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Summary 

Adaptive Backstepping and Sliding Mode Control of 
Uncertain Nonlinear Systems 

by 

Miguel Rios-Bolfvar 

The development of adaptive control design techniques for nonlinear systems with 
parametric uncertainty has been intensively studied in recent years. The recently de- 

veloped adaptive backstepping technique has provided a systematic solution to the prob- 
lem of designing static adaptive controllers for uncertain nonlinear systems transformable 
into the triangular Parametric Strict Feedback and Parametric Pure Feedback forms. 

The adaptive backstepping technique has been adopted in this thesis as the control 
design approach and a number of new algorithms have been developed for the design 

of dynamical controllers for the regulation and tracking of deterministic and adaptive 
control systems. The combination of adaptive backstepping and Sliding Mode Control 
has also been proposed to design robust adaptive strategies for uncertain systems with 
disturbances. The class of adaptive backstepping nonlinear systems has been broadened 

to observable minimum phase systems which are not necessarily transformable into tri- 

angular forms. The design of output feedback control, when only the output is measured, 
has also been studied for a class of uncertain systems transformable into the adaptive 
generalized observer canonical form. 

Since the equations arising from these new algorithms are too complicated to be 

computed by hand, a symbolic algebraic toolbox has been developed. This toolbox 
implements the proposed algorithms for the design of static (dynamic) deterministic 
(adaptive) controllers, and automatically generates MATLAB code programs for com- 

puter simulation. 
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Chapter 1 

Control Regulation of Uncertain 

Nonlinear Systems 

1.1 Introduction 

Mathematical models of practical systems usually contain inaccuracies which may arise 
from actual uncertainty (for instance, imperfect knowledge of parameter values or dis- 
turbances) or from the purposeful choice of a simplified representation of the system's 
dynamics. Modelling imprecisions due to inaccuracies in the terms actually included 
in the model, are called structured (or parametric) uncertainties. In contrast, unstruc- 
tured uncertainties (or unmodelled dynamics) correspond to inaccuracies in the system 
order. Modelling imprecisions can produce adverse effects on the performance of lin- 

ear and nonlinear control systems. Therefore, it is important that any control design 

scheme dealing with uncertainty provides enough robustness to guarantee a satisfactory 
performance under these conditions. Traditionally, two complementary approaches are 
used to deal with uncertainty: adaptive control and robust control. 

Adaptive control is more convenient for plants containing parametric uncertainty 

when no information about the bounds of the unknown parameters is known a priori. 
An estimator (or identifier) provides on-line estimation of the unknown parameters. In 

its forty years of existence, adaptive control has become a well-established discipline 

with a wide spectrum of algorithms and many practical applications. Recently, a new 
family of adaptive control algorithms called backstepping has been developed. This new 
control scheme allows the systematic design of adaptive controllers for nonlinear systems 
containing "unmatched" parametric uncertainty. It will be the main subject to be studied 
in this thesis. 

1 
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Robust control is usually employed for plants with unstructured uncertainty when 
some information (bounds) about the uncertainty is known. The typical robust controller 
is composed of a nominal part, obtained via feedback linearization, pole-placement, or 
any other design technique to stabilize the known part of the plant; and additional terms 

aim at dealing with model uncertainty. 
A simple and popular robust approach to the deterministic control of uncertain 

systems is the Sliding Mode Control technique, which is based upon the special behaviour 

of Variable Structure Systems in the so-called sliding regime. The basic idea of sliding 

mode control is to drive system trajectories towards a stable manifold and ideally keep 

them on it using a discontinuous feedback control. The controlled plant in the sliding 
regime is totally invariant to matched disturbances and parameter variations with known 
bounds, thus maintaining stability and consistent performance. An equivalent approach 
used in the context of power electronics and, more particularly, power conversion, is 

the so-called Pulse-Width-Modulated control technique. It has been shown that Sliding 

Mode Control and Pulse-Width-Modulated control are equivalent control techniques 

with similar robustness properties [104]. 

In this introductory chapter, both adaptive schemes and robust (sliding mode control 
and pulse-width-modulated control) techniques are introduced, and additionally, some 
motivating examples are considered. In Section 1.4 the topics studied in this thesis are 
introduced. 

1.2 Adaptive Control of Uncertain Systems 

It was in the early 1950s, when classical scalar frequency-domain methods were well 

established and broadly used, that the field of adaptive control was born. At that time 

there was considerable interest in the design of autopilots for high-performance aircraft, 

which operated at a wide range of conditions such as different speeds and altitudes. 
The existing feedback theory was appropriate to design an efficient controller at any one 

operating condition, but could not cope with problems under changing operating condi- 
tions. Adaptive control was proposed as a way of automatically adjusting the controller 

parameters in the face of changing aircraft dynamics. Since then, a lot of research has 

been carried out on the design of adaptive controllers to stabilize plants with internal 

and/or external uncertainties. Generally speaking, the basic objective of adaptive con- 
trol is to achieve consistent performance of a system in the presence of uncertainties or 

unknown variations in plant parameters. Since such parameter uncertainties or chan- 
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ging conditions occur in many practical problems, adaptive control is applicable in many 
industrial contexts. 

Adaptive control is now a mature discipline. The intense research performed in this 

area has made available a wide variety of concepts and algorithms, which have attracted 
the attention of many practitioners. The main reason for the popularity of adaptive 
control is associated with its clearly defined objective: to control plants with unknown 
parameters. A very detailed survey of the progress of adaptive control since its birth 
has been presented by Narendra [79]. 

Depending on the way in which the update law is implemented, adaptive schemes are 
classified as direct or indirect. When the estimate corresponds to the parameters of the 

controlled plant, and the controller design is then based on the identified parameters, 
the scheme is called indirect. Alternatively, direct schemes estimate the parameters of 
the controller. Additionally, adaptive controllers can be classified as Lyapunov-based or 

estimation-based, according to the type of parameter update law and the corresponding 

proof of stability and convergence. 
Because of the wide variety of parameter update laws, such as gradient and least- 

squares algorithms, estimation-based designs are broadly applicable in adaptive linear 

control ([35], [97], [80]). This acceptance is also supported by the applicability of the 
"separation principle" to linear systems, which allows one to treat the identifier as a 

separate module and guarantee its properties independent of the controller module. 
However, the stability analysis of estimation-based schemes is usually intricate and is 

conclusive only in the case of normalized update laws. Lyapunov-based design provides 
elegant stability proofs, although, until recently its applicability was restricted to linear 

plants with relative degree one or two. 
One traditional approach in adaptive control consists of ignoring the uncertainty and 

treating the estimated parameters as if they were the true parameters for designing the 

controller via a deterministic scheme, such as pole-placement or optimal control. This 

approach is commonly called certainty equivalence and involves the separation of the 

estimation and control problems. However, it is not obvious that certainty equivalence 
controllers will achieve stabilization of the closed-loop system. Additionally, existing 
adaptive techniques generally require a linear parameterization of the plant dynamics, 

i. e. the parametric uncertainty needs be expressed linearly in terms of a set of unknown 
parameters. 

In the 1960s when the first attempts were made to describe adaptive systems using 

state equations, the fact that adaptive systems are generally nonlinear came to the fore. 
This can be illustrated with the following example. 
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Example 1.1 Consider the system 

i= A(o, 9)x + B(a, 9)u (1.1) 

y= C(u, 9)x 

with u(t) E R, X(t) E R", Y(t) E Rm, QE ßi'"1, and B(t) E R'"', where u, x, y are 
respectively the input, state and output, a is an unknown constant vector, and 9(t) a 
time-varying control parameter vector which is adjusted using the measured signals of 
the system by 

e= 9(y, e, t) (ý. 2) 
Note that the components 9; (t) of 8(t), i=1,2, ... , m2 are no longer parameters, but 

are state variables of the system (1.1)-(1.2). Hence, any adaptive system is merely a 

nonlinear feedback system involving estimation and control ([79]). Indeed, if a linear 

plant contains unknown parameters without any information regarding their bounds, it 

cannot be stabilized by a linear controller. This is true even for the following simple 

example. 

Example 1.2 Consider the scalar linear plant 

i=U+8x (1.3) 

where u is the control and 0 is an unknown constant. Its stabilization can be achieved 
by the following adaptive controller 

u= -9x - cx (1.4) 

0= kx2 (1.5) 

where c and k are positive design parameters. Its stability properties can be checked by 

examining the derivative of the Lyapunov function 

V (X, B) 
- 

2x2 
+ 

2k (0- 6)2 (1.6) 

which turns out to be nonpositive 
V--cx2<<, (1.7) 

Consequently, V(x, 9) evaluated along the solutions of the closed-loop system 

th _ -(c+e)x+Ox (1.8) 

0= kx2 tß. 9) 
is a nonincreasing function of time. This proves that x(t) and 0 remain bounded for all 
t>0, by Theorem A. 1 (in Appendix A). It can be proved that x(t) =0 by using 
the Corollary A. 1. 
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1.2.1 Matching Conditions 

In the last few years the problem of designing adaptive nonlinear controllers for plants 
containing both unknown parameters and known nonlinearities has been of increasing 
interest in the control community. Linear parameterization and full-state feedback are 
common assumptions to deal with these plants. Most of the adaptive nonlinear control 
results have been obtained for linearly parameterized systems of the form 

PP 

= fo(b) +Of; (() + 
[9o()+eic)] 

u (1. lo) 

where SE W" is the state, uER is the scalar input, 0= [0k, 
... , 0, ]T is the vector of 

unknown parameters, and f;, g;, 0<i<p, are smooth vector fields in a neighbourhood 
of the origin C=0 with f; (0) = 0,0 <i<p, go(0) 0. 

An important concept associated with the control of plants with uncertainties is that 

of matching conditions. A system satisfies the matching conditions strictly if both un- 
certainty and control input appear in the same dynamic equation. The controlled plant 
(1.3) obviously satisfies the matching conditions. The design of an adaptive controller 
for a matched system is quite straightforward as illustrated by the following example. 

Example 1.3 

th1 = X2 

i2 =u+O (xi) 
(1.11) 

where u is the control, B an unknown constant and cp a known nonlinear function. By 

choosing the control 
u= -klxi - k222 - 

9ca(2i) (1.12) 

where 0 is an estimate of the unknown parameter, and kl and k2 are positive design 

parameters, the system is transformed into 

with 

x= Ax + W(x)(0 - 
0) (1.13) 

A-01, W= (1.14) 
-kl -k2 SP 

This form suggests that a parameter update law can be designed using a result of ad- 

aptive linear control [80]. This update law is 

9= WT(x)Px (1.15) 



Chapter 1. Control Regulation of Uncertain Nonlinear Systems 6 

where P= PT >0 is chosen to satisfy PA+AT P= -I. The stability of the equilibrium 
x=0,0 =0 of the closed-loop system (1.13)-(1.15) is established by checking the 
derivative of the Lyapunov function 

V =xTPx+(0-9)2 (1.16) 
which is V= 

-11x112 <0 along the solutions of the closed-loop system. 
A concept associated with the matching conditions is that of uncertainty level [57], 

which indicates the number of integrators separating the uncertainty from the control 
input. In other words, suppose the uncertain parameters are in one equation, the uncer- 
tainty level is the number of differentiations with respect to time required to reach the 

control input explicitly. Therefore, systems satisfying the matching conditions strictly 
have uncertainty level zero. It is said that systems satisfy the Extended Matching Condi- 

tions (EMC) when the uncertainty level is one, i. e., the uncertainty is separated from the 

control input by one integrator only. Kanellakopoulos, Kokotovik and Marino [46] have 

developed control schemes for the stabilization of this class of systems. These algorithms 

are called uncertainty-constrained schemes because they require that the system satisfies 
the EMC as structural conditions. The EMC were reformulated in [13] as "strong linear- 

izability" conditions. For full-state feedback linearizable systems, the EMC is necessary 
and sufficient for the existence of a parameter-independent diffeomorphism x= ý(ý) 

which transforms the system (1.10) into 

Xi+i 

2n-1 = X, + e; ýý)7iýý) 1.17) 

in = co(x) +Z 9i(x)c (x) + 

[ßo(x) 

+> Oißi(x) U. 

i=1 i=1 

In order to illustrate the properties of the EMC-based schemes of [46] consider the 
following example. 

Example 1.4 Consider the second order system 

il = x2 + 67(x1) 
i2 =U 

(1.18) 

with -y(xl) a known smooth nonlinear function of xi. Note that this system is already 
in the form (1.17). The design procedure of [46] employs an estimate 0 of the unknown 

parameter 0 and replaces 12 with the new state 
9ry(ý1) (1.19) Xa = x2 + 
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The system (1.18) is then rewritten as 

X2 + (0 - e)y(xl) (1.20) 
X2 =u+ e'Y(xl) + O7x2 + (e - B)Ory7(xl), 

The control can now be designed as a function of 0 and 9, since the derivative 0 will be 

explicitly defined from the update law. By using the control 
AA 

u= -klxl - k252 - 9ry(xl) - 97x2 (1.21) 

the system (1.18) is transformed into 

xl = X2 + (9 - 9)7(x1) (1.22) 
AA 

X2 = -klxl - k252 + (B - B)B77(xi) 
A 

which is linear in the parameter error 0-9. The gains kl and k2 are chosen to place the 

eigenvalues of the system matrix 

A= 
[kl 0 

_1 J (1.23) 
kz 

at some desired stable locations. The resulting form is 

i=Ax+W(x, 9)(B-B) (1.24) 

with 2 :_ [x1 12]T and 

ýry(ý1) 
(1.25) W(±, 6) = 6ry'Y(xi) 

This form is the same as (1.13), which suggests the use of the update law 

9=W (i, 9)T Pi (1.26) 

which is the same update law used in Example 1.3. The stability of the equilibrium point 
i=0,0 =0 of the closed-loop system is established in the same way as for Example 1.3, 

by using the Lyapunov function (1.16). Since the feedback linearization of (1.18) can 
be achieved for all x and 0, the stability result is global. Moreover, from the LaSalle 

invariance theorem (Theorem A. 2), the largest invariant set of (1.24)-(1.26) contained 
in the set where V=0, is 

1e) = 0} (x. m= { (x, 0): X =0, (0-0)W(0 27) 
A 

Then, if W (0,0) ; 0, (0,0) can be shown to be an asymptotically stable equilibrium 
point of (1.24)-(1.26). 
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Since the nonlinear function y(xi) can be any smooth function, this example demon- 

strates that EMC-based schemes guarantee stability properties independently of the type 

of nonlinearities. Many practical systems satisfy the EMC and their stabilization can 
be achieved by this scheme [46]. However, implicit expressions for the control and the 

update law (the derivative 9 is defined in terms of the control u, and u is in turn defined 
in terms of B) may result from the EMC-based schemes (for an example showing this 

problem, see [57]). This difficulty can be avoided by considering the overparameteriza- 
tion approach proposed by Pomet and Praly [82]. Using their scheme, various update 
laws are designed for the same set of unknown parameters. A limitation of this approach 
is the loss of exponential stability. 

The first approach to cope with the stabilization problem of systems that do not 
satisfy the EMC was proposed by Taylor et al [117]. It uses a high-gain feedback 

control to induce a two-time separation property, so that the slow subsystem satisfies 
the EMC and the fast stable dynamics is treated as unmodelled dynamics. EMC-based 

schemes are not applicable to systems that do not satisfy the EMC because second 
derivatives of the parameter estimate 9 would invariably appear in the control, since the 

uncertainty level would be at least two. The adaptive backstepping approach proposed by 

Kanellakopoulos, Kokotovid and Morse [48] removed this structural obstacle and allowed 
Lyapunov-based designs to be applied to wide classes of uncertain nonlinear systems. 

As an alternative to EMC-based schemes, nonlinearity-constrained schemes can be 

used to stabilize uncertain nonlinear systems. These schemes are applicable to systems 
that do not satisfy the EMC, but they impose restrictions on the type of nonlinearity. 
For example, the schemes of Nam and Arapostathis [78] and Sastry and Isidori [98] 

combine feedback linearization with adaptation techniques from adaptive linear control. 
However, to achieve global stability, these schemes require that the nonlinearities be 

restricted by linear growth conditions. In contrast, the adaptive backstepping design 

allows the stabilization of uncertain nonlinear systems without restrictions being placed 

on the system nonlinearities. 

1.2.2 Adaptive Backstepping Design 

The adaptive backstepping design procedure broke the extended matching barrier. It 

was developed in a series of enlightening contributions, regarding state feedback and 

output feedback control, by Kanellakopoulos, Kokotovid and Morse ([47]-[50], [57]). The 

aim of their work was to provide a systematic framework for the design of regulation and 
tracking strategies suitable for a large class of state linearizable nonlinear systems ex- 
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hibiting constant, but unknown, parameter values. For instance, this approach achieves 
the global regulation of the benchmark example 

xi = x2+6xi 
X2 = 2a 

x3 =u 

(1.28) 

which obviously does not satisfy the EMC. 
The initial largest class of uncertain systems for which backstepping provided feed- 

back solutions was that of parametric pure feedback (PPF) systems [48]. This class is 

well represented by the third order system 

ý1 = x2 + W1 (x1,22)O 

ý2 = X3+c2(X1, X2) X3 8 

x3 =u+V lxl, x27 x3 8 

(1.29) 

where 0E RP is a constant unknown vector. PPF systems are characterized by both 

linear parameterization and the structure of the known nonlinearities WW P2,2, and (p3. 
The function cpl must not depend on x3, and a further implicit function restriction 
is imposed on the dependence of cpl on x2, and of cp2 on x3 [48]. This restriction is 

automatically satisfied by the subclass of parametric strict feedback (PSF) systems, in 

which co does not depend on x2, and cp2 does not depend on x3. Global regulation and 
tracking properties are guaranteed for PSF systems. The benchmark problem (1.28) is 

an example of an uncertain nonlinear system in PSF form. 

The basic idea of backstepping is to design a controller for (1.29) by following a step- 
by-step procedure which interlaces, at each step, the change of coordinates required 
for feedback linearization, and the construction of parameter update laws required for 

adaptation. This is achieved by considering some of the state variables as "virtual 

controls" and designing intermediate "control laws". For instance, in (1.29) the first 

virtual control is x2. It is used to stabilize the first equation as a separate system. Since 

0 is unknown, this task is solved with an adaptive controller consisting of the control law 

a(xi) and the update law B= r(xi), which is obtained by Lyapunov-based design. In 

the next step the state x3 is the virtual control which is used to stabilize the subsystem 

consisting of the first two equations of (1.29). The overparameterized algorithm in [48] 

treats the parameter 0 as a new parameter and assigns to it a new estimate with a 

new update law. This overparameterization was removed in the adaptive backstepping 

algorithm with tuning functions [61], by treating 0 in the first step not as an update law 
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but only as the function T(xi). This tuning function is used in subsequent recursive steps 
and the discrepancy 9- r(xi) is compensated with additional terms in the controller. 

The proof of stabilization and tracking properties achieved by both the overparamet- 
erized algorithm and backstepping with tuning functions is a direct consequence of the 
recursive procedure, during which an additive Lyapunov function is constructed for the 
entire system, including the parameter estimates. 

This systematic procedure and its stability and convergence properties are described 

fully in Chapter 2. 

1.3 Robust Control of Uncertain Systems 

As an alternative to adaptive control, the design of robust non-adaptive nonlinear state 
feedback control to yield stability for nonlinear systems with uncertainties, has been 

the subject of considerable research over the last fifteen years. The first attempts to 
deal with uncertainty were studied in the setting of non-cooperative games in the early 
1970's. At that time, Leitmann and Gutman [37,68] developed the notion of treating 

uncertainty as "the other player" in a two-person game. Thus, one player seeks to assure 
a desired outcome, say stability, in the presence of another player whose control actions 
he does not know or knows imperfectly. 

Gutman [36] developed a discontinuous min-max control which asymptotically sta- 
bilizes nonlinear uncertain systems under the matching conditions. Thus, to assure the 
desired behaviour of the closed-loop system, an infinitely (in the ideal case) fast switching 

mechanism is required. The non-ideal but fast switching control yields high-frequency 

dynamics called chattering. This chattering may be undesirable in some systems because 

unmodelled high-frequency plant dynamics may be exciting resulting in unforeseen in- 

stabilities. 
In order to avoid mathematical difficulties associated with non-classical differen- 

tial equations and, more importantly, to obviate the occurrence of chattering, Corless 

and Leitmann [19] introduced a class of continuous state feedback control under the 

same matching conditions. This guaranteed stability from a classical differential equa- 
tion setting, but at the expense of giving up asymptotic stability for uniform ultimate 
boundedness, which at least for systems with matched uncertainties, assures behaviour 

arbitrarily close to asymptotic stability. 
Lyapunov stability theory is very useful in the design of stabilizing controls for un- 

certain systems. It can be used in a constructive fashion to obtain feedback controls 
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which guarantee desired (or acceptable) stability. For instance, consider the uncertain 
system 

th = f(t) x) +9(t, x, U, 0) (1.30) 

where x is the state, u the control and 9E0 the uncertainty. The nominal system 

th = .f 
(t, x) (1.31) 

is Lyapunov stable with a Lyapunov function V (t, x). The problem then is to determine 

a feedback control u= a(t, x) such that V (t, x) is also a Lyapunov function for 

th =f (t, x) + 9(t, x, a(t, x), 0) (1.32) 

forall0EO. 
Stabilizing feedback controls are readily obtained if the so-called matching conditions 

are fulfilled ([69], [19]). Several results regarding robustness in the absence of matching 
conditions have been proposed ([3], [16]-[17], [86]). These results cope with mismatched 
uncertainties and are based on the stability margin of the stabilized nominal system. 
For example, if the nominal system can be stabilized, it has been shown that uncertain 

systems with arbitrarily large unmatched uncertainties can be also stabilized [86]. Thorp 

and Barmish [120] introduced generalized matching conditions. These are structural con- 
ditions on the uncertainty which are less restrictive than matching conditions and permit 

quadratic stabilization via linear control, regardless of the size of most of the uncertain 

elements. Generalized matching conditions have been extended to nonlinear systems by 

Qu [84]. Recently, systematic robust control design techniques have been proposed for 

systems with unmatched uncertainties ([31]-[32], [85]). These approaches were inspired 
by the recursive backstepping algorithm to provide stabilization of uncertain systems 

when information on uncertainty bounds is available. 
An alternative approach in the control regulation of uncertain systems is the Slid- 

ing Mode Control (SMC) technique and its associated feedback control law of Variable 
Structure Control (VSC) systems. The outstanding feature of VSC is the excellent ro- 
bustness and invariance properties in the face of disturbances and unmodelled dynamics. 
On the other hand, a common and popular technique used in the context of power elec- 
tronic circuits control is that of Pulse Width Modulation (PWM), which has been shown 
to exhibit robust properties similar to those of VSC systems [104]. 

1.3.1 Sliding Mode Control 

Generally speaking, SMC is a high-speed discontinuous control which switches on a 

manifold, i. e. the gain switches between two values (structures) according to a rule that 
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depends on the value of the state at each time instant. The objective of the switching 
control law is to drive the state trajectories of the nonlinear plant towards a prescribed 
switching (sliding) surface in the state space, and constrain them to lie upon this surface 
for all subsequent time. The motion that ideally arises when the system state crosses and 

re-crosses a switching surface is called sliding motion([122], [126]). In the sliding mode the 

system is totally invariant to a class of matched disturbances and parameter variations 
with known bounds; thus, the closed-loop system dynamics are wholly characterized by 

the reduced order dynamics of the selected surface. Therefore, a crucial phase of SMC 
is to define a sliding surface so that the plant, restricted to the surface, has desired 
dynamics and properties such as stability to the origin, regulation and tracking. 

SMC design is carried out in two phases. The first phase is to choose a sliding surface 
so that the plant state restricted to the surface has desired dynamics. The second phase 
is to design a switched control that will drive the plant state to the switching surface and 
maintain it on the surface thereafter. Usually, a Lyapunov approach is used to achieve 
this second design phase. The Lyapunov function, which characterizes the motion of 
the state to the surface, is defined in terms of the surface. For each switched control 

structure one chooses the control law so that the derivative of this Lyapunov function is 

negative definite, thus guaranteeing motion of the state trajectory to the surface. 
VSC with sliding mode was intensively studied in the 1960's. This was motivated by 

the introduction of appropriate mathematical tools that allowed the formal description 

of the sliding mode. The work of Utkin [122] provided notable contributions to this area. 
Since then SMC has attracted the attention of many researchers and has allowed the 
introduction of new ideas and the broadening of applications to many practical systems 
(see, for example, [22], [33], [126]). 

In order to illustrate the design tasks carried out during the two phases of SMC 
design, consider the following single input nonlinear system 

x=P x) + 9(x)u (1.33) 

where xE R" is the state, uER the control input, and f (x) and g(x) are smooth vector 
fields. The objective of SMC is to design a switching surface 

cr(x) =0 (1.34) 

in the state space, together with a switched controller of the form 

u(x) _ 
u+(x) if 0' (X) >0 (1.35) 
u-(x) if Q(x) <0 
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which takes the value depending on the sign of the switching function at x. The control 
values u+(x) and u-(x) are chosen so that the tangent vectors of the state trajectories 
point towards the surface such that the state is driven to and maintained on v(x) = 0. 

A sliding mode exists on the surface o , (x) =0 whenever the "distance" to this surface 
and the velocity Q are of opposite signs ([122)), i. e. when 

lim Q>0 lim &<0 
o-+O- o, -+O+ 

or, equivalently 

Q(x)6(x) < o. 

(1.36) 

(1.37) 

If the reduced-order dynamics for a(x) =0 is stable, the VSC design problem for single 
input systems can be readily solved by finding a control law such that the time derivative 

of the Lyapunov function 
V(x) = 

2cr2(x) (1.38) 

is negative definite. By achieving this, the existence condition (1.37) is automatically 
fulfilled and, as a consequence, state trajectories invariably converge to the sliding surface 

and remain on it in a sliding mode (see Figure 1.1). Thus, the problem of existence of 
the sliding mode becomes a feedback control design problem. 

The design of the sliding surface is determined by the system behaviour in the sliding 

mode. This behaviour depends on the parameters of the switching surface. Nonlinear 

switching surfaces are non-trivial to design. In contrast, for the linear case the switching 

surface design problem can be converted into an equivalent state feedback design prob- 
lem. The design of the switching surface requires one to specify the motion of the state 
trajectory in a sliding mode, for which the so-called equivalent control method has been 

developed [1221. 

Equivalent Control Method 

The equivalent control method provides a formal procedure to obtain the sliding equa- 
tions when the state trajectory lies upon the sliding surface. Equivalent control con- 

stitutes an equivalent continuous input which, when applied to the controlled system, 

produces the motion of the system on the sliding surface for the initial state on the 

surface. The equivalent control can be found from 

&(x) =0 (1.39) 
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It can be interpreted as the continuous control law that would maintain Q=0 if the 
dynamics were exactly known. For instance, for the system (1.33), 6, yields 

°(x) = äx `f(x) + s(x)u) (1.40) 

Hence, the equivalent control that renders Q=0 is given by 

Ueq =-- (x) ax. f (2ý (1.41 

Note that to guarantee the existence of the equivalent control the condition 

aý9(x) ý0 (1.42) 

should be fulfilled, at least locally. Condition (1.42) is also a geometric condition for 

the design of a sliding surface, since surfaces that do not satisfy (1.42) are not valid for 

generating a sliding mode. Geometrically, the equivalent control can be constructed as 
the convex combination of the values u+ and u- of u on both sides of the surface a(x). 
This formal justification was derived in the early 1960's by Filippov [25]. 

By substituting the equivalent control into the original system (1.33), one obtains 
the equations governing the system response during ideal sliding motion 

i=f (x) +9(X)ue9. (1.43) 

Figure 1.1: (a) Sliding mode in a bidimensional state space. 
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The reduced-order dynamics of (1.43) are characterized by the geometry of the switching 
surface a(x). 

The structure of the actual control u applied to real systems is decomposed into 

u(x) = ue9(x) + un(x) (1.44) 

where u�(x) is the discontinuous control used to guarantee stability and drive the state 
trajectory towards the sliding surface. For the system (1.33), a candidate Lyapunov 
function is 

1 
V(x, a) = 2ý2ýx) 1.45) 

The derivative of (1.45) yields 

V= vb" =o jx- (. f(x) +9(x)u) (1.46) 

By decomposing u as (1.44) and using the equivalent control (1.41), one obtains 

V= or 
xg(x)u�(X) , 

(1.47) 

Hence, it is convenient to set 

-1 

u�(x) 
ýxg(x) 

a sgn(o), a>0 (1.48) 

to yield 
V= -alo 1. (1.49) 

Therefore, exponential convergence of the state trajectories towards the sliding surface 
is guaranteed. 

Example 1.5 Consider the second order system 

il 
= 

X2 
-I- 

0u= f(X)+ 9(x)u (1.50) 
i2 v(x) 1 

where v(x) is a known nonlinear function. To determine the structure of an appropriate 
sliding surface recall that 

ä9(x) 54 0 

'=1, Since g(x) = [0 1]T, it follows that äZ must be nonzero. Hence, by choosing AOX2 

it is sufficient to consider sliding surfaces of the form 

Q(x) = Ql(xl) + x2 =0 (1.51) 
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If one presumes that the reduced-order dynamics is given by 

xl = -Ax1, .1>0 (1.52) 

the switching surface structure (1.51) implies that in the sliding mode 

12 = -0'1(21). 
(1.53) 

The reduced-order dynamics becomes 

xl = X2 = -Qi(xl) _ -Ax1. 
(1.54) 

Hence, the switching surface design is completed by setting 

a(x) = x2 + axl. (1.55) 

The equivalent control obtained from (1.41) yields 

ueq(X) _ -c(x) -Axt- 
ý1.56ý 

To complete the control design task, the constant gain relay control structure u�(x) is 

chosen according to (1.48) as 

0. (1.57) u�(x) = -a sgn(a(x)), a> 

Robustness to Matched Disturbances 

In order to illustrate the robustness of VSC to disturbances (and/or parameter vari- 
ations), considered the modified system 

th =f (x) + 9(x) 
(u + co(x, 0)) (1.58) 

where cp(x, 0) is a matched unknown function bounded by a positive continuous function 

Iw(x) 0)I <T(x)" (1.59) 

To incorporate robustness into a VSC design the decomposed control structure (1.44) is 

convenient. Furthermore, the design of a sliding surface a(x) with stable reduced-order 
dynamics, when v(x) = 0, is vital to guarantee stability and robustness. By considering 
the Lyapunov function 

V(x, Q) = 2a2(x), (1.60) 

the derivative 
V= ab- = 0,5-x V (x) + 9(x) 

(u(x) + ýO(x, e)), " 
(1.61) 
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The use of the equivalent control (1.41) yields 

V=u2 
L9(x) 

(U. (X) + 9(x, e)), . (1.62) 

Hence, it is necessary to choose u�(x) so that (1.62) is nonpositive. By using the dis- 
continuous control 

nn(x) (i (x) + a) sgn aeag(x) a>0 (1.63) 

we obtain 

V=- (iP(x) + a) äo-g(x) +a 
c7-g(x)V 

(x, 0) 

-a ý 
xg(x) <0 (1.64) 

for stability. 

Clattering 

SNIC assures the desired behaviour of the closed-loop system via an infinitely (in the 
ideal case) fast switching mechanism. In practical applications this ideal condition of 
infinitely fast switching is not achieved and as a consequence the phenomenon of chatter- 
ing appears. Chattering contains high frequency components which may excite unmod- 
elled plant dynamics. Thus, in order to achieve proper performance of the controller, 
chattering should be eliminated in certain physical systems. This can be accomplished 
by smoothing out the control discontinuity in a thin boundary layer neighbouring the 

switching surface ([7,1141) 

B= {x : Iv(x)I < e} (1.65) 

whose width is 2e. The control law is modified as follows 

u_ 
ueq + u�(x) Icr(x)I >, E (1.66) 
ue4 + uc(a, x) (a(x) (< e 

where u, (c, x) is any continuous function satisfying uß(0, x) =0 and uc(a, x) = u, (X) 

when lo(x) I=e. 
This control guarantees that trajectories are attracted to the boundary layer. Inside 

the boundary layer, (1.66) provides a continuous approximation to the usual discon- 

tinuous control action. Intuitively, the smoothing of control discontinuity inside the 
boundary layer essentially assigns a low-pass filter structure to the local dynamics, thus 
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eliminating chattering. However, asymptotic stability is no longer guaranteed but ulti- 

mate boundedness of trajectories to within an e-dependent neighbourhood of the origin 
is assured ([19]). 

Recently, the use of dynamical sliding mode controllers have been proposed as an 

alternative mechanism to reduce undesirable chattering ([30], [1051). By using this ap- 

proach, the sliding mode control design is carried out for a dynamically extended version 

of the controlled plant so that, chattering generated at the dynamical controller for the 

extended system appears reduced at the actual control applied to the original system. 
The controller structure thus obtained is more complex but chattering is alleviated and 

asymptotic stability is still guaranteed. This approach will be adopted as the chattering 

alleviation procedure throughout this thesis. 

1.3.2 Pulse Width Modulation 

We will now describe control via Pulse Width Modulation (PWM). An important sub- 
ject associated with power supplies and electromechanical systems is power electronics. 
Power electronics circuits are principally concerned with processing energy and convert 

electrical energy from the form supplied by a source to the form required by a load. 

For instance, when the conversion process concludes with mechanical motion, the power 

circuit converts electric energy to the form required by the electromechanical transducer, 

for example a DC-motor. 

A special class of power electronics circuits is used to change the character of electrical 

energy: from AC to DC, from one voltage level to another, or in some other way. 

These circuits are called converters. DC-to-DC converters are used extensively in power 

supplies for electronic equipment to control the flow of energy between two DC systems. 

The conversion of DC power is exclusively performed in the switched mode ([53], [101]). 

Switched converters are power circuits in which semiconductor devices switch at high re- 

petitions (high frequency), compared to the variation of the input and output waveforms, 

between the two DC terminals. The actual power flow is controlled by the on/off ratio 

of the respective switches. Examples of their use are the power supplies in computers 

and other electronic equipment. 
The simplest form of a DC-to-DC converter is that of Figure 1.2(a). The switch 

opens and closes at a frequency 1/T, with the ratio of the on-time to the period defined 

as M. The resulting voltage V2 is a chopped version of the input, i. e. a series of pulses 

having an amplitude of Vl and an average or DC value of µV1 as shown in Figure 1.2(b). 

Usually this DC signal has a substantial amount of ripple (chattering), present not only 
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Figure 1.2: (a) The simplest form of a switching DC-to-DC converter. (b) Input and 

output waveforms. 

in the load voltage V2 but also in the source current il. The high frequencies contained 
in the ripple can cause both conducted and radiated interference with other apparatus, 

such as computers or communications equipment ([53]). Therefore, to obtain the desired 

ripple-free input current and output voltage, one must insert low-pass filters at the input 

and output. 
DC-to-DC converters are called up, down or up/down converters to describe their 

ability of increasing, diminishing or both increasing and diminishing the voltage level 

presents at their input terminals. Example are the bilinear Boost, Buck and Buck-Boost 

converters respectively. Their state space models can be represented by the following 

switched controlled dynamical nonlinear system 

ý=f(ß)+9( )u +77 (1.67) 

where f (. ) and g(. ) are smooth vector fields defined on an open set of R", rj is a constant 

vector and u denotes the switch position function acting as a control input, and taking 

values in the binary discrete set {0,1} ([103,104]). 

Switchmode DC-to-DC power converters are usually regulated by means of Pulse- 

Width-Modulation (PWM) feedback control laws. An idealized PWM control strategy 
is that in which switching to the u=1 position are assumed to occur at the beginning of 

each period known as the duty cycle, and change to the u=0 position once within the 

il (1-. )) 

AT T 
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duty cycle according to a switching policy determined by a smooth feedback function 

of the state vector 6, known as the duty ratio and denoted by p(6). The duty cycle is 

assumed to be periodic with infinitesimally small period (i. e. infinitely high frequency), 

and the duty ratio is the fraction of the duty cycle on which the switch position is at 
u=1 (see Figure 1.3). Hence 0< µ() < 1. Under the high frequency assumption 

U 

1 

0 

L_ .. "r J 

Figure 1.3: Typical duty cycle and duty ratio 

it has been rigorously demonstrated in [1031 that an average PWM model is obtained 
by formally replacing the switch position function u by the duty ratio function p. The 

average model satisfies 
±=f(x)+9(x). +i]" (1.68) 

The average model (1.68) has the advantage of reducing any regulation or tracking prob- 
Imn, defined by the converter model (1.67), to a standard nonlinear feedback controller 
design problem in which the duty ratio function plays the role of the required input 

variable. However, the designed feedback control law must be limited to vary in the 
interval (0,11 for implementation purposes. 

A PWM feedback strategy for the specification of the switch position u is given as 

U1 
for tk <t< tk + tcr(tk)T (1.69) 

0 for tk + µr(tk)T <t< tk +T 

where T is the sampling period assumed constant, /Lr(tk) is the value of the restricted 
duty ratio function at the sampling instant tk. The restricted duty function is obtained 

f-- T -º4- T -º 
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from the duty ratio function p, computed via feedback, when it is limited to take values 
in the continuous closed interval [0,1]. 

In [104] a general relationship was established for average PWM-controlled responses 

and ideal sliding mode controlled trajectories. Integral manifolds of average PWM- 

controlled networks qualify as sliding surfaces on which the corresponding equivalent 

control coincides with the duty ratio of the PWM control scheme. PWM control laws 

exhibit robust properties similar to SMC systems. 
It is worth emphasizing that the underlying common assumption made in obtaining 

both average models (average PWM model and ideal sliding dynamics) is the high 

(infinite) frequency assumption. 

1.4 Robust Adaptive Control 

It was demonstrated in [39] that in the presence of unmodelled dynamics and disturb- 

ances, an adaptive controller designed for the ideal situation, i. e. no modelling errors or 
disturbances, could exhibit instability. Since then, considerable research has been direc- 

ted towards the development of robust adaptive control schemes, which can retain certain 

stability properties in the presence of a wide class of modelling errors ([40]-[42], [83], [97]). 

In order to motivate the need for robustness in adaptive control schemes, consider 

again the scalar plant (1.3) together with the adaptive controller 

u=-Ox, 0 =kx2 (1.70) 

which accomplishes the objective of stabilizing the state x to the origin. Suppose that 

instead of (1.3), the actual plant is described by 

x=Ox+u+d (1.71) 

where d is an unknown bounded disturbance. 

It was demonstrated in [38] that for 0(0) = 5, x(O) = 1,0 = 1, k=1 and 

d(t) = (1 + t)-ä [5 
- (1 + t)-l' - 0.4(1 + t)-l1 (1.72) 

the solution of (1.70), (1.71) is given by 

X(t)=(1+t)-ä 0 as t--ýoo (1.73) 

and 
9(t) = 5(1 + t)b -3 0o as t --ý oo (1.74) 
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i. e. the estimated parameter drifts to infinity with time. This instability phenomenon is 
AA 

called parameter drift. By noting that 0(0) =5>1 and B(t) > 9(0), Vt>0, it is easy 
to verify that parameter drift can be stopped at any time t by switching off adaptation, 
i. e. setting k=0 in (1.70). This observation motivated the use of an adaptive law with 
a dead-zone, as a way to counteract parameter drift. 

To avoid this and other phenomena that may cause instabilities in adaptive control 
systems, a number of robust adaptive controllers have been developed. These are based 

mainly upon the use of the certainty equivalence approach. Attempts have been also 

made in [41], [38] to unify the existing algorithms, which were recently compiled in [42]. 

In this thesis the combination of adaptive backstepping and sliding mode control 
techniques is proposed as a way to provide robustness in the presence of disturbances, 

and its effectiveness is shown for a number of practical examples. The contents of the 

thesis is organized as follows: 

In Chapter 2 the geometric conditions needed for an uncertain system to be trans- 
formable into the PPF and PSF triangular forms are given and the Static Adaptive 

Backstepping (SAB) algorithm applicable to these systems is described. A determin- 

istic class of triangular linearizable systems is also considered and a Static Deterministic 

Backstepping (SDB) algorithm is developed for this class of systems. 
A natural extension of static feedback linearization is dynamical feedback lineariza- 

tion. It is characterized by the fact that the linearizing control law is dynamical. We 

describe in Chapter 3a new Dynamical Deterministic Backstepping (DDB) algorithm 

which achieves a linear differential relation between the input and the output via dynam- 

ical compensation. This algorithm is applicable to deterministic observable minimum 

phase nonlinear systems and motivates the development of its adaptive version for un- 

certain systems, described in Chapter 4. This new Dynamical Adaptive Backstepping 
(DAB) algorithm does not use canonical forms and broadens the applicability of back- 

stepping to observable minimum phase uncertain nonlinear systems with nontriangular 
forms. Chapter 5 presents the application of the DAB algorithm to design duty ratio 
functions which are employed in PWM control strategies for the regulation of DC-to-DC 

power converters. 
In Chapters 6 and 7 output tracking problems of uncertain systems in the presence 

of undesirable disturbances are addressed via the combination of adaptive backstepping 

and SMC. Two new systematic combined algorithms SAB-SMC and DAB-SMC have 
been developed for PSF and observable minimum phase systems, respectively. Examples 
illustrate the performance of the combined controllers in tracking tasks. 

A limitation of these control design algorithms is associated with the complexity of 
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the equations arising at each step, when the control design is carried out by hand com- 

putation. This is true even for low order (n < 3) systems. To overcome this limitation 

a symbolic algebraic toolbox called BACKDSMC has been developed. This toolbox 
implements the backstepping and combined backstepping-SMC algorithms described in 

this thesis via the MATLAB symbolic toolbox. The use of BACKDSMC in the design 

of static (dynamic) deterministic (adaptive) backstepping controllers is explained in 
Chapter 8 in a tutorial manner. 

A more realistic control design problem is considered in Chapter 9, where only the 

output of the uncertain nonlinear system is available for measurement. A solution is 

provided via the design of an adaptive observer and a dynamical adaptive output feed- 

back control for a more restricted class of observable minimum phase systems which are 
transformable into the adaptive generalized observer canonical form. 

Some concluding remarks and suggestions for further research are given in Chapter 10. 

In addition two appendices has been incorporated. Appendix A contains some basic con- 

cepts about stability and Appendix B has the full MATLAB code program of the toolbox 

BACKDSMC. 

The author has published a number of papers ([87]-[94]) on the topics covered in this 
thesis. 



Chapter 2 

Classical Backstepping Control Design 

2.1 Introduction 

The analysis of nonlinear control systems, consisting of the study of the interaction 
between input and output, and between input and state, allows one to establish analogies 
with interesting features of linear control systems. For instance, the extension of the 

notions of controllability and observability to nonlinear systems allows classification and 
the possibility of developing nonlinear feedback controllers and observers. However, 
the nontrivial task of analysing nonlinear control systems require the use of complex 
mathematical tools taken from differential geometry, topology and differential algebra. 

An important problem is that of determining whether or not a nonlinear system 
is linearizable, i. e. can be converted to a controllable linear system via a nonlinear 
transformation and a feedback control law. Systems exhibiting this desirable property 
can be stabilized by employing well-known linear control design techniques, such as 

pole-placement or linear optimal control. 
A difficult problem is the stabilization of nonlinear control systems containing para- 

metric uncertainty. Adaptive control has been used for forty years in the regulation of 
uncertain systems. In dealing with parametric uncertainty of nonlinear systems, one 
cannot use the separation principle, which is often applied in the case of linear systems 
to design the update law for identifying unknown parameters as a part of the feedback 

control. Lyapunov-based techniques are often used to overcome this limitation. This 

thesis is concerned with the design of adaptive control for single-input single-output 
nonlinear systems with parametric uncertainty of the form 

PP 
ý_ 

, 
fo(b) +E eifi(C) + 90(0 +E 9i i(C) u (2.1) 

s-1 i=l 

24 
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where CE E2" is the state, uER the input, Or, ... , Bp a set of unknown parameters, and 
f;, g;, 0<i<p, are smooth vector fields in a neighbourhood of the origin C=0, with 
f; (0) = 0,0 <i<p, go(0) 0 0. A number of different techniques to design nonlinear 

adaptive controllers for this class of systems are described in [55], including the first 

version of the so-called backstepping algorithm. 
This chapter is devoted to describing the classical backstepping approach developed 

by Kanellakopoulos et al [48] and Krstit et al [61], and the characterization of the classes 
of nonlinear systems for which this technique was originally developed. For the sake of 
completeness the exposition starts by introducing basic mathematical tools for the ana- 
lysis of nonlinear systems, with emphasis on linearizable systems. Reader familiar with 
these concepts can omit this introductory part. Then we present recursive procedures 
(including the basic backstepping algorithm for deterministic systems) to linearize a spe- 
cial subclass of nonlinear systems in triangular form, via a coordinate transformation 

and a feedback control. Uncertain systems are introduced and geometric conditions are 

presented to characterize the classes of uncertain nonlinear systems transformable into 

either the parametric pure-feedback (PPF) form or the parametric strict-feedback (PSF) 

form. Finally, the classical adaptive backstepping algorithm with tuning functions is de- 

scribed, and its stability and convergence properties are analysed. Examples are given 
to illustrate the various concepts and control design algorithms. 

2.2 Feedback Linearization 

In this section the geometric characterization of the classes of input-output and state 
feedback linearizable systems is presented. A limited number of concepts from differential 

geometry are employed, and simple illustrative examples are considered. 
The proofs of theorems, lemmas, propositions and corollaries given in this section 

have been omitted for the sake of brevity. They can be found in [44,75,811, which 
contain more detailed expositions concerning this subject. 

It is well known from linear control theory that a linear system 

±=Ax+Bu (2.2) 

with xE R' and uER is transformable via a nonsingular linear transformation 

z=Tx, zE W1 (2.3) 

and a feedback law 

u= Kx +v (2.4) 
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into the Brunovsky controller form 

with 
0 

0 
A 

0 

-k0 

F(A 

1 

0 

0 

-ki 

" BKS0 

0 
i 

0 
-k2 

T-lz +T By = Az + Bv (2.5) 

... 00 

... 00 
B,, (2.6) 

... 10 

if and only if the Kalman controllability condition 

span{B, AD,.. 
.' 

An-18} = Rn (2.7) 

holds. Hereafter span{S} denotes the space spanned by the set S. 
A much more complicated problem is to find a nonlinear coordinate transformation 

and a feedback control for single-input nonlinear systems of the form 

i=f(x)+, q(x)u, XE R", UER 

Zi = X1 

with f (x) and g(x) being smooth vector fields defined on an open subset of R", which 
places (2.8) into the Brunovsky controller form. This can be illustrated by the following 

example. 

Example 2.1 Consider the single-input nonlinear system 

ý1 = x2+X 

z= X3 
x3 =U 

The nonlinear transformation 

transforms (2.9) into 

z2 = x2+xi 
Z3 = x3+2xi x2'+'xl) 

(2.8) 

(2.9) 

(2.10) 

il = Z2 
z2 = Z3 
z3 =u+ z2(4zi + 2z2) + 2z1 (z3 - 2ziz2) 

(2.11) 



Chapter 2. Classical Backstepping Control Design 27 

Then the nonlinear state feedback 

u= -z2(4zi + 2z2) - 2zi(z3 - 2zlz2) +v (2.12) 

where v is a reference input, gives the linear closed-loop system 

0 1 0 0 
0 0 1 Iz+I 0v (2.13) 

0 0 0 1 

which is in the Brunovsky controller form. Thus, the use of a nonlinear coordinate trans- 
formation and a state nonlinear feedback control has transformed a nonlinear system into 

a controllable linear system. 
There exists mathematical theory which characterizes, in terms of necessary and 

sufficient conditions, those nonlinear systems which are state feedback linearizable (i. e. 
transformable into linear and controllable systems by a change of coordinates and non- 
linear state feedback) and those which are input-output linearizable (i. e. transformable 
into a system with a linear input-output, map). Before characterizing these classes of 
linearizable systems, some mathematical tools from differential geometry are introduced 

[44,75,811. 
Consider single-input single-output nonlinear systems 

x= f(x) + 9(x)u 

y= h(x) 

(2.14) 

where xE J2" is the state, uER the input and yER the output. f (x) and g(x) 

are smooth vector fields (i. e. continuous vector fields with continuous derivatives of any 

order) defined on an open set R,, C R" of an equilibrium point xo, i. e. f (x,, ) = 0, with 

g(x,, ) # 0. Without loss of generality, it can be assumed that the origin is an equilibrium 

point of (2.14). Additionally, h(x) is a smooth scalar function also defined on R,,. 

For a smooth scalar function h(x) of the state x, the gradient or differential of h is 

defined as the row vector whose i-th element is the partial derivative of h with respect 
to the state coordinate x1, and is denoted by 

ah Oh Oh Oh 
C, 

(x = 0X1 0X2 ... aXn (2.15) 

Similarly, given a vector field f (x), the Jacobian of f is represented by an nxn matrix 



Chapter 2. Classical Bad-stepping Control Design 

of elements (ä bij ='f and denoted by 

axl 0X2 .. . axri 
L IM 

O xi 
(9f2 
0x2 " 

Of2 

". axe 

c9x 

axi OX2 "" " Ox� 

28 

(2.16) 

Two types of differential operation, involving vector fields and scalar functions, are 
frequently used in the analysis of nonlinear control systems. The first type of operation 
involves a real-valued function h and a vector field f, both defined on a subset Ro of R". 

Definition 2.1 Let h(s) be a smooth scalar function defined on a subset R. C w" and 
f (z) a smooth vector field also defined on R0. The Lie derivative of the function h along 
the vector field f is a scalar function often written as Lih and defined as 

ah ah n 

Lf h(x) := oxf 
(x) = 8x, 

f(x) _z 
ax. fs(X). (2.17) 

Repeated Lie derivatives can be defined recursively by 

Lof h=h, L fh = Lth, ..., Lfh = Lt (L'f lh) 
. (2.18) 

Similarly, if g(x) is another vector field defined on R0, then the scalar function L9L fh(x) 
is 

LgLfh(x) =a 
(Oxh)g(x). (2.19) 

The second type of operation involves two vector fields f and g. 

Definition 2.2 Let f and g be two vector fields defined on an open subset Fig C W. 
The Lie bracket off and g is another vector field defined by 

ax--9(x). 
(2.20) [f, gJ(x) :=5. f(x) 

(99 f 

Repeated Lie brackets of a vector field g with the same vector field f is possible. For 

this case the Lie bracket is commonly written as adig to define the recursive operation 

adg(x) = g(x), ... , ad`fg(x) _ [f 
, adt lg(x)] i>1. (2.21) 

Example 2.2 Consider the two vector fields 

X2+xi 0 
f (x) = Xs 1 g(x) =0 (2.22) 

01 
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Then 

adjg(x) _ [f, g](x) = öx2. 
f(x) 

aLg(x) = -ýfg(x) 

2x1 1000 

0010= -1 (2.23) 

00010 

and 

adfg(x) = [f, adtg](x) = 
ö(adfg) 

f(x) - 
of 

adfg(x) = __of adfg(x) ex ex ex 
2x1 1001 
001 -1 1=0 (2.24) 

00001(0 

Coordinate transformations in the state space are very useful with regard to certain 
properties like reachability and observability, or to solve certain control problems such as 
stabilization or decoupling. In nonlinear systems, coordinate transformations are carried 
out by using diffeomorphisms which are defined as follows: 

Definition 2.3 An R"-valued function of n variables 

01(x) ý( g1(x1,..., 2n) ý 
z_ , D(x) 

_ 

02(X) 

- 

02(X1, 
..., 2n) 

(2.25) 

On (X) On(21,..., xn) 

defined on an open subset Ro of Rn, is called a local diffeomorphism if it has the following 

properties 
(i) (I (x) is invertible, i. e. there exists a function ß'1(z) such that 

4'-1(1)(x)) =x Vx E Ro (2.26) 

(ii) <I1(x) and II-1(x) are both smooth mappings, i. e. have continuous derivatives of any 
order. 

If 11 is the whole space R", then (P(x) is called a global diffeomorphism. However, since 

global diffeomorphisms are rare, one often looks for local diffeomorphisms defined in a 
local neighbourhood of a given point. Given a nonlinear function b(x), the following 

result is very useful to check whether or not it is a local diffeomorphism. 
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Proposition 2.1 Suppose (D(x) is a smooth function defined on some subset RI of 1? . 
If the Jacobian matrix of ( is nonsingular at a point x= x0, then, on a suitable open 
subset Eo of Ill containing x0, I(x) defines a local diffeomorphism. 

This can be illustrated by the following two examples. 

Example 2.3 Consider the function 

zl (3x1 + x2x1 

Z2 
)(xl, x2) _ 

sin x2 
(2.27) 

which is defined for all (x1, X2) in R2. Its Jacobian matrix 

ö(_ (3+ A2 2x1 x2 (2.28) TX- 0 cos x2 

has rank 2 at xo = (0,0). Therefore the function (2.27) defines a local diffeomorphism 

around the origin. 

Example 2.4 Consider the function 

Z1 xl 

Z2 = ß(X1 s X2, X3) _ X2 + X1 (2.29) 

Z3 X3 + 2X1 (X2 -F' X1) 

used as the coordinate transformation in Example 2.1. It is defined for all (Xi, x2, x3) in 
JV. The Jacobian matrix 

1100 
IOIT? 
ax 2x1 10 (2.30) 

2x2 + 6x2 2x1 1 

has rank 3 for all (x1, x2, x3) in R3. Therefore the function (2.29) defines a global 
diffcomorphism. 

2.2.1 Distributions 

A vector field f, defined on an open set Rl of R", can be intuitively interpreted as a 

smooth mapping assigning the n-dimensional vector f (x) to each point x of R1. Suppose 

now that d smooth vector fields fl, ... , 
fd are given, all defined on the same open set Rl, 

the concept of distribution can be similarly considered as a mapping assigning a vector 

space to each point x of R1. This can be formally expressed as follows: 
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Definition 2.4 A d-dimensional non-singular smooth D distribution on R1, an open 

subset of Rn, is a map which assigns to each point xE Rl a d-dimensional subspace of 
Rn such that for each xo E RI there exists a neighbourhood Ro of xo and d smooth vector 

fields fl,..., fd with the properties 
(i) f, (x), ... , fd(x) are linearly independent at each x in Ro 

(ii) D(x) = span{ fi(x), ..., fd(x)} at each x in R. 

Moreover, every smooth vector field T belonging to V can be expressed on R. as 

d 
r(x) =E ci(x)fi(x) (2.31) 

1_i 

where cl (x), ... , cd(x) are smooth real-valued functions of x, defined on R0. 

An important property associated with distributions is involutivity which is defined 

as follows: 

Definition 2.5 A distribution D is called involutive if, given any two vector fields f; 

and fj belonging to D, their Lie bracket [f;, f; ] also belongs to D. 

Therefore checking whether or not a nonsingular distribution is involutive amounts to 

checking whether 

rank(fi(x) ... fd(x)) = rank(fi(x) ... fd(x) [f+, f l (x)) (2.32) 

for all x and all 1 <i, j <d. 

Example 2.5 Consider a distribution 

D= span{ fl, f2} (2.33) 

on V with 

00 
fi(x) _07 f2(X) _ _(1+ x2) (2.34) 

1 -}- 22 2x2(x3 + x2x1) 

This distribution has rank 2 for all xE R3. Since 

0 
[11,121(x) =0 (2.35) 

4x2(1 + x2) 
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the matrix 

000 
(fl f2 [fi 

g 
f21) =0 -(1 + x2) 0 (2.36) 

1 +X2 
22 

2X2 (X3 + x2xi) 4x2(1 + x2) 

has rank 2 for all xE R3 and thus the distribution is involutive. Indeed, from (2.31) the 
following relation is satisfied 

[fl, f21 (X) 
_ Cl(X)fl(X) + C2(X)f2(X) 

with 
cl (x) = 4x2, c2 (x) =0 

Therefore the vector field [fl, f2](x) belongs to the distribution D. 

2.2.2 The Frobenius Theorem 

(2.37) 

In this section the integrability of a special set of partial differential equations of first 

order is analysed. A solution to this problem is very important to establish the class of 
feedback linearizable nonlinear systems. To this effect the concept of codistribution is 
first introduced. 

Definition 2.6 A d-dimensional non-singular smooth codistribution W on an open sub- 
set R, of the dual space (R n)* spanned by n-dimensional row vector (covector) fields wi, 
is a map which assigns to each point xE Rl a d-dimensional subspace of (Rn)* such 
that for each xo E Ri there exists a neighbourhood Ro of x0, and d smooth covector fields 

wl,... , wd with the properties 
(i) wl (x), 

... , wd (x) are linearly independent at each x in Ro 

(ii) W (x) = span{wl (x), 
... , wd(x)} at each x in R0. 

If Al is a matrix having n independent columns with elements which are smooth functions 

of x, its rows can be regarded as smooth covector fields. Thus, any matrix of this kind 

identifies a codistribution; the codistribution being generated by the rows. 
Codistributions can be constructed from given distributions in the following man- 

ner. Given a d-dimensional nonsingular distribution D, the codistribution Dl can be 

constructed by the set of all row vectors w which annihilate all the vectors in V, i. e. 

D1(x) _ {w E (f2")* :<w, f >= 0 `d fE D(x)} (2.38) 
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The codistribution Dl is nonsingular, has dimension n-d locally around each xo, and 
is spanned by n-d covector fields wi (x).... )W�-d. By construction, the covector field 

w; is such that 
(wa(x), fi(x)) =0V1<i<d, 1<j<n-d (2.39) 

for all x in R0, i. e. satisfies the equation 

wj(x)F(x) =0 (2.40) 

where F(x) is the nxd matrix 

F(x) = (fi(x) 
... fd(x)). (2.41) 

Therefore, at any fixed point x in R1, (2.40) can be simply regarded as a linear homo- 

geneous equation in the unknown wj(x). 
Suppose now that one is interested in solving differential equations of the form 

Ox 
(f, (X) 

... fd(x)) = 
ýý 

F(x) =0 (2.42) 

where fi(x), 1<i<d, are smooth vector fields defined on an open set Rl of R". Note 
that (2.42) has the form of equation (2.40) with 

wi =ý' (2.43) 

being differentials. In other words, one must find n-d independent row vectors 

0A1 aari-d (2.44) ax' ..., ax 

satisfying (2.42). The solution to this problem is possible when the distribution 

D(x) = span{ fl(x) 
... 

fd(x)} (2.45) 

is completely integrable, i. e. for each point x,, of Rl there exist a neighbourhood Ro of 

x, and n-d real-valued functions al, ... 1 An-d, all defined on R0, such that 

aal aan-d (2.46) span ax ", ax = 

on R0. The Frobenius Theorem provides necessary and sufficient conditions for complete 
integrability. 

Theorem 2.1 (Frobenius) A nonsingular distribution is completely integrable if and 
only if it is involutive. 
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Example 2.6 Suppose that one is interested in determining whether or not the partial 
differential equations 

OA 00 
ax 0 -(1 + x2) _ (0 0) (2.47) 

1+ x2 2x2(x3 + xZxl) 

are solvable. One needs to find a real-valued function . (x1, x2, x3) which satisfies equa- 
tion (2.47). The distribution V= span{ fl, f2}, with 

00 
fi(x) = f2 (X) = -(1 + x2) (2.48) 

1 -{- 2Z 222(x3 + x2x1) 

has rank 2 for all xE R3, and is also involutive, as shown in Example 2.5. Therefore, 
from the Frobenius theorem, D is integrable and thus the partial differential equations 
(2.47) are solvable. 

With these mathematical tools we can now formulate the conditions for feedback 
linearization. 

2.2.3 Input-Output Linearization 

Input-output linearization means the generation of a linear differential relation between 

the output and the input. The notion of relative degree is first described. 

Definition 2.7 The single-input single-output nonlinear system 

i=f (x) + 9(x)u (2.49) 

y= h(x) 

i3 said to have relative degree p at a point xo if 
(i) LgLjh(x) =0 for all x in a neighbourhood of xo and all k<p-1, and 
(ii) LgL j1 h(xo) 0 0. 

In a simpler interpretation the relative degree p is considered to be the least order of 
the output time derivative which is directly affected by the input u. This is illustrated 

as follows. Denote the output time derivative of order i by 

yý'ý(t) dd'y t 
(2.50) 
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Thus, 

y(°)(t 

YM(t 
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= y(t) = h(x(t)), (2.51) 
Oxh )=Lih+uL9h 

(2.52) 

If p=1, since by definition Lgh 0 in Ro, y(l) is directly affected by the input U. When 
1<p<n, by virtue of the definition of p 

y(') = L, h, 1 <i <p -1 (2.53) 

y(p) =L jh + uLgL j 1h. (2.54) 

Hence, y(P) is the lowest order time derivative which is directly affected by the input u. 
The p functions h(x), L fh(x), ..., L Pf- lh(x) are linearly independent and qualify as 

a partial set of new coordinate functions around the point x0 [44]. The choice of these 

new coordinates places system (2.49) into a particularly simple structure. 

Proposition 2.2 Suppose that the system (2.49) has relative degree p. Set 

01 (x) = h(x) 
02(X) = Lfh(x) (2.55) 

OP(x) = L7'h(x) 

If p is strictly less than n, it is always possible to find n-p functions 0, +1, ... , 
0�(x) 

such that the mapping 
q5i(x) 

fi(x) _ (2.56) 
On (x) 

has a Jacobian matrix which is nonsingular at xo and therefore qualifies as a local co- 
ordinate transformation in a neighbourhood of x0. The value of these additional functions 

at xo can be fixed arbitrarily. Moreover, it is always possible to choose the n-p functions 
in such a way that, for all x in the neighbourhood of x0, 

Lgq; (x) =0 Vi s. t. p+1<i<n. (2.57) 

The description of the system in the new coordinates z= I(x) can be easily found. The 

first p-1 equations correspond to a chain of integrators and the p-th equation contains 
the control input u explicitly, as follows 
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Z1 = z2 

z2 = z3 

(2.58) 

zp-i = zn 
zP = a(z) + b(z)u 

with 

b(z) = L9L j 1h (I) -1(z)) (2.59) 

a(z) = L jh (4D-1 (z)) . 
(2.60) 

The remaining n-p equations do not have any special structure and they take the form 

zv+i = qv+l(z) + pa+l(z)u 
(2.61) 

zn = qn(z) + pn(z)u 

with 

Qý(z) _L fýý (ý, -'(z)) pý(z) = L9ý= (ý-i(z)) p }_ 1<i<n. (2.62) 

Nevertheless, if c5p+l(x), ... , 0�(x) are chosen so that L9O; (x) = 0, then equations (2.61) 

are modified to yield the following normal form 

Z1 = Z2 

Z2 = Z3 

ip-i = zP 

zP = a(z) + b(z)u (2.63) 

ZP+i = qP+1(z) 

zn = qn(z) 

V= Zi 

Next, a constructive procedure is described to transform a single-input single-output 

nonlinear system into a linear controllable system via a change of coordinates in the 

state space, and static state feedback. 
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Consider a nonlinear system having at some point x= xo relative degree equal to 
the dimension of the state space, i. e. p=n. In this case, the change of coordinates 
to construct the normal form is given by the output function h(x) and its first n-1 
derivatives along f (x), i. e. 

0, (x) h(x) 

Z= (D(x) _ 
O2(x) 

_ 
Lth(x) 

(2.64) 

On (X) L_'h(x) 

No additional functions are needed to complete the transformation. In the new coordin- 
ates, the system is described by 

Z1 = z2 

Z2 = z3 

(2.65) 

zn-1 = Zn 

zn = a(z) + b(z)u 

with 

b(z) = LgL j-lh ((-1(z)) (2.66) 

a(z) = L fh (41-' (z)) (2.67) 

and z= (zl, z2, .... z�). By construction, the function b(z) is nonzero at the point 
z, = (1(x0), and at all z in a neighbourhood of z0. By choosing the following state 
feedback control law 

uz (-a(z) + v) (2.68) 
() 

where v is an external reference input, the resulting closed-loop system is governed by 

the equations 

Z1 = Z2 

Z2 = Z3 

(2.69) 

zn-1 = Zn 

in =V 

y= Zi 
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which corresponds to a linear controllable system (with linear input-output map) in the 
IIrunovsky controller form. Therefore any nonlinear system with relative degree n at 

some point x0, can be transformed into a system which is linear and controllable in a 

neighbourhood of the point z,, = ýP(xo), 
Additional feedback controls can be imposed on the linear system thus obtained. For 

instance 

v= Kz (2.70) 

with 
Ii' _ (ko k1 ... k. -1) 

(2.71) 

chosen to meet some given control specifications, e. g. to assign a set of eigenvalues in a 

specific sector or to satisfy an optimality criterion. From (2.68) the nonlinear feedback 

control law in the original coordinates has the form 

-L fh(x) + >s ök Lfh(x) 
u L9Lf-'h(x) 

(2.72) 

Example 2.7 In order to illustrate the procedure explained above, consider again the 

nonlinear system of Example 2.1 

with the output 

For this system 

x2+xi 0 
X2 = x3 +0u (2.73) 

x3 01 

y= h(x) = xi. (2.74) 

Lgh(x) = 0, Lfh(x) = X2 + xi 
LgL1h(x) = 0, Lfh(x) = X3 + 2x1(x2 + xi) 
LgL2h(x) = 1, L jh(x) = (6xi + 2X2)(x2 + xi) + 2x1x3 

and the system has relative degree 3 (i. e. equal to the state space dimension) for all 

points in R3. The system can be transformed into a linear controllable system by means 

of the feedback control 

u= -(6x2 + 2X2)(X2 + xi) - 2x1x3 +v (2.75) 

and the change of coordinates 

zl = h(x) = x1 

Z2 = Ljh(x) = x2 + xi (2.76) 

z3 =L fh(x) = x3 + 2x1(x2 + X1). 
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In this case the feedback control and the change of coordinates are defined globally, i. e. 
arc valid for all xE X23. In the new coordinates the system is 

o i o 0 
i= 0 0 1 z+ 0v (2.77) 

0 0 0 1 

which is linear and controllable. 

Note that the change of coordinates (2.76) and the control law (2.75) are, respectively, 
the same transformation (2.10) and control (2.12) used in Example 2.1. 

2.2.4 State Feedback Linearization 

In the previous section the key point that made it possible to change a nonlinear system 
into a linear and controllable one (with a linear input-output map), was the existence of 
an "output" function h(x) for which the system had relative degree equal to n (at x0). 
The existence of such a function is not only a sufficient condition but also a necessary 
condition for the existence of a suitable state feedback and a change of coordinates. 

More precisely, consider a nonlinear system (without output) 

i= f(x) + 9(x)u (2.78) 

and suppose one is interested in solving the following problem: given a point x0, find (if 

possible) a neighbourhood Rl of x0, a feedback 

u= a(x) + ß(x)v (2.79) 

defined on R1, and a coordinate transformation z= 4(x) such that the corresponding 
closed-loop system 

i=f (x) + g(x)a(x) + g(x)Q(x)v (2.80) 

in the coordinates z= fi(x) is linear and controllable, i. e. such that 

Ox 
[(f(x) + 9(x)a(x)) = Az (2.81) 

J x=c-1 (z) 

1)(9(X)Q(X)) 

_= 
.B 

(2.82) 
lox 

1 

X_0_1 (z) 
for some suitable matrix AE RnXn and vector BE Rn satisfying the controllability 

condition 
rank(B AB ... A"-1B) = n. (2.83) 

This problem is the so-called state feedback linearization. The following lemma provides 
necessary and sufficient conditions for the existence of a solution [44]. 
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Lemma 2.1 The state feedback linearization problem is solvable if and only if there 

exist a neighbourhood RI of x0 and a real-valued function a(x) defined on R1 such that 
the system 

th =f (x) + s(x)u 
y= A(x) 

has relative degree n at x0. 

(2.84) 

Regarding the analysis given in Section 2.2.3, the problem of finding a function a(x) 

such that the relative degree of the system at x0 is n, namely a function such that 

L, A(x) = LgL fa(x) _ ... = LgL j-Z A(x) =0 (2.85) 

LgL7 1 A(xo) 0l (2.86) 

is solvable under the conditions given in the following theorem [44]. 

Theorem 2.2 The state feedback linearization problem is solvable near a point xo (i. e. 
there exists an "output" function A(x) for which the system has relative degree n at xo) 
if and only if the following conditions are satisfied 
(i) the matrix (g(xo) ad jg(xo) ... ad j"2g(xo) adnf 'lg(xo)) has rank n 
(ii) the distribution ig�_z = span {g, adfg,... , ad! -2g} is involutive in a neighbourhood 
of zo. 

It can be shown that condition (i) is equivalent to the controllability condition (2.83) 

for the linear approximation of the system (2.78) [44]. In fact, the controllability of the 
linear approximation of the system at xo is a necessary condition for the solvability of 
the state feedback linearization problem. 

Conditions (i) and (ii) together are sufficient to solve the partial differential equations 
(2.85)"(2.86), since they are equivalent to the condition that the distributions 

= span {9, ad19,..., ad'g}, 0<i<n -1 

are involutive and of constant rank i+1. 
To illustrate the use of Theorem 2.2, consider again the linearizable system of Ex- 

ample 2.1, whose associated vector fields are 

X2 + Xi 0 

Ax) _ X3 ' g(x) =0 (2.87) 

01 
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It was demonstrated in Example 2.7 that this system is input-output linearizable with 
the output y= xl. Hence, it is state feedback linearizable and should satisfy conditions 
(i) and (ii) of Theorem 2.2. In order to verify this, recall that the vector fields ad fg(x) 
and a&1g(x), computed in Example 2.2, are 

01 
ad fg(x) _ -1 ad jg(x) =0 (2.88) 

00 

Then 
001 

rank (g(x) ad jg(x) ad jg(x)) = rank 0 -1 0=3 (2.89) 

100 

and condition (i) is satisfied. Note that in this case condition (i) holds for all xE R3. 

Regarding condition (ii), one must verify that the distribution 

Ci = span {g(x), ad jg(x)} (2.90) 

is involutive by checking that 

rank 
(g(x) 

adl9(x)) = rank 
(9(x) 

adi9(x) [9(x), adf9(c)]) . 
(2.91) 

Noting that both vector fields g(x) and ad fg(x) have constant entries independent of 

x, [g(x), adjg(x)] = (0 0 0)T. Therefore, (2.90) holds and consequently condition (ii) is 

also satisfied. 

Example 2.8 Consider the second order system 

ý2 ()+( 0u 
(2.92) (f') =3 x2 01 

This system is not feedback linearizable in a neighbourhood of the origin because the 
linear approximation about the origin is not controllable. This can be verified by checking 
that condition (i) of Theorem 2.2 is violated. Since 

ad jg(x) _ [f, gJ(x) = ägf 
(x) 

axg(x) äg(x) = -3X2 (2.93) 
0 

the rank of the matrix 
(g(0) 

adig(0)) _ 100 
(2.94) 

is 1 and therefore condition (i) is not satisfied. 
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2.3 Control Design for Triangular Systems 

Feedback linearizable systems are an important class of stabilizable systems because the 

control design problem is simplified via a linearizing coordinate transformation, which 
allows the use of well-established control design techniques from linear control theory. 
An interesting class of feedback linearizable nonlinear systems is that of systems in 

triangular form. The control design problem for these systems is simplified even more, 
since the linearizing coordinate transformation is easily set up, as shown in the following 

Corollary. 

Corollary 2.1 Systems in the triangular form 

x1 = 22+ c51(X1) 

ý2 = x3 + c2(x1, x2) 

xk = Xk+1 + ck(X1,..., Xk) (2.95) 

ýn-1 = xn + On-l(XI) 
... , xn-1) 

in = On(Xl, 
""", Xn)+U 

in which q1, ... , q� are known smooth functions such that c; (0) = 0,1 <i<n, are 
globally linearizable. 

Proof. The proof of this corollary requires the verification of conditions (i) and (ii) of 
Theorem 2.2. Alternatively, a constructive proof can be carried out by directly comput- 
ing the linearizing coordinate transformation and feedback control, as follows: 

Step 1. Choose zl = X1 as the first new state coordinate. The time derivative of zl is 

il = x2 + q51(x1) (2.96) 

By choosing 
Z2 = X2 + 41(x1) (2.9 7) 

(2.96) becomes 
il = Z2. (2.98) 

Step 2. The time derivative of z2 is 

Z2 = x3 + 02(x1, x2) + 
Xl 

(x2 + q51(x1)) x3 + 0Z (x1, X2) (2.99) 

1 
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By selecting 
Z3 = X3 + 02(xl, x2) (2.100) 

(2.99) becomes 
z2 = x3. (2.101) 

Step k (3 <k<n- 1). The time derivative of Zk is 

k-i 
ask-ý zk = Xk+l + Ok(xl, 

... )xk) 
+ 

ax 
(x; 

+l + O, (xl, 
... , x; )) 

-i ' 
ý- Xk+1 + Ok(X1, 

..., Xk) (2.102) 

By selecting 

(2.102) becomes 

Zk+i = Xk+i + ck(xi,... ) xk) (2.103) 

Zk=Zk+i 3<k<n-1. (2.104) 

Step n. The time derivative of z� is 

n-1 
n-1 (xi+l + 0, (X1, 

... , xi)) (2.105) Zn = ýný21ý 
... s ýný -+ '+E 

i-1 
axi 

Finally, the linearizing process is completed by choosing the feedback control 

n-1 a* 
u= -cn(21, ... )xn) - 

O' 
1 (xi+1 + ci(21, 

... , Xi)) +v (2.106) 

i=1 

where v is a reference input, or an input control to impose additional control action such 

as pole-placement or optimal control on the system. 

0 

Example 2.9 Consider the nonlinear system in triangular form 

ýl = 22 + ax 

i2 = X3 (2.107) 

i3 =u 

with aa known constant. The q; functions are 

01 = ax?, 02 = 0,03 = 0. (2.108) 
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Applying the above procedure, one obtains the coordinate transformation 

zl = X1 

Z2 = X2+ ax, 

zs = x3 + 2axi(x2 + axi) 

and the linearizing feedback control law 

u= -2axlx3 - (6a2xi + 2ax2)(x2 + axi) + v. 

44 

(2.109) 

(2.110) 

This recursive and systematic procedure is made possible because of the special structure 
of triangular systems. It allows one to choose the function )t(x) = xi as a linearizing 

output, for which the system has relative degree n, as mentioned in Lemma 2.1. A 

similar procedure can be performed for more general triangular systems, such as 

ii = oi(xil 
in = On(Xli... 

)Xn)+Q(X1)... 72n)U 

(2.111) 

where 0;, 1i<n, and ß are smooth nonlinear functions such that , Q(0) 54 0, 

rß; (0) = 0,1 i<n, and Oq5 /Ox +i(0) 0,1 <i<n-1. Systems in the form (2.111) 

are, in general, linearizable locally. 

2.3.1 Static Deterministic Backstepping (SDB) Algorithm 

An alternative design procedure for linearizing deterministic (non-adaptive) triangular 

systems is the backstepping approach proposed by Kanellakopoulos et al [48J and Krstie 

et al [64]. It is based upon the use of a quadratic Lyapunov function which is augmented 
at each step with an additional quadratic term for the stabilization of a subsystem of 
the system (2.95). At the final step the linearizing procedure is completed by obtaining 

a coordinate transformation z =1(x) and a static feedback control law. The algorithm 
to be described is identified in this thesis as the SDB algorithm to characterize the static 
(without derivatives of the control) nature of the control law obtained for deterministic 

systems of the form (2.95). This systematic procedure is carried out as follows: 

Step 1. Choose zi = x1 as the first new state coordinate. The first subsystem is defined 
as 

il = x2 + cil(Xl) (2.112) 

which will be stabilized with respect to the quadratic Lyapunov function 

Vi =1 zi. (2.113) 
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The time derivative of Vi is 
Vi = zl(x2 + 01(x1))" (2.114) 

We consider x2 as a virtual control and can choose X2 = al(xi) to cancel the nonlinear- 
ities and make the bracketed term multiplying zl equal to -clzl, i. e. 

X2 = al(xi) := -41(x1) - Cizl, (2.115) 

where cl is a positive constant. However, since X2 is not the actual control, a new 
coordinate is defined as the deviation of X2 from its "desired value", i. e. 

Z2 := X2 - al(21). (2.116) 

Then il becomes 
il = -C1Zi + z2, (2.117) 

and 
Vl = -CiZ + Z1Z2. (2.118) 

The term Z1Z2 in (2.118) will be compensated at the next step. 

Step 2. Obtain the time derivative of z2 and augment the previous subsystem (2.112) 

with 
z2 = X3 + q52(X1, x2) - 

ýxl 
(X2 + 01(x1)), (2.119) 

i 
which will be stabilized with respect to the augmented Lyapunov function 

V2 = VI +1 z2. (2.120) 
22 

The time derivative of V2, considering (2.118), is 

12 = --ClZ + Z2 zi + X3 + q52(X1, X2) - 

001 
(X2 +01(x1)) (2.121) 

Then, we consider x3 as a virtual control and can choose X3 = a2(x1, X2) to cancel the 

nonlinearities and make the bracketed term multiplying Z2 equal to -c2Z2, i. e. 

23 = a2(X1, X2) := -zl - 2(X1) X2) + 
ýxl 

(x2 + ý1(ý1)) 
- ýýzýý (2.122) 

i 

where C2 is a positive constant. However, since X3 is not the actual control, a new 

coordinate is defined as the deviation of X3 from its "desired value", i. e. 

Z3 := X3 - a2(X1, X2)" (2.123) 

Then (2.119) becomes 
z2 = -Zl - C2Z2 + Z3, (2.124) 
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and 
V2 = -clzi - c2Z2 + z2z3. (2.125) 

Step k. Proceeding by induction, the general k-th step is as follows. By obtaining the 
time derivative of zk, the previous subsystem is augmented with 

k-I 
zk = Xk+1 + 75k(Xl, ... , Xk) - 

aak-1 
(x; +l -}- o; (X 1, ... , xi)) (2.126) 

9x f-1 

which is stabilized with respect to the augmented Lyapunov function 

Vk = Vk_1 + 2zk2. (2.127) 

The time derivative of Vk is 
k-1 k-1 

1jk =- cizi + zk zk-1 `i' Xk+t + Ok(xl, 
... , Xk) 

aak-i (X++1 + O; (X17... 
, xi)) 

ax; 
(2.128) 

In a manner similar to previous steps, we consider Xk+i as a virtual control and can 

choose Xk+1 = ak(X1) ... , Xk) to cancel the nonlinearities and make the bracketed term 

multiplying Zk equal to -ckzk, i. e. 

2k+1 = CYk(X1,... 'Xk) := -zk-1-Ok(21,... 7 Xk)-i- 
aak-1(xi+l+ci(xl,..., 

Xi)) -ck'Zk 
i-1 

axi l 

(2.129) 

where ck is a positive constant. However, since Xk is not the actual control, a new 
coordinate is defined as the deviation of Xk from its "desired value", i. e. 

Zk+1 := Xk+1 - CYk(X1, ... ' 2k). (2.130) 

Then zk becomes 
zk = -zk-1 - CkZk + Zk+i, (2.131) 

and k 
Vk=-c, z? + zkzk+1. (2.132) 

t=1 

Step n. At this final step the time derivative of zn is 
n-1 

in = 26 (x11 ... I Xi))) (2.133) "f' 
On(X) -ýO 

xi ' 
(xs+l 

'. ý"' Oi 

i. l ý 

which will be stabilized with respect to the augmented Lyapunov function 

Vn = Vn_ 1+1 zn =1 zT Z. (2.134) 
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The time derivative of V� is 

47 

n-1 n-1 as 
Vn =` Ciz? + Zn zn-1 +U + On(x) 

- 
n-1 (Xi+1 + Oirx1l 

... ' xi)) (2.135) 

i-1 i-1 
axi l 

Now we select the linearizing control law 

n-1 
i (xi+l + Oi(x1) 

... ' xi)) -' Cnzn (2.136) 2L = -zn-1 - on(x) + 
aýxi 

i=1 

to cancel the nonlinearities and make the bracketed term multiplying z� equal to -c�z,,, 
where c� is a positive constant. Thus 

Vn =- Cszi (2.137) 
i=1 

and the closed-loop system is 
z=A,. z (2.138) 

with 
-c1 10... 00 

-1 -C2 1 ... 00 

0 -1 -C3 ... 00 
Az = (2.139) 

000... -c�_1 1 

000... -1 -C� 
The feedback control (2.136) exhibits a larger control effort than the control law (2.106) 

because of the incorporation of extra terms -CkZk at intermediate steps of the backstep- 

ping algorithm to achieve linearization and stabilization simultaneously. This systematic 

procedure of stabilization is applicable to wide classes of linearizable nonlinear systems 
1641, and can be summarized as follows: 
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SDB Algorithm 
Coordinate transformation 

zk = xk - ak_l (Xl, ... ) xk_1) 1<k<n (2.140)1 

with 
k-2 

Oak-2 
ak-1(x1,... ' Xk-1) _ -zk-2 - 

Ok-1(x1, 
... 9 xk-1) + J'N 

Ox 
(x+l + Oi(xl, 

... , x, )) 

i=i ' 
-ck_1Zk_1 (2.141) 

Feedback control law 

n-1 

u= -zn-1 - 
0n(x) + 

a-1 
(x'+1 + Oi(Xl, 

... 2i)) -' Cnzn (2.142) 

i=1 
ali 

Example 2.10 Consider again the nonlinear system in triangular form of Example (2.9) 

ýi = x2 + ax 
i2 = x3 (2.143) 
i3 =u 

with aa known constant. Applying the SDB algorithm one obtains the coordinate 
transformation 

Zi = Xi 

z2 = x2 - al (X1) 

Z3 = X3-a2(Xl, X2) 

with 

(2.144) 

al(xi) = -axi - clxl (2.145) 

a2(x1, x2) _ -x, - (2axi - cl)(x2 + axi) - c2(x2 + axi + clxi) 

and the linearizing feedback control law 

U= -Z2 + 
aal 

(X2+ axe) + aý2 X3 - C3Z3 (2.146) 1 Ox, 2 
Computer simulations were carried out to assess the performance of the feedback control 
law (2.146) for stabilization. Figure 2.1 shows the asymptotic convergence of the state 
trajectories to the origin for the design parameters Cl = 3, c2 =2 and c3 = 1. Figure 2.2 

shows the controlled responses of the state variables for initial conditions set at ten times 
larger than the initial conditions in Figure 2.1. 
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Adaptive versions of the SDB algorithm can be applied to nonlinear systems with un- 
certainties, as shown in the next section. 

2.4 Adaptive Backstepping Control Design 

Many adaptive nonlinear control schemes have been proposed for single-input lineariz- 

able systems that are linear in the unknown parameters 
PP 

ý= fo(C) +E eif«) + go(C) +> esgc(c) u (2.147) 

i=1 

1 

i=1 

I 

where SE R' is the state, uER the control, Or,. .., 8P a set of unknown parameters, 

and f;, g;, 0<i<p, smooth vector fields in a neighbourhood of the origin =0 with 
f; (0) = 0,0 <i<p, go(0) ; 0. 

The adaptive backstepping design approach developed by Kanellakopoulos et al ([48]- 
[50], [56,57]) extended the class of nonlinear systems for which adaptive controllers 
can be systematically designed. It overcame the structural restriction associated with 

1 -r 
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Figure 2.1: State variable responses of a triangular system regulated via SDB control 
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Figure 2.2: State variable responses of a triangular system regulated via SDB control 
for different initial conditions 

the matching conditions of previous design schemes and enlarged the potentiality of 
Lyapunov-based designs to control nonlinear systems with unknown constant paramet- 

ers. 
The technique uses a step-by-step procedure which interlaces at each step a virtual 

control for a subsystem of the controlled plant, a linearizing change of coordinates and 
the construction of an update law for the unknown parameters. The stability proof is 

constructive and simple, since it is based on the use of a quadratic Lyapunov function 

which is updated at each step as in Section 2.3.1. ' 
The geometric conditions characterizing the class of systems to which backstepping 

is applicable do not constrain the class of nonlinear functions present in the system. 
Instead it is required that the nonlinear system be transformable into the PPF form. In 

general, local stabilization is achieved for this class of uncertain systems, and an estimate 
of the region of attraction is also provided. Furthermore in the case of systems trans- 
formable into the more restrictive PSF form, backstepping guarantees global regulation 
and tracking properties. 
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2.4.1 Parametric Pure-Feedback Systems 

The class of pure-feedback systems is constituted by those systems of the form (2.147) 

which can be transformed via a parameter-independent diffeomorphism x= (I)(() into 
the parametric pure-feedback systems 

21 = X2 + (P1 (x1, x2)O 

22 = 23 + (P2 (xI1 x2,23 8 

T 
ýn-1 = xn +vn-l(XI)... 

j2n)8 

in = VOW + ýr, (x)9 + [ß0(x) + ßT(X)O] u 

with 

vo(o) = 0, vi(0) = ... = on(o) = 0, ßo(0) 56 0. 

(2.148) 

Necessary and sufficient conditions for the existence of such a diffeomorphism were 

provided in [48,57] and are given in the following theorem. 

Theorem 2.3 A diffeomorphism x= 4)(C) with 4(0) = 0, transforming (2.147) into 
(2.148), exists in a neighbourhood lip of the origin if and only if the following conditions 
are satisfied in 1o: 
(i) Feedback Linearization condition. The distributions 

C; = span {go, ad1ogo,..., adý, go}, 0<i<n-1 (2.149) 

are involutive and of constant rank i -}-1 
(ii) Pure-feedback condition 

g; E co, 
(2.150) 

[X, fi] E g1+,, VX E 9j, 0<j<n-2,1 <i<p. 

Note that condition (i) is sufficient for the existence of a diffeomorphism x= (b(C) 
which transforms the system 

ý= fo(0 + 9o(OU, fo(o) = 0, qo(0) ý- 0 

into the system 

2i = Xi+l, 1Gin-1 

in =( o(x) + Qo(x)u, 

(2.151) 

(2.152) 
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with 

VO(O) = o, ßo(o) ý o. 
The pure-feedback condition guarantees the structure of the nonlinear functions Vi in 
the z-coordinates. 

The term "parametric pure-feedback" indicates that the nonlinearities in the vector- 
valued function Vi can depend only on the state variables xj,... , x; for 1<i<n. An 
important subclass of these systems are parametric strict-feedback systems, which have 
desirable properties in the context of adaptive control. 

2.4.2 Parametric Strict-Feedback Systems 

Global stability properties of an adaptive system in the extended space of the states and 
parameter estimates are important for theoretical and practical reasons. Systems with 
these properties exhibit better robustness to disturbances and unmodelled dynamics 

than systems with a finite region of attraction. 
In order to characterize the class of PSF systems, consider the following assumption 

concerning the part of the system (2.147) that does not contain unknown parameters 

Assumption 2.1 There exists a global diffeomorphism x= 4(C), with -1)(0) = 0, trans- 
forming the system 

ý= fo(C) + 9o(C)u (2.153) 

into the system 

i; = x; +1,1 <i<n-1 (2.154) 

x� = cpo(x) + so(x)u, 

with 

O(O)=0, ßo(x)ý0 VxER". 

Necessary and sufficient conditions to transform system (2.147) into the parametric 
strict-feedback form were established in [48,57] and are given in the following theorem. 

Theorem 2.4 Under Assumption 2.1 the system (2.147) is globally diffeomorphically 

equivalent through x ='(() to the parametric strict feedback system 

21 = Z2 'i' Vi (xl)B 

22 = X3 + CP2 (Xl, X2)B 

(2.155) 
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(2)8 
-}- ýQp(x)26 ýn = cox) `f' 4 

if and only if the following parametric strict-feedback condition holds globally 

g; -0 (2.156) 
[h, ff]Eg1, VXEc1,0<j9n-2,1 <i<p 

with G,, 0<j<n-1, as defined in (2.149). 

Note that the PSF form (2.155) is a special case of the system (2.147). If the unknown 
parameters are assumed to be known, (2.155) has the same form as the triangular systems 
(2.95), and the recursive SDB algorithm given in Section 2.3.1 can be used for global 
linearization (stabilization). Then, for 0 unknown, if a proposed adaptive controller does 

not achieve global stability, this is clearly due to adaptation. Adaptive backstepping 

controllers preserve the global stabilization property for this class of systems. 
The adaptive backstepping algorithm proposed by Kanellakopoulos et at [48] re- 

quires multiple estimates of the same parameter, which is impractical for high-order 

systems with numerous unknown parameters. This overparameterization was elimin- 
ated by Krstid et at [611 by the introduction of tuning functions. This method allows 
the strengthening of the stability and convergence properties of the resulting adaptive 
system. 

2.4.3 Static Adaptive Backstepping (SAB) Algorithm 

The main improvement achieved by the incorporation of tuning functions is the reduction 
of the adaptive controller to a minimum structure; the number of parameter estimates 
being equal to the number of unknown parameters. This reduction in the order of the 

closed-loop dynamics guarantees strong stability and convergence properties, as shown 
below. At each step of the recursive algorithm a tuning function is designed, as a 
potential update law, for compensation purposes. The final tuning function is used as 
the actual parameter update law. The static adaptive control law is also obtained at the 
final step. 

It is worthwhile stressing that some authors call adaptive controllers consisting of 
an update law for estimation of the unknown parameters and a feedback control law 
dynamical controllers. Hereafter, we use the terms dynamical adaptive control for a 
feedback law involving the control u and its derivatives, together with an update law 



Chapter 2. Classical . 3ackstepping Control Design 54 

for estimation of the unknown parameters; and static adaptive control for a feedback 

control law without derivatives of u, along with an update law. 

In order to motivate the presentation of the general SAB algorithm with tuning 

functions proposed by Krstid et al [611 for the design of static adaptive controllers for 

PSF and PPF systems, two simple examples of backstepping design are presented first. 

Example 2.11 Consider the problem of designing an adaptive controller for the scalar 

system 
ýi =U+ wl (x1)e (2.157) 

where 0= [0k, ... ,0 
]T is an unknown constant parameter vector and the vector-valued 

nonlinear function VI(xi) = [(pill 
... , cplp)T, is known and smooth. Note that this system 

is already in parametric strict-feedback form. Therefore, the control objective is to sta- 
bilize globally the state x1 to a desired equilibrium point X1. Define the error coordinate 

zl = xi - X1, the deviation of the state variable x1 from its desired equilibrium, and 

consider the quadratic Lyapunov function 

V1 = -zi +2 (e 
- 

e)T r-1(0 - 
B) (2.158) 

where r is a positive definite adaptation gain matrix, 6 is an estimate of the unknown 

parameters and 0-B the corresponding estimate error. The time derivative of (2.158) 

yields 
Vi =z1[u+v, l(xl)e] +(e-ü)Tr-i(-9). (2.159) 

The linear parameterization of (2.157) allows one to add (and substract) B to (from) the 

bracketed term multiplying zi, to obtain 

Vi 
= zi IU + c1 (21)e + c1 (x1)(e 

- 
B)] + (e 

- 
A)T r-1 

r- 0J. (2.160) 

By grouping terms, (2.160) can be rewritten as 

Vi = zl 
[u + wi (x1)9, + (0 - 

6)Tr-1(- 9+ rwl(xl)zl) (2.161) 

with the regressor vector defined as 

wl(x1) = coi(xi). (2.162) 

To achieve the objective of stabilizing the equilibrium x1 = X, (or, equivalently, zl = 0), 

the time derivative of the Lyapunov function (2.161) must yield 

Vl . Cl Z2 (2.163) 
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with cl >0a constant design parameter. This is achieved by choosing the update law 
A 

e= rwl(ý1)zl (2.164) 

and the control law 

u= a(xl, B) = -wi(xi) 0- clzl. (2.165) 

The closed-loop adaptive system is 

z, = -c, z, +wi (x, )(9 -6 (2.166) 

ä 

The unknown parameters in system (2.157) are "matched". Nevertheless, it is not because 

of this condition that the adaptive control design is possible. This can be shown by 

applying the same procedure to the following system, satisfying the extended matching 
condition and obtained by augmenting system (2.157) with an integrator. 

Example 2.12 Consider the problem of designing an adaptive controller for the system 

il = X2+Vi (x1)9 (2.167) 

i2 =U 

to stabilize the state variable x to the desired equilibrium X1. 

Note that the problem of finding an adaptive control to stabilize xl to the equilibrium 
X1 for the subsystem 

xi = x2 + (Pi (x1)O (2.168) 

is exactly the same control design problem as solved in Example 2.11, if x2 was the 

control input. This suggests the possibility of taking advantage of the design carried 

out in Example 2.11 by regarding x2 as a virtual control to stabilize (2.168) with the 
Lyapunov function (2.159). However, since X2 is not a control, one must go back to the 

design in Example 2.11 and consider the fact that x2 is actually a state variable. Thus, 

the time derivative of (2.159) yields 

Vi = zi 
[X2 + wi (X1)9 + (9 - 

9)Tr-i (- 0+7-1) (2.169) 

with 
7-1 = I'wl (X1)zl (2.170) 

being considered as a tuning function, instead of the update law because of the presence 
of the additional state variable. The stabilization of (2.168) would be readily possible, 
if Ti were the update law, X2 the actual control, and the relation 

X2 = a(X1i 
9) 

= -wi 
(21)B 

- c1z1 (2.171) 
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were satisfied. However, since (2.171) is in general not valid, the deviation of x2 from 
its desired value is considered as a new error coordinate 

A 

Z2 := x2 - a(xl, B). (2.172) 

As a consequence, the objective of stabilizing x to the equilibrium Xl is equivalent to 

stabilizing (zl, z2)T to the origin. This new error coordinate Z2 allows one to obtain the 
time derivative of (2.158) 

Vi = -C1Z12 +Z1Z2+(B-e)Tr-i(-B+ r, 
) (2.173) 

and 
, zl = -Clzl + Z2 + wi (X1)(9 - 8). (2.174) 

Then 
z2 =u- 

al (x2 + cpi (x1)B) - 
Oal 

B, (2.175) 
axe 180 and augmenting the Lyapunov function as 

V2 = V1 +1 27 (2.176) 
2 Z2 

the time derivative of the augmented Lyapunov function yields 
8a1 

iýa = -clzi + z2 Zi +u- 
ýý1 (X2 + (Pi (xl)e) - ae 

+(e _ e)Tr-, (4+ Ti) (2.177) 
A 

By adding (and substracting) the parameter estimate 6 to (from) the bracketed term 

multiplying z2, (2.177) can be rewritten as 
AA O 

vz = -clzi + z2 zl +U- ox, x2 + w2 8- a0 e 

,,. f. (0 - 
g)Tr-1 (-B + Ti + Fw2z2) (2.178) 

with the regressor vector defined as 

W2 
1(p1(x1) (2.179) 

, 
ex 

The control objective of global stabilization is achieved if (2.178) has the form 

V2 = Cl Z2 - c2zj (2.180) 

with C2 >0a design parameter. This is achieved by choosing the update law 

e := 72 = Tl + rw2z2 = r(w1z1 + w2z2) (2.181) 
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and the control law 
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aal 
U= -Zl + 

öýl 
X2 - W2 0+ö- 72 - C2Z2. (2.182) 

The adaptive closed-loop system is 

A z1 
_ -cl 1 jIzhI+1wT1 ( 6_ 8) (2.183) 

zZ 
-c2 Z2 

[WT 
AA 

0= rw(z, 9)z (2.184) 

where the regressor matrix W is composed of the regressor vectors 

W (z, 9) _ [wl w21. (2.185) 

The general SAB algorithm (backstepping with tuning functions) proposed by Krstid 

et al [611 for the adaptive regulation of the "output" y= x1 of a PSF system to a desired 

set point yr, can be summarized as follows: 
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SA13 Algorithm 
Coordinate transformation 

zl = Xi - Yr 

zk = xk - ak-1(X1,... 9Xk-1 , 9) 2<k<n (2.186) 

with 

A 

k-I 
aak-1 aaý'-1 

AA 

ak(XI, ... ) Xk) e) :_ -zk-1 + xi-ti + 
ö9 Tk - wk 9 

i_1 
aTi 

k-2 aas 

+ z; +l a9 
rwk - CkZk (2.187) 

i. l 

A wk(xl, ..., 2k, 8) := (Pk - 
k-1 aak-i 

axi 'ri (2.188) 
i-1 

k 

7*k(Xii..., Xk, 8) := Tk-i +rwkzk = rEw; z; (2.189) 
i-1 

Parameter update law 
A 

7n(x50) = FW z (2.190) 

with 
W (z, 8) 

= [wl, 
... , w�]; z= (zi, 

... , z�)T (2.191) 

Adaptive control law 

n-1 
z ýs+l _ wn 

a«n-1 
2L = /ý 

1- aan-1 

ßo(x) n-1 - v0(X) '+' axi 
e+ 

ae 
Tn 

i=1 

n-a aa 
-}- 

ý 
z{+1 

ÖB 
I, Wn - Cttzn (2.192) 

i=1 

The steps leading to this general algorithm are described below. The design proced- 
ure first stabilizes the first equation of (2.155), by considering x2 as a virtual control and 
designing the first tuning function. At each subsequent step the controlled system is 

augmented by one equation. Thus, at the k-th step, a subsystem of order k is stabilized 
with respect to a quadratic Lyapunov function by selecting a stabilizing function ak and 
a tuning function rk. At the final step the resulting tuning function is used as the actual 
update law and the adaptive feedback control is formulated. The design parameters c; 
below are positive. 
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Step 1. Define the error variable 

zl =Xi - yr 

whose time derivative is 
il = S2 +c (x1)O. 
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(2.193) 

(2.194) 

By adding and subtracting the estimate 8 of 0 in (2.194), il can be rewritten as 

zl = X2 + Vi(xi)O + vl(xl)e (2.195) 

with 8 :=9-9 defined as the estimate error. The subsystem (2.195) can be stabilized 

with respect to the Lyapunov function 

Vi(zi, e) = i1 Z' + 2öTr-le, 

with r= rT >0 an adaptation gain matrix. The time derivative of V1 is 

Vl = zl 
[x2+wT] +BTr_1(-9+rwizl), 

with the regressor vector 
w1(xl) := Wi(xi). 

(2.196) 

(2.197) 

(2.198) 

One can eliminate the estimate error 0 from Vl with the update law 0 =7-1 defined as 

rwiZi. (2.199) 

Then, treating x2 as the control, one would have Vl = -clzi with the virtual control 

zz = al defined as 
a, (xi, e) := -Wie - clzi. (2.200) 

However, since X2 is not the control, X20 al and the second error variable 

Z2 := X2 - a1 = X2 + Wi8 + clzia (2.201) 

is defined as the deviation of the state variable X2 from its desired trajectory. Thus the 

closed-loop form of ii becomes 

zi = -C1Z1 + Z2 + wi 9 (2.202) 

and, since ri is not considered as an update law but the first tuning function, the presence 

of 9 is tolerated in 

Vi = -cizi + Z1Z2 + 6Tr-1( -0 +'r, (2.203) 
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The second term in (2.203) will be cancelled at the next step. 

Step 2. Consider now the time derivative of the error variable z2 
A 

Z2 = x3 - aýi x2 + W2 (Xl) x2, e)0 - 
aa, 

-e (2.204) 

with the regressor vector 
A aa, w2(xi) x2,8) :_ W2 - öxl 1 (2.205) 

A By adding and subtracting 0 in (2.204), z2 can be rewritten as 

z2 = x3 - 
ýýi 

X2 + w2 (xl, x2, e)ä - 
äe e+ wT (xi, x2, B)9 (2.206) 

which can be stabilized with respect to the augmented Lyapunov function 

V2 = V1 +2 z2 =2 zi +2 z2 +2 eT I'-16. (2.207) 

The time derivative of V2 is 
AA 

12 = -ClZ + Z2 Z1 + x3 - ax, X2 + w2 9 
ai 

b] 

ad 
+eT r-1 I-e+ Ti + rw2Z2 J. (2.208) 

The estimate error 0 can be eliminated from V2 with the update law 0= 72 defined as 

r2(x1, X2) e) := Ti + rw2z2 = r(zlwl + W2Z2)" (2.209) 

j- c2 z2 with the virtual If additionally X3 were the control, one would make V2 = -c1z2 
control z3 = a2 defined as 

ö. 
72 - C2z2. (2.210) a2(X1, x2,0) : -«: -- -z1 + 

ail 
X2 - WT 20+ 

00 
Since X3 is not the control, X3 0 a2 and the third error variable 

z3: =23-a2 =X3 +z1 - 

X2+W2A 
0- a1T2+C2Z2 (2.211) 

Oxi ae 
is defined as the deviation of the state variable X3 from its desired trajectory. Thus the 

closed-loop form of z2 is 

22_-Z1-C2Z2+Z3+w2B-aal C9- 
ae 72) (2.212) 

and, since 72 is considered the second tuning function, VZ becomes 

V2 
= -cizi - c2z2 + Z2Z3 - z2 

äa1 re 
- 72) + BT r_1 (-0+ 

T2) (2.213) 

00 
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The third term in (2.213) will be cancelled at the next step. 

Step 3. Considering (2.211), the time derivative of the error variable z3 is 

z3 = x4 - 
ýý2 

x2 - 
2x3 + WS (x1) X2, X3,9)0 -a .0 (2.214) 

1z ae 
with the regressor vector 

ÖQ 2 ÖQ2 

W3(xl, x2, x3) 0) :_ W3 - öxl VI - axe'"' 
(2.215) 

A By adding and subtracting 0 in (2.204), z3 can be rewritten as 

z3 X4- axl x2 ax2 2 
x3 + W3 (x1, x2, X3,0)0 - äe 

0+ W3 (xl) X2, X3,2.216) 
which can be stabilized with respect to the augmented Lyapunov function 

V3=V2+2z3=2zi--2z2--2z3+26TI'"19. (2.217) 

The time derivative of V3 is 
Dal V3 . -clzi C2Z2 z2 äB 

(\e 
Tel 

0 
+z3 z2 + x4 - öx2 x2 öx2 x3 +W 3T0 -aal 

e 

i2 00 
+äT r-'( 

-e+T2+rw3z3) . (2.218) 

One can eliminate the estimate error 0 from V3 with the tuning function 0= r3 defined 
as 

A 

T3(x1, x2, X3, e) := 72 + rW3z3 = F(Wizl + W2Z2 + W3Z3). (2.219) 

Notice that choosing a virtual control law to make the bracketed term multiplying z3 
equal to -c3z3 does not cancel the third term in (2.218). Nevertheless, noting that 

B-T2=8-Tg+T3-T2=8-T3+rw3z3, (2.220) 

one can rewrite (2.218) as 

V3=-clzi-c2z2-z2 
- 

(e-T3)-}-9Tr_1C-B--Tg) 

ae aal 
_ 

aal T aal * aal 
2.221 +Z3 z2 + X4 - ail X2 aý2 x3 + w3 0--0- z2 - rw3 ) 

00 00 

Thus the tuning function 0= T3 would also eliminate the third term in (2.221) and, if 

z3 were the control, one would make V3 = -clz1 - c2z2 - c3z3 with the virtual control 

X4 = a3 defined as 

a3(x1, x2, x3, O) :_ -z2 + loa2 
22 + 

aal 
23 -. 3T^ 

g+ 
ÖCY2 

7.3 + z2 
ÖCY 

I'W3 - c3z3. (2.222) 

oxl axe 00 00 
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Since X4 is not the control, x4 0 a3 and the third error variable 

Z4 := X4 - a3 = X4 + Z2 - Öý2 x2 Öx2 X3 + W3 -aal 73 - z2 
CýCY1 I'W3 + C3z3 (2.223) 

ax, 
a2 

08 00 

is defined as the deviation of the state variable x4 from its desired trajectory. Thus, the 

closed-loop form of z3 is 
1 öa2 

(6 - T3' -I- z2 
al I'cv3 (2.224) z3 = -z2 - c3z3 -I- Z4 -I- W= 

B-r 

00' 50 
and, since T3 is considered the third tuning function, V3 becomes 

A1/A 

j%3 : -- - Cez? + Z3Z4 - Z2 
aCtil 

+ z3 
aCr2 ie 

- T3J + eT r-1 (-B+ T3). (2.225) 

; _1 ae 00 `\ 

Step k. Proceeding by induction, the time derivative of the error variable Zk is 

k-I aas-i äak-ý 
+ wi (xi, ... , xk) 9)8 - ae oB (2.226) zk = xk+l - 

=1 ax; 
with the regressor vector 

Wk (X 1, ... , Xk, B) := (Pk - 

k-1 
k-, 

aöakx, 
-1 p;. (2.227) 

By adding and subtracting 9 in (2.226), zk can be rewritten as 

EAA 
äak_1 

zk = xk+l - 
Oak-1 

x; +1 + Wk (X1 
q ... , 2k) 8)8 -8 

aý; ae 
+Wk (X1) ... 7 Xk, O)e (2.228) 

which can be stabilized with respect to the augmented Lyapunov function 

Vk = Vk-i + 
2Zk. 

(2.229) 

The time derivative of Vk is 

k-1 (2z+l)(b_rk_l) 

; =1 ; _1 ae 
k-1 a«k-1 a«k-1 

+Zk Zk-1 + Xk+i axti xj+i + WT O O- 
aB 

e 
1=i 

+ eTr-1 (- 
0+ Tk-1 + rWkzk) (2.230) 
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A 

One can eliminate 0 from Vk with the tuning function 0= rk defined as 
k 

Xk, 
e) 

:= rk-1 +r kzk =r Wiz;. (2.231) 
i-1 

Furthermore noting that 

B-'Tk-1 =e-Tk+Tk-Tk-1 =o - Tk+rWkzk (2.232) 

1/k can be rewritten as 
k_1 

2 
k-2 aa+ ,T 1C l jrk =- cizi -E z{+1 ae 

(9 
- Tý) -}- 8r -0+7 

i-1 i=1 

k-1 aak-1 aak-1 

+Zk 
[Zkl 

+ Xk+i - aXi xi+l - aB 
e 

k-2 Oai 
I'wk (2.233) +Wk B- z`+1 

190 s_i 

Then, if Xk+i were the control, one would make vk = -, Ek 1 c; zj2 with the virtual control 
Xk+l = ak defined as 

A 
k-1 aak-1 Dak-1 

T" 
Ok(x1, ... , xk, B) :_ -zk-1 +Zx; +i + 

00 log wk B 
i=1 

ax' 

k-2 aas 
+ z; +l 00 

rwk - Ckzk. (2.234) 

Since Xk+l is not the control, xk+1 -94 ak in general, and the k-th error variable 

Zk+l := Xk+1 - ak 
k-1 Oak-1 Oak-1 

T" 
= Xk+1 + Zk-1 k+ Wk O 

icl 
aý'ý 

k-2 Oai 

_ z, +l 89 
rWk + CkZk (2.235) 

is defined as the deviation of the state variable Xk+l from its desired trajectory. Thus 

the closed-loop form of ik is 
k-2 

Zk = -zk-1 - Ckzk + Zk+l '+' Wk o ak-1 (b-rk)+( 
z+l 

öa' 
I'wk (2.236) 

; =1 ae 
and, since the k-th tuning function 7-k is considered instead of an update law, the time 

derivative of Vk becomes 
k2 (k_2 aai 

T1 jtk =-Ec; z; + ZkZk+i - Zi+i ae 
(9 

- Tk) +b (- 9+ Tý) (2.237) 
1=i 1-i 
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Step n. Using the definition zn := xn - an_1, the time derivative of the error variable 
, Zn IS 

n-1 I 
in = cpo(x) + /30(x)u -E 

Öan-1 
xý+l '+' wn (x, ^)9 - 

Öan 1B (2.238) 

=1 ax, DO 
with the last regressor vector defined as 

n-1 

Wn(xj B) 
.= Wn 

ax-1 
cp; (2.239) 

' 

A 

By adding and subtracting 9 in (2.238), in can be rewritten as 
n-1 Öan-1 ^ý ae AnTl "ý 

, zn=VOl) x +Qol) xu- x; +l+wn(x, e- e+w xBB ax 
(2.240) 

i=1 ' 

which can be stabilized with respect to the augmented Lyapunov function 

Vn = Un_1 + 
1zn 

= 
2zTz+ 1BTr_19. 

(2.241) 

The time derivative of V. is 

n-1 n-2 aai 
Vn Cizý z; +l e `e - 74-1 

490 

n aan-1 
TA 

Öan-1 
^ E +zn n-1 + p0(x) + ßo(x)u - x{+1 + Wn e e 

; -1 ae 
axe 

+ eT r-1 (- e 
+74-1 + rWnzn) (2.242) 

One can eliminate B from Vn with the final tuning function, i. e. the actual update law 
AA 

e: =7-n(z, 8) = rn-1+rWnzn 

= rw(z, 9)z, (2.243) 

where the regressor matrix W is composed of the regressor vectors wl, ... , w� 

W (Z, 9) _ [wl, 
... , wn]. (2.244) 

Noting that 
e -- 7'n-1 = Tn(z, B) - Tn-1 = I, Wnzn, (2.245) 

V� can be rewritten as 
n-1 n-1 asn 

Vn =- Cizi + Zn zn-1 + VO(X) + 00(x)u 
- 

-1 xi+l `F' Wn 
Oxi 

i=1 i-1 

_ 

aan-1 n-2 

Tn -E Zi+l 
aas 

rw. (2.246) 
ae ; =1 ae 
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In order to achieve the goal 
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n 

Vn =-c; z? (2.247) 

with all c; > 0, the control u should be chosen to make the bracketed term multiplying 
z� equal to -c�z� as follows 

-1 1 Oa,, -1 
ý' ^ 

aan-1 

U= ýO(ý) - zn-1 - VOE + 2i+1 - Wn e+ 

490 
Tn 

i-1 
ax. 

n-2 aai 
+ zi+l 

ao 
rWn 

- CZ,, 

i=1 

The overall closed-loop form of the error system is 

Az(z, 9)z + WT (z, W 
AA 

8= rw(z, 9)z, 

where the matrix Az (z, B) has the following skew-symmetric form 

-Cl 1 0 ... 0 0 

-1 -C2 1+ 
LQ2,3 "". 02, n-1 L02, n 

0 -1 - 02,3 -C3 """ 03, n-1 Q3, n A- 
s" . 

0 -02, n-1 -03, n-1 " .. -Cn-1 1 `f' Qn-l, n 
0 -02, n -Q3, n """ -1 - Lin-1, n -Cn 

(2.248) 

(2.249) 

(2.250) 

(2.251) 

with 
rw,. (2.252) 

ae 
The skew-symmetric form of the matrix A.. is of paramount importance for the 

stability of the system(2.249)-(2.250), since the relation 

cl 0 ... 0 

A, (z, 9) + Az (z, 9) = -2 
0 C2 ... 0 

V(z, 0) E R"+p (2.253) 

00... c� 

yields (2.247) with the quadratic Lyapunov function (2.241). The stability properties 
of the equilibrium point (z, 6) _ (0,0) of the system (2.249)-(2.250) will be analysed in 

Section 2.4.4. 
A characterization of the above described algorithm from a passivity perspective has 

been presented by Kokotovii et al [58]. Full-state measurement and observed-based 
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versions of backstepping for tracking adaptive control of nonlinear uncertain systems 
have been developed by Kanellakopoulos et al [48,49], Kokotovit [56] and Marino et al 
1761. Also, the nonlinear design of adaptive backstepping controllers for linear systems 
with uncertainties have been studied by Krstii et al [63,62] and an early application of 
the backstepping design has been reported by Dawson et al [21]. 

Example 2.13 (Benchmark Example) Consider the third order system [64] 

il = x2 + coT (xl)B 

X2 = 2g 

X3 =u 

(2.254) 

where 0 is an unknown constant parameter vector and cp is a known vector with smooth 

nonlinear function entries. The system (2.254) has uncertainty level two, i. e. two in- 

tegrators separate the uncertainty from the control input. Therefore, the uncertainty 
is unmatched. This system is already in the PSF form and the backstepping algorithm 

with tuning function can be applied directly. For the regulation of the output y= x1 to 

the desired set-point y,. the backstepping algorithm gives the error variables 

Zl = xl - Yr 
Z2 = x2 - al(xl, 9) (2.255) 

Z3 = x3 - a2(x1, x2, e) 

with the stabilizing functions al and a2 given by 

al = _c T (x1)B - clzl 
A 

a2 = -zl + aýi 
(x2 +-VT (xi)e) + ae T2 - c2zý (2.256) 

The tuning functions obtained at the successive steps are 

Tl = I'ziwl = rz1 

TZ = Tl + rz2W2 = T+ l- I'x2 
aal 

(2.257) ax, 

73 = T2 + rz3W3 = T2 - rz3 

, ax 
2 

1 

The parameter update law yields 

e_ 
T3 _r 2W - 22 

aal 
- Z3 

aas 
ýO 2.258) 

aXI axl 
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and the feedback control law is 
0a2 

T&2 19a2 öal öa2 
u. --zZ+ (22+cp 8)+ X3+ T3-Z2 I' (p-C3Z3 a21 0X2 ob 00 ex i 

The closed-loop system in the (z, B)-coordinate system yields 

-Cl 1 

z= -1 -C2 

0 -l +ä ýoTrv 
aal a«2 

e=rý1ý-axl'-ailz 

2.4.4 Stability and Convergence Properties 

(2.261) 

The global stability of the equilibria (z, j) = (0,0) of the system (2.249)-(2.250) and 
(z, 9) = (X, 0) of the original system, are established in this section (see also [64]). 

From Theorem A. 1 the global stability of the equilibrium (z, j) = (0,0) follows from 

the fact that the derivative V� of the Lyapunov function V� along the solutions of (2.249)- 
(2.250) is nonpositive. Moreover, from the LaSalle Invariance Theorem (Theorem A. 2), 
it follows that the (n + p)-dimensional state (z(t), B(t)) converges to the largest invariant 

set Al of (2.249)-(2.250) contained in E= {(z, 6) E R" +P Iz= 0}, i. e. the set where 
= 0. This proves, in particular, that z(t) --> 0 as t --} oo. 
On the invariant set M we have z-0 and z-0. Thus, by setting z=0 and z=0 

in (2.249)-(2.250), 0=0 and 

WT(z, 9)(0 
- 

0) =0 V(z, 0) E M. (2.262) 

From (2.227) and (2.244) it is seen that 

where 

1 

WT (z, 9) := N(z, 9)FT (x) = aXl 

F(x) = [ý i(xi), CP2(xl 

o ... 0 
i FT (x) (2.263) 
"0 

1 

X2), ... , cp�(x)j (2.264) 
ww 

Since N(z, B) is nonsingular for all (z, e) E M, (2.262) and (2.263) imply 
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(2.259) 

0i 
ä1 VT 9 (2.260) 
Oa2 

1- ä cpT r 
]z+r 

-C3 a 

FT(x)(6 - 
6) =0 (2.265) 
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on M. Since zl = x1 -- yr =0 on M, the equilibrium is X1 = yr = X1, and from (2.265) 

91(XJ)(0 - 
0) =0 (2.266) 

on M. Furthermore, recalling from (2.200) that al = -w 9- clzl, and since z2 = 
2z - at =0 and al = -c (X1)9 on M, the relation X2 = -(pi (X1)9 = X2 is obtained 
on Al. Therefore using (2.265) 

V2 (X1, X2)(B - 
6) (2.267) 

on Al. By proceeding in the same manner for the remaining state variables, it can be 

shown that x=X; and cpT (Xl, 
... , 

X; )(6 - 0) =0 on M for i=1, 
... , n. Thus the 

largest invariant set M in E is contained in 

MC {(z, 8) E Jan+P ( z= 0, FT9= 0} 

_ {(x, 9) E Rn+P 1x=X, FT9 = Fe B} (2.268) 

where Fe = F(X). The two equivalent expressions in (2.268) and the convergence of 
(z(t), 8) to M prove that x(t) -* X as t -+ oo. The convergence of the parameter 

A 

estimates 0 to the true unknown parameters depends on the dimension of M which 
equals p- rank{Fe}. When rank{Fe} = p, then dim M=0, i. e. M becomes the 

equilibrium point x=X, 0=0. Thus the parameter estimates converge to their true 

values, so that the equilibrium x=X, 0=0 is globally asymptotically stable. 
The above facts lead to the following theorem (see [64]): 

Theorem 2.5 The closed-loop system consisting of the plant (2.155), the controller 
(2.248) and the update law (2.248) has a globally stable equilibrium (x, 6) _ (X, 0). Fur- 

thermore, its state (x(t), B(t)) converges to the (p - rank[ FF})-dimensional equilibrium 

manifold M given by (2.268), which means, in particular, that 

m x(t) = X. (2.269) 

If yr =0 and F(0) = 0, then timt.. x(t) = 0. The equilibrium (x, 9) _ (X, 0) is globally 

asymptotically stable if and only if rank{Fe} = p. 

Proof: Given constructively before the statement of Theorem 2.5. 

13 
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Regarding Theorem 2.5, the stability properties of Example 2.13 can be readily 
established. Consider the particular case in which 0 is a scalar uncertain constant 
parameter and cpl(Xi) = xi, i. e. the uncertain system is 

xi = X2+X O 

22 = 13 

+3 =u 

(2.270) 

Since dim 0=p=1, this example corresponds to the simplest case. If the equilibrium 
value for xl is Xl 0 0, then the manifold M is the single point x1 = X1, X2 = X2 = 

-X10, x3 = 0,0 = 0, which is a globally asymptotically stable equilibrium. However, if 

the equilibrium value is X1 = 0, global stabilization is still guaranteed but the parameter 
estimate does not converge to the unknown true parameter value. This is shown in 
Figures 2.3,2.4 and 2.5 showing the state trajectories of the system (2.270) regulated 
to the origin for different initial conditions; design parameters cl = 3, c2 = 1, c3 = 5, 

A 

,y=0.1; and a nominal unknown parameter 0=1. The parameter estimate 0 converges 
to different values for different initial conditions. Nevertheless, the control objective of 
regulation to the origin is accomplished for all the initial conditions (global). The lack 

of convergence of the parameter estimate 0 to the unknown true parameter value is due 

to co (0) =0 and thus the rank condition is not satisfied. 
We consider a second equilibrium point x= (1, -1,0) of the system (2.270). For 

this case the equilibrium point (x, B) = (1, -1,0,0) of the closed-loop system is stabil- 
ized globally and asymptotically. This is shown in Figures 2.6,2.7 and 2.8, which were 

obtained for the same initial conditions and design parameters used in the case of regu- 
lation to the origin. The parameter estimate converges asymptotically to the unknown 
true parameter value, and the state variables to their desired equilibrium values. This 

global asymptotic regulation is achieved because tol(l) =1 and thus the rank condition 
A 

is satisfied. The oscillatory behaviour exhibited by 9 and the state variables in Figure 2.8 

can be eliminated by selecting appropriate values for the design parameters. This is il- 
lustrated in Figure 2.9 in which the design parameters were chosen to be cl = 5, C2 = 5, 

c3 =6 and 7=0.01, and the responses show asymptotic stability. 
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Figure 2.3: Controlled state variables and parameter estimate of the Benchmark example 
in regulation to the origin 
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Figure 2.4: Controlled state variables and parameter estimate of the Benchmark example 
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for the initial conditions x1 = 0.5, X2 = 0, x3 = 0.8 and 0=1 
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Figure 2.5: Controlled state variables and parameter estimate of the Benchmark example 
for the initial conditions x, = 1, X2 = 3, x3 =2 and 0=2 
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Figure 2.6: Controlled state variables and parameter estimate of the Benchmark example 
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Figure 2.7: Controlled state variables and parameter estimate of the Benchmark example 
for the initial conditions x1 = 0.5, x2 = 0, X3 = 0.8 and 0=1 
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Figure 2.8: Controlled state variables and parameter estimate of the Benchmark example 
for the initial conditions xl = 1, X2 = 3, X3 =2 and 0=2 
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Figure 2.9: Controlled state variables and parameter estimate of the Benchmark example 

with the design parameters ci = 5, c2 = 5, x3 =6 and ry = 0.01 

Further analysis of convergence of the parameter estimates can be carried out, 

without loss of generality, by considering the regulation of the second order system 

il = X2 +V (x1)9 (2.271) 

X2 = u+W2(x)e 

to X1 = 0. After applying the backstepping design and using Theorem 2.5, the point 

Si 0 

X2 = -cpi (0)6 (2.272) 
A 

00 

is a globally stable equilibrium, and the state of the closed-loop system converges to the 

equilibrium manifold 
T 

Al = 
{(xa) E 2+P) 

[xi] 0 
(0- 6) =U. 

[wroroo) 

(2.273) 

x2(t) 

Nov, if p=2, three different cases can be distinguished. 

246 24 
t 

Parameter estimate 
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" hank{Fe} = 2. In this case FT can be represented by 

vi (o) 
'Pi (07 -'Pi (0) 0) 1o 

(2.274) 

A 

The manifold M is the single point xl = 0, x2 = -02,01 = 01,0A2 = 02, which is 

a globally asymptotically stable equilibrium. 

" Jlank{Fe} = 1. In this case F' can be represented, for instance, by 

I vi (0) 
= 

-1 1 
(2.275) 

V2 (0, -cp1(0)B) 00 
AA 

The manifold M is the linear variety X1 = 0, x2 = 01 - 02,02 - 01 = 02 - 01. 
Neither of the parameter estimates converge to the actual parameter value, but 

AA they converge jointly to the line 02 = 01 + 02 - Ol in the plane x1 = 0, x2 = 01 - 02. 

9 Rank{Fe} = 0. In this case Fe is represented by 

vi (0) 
_00 (2 . 276) 

ýP2 (01-VPi (0)e) 00 

The manifold M is the plane x=0 and corresponds to the case of the weakest 
convergence properties because one cannot guarantee that the parameter estimates 

converge to any submanifold in M. 

2.5 Example: Flexible-Joint Manipulator 

Consider a flexible-joint mechanism which consists of a link driven by a motor through 

a torsional spring (a single-link flexible-joint robot) in the vertical plane ([72,114]). The 

system dynamics can be written in a state space representation as 

(1 = C2 

C2 =- (Cl 
- 

C3) 
- -- sin((1) 

31 31 

ý3 = C4 (2.277) 
k (C1-(3)+ 

-u C4 = 
3m 3m 

where the state variables (= [C1, ýi, C2, c2]T are the angular positions and velocities of 
the link and the motor shaft, respectively. The control input u is the torque applied to 
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the motor shaft, and the system parameters are m mass of the link; g acceleration due 
to gravity; 1 distance from the motor shaft to the center of mass of the link; k torsional 

spring constant; and ji, j,,, moments of inertia about the motor shaft of the link and the 

motor respectively. 
Suppose that one wishes to control this system under parametric uncertainty con- 

ditions. In particular consider the stabilization of this mechanism when the mass of 
the link m is assumed constant but unknown, due to the manipulator driving loads of 

variable mass. Under these conditions the application of the backstepping algorithm 

with tuning functions can be analysed in order to get an adaptive controller to stabilize 
this system. 

Clearly (2.277) is not in the PSF form (2.155). Nevertheless, one may investigate 

whether or not this system is transformable into (2.155) by firstly rewriting its dynamic 

equations in the form (2.147) 

ý= fo(b) + Sou + fi(OO (2.278) 

where 0=m and the vector fields fo, go and fi are defined by 

(2 00 

-((1 - 6) 0 
-9l sin(c1) fo(b) _It C4 90 =II0 fi(b) (2.279) 

10 

, 
%m 

((1 
-(3) jm 0 

Before checking whether or not the parametric strict-feedback conditions (2.156) of The- 

orem 2.4 are satisfied, one must verify that Assumption 2.1 is satisfied. By noting that 
the system 

ý= fo(b) + Sou (2.280) 

with fo and go defined by (2.279), is a linear system in triangular form, Assumption 2.1 
is obviously satisfied, by Corollary 2.1. In fact because of the triangular form of (2.280), 

the coordinate transformation x= I)(() which transforms (2.280) into (2.154) is found 
by following the recursive procedure described in Section 2.3. Such a transformation is 

given by 

X1 
(1 

C2 

X= 
X2 & 

((1 - (3) (2.281) 
X3 

X4 -ýý 
(C2 

- (4) 
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The vector fields go, ad fogo and ad1ogo which characterize the distributions 9� j=0,1,2 

are 

000 
00k 

go =0 adiogo =1 ad fogo = 
i&Om (2.282) 

1 Jr k Lj, 
nJ 

02 
. 
gym 

In this case the Lie brackets of the vector fields (2.282) and fl yield 

10 

[9o, fl] = [adfogo, fi] = [adPogo, fl) 0=0 (2.283) 

0 

and therefore the parametric strict-feedback condition (2.156) is satisfied. Thus, by 

applying the coordinate transformation (2.281), the system (2.277) is transformed into 

the following system in parametric strict-feedback form 

21 = x2 

22 = 13 + cp(X1)9 

x3 = xq 

i4 = aax3 + aic (xi)O + bu 

(2.284) 

where the nonlinear function cp and the constant known parameters are defined by 

al =k (2.285) 
it 

ao =- 
(ai 

+ (2.286) 
Jm 

b= al (2.287) 
im 

W(xl) _ -9l sin(xi) (2.288) 
it 

The application of the backstepping algorithm with tuning functions for the regulation 
of the output y= xl to the desired set-point y, gives the error variables 

Zl = X1-yr 

Z2 = X2 -- al(xi) (2.289) 

Z3 = X3 - a2(X1, X2, e) 

Z4 = 24 - a3(xl, X2, X3, e), 
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with the stabilizing functions a;, i=1,2,3, given by 

al = -clzl 
a2 = -zl - (Pe + 

ax, X2 - C2Z2 (2.290) 

a3 = -Z2 + 
a2 

X2 + 
aal 

(x3 + fie) + 
aal 

T3 - C3 Z3 

ax, aX2 aä 
The tuning functions obtained at the successive steps are 

T2 = '7Z2W2 = 7Z2ýP 
T3 = 72 + yz3W3 = 72 

aal 
2.291 - 7z3 Ö22 

i9a3) 
T4= 73 +'rz4W4 = 73 +. YZ4 al - aal 

where ry is a scalar adaptation gain. The parameter update law is 

T4 = 'i , z2 - z3 
c? 2+ 

z4 a Öx3 
(2.292) 

22 

and the designed feedback control yields 
3 

- aý32; F1 + 
aa3r4 

+ z3 
a2'YW4 

- Cgzq (2.293) tl = 

[_Z3 

- ap23 - W40 + 

, _1 , ae ae 
The closed-loop system in the (z, 9)-coordinates is 

-Cl 1000 

-1 -c2 101 

0 -1 -C3 1 -"äa2 w4 z+ (9a2 VO (2.294) 

Oat 

r 
ae oxba3 

00 -1 + ry 
C-- 

W4 -C4 al 
aX2 

'YAP 0' 1, - 
aal 

' al a&3 -ýz. 2Z 
(2.295) 

Simulations were performed for the single-link manipulator regulated by the above ad- 

aptive feedback control. The following known parameters were used for simulation pur- 

poses: 

j, = 0.05 N-m-sect ; j,,, = 0.007 N-m-sect ;l=1m; k= 200 N-m/rad 

while the nominal unknown mass was chosen to be m=2 kg. In order to drive the load 

suitably fast to the desired equilibrium position, the design parameters were selected to 
be c1= 8, c2 = 10, c3 = 5, C4 = 10 and ry = 0.005. Figure 2.10 shows the angles of the 
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link and the motor shaft, when the controlled link is moved from the initial condition 
¢1(0) = 0.0873 radians to the desired position 01e = 1.2217 radians, corresponding to 

a link displacement of 1.1344 radians, i. e. 65 degrees, for a torque U= 18.4180 N-rn 

applied to the motor shaft. For this desired angular position of the link, the equilibrium 

clue for X3 is 

x3(U) = X3 =k (6 (U) - 61(U)) =U= 368.36 sec-2 
31 31 

Figure 2.10 also shows the corresponding controlled angular velocities of the link and the 

motor shaft and the estimate 0 of the unknown parameter 0. Since the rank condition 

0 
gl sin(X1) 

rank{Fe} = rank 31 
0=1 

algl 
sin(xi) i! 

xl=Xl 

is satisfied, convergence of the parameter estimate 0 to the unknown true mass value is 

guaranteed. Therefore global asymptotic stabilization of the equilibrium point (x, B) = 
(XI, 0, X3,0,0) of the closed-loop system is achieved, as shown in Figure 2.10. Digital 

simulations were carried out for a link displacement of 120 degrees, i. e. from the initial 

position 0(0) = 0.0873 radians to the desired position Xl = 0e = 2.1817 radians, 
for different initial conditions of the link velocity, angular position and velocity of the 

motor shaft. Figures 2.11,2.12 and 2.13 show the global asymptotic stability of this 

new equilibrium point. The same design parameters were used in all the computer 

simulations. 
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Figure 2.10: Controlled state variables and parameter estimate for a link displacement 

of 65 degrees 
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Figure 2.11: Controlled state variables and parameter estimate for a link displacement 

of 120 degrees 
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Figure 2.12: Controlled state variables and parameter estimate for a link displacement 
A 

of 120 degrees and initial conditions x1 = 0.0873, x2 = 4, X3= 200, X4 = 10 and 0=1 
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Figure 2.13: Controlled state variables and parameter estimate for a link displacement 
A 

of 120 degrees and initial conditions xl = 0.0873, x2 = 10, x3 = 100, X4 = 100 and 0=5 



Chapter 3 

Dynamical Deterministic Feedback 

Control 

3.1 Introduction 

In this chapter the stabilization of nonlinear systems via dynamical deterministic (non- 

adaptive) controllers is studied. The systematic procedure described here is a new 
extension of the design of static feedback control for input-output linearizable nonlinear 
systems. The extended class of deterministic nonlinear systems for which this procedure 
is applicable is characterized by observable minimum phase of ne nonlinear systems. 

We first need to consider the problem of stabilizing minimum phase nonlinear systems 
locally and globally. Then dynamical compensation is presented as a natural extension 
of the static stabilization of these systems. Finally a new deterministic backstepping 

algorithm for the design of dynamical feedback controllers is described, and examples 
illustrate the applicability of the design procedure. 

3.2 Stabilization of Minimum Phase Systems 

The stabilization of completely linearizable systems discussed Chapter 2, corresponds to 

the simplest case of regulation of nonlinear systems. In this section the stabilization of 

partially linearizable nonlinear systems is studied. In particular nonlinear systems with 

relative degree p less than the system order, with respect to an output y= h(x), are 

considered. Consider a nonlinear single-input single-output system described by 

i= 
.f 

(x) + 9(x)u (3.1) 

y= h(x) 

81 
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where f (x) and g(x) are smooth vector fields in Rn, and h(x) is a smooth scalar function. 
Suppose x=0 is an equilibrium point of the vector field f (x), i. e. f (0) =0 and h(0) = 0. 
Assume also that the system (3.1) has relative degree p<n at x=0. Then there exists 
a neighbourhood Ro of x=0 in Rn and a local change of coordinates z= ((x) defined 

on 1b, satisfying 4)(0) = 0, such that in the new coordinates, the system is described by 
the equations in the normal form (see Section 2.2.3 for details) [44] 

Z1 = z2 

z2 = z3 

zP-1 = zP 

zP = a(z) + b(z)u (3.2) 

zP+i = qa+i(z) 

in = qn(z) 

y= Zi. 

In order to write (3.2) in a slightly more compact manner, set 

h(x) zl zP+1 

= 

Lfh(x) 

= 
Z2 

= 
Zp+2 

, 77 (3.3) 

L7 1h(x) 
zp Zn 

The normal form of a single-input single-output nonlinear system with p<n at x=0, 

can be rewritten as 

zl = z2 

ZZ = z3 

ip-1 = zP 

zp = a(e, 17) + b(C, i)u (3.4) 

ý= q(C, 1I) 

y= zl 

Consider now the problem of zeroing the output, namely finding, if any exist, pairs formed 

by an initial state x° and by an input function u°("), defined for all t in a neighbourhood 
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of t=0, such that the corresponding output y(t) of the system is identically zero for all 
t in a neighbourhood of t=0 [44]. 

Recalling that in the normal form 

y(t) = zl(t), (3.5) 

the constraint y(t) =0 for all t implies 

zl(t) = z2(t) _ ... = zp(t) = 0, (3.6) 

i. e. fi(t) =0 for all t. In addition the input u(t) must necessarily be the unique solution 
of the equation 

0= a(0, rj) + b(0, ri)u. (3.7) 

As far as the variable q(t) is concerned, it is clear that, since e(t) is identically zero, its 
behaviour is governed by the differential equation 

ý(t) = q(o, q(t)). (3.8) 

We can now conclude that, in order to have the output y(t) of the system identically 

zero, necessarily the initial state must be such that «(0) = 0, whereas rß(0) = q° can be 

chosen arbitrarily. Depending upon the value 17°, the unique input capable of keeping 

y(t) identically zero for all times is 

a(O, ra(t)) 
u(t) - b(O, q(t)) 

(3.9) 

where Y7(t) denotes the solution of the differential equation (3.8) with initial condition 

il(0) = q°. 
The dynamics of equation (3.8) correspond to the dynamics describing the "internal" 

behaviour of the system when input and initial conditions have been chosen in such a 
way as to constrain the output to remain identically zero. These dynamics are called 
the zero dynamics of the system. The trajectories of (3.8) can also be interpreted as 
autonomous trajectories of an appropriate closed-loop system. This can be shown by 
imposing the feedback control law 

u(t) - 
(-a(0, ra(t)) + v) 

b(o, ra(t)) 
(3.10) 

with va new input, to a nonlinear system in the normal form (3.4). The closed-loop 
system thus obtained is described by the equations 

ý= Ae'+By 

ý= q(C, 77) 
y= Ce 

(3.11) 
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with 
010... 00 

001... 00 
A= ...... ", B000... 

10 
000... 01 

C=(1 0 ... 0). 

If the linear subsystem is initially at rest and no input is applied, then y(t) =0 for all 

values of t, and the corresponding internal dynamics of the whole closed-loop system 
are exactly those of equation (3.8), namely, the zero dynamics. The concept of the zero 
dynamics of a nonlinear system plays a role analogously to that of the "zeros" of the 
transfer function in a linear system. In fact the linear approximation at 77 =0 of the 

zero dynamics of a system coincides with the zero dynamics of a linear approximation 
of the system at x=0 (see [44]). 

The interpretation of equation (3.8), the dynamics describing the internal behaviour 

of the system when the output is forced to track the output y(t) =0 exactly, can 
be extended to the case in which the output to be tracked is any arbitrary function. 

Consider the problem of finding, if any exist, pairs consisting of an initial state x° 
and an input function u(. ), defined for all t in a neighbourhood of t=0, such that 

the corresponding output y(t) of the system coincides exactly with yr(t) for all t in a 

neighbourhood of t=0. Proceeding as before, the relation y(t) = yr(t) necessarily 
implies 

z; (t) = (i_1)(t), 1<i<p dt 

Setting 

r(t) = Col (yr(t), y*' (t)) ... 1 yýP-ýý(t)) 

the input u(t) must necessarily satisfy 

y(p) = b(er(t), z(t)) + a(er(t), ij(t))u(t) 
where q(t) is a solution of the differential equation 

al(t) = q'(ý, (t), i(t))" 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Thus, if an output y(t) has to track yr(t) exactly, then necessarily the initial state of the 

system must be set to a value such that 6(0) = er(0), whereas r7(0) = r1O can be chosen 

arbitrarily. Under these conditions the unique input capable of keeping y(t) = yr(t) is 

u(tý - 
y(P) _ a(er(t), 77(t)) 

dt 

b(C, (t), q(t)) 
(3.16) 
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where q(t) denotes the solution of the differential equation (3.15) with initial condition 
«0) = G(O). 

Note that the internal dynamics (3.15) and the equation (3.16) describe a system 
with input ar(t), output u(t) and state q(t) which can be interpreted as a realization of 
the inverse of the original system [44]. 

Definition 3.1 (Minimum Phase) The system (3.1) with p<n and zero dynamics 

(3.8) is said to be minimum phase if 77 =0 is an asymptotically stable equilibrium point 

of (3.8). A system which is not minimum phase is said to be non-minimum phase. 

Example 3.1 Consider the zero dynamics of the system 

x2+x1 0 

i2 = X3 +1u (3.17) 
i3 xlx2 _ x3 0 

23 

y=x1. 

Transform (3.17) into the normal form by proceeding as described in Section 2.2.3. Thus, 

taking successive time derivatives of the output one obtains 

Lgh(x) = 0, L fh(x) = X2 + xi, LgL fh(x) =1. (3.18) 

Note that the relative degree of (3.17) is 2. So we can take y= h(x) and y=L jh(x) 
as the first two coordinates of the transformation placing (3.17) into the normal form. 
The third coordinate can be chosen in this case as x3. Therefore the normal form can 
be calculated by using the mapping 

Zi = Xi 

Z2 = X2 +X (3.19) 

Z3 = X3 

which is a globally defined coordinate transformation. With these new coordinates, 
(3.17) is transformed into the following form 

Z1 = z2 

z2 = z3+2z1z2-f-u 

z3 = -z3+zl(z2-zi)2 

(3.20) 

The constraint y(t) =0 for all t imposes zi(t)= z2(t) =0 for all t, and the state must 

necessarily be governed by the zero dynamics 

z3 
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Since z3 =0 is an asymptotically stable equilibrium point of the zero dynamics (3.21), 

system (3.17) is minimum phase. 

Definition 3.1 is analogous to the notion of minimum phase for the case of linear systems 
in which a system is said to be minimum phase if all its transmission zeros have negative 
real parts. 

3.2.1 Local Asymptotic Stabilization 

The application of the notion of zero dynamics to the local stabilization of minimum 
phase nonlinear systems was firstly described by Byrnes and Isidori ([8J-[11J) and is 

summarized in this section. 
Consider a nonlinear system in the normal form (3.4) and impose a feedback of the 

form 

u b(e, ý1) 
(-a(6, q) - co6i - 0162 - ... - cP-16p) (3.22) 

where co, cl, ... , cp-1 are chosen positive real numbers. Recalling the notation in (3.3), 

the choice of the feedback control (3.22) yields the closed-loop system 

_ (A + BK)ý 

with 

A+ BIf = 

0 1 0... 
0 0 1 ... 

0 0 0 ... 
-CO -Cl -C2 ... 

0 
0 

1 

-Cp-1 

The matrix A+ BK has a Hurwitz characteristic polynomial 

P(S) = CO + C13 + 
... 

+ Cp-13p-1 + 3p 

(3.23) 

(3.24) 

(3.25) 

i. e. all its roots have negative real parts. From this form of the equations describing the 

closed-loop system, the following property is deduced (see [441): 

Proposition 3.1 Suppose the equilibrium i=0 of the zero dynamics of the system is 

locally asymptotically stable and all the roots of the polynomial p(s) have negative real 

parts. Then the feedback control (3.22) locally asymptotically stabilizes the closed-loop 

system (3.23) at the equilibrium (C, 77) = (0,0). 
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The linear approximation of the zero dynamics at rj =0 is characterized by the matrix 

Q_ 
[t9q()1 

ai1 (E, n)=(o, o) 
(3.26) 

If Q has its eigenvalues in the left half complex plane, then the result stated in Propos- 
ition 3.1 would have been a trivial consequence of the Principle of Stability of the First 
Approximation, because the linear approximation of (3.23) has the form [44] 

(3.27) 

However, Proposition 3.1 establishes a stronger result, because it relies only upon the 

assumption that i=0 is an asymptotically stable equilibrium of the zero dynamics of 
the system, and this does not necessarily require the asymptotic stability of the linear 

approximation (i. e. all eigenvalues of Q having negative real parts). In other words, the 

result may hold also in the case of some eigenvalues of Q with zero real parts. 
In order to design a stabilizing control law, there is no need to know explicitly the 

expression of the normal form, only that the system has zero dynamics with a locally 

asymptotically stable equilibrium at ii = 0. In the original coordinates the stabilizing 
control law (3.22) assumes the form 

u= p_1 
C-L 

'Ph(x) - coh(x) - c1Lfh(x) -... - cP_1L f lh(x)). (3.28) 
LgL1 h(x) 

If an output function is not defined, the zero dynamics is also not defined. However, it 

may happen that one is able to design a suitable dummy output whose associated zero 
dynamics have an asymptotically stable equilibrium. In this case a control law of the 
form discussed above will guarantee asymptotic stability. 

Example 3.2 Consider the system already discussed in Example 3.1. Its linear approx- 
imation at x=0 is described by matrices A and B of the form 

oio 0 
A= ] 

s-0 
=001B= s(o) =1 (3.29) [ate 

000 0 
and has one uncontrollable mode corresponding to the eigenvalue A=0. However, its 

zero dynamics 

Z3=-Z (3.30) 

has an asymptotically stable equilibrium at z3 = 0. Thus, from Proposition 3.1, the 
control law 

u= -z3 - 2ziz2 -C Z1 - C1Z2 (3.31) 
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stabilizes the equilibrium x=0. This control law, rewritten in the original coordinates, 
assumes the form 

U. -X3 - 2xi(x2 + xi) - cox, - Cl(X2 + xi) (3.32) 

3.2.2 Global Asymptotic Stabilization 

Global stabilization of nonlinear systems has been intensively studied in the recent years 
(see [11], [64], [77], [119]). We consider in this section a special class of single-input single- 
output nonlinear systems which can be stabilized via state feedback. In particular the 

systems to be considered are those which can be transformed by means of a globally 
defined change of coordinates and/or feedback, into a system having the special normal 
form [441 

z= fo (z, ei) 

1= e2 

(3.33) 

ýP-1 = SP 

ýP = U. 

Note that a system in the normal form of equation (3.4) can be converted via feedback 
into a system of the form 

ý1 = e2 

(3.34) 

U 

= q(ý, i) 

In addition, if the normal form (3.4) is defined globally, so also is the feedback yielding 
the normal form (3.34). The form of (3.33) is a special case of the normal form (3.34) 
in which q(C, i) depends only upon the component ý1 of the vector ý. 

In order to simplify the analysis, consider initially the case p=1. Then (3.33) has 

the form 

,z=f (z, 4) (3.35) 

ý= 
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with (z, f) E R"-1 x R, and f (0,0) = 0. Suppose the subsystem 

z=f (z, 0) (3.36) 

has a global asymptotically stable equilibrium at z=0. Then, in view of a converse Lya- 

punov theorem, there exists a smooth positive definite and radially unbounded function 
V(z) such that (aV/öz) f (z, 0) is negative for each nonzero z. Using this property, it is 

easy to show that (3.35) can be stabilized globally and asymptotically. Observe that the 
function f (z, ý) can be written in the form 

f (z) e) =f (z, 0) + p(z, ')e (3.37) 

where p(z, C) is a smooth function. It suffices to observe that the difference 

Y (Z, 4) :=f (z, e) -f (z, 0) (3.38) 

is a smooth function vanishing at = 0, and we can express f (z, ý) as 

.f 
(z, )= 10 1 of (z, se) ds = 10 1 of (zý C) 

eds (3.39) 
os a( 

Ic=ge 

Now consider the positive definite and radially unbounded function 

W(z, )= V(z) + 
2ý (3.40) 

and observe that 

(Ow aw (f(2, e) 
= 

av ay 
az ae u Dz 

f (z' 0) + äz p(z, ý)ý + eu (3.41) 

Choosing 

u= U(Z)) 
az p(z, ) (3.42) 

yields 

(p.!! öW f(z, ý) 
<0 (3.43) 

äz öC u 

for all nonzero (z, ý). Therefore from Theorem A. 1 it is concluded that the closed-loop 
system 

,z=f (z) e) 

ý= u(z) 6) 

(3.44) 

has a globally asymptotically stable equilibrium at (z, ý) = (0,0). In other words it has 

been shown that, if (3.36) has a globally asymptotically stable equilibrium at z=0, then 
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the equilibrium (z, ý) = (0,0) of the system (3.35) can be rendered globally asymptotic- 
ally stable by means of a smooth feedback law u= u(z, '). 

This result can be easily extended by showing that, for the purpose of stabilizing the 

equilibrium (z, ý) = (0,0) of (3.35), it suffices to assume that the equilibrium z=0 of 

,z=f (z, e) (3.45) 

is stabilizable by means of a smooth law e= a(z). In other words the state variable ý 
is used as a virtual control to stabilize (3.45) in a manner similar to the backstepping 

approach [44]. 

Lemma 3.1 Consider a system of the form (3.35). Suppose there exists a smooth real- 
valued function 

C= a(z) (3.46) 

with a(0) =0 and a smooth real-valued function V(z), which is positive definite and 
radially unbounded, such that 

ýz 
f (z, a(z)) <0 (3.47) 

for all nonzero z. Then there exists a smooth static feedback control law u= u(z, ý) with 

u(0,0) =0 and a smooth real-valued function 

W(z, )= V(z) + 
1ý2 

which is positive definite and radially unbounded, such that 

for all nonzero (z, e). 

Div aW f (z, e) <o äz äe u(z, e) 

Proof. It suffices to consider the globally defined change of variables 

y=- a(z) 

which transforms (3.35) into 

The feedback law 

f (z, y+ a(z)) 

-aaf(z, y+a(z))+u. 

u= aaf 
(z, y. + a(z)) + ul 

(3.48) 

(3.49) 

(3.50) 

(3.51) 

(3.52) 
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with ul an input to allow additional control actions, yields 

z=f (z, y+ a(z)) (3.53) 

y= ul 

which satisfies the hypotheses on which the previous construction is based. 

0 
For the general case of nonlinear systems with relative degree p>1, the repeated use 

of Lemma 3.1 allows one to derive the following result concerning global stabilization of 
a system in the form (3.33). 

Theorem 3.1 Consider a system of the form (3.33). Suppose there exists a smooth 
real-valued function 

e= a(z) (3.54) 

with a(0) =0 and a smooth real valued function V (z), which is positive definite and 
radially unbounded, such that 

az 
fo(z, a(z)) <0 (3.55) 

for all nonzero z. Then there exists a smooth static feedback control law 

(3.56) 

with u(0) = 0, which globally asymptotically stabilizes the equilibrium (z, 

(0,0,... , 0) of the corresponding closed-loop system. 

A special case for which the results of Theorem 3.1 hold is when a(z) = 0, i. e. when 
z= fo(z, 0) has a globally asymptotically stable equilibrium at z=0. This is the case of 

a system whose zero dynamics has a globally asymptotically stable equilibrium at z=0, 
i. e. the case of a globally minimum phase system. 

Example 3.3 Consider the system (3.17) of Example 3.1. Its normal form, obtained 
by using the transformation (3.19), is 

il = zZ 

i2 = z3+2z1z2+2l 

z3 = -z3 + zl(z2 - z2I)2 

(3.57) 

This system is an example of the special case for which Theorem 3.1 holds with a=0, 
because the zero dynamics 

z3 = -z3 (3.58) 
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has a globally asymptotically stable equilibrium at z3 = 0. Therefore the control law 
(3.32) designed in Example 3.2 globally stabilizes the equilibrium x=0. 

Example 3.4 Consider the problem of stabilizing globally asymptotically the equilib- 
rium (xl, x2, Xs) _ (0) 0,0) of the nonlinear system 

±1= X2 -I- 2i 

x2 X3 +X XI (3.59) 

x3 =U 

Note that this system has the triangular form (2.95) and thus the recursive control design 

of Section 2.3 can be used. However, for illustrative purposes, we will use the procedure 
explained above in this section for its stabilization. Since no output function has been 

specified, a "dummy output" of the form 

y= X3 - a(xl, x2) (3.60) 

can be used. This output yields a relative degree p=1 at each xE R3, and a two- 
dimensional zero dynamics. The dynamics obtained by imposing the constraint y=0 

on (3.59), is given by 

+ X2 X2 1 

X2 = a(xl, x2) + x2 x1 

(3.61) 

From the discussion above, one must find, if possible, a function a(x1, X2) which glob- 

ally stabilizes the equilibrium (x1, x2) = (0,0) of (3.61). Then there exists an input 

u(x1, X2, x3) that globally asymptotically stabilizes the equilibrium (x1, X2, x3) = (0,0,0) 

of (3.59). Noting the triangular form of (3.61), one can use the systematic procedure 
described in Section 2.3 to find the coordinate transformation 

zl = X1 

z2 = x2 + Xi 

and the control law 

a(xl) x2) --4 -x2 x1 - 2x1(x2 + xi) - coil - Cl (X2 + xi) 

(3.62) 

(3.63) 

which globally asymptotically stabilizes the equilibrium (xl, x2) = (0,0) of (3.61). In 

fact, the closed-loop system expressed in the coordinates (3.62), has the form 

z=Az= 
01z 

-co -cl 
(3.64) 
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where co, cl > 0. In order to obtain the input that globally stabilizes the equilibrium 
x=0 of (3.59), it is necessary to use the construction indicated in the proof of Lemma 
3.1. With the change of variables (3.60), the system (3.59) is transformed into 

il = X2 + Xi 

i2 = y+«(x1) x2)+x x1 (3.65) 

u ail 
(x2 + xi) - axe 

(y + «(x1' x2 ) + x2xll 

Choosing a preliminary feedback 

u= 
Oa 
ax, 

(x2 +- xi) + axe 
(y + a(xl, X2) + xZxi + ul (3.66) 

yields 

il = x2+xi 

i2 =y+ a(xl, x2) + x2x1 (3.67) 

= ul (3.68) 

which has the form of (3.35) 

,z=f 
(z, ) (3.69) 

ý= ul 

with Z 0 (3.70) Z= 
xl 

'f 
(z, x2 + x1 

2+ 22 ü(xl, x2) +X 2X 1 

,z=f 
(z, 0) has a globally asymptotically stable equilibrium at z=0. As a consequence 

this system can be globally asymptotically stabilized by means of a feedback control law 

ul = uI(z, e) similar to (3.42). 

3.3 Dynamical Feedback Stabilization 

As shown in Section 2.2 the study of transformations of affine nonlinear systems 

±= f(x) + 9(x)u (3.71) 

with f (0) =0 into linear controllable systems 

z=Az+By (3.72) 
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provides a classification of nonlinear systems, and a simplification of the analysis and 
control of those systems (3.71) which are transformable into the form (3.72). 

A natural generalization of static feedback transformations is given by dynamic state 
feedback transformations 

cb = a(x, w)+b(x, w) 

u= a(x, W) +Q(x, W) 

(3.73) 

Dynamical compensation was introduced in [102] and also investigated in [24] in the 

study of input-output decoupling of nonlinear systems with outputs y= h(x). In [44] 

sufficient conditions were given for which a system (3.71) with outputs can be simultan- 
eously input-output decoupled and linearized by a dynamic compensator. Charlet et al 
[14,151 addressed the problem of transforming a nonlinear multi-input system without 
outputs into a linear controllable one via dynamic feedback and extended state space 
diffeomorphism. They also gave sufficient conditions for which a class of multi-input 
systems is dynamic feedback linearizable. 

In this section dynamical feedback stabilization via input-output linearization of 

nonlinear systems with relative degree less than the system order is presented. Consider 

a single-input single-output nonlinear system 

±= Ax) + 9(x)u 

y= h(s) 

(3.74) 

where f (x) and g(x) are smooth vector fields defined on an open set Ro c R", and h(x) 

is a smooth scalar function also defined on Ro. Assume that the origin x=0 is an 

equilibrium point of the vector field f (x), i. e. f (0) =0 and h(0) = 0. Assume also that 

system (3.74) has relative degree p<n at x=0. Consider the operator 

£0(x) = h(x) 
ö, C'-lx 4(x) _(h()) f(x) 1<i<p -1 ax 

£h (x, vi) -a 
(£h 1(x)) 

f (x) g(X)vi) (3.75) 

£h(2, vll ... , v; _p+l) - ax 

(f(x)+g(x)vi) 

i-p a (£, 
h1(x'vl' "'y-P» +Z- - av; v, +, p+ 1<i<n -1 

; _l 
defined on an extended state space (x, v) E ?"x 1"'". This operator allows one to 

express the output y and its first n -1 derivatives as functions of x, u and the derivatives 
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of u 
y 'Ch 
(1) ri 

(1)(X, Vi, ... , un-P) (3.76) 

y(n-1) Icn-1 

Assumption 3.1 The system (8.74) is observable, i. e. the mapping (8.76) satisfies the 

rank condition 

rank 
(9 x=n 

(3.77) 

Vx E Ido and Vvl, ... 1 v�_p. 

Assumption 3.2 The system (8.74) is minimum phase in Ro. 

Lemma 3.2 With Assumption 3.1, the mapping (3.76) is a local change of coordinates 
which places system (3.74) into the form 

Z1 = Z2 

Z2 = Z3 

x�_1 = Zn (3.78) 

in = ap_P(z, u, u(1), ... , u(n_n-1)) + b(z)u(n-n) 

y= Zi 

with b(z) 00 in &. 

Proof. Recall from Section 2.2.3 that an independent set of functions can be formed by 

the output and its first p --1 derivatives {y, y('), ..., y(P )}. It can be used as a partial 
coordinate transformation to place system (3.74) into the form 

zl = z2 

z2 = Z3 

(3.79) 

zn-i = zp 
zp = a(x) + b(x)u 

with 
a(x) =L jh(x), b(x) = LgLPI-lh(x) 
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Using the set {y, y('), ... , y(p'1)} as the first p functions of the mapping (3.76), the 

remaining n-p functions are defined by using the operator (3.75) 

zp+l = a(x) + b(x)u (3.80) 

zp+l+; = a; (x, u, ..., u )) + b(x)u(') 1<i<n-p-1 

where 
a; (x, u,... ' uff`-l)) "= 

d 
dt 

i+ 
dbu(i-i) (3.81) 

In view of Assumption 3.1 the mapping z= (zl, ... , zn)T = 1(x, u, ... , u(n-P-11) con- 
stitutes an invertible local change of coordinates. The proof is completed by observing 
that the relations (3.80) are obtained by computing the time derivative of the previous 
relation (derivative of the output), and noting that 

da�-P_1 (4D-1(z)) db((D-1(z)) 

dt + dt u("-p-i) 

b(z) = 
[b(x)] 

ý_ý-1 (: ) 

(3.82) 

(3.83) 

11 

It is now possible to state the following theorem. 

Theorem 3.2 With Assumptions 3.1 and 3.2 there exists a dynamical controller 

vl = V2 

vn-p-1 = vn-p 

n 

vn-p = -b(z) 
(an-p(z, 

Vl,... 'vn-p-1) 
+ Ci-1zi - u) 

i. l 
26 = V1 

(3.84) 

with ü, a new input, which locally linearizes the dynamics in the z coordinates with 
cigenvalues arbitrarily placed. 

Proof. Assumption 3.2 guarantees the asymptotic stability of the internal dynamics 

of system (3.74). Then Assumption 3.1 allows one to transform the system (3.74) into 

(3.78) by virtue of Lemma 3.2. So, for the system (3.78) the dynamical controller 

(n-p) 
--1n u b(z) a(3.85) 

i=l 
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yields the linearized closed-loop system in the z coordinates 

01 
00 

z=Az+Bü= . 
00 

-co -cl 

o ... o0 
1 ... 00 

" ... z -}- ü 

0 ... 10 

-C2 ... -Cn-1 1 

97 

(3.86) 

where the design parameters c;, i=0, ... ,n-1, can be selected to assign the roots of 
the characteristic polynomial 

p(s) = Co + Cis + 
... 

+ Cn-ISn-1 + Sn (3.87) 

at arbitrary locations of the open left-half complex plane. The proof is completed by 
defining in (3.85) and (3.78) the extended coordinates 

v; =u('-1), 1<i<n-p (3.88) 

which characterizes the set of state variables of the dynamical compensator (3.84). 

Example 3.5 Consider the nonlinear system of Example 3.1 

il X2+X 0 
X2 = X3 +1u 

- X3 0 i3 XiX 2) 

y= X1. 

13 

(3.89) 

This system has relative degree p=2. Therefore using the partial transformation 

(z')f y x1 (3.90) 
Z2 y(l X2 + Xi 

one obtains 

il = z2 (3.91) 

z2 = X3 + 2x1(x2 -I- xi) -I- U. 

It was shown in Example 3.1 that the system (3.89) is globally minimum phase. Taking 

Z3 = 13 + 2xi(x2 + xi) +u (3.92) 
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gives a globally defined control- dependent transformation 

xl 

z= (x, u) = x2 -}- x2 (3.93) 

x3+2x1(x2+xi)+u 

satisfying the observability condition (3.77). Its inverse is defined as 

zl 

x _-1(z, u) = z2 - zi (3.94) 

z3-2zlz2-u 

The transformed system takes the form 

il = Z2 

, z2 = z3 (3.95) 

z3 = zl(z2 - zi)2 - (z3 - 2z1z2 - u)3 +2 (Z2 + ziz3) + is 

Then the dynamical controller 

fc = -zl(z2 - zi)2 + (z3 - 2z1z2 - u)3 - 2(z2 + zlz3) - cozi - C1Z2 - C2Z3 (3.96) 

linearizes system (3.95) and places its eigenvalues in desired positions of the open left-half 

complex plane. Hence the equilibrium (x1, X2, x3) = (0,0,0) is globally asymptotically 

stabilized. 

This systematic procedure is suitable for affine minimum phase nonlinear systems which 

satisfy the observability condition (3.77). Zeitz [125] analysed the representation of 

non-affine systems 

x= f(x, u) 

y= h(x, u) 

(3.97) 

into an extended state space formed by a set of higher-order differential equations in- 

volving the inputs, outputs and their respective derivatives. A similar approach was 

proposed in [123] by van der Schaft. The common idea of both approaches is based 

upon successive differentiation of the outputs and the extension of the system (3.97) by 

incorporating equations depending on the inputs, outputs and their derivatives. In addi- 

tion, assuming that the system (3.95) satisfies an observability condition defined by using 
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an operator similar to (3.75), Zeitz introduced the following Generalized Observability 
Canonical Form 

Z1 = Z2 

Z2 = Z3 

(3.98) 
Z»-1 = Zn 

in = C(z, uý 26(1j..., 26 n-p)) 

Fliess ([26]-[28)) obtained the same canonical form by using a differential algebraic ap- 
proach. In this setting new generalized controller canonical forms for linear and nonlinear 
systems were proposed, for which dynamical compensators can be designed to achieve 
local (global) stabilization. Indeed the relation 

c(z, u, u(1), ..., u(n-n)) c; -iz, +V (3.99) 

defines a linearizing dynamic state feedback for systems in the form (3.98), provided 
that the non-singularity condition 

äc(z, u, um) ... , u(n-p) #0 (3.100) 
OU(n-P) 

is satisfied, at least locally. Note that the condition (3.100) is always satisfied, by 

construction, for the class of affine nonlinear systems (3.74). 

The problem of stabilizing nonlinear systems via dynamical feedback control has 

attracted the attention of many researchers (see, for instance, [20,124]). Recently a lot 

of attention has been paid to global and semi-global stabilization of nonlinear systems 

via dynamical state feedback and output feedback ([77,118,119,121]). 

3.4 Dynamical Deterministic Backstepping (DDB) Al- 

gorithm 
In this section we describe our new extension to the SDB algorithm given in Section 2.3.1 
for triangular systems. The DDB algorithm adopts the same systematic procedure of the 
SDB algorithm, which is based upon Lyapunov-based control design, and is applicable 
to the wider class of deterministic observable minimum phase nonlinear systems. The 

controlled plant does not need to be transformable to a triangular form or contain 
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a cascade form. The stability results are in general local, but global results can be 

achieved if all the assumed conditions are satisfied globally. 
Consider a single-input single-output nonlinear system 

1' =f (x) + 9(x)u 

y=h(x) 

(3.101) 

where f (x) and g(x) are smooth vector fields defined on an open set Ro C R", and h(x) 

is a smooth scalar function also defined on Xo. Assume that the origin x=0 is an 

equilibrium point of the vector field f (x), i. e. f (0) =0 and h(0) = 0. Assume also that 
the system (3.101) has relative degree p<n at x=0. If the system (3.101) satisfies the 
Assumptions 3.1 and 3.2, the following DDB algorithm can be used for regulation of the 

output h(x) to a desired set point yr via a dynamical controller. 

DDB Algorithm 

Coordinate transformation 

zl = ho(x) =y- yr = h(x) - y,. 

zi = h1-i(x) = zj-2 + 
aäß 2f (x) + cj-lzj_1 2<j<p (3.102) 

ahk_2 k-p-1 ahk_2 
zk = hk-1(2, v1 ... e Vk-p) = zk-2 + 

a2 \f 
(x) + g(x)vl) +E 

avi 11+1 

i=i 
+Ck_1zk_1 p+1<k<n 

Dynamical control law 

bl = V2 

VZ = v3 

(3.103) 

vn-p-1 = vn-p 

Üh 
_1 

-1 

Iahn-1( 
l n-P-1 ahn-1 

' n-p = av 

[-Z, 

-, - ax \f 

(X) + g(x)v1) -E avi 
vi-hl - CnZn 

n-p i_1 

Since we consider affine minimum phase nonlinear systems, the condition 
äh�-1 

_ 
ahP-i 

9(X) 0 (3.104) 

is in general satisfied locally. The following steps describe the procedure leading to the 

general DDB algorithm above. 
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Step 1. Choose zl = h° := h(x) - yr as the first new state coordinate. The first 

subsystem is defined as 
zi = 

axc (f(x) + g(x)u) (3.105) 

If the relative degree p>1, 
°g(x) =0 (3.106) 

, Ox 

and (3.105) can be rewritten as 
zi = 

ýxo 
f (x)" (3.107) 

We stabilize (3.107) with respect to the quadratic Lyapunov function 

V1 =2 zi. (3.108) 

The time derivative of Vi is 
Vi = zi 

(2. 
f(x)) (3.109) 

If the bracketed term multiplying zl equals -clzl, i. e. 

Oho 
f (x) _ -clzl (3.110) 

where cl is a positive constant, we can achieve Vi = -clzi. However, since (3.110) is 

not satisfied, a new coordinate is defined as 

z2 = hi(x) :_ 
hof(x) 

+ cizi (3.111) 
lox 

Then il becomes 
il = -clz1 + Z2 (3.112) 

and 
V1 = -CZ + Z1Z2 (3.113) 

The term Z1Z2 in (3.113) will be compensated at the next step. 

Step j (2 <j<p- 1). By induction, this general j-th step characterizes the first p-1 

steps in which the control input u does not appear explicitly. By obtaining the time 

derivative of z j, the previous subsystem is augmented with 

ax 
f(x) (3.114) zj = ax 

(f (x) + s(x)u) = 
ah 

which will be stabilized with respect to the augmented Lyapunov function 

V; = V_1+2z3 (3.115) 
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The time derivative of V is 

'-' ah V=-E ciz; + zi 
[Zi-i 

+ ax 1f (x) (3.116) 
i=l 

If the bracketed term multiplying zj equals -c; zj, i. e. 

z; -1 + aax 1 f(x) = -cjzz (3.117) 

where c; is a positive constant, we can achieve V=-E; 
1 c; z; . However, since (3.117) 

is not satisfied, a new coordinate is defined as 

zj+i = hj .= z3_1 + 
Ohj 1f (x) + cczj (3.118) 

(9 x 

Then z; becomes 
zi _ -zz-1 - cczz + z? +i (3.119) 

and i 
V=- cjzo + zizi+l (3.120) 

s-i 

Step k (p <k<n- 1). This general k-th step characterizes the steps in which the 

control input u and its derivatives appear explicitly. By obtaining the time derivative of 

zk the previous subsystem is augmented with 
k-P 

zk = 
ahk-1(f (x) +9(X )vl) +E 

öhk-1 
v, +i (3.121) 

\ av; Ox s-1 

Note that we have substituted in (3.121) the control u and its derivatives ic, 97. .. by the 

state variables v1, v2, ... respectively, which define the dynamical compensator (3.103). 

The subsystem (3.121) can be stabilized with respect to the augmented Lyapunov func- 

tion 
Vk=Vk-1+2k (3.122) 

The time derivative of Vk is 

k-1 ahk-1r l 
k-p Ohk-1 

Vk =- csz? + Zk zk-1 + ax \f 
(x) + 9(ý)vlJ + av; v'+1 (3.123) 

If the bracketed term multiplying Zk equals -CkZk, i. e. 

Zk-1 + 
ahk-i (1(x) + 9(X)vi) + 

k-P 
ahk-i 

vti+i = -CkZk (3.124) 
aý i-1 

av; 
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where ck is a positive design parameter, we can achieve V=-1c; z;. However, since 
(3.124) is not satisfied, a new coordinate is defined as 

k-P 

zk+i = hk := zk-1 + 
ahk-i 

f(x) + g(x)vl +Z 
ähß-i 

vi+l + CkZk (3.125) 
ax av, i=l Then zk becomes 

zk =- zk-i - CkZk + Zk+l (3.126) 

and k 
Vk =- Cizi + zkzk+l (3.127) 

i=1 

Step n. At this final step the time derivative of zn is 

Cýlln-1 
n-p-1 ahn-1 ahn-1 

in = ax 
(f (X) + 9(x)vl) + 

övi -84.1 + 
avn- vn-P 3.12$) 

i-1 P 

Then the whole system can be stabilized with respect to the augmented Lyapunov 

function 

Vn=Un-1+2zn. 

The time derivative of Vn is 
n-1 

Vn =-E Cizs + zn 

[9+ 
aOx 

1 (f(x)+g(x)vi) + 

Now, a linearizing control law 

(3.129) 

nýl ahn-1 
vi + 

ahn-1 

p 

Vn- 

i=1 
(3.130) 

n-p-1 

zn-i + 
lox 

öh 

x 
(f (x) + g(x)vl) +E 

öhn-i 
vi+l + 

öhn-1 
vn-p = -Cnzn (3.131) Ovi övn_p 

i=1 

can be chosen to cancel the nonlinearities and make the bracketed term multiplying z� 

equal to -cnzn, where cn is a positive constant. Thus 
n 

Vn C; z; (3.132) 
s_i 

and the closed-loop system is 
i=Axz 

with 
-Cl 1 0 ... 0 0 

-1 -C2 1 ... 0 0 
O -1 -C3 ... 0 0 

Az = 

0 0 0 
O 0 0 

(3.133) 

(3.134) 
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The control law (3.131) completes the design of the dynamical compensator (3.103). 

Example 3.6 Consider the problem of stabilizing the origin of the system of Ex- 

ample 3.1 
ýi X2+X? 0 

i2 J= X3 +1u (3.135) 
is 21x2 - x3 0 

Y_ Xi 

This system has relative degree p=2 and is globally minimum phase, as shown in 
Example 3.1. After applying our DDB algorithm we obtain the globally defined control- 
dependent transformation 

Zl = ho(x) = xl 

z2 = hl(x) = x2 -}- x1 -I- clxl (3.136) 

Z3 = h2(x, vl) = xi + (2xi + cl)(x2 + xi) + x3 + vl + C2(X2 +X+ c1X1) 

Therefore the observability condition is satisfied globally and the inverse of the trans- 
formation (3.136) is defined as 

x1 = zl 

X2 = Z2 -Z- CIZ1 

X3 = z3 - zi - (2z1 -}- cl)(z2 - clzl) - vl - c2z2 

The dynamical controller is obtained as 

vl = -z2 - ax2 
(x2 + X21) 

ax2 
(x3 + vi) - xix2 + x3 _ C3z3 

12 

with 
A2 

=1+ 2(x2 + xi) + 2x1 + cl)(2xi + C2) axi 
ah2 

_ 2x1+Cl+C2 
aX2 

(3.137) 

(3.138) 

(3.139) 

Computer simulations were performed to assess the performance of the dynamical con- 

troller (3.138) in the regulation of the origin of the system (3.135). Figures 3.1 and 
3.2 show the asymptotic convergence of the state variables to the origin for the initial 

conditions (x(0), vl(0)) = (4,3,5,0.5) and (x(0), vl(0)) = (8,6,10,0.5) respectively. The 

design parameters used for both computer simulations were cl = 4, c2 =3 and c3 = 10. 
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Figure 3.1: Controlled responses of the state variables of a triangular system 
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Example 3.7 We consider now an example corresponding to a nonlinear system in 

nontriangular form 

il = X2+ X1X3 

iz = x3 
ý3 =u 

(3.140) 

It was shown by Marino and Tomei [75] that this system is input-output linearizable 
locally with respect to the nonlinear output 

y= x1 exp(-x2) (3.141) 

We use here the output function (3.141) and apply our DDB algorithm to design a 
linearizing controller. We obtain the following nonlinear transformation 

zl = ho(x) = xl exp(-x2) - yr 

z2 = he(x) = x2 exp(-x2) + Cl 
(x1 

exp(-x2) - yr) (3.142) 

Z3 = h2(x, vl) = xl exp(-x2) + x3(1- X2) exp(-x2) + c1x2 exp(-x2) 

+c2 [x2 
exp(-x2) + Cl 

(x1 
exp(-x2) yr)] 

and the static feedback control 

U- 
(1112) -1 

-z2 - 
ax, (x2 + XI X3) - 

ah2 
x3 - C3-'y3 (3.143) 

axg a 19X2 

with 
ON 

_ (1 + clc2) exp(-x2) ax, 
ah2 

= exp(-x2) l- XI - X3(2- x2) + cl(1 - x2) + c2(1 - X2- clxi) j (3.144) 

19x2 
Oh2 

= exp(-x2)(1- x2) Ox3 

Note that, as shown by Marino and Tomei [75], the value x2 =1 is a singular value for 

the feedback control law (3.143). Therefore local input-output linearization is achieved. 
Computer simulations were carried out for the stabilization of the system (3.140) to the 

origin. Figure 3.3 shows the asymptotic controlled responses of the state variables for the 
design parameters cl = 2, c2 =2 and c3 = 3. A different equilibrium point x= (2,0,0) 

was also considered. Figure 3.4 shows the asymptotic behaviour of the state variables 
to this equilibrium point using the same initial conditions and design parameters used 
in Figure 3.3. 
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Figure 3.3: Controlled responses of an input-output linearizable system in regulation to 
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3.5 Concluding Remarks 

The systematic DDB algorithm has been developed for observable minimum-phase sys- 
tems. It follows an input-output linearization procedure adopting the backstepping 

ideas. Note that the DDB algorithm leads to the design of static controllers for input- 

output linearizable systems, i. e. systems with relative degree p=n, as shown in 

Example 3.7. In Chapter 4.1 we extend this approach to observable minimum phase 

nonlinear systems with uncertain parameters, by developing a dynamical adaptive back- 

stepping algorithm with tuning functions. 



Chapter 4 

Dynamical Adaptive Backstepping 

Control 

4.1 Introduction 

The Static Adaptive Backstepping (SAB) algorithm of Section 2.4 is appropriate for a 
large class of feedback linearizable uncertain nonlinear systems which are transformable 
into the triangular canonical forms; parametric strict and parametric pure feedback 

forms. However, it cannot deal with nonlinear systems having a nontriangular form. 

In this chapter a new systematic approach is presented for the design of Dynamical 

Adaptive Backstepping (DAB) controllers for the control of nontriangular systems. This 

new adaptive control design procedure is based upon a combination of dynamical input- 

output linearization and the adaptive backstepping algorithm. It does not require any 

canonical form but, instead, it does require that the plant be observable and minimum- 

phase. This new approach broadens the class of systems for which backstepping is 

applicable. It includes the SAB algorithm for PSF and PPF forms as a particular case. 
We start by showing that for some systems for which the SAB algorithm may fail 

to guarantee asymptotic stability, dynamical adaptive controllers can achieve asymp- 
totic stabilization. This fact motivates the need for the use of extended dynamical 

controllers to overcome this limitation of the SAB algorithm. Then the DAB algorithm 
developed by Rios-Bolivar et al [871 is described, and its stability and convergence prop- 

erties are analysed. Two examples, including a system in PSF form and another system 
in nontriangular form, are used to illustrate its applicability to both PSF and observable 
minimum phase nonlinear systems with parametric uncertainty. 

109 
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4.2 Dynamical Adaptive Backstepping (DAB) Algorithm 

As shown in Section 2.4, the SAB algorithm with tuning functions achieves asymptotic 
stabilization of nonlinear systems in PPF or PSF forms. These forms can be seen as 
special structural triangular forms of nonlinear systems which are input-output linear- 
izable, when all the parameters are known, by specifying the output y= xi. Seto et al. 
(100] extended the class of uncertain nonlinear systems for which backstepping is applic- 
able. However, to guarantee global asymptotic stability, they considered only systems 

which can be transformed into a triangular form. Here, a general backstepping algorithm 
for a class of observable nonlinear systems with nontriangular forms and dynamically 
input-output linearizable is developed. The algorithm is a new adaptive version of the 

systematic control design procedure given in Section 3.4 and is based upon a suitable 
combination of dynamical input-output linearization and the backstepping controller 
design method (see Rios-Bolivar et al (87]). 

Consider a single-input single-output nonlinear system with parametric uncertainty 

of the form 

th = fo(x) +'I'(x)O + (so(x) + 9(x)9)u (4.1) 

y= h(x) 

where zE W" is the state; u, yE 1i the input and output respectively, and 0= 

[0k, 
... , 

6p]T is a vector of unknown parameters. fo, go and the columns of the matrices 
%F, co E R"xp are smooth vector fields in a neighbourhood R0 of the origin x=0 with 
fo(O) = 0, go(0) 54 0, and h is a smooth scalar function also defined in 1. It is assumed 
that the system (4.1) has relative degree p strictly less than the system order. 

Kanellakopoulos et al. [48] has presented necessary and sufficient conditions to trans- 
form (4.1) globally into the following parametric strict feedback normal form 

Ci+l'+'V9T ( 
1... fci) 

ý')0 12 p-1 

ýPo( +W ()e+Qo( u (4.2) 
r= (T'o(y, er) + (DT (y, Cr)B 6r E r"-p 

V=61 
Assuming that the fir-subsystem satisfies a bounded-input bounded-state condition with 

respect to y as its input, the problem of tracking a bounded reference signal yr(t) with 
its first p derivatives continuous and bounded, was solved by applying p steps of the 

adaptive backstepping algorithm. However, even though 

ý(y(t) - yr(t)) =0 (4.3) 
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is achieved, only boundedness of the remaining variables is guaranteed in general. This 
is illustrated by the following example. 

Example 4.1 Consider the problem of adaptively regulating the nonlinear system 

il = 12 + Bxi 

i2 = x3 +u (4.4) 
xg = -23 + ß(1 + XI) 

Z� _ X1 

where 0 is a constant but unknown scalar parameter, to take the output y= xl to 

zero. System (4.4) is already in the parametric strict-feedback normal form and is 

globally minimum-phase. The application of two steps of the SAB algorithm with tuning 
functions yields the error variables 

Zl = 21 (4.5) 

Z22 x2 - ai(xi, 9) = x2 + 9xi -I- cixl 

The tuning functions are obtained as 

Ti = ryzlxi (4.6) 

T2 = Ti - yz2 
Öxl 

xl 
2= -1 zl - z2 

ax, 
l 

xi (4.7) 

A 

and the adaptive controller, formed by the parameter update law B= r2 and the feedback 

control 
A 

U= -zl - x3 + 
ail 

(x2 + Oxi) + 
al 

T2 - C22'2) 

00 
(4.8) 

yields the closed-loop system 

Cl -1 
1 

z+- Dal ziä 
-1 -C2 axl 

i3 = -X3 + 0(1 + zl) 

0= ryz1 1- Oxi z 

(4.9) 

where z= [zl z2]T and e=e-e. Note that, from the dynamic equations (4.4), the 

stabilization of the output y= x1 also guarantees that x3 converges to the unknown 
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parameter 0. Therefore, (z, x3i 9) = (0,0,0) is an equilibrium point of (4.9). In or- 
der to establish the stability properties of this equilibrium, recall that when applying 
backstepping the Lyapunov function 

V=2 z1 
2x2 

-1- 292 
(4.10) 

'Y 

is used and the Lyapunov derivative 

V= -clzi - c2z2 (4.11) 

is obtained. Then, from the LaSalle theorem (Theorem A. 2), 

tmz= [zl z2)T = 0, (4.12) 

which also guarantees that xl -+ 0 as t -+ oo. Also recall from Section 2.4.4 that to 

guarantee convergence of the estimate 0 to the actual unknown parameter 0, the rank 
condition 

2 () rank X1 
(z, ýa, e)=(o, e, o) 

1 4.13 

must be satisfied. Since the output xi is stabilized to zero, the rank condition (4.13) is 

violated and convergence to the unknown parameter is not guaranteed. Hence asymp- 
totic stabilization of the equilibrium (z, X37 9) _ (0,0,0) is not achieved. Computer 

simulations confirm this assertion. Figures 4.1 and 4.2 show the stabilization of the 

state variables to the desired equilibrium values, i. e. xl = 0, x2 =0 and x3 = 0. 

However, the parameter estimate B does not converge to the unknown true parameter 

value. Therefore asymptotic stabilization of the equilibrium point (z, x3) B) = (0,0,0) of 

the closed-loop system (4.9) is not achieved. 
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Figure 4.1: Controlled responses of a nonlinear system in PSF normal form 
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This lack of asymptotic stabilization occurs because the SAB algorithm does not use 
the third equation of (4.4) which would allow the rank condition (4.13) to hold. It will be 

proved below that a dynamical adaptive backstepping control achieves the asymptotic 

stabilization of this equilibrium. 
In order to overcome this limitation of the SAB algorithm and also to broaden the 

applicability of this technique to systems with nontriangular forms which are not trans- 
formable into either the parametric pure-feedback form or parametric strict-feedback 
form, a general DAB algorithm to design dynamical adaptive controllers via backstep- 

ping has been developed by Rios-Bolivar et al [87]. The steps yielding this adaptive 

controller follow an input-output linearization procedure and, moreover, the control in- 

put and its derivatives may appear at intermediate steps of the recursive design method. 
This procedure becomes equivalent to the traditional backstepping algorithm in [61] 

when the output corresponds to a linearizing function of the system, i. e. the relative 
degree is equal to the system order, p=n. 

For the purpose of characterizing the class of uncertain nonlinear systems for which 

our algorithm is applicable, consider the adaptive version of the operator (3.75) on the 

system (4.1) 

, Cý°, (x) = h(x) 

£h(x, e) =aä(ß) (. fo + 0) 
0 (£, i- '(X, b» £h( 

'e) ax 
(fU +) 

a (41(x, e)) 
A +A r(x, 9) 2 <i <p-1 

a 

Aah (X, / 
e)ý AA 

h(X, e, vl) = ax 

(fo(x)+w(x)+(go(x)+(x))vi) 

a (Cr'(x, ý)) 

+ 
ae rn(x, 9, vl) (4.14) 

Gh(x, 8, vi, " .., v; -P+1) =a 
(£i-1 (. )) (fo(x) + `I'(x)e + (9o(x) + ýp(z)6)vi ax 

a , ch () + 
aB r; (x, 9, v1,..., v, -P+i) 

-. 0 a (£i-1(. )) Zh 
where the ri's tuning functions are designed at each step of the design algorithm. 
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This allows us to express the output y and its first n-1 derivatives as functions of 
z, u and the derivatives of u 

y 

y(1) 'Ch ý(x, 6, V19 ... , vn-P) (4.15) 

y(n-1) Ln-1 

Assumption 4.1 System (4.1) is observable, i. e. the mapping (4.15) satisfies the rank 

condition 
rankaý 

(. ) 
=n (4.16) 

in 1b. 

Assumption 4.2 System (4.1) is minimum phase in Ro. 

Note that the ability of a system in the form (4.1) to exhibit the observability property 

may depend upon the unknown parameters B. Nevertheless, in that case, one can assume 
that Assumption 4.1 is still valid in the neighbourhood Ro for the nominal, but unknown, 

value of the parameters. 
For Assumptions 4.1 and 4.2, i. e. observable minimum phase nonlinear systems of the 

form (4.1), the general problem of adaptively tracking a bounded desired reference signal 

y, (t) with smooth and bounded derivatives, can be solved using the DAB algorithm 
summarized as follows: 
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DAB Algorithm 

Coordinate transformation 

zl y- yr(t) = h(°)(x) 
- yr(t) 

(4.17) 

A h(k-1) (x, 9, vl, ... , v(k-p), t) - y(k-1) + ak-1(X, 9, v1, ... , V(k_n), t) 2<k<n 

with 

OP-1) OW-1) [fo +'e + (go +c )vl hk = Tk + aB ax 
k-p-1 ah(k-1) ah(k-1) + -itl + (4.18) 

at avi 
i-1 

Wk + 
aCYk-1 

(k + Vu) (4.19) 
Ox aý 

k-1 a(i_1) k-1 

zi 
aai-1 

rWk +k 
-p-1 l aCYk-1 

ak = zk-1 + Fa Zi 
+ 

ä av E -1-0 

a i ae s_2 s_3 i=1 

aak-1 & kw 1 
aak-1 

at 
+ Ckzk (4.20) [fo + XFe + (go + VB)v1] + + ax ae 

k 
Tk = rýWkzk (4.21) 

i-1 

Parameter update law 

o =Tn = rWTz = r[w W2 ... Wn Jz 
(4.22) 

Dynamical adaptive control law 

vl = V2 

(4.23) 

Un-p-1 = Vn-p 

vn_p = 
1 n-1 ah (n-1) (n-1) 

zn-1 -E+ 
CiC 1 

z1rwn + 14 )(t) 

C(ihýn-1) 
öcrn-1 

i_2 ae 9 V8 
C7vn-P 

+ 
Övn-P 

+ 
a 1 aa (fo+ý+(go+coO)vi) 

ax x 
ah(n-1) aan-1 Oa. -1 

_ _ 

at at 
+ 7n ae as 

n-p-1 a^ (n-1) aan-1 

_ aili 
+ vi# 1- Cn Zn 

aili 
i-1 
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The following steps lead to the general DAB algorithm summarized above. 

Step 1. Define the output tracking error as 

z1 :=y- Yr(t) = h(x) - yr(t) (4.24) 

whose time derivative is given by 

il = h(')(x, 9) - yr(t) = ä, 
Oh 

x Lfo +9 -I- (90 -I- ( )u] - yr(t) (4.25) 

If the relative degree p with respect to u is greater than one, 

8x 90(x) -I- (o(x)0) =0 (4.26) 

For the sake of generality, it is assumed that the relative degree p is greater than one. 
Nevertheless, this algorithm is also applicable to systems with p=1. By adding to and 
subtracting from the actual value of the parameters 9 their estimated values B, (4.25) 

can be rewritten as 
zl = 

h(l)(x, B) 
- yr(t) + wl(9 - 

6) (4.27) 

with 

h(1)(x, 0) 
äx 

(fo(x) +W (x)0) (4.28) 

wl = 
ah 

`F(X) (4.29) 

Consider the quadratic Lyapunov function 

Vl =2 zi +2 (9 - 
9)T P-1(B -o) (4.30) 

where r= rT >0 is a matrix of adaptation gains. The time derivative of V1 is 

Vi = zl 
(ii(')(x, 9) 

- yr(t»+ (0 - e)Tr-1(-6 + Fwi zl) (4.31) 

One can achieve Vi = -clzi with cl a positive scalar design constant, by choosing the 
tuning function 

0= Ti = I'wl zl (4.32) 

if the relation 
h(')(x, e) - yr(t) = -clzl (4.33) 

is satisfied. The expression (4.33) represents a desired algebraic relation for which effect- 
ive stabilization of the output tracking error would be possible in combination with the 

estimation update law (4.32). However, since (4.33) is not valid from the outset and 7-1 
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is not considered as an update law but rather as the first tuning function, the deviation 

is taken as the second error variable, i. e. 

Z2 :_ 
0)(x, e) 

-- 2Jr(t) + al 

with 
al = clzl 

The closed-loop form is 
il =-C1z1+z2+W1(9-6) 

and 
Vi = -Clzi + zlz2 + (8 - e)Tr-1(-9 + Ti). 

(4.34) 

(4.35) 

(4.36) 

(4.37) 

By induction one obtains the following j-th generic step which characterizes the first 

steps prior to the explicit appearance of the control input in the transformed dynamical 

system. 

Step j(2<j<p-1) 

Oa- . as t a« 1 zj = he>>(x, 0t) - y(J)(t) + ä71(, fo + WO) + äe r1 + ät 

-}' wý (6 - 9) + 
ah 

"+ 
aa'A 1 0- rj) (4.38) 

ae ae 
with 

Tj + 0^ U-1) 0h^ U-1) (4.39) hcý) (x, 0, t) = ax 
(fo + TO) + 

ae at 

j ax ax 
i (4.40) 

and ri the corresponding tuning function defined at this step. By augmenting the 

Lyapunov function 

V, = j; 
-i +2z; =2z; +2 (9 - 

9)Tr-1 (e - 8) (4.41) 

and time derivative is 
j-1 

=-Z cizi + (8 
- 

e)Tr-1(-e + 7j-1 + rwj zj) 

icl 
A 

+z 
oIu-o a«; -ý (A ý) B-T 

00 + 00 
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-1 ah(i-1) j-1 a«; -1 14 + z' ae + zi ae (e - 7, -1) i=2 i=3 
+ zý 

Izj-I 
-i- 

h(i)(XI elt) aa, 
y. i)ýt) + at 

+ ad Tj + ax (f° + To)] (4.42) 

The parameter estimate error (8 - 
9) can be eliminated from V; by choosing the update 

law 
A 

0 =r = rj-l+rw; zz (4.43) 

However, rj will instead be used as a new tuning function. Thus, noting that 

9- Tj-1 =9- Tj + Ti - Ti-1 =e- 7-j + rw z, (4.44) 

one can rewrite V as 
j-1 

A 

Ciz; +(e-e)Tr-l( -e+r 
) 

i=1 

+ 
(ri., 

zi + rj, zi 
aCYi-1 

(e 
- r. 7) 

ae ae 
-1 all(`-1) j-1 aai-1 

+ z' Z z' 
ae 

+ 
szi 

ae 
rwj + tl(j)(x, e, t) - 

*i=2 

i=3 

+aa 4.45 
ax 

(f0+IPe)+0e ?, j+at +z; 
-1 

) 

One can achieve V=-F; 
=1 c; zs , with the ci's being positive scalar design constants, 

if rj is the update law and the relation 
j-1 alt(i-1) 

j-1 9ai-1 
Z, i 

ae 
+ zi 

ae 
rwT + h(j)(x, gj t) - y(j) (t) 

E 1: r 

i=2 V i=3 

j_1 (f0 'i' TB) '+' Tj 
as 

= (4.46) + a«ax 
ae 

+ 
at 

+ zý-1 -ýjzj 

is satisfied. Since (4.46) is not valid from the outset, its deviation is taken as the (j+l)-th 

error variable 
zj+, := h(i)(x, g, t) - y(j) (t) + aj (x, 0, t) (4.47) 

with 
ia«i1 

1E rwj +a«'A1i=3 
190 

) 
ao 

+ ex 
(f� (X) +'(X)e) + äi + cjzj (4.48) 

a 
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obtaining the closed-loop form for z; as 

z= -z -1 - CA + zi+l +Wi(e - 
9) + 

ahýýý 1ý 
+ 

aas-i (e -- Tr) 
ae ae 

z, ae + 

and 

zi 
aa'-1 

rwT 
i_3 

ae 

j 

j! j -- cjzs + zjzj+l + (0 - 
OST I'-1 

i-1 

J ah(s-i) 
äB =2 

aas-1 
z; 

; _3 
00 

120 

(4.49) 

(4.50) 

Now the steps containing the control input and its derivatives are summarized in the 

following generic step. 

Step k(p<k<n-1) 

zý = h(ý) (x, 6, u, ... , u(k-p) It) _ y*k)(t) +a at 
i+ Oak-', 

rk Tk 

+ 
aak-i [fo 

. ý-F (90 + cp9)ul + 
-n 

öx J -i) 
u(i) + wk (e - 

6) 

, _1 

of (k-1) öQk-1 

00 
+ 

00 
)(O-Tk) 

with 

Oh(k-1) ah(k-1) A lb(k)(2, 'rk + 
ax 

[f0 
+e+ (90 + (Pe)u] 

ae k-p ah(k-1) ah (k-1) 

aucý-ý) at 

ax ax 
+ VU) 

(4.51) 

(4.52) 

(4.53) 

and rk the tuning function defined at this step. By augmenting the Lyapunov function 

k 

Vii =Vii-i +2 zý =2z; +2 (8 _ 9)T r-i -0) (4.54) 

and its time derivative is 

vk=-ýcz; +(9-9)Tr-1(-9+rk-i+rwkzk) 
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zý 
ah(k-1) 

+ 
Oak-1 

r 
l8 - Tk 

ae aä 
k-1 a(i_1) k-1 aai-1 

+E zi 
a8 `F' 

E 
zi 

ae 
(e 

- 7k-1) 

i=2 i=3 

-I- Zk 
[Zkl 

+ h(ý) 
- y(k) + 

öak 1 Tk + 
k-p öai-1 

u(i) 

öa/ý-1 öa/ý-1 

+ at + ax 
1fO+ 6+(90+4)u, (4.55) 

The parameter estimate error (6 - 
6) can be eliminated from Vk by choosing the update 

law 
9= rk = 7, + rWk Zk. (4.56) 

However Tk will instead be used as a new tuning function. Thus, noting that 

e'Tk-1 =e-Tk+Tk--Tk-1 
B-rk +rWkzk, (4.57) 

Vk can be rewritten as 
k-1 

j/k =-Z C{zi +- (B 
- 

e)T r-1 (_O + rk) 

i. l 

aha; -ýý k 
-E- 

ý z; +Ez; (e - 7-k) 
; _2 

ae 
; _3 

ae 

k-1 ah('-1) 
+E zi 

aas-1 
rwT + h(k) 

- yrk) 
, _2 

ag 
; _3 

ae 

Oak-i Oak-i 
Ifo + TO + (so + WB)u] + ae Tk + Ox 

k-p aak-i)u(') 
+ 

öaý 

at 
-i + zk-i (4.58) 

aus 
One can achieve Vk _- Fk 1 c; zi, with the ci's being positive scalar design constants, 

if rk were the update law and the relation 

xk-i + 
k-i 

z' 
ah(i-i) k-1 aaiA 1 I'wý + h(k) -yak) + 

k-p au(i) 

ae 
+ zs 

ae i=1 
E au(i- 

(1=2 

i=3 

aak-i aak-i 
+ Tk +Bl 

aak-i (4.59) 
aX 

[fo+ W A+ (9o+ VA)J u 
ae 

+ at = -CkZk 

were satisfied. However, since (4.59) is not valid from the outset, its deviation is taken 

as the (k + 1)-th error variable 

zk+i := h(k) (ý, 9, u, ... , u(k'n) t) - yýk) + ak (ý, 9, u, ... , u(k'p), t) (4.60) 
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with 

z' 
ahýiý 1) 

+ 
k-1 

z' 
aai^ i I'wk + 

-p aa`-iu(i) 
ak = zý-i + 

k-1 

ae ae au( ) i=2 i=3 i=1 
aCYk-1 aak-1 aak-1 

+ ax 
[fo +e+ (go +c O)u] + 

aB Tip + at + ckzk. 

We obtain the closed-loop form 

ah(k-i) a«k-1 zk = -zk-1- Ckzk + zk+i + wk(e - e)T + 
00 

+ 
öB )(O-rk) 

k-1 k-1 Da; 
-1 T 

; _Z 
00 ; _3 

00 zz 

and 
k 

Vk =_E CiZ ., }., Zkzk+1 + (o _ 
9)TI'-1 (-9 + rk) 

i=1 

k aj(i_1) 
z' öB 

+ 
c-a 

k 

zi (9-Tk) 

=3 
00 

122 

(4.61) 

(4.62) 

(4.63) 

Step n. The design of both the actual update law and the dynamical adaptive output 

tracking controller is completed at this final step. Using the definition (4.60) 
Dan-1 van-1 

in = ll(")(xý e, u, ... 9 u(n-p)1 t) - y*n)(t) + 
at -E- 00 

7,1 

V ý. ln-1 A 
n-P Ö(Xn-1 A 

+ 
49X 

[i0++90+ýu] + (i) 
au({-1) +Wn(9 - 9) 

i-1 

(4.64) 
ae ae 

with 
A 

Vý(n-1) Vf(n_1) 
A 

h(n) (X, 9, u, ... , u(n-P) t) = 00 Tn + äx 
[fo+o+(go+ýu] 

n-P OA (n-1) a 

u+ 
%Z(n-1) 

(4.65) 
au(i-1) at i-1 

aMn-1) 
Wn ax 

+ 
aa 

a2 
n-1 (ý + Vu) (4.66) 

and r,, the tuning function defined at this final step. Augmenting the Lyapunov function 

Un = Vn-i + 2zn = 
2zTZ 

+1 (e - o)Tr-1(8 
- 

O) (4.67) 
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and its time derivative is 

n-1 
lln =-ZCizi +(B-B)TI'-11 -B'+ 'Tn-1`f'FWnzn) 

i-1 

+ zn 
ah(n-1) 

+ 
aan-1 

)(_r) 

ae ae 
"-1 a (i-1) n-1 aai-1 

EZ zi -}- Z z{ (O - Tn-1) i=2 
00 

i=3 
09 

(n) 
_ 

(fl) 
aan-1 n-p a«n-1 

(; ) 
ld Zn Zn-1 + lt y `F' ae 

7. n 
+ 

00-1) 
i-1 

Oan-1 & 
n-1 

+ at + ax 
[fo++9o+&u]] (4.68) 

A 

At this final step one can eliminate the parameter estimate error (0 - B) from V� with 

the update law 
e=Tn =Tn-I +rWnZn = l'N%Tz 

where the regressor matrix WT is composed of the regressor vectors as follows 

WT . 
rWT 

WT . WTl 
LL 12. nJ 

Then, noting that 

B- Tn-1 =e- Tn + Tn - Tn-1 =0- Tn 'I' 
rwn zn) 

i/� can be rewritten as 
n-1 

i. l 

n ah(i-1) 
1: z' öB 

+ 
i=2 

n 

Zi ýe 
- Tn) 

i-3 
' ÖB 

n-1 00 -1) n-1 aai-1 

Zn zi 

, _2 i 
ae 

_3 
ae 

+ 
Dan- 1 

Tn +a 
äx 1 [fo+ý+(go+co)u] 

00 n_ .0 

äu(i-1) 
u at 

z 

In order to achieve � 
1, n C; z, 

i=1 

(4.69) 

(4.70) 

(4.71) 

(4.72) 

(4.73) 
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one must make the bracketed term multiplying zn equal to -czn, i. e. 
fn-1 ah (1-1) n-1 

(ýai-1 
xn-1 'i" z{ -}- z{ I'Wn -}- %Z(") (X, 8,2l, 

.. )Zd(n-P) 
t) 

i=2 
ÖB 

1_g 
ÖB 

Ö«n-1 

- yýn) + Ox 
[fo ++ (go + (P0)u] 
n-p 

+ 
a«n-1 

+ 
aan-1 

uý, ý + 
aan-1 

(4.74) 
! at 0(s-1) Öe Tn = -cnzn 

i-1 

The control function u can be obtained implicitly as the solution of the nonlinear time- 

varying differential equation defined by (4.74). Note that the control law (4.74) can be 

rewritten in the form of the dynamical controller (4.23) by replacing the control input 

u and its derivatives ü, ii.... by the extended state variables v1, v21 v3, ... respectively. 
The overall closed-loop error system has the form 

A 

Az +W (O - 9) (4.75) 

0= rWTZ (4.76) 

where A, has the following skew-symmetric form 

-Cl 1 0 ... 0 0 
-1 -C2 1+02,3 

" .. Q2, n-1 Q2, n 

A- 
0 -1 -02,3 -C3 ... 03, n-1 03, n 4.77) 

0 -Q2, n-1 -L03, n-1 """ -Cn-1 1+ On-l, n 
0 -02, n -Q3, n ... -1 - Qn-l, n --Cn 

with 
00-1) Oaj-j 

e;, ý = 00 + 80 rW;. (4.78) 

4.3 Analysis of Stability and Convergence 

The stability of the equilibrium (z, i) = (0,0), with 6=B-0, is now established for our 

new algorithm. Since the time derivative of the Lyapunov function V along the solutions 

of (4.75)-(4.76) is nonpositive, uniform stability of the equilibrium (z, 6) = (0,0) is 

guaranteed. Moreover, by virtue of the LaSalle-Yoshizawa Theorem (Theorem A. 3), it 
follows further that, as t -+ oo, all solutions converge to the manifold characterized by 

z=0, namely 
n 

limy =_tc; z; =0 (4.79) 
t +00 
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A 

This proves, in particular, that 0 is bounded and z(t) -+ 0. Consequently, 

t moo 
[V (t) Y*(t)] = 0, (4.80) 

i. e. asymptotic tracking is achieved. Furthermore, from (4.70) and the definitions of the 

regressor vectors given in (4.53), it is seen that the components of the regressor matrix 
TV depend in general upon t, x, z, 9, v i,... , YJn_p 

1V := O(t, z, 6, vl,... 1v�_p)F(x, u) = 

where 

Oh 

54 (1) 
8x 

aal 

ex ex F(x, u) 

ah(n-1ý aan-1 

ex 
+ 

ex 

F(x, u) =P (x) +c (x)u 

(4,81) 

(4.82) 

The matrix 0(") in (4.81) is the partial derivative of the observability mapping with 

respect to x, namely 
A 

0(t, z) B, vi,..., v�_p) _ ['lax 
x=O-1(z vv P) 

(4.83) 

which by Assumption 4.1 is nonsingular. Moreover, if limz,,,. y(')(t) = 0, i=0,. .., n, 
holds, and F(0,0) = 0, z=0 is an equilibrium point of the system (4.75)-(4.76) and, 
then, Hint, x(t) = 0. 

The above facts prove the following theorem. 

Theorem 4.1 The closed-loop adaptive system consisting of the plant (4.1), the dynam- 

ical controller defined by (4.74) and the update law (4.69), has a locally uniformly stable 

equilibrium at (z, j) = (0,0) and limt_,,,,, z(t) = 0, which means that asymptotic tracking 

is achieved, i. e. 
m 

[y(t) 
- yr(t)] =0 (4.84) 

t +00 
Moreover, if limt. ýý yr ̀ý = 0, i=0, ... ,n and F(0,0) = 0; limt-ý,,. x(t) = 0. 

Theorem 4.1 guarantees local asymptotic tracking in general. Nevertheless global asymp- 
totic tracking can be achieved if Assumptions 4.1 and 4.2 are satisfied globally. 

The closed-loop system (4.75)-(4.76) exhibits better parameter estimate convergence 
when 

rank[F(x, u)](x, u)=(X, u) =p (4.85) 

and a persistency of excitation condition, similar to that formulated by Sastry and 
Bodson [97], is satisfied by the regressor matrix W. 
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Example 4.2 Consider the nonlinear system already discussed in Example 4.1 

xl X2 xi 
x2 = x3 +0 o+ 1u (4.86) 

X3 -x3 1+ xl 0 

y° T1 

where 6 is an unknown constant parameter. It will be shown that the objective of regulat- 

ing the output to zero is achieved by a dynamical adaptive controller, designed according 
A 

to the algorithm above. In addition, the stability of the equilibrium (XI, X2, X3,0, U) = 

(0,0,0,6, -0) of (4.86) is also achieved. Since the relative degree of (4.86) is 2, the 

first two steps of the traditional backstepping and the above described dynamical back- 

stepping algorithms are identical. Therefore, one can use the results of Example 4.1 as 

partial results for this example and complete the design of the dynamical controller by 

applying the new third step. Thus the function T2 obtained in Example 4.1 is not con- 

sidered the update law anymore but an intermediate tuning function. The third error 

variable is defined as 
z3 =u- a2(Xl, X2, X3, e) (4.87) 

where 
a2 (xi, X2) X39 e) _ -zl - X3 + 

aal 
(X2 + 9x) + 

öal 
72 - C2Z2 (4.88) 

ox1 DO 
Consequently the closed-loop form of z2 is 

z2 = -zl - c2z2 -I- zs -I- W2 (9 - 6) - 
aal (9 

- T2 
09 

) (4.89) 

with 
_ 

aal 2 (4.90) W2 _5X-1 xl 

The Lyapunov function defined for the parameter estimate error (0 - 0) and the first 

two error variables is 
"2=2 

Zl - z2 -I- 2y (0-0) 2 V2 (4.91) 

and " 
V2 . -clz1 - c2z2 -}- z2z3 - z2 

öai (0 
- 7-2) + 

(e - 
A) (- 0 

-I- 72) (4.92) 
00 

The third term in (4.92) will be cancelled at the next step. 

Step 3. From (4.87) the time derivative of z3 is 

Oa2 A 
Öa2 Öa2 " lýa2 

Z3 = U- axl 
(x2+0xi)- 

a2 (X3+u) 
Öx3 \-x3+0(1'+X1)/ 

- ÖB 
0+W3(0-e) (4.93) 
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with 
W3 - 

aa2x2 öa2 
(1 + X1) (4.94) 

xl 1-19x3 
The Lyapunov function is augmented as 

V3 = V2 + 
2z3 

= 
2zTz 

+ 
try(8 

- 
9)2 (4.95) 

where 7 is a scalar adaptation gain. The time derivative of V3 is 

(-+r2+-3z3) V3 
- -C1Z -C2Z2Z2aal 

(OA 
-T21 

00 7 
+zs z2 +ü- 

-- 
(x2 + 9x2) - 0x2 

(x3 + u) 
i 

ý 2(-x3-}-9(1+x, )) - 
ae 

(4.96) 

3a 
The parameter estimate error (0 - 9) is eliminated from (4.96) by selecting the update 
law 

0=T3: =T2+'YW3z3 ='y[W1W2W3)z (4.97) 

with 

Wý = Xi 2,2=- --x1. (4.98) ex, 

Noting that 
8-T2=T3-T2=7W3z3 (4.99) 

V3 can be rewritten as 

V3 = -Ciz1 C2z2 -}- z3 Z2 1 -'y ae 
w3 + 26 -aia2 

Al (22 + Bxi) 
- a22 `X3 

+ U) 
aal )2 

-ßx2(-X3+8(1+X1)) - 
aa2T3 

(4.100) 

3 ae 
Then the dynamical controller is chosen such that the bracketed term multiplying z3 
equals -c3z3, namely 

A 

is 
-z2 1-y 

2a-) 
l 

ws +- 
a2 (xa + Ox1) + 

a2 (x3 + u) 

+IOx3 2/- x3 + B(1 + x1)) +ä 
ae 
a2 

7-3 - c3z3. (4.101) `J 
The error coordinate transformation z= -ý (x, 9, u) constructed in this manner is 

zl = XI 

Z2 = X2 + Oxi + clxl (4.102) 

z3 = x3 +u+ xl + (28xi + Cl)(X2 + Oxi) + c2(x2 + Oxi + clxl) 

-I-ryx1 
[xi + (26x1 + cl)(x2 + 9x1 + cixl)] 
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and its associated Jacobian matrix has the following triangular form 

100 

ax 10 (4.103) 

1* *1 

Therefore the observability condition (4.16) is satisfied globally and the inverse of the 
transformation (4.102) is defined globally as 

ai = zi 

X2 = z2 - 
6zi 

- Cl z1 (4.104) 

xs = z3 -U- zl - (20zi + cl)(z2 - clzl) - c2z2 V14+ (29x1 + cl)z2, 

By Theorem 4.1, the equilibrium (XT, 0, U) = (0,0,9,0, -0) is globally stable. We have 

verified this result by computer simulations for a nominal "unknown" parameter set at 
9=2. Global asymptotic behaviour of the dynamically controlled state variable xl and 
boundedness of the parameter estimate is obtained for all the initial conditions shown in 

Figures 4.3,4.4 and 4.5. The design parameters were cl = 3, c2 = 4, c3 =3 and ry = 1. 

If the initial conditions are chosen close to the desired equilibrium values, small positive 

values of the design parameters may achieve good performance. Otherwise, i. e. for initial 

conditions chosen far from the desired equilibrium values, the design parameters should 
be increased for a suitably fast convergence. However, this can produce adverse effects 

such as oscillations in the transient behaviour of the state variables and parameter 

estimate. These oscillations can be reduced by decreasing some design parameters. 
Therefore there is a trade off between performance and fast convergence of the variables 
to the desired values. This is shown in Figure 4.6, which was obtained with the design 

parameters cl = 6, c2 = 7, c3 =8 and y=0.001. The stability proof above does 

not guarantee that the parameter estimate converges to the actual unknown parameter 

value. This is shown in Figure 4.7 which was obtained for different initial conditions, 

nevertheless global stabilization is achieved for all the initial conditions. 
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4.4 Example: DAB Control of Nontriangular Systems 

A limitation of the traditional adaptive backstepping algorithm [48], [61] has been its 

applicability only to systems which can be transformed to a triangular form. In par- 
ticular the system should be transformable into either the PPF form or PSF form to 

guarantee its stabilization via backstepping. The above new algorithm does not require 
any particular form and can be applied to nonlinear systems not in a triangular form 

and which are not transformable into these canonical forms. This feature is illustrated 

in the following example which considers a nontriangular system. 

Example 4.3 Consider the following third order nonlinear system 

X2 2123 0 

i= fo(x) + fl(x)O + go(x)u = X3 +0 0+ 0u (4.105) 

00 

(1) 

where 0 is a positive unknown parameter. Note that th = fo(x) + go(x)u is already in 
linear form; therefore to check whether or not this system is transformable into either 
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Figure 4.6: Controlled state variables, parameter estimate and control law responses of 

a third order minimum-phase nonlinear system for the initial conditions (x, 0, u) (0) _ 
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the PPF form or the PSF form, it suffices to compute the vector field adPogo 

0 

ad fogo =-1 (4.106) 
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which together with go, allows the definition of the distributions 

go = span{go}, 91 = span{go, adlogo} (4.107) 

The Lie bracket [go, fl] 

[90ý fi] 
ax g0 - ax 

f, =o (4.108) O fl ag° 
(x1\ 

0 
violates the parametric strict-feedback condition of Theorem 2.4 and therefore the system 
(4.105) is not transformable into the PSF form. The Lie bracket [go, fil also violates the 

parametric pure-feedback condition of Theorem 2.3. Hence, traditional backstepping is 

not applicable to this system. Nevertheless we recall from Section 3.4 that, for 0=1, 

the system 4.61 is locally input-output linearizable with respect to the output function 

y= x1 exp(-x2) (4.109) 

Thus, for this output function, we can apply the DAB algorithm for the regulation of 
the output to the desired set point yr, to obtain the coordinate transformation 

il = xl exp(-x2) - yr 
AA 

, 
z2 = hl(x, B) = x2 exp(-x2) + xlx3(0 - 1) exp(-x2) + clzl (4.110) 

A Ohl A Ohl Ohl ahl z3 = hs(x, 9, u) = zi +O 
hl 

(x2 + 0xlx3) + 
axZ x3 + 

ax3 
u+h 72 + C2Z2 

OXI ad 

with the regressor functions 

Wl = xix3 exp(-x2) 

w2 = 
ýý1 

xix3 (4.111) 

Oh2 W3 = axl XI X3 

and the tuning functions 

Ti = rywl zl 

72 = y(wlzl + L02 Z2) (4.112) 

7*3 = 'r[Wi W2 W3Jz 

where ry is a scalar adaptation gain. The update law is 

9= T3 (4.113) 
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and the dynamical adaptive control law is given by 

Ohl Oh2 Oh2 Oh2 Oh2 u= ll2 -Z2 1+ 
09 7W3 - a21 `x2 

+ 821x3) 
- TX-2 X3 - a--U - ae 

T3 - C3Z3 

au 
(4.114) 

Note that in this case 
ah2 ahl 
au = ax3 = (0 - 1)x1 exp(-x2) (4.115) 

Thus 1 and x1 =0 are singular values for the designed controller. Therefore 
local stabilization is possible for equilibrium points far from these singularity values. 
Furthermore, from the known information that 0>0, we can select initial conditions 

with B(0) >1 and an adaptation gain small (or zero) to guarantee that B>1 and thus 

guaranteeing stabilization. We carried out computer simulations for a nominal unknown 

parameter 0=1 and a desired set point yr = 2. Figure 4.8 shows the controlled 
trajectories and parameter estimate for the design parameters cl = 4, C2 = 3, c3= 2 

and -y = 0.001. The regulation of the state variables to the desired equilibrium point 

z= (2,0,0) is achieved whilst 9 converges to a value greater than one. Figure 4.9 shows 
that by choosing the initial condition 9(0) >1 we can turn off the adaptation process 
by selecting -y = 0, and still achieve stabilization of the state variables to the desired 

equilibrium values. 

Consider the alternative output function 

y=X1 (4.116) 

for the regulation of the system (4.61). Before applying the DAB algorithm one must 
check whether or not the system with this new output is minimum phase. Suppose that 

the parameter 0 is known and define the change of coordinates 
X1 

z fi(x) _ X2 + GX1X3 (4.117) 

X2 

to obtain the normal form 

Z1 = z2 

z2 _ (1 + 0z2) 
(z2ezi z3) 

-I- Bzlu (4.118) 

zg 
(Z2 

- z3) 

Ozi 
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Figure 4.8: State variables, parameter estimate and control responses of a nontriangular 

system regulated by a DAB controller 
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Figure 4.9: State variables, parameter estimate and control responses of a nontriangular 
system regulated by a DAB controller with adaptation turned off 
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local stabilization of equilibria of the form (X1, x2, X3) = (Xl, 0,0) is possible for this 
system. To check that (4.117) is a valid transformation, the Jacobian matrix 

100 
öý(z) 

= 9-T3 1 911 (4.119) 
aZ 

010 
is obtained. This matrix has rank 3 if the coordinate x, is different from zero. For 

equilibria with x1 0, the minimum phase property is proved by noting that the third 

equation of the normal form (4.118) can be reduced to the internal dynamics 

z3 eXl (4.120) 

and z3 =0 is an asymptotically stable equilibrium of the internal dynamics if Xl is 

positive. Hence, we conclude that the system (4.105) is locally minimum phase for 

equilibria of the form (x1, x2, x3) = (X1,0,0) with Xl > 0. The application of the new 
DAB algorithm gives the control-dependent error variables 

zl = xl -Xl 
Z2 = al(x, e) = x2 + wie + cl(xl - X1) (4.121) 

AAAA 

z3 = a2(x, 9, u) = xi - Xi + x3 + (Cl + 6x3)x2 + weg + 8xiu + wire + c2z2 

with the regressor functions 

W1 = X1X3 

W2 = (Cl + x30)xlx3 (4.122) 
öal 

w3 = ax 
xix3 

1 

The validity of the transformation (4.121) is verified by computing its Jacobian matrix 

at the equilibrium point (xT, u) = (Xl, 0,0,0) 

100 

ax = cl 1 6X1 (4.123) 
(X,, o, o, o) 1 cl 1+ c1OX1 

This matrix has rank 3 at the equilibrium point, hence (4.121) defines a local coordin- 

ate transformation. This result also verifies the observability condition. The tuning 

functions obtained at the successive steps are 

Ti = 7wi Zi 

T2 = Tl + yw2z2 = 'y(wizl + W2 Z2) (4.124) 

T3 = 72 + 7W3z3 = 'y[W1 W2 W3]z 
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where y>0 is a scalar adaptation gain. The resulting adaptive controller has the 
parameter update law 0= 7-3 and the dynamical feedback control 

ü= 
1 [-Z2(1+,. 

1., 
)-19a2(X2+X1X, 0)-0a2 X3 -&2u&2 - C3z3 (4.125) 

0a2 (9x1 0X2 ax3 ae 
T3 

Ou 

Note that 
äa2 A au = 9x1 (4.126) 

and, as discussed above, only equilibria with coordinate X1 >0 should be considered 
to avoid singularities of the control law. In this case the parameter estimate value 
0=0 is a singular value for the designed controller. The closed-loop system in the 
(z, j)-coordinates yields 

-Cl 10 wl 

-1 -C2 1+ 7W1W3 Z+ W2 (4.127) 
0 -1 -'YW1W3 -C3 W3 

B=7 [WI w2 w31 z (4.128) 

By virtue of Theorem 4.1 asymptotic stabilization of the output to the desired value 
XL is achieved. Computer simulations were carried out for the nominal value of the 

unknown parameter set at 0=1 and a desired output Xl = 2. Figure 4.10 shows the 

satisfactory asymptotic behaviour of the controlled responses for the design parameters 

cl = 2, c2= 3, c3 =3 and 'y = 1. Figure 4.11 shows the state variables and parameter 

estimate for different initial conditions and an adaptation gain 'y = 0.001. Note that, 

since 0=0 is a singular value, we can select initial conditions with 0(0) >0 and assign 

small values to the adaptation gain to achieve stabilization avoiding singularities. 
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Figure 4.10: State variables, parameter estimate and control responses of a nontriangular 
system regulated by a DAB controller 
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angular system regulated by a DAB controller for the initial conditions (x, B, u)(0) _ 
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Chapter 5 

DAB Control of Power Converters 

5.1 Introduction 

We consider in this chapter the application of the DAB algorithm described in Section 4.2 

to practical systems with a discontinuous form. We study the design of dynamical 

adaptive Pulse-Width-Modulated (PWM) controllers with robust stability properties 
for the regulation of DC-to-DC power converters in the presence of perturbation inputs. 

Since, for practical reasons, the regulation of DC-to-DC power converters is tra- 
ditionally performed by means of Pulse-Width-Modulation (PWM) feedback control 

strategies, we propose the use of this technique in combination with the DAB algorithm 
for the robust control of power converters of the Boost and Buck-Boost types. This 

new approach extends the application of the DAB algorithm described in Section 4.2 to 

nonlinear systems with a discontinuous form whose average models (infinite frequency 

assumption) are observable and minimum phase. 
The design of adaptive control strategies for the regulation of power converters in 

the presence of parametric uncertainty is very important in practical applications con- 

cerning regulated power supplies. The combined PWM-DAB approach proposed here 

provides a systematic solution (see [112]). Computer simulations are used to illustrate 

the performance of the backstepping controllers. 

5.2 DC-to-DC Power Converters with Uncertainties 

DC-to-DC power converters are electronic systems used in the conversion of energy. They 

can be modelled as nonlinear systems of discontinuous nature. As stated in Section 1.3.2 
the state space models of switchmode DC-to-DC power converters can be represented 

138 
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by the following switch-controlled dynamical nonlinear system [104] 

ý= f() + 9(ß)u + 77 (5.1) 

where f(. ) and g(") are smooth vector fields defined on an open set R of R", 77 is a 
constant vector and u denotes the switch position function, acting as a control input, 

which takes one of the two values in the binary set 10,11. Since the power converters 
to be considered in this section are of the Boost and Buck-Boost types (see Figure 5.1), 

the vector fields f (") and g(") are defined on an open set Ro of R2. The mathematical 

model of the Boost converter describing the input inductor current I (t) and the output 
capacitor voltage V(t) has the form 

I(t) = -1(1 - u)V(t) +E 

v(t) _ (1- u)I(t) - ý, V(t) 

whereas the corresponding to the Buck-Boost converter is given by 

I(t) = 
L(1- 

u)V(t) + fu 

V(t) _ -C, (1- u)I(t) - CV(t) 

(5.2) 

(5.3) 

where L, C and R are respectively the inductance, capacitance and resistance values of 
the circuit components. The quantity E represents the constant value of the external 

voltage source and the control input function u is the switch position function taking 

values in the binary set 10,1}. 

Defining the state vector 

(6Wl Ißt) l 
(5.4) 

f2 (t) / V(t) / 

the following relations can be identified for the Boost converter 

_1 
e2 

1ZE 

f() =11) 9(o =1 77 =L (5.5) 

Ci RC 
62 - C, ei 0 

and the Buck-Boost converter 

C2 C2 +f 
L1 9ýý) 

-T 
1 (5.6) fW 

ý1 - C RC 
C2 

Cci 

for the general model (5.1). 
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Figure 5.1: (a) Boost converter circuit. (b) Buck-Boost converter circuit 

140 

PWM feedback control strategies consist, ideally, of switching; to the u=1 position 
at the beginning of each duty cycle (period) and changing to the u=0 position once 

within the duty cycle. The fraction of the duty cycle for which the switch position is 

at u=1 is known as the duty ratio It. Since the conversion of DC power is performed 
by semiconductor devices which switch at high frequency, it is assumed that the duty 

cycle has an infinitesimally small period. This assumption allows one to characterize 

average PWM models of power converters. These are obtained by replacing in (5.1) the 
discontinuous switch position u by the duty ratio function p [104,1071 

ý= AO + 9(i)µ + 1l (5.7) 

The state vector thus obtained has an average connotation. This simplification has 

the advantage of reducing the system problem defined by (5.1) to a standard control 
design problem in which the duty cycle function, taking values in the continuous interval 

0< it < 1, plays the role of the control input. However, the control function generated 
by a nonlinear control design technique may exhibit values outside this interval. This 

R 
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drawback is overcome by incorporating a limiting function of the form 

1 

Pr(t) = Fi(t) 
0 

for µ(t) >1 
for 0< µ(t) <1 
for µ(t) <0 

141 

(5. s) 

between the controller and the pulse width modulator (see Figure 5.2), bounding the 
duty ratio function values to the closed interval [0,1]. The above physical restriction on 
the values of the duty ratio function results in local stabilization of the state variables and 
is a well-known limitation of linear and nonlinear feedback control designs for DC-to-DC 

power converters (see, for instance, [53,101,104,107,113]). 

A PWM feedback control strategy for the specification of the switch position function 

u, occurring at regularly sampled instants of time, is given by 

1 for tk <t< tk + Pr(tk)T 

0 for tk + Pr(tk)T <t< tk +T 
(5.9) 

tk+T =tk+l, k=0,1,... 

Under the simplifying assumption that all the circuit parameters are perfectly known, 

a number of feedback control strategies has been proposed for the regulation of power 
supplies ([103J, [104], [107J, [110]). This assumption, however, may be invalid in practical 

situations. More frequently one has a partial knowledge of the values of the converter 

circuit components and of the external voltage source. Commonly, ageing effects on 

such components alter the known nominal values of the circuit parameters. These issues 

justify the need for an adaptive control strategy for the feedback regulation of switch- 

controlled devices delivering constant power to loads. 

Adaptive feedback control of DC-to-DC power supplies has been proposed by Sira-Itamfrez 

el al [113]. The adaptive PWM strategy adopted in that contribution was based upon 

an extension of the results of Sastry and Isidori [98] to discontinuous feedback control. 
Sira-Ramfrez et al proposed in [109] an overparameterized adaptive backstepping scheme 
based upon the backstepping algorithm in [48]. However, due to overparameterization, 
the dimensionally increased adaptive controller exhibited poor parameter convergence. 
More recently our new non-overparameterized DAB algorithm described in Section 4.2 

has been applied to the regulation of switch-controlled power supplies (see [111,112]). 

This approach yields asymptotic stabilization of power supplies when all the circuit 

parameters are unknown, as will be shown in the next section. 
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Figure 5.2: Feedback regulation scheme for nonlinear PWM switch-controlled systems. 

5.3 Adaptive PWM Control of Power Converters 

In order to apply the DAB algorithm, an output function should be specified. Tradition- 

ally two possibilities exist for the regulated output function: either the input inductor 

current I(t) or the output capacitor voltage V(t). When the latter is taken as the reg- 

ulated output, both the Boost and the Buck-Boost converters are non-minimum phase 
[107J. In such a non-minimum phase case the DAB algorithm of Section 4.2 leads to 

an unstable adaptive controller. Hence, regulation of power converters via the input 

inductor current is preferred. Thus, indirect feedback regulation of the output capacitor 

voltage is accomplished. 
Dynamical compensation has been previously proposed for the regulation problem of 

DC-to-DC power converters when full-knowledge of the circuit parameters is assumed 
[107J and under uncertainty conditions [109J. Since the relative degree of the average 

models considered here is 1, the adaptive controller arising from the DAB algorithm of 
Section 4.2 is dynamical in nature. Moreover, it is worth emphasizing that the average 
PWM models of both the Boost and Buck-Boost converters examined in this section are 

not transformable into the PPF and PSF forms. When applying the DAB algorithm, we 
consider the control input u as a state variable of the dynamical compensator. So the 
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PWM models of these converters can be regarded as nontriangular forms of the extended 
system (power converter plus dynamical compensator). 

5.3.1 Adaptive PWM Control of the Boost Converter 

Consider the average model of the Boost converter circuit with the input inductor current 
as the regulated output 

(1 - P)X2 -I- 
E 

il =L1 

x2 C 
(1 P)xi TM RC 

(5.10) 

Y= xi 

where xi is the average input inductor current I(t), X2 the average output capacitor 
voltage V(t) and µ the duty ratio function acting as the control input. Denote the 

values of the parameters defining the circuit equations (5.10) as 

91=L, 92=C, 93=RC, 94=L. (5.11) 

For a constant value of the duty ratio function p=U, 0<U<1, the equilibrium values 
of the average PWM model are readily obtained from (5.10) and (5.11) as 

e (5. i2) X1(U)= eie4u2' X2(u)- 01(l 
04 

u 1a2( ) U) 
Assuming that the actual values of all the circuit parameters are unknown, the primary 
objective is the adaptive feedback regulation of the average input inductor current xi(t) 
towards a known and constant equilibrium value Xi = xl(U). This value corresponds 
to some constant value, U, of the (actual) duty ratio function. 

The average model (5.10) can be rewritten as 

ý1 = c01 (X2, µ)B 

XI µ)9 (5.13) x2 = W2 

y= x1 

where 0= [Bl, 02,0 310 4]T and 

I-(1 
- p)x2 0 

(P1(x2)µ) =0 
IV2(x, p) = 

(1 µ)x1 
. 

(5.14) 
0 -x2 
10 
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Since the function cal depends on the control input p, the average model (5.13) is not 
in PPF form. We now design a dynamical adaptive controller for the average Boost 

converter model (5.13). Once the adaptive controller expressions are found, the average 
state variables X1, x2 appearing in the feedback controller and the parameter adaptation 
laws, are replaced by the actual (non-averaged) variable I(t), V(t) respectively. This 

procedure has been shown to be valid in many linear and nonlinear regulation schemes 
proposed for DC-to-DC power supplies, including those which are based on adaptive 
control ([53,104,107,109,113]). 

Step 1. Define the error variable zl 

zl := X1 - Xi (5.15) 

whose time derivative is given by 

il = wi (x2, µ)e + wi (x2, µ) (8 - 9) (5.16) 

with the regressor vector wi defined by 

wi (X2s µ) _ co (x2) u) (5.17) 

Consider the quadratic Lyapunov function 

Vi =1 zi + -(0-o ýTr-ý(e - e) (5.18) 
where r= PT >0 is a matrix of adaptation gains. The time derivative of Vi is obtained 

Vi = zi 
[wi(x2,11)8] + (0 - 

B)T r_1 [-B+ rwi (x2, P)zl] (5.19) 

One can achieve Vl = -cizi with cl a positive design parameter, by choosing the update 
law 

8= Ti = I'w1 (x2) µ)z1 (5.20) 

if the relation 
Wl(X2, ß)9 = -CiZ1 (5.21) 

is satisfied. However, since (5.21) is not valid and 71 is not considered an update law 
but the first tuning function, the second error variable is defined as 

z2 := wi (x2, u)0 + clzl (5.22) 

The closed-loop form for zl is 

il = -C Zl + Z2 + W1(x2, µ) (9 - B) (5.23) 



Chapter 5. DAB Control of Power Converters 145 

and 
Vi = -eiZ + Z1Z2 + (0 - e)Tr-i (- 0+7-1) (5.24) 

Step 2. The time derivative of Z2 is obtained as 

z2 = W20 +W2(B - 8) + O1X2µ + wig (5.25) 

with the regressor vector 

-cl(1 - µ)x2 
T 

" ail 
TT 

01(1 - µ)2x1 
(5) W2 (x, e, P) = axe 

BýP2 + c1(Pl =91-x . 26 
1( µ) 2 

Cl 

Define the augmented Lyapunov function 

V2 = Vi + z2 (5.27) 

whose time derivative is given by 

Vz = -clzi + Z2 
[Zi + W20 + Blx2µ + wib] + (0 - 

9)I'-1(- 0+ Tl + I'w2 z2) (5.28) 

The control design is completed by choosing the update law 

8=T2=Tl+rw2z2=r[wi w2 
,z (5.29) 

and the dynamical controller 
1A 

µ=[- 
01 X2 

Z1 - w20 - W1T2 - C2Z2J (5.30) 

to achieve 
V2 

= -clzi - c2Z2 (5.31) 

The duty ratio function p can be obtained as the solution of the nonlinear differential 

equation defined by (5.30). Note that the set of error variables 

4 xl - Xl 
z= `ý(xý e9 µ) :_ 

-01(l - µ)x2 + 04 + cl(x1 - Xl) 
(5.32) 

qualifies as a coordinate transformation of the average state variables x, and X2. The 
Jacobian matrix of this transformation is obtained as 

= Ii 0 
(5.33) 

ex [ci 
-91(1 - µ) 
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which is non-singular everywhere except at persistently saturated values of the duty ratio 
function p=1. This condition represents an unstable open-loop situation in the adopted 
PWM setup. For this reason, asymptotically stable behaviour can be guaranteed locally 
for the original state variables as long as asymptotically stable behaviour is achieved for 

the transformed variables zl and z2. The local non-singularity of the Jacobian matrix 
is equivalent to the local observability of the average system (5.13). Furthermore, since 
the rank of the matrix 

I Vi -(1 - µ)X2 001 
_ (5.34) 

APT (X, U) 
0 (1- p)x1 -x2 0 

(X, U) 

is always less than the number of unknown parameters (p = 4), convergence of the 

parameter estimate 0 to the true unknown value of the parameters is not accomplished. 
Nevertheless, bounded values of 9 are guaranteed. 

In summary the adaptive controller for the average system is given by (5.30) together 

with the update law for the parameters (5.29). The duty ratio synthesizer for the PWM 

regulated system is obtained by replacing the average state variables xi, X2 appearing 
in the controller expressions by the actual state variables I (t) and V (t), respectively. 

5.3.2 Adaptive PWM Control of the Buck-Boost Converter 

Consider the average bilinear model of the Buck-Boost converter circuit with the input 

inductor current as the regulated output 

µ)x2 +f il 

i2 =-C (1 - µ)x1 - RC XZ (5.35) 

y= X1 

where xl is the average input inductor current I(t), X2 the average output capacitor 

voltage V (t) and µ the duty ratio function acting as the control input. Denoting the 

values of the circuit parameters as 

111E 
01 = L, 02 = C, 03 = RC, 

04 = L, 5.36 

the equilibrium values of the average PWM model for a constant value of the duty ratio 
function /C = U, 0<U<1, are obtained from (5.35) and (5.36) as 

0304 04 X1ýUý = 91020 - U)2' X2ýUý = -0 (i - v). (5.37) 
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Assuming that the actual values of all the circuit parameters are unknown, the control 

objective is the adaptive feedback regulation of the average input inductor current xi(t) 

towards a known and constant equilibrium value Xl = X1(U) corresponding to some 

constant value U of the duty ratio function. Under these conditions the average model 
(5.35) can be rewritten as 

i1 = (Pi X21 ß)B 

-z = cZ (x, P)e 

y= xl 

where 0= [91,02,031 94]T and 

(1- p)X2 

0 
0 

µ 

0 

CP2 (Xi ß) ý 
-x2 

0 

(5.38) 

(5.39) 

Since the function cpl depends on the control input p, the average model (5.38) is not in 

PPF form. 
Proceeding in the same manner as for the Boost converter, the dynamical backstep- 

ping algorithm yields the error coordinate transformation 

xi - Xi - (5.40) 
el(1 - µ)x2 + 0411 + Cl (x1 

- 
Xi) 

and the tuning functions 

Tl = rw zl (5.41) 
T2 = Ti + n)2 Z2 =r 

[WT 
i W2]Z 

with the regressor vectors 

'l(x2) VT (x21 Fý) (5.42) 
T 

ci(1 - µ)x2 

" ail "TT- el(1 JL)2x1 
w2(-Ti ey µ) - öý2 

42 + c191 - el(1 
- µ)X2 

ßiµ 

The adaptive controller is defined by the update law B= T2 and the dynamical feedback 

law 

L-Zi-W29-W1T2-c2Z2, 
(5.43) 

84 91x2 
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The duty ratio function p can be obtained as the solution of the nonlinear differential 

equation defined by (5.43). 
In order to check the observability condition, the Jacobian matrix of the transform- 

ation (5.40) 
U. p (x, e, m) 

ax 
10 

cl -61(1 - µ) 
(5.44) 

which, as in the case of the Boost converter, is non-singular everywhere except at per- 
sistently saturated values of the duty ratio function p=1. Hence, asymptotically stable 
behaviour of the state variables is guaranteed locally. Furthermore, for the same reasons 
as for the Boost converter, bounded values of 0 are guaranteed but convergence to the 

actual unknown parameters is not accomplished. 

5.3.3 Simulation Results 

Simulations were carried out to assess the adaptively controlled behaviour of both con- 
vcrters. In order to test the robustness of the proposed regulation scheme with respect to 

external perturbation inputs, perturbed models of the actual PWM controlled converter 
were used in the simulations. The perturbed models included an external stochastic 
perturbation input entering additively to the external source voltage represented by 
E. Thus, for the Boost converter the adaptive dynamical controller was applied to the 

perturbed model 

I(t) _-L (1- u)V (t) +ELv (5.45) 

v(t) = 
C(1 

- u)I(t) -ý, V(t) 

i. e. the external voltage source E was assumed to include an unmatched additive noisy 
input v affecting the behaviour of the converter during the "on" and "off" stages of the 

switching. 
In the Buck-Boost converter simulations the perturbed model was taken to be 

I(t) = 
L(1- 

u)V(t) + 
EL vu 

V(t) _ -C(1- u)I(t) - C, 
V(t) (5.46) 

The following supposedly "unknown" values of the circuit parameters were used for 

simulation purposes 

C=181.82µF ;L=0.27 mH ; R= 2.4451 ;E= 14.667 Volts 
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for both converters. These values of the circuit components yield the following actual 
values of the model parameters 

Bi = 3600 ; 02 = 5500 ; 03 = 2250 ; 04 = 52800 

The sampling frequency was set to be 1 KHz and the random noise amplitude was set 
to be 2.44 Volts (16 % of the value of E). 

Figure 5.3 depicts the dynamic adaptively regulated state responses of the Boost 

converter. The figure also shows the evolution of the estimated parameter values as 
obtained from the designed update law, the duty ratio function and the switching actions 
on a shorter time interval. The desired equilibrium value for the average input inductor 

current was set to be I= 15.75 amps. The resulting steady state equilibrium value 
for the average output capacitor voltage is V= 23.77 Volts. The duty ratio value 
corresponding to this equilibrium is µ=U=0.38. The regulated state variables are 

seen to converge asymptotically towards the desired equilibrium values. 
Figure 5.4 shows the dynamic adaptively regulated state responses of the Buck-Boost 

converter, and also the evolution of the estimated parameters arising from the update 
law, the duty ratio function and the switching actions on a shorter time interval. The 

chosen equilibrium value for the average input inductor current was I= 22.5 amps. 
The resulting value for the average capacitor voltage is V= -22 Volts, with duty ratio 

p=U=0.6. The regulated state variables converge asymptotically towards the desired 

equilibrium values. 
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Chapter 6 

SAB and Sliding Mode Control of PSF 
Systems with Disturbances 

6.1 Introduction 

As demonstrated in Section 1.4, an adaptive system may possibly exhibit instability 

in the presence of disturbances. This drawback motivates the need for robustness in 

adaptive control schemes. On the other hand, Sliding Mode Control (SMC) is a well- 
known deterministic technique for the design of robust controllers for uncertain systems 

with disturbances ([122], [126]). 

In this chapter a combination of adaptive control and SMC is proposed to cope with 
tracking problems of uncertain systems in the presence of undesirable disturbances. In 

particular we propose the SAB algorithm described in Section 2.4.3 and SMC to design 

static adaptive sliding mode tracking controllers for systems transformable into the PSF 
form. These new combined SAB-SMC algorithm allows one to design robust controllers 
to achieve global asymptotic stability of uncertain systems in PSF form, and motivates 
the design of tracking controllers for broader classes of uncertain systems which will be 

considered in Chapter 7. 

We first describe the systematic SAB-SMC algorithm and give sufficient conditions 
on the design parameters to guarantee asymptotic stability of the closed-loop system. 
Then a third order uncertain nonlinear system is used to illustrate the applicability of the 
design algorithm, and computer simulations illustrate the performance of the adaptive 
sliding mode controller in tracking tasks. 

152 
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6.2 SAB-SMC Algorithm 

The combination of adaptive control and SMC has been used in regulation and tracking 

problems involving uncertain nonlinear systems. For instance, Slotine and Li solved 
in [114] the tracking problem of robot manipulators with matched uncertainties. A 
direct adaptive SMC scheme was proposed by Su [116] for nonlinear robotic systems 

with bounded time-varying parameters. More recently, a combination of the adaptive 
backstepping algorithm with tuning functions (the SAB algorithm) proposed by Krstid et 
al [61] and SMC has been explored by various researchers for the robust adaptive control 
of nonlinear systems with unmatched disturbances. Sira-Ramirez and Llanes-Santiago 
[108] combined these two techniques for the control of two-dimensional systems in PSF 
form. The approach proposed by Rios-Bolfvar and Zinober [881 and Rios-Bolivar et al 
[911 deals with the general tracking problem for PSF systems, which will be described 

below. A different combined approach has been proposed by Karsenti and Lamnabhi- 

Lagarrigue [52] for a class of nonlinear parameterized uncertain systems with a canonical 
form called non-pure parametric feedback form. This form preserves the triangular form 

of parametric pure-feedback systems, but includes nonlinear relations for the unknown 

parameters. Another combined backstepping-SMC strategy has been used by Chien and 
Fu [18] in the context of output-feedback control. 

Consider the class of uncertain nonlinear systems transformable into the PSF form 

ý1 = 12 + V1 (xi)O 

ý2 = X3 'i' V2 (XI) X2)e 

(6.1) 
ýn-1 = Xn 'i' ýOn-1 X1, ... , Xn-1 e 

xn _ ýO() + (On (x)e + NO(x)26 

y= xi 

where Qo and vi, i=0, ... , n, are smooth nonlinear functions of their arguments, with 
&(0) 96 OVxE R'. 

The problem of robustly adaptively tracking a known bounded reference signal yr(t) 

with continuous and bounded derivatives yý'ý (t), i=1, ... ,n will be solved in this section 
via the following combined SAB-SMC algorithm. 
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SAB-SMC Algorithm 
Coordinate transformation 

Zj :=y- yr(t) = Xi yr(t) 

zk = xk - ak_1(Xl)... , Xk_1,9, t) - yýký (t) 2<k<n (6.2) 

with 

k-1 Oak-1 Oak-1 a«k-1 
ak(21, ... xk, O, t) := -zk-1 + xi+1 '+ e at Tk +- wk B 

i-1 
axi a 

k-2 

a«; + z'+1 a9 
I'Wk - CkZk (6.3) 

i-1 

k-1 Oak-1 

Wk (xl, ... , xk, O, t) .= cpk - Bpi (6.4) 
i-1 

axi 

k 

Tk(X1, ".., Xk, 0, t) 
.= Tk-1 +rWkzk = I'EW; Z1 (6.5) 

i=1 

Define the sliding surface 

Q=klzl+k2z2+... +k�-izn-i+zn=0 (6.6) 

I and choose the design parameters k;, i =1, ..., n-1, such that the polynomial 

p(s) = k1 + k2s +. 
--+ 

kn-13n-2 + sn-1 ý6.7) I 

in the complex variable s is Hurwitz. 

Parameter update law 

n-1 
B := Tn = Tn-1 + rQ 

(Wn+ 
kiwi) 

i=1 
n-1 n-1 

= I' Ewizi+a (W 
n -f -E 

kiwi/J (6.8) 

i=1 i=1 

Adaptive sliding mode control law 

n-1 1 
______ 

ý'" 
aan-1 a4'n-1 

u- Qo(X) cao(x) +Z öx; x'+i - wn B -F- 09 Tn -I - et -I- y(n)(t) 
i=i 

n-1 

_ 

aai-1 i-2 ÖCX- 
ki 

- . zi-1 - c1zi + zi+l 
ae 

ýTn 
- Ti) + (zi+ii)rw1) 

n-2 aa` n-1 

+ zi+i ae) 
r (wn +E kiwi) - !\Q+Q sgn(Q)) (6.9) 

1=1 
\ i=1 
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We now describe the steps leading to the general SAB-SMC algorithm summarized 

above. The first n-1 steps of the computational procedure leading to the adaptive 

controller are exactly the same of those of the SAB algorithm with tuning functions [61] 

for tracking tasks. At the final step an adaptive sliding surface is defined in terms of the 
tracking error variables, and a discontinuous control law is also synthesized to assure 
convergence of the state trajectories to the sliding surface. The resulting adaptive SMC 

guarantees global robust tracking for PSF systems even in the presence of bounded 

disturbances. 

In order to distinguish the differences of the backstepping algorithm in tracking tasks 

considered here and the SAB algorithm given in Section 2.4.3 for regulation problems, 

we describe the first step in detail. 

Step 1. Define the tracking error variable zl as 

zi: =y-yr(t) _Xi-yr(t) (6.10) 

whose time derivative is given by 

zý _ X2 + Vi (x1)B - yr(t). (6.11) 

Adding (and subtracting) the estimate 0 of 0 to (from) (6.11), il can be rewritten as 

zl = X2 +Wie -'r(t) + W1 (6.12) 

where 9=0-e and wl is the regressor vector defined by 

wi(xl) = cpi(xl)" (6.13) 

Consider the Lyapunov function 

vl = 
Z1 

-I- 
2BT 

r-le (6.14) 

where r= rT >0 is a matrix of adaptation gains. The time derivative of Vi yields 

Vi = zl 
[X2 + wi 6- yr(t)] + BT I'-1(- B+ I'wlzl) (G. 15) 

One can achieve Vl = -clzl with cl >0a design parameter, by choosing the update 
law 

e=7,1=rwlzl (6.16) 
if the relation 

X2 + wi 0- yr(t) = -Clzl (6.17) 



Chapter G. SAD and Sliding Mode Control of PSF Systems with Disturbances 156 

is satisfied. However, since (6.17) is not valid in general and Ti is not considered an 

update law but the first tuning function, the second error variable is defined as 

Z2 = X2 - ai(xi, Olt) - yr(t) (6.18) 

where 
al(xi, 9, t) _ -wi 0- clzl. (6.19) 

The closed-loop form of ii becomes 

and 

zl = -Clzl + Z2 +WB (6.20) 

+Z Z +BTr-1(-9+T1). (6.21) Vi =-CIZ2 1 

Note that in this case zl, al and z2 are time-dependent variables. In fact, all the z's 

and a; 's will be time-dependent variables, as shown below. The following generic step 

summarizes the first n-1 steps of the backstepping algorithm for tracking tasks. 

Step k (2 <k<n- 1). The time derivative of the error variable Zk is 

k-1 Da 1 
WT O 

*^ öak-1 

- 
(k)(t) (G. 22) 

zk = Xk}1 - x: +l + wk B- 
00 

e- at yr 
i=1 

aýý 

with the regressor vector 
-i 

Wk := cpk -k 
aal 1 cp;. (6.23) 

By adding and subtracting B in (6.22), zk can be rewritten as 

zk = 2k+1 _ 

k-1 Oak-1 
Xitl + (AT B- Oak 1 Oak-, 

_ y(k)(t) + Wk e (6.24) 
OX, ae at r 

which can be stabilized with respect to the augmented Lyapunov function 

Vii = Vk-1 + 
2zk" (6.25) 

The time derivative of Vk is 
k-1 k-2 8a; (;, l 

k-1 Oak-1 T" 
Oak-1 " aak-i (k)(t) 

+Zk xk-1 + lk+i - xi+i + wk e--e- -t -- Yr ax; a i-1 

+ öTr-1 (-0+ 
Tja-1 + rwkzk) (6.26) 
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One can eliminate 0 from I'k with the update law 0= rk defined as 
k 

Tk := rk-1 + rWkZk =r Wizi. (6.27) 
i. l 

Furthermore, noting that 
1.1.14 
B-Tk-i =e - Tk+Tk - Tk-i =9-Tk+PWkzk (6.28) 

tick can be rewritten as 

Vk = 

k-1 ( k-2 

CiZ 
(I+lj)(b_rk)+äTr1(_b+rk) 

k-1 aak-1 
ýi+l _ 

aas 1e_ aak-1 
_ y(k)(t) +Zk 

[Zk_i 
+ Xk+1 - axi ae at i. l 

k-2 aai 

+WT e zi+1 ae 
rwk (6.29) 

i. l 

Then if Xk+l is considered a virtual control, one can make Vk =-E; ý 
1 c; z; with the 

virtual control Xk+l = ak + y, (k)(t) defined as 

k-1 Oak-1 Oak-1 Oak-1 T" 
ak(X1, ..., xk, B, t) :_ -Zk-I+E xi+i + 

00 
Tk + 

at - wk B 
öx; 

i=l 
k-2 aa; 

+ z'+i 00 
rwk - Ckzk. (6.30) 

which would make the bracketed term multiplying Zk equal to -ckzk. However, since 

zk+1 is not the actual control, the k-th error variable is defined as 
A 

Zk+l = xk+l - ak(xl, ... ' Xk, B, t) - y(k)M (6.31) 

Thus the closed-loop form of ik is 
k-2 

B Tký + (6.32) zi+l 
aj rwk zk = -zk-1 - CkZk -i- zk+l 'i- (Jk 0- 

Oak 
-I ( 

ae 
/ 

; _1 ae 
and, since rk is not considered an update law but rather the k-th tuning function 

k k-2 aai 
vk =-E Cizi + zkzk+l -Z zi+l 00 

(9 
- rk) + 9Tr_1(- 9 

-{- Tk) . 
(6.33) 

i=l i=l 

The control design is completed at the next final step. 
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Step n. Using the definition (6.31) for k=n-1, the time derivative of the error 
variable z� is 

n-1 
� zn = (POW + Po(x)u - 

äa-1 
x; +l + Wn 

00 
B- 

aa" 16- Da"-1 
_y (")(t) (6.34) 

where the last regressor vector is defined as 
n-1 

W 
aan-1 

n= SPn - ax. coj (6.35) 
s 

By adding and subtracting 0 in (6.34), z� can be rewritten as 

n-1 
Zn `= p0(x) +ßD(2)26 -Z 

Da�-, 
Xj -1 

+' Wn (2, e)e - 

aan 

ax; 
(9a�-, 

-F Wý (2,0) 0. 

ob 
e 

at 
(6.36) 

Consider the sliding surface a defined in terms of the error variables as 

Q= klz1+kaz2+... +kn-lzn-1+zn =0 (6.37) 

where the positive scalar design parameters k;, i=1, ... ,n-1, are chosen in such a 
manner that the polynomial 

p(s) = k1 + k2s +... +k. 
- S,, -2 + S»-1 (6.38) 

in the complex variable s is Hurwitz. Then the Lyapunov function is augmented as 
follows 

n-1 
V�=V�-i-+ -2ý2=2Ez? + 

0,2 
+2BTI'-i9. (G. 39) 

s=i 
The time derivative of V� is 

n-1 n-2 Dai 
" Vn =-z Ciz83+ xnzn-1 -E 7n-1) 

00 
i=1 i. l 

n-1 Da. 
-1 ý' " ÖCYn-1 " ÖCYn-1 

n 
[o(x) 

+ ßo(x)u - x; +l +Wn e- 00 e- at - yý ý(t) 
; -1 

axi 

n-1 aai-1 i-2 
! ýa 

-}- ki - zi-i - cizi + zi+l - 89 -- ( 0- Ti +E zi+i 09 
rW' 

j=l 

n-1 

`} BT -B -- Tn-1 -i- I'Q Wn `}' %CiWi (6.40) 

i-1 
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One can eliminate 0 from V� by choosing the update law 
n-1 (w,, 

i-1 
n-1 n-1 

= I' (6.41) 
i. l i. l 

Noting that 
n-1 

Tn-1 = Tn - Tn-i = rQ 
(wn 

+ kiwi) (6.42) 

i=1 

can be rewritten as 
n-1 

Vn =- Ciz{ + znzn-1 

i=1 

n-1 

+Q O(X) + ßo(x)u - 
aan-1 

+ wn 9- aa" 1e- aan-1 
- y(n)(t) 

i=1 axe -K ae at 
n-1 öai-1 1 -Z ýa 

-}- 
k; - zi-1 - c, zi + z, +l - 00 

(T� 
- T; ) + zi+l 

00 
rw' 

j=l 
n-2 as n-1 

zi+l 
ae) 

r (Wn 
+ kiwi) (6.43) 

i=1 i=1 

To achieve n-1 

Vn =- ciz; + xnzn-1 - Aal - AßIal (6.44) 
i. l 

the control u should be chosen to make the bracketed term multiplying o equal to 

-Ä(o +A sgn(o )), where A and ,Q are positive design parameters and sgn is the signum 
function. We can select 

1 n-1 aan-1 aan-1 aan-1 

POW -Po(x) + ax; x'+1 - wn 9+ 
ä9 Tn + at + yýný(t) 

1=1 

n-1 ÖQi-1 l 
i-2 5 aj ) - 

%Ci - , zi-1 - cizi + zi+l 
00 

CT" 
- TiJ + 

j=1 

(Ezi+i)rwi) 
i=1 

n-2 aa' n-1 

zi+l 
a) 

r 
(w» 

+ kiwi) 
-A(+ 13 sgn(Q)) (6.45) 

-1 i. l 

6.3 Analysis of Stability 

Note that we can rewrite the time derivative of the Lyapunov function (6.44) as 

V� = -zTQz - AßkTl (6.46) 



Chapter 6. SAB and Sliding Mode Control of PSF Systems with Disturbances 160 

where Q is a symmetric matrix with the following form 

Cl + Akl Aklk2 ... Aklk�-1 Akt 
Ak2k1 C2 + Akt 

... 
Ak2k�-1 Ak2 

Q= (6.47) 
Akn-1k1 C2 + Akn-1k2 

... cn-1 + Akn-1 -1 + ilk,, 
-1 

Akt Ake ... -2+ Ak�-1 A 

Noting that the determinants of the principal minors of Q are all positive and have the 
form 

dd 

Q+AE(clc2... c; -jki ... cd)>0,1<d<n-1, (6.48) 

a sufficient condition to guarantee that Q is positive definite is 

1 n-2 1 n-2 
IQ) _P4+) (Cn-1 + kn-1)] [f 

ci -4\ 
E(Ci 

... Ci-1%£i Ci+1 ... Cn-2) > 0. (6.49) 

i. l i=1 

The design procedure above guarantees that t6, < 0, and, thus, a sliding mode is 

generated on the sliding surface a=0. 
Since the right hand side of the differential equations which characterize the closed- 

loop system are discontinuous, the Lipschitz continuity condition is violated and, con- 

sequently, we cannot use standard theorems for existence of solutions. Nevertheless, a 

stability proof could be constructed by using the integral invariance principle for differ- 

ential inclusions formulated by Ryan [96]. The integral invariance principle was firstly 

introduced by Byrnes and Martin [12] as a generalization of the LaSalle invariance prin- 
ciple. Then, Ryan considered in [961 the control design problem in a more general 

setting that allows time variation in the differential equations, possible non-uniqueness 

of solutions and discontinuous feedback strategies. 
When the perturbed system incorporates a matched disturbance with known bounds, 

classical disturbance rejection techniques in the setting of sliding mode control (see [122], 

[1261), can be used to reject the undesirable perturbation. However, we consider here 

the effect of an unmatched bounded disturbance without information regarding bounds, 

and show that the closed-loop system obtained by using the procedure above, exhibits a 

certain degree of insensitivity to such disturbances (robustness) as a consequence of the 

sliding mode generated. This is illustrated in the following example. 
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6.4 Robust Tracking Control of PSF Systems 

Example 6.1 Consider the unperturbed third order system in PSF form 

xi = X2+X 9 

X2 = X3 (6.50) 
X3 =U 

y= X1 

where 0 is an unknown constant parameter. The control objective is the tracking of 
a known bounded reference signal yr(t) with bounded derivatives even in the presence 
of disturbances. From the application of the backstepping-SMC algorithm explained 
above, the following tracking error variables are obtained 

zI = 21-yr(t) 
A 

Z2 =X 2- ai(x1, e, t) - y*(t) (6.51) 
A 

z2 = 2g - a2(X i, X2, e, t) - yr(t) 

(6.52) 

where 
AA 

ai (x1,6, t) = -w1O - clzl (6.53) 

a2(x1, x2, e& t) = -zl +x x2 - W20 + 
00 
aal 

72+ 
ä»i 

- C2 Z2 

with the regressor vectors defined as 

wl = X2 

, Oal 
W2 =-x Xl (6.54) 

öa2 
Z 

w3 = -321X1 

Defining the adaptive sliding surface 

a= klzl + k2z2 + z3 =0 k1, k2 >0 (6.55) 

the tuning functions are obtained as 

Ti = 7W1 z1 

Ta = Tl + ryW2Z2 (6.56) 

T3 = 72 + 7o, (W3 + kiwi + k2W2) 
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where the update law is 0= r3, and the discontinuous adaptive control law is 

tL 
Oa2 (9 a2 Oa2 

X2 + X3 - W3e +A 73 + j43ý(t) - kl(-clzl + z2) - k2(-zl - c2Z2 + z3) 12 09 

+(k2 + z2)ya 
aal 

(. 3+ kiwi + k2W2) -A 
(a +Q sgn(a)). (6.57) 

ae 
Using the update law and the adaptive controller thus designed, the time derivative of 
the Lyapunov function 

V=2zi+2z2+2 e2+2ý2 (6.58) 
7 

becomes 
V= 

-zTQz - AßIa l (6.59) 

with 
cl + 

. 
Ak1 Akt k2 i1 k1 

Q= Ak2k1 c2 + \k2 -2 + Ake (6.60) 
. k3k1 -2 + Akt A 

Thus, if the design parameters satisfy the condition (6.49), global asymptotic tracking 
is achieved, namely 

l im. = (y(t)_yr(t)) = o, (6.61) 
whilst a sliding mode is generated on the sliding surface a=0. 

A perturbed model of the third order PSF system (6.50) was used in the computer 
simulations. The additive perturbation was an unmatched external stochastic input v 
entering at the first differential equation 

th1 = x2+x219+v 

x2 = X3 (6.62) 

x3 =U 

y= XI 

The reference signal to be tracked was chosen to be 

yr(t) = sin(10t) (6.63) 

and the perturbation input v=4 sin(80t). 

Computer simulations were carried out for a nominal parameter value 0=1. Fig- 

ure 6.1 shows the tracking performance, the state variable responses and the evolution of 
both the parameter estimate and the sliding function in the absence of the perturbation. 
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Figure 6.2 depicts the robust asymptotic tracking achieved by the combined controller 
in the presence of the perturbation. The design parameters used to obtain both figures 

were cl = 8, C2 = 8, kl = 5, k2 = 15, A=3,0 =5 and -y = 0.001. Computer simulations 

were also performed for an adaptive controller obtained by using the SAB algorithm of 
Section 2.4.3. Figures 6.3 and 6.4 show the tracking performance and evolution of the 

controlled variables in the absence and presence of the perturbation respectively for the 
design parameters cl = 5, c2 = 5, c3 =8 and -y = 1. The responses obtained by the 

combined SAB-SMC controller exhibited a more robust behaviour and reduced track- 
ing error in comparison with the SAB controlled responses. Aditionally the parameter 

estimate function is more insensitive to the perturbation in the case of the combined 
SAB-SMC. This aspect is very important in preserving asymptotic tracking. 
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Chapter 7 

DAB and SMC of Uncertain Nonlinear 

Systems with Disturbances 

7.1 Introduction 

The results of Section 6.2 are applicable only to linearizable uncertain nonlinear systems 

which are transformable into the PSF form. We consider in this chapter the extension 
of these results to a broader class of nonlinear systems with parametric uncertainty. In 

particular, we propose a new combined adaptive sliding mode control approach based 

upon the DAB algorithm given in Section 4.2 and SMC to deal with uncertain systems 

which are not necessarily in the PSF and PPF forms. The controller thus obtained 

exhibits robust behaviour in the presence of undesirable perturbation inputs. 

The design technique proposed here follows a similar procedure to that of Section 6.2 

and the same sufficient condition on the design parameters, guarantees asymptotic track- 
ing and stability of the controlled state variables. As in the case of the DAB algorithm 
described in Section 4.2, the design procedure is applicable to observable minimum phase 
uncertain nonlinear systems and the resulting stability is in general local. 

We start the chapter describing the earlier proposed approach for the design of dy- 

namical sliding mode controllers for tracking tasks of non-adaptive systems. Then the 

combined DAB-SMC algorithm is presented and its stability properties are analysed. Fi- 

nally a field-controlled DC motor with five uncertain parameters is used as an illustrative 

example of the new control design algorithm. 

166 



Chapter 7. DAB and SMC of Uncertain Nonlinear Systems with Disturbances 167 

7.2 Dynamical SMC Design for Deterministic Nonlin- 

ear Systems 

Dynamical discontinuous feedback control of the sliding mode type has been proposed by 
Sira-Ramfrez [105,106] for asymptotic tracking problems in nonlinear systems without 
uncertainty. The dynamical feedback controller is designed by using the Generalized Ob- 

servability Canonical Form (GOCF) (3.98) and achieves asymptotic tracking for a class 

of non-affine minimum-phase observable systems. As a motivation for the asymptotic 
tracking problem for uncertain nonlinear systems, the approach in [106] is summarized 
below. 

Consider a single-input single-output non-affine minimum-phase nonlinear system of 
the form 

th =f (X, u) (7.1) 

y= h(x) 

Assuming that (7.1) is transformable into the GOCF (see Section 3.3) 

1= ý2 

2= 63 

ýn-1 = 6, (7.2) 

y= ý1 
1 

where p is the relative degree of (7.1). The problem of tracking a bounded reference 
signal yr(t) with bounded derivatives can be solved as follows. Defining the tracking 

error function e(t) as the difference between the actual system output y(t) and the 
desired bounded output reference signal yr(t), 

e(t) = y(t) - yr(t) (7.3) 

we obtain 

e(')(t) = ee+i - y(')(t); 0<i<n -1 

e(")(t) = ýn - y(")(t) = c(C, u, üj ... , u("-P)) _ y(n)(t). 

Then, defining z; =i=1,.. ., n, as the components of the error vector z, we 
express the tracking error system in GOCF as 
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zl = z2 
Z2 = z3 

zn-1 = Z. (7.4) 

in =C... (n-p1 
-Y (t) (er (t) }z, u, 2,3 u 

yz = Zi 

with 

ar(t) _ [yý(t), yrlý(t), ... , yin-ý)(t)]T 
T (7.5) 

Under the assumption that the condition 
Öe(ýr(t) -}- z, u, ... , 26("-P)) 

- 34 auf"-v) 
O (7.6) 

is satisfied locally, no singularities need to be considered in the design of a dynamical 
S11MC. The sliding surface is specified in terms of the output tracking error coordinates 
as 

O Zn + Cn-2Zn-1 + 
... + C1Z2 + COZ1 =0 (7.7) 

such that the polynomial 

p(s) = s"-1 + Cn-2sn-2 + ... + C1.5 + co (7.8) 

in the complex variable s is Hurwitz. Finally, the dynamical SMC 
n-1 

C(6 (t) + z, u, ü, ... , u(n-P)) = y(n)(t) _ C, -izs+i - )(o +0 sgn(C')) (7.9) 

with A>0 and 0>0, can be obtained in terms of an implicit ordinary differential 

equation with discontinuous right-hand side. The ideal sliding dynamics, obtained from 

the invariance conditions a=0, &=0 [122], is 

Z1 = Z2 

z2 = Z3 

(7.10) 
n-1 

zn-i =- Ci-izi 
s=i 
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and exhibits asymptotically stable motion towards the origin of the error coordinates. 
Consequently, the output tracking error function zl converges asymptotically to zero, as 
desired. 

This approach is suitable for perfectly known minimum-phase observable nonlinear 
systems. Recently, Spurgeon and Lu [115J proposed different methods for output tracking 

of non-minimum phase systems without uncertainty via dynamical compensation and 
SNIC. 

7.3 DAB-SMC Algorithm 

We next consider an adaptive version of the procedure in Section 7.2 which is applicable 
to a class of minimum-phase observable uncertain nonlinear systems. This adaptive 
control design method has been proposed by Rios-Bolivar et al [92,94] to achieve robust 
tracking in the presence of uncertainty and disturbances. 

Consider the same class of single-input single-output uncertain nonlinear systems as 
analysed in Section 4.2, which can be represented by the dynamic equations 

x= . fo(x) + tP(x)e + (go(x) + V(x)O)u (7. ýý) 
y= h(x) 

where zE f" is the state, u, yER the input and output respectively and 0= 

(9i, ... , Bp]T a vector of unknown parameters. fo, go and the columns of the matrices 
%p, VE R"Xp are smooth vector fields in a neighbourhood Re of the origin x=0, with 
fo(O) = 0, go(0) ý 0, and h is a smooth scalar function also defined in Ro. It is assumed 
that system (7.11) has relative degree p strictly less than the system order. The control 

objective is to drive the system output y(t) to track asymptotically a bounded reference 

signal yr(t) with bounded derivatives in the presence of disturbances. 

Under Assumptions 4.1 and 4.2, this objective can be accomplished by combining 
the DAB algorithm of Section 4.2 and SMC. Adopting a similar procedure to that of 
the previous section, the first n-1 steps follow the algorithm described in Section 4.2. 

At the final step a sliding surface is defined in terms of the tracking error variables and 
both an update law and a dynamical discontinuous feedback law are also synthesized. 
The combined DAB-SMC algorithm can be summarized as follows: 



Chapter 7. DAB and SMC of Uncertain Nonlinear Systems with Disturbances 170 

DAB. SMC Algorithm 
Coordinate transformation 

z1 ý_ Y- Yr(t) = h(°)(x) - yr(t) (7.12) 

Zk := h(k-1) (x, 9, Vi) ... , V(k-P), t) - y*k-i) + ak-i (x, 9, Vi, ... , V(k_p), t) 2<kn 

i with 

"k_ 
ah (k-1) a%tck-1i 

h= 
ae Tk + Ox 

[. fo +e+ (90 + (PO)vi] 
k-p-1 ah(k-1) ah(k-1) 

+ v; +l + at 
(7.13) 

; -1 
avi 

Wk ax +a ax 1 )(iI'+cou) (7.14) 

k-1 aj(i_1) k-1 0a; 
-1 T 

k---P; 1 aak-1 

ak = Zk-1 +E zi + rzi rwk + v; +1 
00 ao 

aak-1 aak-1 aak-1 

+ ax 
[fo + WO + (9o + coe)vl] + 

ae 
Tk + at + ckzk (7.15) 

k 

Tk =r wkzk 1<k<n-1 (7.16) 
; -1 

I Define the sliding surface 

Q=klzl+kaz2+... +kn-lzn-1+zn=0 (7.17) 

I 
with the design parameters k;, i=1, ... ,n-1, chosen such that the polynomial 

p(s) = kl `F' k2s + ... + kn-1Sn-2 + Sn-1 (7.18)1 

in the complex variable s is Hurwitz. 

Parameter update law 

n-1 
8= Tn = Tn-1 ru l Wn lv{WT J (?. 19) 

is 



Chapter 7. DAB and SMC of Uncertain Nonlinear Systems with Disturbances 171 

DAB-SMC Algorithm (cont. ) 

DAI3"SMC law 

vl = V2 

vn-p-1 = vn-P 

1 
en 

_P (oM 
Ö 

n-1) + Oa-1 
vn-P l9vn-p 

(7.20)1 

ý(n-1) n-1 oh 
+ 

a(Xn 1 
)Z, 

(rw' E k1wf y(n) 
u 
i=2 ae ae c=1 

"" 
a%1("-1) ocY 

a2 
+ 

ax (fo 
+'pe + (go +W 9)vl) - at - 

at 1 

ah(n-1) a(X�-1 
_ 

"1 ah("-1) a(X�-1 

a6 
+ a9 T avi + avi vi+l 

Y--' 

n-1 t-1 atl(j-1) i-1 a! X 
- 

ki 
(-zi-i 

- Cizi + zi+l - a8 
+Ez; ae 1 I'wT 

i=1 9J 

n-1 a(; -1) aa; 
-1 

-E- ki + )(rn_Ti)_A(cT+ßsgn(c7))] 

, _1 
Since the final step is the only one different from the DAB algorithm given in Sec- 

tion 4.2, it is described next. 

Step n. At this step we obtain the update law and the dynamical adaptive sliding mode 

tracking controller. After the k=n-1 step of the DAB algorithm, the transformed 

system is 
A 

il = -cizl + z2 + wl(O - 6) 
hclý 

z2 = -Zl-C2Z2+Z3+W2(e-9)+ 
2h(1) (e-72) 

ahýk-1ý aak-1 B- Tk zk = -zk-i - CkZk + Zk+l + Wk (9 - 0) + 
00 

+ 
00 

() 

-i 

z`ah(i-l) + 
k-1 aai-i T (7.21) 

i=2 e zi ae 
rW 

aL i=3 

zn = h(")(X, 6, u, ... , u(n-p) i) - y(n)(i) + an(x, e, u) ... ' U(n-p-1)'t) + wn(e - 
e) 

+ -1 
ei 

+ 
Sa 

00 )(ý_r) 
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n-1 

Tn-1 '- 
r wiT zi 

ti=1 

and the time derivative of V�_1 is 

n-1 n-1 (0; 1) 
1 + 

-+ -I- 
, _3 

ae 

+(e - O)Tr-' (-0+ Tn-, (7.22 
We now define the sliding surface 

or =klzl+k2z2+... +kn-lzn-1+zn=0 (7.23) 

with the positive design parameters k;, i=1, ... ,n-1, chosen in such a manner that 

the polynomial 
p(s) = k1 + k2-9+... + kn-1Sn-2 + sn-1 (7.24) 

in the complex variable s is Hurwitz. Extending the Lyapunov function as 

n-1 

Vn = Vn-1-+' 2 02 =2 Ez'2 +2 u2 +2 (0- BST r-1 ýa -0) (7.25) 
i-1 

the time derivative of V. is 

n-1 n-1 a(; -1) n-1 a; 
-i) i(b_rni) Vn =-C; z? + zn-1zn + 

Ezae 
+Ez; e 

i=2 ; _3 
n-1) 

+U h(n) - y(n)(t) + an + 
ah 

+ 
Dan 

-1 
(8 

- Tn) 

ae ae \ 
af. (j-1) i-1 a« 

e 
rWT 

-}- 
%i -z; -1 - Ciz; + z; ß-1 - , zj 

08 -}- zj ý1 

i=i . 7=2 j=3 

+ 
n-1 ah(; -1) Da, 

1 
-ý 

- 

ae ab 
(e - T`) 

n_1 

+(0- 0^ )T r-1 -B+ Tn-1 + I'U 
(WT 

+ E kiWT) (7.26) 

; =1 

We can eliminate (0 - 
6) from Ün by choosing the update law 

n-1 

B= rn = Tn-1 + ro, (wT, + %kiWT). (7.27) 
i. l 

Now, noting that 
n-1 

B- 7n-1 = Tn - 7n-1 = rQ 
(w 

+k wT) (7.28) 

i=1 
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V� can be rewritten as 
n-1 

Vn Ci z{ + Zn-1 Zn 

i=1 

n-1 ah(i_1) n-1 as' n-1 

'+o, 
h(n) - y(n)(t) + an '+' zi +E zi A1r 

(w, 
+E kiwi 

i=2 
ad 

i=3 
a8 

{=1 
n-1 i-1 a^ u-1) i-1 

zj 
aý 

+E zj 
Dai 1 I'WT + ki -zi_i - Cizi + Z14 1- E-I 

i=1 
. 1=2 j=3 

ao 

n-1 ÖAýi-1ý aCYi-1 

-E ki 
ad 

+ 
ae 

(Tn Ti) (7.29) 

i=1 

Finally, to achieve 
n-1 

Vn =-E Cizi + zn-lzn - Au' 
- Aß l o, 1 (7.30) 

i_1 

the bracketed term multiplying o should be -A(o+g sgn(o)), where A and ß are positive 
design parameters and sgn is the signum function, namely 

n-1 ah(i-1) n-1 aai-1 n-1 
h(n) 

- 2Jýnýýtý 'i' a+ E -- Zi 
ae 

+E z' 
ae 

r(Wn -f. kiwi 
i=2 i=3 i-1 

n-1 i-1 af( j-1) i-1 

+ ki (__1 
- cizi + zi+1 - z, + zj 

aaj-1 
rwT 

E(E)I 

i=l j=2 ag j_3 ad 
n-1 atl('-1ý UCýi-1 

- Eki 
00 + 00 

(Tn - Ti) = -A 
(Q +0 sgn()) (7.31) 

i=l 

() 

The update law (7.27) together with the dynamical discontinuous adaptive feedback law 
(7.31) achieve a sliding mode on the sliding surface (7.23). Note that (7.30) can be 

rewritten as 
V� _ -zTQz - aßýýý (7.32) 

with Q being the same as (6.47). Thus, the sufficient condition (6.49) also applies in 

this case to guarantee that Q is positive definite. However, since the right hand side of 
the differential equations which characterize the closed-loop system are discontinuous, 

we cannot use standard theorems for existence of solutions. Instead, the use of the 

recently introduced integral invariance principle for differential inclusions [96] provides 

a convenient setting for the construction of a stability proof. 
Note that the discontinuous feedback control law (7.31) can be rewritten in the form 

of the dynamical adaptive sliding mode control law (7.20) by replacing the control input 

u and its derivatives it, ü, ... by the state variables v1, v2, v3, ... respectively and solving 
for i _p" 
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An important advantage arises from the dynamical adaptive sliding mode control: 
the output tracking error function zl (t) asymptotically approaches zero with substantially 

reduced chattering [92,941. A slightly modified version of the above algorithm has been 

used by Ahmed-Ali and Lamnabhi-Lagarrigue [2] for tracking problems in some examples 
of practical interest. 

7.4 Example: Field-Controlled DC Motor 

Consider the following nonlinear dynamical model of a field-controlled DC motor [1061 

K VQ - 

La 
a 

21- - X2U+La 

B 
-1X2 +K Xiu (7.33) 

y= X2 

where xl represents the armature circuit current and x2 is the angular velocity of the ro- 
tating axis. V. is a fixed voltage applied to the armature circuit and u is the field winding 
input voltage, acting as the control input. The constants Ra, L., and K represent the 

resistance, the inductance in the armature circuit and the constant torque, respectively. 
The parameters J and B are the moment of inertia and the associated viscous damping 

coefficient of the load. The control objective is to track a known reference trajectory 

y, (t) with bounded derivatives. 

We assume that all the parameters are unknown and rewrite (7.33) as 

21 = -OXX1 - 82222 + 03 

x2 = -8422 + e5xiu 

y= X2 

(7.34) 

with 
_Ba e_ K B_ Va e_B e_K ei La 2 La ,s La 45 (7.35) 

It was shown in [106] that (7.33) is locally minimum-phase in the region characterized 
by the conditions 

h aB > K2U21 V2 > 4RaBX2(U) (7.36) 

where U is a constant equilibrium input voltage and X2(U) is the corresponding equilib- 

rium of the angular velocity X2. Therefore we assume that the nominal unknown values 

of the system parameters satisfy the conditions (7.36) and apply the algorithm described 
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above to design an adaptive dynamical sliding mode controller for tracking the desired 
trajectory. Note that the relative degree p is 1 and therefore the time derivative of the 

control input will appear at the second step of the design algorithm. 

Step 1. By defining the output variable error zl =12 - yr(t), the time derivative of zi 
is given by 

il = w1 B+ wl (O - 6) - y, (t) (7.37) 

with 
WI = 

[0 00- x2 xiu] " (7.38) 

Consider the Lyapunov function 

vl .2 z1 +2 (0-0 ýTr-(e -0) (7.39) 
whose time derivative is 

Vi =. i 
[wiý 

- ? r(t)] +(B-9)Tr-1r-e+rw1zl) (7.40) 

We can achieve 1= -clzi with the update law 

8= T1 = rwiz1 (7.41) 

if the expression 
W10 - yr(t = -cizl (7.42) 

is satisfied. However, since (7.42) is not valid and 7-1 is not considered an update law 

but the first tuning function, we define the second error variable as 

Z2 = W10 - y, -(t) + CiZi (7.43) 

obtaining the following closed-loop form for zi 

il = -d z' + z2 + wl (B -0^) (7.44) 

and 
Vi = -ClZ + z1z2 + (B - )Tr-, r-0+ 

Ti). (7.45) 

Step 2. At this final step we define the sliding surface 

Q= kizl + Z2 =0 (7.46) 
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and the augmented Lyapunov function 

V2=Vi+20'2. (7.47) 

The time derivative of V2 is given by 

v2 = -clzi-I-zlz2-}-(B-B)TI'-i(-9+Tl+ra(w2 +kiwi)) 

+ W20 +W10 + 85x12 
- 9, (t) - cly, (t) + kl(-clzl + Z2) (7.48) 

with 
WZ =I- 85X126 - 8522u2 05U - 

(Cl 
- 04)X2 (Cl 

- 84)X1UJ (7.49) 
ll.. 

A To eliminate (B - 9) from V2 we choose the update law 

0= T2 = ri + rQ(w2 + klwi) =r 
{wTzi 

+ Q(w2 + klwl )] (7.50) 

The control function u can be readily obtained as the solution of the following nonlinear 
time-varying differential equation 

W20 - W1T2 + yr(t) + ci yr(t) - kl(-clzl + z2) -a 
(a +Q sgn(a)) (7.51) 

05x1 

and then 
V2 = -clzl + Z1Z2 - ace - AßlQI. (7.52) 

Note that the term 85x1 in the denominator of (7.51) characterizes the local nature 
of the controller obtained for this example. Thus, this control is applicable only in a 

region for which the condition 05x1 ;0 is satisfied. Moreover, the control-dependent 
4 transformation z= (D (x, 8, u, t) defined by 

z= (D(x, dl u, t) = 
X2 yf (t) (7.53) 

-X204 + XlU05 + Cl(x2 - yr(t)) - yr(t) 

has the associated Jacobian matrix 

ö_(x, 6, u, t) 
_01 (7.54) äx U05 Cl - ä4 

Thus u=0 corresponds to a singularity of the transformation (7.53) and, hence, stabil- 
ization or tracking tasks that imply polarity reversals in the field winding input voltage 

must be handled using a different technique. We consider here tracking tasks which 

guarantees non-singularities of the transformation (7.53). 
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From (6.49) the sufficient condition on the design parameters which guarantees 
asymptotic tracking behaviour is 

A(cl+ki)> 1 
. (7.55) 

In order to test the robustness of the proposed scheme with respect to external perturb- 
ation inputs, we simulated a perturbed model including a bounded external stochastic 

perturbation input v applied to the voltage of the armature circuit V. 

xl = -81X1 - 82222 + 03 + 1/ 

x2 = -94x2 + 05X1U 

y= X2 

(7.56) 

Simulations of a tracking task were performed for a DC motor with the following para- 
meter values 

Ra=7SZ ; La=l20mH ; Va=5V 

K=1.41 x 10-2 N-m/A, B=6.04 x 10-6 N-m-s/rad, J= 1.06 x 10-6 N-m-s2/rad 

and the design parameters were 

=1, Q=1, k1=1, c1=100, r=r5 

The desired output reference trajectory yr(t) was considered to allow a smooth transition 

of the angular velocity X2 between two equilibrium values X2 = 300 and X2 = 200 

yr(t) - 
X2 for 0<t< to 

(7.57) 
X2 + (X2 - X2)exp(-2(t - to)2) for t> to 

It may be verified that, according to the nominal values of the parameters, the initial and 
final angular velocities are located in the minimum phase region of the system. Figure 7.1 

shows the satisfactory robust asymptotic tracking achieved by the combined DAB-SMC 

approach. Computer simulations were also carried out for the controlled system in the 

absence of perturbations. Figure 7.2 shows the asymptotic tracking behaviour exhibited 
in the absence of perturbations. This example illustrate the satisfactory performance 

exhibited by the controller obtained by the DAB-SMC algorithm. The tracking of the 
desired reference output is achieved with almost full insensitivity to the disturbance, 

and considerably reduced chattering. 
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Figure 7.1: Tracking performance, state trajectories of the perturbed system, evolution 

of the parameter estimate and the sliding surface function and perturbation signal 
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Chapter 8 

Backstepping Design via Symbolic 

Algebra Computation 

8.1 Introduction 

The computer technology advances of the last fifteen years have allowed the development 

of a number of computer software systems intended for numerical and symbolic compu- 
tations. Thus, computer packages such as MACSYMA, MAPLE and MATHEMATICA 

provide in general the following capabilities 

9 numerical and symbolic algebra computation 

" data analysis and graphical visualization 

" high-level programming 

The availability of these packages has allowed the development of useful toolboxes 

for implementing systematic schemes for the analysis and design of feedback control 

systems. For instance, some of the toolboxes so far developed include the design of 

nonlinear observers [6], analysis and control design for affine and non-affine systems 
(34,23], SMC design via zero dynamics [67], modelling and nonlinear control design [5], 

analysis of nonlinear systems via algebraic system theory [1], and analysis and design 

based on flatness [95]. 
These tools simplify the development of systematic and recursive control design meth- 

ods which can be implemented by using these computer programs, so that the design of 

stabilizing controllers may be carried out more efficiently. The various backstepping con- 

trol design algorithms given in the previous chapters provide a systematic framework for 

180 
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the design of tracking and regulation strategies suitable for large classes of both determ- 
inistic systems and uncertain systems. A very appealing aspect of these backstepping 
design algorithms is that they follow a systematic step-by-step algorithm. However, the 

equations arising from these design algorithms are usually very complicated for hand 

computation even for low order (n < 3) systems. This justifies the need for a symbolic 
computation toolbox which implements the various backstepping design algorithms and 
computes the required controller without the possible errors of hand computation. 

The SAB algorithm with tuning functions for PPF and PSF systems developed by 

Krstid et al [61] has been implemented using Mathematica [5]. In this chapter we describe 

our new symbolic toolbox which implements the new DAB algorithm of Section 4.2 and 
the combined DAB-SMC of Section 7.3, which have been developed by Rios-Bolfvar et 
al [87,92]. The implementation of these algorithms allows the design of both static 
and dynamic adaptive tracking controllers following the basic ideas of backstepping 

with tuning functions, without the need for transformation into the above-mentioned 

restricted feedback forms. These algorithms have been implemented using the MATLAB 

Symbolic Toolbox [89,90]. MATLAB has been chosen for the implementation of this 

toolbox due to the availability of efficient tools for numerical integration and other 
toolboxes for computer simulations of control systems. The MATLAB Symbolic Algebra 

Toolbox incorporates much of the MAPLE system. 
We start by describing the algorithms and the various classes of nonlinear systems 

for which they are applicable, as well as the features of the new symbolic toolbox. 

Then the use of this toolbox is explained in a tutorial manner by using three examples 

corresponding to three different classes of systems. 

8.2 Symbolic Toolbox for Backstepping Design 

In this section we describe the symbolic toolbox developed via MATLAB, which imple- 

ments the DAB algorithm given in Section 4.2 and the combined DAB-SMC algorithm 

of Section 7.3. The backstepping control design algorithms described in the previous 

chapters allows the design of various types of static and dynamic controllers. These 

controllers are applicable to several classes of nonlinear systems, as shown in Table 8.1. 
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Design algorithm Type of controller Class of system 

SDB Static deterministic Triangular form 

SAB Static adaptive PSF and PPF 

DDB Dynamic deterministic Observable minimum phase 
(I/O linearizable) 

DAB Dynamic adaptive Uncertain observable 
minimum phase 

SAB-SMC Static adaptive sliding mode PSF and PPF 

DAB-SMC Dynamic adaptive sliding mode Uncertain observable 
minimum phase 

Table 8.1: Backstepping control design algorithms 

It is worthwhile stressing that the DDB and DAB algorithms incorporate the SDB 

and SAB algorithms as particular cases, respectively. Also the algorithms developed for 

deterministic systems (identified with D in the second letter of the acronyms) can be seen 

as particular cases of their correspondent adaptive version; those in which the nonlinear 
functions multiplying the uncertain parameter vector B are zero. Thus implementation 

of all the algorithms in Table 8.1 is achieved by implementing only two algorithms: the 

DAB and DAB-SMC algorithms. 
The MATLAB Symbolic Toolbox contains a collection of tools (functions) that can 

be used for manipulating and solving symbolic expressions. There are tools to combine, 

simplify, differentiate, integrate, and solve algebraic and differential equations. Other 

tools allow the derivation of exact results in linear algebraic matrix operations such as 
inverses, determinants, canonical forms and eigenvalues of symbolic matrices without 

the errors introduced by numerical computations. The tools in the MATLAB Symbolic 

Toolbox are built upon the MAPLE computer package. Thus, the symbolic operations 

in MATLAB are actually performed by MAPLE; then the results are transferred to the 

MATLAB environment. 
Our backstepping-SMC design toolbox (BACKDSMC) has been developed for the 

synthesis of tracking and regulating adaptive (and non-adaptive) controllers for a large 

class of observable minimum-phase nonlinear systems, requiring a minimum of effort by 

the user. It has the following features [89,90] 

" automatises the backstepping control design process 

. does not use transformations into canonical forms 
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" allows the design of a number of adaptive and robust adaptive-SMC controllers 

9 does not require the user to have expert knowledge of the backstepping design 

technique 

" automatically generates MATLAB code programs for computer simulation of the 

closed-loop systems. 

The types of controllers designed by BACKDSMC for regulation and tracking problems 
include 

" static and dynamical non-adaptive linearizing controllers for deterministic systems 
(SDB and DDB algorithms) 

" static and dynamical adaptive backstepping controllers for uncertain systems (SAB 

and DAB algorithms) 

" robust static and dynamical combined backstepping-SMC for uncertain systems 
(combined SAB-SMC and DAB-SMC algorithms) 

Our three examples in Section 8.3 illustrate the design of the types of controllers 

above. The outputs generated by BACKDSMC consist of the feedback control law, the 

coordinate transformation placing the system into the error coordinates, the parameter 

update law for uncertain systems, the sliding surface for the combined backstepping- 

SMC design, and the MATLAB code programs for simulation (see Figure 8.1). 

The user needs to provide the nonlinear functions of the mathematical model of the 

system written in the general form 

x= fo(X) +W (x)0 + 
(so (X) + 0(x)0) u (8.1) 

y= h(x) 

where xE R" is the state; u, yER the input and output respectively and 0= 

(ol, ... go PIT a vector of unknown parameters. fo, go and the columns of the matrices 

129V E R" " are known smooth vector fields and h is a smooth scalar function. In ad- 
dition, the symbolic desired output should also be supplied by the user. Depending on 

the nature of y, . 'the problem to be solved is either regulation or tracking. Thus, when 

yl. is constant the designed controller is for regulation, otherwise yr is a time-dependent 

function and the controller is designed for tracking tasks. 
To define symbolic expressions in MATLAB the command SYM is used. Symbolic 

expressions in the MATLAB Symbolic Toolbox are character strings or arrays of char- 

acter strings that represent numbers, functions, operators and variables. The variables 
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Figure 8.1: Symbolic backstepping-SMC control design toolbox. 

are not required to have predefined values. The following MATLAB commands allows 

one to define symbolic expressions. For instance, 

h='sin(xl)' % scalar function 

defines the symbolic scalar function h= sin(xi) depending on the symbolic variable x1. 

A vector field of the form 
X2 

AX) = X3 

U 

is defined by the following MATLAB command 

f=sym('[xl-2; x3; 0]') % vector field 

whereas a symbolic matrix of the form 

I X122 X2 
fi(x) 

cos(2x1) 
X2 

1 -}- ý1 

is defined by 

Psi=sym('[x1*x2"2, x2; cos(2*xl), x2/(l+xl)]') % symbolic matrix 
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To identify the state variables, BACKDSMC needs them be specified by placing a num- 
ber immediately after (without spaces) the symbol `x'. So the first state variable should 
be `xl', the second one `x2', and so on. Character strings which are not identified as 
state variables, symbolic functions or arithmetic operators are treated by BACKDSMC 

as constants. A detailed explanation regarding the creation and manipulation of sym- 
bolic expressions is available in the MATLAB User's Guide [71J. 

Once the symbolic expressions characterizing the system model (8.1) have been cre- 

ated, BACKDSMC can be called in any of the forms below, depending on the design 

requirements of the user. 

[C, TAU]=BACKDSMC(f, g, h, yd, phi, psi) 
designs the adaptive backstepping controller for the uncertain nonlinear sys- 

tem characterized by f, g, h, phi and psi for regulation or tracking to the desired 

output yd (SDB, DDB, SAB and DAB algorithms). 

[C, TAU, Z]=BACKD SMC (f, g, h, yd, phi, psi) 

gives, additionally, the transformation Z placing the original system into 

error coordinates. 
[C, TAU, ZJ=BACKDSMC(f, g, h, yd, phi, psi, 'modfile') 

generates the m-file `modfile. m' containing the system model and the adapt- 

ive controller for numerical simulation purposes. 

[C, TAU, Z]=BACKDSMC(f, g, h, yd, phi, psi, 'modfile', 'runfile') 

generates, additionally, the m-file `runfile. m', which runs `modfile. m' and 

provides nominal values of the unknown parameters, design parameter values 

and initial states for simulation purposes. 

[C, TAU, Z, SIGMA]=BACKDSMC(f, g, h, yd, phi, psi, 'modfile', 'runfile') 

i. e. containing a fourth output argument, allows one to design an adaptive 

sliding mode control (SMC) to generate a SLIDING MODE on the sliding 

surface SIGMA=klz1 + k2z2 + ... + k�_lz�-i + Zn= 0, with k; 's the design 

parameters and z; 's the error coordinates of the transformation Z. 

This information is obtained in the MATLAB command window by typing 

help backdsmc 

The full MATLAB code program of the toolbox BACKDSMC is included in Appendix B. 

In the next section, various examples are given to illustrate the use of the BACKDSMC 

toolbox. 
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8.3, Use of the Symbolic Toolbox BACKDSMC 

\Ve present in this section three different examples to illustrate the use of the symbolic 

toolbox BACKDSMC corresponding to various classes of systems. These are given 
in a tutorial manner, including the series of MATLAB commands required to define 

the symbolic equations which characterize the dynamical system and the arguments 

needed by BACKDSMC. The results are presented in the form of m-files (MATLAB 

code programs), which can be used directly for numerical integration. 

8.3.1 Control Design for Deterministic Nontriangular Systems 

Example 8.1 Consider the third order system without uncertainties 

i1 x2 + x1X3 0 

X2 = X3 +0u (8.2) 

X3 01 

which is not in triangular form. As stated in Section 3.4, this system belongs to the 

class of input-output linearizable systems. The linearizing output is 

y= xl exp(-x2) (8.3) 

The DDB algorithm was applied in Section 3.4 to obtain the following nonlinear 

transformation 

zl = ho(x) = xl exp(-x2) - yr 

z2 = hl(x) = x2 exp(-x2) + Cl 
(xi 

exp(-x2) Yr) 

Z3 = h2(x, VI) = xl exp(-x2) + x3(1 - X2) exp(-x2) + c1x2 exp(-x2) 

+c2 [x2 
exp(-x2) + cl 

(x1 
exp(-x2) yr)J 

and the static feedback control 

U= 
ah2 

-z2 - 

ýý2 
(x2 + xix3) - ax2X3 - C3z3 

ax3 
-1 

12 
with 

öh2 
- (l + c1c2) exp(-x2) 

c9x1 
Dh2 

= exp(-x2) 
(- 

xl - x3(2 - X2) + cl(1 - x2) + c2(1 - X2 - cixl) 
OX2 

(8.4) 

(8.5) 

(8.6) 
aha 
äX3 = exP(-x2)(1 - X2) 
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We apply BACKDSMC to obtain the linearizing static control (8.5). The symbolic 
expressions which characterize the mathematical model (8.2) are defined by the following 

series of MATLAB commands 

f=sym(' [x2-+1 *x3; x3; 0]') 

g=sym('[0; 0; 1]') 

phi=sym('[0; 0; 0]') 

psi=sym('[0; 0; 0]') 

h='x1 *exp(-x2)' 

yd='0' 

% f(x) 

% g(x) 
% phi (x) 

% psi(x) 
% h(x) 

% desired output yd 

The above static backstepping controller is obtained by specifying the command line 

[c, tau, z]=backdsmc(f, g, h, yd, phi, psi) 

To obtain the m-files required for computer simulations two optional arguments may be 

added to the command line 

[c, tau, z] = backdsmc(f, g, h, yd, phi, psi, 'notrian', ' notrianr') (8.7) 

The m-file `notrian. m', generated by the command (8.7), contains the system equations 

and the control law as shown below: 

function xdot=notrian(t, x); 

global c; 

'/, Control law 

u1=(-c(2)*c(1)/exp(x(2))*x(2)-2/exp(x(2))*x(2)+x(3)*c(1)/exp(x(2))*... 

x(2)-x(3)*c(1)/exp(x(2))-x(3)-2/exp(x(2))*x(2)+2*x(3)-2/exp(x(2))+... 

x(3)*c(2)/exp(x(2))*x(2)-x(3)*c(2)/exp(x(2))-c(3)*c(1)/exp(x(2))*x(2)... 

+c(3)*x(3)/exp(x(2))*x(2)-c(3)*x(3)/exp(x(2))-c(3)*c(2)/exp(x(2))*... 

x(2)-c(3)*c(2)*c(1)*x(1)/exp(x(2))-c(3)*x(1)/exp(x(2))-c(1)*x(1)/... 

exp(x(2)))/(-exp(-x(2))*x(2)+exp(-x(2))); 

% System equations 

xdot(1)=x(2)+x(1)*x(3); 

xdot (2) =x (3) ; 

xdot(3)=u1; 
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The m-file `notrianr. m' is generated to run the numerical integrations of the closed-loop 

system in `notrian. m' and allows one to specify the initial conditions, the parameter 
design values and the initial and final times for simulations, as follows: 

x 
% File notrianr. m 

x 
y This program runs notrian. m 

% Right hand side values to be input by user 

global c; 

% Parameter values 

t0=; % Initial time 

tf=; % Final time 

% Initial conditions 
Y. 

[t, x] =ode23 ('notrian' , tO, tf , x0) ; 

When the system contains uncertain parameters the nominal "unknown" values are also 

given in 'notrianr. m'. As shown in Section 3.4 the above controller linearizes the sys- 

tem dynamics and the closed-loop system has a skew-symmetric form. The computer 

simulations shown in Section 3.4 were obtained by using the m-files ̀ notrian. m' and 
`notrianr. m'. BACKDSMC automatically selects the standard Runge-Kutta procedure 

ode23 as ordinary differential equations (ODE) solver. Nevertheless, user may choose 

another ODE solver from the various ODE solvers available in the recently released ode- 

suite for MATLAB and SIMULINK. This suite contains five different routines, including 

two routines for stiff problems. In fact, we used the routine ode 15s from this suite, for 

the numerical integration of sliding mode controlled systems in this thesis. 



Chapter 8. Backstepping Design via Symbolic Algebra Computation 189 

8.3.2 Adaptive Control Design for PSF Systems 

Example 8.2 Consider the flexible-joint manipulator model of Section 2.5 with un- 
known link mass and transformed into the PSF form 

th1 = X2 

x2 = X3 '+' W(21)9 

i3 = X4 (8.8) 

i4 = aOX3+a1W(x, )O+bu 

y= X1 

where the nonlinear function cp and the constant parameters ao, al and b are all known 

- -and 
defined by 

ai =k (8.9) 
31 

ao =a, + (8.10) 
, 
gym 

b= ai (8.11) 
3m 

cp(xl) _ -9l sin(xi) (8.12) 
it 

This example allows one to illustrate the performance of BACKDSMC for the design of 

adaptive backstepping controllers for uncertain systems in PSF form, namely the imple- 

mentation of the SAB algorithm described in Section 2.4.3. We will show that applying 
BACKDSMC we obtain both the update control law (2.292) and the static adaptive 
feedback law (2.293) of Section 2.5, which adaptively stabilizes the output to the desired 

link angular position yd = 1.22 radians. The symbolic expressions which characterize the 

mathematical model (8.8) are defined by the following sequence of MATLAB commands: 

f=sym('[x2; x3; x4; aO*x3]') % f(x) 

g=sym('[0; 0; 0; b]') % g(x) 

phi=sym('[O; -g*1*sin(x1)/j1; 0; -al*g*l*sin(x1)/jl]') % phi(x) 

psi=sym('[0; 0; 0; 0]') % psi(x) 
h='xl' % h(x) 

yd='1.22' % desired output yd 

The following MATLAB command runs BACKDSMC for the design of the static ad- 

aptive backstepping controller and creates the m-file 'robotmod. m' 

[c, tau, z]=backdsmc(f, g, h, yd, phi, psi, 'robotmod') 
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The generated m-file `robotmod. m' contains the system equations, the update law for 

the unknown parameter and the adaptive control law as follows: 

function xdot=robotmod(t, x); 

global c ad theta g1 jl aO al b; 

% Auxiliary variables 

x 
th1=x(5); 

I Update law 

x 
taut=-(x(2)+c(1)*(x(1)-1.22))*ad(1)*g*1*sin(x(1))/jl-((c(1)*x(2)*jl+... 

x(3)*jl-thl*g*1*sin(x(1)))/jl+c(2)*(x(2)+c(1)*(x(1)-1.22))+x(1)-1.22)... 

*ad(1)*g*1*sin(x(1))/jl*(c(1)+c(2))-(-(x(2)*thl*g*1*cos(x(1))-x(2)*... 

c(2)*c(1)*jl-x(2)*jl-c(1)*x(3)*jl+c(1)*thl*g*1*sin(x(1))-c(2)*x(3)*... 
jl+c(2)*thl*g*1*sin(x(1))-x(4)*jl)/jl-g*1*sin(x(1))/jl*(-(x(2)+c(1)*... 

(x(1)-1.22))*ad(1)*g*1*sin(x(1))/jl-((c(1)*x(2)*jl+x(3)*jl-th1*g*1*... 

sin(x(1)))/jl+c(2)*(x(2)+c(1)*(x(1)-1.22))+x(1)-1.22)*ad(1)*g*1*... 

sin(x(1))/jl*(c(1)+c(2)))+c(3)*((c(1)*x(2)*jl+x(3)*jl-thi*g*1*... 

sin(x(1)))/jl+c(2)*(x(2)+c(1)*(x(1)-1.22))+x(1)-1.22)+x(2)+c(1)*... 
(x(1)-1.22))*ad(1)*g*1*sin(x(1))*(-jl*thl*g*1*cos(x(1))+c(2)*c(1)*... 

j1-2+2*jl-2+g-2*1-2*sin(x(1))-2*ad(1)+g-2*1-2*sin(x(1))-2*ad(1)*... 

c(1)-2+2*g-2*1-2*sin(x(1))-2*ad(1)*c(2)*c(1)+g-2*1-2*sin(x(1))-2*... 

ad(1)*c(2)-2+c(3)*jl-2*c(1)+c(3)*jl-2*c(2)+ai*jl-2)/jl-3; 

/, Control law 

y 
u1=(-(2*j1"3*x(3)+aO*x(3)*j1"3+x(2)*c(3)*j1"3+x(2)*c(1)*... 
j1-3+x(4)*jl-3*c(1)+x(4)*jl"3*c(2)+x(4)*jl-3*c(3)+4*g-2*1-2*... 

cos(x(1))*ad(1)*sin(x(1))*x(2)"2*c(2)*c(1)*j1+2*g"2*1-2*cos(x(1))*... 

ad(1)*sin(x(1))*x(2)"2*c(2)"2*jl-x(2)*thi*g*1*jl-2*c(1)*cos(x(1))-... 

x(2)*thi*g*1*j1"2*c(2)*cos(x(1))+4*x(2)*g"2*1"2*cos(x(1))*ad(1)*... 

sin(x(1))*j1*c(1)*x(1)-4.88*x(2)*g"2*1"2*cos(x(1))*ad(1)*sin(x(1))*... 

c(1)*j1+2*x(2)*g"2*1"2*cos(x(1))*ad(1)*sin(x(1))*c(1)*x(3)*j1+2*... 

x(2)*g-2*1"2*cos(x(1))*ad(1)*sin(x(1))*c(2)*x(3)*jl-3*x(2)*g"3*1"3*... 
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cos(x(1))*ad(1)*sin(x(1))-2*c(1)*th1-3*x(2)*g-3*1-3*cos(x(1))*ad(1)*... 

sin(x(1))-2*c(2)*thi+2*x(2)*g-2*1-2*cos(x(1))*ad(1)*sin(x(1))*c(2)*... 

j1*c(1)-2*x(1)+2*x(2)*g-2*1-2*sin(x(1))-2*ad(1)*c(1)*j1+2*x(2)*g-2*... 

1-2*cos(x(1))*ad(1)*sin (x(1))*c(2)-2*j1*c(1)*x(1)-2.44*x(2)*g-2*1-2*... 

cos(x(1))*ad(1)*sin (x(1))*c(2)*c(1)-2*j1-2.44*x(2)*g-2*1-2*cos(x(1))... 

*ad(1)*sin(x(1))*c(2)-2*c(i)*j1+2*x(2)*g-2*1-2*cos(x(1))*ad(1)*... 

sin(x(1))*c(2)*j1*x(1)-2.44*x(2)*g-2*1-2*cos(x(1))*ad(1)*sin(x(1))*... 

c(2)*j1+x(2)*g-2*1-2*sin(x(1))"2*ad(1)*c(2)-2*c(1)*j1+x(2)*g-2*1"2*... 

sin(x(1))-2*ad(1)*c(2)*j1+x(2)*g-2*1-2*sin(x(1))-2*ad(1)*c(2)*c(1)-2*... 
j1-x(2)*c(3)*j1"2*th1*g*1*cos(x(1))-j1"2*th1*g*1*cos(x(1))*x(3)+j1*... 

th1"2*g-2*1-2*cos(x(1))*sin(x(1))+c(2)*c(1)*j1-3*x(3)-c(2)*c(1)*j1-2*... 

thi*g*1*sin(x(1))+g-2*1-2*sin(x(1))-2*ad(1)*x(3)*jl-g-3*1"3*... 

sin(x(1))-3*ad(1)*thi+g-2*1-2*sin(x(1))-2*ad(1)*c(1)-2*x(3)*j1-g-3*... 
1-3*sin(x(1))-3*ad(1)*c(1)-2*thi+2*g-2*1-2*sin(x(1))-2*ad(1)*c(2)*... 

c(1)*x(3)*j1-2*g-3*1-3*sin(x(1))-3*ad(1)*c(2)*c(1)*thi+g-2*1-2*... 

sin(x(1))-2*ad(1)*c(2)-2*x(3)*j1-g-3*1-3*sin(x(1))-3*ad(1)*c(2)-2*... 

th1+c(3)*jl-3*c(1)*x(3)-c(3)*j1-2*c(1)*th1*g*1*sin(x(1))+c(3)*j1"3*... 

c(2)*x(3)-c(3)*j1"2*c(2)*thi*g*1*sin(x(1))+x(4)*j1*g-2*1-2*... 

sin(x(1))-2*ad(1)*c(1)+x(4)*j1*g-2*1-2*sin(x(1))-2*ad(1)*c(2)-2*... 
jl-2*th1*g*1*sin(x(1))-th1*a1*g*1*sin(x(1))*j1-2+th1*g*1*jl-2*x(2)-2... 

*sin(x(1))+2*g-2*1-2*cos(x(1))*ad(1)*sin(x(1))*x(2)-2*j1+2*g-2*1-2*... 

cos(x(1))*ad(1)*sin(x(1))*c(1)-2*x(2)-2*j1+x(2)*c(3)*j1"3*c(2)*c(1))... 
/j1-3-(-(x(2)*g*1*cos(x(1))+c(1)*g*1*sin(x(1))+c(2)*g*1*sin(x(1)))/... 

j1-g-3*1-3*sin(x(1))-3/j1-3*ad(1)*(c(1)+c(2))-c(3)*g*1*sin(x(1))/j1)... 

*(-(x(2)+c(1)*(x(1)-i. 22))*ad(1)*g*1*sin(x(1))/jl-((c(1)*x(2)*jl+x(3)... 

*j1-thl*g*1*sin(x(1)))/jl+c(2)*(x(2)+c(1)*(x(1)-1.22))+x(1)-1.22)*... 

ad(1)*g*1*sin(x(1))/jl*(c(1)+c(2))-(-(x(2)*thl*g*1*cos(x(1))-x(2)*... 

c(2)*c(1)*jl-x(2)*jl-c(1)*x(3)*jl+c(1)*thl*g*1*sin(x(1))-c(2)*x(3)*... 
jl+c(2)*thi*g*1*sin(x(1))-x(4)*jl)/jl-g*1*sin(x(1))/jl*(-(x(2)+c(1)*... 

(x(1)-1.22))*ad(1)*g*1*sin(x(1))/jl-((c(1)*x(2)*jl+x(3)*jl-thi*g*1*... 

sin(x(1)))/jl+c(2)*(x(2)+c(1)*(x(1)-1.22))+x(1)-1.22)*ad(i)*g*1*... 

sin(x(1))/jl*(c(1)+c(2)))+c(3)*((c(1)*x(2)*jl+x(3)*jl-thl*g*1*... 

sin(x(1)))/jl+c(2)*(x(2)+c(1)*(x(1)-1.22))+x(1)-1.22)+x(2)+c(1)*... 
(x(1)-1.22))*ad(1)*g*1*sin(x(1))*(-jl*thi*g*1*cos(x(1))+c(2)*c(1)*... 

jl-2+2*jl-2+g-2*1-2*sin(x(1))-2*ad(1)+g-2*1-2*sin(x(1))-2*ad(1)*... 

c(1)-2+2*g-2*1-2*sin(x(1))-2*ad(1)*c(2)*c(1)+g-2*1-2*sin(x(1))-2*... 
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ad(1)*c(2)-2+c(3)*jl-2*c(1)+c(3)*jl-2*c(2)+a1*jl-2)/j1'3)-c(4)*... 
(-(x(2)*thl*g*1*cos(x(1))-x(2)*c(2)*c(1)*jl-x(2)*jl-c(1)*x(3)*jl+... 

c(1)*thl*g*1*sin(x(1))-c(2)*x(3)*jl+c(2)*thl*g*1*sin(x(1))-x(4)*jl)... 

/jl-g*1*sin(x(1))/jl*(-(x(2)+c(1)*(x(1)-1.22))*ad(1)*g*1*sin(x(1))/... 

jl-((c(1)*x(2)*jl+x(3)*jl-thl*g*1*sin(x(1)))/jl+c(2)*(x(2)+c(1)*... 

(x(1)-1.22))+x(1)-1.22)*ad(1)*g*1*sin(x(1))/jl*(c(1)+c(2)))+c(3)*... 

((c(1)*x(2)*jl+x(3)*jl-thl*g*1*sin(x(1)))/jl+c(2)*(x(2)+c(1)*... 

(x(1)-1.22))+x(1)-1.22)+x(2)+c(1)*(x(1)-1.22))-(c(1)*x(2)*jl+x(3)*... 

jl-thl*g*1*sin(x(1)))/jl-c(2)*(x(2)+c(1)*(x(1)-1.22))-x(1)+1.22-... 

(c(1)*x(2)*jl+x(3)*jl-thl*g*1*sin(x(1))+x(2)*c(2)*jl+c(2)*jl*c(1)*... 

x(1)-1.22*c(2)*c(1)*jl+x(1)*j1-1.22*jl)*g-2*1-2*sin(x(1))-2/jl-5*... 

ad(1)*(-jl*th1*g*1*cos(x(1))+c(2)*c(1)*jl-2+2*jl-2+g-2*1-2*... 

sin(x(1))-2*ad(1)+g-2*1-2*sin(x(1))-2*ad(1)*c(1)-2+2*g-2*1-2*... 

sin(x(1))-2*ad(1)*c(2)*c(1)+g-2*1-2*sin(x(1))-2*ad(1)*c(2)-2+c(3)*... 

jl-2*c(1)+c(3)*j1-2*c(2)+a1*jl"2))/b; 

% System equations 

. 
xdot (1) =x (2) ; 

xdot(2)=x(3)-theta(1)*g*1*sin(x(1))/jl; 

xdot (3) =x (4) ; 

xdot(4)=aO*x(3)+ul*b-theta(1)*al*g*1*sin(x(1))/j1; 

Parameter estimate equations 

xdot(5)=taut; 

The MATLAB program above was used to obtain the computer simulations shown in 

Section 2.5. 

8.3.3 Adaptive SMC Design for Observable Minimum Phase 

Systems 

We now present the symbolic design of dynamical adaptive sliding mode tracking con- 
trollers via BACKDSMC for observable minimum-phase uncertain nonlinear systems, 

namely the implementation of the combined DAB-SMC algorithm described in Sec- 

tion 7.3. 
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Example 8.3 Consider the mathematical model of the field-controlled DC motor of 
Section 7.4 when all parameters are assumed unknown 

i1 = -O1X1- e2X2U + e3 
X2 = -84x2 + 05X1U 

y= X2 

with 

(8.13) 

el = 
Ra 

, e2 =K, 83 = 
Va 

94 =B 95 =K (8.14) 

As shown in Section 7.4 this system is locally observable and minimum-phase in the 

region characterized by the conditions 

RaB > K2U2, V2 > 4RaBX2(U) (8.15) 

where U is a constant equilibrium input voltage and X2(U) is the corresponding equi- 
librium of the angular velocity x2. Assuming that the nominal unknown values of the 

system parameters satisfy the conditions (8.15), we can use BACKDSMC to design an 

adaptive dynamical sliding mode controller for tracking a desired trajectory. We con- 

sider here the same tracking problem of Section 7.4 in which the desired output reference 
trajectory yr(t) corresponds to a nonlinear function characterizing a smooth transition 

of the angular velocity X2 between two equilibrium values X2 and X2 

yr(t) _ 
X2 for 0<t< to (8,16) 
X2 + (X2 - X2)exp(-3(t - to)2) for t >'to 

Regarding the general form (8.1) the symbolic expressions which characterize the math- 
ematical model (8.13) are defined by the following sequence of MATLAB commands 

f=sym('[O; O]') 

g=sym('[0; 0]') 

phi=sym('[-x1,0,1,0,0; 0,0,0, -x2,0]') 
psi=sym('[O, -x2,0,0,0; 0,0,0,0, xl]') 
h='x2' 

yd='vf+(vf-vi)*exp(-a*(t-t0)-2)' 

% f(x) 

% g(x) 
% phi(x) 
% psi(x) 
% h(x) 

desired output yd 
The combined DAB-SMC obtained in Section 7.4, which consists of the sliding surface 
(7.46), the parameter update law (7.50) and the dynamical adaptive control law (7.51) 

can be designed by running the following MATLAB command 

[c, tau, z, sigma] =backdsmc(f, g, h, yd, phi, psi, 'motraclc') 
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Note that the fourth output argument `sigma' indicates to BACKDSMC that the com- 
bined DAB-SMC control design algorithm should be performed. The generated m-file 
`motrack. m' contains the system equations, the update law for the unknown parameter, 
the sliding surface and the adaptive control law as follows: 

function xdot=motrack(t, x); 

global c ad theta k lambda beta a; 

% Auxiliary variables 

ul=x(8); 
th1=x(3); 

th2=x(4); 

th3=x(5); 

th4=x(6); 

th5=x(7); 

. 
% Sliding surface 

sigma=k(1)*x(2)-k(1)*vf-k(1)*exp(-a*(t-tO)-2)*vf+k(1)*... 

exp(-a*(t-tO)-2)*vi-x(2)*th4+u1*x(1)*th5+c(1)*x(2)-c(1)*vf-... 

c(1)*exp(-a*(t-tO)-2)*vf+c(1)*exp(-a*(t-t0)"2)*vi+2*a*(t-t0)*... 

exp(-a*(t-tO)-2)*vf-2*a*(t-t0)*exp(-a*(t-t0)"2)*vi; 

% Update law 

. 
taut=-sigma*ad(1)*ui*x(1)*th5; 

tau2=-sigma*ad(2)*u1"2*x(2)*th5; 

tau3=sigma*ad(3)*ul*th5; 

tau4=-(x(2)-vf-exp(-a*(t-tO)-2)*vf+exp(-a*(t-t0)"2)*vi)*ad(4)*x(2)+... 

sigma*ad(4)*x(2)*(th4-c(1)-k(1)); 

tau5=(x(2)-vf-exp(-a*(t-tO)-2)*vf+exp(-a*(t-t0)"2)*vi)*ad(5)*u1*x(1)-... 

sigma*ad(5)*ul*x(1)*(th4-c(1)-k(1)); 

% Control law 
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control= (-k(1)*(-x(2)*th4+u1*x(1)*th5+2*(vf-vi)*a*(t-t0)*exp(-a... 

*(t-tO)"2))-2*(vf-vi)*a*exp(-a*(t-tO)"2)+4*(vf-vi)*a"2*(t-t0)"2*... 

exp(-a*(t-tO)"2)-x(2)*th4"2-u1*th5*th3+c(1)*x(2)*th4+ad(4)*x(2)"2*vf... 

-2*c(1)*(vf-vi)*a*(t-tO)*exp(-a*(t-tO)"2)+u1*th5*x(1)*th1+u1"2*th5*... 

x(2)*th2+th4*ul*x(1)*th5-c(1)*ul*x(1)*th5-ad(4)*x(2)"3+ad(4)*x(2)"2*... 

exp(-a*(t-tO)"2)*vf-ad(4)*x(2)"2*exp(-a*(t-t0)"2)*vi+sigma*ad(4)*... 

x(2)"2*th4-sigma*ad(4)*x(2)"2*c(1)-sigma*ad(4)*x(2)"2*k(1)-... 

u1"2*x(1)"2*ad(5)*x(2)+u1"2*x(1)"2*ad(5)*vf+u1"2*x(1)"2*ad(5)*... 

exp(-a*(t-t0)"2)*vf-ul"2*x(1)"2*ad(5)*exp(-a*(t-t0)"2)*vi+ui"2*... 

x(1)"2*sigma*ad(5)*th4-u1"2*x(1)"2*sigma*ad(5)*c(1)-u1"2*x(1)"2*... 

sigma*ad(5)*k(1)-lambda*(sigma+beta*sign(sigma)))/x(1)*th5; 

System equations 

xdot(1)=-x(1)*theta(1)-ui*x(2)*theta (2)+theta(3) 

xdot (2)=-x(2)*theta(4)+ul*x(1) *theta(5) ; 

Parameter estimate equations 

xdot (3)=taut; 

xdot (4) =taut; 

xdot(5)=tau3; 

xdot(6)=tau4; 

xdot (7) =tau5; 

'/. Dynamic control equations 

xdot(8)=control; 

This m-file was used in the computer simulations shown in Section 7.4. 

8.4 Concluding Remarks 

These examples illustrate the use of the symbolic toolbox BACKDSMC in the design of 
three different classes of systems. In fact, all the m-files used to obtain the computer 

simulations of all the examples in this thesis were obtained by employing this toolbox. 
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The designer needs to select the initial conditions, the nominal values of the sup- 
posedly unknown parameters, the design parameters r, c;, k;, A, and , Q, as well as the 
initial and final times for simulations. The design parameters lk;, A and 0 used in the 
SAB-SMC and DAB-SMC algorithms should be selected as indicated by standard SMC 
(see Utkin's book [122] and Zinober's book [126]). 

On the other hand, the selection of the design parameters r and c; depends on 
the dynamics exhibited by the open-loop system and the desired performance of the 

closed-loop system. The greater the components of r and c; are chosen, the faster the 

state variables and parameter estimate converge to the desired values. However, high 

gains may generate undesirable increase of the control and oscillations of the transient 

response of the variables, as shown in Section 2.4.4. 



Chapter 9 

Output Feedback Control of Uncertain 

Systems 

9.1 Introduction 

All the control design algorithms described in previous chapters have been developed 

under the assumption that the full state of the system is measured. We consider now a 

more realistic control design problem where only the output is available for measurement. 
The solution to this problem is very difficult because the separation principle, which 

allows one to design state-feedback controllers and observers as two separate modules 
for linear systems, is not applicable to nonlinear systems. 

To provide a solution to this problem additional restrictions are usually needed and 
the transformation of the plant into a more convenient structure is also required (see, for 

instance, [65,66]). We describe here a new approach proposed by Rios-Bolfvar et al [93], 

which achieves the design of adaptive observers and output feedback controllers for a 

class of uncertain systems transformable into the adaptive generalized observer canonical 
form. In this form the nonlinearities multiplying the uncertain parameter vector depend 

only on the output and the control. 
We first introduce nonlinear damping terms to compensate the destabilizing effects of 

the observer errors. Then a procedure is explained for the design of a deterministic back- 

stepping observer/controller system and the concept of passivity is presented. Finally 

the systematic adaptive observer/control backstepping design procedure is described and 

an example is given for illustrative purposes. 

197 
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9.2 Nonlinear Damping Terms 

We describe in this section the use of nonlinear damping terms to guarantee boundedness 

of nonlinear systems perturbed by bounded and matched disturbances. To motivate the 

need for damping terms consider the scalar nonlinear system 

i=u+ VG(X)O(t) (9.1) 
where O(x) is a known nonlinear function and 0(t) is a disturbing function of t. 

Krstit et al [64] have shown that even for an exponentially decaying disturbance of 

the form 
V(t) =19(0)e-kt (9.2) 

the application of a linear control u= -ex to a nonlinear system may lead to divergence 

of the state x(t) to infinity in finite time for initial conditions satisfying 

i(0)x(0) >c+k>0. (9.3) 

This result shows the adverse effects which an apparently "mild" disturbance can produce 
in a nonlinear system. To overcome this problem and guarantee bounded x(t) for all 

bounded 29(t) and for all x(0), the control law u= -cx can be augmented with a 

nonlinear damping term -d(x)x [641: 

u= -ex - d(x)x (9.4) 

d(x) is designed for (9.1) using the quadratic Lyapunov function V(x) = 2x2 whose time 

derivative is 
V= xu + xb(x)O(t) = -cx2 - x2d(x) + xb(x)19(t). (9.5) 

The objective of guaranteeing global boundedness of solutions can be equivalently ex- 

pressed as yielding V outside a compact region to be determined. This is achieved by 

selecting 
d(x) = no'(x), i>0 (9.6) 

which yields the control law 

u= -cx - ixO2(x) (9.7) 

and 

-cx2 - ix202(x) + xO(x)t? (t) 

_ -cx2 -K 
(xx) 

- 
2(t) 2+ 02 

4 
(t) 

-cx2 + t9( t) (9.8) 
4 
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Thus V is negative whenever 
ix(t) 

2 
(nc 

(9.9) 

Since 19(t) is a bounded disturbance, V is negative outside the compact residual set 

R=x: 1xI < 
2Iý1Ký 

(9.10) 

and recalling that V(x) = 2x2, it can be concluded that Ix(t)I decreases whenever x(t) 
is outside the set R. Hence x(t) is bounded 

llxlIo < max Ix(0)I, 
L 00 (9.11) 

and also x(t) converges to the compact set R. defined in (9.10) 

lim Bist{x(t), R} = 0. (9.12) 

These results show that global boundedness is guaranteed in the presence of bounded 
disturbances with unknown bounds, regardless of how small the gains n and c are chosen 
[64]. Note that the size of ?Z can be reduced by increasing the values of i and c. 

Moreover, if the disturbance t9(t) converges to zero in addition to being bounded, then 
the control (9.7) guarantees convergence of x(t) to zero in addition to global boundedness. 

To show this, consider a nonnegative monotically decreasing function ý(t) such that 
V (t) and limt,,,. i (t) = 0. Then, one can obtain [64] 

Ix(t)I C Ix(0)le' +2 
lac (ý9(0)e 1t + U(t/2)) (9.13) 

and, since limt,,,. ý9(t/2) =0 
m x(t) = 0. (9.14) t 

The use of nonlinear damping terms as a tool to improve performance and guarantee 
boundedness was firstly proposed by Kanellakopoulos [45] and Kanellakopoulos et al 
[51]. Similar damping terms are used in this chapter to counteract the destabilizing 

effects of observation errors in the design of output feedback controllers. 

9.3 Observer/ Controller Backstepping Design for Non- 

Adaptive Observable Systems 

Our DDB algorithm involves nonlinear transformations of the controlled plant into error 

coordinates depending on the control input and its derivatives (see Section 3.4). The 
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control algorithm is applicable to observable minimum-phase nonlinear systems and 
dynamically input-output linearizable. 

Here the practical restriction of full-state measurement is relaxed by assuming that 

only the output is measured. Firstly an observer is designed for the system placed into 

the Generalized Observer Canonical Form (GORCF) which has been proposed by Keller 

and Fritz [54]. Then a modified version of the DDB algorithm, incorporating nonlinear 
damping terms, is developed to design dynamical output feedback controllers. Note that 

we have incorporated an additional R in the acronym to distinguish it from the acronym 
GOCF to be used in this chapter for the Generalized Observability Canonical Form. 

9.3.1 Observer Design 

The design of state observers with linearizable error dynamics was firstly studied by 

Krener and Isidori [59], Krener and Respondek [60] and Bestie and Zeitz [4]. The 

Generalized Observability Canonical Form (GOCF) was proposed by Zeitz [125]. Fliess 

obtained the same canonical form in the setting of differential algebra (see [27,28]). 

Since an observer cannot be synthesized from the GOCF directly, Keller and Fritz [54] 

used the GOCF to transform the observable system into the GORCF, from which the 

observer is obtained directly. We adopt this approach for the design of observers and 

combine it with the DDB algorithm along with nonlinear damping terms for the design 

of dynamical output controllers. 
Consider the nonlinear system with no uncertainties 

x= fo(x) + go(x)u 

y= h(x) (9.15) 

where xE R' is the state, uER the control input and yER the output. It is 

assumed that (9.15) is a minimum-phase system with a well-defined relative degree p, 
i. e. 1<p<n. Use the operator (3.75) defined in Section 3.3 

£'(x) = h(x) 

£i (x) =ah 
1(x)) 

fo(x) 1<i<p -1 ax 

LP (x, vi) =a 
(-1(x)) (fo(x) + go(x)vl) 9.16 

ax 
c) 

Li 
h(xý 411 ... ý vi-P+1) =a 

(£h 1(X) yll ... 1 vi-P» 

ax 
(fo(x)+go(x)vi) 

i-P a ('C%, 1(x, y1, ... Vi-P» 
+Z äv" vj+l p+1<i<n-1 

j=1 
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where the functions v1, v2, ... correspond to u, ic, .... This operator allows one to express 
the output y and its first n-1 derivatives as functions of x, u and the derivatives of u 

y £h 
y(1) h 

-p (X, i11, ... v vn-P) __ 

y(n-1) £h-1 

We also assume that (9.15) satisfies the observability condition 

rankaý. 
) 

=n 

at least locally. Then (9.15) can be transformed into the GOCF 

Z1 = z2 

Zn-1 = Zn 

in = f(Z, u, ü, 
... , u(n-p) ) 

y= Zi 

(9.17) 

(9.18) 

(9.19) 

A solution to the problem of designing state observers for systems transformable into 
GOCF, when only the output is measured, has been given by Keller and Fritz [54] using 
the following GORCF 

S1 = -oo(y, u, 2l,..., u(n-p)) 

_ ek-1 - ak-i (y, u, , ... , u("-p-k+l) 2<k<n-p+1 (9.20) 

_ ýj-i - aj-i (y) n-p+2<j<n 

YE _ to = C(y) 

where y is the output of (9.15). The GORCF can be obtained from (9.19) if the scalar 
function f (z, u, ii,. ... , u("-p)) fulfils a special structural condition derived from the fol- 
lowing Generalized Characteristic Equation (GCE) 

n 
£ c(y) +ý Ln-ian-i(Y, u, ..., 26('-P)) _0 (9.21) 

i=1 

where C is the differential operator defined in (9.16). 

For simplicity of notation we will restrict the explanation here to second order non- 
linear systems. Thus, for a second order system with relative degree p=1, the GCE is 

reduced to 
£2c(y) +. Cal (y, u) + ao(y, u, )=0 (9.22) 
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Applying the differential operator C to the system transformed into the GOCF (9.19) 

we obtain 
d'c(y) 

z2 + 
dc(y) 

f(zj u, u) + 
as ýy, u) 

za + 
as (y, u) u+ ao(y, u, il) =0 (9.23) 

dy2 yy 

Hence, the structural condition yields 

f(z, u, )_ ß2(zi)z2 +ßi(zi, u)z2+ßo(zl, u, ) (9.24) 

If this condition is fulfilled, the functions ßo, 01 and , Q2 are known and the three unknown 
functions c(y), ai and ao can be determined from the three partial differential equations 

-02(Zl)d(y) = 
dä (y) 

dy dy2 
-Qi(z� u) 

dc(y) 
- 

Da, (y, u) 
dy ay 

dc(y) 
_ -ßo(zl, u, u) 

äal(y, u) 
u+ao(y, u, u) dy au 

By rewriting the GORCF (9.20) as follows 

yE _ cT 

with 
00... 00 

10... 00 

00... 10 

-ao(") 

CT = [0,... 
10,1] 

an observer can be readily obtained as 

= AC + a(y, u, ... , u("-P)) + K(ýn 
- en) 

�E _ CT 

(9.25) 

(9.26) 

(9.27) 

(9.28) 

with K= [k1,. .., k�]T a vector of positive gains. Thus the observer error e=- 
exhibits the exponentially stable dynamics 

6= Aoe (9.29) 
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with 
00... 0 -k1 

Ao = (A - KcT) =10... 
0 -k2 (9.30) 

00... 1 -k� 

a Hurwitz matrix obtained by selecting the gains k; 's appropriately. 

Example 9.1 Consider the second order nonlinear system 

th1 = -xl + x2 2+U 

i2 = xlx2 +u (9.31) 

y= X2 

The observability condition (9.18) is satisfied if x2 ; 0. Therefore only equilibrium 

points different from the origin can be considered using the proposed method. The 

control-dependent coordinate transformation 

Z1 = y=x2 

z2 =y= xlx2 +U (9.32) 

places (9.31) into the GOCF 

Z1 = z2 

z2 =f (z, u, ü) = 
(_)z_ (1+! 

-)Z2+(1+Zl)U+Z+t s(9.33) 
zl zl 

zl 

Note that f (z, u, ü) satisfies the structural condition (9.24) and the functions go, 01 and 
Q2 are identified as 

Q2(zi) = 
zl 1 

ßi(zi, u) _- 
(i+--) 

l, 
ßo(zi, u, )_ (1 + zl)u + z1 +ü (9.34) 

Then, solving the partial differential equations (9.25), we obtain the unknown functions 

c(y) =1n y, al (y, u) =1n y- 
yu 

ao(y, u) 
yU _U - y2 (9.35) 

Therefore the coordinate transformation 

ý=6= 4(X) = 
ln(X2) + X1 (9.36) 

2 ln(X2) 
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places the system (9.31) into the GORCF 

ý1 =u exp(-ý2) + exp(2ý2) +u 

ý2 = ýi - ý2 +u exp(-6) (9.37) 

Ye =6 

Finally the observer is readily synthesized as 
tA ý1 =u exp(-ý2) + exp(2C2) +u+ ki (S2 

- 
e2) 

ArA ý2 
=-6+u exp(-S2) + k2(ý2 - ý2) (9.38) 

A 

Y= ý2 

Note that the coordinate transformation (9.36) is valid locally for positive values of the 

state variable x2. 
This method is convenient when the system order is low. However, with increasing 

order the structural conditions become stronger [54]. 

9.3.2 Dynamical Deterministic Control Design 

We now proceed to the design of a dynamical deterministic backstepping output control 
by using a slightly modified version of the DDB algorithm, which incorporates nonlinear 
damping terms. The approach follows a systematic procedure and employs the estim- 

ate of the unmeasured state variables and the available output to design a dynamical 

controller in order to ensure the derivative of the Lyapunov function is nonpositive. For 

simplicity we restrict our attention to second order systems which are transformable into 

the GORCF 

S1 = -a0(2) u, ) 

ý2 = Cl - a1(C2i u) (9.39) 

Y$ = C2 

As shown in Section 9.3.1 the following dynamics 
A 

1= -ao(e2) u, )+ ki (e2 
- ý2) 

tA Ca = C1 - al(S2, u) +k2 (C2 - C2) (9.40) 

A 

yE _ Cz 

constitutes an observer for the system (9.39). The error system has the following expo- 
nential stable dynamics 

e= Aoe = (A - KcT )e (9.41) 
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with 

Ao _0 -k1 
1 -k2 

205 

(9.42) 

The problem of tracking a bounded time-dependent desired trajectory C,. (t) with bounded 

derivatives, can be solved by applying the control design algorithm below. 

Step 1. Define the tracking error 

whose time derivative is given by 

z1. =zJE- er= 6 -Cr (9.43) 

zi = 6, - ai(C2, u) - 
er. (9.44) 

Since the state variable ý1 is not measured, we replace it with its estimate and take into 

account the observation error el = 61 - 61 to obtain 

il =ei -ai(e2, u)-er+ei (9.45) 

Consider now the quadratic Lyapunov function 

Vl =1 zi (9.46) 

with time derivative 

Vi = zl 
[ei 

- ai(ý2, u) - 
4*] + zlei (9.47) 

Note that due to the presence of the observation error el we are not able to achieve 
Vi = -clzi by making the bracketed term multiplying zi equal to -clzl. Nevertheless, 

we can consider the observation error el as a destabilizing perturbation whose effects 

may be compensated by incorporating an additional nonlinear damping term dl b1 zl in 

the relation involving the bracketed term multiplying zl, as shown in Section 9.2. Thus 

al(e2, u) - 
6, = -cizl - dltizl (9.48) 

where cl and dl are positive design parameters, is a desired relation for the bracketed 

term multiplying zl. Since the term multiplying the observation error el in (9.47) is zl, 
01 = 1. Moreover, since the relation (9.48) is not valid in general, we define the second 
error variable as 

with 

Z2 al (ý2, u, Cri C*) (9.49) 

a1(ý2, u, e, ýr) = a1(62, u) + ý,. - cizl - dlzl. (9.50) 
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Then 

Vi = -clzi + zlz2 - dizi + ziel 

2 ei 2 ei 
_-dl 2d1 

+ 4d1 

e2 
-clzi + zlz2 +. (9.51) 

Step 2. The time derivative of z2 is obtained from (9.39) and (9.40) as 

z2 = -ao(C2, u, ü) + kle2 - aal 
(C1 

- a, (C2, u)) - 

ýal aal 
(9.52) 

ý2 au cr aýr 

A We again replace Ci with its estimate Ci in (9.52) and take into account the observation 
error el 

a*l z2 = -ao(C2, u, )+ ki e2 + Y'2(& - al(C2, u)) - au 
lu 

ýaiCr är 
Cr + tb2el (9.53) 

ýr a%r 

with 
02 

aal (9.54) 
0C2 

The Lyapunov function is augmented as 

V2=V1+2z2 (9.55) 

and 

2< -cizi + 
4d1 

+ z2 
IZI 

- ao(C2, u, )+ k1e2 + `b2( 1-a, 
( 

2, u)) 

aai aai 
r- 

aal 
Cr + z2b2e1. (9.56) 

au aCr 5Cr 
Note that the observation error el appears again in the derivative of the Lyapunov 
function. So, we can now choose a dynamical control law with an additional damping 

term d2 2z2 to make the bracketed term multiplying z2 equal to -c2Z2 - d2 2z2, namely 

-c2z2 - 
d22ýJ2z2 = zl - ao(C2, u, )+ kiel + b2( 1- al (C2, U)) 

5c4 
- 

9-'21 aai 
C""r (9.57) - au air r-a 

r 

where c2 and d2 are positive design parameters. Thus V2 becomes 
2 

,, /' 
v2 < -clzi c2z2 -I- 

d24'ä z2 + z202ei 

e2 e2 e2 
_ -clzi - c2z2 +4I- da 02x2 - 2d2 + 4d2 

-clzi - c2z2 -{- 
4d+ 

e1 (9.58) 
12 
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We can augment the Lyapunov function with a quadratic term in the observation errors 

V= V2 ++ eTPe (9.59) 
(d, da 

where P is a symmetric positive definite matrix which satisfies the Lyapunov equation 

AoP+PAo = -I 

Thus we obtain 

(9.60) 

V< 
_CIZ2 - c2z2 _31 -ý- 

1 
ei - 

(_+_) 
e2 (9.61) 

4 dl d2 dl d2 

Hence, both asymptotic tracking and exponential convergence of the observation errors 
to zero is achieved. 

Example 9.2 Consider again the second order nonlinear system of Example 9.1 

il = -x1 + x2 2+U 

X2 = X1X2 +u (9.62) 

X2 

which is transformable into the GORCF 

ý1 =u exp(-62) + exp(2ý2) +u 

ý2 = ýl - 
62 +u exp(-62) (9.63) 

Y4 = ý2 

and hence an observer for (9.63) is 

=u exp(-ý2) + exp(2S2) +u +k, C2 
- e2) 

b2 = S1 - S2 +u exp(-e2) + k2(C2 
- 

e2) (9.64) 

A 

Y= Ca 

After applying the modified DDB algorithm above we obtain the coordinate transform- 

ation 

z1 = C2 - Cr (9.65) 

Z2 = &1 -C2+uexP(-C2)-Cr+(ci+di)(e2-Cr) (9.66) 

and the dynamical controller 

ü= exp(e2) -zl-uexp(-C2)-exp(2C2)-u-ki(C2-C2)+er+(cl+d1) 

-02 &w1- 2+u exp(-e2)) - c2z2 - d2 22 z2 (9.67) 
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with 
02 = -1 + cl + dl -u exp(-62). (9.68) 

This systematic procedure can be extended to the general case guaranteeing asymptotic 
tracking and exponential convergence of the observation errors to zero. 

A more complicated problem is tracking a desired output when the system contains 

parametric uncertainty and only the output is measured. Before developing a solution 
to this problem let us introduce some important concepts. 

9.4 Passivity 

The concept of passivity is very important in adaptive control. We present here some 
definitions given by Byrnes et al [11], Krstid et al [64] and Slotine and Li [114]. Consider 

systems of the form 

x=f (x, t) + 9(x, t)u 

y= h(x, t) 

(9.69) 

with xE R", yE R"', uE Rm, and f, g, h continuous in t and smooth in x. Suppose 

that f(O, t) =0 andh(0, t)=0 for all t 0. 

Definition 9.1 The system (9.69) is said to be passive if there exists a continuous 
("storage') function V: J'3 X J2+ _+ R+, which satisfies V(0, t) = 0, Vt > 0, such that 

for alluEC°, x(0) ER", t>to >0 

yT (Ou(t)do >V (x (t), t) -V (x(to)9 to). (9.70) it 

ot 
Definition 9.2 The system (9.69) is said to be strictly passive if there exist a continuous 

nonnegative (storage) function V: i" x R+ -- R+, which satisfies V(O, t) = 0, Vt > 0, 

and a positive definite function (dissipation rate) b: R" -3 R+, such that for all uE CO, 

x(0)E i", t>, to 0 

t 
yT (cr)u(a)du >V (x (t), t) -V (x(to), to) + 

ftoO(x(o, 
))dQ. (9.71) 

ft 

The concepts of passivity and Lyapunov stability are closely related, as shown below. 

Lemma 9.1 Suppose the system (9.69) is (strictly) passive. If V is positive definite, 

radially unbounded and decrescent, i. e. if there exist class KC functions yl and y2 such 
that -yl(lxl) < V(x, t) < 72(IxI), V(x, t) E'2" X R+, then, for u=0, the equilibrium 

x=0 of (9.69) is globally uniformly (asymptotically) stable. 
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Since adaptive control is concerned with the design of interconnected identifiers and 
control laws, the feedback interconnection of passive systems is very important. Consider 

the two passive systems 

thi = fi(xi, t) -+' 9l(xl, t)ul 
y, = hi(xi, t) 

is = f2(x2, t) +92(x2, t)u2 

Y2 = h2(X27 t) 

connected by the relations 

ul = -y2 + Vi, U2 Yl i 

where vl is a reference input to the interconnected system. 

(9.72) 

(9.73) 

(9.74) 

Theorem 9.1 Suppose the system (9.72) is (strictly) passive with storage function Vi 

(and dissipation rate 01) independent of x2. Likewise, suppose the system (9.79) is 

(strictly) passive with storage function V2 (and dissipation rate 02) independent of xi. 
Then the interconnected system (9.72)-(9.79) with input vi and output yl is 

1. strictly passive if both (9.72) and (9.73) are strictly passive 

2. passive if at least one of the systems (9.72) and (9.73) is passive, but not strictly 

passive. 

Moreover, when vl = 0, if (9.72) is strictly passive and (9.73) is passive, then the 

equilibrium x=0 is uniformly stable and limt_+,,. x1(t) = 0. 

In the case of time-invariant linear system the concept of passivity is equivalent to 

positive realness [114]. 

Definition 9.3 A rational transfer function G(s) is said to be positive real if G(s) is 

real for all real s, and Re{G(s)} >0 for all Re{s} > 0. If in addition G(s-s) is positive 

real for some e>0, then G(s) is said to be strictly positive real. 

Thus the basic difference between positive real (PR) and strictly positive real (SPR) 

transfer functions is that PR transfer functions may tolerate poles on the jw axis, while 
SPR functions cannot. 
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We will show that the closed-loop system obtained from the application of both the 
SAB and DAB algorithms have an important passivity property. Recall from Sections 

2.4.3 and 4.2 that the closed-loop system written in the (z, 9) coordinates, has the form 

Azz+WTB 

-rwz 

where A, has a skew-symmetric form, 6=9- 9A is the parameter estimate error and 
r= FT >0 the adaptation gain matrix. Due to the structure of Ax, along the solutions 

of (9.75) we have 

d1_n 
dt 

(. 
zTz) -ýCzs 

+ZTWTB, ci i 0ý 1 <2 <n 

i. l 
n 

cizi + TT B. 

i-1 

By integrating (9.77) over [0, t], we get 

It TT ýSýeýSý(ýS =1 zT (t)z(t) -1 zT(Q)z(O) +0 ciz; 
2 

(s)ds. 

02 

By Definition 9.2, (9.78) implies that the system 

7= Wz 

z= Azz + WT B 

(9.75) 

(9.76) 

(9.77) 

(9.78) 

(9.79) 

is strictly passive with 6 as its input, the function T as its output, V (Z) =2 zT z as the 

storage function, and «(z) =E1c; z; as the dissipation rate. Moreover, the integrator 

system 

-e-rr_Tn SS (9.80) 

with T� the tuning function obtained at the final step, is passive from T� to -6. Hence, 

the closed-loop adaptive system represents a negative feedback interconnection of the 

strictly passive system (9.79) with the passive system (9.80). Thus, Theorem 9.1 indic- 

ates that the equilibrium (z, B) = (0,0) is stable and z --ý 0 as t -+ oo. 
We will carry out a similar analysis on the stability of the closed-loop system having 

observer and controller. 
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9.5 Adaptive Observer/ Controller Backstepping Design 

for Observable Uncertain Systems 

The design of output feedback controllers in the presence of uncertainty is a challenging 

problem in adaptive control. This problem is usually tackled by imposing additional 
restrictions on the class of uncertain systems and resorting to canonical forms. For 

instance, Kanellakopoulos et al [47,50] and Marino and Tomei [73,74] have proposed 
the use of the output feedback form and the adaptive observer form respectively, for the 
design of output feedback controllers and observers (or filters). Both canonical forms 

restrict the nonlinearities multiplying the uncertain parameter, to be dependent of the 

output only. 
We consider here a new approach proposed by Rios-Bolfvar et al [93] for the design 

of observers and output feedback controllers for systems with parametric uncertainty, 

when only the output is available for feedback. We can represent these systems by 

±= fo(x) + go(x)u + W(x)e 

= h(x) 

(9.81) 

where' is a known matrix whose entries are smooth nonlinear functions, and 9E W' a 

constant unknown parameter vector. A solution to both observer and tracking control 
design can be obtained when, after applying the transformation _ 4(x) which places 
the nominal system 

x= fo(x) + go(x)u 

y= h(x) 

(9.82) 

into the GORCF, the resulting nonlinearities multiplying the uncertain parameter vector 
0 depend only upon the measured output and the control, namely 

= A6 + a(yE, u, ... , u("-P)) + A(y4, u)O (9.83) 

yF = ETC 

with A, c and a defined as in (9.27), and AE RnxP a matrix whose entries are smooth 
functions in y4 and u. We will call the structure of the system (9.83) the adaptive 
GORCF. For the transformed system (9.83) we propose the following observer 

- Aý -F- aly, u.... , u(n-P)) ++ n(y4, u)O 

CTS (9.84) 
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with AI(yy, u) A,, I(y4, u) ... Aj, p(y4, n) 
A(ye, u) 

. An(Ye)u) An, I(YfiU) ... 
4.40 u) 

The observation error system yields 

6= Aoe + A(yý, u)9 (9.86) 

whereAo=A-KcT, e=6-6andÖ=0-9. 
Since Ao is a Hurwitz matrix, the system 

e= Aoe + A(yF, u)B (9.87) 

T= AT (YE, u)Pe 

where P is a symmetric positive definite matrix satisfying Aö P+ PAo = -I, is strictly 

passive with input 9, output T, storage function V=2 eT Pe and dissipation rate 2eTe. 

However, since only e� is available, we cannot use r as our first tuning function. Never- 

theless, from the structure of AO we notice that e� has the following relation 

en = -knee + An(yF, u)Ö + en-1 kn >0 (9.88) 

If e�_1 was not present in (9.88), the subsystem 

en = -ken + An(yE, u)i kn >0 (9.89) 

T= rAn (y4, u)en 
(9.90) 

would be strictly passive with input 8 and output r. This would allow to choose the 

gradient type parameter law (see Sastry and Bodson [971) 

To = ran (y4, u)en (9.91) 

to guarantee asymptotic stability of e,,. However, since the presence of the disturbing 

term e�_1, we must incorporate nonlinear damping terms in the design procedure to 

compensate the destabilizing effect of e�_1. Therefore we will use (9.91) as the first 

tuning function of the design procedure. 
For the sake of simplicity we describe below the design procedure for a second order 

system with relative degree one, already in the adaptive GORCF 

ý, = -ao(e2, u, )+ Al (t2, u)e 

ý2 
= ýl - al(e2, u) + A2(6)u)O (9.92) 

YF=62 
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The observer dynamics is 

ý1 =- ao(e2, u, )+ k1(e2 - C2) + A1(e2, u)0 

Ca = ý, 
- al(S2, u) + k2(ý2 62) +A2 (62) u)9 (9.93) 

ye = 62 

and the function 

To = I'a2 e2 (9.94) 

with r= rT > 0, is consider our first tuning function. 

Step 1. The derivative of the tracking error zl = 62 - 6r is given by 

zl = e1 - al(e2' u) + A2(e2, u)e - er + -\2(e2)U)0 + el (9.95) 

Using the Lyapunov function 

V1 =2 zi +2 or-19 (9.96) 

the time derivative 

Vi = zi 
[1-a, (ý2, u) + A2(2, u)O -fir] + ziei + h-1 (-9 + 710 + I3a2 zl) (9.97) 

is obtained. Taking the second tuning function as follows 

T1= To + rA2 zl = rat (e2 + zi) (9.98) 

and defining our second error coordinate as 

Z2 = Cl- a1 (C2, u, 0, er, t) (9.99) 

with 

a1(S2, u, of er, er) = al(c 2, u) x2 
52, U)0+ Sr - 

(c1 
'+' 

d1)(t2 - 
er) (9.100) 

where cl and dl are positive design parameters, Vi becomes 

Vi = -cizi + Z1Z2 - dizi + ziel + BI'-1(-0 + ri) 
22 

_ -clzi + zlz2 - dl zl - 
el + el ++ Tl) 2d1 4d1 

-ciz1 + Z1Z2 + 4d1 + BI'-1(-0 + Ti) (9.101) 

Step 2. The time derivative of Z2 is 

z2 = -ao(e2, u, iü) + kle2 `F' AlO+ b2 
(Cl 

- a, (C2, u) + A2O) 

-- 
a«i e- jai 

- 
öai (9.102) 
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with öai 
02=-OC2 (9.103) 

By considering the estimate of j1 and 9, (9.102) can be rewritten as 

z2 = -ao(e2, u) )+ kle2 + A10 + 02 (i - al(e2, u) + A20) 

- 
au 

ý-a^0-1"- 
901 

r -Hei + ßa29 (9.104) 

Augmenting the Lyapunov function 

V2=Vl+2z2 (9.105) 

and 

z v2 < -clzi + 4d1 
+ er-1(-9 + Ti + rat b2z2) + b2e1 

+z2 zi - ao(e2, u, ý) + kiel -I- a19 +02 (ýl 
- ai(62, U)+ A2O) 

_ 
Da* &e Da* Da*, (9.106) 00 aSr aer 

Finally, the actual update law for the unknown parameters yields 

ä= 72 = Ti + rA 02z2 = I'a2 (e2 + zi + b2z2) (9.107) 

and the dynamical adaptive control is 
AA 

-d2 jp2 0) 
2 z2 - C2 Z2 = zl - ao(e2, u, )+ kle2 + Al + 02 Cýi 

- ai(e2, u) + Ago 

Da*, äa1 äa*, öai Ir 
-a Ir 

au ae 2- 

-ä-e 
Ir 

r 
(9.108) 

where -d/ 2 is the second nonlinear damping term to compensate the destabilizing 

effect of the observation error el. Then 

22e v2 
-clz1 c2 z2 - d202Z2 + 02ei + 

4d1 

22 el 2 ei ei 
_ -c1zl - c2z2 - d2 02x2 - 2d2 

+ 
4d2 

+ 4d1 

-clzi c2z2 +4 
dl 

+ 
d2 

ei (9.109) 

Augmenting the Lyapunov function with a quadratic term defined on the observation 
error vector 

V= V2+ 
dl+ 1 

eTPe (9.110) 
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we obtain 

< -c1z2 - c2z2 
311 

e2 
1F1e2 

-I- 21 -{- 
1eT 

Pne (9.111) 124 -I- 
2- 

dl 2212 

which shows that the passivity property is preserved. Therefore boundedness of all vari- 

ables of the overall closed-loop system, consisting of the controlled plant, the observer, 
the controller and the parameter estimator, is guaranteed. This is illustrated in the 

following example. 

Example 9.3 Consider the following second order uncertain system 

xl = -x, +x2-I-2l+9x2 

y= X2 

where 9 is a constant unknown parameter. Note that the nominal system (obtained when 
9= 0) coincides with the system (9.31) of Examples 9.1 and 9.2. Therefore, applying 

the transformation (9.36) to (9.112), yields 

u 
y +y2+u+O(y+y4) 

ý2 = 61 - Iny+ uy +9y (9.113) 

YF=62 
or, fully transformed into the ý coordinates 

ýi =u exp(-ý2) + exp(2ý2) +u+ 9(exp(62) + exp(462)) 

ýa = ei -e2+uexp(-'2)+Bexp(62) 

yE =2 

22 = xlx2+u+Ox2 (9.112) 

(9.114) 

which is obviously in the adaptive GORCF (9.83) with 

ao(e2, u) 

ai(e2, u) 
A1(ý2) 

)2(e2) 

= -u exp(-62) - exp(262) -u 

= e2 -u exp(-62) 

= exp(e2) + exp(462) 

= exp(2) 

(9.115) 

The observer is given by 

1=u exp(-C2) + exp(2e2) +u+ O(exp(62) + exp(4C2)) + kl (C2 
- e2) 

C2 = 
Ci 

-'2 +u exp(-C2) +0 exp(C2) + k2(C2 - e2) (9.116) 

yf = ýz 
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After applying the systematic procedure described above for tracking a desired output 
e, we obtain the error coordinate transformation 

with 

(9.117) Zl = e2 
-er 

Z2 = e1 
- a1(e2, u, e, 

Sr, Sr) 
(9.118) 

ai =' 2-u exp(-e2) -0 exp(42) +r- (ci + di) (42 - er) (9.119) 

The update law for the unknown parameter yields 

'Yx2(e2)(e2 + zl + 02z2) (9.120) 

with -y a positive adaptation gain and 

IZ :_- 
gal 

= -1 -u exp(-ý2) +O exp(ý2) + (ci 

2 

The dynamical control law is 

iý = exP (ý2) - zl -u exP(-C2) - exP(2C2) -u- k1(ý2 - e2) - Al (WO 

-02 
(ý, 

- e2 +u exp(-ý2) +0 exp(C2)) - exp(e2)r2 

-} ,+ (cl + dl)ý,. - C2Z2 -d2 02zz (9.122) 

Computer simulations were carried out to illustrate the performance of the dynamical 

adaptive backstepping control/observer in tracking a desired reference, corresponding to 

a smooth transition of X2 from X2 = 1.5 to X2 =3 for a nominal unknown parameter 
9= -1. Since we have a scalar unknown parameter and 

A2(X2) = exp(3) 00 (9.123) 

the convergence of 8 to the unknown parameter value is guaranteed and asymptotic 
stability of the overall closed-loop system is achieved, as shown in Figure 9.1. 
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Chapter 10 

Conclusions and Suggestions for 

Further Research 

10.1 Conclusions 

In this thesis we have studied the control design for the regulation and tracking of 

uncertain nonlinear systems when no information is available regarding the uncertain 

parameters. We have adopted the backstepping approach in dealing with these problems, 
because it is a systematic control design procedure which does not require matching 

conditions on the uncertain parameters. Additionally the proof of stability, based upon 
the use of a quadratic Lyapunov function, is simple and constructive. 

We have proposed a number of new systematic control design algorithms without 
the need for the controlled plant to be transformable into canonical forms. Instead of 

canonical forms, we require that the uncertain nonlinear system be observable and min- 
imum phase, for which a dynamic (static) adaptive (deterministic) controller is designed. 

We have also combined dynamic (static) adaptive backstepping with sliding mode con- 
trol via the DAB-SMC (SAB-SMC) algorithm to provide robustness in the presence of 
disturbances. Some of the benefits achieved by these new backstepping algorithms are: 

" the availability of a number of alternative recursive control design algorithms for 

deterministic and adaptive nonlinear systems 

" the DAB algorithm does not require that the system be transformable into either 
the PSF or PPF (triangular) forms and is applicable to uncertain nontriangular 
systems; this result extends the applicability of the backstepping approach to a 
broader class of observable minimum phase uncertain nonlinear systems 

218 
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" dynamical adaptive controllers obtained using the DAB algorithm may exhibit 
better performance than classical static backstepping controllers designed via the 

SAB algorithm, when the differential equations characterizing the zero dynamics 

contain uncertain parameters, as shown in Section 4.2. 

" the adaptive sliding mode controllers designed via the combined DAB-SMC, ex- 
hibit excellent robustness properties with considerably reduced chattering in the 

presence of undesirable disturbances. 

A number of examples and simulations have been studied to evaluate the perform- 

ance of the new backstepping algorithms in regulation and tracking problems. Some 

applications of practical interest have been also studied. For instance, the regulation of 

a flexible-joint manipulator, the PWM control regulation of DC-to-DC power convert- 

ers, and tracking tasks of a field-controlled DC motor have been studied to illustrate the 

SAB, DAB and DAB-SMC algorithms, respectively. 
Even though the recursive design procedures described in this thesis follow systematic 

step-by-step algorithms, the equations are usually too complicated for hand computa- 

tion. For this reason we have developed a symbolic algebra computation toolbox which 
implements the various backstepping design algorithms and computes the required con- 

troller obviating the likely errors of hand computation. This toolbox does not require the 

user to have expert knowledge of the backstepping design technique and automatically 

generates MATLAB code programs for computer simulation of the closed-loop systems. 
In the more realistic context of output feedback control design, when only the output 

is measured, we have proposed a technique which employs a state observer, a parameter 

estimator and a dynamical adaptive backstepping controller for a more restricted class of 

observable minimum phase uncertain systems transformable into the adaptive generalized 

observer canonical form. The output tracking problem may be solved via this approach 

with boundedness of the variables of the overall closed-loop system. Also the conditions 

to guarantee asymptotic stability (rather than boundedness) have been analysed. 
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10.2 Suggestions for Further Research 

There are several important research directions which should be pursued in the context 

of the results obtained in this thesis. Some of these are: 

10.2.1 Extension to Non-Affine Multi-Input Multi-Output Sys- 

tems 

We have studied the design of deterministic (adaptive) control of uncertain affine single- 

input single-output nonlinear systems. These results should be extended to non-affine 

multi-input multi-output uncertain nonlinear systems where the theory of flat systems 

proposed by Fliess and co-workers [29] provides a convenient setting. 

10.2.2 Non-Minimum Phase Uncertain Systems 

We have extended in this thesis the applicability of the backstepping approach to a 

class of observable minimum phase uncertain nonlinear systems. On the other hand 

some discontinuous control design techniques have recently been proposed by Spurgeon 

and Lu [115] and Llanes-Santiago and Sira-Ramirez [70] to deal with deterministic non- 

minimum phase systems. The extension of our results to non-minimum phase systems 

with uncertain parameters, is a very important problem which could be addressed by 

the combination of Adaptive Backstepping and SMC. 

10.2.3 Bounding Functions 

We have assumed in this thesis that no information is available regarding the uncertain 

parameters. This assumption could be removed and one could study uncertainty arising 
from unknown bounded functions or (and) time-varying parameters for which the use of 
known bounding functions is suggested for the design of the stabilizing control law. In 

this context the recent results of Freeman and Kokotovi6 [31,32] and Qu [85] give some 

additional insight. 

10.2.4 Extensions in Output Feedback Control 

Further generalizations of the second order cases analysed in Chapter 9 may be de- 

veloped. Also the class of observable minimum phase uncertain nonlinear systems trans- 

formable into the adaptive generalized observer canonical form (considered in Chapter 9) 
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is rather restrictive. Therefore, a challenging problem is to broaden the class of uncer- 
tain nonlinear systems which can be tackled with the control design algorithm proposed 
in this thesis in the context of output feedback control. 

10.2.5 Extension to the Discrete-Time Case 

The extension of the systematic design algorithms proposed in this thesis to discrete- 

time systems should be addressed. Additional difficulties arise in this context. Two of 

them are: 

1. the geometric characterization of the classes of nonlinear discrete-time systems 

which can be stabilized following the systematic procedure 

2. even though the plant appears linearly parameterized, terms with nonlinear de- 

pendence on the estimate parameters may arise from the direct application of the 

backstepping approach. 

10.2.6 Analysis Tools in the Symbolic Toolbox 

The symbolic algebra toolbox BACKDSMC implements the various backstepping con- 

trol design algorithms proposed in this thesis. However, BACKDSMC is so far a design 

technique only, i. e. it does not incorporate tools for analysis. It would be useful to in- 

corporate tools for the analysis of the uncertain plants with regard to the zero dynamics, 

transforming the plant into certain convenient canonical forms, establishing the region 

of minimum phase, determining the region of observability, etc. 

10.2.7 Simplification of the Symbolic Algebra Output 

Usually the expressions characterizing the backstepping controllers obtained from the 

application of the toolbox BACKDSMC, are very complicated. Additionally, the tools 
for algebraic simplification available in the MATLAB Symbolic Toolbox often fail to 

obtain expressions which have been "optimally" simplified. This matter needs attention 

with regard to practical applications. 

10.2.8 Simplification of the Control Laws 

Further research should be performed concerning the adaptation of the approach to yield 
less complicated control laws. For instance, one could investigate whether or not the 

sliding mode control technique gives simpler control laws. 
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10.2.9 Links with Passivity 

As demonstrated in Chapter 9, the backstepping design approach is closely related to 

passivity. Further investigations should be carried out to study these links and their use 
for the development of new control design techniques. Some new control design proced- 

ures using passivity have been proposed in the recently published book by Sepulchre et 

al [99]. 



Appendix A 

Basics of Stability Theory 

A time-varying dynamic system can be represented by a set of nonlinear differential 

equations of the form 
x=f (x, t) (A. 1) 

where xE R" and f: R' X R+ -+ R" is a piecewise continuous in t and Lipschitz in X. 

A solution of (A. 1) which starts from the point xo at time to > 0, denoted as x(t; X0, to), 

is generally referred to as a state trajectory or a system trajectory. It is possible for 

a system trajectory to correspond to only a single point. Such a point is called an 

equilibrium point. 

Definition A. 1 A state X is an equilibrium point of the system if once x(t; X, to) is 

equal to X, it remains equal to X for all future time. 

Mathematically this means that the vector X satisfies 

f(x, t) -o Vt>to (A. 2) 

A nonlinear system of the form (A. 1) may have several (or many) isolated equilibrium 

points. Any equilibrium can be translated to the origin 0 by redefining the state x as 

z=x-X, so that the solution under investigation can always be considered to be an 

equilibrium at the origin. Lyapunov stability concepts describe continuity properties of 

x(t; xo, to) with respect to the initial state x0. 

Definition A. 2 The equilibrium point 0 is stable at to if for any e>0 there exists a 
b(e, to) such that 

Ilxoll < a(e, to) = II x(t; xo, to)II < e, Vt > to (A. 3) 

otherwise, the equilibrium point 0 is unstable. 
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This definition means that one can keep the state in a ball of arbitrarily small radius e 
by starting the state trajectory in a ball of sufficiently small radius J. 

Definition A. 3 The equilibrium point 0 is asymptotically stable at time to if it is stable 

and, additionally, there exists an r(to) >0 such that 

IIxoII < r(to) = II x(t; xo, to)II -+ 0 as t -+ oo. (A. 4) 

If an equilibrium point X is asymptotically stable, it has a region of attraction, i. e. a 

set SI of initial states xo such that x(t; xo, to) -4 X as t -4 oo. In general, stability 

properties of nonlinear systems are valid for local attraction regions. When the region 

of attraction is the whole space R", then stability properties are global. 

Definition A. 4 The equilibrium point 0 is exponentially stable if there exists two pos- 
itive numbers, a and A, such that for sufficiently small xo, 

IIx(t; xo, to)ll < aIIxolle-a(t-co), Vt > to. (A. 5) 

The stability properties of non-autonomous (time-dependent) systems of the form (A. 1) 

in general depend on the initial time to. For different to, different values of 8(e, to) 

and r(to) may be required to satisfy the conditions in (A. 3) and (A. 4) respectively. 
For practical purposes, it is desirable for the system to have a certain uniformity in 

its behaviour regardless of when the operation starts. Thus, the equilibrium point 0 

in definitions A. 3 and A. 4 is said to be uniform stable and uniform asymptotic stable 

respectively, when b(e, to) = b(e) and r(to) = r, i. e. J and r are independent of to. 

For regulation tasks the designed system is usually autonomous (time-invariant) 

x=f (x). (A. 6) 

The stability properties of autonomous systems are uniform. Also the Lyapunov stability 
theorems for this kind of systems are easily formulated. 

Theorem A. 1 Let x=0 be an equilibrium point of (A. 6). If in a ball Sl around the 

origin, there exists a continuously differentiable positive definite function V(x) : Wn --ý 
i+ such that 

V(x) = 
OV f(x) < 0, Vx E 1, (A. 7) 

then the equilibrium point 0 is locally stable. If the derivative V(x) is locally negative 
definite, i. e. aV V (0) = 0, V (x) = jx f (x) < 0, Vx 0E St, (A. 8) 

then the equilibrium is asymptotically stable. 
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The scalar function V(x) in Theorem A. 1 is called a Lyapunov function. When .S is the 

whole space R" and the Lyapunov function V (x) is radially unbounded, i. e. 

V(x)-+ oo as Jixil -+ oo, (A. 9) 

then the equilibrium at the origin is globally asymptotically stable. 
For autonomous systems invariant sets are very important in checking the asymptotic 

stability of a control system. This is because it often happens that the derivative of the 

Lyapunov function candidate is only negative semi-definite. In this situation it is still 

possible to draw conclusions on asymptotic stability with the help of LaSalle's invariance 

theorem. 

Definition A. 5 A set M is an invariant set of (A. 6) if any solution x(t) that belongs 

to M at some time instant tl, must belong to M for all future and past time, i. e. 

x(tl) EM= x(t) E M, Vt E R. (A. 10) 

A set 1 is positively invariant if this is true for all future time only: 

x(ti) E9= x(t) E SZ, Vt > ti. (A. 11) 

Examples of invariant sets are equilibrium points, their attraction domains and limit 

cycles. 

Theorem A. 2 (LaSalle) Let 1 be a bounded closed (compact) positively invariant set 

of an autonomous system of the form (A. 6). Let V: 1 -3 R+ be a continuously differ- 

entiable function V (x) such that V (x) < 0, Vx E fit. Let E= {x EQIV (x) = 0} 

and let M be the largest invariant set contained in E. Then every bounded solution x(t) 

starting in ci converges to M as t -+ 00. 

Corollary A. 1 (Global Asymptotic Stability) Let x=0 be the only equilibrium 

point of (A. 6). Let V: R" -+ R+ be a continuously differentiable positive definite radially 

unbounded function V (x) such that V (x) < 0, Vx E R". Let E_ {x E R" IV (x) = 0}1 

and suppose that no solution other than x(t) -0 can stay forever in E. Then the origin 
is globally asymptotically stable. 

Considering these invariance results, the most favourable case regarding asymptotic 

stability corresponds to the case when the largest invariant subset M of E is just the 

origin x=0. 
For non-autonomous systems, the main tools to assert convergence of state traject- 

ories are Barbalat's Lemma and the LaSalle-Yoshizawa Theorem. Stability definitions 

are firstly restated in terms of the so-called class-K functions. 
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Definition A. 6 A continuous function yy : [0, a) -+ R+ is said to belong to the class K 
if it is strictly increasing and 'y(0) = 0. It is said to belong to class IKE if a= oo and 

-t(r) -goo asr --goo. 

Definition A. 7 A continuous function Q: [0, a) x R+ -* R+ is said to belong to the 

class KL if for each fixed s the mapping ß(r, s) belongs to K with respect to r, and 
for each fixed r the mapping ß(r, s) is decreasing with respect to s and /3(r, s) -4 0 as 
s -4 oo. It is said to belong to the class KLM if in addition for each fixed s the mapping 
ß(r, s) belongs to the class Ký with respect to r. 

Definition A. 8 The equilibrium point x=0 of (A. 1) is 

" uniformly stable, if there exists a class K function y(. ) and a positive constant c 
independent of to such that 

Iix(t)lI < 7(Ilx(to)II), dt > to > 0, Vx(to) 1 Ilx(to)II < c; (A. 12) 

" uniformly asymptotically stable, if there exists a class KL function Q(", ") and a 

positive contant c independent of to such that 

Ilx(t)II < ß(IIx(to)II, t - to), dt > to > 0, Vx(to) 1 IIx(to)II < c; (A. 13) 

" exponentially stable, if (A. 13) is satisfied with ß(r, s) = kre'a', k>0, a>0. 

If the conditions in Definition A. 8 are satisfied for any initial state x(to) and in addition 

ry E If. and PE KL., the stability properties are said to be global. 

Theorem A. 3 (LaSalle-Yoshizawa) Let x=0 be an equilibrium point of (A. 1) and 

suppose f is locally Lipschitz in x uniformly in t. Let V: , 
R" X R+ -+ R+ be a continu- 

ously differentiable function such that 

'Yi(IIxII) V(X)t) ý 72(IIXII) (A. 14) 

at +af (x) t) < -W (x) <0 (A. 15) 

Vt > 0, Vx E R", where yl and -y2 are class Ifs functions and W is a continuous 
function. Then, all solutions of (A. 1) are globally uniformly bounded and satisfy 

lim W(x(t)) = 0. (A. 16) 
t- oo 

In addition, if W (x) is positive definite, then the equilibrium x=0 is globally uniformly 
asymptotically stable. 
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'/. Toolbox BACKDSMC 

This toolbox allows the design of deterministic (adaptive) 
'/. backstepping controllers or combined backstepping-sliding mode 
'/. controllers (SMC) for observable minimum phase nonlinear systems. 

'/. Programmed by M. Rios-Bolivar Date: 24/10/96 

function [control, tau, z, surface]=backdsgn(f, g, h, yd, phi, psi, modfile, runfile); 

BACKDSMC Symbolic backstepping control design via input-output 
'/. linearization for uncertain nonlinear systems. This program 
'/, allows the design of either dynamical adaptive backstepping 

control or a combined dynamical adaptive backstepping with 
'/. sliding mode control for uncertain nonlinear systems. 

% [C, TAU]=BACKDSMC(F, G, H, Yd, Phi, Psi) designs the adaptive 
% backstepping controller for the uncertain nonlinear system 

% dot{x}=F(x)+G(x)*u+(Phi(x)+u*Psi(x))*THETA 
% y=H(x) 

'/. where F and G are vector fields, Phi and Psi are matrices 
'/. of appropriate dimensions, THETA is a vector of unknown parameters, 
'/. H is a scalar output function, and Yd is the desired output. 
'/. (If Yd is a function of time, a tracking controller is designed). 
'/. C is the designed control and TAU is the update law for the 

'/. unknown parameters. 
If the relative degree r is less than the system order n, the 

'/. controller is dynamic and C corresponds to the (n-r)-th 

derivative of u. 
'/. Note: When all entries of both Phi and Psi are zero, 

a non-adaptive control is designed. 

[C, TAU, Z]=BACKDSMC(F, G, H, Yd, Phi, Psi) gives, additionally, the 
tranformation Z placing the original system into error coordinates. 

I [C, TAU, Z]=BACKDSMC(F, G, H, Yd, Phi, Psi, 'modfile') generates the 
'/. m-file 'modf ile. m' containing the system model and the adaptive 
'/. controller for numerical simulation purposes. 

'/. [C, TAU, Z]=BACKDSMC(F, G, H, Yd, Phi, Psi, 'modfile', 'runfile') generates, 
'/. additionally, the m-file 'runfile. m', which runs 'modfile. m' and 

provides nominal values of the unknown parameters, design parameter 
'/. values and initial states for simulation purposes. 
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EC, TAU, Z, SIGMA]=BACKDSMC(F, G, H, Yd, Phi, Psi, 'modfile', 'runfile'), 
i. e. containing a fourth output argument, allows to design 

'/. an adaptive variable structure control to generate a SLIDING MODE 

on the sliding surface SIGMA=k_1*z_1+k_2*z_2+... k_n-1*z_n-1+z_n, 
'/. with k_i's the design parameters and z_i's the error coordinates 
'/. of the transformation Z. 

% Checking dimensions 

chk=find([6,7,8] == nargin) ; 
if isempty(chk) 

error('Number of input arguments is incorrect') 

end 
chk=find([1,2,3,4] == nargout) ; 
if isempty(chk) 

error('Number of output arguments is incorrect') 

end 
if nargout==4 

smc_design=l; '/. Sliding Mode Control Design 

else 
smc_design=0; 

end 
df=symsize(f); 
dg=symsize(g); 
dh=symsize(h); 
dyd=symsize(yd); 

n=df(1); % system order 
dphi=symsize(phi); 
dpsi=symsize(psi); 
p=dphi(2); % No. of unknown parameters 

check dimensions matching 

if (df -= dg) I (dphi -= dpsi) I (dh "_ [1,1]) I (dh "= dyd) ... 
I (df(1) '"= dphi(1)) error('Inner matrix dimensions must agree') 

end 

% initialization of the states vector [xi, x2,..., xn] 

X='xi'; 
for i=2: n x=[x, ', x', int2str(i)]; end 

'/, initialization of the vector of unknowns thetahat=[thl, th2,... , thp] 
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thhat='' ; 
theta='' ; 
adgain=zeros(p); 
for i=l: p 

adgain=sym(adgain, i, i, ['ad(' , num2str(i) 
if i==1 

thhat='thl'; 
theta='theta(1)'; 

else 
thhat=[thhat, ', th', num2str(i)]; 
theta=[theta, ', theta(', num2str(i), ')']; 

end 
end 
u='ul'; % define u as a symbolic variable 
wr=symop(phi, '+', psi, '*', u); % auxiliar vector wr=phi+psi*u 

% estimate of the system xhat=f(x)+g(x)u+(phi(x)+psi(x))*theta 

xhat=symop(f, '+', g, '*', u, '+', wr, '*', transpose(sym(thhat))); 

initialization of the relative degrees with respect to theta (hat) and 
7.. the control u (cont) respectively 

hat=-1; 

cont=-1; 
tau=sym(p, 1, '0'); % initialization of the tuning function 
z=symop(h, '-', yd); % define the first state coordinate transformation 

yr=yd; 

initialization of a symbolic vector containing the control and its 

derivatives 

uhat=u; 

'/. Design loop 

for i=1: n 
yd=diff (yd, 't') ; '/. i-th derivative of yd(t) 
zaux=sym(sym(z), 1, i); % previous coordinate transformation 
dzdu='0'; % initial dz/duhat 

check out the presence of theta in z(i) coordinate 

if hat==-1 
if findstr('th', zaux) "_ [] 
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hat=i-1; % relative degree respect to theta 

end 
end 

check out the presence of u in z(i) coordinate 

if cont==-1 
if findstr(u, zaux) -_ [] 

cont=i-1; % relative degree respect to u 
udot='u2'; % differential du/dt 

obtain dz/du(du/dt) first time 

dzdu=symop(dzdu, '+', diff(zaux, uhat), '*', udot); 
uhat=[what', ', ' , udot] ;% incorporate du/dt to uhat 

end 
else 

% vector containing derivatives of u only 

udot=transpose(sym([uhat(length(u)+2: size(uhat, 2)), ', u',... 
num2str(i-cont+l)])); 

'/. obtain dz/duhat(duhat/dt) with uhat as a vector 

" 
dzdu=symop(dzdu, '+', jacobian(zaux, sym(uhat)), '*', udot); 

uhat=[uhat, ', u', num2str(i-cont+l)]; % new derivative of u 

end 
dzdx=jacobian(zaux, sym(x)); % partial dz/dx 

obtain partial dz/dthetahat 

if p==1 
dzdthhat=diff(zaux, thhat); 

else 
dzdthhat=j acobian(zaux, sym(thhat)) ; 

end 
w=symop(transpose(wr), '*', transpose(dzdx)); % regressor vector 
if (i==n) & smc_design 

k='k(1)'; 
for j=2: n-1 k=[k, ', k(', int2str(j), ')']; end 
k=sym([k, ', 1']); 

surface=symop(k, '*', transpose(sym(z))); 
sigma=sym('sigma'); 
wadd=sym(1, p, '0'); 

for j=1: n-1 
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wadd=symop(wadd, '+', sym(k, 1, j), '*', wt(j,: )); 

end 
regaux=symop(adgain, '*', '(', w, '+', transpose(wadd), ')'); 

tau=symop(tau, '+', sigma, '*', regaux); 
else 

tau=symop(tau, '+', zaux, '*', adgain, '*', w); % tuning function 

end 
if i==1 

wt=transpose(w); 
dzdth=dzdthhat; 
taut=transpose (tau) ; 

else 
wt=symadrow(wt, transpose(w)); 
dzdth=symadrow(dzdth, dzdthhat); 
taut=symadrow(taut, transpose(tau)); 

end 
dzdt=diff(zaux, 't'); 

sdzdth='0'; 
if i >= 3 

sdzdth=symop(symvxm(sym(z), dzdth, 1, i-1), '*', adgain, '*', w); 
end 

'/. obtain coordinate z to be added at this step 

if i >= 2 

sz=sym(sym(z), 1, i-1); % coordinate z(i-1) 
else 

sz='0'; 
end 
c=['c(', num2str(i), ')']; % control gain 
znext=symop(dzdx, '*', xhat, '+', dzdthhat, '*', tau, '+', dzdu); 

if ((i < n) I "(smc_design)) 
znext=symop(znext, '+', c, '*', zaux, '+', sz); 

end 
znext=symop(znext, '+', dzdt, '+', sdzdth); % z(i+1) 
if i<n 

z=[z, ', ', znext]; 
yr= [yr, ' ,' , yd] ; 

end 
end % end of the design loop 

yr=transpose(sym(yr)); % transform yr to a symbolic vector 

z=transpose(sym(z)); % transform z to a symbolic vector 

Sliding Mode Control Design 
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if smc_design 
dsigmadt=symop(symvxm(transpose(z), dzdth, 1, n-1), '*', adgain,... 

'*', transpose(wadd)); 
for i=1: n-1 

c=['c(', num2str(i), ')']; '/, control gain 
sind=symop(sym(z, i+1,1), '-', c, '*', sym(z, i, 1), '+',... 

dzdth(i,: ), '*', '(', tau, '-', transpose(taut(i,: )), ')'); 
ifi>1 

sind=symop(sind, '-', sym(z, i-1,1), '-',... 
symvxm(transpose(z), dzdth, l, i-1),... 
'*', adgain, '*', transpose(wt(i,: ))); 

end 
sind=symop(sym(k, i, i), '*', sind); 
dsigmadt=symop(dsigmadt, '+', sind); 

end 
else 

dsigmadt='0'; % No SMC design 

end 
znext=symop(znext, '+', dsigmadt); % Add dsigma/dt 

comet=findstr(' ,' , uhat) ;% find the positions of ' ,' in uhat 

% Obtain substrings containing [ul, u2,... ] and [u2, u3,... ] 
to be used in the final control 

if Comm "_ [] 
lcom=length(comm); 
if lcom >2 

subhat=transpose(sym(uhat(i: comm(lcom-1)-1))); 
subdot=transpose(sym(uhat(length(u)+2: comm(lcom)-1))); 

elseif lcom == 2 

subhat=uhat(1); 
subdot=uhat(length(u)+2: comm(lcom)-1); 

end 
end 
uhat=transpose(sym(uhat)); 
thhat=transpose(sym(thhat)); 

Obtain the final control 

if cont==-1 
if findstr(u, znext) 

cont=n; 
end 

transform uhat to a symbolic vector 
transform thhat to a symbolic vector 

relative degree n 

end 
if cont==-1 
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error('control is not available') 
elseif cont==n % case of linearizable system 

den=sym(symop(sym(dzdx, 1, n), '*', '(', g, '+', psi, '*', thhat, ')'), n, 1); 

sum=expand(symop(den, '*', u)); 
control=symop(sum, '-', (znext)); 

else % case of no linearizable system 
den=diff(sym(z, n, 1), sym(uhat, symsize(uhat, l)-1,1)); %denominator 
if n-cont == 1% case of relative degree n-1 

dzdu='0'; 
else 

if symsize(subhat, l) '"= 1 
dzdu=symop(jacobian(sym(z, n, 1), subhat), '*', subdot); 

else 
dzdu=symop(diff(sym(z, n, 1), subhat), '*', subdot); 

end 
end 
control=symop('-', dzdx, '*', xhat, '-', dzdthhat, '*', tau, '-', dzdu); 
if -smc_design 

control=symop(control, '-', c, '*', zaux, '-', sz); 
end 
control=symop(control, '-', dzdt, '-', sdzdth, '-', dsigmadt); 

end 
if smc_design 

disigma='lambda*(sigma+beta*sign(sigma))'; 

control=['(', control, '-', disigma, ')/', den]; 

else 
control=symop(control, '/', den); 

end 
%dispform(control, 80); 

M-file creation 

if nargin >6 
fid=fopen([modfile, '. m'] , 'w' , 'n') ; '/. open file 
fprintf (f id, ['function xdot=', modf ile, ' (t , x) ; \n' ]) ; 
if strcmp(tau, sym(p, 1, '0'))==0 

adapt=l; 
else 

adapt=0; 
p=0; 

end 
fprintf (f id, ' global cl); 
if adapt 

fprintf (fid, ' ad theta') ; 
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end 
if smc_design 

fprintf (fid, ' k lambda beta') ; 
end 
fprintf (f id, ' ; \n') ; 

% the system x=f(x)+g(x)u+(phi(x)+psi(x))*theta 

xhat=symop(f, '+', g, '*', u, '+', wr, '*', transpose (sym(theta))); 

if adapt I (cont < n) 
fprintf(fid, '%c\n%s\n%c\n', '%', ''/. Auxiliary variables', '%'); 

end 
for i=1: n-cont 

fprintf(fid, ['u' 
, num2str(i), '=x(', num2str(n+p+i), '); \n']); 

end; 
if adapt 

for i=l: p 
fprintf(f id, ['th', num2str(i), '=x(', num2str(n+i), '); \n']); 

end; 
end 
if smc_design 

fprintf (fid, ' %c\n%s\n%c\n' ,' 
%' 

,'% Sliding surface', ' %') ; 
fprintf (fid, 'sigma=') ; 
cad=surface; 
for j=1: n 

cad=strrep(cad, ['x', num2str(j)], ['x(', num2str(j), ')']); 

end 
wrecback(fid, cad); 

end 
if adapt 

fprintf (f id, ' %c\n%s\n%c\n' ,' 
%' 

,'% Update law', ' %') ; 
for i=1: p 

fprintf (fid, ['tau' , num2str(i) ,' _']) ; 
cad=sym(tau, i, 1); 
for j=1: n 

cad=strrep(cad, ['x', num2str(j)], C'x(', num2str(j), ')']); 

end 
wrecback(fid, cad); 

end 
end 
fprintf (f id, ''%c\n%s\n%c\n' ,' 

%' 
, ''/. Control law' , ''/. ') ; 

cad=control; 
for i=1: n 

cad=strrep(cad, ['x', num2str(i)], ['x(', num2str(i), ')']); 

end 
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if n==cont 
fprintf (f id, [u, ' 

else 
fprintf (fid, ' control=') ; 

end 
wrecback(fid, cad) ; 
fprintf(f id, '%c\n%s\n%c\n%System equations', '%'); 
for i=1: n 

fprintf(fid, ['xdot(', num2str(i), ')=']); 

cad=sym(xhat, i, 1); 
for j=1: n 

cad=strrep(cad, ['x', num2str(j)], ['x(', num2str(j), ')']); 

end 
wrecback(fid, cad); 

end; 
if adapt 

fprintf (f id, ' %c\n%s\n%c\n' ,' %' , ... 
Parameter estimate equations', '%'); 

for i=1: p 
fprintf(fid, ['xdot(', num2str(n+i), ')=tau', num2str(i), '; \n']); 

end 
end 
if n> cont 

fprintf (f id, ' /, c\n'/, s\n%c\n' ,' %' , ... 
'% Dynamic control equations', '%'); 

end 
for i=1: n-cont-1 

fprintf(fid, ['xdot(', num2str(n+p+i), ')=x(', num2str(n+p+i+1), '); \n']); 

end 
if n> cont 

fprintf(fid, ['xdot(', num2str(2*n+p-cont), ')=control; \n']); 

end 
f close (f id) 

end 

Creation of main M-file 

if nargin == 8 
fid=fopen([runfile, '. m'] , 'w' , 'n') ; '/, open file 
fprintf (fid, ' %c\n%s\n%c\n' , '%' , ... 

['% This program runs ', modfile, '. m'], ''/. '); 

fprintf (f id, ' global cl); 
if adapt 

fprintf (f id, ' ad theta') ; 
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end 
if smc_design 

fprintf (fid, ' k lambda beta') ; 
end 
fprintf (fid, ' ; \n') ; 
fprintf (f id, ' %c\n'/. s\n%c\n', ' 
blk=blanks(n-1); 
blk=strrep(blk, ' ', ' ; '); 
if smc_design 

fprintf (f id, [' k= [' , blk, ' 1] ; \n' ]) ; 
blk=blanks(n-2); 
blk=strrep(blk, ' ', ' ; '); 
fprintf (fid, [' c= [' , blk, ' ]; \n' ]) ; 
fprintf (fid, ' %s\n' 

, 'lambda= ; I); 
fprintf (fid, ' %s\n' 

, 'beta= ; I); 

else 
fprintf (fid, [' c= [' , blk, ' ]; \n' ]) ; 

Parameter values', '%'); 

end 
if adapt 

blk=blanks(p-1); 
blk=strrep(blk, ' ', ' ; '); 
fprintf (f id, [' ad= [' , blk, ' ]; \n' ]) ; 
fprintf (f id, ['theta[' , blk, ' ]; \n' ]) ; 

end 
fprintf (fid, ''/. s\n' , 't0= ;% Initial time') ; 
fprintf (f id, ' %s\n' 

, 'tf= ;% Final time') ; 
fprintf(fid, '%c\n%s\n'/. c\n', '%', Initial conditions', '%'); 
blk=blanks(2*n+p-cont-1); 
blk=strrep(blk, ' ', ' , '); 
fprintf (fid, [' x0= [' , blk, ' ]; \n' ]) ; 
fprintf (fid, [' [t, x] =ode23(''' , modfile, "' , tO, tf, xO) ; \n']) ; 
fclose (fid) ; 

end 

function [mbigger]=symadrow(m, v); 

% SYMADROW appends a new row to a symbolic matrix. 

% MBIGGER=SYMADROW(M, V) appends the symbolic vector V, as a new row, at 
the end of the matrix M to generate the expanded matrix MBIGGER. 

% Programmed by M. 

Cnr, nc] =symsize (m) ; 
lm=length(m); 
m_is_scalar=(nr==nc) 

Rios-Bolivar Date: 24/10/96 

& (nc==1); 
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if m_is_scalar 
mbigger=sym([m, '; ', v]); 

else 
cad=m(1,2: lm-1); 
for i=2: nr 

cad=[cad, '; ', m(i, 2: lm-1)]; 
end 
[nrv, ncv] =symsize (v) ; 
if (nrv==ncv) & (ncv==1) %v is scalar 

mbigger=sym([cad, '; ', v]); 
else 

mbigger=sym([cad, '; ', v(2: length(v)-1)]); 

end 
end 

function wrecback=wrecback(fid, cad) 

% This program writes the character string `cad' in the file 
% assigned to `fid' as records of length approximately equal 

to 'max' 
% 
'/ Programmed by M. Rios-Bolivar Date: 24/10/96 

max=65; % approximate record length 

while cad "_ 11, 
1=length(cad); 
if 1> max 

p=findstr('+', cad(max+1: 1)); 
'/. p=[p, findstr('-', cad(max+1: 1))]; 

p=[p, findstr('*', cad(max+1: 1))]; 

p=[p, findstr('/', cad(max+1: 1))]; 

pos=min(p); 
if pos== [] 

fprintf (fid, [cad, ' ; \n']) ; 
cad="; 

else 
fprintf(fid, [cad(1: max+pos) ,'... 

\n']) ; 
cad=cad(max+pos+1: 1); 

end 
else 

fprintf (f id, [cad, ' ; \n' ]) ; 
cad="; 

end 
end 
end 
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