
Deparbneat of

QfAlUlD

TIC
De rbm-t

COjC

u!
'GNMN
ERsrry of EFFIE

a Sy a
CONTROL

rd SYSTEMS
ENGINEERING

UNIVERMY of SHEFFIELD

The Application of
Adaptive Resonance

Theory and
Reinforcement Learning
To Mapping and Control

Shaun Marriott, M. Sc. (Tech), B. A. (Hons.), Cert. Ed.

Department of Automatic Control and Systems Engineering
The University of Sheffield

Submitted in partial fulfilment of the requirements for admission to the degree of Ph. D.

September 1996

Acknowledgments

I dedicate this thesis to my grandparents Charles and Clarice Grattage without

whose patience and love it would not have existed.

I would very much like to thank my supervisor, Robert Harrison, for his support

and advice. His keen insight and thought-provoking questions have contributed

greatly to the development of this work; his unerring sense of perspective has

proved invaluable.

I would also like to thank my colleagues Chee Peng Lim and Zhe Ma for the many

stimulating discussions which often led to new insights and clarifications.

I also acknowledge the support of Charles Whitworth whose friendship and sense

of hurnour have contributed indirectly to this work.

My thanks go to the Engineering and Physical Sciences Research Council who
have supported me financially throughout this work.

A word of mention must go to Mrs F Elliott for her encouragement and
unwavering optimism.

Finally, I must mention that my early interest in reinforcement learning was
increased through conversations with Richard 'Richie' Sutton at the Cambridge
Neural Network Summer School.

The Application of Adaptive Resonance
Theory and Reinforcement Learning To

Mapping and Control

Shaun Marriott, M. Sc. (Tech), B. A. (Hons.), Cert. Ed.

Summary

In this thesis, the ideas of Adaptive Resonance Theory (ART) and Reinforcement
Learning (RL) are applied to the problems of mapping and control. A neural
architecture, fuzzy ARTMAP is considered as an alternative to standard
feedforward networks for noisy mapping tasks. It is one of a series of
architectures based upon ART. Fuzzy ARTMAP has advantages over
feedforward networks--such as increased autonomy- and is especially suited to
classification-type problems. Here it is used to estimate a continuous mapping
from noisy data. Results show that properties useful for classification problems
are not necessarily advantageous for noisy mapping problems. One particular
feature is found to cause specialisation to the data. A modified variant is
proposed which stores probability information in a sub-unit of the architecture.
The proposed fuzzy ARTMAP variant is found to outperform fuzzy ARTMAP in
a mapping task.

Another novel self-organising architecture, loosely based upon a particular
implementation of ART, is proposed here as an alternative to the fixed state-space
decoder in a seminal implementation of reinforcement learning. A well-known
non-linear control problem is considered. Input / output pattern pairs, desired
state-space regions and the network size / topology are not known in advance.
Results show that, although learning is not smooth, the novel ART-based RL
implementation is successful and develops a meaningful control mapping. The
new decoder increases its information capacity as necessary and indicates that
such a self-organising approach to control is viable. The self-organising
properties of the new decoder allow the neurocontroller to retain previously
learned information and to adapt to newly encountered states throughout its
operation, on-line.

A fuzzy version of the original RL implementation is implemented to investigate
the possibility of distributing control information across more than one state-space
region. The fuzzy version is found to outperform the original RL implementation
in a control task..

Contents

Acknowledge ments ...
(j)

Summary ...
(ii)

Chapter 1: Neural Networks, Mapping and Control

1.1 Motivation and Overview .. 1.

1.2 Adaptive Behaviour ... 3.

1.3 Mapping and Control: Interrelations 5.

1.4 Artificial Neural Networks ... 6.

1.5 A Black Box Approach ... 7.

1.6 Neural Network Architectures: A Critical Review 10.

1.7 Neurocontrollers ... 21.

1.8 Adaptive Control .. 25.

1.9 Delay Learning .. 27.

Chapter 2 Adaptive Resonance Theory and PROBART

2.1 Genedc ART ... 31.

2.2 ART 1 ... 45.

2.3 ARTMAP ... 56.

2.4 Fu'zzy ART ..
64.

2.5 Fuzzy ARTMAP ..
69.

2.6 PROBART ...
73.

2.7 Simulations ; 78.

2.8 General Discussion ... 95.

2.9 Multidimensional Mappings .. 97.

2.10 A Simple Classification Problem 106.

Chapter 3 Reinforcement Learning

3.1 Psychology .. 112.

3.2 Automata ... 119.

3.3 Michie and Chambers' Boxes .. 130.

3.4 Reinforcement Signals and Traces 135.

3.5 Temporal Difference Learning ... 137.

3.6 The BSA Reinforcement Learning System 143.

3.7 Simulations .. 150.

Chapter 4 EUCART and the EUCART-BSA Hybrid

4.1 Background ... 159.

4.2 EUCART Descdption .. 175.

4.3 EUCART-BSA Hybrid ..
197.

4.4 Discussion ..
217.

Chapter 5 Extending the Hybrid

5.1. Meta-Control ..
223.

5.2 Pruning ..
225.

5.3 Distributing the EUCART-BSA Hybrid 230.

5.4 Fuzzy Logic ...
232.

5.5 Distribution by Membership Function: FUZBOX 239.

5.7 The EUCART+BSA Hybrid Revisited 259.

Chapter 6 General Discussion and Conclusions

General Discussion ... 262.

Conclusions ... 271.

References .. 274.

Appendices ... 294.

'6 ... even to animals eventually capable of speech such as ourselves, the world is initially an

unlabeled place. "L-Gerald M. Edelman, 1989

Chapter 1. Neural Networks, Mapping

and Control

1.1 Motivation and Overview

One particular area of research of note in the technological arena lies in the

development of more intelligent and autonomous systems. Although caution must

be exercised when using the word 'intelligent', it is not difficult to grasp the

intended meaning. There is a growing need for autonomous systems which act

upon their environment with less pre-programmed rigidity and reliance on human

intervention than many existing control solutions.

The work presented in this thesis is an investigation into two key aspects of

machine intelligence which are intimately related viz. mapping and control. These

are examined in some detail through both the study of existing artificial neural

architectures and the introduction of three novel architectures. The new

architectures do not lay claim to being universally applicable systems which

circumvent all problems. Indeed, it is doubtful that such a universal system exists

owing to the fundamental nature of the group of competing constraints involved

in intelligent information processing; many of the constraints are mutually

exclusive and compromise is the best that can be hoped for. The development of

the novel architectures detailed in this thesis illustrates many of the issues involved

in quantifying and implementing intelligent computing and control strategies.

The two main biologically-inspired areas of research covered in this thesis are
Adaptive Resonance Theory (ART) and reinforcement learning (RL); both areas

show future promise and interest in them is increasing. One of the new

architectures is a hybrid system with features taken from both theories and

combined to give an autonomous self-organising control system.

The self-organising capabilities of ART-based architectures combine naturally

with the reduced supervisory requirements of reinforcement learning systems.
One of the motivating factors of this work is to investigate the feasibility of self-

organising reduced-supervision systems for intelligent control.

The subject matter of this thesis falls naturally under the two headings of mapping

and control. Adaptive resonance theory forms the basis for the new architectures
developed in both areas of investigation. Reinforcement learning (and related

areas) is of relevance only for the area of control. These factors make it more

convenient to introduce background material as appropriate throughout the thesis.
The structure divides the material conveniently into sets of related topics grouped

within chapters. This is to prevent an oversized introduction consisting of a large

number of preliminary topics grouped together out of context.

Chapter I provides a brief survey of neural networks, mapping and control. This

survey of relevant concepts and architectures comprises a backdrop for the thesis

and motivates the development of the new architectures.

The first sections of Chapter 2 introduce Adaptive Resonance Theory and develop
key themes in considerable detail before introducing a novel ART architecture
called PROBART. PROBART is applied to mapping tasks and its performance is

evaluated. Adaptive resonance theory is the common theme running throughout
the thesis and provides a basis for all of the new architectures.

Chapter 3 is concerned with the reinforcement learning method. Reinforcement
learning is discussed in the context of psychology and learning theory and forms

the basis for the discussion of selected neurocontroller architectures. The seminal
implementation of Barto, Sutton and Anderson (BSA) is then discussed in

considerable detail and motivates the development of the second novel

2

architecture. Related ideas grouped together within this chapter include classical

and operant conditioning, automata theory, and temporal difference learning.

Chapter 4 motivates the development of an ART-based self-organising

architecture. The new architecture, called EUCART, forms a component of the

EUCART-BSA hybrid neurocontroller. The hybrid neurocontroller is described

in detail and its performance is evaluated with a number of simulations.

Chapter 5 investigates extensions to the ideas and architectures covered in the

previous three chapters and introduces the area of fuzzy logic. A third novel

architecture is described, called FUZBOX which illustrates some of these

extensions.

Finally, Chapter 6 provides a general discussion and review of ideas covered in

this thesis, draws some conclusions and indicates possible directions for further

research.

1.2 Adaptive Behaviour

Humans and animals are able to adapt to changing conditions in the world around
them. Successful adaptation is indicated by survival and by avoidance of
discomfort. The main features of this adaptive behaviour are the prediction of
certain environmental characteristics and the selection of appropriate actions from

a repertoire including avoidance or control strategies. In general, learning is
directed by reward and punishment stimuli acquired from an environment.

Prediction of temporal or spatial characteristics of an environment by an organism
is a form of system identification (e. g. Norton, 1986; S6derstr6m and Stoica,
1989); system identification-of whatever degree of sophistication-ýs a
prerequisite for appropriate action if an organism is to adapt successfully. In
living organisms, system identification often involves the formation of cognitive

3

maps (Walker, 1975) which represent pertinent information about the operating

environment. Cognitive maps, or schemata (Howard, 1987) are selective

abstractions of environmental features which allow behavioural adaptation

(learning) by an organism or intelligent agent faced with a potentially confusing

array of stimuli.

The simplest case of input-output map which does not require cognition is the

stimulus-response map of classical conditioning (e. g. Barker, 1994). However,

this is usually only appropriate in straightforward environmental situations

involving a limited behavioural repertoire. In general terms identification may be

applied to the environment and an appropriate action selected (indirect control) or

by developing directly a control strategy (direct control). Either way, an internal

representation of selected characteristics of the environment is acquired through

time from the mass of available information.

The foregoing discussion may appear self-evident when thinking of living

organisms. After all, these activities are carried out on a daily basis in the struggle
for survival and, as such, proceed without reflection. It may appear to be a gross

oversimplification of behaviour but even this analysis reveals several key points.

When attempting to develop artificial autonomous agents, certain important

concepts become apparent and it transpires that the process of adaptation cannot
be taken for granted after all. What is involved in the formation of an internal

representation of the environment or a successful control strategy? How can
information about the world be represented stored and retrieved? How is such
information to be used? What is a "successful" control strategy? What does

control involve? How can artificial autonomous agents be developed which will
behave appropriately? Indeed, what is appropriate behaviour?

These questions and many more have arisen through the study of human and

animal behaviour (e. g. Best, 1992; Carlson, 1994; Pinel, 1993 ; Gellatly, 1986).
This thesis will consider such issues from the point of view of artificial

4

intelligence (AI) with particular emphasis on the areas of artificial neural systems

or neural networks and autonomous learning systems.

1.3 Mapping and Control: Interrelations

There are two major themes underlying adaptive behaviour which are implicit in

the above discussion; these are mapping and control. These two themes are

intimately related in that the mapping between an agent's actions and the

subsequent environmental responses gives valuable information required to

modify the action (behavioural) repertoire. In a limited sense, the behaviour of

living organisms can be thought of as sequences of control actions (even actions

involving flight or avoidance). Figure 1.1. shows a simple control (behaviour)

loop involving mappings between environmental inputs and outputs and organism

inputs and outputs; it illustrates schematically the relationship between an

intelligent agent and its environment.

Environment

Agent

Action Strategy
(control)

Figure 1.1. The relationship between an intelligent agent and its environment. The agent

responds to information from the environment with an action or set of actions from its

behavioural repertoire depending upon past experiences.

The biological inspiration giving rise to the two themes of mapping and control

also provides inspiration for an implementable system suited to such intelligent

tasks. To be more specific, this chapter will consider biologically inspired neural

networks capable of implementing mappings and control strategies. Section 1.4

will introduce the idea of artificial neural networks and provide a background so
that specific neural network architectures can be introduced in subsequent

5

sections. By considering these established architectures, this route will lead to the

idea of artificial autonomous agents with much more flexibility.

1.4 Artificial Neural Networks

Evolution has resulted in the development of a highly adaptive command and

control system in the human body. The central nervous system (CNS) consists of

the brain and spinal chord. Communication with the rest of the body is via the

peripheral nervous system (PNS). The main centre for information processing is

the brain which consists of two main types of cells: neurons which form the

excitable tissues, and neuroglia, which carry out a large number of important

structural and maintenance functions. It is the neurons which provide biological

inspiration for computing elements.

Biological neurons are modelled using simplified abstractions of key features to

give artificial counterparts (e. g. Levine, 1991). An artificial neuron capable of
learning, called an adaline, is discussed in Section 1.6. Artificial neural systems,

or networks, constructed from comparatively simple elements form the subject of
this thesis.

The field of artificial neural networks (ANNs) is also known as connectionism,
parallel distributed processing (PDP), neurocomputing and artificial neural
systems (ANS) (McClelland and Rumelhart, 1986; Simpson, 1990). A related
field, computational neuroscience (Churchland and Sejnowski, 1992)

encompasses both artificial and biological neural networks. Henceforth, the term
"neural networks" will be used for convenience and will refer to biologically
inspired artificial neural systems.

A relative newcomer in the history of science, neural networks comprises a highly
interdisciplinary field devoted to developing new ways of processing information.
By combining abstract processing elements, modelled on biological neurons,
emergent properties arise from simulations of neural networks which emulate

6

some aspects of their biological counterparts. "Emergent properties" is a term

used to describe the behaviour of systems whose individual subsystems may

themselves have a very simple description, yet when taken together as a whole,

can exhibit complex behaviour.

In broad terms a neural network learns to represent a subset of salient features of

the environment. A set of appropriate or desirable responses is learned which can
be elicited by the relevant environmental cues. The characteristic of generalisation
is also present in many artificial neural systems which allows meaningful responses

to stimuli not previously encountered. Good generalisation occurs when

adequate responses are made to inputs of a given class when only a few exemplars

or instantiations of that class have previously been processed. Generalisation is a

consequence of the distributed representation of some artificial neural

architectures.

Neural networks, within the Emits of their structure, modify stored information

through experience in contrast to systems which are pre-programmed with all
information likely to be used during their operational lifetime. Performance on
some task is improved with respect to some prescribed measure. Haykin defines

neural network learning as:
49 ... a process by which the free parameters of a neural network are adapted
through a continuing process of stimulation by the environment in which
the network is embedded. Tle type of learning is determined by the
manner in which the parameter changes take place. " (Haykin, 1994).

1.5 A Black Box Approach

For the present, neural networks can be treated as 'black boxes'. Any neural
network can be viewed as a collection of input and output variables by the end
user who, in many cases, is not concerned with the-possibly complexr-internal
structures or processes (Figure 1.2.). Like human and animal learning viewed

7

from a simplistic standpoint, data is presented to the neural network and is

subsequently processed to produce information that is reflected in a change of

internal state or external behaviour. Why is this any different from conventional
data processing? Viewed at this superficial level, it appears that any computer

program following a set of instructions, or algorithm, can be classed as a neural

network; there is some truth in this, especially at the level of computer hardware,

but there are fundamental differences in neural network and algorithmic
information processing as will become apparent.

Input
Neural Net

Output

'MMMO" (black box) -------- ----- -

Figure 1.2. A neural net as a black box mapping

The key attribute of neural networks is their ability to learn from experience.
Leaming enables neural architectures to solve mapping and classification
problems by adjusting a representation of the problem until a desirable solution
has been found.

How data is used by an artificial network depends upon the learning method used.
Within the field of artificial neural systems three broad classes of learning method
can be distinguished: supervised, unsupervised and reinforcement learning (e. g.
Haykin, 1994) The concepts associated with all three learning methods will recur
throughout this thesis.

Supervised learning: This form of learning involves pairs of patterns to be

associated by a neural network; the pattern pairs, consisting of an input and a
desired output, are pre-specified by an external teacher (Figure 1.3.). The set
of pattern pairs is presented to the network until desired learning criteria are
fulfilled. Note that the data have already been pre-processed by the user who
has previously decided what data is relevant to the problem domain and which

8

patterns are to be associated; object classes are defined a priori to reflect a

pre-defined structuring of the problem domain.

Training
Input

Input
Neural Net

/output

=mono (black box)

Figure 1.3 Supervised learning (training) of a neural net.

Unsupervised learning (self-organisation): Here there is no external teacher

and, thus, no pre-specified organisation of the domain (Figure 1.4.). 71be

neural network has autonomously to organise the input data into structures and

to find regularities within the input space. Any a priori information is usually
in the form of constraints governing the similarity or "closeness" of data items.

Self-organising systems, through experience, develop an internal structure that

reflects the ordering of information in the environment.

Input
Neural Net

output

(black box)

Figure IA Unsupervised learning in a neural net. Self-organised categories are taken to be the

outcome of the learning process.

Reinforcement Learning: this learning method has evolved from consideration
of aspects of psychology. A goal or "end state" is specified but no direction or
method of attaining the goal is given. Learning is by trial and error with
successful changes being rewarded by a non-specific reward signal; similarly,
unsuccessful changes are penalised. Ile non-specific signal is'generated by a
critic network that only indicates success or failure and not the direction of

9

future changes (Figure 1.5.). Unlike the supervised learning method, the

learning task is not solved beforehand by a teacher and pattem pairs are not

specified, only the end-state is specified together with a punishment schedule.

Also, reinforcement learning is distinct from unsupervised learning owing to

the adaptive critic which analyses the performance of the system with respect

to a goal or task. Unsupervised systems do not have feedback of this type as

there is no teacher or critic. Reinforcement learning can be thought of as

supervised learning but not in the strictest sense because the crude

reinforcement signal does not give the desired output but only a crude measure

of success or failure.

Reinforcement

Input Neural Net
Output

womoo",

I

(black box)

Figure I. S. Reinforcement learning applied to a neural net.

1.6 Neural Network Architectures: a Critical Review

One of the earliest useful neural network architectures is the adaline or ADAptive

LINear Element(Widrow and Hoff, 1960; Widrow and Smith, 1963; Widrow,

1987). The adaline is a binary classifier which implements linear discriminant

analysis of decision theory. It is capable of learning from experience and

converges incrementally to a hyperplanar decision boundary through the data.

The final solution gives the best (least squares) approximation to a suitable
(possibly non-linear) decision boundary.

Adaline-type elements have been applied to weather forecasting, speech

recognition, cardiogram analysis and also to control engineering where an adaline

was used to model an existing controller for the cart-pole problem discussed in

section 3.3.2 (Widrow and Smith, 1963; Widrow, 1987);

10

The performance of the adaline is measured by a function of the adjustable

parameters, w= (w., w, , ... w.) known as weights. Ile function, denoted here

by E(w), defines an error energy surface parameterised by the weight vector.

The optimal solution is represented by the set of weights for which E(w) attains

the global minimum of the error surface which is found by adapting the weights

and is analogous to learning.

The task of modifying the adaline weight vector is called training. A training file

is used which contains a set of pattern pairs, Ix
P,

dp I consisting of an input

pattern and its desired class output. This training file is read sequentially for as

many times as are necessary during the supervised learning procedure.

The weight-update rule for adapting the adaline weights is the Widrow-Hoff

learning rule which implements the gradient descent procedure in which the

weight vector is moved in the direction of steepest descent in the error energy

space.

The general form of the gradient descent approach is given in vector form by

W(t + 1) = w(t) - 17VvFE (1.1)

In terms of a discrete time interval, t, where il is a constant governing the learning

rate and. VwE is the gradient of the error energy surface with respect to the

weights.

One thing to note is that the adaline will always find a solution; the linearity

restriction for the adaline simply means that the best (LMS) linear solution will be

found. As far as non-linear decision boundaries are concerned, however, all is not
lost. If the input data can be transformed from the original space into a space
where the classes are more readily linearly separable, then a solution can be found

using the adaline; the technique of transforming the data into a new space is
known as pre-processing which involves transforming the desired input-output

11

mapping into a form which is linear-in-the-parameters. Pre-processing is required

for the solution of non-linear mapping or decision problems by a linear network.

The main problem with using pre-processing is that the non-linear transform must

be known a priori. In a few simple cases where data can be visualised easily, it

may be possible to assume a transform. In most cases, the data is complex and a

suitable transform is not identifiable readily. However, the need for pre-

processing may be circumvented by building non-linearity into a network.

The importance of pre-processing will be seen in Chapters 3,4 and 5 where

methods of pre-processing (state-space) are considered as part of a control

problem; automated methods to render problems more tractable are highly

desirable.

Two possible ways of constructing non-linear neural networks are:

(i) to use a set of non-linear basis functions to construct a mapping or decision

boundary which is linear-in-the-parameters or,

(ii) to use a layeredfeedforward network of fixed dimensions consisting of

cascaded non-Enearides-non-linear-in-the-parameters.

Examples of (i) include thefunctional link network (Pao, 1989) and the radial
basisfunction network (Powell, 1987; Broomhead and Lowe, 1988; Moody and
Darken, 1989; Girosi and Poggio, 1990) which may be constructed incrementally.
An example of (ii) is the multilayer Perceptron (Rumelhart, Hinton and Williams,

1986).

The adaline can be used to construct multilayer networks. However, multilayer
networks of these elements are not necessarily useful. For the adaline, a
multilayer network has a single layer equivalent and is thus restricted to

12

implement a linear function. If the adaline is used in multiple layers with its post-

processing step function-as was originally conceived (Widrow and Hoff,

1960ý-then major difficulties arise in the development of adaptation algorithms.

These have been addressed by Widrow (Widrow and Hoff, 1960; Widrow and

Lehr, 1990) but such methods have not been widely adopted.

In general, a multilayer network which uses gradient descent has the following

requirements:

oa non-linear activation function to prevent the single layer equivalence

problem,

a method of credit assignment to distribute the error at the output throughout

the network, and

a differentiable activation function to enable gradient-based adaptation laws to

be used.

If non-linear continuous processing units are used for the nodes comprising the

multilayer network, the result is a multilayer Perceptron (MLP)(Rumelhart,

Hinton and Williams, 1986). The use of non-linear sigmoidal (usually logistic)

activation functions precludes the existence of an equivalent single layer network

and thus implements a non-linear mapping. Logical questions now arise regarding
the form of a possible learning law for such a network and what can be

approximated by it.

The learning law is a generalisation of the gradient descent rule of equation (1.1).
The continuous activation function allows errors in the output layer to be back-

propagated to the input layer so that all the network weights can be updated.

Subject to some conditions, arbitrary functions can be approximated using a

polynomial basis (Scarborough, 1966; Timan, 1994). That is, component
polynomials can be used to construct approximations to a given function. Here,

the MLP uses sigmoid functions. A result by G. Cybenko (Cybenko, 1989) shows

13

that, under some mild conditions, any continuous function of N real variables may

be approximated by an MLP of a single hidden layer (layer between input and

output layers). Other, independent, results concur with this result (Hornik et al,
1989, Funahashi, 1989) and new results have extended the original scope (e. g.
Hornik, 1993). 71liese theorems, however, give little, if any, practical guidance as

to the network size and configuration for a given mapping task; they are existence

theorems, and some networks may have to be of impractical dimensions to

achieve the desired approximation. In the MLP the pre-processing is an intrinsic

property of the architecture where the hidden layer(s) distort the incoming signal

through "squashing" by the signioidal activation functions.

The adaline is restricted to linear solutions which can be ascertained a priori (e. g.
Kohonen, 1989; Haykin, 1994) using the techniques of linear algebra. This

obviates the use of a Idnear neural network.

Although, the MLP has good representational properties, optimisation is non-
linear and non-convex leading to potential difficulties in training. When using
supervised learning to train a network to represent a non-linear mapping between
input and output space, the problem of local minima may be encountered (e. g.
Gallant, 1993; Haykin, 1994). For example, as with a single layer non-linear
network the MLP error energy function has the possibility of many local (false)

minima. Figure 1.6 illustrates that following the steepest descent rule does not
always result in the minimum error energy.

A possible result of encountering a local minimum, in terms of pattern
classification, is shown in Figure 1.7.

14

E

Global n-ýnimum

Figure 1.6. The problem of local minima.

(a)

w

(b)

Figure 1.7. The effect of local minima on classification. (a) A local minimum leads to the

misclassification of a group of patterns. (b) A possible MLP classification scheme without the

local minimum of (a).

In practical tenns, the higher the dimension of weight space, the more chance

there is of escaping from a local minimum by following one of the weight space

dimensions. The location and depth of local minima depend upon the number of

layers and the number of nodes in each layer. The choice of network size and

configuration for optimal learning is still a large area for research and depends

mainly on heuristic (trial and error) methods but see Vapnik (1995) for optimal

structure selection in feedforward networks for pattern classification.

The last point raises another issue; that of fixed vs. free network topologies. For

some networks the topology (size and configuration), and hence the information

capacity, is fixed and so may not provide the best representation for a particular
data set. For a fixed topology, the network parameters are adjusted to optimise

the representation of a given data set. If the fixed topology is inadequate then,

despite much training, the representation may always remain poor.

Steepest gradient
from this point

Local minima

15

Class I Class 0

Variable topologies have the advantage of flexibility in that nodes may be added

or removed but care has to be taken to minimise disruption to the representation.
Incremental and decremental architectures are covered in this thesis. Node

addition and removal are difficult for architectures such as the MLP owing to the

non-linear distributed representation of information. On what basis can the size

and configuration of an MLP be chosen? Once chosen, the MLP architecture is

usually fixed a priori regardless of the training set.

Artificial neural networks which learn incrementally by adding new nodes or

processing elements during operation have been used to approximate mappings
(Platt, 1991; Kandirkamanathan and Niranjan, 1992; Liu, Kadirkamanathan, and
Billings, 1994). This technique obviates many of the problems associated with
fixed network structures such as that of ascertaining the optimum network size

configuration (Fujita, 1992), deciding upon a connection topology and providing

sufficient information capacity (complexity) for adequate representation of the

problem domain.

Incremental learning is especially useful in situations where information is

gathered and used on-line. In many situations, it is not enough simply to train a

neural network on a given collection of data and leave it to operate without
further adjustment through experience. What if conditions arise which have not
yet been encountered by a trained network? Does new information necessitate
retraining? What happens to the existing body of information represented by the

network if new information is incorporated? Some fixed network structures
suffer the double problems of requiring off-line retraining to deal with new
conditions and catastrophic forgetting where an established mapping is replaced
by a new one (Sharkey and Sharkey, 1994).

The addition of new processing units requires the detection of novel infonnation

which cannot be incorporated into the existing structure. For the resource
allocation network (RAN) of Platt (1991), the addition of new processing units
depends upon a two part novelty condition. The first part deals with the input

vector of a pattern pair. A pattern is novel if the input lies beyond a specified

16

distance from the nearest stored exemplar (centre). In layer 1 the specified limit

decays with time to a resolvable minimum exemplar separation. The second part

of the novelty condition deals with the output vector and states that a pattern is

novel if the difference between the network output and the actual output exceeds

a set limit. Initially the representation of the function is coarse; as learning

proceeds, the allocated units have a reducing width until both novelty conditions

are fulfilled.

Two supervised networks, ARTMAP and fuzzy ARTMAP, based on adaptive

resonance theory (discussed in Chapter 2) have two part novelty conditions

similar to those of the RAN but are not based upon Euclidean distance. The first

part governs the allocation of new nodes to cover regions of the input space. The

second condition deals with incorrectly predicted outputs and triggers corrective

activity which may include the allocation of new nodes. Adaptive resonance

theory offers a sophisticated and flexible approach to both mapping and pattern

clustering.

Another problem that can occur with networks such as the MLP is overtraining.
If an MLP is trained for too long, it can learn to reproduce the training data to a
high degree of accuracy but fail to generalise to the underlying function. To

prevent this, another data set is required to validate the training and to help in

making the decision on whether to train for a shorter or longer period next time.
There are no hard and fast rules and much experience is needed, the avoidance of

overtraining is a large area for research. Using a costfunction consisting of the

error energy and a regularization term may help to overcome this (Bishop, 1995).

The regularization term restricts the amount of curvature of the fitted function so
that rapid changes (which allow tracking of noise) are avoided. However,

regularization introduces a priori assumptions about the form of the underlying
mapping and requires the choice of extra parameters.

17

Many neural networks, including the adaline and MLP, use supervised learning.

One issue which will be considered in much more detail throughout this thesis is

the availability of desired output patterns for supervised learning. Supervised

learning requires that output labels or actions are available during training and this

is not always the case, especially with dynamical systems. Sometimes only initial

and final states are known but not a specified intermediate trajectory.

An alternative to supervised learning where pattern classes are not pre-specified is

pattern clustering which involves sorting input patterns into groups without

predefining a set of such groups; i. e. unsupervised learning. Members of the same

group will have several features in common, that is, they will be "close together",

in some sense, in input space. The groups or clusters of vectors in input space

can be represented in many ways. A convenient way is to use a prototype or

exemplar which represents the cluster as a set of abstract features, i. e. an

6 average' example. For pattern classification, class labels maybe added

retrospectively if required.

The notion of "closeness" depends very much on how the input data is coded and

what metric or distance measure is used. A common metric is Euclidean distance

used in many neural networks (e. g. Haykin, 1994, Kohonen, 1989,1995).

Euclidean distance is not the only possible measure; networks based upon

adaptive resonance theory use the sum of the components of a difference vector
(see Chapter 2).

The self-organising map (SOM) of Kohonen (1989,1995) consists of a number of

nodes arranged on a two-dimensional lattice. Each node stores an exemplar

vector which is representative of a local cluster of inputs. It is an unsupervised

network which operates by allowing the nodes to compete for activation when an
input is presented. The node with an exemplar nearest to the input is chosen as
the winner and updated. The nodes of a neighbourhood around the winning node

are also updated. The SOM competitive network can be applied to the process of

vector quantization which involves the unsupervised compression and storage of
input information by finding a set of exemplar vectors that represents the input

18

space in the most efficient way. The resultant representation tessellates the input

space with a set of irregular convex polygons (regions) delineated by a set of

intersecting hyperplanes; these hyperplanes represent the decision boundaries

between neighbouring nodes when the choice of winning node (exemplar) is based

upon the Euclidean distance between the input vector and all of the stored

exemplars. The tessellation, known as the Voronoi tessellation, is illustrated in

Figures 1.8. and 1.9. (Kohonen, 1989,1995; Hertz, et al, 1991).

"1.
Figure 1.8. Selection of winning nodes based upon Euclidean distance leads to hyperplanar

decision boundaries between nodes. The intersection of these hyperplanar boundaries defines

Figure 1.9. Using Euclidean clustering with winner-takes-all dynamics results in a partitioning

of the input space that consists of irregular convex regions. This partitioning is known as a

Voronoi tessellation

The set of all input vectors belonging to the same partition of the Voronoi

tessellation is known as a Voronoi set. For the SOM winning node, the individual

exemplar (weight) vectors, wj , will move in the direction of the difference vector

I-w, (t) towards an input vector, I, and come to represent nearby clusters of

inputs to which they respond maximally. This is shown schematically in Figure

1.10.

19

the tessellation shown in Figure 1.9.

Figure 1.10. An illustration of clustering in three dimensions. The vectors represent the centres-

of-mass (centroids) of the clusters.

The neighbourhood update mechanism allows topological relationships within the

input space to be conserved within the lattice i. e. data items "close together" in

input space will be stored close together in the lattice nodes (Kohonen, 1989,

1995). For discrete simulations, a continuous neighbourbood can approximated by

updating all neighbours within a given region only. The SOM is a very effective

leaming system which has generated considerable interest in the neural network

community (Kohonen, 1989,1995; Ahalt et al, 1990; Ritter et al 1992).

However, like all neural networks, it has limitations including:

*a fixed network topology (including 2-D nature of lattice) which does not allow
for the addition or removal of nodes,

Rare data cases may be swamped (Kohonen, 1995) which means that small

statistical frequencies are not allotted any territory in the SOM,

neighbourhood and learning rate shrinkage schedules are arbitrary and have

no basis other than empirical judgement.

Other limitations such as lack of a well-defined cost function or absence of
guaranteed convergence are mentioned by authors including Bishop (Bishop,
1995).

20

Self-organising Architectures based upon Adaptive Resonance Theory overcome

some of the limitations of the SOM. This is discussed in Chapter 2 onwards.

Another important issue is that of off-line vs. on-line learning, Le acausal learning

vs. causal learning. A decision must be made between these two options for any

application. For some applications, off-line learning makes better use of the

training data because a training pattern encountered early on during training may

have a different significance later on; this is not possible with on-line learning and

information may only be used once and discarded. Learning may be dependent

upon the order of presentation for on-line learning problems.

One advantage of on-line learning is its flexibility. Take, for example, a control

problem such as is considered in this thesis. With off-line learning, data is

gathered and used to train a neural network controller (see section 1.7).

Following training, the network is fixed and can only work within the bounds of

its training experience. What if conditions change? How will a controller learn

new strategies? With on-line learning, a controller may assimilate new

information as and when it arises. The off-line vs. on-line dilemma also arises in

the unsupervised learning case. For example the SOM may be trained using either

mode but catastrophic forgetting may occur if the underlying statistics of the

problem change.

1.7 Neurocontrollers

There exists a large body of knowledge regarding control engineering theory and

techniques. Conventional techniques often involve linear control theory which is

well established. Controller operating regions are chosen and linearised around a

given set point. State-space methods can be applied to systems with models which
have been simplified by linearising them. The linearity assumption is fulfilled

because control objectives are to keep signals small but unexpected disturbances

21

can violate the linearity assumption by forcing operation out of the linear region;

therefore a non-linear or piecewise linear approach is required

Conventional controller design relies upon knowledge of the plant formulated in a

plant model. The plant model is an input-output mapping which represents a

plant's dynamical characteristics. Prior to controller design, the desired plant
behaviour is formulated for comparison with the actual behaviour. A

compensator is then designed to alter the open-loop plant characteristics resulting
in desired plant behaviour (closed-loop). The controller is almost always fixed

and often involves standard proportional-integral-differential (PID) control

methods (e. g. Banks, 1986)

Obtaining a plant model is an important part of the controller design process and
involves the techniques of system identification applied to model fitting to input-

output data or to derive a mathematical model from first-principles using physical
laws. Conventional control methods have been successful up to a point.
However, the plant dynamics are often complex or little-known and, thus, may

require more sophisticated control techniques than classically derived linear

controllers. Where a system model is available, it may not necessarily have an
inverse and neither may the real system; this makes model-based control more
difficult.

Neural networks provide a flexible approach and are especially suited to mapping
problems. The application of neural network methods to control is known as
neurocontrol and involves the development of neural network based controllers or
neurocontrollers. State-space can be quantised or represented in a smooth
manner depending upon the neurocontroller architecture. Learning can be carried
out off-line or on-line depending upon the situation. On-line learning is usually
known as adaptive control and allows neurocontrollers to adapt continuously to
changing plant conditions or parameters.

The plant can be treated as a "black box" if no model is available and a neural
network can be used to model the plant using the plant's input-output

22

relationships. If the desired controller actions are known-a controller input-

output relationship has been found either implicitly or explicitly- this information

can be used to train a neurocontroller using supervised learning. The trained

neurocontroller will represent a control mapping. The on-line establishment of

control mappings will be covered in more detail in sections 1.8 and 1.9.

Application of neural networks to control problems must be done with caution.
Using neural networks may not necessarily be the best approach. The "model"

obtained may be no more useful than the set of input-output relationships

specified in the training data or obtained during plant operation. The mapping

specified by the neural network may not be transparent or give a parsimonious

representation of the plant. Model complexity depends upon many factors and the

choice of a representative model class may beg the question by requiring
knowledge of plant dynamics of the type being sought.

In addition to the problem of over-complex models with too many parameters,
there is the problem of adequate network complexity. A neural network may
have insufficient "capacity" to represent a dynamical system; this under-
parameterisation may lead to instability and inadequate control because some of
the important dynamical modes may not be represented by the model.

A more fundamental problem concerns the availability of adequate training data in

the first place. For a system identification or parameter estimation task,
information regarding desired plant behaviour is required to "tune" the
neurocontroller during learning; this feedback signal allows the neurocontroller to
associate control actions with the input data (Figure 1.11).

23

....................
Trairing information 7

Neurocontroller

-H
Plant

I

Desired
output

behaviour

Figure 1.11 The neurocontroller training problem. What is fed back and how is it used?

As mentioned previously, where a data set of input-output examples exists,

supervised learning can be used to train an associative memory network. Desired

control output data is not always available and assumes that the control problem

has been solved to some extent before using a neurocontroller. If this were not

the case, how would desired control outputs be known for at least some of the

situations encountered? Even if the control mapping is not represented as a

mathematical model over a specified range of the input space-presumably the

task of the neural network is to find such a mapping, implicitly or otherwise-a

subset of the input-output set is available from some source. That source may be

from a human expert or an existing controller (operator modelling) and represents

a relationship between a system's inputs and outputs.

When specifying training data, care must be taken to ensure that the data set is of

adequate size and sufficiently representative of the problem to allow
determination of the model pammeters-plant or neurocontroller model--to the

required accuracy. The specification of performance criteria must be appropriate
to the control problem being solved and the protocol must be sufficiently general
so as to be applicable to other methods so that meaningful performance
comparisons are possible. What about unknown systems with complex, non-
linear dynamics which may include delays? How can information about plant
delays be incorporated into any representation or model? If the order of the
model is underestimated, it may lead to instability and an insufficiently effective
control strategy.

24

How can neurocontrollers be made more autonomous and capable of extracting
information for themselves during learning? How much, if any, a priori
knowledge is to be included in a candidate neurocontroller? What is the source of

this knowledge?

This brief discussion of some of the issues involved in neurocontrol has raised

various considerations, some of which will be discussed further in later sections.

1.8 Adaptive Control

One area of control theory of relevance here is adaptive control. Adaptive control
is a natural extension of feedback control (Astr6m, 1995). Control perfonnance

can be improved by increasing controller autonomy. Augmented error feedback is

used to adjust controller parameters on-line (Figure 1.12). Many applications
involve the automatic tuning of a simple controller (Astr6m, 1995).

Adaptive control can be divided into two general methods: indirect and direct.

Indirect adaptive control involves on-line modelling of a plant and the synthesis
of a control law from the model by inverting or otherwise using the model.
The plant model is used to predict an output which is used to determine a
control action. 71be success of the control strategy depends upon the accuracy
of the plant model. One of the objectives is to estimate a set of plant
parameters which specify the specific plant model. Closed-loop systems
obtained using adaptive control are non-linear and complex owing to the
parameter adjustment mechanism (Astr6m, 1995).

Direct adaptive control builds an explicit model of a controller on-line without
necessarily referring to an explicit plant model. Neurocontrollers using direct

adaptive control have potential advantages over simple adaptive control

25

methods that use gain scheduling to change the parameters of a linear

controller operating in a local region. The associative memory properties of

some architectures allow the construction of a control map composed of

multiple regions which may or may not be covered by a linear surface

(hyperplane). If the learning algorithm is sufficiently stable-in the sense that

there is little risk of catastrophic forgetting or overwriting (Sharkey and

Sharkey, 1994)--then continual recomputation of locally operative controller

models is not required. Recomputation of locally linear models is

computationally expensive and unnecessary. Adaptability is desirable, but with

the added constraint that a control strategy is not generated anew when re-

entering a region of input or state-space for which a strategy was developed

previously. In other words, a candidate neurocontroller must be adaptive but

not memoryless. Two particular implementations of the direct adaptive control

method are discussed at length in this thesis. Before discussing these

implementations in detail, these two examples of direct adaptive control will be

reviewed briefly to illustrate the concept.

Reinforcement learning methods can be viewed as "... a computationally simple,
direct approach to the adaptive optimal control of nonlinear systems. " (Sutton,

Barto and Williams, 1992). Data is gathered on-line and used to compute a

control output and performance evaluation at each time-step. Reinforcement

learning will be covered in detail in Chapter 3 onwards where novel architectures

are introduced.

Self-organislngfuzq control: this method attempts to build up a rule-base

(commonly on-line) which represents a successful control strategy. The rule-base

is modified according to the direct evaluation of control actions without reference

to a plant model. Evaluation is usually in the form of an explicit look-up table

(matrix) specifying corrections for each rule given the current error and change in

error. A novel form of self-organising fuzzy control using an evaluation network

to replace the look-up table is described in Chapter 5.

26

Controller
Adjustment
Algorithm

I

ControUer
LOOP

x Controller Plant Ii -0.
U

Primary
Feedback
LOOP

(::
E)

Figure 1.12 Block diagram of an adaptive system (after Astrom, 1995). Two control loops are

shown indicating the addition of a secondary loop which is involved in the adaptive tuning of

the controller.

1.9 Delay Learning

This thesis will explore an application of the incremental paradigm to the dynamic

partitioning of state space for control and related problems. As reviewed in

section 1.7 it is very often difficult to establish more than crude qualitative
information about state space trajectories on all but the simplest of analytical
systems. Ascertaining an accurate model of system dynamics and contriving an
objective or cost function signifying desired behaviour is usually the preferred
route in optimal control problems. Most adaptive methods are indirect and use an
estimated system model to recompute controls at each step (Sutton et al, 1992).
Even if adequate knowledge is available, the a priori integration of this
knowledge into the network structure can severely limit the autonomy and
flexibility of the network. Autonomous learning systems need to be able to

extract and organise information during experience in their particular data-rich

environment, increasing their information capacity as necessary.

27

Consideration of autonomous, self-organising systems reveals another, related,

aspect. The world exhibits obscure structure to any observer and convenient

labels, indicating the spatiotemporal significance of, and relationships between,

objects or events are simply not available a priori (Edelman, 1989). It is very

clearly ordered but, often, the causal relationships between objects and events are

not understood. For example, living organisms make sense of the world through

experience and evaluation of behavioural consequences. They structure

experiences autonomously and develop conceptual schemata with which to

classify perceptual stimuli as a basis for future behavioural responses. Where

desired responses are available for neural network training, the initial learning

problem has been solved autonomously by a human operator who has organised

and correlated relevant information to provide training data for the associative

network. This is especially true in control applications where desirable control

actions have to be specified and presented to a given neural network along with

the conditions which necessitate such actions. To increase neural network

autonomy, the processes of information extraction and organisation must be

incorporated into the architecture to allow more intelligent use of "raw" data; the
integration of pre-processing sub-systems into a neural network may reduce
dependency on external pre-processing and may consequently increase network

autonomy.

Additional motivation for the use of incremental self-organising systems for

complex control tasks is the inadequacy of supervised learning in control
problems. The problematic use of a fixed structure network is compounded by

the lack of training information about the structure and dynamics of the

environment or plant. The autonomy of an intelligent agent or neurocontroller
lies in its ability to extract information from the environment.

One requirement of an adaptive learning system is that it be capable of dealing

with delayed effects in the environment. Action and reaction are not
instantaneous with the effects of control actions still having an effect beyond the
instant of application. A system must be able to integrate the effects of delayed

28

control actions into the control assessment procedure. For the supervised

learning method, the provision of input-output pattern pairs by an external teacher

is an artificial process which relies upon several underlying presuppositions for its

operation as a training method. One such being that of a temporal connection

between input-output pairs; the nature of the assumed temporal connection forms

the basis for a model of the state transition dynamics of the system being

controlled. In other words, assumptions regarding the relative timing between

stimuli and responses in a system determine the form of the system model; if those

assumptions are wrong, or cannot be accommodated by the neural network

architecture being used, then control is unlikely to be successful. An adequate

representation of state transition dynamics is a prerequisite for successful control

as these dynamics determine system responses to stimuli through state transitions

that depend on both the present state and the current input. As well as a possible

change in the current response, there might be a transition to a new state. These

dynamics characte'nse a system and must be represented in some way by a

candidate neurocontroller.

A sizeable proportion of neural network theory is based upon associationism

which has its historical roots in psychology (James, 1892). Learning laws which
associate pre-synaptic and post-synaptic outputs (Hebb, 1949) often assume little

or no time delay between correlated signals. Networks based upon these learning
laws, and variants of them, function as simple pattern associators which
strengthen connections between frequently associated patterns, and which weaken
others.

The effects of an input on state transitions are not usually limited to instantaneous

changes unless memoryless systems are considered; a more accurate assessment
of real world systems is that state transitions are influenced by inputs as a function

of the time interval between a particular input and a given state transition. This
temporal effect reduces the validity of simplistic stimulus-response pairing of
input and output to some extent. Problems which involve delayed feedback to a
learning system can be reduced to simple pattern. association tasks but require a
problem to be solved beforehand by a human teacher in order to specify the

29

optimal actions which should be taken by the learning system (Myers, 1992). One

way to take delay into account is to present delayed inputs as part of the pattern

pair. However, this requires assumptions about the system model; for example,

what is the minimum delay time that can be assumed for a good model?
Incorporating time delay information into the training data set increases the

dimensionality of the input space.

Both the difficulty of obtaining relevant input-output pairs and the issue of the

temporal connection between inputs and state transitions (and, therefore, outputs)

are addressed in the paradigm of reinforcement learning (Barto et al, 1983;

Sutton, 1988,1992; Barto, 1992; Sutton et al, 1992; Daynan & Hinton, 1993);

this paradigm will be considered in Chapter 3. A modified form of the

backpropagation algorithm, temporal backpropagation, (e. g. Werbos, 1990) has

been developed to overcome some of the problems associated with using
feedforward neural networks for learning temporally correlated sequences of
inputs. Recurrent networks with feedback connections, such as the Elman network
(Elman, 1990) have also been developed; these and other approaches to the delay

problem will be covered in section 4.2.10.

This chapter has provided a general background to the work presented in this

thesis. Further introductory material will be given where appropriate to the
discussion. Chapter two begins with an introduction to Adaptive Resonance

Theory which underlies two of the novel architectures developed to overcome the
limitations of some existing approaches to mapping and control problems.

30

Chapter 2 Adaptive Resonance Theory

and PROBART

2.1 Generic ART

Cognitive psychology investigates the functions of perception and cognition and

highlights many fundamental questions about the information processing

capabilities of humans and animals (e. g. Best, 1992). For example,

How do humans "make sense" of their environment? (Edelman, 1989)

how do they order experience in time and space by discovering, learning and

recognising invariant properties in the world? (Carpenter and Grossberg,

1987a).

Adaptation and survival of any organism within an environment requires that
information is extracted, organised and acted upon in an efficient manner. Even

general behavioural constraints observed from the natural world, although many

are still without neural correlates (physiological counterparts), nevertheless
impose conditions upon neural models both artificial and natural. Characteristics

of intelligent infon-nation processing include the ability to:

self-organise representational codes within the brain to order
information,

abstract invariant properties from the environment,

generate and test hypotheses,

maintain expectations to compare with "reality",

form stable representations of formed categories but still be able to

respond to significant inputs.

31

11.1 The Stability-Plasticity Dilemma

The last two points form the basis of the fundamental problem of competing

constraints known as the stability-plasticity dilemma (Carpenter and Grossberg,

1987a). It is based upon the premise that it is desirable for any useful intelligent

learning system to have two fundamental properties.

The first property is plasticity. Any system must be adaptive enough to respond

to a series of environmental inputs. During learning, state transitions, resulting
from inputs and the present state of the system, must lead to new steady states

and attractors representing criticalfeature patterns (otherwise known as

prototypes or exemplars) of the environment. Thus the system (or organism)

must self-organise internal representations of invariant environmental features. It

must be capable of recognising novelty and accommodating new inputs from the

environment into its growing repository of experience-plasticity. This

responsiveness to new information must not, however, be at the expense of

previously established knowledge structures. That is, new learning should not
disrupt old learning. This leads to the second property of stability. Learned

representations must be stable regardless of new incoming information; invariant

properties of objects/situations must be abstracted and isolated from detected

irrelevancies. For instance, a person is able to recognise their best friend

regardless of lighting conditions and changes of clothing etc. Thus, an invariant

and stable internal representation of the best friend can be postulated.

The dilemma can be stated simply as a question: how can a system remain plastic
enough to respond to novel stimuli and yet retain stable invariant representations
against relearning and recoding? This question gives rise to the following issues
involved in the development of artificial systems:

" self-organisation and representation of information

" the abstraction of invariant properties

" stability

" plasticity

" causal (possibly real-time) operation.

32

Adaptive Resonance Theory has been developed to deal with these complex

issues and consideration of the stability-plasticity dilemma is reflected in the ART

family of networks (Carpenter and Grossberg, 1986; 1987a, b; 1989; 1992; 1994)

which has gone some way to resolving the conflict between stability and plasticity

within neural networks.

Adaptive resonance theory comprises one of the major themes of this thesis and

will be illustrated in both the contexts of off-line and on-line learning. Two novel

architectures-one off-line and one on-line--are presented in sections 2.6 and 4.2

respectively. T'he novel off-line architecture, PROBART, is applied to the general

mapping problem and is supervised during learning.

ART networks have the ability to allocate nodes dynamically, as required during

processing, without the need for retraining to incorporate novel information; this

property provides a natural basis for on-line adaptive learning. This thesis also

presents a novel network, EUCART-based loosely upon some of the principles

of ART- which is applied to a well-known control problem and acts as a self-

organising state space decoder to provide an autonomously derived internal

representation of state space. As a prelude to the description of the novel

architectures, some members of the class of architectures which comprise ART

will be considered in significant detail. Before this, however, it is desirable to get

an overview of the ART philosophy.

Z 1.2 The Instar and Outsfar Elements

ART architectures are based upon an underlying structure consisting of two
fundamental types of computing element, the instar (Grossberg, 1976a, b,;
Harvey, 1994; Levine, 1991) and the outstar (Grossberg, 1968,1980; Levine,
1991). Both elements form basic components in Kohonen's self-organising maps
(Kohonen, 1989,1995), the counterpropagation network of Hecht-Nielsen (1990)

and the ART 1 network of Carpenter and Grossberg (1987a). A detailed

33

discussion of these artificial neural elements will not be given here; instead, this

sub-section will provide a motivational overview so that further details of instar

and outstar dynamics can be introduced during subsequent discussion of ART

dynamics where appropriate.

The instar is an information processing element which learns to represent a cluster

of inputs by developing long-term memory (LTM); it consists of a single sink

node and a number of source nodes. A single instar element is shown in Figure

2.1. Note that, although there are a number of input nodes and an output node,

the instar is treated as a single element.

X0

wi rp
xi 1 N--,

-- LI

i
Il I I, IIm

Figure 2.1. The instar element which consists of a set of input nodes and a single output node.

The instar operates upon an rn dimensional input vector denoted by

I= (I,
I ... Jig ... 9 1,,)' which is fed directly to a layer of input neurons with

activities denoted by x= (x,
, ... ýxi g ... , x.)' in vector fonn. 71be sink node

activity is denoted by xO. The LTM is stored as a set of weights denoted by

W= (wit
... jWi I w,.)' in vector form. The LTM activity is governed by the

passive decay LTM equation (Grossberg, 1968). Weights decay if no input

vector is present or the sink node is not active; a gated instar may be used to
prevent this. The state of the instar is reflected in the activation functions which
determine the short term memory (STM) trace or activity level for a given input

vector (pattern). The instar output (sink) node dynamics are governed by an
additive STM equation (without shunting) (Grossberg, 1968,1980; Nigrin, 1993).

34

Whilst an input is present, the instar weight vector will tend towards the input

vector. Instars learn to represent the stream of spatial patterns that they are

exposed to; the representation will be an average of the pattern types depending

upon exposure time.

If a layer of instars is formed, each instar will respond maximally to a given input,

or cluster of inputs and the layer comprises a self-organising pattern classification

system whose categories are represented by the output activation values; such a

system is illustrated in Figure 2.2. which shows a competitive layer in which

neurons compete for a share of the total activity available across the layer. If

desired, an overall winner can be selected; this is known as winner-takes-all
dynamics where the node with the largest activity wins the competition and

signifies the resultant category (Rumelhart and Zipser, 1985).

Wi VM

Figure 2.2. A neural network consisting of a layer of instars. Each node in the top layer is an
instar sink and responds maximally to a cluster of inputs.

The underlying mechanism of the competitive network is the inhibitory interaction

between sink nodes inspired by biological realism. These interactions are
simplified to winner-takes-all dynamics by choosing the instar with the largest

activation. By using a good choice of STM dynamical equation, it is permissible
simply to take the node with the largest net input. The right choice of STM

equation reflects the biologically plausible justification for winner-takes-all
dynamics based upon the "closeness of match" between an input vector and the
stored exemplars. If normalised input patterns are used, the following two points
link competitive dynamics through inhibitory interactions and pattern clustering
based upon Euclidean distance:

35

4o competitive dynamics results in the choice of the node with the largest net

input,

* normalisation. of input and stored patterns implies that the node chosen with

the largest net input reflects the smallest Euclidean distance between the stored

pattern and the input pattern.

Biological plausibility does not mean that biological neural networks are

concerned with normalisation and closeness of patterns in a Euclidean sense as if

they were designed for some information processing purpose; networks exhibiting

competitive pre-processing by off-centre, on-surround networks of the type found

in biological organisms are capable of maintaining relative reflectance patterns
(see section 2.1.4) regardless of absolute signal magnitude, and also bounding the
inputs.

The outstar, is the minimal network capable of classical conditioning. It is able to
learn arbitrary spatial patterns and recall them when stimulated. It consists of a

single source node and several sink nodes (Figure 2.3) in contrast to the instar.

XI

10

XI

Figure 2.3. The outstar of Grossberg (Grossberg, 1968,1980). It consists of a source node and

several sink nodes.

The source node activation is denoted by xO and, when trained, is able to elicit an

activity patternX =
(XI9X29***qxi

9 ... , x.)' across sink nodes 1, ... f iq ... 9M.
Consider an individual sink node as shown in Figure 2.4. As well as receiving a
weighted connection from the source node with weight w1o, the sink node

receives a training input, Ii. This allows the outstar to learn an input pattern

36

1=(, 11
12

v***9
li

11 -*t I_) that is distributed across the sink nodes and to associate it

with a source input, I0.

Wie

X(l xi

Figure 2.4. An isolated sink node showing the training input and the source node input.

The basic operation of the outstar is as follows:

e an input pattern, I is presented to the sink nodes of the outstar at the same

time as the source node input, I0.

9 The LTM traces (weights) are modified to store the pattern across the source
nodes while the training inputs are active.

9 When the training input is removed, the LTM traces retain the pattern; an

outstar with this post-input retention property is known as a gated outstar

9 when the source node input, is presented to the network following training, the

associated pattem, I, is recalled.

37

Z 1.3 A Generic ART Module

If two layers of nodes are used in which the individual nodes of one layer act

alternatively as an instar sink node and an outstar source node and the nodes of

the other layer act accordingly as instar source and outstar sink nodes, then the

two layers taken together comprise an autoassociative memory network capable

of storing recognising and recalling patterns. Figure 2.5 shows the two phases of

such a two layer system.

The simple, two phase system forms the basis for ART architectures; ART

variants stem from the inclusion of various mechanisms into an underlying two-

layer two-phase system. Before considering specific architectures, some of the

refinements to the simple autoassociative network will be considered-, the refined

generic ART module will form the basis for subsequent discussion.

C)C)

fal Recognition phase (b) Recall phase %"j
Figure 2.5. An autoassociative memory network consisting of two operational phases: (a) a

recognition phase using the instar mode to select a winning node and (b) a recall phase using

the outstar mode to recall the stored pattern.

A generic ART module comprises two layers or fields of nodes, the matching field

and choice field which are labelled Fl. and F2 respectively; this is shown in Figure

2.6 which illustrates a simplified model without additional features introduced

later. There is a third layer, FO which merely acts as a buffer for an input vector
and is not counted. The F2 nodes act as sink nodes of inputs (instars) and source

nodes of outputs (outstars) during a learning cycle involving a single input

pattem.

38

The algorithm for a single cycle of a generic ART module is given by:

1. an input vector, 1, is transferred from the buffer layer FO to the matching field

F1 and gives rise to an activity pattern, x

2. the activity pattern of F1 is then transmitted to the F2 layer nodes via a set of

weighted connections; each F2 node acts as an instar which responds to a

given input filtered by the bottom-up connections

3. the activation pattern across F2 ,y is then contrast enhanced to find the

maximally responsive instar for the current input; this is a winner-takes-all

competition.
4. the winning instar sink node is then treated as an outstar source node which

projects back down (top-down filter) to F1

5. the pattern elicited across F1 by the active F2 outstar is the prototype average

stored by the winner called the expectation x'

6. the current F1 layer activity pattern, x and the top-down expectation, x' are

combined to give a resultant pattern x* across Fl.

7. if the match between x and x* is sufficient, resonance is said to occur and the

input pattern has been recognised and learning takes place
8. if not, the winning F2 node is inhibited and the whole cycle repeats from step 1

9. if all used nodes are exhausted the a F2 new node is recruited. A node

recruited to represent a category is said to be committed, otherwise it is

uncommitted.

39

F2
10

"0
1

y 1--l-

I Reset LTýb

atching field: STM
F, c)i 0 r(

x ield: STM
F0

llnput f
0 o0

a
Figure 2.6 A generic ART module consisting of two layers. Note that layer FO is an input buffer

layer. This diagram is simplified, with a number of additional features not shown. These

features are discussed in the text.

Figure 2.7 illustrates the pattern matching cycle schematically; in the case shown,

a mismatch at F1 leads to a new search cycle. The ART algorithm is generic and,

as such, is not specific to any one of the ART architectures. Indeed, a number of
issues have to be dealt with prior to implementation. These include:

spec .. ng e method of combining activity patterns across F1

establishing criteria for a "sufficient match"
defining what constitutes an "activation patterW'

specifying the method of "contrast enhancemenf
defining how pattern categories are chosen, and

specifying the form of learning for the bottom-up and top-down

weights which constitute the filters.

The examination of specific ART architectures will exemplify these issues. Ibe
first ART architecture to be examined in detail is ART 1 (Carpenter and
Grossberg, 1987a). This will exemplify the ART paradigm and expand upon the
issues mentioned and raise new issues. The consideration of generic ART within
this subsection will provide the framework for exploring specific ART
implementations and further modifications.

40

130ýup
AdVtive Fdtcr

(a) Bottom-up activity

Top. dom Sim
Adap" plesd Hter Signal

(c) Top-down activity: (matching)

Con=
Enhanewient

(b) Contrwt Enhancement

bbw
Search

(d) Reset

Figure 2.7 A generic ART pattern matching cycle showing reset after pattern mismatch. (a)

The F1 activity pattern is first transmitted to F2 where (b) the F2 activity is contrast enhanced
(relative differences in activity levels are exaggerated) to give an overall winner. For stage (c)

the top-down expectation of the F2 winner is transmitted to F1 to compare with the current
input. (d) if the current input is not what is expected, the F2 winner is inhibited and competition

is resumed.

Z 1.4 Two Subsystems

A generic ART architecture is split into two subsystems for functional

convenience: the attentional subsystem and the orienting subsystem (Carpenter

and Grossberg, 1987a) (Figure 2.8).

The attentional subsystem deals with familiar events and the responses to those

events through the internal representation of structure in the outside world. The

41

attentional subsystem, by itself, cannot maintain stable category codes and create

new categories for unfamiliar patterns. Alone it would cause categories to

become rigid and produce no new categories or to exhibit ceaseless recoding,
hence the requirement for the orienting subsystem.

The orienting subsystem deals with novel patterns and can distinguish whether a

given pattern is sufficiently familiar or whether it is of a new type and requires a

new category.

Attention plays an important role in the self-organisation of recognition codes.
Three types of attentional mechanism, attentional priming, attentional vigilance,

and attentional gain control will be discussed in the context of ART learning.

Attentional Subsystem Orienting Subsystem

..
...............................

+

F2
Gain"

. ntrol en
Co tml Control

STM
Reset

F1
Gain A6

Control +

.. : p
I

Figure 2.8 The attentional and orienting subsystems of a generic ART module.

ART places few restrictions on patterns such as orthogonality. There are no
limitations on storage capacity; an ART architecture can store arbitrarily many
patterns without degradation of sensitivity to novel information. ART units or
nodes store criticalfeatures in the form of spatial patterns. Absolute magnitude
can be misleading and data bits (binary valued ART) have a context dependent

significance; self-scaling of patterns is carried out to enable invariant pattern

42

recognition. For an input I= (11 (t), ... I Ii (t)), if I is a spatial pattern,

then relative activities of the components maintain a constant relationship to one

another regardless of the absolute activity (sum) of the pattern components.
Thus,

I= (11 (t), 1, W t I. W) eji(t),..., e xt)) = (e ej e,)i(t)
on

with the convention thatyei =1 to ensure that I(t) Ii Q) (Grossberg,

1980).

Humans and animals recognise objects quickly. ART has no complex retrieval

mechanism and access to recognition codes is direct (Carpenter and Grossberg,

1987a). ' Indeed, ART algorithms could be implemented in parallel on a suitable

analogue or digital computer.

Although ART networks self organise recognition codes, they have the ability to

alter attentional sensitivity in response to environmental influences. This possible
'teaching' mechanism-which allows negative reinforcement to increase

sensitivity to incorrect category recognitioa--is known as attentional vigilance
(Carpenter and Grossberg, 1987a). Changes to the ART network sensitivity
induced by mismatch of actual and expected inputs is implemented in the

supervised ARTMAP architecture (Carpenter, Grossberg and Reynolds, 199 1);

this attention increasing mechanism, known as match-tracking is discussed in

section 2.3.

Another attentional mechanism is that of attentional priming. Top-down priming
or expectation is fed down from F1 to F2 even when the input has been removed

and before a new input is present. This top down input signal causes changes to
the level of F1 activation thus priming Fl. In this case, F1 activity does not
necessarily elicit a bottom-up signal; F1 merely remains more sensitive to input
from FO. However, an input pattern from FO must be sufficient to cause activity
across F1 without top-down processing, such that a bottom up signal is elicited.
This poses a question. How are input signals from F2 and FO distinguished by

43

FI? It is important that FO derived signals are of sufficient strength to elicit

bottom-up activity and consequent competition and recognition, yet misleading

self-excitation be prevented.

The solution to this problem is provided by another attentional. mechanism,

attentional gain control, which allows the F1 layer to differentiate between signal

sources. A gain controls F1 sensitivity depending upon the signal source; the

operation of the attentional gain control mechanism is governed by the two-thirds

rule.

2.1.5 The Two-Thirds Rule

The effective co-ordination of activity in a generic ART module requires that

certain subtleties of operation be addressed. These subtleties are mainly

concerned. with maintaining sensible signal levels to avoid excessive auto-

excitation or inhibition.

The attentional gain control allows modulation of signal levels as required and

provides a third signal source to augment those of F1 and F2. ART operation is

succinctly represented by the two-thirds rule of Carpenter and Grossberg (1987a)

which states that two out of the three signal sources are required to be present to

activate the F1 nodes. Table 2.1 states the conditions under which the gain is

active.

s Status Fl. F2 Gain

TD +BU

F

0

BU only 1 0 1

ID only 0 1 0

no activity 0 0 0

Table 2.1 The gain signal is switched on when there is activity across Fl. owing to an input

signal from FO. This is to ensure that the Fl. activity is sufficiently strong to elicit activity across
F2. ID signifies that a top-down signal (F2 to FI) is present and BU a bottom-up signal.

44

2.2 ART 1

The ART 1 architecture (Carpenter and Grossberg, 1987a) is a specific
implementation of the generic ART algorithm given in section 2.1.3. It is a self-

organising binary vector clustering system and forms part of the supervised
ARTMAP architecture of section 2.3. A simplified account of the ART 1

dynamics will be given with a view to simulation. The details of the development

of ART 1 dynamics from their biological origins, although interesting and
informative, are of no direct relevance to this discussion. A more comprehensive

account may be found elsewhere (e. g. Grossberg, 1987,1988; Freeman and
Skapura, 1992)

ZZ 1 The Fl Layer: Input Phase

Let the input to the FO layer of an ART 1 module at time, t, be denoted by
and the activity across the Fllayerby

x(t) = (x, (t),. T2 (t),..., xi (t),..., xm (t)) where M is the number of F1 nodes. The

activity across the F2 layer is given by Y(t) =
(YI (01) Y2 WI...

I Yj (01
... I YN (0)

where N is the number of F2 nodes.

The total excitatory input to an F1 layer node is given by

xi(t) = Ii(t)+ g +vj

Where g is the gain signal specified by

I if FO is active and F2 is inactive
0 otherwise

and the net top-down input from layer F2 to layer F1 for the i th F1 node is given
by

45

N
Vi I

Yj WijlTDI
j=l

(2.2)

where i(j
TD) is the connection strength (or weight) from the j th F2 node tothei Wi)

th node of layer F1 (Figure 2.9).

1 '/\

WOýM)

F2

ýV) Fl

ii

Figure 2.9 The input sources to an FI layer node.

The F1 layer weights, representing F1 layer LTM, will be discussed in section

2.2.4.

If an input vector is present but F2 is not active (no net top-down input possible)
then the condition I, >0 causes the i th F1 node to fire owing to the non-specific

gain which increases input sensitivity. Without it the input signal may not be of

sufficient strength to produce a feedforward signal. When both an input is present

and F2 is active, then both the input and the top-down activity is sufficient to

cause F1 layer nodes to fire.

During the input phase, the input, I(t), is propagated to F1 giving x(t) = I(t)

Because no top-down signal is present, g= 1 and xi (t) = Ii (t) + 1.

222 The F2 Layer: the Bottom-Up Phase

The expression for the bottom-up net input to a F2 layer unit from layer F1 is

analogous to equation (2.2) viz.:

46

m

netj (t) (t) w, (, "' (t) (2.3)

where wýPu3 is the connection strength (or weight) from the i th Fl node to the
JS

th node of layer F2 (Figure 2.10).

F2

Fl

I
-I

Figure 2.10. The F2 layer nodes of an ART 1 module operating in instar mode.

Thus, there is a distributed activation pattern across layer F2 depending upon the

level of net input to the individual F2 nodes (Figure 2.11)

Activation

Figure 2.11. An illustration of a typical distributed activation pattern across Fl. The pattern

will be contrast enhanced to find the winning node.

The F2 layer dynamics can be simplified considerably by assuming a winner-takes-

all function of the form

Yj =1
if Tr=maxklTklVk

(2.4)
0 otherwise

where J is the index of the winning F2 node.

47

F2 node index

ZZ3 The Fl Layer: the Top-Down Phase

Top-down activity alone should be insufficient to cause F1 layer activity.

However, top-down activity should have some effect on the F1 layer, this effect is

to prime the layer ready for incoming signals so that the probability of F1 layer

activity is increased.

To analyse the contribution, Vi made by the F2 layer, certain assumptions

(Freeman and Skapura, 1992) are made about the F2 layer. These assumptions

are:

e only a single F2 node has a nonzero output at any given time

* the maximum output of an F2 node is 1, and

9 the maximum weight on a top-down connection is also 1.

The first assumption is reasonable in that after inter-nodal competition across F2,

a single node becomes dominant and represents the category chosen by the ART

module. The second and third assumptions are based upon design considerations.

Returning to the net input value to the i th Fl. layer node given by equation (2.2)

N

vi yW WP) (t) yi (t) wi'j ') (t) = wij") (t) (2.5)

for some winning F2 node J. All the other F2 layer nodes have zero output.

When top-down activity is present, applying the gain criterion to equation (2-1)

gives

xi(t)=Ii(t)+ ('D))(t), or, in vector form, x(t) = I(t) + w()(t) where the WIV(

weight vector of top-down LTM traces is represented as
(TD) I (TD) (TD) W= W1 'W

(D) 1. The F2 generated top-down activity is ij 2j 9-9Wmj

combined with the FO input activity to give a resultant activity across Fl. For

48

some 0<F<1, the condition if xi (t) 2t 1+F then xi (t) =1 is applied to each

component of the F1 activity vector which is equivalent to

(TD)
x(t) = I(t) r) w, (t) (2.6)

where n is the intersection or the logical AND operation defined by

1 iff pj=qj=1 (pi r) qj) =0
otherwise

for the binary vectors p and q.

2.2.4 The F1 Layer., Top-Down LTM Traces

Short-term activities (STM) are alone insufficient to provide a basis for adaptive
learning systems; longer term information must be stored for future activity and

adaptation to an information rich environment. This is where long term

memory-4n the form of weights on connections-becomes important. It can be

stated that -ý-w
(TD)

w (jTD)
+ x)y, which is the learning law for a gated dt I

,d (TD) (TD)
outstar. For the winning F2 node J,

dt w., = (x
- w.,) which implies that the

weights of the winning F2 node, J, move in the direction of x-w (TD). This j
describes the difference vector between the current set of weights and the desired

7D
asymptotic value x representing F1 activity. Changes in w") are made

proportional to this difference vector x-w (TD) (Figure 2.12); this ensures that

W
(TD)

--> x as required. Forfast learning, disregarding transients, w
(TD)

= X. jJ

The weights tend to represent the signal present across the F1 layer when the
particular F2 node was excited. The top-down weight update equation is thus
given by

I
fx(t) if j=i

W171(t+l, Mj"' (t) otherwise

49

This is the fast learning model which assumes that the input patterns remain active

on F1 for a time exceeding that required for equilibrium to be achieved following

transient activity across Fl (Freeman and Skapura, 1992).

(TD)
-wj

rD)

Figure 2.12. The movement of the top-down weight vector in the direction of the input vector.

For fast learning, it is set equal to the activity across Fl.

Although the weights are on connections feeding into the F1 layer, they are
treated as belonging to the F2 layer nodes for convenience, i. e. a top-down weight

vector is associated with each F2 layer node. The F2 layer is treated as a layer of

gated outstars feeding into layer Fl; only one outstar is active at any one time.
The F2 nodes represent input categories arising from the self-organising activities

of the ART 1 module. For the active F2 layer node, the associated weight vector
tends towards the Fl layer output vector; this represents the top-down

expectation of the F2 layer for subsequent processing cycles.

2.2.5 Matching Across Fl.

Referring to back to the discussion of generic ART 1 in section 2.1, for a correct

match to occur (across layer Fl), it is required that the top-down signal fed to the
F1 layer by the winning F2 node approaches the F1 layer output pattern. From

the discussion of section 2.2.4, when learning a new input, this is indeed the case.

50

M
Denoting, the number of l's across the F1 layer by IxI where IxI = Yxi the F1

i=1
layer matching condition for ART 1, which indicates that the correct F2 class or

cluster has been triggered, is given by

n W(73 0
2!! p (2.7)

where p is a threshold constant called the vigilance parameter. If there is no

match between the current input and the top-down expectation, then the winning
F2 node is inhibited and competition resumes.

226 The F2 Layer., Bottom-Up LTM Traces

The weight update equation for the bottom-up LTM traces (weights) is given by

xi(t) w (") (t + 1)
(2.8) W(", (t +a+ jx(t) --a-+-F(, Tt)

(TD) (because wý (t + xi (t)) where, a is a positive constant. For a discussion of

why this form is used, refer to Freeman and Skapura, (1992) suffice to say that it

allows the comparison between the resultant across Fl. and a previously stored
resultant. This comparison facilitates the choice of a winning F2 node.

For the instars of Figure 2.12, recalling equation (2.3) the net input

m

netj(t) =I Wi(i,

It is clear that the node with the largest net input is the eventual F2 layer winner
but what factors determine this? That is, can a function of the input vector, I be

51

derived which explicitly indicates the dependency of the F2 layer node choice

upon the input? An explicit choicefiunction Tj (1) would allow comparison

between F2 node activities for a given input. To derive such a function, the

dependency of xi and wj(iBu) upon the input vector, I must be considered.

When F2 is inactive, the signal across F1 is given by x(t) = I(t), that is, some

unaltered pattern is transmitted to F2 (via the weights) for competition to occur in

order to select a winning node or category. If F2 is active then the winning F2

node, j=J feeds down an exemplar or template representing the top-down

expectation. Recall that this top-down expectation vector is denoted by

W(TD) (TD), (TD)
j

JWJ
wjj '---'w(TD)j. This expectation or template vector is fed down

i Mj

and combined with the input vector present across F1 giving
(TD)

x(t)=I(t)nw, (t) by(2.6). Inshort,

X(t) =
I(t) F2 inactive

(2.9). I(t) r) w
(TD)

.,
(t) F2 active

Substituting Equation (2.8) into Equation (2.3) gives

mm (ID) m Wi(jTD) (t) W(TD)(t)l

wiý (t) li(t)n i Ti (t) xi (t)w; (i",) (t)
xi (t)

-. -
TD

a+ jx(t -, r)i - i=, a+ lx(t - Týj a+ lw(,) (t)l

the time delay,, c is used to signify that Fl activity was stored in the top-down
weights some time previously. The F2 choice function is now given by

Tj (I(t)) =
li(t)nw(jTD) (t)l

(2.10)
a+

lw(, TD) (tý

This form of function for the F2 choice function has important properties as will
become apparent in the following example.

52

227 Bottom-Up Dynamics: an Example

Consider two input patterns I, and, 12where 11 c I., that is, pattern 1 is a strict

subset of pattern 2. For correct recall, pattern 1 must trigger its own associated

node and not that of its superset, pattern 2. Assume that F2 nodes 1 and 2 are

associated with patterns 1, and12 respectively. Thus,

s. t. BU) -a + fli,
V'

W11i

10
Vi s. t. Ili 0

and,

Vi S*t* l2i

W2(,
ý U) a +T121

10
Vi S. t. IN =0

(2.11)

(2.12)

where Ili and 12, are the i th component of patterns 1, and 1. respectively

Now, for 1, , from Equations (2.3) (2.8) and (2.11)

w (TD) t
xi

,
a+ll, l a+lll a+li, l

(TD)
as w, =I I which was leamed previously.

li,
r)w(, ')l I1,

o12
=

111()121

For F2 node 2, T2 xi
a+1121 ý7+- 112* ý+1121

6ý + 1121

because W
(27)'ý 12 and 1, C I., So, T, > T2giving the winning F2 node J=1 because

III I, < 1121 thus
1>1

The presentation of pattern 12 gives T, =

112
('Al

and
a+ll, l - a+li, l

T2

ll,
ol,

l

-

li'l

a+1121 a+1121

53

Thus, by the monotonic increasing property of the choice function (see Appendix

L1121 L1111

121 + 1,1 andthefactthat
1121>1111 (11C12) it is the case A)

1121> I'll
=*T+-1> -T-l

that T2> T, as required.

ZZ8 Simulating ART 1

What must the initial bottom-up weight values be? From equation. (2.10) above,

if the initial weight values are too large another uncommitted node could be

incorrectly triggered resulting in errors being propagated throughout the system.

To prevent this, consider the worst possible case where all bits in the input layer

(BU) (t + 1) =1 Vi i=L.. M FO are set to 1. If this pattern is learned wji
a+IMI

so all weights must fulfil the initial condition wýýu) (0) <1 in order to p a+1MI

prevent an uncommitted node from winning incorrectly. So, let

Wý? U)(O) =1-6 where 8 is a small constant. Thus, for jxj: 5 M
JS a+1MI

-1111 __ 1ý+ ix, > -ý- -3 or 6 for all t.
+, M, a+ lw(, Bu) (t)l

>"ý +I MI

For the initial top-down weights, j(j
TD) (0) = 1.0 to ensure that K

(TD
wj)W0 x(t) = x(t) in the beginning for an uncommitted node.

54

An ART 1 algorithm:

1. Initialise weights

2. Input, I(t),

3. Propagate to F 1: x(t) = 1(t)

4. Propagate to F2 using

netj (t) wj(iBu) (t)xi (t)
M

JS

5. Find winning F2 node J such that

6. netj =max,
Inetj I

or choose first index if there is a tie.

7. For the category chosen by winner-takes-all set

1 if j=j
Yj =0

otherwise

8. Propagate back to F1 (top-down processing): where
(7D)

x'(t) = 1(t) r) wiW

9. Match: For resonance the match condition
1x' I

>,
-. p must be met. III

10. If a match occurs, the weights are updated according to:

(BU) (t + 1) =1, if F1 node i is active and w, (
TD) (t + 1) = x, (Equivalent to WA a+ jx(t)l

W
(TD) (t+l)

= 1(t)nw(TD)(t)), then return to step 2 else j

11. Inhibit the F2 winner and repeat from step 3 until a winner is found or recruit

a new node from the remaining uncommitted nodes. If there are no more nodes

left, read in a new input vector at step 2.

For the incremental version, new F2 nodes may be added as required.

55

2.3 ARTMAP

ART 1 is a self-organising binary pattern clustering system which uses

unsupervised learning. For supervised learning, two ART1 modules, ARTa and

ARTb, are linked via a map field to form ARTMAP. Refer to Figure 2.15 which

shows a continuous valued input variant, Fuzzy ARTMAP, which has a similar
form but uses identical bottom-up and top-down weights; this variant will be

covered in section 2.5.

ARTMAP (Carpenter, Grossberg and Reynolds, 1991) allows the association of
binary patterns through supervised learning. The input and output spaces are self-

organised by the two ART 1 modules, ARTa and ARIb respectively. These

modules are linked by a map field which implements the mapping from input to

output by associating ARTa and ARTh categories via compressed F2 codes.
Dynamic control over the matching threshold in the ARTa module is provided by

match-tracking (attentional vigilance). The ARTMAP algorithm will be discussed

as a prelude to the discussion of fuzzy ARTMAP and a variant which forms part

of the subject of this thesis.

23.1 The ARTMAP Algorithm

A brief discussion of notation is required to avoid possible confusion. Input

vectors to the ART a and ART b modules are denoted by I" and Ib respectively.
The ARTa and ARTh F1 layers are denoted by Fla and Flb respectively. The

number of nodes in layers Fla and Flb are denoted by M. and M.. Similarly

Na and Nbdenote the number of nodes in F2a and F2b respectively.

The top-down weights in ARTa and ARTh are denoted by w, (TDa) (t) and

Wi(TDb) i VW respectively. Similarly, the bottom-up weights are denoted by wý? u-)(t)
A

and wj(iBub) (t) respectively.

56

Inputs I" and lb are presented to ARTa and ARTh respectively. The two ART1

modules are allowed to self-organise and produce F2 recognition codes for their

respective inputs as per the ART 1 algorithm. 7Ibe resultant ARTa and ARTb

categories then have either to become associated or any current association

verified. ARTMAP can learn associations between input and output space and

can recall a response given an input stimulus. Figure 2.13 shows the situation

schematically.

The dynamics of the map field are similar to those of F1 in that map field

activation is given by Xkab = Yb +G+ yj" ("b) where G is a gain. When F2a and A: W; j

F2b are both active there is no gain i. e. G=O. The logical AND is carried out

between the actual and expected F2 b patterns using the condition X*
b> 1+ Wfor

x, "b= I else x"b=O where O<W<l.

ARTa F2 ARTh F2
Category Category

Map field
node

Figure 2.13 The linking of input and output categories via a map field in ARTMAP

57

The ARTMAP algorithm:

1. Initialise weights

2. Present inputs I" and lb to ARTa and ARTh respectively

3. Find winning ARTa and ARTa category nodes
b ab 4. Calculate map field activation using x*b=y nw,

kabl

5. match: lyb I pb; if there is mismatch, increase the ARTa vigilance and trigger

a new ART a search (step 2) else
(ab) 6. Update: Wkf

(t + 1) = Xk ab

Z3.2 ART I and ARTMAP: an Example

The following sample calculations are included to illustrate the ART 1 and
ARTMAP architectures and to motivate the fuzzy ART / Fuzzy ARTMAP

discussions of section 2.4 onwards. Pattern association by ARTMAP is covered
because the operation of the ART 1 algorithm forms an integral part of ARTMAP

and any separate discussion would be redundant. Only key points pertinent to

the discussion will be given here; full details will be found in Appendix B.

The pattems to be associated in this simple example are:
11,111110-ý1010,11'

lb 1429 11"W-"'Olt
2

Ja
3,111(M_ý1010

lb
11

The parameters used in this example am: a=2.0,8 = 0.01, M, = N. = 6,

Mb= Nb= 4. The baseline vigilance for ARTa, specified by jY. = 0.4,

illustrates match-tracking in ARTMAP. ARTh vigilance, pb= 0.9

=
[1111101"lb(l)

= lb Present inputs:, 1" (1) = 11
1=

[101011

58

After processing, the first ART a input vector is stored as the top-down

expectation of F2 node 1 as indicated by the first column of the ART a top-down

weight matrix:

1.0 1.0 1.0 1.0 1.0 1.6-
1.0 LO 1.0 1.0 1.0 1.0
1 0 1.0 1.0 1.0 1.0 1.0

W(TDa) .
1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

LO-O LO 1.0 1.0 1.0 1.0j

Similarly:

1.0 1.0 1.0 1.0
0 0 1.0 1.0 1.0

w
(TDb) (I)

=
.

1.0 1.0 1.0 1.0

0.0 LO 1.0 1.0j

where the first ART b vector is stored as the top-down expectation of ART b F2

node 1.

(ab)(t + 1) = Xab 'Me map field weights are given by w. k (t) and, thus,

. 1.0 1.0 1.0 1.0 1.0 1.6"
0.0 1.0 1.0 1.0 LO 1.0

Wal(l) =
0.0 1.0 1.0 1.0 LO LO

LO. 0 1.0 1.0 1.0 1.0 1.0]

indicating that ART a node 1 is linked with ART b node 1.

For the next cycle, 1" (2) = I" = [1111001' and lb (2) = Ib= [01011'. Note that 22

1'2' c 1, ' and 1b, =
(I b,)c

ARTh node 2 wins the competition this time and stores the second input vector at

node 2.

For ARTa, owing to the subset property, the second input vector triggers ART a
F2 node 1 giving the resultant (after top-down expectation):

59

x'(2) =V0w
(TDa)

21

= la2

= 1421

Xb

121

Matching at ARTa gives, for (2) = 1'2,
m.

0 2: Pb = 0.9 which is an ll'(2)1 11'2'1

accepted match. The F2 activity vectors for AM and ARIb are now given by

y" (2) = [1000001'and yb (2) = [01001'respectively.

ARTa node (category) 1 is linked with ARTh node (category) 1 and so a

mismatch occurs. Match-tracking will not be of any uses because the ratio

Ix'(2)1
=

Ir2I

= 1. Increasing the ART a vigilance parameter beyond unity is Ila Ila 1 (2)1 2

meaningless as no new ARTa node may be recruited to make the new required

association between the second ART a input vector and the second ARTh input

vector.

For the third input 1'3' c I, and 1, ' belongs to ARTa category 1 which is linked to

ARTh category I as required.

23.3 Match-Tracking Revisited

For the case where the current ART a input is not a subset of a previous input and

there is a match with an incorrect prediction, match tracking will allow the ARTa

vigilance to be raised to ensure that a new search is triggered; this allows the

current input to be distinguished from previous inputs so that the correct ARTh

pattern can be associated with it.

For example, given the following inputs to be associated:
la

Is
100111-ý1010, I,,

ja 110110_*Olol, lb
2t2

60

Say pattern 1 is stored in an ARTa node and that it is pattern 2 which triggers that
IXa I Ila

n W(TDa) a nla

particular node. So,
21

12 310011011
0.75.

aa 11
21

11
21

Ial 1[110115]1 4

If the ARTa vigilance, p. was, for example, 0.6 and, thus, gave the wrong

prediction, it could be increased to 0.75+8 to avoid a subsequent incorrect

prediction. If a new ARTa node was created during match tracking, then the new

ARTa node would give x" = I" n W("") = I' r) I" = I' ensuring that the ARTa

match criterion is fulfilled because the ratio

Ila I=
1.0. The new ARTa node is the Ila I

linked to the correct ARTh node via the map field. Next time the second pattern

is presented, the newly created node wins the competition and ensures the correct

prediction.

The case where an input pattern is a subset of a pattern encountered previously

causes problems as illustrated in the computations. A solution to this problem is

discussed next.

Z3.4 Complement Coding

The crux of the ARTMAP subset problem is that for some input I there is a stored

weight w such that ICw. This situation must be prevented to allow the use of

another category node or the recruitment of an uncommitted node.

To prevent dissimilar inputs fi-orn being subsets of one another, define a new input

110 = [I V] where Y has all 4done" entries where "zero" entries were previously

and vice versa. Ibis technique known as complement coding (Carpenter,
Grossberg and Reynolds, 1991) circumvents the subset problem as shown in the
following theorem which ensures that the subset problem will not occur:

61

Theorem: The ARTHAP Match-Tracking Theorem: Any ARTa input which is

not equal to any previously stored AM input will always trigger match tracIdng

activity in ARTMAP if complement coding is used.

A proof is given in Appendix C. The property detailed by the ARTMAP match-

tracking theorem ensures that match-tracking always allows associations between

ARTa and ARTh nodes providing that the ARTa vectors are not equal even in the

subset case described previously. To illustrate match-tracking when complement

coding is used, the following numerical example gives the final top-down and map
field weight matrices for the case where the ARTa vectors of the previous

numerical example are complement coded to circumvent the subset problem.

Z3.5 An Example of Match-Tracking

Consider the following pattern pairs to be associated:
11 a, 1111100000ol->1010, ill

1 ta jjjj0W(Mjj_. ý0j0j, lb
292

1 pa 111000000111-)1010,1,
391

After all three pattern pairs have been presented the two top-down weight
matrices and the map field weight matrix are given by:

W(7'D") (3) =I

1.000 1.000 1.000 1.000 1-000 1.006
1.000 LOOO LOOO LOOO 1.000 1.000
1.000 1.000 LOOO LOOO 1.000 1.000
1.000 1.000 0.000 1.000 1.000 1.000
1.000 0.000 0.000 LOOO 1.000 1.000
0000 0000 0000 1000 1000 1000
0.000 0.000 0.000 LOOO 1.000 1.000
0.000 0.000 0.000 LOOO 1.000 1.000
0.000 0000 0.000 1.000 1.000 1.000
0.000 0.000 LOOO LOOO 1.000 1.000
0.000 1.000 1.000 1.000 1.000 1.000
1-000 LOOO LOOO LOOO 1.000 1.000

62

1.000 0.000 1.000 1.006-
0 000 1'000 Looo Looo

W(TDb)(3) = '
1.000 0.000 1.000 LOOO

LO-000 1.000 1.000 LOOOJ

i. om o. wo 1. Offl 1. o00 1.00o i. ooö-
000 () 1 . 000 () . 000 1 . 000 1 . 000 l* 000 (ab) (3) .

0.000 0.000 0.000 1.000 1.000 1.000

0.000 0.000 0.000 1.000 1.000 1. MOJ

The first three columns of the ARTa top-down matrix show that the three ARTa

input patterns have been stored separately. The ARTh top-down matrix is as

before with two patterns stored. The final map field weight matrix indicates that

all three associations have been made. Column 2 shows that ARTa node 2 is

associated with ARTb node 2 as required.

So far, the case where I'j * I, has been dealt with but what about when

Ja =P and both ARTa inputs are to be associated with different ARTh inputs? iI

Here, Iaj -ý I'j and I, ' -+ Ij' with Pj # IjbComplement coding cannot help

because Iaj = Iia implies that Ija = 1,1a
. Match tracIdng win also be of no use AI

because, following the association Ia -, 1, ý, input Iaj = lia gives an ARTa match

of 1.0. When the ARTh node is predicted incorrectly and the ARTa module is

reset, the ARTa vigilance will be raised to a value greater than unity which is not

allowed. Thus the association I'j' --* I'j will be ignored. What this means is that

no one-to-many mappings are possible with ARTMAP.

63

2.4 Fuzzy ART

Both ART 1 and ARTMAP operate on binary valued data. A real valued version

of ARTMAP, Fuzzy ARTMAP (Carpenter et al, 1992) can be constructed from

real-valued analogues of ART 1 modules known asfuzzy ART modules

(Carpenter, Grossberg and Rosen, 1991). Operation of fuzzy ARTMAP is

analogous to that of ARTMAP.

Z4.1 Structure

Each fuzzy ART module consists of three fields, or layers, of nodes: an input

field, a matching field and a choice field. A schematic outline of a fuzzy ART

module is shown in Figure 2.14. The input field, FO stores the current input

vector and transmits it to the matching field, F, which also receives top-down

input from the choice field F2; this latter field representing the active category

assignment of the input data.

F

y
LTýD I Reset

IMatching field: STM
F, 10 Oi 0

x

Fo nput field: STM f
0.... 0 0

a
Figure 2.14. The fuzzy ART module. This figure illustrates the relationship

between long term memory and short term memory and is identical to Figure 2.6 because fuzzy

ART is a specific implementation of the functional (generic) description. Specific

implementational details are given in the text. The Figure is reproduced here for convenience.

The FO activity vector is denoted

by 1=(Ill ... 9 Im), Ii E [0., 11 c: %, Vi= 1q..., M. The F, and F2activity vectors

%r%A J-r

are denoted by x= (x,
.... xm) and, y= (y

1,1 **9 YN) respectively. Each F2 node

represents a class or category of inputs grouped together around an exemplar or

prototype generated during the self-organising activity of the fuzzy ART module.

Furthermore, each F2 category node, j has its own set of adaptive weights stored

in the form of a vector w, = (WA
I Wj2 -) ... I WjM), Vj = 1'... 9 N.

These weights represent the long term memory traces which evolve during

network operation. The initial weight vector values are given by:

wji (0) = 1, Vj = N, Vi = I, -, M.

With no categories being allocated to F2nodes at this stage, the nodes are said to

be uncommitted (Carpenter et al, 1992). Once a category node is chosen to

represent a category it then becomes committed. Unlike ARTMAP sub-systems
(ART1 modules), the fuzzy ARTMAP components (fuzzy ART modules) differ in

that the weight matrix [wji] includes both top-down and bottom-up weight

information.

24.2 Choke Field Activity

The choice field (F2) nodes operate with winner-takes-all dynamics modelled by

the F2output function (choice function)

T j(,)=

IIAWjl

9
VIE[O'l], W,

(2.13)
a+lwjl

where I is the given input vector, wj is the j1h F2node weight vector, Cc is the

choice parameter where w=-O in the case of fuzzy ART, A, is the fuzzy AND

operator so that (pAq)i a min, (pi, qj), and the V norm 1.1 is defined by
m

IpI=Y, IpiI. i=1

This form of choice function given by equation (2.13) is the continuous-valued
analogue of equation (2.10)

65

The overall F2winner, node J, is selected by T, = max j [Tj: jNI to

represent a category choice for a given input vector I. Tj (I) reflects the degree

of match between the current input, I and the LTM of the j"' node, wj. The

ratio, 0: 5 jqj :51, gives a measure of the fuzzy subsethood. of q with respect to

p. The limit, Iql =1 indicates that q is a fuzzy subset of p.

Specifically, if
II A wjI

=1, which occurs when 11 A WI=Iwjl, thenwi is a fuzzy I WV Tj
subset of I. The greatest degree of match between input and weight vectors, for

competing nodes, ensures selection as > 1w, I gives

> and, thus, Tj (1) >T
a+jw'I t (1) as desired.

The choice parameter, a breaks the deadlock between competing nodes when wj

and w, are both fuzzy subsets of I, by selecting the node j such that IWjk'jWkj*

This is because T(I) is monotonically increasing so that, 11 A wj I= IWj I giving

Tj (1) =

1W
il Thus for >T Tk

a+
jWjI *

IWjI IW*"
j
(1) > (1)*

In the case that Tj =T. for some j, k:! ýN, such that Tj, Tk >T, Vl* i, k

the node with the lowest index is chosen.

Thus, the small value of the choice parameter is motivated by the mutual
fulfilment of two constraints involving fuzzy subsethood. and deadlock breaking.

66

Z4.3 Matching field Activity

The F, layer activity of fuzzy ART is analogous to that of ART 1 with equation

(2.9) being replaced by
I if F2 is inactive

X=
II

Awj if the Ph F2 node is active.

The match condition of equation (2.7) is replaced by
IlAWI

III (2.14).

to ensure that the input vector belongs to the chosen category (Carpenter,

Grossberg and Rosen, 199 1).

This approach, with individual nodes representing categories, allows for dynamic

adjustment of network size without disrupting previously acquired information as

happens with, for example, feedforward networks. Extra nodes are simply

assigned as and when required to represent new categories or pattern clusters.
Both the fuzzy ARTMAP and the PROBART implementations discussed in this

thesis use dynamic node allocation. However a fixed number of nodes can be

allocated at the outset if desired.

Z4.4 Leaming

Following a successful search, LTM changes are made according to
w =P(IAW (old))+(l_p)W(old)

(2.15)
for the winning F2 node, J. These changes correspond to the notion of learning.

The learning rate parameter, P, with 05 fl: 5 1 ensures that the new weight vector

w. is a convex combination of the resultant vector across F, and the F2 layer

expectation template. For P= 1, known as Fast-Conunit-Fast-Recode (FCFR),

F, resultant vectors directly replace the present category exemplars.

67

An option, Fast-Commit-Slow-Recode(FCSR) , allows for initial fast learning

prior to the convex combination learning rule of equatioq (2.15) by setting P=1

for uncommitted nodes only (Carpenter, Grossberg and Rosen, 199 1).. Thus,

=I initially.

2.4.5 Complement Coding

According to Carpenter et al, (Carpenter, Grossberg and Reynolds 1991,

Carpenter Grossberg and Rosen 1991, Carpenter et al 1992) normalisation of the

input vectors is required to prevent category proliferation. In Carpenter

Gros sberg and Rosen (1991) it is proved geometrically that, without complement

coding, the monotonically decreasing weight components would eventually result

in many categories clustering near to the origin with others being created to ý

replace them. For example, on the real line, when all categories to the left of an

input value are inhibited, the first category to the right will be selected as any

categories further to the right will result in a smaller activation value for the

function T(I). Furthermore, the condition of equation (2.14) is always fulfilled

as I<w. gives
I1AWjI

=
111

=1ý! p An algebraic proof of category proliferation III III

on the real line without complement coding (Marriott and Harrison, 1994) is

given in Appendix D.

Normalisation is represented by III a y, VI e [0,1]m for some 'Y> 0. To achieve

this for arbitrary I r= [0,1] " take I= (a, a") e [0,1]2M where ae [0, lf is the

original input and a' = I- a where I= and, III = M.

Thus, the new FO layer input vector, I is complement coded and of dimension
111='Y=M, VIC 2M with [0,1]2m.

68

2.5 Fuzzy ARTMAP

For heteroassociative tasks, two connected fuzzy ART modules are required with

each module receiving either the input (stimulus) or output (response) component

of each pattern pair to be associated. Thus, the input and output spaces are

organised into distinct categorised sets during processing.

2.5.1 Structure

The heteroassociative network discussed here is fuzzy ARTMAP (Carpenter et al,
1992) which uses a layer of nodes, called the map field, to link the two fuzzy ART

modules. This configuration is illustrated in Figure 2.15. The main function of

the map field is to associate compressed representations of the original pattern

pair components (Carpenter, Grossberg and Reynolds, 1991; Carpenter et al,
1992)

Map field: STM
0

oj... 0

3eb
I

C
rhoice field. STM
0

-0
0 P2 "" J

C-1 -r.,.. TI -LTm-

c)

�,
lIn&tfield: STM

.... 0
.....

ART.

Reset

Fb
10

2

Y"

b Matching field: STM Fl' 10..... 0.
. 0

lln&t flcld: STM
F" 0 0

ARTý I
b

'ART b
output.

Figure 2.15 71be fuzzy ARTMAP system. It consists of two fuzzy ART modules linked via a
field of nodes called the map field (Carpenter et al, 1992).

Reset

69

The two fuzzy ART modules, ARTa and ARTb, accept inputs in complement

coded form denoted by 1. = (a, a) and 1,, = (b, W) respectively (Carpenter et al,

1992).

Following the convention of Carpenter et al (1992), the ARTa F, and F2 layers

are denoted by Fj" and F. " respectively, with output vectors x" = (x, X2M.)

aa
jj and y" = (y, y;.) respectively. Let, wa, j

(W;
l 9 Wi 29 WJ, 2M.)denote the j'

ARTa weight vector. Similarly, the F, ' and f2boutput vectors are denoted by
bbb yb = (Yb b

x= (X
II... IX2M.

) and y,,,) respectively, and
bbbb Wk =(WkI'Wi2I-9Wk, 2M.

) denotes the khARTh weight vector. The map field is

denoted by Fab with output vector x' = (x ab ') and weight vector 1 9-'XNj'

W ab - (Wab W ab W ab
i- il $ j2 91 119J. Nj,

)for the j" F2" node to Fab.

Activity vectors are reset to zero between data presentations.

25.2 Map Field Activation

Map field activation is governed by both F2" and F2' activity in the following way:
b ab Y AWj if the J' F2" node is active and f2b is active,

w ab if the J' F2" node is active and f2b is inactive,
x ab

ybi if F2' is inactive and f2b is active, 10
if F2* is inactive and f2b is inactive.

which is analogous to the ARTMAP map field.

The four cases will be considered in order below.

i) F2" active and F2' active:

(2.16)

This corresponds to a pattern pair('. I 1b) being present. 1. elicits an ARTa

category selection with, say, the J' F2" node winning the competition. This

index, J will correspond to a weight vector, wjb in the map field which links the

F2' node with a predicted F2' layer activation. This predicted F2b node represents

the ARTh category associated with the presently active ARTa category.

70

b
Simultaneously, the ARTh input, 1,, has excited a category represented by the Fý

Output yb =(... 0,1,0,...) with a1 in the k"' position indicating node k is active.

The fuzzy AND operation, yb AW ab

., ensures that the map field activity is non-zero

only if the predicted and actual ARTh categories coincide (the kth category being

predicted by ARTa) or if node J is uncommitted; all components of w. b being

equal to unity in the latter case.

ii) F2" active and F2b inactive.

This corresponds to prediction with w', b representing the ARTh category

associated with the currently active ARTa category. Heteroassociative mapping
is achieved by working backwards within the ARTh module; the fuzzy ARTh

weight vector associated with the predicted F2bnode represents the expectation

template fed down from F2" to Fb; this corresponds to the current exemplar for

that ARTh category and, thus, the predicted output.

iii) F2" inactive and F2' active.

In this case only an ARTh input is present; thus, the map field activation

represents the active ARTh category via the one-to-one relationship between the

map field and ARTh.

iv) The final case represents the network in a quiescent state with no inputs

impinging upon it.

Z5.3 Match-Tracking

The concept of vigilance is extended in fuzzy ARTMAP, analogous to ARTMAP,
by allowing the ARTa vigilance parameter, & to vary whilst the ARTh vigilance

parameter is fixed for a given training cycle. When an input is first presented, p.
is set to its baseline value, j5.. Matching between ARTa and ARTh categories,

again, depends upon the condition
IxI

> pb If this is not fulfilled, i. e. the ARTa lyl -

71

category results in an incorrect prediction, match tracking activity is initiated

where p. is increased such that p. > prevent reselection of the J "' F"

node. Then the ARTa search cycle is carried out once more to select a new

ARTa category which correctly predicts the current ARTh category. One of three

conditions must occur to end the match tracking cycle: a matching ARTa

category is selected from those already learned by ARTa, a new category is

created (during training) or the condition p. >1 occurs which leads to shutdown

of F2" until a new ARTa input becomes active.

15.4 Pattern Pair Association

Pattern pairs are associated via their compressed representations or category

nodes. LTM information regarding inter-module F2 node linkages is stored in the

map field weight matrix which assigns a vector to each ARTa node reflecting the

associated ARTb node.

A clearer idea of heteroassociative learning and prediction under FCSR is gained
by considering the operation of fuzzy ARTMAP when presented with a previously

unseen pattern pair which does not belong to any of the current categories. The

pattern pair('. I lb)causes new categories J and K to be created in ARTa and
ARTh respectively.

Initially, w, ', b (0) = 1, Vi = N., Vk = Nb. When resonance occurs, in

which the J "' ARTa category becomes active, w. ' b is set equal to x"b. The map

field activation is given by x' = yb A WaKold) = yb (Khvector entry= 1 only) as the i
J"' ARTa node is uncommitted (all entries =1). Map field learning requires

ab(n-) ab Wab = yb Wi =x which gives .

If 1. is presented alone, the Ph ARTa node is selected which predicts the K"

ARTh category through the J' map field weight vector.

72

2.6 PROBART

As discussed in section 2.1 onwards, ART architectures have some interesting and

useful properties. Some of these properties will be exploited in the novel

architectures introduced in this thesis. However, the original formulation of ART

has some drawbacks. The following list identifies the main ones:

e Both ARTMAP and fuzzy ARTMAP cannot deal with one-to-many mappings,

that is, there can be no more that one output (output node) associated with a

given input vector (input node). A way of allowing one-to-many mappings is

developed within this section.

Fuzzy ARTMAP suffers from over-learning and cannot easily distinguish

between rapidly varying curves and noise because match tracking leads fuzzy

ARTMAP to treat an incorrect prediction as a novel prediction requiring a new

node instead of as a noisy input. Thus, ARTMAP tracks the noise and

attempts to reproduce a noisy mapping exactly. The over-learning problem is

illustrated in the simulations of section 2.7.

Fuzzy ARTMAP does not generallse well when applied to mapping problems

and fails to give a predicted output if an unknown input pattern is presented at

recall. The novel architecture also suffers from this problem but possible

modifications are suggested in the discussion. The lack of generalisation may
appear to be a major drawback but is a trade-off for the added flexibility of the

mapping. The highly localised construction of the mapping allows the addition

and removal of nodes without disrupting the overall mapping. For some
applications, a 'rough and ready' mapping is an acceptable trade-off. For

classification problems, however, fuzzy ARTMAP generalisation is much
better as illustrated in section 2.10

These points are intended to give an overview only. These and other issues will
be discussed at greater length at appropriate points in the discussion of simulation
results.

73

Z6.1 PROBART Structure

PROB ART (Marriott and Harrison, 1995a) is the result of modifications to the

fuzzy ARTMAP system motivated by empirical findings on the operational

characteristics of fuzzy ARTMAP under certain conditions. A comparative

analysis of fuzzy ARTMAP and PROBART operation is presented below. First,

the fuzzy ARTMAP modifications incorporated into PROBART are described,

and a description of PROBART operation is presented.

As with fuzzy ARTMAP, PROBART uses a pair of fuzzy ART modules linked by

a map field, this is where the similarity ends owing to different map field

dynamics. The inputs are again accepted in complement coded form. The

notation introduced above in the sections describing fuzzy ARTMAP is retained

in the description of PROBART. Exceptions are described where appropriate.

2 6.2 Map Field Activatlon

In PROBART equation (2.16) is replaced by

yb +Wab if the J" F2* node is active and F2b is active,

w ab if the J' F2" node is active and f2b is inactive,
x ab

ybj if F2" is inactive and Fb2 is active,
(2.17)

.0
if f2a is inactive and f2b is inactive.

in which the fuzzy AND operation (A) is replaced by vector addition (+). As will
become apparent, this allows the nodal association frequency counts maintained in

LTM to be incremented.

Before interpreting equation (2.17) it is important to realise that the map field

weight matrix now contains information about the frequency with which pairs of
ARTa and ARTh categories are associated e. g. wjk' =f, f r= N, where N is the

set of natural numbers. This indicates that thej" ARTa node has been associated

with the k"' ARTh node f times during the training phase.
Initial map field weight values are given by

"b (0) =0 Vj = Na I
Vk = Nb *

Wjk

74

The four cases of equation (2.17) are analogous to those given in equation (2.16)

i) F2" active and F2b active:

As with fuzzy ARTMAP, the pattern pairU. I 1b) results in selection of the J",

ARTa category and the K"' ARTh category. The vector Yb is, again, a unit

vector with the K" entry equal to one. The vector x"bnow represents the

updated frequency distribution of node associations between the P" ARTa node

and nodes in the ARTh Fb layer, the map field weight matrix entry wa,. bbeing 2

incremented by one, reflecting the new association.
ii) F2a active and F2b inactive.

Analogous to fuzzy ARTMAP, this corresponds to prediction but care has to be

taken to determine in which sense the prediction is made. The implementation of
PROBART discussed in this paper uses a weighted average given by

N

Wcrib ,M 2 Mj, (2.18)
W ab I

il

where u,,, is the expected value (mean) of the mh component of the predicted

output pattern associated with the Ph ARTa node, lw*bl is the total number of

associations of ARTh nodes with the Ph ARTa node, E,,. is the m" component of

the W' ARTh category exemplar and w. ý, is the frequency of association between

the n" ARTb node and the Ph ARTa node. Other possible prediction measures
can be used. These include: choosing the exemplar with the highest frequency,

giving relative association frequency information, and using alternative higher

order moments. The predicted ARTb output vector is denoted by

JUJ = (Pjj I ... sju j, ml,). Note that only the firstMbcomponents which are not

complement coded are meaningful and correspond to the original pattern pair
data, with fi being an estimate of the true output b associated with input

pattern a.

75

Nb

Equation (2.18) can also be written as u,. I e. p,. where p.. is the empirically
R=1

estimated probability of association between the J' ARTa node and the n'h

ARTb node given by pj. = W-ý'
W ab II

Conditions iii) and iv) are identical to those in fuzzy ARTMAP.

Z6.3 Leaming

As with fuzzy ARTMAP wax-) = x"bbut note that there is now no match

tracking. The ARTa vigilance parameter, p., is held constant to maintain fixed

category sizes. 'Ibis is to prevent corruption of frequency information which

would occur if category sizes were variable. How would association frequencies

pertaining to a single category be apportioned to its eventual sub-categories when

associations have previously been recorded in relation to the original, coarser

category? This is similar to the problem of retrieving fmer scale information from

a coarser grey scale image in which information has been discarded. Further

details will be found in the general discussion section below. Without match

tracking, supervised associations are not judged to be correct or incorrect but

recorded as they occur; training values distorted by noise are not associated with
higher vigilance sub-categories within ARTa. More frequent associations are

more heavily weighted in prediction mode. Note that the map field vigilance

parameter, pb is not required for PROBART. This allows for one-to-many

mapping between ARTa and ARTh categories which may be important in

situations where more than one action results from a single stimulus or input. The

relative importance of the ARTh categories associated with a single ARTa

category are reflected in the map field frequencies.

76

Carpenter and Tan (1993) modify the map field of fuzzy ARTMAP to give

estimates of the probability of whether or not an input belongs to a particular

category. This is achieved by using a map field learning parameter to govern the

rate of change of map field weights. In the slow-learning mode, the current map

field weight vector and current map field activation vector are combined to give

the new map field weight vector.

Although not investigated in this thesis, as with fuzzy ARTMAP, it is possible for

PROBART to be operated in an on-line mode and in a non-stationary information

environment. In the latter case, node association frequencies would change

concomitantly with changes in underlying trends.

77

2.7 Simulations

Z7.1 The Mapping Task

A continuous non-linear signal was used for comparison of fuzzy ARTMAP and

PROBART performance (Marriott and Harrison, 1995a):

f: [0,1] c 9t -ý [0,1] c 9t with,
f (x) = (sin(10x) + sin(20x) + sin(30x) + sin(40x) + sin(50x) + sin(60x) + sin(70x) + 10) / 20,

and x in radians. See Figure 2.16.

0.2

0.2 0.4 0.6 0.3

Figure 2.16. Noise-free test signal used in the evaluation of fuzzy ARTMAP and PROBART

perfonnance.

The range of the test function f : 9Z -+ 9Z is [0.2295,0.7705] for the input domain

[0,1]. Gaussian noise, derived from a zero mean source with unit variance, is

added to the signal with a scale factor of 0.02. Thus, the corrupted output signal

for pattern pair p is given by yp = y(p) =f (xP) + 0.02ep , where e,, - N(O, 1) is

the Gaussian noise, for the p th pattern pair and xP is the x-coordinate of this pair.

The x-coordinates were randomly chosen from a uniformly distributed source.
The training and testing files were generated with different sets of x-coordinates

unless otherwise stated. The testing sets being noise-free coordinates, or pattern

78

pairs, (x,, y.) chosen at random from the test curve, f (x) - For all experiments

the choice parameter, a=0.001 and the learning mode chosen was FCFR unless

otherwise stated.

Z 7.2 Performance Measures

Performance is judged by both the root mean square error (RMSE) and maximum

absolute error (MAXAE) measures. The RMSE value is computed by

RMSE= llldp-yp kN 1ý F
where d. is the desired output for pattern p, yp is the actual output and N is the

number of patterns used for training or testing.

In the following tables, TR denotes the noisy training set, TE(NF) denotes the

noise-free test set using the same x-coordinates as the noisy training set, and TE

denotes the noise-free test set selected using a different x-coordinate sample. The

purpose of TE is to test the generalisation of the mapping.
As a further illustration of network performance, the error profile is plotted below

the actual network output signal. RMSE and MAXAE error measures alone are

very coarse indicators of network performance, especially when applied over the

whole curve. Error profiles provide more detailed information in a visual form.

For the simulations described below, example results are given in the text, and

mean results, together with their respective error bounds, will be found in

appendix E.

It will be shown that PROBART requires fewer nodes than fuzzy ARTMAP to

achieve comparable performance on a noisy mapping task. Also included is a
comparison of fuzzy ARTMAP and PROBART performance when both

architectures are applied to a classification problem; this illustrates the purpose of
match tracking in fuzzy ARTMAP.

79

Z 7.3 Simulation 1

Fuzzy ARTMAP was trained on both noise-free and noisy data. Its parameters

were set as follows: a=0.00 1, p. = 0.99, pb = 0.99 and p.,, = 0.9. Both the

training and test sets consisted of 1,000 data pairs. Typical results for the training

signal without noise are shown in Table 2.2.

No of categories. Error measures
ARTa AM RMSE MAXAE

312 53 0* 0074 0.01

Table 2.2. An example of fuzzy ARTMAP performance with noise-free training and test data.

Training is off-line using 1,000 pattern pairs.

For the typical results, only a single training epoch was required for fuzzy

ARTMAP to acquire an internal representation of the test mapping signal with the
RMSE ranging between approximately 1% of the input signal at its maximum

point to approximately 3% at its minimum point. This is shown in Figure 2.17.

cr

0.2

A ft

1 I'
I'

V\/\/dW I V\1,
S.
U

U. 4 0.5 0.8
ART& Input.

Figure 2.17. Fuzzy ARTMAP performance with noise-free data. The network has been both
trained and tested using the same noise-free data file. The lower section of the graph shows the

error profile.

80

Note the uniformity of the error profile which attains an absolute maximum range

of only 4.4% to 1.3% of the test signal at its maximum and minimum points

respectively.

The effect of match tracking on the fuzzy ARTa module is immediately apparent
from the distribution of category numbers between the two modules in Table 2.2.

Taking the ratio of the total input signal range (1.0) to the total output signal

range (0.541) predicts a category ratio of approximately 2: 1 for the ARTa and
ARTb modules respectively. 'Illis ratio assumes that both modules have the same

vigilance parameters and, hence, the same input resolution or category sizes. At

the beginning of each training pattern pair presentation the condition p. = pb is

fulfilled. For the typical results of Table 2.2., match tracking has increased the

ratio to about 6: 1 by reducing category sizes through increased vigilance in order

to resolve sub-categories. Data compression of approximately 3.3 data points per

category node is achieved.
Typical results for the training signal with noise are shown in Table 2.3.

Error measures
No. of categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

806 61 -] 0.0137 0.0302 0.0302 0.0878 0.0678 0.0679

Table 2.3. TvDical resu lts for fuzzv ARTMAP tminpA neinan nni,. zv timn fil p. nf IW itp. mQ nnd Q
tested using a noise-free data file also consisting of 1,000 data items.

When fuzzy ARTMAP is trained with pattern pairs derived from the input signal
of Figure 2.17, but this time distorted by noise, two training epochs are required
to obtain the lowest training RMSE value. Both training epochs consist of
presenting the pattern pairs and adjusting the network weights after each,
individual presentation on the basis of erroneous predictions. A single training
epoch requires that the whole training file be processed in this way. Following
training, the training file is used purely as a test file (with the learning mode
disabled) to assess the current learning progress. The disabling action prevents
further learning from taking place during testing. The typical results of Table 2.3
are illustrated in figure 2.18.

81

I . ZAL- W., tzoet -1 -. *AM » '-
.. ei �. ; 0- ..

0.2 0.4 0.8 0.8
ARTa InpuL

Figure 2.18. Fuzzy ARTMAP performance with noisy data. The network output and

corresponding error profile illustrate the results shown in Table 2.3.

The error profile, coupled with the number of ARTa categories, indicates that

each disturbance is being faithfully recorded on an almost individual basis. Its

characteristics do not vary across the input domain. Thus, it appears that the

source of error has not been effectively filtered or altered. FCFR results (P = 1)

are quoted because both the RMSE and NIAXAE measures did not vary greatly

for values of P in the range 0.1 to 1. Variation of P, using FCSR, did not appear

to effect noise suppression through equation (2.15) with the maximum measured

difference between training RMSE values for this data set being approximately
4% of the lowest value. Ibis apparent insensitivity to P was consistently

observed and was the result of the high vigilance values confining categories

within narrow ranges. This situation is depicted graphically in Figure 2.19.

Using FCSR and reducing the vigilance values of the ARTa and ARTh modules to
increase the effect of P in equation (2.15) was found to be counter-productive.
For example, reducing p. and pb to 0.9 increased the testing RMSE (TE) by a

factor of approximately 2.5 for P in the range 0.1 to 1.0. The numbers of ARTa

and ARTb categories were reduced concomitantly with their increased coverage

of regions of input and output space but without any corresponding increase in

generalisation.

82

0.015

Iu0.01 i
W
7. 0.005--

0.
V- C"i M M, to rl%- cc M 6 C=i C=; 66666

Learning parameter, beta.

Figure 2.19. Plot of RMSE against P for two different runs with p. = pb = 0.99 illustrating

the lack of effectiveness of P in reducing noise.

Note the significant increase, when comparing Tables 2.2. and 2.3., in the number

of ARTa categories required to represent the noisy mapping while the number of

ARTb categories did not increase unduly The latter increase reflects an extended

ARTb input range as a consequence of noise. The large number of ARTa

categories did not reduce when P was varied using FCSR. The mean ratio of

approximately 1.25 data points per ARTa category (Appendix E. Table E1.4)

indicates that fuzzy ARTMAP appears to be learning the noisy signal in contrast

to the underlying mapping. This observation is further confirmed by the RMSE

results for the training data set, with the mean noise-free testing RMSE value
(TE(NF)) being greater than twice that of the mean noisy training RMSE (TR)

(Appendix E. Table EIA) after training fuzzy ARTMAP on noisy data.

However, this example must not be taken to indicate poor performance by the

network in general. The data here is highly disorganised, having no clusters,

while fuzzy ARTMAP performs best with clustered data. Match tracking allows

sub-clusters to be resolved in classification problems by varying the ARTa

vigilance parameter during learning, but this enhanced performance mechanism
becomes a disadvantage in highly disorganised data sets such as those used here.
To understand the operation of match tracking under these circumstances, refer to
Figure 2.20 (a) where, for clustered data, the category delimited by p., maps to

an ARTa node and via the map field to, say, ARTh category 1 (class 1). If data is

83

found within the ARTa node category which does not map to category 1, match

tracking increases ARTa vigilance to p., > p., which leads to the activation or

formation of a sub-category capable of being associated with ARTh category 2.

This mechanism is suited to classification problems. Thus, sub-categories are

formed which allow learning of infrequent but perhaps significant features which

may be ignored or averaged out by other architectures including PROBART.

(a) Clustered data (classification).

[3 Class 1.
o Class 2.

(D
.....

(ý)
..... ARTh F2 nodes.

via

ý) ARTA F2 nodes.

(b) Unclustered data (Estimatim).

y

JD, CýýýýIriput
'*-PG2-O' space.

-Pdl

F2 nodes.

Input
x+8 x space.

Figure 2.20. Comparison of classification and estimation modes. (a) highly organised data

leads to the establishment of distinct categories. (b) disorganised data, i. e. not belonging to

discrete categories, found within a3- neighbourhood centred around an input value, leads to

an output estimate coffesponding to that input value.

With unclustered data deviations in ARTh values are treated as novel features and

new ARTa sub-categories are created individually to encompass many of the data

points (see Figure 2.20(b)). T'hus, a small subset of the input space may be

mapped to a larger range of output space determined by the noise which is treated

as a multitude of predicted output classes. Ideally, the range of output space
would be transformed to provide an estimated output which the given input range
x±& would map to, but this does not happen. In other words, fuzzy ARTMAP
does not map an input belonging to the 3-neighbourhood of x to an estimate y^,.
It creates a sub-category for such inputs and individually maps them to the noisy
outputs with which they are associated during training.

84

X-8x x

17.4 Simulation 2

PROBART was trained on the same sets of noisy and noise-free data used in

simulation 1. The parameters: a=0.001, p. = 0.99, pb = 0.99 are set identically

to those in the previous experiment wherever possible. The map field vigilance
does not exist in PROBART as match tracking has been removed. Typical results
for the training signal without noise are shown in Table 2.4.

No. of categories. Error measures
ARTa AR71b RMSE MAXAE

110 53 0.0169 0.0755
Table 2.4. PROBART performance with noise-free training and test data. Training is off-line

using 1,000 pattern pairs identical to those used in producing the results shown in Table 2.2.

Figure 2.21 illustrates the performance of PROBART with noise-free data after a

single epoch (typical results).

0.6-

0.4-

0.2-

0- ... -. - - --- - --- --- - now

-0.2

UA UX 0.5
ARTa input.

Figure 2.21. PROBART performanCe with noise-free data. As with fuzzy ARTMAP, the
network has been both trained and tested using the same noise-free data file.

Note the different error profile when Figure 2.21 is compared with Figure 2.17.
The former is not uniform, exhibits structural properties and is considerably larger
in magnitude at some points, notably where large increases in signal slope occur.

85

As will become apparent, this is a consequence of the trade-off between plasticity

and stability. When match tracIdng is removed, sensitivity to rapidly fluctuating

noise signals is greatly reduced as ARTa sub-categories are not created to

represent the noisy associations. However, this fixed quantization of the input

domain leads to inaccuracies in signal representation. The relative importance of

these inaccuracies, compared to overall noise reduction with noisy signals and
increased generalisation, depends upon the application. Typical results for the

training signal with noise are shown in Table 2.5.

Error measures
No. of categories RMSE MAXAE

ARTa ARTh TR TE(NF) TR TE(NF) I TE

112

161

0.0322

10-.

0-18-975". 0202 0.1057

10.0769

10-0905

Table 2.5. Typical results for PROBART trained and tested using the data files of simulation I

which generated the results of Table 2.5.

Figure 2.22 shows the typical results of this simulation after a single mining

epoch.

I

D. 8

0.6-

. F6 ýr , rr % . 0% - p.

0. - -I-

0.2-

0.2

U. Z 0.4 0.6 0.8
ARTa Input.

Figure 2.22. PROBART performance with noisy data. The network output and corresponding
error profile illustrate the results shown in Table 2.2.2A. Note that PROBART carries out a

single training epoch only, when learning a mapping.

86

FCFR results are, again, quoted with only a 5% maximum variation fi-om the

lowest training RMSE value for 0.1: 5 P: 5 1 using FCSR.

The predicted category ratio of 2: 1 for the number of ARTa nodes compared to

the number of ARTh nodes is reflected in both Table 2.4 and Table 2.5. Again,

the increase in ARTb nodes is a consequence of output range extension by the

additive Gaussian noise.
The mean ratio of 9.0 data points per ARTa category indicates that PROBART

uses a coarser partitioning of the input space than that generated by fuzzy

ARTMAP to represent the function/mapping domain. This reduction in

categories results from the use of a fixed ARTa vigilance which, unlike fuzzy

ARTMAP, does not allow subdivision of existing categories. In mapping

problems this data compression is desirable to prevent the network from

degenerating into a'look-up' table and, thus, being incapable of generalisation.
Observe in Table E2.4. of Appendix E that the mean noise-free test RMSE value
(TE(NF)) is lower than the mean noisy training RMSE value (TR) (both sets of
data used as test data following training with noisy data). As expected, this
indicates that the opposite effect to that observed in fuzzy ARTMAP simulations
is taking place. PROBART tends to learn the underlying signal which is, of

course, the objective here.

The larger mean RMSE of PROBART (Table E2.1. in Appendix E) for the noise-
free training/testing data set compared to that exhibited by fuzzy ARTMAP
(Table E 1.1. in Appendix E) results from the fixed vigilance which limits the input
domain partitioning. The reduction in resolution in rapidly changing signal
regions (increasing gradient) is apparent from Figures 2.21 and 2.22, both in the
actual output signals and in the error profiles. Thus, prediction errors are
increased in those subsets of the input domain where small ARTa inter-category
distances give rise to larger ARTh inter-category distances in the function range.
These errors, unrelated to noise, account for a sizeable proportion of the RMSE

value in PROBART simulations trained with a noisy data set.
Comparison of Tables E2.4 and E1.4 in Appendix E reveals that PROBART
reduces the mean RMSE value for the noise-free test set to 67% of the value for

87

fuzzy ARTMAP. This gain in performance is considerably enhanced when

comparing the number of ARTa categories generated by both systems.

PROBART has achieved generalisation, using approximately one seventh of the

number of ARTa category nodes required by fuzzy ARTMAP.

To investigate the gradientleffor relationship further, an experiment was

performed using a straight line as the training function, where the gradient was

varied in the range 1.0-10.0 for a fixed vigilance of 0.99 at fixed intercepts The

results of a single experiment consisting of 5 runs of the same noise-free training

file using different gradients is shown in Figure 2.23. The test file used was

identical to the training file to eliminate the introduction of errors related to the

use of different x-coordinate values.

0.07-
0.06--
0.05--

LLI 0.04--
0.03--
0.02 1-
0.01--

01iii
2468 10

Gradient

Figure 2.23. Plot of maximum absolute error vs. gradient for PROBART using a noise-free

straight line training function. The relationship shows that intrinsic (non-noise related) errors
increase with increasing function gradient. See text for discussion.

Note the linear relationship between the maximum absolute error and the gradient

confirming that, as expected, rapidly changing signal regions decrease predictive

accuracy. This linearity was consistently observed. Thus, signal quantization,

resulting from the use of fixed vigilance parameters, introduces inaccuracies which
can only be removed by increasing system vigilance to provide finer coverage of
the input (stimulus) space and output (response) space. Reduction of the

88

quantization interval size is used to compensate for the removal of match

tracking. The effect of increasing both the ARTa and ARTh vigilance parameters

to increase signal resolution was investigated in the following simulations.

Z7.5 Simulation 3

PROBART was trained using the same noise-free data and value of a of

simulation 2 but with increased vigilance parameters: p. = 0.999, p, = 0.999.

Again, the test file was identical to the noise-free training file and consisted of
1,000 coordinate pairs. An example of typical results are shown in Table 2.6.

No. of categories. Error measures
ARTa ARTh RMSE MAXAE

499 243 0.0016 0.0084
Table 2.6. Typical results obtained from PROBART using increased vigilance

Pa = 0* 9991 Pb = 0.999). Both training and testing were carried out using a noise-free
data Me consisting of 1,000 pattem pairs.

These results are illustrated in Figure 2.24.

I
0.6-

0.4-

0.2ý

W. dt U. 0 0.8

ART& input.

Figure 2.24. PROBART performance with noise-free data illustrating the effect of increased
vigilance on the error profile.

89

Note the improvement in the error profile over that of Figure 2.21. Disturbances

in the profile in areas of rapid signal change have been greatly reduced.
Compared with the mean noise-free results of simulation 2 (Appendix E, Table

E2.1), both the ARTa and the ARTh modules have shown an approximately five-

fold increase in the mean number of category nodes (Appendix E, Table E3.1).

These increases are reflected in the reduction of both mean error measures to

about 10% of the previous values. Thus, the signal has been represented more

accurately but at the expense of an increase in overall network size. Again,

varying P (using FCSR) made very little difference, producing less than 10%

maximum variation in the range of RMSE values for the typical results quoted.

However, the benefits of simply increasing input/output space resolution are not

realised when noisy training data is used as the following simulation illustrates.

ZZ6 Simulation 4

PROBART was trained with the noisy data set used previously in simulations 1

and 2 with parameters set as for simulation 3. Table 2.7 surnmarises the results of
an example run.

I Error measures I

No. of categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

504 277 0.0208 0.0196 0.0192 10.0527 0.0544 0.0545
rable 2.7. Typical results for PROBART trained using a noisy data file of 1,000 items and tested

using a noise-free data file also consisting of 1,000 data items. The increased vigilance values

Of P. = 0.999, Pb = 0.999 leads to an expected increase in the number of category nodes in

both the ARTA and ARIb modules.

The results of the typical run summarised in Table 2.7 are illustrated in Figure
2.25.

90

A
.%

0.2 0.4 0.6 0.8
ART& Input.

Figure 225. PROBART performance with noisy data and increased vigilance

(pa = 0.999, pb = 0.999). This figure illustrates the effect of decreased category sizes

brought about by the combination of increased vigilance and noisy input data.

The error profile bears some similarity to that of Figure 2.18 and reflects the

increased vigilance leading to reduced category sizes and poorer generalisation.

Comparing the mean results (Appendix E, Table E4.1) with the second mean set

of simulation 2 (Appendix E, Table E2.4), it is apparent that a five-fold increase in

the number of ARTa nodes has resulted in a 40% decrease in training RMSE (TR)

and negligible change in both testing RMSE values. Ile mean MAXAE has been

reduced in all three cases with a 50% reduction in mean training error (TR).

Thus, although the testing RMSE values, TE(NF) and TE, are comparable,

comparison of Figures 2.22 and 2.25 gives a clearer indication of what is

happening.

This altered performance is explained by considering the ratio of approximately 2

data points per ARTa node which gives small samples for averaging to give an

estimated output value. Thus, estimates are based on smaller sample sizes and are

correspondingly less accurate.

91

27.7 Simulation 5

Increasing the number of training data points to 10,000 and using similar

parameters gives the results of Table 2.8.

Error measures

No. of categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

1145 618 0.0265

1

0.0096 0.0114 1
0.0785 0.0255 0.0472

Table 2.8. Typical results for PROBART obtained using the parameters of simulation 4 with the

noisy training file increased to 10,000 items.

Note that the mean RMSE value for the test set (TE) (Appendix E, Table E5.1)

after training on a noisy data file of 10,000 points has been reduced to about 56%

of its previous value for 1,000 data points (Appendix E, Table E4.1). There is

also an additional two-fold increase in ARTa category nodes. Ilis latter increase

is explained by the increased number of uniformly distributed x-coordinates

causing the pacIdng density of ARTa nodes to rise, restricted only by the vigilance

parameter.
The following graph, Figure 2.26, illustrates the variation in test RMSE for ARTa

and ARTb vigilance in the range 0.99-0.999. The typical data set used

throughout this run consists of a noisy training file of 10,000 pattern pairs and a

noise-free test file of 1,000 pattern pairs. The general trend appears to indicate a

reduction in RMSE for increased vigilance as expected. Ile upturn for a vigilance

value of 0.999 further confirms the hypothesis that high vigilance values lead to

smaller sample sizes and, thus, less accurate estimates of output values. There is a
fundamental conflict between providing an adequate partitioning of the ARTa

input space and adequate sample sizes for calculating the expected output value.

92

0.018
0.016
0.014--

ui
0.012--

/jm Cn 0.01 -- 7.0.008--
or- 0.006 -- 0.004--

0.002--
0- 11111iv

CY) T-- C'J M Vr Ln CO r-- CC) CY) CY) CY) C" CF) CY) C" C" CY) CY) C"

C:; C" C" C" a) C" Cn m C" m
6 C6 666a; 6 C6 Ci

Vigilance.

Figure 2.26. Plot of test (TE) RMSE vs. vigilance for typical noisy training data file of 10,000

pattern pairs. It illustrates the problem of increasing PROBART vigilance parameters to

increase accuracy. Tighter categories, whilst increasing signal resolution, lead to smaller

sample sizes and, thus, less accurate estimates of the underlying function.

Figure 2.27 illustrates the effect of increasing the size of the noisy training file for

the typical data.

For vigilance values of p. = pb= 0.998, the results of Table 2.9 were obtained.
I Error measures I

Categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

608 341
1
0.0276 0.0079 0.0084

1
0.0779 0.0219 0.0269

Table 2.9. Typical results obtained by training PROBART on the 10,000 point noisy data file

used in the previous simulations with vigilance levels set at p. = pb = 0.998. The test file

used consisted of 1,000 noise-ftee pattern pairs.
Table 2.9 gives a further reduction of the test set RMSE (TE) over and above the
typical value obtained in simulation 5 to 44% of that obtained with aý1,000 point
training file (Table 2.7).

93

I

A

I S\tdl

V

0.2 0.4 0.6 0.8
ARTa inpuL

Figure 2.27. PROBART performance when trained on 10,000 point noisy data file with

'": 0* 999, Comparing the error profile with increased vigilance values of P. - 0* 9990 A

that of Figure 12 indicates a reduced error as expected.

0.021-
0.021

Lu 0.019 in
0.018
0.017

0.016
cm cm cm m CD C: 3 cý cm CM CD CD CD CD cm CD CD cm
cz cz C: 2 cm cm cm cm C: 2 CD
r- c14 m lw Ln cm r- 02 C" cm

N unber of clata Iterns (tral n and tes t).

Figure 2.28. Plot of RMSE value against increasing data set size (both training and testing file

size) for PROBART with fixed vigilance of p. = pb = 0.99. This plot shows the stability of
RMSE with respect to changes in the data sample size. See text for explanation.

Figure 2.28 illustrates the stability of RMSE values for increasing training data

sample size. Ibe slight improvement for the larger amounts of data is explained
by the increased cover density of the input and output spaces by exemplars and
their category zones. Changes in RMSE values are directly affected by changes in

the vigilance parameters. Increasing the amount of data only serves to pack the
existing categories and create new categories limited by the vigilance values.

94

2.8 General Discussion

Both fuzzy ARTMAP and PROBART perform effectively with noise-free data,

requiring only one pass through the training file (one epoch) for optimum

learning in the RMSE sense (lowest error energy). In contrast with fuzzy

ARTMAP, PROBART carries out a single epoch for all training and testing as

match tracking has been removed. This prevents distortion of the computed

probabilities (frequency count/ total pattern pairs). For example, for a fixed

vigilance, an output, y, has the conditional probability given the interval I,, of

p (y, I I.) for an interval I.,, based around an exemplar xj. Were the interval

partitioned into two sub-intervals I,,,, and IX12 , by increasing vigilance (formation

of a sub-category), there is no method of allocating the current frequency count

based upon interval Ix, to intervals 1,,
1,

and I.,, individually. Thus, p(y, I I,,,) and

P(Yj II cannot be derived from p(y, I I.,,). Also, feedback via match tracking

alters the frequency of inter-ART node associations by assessing current inputs on

the basis of previous data and not by recording raw frequencies. This situation

cannot reflect a true empirical frequency distribution upon which the estimated

outputs or pattern association probabilities are based.

Fuzzy ARTMAP is extremely good at classification problems but match tracidng

tends to cause the allocation of many nodes for noisy mappings with the noisy
disturbances seen as novel features. The dynamics expressed in equation (2.15)
do not act as an effective filter at high vigilance levels (; -> 0.9) using FCSR. This

is a consequence of LTM exemplar weights being very near to the noisy input

values which fall into their categories. The convex combination of equation
(2.15) gives LTM weight values close to the original exemplar values.

It is difficult to classify neural networks as good or bad on the basis of raw results
alone. Overall perfonnance also depends upon the problem to which the network
or algorithm is applied. Another factor is the degree of specialisation of the

network. Enhanced performance is often obtained at the expense of decreasing

95

generality, i. e. the architecture moves away from being general purpose and

becomes oriented towards a particular problem or problem schema. This

specialisation frequently requires the incorporation of a priori information or

structure into the neural network and its dynamics and, thus, restricts its range of

applicability.

To a certain extent, PROBART is a trade-off between performance and generality
in that better performance could no doubt be obtained using a more specialised

network architecture but it does not require a priori information about the

mapping to be learned. Given that PROBART deviates significantly from fuzzy

ARTMAP, it begs the question why use fuzzy ARTMAP at all? The answer lies

in the known attractive properties of ART, in particular, their stability. Other

clustering algorithms based, say, on Euclidean distance are known to have

stability problems under some circumstances. Moore (1989) cites the Cluster

Euclidean algorithm which chooses the node coding for the nearest exemplar to

the input vector in the Euclidean distance sense. Incorporating equation (2.15) to

give the Cluster Unidirectional algorithm (Moore, 1989) removes the endless

cycling of weight vectors but suffers from the category proliferation problem

countered by the use of complement coding in fuzzy ART.

96

2.9 Multidimensional Mappings

As stated, fuzzy ARTMAP is capable of mapping subsets of 9t' to W.

PROBART is also capable of such mappings. A visual illustration of this

capability is included here in the form of a continuous non-linear mapping from

91' to 91 which is shown in Figure 2.29.

Again, Gaussian noise, derived from a zero mean source with unit variance, is

added to the signal with a scale factor of 0.02. Conditions and perfomance

measures are similar to those used in the previous single variable mapping but are

generalised for the present multivariable mapping.

29.1 Simulation 6

Fuzzy ARTMAP was trained on noisy data. Its parameters were set as follows:

a=0.001, p. =0'99'Pb=0.99andp. b=0.9. Both the training and test sets

consisted of 1,000 data pairs.

An example of fuzzy ARTMAP performance for the training signal with noise is

shown in Table 2.10.
I

vl___ --I I r-rror m easures

_No.
of ca egories RMSE MAXAE

ARTa
_ARTh

TR IT(NF) TE TR TE(NF) TE

63 0.0075 0.0235 10.01 0.077

Table 2.10. Typical results for fuzzy ARTMAP trained using a noisy version of the signal

illustrated in Figure 2.29 Both the noisy training file and the non-noisy test file consisted of

1,000 pattern pairs to be associated. The network parameters used were

a=0.001, p, =0.99, pb =0.99andpb =O. 9.

97

The network output and error profile are shown in Figures 2.30(a) and 2.30(b)

respectively.

Fuzzy ARTMAP requires almost one node per data item. Thus, under high

vigilance conditions, it acts as a look-up table by storing and retrieving individual

pattern pairs. The error profile reproduces the original errors almost faithfully as

nearly all individual errors are recorded. It is also apparent from Table 2.10, as

with the single variable examples, fuzzy ARTMAP has learnt the noisy signal.

Changing the learning parameter, 0 (using FCSR) made very little difference.

Using values of 0.5 and 0.9 gave testing RMSE values of 0.0236 and 0.0235

respectively. The numbers of ARTa categories were 955 and 950 respectively.

The high vigilance parameters for ARTa and ARTh prevented the occurrence of
large changes in RMSE values during training.

29.2 Simulation 7

Increasing the number of training data points to 5,000 and using similar

parameters (FCFR) gives the results shown in Table 2.11.

Error measures
No. of categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

.
4528 1101 1 0.0076 0.0307

_
10.01 0.0743

Table 2.11. Typical Results for Fuzzy ARTMAP when retaining the parmneters used to obtain

the results of Table 2.10. The noisy training data file was increased from 1,000 to 5,000 pattern

pairs. The noise-free testing file remained at 1,000 pattern pairs.

98

These results are illustrated in Figures 2.31(a) and 2.31(b). Note the number of

ARTa categories which indicate that, as expected, little generalisation has

occurred.

Z9.3 Simulation 8

PROBART was trained on the same sets of noisy and noise-free data used in

simulation 6. Ile parameters are set identically to those in that simulation except

for the map field vigilance which is not required.

Typical results for the training signal with noise are shown in Table 2.12.

Error measures

No. of categories I RMSE I MAXAE

ARTa I ARTh I TR I TE(NF) I TE I TR I TE(NF) I TE

739 163 10.0163 1 10.0196 10.0497 1 10.0775

Table 2.12. Typical results for PROBART trained using a noisy version of the signal illustrated

in Figure 16. Both the noisy training file and the non-noisy test file consisted of 1,000 pattern

pairs to be associated. The network pameteTS used were

a=0.001, p. = 0.99, pb = 0.99
.

These results are illustrated in Figures 2.32(a) and 2.32(b).

Note that, compared to simulation 6, approximately 23% fewer ARTa nodes are

required to represent the mapping for a comparable value of testing RMSE.

The following simulation (simulation 9) illustrates further reductions in the

number of ARTa nodes for PROBART relative to fuzzy ARTMAP.

99

Z9.4 Simulation 9

Categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

2283 101 10.0232 1 0.0216 1 0.065 1- 0.067

Table 2.13. Typical Results for PROBART when retaining the parameters used to obtain the

results of Table 11. The noisy training data file was increased from 1,000 to 5,000 pattern pairs.

The noise-free testing file remained at 1,000 pattern pairs.

The results of Table 2.13 are illustrated in Figures 2.33(a) and 2.33(b).

Comparing Table 2.13 with Table 2.11 shows a reduction of approximately 50%

in the number of ARTa nodes required to represent the mapping. This reduction

is not at the expense of testing RMSE (TE) which has been reduced by 30%.

This indicates the improved performance offered by PROBART when dealing

with larger data sets.

100

Co (0 le C\i

c; äd
, sIxt2-Z

CR Cl

CD

CD

/t
/0

?

U
U

0

N

C

0

cl

U

101

C\!
0

ci

Co ä
9 uý ný ci C:) cli CD CD C) (D ä

'lndino qLEIV

CC!
C)

CD CL

'IT cc

CD

CD

CD

CL

Cc

CC!

C) CL

C) <

(\I
C)

0

(D

.. (D

CR
CD

C9 (p qý Cý 0 C\j
C) 0 C) 06

'Indino q_LljV

C\i
-1 Cl- C
cyj i-

, ý6 r- 0

1-0

cli

u
0
C

>
U

m bj) u
c r_ it C3 0 zi ý Ij 11

w
2

C3

N 0
:3 r-

LL

q

102

lký
C)

cý Ilý lIcý N C) CM
(D CD 0 c5

-indino q_L)jV

0

(0
\0

C3

Cý
C)

15
CL

, It

CD

0

Ic\J /0

/
0

D
)

Cli
CD

CR
C)

CR C\! 0
00

qiljV

50 CL 12

(r
<

CL

.c
<

a

E

(D
0.

-: I C
00

C, i ýý -0 (U

CL

ell

103

co

cwq
C) co

C\! CD (N CD C) C3 C3 qiUV

co

C3 cl

C) <

C)

C)

CD

(75
I-

cq
0

Iq
0 CL

C:

C) <

CD

C3

Co

-7-
OR (p Cý a c\1
0000 C5

'indino q_LHV

c'J
a-

I-
ci:

06
a 0

.9

C

0

4-
0
c:

4)
>

ö

0
Vp
u

.
r_ lu mg

41

0

<

C)

ce ,

104

C\!
C)

C\j
0

C?
'indino q_L)jV

t5
0-

CC
<

C\j

C\i
zi Cl

.s

Co

OL

.
c:

cr
C) <

C\ý
C,

N
C3

ci

C

'i
CR

cq Cý 0 C'4
0000

vdino q_L)jV

C\i
D
cl
c:

r

I)
Ll.

C

I"
V

6E

F-
C

F-

o

105

2.10 A Simple Classification Problem

In contrast to the above, the following two simulations illustrate the utility of

match tracking which confers the property of parsimonious representation on the

original fuzzy ARTMAP architecture. The interval [0,1] c 9Z was partitioned into

two categories as follows: The intervals [0,0.3] and [0.7,1.0] map to category

one, and (0.3,0.7) maps to category two with the exception of the sub-interval

[0.45,0.55] which maps to category one also. Random numbers in the range 0 to

1, drawn from a uniformly distributed source, were used to generate training and

testing sets of 1,000 data pairs. Tables 2.14 and 2.15 give the mean results of five

trials.

Z10.1 Simulation 10

Fuzzy ARTMAP was trained on 1,000 data pairs and tested on a different testing

set of the same size. The parameters were set as follows

a=0.00 1, and p. b= 0.9. The vigilance parameters p. and pbwere set as given in

Table 2.14. Note that the errors include inputs which were not assigned to

categories during testing i. e. the "no prediction mode" state.

I

Bounds (Min. Max.)

Vigilance No of categories Error' No of categories Error

PaIPb ARTa ARTh Train Test ARTa ARTh Train Test

0.2 6 2 0 7 47 22 00 0 14
0.5 6 2 0 7 58 22 00 0 14

0.9 17 2
10 15

16 19 22
100

0 12
0.99 113

12
0 1 22 108119 22 100

15 30
Ible 2.14. The mean np. irfhrmnnr, - nf ADT1k, 4 AD -41, -- 4%--- --A -.: - A-

-

when applied to a simple categorisation problem.

I No. of incorrect categories including inputs which were not recognised.

106

Z 10.2 Simulation 11

PROBART was trained using the same conditions as in simulation 10 but without

the map field parameter. The mean results are shown in Table 2.15.

Bounds (Min. Max)

Vigilance No of categories Error No of categories

P. IPb ARTa ARTh Train Test ARTa ARTh Train Test

0.2 2 2 300 310 22 22 289 312 310 310

0.5 3 2 285 308 23 22 212 312 300 310

0.9 14 2 90 106 12 16 22 54 124 66 152

0.99 113 2 6 32 107116 22 2-12 17 44
Table 2.15. The mean t)erformance of PROBA RT with noise-free training and testing data

when applied to a simple categorisation problem.

Simulations 10 and 11 illustrate the points made regarding match tracking in the
discussion of simulation 1. Fuzzy ARTMAP is able to represent categories

efficiently by varying the vigilance parameter through match tracking. The

increased error at high vigilance is accounted for by the narrow scope of

categories which cause some patterns to go unrecognised. PROBART behaves as

expected with a fixed category size. With low vigilance, category membership
frequency causes the higher frequency category (category one) to dominate with
an error rate of approximately 30% as predicted from the distribution. At very
high vigilance (ý: 0.99) differences between PROBART and fuzzy ARTMAP are

neg igi e as there is little scope for incrementing p. during learning.

Z 10.3 A Short Conclusion

It is self-evident that some neural networks do better at certain tasks than others.
Often, a specialised network will outperform its more general counterpart but

suffers from the disadvantage of requiring a prior! information pertaining to the
learning task. Thus, autonomy is reduced as operator knowledge is built into the
network to guide learning. ART-based systems are self-organising and so reduce

107

the need for intervention. They exhibit attractive properties such as the ability to

operate in non-stationary environments and to learn continuously new

associations following training, without disrupting previous learning. However,

the independence of nodes, as in fuzzy ARTMAP, leads to over learning and

reduced generalisation as noisy associations are treated as novel associations in

noisy mapping problems. The mechanism of match tracking which allows sub-

categories to be resolved in classification problems causes categories to

proliferate when noisy mapping approximations are carried out. Rapidly changing

regions of a mapping--often resulting from the superposition of noise on the

underlying signal---are treated as misclassifications requiring new ART a and
ART b category nodes with alternative links via the map field. PROBART goes

some way to rectifying this by using probability information, combined from

various nodes, to estimate output values. The benefits of using PROBART when
dealing with noisy mappings include a reduction in RMSE values, an improved

error profile, a sizeable reduction in the number of ARTa category nodes and
increased generalisation.

As illustrated, PROBART is also capable of classification and exhibits

performance similar to fuzzy ARTMAP at high vigilance. For efficient

performance on classification tasks, however, fuzzy ARTMAP is the preferred

architecture where classes are resolved accurately using few nodes. As with all
tasks the architecture must be matched with the problem and the ART family of

networks is no exception.

While PROBART requires fewer nodes than fuzzy ARTMAP to achieve similar
performance for a complex mapping task, it has not solved the generalisation.
problem. For example, in the testing phase, some inputs are rejected and
consequently no prediction can be made because those inputs are not within the
range of any relevant ARTa category. Neither fuzzy ARTMAP nor PROBART

construct a mapping using a sum of weighted basis functions. Although this
property confers several advantages on the ART family of architectures, the
danger is that-under certain conditions--they may become nothing more than

108

sophisticated look-up tables. One possible solution would be to remove both the

ARTa vigilance and "winner-takes-all" dynamics during the testing phase. This

would allow a local neighbourhood to be established around the input and a

weighted interpolation procedure, depending upon the degree of match between

the input and existing ARTa categories, to be carried out to provide an output

prediction. The result would be a reduction in the number of inputs which do not

lead to a prediction; a problem which increases with higher dimensional space as

the input data becomes less densely packed.

The present version of PROBART uses a simple average to calculate the output

approximation. 'This average is made possible owing to the multiple linkages

allowed between input categories and output categories. Through the map field

frequency counts a rough approximation to the probability distribution of the

output values could be made. For a single input category, linkages to multiple

output categories could be stated individually together with their respective
frequencies. Thus, PROBART could approximate multimodal distributions and

thereby remove the one-to-many mapping restriction of fuzzy ARTMAP.

A possible continuous version of PROBART (hence exhibiting generalisation)
KK

Y
ýfQX_Ca)

would have the form ^=i 11
j=1

f2(wýj)cý where K signifies the set of

nearest ARTa nodes to the input x, c! and Cb are the node exemplars or Ii
centroids of ART a and ARTh nodes respectively, K, signifies the set of ART b

nodes associated with the i th ART a node, f, () is a normalised 'activity'

function in the range [0,1], f2(.) is a normalised weighting in the range [0,1] and

W,, ab is the frequency of association between the i th ART a node and the j th ART

b node. In the limiting case where the winning ART a node only is chosen with

index 1, the estimate is iven by Y^=
j

f2 (W ab Cb where f, c, 1.0 and
j=1

)

choosing f2(.) to be the relative frequency gives equation (2.18).

109

Both Fuzzy ARTMAP and PROBART provide a "rough and ready" method of

approximating mappings and can be implemented as on-line versions. The

underlying concern of adaptive resonance theory is with pattern classification and

recognition but the theory does not entirely preclude mapping as shown. The

trade-off between precise mapping and adaptiveness may be worth making for

certain applications. One area of application is neurocontrol where precise

mapping may be too time-consuming and computationally expensive making some

problems untenable. Precise mapping may not be needed because error-

correction techniques adapt quickly providing there is an underlying mechanism

which allows rapid storage and retrieval of control information. The CMAC

(Albus, 1975a, b) is an example of an adaptive memory system which functions

somewhat like a look-up table and that allows rapid and flexible adaptation

through the use of hash coding to retrieve or store information quickly.

To put the neurocontrol issue into perspective, consider human and animal

behaviour. Although constructed from "components" with wide tolerance limits,

inherent disturbances and relatively imprecise connectivity, the nervous system is

highly adaptive and successful. There is simply not enough time for all the

subsystems involved to compute trajectories and apply the techniques of inverse

kinematics etc.; movements are made and fine-tuned immediately using multiple

sources of feedback.

Consideration of the mapping problem, and some of the issues involved, reveals a

more fundamental concern with supervised learning; the very fact that it is

supervised. This concern will be addressed throughout this thesis but a few

words are in order here. Training data is usually in the form of a set of pattern

pairs, and there is predefined structure already present--albeit implicitly- in the

statement of a learning problem. The supervised model of learning-used

extensively in the neural network field is not the only model of learning and,
furthermore, does not account for the majority of learning.

110

For the purposes of system identification, supervised learning methods may

provide a model of a system from samples of the system's behaviour. In many

cases, however, one black box is being swapped for another. Without analytical

information to synthesise a system model, it may be just as difficult-if not more

so--to extract relevant information from the collection of weighted connections

between nodes in a neural network.

Most criticism can be directed not towards learning mappings from 'raw' data,

but towards using supervised learning methods for training controllers. Where

does the control information, pertaining to the desired control actions, come
from? Observing the input-output behaviour of an unknown system and using

supervised learning to develop a mapping (almost certainly not in minimal form)

is one thing, but training a neurocontroller with desired control information is

another.

Knowing the intermediate control actions to achieve a given control

objective-using a neural network trained with supervised learning-implies that

the control problem has already been solved in some sense. If this were not the

case, then how would the "correcf' intermediate control actions be known? For

example, using an existing control strategy or modelling an expert reduces to

nothing more than transferring control "knowledge" to a neural network platform.

A more desirable and more biologically realistic situation is to have autonomous
learning systems which are capable of discovering temporospatial structure and
order for themselves with a minimum of a priori information except where it is
beneficial or easily produced in any given situation. Such autonomous systems
would be goal-driven and strive to develop successful behavioural strategies
which enabled them to achieve the stated goals. The possible move away from
"dim" number-crunching neural network architectures towards more flexible and
adaptive structures is discussed in Chapter 3 onwards where an alternative
learning model, reinforcement learning, is explored.

ill

Chapter 3 Reinforcement Learning

3.1 Psychology

3.1.1 Behaviourism

Until the early part of the twentieth century, psychology still relied heavily on the

process of introspection. However, the practice of self-observation was not

entirely satisfactory and the idea of unconscious mental processes became more

and more acceptable (Hergenhahn, 1992). The move away from introspective

psychology was coupled with an increasing adoption of objective experimental

protocols which formed the basis for the newly emerging science of experimental

psychology. In 1913 John Watson formulated the concept of Behaviourism

which treated organisms as "black boxes" (Watson, 1913). Subjective sensations

were ignored and psychologists collected data purely through observation of an

organism's external behaviour. Watson believed that learning is the most

important factor in the development of behaviour patterns and that all human

skills, personality traits and motives are learned. Even complex behaviour

patterns are believed to consist of sequences of multiple conditionings acquired

through continuous learning throughout life (Hebb, 1972). In terms of a neural-

network model, action sequences are acquired through on-line supervised

learning. As plausible as this theory of human and animal behaviour sounds, it is

far too simplified and posits organisms only as passive responders to external

stimuli.

The psychologist E. L. Thorndyke (Thorndyke, 1911) postulated that organisms

were much more active, and that learning took place through gradual adjustments
in behaviour following random actions (stochastic search). Actions which were

successful in a particular context were more likely to be repeated in the saine

context at some future time. Thorndyke used a "puzzle box" in which he placed a

single cat. The box had a latch on the door which the cat had to operate correctly

112

in order to free itself-, this required a sequence of actions which had to be learned.

Cats learned to "solve the puzzle" by trying sets of actions which became focused

on the latch as time progressed. Spontaneous action sequences were generated by

the animal and not through an explicit training program of stimulus patterns and
desired responses.

Associative learning consists of associating behavioural "atoms" in humans and

animals. Experimental procedures have been developed to allow the study of

associative learning- involving response conditioning - in controlled

environments. T'here are two main types of associative learning studied in

experimental psychology:

* classical conditioning which involves conditioning an organism's responses to

extemally applied stimuli, and

9 operant conditioning which involves conditioning the type and intensity of

spontaneous behaviour generated by an organism.

Although classical and operant conditioning are treated as separate models of
human and animal behaviour, the sharp distinction is used as a matter of

convenience only; in practice, the division between the two models is much less

distinct with behaviour often consisting of a mixture of the two approaches.

To illustrate the transition from a passive stimulus-response model--in terms of
both living organisms and neural networks--to a more active model involving

exploration and evaluative feedback, these two contrasting behavioural. models
will be discussed.

113

3.1.2 Classical Conditioning

The first associative learning model, classical conditioning, is based upon the fact

that certain innate or "hardwired" response patterns are already present in an

organism from birth. Simple behavioural patterns are elicited by environmental

cues without the intervention of "cognition" or internal modelling. Such

stereotypical actions, known as reflex actions are responses to environmental

stimuli which are not learned and follow a simple stimulus-response (S-R) pattern.
They have arisen from years of evolutionary development and natural selection
(Anderson, J. R., 1995; Barker, 1994). Some simple reflexes have the underlying

mechanism in which a sensory neuron transmits a signal directly to a motor

neuron via synapses; in other cases, one or more interneurons mediate between

the motor and the sensory neurons.

The physiologist, Ivan Pavlov was particularly interested in the salivary reflex

which he studied in dogs (Pavlov, 1928). The stimulus was invariably meat

powder which was placed on the dogs' tongues and elicited a response of

salivation. This is a typical example of an involuntary S-R pattern. The natural

pairing of stimulus and response provides a basis upon which classical

conditioning experiments are carried out, even today. The stimulus in such cases
is known as the unconditioned stimulus (UCS) and is followed by an

unconditioned response (UR). So, for the naturally occurring (unlearned

situation: UCS -* UR.

If a stimulus, previously unconnected with the UCS, is paired with the UCS on a

number of occasions, it is found that the new stimulus alone can elicit the

response. The new stimulus is called the conditioned stimulus (CS) and the
response elicited by the CS is known as the conditioned response (CR). In the
case of Pavlov's experiments, the CS was a bell and the CR was salivation
brought about by the bell. Three phases of conditioning can be distinguished
(Barker, 1994) viz.

114

e the initial phase: UCS (taste) + CS (bell) -ý UR (salivation)

* the training phase: (a number of presentations)

UCS (taste) + CS (bell) -ý UR (unconditioned salivation)
CR (conditioned salivation)

9 the testing phase: CS (bell) -+ CR (conditioned salivation)

By training using the pattern UCS + CS -ý UR + CR we end up with the

association CS --> CR. Note that the pattern to be learned (the CR) is not

presented to the test animal, it is originally elicited during a natural, inbuilt reflex.

If the CS is continually presented without the UCS during conditioning, the

response is observed to diminish; this is known as extinction (Anderson, J. R.,

1995).

Extinction can be incorporated in artificial neural networks as aforgetting factor

which allows associations between input and response patterns to diminish with

time unless reaffirmed during use. The weakening of associations may be

important in certain types of neural network which are operating in environments

which change over time. Environments with time varying properties are known as

non-stationary.

3.1.3 Operant Conditioning and Reinforcement

The ideas of active learning in organisms are taken further by the psychologist B.
F. Skinner. Skinner developed a standardised methodology for carrying out
learning experiments by controlling the environment and isolating a limited

number of dependent variables (Barker, 1994).

Ile most widely known example of an artificial environment is the Skinner box:

which comprises a laboratory apparatus in which an animal is caged for

115

conditioning experiments and which typically contains a lever that must be pressed

by the animal to gain reward or avoid punishment

The learning theory studied using these experimental conditions is known as

operant conditioning. A succinct definition of operant conditioning is given by

Roberts (1993),

"A form of conditioning in which learning takes place when reinforcement

follows a person's or animal's spontaneous response; also known as

instrumental conditioning. For example, a rat exploring its cage might

press a lever, and find that a food pellet appears. It will then learn to press

the lever in order to obtain food. "

There are several key concepts embedded within this definition which are worth

expanding upon to provide a basis for ideas developed in later sections when

discussing autonomous artificial systems viz.

Operant: This refers to any response which operates on the environment

(Barker, 1994).

Conditioning: This is not meant in the classical sense. Here it refers to the

modification of internally generated behaviour patterns generated by stochastic

search of the environment (exploration). During the course of time, certain
behaviour patterns become more probable and others less so.

Reinforcement: Reinforcement can be thought of as evaluative feedback from

the environment. Reinforcement can be either positive or negative. Care must
be taken with terminology to avoid confusion. Positive reinforcement can be
identified with the idea of "reward7' but negative reinforcement is not
"punishment"; it is the avoidance of punishment when referring to
psychobiological studies. A reinforcer is defmed as any stimulus applied
following a response which has the effect of increasing the probability of that
response (Barker, 1994). Positive reinforcement enhances "approach"
behaviour while negative reinforcement enhances "avoidance" behaviour. The

116

term reinforcement refers to the enhancement of behaviour not the informative

"direction" (approach/avoid) or survival value. For SIdnner, a reinforcement
does not necessarily imply a reward. The term punisher is used to refer to a
stimulus which reduces the probability of a given response; its survival value is
identified with punishment.

Spontaneous response refers to the internally generated behaviour patterns
actively exhibited by an organism exploring its environment. These are not

conditioned by presenting a stimulus to a passive recipient which then responds

with an approximation to a desired response specified by the "trainer".

These points have provided, and will continue to provide, biological inspiration

for the design of autonomous agents capable of learning about the world and

actively adapting to environmental conditions with reduced operator prompting.
The brief introduction to relevant psychological ideas presented here illustrates

that neural networks and other autonomous systems may benefit from a study of

psychobiological ideas. The biological world may, at least, provide inspiration for

the design of "intelligene' autonomous agents; better still, it will furnish

researchers with mechanisms which provides a basis for artificial counterparts.

In the sections dealing with reinforcement learning in artificial autonomous
agents, the term "positive reinforcement! 'will refer to reward or probability
enhancement and the term "negative reinforcemenf' will refer to punishment or
probability reduction. This convention is used in the reinforcement learning
literature and will be adhered to here. Ile contrasting use of terms must be borne
in mind when comparing psychobiological and artificial neural network literature.

3.1.4 Shaping

Operant conditioning involves associative learning in which the desired behaviour
or increasingly closer approximations to it are followed by a reinforcing stimulus;
the animal receives reinforcement depending upon how it responds to aspects of

117

the controlled environment. Rewards (or punishment) become associated with

individual actions or sequences of actions.

Classical conditioning does not depend upon the spontaneous generation of

behaviour by an organism; instead the response is elicited by an externally applied

stimulus which triggers a "hardwireW'pattem of behaviour. Conditioning, in this

case, consists of forming an association between the naturally occurring stimulus

and an artificial stimulus.

In both conditioning methods, associative learning takes place through shaping of

behaviour; this shaping depends upon a reinforcement schedule which is specified

as a set of events and contingencies for each type of artificial environment.

Even in the controlled conditions of an artificial environment, both types of

associative learning do not occur in isolation; this blurring of boundaries is even

more pronounced in natural environments-especially in the case of

humans--where learning takes place through association of instinctive urges with

socially acceptable outlets, shaping of spontaneous responses with reward /

punishment schedules and association of appropriate behavioural responses with

environmental cues. Higher level associative learning also takes place where

abstract ideas (concepts) are associated.

The ideas of experimental psychology provide motivation for the development of

artificial learning systems such as neural networks. However, the study of

artificial neural networks is a subject in its own right and does not exist solely to

provide a set of abstract explanatory models for observed behaviour.

The division of conditioning into classical and operant modes has an artificial

counterpart in neural network learning methods, namely supervised and

reinforcement learning; unsupervised learning is more difficult to classify in this

twofold scheme but possibly belongs in the second class--the artificial

counterpart to operant conditioning-although it is difficult to see where the

shaping of behaviour occurs here.

118

3.2 Automata

Reinforcement learning algorithms are a class of algorithms for learning automata

(Zeidenburg, 1990). This section will form an introduction to the theory of

automata. There are two general classes of automata, viz. deterministic and

stochastic. Stochastic automata are of particular interest in this thesis but

deterministic automata provide a convenient starting-point for discussion and

generalise naturally to their stochastic counterparts. These two classes will be

covered in sections 3.2.2 and 3.2.3. Section 3.2.4 will discuss the concept of

learning as it applies to automata.

The theory of stochastic automata can be related meaningfully to the theory of

operant conditioning in animals. At a basic level, animals can be modelled as

stochastic automata which learn and adapt to the environment. When placed in a

new (experimental) environment, animals will exhibit behavioural patterns from a

repertoire of actions or action sequences having different probabilities. The

relative frequencies of the occurrence of given actions can be changed over time

with a reinforcement schedule based upon the theory operant conditioning. Seen

from the point of view of stochastic automata which learn, the changes in action
frequencies correspond to action probabilities altered by a learning algorithm

exposed to training signals.

3. Z 1 Introduction: Markov Decision Processes

A useful framework for the formulation of leaming problems is that of Markov
Decision Processes (Markov Processes) or Controlled Markov Chains (Bailey,
1964; Budnick, 1988; Watkins, 1989). Markov decision processes allow the
representation of probabilistic behaviour in an organism or intelligent agent. In its
simplest form a Markov decision process involves spontaneous outcomes with no
external input. A definition of this form is given by Budnick (1988):

119

"A Markov process is a sequence of experiments in which each experiment has m

possible outcomes E,, E21)
** *I

E,, and the probability of each outcome depends

only upon the outcome of the previous experiment. "

Here, outcome means action or state and experiment a behavioural period or unit

in which an action is performed out of a repertoire or action set. Informally, state

is the current potential for an outcome or set of outcomes depending upon past

experience or history. Past history is not stored explicitly, it is represented by the

state of a system.

It is convenient to distinguish between states and actions; this is not done in the

above definition which uses the general term of "outcomes". Watkins (1989) uses

the distinction and it will be used henceforth in this thesis. In a Markov decision

process there is a finite set of states, denoted here by S. Ile transitions between

members of S are determined by a transition function, T. If state transitions are

determined only by the previous state then the transition function, T(s) where

SES can be represented as a matrix of transition probabilities known as the state

transition matrix. To calculate transition probabilities over a number of steps, the

state transition matrix is multiplied by itself that number of times.

States can be thought of as an "internal" representation of behaviour, and actions

as an "external" manifestation of behaviour. The finite set of actions is

determined probabilistically by the system states when operated upon by an action
function, denoted here by A. Figure 3.1 shows the situation schematically.

120

Action
Function, A

State Space, S

Transition
Function, T

Figure 3.1 A schematic representation of a Markov process. The process changes state

according to a transition function and elicits some action.

The previous description can be formalised to include the state-action distinction;

following WatIdns (1989) an extended definition is given. Thus, a Markov

decision process consists of four parts:

oa finite state-space,

e an action function, A, which detennines probabilistically the action at each
discrete time step,

ea transition function, T, which detennines probabilistically the transition
between states of the process, and

*a reward function, R, which gives the, possibly probabilistic, reward at each
time step.

Note that the extended definition also includes a reward function.

3. Z2 Deterministic Automata

Any system-for example, a neural network an environment and a plant--can be

thought of as a black-box with a specified set of inputs and outputs. To simplify
further the formulation of systems in terms of automata two conditions may be

specified: Changes occur in discrete time and both the input and output sets are
finite. Ibe sets of inputs and outputs and discrete time instants, can be

represented by X, Y and Z respectively.

121

So, far this abstract model says nothing about the relationship or mapping

between X and Y as a function of Z. Set Z is required because a sequence of

inputs from set X may not determine uniquely a sequence of outputs from set Y.

If the output sequence is determined for a given input set, regardless of time, the

system model is said to be memoryless.

For most systems, the input-output mapping depends upon the "history" of the

system. For deterministic automata, the system history is represented by a set of

states. A definition of state is given by (Arbib, 1987):

"The state of a deterministic system is some representation of the past activity

of the system that is sufficiently detailed to serve as a basis together with the

current inputs for determining what the next output and state will be. "

The state does not give any information about how it was reached. Such

information is redundant and each state provides a compact representation of a set

of equivalent histories (Minsky, 1967).

The above description can be formalised to give a definition of an automaton

(Arbib, 1987):

An automaton is specified by three sets X, Y, and S, and two functions T and A,

where
(i) X is a finite set, the set of inputs;

(ii) Y is a finite set, the set of outputs;
(iii) S is the set of states; while
(iv) T: SxX --> S, the state-transition function is such that if at any time t the

system is in state s and receives input x, the at time t+l the system will be in

state T(s, x): and

(v) AS --) Y, the outputfunction, is such that s always yields output A(s) -

122

The automaton is said to befinite if S is a finite set and deterministic if the state-

transition function, T, uniquely determines the output when a given input is

present. In other words, from any state, the future evolution is determined for a

specified input sequence provided that state transitions are not random. The case

of random state-transition functions is covered in section 3.2.3.

Neural networks, defined formally may be viewed as finite automata (Arbib,

1987). Conversely, the state dependent input-output mapping of a finite

automaton can be replicated by a functionally equivalent neural network.

For a non-stochastic neural network, the equivalent detenninistic state-transition

function can be identified with the set (matrix) of weights, W* following training.

Thefinal mapping F*: X -+ Y, xý-* y= F*(x), uses W* implicitly.

During training, F is also a function of W(t) which will be represented by W, to

show that the weight matrix is parameterised by the time instant, t. At any time
instant, t during training, the input-output mapping can be represented by

Fw: X --) Y where F is the functional F(W,, x). For F F(W 0 x) the weight I
matrix W. is subsumed within the function as constant giving the function

F*: x ý-> F-

3.23 Stochastic Automata

If the state-transition function is probabilistic, that is, for a given state there exists
a set of possible transitions which depend upon a set of associated probabilities,
then the transition function does not uniquely determine the transitions and allows
a stochastic search of the environment.

123

For a stochastic automaton, both (iv) and (v) of the automaton definition are

modified to include the probabilistic nature of stochastic automata. Now, the

state does not determine the transition (via the transition map S -ý S) for a given

input, it determines a set of probabilities governing the transition. A state s r= S

has a vector of probabilities, p associated with it which signify the transition

probabilities, given the current state.

3. Z4 Leaming Automata

Up to now, nothing has been said about how the state-transition

mappings--whether deterministic or stochastic- are specified, indeed, the key

idea of learning has been avoided. Learning is essential to the development of

autonomous agents if they are to be sufficiently adaptable. Deterministic and

stochastic automata may be used if the environment or plant model is known

sufficiently well. Otherwise, more sophisticated methods, such as those of

neurocontrol, are required. On-line adaptation of the state-transition function (or

its neurocontroller equivalent) is carried out as more observations become

available. With lean-dng, little or no a priori knowledge may be necessary in

order to develop a successful control strategy.

Without learning, for input patterns x, _,, x, r: X at successive time instants

t, t +1eZ and states si, sj, sk (: - Sa state transition can be represented fonmally

by sj = T(si
gx, -,

)
--* s. = T(sj, x,

).

With learning, the set S and the function T are both dependent upon time. For

this case, the set of states can be represented by S,
-,,

S, S,., with the succession

of states Si r= S,
-,, s, r= S, . s,, r= St+l . Now the transition is represented by

Si =TC-l(Si'XI-1) r2s, -+ S, =T,
(sj,

x,
)r= S,

+,, where the state-transition function,

T is parameterised by time. In some cases, the number of states may be fixed, or

124

may grow or reduce for some automata providing this is taken into account by the

state-transition function.

For a stochastic automaton in which learning has occurred, for a given state si ,

pi (t) is not necessarily equal to p, (t + 1). Automata which are capable of

leaming are called learning automata.

For a learning stochastic automaton, the main task is to "shape'probability

distributions for both the state-transition function and the action (output) function

respectively. For the latter, some actions will be made more probable, and others
less so. The learning process of shaping probability distributions in a learning

automaton can be viewed as the artificial counterpart of operant conditioning.

For a stationary environment, S,, --> S %where S. is the final set of states which

are optimal in some sense, that is, the set of states tends to a final set with respect

to time (, r -4 oo). This is a generalisation of the fixed point concept. More

formally, S, = Sr+l =S*, Vr ý? - r* where r* is some time instant. For a non-

stationary environment no such optimal set of states exists.

For a stationary environment, an automaton has to solve an optimisation problem

where the optimal state set is treated as a "fixed point! '. More importantly, the

state-transition functionalso treated as a "fixed point! ! -- determines behaviour.

This must be optimised. Formally, T, -* T', T' = T* (s, x) and

T, (s, x)=T, +I(s, x)=T'(s, x), Vr. >-., r*. The state-transition function will be

optimised through learning. For a non-stationary process, no such absorbing
64state" exists where all state transition probabilities are fixed indicating an optimal
state transition function for an animal or automaton.

125

3.25 What is Meant by'Optimall

The notion of "optimal" behaviour needs to be clarified. Watkins (1989)

distinguishes between two types of optimality in learning:

optimal learning where the agent processes information in such a way that

ensures that the "best"possible decisions are made at each stage of learning;

learning of efficient strategies where the process of acquiring a strategy is not

necessarily optimal but leads eventually to a maximally efficient strategy.

The second notion is weaker than the first and refers to an end-state as opposed

to overall efficiency. Optimal learning refers to the learning method itself and
does not necessarily lead to the acquisition of the maximally efficient strategy; the

overall cost to the agent may be too great (Watkins, 1989).

Optimal behaviour, in whatever sense, involves a trade-off between exploration

and exploitation. If too much time is spent in exploring the environment then
little time is left for immediate exploitation of acquired learning. Conversely, if

too little exploration is carried out then useful alternative behaviours may be

missed and time may be wasted exploiting a second-rate strategy. This dilemma is

known as the exploration-exploitation trade-off (Watkins, 1989). At each

moment in time, an agent must decide whether to explore or to exploit. There are

no hard and fast rules for this decision process.

The formalisation of optimal learning theory is difficult for two main reasons
(Watkins, 1989):

o the difficulty of devising proven optimal learning strategies for all but the
simplest of artificial problems;

the requirement of a priori assumptions pertaining to probability distributions

of encountered environments.

126

3. Z6 The Road to Reinforcement Learning: Two Algorithms

A subject of this thesis is a particular control strategy of reinforcement learning

using two outputs (bang-bang control). The neurocontroller used in this

application can be viewed as a stochastic automaton. To prepare further for the

later discussion, the idea of learning in stochastic automata will be expanded

upon.

There exists a class of learning algorithms for stochastic automata (Zeidenburg,

1990). Here two algorithms of relevance to the discussion will be covered; these

are the linear reward-penalty algorithm (Narendra and Thatachar, 1974) and the

associative reward-penalty algorithm (Barto and Anandan, 1985).

The linear reward-penalty (L,,
-p)

deals with a simplified automaton, with a single

state (no state-transition function), and only a simple reward-penalty signal as

input. The learning problem involves convergence to a final set of action

probabilities which specify a desired behavioural repertoire. Again, the

connection with operant conditioning is apparent. The situation is illustrated

schematically in Figure 3.2.

Environment
X(t)

II

Evaluation
Function

Stochastic
Automaton 7ACtiO;

n,

ýa(f)

Reinforcernent/
penalty signal, T(O

Figure 3.2. The operation of a learning automation in an environment. Actions are directed

towards the environment from which feedback is obtained

127

The set of actions, A is defined as A= jaj,..., aj,..., a. j with an associated set

of action probabilities P= 1p,
I ... P, '. --'p.

j. This system can be thought of as

a stochastic neural network with a set of m nodes. The operation of this system

provides a simple model of operant conditioning.

At time instant t, the reinforcement signal r(t) of +1 or -1 is applied to the

automaton and action a(t) = a, r= A is elicited. For r(t)=l the learning rule is

pi (t + 1) ,ý pi (t) + XR (1
- pi (t)) for the "winning" action and

pj Q+ 1) = (1
-, ýR)pj (t) for the rest.

For the reward part of the learning rule, the set of action probabilities always

sums to unity. For the "punishment" part of the learning rule, r(t)=-I,

Pi (t + 1) = (i - lp)pi (t)
pj(t+l)= Ap +(l-Ap)pj(t) M-1
It can be shown similarly for the punishment case, that the set of action

probabilities sums to unity.

The associative reward-penalty algorithm (AR-p) of Barto, and Anandan (1985)

extends the utility of the LR-p driven stochastic automata by allowing the

association of output actions with input vectors from the environment; this is

shown schematically in Figure 3.3.

Environment
x(t)

Evaluation
IxW

Function

tochastic S
A-utomaton ActiM a(t) Reinforcernent/

penalty signal. r(t)

Figure 3.3 The Associative Reward-Penalty automaton of Barto and Anandan (1985).

128

The automaton can now learn an input-output mapping and associate appropriate

actions with stimuli from the environment. The automaton is "taught" to make

associations by an evaluation function (critic) which emits reward / penalty signals
based upon the current input vector and the most recent action. Formally,

r(t)=d(x(t), a(t)), d: XxA--)1-1, +l}.

The actual details of the associative reward-penalty algorithm are not important

here and are documented elsewhere (Barto and Anandan, 1985) where it is shown

that AR-p reduces to LR-p under certain conditions; variations to the basic

algorithm can also be found there.

So far, the stochastic automata of Figures 3.2 and 3.3 have been treated as black

boxes with no mention of the internal states. It is not the intention of this thesis to
discuss these matters further but suffice to say that the black box will be "opened"

when discussing the reinforcement-leaming based neurocontroller. Section 3.2

has indicated the possibility of automata (or equivalent neural networks) which
learn to associate actions with input vectors from an environment and do not

require the specification of desired outputs (actions) as with supervised learning.

The main advance here is the use of an evaluation function or critic which
determines the type of reinforcement (reward or punishment) administered to the
learning automaton.

The critic network must be examined next in some detail if the possible accusation
that the learning problem has been merely re-located is to be refuted.

129

3.3 Michie and Chambers' Boxes

It has been stated that to develop a controller, knowledge of system dynamics is

required. Furthermore, in addition to the accurate dynamical model, knowledge

of the desired system behaviour is needed, usually in the form of an objective or

cost function (Anderson, C. W., 1989). This knowledge is often either

unavailable or difficult to obtain. Candidate autonomous neurocontrollers must

be able to operate without such a priori knowledge and formulate a control

strategy on-line given plant input-output data as it arises.

3.3.1 Introduction

'Reinforcement learning applied to the cart-pole or inverted pendulum problem
exemplifies the control problem of applying a "naive" neurocontroller directly to

an opaque (black-box) dynamical system. The inverted pendulum problem is an

unstable system with dynamics of fundamental importance to the idea of
maintaining balance in, for example, walking systems or rocketry. (Anderson, C.
W., 1989).

When treating a dynamical system as a black box, using reinforcement learning,

the only information available is a state vector, which forms the neurocontroller
input and a punishment signal which signifies when control has failed. The
desired intermediate control action for each system state is unknown. There is

also no explicit objective or cost function to shape controller performance.
Neurocontroller learning is based upon failure signals alone.

It should be apparent that temporal information is important for such a control
problem and that delays will play a part in the learning of long sequences of
actions required to avoid failure. Delayed input information is not available to the
neurocontroller which has to apportion "blame" over a sequence of actions
depending upon individual "responsibility". This is the assignment of credit
problem (Anderson, C. W., 1989).

130

The formulation of reinforcement learning considered in this thesis is that of Barto

Sutton and Anderson (1983) which will henceforth be referred to as the BSA

model for convenience. The BSA reinforcement learning system provides the

basis for an autonomous neurocontroller architecture (Barto, Sutton and

Anderson, 1983) which has provided inspiration for a number of modified

architectures including those comprising the subject of the remainder of this

thesis. Some of the other BSA variants will be covered briefly in section 4.1

together with a few alternative control methods.

3.3.2 The Carl-Pole problem

The starting point for the BSA formulation of reinforcement learning (Barto et al,

1983) is the "boxes" adaptive problem solving system of Michie and Chambers

(1968a). As the boxes learning system forms the basis for the evolution of the

present work, it will be described briefly here.

Following Michie and Chambers (1968a) and Barto et al (1983) the cart-pole

system problem is used to exemplify some of the characteristics that distinguish

neural networks as autonomous learning systems from other available data

processing methods. The characteristics of autonomy and adaptability are among
the most important. As a test problem, the cart-pole system provides an example

of a highly non-linear system involving the characterisation of complex state-space
trajectories. Standard solution methods require assumptions about the form of

the control force function and an objective function (Anderson, C. W. 1989;

Hocking, 1991). Furthermore, such techniques rarely generalise and, thus,

require an a priori analysis of each dynamical system encountered. Like Barto et
al (1983), it is assumed in this thesis that the available feedback is of much lower

quality than is required for both standard control techniques and for supervised
learning techniques. Furthermore, it is believed that similar assumptions can be

made about the state-space partitioning problem where any autonomous system
will have limited information about the structure of state-space in advance of

131

experience. Indeed, merely specifying a fixed partitioning a priori makes

assumptions about the granularity of the resultant control mapping and constrains

the available adaptive procedures within a pre-specified temporospatial structure.

The problem posed by Michie and Chambers to illustrate the boxes adaptive
learning system consists of a cart constrained to move along a one dimensional

track with a pole attached to it. This is illustrated in Figure 3.4. The movement

of the pole is constrained within the vertical plane and is represented by the state

variables 0 and 6 signifying the angle of the pole from the vertical and the

angular speed of the pole respectively. The movement of the cart is controlled by

an impulse force (bang-bang control) in either direction and is represented by the

state variables x and I which signify the distance from the origin (centre) of the

track and the speed of the cart respectively. Thus, there are four state variables

representing the whole motion of the cart-pole system. System parameters are

given in appendix F which also specifies the physical system and computer

simulation details.

x

Figure 3.4. The cart-pole system. Motion is constrained within the vertical plane. See the body

of the text for details.

Information ftom. the physical system simulation is minimal and does not provide
stimulus-response pairs consisting of inputs and desired outputs to be associated.
Only the state vector and a coarse failure signal, reflecting the cart-pole status, are
supplied to the control system. If the pole falls or the cart hits the track
boundaries then a failure signal is sent to the controller and the cart-pole system is
reset to its initial conditions to begin a new trial.

132

-2.4m +2.4m

3.3.3 Boxes

Under these conditions, the credit assignment problem becomes apparent; there

are difficulties concerning the assignment of credit (blame) to individual control

actions which, taken together, comprise the state-space trajectory which leads to

failure and thus the final failure signal (Barto et al, 1983). The boxes system
(Michie and Chambers, 1968a) partitions state-space into 225 non-overlapping

regions or boxes by quantising the state variables; note that this partitioning is

fixed ab initio in both the boxes and the BSA systems. Each individual region is

independent and is said to contain a local "demon" (Selfridge, 1959) which has to

choose a control action of ±N Newtons whenever the state-space trajectory enters

the local region.

A global demon has overall control; its task is to decode the state vector, assign
its trajectory to individual regions and distribute the failure signal to the local

demons. Left/right force decisions are taken on the basis of the utility of these
decisions calculated from past failure signals weighted by the time interval from

box entry to failure for a given run. Thus, the expected lifetimes of a left or right
decision determine the box output at any particular time and the temporally

weighted effect of failure on the system is fed back to compute new left/right

decision expected lifetimes. The full formulation of the boxes learning system is

found in Michie and Chambers, (1968a).

3.3.4 Linearisation

Standard state-space methods can be used to obtain a linear model as an
approximation to a non-linear system and to design a closed-loop feedback

controller (via pole placement) to control the system within a limited region of
state-space (e. g. Friedland, 1987). This control method requires an a priori
model of the dynamical system, obtained by using the simplification of
linearisation to render the problem amenable to linear techniques (e. g. Wiberg,
197 1; Banks, 1986). More sophisticated approaches using feedback linearisation,

133

for example, may extend the neighbourhood. of effective control but are still highly

dependent on accurate a priori models. For many desirable control purposes,

however, such models may not be available or may contain too many analytical

simplifications which render the proposed control system incapable of following

the complex dynamics of the real system under consideration.

To simplify, friction can be neglected, i. e. p, =jup = 0. The frictionless

equations are linearised by assuming that O(t) and 6(t) are small; these

assumptions are reasonable given that the pole is to be balanced around an

equilibrium point of 0=6=0. The simplifications sin(O) - 0, cos(O) -1 and

62 can be substituted into equations (Fl) and (F2) of Appendix F to give

go
F

6= -F---
M, +m

, and
I-m

3 m, +m

..
F -mII9 x=-. Rearranging gives
M, +m

ýM, +M) 3 ml .. 1
go- F andi = --0 + -F 1(4m, + m) 1(4m, + m) me +m M, +m

I). --

S ubstitution gives! 0mg-0 +F. Letting x, = x, X2 =-tO (4m, + m) (4m, + m)

X3 '= 0, and x4= 6, the dynamical equations can be put in matrix form, thus:

010

X, 00-
3mg

0 XI 4
't2 l(4m, + m5 X2

+
(4m, + m) F jC3 00010

-14
00

3(m, + m)g 0

rX34.4

l(4m, + m)
-.

(4m, + m).

which is in the standard linear state-space form, :k= Ax + Bu for which a linear

controller can be developed (e. g. Friedland, 1987, Ogata, 1990). The intention

here, in this thesis, is not simply to develop another controller for a particular non-
linear control problem; it is to explore some of the issues for which the cart-pole

problem provides a convenient example and to indicate the possibilities of
developing flexible, general purpose controllers capable of adapting to a given
dynamical system with a minimum of a priori information.

134

3.4 Reinforcement Signals and Traces

3.4.1 Reinforcement

The only feedback information available for neurocontroller learning is a failure

signal which is triggered when the state vector crosses preset failure boundaries.

For the BSA formulation, the preset failure Emits are ± 12* and ± 2AM . If the

pendulum or cart exceed their respective bounds, then a punishment signal is fed

back to the neurocontroller.

The reinforcement signal at time, t, denoted by r (t) , is characterised by,

1 when failure occur's
r(t) =0 otherwise

It will become clear that failure alone is an inadequate training signal. Ibis

inadequacy is corrected in the original BSA version of reinforcement learning by

using predicted reinforcement to provide "reward7' or positive reinforcement to

enhance learning and reduce learning time.

The BSA learning system selects a control action for a given state at each time

step. The neurocontroller attempts to learn through experience which action is

appropriate for which state and associates state-action pairs in an associative
memory network (Figure 3.5).

Reinforcement

Cart-Pole
jNEUROCONTROLLER System

State vector

Figure 3.5. A neurocontroller based upon reinforcement learning. Internal details of the
neurocontroller will be covered in later sections.

Faflure
check

135

3.4.2 Traces

The problem of delay learning has been mentioned in Chapter 1. There are
difficulties in training neural networks to associate input and output patterns

owing to system memory. The approach of Hebb (1949) is simplistic in that
inputs and outputs are associated by the instantaneous correlation of neural

activities. Control of dynamical systems by neural networks often requires that
delays are taken into account by the correlation of delayed inputs and outputs.

The boxes system of Michie and Chambers (1968a) circumvents the delay

problem by recording what control action was used and when in the form of a
"tally". A more biologically plausible system was proposed by Klopf (1972,1986,

1988) and Sutton and Barto (1981) which postulated the existence of neural

activity traces known as eligibility traces. These traces are said to indicate when

a synapse (weight) is eligible for modification (Levine, 1991).

Incorporation of this mechanism into neural network architectures means that

neural activities may be correlated in time, that is, a single input can still influence

subsequent behaviour if weighted connections between neurons remain eligible for

update after the input has been removed. Eligibility traces are an integral part of
Barto, Sutton and Anderson's (1983) reinforcement learning system.

136

3.5 Temporal Difference Learning

3.5.1 Sequence Prediction

One of the objectives of developing autonomous learning systems is to be able to

treat any environment (plant) as a black box and predict future behaviour.

Prediction is the most basic form of learning (Sutton, 1988) and is fundamental to

survival. Prediction of environmental characteristics arises from the need to

establish the utility of different regions of the problem space and to associate

appropriate actions with those regions. Often, a heuristic search of problem space
is carried out by an intelligent agent to build up an internal representation of

salient features.

Autonomous learning also implies an ability to take training examples directly

from the "stream of experience't--that is, on-line or causal learning--without the

help of a teacher or supervisor. A possible solution to the on-line prediction

problem is that of Temporal difference learning (TD) which Sutton (1988)

defines as "... a class of incremental learning procedures specialised for prediction

problems. " Temporal difference learning is a subset of the reinforcement learning

paradigm; the key concept is that of the temporal difference between successive

predictions, hence the name. Two advantages of temporal difference learning are
that:

* learning is incremental; handling one piece of data at a time makes
computations easier, and

9 time delayed data does not have to be stored.

Early approaches to TD learning include Samuel's checkers player (Samuel,
1959) and Barto, Sutton and Anderson's ASE/ACE system (Barto, Sutton and
Anderson, 1983); the latter being the motivation for a large part of the subject
matter of this thesis. TD methods have also been proposed as models of classical
conditioning (e. g. Barto and Sutton, 1982; Sutton and Barto, 1981,1990; Klopf,
1988). The operation and utility of temporal difference learning methods will be

137

covered in section 3.5.2; the remainder of this section will provide some

background and motivate the subsequent discussion.

TD learning attempts to move interest in artificial and natural learning methods

away from the dominant supervised learning paradigm. Supervised learning

methods are used extensively for training neural networks (e. g. Haykin, 1994).

As discussed in section 1.5, pattern pairs, consisting of an input, x and a desired

or actual output, y are presented, often repeatedly, to a neural network. A

training set containing numerous examples is used to train a neural network to

construct an input output mapping. After training, an input, x is presented to the

trained network and elicits a response, ̂ predicted by the stored associative Y

mapping. This is a form of system identification and has proved effective for

straightforward associative pattern matching.

Problems arise with the supervised learning method when temporal effects have to

be taken into account (Myers, 1992). Prediction data is often in the form of a

sequence of temporally related events or experiments E,, E21 E,, such as a

time-series. System identification in this case is concerned with discovering the

dynamical laws underlying a process to enable prediction and control Techniques

using recurrent neural networks have been developed to deal with time delays and

temporal sequences of events (e. g Elman 1990) but these often involve complex

algorithms or network structures.

The sequential learning problem may be cast in terms of supervised learning by

treating successive members of a temporal sequence as input-output patterns, thus
(E., E., +,

) forms a set of training patterns. The more general form,

(E.
I-A: I*I-IE.,..., E. +,

) where the first k members form an extended input vector,
is used to take account of delays.

There is a more fundamental problem with delays; when attempting to control
dynamical systems, a sequence of events or control actions may lead to a final

outcome or goal where intermediate stages are of little or no importance until the

138

goal is reached. In such cases, learning cannot take place until the final outcome

so that credit (or blame) may be assigned to each of the preceding actions. This

can be represented by (XI
IX2 11 , , x, y, +,

), where xX is a vector of observations

or control actions and y is the final outcome of a process. This is the multistep

prediction problem (Sutton, 1988).

A putative learning system will be required to produces a series of predictions

YI9Y29*** , y, which approximate y.,, = y. This "end state"problern can also be

framed in terms of supervised learning by specifying pattern pairs
(x,,

, y). The

weights are updated at the end of a temporal sequence; this can be written as

R
W. ', = WO +. (3.1) Y, &W,

where

Aw, = a(y - y^jVJ1 (3.2)

(Sutton, 1988). Here, t denotes the time label of all intermediate weight changes

prior to the final update at the end of a temporal sequence.

Taking a linear estimator of the form y^, = w'x, and substituting into equation

(3.2) gives the simplest case of an update rule (Sutton, 1988)

Aw, = a(y - wt x, ý, which is the Widrow-Hoff or delta rule used in the adaline

(Widrow, 1960, Widrow and Hoff, 1963). A similar form can be used for the

multilayer Perceptron where gradient information is backpropagated through one
or more hidden layers.

3.5.2 Temporal Difference Learning

Equation (3.1) can be reformulated in terms of successive predictions, y, and
with

t

Aw, = a(ýI+j - ^I y)lv-Y (3.3)

139

Details of the derivation leading to Equation (3.3) can be found in Sutton (1988).

The weight update can now be computed incrementally as Aw, only depends

upon successive predictions (TD). ' The advantage is that values of a temporal

sequence are not stored.

The key feature of temporal difference learning is that it is the changes in

successive predictions which drive learning and not the overall error between the

predicted and an actual or desired outcome. Equation (3.3) uses the implicit

assumption that the past predictions in the summation are weighted equally. A

more general form of the weight update equation is given by

Aw, = a(t+1 W. (3.4) Y -kV Yk
k=1

and includes an exponential weighting factor X, where 0: 51: 5 1 (Sutton, 1988).

More recent predictions are weighted more strongly which is in accord with the
idea of stimulus traces (see sub-section 3.4.2).

The weighting factor parameterises a family of learning procedures denoted by

TD(X) of the form given in equation (3.4); equation, (3.3) is a special case TD(l).

Defining,

1+1 I -k V e,,, dx+l yk gives Aw, = a(y, +, - y,)e, which leads to the recursive
k=1

A

fonn e, +, V
Wyf+j + Ae

I
(Sutton, 1988).

For X=O, Aw, = a(y-l+l - y^ f)VW. I y which is similar in form to the adaline

(Widrow-Hoff) learning rule but successive predictions are used.

The convergence of TD(O) for absorbing Markov processes is proved in Sutton
(1988). An absorbing Markov process has a well-defined end-state. The

prediction problems discussed so far assume definite outcomes at the end of a
sequence but this is not always the case; indeed, for the cart-pole problem, the
desired "outcome" of success demands longer and longer temporal sequences of

140

states and control outputs as balancing becomes more and more successful. Finite

sequences terminated by failure are to be avoided. Prediction problems involving

potentially infinite temporal sequences equences with no well-defined

outcome--are called infinite-horizon problems (Sutton, 1988). In such cases,

success (failure) is measured by associated costs generated by an environment or

process.

Sutton (1988) defines a discounted sum of future costs

R, =
jy
k=0

Defining a predicted future cost and assuming that it is accurate gives

r yk +I
.dr, +, +,

= r,
+,

+ r,
+, +2

+ IRW
k=O k=1 k=O

For the recursive equation R^, = r, + 7R^j+1 it can be assumed that R, # r, + jRj+j

until convergence and so an error e can be defined in place of the predictive

difference (ý
t+l - y^ t) of equation (3.4). Defining the error e=r, +, + IR^ R,

gives,
t

Aw, = a(r, +, + jRt+j - RI)2 Rt (3.5) ,;
V-kv,,, -

k=l

as the equivalent weight update rule to equation (3.4) for infinite horizon

problems (Sutton, 1988). In this thesis, this form of temporal difference learning

equation is referred to as TDIH(k) to distinguish it from the finite horizon version
TD(k).

For X--O

Aw, = a(r,
+,

+ ^(+I
-

^I
w. k JR R)V R (3.6)

Equation (3.6) is a special case of TDIH(%), denoted by TDIH(O) which relies
only upon successive predictions of reinforcement; an example of TDIH(O) is that
of Barto's Sutton's and Anderson's reinforcement learning system (1983) which
is the subject of section 3.6.

141

3.5.3 O-Learning

Q-1earning is a form of reinforcement learning derived from dynamic

programming; it is model-free and enables autonomous agents to discover optimal
behavioural strategies in Markovian environments (Watkins, 1989; Sutton, Barto

and Williams, 1992; Watkins and Daynan, 1992). Q-learning is similar to

temporal difference learning in that an agent acts, evaluates the consequences of a

particular action immediately (reward or penalty), and proceeds to estimate the

value of the subsequent state. A Q-learning agent estimates a real valued function

of the current state and action, known as the valuefiunction, which represents the

total expected discounted future reward (Q-value). Ibe objective of Q-learning is

to estimate the Q-values for an optimal policy (Watkins and Daynan, 1992).

Q-Iean-dng systems have formally proven learning capabilities (Watkins, 1989;
Watkins and Daynan, 1992; Sutton, Barto, and Williams, 1992). An agent using
Q-learning explores state-space by trying out its repertoire of actions; it builds a
map of state values based upon the expected long-term discounted reward.

The main difference between actor-critic and Q-learning systems is that actor-
critic learning systems have two distinct sub-systems--one for estimating the
long-term utility of each state and one for choosing the optimal action for each
state-and compute state and action utilities separately whereas Q-learning

systems maintain estimates of combined state-action pair utilities. Q-learning,

thus, combines the operations of the actor and critic sub-systems.

Q-1earning is said to be conceptually simpler, have a better-developed theory and
has been found to converge faster in a number of cases, than reinforcement
learning (Sutton, Barto and Williams, 1992). However, the implementation of
reinforcement learning of Barto, Sutton, and Anderson (1983) is suited to the
incremental structure of ART-based networks. Q-learning will not be considered
henceforth in this thesis; further details will be found in Watkins, 1989; Watkins
and Daynan, 1992; Sutton, Barto, and Williams, 1992.

142

3.6 The BSA Reinforcement Learning System

3.6.1 The Associative Search Element (ASE)

The BSA implementation (Barto et al, 1983) uses the following quantisation, of

state-space:
i)x: -2.4m<x<-0.8m: gx! 9+0.8m<x: 9+2.4m,

ü) 0: - 121! 9 0< -61: 9 0< -P: 9 0< +1: 9 0< +60: 9 05 +121>,

iii) t: t< -03m /s :9t5 +O. 5m /s< ic

iv)ö: ö<-500/s2>, ö: g+500/S<ö

This collection of intervals results in a state-space partition of 162 distinct

regions. A decoder system (see Figure 3.6) assigns a unique output line to each

state-space region. This set of decoder outputs forms the unit input vector to the

single ASE processing element. During processing, a state vector enters the

decoder which switches on the appropriate input line to the ASE which

subsequently issues a control action depending upon the current system state.

To avoid confusion between the original ASE /ACE notation and the original
ART notation, the ASE / ACE notation has been modified and consequently
differs from that used in the original paper of Barto et al, (1983).

The ASE control output is computed by

R
y(t) fII Zi (Oxi W+ E(01 (3.7)

where y (t) is the output at time t, zi (t) is the scalar weight value of tile i" ASE

input line at time t, xi (t) is the activation of the i" ASE input line,

EW - NAD is Gaussian noise derived from a zero mean source with unit

variance and

fW1 for x '? - 0

-1 forx<O

143

gives the activation function of the ASE element which signifies the right and left

control actions respectively.
Reinforcement

Figure 3.6. A neurocontroller based upon reinforcement learning. Both the original associative

search element (ASE) and the adaptive critic element (ACE) of Barto et al (1983) have been

retained. The independence of the decoder from the ASE / ACE subsystems makes it a focus for

possible modifications (After Barto et al., 1983).

The BSA implementation uses a standard basis of 162 unit vectors of 162 entries;

when the Ph input line is active, the basis vector signifying the ASE input vector

consists of all zero entries except for a "one" at the Ph entry. The decoder is a
sub-system of the whole control system which lends itself to useful modification.
This allows the properties of the controller to be modified whilst retaining the

144

functionality of the ASE and ACE sub-units. Various methods of state-space

partitioning become possible (e. g. Lin and Kim, 1991) including self-organisation

through experience as considered in this thesis. Thus, the a priori partitioning of

state-space, as given in the original formulation, is a sufficient but not a necessary

condition for using the ASE / ACE system.

From equation (3.7) it can be seen that, at a given time, r

Y(T) =f [z k (r) + C(T)] ke fl,..., 162}

where k is the index of the input line. The weight, zi (r) signifies the direction in

which the control force is applied at time,, r depending on the'result when added

to e(r) the random perturbation also at time, r.

The ASE weight evolution equation, for the i" input line is given by

zi (t+1) =ziW+ ar^(t)e iW1 (3.8)

where P(t) is the real valued reinforcement at time t, ej (t) is the "eligibility" at

time t of input pathway i and a is the positive rate of change constant for z,

whichdetermines the magnitude of change in zi with respect to the reinforcement

signal. The term 'reinforcement' has already been mentioned and, for the ASE

unit operating alone, is given the value of 0 throughout a trial until failure occurs

when it becomes equal to -1.

Eligibility is derived from the work of Klopf (Klopf, 1986,1988) and represents
the temporal weighting of the reinforcement signal in the derivation of the weight
change. In a series of modifications to the Hebbian model (Hebb, 1949), Klopf

suggests that, "instead of correlating approximately simultaneous pre- and post-
synaptic signal levels, earlier pre-synaptic signal levels should be correlated with
later post-synaptic signal levels. "' (Klopf, 1988). Klopf considers changes in
levels to be more important but here we are concerned with the signal levels and
delay effects. This is consistent with a solution of the credit assignment problem
which requires temporally adjusted weight updates for distributing credit or blame

145

to state-space partitions traversed by an evolving state-space trajectory. The

eligibility update equation is given by:

e, (t + 1) = &i (t) + (1 - 8)y(t)xi (t) (3.9)

where 3,0: 5 8<1 is a constant determining the eligibility trace decay rate.

This linear difference equation gives an exponentially decaying eligibility trace

which maximally contributes to weight updates when the given input line is

activated recently with respect to the reinforcement signal. Without stimulation

via conjunction of pre- and post-synaptic activity reflected in equation (3.9), the

eligibility trace passively decays. This is Hebbian leaming (Hebb, 1949) with

passive decay. The inclusion of the term y(t) ensures that information regarding

the direction of the force is included in the weighting which reflects the expected
lifetime and desirability of a particular control force. Consequently, actions which

were made relatively long ago, with respect to eventual failure, merit little change

to their expected lifetimes and, thus, exert little influence on the outcome.

3.6.2 A Non-linear Evaluation Function

The ASE element forms the action network and is formally equivalent to the
boxes system. In theory, this action system could implement a linear

neurocontroller without quantization of the state-space. A linear neurocontroller

using the adaline element learned to balance the pole using operator modelling
(Widrow and Smith, 1963). For an autonomous system-not using supervised
learning or operator modelling--this would require an evaluation function which
evaluated the consequences of each action on-line.

In practice, the ASE could not learn such a linear control mapping without
knowing the desired output for each input state using a linear evaluation function
because no such linear function exists. The evaluation function would have to be

non-linear (Anderson, C. W., 1989) and so precludes the use of linear neural
networks to develop neurocontrollers without pre-processing. Ile BSA
implementation uses linear neural elements but does not violate the non-linearity

146

requirement because the quantization of state-space is a form of pre-processing

which transforms the original variables into a form which allows a single linear

element to solve the control problem. The evaluation function of the BSA system

uses the quantization of state-space and constructs a look-up table of system

states (Boxes) and their current evaluations regarding reinforcement. Using an

evaluation function allows a continuous reinforcement signal to be used instead of

the crude failure signal. The more informative signal consequently improves the
learning rate.

Other methods of solving the control problem will be discussed in section 4.2.10

onwards including Anderson's non-linear action and control elements, each

consisting of two layers (Anderson, C. W., 1989).

That any evaluation function for the cart-pole system is non-linear can be seen by

examining the angle failure criterion alone (Anderson, C. W., 1989). Consider an

evaluation function using the BSA failure criterion of ± 12' and using positive
and negative reinforcement of +1 and -1 respectively at the extremes. Traversing

the evaluation function angular range between failure at - 12' through the
"successful" region to failure at + 12' indicates that a linear function (hyperplane)

to solve the problem does not exist. Figure 3.7 shows a simple hypothetical

evaluation function which is clearly non-linear.

+1
Reinforcement

Pole
Angle

-1

- 12" 00 + 12*

Figure 3.7 A possible evaluation function for reinforcement given the pole angle. At the two
extremes of pole angle, the reinforcement is -1. At the balance point, reinforcement is +1. No
linear decision boundary exists (a single point) between positive and negative reinforcement.

147

3.6.3 The Adaptive Critic Element (ACE)

The ACE is similar in structure to the ASE (see Figure 3.6) and computes an

expected or predicted reinforcement signal given the current state vector and

external reinforcement from the system; the predicted reinforcement is continuous

unlike the external reinforcement signal and allows learning throughout a trial.

Thus, the combined ASE / ACE system is not a purely failure driven system. The

prediction of expected reinforcement is given by

p (t) qj (t)xi (t) (3.10)

where qj (t) is the weight for the i" input line and x, (t) is the input signal for that

line as before.

The learning rule is given by

qj (t + 1) = qj (t) + br^(t)Y, (t) (3.11)

where b, b>0 is a constant which determines the rate of change of learning in

qj, rý(t) is the predicted reinforcement and X, (t) is a trace of the activity of the

input variable x,.

This trace, unlike the eligibility trace, does not take into account the control
action chosen by the system for the region of state-space. It is given by:
Yj (t + 1) = AYj (t) + (I - A,)xi (t) (3.12)

where A, 0 _5 A<1, is a rate of change constant. Although similar in form to

the eligibility trace, it provides a record of the activity of the input line x, alone
during the trial to determine whether or not the particular input line contributes to
the prediction. With the present protocol of selecting a single input line, equation
(3.10) becomes p (r) = q,, (r) at time r where the weight q, reflects the

prediction of failure for a given control action elicited by entering the region of
state-space coded for by input line k.

A distributed version of equation (3.10) might also be used where multiple input
lines, xi (t) , are activated to varying degrees, in the range zero to one, and thus

148

weight the prediction contributions to give a final prediction of reinforcement; this

possibility is mentioned in Barto et al (1983). A novel distributed architecture,

FUZBOX, is discussed in section 5.5.

The predicted reinforcement is given by

P(t) = r(t) flp(t) - p(t - 1) (3.13)

where r(t) is the external reinforcement, r(t) e jOi-11, andy, 0 <, y: 5 1, is a

discounting factor. The discounting factor is required to prevent the

reinforcement from becoming self-sustaining. To see this, consider 7=1 and

p(t) = p(t - 1) at some time, t. If failure has not yet occurred, equation (3.13)

gives ; (0 =0+ p(t) - p(t - 1) =0

Now, from equation (3.11), qj (t + 1) = qj (t) + br^ (t)Yj (t) = qj (t) :P (t) =0 for

some node, i, so that p(t + 1) = qj (t + 1) = qj (t) = p(t) if node i is chosen again.

Thus, the prediction for a particular node becomes self-sustaining.

When r(t)--O, (failure has not yet occurred) a smaller prediction of failure,

p(t)>p(t-1), (e. g. -0.8 > -0.9) signifying a transition from a region of higher

expected failure to a region of lower expected failure, constitutes a positive

reinforcement.

When r(t)=-l (failure), p(t)---O (no present prediction) and equation (3.13)
becomes F^(T) = -1 - p(T - 1) . Thus, the degree of prediction of failure is taken

into account and fully predicted failure is not penalised.

For the reinforcement learning system just described, the weights can be viewed

as representing probabilities (although not nomalised) stored in stochastic

automata which determine the next action given a particular state.

This is an approach to reinforcement learning in a specific way. For a more

standard introduction see Barto, Bradtke and Singh (1995).

149

3.7 Simulations

3.7.1 Replication

The BSA system was implemented as detailed in Barto, Sutton and Anderson

(1983) for comparison purposes. A series of runs was carried out. Each run

consisted of a sequence of trials, the cart-pole state was reset to

x=! =0=6=0 at the beginning of each trial. Ile ASE / ACE parameters

were set as follows: a=1,000, b---0.5,8--0.9, y--0.95, X=0.8. The cart-pole

simulation details are given in appendix F.

A summary of the results of 100 runs is given in Table 3.1. A mean trial count of

106 trials required for convergence concurs with the results of Barto, Sutton and

Anderson (1983) in which 10 runs were carried out up to a maximum of 100

trials. At 100 trials the BSA results show an average balance time of

approximately. 1600 seconds (80,000 time steps) indicating that the system had

learned to balance the pole.

mean min max SD

106.09 33 917 133.073
rable 3.1 Mean results for 100 runs for the replication studies of the original BSA system.

The min trials and max trials figures indicate the minimum number of trials to

convergence and maximum number of trials to convergence respectively during

the set of 100 runs. Note the large variation between a run which converges
within 33 trials and one which took 917 trials to converge.

The standard deviation figure of approximately 133 shows a large variance and
indicates that the convergence rates are not grouped tightly; The variability of
convergence is confirmed further in Table 3.2 which shows the first 10 runs of the

replication simulation.

150

seed 1 2 3 4 5 6 7 8 9 10

trials 71 130 50 53 50 121 141 83 57 82

Table 3.2 The convergence times for the first ten runs of the replication studies.

To get the figures for 100 runs, one anomalous run was removed because it failed

to converge within 10,000 trials and it appeared that the system could not recover

from "bad! ' strategy choices.

Individual runs were qualitatively similar to those of the original BSA

implementation; Figure 3.8 shows the characteristic slow start, with many early
failures, followed by a rapid rise in performance.

0
C

0

Figure 3.8 A typical run showing ASE/ ACE reinforcement learning performance over 100

trials.

Figure 3.9 displays the same results without averaging across bins of five (see
Barto, Sutton and Anderson, 1983). In this raw form, it is readily apparent that
learning is not monotonic with trial durations dropping down to lower levels as
time proceeds.

151

10 20 30 40 50 60 70 80 90 100
TrW number.

I
Figure 3.9 The run of Figure 3.8 without averaging to show the non-monotonic nature of

learning.

Figure 3.10 shows the incremental usage of boxes during learning. The

monotonic increase in the number of boxes recruited continues until a sufficient

coverage of state-space is achieved. For this run, a total of 129 boxes, out of the

maximum of 162, was used.

120

100

I
so

60 -6

40 z

20

Figure 3.10 The incremental use of boxes with learning for the ASE ACE system for the run
of Figure 3.8

152

0 10 20 30 40 50 60 70 80 90 100
TrW nuffber.

u 10 20 30 40 50 60 70 so 90 100
Tdal number.

3.7.2 Box Usage.

The run details give useful information about the performance of the BSA

implementation of a reinforcement leaming system However, this is a black box

approach and does not give any indication of how the control strategy is

represented across state space for any particular run. At this point it is instructive

to "open the box" and look at a particular control strategy implementation.

The BSA system can be envisaged as a crude rule-base which specifies a mapping

between states and actions. Figure 3.11 shows a trained system in graphical form

Only a subset of the state-space regions are shown for illustrative purposes. The

information is stored as a set of 162 "rules" with four antecedent

propositions-one for each of the state variables-and a consequent action

, specifying a positive or negative force. To represent the five dimensional

information in two dimensions, the cart position and cart acceleration are used as

parameters to specify one of nine quantised phase planes involving the angle and

angular acceleration. The box shadings indicate that a box has not been entered at

any time or, if it has been entered, the direction of the force specified by the

control policy. The phase plane shown in Figure 3.11 consists of 3X6 or 18

boxes a-rising from the fact that the pole angle is quantised into six regions and the

angular velocity into three regions. The cart distance and cart velocity have been

fixed giving one of nine possible phase planes.

(a) (b)
Figure 3.11 Two quantised phase planes showing control rules after training. Black and white
regions indicate left and right control forces respectively. Grey regions indicate regions of state-

space not yet explored for this run.

153

Figure 3.12 shows the magnitudes of the weights for the state space region (a)

illustrated in figure 3.11; the increased detail gives a better idea of what is

happening. Areas of state space which have not been entered may have

impossible combinations of state variables.

Michie and Chambers (1968b) distinguish between "informed7or "uninformed"

and "decisive" or "indecisive" boxes. These labels are given on the basis of the

amount of information accumulated and the strength of the left or right decision.

They noted that the cart-pole problem exhibited considerable symmetry-, this fact

was used to extract information about the nature of learning with the 'boxes'

system (Michie and Chambers, 1968a).

For the initial random configuration, there was 50% symmetry when it came to

left / right decision malcing. The final configuration for a single run exhibited 84%

symmetry for informed boxes and 50% symmetry for the uninformed boxes.

Thus, learning allows the boxes system to order information and build a

structured representation of state space. Note that the internal representation in

this case is transparent, that is, it is directly accessible by an observer. There is no

need for a, possibly complicated, mapping between weight space and state space.

Informed and decisive regions of state space are where a left / right decision is

essential for the maintenance of an adequate control strategy. Regions which are
informed and yet indecisive are "don't care" regions which are not so important.

Uninformed regions signify difficult or impossible combinations of state variables

which often entail contradictory control aims. The boxes system can be seen as
building up its own classification of "controllable" and "uncontrollable" states
(Michie and Chambers, 1968b).

154

(a) ASE weight values for the box usage diagram of Figure 3.11. Note the variation in weight

magnitudes between boxes making the same direction "decision".

(b) Box usage for a phase plane adjacent to that of (a). this phase plane results from a shift of

only one cart velocity range.

Figure 3.12 Box usage graphs extending the information given in Figure 3.11. The codes
"0,1 form an 'index of the state-space regions used by the boxes system e. g. 00 denotes the

first box of the phase-plane and 52 denotes the eighteenth.

155

3.7.3 New Box Boundaries

The decoder box boundaries of the replication simulations were those specified in

the paper of Barto, Sutton and Anderson (1983). Simulations using different box

boundaries were carried out to anticipate the use of a fuzzy partitioning and to

investigate robustness to variations in partitions. Table 3.3 shows the first 10 runs

of the original BSA system using the parameters and conditions of section 3.7.1

but with all box dimensions increased by 10%. A run by run comparison of Table

3.3 with Table 3.2 reveals significant differences in convergence times. 71be

vanations indicate that convergence times are sensitive to changes in state space

partitioning. Fixing partitions a priori requires a decision about the suitability of

box boundaries; indeed, the BSA implementation uses a partition "... based on

specific knowledge of the control tasle' (Barto, Sutton and Anderson, 1983). If

problem specific knowledge is not available, much experimental work may be

required to optimise the state space partition and, even then, the partition may

only be suitable for a given set of parameters.

seed 1 2 3 4 5 6 7 8 9 10

trials 426 47 50 125 85 -2794 56 269 112 61
Table 3.3 The convergence times for the first 10 runs of the replication studies with the box

boundaries increased by 10%

mean min max. SD

295.4 21 3881 670.736

rable 3.4 Mean results for 100 runs for the replication studies with the box boundaries

increased by 10%

for the results of Table 3.4, two runs were discarded which did not converge
within 10,000 trials. Comparing these results with those of table 3.1 indicates that
performance is affected by even a small change in the box boundaries. The mean
convergence "time" has almost tripled whilst the variance has increased

considerably.

156

To anticipate the simulations of section 5.5.6 using a fuzzy partitioning, the state

space was set up using the following unoptimised partitioning:

i)x: -2Am: 5x<-1.6rn: 5x<-0.7m5x<+0.7m: 5x<+L6? n5x<+2Am,

e-. - 120: 9 69 < -69: 9 e< -r! g e< +1: 9 e< +6': g e: 5. +l2',

iii). t: t: 5-2. Omls<. t: 5-03mls<. t: 5+03mls<. t: 5+2. Omls<. t

iv) 6: 6< -50"Is: 5 6< -1001s: 5- 6< +1(r/S: 5 6< +5001s: 5 6

This partitioning is what would result if a fuzzy partitioning was used in winner-

takes-all mode, that is, if the partition boundary between two fuzzy boxes was

taken where the fuzzy membership functions crossed. The fuzzy boxes system,

FUZBOX, is covered in section 5.5.

Table 3.5 shows the first ten result obtained using the same conditions of the

previous two simulations with the new partitioning. 71be difference in

convergence time for the same random number seed is large in some cases; run 6

failed to converge within 10,000 trials.

seed 1 2 3 4 5 6 7 8 9 10

trials 55 276 374 3707 70 - 1239 53 51 178

Table 35 The convergence times for the first 10 runs of the replication studies using the new
625 box parfifioning

Using a fuzzy partitioning, which has the discrete partition described above as its

limit, the results are radically different as shown in section 5.5.6. 'Me difference
in convergence times observed when using a form of distributed representation
indicates that distribution of information across neighbouring boxes may be a

useful characteristic to confer upon an autonomous learning system because
learning is accelerated.

157

Distributed representation systems are discussed in section 5.5 where learned

information is used to inform neighbouring boxes and control information is

obtained from more than one box and combined to give a resultant. The

remainder of chapter 3 will continue to look at non-distributed systems and their

properties; this is commensurate with the original BSA reinforcement learning

implementation.

3.7.4 Discussion

The ASE / ACE implementation of reinforcement learning is very effective as can

be seen from the results and it is difficult to see how the actual learning

mechanisms should be modified to improve upon it. However, the decoder is

functionally isolated from the ASE / ACE modules and provides a focus for

modification.

The original decoder (Barto, Sutton, and Anderson, 1983) is preset by the user

according to empirically derived principles. This is not entirely satisfactory for an

autonomous system which should be able to develop its own quantisation of state-

space through experience. This is the subject of Chapter 4 which introduces and

evaluates a novel self-organising decoder, EUCART, (Marriott and Harrison,

1995,1996).

One noticeable characteristic of the BSA reinforcement learning system is that
learning is not monotonic. Learning consists of exploration of the state-space
using a stochastic search technique; this is exploration. During exploitation of
control strategies, the state-space trajectory may drift into neighbouring regions of
state-space which have not yet been explored; this may happen because random
perturbations force the trajectory out of control regions which are only weakly
established. The exploration-exploitation gives rise to characteristic "plateau and
drop" behaviour where successful control appears to be established and lost.

158

Chapter 4 EUCART and the EUCART-
BSA Hybrid

4.1 Background

This section provides an overview of the problem and a critique of some current

approaches. The development of a novel architecture is, thus motivated.

4.1.1 The Decoder Subsystem: Pre-processing

In the original BSA implementation, the decoder is specified by using a fixed

mapping between the partitioned state-space and the input lines. Another decoder

scheme (Lin and Kim, 1991) uses the cerebellar model articulation controller

(CMAQ of Albus (Albus, 1975a, 1975b, 1979; Tolle and Ersu, 1992) with a

fixed number of memory locations and an efficient mapping which maps only

states which are used, to locations in the CMAC controller. The distribution of

state-space information across the locations leads to a degree of overlap and,

consequently, some ability to generalise about regions of state-space not yet

traversed. The large state-space is mapped to smaller storage space using the

state variables as an address key (Lin and Kim, 1991) for the decoder. This

compression avoids allocation of storage for large regions of state-space which

are not used.

The decoder provides a sub-unit replete with possibilities for modification.
Decoder modules can be designed which implement various mappings between

state-space and the ASE / ACE controller sub-systems. If the decoder co-domain

consists of independent input lines as in the original BSA implementation, then the

possibility of increasing network size by exploring state-space presents itself. The

addition of new input lines, representing newly traversed areas of state-space, will

not conflict with the previously established input lines to the ASE / ACE and their

159

corresponding weight and trace values. Although the input lines are independent,

the state-space regions represented by these lines may overlap and temporarily

disrupt the mapping; this phenomenon is considered in section 4.2.

4.1.2 An ART-based decoder

From equations (3.7) and (3.10), for some k,

xi (t) =1
for i=k

0 for Vi * kv

means that y(t) and p(t) depend upon one input line only. This decoupling of the

xi allows the addition of new input lines without disruption of the established

output and prediction values, for the existing lines, which would occur if more

than one input line contributed to the calculation. Thus, decoders which
dynamically partition the state-space, using whatever method, can be easily linked

to the ASE / ACE sub-systems provided that the coded state-space regions have

unique input lines. This method is highly dependent on experience and is flexible

in that new regions of state-space encountered under different initial conditions or
disturbances can be accounted for by allocating new storage areas (nodes) which

contain the traces and expected lifetime / prediction values for the newly

encountered state-space region.

A distributed representation of y(t) and p(t) of equations (3.7) and (3.10)

respectively is possible if input line conflicts are avoided by allocating input line

activity according to the degree of node membership (e. g. Zhang and Grant,
1992). Here, the single activated input line convention of Barto et al, (1983) is

adopted for compatibility between the original ASE / ACE formulation and
winner-takes-all dynamics.

160

4.1.3 Other Approaches Using ASE /ACE type modules

A multilayer non-linear network, with sub-systems operationally similar to the

ASE / ACE subsystems, was developed by Anderson, C. W. (1989) to address

some of the shortcomings of neurocontroller architectures.

Anderson acknowledged the problems of control such as unavailability of
dynamical information and the credit assignment problem, but also stressed the

non-linearity of the evaluation function (see section 3.6.2). Ibis means that,

although it is possible to use a linear control force function, there is no way to

train a linear controller directly from experience; a previously developed control

law is required to train the neurocontroller which defeats the object of using a

neural network and precludes autonomous operation. The situation is much

worse when the plant dynamics are not known and a controller cannot be

designed to provide examples of desired neurocontroller behaviour.

The BSA system gets around this problem by using pre-processing to decouple

the system states to provide a look-up table of neurocontroller actions; this

approach requires the a priori use of pre-processing by the user which, again,

reduces neurocontroller autonomy.

Anderson (1989) proposes the use of a non-linear neurocontroller to allow pre-

processing to be included in the control process itself. 17he ASE / ACE

counterparts of Anderson's system are known as the action network and

evaluation network respectively.

The action network is non-linear and is capable of learning a control force
function of the fonn: F, = b, 0, + b26, + b3h, +b4h,, using Anderson's notation for

the state variables. An alternative method of generating a linear controller, using
genetic algorithms (Howell, 1994), is discussed in section 4.1.5.

The evaluation network is also non-linear and is capable of learning the non-linear
evaluation function.

161

Training is carried out using a variant of the backpropagation algorithm which

allows the hidden units to learn by circumventing the credit-assignment problem.

The errors backpropagated to the hidden units of the evaluation function were

derived from the evaluation network's output whereas the errors backpropagated

to the action network hidden units combines that error with action information.

Anderson first shows that using a single layer network gives poor results, even

though the action net can learn a strategy, because the evaluation function is non-

linear and so the action network doesn't "know how to learn" such a strategy.

Results for the two layer network-using the cart-pole simuladon--show that a

much longer learning time is required when compared to the original BSA system.

The increase in learning time is accounted for by the advantage of increased

generalisation across state-space. This illustrates the trade-off between generality

and learning speed encountered in many control problems. The richer experience

of the Anderson network makes it more robust in that the network represents a

non-linear function as opposed to a piecewise look-up table.

For Anderson's system, approximately 10,000 trials were required to balance the

pole for about 7,000 steps (140 seconds). An a priori choice of boxes is not

required but at a cost to performance.

Lin and Kim (1991) use the CMAC network (Albus, 1975a, 1975b, 1979; Tolle

and Ersu, 1992) to form the state-space decoder for an ASF. /ACE unit-based
learning system. The CMAC network distributes individual state boxes and their

corresponding ASE/ACE weight and trace values across CMAC storage
locations. Instead of assigning state and related information to a single location, it

is shared between overlapping locations such that, for a given input repeated
immediately after learning, the information will be accurately reproduced.
Repeated learning experiences of this type lead eventually to a distributed

representation of the control surface.

162

The CMAC reinforcement learning system was tested using the standard cart-pole

simulation in one of two modes: for mode one, the cart-pole system was reset to

zero initial conditions after each failure, for mode two the state was reset to a

random value. The results of simulations using these two modes of operation

were compared with those of the original BSA study (Barto, Sutton and

Anderson, 1983) and Anderson's multilayer neural network system (Anderson,

1989).

The CMAC based system was found to consistently outperform both of the

systems used for comparison (Lin and Kim, 1991) and illustrated the effect of

varying the CMAC storage capacity. The memory storage requirements (in terms

of locations) could be reduced below those of the original BSA study because

there are only a few critical states concentrated within a small region. The

advantages of using a CMAC decoder are a reduction in storage requirements and

an increase in learning rate through generalisation of state information. No

memory capability is wasted on uninformative states. Interpolation of information

across locations reduces both the storage overheads and leads to the observed

increased learning rate.

Note that distribution of information throughout the network in this case involves

individual quantised states being "spread" across the set of storage locations; it

does not mean that actions and predicted outputs are composites produced by

combining values associated with several states; individual weight and trace values

are used by the learning system following retrieval from the CMAC memory.

Santiago and Werbos (1994) use a method related to reinforcement learning and
known as dual heuristic programming (DHP) to solve the cart-pole problem. The

DHP network consists of four components:

* an action network, which issues the control actions;

*a critic network, which evaluates the utility of performing given actions;

163

9a model network, which performs one-step-ahead prediction of system

states, and

ea utilityfunction which is used to modify the critic network.

The success criterion for the DHP network was defined as being able to balance

the pole for 30 minutes (1800 seconds). According to this criterion, the average

balance time over 11 runs was 31.8 trials to success. The II runs used 4 different

pole lengths. The results were compared against a set generated using

backpropagation through time and the DHP network was found consistently to

outperform the comparison system.

4.1.4 Other Approaches Using ASE /ACE: A Critique

Anderson's non-linear system appears to confer robustness of learning at the

expense of training speed; robustness is desirable in control applications but at

what cost? The use of a feedforward network trained with a modified
backpropagation method (gradient descent) reduces network flexibility.

The network size and configuration has to remain fixed once specified; no nodes

can be added or removed during operation to adjust the network according to

experience in state-space. This may lead to sub-optimal solutions in that a control

or evaluation surface may be under- or over-represented.

The network is also opaque in the sense that the distributed stored representation
does not easily yield information to a user or expert. Extraction of explicit
operational information from feedforward neural networks, such as the multilayer
Perceptron, is not easy (Ma, Harrison and Kennedy, 1995) and requires
specialised construction to facilitate rule extraction (Brown and Harris, 1994).

The CMAC interpolation method is not of the first type postulated by Barto,
Sutton and Anderson which would involve "overlapping sets of output pathways"

164

(Barto, Sutton, and Anderson, 1983). It is of the second type involving

associative memory networks "... in which dispersed rather than localised patterns

of activity encode infonnation. " (Barto, Sutton, and Anderson, 1983).

The distribution method of the second type, although conferring advantages upon

the learning system---like the CMAC based system--does not facilitate ease of

information retrieval; the system still remains opaque to a user or expert. The

original boxes (NEchie and Chambers, 1968a) and BSA (Barto, Sutton and
Anderson, 1983) approaches formed a crude rule-base from which dynamical

information could be obtained easily. For the CMAC based system, the output

would have to be reconstructed for a given input and the rules generated using a
black box (based only on input / output behaviour) approach (Ma, Harrison and

Kennedy, 1995); this would lead to a combinatorial explosion of trying different

combinations of inputs to generate the rule base even though there are a limited

number of storage locations. The main reason is that the storage locations do not

have a direct one-to-one relationship with a rule-base--the candidate rules
(boxes) being distributed throughout the CMAC memory.

The EUCART-based reinforcement learning system has some of the

characteristics of transparency with nodes directly representing sets of related
states (closed balls) with associated weight and trace information. These state
sets can be seen as "micro-rules" giving dynamical information about small
regions of state-space. The use of localised as opposed to distributed information

eases the problem of infon-nadon extraction and, as explored in this thesis, makes
structural alteration of the neurocontroller feasible through pruning and addition
of nodes.

The EUCART rules, although transparent, are not sufficiently general; an
investigation into the feasibility of "lumping and splitting" Mchie and Chambers,
1968b) is required. Such a scheme of rule generalisation or specialisation is

possible because of the non-distributed nature of the decoder module. The lack of
distribution of the second type, however, does not preclude the possibility of

165

distribution of the first type which is compatible with both generalisation and

transparent information representation; the latter forming a one-to-one

relationship with a rule-base.

The fuzzy version of the BSA boxes system, named FUZBOX here, combines the

advantage of a distributed representation (of the first type) with the utility of a

transparent control mapping in the form of fuzzy rules; the rules encapsulate easily

interpreted dynamical information and allow combinations of rule information

across states to facilitate learning and control action. The FUZBOX system is

discussed in detail in chapter 5 where it is compared with other systems including

the EUCART-based system.

4.1.5 Alternative Approaches

As discussed in section 3.3.4, the cart-pole system can be linearised so that

standard state-space methods can be applied. The fact that a linear controller

exists means that a linear neural network such as the adaline can be used as a

neurocontroller. The adaline provides an early example of neurocontrol (Widrow

and Smith, 1963; Widrow, 1987) using operator modelling where an existing

controller or human operator is used to provide the training data. Supervised,

learning is required when linear neural networks are used because the control

evaluation function is non-linear. A visually supervised version of the linear

adaline controller has been developed (Tolat and Widrow, 1988)

The linear cart-pole model is controllable using proportional plus derivative

control (Picton, 1994) where the control force is proportional to the error and the
derivative of the error between the actual and desired outputs. The output is a
linear function of the cart position and the pole angle and their derivatives. Bang-
bang control can be used; it is time optimal as shown by Pontryagin's Maximum

166

Principle (Hocking, 1991). A suitable control system consists of proportional

plus derivative control and a hard limiter (Picton, 1994).

Defining a parameter vector, w= [w, W2 W3 Wj and a state vector

X=
[Xl

X2 X3 X41
t

=[x t0 61t the form of a bang-bang control

solution can be stated as u= sgn(wtx) which can be solved using an adaline with

a hard limiter on the output (Widrow and Smith, 1963; Widrow, 1987). The

adaline is more suitable than the Perceptron (Rosenblatt, 1962) owing to the

requirements of the Perceptron Convergence Theorem. If the separating
boundary of the two classes representing the discrete outputs is not defined

precisely by the data (rendering the problem not linearly separable) , then the

Perceptron will not converge. The adaline will cope well with noisy data and give

the best linear approximation. The adaline solution defines a switching surface

and generalises after being trained using a borderline exemplar set.

The adaline controller was trained, during a training phase, using a teaching

controller (Widrow and Smith, 1963; Widrow, 1987). The linearised differential

equations representing the cart-pole system were given by
2g

0-
3F

and 41 41M

IF where assumptions were made that damping was negligible, and that M

the pole has no effect upon the cart motion. The teaching controller was of the
form

u= -2-06 - 1.00 + 1.01 + l. Ox The state variables were individually coded using a
6 bit binary code giving a 24 bit binary input vector. Although successful, such
linear systems are limited and have very limited autonomy; they are restricted to
linear system models and have to be trained using an operator or existing

controHer.

Criticisms of inflexibility and possible sub-optimal learning by Anderson's non-
linear reinforcement learning system (Anderson, 1989), are addressed with a new
architecture based upon Q-1earning. The Q-Leaming system with hidden unit

167

restart (Anderson, 1993) still uses a fixed structure net but allows the reuse of

existing nodes. The goal of supervised learning is to obtain a compact

representation with good generalisation. The Q-learning network uses an
incremental gradient based search (similar to backpropagation) and gives initial

fast learning with localised experience; the network is not allowed to generalise

too widely in the beginning. There are a number of fixed units which are trained

at every step. During the gradient based search, units are not added or removed;

changes to network topology are made by restarting the least useful unit.

An example of plant modelling (forward modelling) applied to the cart-pole

problem is the temporal difference approach of Jordan and Jacobs (1990). They

attempt to model the system by using the error between the actual and predicted

plant outputs to drive a backpropagation algorithm. The idea is to find an

adequate model and use this model to train a neurocontrolier. The simulation

protocol is similar to that of Barto, Sutton and Anderson (1983) but with three

important differences:

* disturbances (white noise) were derived from the environment and not from the

controller

9 the forces applied were real valued, not binary, and

after failure, the cart-pole simulation was set to a random value, not to the

origin.

The temporal difference algorithm of Sutton (1988) was used to learn the system
model; this is a prediction problem. A variant was developed in which the
learning of the forward model and the controller proceeded simultaneously.

The results of 20 runs were stated. Of the 20 runs, 18 found an adequate control
configuration and 2 fell into local minima. A set of six runs was illustrated and had

a minimum and maximum run length of approximately 250 and 1400 trials
respectively.

168

The learning times were longer than those for the original BSA study. However,

learning speed is not necessarily the best guide to performance. The fact that a

random starting position was used following failure is likely to mean that the

controller is more robust to changes in starting conditions.

The approach of Connell and Utgoff (1987) attempts to build up a "map" of the

environment through experience. For the cart-pole problem, training information

is weak. Physical system and control constraints makes inevitable regions of

state-space where the recovery of control is not possible; these I'doomex' regions

of state-space must be avoided at all costs. The goals of an autonomous learning

system are to identify and to avoid these undesirable states. The fundamental idea

is to build up a potential map of state-space including the "hot spots".

The CART system of Connell and Utgoff (1987) consists of four elements which

work together to construct the potential map:

41 problem generator: which initialises the cart pole system for a new trial; the

cart-pole system is reset to a small random perturbation away from the

equilibrium point where the cart is centred, on the track and the pole is vertical.

performance element: which chooses a control action-a left or right push---at

each time step; the choice is either to repeat the last action or to carry out the

opposite action. The decision is based upon the angle between two vectors,

the gradient and extended vectors. The gradient vector-4ndicating the

direction of the desirable state-space trajectory --is computed first followed by

the extended vector which shows the direction of the state-space trajectory if

the last action is repeated. The objective is to move to a more desirable state
by following the gradient "downhill"'. If the angle between the two vectors
indicates that the current action policy is reducing the undesirability of being in

this region of state-space then continue, else change the action;

169

e learning element: which estimates the desirability of states given the 5-

dimensional training instances of the state vector coupled with a +1 or -1 label

which constitutes the reinforcement. I'he learning element interpolates

between the training instances to build up a surface in 5-dimensional space;

critic: which supplies information to the leaming element in the form of the

state vector and label pair. The process is initiated using a short-cut which sets

all state variables to zero and labels this point as desirable. When the pole falls,

the final state is labelled as an undesirable state. Between these two extremes,

the algorithm runs until the pole is balanced for greater than 100 time steps.

The algorithm is to back-up to the state which occurred 50 time steps prior to

failure and keep on backing-up until a state is found from which at least 3 of

the state variables decrease in magnitude; the resulting point is then labelled as

desirable.

The numeric parameters of 100,50 and 3 featured in the critic are empirically
derived. An automatic method of deriving such parameters would be desirable

(ConneR and Utgoff, 1987).

An approach, based upon drive-reinforcement theory and related to temporal
difference learning has been developed by Morgan, Patterson and Klopf (1990).

Temporal differences of predicted reinforcement are compared and used to

control learning at the single neuron level. A network consisting of two neurons,

one for each force direction, has a series of inputs or "drivee' which represent a

prediction of eventual reinforcement. A change in a drive level represents a
change in predicted reinforcement.

The main difference between this approach and the BSA approach is that only
those drives which have recently changed are reinforced thus rendering fewer
drives eligible for reinforcement. It was claimed that for one particular run, only a

single trial was required to learn a successful control strategy without failure. For

this run, parameters controlling the learning rate were set a priori. For other

170

values of the learning rate parameters failures occurred. r1be state-space

partitioning is Exed a priori for the drive-reinforcement system in a similar

manner to the boxes or BSA systems.

An alternative method to neurocontrol is provided by the field of genetic

algorithms (e. g. Goldberg, 1989). Genetic algorithms are another example of

artificial learning methods inspired by the biological world. Briefly, information

relevant to a problem is coded as a string of bits called a chromosome. An initial

population of different chromosomes is generated randomly which provides a

starting point for the "breeding" process. Changes in the population take place

over distinct time periods, called generations, which give rise to new

chromosomes. The changes-with mechanisms analogous to natural mechanisms

observed in the science of molecular biologr--take place through such processes

as crossover, recombination and mutation.

At each generation, a new population of chromosomes is produced which

represent a set of candidate solutions to the original problem. The number of

each different type of chromosome is determined by differential reproduction
between chromosomes which depends upon individual fitness parameters. Ibus,

a chromosome with a higher fitness value will tend to "breed7 more rapidly than a

chromosome with a lower one. The fitness value is determined by a

chromosome's suitability as a solution to the original problem. After a number of

generations, a population will exist which may contain an acceptable solution to

the problem. If this is not the case, then more breeding cycles are required.

Control problems may be rendered solvable by genetic algorithm methods by

coding the weights of a candidate neurocontroller to give a chromosome template
(e. g. Wieland, 1991, Maricic, 1991) or by coding the parameters of a known

system model to give the template (Howell, 1994). The cart-pole problem has
been solved using both of these methods (Wieland, 199 1; Maricic, 199 1; Howell,
1994).

171

Howell (1994) used genetic algorithms in system identification to find suitable

sets of parameters for two fon-ns of controller model. The first form of controller

model was specified to solve the simpler two state problem of balancing a

pendulum constrained by the differential equation
4M126

= mgl sin(O) + mlu cos(O) 3

The optimal control problem involves using a genetic algorithm to find the

parameters

ao,..., as andA,..., Awhich specify a continuous controller of the form

22
ao + oc, x, + a2XI + a3X2 + a4X, X2+ a, X2

O+AXI
+ p2X2 +AX2 p

I+
AX2 + AXIX2

2

2 (t) + X2 (t) + U2 (t) is M* such that the cost function J x, 2 immise&
9=0

The 12 control system parameters are discretised, by coding them as 16 bit binary

numbers covering the range -50 to +50; the resultant 192 bit string is the

chromosome.

It was concluded that the genetic algorithm derived controller performed better in

terms of cost than a controller obtained using a linearisation of the system

(Howell, 1994).

When the cart dynamics were included (giving a four state problem) a controller
4444

of the form U aXi + 1: pjX2 +11, ykjxkxl was used. The parameters i i=1 j=1 k=1 1-1

, y, u =0 for some of the terms giving 14 parameters in total. The cost function in

2 (t) + X2 (t) + X2 (t) + X2 (t) + U2
(t)

this case is J X, 234
t=O

Again, the developed controller was found to outperform a standard linear

controller (Howell, 1994). However, the drawback is that the controller learns

control over one region of state-space and not others; this is a gain scheduling

problem for which Howell suggests evolving a controller for each chosen region

172

and storing the parameters. Overall control will then be maintained by switching

between the different controllers.

Maricic (199 1) offers another evolutionary approach to the cart-pole problem

similar to Wieland's (199 1) in which a neural network is optimised using genetic

algorithms. The size and connectivity of the neural network is fixed; one node

acts as the output. In effect, the genetic algorithm 'breeds' neural networks

which signify the phenotype. The genotype, consisting of coded weights, is

altered using genetic operators such as crossover and mutation. The neural

network output is discretised in the range [-1.0, +1.0]. Results show that

adequate control is obtained but the technique is not directly comparable to that

of Barto, Sutton and Anderson (1983) or that developed in this thesis.

While neural network systems utilising the unsupervised learning method require

neither explicit pattern pairs nor evaluative feedback per se to operate effectively,

they are only able to organise input patterns by means of clustering methods and
have no intrinsic means for adjusting control actions on the basis of environmental

responses. External learning mechanisms have to be incorporated into candidate

self-organising controllers based upon such clustering networks. These external

mechanisms can, for example, involve the use of stimulus-response pattern pairs, a

cost-function or scalar evaluative feedback.

A self-organising controller, based upon a Kohonen topology conserving

network, was developed to learn the control actions of a teacher in supervised
learning mode (Ritter et al, 1992). A variant akin to reinforcement learning, using
only a reward signal based upon a specified cost function, has also been developed
(Ritter et A 1992). In both cases Kohonen's original learning algorithm
(Kohonen, 1989) has been extended to incorporate an output value for each node
of the network lattice. In the supervised case, the cart-pole problem has been

solved by a teacher external to the network which acts as a look-up table
following training. Although this method obviates the need for re-calculation of
output values, the requirement for an external teacher limits the autonomy of the
network.

173

The variant removes the requirement for an external teacher and computes desired

outputs on the basis of a generalised reward signal derived from a system specific

cost function. The network no longer has access to desired control outputs and
forms a continuous mapping between state-space and control output space, with

the control outputs being determined via a stochastic search process. During the

search, the stored output value for a particular lattice node is allowed to converge

to a desirable control action.

Both the supervised and the variant topology conserving controllers have a planar

network lattice structure which is fixed ab initio. This places a restriction on the

information capacity of the network through the determination of the state-space

resolution by the size of the lattice. In other words, with too few nodes the

control hypersurface will be coarsely defted. Too many nodes may reduce the

parsimony of the network depending upon the size of the local update region with

respect to the granularity of state-space coverage.

Fuzzy approaches, although relevant here, will be discussed in chapter 5 where
the application of fuzzy techniques is reviewed briefly.

174

4.2 EUCART Description

4.2.1 Introduction

To solve a non-linear control problem using a neurocontroller, a method of

representing state-space is required which allows the association of control

actions with distinct state-space regions; the regions may overlap but they must be

distinctly identifiable so that unique outputs may be assigned to them. A

convenient set of methods of representing state-space that is compatible with the

incremental learning paradigm involves Euclidean clustering (e. g. Kohonen, 1989,

1995). Individual states are assigned to a cluster and, in some cases, new clusters

may be added as required. Euclidean clustering methods provide a convenient

way of assigning cluster membership by comparing the distance between an input

vector and various categories stored by the system. Category assignment based

upon the Euclidean distance between inputs and category centres, or prototypes,

results in a partitioning of state-space as shown in Figure 4.1 if winner-takes-all

dynamics are used.

Figure4.1. Using Euclidean clustering with winner-takes-all dynamics results in a state-space

partitioning that consists of irregular convex regions. The regions are comprise intersecting

hyperplanes that represent the decision surface between neighbouring category centres.

Inputs are assigned to the category represented by the nearest category centre;

this results in a unique assignment for each input unless two or more category

centres are equidistant from an input vector, which is unlikely. Category centres

may be represented by nodes within the neurocon troller. Following competition

175

between category nodes, either an overall winner or a selection of active nodes

may be chosen to compute a control output. In the latter case, a method of

weighting the nodal contributions is required; the weighting is usually a function

of the category node activation.

Here, a novel Euclidean clustering method, inspired by some of the attractive

properties of fuzzy ART (Carpenter, Grossberg and Rosen, 1991), is presented

that overcomes the problem of category drift (Moore, 1989) and allows
incremental learning of state-space information without supervision. Ibis method

is compatible with the BSA formulation of reinforcement learning, and is

implemented as a state-space decoder that replaces the fixed structure of Barto et

al, (1983).

4.22 Fuzzy and Euclidean Clustering

The fuzzy ART system has many desirable properties of which a subset can be

abstracted for the purpose of designing a state-space decoder. Framing this

subset in Euclidean terms serves as a basis for further developments in decoding

schemes. As will be discussed in this section, emulating one particular aspect of
fuzzy ART operation provides a first attempt at a solution to the problem of
Euclidean category drift (Moore, 1989). Other properties framed in Euclidean

terms lose some of the characteristics which make fuzzy ART particularly good at
unsupervised learning. However, the Euclidean network presented here is not
designed to function as a classifier in the sense that the fuzzy ART system is, and
further development would produce a closer functional relationship between the
fuzzy and Euclidean clustering schemes if required. The object is not simply to
have a Euclidean form of fuzzy ART, if that were indeed possible; fundamental
differences in Euclidean and fuzzy metrics restrict operational correspondences in

networks to functional analogies.

176

4.2.3 The EUCART System

EUCART (Marriott and Harrison, 1995,1996) is a novel Euclidean self-

organising state-space decoder based loosely on Fuzzy ART (Carpenter,

Grossberg and Rosen, 1991), hence the name, from EUClidean ART. Its purpose

is autonomously to structure state-space so that the ASE / ACE sub-units may

associate control actions with individual state-space regions through

reinforcement learning. The main property of fuzzy ART incorporated into

EUCART is the category growth property which prevents category templates or

prototypes from wandering (Figure 4.2). The category growth property allows

the new category to incorporate the region of state-space encompassed previously

by the category by expanding outwards towards the input vector up to a

maximum possible extent. The existing members of the cluster will always remain

within the category.

New region of state
space encompassed
yt by the original
p

category

State space ?

originally The category centre encompassed
may move to a new by the category location

Figure 4.2. A schematic illustration of the phenomenon of category wandering. As a given

category centre is updated by a strearn of inputs assigned to the category that it rcpresents, the

location of the category centre moves and encompasses a new region of state-space.
Consequently states that belonged to a particular category may not belong to It any longer.

Category drift may cause degradation of performance in control applications

where information is lost through the movement of categories. For example, it is

possible that some states have control actions associated with them when assigned

to a particular category, but lose these associations when the category moves.
Consequently, either no control actions are available for such "displaced" states,
or, different control actions are assigned following the category movement. For

winner- takes-all dynamics, gains in using the category growth property may be

177

offset by the plasticity of category assignment where states are reassigned to

nearer category centres during learning. Using the category growth property

prevents the case where states lose any associated output altogether by ensuring

that states always remain members of the category extent of one or more category

nodes once they come within the category boundaries; where there is multiple

membership, an overall winner may be chosen. The problem of state dissociation

is shown in Figure 4.3.

State is no longer
associated with a
control action

Original category
now encloses a new
region of state
space

Figure 4.3 Category wandering can result in dissociation of states from control actions that are
learned responses to these states. Control infortnation is lost or disrupted depending upon the

degree of category displacement.

Where a distributed representation is used, the phenomenon of category

wandering presents more of a problem because once a state "informs" a control
output associated with a category node, even if that particular category node is

not the overall winner next time, it still contributes proportionately to the output
because states may belong to one or more categories. Thus, when states are
dissociated from categories that they have informed (i. e. they have modified
associated category information) when these states or regions of state-space are
reactivated, information relating to the control output is lost. This is illustrated in
Figure 4.4.

--

I

178

-S

I

/?: t
0

Now, the control output for this
state is determined by a single
category only

Figure 4.4. The effect of category wandering when a distributed representation is used.

Categories that previously contributed to the control output no longer have any effect. The

category growth property ensures that, for a distributed representation, once a region of state-

space contributes to a category and its associated control action, it will always continue to do so.

The EUCART system retains the ARTfields FO, F, and F2 but differs in the

dynamic operation of the latter two, especially in the case of the matching field,

F,
-

Unlike Fuzzy ART, EUCART does not use complement coding. The input is

given by I= (I
I, -,

/m),. a subset of the real line,
,Vi=I,,

M.

Note that dropping complement coding removes the unit normalisation restriction.

That is, inputs do not have to remain within the unit hypercube. However,

EUCART inputs have to be within a fixed input space (hypercuboid) of specified

dimension. In this paper we confine the inputs within the unit hypercube, [0,11'4

for convenience. Each F2 node represents a class or category of inputs and

operates in wi nner- takes- all mode as before.

Associated with each F2 node j is a set of adaptive weights

WI= (Wil
1 Wj21 Wj2M), Vi = 11.... N. These weights store the network LTM

traces in a form allowing emulation of a fuzzy ART property which prevents

category wandering. Two vectors of length M are stored as a single vector

representing the minimum and maximum extents of category growth in elements I

to M and M+l to 2M respectively. Before discussing this mechanism it instructive

to look at both Euclidean and fuzzy categorisation in more detail.

179

4. Z4 Categoty Drift: a Fuzzy ART Approach

It has been mentioned that Euclidean clustering suffers from a phenomenon
known as 'category drift' which results from the updating and subsequent

movement of category centres in the classification system representation of input

space. In some cases, categories drift quite dramatically and even re-occupy

previous class centre positions. Monotonic changes can help to rectify this

problem but can introduce problems of a different type (Moore, 1989). Fuzzy

ART gets around this problem by using complement coding. Complement coding

allows a category to grow by incorporating previously enclosed space within the

new category extent. The category growth property of fuzzy ART ensures that

categories do not drift and occupy different areas of state-space.
The weight vector of a fuzzy ART category is given by

Wi= (Uj 9Vj)

where u, and vi are non-complement coded and complement coded

respectively. Note that vj' is not necessarily the complement coded form of uj

When the new category is first created, vj is the complement coded form of u,

but, during operation, sometimes only u- is replaced by the new input following

the fuzzy AND operation and at other times, vj is replaced depending upon the

new input vector.

As illustrated in Figure 4.5, uj and Vj, for a two dimensional system, represent

the extent of the current category if the size of the rectangle Rj is defined as
JRJ = jvj - ujj

If a new input a is used to update the J" winning category of extent JRj I, the

updating operation, signified by ED, gives
JR.

r ED al = 1(a v v,) - (a A U,,)I.

This comes from applying the FCFR learning equation (P=1.0), using input a, to
the weight vector w,.

180

If the new category JRj (D al is too large then fuzzy ART resets and searches for a

new category. It can be shown (Carpenter Grossberg and Rosen, 1991) that, for

an M dimensional input space,

JRj (D aj!! ý M (I - p) (4.1)

Thus, the growth of a particular category is limited by the vigilance parameter as

would be expected.

An important point to note is that the weight values do not signify the centre of a

category in the normal sense of clustering procedures; they signify the 'extent'

values which allow the growth of a category to include previously encompassed

values of weight space. Categories do not move but grow until a specified upper

limit of category size is reached.

01

Figure 4.5. Fuzzy ART clustering and category growth illustrating the category growth

property. (After Carpenter, Grossberg and Rosen, 1991). Categories are represented by 'extent

markers' and not centres; the latter are not meaningful when using the Lý norm which is more

suited to fuzzy operations than is the Euclidean norm.

4.2.5 EUCART Categories

EUCART weight values are given by WE = (UE, V
E),

where uE and v are the

minimum and maximum category extent markers with components given by
E (U E

Vk (t + 1) = Ujk (t + 1)
=min jk (t), ak and j max(vi (t), ak) respectively. These

4 poles' moving in 'opposite' directions in M-dimensional hyperspace delimit

hyperspace categories whose extent is given by

191

ej =11VE _UEII, ii

where 11
.
11 is the Euclidean or P norm (Euclidean distance between two vectors);

see Figure 4.6. Analogously to equation (4.1) the category growth criterion for

normalised Euclidean space becomes

ej!! ý -Ir-M (1 - PE) (4.2)
2

where VM is the maximum possible Euclidean distance between points in [0, I]m

and pE is the vigilance parameter of EUCART. Analogously to fuzzy ART, for

high vigilance, i. e. pE -4 1, the resulting categories are very small and for low

vigilance, i. e. pE-ý 0 they are very large.

The centre of a category is given by

C=1 (UE + VE) i2ji

and, as with fuzzy ART, does not reflect the centre of mass (centroid) of the

category, which may be desired for certain applications. The centre of mass of a

category may be computed incrementally during learning as required. All input

vectors that contribute to a category will continue to belong to that category

throughout the learning process as stated by the EUCART Category Composition

Theoreni.

u

Figure 4.6. EUCART clustefing using the category extent markers analogous to those offuzzy

ART. When a new input extends the category boundaries, the category centre will also change.

However, the subset of input space encompassed by the previous category remains within the

new category.

An input, I is said to be a member of the i"' category if

182

lici
- 111: 5 -SfM (1

- PE)

2

which forms the EUCART match criterion. This form of match criterion, unlike

equation (2.14) of fuzzy ART does not take into account the absolute magnitude

of the input vector. In the context of state-space partitioning this is not

particularly important as the main focus of interest is upon absolute distances

from a state-space exemplar. In pattern recognition tasks, however, the absolute

magnitude must be taken into account so that patterns are matched according to

the degree of correlation between them. For example, an input may be closer to a

signal category in terms of absolute magnitude but have a much smaller

correlation in terms of vector direction, i. e. dot product. Thus, a category with a

smaller exemplar vector magnitude but nearer in terms of angle may well be the

desired category. Ibis important point is reflected in fuzzy ART by the dual

choice and matching functions, and the search mechanism. Note that choosing a

winner in terms of distance alone is not equivalent to finding the largest net input

by using the dot product, unless the exemplar weights are normalised.

4. Z6 EUCART Category Containment

Section 4.2.6 describes the EUCART category form and illustrates the use of

category extent markers in specifying hyperspherical categories analogous to the

hyperrectangular ones of fuzzy ART. The problem of category drift was outlined
in sections 4.2.3 and 4.2.4. and also occurs in ART systems which do not use

complement coding (Appendix D); in the latter case, it is for a slightly different

reason and leads to category proliferation as categories which have drifted

towards the origin are replaced by new categories.

One of the major justifications for an architecture such as EUCART is that it both

confers the benefits of using a Euclidean metric and prevents category drift.
EUCART prevents category drift in the sense that once inputs are assigned to a
category, they always remain within the confines of that category. Even though

183

the category boundaries change, no input, once categorised, is ever "left behinX'

by a wandering category.

The hyperspherical category growth is not monotonic in the sense that established

hypervolumes are necessarily contained in later hypervolumes. However, as

proved in the EUCART Category Composition Theorem of this thesis, all

members of a given category remain within the boundaries of that category from

the moment of categorisation onwards if fast learning (0=1) is used. This

property is important for problems where actions or outputs are associated with

regions of input space or state-space.

A semi-formal proof of the EUCART Category Composition theorem is

developed in Appendix G and will forms the basis for the Centroid Inclusion

Theorem of section 4.2.13 which shows that the inclusion of centroid
information-concerning the distribution of inputs within a category--within the

EUCART architecture is possible.

The EUCART Category Composition Theorem :

All inputs that are members of a given hyperspherical, category remain within that

category throughout the category growth process and beyond.

In other words, for an input space (state-space), X

Vxv r: X for some time,, r and some hyperspherical category, C, (') at timer,

xv G c(i) =* x r= c(i) Vn>O

4. Z7. The Fuzzy Choke and Matching Functions Revisited

The fuzzy ART choice function of equation (2.13) approximates to
IIAWjl

with a -ý 0. 1wil

184

This measures the extent to which w, is a fuzzy subset of I (Zadeh, 1965;

Kosko, 1992).

Where wj is a fuzzy subset of I,

Tj(i)=Tj(wj)=
1wil

a+lwjl

IIAWjl=l

md equadon (2.13) becomes
1wil

with Tj (1) -I as a -ý

(4.3)

1w
jI can be maximised up to a maximum value at w, =I to give the highest

choice function for fuzzy subsets of I through the monotonic increasing property

(M. I. P.) of equation (4.3); this property is proved informally in appendix B. The

fuzzy ART match function of equation (2.14) has a value of
IIAWji=iWjl

(4.4) III III

for wja fuzzy subset of I. So, for this special case, given the set of fuzzy

subsets of I, denoted by K2, . for wj OWk 6 r1l

Tk(l)ý: Tj(l), =: ý jWkjý: jWJjI Vj#k

by the M. I. P.

Now, for 1w, I= max, fiwjll, ff reset occurs, no more matches can be found

since, from equation (4.3)

wjl JW
:5L: 5

lwkl,
and,

lwkl<p==>Iwjl<p,
VwjeQ, forsome ii

1w,
III III III III

Wk G 01.

Thus, no further search for fuzzy subsets is required. Other searches will follow
for cases when wj v- f1l.

If EUCART is given the choice function

185

TjE(1)=l-llcj -ill
where cj = -'(uf +vEj) as before, for a normalised space, 4W "2'

[0,1]m then TjE (1) r= [0,1] and a match criterion based purely upon absolute

2
(1 - p,.) removes the necessity of further search if the distance lic

VM

TE (I TE (1) =: ý _ Ill 2., JjCk
_ Ill,

criterion is not fulfilled. In other words, kj
11c

j

Vj: # k

M (I - p.) which and failing the match criterion gives
JJCJ

- ill;
->

Jýk
- 11i >

2E

2

implies that 11C
j>

2E: (1 - PE)" Vi M
2

Thus, the search for a new winner is not required because no better match, in the

sense of Euclidean distance, can be found. The simplified choice and match

functions of EUCART do not take the magnitude of the input vector into account

and so remove the need for a more complex search pattern. The more complex

search is required to find a new input with roughly the same relative spatial

pattern regardless of the absolute magnitude. These simplified dynamics suffice in

the present control context because stored patterns reflect state values and

correlation of an input with its canonical or exemplar state is based purely upon

absolute distances. As mentioned above, more sophisticated pattern clustering,

using a Euclidean metric, requires some form of angle or dot product measure to

assess input correlation with stored exemplars to improve clustering properties.

This correlation measure allows matching independently of signal magnitude, For

example, in the clustering of visual data, it is desirable that patterns can be

clustered within a sample space of varying background illumination, with respect

to relative reflectance patterns.

4. Z8 EUCART Leaming

Learning in EUCART is analogous to learning in fuzzy ART and LTM changes
are made according to

186

(Enew)
=

(old))UE(old) AUE -PE J Ui PE (1
j+

(1 (4.5a)

and,
E(new)

V
E(old))+ (I_ pE)V E(old)

vi PE('A
Ji (4.5b)

whereAand v are the fuzzy AND and OR operators respectively (Zadeh, 1965).

Equations (4.5a) and (4.5b) are used to find the new min and max category extent

markers respectively provided that the category growth criterion of equation (4.2)

is not violated by the updated extent markers; if this criterion is violated then the

update is not carried out. The Fast- Commit-Fast-R ecode and Fast-Commit-

Slow-Recode options are retained in EUCART.

4.2.9 A Comparison with Fuzzy ART

Figure 4.7 illustrates the fuzzy ART choice function of equation (2-13) as a
function of the two exemplar weights for a two-dimensional non complement-

coded input. Where both weight values are less than their respective input values,

the choice function has a plateau of approximately unity. Outside of this plateau

region, the choice function decays with increasing weight magnitude.

Fuzzy ART ChoiOe Function

9
(5

>

0
0

C)

1
0.8

wl

Figure 4.7 An illustration of the fuzzy ART choice function for a two dimensional weight
space.

187

w2

The Euclidean choice function of EUCART is more representative of state-space

and does not suffer from the "near discontinuity" between the plateau region and

the remainder of weight space. Any function of the fuzzy ART choice function

would have a small range within a region of state-space determined by an input;

this would not be representative of the variation in distance between the input

vector and the weight vector because the choice function is a non-linear function

of that distance. Problems might arise when weighting node contributions on the

basis of the distance between a given input and neighbouring nodes when using a

distributed representation of information within a network.

4. Z 10 A Comparison with Other Architectures

Static networks--networks with no recurrent connections-have a finite impulse

response and cannot store information for an indefinite amount of time.
Recurrent neural networks have an internal state that is capable of representing
contextual information. Learning algorithms for recurrent networks are mostly

generalisations of existing learning algorithms for static networks; an example is

the backpropagation through time algorithm (Werbos, 1990; Srinivasan, Prasad

and Rao, 1994) which is an extension of the gradient descent algorithm for
feefforward networks (McClelland and Rumelhart, 1986) It works by storing

unit activations and computing the gradient recursively.

Recurrent networks can have limited storage capacities for dealing with input

sequences (Bengio, Simard and Frasconi, 1994). Recurrent networks generally
outperform static networks but optimality is more difficult to obtain (Picton,
1994) and readily settle into local minima representing sub-optimal solutions
(Bianchini, Gori and Maggini, 1994); these solutions take into account short term
dependencies as opposed to longer term dependencies (Bengio, Simard and
Frasconi, 1994). The difficulties involved in training recurrent neural networks
are possibly responsible for their slow adoption in the field of control engineering.

188

A partially recurrent network, the Elman network, (Elman, 1990) is slowly

increasing in popularity for system modelling and identification (Picton, 1994); it

is especially useful for modelling dynamical systems with temporal correlation and

delay effects. An Elman network consists of three layers plus a context layer

(Figure 4.8). Only the middle layer is recurrent which gives the architecture

advantages over fully recurrent nets. A modified form of backpropagation can be

used to train it (Elman, 1990; Picton, 1994)

x y

Figure 4.8. An Elman network which consists of three feedforward layers and a context layer

which provides a delay of one sampling period.

Connections to context units are fixed and provide a delay of one sampling

period. Outputs of the hidden layer represent the state which is then fed to the

context units. The output of the context units is fed to the output layer. The

output of the net represents a function of the current state and the previous state.

It is difficult to see how such a system will take into account long-term

dependencies such as those encountered with failure-driven systems with
expanding time horizons.

189

4. Z 11. Cascade Correlation

An example of an incremental learning system with self-organising capabilities is

the Cascade-correlation architecture of Fahlman and Lebiere (1990). It was

developed because current learning algorithms--mostly based around

backpropagation using feedforward network&-were seen as slow. The lack of

speed was thought, in part, to be responsible for the lack of widespread

application of neural networks.

The main problem with algorithms such as backpropagation is that all weights

have to change and it is difficult to add or adapt individual nodes. The use of

global learning often results in wasted effort through inefficiency of adaptation.

The cascade-correlation network was developed to overcome these difficulties.

There are two key ideas that underlie the cascade-correlation neural network viz.
A cascaded architecture: where nodes are added incrementally as required and the

maximised correlation between the outputs of new units and the residual error

signal. New units are added to the network, one by one, when required. The

weights on the incoming connections are fixed and adaptation occurs only on the

output connection weights.

The learning strategy is incremental and allows progression to high-order feature

detection; learning begins with no hidden units and direct input-output training.
After a number of training cycles (off-line), a minimum error level is approached
asymptotically at which there is no significant reduction in error for each extra
cycle. If the error is less than or equal to a prescribed limit the process stops,
otherwise, a hidden unit is added to reduce the residual error and the process is

repeated.

More than one new hidden unit can be used in the form of a candidate pool where
a winner is chosen on the basis of residual error reduction.

190

When a new node is added, the input weights are frozen and the node output

weights are trained so as to reduce the residual error. Local training is used

instead of global training with the new node being trained separately form the rest

of the network to reduce the residual error without disrupting the remainder of

the network. The network weights are frozen whilst a suitable set of input

weights for the new unit are found, then the new unit input weights are frozen and

full network training is resumed.

The many advantages of the cascade-correlation network over "standard! '

feedforward networks---such as the multilayer Perceptron-using

backpropagation include (Fahlman and Lebiere, 1990):

1. the network size / topology is not required in advance,

2. there is a sizeable reduction in training time;

3. high order feature detectors can be constructed without "slowdown"

4. the cascade-correlation architecture can be used for incremental learning in

which new information is added to the trained net

5. only one layer is trained at a time

6. no backpropagation of error signals is required; weighted connections are

unidirectional (biologically plausible)

7. there is no interaction of new node candidates; each candidate sees input and

output and the connections are limited, thus making parallel implementation

possible.

Other incremental learning architectures using a single layer are not good for

some problems which require higher-order feature detectors with interconnected

non-linear layers (FahIman and Lebiere, 1990).

The cascade-correlation architecture does offer advantages over architectures

such as the multilayer Perceptron and in certain mapping tasks will outperform it.

However, certain fundamental objections remain when considering the use of this

architecture for control problems. The cascade correlation architecture uses a

191

modified form of the gradient descent method which is off-line and requires

numerous passes through a pre-specified training set. Supervised learning is also

required to provide an output vector-for each input vector--so that the residual

error can be computed to provide a training signal for the addition of new nodes.
Furthermore, although nodes can be added to the cascade correlation network, it

is difficult to see how nodes can be removed to reduce the load caused by under-

utilised nodes.

4. Z 12 Fritzko's Growing Call Structures

Fritzke (1991,1993,1994) proposes an incremental self-organising network, the

growing cell structures (GCS) which, like Kohonen's SOM, maintains a

topological relationship between network nodes and the input space.

The main difference between the SOM and the GCS is that for the SOM, the

structure and size of the network are predetermined, but for the GCS, nodes may
be added or removed. The GCS network is an improvement over the SOM

(Fritzke, 1993) and has both unsupervised and supervised versions.

Cells or nodes of the GCS network are arranged in RN and are not restricted to a
planar structure. The topological relationship between the cells is maintained by

an algorithm which constructs a topological complex from hypertetrahedral

simplices according to the distribution of input data; simplices may be added or
removed as required.

Like the SOM, the GCS net uses competitive learning to find the nearest
nodo--in terms of Euclidean distance-for each input presentation. The winning

node will be a member of at least one simplex. The set of nodes comprising the
GCS network defines a Voronoi tessellation; each node is responsible for a
Voronoi region within which it is the winner. The winning node is updated to the

192

maximum extent and the direct topological neighbours of the simplex are updated

to a lesser extent.

Activity traces are maintained for each cell; the winning node trace is increased

whilst all others are decreased. The maintenance of traces allows the underlying

probability distribution to be estimated by calculating the relative signal ftequency

of the cells, that is, the ratio of the cell trace to the total trace. Where the trace is

high, a new cell may be added and the trace values redistributed. Where it is low,

cells can be removed. The algorithm for the addition and removal of cells

maintains the topological structure of the complex, i. e. it will always consist of

connected hypertetrahedral simplices.

The supervised version uses a radial basis function centred on each of the cell

exemplars (weight vectors). It was bench-marked against a MLP and a cascade

correlation network using the two spirals problem (Carpenter et al 1992). Results

showed that the GCS network required many fewer training epochs. This result

could be misleading, however because the computational complexity of each

epoch for each of the networks may not be comparable.

4. Z13 Why Use EUCART?

Like the cascade correlation and GCS networks, EUCART does not require the

size and topology to be specified in advance of training. Learning in EUCART is

incremental and adapts to incorporate new information on-line for an indefinite

period; there is no distinguishable training phase as with many network

architectures such as the multilayer Perceptron and many of its derivatives.

The EUCART structure of individual nodes means that processing is strictly local

and only one node is involved at any one time where winner-takes-all processing
is used; Backpropagation of error signals during global learning is not required.

193

The direct topological relationship between the EUCART node locations and the

state-space regions they represent, means that complex spatial information

regarding node connections is not required; node neighbourhoods are simply

chosen on the basis of Euclidean distance.

EUCART has a simple structure when compared to the GCS network. Is all the

complexity of the GCS network required for this task? There may be no need for

the topological information in this case. The GCS network requires the

supervised learning variant if it is to be used to solve the cart-pole problem.

It is possible that the GCS network could be used as a self-organising decoder in

the way that EUCART is. Even though the topological structure is maintained by

the GCS network it will still suffer from category drift because the state-space

categories would be based around the exemplar vectors represented by the node

centroids. Although EUCART suffers from the problem of state reallocation

when winner-takes-all competition is used, a distributed version, which combines

information from more than one node, would reduce the impact because all

categories to which a given state belongs will be used to produce the output. This

is not the case with the GCS network which does not maintain the property of the

EUCART category composition theorem and so would continue to suffer from

the state reallocation problem even with distribution of state information. The

GCS has no category extent markers to delimit the set of input vectors belonging

to each category; thus there is no way of telling whether or not a given input

actually belongs to a given category, owing to a set of inputs which have

determined the extent markers, or is assigned to a category on the grounds that

the category centre has moved the category to where the given input vector is

located.

To some extent, EUCART is a "rough and ready" method of obtaining a state-

space partitioning; it is certainly not the last word on self-organising nets, nor is it

meant to be. In effect, it is a working algorithm shell to which improvements may
be made and from which variations may be developed.

194

One possible variation on EUCART may be to use direction information when

comparing input and exemplar vectors; this would be analogous to the match

condition of fuzzy ART which is separate from the choice function. By

comparing directional information, EUCART could maintain clusters based upon

groupings of spatial patterns, that is, patterns not simply related by absolute
Euclidean distance. A typical pattern matching cycle would consist of finding the

nearest exemplar to the input pattern and then checIdng for a match in terms of

spatial information. If the nearest exemplar pattern did not match sufficiently,

then the node could be inhibited and a search triggered to find the next nearest

stored pattern which may be a closer spatial match.

It is acknowledged that centroid information of the type found in competitive

vector quantising and probabilistic neural network architectures, might be of
importance for a large number of tasks (Specht, 1990; Lim and Harrison, 1995);

for the quantisation of state-space considered here, this issue might not be critical

where optimal state-space partitioning for control does not depend directly upon

the distribution of input data. For example, successful control applications have

been achieved with both pre-set and self-organising schemes (e. g. Barto, Sutton

and Anderson, 1983; Hormel, 1990; Ritter et al, 1992).

However, it can be postulated that the use of centroid information may give an
improved partitioning of state-space and, consequently, improve the control. Ile

next section explores the option of adding centroid information to alter the
operating characteristics of EUCART to make it more suitable for other
application areas and, possibly, improve control performance.

4. Z 14 Adding Centrolds

The inclusion of centroid information often allows a category to represent the
contained data in a more meaningful way. For example, a Gaussian kernel

195

function could be placed at the "true" centre of the category (the centroid) to
indicate set membership. More simply, category membership could be made

proportional to the distance between an input and the relevant category centroid.
The following theorem shows that the EUCART category centroid will always

remain within the category and so will be meaningfully associated with that

category. The centroid can then be used in any algorithm which requires centroid
information.

The EUCART Centroid Inclusion Theorem:

A EUCART category centroid, W(t), defined by the incremental learning rule

Wi (t + 1) = wic W+ a(l(t) - w, W) (4.6) 81

where a is a learning constant such that 0: 5 a: 5 1 will always remain within the

hyperspherical category, S, () for all t.

Proof..

As sume, without los s of generality, that w, (t) e H, (') . That the input is contained

in the hyperrectangle I(t) e H() is ensured by the category growth process. The

hyperrectangle, H() is a convex set. Let w, (t) and I(t) be the endpoints of a

linedefinedby r(i7)=wv(t)+? 7(1(t)-wc(t)) (4.7) 9
where 0: 5 17: 5 1. Setting il--O, 1 gives the extremes w, "(t) and I(t) respectively.

From lemma 3 of Appendix G, HH and from the definition of a convex

set, r(i7) r= H, (+),, V77 e [0,1]

For some time, t equation (4.6) can be identified with equation (4.7) and for an
arbitrary value il=a so

wic +

Thus, w; (t) e H, (') => w i'(t + 1) r= H, ('), , and taking, w M) = I(l) by the principle

of mathematical induction, w,! (r) E H, (), Vr m

196

4.3 EUCART-BSA Hybrid

Section 4.3 presents simulation results showing the application of EUCART to

the solution of a non-linear control problem (the cart-pole problem) using

reinforcement learning. First, EUCART is applied in the form discussed in section

4.2. Second, a modified version of EUCART, EUCART with nearest neighbour

priming, is proposed in an attempt to improve performance further. The results

are compared to those of the original BSA implementation and some properties of

the EUCART-based neurocontroller are discussed.

4.3.1 Hybrid Description

This section describes the simulations carried out using the EUCART state-space

decoder in place of the fixed state-space decoder of Barto et al. (1983). The first

objective is to confirm that the idea of decoupling the state-space representation

task and the control action leaming task is tenable. If so, the original BSA

reinforcement learning implementation can be retained and different

neurocontroller architectures could be developed through modifications to the

decoder. The second objective is to develop a decoder which does not require a

prior! state-space structuring and can organise state-space information

autonomously through experience. The achievement of the second objective is a

sufficient condition for achievement of the first and indicates the possibility of

other decoder architectures.

The EUCART-BSA hybrid consists of the EUCART decoder with nodes linked

to stored ASE / ACE infonnation. Each node now takes the place of a single box

which can determine its own extent, and nodes may be added as required.

Using EUCART as a self-organising decoder coupled with the BSA

implementation of reinforcement learning, gives a neurocontroller with the
following benefits:

197

0 minimal supervision requirements

incremental partitioning of state-space,

"quick! ' partitioning on-line,

category overlap: basis for distribution of control information

"once a member always a member" anticipation of a distributed

representation ensuring that inputs always contribute to their allotted

category.

4.3.2 Simulation 1: the Basic Hybrid System

Simulations, following the method of Barto et al (1983) comprising 10 runs of

600 trials each, were carried out. As in the BSA implementation, the state vector

was reset to x=1=0=&=0 after each trial. The simulation conditions and

parameters were similar to those in the BSA implementation except for a few

minor changes necessitated by the new approach. First, runs were not terminated

when the trial of a particular run first reached the ceiling of 500,000 time steps of

0.02 seconds (approximately 2.8 hours of simulated time). Learning was still

occurring in some cases and the system had to reach the ceiling value a large

number of times consecutively to indicate convergence. Second, the learning

parameter, a was set to 1,000 in the BSA implementation to establish control

actions quickly. In the present implementation, because the state-space

partitioning is not fixed, learning needs to remain plastic to prevent premature

establishment of control actions. Hence a was set to 0.8. The parameters used in

the EUCART decoder were cc-4.00001, P--0.9 and p=0.8. The FCSR option was

used.

Table 4.1 shows the results of the first 10 runs of the EUCART-BSA hybrid

system.

198

seed 1 2 3 4 5 6 7 8 9 10

trials 9 1550+ 108 271 404 223 746+ 287 455 24

nodes 24 533 188 429 472 334 573 355 454 62

Table 4.1 The results for the first 10 runs of the EUCART-BSA hybrid system. The number of

trials to convergence and the number of nodes generated are shown Note that learning times are

much longer than for the BSA original system. This is because a state-space partitioning has to

be leamed.

12000

10000

8000
41)
r_

6000

Ai
4000

10 trial average.
/ J* i _. :. %

-8 trial average.

2000
[Converjgenio'o

pt

10 trial std. devn.

8 trial std. devn.

0 100 200 300 400 600 600
TrIW number.

Figure 4.9. Simulation results showing the performance of the ASE / ACE system with the
EUCART state-space decoder. The trials were averaged over ten or eight runs as described in

the text.

Figure 4.9 shows the results of 10 runs and a subset of 8 runs. The Simulated
trial duration is plotted against the trial number to show how control performance
changes with increasing experience. The subset was required for clarity as 8 of
the 10 runs converged to the ceiling value of 10,000 seconds (500,000 time steps)
within the 600 trial limit; The remaining two runs converged at about 1500 trials
and 1200 trials respectively. The solid curve shows the average of the 8 runs
which converged during the trial limit. The dotted curve shows the average with
the remaining two runs added to the ensembles for each trial. As with the BSA

199

study, a single point is plotted to indicate the average of each bin of 5 consecutive

trial (ensemble) averages. The remaining curves show 1 standard deviation either

side of the respective means, i. e. the dashed curve is associated with the solid

curve and the chained curve is associated with the dotted curve. These are

calculated at 25 trial intervals on the original ensemble values (not on the five trial

bins). Although the sample size is small, standard deviation is used to indicate

spread, since maximum and minimum values are dominated by the trial which

converges first. The circles at the top of the graph indicate at which trial the

members of the 8 run subset converged.

In the original BSA implementation the simulation results show that convergence

towards a solution of the cart-pole problem occurs mostly within 100 trials. The

present implementation requires more trials than this on the whole, but does

eventually solve the problem. Here, learning is incremental, and is required to be

more plastic; consequently, learning is slower to allow for adjustments in the

state-space representation. With rapid learning of control actions, changes in

state-space representation for a particular node centre and its immediate vicinity

would not be followed by concomitant changes in the control actions to the

required extent. Thus, the control action would not be representative of the

modified state node and its current sphere of influence; it would represent,
instead, the established control based upon a premature partitioning of state-

space.

The utility of EUCART Hes in the generality of the resulting approach when
coupled with reinforcement learning. No a priori partitioning of state-space is

required unlike "boxes" (Mitchie and Chambers, 1968) or the original BSA
implementation (Barto et al. 1983). In principle, the new approach could be

applied to other dynamical systems with little modification without the
requirement for an alternative fixed state-space partition specific to the new
system. This indicates the possibility of general purpose autonomous
neurocontrollers.

200

Note the wide variation of average trial duration for each ensemble of 8 or 10

trials. The stochastic nature of the control output for a new node results in widely

varying state-space trajectories while the control mapping is being established
during each run. Within a single ensemble of trials, one run may have established

a control mapping very quickly within a limited region of state-space while

another may still have low trial durations as a result of initial control outputs

pushing the state-space trajectory further away from a desired region and causing

the creation of many naYve nodes requiring training.

Figure 4.10 shows the average increase in the number of EUCART nodes for both

the full set of 10 runs and for the 8 trial subset. Both the 8 run averages and the 8

run maxima reflect convergence to a final set of desirable control actions. The 10

run averages and 10 run maxima indicate that adequate state-space coverage has

not yet been achieved for the remaining two runs; adequate coverage in the

present context means that a control mapping has been established which

maintains control for a cart-pole system starting with a given set of initial

conditions. Whether coverage is adequate given a different set of initial

conditions is another matter.

600
- 10 trial average.

.... 8 trial average.
...

I
500-

10 tdW maximum.

8 trial maximum.
400-

300 -

.......................................

I

200-
If /

100-

....
77777-

I /-- 8,10 trial minimum.

01 : ý-o 3ý50 : ý-o iý-o --6, OJO
Trial number.

Figure 4.10 Simulation results showing the increase in the number of EUCART nodes
representing individual state-space regions and their associated control actions.

201

As expected for the neurocontroller performance, the trend is towards greater

trial durations as the trial number increases. However, the increases in trial

duration are not monotonic. This is because the addition of a new EUCART

node introduces an initial arbitrary control action. This sometimes pushes the

state-space trajectory into previously unencountered regions of state-space or a

region where the control actions are not properly established. The

neurocontroller is then likely to fail if the well-established state-space regions are

not re-entered quickly. Also, new nodes are sometimes added to cover 44gapS" in

state-space and their influence replaces some well-established state-space regions

with naYve coverage because the regions are now associated with a new node (i. e.

the new node centre is now nearer to states previously encompassed by other

nodes). For winner-takes-all competition, the EUCART category composition

theorem is not violated because the input vectors are associated with the new

category nodes. However, information is lost from long-standing categories

which are now "further away" because only a winning node is chosen and

previous associations are discarded. A distributed representation of data would

prevent this by taking into account all categories with which the input is

associated.

Figure 4.11 illustrates the situation schematically. The dark border shows the
decision boundary within which states belong to the new node. The degree of
disruption caused by a new (and naYve) node depends upon the extent of overlap.
The extent of overlap, in turn, is a function of the Euclidean distance between the

category centres. If this distance, for a particular node with respect to its nearest
neighbour, exceeds twice the maximum possible category radius, then no overlap
will occur until a new node is added which violates the minimum distance

condition. The dependence of overlap on inter-category distance is exploited in

the modified EUCART decoder implementation discussed later.

202

New state node

State cate
centres

Figure 4.11. A schematic illustration of the problem of overlap associated with adding new

nodes. The decision region for the new node now includes space previously covered by the

original EUCART nodes. Disruption to established control actions within these regions is

possible until the new node has learnt to represent a desirable control action.

As the results show, performance is eventually recovered when the new nodes

learn to represent desirable control actions. The undesirable disruption is

reminiscent of the stability -plasticity dilemma (Carpenter and Grossberg, 1997a)

which states that adaptive systems must balance the requirement for stable

learning of information against the requirement of plasticity and adaptation to

novel phenomena.

With fixed non-overlapping box-based decoders, the neurocontroller is a pre-

established look-up table which is filled during learning. Although there is no

overlapping and hence no disruption of learning between state-space regions, a

priori assumptions are made by an operator which restrict the autonomy of a

learning system; such assumptions include a prespecified state-space granularity

and a prespecified distribution of state-space categories. The disruption effect is a

consequence of the autonomy of a EUCART-based neurocontroller; attempts to

improve neurocontroller performance must include a reduction of this disruption

effect without reducing the level of autonomy.

Figure 4.12 shows the results of a typical run. Again, the results are plotted as an

average of bins of 5 consecutive trial values. The graph indicates some

correlation between increases in node numbers and disruption of trial duration.

This is readily apparent at around trial 400 with the small increase in the number

203

Previous state nodes

of EUCART nodes occurring simultaneously with a drop in the trial duration

before recovery and final convergence. From inspection of Figure 4.12, it is

apparent that the trend is towards increasing trial durations until the ceiling of

10,000 seconds is reached. The effect of transient disruptions caused by the

addition of new nodes is more pronounced when winner-takes-all dynamics are

used because a trained category node is replaced outright by a naYve node which,

henceforth, wins the competition in a given region until, possibly, replaced by a

new node. Over time, this node will be trained and will reflect the control

mapping correctly within a given region of state-space.

12000

10000

8000

6000

4000 16C

200C

0 100 200 300 400 500 600
Trial number.

1

Figure 4.12. One typical run from the ensemble. Results are plotted as averages of rive

consecutive trials. Note the uwsient disruptions caused by the addition of new nodes.

4.3.3 EUCART, Incremental Clustering and Stability

The last point in section 4.3.2. raises the question of stability. The incremental

clustering algorithm of EUCART gradually builds a cover over regions of state-

space; whilst the cover is being built, transient disruptions will occur. When no
99 gaps" exist in a region of state-space, disruptive naYve nodes will no longer be

204

required and a tessellation of this region by the choice function hyperplanes,

between neighbouring category centres, will have formed.

Moore (1989) proposes two types of stability for incremental clustering

algorithms:

Stable 1: no prototype vector can "cycle", or take on a value that it had at a

previous time (provided it has changed in the meantime), and

Stable 2: only a finite number of clusters is formed with infinite presentation of

the data.

Moore modifies the condition of Stable I to include the case where a prototype

vector may include a previous value but it must eventually stop moving. The

condition of Stable 2 is also restated as:

"in a bounded input space, condition (2) is equivalent to requiring that prototype

vectors do not get arbitrarily close to each other. "

EUCART is Stable 1, in the modified sense. For a given category, the category

centre will stop moving when the EUCART category reaches its maximum extent;

the category centre may pass through a previous value but will converge towards
its final position in the fully extended category. Analogously to fuzzy ART,

UE
Ii

(Carpenter Grossberg and Rosen. 199 1) 11
j monot onically decreases and 11v 111

monotonically increases until the category reaches its maximum diameter, at this

point the category has stabilised. EUCART is also Stable 2 because the input

space is bounded (because the dynamics of this particular problem are constrained
to lie on a manifold) and thus requires a finite number of hyperspheres to contain
it. Category hyperspheres may extend beyond the input space but, where they do,

no input vectors will be found there by definition; this "fictitious" input space
allows a complete cover of the Euclidean input space by hyperspheres of a fixed

radius and thereby obviates the requirement of collections of hyperspheres near
the input space boundary with radii tending to zero. The shortest run of the set of

205

runs converges after just 10 trials with only 24 nodes. This set of control actions

is almost certainly limited because comparatively little of state-space has been

explored. The controller would not be expected to be as robust and to possess as

good disturbance rejection propei ties as those controllers with many more nodes

which indicates a wider experience of state-space. From the point of view of

robustness, the random perturbations caused by the introduction of naYve nodes

have a beneficial effect on the long term experience of the neurocontroller by

extending its experience into new state-space regions.

In many control applications these random perturbations by the naYve nodes may

not be desirable or practical when worldng within a real environment (it may be

dangerous) but including a model of the environment alongside a neurocontroller

may allow "what if" probing by the neurocontroller to improve the rate of

convergence towards a viable control solution. A better solution perhaps, would
be to set failure limits for the reinforcement learning neurocontroller which lay

within regions of performance recovery by an operator, or other control method,

so that learning from failure did not necessarily entail disastrous consequences

within a real operating environment. Failure would then represent undesirable

system states to be avoided by a neurocontroller and which would lead to an

operator warning to allow manual recovery of performance.

The naYvety of neurocontrollers with comparatively few nodes is considered in
Chapter 5 which illustrates the adaptiveness of the EUCART approach; there, it is

shown that when new regions of state-space are encountered, a EUCART-based

neurocontroller is able to adapt without catastrophic forgetting (Sharkey and
Sharkey, 1994). The next section will present a modified EUCART-based

neurocontroller which attempts to reduce the disruption by naive nodes during
incremental clustering.

206

4.3.4 Simulation 2: Nearest Neighbour Priming

As discussed previously, it was found that naive nodes, added to fin "gaps" in

state-space coverage, often disrupted currently established control information.

Although recovery and convergence eventually occurs, it would be desirable to

minimise disruption during learning. Where disruption is likely to be the most

severe, it is because the region of influence of a nalve node infiltrates established

nodes in the neighbourhood of the new node. Thus, some state vectors which

were previously encompassed by the original nodes are now nearer to the new

node centre and thus elicit the control action determined by the new node

parameters; the parameters have not yet had time to tend towards desirable values
because the node has been newly created.

To reduce disruption when a new node is added, information from surrounding

nodes must be taken into account. Instead of beginning with a zero initial control

action weight, the weight values of n nearest neighbours can be combined to give

an initial weight value. In the present modified implementation, a scalar weighted

average of the form

new
1

zo --1: 77izi
n =,

is assigned as the ASE weight for the new node, where 77i is the scalar

contribution weighting of the i" neighbouring state-space category and Z, is the

0 ASE weight. The contribution weighting takes the following two factors into

account,

category centre distance; the further away the neighbouring state-space
category is from the new category centre, the smaUer the contribution to the
initial ASE weight should be, and

category node age; the "older" the neighbouring category in terms of learning
experience, the more established the control action is and hence is less likely

207

to be disruptive; the contribution to the initial ASE weight should be reduced

for recent (naYve) categories.

Ideally, new node priming is determined by close, well established categories with

desirable control actions. The form of the contribution weighting for the 0

nearest neighbour is, 77i = (Tj (c,,,,)Xi)p where c. is the newly created category

centre, T, (.) is the EUCART choice function for the 0 category node, Yj is the

ACE trace for the i' node and p 2: 1 is used for contrast enhancement (Nabet

and Pinter, 199 1). Note that Tj (.): S 1 and 5F, :51 imply that 77, :51. Contrast

enhancement is used to weight more heavily those nodes which are nearest to the

new node or are "older".

The parameters used in the runs of the modified EUCART sYstem were the same

as those used in the runs of the unmodified version. The number of nearest

neighbours, used to determine the initial ASE weights of new nodes, is n=5 and

the power p=5 is used to contrast enhance the contribution weighting, 71, .

The K nearest neighbours technique coupled with a variant of ART was used by
Zhang and Grant (1992) in conjunction with the boxes learning algorithm (Michie

and Chambers, 1968a). For a new input vector, if the input does not exceed a
membership threshold, the K nearest neighbours to the input are selected and
updated according to the degree of membership of the input with respect to the
category nodes. Category centres are updated in proportion to input vector
membership using a modified competitive learning scheme and represent the
centre-of-gravity for a cluster of input patterns in state-space encompassed by the
category node. The K nearest neighbour method is used in this context to update
existing nodes; if no nodes fulfil the membership criterion, then a new node is

created. Here, K nearest neighbours are used to prime the new node to minimise
disruption during the learning process.

208

seed 1 2 3 4 5 6 7 8 9 10

trials 11- 326 173 216 242 442 555 113 121 52

nodes 40 430 246 349 377
1

398
1

396
1

211 275 149

Table 4.27[he lust IU runs ot EUL; AKI-KLwiui priming snowing u-iaiuurduuiis mu mim

number of nodes.

Figure 4.13 shows the results of ten runs using the parameters of the previous set

of runs. This time, all ten runs converged within 600 trials.

12000

10000

8000

6000
m

400C

200(

..........

..........
10 trial average.

10 trial std. devn.
o Convergence pt.

0 100 200 300 400 Soo 600
Trial number.

Figure 4.13. Simulation results showing the performance of the ASE / ACE system with the
EUCART state-space decoder using nearest neighbour priming. The trials were averaged over

ten runs before plotting in bins of five trials; all runs ten-ninated within 600 trials.

After about 250 trials, the average number of nodes for the modified version of
EUCART (Figure 4.14) is similar to that of the eight run average of the original
version. This indicates that the increased average for the ten runs using the

original version of EUCART is caused by the two runs which did not converge
within the 600 trial limit. The time required-to-convergence and the number of

nodes are linked by the fact that an increase in the number of naYve nodes requires
an increase in learning time to modify the new parameters.

209

Priming is only effective in reducing disruption in regions of well-established

nodes represent a desirable control mapping. Without priming, the effect of a

new node is to issue a random control action which may cause the state-space

trajectory to enter new or weakly established regions of state-space. Often, the

result is that well established regions cannot be re-entered and failure occurs

subsequently. Where state-space areas are not well established, priming has little

or no effect because of the contrast enhancement of:

i) distance effects, where neighbouring nodes are relatively far apart in sparsely

represented regions,

ii) experience effects, where weakly established nodes contribute little information

to the new node.

600

500

400

300

200

100

/

10 trial average.
10 trU maxlmum.

10 trW mlnlmum.

Figure 4.14 Simulation results showing the increase in the number of EUCART nodes when
nearest neighbour priming is used.

210

01 AI
0 100 200 300 400 Soo 600

Trial number.

Figure 4.15 shows a run using nearest neighbour priming which uses the same

parameters as those used to produce the results of Figure 4.1 l.; the same random

number seed was used to illustrate the difference in disruption effects. Comparing

Figures 4.12 and 4.15 shows that the increase in the number of nodes is

approximately the same until about trial 150 where the run using nearest

neighbour priming begins to produce slightly fewer nodes and converges at

around trial 250. The two peaks of Figure 4.15 that exceed 8000 seconds
indicate that, although disruption occurs, the control mapping is becoming more

effective. Without nearest neighbour priming in Figure 4.12, further disruption

occurs for nearly 200 trials following the two peaks similar to those of Figure

4.15.

12000

10000

8000
c

6000

-a
iE

4000

2000

I

Figure 4.15. One typical run from the ensemble using nearest neighbour priming; the
parameters are the same as those used in the run of Figure 4.12.

Figures 4.16 and 4.17 illustrate the effect of nearest neighbou. r priming upon one
of the two runs which did not converge originally within the 600 trial limit.
Figure 4.16 shows the original performance without priming and Figure 4.17
illustrates performance with priming.

211

0 100 200 300 400 Soo 600
Trial number.

12000

10000

r_
0
m
ýi 6000

je

4000

200C

I

Figure 4.16. An example of a run without nearest neighbour priming which did not converge

within 600 trials. Convergence occurred eventually after about 1200 trials. Note the rapid
increase in nodes and the large variation in trial durations.

12000

10000

8000

a

6000

I. -
400C 116C

200C

100 200 300 400 Soo 600
Trial number.

I
I

Figure 4.17. A run, using nearest neighbour priming, with the same parameters as those used in
the run of Figure 3.26. Note the sizeable reduction in the number of nodes as compared with

Figure 4.16.

212

0 100 200 300 400 500 600
TrW number.

4.3.5 Leaming Rate

A set of 10 runs was carried out using the conditions of simulation 2 except that

this time, the EUCART learning rate P=1. This is equivalent to fast learning

(FCSR) in fuzzy ART. The results are shown in Table 4.3. It was decided to use

the fast learning mode for EUCART for subsequent experiments because it made

sense in the light of the comments on category membership which assumes that

categories will always extend to contain any member.

seed 1 2 3 4 5 6 7 8 9 10

trials 39 108 431 521 368 177 408 113 591 87

nodes 1 106 231 434 436 409 308 391 222 502 170

Table 4.3 Fast learning in EUCART with the learning rate set to unity showing the number of

trials to convergence and the final number of nodes for the first 10 random number seeds.

Comparing the results of Table 4.3 with those of Table 4.2 shows that setting 0=1

has an effect, as expected. The simulation provides a baseline with which to

compare future modifications using fully extended categories. Setting P=1

ensures that new inputs are always included in the category.

4.3.6 Simulation 4: Neurocontroller Adaptability with Different Initial
Conditions

A question to ask is "what happens when different initial conditions are used in

the cart-pole system simulation? ". In other words, "how adaptive is a trained
EUCART-based neurocontroller? ". Any candidate neurocontroller must be

plastic and must not suffer catastrophic forgetting when new information is

encountered. Table 4.4 shows the results of a EUCART-based neurocontroller,
using nearest neighbour priming, operated under different initial conditions
following training; only the angle was changed in the simulations to illustrate the

situation. With only 40 nodes, this controller has not explored much of state-
space and has to reduce its naYvety through exploration of unknown regions.

213

New initial condition No. of new trials required No. of new nodes required

+11, 0 0

+30 0 0

+60 171 275

+111, 371 319

Table 4.4. Results from a naive mained neurocontroller, consisting of 40 nodes, and the effect of

changing the initial angle. After retraining, the angle was reset; no disruption of previous
learning was observed.

The neurocontroller was trained with an initial state vector of zero. After

training, the initial pole angle was changed before restarting the simulation. To

check that learning under the new initial condition did not disrupt previous

experience, the initial condition was then reset to the original value after

successful training with the new condition. Resetting the initial condition did not
disrupt the established control mapping in any of the cases i. e. the original

mapping had not been "forgotten".

Initial conditions of +1' and +3' were dealt with easily by the 40 node

neurocontroller and required no new nodes or further trials. For +61, a further

275 nodes and 171 trials were required. Setting the angle to 111, after resetting
the neurocontroller, and training fi-om zero initial conditions, resulted in a further

319 nodes (over and above the original 40 nodes) trained over 371 trials. The

angle of 1111 is near to the failure limit of 12". These results indicate that a naive
EUCART-based neurocontroller is able to adapt to the new conditions without
disrupting previous learning. To illustrate the naYvety of the 40 node
neurocontroller, a simulation was carried out using a'trained 377 node
neurocontroller with a new initial condition of +6' for the angle; for this

neurocontroller, only a single further trial was required to train a single new node.
The more extensive experience of the 377 node neurocontroller, compared with
the 40 node neurocontroller of Table 4.4, is reflected in the reduced requirement
for extra leaming.

214

4.3.7 Simulation 5. - Changing Plant Conditions and Robustness

some work has been carried out on the robustness of the current hybrid system

which includes changing the operating characteristics of the simulation model
(Marriott and Harrison, 1996). Preliminary results indicate (see Table 10) that the

EUCART-based RL system is able to adapt to changes in simulation model

characteristics (e. g. cart friction). The starting system at the beginning of each

run is the naYve 40 node neurocontroller used in simulation 4. The fkst column of

Table 3.10 indicates increase of the cart friction coefficient used in the original
BSA study e. g. 650x signifies 650 times the original. Columns two and three

indicate the number of extra trials required and extra nodes generated respectively
before adaptation to the changed conditions. Learning following altered cart-pole

conditions is usuaRy accompanied by a "burst! 'of new node creation which
represents a stochastic search of previously unseen state-space regions.

Table 4.5 Changes in a EUCART-BSA neurocontroller required to recover control when cart
friction is increased.

Frict.

Inc.

Extra Trials Extra Nodes

2X 0 0

64X 0 0

16OX 0 0

24OX 0 0

250X 946 494

320X 0 0

380X 0 0

384X 274 355

40OX 0 0

450X 302 313

50OX 162

60OX 176 285

650X 265 360

215

Both simulations 4 and 5 show that the EUCART-BSA hybrid is able to recover

from changes in operating conditions which illustrates the adaptability of this

autonomous neurocontroller. However, in both cases, this is at the cost of a

considerable number of new learning trials and new nodes. Many of the new

nodes will be spurious and can probably be removed without undue loss of

control. Pruning of redundant nodes is covered in Chapter 5.

There are two anomalous results which have not yet been explained; they occur at

250X and 384X. The same random number sequence is used for all simulations

but the number of extra nodes generated by the EUCART-BSA system indicates

that new regions of state-space have been entered. The large number of extra

trials required by the hybrid for the factor of 250 indicates that the neurocontroller

had difficulty in maintaining control. It may be the case that for this particular

non-linear problem, slight perturbations in any of the parameters can have

disproportionate effects upon the outcome. Such anomalous behaviour may

possibly be prevented by increasing the experience of the EUCART-BSA

neurocontroller so that the state-space trajectory remains in a region of experience

where a successful control strategy is more likely to be found. For a naYve

neurocontroller, the region of successful control is likely to be small and control

actions outside of this region are random thus exacerbating the control problem.

The fact that new learning is required is exacerbated by the initial naYvety of the

neurocontroller. A neurocontroller which learns quickly has little chance of

exploring state-space (Sammut and Crib, 1990). Ibis is evident when using the
40 node neurocontroller which, like the others featured in this thesis, was started
from the origin of state-space at the commencement of each trial. More

experience of state-space in the initial stages of learning may reduce the

requirement for future learning when conditions change. Ibis is the exploration-
exploitation trade-off once again.

216

4.4 Discussion

4.4.1 Problems

The EUCART-BSA hybrid is a potentially useful prototype neurocontroller.

There is clearly much room for improvement of the current system but

nevertheless it does provide an alternative approach to adaptive control. The

achievement of increased neurocontroller autonomy (reduced designer

intervention) is an ongoing process which can benefit from the combination of

established neural network architectures in novel ways. The current drawbacks

associated with the EUCART-BSA hybrid are:

transient disruption of established control by the addition of new

nodes;

the proliferation of uninformative nodes caused by stochastic search of

state-space during the early stages of establishing a control mapping;

nafve control through lack of further experience of state-space over

and above that required to balance the pole at the origin;

,* the need for arbitrary parameters which have to be set by the user;

* long learning times when learning from failure, and

significant computational overheads which increase linearly with the

addition of new nodes.

217

4.4.2 Possible Solutions

Possible solutions and indicators of further work include:

the use of distributed control to allow membership, of more than one state

category enabling established nodes still to determine actions which would

otherwise be determined by a naYve node;

the use of "relevance" pruning to remove nodes created by state-space

trajectories very rarely followed after control has been established--4f

operating conditions do change, new nodes can be created dynanfically and will

not be pruned if significant;

the use of self-tuning parameters to adapt node size and position during

learning. This is possibly the most Micult solution and will require "meta

contror' at a hierarchical level above that of the ACE element to ensure

intelligent tuning based upon overall performance,

selective update of significant trace values (Hu and Fellman, 1995) as
discussed in this sub-section, and

the training of the hybrid by starting the cart-pole system from random state-

space points to allow the controller to experience more of state-space

All traces in the ASE and ACE sub-systems are updated each time. At any time
instant, many of the trace values are insignificant and updating them is wasteful

and computationally inefficient. Hu and Fellman (1995) propose a state history

queue (SHQ) or set of registers which store a finite number of box addresses.
Every time a state-space box is entered, its address is stored in the SHQ. States

move through the queue which approximates the exponential decay of the traces.
If a state which entered the queue is not accessed again during the time-length of
the queue, it is discarded. As time progresses, box addresses are removed from

the queue. Only state boxes currently in the queue are updated which removes

218

the need to access all box addresses each time the weights are updated. The SHQ

method could be applied to the EUCART-BSA hybrid and the FUZBOX

architecture of Chapter 5.

Hu and Fellman also put forward the idea of dynamic allocation of control

memory, that is, control memory is only allocated for traversed state-space

regions; this is used in both the EUCART-BSA hybrid and FUZBOX. The

efficient use of storage and consequent reduction of computational overheads

(more 'boxes' entails more computation) was less of a problem with the original

BSA implementation; the set of boxes were optimised manually (Barto, Sutton

and Anderson, 1983).

A larger coverage of state-space allows the adequate representation of possible

system dynamics, but physical memory is only allocated to used states (Hu and
Fellman, 1995). EUCART does this but a problem arises. There are a limited

number of key regions of state-space which require coverage but many other

regions are traversed, especially during exploration. Many of the state nodes

created are seldom used, if at all, once a control strategy is established. The

systematic removal of these spurious nodes through pruning would reduce

computational overheads.

4.4.3 Short Conclusion

It has been shown that the EUCART state-space decoder, in conjunction with the
ASE / ACE subsystems, is able to learn a control mapping for a non-linear control
problem. The resulting neurocontroller is autonomous and does not require a
priori information other than a choice of operating parameters. The incremental

clustering algorithm of EUCART successfully partitions state-space and allows
on-line adaptation to new regions which may not be accounted for by an a priori
partitioning. The EUCART decoder simulations also extend the BSA
implementation by considering the effect of new initial conditions on a trained
neurocontroller that has converged to the simulation ceiling using the "alkerd'

219

initial state. Indeed, using a EUCART decoder has extended the generality of the

BSA implementation of reinforcement learning by indicating the possibility of

developing "general purpose" neurocontrollers; such controllers may not be as

precise as those designed for specific tasks using high precision analysis and

design techniques, but would be more readily applicable, "off-the-shelf", and

ready to adapt through experience. This approach entails a movement away from

highly accurate static mappings towards a more adaptive approach exemplified by

the principle of increasing precision vs. decreasing intelligence (Saridis, 1989).

Isolating the state-space decoder task from the control action learning task and

treating it as a "black box" allows the development of variant reinforcement

learning networks which still retain the original ASE / ACE specification. The

main operational criterion for a candidate state-space decoder used in this way is

that it assigns a unique representation to distinct regions of state-space; the

regions may overlap in places but the state-space representation and parameter

updating methods must account for this. For example, winner-takes-all dynamics

can be used to choose a winning neurocontroller node or parameters for several

nodes can be updated in proportion to their respective activation levels

(membership functions). The latter approach is consistent with fuzzy rule-bases

where multiple rules may be activated. The EUCART-BSA approach uses the

winner-takes-all method for choosing prediction and control information for

consistency with the original ASE / ACE implementation which uses a fixed non-

overlapping state-space partitioning. Although EUCART categories overlap, only

one category is selected at any one time so potential conflict is avoided.

The EUCART self-organising state-space decoder discussed in this thesis has

removed the need for such a priori restrictions but in doing so has introduced the

problem of disrupted learning during incremental partitioning of state-space. This
disruption is inevitable as the introduction of new nodes causes overlapping which
changes the state-space tessellation and thus the established control mapping.
Although the EUCART decoder system eventually stabilises, it is desirable to
reduce transient effects during learning. The nearest neighbour modifications go
some way towards reducing disturbances caused by the addition of new nodes but

220

a more distributed representation of state-space and the associated control

mapping is desired while retaining the attractive properties of the ASE / ACE

reinforcement learning system. The original BSA implementation does not

preclude this. Indeed, the seminal paper of Barto et al, (1983) mentions this

possibility.

The power law, for the nearest neighbour weighting using the fifth power, was

chosen on the basis of empirical observation. Other forms of contrast

enhancement law may be more suitable. The introduction of such parameters

highlights one of the problems of self-organising systems; the danger is that by

using self-organisation, other a priori assumptions are substituted for those

assumptions that are to be removed. The requirement of numerous parameters

can possibly reduce the utility of self-organisation over a priori structuring of

infonnation. On the point of a priori inclusion of information, Procyk and

Mamdani (1979) state that

"it is impossible to design a controller which need not assume anything about its

environment. One can only strive to lessen its dependency and sensitivity to it. 'P

The minimisation of built-in assumptions about the environment must be a guiding

principle in the development of neurocontrollers but with the proviso that,

wherever possible and convenient, known facts can be included in the

neurocontroller structure if performance will be improved by doing so. Having to
learn known facts that could otherwise be built-into a neurocontroller to improve

performance cannot always be justified by claims of autonomy.

Nearest neighbour methods can be used to compute both the control output and
the predicted failure values for a given input vector by category membership value
(Zhang and Grant, 1992) in conjunction with new node priming. Ibis will
probably reduce the disruption caused by the addition of new nodes and augment
the limited applicability of new node priming by updating all nodes triggered by a
state-space trajectory entering overlapping state-space regions. A method for
distributed processing of predictions and control outputs within the ASE and

221

ACE processing units is required if internal representations of the state-space and

control mapping are to be smoothed out.

Although nodes represent individual state-space regions and their associated

control actions, the neurocontroller is not at all transparent to an operator. The

nodes, in effect, represent f 'micro-rules" of the form 'if the state- space vector is in

the region surrounding centre x then output y'. These numerical rules are not

very meaningful and, in many cases, clusters of micro-rules could be replaced

effectively by a more general rule. Pruning and generalisation of groups of micro-

rules is possible but the associated technicalities may be obviated by using a more

efficient state-space representation to begin with; for example, using nodes to

represent fuzzy rules. Fuzzy systems are much better suited to knowledge

extraction (e. g. Berenji and Khedkar, 1992; Jang, 1992,1993; Jang and Sun,

1995) than networks using micro-rules but introduce other considerations such as
the choice between a rule base with a fixed number of rules or a self-organising

rule-base; the task of rule extraction (Wang and Mendel, 1992) and the task of
tuning the fuzzy membership functions.

The distribution of ASE / ACE dynamics is compatible with the fuzzy approach as
it is possible that multiple rules are activated and contribute to the control or
predictive outputs. Similarly, distribution of state-space decoding across multiple
input lines may reduce the effect of state-space node overlap when EUCART is

used.

In this thesis, it has been shown that the decoder section of the original BSA
implementation provides a basis for the development of variant reinforcement
learning architectures. The EUCART decoder is self-organising and is compatible
with the original ASE /ACE formulation. Other types of state-space decoder that
are similarly compatible are possible. The very fact that the principles of self-
organisation and reinforcement learning can co-exist is an exciting prospect for

artificial neural systems development and points a way forward to the
development of autonomous neural systems that require much less outside
intervention than at present.

222

Chapter 5 Extending the Hybrid

5.1 Meta-Control

Most neural network architectures are still relatively primitive when compared to

even the simplest living systems. This fact cannot be attributed totally to the lack

of available computing power because brute-force information processing would

not solve the many complex problems which require more "intelugenf' or
heuristic methods. For example, human language and vision processing tasks

would result in a combinatorial explosion if every possible combination of

circumstances were coded for a priori.

A criticism of many current neural networks is that they are relatively inflexible.

It is true that they learn, but this is only in a limited way. The majority of

networks have a fixed structure and can only adjust themselves within a narrow
band of possibilities. They also usually consist of a single structure, although

modular structures are being developed (e. g. Jacobs and Jordan, 1993).

Criticism of the supervised learning method has already been made.

The subject of animal learning has been covered briefly in section 3.1 onwards.
Animal learning is purposeful and goal-orientated for the most part. Behaviour is
internally generated and intermediate steps to a goal are developed by active
exploration of an environment. Depending upon the level of evolution, animals
become "aware" of obstacles in the way of reaching goals and avoid them by

exploring alternative strategies There is much to be learned from studies of
animal behaviour.

Neurocontrol is one area which requires more adaptive and autonomous systems
endowed with a degree of intelligence. The term "meta-contror' is introduced
here to cover the concept of "controlling the controller"--with particular

223

reference to neurocontrollers. Although difficult to define, certain operational

characteristics may be listed to help clarify the concept, viz.

e active, intentional or goal-driven behaviour as opposed to passive reaction to

applied data;

* self-generated intermediate behavioural. sequences,

* Higher-order (meta) evaluation of progress;

e 'intelligent' adjustment of control strategies;

9 hierarchical and distributed systems composed of sub-modules;

* possible tracking of non-stationarity;

e forward planning and "what if ... T' analysis.

e experiential modification of neurocontroller structure--c. f. neural Darwinism

(Edelman, 1989) and genetic algorithms (e. g. Goldberg, 1989).

This Est is not exhaustive but, it is hoped, conveys the idea of a genre of
intelligent adaptive neurocontrollers which are capable of a greater degree of
interaction with an environment in some ways similar to that of humans and

animals. Any candidate intelligent neurocontroller will exhibit some of these

properties to some degree.

224

5.2 Pruning

5. Zl Introduction

One of the items of the list of section 5.1 is modification of the neurocontroller

structure. The incremental addition of nodes has already been mentioned in the

preceding chapters. Removal of nodes by pruning is also a viable approach to

structural modification and has been investigated (e. g. Le Cun, Deenker and Solla,

1990; Reed, 1993, Fritzke, 1994). Removal of nodes from feedforward networks

such as the MLP is more difficult than from ART-based networks because, in the

former case, nodes contribute to a distributed representation and the amount of

contribution to the mapping has to be computed globally (e. g Reed, 1993).

For the EUCART-BSA hybrid, many of the nodes that are created are relatively

unimportant as they appear when the state-space trajectory moves between

critical regions. One way to approach pruning is to remove nodes periodically if

they appear to be of little relevance to control. Relevance may be assessed by

calculating a measure the relative trace strength (RTS) given by

RTSi = 11
xi

I Xý
k=1

The RTS has been introduced here to give a measure of relative eligibility which

shows how much any particular node has been active. If the RTS for a node falls

below a given threshold then the node may be removed because its relative

importance has dropped in comparison with other nodes.

5. Z2 A Simulation

A simulation was carried out using the same conditions as for simulation 2 of

section 4.3.1 with the random number seed set to 2. This time, pruning was

carried out periodically with a period of 30 trials. The pruning threshold was

extremely small with a value of 0.000001. This was to ensure that only very

weakly active nodes were removed. The results are shown in Figure 5.1.

225

.9
I

Figure 5.1 Simulation results showing the performance of the EUCART-BSA hybrid system

with pruning. The pruning is periodic with a period of 30 trials. The resulting neurocontroller
has only 6 nodes.

The run of Figure 5.1 converged at trial 84 with 62 nodes but pruning caused
disruption until convergence occurred at trial 120 giving a6 node neurocontroller.

Figures 5.2 to 5.5 show the performance of the pruned system

Figure 5.2. The cart position for the EUCART-BSA pruning simulation. Note the oscillation of
the cart around the track origin; the cart is confined within about 0.015m of the origin or 0.63%.

226

0 20 40 60 80 lw 120 140 160 180
TrW nun-ber.

2 2.5 3 3.5 4 4.5
Time (secs).

8.

C.)

5
Tkne (soca).

Figure 5.3. The cart velocity for the EUCART-BSA pruning simulation. Note the oscillations

required to maintain a good cart position.

I

0.5

0

2-0.5 0 CL

-1-1

1

is
Tlnie (soca).

Figure 5.4. The pole angle for the EUCART-BSA pruning simulation Note that the pole
remains within about I degree either side of vertical.

227

e

40

30 -

20 -

10

0

-10

--2D 0 0.5 1 1.5 2 2.5 3 3.5 4 4.
Time (secs).

Figure 5.5. The pole angular velocity for the EUCART-BSA pruning simulation Note that the

pole velocity is predominantly negative in opposition to the predominantly positive cart velocity.

Cart-pole control is oscillatory as expected when using bang-bang control.
Smooth control requires a graded output so that a minimal corrective force may
be applied as required. It is interesting to note that both the cart displacement and

pole angle remain within a small range of the full scale allowed. Only the range

end-points are specified for failure and oscillations up to the failure limits would
be allowable although this would not constitute good control. Large oscillations
just within the failure limits have been observed in the BSA system (Johnson and
Smartt, 1993). It is likely that there will be similar cases observed for the
EUCART-BSA hybrid if the control behaviour of many runs is examined.

5. Z3 Issues

The preceding simulation shows that a simple pruning scheme can be successful

and that many of the nodes are created spuriously. However, there are two points

which must be addressed if pruning is to be a viable extension of the EUCART-

RL hybrid. First, pruning by usage-reflected by the RTS- is only useful for a

stationary environment. Ile nodes required to maintain control are used regularly
and, consequently, are not pruned. If environmental conditions change which

necessitate a new "set-poinf 'or control strategy, then the controller will adapt as

228

required but the old control strategy will be lost because the RTS of the nodes
involved in the previous strategy will decline until they drop below the pruning

threshold. If the environment returns to the previous conditions, then the original

control strategy will have to be re-learnt. This is undesirable and does not allow

the neurocontroller to build up a general control strategy. Clearly, the 6 node

controller of the simulation will not be robust in a non-stationary environment.
Balance will be maintained about the origin until the operating conditions change

and a new control region established. A new method of pruning other than by

absolute usage is required. A contextual usage measure may be possible in which

a successful localised control strategy is not erased when operating conditions

shift, e. g. if for a particular node the RTS exceeds a given relevance threshold in

any context then it is deemed important and 'made immune' from removal.

Second, the simple pruning used in the simulation is carried out at set periods

using a set threshold. The pruning period and pruning threshold are arbitrary

parameters which have to be set by the user. Although it has been demonstrated

that the use of pruning is feasible, the introduction of yet more arbitrary

parameters is unsatisfactory. The pruning operation has to be made adaptive in

some way so that pruning only occurs at relevant intervals and to a relevant
degree. How these levels of relevance are decided is another matter and provides
directions for further research.

These two points require investigation if improvements are to be made to the
hybrid. A further point, though of lesser significance, is that when nodes are
removed, useful information may be lost. The GCS system of Fritzke (1991,
1993,1994) redistributes some of the information. A modified version of this
method may be useful here.

The active removal of nodes may be augmented or replaced with techniques
which "lump" nodes together to reduce redundant coverage of state-space
(Michie and Chambers 1968b). The technique of lumping is closely rI elated to its

counterpart of "splitting" to give finer resolution; once a split occurs then
redundant sections may be removed by pruning.

229

5.3. Distributing the EUCART-BSA Hybrid

5.3.1 Introduction

It is a reasonable assumption that distributing information across the decoder by

allowing states to be members of more than one "box! 'will improve performance.

This assumption is in accord with the relative smoothness of the cart-pole

dynamics (Barto, Sutton and Anderson, 1983). Distribution across boxes is a

form of generalisation in that an informed control decision can be made on the

basis of information from neighbouring boxes even though a given box has never

been entered previously.

The original BSA approach does not preclude distribution; winner-takes-all
dynamics as a matter of design choice. A distributed reinforcement learning

system is pre-empted by the form of the dynamical equations and the challenge to

distribute is clearly stated in Barto, Sutton and Anderson, (1983).

The basis of a distributed approach rests upon finding a weighting system to

combine sets of control outputs or predictions. A normalised category

membership function is required to indicate the relative activity or contribution of

a given box or node.

Before attempting to develop a distributed version of the EUCART-BSA hybrid,

it is sensible to explore the feasibility of distributed ASE / ACE dynamics '
decoupled from the EUCART decoder. The decomposition of the design process
makes it simpler and allows distribution to be investigated under less com plex
conditions. A distributed decoder with a fixed overlap is much easier to deal with
than the dynamical EUCART decoder with variable''membership functions.

An ideal candidate, which fulfils the fixed overlap condition and is equivalent to
the original boxes system at the winner-takes-all limit, is afuzzy boxes system.
Such a system introduced in this thesis, forms the subject of section 5.5.

230

5.3.2 Why Fuzzy? The Distributed White-Box

Fuzzy systems (Zadeh, 1965) are ideal for distribution of information across more

than one storage location in a mapping or representation. A fuzzy input-output

controller can approximate to any degree of accuracy, a continuous system

(Buckley and Hayashi, 1993). Fuzzy logic and fuzzy systems will be covered in

section 5.4 onwards. The purpose of this section is to motivate the use of a fuzzy

distributed decoder.

The two primary reasons for choosing a fuzzy system have already been

mentioned. The overlapping coverage of the input space by fuzzy sets (see

section 5.3.3.) and the property of 'boxes in the limit' make fuzzy systems a

natural choice for a distributed decoder. Another attractive property of fuzzy

systems is the ease of extraction of information in the form of rules.

It is difficult to extract knowledge from neural networks such as the MLP by

considering the weighted connections between nodes. Knowledge-based systems

(KBS), on the other hand, are in the form of rules easily interpretable by a human

being. The distributed representation of a neural net may not easily be mapped to

a set of rules. For a non-linear network a change in the antecedent of a rule may

have a disproportional effect on the consequent thereby making it difficult to trace

the effects of weights and activity levels for each rule.

Using a black-box approach of presenting and testing combinations of inputs leads

to a combinatorial explosion of tests for all but a trivial number of input variables.
Furthermore, rule extraction is an inefficient two-stage process where a network
has to be trained prior to rule extraction. A more efficient method would be to

train rules from the outset. Using a fuzzy decoder attached to a distributed ASE

ACE system would allow rules to be generated directly to give a self-tuning rule-
base.

231

5.4 Fuzzy Logic

In the subsections that follow, the main concepts of fuzzy logic relevant to the

development of ideas covered in this thesis are presented. This introduction to

fuzzy logic is not meant to be exhaustive; it allows the thesis to be self-contained

without depending too heavily upon auxiliary material. The concepts of fuzzy

logic are introduced in anticipation of the discussion of a novel neurocontroller

architecture.

Fuzzy logic allows the use of qualitative knowledge. --often vague and

imprecise-ýn the form of rules. Quantitative precision is also retained through

the use of input-output mappings specified by the set of rules (e. g. Wang and
Mendel, 1992; Buckley and Hayashi, 1993).

5.4.1 Crisp Sets and Fuzzy Sets

Traditional logic (e. g. Hamilton, 1988; Mendelson, 1987) deals with crisp sets,

that is, sets with membership functions which map to binary sets such as 10,11 or
jTrue, FaIsej. An element of a crisp set will be mapped to one of the binary

values in the target set indicating membership or non-membership of the element.
This can be stated more formally:

given a crisp set, X, Such that XaU, where U is the universe of discourse and

the set X is defined by X= 1xi P(x) is truel where P(x) is a truth function of x.
The membership function jFx (x) can be defined as

iTx W=I
if x6X (P(x) is tnte)

0 if x0X (P(x) is false)

for example, denoting the set of even numbers less than ten by E= 12,4,6,8} and

the set membership function by u,, (e), the following facts can be stated,
2 eE => jTE (2) = 1,7 0E =* jTE(7) 0.

232

This polarisation of set membership represents the extreme case. In reality set

membership (concept instantiation) is often not clear cut. Grades of set

membership can exist on a continuum between zero (non membership) and one
(full membership) e. g., for the concept pair young-old, when is someone young?
From traditional logic a boundary point has to be defined. Does this make sense?
Does a single second either side of the boundary point make a difference?

By defining a continuous membership function
jux

(x) the continuum of

membership can be dealt with. More formally, the fuzzy membership can be

stated as

jux:
X ---> [Oal yx (x) F-> m r= [0, ']

Fuzzy logic deals withfuzzy sets, that is, with sets having continuous membership
function (Zadeh, 1965; Pedrycz, 1993; Kruse, Gebhardt, and Palm 1994; Kruse,
Gebhardt and Klawonn, 1994). Viewed in this manner, traditional logic is a
subset of fuzzy logic with the binary set values comprising the extremes of the
fuzzy membership continuum. Conversion between fuzzy and crisp set

memberships is achieved by specifying a cut-off boundary in the membership
continuum and assigning elements to crisp sets depending upon whether or not
they are above or below the cut-off point.

The power of fuzzy logic lies in its ability to deal with imprecise linguistic

information represented by concepts such as "hof, "warm", "cold", "small" or
"medium". The set of all numerical values (e. g. range of temperatures) involved

in a given application of fuzzy logic is known as the universe of discourse, again
denoted by U. This universe of discourse is coded by a group of linguistic

variables e. g. temperature,, pressure, and angle. The linguistic variables are

composed of a number of terna representing imprecise quantifications of the
linguistic variable. For example the linguistic variable of angle can be quantified
by the set of terms,

Xe = JLIV, SN, NZ, SP, LP}

where LN, SN, NZ, SP and LP represent the linguistic terms large negative, small
negative, near zero, small positive and large positive respectively. The set of

233

linguistic terms for each linguistic variable, taken together, are said to cover the

universe of discourse.

There are many forms of membership function. An example is shown in Figure

5.6.

ju(
1

x

Figure 5.6 A triangular membership function often used to fuzzify a given variable.

The triangular membership function is commonly used in applications owing to

its simplicity. Each dimension of the input space is divided into several intervals,

Ii. A set of points,
jAj I

along the input dimension, called knots, determines the

size and location of the intervals, and thus, the width of fuzzy sets along the input

dimension.

For some input lying in an interval, i. e. xe Ii = [; Li_,, Aj], membership of the

fuzzy sets Ai-I and A, is defined by

Aj -x
Ali

and

,U"W=
X-Ai-j

(5.2) A, j -

respectively.

Figure 5.7 shows a set of 5 triangular basis functions covering the input space.
The first and last triangular functions are given a constant value of 1.0 beyond the
end-points specified by knots. The triangular functions are B-splines of order 2
(Brown and Harris, 1994). The sets of basis functions covering each dimension,

234

4i-I li 4i li+l

taken together, form afuzzification of the input space. B-splines form a

parameterised class of sets of basis functions of many orders. Each individual set

of a given order covers an input space. Sets of Gaussian basis functions may also
be used.

Figure 5.7. The fuzzification of a real variable using a set of triangular functions.

In the case illustrated in Figure 5.7, equations (5.1) and (5.2) hold for i=2,..., 5.

For x r= I, = I, and for x r= Ii = [Ai-l j; Lj]

The support of a fuzzy set, A, denoted here by S(A), is defined as inputs,

S(A) = Ix r: X: PA(X) ý)'Oj
*If S (A) c: X, a support is said to be compact.

If at each point (element) of a linguistic variable the membership functions applied
to that point for each linguistic term sum to one, then the fuzzy sets (terms) are
said to be nonnalised. For example, for the linguistic variable "angle", denoted by
X8 , the fuzzy membership functions conform. to

(0) +. U,,,, (0) + 14'.. (0) +, U,., (0) + P"', (0) =1

for all values of 0, where pe, LN is the fuzzy membership function for the linguistic

variable "angle" and so on. Normalised fuzzy sets are used subsequently. Note

that there are a few general conditions on fuzzy membership functions such as
their having to be defined at every point. Smooth membership functions such as
Gaussian can also be used.
For the cart-pole problem, the universe of discourse, U consists of the set of all

state vectors, x= (x, 1,0,6) with dimensions distance., speed, angle and angular
velocity respectively. The four dimensions of the state vector form the four

235

11 1"1 12 &2 13 43 14 44 IS A-5 16

linguistic variables of interest. Each of the four variables are covered by the five

linguistic terms of LN, SN, NZ, SP and LP respectively triangular membership
functions are chosen, as stated previously for the angle example.

5.4.2 A Fuzzy System (Mapping)

The main advantage of fuzzy systems is that they allow both the construction and

representation of qualitative mappings and the possibility of "interrogation" of the

internal structure; here, the "black-box" has been replaced by a "white-box! '

consisting of explicit rules understandable by a human being. Using a fuzzy rule
base also allows the easier integration of a priori information into a learning

system; known qualitative knowledge concerning a problem can be formulated in

terms of "if-then" rules which are used to prime the rule base. A fuzzy system or

mapping consists of a rule-base which codes the system knowledge and two

algorithms which carry out the respective transformations between the input space

and rule space and rule space and output space (Figure 5.8). Input data is

fuzzified and used to select a set of relevant rules from the rule-base.

x Fuz
Rule Defuz]---*
Base

-H
Figure 5.8 A schematic diagram of a fuzzy system. Inputs are fuzzified before being applied to

the rule-base. The fuzzy outputs are combined and defuzzified to give the final output.

The selected rules are combined to give a fuzzy output which is then defuzzified
to give a real output.
For a crisp input, x, components xi lie within open or closed i n-t'ervals, Ii where
i=1,..., m = dimjxj. Similarly for y, where n ='dimlyl . Each

236

interval, I,, is covered by M functions and each interval, Ii is covered by N

functions.

So, for each of the m dimensions of x, there are M linguistic variables giving

M 'possible rule antecedents C'if" parts). Similarly, for each of the n dimensions

of y, there are N linguistic variables giving N' possible consequents. This gives a

total number of possible rules of M'x N'. Where M and N are not fixed for all

MM
intervals, Mi and Nj are defined giving Mi possible antecedents and rj Nj

J-1

possible consequents; this gives a total number of possible rules of

Mi Nj . The curse of dimensionality should be apparent from this

analysis; however, in practice, all of the rules may not be used.

As an example of a relatively simple system, consider the possible rule base

required to control the cart-pole system. There are four state variables giving

m=4. Using five linguistic variables for each input interval, M=5. For bang-bang

control, where the output is not fuzzified, n=1 and N=l. In this case the total

number of possible rules is given by 54= 625. This fuzzy rule-base will be

covered in the discussion of a novel self organising fuzzy controller, FUZBOX

discussed in section 5.5.

The large number of possible rules gives rules at the lowest level of rule
generality, including all antecedent clauses. Lumping and'splitting of rules is

relevant to the discussion of fuzzy systems.

5.4.3 A Fuzzy Controller

Fuzzy systems are now used widely in control (e. g. Procyk and Mamdani, 1979,
Pedrycz, 1993; Linkens and Abbod, 1993; Nie and Linkens, 1994). A novel self-
orgranising fuzzy control system, FUZBOX, which uses reinforcement learning, is C?

237

introduced in the next section. The present section will introduce the subject of
fuzzy control in anticipation of the discussion. A simple form of fuzzy controller
is shown in Figure 5.9

SP e -T e Controller Tý- 1-1
Rule-base

Li
DEFUZ

ý-ý

Plant

Figure 5.9. A schematic representation of a fuzzy logic controller. Fuzzification and
defuzzification are denoted by FUZ and DEFUZ respectively.

The fuzzy controller of Figure 5.9 is a SISO system which uses a real error, e

which is fuzzified to give a fuzzy error, e. The controller is specified in the form

of a rule matrLx (Procyk and Mamdani, 1979) which gives the control output, u,
governed by the error, e, and the change in error, AE . For example, a small

system with five linguistic variables given by LN, SN, NZ, SP, and LP may have a

rule matrix given by

SN NZ SP LP
LN
SN NZ SP
NZ SP NZ SN
SP SN
LP

The rule matrix is an input-output mapping which is transparent to a user and yet
still allows a quantitative mapping for control (Brown and Harris, 1994). Because

the fuzzification process, rule matrix and defuzzification process are all known, a

control law can be formulated directly in non-fuzzy terms, u(e, Ae) if required.

Fuzzy logic control is closely related to neurocontrol, and fuzzy neurocontrollers
have been developed (e. g. Brown and Harris, 1994 Linkens and Nie, 1994).
Fuzzy sets can be thought of as being analogous to basis functions which are
combined to implement a mapping.

238

5.5 Distribution by Membership Function: FUZBOX

5.5.1 Distributed Reinforcement Learning Using Fuzzy Methods

Thus -far, a hybrid approach to neurocontrol has been explored which combines

the flexibility of self-organisation with the adaptability of reinforcement learning

and its suitability to information-poor environments. As discussed, the hybrid

approach shows much promise and is worth developing further. However,

problems still remain and improvements in performance are required if such a

system is to be of any practical use. One area for improvement, the possibility of

distributing the ASE and ACE elements was mentioned in section 5.2.1.

Fuzzy systems are a natural choice for developing a prototypical distributed

system because of the graded membership functions. Furthermore, the use of a

rule-base is a natural extension of the boxes concept where the boxes form a

crude rule base in the original undistributed formulations (Michie and Chambers,

1968a; Barto, Sutton And Anderson, 1983).

By demonstrating the use of distribution in a modified ASE / ASE system, it is

indicated that a distributed version of the EUCART+BSA hybrid is possible which

will allow the combination of neurocontroller outputs for a state which lies within

the boundaries of two or more state nodes.

A novel fuzzy neurocontroller architecture, given the name FUZBOX, is

introduced in this section. This architecture demonstrates that distribution of both

the ASE and ACE modules is, indeed, possible and that learning-in the case of
FUZBOX--is accelerated compared with the EUCART-BSA hybrid.

239

5.5.2 Direct Fuzzy Control

A fuzzy knowledge-based neural network (FKBNN) is proposed by Alch6-Buc,

Andr6s, and Nadal (1992) which solves the cart-pole problem. The FKBNN

allows the extraction of decision rules from an artificial neural system. The

neurocontroller implements rules of the form: ifX is Ai then Z is Bj. The network

is composed of three layers:

*a condition layer which has a fuzzy set associated with each node and each

node computes the membership function;

*a conclusion layer whose nodes associate fuzzy sets with their consequences;

the weights on the incoming links from the condition layer are stored in a

matrix representing the strength of if-then relations between conditions and

conclusions;

a combination layer which combines the rules to give an output; the output

node computes the centre-of-gravity defuzzification.

The network uses supervised learning implemented by a modified form of the

backpropagation algorithm which is divided into three separate steps:

i) the fuzzy sets in the first layer are corrected with all other parameters being

frozen; this process gives a preliminary approximation to the rule conditions,
H) when step i) is satisfactory, the first layer fuzzy sets are frozen and the network

learns the strengths of the if-then relations; this is rule identification;

iii) finally, all parameters of the net are involved in optimisation, especially the

centres of the consequent sets.

Learning is off-line and involves the minimisation of a specified error function

which contains arbitrary parameters. The error function consists, of three separate

sections which are designed to impose correctness, completeness and consistency
upon the network.

240

The FKBNN was applied to the simplified case of the cart pole system only,

which dealt with the pendulum angle and angular velocity. Nine rules were used

which gave successful control performance. The paper stated that a possible next

step forward was to put a FKBNN into a control loop where feedback was

provided by the pendulum itself. On-line in situ control similar to this proposal

has been achieved by FUZBOX; the main differences between FUZBOX and

FKBNN are that FUZBOX

is autonomous,

uses fixed fuzzy membership functions,

does not use fuzzy sets at the output, which would entail

defuzzification, and

does not require the specification of desired intermediate control

actions.

For convenience, the cart-pole control problem is resolved into two decoupled

tasks:

the self-organisation task, which involves the autonomous categorisation of
input information to provide a basis for subsequent control actions, and

the control action learning task, which involves the evaluation and correction

of elicited control actions associated with individual states or distinct regions

of state-space represented internally by the neurocontroller.

The hybrid approach is possible because the two tasks are decoupled'and can be

solved independently. For example, solution of the control action learning task

only requires the assumption that individual regions of state-space . are represented
such that they provide a unique "key" to associated control actions which'are
stored separately from the internal representation of state-space. . neaisignment*

of credit or blame and the updating of individual Control actions is not linked
inextricably to the method of state-space partitioning provided that there is a one-

241

to-one correspondence between the evaluated region of state-space and its

associated control action.

Decoupling the tasks also allows the possibility of other related neurocontroller

methods. Indeed, as stated here, the first task is too restrictive and can be

replaced by the more general

* decoder task, which involves the decoding of state-space into a representation

with which individual control actions can be associated.

Note that the term 'decoder' is used as opposed to the term 'encoder'; this usage
is consistent with the BSA formulation of reinforcement learning, and reflects the

analogy between the BSA state-space decoder and a computer memory address
decoder which decodes input addresses to allow access to physical memory
locations (Barto et al, 1983). The state-space decoder task is to treat the state as

a decoder "address" pointing to an associated control action stored within the

neurocontroller.

The statement of the decoder task says nothing about its nature; for example, it

can have a fixed structure and act as an indexing system for a control action look

up table (Michie and Chambers, 1968a) or it can be self-organising as is the
EUCART decoder. Also, both discrete-valued and continuous-valued decoders

are possible; the latter consisting of a smooth mapping between a continuous
input space and a continuous output space.

The original BSA approach can be decoupled into the decoder task and the

control action learning task. Here the decoder indexes a fixed state-space
representation which is in the form of a look-up table; as learning proceeds, the
look-up table is filled (Barto et al, 1983). It is precisely because the two tasks are
decoupled that other types of state-space decoder are possible whilst retaining the
original BSA implementation of reinforcement learning.

242

Fuzzy-logic-based neurocontrollers allow a natural decoupling of the two tasks by

treating the decoder task as one of determining rule antecedents and the control

action learning task as one of determining associated rule consequents (e. g.

Berenji and Khedkar, 1992; Jang, 1992,1993; Jang and Sun, 1995). For example,

the generalised approximate-reasoning-based intelligent control (GARIC)

architecture of Berenji and Khedkar (1992) uses an action selection network

(ASN) and an action evaluation network (AEN) which are analogous to the ASE

and ACE respectively. Here, although the decoding task is independent of the

control action learning task, the state-space decoding is not carried out by a

separate decoder system but is subsumed within the operations of the ASN.

States are decoded into the constituent terms of linguistic variables where each

linguistic variable consists of a set of terms. One term is selected from each

individual linguistic variable; the selected term represents the "value! ' of the

linguistic variable, e. g. the term "near zero" might be selected from the set of

terms comprising the linguistic variable "velocity". The resultant collection of

selected terms, consisting of a single term from each set, comprises a rule

antecedent. Note that individual states are not represented by individual rules in

this case; a single state can fulfil the antecedent conditions of more than one rule

and thereby trigger multiple rules. Rule antecedents can be viewed as

characterising distinct regions of dynamical space which overlap in places where

multiple rules are involved. Control actions are associated with input states

through fuzzy encoding as rule consequents. GARIC uses reinforcement learning

to tune the fuzzy rule base so that it is able to represent the desired control

mapping. The fuzzy encoding of both the input terms and the output terms is

tuned adaptively. A fixed number of rules is used to solve the cart-pole problem.

The adaptive-network-based fuzzy inference system (ANFIS) of Jang (1992,1993;

Jang and Sun, 1995) also tunes the fuzzy encoding of the state-space input

patterns to form the rule antecedent terms but treats the rule consequents as real
functions which are linear-in-the-parameters. These functions determine the
control output when ANFIS is used to control the cart-pole problem, again, using
a fixed number of rules. Learning consist of two stages: a forward pass to update
the consequent parameters by recursive least squares estimation, and a backward

243

pass to update the antecedent parameters by gradient descent down the error

energy surface determined by the input fuzzification. lbus, the two tasks are
decoupled and separate learning phases are used.

A fuzzy version of the ASE element was developed by Johnson and Smartt

(1993). It was based upon the observation that the decoder-ASE combination
formed a type of expert system (Johnson and Smartt, 1993). The decoder

represented the set of possible antecedents and the ASE the set of consequents.

Thefiiz2y associative search element (FASE) used a continuous output obtained

by defuzzification of the consequents. As with the BSA system, the cart-pole
problem was formulated in terms of four state variables.

Two linguistic variables were used for both the antecedent components and the

consequent. The combination of state and linguistic variables gives 24= 16 rules
if a single linguistic variable is chosen for each rule. The rule base is fixed in size

and an appropriate output is defined for each rule in the rule base. One node is

defined for each rule. The decoder assigns a rule applicability value, x,, to each

of the 16 rules where i=1,..., 16. The weighted consequents are then defuzzified

to give a continuous output value.

Johnson and Smartt (1993) note that the pole angle oscillates considerably in the
BSA implementation and just manages to stay within the failure limits. Ile FASE
implementation allows much smoother control.

FUZBOX, unlike FASE, does not fix the number of rules from the outset and
allows the correct output actions to be learned. Ile output is still bang-bang but

appears much less oscillatory when compared with the original BSA

implementation e. g the pole angle remained within a degree either side of vertical
for a number of cases.

244

The FUZBOX system is similar to the fuzzified actor / critic system of hanan,

Mohammed and Shihuang (1995) but does not use a CMAC to store the rules.

Here, it was found that similar results were achieved using FUZBOX without the

need for CMAC-based pre-processing. This indicates that using a CMAC to store

"box" information (Lin and Kim, 1992), whilst effective for improving

performance for a discrete actor / critic system, is possibly redundant if a
distributed actor / critic is used.

5.5.3 FUZBOX: Description

The FUZBOX system is also based upon treating state boxes as rules and using
fuzzy membership to distribute learned information. Bang-bang control is

retained using a special case of the Sugeno method (Sugeno and Nishida, 1985)

where linguistic variables are not used at the output. Instead for each rule with an

antecedent of the form

R': x, is Ail , a, x. is A,,

the single valued consequent is of the form

i0A Y= Pi + Pj'X1 +1 ... +Pi Xn.

For FUZBOX, y' = pO where pio e I
I- ', +'I -

Ile maximum possible number of rules for FUZBOX is 625 which is determined

by the use of four state variables and five linguistic variables for each of the state
intervals. Each of the 625 possible antecedents is assigned one output only.
The new state-space partition uses the linguistic variables LN, SN, N7, SP, and
LP. A typical rule is given by,

If x is SN and I is SN and 0 is SP and 6 is SP then output is + 1.

The knot vectors determining the fuzzification are chosen to be

kx1.8; -, L4,0.0, lA, L8] kt 3.0i-1.0,0.0LO, ý. qj

k0= [- 10.0, -2.0,0.0,2.0,10.0], and k6= [- 80.0, -20.0,0.0,20.0,80.0]

245

The relevance of a rule for a given input is measured by the rule antecedent

strength (RAS) which combines the membership values of each state variable
belonging to the fuzzy set associated with each linguistic variable. The RAS for

the i th rule is defined by (AW = X. Aj
(x)ym, (i)14,

AI
(O)I4.

A.
(6))

where,

. U., Aj
(x) denotes the fuzzy membership of the cart displacement with respect to

the fuzzy set associated with the linguistic variable Aj and so on.

Rules are added incrementally if the hash code of the rule with the highest

possible RAS indicates a non-existent rule so that previously encountered state-

space regions are represented by at least the most relevant rule as part of the rule
base.

The rules triggered by the input are combined to give a weighted avemge

r
y oul = Ywi(x)y,

i=l

where w, (x) is the normalised membership function given by

AW
I: P, i(x) k-I

and r is the number of rules combined to give the output.

This normalisation is required because although 0: 5 A (x) :! ý 1, Vx and
NR

A (x) =1 where N,, is the maximum number of possible rules, rules are added

incrementally and only rules that are available are used. The number of rules used
(combined), r, may be for example: all the current rules; all the rules triggered by
the input; a subset of available rules depending upon a threshold, or a pre-
maximum set number. FUZBOX sets r to the number of rules triggered by the

246

input to indicate the number of rules involved in determining the control output

which is given by u= 10 sgn(y Out)

Denoting the rule base at time instant, t, by 9t, all rules Ri such that Ri r= 9t,

are updated according to the dynamics described in sections 5.5.4 and 5.5.5.

The modified actor / critic elements of FUZBOX, labelled distributed ASE

(DASE) and distributed ACE (DACE) respectively, operate as the original BSA

implementation when a single rule is chosen using winner-takes-all based upon the

RAS (A (x)).

I --------------------------------------

DACE

DASE
Fuz (rule base)

Distrib Cart-Pole

Figure 5.10 The FUZBOX neurocontroller. Fuz denotes the fuzzification process detailed in the

text and distrib denotes the combination of rule infonnation to give the weighted average output.
This is then used to generate the actual control output.

5.5.4 Distributed ASE dynamics

DASE dynamics are similar to those of the original ASE system but with a
normalised scalar parameter to weight the individual contributions. The final

control output, u is given by

247

u(t) = 10 sgn(y" (t) + e(t))

where y" (t) is the weighted output consisting of contributions from active rules

F
given by y` (t) u(x)y(t) and e(t) -N (0,1) is Gaussian noise derived from

a zero mean source with unit variance. ne factor of 10 scales up the output to

±10 Newtons.

The output for an individual rule is given by y'(t) = sgn(zi (t)) is the where z, (t)

is the DASE weight for the i th rule.

The DASE weight evolution equation for the ith rule is given by,

zi (t + 1) = zi (t) + ar^(t)ei (t)

as for the ASE element where P(t) is the real-valued reinforcement at time, t, a is

again the positive rate of change constant which determines the magnitude of ,ý
change for the output weight time evolution and e, (t) is the eligibility trace with

the evolution equation

e, (t + 1) = &i (t) + (I - 8)w, (x(t))y(t)

which now contains the weighting term.

5.5.5 Distributed ACE dynamics

The DACE is similar in structure to the ACE with the weighting term included to
distribute activity across a set of rules.

The distributed prediction of expected reinforcement is given by

r
p(t) qj (t)wi (x(t)) (5.3)

248

where qj (t) is the weight for the i" rule and wi (x(t)) is the input weighting for

that rule as before.

The weight evolution equation is given by

qj (t + 1) = qj (t) + br^(t)Y, (t)

where b>0, is a constant which determines the rate of change of learning in qj,

FP(t) is the predicted reinforcement and Yj (t) is a trace of the activity of the input

variable, xi.

Unlike the eligibility trace, this trace does not take into account the control action

chosen by the system for the region of state-space but now incorporates the

weighting factor. It is given by:

Yj (t + 1) = Ali W+ (1 - A) w, (x(t))

Where 1,0: 5 A, <1 is a rate of change constant. The trace provides a record

of the activity of the i th rule analogous to the activity of the i th input line, xj, in

the original ACE element and enables the determination of the contribution of that

particular rule to the prediction. With the new, distributed, protocol of selecting

multiple active rules, equation (5.3) gives the weighted prediction of failure for a

combination of overlapping rules coding for neighbouring regions of state-space.

The predicted reinforcement is given by

P(t) = r(t) + jp(t) - p(t - 1)

where r(t) is the external reinforcement, r(t) r: 10, -l}, andy, O<y: 51, isa

discounting factor.

Sub-section 5.5.6 presents simulation results showing the application of FUZBOX

to the cart-pole problem. The effects of using a distributed representation are
demonstrated clearly. The FUZBOX results are compared with the previous

reinforcement learning implementations discussed earlier.

249

5.5.6 FUZBOX., Some Results

This sub-section investigates the use of a distributed representation for the

ASE/ACE elements in the novel reinforcement learning architecture, FUZBOX

As will be seen, the original objective of establishing the viability of distributed

reinforcement learning has been fulfilled. The investigation of a distributed

representation was carried out using a different structure from that of the

EUCART-BSA hybrid so that issues affecting distribution were isolated from

possible complications introduced by using self-organising clusters. Once the

viability of distribution was established using a fixed representation-boxes with

fuzzy boundaries--then generalisation to the self-organising version could be

investigated.

Simulations, again following the method of Barto et al (1983) comprising 10 runs
of 100 trials each, were carried out. As in the BSA implementation, the state

vector was reset to x=I=0=6=0 after each trial. The simulation conditions

and parameters were similar to those of the BSA implementation except that,

again, runs were not terminated when the trial of a particular run first reached the

ceiling of 500,000 time steps As with the EUCART-BSA hybrid, learning was still

occurring in some cases and the system had to reach the ceiling value a large

number of times consecutively to indicate convergence. For the FUZBOX

simulations, the learning parameter, a was set to 1,000 as in the BSA
implementation to establish control actions quickly. Rules are added
incrementally if the rule does not exist which would have the highest possible
RAS.

Table 5.1 shows the results of the first ten runs using FUZBOX Comparing
Table 5.1 with Table 4.1 of section 4.3.2 and Table 4.2 of section 4.3.4 indicates

that the number of trials required to converge to a solution of the control problem
is generally lower for FUZBOX in comparison with the EUCART-BSA hybrid

given the same cart-pole and noise conditions. This is confmned by the average
convergence time of 45.9 trials for FUZBOX (over 10 runs) compared with
407.7 trials for the EUCART-BSA hybrid (over 10 runs) and 83.8 for the original

250

BSA system. Ile results for a further ten runs are shown in Table 5.2. The

average convergence time has increased to 61.2 for twenty runs.

seed 1 2 3 4 5 6 7 8 9 10

trials 31 31 42 59 54 70 54 37 29 52

rules 152 215 200 260 223 210 202 160 196 158

Table 5.1 The first ten runs of the FUZBOX simulation using similar conditions to those of

sections 4.3 2. and 4.3.4. The same initial conditions and random number seeds are used to

provide a direct comparison.

seed 11 12 13 14 15 16 17 18 19 20

trials 179 29 227 113 23 29 55 16 76 18

rules 1333 183 1273 1236 175 158 251 163 "270 157

Table 5.2 A further ten runs of the FUZBOX simulation using the same conditions as the

simulation illustrated in Table 5.2

These results for FUZBOX indicate that distribution of infomation across several
boxes decreases the learning time required to acquire a successful control strategy
for the given initial conditions. Figures 5.11 and 5.12 illustrate the perfonnance

of FUZBOX for the first 10 runs featured in Table 5.1. All of these runs
converged within 100 trials. The solid curve shows the average pole-balancing
time over the 10 runs for each trial. Again, a single point is plotted to indicate the

average of each bin of 5 consecutive trial (ensemble) averages. The dotted curves

show I standard deviation either side of the mean. The circles at the top of the

graph indicate at which trial the members of the 10 run set converged.

251

12000- 10 trial average.

10000

8000-

6000-

4000-

2000- 10 trial aid. devn. 10 trial I
a Convergence pL

10 20 30 40 50 60 70 so 90 100

Figure 5.11 FUZBOX simulation results showing the first 10 runs. Note that there are two

coincident convergences at 31 and 54 trials respectively.

Comparing this with Figure 4.9 of section 4.3.2 illustrates visually the more rapid

convergence of FUZBOX as compared with the EUCART-BSA hybrid. One

important thing to note is that the pole-balancing durations increase

monotonically. Although the use of 'bins' of five consecutive trials smoothes the

curve and removes some of the fluctuations, there are no drops in average

performance compared to the EUCART-BSA hybrid

Figure 5.12 illustrates the increase in number of rules (boxes) as a function of trial

number. The curve appears to approach an asymptotic value of approximately
200 rules. This means that approximately 425 rules remain unused for this set of
initial conditions. Dynamic allocation of rules prevents the allocation and use of

redundant memory, thus, reducing computational overheads. It is likely that more

rules will be required for more demanding initial conditions and will be allocated

accordingly.

Another advantage of dynamic allocation of rules is that it facilitates pruning of

redundant rules. Rules may be removed from the rule-base and thereby from the
storage requirements of the system.

252

350

- 10 trial average.

250 - -10 trial maximum --------------------

22w-

ISO ----------------
z

100-

10 trial minimum.

OL L-
0 10 20 30 40 50 60 70 so 90 100
L

Tdal number.

Figure 5.12 The average number of rules for ten runs using the FUZBOX neurocontroller. Note

that about 200 rules are generated on average compared with the possible 625.

A single run of FUZBOX was carried out using the conditions given for the 20

run set except that the pole angle was initialised to 11 degrees from the vertical
for training and testing. Figure 5.13 shows the phase plane plot for this run.
Figure 5.14 shows the cart-position for the first 8.5 seconds and illustrates clearly

the use of predominantly right directed forces to rectify the pole. 71"his control

policy pushes the cart to around 1.2m away from the origin after which corrective

action attempts to push the cart back to the origin without losing control of the

pole.

Figure 5.15 is commensurate with this and shows the transition between positive

cart velocity and negative cart velocity as control emphasis switches from the pole

to the cart. In other words, for the pole initial condition of 11 degrees, control
forces have to be predominately right-directed giving the cart a positive velocity
(and displacement). To compensate for this, the cart velocity is made negative

with rapid switching to maintain the pole balance (Fig 5.15). The cart then moves
towards the origin.

253

f

I

IOU

80

60

40

20

0 :

-20

-40

-60

-80

-100
Pole Angle (Theta).

Figure 5.13 Phase plane plot for the II degree initial condition FUZBOX Tun. Note how the

angle is brought into the stable region in the centre of the phase plane.

]A -

1.2-

1-

O. S.

0.6-

0.4[

0.2

1245878
Tkne (sacs).

Figure 5.14 cart displacement plot for the II degree initial condition FUZBOX run. Note the

significant move away from the origin as the pole angle is corrected. The large displacement is

then corrected.

254

11

5

Figure 5.15 cart velocity plot for the 11 degree initial condition FUZBOX run.

The pole angle evolution is shown in Figure 5.16 where there is an initial rapid

compensation forcing the pole towards zero followed by oscillation between zero

degrees and -2 degrees for about six seconds.

IOR

"0

0.

0-

M-
1456

Tirm

Figure 5.16 pole angle plot for the II degree FUZBOX run.

The pole velocity is shown in Figure 5.17. There is an initial negative pole

velocity as expected followed by rapid oscillation of velocity around zero. The

oscillatory behaviour around zero is predominantly positive as the neurocontroUer

compensates for the cart displacement.

255

145
The (sacs).

Tkno (secs).

Figure 5.17 pole angular velocity plot for the II degree initial condition FUZBOX run.

5.5.7 An Example Rule-Base

A FUZBOX simulation was carried out using the following parameters: cc=1000,

P=0.5,8--0.9, r--0.95 and %--0.8 which were identical to those used in the original
BSA implementation. This simulation corresponds to the first entry of Table 5.1.

Following the simulation, the 14 most important rule&--in terms of relative rule

strength-were selected out of a total of 152 generated by FUZBOX These 14

rules accounted for 89.6 % of the total rule strength of unity. Figure 5.18 shows

the cumulative rule strength with respect to the rule rank. Table 5.3 shows the
form of these rules together with the associated relative rule strengths (RRS).

RRS I is the relative rule strength of the 14 rules when they were chosen from a

run of 32 trials, that is, one trial following convergence. RRS2 is the relative rule

strength obtained after 5 trials of a run using the 14 rules a priori to prime the

rule-base. Eleven new rules were generated for this run of five trials. The

maximum RRS2 value of the newly generated rules was 0.02 or 2%. The total

relative rule strength attributable to the 11 new rules was 5.3% which means that
the total rule strength had increased slightly from 89.6% to 94.7% indicating that
little information had been added to the a priori rule-base taken from the first run.

256

Fuzzy Rule Usage

0.9 --
0.8 --

Co 0.7 -- c g 0.6

0.5
0.4 cc
0.3
0.2 -

cr 0.1

0

Figure 4.2.3.10 A plot showing the absolute and cumulative relative rule strength values for a

ranked set of rules comprising a successful FUZBOX rule-base.

x xdot theta
I

thetado

tI

output
I RRS(l) I RRS(2) I

NZ NZ NZ NZ POSITIVE 0.274062 0.254235

SN NZ NZ NZ NEGATIVE 0.154640 0.253995

NZ NZ NZ SN NEGATIVE 0.093908 0.082556

NZ NZ NZ SP POSITIVE 0.090931 0.080343

SN NZ NZ SP POSITIVE 0.050219 0.080159

SN NZ NZ SN NEGATIVE 0.049607 0.092504

NZ NZ SN NZ NEGATIVE 0.039465 0.016461

NZ NZ SP NZ POSITIVE 0.035519 0.011799

NZ SN NZ SP POSITIVE 0.020934 0.019486

NZ SP NZ SN POSITIVE 0.019701 0.020025

NZ NZ SP SP POSITIVE 0.018708 0. (X)7265

NZ NZ SN SN NEGATIVE 0.017498 0.009705

SN NZ SP NZ POSITIVE 0.015824 0.016116

SN NZ SN NZ NEGATIVE 0.014594 0.012024

I able _'). J. A rule-base consisting ot tourteen rules generated using FUZBOX These rules were

sufficient to solve the cart-pole problem when the cart-pole system is started from near the

origin. RRS(I) is the original relative rule strength of the rules; this figure was used to select

these 14 rules from the original 152. RRS(2) is the new relative rule strength obtained when

using the rule as part of a 14 rule rule-base

257

789 10 11 12 13 14

Rule Rank

5.5.8 Adaptive Rule Reversal Recovety

One of the features of self-organising autonomous systems is their adaptiveness to

changing conditions during operation. To illustrate the adaptiveness of

FUZBOX, the rules used in the simulation of section 5.5.7 were negated, that is,

positive outputs were made negative and vice versa. Ibis a priori rule base was

exactly opposite to a known successful rule base which meant that FUZBOX

would not be able to balance the pole immediately.

FUZBOX required a total of 98 trials before converging to a consistent balancing

time of 10000 seconds. A total of 194 rules were generated, although, as
illustrated in the previous simulation, only a small fraction of this total number

might be required for balancing.

This simulation demonstrates clearly that the self-organising nature of FUZBOX

allows on-line recovery from changes in operating conditions; indeed, even

changes as drastic as complete reversal of sucessful rules. The loss of control
during the recovery period may be unacceptable in practical terms but would it be

reasonable to expect any system to maintain control immediately following an
inversion of its rule base? More pertinent though is the ability of FUZBOX to re-

establish control.

5.5.9 Pruning

The rule base of section 5.5.7 consisted of 14 rules selected from a total of 152.
Pruning, in this case, was done by hand. It is not inconceivable that this may be

carried out automatically. A simple method would be similar to that of the
EUCART-BSA hybrid with pruning in that the 'weakest' nodes would be

removed periodically if the relative rule strength drops below a given threshold.
However, the same criticisms hold as for the EUCART-based system.

258

5.6 The EUCART+BSA Hybrid Revisited

5.6.1 Distribution of Information

The FUZBOX architecture shows clearly that distribution of the information

throughout the ASE / ACE modules is possible. Distributing the EUCART-BSA

hybrid requires a type of fuzzification of category membership. A method similar

to that of Zhang and Grant (1992) can be applied to EUCART by defining a

relative node activation (RNA) in terms of the category centre. Using the

EUCART choice function defined by

TjE (1) =i--, rm-

a relative node activation can be defined as
Tý E

N
I TE

k=l

to give a category membership function.

The EUCART choice function presents a natural fuzzification of the input space
because it is constrained on the interval [0, I] as no input and exemplar vectors

can be more than NrM- apart. The choice function values then have to be

normalised to give a normalised fuzzification for a weighted distribution of
information. Here, the weighting of distributed information is directly

proportional to the radial distance between a given input and all category centres;

node "age" is not taken into account.

The EUCART category centres-defined by the category extent markers- may
be replaced by centroids as detailed in section 4.2.14.

Preliminary experiments using the conditions of simulation 2 of section 4.3.4 were

carried out using both the centre and centroid prototypes. A single run using
random number seed 1 for both prototypes gave the results of, Table 5.5

259

method trials nodes

EUCART centre 235 360

centroid 313 392

Table 5.5 The results of a single run of a distributed EUCART-BSA hybrid using two different

methods of distribution of information. EUCART centre denotes the method of fuzzification
(and hence distribution of information) with respect to the category node centre determined by

the category extent markers. Centroid denotes fuzzification using the centroid of a given
category node.

From the preliminary results of Table 5.5 it is clear that for this single run the

distributed EUCART-BSA hybrid learns using either the original EUCART centre

or the centroid. However, for this single case, the distributed hybrid learns more

slowly than any of the previous methods explored in this thesis. This is

counterintuitive and requires a statistical study of a set of runs to see if this

method is slower on average. If such is the case, then further research is required

to establish why.

5.6.2 Distribution of Information: A Conclusion

It has been established that the non-distributed version of the EUCART-BSA
hybrid succeeds in learning a meaningful control mapping by self-organising a

representation of the state-space. It has also been established that, for a fuzzy

decoder with fixed overlap, distributed ASE and ACE modules are possible.
Furthermore, learning is much more rapid with the distributed system when
compared with a winner-takes-all system (boxes) with the same crisp boundaries

as the intersections of the fuzzy sets used for the distributed version.

The logical next step is to distribute the EUCART-BSA hybrid system.
Preliminary results show that this is not straightforward and learning may in fact
be made more difficult by distributing the EUCART-BSA hybrid. One possible
cause of the problems is that the category membership functions used to obtain

260

the distribution weightings are always changing because the hyperspherical

category boundaries are dynamic. This must be investigated further.

In both the EUCART and fuzzy decoders, the spectre of the curse of

dimensionality is raised. The number of possible nodes or rules rises dramatically

with the increasing dimensionality of input space. For example, for a modest ten-

dimensional system using five fuzzy sets for each dimension of the input space,

there are 100,000 possible rules. Such systems rapidly become untenable as the

number of input variables is increased. Clearly a more compact or efficient

representation is required.

For the EUCART (fuzzy) system, nodes (rules) are added as required which helps

to reduce storage and computational overheads. Furthermore, as discussed,

relevance pruning may provide a viable option for reducing complexity and aiding

efficient storage.

Another possible extension has already mentioned, that of "splitting" and

"lumping" (Michie and Chambers, 1968b). The "lumping" together of sets of

rules or nodes of low generality to give rules or nodes of higher generality will

both increase generalisation and reduce storage requirements. In the case of

FUZBOX, increased rule generality will aid comprehension of the rule-base by a

user.

Both the EUCART-BSA hybrid and FUZBOX need to be extended to multi-

valued or continuous outputs if their usefulness and generality are to be increased.

For the multi-valued case, probabilities may be associated with the output values

and modified according to success or failure. The trade-off for the added
flexibility will undoubtedly be in terms of learning time which will increase with

the number of additional outputs.

261

Chapter 6 General Discussion and

Conclusions

6.1 General Discussion

Three novel architectures, namely PROBART, EUCART and FUZBOX, have

been introduced in this thesis and have been applied to mapping and control

problems with some success. All three novel architectures have addressed some

of the shortcomings of alternative architectures.

Both the EUCART-BSA hybrid and FUZBOX demonstrate the possibility of

autonomous neurocontrollers which can be "plugged in" and left to learn in situ.
To avoid potentially catastrophic results, a human controller or other device could
be used to maintain control beyond recoverable "failure" limits. Much work is

still to be done concerning robustness, but the simulation results provide
inspiration for further work.

One of the main points which has arisen from this work is the notion of

compromise. Apparently, there is no universal neural network which is equally

suitable for solving all types of problem. A number of competing constraints
become apparent when considering neural architectures and problem domains. It

might be said that there are no solutions, only insight into the nature of the

automated learning task. The following list gives some of the areas of conflict:

" stability vs. plasticity

" look-up vs. generalisation

" discrete vs. distributed knowledge representation
Off-line vs. on-line (causal) learning

exploration vs. exploitation

262

One area of concern for machine learning is the efficient (optimal) use of

information. Although learning an optimal strategy may be the desired goal, the

learning of that strategy may be sub-optimal. The significance of sub-optimality

depends on its degree.

A major criticism aimed at reinforcement learning is the invariably long period of

learning taken to acquire a behavioural (control) strategy. The lack of

intermediate supervisory signals (supervised learning) has the drawback of making

learning relatively slow whilst behavioural action pairs are constructed along the

lines of trial and error.

The lack of model-based processing leads to inefficient use of information.

Stochastic search of the problem space replaces the strategy of repeatedly

estimating and refining parameters. This may be fine for small problems but will
become untenable rapidly with increasing problem complexity.

Failure-driven learning is not necessarily an optimal way of acquiring an optimal

strategy. The lack of meta-processing and evaluation makes reinforcement
learning a brute-force method. It would not be desirable for a mobile autonomous

agent to bump into an obstacle a large number of times before changing its

strategy. Inclusion of meta-processing algorithms to switch intelligently between

strategies or a priori information may provide an alternative to purely failure-

driven learning. Reinforcement learning could be used to fine-tune coarse

strategies acquired more rapidly through other learning methods.

A more general criticism can be aimed not at the length of time taken to acquire a
behavioural strategy using reinforcement learning, but that learning time is used at

all to measure performance. The most frequently used measure of performance
for connectionist and genetic algorithms is the learning rate (Sammut and Crib,

1990). The learning rate is a measure of how many trials are required before

performance is adequate. Sammut and Crib (1990) criticise the use of the learning

rate of a system as a measure of learning efficiency; they maintain that it is not

necessarily the best measure of performance and that it can be misleading at times.

263

A system may learn quickly but may only be applicable to a small operating

region; this raises the question of robustness. The pole balancing problem was

put forward to illustrate the point.

Sammut and Crib looked at a variety of learning algorithms such as the BSA

reinforcement learning system and found that specific learning-pertaining to a

limited region of state space-was not transferable, and that rapid learning

implied that learning was specific. The investigation revealed the trade-off

between rapid learning and generalisation; this is reminiscent of Michie and

Chambers' idea of exploration vs. exploitation (1968b). Rapid learning rates do

not lead to general solutions.

A bang-bang control system, such as the ASE / ACE system, which uses a

quantised representation of state space can be treated as a finite state automation.

An adequate control strategy for the cart-pole problem is represented by a cycle

between states. Figure 6.1 shows a cycle between states with binary outputs

(bang-bang control)

; Late to

. void (fail)

Figure 6.1 An absorbing cycle representing an adequate control strategy. Once such a cycle
between states has been entered, control will be maintained unless disturbances force the state-

space trajectory out of this operating region.

When a neurocontroller learns a control strategy quickly it means that a cycle has

been discovered within a short time; it also implies that the rest of the finite state

automaton graph has not been explored. There are many potential solutions to

the cart-pole problem. Some of the cyclic solutions have state nodes in common

owing to the variability within a given state node; this variability within a node

264

stems from the fact that a state node represents a set or cluster of states which

may lead to different regions of state space, even for the same output (See Figure

6.2)

0

Figure 6.2 Variation within a region of state-space represented by a single node. The same

output may lead to state-nodes with different outputs.

Starting a system with different initial conditions from those used for training very

often does not balance the pendulum again. In effect, the system only learns to
balance the pendulum from favourable conditions and some states are never

experienced and, thus, never learned. Thus using learning rate as the sole

criterion for assessing the performance of an architecture says nothing about the

quality of the solution and so is misleading. What is required is a robust control

strategy.

Sammut and Crib (1990) suggested using a voting strategy to counteract the

problem of overspecialisation. Iley used a set of random starting points and
'froze' the successful strategies. For example using 20 random starting points for

832 trials of a single experiment resulted in 100 successful trials. Using a Yoting

strategy to select the most successful strategies amongst the 100 successful trials

gave a new set of boxes. The new set of boxes resulted in a score of 20/20

successful trials when tested on each of 20 new random starting points. Ibis is

compared with a near zero score for learning systems trained using a single long

run with a single starting point.

The use of random starting points when training may increase learning time but

this may be acceptable when taking into account the increase in robustness.

265

Random starting points will lead to a greater proliferation in EUCART nodes

used en passant which will not contribute greatly to any given strategy.

However, relevance pruning will remove these providing that the pruning strategy

is contextual as opposed to purely usage-based. Contextual pruning would only

permit the removal of nodes in a given context or strategy. Nodes which

contributed to a successful control strategy for a given starting point would be

rendered "immune" from pruning when either the starting point or plant operating

conditions changed. This immunity would prevent pruning from favouring a

single strategy. Previously useful nodes which are no longer used in the current

strategy would have a falling relative usage count. Without immunity, these

nodes would become unimportant and would be removed when the usage count
fell below a given threshold if operating conditions warranted a change in

strategy. Contextual pruning provides a direction for future work.

The cart-pole problem provides a useful dynamical system for the development

and testing of putative neurocontrollers. However, difficulties arise in comparing

the performances of systems developed by various authors. Geva and Sitte

(1993) highlight two main problems:

*a lack of an agreed experimental protocol upon which to base benchmark tests,

and

*a lack of an agreed reporting standard for results.

In addition to this, not all experimental details are reported which makes

replication, and consequently comparison, difficult (Randall, Thorne, and Wild,

1994). Geva and Sitte (1993) also expressed concern that the cart-pole problem
is trivial if zero initial conditions are used. Randal, Thorne and Wild (1994)

suggest:

a standard set of parameters for the simulation including a difficult starting
condition (e. g. cart displacement +lm, cart velocity +lm/s, pole angle Irad,

pole angular velocity 0.17 89 rad/s)

266

ea set of standard assessment criteria, e. g.

-balancing time

-centering / oscillation (RMS values)

For the case of the oscillation criterion, the findings of Randal, Thome and Wild

concur with those of Geva and Sitte (1993) in that for box-based systems, large

oscillations (in centering of pole and cart) are caused by course partitioning of

state-space. The suggested reason is that the state-space trajectories remain

within the same state-space region (box) for more than one time-step.

Consequently, the same control action is issued for a number of consecutive time-

steps giving large cart and pole displacements. Ile situation is likely to be

repeated when the trajectory crosses a box boundary. The oscillation problem
indicates that variable granularity state-space partitioning may provide better

performance. However, a number of practical problems need to be overcome

including the difficulty in specifying a "granularity adjustment' 'algorithm or

procedure. This is a meta-control problem.

One possibility may be to introduce match-tracking in EUCART to "splie'nodes

by including smaller nodes in critical or boundary regions. The increased storage

overheads will possibly be mitigated by the judicious use of pruning to reduce

coverage of less important regions. The viability of pruning has already been

demonstrated although more work has to be done to make it more "intelligene'.

A recent paper by Lin and Lin (1996) proposes a network, RFALCON, which ties

together a number of ideas presented in this thesis. The Reinforcement Fuzzy

Adaptive Learning Controller Network associates input patterns with output
patterns according to a reinforcement schedule. It is constructed from two

multilayer feedforward networks (FALCONs) known as the actor the critic
respectively. Associated with RFALCON is an ART-based algorithm which is

used to cluster the input and output spaces. The RFALCON system operates on-
line using a two-phase process:

267

e structure learning, which uses ART to self-organise the input and output

spaces, and,

o parameter learning, which uses a form of backpropagation to tune the input

and output fuzzy membership functions.

Nodes representing linguistic terms or fuzzy rules can be added as required.

Results for the cart-pole problem show an average convergence time of 15 trials

for 5 runs. An average of 10 fuzzy rules were created. A run was terminated at

50 000 time-steps (1000 seconds) if failure did not occur before this time.

Although a fuzzy-logic based neurocontroller (FUZBOX) has been introduced as

a novel functional learning system in this thesis, the aim was to demonstrate the

feasibility of a distributed representation of state-space. Decoupling the

distributed representation feasibility problem from EUCART-BSA dynamics

made it easier to deal with. The main aim to distribute the EUCART-BSA hybrid

still remains. The idea of tuning the membership functions from both the work of

Berengii and Khedar (1992) and Lin and Lin (1996) by using a modified gradient

descent method may be useful in developing an automated variable granularity

system.

Reinforcement learning has only been applied to a single problem within this

thesis. Ibis was done deliberately so that operational and architectural issues

could be explored with respect to a well-known problem. It is envisaged that

once architectural issues have been resolved, the resulting architectures would be

applied to other problem domains especially in "real-world" control. Outstanding

issues include:

" contextual pruning,

" robustness,

" more efficient learning (distribution of information?),

multi-valued or continuous outputs,

a principled approach including a well-founded theory,

268

variable granularity of state-space coverage (including automatic tuning of

granularity), and

meta-control including intelligent strategy shifting

For the FUZBOX, architecture in particular, areas of future work include:

automatic tuning of fuzzy membership functions, and

"splitting and lumping" to give more general rules using a fuzzy analogue of

Karnaugh mapping (e. g. Bannister and Whitehead, 1983):

The ball and beam system (Lin and Lin, 1996) would provide a possible

alternative benchmark problem.

Most, if not all, future improvements would be in the direction of increased

autonomy and more intelligent behaviour. This, of course, is characterised by the

concept of meta-control. Tolle and Ursil (1992) give further insight into the

notion of meta-control by dividing the concept of "machine intelligence" into two
levels: Microintelligence: characterised by

" computing units

" local processing

" input/output mappings

" functional groups of processing elements: networks

generalisation and recall, and

Macrointelligence: characterised by

" goal orientated use of microintelligence

" co-ordination of functional groups

" multiple levels of processing (e. g. Churchland and Sejnowski, 1992)

" subroutines

" tokens-atoms of the next level.

269

One possible direction of future development is that neurocontrol will move away
from single reactive networks towards a form of distributed macrointelligence
(meta-control) operating within multiply re-entrant networks (Edelman, 1989)

capable of tracking and intelligently pre-empting change. Such multi-component

networks would be capable of learning through experience and constantly

adapting to novel conditions. They would not be limited to a small pre-
determined behavioural repertoire or constrained to optimise a single strategy.
Although intelligence is difficult to define or even to characterise, it certainly does

not mean doggedly persisting with a learning strategy when even a little higher-

level (meta-) processing would reveal that the strategy was hopeless or needed

adjusting.

It may be objected that speculation proposing such ill-defined intelligent systems
is far removed from current capabilities such as those detailed here. Indeed, it

may be that nothing short of a paradigm shift is required to change the emphasis
from more conservative approaches to learning to more organic and diffuse

approaches emphasising emergent properties. There is evidence that this is

happening (e. g Langton, 1989). The development of intelligent autonomous

systems may seem unrealistic and yet some of the simplest living organisms

exhibit adaptive behaviour.

Arguably, the greatest source of inspiration is the biological world. Millions of

years of evolution and untold numbers of organisms have constituted a learning

experiment of unprecedented levels. Examples of successful intelligent adaptation

abound in a harsh testing ground for learning algorithms. A "reverse-engineering"

or analytic approach applied to the living world may seem antithetical to a
bottom-up synthetic approach to artificial learning but it is not. Indeed significant

advances in machine learning theory may possibly result from the synergistic

combination of these complementary approaches.

270

6.2 Conclusions

In this thesis, a number of drawbacks of current approaches and fundamental

problems behind these drawbacks have been presented. These include:

* The lack of one-to-many mapping in ARTMAP and fuzzy ARTMAP;

9 The tracking of noise by fuzzy ARTMAP, i. e. noise is treated as novelty and

leamed;

9 The minimal generalisation capabilities of ARTMAP and fuzzy ARTMAP, i. e.

if an input does not fall within an existing category then an estimated output

cannot be generated;

* The requirement for a fixed a priori structuring of state-space in the BSA

implementation of reinforcement learning;

o The use of winner-takes-all dynamics with discrete boxes;

* The allocation of information storage capacity en masse regardless of use;

9 The long learning times required for reinforcement learning.

The above list is not meant to give the impression that the architectures featured

here are without merit. In particular, ARTMAP, fuzzy ARTMAP and the ASE

/ACE systems have proved to be successful approaches to many problems
involved in learning. However, further improvements can be made. Novel

architectures and proposed modifications to architectures include:

*A novel mapping architecture, PROBART, base upon adaptive resonance

theory

271

Establishment of one-to-many mappings and noise suppression in PROBART;

A proposed method of distributing information in PROBART to increase

generalisation to unseen inputs;

A novel self-organising architecture, EUCART, used in the self-organising

partitioning of state-space for control applications;

An autonomous hybrid architecture, EUCART+BSA, which is based upon two

current areas of research, ART and reinforcement learning;

A fuzzy-logic and reinforcement-learning based autonomous system,

FUZBOX, capable of generating rules from experience;

Both implemented and proposed mechanisms for dynamic allocation of storage

via incremental learning and pruning mechanisms.

One particular aspect of importance which has arisen from this work is that of

controller robustness. Even from consideration of a single simulated control

example, it is clear that both the original BSA neurocontroller and the novel

architectures indicate the possibility of autonomous control systems requiring

minimal supervision. However, the results from both the replication studies and

the novel architecture studies suggest that performance is sensitive to changes in a

number of parameters including initial conditions and the introduction of noise to

drive the stochastic search. The variability of convergence times for the same
initial conditions is evidence of sensitivity. The resulting neurocontrollers will be

robust to differing degrees depending upon the final extent of neurocontroller

experience following convergence.

Arguably the most fruitful next step will be to increase the experience of the

neurocontroller by exposing it to different control conditions through direct

manipulation of the simulation. This increase in experience will entail a

272

commensurate increase in storage requirements which will require modulation

using intelligent pruning. Robustness is an issue which must be dealt with if

realistic neurocontrollers are to be developed.

The contents of this thesis establish some new results and provide an indication of

possible future directions. It is not so much that the architectures discussed are

end-products of a problem-orientated design process but are rather by-products of

an exploration of the issues involved in machine learning. Ibis exploration is

open-ended and numerous future modifications have been proposed. Adaptive

Resonance Theory and reinforcement learning are two biologically and

psychologically inspired theories which continue to grow in importance and shed
light on some of the age-old problems in learning theory, both biological and

artificial.

273

References

Ahalt, S. C., Krishnamurthy, A. K. Prakoon, C. and Melton, D. E, (1990),

Competitive Learning Algorithms for Vector Quantisation, Neural Networks, 3,277-

290.

Albus, J. S. (1975a), A New Approach to Manipulator Control: The Cerebellar

Model Articulation Controller (CMAC), Trans. ASME. JnI. Dyn. Sys. Meas. and
Control. 63 (3), 220-227

Albus, J. S. (1975b), Data Storage in the Cerebellar Model Articulation Controller

(CMAQ, Trans. ASME. Al. Dyn. Sys. Meas. and Control. 63 (3), 228 -233

Albus, J. A Model of the Brain for Robot Control (1979), parts 1,11 and III, BYTE

magazine, June, July and August issues 10-A. 55-95,66-80. BYTE Publications

Inc.

de Alche-Buc, F. Andres, V. and Nadal, J-P (1992), Learning Fuzzy Control Rules

with a Fuzzy Neural Network, in Artificial Networks 2 (Eds.) Alexander, I and
Taylor, J. Elsevier Science Publishers, 715-719

Anderson, C. W., (1989), Learning to Control an Inverted Pendulum using Neural
Networks, IEEE Control Systems Magazine, April 31-36

Anderson, C. W. (1993), Q-Learning with Hidden-Unit Restarting Advances in
Neural Information Processing Systems 5

Anderson, J. R. (1995), Learning and Memory: an Integrated Approach, John Wiley

and Sons, NY.

274

Arbib, M., A. (1987), Brains, Machines and Mathematics (rd Edn.) Springer-Verlag

NY.

Astr6m, K. J. (1995) Adaptive Control: General Methodology In The Handbook of

Brain Theory and Neural Networks Arbib, M. A. (ed.) MIT Cambridge MA.

Bailey, N. T. J. (1964), The Elements of Stochastic Processes with Applications to

the Natural Sciences. Wiley

Banks, S. P. (1986), Control Systems Engineering Prentice-HaR international

Englewood cliffs NJ

Bannister, B. R. and Whitehead, D. G. (1983), Fundamentals ofModern Digital

Systems The Macmillan Press Ltd. London

Barker, L. M, (1994) Learning and Behavior: a Psychological Perspective

Macmillan College Publishing Company, New Yo&

Barto, A. G. (1992), Reinforcement Learning and Adaptive critic Methods, in White,

D. A. and Sofge, D. A. (Eds.) Handbook ofIntelligent Control: Neural, Fuzzy and
Adaptive Approaches.

Barto and Anandan, (1985), Pattem-Recognizing Stochastic Leaming Automata

IEEE Transactions on Systems, Man and Cybernetics 15 (3) 360-375

Barto, A. G. Bradtke, S. J. and Singh, S. P. Learning to Act Using Real-time dynamic

Programming. Artificial Intelligence Special Volume 72 (1): 81-138,1995.

Barto, A. G. and Sutton, R. S. (1982), Simulation of Anticipatory Responses in

Classical Conditioning by a Neur-on-Like Adaptive Element, Behavioral Brain

Research, 4,221-235.

275

Barto, A. G. Sutton, R. S., and Anderson, C. W. (1983), Neuronlike Adaptive

Elements that can Solve Difficult Izarning Control Problems IEEE Trans. Syst. Man.

Cybern. Vol. SMC-13,834-846.

Bengio, Y., Simard, P. and Frasconi, P. (1994), Learning Long-Term Dependencies

with Gradient Descent is Difficult IEEE Trans. On Neural Networks, 5 (2), 157-166

Berenji, H. R. and Khedkar, P. (1992), Learning and Tuning Fuzzy Logic

Controllers Through Reinforcements. IEEE Trans. On Neural Networks, 3 (5), 724-

740

Best, J. B. (1992), Cognitive Psychology (3 rd Edn.) West Publishing company St Paul

MN.

Bianchini, M, Gori, M and Maggini, M, (1994), On the Problem of Local Minima in

Recurrent Neuml Networks IEEE Trans. On Neural Networks, 5 (2), 167-177

Bishop, C. (1995) Neural Networksfor Pattern Recognition Clarendon Press Oxford

Broomhead, D., and Lowe, D. (1988), Multivariable Function Interpolation and
Adaptive Networks. Complex Systena, 2,321-355

Brown, M. and Harris, C. (1994), Neurofuzzy Adaptive Modelling and Control,
Prentice Hall Series in Systems and Control engineering, Prentice Hall, New York.

Buckley, J. J. and Hayashi, Y. (1993), Proceedings of the World Congress on Neural

Networks (INNS), Portland, Oregon 2,92-96

Budnick, F. S. (1988), Applied Mathematicsfor Business, Economics and the Social
Sciences (3"' Edn.) McGraw IE11

276

Carlson, N. R. (1994), Physiology of Behavior, Allyn and Bacon Needham Heights

MA.

Carpenter, G. A. and Grossberg, S. (1986), Absolutely Stable Learning of
Recognition Codes by a Self-organizing Neural Network, In J. Denker (Ed.) AIP

conference Proceedings 151: Neural Networks for Computing 77-85 New York AIP.

Carpenter, G. A., & Grossberg, S, (1987a), A Massively Parallel Architecture for a

Self-organizing Neural Pattern Recognition Machine, Computer Vision, Graphics,

and Image Processing, 37,54-115.

Carpenter, G. A., & Grossberg, S, (1987b), ART 2: Self-organisation of Stable

Category Recognition Codes for Analog Input Patterns. Applied Optics, 26,4919-

4930.

Carpenter, G. A., & Grossberg, S, (1989), ART 3: Hierarchical Search Using

Chemical Transmitters in Self-Organizing Pattern Recognition Architectures, Neural

Networks, 3,129-152.

Carpenter, G, and Grossberg, S. (1992), A Self-Organizing Neural Network for

Supervised Learning, Recognition, and Prediction IEEE Communications Magazine

30(9)38-49

Carpenter, G and Grossberg, S. (1994), Fuzzy ARTMAP: A Synthesis of Neural

Networks and Fuzzy Logic for Supervised Categorization and Nonstationary :, ýý
Prediction in Fuzzy Sets, Neural Networks, and Soft Computing, Yager, R. R. and
Zadeh, L. A. (Eds.) VNR New York.

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. H., & Rosen, -D.
B., (1992), Fuzzy ARTMAP: A Neural Network Architecture for Incremental

277

Supervised Learning of Analog Multidimensional Maps, IEEE Transactions on

Neural Networks, 3,698-712.

Carpenter, G. A., Grossberg, S. & Reynolds, J. H., (1991), ARTMAP: Supervised

Real-time Learning and Classification of Nonstationary Data by a Self-organizing

Neural Network. Neural Networks, 4,565-588.

Carpenter, G. A., Grossberg, S., & Rosen, D. B., (1991), Fuzzy ART: Fast Stable

Learning and Categorization of Analog Patterns by an Adaptive Resonance System.

Neural Networks, 4,759-77 1.

Carpenter, G. A. and Tan, A-H. (1993), Rule Extraction, Fuzzy ARTMAP, and
Medical Databases. In Proceedings, World Congress on Neural Networks, Portland,

OR, Vol. L 501-506 Lawrence Erlbaum Associates. hiUsdale, NJ.

Churchland, P. S. and Sejnowski, T. J. (1992), The Computational Brain MIT Press

Cambridge MA

Connell, M. E. and Utgoff, P. E. (1987) Ixaming to Control a Dynamic Physical

System Machine Learning and Knowledge Acquisition 456-460

Cybenko, G. (1989), Approximation by Superpositions of a Sigmoidal Function.

Mathematical Control, Signals and Systems, 2,303-314.

Daynan, P. and Hinton, G. E. (1993), Feudal Reinforcement Learning in Henson Si.,

Cowan, J. D. and Giles, D. L. (Eds.) Advances in Neural Information Processing 5,
Morgan Kaufmann, San Mateo, CA.

Edelman, G. M. (1989), Neural Darwinism: The Theory offeuronal Group

Selection, Oxford University Press, Oxford.

278

Elman, J. L. (1990), Finding Structure in Time Cognitive Science 14 179-211

Fahlman, S. E. and Lebiere, C. (1990), The Cascade Correlation Izaming

Architecture in Advances in Neural Information Processing Systems 2 Touretsky, D.

(Ed) Morgan Kauffman 524-533

Freeman J. A. and Skapura, D. M. (1992), Neural Networks: Algorithm,

Applications and Programming Techniques Addison-Wesley Inc.,. Reading Mass.

Friedland, B., (1987), Control System Design: An Introduction to State space
Methods, McGraw-Hill Book Company, New York

Fritzke, B. (1991), Unsupervised Clustering with Growing Cell Structures

Proceedings of the IEEE International Joint conference on Neural networks Vol. 11
531-536

Fritzke, B. (1993), Kohonen Feature Maps and Growing Cell Structures. A

Performance comparison in Advances in Neural Information Processing Systems 5
Hanson, S. J., Cowan, J. D. and Giles, C. L. (Eds). Morgan Kauffman Publishers Inc.
123-130

Fritzke, B. (1994), Growing Cell Structures-A Self-Organizing Network for
Unsupervised and Supervised Ixaming. Neural Networks Vol. 7 No. 9 1441-1460

Fu, L (1994), Neural Networks in Computer Intelligence McGMw-Hi11 Inc. New

York.

Fujita, 0. (1992), Optimization of the Hidden Unit Function in Feedforward Neural
Networks Neural Networks, 5,755-764.

279

Funahashi, K-I. (1989), On the Approximate Realization of Continuous Mappings by

Neural Networks. Neural Networks, 2,183-192.

Fung, C. F., Biflings, S. A. and Luo, W. (1994) On-Line Supervised Adaptive

Training Using Radial Basis Function Networks Research Report No 554, The

University of Sheffield, U. K.

Gallant, S. (1993) Neural network Learning and Expert Systems MIT Press

Cambridge MA

Gellatly, A (Ed.) (1986), The Skilful Mind: An Introduction to Cognitive Psychology
Open University Press Nfilton Keynes

Geva, S. and Sitte, J. (1993), Ibe Cart-pole Experiment as a Benchmark for

Trainable Controllers, IEEE Control Systems Magazine 13 (5) 40-51

Girosi, F. and Poggio, T (1990), Networks and the Best Approximation Property.

Biological Cybernetics 63,169-176.

Goldberg, D. E. (1989), Genetic Algorithnn in Search, Optimization and Machine

Learning Addison Wesley.

Grossberg, S. (1968) Some Nonlinear Networks Capable of Learning a Spatial
Pattem of Arbitrary Complexity, Applied Mathematics 59,368-372

Grossberg, S (1976a); Adaptive Pattern Classification and Universal Recoding 1:
Parallel Development and Coding of Neural feature Detectors, Biological
Cybernetics, 23 121-134

280

Grossberg, S (1976b); On the Development of Feature Detectors in the Visual Cortex

with Applications to Izaming and Reaction-Diffusion Systems, Biological

Cybernetics, 21145-159

Grossberg, S., (1980); How Does a Brain Build a Cognitive Code? Psychological

Review, 1,1-51.

Grossberg, S (1987), Competitive Learning from Interactive, Activation to Adaptive

Resonance Cognitive Science 11.23-63.

Grossberg, S (1988), Nonlinear Neural Networks: Pzinciples, Mechanisms, and
Architectures, Neural Networks 1,17-6 1.

Harvey, R. L. (1994), Neural Network Principles Prentice-hall International Inc.

London

Hamilton, A. G. (1988), Logic For Mathematicians Cambridge University Press

Haykin, S. (1994), Neural Networks: a Comprehensive Foundation Macmillan NY.

Hebb, D. 0. (1949), Organization ofBehavior, Wiley, NY.

Hebb, D. 0. (1972), Textbook of Psychology Saunders Philadelphia

Hecht-Nielsen, R. (1990), Neurocomputing Addison Wesley, Reading, MA.

Hergenhahn, B. R. (1992), An Introduction to the History ofPsychology Wadsworth
Publishing Company Belmont CA.

281

Hertz, J., Krogh, A. and Palmer, R. G. (1991), Introduction to the Theory offeural
Computation Addison Wesley Reading MA

Hocldng, L. M., (1991), Optimal Control: An Introduction to the Theory with
Applications, Oxford Applied Mathematics and Computing Science Series,

Clarendon Press, Oxford.

Hornik, K. (1993), Some New Results on Neural Network Approximation. Neural

Networks, 6,1069-1072.

Homik, K., Stinchcombe, M. & White, H. (1989), Multilayer Feedforward Networks

are Universal Approximators., Neural Networks, 2,359-366.

Howard, R. W (1987), Concepts and Schemata: An Introduction Cassell Educadon

Howell, M. N. W. (1994), Applications of Complex SY3tem to Pattern Recognition,

Optimisation and Control Ph. D. Ilesis University of Sheffield

Hu, Y. and Fellman, R. D. (1995), An Implementation Efficient I-earning Algorithm
for Adaptive Control Using Associative Content Addressable Memory IEEE Trans.

on Syst. Man and Cybern., 25, (4), 704-709

Jacobs, R. A. and Jordan, M. 1. (1993), Learning Piecewise Control Strategies in a
Modular Neural Network Architecture IEEE Trans. on Syst. Man and Cybern., 23,
(2), 337-345

James, W (1892), Textbook of Psychology: Briefer Course, Macmillan & Co. Ltd,

London.

282 ,

Jang, R. J-S. (1992), Self-Leaming Fuzzy Controllers Based on Temporal Back

Propagation, IEEE Trans. on Neural Networks, 3 (5).

Jang, R. J-S. (1993), ANFIS: Adaptive-Network-Based Fuzzy Inference System,

IEEE Trans. on Syst. Man and Cybern., 23, (3), 665-685

Jang, R. J-S. and Sun, C-T. (1995), Neuro-fuzzy Modelling and Control. Proc.

IEEE, 83, (3)

Jianan, F. Hussein, E. M. and Shihuang, S. (1995), Self-iLearning FuzzY Control

Based on Adaptive Critic with CMAC Technique Proceedings of the IEEE

International Conference on Neural Networks and Signal Processing, Nanjing China

Vol. 1,564-567

Johnson, J. A., and Smartt, H. B. (1993), Fuzzy Logic and the Associative Search

Element Proc. World congress on Neural Networks INNS Portland Oregon Vol. 11

52-55

Jordan M. I. and Jacobs, R. A. (1990), Ixaming to Control an Unstable System with
Forward Modeffing in Advances in Neural Information Processing Systems 2
Touretsky, D. (Ed) Morgan Kauffman 324-331

Kadirkamanathan, V. and Niranjan, M (1992), Technical Report CUED/F-
INFENGAR. 111, Cambridge University, Cambridge, UK.

Khedar, P. S. and Berenji, H. R. (1993), Generating Fuzzy Rules with Linear
Consequents from Data Proceedings of the World congress on Neural Networks
INNS Portland Oregon Vol. 1118-21

283

Kim, Y. S. and Lee, J. G. (1990), Design of a Pole-Balancing Controller Using

Neural Networks Proceedings of the International Conference on Neural Networks

Vol 2.619-612

Klopf, A. H. (1972), Brain Function and Adaptive Systems: a Heterostatic Theory.

Air Force Cambridge Research Laboratories Research Report AFCRL-72-0164,

Bedford MA

Klopf, A. H., (1986), A Drive-Reinforcement Model of Single Neuron function: An

Altemative to the Hebbian Neuronal Model in J. Denker (Ed.) AIP Conference

Proceedings 151, Neural Networks for Computing, 77-85 New York, AIP

Klopf, A. H., (1988), A Neuronal Model of Classical Conditioning, Psychobiology,

16, (2), 85-125.

Kohonen, T. (1989), Self-Organisation and Associative Memory, (3rdEdn.)

Springer-Verlag, Berlin.

Kohonen, T. (1995), Self-Organizing Maps Springer series in infomation Sciences

Springer-Verlag Berlin

Kosko, B., (1992), Neural Networks and Fuzzy Systems: A dynamical Systems

Approach to Machine Intelligence (263 - 298) Prentice-Hall International, Inc.

fFuzzy Systena John Kruse, R, Gebhardt, J. and Klawonn, F. (1994), Foundations o
Wiley and Sons Chichester

Kruse, R. Gebhardý J. and Pair, R. (Eds) (1994), Fuzzy Systems in CotVuter Science
Vieweg

284

Lahdhiri, T., Carnal, C. L. and Alouani, A. T. (1994), Cart-Pendulum Balancing

Problem using Fuzzy Logic Control Proceedings of the IEEE Southeastcon 1994

393-367

Langton, C. G. (1989) Artificial Life Addison Wesley, Redwood City CA

Le Cun, J. Denker, J. S. and Solla, S. A. (1990), Optimal Brain Damage in Advances

in Neural Information Processing Systems 2 Touretsky, D. (Ed) 598-605

Levin, A. U. and Narendra, K. S. (1993), Control of Nonlinear Dynamical Systems

Using Neural Networks: Controllability and Stabilization IEEE Transactions on
Neural Networks. 4,2,192-207.

Levine, D. S. (1991), Introduction to Neural and Cognitive Modelling Lawrence

Erlbaum Associates Hillsdale NJ

Lim, C. P. and Harrison, R. F. (1995) Probabilistic Fuzzy Artmap: an Autonomous

Neural Network Architecture for Bayesian Probability Estimation. Proc. IEE, 4h Int
Conf. On ANNs, Cambridge 148-153.

Lin, C-J and Lin, C-T (1996), Reinforcement Learning for an ART-Based Fuzzy
Adaptive Learning Control Network IEEE Transactions on Neural Networks 7 (3)
709-731

Lin, C-S. and Kim, H. (1991), CMAC-based Adaptive Critic Self-Leaming Control.

IEEE Transactions on Neural Networks. 2,5,530-533.

Linkens, D. and Abbod, M. F. (1993), Supervisory Intelligent Control Using A Fuzzy
logic Hiemrchy Trans. Inst. MC 15 (3) 112-132

285

Liu, G. P., Kadirkamanathan, V. and Billings, S. A. (1994), Stable Sequential

Identification of Continuous Nonlinear Dynamical Systems by Growing RBF Neural

Networks, Research ReportNo 547, The university of Sheffield, U. K.

- Knowledge-Based Ma, Z., Harrison, R. F. and Kennedy, R. L. (1995) GR2 A Hybrid

System using General Rules. international Joint Conference on Artificial

Intelligence Montreal.

McClelland, D. E. and Rumelhm J. L (1986), Parallel Distributed Processing:
r7-. - r-. xplorations in the Microstructure of Cognition, Vol 1: Foundations Mrr Press

Cambridge MA.

Marriott, S and Harrison, R. F. (1994), A modified Fuzzy ARTmAP Architecture for

the Approximation of Noisy Mappings, Research Report No 522, The University of
Sheffield, U. K.

Marriott, S and Harrison, R. F. (1995a), A modified Fuzzy ARTMAP Architecture

for the Approximation of Noisy Mappings, Neural Networks 8 (4) 619-641

Marriott, S. and Harrison, R. F. (1995b), A Self-Organising State Space Decoder for

Reinforcement Learning, Research Report No 582, Ile University of Sheffield, U. K.

Marriott, S. and Harrison, R. F. (1996), Proceedings of Control'96 Exeter UX

1113-1117

Maricic (1991)

Mendel, J. M. (1995), Fuzzy Logic Systems for Engineering: A Tutorial, Proceedings

of the IEEE, 83 (3) 345-377

286

Mendelson, E (1987). Introduction to Mathematical Logic Wadsworth and

Brooks/Cole Monterey CA

Michie, D. and Chambers, R. A., (1968a), BOXES: an Experiment in Adaptive

Control, in Machine Intelligence 2, E. Dale and Nfichie, D. Eds. Edinburgh: Oliver

and Boyd.

Michie, D. and Chambers, R. A., (1968b), 'Boxes' as a model of pattern-formation in

Towards a Theoretical Biology (Ed.) Waddington, C. H. Oliver and Boyd Edinburgh

Minsky, M. L. (1967), Computation: Finite and Infinite Machines Prentice-Hall

Series in Automatic Computation

Moody, J. and Darken, C. (1988), Learning with Localized Receptive Fields. In

Touretzky, D. et al (Eds.), Proceedings of the 1988 Connectionist Models Swmner

School, (174-185) San Mateo, CA, Morgan Kaufmann Publishers.

Moody, J. and Darken, C. (1989), Fast Learning in Networks of Locally_tuned

Processing Units. Neural Computation 1 (2) 281-294

Moore, B., (1989), ART 1 and Pattern Clustering. In Touretzky, D. et al (Eds.),

Proceedings of the 1988 Connectionist Models Summer School, (174-185) San

Mateo, CA, Morgan Kaufmann Publishers.

Morgan, J. S. Patterson, E. C. and Klopf, A. H. (1990), Drive-Reinforcement

Learning: a Self-Supervised Model for Adaptive Control Network 1439-448

Myers, C. E. (1992), Delay Learning in Artificial neural Networks, Chapman and
Hall, London.

287

Narendra, K. S. and Tbathachar, M. A. L. (1974), Learning Automata-A Survey, IEE

Transactions on System Man and Cybernetics, 4,323-334

Nie, J. and linkens, D. A. (1994), FCMAC a Fuzzified. Cerebelar Model Articulation

Controller with self-organizing Capacity Automatica 30 (4) 655-664

Nigrin, A. (1993), Neural Networksfor Pattern Recognition MIT Press Cambridge

MA

Norton, J. P. (1986), An Introduction to Identification Academic Press, London

Ogata, K. (1990) Modern Control Engineering Prentice-HaU International Inc.

London

Pao, Y-H (1989) Adaptive Pattern Recognition and Neural Networks Addison-

Wesley Publishing Company Inc., Reading Mass

Pavlov, I. P. (1928), Lectures on Conditioned Reflexes, Vol. I, (Trans.) Gantt, W. H.,

Lawrence & Wishart Ltd, London.

Pedrycz, W. (1993), Fuzzy Control and Fuzzy Systems Second, extended, edition
Research Studies Press Taunton

Picton, P. (1994), Introduction to Neural Networks MacmUlan Hants

Pinel, J. P. J. (1993), Biopsychology (2nd Edn.) Allyn and Bacon.

Platt, J. C. (199 1), A Resource Allocating Network for Function Interpolation.
Neural Computation 3 (2), 215-225.

288

Powell, M. J. D. (1987), Radial Basis Functions for Multivariable Interpolation: a

Review, in Algorithmsfor Approximation, Mason, J. C. and Cox, M. G. (eds.)

Clarendon Press Oxford 143-167

Prockyk, T. J. and Mamdani, E. H. (1979), A Linguisdc Self-Organising Process

Controller, Automatica, 15 15-30

Randall, M., Thorne, C., and Wild, C. (1994), A Standard Comparison of Adaptive
Controllers to Solve the Cart-Pole Problem Proceedings of the Second Australian

and New Zealand Conference on Intelligent Information Systems 61-65

Reed, R. (1993), Pruning Algorithms-A Survey, IEEE TransactionS on Neural
Networks, 4,5,740-747

Ritter, H., Martinetz, T., and Schulten, K. (1992), Neural Computation and Self-
Organizing Maps: an Introduction, Addison-Wesley Publishing Company, Reading
MA. 7ý 11 1,11

Roberts, 1 (1993), Making Sense of English in psychology Chambers Harrap Ltd.
Edinburgh.

Rosenblatt, F. (1962), Principles offeurodynamics. New York, Spartan.

Rumelhart, D. E., Hinton, G. E., & Wifflams, R. J. (1986), Learning Internal
Representation by Error Propagation. In Rumelhart, D. E. & McLelland (Eds.),
Parallel Distribwed Processing, 1,318-362, Cambridge, MA. ' MIT Press.

Rumelhart, D. E., Hinton, G. E. and Williams, R. J. (1986) Learning Representations
by Back-propagating Errors, Nature 323 533-536

289

Rumelhart, D. E. and Zipser, D (1985) Competitive Learning In Rumelhart, D. E. &

McLelland (Eds.), Parallel Distributed Processing, 1,152-193 Cambridge, MA, Mrr

Press.

, ', - Sa V. R. and Ballard, D. H. (1993), a Note on Learning Vector Quantisation in

Henson S. J., Cowan, J. D. and Giles, D. L. (Eds.) Advances in Neural Information

Processing 5, Morgan Kaufmann, San Mateo, CA. 221-227

Sammut, C. and Cribb, J. (1990), Is Learning Rate a Good Perfomance Criterion for

Learning? Proceedings of the Seventh International WOrkshOP On Machine

Learning. Morgan Kaufmann 170-178

Samuel, A. L. (1959) Some Studies in Machine I-earning Using the Game of
Checkers, IBM Journal ofResearch and Development 221-229

Santiago, R. A. and Werbos, P. J. (1994), New Progress Towards Truly Brain-Like

Intelligent Control Proceedings of the World congress on Neural Networks 1994 Vol

1.26-33

Saridis, G. N. (1989), Analytic Fonnulation of the Principle of Increasing Precision

with Decreasing Intelligence for Intelligent Machines. Automatica 2S9'3,, 461-467.

Scarborough, J. B. (1966), Numerical Mathematical Analysis. (Sixth Edn.) 7be

Johns Hopkins Press. Baltimore.

Selfridge, 0. (1959), Pandemonium: A paradigm for leanuing, in Sym psium on the P
mechanisation of though processes, London, HMSO.

Sharkey, N. E. and Sharkey, A. J. C. (1994), Understanding Catastrophic
Interference in Neural Nets. Research ReportCS-944, University of Sheffield, U. K.

290 '1 ý

Simpson, P. K. (1990), Artificial Neural Systems: Foundations, Paradigms,

APPlications and Implementations Pergamon Press, NY

Specht, D (1990) Probabilistic Neural Networks Neural Networks 3 109-118

Werstrom, T. and Stoica, P (1989) System Identification Prentice Hall NY

Srinivasan, B. Prasad, U. R. and Rao, N. J. (1994), Back propagation Throug

Adjoints for the Identification of Nonlinear Dynamic Systems Using Recurrent Neural

Networks IEEE Trans. On Neural Networks, 5 (2), 213-227

Sugeno, M. and Nishida, M. (1985), Fuzzy Control of Model Car, Fuzzy Sets and

Systena 16 103-113

Sutton, R. S. (1988), Learning to Predict by the Methods of Temporal differýnces,

Machine Learning, 3,9-44.

Sutton, R. S. (Ed.) (1992), Reinforcement Uarning: A special Issue of Machine

Learning on Reinforcement Ixarning Kluwer Academic Publishers.

Sutton, R. S., and Barto, A. G. (198 1), Towards a Modem Theory of Adaptive

Networks: Expectation and Prediction, Psychological Review, 88 (2), 135-170.

Sutton, R. S., and Barto, A. G. (1990), Time-Derivative Models of Pavlovian

Reinforcement, in Gabriel, M. and Moore, J. Learning and C6nVlitatiOnal

Neuroscience: Foundations o Adaptive Networks. MIT Press, Cambridge MA..
'

Of
497-537.

Sutton, R. S., Barto, A. G. and Williams, R. J. (1992), Reinforcement Learning Is

Direct Adaptive Optimal control, IEEE Control Syst , ents I Magazine, April, 19-22.

291

Thorndyke, E. L. (1911), Animal Intelligence, Macmillan, NY

Timan, A. F. (1994), Theory ofApproximation offunctions of a Real Variable,

Dover Publication Incorporated, New York.

Tolat, V. V. and Widrow, B. (1988), An Adaptive "Broom Balancer" with Visual

Inputs Proceedings of the IEEE International Conference on Neural Networks VOL

2641-647

Tolle, H., ErsU, E. (1992), Neurocontrol: Learning Control Systems Inspired by

Neuronal Architectures and Human Problem Solving Strategies, Lecture Notes in

Control and Information Sciences. Springer Verlag

Vapnic, V. N. (1995) The Nature ofStatistical Learning Theory Springer N. Y.

Wang, Li-Xin, and Mendel, J. A (1992), Genemting Fuzzy Rules by Learning from

Examples, IEEE Trans. Sys., Man and Cybern. 22 (6), 1414-1427.

Walker, S. (1975), Learning and Reinforcement Volume A3 of Essential Psychology

Series Herriot, P. (Ed.) Methuen

Watkins, C. J. C. H (1989) Ph. D. Thesis University of Cambridge.

Watkins, C. J. C. H. and Daynan, P. (1992), Technical Note: Q. I-eaming Machine
Learning 8 279-292

Watson, J. B. (1913), Psychology as the Behaviourist Sees it, Psychological Review
20,158-177

292

Werbos, P. J. (1990) Backpropagation Through Time: What it is and How to Do it,

Proc. IEEE 78 1550-1560.

Wiberg, D. M. (197 1) State-Space and Linear Systenu McGraw-lEll

Widrow, B. (1987) ne Original Adaptive Neural Net Broom-Balancer. Proceedings

of the International Symposiwn on Circuits and systents 351-357

Widrow, B. and Hoff, M. E. (1960). Adaptive Switching Circuits. In 1960 IRE

WESCON Record, 4,96-104. NY IRE. Reprinted in Anderson and Rosenfield

(1988)

Widrow,]3, and Smith, F. W. (1963). pattern recognizing Control Systems.

Computer Information Sciences (COINS) Symposium

Widrow, B. and Lehr, M. A. (1990) 30 Years of Adaptive Neural Networks:

Perceptron, Madaline and Backpropagation Proceedings of the IEEE 78 (9) 1415-

1442.

Wieland, A. P. (199 1) Evolving Neural Network controllers for Unstable Systems
PrOc. IEEE Vol 2 667-673

Zadeh, L. A., (1965). Fuzzy Sets. Information and Control, 8,338-353.

Zhang, 13. and Grant. E. (1992), Using Competitive Learning For State-Space
Partitioning, Proceedings if the IEEE international Symposim on Intelligent
Control, 391-395

Zeidenberg, M. (1990), Neural Networks in Artificial Intelligence, Ellis Horwood
Series in Artificial Intelligence, Ellis Horwood, New York.

293

Appendix A The Monotonic Increasing Property of the fuzzy ART Choice

Function (Marriott and Harrison, 1994)
a

This proof is included to illustrate an important property of ART module choice

functions.

When wj is a fuzzy subset of I, the Fuzzy ART choice function is of the form

ax f (X) = ý+x .

Theorem: For a function f: [0,1] f (X) =
ax

, where a and b are
b+x

positive constants, given some X, IX2 lE
[0111 f (X2) ýý f (XI) :* X2 ý-Xl

*

In the thesis, the above property is referred to as the "monotonic increasing

property" or M. I. P.

Proof: For someX, X2r: [0, l] assume that f (X2 f (xj), i. e.

aX2
> aX,

b+X2 b+x I
Using the rules of inequalities

aX2 (b+ Xj)
>

"I (b+ X2)

(b + xl)(b+ X2) (b + X1)(b+ X2)

giving,
abX2 ý: abx,

and
X2 ýý X1

Similarly, it can be proved that
X2 ýý X1 ' '2* f (X2) f (XI)

294

Appendix B: ARTMAP: a Numerical Example.

The pattems to be associated in this simple example are:

111110_ý1010, lb
I

la
2,111100_40101,

lb
2

l3al 111"-"0109 lbl

The parameters used in this example are: a=2.0,6 = 0.01, M,, = N. =

Mb= Nb= 4. The baseline vigilance for ARTa, specified by jY. = 0.4,

illustrates match-tracldng in ARTMAP. ART b vigilance, A=0.9

Initialise weights:

11-
Wi!

TDa) (0)
= 1.0, W4ý=b)

(0)
= 1.0, W,

(BUa) (0)
=ý-6= -0.0 1=0.115

vi a+M, 2+6

and
(ý Ub) (0)

= -3=--L-0.01=0.157 Mi
a+M, 2+4

1D-
msent inputs:, 111101', 1'(1) [10101'

Consider the ARTh module. Propagate the input to Flb giving
Xb (t) lb (1)

ý lb

I. PrOPagate to F2b via bottom-up connections:
M"

.. i
WýýUbl (O)Xi netj(1) = 1:

J,
b (1)

iml

= 0.157 x 1+ 0.157 xO+0.157 xl+0.157 xO
= 0.314

1

It is the same for all F2a nodes as there are no committed nodes yet so the first

node is chosen as the winner i. e. J=1.

295

(7vb)
Propagate back to Fl b via top-down connections giving xb (1) =

lb (1) +wi

or componentwise, xi = Ii + w, ("). Apply the condition If xi >, - 1+F then xi =I

else Xb =0 There is no gain as F1b and F2b are active and so, i

xlb(l)=1+1=2, x2b(l) = 0+ 0.157 = 0.157, x3b(l) = 1+0.157=1.157 and
b Xb(l) = I, Xb(l) = O, Xb(l) = x4(l) = 0+0.157 = 0.157, which implies thatý ,231 and

X '(1) = 0. after thresholding. 4

Matching at ARTh Fl gives, for x" (1) = [10101', 11"(1)l = 1.0ý: pb=09. A

similar sequence of events follows for the ARTa module where F2a, node I is

acdvated.

(ab)
= I+Ixl=2, For the map field, x, 'b (1) = ykb(l) + Yar (Owki (0), and thus, X, '

x2"'=0+lxl=l, x'=0+lxl=land ab=O+lxl=lgiving xý

xab= [10001'after thresholding.

Now, Xab(l) = Yb (1) n Wab(O) = yb (1) because, wl (0) = [I 1111, signifying that
.rr

no association has been learned yet as the J th AM node is uncommitted.

At this stage the ARTa and ARTh modules and the map field have to be updated.

For ARTa-. W(TDa) (1)
= Xi

(1)
giving w

(TDa) t

and if ,
(1) = [1.0 1.0 1.0 1.0 1.0 0-01

1.0 1.0 1.0 1.0 1.0 1.6,
1.0 10 1.0 1.0 1.0 1.0

(TDa)
1-0 LO 1.0 1.0 1.0 1.0

W
1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

LO-0 1.0 1.0 1.0 1.0 1.0

296

I, (I
(Rua)

11

Also, wj(Ru"I (1) =- giving w,, (1) =-=-=0.143. similarly,
a+ Ix" W 2+5 7

(SUa) (BUa) (Rua)
wi, (1)

=w (1) = (1)w, (Bua) (1) = 0.143,
13 M4

BUa)
00

butW, (6 (1)
=

2+5 =7=0.0 giving

(TDa)
w [0.143 0.143 0.143 0.143 0.143 0.01 and

0.143 0.143 0.143 0.143 0.143 0.0
0.115 0.115 0.115 0.115 0.115 0.115

w
(DUa) (1) 0.115 0.115 0.115 0.115 0.115 0.115

0.115 0.115 0.115 0.115 0.115 0.115
0.115 0.115 0.115 0.115 0.115 0.115

LOA 15 0.115 0.115 0.115 0.115 0.1 15J

Similarly for ART'b. - w,
(TDb) (1)=11.0 00 1.0 0.0]' and

(BUb)
W1 (1)=[0250 0.0 0.250 O. Of giving the ARTh weight matflces

- 1.0 1.0 1.0 1.6, 0.250 0.0 0250 0.0

W(TDb)(1) =
0.0 LO 1.0 1.0

and W
(SUb) 0.157 0.157 0.157 0.157

1.0 LO 1.0 1.0 0.157 0.157 0.157 0.157
0.0 LO 1.0 1.0 0.157 0.157 0.157 0.157_

respectively.

'Me map field weights are given by w(' b) (t + 1) = x, ' and, thus,

1.0 1.0 1.0 1.0 1.0 1.0

w ab(i) =

0.0 1.0 1.0 1.0 LO LO

0.0 1.0 1.0 1.0 LO 1.0

LO. 0 1.0 1.0 1.0 LO LOJ

For the next cycle, 1" (2) = 12' = [1111001' and Ib (2) = Ib = [01011'. Note that 2

lb =
(1b)c 1'2' c 1'1' and 21

297

lb lb
Consider the ARTh module. Propagate input to Flb giving x'(2) (2) 2

Propagate to F2b (BU) giving
M

net, (2) =2 wl(iBub)
(1)xib(2)

i=l

= O25OxO+O. Ox 1+0.250xO+O. Ox 1
0.0

and

net2(2) net, (2) = net4(2) = 0.314. Choose J=2 as the winning node and

Xb(2)=Ib(2)+w
(TDb)(1). Componentwise, propagate back to Flb (TD) giving

x, = Ii + w, ý"). Apply the condition If xj 2t 1+F then xi =1 else xib =0 again

giving xb (2) =0+1=1, x2b(2)=1+1=2 x3b(2)=0+1= 1 and

X4b(2) = 1+ 1=2, which implies that x"(2) = [01011'after thresholding.

Matching at Flb gives, f or Xb (2) = [01011', Ilb (2)1 = 1.0; >- pb = 0.9.

For ARTa: Propagate input to Fla giving xa (2) =I" (2) = 12. PropagatetoF2a

(BU) giving
m

net" (2) w
(BUa) (I)X a (2) 1

= Q143x 1+0.143x 1+0.143x 1+0.143x 1+0.143x O+O-Ox 1

= 0572

and
m

net, a (2)
w2(fua) (I)xi" (2) 2i 8

iml

0.115x 1+0.115x 1+0.115x 1+0.115X 1+0.115XO+0.0xl
0.46

similarly net3a(2) = net4a(2) = neta (2) = net6a(2) = 0.46 andF2a node I wins the

competition. This makes sense because 12' cV and none of the other F2a, nodes

are committed at this stage.

298

.,.,
(1) or Componentwise, Propagate back to Fla CrD) givingx"(2) =I" (2)+w (TDa)

r. +w Xib Xi =), j(VTD) - Applying the condition, If xi >, - 1+F then xi =1 else 0

gives

x, 4(2) = 1+ 1=2, x2a(2) = x3*(2) = x4a(2) = 2, xas (2) = 0+ 1=1, and

x6"(2) = 0+ 0=0 which implies that x" (2) = [1111001' after thresholding and

x'(2) =V r) W(TDa) 21
(1)

42

= 2,1

Xb

ka (2ý 11421

Matching at ARTa gives, for (2) = 12' , ---
1.0 ý. - pb= 0.9. The F2

11" (2)l F12 I

activity vectors for ARTa and ARTh are now given by y(2) = [1000001'and

y'(2) = [01001'respectively.

For the map field:

w ab 0) = [1000'], andx"b(2) = y'(2) + Y. 1
(1) W(ab)

(1)

. r. kk kjml

thus, x, "b (2) =0+1x1=1 "b(2)=l+lxO=l, x3*b(2)=O+JxO=O and X2 3

x4"b(2)=O+lxO=O giving x"b(2) = [00001'after thresholding,

Lexab(2) = yb (2) n w, (1) =0. This is because the active ARIb category

(category 2) is not predicted by ARTa. ARIb category 1 is predicted because the

ART a input is a subset of the ARTa category 1 exemplar and ARTa category I is

linked via the map field to ARTh category 1.

Ix ab (2)1
The map field match criterion r-

Yý (2), ; -> pb fails because Ixa(2)1 =0 and the

current ARTh category is not what is predicted. Match tracking attempts to
rectify this incorrect prediction by raising the ARTa vigilance so that the currently
active ARTa node is no longer chosen and a new ARTa category found with the

299

correct prediction or a new map field linkage is created using a newly committed
ARTA node.

However, the problem lies within ARTa and cannot be solved with match tracking

using the system described so far. Normally, a map field mismatch would trigger

match tracking which would increase the ARTa vigilance above the ratio

"(2)1 a a

ja

Ix aW= Ila W r) W

which, in this particular case is N2 = land
r(2)1 12 (01 111, (01 a2

no future ARTa match will be greater than unity. This means that no other node

may be recruited or created. ARTh has learned the new input but it cannot be

associated with the current ARTa input.

For the third input I3ac la and 1, belongs to ARTa category I linked which is

linked to ARTh category 1 as required.

300

Appendix C: The ARTMAP Match-Tracking Theorem

Theorem: The ARTHAP Match-Tracking Theorem Any ARTa input which is not

equal to any previously stored ARTa input will always trigger match tracking

activity in ARTMAP if complement coding is used.

Proof.

Let IJ denote some input I" (t) at time, t and Ii denote some previous input

I" (t - T) at time t-, r such that 1, c: 1, - Using complement coding, the following

IC f= (1,, Ic). inputs can be defined: 1ý =
(Ij

9
), and I, i

Without loss of generality, assume Ii is stored by some top-down ARTa weight,

i. e. w
(TDa)

.r
(t)

= Ii'.

The ARTa matching condition can be stated as ; -> A 11-0 (01

(TDa) Assume the input Ij triggers ARTA node J such that w., (t) = I,. The match

Ila (t) r) w(
'a) (t)l

condition is then- pa
Ir wl IIJI

It is required to prove that 11' n I' j so that the matching ratio does not iI<
11,1

equal unity to allow the ARTa vigilance to be increased through match tracking.

By hypothesis, Ii c 1,, which implies that If c I'. Now,

301

Y
J) (ii uP (1, r) 1,) u (Ij n ic) u (ic n Ij) u (I c n1i) iii

=(ij nii)uouou(icj nli')

(1, nii)u(icj n lie)

By hypothesis, li c 1, giving Ij r) li = Ij and, by deduction, li' c I'j, giving,

IC = ii9

Substituting these terms into V, n li' =
(Ij n Ij) U

(I'j n K) gives

11r)ll=l UP iiiI

The condition 11'j
r) I, f I< 11 1

can now be replaced bY the equivalent condition

11
UYI< JIj. Now, IIj u 11 1= Iij I+ 11! 1, and

11" 1
iIiiAi

By hypothesis Ij c I, which implies that jIj I< Ili 1. Similarly If c I'j implies

that Ili I< jIj I. The latter can also be proved
Ili I

<Ili I=* -IliI > -Ili I=: > M-11JI > M-11ij =* IlcjI > Il; I
Now, starting from the fact that

Ili
U If

I= Iljl+ilc I the equivalent match

IC condition may be proved, thus,
Ili

U
I=IjjI+jjj<Ijjj+I1'j=I1'jand the

equivalent condition Ili u 1; 1< 11; 1 is proved as required. 0

Thus it is shown that III r) 11 j and the match condition gives iI<
i" I

11,
J n W., I'j n Ij 11,

J
1

1.0 which allows match tracking to increment the

ARTa vigilance parameter.

302

Appendix D. Fuzzy ARTMAP Category Dynamics: A Single dimensional

Example

DI Introductlon

This appendix illustrates the proliferation of categories by fuzzy ARTMAP on the

real line when complement coding is not applied (Marriott and Harrison, 1994).

This derivation differs from that given in Carpenter, Grossberg and Rosen (1991)

by applying real analysis to adjacent categories to establish choice regions and

category movement rather than the geometric interpretation. Carpenter,

Grossberg and Rosen (1991) gives a geometric interpretation of the effect of

complement coding in reducing the proliferation of categories.

Let w, -, and w, denote the exemplars for nodes S-1 and s respectively where

w, -,, w, 6 [0,1] c 91. Without loss of generality, assume

0: 5 W', < W, :! ý 1 (D 1)

and that for all inputs, I considered here

W'-I :51 :5W, (D2)

forsomes-l, seN. SeeFigureDl.

WI_i I Wa

Figure D1 Two adjacent categories on the real line

Any input, 1, can be parameterised in the range
, (A,) = W'l +A(w, - w, -,

) (D3)

where 0: 5,1: 5 1. Henceforth, I(A) wiR be denoted by I
In this case, the choice function of equation (2.13) gives

303

WIýj (D4)
a+w, _,

and,

w'-I + A(w, (D5).
a+w,

Consider the effect of the parameter A- Three cases naturally arise: -
DA, = 0,

ii)'I = I,

iii)O <A<1.

For A=0, from equation (W), I=w,
-,, and from equation (D5)

T, Q) =
w'-'

. a+w,

Also, T,
-,

(I)= W" by equation (D4).
a+w, -,

Now, from equation (D 1), w,, > w, -, which implies that T,
-I

(I) > T, (1), and node

s-1 wins as expected.

For 1,1 = w,, T,, (I) -
w. -1 and T, (I) -

W,
a+w, a+w,,

So, by the monotonic property of T(I), w, M> M-t M gives T. (1) >T

and node s wins as expected.

For 0<2, <1a question naturally arises as to where the decision boundarY for

adjacent exemplars lies.

Equating T,
-,

(I) and T, (I) gives w'-' w, +; L(w,
and solving for A

a+w, -, a+w,

gives
Xb

where ; L,, is the boundary value of A-

(D6)

Thus A, is slightly less than one and depends upon ct. This means that all inputs

in the range given by equation (D2) map to node s-I unless they are within a small
distance of node s. This is proved in the following theorem:

304

Theorem:

VI such that w, -,
:51< Wl +; Lb (W, - W101 WI-I > 0'

wherek is given by equation (D6), I

maps to the s- I th category.

Proof..

LetA=y, k,, O<y<l,

i. e. 0 <A < A,,, as required, so that,

T, W'-I
a+ w, _,

and,

TW WS-1)
S s-I +Y b (W

a+ w.
Now,

W, > WI-I -
Multiplication of both sides by (I- y) and further application of the algebra of

inequalities leads to,

w, -I(a+w,
)>w,,

and,
w, -, >w, -, (a+w, -,

)+)w, -I(w, -w, -,
)

(a+w, -,)(a+w,,)
Ws-I + YAb (

(a + 0),)
giving, T,

_,
(I) > T, (I)

for 0< y< 1.

The condition T,
-,

(I) > T, (I)

requires

W, -i- > W. -I +), (w, - w, -,
)

a+w, _, a+w,,
giving

305

w, >, ý(a + w,,)

which leads to
W'-I <

a+w, _,
Also, A>0 and a>0 finally giving

0<A< Wr-I <
a+

Therefore,

T (I(A)) >T , (I (;
L)), for A in the above range

Thus, all inputs between exemplars w, -, and w, map to category s- I except for

those in a small exclusion zone(W,
-l

+ lb (WI - w, _,
), w,) determined by a.

wir

Figure D2. Two adjacent categories in the real line illustrating the exclusion zone near to

category s.

Note that the above only determines the winning node through T(l) and not

category membership which depends upon the match criterion.

Match Criterion
Equation (2) states the match criterion
JIAWI

I

which gives w, -,
ý: pI for node s- 1.

Thus, 1: 5 wl-I is required for a match to occur. p

306

D2. Category Proliferation
Consider what happens when

' Ws < Wz-2 ""
-1

"ý: I '4ý Ws 4' ' Ws+1 <*

By previous results, T,
-,

(1) > T, (I), but, I> w" ensures that node s- I is
P

inhibited.

Again, T,
-2(,

)> T, (1), by previous results, but I> W&-2 causes inhibition of node
P

s-2.
Thus, all nodes, 1: 5 s-I are inhibited.
Now,

TkM Vk;
-> s

a+Wk

giving

TT>... asW,, < Wl+l < W:
+2

<* (1) >M>T . r+2
M

So, by the above, all nodes, 1 with exemplars w, < w,,, I<s, are inhibited so

+1
node s is selected giving T, (I) > -ýi for an uncommitted node.

a+w, +1

This means that the next available node is selected which has its exemplar w,

replaced by I as the match criterion gives,
1A w# I>p for p<1, regardless

of the distance between I andw,.
Thus, as I<w, exemplars drift towards the origin as their magnitudes are

reduced. This causes the creation of more categories in areas of input space made
devoid of exemplars by this drifting effect.
Although stable by the monotonic decreasing of weights, the network suffers from

Proliferation of category nodes unless complement coding is used.

307

Appendix E: Further Fuzzy ARTMAP and PROBART Results

Mean results are based upon a sample size of 5 RMSE or MAXAE values from

separate runs which are averaged to give an indication of performance. Maximum

and minimum values are included to indicate the range of variation between runs.

Simulation 1

No. of categories Error measures

ARTa ARTb RMSE NLAXAE

298 52 0.0074 0.01
ata Table E1.1. Mean results of fuzzy ARTMAp performance with noise-free training and test da

derived from the test function of Figure 3. Training and testing is off-line using 1.000 Pattern

pairs. See main text for parameter values.

Error measures
RMSE (TE) II Effor range2. I MAxAF, (TE) I Effor mnge.

0.0076 13.31% - 0.99% --10.01 14.36% -1.3%
Table E 12. Worst case bounds for the simulation data described in Table EI-I

Error measures

RMSE (JE)3 Error range. MAXAE (TEII Error range.

0.0073

13.18%

- 0.95%

10.01

14.36% -1.3%

Table E1.3. Best case bounds for the simulation data described in Table El. I.

I Highest RMSE value of sample.
2As a percentage of minimum and maximum values of test signal respectively.
31, owest RMSE value of sample.

308

F,
ý

Error measures
No. of categories RMSE MAXAE

ARTA ARTh TR TE(NF) I TE TR TE(NF)
79-8

162

0.0131

10.291

10.293 0.0871

1-0.0717 1

0.0679

11 o0o items and Table EIA Mean results for fuzzy ARTMAP trained using a noisy data fe Of I,

tested using a noise-free data file also consisfing of 1,000 data items.

Error measures
RMSE (TE) Error range. MAXAE (TE) Error range.

0.0278 12.11% - 3.61% 0.0648 28.24% - 8.41%

Table EIA Best case bounds for the simulation data described in Table EIA

Simulation 2

categories Error measures
ARTh RMSE MAXAE

53 0.0175 0.0783
Table E2. I. Mean results of PROBART performance under the same conditions as those of

simulation I and using the same noise-free data fileý

No. of
ARTa

113

Error measures
RMSE (TE) Error range. MAXAE (TE) Error range.
0.0185 8.06%-2.4% 0.085 37.04% - 11.03%
Table E2.2. Worst case bounds for the simulation data described in Table E2.1.

4Note that map field vigilance does not apply to PROBART simulations.

309

Table El. 5. Worst case bounds for the simulation data described in Table EIA

Error measures
RMSE (TE) Error range. MAXAF, (TE) Error range.

0.0169 7.36% - 2.19% 0.0729 31.76% - 9.46%

fable E2.3. Best case bounds for the simulation data clescnwa in i avic, r., 4. i-

Error measures
No. of categories RMSE MAXAE I

ARTa AR71b TR TE(NF) TE TR TE(NF) TE

111 62 0.0316 0.195 0.0206 0.1005 0.0815 0.0839

Table E2.4. Mean results for PROBART Mined unaer tne same conawoub UZ bullulauv--

using the noisy U-aining file.

Error measures
RMSE (TE) Error range. MAX Cl- ffor range.

0.0228

19.93%

- 2.96%

10.0974- 142.44%

- 12.64%

Table E2.5. Worst case bounds for the simulation data described in Table E2.4-

Error measureS

RMSE (TE) Error range. MAXAE (TE) I Error range.

0.0196 8.54% - 2.54%

10.0729

131.76% -9.46%
Table E2.6. Best case bounds for the simulation data described in Table E2.4.

Simulation 3

No. of categories Error measures
ARTa ARTh RMSE MAXAE

509 243 0.0015 0.0073 L__
-II Table EM. Mean results obtained by PROBART using increased vigilance. Both training and

testing were carried out using the same noise-free data file used in simulations I and 2.

310

Error measures

RMSE (TE) I Error range. 1 MAXAE (TE) 1 or range.

0.0016 1 0.7% - 0.21% 0.0084 3.66% -1-09%
Table E3.2 Worst case bounds for the simulation data described in Table E3. I.

Error measures

RMSE (TE) Error range. MAXAE (TE) Error range.

0.0015 0.65% - 0.19% 0.0061 2.65% - 0.79%

fable E3.3. Best case bounds for the simulation data (JeSCnDeU in iauicnaa-

Simulation 4

Error measures
No. of categories RMSE MAXAE

ARTa ARTh TR TE(NF) TE TR TE(NF) TE

513 279 0.0193 0.0199 0.0197 0.0541 0.057 0.0566

Table E4.1. Mean results for PROBART trained using the noisy data set used previously in

simulations I and 2 with parameters set as for simulation 3 i. e. P. -*ý 0.999, A : -' 0- 999

Error measures
RMSE (TE) Error range. MAXAE (TE) Error range.
0.0206 8.98% -2.67% 0.0648 28.24% - 8.41%

Table E4.2. Worst case bounds for the simulation data described in Table B4.1.

Error measures

RMSE (TE) Error range. 1 MAYCAE (TE) Error range.

9 8.23% - 2.45% 0.0498 H7%
- 6.46%

Table E4.3. Best case bounds for the simulation data described in Table E4.1-

311

Simulation 5

Error measures

Categories RMSE MAXAE

ARTA ARTh TR TE(NF) TE TR TE(NF) TE

-- I --- 1131

1620

10.0265

1

0.0089

1

0.011 0.0814 0.0225

1

0.0426

Table E5.1. Mean results for PROBART obtained using the parameters of simulation 4 with the

noisy training file increased to 10,000 items.

Error measures
RMSE (TE) Error range. MAXAE (TE) Error range.

0.0117 5.1%-1.52% 0.0472 20.57% - 6.13%

i awe tz. 2. Worst case bounds for the simulation (lata aescnDea in i awe zo. i-

Error measures
RMSE (TE) Error range. MAXAE (TE) Error range.

0.0103 4.49% - 1.52% 0.0388 16.91% - 5.04%

Table E53. Best case bounds for the simulation data described in Table E5.1-

312

Appendix F The Cart-Pole Simulation

The cart-pole simulation was carried out as state in Barto, et al (1983) with minor

modifications. ne state vector was reset to x=I=0=&=0 after each trial;

failure was indicated by a reinforcement signal of -I when either the cart

displacement, x or pole angle, 0 left their ranges of [-2.4m, 2.4m] and [- 12*, + 1211

respectively. All trace variables were set to zero at the start of each trial. All

weights were set to zero at the start of each run. Each run of the set of ten used

random numbers from a different seed value. See Barto et al (1983) for further

details.

The parameter values used for the ASE / ACE subsystems were a=0.8, b=0.5,

8--0-9 r--0.98 and cr--0.01. Here, a and y differ from the BSA implementation.

As stated in the body of the text, the former was reduced substantially to prevent

premature establishment of control actions. The latter was used to reduce the

reinforcement prediction discounting but does not appear to have any significant

effect; the change is noted here for completeness.

The simulation equations for the cart-pole system are the following non-linear
differential equations (Barto, et al, 1983):

gsinO +Coso-F-mlO
2 sinO+, U, sgn(. i) U,, b

M, +m ml (FI)
MCOS2 0 [3

me +m

.t=+
MI[Ö2 sin 0-ä cos 0] - g. sgn(ic)

M, +m
(F2)

The parameters are those used in Barto et al (1983) with no changes, and the

system is simulated using Euler's method with a timestep of 0.02 seconds.
control force is applied at every timestep until failure occurs. The neurocontroller
only has access to the cart-pole system states in the form of a state vector. It
does not have privileged access to a model or any pre-existing cost function.

313

Appendix G The EUCART Category Composition Theorem

The Category Composition Theorem requires several lemmas which will be

developed here. First, a definition is required:

Deffifition: Category Membership Property:

An input vector, x, eX is a member of a category C, () if it lies within a closed

ball B, (') =
jp: 1ý

- c(, ') 11 :5 pI where X is the input space, C, () is the category centre

and p is the category radius.

The centre, c, (i) is determined by the category extent markers defined Previously*

This centre forms the centre of hyperrectangular category H, (') and hyperspherical

category S, () respectively.

Lemma 1: A hyperrectangular category, H, (), determined by the same category

extent markers (u('), v, ()) as a hyperspherical category S, () is a proper subset of

SI(') i. e. HI) c SO.

Proqf. ý
By definition of a subset, it has to be shown that
VX, xe HI) =* xe S(I).

The centre of H, () and S, (), c, () is determined by the category extent markers

0 (u(, '), v,)) through the definition c(,) (u(') + v(, ')). The longest diagonal
2'

(intervertex distance) of H, (U (i), V V) is between the category extent markers

and is given by 11v u (,) 11
. This distance form s the diameter of S, () with the

common centre c, () which lies on the diagonal. Figure G2 illustrates the situation
in two dimensions.

314

ß(i)

Figure GI The hyperrectangle is contained within the inner hypersphere. Both are determined

by the category extent markers and both lie within the outer hypersphere which denotes the

maximum possible category extent given the current centre.

By definition, the radius of SO) is given by r=
1

Because
2

1 G) 1v u (,) 11 is the largest intervertex distance, the distance from any vertex of

H, (') to the centre, c, () is always less than or equal to r. More formally, define

St(') =
IP: 11P

- C() 11: 5 rl. The hyperrectangular category HO) is determined by the

G) category extent markers (u, vO))which form two of the vertices. The largest

intervertex distance which is divided into two equal parts by the common centre,
0 0) el
) determines the largest possible distance between any input vector, x. eH,

r= and the common centre. So, llx,
- c(, i)

11: 5
1 liv (, i) -u0,) r and x. 2

Therefore, x r= H(') => x r= S(') for some arbiwary point, x Thus, PIPt
Vx, x r= H, 11 =* xeS, "', and by definition, H, () c S, 6) as required. 0

Lemma 2: for any input x, eX belonging to a category C, (), x, either lies within

a contained hypen-ectangle, H, (') or the complement of H, () with respect to the

closed ball, B, () . determining the maximum possible extent of that category at
time instant, t.

315

Proof.

By lemma 1, Hj(') c St(i). Ile maximum possible extent of S at me ins t, t ti tan

G) C: S0 is C, () = B, () so, S, () c B, () and thus, H, B, (). The sets H, () and

r) (H(i))c
u

[B(')
n (H('))c] B(') and I form a partition of B, () because H, ttt

He(') n
[B, (') n (Hi('))]

= 0.

So, for any x, e C(') = Bt(') either x, r= H(') or, x, r= B(') n (H(') c. m I191)

Lemma 3: hyperrectangular category growth is monotonic. Formally,

H, (')

Proof. ý

For the category extent markers, (u (i)
I, v ()) at time, t, the following notation is

used: let uk(') denote the k th component of u(, '), and let v') denote the k th .1k, t

component of v(,). By definition of the category extent markers,

Vk, u () (i)
0 :ý Vk, t .

At the next time instant, t+1 the category extent markers are

denoted by (u ('), v(i)). If the new input, xeC, (') but x0H then, by the + +1 PP
definition of sub-section. 3.3.2.5, the category extent markers extend to include
the new input in the hyperrectangular category at time t+1. Let Xk. p

indicate the

k th component of the p th pattern vector. The following three cases cover all
Possible relationships between the input vector components and the category
extent marker components:

G) Xk,
p

< Uk, t

Uk(i,
)t

:5 Xk,
p :5 Vk(i,

)t

V k(i,
)t

<Xk.
p

By definition of the category extent marker update of sub-section 3.3.2.5 , the
three cases give the following:

316

U(i) k. t+, ý Xk.
P

ii) no change

ifi) V(i) = Xt. k, (+l

so, at time t+l, the following inequalities must hold:

UW W k. t+l ' "'ý Xk,
p

< Uk, t

U(i) k. (+l = Uk(i.
)t

:5 Xk.
p

!; Vk(i.
)t

= Vk(i,
)t+l

'fi) X k. p= k(i.
)t
+I

Define closed real intervals A(') =
[u(i)

, v(',)
]

such that

N

x ... XAk(,), X... XA(')t A(')
't

k. 9 N, k. t
knl

NN

Ak('.), Ak(!,
k. t k, I+j which implies that rj Ak(!, cIIA k(,

),
k, t t+I

kul kul

or, H, () Q H, O,), as required. 0

The EUCART Category Composition Theorem: All inputs that are members of a

given hyperspherical category remain within that category throughout the

category growth process and beyond.

In other words, for an input space (state-space), X

Vx 6X for some time,, r and some hyperspherical category, C() at timer, Ir I

XT

Proof .
xt (=- X at time, t. Without loss of generality, assume that a new category is not

created. x, belongs to some category C, () at time, t.

By the category membership property and lemma 2, x, r= C, (), implies that

317

Xi E H() c: S 4) g(i) n 1, ZB, () = e), or XEJ8
(H, ('»".

9
ctl

9t

If x, E Ht(') . then by lemma 3

EHC r()

If, however, x r= Bý') r) H(l) then, by the category growth 19(1
)0

process, x, e H(') c C(') . Either way xe C(') giving x, r= C, (') =* X, r= C()
W 1+1

BY definition, x r= r(i) 0 Co , so by the principle of mathematical induction,

XT r: CG) G)
r =* x. r= C, +., n as required M

318

