












































































































































































































































































































































































































































CVQs will also divide the state space into increasingly smaller regions. If one
considers the possibility of noise in the state of the system, then the smaller the
region, the higher the possibility of misclassifying the state space. In other words.
the CVQ also progresses from robustness to brittleness during the extraction. or
put another way, when CrySSMEx extracts a sequence of SS\Ms from Q. thev will
cover a spectrum from robust-but-stochastic to brittle-but-high-fidelity models.

Consider a situation where an SDTDS has been analysed using CrySSMEx. then
the SSM and CVQ can be used to continuously monitor and predict the system
(which we can assume to be noisy). In other words, the SSM is used for the
prediction, whereas the CVQ is used to justify and adjust the SSM state as a
correct stochastic representation of the SDTDS state. In this situation, the robust-
brittle-spectrum could be very fruitful. The whole range of SS\s and CVQs can
be run simultaneously on the same input for a robust and high-fidelity prediction
of the system.

Potentially, if correctly implemented, one could achieve the best of both worlds.
The spectrum could potentially be exploited by using the genealogy of SEs (cf.
Section 16.2.3). An SSM SE or CVQ-observation of the SDTDS state will provide
information regarding the state of a more brittle SSM. For example, if the CVQ
cuq™ observes in the SDTDS that the SE (of the corresponding SSM) should be
q; this can be used to infer the states of subsequent, more brittle, SS\Ms through

genealogical relations (together with conditional probabilities of how SEs of one

SSM explain SEs of other SSAIs).

17.5 Higher order extraction

As mentioned in Section 13.2. CrySSMEx differs from earlier RNN-RE-algorithins
by adapting the state space quantizer to generate better rules. This, together with
the fact that the adapted quantizer has a graph-like structure, could possibly be
cxploited for the extraction of higher-order rules. Specifically. the extraction of
context-free grammars is a possibility. A finite state recognizer of a context-free

grammar requires an external memory in the form of a stack. For example. the

the possibility of making observations which contradict the SSM increases with its fidelity. This
is an important feature and its further explotation is suggested in Scction 13.6.
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Figure 17.1: A partial example of how the level of CVQ nodes (cf. Definition 10.6)
could be used to infer context free grammars. The SE-pairs of each level are equivalent of
all other similar pairs in that symbols a and b trigger the same response in the output as
well as the same relative changes in the CVQ level. The level information is to the right
abstracted and replaced with an operation on a variable L. L := L + 1 corresponds to a
push onto the stack and L := L — 1 corresponds to a pop. The example is simplified since
there must also be an initial value of L and special considerations for when L reaches its
minimum and/or maximum (for both the left and right machine).

a"b"-problem is a CFL (Context Free Language) where the number of as needs to
be stored, possibly by “storing” the as themselves. An FSA approximation of a
CFL is always an illusory abstraction, since, in principle, there is no upper limit on
the length of the strings (i.e. n is unbounded).

To induce a CFL grammar using CrySSMEx, the CVQ-level (cf. Definition 10.6)
could be imposed on the SEs of the SSM. It may then be possible to identify a
subset of SEs, @ C @ such that another subset of SEs, Q' C @ can also be found
in the same SSM and the SEs of @' are semi-equivalent to the SEs of Q apart from
that their levels always differ by the same amount. If a sequence of such subsets
can be formed, it may be possible to replace transitions between the subsets by the
pop and push operations of a stack. The hypothesis is that the levels of the ("VQ
may possibly correspond to the levels (i.e. amount of stored data) of the external
stack. Figure 17.1 depicts a simplified example of a possible situation.

In the ab"-domain. this would correspond to a simple machine connected to
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a stack which takes care of the counting of as and bs. Of course, this extracted
CFL would be a hypothesis that an unbounded number of as can be counted by the
underlying system although no observations of this can be made. In other words,
this kind of extraction would relax the closed world assumption of CrySSMEx.

The CVQ is not only holding the information about the level which could be
used as suggested above, the graph is itself a data structure that may hold infor-
mation of the underlying domain. For example, Elman (1990) trained an RNN to
recognize simple sentences. His analysis of the state representation revealed that
the RNN had grouped related words in a fairly semantically oriented hierarchical
structure (cf. Figure 5.1). For example, the RNN separated, in its state, animates
from inanimates and humans from animals etc. The study was conducted by the
use of hierarchical cluster analysis, which does not take into account the dynamic
properties of the RNN at all (Elman’s paper was written before any RNN-RE paper,
cf. Section 5.1).

With CrySSMEx, it is possible for both the semantical and syntactical infor-
mation to be extracted simultaneously. It would be very interesting to replicate
Elman’s analysis by using CrySSMEx to investigate to which degree semantical in-
formation can be traced in the CVQ graph*®. Further interest lies in the sense that

it would replicate a scientist’s analysis using an automated analyser.

17.6 Relative SDTDS analysis

17.6.1 d(SdtdSl, SdtdSz)

Consider two SDTDSs, sdtds; and sdtds, with an identical input and output do-
main, but with different state spaces and transition functions. It could, for example,
be two RNNs trained on the same domain. From these two systems, it is possible to
create a third SDTDS, sdtdsise. in which the state and output domains are simply
augmented and the corresponding transition functions of the svstems handle their
part of the augmented state and output space. In other words, it is possible to
describe several SDTDSs as one larger SDTDS. There is nothing strange in doing

this. as the SDTDS state and output vector spaces are not bounded (sce Figure 17.2

\any thanks to Nick Chater for inspiring this idea.
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Figure 17.2:  An illustration of how two systems really constitute one system. The
two SDTDSs to the left, with an identical input domain, can instead be described as one
larger SDTDS where both of them are fully preserved.

for an illustration).

The system sdtds;,o describes both systems sdtds, and sdtdsy simultaneously.
Therefore, CrySSMEx applied to sdtds; 9, corresponds to applying it to both systems
at once. If A, is subsequently chosen to reflect the difference of the output of
the two systems, then the extracted SSM would also describe this difference. A,
could, for example, correspond to the sign of the result of a simple elementwise
subtraction of the output vectors. Another possibility, when the output has a
symbolic interpretation, is to let A, result in 1 if there is a difference, and 0 if
not. Or one could have unique enumeration per each observed combination of
simultaneous outputs of the two systems. However A, is chosen, as long as it
reflects the divergence of the two systems from each other, the extracted machine
should also reflect this difference.

The extracted SSM will be an abstraction of the differences between the two
systems since the SSMs extracted from the individual systems are abstractions
of their corresponding systems. The consequence is that the difference between
two systems is a third system. In the same sense as the difference between two
vectors could be a third, difference vector, (if elementwise subtraction is used), the
difference of two systems is not necessarily described using a simple scalar. If A, is
chosen properly, however, two “similar” sdtdsy and sdtds, should result in a small
SSM extracted from sdtds, .. If the difference of the systems is big, then the SS\I

extracted from sdtds;,» should, consequentially, also be big.
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Thereby, one could define a distance measure between systems bv using the
extracted SSM as a measure. It basically means that the difference between two
systems is described by an SSM that defines a finite state grammar of differences
between the two systems.

The SSM could be used as it is to describe the details. or the SS\ could be
the basis of a quantitative difference measure. For example, log |Q| (where |Q)] is
the number of SEs in the SSM extracted from sdtds;.3) could be used. If there is
no difference between the systems. or if this difference is only in terms of a direct
one-to-one translation of output symbols, and the resulting SSM thereby only has
one SE, then this results in a distance of 0. This is appealing since the difference
between two identical things should be zero (cf. that d(z.x) = 0 if d here denotes
the difference between two real numbers). All more complex differences between
the systems will return a higher number. The distance from a non-active SDTDS
(always producing the same output) to an active SDTDS would be isomorphic to
the latter. This is also appealing if we consider the non-active system a point zero
from which the deviation should only be a consequence of the active svstem (cf.
d(z,0) = x).

If any of the underlving svstems are chaotic, however, this kind of difterence
measure could become problematic since CrySSMEx will not terminate at a deter-
ministic machine. However, it could be possible to generate one distance measure
per each SSM of the CrySSMEx iterations, especially if the automatic extraction of
deterministic SS)s is implemented (cf. Section 16.2.4).

Every kind of distance measurement comes with weaknesses. however. Not
even the typical choice of Euclidean distances between vectors is entirely obvious
(for example. city block distance is sometimes more appropriate). However. while
pitfalls are kept in mind, this kind of distance measure between dynamic svstems
could turn out to be quite useful in many contexts. For example. to ensure diversity

in sets of RNNs that are to be used as ensembles (Krogh & Vedelsby. 1995).

17.6.2 A “grammar of mistakes”

One possible usage for the difference between two systems as a basis for .\, s to

oxtract a “grammar of wistakes™. If the underlying svstem is an RNN trained
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to perform in a domain, the output of the network typicallyv deviates from the
desired target output. Then A, could be chosen to reflect this discrepancy (as it is
suggested to reflect the divergence of two SDTDSs in the previous section). It could.
for example, result in 1 every time there is an error and 0 if not. Alternatively it
could be a more detailed enumeration of each possible error, e.g.. one unique svmbol
for the specific error corresponding to “the output was a but it should have been a
b”.

The resulting machine would not describe the output of the RNN. but onlv the
ways in which the RNN conducts errors. This description of the RNN mistakes
could be used as guidance for generating more data on which to train the RNN. It
could potentially also be used in other ways to refine the RNN training procedure.
For example, it was sometimes possible to see exactly when some of the a"b"-RN N\«
performed mistakes for longer strings based on the extracted SS\s, e.g., the RNXN
predicted eleven bs after twelve as but was otherwise correct.

A problematic issue, however, is that A, would not be a function purely of the
output of the system, but also of the external domain. This would mean that .\,
cannot necessarily be described as a function of the output domain of the SDTDS.
For example, the exact same output vector of the system may at one instance be
correct and at another erroneous. This would corrupt some of the assumptions
required for CrySSMEx to extract rules. Whether or not this poses a problem in
realistic cases, and if so, if this problem and others can be alleviated, remain open
issues. One possible way to circumvent the problem could be to extract the SS\I
as normal and then apply it, instead of the RNN. to the domain and record when
and how the SS\I performs errors (cf. Section 16.2.5). From an SSM with such
information, the output symbols could be replaced with symbols referring to the
existence (i.e. binary error/no error information) or the frequency of errors in a
transition. That SSM would after minimization be a grammar of mistakes of the
underlying RNYN, describing with a finite state description exactly for what situation

an RNN generates erroneous output symbols.
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17.7 CrySSMEx?

17.7.1 Meta-SDTDS

When CrySSMEx is used on an RNN to generate a deterministic machine it means
a transition from an uncountable domain into a countable one. The RNNs them-
selves cannot be counted or enumerated since they build upon the uncountable
real-valued input, state, and output domains. The deterministic SS)Ms. however.
can be enumerated. Thus, if the translation from an RNN into a deterministic SS)M
is successful, the RNN can be indirectly enumerated by the extracted SSMNI. Sev-
eral other attempts have been made to enumerate RN Ns with discrete “signatures”
that describe their dynamics. For example, by using the recurrent -self-weights”
of the state nodes (Tonkes et al., 1998) or an analysis of the Eigenvalues of the
Jacobian matrix in the vicinity of fixed points (Bodén et al., 2000). The use of
rule extraction to create such an enumeration could, however, be a more profound
way of enumerating RNNs since the extracted machines will in effect emulate the
RNNs.

If CrySSMEx was used on a set of RNNs to generate a set of SSMs, these SSMs
would potentially end up in a set of equivalence classes (cf. Blair and Pollack
(1997)), where all SSMs of one equivalence class are indistinguishable from each
other in terms of their output in all situations. These equivalence classes can each
be enumerated with natural numbers, {1...n}. These CrySSMEx-enumerations of
the underlying RNNs could then be viewed as a quantizer (cf. Definition 9.4) ap-
plied to the weight space of the RNNs. Of course, each RNN should be exposed to
the exact same input sequence so that the difference between {2s of different RNN«x
is only due to the RNNs themselves.

If we consider backpropagation (BP), or backpropagation through time (BPTT),
these algorithms can in themselves be viewed as systems falling under the SDTDS
definition (Definition 9.1). Given a fixed learning rate and a fixed training set. BP
will make transitions in the weight space of the trained RNN. i.e. in one epoch,
BP will make a transition from one weight configuration into another. The weight
space corresponds to the state space of the SDTDS. the input space is empty and

the output could be equal to the state space. The transition function is simply the
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Figure 17.3: An illustration of how CrySSMEx could be used to analyse the backpropa-
gation algorithm (or some other deterministic training algorithm) when used for training
RNNs (or some other SDTDS). Backpropagation performs transitions in the weight space
of RNNs. CrySSMEx is applied to each RNN and transitions between equivalence classes
of RNNs can be described. CrySSMEx is then used on the level of backpropagation as
the underlying SDTDS and the weight space is processed such that equivalent RNNs will
be grouped together and inequivalent RNNs will be split. The two leftmost RNNs cor-
respond to random initial weight configurations. In reality, the BP-SS\ should become
considerably larger.

gradient descent based updating of the weights of the RINN.

Since the weight space of BP can be viewed as a state space in the BP-SDTDS,
and since CrySSMEx could be used to enumerate (or quantize) this state space it
would be quite straightforward to use CrySSMEx to analyse BP or BPTT by letting
CrySSMEx itself be the basis of A,. CrySSMEx would then be used on two levels
(hence the name CrySSMEx?), one to enumerate RNNs, and one to extract the
transitions between equivalence sets of RNNs (cf. Figure 17.3).

If successful, the results should be quite informative for the analvsis of BP and
BPTT. The extracted machine would describe sequences of transitions between
different RNNs as the RNNs progress towards the desired solution. It would also
be possible to see how the BP sometimes “forgets” successful solutions and drifts

off to unwanted parts of search space (Bodén et al.. 1999: Tonkes & Wiles, 1999,
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Jacobsson, 1999). The main obstacles for using CrySSMEx in this manner are the
computational time required and that the weight space may be too enormous to
conduct this extraction. But this should be fairly straightforward to implement

and test.

17.7.2 Dual systems

Another form of CrySSMEx?, i.e. where CrySSMEx is used simultaneously in two
different contexts, would be to extract from two interacting systems. For example.
consider that one system is an agent, and the other one is the environment in
which the agent operates in. The input-output relation of the two systems would
be reversed, i.e. the input of the agent is the output of the environment and vice
versa.

Let the state spaces of the agent and environment be termed S, and Sg respec-
tively. Viewed from the agent’s perspective, its state S4, would have the following
basic interaction 4 = S4 = O4 whereas its environment would have this interac-
tion: Ig = Sg = Of where O4 = I is the output/action of the agent and thereby
the input to the environment, and I4 = Og is the sensory input of the agent and
hence the output of the environment. Figure 17.4 depicts a schematic description
of the agent-environment duality. The internal dynamics of the systems are here
ignored, but naturally the state of the systems will also affect themselves.

The extraction using CrySSMEx requires A, to be specified and A; to be invert-
ible, but that would not necessarily hold in this example (i.e. some of the obstacles
described in Section 17.9 may have to be solved first). The extraction of a machine
in one system may, however, be used to refine the A; and A, of the other system
(remember that A; of one system is the A, of the other). This is highly specula-
tive, of course, but the potential end result would be an extraction of a svmbolic
description of how the two systems interact (Figure 17.4).

A good start would perhaps be to limit the agent’s repertoire of possible actions
to a finite set so that a A, of the agent could be easily specified. This would allow
for a deeper analysis of some autonomous robot experiments where RNNs have

been used, for instance, Meeden (1996) used a finite set of actions. e.g., "move

forward-left” or “move backwards-right”.
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Figure 17.4: An abstract depiction of how CrySSMEx could simultaneously be applied
to dual interacting systems. In this example A stands for agent and E for the environ-
ment in which the agent is situated. Both the agent and the environment are dyvnamic
systems and if CrySSMEx successfully extracts finite state descriptions of them both, a
symbolic description of the “language” between the two systems would also have been
extracted. The sensorimotor agent-environment interaction (I1/Of and O 4/Ig) would
be abstracted as interchanging symbols (X 4/YEg and Y1/ XEg) between two discrete (and
possibly stochastic) systems.

If the above is possible, then a possible next step is to create what I would call
CrySSMEx", where an unspecified number of subsystems can be identified. The idea
is that a single large system can sometimes be more adequately described as a sct
of interacting systems (Watson & Pollack. 2005). For example, if two FSMs of m
and n states are translated into a single FSM, the resulting size of this FSM could
require as many as m X n states. For large FS\Ns m +n < m x n and clearly. in
such cases, the two separate FSMs are a more compressed description.

The description of the interacting subsystems, conducting symbolic interaction,
could well be shorter than describing the full system using a single finite state
model. If an automatic division into subsystems is at all possible, the result of such
extraction would be very powerful. While genetic algorithms could possibly be used
to speculate about subsystem divisions, the fitness of such speculations could be

evaluated by the above described CrySSMEx?.

17.8 Truly parameter free CrySSMEx

CrySSMEx is only truly free from parameters if we consider Q) and .\, as derivable
from the domain somehow (see Algorithm 11.2). .\, can be seen as derivable when,
for example, the domain is symbolic which has typically been the case when RNN-

RE has been applied to RNNs trained on formal erammars (¢f. Part I). But could
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the parameters be reduced in a broader range of situations?

17.8.1 Guessing A,

If there is no known underlying symbolic domain or other natural symbolic interpre-
tation of the SDTDS output, then inferring A, (cf. Section 9.1.3) from the SDTDS
alone seems an impossible task. The size of the resulting SSM could, for example,
not be used as any indication. If A, is cvq®, for example, then the resulting SSMI
has only one state, all inputs leading to the same transition resulting in a single
output symbol. If A, is more finely grained, however, the SSM may be very large
but with output symbols that are very subtly differentiated semantically. The very
reason A, is a parameter of CrySSMEx is that it should be chosen by the user to
reflect something meaningful. For example, if the underlying RNN is trained on
symbolic data, it makes sense to let A, reflect the symbolic interpretation of the
RNN output.

It could, however, be possible to use a whole range of output quantizers si-
multaneously, each resulting in its own “SSM-view” of the SDTDS. Perhaps there
could be context dependent features from which can be estimated the adequateness
of these different views? For example, if the underlying system predicts the stock
market, and the output is in a range from -10 to 10%, then the accuracy of the
numerical prediction of the stock value, calculated using a numerical interpretation

of the symbolic output of the SSM, could be used as an evaluation criterion.

17.8.2 Generating )

It may not seem to be easy to avoid the sample set generated from the SDTDS
as a parameter. The algorithm should after all need some examples from which to
induce the model. But since the underlying system could potentially be immediately
interacted with, i.e. by feeding it input to see what happens, it would suffice to give
only the system itself as an input parameter. CrySSMEx would then itself choose
what inputs to use to generate 2. Some ideas about how to perform this interaction

are, however, discussed in more detail in Sections 18.4 and 18.6.
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17.9 Gradual removal of SDTDS constraints

The SDTDS definition is used in this thesis in order to not restrict the possible
systems to RNNs only. The definition is therefore quite wide and details such
as activation functions and weights are ignored so that many other architectures
comply with the description. It may, however, still be too restrictive for a wide range

of simulated systems. These restrictions are obvious targets for further development

of the algorithm.

17.9.1 Determinism = Nondeterminism

One major obstacle for the use of CrySSMEx for a broader range of simulated sys-
tems, is that it cannot handle noisy systems. Random noise is often added in
simulated systems to create more realistic simulations and to “smear out™ possible
systematic mistakes due to erroneous assumptions.

CrySSMEx will have problems with an underlying noisy system for many reasons,

for example:

e If an SE is nondeterministic, is it so because it should actually be split or is
it due to noise? Indeterminism stemming from a poor quantization can, and
should, be handled by a SE split. But indeterminism due to noise will not be
helped by such splits.

e If two SEs are almost equivalent, but not quite, is their inequivalence due to
the noise, or an actual inequivalence? Should they be merged or not? And
how do you determine if two SEs are almost equivalent®?

e When should CrySSMEx terminate? A fully deterministic SSM cannot be

achieved as the underlying system is not deterministic. Hence, some other

termination criterion must be used.

My conjecture is that the solution lies in abandoning the simple deterministic
progression from ssm® and upwards. Instead I find it likely that a heuristic or
breadth first search needs to be conducted. There is a need for a backtrack possi-

bility since the consequence of a split or a merge may not be fully apparent until it

5Kullback Leibler distance of output distributions may be a good start (Cover & Thomas.
1990).
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is conducted and a new SSM is formed after it. Therefore a number of alternatives
may need to be tested for each SSM. For example, if an SE is split but the split
creates two SEs with no significantly decreased indeterminism. perhaps the split
should not have been conducted.

The generated search tree would have some practical consequences on the cvQ
graph. It would not be reasonable to create a different CVQ graph for each possible
vertex in the search tree. The CVQs will be related to each other and have large
overlaps. Rather, a multi-version CVQ should be created so that the quantization

of a vector using multiple versions can be conducted simultaneously.

17.9.2 Discrete input = Continuous input

The input space of the SDTDS is not explicitly limited in the SDTDS definition.
But for CrySSMEx to function, it needs to be discrete and A; must be invertible.
This is due to the fact that each transition in the final SSM requires a unique input
symbol to label it.

Consider an SDTDS with a discrete set of input patterns, but with no predefined
input quantizer. Let A; be cvg®. Then CrySSMEx could at each nondeterministic
SE perform the split on either A, or A;. If the split of the input space reduces the
ambiguity of the output symbol then it is successful. If not, then split the SE as
usual. If, for example, the input space of the system illustrated in Section 12.1 (cf.
Figure 12.2) has no known quantizer, the first SSM would have one SE, and one
input symbol x, and at the first iteration the input space would be sampled since
the state space is in the collect_split_data-function (cf. Algorithm 11.1). This
would continue until a deterministic SSM is extracted.

If the input space is truly continuous, another problem will occur. Even if the
underlying system is truly deterministic, any finite description of the input space
could give the impression that the system is not deterministic. If, for example, two
input vectors 7; and 7 result in two significantly different states of the SSM but are
quantized as the same input symbol, then from this input symbol alone, the state
could not be predicted. Hence, the same search procedure which is suggested in the
previous section would have to be used (with a different termination criteria etc.).

In other words, a breadth first, or heuristic, search is suggested. as in the case of
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indeterministic SDTDSs, but with the additional operation to split input symbols.

17.9.3 Full observability = Partial observability

A problem related to that of noise, is when the state quantizer has no full infor-
mation of the underlying system. This is typically always the case in real world
domains; some things will always remain hidden since no full nondisruptive mea-
surements can be done (cf. discussion of Plato’s cave in Chapter 1). If the state
space is not fully observable, it will again resemble the situation of indeterminis-
tic SDTDSs since the effect of hidden variables that cannot be modelled will be
observed as noise. A solution similar to the one suggested in Section 17.9.1 could
therefore apply.

The partial observability problem may, for example, arise when the state is
not directly observable, but first passes through some function which reduces the
information content in comparison to the full state. For example, if the full state
is a physical environment, the environment state will only be indirectly accessible

through sensors.

17.9.4 Discrete time = Continuous time

The restriction to consider only discrete time is not necessarily required in the SSM
description of the underlying system. The transition functions could possibly be
replaced with continuous time differential equations with an arbitrary choice of Af.
The modelling of continuous time SDTDSs could thereby also be a potential pos-
sibility. To do this from scratch would, however, probably mean reinventing large
portions of control theory. Clearly, this is one direction in which the well developed

theories of other fields would have to be used (cf. discussion in Chapter 15).

17.9.5 Real environments

If the above obstacles (of Sections 17.9.1-17.9.4) can be surmounted. then the road
is open to real world environments. The real world is noisy and continuous. and
only partially and indirectly observable all at once. Thus, if these kinds of svstems

are to be analvsed, all of the above mentioned problems must be handled together
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and not in isolation. I would, however. suggest that dealing with each problem
in isolation would be a good way to start. Furthermore, the best place to start
would probably be to work on SDTDSs of the kind studied in Chapter 12 and let
CrySSMEx find a suitable A;. Then controlled noise could be added to the systems
gradually.

If successful, it would be very interesting to implement this kind of svstem on
an autonomous robot which could then explore its environment and build an in-
creasingly accurate model of its actions and their consequences. There is. of course.,
much earlier work to consider. For example, Fox. Ghallab, Infantes and Long (2006)
present a Hidden Markov Model approach for creating finite state models of robot
behaviour. While their approach did require some human interpretation of obser-
vations, it would be very interesting to see if SSMs and CrySSMEx could be used in

a similar way and if the procedure then could be more fully automated.

144



Chapter 18

Sciences of Simulated Universes

In this chapter future ambitions for the RNN-RE field are suggested in two frame-
works; Empirical and Popperian Machines. Within these descriptions, CrySSMEx
serves as a basis and central component of all examples, but the ideas presented
are intended as goals that could guide RNN-RE development in general.

Firstly, some properties of simulated systems are discussed from an epistemo-
logical perspective, suggesting that simulated systems are very accessible for scien-
tific analysis, and for automated scientific analysis. Subsequently in Sections 18.2
and 18.3, the necessity, feasibility, and revenues of the automatic analysis of simu-
lated systems are discussed. In Section 18.4 Empirical Machines are suggested as an
active learner for modelling simulated systems. While Karl Popper’s philosophy of
science is briefly compared with Herbert Simon's machine learning ideas for solving
scientific problems in Section 18.5. Section 18.6 presents the furthest ambition for
rule extraction of this thesis: Popperian Machines, i.e. fully automated generators
and verifiers of statements, of highest possible empirical content. about populations

of underlying simulated systems.

18.1 The golden properties of simulated systems

A single simulated svstem has some properties that make it very suitable for con-
ducting active learning (e.g. Cohn et al., 1994; Brvant et al.. 1999), on it (cf.
Chapter 15). Real physical systems are by far much more complex to analvsc. [f

we, for example, want to implement an active learner in the context of, for exam-



ple, neuroscience or molecular biology, we need to automate not only the ability
to put forward theories and test them, but also all other competences involved.
A researcher conducting biological experiments needs skills in handling biological
tissue as well as planning expertise regarding the cost of the experimentation. etc.
To become a skilled experimental biologist may take a very long time. If an au-
tomated learner should interact with physical systems in the same manner as a
human expert, a considerable amount of sophisticated automation needs to be im-
plemented. In other words, the complete automated empirical loop becomes a huge
project compared to simply conducting experiments manually. There must be some
kind of gain expected from automating something to motivate the automation in
the first place. An even more difficult situation occurs if we move from a labo-
ratory environment into the so called “real world” where repeatable experiments
are perhaps only an idealization. In such domains human skills and experiences
become even more valuable and, at the same time, more difficult to automate. In
psychological studies, for example, how are test subjects selected and interpreted?
In astronomy, how are space probes designed and put into space and what probes
should be prioritized?

I suggest that if we want to automate scientific processes of any kind, instead of
focusing on the big scientific questions, we should more modestly start by looking at
systems with properties more suitable for automated analysis. Simulated systems
naturally have such inviting properties (but are not necessarily trivial to compre-
hend, cf. Section 18.2). If we compare the study of simulated dynamic systems
with the study of physical dynamic systems, there are some quite obvious differ-
ences that make them perfect subjects for systematic analysis. Let us call these the
“golden properties” of simulated systems, which when simulated on a computer.

allow us to (among other things):

o fully observe every single variable of the system,

e replicate results with arbitrarily high accuracy,

e repeat experiments without much additional effort after the framework for
the first experiment has been implemented.

o duplicate and distribute them among research colleagues,

e study the effect of arbitrary pertubations of the systems under controlled
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conditions,

e do nonperturbative studies of internal properties to an arbitrary degree of

detail.

In other words, they are almost perfect experimental subjects. Very few scientific
communities have the luxury of studying entities with properties so inviting for
conducting research on them. In fact, some of these properties lay the ground for the
possibility of conducting rule extraction from RNNs (cf. the “implicit requirements”
discussed in Section 6.5).

For example, one central aspect in science is to infer causality from observations
(Pearl, 2000). Sometimes it is obvious which event causes which effects, for example,
a glass shatters as a consequence of it falling to the floor, not the other way around.
But for some systems causality may become a chicken-or-egg matter, for example, if
the concentrations of two enzymes X and Y are correlated in a large set of samples,
is a high concentration of X causing a high concentration of Y, or vice versa? Or is
there perhaps an unknown cause Z, affecting both X and Y? Such issues are very
problematic if there are no additional data.

For simulated systems, however, determination of causality is quite problem free.
Let us assume instead that the X —Y — Z-system is a simulated one, then it becomes
a simple matter of manipulating the levels of X and Y to see the effect of one or
the other. Even if we do not directly alter X and Y (since it may be biologically
implausible to do so) we can restart the system several times from the exact same
initial state. One can also save and retrieve the state of the system at any arbitrary
point in time. The controllability of the simulated system allows repeatability by
copying and altering the state arbitrarily. In a biological system, the state can
never be guaranteed to be exactly the same in two systems. Thus it will never be
fully known if the effect of what you want to test, or some possibly uncontrolled
aspect of the state of, e.g., a cell, is what is being measured. For simulated systems.
however, the inference of cause and effect is trivial. For example, it is in principle
trivial to answer questions such as “What would have happened to the simulated
system if it at time ¢ was affected this way instead of that way”" (just restart
the simulation and simply try it out at time t). Imagine the richness of sciences

with answers to such questions, were Reality susceptible to them: e.g.. “What if
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dinosaurs had never become extinct””. “What if gravity was 5% weaker?". “\What
if I had taken mathematics instead of computer science?”, “What if Alexander the
Great had lost his first battle?”. We will never know the answers to such questions
targeting the Reality in which we live. For simulated systems. however. questions
of that kind can in principle always be answered. The problem is of course to ask
the most interesting questions.

As long as a simulator is properly implemented, any observed phenomena can
be recreated and studied in detail. If, for example, one simulated experiment out
of a million results in deviant, but highly interesting results. this exact experiment
can be recovered and studied again. If one real experiment out of a million returns
a freak result, then you may only hope to achieve the same result again.

I suggest that every simulated system is susceptible to a scientific method supe-
rior to the method of sciences studying the real world. One may even demand that
every simulated system is more thoroughly analysed than their real counterparts:
i.e. that the possibility infers an obligation. But it is not that simple.

The Achilles heel of simulated experiments is instead that the ease of generating
clear observations is a double edged sword. It becomes very easy to generate new
results for slightly different conditions or slightly different svstems may produce
unsurmountable amounts of data. This is also why there is a need for sciences
of simulated systems. While these systems are widely used today and can be fully
controlled, they may be incomprehensible due to the ease of conducting an arbitrary
number of studies on arbitrarily many, arbitrarily complex systems. Each system
can in principle have its own “science”, including a scientific nomenclature, models

and data.

18.2 Incomprehensibility due to abundance and
complexity

John Horgan in his controversial book, “The End of Science” (Horgan, 1996). sug-
pests several reasons why our scientific explorations may soon hit a solid brick wall.
Horgan is a renowned science writer for Scientific American. and perhaps it takes

a journalist with an unbiased perspective on science to dare to suggest there are
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fundamental limits to science and that those limits may already have been reached.
The book should perhaps more properly have been titled “The Ends of Scien-
tific Revolutions” since he suggests several different causes for scientific limits and
predicts a future lack of scientific revolutions (Kuhn, 1962) rather than a lack of sci-
entific progress in general. For example, quantum physics could only revolutionize
physics once, whereas refinements and applications of quantum physics may be de-
veloped indefinitely. However, some areas such as particle physics. mav soon reach
a limit due to the physical unfeasibility of testing some hypotheses because the cost
could become astronomical (quite literarily so, since required particle accelerators
may surpass our solar system in size).

Potential scientific progress may also be impeded bv human limitation in un-
derstanding a subject to the degree that accurate and meaningful hypotheses can
be made. A potential solution to this is to exclude the human element from the
equation and let computers without our cognitive limitations suggest and test the
hypotheses. This solution is suggested in light of Horgan's book by Riegler (1998)
and the subject is also briefly touched upon in Horgan’s book itself. Therefore, if
machine intelligence is the key to the science of the incomprehensible, why not start
with simulated systems that have such inviting properties for conducting research
on them (cf. previous section)?

It is quite easy to create simulated systems that behave in incomprehensible
ways, even to the designer. Just create a system which alters itself as it runs and
you may soon be scratching your head trying to figure out what it is doing. Clearly,
the possibility that the scientific investigation of a simulated system may become
intractable for a human is quite conceivable (despite the golden properties presented
in Section 18.1).

A fundamental problem facing many empirical computer scientists is that it is
much easier creating large numbers of new computational models and observations
than actually understanding any of them. This situation is especially true in arcas
where automated model building is part of the research, e.g.. much ANN research.
This is because when one studies a phenomenon such as a neural network training
algorithm, the phenomenon manifests itself in a class of computational models. t.c.

the networks themselves.
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Suppose the level of the model builder (trainer) is called level 0 and the level
of the resulting models (networks) level 1. In the study of backpropagation. which
is a deterministic gradient descent algorithm for training ANNs, for example, the
algorithm results in a trained network for every random initial network you srart
with (which is the standard procedure for training). Furthermore. the result varies
with selection of learning rate etc. The backpropagation algorithm is in this context
a level 0 object and the network a level 1 object. Level 0 objects create level 1
objects.

If the scientist wants to analyse some aspect of the system at level 0 (within
the context of some specified domain), then the empirical study needs to take place
at level 1, i.e. the level on which the system manifests itself. As in any empirical
study, more than one object needs to be incorporated. and, in many cases. the
differences between individual generated models are not insignificant, necessitating
a considerable number of models to be generated and studied. In the case of
backpropagation, the resulting generated networks may be very diversified despite
being trained on exactly the same domain. Each network can then be studied and
analysed in its own right. A few of the networks may, for example, have completely
novel and surprising solution to a problem, as exemplified in Ziemke and Thieme
(2002) when it was discovered that some evolved networks, controlling a robot,
used the environment as its memory instead of using its internal representation. In
order to discover such surprising behaviour in the networks, each must be studied in
detail (or, at least, one must be lucky enough to study the interesting ones closer).

The level 1 phenomena manifest themselves in what we can call level 2 (sce
Figure 18.1), which in the case of neural networks corresponds to the behaviour
of the networks within the given domain (cf. Q2 of Definition 9.3). The generated
collective of level 1 models are almost always evaluated quantitatively at level 2. e.g..
a performance estimation of the networks (e.g. Miller & Giles. 1993; Jacobsson &
Ziemke, 2003a). There are also more qualitative evaluations of the networks based
on visual analysis of the behaviour (e.g. Meeden, 1996: Ziemke & Thieme. 2002).

Based on the collective results at level 2. conclusions on the aspects of the
models of level 0 are then drawn, tvpically without incorporating the individuality

of the level 1 models. In other words. there isx an explanatory gap between the
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Figure 18.1: An illustration of the information explosion that many empirical computer
scientists may encounter. Level 0 objects may for example be different training algorithms
that each will generate one or more level 1 objects, e.g., neural networks. The trained
models have one or more measurable behaviours in different situations. To explain level 0
systems, more than one level 1-system may therefore have to be examined in turn.

trainer of models and the models” behaviour. For example, if a number of potential
backpropagation parameter settings are to be compared in a domain, the final
performance of the resulting networks in terms of their generalization error would
typically be used to evaluate which setting is the best. But if the specifics of the
dynamics of the network is of interest then this performance analysis, of how the
networks manifest themselves on their domains, may not be enough. For example, if
the networks of Ziemke and Thieme (2002) had only been quantitatively evaluated
and not visually inspected, the fact that some networks utilized the environment
as memory would probably not have been recognized. The individuality of level 1
objects is lost when level 0 phenomena are evaluated only on an averaged collection
of level 2 data.

For other fields of science, where data collection is more costly. this would seem
absurd. For example, it would be unforgivable to not study data from space probes
in great detail considering the cost of gathering it. Treating data from space probes
as a collective set of data without accounting for the individuality of the probes
or the planets they are probing would be considered quite absurd. Yet. this is
preciselv what is done when a training algorithm is used to generate svstems that
“probe” the search space of the training algorithm. Each svstem may be a unique
solution to the problem found by the trainer, vet such individuality is lost when a

mere performance measure is conducted and then averaged for several individuals.
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The problem for the empirical computer scientist is that each model at level 1
is itself, although relatively easy to create, a potentially complex phenomenon for
which theories can be put forward and tested. Theories which explain the mecha-
nisms behind how the numerous level 1 models manifest themselves at level 2 may
require more than a superficial analysis of quantifiable aspects of this manifesta-
tion. This is typically done only on selected individual models, due to the amount
of effort needed to perform a complete empirical study on each object (e.g. Pollack,
1987; Meeden, 1996; Rodriguez et al.. 1999; Bodén et al., 2000).

The basic problem here is not only whether or not the complexity of level 1
systems supersedes the human possibility of understanding them (as Horgan (1996)
suggests as a reason for halting scientific progress). For example, there are many
papers in which individual recurrent networks have been analysed in detail and
have arguably been understood by the authors (and readers)!. The problem is
rather that a detailed analysis of a handful level 1 objects may not be sufficient to
understand the properties of the level 0 objects. It may. however, be too costly for
humans to analyse each individual level 1 object.

There are many instances of human scientists spending entire careers on subject
matters that are seemingly very narrow. For example, biologists working on just
a few selected proteins for most of their careers. This is how some sciences have
become organized through the success of reductionism (and as a consequence of
some sociocultural aspects according to Kuhn (1962)). It does, however, seem
sensible for someone to be funded for analysing a very specific neurotransmitter
and its role in Alzheimer’s decease, for example. The potential of such research
lies in applications which may help people. There are, however, considerably fewer
people (apart from some overly enthusiastic mathematicians, perhaps) building
their careers on the analysis of one or several instances of simulated systems. even
though some such systems may be sufficiently complex for researchers to spend
a lifetime learning new things about them. One reason is that the knowledge
acquired about a simulated system may only indirectly yield dividends in the real
world. Another reason is that for every simulated model that can be created. an

uncountable number of variants of it can also be created. Why focus on one model.

1Gee Section 2.1 for a number of examples of such papers.
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when a new one can be created which may be more interesting? The problems for
an experimental computer scientist are that there are too many choices every step
of the way towards creating and analysing simulated systems.

The relative ease of creating new systems that can (and certainly should) be
studied yields a very low revenue from the analysis of each individual system. Con-
sider simulations of chemical reactions in an artificial molecular system with differ-
ent reaction rules and concentration levels of reactants, or simulations of galaxies
formed under different conditions. Another instance is simulations of thousands
of recurrent neural networks created by genetic algorithms for the purpose of con-
trolling a simulated robot arm. A detailed manual study of a randomly selected
individual system in these example areas will most likely not be very rewarding.

Simulated systems are abundant in contemporary research and with the means
of creating one system, another can easily be created by tweaking some parameters
and running the level 0 simulator-generator again. Each individual level 1 system
may hold the key to whatever problem you are trying to solve, but carefully con-
ducted scientific studies on each of them become practically impossible. This is why
automated analysis of simulated systems is important. For real world systems the
potential prognosed pay-off, in terms of the knowledge gained and the application
of some research may be sufficient to motivate financing humans to conduct the
research. For individual simulated universes, however, the low payoff alone may be
sufficient motivation to automate the analysis. Moreover, machine analysis rather
than human reasoning may be more appropriate for some simulated systems. This
is because a simulated system can easily be created to be counter-intuitive and ab-
stract in a way that renders past human experience useless in the analysis process.
See Table 18.1 for a brief summary of some of the differences between simulated
worlds and reality.

If the golden properties are utilized to automate the analysis of simulated svs-
tems, what is then the purpose of the automatically generated models of these
systems? The simulated system is of course in itself completely described in source
code or something akin to it. This issue is central in rule extraction and the mo-
tivator is traditionally that a comprehensible model should be created from an

incomprehensible system. In the following section I argue why this motivation 1s

153



Real world Simulated world
There is only one observable real | Create as many simulated worlds as

world. you like.

Acquired knowledge may yield high | Knowledge is of low value since it will

payoff (e.g., applications). be only about the simulated system
and nothing else.

Uncontrolled noise. Controlled noise.

Repetition of experiments require | Repetition of experiments require

skill. only copy-paste of system state and
parameters.

Human intuition may be helpful since | Simulated systems may be entirely
humans have experience of the nature | unintuitive.
of the real world.

Time is (or appears as) continuous, | Time can be linear, cyclic or tree-like
linear, divided into past, present and | and discrete, history is always accessi-
future, and cannot be controlled. | ble for analysis, future can always be
Only if the present contains infor- | predicted (i.e. presimulated in sepa-
mation about the past can historical | rate time line).

analysis be conducted. Prediction is

difficult.
Can only be controlled indirectly, | Can be controlled in a “hand-of-god”-
through interaction. like manner.

Table 18.1: Some highlighted examples of why it is easy as well as reasonable to conduct
a scientific study of a simulated system.

not as important as it seems.

18.3 Models as proxies for queries

I would suggest that the comprehensibility of extracted rules should not be the sole
basis for the assessment of the usefulness of rules (cf. Andrews et al. (1995); Tickle
et al. (1997, 1998)). The rules, or models, of some underlying phenomena can be
useful in other ways than being directly read and comprehended by humans. Tradi-
tionally, models of something should accentuate certain aspects and omit others in
order to promote understanding and ability to control the phenomena (Follesdal,
Wallge & Elster, 1993). This is especially clear in control theory where the models
should be simple enough for engineers to develop and scrutinize them, yet sophisti-
cated enough to control the plant. But, with regard to automated model building,.

the role of the engineer is replaced by a machine. The virtue of the model as a
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means to achieve control is, in my view, not diminished by being machine created

For real control applications. however, legal problems may arise if no team of engi-

neers can be held responsible for the system (the legality issue is also used as ope

motivator for rule extraction in Andrews et al. (1995)). When considering simu-

lated systems, however, models of the systems can be built automatically without
any risks involved (cf. initial discussion of Chapter 1).

The possibility of using models to control a phenomena is. nevertheless, not
the most essential if the underlying system is a simulated one. There may be a
desire to understand the system, but this may be rendered impossible if the model
of the system becomes more complex as a consequence of optimizing the fidelity.
The comprehensibility/fidelity tradeoff (Craven & Shavlik, 1999) means that the
better the model mimics the underlying system, the bigger and more complex it
may become.

I would however argue that if a model has certain properties, then, even if it
is large and incomprehensible. it may still be meaningful in terms of comprehen-
sion. For example, consider a highly complex simulated model of hot plasma. for
the purpose of building a fusion reactor. The model may have millions of state
variables and build on quantum mechanical principles. as well as being highly non-
linear. Despite being incomprehensible (within mortal limits of understanding),
the researcher depends on the model to answer queries such as “will this magnetic
field configuration result in a stable plasma?” and expects responses such as “Yes,
in 90% of the cases.”. The incomprehensibility of the system itself is of little sig-
nificance (given that it is accurate with respect to the relevant underlying physics)
when the researchers receive an answer which may very well be comprehensible.

Consequently, the idea is that models may be useful as a prozy for queries. 1
would hold that one strength of models, in science, mathematics and maybe even
as mental representations, is that the model acts as a query-proxy between the
question-holder and the “reality” that the question addresses. The virtue of any
simulation lies in that the simulator is a model which is much cheaper. and more
appropriate, to query than the reality itself. And when it comes to models of
simulated models, the more abstract model should be constructed such that it is.

in turn, more appropriate for queries than the underlying simulated systemn.
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Consider for example SSMs as models of SDTDSs (cf. Part II). The user could

of course interact with the simulated SDTDS directly. by testing various combina-
tion of input patterns. But CrySSMEx creates the SS\ model of the SDTDS as a
potential proxy for certain kinds of queries about the underlying system. Then, as
suggested in Section 17.2, various questions could be asked of this model without
the need to interact with the underlying system directly. The extracted SSM is
more appropriate for queries since it has a well defined syntax in the structure of
the SEs and transition as well as defined semantics represented by the input, output
and state quantizers.

To illustrate the strength of a model as a proxy for queries, consider a very
simple model of a population of real-valued measurements as a mean value and
standard deviation. Let us say, for example, that you have measured the length of
one thousand slimy earthworms, a nasty and cumbersome task by many standards.
From this exercise you know that the average length is 15 cm with a standard
deviation of 3 cm. To create a lossy model, in this case, you choose to assume
that the lengths are normally distributed. The model is lossy in the sense the
exact lengths of all measured worms cannot be recreated and other aspects of the
worms, such as degree of sliminess, are completely ignored?. It is a very powerful
model for the length of earthworms, not only for the ones that have been carefully
measured, but a model that is assumed will hold also for many other earthworms
collected under similar conditions. In fact, it may even be assumed that it holds
for all earthworms that have ever existed or will ever exist. Even if an infinite
number of earthworms will exist before the end of time, you will have a model
for them too, accurate or not. From the data alone, without assuming normal
distribution (or some other criteria) as your criteria for compression, you could not
have expressed anything more substantial than statements about specific lengths
of the 1000 individual earthworms you have encountered. Any statement about
these specific 1000 worms you could have been more accurate. but without the
compression of the model, would you really understand the domain? Compression
is, if not the actual act of comprehension, clearly helpful for your comprehension. A

deeper discussion of the suggested relation between compression and comprehension

2The normal distribution assumption also makes the model lossy in the sense that if it is a
false assumption, the model will be inaccurate.
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can be found in Chaitin (2005).

The power of the model is not only that it generalizes to more data than just
the collected data. The power of it as a proxy for queries is realized when vou may
have concrete questions regarding the lengths of the earthworms. If vou want to
go fishing and need earthworms longer than 20 cm in order to catch a really big
fish, then you could simply utilize your model of earthworm lengths to calculate
the probability of finding such worms. Suppose you want to estimate the expected
time it will take to get ten such worms if you dig up ten worms per minute. The
probability of an arbitrarily selected worm being longer than 20 cm should be
approximately one in twenty, according to your model. From this the expected
time it will take to find ten long worms can actually be calculated. Consider if
you want the same answer, without the use of your powerful “worm-length-model".
Then you would actually have to dig up the desired amount of long worms, measure
the time each one takes, and repeat this until you can make a model for the average
time needed for the task. It would amount to a lot of worms compared to the elegant
worm-length-model powered deduction.

By investing computational time in building a model of a simulated system, the
cost of answering certain queries may decrease significantly. In the example above,
the collection of data together with some assumptions made possible queries about
an infinity of never seen examples. The answers may be wrong, if the model is
incorrect. But a single model consisting of two real values eliminates the need to
conduct any more measurements once the risk of errors in the model is accepted.
This is of course an idealization, but any form of model building should produce
revenues in the form of reduced (computational) cost for answering certain queries.

When a model, that is intended to be suitable for queries, is built upon a
simulated system, the assumptions made should be such that the model is more
suitable for queries than the simulated system is by itself. The assumption under-
lying CrySSMEx, for example, is that a finite state model is adequate. Even when
it is not adequate, it may be used as a proxy for queries, although the answers
may sometimes be inaccurate. What CrySSMEx does is to incrementally generate
gradually better models so that the expected accuracy of query-answers, with re-

spect to the actual underlying system, will gradually increase. It will, however.
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only increase with respect to the collected data, Q). and when this data is perfectly
modelled, CrySSMEx terminates.

One could object that there may also exist queries, and answers to these queries.
that themselves are beyond our comprehension. Some of these incomprehensible
queries may however be exactly the kind of queries that are necessary (given some
ad hoc utility function). Thereby the rules can only be made partly comprehensible
by being accessible through queries. The problem of incomprehensible models is
merely temporarily avoided, and not solved, since, the most significant queries for
a particular model may be beyond our comprehension. This is of course true. We
cannot escape our finite ability to comprehend complex models. But. sometimes
not even queries, or their answers, need to be humanly comprehensible to be useful.
On a reasonable degree of abstraction CrySSMEx can be seen as asking questions of
the latest SSM about what aspects of it need refining, and how this should be done
through resampling of (2. In CrySSMEx, the extraction of SSMs progresses with or
without our comprehension. In the following section this form of querying, for the

purpose of improving the queried model itself, is discussed further.

18.4 Future direction I: Empirical Machines

I will now define the first framework in which I think future RNN-RE algorithms
should be developed: Empirical Machines, based on active learning and induction
of models through querying of the underlying system (Angluin, 1981, 1987; Cohn,
1994: MacKay, 1992; Cohn et al., 1994; King et al., 2004; Angluin, 2004). A similar
active learning rule extraction approach is also suggested by Craven and Shavlik
(1994), but for feedforward networks only. For dynamic systems, the problems
are quite different than for feedforward networks since a system is fundamentally
different from a function in that it changes over time.

In CrySSMEx a sequence of models is built based on a predefined set of obser-
vations, 2. As mentioned above, CrySSMEx can be seen as “querying’ its latest
SSM model about how it could be refined such that the data is more properly
interpreted. From the answer of this query, the next SSM is then created. More

precisely, the SDTDS is interpreted through the CVQ which is adapted to create
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an SSM description of the SDTDS that is minimal and consistent with the SDTDS
sample, (). The adaptation of the CVQ is based on pinpointing ambiguous SEs of
the SSM through measuring the conditional entropy and selecting data in Q that
may alleviate the ambiguity (nondeterminism). It could however be argued that
the principle which is used to select data from €2 could potentially also be used to
add data to €.

The reason the conditional entropy is used in Algorithm 11.1 is that it can be
interpreted as a model of ignorance. For example, Hy;n(Y|Q = ¢;, X' = 1) can be
interpreted as the degree of uncertainty regarding what the output symbol should
be if the SE and input symbol is known. In other words. the constituents of the
model that are the most ignorant or inexact are selected for refinement. The H,,,,
entropies are defined (definitions 9.9 and 9.10) such that it does not consider dead
transitions (Definition 9.7) as ignorance. These definitions were based on the choice
of the closed world assumption, i.e. if a transition is dead, it is so because it is not
represented in €2 and thereby does not indicate any ignorance of the SSM regarding
2, but rather as ignorance in Q regarding the underlying system itself. The closed
world assumption says: if something is not in the sampled data, {2, then it is also
not in the model.

Dead transitions are, however. only one extreme case of insufficient data in 2
i.e. when an input symbol has never been presented to the underlving SDTDS in
certain situations. This is only at one end of the spectrum of transition frequencies
and the only one which can be seen in the SSM at all since the frequencies of
SEs and transitions in Q are not modelled at all in the SSM. The extracted SSM.
however, may have some SEs and transitions that could be very poorly supported
by data in . For example. if one transition is executed only one time and another
1000 times, in a quantized €. this will not be reflected in the SSM at all. Tt 1s quite
conceivable that a transition supported by a handful of observations in @ can be
considered more volatile than a transition supported by thousands of obscrvations.
An SSM is more likely to fail to generalize with respect to unseen situations at
the weakest links. i.e. infrequent SEs and transitions. It is also guaranteed not to
generalize at all in dead transitions.

One goal of CrySSMEx is to create a model which minimizes the uncertainty of the



output of the underlying system given a sequence of inputs. If the model mimijcs
the underlying system well, this uncertainty will reach zero. This uncertainty is
what is gradually eliminated in the CrySSMEx-loop.

Fully eliminated uncertainty terminates CrySSMEx, i.e. after the SS)M fully de-
scribes the data in () there is nothing more for CrySSMEx to do. This is precisely the
point at which CrySSMEx could be made part of an active learner: by resampling 2 to
cover ignorance in the SSM regarding the underlying SDTDS (cf. Section 17.2.1).
The resampling should be done by interacting with the underlving SDTDS in a
manner which should make infrequent SEs and transitions more frequent as well as
it should eliminate dead transitions.

There are of course many strategies for how to patch up the holes in the SS)I.
One is to generate an input sequence which according to the current SSM should re-
sult in more uniform SE frequencies, i.e. that states should be visited approximately
the same number of times. Another method would be to interactively (while the
CVQ quantizes the state space) force the SDTDS to follow previously dead transi-
tions. This must be done interactively since, based on the SS\I, it is iinpossible to
know what will happen in the dead transition. A reasonable strategy could be to
generate a new () that maximizes the probability that the underlying SSM should
fail to predict the SDTDS. To prevent loops, it is probably beneficial to let the
new ) contain the previous Q as a subset. When this new  has been used to
create a new model, the whole resampling procedure could be started over again.
For every iteration, the induced model should better mimic the underlying svstem
since the data on which it has been trained was selected to be as problematic for
the underlying systemn as possible®.

By Empirical Machine, I refer not only to systems built on CrySSMEx. As cur-
rently implemented, CrySSMEx has its specific limitations and features which are not
meant to constrain the concept of Empirical Machines. Empirical Machine means
a system of model induction which should create a model of a simulated svstem
that should be more accessible to queries than the underlying svstem itself. In par-

ticular, the model must be able to answer queries regarding its own inabilities (i.c.

SA similar idea was developed already in Jacobsson and Olsson (2000) (which in turn was
based on Jacobsson (1998)) where. problematic. prototypical input patterns were extracted from
feedforward networks by “inverting” them.
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Figure 18.2: Outline of an Empirical Machine. The initial model of the underlying
system queries the underlying system in order to improve itself. A sequence of models
is thereby created, where increasingly detailed queries can be given as the deviance of
the models from the actual system decreases. A user can potentially query the Empirical
Machine which acts as an adapting proxy for queries. The queries from the uscr could be
used to guide the refinement of the underlying models.

ignorance) to answer certain queries. Apart from creating the model, the Empiri-
cal Machine must also have a mechanism for generating a new set of observations
which should remedy the ignorance in the current model. Traditionally, RNN-RE
methods assumne finite state models, but other models are of course possible. For
example. a similar active learning rule extractor was suggested by Craven and Shav-
lik (1994), but it was limited to feed forward networks only. An Empirical Machine
is to be regarded as an automatic method for creating models of simulated system,
models that should in principle never stop being refined (or, at least verified) as
long as the machine is running. An external user may of course provide guidance
by providing additional queries regarding the underlying system. The outline of an
Empirical Machine in conjunction with an external user is depicted in Figure 18.2.

Observant readers will remember it was previously argued that it is preferable
to let CrySSMEx be compositional, i.e. to collect data from the SDTDS as it was op-
crating in its domain (cf. discussion in Section 9.1.2). By recollecting data actively,
the patterns of an underlying domain of the SDTDS will not be used as heuristics
in generating the rules which will result in many aspects of the rules not being

relevant for the SDTDS as it is actually operating in its domain. In Jacobsson
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and Ziemke (2003b) (and Appendix D) it was shown that by using the domain as
heuristics, significantly fewer states were extracted than if breadth first search was
used. This active learner is therefore more suitable for systems that are not strictly
bound by a constrained external domain. For example, the a"b"-predicting R\ Ns
(cf. Section 12.2 and appendices C and D) are not really intended to do anything
else than predict a"b"-strings. An Empirical Machine might, however. “conduct
experiments” on the RNN using any non-a"b"-string resulting in big SSMs with
largely irrelevant aspects in terms of a"b™.

The reason I define and discuss Empirical Machines is that, apart from being
a potential extension of CrySSMEx, it also provides a framework for other poten-
tial RNN-RE algorithms. If one wants to design a rule extractor for the purpose
of building an Empirical Machine, some arguably important goals for RNN-RE
algorithms and their rules are highlighted:

e By providing rules that can be queried, fidelity could potentially coexist with
comprehensibility (cf. discussion in Section 7.2.2) since large incomprehensible
rule sets can be viewed through queries that accentuate aspects of relevance
for the user. This places a focus on the querability of rules as a quality
criteria rather than the traditional criteria fidelity, accuracy, consistency and
comprehensibility (cf. Section 4.2.4).

e The rules should be able to assess some aspects of their own ignorance. This
is important not only for the Empirical Machine framework, but also for the
possibility of providing estimations of confidence when the rules are used to
predict or model the underlying system.

e The user can, but is not required to, guide the extraction. In essence, this
means the extraction process is further automated since the user needs to do
nothing more than provide the Empirical Machine access to the underlying
system. Full automation means the Empirical Machine can more easily be
incorporated as a constituent of larger systems (which is suggested in Sec-
tion 18.6).

e In order to build an Empirical Machine from a rule extractor means it must
be “user independent” since it must interact with the underlving svstem au-

tonomously. The importance of freedom from, or consistency over, parameters
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becomes accentuated since these parameters would be inherited from the rule

extractor to the Empirical Machine.

The first point is perhaps the most important for the field of RNN-RE since it
would motivate research on rule extraction also when the rules are bevond human
comprehension. Human comprehension has its limits but [ see no reason why
extracted incomprehensible rules should be deemed worthless if they accurately
describe the underlying phenomena. As Einstein once put it: “A scientific theory
should be as simple as possible, but no simpler”. The challenge for rule extractors
is to show that this may also be true beyond the limit of human comprehension.

Most likely, the extracted models will quickly explode in size as every hole
patched in the SSM is likely to generate a larger SSM with even more dead transi-
tions. Therefore some strategies, regarding what aspects of the SSM should be the
focus of further resampling of the SDTDS, must be devised. Such interestingness
measures are commonly used as heuristics in computational scientific discovery and

this connection is investigated in more detail in the following sections.

18.5 Popper and machine learning

Scientific discovery involves two main subprocesses; creativity and criticism. Or as
Popper states it; “the work of the scientist consists in putting forward and testing
theories.” (Popper (1990), p. 31). Traditionally. the machine learning field has
been more involved with the former rather than the latter. Ironically. however. this
aspect of science is perhaps not the most accessible for automation. To automate
something, you must first understand it enough to program it (Chaitin, 2005).
Popper states: “The initial stage, the act of conceiving or inventing a theorv, seems
to me neither to call for logical analysis nor to be susceptible of it™ (Popper (1990).
p. 31). This has of course received criticism from proponents of machine learning
approaches to science; “It is unusual for an author. less than one-tenth of the wav
through his work, to disclaim the existence of the subject matter that the title of
his treatise announces. Yet that is exactly what Karl Popper does in his classic,
The Logic of Scientific Discovery™ (Simon (1973), p. 471,). This could simply

be attributed to a poorly titled book. The original title in German was ~Logik
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der Forschung” (Popper, 1935) which is more accuratelv translated as "Logic of
Research” (which sounds less powerful, I suppose). Even more accurately, the book
should perhaps be titled “The Aspects of Science that can Actually be Reduced to a
Logical Description” or, “How to Separate Science from Non-science”. The last title
would indeed reveal the main ambition that Popper seemed to have with his book:
to give a detailed description of what science is and how to recognize pseudoscience
disguising as science.

The machine learning literature is strongly influenced by Herbert A. Simon,
a strong proponent of machine intelligence applied to realistic scientific probles.
Simon’s articles present a strongly descriptive view of science. A paper on a ma-
chine learning technique applied to a scientific domain is typically introduced by
a description of a success story where a scientist has discovered a novel law. In
Simon (1992), for example, diaries, correspondence and laboratory notebooks of a
few noteworthy scientists are studied to find patterns in their creativity, intuition,
assessment of the validity of ideas and planning of experiments etc. A challenging
task indeed. As I see it. the basic problem is. however. that intuition and creativity
are not matters easily approached by other means than introspection. Ideas about
scientific creativity may possibly be no more than sophisticated guesses at best.
since the problem of scientific creativity itself may not be a problem open to the
scrutiny of scientific methods (Popper. 1990). The science of creativity is not a
science at all, in fact. if we follow Popper’s definition of science.

Popper’s demarcation of science from non-science, or pseudo-science, is based on
his view that science should deal exclusively with falsifiable statements. If a state-
ment cannot be falsified through observations, then it is not scientific. Falsification
is, however, a property of the statement itself, not of the source of the statement.
In other words. in Popper’s philosophy of science, the source of statements i~ a
wild-card. Popper never states that there are no logicallyv built up methods that
can come up with falsifiable statements, i.e. he never excludes the possibility of
the creative element of the scientist being automated. He merely claims that the
analysis of human creativity is intractable, and this does not. in my view. exclude

the possibility that logically built systems may have ~creative” features. Sunon

. e . . e or S A)‘
and others have certainly been able to develop sev eral such logical programs ton

164



artificial creativity in scientific domains such as mathematics. chemistry. physics
astronomy biology, medicine etc. (Simon, 1995/96; Colton & Steel. 1999). Novel
discoveries are rare (typically known facts are rediscovered) but it does happen.
Others have embraced the non-logical nature of scientific discovery and let “ran-
dom” evolutionary processes be the basis for creative discoveries (Koza et al., 2003).
Through the use of genetic programming which builds on random mutations, ran-
dom crossovers and fitness-based stochastic selection, Koza et al. have been able
to find novel non-intuitive solutions to complex engineering problems (typically in
the field of electronics).

What defines computational scientific discovery? I would hold that Popper’s
definition is a good one to describe the middle word; i.e. that only falsifiable state-
ments are “scientific’. “Computational discoveries” are discoveries made by an
algorithm run on a computer. The process of computational discovery should also
involve minimal, or no, human intervention, to distinguish it from computer aided
research where the computer is used as a tool in the hand of humans. *Discovery”
is, in my view, a creation of a falsifiable, yet not falsified, statement about some-
thing. The creation itself can be made in any arbitrary way. Since the source of
statements bears no relevance in the assessment of their falsifiability, the nature of
the source needs no further specification. For the current discussion, we can assume
it to be random, human or a highly sophisticated machine learning algorithm. It
would be possible to call such statements “facts”. but in Popper’s philosophy, the
notion of a fact is problematic. Nothing can be known for sure. but some state-
ments can be stronger than others by being logically improbable to be true unless
they really are true. That is the essence of falsifiability.

You might react to the word “something” in “statement about something”.
Surely science must be about scientific subject matters, such as physics. medicine
or chemistry? But, such a definition of science would be purely descriptive and
provide no indication of when or if the study of a particular subject matter becomes
a science. On the contrary, I would hold that a proper definition of science is a
definition of the scientific method, not of the subject matter. It is the nature
of how we approach a subject matter that makes some knowledge scientific and

other knowledge not. If a subject is approached with a sound scientific method,
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then the knowledge generated deserves to be labelled sctentific knowledge®. This is
however seemingly not viewed as a sufficient criterion by researchers in the field of
computational scientific discovery. The problem domains under study are typically
within traditional natural sciences or mathematics (e.g. Simon, 1995/96; Colton &
Steel, 1999; King et al., 2004).

Another striking difference between Popper’s philosophy of science and tra-
ditional machine learning is the anticipated difficulty of approaching the matter
systematically. “The central problem of epistemology has always been and still
is the problem of the growth of knowledge. And the growth of knowledge can be
studied best by studying the growth of scientific knowledge.” (Popper (1990), p. 15).
The reason that scientific knowledge is considered easier to approach systematically
is simply that it is a very limited form of knowledge for which methodologies can
be defined. Consider common sense knowledge on the other hand; we all have it
(more or less), but can we single out a method for acquiring common sense knowl-
edge? In comparison, scientific progress is a social and well documented process
(Kuhn, 1962). Interestingly, however, proponents of traditional computational sci-
entific discovery hold: “Scientific discovery is generally viewed as one of the most
complex human creative activities” (Langley et al. (2002), p. 1). I do believe how-
ever, that this argument is more a consequence of analysing the result of scientific
method, than the scientific models themselves. The scientific method for testing
these models is in itself very simple in principle.

The ambition of Simon and his followers is indeed impressive. They attempt to
mimic the processes by which the great scientific minds of the past have achieved
success. But it is like deciding that Mount Everest is a good place to start if
you want to learn mountain climbing. The principle of climbing mountains is very
simple: just walk or crawl or climb towards higher ground until you reach the
top. The difficulty is more a consequence of the mountain. Likewise, the scientific
process is elementary; the resulting complexity is simply a consequence of applyving
it to complex systems. Ironically, Simon himself provides an appropriate analogy
to this in his well known ant on the beach metaphor (Simon. 1969): the complex

path taken by an ant on the beach may be a consequence of the complexity of the

4Not to be confused with “truth” or “true knowledge”. Scientific knowledge is. and should
always be susceptible to change.
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environment rather than the complexity of the ant. A simple mechanism may result
in complex phenomena if put in complex contexts. And I believe this is precisely
the case for the scientific method.

The ambitions set aside, in practice, the machine learning field is tyvpically
focused on induction of theories from data. Data is gathered from which models
are subsequently induced. Various heuristics are used to guide the model induction

towards interesting and comprehensible models. Some measures of interestingness

are (Colton et al., 2000):

o Empirical plausibility of conjectures. They do not suggest always discarding
conjectures refuted by observations, instead the conjecture could be altered
to fit the data. But the bottom line is that plausibility is taken as a criteria
for interestingness.

e Nowelty. If a conjecture or concept can be deductively derived it cannot be
considered very novel.

e Surprisingness. Tautologies are the least surprising of conjectures.

o Applicability. The proportion of models in a database to which the conjecture
or concept is applicable.

e Comprehensibility and complexity. Simpler conjectures can be considered
more interesting.

o Utility. Ability for user to explicitly guide the search for conjectures by spec-
ifying a focus that indicates interestingness in the domain from the user's

perspective.

Interestingly, Popper’s falsifiability is not in the list. In fact, Popper is seldom cited
at all in the computational scientific discovery community. This may of course be
due to Simon’s early criticism of Popper’s refutation of analytically approaching
the nature of human creativity.

In my opinion, Popper provides machine learning with a very sound philosophi-
cal, as well as practical basis, for automating science. He could well be criticized for
providing a very poor description of how science is conducted in practice. Most sci-
entists do not focus their attention and experiments on falsifving their own claims.
Moreover, much that we consider scientific knowledge may not be entirely falsifi-

able. But Popper’s philosophy of science is not descriptive, it is normative. He
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simply states what he considers scientists should do with their conjectures. not
what they are actually doing. As a consequence, he gives a fairly nonanthropomor-
phic view of science. The act of falsifying statements is not a tvpical human thing
to do. We prefer confirming our ideas and subsequently applying them. Striving
for falsification is, however, arguably a very logical ambition (if you believe in Pop-
per’s arguments, that is) and falsifiability should thereby be a good heuristic for
evaluating statements we want to be scientific. A good heuristic, that is. also when
computer-evaluated.

Moreover, as Popper denies any methodological approach for understanding cre-
ativity, there may also not be any methodological approaches for designing devices
that exhibit creativity. Thus creativity becomes a wildcard. Theories could be
generated by the throw of a dice a la Genetic Programming (Koza et al., 2003),
or by a sophisticated guessing game a la Inductive Logic Programming (Muggle-
ton & Raedt, 1994). With any arbitrary generator of statements, it would still fit
the Popperian framework as described here. The degree to which the creativity is
successful can in a Popperian framework be evaluated by the degree to which the
statements are falsifiable, but not yet falsified. Consider Einstein, for example: the
assessment of him being a successful creative scientific genius comes from his. quite
falsifiable ideas still being unfalsified (despite some considerable effort) a hundred
years after his 1905 annus mirabilis. But if instead a monkey at a type-writer had
put forward the theories by an incredible coincidence, these would have been just as
powerful (even though it is unlikely the monkey would have been given any credit
in the unlikelv event anyone actually started taking them seriously).

Of course, if we developed machine learning techniques that use Popperian
falsificationism as a basis, we should not expect this science to resemble human
science. Human scientists do not follow the strict schemes of falsificationism. To
better understand human scientific creativity, we should instead follow Simon's
initiative to be inspired by descriptive philosophies of science.

A similar problem is mentioned by Witkowski (2002) who created a Popperian
model of animal behaviour. Although it may be reasonable to assume that a lim-
ited form of assessment of falsification of theories could occur in animal brains. the

analogv should not be taken too seriously: ~Clearly it will not be appropriate to
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suggest that the principles embodied in ‘The Logic of Scientific Discovery' can be
wholly or directly incorporated into an animat controller, where the aim is to pro-
vide engineering analogues of animal learning and behavior.” (Witkowski (2002).
Section 6). The same can perhaps be said if we were trying to provide engineering
analogues of the human epistemology of science which seems to be the ambition of
Simon et al. But my ambition is, rather than to strive for a model of human episte-
mology as it manifests itself in traditional science, I want to develop a scientifically

based Machine Epistemology directed specifically at simulated systems®.

18.6 Future direction II: Popperian Machines

In the following section I suggest how the Popperian framework could be used as a
basis for future RNN-RE algorithms that conduct an automatic scientific process
on simulated systems: Popperian Machines®. In the suggested Empirical Machine,
a model is induced through a series of queries to the underlving simulated systemn
for the purpose of acquiring a better model. Every simulated system that is anal-
ysed within an Empirical Machine will thereby have an adaptable query-proxy (the
induced model) to which a user can ask certain questions. If a particular question
requires aspects of the model that are not yet supported by data. the Empirical
Machine will, as suggested in Section 18.4, automatically interact with the under-
lying system in order to acquire this data. In effect, the Empirical Machine acts as
an automated experimenter conducting tests on the underlying system.

The Empirical Machine should be able to falsify statements, firstly by consulting
its model directly, and secondly by acquiring data that potentially could falsify the
statement. Queries to the Empirical Machine (let us adhere to SSMs in these
examples) could be in the form of statements, such as “There exists an SE to

which the input symbol a will always cause a transition from all other SEs”. The

5The relation between machine learning and the philosophy of science is also arguably a strong
one (e.g. Williamson, 2004; Korb, 2004) and this strong connection is what I propose should
be utilized in practice. Moreover, in recent interesting arguments against the widespread use
of “data-driven” data mining in the bioinformatics field, Popper has been used as an argument
against machine learning induction (Allen, 2001a, 2001b; Gillies, 2001) '

6Not to be confused with Dennett’s Popperian creatures (Dennett. 1996). The Popperian
creatures are based on the idea that the anticipations of the outcome of different actions (through
a sophisticated enough internal mental representation of the world) allow the creatures to select

among their actions before performing them.
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Empirical Machine should, to test (i.e. to falsify) the statement based on this

specific example query, check all a-transitions and see if they all lead to the same
SE. Moreover, if any a-transitions are dead (Definition 9.7). it should attempt to
extend (2, through interaction with the underlying SDTDS, so that data is collected
regarding these transitions. Clearly, the implementation of an Empirical Machine
requires a number of complex declarative programming problems to be solved. but
let’s assume that these are solved for the relevant cases.

If the Empirical Machine can be entrusted to actually collect the data necessary
to falsify statements, then populations of Empirical Machines, each adjusted to their
own underlying system, could serve as a basis for falsifying statements that are over
populations of systems. For example, the statement in the previous example could
be expressed as: “In all systems of this population, there exists an SE to which
symbol a will always cause a transition from all other SEs.” If such a statement
is falsifiable for just one of the underlying systems then it is falsifiable. If it is
subsequently proved false in just one of the underlying systems, then it is false.

Although the creativity aspect of this framework was previously referred to
as a “wildcard”, it should be noted that a successful falsification could be very
informative for generating new statements. For example, statements about all
underlying systems, falsified merely for one system, X, could be refined as “For all
systems except system X...”. Such divisions could lay the ground for dividing the
underlying systems into subclasses based on what statements can be given about
them. Concepts such as “Systems for which statement S is true” could then be
introduced into the query language (cf. concept induction Colton et al. (2000)).

The framework for generating falsifiable statements about the simulated system
I term a Popperian Machine and is depicted in Figure 18.3. The concept is fairly
simple; the generator of statements fills a list of statements which the Empirical
Machines attempt to falsify. The statement list should only contain falsifiable, vet
unfalsified statements. How to populate the list and what statements should be
prioritized is discussed next.

Popper describes the scientific process following the creation of a novel hypoth-

esis as:

“First, there is the logical comparison of the conclusions among them-
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Figure 18.3: Outline of a Popperian Machine. A statement generator (which is unde-
fined and could very well be a human user) feeds a statement list falsifiable statements
about a set of underlying systems. The statements are reformulated as queries (.ainwd at
falsifying the statements) to a set of Empirical Machines that interact With.tll(‘ll‘ assoCi-
ated underlying system in order to build models that can answer the queries. Falsified
statements are then deleted from the list of statements. Over time, the list of ftateuwm.\
should have increasingly higher empirical content, in terms of them being falsifiable, vet

not falsified (Popper. 1990).
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selves, by which the internal consistency of the system is tested. Sec.
ondly, there is the investigation of the logical form of the theory, with
the object of determining whether it has the character of an emf)iricaj

or scientific theory, or whether it is, for example, tautological. Thirdly
there is the comparison with other theories, chiefly with the aim of
determining whether the theory would constitute a scientific advance
should it survive our various tests. And finally, there is the testing of

the theory by way of empirical applications of the conclusions which
can be derived from it.” (Popper (1990), p. 32)

In accord with the suggested framework in Figure 18.3 I maintain that many
aspects of what Popper considers a scientific process could be automated. How to
implement the logic required for the deductive reasoning regarding, for example,
“internal consistency” and “logical form” is not in the scope of this thesis. But
such matters are highly central in the field of Inductive Logic Programming (Mug-
gleton & Raedt, 1994), since it involves generating (guessing) statements that are
of internal consistency and of particular logical forms. The fourth step, “the testing
of the theory” is, in my suggested framework, the responsibility of the Empirical
Machine.

The aspect of falsifiability becomes relevant in the third step, i.e. in the assess-
ment to which degree a statement constitutes a scientific advance. How to exactly
define and implement the assessment of falsifiability itself is also a grand issue be-
yond the scope of this thesis. I would, however, suggest some basic directions.
Firstly. some statements are inherently unfalsifiable by their nature (e.g., tautolo-
gies). Others require enormous resources in order to test them, which thereby
renders them less falsifiable. Other statements are open-ended since they involve
infinity. For example, if the statement “Transitions over symbol a from SE ¢; will
always lead to the same SE’ is not falsified after 1000 consecutive as, should 1000
more be tested?

There will be degrees of falsifiability as well as degrees of how much falsification
has been attempted through experiments targeted at a specific statement. The
concept of “degrees of falsifiability” occupies large portions of Popper (1990). There
is also a number of possibilities of how to exactly formalize and implement the
assessment of the falsifiability of statements. I will not attempt to suggest any
particular strategy for the general case. For example, Popper proposes that the

“logical probability of a statement is complementary to its degree of falsifiability
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(Popper (1990), p. 119). In other words, if it seems very probable that a statement
will be falsified through observations, it should thus be considered falsifiable. How
exactly this logical probability is assessed is, however, likely to depend on the
underlying logical language in use.

Within the context of SSMs and underlying SDTDSs, however, 1 would suggest
that falsifiability could quite easily be translated into universality and precision
(Popper (1990), section 36). Universality and precision are described by Popper
as the two outstanding demands for statements with the highest possible empirical
content. A statement is more universal than another if it applies to more situations.
A statement is more precise than another if it forbids more outcomes in those
situations. For example, a statement about all days of the week is more universal
than a statement only about Mondays. And a statement that on the referred days
100% of all people drink coffee is more precise than one stating that only at least
80% drink coffee, since the latter allows more observations without falsifying it".

Universality of SSM-statements could be translated into the number of situa-
tions for which a statement applies, i.e. the number of systems for which a statement
applies, or number of SEs. Precision could be translated into an assessment of how
well the statement constrains the behaviour of the system into a limited set of pos-
sibilities. Universal statements will thereby be more falsifiable since more systems
and situations would occur in which the statement can be falsified. Precise state-
ments would be more falsifiable since fewer of the probable observed situations will
allow the statement to be considered unfalsified.

Universality and precision could potentially be competing goals. It is, for exam-
ple, probably easier to give a very precise statement about a single system compared
to one for a wide range of systems. For example, an SSM extracted from a single
SDTDS is a very precise (and falsifiable) statement that “This SSM describes how
this specific SDTDS behaves”. The full range of generated statements should thus
ideally cover a spectrum of universal and precise statements (cf. Figure 18.4).

By promoting universality and precision alone, short and simple statements
should become more prevalent than complex ones. A statement about all svstems

requires no lengthy explicit list of what systems it applies to, for example. And pre-

To falsify the statements you need, for the first one, only observe that one person does not
drink coffee, whereas the other one require observations of at least 20% of the population.
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Figure 18.4: Falsifiability as universality and precision. Statements about syvstems (cf.
Figure 18.3) occupy points on the axes (illustrated by the circles) and would ideally cover
a spectrum of from precise to universal ones.

cise statements should describe as few allowed situations as possible. The simplicity

could also be further, and implicitly, promoted in the generation of statements:

“Simple statements, if knowledge is our object. are to be prized more
highly than less simple ones because they tell us more: because their em-
pirical content is greater: and because they are better testable.” (Popper

(1990), p. 142).

With regard to the simplicity of statements, I would again argue that Popper s
philosophy is ideal for machine learning. His chapter on simplicity (Chapter 7 in
Popper (1990)) includes, for example. the section ~Elimination of the Aesthetie
and the Pragmatic Concepts of Simplicity”. Simplicity is a very central theme in
epistemology, vet with few successful logical definitions of the concept, according
to Popper. His approach is. quite naturally, to relate simplicity with falsifiability
in an attempt to find a nonanthropomorphic definition of the concept.

The Popperian Machine could fit very well into the context of rule extraction

since it would not only induce rules from underlying svstems. but also statements

~ientific principle : ell tested.
about the svstems that are based on a sound scientific principle and well t
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Moreover, the extracted rules themselves would reflect and support these scientifi-
cally guided statements. The whole ambition is to maximize the empirical contents

of the statements and thereby also of the underlying rules. Therefore I suggest
5o

that Popperian Machines are an important future direction for the field of rule

extraction.

18.7 Chapter summary

In this chapter I argue that automated analysis of simulated systems is both promis-
ing and required. Promising in the sense that the ease of observability and manip-
ulability is unmatched in reality (cf. Section 18.1), and required in the sense that
these system may be large, complex. counter-intuitive and numerous since creation
of simulated systems is easy (cf. Section 18.2). The researcher per system ratio is
low today and likely to decline. In my opinion, the basic reasons for automating
anything are necessity and possibility. These criteria are certainly fulfilled when
it comes to automated analysis of simulated systems. The analysis of simulated
systems should be automated not because the most significant research questions
are found in them, but because the process is too expensive for humans to do it.
The volume and insignificance of the many individual simulations renders them too
unrewarding for human reasoning.

In Section 18.3 I also challenge the notion of comprehensibility as the primary
motivation for RE (cf. Section 4.2.4). A model has more virtues than being readable
by humans. Many simulators themselves are good examples of these. A weather
simulator is, for example, very complex but acts as a proxy for queries about the
actual weather (which is even more complex). The weather presenter in turn acts
as a proxy for the simulator, giving us a presentation that laymen may understand.
Although the weather simulator itself is very complex and incomprehensible to most
of us, it generates a result we may understand and appreciate; a weather forecast.
Similarly, rules extracted from an SDTDS may be incomprehensibly complex, but
it acts as a model with a clearly defined syntax of which queries can be asked.

In Sections 18.4-18.6 two abstract frameworks for future RNN-RE research were

suggested. These frameworks are suggested on the basis that fidelity should be con-
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sidered more important than comprehensibility (cf. Section 4.2.4) since models that
correctly mimic the underlying system should generate better answers to queries
about the system. Empirical Machines are proposed as active learners that target
the ignorance of their best models in order to gather interesting data from the
system through interaction (i.e. experimentation). Based on a philosophical discus-
sion of Popper in relation to machine learning and automated scientific discovery
(in Section 18.5), it is suggested Popperian Machines provide a scientifically based
selection that guides the Empirical Machines towards scrutinizing statements of
high empirical content. These statements (i.e. theories) about populations of sim-

ulated systems, that should be falsifiable but not falsified, is the desired output of
the Popperian Machines.
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Chapter 19

Summary and Final Thoughts

19.1 Contribution highlights

The contributions of this thesis are distributed in its three parts: the first provides
an account of the history of the field, the second makes a contribution to the field,
and the final part views the field from a new, more speculative perspective and
suggests future directions.

The goal of Part [ is to provide structure to the RNN-RE field through a tax-
onomy and review of earlier techniques. In Part II CrySSMEx is suggested as an
alternative to the reviewed techniques. It is not only a new technique, but is also
separated from the pattern of the previous techniques by integrating elements that
were separated earlier. In Part III, not only some more or less speculative ideas
for future work are suggested. but also concepts that question the very idea of rule
extraction by viewing it as an automated scientific process.

To summarize, the main contributions of this thesis are:

e Part I: A taxonomy for RNN-RE to organize the field of RNN-RE and to

suggest some possible common goals for the field.

— A taxonomy of RNN-RE techniques.
— A collection of references of (hopefully) all earlier RNN-RE papers,
A historical account of how RNN-RE has developed as a ficld.

— A description of RNN-RE separated into four constituents: quantization,

observation. construction and minimization.



e Part II: The CrySSMEx-algorithm which distinguishes itself from al] earlier
RNN-RE approaches in several ways.

— The first integration of quantization, observation. construction and min-

imization into one algorithm.

— The SSM as a new form of an extracted model.

— The CVQ as a novel quantization algorithm which is both divisive and
agglomerative.

— The source code, and its open source availability!, is itself a contribution

which unfortunately is too technically detailed to be dealt with more

thoroughly in this thesis?.
e Part III: New connections to other fields and future directions are suggested.

— A connection of RNN-RE is made to other fields of machine learning
(and of control theory etc.).

— More than ten possible improvements (some of which have actually
been implemented) and approximately 20 challenges for RNN-RE and
CrySSMEx are suggested.

— A motivation for the automation of scientific analysis of simulated sys-
tems is given.

— Empirical and Popperian Machines are suggested.

While the thesis began with references to Plato and ended with references to
Popper, the contribution that should be emphasized above all the others, and which
is very far from an abstract philosophical discussion is CrySSMEx and its implemen-

tation.

19.2 Final thoughts

RNNs, and simulated systems in general, are, since they are simulated entities.

very “studyable” once we have the tools to study them (cf. the “golden properties®

10n cryssmex.sourceforge.net.

21t may be worth mentioning that I spent far more time
than on the thesis text and the presented experiments comb
solving some interesting problems (e.g., the Voronoi diagram plotter u
and 12.3, which can plot within arbitrarily merged Voronoi compartmen
never made it into the thesis.

on the implementation of CrySSMEx
ined. This implementation involved
sed to generate Figures 12.2
ts) that unfortunately
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of Section 18.1). Furthermore, the algorithms reviewed in thijs thesis. together
s thesis. tog

with CrySSMEx, may hold the seed of a deeper and more general notion of analv«is
than previously employed for RNNs. Better analysis tools may in turn help R\N
research to progress more rapidly once we obtain a deeper understanding of what

the networks are actually doing. After all, in many other disciplines of science. the

quantum leaps in progress often stem from more sophisticated analvsis tools and
measuring devices producing qualitatively new data conflicting with existing models
(anomalies) that eventually may result in scientific revolutions (Kuhn. 1962). Todav
we have deep, though partially conflicting theories of what the RNNs will be able
to do in practice (i.e. the Turing machine equivalence vs. the difficulty of acquiring
correct behaviour through learning), but we have no means of evaluating in an
efficient manner what particular instances of RNNs are actually doing.

With critical eyes, rule extraction from recurrent neural networks may seem an
infinitesimal subfield within another infinitesimal subfield and thereby it has very
limited potential to deliver interesting scientific results. But if there were a future
microscope for zooming in on RNNs, I would maintain that there are good reasons
to believe rule extraction mechanisms are the operational parts, or “lenses” . of that
microscope. And as any real-world microscope, this RNN-microscope will, if general
enough, be able to zoom in on other types of simulated dynamic svstems and thus
contribute to the scientific community in a considerably broader sense. Not in the
sense that the biggest research questions are found in these systems, the reason for
automating the simulated system analysis is precisely the opposite; it is simply too
expensive to let humans do it when the systems are individually too uninteresting
and when the number of them per researcher grows too large. The Empirical and
Popperian Machines are suggested with this in mind. My hope is that the ideas
suggested in this final part of the thesis will help populating the artificial “Plato
caves” (cf. Chapter 1) with prisoners that have epistemic hunger® and the capability
to explain their most informative conclusions about their universes to the creators

of these universes.

3Le. curiosity (Dennett, 1996, p. 92).
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Appendix A

Substochastic vectors

Some important types of, and operations on. substochastic vectors are defined below

(some of these are also found in Paz (1971)):

Definition A.1 A substochastic vector U is a vector where all elements are

nonnegative and the sum of the elements is < 1. (0
A special case of the substochastic distribution is where all probabilities ave zevo:

Definition A.2 An exhausted substochastic vector U is the special case of a

substochastic vector where all elements are 0. O

And, as another special case, we find vectors with more conventional probabilistic

properties:

Definition A.3 A stochastic vector U is the special case of a substochastic vector

where the sum of the elements is exactly 1. U

And a special case of stochastic vectors is where only one element is probable:

Definition A.4 A degenerate vector is a stochastic vector one element with

probability 1 and the rest 0. [

Definition A.5 The entropy of an n-dimensional substochastic vector U is here

denoted as H () and is calculated by

QW]
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By definition 0 - log) = 0. Entropy is not really well defined for substochastic
vectors, but in the algorithm of this thesis, entropy will onlv be calculated over
stochastic or exhausted vectors. Therefore the entropy as described here will be
according to proper theory (Cover & Thomas, 1990) unless the distribution is ex-

hausted in which case function, here called entropy, will return zero.

Definition A.6 The function normalize is used to transform a substochastic vec-

tor into a stochastic vector, if possible, according to

v . n —
YA if Zi:l v; >0

v-0 otherwise

normalize(v) =

O

Definition A.7 The support set of a substochastic vector ' = (v}, th,....T,) is

the set {i : ¥; > 0} and is denoted sup(¢). O
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List

Appendix B

of abbreviations

CrySSMExX

CvQ
NDI-equivalence
RE

RNN

RNN-RE
SDTDS

SE

SSM
UNDI-equivalent
VQ

A

Q

Crystallizing SSM Extractor
Crystalline Vector Quantizer

Not Decisively-Inequivalent

Rule Extraction

Recurrent Neural Network

RNN specific RE

Situated Discrete Time Dynamic Svstem
State Element (of an SS\)
Substochastic Sequential Machine
Universally NDI-equivalent

Vector Quantizer

Quantizer function

Transition event set (from an SDTDS)

Table B.1:

List of important abbreviations.
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Appendix C
Jacobsson & Ziemke (2003a)

Improving Procedures for Evaluation of Connectionist
Context-Free Language Predictors!

Henrik Jacobsson, Tom Ziemke

Abstract

This paper shows how seemingly minor differences in training and evaluation pro-
cedures used in recent studies of recurrent neural networks as context free language
predictors can lead to significant differences in apparent network performance. We
therefore suggest standard evaluation procedures whose use would facilitate better
reproducability and comparability.

C.1 Introduction

A number of recent papers have investigated the use of Recurrent Neural Networks
(RNNs) for predicting strings belonging to the class of the Context Free Language
(CFL) a"b™ and the Context Sensitive Language (CSL) a"b"c" (Wiles & Elman,
1995; Tonkes et al., 1998; Rodriguez et al.. 1999; Tonkes & Wiles, 1999; Bodén et al.,
1999, 2000; Chalup & Blair, 2000; Bodén & Wiles, 2000; Gers & Schmidhuber, 2001;
Bodén & Blair, in press; Schmidhuber et al., 2002). Each of these papers makes
valuable contributions, but when we compared them, we noticed two problems:
Firstly, sometimes a number of details of the evaluation method (for evaluating
the generalization ability of the networks) were undocumented. Secondly. where
details of evaluation were provided, minor differences between the methods used
in different papers were found. This led us to carry out a series of experiments
with the aim to systematically investigate whether these differences may e}ffect the
Estimated Generalization Ability (EGA) for a given population of R.\§s. Such
differences may be an indicator that the reproducability and cpmparabihty of the
generalization ability presented in these papers might be questlon.ed. |
In our experiments we have varied three aspects of the testing pr(‘)‘(-edure in
order to see how the EGA of the RNNs is affected. These aspects are: Firstly. the

I'This is a verbatim copy of Jacobsson and Ziemke (2003a). Only the formatting mullt mnm}()'t
. : \A \; ‘|
information differs from the original (the bibliography is also not included here since it can
found elsewhere in the thesis).
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string order, i.e. the order in which strings of different len

a"b" are concatenated into the string which the RNN shoulcglt ;k)l:eflri(;? égio%;c?ll\l'l ntlsz
mazimum string length, i.e. the highest value of n of the a"b® strings in th;test
set. The third aspect, error tolerance is the degree to which the network is allowed
to make mistakes. The reason that the two first aspects are important is that an
RNN is a dynamical system with a potential sensitivity to its initial state which
can be based on previous inputs. Variations of these three aspects exist in the
above mentioned papers, but are in some cases just vaguely described, if at all. In
addition to these three, other important aspects, such as the number of networks.
number of repeated tests per network and basic definitions such as “success” are
varied and in some cases quite vaguely described.

The structure of this paper is as follows: First the investigated papers are
briefly summarized to give an overview of their experimental strategies. Then our
experiments designed to evaluate the sensitivity of the EGA with respect to testing
procedure are presented. The results of the survey and experiments are then fused
into some concluding remarks and recommendations.

C.2 Background

The papers that present results of CFL and CSL predictions with RNNs and their
testing approaches are summarized in Table C.1. The architectures focused on
in these papers were Simple Recurrent Networks (SRNs) (Wiles & Elman, 1995;
Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; Bodén et al.,
1999, 2000; Chalup & Blair, 2000), Sequential Cascaded Networks (SCNs) (Bodén
et al., 2000; Bodén & Wiles, 2000; Bodén & Blair, in press) and Long Short-Term
Memory (LSTM) (Gers & Schmidhuber, 2001; Schmidhuber et al., 2002). The
training algorithms used in these papers are either based on gradient descent (Wiles
& Elman, 1995; Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999;
Bodén et al., 1999, 2000; Bodén & Wiles, 2000; Gers & Schmidhuber. 2001: Bodén
& Blair, in press; Schmidhuber et al., 2002) and/or Evolutionary Hillclimbing (EH)
(Tonkes et al., 1998; Bodén et al., 2000; Chalup & Blair, 2000). There are, of course,
many other important papers in the field of CFL/CSL prediction and related fields.
but those not presenting quantitative studies of the generalization ability have been
omitted as they have no direct bearing on our results. Other papers in the field
of CFL- and CSL-prediction have also been omitted to make comparisons simpler,
i.e. only a”b” and a®b"c"” papers are included.

The training and test set sizes used in the cited papers are presented in Ta-
ble C.1, as well as the ordering of strings in the test set. Where there has been
any chance of misunderstanding the structure of the testing set /procedure. we l}a\'e
chosen not to make any assumptions. For example. when the test set is (‘axplame:-d
as “from depth 1 to 30” (Wiles & Elman, 1995) or “strings up ton = 12' (Bodén
et al., 1999) it may be implicit that the strings are ordered in an ascending order.
but as no explicit definition of string order is found, these papers are marked as
being ambiguous about the test set order. ‘ |

Among these papers, we found three different test set F)rdox'xngs: .m.ndom, as-
cending and descending order. Six out of eleven papers did not explicitly (l(ﬁl\(*
the order of their test set. The maximum string length of the test set also va.rul'q
among the papers. Furthermore, the details of the error tolerance were usually
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not discussed, i.e. it was actually quite unclear in some of the papers whether cor-
rect prediction once per string occurrence was enough to consider the prediction
successful or if the network needed to consistently predict all
seems, however, that the former is most commonly used.

It may also be worth noting that two papers (Gers & Schmidhuber 2001:
Schmidhuber et al., 2002) used slightly different domains, a"b"T and a"iy"c"T.
which strictly speaking are not the same languages as a”b” or a"b"c". The ter-.
minal symbol T gives the network a mechanism for resetting its state in a more
deterministic manner than otherwise. The comparison across these domains may
therefore not be reliable. Considering only comparisons within the domains. how-

ever, the terminal symbol may in fact improve comparability due to the potential
increase of determinism.

strings correctly. It

C.3 Experiments

The experiments presented in this paper are aimed towards evaluating whether
the string order, mazimum string length and error tolerance when testing RNN
predictors affect the EGA significantly for given trained populations of networks.
We therefore consider the training of the networks a secondary matter, i.e. no effort
has been spent on finding optimal parameters for the EH. In effect, the results may
not be comparable to other papers (a comparison that should not be done anyway).
Instead the training should just be seen as a necessary step to generate populations
of networks in which some effects of the testing parameters can be demonstrated.

C.3.1 The Testing Procedure

The test set is determined by the string order and maximum string length. Three
orderings of string are used; random, ascending, and descending. We let the max-
imum string length of the test set vary between 10 and 100. In each test, exactly
1000 strings of each length are included. The strings are concatenated into the
sequence which the network is trained to predict.

The performance of the network is recorded for the 1000 strings of each length it
receives. If we consider just one network we will have an estimate of the performance
of the network on each individual string length. This performance is typically higher
for short strings and lower for long strings. The performance is, however, not
necessarily decreasing monotonically and a string with a high n may be predicted
completely accurately, while the strings of length n —1 could at the same time be
completely inaccurately predicted. We have chosen to record the maximum string
length that the network processes correctly (string length is something whif‘h all
previous papers have mentioned when talking about the generalization ability gf
their networks), but this measurement needs to take into account th(? nonmonotonic
performance degradations for longer strings. The following definition will lead to

such a measurement. o , |
The correctness, c(n), of a network in terms of predicting a given length is

defined as no. of correctly predicted strings of length n (C.1)

no. of strings of length n
case was 1000 for all n up

c(n) =

where the total number of strings of length n in this
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861

T
o E E
S - a0 - -
g 3 g % 2
& 2 3 7 7
= A = = =
Wiles & Elman (1995) a"b" 1<n<12 * 1<n<30
Tonkes ct al. (1998) a"b" 1<n<10 * 1<n<12
Rodriguez et al. (1999) a"b" 1<n<1l asc | until failure
Tonkes & Wiles (1999) a"b" 1<n<10 * 1<n<12
Bodén et al. (1999) a"b" 1<n<10 * 1<n<12
Bodén ct al. (2000) a"b" 1<n<10 rand | *
Chalup & Blair (2000) a"b" 1<n<20 rand | 1 < n < 20*
— a"b"c? 1<n<20 rand | 1 < n < 20**
Bodén & Wiles (2000) a"b"c" 1<n<10 desc | 1 < n < “large
n
Gers & Schmidhuber (2001) { a"b*T 1<n<10to |* 1 <n <1000
1 <n <50
- — a'b"c"T | 1<n<10to |* 1 <n <500
1 <n <50
Boden & Blair (2002) a'b' I<n<10 |* %
Schmidhuber et al. (2002) | Refers to the data in Gers & Schmidhuber (2001)

*=not explicitly defined.

¥*=incrementally tested during training,.

Table C.1: A swmmary of CFL and CSL prediction experiments using various neural network architectures.



n 1 2 3 4 5 6 7 8 9T 10
11 1

c(n) 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 091 | 1.00 | 1.00 | 0.77 0.10 00[2) 1(1:) 0;

cr(n) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 [ 0.91 [ 091 [ 0.91 | 0.70 0.07 0:00 0.(1) 0.00

Table C.2: A realistic example of an evaluation of an RNN by using ¢(n) and ¢, (n) of

equation C.1 and C.2. If requiring a strong network, this network’s EGA is up to string
length 6 and if only requiring a weak network, the EGA is 11.

to the maximal string length. A correctly predicted string means that at least the
predictable part (i.e. not the first b) of the string is correctly predicted. As c(n) is
not monotonically decreasing it can not be used directly to unambiguously define
up to which string length the network is successful. In Table C.2 an exaniple of a
string evaluation is shown. From this example it is clear that there is no obvious
way to give statements of which maximum string length the network can handle.
In the example, the network can handle all strings up to a®b® but fails on some of
a’b’ , al%!® and al'b!! . It can also handle all of a'®*b!® | but none of a!?b'2 or
al*b* . Up to what string length should we then say that the network is performing
correctly?

To solve this we introduce a recursive definition of correctness, reflecting that
the performance on one string length depends also on the performance on all shorter
string lengths. The recursive correctness, c.(n), is defined as:

c (1) = ¢(1) (C2)
c(n) =c.(n—1)-c(n) forn > 1 ;

In the example of Table C.2, c.(n) is monotonically decreasing and only accepts
string lengths for which previous string lengths also have been correctly predicted.
The correctly predicted a'®b'® are now ignored since no correct predictions of
al?b'? were made.

The error tolerance is the quality demand on the network by the experimenter.
The highest error tolerance corresponds to the experimenter being satisfied with the
RNN correctly predicting strings only at least once and the lowest error tolerance
is when the RNN needs to correctly predict all strings. Chalup and Blair (Chalup
& Blair, 2000) addressed the issue of error tolerance explicitly and defined “weak
solutions” and “strong solutions” to correspond to networks satisfying the highest
and lowest error tolerance requirements respectively. We adopt these terms in this
paper. The EGA (using ¢,(n)) of the network in the example in Table C.2 is then
6 if we consider only strong solutions, and 11 if we only require weak solutions.

C.3.2 Architecture & Training Algorithm

The network architecture used in our experiments is an SRN and the optimisation
algorithm is an EH, see (Bodén et al., 2000) for details. The fitness is proportional to
the number of correctly predicted strings in a concatenated sequence of strings from
a"b" with 1 < n < 10 where each string length occurred exactly three tix‘nos (cf.
the testing procedure in the previous section). Three separate fitne.ss functions are
used: Frond, Fase a0d Fgese for random, ascending and descending st.rmg length .order
respectively, i.e. the only difference between the fitness functions is the ordering of

the strings. It should be noted that the aim of the experiment is not to evaluate
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the differences between these populations but to evaluate how the EGA varies
for these fixed populations under different testing strategies. The use of three
different populations may reveal different effects the testing procedure may have
on the estimated results. In fact any sufficiently large population would do as the
goal basically is to show that there are populations for which testing procedure
differences significantly affect the estimated performance.

The evolutionary algorithm was run for 10,000 generations with a mutation rate
of 0 = 1.0 and a population size of 100 of which 20 were selected as elite. The elite
group was saved to the next generation and was the group from which new networks
were generated. 120 runs were carried out for each fitness function with different
random seeds and the best network of each successful end-population was saved for
further analysis. A population was deemed successful if at least one of its networks
correctly predicted (the predictable part of) all strings in the training set.

C.4 Results

C.4.1 Training Results

Of the 120 experiments with each of the three fitness functions F,.gng, Fuse and
Fiesc the number of successful (in terms of correctly predicting the entire training
set) runs were 114, 75 and 76 respectively. All the statistics will be based on the
best network of each successful population. It is worth noting that the success
rate is much higher for Fi4.q¢ than for F,,. and Fge,.. This is probably due to
higher sensitivity to local optima for the deterministic fitness functions. Subsequent
experiments (not documented here) indicated that for higher values of the mutation
parameter, o, this problem vanishes.

C.4.2 Estimated Generalization Abilities

The resulting EGA of networks generated with the three fitness functions tested un-
der different conditions are shown in Table C.3. The maximum correctly predicted
string length of each successful network was calculated according to equations C.1
and C.2 as in the example in Table C.2.

The Effect of Error Tolerance Level

The effect of demanding weak or strong networks is clearest when the networks
are tested on strings in a random order. The EGA is half or lower for the strong
solutions given a high enough maximum string length of the test set. The error
tolerance effect is still there with a test set in ascending order, but weaker.
Interestingly, the error tolerance has virtually no effect at all when'testing on
strings in a descending order. We speculate that this is due to the R.\"N.gradually
receiving simpler and simpler strings, resulting in the exact same behaviour every
time, i.e. the network either correctly predicts all strings of a specific length or none
at all. . '
One should keep in mind that, as the test set has 1000 reghcas of each strmg
length, strong solutions correctly predict 1000 out of 1000 strings. whereas weak
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solutions need only predict 1 out of 1000 correctly.

' ‘ ) In our opinion, this makes
strong solutions much more interesting.

Effects of Maximum String Length

The effect of the maximum string length (N in Table C.3) differs depending on
test set order, error tolerance and fitness function. When only considering strong
solutions and random test set order, a higher N leads to a significantly lower EGA
for all networks. The opposite seems to be true for most weak solutions for all test
set orderings and networks. For ascending test set order, the degrading performance
for higher values of IV is not as clear as when testing on randomly ordered strings.
For tests on strings in descending order, N has no degrading effect.

The Effects of String Order

String order is perhaps one of the more interesting aspects of the testing procedures,
as there were three distinct orderings found in previous work while most papers
did not describe this aspect of testing explicitly. In our experiments, string order
played two roles, in the training and testing of networks. The networks trained on
the different training sets can be clearly ranked in terms of performance. Networks
trained on Fi.,,q are clearly better than F,,. which is clearly better than Fj,..

A ranking of the test sets is not as straightforward. Considering only strong
solutions it is, however, clear that a randomly ordered test set is tougher than the
ascending order which is in turn tougher than the descending order. For weak solu-
tions the randomly ordered test set gives the highest results. This is not surprising
as weak solutions need only 1 out of 1000 strings correctly predicted of every string
length and a randomly ordered set gives the network a higher variety of initial
states of which some may lead to a correct prediction.

It is interesting to see that, as a validation of the network training, all networks
handle their training sets perfectly and that the networks trained with Fignq also
handle the other training sets perfectly. Networks trained on randomly ordered
strings thus seem more robust.

Although the results of the randomly ordered test set seem to be most sensitive
to the other parameters (i.e. string length and error tolerance), in our opinion,
this test provides the most interesting results, as the network will be tested more
rigorously.

C.5 Discussion and Conclusions

It is clear from table C.3 that changes in the testing procedure render significantlv
different results. These effects are also not consistent for the three populations and
can therefore at this stage not be predicted. These results are not surprising, as it
is well known that initial conditions may affect the behavior of dynamical systems,
and hence affect the performance of RNNs, a subset of dynamical svstems. The
cited papers, implicitly or explicitly, touch the dynamical nature of RN Ns. but in the
construction or description of the experimental setup this important issue ofte‘n dmjs
not receive much attention. All papers describe the architectures and algonthpnc
details of the learning techniques quite thoroughly and present insightful, detailed
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analyses of individual networks. But without a proper description of the testing
procedures used to generate quantitative results, reproducibility and comparability
are lost. Three papers also make cross paper comparisons (Gers & Schmidhuber,
2001; Bodén & Wiles, 2002; Schmidhuber et al., 2002) in the domain of these papers.
comparisons that, due to the problems pointed out here, may be questioned. For
the same reasons, it would also not make sense to compare our results to those of
any other paper using different testing procedures.

Some practical recommendations for future research in this area: Train and
test sets should be ordered randomly to give both robust networks and a thorough
testing of these networks. Only strong networks (or perhaps a slightly relaxed
version of “strong”, e.g. 90-99% correct) should be considered. A network solving
a task only (at least) once is far less interesting than those solving it consistently.
Since the results also indicate that the maximum string length in the test set has
a significant effect on the results the expected performance may affect the measured
performance directly, since the maximum string length in the test set will probably
be chosen based on the expected performance. Hence, the maximum string length in
the test set should be varied, perhaps starting with a low value and then increasing
stepwise.

What can be learned from this is that to guarantee reproducability, the descrip-
tion of the generation of testable objects has to be complemented with a description
of the testing procedure applied to these objects. In the cited papers the architec-
tures, training procedures and analysis of individual RNNs came out mostly crystal
clear to the reader, while some crucial details of the testing methods did less so.
So our final, and most important recommendation, is to recognize that the analysis
tools are as important a part of the data generation as the networks themselves.
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Networks trained on Fy4nq (114 RNNs) | Networks trained on F,s. (75 RNNs) Networks trained on Fyes. (76 RNNs)
strong weak strong weak strong weak
avg max avg max avg max avg max avg max avg max
N Test set in random order
10 J} 10.00 (0.00) 10 { 10.00 (0.00) 10 6.79 (0.45) 10 | 10.00 (0.00) 10 4.07 (0.48) 10 | 10.00 (0.00) 10
15 8.95 (0.45) 15 | 12.09 (0.16) 15 5.11 (0.62) 15 | 12.13 (0.26) 15 3.46 (0.56) 15 | 12.36 (0.21) 15
20 7.77 (0.53) 20 | 12.48 (0.22) 20 3.33 (0.58) 17 | 13.12 (0.31) 20 1.58 (0.37) 14 | 12.96 (0.36) 20
25 6.51 (0.50) 20 | 12.55 (0.23) 23 2.72 (0.54) 17 | 13.53 (0.36) 25 1.37 (0.35) 14 | 13.55 (0.38) 25
50 5.81 (0.48) 20 | 12.63 (0.24) 23 2.00 (0.45) 17 | 14.19 (0.61) 49 1.32 (0.35) 14 | 14.53 (0.59) 36
100 5.81 (0.48) 20 | 12.62 (0.24) 23 2.00 (0.45) 17 | 14.08 (0.60) 49 1.33 (0.35) 14 | 14.04 (0.49) 30
Test set in ascending order
10 [[10.00 (0.00) 10 | 10.00 (0.00) 10 || 10.00 (0.00) 10 | 10.00 (0.00) 10 || 6.49(0.49) 10 | 8.80 (0.31) 10
15 || 10.84 (0.34) 15| 11.71 (0.16) 15 || 9.24 (0.61) 15| 11.43 (0.28) 15| 6.49(0.64) 15| 8.78 (0.52) 15
20 || 11.10 (0.37) 20| 1197 (0.22) 20 || 8.88(0.66) 20| 11.65(0.33) 20| 5.16(063) 20| 8.75(0.56) 20
25 || 10.26 (0.44) 21 | 11.98 (0.22) 21 7.32 (0.75) 25 | 11.71 (0.36) 25 5.26 (0.67) 21 8.59 (0.58) 21
50 || 10.80 (0.38) 20 | 11.98(0.22) 21 || 8.07(0.67) 19 | 12.00 (0.54) 45 | 5.00(0.64) 21| 851 (0.59) 21
100 [| 10.80 (0.38) 20 | 11.98 (0.22) 21 || 8.07(0.67) 19| 12.00 (0.54) 15 || 5.00(0.64) 21| 8.51(0.59) 21
Test set in descending order
10 || 10.00 (0.00) 10 | 10.00 (0.00) 10 9.33 (0.22) 10 9.36 (0.22) 10 || 10.00 (0.00) 10 | 10.00 (0.00) 10
15 || 11.64 (0.16) 15 | 11.64 (0.16) 15 || 10.97 (0.36) 15 | 10.97 (0.36) 15 || 10.50 (0.24) 15 | 10.50 (0.24) 15
20 || 11.89 (0.22) 20| 11.89(0.22) 20 || 11.08 (0.45) 20| 11.08 (0.45) 20 |[ 10.51 (0.32) 20 | 10.51 (0.32) 20
25 || 11.90 (0.22) 21| 11.90(0.22) 21 || 11.16 (0.46) 25 | 11.16 (0.46) 25 |[ 10.63 (0.33) 23 | 10.63 (0.33) 23
50 || 11.90 (0.22) 21| 11.90(0.22) 21 || 11.43 (0.62) 45 | 11.43 (0.62) 45 |[ 10.61 (0.32) 21 | 10.61 (0.32) 21
100 || 11.90 (0.22) 21 | 11.90 (0.22) 21 || 11.43 (O 62) 45 | 11.43 (0.62) 45 | 10.61 (0.32) 21 | 10.61 (0.32) 21

Table C.3: The average, standard deviation (in parentheses), and maximum length the networks was deemed to process correctly. The performance
is evaluated on networks generated with the three different fitness functions, Fi 4,4, Fasc and Fgez.. The results are separated into the three different
test sets and results for weak and strong solutions are presented separately. The results for different maximum string lengths N are also shown

separately.



Appendix D
Jacobsson & Ziemke (2003b)

Reducing Complexity of Rule Extraction from Prediction
RNNs through Domain Interaction!

Henrik Jacobsson, Tom Ziemke

Abstract

This paper presents a quantitative investigation of the differences between rule
extraction through breadth first search and through sampling the states of the
RNN in interaction with its domain. We show that for an RNN trained to predict
symbol sequences in formal grammar domains, the breadth first search is especially
inefficient for languages sharing properties with realistic real world domains. We
also identify some important research issues, needed to be resolved to ensure further
development in the field of rule extraction from RNNs.

D.1 Introduction

An RNN can be painstakingly difficult to analyze. Very often RNN analvsis be-
comes a matter of creating small enough networks to allow a direct visualization
of the internal activations. There are almost as many approaches to RNN analysis
as there are papers about RNN and the methods are often ad hoc and adapted
to specific domains and network architectures. Rule extraction (RE) from RNNs
(Giles, Miller, Chen, Chen & Sun, 1992; Zeng et al., 1993: Tino & Sajda, 1995; Blair
& Pollack. 1997; Tino & Koteles, 1999) offers a very promising tool for analyzing
RNNs as it generates a functional model (usually a finite state automaton, FSA) of
the of the RNN. providing an abstract symbolic model of the potentially complex
analog network dynamics. In comparison to other analysis tools, such as cluster
analysis, vector flow fields, analysis of fixed points etc., RE gives insight not only
to the “passive” clusters resulting in the state space, but also to the “active” role
of these clusters in the RNN interaction with the domain. RE is also not inherentlv
limited by the dimensionality of the state space as are visualization methods. How-
ever, RE suffers from an apparent increasing space and time complexity for larger

IThis is a verbatim copy of Jacobsson and Ziemke (2003b). Onlyv the formatting and contact
information differs from the original (the bibliography is also not included here since it can be

found elsewhere in the thesis).
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and more complex networks and therefore various heuristics need to be developed
to allow RE to tackle more 'difficult’ RNN.

The effect of one such heuristic will be investigated quantitatively in this paper.
The complexity of the behavior of an RNN is a product of its internal functional
mappings generating sequences of states and output and of the complexity of the
domain from which the network is fed input patterns. It is well known that even
relatively simple systems can exhibit surprisingly complex behavior in interaction
with a complex environment but the opposite is true also: the complexity of the
behavior of a potentially complex system can be restricted by a simple environment.
We will in this paper show an example of how this can be exploited as a heuristics
for RE from RNNs by using the domain as a means for generating the states of the
network that are the basis for the extracted rule set as opposed to performing a
breadth first search based on the possible input patterns. Both methods have been
used previously in RE algorithms, but to our knowledge no comparative study has
been presented.

We will first introduce our definition of RNNs, rule extraction and some theo-
retical prerequisits. Then the experiments and results are presented. In the last
section we draw some conclusions and discuss possible future directions.

D.2 Background

In this paper we will, for simplicity, stick to a very simple definition of recurrent
neural networks. The activations of the input, state and output nodes are for
example restricted to values in the interval [0,1] and the output is functionally
dependent on the state alone (excluding for example some forms of second ordered
networks).

Definition D.1 A Recurrent Neural Network is a 6-tuple R = (1,0, S, 4, 7, so)
where

I C [0,1]™ is the input space,

S C [0,1]™s is the state space,

O C [0, 1]™° is the output space,

§:S xI— S is the state transition function and

v : 8 — O is the state interpretation function

sp € S is the initial state vector [J

Where n;, ng and no are the dimensionality of each respective space. Note that
the weights of the connections and activation functions of the individual nodes
are subsumed by & and v in this definition. Those details are simply ignored by
existing RE algorithms and the neurons of the network are treated as ensembles
rather than as individuals. The term compositional was suggested by (Tickle et
al., 1998) to denote this level of granularity of the rule extraction algorithm'’s view
upon the underlying network. The other modes of granularity are decompositional
(white box), pedagogical (black box) and eclectic (containing elements of both
decompositional and pedagogical).

States in the state space S will be visited when the network is fed input vectors
from the input space. However, the full set of possible input patterns is seldomly
needed to take into account for training or analysis of the RNN, e.g. if different
input features are strongly correlated. Instead we can define the set I C [ as a
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finite set of patterns that the network actually will receive in situ, i.e. when receiving
input from the domain. We have here chosen to define I as finite since in previous
approaches to RE from RNNs. formal language tasks have almost exclusivelv been
considered. For this reason we introduce a set of symbols, ¥. isomorphic to I, i.e.
for every symbol in ¥, there is exactly one corresponding member in /. In many
papers where a formal language recognition/prediction task is studied, the symbols
of ¥ are encoded in I through ’one hot’ encoding, i.e. every symbol of £ “activates’
only one corresponding element of the input vector.

When the network is fed patterns from [ a number of states will be visited.
This set can formally be defined as the set of I-accessible states from the initial
state sg, let us call it A] C S. Al is composed of those states in S that will be
visited through the iterative mappings induced by all possible input patterns in I
in all possible orders as defined in equations D.1 and D.2. In other words. A{, is
the set of states that would be visited if all possible sequences over ¥ (denoted £*)
were fed to the network (with the network reset to sy before each new string).

Yo= {80}, Ynt1=VaU|JO(1.Vs) forn>0 (D.1)
iel
A = lim Y, (D.2)

A similar definition (for binary languages only) of accessible states is found in (Blair
& Pollack, 1997). The production of these states is equivalent to that of an iterated
function system (IFS) (Kolen, 1994b).

In rule extraction algorithms the state space needs to be quantized to a finite
set of classes. This quantization function is here denoted @ : S — {0,1,2,..., N}
in its general form. In previous RE approaches () is typically a simple orthogonal
lattice dividing the state space into hypercubes (e.g. (Giles, Miller, Chen, Chen
& Sun, 1992)), dividing the activation range of each individual state dimension
into q intervals of equal size. This results in ¢"¢ hypercubes that can be uniquely
enumerated. In this paper we refer to these hypercubes as bins and the degree of
quantization in each dimension of the state space will be referred to as q. Other
clustering methods used for RE from RNNs are for example k-means clustering
(e.g. (Zeng et al., 1993)) or a self organizing map SOM (e.g. (Tifio & Sajda, 1995)).

D.2.1 Rule extraction through breadth first search

One of the most common algorithm for rule extraction from RNNs is that of Giles
et al. (Giles, Miller, Chen, Chen & Sun, 1992). The algorithm conducts a breadth
first search in the state space to extract a finite state machine from the RNN.
The RNNs were prior to RE trained to classify strings as grammatical or non-
grammatical. In the general case, any string in X* should then be possible for the
network to process.

The algorithm starts with an initial state s, and generates the outgoing transi-
tions from this state by computing all new states for all input symbols, i.e. §(so. i)
for all i € I. This is then repeated for all first states in each visited bin until all
these states have been tested in this way and no new bin is visited. The number of
the bin and the corresponding output of the first encountered state vector of each
bin is then transformed to the extracted FSA. This FSA is then minimized using
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a standard minimization algorithm (Hopcroft & Ullman, 1979). The RE algorithm
starts with a small ¢ and is repeated with increased values of q until the machine
is consistent with the training data.

One way to view this algorithm is to see that the search generates a tree of
symbols that generates a set of states in the network. From the root node (equiv-
alent to the initial state of the network) all symbols expand to subtrees that are
expanded likewise until all leaf-nodes lead to loops in S. From the root node the
path to each leaf node is the equivalent to a string of symbols. If all these substrings
are fed to the network with a network reset between each string, the exact same
states as visited during breadth first RE will be visited. This set of substrings will
be called Xp, where Xp C £* and the states visited during the extraction of rules
will be called .Aé( . i.e. the set accessible from the initial state sq through breadth
first search RE, AX? C Al

D.2.2 Rule extraction in a domain context

As mentioned above, in many tasks the full set of strings in £* is not relevant for
the training of the network. Much research on RNN is focused on prediction tasks
which in many ways are much less restrictive than classification tasks since the role
of an external “teacher” is reduced to a minimum. For prediction tasks the network
is not required to correctly predict all possible sequences of symbols, but only the
ones that belongs to the domain. The network does typically not even need to
correctly predict all symbols of the sequences in the domain, as some subparts of
the sequence may be inherently unpredictable. The temporal XOR problem is one
such example where only every third symbol is at all predictable (Elman, 1990).
This means that the rules extracted from the network need only incorporate the
sequences and subsequences that the network will encounter in the domain. If the
network is for example trained to predict events that results from the behavior of a
autonomous robot it would not be reasonable to extract rules for actions that would
never be carried out in certain situations, e.g. the event 'drive-forward’ should not
occur if the robot is in the state 'wall-ahead’ and is successfully avoiding obstacles.
We will use the notation X € ¥£* to refer to a sequence generated or sampled
from the domain. The sequence is written as Toz1Z3...z,. This domain specific
input sequence will generate a sequence of states in the network which we will refer
to as the X -accessible set from sq, or AY. A¥ C A} is more formally defined as

Sp+1 = 0(Sn, in) (D.3)

" where n > 0 and i, corresponds to z, (remember that [ and ¥ are isomorphic and

X € £*). And
-A())( = {30781a82v"°~3n} (D4)

where n is the length of sequence X.
From the information about states gathered through the processing of the do-

main, a state machine of some kind. emulating the network, can be generated. The
typically indeterministic data from the network mustvbe processed in some way to
Jead to a deterministic discrete machine (e.g. (Tifo & Sajda, 1995)) or the extracted
state machine can in itself be stochastic (e.g. (Tino & Koteles, 1999)).
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D.3 Experiments

The sets AY and .Aé{ % are both subsets of A{) but cover different aspect and generate
different rule sets. In this paper we will experimentally investigate the relation
between A and A{:( ?, i.e. the difference between the domain sampling and breadth
first search approaches of RE in terms of the visited states.

In these experiments we have chosen to limit the tasks to be pure prediction
tasks, i.e. the task for a network is to predict the next symbol in a sequence gen-
erated by a grammar and not to classify incoming strings. Another prerequisite is
also that the networks are perfect, i.e. they never predict predictable symbols of
the domain incorrectly. This in order to prevent illegal rules to be caused by an

erroneous network, but instead to be indicators of flaws of the extraction procedure
itself.

D.3.1 The Networks

Three prediction domains have been considered in this paper, two regular gram-
mars and one context free. (Casey, 1996) showed that from an RNN effectively
implementing a regular grammar, a finite state machine consistent with the RNN
can be extracted. For the context free grammar, we assume that some limited
version of it can be extracted.

e The simplest is the temporal XOR-problem, suggested in (Elman, 1990),
where every third binary symbol is determined by an XOR operation of the
two preceding symbols which are random.

e The next grammar, the “6-letter grammar”, was created by Elman (Elman,
1990) to test a language with more than two symbols and that required some
deeper memory in the network. The sequence from the grammar consists of
the subsequences ba, dii and guuu concatenated in random order?. Conse-
quently, only the vowels are predictable.

e The third domain was 01", a context free language. n was in these exper-
iments 1 < n < 10 and varied in random order with the generated strings
concatenated into a single sequence. In this language. only the 1’s and the
first O is predictable. The full grammar, with n unlimited, cannot be rep-
resented in any finite state machine, but since we only require the rules to
correctly predict the training set it is possible to view this as a regular gram-
mar (although this may be complicated if the network has actually learned
to generalize to longer sequences).

These domains were chosen to test the effect of the number of symbols and
language class separately. All languages have predictable and unpredictable parts
of the generated sequences and the networks are all trained to predict the next
symbol. 100 networks were trained on each domain until they were deemed to
I;erfectly predict the predictable parts of the sequences. The architecture chosen
was simple recurrent networks (SRNs) (Elman, 1990) with two hidden nodes. For
the regular language backpropagation through time (BPTT) was used to train

2In our experiments we used 'one-hot’ encoding to represent the symbols to the network, i.e.
six bits were used of which each onc encodes only one symbol. Elman used a quite different

non-orthogonal encoding based on phonological properties of the letters.
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them and. since BPTT had problems on the context free language an evolutionary
hill-climbing algorithm was used for that instead.

D.3.2 Evaluation criteria

‘The primary objective of the experiments was to assert the degree of excess com-
putational power used by rule extraction through breadth first in the selected do-
mains. For all networks, we tested RE through breadth first search and sampling
for varying values of q to see tlie effects of the quantization level on various aspects.

~ We chose to measure |Ay?| and |AX| and will here present the ratio,
IA(),(BI /|AZ], i.e. the relative difference in number of bins visited through RE and
through processing of domain respectively. Also, the proportion of substrings in
Xp that are at all possible in the domain which the network is trained on is mea-
sured. If the breadth first RE for example tests the sequence 00011110 on a
correctly predicting 0"1"-network starting from the initial state in the network, it
is a symbol-sequence that never occurs in the true domain and should therefore be
considered an obsolete sequence.

The performance of the extracted machines was also monitored to determine
whether correct rules were extracted. The termination point for the breadth first
RE, i.e. when the extracted machine is consistent with the data, was also tested in
order to see if and when the algorithm would terminate.

D.4 Results

In Figure D.1 we show an example of how RE can be illustrated in the state space
of the RNN predicting the 6-letter sequence. In this example it can be seen how
RE through breadth first search finds many states irrelevant for predicting within
the domain.

In Figure D.2 the ratios of visited bins and of syntactical substrings generated
in the RNN by breadth first search RE in comparison to domain interaction are
shown. It is clear that breadth first RE generated the biggest amount of irrelevant
tests on the 6-letter networks. This is probably due to the fact that after each
symbol in the 6-letter sequence, typically only one of six symbols will occur in the
domain whereas all six symbols will be tested by the RE.

It should be mentioned that the RE algorithm terminated quite rapidly; for
XOR within ¢ = 3 to ¢ = 10, for the 6-letter grammar within ¢ = 2 to ¢ = 8.
But for O"1" at least ¢ = 21 and for 15% of the networks, the algorithm did
not terminate at all. 84% of the XOR networks seemed to stabilize in terms of
extracting equivalent machines. Only 2% of the 6-letter sequence stabilized. 5%
of the 0”1" actually also stabilized. These numbers are not fully certain however,
since the number of states in the minimized automata could continue increasing for

higher quantization levels.

D.5 Discussion and Conclusions

We have shown that the degree to which breadth first RE requires excessive com-
putational resources seems to be related to the number of symbols in the language
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Figure D.1: The internal activation of a network performing prediction in the 6-letter
sequence. The lattice corresponds to the discretization with the state divided into 252
bins in this example. The diagonal dotted lines are the hyperplanes, defining the borders
within the state space for which symbol that is predicted. The hyperplanes divides the
state space into the 'u’-region on the upper half, the ’a’-region on the lower left side and
the ’i’-region on the lower right side. The rest of the state space corresponds to no valid
symbol; the center area with all output nodes set to zero and a small area on the center
left side with the ’a’ and 'u’-node active simultaneously. The states visited through the
breadth first RE are denoted '+’ and the states visited through processing of the domain
are denoted '+’ and are connected to show the order of the states visited.

for networks trained to predict symbolic sequences. The ratio of, for the domain,
relevant “questions” (in form of sequences) “asked” to the network also was very
low for the grammar with six symbols, and for the context free grammar.

Blair and Pollack (Blair & Pollack, 1997) suggested to use the state count of the
extracted machine to determine whether the network is effectively implementing
“regular’ or “non-regular” automaton. If the state count is growing indefinitely
with ¢, they proposed to use this as an indicator that the underlying RNN is
non-regular. But the results presented here suggest that, for prediction tasks,
regularity of the network can not be tested as suggested in (Blair & Pollack, 1997)
since the number of states generated from networks predicting sequences of the
regular languages was almost always growing indefinitely although the networks
were predicting all symbols of the language perfectly. The percentage of networks
for which the RE stabilized did also not correlate with the language class. The
termination criterion of the RE algorithm was however satisfied much earlier for
regular than for context free prediction networks. But this could also be due to the
larger number of states needed to model the strictly reqular language 0"1" with
1 < n < 10. This should however be investigated further to give more insight into
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Figure D.2: The ratio | AX?|/|A¥| is shown in the left column and the ratio of substrings
in Xp possible in the domain is shown on the left side. (a) and (b) correspond to the
XOR-language. (c) and (d) to the 6-letter language (observe that for this language ¢ was
at most 50) and (e) and (f) to the 0"1"-language. The maximum, minimum. average and
standard deviation of one hundred networks for each domain are shown.
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if (and how) RE can be used to determine the underlying language class, which is
judged to be “fool’s gold” by Kolen (Kolen, 1993).

One can also argue that RE through search is, in some sense, less credible
than through sampling since it requires the possibility of an external entity setting
the state of the network. Sampling of the networks internal states generated in
the context of its domain however generates stochastic machines that are harder
to analyse (and to minimize, execute, compare etc.) than the finite automata
generated by breadth first search RE.

We suggest that in most “real world domains”, e.g. stock market prediction,
the task is precisely to predict sequences of data with typically a magnitude of
possible input patterns. According to our results, in these types of tasks it would
be especially beneficial to use sampling rather than breadth first to extract rules.

But, to fully exploit the potential of RE through sampling and to ensure further
development of these algorithms, new questions need to be asked. For example, the
optimal quantization function for the state space should be sought. And to do that,
we need to ask how to evaluate different quantization functions. Since an RNN (as
defined here) is deterministic, one possibility could be to give higher scores to quan-
tization functions generating “less stochastic” machines. Another difficulty that has
not been investigated properly is how rule extraction from imperfect networks (very
commonly found in real world domains) should be conducted. In a way, this has
been implicitly touched in this paper, since we used partly unpredictable prediction
domains, but this should be investigated in further detail.

212



	434470_0000
	434470_0001
	434470_0002
	434470_0003
	434470_0004
	434470_0005
	434470_0006
	434470_0007
	434470_0008
	434470_0009
	434470_0010
	434470_0011
	434470_0012
	434470_0013
	434470_0014
	434470_0015
	434470_0016
	434470_0017
	434470_0018
	434470_0019
	434470_0020
	434470_0021
	434470_0022
	434470_0023
	434470_0024
	434470_0025
	434470_0026
	434470_0027
	434470_0028
	434470_0029
	434470_0030
	434470_0031
	434470_0032
	434470_0033
	434470_0034
	434470_0035
	434470_0036
	434470_0037
	434470_0038
	434470_0039
	434470_0040
	434470_0041
	434470_0042
	434470_0043
	434470_0044
	434470_0045
	434470_0046
	434470_0047
	434470_0048
	434470_0049
	434470_0050
	434470_0051
	434470_0052
	434470_0053
	434470_0054
	434470_0055
	434470_0056
	434470_0057
	434470_0058
	434470_0059
	434470_0060
	434470_0061
	434470_0062
	434470_0063
	434470_0064
	434470_0065
	434470_0066
	434470_0067
	434470_0068
	434470_0069
	434470_0070
	434470_0071
	434470_0072
	434470_0073
	434470_0074
	434470_0075
	434470_0076
	434470_0077
	434470_0078
	434470_0079
	434470_0080
	434470_0081
	434470_0082
	434470_0083
	434470_0084
	434470_0085
	434470_0086
	434470_0087
	434470_0088
	434470_0089
	434470_0090
	434470_0091
	434470_0092
	434470_0093
	434470_0094
	434470_0095
	434470_0096
	434470_0097
	434470_0098
	434470_0099
	434470_0100
	434470_0101
	434470_0102
	434470_0103
	434470_0104
	434470_0105
	434470_0106
	434470_0107
	434470_0108
	434470_0109
	434470_0110
	434470_0111
	434470_0112
	434470_0113
	434470_0114
	434470_0115
	434470_0116
	434470_0117
	434470_0118
	434470_0119
	434470_0120
	434470_0121
	434470_0122
	434470_0123
	434470_0124
	434470_0125
	434470_0126
	434470_0127
	434470_0128
	434470_0129
	434470_0130
	434470_0131
	434470_0132
	434470_0133
	434470_0134
	434470_0135
	434470_0136
	434470_0137
	434470_0138
	434470_0139
	434470_0140
	434470_0141
	434470_0142
	434470_0143
	434470_0144
	434470_0145
	434470_0146
	434470_0147
	434470_0148
	434470_0149
	434470_0150
	434470_0151
	434470_0152
	434470_0153
	434470_0154
	434470_0155
	434470_0156
	434470_0157
	434470_0158
	434470_0159
	434470_0160
	434470_0161
	434470_0162
	434470_0163
	434470_0164
	434470_0165
	434470_0166
	434470_0167
	434470_0168
	434470_0169
	434470_0170
	434470_0171
	434470_0172
	434470_0173
	434470_0174
	434470_0175
	434470_0176
	434470_0177
	434470_0178
	434470_0179
	434470_0180
	434470_0181
	434470_0182
	434470_0183
	434470_0184
	434470_0185
	434470_0186
	434470_0187
	434470_0188
	434470_0189
	434470_0190
	434470_0191
	434470_0192
	434470_0193
	434470_0194
	434470_0195
	434470_0196
	434470_0197
	434470_0198
	434470_0199
	434470_0200
	434470_0201
	434470_0202
	434470_0203
	434470_0204
	434470_0205
	434470_0206
	434470_0207
	434470_0208
	434470_0209
	434470_0210
	434470_0211
	434470_0212
	434470_0213
	434470_0214
	434470_0215
	434470_0216
	434470_0217
	434470_0218
	434470_0219
	434470_0220
	434470_0221
	434470_0222
	434470_0223
	434470_0224
	434470_0225

