




























































































































































































































































































in these temporal domains (Jacobsson & Ziemke, 2003a) (also in Appendi.x C). It 

is, for example, not obvious whether the rules should generalize towards only loncrer _ b 

anbn-strings or perhaps even balancing parenthesis languages (i.e. if you replace a 

with 1 C and b with 'r and enforce that the parenthesis are balanced at the end of 

the string). 

The potential fidelity-accuracy tradeoff could nevertheless be exploited as sug­

gested in the following section. 

17.4 Robust hierarchical stochastic degree-of-be-

lief model 

Since there are reasons to believe that smaller should be nlore adequate 

for generalizing to unseen eXalnples, according to the Occaln's razor argulnent, 

the CrySSMEx-iterations should progressively generate less and less accurate 

simply because they become gradually larger. They will, however, also be of in­

creasingly higher fidelity. 

In other words, ssmn has a more robust stochastic infonnation regarding the 

underlying systelll than has ssmn+m (if m > 0). The first ssmo, for ex­

ample, has an extremely robust Illodel of the underlying systel11 which is ahnost 

guaranteed to be correct since it can only produce very vague answers regarding the 

actual state (and output) of the underlying systenl. Later SS:vls will have higher 

probabilities with regards to generalizing incorrectly about the actual state of the 

underlying systenl. In other tenns, the rnore developed beconle brittle since 

they will generate more specific output predictions. For example, ssmo will alway 

be correct regarding the state of the underlying SDTDS since all microstates are 

lllodelled as one rnacrostate. It will also give a vague probability distribution over 

the output sYlnbols. After a few CrySSMEx-iterations (cf. Algorit 11111 11.1), howt'v('l', 

the SS:\ I will be described as consisting of s(:'veral SEs and will attenlpt predicting 

the nWCfostate of t he system, a prediction that lllCl\" 1)(' elTOllPOllS if the 

SS:\ [ does not generalize correctly. 

The SS:\[s are thus progressing fr0111 rohll.'dllrss to britt/clIf, ..... ..,·3. \lo[('oV{'r. the 

are also progressing from llnjal.-;ljiuble SS:'b towards more E'a8il:v jal.-;ijiabit' i.t'. 

129 



CVQs will also divide the state space into increasinglv srnaller re '-' J gIOns. If one 

considers the possibility of noise in the state of the s.\"stem, then the snlaller the 

region, the higher the possibility of rnisclassifying the state space. In other words. 

the CVQ also progresses from robustness to brittleness during the extraction. or 

put another way, when CrySSMEx extracts a sequence of SS:"Is from n. they will 

cover a spectrum from robust-but-stochastic to brittle-but-high-fidelity llloclels. 

Consider a situation where an 8DTD8 has been analysed using CrySSMEx. then 

the 88:"1 and CVQ can be used to continuously monitor and predict the systern 

(which we can assume to be noisy). In other words, the 88:"1 is used for the 

prediction, whereas the CVQ is used to justify and adjust the SS~1 state as a 

correct stochastic representation of the 8DTD8 state. In this situation, the robust­

brittle-spectrum could be very fruitful. The whole range of SS:"1s and CVQs can 

be run simultaneously on the same input for a robust and high-fidelity prediction 

of the system. 

Potentially, if correctly implemented, one could achieve the best of both worlds. 

The spectrum could potentially be exploited by using the genealogy of 8Es (cf. 

Section 16.2.3). An SSM SE or CVQ-observation of the SDTDS state will provide 

information regarding the state of a Inore brittle SSl\1. For eXalllple, if the CVQ 

cvqn observes in the SDTDS that the SE (of the corresponding SS:"1) should be 

qi this can be used to infer the states of subsequent, Inore brittle, SS:"1s through 

genealogical relations (together with conditional probabilities of how SEs of one 

SSM explain SEs of other SS;\1s). 

17.5 Higher order extraction 

As Inentioned in Section 13.2, CrySSMEx differs from earlier R:\:';-RE-algoritlulls 

hy adapting the state space quantizer to generate better rules. This, together with 

the fact that the adapted quantizer has a graph-like structure, could possibly be 

(\xploited for the extraction of higher-order rules. Specifically. the extraction of 

context-free gnunmars is a possibility. A finite state recognizer of a cOlltext-free 

grmnrnar requires an external rnemory in the fonn of a st ack. For eXillnpl('. t hp 

the possihility of making obs('n·at.ions which contradict the SS~I increas('s with its fidelity'. This 
is an importallt feature and its further explotation is suggested in Section 1~.1; 



Figure 17.1: A partial example of how the level of CVQ nodes (cf. Definition 10.6) 
could be used to infer context free grammars. The SE-pairs of each level are equivalent of 
all other similar pairs in that symbols a and b trigger the same response in the output as 
well as the same relative changes in the CVQ level. The level information is to the right 
abstracted and replaced with an operation on a variable L. L:= L + 1 corresponds to a 
push onto the stack and L := L - 1 corresponds to a pop. The example is simplified since 
there must also be an initial value of L and special considerations for when L reaches its 
minimum and/or maximum (for both the left and right machine). 

anbn-problem is a CFL (Context Free Language) where the nUluber of as needs to 

be stored, possibly by "storing" the as thenlselves. An FSA approxilnatioll of a 

CFL is always an illusory abstraction, since, in principle, there is no upper lirnit OIl 

the length of the strings (i.e. n is unbounded). 

To induce a CFL grmIlmar using CrySSMEx, the CVQ-Ievel (cf. Definition 10.6) 

could be ilIlposed on the SEs of the SS:\1. It may then be possible to identify a 

subset of SEs, Q c Q such that another subset of SEs, Q' c Q can also be found 

in the SaIIle SS:\1 and the SEs of Q' are sel11i-equivalent to the SEs of Q apart fr0111 

that their levels always differ by the SaIIle al11ount. If a sequence of stIch subsets 

can be fonned, it IIlay be possible to replace transitions between the subsets by t hp 

pop and push operations of a stack. The hypothesis is that the levels of thf' CVQ 

IlWy possibly correspond to the levels (i.e. aInount of stored data) of the t'xternal 

stack. Figure 17.1 depicts a silllplified exalnple of a possible situatioll. 

In the a nb ll -d01Ilain, this would correspond to ,\ silnple machine COlIllPctpd to 



a stack which takes care of the counting of as and bs. Of course. this extracted 

CFL would be a hypothesis that an unbounded number of as can be counted by the 

underlying system although no observations of this can be made. In other words , 

this kind of extraction would relax the closed world assumption of CrySSMEx. 

The CVQ is not only holding the information about the level which could be 

used as suggested above, the graph is itself a data structure that may hold infor­

mation of the underlying domain. For example, Elman (1990) trained an R:\:\ to 

recognize simple sentences. His analysis of the state representation revealed that 

the RNN had grouped related words in a fairly semantically oriented hierarchical 

structure (cf. Figure 5.1). For example, the RNN separated, in its state, aninlates 

from in animates and humans from animals etc. The study was conducted by the 

use of hierarchical cluster analysis, which does not take into account the dynaIllic 

properties of the RXN at all (Elman's paper was written before any RNN-RE paper, 

cf. Section 5.1). 

With CrySSMEx, it is possible for both the selllantical and syntactical infor­

mation to be extracted simultaneously. It would be yery interesting to replicate 

Elrnan's analysis by using CrySSMEx to investigate to which degree semantical in­

formation can be traced in the CVQ graph.!. Further interest lies in the sense that 

it would replicate a scientist's analysis using an autOlllated analyser. 

17.6 Relative SDTDS analysis 

Consider two SDTDSs, sdtds 1 and sdtds2 with an identical input and output do­

lllain, but with different state spaces and transition functions. It could, for eXaIuple, 

be two R~~s trained on the sanle domain. From these two systenls, it is possible to 

('reate a third SDTDS, sdtds1+2 , in which the state and output dOlnains are :-;implY 

auglnented and the corresponding transition functions of the svsterllS handle t lwir 

part of the augnlented state and output space. In other words. it is possible to 

describe sen'ral SDTDSs as one larger SDTDS. There is nothing strange ill doillg 

this. as the SDTDS state and output vector spac('s are not bounded (."('(' Figure 17.'2 

t \Llll\" thanks to Nick Chater for inspiring this idea. 

132 



sdtds1+2 

I I I 

Figure 17.2: An illustration of how two systems really constitute one system. The 
two SDTDSs to the left, with an identical input domain, can instead be described as one 
larger SDTDS where both of them are fully preserved. 

for an illustration). 

The system sdtds1+2 describes both systems sdtds 1 and sdtds2 sinlultaneously. 

Therefore, CrySSMEx applied to sdtds1+2 , corresponds to applying it to both systenls 

at once. If Ao is subsequently chosen to reflect the difference of the output of 

the two systellls, then the extracted SSM would also describe this difference. An 

could, for exanlple, correspond to the sign of the result of a simple elelnentwise 

subtraction of the output vectors. Another possibility, \,'hen the output has a 

sYlnbolic interpretation, is to let Ao result in 1 if there is a difference, and 0 if 

not. Or one could have unique enumeration per each observed combination of 

simultaneous outputs of the two systems. However Ao is chosen, as long as it 

reflects the divergence of the two systelns frOln each other, the extracted Inachine 

should also reflect this difference. 

The extracted SSl\1 will be an abstraction of the differences between the two 

svstelllS since the SSl\1s extracted frOlIl the individual systelns are abstractions 

of their corresponding systems. The consequence is that the difference between 

two systerlls is a third systenl. In the SaIIle sense as the difference between two 

vectors could be a third, difference vector, (if eleIllentwise subtraction is Ilsed), the 

difference of two systeills is not necessarily described using a silllple scalar. If ,\" i~ 

chosen properly, however, two "silllilar" ..,dtds1 and .'ldtd.'·"'2 should result ill a small 

SS~I extracted froIll sdtds 1+'2. If tlw differenct) of the systeills i:-; big, tlwn tlH' SS\[ 

('xtract('d frOlll ..,dtds1+2 should, consequentially, also be big. 



Thereby, one could define a distance measure between systems by using the 

extracted SS:Y1 as a measure. It basically means that the difference between two 

systems is described by an SS~1 that defines a finite state grammar of differences 

between the two systems. 

The SS~1 could be used as it is to describe the details. or the SS~I could be 

the basis of a quantitative difference measure. For example, log IQI (where IQI is 

the number of SEs in the SS~I extracted from sdtds1+2 ) could be used. If there is 

no difference between the systems. or if this difference is only in ten1lS of a direct 

one-to-one translation of output symbols, and the resulting SS~v1 thereby only' has 

one SE, then this results in a distance of O. This is appealing since the difference 

between two identical things should be zero (cf. that d(x. x) = 0 if d here denotes 

the difference between two real numbers). All lllore conlplex differences between 

the systems will return a higher number. The distance from a non-acti\'e SDTDS 

(always producing the saIne output) to an active SDTDS would be iSOInorphic to 

the latter. This is also appealing if we consider the non-active systenl a point zero 

frOln which the deviation should only be a consequence of the active svstenl (d. 

d(x,O) = x). 

If any of the underlying s:vstems are chaotic, however, this kind of difference 

Ineasure could become problematic since CrySSMEx will not tenninate at a deter­

lllinistic lllachine. However, it could be possible to generate one distance rneasure 

per each SS~I of the CrySSMEx iterations, especially if the autOlnatic extraction of 

detenninistic SS~Is is implenlented (cf. Section 16.2.-1). 

Every kind of distance I1leaSUrelllent comes with weaknesses. however. \"ot 

even the typical choice of Euclidean distances between vectors is entirely obvious 

(for excunple. city block distance is sOlnetiIlles more appropriate). However. while 

pitfalls are kept in 11lind, this kind of distance measure between dynamic sVstPll1S 

could turn out to be quite useful in 11lany contexts. For example. to ensure di\'(,l"sitv 

in sets of R~~s that are to be used as ensernbles (Krogh tV Vedelsh\", 199;-)). 

17.6.2 A "grammar of mistakes" 

One possible usage for the difference between two systenls as a basis for .\() is to 

('xtnlCt a "gnullluar of lllistakes". If t he underlying sVstelll is an R\"\" traillt'd 

13-1 



to perform in a domain, the output of the net\vork typicall~' deviates froIn the 

desired target output. Then Ao could be chosen to reflect this discrepanc~r (ct~ it i:-; 

suggested to reflect the divergence of two SDTDSs in the previous section). It could. 

for example, result in 1 every time there is an error and 0 if not. Alternatively it 

could be a more detailed enumeration of each possible error, e.g.~ one unique ~\Inbol 

for the specific error corresponding to "the output was a but it should have been a 

b" . 

The resulting machine would not describe the output of the RS\". but onl~' the 

ways in which the RNN conducts errors. This description of the R\"\" Inistakes 

could be used as guidance for generating more data on which to train the R \"\". It 

could potentially also be used in other ways to refine the R~\T training procedure. 

For example, it was sometimes possible to see exactly when sonle of the anbTl_R\":\~ 

performed mistakes for longer strings based on the extracted SS~1s. e.g., the R \"\" 

predicted eleven bs after twelve as but was otherwise correct. 

A problematic issue, however, is that Ao would not be a function purely of the 

output of the systeln, but also of the external domain. This would Inean that ~\() 

cannot necessarily be described as a function of the output dOlllain of the SDTDS. 

For example, the exact same output vector of the systelll Ina~' at one inst ClncC' be 

correct and at another erroneous. This would corrupt SOllle of the assurnptions 

required for CrySSMEx to extract rules. vVhether or not this poses a problenl in 

realistic cases, and if so, if this problell1 and others can be alleviated, relnain open 

issues. One possible way to circulnvent the problern could be to extract the SS~1 

as nonllal and then apply it, instead of the R N~. to the clOlllain and record when 

and how the SS:\1 perfonns errors (cf. Section 16.2.5). From all SS:\1 with such 

infonnation, the output syrnbols could be replaced with syrnbols referring to the 

existence (i.e. binary error Ino error information) or the frequency' of errors in a 

transition. That SSl\v1 would after Ininimization be a grarnmar of Inist akes of the 

underlying R~~, describing with a finite state description exactly for what situatioll 

an RN\, generates erroneous output sYInbols. 

135 



17. 7 CrySSMEx2 

17.7.1 Meta-SDTDS 

When CrySSMEx is used on an RKN to generate a deterministic nlachine it I11eans 

a transition from an uncountable dOlnain into a countable one. The R::\::\s theru­

selves cannot be counted or enumerated since they build upon the uncountable 

real-valued input, state, and output domains. The deterministic SS}'Is. however. 

can be enumerated. Thus, if the translation froill an R~l\ into a deterministic SS~I 

is successful, the RNN can be indirectly enumerated by the extracted SS}'f. Sev­

eral other attempts have been made to enumerate R"\"N s with discrete "signatures" 

that describe their dynamics. For exalnple, by using the recurrent "~elf-\veights" 

of the state nodes (Tonkes et al., 1998) or an analysis of the Eigenvalues of the 

Jacobian matrix in the vicinity of fixed points (Boden et al., 2000). The use of 

rule extraction to create such an enumeration could, however, be a more profound 

way of enumerating RNN s since the extracted machines will in effect eillulate the 

RNNs. 

If CrySSMEx was used on a set of R ~~ s to generate a set of SS}' Is, these SS:\ Is 

would potentially end up in a set of equivalence classes (cf. Blair and Pollack 

(1997)), where all SS~Is of one equivalence class are indistinguishable frOtll each 

other in tenns of their output in all situations. These equivalence classes can each 

be enunlerated with natural numbers, {I ... n}. These CrySSMEx-ellulllerations of 

the underlying R~Ns could then be viewed as a quantizer (cf. Definition 9.--1) ap­

plied to the weight space of the RNNs. Of course, each R)J\" should be exposed to 

the exact same input sequence so that the difference between Os of different R\"\"s 

is only due to the RNNs themselves. 

If we consider backpropagation (BP), or backpropagation through time (BPTT), 

these algorithrns can in theillselves be viewed as systems falling under the SDTDS 

definition (Definition 9.1). Given a fixed learning rate and a fixed training set. Br 

will 111ake transitions in the weight space of the trained R:\'"\". i.e. in one epoch. 

BP will lnake a transition fr0111 one weight configuration into anot her. The wpight 

space corresponds to the state space of the SDTDS. the input space is (,lllpt~· and 

the output could be equal to the state space. The transition function is silllph' tht' 

136 



Backpropagation-SSM 

SSM 

Figure 17.3: An illustration of how CrySSMEx could be used to analyse the backpropa­
gat ion algorithm (or some other deterministic training algorithm) when used for training 
RNNs (or some other SDTDS). Backpropagation performs transitions in the weight space 
of RNNs. CrySSMEx is applied to each RNN and transitions between equivalence classes 
of RNNs can be described. CrySSMEx is then used on the level of backpropagation (lli 

the underlying SDTDS and the weight space is processed such that equivalent RNNs will 
be grouped together and inequivalent RNNs will be split. The two leftmost RNNs cor­
respond to random initial weight configurations. In reality, the BP-SS:\I should become 
considerably larger. 

gradient descent based updating of the weights of the R l\)J. 

Since the weight space of BP can be viewed as a state space in the BP-SDTDS, 

and since CrySSMEx could be used to enUlnerate (or quantize) this state space it 

would be quite straightforward to use CrySSMEx to analyse BP or BPTT by ldting 

CrySSMEx itself be the basis of Ao. CrySSMEx would then be used on two le\Tls 

(hence the name CrySSMEx2), one to enumerate Rt\Xs, and one to extract the 

transitions between equivalence sets of R)JNs (cf. Figure 17.3). 

If successful, the results should be quite infonnative for the anal\sis of BP and 

BPTT. The ('xtracted lllachine would describe sequences of transitions lwt\\"('('ll 

different R:.J:.Js as the RNNs progress towards the desired solution. It would also 

be possihle to see 110\\" the BP sometilllCS "forgets" successful solutiolls allel drifts 

off to unwanted parts of search space (Boden et al., 1999: Tonkps l\; \\"iies. lq~)~); 

137 



Jacobsson, 1999). The main obstacles for using CrySSMEx in this 111anner are the 

computational time required and that the weight space may be too enormous to 

conduct this extraction. But this should be fairly straightforward to implement 

and test. 

17.7.2 Dual systems 

Another form of CrySSMEx2
, i.e. where CrySSMEx is used simultaneously in two 

different contexts, would be to extract from two interacting systems. For example. 

consider that one system is an agent, and the other one is the envirOnIl1ent in 

which the agent operates in. The input-output relation of the two systems would 

be reversed, i.e. the input of the agent is the output of the environment and vice 

versa. 

Let the state spaces of the agent and environment be termed SA and S E respec­

tively. Viewed from the agent's perspective, its state SA, would have the following 

basic interaction IA ~ S A ~ D A whereas its environment would have this interac­

tion: IE ~ SE ~ DE where DA = IE is the output/action of the agent and thereby 

the input to the environment, and IA = DE is the sensory input of the agent and 

hence the output of the environment. Figure 17.4 depicts a schematic description 

of the agent-environment duality. The internal dynamics of the systeuls are here 

ignored, but naturally the state of the systems will also affect themselves. 

The extraction using CrySSMEx requires Ao to be specified and Ai to be invert­

ible, but that would not necessarily hold in this example (Le. sonle of the obstacles 

described in Section 17.9 may have to be solved first). The extraction of a machine 

in one system may, however, be used to refine the Ai and Ao of the other system 

(remember that Ai of one system is the Ao of the other). This is highly specula­

tive, of course, but the potential end result would be an extraction of a s~'Inbolic 

description of how the two systems interact (Figure 17.4). 

A good start would perhaps be to limit the agent's repertoire of possible actions 

to a finite set so that a Ao of the agent could be easily specified. This would allow 

for a deeper analysis of some autonomous robot experiments where R~~ shave 

been used, for instance, lVleeden (1996) used a finite set of actions, e.g., "lllove 

forward-left" or "move backwards-right" . 

138 



_ .... --_ •...•.•... 

l...·.: .... ·.·····.~··s~·~ ..... ·· ) =?'.· .. \.~.l······ 
... --.. --.. -_ .... - - _ ....... _ ... -

Figure 17.4: An abstract depiction of how CrySSMEx could simultaneousl~' be applied 
to dual interacting systems. In this example A stands for agent and E for the enviroIl­
ment in which the agent is situated. Both the agent and the environment are d~'namic 
systems and if CrySSMEx successfully extracts finite state descriptions of them both. a 
symbolic description of the "language" between the two systems would also have been 
extracted. The sensorimotor agent-environment interaction (lA/DE and OA/IE) would 
be abstracted as interchanging symbols (X A / Y E and Y A / X E) between two discrete (and 
possibly stochastic) systems. 

If the above is possible, then a possible next step is to create what I would call 

CrySSMExn 
1 where an unspecified number of subsystems can be identified. The idea 

is that a single large system can sometiIlles be lnore adequately described cb a ~<'t 

of interacting systeIlls (Watson & Pollack. 2005). For exarnple, if two FS\Is of 111 

and n states are translated into a single FS~\I, the resulting size of thL-; FS\I could 

require as many as m x n states. For large FS\Is Tn + 11 « Tn x n and dearly. in 

such cases, the two separate FSi\Is are a Inore cOlllpressed description. 

The description of the interacting subsystenls, conducting :-ivlllbolic interaction, 

could well be shorter than describing the full s~:steIn using a single finite ~tate 

lllodei. If an autOlnatic division into subsystenls is at all possible, the result of such 

extraction would be very powerfuL \Vhile genetic algorithnls could p()s~ibly be used 

to speculate about subsysten1 divisions, the fitness of such speculations could lw 

evaluated by the above described CrySSMEx2. 

17.8 Truly parameter free CrySSMEx 

CrySSMEx is only truly free froIll parallleters if we consider nand .\0 as dprivclblp 

frorn the donlC-lin sOlnehow (sec Aigoritlull 11.2) . . \0 can be S('('ll as deri\'ablp WlH'll. 

for eX<llllple, the dOllWill is synlbolic which has typicall~' been the CClS(' wh(,11 R\,\,­

RE lws bccll applied to R\'"\'s trained on fOrInal grallllllars (cf. Part I). But could 



the parameters be reduced in a broader range of situations? 

17.8.1 Guessing Ao 

If there is no known underlying symbolic domain or other natural sYlnbolic interpre­

tation of the SDTDS output, then inferring Ao (cf. Section 9.1.3) frOl11 the SDTDS 

alone seems an impossible task. The size of the resulting SS~I could, for exruuple, 

not be used as any indication. If Ao is cvqo, for example, then the resulting SS~I 

has only one state, all inputs leading to the same transition resulting in a single 

output symbol. If Ao is more finely grained, however, the SS1J may be very large 

but with output symbols that are very subtly differentiated semantically. The very 

reason Ao is a parameter of CrySSMEx is that it should be chosen by the user to 

reflect something meaningful. For example, if the underlying RNN is trained on 

symbolic data, it makes sense to let Ao reflect the symbolic interpretation of the 

RNN output. 

It could, however, be possible to use a whole range of output quantizers si­

multaneously, each resulting in its own "SSM-view" of the SDTDS. Perhaps there 

could be context dependent features from which can be estimated the adequateness 

of these different views? For example, if the underlying system predicts the stock 

market, and the output is in a range from -10 to 10%, then the accuracy of the 

numerical prediction of the stock value, calculated using a numerical interpretation 

of the symbolic output of the SSM, could be used as an evaluation criterion. 

17.8.2 Generating n 

It may not seem to be easy to avoid the sample set generated from the SDTDS 

as a parameter. The algorithm should after all need some examples from which to 

induce the model. But since the underlying system could potentially be ilnmediately 

interacted with, i.e. by feeding it input to see what happens, it would suffice to give 

only the system itself as an input parameter. CrySSMEx would then itself choose 

what inputs to use to generate O. Some ideas about how to perform this interaction 

are, however, discussed in more detail in Sections 18.4 and 18.6. 

140 



17.9 Gradual removal of SDTDS constraints 

The SDTDS definition is used in this thesis in order to not restrict the possible 

systems to R~~s only. The definition is therefore quite wide and details such 

as activation functions and weights are ignored so that many other architectures 

comply with the description. It may, however, still be too restrictiYe for a wide range 

of simulated systems. These restrictions are obvious targets for further development 

of the algorithm. 

17.9.1 Determinism ~ Nondeterminism 

One major obstacle for the use of CrySSMEx for a broader range of silnulated sys­

tems, is that it cannot handle noisy systems. Random noise is often added in 

simulated systems to create more realistic simulations and to "smear out" possible 

systematic mistakes due to erroneous assumptions. 

CrySSMEx will have problems with an underlying noisy system for many reasons, 

for example: 

• If an SE is nondeterministic, is it so because it should actually be split or is 

it due to noise? Indeterminism stemming from a poor quantization can, and 

should, be handled by a SE split. But indeterminisln due to noise will not be 

helped by such splits. 

• If two SEs are almost equivalent, but not quite, is their inequivalence due to 

the noise, or an actual inequivalence? Should they be merged or not? And 

how do you determine if two SEs are almost equivalent5? 

• When should CrySSMEx terminate? A fully deterministic SSM cannot be 

achieved as the underlying system is not deterministic. Hence, some other 

termination criterion must be used. 

My conjecture is that the solution lies in abandoning the simple deterministic 

progression from ssmo and upwards. Instead I find it likely that a heuristic or 

breadth first search needs to be conducted. There is a need for a backtrack possi­

bility since the consequence of a split or a Inerge may not be fully apparent until it 

5Kullback Leibler distance of output distributions may be a good start (Cover &: Thomas. 

1990). 

141 



is conducted and a new SSM is formed after it. Therefore a number of alternatives 

may need to be tested for each SSM. For example, if an SE is split but the split 

creates two SEs with no significantly decreased indeterminism. perhaps the split 

should not have been conducted. 

The generated search tree would have some practical consequences on the CVQ 

graph. It would not be reasonable to create a different CVQ graph for each possible 

vertex in the search tree. The CVQs will be related to each other and have large 

overlaps. Rather, a multi-version CVQ should be created so that the quantization 

of a vector using multiple versions can be conducted simultaneously. 

17.9.2 Discrete input ~ Continuous input 

The input space of the SDTDS is not explicitly limited in the SDTDS definition. 

But for CrySSMEx to function, it needs to be discrete and Ai must be invertible. 

This is due to the fact that each transition in the final SS~1 requires a unique input 

symbol to label it. 

Consider an SDTDS with a discrete set of input patterns, but with no predefined 

input quantizer. Let Ai be cvqo. Then CrySSMEx could at each nondeterministic 

SE perform the split on either As or Ai. If the split of the input space reduces the 

ambiguity of the output symbol then it is successful. If not, then split the SE as 

usual. If, for example, the input space of the system illustrated in Section 12.1 (cf. 

Figure 12.2) has no known quantizer, the first SSM would have one SE, and one 

input symbol x, and at the first iteration the input space would be salnpled since 

the state space is in the collect_spli t_data-function (cf. Algorithm 11.1). This 

would continue until a deterministic SSM is extracted. 

If the input space is truly continuous, another problem will occur. Even if the 

underlying system is truly deterministic, any finite description of the input space 

could give the impression that the system is not deterministic. If, for exanlple, two 

input vectors f1 and i2 result in two significantly different states of the SS~I but are 

quantized as the same input symbol, then from this input sYlnbol alone, the statt' 

could not be predicted. Hence, the same search procedure which is suggested in the 

previous section would have to be used (with a different termination criteria <'te.). 

In other words, a breadth first, or heuristic, search is suggested. as in t he ('asp of 

142 



indeterministic SDTDSs, but with the additional operation to split input symbols. 

17.9.3 Full observability =? Partial observability 

A problem related to that of noise, is when the state quantizer has no full infor­

mation of the underlying system. This is typically always the case in real world 

domains; some things will always remain hidden since no full nondisrupti\'e rnea­

surements can be done (cf. discussion of Plato's cave in Chapter 1). If the state 

space is not fully observable, it will again reselnble the situation of indeternlinis­

tic SDTDSs since the effect of hidden variables that cannot be Inodelled will be 

observed as noise. A solution similar to the one suggested in Section 17.9.1 could 

therefore apply. 

The partial observability problem may, for exalnple. anse when the state is 

not directly observable, but first passes through SOlne function which reduces the 

information content in comparison to the full state. For example, if the full ~tate 

is a physical environment, the environlnent state will onl:\' be indirect ly accessible 

through sensors. 

17.9.4 Discrete time ::::} Continuous time 

The restriction to consider only discrete time is not necessarily required in the SS~I 

description of the underlying system. The transition functions could possibly be 

replaced with continuous tirne differential equations with an arbitrary choice of j.t. 

The Inodelling of continuous tilne SDTDSs could thereby also be a potential pos­

sibility. To do this frOln scratch would. however, probably mean reinventing large 

portions of control theory, Clearly, this is one direction in which the well developed 

theories of other fields would have to be used (cf. discussion in Chapter 13). 

17.9.5 Real environments 

If the above obstacles (of Sections 17.9.1-17.9A) can be surrnounted. then the road 

is open to real \\'orld ell\'ironnlents. The real world is noisy and continuous. and 

only partialk and indirect l~' observable all at Ollce. Thus, if t hes{' kinds of ~\'st{'lll~ 

are to be anal~'s{'d, all of t he above Inentioned problenls Inu~t 1)(' halHll('c\ t ogt't h('I' 

1-13 



and not in isolation. I would, however, suggest that dealing with each problenl 

in isolation would be a good way to start. Furthermore, the best place to start 

would probably be to work on SDTDSs of the kind studied in Chapter 12 and let 

CrySSMEx find a suitable Ai. Then controlled noise could be added to the systeills 

gradually. 

If successful, it would be very interesting to implement this kind of system on 

an autonomous robot which could then explore its environment and build an in­

creasingly accurate model of its actions and their consequences. There i~. of course. 

much earlier work to consider. For example, Fox. Ghallab, Infantes and Long (2006) 

present a Hidden Markov Model approach for creating finite state nlodels of robot 

behaviour. While their approach did require some human interpretation of obser­

vations, it would be very interesting to see if SS:Yls and CrySSMEx could be used in 

a similar way and if the procedure then could be more fully autonlated. 



Chapter 18 

Sciences of Simulated Universes 

In this chapter future ambitions for the RNN-RE field are suggested in two franle­

works; Empirical and Popperian Machines. \\;ithin these descriptions, CrySSMEx 

serves as a basis and central component of all eXaInples, but the ideas presented 

are intended as goals that could guide RNl\-RE developnlent in general. 

Firstly, some properties of simulated systerns are discussed from an epistelllO­

logical perspective, suggesting that simulated systellIs are very accessible for scien­

tific analysis, and for autOlnated scientific analysis. Subsequently in Sections 18.2 

and 18.3, the necessity, feasibility, and revenues of the autOlnatic analysis of sinUl­

lated systems are discussed. In Section 18.-1 Elnpirical :\Iachines are suggested as an 

active learner for modelling simulated systelns. \Yhile Karl Popper's philosophy of 

science is briefly conlpared with Herbert Sinlon's lnachine learning ideas for solving 

scientific problems in Section 18.5. Section 18.6 presents the furthest ambition for 

rule extraction of this thesis: Popperian ~Iachines, i.e. fully automated generators 

and verifiers of statelnents, of highest possible elnpirical content. about populations 

of underlying silnulated systenIs. 

1B.1 The golden properties of simulated systems 

A single silllulated Systeul has SOllle propertips that Blake it \"er~' suitablf' for COll­

ducting active learning (e.g. Cohn et aL 1994; Bryant et al.. 109~)), 011 it (d. 

Chapter 15). Real ph~'sintl systellls are by far lIlllCh lllore cOlnplpx to anal.\>,t, If 

we, for {'xCllnple, want to inlplenlellt an active learllcr ill the context of, for ('xalll-

145 



pIe, neuroscience or molecular biology, we need to automate not only the ability 

to put forward theories and test them, but also all other competences involved. 

A researcher conducting biological experiments needs skills in handling biological 

tissue as well as planning expertise regarding the cost of the experimentation. etc. 

To become a skilled experimental biologist may take a very long tilne. If an au­

tomated learner should interact with physical systems in the same manner as a 

human expert, a considerable amount of sophisticated automation needs to be inl­

plemented. In other words, the complete automated empirical loop becomes a huge 

project compared to simply conducting experiments manually. There must be some 

kind of gain expected from automating something to motivate the autOlnation in 

the first place. An even more difficult situation occurs if we move fronl a labo­

ratory environment into the so called "real world" where repeatable experiments 

are perhaps only an idealization. In such domains hUlnan skills and experiences 

become even more valuable and, at the same time, more difficult to autonlate. In 

psychological studies, for exalnple, how are test subjects selected and interpreted? 

In astronomy, how are space probes designed and put into space and what probes 

should be prioritized? 

I suggest that if we want to autOlnate scientific processes of any kind, instead of 

focusing on the big scientific questions, we should more modestly start by looking at 

systems with properties more suitable for automated analysis. Simulated systelns 

naturally have such inviting properties (but are not necessarily trivial to compre­

hend, cf. Section 18.2). If we compare the study of simulated dynamic systems 

with the study of physical dynamic systems, there are some quite obvious differ­

ences that nlake them perfect subjects for systematic analysis. Let us call these the 

"golden properties" of simulated systems, which when simulated on a computer. 

allow us to (among other things): 

• fully observe every single variable of the system, 

• replicate results with arbitrarily high accuracy. 

• repeat experiments without much additional effort after the fralnework for 

the first experilnent has been implemented, 

• duplicate and distribute them among research colleagues. 

• study the effect of arbitrary' pertubations of the s~'stems under controll"d 

146 



conditions, 

• do nonperturbative studies of internal properties to an arbitrary degree of 

detail. 

In other words, they are almost perfect experimental subjects. Verv few scientific 
v 

communities have the luxury of studying entities with properties so inviting for 

conducting research on them. In fact, some of these properties lay the ground for the 

possibility of conducting rule extraction from RNNs (cf. the "implicit requirements" 

discussed in Section 6.5). 

For example, one central aspect in science is to infer causality from observations 

(Pearl, 2000). Sometimes it is obvious which event causes which effects, for example, 

a glass shatters as a consequence of it falling to the floor, not the other way around. 

But for some systems causality may become a chicken-or-egg matter, for example, if 

the concentrations of two enzymes X and Y are correlated in a large set of sall1ples, 

is a high concentration of X causing a high concentration of Y, or vice versa? Or is 

there perhaps an unknown cause Z, affecting both X and Y? Such issues are very 

problematic if there are no additional data. 

For simulated systems, however, determination of causality is quite problem free. 

Let us assume instead that the X - Y - Z-system is a sill1ulated one, then it becomes 

a simple nlatter of manipulating the levels of X and Y to see the effect of one or 

the other. Even if we do not directly alter X and Y (since it 111ay be biologically 

implausible to do so) we can restart the system several times from the exact same 

initial state. One can also save and retrieve the state of the system at any arbitrary 

point in time. The controllability of the simulated systell1 allows repeatability by 

copying and altering the state arbitrarily. In a biological system, the state can 

never be guaranteed to be exactly the same in two systems. Thus it will never be 

fully known if the effect of what you want to test, or some possibly uncontrolled 

aspect of the state of, e.g., a cell, is what is being measured. For simulated systems. 

however, the inference of cause and effect is trivial. For example, it is in principle 

trivial to answer questions such as "\Vhat would have happened to the silnulated 

system if it at tiIne t was affected this way instead of that way?" (just restart 

the simulation and simply try it out at time t). hnagine the richness of scienc(>s 

with answers to such questions, were Reality susceptible to them: e.g .... \Yhat if 

147 



dinosaurs had never become extinctT'. :'\Vhat if grayity was .j% weaker?". "\Yhat 

if I had taken mathematics instead of computer science?", ;,\\That if Alexander the 

Great had lost his first battle?". \Ve will never know the answers to such questions 

targeting the Reality in which we live. For simulated systenls. however. questions 

of that kind can in principle always be answered. The probleln is of course to ask 

the most interesting questions. 

As long as a simulator is properly implelnented, any observed phenOlllena can 

be recreated and studied in detail. If, for example, one simulated experiment out 

of a million results in deviant, but highly interesting results, this exact experilnent 

can be recovered and studied again. If one real experilnent out of a luillion return:-; 

a freak result, then you may only hope to achieve the saIne result again. 

I suggest that every simulated system is susceptible to a scientific Inethod :-;upe­

rior to the lnethod of sciences studying the real world. One lnay even demand that 

every simulated system is more thoroughly analysed than their real counterparb: 

i.e. that the possibility infers an obligation. But it is not that silnple. 

The Achilles heel of simulated experiments is instead that t he ease of generating 

clear observations is a double edged sword. It becOInes very easy to gen('rate new 

results for slightly different conditions or slightly different s\'stems lIlay produce 

unsurmountable amounts of data. This is also why there i:-; a need for sciences 

of simulated systelns. v\~hile these systelils are widely used today and can be fully 

controlled, they may be incOInprehensible due to the ease of conducting an arbitrary 

llulnber of studies on arbitrarily Inany, arbitrarily cOInplex systelns. Each system 

can in principle have its own "science", including a scientific nOInenclature, models 

and data. 

18.2 Incomprehensibility due to abundance and 

complexity 

John Horgan in his controversial book, "The End of Science" (Horgan, l~)<)()). ,";llg­

g('sts several reasons why our scientific explorations lilay soon hit a :-;olid brick wall. 

. . f S' t'fi '\ . '111<1 I)('rh'~I)"; it t'lkt's Horgan is a renm\'lH'd SClenCE' wnter or Clen I c .'-\mencan, ( (. (. 

a journalist wi th all unbiased perspectiv(' on :-;ciellce to dare to :-;uggcst t hpf£, an' 



fundamental limits to science and that those limits may already have been reached. 

The book should perhaps more properly have been titled ;'The En ds of Scien­

tific Revolutions" since he suggests several different causes for scientific limits and 

predicts a future lack of scientific revolutions (Kuhn, 1962) rather than a lack of sci­

entific progress in general. For example, quantum physics could only revolutionize 

physics once, whereas refinelnents and applications of quantum physics nla~o be de­

veloped indefinitely. However, some areas such as particle physics. lI1Cl\' soon reach 

a limit due to the physical unfeasibility of testing some hypotheses because the ('():-;t 

could become astronomical (quite literarily so, since required particle accelerators 

may surpass our solar system in size). 

Potential scientific progress may also be impeded by human lilIlitation in un­

derstanding a subject to the degree that accurate and meaningful hypot IlP:-;e~ can 

be made. A potential solution to this is to exclude the human elelnent frOlIl the 

equation and let computers without our cognitive lilnitations suggest and test the 

hypotheses. This solution is suggested in light of Horgan's book by Riegler (199~) 

and the subject is also briefly touched upon in Horgan's book itself. Therefore, if 

machine intelligence is the key to the science of the incOlnprehensible, why not st art 

with silnulated systems that have such inviting properties for conducting rt'sparch 

on theln (cf. previous section)? 

It is quite easy to create silIlulated systeills that beha\Op in incoIIlprehensiblp 

ways, even to the designer. .Just create a s~'steln which alters itself as it runs and 

you lliay soon be scratching your head trying to figure out what it is doing. Clearly, 

the possibility that the scientific investigation of a silllulated system IIlay become 

intractable for a human is quite conceivable (despite the golden properties presPllted 

in Section 18.1). 

A fundamental probleln facing many enlpirical computer scientists i~ that it i:-; 

lnuch easier creating large nUlnbers of new computational lnodels and observatiolls 

than actuall~' understanding any of them. This situation is especiall:v true in ar('(t:-; 

where autolnated Inodel building is part of the research, e.g .. Inuch .\\"~ re:-;parch. 

This is becCluse when one studies a phenOlnenon such a:-; a IH'ural network training; 

algorithln, the phpnOlnenon manifests ibelf in a class of computational JIlodels. i.('. 

the nd\\Oorks thelnselv('s. 

149 



Suppose the level of the model builder (trainer) is called level 0 and the level 

of the resulting models (networks) level 1. In the study of backpropagatioll. which 

is a deterministic gradient descent algorithm for training AXX s, for example. the 

algorithm results in a trained network for every random initial network you start 

with (which is the standard procedure for training). Furthermore~ the result varies 

with selection of learning rate etc. The backpropagation algoritllln is in this context 

a level 0 object and the network a level 1 object. Level 0 objects create level 1 

objects. 

If the scientist wants to analyse some aspect of the system at level 0 (within 

the context of some specified domain), then the empirical stud~' needs to take place 

at level 1, i.e. the level on which the system manifests itself. As in any elllpirical 

study, more than one object needs to be incorporated. and, in Inany casps, the 

differences between individual generated models are not insignificant, necessit ating 

a considerable number of models to be generated and studied. In the ca~c of 

backpropagation, the resulting generated networks may be very diversified despite 

being trained on exactly the same domain. Each network can then be studied and 

analysed in its own right. A few of the networks rnay, for example, have completeh' 

novel and surprising solution to a problelll, as exemplified in Zienlke and Thieme 

(2002) when it was discovered that sorne evolved networks, controlling a robot, 

used the envirorllnent as its Ineu10ry instead of using its internal representation. In 

order to discover such surprising behaviour in the networks, each Ulust be studied in 

detail (or, at least, one 11lUst be lucky enough to study the interesting ones closer). 

The level 1 phenomena lnanifest themselves in what \ve can call level J (sec 

Figure IS.I), which in the case of neural networks corresponds to the behaviour 

of the networks within the given domain (cf. n of Definition 9.3). The generated 

collective of level 1 models are almost always eyaluated quantitatively at level 2. e.g .. 

a perforrnance estimation of the networks (e.g. ~Iiller & Giles. 1993; Jacobssoll (\; 

Zielnke, 2003a). There are also 1110re qualitative evaluations of the networks bascd 

on visual analysis of the behaviour (e.g. :\ Ieeden, 1996; Ziemke l\: Thiemp. 2(02). 

Based on the collective results at le\'el 2. conclusions on the <lSp('ct:- of tIl<' 

nlodels of level 0 are then drawn, t~Tpically without incorporating the indiyicillalitv 

of the level 1 r11odels. In other words. there is an explanatOlY gap lwt\\"('('11 the 

150 



Level 0 Dynamic System 

Level 1 Dynamic System 

Level 2 000000 Measurements 

Figure 18.1: An illustration of the information explosion that many empirical computer 
scientists may encounter. Level 0 objects may for example be different training algorithms 
that each will generate one or more level 1 objects, e.g., neural networks. The trained 
models have one or more measurable behaviours in different situations. To explain level 0 
systems, more than one level I-system may therefore have to be examined in turn. 

trainer of models and the models' behaviour. For eXalnple, if a number of potential 

backpropagation parameter settings are to be conlpared in a domain, the fillal 

performance of the resulting networks in terms of their generalization error would 

typically be used to evaluate which setting is the best. But if the specifics of the 

dynamics of the network is of interest then this performance analysis, of ho\v the 

networks rnanifest themselves on their domains, may not be enough. For eXaInple, if 

the networks of Ziemke and Thieme (2002) had only been quantitativelv evaluated 

and not visually inspected, the fact that some networks utilized the environment 

as melllory would probably not have been recognized. The individuality of le\'(-'1 1 

objects is lost when level 0 phen01nena are evaluated only on an averaged collection 

of level 2 data. 

For other fields of science where data collection is l110re costly, this would seem , ' 

absurd. For eXcullple, it would be unforgivable to not study'" data from space prolws 

in great detail considering the cost of gathering it. Treating dat a fr01n space pro\)('s 

as a collective set of data without accounting for the individualit~" of the probes 

or the planets they are probing would be considered quite absurd. Yet, this i:, 

precisel,v what is done when a training algorithm is used to generate S\"stt'IllS that 

"probe" the search space of the training algorithm. Each s\"stem may be a lllliquf' 

solution to the problem found by the trainer, ~"et such individuality is lost WlH'1l a 

llH'l'(' perforInance 111eru:lUre is conducted and then averaged for s('vcral i ndivicluals. 

151 



The problem for the empirical computer scientist is that each model at level 1 

is itself, although relatively easy to create, a potentially cOlnplex phenomenon for 

which theories can be put forward and tested. Theories which explain the mecha­

nisms behind how the numerous level 1 models manifest themselves at level 2 may 

require more than a superficial analysis of quantifiable aspects of this manifesta­

tion. This is typically done only on selected individual models, due to the mnount 

of effort needed to perform a complete empirical study on each object (e.g. Pollack, 

1987; Meeden, 1996; Rodriguez et al.~ 1999; Boden et al., 2000). 

The basic problem here is not only whether or not the complexity of level 1 

systems supersedes the human possibility of understanding them (as Horgan (1996) 

suggests as a reason for halting scientific progress). For example, there are many 

papers in which individual recurrent networks have been analysed in detail and 

have arguably been understood by the authors (and readers) 1 . The problem is 

rather that a detailed analysis of a handful level 1 objects may not be sufficient to 

understand the properties of the level 0 objects. It may. however, be too costly for 

humans to analyse each individual level 1 object. 

There are many instances of human scientists spending entire careers on subject 

matters that are seemingly very narrow. For example, biologists working on just 

a few selected proteins for most of their careers. This is how some sciences have 

become organized through the success of reductionism (and as a consequence of 

some sociocultural aspects according to Kuhn (1962)). It does, however, seem 

sensible for someone to be funded for analysing a very specific neurotransmitter 

and its role in Alzheimer's decease 1 for example. The potential of such research 

lies in applications which may help people. There are, however, considerably fewer 

people (apart from some overly enthusiastic mathematicians, perhaps) building 

their careers on the analysis of one or several instances of simulated systems, even 

though some such systems may be sufficiently complex for researchers to spend 

a lifetime learning new things about them. One reason is that the knowledge 

acquired about a simulated system may only indirectly yield dividends in the real 

world. Another reason is that for every simulated model that can be created. an 

uncountable number of variants of it can also be created. \Vhy focus on one model. 

ISee Section 2.1 for a number of examples of such papers. 

152 



when a new one can be created which may be more interesting? The problems for 

an experimental computer scientist are that there are too many choices every step 

of the way towards creating and analysing simulated systems. 

The relative ease of creating new systems that can (and certainly should) be 

studied yields a very low revenue from the analysis of each individual system. Con­

sider simulations of chemical reactions in an artificial molecular system with differ­

ent reaction rules and concentration levels of reactants, or simulations of galaxies 

formed under different conditions. Another instance is simulations of thousands 

of recurrent neural networks created by genetic algorithms for the purpose of con­

trolling a simulated robot arm. A detailed manual study of a randonlly selected 

individual system in these example areas will most likely not be very rewarding. 

Simulated systems are abundant in contemporary research and with the Iueans 

of creating one system, another can easily be created by tweaking some parameters 

and running the level 0 simulator-generator again. Each individual level 1 system 

may hold the key to whatever problem you are trying to solve, but carefully con­

ducted scientific studies on each of them become practically impossible. This is why 

automated analysis of simulated systems is important. For real world systems the 

potential prognosed pay-off, in terms of the knowledge gained and the application 

of some research may be sufficient to motivate financing humans to conduct the 

research. For individual simulated universes, however, the low payoff alone may be 

sufficient motivation to automate the analysis. Tvloreover, machine analysis rather 

than human reasoning may be more appropriate for some simulated systems. This 

is because a simulated system can easily be created to be counter-intuitive and ab­

stract in a way that renders past human experience useless in the analysis process. 

See Table 18.1 for a brief summary of SOlne of the differences between sinlulated 

worlds and reality. 

If the golden properties are utilized to automate the analysis of sill1ulated S~'s-

terns, what is then the purpose of the automatically generated models of t hest' 

systems? The siInulated system is of course in itself completely described in source 

code or something akin to it. This issue is central in rule extraction and the mo­

tivator is traditionally that a comprehensible model should be created from a.n 

incomprehensible system. In the following section I argue why this l11oti\'ation is 

153 



! Real world 

There IS only one observable real Create as many simulated worlds as 

I Simulated world 

world. you like. 
Acquired knowledge may yield high Knowledge is of low value since it "ill 
payoff (e.g., applications). be only about the silnulated systerll 

and nothing else. 
Uncontrolled noise. Controlled noise. 
Repetition of experiments requIre Repetition of experiments require 
skill. only copy-paste of system state and 

parameters. 
Human intuition may be helpful since Simulated systems may be entirely 
humans have experience of the nature unintuitive. 
of the real world. 
Time is (or appears as) continuous, Time can be linear, cyclic or tree-like 
linear, divided into past, present and and discrete, history is always accessi-
future, and cannot be controlled. ble for analysis, future can always be 
Only if the present contains infor- predicted (i.e. presimulated in sepa-
mation about the past can historical rate time line). 
analysis be conducted. Prediction is 
difficult. 
Can only be controlled indirectly, Can be controlled in a ;;hand-of-god"-
through interaction. like manner. 

Table 18.1: Some highlighted examples of why it is easy as well as reasonable to conduct 
a scientific study of a simulated system. 

not as important as it seems. 

18.3 Models as proxies for queries 

I would suggest that the comprehensibility of extracted rules should not be the sole 

basis for the assessment of the usefulness of rules (cf. Andrews et al. (1995); Tickle 

et al. (1997, 1998)). The rules, or models, of some underlying phenomena can be 

useful in other ways than being directly read and cOlnprehended by hUlnans. Tradi­

tionally, models of something should accentuate certain aspects and Olnit others in 

order to promote understanding and ability to control the phenolllena (Follesdal. 

Walloe & Elster, 1993). This is especially clear in control theory where the 1110dels 

should be simple enough for engineers to develop and scrutinize them, yet sophisti­

cated enough to control the plant. But, with regard to automated model buildillg. 

the role of the engineer is replaced by a machine. The yirtue of tlH' lll()(iPi as a 

154 



means to achieve control is, in my view~ not diminished by being lnachine created. 

For real control applications. however ~ legal problems may arise if no terun of engi­

neers can be held responsible for the system (the legality issue is also used as one 

motivator for rule extraction in Andrews et al. (1995)). \Yhen considering sinlu­

lated systems, however, models of the systelns can be built automatically without 

any risks involved (cf. initial discussion of Chapter 1). 

The possibility of using models to control a phenomena is. nevertheless, not 

the most essential if the underlying system is a simulated one. There may be a 

desire to understand the system, but this may be rendered impossible if the Iuodel 

of the system becomes more complex as a consequence of optiInizing the fidelity. 

The comprehensibility/fidelity tradeoff (Craven & Shavlik, 1999) lneans that the 

better the model mimics the underlying system, the bigger and more complex it 

may become. 

I would however argue that if a model has certain properties, then, even if it 

is large and incomprehensible. it may still be meaningful in tenns of cOluprehen­

sion. For example, consider a highly complex simulated model of hot plasma. for 

the purpose of building a fusion reactor. The model may have nlillions of state 

variables and build on quantum mechanical principles, as well as being highly non­

linear. Despite being incomprehensible (within mortal limits of understanding), 

the researcher depends on the model to answer queries such as "will this nlagnetic 

field configuration result in a stable plasma T' and expects responses such as "Yes, 

in 90% of the cases.". The incomprehensibility of the system itself is of little sig­

nificance (given that it is accurate with respect to the relevant underlying physics) 

when the researchers receive an answer which Inay very well be conlprehensible. 

Consequently, the idea is that nlodels Inay be useful as a proxy for queries. I 

would hold that one strength of models, in science, mathematics and Inaybe even 

as mental representations, is that the model acts as a quer~'-proxy between the 

question-holder and the "reality" that the question addresses. The virtue of any 

silllulation lies in that the simulator is a model which is much cheaper. and mon~ 

appropriate, to query than the reality itself. And when it COlIles to models of 

simulated models, the more abstract model should be constructed such t hat it is. 

in turn, more appropriate for queries than the underlying silllulated systPlIl. 

155 



Consider for example SSMs as models of SDTDSs (cf. Part II). The user could 

of course interact with the simulated SDTDS directly, by testing yarious combina­

tion of input patterns. But CrySSMEx creates the SS}'! model of the SDTDS as a 

potential proxy for certain kinds of queries about the underlying system. Then, as 

suggested in Section 17.2, various questions could be asked of this model without 

the need to interact with the underlying system directly. The extracted SS~I is 

more appropriate for queries since it has a well defined syntax in the structure of 

the SEs and transition as well as defined semantics represented by the input, output 

and state quantizers. 

To illustrate the strength of a model as a proxy for queries, consider a very 

simple model of a population of real-valued measurenlents as a nlean yalue and 

standard deviation. Let us say, for example, that you have nleasured the length of 

one thousand slimy earthworms, a nasty and cumbersome task by many standards. 

From this exercise you know that the average length is 15 cm with a standard 

deviation of 3 cm. To create a lossy model, in this case, you choose to assume 

that the lengths are normally distributed. The model is lossy in the sense the 

exact lengths of all measured wonns cannot be recreated and other aspects of the 

worms, such as degree of sliminess, are completely ignored2
. It is a very powerful 

model for the length of earthworms, not only for the ones that have been carefully 

lueasured, but a model that is assulned will hold also for luany other earthwonns 

collected under similar conditions. In fact, it may even be assumed that it holds 

for all earthworms that have ever existed or will ever exist. Even if an infinite 

number of earthworms will exist before the end of time, you will have a model 

for them too, accurate or not. From the data alone, without assuluing nonnal 

distribution (or some other criteria) as your criteria for compression, you could not 

have expressed anything more substantial than statements about specific lengths 

of the 1000 individual earthworms you have encountered. Any statement about 

these specific 1000 worms you could have been more accurate. but without the 

compression of the model, would you really understand the dOluain? Compression 

is, if not the actual act of comprehension, clearly helpful for your cOlnprehension. A 

deeper discussion of the suggested relation between compression and cOlnprelwllsioll 

2The normal distribution assumption also makes the model lossy in the sense t hat if it i~ a 
false assumption, the model will be inaccurate. 

156 



can be found in Chaitin (2005). 

The power of the model is not only that it generalizes to more data than just 

the collected data. The power of it as a proxy for queries is realized when you may 

have concrete questions regarding the lengths of the earthworms. If you want to 

go fishing and need earthworms longer than 20 em in order to catch a really big 

fish, then you could simply utilize your model of earthworm lengths to calculate 

the probability of finding such worms. Suppose you want to estimate the expected 

time it will take to get ten such worms if you dig up ten worms per minute. The 

probability of an arbitrarily selected worm being longer than 20 cm should be 

approximately one in twenty, according to your model. From this the expected 

time it will take to find ten long worms can actually be calculated. Consider if 

you want the same answer, without the use of your powerful "worm-length-model". 

Then you would actually have to dig up the desired amount of long worms, nleasure 

the time each one takes, and repeat this until you can make a model for the average 

time needed for the task. It would amount to a lot of worms compared to the elegant 

worm-length-model powered deduction. 

By investing computational time in building a model of a simulated system, the 

cost of answering certain queries may decrease significantly. In the exanlple above, 

the collection of data together with some assumptions made possible queries about 

an infinity of never seen eXaInples. The answers may be wrong, if the model is 

incorrect. But a single model consisting of two real values eliminates the need to 

conduct any more measurements once the risk of errors in the model is accepted. 

This is of course an idealization, but any form of model building should produce 

revenues in the form of reduced (computational) cost for answering certain queries. 

When a model, that is intended to be suitable for queries, is built upon a 

simulated system, the assumptions made should be such that the model is more 

suitable for queries than the simulated system is by itself. The 8..':)sumption under­

lying CrySSMEx, for example, is that a finite state model is adequate. Even when 

it is not adequate, it Inay be used as a proxy for queries, although the answers 

may sometimes be inaccurate. What CrySSMEx does is to increlnentall~' generate 

gradually better models so that the expected accuracy of query-answers, with rp­

spect to the actual underlying system, will gradually incre8..':)e. It wilL howew'l". 

157 



only increase with respect to the collected datal 0, and when this data is perfectly 

modelled, CrySSMEx terminates. 

One could object that there may also exist queries, and answers to these queries, 

that themselves are beyond our comprehension. Some of these incomprehensible 

queries may however be exactly the kind of queries that are necessary (given sonle 

ad hoc utility function). Thereby the rules can only be made partly cOlnprehensible 

by being accessible through queries. The problem of incomprehensible models is 

merely temporarily avoided, and not solved, since, the most significant queries for 

a particular model may be beyond our comprehension. This is of course true. \\"e 

cannot escape our finite ability to comprehend complex models. But, sometimes 

not even queries, or their answers, need to be humanly comprehensible to be useful. 

On a reasonable degree of abstraction CrySSMEx can be seen as asking questions of 

the latest SSM about what aspects of it need refining, and how this should be done 

through resampling of O. In CrySSMEx, the extraction of 88Ms progresses with or 

without our comprehension. In the following section this form of querying, for the 

purpose of improving the queried model itself, is discussed further. 

18.4 Future direction I: Empirical Machines 

I will now define the first framework in which I think future RNN-RE algorithms 

should be developed: Empirical lVlachines, based on active learning and induction 

of models through querying of the underlying system (Angluin, 1981, 1987; Cohn, 

1994; MacKay, 1992; Cohn et al., 1994; King et al., 2004; Angluin, 2004). A siInilar 

active learning rule extraction approach is also suggested by Craven and 8havlik 

(1994), but for feedforward networks only. For dynamic systems, the problenls 

are quite different than for feedforward networks since a system is fundamentally 

different from a function in that it changes over time. 

In CrySSMEx a sequence of models is built based on a predefined set of obser­

vations, O. As mentioned above, CrySSMEx can be seen as "querying" its latest 

8811 model about how it could be refined such that the data is more properlY 

interpreted. From the answer of this query, the next SS:\I is then created. ~Iore 

precisely, the 8DTDS is interpreted through the CVQ which is adapted to creatp 

158 



an SS~1 description of the SDTDS that is minimal and consistent with the SDTDS 

sample, n. The adaptation of the CVQ is based on pinpointing alnbiguous SEs of 

the SS~1 through measuring the conditional entropy and selecting data in [2 that 

may alleviate the ambiguity (nondeterminism). It could however be argued that 

the principle which is used to select data from n could potentially also be used to 

add data to n. 
The reason the conditional entropy is used in Algorithm 11.1 is that it can be 

interpreted as a model of ignorance. For example, Hssm(YIQ = qi, J\ = .Z'k) can be 

interpreted as the degree of uncertainty regarding what the output sYlnbol should 

be if the SE and input symbol is known. In other words. the constituents of the 

model that are the most ignorant or inexact are selected for refinement. The Hssm 

entropies are defined (definitions 9.9 and 9.10) such that it does not consider dead 

transitions (Definition 9.7) as ignorance. These definitions were based on the choice 

of the closed world assumption, i.e. if a transition is dead, it is so because it is not 

represented in n and thereby does not indicate any ignorance of the SS:-'[ regardin~ 

0, but rather as ignorance in 0 regarding the underlying systenl itself. The closed 

world assumption says: if something is not in the smnpled data, 0, then it is al.-.;o 

not in the Inodel. 

Dead transitions are, however. only one extreme case of insufficient data in n; 
i.e. when an input sYlnbol has never been presented to the underlying SDTDS in 

certain situations. This is only at one end of the spectruID of transition frequencies 

and the only one which can be seen in the SSl\[ at all since the frequencies of 

SEs and transitions in [2 are not modelled at all in the SS~I. The extracted SS:-'L 

however, lIlay have some SEs and transitions that could be very poorly supported 

by data in O. For exalnple. if one transition is executed only one tilHe and anot her 

1000 tilnes, in a quantized O. this will not be reflected in the SS:-'[ at all. It is quite 

conceivable that a transition supported by a handful of obsery<lt i()llS ill [2 can lw 

considered Inore volatile than a transition supported by thousands of OhS(Tvatioll:--. 

An SS\f is more likely to fail to generalize with respect to unseen sitllat ions clf 

tIlt' weakest links. i.e. infrequent SE.-.; and transitions. It is also guaranteed llot to 

generalize at all in dead transitions. 

OIle goal of CrySSMEx is to create a DIodel which minimizes the llllc('rtaillt~· of t 11(' 

159 



output of the underlying system given a sequence of inputs. If the model mimic~ 

the underlying system well, this uncertainty will reach zero. This uncertainty i~ 

what is gradually eliminated in the CrySSMEx-Ioop. 

Fully eliminated uncertainty terminates CrySSMEx, i.e. after the SS:\1 fully de­

scribes the data in n there is nothing more for CrySSMEx to do. This is precisely the 

point at which CrySSMEx could be made part of an active learner: by resarllpling n to 

cover ignorance in the SSM regarding the underlying SDTDS (cf. Section 17.2.1). 

The resampling should be done by interacting with the underlying SDTDS in a 

manner which should make infrequent SEs and transitions more frequent as well ,b 

it should eliminate dead transitions. 

There are of course many strategies for how to patch up the holes in the SS:\1. 

One is to generate an input sequence which according to the current SS:\1 should re­

sult in more uniform SE frequencies, i.e. that states should be visited approxilllatel~' 

the same number of times. Another method would be to interactively (while the 

CVQ quantizes the state space) force the SDTDS to follow previously dead trclllsi­

tions. This must be done interactively since, based on the SS~ L it is ilnpossible to 

know what will happen in the dead transition. A reasonable strategy' could be to 

generate a new n that Inaximizes the probability that the underlying SS\[ should 

fail to predict the SDTDS. To prevent loops, it is probably beneficial to let the 

new n contain the previous n as a subset. When this new n has been used to 

create a new lllodel, the whole resanlpling procedure could be started over again. 

For every iteration, the induced model should better lnimic the underlying system 

since the data on which it has been trained was selected to be as problematic for 

the underlying systelll as possible3
. 

By Elllpirical l\lachine, I refer not only to systeills built on CrySSMEx. A.s cur­

rently iIllplemented, CrySSMEx has its specific limitations and features which are not 

uwant to constrain the concept of Empirical l\Iachines. Empirical :\Iachine meaIl~ 

a svste1l1 of model induction which should create a model of a simulated s\"stelll 

that should be more accessible to queries than the underlying system itsPlf. III par­

ticular, the rnodel Blust be able to allswer queries regarding its own inabili tips (i.e. 

;\A similar idea was developed already' in Jacobsson and Olsson (2000) (which in tllrn .was 
bas('d on Jacobsson (1998)) where. problematic. prototypical input patterns wen' l'xtra('t('d from 

feed forward networks by "iuH'rting" them. 

160 



Empirical Machine 

Model 1 Model 2 ... ~ Model n ... 

? . ? . 

Simulated System 

Figure 18.2: Outline of an Empirical Machine. The initial model of the underlying 
system queries the underlying system in order to improve itself. A sequence of models 
is thereby created, where increasingly detailed queries can be given as the deviance of 
the models from the actual system decreases. A user can potentially query the Empirical 
Machine which acts as an adapting proxy for queries. The queries from the ll~l'r could be 
used to guide the refinement of the underlying models. 

ignorance) to answer certain queries. Apart from creating the InodeL the Elllpiri­

cal Machine lnust also have a mechanism for generating a new set of observations 

which should relnedy the ignorance in the current lllodel. Traditionally, R:\":\"-RE 

methods aSSUllle finite state models, but other lnodels are of course possible. For 

exmnple. a silnilar active learning rule extractor was suggested by Craven and Shav­

lik (1994), but it was limited to feed forward networks only. An Elnpirical :\Iachine 

is to be regarded as an automatic lnethod for creating Inodels of silllniated ~y~t{,lll, 

nlodels that should in principle never stop being refined (or, at least verified) a~ 

long as t he machine is running. An external user lnay of course provid{' guidance 

by providing additional queries regarding the underlying Sy::;teill. The outline of an 

Elllpirical :\Iachine in conjunction with an external user is depicted in Figure 1~.:2. 

Observant readers will remember it was previously argued that it i~ preferable 

to kt CrySSMEx be compositional, i.e. to collect data fron1 the SDTDS <l~ it \\';\~ op­

('rating in it~ dOlnain (cf. discussion in Section 9.1.2). By recollecting data acti\"{\l~·. 

t he patterns of an underlying don1ain of the SDTDS will not be lls{'d ib ht'llrist i('~ 

in g('Ilerating the rules \\·hich will result in nUH1\" asp<'cts of the rlll{'~ llot \WiIlg 

rek\"ant for the SDTDS as it is actually operating ill ib domain. In .Ja('()h~~()ll 

161 



and Ziemke (2003b) (and Appendix D) it was shown that by using the domain as 

heuristics, significantly fewer states were extracted than if breadth first search was 

used. This active learner is therefore more suitable for systems that are not strictly 

bound by a constrained external domain. For example, the anbn-predicting RXXs 

(cf. Section 12.2 and appendices C and D) are not really intended to do anything 

else than predict anbn-strings. An Empirical rvlachine might, however. "conduct 

experiments" on the RNN using any non-anbn-string resulting in big SS:\,Is with 

largely irrelevant aspects in terms of an b n . 

The reason I define and discuss Empirical Machines is that, apart from being 

a potential extension of CrySSMEx, it also provides a framework for other poten­

tial RNN-RE algorithms. If one wants to design a rule extractor for the purpose 

of building an Empirical Machine, some arguably important goals for RNN-RE 

algorithms and their rules are highlighted: 

• By providing rules that can be queried, fidelity could potentially coexist with 

comprehensibility (cf. discussion in Section 7.2.2) since large incomprehensible 

rule sets can be viewed through queries that accentuate aspects of relevance 

for the user. This places a focus on the querability of rules as a quality 

criteria rather than the traditional criteria fidelity, accuracy, consistency and 

com prehensi bili ty (cf. Sect ion 4.2.4). 

• The rules should be able to assess some aspects of their own ignorance. This 

is important not only for the Empirical Machine framework, but also for the 

possibility of providing estimations of confidence when the rules are used to 

predict or model the underlying system. 

• The user can, but is not required to, guide the extraction. In essence, this 

means the extraction process is further automated since the user needs to do 

nothing more than provide the Empirical !vlachine access to the underlying 

system. Full automation means the Empirical l\Iachine can more easily be 

incorporated as a constituent of larger systems (which is suggested in Sec-

tion 18.6). 

• In order to build an Empirical Machine from a rule extractor means it must 

be "user independent" since it must interact with the under1~'illg ~~'stem au­

tonomously. The importance of freedom from, or consistency over. paralll{'t('r~ 

162 



becomes accentuated since these parameters would be inherited from the rule 

extractor to the Empirical Machine. 

The first point is perhaps the most important for the field of R~~-RE ~ince it 

would motivate research on rule extraction also when the rules are beyond hUlnan 

comprehension. Human comprehension has its limits but I see no reason why 

extracted incomprehensible rules should be deemed worthless if they accurately 

describe the underlying phenomena. As Einstein once put it: ';A scientific theory 

should be as simple as possible, but no simpler". The challenge for rule extractors 

is to show that this may also be true beyond the lilnit of hUlnan comprehension. 

Most likely, the extracted models will quickly explode in size as every hole 

patched in the SSM is likely to generate a larger SS~\I 'with even Inore dead transi­

tions. Therefore some strategies, regarding what aspects of the SS:\1 should be the 

focus of further resampling of the SDTDS, must be devised. Such intercstinqncss 

measures are commonly used as heuristics in computational scientific discovery and 

this connection is investigated in lnore detail in the following sections. 

18.5 Popper and machine learning 

Scientific discovery involves two nlain subprocesses~ creativity and criticisln. Or as 

Popper states it; "the work of the scientist consists in putting forward and testing 

theories." (Popper (1990), p. 31). Traditionally. the machine learning field has 

been Inore involved with the former rather than the latter. Ironically. however, this 

aspect of science is perhaps not the 11l0St accessible for aut Olnation. To dlltOlnatc 

sOlnething, you must first understand it enough to progralll it (Chaitin, 2005). 

Popper states: "The initial stage, the act of conceiving or inventing a theory, S('(,lllS 

to me neither to call for logical analysis nor to be susceptible of it" (Popper (1!)00), 

p. ~n). This has of course received criticism frOln proponents of lnachine learnillg 

<1 pproaches to science; "It is unusual for an author, less than one-tent h of t h(' wm' 

through his work, to disclaiIll the existence of the subject Inatter that the tit h' of 

his treatise announces. Yet that is exactly what Karl Popper dews in his classic. 

The Log'it of Scientific D i,~('() l'ery" (Silnoll (1973), p . ..! 11,). This could simplY 

1)(' attributed to a poorlY titled book. The original title in GprlllCln was "LOYlk 

163 



der Forschung') (Popper, 1935) which is more accurately translated as "Logic of 

Research" (which sounds less powerful, I suppose). Even more accurately, the book 

should per haps be titled "The Aspects of Science that can Actually be Reductd to a 

Logical Description" or, "How to Separate Science from Non-science". The last title 

would indeed reveal the main ambition that Popper seemed to have with his book: 

to give a detailed description of what science is and how to recognize pseudoscience 

disguising as science. 

The machine learning literature is strongly influenced by Herbert A. SinIon, 

a strong proponent of machine intelligence applied to realistic scientific problems. 

Simon's articles present a strongly descriptive view of science. A paper on a llla­

chine learning technique applied to a scientific dOlnain is typically introduced by 

a description of a success story where a scientist has discovered a novel law. In 

Simon (1992), for example, diaries, correspondence and laboratory notebooks of a 

few noteworthy scientists are studied to find patterns in their creativity, intuition. 

assessment of the validity of ideas and planning of experiments etc. A challenging 

task indeed. As I see it. the basic problenl is. however. that intuition and creativlty 

are not matters easily approached by other means than introspection. Idea~ about 

scientific creativity may possibly be no more than sophisticated guesses at best. 

since the problem of scientific creativity itself may not be a probleln open to the 

scrutiny of scientific Inethods (Popper. 1990). The science of creativity is not (l 

science at all, in fact, if we follow Popper's definition of science. 

Popper's demarcation of science from non-science, or pseudo-science, is based on 

his view that science should deal exclusively with falsifiable statements. If a stat('­

lllent cannot be falsified through observations, then it is not scientific. Falsificatioll 

is, however, a property of the statement itself, not of the source of the statelnent. 

In other words, in Popper's philosophy of science, the source of statelnenb i:-- a 

wild-card. Popper never states that there are no logicallY built up met hods that 

can COlne up with falsifiable statements, i.e. he never excludes the p()s.-;ibilit~· of 

the creative element of the scientist being autolnated. He merel.v claims that tht' 

aluti.Ysis of hun1an creativity is intractable, and this does not. in m~' view. exclude 

the possibility that logically built systems lnay have "creatiy(;' features. ~illlOll 

and others hcl\'e certainly been able to develop several such logical pr()~rallls for 



artificial creativity in scientific domains such as mathematics. chemistry. physics 

astronomy biology~ medicine etc. (Simon, 1995/96; Colton &, Steel. 1999). Xovel 

discoveries are rare (typically known facts are rediscovered) but it does happen. 

Others have embraced the non-logical nature of scientific discovery and let "ran­

dom" evolutionary processes be the basis for creative discoveries (Koza et al .. 2003). 

Through the use of genetic programming which builds on random mutations, ran­

dom crossovers and fitness-based stochastic selection, Koza et al. have been able 

to find novel non-intuitive solutions to complex engineering problems (typically in 

the field of electronics). 

What defines computational scientific discovery? I would hold that Popper's 

definition is a good one to describe the middle word; i.e. that only falsifiable state­

ments are "scientific". "Computational discoveries" are discoveries made by an 

algorithm run on a computer. The process of computational discovery should also 

involve minimal, or no, human intervention, to distinguish it from computer aided 

research where the computer is used as a tool in the hand of humans. "Discovery" 

is, in my view, a creation of a falsifiable, yet not falsified, statement about some­

thing. The creation itself can be made in any arbitrary way. Since the source of 

statements bears no relevance in the assessment of their falsifiability, the nature of 

the source needs no further specification. For the current discussion, we can assume 

it to be randOlTI, human or a highly sophisticated machine learning algorithm. It 

would be possible to call such statements "facts" ~ but in Popper's philosophy, the 

notion of a fact is problematic. Nothing can be known for sure. but smne state­

ments can be stronger than others by being logically improbable to be true unless 

they really are true. That is the essence of falsifiability. 

You might react to the word "something" in "statement about something". 

Surely science must be about scientific subject matters, such as physics. medicine 

or chemistry? But, such a definition of science would be purely descriptive and 

provide no indication of when or if the study of a particular subject matter becOInes 

a science. On the contrary, I would hold that a proper definition of science is a 

definition of the scientific method, not of the subject matter. It is the nature 

of how we approach a subject matter that makes some knowledge scientific and 

other knowledge not. If a subject is approached with a sound scientific nwthod. 

165 



then the knowledge generated deserves to be labelled scientific knowledge4 . This is 

however seemingly not viewed as a sufficient criterion by researchers in the field of 

computational scientific discovery. The problem domains under study are typically 

within traditional natural sciences or mathematics (e.g. Simon, 1995/96; Colton &: 

Steel, 1999; King et al., 2004). 

Another striking difference between Popper's philosophy of science and tra­

ditional machine learning is the anticipated difficulty of approaching the matter 

systematically. "The central problem of epistemology has always been and st ill 

is the problem of the growth of knowledge. And the growth of knowledge can be 

studied best by studying the growth of scientific knowledge." (Popper (1990), p. 15). 

The reason that scientific knowledge is considered easier to approach systematically 

is simply that it is a very limited form of knowledge for which methodologies can 

be defined. Consider common sense knowledge on the other hand; we all have it 

(more or less), but can we single out a method for acquiring comInon sense knowl­

edge? In comparison, scientific progress is a social and well documented process 

(Kuhn, 1962). Interestingly, however, proponents of traditional computational sci­

entific discovery hold: "Scientific discovery is generally viewed as one of the Inost 

complex human creative activities" (Langleyet al. (2002), p. 1). I do believe how­

ever, that this argument is more a consequence of analysing the result of scientific 

method, than the scientific models themselves. The scientific method for testing 

these models is in itself very simple in principle. 

The aInbition of Simon and his followers is indeed impressive. They atteInpt to 

mimic the processes by which the great scientific minds of the past have achieved 

success. But it is like deciding that Mount Everest is a good place to start if 

you want to learn mountain climbing. The principle of climbing mountains is very 

simple: just walk or crawl or climb towards higher ground until you reach the 

top. The difficulty is more a consequence of the mountain. Likewise, the scientific 

process is elementary; the resulting complexity is simply a consequence of appb'ing 

it to complex systems. Ironically, Simon himself provides an appropriate analogy 

to this in his well known ant on the beach metaphor (Simon, 1969): the complex 

path taken by an ant on the beach may be a consequence of the complexit.\· of the 

4Not to be confused with "truth" or "true knowledge". Scientific knowledge is, and should 

always be susceptible to change. 

166 



environment rather than the complexity of the ant. A simple mechanism lnay result 

in complex phenomena if put in complex contexts. And I believe this is precisel~' 

the case for the scientific method. 

The ambitions set aside, in practice, the machine learning field is t~'pically 

focused on induction of theories from data. Data is gathered from which models 

are subsequently induced. Various heuristics are used to guide the model induction 

towards interesting and comprehensible models. Some measures of interestingness 

are (Colton et al., 2000): 

• Empirical plausibility of conjectures. They do not suggest always discarding 

conjectures refuted by observations, instead the conjecture could be altered 

to fit the data. But the bottom line is that plausibility is taken as a criteria 

for interestingness. 

• Novelty. If a conjecture or concept can be deductively derived it cannot be 

considered very novel. 

• Surprisingness. Tautologies are the least surprising of conjectures. 

• Applicability. The proportion of models in a database to which the conjecture 

or concept is applicable. 

• Comprehensibility and complexity. Simpler conjectures can be considered 

more interesting. 

• Utility. Ability for user to explicitly guide the search for conjectures by spec­

ifying a focus that indicates interestingness in the domain from the user's 

perspective. 

Interestingly, Popper's falsifiability is not in the list. In fact, Popper is seldom cited 

at all in the computational scientific discovery community. This Inay of course be 

due to Simon's early criticism of Popper's refutation of analytically approaching 

the nature of human creativity. 

In my opinion, Popper provides machine learning with a very sound philosophi-

cal, as well as practical basis, for automating science. He could well be crit icized for 

providing a very poor description of how science is conducted in practice. \lost sci­

entists do not focus their attention and experiments on falsifying their own claims. 

Moreover, much that we consider scientific knowledge ma~' not be entirely falsifi­

able. But Popper's philosophy of science is not descriptive, it is Tl017llatil1f'. He 

167 



simply states what he considers scientists should do with their conjectures. not 

what they are actually doing. As a consequence, he gives a fairly nonanthropOlnor­

phic view of science. The act of falsifying statements is not a typical hUlllan thing 

to do. We prefer confirming our ideas and subsequently applying t heill. StriYing 

for falsification is, however, arguably a very logical aInbition (if you believe in Pop­

per's arguments, that is) and falsifiability should thereby be a good heuri~tic fl)r 

evaluating statements we want to be scientific. A good heuristic, that is. abo ,,,hen 

computer-evaluated. 

Moreover, as Popper denies any methodological approach for understanding cre­

ativity, there may also not be any methodological approaches for designing devices 

that exhibit creativity. Thus creativity becomes a wildcard. Theories could be 

generated by the throw of a dice a la Genetic PrograInming (Koza et a1., 2003), 

or by a sophisticated guessing gaIne a la Inductiye Logic Programlning (\ [uggle­

ton & Raedt, 1994). With any arbitrary generator of statelllents, it would still fit 

the Popperian framework as described here. The degree to which the creativit\ is 

successful can in a Popperian framework be evaluated by t he degree to which the 

statements are falsifiable, but not yet falsified. Consider Einstein, for exmnple: the 

assessment of him being a successful creative scientific genius COllIes frmn his. quite 

falsifiable ideas still being unfalsified (despite sonle considerable effort) a hundred 

years after his 1905 annus mirabilis. But if instead a monkey at a type-writer had 

put forward the theories by an incredible coincidence, these would have been just ,\S 

powerful (even though it is unlikely the Inonkey would have been given any credit 

in the unlikely event anyone actually started taking them seriousl)'). 

Of course, if we developed machine learning techniques that use Popperian 

falsificationism as a basis, we should not expect this science to reselnble ILlllllHn 

science. Human scientists do not follow the strict schemes of falsificationisIll. To 

better understand hUl1lan scientific creativity, we should instead follow Simoll's 

initiative to be inspired by descriptive philosophies of science. 

A sinlilar problenl is Inentioned by \\~it kowski (2002) who created H PoppPlian 

model of aniInal behaviour. Although it lllay be reasonable to assump t hat a lilll­

ited fonn of asseSSlllent of falsification of theories could occur in ,\\limal brains. thl' 

1 } ld t b k t . I ··C'le~"'rl.\' l't will not be aI)I)ropriat{· T () ana ogy S IOU no eta en 00 senous .\': ,~ 

1G8 



suggest that the principles embodied in 'The Logic of Scientl'fic D' . b IScovery can e 

wholly or directly incorporated into an animat controller, where the aim is to pro-

vide engineering analogues of animal learning and behavior." (\Yitkowski (2002). 

Section 6). The same can perhaps be said if we were trying to provide engineering 

analogues of the human epistemology of science which seems to be the ambition of 

Simon et al. But my ambition is, rather than to strive for a model of human episte­

mology as it manifests itself in traditional science, I want to develop a scientifically 

based Machine Epistemology directed specifically at simulated systems5 . 

18.6 Future direction II: Popperian Machines 

In the following section I suggest how the Popperian framework could be used as a 

basis for future RNX-RE algorithms that conduct an automatic scientific process 

on simulated systems: Popperian Machines6 . In the suggested Elnpirical l\Iachine, 

a model is induced through a series of queries to the underlying simulated systern 

for the purpose of acquiring a better model. Every silnulated system that is anal­

ysed within an Empirical Machine will thereby have an adaptable query-proxy (the 

induced model) to which a user can ask certain questions. If a particular question 

requires aspects of the model that are not yet supported by data. the Elnpirical 

Machine will, as suggested in Section 18.4, automatically interact with the under­

lying system in order to acquire this data. In effect, the Empirical Machine acts as 

an automated experimenter conducting tests on the underlying system. 

The Empirical Machine should be able to falsify statements, firstly by consulting 

its model directly, and secondly by acquiring data that potentially could falsify the 

statement. Queries to the Empirical Machine (let us adhere to SS~Is in these 

examples) could be in the fonn of statements, such as "There exists an SE to 

which the input symbol a will always cause a transition from all other SEs". The 

5The relation between machine learning and the philosophy of science is also arguably a strong 
one (e.g. Williamson, 2004; Korb, 2004) and this strong connection is what I propose should 
be utilized in practice. Moreover, in recent interesting arguments against the widespread uS{' 
of "data-driven" data mining in the bioinformatics field, Popper has been used as an argument 
against machine learning induction (Allen, 2001a, 2001b; Gillies, 2001) . 

6Not to be confused with Dennett's Popper ian creatures (Dennett. 1996). Tht' Poppenan 
rreRtllres arc based on the idea that the' anticipations of the' ontrOInr of diffrfl'nt Rctions (throllg;h 

. . . 1 t t' f th rid) allow the ('[t'H t urt'S to select a sophisticated enough mternal menta represen a Ion 0 e wo 
among their actions before performing them. 

169 



Empirical Machine should, to test (i.e. to falsify) the statement, based on thi~ 

specific example query, check all a-transitions and see if they all lead to the same 

SE. Moreover, if any a-transitions are dead (Definition 9.7). it should attempt to 

extend 0, through interaction with the underlying SDTDS, so that data is collected 

regarding these transitions. Clearly, the implementation of an Empirical ~Iachine 

requires a number of complex declarative programming problems to be solved, but 

let's assume that these are solved for the relevant cases. 

If the Empirical Machine can be entrusted to actually collect the data necessary 

to falsify statements, then populations of Empirical Machines, each adjusted to their 

own underlying system, could serve as a basis for falsifying statements that are over 

populations of systems. For example, the statement in the previous example could 

be expressed as: "In all systems of this population, there exists an SE to which 

symbol a will always cause a transition from all other SEs." If such a statement 

is falsifiable for just one of the underlying systems then it is falsifiable. If it is 

subsequently proved false in just one of the underlying systems, then it is false. 

Although the creativity aspect of this framework was previously referred to 

as a "wildcard~', it should be noted that a successful falsification could be very 

informative for generating new statements. For example~ statements about all 

underlying systems, falsified Inerely for one system, X, could be refined as "For all 

systems except system X ... ". Such divisions could lay the ground for dividing the 

underlying systelns into subclasses based on what statements can be given about 

them. Concepts such as "Systems for which statement S is true" could then be 

introd uced into the query language (cf. concept induction Colton et al. (2000)). 

The framework for generating falsifiable statements about the simulated system 

I term a Popperian Machine and is depicted in Figure 18.3. The concept is fairly 

simple; the generator of statements fills a list of statements which the Empirical 

Machines attempt to falsify. The statement list should only contain falsifiable, yt't 

unfalsified statements. How to populate the list and what statements should be 

prioritized is discussed next. 

Popper describes the scientific process following the creation of a no\"pl hvpoth-

eSls as: 

"First, there is the logical comparison of the conclusions among t ht'lIl-

170 



........................... 
:' .......... : Statement Evaluations ~ ........... . , .......................... . 

............. . . 
: Statement -' ----' Falsifiable Statements 
: Generator : 

Nonfalsifiable 
Statements 

j :l ...... / ___ ~ Falsified 
~/l\~ S \ tatements 

-----~ 

Falsifying 
Queries 

Statements 

~-....( Falsifications 

EM Population 
? 

Figure 18.3: Outline of a Popperian lVlachine. A statement generator (which is unde­
fined and could very well be a human user) feeds a statement list falsifiable statements 
about a set of underlying systems. The statements are refornlulated as queries (ailll('d ill 

falsifying the statements) to a set of Empirical 1Iachines that interact with their a .. -.;soci­
ated underlying system in order to build models that can answer the queries. Falsified 
statements are then deleted from the list of statements. Over time. the list of statt'IllPllt-, 

should have increasingly higher empirical content. in terms of them being falsifiable. ~·('t 
not falsified (Popper. 1990). 

171 



selves, by which the internal consistency of the system is tested. Sec­
ondly, there is the investigation of the logical form of the theory, with 
the object of determining whether it has the character of an em~irical 
or scientific theory, or whether it is, for example 1 tautological. Thirdly 
there is the comparison with other theories, chiefly with the aim ~f 
determining whether the theory would constitute a scientific advance 
should it survive our various tests. And finally, there is the testing of 
the theory by way of empirical applications of the conclusions which 
can be derived from it.~~ (Popper (1990), p. 32) 

In accord with the suggested framework in Figure 18.3 I maintain that many 

aspects of what Popper considers a scientific process could be automated. How to 

implement the logic required for the deductive reasoning regarding, for example, 

"internal consistency" and "logical form" is not in the scope of this thesis. But 

such matters are highly central in the field of Inductive Logic Progralnming (~Iug­

gleton & Raedt, 1994), since it involves generating (guessing) statements that are 

of internal consistency and of particular logical forms. The fourth step, "the testing 

of the theory" is, in my suggested framework, the responsibility of the Empirical 

Machine. 

The aspect of falsifiability becomes relevant in the third step, i.e. in the assess­

ment to which degree a statement constitutes a scientific advance. How to exactly 

define and implement the assessment of falsifiability itself is also a grand issue be­

yond the scope of this thesis. I would, however, suggest some basic directions. 

Firstly_ some statements are inherently unfalsifiable by their nature (e.g., tautolo­

gies). Others require enormous resources in order to test them, which thereby 

renders them less falsifiable. Other statements are open-ended since they involve 

infinity. For example, if the statelnent "Transitions over symbol a from SE ql will 

always lead to the same SE
' 

is not falsified after 1000 consecutive as, should 1000 

more be tested? 

There will be degrees of falsifiability as well as degrees of how much falsification 

has been attempted through experiments targeted at a specific statement. The 

concept of "degrees of falsifiability" occupies large portions of Popper (1990). There 

is also a number of possibilities of how to exactly formalize and illlplenwnt the 

assessment of the falsifiability of statements. I will not attenlpt to :-iuggest any 

particular strategy for the general case. For example, Popper proposes that t Iw 

"logical probability of a statement is complementary to it'! degree of fa I.., ifiabili t.ll " 

172 



(Popper (1990), p. 119). In other words, if it seems very probable that a statelnent 

will be falsified through observations, it should thus be considered falsifiable. How 

exactly this logical probability is assessed is, however, likely to depend on the 

underlying logical language in use. 

Within the context of SSMs and underlying SDTDSs, however ~ I would suggest 

that falsifiability could quite easily be translated into universality and precision 

(Popper (1990), section 36). Universality and precision are described by Popper 

as the two outstanding demands for statements with the highest possible elnpirical 

content. A statement is more universal than another if it applies to more situations. 

A statement is more precise than another if it forbids more outconles in those 

situations. For example, a statement about all days of the week is more universal 

than a statement only about Mondays. And a statement that on the referred days 

100% of all people drink coffee is more precise than one stating t hat only at least 

80% drink coffee, since the latter allows more observations without falsifying it i. 

Universality of SSM-statements could be translated into the number of situa­

tions for which a statement applies, i.e. the number of systems for which a statelnent 

applies, or number of SEs. Precision could be translated into an assessment of how 

well the statement constrains the behaviour of the system into a limited set of pos­

sibilities. Universal statelnents will thereby be more falsifiable since more systems 

and situations would occur in which the statement can be falsified. Precise stat('-

ments would be more falsifiable since fewer of the probable observed situations will 

allow the statement to be considered unfalsified. 

Universality and precision could potentially be competing goals. It is, for exam­

ple, probably easier to give a very precise statement about a single systeln cOlnpared 

to one for a wide range of systems. For example, an SSM extracted from a single 

SDTDS is a very precise (and falsifiable) statement that "This SS1\[ describes how 

this specific SDTDS behaves". The full range of generated statements should thus 

ideally cover a spectrum of universal and precise statements (cf. FigUH' 18.4). 

By promoting universality and precision alone, short and silnple statt'llH'llt~ 

should become more prevalent than complex ones. A statenlent about all S\·~tems 

require~ no lengthy explicit li~t of what ~y~tem~ it applies to, for exaluple. And prp-

7To falsify the statements you need, fOf the first one, only observe that one pefSO~ dot'S n()t 
.' . b . f tIt 20l/t of til(' populatlOll. nfmk coffee, wherea." the oth('r one reql11fe 0 sefvatlOns 0 a ('as, { 

173 



c 
o .-
t/J .-
(.) 
Cl) 
l-

e.. 

o 

Universality 

Figure 18.4: Falsifiability as universality and precision. Statements about S~'St(,lllS (d. 
Figure 18.3) occupy points on the axes (illustrated by the circles) and would idcall~' eO\'('1" 

a spectrum of from precise to universal ones. 

cise statements should describe as few allowed situations as possible. The simplicity 

could also be further, and ilnplicitly, prornoted in the generation of st atelllenb: 

"Sirnple statements, if knowledge is our object. are to be prized IllOre 
highly than less simple ones because they tell us more; because their em­
pirical content is greater; and because they are better testable." (Popper 

(1990), p. L12). 

vVith regard to the sirnplicity of statenlents, I would agaIn argue t hat Popper ',-. 

philosophy is ideal for machine learning. His chapter on silnplicity (Chapter I ill 

Popper (1990)) includes, for exarnple. the section .. Elirn i nat ion of tli e Af stili t!(' 

(Ind the Pragmatic Concepts of Simplicity". Simplicity is a very' central t ht'lllP ill 

epistenlology, yet with few successful logical definitions of the COll('Ppt, according 

to Popper. His approach is. quite naturally, to relate simplicity with falsihability 

in an attelnpt to find a nonanthrop0111orphic definition of the concept, 

The Popperian \ lachine could fit Yen' well into the context of rulp e:-:l ract iOI\ 

since it would not only induce rules fr0111 underlying :.;ystems. but abo st at t'llH'llb 

about the S\'stPIllS that are based on a sound scientific principlt' and \\"('11 tt·stt·d 



Moreover, the extracted rules themselves would reflect and support tl .' iii . lese snent -

cally guided statements. The whole ambition is to maximize the emprr' l' al c contents 

of the statements and thereby also of the underlying rules. Therefore I suggest 

that Popperian 1'1achines are an important future direction for the field of rule 

extraction. 

18.7 Chapter summary 

In this chapter I argue that automated analysis of simulated systenls is both prOlnis­

ing and required. Promising in the sense that the ease of observability and Inanip­

ulability is unmatched in reality (cf. Section 18.1), and required in the sense that 

these system may be large, complex~ counter-intuitive and nU1l1erous since creation 

of simulated systems is easy (cf. Section 18.2). The researcher per system ratio is 

low today and likely to decline. In my opinion, the basic reasons for automating 

anything are necessity and possibility. These criteria are certainly fulfilled when 

it comes to automated analysis of simulated systems. The analysis of simulated 

systems should be automated not because the most significant research questions 

are found in them, but because the process is too expensive for humans to do it. 

The volume and insignificance of the many individual simulations renders thenl too 

unrewarding for human reasoning. 

In Section 18.3 I also challenge the notion of cOlnprehensibility as the primary 

motivation for RE (cf. Section 4.2.4). A model has more virtues than being readable 

by humans. Many simulators themselves are good examples of these. A weather 

simulator is, for example, very complex but acts as a proxy for queries about the 

actual weather (which is even more complex). The weather presenter in turn acts 

as a proxy for the simulator, giving us a presentation that laymen Inay understand. 

Although the weather simulator itself is very complex and incomprehensible to most 

of us, it generates a result we may understand and appreciate; a weather fon'ca;-;t. 

Similarly, rules extracted from an SDTDS may be incomprehensibly cOlllplex. but 

it acts as a model with a clearly defined syntax of which queries can be askp(l. 

In Sections 18.4-18.6 two abstract frameworks for future R~~-RE l'(';-;earch were 

suggested. These frameworks are suggested on the basis that fidelit~· should be COI1-

175 



sidered more important than comprehensibility (cf. Section 4.2.-1) since models that 

correctly mimic the underlying system should generate better answers to queries 

about the system. Empirical Machines are proposed as actiye learners that taraet 
b 

the ignorance of their best models in order to gather interesting dat a from the 

system through interaction (i.e. experimentation). Based on a philosophical discus­

sion of Popper in relation to machine learning and automated scientific discovery 

(in Section 18.5), it is suggested Popperian Machines provide a scientifically based 

selection that guides the Empirical Machines towards scrutinizing statenlents of 

high empirical content. These statements (i.e. theories) about populations of sim­

ulated systems, that should be falsifiable but not falsified, is the desired output of 

the Popperian Machines. 

176 



Chapter 19 

Summary and Final Thoughts 

19.1 Contribution highlights 

The contributions of this thesis are distributed in its three parb: the fir~t provides 

an account of the history of the field, the second Inakes a contribution to t he field, 

and the final part views the field frOlll a new. more speculative perspective and 

suggests future directions. 

The goal of Part I is to provide structure to the RN:\"-RE field through a tax­

onomy and review of earlier techniques. In Part II CrySSMEx is suggested as ,\ll 

alternative to the reviewed techniques. It is not only a new technique, but i~ also 

separated from the pattern of the previous techniques by integrating elements that 

were separated earlier. In Part III, not only SOllle more or less speculative ideas 

for future work are suggested. but also concepts that question the very idea of rule 

extraction by viewing it as an automated scientific process. 

To sUllllllarize, the main contributions of this thesis are: 

• Part I: A taxonOlllY for RNN-RE to organize the field of R:\"\,-RE and to 

suggest some possible common goals for the field. 

A taxonomy of RNN-RE techniques. 

A collection of references of (hopefully) all earlier R \'\'- R E papt'!":-. 

-- A historical account of how R NX-RE has developpd itS a fidei. 

A description of RNN-R E separated into four canst it U(,llts: quantizat iOIl. 

observation, construction and minimization. 

177 



• Part II: The CrySSMEx-algorithm which distinguishes itself from all earlier 

RNN-RE approaches in several ways. 

- The first integration of quantization, observation, construction and min­

imization into one algorithm. 

- The 881\;1 as a new form of an extracted model. 

- The CVQ as a novel quantization algorithm which is both divisive and 

agglomerative. 

- The source code, and its open source availability!, is itself a contribution 

which unfortunately is too technically detailed to be dealt with more 

thoroughly in this thesis2 . 

• Part III: New connections to other fields and future directions are suggested. 

A connection of RNN-RE is made to other fields of machine learning 

(and of control theory etc.). 

More than ten possible improvements (some of which have actually 

been implemented) and approximately 20 challenges for RNN-RE and 

CrySSMEx are suggested. 

A motivation for the automation of scientific analysis of silllulated sys­

tems is given. 

- Empirical and Popperian l\Iachines are suggested. 

While the thesis began with references to Plato and ended with references to 

Popper, the contribution that should be emphasized above all the others, and which 

is very far from an abstract philosophical discussion is CrySSMEx and its ilnplemen­

tation. 

19.2 Final thoughts 

RNNs, and simulated systems in general, are, since they are sinlulated entities, 

very "studyable" once we have the tools to study them (cf. the "golden properties" 

IOn cryssmex. sourceforge. net. . 
2It may be worth mentioning that I spent far more time on the implementation ~f C~ySSKEx 

. . b' d Th'· implementation lIl\'olwd than on the thesls text and the presented expenments com me. IS .? 'J 
. ( h" . d' I tter used to generate Figures 1_._ solvmg some interesting problems e.g., t e voronOi lagram po· tel' 

and 12.3, which can plot within arbitrarily merged Voronoi compartments) that llnfortuna ~ 
never made it into the thesis. 

178 



of Section 18.1). Furthermore, the algorithms reviewed in thi~ tl .. -. 1 :-, le::--b. toget lef 

with CrySSMEx, may hold the seed of a deeper and more general notion of anah'~i~ 

than previously employed for RNNs. Better analysis tools ma\' in turn 1 1 R'VY _ le p .'_' 

research to progress more rapidly once we obtain a deeper understanding of what 

the networks are actually doing, After all, in many other disciplines of science. the 

quantum leaps in progress often stem frOln more sophisticated anal:;sis toob and 

measuring devices producing qualitatively new data conflicting with existing Inodeb 

(anomalies) that eventually may result in scientific revolutions (Kuhn. 1962). Torla~' 

we have deep, though partially conflicting theories of what the R\,"\," s will be ablp 

to do in practice (i.e. the Turing machine equivalence vs. the difficulty of acquiring 

correct behaviour through learning), but we have no Ineans of evaluating III an 

efficient manner what particular instances of RNNs are actually doing. 

With critical eyes, rule extraction from recurrent neural networks nlay seenl an 

infinitesimal subfield within another infinitesilnal subfield and thereby it l1<\s \'er~' 

limited potential to deliver interesting scientific results. But if there were a future 

microscope for zooming in on RNN s, I would Inaintain that t here are good reaSOlls 

to believe rule extraction mechanisms are the operational parts, or "lenses". of th,d 

microscope, And as any real-world microscope, this RNK-microscope will, if ~clleral 

enough, be able to zoom in on other types of simulated d:vnmnic s\'steIllS and thus 

contribute to the scientific cOlnmunity in a considerably broader sense. \ot ill thp 

sense that the biggest research questions are found in these s\'stems, the reason for 

autonlating the simulated systeln analysis is precisely the opposite; it is silllply' too 

expensive to let humans do it when the systenls are individually too uninterestiIl~ 

and when the number of them per researcher grows too large. The Elnpirical and 

Popperian ~achines are suggested with this in mind. :\ly hope is that tlw idea~ 

suggested in this final part of the thesis will help populating the artificial "Plato 

caves" (cf. Chapter 1) with prisoners that have epistemic hunger3 and the capabilit\, 

to explain their Inost infornlative conclusions about their uni\'cl's('."; to the creators 

of these universes. 

31.('. curiosity (Dennett, 1996, p. 92). 

179 



References 

Allen, J. F. (2001a). Bioinformatics and discovery: induction beckons again. B/()E..;­
says, 23(1), 104-107. 

Allen, J. F. (2001b). In silico veritas - data-mining and automated discoven': the 
truth is in there. EMBO reports, 2(7), 542-544. . 

Alquezar, R. & Sanfeliu, A. (1994a). A hybrid connectionist synlbolic approach to 
regular grammar inference based on neural learning and hierarchical cluster­
ing. In Proceedings of ICGJ'94 (pp. 203-211). 

Alquezar, R. & Sanfeliu, A. (1994b). Inference and recognition of regular graInlllar~ 
by training recurrent neural networks to learn the next-sYlnbol prediction 
task. In F. Casacuberta & A. Sanfeliu (Eds.), Advances in pattcT'l1 rfcoql1 itioTl 

and applications: Selected papers from the Vth spanish symposium on putter" 
recognition and image analysis (pp. 48-59). Singapore: \'·orld Scientific. 

Alquezar, R., Sanfeliu, A. & Sainz, M. (1997). Experilllental asseSSlllent of con­
nectionist regular inference from positive and negative examples. In \ II sirTl­

posium nacional de reconocimiento de formas y analisis de irruigenes (Vol. 1, 
pp. 49-54). Barcelona, Spain. 

Andrews, R., Diederich, J. & Tickle, A. B. (1995). Survey and critique of techniques 
for extracting rules frolll trained artificial neural nehvorks. K7Iowledge Baser! 
Systems, 8 (6), 373-389. 

Angluin, D. (1981). A note on the number of queries needed to identify regular 
languages. Information and Control, 51 (1), 76-87. 

Angluin, D. (1987). Learning regular sets frorll queries anel counter('x(llllplp~. II/­
formation and Computation, 75, 87-106. 

Angluin, D. (2004). Queries revisited. Theoretical Computer Science, ,11.1(2), 

175-19-1. 
Bakker, B. (2004). The state of mind: Reinforcement learning with recur"ent f/(lIml 

networks. Phd thesis, Unit of Cognitive Psychology. Leiden Univer~ity. 
Bakker, B. & Jong, M. de. (2000). The epsilon state count. In J. A, :"lp~'('r. 

A. Berthoz, D. Floreano, H. Roitblat 8.= S. Wilson (Eels.), Frum animals to 
anirr~ats 6: Proceedings of the sixth international conference on sirn ulrdion of 
adaptive behavior (pp. 51-60). Cambridge, :\1:\: ;\.IIT Pre~s, 

Barreto. G. A., Araujo, A. F. R. & Kremer, S. C. (2003). A ta..,{OllOlll~' for, ~p;l­
tiotenlporal connectionist networks revisited: The unsupel'\'is('d ('a~(' .• \ (II ral 

Corr~putation, 15(6), 1255-1320. 
Bengio. Y., Sirnard, P. & Frasconi, P. (199 .. 1. :"Iarch). Lt'arnillg long-term <1('-

pendencies with gradient descent is difficult. IEEE Transaction<; OTI .VeumL 

NctW01-h:S. 5(2),157-166. . . 
. ( ) ~ . 1 r )'11' of lll<illctive IlI"<,:.',r;llll Bergadano, F. S: Gunettr, D. 1996. .Lestlng )) llH rl ~ ,_ .) 

learning. ACM Transactions on Software En.r/llI('(T,l/I/ (lnd .HI thod%y.ll. ,)(-). 

180 



119-145. 

Blair, A. & Pollack, J. (1997). Analysis of dynamical recognizers N 1 C 
tation, 9(5), 1127-1142. . eum ompu-

Blanco, A., D~lgado, M. & Pegalajar, M. C. (2000). Extracting rules from a 
(fUZZY/CrISp) recurrent neural network using a self-organizing map. Interna­
tional Journal of Intelligent Systems, 15, 595-621. 

Boden, M. & Blair, A. (in press). Learning the dynamics of elnbedded clau ses. 
Applied Intelligence: Special issue on natural language and machine leamin . 

Boden, M:, Jacobsson, H .. & Ziemke, T. (2000). Evolving context-free langua:e 
predlctors. In D. WhItley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee & 
H.-G. Beyer (Eds.), Proceedings of the genetic and evolutionary computation 
conference (pp. 1033-1040). San Fransisco: Morgan Kaufmann. 

Boden, M. & Wiles, J. (2000). Context-free and context-sensiti\'e dynamics in 
recurrent neural networks. Connection Science, 12(3/4), 196-210. 

Boden, M. & Wiles, J. (2002). On learning context free and context sensitive 
languages. IEEE Transactions on Neural Networks, 13(2), 491-493. 

Boden, M., Wiles, J., Tonkes, B. & Blair, A. (1999). Learning to predict a context­
free language: Analysis of dynamics in recurrent hidden units. In Proceedings 
of ICANN 99 (pp. 359-364). Edinburgh: IEEE. 

Bruske, J. & Sommer, G. (1995). Dynamic cell structure learns perfectly topology 
preserving map. Neural Computation, 1, 845-865. 

Bryant, C. H., Muggleton, S. H., Page, C. D. & Sternberg, ~I. J. E. (1999). 
Combining active learning with inductive logic programming to close the loop 
in machine learning. In Proceedings of the AISB '99 symposium on AI and 
scientific creativity. (informal proceedings) 

Bullinaria, J. A. (1997). Analyzing the internal representations of trained artificial 
neural networks. In A. Browne (Ed.), Neural network analysis, architectures 
and applications (pp. 3-26). lOP Publishing. 

Carrasco, R. C. & Forcada, M. L. (2001). Simple strategies to encode tree automata 
in sigmoid recursive neural networks. IEEE Transactions on Knowledge and 
Data Engineering, 13(2), 148-156. 

Carrasco, R. C., Forcada, M. L., ivluiioz, M. A. V. & Neco, R. P. (2000). Stable 
encoding of finite-state machines in discrete-time recurrent neural nets wit h 
sigmoid units. Neural Computation, 12(9), 2129-2174. 

Casey, M. (1996). The dynamics of discrete-tilne computation, with application 
to recurrent neural networks and finite state machine extraction. Neural 
Computation, 8(6), 1135-1178. 

Cechin, A. L., Pechmann Simon, D. R. & Stertz, K. (2003). State autOlnata 
extraction from recurrent neural nets using k-means and fuzzy clustering. III 
XXIII international conference of the Chilean computer science society (pp. 

73-78). 
Chaitin, G. J. (1987). Algorithmic information theory. Cambridge Universit~~ P~·ess. 
Chaitin, G. J. (2005, June). Epistemology as information theory Jrr:m Le'tbnl:: to 

O. Alan Thring Lecture on Computing and Philosophy. E-C~P 05:. Eur?p(>Cl.n 
Computing and Philosophy Conference, l\lalardalen Universlty. Vasteras. 

Chalup S. K. & Blair A. D. (2000). First order recurrent neural networks learn 
" T ISB~ 0-.... 2~().. to predict a mildly context-sensitive language (TR 2000-06 :'\0.. . . I • ~). 

1109-3). Department of Computer Science and Software Engl11("{>rlnF;. I hp 

181 



University of Newcastle. 

Christiansen, ~1. H. & Chater, N. (1999). Toward a connectionist model of ree . 
. h 1'" £ C urslon In uman Inguistic per ormance. ognitive Science, 23(2). 157-205. 

Cicchello, O. & Kremer, S. C. (2003). Inducing grammars from sparse data sets: 
A survey of algorithms and results. Journal of Machine Learning Research. 
4, 603-632. 

Cleeremans, A., McClelland, J. L. & Servan-Schreiber, D. (1989). Finite state 
automata and simple recurrent networks. Neural Computation, 1, 372-381. 

Cohn, D. A. (1994). Neural network exploration using optimal experiment de­
sign. In J. D. Cowan, G. Tesauro & J. Alspector (Eds.), Advances in neuml 
information processing systems (Vol. 6, pp. 679-686). ~Iorgan Kaufmann 
Publishers, Inc. 

Cohn, D. A., Atlas, L. & Ladner, R. E. (1994). Improving generalization with 
active learning. Machine Learning, 15 (2), 201-221. 

Colton, S., Bundy, A. & Walsh, T. (2000). On the notion of interestingness in au­
tomated mathematical discovery. International Journal of Human Computer 
Studies, 53(3), 351-375. 

Colton, S. & Steel, G. (1999). Artificial intelligence and scientific creativity. Arti­
ficial Intelligence and the Study of Behaviour Quarterly, 102. 

Cover, T. M. & Thomas, J. A. (1990). Elements of information theory. John \Viley. 
New York. 

Craven, M. W. & Shavlik, J. W. (1994). Using sampling and queries to extract rules 
from trained neural networks. In W. W. Cohen & H. Hirsh (Eds.), Machine 
learning: Proceedings of the eleventh international conference. San Fransisco, 
CA: Morgan Kaufmann. 

Craven, M. W. & Shavlik, J. W. (1996). Extracting tree-structured representations 
of trained networks. Advances in Neural Information Processing Systems, 8, 
24-30. 

Craven, M. W. & Shavlik, J. V./. (1999). Rule extraction: Where do we go from 
here? (Tech. Rep. No. Machine Learning Research Group Working Paper 
99-1). Department of Computer Sciences, University of Wisconsin. 

Crutchfield. J. P. (1994). The calculi of emergence: Computation, dynalnics, and 
induction. Physica D, 75, 11-54. 

Crutchfield, J. P. & Young, K. (1990). Computation at the onset of chaos. In 
W. Zurek (Ed.), Complexity, entropy and the physics of information. Addison-
Wesley, Reading, MA. 

Das, S. & Das, R. (1991). Induction of discrete-state machine by stabilizing a simple 
recurrent network using clustering. Computer Science and Informatics, 21 (2), 
35-40. 

Das. S., Giles, C. L. & Sun, G. Z. (1993). Using prior knowledge in a ~~PDA 
to learn context-free languages. In S. J. Hanson, J. D. Cowan & C. L. Giles 
(Eds.), Advances in neural information processing systems (Vol. .5, pp. 65-72). 

Morgan Kaufmann, San Mateo, CA. . 
Das, S. & Mozer, ~1. (1998). Dynamic on-line clustering and state extractlOn: all 

approach to symbolic learning. Neural Networks, 11 (1), 53-~-1. . 1 

Das, S. & Mozer, M. C. (1994). A unified gradient-descent/clustenng archltectun 
. .., I J D C G Tesauro ~.J Alspt'ctor for finIte state machIne InductIon. n . . owan.. ~. (" 

(Eds.), Advances in neural information processing systems (Vol. 6. pp. 1 J- 2h). 

182 



Morgan Kaufmann Publishers, Inc. 

de la Higuera, C. (2005). A bibliographical study of grammatical inference. Pattern 
Recognition, 38, 1332-1348. 

Dennett, D. C. (1996). Kinds of mind. New York: Basic Books. 
Devaney, R. L. (1992). A first course in chaotic dynamical systen7·' 'd l' , ,'"'. ."\. ( Ison-

Wesley. 

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14. 1 ;q-21 1. 
Everitt, B. S., Landau, S. & Leese, M. (2001). Cluster analysis. London: Arnold. 
Fanelli, R. (1993). Grammatical inference and approximation of finite automata by 

elman type recurrent neural networks trained with full forward error propaga­
tion (Tech. Rep. No. ~NRG930628A). Dept. of Physics, BrooklYIl Collerre of 
the City University of New York. 

. b 

Follesdal, D., Wall0e, L. & Elster, J. (1993). Argumentationsteori. -"pnil.: och 
vetenskapsfilosofi. Thales. 

Forcada, 11. L. (2002, January). Neural networks: Automata and formal models of 
computation. (http://www.dlsi.ua.es/..-.mIf /nnafmc/. accessed :\Iarch 31. 
2006) 

Forcada, 11. L. & Carrasco, R. C. (2001). Finite-state computation in analog 
neural networks: steps towards biologically plausible models? In S. \Venntpr, 
J. Austin & D. Willshaw (Eds.), Emergent computational models hused on 
neuroscience (pp. 482-486). Springer-Verlag. 

Fox, M., Ghallab, M., Infantes, G. & Long, D. (2006). Robot introspection through 
learned hidden Markov rnodels. Artificial Intelligence, 170, ;)9-11:L 

Frasconi, P., Gori, M., Maggini, M. & Soda. G. (1996). Representation of finitp 
state automata in recurrent radial basis function networks. ~fachine Lrarniny. 
23(1),5-32. 

Friedman, ~. & Halpern, J. Y. (1999). Belief revision: A critique. Journal of Logir. 
Language, and Information, 8, 401-..J:20. 

Garg, V. K., KUlnar, R. & Marcus, S. 1. (1999). Probabilistic language formalism for 
stochastic discrete event systerns. IEEE Transactions on Automatic COT/trol. 
44, 280-293. 

Gers, F. A. & Schmidhuber, J. (2001). LST~I recurrent networks learn simpk 
context free and context sensitive languages. IEEE Transactions Of! Neural 
Networks, 12(6), 1333-1340. 

Giles, C. L., Chen, D., Miller, C., Chen, H., Sun, G. & Lee. Y. (1991). Secollci­
order recurrent neural networks for gramrnatical inference. In PW('((r/llI!F' 

of international joint conference on neural networks (Vol. 2, pp. 273-2S1). 

Seattle, vVashington: IEEE Publication. 
Giles, C. L., Horne, B. G. & Lin, T. (1995). Learning a class of large finite ~t ate 

Inachines with a recurrent neural network. Neural Networks. 8(9), l:F)9-1:3G'-), 
Giles, C. L., Lawrence, S. & Tsoi, A. (1997). Rule inference for financial predictioll 

using recurrent neural networks. In Proceedings of IEEE/IAFE COf)j('rcnCl Oil 

computational intelligence for financial engineering (eIFEr) (pp. 2,");{ 2,-)Q). 

Piscataway, N J: IEEE. , 
Gilt's, C. L., Lawrellce, S. & Tsoi, A. C. (2001, July/August). :.: oi~y' r imp ~(\n(\s pn'-

.. . 1 k d' ' t'c' 1 l' Ilfpn'llCt' .\/nChITH' ciIctlOn USIng a recurrent neura networ an granlllla 1 a . 

L('arniny, 44 (1/2), 161-183. . 
G·l,· c~ L '1'11 C B Ch D Chen H. H. L\: SUll, G. Z. (1992). L('arlllllg awl 1 ( s, . .,.\ 1 er. . ., en, ., , 

183 



extracting finite state automata with second-order recurrent al ks . . neur networ· 
Neural Computat~on, 4 (3), 393-405. . 

Giles, C. L., ~iller, C. B., ?hen, D., Sun, G. Z., Chen, H. H. & Lee, Y, C, (1992). 
Extracting and learnIng an unknown grammar with recurrent neural net­
works. In J. E. Moody, S. J. Hanson & R. P. Lippmann (Eds.), Advances in 
neural information processing systems (Vol. 4, pp. 317-32-1). ~Iorgan Kauf­
mann Publishers, Inc. 

Giles, C. L. & Omlin, C. W. (1993). Extraction, insertion and refinement of 
symbolic rules in dynamically driven recurrent neural networks. Connection 
Science, 5(3 - 4), 307-337. 

Giles, C. L. & Omlin, C. W. (1994). Pruning recurrent neural networks for improved 
generalization performance. IEEE Transactions on Neural Networks, 5(5), 
848-851. 

Gillies, D. A. (2001). Popper and computer induction. Bioessays. 
Gold, M. E. (1967). Language identification in the limit. Information and Control, 

10(5), 447-474. 
Golea, M. (1996). On the complexity of rule extraction from neural networks and 

network-querying (Tech. Rep.). Canberra, Australia: Australian National 
U ni versi ty. 

Gori, M., Maggini, M., Martinelli, E. & Soda, G. (1998, ~Iay). Inductive inference 
from noisy examples using the hybrid finite state filter. IEEE Transactions 
on Neural Networks, 9(3), 571-575. 

Gori, M., Maggini, M. & Soda, G. (1994, August). Scheduling of modular archi­
tectures for inductive inference of regular grammars. In ECAI '94 workshop 
on combining symbolic and connectionist processing (pp. 78-87). Wiley. 

Goudreau, M. W. & Giles, C. L. (1995). Using recurrent neural networks to learn 
the structure of interconnection networks. Neural Networks, 8 (5), 793-804. 

Goudreau, M. W., Giles, C. L., Chakradhar, S. T. & Chen, D. (1994). First-order 
vs. second-order single layer recurrent neural networks. IEEE Transactions 
on Neural Networks, 5(3), 511-518. 

Haminer, B. & Tino, P. (2003). Recurrent neural networks with slnall weights 
implement definite memory machines. Neural Computation, 15(8), 1897-
1929. 

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist networks. 
Artificial Intelligence, 46(1-2), 47-75. 

Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Com-
putation, 9 (8), 1 735-1 780. 

Hopcroft, J. & Ullman, J. D. (1979). Introduction to automata theory, languages. 
and compilation. Addison-Wesley Publishing Company. 

Horgan, J. (1996). The end of science. Little, Brown and Company. 
Horne, B. G. & Giles, C. L. (1995). An experimental comparison of recurrent 

neural networks. In G. Tesauro, D. Touretzky & T. Leen (Eds.), Advances ill 

neural information processing systems 7 (pp. 697-704). ~nT Press. 
Horne, B. G. & Hush, D. R. (1994). Bounds on the complexity of recurrent 

neural network implementations of finite state machines. In~. D. Cowan. 
G. Tesauro & J. Alspector (Eds.), Advances in neural informatwn proces."illl!l 
systems (Vol. 6, pp. 359-366). Morgan Kauflnann publishers, I11c: 

H b d P H I & CI'ff D T. (1995). Circle in the round: State spac(' us an s, ., arvey,. I,. 

184 



attractors for evolved sighted robots. Robotics and Autonomolh 5 " :: 
15 (1-2), 83-106. ,1/ tt /71" 

Jacobsson, H. (1998). Inversion of an artificial neural network map' b . '" pzng y et'o-
lut'tonary algonthms w~th shanng. Bachelor's thesis T -Ill' \'ersl' t ' f ~,' ,. 1 . ~ \ 0 ~K()vce 

(report number: HS-IDA-EA-98-113). . 

Jacobsson, H. (1999), A comparison of simple recurrent and sequential ('(J'~(,llded net­
works for formal language recognition. Master's thesis. University of Skoyde 
(report number: HS-IDA-~ID-99-005). . 

Jacobsson. H. (2005). Rule extraction from recurrent neural networks: .-\. ta.XOllonw 
and review. Neural Computation, 17(6),1223-1263. . 

Jacobsson, H. (2006). The crystallizing substochastic sequentialluachine extractor 
- CrySSMEx. Neural Computation, 18(9),2211-2255. 

Jacobsson, H. & Olsson, B. (2000). An evolutionary algorithnl for inversion of 
artificial neural networks. In P. P. \iVang (Ed.), Proceedings of the fifth joint 
conference on information sciences (pp. 1070-1073). Association for Intelli­
gent Machinery. 

Jacobsson, H. & Ziemke, T. (2003a). Improving procedures for evaluation of 
connectionist context-free language predictors. IEEE Transactions on Nell ral 
Networks, 14 (4), 963-966. 

Jacobsson, H. & Ziemke, T. (2003b). Reducing complexity of rule e.rtraction from 
prediction RNNs through domain interaction (Tech. Rep. \"0. HS-IDA-TR-
03-007). Department of COlnputer Science, University of Skovcle. Sweden. 

Jacobsson, H. & Ziemke, T. (2005a). Rethinking rule extraction from recurrent 
neural networks. In A. d'Avila Garcez, .1. Elman & P. Hitzler (Eels.). IlCAI-OJ 
workshop on neural-symbolic learning and reasoning. 

Jacobsson, H. & Ziemke, T. (2005b). CrySSMEx, a novel rule extractor for recurrent 
neural networks: Overview and case study. In \Y. Duch, .1. Kacprzyk. E. Oja 
& S. Zadrozny (Eds.), Artificial neural networks: Formal worlds and their 
applications - ICANN 2005 - part II (pp. 503-508). Berlin: Springer. 

Jaeger, H. (2003). Adaptive nonlinear system identification with echo state llPt­
works. In S. T. S. Becker & K. Obermayer (Eds.), Adl'uTler's in neural iflJor'­
mation processing systems 15 (pp. 593-600). Cambridge, \IA: \IIT Press. 

Jaeger, H. & Haas, H. (2004, April). Harnessing nonlinearity: Predicting chaotic 
systellls and saving energy in wireless cOlnmunication. Science, 566'l(30'!), 

78-80. 
Jagota, A., Plate, T., Shastri, L. & Sun, R. (1999). Connectionist s\'lnbol proc('ss­

ing: Dead or alive? Neural Computing Surveys, :2, 1-40. 
Jain, A. K., ~\lurty, 1\1. N. & Flynn. P. J. (1999. September). Data clustering: .\ 

review. ACM Computing Surveys, 31 (3), 264-323. 
King, R. D., Whelan, K. E .. Jones, F. M., Reiser, P. G. K., Bryant. C. H .. \Illgglt'­

ton, S. H. et al. (2004, January). Functional genOlnic hypothe~is generatioll 
and experilnentation b,Y a robot scientist. Nature, 4:2'l(G971). 2-l-;--2,-)2. 

Kohonen. T. (1995). Self-organizing maps. Berlin, Heidelberg: Springer. 
Kolen, .1. F. (1993). Fool's gold: Extracting finite state machines ff(~lll n'cll.lT(,llt 

network dynamics. In J. Cowan, G. Tesauro ~f..: .1. Alspector (Eds.), J\tllml 
, . . 6 ( hOI ~()I.') S F~l"lll('l'S('O (' \. \{orpaH ~nformatzon process~ng systems pp.;) -,) (1. an ( . , ... ,,", 

KaufInann. 
Kolen, .1. F. (1994a). Exploring the compttfatiollo/ capabilities of f'(('ll171'lIt TIt 11-

185 



ral networks. Unpublished doctoral dissertation The Ohl'O St t U' . , a e ruw'rslty 
Department of Computer and Information Sciences. . ' 

Kolen, J. F. ?(1994b). Recurrent networks: State machines or iterated function 
systems .. In M. C. Mozer, P'. Smolensky, D. S. Touretzky, J. L. Elman & 
A. S. Welgend (Eds.), Proceed'tngs of the 1993 connectionist models summer 
school. Hillsdale, N J: Lawrence Erlbaum. 

Kolen, J. F. & Kremer, S. C. (Eds.). (2001). A field guide to dynamical recurrent 
networks. IEEE Press. 

Kolen, J. F. & Pollack, J. (1995). The observers' paradox: Apparent COlnputa­
tional complexity in physical systems. Journal of Exp. and Theoret. ArtificiaL 
Intelligence, 7(3). 

Korb, K. B. (2004). Machine learning as philosophy of science. Minds and Machine.'i. 
14 (4), 433-440. 

Koza, J. R., Keane, M. A., Streeter, 11. J., Mydlowec, W., Yu, J. &. Lanza, G. 
(2003). Genetic programming IV: Routine human-competitive machine intel­
ligence. Boston, MA: Kluwer Academic Publishers. 

Kremer, S. C. (2001). Spatiotemporal connectionist networks: A taxononlY and 
review. Neural Computation, 13(2), 248-306. 

Krogh, A. & Vedelsby, J. (1995). Neural network ensembles, cross validation, and 
active learning. In G. Tesauro, D. S. Touretzky & T. K. Leen (Eds.), Advances 
in neural information processing systems (Vol. 7, pp. 231-238). Cambridge. 
MA: MIT Press. 

Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago: University of 
Chicago Press. 

Kumar, R. & Garg, V. K. (2001). Control of stochastic discrete event systenls 
modeled by probabilistic languages. IEEE Transactions on Automatic Con­
trol, 46(4),593-606. 

Lang, K. J. (1992). Random DFA's can be approximately learned fronl sparse 
uniform examples. In Proceedings of the fifth ACM workshop on computational 
learning theory (pp. 45-52). New York. 

Langley, P. (1998). The computer-aided discovery of scientific knowledge. In First 
international conference on discovery science (pp. 25-39). Fukuoka, Hapan: 
Springer. 

Langley, P. (2000). The computational support of scientific discovery. International 
Journal of Human-Computer Studies, 53, 393-410. 

Langley, P. (2002). Lessons for the computational discovery of scientific knowledge. 
In Proceedings of first international workshop on data mining lessons learned 
(pp. 9-12). Sydney. 

Langley, P., Shrager, J. & Saito, K. (2002). Computational discovery of commu­
nicable scientific knowledge. In L. Magnani, N. J. Kersessian &. C. Pizzi 
(Eds.), Logical and computational aspects of model-based reasoning. Dor­
drecht: Kluwer Academic. 

Lawrence, S., Giles, C. L. & Fong, S. (2000). Xatural language gralnmatical 
inference with recurrent neural networks. IEEE Transactions on Knowledge 

and Data Engineering, 12(1), 126-140. . 
Lawrence S. Giles C. L. & Tsoi. A. C. (1998). Symbolic conversion, grammatical 

'" . '. d" I)' Ahu-inference and rule extraction for foreIgn exchange rate pre IctlOn. 11 . . 

Mostafa, A. S. Weigend & P. Refenes (Eds.). Neuml networks ill thi' capdal 

186 



markets nncm96 (pp. 333-345). Singapore: \Vorld Scientific Press. 
Linaker, F. & Jacobsson, H. (2001a). Learning delayed response tasks throuGh 

unsupervised event extraction. International Journal of Computational Int:l­
ligence and Applications., 1 (4),413-426. 

Linaker, F. & Jacobsson, H. (2001b). Mobile robot learning of delayed response 
tasks through event extraction: A solution to the road sign problem and be­
yond. In B. Nebel (Ed.), Proceedings of the seventeenth international joint 
conference on artificial intelligence, IJCAI-2001 (pp. 777-782). San Fran­
sisco: Morgan Kaufmann. 

Ljung, L. (1999). System identification: theory for the user. Prentice Hall. 
YlacKay, D. (1992). Information-based objective functions for active data selection. 

Neural Computation, 4 (4), 590-604. 
Maggini, M. (1998). Recursive neural networks and automata. In C. L. Giles 

& M. Gori (Eds.), Adaptive processing of sequences and data structures (pp. 
248-295) . Springer-Verlag. 

Manolios, P. & Fanelli, R. (1994). First order recurrent neural networks and 
deterministic finite state automata. Neural Computation, 6(6L 1155-117:). 

Marculescu, D .. :\Iarculescu, R. & Pedram, M. (1996). Stochastic sequential rna­
chine synthesis targeting constrained sequence generation. In DAC'96: Pro­
ceedings of the 33rd annual conference on design automation (pp. 696-701). 
New York, ~Y, USA: AClVi Press. 

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immallcnt in 
nervous activity. Bulletin of Mathematical Biophysics, 5, 115-133. 

Medler, D. (1998). A brief history of connectionisln. Neural Com]Jutin.r; SUl'lI{,.I/,'i. 

1(1),61-101. 
i\1eeden, L. A. (1996). An increlnental approach to developing intelligent neural 

network controllers for robots. IEEE Transactions on Systerns. jUan. and 
Cybernetics, Part B: Cybernetics, 26(3),474-85. 

Miller. C. B. & Giles, C. L. (1993). Experimental cOlnparison of the effect of order 
in recurrent neural networks. International Journal of Pattern RecognitioTi 
and A rtificial I nteliigence, 7 ( 4:), 849-872. 

~Iirkin, B. (1996). Mathematical classification and clustering (Vol. 11). Kluwer. 
~Ioore, E. F. (1956). Gedanken-experiments on sequential l11achines. In C. E. 

Shannon & J. McCarthy (Eds.), Annals of mathematical studies (Vol. 3.J, pp. 

129-153). Princeton University Press. 
~luggleton, S. & Raedt, L. D. (1994). Inductive logic progralIllning: Theory alld 

lllethods. Journal of Logic Programming, 19,20, 629-679. 
Niklasson, L. & Boden, M. (1997). Representing structure and structured rep­

resentations in connectionist networks. In A. Browne (Ed.), Neural nf'twork 

per'spectives on cognition and adaptive robotics (pp. 20-50). lOP Press. , 
Olnlin, C. W. (2001). Understanding and explaining DR:\" behaviour. Ill.1. ~. 

Kolen &: S. C. Kremer (Eds.), A field guide to dynamical recunnd lIrtl/"(},.J,·.~ 
(pp. 207-228). IEEE Press. . 

O 1· C \\" G'l C & '1'11 C (1992). Heuristics for the extractIOll 0\ III 111. . . , 1 es, . . \ 1 er, . . f th . 
, C('Cdllll~· 0 ( rules from discrete-tirne recurrent neural networks. In Pro !f . 

I T~ .~~) '\ 'W interllati()nal joint conference on neural lIetU'orks (Vol. . pp .. , . l •. ( 

York: International Neural Network Society, IEEE. 
OUllin, C. \Y. L\: Giles, C. L. (1992). Training ~ecolld-ordt'r rec\IITPllt Ilt'llral Ilt't-

187 



w~rks ~sing hi.nts. In D. Sleeman & P .. Edwards (Eds.). Proceedings of the 
n'tnth 'tnternat'tonal conference on mach'tne learning (pp. 363-368). San ~la­
teo, CA: ~lorgan Kaufmann Publishers. 

Omlinl C. W. & Giles, C. L. (1996a). Constructing deternlinistic finite-state 
automata in recurrent neural networks. Journal of the ACJ1. 43. 937-972. 

Omlin. C. W. & Giles, C. L. (1996b). Extraction of rules fronl discrete-time 
recurrent neural networks. Neural Networks, 9(1), 41-51. 

Omlin. C. W. & Giles, C. L. (1996c). Rule revision with recurrent neural network~. 
Knowledge and Data Engineering, 8(1), 183-188. 

Omlinl C. W. & Giles, C. L. (2000). Symbolic knowledge representation in recurrent 
neural networks: Insights from theoretical models of computation. In 1. Cloete 
& J. M. Zurada (Eds.), Knowledge-based neurocomputing. :\HT Press. 

Omlin, C. W., Thornber, K. K. & Giles, C. L. (1998). Deternlinistic fuzz~' fi­
nite state automata can be deterministically encoded into recurrent neural 
networks. IEEE Transactions on Fuzzy Systems, 6(1), 76-89. 

Paz, A. (1971). Introduction to probabilistic automata. Acadenlic Press. 
Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge Univer­

sity Press. 
Plato. (1991). The republic - the complete and unabridged Jowett tmns/(]ti()/I. 

Vintage Classics. 
Pollack, J. B. (1987). Cascaded back-propagation on dynmnic connectionist net­

works. In Proceedings of the 9th annual conference of the cognitil'(' 8riclIc(' 

society (pp. 391-404). Hillsdale, NJ: Lawrence Erlbaum Associates. 
Popper, K. R. (1935). Logik der forschung. Julius Springer Verlag. 
Popper, K. R. (1990). The logic of scientific discovery (14 ed.). London: Uuwin 

Hyman. (Originally published 1959) 
Rabin, Nt O. (1963). Probabilistic automata. Information and Control. 6,230-:215. 
Riegler, A. (1998). The end of science: Can we overcorne cognitivp lilnitiltiolls·.) 

Evolution and Cognition, 4 (1), 37-50. 
Rodriguez, P. (1999). Mathematical foundations of simple recurrent nelLral net­

works in language processing. Unpublished doctoral dissertation, UnivE'rsit\· 
of California, San Diego. 

Rodriguez, P., Wiles, J. & Elman, J. L. (1999). A recurrent network thilt learus to 
count. Connection Science, 11, 5-40. 

Sanfeliu~ A. & Alquezar, R. (1995). Active grarnrnatical inference: a new learn­
ing rnethodology. In Shape, structure and pattern recognition (pp. 191-1()()). 

World Scientific Pub. 
Schellharniner, 1., Diederich, J., Towsey, 11. &: Bruginan, C. (1998). Kll()wled,~tl 

extraction and recurrent neural networks: An analysis of an Elman lwtwork 
trained on a natural language learning task. In D. ~1. \Y. Powt'I':-- (E(~.), 

h d . l ge !)f'()('( .... ...; I TI (I Proceedings of the joint conference on new met 0 s In ang~a " .. _ .. 
and computational natural language learning: NeMLap'l/CoJ\ LL?," .(pp. /.{ 

78). SOlnerset. X ew Jersey: Association for COlnputational Ling1l1~tl('~. . 
SchInidhubE'f, J. (1992). Learning complex, extended SE'quenc('~ U.-.;illg the prlll(,lpl(' 

of history compression. Neural Computation, 4 (2), 2:1-1-1-t2. 

S 1 'dl b '.1 G" F fT E k D (2002). Learllill LJ nonregular languages: :\ 
Cl1111 lU er, .. , elS. . 0.:. c, . t'> (' t t 

., "k . d LST\l Xeurnl 0 171 1)11 n lOTI. cornpansoll of SImple Recurrent l\etwor s an - . 

14 (9). 2039-20-11. 

18K 



Servan-Schreiber~ D., Cleeremans~ A. & McClelland, J. L. (1989). Learnm 
t · 1 t t . . 1 t· k g sequen-la s rue ure In SImp e recurren networ s. In D. S. Touretzky (Ed.). Ad 
in neural information processing systems (Vol 1 pp 643-6< 52) s ,vrances ',. . an.\ ateo 
CA: Morgan Kaufmann. . 

Servan-Schreiber, D., Cleeremans, A. & McClelland, J. L. (1991). Graded state 
machines: The representation of temporal contingencies in simple recurrent 
networks. Machine Learning, 7, 161-193. 

Sharkey, A. J. C. (1996). [special issue]. Combining artificial neural nets: Enselnble 
approaches. Connection Science, 8(3/4). 

Sharkey, ~. E. & Jackson, S. A. (1995). An internal report for connectionists. 
In R. Sun & L. A. Bookman (Eds.), Computational architectures integrating 
neural and symbolic processes (pp. 223-244). Kluwer, Boston. 

Siegelmann, H. T. & Sontag, E. D. (1995). On the computational power of neural 
nets. Journal of Computer and System Sciences, 50(1), 132-150. 

Sima, J. & Orponen, P. (2003). General purpose computation with neurall1etworks: 
a survey of complexity theoretic results. Neural Computation, 15, 2727-2778. 

Simon, H. A. (1969). The sciences of the artificial. Cambridge, !\IA: ~IIT Press. 
(2nd edition) 

Simon, H. A. (1973). Does scientific discovery have a logic? Philosophy of Science, 
40, 471-480. 

Simon, H. A. (1992). Scientific discovery as problem solving. International Studies 
in the Philosophy of Science, 6, 3-14. 

Simon, H. A. (1995/96). Machine discovery. Foundations of Science, 1 (2), 171-200. 
Stening, J., Jacobsson, H. & Ziemke, T. (2005). Imagination and abstraction 

of sensorimotor flow: Towards a robot model. In AISB'05: Proceedings of 
the symposium on next generation approaches to machine consciousness -
imagination, development, intersubjectivity and embodiment (pp. 50-58). The 
Society for the Study of Artificial Intelligence and the Simulation of Behavior. 

Sun, G. Z., Giles, C. L. & Chen, H. H. (1998). The neural network pushdown 
automation: Architecture, dynamics and learning. In C. Giles & Po1. Gori 
(Eds. ), Adaptive processing of sequences and data structures (pp. 296-345). 
Springer. 

Sun, R. & Giles, C. L. (Eds.). (2001). Sequence learning: Paradigms, algorithms, 
and applications (Vol. 1828). Springer. 

Sun, R., Peterson, T. & Sessions, C. (2001). The extraction of planning knowledge 
from reinforcement learning neural networks. In Proceedings of wirn·ZOOl. 
Heidelberg, Germany: Springer-Verlag. 

Tabor, W. & Tanenhaus, M. (1999). Dynamical models of sentence processing. 
Cognitive Science, 24 (4), 491-515. . 

Tickle, A. B., Andrews, R., Golea. ~L & Diederich, J. (1997). Rule pxtractlOll 
from artificial neural networks. In A. Browne (Ed.), Neural network analYSIS, 
architectures and applications (pp. 61-99). lOP Publishing. . 

Tickle, A. B., Andrews, R., Golea, 1\I. & Diederich, J. (1998). The truth wlll cOl~le ~o 
light: directions and challenges in extracting the knowledge elnbedded wlthlll 
mined artificial neural networks. IEEE Transactions on Neuml Nefu'ork."i, 

9(6), 1057-1068. . 
Tino, P., Dorffner, G. & Schittenkopf, C. (2000). Understanding state space Or~(~~l-

zation in recurrent neural networks with iterative function ~\"~telll~ dYllanlH :-.. 

189 



In S. Wermter & R. Sun (Eds.), Hybrid neural symbolic integrrat'" ( ,)~ 
, I zan pp II )_ 

270). Springer Verlag. . -

Tino, P. & Hammer, B. (2003). Architectural bias in recurrent neural networks _ 
fractal analysis. Neural Computation, 15(8),1931-1967. 

Tino, P., Horne, B. G., Giles, C. L. & Collingwood, P. C. (1998). Finite :-.tCtte 
machines and recurrent neural networks - automata and dynalnical ~\"qf-'lll:­
approaches. In J. E. Dayhoff & O. Omidvar (Eds.), Neural netu'OT:k.~ and 
pattern recognition (pp. 171-220). Academic Press. 

Tino, P. & Koteles, M. (1999). Extracting finite-state representations from recur­
rent neural networks trained on chaotic symbolic sequences. IEEE Tmn'''I/(­
tions on Neural Networks, 10(2),284-302. 

Tino, P., Cernansky, M. & Beiiuskova, L. (2004). Markovian architectural bias of 
recurrent neural networks. IEEE Transactions on Neural Networks, L)(l), 
6-15. 

Tino, P. & Vojtek, V. (1998). Extracting stochastic machines from recurrent neural 
networks trained on complex symbolic sequences. Neural Network {{"orld. 
8(5),517-530. 

Tino, P. & Sajda, J. (1995). Learning and extracting initial nlealy' automata with 
a modular neural network model. Neural Computation, 'l( c±), 822-~--1:-t 

Tomita, M. (1982). Dynarnic construction of finite-state automata frOln example:-; 
using hillclimbing. In Proceedings of fourth annual cognitive science conference 
(pp. 105-108). Ann Arbor, MI. 

Tonkes, B., Blair, A. & \\:iles. J. (1998). Inductive bias in context-free language 
learning. In Proceedings of the ninth A ustralian conference on n C liT'(] I II ct works 
(pp. 52-56). Brisbane: Department of Computer Science and Electrical Ell­
gineering, University of Queensland. 

Tonkes, B. & Wiles, J. (1999). Learning a context-free task with a recurrellt 
neural network: An analysis of stability. In R. Heath, B. Hayes. A. Heathcote 
& C. Hooker (Eds.), Dynamical cognitive science: Proceedings of the fOll7ih 
biennial conference of the Australasian cognitive science society. :'\ eWcClst If'. 

Towell, G. G. & Shavlik, J. W. (1993). The extraction of refined rules from 
knowledge-based neural networks. Machine Learning, 13(1), 1'i"-10l. 

Trakhtenbrot, B. A. & Barzdin, J. M. (1973). Finite automata: bel}(ll'lOr (Jnd 
synthesis. Amsterdarn: N orth-Holland. 

Vahed, A. & o Inlin, C. W. (1999). Rule extraction from recurrent neural ndwo,.~,s 
using a symbolic machine learning algorithm (Tech. Rep. \"0. CS-C 's-TR--1). 
University of Stellenbosch, South Africa: Computer Science Department .. 

Vahed, A. &, Omlin, C. \Y. (2004). A machine learning luethod for pxtracrlllg 
symbolic knowledge from recurrent neural networks. Neu7'al ComputatlOTl. 

16, 59-71. . -l C \ I 
Valiant, L. G. (1984). A theory of the learnable. Communication,,, oj the ,J • 

27(11).113-4:-11--1:2. . . 
\Yatrous, R. L. &. Kuhn, G. ~I. (1992). Induction of finitf'-state alltom'\~l ~:~\I;~ 

second-order recurrent networks. In J. E. :doody, S . .J. HClll.-,()1l L .\. . 

. . I . f t.' n p7'Ore'i'iiTllJ ."1/-"'1 T1I~ I. \01. -1. LIppInann (Eds.), Advances 'ln neura 'lnJornw,lO ".' 
pp. 309-317). ~dorgan KaufInann publisher;.;. IllC. 

\\ ', t -, R A rr P 11, k J B (200.')). ~Iodular intf'niPpf'l1<it'llCY ill (,OIllPiPx (1 SOIl, .. . (~ 0 elC, . . 

dynamical s~·stems. Artificial Life, --145---1:5 'i". 

190 



\\'iles, .1. & Elman, J. L. (1995). Learning to count without a counter. \ .' . .""\ ca~p 
study of dynamics and activation landscapes in recurrent neural network." 
In Proceedings of the seventeenth annual conference of the cognitire ,':;('iEnCf 

society (pp. 482-487). Cambridge MA: j\HT Press. 

Williamson, J. (2004). A dynamic interaction between machine learning and the 
philosophy of science. Minds and Machines, 14 (4l 539-5-19. 

Witkowski, :\1. (2002, August). Anticipatory learning: The animat as cli~conT\" 
engine. In Adaptive behavior in anticipatory learning systems (ABiALS-02). 
Edinburgh. 

Young, K. & Crutchfield, J. P. (1993). Fluctuation spectroscopy. Chaos. Solution .... 
and Fractals, 4, 5-39. 

Young, S. & Garg, V. K. (1995). ~fodel uncertainty in discrete event s\"~telll~. 
SIAM Journal on Control and Optimization, 33(1), 208-226. 

Zeng, Z., Goodman, R. M. & Smyth, P. (1993). Learning finite state luachillf'S 
with self-clustering recurrent networks. Neural Computation, 5(6), Q76-9QO. 

Zhou, Z.-H. (2004). Rule extraction: using neural networks or for neuralnetwork<.' 
Journal of Computer Science and Technology, 19(2), 2-:1:9-253. 

Ziemke, T. (2000). On 'parts' and 'wholes' of adaptive behavior: Functional 
modularity and diachronic structure in recurrent neural robot controllE'r~. In 
From animals to animats 6 - proceedings of the sixth international cOllfcnTlc( 

on the simulation of adaptive behavior (SAB 2000). Catubridge, ~L\: ~IIT 
Press. 

Ziemke, T. & Thieme, M. (2002). Neuromodulation of reactive sensoriulOtor map­
pings as a short-term memory mechanism in delayed response tasks . . td([lifil'f 

Behavior, 10(3/-:1:), 185-199. 

191 



Appendix A 

Substochastic vectors 

Some important types of, and operations on~ substochastic vectors are defined below 

(some of these are also found in Paz (1971)): 

Definition A.I A substochastic vector fJ is a vector where all elemenb are 

nonnegative and the sum of the elements is < 1. 0 

A special case of the substochastic distribution is where all probabilities ill"(\ Zt'l"(): 

Definition A.2 An exhausted substochastic vector iJ is the special Cil:-;C of a 

substochastic vector where all elelnents are O. 0 

And, as another special case, we find vectors ,vith l110re conventiollill probabilist ic 

properties: 

Definition A.3 A stochastic vector v is the special case of a substochastic ,'ector 

where the sum of the elernents is exactly 1. 0 

And a special case of stochastic vectors is where only one element is probablp: 

Definition A.4 A degenerate vector is a stochastic vector one element with 

probability 1 and the rest O. 0 

Definition A.5 The entropy of an n-dilnensional substochastic vect or /' 1:-. IH'rt' 

denoted as H (11) and is calculated by 

n 

H(17) = - L ti log Vi 
i=1 

o 

19:2 



By definition a . log 0 = o. Entropy is not really well defined for substochastic 

vectors, but in the algorithm of this thesis, entropy will only be calculated over 

stochastic or exhausted vectors. Therefore the entropy as described here will be 

according to proper theory (Cover & Thomas, 1990) unless the distribution is ex­

hausted in which case function, here called entropy, will return zero. 

Definition A.6 The function normalize is used to transform a substochastic vec-

tor into a stochastic vector, if possible, according to 

o 

normalize ( iJ) = { L.~~l iT; 

v·a 
if 2::1 Vi> 0 

otherwise 

Definition A.7 The support set of a substochastic vector u = (i"l' f 21 ... , l~n) is 

the set {i : Vi > a} and is denoted sup( v). 0 

1 9~1 

7 



Appendix B 

List of abbreviations 

CrySSMEx 
cVQ 
~DI-equivalence 

RE 
R~N 

R~~-RE 

SDTDS 
SE 
SSYI 
U~DI-equivalent 

VQ 
A 
n 

Crystallizing SS~I Extractor 
Crystalline Vector Quantizer 
Not Decisively-Inequivalent 
Rule Extraction 
Recurrent Neural X etwork 
RNN specific RE 
Situated Discrete Time Dynamic S~'stem 
State Element (of an SS~I) 
Substochastic Sequential ~lachille 
Universally NDI-equivalent 
Vector Quantizer 
Quantizer function 
Transition event set (frOIll an SDTDS) 

Table B.l: List of important abbreviations. 

194 



Appendix C 

Jacobsson & Ziemke (2003a) 

Improving Procedures for Evaluation of Connectionist 
Context-Free Language Predictors 1 

Henrik Jacobsson, Tom Ziemke 

Abstract 
This paper shows how seemingly minor differences in training and evaluation pro­
cedures used in recent studies of recurrent neural networks as context free language 
predictors can lead to significant differences in apparent network performance. We 
therefore suggest standard evaluation procedures whose use would facilitate better 
reproducability and comparability. 

e.1 Introduction 

A number of recent papers have investigated the use of Recurrent ~eural ~etworks 
(RNNs) for predicting strings belonging to the class of the Context Free Language 
(CFL) anbn and the Context Sensitive Language (CSL) anbncn (\Viles & Elnlan, 
1995: Tonkes et al., 1998; Rodriguez et aI., 1999; Tonkes & Wiles, 1999; Boden et al., 
1999,2000; Chalup & Blair, 2000; Boden & Wiles, 2000; Gers & Schmidhuber, 2001; 
Boden & Blair, in press; Schluidhuber et al., 2002). Each of these papers makes 
valuable contributions, but when we compared them, we noticed two problems: 
Firstly, sometilnes a number of details of the evaluation method (for evaluating 
the generalization ability of the networks) were undocumented. Secondly. where 
details of evaluation were provided, minor differences between the methods used 
in different papers were found. This led us to carry out a series of expf'riments 
with the aim to systematically investigate whether these differences Inay affett the 
Estimated Generalization Ability (EGA) for a given population of R~~~. Such 
differences may be an indicator that the reproducability and cOluparability of tht' 

generalization ability presented in these papers nlight be questioned. 
In our experiments we have varied three aspects of the testing pro('t'dure in 

order to see how the EGA of the RNNs is affected. These aspects are: Fir~t l~·. t lit' 

IThis is a verbatim copy of Jacobsson and Ziemke (2003a). Only the formattill.J?; aW.l rontnct 
information differs from the original (the bibliography is also not inclnd('{l h(,T(, ~1I1('(' It nm he' 

found elsewhere in the thesis). 

195 



string order, i.e. the order in which strings of different lengths from th 
nbn d . h . . e grammar 

a . are conc~tenate In~o t e str~ng whIch the RXN should predict. Secondly. the 
max'tmum strtng length, 1.e. the hIghest value of n of the anbn str' . th-. . mgs In e test 
set. The thIrd aspect, error tolerance IS the degree to which the network is allowed 
to make mistakes. The reason that the two first aspects are important is that an 
RNN is a dynamical system with a potential sensitivity to its initial state which 
can be based on previous inputs. Variations of these three aspects exist in the 
above mentioned papers, but are in some cases just vaguely described, if at all. In 
addition to these three, other important aspects, such as the number of networks. 
number of repeated tests per network and basic definitions such as "success" are 
varied and in some cases quite vaguely described. 

The structure of this paper is as follows: First the investigated papers are 
briefly summarized to give an overview of their experimental strategies. Then our 
experiments designed to evaluate the sensitivity of the EGA with respect to testing 
procedure are presented. The results of the survey and experiments are then fused 
into some concluding remarks and recommendations. 

C.2 Background 

The papers that present results of CFL and CSL predictions with R~N s and their 
testing approaches are summarized in Table C.l. The architectures focused on 
in these papers were Simple Recurrent Networks (SRNs) (Wiles & Elman, 1995: 
Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; Boden et al., 
1999, 2000; Chalup & Blair, 2000), Sequential Cascaded Networks (SCNs) (Boden 
et al., 2000; Boden & Wiles, 2000; Boden & Blair, in press) and Long Short-Term 
Memory (LST~) (Gers & Schmidhuber, 2001; Schmidhuber et al., 2002). The 
training algorithms used in these papers are either based on gradient descent (\Viles 
& Elman, 1995; Tonkes et al., 1998; Rodriguez et al., 1999; Tonkes & Wiles, 1999; 
Boden et al., 1999,2000; Boden & Wiles, 2000; Gers & Schlnidhuber. 2001: Boden 
& Blair, in press; Schmidhuber et al., 2002) and/or Evolutionary Hillclimbing (EH) 
(Tonkes et aL 1998; Boden et al., 2000; Chalup & Blair, 2000). There are, of course, 
many other important papers in the field of CFL/CSL prediction and related fields. 
but those not presenting quantitative studies of the generalization ability have been 
omitted as they have no direct bearing on our results. Other papers in the field 
of CFL- and CSL-prediction have also been omitted to make comparisons simpler, 
i.e. only anbn and anbncn papers are included. 

The training and test set sizes used in the cited papers are presented in Ta­
ble C.1, as well as the ordering of strings in the test set. \Vhere t here has been 
any chance of misunderstanding the structure of the testing set/procedure. we have 
chosen not to make any assuInptions. For example. when the test set is explained 
as "from depth 1 to 30" (Wiles & Elman, 1995) or ';strings up to n = 1~" (Boden 
et al., 1999) it may be implicit that the strings are ordered in all ascendlng ordpr. 
but as no explicit definition of string order is found, these papers arp marked a~ 
being ambiguous about the test set order. . . 

Among these papers, we found three different test set ordprmgs: ~Yl.ndom, ~.,-
cending and descending order. Six out of eleven papers did not t'xph('ltl~' cl(,~IH' 
the order of their test set. The maximulll string length of t 1w test st't also vaI"H,d 

among the papers. Furthermore, the dptails of t he error toleraun' w('rt> USl1Hllv 

196 



not discussed, i.e. it was actually quite unclear in some of the pa h th pers weer cor-
rect predictio~ once per string occurrence was enough to consider the prediction 
successful or If the network needed to consistently predict all strings correctly. It 
seems, however, that the former is most commonly used. . 

It may also be worth noting that two papers (Gers &. Schmidhuber. 2001: 
Schmidhuber et al., 2002) used slightly different domains, anbnT and anbncnT 
which strictly speaking are not the same languages as anbn or anbncn. The ter~ 
minal symbol T gives the network a mechanism for resetting its state in a lllore 
deterministic manner than otherwise. The comparison across these domains lllay 
therefore not be reliable. Considering only comparisons within the domains. ho;­
ever, the terminal symbol may in fact improve comparability due to the potential 
increase of determinism. 

C.3 Experiments 

The experiments presented in this paper are aimed towards evaluating whether 
the string order, maximum string length and error tolerance when testing R~N 
predictors affect the EGA significantly for given trained populations of networks. 
We therefore consider the training of the networks a secondary matter, i.e. no effort 
has been spent on finding optimal parameters for the ER. In effect, the results Illay 
not be comparable to other papers (a comparison that should not be done anyway). 
Instead the training should just be seen as a necessary step to generate popUlations 
of networks in which some effects of the testing parameters can be demonstrated. 

C.3.1 The Testing Procedure 

The test set is determined by the string order and maximum string length. Three 
orderings of string are used; random, ascending, and descending. vVe let the max­
imum string length of the test set vary between 10 and 100. In each test, exactly 
1000 strings of each length are included. The strings are concatenated into the 
sequence which the network is trained to predict. 

The performance of the network is recorded for the 1000 strings of each length it 
receives. If we consider just one network we will have an estilnate of the perfonnance 
of the network on each individual string length. This performance is typically higher 
for short strings and lower for long strings. The performance is, however, not 
necessarily decreasing monotonically and a string with a high n may be predicted 
completely accurately, while the strings of length n - 1 could at the same time be 
completely inaccurately predicted. We have chosen to record the lllaximuin string 
length that the network processes correctly (string length is son~eth~ng wl~i~h all 
previous papers have mentioned when talking about the generahzatIOn ablht~· ~f 
their networks), but this measurement needs to take into account t~~ 1l01ll~IOnot0Il1C 
performance degradations for longer strings. The following defimtIOll WIll lead to 

such a measurement. . 
The correctness, c(n), of a network in terms of predicting a given length IS 

defined as . . f I gtl no. of correctly predIcted stnngs 0 en 1 1l (C.1 ) 
c( n) = no. of strings of length 1l 

where the total number of strings of length n in this case was lOOO for all 11 up 

197 



....... 
'-0 
'X-

~ 
~ '"d (l) H 

(l) 
[f) 0 

U 
~ b.O ~ ~ ~ ....... ~ (l) (l) 

(l) ro ....... [f) [f) 
H ...... ~ 
~ ~ ....... ~ ~ ro [f) [f) 

(l) 0 
~ ~ ~ ~ Q 

Wiles & Elman (1995) a1tb n 1 < n < 12 * 1 <n< 30 
Tonkes ct al. (1998) a1tb 1t 1 < n < 10 * 1 <n < 12 

Rodriguez et al. (1999) a Hb1t 1 <n < 11 asc until failure 
Tonkes & Wiles (1999) allbl! 1 < n < 10 * 1 < n < 12 
Boden et al. (1999) anbn 1 <n < 10 * 1 <n < 12 
Boden ct al. (2000) an b 1t 1 < n < 10 rand * 
Chalup & Blair (2000) a ltb ll 1 < n < 20 rand 1 < n < 20** 

,; a IL b llc ll 1 < n < 20 rand 1 < n < 20** -~ 

Boden & ~Tiles (2000) a ll b llc ll 1 < n < 10 dcsc 1 < n < "large 
" n 

Gers & Sclllllidlmlwr (2001) allbnT 1 < n < 10 to * 1 < n < 1000 
1 < n < 50 

.. altbHcllT 1 < n < 10 to * 1 < n < 500 -- -

- -

1 < n < 50 - -

B()d{'ll &. Blair (2002) allb'l 1 < n < 10 * * 
Sdllllidhubpr d a1. (:200:2) Refers to the data ill Gel's & SChIllidhuber (2001) 
*=llot ('xplicitly d('hlll'(l. 

* * =i 11Cl'( 'IlH 'l1t all" t (':-It ('el d llriug t l' (lillillg. 

'1'<l1>k C.l: :\ Sllllllllary uf CFL <lud CSL prediction expl'riIllC'Ilts USiIlg variolls ll(,llral 11<'1 work tlrcilit ('d lin's. 



n 1 2 3 4 5 6 7 8 9 10 11 12 
c(n) 1.00 1.00 1.00 1.00 1.00 

13 14 
1.00 0.91 1.00 1.00 0.77 0.10 0.00 1.00 0.00 

er(n) 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91 0.91 0.70 0.07 0.00 0.00 0.00 

Tabl~ C.2: A realistic exam~l~ of an evaluation of an RNN by using c{n) and c,.(n) of 
equation C.l and C.2. If reqmnng a strong network, this network~s EGA is up to stri 
length 6 and if only requiring a weak network, the EGA is 11. ng 

to the maximal string length. A correctly predicted string means that at least the 
predictable p~rt (Le. not t~e ~rst b) of the string is correctly predicted. As c( n) is 
not monotonIcally decreasIng It can not be used directly to unambiguously define 
up to which string length the network is successful. In Table C.2 an eXal~ple of a 
string evaluation is shown. From this example it is clear that there is no obvious 
way to give statements of which maximum string length the network can handle. 
In the example, the network can handle all strings up to a6b 6 but fails on SOlne of 
a7b 7 ,a1Ob 1O and allbll . It can also handle all of a 13b 13 , but none of a 12b 12 or 
a14b 14

. Up to what string length should we then say that the network is perfonning 
correctly? 

To solve this we introduce a recursive definition of correctness, reflecting that 
the performance on one string length depends also on the performance on all shorter 
string lengths. The recursive correctness, Cr ( n ), is defined as: 

er(l) = c(l) 
er(n) = er(n - 1) . c(n) for n > 1 

(C.2) 

In the example of Table C.2, er(n) is monotonically decreasing and only accepts 
string lengths for which previous string lengths also have been correctly predicted. 
The correctly predicted a 13b 13 are now ignored since no correct predictions of 
a 12b 12 were made. 

The error tolerance is the quality demand on the network by the experimenter. 
The highest error tolerance corresponds to the experimenter being satisfied with the 
RNN correctly predicting strings only at least once and the lowest error tolerance 
is when the RNN needs to correctly predict all strings. Chalup and Blair (Chalup 
& Blair, 2000) addressed the issue of error tolerance explicitly and defined ::weak 
solutions" and "strong solutions" to correspond to networks satisfying the highest 
and lowest error tolerance requirements respectively. We adopt these terms in this 
paper. The EGA (using er (n)) of the network in the example in Table C. 2 is then 
6 if we consider only strong solutions, and 11 if we only require weak solutions. 

C.3.2 Architecture & Training Algorithm 
The network architecture used in our experiments is an SRN and the optimisation 
algorithm is an EH, see (Boden et al., 2000) for details. The fitness is proportional to 
the number of correctly predicted strings in a concatenated sequence of strings from 
anbn with 1 < n < 10 where each string length occurred exacth" three timt's (cf. 
the testing procedure in the previous section). Three separate fitness functions are 
used' F. d F. and F.de for random ascending and descending string It-ngth order 

, ran, asc se' ... f 
respectively, i.e. the only difference between the fitness functlOns .IS the ordenng () 
the strings. It should be noted that the aim of the experilnent IS not to evaluate 

199 



the differences between these populations but to evaluate how the EG.-\ varies 
for these fixed populations under different testing strategies. The use of three 
different ~opulations may reveal different effects the testing procedure may have 
on the estImated results. In fact any sufficiently large population would do as the 
goal basically is to show that there are populations for which testing procedure 
differences significantly affect the estimated performance. 

The evolutionary algorithm was run for 10,000 generations with a mutation rate 
of a = 1.0 and a population size of 100 of which 20 were selected as elite. The elite 
group was saved to the next generation and was the group from which new networks 
were generated. 120 runs were carried out for each fitness function with different 
random seeds and the best network of each successful end-population was saved for 
further analysis. A population was deemed successful if at least one of its networks 
correctly predicted (the predictable part of) all strings in the training set. 

C.4 Results 

C.4.1 Training Results 

Of the 120 experiments with each of the three fitness functions F rand , Fase and 
F desc the number of successful (in terms of correctly predicting the entire training 
set) runs were 114, 75 and 76 respectively. All the statistics will be based on the 
best network of each successful population. It is worth noting that the success 
rate is much higher for Frand than for Fasc and Fdesc. This is probably due to 
higher sensitivity to local optima for the deterministic fitness functions. Subsequent 
experiments (not documented here) indicated that for higher values of the mutation 
parameter, a, this problem vanishes. 

C.4.2 Estimated Generalization Abilities 

The resulting EGA of networks generated with the three fitness functions tested un­
der different conditions are shown in Table C.3. The maximUll1 correctly predicted 
string length of each successful network was calculated according to equations C.1 
and C.2 as in the example in Table C.2. 

The Effect of Error Tolerance Level 

The effect of demanding weak or strong networks is clearest when the networks 
are tested on strings in a random order. The EGA is half or lower for the strong 
solutions given a high enough maximum string length of the test set. The error 
tolerance effect is still there with a test set in ascending order, but weaker. 

Interestingly, the error tolerance has virtually no effect at all whe~. testing on 
strings in a descending order. We speculate that this is due to the R~ ~ . graduall~' 
receiving simpler and simpler strings, resulting in the exact salll~ behaVIOur (,Vf'r~' 
time, i.e. the network either correctly predicts all strings of a speCIfic lengt h or none 

at all. 1 . 
One should keep in mind that, as the test set has 1000 replicas of pac 1 stflng 

. d' 1000 t flOOD strings whereas W(leU< length, strong solutions correctly pre lct ou 0 ' 

200 



solutions need only predict lout of 1000 correctly. In our opinion, this makes 
strong solutions much more interesting. 

Effects of Maximum String Length 

The effect of the maximum string length (N in Table C.3) differs depending on 
test set order, error tolerance and fitness function. \Vhen only considering strong 
solutions and random test set order, a higher N leads to a significantly lower EG.\ 
for all networks. The opposite seems to be true for most weak solutions for all test 
set orderings and networks. For ascending test set order, the degrading perfonnance 
for higher values of N is not as clear as when testing on randomly ordered strings. 
For tests on strings in descending order, N has no degrading effect. 

The Effects of String Order 

String order is perhaps one of the more interesting aspects of the testing procedures, 
as there were three distinct orderings found in previous work while most papers 
did not describe this aspect of testing explicitly. In our experiments, string order 
played two roles, in the training and testing of networks. The networks trained 011 
the different training sets can be clearly ranked in terms of performance. Networks 
trained on F rand are clearly better than Fasc which is clearly better than Fdesc. 

A ranking of the test sets is not as straightforward. Considering only strong 
solutions it is, however, clear that a randomly ordered test set is tougher than the 
ascending order which is in turn tougher than the descending order. For weak solu­
tions the randomly ordered test set gives the highest results. This is not surprising 
as weak solutions need only lout of 1000 strings correctly predicted of every string 
length and a randomly ordered set gives the network a higher variety of initial 
states of which some may lead to a correct prediction. 

It is interesting to see that, as a validation of the network training, all networks 
handle their training sets perfectly and that the networks trained with Frand also 
handle the other training sets perfectly. Networks trained on randomly ordered 
strings thus seem more robust. 

Although the results of the randomly ordered test set seem to be ll10St sensitive 
to the other parameters (i.e. string length and error tolerance), in our opinion, 
this test provides the most interesting results, as the network will be tested more 
rigorously. 

C.5 Discussion and Conclusions 

It is clear from table C.3 that changes in the testing procedure render significant l~' 
different results. These effects are also not consistent for the three populations and 
can therefore at this stage not be predicted. These results are not surprising. as it 
is well known that initial conditions may affect the behavior of dynamical systeills. 
and hence affect the performance of RNN s, a subset of dynamical systPlllS. Tllt' 
cited papers, iInplicitly or explicitly, touch the dynamical nature of R ~~ s. but ill the 
construction or description of the experimental setup this ilnportant isstH' ofte~l do~'s 
not receive much attention. All papers describe the architectures and algonth~l1lc 
details of the learning techniques quite thoroughly and present insightful. (iPt aIled 

201 



analyses of individual networks. But without a proper description of the testing 
procedures used to generate quantitative results. reproducibility and comparability 
are lost. Three papers also make cross paper comparisons (Gers & Schmidhuber, 
2001; Boden & Wiles, 2002; Schmidhuber et al., 2002) in the domain of these papers. 
comparisons that, due to the problems pointed out here, may be questioned. For 
the same reasons, it would also not make sense to compare our results to those of 
any other paper using different testing procedures. 

Some practical recommendations for future research in this area: Train and 
test sets should be ordered randomly to give both robust networks and a thorough 
testing of these networks. Only strong networks (or perhaps a slightly relaxed 
version of "strong", e.g. 90-99% correct) should be considered. A network solving 
a task only (at least) once is far less interesting than those solving it consistently. 
Since the results also indicate that the maximum string length in the test set has 
a significant effect on the results the expected performance may affect the measured 
performance directly, since the maximum string length in the test set will probably 
be chosen based on the expected performance. Hence, the maximum string length in 
the test set should be varied, perhaps starting with a low value and then increasing 
stepwise. 

What can be learned from this is that to guarantee reproducability, the descrip­
tion of the generation of testable objects has to be complemented with a description 
of the testing procedure applied to these objects. In the cited papers the architec­
tures, training procedures and analysis of individual RNNs came out mostly crystal 
clear to the reader, while some crucial details of the testing luethods did less so. 
So our final, and most important recommendation, is to recognize that the analysis 
tools are as important a part of the data generation as the networks themselves. 

202 



tV o 
w 

'-', 

Networks trained on F rand (114 RNNs) Networks trained on Fasc (75 RNNs) Networks trained on Fdesc (76 RNNs) 
strong weak strong weak strong weak 

avg max avg max avg max avg max avg max avg max 
N Test set in random order 
10 10.00 (0.00) 10 10.00 (0.00) 10 6.79 (0.45) 10 10.00 (0.00) 10 4.07 (0.48) 10 10.00 (0.00) 10 
15 8.95 (0.45) 15 12.09 (0.16) 15 5.11 (0.62) 15 12.13 (0.26) 15 3.46 (0.56) 15 12.36 (0.21) 15 
20 7.77 (0.53) 20 12.48 (0.22) 20 3.33 (0.58) 17 13.12 (0.31) 20 1.58 (0.37) 14 12.96 (0.36) 20 
25 6.51 (0.50) 20 12.55 (0.23) 23 2.72 (0.54) 17 13.53 (0.36) 25 1.37 (0.35) 14 13.55 (0.38) 25 
50 5.81 (0.48) 20 12.63 (0.24) 23 2.00 (0.45) 17 14.19 (0.61) 49 1.32 (0.35) 14 14.53 (0.59) 36 

100 5.81 (0.48) 20 12.62 (0.24) 23 2.00 (0.45) 17 14.08 (0.60) 49 1.33 (0.35) 14 14.04 (0.49) 30 
Test set in ascending order 

10 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10 10.00 (0.00) 10 6.49 (0.49) 10 8.80 (0.31) 10 
15 10.84 (0.34) 15 11.71 (0.16) 15 9.24 (0.61) 15 11.43 (0.28) 15 6.49 (0.64) 15 8.78 (0.52) 15 
20 11.10 (0.37) 20 11.97 (0.22) 20 8.88 (0.66) 20 11.65 (0.33) 20 5.16 (0.63) 20 8.75 (0.56) 20 
25 10.26 (0.44) 21 11.98 (0.22) 21 7.32 (0.75) 25 11.71 (0.36) 25 5.26 (0.67) 21 8.59 (0.58) 21 
50 10.80 (0.38) 20 11.98 (0.22) 21 8.07 (0.67) 19 12.00 (0.54) 45 5.00 (0.64) 21 8.51 (0.59) 21 

100 10.80 (0.38) 20 11.98 (0.22) 21 8.07 (0.67) 19 12.00 (0.54) -15 5.00 (0.64) 21 8.51 (0.59) 21 
Test set in descending order 

10 10.00 (0.00) 10 10.00 (0.00) 10 9.33 (0.22) 10 9.36 (0.22) 10 10.00 (0.00) 10 10.00 (0.00) 10 
15 11.64 (0.16) 15 11.64 (0.16) 15 10.97 (0.36) 15 10.97 (0.36) 15 10.50 (0.24) 15 10.50 (0.24) 15 
20 11.89 (0.22) 20 11.89 (0.22) 20 11.08 (0.45) 20 11.08 (0.45) 20 10.51 (0.32) 20 10.51 (0.32) 20 
25 11.90 (0.22) 21 11.90 (0.22) 21 11.16 (0.46) 25 11.16 (0.46) 25 10.63 (0.33) 23 10.63 (0.33) 23 
50 11.90 (0.22) 21 11.90 (0.22) 21 11.43 (0.62) 45 11.43 (0.62) 45 10.61 (0.32) 21 10.61 (0.32) 21 

100 11.90 (0.22) 21 11.90 (0.22) 21 11.43 (0.62) 45 11.43 (0.62) 45 10.61 (0.32) 21 10.61 (0.32) 21 
--- -- ----------

Table C.3: The average, standard deviation (in parentheses), and maximum length the networks was deemed to process correctly. The perfonna.nc(' 
is evaluated on networks generated with the three different fitness functions, F rand , Fasc and Fdesc. The results are separated into the three diH'erent 
test sets and results for weak and strong solutions are presented separately. The results for different maximum string lengt hs N are also shown 

separately. 



Appendix D 

Jacobsson & Ziemke (2003b) 

Reducing Complexity of Rule Extraction from Prediction 
RNNs through Domain Interaction1 

Henrik J acobsson, Tom Ziernke 

Abstract 
This paper presents a quantitative investigation of t he differences between rule 
extraction through breadth first search and through saIllpling the states of the 
RNN in interaction with its domain. \Ve show that for an R ~~ trained to predict 
sYlnbol sequences in formal grammar dOlllains, the breadth first search is especiall~' 
inefficient for languages sharing properties with realistic real world clOlnains. \\'(' 
also identify some important research issues, needed to be resolved to ensure furt her 
development in the field of rule extraction from R:\\'s. 

D.I Introduction 

An R~N can be painstakingly difficult to analyze. Very often R:\K Clnalysis he­
comes a matter of creating s1nall enough networks to allow a direct visualization 
of the internal activations. There are almost as many approaches to R:\:,\ analysis 
as there are papers about RNN and the 1nethods are often ad hoc and adapted 
to specific dOlnains and network architectures. Rule extraction (RE) frOlIl R~~s 
(Giles, Miller, Chen, Chen & Sun, 1992; Zeng et al., 1993; Tino k Sajcla, 1995; Blair 
& Pollack. 1997; Tino & Koteles, 1999) offers a yer~' prOlnising tool for analyzing 
RNNs as it generates a functional model (usually a finite state autonl<lton, FS:\) of 
t he of the R~~. providing an abstract symbolic 1nodel of the potentially cOlnplt.'x 
analog network dynamics. In comparison to other analysis tools, such as cluster 
analysis, vector flow fields, analysis of fixed points etc., RE gives insight not only 
to the "passive" clusters resulting in the state space, but also to the "active" roh' 
of t heSt' clusters in the RNl\'" interaction with the dOlnain. RE i~ ,ds() not inherent h' 
liInited by the dinlensionality of the st ate space as are visualization Illet hods. How-. . 
ever, RE suffers froln an apparent increasing space and tilne complexity for larger 

IThis is a verbatim ('op~' of Jacobsson and Ziemke (2003b). OnI,\' the formatting and contact 
information differs from the original (the bibliography is also not illdll<i('d here :--illC'(' it can })(' 

found ('Ist'where in the thesis). 

204 



and more complex networks and therefore various heuristics need to be developed 
to allow RE to tackle more 'difficult' Rr\Ns. 

The effect of one such heuristic will be investigated quantitatively in this paper. 
The complexity of the behavior of an RNN is a product of its internal functional 
mappings generating sequences of states and output and of the complexity of the 
domain from which the network is fed input patterns. It is well known that even 
relatively simple systems can exhibit surprisingly complex behavior in interaction 
with a complex environment but the opposite is true also: the complexity of the 
behavior of a potentially complex system can be restricted by a simple environlnent. 
We will in this paper show an example of how this can be exploited as a heuristics 
for RE from R~~ s by using the domain as a means for generating the states of the 
network that are the basis for the extracted rule set as opposed to performing a 
breadth first search based on the possible input patterns. Both nlethods haye been 
used previously in RE algorithms, but to our knowledge no comparative study has 
been presented. 

We will first introduce our definition of RNNs, rule extraction and some theo­
retical prerequisits. Then the experiments and results are presented. In the last 
section we draw some conclusions and discuss possible future directions. 

D.2 Background 

In this paper we will, for simplicity, stick to a very simple definition of recurrent 
neural networks. The activations of the input, state and output nodes are for 
example restricted to values in the interval [0, 1] and the output is functionally 
dependent on the state alone (excluding for example some forms of second ordered 
networks). 

Definition D.I A Recurrent Neural Network is a 6-tuple R = (1,0, S, 6", so) 
where 
I C [0, 1 ]nJ is the input space, 
S C [0, 1 ]ns is the state space, 
o C [0, 1 ]no is the output space, 
8 : S x I ---+ S is the state transition function and 
'Y : S ---+ 0 is the state interpretation function 
So E S is the initial state vector 0 

Where nJ, ns and no are the dimensionality of each respective space. Note that 
the weights of the connections and activation functions of the individual nodes 
are subsumed by 6 and 'Y in this definition. Those details are silnply ignored by 
existing RE algorithnls and the neurons of the network are treated as ensembles 
rather than as individuals. The term compositional was suggested by (Tickle et 
al., 1998) to denote this level of granularity of the rule extraction algorithm's view 
upon the underlying network. The other modes of granularity are decOlnpositional 
(white box), pedagogical (black box) and eclectic (containing elements of both 
decompositional and pedagogical). 

States in the state space S will be visited when the network is fed input yectors 
from the input space. However, the full set of possible input patterns is seldoluly 
needed to take into account for training or analysis of the R~:\. e.g. ~f different 
input features are strongly correlated. Instead we can define the set 1 C I a.s a 

205 



finite set of patterns that the network actually will receive in situ, i.e. when receiving 
input from the domain. We have here chosen to define i as finite since in previous 
approaches to RE from RNNs. formal language tasks have almost exclusivelv been 
considered. For this reason we introduce a set of symbols, E, isomorphic t; i, i.e. 
for every symbol in E, there is exactly one corresponding lnember in 1. In many 
papers where a formal language recognition/prediction task is studied, the symbols 
of E are encoded in I through 'one hot' encoding, i.e. every symbol of E 'activates' 
only one corresponding element of the input vector. 

When the network is fed patterns from i a number of states will be visited. 
This set can formally be defined as the set of i-accessible states from the initial 
state So, let us call it ~ c s. ~ is composed of those states in S that will be 
visited through the iterative mappings induced by all possible input patterns in i 
in all possible orders as defined in equations D.1 and D.2. In other words. ~ is 
the set of states that would be visited if all possible sequences over E (denoted E*) 
were fed to the network (with the network reset to So before each new string). 

Yo = {so}, Yn+l = Yn U U 6(i, Yn) for n > 0 
iEi 

~ = lim Yn 
n-+oo 

(D.1) 

(D.2) 

A similar definition (for binary languages only) of accessible states is found in (Blair 
& Pollack, 1997). The production of these states is equivalent to that of an iterated 
function system (IFS) (Kolen, 1994b). 

In rule extraction algorithms the state space needs to be quantized to a finite 
set of classes. This quantization function is here denoted Q : S ---+ {O, 1, 2, ... , N} 
in its general form. In previous RE approaches Q is typically a simple orthogonal 
lattice dividing the state space into hypercubes (e.g. (Giles, lVliller, Chen, Chen 
& Sun, 1992)), dividing the activation range of each individual state dimension 
into q intervals of equal size. This results in qnS hypercubes that can be uniquely 
enumerated. In this paper we refer to these hypercubes as bins and the degree of 
quantization in each dimension of the state space will be referred to as q. Other 
clustering methods used for RE from RNNs are for example k-means clustering 
(e.g. (Zeng et aI., 1993)) or a self organizing map SOM (e.g. (Tino & Sajda, 1995)). 

D.2.1 Rule extraction through breadth first search 

One of the most COlnmon algorithm for rule extraction from RNNs is that of Giles 
et al. (Giles, Miller, Chen, Chen & Sun, 1992). The algorithm conducts a breadth 
first search in the state space to extract a finite state machine from the RN~. 
The RN~s were prior to RE trained to classify strings as grammatical or non­
grammatical. In the general case, any string in E* should then be possible for the 
networ k to process. 

The algorithm starts with an initial state So and generates the outgoing transi-
tions from this state by computing all new states for all input symbols, i.e. 6(so, i) 
for all i E i. This is then repeated for all first states in each visited bin until all 
these states have been tested in this way and no new bin is visited. The nurnber of 
the bin and the corresponding output of the first encountered state vector of each 
bin is then transformed to the extracted FSA. This FSA is then nlinirnized using 

206 



" ", 

a standard minimization algorithm (Hopcroft & Ullman, 1979). The RE algorithm 
starts with a small q and is repeated with increased values of q until the machine 
is consistent with the training data. 

One way to view this algorithm is to see that the search generates a tree of 
symbols that generates a set of states in the network. From the root node (equiv­
alent to the initial state of the network) all symbols expand to subtrees that are 
expanded likewise until all leaf-nodes lead to loops in S. From the root node the 
path to each leaf node is the equivalent to a string of symbols. If all these substrings 
are fed to the network with a network reset between each string, the exact sanIe 
states as visited during breadth first RE will be visited. This set of substrings will 
be called X B , where X B C E* and the states visited during the extraction of rules 
will be called A;B, i.e. the set accessible from the initial state So through breadth 
first search RE, A;B C A~. 

D.2.2 Rule extraction in a domain context 

As mentioned above, in many tasks the full set of strings in E* is not relevant for 
the training of the network. Much research on RNN is focused on prediction tasks 
which in many ways are much less restrictive than classification tasks since the role 
of an external "teacher" is reduced to a minimum. For prediction tasks the network 
is not required to correctly predict all possible sequences of symbols, but only the 
ones that belongs to the domain. The network does typically not even need to 
correctly predict all symbols of the sequences in the domain, as some subparts of 
the sequence may be inherently unpredictable. The temporal XOR problenl is one 
such example where only every third symbol is at all predictable (Elman, 1990). 
This means that the rules extracted from the network need only incorporate the 
sequences and subsequences that the network will encounter in the domain. If the 
network is for example trained to predict events that results from the behavior of a 
autonomous robot it would not be reasonable to extract rules for actions that would 
never be carried out in certain situations, e.g. the event 'drive-forward' should not 
occur if the robot is in the state 'wall-ahead' and is successfully avoiding obstacles. 

We will use the notation X E E* to refer to a sequence generated or sampled 
from the domain. The sequence is written as XOXIX2 ... Xn. This domain specific 
input sequence will generate a sequence of states in ~he network which we will refer 
to as the X -accessible set from So, or ~. ~ C A~ is more formally defined as 

(D.3) 

A 

where n > 0 and in corresponds to Xn (remember that I and E are isomorphic and 
X E E*). And 

~ = {SO,Sl,S2, ... ,Sn} 

where n is the length of sequence X. 

(D.4) 

From the information about states gathered through the processing of the do­
main, a state machine of some kind. emulating the network, can be generated. The 
typically indeterministic data from the network must_be processed in SOlne way to 
lead to a deterministic discrete machine (e.g. (Tino & Sajda, 1995)) or the extracted 
state machine can in itself be stochastic {e.g. (Tino & Koteles, 1999)). 

207 



D.3 Experiments 
AX AX -

The sets ~ and ~ B are both subsets of ~ but cover different aspect and generate 
different rule sets. In this paper we will experimentally investigate the relation AX AX • 
between ~ and ~ B, i.e. the difference between the domain sampling and breadth 
first search approaches of RE in terms of the visited states. 

In these experiments we have chosen to limit the tasks to be pure prediction 
tasks, i.e. the task for a network is to predict the next symbol in a sequence gen­
erated by a grammar and not to classify incoming strings. Another prerequisite is 
also that the networks are perfect, i.e. they never predict predictable symbols of 
the domain incorrectly. This in order to prevent illegal rules to be caused by an 
erroneous network, but instead to be indicators of flaws of the extraction procedure 
itself. 

D.3.1 The Networks 

Three prediction domains have been considered in this paper, two regular granl­
mars and one context free. (Casey, 1996) showed that froin an RNX effectively 
implementing a regular grammar, a finite state machine consistent with the RNN 
can be extracted. For the context free grammar, we assume that some limited 
version of it can be extracted. 

• The simplest is the temporal XOR-problem, suggested in (Elman, 1990), 
where every third binary symbol is determined by an XOR operation of the 
two preceding sYInbols which are random. 

• The next grammar, the "6-letter grammar", was created by Elman (Ehnan, 
1990) to test a language with more than two symbols and that required some 
deeper memory in the network. The sequence from the grammar consists of 
the subsequences ha, dii and guuu concatenated in random order2. Conse­
quently, only the vowels are predictable. 

• The third domain was oni n, a context free language. n was in these exper­
iments 1 < n < 10 and varied in random order with the generated strings 
concatenated into a single sequence. In this language. only the I's and the 
first 0 is predictable. The full grammar, with n unlimited, cannot be rep­
resented in any finite state machine, but since we only require the rules to 
correctly predict the training set it is possible to view this as a regular graln­
mar (although this may be complicated if the network has actually learned 
to generalize to longer sequences). 

These domains were chosen to test the effect of the number of symbols and 
language class separately. All languages have predict able and unpredictable parts 
of the generated sequences and the networks are all trained to predict the next 
symbol. 100 networks were trained on each domain until the~r were deemed to 
perfectly predict the predictable parts of the sequences. The architecture chosen 
was simple recurrent networks (SRNs) (Elman, 1990) with two hidden nodes. For 
the regular language backpropagation through time (BPTT) was used to train 

2In our experiments we used 'one-hot' encoding to represent the symbols to the network, i.e. 
six bits were used of which each one encod('.8 only on(' symbol. Elman used a quit(' ciiffcr('nt 
non-orthogonal encoding based on phonological properties of the letters. 

208 



them and since BPTT had problems on the context free language an evolutionary 
hill-climbing algorithm was used for that instead. 

D.3.2 Evaluation criteria 

The primary objective of the experiments was to assert the degree of excess conl­
putational power used by rule extraction through breadth first in the selected do­
mains. For all networks, we tested RE through breadth first search and sampling 
for varying values of q to see the effects of the quantization level on various aspects. 

AX A 

A We <:hose to measure IA(; B I and IA: I and will here present the ratio, 
IA;BI/IA:I, i.e. the relative difference in number of bins visited through RE and 
through processing of domain respectively. Also, the proportion of substrings in 
X B that are at all possible in the domain which the network is trained on is mea­
sured. If the breadth first RE for example tests the sequence 00011110 on a 
correctly predicting onl n-network starting from the initial state in the network, it 
is a symbol-sequence that never occurs in the true domain and should therefore be 
considered an obsolete sequence. 

The performance of the extracted machines was also Inonitored to determine 
whether correct rules were extracted. The termination point for the breadth first 
RE, i.e. when the extracted machine is consistent with the data, was also tested in 
order to see if and when the algorithm would terminate. 

D.4 Results 

In Figure D.1 we show an example of how RE can be illustrated in the state space 
of the R~N predicting the 6-letter sequence. In this example it can be seen how 
RE through breadth first search finds many states irrelevant for predicting within 
the domain. 

In Figure D.2 the ratios of visited bins and of syntactical substrings generated 
in the R~N by breadth first search RE in comparison to domain interaction are 
shown. It is clear that breadth first RE generated the biggest aInount of irrelevant 
tests on the 6-letter networks. This is probably due to the fact that after each 
symbol in the 6-letter sequence, typically only one of six symbols will occur in the 
domain whereas all six symbols will be tested by the RE. 

It should be mentioned that the RE algorithm terminated quite rapidly; for 
XOR within q = 3 to q = 10, for the 6-letter gramluar within q = 2 to q = 8. 
But for onl n at least q = 21 and for 15% of the networks, the algorithln did 
not terminate at all. 84% of the XOR networks seemed to stabilize in terms of 
extracting equivalent machines. Only 2% of the 6-letter sequence stabilized. 5% 
of the on 1 n actually also stabilized. These numbers are not fully certain however, 
since the number of states in the minimized automata could continue increasing for 
higher quantization levels. 

D.5 Discussion and Conclusions 

We have shown that the degree to which breadth first RE requires excessiv(' ('om­
putational resources seems to be related to the nUlnber of symbols in t he language 

209 



1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

o 

o 

-'-- ..... -- ..... --

.. . .............. ~ .. _ ... -

. - "," ...... '"'." -. -: -.-.-~ - - ........... - - -... .. -
.. ~ - _. . .. :- - .. : .. -:- ... ~ .... ; . -.: - - . 

.;- .. ~-- .: .... : .. u.; 
., 

.... -u·: 
., . , 

......... ....• . .. :to : 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Figure D.1: The internal activation of a network performing prediction in the 6-letter 
sequence. The lattice corresponds to the discretization with the state divided into 252 

bins in this example. The diagonal dotted lines are the hyperplanes, defining the borders 
within the state space for which symbol that is predicted. The hyperplanes divides the 
state space into the 'u'-region on the upper half, the 'a'-region on the lower left side and 
the 'i'-region on the lower right side. The rest of the state space corresponds to no valid 
symbol; the center area with all output nodes set to zero and a small area on the center 
left side with the 'a' and 'u'-node active simultaneously. The states visited through the 
breadth first RE are denoted '+' and the states visited through processing of the domain 
are denoted '*' and are connected to show the order of the states visited. 

for networks trained to predict symbolic sequences. The ratio of, for the domain, 
relevant "questions" (in form of sequences) "asked~' to the network also was very 
low for the gralnmar with six symbols, and for the context free grammar. 

Blair and Pollack (Blair & Pollack, 1997) suggested to use the st ate count of the 
extracted machine to determine whether the network is effectively implementing 
"regular" or "non-regular" automaton. If the state count is growing indefinitely 
with q, they proposed to use this as an indicator that the underlying RNN is 
non-regular. But the results presented here suggest that, for prediction tasks, 
regularity of the network can not be tested as suggested in (Blair & Pollack, 1997) 
since the number of states generated from networks predicting sequences of the 
regular languages was almost always growing indefinitely although the networks 
were predicting all symbols of the language perfectly. The percentage of networks 
for which the RE stabilized did also not correlate with the language class. The 
termination criterion of the RE algorithm was however satisfied much earlier for 
regular than for context free prediction networks. But this could also be due to the 
larger number of states needed to model the strictly regular language 0" 1" with 
1 < n < 10. This should however be investigated further to give more insight into 

210 



2,-----------------______ ~ 

%~----------~50~----------~100 %~----------~5~0----------~100 

(a) (b) 
100,-----------------------__ ~ 0.2,-----------------------

50 

00 ~~~~---~- --------______ --.1 

50 50 

(c) ( d) 
5,-----------~------------~ 

0.5 , 

50 100 50 100 

(e) ( f) 

Figure D.2: The ratio IA~B IliAci I is shown in the left column and the ratio of suhstrings 
in XB possible in the domain is shown on the left side. (a) and (b) correspond to the 
XOR-Ianguage, (c) and (d) to the 6-letter language (observe that for this language q \\·as 
at most 50) and (e) and (f) to the on! n-Ianguage. The maxiIllulIl, minimum. an'ragt' and 
standard deviation of one hundred networks for each domain are shown. 

211 



if (and how) RE can be used to determine the underlying language class, which is 
judged to be "fool's gold" by Kolen (Kolen, 1993). 

One can also argue that RE through search is, in some sense, less credible 
than through sampling since it requires the possibility of an external entity setting 
the state of the network. Sampling of the networks internal states generated in 
the context of its domain however generates stochastic machines that are harder 
to analyse (and to minimize, execute, compare etc.) than the finite automata 
generated by breadth first search RE. 

We suggest that in most "real world domains", e.g. stock market prediction, 
the task is precisely to predict sequences of data with typically a magnitude of 
possible input patterns. According to our results, in these types of tasks it would 
be especially beneficial to use sampling rather than breadth first to extract rules. 

But, to fully exploit the potential of RE through sampling and to ensure further 
development of these algorithms, new questions need to be asked. For example, the 
optimal quantization function for the state space should be sought. And to do that, 
we need to ask how to evaluate different quantization functions. Since an RNN (as 
defined here) is deterministic, one possibility could be to give higher scores to quan­
tization functions generating "less stochastic" machines. Another difficulty that has 
not been investigated properly is how rule extraction from imperfect networks (very 
commonly found in real world domains) should be conducted. In a way, this has 
been implicitly touched in this paper, since we used partly unpredictable prediction 
domains, but this should be investigated in further detail. 

212 


	434470_0000
	434470_0001
	434470_0002
	434470_0003
	434470_0004
	434470_0005
	434470_0006
	434470_0007
	434470_0008
	434470_0009
	434470_0010
	434470_0011
	434470_0012
	434470_0013
	434470_0014
	434470_0015
	434470_0016
	434470_0017
	434470_0018
	434470_0019
	434470_0020
	434470_0021
	434470_0022
	434470_0023
	434470_0024
	434470_0025
	434470_0026
	434470_0027
	434470_0028
	434470_0029
	434470_0030
	434470_0031
	434470_0032
	434470_0033
	434470_0034
	434470_0035
	434470_0036
	434470_0037
	434470_0038
	434470_0039
	434470_0040
	434470_0041
	434470_0042
	434470_0043
	434470_0044
	434470_0045
	434470_0046
	434470_0047
	434470_0048
	434470_0049
	434470_0050
	434470_0051
	434470_0052
	434470_0053
	434470_0054
	434470_0055
	434470_0056
	434470_0057
	434470_0058
	434470_0059
	434470_0060
	434470_0061
	434470_0062
	434470_0063
	434470_0064
	434470_0065
	434470_0066
	434470_0067
	434470_0068
	434470_0069
	434470_0070
	434470_0071
	434470_0072
	434470_0073
	434470_0074
	434470_0075
	434470_0076
	434470_0077
	434470_0078
	434470_0079
	434470_0080
	434470_0081
	434470_0082
	434470_0083
	434470_0084
	434470_0085
	434470_0086
	434470_0087
	434470_0088
	434470_0089
	434470_0090
	434470_0091
	434470_0092
	434470_0093
	434470_0094
	434470_0095
	434470_0096
	434470_0097
	434470_0098
	434470_0099
	434470_0100
	434470_0101
	434470_0102
	434470_0103
	434470_0104
	434470_0105
	434470_0106
	434470_0107
	434470_0108
	434470_0109
	434470_0110
	434470_0111
	434470_0112
	434470_0113
	434470_0114
	434470_0115
	434470_0116
	434470_0117
	434470_0118
	434470_0119
	434470_0120
	434470_0121
	434470_0122
	434470_0123
	434470_0124
	434470_0125
	434470_0126
	434470_0127
	434470_0128
	434470_0129
	434470_0130
	434470_0131
	434470_0132
	434470_0133
	434470_0134
	434470_0135
	434470_0136
	434470_0137
	434470_0138
	434470_0139
	434470_0140
	434470_0141
	434470_0142
	434470_0143
	434470_0144
	434470_0145
	434470_0146
	434470_0147
	434470_0148
	434470_0149
	434470_0150
	434470_0151
	434470_0152
	434470_0153
	434470_0154
	434470_0155
	434470_0156
	434470_0157
	434470_0158
	434470_0159
	434470_0160
	434470_0161
	434470_0162
	434470_0163
	434470_0164
	434470_0165
	434470_0166
	434470_0167
	434470_0168
	434470_0169
	434470_0170
	434470_0171
	434470_0172
	434470_0173
	434470_0174
	434470_0175
	434470_0176
	434470_0177
	434470_0178
	434470_0179
	434470_0180
	434470_0181
	434470_0182
	434470_0183
	434470_0184
	434470_0185
	434470_0186
	434470_0187
	434470_0188
	434470_0189
	434470_0190
	434470_0191
	434470_0192
	434470_0193
	434470_0194
	434470_0195
	434470_0196
	434470_0197
	434470_0198
	434470_0199
	434470_0200
	434470_0201
	434470_0202
	434470_0203
	434470_0204
	434470_0205
	434470_0206
	434470_0207
	434470_0208
	434470_0209
	434470_0210
	434470_0211
	434470_0212
	434470_0213
	434470_0214
	434470_0215
	434470_0216
	434470_0217
	434470_0218
	434470_0219
	434470_0220
	434470_0221
	434470_0222
	434470_0223
	434470_0224
	434470_0225

