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Abstract 

This thesis investigates rule extraction from recurrent neuralnet"'orks, which tak('~ 
t he form of autOlnated construction of models of an underlying network. T~'pically 

the models are expressed as finite state machines and they should Inimic t he net­
work while being more intelligible. It is argued that rule extraction allows a deeper 
and more general form of analysis than other, Inore or less ad hoc, Inet hods which 
are typically applied after the training of the recurrent networks. The first part of 
this thesis reviews and analyses the development of related techniques. The s{'('owl 
part presents a novel algorithm, the Crystallizing SlIbstochastic SCfjucntial Alachine 
Extractor (CrySSMEx), which efficiently generates a sequence of increasingly refilled 
stochastic finite state Inodels of an underlying s,·stein. :; ovel features of CrySSMEx 

include, for example, freedOln froill paraIneters. detenllinistic extraction, a hierar­
chical vector quantizer. and a stochastic finite state Illodel which can be constructed 
also when sonle data is lllissing. Experiments show that CrySSMEx is, cOlllpared to 
other Inethods. applicable to a wider range of problellls (such as high-diIllensional 
or chaotic clynaIllic systems). Finally, the field is discussed fronl a lnore theoretical 
perspective in terms of scientific Inethoclology targeted at silnulated systeIn~. It 
is suggested that a rule extractor (or Empirical ~Iachille) can actively select data 
frOln the Sy'steIll it is set to IHodel by continuously targeting the weakest point of its 
currently strongest Illodel. These alltOlllated experilnenters can, in turn, be nwcle 
part of a frarnework (or Popperian ~Iachine) ill which theories about populatiolls 
of systeins are generated and tested in order to est ablish falsifiable SLl telnents. 
These stateinents should have a high eillpirical content and thus concisely describe 
einergent, and previously unknown, properties of the systeIlls. 
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Seek silnplicity, and distrust it. 
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Chapter 1 

Introduction 

Computer simulations are conducted for many reasons. Simulations are In lnany 

ways playgrounds for entertainment and education in lllore or less serious contexts. 

Computer games may provide realistic simulated environments that entail an enter­

tainment value as well as the possibility to put yourself in situations in which you 

may learn new things. For example, airline pilots, surgeons and n1ilitary comn1an­

ders can safely practise their skills in simulated envirOlUllents where their actions 

will not have any fatal consequences. In a silllilar fashion, scientists can create sim­

ulations in which they can test their theories in ways that are impossible or very 

expensive in the real world. They lllay even test theories by sirllulating systelllS 

with no obvious counterpart in the physical world. This thesis focuses on these 

last types of simulated systems in which there is no hun1an intervention during the 

execution of the simulation and where an understanding of the system requires a 

systelllatic analysis of it. 

These simulations are In themselves slllall artificial universes with their own 

laws and their own elllergent orders stemming frOln these laws. :\lany (but far 

frOlll all) of these universes are created to reflect phenOlnena in our own Universe!. 

They are then carefully designed so that their laws rnilllic the natural laws of our 

Universe to our best understanding. The emergent dynalnics of these silllulators are 

consequently used to validate our theories of the laws of the Universe. If an elnergent 

behaviour can be observed in the sirnulated universe as well as in Reality. the 

theories underlying the construction of the silllulator become validated. ~Ioreov{'r. 

as we are olIlniscient gods frOlIl the perspective of the sill1ulated universe, \\T can 

obserVt-' phenoillena not readily apparent in the physical Universe. 

For eXaIllple, consider a helioseisrllologist, a scientist who analyses t h(' intprior 

of the SUll through obst'lTations of the oscillations and sound waves that can bp 

1 Universe (and sometimes Realit:v) is here \\Titten with capital letters to elllpha~iz(' its impo[­
tHllt'{' and to dearl!' separate it from simulated counterparts. 
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observed on the surface of the Sun. There is of course no direct way to observe the 

interior of the Sun. If a detailed theory of the Sun is constructed, however, with 

specifications of constituents, densities, magnetic fields~ temperatures etc., then this 

theory can be the basis of a simulation. The scientist thus may visualize the interior 

of the simulated Sun by projecting selected slices of the Sun. These visualizations 

may help the scientist to understand the Sun at a significantly deeper level than 

would otherwise be possible. The scientist may even become genuinely surprised 

by the results of the simulation, despite them being created by the scientist in 

the first place. Unforeseen predictions stemming from the simulation may later be 

corroborated with observations of the Sun. Observations that without the simulator 

would perhaps lack a proper explanation. 

The situation for the helioseismologist can be taken as an example of how sci­

entists typically need to study nature only through indirect observations of the 

underlying system. The true nature of what is studied may always be hidden. 

Plato's "allegory of the cave" is often used to illustrate this situation in scientific 

studies: 

Behold! human beings living in a underground den [ ... ]; here they have 
been from their childhood, and have their legs and necks chained so that 
they cannot move, and can only see before them, being prevented by 
the chains frOIll turning round their heads. Above and behind them a 
fire is blazing at a distance, and between the fire and the prisoners there 
is a raised way~ and you will see, if you look, a low wall built along the 
way, like the :screen which marionette players have in front of them, over 
which they show the puppets. [ ... ] And do you see, I said, men passing 
along the wall carrying all sorts of vessels, and statues and figures of 
animals made of wood and stone and various materials, which appear 
over the wall? [ ... ] To them, I said, the truth would be literally nothing 
but the shadows of the images. (The Republic - book VII (Plato, 1991), 
pp. 253-354) 

Just as Plato' s prisoners, scientists can typically only observe secondary phe­

nomena, e.g., the sound waves on the surface of the Sun, stemming froin hidden 

activity deep within it. The shadows on the wall are clues about the ';real" ob­

jects that we may never observe directly. We can try to explain the nature of the 

real objects, but not entirely as we please. Scientific methodology strictly gov­

erns what explanations and guesses that are acceptable and the very fact t hat the 

"true" Reality is Dot directly observed colours the scientific meted. Since Realit~, 

cannot siInply be scientifically described just as we inlmediatel~' percein~ it 1 and 

intuitively understand it, we restrict scientific explanations to the OIH'S t hat can be 
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tested. More precisely, we may restrict ourselves to accepting only explanations 

that could be falsified through experiments (Popper. 1990). Therefore. scientists 

do not entirely comply with the description of Plato's prisoners since they have an 

urge (without taking their eyes of the projection) to indirectly interact with the 

objects between the fire and the wall. That is how scientists learn, by active inter­

action through experiments. Based on previous experience, conjectures are born in 

the mind of the imprisoned scientists, and further experiments helps to refine the 

scientific knowledge by refuting ideas of Reality that are false (Popper. 1990). 

In simulated universes, however, we are no longer the prisoners. we are instead 

the creators of the cave, the fire, the passage way and the wall onto which images of 

objects of our choice are projected. Yet, one may argue that we still put ourselves 

in the position of the prisoners once we have constructed the cave. We are still 

bounded by our desire to understand the Reality which inspired us to build the cave 

in the first place. But we do not belong in our simulated caves such as the prisoners 

envisioned by Socrates in Plato's text. They are imprisoned since childhood and 

their entire perception of the universe is the projection. When we analyse our 

simulated systems, i.e. when we "enter the cave" of our creation, we bring with 

us the experience built from the experience in our own "cave" in which we are 

the true prisoners; the Universe. This experience may largely overlap with the 

experience of an imagined life-long cave occupant, but the simulator may be entirely 

new to us. For eXalnple. if the simulator is not designed to encompass any real 

phenomena, but is instead an abstract mathematical construction, then it may 

becolne difficult for us to fully interpret any projection. Some simulations, such as 

of artificial neural networks, or of artificial life, are not meant to reflect Reality more 

than in a very abstract sense. The projection in this case may be visualizations 

of the system, or data logs from simulating the system. Since the projection is 

chosen by ourselves and our limited understanding of the system, it may not be 

the nlost informative of possible projections. For example. the helioseisnl0logist 

Inay visualize the Sun by slicing it up like an onion whereas he/she could learn 

more by other more counter-intuitive projections in space-time t hat perhaps Illore 

appropriately preserve information about relevant dynamics of the Sun. 

We may also take the seat of the prisoner for other reasons t han direct and 
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aesthetic visualizations of the system. There may simply be a concrete need for 

projecting a complex simulated system onto a more comprehensible plane. One 

reason for this is that the system may be completely abstract to us. It could also 

consist of an enormous number of state variables. changing over long sequences 

of simulated time. The system must then typically be projected. through visu­

alizations or otherwise, just to enable us to comprehend it. If, for example. the 

dynamically changing simulated Sun is represented by a finite set of elements in a 

3D-lattice of 100 x 100 x 100 elements of 10 values each (e.g., chemical composition, 

temperature etc.) and this system is simulated for 102 time steps, then the amount 

of data is on the order of 109
. It can be argued that the scientific value of this data 

does not emerge until the scientist can put forward statements about the systeill. 

But what if the system is not a Sun? What if it was created for other reasons 

than simulating aspects of Reality? The terminology of the scientist, bounded by 

his/her perceived Reality, may not be appropriate or rich enough for the task of 

describing the 109 data points in a truly lneaningful way. It may become difficult 

for us to remain the scientific prisoners in our simulated universes/caves. We nlay 

lack the intuition for it. 

Moreover, we should not underestimate our ability to create such caves once we 

have the means of creating one of them. The helioseismologist may for example 

continue to generate hypothetical stars indefinitely, each one representing a new 

simulated cave. For each different star, different research questions may be of rel­

evance. Perhaps the acoustics of a red dwarf have a rich variety of self-sustained 

harmonic sound waves that are never seen in a larger star? Each such potential 

richness of behaviour of each individual system may require the helioseismologist 

to assume the role of a scientifically reasoning prisoner in each cave. Even if the 

intuition of the helioseismologist may, after years of training, be sufficient to cor­

rectly understand each system, he may for every correctly analysed systeul create 

yet another one, e.g., a little more helium, some lnore metals, a somewhat younger 

star, etc. 

In some areas of research the creation of novel systems lies at the very core of 

their nlethodology, especially for artificial neural networks (AXNs). artificial life. 

genetic algorithms/progralnlning (GA/GP), etc. For these areas, the creation of 
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the system need not be grounded in a sound solid theory of the Universe since 

they are not meant to correspond to any reality. The systems are therefore easy 

to create. In fact, long sequences of such systems are created constantly, just to 

evaluate their fitness in solving the task which they are supposed to solve. And. free 

from any basis in our Reality, they are not easy to understand, intuitively. In such 

cases we typically put ourselves directly in the prisoner' s position only for a handful 

of examples. Instead, the analysis of the projection is typically reduced to a simple 

automated data collector, e.g., a numeric performance evaluation. For example. the 

results of genetic programming may be a couple of thousand potential systems that 

all solve, or partially solve, a particular problem. Typically only the best of these 

are further analysed for the purpose of describing and understanding them. But 

each one of these systems would require "a scientific prisoner" of its own, in order to 

be analysed with scientific methodology. The simple collection of data, in the same 

way for each systeIn, corresponds to letting each cave be inhabited by dummy 

prisoners, not learning from the experience stemming from each system. Just 

as each of the helioseismologist's hypothetical stars may require its own research 

questions to be properly scientifically analysed, automatically created systems may 

be widely different from each other despite being created by the same mechanism. 

The dummy prisoner we put in our place, Inay therefore be inadequate. 

In this thesis, I will suggest that, in the place of the passive data collecting 

prisoners of these caves, put in prisoners that can more actively interact with the 

system behind the fire. I suggest that instead of only being the creators of the 

cave, fire and projected objects, we should also create the prisoners themselves. 

One set of (artificial) prisoners per cave, situated in their own universe, analysing 

and interacting to learn about their world. Of course, in this thesis, the set of 

potential caves will be very modest. Although I will suggest that their behaviour 

is strictly regulated by the saIne principles of scientific methodology that govern 

human scientists, the intelligence of these prisoners will also be modest. However, 

the principle could apply in a broader sense: analysis of artificial systems conducted 

by artificial scientific intelligence. The "scientific" aspect of these prisoners will be 

more accentuated at the end of this thesis where Popper's falsificationism will be 

suggested as a guideline for evaluating statenlents about simulated universes. 
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But how should these prisoners be created? And is it feasible to create them 

at all? The problems of artificial intelligence are by no nleans trivial. However. 

as described above, simulated systems typically act as playgrounds for learning 

without any risks. Simulated systems are lnore easily controlled and are alread~' 

used many times as development environments when creating artificial intelligences 

such as learning systems. For example. robot controllers that should learn frOlll 

experience are often trained completely in simulation (e.g. ~leeden. 1996; Zielllke. 

2000). As will be discussed in Chapter 18, it is a simple nlatter of fact that sinlulated 

systems are much easier to integrate with AI learning techniques since there is 

no noisy Reality which must be indirectly interacted with, through sensors and 

actuators. This is also one of the main criticisms of early AI techniques: they 

were very successfully applied, but only on silllple toy-world problerlls. e.g., the 

blocks world. Simulated systems of today, however, are not necessarily triviaL nor 

necessarily sufficiently analysed by hUlnan scientists either, since the very SaIlle 

scientists can easily create more systems than they can ever fully analyse in their 

life times. ~any simulated systerns lllay therefore both be the perfect playground 

for artificial scientific intelligence as well as domains where there is a need for such 

techniques. 

In this thesis, the Plato caves in question are instantiations of simulated trained 

recurrent neural networks (RNNs). For RNNs (e.g. Kremer, 2001; Kolen & Kremer, 

2001) it has been natural to analyse them as finite state machines (FSl\Is), parHv 

due to their comlnon source of origin (l\IcCulloch & Pitts, 1943), and partly due to 

the fact that the:v have often been trained to perfonll regular language recognition 

(e.g. Cleerelllans, McClelland & Servan-Schreiber, 1989; Christiansen & ClHtter. 

1999). This has resulted in the development of algorithms for transfonning one 

lllodel into another. i.e. from RNNs into FSl\Is. These transfonnations are made 

through observation of the RN~ and the generation of FS;\I descriptions of the~e 

observations. In other words, the "Plato prisoners" in this case are therefore al­

goritllll1S that learn to create FS~I descriptions of RS\'"s through observations of 

RNN projections. The projections are not indirect in the sense that the perception 

of Plato's prisoners is indirect. Instead. these "projections" t\'picallv contain {,\"(T~' 

single aspect of the R:\\, s (but lilnited to the R \':'\ (IS put in specific cOlltexts). 
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The problem for human observers of RNNs is that their behaviour is not a con­

sequence of the physical laws we are used to. They may be counter-intuitive and 

complex to understand, even if moderately sized. The FS:\I descriptions of some 

RNNs may indeed be fairly complex too, but they have the advantage of having a 

clearly defined syntax and semantics. With a clear formal specification~ the FSMs 

can be used as a proxy, in place of the actual underlying RNN, for inference of new 

(falsifiable, Popper (1990)) statements about the RNXs (cf. Chapter 18). 

The broad structure of this thesis is as follows: Part I presents a survey and 

critique of rule extraction algorithms that generate FSMs mimicking specific RNNs. 

In Part II a novel rule extraction algorithm is suggested and experiments are con­

ducted to establish the efficiency of it. Finally, Part III discusses several, more or 

less, speculative future directions based on the connection to scientific methodology. 
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Part I 

Rule Extraction from Recurrent 

Neural Networks - A Survey 



Chapter 2 

Introduction to Part I 

In this part of the thesis, techniques for extracting rules (or finite st ate rnachines) 

from discrete-time recurrent neural networks (DTR XNS, or sirllply R~:.J s) are re­

viewed. A new taxonomy for classifying existing techniques will be suggested, and 

existing techniques will be presented and evaluated. A list of open research issues 

that need to be addressed will also be suggested 1 . 

By R~~-RE I refer to the process of finding/building sYlnbolic cOlnputational 

models/machines that Inilnic the RNN to a satisfactory degree. The connection 

between R~~ sand sYlubolic luodels of computation is ahnost as old as the study 

of RNNs thelnselves since the origins of these fields are largely overlapping. The 

study of neural networks once coincided with the study of cOlnputation in the binary 

recurrent network implementations of finite state autOlnata of the theoretical work 

on nervous systems by i\IcCulloch and Pitts (1943) (an interesting overview of this 

topic is found in Forcada, 2002.) This comlnon heritage has been flavouring the 

development of the digital computer although our current computer s~'stelns are 

very far fronl being Inodels of the nervous system. 

In the early 1990s, the research on recurrent neural networks was revived. \\Then 

Elman introduced his, quite well known, simple recurrent network (SR:,\) (Ehniln, 

1990), the connection between finite state machines and neural networks \nl~ again 

present fron1 the start. In his paper, the internal activations of the net\vorks were 

f'xplicitly cOIupared to the state~ of a finite state Inachine. 

I n theory, R~:\T s are Turing machine equivalent2 (SiegehnClnn Ie\: Sont a~, 19D,-)), 

1 Chapters :2 I han' been published in a n)r~' similar form in Jacohsson (2005). 
2 ActllaJl~' ~IcCulloch and Pitts (1943) determined this equivalence alread~' in 1~H3, for discrpt(' 
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and can thus compute whatever function any digital computer can compute. But 

we also know that to get the RNN to perform the desired computations is very 

difficult (Bengio, Simard & Frasconi, 1994). This leaves us in a state of knowledge 

vacuum; we know that RNNs can be immensely powerful computational devices, 

and we also know that finding the instantiations of RNNs that perform these com­

putations could very well be an insurmountable obstacle, but we do not have the 

means for efficiently determining the computational abilities of our current RN~ 

instantiations. On a less theoretical level, we can simply evaluate the performance 

of different R~~ s in order to see to which degree a learning problem is solved for a 

specific domain. Such studies are conducted in virtually all papers applying RNNs 

on a domain, and in some cases more systematic studies are presented (rvIiller & 

Giles, 1993; Horne & Giles, 1995; Alquezar, Sanfeliu & Sainz, 1997). But even 

something as simple as evaluating the performance of an RXN on a specific domain 

has some intrinsic problems since implicit aspects of the evaluation procedure can 

have a significant impact on the estimated quantitative performance (J acobsson & 

Ziemke, 2003a; Jacobsson, 1999) (cf. Appendix C). 

Actually, the analysis problems may lead to the use of too simplistic models, e.g., 

smaller networks and toy problem dOlnains, just to be able to analyse (or visualize) 

the results. One may wonder how many published networks with just two or three 

state (or hidden) nodes had their specific topology chosen just to make the plotting 

of their internal activations possible. Thus, what is required is in-depth analyses of 

RNN instantiations to uncover the actual behaviour of RNN instantiations without 

the need for "manually" analysing visualizations of the RNN behaviour. An efficient 

rule extraction technique may be the best tool for such analyses. 

2.1 Topic delimitation 

Since the early nineties, an abundance of papers on recurrent neural networks has 

been written3 , and many of them have dealt explicitly with the connection between 

RNNs and state machines. Many contributions have been theoretical, establishing 

the connection between (analogue) RNN s (or other dynamic systenls) and tradi­

networks (Medler, 1998). 
3 Many of these are summarized in Kremer (2001) and Barreto, Araujo and Kremer (2003). 
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tional (discrete) computational devices (e.g. Crutchfield &. )'oung. 1990: Sen'an­

Schreiber, Cleeremans & ~IcClelland, 1991; Crutchfield, 1994; Kolen, 1994a; Horne 

& Hush, 1994; Siegelmann & Sontag, 1995; Casey. 1996: Tino, Horne. Giles & 

Collingwood, 1998; Jagota, Plate, Shastri & Sun, 1999; Omlin & Giles, 2000: Silna 

& Orponen, 2003; Hammer & Tino, 2003; Tino & Hammer, 2003). \Vhile these 

papers cover a wide spectrUlTI of highly interesting and important theoretical in­

sights, this thesis will not dwell on these theoretical issues. Firstly. because it is not 

the focus of the survey-part of this thesis. Moreover, some of these papers already 

resemble surveys themselves, summarizing earlier findings. 

At a pragmatic level, these are papers describing techniques for transfonning 

state machines into RNXs (rule insertion) and/or for transforming RXNs into state 

machines (rule extraction) (e.g. Omlin & Giles. 1992; Giles & Omlin, 1993: Das, 

Giles & Sun, 1993; Alquezar & Sanfeliu, 1994a; Omlin & Giles. 1996a, 1996c; 

Omlin, Thornber & Giles, 1998; OInlin & Giles, 2000; Carrasco. Forcada, 0.Iunoz 

& N eco, 2000; Carrasco & Forcada, 2001). This thesis, however. deals exclusively' 

with algorithms for performing rule extraction from R NN s. 

Unfortunately, there is no space for a discussion of the analysis tools of RXl\'"s 

other than just RE. Since there are a Inultitude of lnethods used to analyse RNNs. a 

survey on this issue should definitely be written as well. A brief (and Inost probably 

inconclusive) list of examples of other analysis tools that have been used on RXXs 

includes: 

• Hinton diagralns (e.g. Hinton, 1990; Xiklasson & Boden. 1997), 

• hierarchical cluster analysis (e.g. Cleerelnans et al., 1989; Ehnan, 1990; 

Servan-Schreiber, Cleerernans & ~'lcClelland. 1989; N. E. Sharkey & .J ack­

son, 1995; Bullinaria, 1997), 

• silTIple state space plots (e.g. Giles & Omlin. 1993; Zeng, Goodrnan l\: SlIl\'t h. 

1993; Gori, l\Iaggini & Soda, 1994; Niklasson & Boden, 19~)7: Tonkes, Blair 

& \Yiles, 1998: Tonkes & \Yiles, 1999; Rodriguez, Wiles ,\: Elman. 1 qqq: 

Rodriguez. 1999; Tabor & Tanenhaus, 1999). 

• activation values plotted over time (e.g. Husbands, Harn)\' ,\.' Cliff, 1 qq:>: 

Meeden, 1996; Ziernke & Thienle, 2002), 

• iterated maps (c.g. \Yiles & Ehnan. 1995). 
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• vector flow fields (e.g. Rodriguez et al., 1999: Rodriguez, 1999). 

• external descriptive behaviour analysis of RXX based autonomous robotic 

controllers (e.g. Husbands et al., 1995; ~leedenl 1996). 

• weight space analysis (e.g. Boden, \Viles, Tonkes &: Blair. 1999: Tonkes &. 

Wiles~ 1999), 

• dynamic systems theory (e.g. Tonkes et al., 1998; Rodriguez et al.. 1999; 

Rodriguez, 1999; Boden, Jacobsson & Ziemke, 2000), 

• and ordinary quantitative evaluations of RNN performance for different do­

mains (basically every single paper where an RNN is applied). 

Unlike previous surveys of rule extraction (Andrews, Diederich & Tickle, 1995; 

Tickle, Andrews, Golea & Diederich, 1997, 1998), this thesis deals exclusively with 

rule extraction from recurrent neural networks (resulting in quite different evalua­

tion criteria than in previous RE surveys, as Chapter 4 illustrates). In fact, nlany of 

the RE approaches for non-recurrent networks could potentially be used on RNNs, 

or at least on non-recurrent networks in temporal domains (e.g. Craven & Shavlik, 

1996; R. Sun, Peterson & Sessions, 2001). There are also other symbolic learning 

techniques for 'training~l finite automata on symbolic sequence domains directly, 

without taking the extra step of training a neural network, which could be men­

tioned (R. Sun & Giles, 2001; Cicchello & Kremer, 2003). While these techniques 

are certainly interesting in themselves and should also be compared to RNN-RE 

techniques experimentally, they are not further examined in this thesis. 

To summarize, this part of the thesis (i.e. Chapters 2-7) is focused solely on 

c( RNN-RE techniques. but this field is closely related to the above mentioned areas.!. 

It may also be worth mentioning that, as a review of techniques, the descriptions 

are not meant to be tutorials. Thus, for readers interested in ilnplementing the 

algorithms, consulting the cited papers should be more helpful. 

2.2 Overview of Part I 

Firstly, Chapter 3 describes RNNs, finite state machines, and COlnmon character­

istics of R~~-RE algorithms. The evaluation criteria underlying the construction 

-1 As well as a number of areas that are related based on coincidental overlap rather than 
tradition (cf. Chapter 15). 
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of a taxonomy for appropriately classifying and describing R:\":\-RE algorithms are 

described in Chapter 4. The techniques are described in Chapter 5 and are conse­

quently discussed in light of the evaluation criteria in Chapter 6. The open research 

issues are summarized in Chapter 7. 
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Chapter 3 

Background 

An RNN processes sequences of data (input) and generates responses (output) in 

a discrete time manner. The RNN processes information by using its internal con­

tinuous state space as an implicit, holistic memory of past input patterns (Ehnan, 

1990). In the extraction of rules from an RX)J, the continuous state space is ap­

proximated by a finite set of states and the dynmnics of the R X~ is Inappecl to 

transitions among this discrete set of states. 

A brief definition of what constitutes a recurrent neural network in the scope 

of this thesis follows. In addition, a concise introduction to finite state lnachines 

(FS~Is) will also be provided. since the extracted rules are typically represelltf'd as 

such. A more detailed description of what R:\~ -R E algoritllllls typically constitute 

will then follow. 

3.1 Recurrent neural networks 

To provide a detailed review of the achievements in RXX research and the vast 

variety of different RNN architectures is far beyond the scope of this thesis. Instead. 

a set of identified common features of 1110St RNX architectures will be described at 

an abstract enough level to hopefully not only incorporate lnost networks to which 

the existing R\""~-RE algorithll1s could be applied but also abstract enough to sec 

the striking silnilarities of RXN cOlnputation with the cOlllputation in finitc state 

IllClchines (see Definition 3.2). Readers with no prior experience of R \"":\s can filld 

lllore detailed descriptions and wdl developed classificatiolls of R:\\'.-; in Kolen alld 
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Kremer (2001), Kremer (2001) or Barreto et al. (2003). 

Only a few of the many RXN architectures have been used at all in the context 

of rule extraction, e.g., simple recurrent networks (SRXs. Elrl1an, 1990) and nl0re 

commonly second-order networks (e.g., Sequential Cascaded Xetworks, SC~s. Pol­

lack, 1987). These models differ somewhat in their functionality and how they are 

trained. But the functional dependencies are, at some level of abstraction, basically 

the same, which is exploited in the definition below. 

Definition 3.1 A Recurrent Neural Network R is a 6-tuple R = (J, 0, S. ~,.~. ~'O' 

sa) where, I C }Rni is a set of input vectors, S C }Rns is a set of state vectors, 

o C }Rno is a set of output vectors, l8 : S x I ~ S is the state tmnsition junction, 

'Yo : S x I ~ 0 is the state interpretation function, and sa E S is the initial state 

vector. nil n Sl no E N are the dimensionalities of the input, state and output 

spaces respectively. 0 

Often the input, state and output are restricted to hypercubes with all elements 

limited to real nUlubers (or, of course, rational approximations of real nunlbers 

when simulated) between zero and one or minus one and one. \Yhen training the 

networks, the two functions l8 and 10 are typically adjusted to produce the desired 

output according to some training set. For a sequence of input vectors (i I , i2 , ... , il) 

the state is updated according to st = r8(st-l,it) and the output according to 

ot = lo(it, st-l). The functional dependencies are depicted in Figure 3.l. 

Note that the weights. biases, activation functions and other concepts typically 

associated with neural networks are all hidden in the state transition function fS and 

state interpretation function lO' This is because. as far as RNN-RE algorithms are 

concerned, the fact that the networks have adaptive weights and can be trained. 

is of less importance. An interesting consequence of the abstract nature of this 

RNN description, which is also all that is required to continue describing R~X-RE 

algorithlus, is that it reveals something about the portability of t he algorithms 1 

(cf. Section -1.2). There are simply not luany assunlptions and requirelnents of the 

underlying R~~s, which means that they are portable to more RX~ types than 

they would be otherwise. However. there are a few asstuuptions, e.g .. that statl'S 

ITo ensure high portability in my own suggested technique. a slightly more general definition 
will be given in Part II which does not include an initial state (Definition 9.1 on pagl' 59). 
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Figure 3.1: The functional dependencies of the input, state and output of an RNN. This 
is a Mealy-type RNN, i.e. where the output is determined by state and input together. 
For some RNNs it may be more appropriate to describe them as ~Ioore machines where 
the output can be determined from the state alone. This can however be achieved in 
the Mealy machine by simply letting the input domain's influence over the output be 
possible in theory but non-existent in practice. Therefore the ~Iealy machines encompass 
also Moore machines. 

should cluster in the state space as a result of the training (Cleerenlans et al., 1989; 

Servan-Schreiber et al., 1989). SOlne, more implicit, assulnptions are also the target 

of some of the criticislns of RXN-RE (Kolen, 1993, 1994a). which will be discussed 

in Section 6.7 (more im plici t aSSUln ptions are also discussed in Sect ion 6.5). 

3.2 Finite state machines 

The rules extracted froIn RNNs are almost exclusively represented as finite state 

Inachines (FSMs). The following description is kept brief. For a full discussion of 

what comprises a regular language and other classes of formal languages, interested 

readers are referred to Hopcroft and Ullman (1979). 

Definition 3.2 A Deterministic f.vfealy Afachine 1\1 is a 6-tuple AI = (X. y, Q, 

Is, 1'0' qO) where, X is the finite input alphabet, Y is the finite output alphabet, Q is 

a finite set oj states, :s : Q x X ---+ Q is the transition junction, ~'O : Q x .. \ ---+ Y i:-; 

t he output junction, and qO E Q is the initial state (note the silnilarities with tlw 

RNNs in Definition 3.1). 0 

In rases where the output alphabet is binary the lllarhine is oftpll rcf('lTt'd to "b 

a finite state automaton (FSA). In an FSA. the output is interpreted (lS all ([('('('pt In' 

reject derision detennining whether an input sequPllce is ;weep! ('<1 as a grallllllal ict\ 

string or not. 
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Figure 3.2: Examples of (non-equivalent) different FSl\I types with X = {a, b}, Y = 

{c, d}, Q = {I, 2} and qo = 1; (A) deterministic Moore machine, (B) deterministic ~Ieal:v 
machine, (C) nondeterministic Moore machine, and (D) nondeterministic NIealy machine. 

There are actually two different 1l1odels which can describe an FS~I; Mealy (as 

above) or Moore machines that, although they are quite different frOIl1 each other, 

are computationally equivalent (Hopcroft & Ullman, 1979). ~Ioore 1l1achines gener­

ate outputs based only on the current state and i\Iealy 1l1achines on the transitions 

between states. i.e. the output function, !o' is for a ~Ioort~ nlachine 10 : Q ~ Y 

and for a Mealy machine 10 : Q x X ---+ Y. 

In deterministic machines. an input symbolulaY only trigger a single transition 

from one state to exactly one state (as in the definition above). In a nondetermin­

istic machine, however, a state may have zero, one or more outgoing transitions 

triggered by the same input, i.e. the transition function, !s, is !s : Q x X ~ 2Q (a 

function to the power set of Q) instead of!s : QxX ~ Q. This nleans that in a non­

deterministic machine, a symbol may trigger one or more transitions froIn a stat<', 

or even no transition at all (since 0 E 2Q). I will denote nondetenninistic Inachine~ 

incomplete if there is at least one q E Q and x E X such t hat ~'.~ (q. 1') = 0. Deter­

ministic and nondeterministic finite state Inachines are cOInputationall~' equivalent. 

although nondeterministic Inachines can t~'pically be llluch more compact (i.e. have 

less states) than their detenninistic counterpart. Detenninistic FS~I and detpnnill-
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1. Quan~iza~ion of the continuous state space of the R~~. 
resulting In a discrete set of states. 

2. State and output generation (and output classification. if 
necessary) by feeding the RX~ input patterns. 

3. Rule construction based on the observed state transitions. 
4. Rule set minimization. 

Table 3.1: The common "ingredients" of RNN-RE algorithms. 

istic FSA, will be abbreviated DF:M and DFA respectively. 

In summary, there are four types of FSMs: deterministic 1\loore machine, de­

terministic Mealy machine, nondeterministic Moore machine, and nondeterminis­

tic Mealy machine, see Figure 3.2 for examples. l\loreover, the machines can be 

stochastic2 as well if transition probabilities are also encoded in the machine. 

For a more detailed description of deterministic and nondeterministic, ~1ealy 

and Moore machines~ proofs of equivalence, and a "standard" minimization algo­

rithm, see Hopcroft and Ulhnan (1979). For the corresponding theory on stochastic 

machines, see Paz (1971). 

3.3 The basic recipe for RNN rule extraction 

The algorithms described in this thesis have many features in common as listed in 

Table 3.1. 

The continuous state space of the R~j\" needs to be mapped into a finite set of 

discrete states corresponding to the states of the resulting machine. We will refer 

to the states of the network as microstates and the finite set of quantized states 

of the network as macrostates. The macrostates are basically what the RE algo­

rithm "sees" of the underlying RNN, whereas the actual state of the network, the 

microstates, are hidden. The act of transforming the lnicrostates into InC1crostatps 

is a critical part of RNN-RE algorithnls (ingredient onp in Table 3.1) and is called 

quantization. One nlarrostate corresponds to an uncountable set of possible mi-

2Cf. stochastic sequential machines (Paz, 1971), probabilistic automata (Rahin. 1963) or the 
substochastic sequential machines as I suggest in Part II. 
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crostates (only in theory: in practice the RXX is simulated on a computer with 

finite precision). Therefore deterministic sequences of events at the rnicrostate­

level may appear stochastic at the macrostate-Ievel since infonnation is lost in the 

quantization, e.g., if two microstates al. a2 E A deterministically transit to nli­

crostates bI E Band CI E C respectively, then, at macrostate level, it cannot be 

determined from observing macrostate A whether the next macrostate will be B or 

C. 

Another common ingredient of RXX-RE algorithms is systematic testing of the 

RNN with different inputs (from the domain or generated specifically for t he ex­

traction) and the (macro)states and outputs are stored and used to induce the finite 

state machine (ingredient two). The third ingredient is the machine construction. 

a process often conducted concurrently with the state and output generation. 

Many times, the generated machine is then minimized using a standard min­

imization algorithm (Hopcroft & Ullman, 1979), which is the fourt h common in­

gredient of R~~-RE algorithms. FS~I lninimization is however not part of all 

algorithms, and can also be considered an external feature. independent of the 

actual extraction. 
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Chapter 4 

Evaluation Criteria and Taxonomy 

Several evaluation criteria have been chosen in order to sinlplif~' cOlnparison~ and to 

structure the descriptions of the algorithnls in the following chapters. The rule type. 

quantization method and state generation method can be considered to constitute 

the main distinguishing features of Rl\N-RE algorithills , and are therefore bepn 

used to structure this survey. 

4.1 Main criteria 

4.1.1 Rule type 

As previously Inentioned (in Section 3.2) the rules generated b~' R"\,"~-RE algoritllIllS 

are FSMs that are either deterministic. nondeterministic or stochastic. They can 

also be in a Alealy or Aloore forIllat. In my classification of rule types I hayp also 

chosen to distinguish whether the Inachine (and underlying R\-X) is producing a 

binary accept/reject decision at the end of a string (i.e. like an FSA) or if the ta:-ik 

is to produce an output sequence of SYIllbols based on the input sequence (t~'picalh' 

for prediction). 

4.1.2 Quantization 

One of the Inost Var~"illg eleIIlPnts of existing R:\:\-RE algorithnl:-i is tIlt' stntl Sj)(J('1 

quantizatioll lllE'thod. EXaIllples of Inethods used include: hierarchical clnst('ring. 

\"('ctor quantization and ~.;('lf organizing maps (see Spctioll (j.2 for a dptailpd disCllS-
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sion). 

4.1.3 State generation 

Another important criterion is the state generation procedure for which there are 

two basic methods: searching and sampling. These are further described in the 

descriptions of the algorithrns. 

4.1.4 Network type and domain 

Although not a feature of the extraction algorithm per se, the network type(s) and 

in which domain(s) each R~0J-RE algorithm is used, are explicitly listed for each 

presented technique. 

4.2 Criteria from the ADT taxonomy 

Andrews et al. (1995) introduced a taxonOlllY. the ADTI taxonomy, for RE algo­

rithms which has since been an inlportant frarnework when introducing new. or 

discussing existing. RE algoritllllls (e.g. Schellhamluer. Diederich, Tuwsey l\: Brug­

rnan, 1998; Vahed & Onllin. 1999: Craven &: Shavlik, 1999; Blanco, Delgado l\: 

Pegalajar, 2000). The five evaluation criteria in the ADT taxonOluy are: expressive 

power, translucency, portability, rule quality and algorithmic cOlllplexity. However, 

for SOllle of their classification aspects all Ri\'~-RE algorithrus would end up in 

the salue class and those aspects are therefore not very infonnative. The ADT 

taxonOlu.\' does, however, provide us \-vith some very' useful viewpoints discussed 

in Chapter 6. SOlne of the terminology from the ADT taxonolllY also appears in 

various sections of this survey, therefore a brief description of the ADT aspects 

follmys. 

4.2.1 Expressive power 

The c,rp,'cssil'e power is basically the type of rules generated by the RE and hence 

Suhsuluecl b.\' our rule type criteria, Taking Tickle et aI. (1997) and Tickle et al. 

(19m.;) into account, ADT identifies four basic classes: 

1 .. ADT" COIIll'S from the IlalIles of the authors. Alldrews, Diederich and Tickle. 
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• propositional logic (i.e. if. .. then ... else). 

• nonconventional logic (e.g., fuzzy logic) 1 

• first-order logic (i.e. rules with quantifiers and variables). and 

• finite state machines. 

Almost all rules froin RNX-RE algorithms comply with the last category. 

4.2.2 Translucency 

One of the central aspects in the ADT taxonomy, translucency, described as the 

"degree to which the rule-extraction algorithm 'looks inside' the Ai\'"~" is less rel­

evant in this survey since it is not a distinguishing feature of RXX-RE algoritlllns. 

ADT initially identified three types of RE algorithms. (i) decompositional algo­

rithms where rules are built on the level of individual neurons and then cOlnbined, 

(ii) pedagogical approaches using a black-box nlodel of the underlying network and 

(iii) eclectic algorithms with aspects from both previous types. Tickle et aI. (1998) 

also introduced a fourth intennediate category, compositional, to accollllIlodate for 

RNN-RE algorithms that are all (except for one pedagogical algoritlllIl (Vahed & 

Omlin, 1999, 2004)) based on analysing ensenlbles of neurons (i.e. the hidden state 

space). 

4.2.3 Portability 

Portability denotes how well an RE technique covers the set of available A(\~ 

architectures. As for translucency, portability is probably lnuch the same for all 

RNN-RE algoritluns. It is also a quite cOlnplex aspect of RE techniques (tightly 

bound with translucency, and, in terms of feasibility, with algorithmic cOlnplexit~·) 

and therefore this survey does not distinguish RNN-RE algorithms by this criterion. 

4.2.4 Quality 

The q'uality of the extracted rules is a very important aspect of R E techniques. and 

perhaps the IHost interesting for ('\"aluation of the qualit~" of the algorit luns. Thi~ 

aspect differs froln the other ones because it evaluates RE algorit hnls at the level 

of the "lIlfS rather than at the level of the RE algorithrns thelnselves. 
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Based on previous work, such as Towell and Shavlik (1993), four suh-aspects of 

rule quality are suggested in the ADT taxonomy; 

• rule accuracy, i.e. the ability of the rules to generalize correctly to unseen 

examples, 

• rule fidelity, i.e. how well the rules mimic the behaviour of the RX~. 

• rule consistency, i.e. the extent to which equivalent rules are extracted frOln 

different networks trained on the same task, and 

• rule comprehensibility, i.e. readability of rules and/or the size of the rule set. 

4.2.5 Algorithmic complexity 

The algorithmic complexity of RE algorithms is unfortunately also often an open 

question as authors seldom analyse this explicitly (Andrews et al., 1995). Although 

Golea (1996) demonstrated that RE can be an NP-hard problem, it is unclear how 

existing heuristics affect the actual expected time and space requirements. The 

complexity of R~~-RE has not received much attention and the issue itself is quite 

complex as the execution time can be affected by many factors. e.g., number of state 

nodes, number of input symbols, granularity of the quantization, RNN dynamics 

etc. 
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Chapter 5 

RNN-RE Techniques 

In spite of the identified common characteristics of RE algorithms (Table 3.1), 

dividing them into groups has been a painstaking task as there are innunlerable 

ways to do so. The techniques are presented in a primarily chronological order and 

when a later technique is similar to an earlier one, it is presented in connection 

with its predecessor (although this relation may be constituted by coincidental 

similarities rather than a direct continuation of prior work). 

Firstly, smne early work that laid the foundation for the developlnent of R E 

techniques is presented in the following section. The algorithnls are subsequently 

described in more detail in Sections 5.2-5.7. However, for more cOlnprehensive 

descriptions of the algorithlns, interested readers should refer to the original papers. 

5.1 Pre-RE approaches 

To understand the roots of FS!\I extraction frOln recurrent netv\iorks, it is useful 

to recognize that in some early attenlpts to analyse RNXs, clustering techniques 

were used on the state space, and clusters corresponding to the states of the FS:\ [ 

generating the language were found (clustering, i.e. quantization. is still today' one of 

the central issues of the research on RE fronl RNNs). Hierarchical Cluster Anah"~i~ 

(HCA) was used for analysing R~:\s in a few early papers on RN:\s (CleereIllall~ 

d aI., 1989; Servan-Schreiber et aI., 1989; Ehnan, 1990; Servan-Schreiber et al., 

1991). The authors found that for a network trained on strings generated bv a 

small finite-state Inachine, the HeA lnay find clusters in the state space ,,"hich 



apparently correspond to the states of the grammar. The clusters of the HeA were 

labelled using the labels of the states of the underlying (known) state machine. 

making it easy to draw the connection between the RXX and the FS~1. 

The fact that much of the early research on RNN s was conducted on problem 

sets explicitly based on FSMs may have biased subsequent research to look for these 

FSMs inside the network. However, for some successful networks (e.g. Servan­

Schreiber et al., 1991), no clusters corresponding directly to the states of the FS~L 

which generated the training set language, were found. This meant the network had 

an alternative, but apparently correct, representation of the problenl, that differed 

from the one anticipated. This was probably due to the fact that the clusters of 

the internal state of the network did not necessarily have a straightforward one-to­

one relation with the states of the corresponding minimal machine. It was later 

shown that non-minimal machines would typically be what is initially extracted by 

clustering the state space when RE was used on RNNs (Giles, Miller, Chen, Chen & 

Sun, 1992). Therefore FS:vr minimization is included in most RNN-RE algorithms. 

The basic problem of using only clustering (and not recording the transitions) 

for analysing RNN s is that there is no reliable way of telling how the clusters relate 

to each other temporallyl. If the exact same FS~r is not found, the clusters may 

not be labelled using the original FSM as a source and the temporal ordering of 

the clusters is therefore lost. This problem was also observed by Elman (1990): 

"the temporal relationship between states is lost. One would like to know what the 

trajectories between states [ ... J look like.". The solution of this problem led to the 

development of FSYi extraction from RNN s. 

5.2 Search in equipartitioned state space 

The algorithm of Giles et al. (Giles et al., 1991; Giles, Miller, Chen, Chen & 

Sun, 1992; Olnlin & Giles, 1996b) partitioned the state space into equally sized 

hypercubes (i.e. macrostates) and conducted a breadth-first search by feeding the 

1 There are also other problems of an HCA-based analysis of ANNs in general, as adjacent 
states (i.e. hidden nnit activations) ma~' be interpreted differently by the output layer and r('mote 
states may have the same interpretation (N. E. Sharkey & Jackson, 1995). For RNNs this becomes 
even more problematic as the state is not only mapped into an output but also mapped recursively 
to all succeeding outputs through the state transitions. This is one of the issues that is dealt with 
in more detail in Part II. 
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Figure 5.1: A schematic conceptual diagram of spatial representations in the state 
nodes 81 and 82 of an SRN as presented by Elman (1990) (Elman did, however, use an 
HCA rather than plotting values directly since his SRN had 150 state nodes). Elman's 
SRN was trained on predicting words in natural language sequences, and it separated 
the internal representations of words through their context in sentences. \Vord classes as 
well as semantical grouping were observed. By observing only recorded activatiolls of the 
state space, however, there is no information how the temporal relationships of the words 
are processed dynamically by the SRN. These dynamics can be analysed using RNN-RE 
techlliques, however. 
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DFA extraction, regular partitioning, breadth first search 
(Giles et al., 1991; Giles, Miller, Chen, Chen & Sun, 1992; Omlin &: Giles, 1996b) 
Rule type: Moore DFA with binary (accept/reject) output. 
Quantization: Regular partitioning by q intervals in each state dimension. gen­

erating qN bins of which typically only a small subset is visited 

State generation: 
N etwork( s }: 
Domain(s}: 

by the RNN. 
Breadth-first search. 
Predominantly used on second-order RNN s 
Predominantly regular languages with relatively few symbols. 
Some applied domains, e.g., quantized financial data (Giles, 
Lawrence & Tsoi, 1997; Lawrence, Giles & Tsoi. 1998; Giles, 
Lawrence & Tsoi, 2001) 

Table 5.1: Summary of algorithm extracting DFA through searching in an equiparti­
tioned state space. 

network input patterns until no new partitions were visited. The transitions among 

the macrostates (induced by input patterns) were the basis for the extracted ma­

chine. The search started with a predefined initial state of the network and tested 

all possible input patterns on this microstate, see Figure 5.2. The first encountered 

microstate of each macrostate was then used to induce new states. This guaranteed 

the extraction of a deterministic machine since any state drift (Das & Mozer, 1994, 

1998) was avoided as the search was pruned when reentering already visited parti­

tions. The extracted automaton was then minimized using a standard minimization 

algorithlll for DFA (Hopcroft & Ullman, 1979). The algorithlll is summarized in 

Table 5.1. 

The central parameter of the algorithm is the quantization degree q of the 

equipartition. The authors suggested starting with q = 2 and increasing it until an 

automata consistent with the training set is extracted, i.e. the termination criteria 

is to have perfect accuracy of the rules. The choice of q is, however, usually not 

explicitly described as part of the RE algorithm (one exception is in the description 

by Omlin (2001) where the suggested incremental procedure is also part of the 

algorithm) . 

Giles, Miller, Chen, Chen and Sun (1992) found that the generalization ability 

of the extracted Inachines sometimes exceeded that of the underlying R:\":\"s. Since 

the networks were trained on regular grammars, if the extraction result was a 

DFA equivalent with the original grammar that generated the training/test set, 

generalization would also be perfect. Giles. :\tIiller, Chen, Sun et al. (1992) showed 
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Figure 5.2: An example of the DFA extraction algorithm of Giles et al. (1991) used 
on an RNN with two state nodes trained on a binary language and the quantization 
parameter q = 3. The state space is divided into accept and reject regions (gray and 
white respectively). The algorithm expands the graph until all nodes have two outgoing 
arcs. Note that the macrostate corresponding to node 3 could actually be interpreted both 
as an accept and reject state depending on the microstate, but the algorithm used the 
interpretation of the first encountered microstate as the interpretation of the macrostate. 
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that during successful training of an R~~. the extracted DFA will e\'entuallv belono - ~ 

to the same equivalence class as the original DFA. The existence of equivalence 

classes over different degrees of quantization (i.e. different values of q) W2b used 

in Omlin, Giles and Miller (1992) as an indicator of the networks' generalization 

ability, i.e. if the extracted DFAs for increasing values of q collapsed into a single 

equivalence class, it was taken as a sign of good generalization ability without the 

need for explicitly testing this on a separate test set, 

The same algorithm has been used in various other contexts: as part of rule 

refinement techniques (e.g. Omlin & Giles~ 1992: Giles &:: Omlin, 1993: Das et al.. 

1993; Omlin & Giles, 1996c), as an indicator of an underlying language class (Blair 

& Pollack, 1997), as a method for complexity evaluation (e.g. Bakker &:: Jong, 2000). 

as part of a quantitative comparison of different R~='J architectures (~riller 8,: Giles. 

1993), as a means for FSM acquisition2 (e.g. Giles, Horne &:: Lin. 19D,,,)) or Silllply 

as an analysis tool of the RNN solutions3 (e.g. Giles &:: Olnlin, 1994; Goudreau &:: 

Giles, 1995; Giles et al., 1997; Lawrence et al., 1998; Lawrence, Giles &:: Fong, 2000; 

Giles et al., 2001: BakkeL 2004). The algorithlTI has also been used in the cOllt('xt 

of recursive networks (i\Iaggini. 1998). 

An apparent problelTI with this technique is that the worst-case nUlnber of clus­

ters grows exponentially with the number of state nodes ~ (qN). The tilne needed 

for the breadth-first search will also grow exponentially with the nunlber of possible 

input symbols. In practice, however, the number of visited states is much SllHtller 

than the number of possible states. 

This, the earliest of RNN-RE lnethods. is also the lnost widespread algoritlun. 

Alnlost all subsequent papers where new RNX-RE techniques have been proposed 

cite Giles, Miller, Chen, Chen and Sun (1992). But often these papers do not 

contain citations to each other, implying that the field is less diverse than it actually 

is. Consequently there is a surprising variety of RE approaches. SOlIle of thelIl 

seelningl~' developed independently of each other. 

2Implicitly, however, more or less all papers using RE are in some wa~' on FS~I/iallguage 
acquisition. This diyision into RNN-RE usage should be taken with a grain of salt since each 
paper has more than one contribution. 

3This is also implicitl~' part of maIl~' other papers as wE'll. 
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DFA extraction, vector quantifier, breadth first search 
(Zeng et al., 1993; Frasconi et al., 1996; Gori et al.. 1998) 
Rule type: Nloore DFA with binary (accept/reject) output. 
Quantization: k-means. 
State generation: Breadth-first search. 
Network(s): Second-order RNNs (Zeng et al.. 1993). Recurrent radial ba­

sis function network, (Frasconi et al.. 1996: Gori et al .. 1998). 
RNN with an external pushdown automaton (G. Z. Sun. Gile~ 
& Chen, 1998). 

Domain(s): Regular binary languages (Tomita, 1982), context free lan­
guages (G. Z. Sun et al., 1998). 

Table 5.2: Summary of algorithms extracting DFA through searching in a ~tate space 
partitioned by vector quantization. 

5.3 Search • In state space partitioned through 

vector quantization 

An alternative to the simple equipartition quantization was already suggested b~' 

Zeng et al. (1993) where a k-lueans algorithm was used to cluster the luicrostates. 

The centres of the clusters, the model vectors, were used as the basis for the breadt h­

first search, i.e. the RNN was tested with all input s~;lnbols for each model vector 

state (cf. the equipartition algorithlns where the first encountered RNl\ state is the 

basis for further search). See Figure 5.3 for an illustrative exalnple of this algoritllIll. 

A similar approach, also using k-means, developed seelningly independently frolll 

Zeng et al. (1993) was presented in Frasconi, Gori, :\Iaggini and Soda (1996) and 

Gori, Maggini, Martinelli and Soda (1998), and a silnilar SO:\I-based approach in 

Blanco et al. (2000). A sumrnary of these approaches is provided in Table :).2. 

In order to support an appropriate clustering of states, Zeng et al. (1993) 

and Frasconi et al. (1996) induced a bias for the RXX to fonn clusters during 

training. Other studies have also followed this approach (Das & Das, 1991: Da~ L\: 

l\'lozer, 1994, 1998). RE-RNX algorithlns developed on such specialized RXXs Ina~·. 

however, not work on other networks. RE techniques that can be used on already 

existing networks (i.e. typically not designed for easy anal~'sis) are described by 

Tickle ct al. (1998) as Inore attractive techniques. 

In the presented search-based approaches, t he reentering into part itiollS was the 

h;l~i~ of pruning the search .. ~ different pruning strategv was ~ugge~ted b~' Alquezar 
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Figure 5.3: An illustrative example of rule extraction through breadth-first search in a 
state space clustered by k-means. (A) The states of the RNN are sampled during training, 
(B) these states are clustered into a predefined number of clusters, (C) a breadth-first 
search (cf. Figure 5.2)conducted based on the model vectors and, (D) the machine is 
constructed. 
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a 

Figure 5.4: An example of a prefix tree of depth three, created from a language that 
only accepts strings containing at least two b's. 

and Sanfeliu (1994a) and Sanfeliu and Alquezar (1995) who chose to use the dornain 

to detennine search depth (the algorithm is summarized in Table 5.3). A prefix tree 

(see Figure 5.4) was built based on the occurrences of positive and negativp strings 

in the training set, i.e. the prefix tree contained only strings present in the training 

set. The states of the RNN were generated using only the strings in the prefix tree. 

The authors used RE as part of their Active Grammatical Inference (AGI) learning 

methodology. an iterative rule refinelnent technique. 

The states generated with the prefix tree were the basis of the initial Inachine. 

The spatially closest pair of these states was then merged iteratively until further 

clustering would result in an inconsistency. This RE technique was also used for 

a wide variety of regular grall1111ars and two t:vpes of networks in Alquezar et al. 

(1997). The authors reported that the extracted lnachines on average perfonned 

significant ly better than the original RNN s. 

5.4 Sampling-based extraction of DFA 

Instead of conducting a ~l'arch in the quantized state space, the activit.\'· of the R:\,"\ 

in interactioll with t hf' datal envirOllInent can be recorded. In this WCl.\'·, the dornain 

can be considered as heuristics confining the states of the R"\~ to only relevant 

statt's. 
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DFA extraction, hierarchical clustering, sampling on domain 
(Alquezar & Sanfeliu, 1994a), and (Sanfeliu & Alquezar. 1995) 
Rule type: Unbiased ::v100re DFA. Unbiased means the output is trinar:" 

Quantization: 
State generation: 
Network{s}: 

Domain{s}: 

(accept, reject and unknown). 
Hierarchical clustering. 
A prefix-tree is built based on the examples of the training :-let. 
First-order RNN (not specified in Alquezar and Sanfeliu (199-la) 
but in Sanfeliu and Alquezar (1995)). 
At least 15 different regular binary language~ (Alquezar et aI.. 
1997). 

Table 5.3: A summary of the search-based DFA extracting algorithm proposed b~' 
Alquezar and Sanfeliu for unbiased grammars. 

DFA extraction, dynamic interval clustering, sampling on domain 
(Watrous & Kuhn, 1992) 
Rule type: Moore DFA with binary (accept/reject) decision. 
Quantization: Dynamically updated intervals for each state unit. States are 

collapsed and split through updating the intervals. 
State generation: Sampling the RNN while processing the domain. 
Network{s}: Second-order RNNs. 
Domain{s}: Regular binary languages (Tomita, 1982). 

Table 5.4: A summary of the sampling-based DFA extraction algorithm proposed b~' 
Watrous and Kuhn (1992). 

Already before the development of RE techniques for R:\:\s. scullpling of the 

state space using the domain, was the 1nost natural way of conducting analy:-;is of 

R.NNs (Cleerenlans et al., 1989; Servan-Schreiber et al., 1989; Elman, 1990). The 

first R.E technique based on sarnpling the R~N was proposed by \Yatrous and Kuhn 

(1992) (see Table 5.4). The quantization of the state space was based on splitting 

individual state units' activations into intervals. They described that these intervals 

could be Inerged and split to help the extraction of minimal and detenninistic rules. 

The procedure of state splitting. however, is somewhat vaguely described and lllay 

require intervention fronl the user. 

~Iall()lios and Fanelli (1994) chose to use a simple vector quantifier to clis('l'('tize 

the state space. Training frOln different. randolnly initiated, llloclel vectors \\'{'n' 

repeatedly conducted until a deterministic Inachine was found. The tenninatioll 

of this procedure is, ho\\,('\'('1', not guaranteed. The algoritllIn is sUlnllHlxized in 
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DFA extraction, vector quantifier, sampling on domain 
(Manolios & Fanelli, 1994), originally in tech. rep. (Fanelli. 1993) 
Rule type: Moore DFA with binary (accept/reject) decision. 
Quantization: A simple vector quantifier. details unclear. 
State generation: Sampling on a test set. 
Network{s}: First-order RNNs. 
Domain{s): Regular binary languages (Tomita, 1982). 

Table 5.5: The sampling-based DFA extractor originally proposed in Fanelli (1993). 

DFM extraction, SOM, sampling on domain 
(Tino & Sajda, 1995) 
Rule type: 
Quantization: 
State generation: 
Network{s}: 
Domain{s}: 

Mealy DF1,tI with multiple output symbols. 
Star topology S01\1. 
Sampling on training set. 
Second-order RNN s. 
Regular formal language domains with either two or three input 
symbols (not counting the end-of-string symbol) and two or 
three output symbols. 

Table 5.6: Summary of the ~ampling-based DFM extractor of Tino and Sajda (1995). 

A silnilar approach was suggested in Tino and Sajda (1995) where an algoritlull 

for removing inconsistent transitions was introduced. This algoritlull could, how­

ever, fail under certain CirCU111stances so that the extraction of a OFA could not 

be guaranteed. A star topology self-organizing lllap (S01'.I. (Kohonen, 1995)) was 

used to quantize the state space. Tiilo and Sajda (1995) were the first to extract 

l\![ealy instead of :\!(oore lllachines and also the first who did not confine the output 

to binary accept/reject decisions (not counting the unbiased OFA of Alquezar and 

Sanfeliu (1994a)). This algorithm is sumlnarized in Table 5.6. 

The breadth-first search will reliably find consistent OF:\Is since the search i~ 

pruned before inconsistencies leading to indeterminisln are introduced. The D F:\ I 

will also be complete since all synlbols are tested on all states. In salnpling the 

state space, deterrllinisln is no longer guaranteed. since two microstates of tIlt' SflllH' 

Inacrostate nlav result in transitions to different Inacrostates (even though these 

transitions are triggered b:v the sanIe input syrnbol). Two st C1 te vectors in the sanw 

l)(lrtition Illa~' also be Inapped to different classes in the output. The extracted 

l11arhines ma,\' also \)(' incomplete since all sYlnbols lIla)" not have been testpd on 

34 



DFM extraction, vector quantizer, sampling on domain 
(Schellhammer et al., 1998) 
Rule type: Mealy DF~T with a ~;rescue state~~ used to make machine com­

plete. 
Quantization: 
State generation: 

Network(s): 
Domain(s): 

k-means. 
Sampling on training set. Inconsistencies solved by discarding 
the least frequent of inconsistent transitions. 
SRN. 
Natural language prediction task. 

Table 5.7: Summary of the only sampling-based DF:\I extractor. where inconsistencies 
and incompleteness are handled. 

all states. Therefore~ the DF~I extraction, through sampling could fail as in the 

above cases of Watrous and Kuhn (1992), Manolios and Fanelli (199.,1) and TiflO 

and Sajda (1995). It is unclear how incomplete machines were handled in the above 

described approaches. Perhaps the extracted IIlachines were slIlall enough and the 

domains simple enough that no such problems occurred. 

One approach to solving the problem of indeternlinislIl i~ the use of transition 

frequencies to discard the least frequent of inconsistent transitions. This heuristic 

should, in Inost cases, solve the inconsistency without deviating rnuch from the 

operation of the underlying RNK in the lIlajority of the transitions. This silIlple 

procedure was proposed by Schellhamlner et al. (1998) (sUllllllarized in Table S.7). 

They also dealt with the probleln of incOlnplete rnachines by creating trclnsitiollS 

to a predefined "rescue state" to cOlnplete the Inachine. These silnplifications did 

not significantly reduce the performance of the DF)''I and t he rescue state enabled 

the Inachines to make ('guesses" about inputs that otherwise would not be possible 

to parse. 

5.5 Stochastic machine extraction 

As described in the previous section, the extraction of deterministic FS:\Is (DF:\b) 

froIn RN~s through sanlpling is hampered by the fact that the quantization of 

the state space llHl~r lead to inconsistencies in the Inacrostate transitions. Tlws(' 

inconsistcnt transitions (and potentially st at (' interpret at ions ) will, h O\\'(' \"('1' , foll()\\" 

SOlllE' patterns and if all such trallsit ions are counted t he\" can be transcribed into 



a stochastic machine, i.e. a machine with probabilities associated with the transi­

tions. The inconsistencies that ruin a DF:\l extraction may in other words contain 

informative probabilities that more accurately describe the RXX. 

An algorithm for the extraction of stochastic machines from RXXs was proposed 

by Tino and Vojtek (1998). These extracted machines were, however, not equivalent 

to the stochastic machines defined by Paz (1971) and Rabin (1963) since the the 

conditional probability of the output given the state transition was not included in 

the model, i.e. the extracted machines did not model the output of the RXN. The 

algorithm quantized the state space using a 8011 (as did Tino and Sajda (1995)). 

The generation of states (and state transitions) was divided into two phases; the 

"pre-test" phase, where the RNN was domain-driven, and a "self-driven" phase, 

where the output of the RNN was used as input in the next time-step (this RNN 

was trained to predict a long sequence of sYlnbols). In Tino and Koteles (1999) 

(further described in Tino, Dorffner and Schittenkopf (2000)) the SO!vI was replaced 

with a dynamic cell structure (DCS, Bruske and Sommer (1995)). but otherwise 

the algorithm was the same (see the summary in Table 5.8). 

The stochastic machines can be analysed in new interesting ways. The authors 

(Tino & Vojtek, 1998; Tino & Koteles, 1999), for exalllple, used entropy spectra 

(K. Young & Crutchfield, 1993) to compare the probabilities of strings generated 

by the R~~ s with the probabilities of the strings in the original source. \Yhile 

the results were interesting, there were no indications, in that paper, how well 

the extracted machines corresponded to the network (i.e. rule fidelity) or how well 

they generalized on any test set4 (i.e. rule accuracy). The comprehensibility of the 

extracted rules complete also cannot be determined from these papers. The fact 

that the extracted machines did not model the output of the RNN also makes it 

difficult to evaluate this algorithm in the context of the other ones 

Another related approach which may not be rule extraction per se, but can 

perhaps, at least, be termed a partial rule extraction algorithm, is the "neural 

prediction machine" (NPM) constructed in (Tino, Cernansky & Benu§kova, 2004). 

The NP~I predicts the next symbol given the state of the network, i.e. the state 

dynalnics are handled by the RNN and not extracted at all (see a SUIllIllary of this 

4Unless the entropy spectra analysis is considered a form of accuracy measurement. This is 
something it can be' argued to be (P. Tino, personal communication, June 27, 2006) 
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Stochastic machine extraction, SOM, sampling on domain 
(Tino & Vojtek, 1998; Tino & Koteles, 1999) 
Rule type: Stochastic Mealy finite state machine. 
Quantization: SOM (unspecified topology) in Tino and Vojtek (1998) and 

State generation: 
N etwork( s }: 
Domain (s): 

DCS in Tino and Koteles (1999) 
Two phases: Sampling on training set and "self-driven" RNN. 
Primarily second-order RNNs. 
Prediction of (four) symbols generated from continuous chaotic 
laser data and a chaotic series of binary symbols generated with 
iterated logistic map function. 

Table 5.8: Summary of approaches of RNN-RE for extraction of stochastic machines. 

Neural prediction machine, vector quantizer, sampling on domain 
(Tino et al., 2004) 
Rule type: A "Neural Prediction Machine" (NPM) predicting the next out­

put based on current state of the RNN. State transitions not 
modelled. 

Quantization: 
State generation: 
Network(s}: 
Domain (s): 

k-means. 
Sampling. 
First-order RNN. 
Continuous chaotic laser data domain transformed to four sym­
bols and recursive natural language domains. 

Table 5.9: Neural Prediction Machines (NPMs) differ from the FSM ordinarily extracted 
from RNNs in that state transitions are not incorporated into the model. 

approach in Table 5.9). 

5.6 A pedagogical approach 

All previously described algorithms comply with the category compositional in 

ADT's translucency classification (see Section 4.2). There is, to my knowledge, only 

one algorithm that uses a pedagogical approach instead. Vahed and Omlin (1999, 

2004) used a machine learning method requiring only the input and the output 

to extract the machine, i.e. the internal state is ignored (see the summary in Ta­

ble 5.10). The data used for extraction was based on all strings up to a given length. 

The input and output of the network was recorded and fed to the polynomial-time 

"Trakhtenbrot-Barzdin" algorithm (Trakhtenbrot & Barzdin, 1973). 

It was also reported that this algorithm was more successful in returning correct 

37 



DFA extraction, black-box model 
(Vahed & Omlin, 1999, 2004) 
Rule type: Moore DFA with binary (accept/reject) output. 
Quantization: N / A. 
State generation: All strings up to a certain length. 
N etwork{ s): Second-order RNN. 
Domain{s): One randomly generated 10-state DFA. 

Table 5.10: The only RNN-RE algorithm where the internal state of the R~~ is not 
regarded during the extraction process. 

DFAs than clustering-based algorithms (Giles. ~Iiller, Chen. Sun et al., 1992). This 

paper actually seems to be the only one that describes an experinlental cOlllparison 

of different RE techniques at all. 

The machine learning algorithm they used is indeed of polynonlial tinw com-

plexity, given that a prefix tree (see Figure 5.-1) is available. But the size of the 

prefix tree up to a string length L is of cOlllplexity O(nL
). where n is the nUlnber of 

symbols. As a consequence, this approach is likely to have SOllle problenls scaling 

up to more complex problems with more sY111bols. 

5.7 RE-supporting RNN architectures 

As previously nlentioned, clusters can be induced during training to support RE in 

later stages (Zeng et al., 1993; Frasconi et al., 1996). This was originally suggested 

in Das and Das (1991) and further developed in Das and ~I()zpr (199-1) and Das 

and Mozer (1998). Training to induce clusters results. if successfully performed. 

in RNN s that are trivially transfonned to finite nlachines. Since the foclls of this 

survey is on the det ails of the extraction procedure, more particulars aboll t these 

approaches are not be included in this thesis. 
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Chapter 6 

Discussion 

This section summarizes and evaluates the described techniques frOln the perspec­

tives of the evaluation criteria: rule type, quantization lllethod, state generation, 

network type and domain. The two criteria portability and quality of the :-\ DT 

taxonomy (described in Section .J.2), are also discussed. 

6.1 Rule types 

It is quite clear that 11l0st of the research described in Chapter :) focuses on 

extracting "traditional" DFA for classification of binary strings as granuuati­

cal/ungraIllluatical (Giles et a1., 1991; Giles, ~Iiller, Chen, Chen & Sun, 1992; 

Watrous & Kuhn, 1992; Zeng et aI., 1993; Alquezar k Sanfeliu, Um-ia: \[anolios 

& Fanelli, 1994; Sanfeliu & Alquezar, 1995; Onllin & Giles, 1996b; Frasconi et al., 

1996; Gori et aI., 1998; Vahed & Omlin, 1999. 200.J). Only a few DFA extrac­

tion algorithms are used on domains with nlore than two output s:nnbols (TiflO 

& Sajda, 1995: Schellhalnmer et aI., 1998). It is also interesting that onl~' three 

papers (Schellhammer et aI., 1998; Tino & Vojtek, 1998; Tiilo k Koteles, 1999) 

have studied DFA RNN-RE in a prediction domain while prediction of sequences is 

quite commonly studied in RN~ research in general (e.g. Elman, 1990; Alquezar l\: 

Sanfeliu, 199.Jb: Jacobsson, 1999: Gers l\: Sclllnidhuber. 2001: .J (lC()h:-;:-;()ll l\: Ziemkf', 

2003(1). 

The crisp DFA do not lllodel probabilistic properties of macrostate transitiOll:-; 

and nHlcrostate illterpretations: that kind of information i:-; lost in the ru1<':-;, indt'-



pendently of whether search or sampling is used to generate states. Hence. a lllore 

expressive set of rules may be represented in stochastic FS~1 (Tino &: Vojtek, 1998; 

Tino & Koteles, 1999). Furthermore~ the fidelity, i.e. the coherence of the rules 

with the RN~, of stochastic rules should in principle be higher (given the same 

premises, e.g., quantization) than for their deterministic counterparts. The fidelity 

can, however, be measured in various ways (since the term is not clearly defined) 

and may possibly lead to ambiguous results. If stochastic machines are to be used 

for RX~ analysis, however, it is important that the extracted machines also model 

the output of the RNN. Such stochastic machines (Paz, 1971; Rabin, 1963) have 

yet to be extracted and further work is required to realize this (which this thesis 

does actually in Part II). 

A way of combining "the best of both worlds" may be to advance the method 

chosen by chosen by Schellhammer et al. (1998) in which probabilities were calcu­

lated and then used as heuristics for transforming the incomplete and nondetermin­

istic machine into a deterministic and complete machine. Thus the information loss 

from transforming the RNN to a deterministic machine could possibly be tracked. 

Of course, this will depend on if the RNN robustly emulates a FSM (Casey, 1996). 

Whether this would work or not remains an open issue, but the suggested algorithm 

in Part II may alleviate some of the problem by extracting stochastic machines until 

a deterministic machine possibly will be found (which is not guaranteed since the 

RNN may for example be chaotic). 

A last, "exotic", fonn of rules is the Neural Prediction 11achine. The NPM only 

predicts the output of the network given the state, and is not concerned with the 

internal mappings of states in the RNN (Tino et al., 2004). 

6.2 State space quantization 

Clearly, there is no consensus about how to quantize the state space. Methods that 

have been used are (see Chapter 5 for more complete reference lists): 

• Regular (grid) partition (Giles et al., 1991), 

• k-means (Zeng et al., 1993; Frasconi et al., 1996; Schellhalnlner et al., 1998; 

Tino et al., 2004; Cechin, Pechlnann Simon & Stertz, 2003), 
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• SOM (Tino & Sajda, 1995; Tino & Vojtek, 1998; Blanco et al., 2000). dy-

namical cell structures (Tino & Koteles. 1999), 

• "other" vector quantifiers (Manolios & Fanelli, 1994), 

• hierarchical clustering (Alquezar & Sanfeliu, 1994a), 

• dynamically updated intervals (Watrous & Kuhn, 1992) and, 

• fuzzy clustering (Cechin et al., 2003). 

This totals eight different techniques, not counting small variations in implemen­

tations. Although only a fraction of the existing clustering techniques have been 

tested at all (Mirkin, 1996; Jain, Murty & Flynn, 1999) it is clear that many of 

them has been used to approach the quantization problem. 

However, the most striking aspect about the use of this multitude of various 

techniques is not that there are so many, but that there are no studies comparing 

different quantization techniques to each other in the context of RNN-RE. 

The two main families of clustering techniques used are vector-quantization 

(VQ, e.g., k-means and SOM) and equipartition. The main difference between 

these, apart from VQ-partitions not being of equal sizes and shapes, is that the 

VQ-clusters are not fixed prior to the extraction but are instead adapted to fit the 

actually occurring state activations in the RNN. In principle, vector quantization 

should be able to scale up to lllore state nodes than the equipartition nlethod since 

the number of partitions can be arbitrarily selected independent frOlll state space 

dimensionali ty. 

6.3 State generation 

There are two basic strategies for generating the states in the RXX (see Chapter 5 

for more complete reference lists): 

• Searching (Giles et al., 1991; Zeng et al., 1993; Frasconi et al., 1996) and, 

• sampling (Watrous & Kuhn, 1992; Manolios & Fanelli, 1994; Alquezar & 

Sanfeliu, 1994a; Tino & Sajda, 1995; Schellhammer et al., 1998; Tino & 

Vojtek, 1998; Tino et al., 2004). 

There are almost no studies experimentally comparing searching- and sampling-

based R~~-RE, apart from one preliminary study (Jacobsson & Ziemke, 2003b) 

41 ~NIVEASI7Y 
I~,*IELD 
-...ur1ARy 



(cf. Appendix D). In contrast to the situation with clustering techniques however. 

it is quite easy to see at least a few of the consequences of the choice of state 

generation method. 

Firstly, breadth-first search will obviously have problems with scaling up to 

larger problems and is especially sensitive to the number of input symbols. There 

are also reasons to believe that for prediction networks in domains that are not 

completely random, many of the transitions and states generated with breadth-first 

search would not be relevant or ever occur in the dOlnain (Jacobsson &: Ziemke. 

2003b). Machines extracted with search are, however, guaranteed to be determin­

istic, which may very well be desired (see discussion in the previous section). The 

extraction is also guaranteed to result in a complete machine where all possible 

inputs are tested on all encountered states. 

RE through sampling on the domain is not guaranteed to result in determinis­

tic and complete machines. If this is required, there is no guarantee that a certain 

state space quantization will result in a solution since inconsistencies Inight oc­

cur. A heuristic solution to this problem has only been proposed in one paper 

(Schellhammer et al., 1998). In summary, sampling-based RE techniques Inay be a 

preferable strategy for extraction of stochastic rather than detenninistic machines. 

6.4 Network types and domains 

The networks that have been studied using RNN-RE are in most cases relatively 

small ones with few state nodes. This nlay be due to the fact that most domains 

used were simple enough to allow slnall networks to be trained. 

There are also significantly more second-order than first -order networks. This 

IS probably an effect of the focus on formal language domains where second­

order RN~ s are more commonly used than first-order networks (Goudreau~ Giles. 

Chakradhar & Cheng 1994). 

As mentioned in Section 6.1, the investigated domains mostly require only bi-

nary string classification. More complex domains with many symbols. deep syn­

tactical structures or chaotic behaviour, etc., have not been tested using RN:\-RE 

(before this thesis, cf. Chapter 12 of Part II). Therefore, the applicability of these 
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techniques is largely an open issue. The importance of rule extraction as described 

by Andrews et al. (1995). e.g., explanation capability, verification of .-\:'\:'\ COIn­

ponents, etc., is therefore less than it would haye been if the techniques had been 

demonstrated to work on the state-of-the-art RXX s operating on the rnost chal-

lenging domains. 

6.5 Portability 

Even though most RNN-RE algorithms are compositional, (i.e. under the ADT 

translucency criteria) and have, in principle, the same requirements on the under­

lying RNN, there are some implicit requirements that could be useful to identify, 

especially if the existing RNN-RE algorithms are to be applied on previously un­

encountered R~~ architectures (or other dynamic systems) and domains. Current 

RE techniques are preferably used on RNNs that: 

1. operate in discrete time since continuous-time RNN can not be described 

as finite state machines. There is~ however, no known study on continuous 

time R~~s in the domain of FSM generated languages (Forcada & Carrasco, 

2001), 

2. have clearly defined input, state and output nodes, i.e. randomly structured 

RN~ s may be problematic, 

3. have a fully observable state, otherwise unobserved state nodes or noise in 

the observation process would disturb the extraction process since the state 

space would not be reliably quantized, 

4. have state nodes that can be set explicitly (for search-based techniques) ~ 

5. are deterministic, otherwise the same problem would occur as when the state 

is not fully observable, 

6. are fixed during RE, i.e. no training of the RNN can be allowed during the 

RE process, 

7. operate on a preferably discrete domain (or be transformed to a discrete 

representation prior to RE (e.g. Giles et aI., 1997)) since there are no Ineans 

of representing continuous input/output data in the current types of extracted 

rules since the transitions of the extracted FSMs must be labeled using input 
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and output symbols. 

The problem with making a list of implicit requirements is just that they are im­

plicit (i.e. not readily apparent). Hence, there may be other essential requirements 

that I have not managed to consider at this stage. Furthermore~ the strengths of 

these requirements are unclear as well, some of them may actually be quite easily 

alleviated with some enhancements of current RXX-RE techniques (this possibility 

will be discussed further in Section 17.9). 

6.6 Rule quality 

As previously mentioned (cf. Section 4.2.4), the quality of R~X-RE techniques is 

(or should be) evaluated at the level of the actual rules, rather than at the level 

of the algorithms. Extracted rules depend not only on the algorithm but also 

on the underlying domain and network. Evaluation of the rule quality therefore 

requires extensive studies comparing different RE techniques under silnilar condi­

tions. Unfortunately, such studies have not yet been conducted for most RNN-RE 

algorithms. 

There are, in the existing corpus of papers on R~~-RE. a few indirect results 

that provide some indications for some of the rule quality sub-categories: accuracy, 

fidelity, consistency and comprehensibility. 

A number of studies indicate that the extracted Inachines indeed have high 

accuracy since they may even be generalizing better than the underlying RNN 

(Giles, ~Hller, Chen l Chen & Sun, 1992, 1992; Giles & Omlin. 1993; Onllin &: 

Giles, 1996b). There are, however, unfortunately no studies in which t he fidelity 

of the extracted rules has been tested separately from the accuracyl. The studies 

tend to focus on networks that are quite successful in their dOlnain and under 

such circumstances the difference between fidelity and accuracy is very small. For 

networks performing badly in their domain, high fidelity would, however, inlply low 

accuracy since the errors of the network would then be replicated by the machine. 

Rule consistency has not been extensively studied, although some papers touch 

the subject. Rules extracted from a network during training were found to fall 

IThere is an interesting discussion about the fidelity-accuracy dilemma in Zhou (2004). 
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under a sequence of equivalence classes during training (Giles. ~Iiller. Chen. SUll 

et al., 1992). This can be seen as an example of consistency since the extracted 

rules after a certain period of training eventually stabilized in the sallle equivalence 

class, i.e. the set of quite similar networks at the later stage of the training re­

sulted in equivalent rules. The consistency over different parameter settings (of the 

quantization parameter q in the equipartitioned RNN-RE algorithm) has also been 

proposed as an indicator of regUlarity in the underlying network (Blair &. Pollack. 

1997). These results on consistency are, however ~ more or less indirect. 

Rule comprehensibility is typically considered an important issue to ensure fur­

ther progress for RNN-RE research. After all, if the goal of extracting rules is to 

understand the underlying incomprehensible network, the rules should preferably 

be comprehensible themselves. The comprehensibility of extracted rules has not 

been directly evaluated. It is, however, clear that in some cases the RNN-RE­

analysis has been informative in qualitative ways. I will, however, argue in Part III 

of this thesis that the incomprehensibility of the rules does not render them useless. 

6.7 RNN-RE, fool's gold? 

Kolen (1993) showed with some sirnple exarnples that some dynamic systems with 

real-valued state space (e.g., an RNN) cannot be described discretely without intro­

ducing peculiar results (cf. Kolen and Pollack (1995)). If you want to approximate 

the behaviour of a physical system with a real-valued state space as a discrete ma­

chine you will not only risk that the approxirnation might not be exact. A more 

profound effect of the approximation is that induced machines, from the sanle phys­

ical system, may belong to completely different classes of computational rllodels, 

depending only on how the transformation from the real-valued space to a discrete 

approximation is conducted2
. 

This critique strikes at the very heart of RNN-RE, since the quantization of 

the state space is a crucial element of these algorithms and RNN-RE was actually 

2 A potential flaw in Kolen's argument is, however, that he is not only considering discretization 
of the state space, but also the discretization of the time of a continuous time dynamic system 
(P. Tino, personal communication, June 27, 2006). The underlying problem is, however, there 
ll(weTtheless; that discl'etizing a continuous space will obviously result ill something rliffeTeut than 
the continuous space in question and that depending on the exact nature of the discretization. 
diffeTent Tesults may be obtained. 
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termed "fool's gold" by Kolen (1993). He pointed out that RXXs should be analysed 

as dynamic systems or more specifically iterated function systems (IFSs) rather than 

state machines. 

Nevertheless, there are some replies to this critique. One simple approach is to 

avoid the problem by not modelling transitions at all (Tino et al.. 200-1). or not 

even quantizing the state space (Vahed & Omlin. 1999,2004). Another response to 

Kolen's critique is that extraction of a state machine from an RNN has been proven 

to work if the underlying RNN robustly model a finite state machine (Casey. 1996). 

However, this does not alleviate the fact that the language class for unknown RNN s 

cannot be reliably recognized. But at least there is a theoretical "guarantee'~ that 

if there is an FSM at "the bottom" of an RNN, it can always be extracted in 

principle. 

Failure of rule extraction from an RNN could therefore be an indicator that the 

underlying R~~ is not implementing a finite state machine. One first step in this 

direction has been proposed by Blair and Pollack (1997). They used unbounded 

growth of the macrostate set under increased resolution of the equipartition quan­

tization method as an indicator of a nonregular underlying RNN. 

If we limit ourselves to real world domains, RE will necessarily be operating 

on finite domains, making FSM interpretations theoretically possible at all times 

(although they may not be the minimal description of a domain-RNN interaction). 

In fact, since the focus of RNN-RE research is on FSl\[ extraction, the question 

should not be whether a language class is misjudged by an RE algorithm or not 

(since extraction at the level of the class of regular languages is one of the premises), 

but rather how well the extracted finite machine approximates the network, as 

proposed by Blair and Pollack (1997). How to evaluate the fidelity of an FS:\1 and 

whether this evaluation may distinguish between errors stemming from a poorly 

quantized state space or from a higher language class in the RNN / domain remains 

. 
an open Issue. 

In summary, although Kolen's critique is justified, there are still reasons for 

further research on RE from RNN s: a lack of sophisticated analysis tools that can 

handle the complexity of RNNs hampers RNN research. Although there are theo­

retical possibilities that RE may result in ambiguous answers about an RNN. this 
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also holds for many other analysis techniques. For any analysis tool to be trustwor­

thy, the disadvantages must be known and taken into account when examining the 

results. This is precisely what makes Kolen's observations valuable for R~~-RE 

usage; the exposure of some of the limitations of RXX-RE techniques. 
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Chapter 7 

Open Issues and Summary 

7.1 Goals of RNN-RE 

It is clear that the developrnent of the R:.JX-RE algoritlulls has been driven hy 

different goals in the different papers. But what are the p()~~ible goals of RXX-RE',' 

Conceivable answers could be (partly overlapping with Andrews et al. (1995) in 

the context of RE in general): 

1. to acquire a generic rnodel of the domain, i.e. the RXX is used nlereh' as (\ 

tool in the acquisition process (data Inining), 

2. to provide an explanation of the R ~~, 

3. to allow verification/validation of the R;\:\' with respect to smnt' requirenleuts 

(cf. software testing) and thus Inake new, potentially safety critical. dOlllains 

possible for RNNs, 

4. to improve on current R ~N architectures by identifying errors. 

The appropriate measure to evaluate the success (or rule quality) of a specific 

instance of an R:.JN-RE algorithnl being applied on an RX;\ (and dmllain) depends 

highly on which of these (or other) goals are desired (see Figure 1.1). For the tirst 

goal, for exarnple, the Inaxilnization of accuracy is the prillle target. In many ()f 

the papers it is clear that the accuracy is the lllost illlportant aspect of rule qualit\" 

Accuracy is a satisfactor~' llleans for evaluating rule qualit\, as long as t he goal for 

rule t'xtr<1ctioll is to find rules that are "<1S good as possible" in the dOInain. For 

the other goals the Inaxilnization of fidelit:v is likely to be Illore import ant. ,\ fter 

a 11, if t h(' network is tested with all accuracy-ma ... XIIlllzlIlg R E met hod, t lw H'sllit 



Accuracy Efficiency 

Goal? 

Fidelity Comprehensibility 

Figure 7.1: Four, possibly opposing, goals of RNN-RE that in an ideal algorithm would 
simply be chosen by the setting of a few user-defined paranleters. 

may be rules with a performance better than the network (a result con finned 1)\· 

many studies). Therefore, for the purposes of R NX analysis, fidelity should be the 

preferred quality evaluation criterion. In some cases, however, cOInprehellsibility 

may be more crucial than fidelity and accufiwy. In others. it is ilnaginable tlw t the 

efficiency of the algorithm (in terms of execution tiIne or requirecllllenlOry storage) 

is the priInary objective. There lna:v also be other. more dOInain specific llH)(lSIll'PS 

to evaluate the degree of goal achievelnent. The details of the resulting RX\,,-RE 

algorithm may depend on which of these goals is the aiITI. Preferably, however, 

the one and sarne algorithm should be generic enough to allow t he user to choose 

anlong the goals. 

7.2 New challenges 

\Yhat should we expect frOlTI future R~~-RE algorithills? There are smue chal­

lenging applications and requirements for R:.JX-RE algoritluns that are worth sng-

gesting. 
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7.2.1 Tailor-made quantization algorithms 

The quantization algorithm is perhaps the most critical part of extracting rules 

from RN~s. But what characterizes a good quantization in the context of R~~­

RE? It is not necessarily spatial requirements (X. E. Sharkey &: Jackson. 1995), (1:' 

is usually the case for evaluation of clustering techniques (Jain et al.. 1999), but 

rather requirements based on properties of the extracted rule set. To have clusters 

that are spatially coherent and well separated is of less ilnportance than the fidelity 

of the resulting rules. One would prefer a clustering technique in which the clusters 

are functionally coherent and well separated rather than spatiallyl. 

7.2.2 Goal oriented gradually refining rule extraction 

Methods for controlling the "comprehensibility/fidelity tradeoff" are identified as 

an important line of research by Craven and Shavlik (1999). This ··tradeoff·· issue 

may be expanded to include techniques in which the user rllay, through the sd­

ting of a few parameters, not only have the ability to choose between fidelity and 

comprehensibility, but also fidelity and accuracy, fidelity and cOlllputation time etc. 

In an ideal R~~-RE algorithrn the relation between execution tilne, fidelity and 

cornprehensibility 11lay be as illustrated in Figure 7.2. Rules should be refined gnld­

ually over time and the ll10re time available, the higher the possibility of acquiring 

rules of high fidelity and/or comprehensibility (';anytinle rule extraction" (Craven 

& Shavlik, 1999)). 

One lnethod for gradually refining rules lnay be to do "re-extraction" of Ull­

certain/infrequent but possibly ilnportant rules by querying the network (Cra\Tll 

& Shaylik, 199--1). This can, for exalnple, be achieved by directly setting st ates in 

the network to be in the vicinity of the model vector (or something equivalent) of 

the macrostate of interest and then testing the effect of feeding the R \"\" \"arious 

possible inputs. In Part III of this thesis, such reextraction is disCllsscd in Illore 

detail due to of the results of Part II. 

1 \\"hich is precisely what the RNN-RE method presented in Part II does using the ('r~'stalline 
Vl'ctor QuantizeI' (cf. Chapter 10). 
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Fidelity 

Execution time 

Comprehensibility 

Figure 7.2: The relation between execution time, fidelit~· and comprehensibilit~· for 
ideal RNN-RE algorithms with possible gradual refinement of the rules. The more time 
available, the more the degree of freedom in choosing between high fidelity and compre­
hensibility. 

7.2.3 RNN comparisons and evaluations 

A distance metric between RNNs could be defined by cOlnparing rules extracted 

by RNN-RE. R~Ns are otherwise difficult to compare directly since cOlnpletely 

different weights can yield equivalent behaviour anel slIlall differences in weights 

lnay result in very different behaviours. This sort of distance lnetric could possibly 

be favourable if constructing heterogeneous RNN enselnbles (Krogh & Vedelsby, 

1995; A. J. C. Sharkey. 1996). 

The concept that R XN-RE can be used as an indication of the cOlnplexit~· of 

the underlying R~N (or SOlIle other dynamic system) and dOlIlain could be further 

developed. Previous studies seem to show promising results (Crutchfield & Young. 

1990; Blair & Pollack, 1997; Bakker & Jong, 2000) with regard to cOlllplexit\, esti­

uwtions that go beyond Shannon entropy (Cover & ThOIIlas, 1990) andmillinlllln 

algorithlnic description length cOlllplexity (Chaitin, 1987) (a.k.a. Kohnogoroy COlIl-

plexity). 
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7.2.4 RNN debugging 

The underlying task of the RNN (e.g., prediction) can be integrated with the rules 

in order to identify more exactly when and how erroneous behaviour occurs in 

the network. This can be achieved simply by marking which of the states in the 

extracted machines are involved in the errors. These errors can then perhaps be 

further retraced, in the rules, to the actual erroneous behaviour. This can possibly 

be further integrated with the training of the network by updating the weights only 

in situations identified by the rules as being part of an erroneous behaviour (cf. 

Schmidhuber (1992)). 

7.3 Some practical recommendations 

Since this thesis is, in part, aimed at attracting more researchers to the field it is 

perhaps beneficial to not only identify open issues, but also to provide some prac­

tical recommendations about how things should be done. These recomlnendations 

are partly a repetition of Craven and Shavlik (1999), but they are nevertheless 

important enough to be repeated. 

Firstly, when developing a new RNN-RE algorithm, strive for generality (i.e. 

high portability). The usefulness of the algorithln developed will directly corre­

late with how easily it can be used on existing RXXs, originally implemented and 

tested without the intention of making them suitable for RE. Craven and Shavlik 

(1999) even suggest that the RE algorithms should be so general that not even the 

assumption that the underlying system is a neural network is necessary. Actually, 

there are indications that this is already a fact for most RNN-RE algorithms, con­

sidering the very limited assumptions of the underlying RNN (cf. Definition 3.1 or 

Definition 9.1). 

Another good piece of advice is to seek out collaborators who already have 

RNNs they want to analyse (Craven & Shavlik. 1999). It is highly unlikely that 

there will be enough time to develop both state-of-the-art R:,\Xs and state-of-the­

art RNN-RE algorithms at the sanle tilne. Finding willing collaborators should not 

be too difficult since researchers applying novel R~l\s on new domains will Illost 

likely benefit fronl the knowledge acquired through rule extraction. 
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Another important ingredient for enhancing the attraction of a technique is to 

make its implementation publicly available2 (Craven &. Shavlik, 1999). After alL 

accessibility of use by researchers who are quite busy pursuing their own line of 

work is the aim of the techniques. 

7.4 Conclusions of Part I 

Ideally, if the RNN-RE techniques developed so far had been really successful, 

they would have been among the first analysis techniques used when new RXX 

architectures were developed or a new domain was conquered. :\"0 other analysis 

tools seem to promise a more detailed and profound understanding of RXXs. But 

we are not there yet. 

Despite numerous achievements, there seems to be no apparent common direc­

tion (or well defined goals) in previous RNN-RE research3 . In most cases, developed 

algorithms are seemingly not built on the basis of previous results and there seelns 

to be very slow (if any) progress towards handling more complex RXNs and do­

mains with R~~-RE algorithms. In fact, only one algorithm has been used to any 

wide extent in the follow-up work, and moreover, it is the first RNN-RE algorithm 

developed (Giles, ~1iller, Chen, Chen & Sun, 1992). Surprisingly, it has not been 

replaced by anything significantly better in the years since then. Actually, more 

recent algorithms may very well be better, but they are still not used as frequently 

as the first one, and there are almost no comparative studies. 

In the following part of this thesis, a novel RXX-RE algorithm is presented. The 

key to this algorithm was precisely the development of a tailor-lnade quantizer as 

suggested above (Section 7.2.1). ~Iany of the practical recomlnendations Inentioned 

above were, of course, central in the development of the algorithul , to Inake it 

portable and anytime extracting. In the final part of the thesis, more alnbitious 

and speculative goals are stated for the field as R~N-RE is reinterpreted as a 

computational scientific process applied to simulated dynaulic systelns. 

2 An open source distribution of my own algorithm. presented in Part II, is under preparation 

on cryssmex. sourceforge. net. 
30ne of the goals with this thesis and with Jacobsson (2005) is to sllggest sllch goals. 
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Chapter 8 

Introduction to Part II 

A number of techniques for extracting rules from RN~s were described in the 

previous part of the thesis. The common ingredients of rnost of these were identified 

(in Table 3.1 on page 18) as (1) the quantization of state space, (2) generation 

of data, (3) rule construction and (~) rule minimization. Although the presented 

techniques constituted a wide variety, their one common aspect is the separability of 

these ingredients fronl each other. These four constituenLi have not been integrated 

in these approaches and the quantization of the st ate space of the R \':-J has been 

treated as any Euclidean space with clusters of data, without accounting for the 

fact that the points in state space are part of a dynalnic systern in interaction with 

a domain. 

This part of the thesis! presents a novel RN:-J-RE algorithm; CrySSMEx2 (Crys­

tallizing Substochastic Sequential ~Iachille Extractor), which is parallleter free, 

handles missing data, generates approxilnative rules if the underlying systern is 

chaotic, and returns results at "any-tiIlle" (Craven & Shavlik, 1999), i.e. coarse 

lllOdels are initially created and then iteratively" refined. The underlying concept 

of CrySSMEx is to observe the state and output of an RN:\, quantize the state 

space. and refine the quantization of the state space such that the resulting ma­

chine t.vpically is Ininimal, deternlinistic, and equivalent to the R \"\". CrySSMEx is 

able to extract rules frOlll R~~s in dOlnains where other techniqlles canBOt. At 

least, earlier techniques seelll not to be feasible in these domains. 

1 \Yhich is largely ha~ed on Jacobssoll (2006). 
2To 1)(' pronounced somewhat like ··Christmas". All open source distrihution of the algorithm 

is also under preparation at t he time of preparation of this t ht'sis (cryssmex. sourcef orge. net). 
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8.1 Aim 

CrySSMEx differs from many earlier approaches in that it strives for fidelity rather 

than accuracy of the rules. Fidelity is the degree to which the rules mimic the 

network, whereas accuracy is related to how well the rules generalize when applied 

to unseen examples (Andrews et al., 1995). \Yhen fidelity· is the goal and the 

underlying network makes errors. the machine extracted from the network should 

also replicate those mistakes. Some earlier approaches have also focused on fidelity 

(e.g. Vahed & Omlin, 2004). but most work has had accuracy as the prinle goal 

for the rules (e.g. Giles, ~Iiller, Chen. Chen & Sun, 1992; Zeng et a1., 1993). This 

is logical if the network is used as an intermediate step for acquiring sYlubolic 

knowledge from data, e.g., for grammar induction. In SOUle cases this approach has 

been very successful when the extracted rules were equivalent to the sYlnbolic data 

generator (e.g. Giles, ~[iner. Chen, Chen & Sun. 1992; Giles, NIiller, Chen, Sun et 

al., 1992). 

The strive for fidelity is beneficial because it lnakes the rules useful for analysing 

erroneous R~~s. Oue could COlnpare an erroneous RNN to a sick patiellt and an 

RNN-RE algorithm to an instrulnent a doctor uses to diagnose the patient. TIlP 

doctor would gain little froln an accuracy-seeking instrulllent that describes the 

condition of the patient if completely healthy, ,,·hich is basically what accuracy­

optimizing lnethods strive for. Instead, the analysis tool should generate an analysis 

that reflects the actual condition of the patient. 

Another difference between accuracy and fidelity' is that the latter does not 

presuppose the existence of any task in wh,irh errors can be defined. Instead. the 

quality of extraction is measured on how well the extracted lnodel rnimics the 

underlying systeln. This allows for the analysis of simulated systerlls other than 

just RNNs. Therefore, in this thesis. the extraction of rules frmn R:\~s is treatt'd 

as an interesting specia1 case of extraction fr01n a broad range of dynarnic s~·stell1S 

(defined in Section 9. l). 
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8.2 What is new in CrySSMEx? 

The three main criteria in the taxonomy of R~~-RE lnethods in Part I (Jacobsson~ 

200.S) are: (1) the means of state observation, (2) the type of rules extracted, and 

(3) the state space quantization method. 

The observation of states in CrySSMEx, as in many other approaches (e.g. \\'<:1-

trous & Kuhn, 1992; Manolios & Fanelli. 1994; Tino & Vojtek, 1998: Tiiio k 

Koteles, 1999; Tino et al., 2004), is solely based on salnpling the s,Ystern a~ it 

behaves in its domain. The novel components of CrySSMEx are: the rule type 

(Section 9.2), and the quantization method (Chapter 10). But what really dis­

tinguishes CrySSMEx from all earlier methods, is the integration of the four basic 

elements found in previous methods (Jacobsson (2005), p. 1230): 

• quantization of state, 

• observation of the underlying systenl, 

• rule construction and 

• rule minimization. 

These four subprocedures have typically been quite separable in R~~-R E algo­

rithms. In earlier approaches, the quantization of the state space was achieved by 

traditional clustering techniques with no sensitivity to, nor any integration with. 

the dynalnics of the RNN. Also, the Ininimization of the rules (when conducted at 

all) was just a postprocessing of the rules. In CrySSMEx, all four constituents are 

tightly integrated into one systelIl resulting in an ernpiricalloop of Inodel refinernent 

through lnodel based data selection (cf. Chapter 11). 

8.3 Overview 

This part of the thesis is structured to enhance the understanding of the lIH1111 

loop of the algoritlun (in Section 11.2). The algorithm should, however, be under­

standable, at an abstract level. without knowing all the details of the constituents. 

Therefore readers are recolnnlended to briefly look at Algorithrn 11.2 (OIl page ;-.:q) 

of S('ction 11.2, the point of convergence of this part of the thesis, before continu­

ing to read Part II. To further aid readers, illlportant abbreviatiolls ,up list{'d in 

Table B.1 of ,.\ppcndix B. 
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The remaining chapters of this thesis part is otherwise organized as follows: in 

Chapter 9 the specific class of dynamic systems that are analysable with CrySSMEx 

is defined together with a discrete stochastic model of these systems. A novel 

vector quantizer is described in Chapter 10. As mentioned. Chapter 11 connects 

the constituents of CrySSMEx into one coherent algorithm. \\~hile remaining chap­

ters contain experiments, discussion and conclusions, future work suggestions and 

discussion are covered mainly in Part III. 
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Chapter 9 

Modelling Dynamic Systems 

This chapter introduces a class of dynamic systems (Section 9.1), a finite stochastic 

model of these systems (Section 9.2) and a means of transforming the dynarnic 

system into the stochastic model through systeln observation (Section 9.2.3). The 

translation process of the system into a model is refined by other parts of CrySSMEx 

(Chapters 10-11) so that more precise translations can be Inade. 

9.1 Situated Discrete Time Dynamic Systems 

The target dornain for CrySSMEx is a general class of dynaIl1ic systerns which in­

cludes R:"J:"Js. Therefore, only properties of R~Ns that are of irnportance for rule 

extraction are included. Other properties typically associated with neural networks, 

such as weights, activation functions and learning, are sinlply Oluitted. 

The targeted class of systell1S is referred to in this thesis as situated discrete tilne 

dynaInic systeIll, incorporating state, input, output and dynaInics of the systelll. 

The svstenl is situated in the sense that it has a defined interface with a dOlnain 

with which it interacts. Henceforth in the thesis, the extraction of rules frOln such 

dYllalllic systems rather than only frOln R~\,s will be considered, but the underlying 

problenls are precisely the saIne (cf. Definition 3.1). 

9.1.1 Definition 

Definition 9.1 A sit llated discrete tim (' dynarnic s,If·-dulI (SDTDS), is a 

quadruple (5. I. 0.1) where S' C IR."'. is a set of stntc l'cdor .... , I C IRn, is a set oj 
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input vectors, 0 C ]Rna is a set of output vectors, '"'I : S x I ---4 S X 0 is the 

transition function, and n s , ni. no E N are the dimensionalities of the state. input 

and output spaces respectively. 0 

Interpretation: If the system, at time t, occupies a state s(t) and is fed an input 

itt), then the resulting next state and produced output is determined by [s(t + 

1), o(t + 1)] = 'Y(S'(t) , r(t)). The current and initial state of the systeln are not 

included in the SDTDS model since it is something imposed on the systenl (the 

SDTDS specifies the framework and behaviour for any arbitrary initial state just 

at a function specifies the image of any arbitrary melnber of the dOlnain of the 

function). To simplify descriptions, the transition function, ~" can be subdivided 

into two functions 'Y.5 : S x I ---+ S and 'Yo : S x I ---+ O. 

It should be noted that the functional dependencies are those of a ~Ieal~T S~Tsteln 

rather than a 1100re system in that the output is determined by state and input 

rather than a function of state alone (Hopcroft &= Ulhnan. 1979). The reason for 

this choice is that a Mealy model can subsume a Moore Inodel but not necessaril~' 

vice versa l (if we only consider finite state machines, however, they are cOlnpletely 

equivalent (Hopcroft & Ullman, 1979)). 

In its current implementation, CrySSMEx also requires the set of input vectors 

to be finite. which for exanlple is the case for any syn1bol processing R~~. This 

restriction is not included in the definition since it applies more to what is used as 

input to the SDTDS, rather than a restriction of the s~'stelll itself. Other than that. 

there are no theoretical restrictions on the SDTDS as defined above for CrySSMEx 

to analyse it. 

There are also sonle other ;;ilnplicit requirements" (cf. Section 6.5) , made by 

a rule extraction algorithm of the underlying SDTDS, that cause SOlne systellls of 

general interest not to comply with the above definition (Jacobsson, 2005). For 

eXaInple. the state, input and output must be distinctly separable as well as fully 

and unintrusivel}T obsclyable. ~Ioreover. ~. must be a noise-free functioll. i.e. the 

ohserved systelll is assullled to be completel:v detenninistic. 

1 A :\loore model, and a r..loore machine extraction version of CrySSMEx has also been impl('­
lJl(,Ilt('(l, but is not pr('s('nt('d h('r(' sinc(' it involves small chang('s in many diff('f('ut parts of the 

descri ptiOllS. 
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9.1.2 Collection of data from an SDTDS 

An RNN-RE algorithm should transform an R~X into a discrete model mimicking 

the RNN to a satisfactory degree. To do this, a compositional approach has typicall~' 

been adopted where data is gathered from the internal activations of the RXX and 

a model is subsequently built from this (Tickle et al., 1998). Within the RXX-RE 

field, two sub-types of the compositional approach exist; one where the RXX-RE 

algorithm interacts directly with the RNN while performing a breadth first search, 

and another where the data is collected from the RNN during interaction with the 

domain in which it was trained (cf. Section 6.3). In CrySSMEx, the latter is chosen 

for three reasons: (1) the data (and hence the extracted model) will only contain 

aspects of the R~N relevant for the domain, (2) it is far more efficient since, in 

effect, the domain is used as a heuristic when searching anlong all the possible 

models that describe the behaviour of the system (Jacobsson & Ziemke, 2003b) (cf. 

Appendix D), and (3) it is possible to do the extraction off-line, i.e. pregenerated 

data can be used in CrySSMEx since no direct interaction between extractor and 

underlying system is needed. 

When the SDTDS is set to hold a certain initial state and is then fed a sequence 

of input vectors from a domain it will generate a sequence of states and outputs as 

a result. This domain interaction is the basis for the data collection and the result 

is recorded as a sequence of transition events. 

Definition 9.2 An SDTDS transition event at a time t, w(t), is a quadruple 

(s(t), f(t), o(t + 1), s(t + 1)) E }Rns x }Rni x }Rna X }Rn .• where s(t + 1) is the state 

vector reached after the SDTDS received input f(t) while occupying state s(t), 

and o( t + 1) is the output generated in the transition. 0 

Definition 9.3 A transition event set, n, consists of selected transition events 

recorded from the SDTDS with a given set of input sequences. 0 

The reason that n is defined to consist of selected events is that it is quite possible 

that some events are not wanted in the model, e.g., when the user has Illade an 

explicit reset of the state with no wish to model the transition caused by this. The 

user lnay also want to let the system "settle in" before starting data collection. TIl(' 

fact that the user is allowed to choose a subset of available events to work with, Inay 
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give the notion that the biases of the user may affect the results. However. such 

selection requirements are always part of any empirical process and the selection of 

data will necessarily affect the results. The initial state are also omitted from the 

definition SDTDS for this reason; possibly several initial states should be selected 

by the user to be appropriate for the aspects of the SDTDS the user wants to Illodel. 

9.1.3 Building a stochastic dynamic model from a quan­

tized SDTDS 

The most essential part of CrySSMEx, and all earlier RN~-RE algorithms, is the 

quantization of the state space. The set of possible states in the state space of the 

SDTDS is uncountable and lllust be transformed to a finite dOlllain to lllake the 

extraction of a finite machine possible. 

Definition 9.4 A quantizer A: IRn ----+ {I, 2, .. . m} is a function that separates an 

n-dimensional real space into m uniquely labelled disjoint subspaces. The 

maximum number of subspaces, m (i.e. the cardinality of the codOlnain of 

function A), will, for pragillatic reasons, be denoted IAI. 0 

Although not explicitly stated in most RNN-RE papers, all three spaces of RNNs 

(input, state and output) are actually labelled using SOlne fonn of quantization 

function. The quantization of the state space is, of course, a central concern, but 

also the input and output need to be labelled into a finite set of SYlllbols to produce 

the extracted finite machine. The state, input and output quantizers will be denoted 

As, Ai and Ao respectively. 

The SDTDS is in itself, of course, capable of reacting according to any of the pos­

sible input vectors (since the SDTDS definition includes the whole vector spaces in 

the dOlnains of the transition function), but in its current ilnplementation CrySSMEx 

requires the input domain to be finite (and Ai lnust be invertible). 

The frequencies of quantized transitions in the transition event set, n, are trans­

fonned into a joint probabilit~· distribution that will later be used to build a d:vllcunic 

lllodel which lnilnics the SDTDS (Section 9.2.3): 

Definition 9.5 A stochastic dYlIomic model of an SDTDS is a joint probability 

lllilss fuuction induced froin a trmlsition event set n aud qUHntizprs '\0' .\j awl .\.~ 



is defined as a function Po : [l.IAsl] x [1. lAd] x [1. IAol] x [l.I.\sl] ~ [0,1] where 

Po( i, k, l. j) denotes the probability~ that if one picks a random transition event 

from n, it would be a transition from a state enumerated i by .\,. over an input 

vector enumerated k by Ai, which generated an output enumerated I by '\0' and a 

new state enumerated j by As 2. 0 

9.2 Substochastic Sequential Machines 

Stochastic machines have been extracted earlier (Tino & Vojtek, 1998: Tiflo &. 

Koteles, 1999), but without modelling the output of the systenl explicitly. In 

CrySSMEx, however, the output of the system will be modelled as well. 

The stochastic dynamic model (Po in Definition 9.5) collected frOIn the SDTDS 

in interaction with its dOlnain provides infonnation about the estilnated probabili­

ties of the effect and outcome of transitions in the systeln as "yiewecl" through the 

quantizers. These probabilities are used to build a finite stochastic machine lnodel 

of the SDTDS. This type of machine resembles stochastic sequential mach'ines (Paz, 

1971) or probabilistic automata (Rabin, 1963) but has some distinguishing features 

since there is a realistic possibility of model ~'incompleteness" due to a finite ob­

served set of transition events. This is due to the fact that the sanlple of input 

sequences in n will not necessariI:,' provide examples of all possible input sYlnbols 

in all possible enulnerations of the quantized SDTDS space. The choice here is to 

Inake a "closed world assulnption", and consequentially, only what is observed in 

n will be included in the Inodel. 

Missing data Inust therefore be handled when the nl0del is built from n. This 

causes the probabilistic Inodel to becOIne a substochastic sequential machine (SS'\I) 

rather than the stochastic sequential machines of Paz (1971). As a consequence. this 

incOInpleteness of the Inodel ilnplies that probability can "leak" out frOIn the sLlte of 

t he machine during parsing of input sequences. causing t he probability distributiolls 

to becOIne suhstochastic (see Appendix .--\). The details of what this entails are 

clarified in t he following sections. First, however, SOlIlP additional definit iOllS and 

llotational cOllvpntions are introduced, followed by tilt' full SS'\I ddl11itioll. 

2The awkward order of i, j. k. and I is due to other ('ontexh of the variables of ]In latpr in this 

thesis. 
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9.2.1 Notation of probability distributions as vectors 

Sometimes a probability distribution over a finite domain is preferably denoted 

as a vector (cf. Paz, 1971). The probability mass function over a discrete finite 

stochastic variable X, is denoted p(X = xd, or P(Xi) for short. p(xd is interpreted 

as the probability of X having the value Xi. If we want to express this probability 

as a vector it is convenient to just write P(Xi) as Xi. The full vector, representing 

the full distribution over X is denoted X, i.e. with no index. The vector and 

probability notation of distributions will be used interchangeably since they are 

more conveniently expressed as one or the other depending on context. Inlportant 

types of substochastic vectors and operations on them are defined in Appendix A. 

9.2.2 SSM definition 

Definition 9.6 A substochastic sequential machine (SSlVI) is a quadruple 

(Q, X, Y, P = {p(qj, Yllqi, Xk)}) where Q is a finite set of state elements (SEs), X 

is a finite set of input sYlnbols, Y is a finite set of output symbols, and P is a 

finite set of conditional probabilities (cf. explanation of Equation 9.3) where 

qi, qj E Q, Xk E X and Yl E Y. 0 

The terminology is here sOlnewhat different from that of conventional finite state 

machines. The input and output domains of the SSM will still be considered alpha­

bets of symbols, whereas the Q of the SSM will instead be denoted state elements 

or SEs3 to not confuse them with the state of the SDTDS. Also, the actual state 

of the SSM is more properly described as a (sub )stochastic distribution over these 

elements. The interpretation of p(qj, yt!qi, Xk) is that it is the probability of the 

Inachine entering the SE qj and in this transition producing symbol Yl given that 

it occupied only SE qi and was fed input symbol Xk. A more detailed description 

of the SSM interpretation is given in Section 9.2.4 where the use of an SSM as a 

parser of input symbols is described. But first, the construction of an SSM fronl a 

model of the SDTDS will be described. 

3See Table D.l for a list of abbreviations. 
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9.2.3 Translation of an SDTDS into an SSM 

It is quite straightforward to see the similarities of the SDTDS and the SS~I (cf. 

definitions 9.1 and 9.6). The difference lies mainly in the discreteness of the in­

put, state and output domains of the SS~I versus the uncountable donlains in 

the SDTDS. In practice, however, the SSM can be seen as a subclass of the set 

of SDTDSs since a substochastic SE distribution can be subsumed as an SDTDS 

state and correspondingly for input and output. 

When transforming an SDTDS into an SSM-model, the uncountable domains S, 

I and 0 of the SDTDS are reduced to the finite domains, Q, X and Y respectively. 

The SSM is created from a quantized SDTDS so that the domains of the SS~I are 

isomorphic to the codomains of the respective quantizers. In other words, Q of 

the SSM is isomorphic to [1, IAsl] and correspondingly for the input and output 

symbols. In the following text, an SE denoted qi E Q corresponds to the portion of 

the state space of the SDTDS enumerated i by the As-quantizer. 

The joint probabilities of observed and quantized SDTDS transitions (Po), are 

translated into joint probabilities of SSM transitions according to: 

P(qi' Xk, Yl, qj) = 

Po ( As ( s( t)) = i, Ai (f( t)) = k, Ao ( o( t + 1)) = l, As ( s( t + 1)) = j ) 
(9.1 ) 

i.e. the joint probability of SSM transitions are defined so that they correspond to 

the observed frequency of transitions in the SDTDS. The conditional probability 

of the SSYI, p(qj, ytiqi, Xk), is calculated from the joint probability according to 

equations 9.2 and 9.3. 

IQI WI 

P(qi' Xk) = L LP(qi, Xk, Yl, qj) 
j=l [=1 

if p( qi, X k) > 0 

if P(qi, Xk) = 0 

(9.2) 

(9.3) 

Although conceptually appealing, the distribution P = {p(%, ydqi' .rk)}, is per­

haps a bit haphazardly tenned conditional probabilities since a conditional proba­

bility p(alb) traditionally is undefined if p(b) = o. But in the SS:-"1 these need to be 
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defined since there might actually be cases where there is no transition frmll a SE 

qi over a specific symbol Xk, simply because there are no observations in 0 of any 

such event. 

Definition 9.7 If P(qjl yzlqil Xk) = 0 for all qj E Q and Yl E Y. then the transition 

from qi over input Xk will be referred to as a dead transition. 0 

Definition 9.8 The procedure of transforming an SDTDS frmn O. through the 

stochastic dynamic model, Po. of Definition 9.5, into an SS~I as defined above in 

equations 9.1-9.3 will in pseudo-code be denoted as 

88m = create-1Ilachine(O, ASl Ai, Ao) where As, Ai and Ao are the state~ input 

and output quantizer respectively, and 88m the resulting SS~I. 0 

When an SS11 is created with create-1Ilachine, the SDTDS frmll which 0 

was sampled is referred to as the underlying sy8tem of the SS~L ~ ext, the exact 

calculations of state and output of the SS~I are described. The SS~I processes 

input such that its distributions over Q and Y correspond to the degree of belief of 

the occupied :-;tate and output enumeration of the underlying systeIn. 

9.2.4 Parsing an input sequence using an SSM 

Unlike a "standard" discrete i\Iealy machine where exactly one state is occupied at 

a tinle (Hopcroft & Ulhnan, 1979), the conlplete description of the state occupied 

by an SS~\I is the substochastic distribution over zero. one, or Inore SEs. Likewise, 

t he transitions generate substochastic distributions of output symbols rather than 

individual symbols. 

The exact calculations of distributions are as follows: Let if( t) = (if I (t), ih (t), ... , 

(Tn (t)) be a substochastic vector denoting the distribution over Q at tillle t and 

.rd t) E .. \ be the input sYl11001 fed to the lnachine in that tilne step. The H'slllting 

distribution vector over Q, if( t + 1), is calculated by.! 

if( t + 1) = P q ( if(t ), .1' d t ) ) (9.-1 ) 

I Note t ha t t hi~ is a case where the notational choice of letting p( (ji) = (J, comes iIlto play (cf. 
Sl'ction 9.~.1), i.e. it is implicit that (/i(t + 1) and p(qi(f + 1)) [('fpr to the probability p(Q = (I,) 

at time f + 1. 
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where each element 1£ (t + 1) of if( t + 1) (corresponding to a probability of a SE) is 

calculated by 

(9.5) 

and concurrently, the distribution of output symbols y( t + 1) over Y is generated 

in the transition by 

y( t + 1) = P y ( if( t ), X k ( t ) ) (9.6) 

where each element ih(t+ 1) of y(t+ 1) (corresponding to a probability of an output 

symbol) is calculated by 

(9.7) 

Note that if the transition from qi (t) over Xk (t) is dead and iii (t) > 0, then the 

respective sum of the probabilities of distribution ib (t + 1) and ilL (t + 1), will be 

less than 1. In such cases, distributions of the machine will become substochastic 

(cf. Appendix A). 

Another possibility of parsing is to, when possible, divide the probabilities with 

the sum of the probabilities after each symbol. This mode of parsing is referred to 

as normalized parsing. 

(9.8) 

where the '*' is either q or y (normalize is defined in Appendix A). 

One may argue that instead of the notion of substochastic probabilities and state 

"leaking" from the machine, it would be better to add an additional state element 

qdead to which all dead transitions are then made (producing an additional "dead" 

output symbol, Ydead) 5 . This can work, and it would also, as far as I can judge. 

create a machine equivalent to the machines of Paz (1971). It would, however, 

destroy the otherwise cOlnplete semantic connection between underlying sy~t(,In 

and SSM since there will be no corresponding elernents in Sand Y of the SDTDS 

5This can be compared with the "rescue state" of Schellhammer et al. (1998) (d. Table 5. i). 
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for qdead and Ydead respectively. 

To illustrate the parsing of symbol sequences with SS~Is. some examples are 

examined in Section 9.2.7. But first some important types of SEs must be intro­

duced. There are a number of properties of SS~Is and SEs that can be used for a 

deeper analysis of the machines. In this thesis only the ones that are crucial for 

CrySSMEx are mentioned: deterministic and equivalent SS~I SEs. 

9.2.5 SSM determinism 

An SSM will always be deterministic in the sense that the state element and out­

put symbol distributions are always deterministically calculated. Therefore, the 

determinism of an SE is instead defined to reflect the degree to which the SSrvI 

determines the succeeding occupied state enumerations and output symbols of the 

underlying dynamic system. For this purpose entropy and, especially, conditional 

entropy (Cover & Thomas, 1990) are suitable (see Definition A.5 in Appendix A). 

A conditional entropy H(YIX = x) can be interpreted as the remaining uncer­

tainty of variable Y given that variable X would be known to have the value x. 

Here, the conditional SSM-based entropy of the output given an SE qi and input 

Xk in an SSM ssm will be denoted Hssm(YIQ = qi, X = Xk) and is defined by 

(9.9) 

where if is here the degenerate (see Appendix A) SE distribution vector with iii = 

1.0. The conditional entropy of the SE given the previous SE and input synlbol is 

likewisely denoted Hssm(QIQ = qi, X = Xk) and is here defined by 

(9.10) 

with if degenerate as in equation 9.9. 

The interpretations of the entropies in equations 9.9 and 9.10 are that given 

a distribution over Q, concentrated to only qi, and the input then is Ik. they 

return the degree of uncertainty of the SS~I regarding the succeeding output sYlubol 

and occupied state enumeration of the underl~'ing SDTDS, respectively. This is 

an idealized interpretation due to the substochastic naturt' of the nlodel. The 
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conditional entropy will be zero also when the SS~I has another type of uncertaint~· 

when transition from qi over Xk is dead. In this sense, the conditional entropies 

of equations 9.9 and 9.10 are not entirely compatible with how the concept of 

entropy is typically used (cf. discussion after Definition A.5 and after Equation 9.3 

in relation to the conditional probabilities). 

Definition 9.9 An SE qi E Q of an SS~1 ssm is deterministic iff 

Hssm(YIQ = qi, X = Xk) = 0 and Hssm(QIQ = qi, X = Xk) = 0 for 'r/Xk E X. 0 

A deterministic SE has exactly zero or one outgoing transition for each input sym­

bol. 

Definition 9.10 An SSM is deterministic iff all SEs qi E Q are deterministic. 0 

If a machine is deterministic, and its initial SE distribution is degenerate, then all 

subsequent SE and output distributions will both be either degenerate or exhausted 

(cf. Appendix A). This definition of a deterministic machine differs somewhat from 

that of traditional deterministic finite automata (Hopcroft & Ullman, 1979). in 

which states (corresponding to the state elements of the SS~I) must have transitions 

to exactly one state for all input symbols. 

It is quite straightforward to see that a deterministic SSM, in which there are 

no dead transitions, is equivalent to the nonstochastic standard Mealy machines 

as defined in Hopcroft and Ullman (1979)1 if a degenerate distribution over Q is 

defined as initial state. Such a machine must always occupy only one SE at a time 

and generate one single output sYlnbol at a tilne. 

SSM determinism is used as a termination criterion in CrySSMEx (see Algo­

rithm 11.2). The conditional entropies are also used as a basis for selection of the 

most infornlative state vectors of n in order to perform optimization of the SDTDS 

state quantizer (see Algorithm 11.1 on page 87). 

9.2.6 Equivalence and nonequivalence of SEs 

The second important property of SEs is equivalence. In automata theory, two 

states qi and qj of a machine are equivalent if, and only if, the output of the 

autolnata would be the saIne for all possible future input sequences independent of 
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which of the two possible states that are occupied initially. This can be tested quite 

efficiently in traditional nonstochastic automata (Hopcroft &. Cllman. 1979), but 

for stochastic machines it is somewhat more difficult. In fact, it is even impossible 

in general for substochastic machines since the model would not ';know" what 

the outcome of dead transition would be in the underlying system. It would, for 

example, be impossible to determine what other state elements an SE with no 

outgoing transition is or is not equivalent to since the outcome of any possible future 

input sequence is undefined in the model. The only way to determine equivalence 

of such an SE, to other SEs, is to return to the underlying SDTDS to record the 

missing transitions, and thereby make it part of the SSM model. However, since 

this would break the closed world assumption, it is not considered. Rerecording 

of n is however considered an option in the future work sections of the thesis (cf. 

Section 18.4). 

It is, however, possible to determine that two SEs are not equivalent if they, 

in their outgoing transitions, share some input symbols and transitions over these 

lead to discrepancies in the future output of the ssrvr. Therefore, an algorithm that 

returns true if and only if two SEs are not decisively inequivalent (NDI-equivalent 

for short) is provided6
. For example, an SE which has no outgoing transitions will 

be NDI-equivalent with all other SEs since there will be no decisive evidence of the 

opposite. Two SEs with no input symbols in common in their outgoing transitions 

will also always be NDI-equivalent. 

To determine the NDI-equivalence of SEs qi and qj, the recurSIve function 

NDI_equivalent(ssrn, 11, V, 0) (described in Algorithm 9.1) is called, where i1 and 

v are the corresponding degenerate SE distributions for qi and qj respectively (the 

need for the empty set is clarified in Algorithm 9.1), and the result is true or false 

depending on whether the SE distributions i1 and v are NDI-equivalent or not. The 

algorithm is highly recursive and uses a "trick" based on the support sets (see Ap­

pendix A) of the SE distributions to avoid infinite recursions that otherwise could 

occur. If we allow ourselves to jump ahead to a later exarnple, consider the testing 

of equivalence between SEs q5 and q6 in Figure 9.2 (on page 76). When starting in 

6It is also possible to test if SEs are decisively equivalent as well, i.e. when all subsequent SEs 
have the same symbols for outgoing transitions. But preliminary studies have shown that more 
interesting results are achieved using NDI-equivalence simply because dead transitions are quite 
common. 
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SE q5 and the SSM is fed symbol b, the SE distribution is gradually approaching 

a pure SE q6, but it will never quite reach it. The algorithm would not stop if it 

were not for the use of reencounters of SE support sets as a termination criteria. 

Since there is just a finite set of possible support sets (2Q), this guarantees that the 

algorithm will terminate. 

What is currently lacking, is formal proof that NDI_equivalent functions as 

intended for all possible SS~fs under all possible conditions. Formal proof of a 

method for equivalence testing of states in stochastic sequential machines, however, 

does exist (Paz, 1971). In that proof, strong similarities with this algorithm do 

occur, but a formal 1: 1 connection is yet to be achieved. For now, the experilnents 

of Chapter 12 are the only indication that the algorithm as a whole functions 

for the presented cases. In addition to these experiments, the algorithm has been 

successfully tested in a number of hand-made SSNls. with properties that make them 

interesting to analyse with respect to SE equivalence, e.g., the SS1\1 of Figure 9.2. 

For three SEs qi, qj and qk of an SSM it may very well hold that qi and qj 

are XDI-equivalent and likewise for qj and qk while qi and qk are not. In other 

words, the relation is not transitive. It is required, by other parts of CrySSMEx (see 

Algorithm 11.2) that states can be grouped into disjoint equivalence sets, which is 

not possible if the equivalence relation is not transitive (and symmetric and reflexive 

as well). 

Definition 9.11 Let 7r(qi) denote the set of SEs with which qi is NDI-equivalel1t. 

Two SEs qi and qj are defined as universally NDI-equivalent (UNDI-equivalence, 

for short) if 7r ( qi) = 7r ( qj ). 0 

U~DI-equivalence is a transitive relation (sYlnmetry and reflexiveness is inherited 

from the NDI-equivalence) and therefore can be used to define non-overlapping 

equivalence sets. There is, however, more than one way of translating the NDI­

equivalence into a transitive relation and this issue is again Inentioned in Sec­

tion 16.1. 

Definition 9.12 A set of UNDI-equivalence sets, E, consists of disjoint sets of 

SEs, e E E where e C Q (with all es together covering all SEs in the SS~I) and for 

all qi, qj E e, qi and qj are UXDI-equivalent. In the pseudo-code notation, the 
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NDI_equivalent(ssrn, ii, V, H) 
Input: an SSM ssm, SE distributions ii and v. and history of state support 

sets H. 
Output: returns true if il and v are not decisively inequivalent given 

possible future input sequences. 
begin 

1 if :3xk EX: (Py(il, Xk) i= Py(v, Xk) /\ sup (Pq (il, Xk)) i= 0/\ 
sup(Pq(v, Xk)) i= 0) then return false; 

I*i. e. the output must be the same for both BE distributions for all 
possible input symbols. *1 

2 else if il = v then return true; 
1 *i. e. if the distributions are identical, they are equivalent. *1 

3 else if (sup(il), sup(v)) E H then return true; 
I*i. e. a loop has been encountered. Eventual in equivalence will be 

encountered in another branch of the recursion tree. *1 
4 else 

5 

1*1f the equivalencelinequivalence cannot be asserted, 
inputs must be tested. 

R:= true; 
k:= 1; 
while R = true /\ :r:k E X do 

1 * As long as no in equivalence has been shown ... 

il' = Pq(il, Xk); 
v' = Pq(u, .r'k); 

if sup( il') i= 0 /\ sup( V') i= 0 then 
1*. .. continue testing recursively. 
H' = H U (sup(il), sup(v)); 
R := NDI_equivalent(ssrn, il', v', H'); 

end 
k := k + 1: 

end 
return R; 

end 
end 

then subsequent 
*1 

*1 

*1 

Algorithm 9.1: The recursive function NDI_equivalent(88T1t, il, V, 0) returns true if 
and only if there is no evidence that the future ssm output could differ depending on 
which of SE distributions zlor v are occupied in the SS~I. The if-statement on line 2 can 
(lctually be logically omitted, since line 3 will catch the equivalence in subsequent levels 
of recnrsion (line 4), but it makes the algorithm considerably more efficient in most 
realistic C(1.'-\('.'-\. The empty support set tests on lines lL\:-S together with the normalized 
parsing CPq and Py) canse the algorithm to return true when assessment of inequi\"alt'llce 
canllot be perfonned. 
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function call E = generate_UNDI_equivalence_sets(ssm) is be used to denote 

the generation of a set of UNDI-equivalence sets E from an SS~I ssm. 0 
~ 

A machine with equivalent SEs can be collapsed to a smaller rnachine by col­

lapsing all equivalent sets into new, individual SEs. This collapsing, or merging~ is. 

however, part of another subalgorithm (the merge_cvq-function of Definition 10.7). 

9.2.7 SSM examples and interpretations 

Example 9.1 Consider an SSM with Q = {ql, q2}, X = {a, b}, Y = {c, d} and 

transition probabilities P = {P(q2' clql, a) = 1.0,p(q2, clqr, b) = O.l,P(ql, Clql, b) = 

0.9,p(ql, Clq2, a) = 0.8,p(ql, dlq2, a) = 0.2,P(q2, dlq2, b) = 1.0} (SSM A in 

Figure 9.1). All zero probabilities are omitted from the descriptions, e.g., that 

P(ql, alql, a) = 0.0. If we let the initial SE vector be q(O) = (1.0,0.0) (i.e. that 

p( Q = ql) = 1.0 at time t = 0) and then parse the string aabbba with the 

machine, the sequence of SE and output symbol distribution vectors (where the 

two elements of vector iJ correspond to probabilities of syrnbol c and d 

respectively) would be as follows: 

( a) q( 1) = (0.0, 1. 0 ), iJ( 1) = (1. 0, 0.0), 

(a) q(2) = (1.0,0.0), iJ(2) = (0.8,0.2), 

(b) q(3) = (0.9,0.1), iJ(3) = (1.0,0.0), 

(b) q(4) = (0.81,0.19), iJ(4) = (0.9,0.1), 

(b) q(5) = (0.729,0.271), iJ(5) = (0.81,0.19), 

(a) q(6) = (0.271,0.729), iJ(6) = (0.9458,0.0542). 0 

Note that, since the SSM of Example 9.1 has no dead transitions, the sums of 

the SE and output probabilities are always one, respectively. In the next exarnple 

an SSM that has some dead transitions is shown. 

Example 9.2 Consider an SS~f with Q = {ql, q2}, X = {a, b}, Y = {c. d} and 

transition probabilities P = {P(q2, Clql, a) = 1.0,p(ql, clqr, b) = 0.9. P(q2' Clql. b) = 

0.1,P(ql, dlq2, a) = 1.0} (SS~l B in Figure 9.1). Note that the machine has dead 

transitions since q2 has no outgoing transition over symbol b. SE q2 is also an 

example of a deterministic SE. If q(0) = (0.0. 1.0) and the SS~1 is fed ~vlllbol b as 

input the probabilities of all SEs and outputs would therefore iIllmediately reach 
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b:c:O.9 

b:c:O.1 

a:d:O.2 

A 

b:c:O.1 

~~ 
b:C:O.9~:B 

a:d 

B 

b:d 

Figure 9.1: The two SSMs of examples 9.1 (A) and 9.2 (B) (with qi denoted by i). A 
transition label x:y:p should be read as a transition with x as input and y as output and 
p as the probability of this transition. For example, the transition label "b:c:O.1" from ql 

to q2 corresponds to the conditional probability p( q2, C I ql, b) = 0.1. If the p is 1.0, then 
the probability is omitted from the label. 

zero. In other words. the possibility of being in SE q2 is eliminated by the symbol 

b, and as a consequence of the SS~1 ;'observing" b, the probability of this 

ilnpossibility vanishes from the machine. If we instead let £1(0) = (1.0,0.0) and 

then parse a sequence of t bs, the SUlll of SE probabilities would be O.g(t-l) when 

t > 1. 0 

As the eXaIllple illustrates, the the SS~I acts as an observer of inputs, frmll 

which it derives a rllodelled degree of belief of what the actual enUllleration of the' 

state and output of the underlying systenl would be, given the same input sequence. 

Typically, if an SS~I is given a unifonn initial SE distribution, the SE distribution 

will, for each input s~'lnbol, gradually becmne nl0re and nlore focused towards a 

SIll all number of possible SEs (and output symbols). In a way. the SS~I can be seen 

to '"co1ldc1lse··. or ;'crvst allize" to a minirllal hypothesis of t he fact Hal (knowablp) 

st ate of the underlying s\"stem. 

An SS~I can be quite different and counter-intuitiv(' cOIn pared to stat(' machilH's 

t.\"picall~" encountered in t he literature which is illustrated ill t h(' npxt ('xample. 
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Example 9.3 The SS)'1 of Figure 9.2 represents a lllore complex SS~I. This 

machine is not fully connected and also contains a "dead SE" (cf. Definition 9.7) 

from which there are no transitions (qlO)' This is a perfectly correct form of SS)'1 

and, if provided with an initial SE distribution, this machine can process input 

sequences just as the SSMs of the previous examples. In this machine. man)' 

properties of the UNDI-equivalence becOlne clear. The set of equivalence sets 

returned by generate_UNDI_equi valence_sets is 

{{Ql},{q2,q3,q4}:{q5,q6,q7},{q8},{q9},{qlO}}. State elenlent QlO wilL since it has 

no outgoing transition, be NDI-equivalent with all other SEs. Ho\veyer, since it is 

the only element with this property, it is not U:-;DI-equivalent with anything but 

itself. Q8 is, on the other hand, the only one KDI-equivalent with only itself. One 

can easily see that the SEs of the equivalence sets {Q2, Q3, Q4} and {Q5, q6, q7} have 

the output symbols in common. respectively. q3 is special since it has no outgoing 

transition over symbol b, whereas q2 and q4 have. q3 is, however, NDI-equivalent 

with SEs Q2 and Q4 since it cannot be decided that symbol b should result in all)' 

different output given any of these three SEs. Then, for the same reason, why is 

not qg U:\fDI-equivalent to Q5, Q6 and q7, although it too, is constantly giving c as 

output? The reason is that SE Qg is also NDI-equivalent with q1. which none of q5, 

Q6 and Q7 are, therefore it is not U:\'DI-equivalent with thenl the way q3 is with q2 

and Q4. If one added Q11, NDI-equivalent with Q3, but not with q2 and q4, then this 

situation would change (even though Q11 may seelll cOlllpletely unrelated to Q3). 

Another aspect to notice is that the transition frOlll the equivalence set 

{ (/'2, Q3, (j 1 }, froln Q2 to QlO, Illakes no difference for the asseSSInent of the 

equivalence of Q2 with Q3 and Q4 since the transitions is to a dead SE fronl which 

no decisive inequivalences can be derived. 0 

The fonnat of the extracted rules of CrySSMEx has now been described. The 

ll('xt step is to define a vector quantization function which is later orchestrated to 

work in conjunction with these rules. 
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a:c,b:c a:d 

a:c 

a:d:O.6, 
b:d:O.2 

a:d,b:d 

Figure 9.2: A more cOInplex SS}'I example where UNDI-equivalence sets have been 
grouped together. See discussion in text of Example 9.3. 
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Chapter 10 

The Crystalline Vector Quantizer 

The observation and quantization of the state space of the underlying SDTDS is 

perhaps the most signifying constituent of RN:;\'-RE algorithms. In previous work, 

quite traditional clustering algorithms have been used to partition the state space 

of the R~~ (Jacobsson. 2005), e.g., self-organizing maps and k-means clustering 

(cf. Section 6.2). The problem with these clustering algorithms is that they parti­

tion the state space solely according to spatial properties, e.g., so that datapoillts 

have low intracluster distances and high intercluster distances (Everitt, Landau & 

Leese, 2001). In the case of RNNs and other dynamic systenls, however, the spatial 

requirenlellts should give way to functional requirements. The spatial (e.g .. Eu­

clidean) proxilnit~r of two states of the SDTDS is of less ilnportance for deciding if 

they belong to the SaIne cluster, than the invariance of the apparent behaviour of 

the SDTDS \\'ith respect to these states. Silnilar problems also exist when cluster­

ing internal activations of feedforward networks (l\. E. Sharkey &, Jackson, 199.5). 

This lneans, among other things, that the quantizer lnay need to have varyIng 

granularity in different regions of the state space. 

A partitioning that is cOInpletely guided only by the dynanlics of the SDTDS is. 

howeHT, an idealization (Casey, 1996; Blair &: Pollack, 1997; Jacobsson (\: Ziemke, 

2003b). Instead \\.(' will have to be content 'wit h partitions that are equi\'aiellt for 

i1 specific and finite set of input sequences (in the finite n of Definition 9.3). 

'To satisfy the functional requirernents. a quantizer that allm\'s generatioIl ()f a 

di\'isioll of the state space based on spatial properties is needed, as well as splitting 

and Inerging rq~iolls into uew ones when the functional requin'lllPllts are not sati:---
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fled (details of when exactly when it is appropriate to split or merge are covered in 

Chapter 11). For this purpose, a novel quantizer is suggested, the Crystalline Vec­

tor Quantizer (CVQ). The CVQ has some resemblance to the hierarchical decision 

tree representation extracted from feed-forward networks by Craven and Shavlik 

(1996), but differs in the details. 

The CVQ is built upon a graph which is defined below. How the infonnation of 

this graph is used to quantize a vector space is described in Section 10.2 and CVQ 

training in Section 10.3. 

10.1 Definition of CVQ graph 

Definition 10.1 A CVQ graph is a quadruple 

CVQ = (NLeaf, NvQ , N Merged, nroot) where nroot E NLeaf U N\'Q is the root node of 

the CVQ graph, in which the constituents are defined as in definitions 10.2-10.4. 

o 

The CVQ graph is a directed graph and could thus be described as a set of 

vertices and edges, but for notational reasons it is easier to omit the edges frOIn the 

description and instead of edges let nodes have explicit references to other nodes. 

The first node type, however, has no explicit references to any other nodes. 

Definition 10.2 A leaf node in a CVQ graph n E NLeaf has only one 

constituent, n = (1 D), where 1 DEN is a unique enumeration of the leaf nodes 

within the CVQ and 1 < 1 D < INLeafl. 0 

Definition 10.3 A Vector Quantizer (VQ) node in a CVQ graph, n E NVQ is a 

tuple n = (M, C) where M is a list of K model vectors, [nit, nh, ... ,mK] where 

[m]i E IRd , and C is a (nonrepetative) list of child nodes [CI' C2, ... , CK] where 

C; E N Leaf UNMerged U NvQ. dEN is the dimensionality of the vector space which 

the CVQ will be used to quantize. 0 

Definition 10.4 A merged node in a CVQ graph, n E NMerged, contains only a 

"link", n = (ngroup ), where ngroup E NLeaf UNMerged U NvQ . 0 

78 



The interpretation is clarified in the next section where the use of a CVQ as 

quantization function is described in which all CVQ node constituents are of rel­

evance. The example of Figure 10.1 is also beneficial for understanding the inter­

pretation of the CVQ nodes. 

The constituents of a CVQ are simply as defined above~ but there are~ of course, 

a number of constraints for how the CVQ graph can be constructed, e.g., that there 

may be no cycles in the graph. These constraints cannot be simply fonnalized. but 

are quite intuitive. Therefore, instead of a lengthy formal description, an example 

illustrates a typical CVQ topology in Figure 10.1. Also, the way the CrySSMEx 

algorithm builds the CVQ defines the constraints in exact detail (Chapter 11). 

Firstly, however, some useful implicit properties of CVQ nodes should be de­

fined. 

Definition 10.5 The parent set of a node n is denoted! n.Parent and refers to 

the set of all nodes where N E N Merged or N E NVQ where N. ngroup = n or 

n E N.C for merged and VQ node parents respectively (nroot.Parent = 0). 0 

A node, n, can have two types of parent sets; either it has a set of merged nodes 

that are linked to n, or it has just one VQ node (as illustrated in the example of 

Figure 10.1). 

Definition 10.6 The level LEN of a node n is denoted n.L. The level of the 

root node is 0 and of all the other nodes n.L = max (np.L) if 
npEn.Parent 

n.Parent c NMerged and n.L = np.L + 1 if n.Parent = {np} and np E NvQ . 0 

The level of a node reflects how many VQ nodes, or splits, are maximally required to 

reach the node from nroot (see Sections 10.2 and 10.3 for more details on CVQ graph 

interpretation and splits). The example in Figure 10.1 illustrates the structure of 

a typical CVQ graph. 

10.2 Quantizing with a CVQ 

When a CVQ is used as a quantizer (Definition 9.4) the corresponding quantization 

function is denoted Acvq and is in turn defined by the recursive function winner: 

NLea/ UNMerged U NVQ X lRd 
---+ {l. 2, ... m} as defined in equation: 

IAn object orientation like notation is adopted here, where S.Y means "The}" of S". 
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Merged node 

Level = 1 Parent = { 

ngroup = 

VQ-node 

Level = 2 Parent = { 

10 = 3 

VQ-node 

Level = 0 Parent = { } 
M = {rn, , m2 ' m3 } 

c= 

Level = 1 

10 = 1 

Merged node 

Level = 2 Parent = { 

Figure 10.1: Example of a CVQ with NLeaj 

NVQ = {no, n3} and nroot = no· 

Acvq( iJ) = winner( nroot, r) 

where winner is recursively defined as 

n.ID 

Leaf-node 

Level = 2 

10 = 2 

if n E N Leaj 

winner(n, iJ) = winner(n.ngroup , iJ) if n E NMerged 

winner(n.ctL" r) 

} 

} 

(10.1) 

(10.2) 

where II', the index of the \vinning child of a VQ-node, is detennined according t() 

IL' = argillinilil- TI.[TTl]dl 
lSiSln.C! 

HO 

(lO.:q 
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Figure 10.2: How a two-dimensional space would be quantized if the example CVQ in 
Figure 10.1 had model vectors no.1I1 = [(0.25,0.75), (0.75,0.75), (0.5,0.25)] and n3.111 = 
[(0.30,0.20), (0.55,0.35)]. 

where Ilv - n.[m]ill denotes the Euclidean distance between the vector to be quan­

tized and the ith model vector of the VQ-node. If two lllodel vectors have equal 

distance to the data vector, the slnaller of the indices will be returned. 

Example 10.1 If a vector v is classified by the CVQ of Figure 10.1, the 

classification starts with the root. which is a VQ node. v is cOlnpared to the 

rnodel vectors and the closest such is chosen as a winner. If ml is the closest, then 

the lnerged node (nr) is entered from which the leaf node (n6) with I D = 3 is 

iUllllediately entered and 3 is returned. In briefer terms: 

ACl'q(v) = winner(no,v) = winner(nl,v) = winner(n6,v) = n6.ID = 3. The 

di\'ision of a two-dimensional state space using the CVQ of Figure 10.1 with 

exelnplified instantiated model vectors is illustrated in Figure 10.2. 0 

10.3 CVQ training 

The trcliniug of the C\TQ in CrySSMEx is tight l~' connected with operations of the 

SS:\[ and saInplillg of the SDTDS (as discussed in Sectioll X.2). Here, hOW(,Vf.'L tIlt' 
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operations that are later used to refine the CVQ are defined as independent of their 

role in CrySSMEx (see Chapter 11 for this context). 

The training consists of replacing leaf nodes with either merged nodes or VQ 

nodes, add new leaf nodes, and then reenumerate the IDs appropriately. Replace­

ment of a leaf node with a VQ-node results in a larger number of leaf nodes and is 

referred to as CVQ splitting. Replacement of several leaf nodes with merged nodes 

results in a smaller number of leaf nodes and is referred to as CVQ merging. After 

completion of each of these operations, leaf nodes will be reenumerated. 

Firstly, merging is described, followed by basic splitting, then an operation called 

complete splitting. "The user" which is mentioned in the following descriptions, is 

another part of the CrySSMEx algorithm, but it should of course be possible to use 

CVQ in other contexts. 

10.3.1 The initial CVQ 

The initial CVQ, denoted cvqo, is the simplest possible CVQ consisting of only one 

leaf node (nroot) with I D = 1. All vectors will thereby be quantized as nroot.I D = 1 

by the initial CVQ. 

10.3.2 Merging 

The merging of nodes in a CVQ corresponds to merging regions in the quantized 

space. This is conveniently described with an example: 

Example 10.2 In the exanlple of Figure 10.1, nodes nl and n4 have been nlerged 

into n6. Before this merge, nl and n4 were two separate leaf nodes, but then the 

"user" discovered that the corresponding regions should not be separated, for 

some reason. The merge was subsequently conducted by creating a new leaf node, 

n6, and then replacing the leaf nodes nl and n4 with merged nodes connected to 

n6. D 

In principle, any number of leaf nodes can be merged simultaneously. The lnerge 

is an operation on the CVQ graph, not necessarily related to all~' spatial properties 

of the quantized space, i.e. disconnected regions can be Inerged. The decicion of 
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which subset of leaf nodes to merge is also entirely independent frOlll their position 

in the CVQ graph. 

Definition 10.7 The merging of one or more groups of leaf nodes will be 

denoted cvq' := merge_cvq(cvq, E) where E is a set of disjoint sets of IDs 

covering all leafs of the CVQ. The result, cvq', is the CVQ where leaves have been 

merged into one new leaf node per set in E (trivial sets in E, with only one 

member, are simply ignored). The leaf nodes are also re-enumerated before 

returning the resulting CVQ. 0 

E is later (in Algorithm 11.2) connected to the set of equivalence sets gener­

ated from 88Ms by the function generate_UNDI_equi valence_sets (described in 

Definition 9.12). 

Example 10.3 If cvq' = merge_cvq(cvq, {{I, 3, 5}, {2, 4}, {6}}) is called, it will 

replace leaf nodes with IDs 1, 3 and 5 with merged nodes connected to a new leaf 

node, and correspondingly for 2 and 4. The leaf node with I D = 6 will be left 

unaltered. CVQ-based quantization function Acvql will then quantize vectors into 

the range [1,3] whereas Acvq quantized into the range [1,6]. 0 

10.3.3 Basic splitting 

When a CVQ leaf node is split, this amounts to splitting the corresponding region 

enumerated by that leaf. It is simpler to also describe this mechanism with an 

example: 

Example 10.4 A set of two-dimensional data vectors V are quantized as in 

Figure 10.2. Now, the user has discovered that there are actually two types of 

vectors quantized as 1 (let us call the set of these vectors Vi). The user wants the 

two classes to be correctly separated by the CVQ. To do this the user collects all 

data vectors Vi = {Vi : Acvq ( Vi) = I} and separates this set into two sets V1+ and 

V1- corresponding to the two classes. The node with I D = 1 (i.e. n2 in 

Figure 10.1) would then be replaced with a VQ node with two model vectors and 

two new leaf nodes as children. The model vectors of the VQ node is then set to 

be the average of the vectors in sets vt and V1- respectively. 0 
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In the above example, a leaf was only split into two new leaves. but in general, 

a leaf's corresponding region in the quantized space can be split into any number 

of regions. 

10.3.4 Complete splitting 

It is possible that the model vectors will not perfectly separate the data vectors after 

a basic split, since they might be linearly inseparable or the average vectors of the 

data sets may not be the perfect model vectors for separating the data2 . In such 

cases, CrySSMEx would typically re-split the resulting region again automatically 

(see Chapter 11 where CrySSMEx is described in detail). It is however possible 

that an imperfect split may cause a non-minimal machine to be extracted and also 

that CrySSMEx will not terminate due to spurious SEs. Therefore a "perfect", or 

complete, split mechanism has also been devised. 

To perform a complete split, the splitting is first conducted as in Example 10.4. 

But if the enumerated data vectors are still not separated, then the new leafs will 

be re-split using the corresponding subsets of the data vectors until the data vector 

class can be uniquely inferred from the identity of the involved leaf nodes. After 

this, all involved leaf nodes "belonging" to the same class are merged. 

Definition 10.8 The complete split of several VQ nodes using a number of data 

sets at once will be denoted cvq' := split_cvq(cvq, D) where cvq is the CVQ to 

be split and D = [Db D2 , •.. DIAcvql] is a list of data sets where Di is the data set 

for splitting the leaf node with I D = i (if the node should not be split, then 

Di = 0). The elements of a data set are pairs (-u, £) where v E IRn is the data 

vector and I! E N is label, or class, of the data vector. The leaf nodes of cvq' are 

also re-enunlerated immediately after the completion of all splits. 0 

There is also a possibility that the averages of two or more classes are exactly 

the same, in which case the splitting will fail completely. It is very unlikely this 

will occur by chance and no fixes are included in the definition of the algorithill. 

2 In fact. it can be quite inefficient to use the average as model vectors. The' re'ason that 
model vectors are chosen as such is basically that it is simple, deterministic and does not require 
any parameters. Other, more sophisticated methods, such as resource allocating learning vector 
quantization (Everitt et aI., 2001), have also been tested, but it does not really make a big 
difference apart from longer computation time'$ and somewhat smalle'r CVQ graphs. 
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It has not occurred in any of the experiments (Chapter 12), and if it did. the 

implemented algorithm (cryssmex. sourcef orge . net) would abort execution and 

generate a warning. It is of course also very important that there is no pair of 

differently classified but identical data vectors. This should not happen in the 

context of CrySSMEx due to the way data is collected from a deterministic machine, 

but it should be kept in mind if the CVQ is to be used in another context. 

85 



Chapter 11 

The Crystallizing Substochastic 

Sequential Machine Extractor 

11.1 Data selection from ~2 

Perhaps the most important point of convergence of the various constituents de­

scribed so far, in this thesis, is where subsets of {1 are selected and classified based 

on properties of the extracted SSj\1. The goal of CrySSMEx is to generate a deter­

Ininistic SS~[ from the underlying detenninistic SDTDS by dividing the state space 

into a rninilnal set of enulnerated regions that can be used to describe the SDTDS 

perfectly in the context of n. To do this, indetenninistic SEs of the SS~I are 

targeted for splitting in the corresponding CVQ using selected state vectors frorn 

n. The basis for the selection of state vectors is to choose the set which should 

convey the Inost infonnation, prirnarily of the output of the SS~I and secondarily, 

the next state elelnent of the SSj\I. The entropies Hssm(YIQ = qi, X = Xk) and 

HS.~/lI(QIQ = qi, X = Xk) (definitions 9.9 and 9.10 respectively) are used for this 

selection. This basis for selection is not the only one possible, ho\vever, and this is 

Inentioned again in Section 16.1. The entire selection procedure is contained in the 

function collect_spli t_data, described in AlgoritlllIl 11.1. 

11.2 CrySSMEx main loop 

The ingredienb for CrySSMEx hayp 110W been presented: 



collect_spli t_data(O, ssm, Ai, As, Ao) 
Input: A transition event set, 0, an SSM, ssm, an input quantizer, .\/' a 

state quantizer, As, an output quantizer. Ao. 
Output: A list of data sets D, one data set per q E Q. The element of each 

data set is a pair (v, £) where iJ E IRn is a data vector and '- E N is 
the assigned label of the vector. 

begin 
D := [0,0 ... 0]; 
for \f (s( t), f( t), o( t + 1), s( t + 1)) E 0 do 

qi : = As ( s( t ) ) ; 
X k : = Ai (f( t ) ) ; 
Yl := Ao(o(t + 1)); 
qj := As(s(t + 1)); 
/*If qi is indeterministic, the state vector should be stored in D with 

an appropriate labelling. * / 
if :3xm : Hssm(YIQ = qil X = xm) > 0 then 

Xmax := argmax Hssm(YIQ = qi. X = xm); 
XmEX 

if Xk = Xmax then 
/*If output indeterministic with respect to qi and Xk. label the 

state vector with the output symbol, Yl. * / 
Di := Di U (s(t), Yl); 

end 
else if :3:rm : Hssm(QIQ = qil X = '[TTl) > 0 then 

/*If output is uniquely determined from qi. but next state is not. 
label state vector using next SE, qj. * / 

'Z:maJ' := argmax Hssm(QIQ = qi· X = xm); 
XmEX 

if .rk = Xmax then 
I D i : = DiU (s( t ) 1 qj) : 

end 
endif 

end 
return D; 

end 
Algorithm 11.1: collect_split_data selects state vectors from nand labds them 
according to either Ao or As such that t he~' are suitable for use in splitting C\'Q nodes. 
The resulting list of data sets. D consists of one data set of labelled state vectors for 
each SS~I SE, i.e. Di corresponds to the data set for splitting state qi· 



• the SDTDS which represents the class of specimens for CrySSHEx to anal~'se 

(Definition 9.1), 

• the data set, i.e. the SDTDS transition event set n (Definition 9.3). 

• SS~s, which can be viewed as a subtype of SDTDSs (Definition 9.6). 

• quantizers, e.g., Ai, As and Ao (Definition 9.4), 

• SDTDS translation into SSM through quantization of input, output and state 

(Definition 9.8), 

• the SSM transition functions Pq and Py (Equations 9.4 and 9.6) and P* 
(Equation 9.8), 

• the generation of UNDI-equivalence sets of SEs in SS1rfs (Definition 9.12), 

• the CVQ (Definitions 10.1 to 10.3), used as a quantizer of vectors through 

the function Acvq (Equation 10.1), 

• merging and splitting of CVQ leaf nodes (Definitions 10.7 and 10.8), 

• a mechanism for selecting and labelling state vectors of n based on properties 

of the SSM (Algorithln 11.1). 

These constituents are integrated into the CrySSMEx-algorithm as described in 

Algorithm 11.2. The principle behind the algorithm is that the SSM should be kept 

as small as possible through the merging of SEs that are UNDI-equivalent while 

at the same time splitting indeterministic SEs. It is important to decide before 

an SE is deemed to be indeterministic, that it is not so because it, over one input 

symbol, transits to two or In ore SEs which are really equivalent (or at least UNDI­

equivalent). If the Inachine was not minimized through the merging of equivalent 

state elements, it would risk resulting in an explosion of SEs due to unjustified 

splits. 

If the algorithm does not converge in due time, additional termination criteria 

could be added. For exalnple, one may want to limit the number of possible itera­

tions, or put a lilnit on IQI. The extracted, then possibly indeterministic, SS~I will 

still be a nl0del of the underlying SDTDS, and moreover, the Inore computational 

resources dedicated to iterate CrySSMEx, the better a model the SS~I will be of the 

SDTDS, in terms of fidelity. 
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CrySSMEx(O, Ao) 
Input: An SDTDS transition event set, n. and an output quantization 

function, Ao. 
Output: A deterministic SSM mimicking the SDTDS within the domain n 

as described by Ao. 
begin 

let Ai be an invertible quantizer for all I in n; 
i:= 0; 
ssmo := createjD.achine(n, Ai, Acvqo, Ao); 
j*ssmo has Q = {ql} with all transitions to itself. 
repeat 

i := i + 1; 
D := collect_split_data(n, ssrni- 1

, Ai, Acvqi-l, Ao); 
cvqi := split_cvq(cvqi-l, D): 
ssmi := createjD.achine(n, Ai, Acvqi, Ao); 
if ssrni has UNDI-equivalent states then 

j*Merge SEs if possible. 
E := generate_UNDI_equi valence_sets( ssmi); 
cvqi := merge_cvq( cvqi, E); 
ssmi := createjD.achine(n, Ai, Acvql' Ao); 

end 
until S.Sl1/i is deterministic; 
return ssml; 

end 
Algorithm 11.2: The main loop of CrySSMEx. 
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Chapter 12 

Experiments 

The main purpose of the experiments in this thesis is to show that CrySSMEx nlan­

ages to extract machines in contexts previously unsolved using RNN-RE algoritluus. 

Another goal is to identify weaknesses of CrySSMEx by running it on notoriously 

challenging SDTDSs. A deeper analysis of how and why CrySSMEx behaves as it 

does~ as well as of the resulting SSJ\Is and CVQs will, however, have to be post­

poned for future work (discussed more in Chapter 16). Other relevant experilnents 

are also presented in Jacobsson and Zielnke (2003a) and Jacobsson and Ziemke 

(2003b), which are both included verbatim in appendices C and D respectively. 

Jacobsson and Ziemke (2003a)1 delllonstratecl how seelningly minor differences in 

testing procedure had significant effects on estimated results in the anbn-domain 

used in Section 12.2. Jacobsson and Zielnke (2003b) conlpared breadth first search 

RNN-RE with a smnpling based RNN-RE. 

12.1 An illustrative example 

~I()st previous work on RNN-RE algorithms has been experimentally tested on regu­

lar language dOluains (cf. Section 6.-1). The aim of this experinlent is to dernonstrate 

that t his kind of dOluain is trivial and at the saIue time illustrate the extraction 

proc('ss. It has already been proven that if an R X\' is robust ly perfonning a reg­

ular language recognition task, then this IHodel can alwa~'s be extracted (C'as('\'. 

1996). But no technique can warn-tnt that such an extraction is possible in pract ict': 

l\\'ilicil in turn was an extension of the work in .Jacobsson (1999). 
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Figure 12.1: The state space of the RNN in the "badiiguuu"-domain. The states (*) 
and transitions between states are shown and the decision hyperplanes (N. E. Sharkey &= 
Jackson, 1995) for each output unit are plotted (only three are visible). 

there is no guarantee for CrySSMEx either, of course, but it does seenl to be quite a 

straightforward process. 

Elman (1990) used a simple regular language to train a sirnple recurrent network 

(SRN). The domain consisted of three subsequences ba, dii and guuu repeated in 

random order, e.g., babadiibaguuudiiguuu .... The task for the RNN was to do 

next-syrnbol prediction. In essence, only the vowels were at all predictable. In this 

thesis, an SRN with two hidden nodes was trained on this donlain with the synlbols 

represented as six dilnensional vectors with one node active for respectiye s:vrnbol. 

To generate O. a string of 105 randOlnly ordered substrings was used on the 

trained RNN. The state space of the R~N is shown in Figure 12.1. Three iterations 

completed the extraction and the sequence of state space diyisions, the CVQ graphs 

and the SS:"Is are illustrated in Figure 12.2. The breadth first technique of Giles, 

:\Iiller, Chen, Chen and Sun (1992) has also been tested 011 this dOlnain, and it 

l"(\slllt('d in a large nurnber of states neyer yisited by the R ~N when predicting the 

actual strings (Jacohssoll & Ziell1ke, 2003b) (cf. Appendix D). 

:\ lost (\ss(\lltial feat lln's of CrySSMEx are exernplifieci ill this extractiOll. In t h(' 

initial SS:"!. SSTlIO, it ran be seen that input snllbol i gf'neratcs tllP rnaxillllllll 

<llllollnt of llllccrtaillt y regarding t he output s~'rnbol (t h(' ott t put snllbol C h('rt' 
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Figure 12.2: Extraction from RNN predicting in the "badiiguuu"-domain. The state 
span' divisions (cf. Figure 12.1), CVQ graphs and SS;-,Is are shown for the initial model 
and all subsequent iterations of CrySSMEx. 



corresponds to the non-symbol generated by the R:\:\ when it predicts a consonant, 

with no possibility of predicting the exact symbol due to the randOlll ordering of 

substrings). For that reason. collect_split_data will select state vectors which 

the R~N occupied when it received i as input and label them according to the 

output label as determined by Ao. The CVQ is then split according to the selected 

data, resulting in cvql. The same procedure is repeated again with ssm 1. and an 

SSM of three SEs, of which two are U~DI-equivalent, is generated (not shown) This 

results in two merged nodes in cvq2. As can be seen in the state space division, 

cvq2 merges two (locally) disconnected subspaces. Fronl both SEs of ssm'.l, the 

output can now be deterministically predicted, but q2 is still indeterministic since 

transitions from it over symbol u is ambiguously mapped to q1 and q2. Therefore, 

collect_spli t_data selects those RX:\ state vectors in 0 enumerated 2 b~' "\Cl'q2 

from which a transition induced by symbol u was made, and labels thenl according 

to the Acvq2-enurlleration of the subsequent state vector. After the split of Cl)q2, 

CrySSMEx terminates since the resulting SS~1 is deterministic and will fully lllimic 

the underlying R~N within O. 

Note that there are some dead transitions in ssm3
, e.g., for symbol gin q3. If the 

underlying R~~ is fed a g while occupying a state in the corresponding subspace, 

it will certainly react in some manner, but since that event was not recorded in 0, 

the resulting SSM does not model it. Also, the resulting SS;-'1 is not a lllodel of the 

input source; for example, although not supported in 0, ssm3 models the outcome 

of infinite sequence of SYlllbols i and u. This is due to the fact that CrySSMEx does 

not build a model of the domain, it builds a rllodel of how the underlying systelll 

interacts with its dOluain without guarantees of generalization to situations outside 

o (again, a consequence of the closed world assumption). 

12.2 An RNN trained on a context free language 

The prediction of ~~'rllbols in the context free language anbTl is a challengillg dOlnain 

for RI\:\s that has been studied quite intensciy (e.g. \\'iles L\: Ehnan, 199:): Bod{>n 

(~ \riles, 2000: Gers L~ Scluuidhuber, 2001). In ln~' study', CrySSMEx was used to 
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analyse 100 successfully trained2 8RNs (of one input node. two state nodes and one 

output node) to predict the predictable symbols of randomly ordered anbn-strings 

(1 < n < 10). n was here generated by exposing the R~X to exactly 200 anbn_ 

strings of each length (1 < n < 10) in random order. For all 100 RXXs, extraction 

was successful, resulting in 88Ms of eleven 8Es. An example of an extracted ma­

chine, together with the CVQ-quantized state space, is shown in Figure 12.3. 

The regular grid lattice quantizer of Giles, Miller, Chen, Chen and 8un (1992) 

was also tested, and it typically never found any 88M with the same behaviour as 

the RNN until the state space was divided into at least 40 x 40 grids. The number 

of 8Es was then between 25 and 70. If the breadth first search of that paper is 

employed, the number of states becomes even higher (Jacobsson & Ziemke, 2003b) 

because then many states which would not have been visited when processing anbn
_ 

strings are also included (cf. Appendix D). 

In this domain, some problems for CrySSMEx are exposed. Firstly, although 

all extracted 88Ms had the same IQI, and all 88Ms generated exactly the same 

outputs as the RNNs (within the sampled domain), actually two types of 88Ms 

were extracted: 90 88Ms of one type and 10 of the other. This is probably due 

to different forms of dynamics of the underlying RNN s (Tonkes et al., 1998). If 

the deviance of the extracted 88yls from the RNN is plotted as error curves, they 

follow two exact and distinctly separate curves (see Figure 12.4). The extraction 

also took either nine or ten iterations depending on the underlying RNN. Clearly, 

CrySSMEx is sensitive to the internal properties of the RXX that give rise to these 

differences3 . This may be a problem, but it may also be a key to a window of 

analysis of the dynamics of the underlying RXX. 

A more serious problem arose when n was too small, e.g., with just ten occur­

rences of each string length, CrySSMEx could get stuck in loops where an ssmi would 

be exactly equal to ssmi- n , where n > 1. This was due to the merging and splitting 

of 8Es cancelling each other over one or more iteration. The mechanisms behind 

these loops are not entirely clear and the issue definitely requires lnore targeted 

experiments. It seems. however. to be linked with some kind of data starvation 

2Using a genetic algorithm, see Jacobsson and Ziemke (2003a) (or AppendLx C) for further 
details and a more comprehensive list of references. 

3Why exactly these results were obtained remains an open issue. 
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Figure 12.:): The first two machines (ssmo and ssm l
) and the last (s.'imlO) in the 

sequence of machines extracted by CrySSMEx in the anbn-domain. The state space of 
thc RNN and its cvqlO-division of the state space is also shown below the machines. 
Note that some distant states belong to the same region, while, at the same time, some 
IH\arb)" statcs are divided due to the functionally driven quantization strategy employed 
in CrySSMEx. Some of the disjoiut regions are also actually merged in the c\rQ (which 

C<Illllot be S('Cu in the diagram). 
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Figure 12.4: The error curves (where error here corresponds to the ratio of output 
symbols of the 88111 not congruent with the RNN) of the extracted 881Is from 100 8RNs 
evolved to predict in the anbn-domain. For 90 of the networks, the error curve followed 
the flatter line, and for the others it followed the steeper line. All 100 error curves are 
overlaid in the diagram and there are no deviances from the error C"urycs since CrySSMEx 

is deternlinistic. 

since it has only occurred for smaller Os. To cirCUlnvent this problen1, CrySSMEx is 

now illlplemented to abort execution, by default, if a loop is encountered. Another, 

also impleillented, option is to skip the Inerge completely if it should result in a 

loop. This approach is successful in that CrySSMEx ternlinates ,,"ith a detenninistic 

SS~I equivalent with the Rl\N, but unfortunately with more SEs than the eleven 

otherwise extracted. 

A third problem sOlnetillles occurred when 0 was generated with longer aTlbTl
_ 

strings. In SOlne cases, when the R ~~ generalized to longer strings perfect Iv. this 

posed no probleill. In others, an erroneous prediction of the R\,~ was successfully 

lllodelled in the SS;\1, e.g .. that it predicted an a prenlaturely if TI = 11. However, 

in other installces, the teillporal dependencies of the errors are quite cOlllplex. and 

the SS~ ls S(,(,lll to grm\" indefinitely (without en'r exceeding the sizt' of n. of course). 

It is known that R \'\' s with weight:-; in the vicinity of the corrpct solution hay(' 11 

s('(,lllingl~' chaotic error gradient distribl1itioll which Illakes training llsing gra<iiPllt 
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descent difficult (e.g. Boden & \Yiles, 2000). Perhaps a chaotic R:\,X nlav also 

explain the difficulty for CrySSMEx (cf. Section 12.--1). 

12.3 A large RNN 

An SRN of one input node, one output node and 103 state nodes (i.e. rllore than 

106 weights) was created to test the feasibility of extracting rules frOIIl SDTDSs 

of high dimensionality. The weights were initiated in the interval [-0.01.0.01] 

and the network was then exposed to a sequence of 104 randorIlly ordered inputs 

(1 = {(0),(1)}). The output quantizer used in this case gave three syrnbols, +, 
- and 0, corresponding to whether activation of the output node increased. de­

creased or remained the same. The input symbols a and b corresponded to the 

binary activation of the single input unit. The continuous actiyation function of all 

nodes, 1/(1 + exp( -net)), makes it typically impossible for the output to stabilize 

completely, i.e. there should be no need for syrnbol 0, but lin1its in machine preci­

sion made it necessary. This kind of network, with small random weights has been 

theoretically studied earlier and has been proven to ilIlplement definite rnemory 

Inachines (HalIllner & Tino, 2003). This is, however, the first time a large scale 

network of this type has been studied using RN:.J-RE. 

The extracted lnachine, with IQI = 19, is illustrated in Figure 12.5. The Inachine 

emulated perfectly the behaviour of the SR\' within n as "viewed" through Ao. It 

lIlay be of interest to mention that the generated data required over 230tvlB of 

storage, yet CrySSMEx required only six iterations in the main loop to extract a 

machine of 19 states with the same apparent behaviour as the significantl~' larger 

RNN. The ease to extract from these networks is not surprising since the slllall 

weights forcp the network to have contracting transition maps, essentially causing 

the network to ';forget" long term dependencies. It is, however, interesting to note 

that the CVQ does not seem to have any problems scaling up with resppct to statp 

space dilllensionality. 

SOllle IIlore preliininary experirnents were carried out with the saIne R\,:'; ar­

chitccture but wit h larger randorn weights. For smaller weights. IQI dpcrt'aseci, and 

for larger ones, the extraction lnay beCOllle ilnpossible ill t IH' sense that t IH' SS\ r 
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Figure 12.5: An SSM extracted from an RNN with 103 state nodes and random weights. 
To save space, numbering is omitted and repetitive transition labels are bundled. 

size seemed to grow indefinitely. SS:vls were of course still extracted, but no deter­

ministic SS:M were found within reasonable time. A high dinlensional state space 

is not needed to Inake the extraction of deterministic SSMs impossible, however, as 

the following experiment delnonstrates. 

12.4 A chaotic system 

To do rule extraction from a chaotic system nlay be considered unreasonable. If 

a systenl is chaotic it rneans that it will never repeat its trajectory in state space 

and that infinitesilual differences of two st ates will grow over tinle (Devaney, 1992). 

These properties Inake the systeln ilnpossible to describe deterministically with a 

finite set of states. AllY attempt to group two distinct SDTDS states into the same 

subspace will fail since their future trajectories will inevitably diverge if the SYstelll 

is chaotic. 

It is, however, possible to use CrySSMEx to extract indeterrninistic SS:\Is frOIll 

chaotic s~·stems. An iterated quadratic Inap is used to demonstrate this: 

s(t + 1) = a· s(t)· (1- s(t)) (12.1) 

The COllstant a, in the illterYal [0, -!J, detenl1ines whether the attractor of the ~\·:-;tem 

is H fixed point. cyclic or chaotic (Devaney, 1992). This s~'steln conform:-; with tht' 

SDTDS definition, but with I = 0 and 0 = 0. A :-;imilar ('xpprinlPIlt. in the S<Ull(' 



domain, was conducted by Crutchfield and Young (1990), but their approach was 

quite different from CrySSMEx because a fixed (unknown) translation from state 

space into a discrete set of observations was assumed. In CrySSMEx. it is precisely 

this translation that is the target for refinement. 

The data was generated by running the system for 105 time steps, after an 

initial 105 unmonitored steps to let the system "settle in" on its attractor. The 

output symbols were, as in the last example, +, - and 0 corresponding to whether 

the state increased, decreased or remained unchanged respectively.!. This choice 

of output symbols is just one of many possible Ao, which is why it is part of the 

input parameters of CrySSMEx. Some readers might protest that this contradicts 

earlier claims in this thesis that CrySSMEx is parameter free. The subtle difference 

here is that although CrySSMEx requires the output quantization as a parameter, 

this quantization is for RXX applications typically defined a priori as a direct 

consequence of the symbolic domain of the RNN. In the above case, however, a 

number of output quantizations are conceivable. 

The resulting machines are trivial when a is set so that the attractor is fixed 

or cyclic. If it is fixed, an SS11 with one SE, and a transition generating symbol 

o are enough to describe the dynamics. If the systelll is cyclic, a finite set of SEs 

suffice to describe the system deterministically, e.g., if a = 3.5 (having a period four 

cycle) two SEs is enough, since the system, as "viewed" through Ao, generates the 

output sequence· .. + - + - .... If a = 3.839, the systelll has a 3-cycle attractor 

(Devaney, 1992) and generates the sequence· .. + + - + + - ... and consequently, 

the SSM had three SEs. 

If a is chosen so that the system is chaotic, CrySSMEx will not terminate (at 

least not until the finite set of n is fully accounted for). But t he extracted SSMs 

can nevertheless be argued to account for some of the dynamics of the systerll. 

To test the fidelity of the SS~I, the extracted machines were initialized with the 

As-enumeration of an initial state (chosen within the attractor) of the underlying 

systenl, and both the SSM and the system were run in parallel until the SS~1 failed 

to predict the output symbol of the system. This tests also the generalization of 

4 A more common way to discretize this state space is to split the space into two parts with 0 .. 5 
as a delimiter (e.g. Crutchfield & Young, 1990). These experiments should therefore be repeated 
with a more standard approach to ensure comparability. 
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Figure 12.6: Some results of CrySSMEx modelling chaotic systems from extracted ssmo 

to ssm20 . The diagram illustrates the average number of correctly predicted symbols 
before the SSM failed to predict the output symbol of the system. When a = --1.0, the 
extraction was aborted at iteration 15 due to limited memory resources. 

the SSM since previously unseen sequences are used in the test. 

Six quadratic Inap systems, with a = 3.7, a = 3.75, a = 3.8, a = 3.9, a = 3.95 

and a = 4.0 respectively, were analysed. The quality of extracted SS~Is, in tenns of 

the average tillle until SSi\I output deviates frOIll the underlying systenl, typically 

increased for higher iterations of CrySSMEx (see Figure 12.6). The number of SEs 

grew exponentially for all s~rstelns. and grew faster for higher values of a (see 

Figure 12.7). The number of SEs in relation to the number of correctly predicted 

sYlnbols reveals that the "cost", in tenns of SS~I size, for each correctl:v predicted 

sYlnbol also increases exponentially (see Figure 12.8). It is however interesting to 

nott' that invested computational tilne clearly gives a gain in terms of SS~I fidelit~· 

even when the underlying system is chaotic. 

Other values of a were also tested, but if a = 3.85. for eXaInple. only three SEs 

were needed to predict the system indefinitely. Therefore, the seeillingly Illonotonic 

relation behn'en nand the nUlIlber of SEs and prediction difficult\· is merely an 

illusioll. 
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(cf. Figure 12.6). 
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FigurE' 12.S: The diagram shows the number of states divided b~' the an'rage number 
of correctly predicted symbols in the chaotic domain, thereb~' indicating the ··co:-;t'· of 
predicting t he s~'stem in terms of how lllall~' states each prediction needs (cf. Figures 12.6 

and 12.7). 
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Chapter 13 

Summary of Part II 

13.1 New problem domains handled 

The extraction of deterministic SSMs using CrySSMEx has now been shown to be 

possible for a number of challenging domains. The possibility of extracting stochas­

tic SS:\Is from chaotic systems was also demonstrated. The domains on which ear­

lier approaches have been tested were, ahnost exclusively, relatively sinlple binary 

regular grammars (cf. Part I or Jacobsson (2005)). Arguably, the context free do­

IHain, the high dilnensional SR~ and the chaotic system tested in this thesis, all 

constitute significantly more difficult problelHs. 

13.2 New in CrySSMEx 

COlllpared to the RNN-RE techniques presented in Part I, CrySSMEx introduces a 

nUlnber of novel features. 

13.2.1 Integration of RNN-RE ingredients 

As discussed in Chapter 8, there are three main differences between CrySSMEx anel 

{'ill'lier approaches: the SS:\1, the CYQ and the integration of quantization, ObS('l'\',l­

hon and Ininilnization. These three ingredients make CrySSMEx Inore efficient than 

{'arlier a.lgoritllllls silnply because CrySSMEx performs a directed and detcrrninistic 

search for a lninilllal quantization of the state space. Earlit'r approaclws ha\'{\ rt'licd 

011 qll<lntizers to find this lllininull quant ization wit hout any inforInation about the 

102 



underlying dynamic system context of the state space. 

13.2.2 Parameter freedom 

Another difference to most earlier approaches is that CrySSMEx is pararlleter free l 

This is quite an advantage, since in the use of the algorithm as an analy~is tool, 

the results are guaranteed not to be affected by the choice of paralneters. 

13.2.3 Deterministic extraction 

CrySSMEx is deterministic and will result in the exact saIne extraction every tiIne a 

data set is presented to it. Consequently, there is no need to run it lllore than once 

on the same data. The detenninism stems froIll the determinisnl of the quantizer. 

This is not entirely novel, the regular lattice quantizer used by Giles et al. (cf. 

Section 5.2) is also deterministic, but the technique has problems scaling up and 

cannot be as precisely refined as the CVQ. Determinisln is essentially the sanle as 

having no random seed parameter as input to the algorithm. 

The determinisln and parameter freedom should be essential if CrySSMEx is to 

be used as part of a larger system (as suggested in Part III of this thesis). As 

the conlponent of a systenl, a parameter infested and indetenninistic rule extractor 

would pass on these properties, in an amplified fonn. to the systeln of which it is 

part. If, for exalnple, a rule extractor can give 10 possible separate rules as a result, 

a systenl of n such rule extractors would provide Ion possible results. 

13.2.4 Gradual anytime extraction 

Allother Inailf'feature is that the algorithln quickly creates an initial coarse stochas­

tic Inodel which it then gradually refines until a deternlinistic Inodel is found (if 

possible). This ;'anrtiIne rule extraction" possibilitr was considered by Craven and 

Shavlik (1999) to be an illlportant aspect with respect to the scalability of the 

algorithms. 

Thl' advantage is that the Jnore computational resource::; ill\·('::;ted in rUBning t IH' 

lGi\"('1I thnt tIl<' ontpllt ql1antiz('r, '\0' is seen as derivable from the domain. which it alwa~'s 
has been in the s~'lllbolic domains studied in the field of Rl\!\-RE. It is not IH)('('ssarily the ca .. '"i(' 

for SDTDSs in general, though. 



algorithm, the more accurate the result will be. At the same time it will generate 

results on which can be based the decision of whether or not you want it to have 

more resources. For example, when very large SSMs were extracted from chaotic 

systems (Section 12.4), the diminishing performance gain of SS~Is as predictor of 

the underlying system could be used as a termination criteria. 

13.2.5 The handling of missing data 

The algorithm can also handle missing data due to the substochastic nature of the 

extracted model. This is important since it uses the observation of a system to 

build models2
. Observations that may, or may not, include all relevant aspects of 

the underlying system. For example, dead transitions are allowed, i.e. when the 

effect of an input symbol for a specific macrostate of the SDTDS is unknown, the 

corresponding transition in the SSM is undefined. 

In effect, it means that the SSM partly models the ignorance that follows from 

n being a finite sample of the system. Furthermore, the entropies used to refine 

the CVQ are chosen so that the ignorance stemming from an imperfect state quan­
.GC) 

tization can be redressed with no regards to dead transitions. A deeper discussion 

of this topic is found in Section 18.4. 

13.2.6 An SSM is an SDTDS 

Another distinguishing feature of CrySSMEx in comparison to most other RE al­

gorithms is that the hypothesis space includes the system space, i.e. that the set 

of SSMs is a subset of the SDTDSs. I believe this is something quite unusual for 

RE algorithms (Andrews et al., 1995; Jacobsson, 2005). A finite state machine 

typically does not fit well into the framework of RNN s. 

This relationship could be very fruitful. I have already used this feature for some 

verification of CrySSMEx; two SSMs, one SSM extracted from another deterministic 

SSt\I should generally be equivalent to each other. Further utilization of this rela­

tionship is suggested in Section 16.2.4, where it is proposed that the extraction of 

2It r('mains to conduct cxperimcnts in different domains to ('valuatf' the r('lativ(' importanc(' 
of this and to which extent dead transitions occur in extracted SS~ls. Although not reported 
explicitly in the experiments of this thesis, however, dead transitions seem to be very common, 
which is especially obvious in the badiiguuu-domain (cf. Section 12.1). 
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SSMs from SSMs be automated within the rule extraction framework. 

13.2.7 Hierarchically structured state space quantization 

Last, but not least, the extraction results not only in a machine, but also in a 

hierarchically structured geometrical organization of the state space of the under­

lying system. This should be contrasted with the pure black box model of Vahed 

and Omlin (2004) where none of the internal dynamic state space is used in the 

extraction. Intuitively, the relation between the structure of the CVQ graph, the 

topology of SDTDS state space, and the SSM should contain important seeds for 

the further development of CrySSMEx and deeper analysis of the underlying system. 

Some such future prospects are discussed in Chapter 17. 
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Part III 

From Rule Extraction to Machine 

Epistemology 
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Chapter 14 

Introduction to Part III 

In Parts I and II of this thesis the field of RN~ -RE is surveyed in detail and a 

novel technique l CrySSMExl is suggested and tested. In this final part of the thesis. 

potential future work is discussed in detail and new alnbitious goals are suggested. 

Some of these goals may be ilnmediately realizable and others may be considered 

more speculative. The suggestion of these goals is meant to serve as a catalyzer for 

the field l rather than suggesting a concrete agenda. 

RNN- RE techniques previous to CrySSMEx are of a wide variety in ternlS of 

the format of the rules as well as how the rules are extracted. Cornmon to all 1 

however 1 is that their constituent parts (quantization l observation, generation alld 

lninilllization) are not integrated to work in conjunction to solye the problenl of rule 

extraction. The developlnent of these techniques appears to have been focused on 

one or two of these constituents at a tilne. In CrySSMExl however, the constituents 

are brought together for the first time and a nunlber of novel features, discussed 

ill Section 13.21 is the consequence of this. Furthermore, during the developnlent 

of CrySSMEx, it has been assulned RXNs should not be considered the only s\'stelll 

sllsccptible to the kind of automated analysis that R;,\X-RE constitutps. In this part 

of t he thesis (Chapters 1-:1-19) 1 the specific assunlPtions underlying t he development 

of CrySSMEx, the novel features of CrySSMEx and its possible inlprovemenb an' 

further discussed, ('xtrapolated and Illotivated. Hopefully, IIlC111Y of tht' isstl()s are 

n,lcvilllt also for t('chniques ot her than CrySSMEx, current or future OIlCS. 

Thc fields of R~N-RE and of RE in general, are for natural l'('(lS()llS tra<iitiollalh' 

ass()cia tf'd wi th cOllllPctionism and neural com put CltiOIl. If. howevcr. tllP ulldprl~'i ng 
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system is not restricted to neural networks only~ then associations with other fields 

will become more obvious. This issue is referred to in the next chapter. where sonle 

of these related fields are identified and briefly surveyed. 

In Chapter 16, some flaws of CrySSMEx are identified and possible enhance­

ments suggested. These enhancements are primarily based on the novel 88),1 and 

CVQ, and should be fairly straightforward to implement and test. Such possible 

improvements lay the basis for Chapter 17. in which future challenges are sug­

gested; challenges stemming from the novelties introduced by CrySSMEx, but which 

are also intended for the field as a whole. Several of these challenges are also con­

nected to and potentially partially solved in some of the related fields referred to 

in Chapter 15. 

Since the fidelity of extracted rules is the primary objective for CrySSMEx, rules 

may precisely describe the underlying system at the expense of comprehensibility. 

The virtue of rule extraction, however, does not have to be solely in terms of imme­

diate comprehensibility of the rules. The extracted rules are models of sill1ulated 

systems that may be employed just as scientists employ mathematical models to 

describe physical systell1s. In Chapter 18, this connection is further extrapolated 

and future goals are suggested for RNN-RE in lines of active learning and compu­

tational scientific discovery (Chapter 15). 
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Chapter 15 

Future and Related Areas of 

Research 

In this thesis I have followed the argument of Craven and Shavlik (1999). who 

claim that when developing a rule extractor one should not assume the underlying 

systeln is necessarily a neural network. The consequence is that the potential class 

of underlying systems will then enCOlnpass systems which are typically under study 

in other fields of research. This chapter briefly reviews a number of such fields and 

discuss how the RNN-RE-field may potentially benefit frOln studying some then1 

lllOre closely. 

In SOlne cases. techniques have been developed that could be used in R~N-RE 

contexts, and in others well developed fields could help by introducing a richer and 

lllore detailed tenninology. As the title of this chapter ilnplies. these related fields 

should be incorporated into RNN-RE research in the future. 

15.1 Fields similar to RNN-RE 

If w(' acccpt that R ~K-RE techniques can be used on n10re types of systems than 

just RKNs, then I would argue Ri'\:\-RE should not be considered a field of neural 

cOlnputation, but rather a field of Inachine learning applied to lllodeis of neural 

computation (cf. Craven and Shavlik (199-1)). The consequence is that rdat('d 

algorithn1s are not prinlC1Tily found in the literature of neural cOInputatioll (apart 

fr0111 the "classical" R:,\N-RE algoritllllls). 
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One important field, not immediately associated with machine learning, is con­

trol theory. Especially with regard to the system identification aspect of control 

theory, one suggested definition could as well apply to RE: "System identification 

deals with the problem of building mathematical models of dynamic s~'stems based 

on observed data from the system" (Ljung (1999) p. 1). In control theory(e.g. S. 

Young & Garg, 1995; Marculescu, Marculescu & Pedram, 1996; Garg, Kumar & 

Marcus, 1999; Kumar & Garg, 2001). and especially for discrete event systems, sim­

ilar problems as those for RNN-RE-algorithms have been dealt with for a long time. 

There are, however, some distinguishing features that separate CrySSMEx from algo­

rithms of control theory, for example, the assumed full observability, discrete time 

and determinism of the underlying system. 

In order to mature, however, the RNN-RE field needs to take into account the 

well developed theory of this related field. But once the connection to control theory 

is made, there is an abundance of other (some partly overlapping) fields that also 

needs to be taken into account: 

• inductive logic programluing (e.g. Muggleton & RaedL 1994), 

• grammar induction (e.g. Moore, 1956; Gold, 1967; Lang, 1992; de la Higuera, 

2005), 

• computational learning theory (e.g. Valiant. 1984; Angluin, 1987. 2004), 

• symbolic dynamics (Crutchfield, 1994), 

• computational scientific/mathematical discovery (e.g. Simon, 1995/96; Lan­

gley, 1998, 2000; Colton, Bundy & Walsh, 2000; Langley, Shrager & Saito, 

2002; Langley, 2002), 

• closed loop discovery (a.k.a. active learning) (e.g. MacKay, 1992; Cohn, Atlas 

& Ladner, 1994; Bryant. Yluggleton, Page & Sternberg, 1999), 

• belief revision (Friedman & Halpern, 1999), 

• software testing (Bergadano & Gunetti, 1996), 

• data mining, etc. 

Taken together, these fields form an almost insunnountable abundance of literature 

(only very few exaluples are cited here). There are probably also other fields that 

are important to consider (cf. next section). 

Some of the goals of these fields differ widely. For example. the goal for s~'st(,1ll 
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identification is to better facilitate control of the underlying system whereas for 

software testing, it is to find errors. The terminology is also very diversified: the 

underlying systems may be called plants. machines and dynamic systerns in control 

theory, an abstract teacher in computational learning theory, or an interactive 

user in inductive logic programming. The process is about system identification. 

model induction, scientific discovery or data mining, etc. The hypothesis space of 

the induced models also varies from differential equations, finite state machines, 

statements about systems and ad hoc representations of engineering problems. 

After a brief review of the leading papers and books of the field, it becolnes 

obvious from the lack of cross-referencing that the potential connections are not 

fully exploited. Yet all these fields have one thing in common with rule extraction; 

one of their central goals is to automatically induce models, conjectures, concepts 

and predictions based on observations. 

The exact nature of the similarities and differences of these fields to each other 

and to R~N-RE is out of the scope of this thesis, however. But since the goals of 

these fields overlap with science in general, I would suggest that a natural way of 

bringing these fields closer together could be to build an encompassing theory by 

taking advantage of the deep insights philosophers of science have already provided 

us with (e.g. Simon, 1973; Williamson, 2004). 

15.2 Theoretical connections 

There are, at this point, no mathematical proofs that CrySSMEx will always pro­

vide the expected results, and clearly, some of the experiments demonstrate that 

it will not. A proof should distinguish the set of problems that can be solved by 

CrySSMEx froIn the ones that cannot. Therefore, a proof, or at least a deep theo­

retical analysis of the algorithm, is important. But such an analysis will arguably, 

since the parts are tightly integrated, require a merge of theories surrounding all 

CrySSMEx-constituents, combines ideas from areas such as: 

• automata theory (Hopcroft & Ullman, 1979), 

• stochastic machines (Paz, 1971), 

• infornlation theory (Cover & ThOlnas, 1990), and 
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• cluster analysis (Everitt et aL 2001). 

There are, of course, also strong connections with the highly developed nlathenlat­

ical field of dynamic systems theory (Devaney, 1992), especially within the context 

of symbolic dynamics (Crutchfield, 1994). And the whole procedure of generating 

minimal algorithms (i.e. in this case SSMs) to explain a source of data (i.e. 0) is of 

course related to algorithmic information theory (Chaitin, 1987). 

The algorithmic complexity also remains an open issue. The experiments clearly 

show how evasive this issue is. For example, the analysis of an RXN of 103-

dimensional state space resulted in a very modest SSl\1 (simply because the weights 

were small enough, cf. Section 12.3) whereas chaotic one-dimensional autonomous 

systems generated enormous SSMs (Section 12.4). The SSM size for modelling 

chaotic systems will be bounded by Inl, but such an answer is quite unsatisfactory 

since the algorithm should typically be terminated before it luemorizes the entire 

data set. Given that the system is not chaotic, however, the computational com­

plexity issue will be arguably more interesting, but at the same time very difficult to 

analyse since there are some arguably malicious factors to include, e.g., properties 

of'Y (of the SDTDS) in combination with the selected input sequences. 
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Chapter 16 

Possible CrySSMEx Improvements 

During the development of CrySSMEx, many dead ends were encountered. The 

algorithm is presented in Part II just as it is (since it arguably works quite \vell). 

Therefore many details may seeln to be ;;out of the blue". However, the algorithnl 

has been implemented in such a way so that it will be easy for users to change SOllle 

of these constituents in order to also tryout the refuted alternativesl . The lnany 

dead ends and tried out alternatives to the specifics of CrySSMEx as it is presented 

in Part II, represent past issues in that these alternatives, based on prelinlinary 

experiments, have not been selected for use in CrySSMEx. But they also represent 

possible open issues since their assessment as dead ends is neither fully tested nor 

documented. 

In this chapter a nUlnber of possible CrySSMEx-enhancelnents is presented. ~1any 

of these suggestions are already partly or fully implelnented, but would require 1110re 

attention and testing before their full integration with CrySSMEx is feasible. 

16.1 Critical issues 

Perhaps the most critical current issue concerns the theoretical understanding of 

the algoritlllll. There are at least two central decisions in the algorit lun that h<-1\"<' 

been luade on heuristic grounds: 

• \'DI-equivalent SEs are llOW grouped USIng C\'DI-equivalence (Definition 

9.11). There is, hO\\TH'L Inore than one way to group \,DI-equinllt'llt SEs if 

1 S(,(, cryssmex. sourceforge. net for more details. 
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the relation is non-transitive. The chosen solution is only one possible. quite 

restrictive, way. For example, if SE pairs ql and q2 and q2 and q3 are :\DI­

equivalent respectively while ql and q3 are not. then hypothetical equivalence 

sets are {{ql}, {q2}, {q3}}}, {{ql, q2}, {q3}}} or {{ql}. {Q2. Q3}}. of which only 

the first. which results in no merge, is generated by CNDI-equivalence. The 

equivalence set {{Ql, Q2, Q3}} would, however, not be reasonable since it groups 

non-equivalent Ql and Q3. 

• When data is collected in collect_spli t_data (Algorithm 11.1) a single input 

symbol is selected based on conditional entropy. It is. however. possible that 

another symbol should be selected, or that more than one symbol should be 

included. The selected symbol very strongly affects what the lllodel vectors 

will be, and even if the seemingly most informative synlbol is selected, the 

selection mechanism includes no heuristics about the underlying geOll1etrical 

consequences of the decision. Moreover, it is not entirely' selecting the the 

output symbol over next SE when labelling data is the optinlal strategy. 

The solution to both of these issues should involve more than just finding al­

ternatives to U~DI-equivalence and entropy-based selection of input symbols. I 

suspect that it may involve systematic testing of merging and splitting in a breadth 

first search ll1anner. This is due to the simple fact that the suitability of a split or 

ll1erge operation may not become clear until after actually performing the operation 

and testing the effect of using the quantizer to generate a new SSlv1. It may even 

be necessary to split one SE at a till1e instead of, as now. splitting a number of SEs 

sillluitaneously. 

In this respect, it is perhaps reasonable to consider CrySSMEx a prOll1ising first 

step towards a more generic approach, rather than a final solution to the probleIIl 

of RNN-RE. \Ioreover. the fact that the algorithlll perfonns quite well on cOll1plex 

doma.ills while there are still obvious ways to inlprove it can also be considered 

quite valuable. It could be regarded a lnotivation that would justify an effort of 

mat hematically proving the correctness of the algorithm, or at least critical part:-; 

of it. such HS NDI_equi valent (Algorithlll 9.1). 
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16.2 SSM refinement and analysis 

The SS~1 definition and operations on SS~ls barely scratch the surface of what can 

possibly be accomplished with these kinds of dyna111ic stochastic 1110dels. Relations 

to other similar models, such as Bayesian ~etworks and Hidden ~larkov ~lodelslnay 

be identified and utilized for further analysis and refinement. Some refinelnents and 

possible analyses of SSMs that were encountered and sometimes implemented dur­

ing the development of CrySSMEx, are briefly presented in the following subsections. 

16.2.1 Moore SSMs 

The algorithm is also implemented (cryssmex. sourceforge. net) with the possi­

bility of extraction SSMs on 1\1oore format rather than ~Iealy (cf. Figure 3.2) as 

presented in Part II. In a ]'vIoore SS1\1, the output is detennined from a SE distri­

bution rather than in the transition between state distributions. The experilnents 

conducted in this thesis could therefore be repeated with extraction of :\1oore SS0.Is 

instead. Since the whole description of SS1Is and the algorithnls would have to be 

translated and repeated in 1\100re format, it is left for future work. however. 

16.2.2 Modal logic possibility 

The testing of equivalence of state elelnents of SS1\Is currently returns only in 

true or false (cf. Algorithln 9.1) depending on whether the two elernents are NDI­

equivalent or not. The NDI-equivalence is however more adequately answered with 

"true" (T), "false" (F) or ;'possible" (P). The answer P then refers to the cases 

where full equivalence could not be asserted due to dead transitions. The use of 

111Odaiiogic could potentially help in generating equivalence sets since two SEs that 

are truly equivalent 111ust be merged, whereas possibly equivalent SEs can possibly 

be rnerged. It could thus be easier to systematically test all combinations of possible 

lnerg{'s (cf. Section 16.1). 

16.2.3 SE relations 

\ \'hCll CrySSMEx currently extracts a sequence of SS~1s. the SEs of all .'-) .... 111 I is not 

tr(1('cd frOIn its predecessor ssm i-I. There is however a potelltial relation of ('\'{TV 
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SE in ssm
i 

to the SEs in ssmi
-

1
1 e.g., relations as ;'is-split-from", "is-nlerged-frolll" 

or "is-not-split-from". Since these relations can be formed between any succeeding 

SSMs they could be used to generate something that resembles a genealogy of SEs 

(cf. Figure 16.1). Such a genealogy could be used in many ways, e.g., to define 

the integrity of SEs as the number of CrySSMEx iterations (of the main loop in 

Algorithm 11.2) in which it has not been part of any merge or split operation. In 

Figure 16.1, for example, the q4 of ssm4 has an integrity of 2 whereas q5 has an 

integrity of 1. Another example is the purity of SEs in terms of whether or not it 

is the result of any merges. SEs {q4, q5, q6, q7} of ssm4 in Figure 16.1, are examples 

of pure SEs. 

A genealogy can also be used to define the "relatedness" of SEs. Since the 

genealogy of SS11 state elements involves multiple parents, the relatedness can be 

defined in several ways, for example, by counting how many CrySSMEx-iterations 

since two states belonged together in one and the same SE. In Figure 16.1, for 

example, q6 and q7 are then more related than q5 and q6. Relatedness could also 

be based on the number of parents in common in the last SSM. For example, ql 

and q2 of ssm4 has ql and q2 of ssm3 in common as parents but q2 and q3 (of 

ssm4) also have q3 (of ssm3) in common. The CVQ graph could also be used 

in a similar way, of course, but the multiple splits due to the complete split (see 

Definition 10.8) may obscure the SE relations. The relatedness of two SEs could 

possibly be used as heuristics when forming equivalence sets to be used for merging 

by prioritizing the Inerging of related SEs over relatively unrelated SEs (cf. the 

discussion in Section 16.1). 

Derived properties can possibly be quite informative. Properties such as re­

latedness, integrity, purity and others defined over the genealogy graph, could po­

tentially be fruitful windows into the dynamics of the underlying system or the 

input sequence with which the system interacts. Perhaps the prevalence of pure 

SEs is. for example, correlated with a certain form of dynamics in the underlying 

systeln? Or: perhaps, states of lower integrity are typically more sensitive to noise? 

If nothing else, issues such as these could quite sinlply be investigated further. 
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o 
ssm 

1 ssm 

4 ssm 

Figure 16.1: A genealogy of SSM SEs. The SS:Ms are shown without transitions and qi 

is simply written as i. Since SEs are created from one or more SEs of the preceding SS~L 
through splitting and merging, there is a rich variety of possible genealogy relations and 
properties. For clarity, the transitions within the machines are not shown. 

of!: 

16.2.4 Always deterministic SSMs 

Since an SSl1 strictly speaking is an SDTDS, it is possible to extract SS1\1s frOlll 

other SSl1s. One way to utilize this could be to automatically extract deterministic 

descriptions of the sequence of SSl\1s extracted by CrySSMEx. The sequence of 

(mostly) nondeterministic SSl\1s generated by CrySSMEx, ssmo ... ssmTl, could then 

gin' rise to a sequence of detenninistic SS1\1s, SSin° ... ssrn,n. To generate ssm i froill 

ssm i
, the inputs of r2 is quantized by Ai and fed as SYlllbolic input to ssmi (using 

nonnalized parsing) and the substochastic state vectors are read as the state of the 

SSM (viewed as an SDTDS). The resulting data sequence, r2ssmi is then used as 

input to CrySSMEx. The suggested procedure is depicted in Figure 16.2. 

The output quantizer in this case could be chosen to be maxiIllUIll likelihood, 

i.e. the output S~'lllbol distribution of ssm i is quantized such that the S~'lllbol with 

the highest probability "wins". CrySSMEx should then generate an .@I
i 

seIui­

equivalent to ssm i over r2. It will not be full~' equivalent, however. since SSl1/l 

needs to be initialized prior to generating r2ssmi and this initialization Ina\", or llla~' 

not, correspond to the internal activation of the underlying ~\'steln of ssm
i under 

its corresponding initialization. 
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Figure 16.2: The possibility to derive SS~Is from SS~Is could be used to extract de­
terministic. SSMs from the nondeterministic intermediate SS~Is during extraction. From 
every ssmz, a transitiOl~ event set 0ssmi is created (ba~ed on input events in 0) and a 
detenninistic SSM SSiTlz is extracted from it. 

16.2.5 Additional information 

The SSM is in its current fonn quite free frOln information regarding the underlying 

systelll since only the conditional probabilities are stored. One could. however, 

easily ilnagine that it could be desirable to add some more information to the SSt\L 

For example, each SE in the SS:"iI corresponds to an enuillerated region in the 

SDTDS which in n has a certain visitation frequency. Therefore each SE can be 

associated with a frequency. This information could be added to the SS:"1 which 

then would then convey inforillation about. for example, which situations have only 

V('l'Y" rarely occurred in n. Such infonnation could be \"ital to refine n (cf. discussion 

ill Section 18.-1). 

Another possibility. if the underlying SDTDS, for exalnple, is an R\"\" traillPci 

within a dOlnain, is that the information of the error frequenc~" of the R\"\" could 

also be stor('d for each SE or transition. The SS~I would then hold informatioIl 

rq!,ardillg the situatiolls in which the R\":\ produces ('rrors. This information could 
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be used to pinpoint the error of the RNX in order to, for example. refine the training 

set (cf. discussion in Section 17.6.2). 

The average state vector associated with each SE could also be saved. for ex­

ample. SEs then could be associated with their corresponding ;typicar~ 8DTD8 

states. Other contextual information could also be added to accentuate certain as­

pects of the underlying SDTD8, e.g., if the state of the 8DTDS has a temperature 

variable, the average temperature could be highlighted for each 8E. 

16.2.6 SSM comparisons 

How big is the difference between two 8SMs? This question may not have one 

unique answer. There are a number of possible ways to define difference measures. 

One could, for example, base it on relative entropy of the output distributions of 

the two systems2 (a.k.a. Kullback-Liebler divergence) (Cover & Thomas, 1990). 

Relative entropy is used as a kind of distance measure between probability dis­

tributions. By using relative entropy over the output distributions of two 88Ms 

one could measure the divergence of the machines from each other under various 

sequences of input symbols. The question is, which input sequences? Furthermore, 

how should the results be weighed if summed up for many input sequences? 

The issue is problematic and may not have any satisfactory answers. But, if the 

distance measure between S8Nfs has a specified purpose, then possibly some domain 

specific way of measuring the distance could be appropriate. For eXaInple, if the 

underlying R~~s are used as predictors of critical events in a plant, the difference 

between them could be defined in terms of the difference in the situations for which 

they predict the critical event. 

For example, if the distance is measured for the purpose of guaranteeing that 

RNNs in a large set exhibit diversity (e.g., if they are to be used as an ensemble 

(Krogh & Vedelsby, 1995)), then perhaps some fairly simple analytic procedure 

could be adequate. 

Another, perhaps more generic, method is to extract the difference between 

88Ms by using CrySSMEx as suggested in Section 17.6.1. 

2Many thanks to Andre Griining for all the inspiring discussions regarding ways to do this. 
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16.3 CVQ refinement 

16.3.1 Refined training 

One aspect which has received little attention in this thesis is the CVQ graph and 

the CVQ as a quantization function (Chapter 10). The rnodel vectors of the VQ­

nodes are: for example~ selected simply as the average of the data vectors without 

any further refinement. This, and other unoptimized aspects of the CVQ rnay 

result in CVQ graphs that are larger than necessary to quantize the state space of 

the SDTDS properly. The CVQ can be optimized in many ways; one is to refine 

the model vectors using LVQ- or SO~I-techniques (Kohonen. 1995). This kind of 

optimization would be conducted in the learning phase of VQ-node creation. The 

currently suggested method of just choosing the average of each class of vectors 

(cf. Section 10.3) was actually originally chosen because it was the least optiInal in 

order to show that CrySSMEx was not sensitive to the quality of the quantization 

made through the model vectors. To my surprise, replacing a fairly sophisticated 

resource allocating vector quantization training algorithm with a straightforward 

initialization, using averages~ did not reduce the quality of the extracted machines 

at all. If model vectors were selected more carefully, however, the CVQ graph could 

in Inany cases be reduced. 

16.3.2 Post-training refinements 

Another irnprovement, given a trained CVQ-graph which corresponds to quantiza­

tion function Acvq , would be to atternpt to generate a smaller CVQ graph with a 

quantization function Acvql equivalent to Acvq. I would like to separate two levels of 

such CVQ graph reduction: analytical and empirical. The analytical CVQ graph 

rpductioll \v"ould require the postcondition Acvq( v) = Acvql (v) for all I! in dornaill of 

quantizer. The empirical, however. needs only postcondition Acvq(f!) = A ('/'(/ (n for 

all Ii that are salnpled state vectors in [2 (or any other sanlple space of interest). 

The en1pirical cornpression can be likened to a lossy cOlnpression. which should be 

more efficient. but less accurate, than t he analytical approach. 
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16.3.3 Further recursiveness 

Apart from optimizing the CVQ graph, one could develop it further in other direc­

tions. The CVQ graph is a recursive organization of vector quantizers in which one 

or more of these are used to generate an enumeration of data vectors. But there is no 

reason why this recursive organization should be over vector quantizers explicitly. 

The VQ-nodes could instead contain any kind of quantizer (cf. the abstract descrip­

tion of quantizers in Definition 9.4). Let us call these nodes Quantization-nodes 

(Q-nodes) and the graph corresponding to the CVQ graph a Crystalline Quantizer 

graph (CQ graph). The Q-nodes could, for example, consist of decision trees, feed­

forward artificial neural networks or simple if-then-else-functions that replaces the 

VQ in Equation 10.3. An interesting possible Q-node would have a quantizer which 

in itself is a CVQ- or CQ-graph. 

Another recursive possibility would be to let a quantizer consist of several con­

jugated quantizers, i.e. multiple quantizers applied simultaneously and where the 

resulting quantization is a vector of enumerations in which each vector corresponds 

to the result of one quantizer. These vectors will then in turn be enulnerated to gen­

erate a single enumeration in the end results. For example, if quantizers AI ... Am 

are used to quantize a vector il, the result would be a vector (nl ... n m ) where 

ni = Ai (il). This vector is then stored and enumerated in a look-up table of all 

such encountered vectors. 

The reason for suggesting conjugated quantizers is that they could be used 

when splitting an SSM state element using multiple symbols (cf. discussion in Sec­

tion 16.1). Each split-symbol would generate one CVQ (or CQ) which could then 

be conjugated. 

16.3.4 Intelligible quantizers 

The intelligibility of CVQs could be improved considerably. The CVQ can be vi­

sualized using Voronoi-diagrams (as in Figure 12.3 on page 95) if it is used only 

for two-dilnensional vector spaces. But for higher-dimensional spaces, t he under­

lying geometrical properties of the CVQ-quantized space becomes intractable. If. 

however, a CQ is based on quantizers with silnple textual explanations, e.g .. "if 

V4 > 0.56 then return 1 else return 2··, then the textual interpretation of each 
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such quantizer could possibly be used to generate a textual interpretation of the 

whole CQ graph. Such textual descriptions can, for example, be generated from 

decision trees as nested if-then-else-statements. In the CQ case, however, it may 

become more complex as merged nodes allow several possible paths to the saUH' 

leaf-node. Each leaf-node can therefore correspond to more than one explanation. 

For example, the leaf node n6 of Figure 10.2 (page 81) could be explained as ';if 

nh of no is the winner then return I D = 3" or as "if nh of no is the winner and 

nit of n3 the winner then return I D = 3". The concept of winning model vectors 

is not entirely easy to grasp since they are potentially multidimensional and the 

resulting quantization is a result of testing all these model vectors against the dat a­

vector. Therefore, vector quantization may not be the way to generate "readable" 

quantizers, whereas CQs tailor-made for this purpose could. 

If readable CQs can be generated, another form of CVQ optimization could 

therefore be to do an empirical translation (cf. the empirical graph reduction dis­

cussed in Section 16.3.2) from the "unreadable" CVQ to a more readable CQ. 
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Chapter 17 

Possible CrySSMEx Challenges 

In this chapter a number of possible challenges for the further developnlent of 

CrySSMEx are suggested. This chapter is built on the previous one since SOlne of the 

presented challenges would require significant improvelnents of CrySSMEx. However, 

the future work suggested in this chapter is more speculative and also intended as 

potential challenges for Inore RNN-RE algorithms than only CrySSMEx. 

17.1 More interesting SDTDSs 

The Inost obvious possibility of future work is the application of CrySSMEx to Inore 

problems. In this thesis, only a handful of systenls are analysed using CrySSMEx. 

The applicability of CrySSMEx to more complex models remains an open issue. The 

SDTDS definition is broad enough to apply to a large nUlnber of interesting neural 

network nlodels. The experinlents also denlonstrate that high dilnensionality of 

the state space poses no ilnmediate limits. Hence, it could be possible to extract 

rules fr0111 the otherwise hard-to-analyse net\vorks such as, for eXaInple, Echo St ate 

Networks (ES~) (Jaeger, 2003: Jaeger (\: Haas, 2004). The ES:\'"s are a rare species 

of RNNs because a large nUlnber of state nodes are interconnected in a rand01Il 

fashion (and not trained). These state nodes then exhibit a wide range of input­

driven dynamic behaviours. The output neurons tap into these dynamics by using 

silnple linear optilnization techniqu('s. In a network of several hundred state nodes, 

some 111ay have the dynalnics required to solve the task. Alt hough remarkahl.y 

simple. this architecture has proven to be quite S\lc('('ssful. But it should, hO\\'('\"pr 
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be notoriously difficult to analyse since it has a highly multidimensional state space. 

Another promising architecture is the Long Short-Term ~demory architecture 

(LSTM) (Hochreiter & Schmidhuber, 1997). The LST~l has been used on the anbn_ 

domain with remarkably better results than, for example, simple recurrent networks 

(Schmidhuber, Gers & Eck. 2002). Although the testing procedure is sOlnewhat 

unclear and can be questioned (Jacobsson & Ziemke, 2003a) (or perhaps because of 

this), the results invite further analysis: (a) partly to gain deeper understanding of 

how LSTMs represent the anbn-problem as compared to SRNs, but also, (b) to see 

how CrySSMEx scales up to very deep grammar structures. The anbn-experiments 

of Section 12.2 show extraction from RNNs with a deeper structure than to which 

any previous R~~-RE technique has been applied, but analysis of LST:\I would 

increase the depth even further. 

The most ambitious network architectures from which to extract rules, however, 

may be the ones that build on models of biological neurons. RNN-RE has so far been 

restricted to simple mathematically oriented RNX s rather than more biologically 

realistic models, possibly due to the problem of scaling up. The promising CrySSMEx 

results, however, imply that the analysis of some of these systems nlay be possible 

(as long as they fit into the SDTDS definition). 

Apart from various neural network architectures. there is an abundance of other 

simulated models to choose from. As long as a system complies with the SDTDS 

definition, then it has the potential of being analysed by CrySSMEx. If some of the 

requirements of the SDTDS can also be alleviated bit by bit (cf. Section 17.9), the 

descendants of CrySSMEx could be applied to an even broader range of systems. 

17.2 An SSM Query-language 

The issue of comprehensibility has often been the central driving force in rule ex­

traction research (Andrews et al., 1995; Tickle et al., 1998). Rule extraction has 

been seen as a means of helping researchers better understand their networks and 

therefore the conlprehensibility of the rules is important. I would like to challenge 

this view, however. I find it problematic if comprehensibility becOInes a required 

post-condition of rules not yet extracted. What if the underlying systenl cannot 
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be described by a small set of rules? Should this impinge on the fidelit~· of the 

rules? Instead of establishing the sacrifice of fidelity in favour of conlprehensibility 

as a basis for the algorithm, I would argue for the extraction being optimized for 

fidelity, but that the rules should be at least partly comprehensible through the 

possibility of querying them (cf. Chapter 18). 

For CrySSMEx this preference for fidelity over comprehensibility, means that a 

large SS11, which more accurately describes a system than a smaller one. will be 

preferred. But if the larger SSM could be post-processed such that slnaller-SS~I 

"views~: or "derivatives" of the underlying system can be extracted from it, then 

comprehensibility would be partly re-acquired. For example, in the anbn-SS~I of 

Figure 12.3, one could ask the question: "What sequences of inputs will generate 

a prediction of an a after the input of a b?" and receive a number of arguabl~· 

comprehensible examples. 

The possible number of queries for a single SSM is unbounded, e.g.: 

• "What SEs precede a as output?" 

• "What input sequences will take the SSM from qI to q2 without passing q3T' 

• "What are the 100 alphabetically first sequences that are not modelled in the 

SSM?" 

• "What is the shortest input sequence that will exhaust the SS~I SE distribu­

tion frorn a uniform SE distribution T' 

• "What is the probability of generating output sequence ccdd given gIven 

input sequence aabb and an initial uniform SE distribution?" 

• "What is the probability that the p( q3) > 0.9 five time steps ago, given the 

input history aabab if currently P(X5) = LOT' 

• etc. 

A fairly complex query language would have to be developed to handle these 

questions. The query language (both in the question and answer spaces) would 

likely need to represent and handle elements of the following kind of data: 

• probabilities, 

• probability distributions, 

• entropies, 
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• ranges of probabilities, entropies etc .. 

• symbols, 

• symbol sequences, 

• sequences of probability distributions, 

• sets of symbols, states, probabilities etc., 

• SSMs, 

• quantizers, 

• CVQs, 

• vectors, 

• SDTDS data, 

• Modal logic (cf. Section 16.2.2) 

• SS:YI genealogy (cf. Section 16.2.3) 

• etc. 

Moreover, some of the additional information suggested in Section 16.2.5 could 

be added, e.g., visitation frequency, error rates, or ad hoc infonnation. ~Iultiple 

SSl\Is and relations based on SE genealogy could also be part of the queries (cf. 

Section 16.2.3) A brief outline of the potential of such a language follows, but the 

examples are kept in English, as the syntax and semantics of such a query language 

would require rnuch additional work. 

17.2.1 Querying regarding SSM ignorance 

If, for exmnple, the infonnation about how frequently states and state transitions 

are in 0 is added to the SS~I (cf. Section 16.2 .. 5), then questions regarding ';SS~I 

ignorance" could be asked. For exanlple: 

• "Disregarding dead transitions, what are the 20 transitions least frequently 

l?" usee. 

• "Generate a sequence of inputs that according to the latest an1ilable SS~I 

will gene[(\ t(' observations of the SDTDS that, if added to 0, should lIlake all 

S Es llearly equally frequently' vlsited." 

• "Remove all SEs that are visited only 10 tinIes or less ill r2!" 

• "G('lHTa k eU 1 illPut sequence that maxilnizes cert aint\' of SS~ r knowledge of 

the underlying s~rsteln!" 
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The "ignorance" of the SSM refers simply to what aspects of the underlying S~'5tem 

it has little or no information about. Questions such as those above could therefore 

be used to resample a new n in order to reduce the overall ignorance of the SS}'I. 

The usefulness of such questions will be highlighted in Section 18.-1. 

17.2.2 Querying to achieve control 

The SSMs are models of the underlying systems that could potentially' be used to 

control the underlying SDTDS. The SSM could be interacted with simultaneously, 

as with the underlying SDTDS, using the same inputs sequences. The difference 

is that the SS:M can be used for planning the estimated outcome of the underlying 

system. One could therefore consider questions such as: 

• "What is the best sequence of input symbols to generate an output sYlnbol b 

with highest possible likelihood within 10 tilne stepsT' 

• "Take system into one of SEs ql or q2 as soon as possible!" 

• "Get the system to generate an output sequence which in the following (ad­

ditional) SS1-'1 would generate symbol 1 after the last input symbol." 1 

If CrySSMEx is used to extract a lnodel of the environment of a robot, for ex­

ample, then these kinds of queries could be the foundation for the robot to take 

advantage of its induced SSM model as a basis for planning. 

17.2.3 SSM abstraction through queries 

To increase the cOlnprehensibility of SSMs, an SSM could be abstracted through 

queries that result in derivatives of the original SSM in which certain aspects are 

accentuated and others ignored. For example, if a large SSM predicts letters, a 

question resulting in a 1110re abstract SSl\I would be: "Generate an SSM in which 

vowels are separated from dconsonants in the output, but the individuality of output 

symbols is otherwise ignored.", i.e. all vowels are grouped into one single output 

SYll1boi and vice versa for consonants. 

One way to resolve queries is to do it analytically, i.e. by processing an existing 

SSM based on the query. Another way is to extract one SS~I froIn the other by 

IThe additional SSM is here thought of as a description of acceptable (i.e. grammatical) input 

strings. 
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using CrySSMEx and a more abstract output quantizer with fewer possible synlbols 

(cf. discussion of how SSMs are SDTDSs in Section 16.2.4). 

If queries make abstraction of the kind described above possible. then it could 

feasibly automate the abstraction process further. For example. ;;Generate a set of 

the smallest possible SS1:Is that explain at least 90o/c of the output syrnbols in O~ ... 

The abstraction of SSMs can thus be viewed as a lossy cOlnpression of the 

underlying SS1Is. In the same way, the SS~1 is a lossy cOlnpression of the underlying 

SDTDS. 

17.3 User goals 

As suggested in Chapter 7 (cf. Figures 7.1 and 7.2). the possibility for the user to 

choose between fidelity, efficiency or comprehensibility in the manner of a paranleter 

of the R~~-RE algorithm should be considered a much desired feature. 

In CrySSMEx, the extraction by default goes from small Inodels to larger. The 

comprehensibility thereby decreases2
, whereas the fidelity increases. The fidelity 

versus efficiency tradeoff is thus trivially chosen by the user in the possibility to 

abort CrySSMEx at any tilue. More tirue rneans higher fidelity and less comprehen­

sibility. 

The query language, automated abstraction and automated extraction of deter­

ministic SS~Is during extraction could, however, help to boost comprehensibility 

at the cost of efficiency. If the SSj\Is can be queried as suggested above, there wilL 

however, not necessarily be any tradeoff between comprehensibility and fidelity. 

COlnprehensible answers will be generated frorn a Inodel of high fidelity and these 

answers (possibly SS~1:s theluselves) ruay coexist with the original high-fidelity SS~1. 

\Vith regard to accuracy (Section 4.2...1). ho\vever, I would argue that this is 

an ill-defined rueasureluent. If there is a dOluain in which the network has been 

trailled, it is perhaps likely that a snlall SS~I would generalize better than a larger 

one (according to the principle of Occam's razor). There will also be a ficlelit~,­

accuracy tradeoff (Zhou. 2004). The accuracy of rules is. nevert beless. a feat ure 

that depends 011 the definition of generalization ability which is not al\\'(l\'s obvious 

2Supposing that we make the crude assumption that larger rules are necessarily \('ss compn'­

hensible. 
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in these temporal domains (Jacobsson & Ziemke, 2003a) (also in Appendi.x C). It 

is, for example, not obvious whether the rules should generalize towards only loncrer _ b 

anbn-strings or perhaps even balancing parenthesis languages (i.e. if you replace a 

with 1 C and b with 'r and enforce that the parenthesis are balanced at the end of 

the string). 

The potential fidelity-accuracy tradeoff could nevertheless be exploited as sug­

gested in the following section. 

17.4 Robust hierarchical stochastic degree-of-be-

lief model 

Since there are reasons to believe that smaller SS~Is should be nlore adequate 

for generalizing to unseen eXalnples, according to the Occaln's razor argulnent, 

the CrySSMEx-iterations should progressively generate less and less accurate SS~Is 

simply because they become gradually larger. They will, however, also be of in­

creasingly higher fidelity. 

In other words, ssmn has a more robust stochastic infonnation regarding the 

underlying systelll than has ssmn+m (if m > 0). The first SS~I. ssmo, for ex­

ample, has an extremely robust Illodel of the underlying systel11 which is ahnost 

guaranteed to be correct since it can only produce very vague answers regarding the 

actual state (and output) of the underlying systenl. Later SS:vls will have higher 

probabilities with regards to generalizing incorrectly about the actual state of the 

underlying systenl. In other tenns, the rnore developed SS~Is beconle brittle since 

they will generate more specific output predictions. For example, ssmo will alway 

be correct regarding the state of the underlying SDTDS since all microstates are 

lllodelled as one rnacrostate. It will also give a vague probability distribution over 

the output sYlnbols. After a few CrySSMEx-iterations (cf. Algorit 11111 11.1), howt'v('l', 

the SS:\ I will be described as consisting of s(:'veral SEs and will attenlpt predicting 

the nWCfostate of t he underl~'illg system, a prediction that lllCl\" 1)(' elTOllPOllS if the 

SS:\ [ does not generalize correctly. 

The SS:\[s are thus progressing fr0111 rohll.'dllrss to britt/clIf, ..... ..,·3. \lo[('oV{'r. the 

:ITIH'~" are also progressing from llnjal.-;ljiuble SS:'b towards more E'a8il:v jal.-;ijiabit' SS~b. i.t'. 
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CVQs will also divide the state space into increasinglv srnaller re '-' J gIOns. If one 

considers the possibility of noise in the state of the s.\"stem, then the snlaller the 

region, the higher the possibility of rnisclassifying the state space. In other words. 

the CVQ also progresses from robustness to brittleness during the extraction. or 

put another way, when CrySSMEx extracts a sequence of SS:"Is from n. they will 

cover a spectrum from robust-but-stochastic to brittle-but-high-fidelity llloclels. 

Consider a situation where an 8DTD8 has been analysed using CrySSMEx. then 

the 88:"1 and CVQ can be used to continuously monitor and predict the systern 

(which we can assume to be noisy). In other words, the 88:"1 is used for the 

prediction, whereas the CVQ is used to justify and adjust the SS~1 state as a 

correct stochastic representation of the 8DTD8 state. In this situation, the robust­

brittle-spectrum could be very fruitful. The whole range of SS:"1s and CVQs can 

be run simultaneously on the same input for a robust and high-fidelity prediction 

of the system. 

Potentially, if correctly implemented, one could achieve the best of both worlds. 

The spectrum could potentially be exploited by using the genealogy of 8Es (cf. 

Section 16.2.3). An SSM SE or CVQ-observation of the SDTDS state will provide 

information regarding the state of a Inore brittle SSl\1. For eXalllple, if the CVQ 

cvqn observes in the SDTDS that the SE (of the corresponding SS:"1) should be 

qi this can be used to infer the states of subsequent, Inore brittle, SS:"1s through 

genealogical relations (together with conditional probabilities of how SEs of one 

SSM explain SEs of other SS;\1s). 

17.5 Higher order extraction 

As Inentioned in Section 13.2, CrySSMEx differs from earlier R:\:';-RE-algoritlulls 

hy adapting the state space quantizer to generate better rules. This, together with 

the fact that the adapted quantizer has a graph-like structure, could possibly be 

(\xploited for the extraction of higher-order rules. Specifically. the extraction of 

context-free gnunmars is a possibility. A finite state recognizer of a cOlltext-free 

grmnrnar requires an external rnemory in the fonn of a st ack. For eXillnpl('. t hp 

the possihility of making obs('n·at.ions which contradict the SS~I increas('s with its fidelity'. This 
is an importallt feature and its further explotation is suggested in Section 1~.1; 



Figure 17.1: A partial example of how the level of CVQ nodes (cf. Definition 10.6) 
could be used to infer context free grammars. The SE-pairs of each level are equivalent of 
all other similar pairs in that symbols a and b trigger the same response in the output as 
well as the same relative changes in the CVQ level. The level information is to the right 
abstracted and replaced with an operation on a variable L. L:= L + 1 corresponds to a 
push onto the stack and L := L - 1 corresponds to a pop. The example is simplified since 
there must also be an initial value of L and special considerations for when L reaches its 
minimum and/or maximum (for both the left and right machine). 

anbn-problem is a CFL (Context Free Language) where the nUluber of as needs to 

be stored, possibly by "storing" the as thenlselves. An FSA approxilnatioll of a 

CFL is always an illusory abstraction, since, in principle, there is no upper lirnit OIl 

the length of the strings (i.e. n is unbounded). 

To induce a CFL grmIlmar using CrySSMEx, the CVQ-Ievel (cf. Definition 10.6) 

could be ilIlposed on the SEs of the SS:\1. It may then be possible to identify a 

subset of SEs, Q c Q such that another subset of SEs, Q' c Q can also be found 

in the SaIIle SS:\1 and the SEs of Q' are sel11i-equivalent to the SEs of Q apart fr0111 

that their levels always differ by the SaIIle al11ount. If a sequence of stIch subsets 

can be fonned, it IIlay be possible to replace transitions between the subsets by t hp 

pop and push operations of a stack. The hypothesis is that the levels of thf' CVQ 

IlWy possibly correspond to the levels (i.e. aInount of stored data) of the t'xternal 

stack. Figure 17.1 depicts a silllplified exalnple of a possible situatioll. 

In the a nb ll -d01Ilain, this would correspond to ,\ silnple machine COlIllPctpd to 



a stack which takes care of the counting of as and bs. Of course. this extracted 

CFL would be a hypothesis that an unbounded number of as can be counted by the 

underlying system although no observations of this can be made. In other words , 

this kind of extraction would relax the closed world assumption of CrySSMEx. 

The CVQ is not only holding the information about the level which could be 

used as suggested above, the graph is itself a data structure that may hold infor­

mation of the underlying domain. For example, Elman (1990) trained an R:\:\ to 

recognize simple sentences. His analysis of the state representation revealed that 

the RNN had grouped related words in a fairly semantically oriented hierarchical 

structure (cf. Figure 5.1). For example, the RNN separated, in its state, aninlates 

from in animates and humans from animals etc. The study was conducted by the 

use of hierarchical cluster analysis, which does not take into account the dynaIllic 

properties of the RXN at all (Elman's paper was written before any RNN-RE paper, 

cf. Section 5.1). 

With CrySSMEx, it is possible for both the selllantical and syntactical infor­

mation to be extracted simultaneously. It would be yery interesting to replicate 

Elrnan's analysis by using CrySSMEx to investigate to which degree semantical in­

formation can be traced in the CVQ graph.!. Further interest lies in the sense that 

it would replicate a scientist's analysis using an autOlllated analyser. 

17.6 Relative SDTDS analysis 

Consider two SDTDSs, sdtds 1 and sdtds2 with an identical input and output do­

lllain, but with different state spaces and transition functions. It could, for eXaIuple, 

be two R~~s trained on the sanle domain. From these two systenls, it is possible to 

('reate a third SDTDS, sdtds1+2 , in which the state and output dOlnains are :-;implY 

auglnented and the corresponding transition functions of the svsterllS handle t lwir 

part of the augnlented state and output space. In other words. it is possible to 

describe sen'ral SDTDSs as one larger SDTDS. There is nothing strange ill doillg 

this. as the SDTDS state and output vector spac('s are not bounded (."('(' Figure 17.'2 

t \Llll\" thanks to Nick Chater for inspiring this idea. 
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sdtds1+2 

I I I 

Figure 17.2: An illustration of how two systems really constitute one system. The 
two SDTDSs to the left, with an identical input domain, can instead be described as one 
larger SDTDS where both of them are fully preserved. 

for an illustration). 

The system sdtds1+2 describes both systems sdtds 1 and sdtds2 sinlultaneously. 

Therefore, CrySSMEx applied to sdtds1+2 , corresponds to applying it to both systenls 

at once. If Ao is subsequently chosen to reflect the difference of the output of 

the two systellls, then the extracted SSM would also describe this difference. An 

could, for exanlple, correspond to the sign of the result of a simple elelnentwise 

subtraction of the output vectors. Another possibility, \,'hen the output has a 

sYlnbolic interpretation, is to let Ao result in 1 if there is a difference, and 0 if 

not. Or one could have unique enumeration per each observed combination of 

simultaneous outputs of the two systems. However Ao is chosen, as long as it 

reflects the divergence of the two systelns frOln each other, the extracted Inachine 

should also reflect this difference. 

The extracted SSl\1 will be an abstraction of the differences between the two 

svstelllS since the SSl\1s extracted frOlIl the individual systelns are abstractions 

of their corresponding systems. The consequence is that the difference between 

two systerlls is a third systenl. In the SaIIle sense as the difference between two 

vectors could be a third, difference vector, (if eleIllentwise subtraction is Ilsed), the 

difference of two systeills is not necessarily described using a silllple scalar. If ,\" i~ 

chosen properly, however, two "silllilar" ..,dtds1 and .'ldtd.'·"'2 should result ill a small 

SS~I extracted froIll sdtds 1+'2. If tlw differenct) of the systeills i:-; big, tlwn tlH' SS\[ 

('xtract('d frOlll ..,dtds1+2 should, consequentially, also be big. 



Thereby, one could define a distance measure between systems by using the 

extracted SS:Y1 as a measure. It basically means that the difference between two 

systems is described by an SS~1 that defines a finite state grammar of differences 

between the two systems. 

The SS~1 could be used as it is to describe the details. or the SS~I could be 

the basis of a quantitative difference measure. For example, log IQI (where IQI is 

the number of SEs in the SS~I extracted from sdtds1+2 ) could be used. If there is 

no difference between the systems. or if this difference is only in ten1lS of a direct 

one-to-one translation of output symbols, and the resulting SS~v1 thereby only' has 

one SE, then this results in a distance of O. This is appealing since the difference 

between two identical things should be zero (cf. that d(x. x) = 0 if d here denotes 

the difference between two real numbers). All lllore conlplex differences between 

the systems will return a higher number. The distance from a non-acti\'e SDTDS 

(always producing the saIne output) to an active SDTDS would be iSOInorphic to 

the latter. This is also appealing if we consider the non-active systenl a point zero 

frOln which the deviation should only be a consequence of the active svstenl (d. 

d(x,O) = x). 

If any of the underlying s:vstems are chaotic, however, this kind of difference 

Ineasure could become problematic since CrySSMEx will not tenninate at a deter­

lllinistic lllachine. However, it could be possible to generate one distance rneasure 

per each SS~I of the CrySSMEx iterations, especially if the autOlnatic extraction of 

detenninistic SS~Is is implenlented (cf. Section 16.2.-1). 

Every kind of distance I1leaSUrelllent comes with weaknesses. however. \"ot 

even the typical choice of Euclidean distances between vectors is entirely obvious 

(for excunple. city block distance is sOlnetiIlles more appropriate). However. while 

pitfalls are kept in 11lind, this kind of distance measure between dynamic sVstPll1S 

could turn out to be quite useful in 11lany contexts. For example. to ensure di\'(,l"sitv 

in sets of R~~s that are to be used as ensernbles (Krogh tV Vedelsh\", 199;-)). 

17.6.2 A "grammar of mistakes" 

One possible usage for the difference between two systenls as a basis for .\() is to 

('xtnlCt a "gnullluar of lllistakes". If t he underlying sVstelll is an R\"\" traillt'd 
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to perform in a domain, the output of the net\vork typicall~' deviates froIn the 

desired target output. Then Ao could be chosen to reflect this discrepanc~r (ct~ it i:-; 

suggested to reflect the divergence of two SDTDSs in the previous section). It could. 

for example, result in 1 every time there is an error and 0 if not. Alternatively it 

could be a more detailed enumeration of each possible error, e.g.~ one unique ~\Inbol 

for the specific error corresponding to "the output was a but it should have been a 

b" . 

The resulting machine would not describe the output of the RS\". but onl~' the 

ways in which the RNN conducts errors. This description of the R\"\" Inistakes 

could be used as guidance for generating more data on which to train the R \"\". It 

could potentially also be used in other ways to refine the R~\T training procedure. 

For example, it was sometimes possible to see exactly when sonle of the anbTl_R\":\~ 

performed mistakes for longer strings based on the extracted SS~1s. e.g., the R \"\" 

predicted eleven bs after twelve as but was otherwise correct. 

A problematic issue, however, is that Ao would not be a function purely of the 

output of the systeln, but also of the external domain. This would Inean that ~\() 

cannot necessarily be described as a function of the output dOlllain of the SDTDS. 

For example, the exact same output vector of the systelll Ina~' at one inst ClncC' be 

correct and at another erroneous. This would corrupt SOllle of the assurnptions 

required for CrySSMEx to extract rules. vVhether or not this poses a problenl in 

realistic cases, and if so, if this problell1 and others can be alleviated, relnain open 

issues. One possible way to circulnvent the problern could be to extract the SS~1 

as nonllal and then apply it, instead of the R N~. to the clOlllain and record when 

and how the SS:\1 perfonns errors (cf. Section 16.2.5). From all SS:\1 with such 

infonnation, the output syrnbols could be replaced with syrnbols referring to the 

existence (i.e. binary error Ino error information) or the frequency' of errors in a 

transition. That SSl\v1 would after Ininimization be a grarnmar of Inist akes of the 

underlying R~~, describing with a finite state description exactly for what situatioll 

an RN\, generates erroneous output sYInbols. 
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17. 7 CrySSMEx2 

17.7.1 Meta-SDTDS 

When CrySSMEx is used on an RKN to generate a deterministic nlachine it I11eans 

a transition from an uncountable dOlnain into a countable one. The R::\::\s theru­

selves cannot be counted or enumerated since they build upon the uncountable 

real-valued input, state, and output domains. The deterministic SS}'Is. however. 

can be enumerated. Thus, if the translation froill an R~l\ into a deterministic SS~I 

is successful, the RNN can be indirectly enumerated by the extracted SS}'f. Sev­

eral other attempts have been made to enumerate R"\"N s with discrete "signatures" 

that describe their dynamics. For exalnple, by using the recurrent "~elf-\veights" 

of the state nodes (Tonkes et al., 1998) or an analysis of the Eigenvalues of the 

Jacobian matrix in the vicinity of fixed points (Boden et al., 2000). The use of 

rule extraction to create such an enumeration could, however, be a more profound 

way of enumerating RNN s since the extracted machines will in effect eillulate the 

RNNs. 

If CrySSMEx was used on a set of R ~~ s to generate a set of SS}' Is, these SS:\ Is 

would potentially end up in a set of equivalence classes (cf. Blair and Pollack 

(1997)), where all SS~Is of one equivalence class are indistinguishable frOtll each 

other in tenns of their output in all situations. These equivalence classes can each 

be enunlerated with natural numbers, {I ... n}. These CrySSMEx-ellulllerations of 

the underlying R~Ns could then be viewed as a quantizer (cf. Definition 9.--1) ap­

plied to the weight space of the RNNs. Of course, each R)J\" should be exposed to 

the exact same input sequence so that the difference between Os of different R\"\"s 

is only due to the RNNs themselves. 

If we consider backpropagation (BP), or backpropagation through time (BPTT), 

these algorithrns can in theillselves be viewed as systems falling under the SDTDS 

definition (Definition 9.1). Given a fixed learning rate and a fixed training set. Br 

will 111ake transitions in the weight space of the trained R:\'"\". i.e. in one epoch. 

BP will lnake a transition fr0111 one weight configuration into anot her. The wpight 

space corresponds to the state space of the SDTDS. the input space is (,lllpt~· and 

the output could be equal to the state space. The transition function is silllph' tht' 
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Backpropagation-SSM 

SSM 

Figure 17.3: An illustration of how CrySSMEx could be used to analyse the backpropa­
gat ion algorithm (or some other deterministic training algorithm) when used for training 
RNNs (or some other SDTDS). Backpropagation performs transitions in the weight space 
of RNNs. CrySSMEx is applied to each RNN and transitions between equivalence classes 
of RNNs can be described. CrySSMEx is then used on the level of backpropagation (lli 

the underlying SDTDS and the weight space is processed such that equivalent RNNs will 
be grouped together and inequivalent RNNs will be split. The two leftmost RNNs cor­
respond to random initial weight configurations. In reality, the BP-SS:\I should become 
considerably larger. 

gradient descent based updating of the weights of the R l\)J. 

Since the weight space of BP can be viewed as a state space in the BP-SDTDS, 

and since CrySSMEx could be used to enUlnerate (or quantize) this state space it 

would be quite straightforward to use CrySSMEx to analyse BP or BPTT by ldting 

CrySSMEx itself be the basis of Ao. CrySSMEx would then be used on two le\Tls 

(hence the name CrySSMEx2), one to enumerate Rt\Xs, and one to extract the 

transitions between equivalence sets of R)JNs (cf. Figure 17.3). 

If successful, the results should be quite infonnative for the anal\sis of BP and 

BPTT. The ('xtracted lllachine would describe sequences of transitions lwt\\"('('ll 

different R:.J:.Js as the RNNs progress towards the desired solution. It would also 

be possihle to see 110\\" the BP sometilllCS "forgets" successful solutiolls allel drifts 

off to unwanted parts of search space (Boden et al., 1999: Tonkps l\; \\"iies. lq~)~); 
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Jacobsson, 1999). The main obstacles for using CrySSMEx in this 111anner are the 

computational time required and that the weight space may be too enormous to 

conduct this extraction. But this should be fairly straightforward to implement 

and test. 

17.7.2 Dual systems 

Another form of CrySSMEx2
, i.e. where CrySSMEx is used simultaneously in two 

different contexts, would be to extract from two interacting systems. For example. 

consider that one system is an agent, and the other one is the envirOnIl1ent in 

which the agent operates in. The input-output relation of the two systems would 

be reversed, i.e. the input of the agent is the output of the environment and vice 

versa. 

Let the state spaces of the agent and environment be termed SA and S E respec­

tively. Viewed from the agent's perspective, its state SA, would have the following 

basic interaction IA ~ S A ~ D A whereas its environment would have this interac­

tion: IE ~ SE ~ DE where DA = IE is the output/action of the agent and thereby 

the input to the environment, and IA = DE is the sensory input of the agent and 

hence the output of the environment. Figure 17.4 depicts a schematic description 

of the agent-environment duality. The internal dynamics of the systeuls are here 

ignored, but naturally the state of the systems will also affect themselves. 

The extraction using CrySSMEx requires Ao to be specified and Ai to be invert­

ible, but that would not necessarily hold in this example (Le. sonle of the obstacles 

described in Section 17.9 may have to be solved first). The extraction of a machine 

in one system may, however, be used to refine the Ai and Ao of the other system 

(remember that Ai of one system is the Ao of the other). This is highly specula­

tive, of course, but the potential end result would be an extraction of a s~'Inbolic 

description of how the two systems interact (Figure 17.4). 

A good start would perhaps be to limit the agent's repertoire of possible actions 

to a finite set so that a Ao of the agent could be easily specified. This would allow 

for a deeper analysis of some autonomous robot experiments where R~~ shave 

been used, for instance, lVleeden (1996) used a finite set of actions, e.g., "lllove 

forward-left" or "move backwards-right" . 
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Figure 17.4: An abstract depiction of how CrySSMEx could simultaneousl~' be applied 
to dual interacting systems. In this example A stands for agent and E for the enviroIl­
ment in which the agent is situated. Both the agent and the environment are d~'namic 
systems and if CrySSMEx successfully extracts finite state descriptions of them both. a 
symbolic description of the "language" between the two systems would also have been 
extracted. The sensorimotor agent-environment interaction (lA/DE and OA/IE) would 
be abstracted as interchanging symbols (X A / Y E and Y A / X E) between two discrete (and 
possibly stochastic) systems. 

If the above is possible, then a possible next step is to create what I would call 

CrySSMExn 
1 where an unspecified number of subsystems can be identified. The idea 

is that a single large system can sometiIlles be lnore adequately described cb a ~<'t 

of interacting systeIlls (Watson & Pollack. 2005). For exarnple, if two FS\Is of 111 

and n states are translated into a single FS~\I, the resulting size of thL-; FS\I could 

require as many as m x n states. For large FS\Is Tn + 11 « Tn x n and dearly. in 

such cases, the two separate FSi\Is are a Inore cOlllpressed description. 

The description of the interacting subsystenls, conducting :-ivlllbolic interaction, 

could well be shorter than describing the full s~:steIn using a single finite ~tate 

lllodei. If an autOlnatic division into subsystenls is at all possible, the result of such 

extraction would be very powerfuL \Vhile genetic algorithnls could p()s~ibly be used 

to speculate about subsysten1 divisions, the fitness of such speculations could lw 

evaluated by the above described CrySSMEx2. 

17.8 Truly parameter free CrySSMEx 

CrySSMEx is only truly free froIll parallleters if we consider nand .\0 as dprivclblp 

frorn the donlC-lin sOlnehow (sec Aigoritlull 11.2) . . \0 can be S('('ll as deri\'ablp WlH'll. 

for eX<llllple, the dOllWill is synlbolic which has typicall~' been the CClS(' wh(,11 R\,\,­

RE lws bccll applied to R\'"\'s trained on fOrInal grallllllars (cf. Part I). But could 



the parameters be reduced in a broader range of situations? 

17.8.1 Guessing Ao 

If there is no known underlying symbolic domain or other natural sYlnbolic interpre­

tation of the SDTDS output, then inferring Ao (cf. Section 9.1.3) frOl11 the SDTDS 

alone seems an impossible task. The size of the resulting SS~I could, for exruuple, 

not be used as any indication. If Ao is cvqo, for example, then the resulting SS~I 

has only one state, all inputs leading to the same transition resulting in a single 

output symbol. If Ao is more finely grained, however, the SS1J may be very large 

but with output symbols that are very subtly differentiated semantically. The very 

reason Ao is a parameter of CrySSMEx is that it should be chosen by the user to 

reflect something meaningful. For example, if the underlying RNN is trained on 

symbolic data, it makes sense to let Ao reflect the symbolic interpretation of the 

RNN output. 

It could, however, be possible to use a whole range of output quantizers si­

multaneously, each resulting in its own "SSM-view" of the SDTDS. Perhaps there 

could be context dependent features from which can be estimated the adequateness 

of these different views? For example, if the underlying system predicts the stock 

market, and the output is in a range from -10 to 10%, then the accuracy of the 

numerical prediction of the stock value, calculated using a numerical interpretation 

of the symbolic output of the SSM, could be used as an evaluation criterion. 

17.8.2 Generating n 

It may not seem to be easy to avoid the sample set generated from the SDTDS 

as a parameter. The algorithm should after all need some examples from which to 

induce the model. But since the underlying system could potentially be ilnmediately 

interacted with, i.e. by feeding it input to see what happens, it would suffice to give 

only the system itself as an input parameter. CrySSMEx would then itself choose 

what inputs to use to generate O. Some ideas about how to perform this interaction 

are, however, discussed in more detail in Sections 18.4 and 18.6. 
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17.9 Gradual removal of SDTDS constraints 

The SDTDS definition is used in this thesis in order to not restrict the possible 

systems to R~~s only. The definition is therefore quite wide and details such 

as activation functions and weights are ignored so that many other architectures 

comply with the description. It may, however, still be too restrictiYe for a wide range 

of simulated systems. These restrictions are obvious targets for further development 

of the algorithm. 

17.9.1 Determinism ~ Nondeterminism 

One major obstacle for the use of CrySSMEx for a broader range of silnulated sys­

tems, is that it cannot handle noisy systems. Random noise is often added in 

simulated systems to create more realistic simulations and to "smear out" possible 

systematic mistakes due to erroneous assumptions. 

CrySSMEx will have problems with an underlying noisy system for many reasons, 

for example: 

• If an SE is nondeterministic, is it so because it should actually be split or is 

it due to noise? Indeterminism stemming from a poor quantization can, and 

should, be handled by a SE split. But indeterminisln due to noise will not be 

helped by such splits. 

• If two SEs are almost equivalent, but not quite, is their inequivalence due to 

the noise, or an actual inequivalence? Should they be merged or not? And 

how do you determine if two SEs are almost equivalent5? 

• When should CrySSMEx terminate? A fully deterministic SSM cannot be 

achieved as the underlying system is not deterministic. Hence, some other 

termination criterion must be used. 

My conjecture is that the solution lies in abandoning the simple deterministic 

progression from ssmo and upwards. Instead I find it likely that a heuristic or 

breadth first search needs to be conducted. There is a need for a backtrack possi­

bility since the consequence of a split or a Inerge may not be fully apparent until it 

5Kullback Leibler distance of output distributions may be a good start (Cover &: Thomas. 

1990). 
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is conducted and a new SSM is formed after it. Therefore a number of alternatives 

may need to be tested for each SSM. For example, if an SE is split but the split 

creates two SEs with no significantly decreased indeterminism. perhaps the split 

should not have been conducted. 

The generated search tree would have some practical consequences on the CVQ 

graph. It would not be reasonable to create a different CVQ graph for each possible 

vertex in the search tree. The CVQs will be related to each other and have large 

overlaps. Rather, a multi-version CVQ should be created so that the quantization 

of a vector using multiple versions can be conducted simultaneously. 

17.9.2 Discrete input ~ Continuous input 

The input space of the SDTDS is not explicitly limited in the SDTDS definition. 

But for CrySSMEx to function, it needs to be discrete and Ai must be invertible. 

This is due to the fact that each transition in the final SS~1 requires a unique input 

symbol to label it. 

Consider an SDTDS with a discrete set of input patterns, but with no predefined 

input quantizer. Let Ai be cvqo. Then CrySSMEx could at each nondeterministic 

SE perform the split on either As or Ai. If the split of the input space reduces the 

ambiguity of the output symbol then it is successful. If not, then split the SE as 

usual. If, for example, the input space of the system illustrated in Section 12.1 (cf. 

Figure 12.2) has no known quantizer, the first SSM would have one SE, and one 

input symbol x, and at the first iteration the input space would be salnpled since 

the state space is in the collect_spli t_data-function (cf. Algorithm 11.1). This 

would continue until a deterministic SSM is extracted. 

If the input space is truly continuous, another problem will occur. Even if the 

underlying system is truly deterministic, any finite description of the input space 

could give the impression that the system is not deterministic. If, for exanlple, two 

input vectors f1 and i2 result in two significantly different states of the SS~I but are 

quantized as the same input symbol, then from this input sYlnbol alone, the statt' 

could not be predicted. Hence, the same search procedure which is suggested in the 

previous section would have to be used (with a different termination criteria <'te.). 

In other words, a breadth first, or heuristic, search is suggested. as in t he ('asp of 
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indeterministic SDTDSs, but with the additional operation to split input symbols. 

17.9.3 Full observability =? Partial observability 

A problem related to that of noise, is when the state quantizer has no full infor­

mation of the underlying system. This is typically always the case in real world 

domains; some things will always remain hidden since no full nondisrupti\'e rnea­

surements can be done (cf. discussion of Plato's cave in Chapter 1). If the state 

space is not fully observable, it will again reselnble the situation of indeternlinis­

tic SDTDSs since the effect of hidden variables that cannot be Inodelled will be 

observed as noise. A solution similar to the one suggested in Section 17.9.1 could 

therefore apply. 

The partial observability problem may, for exalnple. anse when the state is 

not directly observable, but first passes through SOlne function which reduces the 

information content in comparison to the full state. For example, if the full ~tate 

is a physical environment, the environlnent state will onl:\' be indirect ly accessible 

through sensors. 

17.9.4 Discrete time ::::} Continuous time 

The restriction to consider only discrete time is not necessarily required in the SS~I 

description of the underlying system. The transition functions could possibly be 

replaced with continuous tirne differential equations with an arbitrary choice of j.t. 

The Inodelling of continuous tilne SDTDSs could thereby also be a potential pos­

sibility. To do this frOln scratch would. however, probably mean reinventing large 

portions of control theory, Clearly, this is one direction in which the well developed 

theories of other fields would have to be used (cf. discussion in Chapter 13). 

17.9.5 Real environments 

If the above obstacles (of Sections 17.9.1-17.9A) can be surrnounted. then the road 

is open to real \\'orld ell\'ironnlents. The real world is noisy and continuous. and 

only partialk and indirect l~' observable all at Ollce. Thus, if t hes{' kinds of ~\'st{'lll~ 

are to be anal~'s{'d, all of t he above Inentioned problenls Inu~t 1)(' halHll('c\ t ogt't h('I' 
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and not in isolation. I would, however, suggest that dealing with each problenl 

in isolation would be a good way to start. Furthermore, the best place to start 

would probably be to work on SDTDSs of the kind studied in Chapter 12 and let 

CrySSMEx find a suitable Ai. Then controlled noise could be added to the systeills 

gradually. 

If successful, it would be very interesting to implement this kind of system on 

an autonomous robot which could then explore its environment and build an in­

creasingly accurate model of its actions and their consequences. There i~. of course. 

much earlier work to consider. For example, Fox. Ghallab, Infantes and Long (2006) 

present a Hidden Markov Model approach for creating finite state nlodels of robot 

behaviour. While their approach did require some human interpretation of obser­

vations, it would be very interesting to see if SS:Yls and CrySSMEx could be used in 

a similar way and if the procedure then could be more fully autonlated. 



Chapter 18 

Sciences of Simulated Universes 

In this chapter future ambitions for the RNN-RE field are suggested in two franle­

works; Empirical and Popperian Machines. \\;ithin these descriptions, CrySSMEx 

serves as a basis and central component of all eXaInples, but the ideas presented 

are intended as goals that could guide RNl\-RE developnlent in general. 

Firstly, some properties of simulated systerns are discussed from an epistelllO­

logical perspective, suggesting that simulated systellIs are very accessible for scien­

tific analysis, and for autOlnated scientific analysis. Subsequently in Sections 18.2 

and 18.3, the necessity, feasibility, and revenues of the autOlnatic analysis of sinUl­

lated systems are discussed. In Section 18.-1 Elnpirical :\Iachines are suggested as an 

active learner for modelling simulated systelns. \Yhile Karl Popper's philosophy of 

science is briefly conlpared with Herbert Sinlon's lnachine learning ideas for solving 

scientific problems in Section 18.5. Section 18.6 presents the furthest ambition for 

rule extraction of this thesis: Popperian ~Iachines, i.e. fully automated generators 

and verifiers of statelnents, of highest possible elnpirical content. about populations 

of underlying silnulated systenIs. 

1B.1 The golden properties of simulated systems 

A single silllulated Systeul has SOllle propertips that Blake it \"er~' suitablf' for COll­

ducting active learning (e.g. Cohn et aL 1994; Bryant et al.. 109~)), 011 it (d. 

Chapter 15). Real ph~'sintl systellls are by far lIlllCh lllore cOlnplpx to anal.\>,t, If 

we, for {'xCllnple, want to inlplenlellt an active learllcr ill the context of, for ('xalll-
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pIe, neuroscience or molecular biology, we need to automate not only the ability 

to put forward theories and test them, but also all other competences involved. 

A researcher conducting biological experiments needs skills in handling biological 

tissue as well as planning expertise regarding the cost of the experimentation. etc. 

To become a skilled experimental biologist may take a very long tilne. If an au­

tomated learner should interact with physical systems in the same manner as a 

human expert, a considerable amount of sophisticated automation needs to be inl­

plemented. In other words, the complete automated empirical loop becomes a huge 

project compared to simply conducting experiments manually. There must be some 

kind of gain expected from automating something to motivate the autOlnation in 

the first place. An even more difficult situation occurs if we move fronl a labo­

ratory environment into the so called "real world" where repeatable experiments 

are perhaps only an idealization. In such domains hUlnan skills and experiences 

become even more valuable and, at the same time, more difficult to autonlate. In 

psychological studies, for exalnple, how are test subjects selected and interpreted? 

In astronomy, how are space probes designed and put into space and what probes 

should be prioritized? 

I suggest that if we want to autOlnate scientific processes of any kind, instead of 

focusing on the big scientific questions, we should more modestly start by looking at 

systems with properties more suitable for automated analysis. Simulated systelns 

naturally have such inviting properties (but are not necessarily trivial to compre­

hend, cf. Section 18.2). If we compare the study of simulated dynamic systems 

with the study of physical dynamic systems, there are some quite obvious differ­

ences that nlake them perfect subjects for systematic analysis. Let us call these the 

"golden properties" of simulated systems, which when simulated on a computer. 

allow us to (among other things): 

• fully observe every single variable of the system, 

• replicate results with arbitrarily high accuracy. 

• repeat experiments without much additional effort after the fralnework for 

the first experilnent has been implemented, 

• duplicate and distribute them among research colleagues. 

• study the effect of arbitrary' pertubations of the s~'stems under controll"d 
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conditions, 

• do nonperturbative studies of internal properties to an arbitrary degree of 

detail. 

In other words, they are almost perfect experimental subjects. Verv few scientific 
v 

communities have the luxury of studying entities with properties so inviting for 

conducting research on them. In fact, some of these properties lay the ground for the 

possibility of conducting rule extraction from RNNs (cf. the "implicit requirements" 

discussed in Section 6.5). 

For example, one central aspect in science is to infer causality from observations 

(Pearl, 2000). Sometimes it is obvious which event causes which effects, for example, 

a glass shatters as a consequence of it falling to the floor, not the other way around. 

But for some systems causality may become a chicken-or-egg matter, for example, if 

the concentrations of two enzymes X and Y are correlated in a large set of sall1ples, 

is a high concentration of X causing a high concentration of Y, or vice versa? Or is 

there perhaps an unknown cause Z, affecting both X and Y? Such issues are very 

problematic if there are no additional data. 

For simulated systems, however, determination of causality is quite problem free. 

Let us assume instead that the X - Y - Z-system is a sill1ulated one, then it becomes 

a simple nlatter of manipulating the levels of X and Y to see the effect of one or 

the other. Even if we do not directly alter X and Y (since it 111ay be biologically 

implausible to do so) we can restart the system several times from the exact same 

initial state. One can also save and retrieve the state of the system at any arbitrary 

point in time. The controllability of the simulated systell1 allows repeatability by 

copying and altering the state arbitrarily. In a biological system, the state can 

never be guaranteed to be exactly the same in two systems. Thus it will never be 

fully known if the effect of what you want to test, or some possibly uncontrolled 

aspect of the state of, e.g., a cell, is what is being measured. For simulated systems. 

however, the inference of cause and effect is trivial. For example, it is in principle 

trivial to answer questions such as "\Vhat would have happened to the silnulated 

system if it at tiIne t was affected this way instead of that way?" (just restart 

the simulation and simply try it out at time t). hnagine the richness of scienc(>s 

with answers to such questions, were Reality susceptible to them: e.g .... \Yhat if 
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dinosaurs had never become extinctT'. :'\Vhat if grayity was .j% weaker?". "\Yhat 

if I had taken mathematics instead of computer science?", ;,\\That if Alexander the 

Great had lost his first battle?". \Ve will never know the answers to such questions 

targeting the Reality in which we live. For simulated systenls. however. questions 

of that kind can in principle always be answered. The probleln is of course to ask 

the most interesting questions. 

As long as a simulator is properly implelnented, any observed phenOlllena can 

be recreated and studied in detail. If, for example, one simulated experiment out 

of a million results in deviant, but highly interesting results, this exact experilnent 

can be recovered and studied again. If one real experilnent out of a luillion return:-; 

a freak result, then you may only hope to achieve the saIne result again. 

I suggest that every simulated system is susceptible to a scientific Inethod :-;upe­

rior to the lnethod of sciences studying the real world. One lnay even demand that 

every simulated system is more thoroughly analysed than their real counterparb: 

i.e. that the possibility infers an obligation. But it is not that silnple. 

The Achilles heel of simulated experiments is instead that t he ease of generating 

clear observations is a double edged sword. It becOInes very easy to gen('rate new 

results for slightly different conditions or slightly different s\'stems lIlay produce 

unsurmountable amounts of data. This is also why there i:-; a need for sciences 

of simulated systelns. v\~hile these systelils are widely used today and can be fully 

controlled, they may be incOInprehensible due to the ease of conducting an arbitrary 

llulnber of studies on arbitrarily Inany, arbitrarily cOInplex systelns. Each system 

can in principle have its own "science", including a scientific nOInenclature, models 

and data. 

18.2 Incomprehensibility due to abundance and 

complexity 

John Horgan in his controversial book, "The End of Science" (Horgan, l~)<)()). ,";llg­

g('sts several reasons why our scientific explorations lilay soon hit a :-;olid brick wall. 

. . f S' t'fi '\ . '111<1 I)('rh'~I)"; it t'lkt's Horgan is a renm\'lH'd SClenCE' wnter or Clen I c .'-\mencan, ( (. (. 

a journalist wi th all unbiased perspectiv(' on :-;ciellce to dare to :-;uggcst t hpf£, an' 



fundamental limits to science and that those limits may already have been reached. 

The book should perhaps more properly have been titled ;'The En ds of Scien­

tific Revolutions" since he suggests several different causes for scientific limits and 

predicts a future lack of scientific revolutions (Kuhn, 1962) rather than a lack of sci­

entific progress in general. For example, quantum physics could only revolutionize 

physics once, whereas refinelnents and applications of quantum physics nla~o be de­

veloped indefinitely. However, some areas such as particle physics. lI1Cl\' soon reach 

a limit due to the physical unfeasibility of testing some hypotheses because the ('():-;t 

could become astronomical (quite literarily so, since required particle accelerators 

may surpass our solar system in size). 

Potential scientific progress may also be impeded by human lilIlitation in un­

derstanding a subject to the degree that accurate and meaningful hypot IlP:-;e~ can 

be made. A potential solution to this is to exclude the human elelnent frOlIl the 

equation and let computers without our cognitive lilnitations suggest and test the 

hypotheses. This solution is suggested in light of Horgan's book by Riegler (199~) 

and the subject is also briefly touched upon in Horgan's book itself. Therefore, if 

machine intelligence is the key to the science of the incOlnprehensible, why not st art 

with silnulated systems that have such inviting properties for conducting rt'sparch 

on theln (cf. previous section)? 

It is quite easy to create silIlulated systeills that beha\Op in incoIIlprehensiblp 

ways, even to the designer. .Just create a s~'steln which alters itself as it runs and 

you lliay soon be scratching your head trying to figure out what it is doing. Clearly, 

the possibility that the scientific investigation of a silllulated system IIlay become 

intractable for a human is quite conceivable (despite the golden properties presPllted 

in Section 18.1). 

A fundamental probleln facing many enlpirical computer scientists i~ that it i:-; 

lnuch easier creating large nUlnbers of new computational lnodels and observatiolls 

than actuall~' understanding any of them. This situation is especiall:v true in ar('(t:-; 

where autolnated Inodel building is part of the research, e.g .. Inuch .\\"~ re:-;parch. 

This is becCluse when one studies a phenOlnenon such a:-; a IH'ural network training; 

algorithln, the phpnOlnenon manifests ibelf in a class of computational JIlodels. i.('. 

the nd\\Oorks thelnselv('s. 
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Suppose the level of the model builder (trainer) is called level 0 and the level 

of the resulting models (networks) level 1. In the study of backpropagatioll. which 

is a deterministic gradient descent algorithm for training AXX s, for example. the 

algorithm results in a trained network for every random initial network you start 

with (which is the standard procedure for training). Furthermore~ the result varies 

with selection of learning rate etc. The backpropagation algoritllln is in this context 

a level 0 object and the network a level 1 object. Level 0 objects create level 1 

objects. 

If the scientist wants to analyse some aspect of the system at level 0 (within 

the context of some specified domain), then the empirical stud~' needs to take place 

at level 1, i.e. the level on which the system manifests itself. As in any elllpirical 

study, more than one object needs to be incorporated. and, in Inany casps, the 

differences between individual generated models are not insignificant, necessit ating 

a considerable number of models to be generated and studied. In the ca~c of 

backpropagation, the resulting generated networks may be very diversified despite 

being trained on exactly the same domain. Each network can then be studied and 

analysed in its own right. A few of the networks rnay, for example, have completeh' 

novel and surprising solution to a problelll, as exemplified in Zienlke and Thieme 

(2002) when it was discovered that sorne evolved networks, controlling a robot, 

used the envirorllnent as its Ineu10ry instead of using its internal representation. In 

order to discover such surprising behaviour in the networks, each Ulust be studied in 

detail (or, at least, one 11lUst be lucky enough to study the interesting ones closer). 

The level 1 phenomena lnanifest themselves in what \ve can call level J (sec 

Figure IS.I), which in the case of neural networks corresponds to the behaviour 

of the networks within the given domain (cf. n of Definition 9.3). The generated 

collective of level 1 models are almost always eyaluated quantitatively at level 2. e.g .. 

a perforrnance estimation of the networks (e.g. ~Iiller & Giles. 1993; Jacobssoll (\; 

Zielnke, 2003a). There are also 1110re qualitative evaluations of the networks bascd 

on visual analysis of the behaviour (e.g. :\ Ieeden, 1996; Ziemke l\: Thiemp. 2(02). 

Based on the collective results at le\'el 2. conclusions on the <lSp('ct:- of tIl<' 

nlodels of level 0 are then drawn, t~Tpically without incorporating the indiyicillalitv 

of the level 1 r11odels. In other words. there is an explanatOlY gap lwt\\"('('11 the 
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Level 0 Dynamic System 

Level 1 Dynamic System 

Level 2 000000 Measurements 

Figure 18.1: An illustration of the information explosion that many empirical computer 
scientists may encounter. Level 0 objects may for example be different training algorithms 
that each will generate one or more level 1 objects, e.g., neural networks. The trained 
models have one or more measurable behaviours in different situations. To explain level 0 
systems, more than one level I-system may therefore have to be examined in turn. 

trainer of models and the models' behaviour. For eXalnple, if a number of potential 

backpropagation parameter settings are to be conlpared in a domain, the fillal 

performance of the resulting networks in terms of their generalization error would 

typically be used to evaluate which setting is the best. But if the specifics of the 

dynamics of the network is of interest then this performance analysis, of ho\v the 

networks rnanifest themselves on their domains, may not be enough. For eXaInple, if 

the networks of Ziemke and Thieme (2002) had only been quantitativelv evaluated 

and not visually inspected, the fact that some networks utilized the environment 

as melllory would probably not have been recognized. The individuality of le\'(-'1 1 

objects is lost when level 0 phen01nena are evaluated only on an averaged collection 

of level 2 data. 

For other fields of science where data collection is l110re costly, this would seem , ' 

absurd. For eXcullple, it would be unforgivable to not study'" data from space prolws 

in great detail considering the cost of gathering it. Treating dat a fr01n space pro\)('s 

as a collective set of data without accounting for the individualit~" of the probes 

or the planets they are probing would be considered quite absurd. Yet, this i:, 

precisel,v what is done when a training algorithm is used to generate S\"stt'IllS that 

"probe" the search space of the training algorithm. Each s\"stem may be a lllliquf' 

solution to the problem found by the trainer, ~"et such individuality is lost WlH'1l a 

llH'l'(' perforInance 111eru:lUre is conducted and then averaged for s('vcral i ndivicluals. 
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The problem for the empirical computer scientist is that each model at level 1 

is itself, although relatively easy to create, a potentially cOlnplex phenomenon for 

which theories can be put forward and tested. Theories which explain the mecha­

nisms behind how the numerous level 1 models manifest themselves at level 2 may 

require more than a superficial analysis of quantifiable aspects of this manifesta­

tion. This is typically done only on selected individual models, due to the mnount 

of effort needed to perform a complete empirical study on each object (e.g. Pollack, 

1987; Meeden, 1996; Rodriguez et al.~ 1999; Boden et al., 2000). 

The basic problem here is not only whether or not the complexity of level 1 

systems supersedes the human possibility of understanding them (as Horgan (1996) 

suggests as a reason for halting scientific progress). For example, there are many 

papers in which individual recurrent networks have been analysed in detail and 

have arguably been understood by the authors (and readers) 1 . The problem is 

rather that a detailed analysis of a handful level 1 objects may not be sufficient to 

understand the properties of the level 0 objects. It may. however, be too costly for 

humans to analyse each individual level 1 object. 

There are many instances of human scientists spending entire careers on subject 

matters that are seemingly very narrow. For example, biologists working on just 

a few selected proteins for most of their careers. This is how some sciences have 

become organized through the success of reductionism (and as a consequence of 

some sociocultural aspects according to Kuhn (1962)). It does, however, seem 

sensible for someone to be funded for analysing a very specific neurotransmitter 

and its role in Alzheimer's decease 1 for example. The potential of such research 

lies in applications which may help people. There are, however, considerably fewer 

people (apart from some overly enthusiastic mathematicians, perhaps) building 

their careers on the analysis of one or several instances of simulated systems, even 

though some such systems may be sufficiently complex for researchers to spend 

a lifetime learning new things about them. One reason is that the knowledge 

acquired about a simulated system may only indirectly yield dividends in the real 

world. Another reason is that for every simulated model that can be created. an 

uncountable number of variants of it can also be created. \Vhy focus on one model. 

ISee Section 2.1 for a number of examples of such papers. 
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when a new one can be created which may be more interesting? The problems for 

an experimental computer scientist are that there are too many choices every step 

of the way towards creating and analysing simulated systems. 

The relative ease of creating new systems that can (and certainly should) be 

studied yields a very low revenue from the analysis of each individual system. Con­

sider simulations of chemical reactions in an artificial molecular system with differ­

ent reaction rules and concentration levels of reactants, or simulations of galaxies 

formed under different conditions. Another instance is simulations of thousands 

of recurrent neural networks created by genetic algorithms for the purpose of con­

trolling a simulated robot arm. A detailed manual study of a randonlly selected 

individual system in these example areas will most likely not be very rewarding. 

Simulated systems are abundant in contemporary research and with the Iueans 

of creating one system, another can easily be created by tweaking some parameters 

and running the level 0 simulator-generator again. Each individual level 1 system 

may hold the key to whatever problem you are trying to solve, but carefully con­

ducted scientific studies on each of them become practically impossible. This is why 

automated analysis of simulated systems is important. For real world systems the 

potential prognosed pay-off, in terms of the knowledge gained and the application 

of some research may be sufficient to motivate financing humans to conduct the 

research. For individual simulated universes, however, the low payoff alone may be 

sufficient motivation to automate the analysis. Tvloreover, machine analysis rather 

than human reasoning may be more appropriate for some simulated systems. This 

is because a simulated system can easily be created to be counter-intuitive and ab­

stract in a way that renders past human experience useless in the analysis process. 

See Table 18.1 for a brief summary of SOlne of the differences between sinlulated 

worlds and reality. 

If the golden properties are utilized to automate the analysis of sill1ulated S~'s-

terns, what is then the purpose of the automatically generated models of t hest' 

systems? The siInulated system is of course in itself completely described in source 

code or something akin to it. This issue is central in rule extraction and the mo­

tivator is traditionally that a comprehensible model should be created from a.n 

incomprehensible system. In the following section I argue why this l11oti\'ation is 
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! Real world 

There IS only one observable real Create as many simulated worlds as 

I Simulated world 

world. you like. 
Acquired knowledge may yield high Knowledge is of low value since it "ill 
payoff (e.g., applications). be only about the silnulated systerll 

and nothing else. 
Uncontrolled noise. Controlled noise. 
Repetition of experiments requIre Repetition of experiments require 
skill. only copy-paste of system state and 

parameters. 
Human intuition may be helpful since Simulated systems may be entirely 
humans have experience of the nature unintuitive. 
of the real world. 
Time is (or appears as) continuous, Time can be linear, cyclic or tree-like 
linear, divided into past, present and and discrete, history is always accessi-
future, and cannot be controlled. ble for analysis, future can always be 
Only if the present contains infor- predicted (i.e. presimulated in sepa-
mation about the past can historical rate time line). 
analysis be conducted. Prediction is 
difficult. 
Can only be controlled indirectly, Can be controlled in a ;;hand-of-god"-
through interaction. like manner. 

Table 18.1: Some highlighted examples of why it is easy as well as reasonable to conduct 
a scientific study of a simulated system. 

not as important as it seems. 

18.3 Models as proxies for queries 

I would suggest that the comprehensibility of extracted rules should not be the sole 

basis for the assessment of the usefulness of rules (cf. Andrews et al. (1995); Tickle 

et al. (1997, 1998)). The rules, or models, of some underlying phenomena can be 

useful in other ways than being directly read and cOlnprehended by hUlnans. Tradi­

tionally, models of something should accentuate certain aspects and Olnit others in 

order to promote understanding and ability to control the phenolllena (Follesdal. 

Walloe & Elster, 1993). This is especially clear in control theory where the 1110dels 

should be simple enough for engineers to develop and scrutinize them, yet sophisti­

cated enough to control the plant. But, with regard to automated model buildillg. 

the role of the engineer is replaced by a machine. The yirtue of tlH' lll()(iPi as a 
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means to achieve control is, in my view~ not diminished by being lnachine created. 

For real control applications. however ~ legal problems may arise if no terun of engi­

neers can be held responsible for the system (the legality issue is also used as one 

motivator for rule extraction in Andrews et al. (1995)). \Yhen considering sinlu­

lated systems, however, models of the systelns can be built automatically without 

any risks involved (cf. initial discussion of Chapter 1). 

The possibility of using models to control a phenomena is. nevertheless, not 

the most essential if the underlying system is a simulated one. There may be a 

desire to understand the system, but this may be rendered impossible if the Iuodel 

of the system becomes more complex as a consequence of optiInizing the fidelity. 

The comprehensibility/fidelity tradeoff (Craven & Shavlik, 1999) lneans that the 

better the model mimics the underlying system, the bigger and more complex it 

may become. 

I would however argue that if a model has certain properties, then, even if it 

is large and incomprehensible. it may still be meaningful in tenns of cOluprehen­

sion. For example, consider a highly complex simulated model of hot plasma. for 

the purpose of building a fusion reactor. The model may have nlillions of state 

variables and build on quantum mechanical principles, as well as being highly non­

linear. Despite being incomprehensible (within mortal limits of understanding), 

the researcher depends on the model to answer queries such as "will this nlagnetic 

field configuration result in a stable plasma T' and expects responses such as "Yes, 

in 90% of the cases.". The incomprehensibility of the system itself is of little sig­

nificance (given that it is accurate with respect to the relevant underlying physics) 

when the researchers receive an answer which Inay very well be conlprehensible. 

Consequently, the idea is that nlodels Inay be useful as a proxy for queries. I 

would hold that one strength of models, in science, mathematics and Inaybe even 

as mental representations, is that the model acts as a quer~'-proxy between the 

question-holder and the "reality" that the question addresses. The virtue of any 

silllulation lies in that the simulator is a model which is much cheaper. and mon~ 

appropriate, to query than the reality itself. And when it COlIles to models of 

simulated models, the more abstract model should be constructed such t hat it is. 

in turn, more appropriate for queries than the underlying silllulated systPlIl. 
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Consider for example SSMs as models of SDTDSs (cf. Part II). The user could 

of course interact with the simulated SDTDS directly, by testing yarious combina­

tion of input patterns. But CrySSMEx creates the SS}'! model of the SDTDS as a 

potential proxy for certain kinds of queries about the underlying system. Then, as 

suggested in Section 17.2, various questions could be asked of this model without 

the need to interact with the underlying system directly. The extracted SS~I is 

more appropriate for queries since it has a well defined syntax in the structure of 

the SEs and transition as well as defined semantics represented by the input, output 

and state quantizers. 

To illustrate the strength of a model as a proxy for queries, consider a very 

simple model of a population of real-valued measurenlents as a nlean yalue and 

standard deviation. Let us say, for example, that you have nleasured the length of 

one thousand slimy earthworms, a nasty and cumbersome task by many standards. 

From this exercise you know that the average length is 15 cm with a standard 

deviation of 3 cm. To create a lossy model, in this case, you choose to assume 

that the lengths are normally distributed. The model is lossy in the sense the 

exact lengths of all measured wonns cannot be recreated and other aspects of the 

worms, such as degree of sliminess, are completely ignored2
. It is a very powerful 

model for the length of earthworms, not only for the ones that have been carefully 

lueasured, but a model that is assulned will hold also for luany other earthwonns 

collected under similar conditions. In fact, it may even be assumed that it holds 

for all earthworms that have ever existed or will ever exist. Even if an infinite 

number of earthworms will exist before the end of time, you will have a model 

for them too, accurate or not. From the data alone, without assuluing nonnal 

distribution (or some other criteria) as your criteria for compression, you could not 

have expressed anything more substantial than statements about specific lengths 

of the 1000 individual earthworms you have encountered. Any statement about 

these specific 1000 worms you could have been more accurate. but without the 

compression of the model, would you really understand the dOluain? Compression 

is, if not the actual act of comprehension, clearly helpful for your cOlnprehension. A 

deeper discussion of the suggested relation between compression and cOlnprelwllsioll 

2The normal distribution assumption also makes the model lossy in the sense t hat if it i~ a 
false assumption, the model will be inaccurate. 
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can be found in Chaitin (2005). 

The power of the model is not only that it generalizes to more data than just 

the collected data. The power of it as a proxy for queries is realized when you may 

have concrete questions regarding the lengths of the earthworms. If you want to 

go fishing and need earthworms longer than 20 em in order to catch a really big 

fish, then you could simply utilize your model of earthworm lengths to calculate 

the probability of finding such worms. Suppose you want to estimate the expected 

time it will take to get ten such worms if you dig up ten worms per minute. The 

probability of an arbitrarily selected worm being longer than 20 cm should be 

approximately one in twenty, according to your model. From this the expected 

time it will take to find ten long worms can actually be calculated. Consider if 

you want the same answer, without the use of your powerful "worm-length-model". 

Then you would actually have to dig up the desired amount of long worms, nleasure 

the time each one takes, and repeat this until you can make a model for the average 

time needed for the task. It would amount to a lot of worms compared to the elegant 

worm-length-model powered deduction. 

By investing computational time in building a model of a simulated system, the 

cost of answering certain queries may decrease significantly. In the exanlple above, 

the collection of data together with some assumptions made possible queries about 

an infinity of never seen eXaInples. The answers may be wrong, if the model is 

incorrect. But a single model consisting of two real values eliminates the need to 

conduct any more measurements once the risk of errors in the model is accepted. 

This is of course an idealization, but any form of model building should produce 

revenues in the form of reduced (computational) cost for answering certain queries. 

When a model, that is intended to be suitable for queries, is built upon a 

simulated system, the assumptions made should be such that the model is more 

suitable for queries than the simulated system is by itself. The 8..':)sumption under­

lying CrySSMEx, for example, is that a finite state model is adequate. Even when 

it is not adequate, it Inay be used as a proxy for queries, although the answers 

may sometimes be inaccurate. What CrySSMEx does is to increlnentall~' generate 

gradually better models so that the expected accuracy of query-answers, with rp­

spect to the actual underlying system, will gradually incre8..':)e. It wilL howew'l". 
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only increase with respect to the collected datal 0, and when this data is perfectly 

modelled, CrySSMEx terminates. 

One could object that there may also exist queries, and answers to these queries, 

that themselves are beyond our comprehension. Some of these incomprehensible 

queries may however be exactly the kind of queries that are necessary (given sonle 

ad hoc utility function). Thereby the rules can only be made partly cOlnprehensible 

by being accessible through queries. The problem of incomprehensible models is 

merely temporarily avoided, and not solved, since, the most significant queries for 

a particular model may be beyond our comprehension. This is of course true. \\"e 

cannot escape our finite ability to comprehend complex models. But, sometimes 

not even queries, or their answers, need to be humanly comprehensible to be useful. 

On a reasonable degree of abstraction CrySSMEx can be seen as asking questions of 

the latest SSM about what aspects of it need refining, and how this should be done 

through resampling of O. In CrySSMEx, the extraction of 88Ms progresses with or 

without our comprehension. In the following section this form of querying, for the 

purpose of improving the queried model itself, is discussed further. 

18.4 Future direction I: Empirical Machines 

I will now define the first framework in which I think future RNN-RE algorithms 

should be developed: Empirical lVlachines, based on active learning and induction 

of models through querying of the underlying system (Angluin, 1981, 1987; Cohn, 

1994; MacKay, 1992; Cohn et al., 1994; King et al., 2004; Angluin, 2004). A siInilar 

active learning rule extraction approach is also suggested by Craven and 8havlik 

(1994), but for feedforward networks only. For dynamic systems, the problenls 

are quite different than for feedforward networks since a system is fundamentally 

different from a function in that it changes over time. 

In CrySSMEx a sequence of models is built based on a predefined set of obser­

vations, O. As mentioned above, CrySSMEx can be seen as "querying" its latest 

8811 model about how it could be refined such that the data is more properlY 

interpreted. From the answer of this query, the next SS:\I is then created. ~Iore 

precisely, the 8DTDS is interpreted through the CVQ which is adapted to creatp 
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an SS~1 description of the SDTDS that is minimal and consistent with the SDTDS 

sample, n. The adaptation of the CVQ is based on pinpointing alnbiguous SEs of 

the SS~1 through measuring the conditional entropy and selecting data in [2 that 

may alleviate the ambiguity (nondeterminism). It could however be argued that 

the principle which is used to select data from n could potentially also be used to 

add data to n. 
The reason the conditional entropy is used in Algorithm 11.1 is that it can be 

interpreted as a model of ignorance. For example, Hssm(YIQ = qi, J\ = .Z'k) can be 

interpreted as the degree of uncertainty regarding what the output sYlnbol should 

be if the SE and input symbol is known. In other words. the constituents of the 

model that are the most ignorant or inexact are selected for refinement. The Hssm 

entropies are defined (definitions 9.9 and 9.10) such that it does not consider dead 

transitions (Definition 9.7) as ignorance. These definitions were based on the choice 

of the closed world assumption, i.e. if a transition is dead, it is so because it is not 

represented in n and thereby does not indicate any ignorance of the SS:-'[ regardin~ 

0, but rather as ignorance in 0 regarding the underlying systenl itself. The closed 

world assumption says: if something is not in the smnpled data, 0, then it is al.-.;o 

not in the Inodel. 

Dead transitions are, however. only one extreme case of insufficient data in n; 
i.e. when an input sYlnbol has never been presented to the underlying SDTDS in 

certain situations. This is only at one end of the spectruID of transition frequencies 

and the only one which can be seen in the SSl\[ at all since the frequencies of 

SEs and transitions in [2 are not modelled at all in the SS~I. The extracted SS:-'L 

however, lIlay have some SEs and transitions that could be very poorly supported 

by data in O. For exalnple. if one transition is executed only one tilHe and anot her 

1000 tilnes, in a quantized O. this will not be reflected in the SS:-'[ at all. It is quite 

conceivable that a transition supported by a handful of obsery<lt i()llS ill [2 can lw 

considered Inore volatile than a transition supported by thousands of OhS(Tvatioll:--. 

An SS\f is more likely to fail to generalize with respect to unseen sitllat ions clf 

tIlt' weakest links. i.e. infrequent SE.-.; and transitions. It is also guaranteed llot to 

generalize at all in dead transitions. 

OIle goal of CrySSMEx is to create a DIodel which minimizes the llllc('rtaillt~· of t 11(' 
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output of the underlying system given a sequence of inputs. If the model mimic~ 

the underlying system well, this uncertainty will reach zero. This uncertainty i~ 

what is gradually eliminated in the CrySSMEx-Ioop. 

Fully eliminated uncertainty terminates CrySSMEx, i.e. after the SS:\1 fully de­

scribes the data in n there is nothing more for CrySSMEx to do. This is precisely the 

point at which CrySSMEx could be made part of an active learner: by resarllpling n to 

cover ignorance in the SSM regarding the underlying SDTDS (cf. Section 17.2.1). 

The resampling should be done by interacting with the underlying SDTDS in a 

manner which should make infrequent SEs and transitions more frequent as well ,b 

it should eliminate dead transitions. 

There are of course many strategies for how to patch up the holes in the SS:\1. 

One is to generate an input sequence which according to the current SS:\1 should re­

sult in more uniform SE frequencies, i.e. that states should be visited approxilllatel~' 

the same number of times. Another method would be to interactively (while the 

CVQ quantizes the state space) force the SDTDS to follow previously dead trclllsi­

tions. This must be done interactively since, based on the SS~ L it is ilnpossible to 

know what will happen in the dead transition. A reasonable strategy' could be to 

generate a new n that Inaximizes the probability that the underlying SS\[ should 

fail to predict the SDTDS. To prevent loops, it is probably beneficial to let the 

new n contain the previous n as a subset. When this new n has been used to 

create a new lllodel, the whole resanlpling procedure could be started over again. 

For every iteration, the induced model should better lnimic the underlying system 

since the data on which it has been trained was selected to be as problematic for 

the underlying systelll as possible3
. 

By Elllpirical l\lachine, I refer not only to systeills built on CrySSMEx. A.s cur­

rently iIllplemented, CrySSMEx has its specific limitations and features which are not 

uwant to constrain the concept of Empirical l\Iachines. Empirical :\Iachine meaIl~ 

a svste1l1 of model induction which should create a model of a simulated s\"stelll 

that should be more accessible to queries than the underlying system itsPlf. III par­

ticular, the rnodel Blust be able to allswer queries regarding its own inabili tips (i.e. 

;\A similar idea was developed already' in Jacobsson and Olsson (2000) (which in tllrn .was 
bas('d on Jacobsson (1998)) where. problematic. prototypical input patterns wen' l'xtra('t('d from 

feed forward networks by "iuH'rting" them. 
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Empirical Machine 

Model 1 Model 2 ... ~ Model n ... 

? . ? . 

Simulated System 

Figure 18.2: Outline of an Empirical Machine. The initial model of the underlying 
system queries the underlying system in order to improve itself. A sequence of models 
is thereby created, where increasingly detailed queries can be given as the deviance of 
the models from the actual system decreases. A user can potentially query the Empirical 
Machine which acts as an adapting proxy for queries. The queries from the ll~l'r could be 
used to guide the refinement of the underlying models. 

ignorance) to answer certain queries. Apart from creating the InodeL the Elllpiri­

cal Machine lnust also have a mechanism for generating a new set of observations 

which should relnedy the ignorance in the current lllodel. Traditionally, R:\":\"-RE 

methods aSSUllle finite state models, but other lnodels are of course possible. For 

exmnple. a silnilar active learning rule extractor was suggested by Craven and Shav­

lik (1994), but it was limited to feed forward networks only. An Elnpirical :\Iachine 

is to be regarded as an automatic lnethod for creating Inodels of silllniated ~y~t{,lll, 

nlodels that should in principle never stop being refined (or, at least verified) a~ 

long as t he machine is running. An external user lnay of course provid{' guidance 

by providing additional queries regarding the underlying Sy::;teill. The outline of an 

Elllpirical :\Iachine in conjunction with an external user is depicted in Figure 1~.:2. 

Observant readers will remember it was previously argued that it i~ preferable 

to kt CrySSMEx be compositional, i.e. to collect data fron1 the SDTDS <l~ it \\';\~ op­

('rating in it~ dOlnain (cf. discussion in Section 9.1.2). By recollecting data acti\"{\l~·. 

t he patterns of an underlying don1ain of the SDTDS will not be lls{'d ib ht'llrist i('~ 

in g('Ilerating the rules \\·hich will result in nUH1\" asp<'cts of the rlll{'~ llot \WiIlg 

rek\"ant for the SDTDS as it is actually operating ill ib domain. In .Ja('()h~~()ll 
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and Ziemke (2003b) (and Appendix D) it was shown that by using the domain as 

heuristics, significantly fewer states were extracted than if breadth first search was 

used. This active learner is therefore more suitable for systems that are not strictly 

bound by a constrained external domain. For example, the anbn-predicting RXXs 

(cf. Section 12.2 and appendices C and D) are not really intended to do anything 

else than predict anbn-strings. An Empirical rvlachine might, however. "conduct 

experiments" on the RNN using any non-anbn-string resulting in big SS:\,Is with 

largely irrelevant aspects in terms of an b n . 

The reason I define and discuss Empirical Machines is that, apart from being 

a potential extension of CrySSMEx, it also provides a framework for other poten­

tial RNN-RE algorithms. If one wants to design a rule extractor for the purpose 

of building an Empirical Machine, some arguably important goals for RNN-RE 

algorithms and their rules are highlighted: 

• By providing rules that can be queried, fidelity could potentially coexist with 

comprehensibility (cf. discussion in Section 7.2.2) since large incomprehensible 

rule sets can be viewed through queries that accentuate aspects of relevance 

for the user. This places a focus on the querability of rules as a quality 

criteria rather than the traditional criteria fidelity, accuracy, consistency and 

com prehensi bili ty (cf. Sect ion 4.2.4). 

• The rules should be able to assess some aspects of their own ignorance. This 

is important not only for the Empirical Machine framework, but also for the 

possibility of providing estimations of confidence when the rules are used to 

predict or model the underlying system. 

• The user can, but is not required to, guide the extraction. In essence, this 

means the extraction process is further automated since the user needs to do 

nothing more than provide the Empirical !vlachine access to the underlying 

system. Full automation means the Empirical l\Iachine can more easily be 

incorporated as a constituent of larger systems (which is suggested in Sec-

tion 18.6). 

• In order to build an Empirical Machine from a rule extractor means it must 

be "user independent" since it must interact with the under1~'illg ~~'stem au­

tonomously. The importance of freedom from, or consistency over. paralll{'t('r~ 
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becomes accentuated since these parameters would be inherited from the rule 

extractor to the Empirical Machine. 

The first point is perhaps the most important for the field of R~~-RE ~ince it 

would motivate research on rule extraction also when the rules are beyond hUlnan 

comprehension. Human comprehension has its limits but I see no reason why 

extracted incomprehensible rules should be deemed worthless if they accurately 

describe the underlying phenomena. As Einstein once put it: ';A scientific theory 

should be as simple as possible, but no simpler". The challenge for rule extractors 

is to show that this may also be true beyond the lilnit of hUlnan comprehension. 

Most likely, the extracted models will quickly explode in size as every hole 

patched in the SSM is likely to generate a larger SS~\I 'with even Inore dead transi­

tions. Therefore some strategies, regarding what aspects of the SS:\1 should be the 

focus of further resampling of the SDTDS, must be devised. Such intercstinqncss 

measures are commonly used as heuristics in computational scientific discovery and 

this connection is investigated in lnore detail in the following sections. 

18.5 Popper and machine learning 

Scientific discovery involves two nlain subprocesses~ creativity and criticisln. Or as 

Popper states it; "the work of the scientist consists in putting forward and testing 

theories." (Popper (1990), p. 31). Traditionally. the machine learning field has 

been Inore involved with the former rather than the latter. Ironically. however, this 

aspect of science is perhaps not the 11l0St accessible for aut Olnation. To dlltOlnatc 

sOlnething, you must first understand it enough to progralll it (Chaitin, 2005). 

Popper states: "The initial stage, the act of conceiving or inventing a theory, S('(,lllS 

to me neither to call for logical analysis nor to be susceptible of it" (Popper (1!)00), 

p. ~n). This has of course received criticism frOln proponents of lnachine learnillg 

<1 pproaches to science; "It is unusual for an author, less than one-tent h of t h(' wm' 

through his work, to disclaiIll the existence of the subject Inatter that the tit h' of 

his treatise announces. Yet that is exactly what Karl Popper dews in his classic. 

The Log'it of Scientific D i,~('() l'ery" (Silnoll (1973), p . ..! 11,). This could simplY 

1)(' attributed to a poorlY titled book. The original title in GprlllCln was "LOYlk 
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der Forschung') (Popper, 1935) which is more accurately translated as "Logic of 

Research" (which sounds less powerful, I suppose). Even more accurately, the book 

should per haps be titled "The Aspects of Science that can Actually be Reductd to a 

Logical Description" or, "How to Separate Science from Non-science". The last title 

would indeed reveal the main ambition that Popper seemed to have with his book: 

to give a detailed description of what science is and how to recognize pseudoscience 

disguising as science. 

The machine learning literature is strongly influenced by Herbert A. SinIon, 

a strong proponent of machine intelligence applied to realistic scientific problems. 

Simon's articles present a strongly descriptive view of science. A paper on a llla­

chine learning technique applied to a scientific dOlnain is typically introduced by 

a description of a success story where a scientist has discovered a novel law. In 

Simon (1992), for example, diaries, correspondence and laboratory notebooks of a 

few noteworthy scientists are studied to find patterns in their creativity, intuition. 

assessment of the validity of ideas and planning of experiments etc. A challenging 

task indeed. As I see it. the basic problenl is. however. that intuition and creativlty 

are not matters easily approached by other means than introspection. Idea~ about 

scientific creativity may possibly be no more than sophisticated guesses at best. 

since the problem of scientific creativity itself may not be a probleln open to the 

scrutiny of scientific Inethods (Popper. 1990). The science of creativity is not (l 

science at all, in fact, if we follow Popper's definition of science. 

Popper's demarcation of science from non-science, or pseudo-science, is based on 

his view that science should deal exclusively with falsifiable statements. If a stat('­

lllent cannot be falsified through observations, then it is not scientific. Falsificatioll 

is, however, a property of the statement itself, not of the source of the statelnent. 

In other words, in Popper's philosophy of science, the source of statelnenb i:-- a 

wild-card. Popper never states that there are no logicallY built up met hods that 

can COlne up with falsifiable statements, i.e. he never excludes the p()s.-;ibilit~· of 

the creative element of the scientist being autolnated. He merel.v claims that tht' 

aluti.Ysis of hun1an creativity is intractable, and this does not. in m~' view. exclude 

the possibility that logically built systems lnay have "creatiy(;' features. ~illlOll 

and others hcl\'e certainly been able to develop several such logical pr()~rallls for 



artificial creativity in scientific domains such as mathematics. chemistry. physics 

astronomy biology~ medicine etc. (Simon, 1995/96; Colton &, Steel. 1999). Xovel 

discoveries are rare (typically known facts are rediscovered) but it does happen. 

Others have embraced the non-logical nature of scientific discovery and let "ran­

dom" evolutionary processes be the basis for creative discoveries (Koza et al .. 2003). 

Through the use of genetic programming which builds on random mutations, ran­

dom crossovers and fitness-based stochastic selection, Koza et al. have been able 

to find novel non-intuitive solutions to complex engineering problems (typically in 

the field of electronics). 

What defines computational scientific discovery? I would hold that Popper's 

definition is a good one to describe the middle word; i.e. that only falsifiable state­

ments are "scientific". "Computational discoveries" are discoveries made by an 

algorithm run on a computer. The process of computational discovery should also 

involve minimal, or no, human intervention, to distinguish it from computer aided 

research where the computer is used as a tool in the hand of humans. "Discovery" 

is, in my view, a creation of a falsifiable, yet not falsified, statement about some­

thing. The creation itself can be made in any arbitrary way. Since the source of 

statements bears no relevance in the assessment of their falsifiability, the nature of 

the source needs no further specification. For the current discussion, we can assume 

it to be randOlTI, human or a highly sophisticated machine learning algorithm. It 

would be possible to call such statements "facts" ~ but in Popper's philosophy, the 

notion of a fact is problematic. Nothing can be known for sure. but smne state­

ments can be stronger than others by being logically improbable to be true unless 

they really are true. That is the essence of falsifiability. 

You might react to the word "something" in "statement about something". 

Surely science must be about scientific subject matters, such as physics. medicine 

or chemistry? But, such a definition of science would be purely descriptive and 

provide no indication of when or if the study of a particular subject matter becOInes 

a science. On the contrary, I would hold that a proper definition of science is a 

definition of the scientific method, not of the subject matter. It is the nature 

of how we approach a subject matter that makes some knowledge scientific and 

other knowledge not. If a subject is approached with a sound scientific nwthod. 
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then the knowledge generated deserves to be labelled scientific knowledge4 . This is 

however seemingly not viewed as a sufficient criterion by researchers in the field of 

computational scientific discovery. The problem domains under study are typically 

within traditional natural sciences or mathematics (e.g. Simon, 1995/96; Colton &: 

Steel, 1999; King et al., 2004). 

Another striking difference between Popper's philosophy of science and tra­

ditional machine learning is the anticipated difficulty of approaching the matter 

systematically. "The central problem of epistemology has always been and st ill 

is the problem of the growth of knowledge. And the growth of knowledge can be 

studied best by studying the growth of scientific knowledge." (Popper (1990), p. 15). 

The reason that scientific knowledge is considered easier to approach systematically 

is simply that it is a very limited form of knowledge for which methodologies can 

be defined. Consider common sense knowledge on the other hand; we all have it 

(more or less), but can we single out a method for acquiring comInon sense knowl­

edge? In comparison, scientific progress is a social and well documented process 

(Kuhn, 1962). Interestingly, however, proponents of traditional computational sci­

entific discovery hold: "Scientific discovery is generally viewed as one of the Inost 

complex human creative activities" (Langleyet al. (2002), p. 1). I do believe how­

ever, that this argument is more a consequence of analysing the result of scientific 

method, than the scientific models themselves. The scientific method for testing 

these models is in itself very simple in principle. 

The aInbition of Simon and his followers is indeed impressive. They atteInpt to 

mimic the processes by which the great scientific minds of the past have achieved 

success. But it is like deciding that Mount Everest is a good place to start if 

you want to learn mountain climbing. The principle of climbing mountains is very 

simple: just walk or crawl or climb towards higher ground until you reach the 

top. The difficulty is more a consequence of the mountain. Likewise, the scientific 

process is elementary; the resulting complexity is simply a consequence of appb'ing 

it to complex systems. Ironically, Simon himself provides an appropriate analogy 

to this in his well known ant on the beach metaphor (Simon, 1969): the complex 

path taken by an ant on the beach may be a consequence of the complexit.\· of the 

4Not to be confused with "truth" or "true knowledge". Scientific knowledge is, and should 

always be susceptible to change. 

166 



environment rather than the complexity of the ant. A simple mechanism lnay result 

in complex phenomena if put in complex contexts. And I believe this is precisel~' 

the case for the scientific method. 

The ambitions set aside, in practice, the machine learning field is t~'pically 

focused on induction of theories from data. Data is gathered from which models 

are subsequently induced. Various heuristics are used to guide the model induction 

towards interesting and comprehensible models. Some measures of interestingness 

are (Colton et al., 2000): 

• Empirical plausibility of conjectures. They do not suggest always discarding 

conjectures refuted by observations, instead the conjecture could be altered 

to fit the data. But the bottom line is that plausibility is taken as a criteria 

for interestingness. 

• Novelty. If a conjecture or concept can be deductively derived it cannot be 

considered very novel. 

• Surprisingness. Tautologies are the least surprising of conjectures. 

• Applicability. The proportion of models in a database to which the conjecture 

or concept is applicable. 

• Comprehensibility and complexity. Simpler conjectures can be considered 

more interesting. 

• Utility. Ability for user to explicitly guide the search for conjectures by spec­

ifying a focus that indicates interestingness in the domain from the user's 

perspective. 

Interestingly, Popper's falsifiability is not in the list. In fact, Popper is seldom cited 

at all in the computational scientific discovery community. This Inay of course be 

due to Simon's early criticism of Popper's refutation of analytically approaching 

the nature of human creativity. 

In my opinion, Popper provides machine learning with a very sound philosophi-

cal, as well as practical basis, for automating science. He could well be crit icized for 

providing a very poor description of how science is conducted in practice. \lost sci­

entists do not focus their attention and experiments on falsifying their own claims. 

Moreover, much that we consider scientific knowledge ma~' not be entirely falsifi­

able. But Popper's philosophy of science is not descriptive, it is Tl017llatil1f'. He 
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simply states what he considers scientists should do with their conjectures. not 

what they are actually doing. As a consequence, he gives a fairly nonanthropOlnor­

phic view of science. The act of falsifying statements is not a typical hUlllan thing 

to do. We prefer confirming our ideas and subsequently applying t heill. StriYing 

for falsification is, however, arguably a very logical aInbition (if you believe in Pop­

per's arguments, that is) and falsifiability should thereby be a good heuri~tic fl)r 

evaluating statements we want to be scientific. A good heuristic, that is. abo ,,,hen 

computer-evaluated. 

Moreover, as Popper denies any methodological approach for understanding cre­

ativity, there may also not be any methodological approaches for designing devices 

that exhibit creativity. Thus creativity becomes a wildcard. Theories could be 

generated by the throw of a dice a la Genetic PrograInming (Koza et a1., 2003), 

or by a sophisticated guessing gaIne a la Inductiye Logic Programlning (\ [uggle­

ton & Raedt, 1994). With any arbitrary generator of statelllents, it would still fit 

the Popperian framework as described here. The degree to which the creativit\ is 

successful can in a Popperian framework be evaluated by t he degree to which the 

statements are falsifiable, but not yet falsified. Consider Einstein, for exmnple: the 

assessment of him being a successful creative scientific genius COllIes frmn his. quite 

falsifiable ideas still being unfalsified (despite sonle considerable effort) a hundred 

years after his 1905 annus mirabilis. But if instead a monkey at a type-writer had 

put forward the theories by an incredible coincidence, these would have been just ,\S 

powerful (even though it is unlikely the Inonkey would have been given any credit 

in the unlikely event anyone actually started taking them seriousl)'). 

Of course, if we developed machine learning techniques that use Popperian 

falsificationism as a basis, we should not expect this science to reselnble ILlllllHn 

science. Human scientists do not follow the strict schemes of falsificationisIll. To 

better understand hUl1lan scientific creativity, we should instead follow Simoll's 

initiative to be inspired by descriptive philosophies of science. 

A sinlilar problenl is Inentioned by \\~it kowski (2002) who created H PoppPlian 

model of aniInal behaviour. Although it lllay be reasonable to assump t hat a lilll­

ited fonn of asseSSlllent of falsification of theories could occur in ,\\limal brains. thl' 

1 } ld t b k t . I ··C'le~"'rl.\' l't will not be aI)I)ropriat{· T () ana ogy S IOU no eta en 00 senous .\': ,~ 
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suggest that the principles embodied in 'The Logic of Scientl'fic D' . b IScovery can e 

wholly or directly incorporated into an animat controller, where the aim is to pro-

vide engineering analogues of animal learning and behavior." (\Yitkowski (2002). 

Section 6). The same can perhaps be said if we were trying to provide engineering 

analogues of the human epistemology of science which seems to be the ambition of 

Simon et al. But my ambition is, rather than to strive for a model of human episte­

mology as it manifests itself in traditional science, I want to develop a scientifically 

based Machine Epistemology directed specifically at simulated systems5 . 

18.6 Future direction II: Popperian Machines 

In the following section I suggest how the Popperian framework could be used as a 

basis for future RNX-RE algorithms that conduct an automatic scientific process 

on simulated systems: Popperian Machines6 . In the suggested Elnpirical l\Iachine, 

a model is induced through a series of queries to the underlying simulated systern 

for the purpose of acquiring a better model. Every silnulated system that is anal­

ysed within an Empirical Machine will thereby have an adaptable query-proxy (the 

induced model) to which a user can ask certain questions. If a particular question 

requires aspects of the model that are not yet supported by data. the Elnpirical 

Machine will, as suggested in Section 18.4, automatically interact with the under­

lying system in order to acquire this data. In effect, the Empirical Machine acts as 

an automated experimenter conducting tests on the underlying system. 

The Empirical Machine should be able to falsify statements, firstly by consulting 

its model directly, and secondly by acquiring data that potentially could falsify the 

statement. Queries to the Empirical Machine (let us adhere to SS~Is in these 

examples) could be in the fonn of statements, such as "There exists an SE to 

which the input symbol a will always cause a transition from all other SEs". The 

5The relation between machine learning and the philosophy of science is also arguably a strong 
one (e.g. Williamson, 2004; Korb, 2004) and this strong connection is what I propose should 
be utilized in practice. Moreover, in recent interesting arguments against the widespread uS{' 
of "data-driven" data mining in the bioinformatics field, Popper has been used as an argument 
against machine learning induction (Allen, 2001a, 2001b; Gillies, 2001) . 

6Not to be confused with Dennett's Popper ian creatures (Dennett. 1996). Tht' Poppenan 
rreRtllres arc based on the idea that the' anticipations of the' ontrOInr of diffrfl'nt Rctions (throllg;h 

. . . 1 t t' f th rid) allow the ('[t'H t urt'S to select a sophisticated enough mternal menta represen a Ion 0 e wo 
among their actions before performing them. 
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Empirical Machine should, to test (i.e. to falsify) the statement, based on thi~ 

specific example query, check all a-transitions and see if they all lead to the same 

SE. Moreover, if any a-transitions are dead (Definition 9.7). it should attempt to 

extend 0, through interaction with the underlying SDTDS, so that data is collected 

regarding these transitions. Clearly, the implementation of an Empirical ~Iachine 

requires a number of complex declarative programming problems to be solved, but 

let's assume that these are solved for the relevant cases. 

If the Empirical Machine can be entrusted to actually collect the data necessary 

to falsify statements, then populations of Empirical Machines, each adjusted to their 

own underlying system, could serve as a basis for falsifying statements that are over 

populations of systems. For example, the statement in the previous example could 

be expressed as: "In all systems of this population, there exists an SE to which 

symbol a will always cause a transition from all other SEs." If such a statement 

is falsifiable for just one of the underlying systems then it is falsifiable. If it is 

subsequently proved false in just one of the underlying systems, then it is false. 

Although the creativity aspect of this framework was previously referred to 

as a "wildcard~', it should be noted that a successful falsification could be very 

informative for generating new statements. For example~ statements about all 

underlying systems, falsified Inerely for one system, X, could be refined as "For all 

systems except system X ... ". Such divisions could lay the ground for dividing the 

underlying systelns into subclasses based on what statements can be given about 

them. Concepts such as "Systems for which statement S is true" could then be 

introd uced into the query language (cf. concept induction Colton et al. (2000)). 

The framework for generating falsifiable statements about the simulated system 

I term a Popperian Machine and is depicted in Figure 18.3. The concept is fairly 

simple; the generator of statements fills a list of statements which the Empirical 

Machines attempt to falsify. The statement list should only contain falsifiable, yt't 

unfalsified statements. How to populate the list and what statements should be 

prioritized is discussed next. 

Popper describes the scientific process following the creation of a no\"pl hvpoth-

eSls as: 

"First, there is the logical comparison of the conclusions among t ht'lIl-
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:' .......... : Statement Evaluations ~ ........... . , .......................... . 

............. . . 
: Statement -' ----' Falsifiable Statements 
: Generator : 

Nonfalsifiable 
Statements 

j :l ...... / ___ ~ Falsified 
~/l\~ S \ tatements 

-----~ 

Falsifying 
Queries 

Statements 

~-....( Falsifications 

EM Population 
? 

Figure 18.3: Outline of a Popperian lVlachine. A statement generator (which is unde­
fined and could very well be a human user) feeds a statement list falsifiable statements 
about a set of underlying systems. The statements are refornlulated as queries (ailll('d ill 

falsifying the statements) to a set of Empirical 1Iachines that interact with their a .. -.;soci­
ated underlying system in order to build models that can answer the queries. Falsified 
statements are then deleted from the list of statements. Over time. the list of statt'IllPllt-, 

should have increasingly higher empirical content. in terms of them being falsifiable. ~·('t 
not falsified (Popper. 1990). 
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selves, by which the internal consistency of the system is tested. Sec­
ondly, there is the investigation of the logical form of the theory, with 
the object of determining whether it has the character of an em~irical 
or scientific theory, or whether it is, for example 1 tautological. Thirdly 
there is the comparison with other theories, chiefly with the aim ~f 
determining whether the theory would constitute a scientific advance 
should it survive our various tests. And finally, there is the testing of 
the theory by way of empirical applications of the conclusions which 
can be derived from it.~~ (Popper (1990), p. 32) 

In accord with the suggested framework in Figure 18.3 I maintain that many 

aspects of what Popper considers a scientific process could be automated. How to 

implement the logic required for the deductive reasoning regarding, for example, 

"internal consistency" and "logical form" is not in the scope of this thesis. But 

such matters are highly central in the field of Inductive Logic Progralnming (~Iug­

gleton & Raedt, 1994), since it involves generating (guessing) statements that are 

of internal consistency and of particular logical forms. The fourth step, "the testing 

of the theory" is, in my suggested framework, the responsibility of the Empirical 

Machine. 

The aspect of falsifiability becomes relevant in the third step, i.e. in the assess­

ment to which degree a statement constitutes a scientific advance. How to exactly 

define and implement the assessment of falsifiability itself is also a grand issue be­

yond the scope of this thesis. I would, however, suggest some basic directions. 

Firstly_ some statements are inherently unfalsifiable by their nature (e.g., tautolo­

gies). Others require enormous resources in order to test them, which thereby 

renders them less falsifiable. Other statements are open-ended since they involve 

infinity. For example, if the statelnent "Transitions over symbol a from SE ql will 

always lead to the same SE
' 

is not falsified after 1000 consecutive as, should 1000 

more be tested? 

There will be degrees of falsifiability as well as degrees of how much falsification 

has been attempted through experiments targeted at a specific statement. The 

concept of "degrees of falsifiability" occupies large portions of Popper (1990). There 

is also a number of possibilities of how to exactly formalize and illlplenwnt the 

assessment of the falsifiability of statements. I will not attenlpt to :-iuggest any 

particular strategy for the general case. For example, Popper proposes that t Iw 

"logical probability of a statement is complementary to it'! degree of fa I.., ifiabili t.ll " 
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(Popper (1990), p. 119). In other words, if it seems very probable that a statelnent 

will be falsified through observations, it should thus be considered falsifiable. How 

exactly this logical probability is assessed is, however, likely to depend on the 

underlying logical language in use. 

Within the context of SSMs and underlying SDTDSs, however ~ I would suggest 

that falsifiability could quite easily be translated into universality and precision 

(Popper (1990), section 36). Universality and precision are described by Popper 

as the two outstanding demands for statements with the highest possible elnpirical 

content. A statement is more universal than another if it applies to more situations. 

A statement is more precise than another if it forbids more outconles in those 

situations. For example, a statement about all days of the week is more universal 

than a statement only about Mondays. And a statement that on the referred days 

100% of all people drink coffee is more precise than one stating t hat only at least 

80% drink coffee, since the latter allows more observations without falsifying it i. 

Universality of SSM-statements could be translated into the number of situa­

tions for which a statement applies, i.e. the number of systems for which a statelnent 

applies, or number of SEs. Precision could be translated into an assessment of how 

well the statement constrains the behaviour of the system into a limited set of pos­

sibilities. Universal statelnents will thereby be more falsifiable since more systems 

and situations would occur in which the statement can be falsified. Precise stat('-

ments would be more falsifiable since fewer of the probable observed situations will 

allow the statement to be considered unfalsified. 

Universality and precision could potentially be competing goals. It is, for exam­

ple, probably easier to give a very precise statement about a single systeln cOlnpared 

to one for a wide range of systems. For example, an SSM extracted from a single 

SDTDS is a very precise (and falsifiable) statement that "This SS1\[ describes how 

this specific SDTDS behaves". The full range of generated statements should thus 

ideally cover a spectrum of universal and precise statements (cf. FigUH' 18.4). 

By promoting universality and precision alone, short and silnple statt'llH'llt~ 

should become more prevalent than complex ones. A statenlent about all S\·~tems 

require~ no lengthy explicit li~t of what ~y~tem~ it applies to, for exaluple. And prp-

7To falsify the statements you need, fOf the first one, only observe that one pefSO~ dot'S n()t 
.' . b . f tIt 20l/t of til(' populatlOll. nfmk coffee, wherea." the oth('r one reql11fe 0 sefvatlOns 0 a ('as, { 
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Figure 18.4: Falsifiability as universality and precision. Statements about S~'St(,lllS (d. 
Figure 18.3) occupy points on the axes (illustrated by the circles) and would idcall~' eO\'('1" 

a spectrum of from precise to universal ones. 

cise statements should describe as few allowed situations as possible. The simplicity 

could also be further, and ilnplicitly, prornoted in the generation of st atelllenb: 

"Sirnple statements, if knowledge is our object. are to be prized IllOre 
highly than less simple ones because they tell us more; because their em­
pirical content is greater; and because they are better testable." (Popper 

(1990), p. L12). 

vVith regard to the sirnplicity of statenlents, I would agaIn argue t hat Popper ',-. 

philosophy is ideal for machine learning. His chapter on silnplicity (Chapter I ill 

Popper (1990)) includes, for exarnple. the section .. Elirn i nat ion of tli e Af stili t!(' 

(Ind the Pragmatic Concepts of Simplicity". Simplicity is a very' central t ht'lllP ill 

epistenlology, yet with few successful logical definitions of the COll('Ppt, according 

to Popper. His approach is. quite naturally, to relate simplicity with falsihability 

in an attelnpt to find a nonanthrop0111orphic definition of the concept, 

The Popperian \ lachine could fit Yen' well into the context of rulp e:-:l ract iOI\ 

since it would not only induce rules fr0111 underlying :.;ystems. but abo st at t'llH'llb 

about the S\'stPIllS that are based on a sound scientific principlt' and \\"('11 tt·stt·d 



Moreover, the extracted rules themselves would reflect and support tl .' iii . lese snent -

cally guided statements. The whole ambition is to maximize the emprr' l' al c contents 

of the statements and thereby also of the underlying rules. Therefore I suggest 

that Popperian 1'1achines are an important future direction for the field of rule 

extraction. 

18.7 Chapter summary 

In this chapter I argue that automated analysis of simulated systenls is both prOlnis­

ing and required. Promising in the sense that the ease of observability and Inanip­

ulability is unmatched in reality (cf. Section 18.1), and required in the sense that 

these system may be large, complex~ counter-intuitive and nU1l1erous since creation 

of simulated systems is easy (cf. Section 18.2). The researcher per system ratio is 

low today and likely to decline. In my opinion, the basic reasons for automating 

anything are necessity and possibility. These criteria are certainly fulfilled when 

it comes to automated analysis of simulated systems. The analysis of simulated 

systems should be automated not because the most significant research questions 

are found in them, but because the process is too expensive for humans to do it. 

The volume and insignificance of the many individual simulations renders thenl too 

unrewarding for human reasoning. 

In Section 18.3 I also challenge the notion of cOlnprehensibility as the primary 

motivation for RE (cf. Section 4.2.4). A model has more virtues than being readable 

by humans. Many simulators themselves are good examples of these. A weather 

simulator is, for example, very complex but acts as a proxy for queries about the 

actual weather (which is even more complex). The weather presenter in turn acts 

as a proxy for the simulator, giving us a presentation that laymen Inay understand. 

Although the weather simulator itself is very complex and incomprehensible to most 

of us, it generates a result we may understand and appreciate; a weather fon'ca;-;t. 

Similarly, rules extracted from an SDTDS may be incomprehensibly cOlllplex. but 

it acts as a model with a clearly defined syntax of which queries can be askp(l. 

In Sections 18.4-18.6 two abstract frameworks for future R~~-RE l'(';-;earch were 

suggested. These frameworks are suggested on the basis that fidelit~· should be COI1-
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sidered more important than comprehensibility (cf. Section 4.2.-1) since models that 

correctly mimic the underlying system should generate better answers to queries 

about the system. Empirical Machines are proposed as actiye learners that taraet 
b 

the ignorance of their best models in order to gather interesting dat a from the 

system through interaction (i.e. experimentation). Based on a philosophical discus­

sion of Popper in relation to machine learning and automated scientific discovery 

(in Section 18.5), it is suggested Popperian Machines provide a scientifically based 

selection that guides the Empirical Machines towards scrutinizing statenlents of 

high empirical content. These statements (i.e. theories) about populations of sim­

ulated systems, that should be falsifiable but not falsified, is the desired output of 

the Popperian Machines. 
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Chapter 19 

Summary and Final Thoughts 

19.1 Contribution highlights 

The contributions of this thesis are distributed in its three parb: the fir~t provides 

an account of the history of the field, the second Inakes a contribution to t he field, 

and the final part views the field frOlll a new. more speculative perspective and 

suggests future directions. 

The goal of Part I is to provide structure to the RN:\"-RE field through a tax­

onomy and review of earlier techniques. In Part II CrySSMEx is suggested as ,\ll 

alternative to the reviewed techniques. It is not only a new technique, but i~ also 

separated from the pattern of the previous techniques by integrating elements that 

were separated earlier. In Part III, not only SOllle more or less speculative ideas 

for future work are suggested. but also concepts that question the very idea of rule 

extraction by viewing it as an automated scientific process. 

To sUllllllarize, the main contributions of this thesis are: 

• Part I: A taxonOlllY for RNN-RE to organize the field of R:\"\,-RE and to 

suggest some possible common goals for the field. 

A taxonomy of RNN-RE techniques. 

A collection of references of (hopefully) all earlier R \'\'- R E papt'!":-. 

-- A historical account of how R NX-RE has developpd itS a fidei. 

A description of RNN-R E separated into four canst it U(,llts: quantizat iOIl. 

observation, construction and minimization. 
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• Part II: The CrySSMEx-algorithm which distinguishes itself from all earlier 

RNN-RE approaches in several ways. 

- The first integration of quantization, observation, construction and min­

imization into one algorithm. 

- The 881\;1 as a new form of an extracted model. 

- The CVQ as a novel quantization algorithm which is both divisive and 

agglomerative. 

- The source code, and its open source availability!, is itself a contribution 

which unfortunately is too technically detailed to be dealt with more 

thoroughly in this thesis2 . 

• Part III: New connections to other fields and future directions are suggested. 

A connection of RNN-RE is made to other fields of machine learning 

(and of control theory etc.). 

More than ten possible improvements (some of which have actually 

been implemented) and approximately 20 challenges for RNN-RE and 

CrySSMEx are suggested. 

A motivation for the automation of scientific analysis of silllulated sys­

tems is given. 

- Empirical and Popperian l\Iachines are suggested. 

While the thesis began with references to Plato and ended with references to 

Popper, the contribution that should be emphasized above all the others, and which 

is very far from an abstract philosophical discussion is CrySSMEx and its ilnplemen­

tation. 

19.2 Final thoughts 

RNNs, and simulated systems in general, are, since they are sinlulated entities, 

very "studyable" once we have the tools to study them (cf. the "golden properties" 

IOn cryssmex. sourceforge. net. . 
2It may be worth mentioning that I spent far more time on the implementation ~f C~ySSKEx 

. . b' d Th'· implementation lIl\'olwd than on the thesls text and the presented expenments com me. IS .? 'J 
. ( h" . d' I tter used to generate Figures 1_._ solvmg some interesting problems e.g., t e voronOi lagram po· tel' 

and 12.3, which can plot within arbitrarily merged Voronoi compartments) that llnfortuna ~ 
never made it into the thesis. 
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of Section 18.1). Furthermore, the algorithms reviewed in thi~ tl .. -. 1 :-, le::--b. toget lef 

with CrySSMEx, may hold the seed of a deeper and more general notion of anah'~i~ 

than previously employed for RNNs. Better analysis tools ma\' in turn 1 1 R'VY _ le p .'_' 

research to progress more rapidly once we obtain a deeper understanding of what 

the networks are actually doing, After all, in many other disciplines of science. the 

quantum leaps in progress often stem frOln more sophisticated anal:;sis toob and 

measuring devices producing qualitatively new data conflicting with existing Inodeb 

(anomalies) that eventually may result in scientific revolutions (Kuhn. 1962). Torla~' 

we have deep, though partially conflicting theories of what the R\,"\," s will be ablp 

to do in practice (i.e. the Turing machine equivalence vs. the difficulty of acquiring 

correct behaviour through learning), but we have no Ineans of evaluating III an 

efficient manner what particular instances of RNNs are actually doing. 

With critical eyes, rule extraction from recurrent neural networks nlay seenl an 

infinitesimal subfield within another infinitesilnal subfield and thereby it l1<\s \'er~' 

limited potential to deliver interesting scientific results. But if there were a future 

microscope for zooming in on RNN s, I would Inaintain that t here are good reaSOlls 

to believe rule extraction mechanisms are the operational parts, or "lenses". of th,d 

microscope, And as any real-world microscope, this RNK-microscope will, if ~clleral 

enough, be able to zoom in on other types of simulated d:vnmnic s\'steIllS and thus 

contribute to the scientific cOlnmunity in a considerably broader sense. \ot ill thp 

sense that the biggest research questions are found in these s\'stems, the reason for 

autonlating the simulated systeln analysis is precisely the opposite; it is silllply' too 

expensive to let humans do it when the systenls are individually too uninterestiIl~ 

and when the number of them per researcher grows too large. The Elnpirical and 

Popperian ~achines are suggested with this in mind. :\ly hope is that tlw idea~ 

suggested in this final part of the thesis will help populating the artificial "Plato 

caves" (cf. Chapter 1) with prisoners that have epistemic hunger3 and the capabilit\, 

to explain their Inost infornlative conclusions about their uni\'cl's('."; to the creators 

of these universes. 

31.('. curiosity (Dennett, 1996, p. 92). 
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Appendix A 

Substochastic vectors 

Some important types of, and operations on~ substochastic vectors are defined below 

(some of these are also found in Paz (1971)): 

Definition A.I A substochastic vector fJ is a vector where all elemenb are 

nonnegative and the sum of the elements is < 1. 0 

A special case of the substochastic distribution is where all probabilities ill"(\ Zt'l"(): 

Definition A.2 An exhausted substochastic vector iJ is the special Cil:-;C of a 

substochastic vector where all elelnents are O. 0 

And, as another special case, we find vectors ,vith l110re conventiollill probabilist ic 

properties: 

Definition A.3 A stochastic vector v is the special case of a substochastic ,'ector 

where the sum of the elernents is exactly 1. 0 

And a special case of stochastic vectors is where only one element is probablp: 

Definition A.4 A degenerate vector is a stochastic vector one element with 

probability 1 and the rest O. 0 

Definition A.5 The entropy of an n-dilnensional substochastic vect or /' 1:-. IH'rt' 

denoted as H (11) and is calculated by 

n 

H(17) = - L ti log Vi 
i=1 

o 

19:2 



By definition a . log 0 = o. Entropy is not really well defined for substochastic 

vectors, but in the algorithm of this thesis, entropy will only be calculated over 

stochastic or exhausted vectors. Therefore the entropy as described here will be 

according to proper theory (Cover & Thomas, 1990) unless the distribution is ex­

hausted in which case function, here called entropy, will return zero. 

Definition A.6 The function normalize is used to transform a substochastic vec-

tor into a stochastic vector, if possible, according to 

o 

normalize ( iJ) = { L.~~l iT; 

v·a 
if 2::1 Vi> 0 

otherwise 

Definition A.7 The support set of a substochastic vector u = (i"l' f 21 ... , l~n) is 

the set {i : Vi > a} and is denoted sup( v). 0 

1 9~1 
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Appendix B 

List of abbreviations 

CrySSMEx 
cVQ 
~DI-equivalence 

RE 
R~N 

R~~-RE 

SDTDS 
SE 
SSYI 
U~DI-equivalent 

VQ 
A 
n 

Crystallizing SS~I Extractor 
Crystalline Vector Quantizer 
Not Decisively-Inequivalent 
Rule Extraction 
Recurrent Neural X etwork 
RNN specific RE 
Situated Discrete Time Dynamic S~'stem 
State Element (of an SS~I) 
Substochastic Sequential ~lachille 
Universally NDI-equivalent 
Vector Quantizer 
Quantizer function 
Transition event set (frOIll an SDTDS) 

Table B.l: List of important abbreviations. 
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Appendix C 

Jacobsson & Ziemke (2003a) 

Improving Procedures for Evaluation of Connectionist 
Context-Free Language Predictors 1 

Henrik Jacobsson, Tom Ziemke 

Abstract 
This paper shows how seemingly minor differences in training and evaluation pro­
cedures used in recent studies of recurrent neural networks as context free language 
predictors can lead to significant differences in apparent network performance. We 
therefore suggest standard evaluation procedures whose use would facilitate better 
reproducability and comparability. 

e.1 Introduction 

A number of recent papers have investigated the use of Recurrent ~eural ~etworks 
(RNNs) for predicting strings belonging to the class of the Context Free Language 
(CFL) anbn and the Context Sensitive Language (CSL) anbncn (\Viles & Elnlan, 
1995: Tonkes et al., 1998; Rodriguez et aI., 1999; Tonkes & Wiles, 1999; Boden et al., 
1999,2000; Chalup & Blair, 2000; Boden & Wiles, 2000; Gers & Schmidhuber, 2001; 
Boden & Blair, in press; Schluidhuber et al., 2002). Each of these papers makes 
valuable contributions, but when we compared them, we noticed two problems: 
Firstly, sometilnes a number of details of the evaluation method (for evaluating 
the generalization ability of the networks) were undocumented. Secondly. where 
details of evaluation were provided, minor differences between the methods used 
in different papers were found. This led us to carry out a series of expf'riments 
with the aim to systematically investigate whether these differences Inay affett the 
Estimated Generalization Ability (EGA) for a given population of R~~~. Such 
differences may be an indicator that the reproducability and cOluparability of tht' 

generalization ability presented in these papers nlight be questioned. 
In our experiments we have varied three aspects of the testing pro('t'dure in 

order to see how the EGA of the RNNs is affected. These aspects are: Fir~t l~·. t lit' 

IThis is a verbatim copy of Jacobsson and Ziemke (2003a). Only the formattill.J?; aW.l rontnct 
information differs from the original (the bibliography is also not inclnd('{l h(,T(, ~1I1('(' It nm he' 

found elsewhere in the thesis). 
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string order, i.e. the order in which strings of different lengths from th 
nbn d . h . . e grammar 

a . are conc~tenate In~o t e str~ng whIch the RXN should predict. Secondly. the 
max'tmum strtng length, 1.e. the hIghest value of n of the anbn str' . th-. . mgs In e test 
set. The thIrd aspect, error tolerance IS the degree to which the network is allowed 
to make mistakes. The reason that the two first aspects are important is that an 
RNN is a dynamical system with a potential sensitivity to its initial state which 
can be based on previous inputs. Variations of these three aspects exist in the 
above mentioned papers, but are in some cases just vaguely described, if at all. In 
addition to these three, other important aspects, such as the number of networks. 
number of repeated tests per network and basic definitions such as "success" are 
varied and in some cases quite vaguely described. 

The structure of this paper is as follows: First the investigated papers are 
briefly summarized to give an overview of their experimental strategies. Then our 
experiments designed to evaluate the sensitivity of the EGA with respect to testing 
procedure are presented. The results of the survey and experiments are then fused 
into some concluding remarks and recommendations. 

C.2 Background 

The papers that present results of CFL and CSL predictions with R~N s and their 
testing approaches are summarized in Table C.l. The architectures focused on 
in these papers were Simple Recurrent Networks (SRNs) (Wiles & Elman, 1995: 
Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; Boden et al., 
1999, 2000; Chalup & Blair, 2000), Sequential Cascaded Networks (SCNs) (Boden 
et al., 2000; Boden & Wiles, 2000; Boden & Blair, in press) and Long Short-Term 
Memory (LST~) (Gers & Schmidhuber, 2001; Schmidhuber et al., 2002). The 
training algorithms used in these papers are either based on gradient descent (\Viles 
& Elman, 1995; Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; 
Boden et al., 1999,2000; Boden & Wiles, 2000; Gers & Schlnidhuber. 2001: Boden 
& Blair, in press; Schmidhuber et al., 2002) and/or Evolutionary Hillclimbing (EH) 
(Tonkes et aL 1998; Boden et al., 2000; Chalup & Blair, 2000). There are, of course, 
many other important papers in the field of CFL/CSL prediction and related fields. 
but those not presenting quantitative studies of the generalization ability have been 
omitted as they have no direct bearing on our results. Other papers in the field 
of CFL- and CSL-prediction have also been omitted to make comparisons simpler, 
i.e. only anbn and anbncn papers are included. 

The training and test set sizes used in the cited papers are presented in Ta­
ble C.1, as well as the ordering of strings in the test set. \Vhere t here has been 
any chance of misunderstanding the structure of the testing set/procedure. we have 
chosen not to make any assuInptions. For example. when the test set is explained 
as "from depth 1 to 30" (Wiles & Elman, 1995) or ';strings up to n = 1~" (Boden 
et al., 1999) it may be implicit that the strings are ordered in all ascendlng ordpr. 
but as no explicit definition of string order is found, these papers arp marked a~ 
being ambiguous about the test set order. . . 

Among these papers, we found three different test set ordprmgs: ~Yl.ndom, ~.,-
cending and descending order. Six out of eleven papers did not t'xph('ltl~' cl(,~IH' 
the order of their test set. The maximulll string length of t 1w test st't also vaI"H,d 

among the papers. Furthermore, the dptails of t he error toleraun' w('rt> USl1Hllv 
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not discussed, i.e. it was actually quite unclear in some of the pa h th pers weer cor-
rect predictio~ once per string occurrence was enough to consider the prediction 
successful or If the network needed to consistently predict all strings correctly. It 
seems, however, that the former is most commonly used. . 

It may also be worth noting that two papers (Gers &. Schmidhuber. 2001: 
Schmidhuber et al., 2002) used slightly different domains, anbnT and anbncnT 
which strictly speaking are not the same languages as anbn or anbncn. The ter~ 
minal symbol T gives the network a mechanism for resetting its state in a lllore 
deterministic manner than otherwise. The comparison across these domains lllay 
therefore not be reliable. Considering only comparisons within the domains. ho;­
ever, the terminal symbol may in fact improve comparability due to the potential 
increase of determinism. 

C.3 Experiments 

The experiments presented in this paper are aimed towards evaluating whether 
the string order, maximum string length and error tolerance when testing R~N 
predictors affect the EGA significantly for given trained populations of networks. 
We therefore consider the training of the networks a secondary matter, i.e. no effort 
has been spent on finding optimal parameters for the ER. In effect, the results Illay 
not be comparable to other papers (a comparison that should not be done anyway). 
Instead the training should just be seen as a necessary step to generate popUlations 
of networks in which some effects of the testing parameters can be demonstrated. 

C.3.1 The Testing Procedure 

The test set is determined by the string order and maximum string length. Three 
orderings of string are used; random, ascending, and descending. vVe let the max­
imum string length of the test set vary between 10 and 100. In each test, exactly 
1000 strings of each length are included. The strings are concatenated into the 
sequence which the network is trained to predict. 

The performance of the network is recorded for the 1000 strings of each length it 
receives. If we consider just one network we will have an estilnate of the perfonnance 
of the network on each individual string length. This performance is typically higher 
for short strings and lower for long strings. The performance is, however, not 
necessarily decreasing monotonically and a string with a high n may be predicted 
completely accurately, while the strings of length n - 1 could at the same time be 
completely inaccurately predicted. We have chosen to record the lllaximuin string 
length that the network processes correctly (string length is son~eth~ng wl~i~h all 
previous papers have mentioned when talking about the generahzatIOn ablht~· ~f 
their networks), but this measurement needs to take into account t~~ 1l01ll~IOnot0Il1C 
performance degradations for longer strings. The following defimtIOll WIll lead to 

such a measurement. . 
The correctness, c(n), of a network in terms of predicting a given length IS 

defined as . . f I gtl no. of correctly predIcted stnngs 0 en 1 1l (C.1 ) 
c( n) = no. of strings of length 1l 

where the total number of strings of length n in this case was lOOO for all 11 up 
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(l) ro ....... [f) [f) 
H ...... ~ 
~ ~ ....... ~ ~ ro [f) [f) 

(l) 0 
~ ~ ~ ~ Q 

Wiles & Elman (1995) a1tb n 1 < n < 12 * 1 <n< 30 
Tonkes ct al. (1998) a1tb 1t 1 < n < 10 * 1 <n < 12 

Rodriguez et al. (1999) a Hb1t 1 <n < 11 asc until failure 
Tonkes & Wiles (1999) allbl! 1 < n < 10 * 1 < n < 12 
Boden et al. (1999) anbn 1 <n < 10 * 1 <n < 12 
Boden ct al. (2000) an b 1t 1 < n < 10 rand * 
Chalup & Blair (2000) a ltb ll 1 < n < 20 rand 1 < n < 20** 

,; a IL b llc ll 1 < n < 20 rand 1 < n < 20** -~ 

Boden & ~Tiles (2000) a ll b llc ll 1 < n < 10 dcsc 1 < n < "large 
" n 

Gers & Sclllllidlmlwr (2001) allbnT 1 < n < 10 to * 1 < n < 1000 
1 < n < 50 

.. altbHcllT 1 < n < 10 to * 1 < n < 500 -- -

- -

1 < n < 50 - -

B()d{'ll &. Blair (2002) allb'l 1 < n < 10 * * 
Sdllllidhubpr d a1. (:200:2) Refers to the data ill Gel's & SChIllidhuber (2001) 
*=llot ('xplicitly d('hlll'(l. 

* * =i 11Cl'( 'IlH 'l1t all" t (':-It ('el d llriug t l' (lillillg. 

'1'<l1>k C.l: :\ Sllllllllary uf CFL <lud CSL prediction expl'riIllC'Ilts USiIlg variolls ll(,llral 11<'1 work tlrcilit ('d lin's. 



n 1 2 3 4 5 6 7 8 9 10 11 12 
c(n) 1.00 1.00 1.00 1.00 1.00 

13 14 
1.00 0.91 1.00 1.00 0.77 0.10 0.00 1.00 0.00 

er(n) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 0.91 0.70 0.07 0.00 0.00 0.00 

Tabl~ C.2: A realistic exam~l~ of an evaluation of an RNN by using c{n) and c,.(n) of 
equation C.l and C.2. If reqmnng a strong network, this network~s EGA is up to stri 
length 6 and if only requiring a weak network, the EGA is 11. ng 

to the maximal string length. A correctly predicted string means that at least the 
predictable p~rt (Le. not t~e ~rst b) of the string is correctly predicted. As c( n) is 
not monotonIcally decreasIng It can not be used directly to unambiguously define 
up to which string length the network is successful. In Table C.2 an eXal~ple of a 
string evaluation is shown. From this example it is clear that there is no obvious 
way to give statements of which maximum string length the network can handle. 
In the example, the network can handle all strings up to a6b 6 but fails on SOlne of 
a7b 7 ,a1Ob 1O and allbll . It can also handle all of a 13b 13 , but none of a 12b 12 or 
a14b 14

. Up to what string length should we then say that the network is perfonning 
correctly? 

To solve this we introduce a recursive definition of correctness, reflecting that 
the performance on one string length depends also on the performance on all shorter 
string lengths. The recursive correctness, Cr ( n ), is defined as: 

er(l) = c(l) 
er(n) = er(n - 1) . c(n) for n > 1 

(C.2) 

In the example of Table C.2, er(n) is monotonically decreasing and only accepts 
string lengths for which previous string lengths also have been correctly predicted. 
The correctly predicted a 13b 13 are now ignored since no correct predictions of 
a 12b 12 were made. 

The error tolerance is the quality demand on the network by the experimenter. 
The highest error tolerance corresponds to the experimenter being satisfied with the 
RNN correctly predicting strings only at least once and the lowest error tolerance 
is when the RNN needs to correctly predict all strings. Chalup and Blair (Chalup 
& Blair, 2000) addressed the issue of error tolerance explicitly and defined ::weak 
solutions" and "strong solutions" to correspond to networks satisfying the highest 
and lowest error tolerance requirements respectively. We adopt these terms in this 
paper. The EGA (using er (n)) of the network in the example in Table C. 2 is then 
6 if we consider only strong solutions, and 11 if we only require weak solutions. 

C.3.2 Architecture & Training Algorithm 
The network architecture used in our experiments is an SRN and the optimisation 
algorithm is an EH, see (Boden et al., 2000) for details. The fitness is proportional to 
the number of correctly predicted strings in a concatenated sequence of strings from 
anbn with 1 < n < 10 where each string length occurred exacth" three timt's (cf. 
the testing procedure in the previous section). Three separate fitness functions are 
used' F. d F. and F.de for random ascending and descending string It-ngth order 

, ran, asc se' ... f 
respectively, i.e. the only difference between the fitness functlOns .IS the ordenng () 
the strings. It should be noted that the aim of the experilnent IS not to evaluate 
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the differences between these populations but to evaluate how the EG.-\ varies 
for these fixed populations under different testing strategies. The use of three 
different ~opulations may reveal different effects the testing procedure may have 
on the estImated results. In fact any sufficiently large population would do as the 
goal basically is to show that there are populations for which testing procedure 
differences significantly affect the estimated performance. 

The evolutionary algorithm was run for 10,000 generations with a mutation rate 
of a = 1.0 and a population size of 100 of which 20 were selected as elite. The elite 
group was saved to the next generation and was the group from which new networks 
were generated. 120 runs were carried out for each fitness function with different 
random seeds and the best network of each successful end-population was saved for 
further analysis. A population was deemed successful if at least one of its networks 
correctly predicted (the predictable part of) all strings in the training set. 

C.4 Results 

C.4.1 Training Results 

Of the 120 experiments with each of the three fitness functions F rand , Fase and 
F desc the number of successful (in terms of correctly predicting the entire training 
set) runs were 114, 75 and 76 respectively. All the statistics will be based on the 
best network of each successful population. It is worth noting that the success 
rate is much higher for Frand than for Fasc and Fdesc. This is probably due to 
higher sensitivity to local optima for the deterministic fitness functions. Subsequent 
experiments (not documented here) indicated that for higher values of the mutation 
parameter, a, this problem vanishes. 

C.4.2 Estimated Generalization Abilities 

The resulting EGA of networks generated with the three fitness functions tested un­
der different conditions are shown in Table C.3. The maximUll1 correctly predicted 
string length of each successful network was calculated according to equations C.1 
and C.2 as in the example in Table C.2. 

The Effect of Error Tolerance Level 

The effect of demanding weak or strong networks is clearest when the networks 
are tested on strings in a random order. The EGA is half or lower for the strong 
solutions given a high enough maximum string length of the test set. The error 
tolerance effect is still there with a test set in ascending order, but weaker. 

Interestingly, the error tolerance has virtually no effect at all whe~. testing on 
strings in a descending order. We speculate that this is due to the R~ ~ . graduall~' 
receiving simpler and simpler strings, resulting in the exact salll~ behaVIOur (,Vf'r~' 
time, i.e. the network either correctly predicts all strings of a speCIfic lengt h or none 

at all. 1 . 
One should keep in mind that, as the test set has 1000 replicas of pac 1 stflng 

. d' 1000 t flOOD strings whereas W(leU< length, strong solutions correctly pre lct ou 0 ' 
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solutions need only predict lout of 1000 correctly. In our opinion, this makes 
strong solutions much more interesting. 

Effects of Maximum String Length 

The effect of the maximum string length (N in Table C.3) differs depending on 
test set order, error tolerance and fitness function. \Vhen only considering strong 
solutions and random test set order, a higher N leads to a significantly lower EG.\ 
for all networks. The opposite seems to be true for most weak solutions for all test 
set orderings and networks. For ascending test set order, the degrading perfonnance 
for higher values of N is not as clear as when testing on randomly ordered strings. 
For tests on strings in descending order, N has no degrading effect. 

The Effects of String Order 

String order is perhaps one of the more interesting aspects of the testing procedures, 
as there were three distinct orderings found in previous work while most papers 
did not describe this aspect of testing explicitly. In our experiments, string order 
played two roles, in the training and testing of networks. The networks trained 011 
the different training sets can be clearly ranked in terms of performance. Networks 
trained on F rand are clearly better than Fasc which is clearly better than Fdesc. 

A ranking of the test sets is not as straightforward. Considering only strong 
solutions it is, however, clear that a randomly ordered test set is tougher than the 
ascending order which is in turn tougher than the descending order. For weak solu­
tions the randomly ordered test set gives the highest results. This is not surprising 
as weak solutions need only lout of 1000 strings correctly predicted of every string 
length and a randomly ordered set gives the network a higher variety of initial 
states of which some may lead to a correct prediction. 

It is interesting to see that, as a validation of the network training, all networks 
handle their training sets perfectly and that the networks trained with Frand also 
handle the other training sets perfectly. Networks trained on randomly ordered 
strings thus seem more robust. 

Although the results of the randomly ordered test set seem to be ll10St sensitive 
to the other parameters (i.e. string length and error tolerance), in our opinion, 
this test provides the most interesting results, as the network will be tested more 
rigorously. 

C.5 Discussion and Conclusions 

It is clear from table C.3 that changes in the testing procedure render significant l~' 
different results. These effects are also not consistent for the three populations and 
can therefore at this stage not be predicted. These results are not surprising. as it 
is well known that initial conditions may affect the behavior of dynamical systeills. 
and hence affect the performance of RNN s, a subset of dynamical systPlllS. Tllt' 
cited papers, iInplicitly or explicitly, touch the dynamical nature of R ~~ s. but ill the 
construction or description of the experimental setup this ilnportant isstH' ofte~l do~'s 
not receive much attention. All papers describe the architectures and algonth~l1lc 
details of the learning techniques quite thoroughly and present insightful. (iPt aIled 
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analyses of individual networks. But without a proper description of the testing 
procedures used to generate quantitative results. reproducibility and comparability 
are lost. Three papers also make cross paper comparisons (Gers & Schmidhuber, 
2001; Boden & Wiles, 2002; Schmidhuber et al., 2002) in the domain of these papers. 
comparisons that, due to the problems pointed out here, may be questioned. For 
the same reasons, it would also not make sense to compare our results to those of 
any other paper using different testing procedures. 

Some practical recommendations for future research in this area: Train and 
test sets should be ordered randomly to give both robust networks and a thorough 
testing of these networks. Only strong networks (or perhaps a slightly relaxed 
version of "strong", e.g. 90-99% correct) should be considered. A network solving 
a task only (at least) once is far less interesting than those solving it consistently. 
Since the results also indicate that the maximum string length in the test set has 
a significant effect on the results the expected performance may affect the measured 
performance directly, since the maximum string length in the test set will probably 
be chosen based on the expected performance. Hence, the maximum string length in 
the test set should be varied, perhaps starting with a low value and then increasing 
stepwise. 

What can be learned from this is that to guarantee reproducability, the descrip­
tion of the generation of testable objects has to be complemented with a description 
of the testing procedure applied to these objects. In the cited papers the architec­
tures, training procedures and analysis of individual RNNs came out mostly crystal 
clear to the reader, while some crucial details of the testing luethods did less so. 
So our final, and most important recommendation, is to recognize that the analysis 
tools are as important a part of the data generation as the networks themselves. 
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Networks trained on F rand (114 RNNs) Networks trained on Fasc (75 RNNs) Networks trained on Fdesc (76 RNNs) 
strong weak strong weak strong weak 

avg max avg max avg max avg max avg max avg max 
N Test set in random order 
10 10.00 (0.00) 10 10.00 (0.00) 10 6.79 (0.45) 10 10.00 (0.00) 10 4.07 (0.48) 10 10.00 (0.00) 10 
15 8.95 (0.45) 15 12.09 (0.16) 15 5.11 (0.62) 15 12.13 (0.26) 15 3.46 (0.56) 15 12.36 (0.21) 15 
20 7.77 (0.53) 20 12.48 (0.22) 20 3.33 (0.58) 17 13.12 (0.31) 20 1.58 (0.37) 14 12.96 (0.36) 20 
25 6.51 (0.50) 20 12.55 (0.23) 23 2.72 (0.54) 17 13.53 (0.36) 25 1.37 (0.35) 14 13.55 (0.38) 25 
50 5.81 (0.48) 20 12.63 (0.24) 23 2.00 (0.45) 17 14.19 (0.61) 49 1.32 (0.35) 14 14.53 (0.59) 36 

100 5.81 (0.48) 20 12.62 (0.24) 23 2.00 (0.45) 17 14.08 (0.60) 49 1.33 (0.35) 14 14.04 (0.49) 30 
Test set in ascending order 

10 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10 6.49 (0.49) 10 8.80 (0.31) 10 
15 10.84 (0.34) 15 11.71 (0.16) 15 9.24 (0.61) 15 11.43 (0.28) 15 6.49 (0.64) 15 8.78 (0.52) 15 
20 11.10 (0.37) 20 11.97 (0.22) 20 8.88 (0.66) 20 11.65 (0.33) 20 5.16 (0.63) 20 8.75 (0.56) 20 
25 10.26 (0.44) 21 11.98 (0.22) 21 7.32 (0.75) 25 11.71 (0.36) 25 5.26 (0.67) 21 8.59 (0.58) 21 
50 10.80 (0.38) 20 11.98 (0.22) 21 8.07 (0.67) 19 12.00 (0.54) 45 5.00 (0.64) 21 8.51 (0.59) 21 

100 10.80 (0.38) 20 11.98 (0.22) 21 8.07 (0.67) 19 12.00 (0.54) -15 5.00 (0.64) 21 8.51 (0.59) 21 
Test set in descending order 

10 10.00 (0.00) 10 10.00 (0.00) 10 9.33 (0.22) 10 9.36 (0.22) 10 10.00 (0.00) 10 10.00 (0.00) 10 
15 11.64 (0.16) 15 11.64 (0.16) 15 10.97 (0.36) 15 10.97 (0.36) 15 10.50 (0.24) 15 10.50 (0.24) 15 
20 11.89 (0.22) 20 11.89 (0.22) 20 11.08 (0.45) 20 11.08 (0.45) 20 10.51 (0.32) 20 10.51 (0.32) 20 
25 11.90 (0.22) 21 11.90 (0.22) 21 11.16 (0.46) 25 11.16 (0.46) 25 10.63 (0.33) 23 10.63 (0.33) 23 
50 11.90 (0.22) 21 11.90 (0.22) 21 11.43 (0.62) 45 11.43 (0.62) 45 10.61 (0.32) 21 10.61 (0.32) 21 

100 11.90 (0.22) 21 11.90 (0.22) 21 11.43 (0.62) 45 11.43 (0.62) 45 10.61 (0.32) 21 10.61 (0.32) 21 
--- -- ----------

Table C.3: The average, standard deviation (in parentheses), and maximum length the networks was deemed to process correctly. The perfonna.nc(' 
is evaluated on networks generated with the three different fitness functions, F rand , Fasc and Fdesc. The results are separated into the three diH'erent 
test sets and results for weak and strong solutions are presented separately. The results for different maximum string lengt hs N are also shown 

separately. 



Appendix D 

Jacobsson & Ziemke (2003b) 

Reducing Complexity of Rule Extraction from Prediction 
RNNs through Domain Interaction1 

Henrik J acobsson, Tom Ziernke 

Abstract 
This paper presents a quantitative investigation of t he differences between rule 
extraction through breadth first search and through saIllpling the states of the 
RNN in interaction with its domain. \Ve show that for an R ~~ trained to predict 
sYlnbol sequences in formal grammar dOlllains, the breadth first search is especiall~' 
inefficient for languages sharing properties with realistic real world clOlnains. \\'(' 
also identify some important research issues, needed to be resolved to ensure furt her 
development in the field of rule extraction from R:\\'s. 

D.I Introduction 

An R~N can be painstakingly difficult to analyze. Very often R:\K Clnalysis he­
comes a matter of creating s1nall enough networks to allow a direct visualization 
of the internal activations. There are almost as many approaches to R:\:,\ analysis 
as there are papers about RNN and the 1nethods are often ad hoc and adapted 
to specific dOlnains and network architectures. Rule extraction (RE) frOlIl R~~s 
(Giles, Miller, Chen, Chen & Sun, 1992; Zeng et al., 1993; Tino k Sajcla, 1995; Blair 
& Pollack. 1997; Tino & Koteles, 1999) offers a yer~' prOlnising tool for analyzing 
RNNs as it generates a functional model (usually a finite state autonl<lton, FS:\) of 
t he of the R~~. providing an abstract symbolic 1nodel of the potentially cOlnplt.'x 
analog network dynamics. In comparison to other analysis tools, such as cluster 
analysis, vector flow fields, analysis of fixed points etc., RE gives insight not only 
to the "passive" clusters resulting in the state space, but also to the "active" roh' 
of t heSt' clusters in the RNl\'" interaction with the dOlnain. RE i~ ,ds() not inherent h' 
liInited by the dinlensionality of the st ate space as are visualization Illet hods. How-. . 
ever, RE suffers froln an apparent increasing space and tilne complexity for larger 

IThis is a verbatim ('op~' of Jacobsson and Ziemke (2003b). OnI,\' the formatting and contact 
information differs from the original (the bibliography is also not illdll<i('d here :--illC'(' it can })(' 

found ('Ist'where in the thesis). 
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and more complex networks and therefore various heuristics need to be developed 
to allow RE to tackle more 'difficult' Rr\Ns. 

The effect of one such heuristic will be investigated quantitatively in this paper. 
The complexity of the behavior of an RNN is a product of its internal functional 
mappings generating sequences of states and output and of the complexity of the 
domain from which the network is fed input patterns. It is well known that even 
relatively simple systems can exhibit surprisingly complex behavior in interaction 
with a complex environment but the opposite is true also: the complexity of the 
behavior of a potentially complex system can be restricted by a simple environlnent. 
We will in this paper show an example of how this can be exploited as a heuristics 
for RE from R~~ s by using the domain as a means for generating the states of the 
network that are the basis for the extracted rule set as opposed to performing a 
breadth first search based on the possible input patterns. Both nlethods haye been 
used previously in RE algorithms, but to our knowledge no comparative study has 
been presented. 

We will first introduce our definition of RNNs, rule extraction and some theo­
retical prerequisits. Then the experiments and results are presented. In the last 
section we draw some conclusions and discuss possible future directions. 

D.2 Background 

In this paper we will, for simplicity, stick to a very simple definition of recurrent 
neural networks. The activations of the input, state and output nodes are for 
example restricted to values in the interval [0, 1] and the output is functionally 
dependent on the state alone (excluding for example some forms of second ordered 
networks). 

Definition D.I A Recurrent Neural Network is a 6-tuple R = (1,0, S, 6", so) 
where 
I C [0, 1 ]nJ is the input space, 
S C [0, 1 ]ns is the state space, 
o C [0, 1 ]no is the output space, 
8 : S x I ---+ S is the state transition function and 
'Y : S ---+ 0 is the state interpretation function 
So E S is the initial state vector 0 

Where nJ, ns and no are the dimensionality of each respective space. Note that 
the weights of the connections and activation functions of the individual nodes 
are subsumed by 6 and 'Y in this definition. Those details are silnply ignored by 
existing RE algorithnls and the neurons of the network are treated as ensembles 
rather than as individuals. The term compositional was suggested by (Tickle et 
al., 1998) to denote this level of granularity of the rule extraction algorithm's view 
upon the underlying network. The other modes of granularity are decOlnpositional 
(white box), pedagogical (black box) and eclectic (containing elements of both 
decompositional and pedagogical). 

States in the state space S will be visited when the network is fed input yectors 
from the input space. However, the full set of possible input patterns is seldoluly 
needed to take into account for training or analysis of the R~:\. e.g. ~f different 
input features are strongly correlated. Instead we can define the set 1 C I a.s a 
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finite set of patterns that the network actually will receive in situ, i.e. when receiving 
input from the domain. We have here chosen to define i as finite since in previous 
approaches to RE from RNNs. formal language tasks have almost exclusivelv been 
considered. For this reason we introduce a set of symbols, E, isomorphic t; i, i.e. 
for every symbol in E, there is exactly one corresponding lnember in 1. In many 
papers where a formal language recognition/prediction task is studied, the symbols 
of E are encoded in I through 'one hot' encoding, i.e. every symbol of E 'activates' 
only one corresponding element of the input vector. 

When the network is fed patterns from i a number of states will be visited. 
This set can formally be defined as the set of i-accessible states from the initial 
state So, let us call it ~ c s. ~ is composed of those states in S that will be 
visited through the iterative mappings induced by all possible input patterns in i 
in all possible orders as defined in equations D.1 and D.2. In other words. ~ is 
the set of states that would be visited if all possible sequences over E (denoted E*) 
were fed to the network (with the network reset to So before each new string). 

Yo = {so}, Yn+l = Yn U U 6(i, Yn) for n > 0 
iEi 

~ = lim Yn 
n-+oo 

(D.1) 

(D.2) 

A similar definition (for binary languages only) of accessible states is found in (Blair 
& Pollack, 1997). The production of these states is equivalent to that of an iterated 
function system (IFS) (Kolen, 1994b). 

In rule extraction algorithms the state space needs to be quantized to a finite 
set of classes. This quantization function is here denoted Q : S ---+ {O, 1, 2, ... , N} 
in its general form. In previous RE approaches Q is typically a simple orthogonal 
lattice dividing the state space into hypercubes (e.g. (Giles, lVliller, Chen, Chen 
& Sun, 1992)), dividing the activation range of each individual state dimension 
into q intervals of equal size. This results in qnS hypercubes that can be uniquely 
enumerated. In this paper we refer to these hypercubes as bins and the degree of 
quantization in each dimension of the state space will be referred to as q. Other 
clustering methods used for RE from RNNs are for example k-means clustering 
(e.g. (Zeng et aI., 1993)) or a self organizing map SOM (e.g. (Tino & Sajda, 1995)). 

D.2.1 Rule extraction through breadth first search 

One of the most COlnmon algorithm for rule extraction from RNNs is that of Giles 
et al. (Giles, Miller, Chen, Chen & Sun, 1992). The algorithm conducts a breadth 
first search in the state space to extract a finite state machine from the RN~. 
The RN~s were prior to RE trained to classify strings as grammatical or non­
grammatical. In the general case, any string in E* should then be possible for the 
networ k to process. 

The algorithm starts with an initial state So and generates the outgoing transi-
tions from this state by computing all new states for all input symbols, i.e. 6(so, i) 
for all i E i. This is then repeated for all first states in each visited bin until all 
these states have been tested in this way and no new bin is visited. The nurnber of 
the bin and the corresponding output of the first encountered state vector of each 
bin is then transformed to the extracted FSA. This FSA is then nlinirnized using 
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a standard minimization algorithm (Hopcroft & Ullman, 1979). The RE algorithm 
starts with a small q and is repeated with increased values of q until the machine 
is consistent with the training data. 

One way to view this algorithm is to see that the search generates a tree of 
symbols that generates a set of states in the network. From the root node (equiv­
alent to the initial state of the network) all symbols expand to subtrees that are 
expanded likewise until all leaf-nodes lead to loops in S. From the root node the 
path to each leaf node is the equivalent to a string of symbols. If all these substrings 
are fed to the network with a network reset between each string, the exact sanIe 
states as visited during breadth first RE will be visited. This set of substrings will 
be called X B , where X B C E* and the states visited during the extraction of rules 
will be called A;B, i.e. the set accessible from the initial state So through breadth 
first search RE, A;B C A~. 

D.2.2 Rule extraction in a domain context 

As mentioned above, in many tasks the full set of strings in E* is not relevant for 
the training of the network. Much research on RNN is focused on prediction tasks 
which in many ways are much less restrictive than classification tasks since the role 
of an external "teacher" is reduced to a minimum. For prediction tasks the network 
is not required to correctly predict all possible sequences of symbols, but only the 
ones that belongs to the domain. The network does typically not even need to 
correctly predict all symbols of the sequences in the domain, as some subparts of 
the sequence may be inherently unpredictable. The temporal XOR problenl is one 
such example where only every third symbol is at all predictable (Elman, 1990). 
This means that the rules extracted from the network need only incorporate the 
sequences and subsequences that the network will encounter in the domain. If the 
network is for example trained to predict events that results from the behavior of a 
autonomous robot it would not be reasonable to extract rules for actions that would 
never be carried out in certain situations, e.g. the event 'drive-forward' should not 
occur if the robot is in the state 'wall-ahead' and is successfully avoiding obstacles. 

We will use the notation X E E* to refer to a sequence generated or sampled 
from the domain. The sequence is written as XOXIX2 ... Xn. This domain specific 
input sequence will generate a sequence of states in ~he network which we will refer 
to as the X -accessible set from So, or ~. ~ C A~ is more formally defined as 

(D.3) 

A 

where n > 0 and in corresponds to Xn (remember that I and E are isomorphic and 
X E E*). And 

~ = {SO,Sl,S2, ... ,Sn} 

where n is the length of sequence X. 

(D.4) 

From the information about states gathered through the processing of the do­
main, a state machine of some kind. emulating the network, can be generated. The 
typically indeterministic data from the network must_be processed in SOlne way to 
lead to a deterministic discrete machine (e.g. (Tino & Sajda, 1995)) or the extracted 
state machine can in itself be stochastic {e.g. (Tino & Koteles, 1999)). 
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D.3 Experiments 
AX AX -

The sets ~ and ~ B are both subsets of ~ but cover different aspect and generate 
different rule sets. In this paper we will experimentally investigate the relation AX AX • 
between ~ and ~ B, i.e. the difference between the domain sampling and breadth 
first search approaches of RE in terms of the visited states. 

In these experiments we have chosen to limit the tasks to be pure prediction 
tasks, i.e. the task for a network is to predict the next symbol in a sequence gen­
erated by a grammar and not to classify incoming strings. Another prerequisite is 
also that the networks are perfect, i.e. they never predict predictable symbols of 
the domain incorrectly. This in order to prevent illegal rules to be caused by an 
erroneous network, but instead to be indicators of flaws of the extraction procedure 
itself. 

D.3.1 The Networks 

Three prediction domains have been considered in this paper, two regular granl­
mars and one context free. (Casey, 1996) showed that froin an RNX effectively 
implementing a regular grammar, a finite state machine consistent with the RNN 
can be extracted. For the context free grammar, we assume that some limited 
version of it can be extracted. 

• The simplest is the temporal XOR-problem, suggested in (Elman, 1990), 
where every third binary symbol is determined by an XOR operation of the 
two preceding sYInbols which are random. 

• The next grammar, the "6-letter grammar", was created by Elman (Ehnan, 
1990) to test a language with more than two symbols and that required some 
deeper memory in the network. The sequence from the grammar consists of 
the subsequences ha, dii and guuu concatenated in random order2. Conse­
quently, only the vowels are predictable. 

• The third domain was oni n, a context free language. n was in these exper­
iments 1 < n < 10 and varied in random order with the generated strings 
concatenated into a single sequence. In this language. only the I's and the 
first 0 is predictable. The full grammar, with n unlimited, cannot be rep­
resented in any finite state machine, but since we only require the rules to 
correctly predict the training set it is possible to view this as a regular graln­
mar (although this may be complicated if the network has actually learned 
to generalize to longer sequences). 

These domains were chosen to test the effect of the number of symbols and 
language class separately. All languages have predict able and unpredictable parts 
of the generated sequences and the networks are all trained to predict the next 
symbol. 100 networks were trained on each domain until the~r were deemed to 
perfectly predict the predictable parts of the sequences. The architecture chosen 
was simple recurrent networks (SRNs) (Elman, 1990) with two hidden nodes. For 
the regular language backpropagation through time (BPTT) was used to train 

2In our experiments we used 'one-hot' encoding to represent the symbols to the network, i.e. 
six bits were used of which each one encod('.8 only on(' symbol. Elman used a quit(' ciiffcr('nt 
non-orthogonal encoding based on phonological properties of the letters. 
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them and since BPTT had problems on the context free language an evolutionary 
hill-climbing algorithm was used for that instead. 

D.3.2 Evaluation criteria 

The primary objective of the experiments was to assert the degree of excess conl­
putational power used by rule extraction through breadth first in the selected do­
mains. For all networks, we tested RE through breadth first search and sampling 
for varying values of q to see the effects of the quantization level on various aspects. 

AX A 

A We <:hose to measure IA(; B I and IA: I and will here present the ratio, 
IA;BI/IA:I, i.e. the relative difference in number of bins visited through RE and 
through processing of domain respectively. Also, the proportion of substrings in 
X B that are at all possible in the domain which the network is trained on is mea­
sured. If the breadth first RE for example tests the sequence 00011110 on a 
correctly predicting onl n-network starting from the initial state in the network, it 
is a symbol-sequence that never occurs in the true domain and should therefore be 
considered an obsolete sequence. 

The performance of the extracted machines was also Inonitored to determine 
whether correct rules were extracted. The termination point for the breadth first 
RE, i.e. when the extracted machine is consistent with the data, was also tested in 
order to see if and when the algorithm would terminate. 

D.4 Results 

In Figure D.1 we show an example of how RE can be illustrated in the state space 
of the R~N predicting the 6-letter sequence. In this example it can be seen how 
RE through breadth first search finds many states irrelevant for predicting within 
the domain. 

In Figure D.2 the ratios of visited bins and of syntactical substrings generated 
in the R~N by breadth first search RE in comparison to domain interaction are 
shown. It is clear that breadth first RE generated the biggest aInount of irrelevant 
tests on the 6-letter networks. This is probably due to the fact that after each 
symbol in the 6-letter sequence, typically only one of six symbols will occur in the 
domain whereas all six symbols will be tested by the RE. 

It should be mentioned that the RE algorithm terminated quite rapidly; for 
XOR within q = 3 to q = 10, for the 6-letter gramluar within q = 2 to q = 8. 
But for onl n at least q = 21 and for 15% of the networks, the algorithln did 
not terminate at all. 84% of the XOR networks seemed to stabilize in terms of 
extracting equivalent machines. Only 2% of the 6-letter sequence stabilized. 5% 
of the on 1 n actually also stabilized. These numbers are not fully certain however, 
since the number of states in the minimized automata could continue increasing for 
higher quantization levels. 

D.5 Discussion and Conclusions 

We have shown that the degree to which breadth first RE requires excessiv(' ('om­
putational resources seems to be related to the nUlnber of symbols in t he language 
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Figure D.1: The internal activation of a network performing prediction in the 6-letter 
sequence. The lattice corresponds to the discretization with the state divided into 252 

bins in this example. The diagonal dotted lines are the hyperplanes, defining the borders 
within the state space for which symbol that is predicted. The hyperplanes divides the 
state space into the 'u'-region on the upper half, the 'a'-region on the lower left side and 
the 'i'-region on the lower right side. The rest of the state space corresponds to no valid 
symbol; the center area with all output nodes set to zero and a small area on the center 
left side with the 'a' and 'u'-node active simultaneously. The states visited through the 
breadth first RE are denoted '+' and the states visited through processing of the domain 
are denoted '*' and are connected to show the order of the states visited. 

for networks trained to predict symbolic sequences. The ratio of, for the domain, 
relevant "questions" (in form of sequences) "asked~' to the network also was very 
low for the gralnmar with six symbols, and for the context free grammar. 

Blair and Pollack (Blair & Pollack, 1997) suggested to use the st ate count of the 
extracted machine to determine whether the network is effectively implementing 
"regular" or "non-regular" automaton. If the state count is growing indefinitely 
with q, they proposed to use this as an indicator that the underlying RNN is 
non-regular. But the results presented here suggest that, for prediction tasks, 
regularity of the network can not be tested as suggested in (Blair & Pollack, 1997) 
since the number of states generated from networks predicting sequences of the 
regular languages was almost always growing indefinitely although the networks 
were predicting all symbols of the language perfectly. The percentage of networks 
for which the RE stabilized did also not correlate with the language class. The 
termination criterion of the RE algorithm was however satisfied much earlier for 
regular than for context free prediction networks. But this could also be due to the 
larger number of states needed to model the strictly regular language 0" 1" with 
1 < n < 10. This should however be investigated further to give more insight into 
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Figure D.2: The ratio IA~B IliAci I is shown in the left column and the ratio of suhstrings 
in XB possible in the domain is shown on the left side. (a) and (b) correspond to the 
XOR-Ianguage, (c) and (d) to the 6-letter language (observe that for this language q \\·as 
at most 50) and (e) and (f) to the on! n-Ianguage. The maxiIllulIl, minimum. an'ragt' and 
standard deviation of one hundred networks for each domain are shown. 
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if (and how) RE can be used to determine the underlying language class, which is 
judged to be "fool's gold" by Kolen (Kolen, 1993). 

One can also argue that RE through search is, in some sense, less credible 
than through sampling since it requires the possibility of an external entity setting 
the state of the network. Sampling of the networks internal states generated in 
the context of its domain however generates stochastic machines that are harder 
to analyse (and to minimize, execute, compare etc.) than the finite automata 
generated by breadth first search RE. 

We suggest that in most "real world domains", e.g. stock market prediction, 
the task is precisely to predict sequences of data with typically a magnitude of 
possible input patterns. According to our results, in these types of tasks it would 
be especially beneficial to use sampling rather than breadth first to extract rules. 

But, to fully exploit the potential of RE through sampling and to ensure further 
development of these algorithms, new questions need to be asked. For example, the 
optimal quantization function for the state space should be sought. And to do that, 
we need to ask how to evaluate different quantization functions. Since an RNN (as 
defined here) is deterministic, one possibility could be to give higher scores to quan­
tization functions generating "less stochastic" machines. Another difficulty that has 
not been investigated properly is how rule extraction from imperfect networks (very 
commonly found in real world domains) should be conducted. In a way, this has 
been implicitly touched in this paper, since we used partly unpredictable prediction 
domains, but this should be investigated in further detail. 
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