including the channel state and the random noise at the anten-

nas, as well as other possible interference effects, such as other transmissions from other

systems. Thus, just considering the channel state once per packet of data transmission,

and resorting to an interference cancellation ordering decision based on this information

could lead to accuracy loss when computing the SIC algorithm. So a possibility for the

SIC method is to consider the cancellation order on a per-time instant basis, possibly re-

sulting in the ordering changing at each time instant, giving the SIC method a dynamic

ordering.

To calculate the dynamic ordering, we could consider the SINR at each time instance,

and directly derive a method to calculate the ordering, however this would likely require

accurate knowledge of the nature of interference, and so could be difficult to obtain. How-

ever, if we consider the LLR at each time instant of transmission, it is possible to derive a

dynamic ordering of the SIC process [70], [107]. First, let us consider the LLR of a bit of

a received BPSK symbol given the estimate x̂i:

Li =

∣∣∣∣ln [f(x̂i|bi = +1)

f(x̂i|bi = −1)

]∣∣∣∣ . (4.8)

The magnitude of Li can be considered a measurement of how certain the detector can be

that the estimated symbol is correct when the quantisation of x̂i is performed, and thus can
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be considered a measure of the reliability of the estimated bit. Now, if the filter WMMSE

of the linear MMSE detector is considered:

WMMSE = (HHH + Iσ2
n)−1H = R−1

y H, (4.9)

the filter for each individual antenna wi can be rewritten as a product of the auto-

correlation matrix of the interference plus noise Ri:

wi = (1 + hHi R−1
i hi)

−1R−1
i hi, (4.10)

Ri =

 Nr∑
l=1
l 6=i

hlh
H
l + Iσ2

n

 . (4.11)

If Eq.(4.10) is substituted into Eq.(4.4), the Gaussian PDF Eq.(4.5) of x̂ can give us the

instantaneous SINR γ̄i as:

γ̄i = hHi R−1
i hi. (4.12)

Now, if the Gaussian approximation for x̂i in Eq.(4.5) is substituted into Eq.(4.8), the

reliability Li is equivalent to:

Li = 4(1 + γ̄i)|x̂i| ' (1 + γ̄i)|x̂i|. (4.13)

However, γ̄i requires R−1
i , which may be complex to acquire in the system. In [107],

the matrix inversion lemma may be applied to R−1
i , resulting in:

γ̄i =
hHi R−1

y hi

1− hHi R−1
y hi

, (4.14)

which only uses Ry, which is the autocorrelation of the received signal already calculated

for use in the MMSE filter. Substituting this result into Eq.(4.13) and simplifying gives:

Li = (1− hHi R−1
y hi)

−1|x̂i|, (4.15)

which is referred to as the Type-L reliability [107] for bi. If we are using a modula-

tion scheme with multiple bits per symbol (for example Quadrature Phase Shift Keying
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Table 4.1: Reliability Ordering Successive Interference Cancellation Algorithm

Initialisation: y0 = y,H0 = H, Ry,0 = HHH + Iσ2
n

for i = 1→ Nt do
Wi = R−1

y,i−1Hi−1

x̂i = WH
i yi−1

for j = 1→ (Nt + 1− i) do
Lj = (1− hHj R−1

y,i−1hj)
−1|x̂j |

end for
j = argmaxLj (L1, ..., LN+1−i)
x̃j = Q[x̂i(j)]
yi = yi−1 − x̃jhj
Hi = H′i−1

〈j〉

Ry,i = Ri−1 − hjh
H
j

end for

x̂i(j) represents the jth value of x̂i

H′i−1
〈j〉 represents Hi−1 with the jth column removed

(QPSK)), then a simple extension to Eq.(4.15) is:

Li = (1− hHi R−1
y hi)

−1(|<(x̂i)|+ |=(x̂i)|). (4.16)

This reliability Li can be incorporated into the SIC algorithm, as at every stage of the

SIC procedure for each antenna’s signal that has not yet been estimated, the reliability

can be calculated, and the signal with the highest reliability measurement will be the next

estimated signal. This results in a dynamic ordering that is not predetermined before the

SIC is processed, and can change with every time instant. Table 4.1 shows the algorithm

used for the RO-SIC process.

4.3.3 Multiple Feedback Cancellation

The method of MF [104–106] in a SIC process is based on the idea of reliable and unre-

liable symbol estimates, and how alternative symbol quantisation decisions can affect the

cancellation results. During the SIC cancellation process, the quantised estimated symbol

x̃i, is defined as x̃i = Q[x̂i], where Q[] is the quantisation function appropriate for the

modulation scheme being used in the system, and the quantisation operates by choosing

the constellation point c with the smallest Euclidean distance to the estimated symbol as
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described by

x̃i = arg min
c∈V
‖x̂i − c‖2. (4.17)

Figure 4.1: Example of a Voronoi diagram

This operation can be represented by a Voronoi diagram [108–110], which is a method

of dividing an area up into regions around a set of points placed in the area. Each point

in the diagram has a Voronoi cell associated with it, and the area within each Voronoi cell

is defined as the space which has the Voronoi cell’s point as its closest point in Euclidean

distance. Fig. 4.1 shows an example of a Voronoi diagram with 6 points on a flat plane.

The area is divided up into 6 regions around the 6 points, and if any position on the plane

is chosen, the region in which the position is located shows which point is closest. The

boundaries between the Voronoi regions can be called Voronoi boundaries, and represent

the threshold at which a position can be considered to be close to two or more points.

The Voronoi diagram can thus be shown to correspond to how the quantisation function

quantises estimated symbols to constellation points on a constellation diagram, with the

Voronoi points representing the constellation points, the Voronoi regions showing where

an estimated symbol will be quantised to and the Voronoi boundaries showing where the

decision boundaries are located. Fig. 4.2a and 4.2b show the Voronoi diagrams for QPSK

and 16-QAM modulation schemes, and so show how estimated symbols will be quantised.

However, if the estimated symbol is close to the Voronoi boundaries of two or more
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Figure 4.2: Voronoi diagrams for QPSK and 16-QAM modulation schemes

constellation points, then the estimated symbol could conceivably be attributed to a con-

stellation point that does not have the smallest Euclidean distance from the estimated

symbol, as the effects of noise and interference are likely to cause the estimate to cross a

Voronoi boundary.

Therefore, an area surrounding the Voronoi boundaries can be described as a scenario

in which it is possible that the standard quantisation process may give inaccurate results.

And so, a shadowing region on the constellation diagram is created, which defines an area

in which an estimated symbol may be considered for alternative quantisation results. If

x̂i falls within this region, then the C alternative constellation points with the smallest

Euclidean distances (U ⊂ V, [u1, ..., uC ]) to x̂i are considered for SIC processing, instead

of just the closest. Fig. 4.3 shows how the shadowing region is defined by a shadowing

criterion value S for QPSK modulation, which defines how far from the constellation axes

(which are the Voronoi boundaries for a QPSK constellation) the shadowing region is set.

When these alternative candidates for x̃i are considered, the MF algorithm processes

the SIC to completion for the C possible candidates, to produce an estimated symbol

vector for all transmitted antennas x̃c, c = 1, ..., C. Then using the ML rule, the MF

technique chooses the x̃c that produces the smallest Euclidean distance as described by:

x̃ = arg min‖y −Hx̃c‖2, c = 1, ..., C. (4.18)
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Figure 4.3: Shadow region for QPSK modulation

Table 4.2: Multiple Feedback Successive Interference Cancellation Algorithm

Initialisation: y0 = y,H0 = H
wi = (H̄iH̄

H
i + Iσ2

n)
−1hi, i = 1, ..., Nt

for i = 1→ Nt do
x̂i = wH

i yi−1

if |<[x̂i]| and |=[x̂i]| > S then
x̃i = Q[x̂i]

else
for k = 1→ C do

x̃k = x̃
yki = yi−1 − ukhi
for l = i+ 1→ Nt do

x̃kl = Q[wH
l ykl−1]

ykl = ykl−1 − x̃kl hl
end for

end for
x̃i = argmink=1,...,C‖y −H0x̂k‖2

end if
yi = yi−1 − x̃ihi
Hi = H′i−1

〈i〉

end for

H̄i represents the matrix formed by taking the columns i, i+ 1, ..., Nt of H
Assuming QPSK data is transmitted

The symbol candidate uc associated with the chosen x̃c is then chosen as x̃i for that

cancellation stage, and the MF-SIC continues from the ith stage. Table 4.2 shows the

MF-SIC algorithm.
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4.4 Proposed Multiple Feedback Reliability Ordering

Successive Interference Cancellation

Our proposed MF-RO-SIC detector combines the ideas of dynamic ordering within the

SIC process, the multiple candidates feature for unreliable cancellation estimates, and

overcomes the drawbacks of existing SIC detectors by minimising the extra computational

complexity required.

A possibility for the combination of the MF-SIC and RO-SIC is to have the MF process

taking place after the RO algorithm has decided which signal to estimate for this current

iteration of the main SIC for loop. But, as may be noted in the algorithm in Table 4.2, the

MF-SIC adds only a small amount of extra complexity over the SIC, as the cancellation

filters for each stage Wn can be precalculated and reused within the MF process:

wi = (H̄iH̄
H
i + Iσ2)−1hi, i = 1, ..., Nt, (4.19)

eliminating the requirement to use a matrix inverse at each stage for a filter calculation,

but this is only true if the cancellation order is known before the SIC is processed. In

the case of the RO-SIC, the ordering dynamically changes with each cancellation stage

so that the order is not predetermined, and so the MF filters cannot be precalculated for

each time instant. For this reason, the filters would have to be recalculated for each stage

in the MF, introducing a matrix inversion operation at each cancellation stage, every time

x̂i falls within the MF shadowing region, as well as determining the dynamic RO. This

would involve a large increase in complexity over the standard MF-SIC, and this should

be avoided.

In order to avoid this large increase in required complexity, we can split the MF-RO-

SIC into two sections. Firstly, the RO-SIC can be calculated as in Table 4.1, in order

to give a base estimate of x̃, and to also determine the cancellation order taken by the

dynamic ordering algorithm for this time instant. This cancellation order can then be

returned to the MF-SIC.

This returned ordering can then be used as a predetermined ordering for the MF-SIC
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Figure 4.4: Structure of piece-wise MF-RO-SIC

process, and so the filters can be precalculated as in Table 4.2, with the new predetermined

ordering, which means the filters only have to be calculated once per time instant for the

MF-SIC, reducing the complexity of the MF-SIC process to the original level. This piece-

wise approach is shown in Fig.4.4.

This piece-wise approach to the MF-RO-SIC does save complexity over the exhaustive

ordering algorithm, but the filters are still calculated for the MF-SIC, and in effect the

complexity of the RO-SIC and the MF-SIC is additive, roughly doubling the complexity

over either individual algorithm.

However, greater reductions in complexity can be achieved by further integrating the

two stages together intelligently. The MF-SIC filters gi can be extracted from each stage

of the RO-SIC, by taking and storing the jth column of the RO-SIC filter associated with

the chosen cancellation, thus these values can be reused for the MF-SIC, so that the filters

do not need to be calculated at all for the MF-SIC, reducing the complexity as no extra

matrix inversions have to be performed. The MF-SIC filter gi is given by:

gi = wi,j, (4.20)

where wi,j is the jth column of the filter W calculated for the ith cancellation stage of

the RO-SIC. Also, whilst the MF-SIC cannot be directly integrated into the RO-SIC with

low complexity due to the dynamic ordering restriction, the shadow criterion test for each

x̂i can still be carried out within the RO-SIC process, as below assumming QPSK data:

|<[x̂i]| < S and |=[x̂i]| < S (4.21)

If no x̂i falls within the shadow criterion area during the RO-SIC, then logically the

MF-SIC will not give a different x̃ than the RO-SIC, as the MF technique will never be

performed, and so the MF-SIC stage can be skipped for that time instant, reducing com-

plexity further. Fig. 4.5 shows the structure of the MF-RO-SIC with these considerations,
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Table 4.3: Multiple Feedback Reliability Ordering Successive Interference Cancellation
Algorithm

Initialisation: y0 = y,H0 = H, Ry,0 = HHH + Iσ2
n,m = 0

for i = 1→ Nt

Wi = R−1
y,i−1Hi−1

x̂i = WH
i yi−1

for j = 1→ (Nt + 1− i)
Lj = (1− hHj R−1

y hj)
−1|x̂j |

end for
j = argmaxLj (L1, ..., LNt+1−i)
gi = wi,j

x̃j = Q[x̂i(j)]
if |<[x̂i(j)]| or |=[x̂i(j)]| < S

m = 1
end if
yi = yi−1 − x̃jhj
Hi = H′i−1

〈j〉

Ry,i = Ri−1 − hjh
H
j

end for
if m = 1

for i = 1→ Nt

x̂i = gHi yi−1

if |<[x̂i] and |=[x̂i] > S
x̃i = Q[x̂i]

else
for k = 1→ C

x̃k = x̃
yki = yi−1 − ukhi
for l = i+ 1→ Nt

x̃kl = Q[gHl ykl−1]

ykl = ykl−1 − x̃kl hl
end for

end for
kopt = argmink=1,...,C‖y0 −H0x̂k‖2
x̃i = ukopt

end if
yi = yi−1 − x̃ihi
Hi = H′i−1

〈i〉

end for
end if

Assumes that QPSK is transmitted

and Table 4.3 shows the complete algorithm for the proposed MF-RO-SIC detector.
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Figure 4.5: Structure of proposed MF-RO-SIC

4.5 Computational Complexity

The proposed MF-RO-SIC MIMO detector was designed in the previous section to reduce

the extra complexity required as compared to the methods which the proposed detector

is derived from. In order to fairly compare the algorithms in terms of computational

complexity, it is required that the four methods (SIC, RO-SIC, MF-SIC and MF-RO-SIC)

are analysed in terms of the number of complex additions and multiplications (collectively

called operations) that are needed to run the algorithms per time instant.

As the MF-SIC and MF-RO-SIC use the conditional shadow criterion, directly

analysing the complexity will be extremely difficult as the probability of the operations

dependent on the shadow criterion result being run will change with each time instant.

To easily assess the computational complexity, the complexity analysis will include some

empirical variables, which are obtained by running simulations of the algorithms to be

analysed in the system model detailed in Section 4.2. These empirical variables negate

the need for complex statistical analysis of the conditional portions of the algorithms, and

will be defined as follows:

• F will represent the average number of shadow criterion tests that are failed (i.e. .

alternative candidates are considered) per time instant.

• T will represent the average number of alternative candidates that are calculated per

time instant.

• Z will represent the average percentage of time instants that require the MF section

of the MF-RO-SIC to be processed.
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Table 4.4: Computational Complexity of Interference Cancellation Algorithms

Algorithm Complex Additions Complex Multiplications

SIC Nt

2 (Nr
2Nt + 3Nr

2 + 2Nr − 2) +

Nt(
Nr

3

3 + Nr
2

2 − 5Nr

6 )

NrNt

2 (NrNt + 3Nr + 4) +Nt(
Nr

3

3 +

Nr
2

2 + Nr

3 )

RO-SIC NrNt

2 (5NrNt − 4Nt + 5Nr + 2) +

Nt(
Nr

3

3 + Nr
2

2 − 5Nr

6 )

Nt

2 (3Nr
2Nt + 3NrNt +Nt + 5Nr

2 +

3Nr + 1) +Nt(
Nr

3

3 + Nr
2

2 + Nr

3 )

MF-SIC Nt

2 (Nr
2Nt + 3Nr

2 + 2Nr − 2) +

Nt(
Nr

3

3 + Nr
2

2 − 5Nr

6 ) + T (2Nr −

1) + CNr
2F

NrNt

2 (NrNt + 3Nr + 4) +Nt(
Nr

3

3 +

Nr
2

2 + Nr

3 ) +Nr(2T + CNrF )

MF-RO-SIC NrNt

2 (5NrNt − 4Nt + 5Nr + 2) +

+Nt(
Nr

3

3 + Nr
2

2 − 5Nr

6 ) + T (2Nr −

1) + CNr
2F + Z(2Nr − 1)

Nt

2 (3Nr
2Nt + 3NrNt +Nt + 5Nr

2 +

3Nr + 1) +Nt(
Nr

3

3 + Nr
2

2 + Nr

3 ) +

Nr(2T + CNrF + 2Z)

Using these variables, it is possible to express the computational complexity of the four

methods as shown in Table 4.4, and form comparisons of the relative computational cost.

For the purpose of this analysis, it has been assumed that for matrix inversion operations

that the Gauss-Jordan elimination method has been used. For practical systems, more

efficient methods may be used, but this has little impact on the relative complexity of the

algorithms as each method requires Nt inversions of an Nr ×Nr matrix per time instance

to operate.
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Figure 4.6: Number of complex operations for each algorithm for a QPSK MIMO system,
S = 0.2, C = 4

Fig. 4.6 shows plots of the computational complexity for different sizes of a MIMO

system, and over different SNR values. For these simulations, QPSK was used as the
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Table 4.5: Average Complexity Cost for RO-SIC and MF-RO-SIC

SNR RO-SIC Operations MF-RO-SIC Operations Average % Increase
0 1588.7 1627.3 2.4288
5 1588.7 1607.1 1.1576
10 1588.7 1592.6 0.2459
15 1588.7 1589.1 0.0266
20 1588.7 1588.8 0.0036

modulation scheme, with the shadow criterion S set to 0.2, and the number of alternative

candidates considered C to 4. Fig. 4.6a shows how the complexity changes as the size of

the MIMO system increases, at an SNR of 10dB. It can be seen that adding the MF method

to the SIC and RO-SIC adds very little complexity compared to the original methods, and

that using the RO method roughly doubles the complexity as compared to the SIC. This

is due to the amount of reliabilities that have to be calculated per time instant for the RO

method. Fig. 4.6b shows how the complexity varies over a range of SNR values for a

4x4 system. The only terms dependent on the SNR are the empirical variables obtained

(S, T and Z), and so the SIC and RO-SIC have no variance in their complexity over the

SNR range, whereas the MF-SIC and MF-RO-SIC do have some variance. At high SNR

values, the MF-SIC and MF-RO-SIC converge towards the SIC and RO-SIC complexity

costs, respectively, due to the shadow criterion test failing only rarely. At low SNR values,

the difference between the MF and non-MF methods can be seen, but the increase in

complexity is only a small percentage. Table 4.5 shows the average percentage increase

in complexity between the RO-SIC and proposed MF-RO-SIC algorithm. At a 0dB SNR,

the MF-RO-SIC only increases the complexity by 2.4%, whereas at 20dB SNR, the MF

section of the algorithm is processed so rarely, that the increase is less than a hundredth

of a percent.

4.6 Iterative Detection and Decoding

Here a hard decision feedback IDD system is presented, incorporating the idea of IDD

[36, 95, 96, 98] with the proposed MF-RO-SIC detector to improve the BER performance

in conjunction with channel coding.
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4.6.1 Hard Decision Feedback System

In this scenario, the IDD system is based upon the IDD system in Chapter 3, but in con-

trast, hard decision detection and feedback are used for the detectors, eliminating the

need for a list based MAP algorithm. In the proposed MF-RO-SIC algorithm, the quan-

tised estimated symbols x̃ are used to refine the received signal to increase the accuracy

of subsequent stream detections, but the effectiveness of this interference cancellation is

dependent on the accuracy of the x̃ symbols being cancelled. If the accuracy of x̃ can be

improved, then the BER performance of the MF-RO-SIC detector will improve.

To this end, we can use the detected and decoded bits from an iterative detection system

as a substitute for x̃ in the interference part of a SIC algorithm. The theory behind this

idea is that by using channel coding in the IDD system, the estimated decoded bits will

have a higher accuracy than the encoded bits that are manipulated and estimated between

the encoder stage at the transmitter and the decoder stage at the receiver of the IDD

system. Thus, the symbols derived from the decoded bits will have a better BER than

the x̃ symbols in the MF-RO-SIC algorithm. And so the system consists of the layout

as seen in Fig. 4.7, with the subscripts 1 and 2 representing the inner and outer coding

and mapping functions respectively and ΛD represents the a posteriori LLRV of the inner

bits b of the bit vector b, ΛA is the a priori LLRV of b, ΛE is the extrinsic information

LLRV and the output LLRV ΛO, which is the output of each iteration that is used for the

bit estimation.

Binary Source Encoder Interleaver Constellation

MF-RO-SICDeinterleaverDecoderBit Decision

Estimated Encoder Interleaver SIC
Binary Data

Mapper

H

y1

b2 λ2 λ1

x1

x̂1b̃2

Constellation
Mapper

b̃2 λ̃2 λ̃1 x̃1

x̂1

ΛD2

Demapper
ΛD1

ΛA2

Interleaver
ΛE2 ΛA1

ΛO

Figure 4.7: Hard decision iterative decoding system layout
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The binary source bits b2 are first encoded by the channel coding scheme used by the

IDD system (in this case a convolutional code) to produce the outer coded bits λ2, which

are then interleaved into the inner coded bits λ1. The inner coded bits are then mapped

to a constellation diagram to produce the symbols for MIMO transmission x1. The coded

transmitted symbols are received as the received coded signal vector y1, and then the

proposed MF-RO-SIC detector performs the algorithm to produce the inner estimated

coded transmitted symbols x̂1. The demapper then will estimate the inner a posteriori bit

LLRV ΛD1 using a MAP method and then this result is deinterleaved to the outer a priori

LLRV ΛA2, which is given to the decoder which produces the output LLRV ΛO. A bit

decision process then takes place on ΛO to produce the outer estimated binary data bits

b̃2, which is our result for this first iteration of detection.

Now two types of feedback take place, firstly in a similar fashion to Chapter 3’s IDD

system, the decoder also produces the outer a posteriori bit LLRV ΛD2, which has the

ΛA2 subtracted from it to give the outer extrinsic information LLRV ΛE2. This is then

interleaved to give the inner a priori LLRV ΛA1, which is an input to the demapper for

the next iteration of processing.

Secondly, in order to refine the estimated binary data bits, we now feedback these bits

to the SIC algorithm for a refinement of the estimated symbols x̂1, but this first requires

some manipulation. The outer estimated binary data bits are re-encoded and interleaved

using the same convolutional code and interleaver as the transmitter, to produce the esti-

mated inner coded bits λ1, which are then mapped to the estimated inner coded transmit-

ted symbols x̃1. A standard SIC detector will then use this re-encoded result in place of

the quantised estimated symbolsQ[x̂i] in the SIC process. The SIC process will then pro-

duce the inner estimated coded transmitted symbols x̂1 instead of the MF-RO-SIC, which

then are processed in the second iteration as in the first iteration. Each iteration subse-

quently is processed using the same method as the second iteration, producing refined and

more accurate versions of b̃2.
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4.6.2 Demapping Estimated Symbols

The demapper in Fig. 4.7 is a two-stage process that relies on the MAP method to pro-

duce individual bit LLRVs from the estimated symbols x̂1. A difference from the MAP

method in Chapter 3 is that the MAP method here will not have a list of potential symbols

candidates produced by the detector, but only a single vector. In order to calculate the

MAP, the probability of getting the estimate x̂1 for each possible constellation point is

required. This probability is calculated by:

p(x̂1|xk) =
1

2πσ2
exp

(−|x̂1 − xk|2
2σ2

)
, k = 1...K, (4.22)

where K is the number of constellation points in the modulation scheme used, and xk is

the kth symbol in the modulation scheme. To get the symbol log-likelihood this is then

arranged as:

logf(x̂1|xk) =
−|x̂1 − xk|2

2σ2
, k = 1...K. (4.23)

To obtain the inner bit LLRV Λ1,b, where b is the bit index for each symbol, b = 1...log2K,

we use the above result in a MAP algorithm [111]:

Λ1,b = log


∑
xk∈X1

f(x̂1,b|xk)p(xk)∑
xk∈X0

f(x̂1,b|xk)p(xk)

 , (4.24)

where p(xk) is the a priori probability of xk, which is obtained from the decoder after

each iteration. For the first iteration process this LLRV is set to 0 for all symbols, which

represents no initial assumption about the bit data. The MAP can then be approximated

using the Max-Log approximation detailed in Chapter 3 to give:

Λ1,b ≈ max
xk∈X1

log (f(x̂1,b|xk)p(xk))− max
xk∈X0

log (f(x̂1,b|xk)p(xk)) (4.25)
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4.7 Simulation Results

For the simulation results presented in this chapter, a MIMO system was considered with

either a QPSK or a 16-QAM scheme, and with perfect knowledge of the channel state

information, the SIC detectors considered are based upon linear MMSE filtering, and the

individual channel elements are modelled as having Rayleigh distributions. Extensions to

other modulation schemes and propagation channels is straightforward.
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Figure 4.8: 4x4 MIMO with QPSK modulation, C = 4, S = 0.2

Fig. 4.8 shows how the proposed MF-RO-SIC detector compares with the VBLAST-

SIC, RO-SIC, MF-SIC and the ML detector in terms of BER in a 4x4 MIMO system. The

number of candidates for the MF (C) is set to 4, with the shadow criterion S set to 0.2.

The MF-RO-SIC can be seen to have up to 4dB in BER performance improvement over

the MF-SIC at a BER level of 10−4, just over 4dB over the RO-SIC at a BER level of 10−4

and up to 8dB of gain over the VBLAST-SIC at a BER level of 10−3. In this scenario,

it appears that the MF method is the major contributor to the MF-RO-SIC detectors per-

formance in the lower SNR region, with the dynamic RO providing the extra gains at the

higher SNR level.

Fig. 4.9 similarly shows how the proposed MF-RO-SIC detector compares with the

VBLAST-SIC, RO-SIC, MF-SIC and the ML detector in terms of BER in an 8x8 MIMO
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Figure 4.9: 8x8 MIMO with QPSK modulation, C = 4, S = 0.2

system. The number of candidates for the MF (C) is set to 4, with the shadow criterion

S set to 0.2. The MF-RO-SIC can be seen to have up to 4dB BER performance over the

MF-SIC at a BER level of 10−4, just over 2dB over the RO-SIC at a BER level of 10−4.7

and up to 8dB of gain over the VBLAST-SIC at a BER level of 10−3, with the MF-RO-

SIC approaching the ML performance with a 2dB loss at a BER level of 10−5.4. It can be

noted that in Fig. 4.8, the MF-SIC had better performance than the RO-SIC, but in Fig.

4.9, the RO-SIC outperformed the MF-SIC, suggesting that for larger MIMO systems, the

RO in the MF-RO-SIC provides the major contribution to the performance gains of the

MF-RO-SIC over the VBLAST SIC, whilst for smaller MIMO systems, the MF provides

the greater performance gains.

Fig. 4.10 shows how the BER performance of the MF-RO-SIC changes as the shadow

criterion is varied, as compared to the RO-SIC and the ML solution. As the shadow

criterion is increased, the BER performance varies from the RO-SIC performance and

tends towards the ML performance. It can be seen that for each 0.1 increase of S, the

BER performance of the MF-RO-SIC has another 1-2dB of gain added at a BER level of

10−3.7. This however, is at the cost of complexity, as the larger the shadow criterion, the

more likely an estimated symbol is to fall within the shadow area, and thus the MF process

is calculated more often. It should be noted that a degradation in BER performance was

observed if S was set too high (∼ 0.4 > S). These values of S represent the shadow
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Figure 4.10: 4x4 MIMO with QPSK modulation, C = 4, variable S

criterion boundary being closer to the constellation point than the constellation axis, as

for QPSK, the constellation point is at a value of 0.7071. This is possibly due to the

MF-RO-SIC testing a large amount of alternative constellation points in the MF process,

increasing the likelihood that false positive solutions are found for the ML rule due to

noise and self-interference.
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Figure 4.11: 4x4 MIMO with 16-QAM modulation, C = 4, S = 0.1

Fig. 4.11 shows the performance of proposed MF-RO-SIC detector as compared with

the VBLAST-SIC, RO-SIC, MF-SIC and the ML detector in terms of BER in a 4x4 MIMO
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system, in a system using 16-QAM. The number of candidates for the MF (C) is set to 4,

with the shadow criterion S set to 0.1. The shadow criterion is set lower for 16-QAM than

QPSK, as the constellation points for 16-QAM are closer together than for QPSK, and so

the shadow criterion is scaled down to account for this. For this system, the MF-RO-SIC

has 1dB of gain over the MF-SIC at a BER level of 10−3, 4dB of gain over the RO-SIC

at a BER level of 10−2.5 and up to 6dB of gain over the VBLAST-SIC at a BER level of

10−2. The MF-RO-SIC has about 4dB of loss from the ML detector at a BER level of

10−3.2, which is a greater loss than for QPSK, which suggests that the shadow criterion

and number of candidates can be further optimised.
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Figure 4.12: 4x4 MIMO with 16-QAM modulation, C = 4, variable S

Fig. 4.12 shows the BER performance of the proposed MF-RO-SIC detector as the

shadow criterion is varied. It can be seen that increasing the shadow criterion increases

the BER performance, until at S = 0.15 the performance starts decreasing, as the number

of false positives starts degrading the accuracy of the detector. The value at which the

shadow criterion increase degrades performance is smaller than for QPSK, due to the

smaller separation between the constellation points and the Voronoi boundaries.

Fig. 4.13 shows how varying the candidate limit C affects the BER performance of

the MF-RO-SIC for a 16-QAM modulation. It can be seen that adding extra candidates

(which increases the complexity of the MF section of the algorithm) beyond 4 candidates
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Figure 4.13: 4x4 MIMO with 16-QAM modulation, variable C, S = 0.1
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Figure 4.14: 4x3 MIMO with QPSK modulation, C = 4, S = 0.2

has diminishing gains. The gain from using 2 candidates to 4 candidates is approximately

1dB, but the gain from 4 to 6 candidates is less than 0.5dB, similarly from 6 to 8 candi-

dates. This suggests that for this scenario, a choice of 4 candidates in the MF algorithm

offers a very attractive complexity to gain ratio.

Fig. 4.14 shows how the hard decision iterative feedback version of the proposed MF-
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RO-SIC performs in terms of coded BER, in a 4x3 MIMO QPSK system. The plots shown

are the results of the 1st and 3rd iteration of decoding and detection. It can be seen that

the 3rd iteration of the MF-RO-SIC outperforms the 3rd iteration of the MF-SIC by up to

4dB at a BER level of 10−5, and the 3rd iteration of the RO-SIC by up to 6dB at a BER

level of 10−4.4. It can also be seen that from the 1st to 3rd iteration of the hard decision

feedback system, the MF-RO-SIC gains up to 3.5dB in BER performance at a BER level

of 10−5.

4.8 Summary

In this chapter, a new MF-RO-SIC detector has been proposed, utilising the ideas of dy-

namic cancellation stage reliability ordering and multiple candidates for estimated symbol

decisions, with consideration given to the complexity of the resultant detector and how

this can be reduced. An analysis of the complexity shows that the proposed detector adds

very little complexity to the RO-SIC, but that simulation results have shown up to 4dB

of gains over previously established SIC detectors and 8dB gains over the VBLAST-SIC,

for 4x4 and 8x8 MIMO systems with QPSK modulation, and up to 4dB of gain over es-

tablished detectors for a 16-QAM modulation scheme system. It has also been shown

how the BER performance of the MF-RO-SIC detector is altered as the parameters of

the detector are altered, and how this can approach the ML detector performance. Also

considered is an iterative version with channel decoding, utilising hard feedback that is

re-encoded to provide greater accuracy for the interference cancellation process. It is seen

that this IDD method is effective in accurately detecting the transmitted data.
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Chapter 5

Multi-Branch Interference Cancellation

with Widely-Linear Processing for

Multiuser Cooperative MIMO Systems
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5.1 Introduction

In systems using real-valued constellations such as Binary Phase Shift Keying (BPSK),

Widely Linear (WL) filtering techniques [61,112,113] can produce much superior Bit Er-

ror Rate (BER) performances as compared with standard linear Minimum Mean Squared

Error (MMSE) filters by exploiting the non-circularity of the received data to give ex-

tra degrees of freedom. Although WL techniques have been shown to perform well in

point-to-point MIMO systems [62, 114], the scenarios of overloaded multi-user detection

(MUD), where there are more transmit antennas at the users than receiver antennas at

the destination [115] or cooperative communication cases [13, 17] have seen very little

development.

As WL techniques are applicable particularly in modulation schemes where there is

only one dimension used (BPSK, Amplitude Shift keying (ASK) etc.), or in modulation

schemes where there is an imbalance between the average power of the in-phase and

quadrature dimensions, such as offset QPSK and offset QAM, it is possible to overload

the system by using more transmit antennas than receive antennas, and still maintain an

acceptable error performance as compared with standard linear techniques. This can be

applied to situations where multiple users are transmitting data simultaneously to a mul-

tiple antenna destination, and the destination is able to receive more data streams/user

transmissions than receive antennas at the destination. This is similar to the up-link sce-

nario of a system with multiple users and a base station.

WL MUDs can potentially resolve twice the number of users than that of antenna el-

ements at the receiver, without significant loss of error performance in the system [116],

assuming real valued modulation schemes are used, unlike linear receivers, which can

only resolve the same number of users as that of antenna elements at the receiver without

error performance loss. This is due to the WL Wiener filtering techniques taking ad-

vantage of the covariance matrix of the received signal as well as the pseudo-covariance

matrix of the received signal, which is non-zero for non-circular signals. This setting

gives the WL filter extra degrees of freedom as compared with the linear filter, which

only uses the covariance matrix of the received signal [117]. Cooperative systems can

also be considered for this scenario, with some user devices acting as relays for the other
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devices, retransmitting the received signals for the other users in a different time frame to

the destination. These relayed signals can give the destination an extra source of spatial

diversity, and so potentially improve the error performance.

In this chapter, we shall propose a technique in which a WL Successive Interference

Cancellation (SIC) algorithm [71] is enhanced with the Multi-Branch (MB) method [69,

103, 118, 119], and show how this method can be applied to the design of receivers of

an overloaded multi-user cooperative scenario using simple Amplify-and-Forward (AF)

relays [16]. The results shown will demonstrate that the introduction of relays into the

system can improve the BER performance at the destination, and that the introduction of

the MB method can improve performance even further.

5.2 System Model

User 1

User 2

User K

Relay 1

Relay M

Destination

First Phase Second Phase

Figure 5.1: Two-Phase MIMO Multiuser Cooperative System Model

The system under consideration is a two-phase multi-relay scenario, with K single-

antenna source users and a destination node with R antenna elements. The first phase of

transmission originates from the K source users to the M single-antenna AF relays and

the destination node, with the second phase consisting of the relay nodes retransmitting
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to the destination node. The first phase of transmission is described by:

ysd =
K∑
k=1

hsdkxsk + n
(1)
d ∈ CRx1, (5.1)

ysrm =
K∑
k=1

hsrm,k
xsk + n(1)

rm ,m = 1, . . . ,M, (5.2)

and the second phase of transmission by:

yrd =
M∑
m=1

hrdmγrmysrm + n
(2)
d ∈ CRx1. (5.3)

The quantities y and y denote the received signal vector or scalar, x and x are the trans-

mitted symbol vector and scalar, the channels are represented by the h vector or h scalar,

and n and n represent the Additive White Gaussian Noise (AWGN) vector or scalar at the

receive antennas, whose samples are drawn from a complex Gaussian distribution with

mean zero and variance σ2
n, which is given by:

σ2
n = 1/(ζ), (5.4)

where ζ is each user’s signal-to-noise ratio (SNR).

The s,d and r subscripts denote the variable’s relation to the system, source, destination

and relay, respectively, and the subscript k represents the user index. For example, the

quantity hsdk represents the channel between the source user k and the destination. The

superscript (1) on each noise term, n indicates the transmission phase in which the noise

vector is applied. The scalar γ is the AF amplification factor at the relays, defined as:

γrm =

√
1

|hsrm |2 + σn2
(5.5)

where | • | is the absolute value of the complex scalar. Note that if hsrm was a vector or

matrix (in the case of the users or relays having multiple antennas), the Frobenius norm

would be appropriate instead of the absolute value. Fig.5.1 shows the two-phase multiuser

cooperative system layout.

The propagation channels between nodes are modelled as Rayleigh distributed chan-
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nels, with a path-loss exponential scaling factor [86] and added large scale log-normal

shadowing (LNS) [87], as given by

h = αp,qβp,qho, (5.6)

with ho denoting a complex Gaussian distributed channel with a Rayleigh distributed

modulus, αp,q representing the distance related path-loss between transmitter p and re-

ceiver q and βp,q as a log-normal variable, representing shadowing between transmitter p

and receiver q. The parameters α and β are calculated as follows:

αsd =
√
L, (5.7)

αsrm,k
=

αsd√
(dsrm,k

)ρ
,m = 1, . . . ,M, k = 1, . . . , K (5.8)

αrdm,k
=

αsd√
(drdm,k

)ρ
,m = 1, . . . ,M, k = 1, . . . , K (5.9)

βp,q = 10

(
σsN (0, 1)

10

)
(5.10)

where L is the base power path loss of the source to destination link, ρ is the path loss

exponent, usually between 2 and 4 depending on the environment, N (0, 1) represents a

Gaussian distribution with mean zero and variance 1 and σs is the shadowing spread in

dB. It is assumed the LNS affecting each channel is subject to similar shadowing spread,

but is expressed as independent log-normal variables.

5.3 Proposed Multi-Branch Widely-Linear Successive

Interference Cancellation

In this section, the theory and derivation of WL filters and their integration into the SIC

process is discussed, and how MB processing can include the WL SIC, along with de-

scriptions of the algorithms required for implementation.
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5.3.1 Widely Linear Successive Interference Cancellation

The method of SIC is well established, and operates by estimating each transmitted sym-

bol in a received symbol vector using a receive filter to compute the estimate. Once an

estimate for a transmitted symbol has been obtained, the estimate is then refined by at-

tempting to remove the effects of the interference on the desired signal. This allows the

remaining symbols to be estimated with a greater accuracy. In traditional SIC methods,

the filter applied to extract the received symbols is typically a linear MMSE filter, but

in the case of non-circular modulation schemes, it is possible to replace this with a WL

MMSE filter as described in Chapter 2. Note that for circular modulation schemes such

as QPSK or 16-QAM, the WL MMSE filter reduces to the linear MMSE filter, and its

application results in no performance gain.

The WL MMSE filter is based upon a similar form to the linear MMSE filter, but

instead of operating solely upon the received signal, it also has a filter applied to the com-

plex conjugate of the received signal, described as below for a complex vector estimate z

of the desired complex vector x:

z = FHy + GHy∗ (5.11)

where H represents the Hermitian transformation and ∗ indicates the complex conjugate,

and the observation vector y is modelled as:

y = Hx + n, (5.12)

which can be described as a single phase of the cooperative transmission, similar to

Eq.(5.1) for the first phase of transmission, if theK users are instead viewed asK transmit

antennas, and similar to Eq.(5.3) if the M relays are M transmit antennas, with γrmysrm
replacing the complex vector x. In both cases, the definition of n remains as in Section

5.2.

The design of the WL MMSE filters F and G corresponds to solving the following

minimisation problem:

E = E[‖x− FHy −GHy∗‖2], (5.13)

T. Hesketh, Ph.D. Thesis, Department of Electronics, University of York

100

2014



Table 5.1: Widely Linear Successive Interference Cancellation Algorithm

Initialisation: y(0) = y,H(0) = H

for i = 1→ K do
z(i) = FH(i)y(i− 1) + GH(i)y∗(i− 1)
x̃(i) = Q[z(i)]

y(i) = y(i− 1)− x̃(i)H(i− 1)〈i〉

H(i) = H′(i− 1)〈i〉

end for

H〈i〉 represents the ith column of H
H′〈i〉 represents H with the ith column removed
Q[•] represents the quantise function

where E[•] is the expectation operator, and this can give the cost function of the mean

squared error (E) between the desired signal x and the estimate z given by

[Fopt,Gopt] = arg min
F,G
E . (5.14)

Using the derivation of the WL filters as described in Chapter 2 (Eq.2.26-2.41), Eq.(5.13)

can be solved using simultaneous equations to isolate F and G, obtaining the final result:

F = (Rhh −RhtR
−∗
hhR∗ht)

−1(H−RhtR
−∗
hhH∗) ∈ CRxK (5.15)

G = (Rhh −RhtR
−∗
hhR∗ht)

−∗(H∗ −R∗htR
−1
hhH) ∈ CRxK (5.16)

where

Rhh = HHH + Iσ2 ∈ CKxK (5.17)

Rht = HHT ∈ CKxK (5.18)

where −∗ represents the inverse conjugate, and so gives definitions for the WL MMSE

filters, F and G. Table 5.1 shows the algorithm used for the WL SIC process.

5.3.2 Multi-Branch Successive Interference Cancellation

The order of cancellation within a SIC process is important, and can affect the perfor-

mance of the SIC method, as an incorrectly estimated symbol at an early cancellation
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stage may cause other symbols to be incorrectly estimated also, resulting in error propa-

gation.

An often used scheme is to estimate the symbol with the greatest associated channel

power first, and then the next greatest power symbol and so on. This is sometimes re-

ferred to as the Ordered SIC (OSIC) or the VBLAST scheme [78], [100], [101]. The

principle behind VBLAST being that the symbol with the greatest channel power will be

the least prone to being estimated incorrectly, thus reducing error propagation. However,

the VBLAST ordering is not guaranteed to be the best cancellation order for each received

symbol vector due to noise and other interference effects. In addition, the use of SIC lim-

its the diversity order achieved by the detector as compared to the full receive diversity

attained by the ML detector.

The MB scheme [102] operates by altering the order of cancellation in the SIC pro-

cess, by default the VBLAST scheme, and running this altered order separately from the

original order. Each different order permutation process is known as a branch, thus the

MB scheme runs several different cancellation order branches in parallel. The results of

the branches are processed by an ML decision rule using the Euclidean distance as a met-

ric, which chooses the most likely symbol for each user amongst the candidates available

in the branches. This strategy allows the MB scheme to attain a superior diversity order

to the standard SIC algorithm and closer to that of the ML detector. The ML rule used is

as described below:

x̃ = (x̃1, ..., x̃K)T = min
b=1,..,B

‖(y −H(x̂1,b, ..., x̂K,b)
T‖2, (5.19)

where B is the number of branches being considered by the ML rule, and b is the index

of the branch currently being considered, with x̃ representing the final answer of the MB-

WL-SIC.

Each branch, and thus cancellation order, has an associated permutation matrix T

which alters the branch’s cancellation order. The permutation matrix Ti is a binary matrix

which is applied to the base VBLAST ordering vector c0 to create a new ordering vector

for branch i, ci, as below:

ci = Tic0, (5.20)
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Table 5.2: Multiple Branch Algorithm

for i = 1→ B do
yt = (yTsd,y

T
rd)

T

hsd = (hsd1 , ...,hsdK )
hur = (hsr1,m, ...,hsrK ,m)

hsrd =
∑M

m=1(hrmγrmhur)

Ht = (hTsd,h
T
srd)

T

(x̂s1,i, ..., x̂sK ,i)
T =WL-SIC(yt,Ht,Ti, σn)

end for
(x̃s1 , ..., x̃sK )T = min

j=1,..,B
‖(yt −Ht(x̂s1,j, ..., x̂sK ,j)

T‖2

where Ti starts as a K × K matrix of zeros, with entries corresponding to the desired

permutation changed to 1’s. To determine which entries are 1’s, each row of Ti is related

to a single entry in the desired ordering ci. And so for the kth row of Ti, the value of ci(k)

determines which column in this row is set to 1. For example, if the desired ordering ci

was [2, 3, 1, 4] for K = 4, then Ti would be:

Ti =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

 (5.21)

Within this MB system, each branch performs a WL-SIC process, with the cancellation

order altered by T. The algorithm operates as in Table 5.2 for B branches, and is repre-

sented in Fig.5.2:

5.4 Branch Selection

Choosing which permutation branches to run is important, as there are K! different possi-

ble permutations, so running every possible branch would be computationally prohibitive.

Fig.5.3 shows the possible permutations of a system with 4 transmitted data streams (by

individual antennas or users), with the default ordering defined as the VBLAST order-

ing, which will order the cancellation by the norm of the channel associated with each
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Figure 5.2: Multi-Branch System

transmitted data stream. It can be seen how different cancellation orders create branches

from the initial cancellation stage within the SIC at the top of the diagram, and as the

algorithm progresses it moves down the cancellation stages from top to bottom, with each

branch describing a different cancellation order, potentially giving different results for the

symbol detection.
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Figure 5.3: Multi-Branch Permutation Possibilities for a MIMO system with 4 transmit-
ters
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A proposed strategy for branch selection is to choose B ≤ K, b = 1, ..., B branches

(including the original VBLAST branch), where b is the branch index, with the bth branch

altering the cancellation order by initially processing the bth cancellation stage first, and

then processing the remaining stages in order. For example, in a 4-user system, the cancel-

lation orders for B = 4 branches would be [1, 2, 3, 4], [2, 1, 3, 4], [3, 1, 2, 4] and [4, 1, 2, 3],

or referring to Fig.5.3, branch indices 1,7,15 and 24. This gives the 4 permutation matri-

ces T1...T4 as:

T1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,T2 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1



T3 =


0 0 1 0

1 0 0 0

0 1 0 0

0 0 0 1

 ,T4 =


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0



Alternatively, it is possible to compile a list of the most commonly selected branches

by the ML rule for a system, as these branches are most likely to give better BER perfor-

mance than the other branches. However, the only way to determine the most commonly

selected branches by the ML rule is to empirically run the system over a very large num-

ber of packets and time instances in the environment the system is to operate in, calcu-

lating every branch for each detection instance, and observe the frequency at which each

branch is selected [103]. Unfortunately, for large numbers of transmit antennas or users,

this quickly becomes impractical due to the fact that there are K! numbers of possible

branches, and would have to be rerun for each different scenario in which the algorithm

could operate in.

Therefore, in order to counter the extremely high complexity of calculating each

branch for each time instance, without excluding a branch from being processed it is

fundamental to find a new way of selecting the ordered branches.

The proposed branch selection strategy consists of a dynamic selection of branches,

where during the original VBLAST branch, if a symbol decision in the SIC process is

considered unreliable, a new branch is created such that the branches diverge in processing
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order at the point of the unreliable symbol estimate, giving rise to a different cancellation

order branch, which could also create another new branch in the case of an unreliable

symbol estimate arising in the new branch. In order to determine if a symbol estimate

is unreliable, the idea of a shadowing area in the constellation diagram from the MF

algorithm [104–106] in Chapter 4 can be used. Fig. 5.4 shows the shadow area for QPSK

modulation on a constellation diagram. If a symbol estimate falls within the shadow area

on the constellation diagram, then the symbol can be considered unreliable, and so an

alternative cancellation order can be considered for the MB algorithm, creating a new

branch in parallel with the old ordering.

ℑ

ℜ

Constellation Point
SVoronoi Boundaries

Figure 5.4: Shadow region for QPSK modulation

The rules of operation in the dynamic branching as based upon Fig.5.3 are:

• Start with branch index 1, and process cancellation stage 1

• If at any point during the processing of the branch, a symbol estimate is unreliable,

hop right to the next possible alternative unless the next cancellation to the right

does not share a common root with the current branch, e.g. 3rd stage of branch

index 6 to 3rd stage of branch index 7 is not allowed.

• If hopping branches, the original branch continues the processing, and the new

branch uses the previously processed data from previous stages.

• If the alternative cancellation hopped to is also unreliable, the algorithm can hop

again if possible.

• Each newly created branch can spawn new branches.
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• The last cancellation stage has no alternatives to hop to, and so the unreliablity test

does not need to be processed.
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2 3 4 1 3 4

1 2

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.5: Dymanic branching branch selection

Fig.5.5 shows how the dynamic branch selection creates new branches as the SIC op-

erates in a single time instant. (The right half of the orders are not considered, and so

omitted from this diagram for the purpose of clarity.) In Fig.5.5, the original branch

(highlighted in red) first processes the data stream from transmitter 1. In this case, the

symbol is considered unreliable, and so a new branch is created (in green), and instead

start by processing transmitter 2’s data. The estimate obtained is reliable, and so the

branch continues, and completes without any more unreliable symbol estimates. As the

red branch continues, in the second stage the symbol estimate is also considered unre-

liable, and so another new branch is created (blue). The red branch continues without

any more unreliable estimates and completes. The blue branch uses the processed data

from the first stage, as the roots of the red and blue branches are the same, and continues

processing the branch, but the symbol estimate in the second cancellation stage is also

unreliable, and so the order hops right (orange). However this estimate is also unreliable,

and tries to hop right again, but as this would hop to a branch that does not share a root

with this branch, the hop does not happen (represented by the brown line with a cross).
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Table 5.3: Dynamic branching and branch hop algorithm

Dynamic Branching
1. Run branch index 1 (VBLAST branch) and during processing note at which

stages unreliable symbol estimates occurred, if any
2. If unreliable estimates occurred, calculate which branches to hop to, and queue

the branch indices for processing, else go to Step 6
3. If there is a queue of branches to be processed, process the next branch noting

at which stages unreliable symbol estimates occurred, if any
4. If unreliable estimates occurred, calculate which branches to hop to, and queue

the branch indices for processing
5. If there are branches remaining to be calculated that have not been processed

already, go to Step 3
6. Gather results from each processed branch, and determine the best result using

the ML rule

Hop Algorithm
b = current branch index, s = stage at which unreliable estimate occurred
if s = k then skip to end
for i = 1→ s− 1

Remove columns whose first row does not equal the ith stage of b
Remove first row

end for
Remove columns whose first row does equal the sth stage of b
Remove columns whose branch index is less than or equal to b
Branch to hop to is the lowest remaining branch index
if no branch indices remain then cannot hop

The orange branch then processes to completion without any more unreliable data esti-

mates. In the third cancellation stage, the blue branch has an unreliable symbol estimate,

and so a new branch (purple) is created. All remaining branches then complete, as for the

last cancellation stage there are no alternatives. The result of this process has thus created

5 branches (indices 1,3,4,5 and 7) that will be compared by Euclidean distance metrics.

Alternatively, if there had been no unreliable symbol estimates during the processing, then

the only branch processed would have been the original branch index 1, equivalent to the

VBLAST WL-SIC.

To describe this algorithm in a way suitable for implementation in computer program-

ming, we can consider the possible branch orders as a table, with each order as a column in

the table containing the cancellation order indices, as in Table 5.4. The dynamic branch-

ing can then be thought of as manipulating the table and removing rows as necessary. The

algorithm for the dynamic branching is described in Table 5.3.
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Table 5.4: MB order table

1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4
2 2 3 3 4 4 1 1 3 3 4 4 2 2 1 1 4 4 2 2 3 3 1 1
3 4 2 4 3 2 3 4 1 4 3 1 1 4 2 4 1 2 3 1 2 1 3 2
4 3 4 2 2 3 4 3 4 1 1 3 4 1 4 2 2 1 1 3 1 2 2 3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Branch Index

5.5 Computational Complexity

The proposed MB-WL-SIC detector is obviously more computationally intense than the

WL-SIC detector to process per time instance, due to the multiple branches being pro-

cessed, but the dynamic branch selection algorithm aims to alleviate this problem some-

what by only processing extra branches when necessary. In order to compare the different

detection algorithms, four different detection schemes (SIC, WL-SIC, MB-WL-SIC us-

ing B branches and MB-WL-SIC with dynamic branch selection (DMB-WL-SIC)) will

be analysed to assess the computational complexity per time instance in terms of complex

additions and multiplications.

However, directly analysing the computational complexity of the DMB-WL-SIC is not

easy, due to the fact that the dynamic branching relies on the conditional shadow criterion

to determine the algorithm’s operation. This is similar to the problem in analysing the

complexity of the MF-SIC and MF-RO-SIC in Chapter 4, and so a similar solution to

calculate the computational complexity is used. A variable C will be used to denote the

number of cancellation stages that take place on average per time instant, and this variable

will be empirically estimated during the operation of the DMB-WL-SIC in the system

model in Section 5.2, along with the average number of branches B̃ that the DMB-WL-

SIC processes. As the MB-WL-SIC stacks the received signals from both phases into a

single vector, the received signal vector length is 2R, which is represented by the quantity

T . This now allows for the comparison of the complex additions and multiplications

required to process each algorithm per time instant, as shown in Table 5.5.

Fig 5.6 shows plots demonstrating the complex operations required to process the al-

gorithm per time instant, with each complex addition or multiplication counted as 1 unit,
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Table 5.5: Computational Complexity of Interference Cancellation Algorithms

Algorithm Complex Additions Complex Multiplications

Linear SIC K
2 (KT

2 + 3T 2 + 2T − 2) + T (T
3

3 +

T 2

2 − 5T
6 )

KT
2 (KT +3T +4)+ T (T

3

3 + T 2

2 + T
3 )

WL-SIC T (2K2T +KT 2 + 3KT +K − 2T +

1) + 2K(T
3

3 + T 2

2 − 5T
6 )

KT (2KT +K + 2T 2 + 4T + 1) +

2K(T
3

3 + T 2

2 + T
3 )

MB-WL-SIC B(T (2K2T +KT 2 + 3KT +K −

2T + 1) + 2K(T
3

3 + T 2

2 − 5T
6 ) +KT )

B(KT (2KT +K + 2T 2 + 4T + 1) +

2K(T
3

3 + T 2

2 + T
3 ) + T (K + 1))

DMB-WL-SIC T (2KT −2T +1)+CT (2KT +2T 2+

T + 1 + 2(T
3

3 + T 2

2 − 5T
6 )) + B̃KT

2KT 2 +CT (4KT +K + 2T 2 + 2T +

1 + 2(T
3

3 + T 2

2 + T
3 )) + B̃T (K + 1)
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Figure 5.6: Number of complex operations for each algorithm for a BPSK cooperative
MIMO system, S = 0.2,M = 2, R = 2, B = 4

Fig. 5.6a shows how the complexity changes as the number of transmitting users is in-

creased at 10dB SNR. The complexity of the different algorithms can be seen to remain

proportional in relation to each other asK changes, with the WL-SIC having roughly four

times the complexity of the SIC, which is expected due to the extra processing the WL

filters require. The MB-WL-SIC also increases the complexity over the WL-SIC by four

times, which is due to the MB-WL-SIC using four branches in this case. However, the

DMB-WL-SIC has a reduced complexity as compared with the MB-WL-SIC, using over

50% less complexity, meaning that the complexity of the DMB-WL-SIC is roughly dou-

ble that of the WL-SIC. Fig. 5.6b shows how the complexity changes as the SNR value

changes when K = 8. As expected, the complexity of the DMB-WL-SIC reduces as the

SNR increases, due to the dynamic branching switching branches less often. This gives
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the result that the DMB-WL-SIC has between 30% less complexity at 0dB, and 60% less

complexity at 20dB than the MB-WL-SIC.

5.6 Iterative Detection and Decoding

Here a list-based IDD system is presented, which extends the proposed MB-WL-SIC to

output a list of potential symbol estimate candidates, instead of a single hard decision,

and how this principle can also be applied to generate list candidates from the linear SIC

and WL-SIC.

5.6.1 IDD List-Based System

The candidate list-based IDD system is very similar to the IDD system presented in Chap-

ter 3, but with a few key differences, as can be seen in Fig. 5.7. Firstly, the list sphere

decoder (LSD) that is used as the detector is not appropriate in this setting, as the pro-

posed detector is not directly based upon the ML rule, but instead must be replaced with

list-generating algorithm based upon the proposed MB-WL-SIC. This can be easily ac-

complished with the MB-WL-SIC by eliminating the final ML rule decision from the

algorithm, so that the detector instead returns the result from every branch, not just the

branch determined to be optimal by the ML rule. The output of the list MB-WL-SIC

algorithm is therefore:

X̃ = (x̂s1,j, ..., x̂sK ,j), j = 1...B, (5.22)

instead of just x̃, where each column vector of X̃ is a candidate vector in the list.

Secondly, a list L is generated for every iteration of the IDD system from the inner a

priori LLRV ΛA1, using a list generation algorithm, which can generate a list of candi-

dates from a single vector of symbol estimates. This list is then used in the MAP detector

instead of the list from the previous iteration. This is in contrast to the IDD system in

Chapter 3, which generates the list using the LSD during the first iteration, and then uses

this list for each subsequent iteration.
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Figure 5.7: List based iterative decoding system layout

5.6.2 List Generator

The list generator algorithm used here is based upon the work in [120, 121]. The algo-

rithm works upon the principle of the reliability of each bit of each symbol estimate, and

of swapping the bits of the most unreliable estimates for different bits, and so different

symbol estimates. By swapping the bits of the most unreliable symbols, a list of alterna-

tive symbol estimate vector is built up, and so this list can be used for the MAP algorithm.

The list algorithm is controlled by a maximum list size Lmax and a reliability threshold

Vth which sets the maximum reliability sum for a bit vector. The list algorithm works

by creating a permutation of a bit vector that is already under Vth, and then testing the

reliability sum of the new permutation. If the permutation reliability sum ω is below ωth,

then the permutation is kept for the next round of permutations. Otherwise the permuta-

tion is discarded. If more permutation candidates are created than the maximum list size,

then the permutations with the largest ω are discarded until there are Lmax permutation

candidates. Table 5.6 shows the algorithm for the list generator method.

The list generator algorithm can also be used to create candidate lists from the un-

quantised symbol estimates z from the SIC, WL-SIC or any other detector that produces

only a single set of symbol estimates. In this case, the a priori LLRVs ΛA1 are substituted

with z in the algorithm in Table 5.6 to produce the initial candidate list for the MAP

detector in the first iteration of the IDD, and then the list from the a priori LLRVs for
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Table 5.6: List Generator Algorithm

Initialisation: bA = (sgn[ΛA1] + 1)/2, V(0) = 0K×1, ω(0) = 0, L = 1

for i = 1→ K do
p = 0K×1

p(i) = 1
for l = 1→ L do

Vl(i) = Vl(i− 1) + p
end for
Vi = [V(i− 1),V(i)]
L = 2L
for l = 1→ L do

ωl = Vl(i)
T |ΛA1|

end for
if 1st iteration of IDD then

for l = 1→ L do
if ωl > ωth then

Discard ωl and Vl(i)
end if

end for
L =length(ω)

end if
if L > Lmax then

Sort ωl and Vl(i) by ωl, l = 1→ L
Keep first Lmax entries of ωl and Vl(i)
L = Lmax

end if
end for
for l = 1→ L do

b = bA ⊕Vl

Ll =BPSK-Modulate(b)
end for

Vl is the lth column of V, 0K×1 represents a K length vector of zeros
⊕ represents the bit-wise XOR operator

subsequent iterations.

5.7 Simulation Results

In the simulations performed, the system is set up as a base pool of K + M sources

which are randomly distributed between a distance of 0.75 to 1.25 units away from the

destination, where a unit of distance is a generic measure, relative to the average distance
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of 1 unit from the destination, which defines the base path loss in Eq.(5.7). For these

simulations, the base path loss at a distance of 1 unit is 20dB. From this pool, the M

closest sources to the destination are redefined as relays, to ensure the relays are well

positioned to transmit to the destination, with the rest of the source pool becoming the user

sources. The users distance from the newly defined relays (dsrm,k
) is similarly modelled

as randomly distributed between a relative distance of 0.75 to 1.25 units. The distances of

0.75 and 1.25 are chosen for both the sources and relay to ensure that the relays were close

enough to potentially be of use in the system, but not close enough to always dominate.
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Figure 5.8: MIMO cooperative system with 2 AF relays, BPSK modulation, 8 single
antenna users, 2 antennas at destination

BPSK is the symbol modulation scheme used for the system, and the destination is

assumed to have 2 receive antennas. The channels are modelled with a LNS variance of

6dB and a path-loss exponent of 4. To ensure a fair comparison of the cooperative and

non-cooperative cases, the Signal-to-Noise Ratio (SNR) used on the horizontal axis is

defined as the ratio of each user’s source transmission power to the destination’s received

noise power. The channels are also assumed to be quasi-static, and so are unchanging over

a packet, but non-correlated between packets, with the destination having full knowledge

of the system. Synchronous transmission by the relays in the second phase of transmission
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is also assumed for simplicity although the system can be generalised to asynchronous

transmission. The non-cooperative case (where the relays are not utilised) as well the

cooperative case (where the relays are used) are considered in our results.
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Figure 5.9: MIMO cooperative system with 2 AF relays and a variable number of single
antenna users, BPSK modulation, 2 antennas at destination

Fig. 5.8 shows the results for the non-cooperative and the cooperative case, with 4

branches being processed in the MB-WL-SIC for 8 user sources, with the system also

consisting of 2 AF relays. It can be seen that in the non-cooperative case, the WL-SIC

quickly reaches a high error floor, and although the MB-WL-SIC performs over 7dB

better at a BER level of 10−1.8, the MB-WL-SIC still reaches a relatively high error floor.

For the cooperative case, the MB-WL-SIC is shown to be comparable to the ML solution

(produced using the cooperative Sphere Decoder (SD) scheme in Chapter 3) up to a 15dB

SNR, giving up to 4dB of gain over the WL-SIC at a BER level of 10−3.5, with the MB-

WL-SIC cooperative case showing up to 10dB of gain over the equivalent non-cooperative

case at a BER level of 10−2. The WL SIC and WL MB SIC can be seen to have over 7dB

of gain each over the equivalent linear detectors for the cooperative case at a BER level

of 10−2 and 10−2.9 respectively, showing the advantage that WL filtering can give over

linear filters for BPSK.

Fig. 5.9(a) shows the BER as compared to the number of source users, for a system
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with 2 AF relays with an SNR of 15dB, with a 2 antenna destination. It can be seen

that for up to 6-7 single antenna users, the cooperative MB-WL-SIC running 4 branches

is equivalent to the SD. For the non-cooperative schemes, the error rate has consistently

at least an order of magnitude worse performance than the cooperative case. The gap

between the SD and MB-WL-SIC can be seen to widen as the number of users increases,

but the MB-WL-SIC still maintains roughly half a magnitude performance gain over the

WL-SIC. Fig. 5.9(b) shows the BER against the SNR for a varying number of users in

the same system, showing that above 7-8 users, the performance degrades by 2-3dB for

every extra user added.
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Figure 5.10: MIMO cooperative system with a variable number of AF relays, BPSK
modulation, 8 single antenna users, 15dB SNR, 2 antennas at destination

Fig. 5.10 shows the BER as compared with the number of AF relays in the system for

8 users sources at 15dB SNR. As the number of relays increases, it can be seen that all

the proposed cooperative schemes reach an error floor at around 5-6 relays. This could be

due to the fact that the self interference between the relays becomes a major factor, and

results in diminishing gain returns as the number of relays increases. The non-cooperative

cases do not use the relays, and so remain at a constant performance level throughout.

Fig. 5.11 shows the BER performance against the SNR value for the dynamic branch
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Figure 5.11: MIMO cooperative system with 2 AF relays, BPSK modulation, 8 single
antenna users, 2 antennas at destination, dynamic branch selection with a variable shad-
owing criterion

choice selection scheme, demonstrating how the BER performance changes as the shad-

owing criterion value S used for the dynamic branching scheme is altered. It can be seen

that for each 0.05 increment of S, the BER performance has between 0.5-1dB of gain at

high SNR values, but this comes at the increased cost of computational complexity. It

should also be noted, that if S is increased too high, that symbol estimates will begin to

be described as unreliable erroneously, and start giving performance loss, similar to the

effect observed in Chapter 4 for the MF-SIC and MF-RO-SIC.

Fig. 5.12 shows the coded BER performance against the SNR value for the list-based

IDD system with an implementation of the WL, WL-SIC, and the proposed MB-WL-SIC

with 4 branches as in Section 5.6. For a fair comparison, the maximum list size Lmax is

set to B = 4. A rate 1/2 [7, 5] convolutional code with a memory of 2 is used by the

encoder and decoder in the IDD system, and it can be seen that for the first iteration, the

MB-WL-SIC has a 1.5dB performance gain over the WL-SIC at a BER level of 10−3.5,

and up to 4dB of gain over the WL filtering technique at a BER level of 10−3. For the third
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Figure 5.12: Coded MIMO cooperative system with 2 AF relays, BPSK modulation, 8
single antenna users, 2 antennas at destination

iteration, the MB-WL-SIC gains up to 2dB from the first iteration at a BER level of 10−3.5,

and about 1dB over the third iteration of the WL-SIC at a BER level of 10−4, with up to

3.5dB of gain over the third iteration of the WL filter at a BER level of 10−3. It should be

noted that at low SNR values, the MB-WL-SIC does not offer any gain over the WL-SIC,

and can give a slight loss, suggesting that at very low SNR values, it is preferable to use

the WL-SIC for IDD. However, both the WL-SIC and MB-WL-SIC both give gains over

the WL filtering technique at low SNR values.

5.8 Summary

In this chapter, we have proposed a widely linear detection scheme for real-valued mod-

ulation schemes in an overloaded multi-user scenario with cooperative MIMO relaying,

with a proposed list IDD system based on the MB-WL-SIC detector. A method of dy-
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namically selecting the branches of the MB-WL-SIC has been proposed, and a complex-

ity analysis of the proposed detector has been demonstrated. The proposed MB-WL-SIC

detection scheme has shown up to 4dB gains over the conventional WL-SIC in the coop-

erative case, showing equivalent performance to the ML solution in some scenarios, with

also the WL techniques being seen to have over 7dB of gain over the equivalent linear

detectors for the cooperative case. The list-based IDD system has shown that the MB-

WL-SIC can give some gains over the WL-SIC, with subsequent iterations giving up to

2dB of extra gains, also demonstrating how the list-based algorithm can be applied to the

WL filtering and WL-SIC methods. It has been seen that the inclusion of a small number

of single antenna AF relays can boost the performance of the system significantly, and

give a low rate of errors in conjunction with the MB-WL-SIC, even in a very heavily

overloaded system. The DMB-WL-SIC has shown that MB performance gains can be

obtained, but with a lower average complexity cost, especially at high SNR values.
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Chapter 6

Conclusions and Future Work
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6.1 Summary and Conclusions

In this thesis, techniques of detection and link selection have been investigated and pro-

posed for MIMO and cooperative relay systems, with analyses of computational complex-

ity and implementations for IDD systems described. Results of simulation modelling for

the proposed techniques have been presented and discussed, showing primarily the BER

gains of the algorithms for a range of SNR values. Other metrics and parameters have

also been highlighted appropriately to the algorithms being presented.
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In Chapter 3, a cross-layer design for a cooperative MIMO relay system is proposed,

deriving a cooperative ML detector for use with a SD from both phases of transmission

in the system, and using a summed channel approximation to take advantage of the sys-

tem information available at the destination device. The system model takes into account

distance and shadowing effects in the channel, as well as relay positioning. The proposed

cooperative ML detector is also formed such that the resulting channel that the SD oper-

ates on is the same matrix size as a non-cooperative, such that the SD will have a lower

complexity for each time instant than the alternative of stacking the received signals.

For this system, two new combinatorial link selection schemes were proposed, extend-

ing previously proposed link selection schemes to take into account sets of relays in the

link selection metrics, rather than the individual relays. The proposed cooperative detec-

tor and link selection techniques were then integrated into an IDD system, which uses

the LSD and MAP detection techniques with convolutional channel coding. Simulation

results showed that the cooperative ML detector gives a good BER performance in the co-

operative MIMO system with distance shadowing fading effects, and compared this with

how the cooperative ML detector performs in system model from previous literature. The

proposed combinatorial link selection techniques were shown to give good gains in BER

performance over previous link selection strategies, but were also shown to have an in-

creased computational complexity cost as a trade-off. The IDD scheme was demonstrated

to work well with the proposed combinatorial link selection techniques for a rate 1/2 and

rate 1/3 convolutional channel code, giving up to a decade and half of BER gain over the

uncoded system.

In Chapter 4, a dynamically ordering, alternative cancellation candidate SIC detector

is proposed for a MIMO system, using the methods of RO, which is derived from the

LLR of the estimated data symbols, and the technique of MF, which tests for unreliable

data symbol estimates during the cancellation process using a shadow criterion area based

upon the Voronoi boundaries of the modulation scheme’s constellation diagram. RO and

MF techniques are combined into a single proposed detector, which is developed to reduce

the extra complexity required to process per time instant as compared with either RO or

MF, and a complexity analysis to compare the algorithms shows that the proposed MF-

RO-SIC requires very little extra complexity as compared to the RO-SIC. A hard decision

feedback IDD scheme is also developed, which uses the MAP detector, and re-encodes

the detected bits into estimated symbols that can be used in the SIC process to increase the
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accuracy of the cancelled symbols in the next iteration of detection. Simulation results

showed that the proposed detector offers BER gains at high SNR values for both 4x4

and 8x8 systems, as well as for QPSK and 16-QAM modulation schemes. The effect on

performance of varying the shadow criterion and the number of alternative candidates is

shown, and the coded BER performance of the hard decision feedback IDD system with

the proposed MF-RO-SIC is shown to have gains over the IDD system with the RO-SIC

and MF-SIC.

In Chapter 5, a WL based detector is proposed using the method of MB for a heav-

ily overloaded multiple user BPSK cooperative MIMO system. The WL-SIC is detailed

for the non-circular signal case, and the MB technique is discussed, with the two tech-

niques being combined, showing how the ordering of the branches involved is applied to

the system. The choice of MB branches is then investigated, with a method of dynami-

cally choosing branches during the cancellation process being developed, based upon the

shadow criterion used in MF techniques. The algorithm for hopping between different

branches is detailed, and a computational complexity analysis is performed, comparing

the different cancellation algorithms. A list-based IDD scheme is then developed, adapt-

ing the proposed MB-WL-SIC to give a list output, and a list generation algorithm is

detailed which is used to produce candidate lists from the single vector output of the WL

filter and WL-SIC, and also to generate new lists per iteration using the a priori LLRVs.

Simulation results show that the MB-WL-SIC can approach the cooperative ML detector

BER performance for the heavily overloaded multiple user cooperative system with the

use of a small number of AF relays. The BER performance of the proposed detector is also

investigated as the number of users and relays in the system changes. The performance of

the DMB-WL-SIC is also demonstrated for different values of the shadow criterion, and

the list-based IDD scheme is shown to have BER gains when using the proposed detector

with a list output.

6.2 Future Work

Many of the methods and algorithms detailed in this thesis have potential to be applied

to scenarios, systems and techniques outside the scope of this thesis, and there is further
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work and analysis that could be considered to extend the work that has been covered.

Cooperative MIMO systems in this thesis are limited to just two phases of transmission

over a single set of relays, but this scenario could be extended to include multiple hops

and phases of transmission within the system, and as such each technique designed for

cooperative systems in this thesis could potentially be adapted for such a system. Of

particular application might be the combinatorial link selection algorithms proposed in

Chapter 3, and by extension the cross-layer cooperative ML detector design. Also, the

overloaded multiple user cooperative system and the proposed methods in Chapter 5 could

find use in mobile communications or wireless sensor networks (WSN), as typically a

WSN consists of many small, single antenna devices transmitting at low data rates, that

can relay data between each device to a single destination in a mesh network, and this

fits well with the idea of using a few devices for simple relays, and the use of BPSK or

similar non-circular modulation schemes. Thus, the MB and WL techniques in Chapter 5

could be used in order to improve the accuracy of data reception in such a network.

The techniques of MF and RO can also be applied to most SIC based algorithms, and

it is possible to combine MF, RO, WL and MB methods together in many combinations,

which could be altered and tuned to suit the application or scenario in which the hybrid

detector would be used, with a great deal of flexibility due to the shadowing and candi-

date limit parameters of MF and the number and choice of branches in MB. The dynamic

branching algorithm in Chapter 5 can also be used for linear filter MB-SIC for circu-

lar signal systems, and could potentially be adapted for other interference cancellation

methods.

The three IDD schemes detailed during this thesis are generally portable to be used

with other types and sizes of channel coding schemes, as well as being applicable to a

variety of different detector algorithms. The LSD IDD scheme from Chapter 3 provides

a platform for any ML based detectors, the hard decision feedback method in Chapter

4 could be adapted to other interference cancellation methods reliant on cancelling esti-

mated symbols, and the list-based IDD method with the list generator in Chapter 5 can

be used with any detector that outputs a list or a single vector estimate of the transmitted

data, so there is a large scope of application.
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Appendix

Derivation of Cooperative ML rule

Equating Eq. (3.15) and Eq. (3.16) gives:

‖ye − H̃eAex‖2 = ‖ysd − H̃sdAsx‖2 +
∑
mεΩs

‖yrdm − H̃rdmArmxm‖2 (A.1)

Using the matrix S defined in Eq. (3.19), we can find the approximation of the equated

ML rules to be:

‖ye − H̃eAex‖2 = ‖ysd − H̃sdAsx‖2 + ‖yrd − Sx‖2 (A.2)

Expanding these equations gives:

yHe ye + xH(H̃eAe)
H(H̃eAe)x− yHe (H̃eAe)x− xH(H̃eAe)

Hye = yHsdysd + yHrdyrd+

xH(AH
s H̃H

s H̃sAs + SHS)x− (yHsdH̃sAs + yHrdS)x− xH(AH
s H̃H

s ysd + SHyrd)

(A.3)

By equivalence, we can make the associations:

xH(H̃eAe)
H(H̃eAe)x = xH(AH

s H̃H
s H̃sAs + SHS)x (A.4)

xH(H̃eAe)
Hye = xH(AH

s H̃H
s ysd + SHyrd) (A.5)
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Starting with Eq. (A.4) it is clear that:

(H̃eAe)
H(H̃eAe) = (AH

s H̃H
s H̃sAs + SHS) (A.6)

H̃eAe = (AH
s H̃H

s H̃sAs + SHS)1/2 (A.7)

We can prove that the use of the matrix square root in this case is appropriate, as

AH
s H̃H

s H̃sAs and SHS are clearly square positive definite Hermitian (SPDH) matrices,

and so their sum is also a SPDH.

Taking a SPDH matrix K of size n, we can diagonalise as such:

K = PHdiag(λ1, . . . , λn)P, (A.8)

where P is a unitary matrix, and λ is a positive eigenvalue. The matrix square root of K

is therefore:
√

K = PHdiag(
√
λ1, . . . ,

√
λn)P, (A.9)

which is clearly still a SPDH matrix. Therefore H̃eAe is also a SPDH, which therefore

means that H̃eAe = (H̃eAe)
H , so (H̃eAe)

H(H̃eAe) = (H̃eAe)
2 demonstrating that the

matrix square root is an appropriate operation in this case.

Using the result of Eq. (A.7) in Eq. (A.5) and rearranging gives:

ye = (H̃eAe)
−1(AH

s H̃H
s ysd + SHyrd) (A.10)
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Glossary

16-QAM 16 - Quadrature Amplitude Modulation

AF Amplify and Forward

ARQ Automatic Repeat Request

ASK Amplitude Shift Keying

AWGN Additive White Gaussian Noise

BPSK Binary Phase Shift Keying

BER Bit Error Rate

CF Compress and Forward

CP Channel Power

CSI Channel State Information

DF Decode and Forward

DMB Dynamic Multiple Branch

ECC Error Correction Code

FEC Forward Error Correction

IDD Iterative Detection and Decoding

LDPC Low Density Parity Check

LLR Log Likelihood Ratio

LLRV Log Likelihood Ratio Value

LMS Least Mean Squares

LNS Log-Normal Shadowing

LOS Line-Of-Sight

LS Least Squares

LSD List Sphere Decoder

MAP Maximum A Posteriori
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MB Multiple Branch

MF Multiple Feedback

MH Maximum Harmonic

MHC Maximum Harmonic Combinatorial

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood

MM Maximum Minimum

MMC Maximum Minimum Combinatorial

MMSE Minimum Mean Square Error

MS Maximum Sum

MSE Mean Square Error

OSIC Ordered Successive Interference Cancellation

QPSK Quadrature Phase Shift Keying

RO Reliability Ordering

SD Sphere Decoder

SG Stochastic Gradient

SIC Successive Interference Cancellation

SINR Signal to Interference-plus-Noise Ratio

SISO Soft-Input Soft-Output

SNR Signal to Noise Ratio

SPDH Semi-Positive Definite Hermitian

VBLAST Vertical Bell LAbs Space-Time

WL Widely Linear

ZF Zero Forcing
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