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ABSTRACT

This investigation involved creep and moisture movement measurements for

about six months on 13-course clay (Engineering class B) and calcium silicate
brickwork, and 5-course concrete blockwork, consecutively. Four different geometries
of masonry were built, namely: single-leaf wall, cavity wall, hollow pier and solid pier,
respectively having volume/surface area (V/S) ratios of 44, 51, 78 and 112 mm.
- Deformations were also measured on one-brick wide 5 or 6-stack high model brickwalls
which were partly sealed to simulate the V/S ratios of the corresponding 13-course
brickwork. At the same time, deformations were also measured on individual mortar
prisms and brick or block units in order to verify composite model expressions for
predicting masonry movements. Simulation of moisture diffusion of the corresponding
mortar joints and embedded bricks or block were made in terms of V/S ratio by partial
sealing of the individual mortar prisms and brick or block units.

The tests reveal that the modulus of elasticity to be independent of masonry
geometry. However, there is a clear influence of geometry on the vertical ultimate creep
and moisture movement of all the masonry ‘types, i.e. creep and shrinkage increase with
a decrease of V/S ratio. A similar trend occurs for horizontal shrinkage except for the
clay brickwork which undergoes moisture expansion. Deformations of the model walls
show reasonable agreement with the 13-course brickwork.

When results of individual mortar and brick/block specimens are inserted in
composite models, the predicted strains show good agreement with the measured strains,
particularly in the vertical direction.

There 1s no consistent pattern in the distribution of load and moisture strains

for the different masonry geometries, and the measurements reveal that actual strains
can be up to 100% higher than the average strains.
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CHAPTER 1
INTRODUCTION

1.1 Background

Masonry is a composite material comprised of brick or block or stone as
the building unit and mortar as the jointing material. The thickness of the mortar joint

both horizontal and vertical is generally standardised at 10 mm. The brick unit has a
standard size of about 216 x 102.5 x 65 mm, whereby the block unit has various

combinations of standard sizes. The masonry units are laid in several artistic patterns

called bond patterns, the most common are the stretcher, English and Flemish bonds.

Masonry like many other structural and building materials deform when

subjected to loading. When subjected to a sustained applied load it undergoes an

instantaneous or elastic deformation followed by a time-dependent deformation. The
time-dependent deformation : creep and shrinkage (or expansion), have a bearing in
the design for movement in masonry structures. Modern masonry exhibit larger
movements compared with traditional masonry due to combined effects of elasticity,
creep, moisture expansion, shrinkage and thermal strain. Those larger movements
arise from the uses of slender sections, higher working stresses, thicker mortar joints
and new bricks and blocks which are more sensitive to stress and environment. Failure
to allow for creep and moisture movements in the design and construction of masonry
members may cause serviceability problems through spalling and buckling, or
cracking in case of restraint. Also, creep induces greater deflections in reinforced

brickwork beams and loss of prestress in post-tensioned brickwork.

Unfortunately, compared with concrete there are very few data available
on the time-dependent properties masonry such as creep, and although a significant

contribution on the study of creep in masonry has - been made by a number of

researchers ™, such results are still sparse and represent only a small aspect of

masonry; there are many other aspects that have not been studied in detail. It seems



that this situation has restricted the development of universal design procedure. At
present, existing designinformationrelies the *ultimate’ values for creep and shrinkage

for a limited range of brick and block masonry, which have been extrapolated from

results of tests carried out under particular laboratory conditions. The influence of

many factors, such as curing conditions, temperature, humidity, age at loading or
exposure, type of mortar, geometry of masonry, presence of damp proof course, mortar
bed reinforcement and anisotropic behaviour are not recognized. Consequently, it is
desirable to investigate these aspects in detail so that adequate data is available and

relevant influencing factors can be allowed for in estimating long-term deformations,

as in the case of concrete?” %,

3

One of the objectives of the present research is to investigate the influence
of geometry on creep of masonry. For concrete, the influence of size and shape of
member on creep and shrinkage are well known. All prediction methods for estimating
the ime-dependent deformation do allow for size and shape effect by coefficients
related to effective thickness, average thickness and volume-to-exposed surface area
(V/S) ratio”®. Both creep and shrinkage of concrete depend on the rate of moisture
diffusion which is governed by the average drying path. Essentially, under conditions
of drying, creep and shrinkage are less for larger size members. In masonry, the
average drying path length of the mortar bed joints in a solid pier is greater than that
of a single-leaf wall of similar cross-section, and consequently the moisture loss is
slower in the pier so that both creep and shrinkage should be less. In the long term,
shrinkage and creep of the wall and pier might be expected to be similar, but this is
not found to be the case for concrete members, probably because of structural changes
in the cement paste (e.g. carbonation) which restrict moisture diffus:ioq, especially in
smaller merﬂbcrs. By analogy to concrete, the influence of geometry on creep of

masonry 1s anticipated to have a similar effect to that on shrinkage. There has been



no previous comprehensive study on the influence of geometry on creep of masonry

except that carried out by Lenczner'®, who found that creep in piers was less than in

wallS- : - v - ) T

Brooks and Bingel® have proposed that shrinkage is a function of size as
expressed 1n terms of the volume-to-exposed surface area ratio (V/S) by an empirical
function representing an approximation of the average drying path length of masonry
of similar shape. The present investi ghf:ibh looks into this aspect further and extends
it to creep so that a more accurate computation and prediction on the long-term

movement can be made, for any geometry of masonry.

The elastic moduh of both mortar and umts also vary wnhm vnde limits as
do theu' stren gths In general the mortar has a lower modulus of elast1c1ty and higher
creep than the brick or block units. The mortar will undergo shnnkage while the bnck

unit may undergo shrmkage or expanswn The presence of bond between the unit and
the mortar joint ensures that masonry behaves as a compoelte cnontmuurh The values
of modulus of elasncuy ,creep and shrinkage of the compesue will therefore lie in
between those individual values. Obtaining these strain related properties of any
masonry experimentally is expensive due to len gthj tests, using buiky specimens and
high capacity testing machines. On the other hand, separate measurement of the
properties on mortar and brick or block are much simpler and cheaper. The data can
then combined by a coniposite mathematical model to predict the behaviour of the
larger inasohry. Prediction of elasticity and time-dependent deformation of masonry

by composite models has been proposed by several investigators®*, but there has

been very little experimental verification of such models.

==
o

The main problem normally encountered when using composite model is
theinput of arepresentative data. Forexample, Ameny et al>® had to adjust, empirically,
the creep of individual block and mortar specimens in order to predict their composite

effectin masonry. The data must be obtained from specimens which are representative



intrinsically and extrinsically to those in the masonry. Among the factors that have
not been taken into account by previous researcher in their composite model is the
dryingeffectof masonry. In the case of shrinkage and creep, itisnecessary todetermine
the brick and mortar properties on specimens having similar pattern of moisture

diffusion, which can be quantified as the V/S ratio, to that in the masonry mortar joints
and embedded bricks to ensure correct modelling. For example, the foregoing could
explain the observation of Ameny et al* that the bed joint creep in a blockwork prism
was significantly less than that in a cylindrical specimen subjected to the same stress.
Compared with the bed joints, the cylinder had a smaller V/S ratio and thus a greater

éreep. The V/S ratio effect on mortar and brick has been used in the verification of
composite models for creep of clay and calcium silicate brickwork single-leaf walls™

and for shrinkage of calcium silicate brickwork and concrete blockwork®'. For the

creep in masonry, since no data is available, the adjustment for the effect of size are
made using factors from concrete technology” 2. It is therefore desirable to extend

this work to cover other types of masonry so as to enable a more accurate modelling.

Another alternative solution to cut the high cost of full scale testing to assess

the performance of masonry is by testing a scaled down model wall. In other
engineering fields, normally a ’"dimensionless analysis’ is used to simulate the physical
properties of the model to the prototype. Itis difficult to apply this method in masonry
although the technique has been used to predict some mechanical properties of
masonry*’, There has been one attempt to apply this approach to creep by Lenczner*
who measured a much greater creep on model walls constructed from half-size bricks
than the corresponding creep on brickwork built from standard size bricks. The reason
the discrepancy is attributed to a lack of simulation between the smaller brickwork
and the full-scale brickwork. It is therefore necessary to improve the methbdblogy of

model test by proper simulation of the moisture diffusion of the model wall to the

prototype.



1.2  Brick and block units

For centuries élgy bricks have been used in building construction which
were normally hand made. However, the present-day productioh 1s hi ghlir mechanised,
although in n:{any paﬁs of the world bricks are still made by‘hand. Units can also be
médc from other materials such as lime-sand mix and concrete, the latter being called
a block because of its size being larger than the bricks. Nearly every building has

some form of masonry work in the form of clay or calcium silicate bricks or concrete

blocks or a combination of them.

1.2.1 Clay brick

Clay bricks are made by shaping suitable clays and shales to units of
standard size, which are then fired to a temperature ranging from 900 to 1200°C. The
fired product is a porous ceramic composed mainly of silica, SiO, (55-65% by weight),
and alumina, Al,0; (10-25%). The quality and properties of clay brick depend on the
clay composition and firing process. Extruded bricks are generally perforated and

pressed bricks commonly have frogs in one or both of the bed faces; both features

reduce brick weight.

In ;;raétice bricks are classified into 3 cate gories'”, ﬁaxhcljr: common brick,
for general building purposes; facing i)ﬂck,'manufactured for its appeérénce; and

engineering brick, for use where high strength and durability are required. Other than

the functional rcquireinénts, bricks are also classified accordin g to their strength and

water absorption in case of engineering bricks'".

1.2.2 Calcium silicate brick

Calcium silicate bricks are suitable for use in both external and protected
internal walling. They are available as facin g bricks or as commons. The raw materials
used in the manufacture are a very fine siliceous aggregate, a high calcium lime and

water. Inert and stable pigments are normally added to give the required colour. The



materials are first mixed in the required proportions and are mechanically pressed
under considerable pressure into moulds. They are then cured in high pressure steam
autoclaves for several hours which results in the combination of the lime with part of
the siliceous{_ aggregate to produce a hydrous ﬂcalcium silicg;g (tobermorite) which

forms the binding medium in the finished brick. |

As for clay bricks, the bricks are available in a solid or a frogged un