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Summary 

In this thesis, the ideas of Adaptive Resonance Theory (ART) and Reinforcement 
Learning (RL) are applied to the problems of mapping and control. A neural 
architecture, fuzzy ARTMAP is considered as an alternative to standard 
feedforward networks for noisy mapping tasks. It is one of a series of 
architectures based upon ART. Fuzzy ARTMAP has advantages over 
feedforward networks--such as increased autonomy- and is especially suited to 
classification-type problems. Here it is used to estimate a continuous mapping 
from noisy data. Results show that properties useful for classification problems 
are not necessarily advantageous for noisy mapping problems. One particular 
feature is found to cause specialisation to the data. A modified variant is 
proposed which stores probability information in a sub-unit of the architecture. 
The proposed fuzzy ARTMAP variant is found to outperform fuzzy ARTMAP in 
a mapping task. 

Another novel self-organising architecture, loosely based upon a particular 
implementation of ART, is proposed here as an alternative to the fixed state-space 
decoder in a seminal implementation of reinforcement learning. A well-known 
non-linear control problem is considered. Input / output pattern pairs, desired 
state-space regions and the network size / topology are not known in advance. 
Results show that, although learning is not smooth, the novel ART-based RL 
implementation is successful and develops a meaningful control mapping. The 
new decoder increases its information capacity as necessary and indicates that 
such a self-organising approach to control is viable. The self-organising 
properties of the new decoder allow the neurocontroller to retain previously 
learned information and to adapt to newly encountered states throughout its 
operation, on-line. 

A fuzzy version of the original RL implementation is implemented to investigate 
the possibility of distributing control information across more than one state-space 
region. The fuzzy version is found to outperform the original RL implementation 
in a control task.. 
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'6 ... even to animals eventually capable of speech such as ourselves, the world is initially an 

unlabeled place. "L-Gerald M. Edelman, 1989 

Chapter 1. Neural Networks, Mapping 

and Control 

1.1 Motivation and Overview 

One particular area of research of note in the technological arena lies in the 

development of more intelligent and autonomous systems. Although caution must 

be exercised when using the word 'intelligent', it is not difficult to grasp the 

intended meaning. There is a growing need for autonomous systems which act 

upon their environment with less pre-programmed rigidity and reliance on human 

intervention than many existing control solutions. 

The work presented in this thesis is an investigation into two key aspects of 

machine intelligence which are intimately related viz. mapping and control. These 

are examined in some detail through both the study of existing artificial neural 

architectures and the introduction of three novel architectures. The new 

architectures do not lay claim to being universally applicable systems which 

circumvent all problems. Indeed, it is doubtful that such a universal system exists 

owing to the fundamental nature of the group of competing constraints involved 

in intelligent information processing; many of the constraints are mutually 

exclusive and compromise is the best that can be hoped for. The development of 

the novel architectures detailed in this thesis illustrates many of the issues involved 

in quantifying and implementing intelligent computing and control strategies. 

The two main biologically-inspired areas of research covered in this thesis are 
Adaptive Resonance Theory (ART) and reinforcement learning (RL); both areas 

show future promise and interest in them is increasing. One of the new 



architectures is a hybrid system with features taken from both theories and 

combined to give an autonomous self-organising control system. 

The self-organising capabilities of ART-based architectures combine naturally 

with the reduced supervisory requirements of reinforcement learning systems. 
One of the motivating factors of this work is to investigate the feasibility of self- 

organising reduced-supervision systems for intelligent control. 

The subject matter of this thesis falls naturally under the two headings of mapping 

and control. Adaptive resonance theory forms the basis for the new architectures 
developed in both areas of investigation. Reinforcement learning (and related 

areas) is of relevance only for the area of control. These factors make it more 

convenient to introduce background material as appropriate throughout the thesis. 
The structure divides the material conveniently into sets of related topics grouped 

within chapters. This is to prevent an oversized introduction consisting of a large 

number of preliminary topics grouped together out of context. 

Chapter I provides a brief survey of neural networks, mapping and control. This 

survey of relevant concepts and architectures comprises a backdrop for the thesis 

and motivates the development of the new architectures. 

The first sections of Chapter 2 introduce Adaptive Resonance Theory and develop 
key themes in considerable detail before introducing a novel ART architecture 
called PROBART. PROBART is applied to mapping tasks and its performance is 

evaluated. Adaptive resonance theory is the common theme running throughout 
the thesis and provides a basis for all of the new architectures. 

Chapter 3 is concerned with the reinforcement learning method. Reinforcement 
learning is discussed in the context of psychology and learning theory and forms 

the basis for the discussion of selected neurocontroller architectures. The seminal 
implementation of Barto, Sutton and Anderson (BSA) is then discussed in 

considerable detail and motivates the development of the second novel 
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architecture. Related ideas grouped together within this chapter include classical 

and operant conditioning, automata theory, and temporal difference learning. 

Chapter 4 motivates the development of an ART-based self-organising 

architecture. The new architecture, called EUCART, forms a component of the 

EUCART-BSA hybrid neurocontroller. The hybrid neurocontroller is described 

in detail and its performance is evaluated with a number of simulations. 

Chapter 5 investigates extensions to the ideas and architectures covered in the 

previous three chapters and introduces the area of fuzzy logic. A third novel 

architecture is described, called FUZBOX which illustrates some of these 

extensions. 

Finally, Chapter 6 provides a general discussion and review of ideas covered in 

this thesis, draws some conclusions and indicates possible directions for further 

research. 

1.2 Adaptive Behaviour 

Humans and animals are able to adapt to changing conditions in the world around 
them. Successful adaptation is indicated by survival and by avoidance of 
discomfort. The main features of this adaptive behaviour are the prediction of 
certain environmental characteristics and the selection of appropriate actions from 

a repertoire including avoidance or control strategies. In general, learning is 
directed by reward and punishment stimuli acquired from an environment. 

Prediction of temporal or spatial characteristics of an environment by an organism 
is a form of system identification (e. g. Norton, 1986; S6derstr6m and Stoica, 
1989); system identification-of whatever degree of sophistication-ýs a 
prerequisite for appropriate action if an organism is to adapt successfully. In 
living organisms, system identification often involves the formation of cognitive 
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maps (Walker, 1975) which represent pertinent information about the operating 

environment. Cognitive maps, or schemata (Howard, 1987) are selective 

abstractions of environmental features which allow behavioural adaptation 

(learning) by an organism or intelligent agent faced with a potentially confusing 

array of stimuli. 

The simplest case of input-output map which does not require cognition is the 

stimulus-response map of classical conditioning (e. g. Barker, 1994). However, 

this is usually only appropriate in straightforward environmental situations 

involving a limited behavioural repertoire. In general terms identification may be 

applied to the environment and an appropriate action selected (indirect control) or 

by developing directly a control strategy (direct control). Either way, an internal 

representation of selected characteristics of the environment is acquired through 

time from the mass of available information. 

The foregoing discussion may appear self-evident when thinking of living 

organisms. After all, these activities are carried out on a daily basis in the struggle 
for survival and, as such, proceed without reflection. It may appear to be a gross 

oversimplification of behaviour but even this analysis reveals several key points. 

When attempting to develop artificial autonomous agents, certain important 

concepts become apparent and it transpires that the process of adaptation cannot 
be taken for granted after all. What is involved in the formation of an internal 

representation of the environment or a successful control strategy? How can 
information about the world be represented stored and retrieved? How is such 
information to be used? What is a "successful" control strategy? What does 

control involve? How can artificial autonomous agents be developed which will 
behave appropriately? Indeed, what is appropriate behaviour? 

These questions and many more have arisen through the study of human and 

animal behaviour (e. g. Best, 1992; Carlson, 1994; Pinel, 1993 ; Gellatly, 1986). 
This thesis will consider such issues from the point of view of artificial 
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intelligence (AI) with particular emphasis on the areas of artificial neural systems 

or neural networks and autonomous learning systems. 

1.3 Mapping and Control: Interrelations 

There are two major themes underlying adaptive behaviour which are implicit in 

the above discussion; these are mapping and control. These two themes are 

intimately related in that the mapping between an agent's actions and the 

subsequent environmental responses gives valuable information required to 

modify the action (behavioural) repertoire. In a limited sense, the behaviour of 

living organisms can be thought of as sequences of control actions (even actions 

involving flight or avoidance). Figure 1.1. shows a simple control (behaviour) 

loop involving mappings between environmental inputs and outputs and organism 

inputs and outputs; it illustrates schematically the relationship between an 

intelligent agent and its environment. 

Environment 

Agent 

Action Strategy 
(control) 

Figure 1.1. The relationship between an intelligent agent and its environment. The agent 

responds to information from the environment with an action or set of actions from its 

behavioural repertoire depending upon past experiences. 

The biological inspiration giving rise to the two themes of mapping and control 

also provides inspiration for an implementable system suited to such intelligent 

tasks. To be more specific, this chapter will consider biologically inspired neural 

networks capable of implementing mappings and control strategies. Section 1.4 

will introduce the idea of artificial neural networks and provide a background so 
that specific neural network architectures can be introduced in subsequent 
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sections. By considering these established architectures, this route will lead to the 

idea of artificial autonomous agents with much more flexibility. 

1.4 Artificial Neural Networks 

Evolution has resulted in the development of a highly adaptive command and 

control system in the human body. The central nervous system (CNS) consists of 

the brain and spinal chord. Communication with the rest of the body is via the 

peripheral nervous system (PNS). The main centre for information processing is 

the brain which consists of two main types of cells: neurons which form the 

excitable tissues, and neuroglia, which carry out a large number of important 

structural and maintenance functions. It is the neurons which provide biological 

inspiration for computing elements. 

Biological neurons are modelled using simplified abstractions of key features to 

give artificial counterparts (e. g. Levine, 1991). An artificial neuron capable of 
learning, called an adaline, is discussed in Section 1.6. Artificial neural systems, 

or networks, constructed from comparatively simple elements form the subject of 
this thesis. 

The field of artificial neural networks (ANNs) is also known as connectionism, 
parallel distributed processing (PDP), neurocomputing and artificial neural 
systems (ANS) (McClelland and Rumelhart, 1986; Simpson, 1990). A related 
field, computational neuroscience (Churchland and Sejnowski, 1992) 

encompasses both artificial and biological neural networks. Henceforth, the term 
"neural networks" will be used for convenience and will refer to biologically 
inspired artificial neural systems. 

A relative newcomer in the history of science, neural networks comprises a highly 
interdisciplinary field devoted to developing new ways of processing information. 
By combining abstract processing elements, modelled on biological neurons, 
emergent properties arise from simulations of neural networks which emulate 
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some aspects of their biological counterparts. "Emergent properties" is a term 

used to describe the behaviour of systems whose individual subsystems may 

themselves have a very simple description, yet when taken together as a whole, 

can exhibit complex behaviour. 

In broad terms a neural network learns to represent a subset of salient features of 

the environment. A set of appropriate or desirable responses is learned which can 
be elicited by the relevant environmental cues. The characteristic of generalisation 
is also present in many artificial neural systems which allows meaningful responses 

to stimuli not previously encountered. Good generalisation occurs when 

adequate responses are made to inputs of a given class when only a few exemplars 

or instantiations of that class have previously been processed. Generalisation is a 

consequence of the distributed representation of some artificial neural 

architectures. 

Neural networks, within the Emits of their structure, modify stored information 

through experience in contrast to systems which are pre-programmed with all 
information likely to be used during their operational lifetime. Performance on 
some task is improved with respect to some prescribed measure. Haykin defines 

neural network learning as: 
49 ... a process by which the free parameters of a neural network are adapted 
through a continuing process of stimulation by the environment in which 
the network is embedded. Tle type of learning is determined by the 
manner in which the parameter changes take place. " (Haykin, 1994). 

1.5 A Black Box Approach 

For the present, neural networks can be treated as 'black boxes'. Any neural 
network can be viewed as a collection of input and output variables by the end 
user who, in many cases, is not concerned with the-possibly complexr-internal 
structures or processes (Figure 1.2. ). Like human and animal learning viewed 

7 



from a simplistic standpoint, data is presented to the neural network and is 

subsequently processed to produce information that is reflected in a change of 

internal state or external behaviour. Why is this any different from conventional 
data processing? Viewed at this superficial level, it appears that any computer 

program following a set of instructions, or algorithm, can be classed as a neural 

network; there is some truth in this, especially at the level of computer hardware, 

but there are fundamental differences in neural network and algorithmic 
information processing as will become apparent. 

Input 
Neural Net 

Output 

'MMMO" (black box) -------- ----- - 

Figure 1.2. A neural net as a black box mapping 

The key attribute of neural networks is their ability to learn from experience. 
Leaming enables neural architectures to solve mapping and classification 
problems by adjusting a representation of the problem until a desirable solution 
has been found. 

How data is used by an artificial network depends upon the learning method used. 
Within the field of artificial neural systems three broad classes of learning method 
can be distinguished: supervised, unsupervised and reinforcement learning (e. g. 
Haykin, 1994) The concepts associated with all three learning methods will recur 
throughout this thesis. 

Supervised learning: This form of learning involves pairs of patterns to be 

associated by a neural network; the pattern pairs, consisting of an input and a 
desired output, are pre-specified by an external teacher (Figure 1.3. ). The set 
of pattern pairs is presented to the network until desired learning criteria are 
fulfilled. Note that the data have already been pre-processed by the user who 
has previously decided what data is relevant to the problem domain and which 
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patterns are to be associated; object classes are defined a priori to reflect a 

pre-defined structuring of the problem domain. 

Training 
Input 

Input 
Neural Net 

/output 

=mono (black box) 

Figure 1.3 Supervised learning (training) of a neural net. 

Unsupervised learning (self-organisation): Here there is no external teacher 

and, thus, no pre-specified organisation of the domain (Figure 1.4. ). 71be 

neural network has autonomously to organise the input data into structures and 

to find regularities within the input space. Any a priori information is usually 
in the form of constraints governing the similarity or "closeness" of data items. 

Self-organising systems, through experience, develop an internal structure that 

reflects the ordering of information in the environment. 

Input 
Neural Net 

output 

(black box) 

Figure IA Unsupervised learning in a neural net. Self-organised categories are taken to be the 

outcome of the learning process. 

Reinforcement Learning: this learning method has evolved from consideration 
of aspects of psychology. A goal or "end state" is specified but no direction or 
method of attaining the goal is given. Learning is by trial and error with 
successful changes being rewarded by a non-specific reward signal; similarly, 
unsuccessful changes are penalised. Ile non-specific signal is'generated by a 
critic network that only indicates success or failure and not the direction of 
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future changes (Figure 1.5. ). Unlike the supervised learning method, the 

learning task is not solved beforehand by a teacher and pattem pairs are not 

specified, only the end-state is specified together with a punishment schedule. 

Also, reinforcement learning is distinct from unsupervised learning owing to 

the adaptive critic which analyses the performance of the system with respect 

to a goal or task. Unsupervised systems do not have feedback of this type as 

there is no teacher or critic. Reinforcement learning can be thought of as 

supervised learning but not in the strictest sense because the crude 

reinforcement signal does not give the desired output but only a crude measure 

of success or failure. 

Reinforcement 

Input Neural Net 
Output 

womoo", 

I 

(black box) 

Figure I. S. Reinforcement learning applied to a neural net. 

1.6 Neural Network Architectures: a Critical Review 

One of the earliest useful neural network architectures is the adaline or ADAptive 

LINear Element(Widrow and Hoff, 1960; Widrow and Smith, 1963; Widrow, 

1987). The adaline is a binary classifier which implements linear discriminant 

analysis of decision theory. It is capable of learning from experience and 

converges incrementally to a hyperplanar decision boundary through the data. 

The final solution gives the best (least squares) approximation to a suitable 
(possibly non-linear) decision boundary. 

Adaline-type elements have been applied to weather forecasting, speech 

recognition, cardiogram analysis and also to control engineering where an adaline 

was used to model an existing controller for the cart-pole problem discussed in 

section 3.3.2 (Widrow and Smith, 1963; Widrow, 1987); 
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The performance of the adaline is measured by a function of the adjustable 

parameters, w= (w., w, , ... w. ) known as weights. Ile function, denoted here 

by E(w), defines an error energy surface parameterised by the weight vector. 

The optimal solution is represented by the set of weights for which E(w) attains 

the global minimum of the error surface which is found by adapting the weights 

and is analogous to learning. 

The task of modifying the adaline weight vector is called training. A training file 

is used which contains a set of pattern pairs, Ix 
P, 

dp I consisting of an input 

pattern and its desired class output. This training file is read sequentially for as 

many times as are necessary during the supervised learning procedure. 

The weight-update rule for adapting the adaline weights is the Widrow-Hoff 

learning rule which implements the gradient descent procedure in which the 

weight vector is moved in the direction of steepest descent in the error energy 

space. 

The general form of the gradient descent approach is given in vector form by 

W(t + 1) = w(t) - 17VvFE (1.1) 

In terms of a discrete time interval, t, where il is a constant governing the learning 

rate and. VwE is the gradient of the error energy surface with respect to the 

weights. 

One thing to note is that the adaline will always find a solution; the linearity 

restriction for the adaline simply means that the best (LMS) linear solution will be 

found. As far as non-linear decision boundaries are concerned, however, all is not 
lost. If the input data can be transformed from the original space into a space 
where the classes are more readily linearly separable, then a solution can be found 

using the adaline; the technique of transforming the data into a new space is 
known as pre-processing which involves transforming the desired input-output 
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mapping into a form which is linear-in-the-parameters. Pre-processing is required 

for the solution of non-linear mapping or decision problems by a linear network. 

The main problem with using pre-processing is that the non-linear transform must 

be known a priori. In a few simple cases where data can be visualised easily, it 

may be possible to assume a transform. In most cases, the data is complex and a 

suitable transform is not identifiable readily. However, the need for pre- 

processing may be circumvented by building non-linearity into a network. 

The importance of pre-processing will be seen in Chapters 3,4 and 5 where 

methods of pre-processing (state-space) are considered as part of a control 

problem; automated methods to render problems more tractable are highly 

desirable. 

Two possible ways of constructing non-linear neural networks are: 

(i) to use a set of non-linear basis functions to construct a mapping or decision 

boundary which is linear-in-the-parameters or, 

(ii) to use a layeredfeedforward network of fixed dimensions consisting of 

cascaded non-Enearides-non-linear-in-the-parameters. 

Examples of (i) include thefunctional link network (Pao, 1989) and the radial 
basisfunction network (Powell, 1987; Broomhead and Lowe, 1988; Moody and 
Darken, 1989; Girosi and Poggio, 1990) which may be constructed incrementally. 
An example of (ii) is the multilayer Perceptron (Rumelhart, Hinton and Williams, 

1986). 

The adaline can be used to construct multilayer networks. However, multilayer 
networks of these elements are not necessarily useful. For the adaline, a 
multilayer network has a single layer equivalent and is thus restricted to 
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implement a linear function. If the adaline is used in multiple layers with its post- 

processing step function-as was originally conceived (Widrow and Hoff, 

1960ý-then major difficulties arise in the development of adaptation algorithms. 

These have been addressed by Widrow (Widrow and Hoff, 1960; Widrow and 

Lehr, 1990) but such methods have not been widely adopted. 

In general, a multilayer network which uses gradient descent has the following 

requirements: 

oa non-linear activation function to prevent the single layer equivalence 

problem, 

a method of credit assignment to distribute the error at the output throughout 

the network, and 

a differentiable activation function to enable gradient-based adaptation laws to 

be used. 

If non-linear continuous processing units are used for the nodes comprising the 

multilayer network, the result is a multilayer Perceptron (MLP)(Rumelhart, 

Hinton and Williams, 1986). The use of non-linear sigmoidal (usually logistic) 

activation functions precludes the existence of an equivalent single layer network 

and thus implements a non-linear mapping. Logical questions now arise regarding 
the form of a possible learning law for such a network and what can be 

approximated by it. 

The learning law is a generalisation of the gradient descent rule of equation (1.1). 
The continuous activation function allows errors in the output layer to be back- 

propagated to the input layer so that all the network weights can be updated. 

Subject to some conditions, arbitrary functions can be approximated using a 

polynomial basis (Scarborough, 1966; Timan, 1994). That is, component 
polynomials can be used to construct approximations to a given function. Here, 

the MLP uses sigmoid functions. A result by G. Cybenko (Cybenko, 1989) shows 
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that, under some mild conditions, any continuous function of N real variables may 

be approximated by an MLP of a single hidden layer (layer between input and 

output layers). Other, independent, results concur with this result (Hornik et al, 
1989, Funahashi, 1989) and new results have extended the original scope (e. g. 
Hornik, 1993). 71liese theorems, however, give little, if any, practical guidance as 

to the network size and configuration for a given mapping task; they are existence 

theorems, and some networks may have to be of impractical dimensions to 

achieve the desired approximation. In the MLP the pre-processing is an intrinsic 

property of the architecture where the hidden layer(s) distort the incoming signal 

through "squashing" by the signioidal activation functions. 

The adaline is restricted to linear solutions which can be ascertained a priori (e. g. 
Kohonen, 1989; Haykin, 1994) using the techniques of linear algebra. This 

obviates the use of a Idnear neural network. 

Although, the MLP has good representational properties, optimisation is non- 
linear and non-convex leading to potential difficulties in training. When using 
supervised learning to train a network to represent a non-linear mapping between 
input and output space, the problem of local minima may be encountered (e. g. 
Gallant, 1993; Haykin, 1994). For example, as with a single layer non-linear 
network the MLP error energy function has the possibility of many local (false) 

minima. Figure 1.6 illustrates that following the steepest descent rule does not 
always result in the minimum error energy. 

A possible result of encountering a local minimum, in terms of pattern 
classification, is shown in Figure 1.7. 
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E 

Global n-ýnimum 

Figure 1.6. The problem of local minima. 

(a) 

w 

(b) 

Figure 1.7. The effect of local minima on classification. (a) A local minimum leads to the 

misclassification of a group of patterns. (b) A possible MLP classification scheme without the 

local minimum of (a). 

In practical tenns, the higher the dimension of weight space, the more chance 

there is of escaping from a local minimum by following one of the weight space 

dimensions. The location and depth of local minima depend upon the number of 

layers and the number of nodes in each layer. The choice of network size and 

configuration for optimal learning is still a large area for research and depends 

mainly on heuristic (trial and error) methods but see Vapnik (1995) for optimal 

structure selection in feedforward networks for pattern classification. 

The last point raises another issue; that of fixed vs. free network topologies. For 

some networks the topology (size and configuration), and hence the information 

capacity, is fixed and so may not provide the best representation for a particular 
data set. For a fixed topology, the network parameters are adjusted to optimise 

the representation of a given data set. If the fixed topology is inadequate then, 

despite much training, the representation may always remain poor. 

Steepest gradient 
from this point 

Local minima 
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Variable topologies have the advantage of flexibility in that nodes may be added 

or removed but care has to be taken to minimise disruption to the representation. 
Incremental and decremental architectures are covered in this thesis. Node 

addition and removal are difficult for architectures such as the MLP owing to the 

non-linear distributed representation of information. On what basis can the size 

and configuration of an MLP be chosen? Once chosen, the MLP architecture is 

usually fixed a priori regardless of the training set. 

Artificial neural networks which learn incrementally by adding new nodes or 

processing elements during operation have been used to approximate mappings 
(Platt, 1991; Kandirkamanathan and Niranjan, 1992; Liu, Kadirkamanathan, and 
Billings, 1994). This technique obviates many of the problems associated with 
fixed network structures such as that of ascertaining the optimum network size 

configuration (Fujita, 1992), deciding upon a connection topology and providing 

sufficient information capacity (complexity) for adequate representation of the 

problem domain. 

Incremental learning is especially useful in situations where information is 

gathered and used on-line. In many situations, it is not enough simply to train a 

neural network on a given collection of data and leave it to operate without 
further adjustment through experience. What if conditions arise which have not 
yet been encountered by a trained network? Does new information necessitate 
retraining? What happens to the existing body of information represented by the 

network if new information is incorporated? Some fixed network structures 
suffer the double problems of requiring off-line retraining to deal with new 
conditions and catastrophic forgetting where an established mapping is replaced 
by a new one (Sharkey and Sharkey, 1994). 

The addition of new processing units requires the detection of novel infonnation 

which cannot be incorporated into the existing structure. For the resource 
allocation network (RAN) of Platt (1991), the addition of new processing units 
depends upon a two part novelty condition. The first part deals with the input 

vector of a pattern pair. A pattern is novel if the input lies beyond a specified 
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distance from the nearest stored exemplar (centre). In layer 1 the specified limit 

decays with time to a resolvable minimum exemplar separation. The second part 

of the novelty condition deals with the output vector and states that a pattern is 

novel if the difference between the network output and the actual output exceeds 

a set limit. Initially the representation of the function is coarse; as learning 

proceeds, the allocated units have a reducing width until both novelty conditions 

are fulfilled. 

Two supervised networks, ARTMAP and fuzzy ARTMAP, based on adaptive 

resonance theory (discussed in Chapter 2) have two part novelty conditions 

similar to those of the RAN but are not based upon Euclidean distance. The first 

part governs the allocation of new nodes to cover regions of the input space. The 

second condition deals with incorrectly predicted outputs and triggers corrective 

activity which may include the allocation of new nodes. Adaptive resonance 

theory offers a sophisticated and flexible approach to both mapping and pattern 

clustering. 

Another problem that can occur with networks such as the MLP is overtraining. 
If an MLP is trained for too long, it can learn to reproduce the training data to a 
high degree of accuracy but fail to generalise to the underlying function. To 

prevent this, another data set is required to validate the training and to help in 

making the decision on whether to train for a shorter or longer period next time. 
There are no hard and fast rules and much experience is needed, the avoidance of 

overtraining is a large area for research. Using a costfunction consisting of the 

error energy and a regularization term may help to overcome this (Bishop, 1995). 

The regularization term restricts the amount of curvature of the fitted function so 
that rapid changes (which allow tracking of noise) are avoided. However, 

regularization introduces a priori assumptions about the form of the underlying 
mapping and requires the choice of extra parameters. 
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Many neural networks, including the adaline and MLP, use supervised learning. 

One issue which will be considered in much more detail throughout this thesis is 

the availability of desired output patterns for supervised learning. Supervised 

learning requires that output labels or actions are available during training and this 

is not always the case, especially with dynamical systems. Sometimes only initial 

and final states are known but not a specified intermediate trajectory. 

An alternative to supervised learning where pattern classes are not pre-specified is 

pattern clustering which involves sorting input patterns into groups without 

predefining a set of such groups; i. e. unsupervised learning. Members of the same 

group will have several features in common, that is, they will be "close together", 

in some sense, in input space. The groups or clusters of vectors in input space 

can be represented in many ways. A convenient way is to use a prototype or 

exemplar which represents the cluster as a set of abstract features, i. e. an 

6 average' example. For pattern classification, class labels maybe added 

retrospectively if required. 

The notion of "closeness" depends very much on how the input data is coded and 

what metric or distance measure is used. A common metric is Euclidean distance 

used in many neural networks (e. g. Haykin, 1994, Kohonen, 1989,1995). 

Euclidean distance is not the only possible measure; networks based upon 

adaptive resonance theory use the sum of the components of a difference vector 
(see Chapter 2). 

The self-organising map (SOM) of Kohonen (1989,1995) consists of a number of 

nodes arranged on a two-dimensional lattice. Each node stores an exemplar 

vector which is representative of a local cluster of inputs. It is an unsupervised 

network which operates by allowing the nodes to compete for activation when an 
input is presented. The node with an exemplar nearest to the input is chosen as 
the winner and updated. The nodes of a neighbourhood around the winning node 

are also updated. The SOM competitive network can be applied to the process of 

vector quantization which involves the unsupervised compression and storage of 
input information by finding a set of exemplar vectors that represents the input 
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space in the most efficient way. The resultant representation tessellates the input 

space with a set of irregular convex polygons (regions) delineated by a set of 

intersecting hyperplanes; these hyperplanes represent the decision boundaries 

between neighbouring nodes when the choice of winning node (exemplar) is based 

upon the Euclidean distance between the input vector and all of the stored 

exemplars. The tessellation, known as the Voronoi tessellation, is illustrated in 

Figures 1.8. and 1.9. (Kohonen, 1989,1995; Hertz, et al, 1991). 

"1. 
Figure 1.8. Selection of winning nodes based upon Euclidean distance leads to hyperplanar 

decision boundaries between nodes. The intersection of these hyperplanar boundaries defines 

Figure 1.9. Using Euclidean clustering with winner-takes-all dynamics results in a partitioning 

of the input space that consists of irregular convex regions. This partitioning is known as a 

Voronoi tessellation 

The set of all input vectors belonging to the same partition of the Voronoi 

tessellation is known as a Voronoi set. For the SOM winning node, the individual 

exemplar (weight) vectors, wj , will move in the direction of the difference vector 

I-w, (t) towards an input vector, I, and come to represent nearby clusters of 

inputs to which they respond maximally. This is shown schematically in Figure 

1.10. 
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Figure 1.10. An illustration of clustering in three dimensions. The vectors represent the centres- 

of-mass (centroids) of the clusters. 

The neighbourhood update mechanism allows topological relationships within the 

input space to be conserved within the lattice i. e. data items "close together" in 

input space will be stored close together in the lattice nodes (Kohonen, 1989, 

1995). For discrete simulations, a continuous neighbourbood can approximated by 

updating all neighbours within a given region only. The SOM is a very effective 

leaming system which has generated considerable interest in the neural network 

community (Kohonen, 1989,1995; Ahalt et al, 1990; Ritter et al 1992). 

However, like all neural networks, it has limitations including: 

*a fixed network topology (including 2-D nature of lattice) which does not allow 
for the addition or removal of nodes, 

Rare data cases may be swamped (Kohonen, 1995) which means that small 

statistical frequencies are not allotted any territory in the SOM, 

neighbourhood and learning rate shrinkage schedules are arbitrary and have 

no basis other than empirical judgement. 

Other limitations such as lack of a well-defined cost function or absence of 
guaranteed convergence are mentioned by authors including Bishop (Bishop, 
1995). 
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Self-organising Architectures based upon Adaptive Resonance Theory overcome 

some of the limitations of the SOM. This is discussed in Chapter 2 onwards. 

Another important issue is that of off-line vs. on-line learning, Le acausal learning 

vs. causal learning. A decision must be made between these two options for any 

application. For some applications, off-line learning makes better use of the 

training data because a training pattern encountered early on during training may 

have a different significance later on; this is not possible with on-line learning and 

information may only be used once and discarded. Learning may be dependent 

upon the order of presentation for on-line learning problems. 

One advantage of on-line learning is its flexibility. Take, for example, a control 

problem such as is considered in this thesis. With off-line learning, data is 

gathered and used to train a neural network controller (see section 1.7). 

Following training, the network is fixed and can only work within the bounds of 

its training experience. What if conditions change? How will a controller learn 

new strategies? With on-line learning, a controller may assimilate new 

information as and when it arises. The off-line vs. on-line dilemma also arises in 

the unsupervised learning case. For example the SOM may be trained using either 

mode but catastrophic forgetting may occur if the underlying statistics of the 

problem change. 

1.7 Neurocontrollers 

There exists a large body of knowledge regarding control engineering theory and 

techniques. Conventional techniques often involve linear control theory which is 

well established. Controller operating regions are chosen and linearised around a 

given set point. State-space methods can be applied to systems with models which 
have been simplified by linearising them. The linearity assumption is fulfilled 

because control objectives are to keep signals small but unexpected disturbances 
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can violate the linearity assumption by forcing operation out of the linear region; 

therefore a non-linear or piecewise linear approach is required 

Conventional controller design relies upon knowledge of the plant formulated in a 

plant model. The plant model is an input-output mapping which represents a 

plant's dynamical characteristics. Prior to controller design, the desired plant 
behaviour is formulated for comparison with the actual behaviour. A 

compensator is then designed to alter the open-loop plant characteristics resulting 
in desired plant behaviour (closed-loop). The controller is almost always fixed 

and often involves standard proportional-integral-differential (PID) control 

methods (e. g. Banks, 1986) 

Obtaining a plant model is an important part of the controller design process and 
involves the techniques of system identification applied to model fitting to input- 

output data or to derive a mathematical model from first-principles using physical 
laws. Conventional control methods have been successful up to a point. 
However, the plant dynamics are often complex or little-known and, thus, may 

require more sophisticated control techniques than classically derived linear 

controllers. Where a system model is available, it may not necessarily have an 
inverse and neither may the real system; this makes model-based control more 
difficult. 

Neural networks provide a flexible approach and are especially suited to mapping 
problems. The application of neural network methods to control is known as 
neurocontrol and involves the development of neural network based controllers or 
neurocontrollers. State-space can be quantised or represented in a smooth 
manner depending upon the neurocontroller architecture. Learning can be carried 
out off-line or on-line depending upon the situation. On-line learning is usually 
known as adaptive control and allows neurocontrollers to adapt continuously to 
changing plant conditions or parameters. 

The plant can be treated as a "black box" if no model is available and a neural 
network can be used to model the plant using the plant's input-output 
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relationships. If the desired controller actions are known-a controller input- 

output relationship has been found either implicitly or explicitly- this information 

can be used to train a neurocontroller using supervised learning. The trained 

neurocontroller will represent a control mapping. The on-line establishment of 

control mappings will be covered in more detail in sections 1.8 and 1.9. 

Application of neural networks to control problems must be done with caution. 
Using neural networks may not necessarily be the best approach. The "model" 

obtained may be no more useful than the set of input-output relationships 

specified in the training data or obtained during plant operation. The mapping 

specified by the neural network may not be transparent or give a parsimonious 

representation of the plant. Model complexity depends upon many factors and the 

choice of a representative model class may beg the question by requiring 
knowledge of plant dynamics of the type being sought. 

In addition to the problem of over-complex models with too many parameters, 
there is the problem of adequate network complexity. A neural network may 
have insufficient "capacity" to represent a dynamical system; this under- 
parameterisation may lead to instability and inadequate control because some of 
the important dynamical modes may not be represented by the model. 

A more fundamental problem concerns the availability of adequate training data in 

the first place. For a system identification or parameter estimation task, 
information regarding desired plant behaviour is required to "tune" the 
neurocontroller during learning; this feedback signal allows the neurocontroller to 
associate control actions with the input data (Figure 1.11). 
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Figure 1.11 The neurocontroller training problem. What is fed back and how is it used? 

As mentioned previously, where a data set of input-output examples exists, 

supervised learning can be used to train an associative memory network. Desired 

control output data is not always available and assumes that the control problem 

has been solved to some extent before using a neurocontroller. If this were not 

the case, how would desired control outputs be known for at least some of the 

situations encountered? Even if the control mapping is not represented as a 

mathematical model over a specified range of the input space-presumably the 

task of the neural network is to find such a mapping, implicitly or otherwise-a 

subset of the input-output set is available from some source. That source may be 

from a human expert or an existing controller (operator modelling) and represents 

a relationship between a system's inputs and outputs. 

When specifying training data, care must be taken to ensure that the data set is of 

adequate size and sufficiently representative of the problem to allow 
determination of the model pammeters-plant or neurocontroller model--to the 

required accuracy. The specification of performance criteria must be appropriate 
to the control problem being solved and the protocol must be sufficiently general 
so as to be applicable to other methods so that meaningful performance 
comparisons are possible. What about unknown systems with complex, non- 
linear dynamics which may include delays? How can information about plant 
delays be incorporated into any representation or model? If the order of the 
model is underestimated, it may lead to instability and an insufficiently effective 
control strategy. 
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How can neurocontrollers be made more autonomous and capable of extracting 
information for themselves during learning? How much, if any, a priori 
knowledge is to be included in a candidate neurocontroller? What is the source of 

this knowledge? 

This brief discussion of some of the issues involved in neurocontrol has raised 

various considerations, some of which will be discussed further in later sections. 

1.8 Adaptive Control 

One area of control theory of relevance here is adaptive control. Adaptive control 
is a natural extension of feedback control (Astr6m, 1995). Control perfonnance 

can be improved by increasing controller autonomy. Augmented error feedback is 

used to adjust controller parameters on-line (Figure 1.12). Many applications 
involve the automatic tuning of a simple controller (Astr6m, 1995). 

Adaptive control can be divided into two general methods: indirect and direct. 

Indirect adaptive control involves on-line modelling of a plant and the synthesis 
of a control law from the model by inverting or otherwise using the model. 
The plant model is used to predict an output which is used to determine a 
control action. 71be success of the control strategy depends upon the accuracy 
of the plant model. One of the objectives is to estimate a set of plant 
parameters which specify the specific plant model. Closed-loop systems 
obtained using adaptive control are non-linear and complex owing to the 
parameter adjustment mechanism (Astr6m, 1995). 

Direct adaptive control builds an explicit model of a controller on-line without 
necessarily referring to an explicit plant model. Neurocontrollers using direct 

adaptive control have potential advantages over simple adaptive control 
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methods that use gain scheduling to change the parameters of a linear 

controller operating in a local region. The associative memory properties of 

some architectures allow the construction of a control map composed of 

multiple regions which may or may not be covered by a linear surface 

(hyperplane). If the learning algorithm is sufficiently stable-in the sense that 

there is little risk of catastrophic forgetting or overwriting (Sharkey and 

Sharkey, 1994)--then continual recomputation of locally operative controller 

models is not required. Recomputation of locally linear models is 

computationally expensive and unnecessary. Adaptability is desirable, but with 

the added constraint that a control strategy is not generated anew when re- 

entering a region of input or state-space for which a strategy was developed 

previously. In other words, a candidate neurocontroller must be adaptive but 

not memoryless. Two particular implementations of the direct adaptive control 

method are discussed at length in this thesis. Before discussing these 

implementations in detail, these two examples of direct adaptive control will be 

reviewed briefly to illustrate the concept. 

Reinforcement learning methods can be viewed as "... a computationally simple, 
direct approach to the adaptive optimal control of nonlinear systems. " (Sutton, 

Barto and Williams, 1992). Data is gathered on-line and used to compute a 

control output and performance evaluation at each time-step. Reinforcement 

learning will be covered in detail in Chapter 3 onwards where novel architectures 

are introduced. 

Self-organislngfuzq control: this method attempts to build up a rule-base 

(commonly on-line) which represents a successful control strategy. The rule-base 

is modified according to the direct evaluation of control actions without reference 

to a plant model. Evaluation is usually in the form of an explicit look-up table 

(matrix) specifying corrections for each rule given the current error and change in 

error. A novel form of self-organising fuzzy control using an evaluation network 

to replace the look-up table is described in Chapter 5. 
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Figure 1.12 Block diagram of an adaptive system (after Astrom, 1995). Two control loops are 

shown indicating the addition of a secondary loop which is involved in the adaptive tuning of 

the controller. 

1.9 Delay Learning 

This thesis will explore an application of the incremental paradigm to the dynamic 

partitioning of state space for control and related problems. As reviewed in 

section 1.7 it is very often difficult to establish more than crude qualitative 
information about state space trajectories on all but the simplest of analytical 
systems. Ascertaining an accurate model of system dynamics and contriving an 
objective or cost function signifying desired behaviour is usually the preferred 
route in optimal control problems. Most adaptive methods are indirect and use an 
estimated system model to recompute controls at each step (Sutton et al, 1992). 
Even if adequate knowledge is available, the a priori integration of this 
knowledge into the network structure can severely limit the autonomy and 
flexibility of the network. Autonomous learning systems need to be able to 

extract and organise information during experience in their particular data-rich 

environment, increasing their information capacity as necessary. 
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Consideration of autonomous, self-organising systems reveals another, related, 

aspect. The world exhibits obscure structure to any observer and convenient 

labels, indicating the spatiotemporal significance of, and relationships between, 

objects or events are simply not available a priori (Edelman, 1989). It is very 

clearly ordered but, often, the causal relationships between objects and events are 

not understood. For example, living organisms make sense of the world through 

experience and evaluation of behavioural consequences. They structure 

experiences autonomously and develop conceptual schemata with which to 

classify perceptual stimuli as a basis for future behavioural responses. Where 

desired responses are available for neural network training, the initial learning 

problem has been solved autonomously by a human operator who has organised 

and correlated relevant information to provide training data for the associative 

network. This is especially true in control applications where desirable control 

actions have to be specified and presented to a given neural network along with 

the conditions which necessitate such actions. To increase neural network 

autonomy, the processes of information extraction and organisation must be 

incorporated into the architecture to allow more intelligent use of "raw" data; the 
integration of pre-processing sub-systems into a neural network may reduce 
dependency on external pre-processing and may consequently increase network 

autonomy. 

Additional motivation for the use of incremental self-organising systems for 

complex control tasks is the inadequacy of supervised learning in control 
problems. The problematic use of a fixed structure network is compounded by 

the lack of training information about the structure and dynamics of the 

environment or plant. The autonomy of an intelligent agent or neurocontroller 
lies in its ability to extract information from the environment. 

One requirement of an adaptive learning system is that it be capable of dealing 

with delayed effects in the environment. Action and reaction are not 
instantaneous with the effects of control actions still having an effect beyond the 
instant of application. A system must be able to integrate the effects of delayed 
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control actions into the control assessment procedure. For the supervised 

learning method, the provision of input-output pattern pairs by an external teacher 

is an artificial process which relies upon several underlying presuppositions for its 

operation as a training method. One such being that of a temporal connection 

between input-output pairs; the nature of the assumed temporal connection forms 

the basis for a model of the state transition dynamics of the system being 

controlled. In other words, assumptions regarding the relative timing between 

stimuli and responses in a system determine the form of the system model; if those 

assumptions are wrong, or cannot be accommodated by the neural network 

architecture being used, then control is unlikely to be successful. An adequate 

representation of state transition dynamics is a prerequisite for successful control 

as these dynamics determine system responses to stimuli through state transitions 

that depend on both the present state and the current input. As well as a possible 

change in the current response, there might be a transition to a new state. These 

dynamics characte'nse a system and must be represented in some way by a 

candidate neurocontroller. 

A sizeable proportion of neural network theory is based upon associationism 

which has its historical roots in psychology (James, 1892). Learning laws which 
associate pre-synaptic and post-synaptic outputs (Hebb, 1949) often assume little 

or no time delay between correlated signals. Networks based upon these learning 
laws, and variants of them, function as simple pattern associators which 
strengthen connections between frequently associated patterns, and which weaken 
others. 

The effects of an input on state transitions are not usually limited to instantaneous 

changes unless memoryless systems are considered; a more accurate assessment 
of real world systems is that state transitions are influenced by inputs as a function 

of the time interval between a particular input and a given state transition. This 
temporal effect reduces the validity of simplistic stimulus-response pairing of 
input and output to some extent. Problems which involve delayed feedback to a 
learning system can be reduced to simple pattern. association tasks but require a 
problem to be solved beforehand by a human teacher in order to specify the 
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optimal actions which should be taken by the learning system (Myers, 1992). One 

way to take delay into account is to present delayed inputs as part of the pattern 

pair. However, this requires assumptions about the system model; for example, 

what is the minimum delay time that can be assumed for a good model? 
Incorporating time delay information into the training data set increases the 

dimensionality of the input space. 

Both the difficulty of obtaining relevant input-output pairs and the issue of the 

temporal connection between inputs and state transitions (and, therefore, outputs) 

are addressed in the paradigm of reinforcement learning (Barto et al, 1983; 

Sutton, 1988,1992; Barto, 1992; Sutton et al, 1992; Daynan & Hinton, 1993); 

this paradigm will be considered in Chapter 3. A modified form of the 

backpropagation algorithm, temporal backpropagation, (e. g. Werbos, 1990) has 

been developed to overcome some of the problems associated with using 
feedforward neural networks for learning temporally correlated sequences of 
inputs. Recurrent networks with feedback connections, such as the Elman network 
(Elman, 1990) have also been developed; these and other approaches to the delay 

problem will be covered in section 4.2.10. 

This chapter has provided a general background to the work presented in this 

thesis. Further introductory material will be given where appropriate to the 
discussion. Chapter two begins with an introduction to Adaptive Resonance 

Theory which underlies two of the novel architectures developed to overcome the 
limitations of some existing approaches to mapping and control problems. 
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Chapter 2 Adaptive Resonance Theory 

and PROBART 

2.1 Generic ART 

Cognitive psychology investigates the functions of perception and cognition and 

highlights many fundamental questions about the information processing 

capabilities of humans and animals (e. g. Best, 1992). For example, 

How do humans "make sense" of their environment? (Edelman, 1989) 

how do they order experience in time and space by discovering, learning and 

recognising invariant properties in the world? (Carpenter and Grossberg, 

1987a). 

Adaptation and survival of any organism within an environment requires that 
information is extracted, organised and acted upon in an efficient manner. Even 

general behavioural constraints observed from the natural world, although many 

are still without neural correlates (physiological counterparts), nevertheless 
impose conditions upon neural models both artificial and natural. Characteristics 

of intelligent infon-nation processing include the ability to: 

self-organise representational codes within the brain to order 
information, 

abstract invariant properties from the environment, 

generate and test hypotheses, 

maintain expectations to compare with "reality", 

form stable representations of formed categories but still be able to 

respond to significant inputs. 
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11.1 The Stability-Plasticity Dilemma 

The last two points form the basis of the fundamental problem of competing 

constraints known as the stability-plasticity dilemma (Carpenter and Grossberg, 

1987a). It is based upon the premise that it is desirable for any useful intelligent 

learning system to have two fundamental properties. 

The first property is plasticity. Any system must be adaptive enough to respond 

to a series of environmental inputs. During learning, state transitions, resulting 
from inputs and the present state of the system, must lead to new steady states 

and attractors representing criticalfeature patterns (otherwise known as 

prototypes or exemplars) of the environment. Thus the system (or organism) 

must self-organise internal representations of invariant environmental features. It 

must be capable of recognising novelty and accommodating new inputs from the 

environment into its growing repository of experience-plasticity. This 

responsiveness to new information must not, however, be at the expense of 

previously established knowledge structures. That is, new learning should not 
disrupt old learning. This leads to the second property of stability. Learned 

representations must be stable regardless of new incoming information; invariant 

properties of objects/situations must be abstracted and isolated from detected 

irrelevancies. For instance, a person is able to recognise their best friend 

regardless of lighting conditions and changes of clothing etc. Thus, an invariant 

and stable internal representation of the best friend can be postulated. 

The dilemma can be stated simply as a question: how can a system remain plastic 
enough to respond to novel stimuli and yet retain stable invariant representations 
against relearning and recoding? This question gives rise to the following issues 
involved in the development of artificial systems: 

" self-organisation and representation of information 

" the abstraction of invariant properties 

" stability 

" plasticity 

" causal (possibly real-time) operation. 
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Adaptive Resonance Theory has been developed to deal with these complex 

issues and consideration of the stability-plasticity dilemma is reflected in the ART 

family of networks (Carpenter and Grossberg, 1986; 1987a, b; 1989; 1992; 1994) 

which has gone some way to resolving the conflict between stability and plasticity 

within neural networks. 

Adaptive resonance theory comprises one of the major themes of this thesis and 

will be illustrated in both the contexts of off-line and on-line learning. Two novel 

architectures-one off-line and one on-line--are presented in sections 2.6 and 4.2 

respectively. T'he novel off-line architecture, PROBART, is applied to the general 

mapping problem and is supervised during learning. 

ART networks have the ability to allocate nodes dynamically, as required during 

processing, without the need for retraining to incorporate novel information; this 

property provides a natural basis for on-line adaptive learning. This thesis also 

presents a novel network, EUCART-based loosely upon some of the principles 

of ART- which is applied to a well-known control problem and acts as a self- 

organising state space decoder to provide an autonomously derived internal 

representation of state space. As a prelude to the description of the novel 

architectures, some members of the class of architectures which comprise ART 

will be considered in significant detail. Before this, however, it is desirable to get 

an overview of the ART philosophy. 

Z 1.2 The Instar and Outsfar Elements 

ART architectures are based upon an underlying structure consisting of two 
fundamental types of computing element, the instar (Grossberg, 1976a, b,; 
Harvey, 1994; Levine, 1991) and the outstar (Grossberg, 1968,1980; Levine, 
1991). Both elements form basic components in Kohonen's self-organising maps 
(Kohonen, 1989,1995), the counterpropagation network of Hecht-Nielsen (1990) 

and the ART 1 network of Carpenter and Grossberg (1987a). A detailed 
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discussion of these artificial neural elements will not be given here; instead, this 

sub-section will provide a motivational overview so that further details of instar 

and outstar dynamics can be introduced during subsequent discussion of ART 

dynamics where appropriate. 

The instar is an information processing element which learns to represent a cluster 

of inputs by developing long-term memory (LTM); it consists of a single sink 

node and a number of source nodes. A single instar element is shown in Figure 

2.1. Note that, although there are a number of input nodes and an output node, 

the instar is treated as a single element. 
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Figure 2.1. The instar element which consists of a set of input nodes and a single output node. 

The instar operates upon an rn dimensional input vector denoted by 

I= (I, 
I ... Jig ... 9 1,, )' which is fed directly to a layer of input neurons with 

activities denoted by x= (x, 
, ... ýxi g ... , x. )' in vector fonn. 71be sink node 

activity is denoted by xO. The LTM is stored as a set of weights denoted by 

W= (wit 
... jWi I ... . w,. )' in vector form. The LTM activity is governed by the 

passive decay LTM equation (Grossberg, 1968). Weights decay if no input 

vector is present or the sink node is not active; a gated instar may be used to 
prevent this. The state of the instar is reflected in the activation functions which 
determine the short term memory (STM) trace or activity level for a given input 

vector (pattern). The instar output (sink) node dynamics are governed by an 
additive STM equation (without shunting) (Grossberg, 1968,1980; Nigrin, 1993). 
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Whilst an input is present, the instar weight vector will tend towards the input 

vector. Instars learn to represent the stream of spatial patterns that they are 

exposed to; the representation will be an average of the pattern types depending 

upon exposure time. 

If a layer of instars is formed, each instar will respond maximally to a given input, 

or cluster of inputs and the layer comprises a self-organising pattern classification 

system whose categories are represented by the output activation values; such a 

system is illustrated in Figure 2.2. which shows a competitive layer in which 

neurons compete for a share of the total activity available across the layer. If 

desired, an overall winner can be selected; this is known as winner-takes-all 
dynamics where the node with the largest activity wins the competition and 

signifies the resultant category (Rumelhart and Zipser, 1985). 

Wi VM 

Figure 2.2. A neural network consisting of a layer of instars. Each node in the top layer is an 
instar sink and responds maximally to a cluster of inputs. 

The underlying mechanism of the competitive network is the inhibitory interaction 

between sink nodes inspired by biological realism. These interactions are 
simplified to winner-takes-all dynamics by choosing the instar with the largest 

activation. By using a good choice of STM dynamical equation, it is permissible 
simply to take the node with the largest net input. The right choice of STM 

equation reflects the biologically plausible justification for winner-takes-all 
dynamics based upon the "closeness of match" between an input vector and the 
stored exemplars. If normalised input patterns are used, the following two points 
link competitive dynamics through inhibitory interactions and pattern clustering 
based upon Euclidean distance: 
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4o competitive dynamics results in the choice of the node with the largest net 

input, 

* normalisation. of input and stored patterns implies that the node chosen with 

the largest net input reflects the smallest Euclidean distance between the stored 

pattern and the input pattern. 

Biological plausibility does not mean that biological neural networks are 

concerned with normalisation and closeness of patterns in a Euclidean sense as if 

they were designed for some information processing purpose; networks exhibiting 

competitive pre-processing by off-centre, on-surround networks of the type found 

in biological organisms are capable of maintaining relative reflectance patterns 
(see section 2.1.4) regardless of absolute signal magnitude, and also bounding the 
inputs. 

The outstar, is the minimal network capable of classical conditioning. It is able to 
learn arbitrary spatial patterns and recall them when stimulated. It consists of a 

single source node and several sink nodes (Figure 2.3) in contrast to the instar. 

XI 

10 

XI 

Figure 2.3. The outstar of Grossberg (Grossberg, 1968,1980). It consists of a source node and 

several sink nodes. 

The source node activation is denoted by xO and, when trained, is able to elicit an 

activity patternX = 
(XI9X29***qxi 

9 ... , x. )' across sink nodes 1, ... f iq ... 9M. 
Consider an individual sink node as shown in Figure 2.4. As well as receiving a 
weighted connection from the source node with weight w1o, the sink node 

receives a training input, Ii. This allows the outstar to learn an input pattern 
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1=(, 11 
12 

v***9 
li 

11 -*t I_) that is distributed across the sink nodes and to associate it 

with a source input, I0. 

Wie 

X(l xi 

Figure 2.4. An isolated sink node showing the training input and the source node input. 

The basic operation of the outstar is as follows: 

e an input pattern, I is presented to the sink nodes of the outstar at the same 

time as the source node input, I0. 

9 The LTM traces (weights) are modified to store the pattern across the source 
nodes while the training inputs are active. 

9 When the training input is removed, the LTM traces retain the pattern; an 

outstar with this post-input retention property is known as a gated outstar 

9 when the source node input, is presented to the network following training, the 

associated pattem, I, is recalled. 
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Z 1.3 A Generic ART Module 

If two layers of nodes are used in which the individual nodes of one layer act 

alternatively as an instar sink node and an outstar source node and the nodes of 

the other layer act accordingly as instar source and outstar sink nodes, then the 

two layers taken together comprise an autoassociative memory network capable 

of storing recognising and recalling patterns. Figure 2.5 shows the two phases of 

such a two layer system. 

The simple, two phase system forms the basis for ART architectures; ART 

variants stem from the inclusion of various mechanisms into an underlying two- 

layer two-phase system. Before considering specific architectures, some of the 

refinements to the simple autoassociative network will be considered-, the refined 

generic ART module will form the basis for subsequent discussion. 

C )C ) 

fal Recognition phase (b) Recall phase %"j 
Figure 2.5. An autoassociative memory network consisting of two operational phases: (a) a 

recognition phase using the instar mode to select a winning node and (b) a recall phase using 

the outstar mode to recall the stored pattern. 

A generic ART module comprises two layers or fields of nodes, the matching field 

and choice field which are labelled Fl. and F2 respectively; this is shown in Figure 

2.6 which illustrates a simplified model without additional features introduced 

later. There is a third layer, FO which merely acts as a buffer for an input vector 
and is not counted. The F2 nodes act as sink nodes of inputs (instars) and source 

nodes of outputs (outstars) during a learning cycle involving a single input 

pattem. 
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The algorithm for a single cycle of a generic ART module is given by: 

1. an input vector, 1, is transferred from the buffer layer FO to the matching field 

F1 and gives rise to an activity pattern, x 

2. the activity pattern of F1 is then transmitted to the F2 layer nodes via a set of 

weighted connections; each F2 node acts as an instar which responds to a 

given input filtered by the bottom-up connections 

3. the activation pattern across F2 ,y is then contrast enhanced to find the 

maximally responsive instar for the current input; this is a winner-takes-all 

competition. 
4. the winning instar sink node is then treated as an outstar source node which 

projects back down (top-down filter) to F1 

5. the pattern elicited across F1 by the active F2 outstar is the prototype average 

stored by the winner called the expectation x' 

6. the current F1 layer activity pattern, x and the top-down expectation, x' are 

combined to give a resultant pattern x* across Fl. 

7. if the match between x and x* is sufficient, resonance is said to occur and the 

input pattern has been recognised and learning takes place 
8. if not, the winning F2 node is inhibited and the whole cycle repeats from step 1 

9. if all used nodes are exhausted the a F2 new node is recruited. A node 

recruited to represent a category is said to be committed, otherwise it is 

uncommitted. 
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F, c)i ..... 0 r( 

x ield: STM 
F0 

llnput f 
0 .... o0 

a 
Figure 2.6 A generic ART module consisting of two layers. Note that layer FO is an input buffer 

layer. This diagram is simplified, with a number of additional features not shown. These 

features are discussed in the text. 

Figure 2.7 illustrates the pattern matching cycle schematically; in the case shown, 

a mismatch at F1 leads to a new search cycle. The ART algorithm is generic and, 

as such, is not specific to any one of the ART architectures. Indeed, a number of 
issues have to be dealt with prior to implementation. These include: 

spec .. ng e method of combining activity patterns across F1 

establishing criteria for a "sufficient match" 
defining what constitutes an "activation patterW' 

specifying the method of "contrast enhancemenf 
defining how pattern categories are chosen, and 

specifying the form of learning for the bottom-up and top-down 

weights which constitute the filters. 

The examination of specific ART architectures will exemplify these issues. Ibe 
first ART architecture to be examined in detail is ART 1 (Carpenter and 
Grossberg, 1987a). This will exemplify the ART paradigm and expand upon the 
issues mentioned and raise new issues. The consideration of generic ART within 
this subsection will provide the framework for exploring specific ART 
implementations and further modifications. 
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(a) Bottom-up activity 
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Adap" plesd Hter Signal 

(c) Top-down activity: (matching) 
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Enhanewient 

(b) Contrwt Enhancement 

bbw 
Search 

(d) Reset 

Figure 2.7 A generic ART pattern matching cycle showing reset after pattern mismatch. (a) 

The F1 activity pattern is first transmitted to F2 where (b) the F2 activity is contrast enhanced 
(relative differences in activity levels are exaggerated) to give an overall winner. For stage (c) 

the top-down expectation of the F2 winner is transmitted to F1 to compare with the current 
input. (d) if the current input is not what is expected, the F2 winner is inhibited and competition 

is resumed. 

Z 1.4 Two Subsystems 

A generic ART architecture is split into two subsystems for functional 

convenience: the attentional subsystem and the orienting subsystem (Carpenter 

and Grossberg, 1987a) (Figure 2.8). 

The attentional subsystem deals with familiar events and the responses to those 

events through the internal representation of structure in the outside world. The 
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attentional subsystem, by itself, cannot maintain stable category codes and create 

new categories for unfamiliar patterns. Alone it would cause categories to 

become rigid and produce no new categories or to exhibit ceaseless recoding, 
hence the requirement for the orienting subsystem. 

The orienting subsystem deals with novel patterns and can distinguish whether a 

given pattern is sufficiently familiar or whether it is of a new type and requires a 

new category. 

Attention plays an important role in the self-organisation of recognition codes. 
Three types of attentional mechanism, attentional priming, attentional vigilance, 

and attentional gain control will be discussed in the context of ART learning. 

Attentional Subsystem Orienting Subsystem 

........................................................................................ 
............................... 

+ 

F2 
Gain" 

. ntrol en 
Co tml Control 

STM 
Reset 

F1 
Gain A6 

Control + 

...................................................................................... : p ................................ 
I 

Figure 2.8 The attentional and orienting subsystems of a generic ART module. 

ART places few restrictions on patterns such as orthogonality. There are no 
limitations on storage capacity; an ART architecture can store arbitrarily many 
patterns without degradation of sensitivity to novel information. ART units or 
nodes store criticalfeatures in the form of spatial patterns. Absolute magnitude 
can be misleading and data bits (binary valued ART) have a context dependent 

significance; self-scaling of patterns is carried out to enable invariant pattern 
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recognition. For an input I= (11 (t), ... I Ii (t)), if I is a spatial pattern, 

then relative activities of the components maintain a constant relationship to one 

another regardless of the absolute activity (sum) of the pattern components. 
Thus, 

I= (11 (t), 1, W .... t I. W) eji(t),..., e xt)) = (e ej e, )i(t) 
on 

with the convention thatyei =1 to ensure that I(t) Ii Q) (Grossberg, 

1980). 

Humans and animals recognise objects quickly. ART has no complex retrieval 

mechanism and access to recognition codes is direct (Carpenter and Grossberg, 

1987a). ' Indeed, ART algorithms could be implemented in parallel on a suitable 

analogue or digital computer. 

Although ART networks self organise recognition codes, they have the ability to 

alter attentional sensitivity in response to environmental influences. This possible 
'teaching' mechanism-which allows negative reinforcement to increase 

sensitivity to incorrect category recognitioa--is known as attentional vigilance 
(Carpenter and Grossberg, 1987a). Changes to the ART network sensitivity 
induced by mismatch of actual and expected inputs is implemented in the 

supervised ARTMAP architecture (Carpenter, Grossberg and Reynolds, 199 1); 

this attention increasing mechanism, known as match-tracking is discussed in 

section 2.3. 

Another attentional mechanism is that of attentional priming. Top-down priming 
or expectation is fed down from F1 to F2 even when the input has been removed 

and before a new input is present. This top down input signal causes changes to 
the level of F1 activation thus priming Fl. In this case, F1 activity does not 
necessarily elicit a bottom-up signal; F1 merely remains more sensitive to input 
from FO. However, an input pattern from FO must be sufficient to cause activity 
across F1 without top-down processing, such that a bottom up signal is elicited. 
This poses a question. How are input signals from F2 and FO distinguished by 
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FI? It is important that FO derived signals are of sufficient strength to elicit 

bottom-up activity and consequent competition and recognition, yet misleading 

self-excitation be prevented. 

The solution to this problem is provided by another attentional. mechanism, 

attentional gain control, which allows the F1 layer to differentiate between signal 

sources. A gain controls F1 sensitivity depending upon the signal source; the 

operation of the attentional gain control mechanism is governed by the two-thirds 

rule. 

2.1.5 The Two-Thirds Rule 

The effective co-ordination of activity in a generic ART module requires that 

certain subtleties of operation be addressed. These subtleties are mainly 

concerned. with maintaining sensible signal levels to avoid excessive auto- 

excitation or inhibition. 

The attentional gain control allows modulation of signal levels as required and 

provides a third signal source to augment those of F1 and F2. ART operation is 

succinctly represented by the two-thirds rule of Carpenter and Grossberg (1987a) 

which states that two out of the three signal sources are required to be present to 

activate the F1 nodes. Table 2.1 states the conditions under which the gain is 

active. 

s Status Fl. F2 Gain 

TD +BU 

F 

0 

BU only 1 0 1 

ID only 0 1 0 

no activity 0 0 0 

Table 2.1 The gain signal is switched on when there is activity across Fl. owing to an input 

signal from FO. This is to ensure that the Fl. activity is sufficiently strong to elicit activity across 
F2. ID signifies that a top-down signal (F2 to FI) is present and BU a bottom-up signal. 
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2.2 ART 1 

The ART 1 architecture (Carpenter and Grossberg, 1987a) is a specific 
implementation of the generic ART algorithm given in section 2.1.3. It is a self- 

organising binary vector clustering system and forms part of the supervised 
ARTMAP architecture of section 2.3. A simplified account of the ART 1 

dynamics will be given with a view to simulation. The details of the development 

of ART 1 dynamics from their biological origins, although interesting and 
informative, are of no direct relevance to this discussion. A more comprehensive 

account may be found elsewhere (e. g. Grossberg, 1987,1988; Freeman and 
Skapura, 1992) 

ZZ 1 The Fl Layer: Input Phase 

Let the input to the FO layer of an ART 1 module at time, t, be denoted by 
and the activity across the Fllayerby 

x(t) = (x, (t),. T2 (t),..., xi (t),..., xm (t)) where M is the number of F1 nodes. The 

activity across the F2 layer is given by Y(t) = 
(YI (01) Y2 WI... 

I Yj (01 
... I YN (0) 

where N is the number of F2 nodes. 

The total excitatory input to an F1 layer node is given by 

xi(t) = Ii(t)+ g +vj 

Where g is the gain signal specified by 

I if FO is active and F2 is inactive 
0 otherwise 

and the net top-down input from layer F2 to layer F1 for the i th F1 node is given 
by 
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N 
Vi I 

Yj WijlTDI 
j=l 

(2.2) 

where i(j 
TD) is the connection strength (or weight) from the j th F2 node tothei Wi) 

th node of layer F1 (Figure 2.9). 

1 '/\ 

WOýM) 

F2 

ýV) Fl 

ii 

Figure 2.9 The input sources to an FI layer node. 

The F1 layer weights, representing F1 layer LTM, will be discussed in section 

2.2.4. 

If an input vector is present but F2 is not active (no net top-down input possible) 
then the condition I, >0 causes the i th F1 node to fire owing to the non-specific 

gain which increases input sensitivity. Without it the input signal may not be of 

sufficient strength to produce a feedforward signal. When both an input is present 

and F2 is active, then both the input and the top-down activity is sufficient to 

cause F1 layer nodes to fire. 

During the input phase, the input, I(t), is propagated to F1 giving x(t) = I(t) 

Because no top-down signal is present, g= 1 and xi (t) = Ii (t) + 1. 

222 The F2 Layer: the Bottom-Up Phase 

The expression for the bottom-up net input to a F2 layer unit from layer F1 is 

analogous to equation (2.2) viz.: 
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m 

netj (t) (t) w, (, "' (t) (2.3) 

where wýPu3 is the connection strength (or weight) from the i th Fl node to the 
JS 

th node of layer F2 (Figure 2.10). 

F2 

Fl 

I 
-I 

Figure 2.10. The F2 layer nodes of an ART 1 module operating in instar mode. 

Thus, there is a distributed activation pattern across layer F2 depending upon the 

level of net input to the individual F2 nodes (Figure 2.11) 

Activation 

Figure 2.11. An illustration of a typical distributed activation pattern across Fl. The pattern 

will be contrast enhanced to find the winning node. 

The F2 layer dynamics can be simplified considerably by assuming a winner-takes- 

all function of the form 

Yj =1 
if Tr=maxklTklVk 

(2.4) 
0 otherwise 

where J is the index of the winning F2 node. 
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ZZ3 The Fl Layer: the Top-Down Phase 

Top-down activity alone should be insufficient to cause F1 layer activity. 

However, top-down activity should have some effect on the F1 layer, this effect is 

to prime the layer ready for incoming signals so that the probability of F1 layer 

activity is increased. 

To analyse the contribution, Vi made by the F2 layer, certain assumptions 

(Freeman and Skapura, 1992) are made about the F2 layer. These assumptions 

are: 

e only a single F2 node has a nonzero output at any given time 

* the maximum output of an F2 node is 1, and 

9 the maximum weight on a top-down connection is also 1. 

The first assumption is reasonable in that after inter-nodal competition across F2, 

a single node becomes dominant and represents the category chosen by the ART 

module. The second and third assumptions are based upon design considerations. 

Returning to the net input value to the i th Fl. layer node given by equation (2.2) 

N 

vi yW WP) (t) yi (t) wi'j ') (t) = wij") (t) (2.5) 

for some winning F2 node J. All the other F2 layer nodes have zero output. 

When top-down activity is present, applying the gain criterion to equation (2-1) 

gives 

xi(t)=Ii(t)+ ( 'D))(t), or, in vector form, x(t) = I(t) + w()(t) where the WIV( 

weight vector of top-down LTM traces is represented as 
(TD) I (TD) (TD) W= W1 'W 

(D) 1. The F2 generated top-down activity is ij 2j 9-9Wmj 

combined with the FO input activity to give a resultant activity across Fl. For 
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some 0<F<1, the condition if xi (t) 2t 1+F then xi (t) =1 is applied to each 

component of the F1 activity vector which is equivalent to 

(TD) 
x(t) = I(t) r) w, (t) (2.6) 

where n is the intersection or the logical AND operation defined by 

1 iff pj=qj=1 (pi r) qj) =0 
otherwise 

for the binary vectors p and q. 

2.2.4 The F1 Layer., Top-Down LTM Traces 

Short-term activities (STM) are alone insufficient to provide a basis for adaptive 
learning systems; longer term information must be stored for future activity and 

adaptation to an information rich environment. This is where long term 

memory-4n the form of weights on connections-becomes important. It can be 

stated that -ý-w 
(TD) 

w (jTD) 
+ x)y, which is the learning law for a gated dt I 

,d (TD) (TD) 
outstar. For the winning F2 node J, 

dt w., = (x 
- w., ) which implies that the 

weights of the winning F2 node, J, move in the direction of x-w (TD). This j 
describes the difference vector between the current set of weights and the desired 

7D 
asymptotic value x representing F1 activity. Changes in w" ) are made 

proportional to this difference vector x-w (TD) (Figure 2.12); this ensures that 

W 
(TD) 

--> x as required. Forfast learning, disregarding transients, w 
(TD) 

= X. jJ 

The weights tend to represent the signal present across the F1 layer when the 
particular F2 node was excited. The top-down weight update equation is thus 
given by 

I 
fx(t) if j=i 

W171(t+l, Mj"' (t) otherwise 
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This is the fast learning model which assumes that the input patterns remain active 

on F1 for a time exceeding that required for equilibrium to be achieved following 

transient activity across Fl (Freeman and Skapura, 1992). 

(TD) 
-wj 

rD) 

Figure 2.12. The movement of the top-down weight vector in the direction of the input vector. 

For fast learning, it is set equal to the activity across Fl. 

Although the weights are on connections feeding into the F1 layer, they are 
treated as belonging to the F2 layer nodes for convenience, i. e. a top-down weight 

vector is associated with each F2 layer node. The F2 layer is treated as a layer of 

gated outstars feeding into layer Fl; only one outstar is active at any one time. 
The F2 nodes represent input categories arising from the self-organising activities 

of the ART 1 module. For the active F2 layer node, the associated weight vector 
tends towards the Fl layer output vector; this represents the top-down 

expectation of the F2 layer for subsequent processing cycles. 

2.2.5 Matching Across Fl. 

Referring to back to the discussion of generic ART 1 in section 2.1, for a correct 

match to occur (across layer Fl), it is required that the top-down signal fed to the 
F1 layer by the winning F2 node approaches the F1 layer output pattern. From 

the discussion of section 2.2.4, when learning a new input, this is indeed the case. 
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M 
Denoting, the number of l's across the F1 layer by IxI where IxI = Yxi the F1 

i=1 
layer matching condition for ART 1, which indicates that the correct F2 class or 

cluster has been triggered, is given by 

n W(73 0 
2!! p (2.7) 

where p is a threshold constant called the vigilance parameter. If there is no 

match between the current input and the top-down expectation, then the winning 
F2 node is inhibited and competition resumes. 

226 The F2 Layer., Bottom-Up LTM Traces 

The weight update equation for the bottom-up LTM traces (weights) is given by 

xi(t) w (") (t + 1) 
(2.8) W(", (t +a+ jx(t) --a-+-F(, Tt) 

(TD) (because wý (t + xi (t) ) where, a is a positive constant. For a discussion of 

why this form is used, refer to Freeman and Skapura, (1992) suffice to say that it 

allows the comparison between the resultant across Fl. and a previously stored 
resultant. This comparison facilitates the choice of a winning F2 node. 

For the instars of Figure 2.12, recalling equation (2.3) the net input 

m 

netj(t) =I Wi(i, 

It is clear that the node with the largest net input is the eventual F2 layer winner 
but what factors determine this? That is, can a function of the input vector, I be 
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derived which explicitly indicates the dependency of the F2 layer node choice 

upon the input? An explicit choicefiunction Tj (1) would allow comparison 

between F2 node activities for a given input. To derive such a function, the 

dependency of xi and wj(iBu) upon the input vector, I must be considered. 

When F2 is inactive, the signal across F1 is given by x(t) = I(t), that is, some 

unaltered pattern is transmitted to F2 (via the weights) for competition to occur in 

order to select a winning node or category. If F2 is active then the winning F2 

node, j=J feeds down an exemplar or template representing the top-down 

expectation. Recall that this top-down expectation vector is denoted by 

W(TD) (TD), (TD) 
j 

JWJ 
wjj '---'w(TD)j. This expectation or template vector is fed down 

i Mj 

and combined with the input vector present across F1 giving 
(TD) 

x(t)=I(t)nw, (t) by(2.6). Inshort, 

X(t) = 
I(t) F2 inactive 

(2.9). I(t) r) w 
(TD) 

., 
(t) F2 active 

Substituting Equation (2.8) into Equation (2.3) gives 

mm (ID) m Wi(jTD) (t) W(TD)(t)l 

wiý (t) li(t)n i Ti (t) xi (t)w; (i", ) (t) 
xi (t) 

-. - 
TD 

a+ jx(t -, r)i - i=, a+ lx(t - Týj a+ lw(, ) (t)l 

the time delay,, c is used to signify that Fl activity was stored in the top-down 
weights some time previously. The F2 choice function is now given by 

Tj (I(t)) = 
li(t)nw(jTD) (t)l 

(2.10) 
a+ 

lw(, TD) (tý 

This form of function for the F2 choice function has important properties as will 
become apparent in the following example. 
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227 Bottom-Up Dynamics: an Example 

Consider two input patterns I, and, 12where 11 c I., that is, pattern 1 is a strict 

subset of pattern 2. For correct recall, pattern 1 must trigger its own associated 

node and not that of its superset, pattern 2. Assume that F2 nodes 1 and 2 are 

associated with patterns 1, and12 respectively. Thus, 

s. t. BU) -a + fli, 
V' 

W11i 

10 
Vi s. t. Ili 0 

and, 

Vi S*t* l2i 

W2(, 
ý U) a +T121 

10 
Vi S. t. IN =0 

(2.11) 

(2.12) 

where Ili and 12, are the i th component of patterns 1, and 1. respectively 

Now, for 1, , from Equations (2.3) (2.8) and (2.11) 

w (TD) t 
xi 

, 
a+ll, l a+lll a+li, l 

(TD) 
as w, =I I which was leamed previously. 

li, 
r)w(, ')l I1, 

o12 
= 

111()121 

For F2 node 2, T2 xi 
a+1121 ý7+- 112* ý+1121 

6ý + 1121 

because W 
(27)'ý 12 and 1, C I., So, T, > T2giving the winning F2 node J=1 because 

III I, < 1121 thus 
1>1 

The presentation of pattern 12 gives T, = 

112 
('Al 

and 
a+ll, l - a+li, l 

T2 

ll, 
ol, 

l 

- 

li'l 

a+1121 a+1121 
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Thus, by the monotonic increasing property of the choice function (see Appendix 

L1121 L1111 

121 + 1,1 andthefactthat 
1121>1111 (11C12) it is the case A) 

1121> I'll 
=*T+-1> -T-l 

that T2> T, as required. 

ZZ8 Simulating ART 1 

What must the initial bottom-up weight values be? From equation. (2.10) above, 

if the initial weight values are too large another uncommitted node could be 

incorrectly triggered resulting in errors being propagated throughout the system. 

To prevent this, consider the worst possible case where all bits in the input layer 

(BU) (t + 1) =1 Vi i=L.. M FO are set to 1. If this pattern is learned wji 
a+IMI 

so all weights must fulfil the initial condition wýýu) (0) <1 in order to p a+1MI 

prevent an uncommitted node from winning incorrectly. So, let 

Wý? U)(O) =1-6 where 8 is a small constant. Thus, for jxj: 5 M 
JS a+1MI 

-1111 __ 1ý+ ix, > -ý- -3 or 6 for all t. 
+, M, a+ lw(, Bu) (t)l 

>"ý +I MI 

For the initial top-down weights, j(j 
TD) (0) = 1.0 to ensure that K 

(TD 
wj)W0 x(t) = x(t) in the beginning for an uncommitted node. 
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An ART 1 algorithm: 

1. Initialise weights 

2. Input, I(t), 

3. Propagate to F 1: x(t) = 1(t) 

4. Propagate to F2 using 

netj (t) wj(iBu) (t)xi (t) 
M 

JS 

5. Find winning F2 node J such that 

6. netj =max, 
Inetj I 

or choose first index if there is a tie. 

7. For the category chosen by winner-takes-all set 

1 if j=j 
Yj =0 

otherwise 

8. Propagate back to F1 (top-down processing): where 
(7D) 

x'(t) = 1(t) r) wiW 

9. Match: For resonance the match condition 
1x' I 

>, 
-. p must be met. III 

10. If a match occurs, the weights are updated according to: 

(BU) (t + 1) =1, if F1 node i is active and w, ( 
TD) (t + 1) = x, (Equivalent to WA a+ jx(t)l 

W 
(TD) (t+l) 

= 1(t)nw(TD)(t)), then return to step 2 else j 

11. Inhibit the F2 winner and repeat from step 3 until a winner is found or recruit 

a new node from the remaining uncommitted nodes. If there are no more nodes 

left, read in a new input vector at step 2. 

For the incremental version, new F2 nodes may be added as required. 
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2.3 ARTMAP 

ART 1 is a self-organising binary pattern clustering system which uses 

unsupervised learning. For supervised learning, two ART1 modules, ARTa and 

ARTb, are linked via a map field to form ARTMAP. Refer to Figure 2.15 which 

shows a continuous valued input variant, Fuzzy ARTMAP, which has a similar 
form but uses identical bottom-up and top-down weights; this variant will be 

covered in section 2.5. 

ARTMAP (Carpenter, Grossberg and Reynolds, 1991) allows the association of 
binary patterns through supervised learning. The input and output spaces are self- 

organised by the two ART 1 modules, ARTa and ARIb respectively. These 

modules are linked by a map field which implements the mapping from input to 

output by associating ARTa and ARTh categories via compressed F2 codes. 
Dynamic control over the matching threshold in the ARTa module is provided by 

match-tracking (attentional vigilance). The ARTMAP algorithm will be discussed 

as a prelude to the discussion of fuzzy ARTMAP and a variant which forms part 

of the subject of this thesis. 

23.1 The ARTMAP Algorithm 

A brief discussion of notation is required to avoid possible confusion. Input 

vectors to the ART a and ART b modules are denoted by I" and Ib respectively. 
The ARTa and ARTh F1 layers are denoted by Fla and Flb respectively. The 

number of nodes in layers Fla and Flb are denoted by M. and M.. Similarly 

Na and Nbdenote the number of nodes in F2a and F2b respectively. 

The top-down weights in ARTa and ARTh are denoted by w, (TDa) (t) and 

Wi(TDb) i VW respectively. Similarly, the bottom-up weights are denoted by wý? u-)(t) 
A 

and wj(iBub) (t) respectively. 
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Inputs I" and lb are presented to ARTa and ARTh respectively. The two ART1 

modules are allowed to self-organise and produce F2 recognition codes for their 

respective inputs as per the ART 1 algorithm. 7Ibe resultant ARTa and ARTb 

categories then have either to become associated or any current association 

verified. ARTMAP can learn associations between input and output space and 

can recall a response given an input stimulus. Figure 2.13 shows the situation 

schematically. 

The dynamics of the map field are similar to those of F1 in that map field 

activation is given by Xkab = Yb +G+ yj" ("b) where G is a gain. When F2a and A: W; j 

F2b are both active there is no gain i. e. G=O. The logical AND is carried out 

between the actual and expected F2 b patterns using the condition X* 
b> 1+ Wfor 

x, "b= I else x"b=O where O<W<l. 

ARTa F2 ARTh F2 
Category Category 

Map field 
node 

Figure 2.13 The linking of input and output categories via a map field in ARTMAP 
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The ARTMAP algorithm: 

1. Initialise weights 

2. Present inputs I" and lb to ARTa and ARTh respectively 

3. Find winning ARTa and ARTa category nodes 
b ab 4. Calculate map field activation using x*b=y nw, 

kabl 

5. match: lyb I pb; if there is mismatch, increase the ARTa vigilance and trigger 

a new ART a search (step 2) else 
(ab) 6. Update: Wkf 

(t + 1) = Xk ab 

Z3.2 ART I and ARTMAP: an Example 

The following sample calculations are included to illustrate the ART 1 and 
ARTMAP architectures and to motivate the fuzzy ART / Fuzzy ARTMAP 

discussions of section 2.4 onwards. Pattern association by ARTMAP is covered 
because the operation of the ART 1 algorithm forms an integral part of ARTMAP 

and any separate discussion would be redundant. Only key points pertinent to 

the discussion will be given here; full details will be found in Appendix B. 

The pattems to be associated in this simple example are: 
11,111110-ý1010,11' 

lb 1429 11"W-"'Olt 
2 

Ja 
3,111(M_ý1010 

lb 
11 

The parameters used in this example am: a=2.0,8 = 0.01, M, = N. = 6, 

Mb= Nb= 4. The baseline vigilance for ARTa, specified by jY. = 0.4, 

illustrates match-tracking in ARTMAP. ARTh vigilance, pb= 0.9 

= 
[1111101"lb(l) 

= lb Present inputs:, 1" (1) = 11 
1= 

[101011 
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After processing, the first ART a input vector is stored as the top-down 

expectation of F2 node 1 as indicated by the first column of the ART a top-down 

weight matrix: 

1.0 1.0 1.0 1.0 1.0 1.6- 
1.0 LO 1.0 1.0 1.0 1.0 
1 0 1.0 1.0 1.0 1.0 1.0 

W(TDa) . 
1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 

LO-O LO 1.0 1.0 1.0 1.0j 

Similarly: 

1.0 1.0 1.0 1.0 
0 0 1.0 1.0 1.0 

w 
(TDb) (I) 

= 
. 

1.0 1.0 1.0 1.0 

0.0 LO 1.0 1.0j 

where the first ART b vector is stored as the top-down expectation of ART b F2 

node 1. 

(ab)(t + 1) = Xab 'Me map field weights are given by w. k (t) and, thus, 

. 1.0 1.0 1.0 1.0 1.0 1.6" 
0.0 1.0 1.0 1.0 LO 1.0 

Wal(l) = 
0.0 1.0 1.0 1.0 LO LO 

LO. 0 1.0 1.0 1.0 1.0 1.0] 

indicating that ART a node 1 is linked with ART b node 1. 

For the next cycle, 1" (2) = I" = [1111001' and lb (2) = Ib= [01011'. Note that 22 

1'2' c 1, ' and 1b, = 
(I b, )c 

ARTh node 2 wins the competition this time and stores the second input vector at 

node 2. 

For ARTa, owing to the subset property, the second input vector triggers ART a 
F2 node 1 giving the resultant (after top-down expectation): 
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x'(2) =V0w 
(TDa) 

21 

= la2 

= 1421 

Xb 

121 

Matching at ARTa gives, for (2) = 1'2, 
m. 

0 2: Pb = 0.9 which is an ll'(2)1 11'2'1 

accepted match. The F2 activity vectors for AM and ARIb are now given by 

y" (2) = [1000001'and yb (2) = [01001'respectively. 

ARTa node (category) 1 is linked with ARTh node (category) 1 and so a 

mismatch occurs. Match-tracking will not be of any uses because the ratio 

Ix'(2)1 
= 

Ir2I 

= 1. Increasing the ART a vigilance parameter beyond unity is Ila Ila 1 (2)1 2 

meaningless as no new ARTa node may be recruited to make the new required 

association between the second ART a input vector and the second ARTh input 

vector. 

For the third input 1'3' c I, and 1, ' belongs to ARTa category 1 which is linked to 

ARTh category I as required. 

23.3 Match-Tracking Revisited 

For the case where the current ART a input is not a subset of a previous input and 

there is a match with an incorrect prediction, match tracking will allow the ARTa 

vigilance to be raised to ensure that a new search is triggered; this allows the 

current input to be distinguished from previous inputs so that the correct ARTh 

pattern can be associated with it. 

For example, given the following inputs to be associated: 
la 

Is 
100111-ý1010, I,, 

ja 110110_*Olol, lb 
2t2 
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Say pattern 1 is stored in an ARTa node and that it is pattern 2 which triggers that 
IXa I Ila 

n W(TDa) a nla 

particular node. So, 
21 

12 310011011 
0.75. 

aa 11 
21 

11 
21 

Ial 1[110115]1 4 

If the ARTa vigilance, p. was, for example, 0.6 and, thus, gave the wrong 

prediction, it could be increased to 0.75+8 to avoid a subsequent incorrect 

prediction. If a new ARTa node was created during match tracking, then the new 

ARTa node would give x" = I" n W("") = I' r) I" = I' ensuring that the ARTa 

match criterion is fulfilled because the ratio 

Ila I= 
1.0. The new ARTa node is the Ila I 

linked to the correct ARTh node via the map field. Next time the second pattern 

is presented, the newly created node wins the competition and ensures the correct 

prediction. 

The case where an input pattern is a subset of a pattern encountered previously 

causes problems as illustrated in the computations. A solution to this problem is 

discussed next. 

Z3.4 Complement Coding 

The crux of the ARTMAP subset problem is that for some input I there is a stored 

weight w such that ICw. This situation must be prevented to allow the use of 

another category node or the recruitment of an uncommitted node. 

To prevent dissimilar inputs fi-orn being subsets of one another, define a new input 

110 = [I V] where Y has all 4done" entries where "zero" entries were previously 

and vice versa. Ibis technique known as complement coding (Carpenter, 
Grossberg and Reynolds, 1991) circumvents the subset problem as shown in the 
following theorem which ensures that the subset problem will not occur: 
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Theorem: The ARTHAP Match-Tracking Theorem: Any ARTa input which is 

not equal to any previously stored AM input will always trigger match tracIdng 

activity in ARTMAP if complement coding is used. 

A proof is given in Appendix C. The property detailed by the ARTMAP match- 

tracking theorem ensures that match-tracking always allows associations between 

ARTa and ARTh nodes providing that the ARTa vectors are not equal even in the 

subset case described previously. To illustrate match-tracking when complement 

coding is used, the following numerical example gives the final top-down and map 
field weight matrices for the case where the ARTa vectors of the previous 

numerical example are complement coded to circumvent the subset problem. 

Z3.5 An Example of Match-Tracking 

Consider the following pattern pairs to be associated: 
11 a, 1111100000ol->1010, ill 

1 ta jjjj0W(Mjj_. ý0j0j, lb 
292 

1 pa 111000000111-)1010,1, 
391 

After all three pattern pairs have been presented the two top-down weight 
matrices and the map field weight matrix are given by: 

W(7'D") (3) =I 

1.000 1.000 1.000 1.000 1-000 1.006 
1.000 LOOO LOOO LOOO 1.000 1.000 
1.000 1.000 LOOO LOOO 1.000 1.000 
1.000 1.000 0.000 1.000 1.000 1.000 
1.000 0.000 0.000 LOOO 1.000 1.000 
0000 0000 0000 1000 1000 1000 
0.000 0.000 0.000 LOOO 1.000 1.000 
0.000 0.000 0.000 LOOO 1.000 1.000 
0.000 0000 0.000 1.000 1.000 1.000 
0.000 0.000 LOOO LOOO 1.000 1.000 
0.000 1.000 1.000 1.000 1.000 1.000 
1-000 LOOO LOOO LOOO 1.000 1.000 
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1.000 0.000 1.000 1.006- 
0 000 1'000 Looo Looo 

W(TDb)(3) = ' 
1.000 0.000 1.000 LOOO 

LO-000 1.000 1.000 LOOOJ 

i. om o. wo 1. Offl 1. o00 1.00o i. ooö- 
000 () 1 . 000 () . 000 1 . 000 1 . 000 l* 000 (ab) (3) . 

0.000 0.000 0.000 1.000 1.000 1.000 

0.000 0.000 0.000 1.000 1.000 1. MOJ 

The first three columns of the ARTa top-down matrix show that the three ARTa 

input patterns have been stored separately. The ARTh top-down matrix is as 

before with two patterns stored. The final map field weight matrix indicates that 

all three associations have been made. Column 2 shows that ARTa node 2 is 

associated with ARTb node 2 as required. 

So far, the case where I'j * I, has been dealt with but what about when 

Ja =P and both ARTa inputs are to be associated with different ARTh inputs? iI 

Here, Iaj -ý I'j and I, ' -+ Ij' with Pj # IjbComplement coding cannot help 

because Iaj = Iia implies that Ija = 1,1a 
. Match tracIdng win also be of no use AI 

because, following the association Ia -, 1, ý, input Iaj = lia gives an ARTa match 

of 1.0. When the ARTh node is predicted incorrectly and the ARTa module is 

reset, the ARTa vigilance will be raised to a value greater than unity which is not 

allowed. Thus the association I'j' --* I'j will be ignored. What this means is that 

no one-to-many mappings are possible with ARTMAP. 
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2.4 Fuzzy ART 

Both ART 1 and ARTMAP operate on binary valued data. A real valued version 

of ARTMAP, Fuzzy ARTMAP (Carpenter et al, 1992) can be constructed from 

real-valued analogues of ART 1 modules known asfuzzy ART modules 

(Carpenter, Grossberg and Rosen, 1991). Operation of fuzzy ARTMAP is 

analogous to that of ARTMAP. 

Z4.1 Structure 

Each fuzzy ART module consists of three fields, or layers, of nodes: an input 

field, a matching field and a choice field. A schematic outline of a fuzzy ART 

module is shown in Figure 2.14. The input field, FO stores the current input 

vector and transmits it to the matching field, F, which also receives top-down 

input from the choice field F2; this latter field representing the active category 

assignment of the input data. 

F 

y 
LTýD I Reset 

IMatching field: STM 
F, 10 ..... Oi ..... 0 

x 

Fo nput field: STM f 
0.... 0 ..... 0 

a 
Figure 2.14. The fuzzy ART module. This figure illustrates the relationship 

between long term memory and short term memory and is identical to Figure 2.6 because fuzzy 

ART is a specific implementation of the functional (generic) description. Specific 

implementational details are given in the text. The Figure is reproduced here for convenience. 

The FO activity vector is denoted 

by 1=(Ill ... 9 Im), Ii E [0., 11 c: %, Vi= 1q..., M. The F, and F2activity vectors 

%r%A J-r 



are denoted by x= (x, 
.... xm ) and, y= (y 

1,1 **9 YN ) respectively. Each F2 node 

represents a class or category of inputs grouped together around an exemplar or 

prototype generated during the self-organising activity of the fuzzy ART module. 

Furthermore, each F2 category node, j has its own set of adaptive weights stored 

in the form of a vector w, = (WA 
I Wj2 -) ... I WjM ), Vj = 1'... 9 N. 

These weights represent the long term memory traces which evolve during 

network operation. The initial weight vector values are given by: 

wji (0) = 1, Vj = N, Vi = I, -, M. 

With no categories being allocated to F2nodes at this stage, the nodes are said to 

be uncommitted (Carpenter et al, 1992). Once a category node is chosen to 

represent a category it then becomes committed. Unlike ARTMAP sub-systems 
(ART1 modules), the fuzzy ARTMAP components (fuzzy ART modules) differ in 

that the weight matrix [ wji ] includes both top-down and bottom-up weight 

information. 

24.2 Choke Field Activity 

The choice field (F2) nodes operate with winner-takes-all dynamics modelled by 

the F2output function (choice function) 

T j(, )= 

IIAWjl 

9 
VIE[O'l], W, 

(2.13) 
a+lwjl 

where I is the given input vector, wj is the j1h F2node weight vector, Cc is the 

choice parameter where w=-O in the case of fuzzy ART, A, is the fuzzy AND 

operator so that (pAq)i a min, (pi, qj), and the V norm 1.1 is defined by 
m 

IpI=Y, IpiI. i=1 

This form of choice function given by equation (2.13) is the continuous-valued 
analogue of equation (2.10) 
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The overall F2winner, node J, is selected by T, = max j [Tj: jNI to 

represent a category choice for a given input vector I. Tj (I) reflects the degree 

of match between the current input, I and the LTM of the j"' node, wj. The 

ratio, 0: 5 jqj :51, gives a measure of the fuzzy subsethood. of q with respect to 

p. The limit, Iql =1 indicates that q is a fuzzy subset of p. 

Specifically, if 
II A wjI 

=1, which occurs when 11 A WI=Iwjl, thenwi is a fuzzy I WV Tj 
subset of I. The greatest degree of match between input and weight vectors, for 

competing nodes, ensures selection as > 1w, I gives 

> and, thus, Tj (1) >T 
a+jw'I t (1) as desired. 

The choice parameter, a breaks the deadlock between competing nodes when wj 

and w, are both fuzzy subsets of I, by selecting the node j such that IWjk'jWkj* 

This is because T(I) is monotonically increasing so that, 11 A wj I= IWj I giving 

Tj (1) = 

1W 
il Thus for >T Tk 

a+ 
jWjI * 

IWjI IW*" 
j 
(1) > (1)* 

In the case that Tj =T. for some j, k:! ýN, such that Tj, Tk >T, Vl* i, k 

the node with the lowest index is chosen. 

Thus, the small value of the choice parameter is motivated by the mutual 
fulfilment of two constraints involving fuzzy subsethood. and deadlock breaking. 
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Z4.3 Matching field Activity 

The F, layer activity of fuzzy ART is analogous to that of ART 1 with equation 

(2.9) being replaced by 
I if F2 is inactive 

X= 
II 

Awj if the Ph F2 node is active. 

The match condition of equation (2.7) is replaced by 
IlAWI 

III (2.14). 

to ensure that the input vector belongs to the chosen category (Carpenter, 

Grossberg and Rosen, 199 1). 

This approach, with individual nodes representing categories, allows for dynamic 

adjustment of network size without disrupting previously acquired information as 

happens with, for example, feedforward networks. Extra nodes are simply 

assigned as and when required to represent new categories or pattern clusters. 
Both the fuzzy ARTMAP and the PROBART implementations discussed in this 

thesis use dynamic node allocation. However a fixed number of nodes can be 

allocated at the outset if desired. 

Z4.4 Leaming 

Following a successful search, LTM changes are made according to 
w =P(IAW (old))+(l_p)W(old) 

(2.15) 
for the winning F2 node, J. These changes correspond to the notion of learning. 

The learning rate parameter, P, with 05 fl: 5 1 ensures that the new weight vector 

w. is a convex combination of the resultant vector across F, and the F2 layer 

expectation template. For P= 1, known as Fast-Conunit-Fast-Recode (FCFR), 

F, resultant vectors directly replace the present category exemplars. 
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An option, Fast-Commit-Slow-Recode(FCSR) , allows for initial fast learning 

prior to the convex combination learning rule of equatioq (2.15) by setting P=1 

for uncommitted nodes only (Carpenter, Grossberg and Rosen, 199 1).. Thus, 

=I initially. 

2.4.5 Complement Coding 

According to Carpenter et al, (Carpenter, Grossberg and Reynolds 1991, 

Carpenter Grossberg and Rosen 1991, Carpenter et al 1992) normalisation of the 

input vectors is required to prevent category proliferation. In Carpenter 

Gros sberg and Rosen (1991) it is proved geometrically that, without complement 

coding, the monotonically decreasing weight components would eventually result 

in many categories clustering near to the origin with others being created to ý 

replace them. For example, on the real line, when all categories to the left of an 

input value are inhibited, the first category to the right will be selected as any 

categories further to the right will result in a smaller activation value for the 

function T(I). Furthermore, the condition of equation (2.14) is always fulfilled 

as I<w. gives 
I1AWjI 

= 
111 

=1ý! p An algebraic proof of category proliferation III III 

on the real line without complement coding (Marriott and Harrison, 1994) is 

given in Appendix D. 

Normalisation is represented by III a y, VI e [0,1]m for some 'Y> 0. To achieve 

this for arbitrary I r= [0,1] " take I= (a, a") e [0,1]2M where ae [0, lf is the 

original input and a' = I- a where I= and, III = M. 

Thus, the new FO layer input vector, I is complement coded and of dimension 
111='Y=M, VIC 2M with [0,1]2m. 
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2.5 Fuzzy ARTMAP 

For heteroassociative tasks, two connected fuzzy ART modules are required with 

each module receiving either the input (stimulus) or output (response) component 

of each pattern pair to be associated. Thus, the input and output spaces are 

organised into distinct categorised sets during processing. 

2.5.1 Structure 

The heteroassociative network discussed here is fuzzy ARTMAP (Carpenter et al, 
1992) which uses a layer of nodes, called the map field, to link the two fuzzy ART 

modules. This configuration is illustrated in Figure 2.15. The main function of 

the map field is to associate compressed representations of the original pattern 

pair components (Carpenter, Grossberg and Reynolds, 1991; Carpenter et al, 
1992) 

Map field: STM 
0 ..... 

oj... 0 

3eb 
I 

C 
rhoice field. STM 
0 

-0 
0 P2 "" J 

C-1 -r.,.. TI -LTm- 

c) 

�, 
lIn&tfield: STM 

.... 0 
..... 

ART. 

Reset 

Fb 
10 

2 

Y" 

b Matching field: STM Fl' 10..... 0. 
. ..... 0 

lln&t flcld: STM 
F" .... 0 ..... 0 

ARTý I 
b 

'ART b 
output. 

Figure 2.15 71be fuzzy ARTMAP system. It consists of two fuzzy ART modules linked via a 
field of nodes called the map field (Carpenter et al, 1992). 

Reset 
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The two fuzzy ART modules, ARTa and ARTb, accept inputs in complement 

coded form denoted by 1. = (a, a) and 1,, = (b, W) respectively (Carpenter et al, 

1992). 

Following the convention of Carpenter et al (1992), the ARTa F, and F2 layers 

are denoted by Fj" and F. " respectively, with output vectors x" = (x, X2M. ) 

aa 
jj and y" = (y, ...... y;. ) respectively. Let, wa, j 

(W; 
l 9 Wi 29 WJ, 2M. )denote the j' 

ARTa weight vector. Similarly, the F, ' and f2boutput vectors are denoted by 
bbb yb = (Yb b 

x= (X 
II... IX2M. 

) and y,,, ) respectively, and 
bbbb Wk =(WkI'Wi2I-9Wk, 2M. 

) denotes the khARTh weight vector. The map field is 

denoted by Fab with output vector x' = (x ab ') and weight vector 1 9-'XNj' 

W ab - (Wab W ab W ab 
i- il $ j2 91 119J. Nj, 

)for the j" F2" node to Fab. 

Activity vectors are reset to zero between data presentations. 

25.2 Map Field Activation 

Map field activation is governed by both F2" and F2' activity in the following way: 
b ab Y AWj if the J' F2" node is active and f2b is active, 

w ab if the J' F2" node is active and f2b is inactive, 
x ab 

ybi if F2' is inactive and f2b is active, 10 
if F2* is inactive and f2b is inactive. 

which is analogous to the ARTMAP map field. 

The four cases will be considered in order below. 

i) F2" active and F2' active: 

(2.16) 

This corresponds to a pattern pair('. I 1b) being present. 1. elicits an ARTa 

category selection with, say, the J' F2" node winning the competition. This 

index, J will correspond to a weight vector, wjb in the map field which links the 

F2' node with a predicted F2' layer activation. This predicted F2b node represents 

the ARTh category associated with the presently active ARTa category. 
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b 
Simultaneously, the ARTh input, 1,, has excited a category represented by the Fý 

Output yb =(... 0,1,0,... ) with a1 in the k"' position indicating node k is active. 

The fuzzy AND operation, yb AW ab 

., ensures that the map field activity is non-zero 

only if the predicted and actual ARTh categories coincide (the kth category being 

predicted by ARTa) or if node J is uncommitted; all components of w. b being 

equal to unity in the latter case. 

ii) F2" active and F2b inactive. 

This corresponds to prediction with w', b representing the ARTh category 

associated with the currently active ARTa category. Heteroassociative mapping 
is achieved by working backwards within the ARTh module; the fuzzy ARTh 

weight vector associated with the predicted F2bnode represents the expectation 

template fed down from F2" to Fb; this corresponds to the current exemplar for 

that ARTh category and, thus, the predicted output. 

iii) F2" inactive and F2' active. 

In this case only an ARTh input is present; thus, the map field activation 

represents the active ARTh category via the one-to-one relationship between the 

map field and ARTh. 

iv) The final case represents the network in a quiescent state with no inputs 

impinging upon it. 

Z5.3 Match-Tracking 

The concept of vigilance is extended in fuzzy ARTMAP, analogous to ARTMAP, 
by allowing the ARTa vigilance parameter, & to vary whilst the ARTh vigilance 

parameter is fixed for a given training cycle. When an input is first presented, p. 
is set to its baseline value, j5.. Matching between ARTa and ARTh categories, 

again, depends upon the condition 
IxI 

> pb If this is not fulfilled, i. e. the ARTa lyl - 
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category results in an incorrect prediction, match tracking activity is initiated 

where p. is increased such that p. > prevent reselection of the J "' F" 

node. Then the ARTa search cycle is carried out once more to select a new 

ARTa category which correctly predicts the current ARTh category. One of three 

conditions must occur to end the match tracking cycle: a matching ARTa 

category is selected from those already learned by ARTa, a new category is 

created (during training) or the condition p. >1 occurs which leads to shutdown 

of F2" until a new ARTa input becomes active. 

15.4 Pattern Pair Association 

Pattern pairs are associated via their compressed representations or category 

nodes. LTM information regarding inter-module F2 node linkages is stored in the 

map field weight matrix which assigns a vector to each ARTa node reflecting the 

associated ARTb node. 

A clearer idea of heteroassociative learning and prediction under FCSR is gained 
by considering the operation of fuzzy ARTMAP when presented with a previously 

unseen pattern pair which does not belong to any of the current categories. The 

pattern pair('. I lb )causes new categories J and K to be created in ARTa and 
ARTh respectively. 

Initially, w, ', b (0) = 1, Vi = N., Vk = Nb. When resonance occurs, in 

which the J "' ARTa category becomes active, w. ' b is set equal to x"b. The map 

field activation is given by x' = yb A WaKold) = yb (Khvector entry= 1 only) as the i 
J"' ARTa node is uncommitted (all entries =1). Map field learning requires 

ab(n-) ab Wab = yb Wi =x which gives . 

If 1. is presented alone, the Ph ARTa node is selected which predicts the K" 

ARTh category through the J' map field weight vector. 
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2.6 PROBART 

As discussed in section 2.1 onwards, ART architectures have some interesting and 

useful properties. Some of these properties will be exploited in the novel 

architectures introduced in this thesis. However, the original formulation of ART 

has some drawbacks. The following list identifies the main ones: 

e Both ARTMAP and fuzzy ARTMAP cannot deal with one-to-many mappings, 

that is, there can be no more that one output (output node) associated with a 

given input vector (input node). A way of allowing one-to-many mappings is 

developed within this section. 

Fuzzy ARTMAP suffers from over-learning and cannot easily distinguish 

between rapidly varying curves and noise because match tracking leads fuzzy 

ARTMAP to treat an incorrect prediction as a novel prediction requiring a new 

node instead of as a noisy input. Thus, ARTMAP tracks the noise and 

attempts to reproduce a noisy mapping exactly. The over-learning problem is 

illustrated in the simulations of section 2.7. 

Fuzzy ARTMAP does not generallse well when applied to mapping problems 

and fails to give a predicted output if an unknown input pattern is presented at 

recall. The novel architecture also suffers from this problem but possible 

modifications are suggested in the discussion. The lack of generalisation may 
appear to be a major drawback but is a trade-off for the added flexibility of the 

mapping. The highly localised construction of the mapping allows the addition 

and removal of nodes without disrupting the overall mapping. For some 
applications, a 'rough and ready' mapping is an acceptable trade-off. For 

classification problems, however, fuzzy ARTMAP generalisation is much 
better as illustrated in section 2.10 

These points are intended to give an overview only. These and other issues will 
be discussed at greater length at appropriate points in the discussion of simulation 
results. 
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Z6.1 PROBART Structure 

PROB ART (Marriott and Harrison, 1995a) is the result of modifications to the 

fuzzy ARTMAP system motivated by empirical findings on the operational 

characteristics of fuzzy ARTMAP under certain conditions. A comparative 

analysis of fuzzy ARTMAP and PROBART operation is presented below. First, 

the fuzzy ARTMAP modifications incorporated into PROBART are described, 

and a description of PROBART operation is presented. 

As with fuzzy ARTMAP, PROBART uses a pair of fuzzy ART modules linked by 

a map field, this is where the similarity ends owing to different map field 

dynamics. The inputs are again accepted in complement coded form. The 

notation introduced above in the sections describing fuzzy ARTMAP is retained 

in the description of PROBART. Exceptions are described where appropriate. 

2 6.2 Map Field Activatlon 

In PROBART equation (2.16) is replaced by 

yb +Wab if the J" F2* node is active and F2b is active, 

w ab if the J' F2" node is active and f2b is inactive, 
x ab 

ybj if F2" is inactive and Fb2 is active, 
(2.17) 

.0 
if f2a is inactive and f2b is inactive. 

in which the fuzzy AND operation (A) is replaced by vector addition (+). As will 
become apparent, this allows the nodal association frequency counts maintained in 

LTM to be incremented. 

Before interpreting equation (2.17) it is important to realise that the map field 

weight matrix now contains information about the frequency with which pairs of 
ARTa and ARTh categories are associated e. g. wjk' =f, f r= N, where N is the 

set of natural numbers. This indicates that thej" ARTa node has been associated 

with the k"' ARTh node f times during the training phase. 
Initial map field weight values are given by 

"b (0) =0 Vj = Na I 
Vk = Nb * 

Wjk 
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The four cases of equation (2.17) are analogous to those given in equation (2.16) 

i) F2" active and F2b active: 

As with fuzzy ARTMAP, the pattern pairU. I 1b) results in selection of the J", 

ARTa category and the K"' ARTh category. The vector Yb is, again, a unit 

vector with the K" entry equal to one. The vector x"bnow represents the 

updated frequency distribution of node associations between the P" ARTa node 

and nodes in the ARTh Fb layer, the map field weight matrix entry wa,. bbeing 2 

incremented by one, reflecting the new association. 
ii) F2a active and F2b inactive. 

Analogous to fuzzy ARTMAP, this corresponds to prediction but care has to be 

taken to determine in which sense the prediction is made. The implementation of 
PROBART discussed in this paper uses a weighted average given by 

N 

Wcrib ,M 2 Mj, (2.18) 
W ab I 

il 

where u,,, is the expected value (mean) of the mh component of the predicted 

output pattern associated with the Ph ARTa node, lw*bl is the total number of 

associations of ARTh nodes with the Ph ARTa node, E,,. is the m" component of 

the W' ARTh category exemplar and w. ý, is the frequency of association between 

the n" ARTb node and the Ph ARTa node. Other possible prediction measures 
can be used. These include: choosing the exemplar with the highest frequency, 

giving relative association frequency information, and using alternative higher 

order moments. The predicted ARTb output vector is denoted by 

JUJ = (Pjj I ... sju j, ml, ). Note that only the firstMbcomponents which are not 

complement coded are meaningful and correspond to the original pattern pair 
data, with fi being an estimate of the true output b associated with input 

pattern a. 
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Nb 

Equation (2.18) can also be written as u,. I e. p,. where p.. is the empirically 
R=1 

estimated probability of association between the J' ARTa node and the n'h 

ARTb node given by pj. = W-ý' 
W ab II 

Conditions iii) and iv) are identical to those in fuzzy ARTMAP. 

Z6.3 Leaming 

As with fuzzy ARTMAP wax-) = x"bbut note that there is now no match 

tracking. The ARTa vigilance parameter, p., is held constant to maintain fixed 

category sizes. 'Ibis is to prevent corruption of frequency information which 

would occur if category sizes were variable. How would association frequencies 

pertaining to a single category be apportioned to its eventual sub-categories when 

associations have previously been recorded in relation to the original, coarser 

category? This is similar to the problem of retrieving fmer scale information from 

a coarser grey scale image in which information has been discarded. Further 

details will be found in the general discussion section below. Without match 

tracking, supervised associations are not judged to be correct or incorrect but 

recorded as they occur; training values distorted by noise are not associated with 
higher vigilance sub-categories within ARTa. More frequent associations are 

more heavily weighted in prediction mode. Note that the map field vigilance 

parameter, pb is not required for PROBART. This allows for one-to-many 

mapping between ARTa and ARTh categories which may be important in 

situations where more than one action results from a single stimulus or input. The 

relative importance of the ARTh categories associated with a single ARTa 

category are reflected in the map field frequencies. 
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Carpenter and Tan (1993) modify the map field of fuzzy ARTMAP to give 

estimates of the probability of whether or not an input belongs to a particular 

category. This is achieved by using a map field learning parameter to govern the 

rate of change of map field weights. In the slow-learning mode, the current map 

field weight vector and current map field activation vector are combined to give 

the new map field weight vector. 

Although not investigated in this thesis, as with fuzzy ARTMAP, it is possible for 

PROBART to be operated in an on-line mode and in a non-stationary information 

environment. In the latter case, node association frequencies would change 

concomitantly with changes in underlying trends. 
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2.7 Simulations 

Z7.1 The Mapping Task 

A continuous non-linear signal was used for comparison of fuzzy ARTMAP and 

PROBART performance (Marriott and Harrison, 1995a): 

f: [0,1] c 9t -ý [0,1] c 9t with, 
f (x) = (sin(10x) + sin(20x) + sin(30x) + sin(40x) + sin(50x) + sin(60x) + sin(70x) + 10) / 20, 

and x in radians. See Figure 2.16. 

0.2 

0.2 0.4 0.6 0.3 

Figure 2.16. Noise-free test signal used in the evaluation of fuzzy ARTMAP and PROBART 

perfonnance. 

The range of the test function f : 9Z -+ 9Z is [0.2295,0.7705] for the input domain 

[0,1]. Gaussian noise, derived from a zero mean source with unit variance, is 

added to the signal with a scale factor of 0.02. Thus, the corrupted output signal 

for pattern pair p is given by yp = y(p) =f (xP) + 0.02ep , where e,, - N(O, 1) is 

the Gaussian noise, for the p th pattern pair and xP is the x-coordinate of this pair. 

The x-coordinates were randomly chosen from a uniformly distributed source. 
The training and testing files were generated with different sets of x-coordinates 

unless otherwise stated. The testing sets being noise-free coordinates, or pattern 

78 



pairs, (x,, y. ) chosen at random from the test curve, f (x) - For all experiments 

the choice parameter, a=0.001 and the learning mode chosen was FCFR unless 

otherwise stated. 

Z 7.2 Performance Measures 

Performance is judged by both the root mean square error (RMSE) and maximum 

absolute error (MAXAE) measures. The RMSE value is computed by 

RMSE= llldp-yp kN 1ý F 
where d. is the desired output for pattern p, yp is the actual output and N is the 

number of patterns used for training or testing. 

In the following tables, TR denotes the noisy training set, TE(NF) denotes the 

noise-free test set using the same x-coordinates as the noisy training set, and TE 

denotes the noise-free test set selected using a different x-coordinate sample. The 

purpose of TE is to test the generalisation of the mapping. 
As a further illustration of network performance, the error profile is plotted below 

the actual network output signal. RMSE and MAXAE error measures alone are 

very coarse indicators of network performance, especially when applied over the 

whole curve. Error profiles provide more detailed information in a visual form. 

For the simulations described below, example results are given in the text, and 

mean results, together with their respective error bounds, will be found in 

appendix E. 

It will be shown that PROBART requires fewer nodes than fuzzy ARTMAP to 

achieve comparable performance on a noisy mapping task. Also included is a 
comparison of fuzzy ARTMAP and PROBART performance when both 

architectures are applied to a classification problem; this illustrates the purpose of 
match tracking in fuzzy ARTMAP. 
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Z 7.3 Simulation 1 

Fuzzy ARTMAP was trained on both noise-free and noisy data. Its parameters 

were set as follows: a=0.00 1, p. = 0.99, pb = 0.99 and p.,, = 0.9. Both the 

training and test sets consisted of 1,000 data pairs. Typical results for the training 

signal without noise are shown in Table 2.2. 

No of categories. Error measures 
ARTa AM RMSE MAXAE 

312 53 0* 0074 0.01 

Table 2.2. An example of fuzzy ARTMAP performance with noise-free training and test data. 

Training is off-line using 1,000 pattern pairs. 

For the typical results, only a single training epoch was required for fuzzy 

ARTMAP to acquire an internal representation of the test mapping signal with the 
RMSE ranging between approximately 1% of the input signal at its maximum 

point to approximately 3% at its minimum point. This is shown in Figure 2.17. 

cr 

0.2 

A ft 

1 I' 
I' 

V\/\/dW I V\1, 
S. 
U 

U. 4 0.5 0.8 
ART& Input. 

Figure 2.17. Fuzzy ARTMAP performance with noise-free data. The network has been both 
trained and tested using the same noise-free data file. The lower section of the graph shows the 

error profile. 
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Note the uniformity of the error profile which attains an absolute maximum range 

of only 4.4% to 1.3% of the test signal at its maximum and minimum points 

respectively. 

The effect of match tracking on the fuzzy ARTa module is immediately apparent 
from the distribution of category numbers between the two modules in Table 2.2. 

Taking the ratio of the total input signal range (1.0) to the total output signal 

range (0.541) predicts a category ratio of approximately 2: 1 for the ARTa and 
ARTb modules respectively. 'Illis ratio assumes that both modules have the same 

vigilance parameters and, hence, the same input resolution or category sizes. At 

the beginning of each training pattern pair presentation the condition p. = pb is 

fulfilled. For the typical results of Table 2.2., match tracking has increased the 

ratio to about 6: 1 by reducing category sizes through increased vigilance in order 

to resolve sub-categories. Data compression of approximately 3.3 data points per 

category node is achieved. 
Typical results for the training signal with noise are shown in Table 2.3. 

Error measures 
No. of categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

806 61 -] 0.0137 0.0302 0.0302 0.0878 0.0678 0.0679 

Table 2.3. TvDical resu lts for fuzzv ARTMAP tminpA neinan nni,. zv timn fil p. nf IW itp. mQ nnd Q 
tested using a noise-free data file also consisting of 1,000 data items. 

When fuzzy ARTMAP is trained with pattern pairs derived from the input signal 
of Figure 2.17, but this time distorted by noise, two training epochs are required 
to obtain the lowest training RMSE value. Both training epochs consist of 
presenting the pattern pairs and adjusting the network weights after each, 
individual presentation on the basis of erroneous predictions. A single training 
epoch requires that the whole training file be processed in this way. Following 
training, the training file is used purely as a test file (with the learning mode 
disabled) to assess the current learning progress. The disabling action prevents 
further learning from taking place during testing. The typical results of Table 2.3 
are illustrated in figure 2.18. 
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Figure 2.18. Fuzzy ARTMAP performance with noisy data. The network output and 

corresponding error profile illustrate the results shown in Table 2.3. 

The error profile, coupled with the number of ARTa categories, indicates that 

each disturbance is being faithfully recorded on an almost individual basis. Its 

characteristics do not vary across the input domain. Thus, it appears that the 

source of error has not been effectively filtered or altered. FCFR results (P = 1) 

are quoted because both the RMSE and NIAXAE measures did not vary greatly 

for values of P in the range 0.1 to 1. Variation of P, using FCSR, did not appear 

to effect noise suppression through equation (2.15) with the maximum measured 

difference between training RMSE values for this data set being approximately 
4% of the lowest value. Ibis apparent insensitivity to P was consistently 

observed and was the result of the high vigilance values confining categories 

within narrow ranges. This situation is depicted graphically in Figure 2.19. 

Using FCSR and reducing the vigilance values of the ARTa and ARTh modules to 
increase the effect of P in equation (2.15) was found to be counter-productive. 
For example, reducing p. and pb to 0.9 increased the testing RMSE (TE) by a 

factor of approximately 2.5 for P in the range 0.1 to 1.0. The numbers of ARTa 

and ARTb categories were reduced concomitantly with their increased coverage 

of regions of input and output space but without any corresponding increase in 

generalisation. 
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Figure 2.19. Plot of RMSE against P for two different runs with p. = pb = 0.99 illustrating 

the lack of effectiveness of P in reducing noise. 

Note the significant increase, when comparing Tables 2.2. and 2.3., in the number 

of ARTa categories required to represent the noisy mapping while the number of 

ARTb categories did not increase unduly The latter increase reflects an extended 

ARTb input range as a consequence of noise. The large number of ARTa 

categories did not reduce when P was varied using FCSR. The mean ratio of 

approximately 1.25 data points per ARTa category (Appendix E. Table E1.4) 

indicates that fuzzy ARTMAP appears to be learning the noisy signal in contrast 

to the underlying mapping. This observation is further confirmed by the RMSE 

results for the training data set, with the mean noise-free testing RMSE value 
(TE(NF)) being greater than twice that of the mean noisy training RMSE (TR) 

(Appendix E. Table EIA) after training fuzzy ARTMAP on noisy data. 

However, this example must not be taken to indicate poor performance by the 

network in general. The data here is highly disorganised, having no clusters, 

while fuzzy ARTMAP performs best with clustered data. Match tracking allows 

sub-clusters to be resolved in classification problems by varying the ARTa 

vigilance parameter during learning, but this enhanced performance mechanism 
becomes a disadvantage in highly disorganised data sets such as those used here. 
To understand the operation of match tracking under these circumstances, refer to 
Figure 2.20 (a) where, for clustered data, the category delimited by p., maps to 

an ARTa node and via the map field to, say, ARTh category 1 (class 1). If data is 
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found within the ARTa node category which does not map to category 1, match 

tracking increases ARTa vigilance to p., > p., which leads to the activation or 

formation of a sub-category capable of being associated with ARTh category 2. 

This mechanism is suited to classification problems. Thus, sub-categories are 

formed which allow learning of infrequent but perhaps significant features which 

may be ignored or averaged out by other architectures including PROBART. 

(a) Clustered data (classification). 

[3 Class 1. 
o Class 2. 

(D 
..... 

(ý) 
..... ARTh F2 nodes. 

via 

ý) ARTA F2 nodes. 

(b) Unclustered data (Estimatim). 

y 

JD, CýýýýIriput 
'*-PG2-O' space. 

-Pdl 

F2 nodes. 

Input 
x+8 x space. 

Figure 2.20. Comparison of classification and estimation modes. (a) highly organised data 

leads to the establishment of distinct categories. (b) disorganised data, i. e. not belonging to 

discrete categories, found within a3- neighbourhood centred around an input value, leads to 

an output estimate coffesponding to that input value. 

With unclustered data deviations in ARTh values are treated as novel features and 

new ARTa sub-categories are created individually to encompass many of the data 

points (see Figure 2.20(b)). T'hus, a small subset of the input space may be 

mapped to a larger range of output space determined by the noise which is treated 

as a multitude of predicted output classes. Ideally, the range of output space 
would be transformed to provide an estimated output which the given input range 
x±& would map to, but this does not happen. In other words, fuzzy ARTMAP 
does not map an input belonging to the 3-neighbourhood of x to an estimate y^,. 
It creates a sub-category for such inputs and individually maps them to the noisy 
outputs with which they are associated during training. 
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17.4 Simulation 2 

PROBART was trained on the same sets of noisy and noise-free data used in 

simulation 1. The parameters: a=0.001, p. = 0.99, pb = 0.99 are set identically 

to those in the previous experiment wherever possible. The map field vigilance 
does not exist in PROBART as match tracking has been removed. Typical results 
for the training signal without noise are shown in Table 2.4. 

No. of categories. Error measures 
ARTa AR71b RMSE MAXAE 

110 53 0.0169 0.0755 
Table 2.4. PROBART performance with noise-free training and test data. Training is off-line 

using 1,000 pattern pairs identical to those used in producing the results shown in Table 2.2. 

Figure 2.21 illustrates the performance of PROBART with noise-free data after a 

single epoch (typical results). 

0.6- 

0.4- 

0.2- 

0- ... -. - - --- - --- --- - now 

-0.2 

UA UX 0.5 
ARTa input. 

Figure 2.21. PROBART performanCe with noise-free data. As with fuzzy ARTMAP, the 
network has been both trained and tested using the same noise-free data file. 

Note the different error profile when Figure 2.21 is compared with Figure 2.17. 
The former is not uniform, exhibits structural properties and is considerably larger 
in magnitude at some points, notably where large increases in signal slope occur. 
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As will become apparent, this is a consequence of the trade-off between plasticity 

and stability. When match tracIdng is removed, sensitivity to rapidly fluctuating 

noise signals is greatly reduced as ARTa sub-categories are not created to 

represent the noisy associations. However, this fixed quantization of the input 

domain leads to inaccuracies in signal representation. The relative importance of 

these inaccuracies, compared to overall noise reduction with noisy signals and 
increased generalisation, depends upon the application. Typical results for the 

training signal with noise are shown in Table 2.5. 

Error measures 
No. of categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TR TE(NF) I TE 

112 

161 

0.0322 

10-. 

0-18-975". 0202 0.1057 

10.0769 

10-0905 

Table 2.5. Typical results for PROBART trained and tested using the data files of simulation I 

which generated the results of Table 2.5. 

Figure 2.22 shows the typical results of this simulation after a single mining 

epoch. 

I 
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Figure 2.22. PROBART performance with noisy data. The network output and corresponding 
error profile illustrate the results shown in Table 2.2.2A. Note that PROBART carries out a 

single training epoch only, when learning a mapping. 
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FCFR results are, again, quoted with only a 5% maximum variation fi-om the 

lowest training RMSE value for 0.1: 5 P: 5 1 using FCSR. 

The predicted category ratio of 2: 1 for the number of ARTa nodes compared to 

the number of ARTh nodes is reflected in both Table 2.4 and Table 2.5. Again, 

the increase in ARTb nodes is a consequence of output range extension by the 

additive Gaussian noise. 
The mean ratio of 9.0 data points per ARTa category indicates that PROBART 

uses a coarser partitioning of the input space than that generated by fuzzy 

ARTMAP to represent the function/mapping domain. This reduction in 

categories results from the use of a fixed ARTa vigilance which, unlike fuzzy 

ARTMAP, does not allow subdivision of existing categories. In mapping 

problems this data compression is desirable to prevent the network from 

degenerating into a'look-up' table and, thus, being incapable of generalisation. 
Observe in Table E2.4. of Appendix E that the mean noise-free test RMSE value 
(TE(NF)) is lower than the mean noisy training RMSE value (TR) (both sets of 
data used as test data following training with noisy data). As expected, this 
indicates that the opposite effect to that observed in fuzzy ARTMAP simulations 
is taking place. PROBART tends to learn the underlying signal which is, of 

course, the objective here. 

The larger mean RMSE of PROBART (Table E2.1. in Appendix E) for the noise- 
free training/testing data set compared to that exhibited by fuzzy ARTMAP 
(Table E 1.1. in Appendix E) results from the fixed vigilance which limits the input 
domain partitioning. The reduction in resolution in rapidly changing signal 
regions (increasing gradient) is apparent from Figures 2.21 and 2.22, both in the 
actual output signals and in the error profiles. Thus, prediction errors are 
increased in those subsets of the input domain where small ARTa inter-category 
distances give rise to larger ARTh inter-category distances in the function range. 
These errors, unrelated to noise, account for a sizeable proportion of the RMSE 

value in PROBART simulations trained with a noisy data set. 
Comparison of Tables E2.4 and E1.4 in Appendix E reveals that PROBART 
reduces the mean RMSE value for the noise-free test set to 67% of the value for 
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fuzzy ARTMAP. This gain in performance is considerably enhanced when 

comparing the number of ARTa categories generated by both systems. 

PROBART has achieved generalisation, using approximately one seventh of the 

number of ARTa category nodes required by fuzzy ARTMAP. 

To investigate the gradientleffor relationship further, an experiment was 

performed using a straight line as the training function, where the gradient was 

varied in the range 1.0-10.0 for a fixed vigilance of 0.99 at fixed intercepts The 

results of a single experiment consisting of 5 runs of the same noise-free training 

file using different gradients is shown in Figure 2.23. The test file used was 

identical to the training file to eliminate the introduction of errors related to the 

use of different x-coordinate values. 
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Figure 2.23. Plot of maximum absolute error vs. gradient for PROBART using a noise-free 

straight line training function. The relationship shows that intrinsic (non-noise related) errors 
increase with increasing function gradient. See text for discussion. 

Note the linear relationship between the maximum absolute error and the gradient 

confirming that, as expected, rapidly changing signal regions decrease predictive 

accuracy. This linearity was consistently observed. Thus, signal quantization, 

resulting from the use of fixed vigilance parameters, introduces inaccuracies which 
can only be removed by increasing system vigilance to provide finer coverage of 
the input (stimulus) space and output (response) space. Reduction of the 
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quantization interval size is used to compensate for the removal of match 

tracking. The effect of increasing both the ARTa and ARTh vigilance parameters 

to increase signal resolution was investigated in the following simulations. 

Z7.5 Simulation 3 

PROBART was trained using the same noise-free data and value of a of 

simulation 2 but with increased vigilance parameters: p. = 0.999, p, = 0.999. 

Again, the test file was identical to the noise-free training file and consisted of 
1,000 coordinate pairs. An example of typical results are shown in Table 2.6. 

No. of categories. Error measures 
ARTa ARTh RMSE MAXAE 

499 243 0.0016 0.0084 
Table 2.6. Typical results obtained from PROBART using increased vigilance 

Pa = 0* 9991 Pb = 0.999). Both training and testing were carried out using a noise-free 
data Me consisting of 1,000 pattem pairs. 

These results are illustrated in Figure 2.24. 

I 
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Figure 2.24. PROBART performance with noise-free data illustrating the effect of increased 
vigilance on the error profile. 
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Note the improvement in the error profile over that of Figure 2.21. Disturbances 

in the profile in areas of rapid signal change have been greatly reduced. 
Compared with the mean noise-free results of simulation 2 (Appendix E, Table 

E2.1), both the ARTa and the ARTh modules have shown an approximately five- 

fold increase in the mean number of category nodes (Appendix E, Table E3.1). 

These increases are reflected in the reduction of both mean error measures to 

about 10% of the previous values. Thus, the signal has been represented more 

accurately but at the expense of an increase in overall network size. Again, 

varying P (using FCSR) made very little difference, producing less than 10% 

maximum variation in the range of RMSE values for the typical results quoted. 

However, the benefits of simply increasing input/output space resolution are not 

realised when noisy training data is used as the following simulation illustrates. 

ZZ6 Simulation 4 

PROBART was trained with the noisy data set used previously in simulations 1 

and 2 with parameters set as for simulation 3. Table 2.7 surnmarises the results of 
an example run. 

I Error measures I 

No. of categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

504 277 0.0208 0.0196 0.0192 10.0527 0.0544 0.0545 
rable 2.7. Typical results for PROBART trained using a noisy data file of 1,000 items and tested 

using a noise-free data file also consisting of 1,000 data items. The increased vigilance values 

Of P. = 0.999, Pb = 0.999 leads to an expected increase in the number of category nodes in 

both the ARTA and ARIb modules. 

The results of the typical run summarised in Table 2.7 are illustrated in Figure 
2.25. 
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Figure 225. PROBART performance with noisy data and increased vigilance 

( pa = 0.999, pb = 0.999). This figure illustrates the effect of decreased category sizes 

brought about by the combination of increased vigilance and noisy input data. 

The error profile bears some similarity to that of Figure 2.18 and reflects the 

increased vigilance leading to reduced category sizes and poorer generalisation. 

Comparing the mean results (Appendix E, Table E4.1) with the second mean set 

of simulation 2 (Appendix E, Table E2.4), it is apparent that a five-fold increase in 

the number of ARTa nodes has resulted in a 40% decrease in training RMSE (TR) 

and negligible change in both testing RMSE values. Ile mean MAXAE has been 

reduced in all three cases with a 50% reduction in mean training error (TR). 

Thus, although the testing RMSE values, TE(NF) and TE, are comparable, 

comparison of Figures 2.22 and 2.25 gives a clearer indication of what is 

happening. 

This altered performance is explained by considering the ratio of approximately 2 

data points per ARTa node which gives small samples for averaging to give an 

estimated output value. Thus, estimates are based on smaller sample sizes and are 

correspondingly less accurate. 
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27.7 Simulation 5 

Increasing the number of training data points to 10,000 and using similar 

parameters gives the results of Table 2.8. 

Error measures 

No. of categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

1145 618 0.0265 

1 

0.0096 0.0114 1 
0.0785 0.0255 0.0472 

Table 2.8. Typical results for PROBART obtained using the parameters of simulation 4 with the 

noisy training file increased to 10,000 items. 

Note that the mean RMSE value for the test set (TE) (Appendix E, Table E5.1) 

after training on a noisy data file of 10,000 points has been reduced to about 56% 

of its previous value for 1,000 data points (Appendix E, Table E4.1). There is 

also an additional two-fold increase in ARTa category nodes. Ilis latter increase 

is explained by the increased number of uniformly distributed x-coordinates 

causing the pacIdng density of ARTa nodes to rise, restricted only by the vigilance 

parameter. 
The following graph, Figure 2.26, illustrates the variation in test RMSE for ARTa 

and ARTb vigilance in the range 0.99-0.999. The typical data set used 

throughout this run consists of a noisy training file of 10,000 pattern pairs and a 

noise-free test file of 1,000 pattern pairs. The general trend appears to indicate a 

reduction in RMSE for increased vigilance as expected. Ile upturn for a vigilance 

value of 0.999 further confirms the hypothesis that high vigilance values lead to 

smaller sample sizes and, thus, less accurate estimates of output values. There is a 
fundamental conflict between providing an adequate partitioning of the ARTa 

input space and adequate sample sizes for calculating the expected output value. 
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Figure 2.26. Plot of test (TE) RMSE vs. vigilance for typical noisy training data file of 10,000 

pattern pairs. It illustrates the problem of increasing PROBART vigilance parameters to 

increase accuracy. Tighter categories, whilst increasing signal resolution, lead to smaller 

sample sizes and, thus, less accurate estimates of the underlying function. 

Figure 2.27 illustrates the effect of increasing the size of the noisy training file for 

the typical data. 

For vigilance values of p. = pb= 0.998, the results of Table 2.9 were obtained. 
I Error measures I 

Categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

608 341 
1 
0.0276 0.0079 0.0084 

1 
0.0779 0.0219 0.0269 

Table 2.9. Typical results obtained by training PROBART on the 10,000 point noisy data file 

used in the previous simulations with vigilance levels set at p. = pb = 0.998. The test file 

used consisted of 1,000 noise-ftee pattern pairs. 
Table 2.9 gives a further reduction of the test set RMSE (TE) over and above the 
typical value obtained in simulation 5 to 44% of that obtained with aý1,000 point 
training file (Table 2.7). 
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Figure 2.27. PROBART performance when trained on 10,000 point noisy data file with 

'": 0* 999, Comparing the error profile with increased vigilance values of P. - 0* 9990 A 

that of Figure 12 indicates a reduced error as expected. 
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Figure 2.28. Plot of RMSE value against increasing data set size (both training and testing file 

size) for PROBART with fixed vigilance of p. = pb = 0.99. This plot shows the stability of 
RMSE with respect to changes in the data sample size. See text for explanation. 

Figure 2.28 illustrates the stability of RMSE values for increasing training data 

sample size. Ibe slight improvement for the larger amounts of data is explained 
by the increased cover density of the input and output spaces by exemplars and 
their category zones. Changes in RMSE values are directly affected by changes in 

the vigilance parameters. Increasing the amount of data only serves to pack the 
existing categories and create new categories limited by the vigilance values. 
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2.8 General Discussion 

Both fuzzy ARTMAP and PROBART perform effectively with noise-free data, 

requiring only one pass through the training file ( one epoch) for optimum 

learning in the RMSE sense (lowest error energy). In contrast with fuzzy 

ARTMAP, PROBART carries out a single epoch for all training and testing as 

match tracking has been removed. This prevents distortion of the computed 

probabilities (frequency count/ total pattern pairs). For example, for a fixed 

vigilance, an output, y, has the conditional probability given the interval I,, of 

p (y, I I. ) for an interval I.,, based around an exemplar xj. Were the interval 

partitioned into two sub-intervals I,,,, and IX12 , by increasing vigilance (formation 

of a sub-category), there is no method of allocating the current frequency count 

based upon interval Ix, to intervals 1,, 
1, 

and I.,, individually. Thus, p(y, I I,,, ) and 

P(Yj II cannot be derived from p(y, I I.,, ). Also, feedback via match tracking 

alters the frequency of inter-ART node associations by assessing current inputs on 

the basis of previous data and not by recording raw frequencies. This situation 

cannot reflect a true empirical frequency distribution upon which the estimated 

outputs or pattern association probabilities are based. 

Fuzzy ARTMAP is extremely good at classification problems but match tracidng 

tends to cause the allocation of many nodes for noisy mappings with the noisy 
disturbances seen as novel features. The dynamics expressed in equation (2.15) 
do not act as an effective filter at high vigilance levels (; -> 0.9) using FCSR. This 

is a consequence of LTM exemplar weights being very near to the noisy input 

values which fall into their categories. The convex combination of equation 
(2.15) gives LTM weight values close to the original exemplar values. 

It is difficult to classify neural networks as good or bad on the basis of raw results 
alone. Overall perfonnance also depends upon the problem to which the network 
or algorithm is applied. Another factor is the degree of specialisation of the 

network. Enhanced performance is often obtained at the expense of decreasing 
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generality, i. e. the architecture moves away from being general purpose and 

becomes oriented towards a particular problem or problem schema. This 

specialisation frequently requires the incorporation of a priori information or 

structure into the neural network and its dynamics and, thus, restricts its range of 

applicability. 

To a certain extent, PROBART is a trade-off between performance and generality 
in that better performance could no doubt be obtained using a more specialised 

network architecture but it does not require a priori information about the 

mapping to be learned. Given that PROBART deviates significantly from fuzzy 

ARTMAP, it begs the question why use fuzzy ARTMAP at all? The answer lies 

in the known attractive properties of ART, in particular, their stability. Other 

clustering algorithms based, say, on Euclidean distance are known to have 

stability problems under some circumstances. Moore (1989) cites the Cluster 

Euclidean algorithm which chooses the node coding for the nearest exemplar to 

the input vector in the Euclidean distance sense. Incorporating equation (2.15) to 

give the Cluster Unidirectional algorithm (Moore, 1989) removes the endless 

cycling of weight vectors but suffers from the category proliferation problem 

countered by the use of complement coding in fuzzy ART. 
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2.9 Multidimensional Mappings 

As stated, fuzzy ARTMAP is capable of mapping subsets of 9t' to W. 

PROBART is also capable of such mappings. A visual illustration of this 

capability is included here in the form of a continuous non-linear mapping from 

91' to 91 which is shown in Figure 2.29. 

Again, Gaussian noise, derived from a zero mean source with unit variance, is 

added to the signal with a scale factor of 0.02. Conditions and perfomance 

measures are similar to those used in the previous single variable mapping but are 

generalised for the present multivariable mapping. 

29.1 Simulation 6 

Fuzzy ARTMAP was trained on noisy data. Its parameters were set as follows: 

a=0.001, p. =0'99'Pb=0.99andp. b=0.9. Both the training and test sets 

consisted of 1,000 data pairs. 

An example of fuzzy ARTMAP performance for the training signal with noise is 

shown in Table 2.10. 
I 

vl___ --I I r-rror m easures 

_No. 
of ca egories RMSE MAXAE 

ARTa 
_ARTh 

TR IT(NF) TE TR TE(NF) TE 

63 0.0075 0.0235 10.01 0.077 

Table 2.10. Typical results for fuzzy ARTMAP trained using a noisy version of the signal 

illustrated in Figure 2.29 Both the noisy training file and the non-noisy test file consisted of 

1,000 pattern pairs to be associated. The network parameters used were 

a=0.001, p, =0.99, pb =0.99andpb =O. 9. 
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The network output and error profile are shown in Figures 2.30(a) and 2.30(b) 

respectively. 

Fuzzy ARTMAP requires almost one node per data item. Thus, under high 

vigilance conditions, it acts as a look-up table by storing and retrieving individual 

pattern pairs. The error profile reproduces the original errors almost faithfully as 

nearly all individual errors are recorded. It is also apparent from Table 2.10, as 

with the single variable examples, fuzzy ARTMAP has learnt the noisy signal. 

Changing the learning parameter, 0 (using FCSR) made very little difference. 

Using values of 0.5 and 0.9 gave testing RMSE values of 0.0236 and 0.0235 

respectively. The numbers of ARTa categories were 955 and 950 respectively. 

The high vigilance parameters for ARTa and ARTh prevented the occurrence of 
large changes in RMSE values during training. 

29.2 Simulation 7 

Increasing the number of training data points to 5,000 and using similar 

parameters (FCFR) gives the results shown in Table 2.11. 

Error measures 
No. of categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

. 
4528 1101 1 0.0076 0.0307 

_ 
10.01 0.0743 

Table 2.11. Typical Results for Fuzzy ARTMAP when retaining the parmneters used to obtain 

the results of Table 2.10. The noisy training data file was increased from 1,000 to 5,000 pattern 

pairs. The noise-free testing file remained at 1,000 pattern pairs. 
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These results are illustrated in Figures 2.31(a) and 2.31(b). Note the number of 

ARTa categories which indicate that, as expected, little generalisation has 

occurred. 

Z9.3 Simulation 8 

PROBART was trained on the same sets of noisy and noise-free data used in 

simulation 6. Ile parameters are set identically to those in that simulation except 

for the map field vigilance which is not required. 

Typical results for the training signal with noise are shown in Table 2.12. 

Error measures 

No. of categories I RMSE I MAXAE 

ARTa I ARTh I TR I TE(NF) I TE I TR I TE(NF) I TE 

739 163 10.0163 1 10.0196 10.0497 1 10.0775 

Table 2.12. Typical results for PROBART trained using a noisy version of the signal illustrated 

in Figure 16. Both the noisy training file and the non-noisy test file consisted of 1,000 pattern 

pairs to be associated. The network pameteTS used were 

a=0.001, p. = 0.99, pb = 0.99 
. 

These results are illustrated in Figures 2.32(a) and 2.32(b). 

Note that, compared to simulation 6, approximately 23% fewer ARTa nodes are 

required to represent the mapping for a comparable value of testing RMSE. 

The following simulation (simulation 9) illustrates further reductions in the 

number of ARTa nodes for PROBART relative to fuzzy ARTMAP. 
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Z9.4 Simulation 9 

Categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

2283 101 10.0232 1 0.0216 1 0.065 1- 0.067 

Table 2.13. Typical Results for PROBART when retaining the parameters used to obtain the 

results of Table 11. The noisy training data file was increased from 1,000 to 5,000 pattern pairs. 

The noise-free testing file remained at 1,000 pattern pairs. 

The results of Table 2.13 are illustrated in Figures 2.33(a) and 2.33(b). 

Comparing Table 2.13 with Table 2.11 shows a reduction of approximately 50% 

in the number of ARTa nodes required to represent the mapping. This reduction 

is not at the expense of testing RMSE (TE) which has been reduced by 30%. 

This indicates the improved performance offered by PROBART when dealing 

with larger data sets. 
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2.10 A Simple Classification Problem 

In contrast to the above, the following two simulations illustrate the utility of 

match tracking which confers the property of parsimonious representation on the 

original fuzzy ARTMAP architecture. The interval [0,1] c 9Z was partitioned into 

two categories as follows: The intervals [0,0.3] and [0.7,1.0] map to category 

one, and (0.3,0.7) maps to category two with the exception of the sub-interval 

[0.45,0.55] which maps to category one also. Random numbers in the range 0 to 

1, drawn from a uniformly distributed source, were used to generate training and 

testing sets of 1,000 data pairs. Tables 2.14 and 2.15 give the mean results of five 

trials. 

Z10.1 Simulation 10 

Fuzzy ARTMAP was trained on 1,000 data pairs and tested on a different testing 

set of the same size. The parameters were set as follows 

a=0.00 1, and p. b= 0.9. The vigilance parameters p. and pbwere set as given in 

Table 2.14. Note that the errors include inputs which were not assigned to 

categories during testing i. e. the "no prediction mode" state. 

I 

Bounds (Min. Max. ) 

Vigilance No of categories Error' No of categories Error 

PaIPb ARTa ARTh Train Test ARTa ARTh Train Test 

0.2 6 2 0 7 47 22 00 0 14 
0.5 6 2 0 7 58 22 00 0 14 

0.9 17 2 
10 15 

16 19 22 
100 

0 12 
0.99 113 

12 
0 1 22 108119 22 100 

15 30 
Ible 2.14. The mean np. irfhrmnnr, - nf ADT1k, 4 AD -41, -- 4%--- --A -.: - A- 

- 

when applied to a simple categorisation problem. 

I No. of incorrect categories including inputs which were not recognised. 
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Z 10.2 Simulation 11 

PROBART was trained using the same conditions as in simulation 10 but without 

the map field parameter. The mean results are shown in Table 2.15. 

Bounds (Min. Max) 

Vigilance No of categories Error No of categories 

P. IPb ARTa ARTh Train Test ARTa ARTh Train Test 

0.2 2 2 300 310 22 22 289 312 310 310 

0.5 3 2 285 308 23 22 212 312 300 310 

0.9 14 2 90 106 12 16 22 54 124 66 152 

0.99 113 2 6 32 107116 22 2-12 17 44 
Table 2.15. The mean t)erformance of PROBA RT with noise-free training and testing data 

when applied to a simple categorisation problem. 

Simulations 10 and 11 illustrate the points made regarding match tracking in the 
discussion of simulation 1. Fuzzy ARTMAP is able to represent categories 

efficiently by varying the vigilance parameter through match tracking. The 

increased error at high vigilance is accounted for by the narrow scope of 

categories which cause some patterns to go unrecognised. PROBART behaves as 

expected with a fixed category size. With low vigilance, category membership 
frequency causes the higher frequency category (category one) to dominate with 
an error rate of approximately 30% as predicted from the distribution. At very 
high vigilance (ý: 0.99) differences between PROBART and fuzzy ARTMAP are 

neg igi e as there is little scope for incrementing p. during learning. 

Z 10.3 A Short Conclusion 

It is self-evident that some neural networks do better at certain tasks than others. 
Often, a specialised network will outperform its more general counterpart but 

suffers from the disadvantage of requiring a prior! information pertaining to the 
learning task. Thus, autonomy is reduced as operator knowledge is built into the 
network to guide learning. ART-based systems are self-organising and so reduce 
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the need for intervention. They exhibit attractive properties such as the ability to 

operate in non-stationary environments and to learn continuously new 

associations following training, without disrupting previous learning. However, 

the independence of nodes, as in fuzzy ARTMAP, leads to over learning and 

reduced generalisation as noisy associations are treated as novel associations in 

noisy mapping problems. The mechanism of match tracking which allows sub- 

categories to be resolved in classification problems causes categories to 

proliferate when noisy mapping approximations are carried out. Rapidly changing 

regions of a mapping--often resulting from the superposition of noise on the 

underlying signal---are treated as misclassifications requiring new ART a and 
ART b category nodes with alternative links via the map field. PROBART goes 

some way to rectifying this by using probability information, combined from 

various nodes, to estimate output values. The benefits of using PROBART when 
dealing with noisy mappings include a reduction in RMSE values, an improved 

error profile, a sizeable reduction in the number of ARTa category nodes and 
increased generalisation. 

As illustrated, PROBART is also capable of classification and exhibits 

performance similar to fuzzy ARTMAP at high vigilance. For efficient 

performance on classification tasks, however, fuzzy ARTMAP is the preferred 

architecture where classes are resolved accurately using few nodes. As with all 
tasks the architecture must be matched with the problem and the ART family of 

networks is no exception. 

While PROBART requires fewer nodes than fuzzy ARTMAP to achieve similar 
performance for a complex mapping task, it has not solved the generalisation. 
problem. For example, in the testing phase, some inputs are rejected and 
consequently no prediction can be made because those inputs are not within the 
range of any relevant ARTa category. Neither fuzzy ARTMAP nor PROBART 

construct a mapping using a sum of weighted basis functions. Although this 
property confers several advantages on the ART family of architectures, the 
danger is that-under certain conditions--they may become nothing more than 
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sophisticated look-up tables. One possible solution would be to remove both the 

ARTa vigilance and "winner-takes-all" dynamics during the testing phase. This 

would allow a local neighbourhood to be established around the input and a 

weighted interpolation procedure, depending upon the degree of match between 

the input and existing ARTa categories, to be carried out to provide an output 

prediction. The result would be a reduction in the number of inputs which do not 

lead to a prediction; a problem which increases with higher dimensional space as 

the input data becomes less densely packed. 

The present version of PROBART uses a simple average to calculate the output 

approximation. 'This average is made possible owing to the multiple linkages 

allowed between input categories and output categories. Through the map field 

frequency counts a rough approximation to the probability distribution of the 

output values could be made. For a single input category, linkages to multiple 

output categories could be stated individually together with their respective 
frequencies. Thus, PROBART could approximate multimodal distributions and 

thereby remove the one-to-many mapping restriction of fuzzy ARTMAP. 

A possible continuous version of PROBART (hence exhibiting generalisation) 
KK 

Y 
ýfQX_Ca ) 

would have the form ^=i 11 
j=1 

f2(wýj)cý where K signifies the set of 

nearest ARTa nodes to the input x, c! and Cb are the node exemplars or Ii 
centroids of ART a and ARTh nodes respectively, K, signifies the set of ART b 

nodes associated with the i th ART a node, f, () is a normalised 'activity' 

function in the range [0,1], f2(. ) is a normalised weighting in the range [0,1] and 

W,, ab is the frequency of association between the i th ART a node and the j th ART 

b node. In the limiting case where the winning ART a node only is chosen with 

index 1, the estimate is iven by Y^= 
j 

f2 (W ab Cb where f, c, 1.0 and 
j=1 

) 

choosing f2(. ) to be the relative frequency gives equation (2.18). 
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Both Fuzzy ARTMAP and PROBART provide a "rough and ready" method of 

approximating mappings and can be implemented as on-line versions. The 

underlying concern of adaptive resonance theory is with pattern classification and 

recognition but the theory does not entirely preclude mapping as shown. The 

trade-off between precise mapping and adaptiveness may be worth making for 

certain applications. One area of application is neurocontrol where precise 

mapping may be too time-consuming and computationally expensive making some 

problems untenable. Precise mapping may not be needed because error- 

correction techniques adapt quickly providing there is an underlying mechanism 

which allows rapid storage and retrieval of control information. The CMAC 

(Albus, 1975a, b) is an example of an adaptive memory system which functions 

somewhat like a look-up table and that allows rapid and flexible adaptation 

through the use of hash coding to retrieve or store information quickly. 

To put the neurocontrol issue into perspective, consider human and animal 

behaviour. Although constructed from "components" with wide tolerance limits, 

inherent disturbances and relatively imprecise connectivity, the nervous system is 

highly adaptive and successful. There is simply not enough time for all the 

subsystems involved to compute trajectories and apply the techniques of inverse 

kinematics etc.; movements are made and fine-tuned immediately using multiple 

sources of feedback. 

Consideration of the mapping problem, and some of the issues involved, reveals a 

more fundamental concern with supervised learning; the very fact that it is 

supervised. This concern will be addressed throughout this thesis but a few 

words are in order here. Training data is usually in the form of a set of pattern 

pairs, and there is predefined structure already present--albeit implicitly- in the 

statement of a learning problem. The supervised model of learning-used 

extensively in the neural network field is not the only model of learning and, 
furthermore, does not account for the majority of learning. 
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For the purposes of system identification, supervised learning methods may 

provide a model of a system from samples of the system's behaviour. In many 

cases, however, one black box is being swapped for another. Without analytical 

information to synthesise a system model, it may be just as difficult-if not more 

so--to extract relevant information from the collection of weighted connections 

between nodes in a neural network. 

Most criticism can be directed not towards learning mappings from 'raw' data, 

but towards using supervised learning methods for training controllers. Where 

does the control information, pertaining to the desired control actions, come 
from? Observing the input-output behaviour of an unknown system and using 

supervised learning to develop a mapping ( almost certainly not in minimal form) 

is one thing, but training a neurocontroller with desired control information is 

another. 

Knowing the intermediate control actions to achieve a given control 

objective-using a neural network trained with supervised learning-implies that 

the control problem has already been solved in some sense. If this were not the 

case, then how would the "correcf' intermediate control actions be known? For 

example, using an existing control strategy or modelling an expert reduces to 

nothing more than transferring control "knowledge" to a neural network platform. 

A more desirable and more biologically realistic situation is to have autonomous 
learning systems which are capable of discovering temporospatial structure and 
order for themselves with a minimum of a priori information except where it is 
beneficial or easily produced in any given situation. Such autonomous systems 
would be goal-driven and strive to develop successful behavioural strategies 
which enabled them to achieve the stated goals. The possible move away from 
"dim" number-crunching neural network architectures towards more flexible and 
adaptive structures is discussed in Chapter 3 onwards where an alternative 
learning model, reinforcement learning, is explored. 
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Chapter 3 Reinforcement Learning 

3.1 Psychology 

3.1.1 Behaviourism 

Until the early part of the twentieth century, psychology still relied heavily on the 

process of introspection. However, the practice of self-observation was not 

entirely satisfactory and the idea of unconscious mental processes became more 

and more acceptable (Hergenhahn, 1992). The move away from introspective 

psychology was coupled with an increasing adoption of objective experimental 

protocols which formed the basis for the newly emerging science of experimental 

psychology. In 1913 John Watson formulated the concept of Behaviourism 

which treated organisms as "black boxes" (Watson, 1913). Subjective sensations 

were ignored and psychologists collected data purely through observation of an 

organism's external behaviour. Watson believed that learning is the most 

important factor in the development of behaviour patterns and that all human 

skills, personality traits and motives are learned. Even complex behaviour 

patterns are believed to consist of sequences of multiple conditionings acquired 

through continuous learning throughout life (Hebb, 1972). In terms of a neural- 

network model, action sequences are acquired through on-line supervised 

learning. As plausible as this theory of human and animal behaviour sounds, it is 

far too simplified and posits organisms only as passive responders to external 

stimuli. 

The psychologist E. L. Thorndyke (Thorndyke, 1911) postulated that organisms 

were much more active, and that learning took place through gradual adjustments 
in behaviour following random actions (stochastic search). Actions which were 

successful in a particular context were more likely to be repeated in the saine 

context at some future time. Thorndyke used a "puzzle box" in which he placed a 

single cat. The box had a latch on the door which the cat had to operate correctly 
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in order to free itself-, this required a sequence of actions which had to be learned. 

Cats learned to "solve the puzzle" by trying sets of actions which became focused 

on the latch as time progressed. Spontaneous action sequences were generated by 

the animal and not through an explicit training program of stimulus patterns and 
desired responses. 

Associative learning consists of associating behavioural "atoms" in humans and 

animals. Experimental procedures have been developed to allow the study of 

associative learning- involving response conditioning - in controlled 

environments. T'here are two main types of associative learning studied in 

experimental psychology: 

* classical conditioning which involves conditioning an organism's responses to 

extemally applied stimuli, and 

9 operant conditioning which involves conditioning the type and intensity of 

spontaneous behaviour generated by an organism. 

Although classical and operant conditioning are treated as separate models of 
human and animal behaviour, the sharp distinction is used as a matter of 

convenience only; in practice, the division between the two models is much less 

distinct with behaviour often consisting of a mixture of the two approaches. 

To illustrate the transition from a passive stimulus-response model--in terms of 
both living organisms and neural networks--to a more active model involving 

exploration and evaluative feedback, these two contrasting behavioural. models 
will be discussed. 
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3.1.2 Classical Conditioning 

The first associative learning model, classical conditioning, is based upon the fact 

that certain innate or "hardwired" response patterns are already present in an 

organism from birth. Simple behavioural patterns are elicited by environmental 

cues without the intervention of "cognition" or internal modelling. Such 

stereotypical actions, known as reflex actions are responses to environmental 

stimuli which are not learned and follow a simple stimulus-response (S-R) pattern. 
They have arisen from years of evolutionary development and natural selection 
(Anderson, J. R., 1995; Barker, 1994). Some simple reflexes have the underlying 

mechanism in which a sensory neuron transmits a signal directly to a motor 

neuron via synapses; in other cases, one or more interneurons mediate between 

the motor and the sensory neurons. 

The physiologist, Ivan Pavlov was particularly interested in the salivary reflex 

which he studied in dogs (Pavlov, 1928). The stimulus was invariably meat 

powder which was placed on the dogs' tongues and elicited a response of 

salivation. This is a typical example of an involuntary S-R pattern. The natural 

pairing of stimulus and response provides a basis upon which classical 

conditioning experiments are carried out, even today. The stimulus in such cases 
is known as the unconditioned stimulus (UCS) and is followed by an 

unconditioned response (UR). So, for the naturally occurring (unlearned 

situation: UCS -* UR. 

If a stimulus, previously unconnected with the UCS, is paired with the UCS on a 

number of occasions, it is found that the new stimulus alone can elicit the 

response. The new stimulus is called the conditioned stimulus (CS) and the 
response elicited by the CS is known as the conditioned response (CR). In the 
case of Pavlov's experiments, the CS was a bell and the CR was salivation 
brought about by the bell. Three phases of conditioning can be distinguished 
(Barker, 1994) viz. 
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e the initial phase: UCS (taste) + CS (bell) -ý UR (salivation) 

* the training phase: (a number of presentations) 

UCS (taste) + CS (bell) -ý UR (unconditioned salivation) 
CR (conditioned salivation) 

9 the testing phase: CS (bell) -+ CR (conditioned salivation) 

By training using the pattern UCS + CS -ý UR + CR we end up with the 

association CS --> CR. Note that the pattern to be learned (the CR) is not 

presented to the test animal, it is originally elicited during a natural, inbuilt reflex. 

If the CS is continually presented without the UCS during conditioning, the 

response is observed to diminish; this is known as extinction (Anderson, J. R., 

1995). 

Extinction can be incorporated in artificial neural networks as aforgetting factor 

which allows associations between input and response patterns to diminish with 

time unless reaffirmed during use. The weakening of associations may be 

important in certain types of neural network which are operating in environments 

which change over time. Environments with time varying properties are known as 

non-stationary. 

3.1.3 Operant Conditioning and Reinforcement 

The ideas of active learning in organisms are taken further by the psychologist B. 
F. Skinner. Skinner developed a standardised methodology for carrying out 
learning experiments by controlling the environment and isolating a limited 

number of dependent variables (Barker, 1994). 

Ile most widely known example of an artificial environment is the Skinner box: 

which comprises a laboratory apparatus in which an animal is caged for 
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conditioning experiments and which typically contains a lever that must be pressed 

by the animal to gain reward or avoid punishment 

The learning theory studied using these experimental conditions is known as 

operant conditioning. A succinct definition of operant conditioning is given by 

Roberts (1993), 

"A form of conditioning in which learning takes place when reinforcement 

follows a person's or animal's spontaneous response; also known as 

instrumental conditioning. For example, a rat exploring its cage might 

press a lever, and find that a food pellet appears. It will then learn to press 

the lever in order to obtain food. " 

There are several key concepts embedded within this definition which are worth 

expanding upon to provide a basis for ideas developed in later sections when 

discussing autonomous artificial systems viz. 

Operant: This refers to any response which operates on the environment 

(Barker, 1994). 

Conditioning: This is not meant in the classical sense. Here it refers to the 

modification of internally generated behaviour patterns generated by stochastic 

search of the environment (exploration). During the course of time, certain 
behaviour patterns become more probable and others less so. 

Reinforcement: Reinforcement can be thought of as evaluative feedback from 

the environment. Reinforcement can be either positive or negative. Care must 
be taken with terminology to avoid confusion. Positive reinforcement can be 
identified with the idea of "reward7' but negative reinforcement is not 
"punishment"; it is the avoidance of punishment when referring to 
psychobiological studies. A reinforcer is defmed as any stimulus applied 
following a response which has the effect of increasing the probability of that 
response (Barker, 1994). Positive reinforcement enhances "approach" 
behaviour while negative reinforcement enhances "avoidance" behaviour. The 
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term reinforcement refers to the enhancement of behaviour not the informative 

"direction" (approach/avoid) or survival value. For SIdnner, a reinforcement 
does not necessarily imply a reward. The term punisher is used to refer to a 
stimulus which reduces the probability of a given response; its survival value is 
identified with punishment. 

Spontaneous response refers to the internally generated behaviour patterns 
actively exhibited by an organism exploring its environment. These are not 

conditioned by presenting a stimulus to a passive recipient which then responds 

with an approximation to a desired response specified by the "trainer". 

These points have provided, and will continue to provide, biological inspiration 

for the design of autonomous agents capable of learning about the world and 

actively adapting to environmental conditions with reduced operator prompting. 
The brief introduction to relevant psychological ideas presented here illustrates 

that neural networks and other autonomous systems may benefit from a study of 

psychobiological ideas. The biological world may, at least, provide inspiration for 

the design of "intelligene' autonomous agents; better still, it will furnish 

researchers with mechanisms which provides a basis for artificial counterparts. 

In the sections dealing with reinforcement learning in artificial autonomous 
agents, the term "positive reinforcement! 'will refer to reward or probability 
enhancement and the term "negative reinforcemenf' will refer to punishment or 
probability reduction. This convention is used in the reinforcement learning 
literature and will be adhered to here. Ile contrasting use of terms must be borne 
in mind when comparing psychobiological and artificial neural network literature. 

3.1.4 Shaping 

Operant conditioning involves associative learning in which the desired behaviour 
or increasingly closer approximations to it are followed by a reinforcing stimulus; 
the animal receives reinforcement depending upon how it responds to aspects of 
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the controlled environment. Rewards (or punishment) become associated with 

individual actions or sequences of actions. 

Classical conditioning does not depend upon the spontaneous generation of 

behaviour by an organism; instead the response is elicited by an externally applied 

stimulus which triggers a "hardwireW'pattem of behaviour. Conditioning, in this 

case, consists of forming an association between the naturally occurring stimulus 

and an artificial stimulus. 

In both conditioning methods, associative learning takes place through shaping of 

behaviour; this shaping depends upon a reinforcement schedule which is specified 

as a set of events and contingencies for each type of artificial environment. 

Even in the controlled conditions of an artificial environment, both types of 

associative learning do not occur in isolation; this blurring of boundaries is even 

more pronounced in natural environments-especially in the case of 

humans--where learning takes place through association of instinctive urges with 

socially acceptable outlets, shaping of spontaneous responses with reward / 

punishment schedules and association of appropriate behavioural responses with 

environmental cues. Higher level associative learning also takes place where 

abstract ideas (concepts) are associated. 

The ideas of experimental psychology provide motivation for the development of 

artificial learning systems such as neural networks. However, the study of 

artificial neural networks is a subject in its own right and does not exist solely to 

provide a set of abstract explanatory models for observed behaviour. 

The division of conditioning into classical and operant modes has an artificial 

counterpart in neural network learning methods, namely supervised and 

reinforcement learning; unsupervised learning is more difficult to classify in this 

twofold scheme but possibly belongs in the second class--the artificial 

counterpart to operant conditioning-although it is difficult to see where the 

shaping of behaviour occurs here. 
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3.2 Automata 

Reinforcement learning algorithms are a class of algorithms for learning automata 

(Zeidenburg, 1990). This section will form an introduction to the theory of 

automata. There are two general classes of automata, viz. deterministic and 

stochastic. Stochastic automata are of particular interest in this thesis but 

deterministic automata provide a convenient starting-point for discussion and 

generalise naturally to their stochastic counterparts. These two classes will be 

covered in sections 3.2.2 and 3.2.3. Section 3.2.4 will discuss the concept of 

learning as it applies to automata. 

The theory of stochastic automata can be related meaningfully to the theory of 

operant conditioning in animals. At a basic level, animals can be modelled as 

stochastic automata which learn and adapt to the environment. When placed in a 

new (experimental) environment, animals will exhibit behavioural patterns from a 

repertoire of actions or action sequences having different probabilities. The 

relative frequencies of the occurrence of given actions can be changed over time 

with a reinforcement schedule based upon the theory operant conditioning. Seen 

from the point of view of stochastic automata which learn, the changes in action 
frequencies correspond to action probabilities altered by a learning algorithm 

exposed to training signals. 

3. Z 1 Introduction: Markov Decision Processes 

A useful framework for the formulation of leaming problems is that of Markov 
Decision Processes (Markov Processes) or Controlled Markov Chains (Bailey, 
1964; Budnick, 1988; Watkins, 1989). Markov decision processes allow the 
representation of probabilistic behaviour in an organism or intelligent agent. In its 
simplest form a Markov decision process involves spontaneous outcomes with no 
external input. A definition of this form is given by Budnick (1988): 
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"A Markov process is a sequence of experiments in which each experiment has m 

possible outcomes E,, E21) 
** *I 

E,, and the probability of each outcome depends 

only upon the outcome of the previous experiment. " 

Here, outcome means action or state and experiment a behavioural period or unit 

in which an action is performed out of a repertoire or action set. Informally, state 

is the current potential for an outcome or set of outcomes depending upon past 

experience or history. Past history is not stored explicitly, it is represented by the 

state of a system. 

It is convenient to distinguish between states and actions; this is not done in the 

above definition which uses the general term of "outcomes". Watkins (1989) uses 

the distinction and it will be used henceforth in this thesis. In a Markov decision 

process there is a finite set of states, denoted here by S. Ile transitions between 

members of S are determined by a transition function, T. If state transitions are 

determined only by the previous state then the transition function, T(s) where 

SES can be represented as a matrix of transition probabilities known as the state 

transition matrix. To calculate transition probabilities over a number of steps, the 

state transition matrix is multiplied by itself that number of times. 

States can be thought of as an "internal" representation of behaviour, and actions 

as an "external" manifestation of behaviour. The finite set of actions is 

determined probabilistically by the system states when operated upon by an action 
function, denoted here by A. Figure 3.1 shows the situation schematically. 
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Action 
Function, A 

State Space, S 

Transition 
Function, T 

Figure 3.1 A schematic representation of a Markov process. The process changes state 

according to a transition function and elicits some action. 

The previous description can be formalised to include the state-action distinction; 

following WatIdns (1989) an extended definition is given. Thus, a Markov 

decision process consists of four parts: 

oa finite state-space, 

e an action function, A, which detennines probabilistically the action at each 
discrete time step, 

ea transition function, T, which detennines probabilistically the transition 
between states of the process, and 

*a reward function, R, which gives the, possibly probabilistic, reward at each 
time step. 

Note that the extended definition also includes a reward function. 

3. Z2 Deterministic Automata 

Any system-for example, a neural network an environment and a plant--can be 

thought of as a black-box with a specified set of inputs and outputs. To simplify 
further the formulation of systems in terms of automata two conditions may be 

specified: Changes occur in discrete time and both the input and output sets are 
finite. Ibe sets of inputs and outputs and discrete time instants, can be 

represented by X, Y and Z respectively. 
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So, far this abstract model says nothing about the relationship or mapping 

between X and Y as a function of Z. Set Z is required because a sequence of 

inputs from set X may not determine uniquely a sequence of outputs from set Y. 

If the output sequence is determined for a given input set, regardless of time, the 

system model is said to be memoryless. 

For most systems, the input-output mapping depends upon the "history" of the 

system. For deterministic automata, the system history is represented by a set of 

states. A definition of state is given by (Arbib, 1987): 

"The state of a deterministic system is some representation of the past activity 

of the system that is sufficiently detailed to serve as a basis together with the 

current inputs for determining what the next output and state will be. " 

The state does not give any information about how it was reached. Such 

information is redundant and each state provides a compact representation of a set 

of equivalent histories (Minsky, 1967). 

The above description can be formalised to give a definition of an automaton 

(Arbib, 1987): 

An automaton is specified by three sets X, Y, and S, and two functions T and A, 

where 
(i) X is a finite set, the set of inputs; 

(ii) Y is a finite set, the set of outputs; 
(iii) S is the set of states; while 
(iv) T: SxX --> S, the state-transition function is such that if at any time t the 

system is in state s and receives input x, the at time t+l the system will be in 

state T(s, x): and 

(v) AS --) Y, the outputfunction, is such that s always yields output A(s) - 
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The automaton is said to befinite if S is a finite set and deterministic if the state- 

transition function, T, uniquely determines the output when a given input is 

present. In other words, from any state, the future evolution is determined for a 

specified input sequence provided that state transitions are not random. The case 

of random state-transition functions is covered in section 3.2.3. 

Neural networks, defined formally may be viewed as finite automata (Arbib, 

1987). Conversely, the state dependent input-output mapping of a finite 

automaton can be replicated by a functionally equivalent neural network. 

For a non-stochastic neural network, the equivalent detenninistic state-transition 

function can be identified with the set (matrix) of weights, W* following training. 

Thefinal mapping F*: X -+ Y, xý-* y= F*(x), uses W* implicitly. 

During training, F is also a function of W(t) which will be represented by W, to 

show that the weight matrix is parameterised by the time instant, t. At any time 
instant, t during training, the input-output mapping can be represented by 

Fw: X --) Y where F is the functional F(W,, x). For F F(W 0 x) the weight I 
matrix W. is subsumed within the function as constant giving the function 

F*: x ý-> F- 

3.23 Stochastic Automata 

If the state-transition function is probabilistic, that is, for a given state there exists 
a set of possible transitions which depend upon a set of associated probabilities, 
then the transition function does not uniquely determine the transitions and allows 
a stochastic search of the environment. 
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For a stochastic automaton, both (iv) and (v) of the automaton definition are 

modified to include the probabilistic nature of stochastic automata. Now, the 

state does not determine the transition (via the transition map S -ý S) for a given 

input, it determines a set of probabilities governing the transition. A state s r= S 

has a vector of probabilities, p associated with it which signify the transition 

probabilities, given the current state. 

3. Z4 Leaming Automata 

Up to now, nothing has been said about how the state-transition 

mappings--whether deterministic or stochastic- are specified, indeed, the key 

idea of learning has been avoided. Learning is essential to the development of 

autonomous agents if they are to be sufficiently adaptable. Deterministic and 

stochastic automata may be used if the environment or plant model is known 

sufficiently well. Otherwise, more sophisticated methods, such as those of 

neurocontrol, are required. On-line adaptation of the state-transition function (or 

its neurocontroller equivalent) is carried out as more observations become 

available. With lean-dng, little or no a priori knowledge may be necessary in 

order to develop a successful control strategy. 

Without learning, for input patterns x, _,, x, r: X at successive time instants 

t, t +1eZ and states si, sj, sk (: - Sa state transition can be represented fonmally 

by sj = T(si 
gx, -, 

) 
--* s. = T(sj, x, 

). 

With learning, the set S and the function T are both dependent upon time. For 

this case, the set of states can be represented by S, 
-,, 

S, S,., with the succession 

of states Si r= S, 
-,, s, r= S, . s,, r= St+l . Now the transition is represented by 

Si =TC-l(Si'XI-1) r2s, -+ S, =T, 
(sj, 

x, 
)r= S, 

+,, where the state-transition function, 

T is parameterised by time. In some cases, the number of states may be fixed, or 
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may grow or reduce for some automata providing this is taken into account by the 

state-transition function. 

For a stochastic automaton in which learning has occurred, for a given state si , 

pi (t) is not necessarily equal to p, (t + 1). Automata which are capable of 

leaming are called learning automata. 

For a learning stochastic automaton, the main task is to "shape'probability 

distributions for both the state-transition function and the action (output) function 

respectively. For the latter, some actions will be made more probable, and others 
less so. The learning process of shaping probability distributions in a learning 

automaton can be viewed as the artificial counterpart of operant conditioning. 

For a stationary environment, S,, --> S %where S. is the final set of states which 

are optimal in some sense, that is, the set of states tends to a final set with respect 

to time (, r -4 oo). This is a generalisation of the fixed point concept. More 

formally, S, = Sr+l =S*, Vr ý? - r* where r* is some time instant. For a non- 

stationary environment no such optimal set of states exists. 

For a stationary environment, an automaton has to solve an optimisation problem 

where the optimal state set is treated as a "fixed point! '. More importantly, the 

state-transition functionalso treated as a "fixed point! ! -- determines behaviour. 

This must be optimised. Formally, T, -* T', T' = T* (s, x) and 

T, (s, x)=T, +I(s, x)=T'(s, x), Vr. >-., r*. The state-transition function will be 

optimised through learning. For a non-stationary process, no such absorbing 
64state" exists where all state transition probabilities are fixed indicating an optimal 
state transition function for an animal or automaton. 
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3.25 What is Meant by'Optimall 

The notion of "optimal" behaviour needs to be clarified. Watkins (1989) 

distinguishes between two types of optimality in learning: 

optimal learning where the agent processes information in such a way that 

ensures that the "best"possible decisions are made at each stage of learning; 

learning of efficient strategies where the process of acquiring a strategy is not 

necessarily optimal but leads eventually to a maximally efficient strategy. 

The second notion is weaker than the first and refers to an end-state as opposed 

to overall efficiency. Optimal learning refers to the learning method itself and 
does not necessarily lead to the acquisition of the maximally efficient strategy; the 

overall cost to the agent may be too great (Watkins, 1989). 

Optimal behaviour, in whatever sense, involves a trade-off between exploration 

and exploitation. If too much time is spent in exploring the environment then 
little time is left for immediate exploitation of acquired learning. Conversely, if 

too little exploration is carried out then useful alternative behaviours may be 

missed and time may be wasted exploiting a second-rate strategy. This dilemma is 

known as the exploration-exploitation trade-off (Watkins, 1989). At each 

moment in time, an agent must decide whether to explore or to exploit. There are 

no hard and fast rules for this decision process. 

The formalisation of optimal learning theory is difficult for two main reasons 
(Watkins, 1989): 

o the difficulty of devising proven optimal learning strategies for all but the 
simplest of artificial problems; 

the requirement of a priori assumptions pertaining to probability distributions 

of encountered environments. 
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3. Z6 The Road to Reinforcement Learning: Two Algorithms 

A subject of this thesis is a particular control strategy of reinforcement learning 

using two outputs (bang-bang control). The neurocontroller used in this 

application can be viewed as a stochastic automaton. To prepare further for the 

later discussion, the idea of learning in stochastic automata will be expanded 

upon. 

There exists a class of learning algorithms for stochastic automata (Zeidenburg, 

1990). Here two algorithms of relevance to the discussion will be covered; these 

are the linear reward-penalty algorithm (Narendra and Thatachar, 1974) and the 

associative reward-penalty algorithm (Barto and Anandan, 1985). 

The linear reward-penalty (L,, 
-p) 

deals with a simplified automaton, with a single 

state (no state-transition function), and only a simple reward-penalty signal as 

input. The learning problem involves convergence to a final set of action 

probabilities which specify a desired behavioural repertoire. Again, the 

connection with operant conditioning is apparent. The situation is illustrated 

schematically in Figure 3.2. 

Environment 
X(t) 

II 

Evaluation 
Function 

Stochastic 
Automaton 7ACtiO; 

n, 

ýa(f) 

Reinforcernent/ 
penalty signal, T(O 

Figure 3.2. The operation of a learning automation in an environment. Actions are directed 

towards the environment from which feedback is obtained 
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The set of actions, A is defined as A= jaj,..., aj,..., a. j with an associated set 

of action probabilities P= 1p, 
I ... P, '. --'p. 

j. This system can be thought of as 

a stochastic neural network with a set of m nodes. The operation of this system 

provides a simple model of operant conditioning. 

At time instant t, the reinforcement signal r(t) of +1 or -1 is applied to the 

automaton and action a(t) = a, r= A is elicited. For r(t)=l the learning rule is 

pi (t + 1) ,ý pi (t) + XR (1 
- pi (t)) for the "winning" action and 

pj Q+ 1) = (1 
-, ýR)pj (t) for the rest. 

For the reward part of the learning rule, the set of action probabilities always 

sums to unity. For the "punishment" part of the learning rule, r(t)=-I, 

Pi (t + 1) = (i - lp)pi (t) 
pj(t+l)= Ap +(l-Ap)pj(t) M-1 
It can be shown similarly for the punishment case, that the set of action 

probabilities sums to unity. 

The associative reward-penalty algorithm (AR-p) of Barto, and Anandan (1985) 

extends the utility of the LR-p driven stochastic automata by allowing the 

association of output actions with input vectors from the environment; this is 

shown schematically in Figure 3.3. 

Environment 
x(t) 

Evaluation 
IxW 

Function 

tochastic S 
A-utomaton ActiM a(t) Reinforcernent/ 

penalty signal. r(t) 

Figure 3.3 The Associative Reward-Penalty automaton of Barto and Anandan (1985). 
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The automaton can now learn an input-output mapping and associate appropriate 

actions with stimuli from the environment. The automaton is "taught" to make 

associations by an evaluation function (critic) which emits reward / penalty signals 
based upon the current input vector and the most recent action. Formally, 

r(t)=d(x(t), a(t)), d: XxA--)1-1, +l}. 

The actual details of the associative reward-penalty algorithm are not important 

here and are documented elsewhere (Barto and Anandan, 1985) where it is shown 

that AR-p reduces to LR-p under certain conditions; variations to the basic 

algorithm can also be found there. 

So far, the stochastic automata of Figures 3.2 and 3.3 have been treated as black 

boxes with no mention of the internal states. It is not the intention of this thesis to 
discuss these matters further but suffice to say that the black box will be "opened" 

when discussing the reinforcement-leaming based neurocontroller. Section 3.2 

has indicated the possibility of automata (or equivalent neural networks) which 
learn to associate actions with input vectors from an environment and do not 

require the specification of desired outputs (actions) as with supervised learning. 

The main advance here is the use of an evaluation function or critic which 
determines the type of reinforcement (reward or punishment) administered to the 
learning automaton. 

The critic network must be examined next in some detail if the possible accusation 
that the learning problem has been merely re-located is to be refuted. 
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3.3 Michie and Chambers' Boxes 

It has been stated that to develop a controller, knowledge of system dynamics is 

required. Furthermore, in addition to the accurate dynamical model, knowledge 

of the desired system behaviour is needed, usually in the form of an objective or 

cost function (Anderson, C. W., 1989). This knowledge is often either 

unavailable or difficult to obtain. Candidate autonomous neurocontrollers must 

be able to operate without such a priori knowledge and formulate a control 

strategy on-line given plant input-output data as it arises. 

3.3.1 Introduction 

'Reinforcement learning applied to the cart-pole or inverted pendulum problem 
exemplifies the control problem of applying a "naive" neurocontroller directly to 

an opaque (black-box) dynamical system. The inverted pendulum problem is an 

unstable system with dynamics of fundamental importance to the idea of 
maintaining balance in, for example, walking systems or rocketry. (Anderson, C. 
W., 1989). 

When treating a dynamical system as a black box, using reinforcement learning, 

the only information available is a state vector, which forms the neurocontroller 
input and a punishment signal which signifies when control has failed. The 
desired intermediate control action for each system state is unknown. There is 

also no explicit objective or cost function to shape controller performance. 
Neurocontroller learning is based upon failure signals alone. 

It should be apparent that temporal information is important for such a control 
problem and that delays will play a part in the learning of long sequences of 
actions required to avoid failure. Delayed input information is not available to the 
neurocontroller which has to apportion "blame" over a sequence of actions 
depending upon individual "responsibility". This is the assignment of credit 
problem (Anderson, C. W., 1989). 
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The formulation of reinforcement learning considered in this thesis is that of Barto 

Sutton and Anderson (1983) which will henceforth be referred to as the BSA 

model for convenience. The BSA reinforcement learning system provides the 

basis for an autonomous neurocontroller architecture (Barto, Sutton and 

Anderson, 1983) which has provided inspiration for a number of modified 

architectures including those comprising the subject of the remainder of this 

thesis. Some of the other BSA variants will be covered briefly in section 4.1 

together with a few alternative control methods. 

3.3.2 The Carl-Pole problem 

The starting point for the BSA formulation of reinforcement learning (Barto et al, 

1983) is the "boxes" adaptive problem solving system of Michie and Chambers 

(1968a). As the boxes learning system forms the basis for the evolution of the 

present work, it will be described briefly here. 

Following Michie and Chambers (1968a) and Barto et al (1983) the cart-pole 

system problem is used to exemplify some of the characteristics that distinguish 

neural networks as autonomous learning systems from other available data 

processing methods. The characteristics of autonomy and adaptability are among 
the most important. As a test problem, the cart-pole system provides an example 

of a highly non-linear system involving the characterisation of complex state-space 
trajectories. Standard solution methods require assumptions about the form of 

the control force function and an objective function (Anderson, C. W. 1989; 

Hocking, 1991). Furthermore, such techniques rarely generalise and, thus, 

require an a priori analysis of each dynamical system encountered. Like Barto et 
al (1983), it is assumed in this thesis that the available feedback is of much lower 

quality than is required for both standard control techniques and for supervised 
learning techniques. Furthermore, it is believed that similar assumptions can be 

made about the state-space partitioning problem where any autonomous system 
will have limited information about the structure of state-space in advance of 
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experience. Indeed, merely specifying a fixed partitioning a priori makes 

assumptions about the granularity of the resultant control mapping and constrains 

the available adaptive procedures within a pre-specified temporospatial structure. 

The problem posed by Michie and Chambers to illustrate the boxes adaptive 
learning system consists of a cart constrained to move along a one dimensional 

track with a pole attached to it. This is illustrated in Figure 3.4. The movement 

of the pole is constrained within the vertical plane and is represented by the state 

variables 0 and 6 signifying the angle of the pole from the vertical and the 

angular speed of the pole respectively. The movement of the cart is controlled by 

an impulse force (bang-bang control) in either direction and is represented by the 

state variables x and I which signify the distance from the origin (centre) of the 

track and the speed of the cart respectively. Thus, there are four state variables 

representing the whole motion of the cart-pole system. System parameters are 

given in appendix F which also specifies the physical system and computer 

simulation details. 

x 

Figure 3.4. The cart-pole system. Motion is constrained within the vertical plane. See the body 

of the text for details. 

Information ftom. the physical system simulation is minimal and does not provide 
stimulus-response pairs consisting of inputs and desired outputs to be associated. 
Only the state vector and a coarse failure signal, reflecting the cart-pole status, are 
supplied to the control system. If the pole falls or the cart hits the track 
boundaries then a failure signal is sent to the controller and the cart-pole system is 
reset to its initial conditions to begin a new trial. 
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3.3.3 Boxes 

Under these conditions, the credit assignment problem becomes apparent; there 

are difficulties concerning the assignment of credit (blame) to individual control 

actions which, taken together, comprise the state-space trajectory which leads to 

failure and thus the final failure signal (Barto et al, 1983). The boxes system 
(Michie and Chambers, 1968a) partitions state-space into 225 non-overlapping 

regions or boxes by quantising the state variables; note that this partitioning is 

fixed ab initio in both the boxes and the BSA systems. Each individual region is 

independent and is said to contain a local "demon" (Selfridge, 1959) which has to 

choose a control action of ±N Newtons whenever the state-space trajectory enters 

the local region. 

A global demon has overall control; its task is to decode the state vector, assign 
its trajectory to individual regions and distribute the failure signal to the local 

demons. Left/right force decisions are taken on the basis of the utility of these 
decisions calculated from past failure signals weighted by the time interval from 

box entry to failure for a given run. Thus, the expected lifetimes of a left or right 
decision determine the box output at any particular time and the temporally 

weighted effect of failure on the system is fed back to compute new left/right 

decision expected lifetimes. The full formulation of the boxes learning system is 

found in Michie and Chambers, (1968a). 

3.3.4 Linearisation 

Standard state-space methods can be used to obtain a linear model as an 
approximation to a non-linear system and to design a closed-loop feedback 

controller (via pole placement) to control the system within a limited region of 
state-space ( e. g. Friedland, 1987). This control method requires an a priori 
model of the dynamical system, obtained by using the simplification of 
linearisation to render the problem amenable to linear techniques (e. g. Wiberg, 
197 1; Banks, 1986). More sophisticated approaches using feedback linearisation, 
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for example, may extend the neighbourhood. of effective control but are still highly 

dependent on accurate a priori models. For many desirable control purposes, 

however, such models may not be available or may contain too many analytical 

simplifications which render the proposed control system incapable of following 

the complex dynamics of the real system under consideration. 

To simplify, friction can be neglected, i. e. p, =jup = 0. The frictionless 

equations are linearised by assuming that O(t) and 6(t) are small; these 

assumptions are reasonable given that the pole is to be balanced around an 

equilibrium point of 0=6=0. The simplifications sin(O) - 0, cos(O) -1 and 

62 can be substituted into equations (Fl) and (F2) of Appendix F to give 

go 
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6= -F--- 
M, +m 

, and 
I-m 

3 m, +m 

.. 
F -mII9 x=-. Rearranging gives 
M, +m 

ýM, +M) 3 ml .. 1 
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I). -- 

S ubstitution gives! 0mg-0 +F. Letting x, = x, X2 =-tO (4m, + m) (4m, + m) 

X3 '= 0, and x4= 6, the dynamical equations can be put in matrix form, thus: 

010 

X, 00- 
3mg 

0 XI 4 
't2 l(4m, + m5 X2 

+ 
(4m, + m) F jC3 00010 

-14 
00 

3(m, + m)g 0 

rX34.4 

l(4m, + m) 
-. 

(4m, + m). 

which is in the standard linear state-space form, :k= Ax + Bu for which a linear 

controller can be developed (e. g. Friedland, 1987, Ogata, 1990). The intention 

here, in this thesis, is not simply to develop another controller for a particular non- 
linear control problem; it is to explore some of the issues for which the cart-pole 

problem provides a convenient example and to indicate the possibilities of 
developing flexible, general purpose controllers capable of adapting to a given 
dynamical system with a minimum of a priori information. 
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3.4 Reinforcement Signals and Traces 

3.4.1 Reinforcement 

The only feedback information available for neurocontroller learning is a failure 

signal which is triggered when the state vector crosses preset failure boundaries. 

For the BSA formulation, the preset failure Emits are ± 12* and ± 2AM . If the 

pendulum or cart exceed their respective bounds, then a punishment signal is fed 

back to the neurocontroller. 

The reinforcement signal at time, t, denoted by r (t) , is characterised by, 

1 when failure occur's 
r(t) =0 otherwise 

It will become clear that failure alone is an inadequate training signal. Ibis 

inadequacy is corrected in the original BSA version of reinforcement learning by 

using predicted reinforcement to provide "reward7' or positive reinforcement to 

enhance learning and reduce learning time. 

The BSA learning system selects a control action for a given state at each time 

step. The neurocontroller attempts to learn through experience which action is 

appropriate for which state and associates state-action pairs in an associative 
memory network (Figure 3.5). 

Reinforcement 

---------------------- 

Cart-Pole 
jNEUROCONTROLLER System 

----------------------- 

State vector 

Figure 3.5. A neurocontroller based upon reinforcement learning. Internal details of the 
neurocontroller will be covered in later sections. 

Faflure 
check 
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3.4.2 Traces 

The problem of delay learning has been mentioned in Chapter 1. There are 
difficulties in training neural networks to associate input and output patterns 

owing to system memory. The approach of Hebb (1949) is simplistic in that 
inputs and outputs are associated by the instantaneous correlation of neural 

activities. Control of dynamical systems by neural networks often requires that 
delays are taken into account by the correlation of delayed inputs and outputs. 

The boxes system of Michie and Chambers (1968a) circumvents the delay 

problem by recording what control action was used and when in the form of a 
"tally". A more biologically plausible system was proposed by Klopf (1972,1986, 

1988) and Sutton and Barto (1981) which postulated the existence of neural 

activity traces known as eligibility traces. These traces are said to indicate when 

a synapse (weight) is eligible for modification (Levine, 1991). 

Incorporation of this mechanism into neural network architectures means that 

neural activities may be correlated in time, that is, a single input can still influence 

subsequent behaviour if weighted connections between neurons remain eligible for 

update after the input has been removed. Eligibility traces are an integral part of 
Barto, Sutton and Anderson's (1983) reinforcement learning system. 
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3.5 Temporal Difference Learning 

3.5.1 Sequence Prediction 

One of the objectives of developing autonomous learning systems is to be able to 

treat any environment (plant) as a black box and predict future behaviour. 

Prediction is the most basic form of learning (Sutton, 1988) and is fundamental to 

survival. Prediction of environmental characteristics arises from the need to 

establish the utility of different regions of the problem space and to associate 

appropriate actions with those regions. Often, a heuristic search of problem space 
is carried out by an intelligent agent to build up an internal representation of 

salient features. 

Autonomous learning also implies an ability to take training examples directly 

from the "stream of experience't--that is, on-line or causal learning--without the 

help of a teacher or supervisor. A possible solution to the on-line prediction 

problem is that of Temporal difference learning (TD) which Sutton (1988) 

defines as "... a class of incremental learning procedures specialised for prediction 

problems. " Temporal difference learning is a subset of the reinforcement learning 

paradigm; the key concept is that of the temporal difference between successive 

predictions, hence the name. Two advantages of temporal difference learning are 
that: 

* learning is incremental; handling one piece of data at a time makes 
computations easier, and 

9 time delayed data does not have to be stored. 

Early approaches to TD learning include Samuel's checkers player (Samuel, 
1959) and Barto, Sutton and Anderson's ASE/ACE system (Barto, Sutton and 
Anderson, 1983); the latter being the motivation for a large part of the subject 
matter of this thesis. TD methods have also been proposed as models of classical 
conditioning (e. g. Barto and Sutton, 1982; Sutton and Barto, 1981,1990; Klopf, 
1988). The operation and utility of temporal difference learning methods will be 
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covered in section 3.5.2; the remainder of this section will provide some 

background and motivate the subsequent discussion. 

TD learning attempts to move interest in artificial and natural learning methods 

away from the dominant supervised learning paradigm. Supervised learning 

methods are used extensively for training neural networks (e. g. Haykin, 1994). 

As discussed in section 1.5, pattern pairs, consisting of an input, x and a desired 

or actual output, y are presented, often repeatedly, to a neural network. A 

training set containing numerous examples is used to train a neural network to 

construct an input output mapping. After training, an input, x is presented to the 

trained network and elicits a response, ̂  predicted by the stored associative Y 

mapping. This is a form of system identification and has proved effective for 

straightforward associative pattern matching. 

Problems arise with the supervised learning method when temporal effects have to 

be taken into account (Myers, 1992). Prediction data is often in the form of a 

sequence of temporally related events or experiments E,, E21 .... E,, such as a 

time-series. System identification in this case is concerned with discovering the 

dynamical laws underlying a process to enable prediction and control Techniques 

using recurrent neural networks have been developed to deal with time delays and 

temporal sequences of events (e. g Elman 1990) but these often involve complex 

algorithms or network structures. 

The sequential learning problem may be cast in terms of supervised learning by 

treating successive members of a temporal sequence as input-output patterns, thus 
(E., E., +, 

) forms a set of training patterns. The more general form, 

(E. 
I-A: I*I-IE.,..., E. +, 

) where the first k members form an extended input vector, 
is used to take account of delays. 

There is a more fundamental problem with delays; when attempting to control 
dynamical systems, a sequence of events or control actions may lead to a final 

outcome or goal where intermediate stages are of little or no importance until the 
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goal is reached. In such cases, learning cannot take place until the final outcome 

so that credit (or blame) may be assigned to each of the preceding actions. This 

can be represented by (XI 
IX2 11 , , x, y, +, 

), where xX is a vector of observations 

or control actions and y is the final outcome of a process. This is the multistep 

prediction problem (Sutton, 1988). 

A putative learning system will be required to produces a series of predictions 

YI9Y29*** , y, which approximate y.,, = y. This "end state"problern can also be 

framed in terms of supervised learning by specifying pattern pairs 
(x,, 

, y). The 

weights are updated at the end of a temporal sequence; this can be written as 

R 
W. ', = WO +. (3.1) Y, &W, 

where 

Aw, = a(y - y^jVJ1 (3.2) 

(Sutton, 1988). Here, t denotes the time label of all intermediate weight changes 

prior to the final update at the end of a temporal sequence. 

Taking a linear estimator of the form y^, = w'x, and substituting into equation 

(3.2) gives the simplest case of an update rule (Sutton, 1988) 

Aw, = a(y - wt x, ý, which is the Widrow-Hoff or delta rule used in the adaline 

(Widrow, 1960, Widrow and Hoff, 1963). A similar form can be used for the 

multilayer Perceptron where gradient information is backpropagated through one 
or more hidden layers. 

3.5.2 Temporal Difference Learning 

Equation (3.1) can be reformulated in terms of successive predictions, y, and 
with 

t 

Aw, = a(ýI+j - ^I y )lv-Y (3.3) 
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Details of the derivation leading to Equation (3.3) can be found in Sutton (1988). 

The weight update can now be computed incrementally as Aw, only depends 

upon successive predictions (TD). ' The advantage is that values of a temporal 

sequence are not stored. 

The key feature of temporal difference learning is that it is the changes in 

successive predictions which drive learning and not the overall error between the 

predicted and an actual or desired outcome. Equation (3.3) uses the implicit 

assumption that the past predictions in the summation are weighted equally. A 

more general form of the weight update equation is given by 

Aw, = a( t+1 W. (3.4) Y -kV Yk 
k=1 

and includes an exponential weighting factor X, where 0: 51: 5 1 (Sutton, 1988). 

More recent predictions are weighted more strongly which is in accord with the 
idea of stimulus traces (see sub-section 3.4.2). 

The weighting factor parameterises a family of learning procedures denoted by 

TD(X) of the form given in equation (3.4); equation, (3.3) is a special case TD(l). 

Defining, 

1+1 I -k V e,,, dx+l yk gives Aw, = a(y, +, - y, )e, which leads to the recursive 
k=1 

A 

fonn e, +, V 
Wyf+j + Ae 

I 
(Sutton, 1988). 

For X=O, Aw, = a(y-l+l - y^ f)VW. I y which is similar in form to the adaline 

(Widrow-Hoff) learning rule but successive predictions are used. 

The convergence of TD(O) for absorbing Markov processes is proved in Sutton 
(1988). An absorbing Markov process has a well-defined end-state. The 

prediction problems discussed so far assume definite outcomes at the end of a 
sequence but this is not always the case; indeed, for the cart-pole problem, the 
desired "outcome" of success demands longer and longer temporal sequences of 
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states and control outputs as balancing becomes more and more successful. Finite 

sequences terminated by failure are to be avoided. Prediction problems involving 

potentially infinite temporal sequences equences with no well-defined 

outcome--are called infinite-horizon problems (Sutton, 1988). In such cases, 

success (failure) is measured by associated costs generated by an environment or 

process. 

Sutton (1988) defines a discounted sum of future costs 

R, = 
jy 
k=0 

Defining a predicted future cost and assuming that it is accurate gives 

r yk +I 
.dr, +, +, 

= r, 
+, 

+ r, 
+, +2 

+ IRW 
k=O k=1 k=O 

For the recursive equation R^, = r, + 7R^j+1 it can be assumed that R, # r, + jRj+j 

until convergence and so an error e can be defined in place of the predictive 

difference (ý 
t+l - y^ t) of equation (3.4). Defining the error e=r, +, + IR^ R, 

gives, 
t 

Aw, = a(r, +, + jRt+j - RI)2 Rt (3.5) ,; 
V-kv,,, - 

k=l 

as the equivalent weight update rule to equation (3.4) for infinite horizon 

problems (Sutton, 1988). In this thesis, this form of temporal difference learning 

equation is referred to as TDIH(k) to distinguish it from the finite horizon version 
TD(k). 

For X--O 

Aw, = a(r, 
+, 

+ ^(+I 
- 

^I 
w. k JR R)V R (3.6) 

Equation (3.6) is a special case of TDIH(%), denoted by TDIH(O) which relies 
only upon successive predictions of reinforcement; an example of TDIH(O) is that 
of Barto's Sutton's and Anderson's reinforcement learning system (1983) which 
is the subject of section 3.6. 
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3.5.3 O-Learning 

Q-1earning is a form of reinforcement learning derived from dynamic 

programming; it is model-free and enables autonomous agents to discover optimal 
behavioural strategies in Markovian environments (Watkins, 1989; Sutton, Barto 

and Williams, 1992; Watkins and Daynan, 1992). Q-learning is similar to 

temporal difference learning in that an agent acts, evaluates the consequences of a 

particular action immediately (reward or penalty), and proceeds to estimate the 

value of the subsequent state. A Q-learning agent estimates a real valued function 

of the current state and action, known as the valuefiunction, which represents the 

total expected discounted future reward (Q-value). Ibe objective of Q-learning is 

to estimate the Q-values for an optimal policy (Watkins and Daynan, 1992). 

Q-Iean-dng systems have formally proven learning capabilities (Watkins, 1989; 
Watkins and Daynan, 1992; Sutton, Barto, and Williams, 1992). An agent using 
Q-learning explores state-space by trying out its repertoire of actions; it builds a 
map of state values based upon the expected long-term discounted reward. 

The main difference between actor-critic and Q-learning systems is that actor- 
critic learning systems have two distinct sub-systems--one for estimating the 
long-term utility of each state and one for choosing the optimal action for each 
state-and compute state and action utilities separately whereas Q-learning 

systems maintain estimates of combined state-action pair utilities. Q-learning, 

thus, combines the operations of the actor and critic sub-systems. 

Q-1earning is said to be conceptually simpler, have a better-developed theory and 
has been found to converge faster in a number of cases, than reinforcement 
learning (Sutton, Barto and Williams, 1992). However, the implementation of 
reinforcement learning of Barto, Sutton, and Anderson (1983) is suited to the 
incremental structure of ART-based networks. Q-learning will not be considered 
henceforth in this thesis; further details will be found in Watkins, 1989; Watkins 
and Daynan, 1992; Sutton, Barto, and Williams, 1992. 
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3.6 The BSA Reinforcement Learning System 

3.6.1 The Associative Search Element (ASE) 

The BSA implementation (Barto et al, 1983) uses the following quantisation, of 

state-space: 
i)x: -2.4m<x<-0.8m: gx! 9+0.8m<x: 9+2.4m, 

ü) 0: - 121! 9 0< -61: 9 0< -P: 9 0< +1: 9 0< +60: 9 05 +121>, 

iii) t: t< -03m /s :9t5 +O. 5m /s< ic 

iv)ö: ö<-500/s2>, ö: g+500/S<ö 

This collection of intervals results in a state-space partition of 162 distinct 

regions. A decoder system (see Figure 3.6) assigns a unique output line to each 

state-space region. This set of decoder outputs forms the unit input vector to the 

single ASE processing element. During processing, a state vector enters the 

decoder which switches on the appropriate input line to the ASE which 

subsequently issues a control action depending upon the current system state. 

To avoid confusion between the original ASE /ACE notation and the original 
ART notation, the ASE / ACE notation has been modified and consequently 
differs from that used in the original paper of Barto et al, (1983). 

The ASE control output is computed by 

R 
y(t) fII Zi (Oxi W+ E(01 (3.7) 

where y (t) is the output at time t, zi (t) is the scalar weight value of tile i" ASE 

input line at time t, xi (t) is the activation of the i" ASE input line, 

EW - NAD is Gaussian noise derived from a zero mean source with unit 

variance and 

fW1 for x '? - 0 

-1 forx<O 
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gives the activation function of the ASE element which signifies the right and left 

control actions respectively. 
Reinforcement 

Figure 3.6. A neurocontroller based upon reinforcement learning. Both the original associative 

search element (ASE) and the adaptive critic element (ACE) of Barto et al (1983) have been 

retained. The independence of the decoder from the ASE / ACE subsystems makes it a focus for 

possible modifications (After Barto et al., 1983). 

The BSA implementation uses a standard basis of 162 unit vectors of 162 entries; 

when the Ph input line is active, the basis vector signifying the ASE input vector 

consists of all zero entries except for a "one" at the Ph entry. The decoder is a 
sub-system of the whole control system which lends itself to useful modification. 
This allows the properties of the controller to be modified whilst retaining the 
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functionality of the ASE and ACE sub-units. Various methods of state-space 

partitioning become possible (e. g. Lin and Kim, 1991) including self-organisation 

through experience as considered in this thesis. Thus, the a priori partitioning of 

state-space, as given in the original formulation, is a sufficient but not a necessary 

condition for using the ASE / ACE system. 

From equation (3.7) it can be seen that, at a given time, r 

Y(T) =f [z k (r) + C(T)] ke fl,..., 162} 

where k is the index of the input line. The weight, zi (r) signifies the direction in 

which the control force is applied at time,, r depending on the'result when added 

to e(r) the random perturbation also at time, r. 

The ASE weight evolution equation, for the i" input line is given by 

zi (t+1) =ziW+ ar^(t)e iW1 (3.8) 

where P(t) is the real valued reinforcement at time t, ej (t) is the "eligibility" at 

time t of input pathway i and a is the positive rate of change constant for z, 

whichdetermines the magnitude of change in zi with respect to the reinforcement 

signal. The term 'reinforcement' has already been mentioned and, for the ASE 

unit operating alone, is given the value of 0 throughout a trial until failure occurs 

when it becomes equal to -1. 

Eligibility is derived from the work of Klopf (Klopf, 1986,1988) and represents 
the temporal weighting of the reinforcement signal in the derivation of the weight 
change. In a series of modifications to the Hebbian model (Hebb, 1949), Klopf 

suggests that, "instead of correlating approximately simultaneous pre- and post- 
synaptic signal levels, earlier pre-synaptic signal levels should be correlated with 
later post-synaptic signal levels. "' (Klopf, 1988). Klopf considers changes in 
levels to be more important but here we are concerned with the signal levels and 
delay effects. This is consistent with a solution of the credit assignment problem 
which requires temporally adjusted weight updates for distributing credit or blame 
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to state-space partitions traversed by an evolving state-space trajectory. The 

eligibility update equation is given by: 

e, (t + 1) = &i (t) + (1 - 8)y(t)xi (t) (3.9) 

where 3,0: 5 8<1 is a constant determining the eligibility trace decay rate. 

This linear difference equation gives an exponentially decaying eligibility trace 

which maximally contributes to weight updates when the given input line is 

activated recently with respect to the reinforcement signal. Without stimulation 

via conjunction of pre- and post-synaptic activity reflected in equation (3.9), the 

eligibility trace passively decays. This is Hebbian leaming (Hebb, 1949) with 

passive decay. The inclusion of the term y(t) ensures that information regarding 

the direction of the force is included in the weighting which reflects the expected 
lifetime and desirability of a particular control force. Consequently, actions which 

were made relatively long ago, with respect to eventual failure, merit little change 

to their expected lifetimes and, thus, exert little influence on the outcome. 

3.6.2 A Non-linear Evaluation Function 

The ASE element forms the action network and is formally equivalent to the 
boxes system. In theory, this action system could implement a linear 

neurocontroller without quantization of the state-space. A linear neurocontroller 

using the adaline element learned to balance the pole using operator modelling 
(Widrow and Smith, 1963). For an autonomous system-not using supervised 
learning or operator modelling--this would require an evaluation function which 
evaluated the consequences of each action on-line. 

In practice, the ASE could not learn such a linear control mapping without 
knowing the desired output for each input state using a linear evaluation function 
because no such linear function exists. The evaluation function would have to be 

non-linear (Anderson, C. W., 1989) and so precludes the use of linear neural 
networks to develop neurocontrollers without pre-processing. Ile BSA 
implementation uses linear neural elements but does not violate the non-linearity 
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requirement because the quantization of state-space is a form of pre-processing 

which transforms the original variables into a form which allows a single linear 

element to solve the control problem. The evaluation function of the BSA system 

uses the quantization of state-space and constructs a look-up table of system 

states (Boxes) and their current evaluations regarding reinforcement. Using an 

evaluation function allows a continuous reinforcement signal to be used instead of 

the crude failure signal. The more informative signal consequently improves the 
learning rate. 

Other methods of solving the control problem will be discussed in section 4.2.10 

onwards including Anderson's non-linear action and control elements, each 

consisting of two layers (Anderson, C. W., 1989). 

That any evaluation function for the cart-pole system is non-linear can be seen by 

examining the angle failure criterion alone (Anderson, C. W., 1989). Consider an 

evaluation function using the BSA failure criterion of ± 12' and using positive 
and negative reinforcement of +1 and -1 respectively at the extremes. Traversing 

the evaluation function angular range between failure at - 12' through the 
"successful" region to failure at + 12' indicates that a linear function (hyperplane) 

to solve the problem does not exist. Figure 3.7 shows a simple hypothetical 

evaluation function which is clearly non-linear. 

+1 
Reinforcement 

Pole 
Angle 

-1 

- 12" 00 + 12* 

Figure 3.7 A possible evaluation function for reinforcement given the pole angle. At the two 
extremes of pole angle, the reinforcement is -1. At the balance point, reinforcement is +1. No 
linear decision boundary exists (a single point) between positive and negative reinforcement. 
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3.6.3 The Adaptive Critic Element (ACE) 

The ACE is similar in structure to the ASE (see Figure 3.6) and computes an 

expected or predicted reinforcement signal given the current state vector and 

external reinforcement from the system; the predicted reinforcement is continuous 

unlike the external reinforcement signal and allows learning throughout a trial. 

Thus, the combined ASE / ACE system is not a purely failure driven system. The 

prediction of expected reinforcement is given by 

p (t) qj (t)xi (t) (3.10) 

where qj (t) is the weight for the i" input line and x, (t) is the input signal for that 

line as before. 

The learning rule is given by 

qj (t + 1) = qj (t) + br^(t)Y, (t) (3.11) 

where b, b>0 is a constant which determines the rate of change of learning in 

qj, rý(t) is the predicted reinforcement and X, (t) is a trace of the activity of the 

input variable x,. 

This trace, unlike the eligibility trace, does not take into account the control 
action chosen by the system for the region of state-space. It is given by: 
Yj (t + 1) = AYj (t) + (I - A, )xi (t) (3.12) 

where A, 0 _5 A<1, is a rate of change constant. Although similar in form to 

the eligibility trace, it provides a record of the activity of the input line x, alone 
during the trial to determine whether or not the particular input line contributes to 
the prediction. With the present protocol of selecting a single input line, equation 
(3.10) becomes p (r) = q,, (r) at time r where the weight q, reflects the 

prediction of failure for a given control action elicited by entering the region of 
state-space coded for by input line k. 

A distributed version of equation (3.10) might also be used where multiple input 
lines, xi (t) , are activated to varying degrees, in the range zero to one, and thus 
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weight the prediction contributions to give a final prediction of reinforcement; this 

possibility is mentioned in Barto et al (1983). A novel distributed architecture, 

FUZBOX, is discussed in section 5.5. 

The predicted reinforcement is given by 

P(t) = r(t) flp(t) - p(t - 1) (3.13) 

where r(t) is the external reinforcement, r(t) e jOi-11, andy, 0 <, y: 5 1, is a 

discounting factor. The discounting factor is required to prevent the 

reinforcement from becoming self-sustaining. To see this, consider 7=1 and 

p(t) = p(t - 1) at some time, t. If failure has not yet occurred, equation (3.13) 

gives ; (0 =0+ p(t) - p(t - 1) =0 

Now, from equation (3.11), qj (t + 1) = qj (t) + br^ (t)Yj (t) = qj (t) :P (t) =0 for 

some node, i, so that p(t + 1) = qj (t + 1) = qj (t) = p(t) if node i is chosen again. 

Thus, the prediction for a particular node becomes self-sustaining. 

When r(t)--O, (failure has not yet occurred) a smaller prediction of failure, 

p(t)>p(t-1), (e. g. -0.8 > -0.9) signifying a transition from a region of higher 

expected failure to a region of lower expected failure, constitutes a positive 

reinforcement. 

When r(t)=-l (failure), p(t)---O (no present prediction) and equation (3.13) 
becomes F^(T) = -1 - p(T - 1) . Thus, the degree of prediction of failure is taken 

into account and fully predicted failure is not penalised. 

For the reinforcement learning system just described, the weights can be viewed 

as representing probabilities (although not nomalised) stored in stochastic 

automata which determine the next action given a particular state. 

This is an approach to reinforcement learning in a specific way. For a more 

standard introduction see Barto, Bradtke and Singh (1995). 
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3.7 Simulations 

3.7.1 Replication 

The BSA system was implemented as detailed in Barto, Sutton and Anderson 

(1983) for comparison purposes. A series of runs was carried out. Each run 

consisted of a sequence of trials, the cart-pole state was reset to 

x=! =0=6=0 at the beginning of each trial. Ile ASE / ACE parameters 

were set as follows: a=1,000, b---0.5,8--0.9, y--0.95, X=0.8. The cart-pole 

simulation details are given in appendix F. 

A summary of the results of 100 runs is given in Table 3.1. A mean trial count of 

106 trials required for convergence concurs with the results of Barto, Sutton and 

Anderson (1983) in which 10 runs were carried out up to a maximum of 100 

trials. At 100 trials the BSA results show an average balance time of 

approximately. 1600 seconds (80,000 time steps) indicating that the system had 

learned to balance the pole. 

mean min max SD 

106.09 33 917 133.073 
rable 3.1 Mean results for 100 runs for the replication studies of the original BSA system. 

The min trials and max trials figures indicate the minimum number of trials to 

convergence and maximum number of trials to convergence respectively during 

the set of 100 runs. Note the large variation between a run which converges 
within 33 trials and one which took 917 trials to converge. 

The standard deviation figure of approximately 133 shows a large variance and 
indicates that the convergence rates are not grouped tightly; The variability of 
convergence is confirmed further in Table 3.2 which shows the first 10 runs of the 

replication simulation. 
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seed 1 2 3 4 5 6 7 8 9 10 

trials 71 130 50 53 50 121 141 83 57 82 

Table 3.2 The convergence times for the first ten runs of the replication studies. 

To get the figures for 100 runs, one anomalous run was removed because it failed 

to converge within 10,000 trials and it appeared that the system could not recover 

from "bad! ' strategy choices. 

Individual runs were qualitatively similar to those of the original BSA 

implementation; Figure 3.8 shows the characteristic slow start, with many early 
failures, followed by a rapid rise in performance. 

0 
C 

0 

Figure 3.8 A typical run showing ASE/ ACE reinforcement learning performance over 100 

trials. 

Figure 3.9 displays the same results without averaging across bins of five (see 
Barto, Sutton and Anderson, 1983). In this raw form, it is readily apparent that 
learning is not monotonic with trial durations dropping down to lower levels as 
time proceeds. 

151 

10 20 30 40 50 60 70 80 90 100 
TrW number. 



I 
Figure 3.9 The run of Figure 3.8 without averaging to show the non-monotonic nature of 

learning. 

Figure 3.10 shows the incremental usage of boxes during learning. The 

monotonic increase in the number of boxes recruited continues until a sufficient 

coverage of state-space is achieved. For this run, a total of 129 boxes, out of the 

maximum of 162, was used. 

120 

100 

I 
so 

60 -6 

40 z 

20 

Figure 3.10 The incremental use of boxes with learning for the ASE ACE system for the run 
of Figure 3.8 
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3.7.2 Box Usage. 

The run details give useful information about the performance of the BSA 

implementation of a reinforcement leaming system However, this is a black box 

approach and does not give any indication of how the control strategy is 

represented across state space for any particular run. At this point it is instructive 

to "open the box" and look at a particular control strategy implementation. 

The BSA system can be envisaged as a crude rule-base which specifies a mapping 

between states and actions. Figure 3.11 shows a trained system in graphical form 

Only a subset of the state-space regions are shown for illustrative purposes. The 

information is stored as a set of 162 "rules" with four antecedent 

propositions-one for each of the state variables-and a consequent action 

, specifying a positive or negative force. To represent the five dimensional 

information in two dimensions, the cart position and cart acceleration are used as 

parameters to specify one of nine quantised phase planes involving the angle and 

angular acceleration. The box shadings indicate that a box has not been entered at 

any time or, if it has been entered, the direction of the force specified by the 

control policy. The phase plane shown in Figure 3.11 consists of 3X6 or 18 

boxes a-rising from the fact that the pole angle is quantised into six regions and the 

angular velocity into three regions. The cart distance and cart velocity have been 

fixed giving one of nine possible phase planes. 

(a) (b) 
Figure 3.11 Two quantised phase planes showing control rules after training. Black and white 
regions indicate left and right control forces respectively. Grey regions indicate regions of state- 

space not yet explored for this run. 
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Figure 3.12 shows the magnitudes of the weights for the state space region (a) 

illustrated in figure 3.11; the increased detail gives a better idea of what is 

happening. Areas of state space which have not been entered may have 

impossible combinations of state variables. 

Michie and Chambers (1968b) distinguish between "informed7or "uninformed" 

and "decisive" or "indecisive" boxes. These labels are given on the basis of the 

amount of information accumulated and the strength of the left or right decision. 

They noted that the cart-pole problem exhibited considerable symmetry-, this fact 

was used to extract information about the nature of learning with the 'boxes' 

system (Michie and Chambers, 1968a). 

For the initial random configuration, there was 50% symmetry when it came to 

left / right decision malcing. The final configuration for a single run exhibited 84% 

symmetry for informed boxes and 50% symmetry for the uninformed boxes. 

Thus, learning allows the boxes system to order information and build a 

structured representation of state space. Note that the internal representation in 

this case is transparent, that is, it is directly accessible by an observer. There is no 

need for a, possibly complicated, mapping between weight space and state space. 

Informed and decisive regions of state space are where a left / right decision is 

essential for the maintenance of an adequate control strategy. Regions which are 
informed and yet indecisive are "don't care" regions which are not so important. 

Uninformed regions signify difficult or impossible combinations of state variables 

which often entail contradictory control aims. The boxes system can be seen as 
building up its own classification of "controllable" and "uncontrollable" states 
(Michie and Chambers, 1968b). 
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(a) ASE weight values for the box usage diagram of Figure 3.11. Note the variation in weight 

magnitudes between boxes making the same direction "decision". 

(b) Box usage for a phase plane adjacent to that of (a). this phase plane results from a shift of 

only one cart velocity range. 

Figure 3.12 Box usage graphs extending the information given in Figure 3.11. The codes 
"0,1 ...... form an 'index of the state-space regions used by the boxes system e. g. 00 denotes the 

first box of the phase-plane and 52 denotes the eighteenth. 
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3.7.3 New Box Boundaries 

The decoder box boundaries of the replication simulations were those specified in 

the paper of Barto, Sutton and Anderson (1983). Simulations using different box 

boundaries were carried out to anticipate the use of a fuzzy partitioning and to 

investigate robustness to variations in partitions. Table 3.3 shows the first 10 runs 

of the original BSA system using the parameters and conditions of section 3.7.1 

but with all box dimensions increased by 10%. A run by run comparison of Table 

3.3 with Table 3.2 reveals significant differences in convergence times. 71be 

vanations indicate that convergence times are sensitive to changes in state space 

partitioning. Fixing partitions a priori requires a decision about the suitability of 

box boundaries; indeed, the BSA implementation uses a partition "... based on 

specific knowledge of the control tasle' (Barto, Sutton and Anderson, 1983). If 

problem specific knowledge is not available, much experimental work may be 

required to optimise the state space partition and, even then, the partition may 

only be suitable for a given set of parameters. 

seed 1 2 3 4 5 6 7 8 9 10 

trials 426 47 50 125 85 -2794 56 269 112 61 
Table 3.3 The convergence times for the first 10 runs of the replication studies with the box 

boundaries increased by 10% 

mean min max. SD 

295.4 21 3881 670.736 

rable 3.4 Mean results for 100 runs for the replication studies with the box boundaries 

increased by 10% 

for the results of Table 3.4, two runs were discarded which did not converge 
within 10,000 trials. Comparing these results with those of table 3.1 indicates that 
performance is affected by even a small change in the box boundaries. The mean 
convergence "time" has almost tripled whilst the variance has increased 

considerably. 
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To anticipate the simulations of section 5.5.6 using a fuzzy partitioning, the state 

space was set up using the following unoptimised partitioning: 

i)x: -2Am: 5x<-1.6rn: 5x<-0.7m5x<+0.7m: 5x<+L6? n5x<+2Am, 

e-. - 120: 9 69 < -69: 9 e< -r! g e< +1: 9 e< +6': g e: 5. +l2', 

iii). t: t: 5-2. Omls<. t: 5-03mls<. t: 5+03mls<. t: 5+2. Omls<. t 

iv) 6: 6< -50"Is: 5 6< -1001s: 5- 6< +1(r/S: 5 6< +5001s: 5 6 

This partitioning is what would result if a fuzzy partitioning was used in winner- 

takes-all mode, that is, if the partition boundary between two fuzzy boxes was 

taken where the fuzzy membership functions crossed. The fuzzy boxes system, 

FUZBOX, is covered in section 5.5. 

Table 3.5 shows the first ten result obtained using the same conditions of the 

previous two simulations with the new partitioning. 71be difference in 

convergence time for the same random number seed is large in some cases; run 6 

failed to converge within 10,000 trials. 

seed 1 2 3 4 5 6 7 8 9 10 

trials 55 276 374 3707 70 - 1239 53 51 178 

Table 35 The convergence times for the first 10 runs of the replication studies using the new 
625 box parfifioning 

Using a fuzzy partitioning, which has the discrete partition described above as its 

limit, the results are radically different as shown in section 5.5.6. 'Me difference 
in convergence times observed when using a form of distributed representation 
indicates that distribution of information across neighbouring boxes may be a 

useful characteristic to confer upon an autonomous learning system because 
learning is accelerated. 
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Distributed representation systems are discussed in section 5.5 where learned 

information is used to inform neighbouring boxes and control information is 

obtained from more than one box and combined to give a resultant. The 

remainder of chapter 3 will continue to look at non-distributed systems and their 

properties; this is commensurate with the original BSA reinforcement learning 

implementation. 

3.7.4 Discussion 

The ASE / ACE implementation of reinforcement learning is very effective as can 

be seen from the results and it is difficult to see how the actual learning 

mechanisms should be modified to improve upon it. However, the decoder is 

functionally isolated from the ASE / ACE modules and provides a focus for 

modification. 

The original decoder (Barto, Sutton, and Anderson, 1983) is preset by the user 

according to empirically derived principles. This is not entirely satisfactory for an 

autonomous system which should be able to develop its own quantisation of state- 

space through experience. This is the subject of Chapter 4 which introduces and 

evaluates a novel self-organising decoder, EUCART, (Marriott and Harrison, 

1995,1996). 

One noticeable characteristic of the BSA reinforcement learning system is that 
learning is not monotonic. Learning consists of exploration of the state-space 
using a stochastic search technique; this is exploration. During exploitation of 
control strategies, the state-space trajectory may drift into neighbouring regions of 
state-space which have not yet been explored; this may happen because random 
perturbations force the trajectory out of control regions which are only weakly 
established. The exploration-exploitation gives rise to characteristic "plateau and 
drop" behaviour where successful control appears to be established and lost. 
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Chapter 4 EUCART and the EUCART- 
BSA Hybrid 

4.1 Background 

This section provides an overview of the problem and a critique of some current 

approaches. The development of a novel architecture is, thus motivated. 

4.1.1 The Decoder Subsystem: Pre-processing 

In the original BSA implementation, the decoder is specified by using a fixed 

mapping between the partitioned state-space and the input lines. Another decoder 

scheme (Lin and Kim, 1991) uses the cerebellar model articulation controller 

(CMAQ of Albus (Albus, 1975a, 1975b, 1979; Tolle and Ersu, 1992) with a 

fixed number of memory locations and an efficient mapping which maps only 

states which are used, to locations in the CMAC controller. The distribution of 

state-space information across the locations leads to a degree of overlap and, 

consequently, some ability to generalise about regions of state-space not yet 

traversed. The large state-space is mapped to smaller storage space using the 

state variables as an address key (Lin and Kim, 1991) for the decoder. This 

compression avoids allocation of storage for large regions of state-space which 

are not used. 

The decoder provides a sub-unit replete with possibilities for modification. 
Decoder modules can be designed which implement various mappings between 

state-space and the ASE / ACE controller sub-systems. If the decoder co-domain 

consists of independent input lines as in the original BSA implementation, then the 

possibility of increasing network size by exploring state-space presents itself. The 

addition of new input lines, representing newly traversed areas of state-space, will 

not conflict with the previously established input lines to the ASE / ACE and their 
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corresponding weight and trace values. Although the input lines are independent, 

the state-space regions represented by these lines may overlap and temporarily 

disrupt the mapping; this phenomenon is considered in section 4.2. 

4.1.2 An ART-based decoder 

From equations (3.7) and (3.10), for some k, 

xi (t) =1 
for i=k 

0 for Vi * kv 

means that y(t) and p(t) depend upon one input line only. This decoupling of the 

xi allows the addition of new input lines without disruption of the established 

output and prediction values, for the existing lines, which would occur if more 

than one input line contributed to the calculation. Thus, decoders which 
dynamically partition the state-space, using whatever method, can be easily linked 

to the ASE / ACE sub-systems provided that the coded state-space regions have 

unique input lines. This method is highly dependent on experience and is flexible 

in that new regions of state-space encountered under different initial conditions or 
disturbances can be accounted for by allocating new storage areas (nodes) which 

contain the traces and expected lifetime / prediction values for the newly 

encountered state-space region. 

A distributed representation of y(t) and p(t) of equations (3.7) and (3.10) 

respectively is possible if input line conflicts are avoided by allocating input line 

activity according to the degree of node membership (e. g. Zhang and Grant, 
1992). Here, the single activated input line convention of Barto et al, (1983) is 

adopted for compatibility between the original ASE / ACE formulation and 
winner-takes-all dynamics. 
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4.1.3 Other Approaches Using ASE /ACE type modules 

A multilayer non-linear network, with sub-systems operationally similar to the 

ASE / ACE subsystems, was developed by Anderson, C. W. (1989) to address 

some of the shortcomings of neurocontroller architectures. 

Anderson acknowledged the problems of control such as unavailability of 
dynamical information and the credit assignment problem, but also stressed the 

non-linearity of the evaluation function (see section 3.6.2). Ibis means that, 

although it is possible to use a linear control force function, there is no way to 

train a linear controller directly from experience; a previously developed control 

law is required to train the neurocontroller which defeats the object of using a 

neural network and precludes autonomous operation. The situation is much 

worse when the plant dynamics are not known and a controller cannot be 

designed to provide examples of desired neurocontroller behaviour. 

The BSA system gets around this problem by using pre-processing to decouple 

the system states to provide a look-up table of neurocontroller actions; this 

approach requires the a priori use of pre-processing by the user which, again, 

reduces neurocontroller autonomy. 

Anderson (1989) proposes the use of a non-linear neurocontroller to allow pre- 

processing to be included in the control process itself. 17he ASE / ACE 

counterparts of Anderson's system are known as the action network and 

evaluation network respectively. 

The action network is non-linear and is capable of learning a control force 
function of the fonn: F, = b, 0, + b26, + b3h, +b4h,, using Anderson's notation for 

the state variables. An alternative method of generating a linear controller, using 
genetic algorithms (Howell, 1994), is discussed in section 4.1.5. 

The evaluation network is also non-linear and is capable of learning the non-linear 
evaluation function. 
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Training is carried out using a variant of the backpropagation algorithm which 

allows the hidden units to learn by circumventing the credit-assignment problem. 

The errors backpropagated to the hidden units of the evaluation function were 

derived from the evaluation network's output whereas the errors backpropagated 

to the action network hidden units combines that error with action information. 

Anderson first shows that using a single layer network gives poor results, even 

though the action net can learn a strategy, because the evaluation function is non- 

linear and so the action network doesn't "know how to learn" such a strategy. 

Results for the two layer network-using the cart-pole simuladon--show that a 

much longer learning time is required when compared to the original BSA system. 

The increase in learning time is accounted for by the advantage of increased 

generalisation across state-space. This illustrates the trade-off between generality 

and learning speed encountered in many control problems. The richer experience 

of the Anderson network makes it more robust in that the network represents a 

non-linear function as opposed to a piecewise look-up table. 

For Anderson's system, approximately 10,000 trials were required to balance the 

pole for about 7,000 steps (140 seconds). An a priori choice of boxes is not 

required but at a cost to performance. 

Lin and Kim (1991) use the CMAC network (Albus, 1975a, 1975b, 1979; Tolle 

and Ersu, 1992) to form the state-space decoder for an ASF. /ACE unit-based 
learning system. The CMAC network distributes individual state boxes and their 

corresponding ASE/ACE weight and trace values across CMAC storage 
locations. Instead of assigning state and related information to a single location, it 

is shared between overlapping locations such that, for a given input repeated 
immediately after learning, the information will be accurately reproduced. 
Repeated learning experiences of this type lead eventually to a distributed 

representation of the control surface. 
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The CMAC reinforcement learning system was tested using the standard cart-pole 

simulation in one of two modes: for mode one, the cart-pole system was reset to 

zero initial conditions after each failure, for mode two the state was reset to a 

random value. The results of simulations using these two modes of operation 

were compared with those of the original BSA study (Barto, Sutton and 

Anderson, 1983) and Anderson's multilayer neural network system (Anderson, 

1989). 

The CMAC based system was found to consistently outperform both of the 

systems used for comparison (Lin and Kim, 1991) and illustrated the effect of 

varying the CMAC storage capacity. The memory storage requirements (in terms 

of locations) could be reduced below those of the original BSA study because 

there are only a few critical states concentrated within a small region. The 

advantages of using a CMAC decoder are a reduction in storage requirements and 

an increase in learning rate through generalisation of state information. No 

memory capability is wasted on uninformative states. Interpolation of information 

across locations reduces both the storage overheads and leads to the observed 

increased learning rate. 

Note that distribution of information throughout the network in this case involves 

individual quantised states being "spread" across the set of storage locations; it 

does not mean that actions and predicted outputs are composites produced by 

combining values associated with several states; individual weight and trace values 

are used by the learning system following retrieval from the CMAC memory. 

Santiago and Werbos (1994) use a method related to reinforcement learning and 
known as dual heuristic programming (DHP) to solve the cart-pole problem. The 

DHP network consists of four components: 

* an action network, which issues the control actions; 

*a critic network, which evaluates the utility of performing given actions; 
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9a model network, which performs one-step-ahead prediction of system 

states, and 

ea utilityfunction which is used to modify the critic network. 

The success criterion for the DHP network was defined as being able to balance 

the pole for 30 minutes (1800 seconds). According to this criterion, the average 

balance time over 11 runs was 31.8 trials to success. The II runs used 4 different 

pole lengths. The results were compared against a set generated using 

backpropagation through time and the DHP network was found consistently to 

outperform the comparison system. 

4.1.4 Other Approaches Using ASE /ACE: A Critique 

Anderson's non-linear system appears to confer robustness of learning at the 

expense of training speed; robustness is desirable in control applications but at 

what cost? The use of a feedforward network trained with a modified 
backpropagation method (gradient descent) reduces network flexibility. 

The network size and configuration has to remain fixed once specified; no nodes 

can be added or removed during operation to adjust the network according to 

experience in state-space. This may lead to sub-optimal solutions in that a control 

or evaluation surface may be under- or over-represented. 

The network is also opaque in the sense that the distributed stored representation 
does not easily yield information to a user or expert. Extraction of explicit 
operational information from feedforward neural networks, such as the multilayer 
Perceptron, is not easy (Ma, Harrison and Kennedy, 1995) and requires 
specialised construction to facilitate rule extraction (Brown and Harris, 1994). 

The CMAC interpolation method is not of the first type postulated by Barto, 
Sutton and Anderson which would involve "overlapping sets of output pathways" 

164 



(Barto, Sutton, and Anderson, 1983). It is of the second type involving 

associative memory networks "... in which dispersed rather than localised patterns 

of activity encode infonnation. " (Barto, Sutton, and Anderson, 1983). 

The distribution method of the second type, although conferring advantages upon 

the learning system---like the CMAC based system--does not facilitate ease of 

information retrieval; the system still remains opaque to a user or expert. The 

original boxes (NEchie and Chambers, 1968a) and BSA (Barto, Sutton and 
Anderson, 1983) approaches formed a crude rule-base from which dynamical 

information could be obtained easily. For the CMAC based system, the output 

would have to be reconstructed for a given input and the rules generated using a 
black box (based only on input / output behaviour) approach (Ma, Harrison and 

Kennedy, 1995); this would lead to a combinatorial explosion of trying different 

combinations of inputs to generate the rule base even though there are a limited 

number of storage locations. The main reason is that the storage locations do not 

have a direct one-to-one relationship with a rule-base--the candidate rules 
(boxes) being distributed throughout the CMAC memory. 

The EUCART-based reinforcement learning system has some of the 

characteristics of transparency with nodes directly representing sets of related 
states (closed balls) with associated weight and trace information. These state 
sets can be seen as "micro-rules" giving dynamical information about small 
regions of state-space. The use of localised as opposed to distributed information 

eases the problem of infon-nadon extraction and, as explored in this thesis, makes 
structural alteration of the neurocontroller feasible through pruning and addition 
of nodes. 

The EUCART rules, although transparent, are not sufficiently general; an 
investigation into the feasibility of "lumping and splitting" Mchie and Chambers, 
1968b) is required. Such a scheme of rule generalisation or specialisation is 

possible because of the non-distributed nature of the decoder module. The lack of 
distribution of the second type, however, does not preclude the possibility of 
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distribution of the first type which is compatible with both generalisation and 

transparent information representation; the latter forming a one-to-one 

relationship with a rule-base. 

The fuzzy version of the BSA boxes system, named FUZBOX here, combines the 

advantage of a distributed representation (of the first type) with the utility of a 

transparent control mapping in the form of fuzzy rules; the rules encapsulate easily 

interpreted dynamical information and allow combinations of rule information 

across states to facilitate learning and control action. The FUZBOX system is 

discussed in detail in chapter 5 where it is compared with other systems including 

the EUCART-based system. 

4.1.5 Alternative Approaches 

As discussed in section 3.3.4, the cart-pole system can be linearised so that 

standard state-space methods can be applied. The fact that a linear controller 

exists means that a linear neural network such as the adaline can be used as a 

neurocontroller. The adaline provides an early example of neurocontrol (Widrow 

and Smith, 1963; Widrow, 1987) using operator modelling where an existing 

controller or human operator is used to provide the training data. Supervised, 

learning is required when linear neural networks are used because the control 

evaluation function is non-linear. A visually supervised version of the linear 

adaline controller has been developed (Tolat and Widrow, 1988) 

The linear cart-pole model is controllable using proportional plus derivative 

control (Picton, 1994) where the control force is proportional to the error and the 
derivative of the error between the actual and desired outputs. The output is a 
linear function of the cart position and the pole angle and their derivatives. Bang- 
bang control can be used; it is time optimal as shown by Pontryagin's Maximum 

166 



Principle (Hocking, 1991). A suitable control system consists of proportional 

plus derivative control and a hard limiter (Picton, 1994). 

Defining a parameter vector, w= [w, W2 W3 Wj and a state vector 

X= 
[Xl 

X2 X3 X41 
t 

=[x t0 61t the form of a bang-bang control 

solution can be stated as u= sgn(wtx) which can be solved using an adaline with 

a hard limiter on the output (Widrow and Smith, 1963; Widrow, 1987). The 

adaline is more suitable than the Perceptron (Rosenblatt, 1962) owing to the 

requirements of the Perceptron Convergence Theorem. If the separating 
boundary of the two classes representing the discrete outputs is not defined 

precisely by the data (rendering the problem not linearly separable) , then the 

Perceptron will not converge. The adaline will cope well with noisy data and give 

the best linear approximation. The adaline solution defines a switching surface 

and generalises after being trained using a borderline exemplar set. 

The adaline controller was trained, during a training phase, using a teaching 

controller (Widrow and Smith, 1963; Widrow, 1987). The linearised differential 

equations representing the cart-pole system were given by 
2g 

0- 
3F 

and 41 41M 

IF where assumptions were made that damping was negligible, and that M 

the pole has no effect upon the cart motion. The teaching controller was of the 
form 

u= -2-06 - 1.00 + 1.01 + l. Ox The state variables were individually coded using a 
6 bit binary code giving a 24 bit binary input vector. Although successful, such 
linear systems are limited and have very limited autonomy; they are restricted to 
linear system models and have to be trained using an operator or existing 

controHer. 

Criticisms of inflexibility and possible sub-optimal learning by Anderson's non- 
linear reinforcement learning system (Anderson, 1989), are addressed with a new 
architecture based upon Q-1earning. The Q-Leaming system with hidden unit 
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restart (Anderson, 1993) still uses a fixed structure net but allows the reuse of 

existing nodes. The goal of supervised learning is to obtain a compact 

representation with good generalisation. The Q-learning network uses an 
incremental gradient based search (similar to backpropagation) and gives initial 

fast learning with localised experience; the network is not allowed to generalise 

too widely in the beginning. There are a number of fixed units which are trained 

at every step. During the gradient based search, units are not added or removed; 

changes to network topology are made by restarting the least useful unit. 

An example of plant modelling (forward modelling) applied to the cart-pole 

problem is the temporal difference approach of Jordan and Jacobs (1990). They 

attempt to model the system by using the error between the actual and predicted 

plant outputs to drive a backpropagation algorithm. The idea is to find an 

adequate model and use this model to train a neurocontrolier. The simulation 

protocol is similar to that of Barto, Sutton and Anderson (1983) but with three 

important differences: 

* disturbances (white noise) were derived from the environment and not from the 

controller 

9 the forces applied were real valued, not binary, and 

after failure, the cart-pole simulation was set to a random value, not to the 

origin. 

The temporal difference algorithm of Sutton (1988) was used to learn the system 
model; this is a prediction problem. A variant was developed in which the 
learning of the forward model and the controller proceeded simultaneously. 

The results of 20 runs were stated. Of the 20 runs, 18 found an adequate control 
configuration and 2 fell into local minima. A set of six runs was illustrated and had 

a minimum and maximum run length of approximately 250 and 1400 trials 
respectively. 
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The learning times were longer than those for the original BSA study. However, 

learning speed is not necessarily the best guide to performance. The fact that a 

random starting position was used following failure is likely to mean that the 

controller is more robust to changes in starting conditions. 

The approach of Connell and Utgoff (1987) attempts to build up a "map" of the 

environment through experience. For the cart-pole problem, training information 

is weak. Physical system and control constraints makes inevitable regions of 

state-space where the recovery of control is not possible; these I'doomex' regions 

of state-space must be avoided at all costs. The goals of an autonomous learning 

system are to identify and to avoid these undesirable states. The fundamental idea 

is to build up a potential map of state-space including the "hot spots". 

The CART system of Connell and Utgoff (1987) consists of four elements which 

work together to construct the potential map: 

41 problem generator: which initialises the cart pole system for a new trial; the 

cart-pole system is reset to a small random perturbation away from the 

equilibrium point where the cart is centred, on the track and the pole is vertical. 

performance element: which chooses a control action-a left or right push---at 

each time step; the choice is either to repeat the last action or to carry out the 

opposite action. The decision is based upon the angle between two vectors, 

the gradient and extended vectors. The gradient vector-4ndicating the 

direction of the desirable state-space trajectory --is computed first followed by 

the extended vector which shows the direction of the state-space trajectory if 

the last action is repeated. The objective is to move to a more desirable state 
by following the gradient "downhill"'. If the angle between the two vectors 
indicates that the current action policy is reducing the undesirability of being in 

this region of state-space then continue, else change the action; 
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e learning element: which estimates the desirability of states given the 5- 

dimensional training instances of the state vector coupled with a +1 or -1 label 

which constitutes the reinforcement. I'he learning element interpolates 

between the training instances to build up a surface in 5-dimensional space; 

critic: which supplies information to the leaming element in the form of the 

state vector and label pair. The process is initiated using a short-cut which sets 

all state variables to zero and labels this point as desirable. When the pole falls, 

the final state is labelled as an undesirable state. Between these two extremes, 

the algorithm runs until the pole is balanced for greater than 100 time steps. 

The algorithm is to back-up to the state which occurred 50 time steps prior to 

failure and keep on backing-up until a state is found from which at least 3 of 

the state variables decrease in magnitude; the resulting point is then labelled as 

desirable. 

The numeric parameters of 100,50 and 3 featured in the critic are empirically 
derived. An automatic method of deriving such parameters would be desirable 

(ConneR and Utgoff, 1987). 

An approach, based upon drive-reinforcement theory and related to temporal 
difference learning has been developed by Morgan, Patterson and Klopf (1990). 

Temporal differences of predicted reinforcement are compared and used to 

control learning at the single neuron level. A network consisting of two neurons, 

one for each force direction, has a series of inputs or "drivee' which represent a 

prediction of eventual reinforcement. A change in a drive level represents a 
change in predicted reinforcement. 

The main difference between this approach and the BSA approach is that only 
those drives which have recently changed are reinforced thus rendering fewer 
drives eligible for reinforcement. It was claimed that for one particular run, only a 

single trial was required to learn a successful control strategy without failure. For 

this run, parameters controlling the learning rate were set a priori. For other 

170 



values of the learning rate parameters failures occurred. r1be state-space 

partitioning is Exed a priori for the drive-reinforcement system in a similar 

manner to the boxes or BSA systems. 

An alternative method to neurocontrol is provided by the field of genetic 

algorithms (e. g. Goldberg, 1989). Genetic algorithms are another example of 

artificial learning methods inspired by the biological world. Briefly, information 

relevant to a problem is coded as a string of bits called a chromosome. An initial 

population of different chromosomes is generated randomly which provides a 

starting point for the "breeding" process. Changes in the population take place 

over distinct time periods, called generations, which give rise to new 

chromosomes. The changes-with mechanisms analogous to natural mechanisms 

observed in the science of molecular biologr--take place through such processes 

as crossover, recombination and mutation. 

At each generation, a new population of chromosomes is produced which 

represent a set of candidate solutions to the original problem. The number of 

each different type of chromosome is determined by differential reproduction 
between chromosomes which depends upon individual fitness parameters. Ibus, 

a chromosome with a higher fitness value will tend to "breed7 more rapidly than a 

chromosome with a lower one. The fitness value is determined by a 

chromosome's suitability as a solution to the original problem. After a number of 

generations, a population will exist which may contain an acceptable solution to 

the problem. If this is not the case, then more breeding cycles are required. 

Control problems may be rendered solvable by genetic algorithm methods by 

coding the weights of a candidate neurocontroller to give a chromosome template 
(e. g. Wieland, 1991, Maricic, 1991) or by coding the parameters of a known 

system model to give the template (Howell, 1994). The cart-pole problem has 
been solved using both of these methods (Wieland, 199 1; Maricic, 199 1; Howell, 
1994). 

171 



Howell (1994) used genetic algorithms in system identification to find suitable 

sets of parameters for two fon-ns of controller model. The first form of controller 

model was specified to solve the simpler two state problem of balancing a 

pendulum constrained by the differential equation 
4M126 

= mgl sin(O) + mlu cos(O) 3 

The optimal control problem involves using a genetic algorithm to find the 

parameters 

ao,..., as andA,..., Awhich specify a continuous controller of the form 

22 
ao + oc, x, + a2XI + a3X2 + a4X, X2+ a, X2 

O+AXI 
+ p2X2 +AX2 p 

I+ 
AX2 + AXIX2 

2 

2 (t) + X2 (t) + U2 (t) is M* such that the cost function J x, 2 immise& 
9=0 

The 12 control system parameters are discretised, by coding them as 16 bit binary 

numbers covering the range -50 to +50; the resultant 192 bit string is the 

chromosome. 

It was concluded that the genetic algorithm derived controller performed better in 

terms of cost than a controller obtained using a linearisation of the system 

(Howell, 1994). 

When the cart dynamics were included (giving a four state problem) a controller 
4444 

of the form U aXi + 1: pjX2 +11, ykjxkxl was used. The parameters i i=1 j=1 k=1 1-1 

, y, u =0 for some of the terms giving 14 parameters in total. The cost function in 

2 (t) + X2 (t) + X2 (t) + X2 (t) + U2 
(t) 

this case is J X, 234 
t=O 

Again, the developed controller was found to outperform a standard linear 

controller (Howell, 1994). However, the drawback is that the controller learns 

control over one region of state-space and not others; this is a gain scheduling 

problem for which Howell suggests evolving a controller for each chosen region 
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and storing the parameters. Overall control will then be maintained by switching 

between the different controllers. 

Maricic (199 1) offers another evolutionary approach to the cart-pole problem 

similar to Wieland's (199 1) in which a neural network is optimised using genetic 

algorithms. The size and connectivity of the neural network is fixed; one node 

acts as the output. In effect, the genetic algorithm 'breeds' neural networks 

which signify the phenotype. The genotype, consisting of coded weights, is 

altered using genetic operators such as crossover and mutation. The neural 

network output is discretised in the range [-1.0, +1.0]. Results show that 

adequate control is obtained but the technique is not directly comparable to that 

of Barto, Sutton and Anderson (1983) or that developed in this thesis. 

While neural network systems utilising the unsupervised learning method require 

neither explicit pattern pairs nor evaluative feedback per se to operate effectively, 

they are only able to organise input patterns by means of clustering methods and 
have no intrinsic means for adjusting control actions on the basis of environmental 

responses. External learning mechanisms have to be incorporated into candidate 

self-organising controllers based upon such clustering networks. These external 

mechanisms can, for example, involve the use of stimulus-response pattern pairs, a 

cost-function or scalar evaluative feedback. 

A self-organising controller, based upon a Kohonen topology conserving 

network, was developed to learn the control actions of a teacher in supervised 
learning mode (Ritter et al, 1992). A variant akin to reinforcement learning, using 
only a reward signal based upon a specified cost function, has also been developed 
(Ritter et A 1992). In both cases Kohonen's original learning algorithm 
(Kohonen, 1989) has been extended to incorporate an output value for each node 
of the network lattice. In the supervised case, the cart-pole problem has been 

solved by a teacher external to the network which acts as a look-up table 
following training. Although this method obviates the need for re-calculation of 
output values, the requirement for an external teacher limits the autonomy of the 
network. 
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The variant removes the requirement for an external teacher and computes desired 

outputs on the basis of a generalised reward signal derived from a system specific 

cost function. The network no longer has access to desired control outputs and 
forms a continuous mapping between state-space and control output space, with 

the control outputs being determined via a stochastic search process. During the 

search, the stored output value for a particular lattice node is allowed to converge 

to a desirable control action. 

Both the supervised and the variant topology conserving controllers have a planar 

network lattice structure which is fixed ab initio. This places a restriction on the 

information capacity of the network through the determination of the state-space 

resolution by the size of the lattice. In other words, with too few nodes the 

control hypersurface will be coarsely defted. Too many nodes may reduce the 

parsimony of the network depending upon the size of the local update region with 

respect to the granularity of state-space coverage. 

Fuzzy approaches, although relevant here, will be discussed in chapter 5 where 
the application of fuzzy techniques is reviewed briefly. 
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4.2 EUCART Description 

4.2.1 Introduction 

To solve a non-linear control problem using a neurocontroller, a method of 

representing state-space is required which allows the association of control 

actions with distinct state-space regions; the regions may overlap but they must be 

distinctly identifiable so that unique outputs may be assigned to them. A 

convenient set of methods of representing state-space that is compatible with the 

incremental learning paradigm involves Euclidean clustering (e. g. Kohonen, 1989, 

1995). Individual states are assigned to a cluster and, in some cases, new clusters 

may be added as required. Euclidean clustering methods provide a convenient 

way of assigning cluster membership by comparing the distance between an input 

vector and various categories stored by the system. Category assignment based 

upon the Euclidean distance between inputs and category centres, or prototypes, 

results in a partitioning of state-space as shown in Figure 4.1 if winner-takes-all 

dynamics are used. 

Figure4.1. Using Euclidean clustering with winner-takes-all dynamics results in a state-space 

partitioning that consists of irregular convex regions. The regions are comprise intersecting 

hyperplanes that represent the decision surface between neighbouring category centres. 

Inputs are assigned to the category represented by the nearest category centre; 

this results in a unique assignment for each input unless two or more category 

centres are equidistant from an input vector, which is unlikely. Category centres 

may be represented by nodes within the neurocon troller. Following competition 
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between category nodes, either an overall winner or a selection of active nodes 

may be chosen to compute a control output. In the latter case, a method of 

weighting the nodal contributions is required; the weighting is usually a function 

of the category node activation. 

Here, a novel Euclidean clustering method, inspired by some of the attractive 

properties of fuzzy ART (Carpenter, Grossberg and Rosen, 1991), is presented 

that overcomes the problem of category drift (Moore, 1989) and allows 
incremental learning of state-space information without supervision. Ibis method 

is compatible with the BSA formulation of reinforcement learning, and is 

implemented as a state-space decoder that replaces the fixed structure of Barto et 

al, (1983). 

4.22 Fuzzy and Euclidean Clustering 

The fuzzy ART system has many desirable properties of which a subset can be 

abstracted for the purpose of designing a state-space decoder. Framing this 

subset in Euclidean terms serves as a basis for further developments in decoding 

schemes. As will be discussed in this section, emulating one particular aspect of 
fuzzy ART operation provides a first attempt at a solution to the problem of 
Euclidean category drift (Moore, 1989). Other properties framed in Euclidean 

terms lose some of the characteristics which make fuzzy ART particularly good at 
unsupervised learning. However, the Euclidean network presented here is not 
designed to function as a classifier in the sense that the fuzzy ART system is, and 
further development would produce a closer functional relationship between the 
fuzzy and Euclidean clustering schemes if required. The object is not simply to 
have a Euclidean form of fuzzy ART, if that were indeed possible; fundamental 
differences in Euclidean and fuzzy metrics restrict operational correspondences in 

networks to functional analogies. 
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4.2.3 The EUCART System 

EUCART (Marriott and Harrison, 1995,1996) is a novel Euclidean self- 

organising state-space decoder based loosely on Fuzzy ART (Carpenter, 

Grossberg and Rosen, 1991), hence the name, from EUClidean ART. Its purpose 

is autonomously to structure state-space so that the ASE / ACE sub-units may 

associate control actions with individual state-space regions through 

reinforcement learning. The main property of fuzzy ART incorporated into 

EUCART is the category growth property which prevents category templates or 

prototypes from wandering (Figure 4.2). The category growth property allows 

the new category to incorporate the region of state-space encompassed previously 

by the category by expanding outwards towards the input vector up to a 

maximum possible extent. The existing members of the cluster will always remain 

within the category. 

New region of state 
space encompassed 
yt by the original 
p 

category 

State space ? 

originally The category centre encompassed 
may move to a new by the category location 

Figure 4.2. A schematic illustration of the phenomenon of category wandering. As a given 

category centre is updated by a strearn of inputs assigned to the category that it rcpresents, the 

location of the category centre moves and encompasses a new region of state-space. 
Consequently states that belonged to a particular category may not belong to It any longer. 

Category drift may cause degradation of performance in control applications 

where information is lost through the movement of categories. For example, it is 

possible that some states have control actions associated with them when assigned 

to a particular category, but lose these associations when the category moves. 
Consequently, either no control actions are available for such "displaced" states, 
or, different control actions are assigned following the category movement. For 

winner- takes-all dynamics, gains in using the category growth property may be 
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offset by the plasticity of category assignment where states are reassigned to 

nearer category centres during learning. Using the category growth property 

prevents the case where states lose any associated output altogether by ensuring 

that states always remain members of the category extent of one or more category 

nodes once they come within the category boundaries; where there is multiple 

membership, an overall winner may be chosen. The problem of state dissociation 

is shown in Figure 4.3. 

State is no longer 
associated with a 
control action 

Original category 
now encloses a new 
region of state 
space 

Figure 4.3 Category wandering can result in dissociation of states from control actions that are 
learned responses to these states. Control infortnation is lost or disrupted depending upon the 

degree of category displacement. 

Where a distributed representation is used, the phenomenon of category 

wandering presents more of a problem because once a state "informs" a control 
output associated with a category node, even if that particular category node is 

not the overall winner next time, it still contributes proportionately to the output 
because states may belong to one or more categories. Thus, when states are 
dissociated from categories that they have informed (i. e. they have modified 
associated category information) when these states or regions of state-space are 
reactivated, information relating to the control output is lost. This is illustrated in 
Figure 4.4. 

-- 

I 
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/?: t 
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Now, the control output for this 
state is determined by a single 
category only 

Figure 4.4. The effect of category wandering when a distributed representation is used. 

Categories that previously contributed to the control output no longer have any effect. The 

category growth property ensures that, for a distributed representation, once a region of state- 

space contributes to a category and its associated control action, it will always continue to do so. 

The EUCART system retains the ARTfields FO, F, and F2 but differs in the 

dynamic operation of the latter two, especially in the case of the matching field, 

F, 
- 

Unlike Fuzzy ART, EUCART does not use complement coding. The input is 

given by I= (I 
I, -, 

/m),. a subset of the real line, 
,Vi=I,, 

M. 

Note that dropping complement coding removes the unit normalisation restriction. 

That is, inputs do not have to remain within the unit hypercube. However, 

EUCART inputs have to be within a fixed input space (hypercuboid) of specified 

dimension. In this paper we confine the inputs within the unit hypercube, [0,11'4 

for convenience. Each F2 node represents a class or category of inputs and 

operates in wi nner- takes- all mode as before. 

Associated with each F2 node j is a set of adaptive weights 

WI= (Wil 
1 Wj21 .... Wj2M), Vi = 11.... N. These weights store the network LTM 

traces in a form allowing emulation of a fuzzy ART property which prevents 

category wandering. Two vectors of length M are stored as a single vector 

representing the minimum and maximum extents of category growth in elements I 

to M and M+l to 2M respectively. Before discussing this mechanism it instructive 

to look at both Euclidean and fuzzy categorisation in more detail. 

179 



4. Z4 Categoty Drift: a Fuzzy ART Approach 

It has been mentioned that Euclidean clustering suffers from a phenomenon 
known as 'category drift' which results from the updating and subsequent 

movement of category centres in the classification system representation of input 

space. In some cases, categories drift quite dramatically and even re-occupy 

previous class centre positions. Monotonic changes can help to rectify this 

problem but can introduce problems of a different type (Moore, 1989). Fuzzy 

ART gets around this problem by using complement coding. Complement coding 

allows a category to grow by incorporating previously enclosed space within the 

new category extent. The category growth property of fuzzy ART ensures that 

categories do not drift and occupy different areas of state-space. 
The weight vector of a fuzzy ART category is given by 

Wi= (Uj 9Vj ) 

where u, and vi are non-complement coded and complement coded 

respectively. Note that vj' is not necessarily the complement coded form of uj 

When the new category is first created, vj is the complement coded form of u, 

but, during operation, sometimes only u- is replaced by the new input following 

the fuzzy AND operation and at other times, vj is replaced depending upon the 

new input vector. 

As illustrated in Figure 4.5, uj and Vj, for a two dimensional system, represent 

the extent of the current category if the size of the rectangle Rj is defined as 
JRJ = jvj - ujj 

If a new input a is used to update the J" winning category of extent JRj I, the 

updating operation, signified by ED, gives 
JR. 

r ED al = 1(a v v, ) - (a A U,, )I. 

This comes from applying the FCFR learning equation (P=1.0), using input a, to 
the weight vector w,. 
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If the new category JRj (D al is too large then fuzzy ART resets and searches for a 

new category. It can be shown (Carpenter Grossberg and Rosen, 1991) that, for 

an M dimensional input space, 

JRj (D aj!! ý M (I - p) (4.1) 

Thus, the growth of a particular category is limited by the vigilance parameter as 

would be expected. 

An important point to note is that the weight values do not signify the centre of a 

category in the normal sense of clustering procedures; they signify the 'extent' 

values which allow the growth of a category to include previously encompassed 

values of weight space. Categories do not move but grow until a specified upper 

limit of category size is reached. 

01 

Figure 4.5. Fuzzy ART clustering and category growth illustrating the category growth 

property. (After Carpenter, Grossberg and Rosen, 1991). Categories are represented by 'extent 

markers' and not centres; the latter are not meaningful when using the Lý norm which is more 

suited to fuzzy operations than is the Euclidean norm. 

4.2.5 EUCART Categories 

EUCART weight values are given by WE = (UE, V 
E), 

where uE and v are the 

minimum and maximum category extent markers with components given by 
E (U E 

Vk (t + 1) = Ujk (t + 1) 
=min jk (t), ak and j max(vi (t), ak) respectively. These 

4 poles' moving in 'opposite' directions in M-dimensional hyperspace delimit 

hyperspace categories whose extent is given by 
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ej =11VE _UEII, ii 

where 11 
. 
11 is the Euclidean or P norm (Euclidean distance between two vectors); 

see Figure 4.6. Analogously to equation (4.1) the category growth criterion for 

normalised Euclidean space becomes 

ej!! ý -Ir-M (1 - PE) (4.2) 
2 

where VM is the maximum possible Euclidean distance between points in [0, I]m 

and pE is the vigilance parameter of EUCART. Analogously to fuzzy ART, for 

high vigilance, i. e. pE -4 1, the resulting categories are very small and for low 

vigilance, i. e. pE-ý 0 they are very large. 

The centre of a category is given by 

C=1 (UE + VE) i2ji 

and, as with fuzzy ART, does not reflect the centre of mass (centroid) of the 

category, which may be desired for certain applications. The centre of mass of a 

category may be computed incrementally during learning as required. All input 

vectors that contribute to a category will continue to belong to that category 

throughout the learning process as stated by the EUCART Category Composition 

Theoreni. 

u 

Figure 4.6. EUCART clustefing using the category extent markers analogous to those offuzzy 

ART. When a new input extends the category boundaries, the category centre will also change. 

However, the subset of input space encompassed by the previous category remains within the 

new category. 

An input, I is said to be a member of the i"' category if 
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lici 
- 111: 5 -SfM (1 

- PE) 

2 

which forms the EUCART match criterion. This form of match criterion, unlike 

equation (2.14) of fuzzy ART does not take into account the absolute magnitude 

of the input vector. In the context of state-space partitioning this is not 

particularly important as the main focus of interest is upon absolute distances 

from a state-space exemplar. In pattern recognition tasks, however, the absolute 

magnitude must be taken into account so that patterns are matched according to 

the degree of correlation between them. For example, an input may be closer to a 

signal category in terms of absolute magnitude but have a much smaller 

correlation in terms of vector direction, i. e. dot product. Thus, a category with a 

smaller exemplar vector magnitude but nearer in terms of angle may well be the 

desired category. Ibis important point is reflected in fuzzy ART by the dual 

choice and matching functions, and the search mechanism. Note that choosing a 

winner in terms of distance alone is not equivalent to finding the largest net input 

by using the dot product, unless the exemplar weights are normalised. 

4. Z6 EUCART Category Containment 

Section 4.2.6 describes the EUCART category form and illustrates the use of 

category extent markers in specifying hyperspherical categories analogous to the 

hyperrectangular ones of fuzzy ART. The problem of category drift was outlined 
in sections 4.2.3 and 4.2.4. and also occurs in ART systems which do not use 

complement coding (Appendix D); in the latter case, it is for a slightly different 

reason and leads to category proliferation as categories which have drifted 

towards the origin are replaced by new categories. 

One of the major justifications for an architecture such as EUCART is that it both 

confers the benefits of using a Euclidean metric and prevents category drift. 
EUCART prevents category drift in the sense that once inputs are assigned to a 
category, they always remain within the confines of that category. Even though 
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the category boundaries change, no input, once categorised, is ever "left behinX' 

by a wandering category. 

The hyperspherical category growth is not monotonic in the sense that established 

hypervolumes are necessarily contained in later hypervolumes. However, as 

proved in the EUCART Category Composition Theorem of this thesis, all 

members of a given category remain within the boundaries of that category from 

the moment of categorisation onwards if fast learning (0=1) is used. This 

property is important for problems where actions or outputs are associated with 

regions of input space or state-space. 

A semi-formal proof of the EUCART Category Composition theorem is 

developed in Appendix G and will forms the basis for the Centroid Inclusion 

Theorem of section 4.2.13 which shows that the inclusion of centroid 
information-concerning the distribution of inputs within a category--within the 

EUCART architecture is possible. 

The EUCART Category Composition Theorem : 

All inputs that are members of a given hyperspherical, category remain within that 

category throughout the category growth process and beyond. 

In other words, for an input space (state-space), X 

Vxv r: X for some time,, r and some hyperspherical category, C, (') at timer, 

xv G c(i) =* x r= c(i) Vn>O 

4. Z7. The Fuzzy Choke and Matching Functions Revisited 

The fuzzy ART choice function of equation (2.13) approximates to 
IIAWjl 

with a -ý 0. 1wil 
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This measures the extent to which w, is a fuzzy subset of I (Zadeh, 1965; 

Kosko, 1992). 

Where wj is a fuzzy subset of I, 

Tj(i)=Tj(wj)= 
1wil 

a+lwjl 

IIAWjl=l 

md equadon (2.13) becomes 
1wil 

with Tj (1) -I as a -ý 

(4.3) 

1w 
jI can be maximised up to a maximum value at w, =I to give the highest 

choice function for fuzzy subsets of I through the monotonic increasing property 

(M. I. P. ) of equation (4.3); this property is proved informally in appendix B. The 

fuzzy ART match function of equation (2.14) has a value of 
IIAWji=iWjl 

(4.4) III III 

for wja fuzzy subset of I. So, for this special case, given the set of fuzzy 

subsets of I, denoted by K2, . for wj OWk 6 r1l 

Tk(l)ý: Tj(l), =: ý jWkjý: jWJjI Vj#k 

by the M. I. P. 

Now, for 1w, I= max, fiwjll, ff reset occurs, no more matches can be found 

since, from equation (4.3) 

wjl JW 
:5L: 5 

lwkl, 
and, 

lwkl<p==>Iwjl<p, 
VwjeQ, forsome ii 

1w, 
III III III III 

Wk G 01. 

Thus, no further search for fuzzy subsets is required. Other searches will follow 
for cases when wj v- f1l. 

If EUCART is given the choice function 
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TjE(1)=l-llcj -ill 
where cj = -'(uf +vEj) as before, for a normalised space, 4W "2' 

[0,1]m then TjE (1) r= [0,1] and a match criterion based purely upon absolute 

2 
(1 - p,. ) removes the necessity of further search if the distance lic 

VM 

TE (I TE (1) =: ý _ Ill 2., JjCk 
_ Ill, 

criterion is not fulfilled. In other words, kj 
11c 

j 

Vj: # k 

M (I - p. ) which and failing the match criterion gives 
JJCJ 

- ill; 
-> 

Jýk 
- 11i > 

2E 

2 

implies that 11C 
j> 

2E: (1 - PE)" Vi M 
2 

Thus, the search for a new winner is not required because no better match, in the 

sense of Euclidean distance, can be found. The simplified choice and match 

functions of EUCART do not take the magnitude of the input vector into account 

and so remove the need for a more complex search pattern. The more complex 

search is required to find a new input with roughly the same relative spatial 

pattern regardless of the absolute magnitude. These simplified dynamics suffice in 

the present control context because stored patterns reflect state values and 

correlation of an input with its canonical or exemplar state is based purely upon 

absolute distances. As mentioned above, more sophisticated pattern clustering, 

using a Euclidean metric, requires some form of angle or dot product measure to 

assess input correlation with stored exemplars to improve clustering properties. 

This correlation measure allows matching independently of signal magnitude, For 

example, in the clustering of visual data, it is desirable that patterns can be 

clustered within a sample space of varying background illumination, with respect 

to relative reflectance patterns. 

4. Z8 EUCART Leaming 

Learning in EUCART is analogous to learning in fuzzy ART and LTM changes 
are made according to 
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(Enew) 
= 

(old) )UE(old) AUE -PE J Ui PE (1 
j+ 

(1 (4.5a) 

and, 
E(new) 

V 
E(old) )+ (I_ pE )V E(old) 

vi PE('A 
Ji (4.5b) 

whereAand v are the fuzzy AND and OR operators respectively (Zadeh, 1965). 

Equations (4.5a) and (4.5b) are used to find the new min and max category extent 

markers respectively provided that the category growth criterion of equation (4.2) 

is not violated by the updated extent markers; if this criterion is violated then the 

update is not carried out. The Fast- Commit-Fast-R ecode and Fast-Commit- 

Slow-Recode options are retained in EUCART. 

4.2.9 A Comparison with Fuzzy ART 

Figure 4.7 illustrates the fuzzy ART choice function of equation (2-13) as a 
function of the two exemplar weights for a two-dimensional non complement- 

coded input. Where both weight values are less than their respective input values, 

the choice function has a plateau of approximately unity. Outside of this plateau 

region, the choice function decays with increasing weight magnitude. 

Fuzzy ART ChoiOe Function 

9 
(5 

> 

0 
0 

C) 

1 
0.8 

wl 

Figure 4.7 An illustration of the fuzzy ART choice function for a two dimensional weight 
space. 
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The Euclidean choice function of EUCART is more representative of state-space 

and does not suffer from the "near discontinuity" between the plateau region and 

the remainder of weight space. Any function of the fuzzy ART choice function 

would have a small range within a region of state-space determined by an input; 

this would not be representative of the variation in distance between the input 

vector and the weight vector because the choice function is a non-linear function 

of that distance. Problems might arise when weighting node contributions on the 

basis of the distance between a given input and neighbouring nodes when using a 

distributed representation of information within a network. 

4. Z 10 A Comparison with Other Architectures 

Static networks--networks with no recurrent connections-have a finite impulse 

response and cannot store information for an indefinite amount of time. 
Recurrent neural networks have an internal state that is capable of representing 
contextual information. Learning algorithms for recurrent networks are mostly 

generalisations of existing learning algorithms for static networks; an example is 

the backpropagation through time algorithm (Werbos, 1990; Srinivasan, Prasad 

and Rao, 1994) which is an extension of the gradient descent algorithm for 
feefforward networks (McClelland and Rumelhart, 1986) It works by storing 

unit activations and computing the gradient recursively. 

Recurrent networks can have limited storage capacities for dealing with input 

sequences (Bengio, Simard and Frasconi, 1994). Recurrent networks generally 
outperform static networks but optimality is more difficult to obtain (Picton, 
1994) and readily settle into local minima representing sub-optimal solutions 
(Bianchini, Gori and Maggini, 1994); these solutions take into account short term 
dependencies as opposed to longer term dependencies (Bengio, Simard and 
Frasconi, 1994). The difficulties involved in training recurrent neural networks 
are possibly responsible for their slow adoption in the field of control engineering. 
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A partially recurrent network, the Elman network, (Elman, 1990) is slowly 

increasing in popularity for system modelling and identification (Picton, 1994); it 

is especially useful for modelling dynamical systems with temporal correlation and 

delay effects. An Elman network consists of three layers plus a context layer 

(Figure 4.8). Only the middle layer is recurrent which gives the architecture 

advantages over fully recurrent nets. A modified form of backpropagation can be 

used to train it (Elman, 1990; Picton, 1994) 

x y 

Figure 4.8. An Elman network which consists of three feedforward layers and a context layer 

which provides a delay of one sampling period. 

Connections to context units are fixed and provide a delay of one sampling 

period. Outputs of the hidden layer represent the state which is then fed to the 

context units. The output of the context units is fed to the output layer. The 

output of the net represents a function of the current state and the previous state. 

It is difficult to see how such a system will take into account long-term 

dependencies such as those encountered with failure-driven systems with 
expanding time horizons. 
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4. Z 11. Cascade Correlation 

An example of an incremental learning system with self-organising capabilities is 

the Cascade-correlation architecture of Fahlman and Lebiere (1990). It was 

developed because current learning algorithms--mostly based around 

backpropagation using feedforward network&-were seen as slow. The lack of 

speed was thought, in part, to be responsible for the lack of widespread 

application of neural networks. 

The main problem with algorithms such as backpropagation is that all weights 

have to change and it is difficult to add or adapt individual nodes. The use of 

global learning often results in wasted effort through inefficiency of adaptation. 

The cascade-correlation network was developed to overcome these difficulties. 

There are two key ideas that underlie the cascade-correlation neural network viz. 
A cascaded architecture: where nodes are added incrementally as required and the 

maximised correlation between the outputs of new units and the residual error 

signal. New units are added to the network, one by one, when required. The 

weights on the incoming connections are fixed and adaptation occurs only on the 

output connection weights. 

The learning strategy is incremental and allows progression to high-order feature 

detection; learning begins with no hidden units and direct input-output training. 
After a number of training cycles (off-line), a minimum error level is approached 
asymptotically at which there is no significant reduction in error for each extra 
cycle. If the error is less than or equal to a prescribed limit the process stops, 
otherwise, a hidden unit is added to reduce the residual error and the process is 

repeated. 

More than one new hidden unit can be used in the form of a candidate pool where 
a winner is chosen on the basis of residual error reduction. 
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When a new node is added, the input weights are frozen and the node output 

weights are trained so as to reduce the residual error. Local training is used 

instead of global training with the new node being trained separately form the rest 

of the network to reduce the residual error without disrupting the remainder of 

the network. The network weights are frozen whilst a suitable set of input 

weights for the new unit are found, then the new unit input weights are frozen and 

full network training is resumed. 

The many advantages of the cascade-correlation network over "standard! ' 

feedforward networks---such as the multilayer Perceptron-using 

backpropagation include (Fahlman and Lebiere, 1990): 

1. the network size / topology is not required in advance, 

2. there is a sizeable reduction in training time; 

3. high order feature detectors can be constructed without "slowdown" 

4. the cascade-correlation architecture can be used for incremental learning in 

which new information is added to the trained net 

5. only one layer is trained at a time 

6. no backpropagation of error signals is required; weighted connections are 

unidirectional (biologically plausible) 

7. there is no interaction of new node candidates; each candidate sees input and 

output and the connections are limited, thus making parallel implementation 

possible. 

Other incremental learning architectures using a single layer are not good for 

some problems which require higher-order feature detectors with interconnected 

non-linear layers (FahIman and Lebiere, 1990). 

The cascade-correlation architecture does offer advantages over architectures 

such as the multilayer Perceptron and in certain mapping tasks will outperform it. 

However, certain fundamental objections remain when considering the use of this 

architecture for control problems. The cascade correlation architecture uses a 
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modified form of the gradient descent method which is off-line and requires 

numerous passes through a pre-specified training set. Supervised learning is also 

required to provide an output vector-for each input vector--so that the residual 

error can be computed to provide a training signal for the addition of new nodes. 
Furthermore, although nodes can be added to the cascade correlation network, it 

is difficult to see how nodes can be removed to reduce the load caused by under- 

utilised nodes. 

4. Z 12 Fritzko's Growing Call Structures 

Fritzke (1991,1993,1994) proposes an incremental self-organising network, the 

growing cell structures (GCS) which, like Kohonen's SOM, maintains a 

topological relationship between network nodes and the input space. 

The main difference between the SOM and the GCS is that for the SOM, the 

structure and size of the network are predetermined, but for the GCS, nodes may 
be added or removed. The GCS network is an improvement over the SOM 

(Fritzke, 1993) and has both unsupervised and supervised versions. 

Cells or nodes of the GCS network are arranged in RN and are not restricted to a 
planar structure. The topological relationship between the cells is maintained by 

an algorithm which constructs a topological complex from hypertetrahedral 

simplices according to the distribution of input data; simplices may be added or 
removed as required. 

Like the SOM, the GCS net uses competitive learning to find the nearest 
nodo--in terms of Euclidean distance-for each input presentation. The winning 

node will be a member of at least one simplex. The set of nodes comprising the 
GCS network defines a Voronoi tessellation; each node is responsible for a 
Voronoi region within which it is the winner. The winning node is updated to the 
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maximum extent and the direct topological neighbours of the simplex are updated 

to a lesser extent. 

Activity traces are maintained for each cell; the winning node trace is increased 

whilst all others are decreased. The maintenance of traces allows the underlying 

probability distribution to be estimated by calculating the relative signal ftequency 

of the cells, that is, the ratio of the cell trace to the total trace. Where the trace is 

high, a new cell may be added and the trace values redistributed. Where it is low, 

cells can be removed. The algorithm for the addition and removal of cells 

maintains the topological structure of the complex, i. e. it will always consist of 

connected hypertetrahedral simplices. 

The supervised version uses a radial basis function centred on each of the cell 

exemplars (weight vectors). It was bench-marked against a MLP and a cascade 

correlation network using the two spirals problem (Carpenter et al 1992). Results 

showed that the GCS network required many fewer training epochs. This result 

could be misleading, however because the computational complexity of each 

epoch for each of the networks may not be comparable. 

4. Z13 Why Use EUCART? 

Like the cascade correlation and GCS networks, EUCART does not require the 

size and topology to be specified in advance of training. Learning in EUCART is 

incremental and adapts to incorporate new information on-line for an indefinite 

period; there is no distinguishable training phase as with many network 

architectures such as the multilayer Perceptron and many of its derivatives. 

The EUCART structure of individual nodes means that processing is strictly local 

and only one node is involved at any one time where winner-takes-all processing 
is used; Backpropagation of error signals during global learning is not required. 
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The direct topological relationship between the EUCART node locations and the 

state-space regions they represent, means that complex spatial information 

regarding node connections is not required; node neighbourhoods are simply 

chosen on the basis of Euclidean distance. 

EUCART has a simple structure when compared to the GCS network. Is all the 

complexity of the GCS network required for this task? There may be no need for 

the topological information in this case. The GCS network requires the 

supervised learning variant if it is to be used to solve the cart-pole problem. 

It is possible that the GCS network could be used as a self-organising decoder in 

the way that EUCART is. Even though the topological structure is maintained by 

the GCS network it will still suffer from category drift because the state-space 

categories would be based around the exemplar vectors represented by the node 

centroids. Although EUCART suffers from the problem of state reallocation 

when winner-takes-all competition is used, a distributed version, which combines 

information from more than one node, would reduce the impact because all 

categories to which a given state belongs will be used to produce the output. This 

is not the case with the GCS network which does not maintain the property of the 

EUCART category composition theorem and so would continue to suffer from 

the state reallocation problem even with distribution of state information. The 

GCS has no category extent markers to delimit the set of input vectors belonging 

to each category; thus there is no way of telling whether or not a given input 

actually belongs to a given category, owing to a set of inputs which have 

determined the extent markers, or is assigned to a category on the grounds that 

the category centre has moved the category to where the given input vector is 

located. 

To some extent, EUCART is a "rough and ready" method of obtaining a state- 

space partitioning; it is certainly not the last word on self-organising nets, nor is it 

meant to be. In effect, it is a working algorithm shell to which improvements may 
be made and from which variations may be developed. 
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One possible variation on EUCART may be to use direction information when 

comparing input and exemplar vectors; this would be analogous to the match 

condition of fuzzy ART which is separate from the choice function. By 

comparing directional information, EUCART could maintain clusters based upon 

groupings of spatial patterns, that is, patterns not simply related by absolute 
Euclidean distance. A typical pattern matching cycle would consist of finding the 

nearest exemplar to the input pattern and then checIdng for a match in terms of 

spatial information. If the nearest exemplar pattern did not match sufficiently, 

then the node could be inhibited and a search triggered to find the next nearest 

stored pattern which may be a closer spatial match. 

It is acknowledged that centroid information of the type found in competitive 

vector quantising and probabilistic neural network architectures, might be of 
importance for a large number of tasks (Specht, 1990; Lim and Harrison, 1995); 

for the quantisation of state-space considered here, this issue might not be critical 

where optimal state-space partitioning for control does not depend directly upon 

the distribution of input data. For example, successful control applications have 

been achieved with both pre-set and self-organising schemes (e. g. Barto, Sutton 

and Anderson, 1983; Hormel, 1990; Ritter et al, 1992). 

However, it can be postulated that the use of centroid information may give an 
improved partitioning of state-space and, consequently, improve the control. Ile 

next section explores the option of adding centroid information to alter the 
operating characteristics of EUCART to make it more suitable for other 
application areas and, possibly, improve control performance. 

4. Z 14 Adding Centrolds 

The inclusion of centroid information often allows a category to represent the 
contained data in a more meaningful way. For example, a Gaussian kernel 

195 



function could be placed at the "true" centre of the category (the centroid) to 
indicate set membership. More simply, category membership could be made 

proportional to the distance between an input and the relevant category centroid. 
The following theorem shows that the EUCART category centroid will always 

remain within the category and so will be meaningfully associated with that 

category. The centroid can then be used in any algorithm which requires centroid 
information. 

The EUCART Centroid Inclusion Theorem: 

A EUCART category centroid, W(t), defined by the incremental learning rule 

Wi (t + 1) = wic W+ a(l(t) - w, W) (4.6) 81 

where a is a learning constant such that 0: 5 a: 5 1 will always remain within the 

hyperspherical category, S, () for all t. 

Proof.. 

As sume, without los s of generality, that w, (t) e H, (') . That the input is contained 

in the hyperrectangle I(t) e H() is ensured by the category growth process. The 

hyperrectangle, H() is a convex set. Let w, (t) and I(t) be the endpoints of a 

linedefinedby r(i7)=wv(t)+? 7(1(t)-wc(t)) (4.7) 9 
where 0: 5 17: 5 1. Setting il--O, 1 gives the extremes w, "(t) and I(t) respectively. 

From lemma 3 of Appendix G, HH and from the definition of a convex 

set, r(i7) r= H, (+),, V77 e [0,1] 

For some time, t equation (4.6) can be identified with equation (4.7) and for an 
arbitrary value il=a so 

wic + 

Thus, w; (t) e H, (') => w i'(t + 1) r= H, (' ), , and taking, w M) = I(l) by the principle 

of mathematical induction, w,! (r) E H, (), Vr m 
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4.3 EUCART-BSA Hybrid 

Section 4.3 presents simulation results showing the application of EUCART to 

the solution of a non-linear control problem ( the cart-pole problem) using 

reinforcement learning. First, EUCART is applied in the form discussed in section 

4.2. Second, a modified version of EUCART, EUCART with nearest neighbour 

priming, is proposed in an attempt to improve performance further. The results 

are compared to those of the original BSA implementation and some properties of 

the EUCART-based neurocontroller are discussed. 

4.3.1 Hybrid Description 

This section describes the simulations carried out using the EUCART state-space 

decoder in place of the fixed state-space decoder of Barto et al. (1983). The first 

objective is to confirm that the idea of decoupling the state-space representation 

task and the control action leaming task is tenable. If so, the original BSA 

reinforcement learning implementation can be retained and different 

neurocontroller architectures could be developed through modifications to the 

decoder. The second objective is to develop a decoder which does not require a 

prior! state-space structuring and can organise state-space information 

autonomously through experience. The achievement of the second objective is a 

sufficient condition for achievement of the first and indicates the possibility of 

other decoder architectures. 

The EUCART-BSA hybrid consists of the EUCART decoder with nodes linked 

to stored ASE / ACE infonnation. Each node now takes the place of a single box 

which can determine its own extent, and nodes may be added as required. 

Using EUCART as a self-organising decoder coupled with the BSA 

implementation of reinforcement learning, gives a neurocontroller with the 
following benefits: 
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0 minimal supervision requirements 

incremental partitioning of state-space, 

"quick! ' partitioning on-line, 

category overlap: basis for distribution of control information 

"once a member always a member" anticipation of a distributed 

representation ensuring that inputs always contribute to their allotted 

category. 

4.3.2 Simulation 1: the Basic Hybrid System 

Simulations, following the method of Barto et al (1983) comprising 10 runs of 

600 trials each, were carried out. As in the BSA implementation, the state vector 

was reset to x=1=0=&=0 after each trial. The simulation conditions and 

parameters were similar to those in the BSA implementation except for a few 

minor changes necessitated by the new approach. First, runs were not terminated 

when the trial of a particular run first reached the ceiling of 500,000 time steps of 

0.02 seconds (approximately 2.8 hours of simulated time). Learning was still 

occurring in some cases and the system had to reach the ceiling value a large 

number of times consecutively to indicate convergence. Second, the learning 

parameter, a was set to 1,000 in the BSA implementation to establish control 

actions quickly. In the present implementation, because the state-space 

partitioning is not fixed, learning needs to remain plastic to prevent premature 

establishment of control actions. Hence a was set to 0.8. The parameters used in 

the EUCART decoder were cc-4.00001, P--0.9 and p=0.8. The FCSR option was 

used. 

Table 4.1 shows the results of the first 10 runs of the EUCART-BSA hybrid 

system. 
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seed 1 2 3 4 5 6 7 8 9 10 

trials 9 1550+ 108 271 404 223 746+ 287 455 24 

nodes 24 533 188 429 472 334 573 355 454 62 

Table 4.1 The results for the first 10 runs of the EUCART-BSA hybrid system. The number of 

trials to convergence and the number of nodes generated are shown Note that learning times are 

much longer than for the BSA original system. This is because a state-space partitioning has to 

be leamed. 
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Figure 4.9. Simulation results showing the performance of the ASE / ACE system with the 
EUCART state-space decoder. The trials were averaged over ten or eight runs as described in 

the text. 

Figure 4.9 shows the results of 10 runs and a subset of 8 runs. The Simulated 
trial duration is plotted against the trial number to show how control performance 
changes with increasing experience. The subset was required for clarity as 8 of 
the 10 runs converged to the ceiling value of 10,000 seconds (500,000 time steps) 
within the 600 trial limit; The remaining two runs converged at about 1500 trials 
and 1200 trials respectively. The solid curve shows the average of the 8 runs 
which converged during the trial limit. The dotted curve shows the average with 
the remaining two runs added to the ensembles for each trial. As with the BSA 
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study, a single point is plotted to indicate the average of each bin of 5 consecutive 

trial (ensemble) averages. The remaining curves show 1 standard deviation either 

side of the respective means, i. e. the dashed curve is associated with the solid 

curve and the chained curve is associated with the dotted curve. These are 

calculated at 25 trial intervals on the original ensemble values (not on the five trial 

bins). Although the sample size is small, standard deviation is used to indicate 

spread, since maximum and minimum values are dominated by the trial which 

converges first. The circles at the top of the graph indicate at which trial the 

members of the 8 run subset converged. 

In the original BSA implementation the simulation results show that convergence 

towards a solution of the cart-pole problem occurs mostly within 100 trials. The 

present implementation requires more trials than this on the whole, but does 

eventually solve the problem. Here, learning is incremental, and is required to be 

more plastic; consequently, learning is slower to allow for adjustments in the 

state-space representation. With rapid learning of control actions, changes in 

state-space representation for a particular node centre and its immediate vicinity 

would not be followed by concomitant changes in the control actions to the 

required extent. Thus, the control action would not be representative of the 

modified state node and its current sphere of influence; it would represent, 
instead, the established control based upon a premature partitioning of state- 

space. 

The utility of EUCART Hes in the generality of the resulting approach when 
coupled with reinforcement learning. No a priori partitioning of state-space is 

required unlike "boxes" (Mitchie and Chambers, 1968) or the original BSA 
implementation (Barto et al. 1983). In principle, the new approach could be 

applied to other dynamical systems with little modification without the 
requirement for an alternative fixed state-space partition specific to the new 
system. This indicates the possibility of general purpose autonomous 
neurocontrollers. 
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Note the wide variation of average trial duration for each ensemble of 8 or 10 

trials. The stochastic nature of the control output for a new node results in widely 

varying state-space trajectories while the control mapping is being established 
during each run. Within a single ensemble of trials, one run may have established 

a control mapping very quickly within a limited region of state-space while 

another may still have low trial durations as a result of initial control outputs 

pushing the state-space trajectory further away from a desired region and causing 

the creation of many naYve nodes requiring training. 

Figure 4.10 shows the average increase in the number of EUCART nodes for both 

the full set of 10 runs and for the 8 trial subset. Both the 8 run averages and the 8 

run maxima reflect convergence to a final set of desirable control actions. The 10 

run averages and 10 run maxima indicate that adequate state-space coverage has 

not yet been achieved for the remaining two runs; adequate coverage in the 

present context means that a control mapping has been established which 

maintains control for a cart-pole system starting with a given set of initial 

conditions. Whether coverage is adequate given a different set of initial 

conditions is another matter. 
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Figure 4.10 Simulation results showing the increase in the number of EUCART nodes 
representing individual state-space regions and their associated control actions. 
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As expected for the neurocontroller performance, the trend is towards greater 

trial durations as the trial number increases. However, the increases in trial 

duration are not monotonic. This is because the addition of a new EUCART 

node introduces an initial arbitrary control action. This sometimes pushes the 

state-space trajectory into previously unencountered regions of state-space or a 

region where the control actions are not properly established. The 

neurocontroller is then likely to fail if the well-established state-space regions are 

not re-entered quickly. Also, new nodes are sometimes added to cover 44gapS" in 

state-space and their influence replaces some well-established state-space regions 

with naYve coverage because the regions are now associated with a new node (i. e. 

the new node centre is now nearer to states previously encompassed by other 

nodes). For winner-takes-all competition, the EUCART category composition 

theorem is not violated because the input vectors are associated with the new 

category nodes. However, information is lost from long-standing categories 

which are now "further away" because only a winning node is chosen and 

previous associations are discarded. A distributed representation of data would 

prevent this by taking into account all categories with which the input is 

associated. 

Figure 4.11 illustrates the situation schematically. The dark border shows the 
decision boundary within which states belong to the new node. The degree of 
disruption caused by a new (and naYve) node depends upon the extent of overlap. 
The extent of overlap, in turn, is a function of the Euclidean distance between the 

category centres. If this distance, for a particular node with respect to its nearest 
neighbour, exceeds twice the maximum possible category radius, then no overlap 
will occur until a new node is added which violates the minimum distance 

condition. The dependence of overlap on inter-category distance is exploited in 

the modified EUCART decoder implementation discussed later. 
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Figure 4.11. A schematic illustration of the problem of overlap associated with adding new 

nodes. The decision region for the new node now includes space previously covered by the 

original EUCART nodes. Disruption to established control actions within these regions is 

possible until the new node has learnt to represent a desirable control action. 

As the results show, performance is eventually recovered when the new nodes 

learn to represent desirable control actions. The undesirable disruption is 

reminiscent of the stability -plasticity dilemma (Carpenter and Grossberg, 1997a) 

which states that adaptive systems must balance the requirement for stable 

learning of information against the requirement of plasticity and adaptation to 

novel phenomena. 

With fixed non-overlapping box-based decoders, the neurocontroller is a pre- 

established look-up table which is filled during learning. Although there is no 

overlapping and hence no disruption of learning between state-space regions, a 

priori assumptions are made by an operator which restrict the autonomy of a 

learning system; such assumptions include a prespecified state-space granularity 

and a prespecified distribution of state-space categories. The disruption effect is a 

consequence of the autonomy of a EUCART-based neurocontroller; attempts to 

improve neurocontroller performance must include a reduction of this disruption 

effect without reducing the level of autonomy. 

Figure 4.12 shows the results of a typical run. Again, the results are plotted as an 

average of bins of 5 consecutive trial values. The graph indicates some 

correlation between increases in node numbers and disruption of trial duration. 

This is readily apparent at around trial 400 with the small increase in the number 
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of EUCART nodes occurring simultaneously with a drop in the trial duration 

before recovery and final convergence. From inspection of Figure 4.12, it is 

apparent that the trend is towards increasing trial durations until the ceiling of 

10,000 seconds is reached. The effect of transient disruptions caused by the 

addition of new nodes is more pronounced when winner-takes-all dynamics are 

used because a trained category node is replaced outright by a naYve node which, 

henceforth, wins the competition in a given region until, possibly, replaced by a 

new node. Over time, this node will be trained and will reflect the control 

mapping correctly within a given region of state-space. 
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Figure 4.12. One typical run from the ensemble. Results are plotted as averages of rive 

consecutive trials. Note the uwsient disruptions caused by the addition of new nodes. 

4.3.3 EUCART, Incremental Clustering and Stability 

The last point in section 4.3.2. raises the question of stability. The incremental 

clustering algorithm of EUCART gradually builds a cover over regions of state- 

space; whilst the cover is being built, transient disruptions will occur. When no 
99 gaps" exist in a region of state-space, disruptive naYve nodes will no longer be 
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required and a tessellation of this region by the choice function hyperplanes, 

between neighbouring category centres, will have formed. 

Moore (1989) proposes two types of stability for incremental clustering 

algorithms: 

Stable 1: no prototype vector can "cycle", or take on a value that it had at a 

previous time (provided it has changed in the meantime), and 

Stable 2: only a finite number of clusters is formed with infinite presentation of 

the data. 

Moore modifies the condition of Stable I to include the case where a prototype 

vector may include a previous value but it must eventually stop moving. The 

condition of Stable 2 is also restated as: 

"in a bounded input space, condition (2) is equivalent to requiring that prototype 

vectors do not get arbitrarily close to each other. " 

EUCART is Stable 1, in the modified sense. For a given category, the category 

centre will stop moving when the EUCART category reaches its maximum extent; 

the category centre may pass through a previous value but will converge towards 
its final position in the fully extended category. Analogously to fuzzy ART, 

UE 
Ii 

(Carpenter Grossberg and Rosen. 199 1) 11 
j monot onically decreases and 11v 111 

monotonically increases until the category reaches its maximum diameter, at this 

point the category has stabilised. EUCART is also Stable 2 because the input 

space is bounded (because the dynamics of this particular problem are constrained 
to lie on a manifold) and thus requires a finite number of hyperspheres to contain 
it. Category hyperspheres may extend beyond the input space but, where they do, 

no input vectors will be found there by definition; this "fictitious" input space 
allows a complete cover of the Euclidean input space by hyperspheres of a fixed 

radius and thereby obviates the requirement of collections of hyperspheres near 
the input space boundary with radii tending to zero. The shortest run of the set of 
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runs converges after just 10 trials with only 24 nodes. This set of control actions 

is almost certainly limited because comparatively little of state-space has been 

explored. The controller would not be expected to be as robust and to possess as 

good disturbance rejection propei ties as those controllers with many more nodes 

which indicates a wider experience of state-space. From the point of view of 

robustness, the random perturbations caused by the introduction of naYve nodes 

have a beneficial effect on the long term experience of the neurocontroller by 

extending its experience into new state-space regions. 

In many control applications these random perturbations by the naYve nodes may 

not be desirable or practical when worldng within a real environment (it may be 

dangerous) but including a model of the environment alongside a neurocontroller 

may allow "what if" probing by the neurocontroller to improve the rate of 

convergence towards a viable control solution. A better solution perhaps, would 
be to set failure limits for the reinforcement learning neurocontroller which lay 

within regions of performance recovery by an operator, or other control method, 

so that learning from failure did not necessarily entail disastrous consequences 

within a real operating environment. Failure would then represent undesirable 

system states to be avoided by a neurocontroller and which would lead to an 

operator warning to allow manual recovery of performance. 

The naYvety of neurocontrollers with comparatively few nodes is considered in 
Chapter 5 which illustrates the adaptiveness of the EUCART approach; there, it is 

shown that when new regions of state-space are encountered, a EUCART-based 

neurocontroller is able to adapt without catastrophic forgetting (Sharkey and 
Sharkey, 1994). The next section will present a modified EUCART-based 

neurocontroller which attempts to reduce the disruption by naive nodes during 
incremental clustering. 
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4.3.4 Simulation 2: Nearest Neighbour Priming 

As discussed previously, it was found that naive nodes, added to fin "gaps" in 

state-space coverage, often disrupted currently established control information. 

Although recovery and convergence eventually occurs, it would be desirable to 

minimise disruption during learning. Where disruption is likely to be the most 

severe, it is because the region of influence of a nalve node infiltrates established 

nodes in the neighbourhood of the new node. Thus, some state vectors which 

were previously encompassed by the original nodes are now nearer to the new 

node centre and thus elicit the control action determined by the new node 

parameters; the parameters have not yet had time to tend towards desirable values 
because the node has been newly created. 

To reduce disruption when a new node is added, information from surrounding 

nodes must be taken into account. Instead of beginning with a zero initial control 

action weight, the weight values of n nearest neighbours can be combined to give 

an initial weight value. In the present modified implementation, a scalar weighted 

average of the form 

new 
1 

zo --1: 77izi 
n =, 

is assigned as the ASE weight for the new node, where 77i is the scalar 

contribution weighting of the i" neighbouring state-space category and Z, is the 

0 ASE weight. The contribution weighting takes the following two factors into 

account, 

category centre distance; the further away the neighbouring state-space 
category is from the new category centre, the smaUer the contribution to the 
initial ASE weight should be, and 

category node age; the "older" the neighbouring category in terms of learning 
experience, the more established the control action is and hence is less likely 
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to be disruptive; the contribution to the initial ASE weight should be reduced 

for recent (naYve) categories. 

Ideally, new node priming is determined by close, well established categories with 

desirable control actions. The form of the contribution weighting for the 0 

nearest neighbour is, 77i = (Tj (c,,,, )Xi)p where c. is the newly created category 

centre, T, (. ) is the EUCART choice function for the 0 category node, Yj is the 

ACE trace for the i' node and p 2: 1 is used for contrast enhancement (Nabet 

and Pinter, 199 1). Note that Tj (. ): S 1 and 5F, :51 imply that 77, :51. Contrast 

enhancement is used to weight more heavily those nodes which are nearest to the 

new node or are "older". 

The parameters used in the runs of the modified EUCART sYstem were the same 

as those used in the runs of the unmodified version. The number of nearest 

neighbours, used to determine the initial ASE weights of new nodes, is n=5 and 

the power p=5 is used to contrast enhance the contribution weighting, 71, . 

The K nearest neighbours technique coupled with a variant of ART was used by 
Zhang and Grant (1992) in conjunction with the boxes learning algorithm (Michie 

and Chambers, 1968a). For a new input vector, if the input does not exceed a 
membership threshold, the K nearest neighbours to the input are selected and 
updated according to the degree of membership of the input with respect to the 
category nodes. Category centres are updated in proportion to input vector 
membership using a modified competitive learning scheme and represent the 
centre-of-gravity for a cluster of input patterns in state-space encompassed by the 
category node. The K nearest neighbour method is used in this context to update 
existing nodes; if no nodes fulfil the membership criterion, then a new node is 

created. Here, K nearest neighbours are used to prime the new node to minimise 
disruption during the learning process. 
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seed 1 2 3 4 5 6 7 8 9 10 

trials 11- 326 173 216 242 442 555 113 121 52 

nodes 40 430 246 349 377 
1 

398 
1 

396 
1 

211 275 149 

Table 4.27[he lust IU runs ot EUL; AKI-KLwiui priming snowing u-iaiuurduuiis mu mim 

number of nodes. 

Figure 4.13 shows the results of ten runs using the parameters of the previous set 

of runs. This time, all ten runs converged within 600 trials. 
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Figure 4.13. Simulation results showing the performance of the ASE / ACE system with the 
EUCART state-space decoder using nearest neighbour priming. The trials were averaged over 

ten runs before plotting in bins of five trials; all runs ten-ninated within 600 trials. 

After about 250 trials, the average number of nodes for the modified version of 
EUCART (Figure 4.14) is similar to that of the eight run average of the original 
version. This indicates that the increased average for the ten runs using the 

original version of EUCART is caused by the two runs which did not converge 
within the 600 trial limit. The time required-to-convergence and the number of 

nodes are linked by the fact that an increase in the number of naYve nodes requires 
an increase in learning time to modify the new parameters. 
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Priming is only effective in reducing disruption in regions of well-established 

nodes represent a desirable control mapping. Without priming, the effect of a 

new node is to issue a random control action which may cause the state-space 

trajectory to enter new or weakly established regions of state-space. Often, the 

result is that well established regions cannot be re-entered and failure occurs 

subsequently. Where state-space areas are not well established, priming has little 

or no effect because of the contrast enhancement of: 

i) distance effects, where neighbouring nodes are relatively far apart in sparsely 

represented regions, 

ii) experience effects, where weakly established nodes contribute little information 

to the new node. 
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Figure 4.14 Simulation results showing the increase in the number of EUCART nodes when 
nearest neighbour priming is used. 
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Figure 4.15 shows a run using nearest neighbour priming which uses the same 

parameters as those used to produce the results of Figure 4.1 l.; the same random 

number seed was used to illustrate the difference in disruption effects. Comparing 

Figures 4.12 and 4.15 shows that the increase in the number of nodes is 

approximately the same until about trial 150 where the run using nearest 

neighbour priming begins to produce slightly fewer nodes and converges at 

around trial 250. The two peaks of Figure 4.15 that exceed 8000 seconds 
indicate that, although disruption occurs, the control mapping is becoming more 

effective. Without nearest neighbour priming in Figure 4.12, further disruption 

occurs for nearly 200 trials following the two peaks similar to those of Figure 

4.15. 
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Figure 4.15. One typical run from the ensemble using nearest neighbour priming; the 
parameters are the same as those used in the run of Figure 4.12. 

Figures 4.16 and 4.17 illustrate the effect of nearest neighbou. r priming upon one 
of the two runs which did not converge originally within the 600 trial limit. 
Figure 4.16 shows the original performance without priming and Figure 4.17 
illustrates performance with priming. 
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Figure 4.16. An example of a run without nearest neighbour priming which did not converge 

within 600 trials. Convergence occurred eventually after about 1200 trials. Note the rapid 
increase in nodes and the large variation in trial durations. 
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Figure 4.17. A run, using nearest neighbour priming, with the same parameters as those used in 
the run of Figure 3.26. Note the sizeable reduction in the number of nodes as compared with 

Figure 4.16. 
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4.3.5 Leaming Rate 

A set of 10 runs was carried out using the conditions of simulation 2 except that 

this time, the EUCART learning rate P=1. This is equivalent to fast learning 

(FCSR) in fuzzy ART. The results are shown in Table 4.3. It was decided to use 

the fast learning mode for EUCART for subsequent experiments because it made 

sense in the light of the comments on category membership which assumes that 

categories will always extend to contain any member. 

seed 1 2 3 4 5 6 7 8 9 10 

trials 39 108 431 521 368 177 408 113 591 87 

nodes 1 106 231 434 436 409 308 391 222 502 170 

Table 4.3 Fast learning in EUCART with the learning rate set to unity showing the number of 

trials to convergence and the final number of nodes for the first 10 random number seeds. 

Comparing the results of Table 4.3 with those of Table 4.2 shows that setting 0=1 

has an effect, as expected. The simulation provides a baseline with which to 

compare future modifications using fully extended categories. Setting P=1 

ensures that new inputs are always included in the category. 

4.3.6 Simulation 4: Neurocontroller Adaptability with Different Initial 
Conditions 

A question to ask is "what happens when different initial conditions are used in 

the cart-pole system simulation? ". In other words, "how adaptive is a trained 
EUCART-based neurocontroller? ". Any candidate neurocontroller must be 

plastic and must not suffer catastrophic forgetting when new information is 

encountered. Table 4.4 shows the results of a EUCART-based neurocontroller, 
using nearest neighbour priming, operated under different initial conditions 
following training; only the angle was changed in the simulations to illustrate the 

situation. With only 40 nodes, this controller has not explored much of state- 
space and has to reduce its naYvety through exploration of unknown regions. 
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New initial condition No. of new trials required No. of new nodes required 

+11, 0 0 

+30 0 0 

+60 171 275 

+111, 371 319 

Table 4.4. Results from a naive mained neurocontroller, consisting of 40 nodes, and the effect of 

changing the initial angle. After retraining, the angle was reset; no disruption of previous 
learning was observed. 

The neurocontroller was trained with an initial state vector of zero. After 

training, the initial pole angle was changed before restarting the simulation. To 

check that learning under the new initial condition did not disrupt previous 

experience, the initial condition was then reset to the original value after 

successful training with the new condition. Resetting the initial condition did not 
disrupt the established control mapping in any of the cases i. e. the original 

mapping had not been "forgotten". 

Initial conditions of +1' and +3' were dealt with easily by the 40 node 

neurocontroller and required no new nodes or further trials. For +61, a further 

275 nodes and 171 trials were required. Setting the angle to 111, after resetting 
the neurocontroller, and training fi-om zero initial conditions, resulted in a further 

319 nodes (over and above the original 40 nodes) trained over 371 trials. The 

angle of 1111 is near to the failure limit of 12". These results indicate that a naive 
EUCART-based neurocontroller is able to adapt to the new conditions without 
disrupting previous learning. To illustrate the naYvety of the 40 node 
neurocontroller, a simulation was carried out using a'trained 377 node 
neurocontroller with a new initial condition of +6' for the angle; for this 

neurocontroller, only a single further trial was required to train a single new node. 
The more extensive experience of the 377 node neurocontroller, compared with 
the 40 node neurocontroller of Table 4.4, is reflected in the reduced requirement 
for extra leaming. 
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4.3.7 Simulation 5. - Changing Plant Conditions and Robustness 

some work has been carried out on the robustness of the current hybrid system 

which includes changing the operating characteristics of the simulation model 
(Marriott and Harrison, 1996). Preliminary results indicate (see Table 10) that the 

EUCART-based RL system is able to adapt to changes in simulation model 

characteristics (e. g. cart friction). The starting system at the beginning of each 

run is the naYve 40 node neurocontroller used in simulation 4. The fkst column of 

Table 3.10 indicates increase of the cart friction coefficient used in the original 
BSA study e. g. 650x signifies 650 times the original. Columns two and three 

indicate the number of extra trials required and extra nodes generated respectively 
before adaptation to the changed conditions. Learning following altered cart-pole 

conditions is usuaRy accompanied by a "burst! 'of new node creation which 
represents a stochastic search of previously unseen state-space regions. 

Table 4.5 Changes in a EUCART-BSA neurocontroller required to recover control when cart 
friction is increased. 

Frict. 

Inc. 

Extra Trials Extra Nodes 

2X 0 0 

64X 0 0 

16OX 0 0 

24OX 0 0 

250X 946 494 

320X 0 0 

380X 0 0 

384X 274 355 

40OX 0 0 

450X 302 313 

50OX 162 

60OX 176 285 

650X 265 360 
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Both simulations 4 and 5 show that the EUCART-BSA hybrid is able to recover 

from changes in operating conditions which illustrates the adaptability of this 

autonomous neurocontroller. However, in both cases, this is at the cost of a 

considerable number of new learning trials and new nodes. Many of the new 

nodes will be spurious and can probably be removed without undue loss of 

control. Pruning of redundant nodes is covered in Chapter 5. 

There are two anomalous results which have not yet been explained; they occur at 

250X and 384X. The same random number sequence is used for all simulations 

but the number of extra nodes generated by the EUCART-BSA system indicates 

that new regions of state-space have been entered. The large number of extra 

trials required by the hybrid for the factor of 250 indicates that the neurocontroller 

had difficulty in maintaining control. It may be the case that for this particular 

non-linear problem, slight perturbations in any of the parameters can have 

disproportionate effects upon the outcome. Such anomalous behaviour may 

possibly be prevented by increasing the experience of the EUCART-BSA 

neurocontroller so that the state-space trajectory remains in a region of experience 

where a successful control strategy is more likely to be found. For a naYve 

neurocontroller, the region of successful control is likely to be small and control 

actions outside of this region are random thus exacerbating the control problem. 

The fact that new learning is required is exacerbated by the initial naYvety of the 

neurocontroller. A neurocontroller which learns quickly has little chance of 

exploring state-space (Sammut and Crib, 1990). Ibis is evident when using the 
40 node neurocontroller which, like the others featured in this thesis, was started 
from the origin of state-space at the commencement of each trial. More 

experience of state-space in the initial stages of learning may reduce the 

requirement for future learning when conditions change. Ibis is the exploration- 
exploitation trade-off once again. 
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4.4 Discussion 

4.4.1 Problems 

The EUCART-BSA hybrid is a potentially useful prototype neurocontroller. 

There is clearly much room for improvement of the current system but 

nevertheless it does provide an alternative approach to adaptive control. The 

achievement of increased neurocontroller autonomy (reduced designer 

intervention) is an ongoing process which can benefit from the combination of 

established neural network architectures in novel ways. The current drawbacks 

associated with the EUCART-BSA hybrid are: 

transient disruption of established control by the addition of new 

nodes; 

the proliferation of uninformative nodes caused by stochastic search of 

state-space during the early stages of establishing a control mapping; 

nafve control through lack of further experience of state-space over 

and above that required to balance the pole at the origin; 

,* the need for arbitrary parameters which have to be set by the user; 

* long learning times when learning from failure, and 

significant computational overheads which increase linearly with the 

addition of new nodes. 
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4.4.2 Possible Solutions 

Possible solutions and indicators of further work include: 

the use of distributed control to allow membership, of more than one state 

category enabling established nodes still to determine actions which would 

otherwise be determined by a naYve node; 

the use of "relevance" pruning to remove nodes created by state-space 

trajectories very rarely followed after control has been established--4f 

operating conditions do change, new nodes can be created dynanfically and will 

not be pruned if significant; 

the use of self-tuning parameters to adapt node size and position during 

learning. This is possibly the most Micult solution and will require "meta 

contror' at a hierarchical level above that of the ACE element to ensure 

intelligent tuning based upon overall performance, 

selective update of significant trace values (Hu and Fellman, 1995) as 
discussed in this sub-section, and 

the training of the hybrid by starting the cart-pole system from random state- 

space points to allow the controller to experience more of state-space 

All traces in the ASE and ACE sub-systems are updated each time. At any time 
instant, many of the trace values are insignificant and updating them is wasteful 

and computationally inefficient. Hu and Fellman (1995) propose a state history 

queue (SHQ) or set of registers which store a finite number of box addresses. 
Every time a state-space box is entered, its address is stored in the SHQ. States 

move through the queue which approximates the exponential decay of the traces. 
If a state which entered the queue is not accessed again during the time-length of 
the queue, it is discarded. As time progresses, box addresses are removed from 

the queue. Only state boxes currently in the queue are updated which removes 
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the need to access all box addresses each time the weights are updated. The SHQ 

method could be applied to the EUCART-BSA hybrid and the FUZBOX 

architecture of Chapter 5. 

Hu and Fellman also put forward the idea of dynamic allocation of control 

memory, that is, control memory is only allocated for traversed state-space 

regions; this is used in both the EUCART-BSA hybrid and FUZBOX. The 

efficient use of storage and consequent reduction of computational overheads 

(more 'boxes' entails more computation) was less of a problem with the original 

BSA implementation; the set of boxes were optimised manually (Barto, Sutton 

and Anderson, 1983). 

A larger coverage of state-space allows the adequate representation of possible 

system dynamics, but physical memory is only allocated to used states (Hu and 
Fellman, 1995). EUCART does this but a problem arises. There are a limited 

number of key regions of state-space which require coverage but many other 

regions are traversed, especially during exploration. Many of the state nodes 

created are seldom used, if at all, once a control strategy is established. The 

systematic removal of these spurious nodes through pruning would reduce 

computational overheads. 

4.4.3 Short Conclusion 

It has been shown that the EUCART state-space decoder, in conjunction with the 
ASE / ACE subsystems, is able to learn a control mapping for a non-linear control 
problem. The resulting neurocontroller is autonomous and does not require a 
priori information other than a choice of operating parameters. The incremental 

clustering algorithm of EUCART successfully partitions state-space and allows 
on-line adaptation to new regions which may not be accounted for by an a priori 
partitioning. The EUCART decoder simulations also extend the BSA 
implementation by considering the effect of new initial conditions on a trained 
neurocontroller that has converged to the simulation ceiling using the "alkerd' 
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initial state. Indeed, using a EUCART decoder has extended the generality of the 

BSA implementation of reinforcement learning by indicating the possibility of 

developing "general purpose" neurocontrollers; such controllers may not be as 

precise as those designed for specific tasks using high precision analysis and 

design techniques, but would be more readily applicable, "off-the-shelf", and 

ready to adapt through experience. This approach entails a movement away from 

highly accurate static mappings towards a more adaptive approach exemplified by 

the principle of increasing precision vs. decreasing intelligence (Saridis, 1989). 

Isolating the state-space decoder task from the control action learning task and 

treating it as a "black box" allows the development of variant reinforcement 

learning networks which still retain the original ASE / ACE specification. The 

main operational criterion for a candidate state-space decoder used in this way is 

that it assigns a unique representation to distinct regions of state-space; the 

regions may overlap in places but the state-space representation and parameter 

updating methods must account for this. For example, winner-takes-all dynamics 

can be used to choose a winning neurocontroller node or parameters for several 

nodes can be updated in proportion to their respective activation levels 

(membership functions). The latter approach is consistent with fuzzy rule-bases 

where multiple rules may be activated. The EUCART-BSA approach uses the 

winner-takes-all method for choosing prediction and control information for 

consistency with the original ASE / ACE implementation which uses a fixed non- 

overlapping state-space partitioning. Although EUCART categories overlap, only 

one category is selected at any one time so potential conflict is avoided. 

The EUCART self-organising state-space decoder discussed in this thesis has 

removed the need for such a priori restrictions but in doing so has introduced the 

problem of disrupted learning during incremental partitioning of state-space. This 
disruption is inevitable as the introduction of new nodes causes overlapping which 
changes the state-space tessellation and thus the established control mapping. 
Although the EUCART decoder system eventually stabilises, it is desirable to 
reduce transient effects during learning. The nearest neighbour modifications go 
some way towards reducing disturbances caused by the addition of new nodes but 
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a more distributed representation of state-space and the associated control 

mapping is desired while retaining the attractive properties of the ASE / ACE 

reinforcement learning system. The original BSA implementation does not 

preclude this. Indeed, the seminal paper of Barto et al, (1983) mentions this 

possibility. 

The power law, for the nearest neighbour weighting using the fifth power, was 

chosen on the basis of empirical observation. Other forms of contrast 

enhancement law may be more suitable. The introduction of such parameters 

highlights one of the problems of self-organising systems; the danger is that by 

using self-organisation, other a priori assumptions are substituted for those 

assumptions that are to be removed. The requirement of numerous parameters 

can possibly reduce the utility of self-organisation over a priori structuring of 

infonnation. On the point of a priori inclusion of information, Procyk and 

Mamdani (1979) state that 

"it is impossible to design a controller which need not assume anything about its 

environment. One can only strive to lessen its dependency and sensitivity to it. 'P 

The minimisation of built-in assumptions about the environment must be a guiding 

principle in the development of neurocontrollers but with the proviso that, 

wherever possible and convenient, known facts can be included in the 

neurocontroller structure if performance will be improved by doing so. Having to 
learn known facts that could otherwise be built-into a neurocontroller to improve 

performance cannot always be justified by claims of autonomy. 

Nearest neighbour methods can be used to compute both the control output and 
the predicted failure values for a given input vector by category membership value 
(Zhang and Grant, 1992) in conjunction with new node priming. Ibis will 
probably reduce the disruption caused by the addition of new nodes and augment 
the limited applicability of new node priming by updating all nodes triggered by a 
state-space trajectory entering overlapping state-space regions. A method for 
distributed processing of predictions and control outputs within the ASE and 
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ACE processing units is required if internal representations of the state-space and 

control mapping are to be smoothed out. 

Although nodes represent individual state-space regions and their associated 

control actions, the neurocontroller is not at all transparent to an operator. The 

nodes, in effect, represent f 'micro-rules" of the form 'if the state- space vector is in 

the region surrounding centre x then output y'. These numerical rules are not 

very meaningful and, in many cases, clusters of micro-rules could be replaced 

effectively by a more general rule. Pruning and generalisation of groups of micro- 

rules is possible but the associated technicalities may be obviated by using a more 

efficient state-space representation to begin with; for example, using nodes to 

represent fuzzy rules. Fuzzy systems are much better suited to knowledge 

extraction (e. g. Berenji and Khedkar, 1992; Jang, 1992,1993; Jang and Sun, 

1995) than networks using micro-rules but introduce other considerations such as 
the choice between a rule base with a fixed number of rules or a self-organising 

rule-base; the task of rule extraction (Wang and Mendel, 1992) and the task of 
tuning the fuzzy membership functions. 

The distribution of ASE / ACE dynamics is compatible with the fuzzy approach as 
it is possible that multiple rules are activated and contribute to the control or 
predictive outputs. Similarly, distribution of state-space decoding across multiple 
input lines may reduce the effect of state-space node overlap when EUCART is 

used. 

In this thesis, it has been shown that the decoder section of the original BSA 
implementation provides a basis for the development of variant reinforcement 
learning architectures. The EUCART decoder is self-organising and is compatible 
with the original ASE /ACE formulation. Other types of state-space decoder that 
are similarly compatible are possible. The very fact that the principles of self- 
organisation and reinforcement learning can co-exist is an exciting prospect for 

artificial neural systems development and points a way forward to the 
development of autonomous neural systems that require much less outside 
intervention than at present. 
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Chapter 5 Extending the Hybrid 

5.1 Meta-Control 

Most neural network architectures are still relatively primitive when compared to 

even the simplest living systems. This fact cannot be attributed totally to the lack 

of available computing power because brute-force information processing would 

not solve the many complex problems which require more "intelugenf' or 
heuristic methods. For example, human language and vision processing tasks 

would result in a combinatorial explosion if every possible combination of 

circumstances were coded for a priori. 

A criticism of many current neural networks is that they are relatively inflexible. 

It is true that they learn, but this is only in a limited way. The majority of 

networks have a fixed structure and can only adjust themselves within a narrow 
band of possibilities. They also usually consist of a single structure, although 

modular structures are being developed ( e. g. Jacobs and Jordan, 1993). 

Criticism of the supervised learning method has already been made. 

The subject of animal learning has been covered briefly in section 3.1 onwards. 
Animal learning is purposeful and goal-orientated for the most part. Behaviour is 
internally generated and intermediate steps to a goal are developed by active 
exploration of an environment. Depending upon the level of evolution, animals 
become "aware" of obstacles in the way of reaching goals and avoid them by 

exploring alternative strategies There is much to be learned from studies of 
animal behaviour. 

Neurocontrol is one area which requires more adaptive and autonomous systems 
endowed with a degree of intelligence. The term "meta-contror' is introduced 
here to cover the concept of "controlling the controller"--with particular 
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reference to neurocontrollers. Although difficult to define, certain operational 

characteristics may be listed to help clarify the concept, viz. 

e active, intentional or goal-driven behaviour as opposed to passive reaction to 

applied data; 

* self-generated intermediate behavioural. sequences, 

* Higher-order (meta) evaluation of progress; 

e 'intelligent' adjustment of control strategies; 

9 hierarchical and distributed systems composed of sub-modules; 

* possible tracking of non-stationarity; 

e forward planning and "what if ... T' analysis. 

e experiential modification of neurocontroller structure--c. f. neural Darwinism 

(Edelman, 1989) and genetic algorithms (e. g. Goldberg, 1989). 

This Est is not exhaustive but, it is hoped, conveys the idea of a genre of 
intelligent adaptive neurocontrollers which are capable of a greater degree of 
interaction with an environment in some ways similar to that of humans and 

animals. Any candidate intelligent neurocontroller will exhibit some of these 

properties to some degree. 
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5.2 Pruning 

5. Zl Introduction 

One of the items of the list of section 5.1 is modification of the neurocontroller 

structure. The incremental addition of nodes has already been mentioned in the 

preceding chapters. Removal of nodes by pruning is also a viable approach to 

structural modification and has been investigated (e. g. Le Cun, Deenker and Solla, 

1990; Reed, 1993, Fritzke, 1994). Removal of nodes from feedforward networks 

such as the MLP is more difficult than from ART-based networks because, in the 

former case, nodes contribute to a distributed representation and the amount of 

contribution to the mapping has to be computed globally (e. g Reed, 1993). 

For the EUCART-BSA hybrid, many of the nodes that are created are relatively 

unimportant as they appear when the state-space trajectory moves between 

critical regions. One way to approach pruning is to remove nodes periodically if 

they appear to be of little relevance to control. Relevance may be assessed by 

calculating a measure the relative trace strength (RTS) given by 

RTSi = 11 
xi 

I Xý 
k=1 

The RTS has been introduced here to give a measure of relative eligibility which 

shows how much any particular node has been active. If the RTS for a node falls 

below a given threshold then the node may be removed because its relative 

importance has dropped in comparison with other nodes. 

5. Z2 A Simulation 

A simulation was carried out using the same conditions as for simulation 2 of 

section 4.3.1 with the random number seed set to 2. This time, pruning was 

carried out periodically with a period of 30 trials. The pruning threshold was 

extremely small with a value of 0.000001. This was to ensure that only very 

weakly active nodes were removed. The results are shown in Figure 5.1. 
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Figure 5.1 Simulation results showing the performance of the EUCART-BSA hybrid system 

with pruning. The pruning is periodic with a period of 30 trials. The resulting neurocontroller 
has only 6 nodes. 

The run of Figure 5.1 converged at trial 84 with 62 nodes but pruning caused 
disruption until convergence occurred at trial 120 giving a6 node neurocontroller. 

Figures 5.2 to 5.5 show the performance of the pruned system 

Figure 5.2. The cart position for the EUCART-BSA pruning simulation. Note the oscillation of 
the cart around the track origin; the cart is confined within about 0.015m of the origin or 0.63%. 
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Figure 5.3. The cart velocity for the EUCART-BSA pruning simulation. Note the oscillations 

required to maintain a good cart position. 
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Figure 5.4. The pole angle for the EUCART-BSA pruning simulation Note that the pole 
remains within about I degree either side of vertical. 
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Figure 5.5. The pole angular velocity for the EUCART-BSA pruning simulation Note that the 

pole velocity is predominantly negative in opposition to the predominantly positive cart velocity. 

Cart-pole control is oscillatory as expected when using bang-bang control. 
Smooth control requires a graded output so that a minimal corrective force may 
be applied as required. It is interesting to note that both the cart displacement and 

pole angle remain within a small range of the full scale allowed. Only the range 

end-points are specified for failure and oscillations up to the failure limits would 
be allowable although this would not constitute good control. Large oscillations 
just within the failure limits have been observed in the BSA system (Johnson and 
Smartt, 1993). It is likely that there will be similar cases observed for the 
EUCART-BSA hybrid if the control behaviour of many runs is examined. 

5. Z3 Issues 

The preceding simulation shows that a simple pruning scheme can be successful 

and that many of the nodes are created spuriously. However, there are two points 

which must be addressed if pruning is to be a viable extension of the EUCART- 

RL hybrid. First, pruning by usage-reflected by the RTS- is only useful for a 

stationary environment. Ile nodes required to maintain control are used regularly 
and, consequently, are not pruned. If environmental conditions change which 

necessitate a new "set-poinf 'or control strategy, then the controller will adapt as 
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required but the old control strategy will be lost because the RTS of the nodes 
involved in the previous strategy will decline until they drop below the pruning 

threshold. If the environment returns to the previous conditions, then the original 

control strategy will have to be re-learnt. This is undesirable and does not allow 

the neurocontroller to build up a general control strategy. Clearly, the 6 node 

controller of the simulation will not be robust in a non-stationary environment. 
Balance will be maintained about the origin until the operating conditions change 

and a new control region established. A new method of pruning other than by 

absolute usage is required. A contextual usage measure may be possible in which 

a successful localised control strategy is not erased when operating conditions 

shift, e. g. if for a particular node the RTS exceeds a given relevance threshold in 

any context then it is deemed important and 'made immune' from removal. 

Second, the simple pruning used in the simulation is carried out at set periods 

using a set threshold. The pruning period and pruning threshold are arbitrary 

parameters which have to be set by the user. Although it has been demonstrated 

that the use of pruning is feasible, the introduction of yet more arbitrary 

parameters is unsatisfactory. The pruning operation has to be made adaptive in 

some way so that pruning only occurs at relevant intervals and to a relevant 
degree. How these levels of relevance are decided is another matter and provides 
directions for further research. 

These two points require investigation if improvements are to be made to the 
hybrid. A further point, though of lesser significance, is that when nodes are 
removed, useful information may be lost. The GCS system of Fritzke (1991, 
1993,1994) redistributes some of the information. A modified version of this 
method may be useful here. 

The active removal of nodes may be augmented or replaced with techniques 
which "lump" nodes together to reduce redundant coverage of state-space 
(Michie and Chambers 1968b). The technique of lumping is closely rI elated to its 

counterpart of "splitting" to give finer resolution; once a split occurs then 
redundant sections may be removed by pruning. 
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5.3. Distributing the EUCART-BSA Hybrid 

5.3.1 Introduction 

It is a reasonable assumption that distributing information across the decoder by 

allowing states to be members of more than one "box! 'will improve performance. 

This assumption is in accord with the relative smoothness of the cart-pole 

dynamics (Barto, Sutton and Anderson, 1983). Distribution across boxes is a 

form of generalisation in that an informed control decision can be made on the 

basis of information from neighbouring boxes even though a given box has never 

been entered previously. 

The original BSA approach does not preclude distribution; winner-takes-all 
dynamics as a matter of design choice. A distributed reinforcement learning 

system is pre-empted by the form of the dynamical equations and the challenge to 

distribute is clearly stated in Barto, Sutton and Anderson, (1983). 

The basis of a distributed approach rests upon finding a weighting system to 

combine sets of control outputs or predictions. A normalised category 

membership function is required to indicate the relative activity or contribution of 

a given box or node. 

Before attempting to develop a distributed version of the EUCART-BSA hybrid, 

it is sensible to explore the feasibility of distributed ASE / ACE dynamics ' 
decoupled from the EUCART decoder. The decomposition of the design process 
makes it simpler and allows distribution to be investigated under less com plex 
conditions. A distributed decoder with a fixed overlap is much easier to deal with 
than the dynamical EUCART decoder with variable''membership functions. 

An ideal candidate, which fulfils the fixed overlap condition and is equivalent to 
the original boxes system at the winner-takes-all limit, is afuzzy boxes system. 
Such a system introduced in this thesis, forms the subject of section 5.5. 
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5.3.2 Why Fuzzy? The Distributed White-Box 

Fuzzy systems (Zadeh, 1965) are ideal for distribution of information across more 

than one storage location in a mapping or representation. A fuzzy input-output 

controller can approximate to any degree of accuracy, a continuous system 

(Buckley and Hayashi, 1993). Fuzzy logic and fuzzy systems will be covered in 

section 5.4 onwards. The purpose of this section is to motivate the use of a fuzzy 

distributed decoder. 

The two primary reasons for choosing a fuzzy system have already been 

mentioned. The overlapping coverage of the input space by fuzzy sets (see 

section 5.3.3. ) and the property of 'boxes in the limit' make fuzzy systems a 

natural choice for a distributed decoder. Another attractive property of fuzzy 

systems is the ease of extraction of information in the form of rules. 

It is difficult to extract knowledge from neural networks such as the MLP by 

considering the weighted connections between nodes. Knowledge-based systems 

(KBS), on the other hand, are in the form of rules easily interpretable by a human 

being. The distributed representation of a neural net may not easily be mapped to 

a set of rules. For a non-linear network a change in the antecedent of a rule may 

have a disproportional effect on the consequent thereby making it difficult to trace 

the effects of weights and activity levels for each rule. 

Using a black-box approach of presenting and testing combinations of inputs leads 

to a combinatorial explosion of tests for all but a trivial number of input variables. 
Furthermore, rule extraction is an inefficient two-stage process where a network 
has to be trained prior to rule extraction. A more efficient method would be to 

train rules from the outset. Using a fuzzy decoder attached to a distributed ASE 

ACE system would allow rules to be generated directly to give a self-tuning rule- 
base. 
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5.4 Fuzzy Logic 

In the subsections that follow, the main concepts of fuzzy logic relevant to the 

development of ideas covered in this thesis are presented. This introduction to 

fuzzy logic is not meant to be exhaustive; it allows the thesis to be self-contained 

without depending too heavily upon auxiliary material. The concepts of fuzzy 

logic are introduced in anticipation of the discussion of a novel neurocontroller 

architecture. 

Fuzzy logic allows the use of qualitative knowledge. --often vague and 

imprecise-ýn the form of rules. Quantitative precision is also retained through 

the use of input-output mappings specified by the set of rules (e. g. Wang and 
Mendel, 1992; Buckley and Hayashi, 1993). 

5.4.1 Crisp Sets and Fuzzy Sets 

Traditional logic (e. g. Hamilton, 1988; Mendelson, 1987) deals with crisp sets, 

that is, sets with membership functions which map to binary sets such as 10,11 or 
jTrue, FaIsej. An element of a crisp set will be mapped to one of the binary 

values in the target set indicating membership or non-membership of the element. 
This can be stated more formally: 

given a crisp set, X, Such that XaU, where U is the universe of discourse and 

the set X is defined by X= 1xi P(x) is truel where P(x) is a truth function of x. 
The membership function jFx (x) can be defined as 

iTx W=I 
if x6X (P(x) is tnte) 

0 if x0X (P(x) is false) 

for example, denoting the set of even numbers less than ten by E= 12,4,6,8} and 

the set membership function by u,, (e), the following facts can be stated, 
2 eE => jTE (2) = 1,7 0E =* jTE(7) 0. 
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This polarisation of set membership represents the extreme case. In reality set 

membership (concept instantiation) is often not clear cut. Grades of set 

membership can exist on a continuum between zero (non membership) and one 
(full membership) e. g., for the concept pair young-old, when is someone young? 
From traditional logic a boundary point has to be defined. Does this make sense? 
Does a single second either side of the boundary point make a difference? 

By defining a continuous membership function 
jux 

(x) the continuum of 

membership can be dealt with. More formally, the fuzzy membership can be 

stated as 

jux: 
X ---> [Oal yx (x) F-> m r= [0, '] 

Fuzzy logic deals withfuzzy sets, that is, with sets having continuous membership 
function (Zadeh, 1965; Pedrycz, 1993; Kruse, Gebhardt, and Palm 1994; Kruse, 
Gebhardt and Klawonn, 1994). Viewed in this manner, traditional logic is a 
subset of fuzzy logic with the binary set values comprising the extremes of the 
fuzzy membership continuum. Conversion between fuzzy and crisp set 

memberships is achieved by specifying a cut-off boundary in the membership 
continuum and assigning elements to crisp sets depending upon whether or not 
they are above or below the cut-off point. 

The power of fuzzy logic lies in its ability to deal with imprecise linguistic 

information represented by concepts such as "hof, "warm", "cold", "small" or 
"medium". The set of all numerical values (e. g. range of temperatures) involved 

in a given application of fuzzy logic is known as the universe of discourse, again 
denoted by U. This universe of discourse is coded by a group of linguistic 

variables e. g. temperature,, pressure, and angle. The linguistic variables are 

composed of a number of terna representing imprecise quantifications of the 
linguistic variable. For example the linguistic variable of angle can be quantified 
by the set of terms, 

Xe = JLIV, SN, NZ, SP, LP} 

where LN, SN, NZ, SP and LP represent the linguistic terms large negative, small 
negative, near zero, small positive and large positive respectively. The set of 

233 



linguistic terms for each linguistic variable, taken together, are said to cover the 

universe of discourse. 

There are many forms of membership function. An example is shown in Figure 

5.6. 

ju( 
1 

x 

Figure 5.6 A triangular membership function often used to fuzzify a given variable. 

The triangular membership function is commonly used in applications owing to 

its simplicity. Each dimension of the input space is divided into several intervals, 

Ii. A set of points, 
jAj I 

along the input dimension, called knots, determines the 

size and location of the intervals, and thus, the width of fuzzy sets along the input 

dimension. 

For some input lying in an interval, i. e. xe Ii = [; Li_,, Aj ], membership of the 

fuzzy sets Ai-I and A, is defined by 

Aj -x 
Ali 

and 

,U"W= 
X-Ai-j 

(5.2) A, j - 

respectively. 

Figure 5.7 shows a set of 5 triangular basis functions covering the input space. 
The first and last triangular functions are given a constant value of 1.0 beyond the 
end-points specified by knots. The triangular functions are B-splines of order 2 
(Brown and Harris, 1994). The sets of basis functions covering each dimension, 
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taken together, form afuzzification of the input space. B-splines form a 

parameterised class of sets of basis functions of many orders. Each individual set 

of a given order covers an input space. Sets of Gaussian basis functions may also 
be used. 

Figure 5.7. The fuzzification of a real variable using a set of triangular functions. 

In the case illustrated in Figure 5.7, equations (5.1) and (5.2) hold for i=2,..., 5. 

For x r= I, = I, and for x r= Ii = [Ai-l j; Lj ] 

The support of a fuzzy set, A, denoted here by S(A), is defined as inputs, 

S(A) = Ix r: X: PA(X) ý)'Oj 
*If S (A) c: X, a support is said to be compact. 

If at each point (element) of a linguistic variable the membership functions applied 
to that point for each linguistic term sum to one, then the fuzzy sets (terms) are 
said to be nonnalised. For example, for the linguistic variable "angle", denoted by 
X8 , the fuzzy membership functions conform. to 

(0) +. U,,,, (0) + 14'.. (0) +, U,., (0) + P"', (0) =1 

for all values of 0, where pe, LN is the fuzzy membership function for the linguistic 

variable "angle" and so on. Normalised fuzzy sets are used subsequently. Note 

that there are a few general conditions on fuzzy membership functions such as 
their having to be defined at every point. Smooth membership functions such as 
Gaussian can also be used. 
For the cart-pole problem, the universe of discourse, U consists of the set of all 

state vectors, x= (x, 1,0,6) with dimensions distance., speed, angle and angular 
velocity respectively. The four dimensions of the state vector form the four 
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linguistic variables of interest. Each of the four variables are covered by the five 

linguistic terms of LN, SN, NZ, SP and LP respectively triangular membership 
functions are chosen, as stated previously for the angle example. 

5.4.2 A Fuzzy System (Mapping) 

The main advantage of fuzzy systems is that they allow both the construction and 

representation of qualitative mappings and the possibility of "interrogation" of the 

internal structure; here, the "black-box" has been replaced by a "white-box! ' 

consisting of explicit rules understandable by a human being. Using a fuzzy rule 
base also allows the easier integration of a priori information into a learning 

system; known qualitative knowledge concerning a problem can be formulated in 

terms of "if-then" rules which are used to prime the rule base. A fuzzy system or 

mapping consists of a rule-base which codes the system knowledge and two 

algorithms which carry out the respective transformations between the input space 

and rule space and rule space and output space (Figure 5.8). Input data is 

fuzzified and used to select a set of relevant rules from the rule-base. 

x Fuz 
Rule Defuz ]---* 
Base 

-H 
Figure 5.8 A schematic diagram of a fuzzy system. Inputs are fuzzified before being applied to 

the rule-base. The fuzzy outputs are combined and defuzzified to give the final output. 

The selected rules are combined to give a fuzzy output which is then defuzzified 
to give a real output. 
For a crisp input, x, components xi lie within open or closed i n-t'ervals, Ii where 
i=1,..., m = dimjxj. Similarly for y, where n ='dimlyl . Each 
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interval, I,, is covered by M functions and each interval, Ii is covered by N 

functions. 

So, for each of the m dimensions of x, there are M linguistic variables giving 

M 'possible rule antecedents C'if" parts). Similarly, for each of the n dimensions 

of y, there are N linguistic variables giving N' possible consequents. This gives a 

total number of possible rules of M'x N'. Where M and N are not fixed for all 

MM 
intervals, Mi and Nj are defined giving Mi possible antecedents and rj Nj 

J-1 

possible consequents; this gives a total number of possible rules of 

Mi Nj . The curse of dimensionality should be apparent from this 

analysis; however, in practice, all of the rules may not be used. 

As an example of a relatively simple system, consider the possible rule base 

required to control the cart-pole system. There are four state variables giving 

m=4. Using five linguistic variables for each input interval, M=5. For bang-bang 

control, where the output is not fuzzified, n=1 and N=l. In this case the total 

number of possible rules is given by 54= 625. This fuzzy rule-base will be 

covered in the discussion of a novel self organising fuzzy controller, FUZBOX 

discussed in section 5.5. 

The large number of possible rules gives rules at the lowest level of rule 
generality, including all antecedent clauses. Lumping and'splitting of rules is 

relevant to the discussion of fuzzy systems. 

5.4.3 A Fuzzy Controller 

Fuzzy systems are now used widely in control (e. g. Procyk and Mamdani, 1979, 
Pedrycz, 1993; Linkens and Abbod, 1993; Nie and Linkens, 1994). A novel self- 
orgranising fuzzy control system, FUZBOX, which uses reinforcement learning, is C? 
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introduced in the next section. The present section will introduce the subject of 
fuzzy control in anticipation of the discussion. A simple form of fuzzy controller 
is shown in Figure 5.9 

SP e -T e Controller Tý- 1-1 
Rule-base 

Li 
DEFUZ 

ý-ý 

Plant 

Figure 5.9. A schematic representation of a fuzzy logic controller. Fuzzification and 
defuzzification are denoted by FUZ and DEFUZ respectively. 

The fuzzy controller of Figure 5.9 is a SISO system which uses a real error, e 

which is fuzzified to give a fuzzy error, e. The controller is specified in the form 

of a rule matrLx (Procyk and Mamdani, 1979) which gives the control output, u, 
governed by the error, e, and the change in error, AE . For example, a small 

system with five linguistic variables given by LN, SN, NZ, SP, and LP may have a 

rule matrix given by 

SN NZ SP LP 
LN 
SN NZ SP 
NZ SP NZ SN 
SP SN 
LP 

The rule matrix is an input-output mapping which is transparent to a user and yet 
still allows a quantitative mapping for control (Brown and Harris, 1994). Because 

the fuzzification process, rule matrix and defuzzification process are all known, a 

control law can be formulated directly in non-fuzzy terms, u(e, Ae) if required. 

Fuzzy logic control is closely related to neurocontrol, and fuzzy neurocontrollers 
have been developed (e. g. Brown and Harris, 1994 Linkens and Nie, 1994). 
Fuzzy sets can be thought of as being analogous to basis functions which are 
combined to implement a mapping. 
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5.5 Distribution by Membership Function: FUZBOX 

5.5.1 Distributed Reinforcement Learning Using Fuzzy Methods 

Thus -far, a hybrid approach to neurocontrol has been explored which combines 

the flexibility of self-organisation with the adaptability of reinforcement learning 

and its suitability to information-poor environments. As discussed, the hybrid 

approach shows much promise and is worth developing further. However, 

problems still remain and improvements in performance are required if such a 

system is to be of any practical use. One area for improvement, the possibility of 

distributing the ASE and ACE elements was mentioned in section 5.2.1. 

Fuzzy systems are a natural choice for developing a prototypical distributed 

system because of the graded membership functions. Furthermore, the use of a 

rule-base is a natural extension of the boxes concept where the boxes form a 

crude rule base in the original undistributed formulations (Michie and Chambers, 

1968a; Barto, Sutton And Anderson, 1983). 

By demonstrating the use of distribution in a modified ASE / ASE system, it is 

indicated that a distributed version of the EUCART+BSA hybrid is possible which 

will allow the combination of neurocontroller outputs for a state which lies within 

the boundaries of two or more state nodes. 

A novel fuzzy neurocontroller architecture, given the name FUZBOX, is 

introduced in this section. This architecture demonstrates that distribution of both 

the ASE and ACE modules is, indeed, possible and that learning-in the case of 
FUZBOX--is accelerated compared with the EUCART-BSA hybrid. 
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5.5.2 Direct Fuzzy Control 

A fuzzy knowledge-based neural network (FKBNN) is proposed by Alch6-Buc, 

Andr6s, and Nadal (1992) which solves the cart-pole problem. The FKBNN 

allows the extraction of decision rules from an artificial neural system. The 

neurocontroller implements rules of the form: ifX is Ai then Z is Bj. The network 

is composed of three layers: 

*a condition layer which has a fuzzy set associated with each node and each 

node computes the membership function; 

*a conclusion layer whose nodes associate fuzzy sets with their consequences; 

the weights on the incoming links from the condition layer are stored in a 

matrix representing the strength of if-then relations between conditions and 

conclusions; 

a combination layer which combines the rules to give an output; the output 

node computes the centre-of-gravity defuzzification. 

The network uses supervised learning implemented by a modified form of the 

backpropagation algorithm which is divided into three separate steps: 

i) the fuzzy sets in the first layer are corrected with all other parameters being 

frozen; this process gives a preliminary approximation to the rule conditions, 
H) when step i) is satisfactory, the first layer fuzzy sets are frozen and the network 

learns the strengths of the if-then relations; this is rule identification; 

iii) finally, all parameters of the net are involved in optimisation, especially the 

centres of the consequent sets. 

Learning is off-line and involves the minimisation of a specified error function 

which contains arbitrary parameters. The error function consists, of three separate 

sections which are designed to impose correctness, completeness and consistency 
upon the network. 
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The FKBNN was applied to the simplified case of the cart pole system only, 

which dealt with the pendulum angle and angular velocity. Nine rules were used 

which gave successful control performance. The paper stated that a possible next 

step forward was to put a FKBNN into a control loop where feedback was 

provided by the pendulum itself. On-line in situ control similar to this proposal 

has been achieved by FUZBOX; the main differences between FUZBOX and 

FKBNN are that FUZBOX 

is autonomous, 

uses fixed fuzzy membership functions, 

does not use fuzzy sets at the output, which would entail 

defuzzification, and 

does not require the specification of desired intermediate control 

actions. 

For convenience, the cart-pole control problem is resolved into two decoupled 

tasks: 

the self-organisation task, which involves the autonomous categorisation of 
input information to provide a basis for subsequent control actions, and 

the control action learning task, which involves the evaluation and correction 

of elicited control actions associated with individual states or distinct regions 

of state-space represented internally by the neurocontroller. 

The hybrid approach is possible because the two tasks are decoupled'and can be 

solved independently. For example, solution of the control action learning task 

only requires the assumption that individual regions of state-space . are represented 
such that they provide a unique "key" to associated control actions which'are 
stored separately from the internal representation of state-space. . neaisignment* 

of credit or blame and the updating of individual Control actions is not linked 
inextricably to the method of state-space partitioning provided that there is a one- 
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to-one correspondence between the evaluated region of state-space and its 

associated control action. 

Decoupling the tasks also allows the possibility of other related neurocontroller 

methods. Indeed, as stated here, the first task is too restrictive and can be 

replaced by the more general 

* decoder task, which involves the decoding of state-space into a representation 

with which individual control actions can be associated. 

Note that the term 'decoder' is used as opposed to the term 'encoder'; this usage 
is consistent with the BSA formulation of reinforcement learning, and reflects the 

analogy between the BSA state-space decoder and a computer memory address 
decoder which decodes input addresses to allow access to physical memory 
locations (Barto et al, 1983). The state-space decoder task is to treat the state as 

a decoder "address" pointing to an associated control action stored within the 

neurocontroller. 

The statement of the decoder task says nothing about its nature; for example, it 

can have a fixed structure and act as an indexing system for a control action look 

up table (Michie and Chambers, 1968a) or it can be self-organising as is the 
EUCART decoder. Also, both discrete-valued and continuous-valued decoders 

are possible; the latter consisting of a smooth mapping between a continuous 
input space and a continuous output space. 

The original BSA approach can be decoupled into the decoder task and the 

control action learning task. Here the decoder indexes a fixed state-space 
representation which is in the form of a look-up table; as learning proceeds, the 
look-up table is filled (Barto et al, 1983). It is precisely because the two tasks are 
decoupled that other types of state-space decoder are possible whilst retaining the 
original BSA implementation of reinforcement learning. 
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Fuzzy-logic-based neurocontrollers allow a natural decoupling of the two tasks by 

treating the decoder task as one of determining rule antecedents and the control 

action learning task as one of determining associated rule consequents (e. g. 

Berenji and Khedkar, 1992; Jang, 1992,1993; Jang and Sun, 1995). For example, 

the generalised approximate-reasoning-based intelligent control (GARIC) 

architecture of Berenji and Khedkar (1992) uses an action selection network 

(ASN) and an action evaluation network (AEN) which are analogous to the ASE 

and ACE respectively. Here, although the decoding task is independent of the 

control action learning task, the state-space decoding is not carried out by a 

separate decoder system but is subsumed within the operations of the ASN. 

States are decoded into the constituent terms of linguistic variables where each 

linguistic variable consists of a set of terms. One term is selected from each 

individual linguistic variable; the selected term represents the "value! ' of the 

linguistic variable, e. g. the term "near zero" might be selected from the set of 

terms comprising the linguistic variable "velocity". The resultant collection of 

selected terms, consisting of a single term from each set, comprises a rule 

antecedent. Note that individual states are not represented by individual rules in 

this case; a single state can fulfil the antecedent conditions of more than one rule 

and thereby trigger multiple rules. Rule antecedents can be viewed as 

characterising distinct regions of dynamical space which overlap in places where 

multiple rules are involved. Control actions are associated with input states 

through fuzzy encoding as rule consequents. GARIC uses reinforcement learning 

to tune the fuzzy rule base so that it is able to represent the desired control 

mapping. The fuzzy encoding of both the input terms and the output terms is 

tuned adaptively. A fixed number of rules is used to solve the cart-pole problem. 

The adaptive-network-based fuzzy inference system (ANFIS) of Jang (1992,1993; 

Jang and Sun, 1995) also tunes the fuzzy encoding of the state-space input 

patterns to form the rule antecedent terms but treats the rule consequents as real 
functions which are linear-in-the-parameters. These functions determine the 
control output when ANFIS is used to control the cart-pole problem, again, using 
a fixed number of rules. Learning consist of two stages: a forward pass to update 
the consequent parameters by recursive least squares estimation, and a backward 
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pass to update the antecedent parameters by gradient descent down the error 

energy surface determined by the input fuzzification. lbus, the two tasks are 
decoupled and separate learning phases are used. 

A fuzzy version of the ASE element was developed by Johnson and Smartt 

(1993). It was based upon the observation that the decoder-ASE combination 
formed a type of expert system (Johnson and Smartt, 1993). The decoder 

represented the set of possible antecedents and the ASE the set of consequents. 

Thefiiz2y associative search element (FASE) used a continuous output obtained 

by defuzzification of the consequents. As with the BSA system, the cart-pole 
problem was formulated in terms of four state variables. 

Two linguistic variables were used for both the antecedent components and the 

consequent. The combination of state and linguistic variables gives 24= 16 rules 
if a single linguistic variable is chosen for each rule. The rule base is fixed in size 

and an appropriate output is defined for each rule in the rule base. One node is 

defined for each rule. The decoder assigns a rule applicability value, x,, to each 

of the 16 rules where i=1,..., 16. The weighted consequents are then defuzzified 

to give a continuous output value. 

Johnson and Smartt (1993) note that the pole angle oscillates considerably in the 
BSA implementation and just manages to stay within the failure limits. Ile FASE 
implementation allows much smoother control. 

FUZBOX, unlike FASE, does not fix the number of rules from the outset and 
allows the correct output actions to be learned. Ile output is still bang-bang but 

appears much less oscillatory when compared with the original BSA 

implementation e. g the pole angle remained within a degree either side of vertical 
for a number of cases. 
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The FUZBOX system is similar to the fuzzified actor / critic system of hanan, 

Mohammed and Shihuang (1995) but does not use a CMAC to store the rules. 

Here, it was found that similar results were achieved using FUZBOX without the 

need for CMAC-based pre-processing. This indicates that using a CMAC to store 

"box" information (Lin and Kim, 1992), whilst effective for improving 

performance for a discrete actor / critic system, is possibly redundant if a 
distributed actor / critic is used. 

5.5.3 FUZBOX: Description 

The FUZBOX system is also based upon treating state boxes as rules and using 
fuzzy membership to distribute learned information. Bang-bang control is 

retained using a special case of the Sugeno method (Sugeno and Nishida, 1985) 

where linguistic variables are not used at the output. Instead for each rule with an 

antecedent of the form 

R': x, is Ail , a, x. is A,, 

the single valued consequent is of the form 

i0A Y= Pi + Pj'X1 +1 ... +Pi Xn. 

For FUZBOX, y' = pO where pio e I 
I- ', +'I - 

Ile maximum possible number of rules for FUZBOX is 625 which is determined 

by the use of four state variables and five linguistic variables for each of the state 
intervals. Each of the 625 possible antecedents is assigned one output only. 
The new state-space partition uses the linguistic variables LN, SN, N7, SP, and 
LP. A typical rule is given by, 

If x is SN and I is SN and 0 is SP and 6 is SP then output is + 1. 

The knot vectors determining the fuzzification are chosen to be 

kx1.8; -, L4,0.0, lA, L8] kt 3.0i-1.0,0.0LO, ý. qj 

k0= [- 10.0, -2.0,0.0,2.0,10.0], and k6= [- 80.0, -20.0,0.0,20.0,80.0] 
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The relevance of a rule for a given input is measured by the rule antecedent 

strength (RAS) which combines the membership values of each state variable 
belonging to the fuzzy set associated with each linguistic variable. The RAS for 

the i th rule is defined by (AW = X. Aj 
(x)ym, (i)14, 

AI 
(O)I4. 

A. 
(6)) 

where, 

. U., Aj 
(x) denotes the fuzzy membership of the cart displacement with respect to 

the fuzzy set associated with the linguistic variable Aj and so on. 

Rules are added incrementally if the hash code of the rule with the highest 

possible RAS indicates a non-existent rule so that previously encountered state- 

space regions are represented by at least the most relevant rule as part of the rule 
base. 

The rules triggered by the input are combined to give a weighted avemge 

r 
y oul = Ywi(x)y, 

i=l 

where w, (x) is the normalised membership function given by 

AW 
I: P, i(x) k-I 

and r is the number of rules combined to give the output. 

This normalisation is required because although 0: 5 A (x) :! ý 1, Vx and 
NR 

A (x) =1 where N,, is the maximum number of possible rules, rules are added 

incrementally and only rules that are available are used. The number of rules used 
(combined), r, may be for example: all the current rules; all the rules triggered by 
the input; a subset of available rules depending upon a threshold, or a pre- 
maximum set number. FUZBOX sets r to the number of rules triggered by the 
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input to indicate the number of rules involved in determining the control output 

which is given by u= 10 sgn(y Out) 

Denoting the rule base at time instant, t, by 9t, all rules Ri such that Ri r= 9t, 

are updated according to the dynamics described in sections 5.5.4 and 5.5.5. 

The modified actor / critic elements of FUZBOX, labelled distributed ASE 

(DASE) and distributed ACE (DACE) respectively, operate as the original BSA 

implementation when a single rule is chosen using winner-takes-all based upon the 

RAS (A (x)). 

I -------------------------------------- 

DACE 

DASE 
Fuz (rule base) 

Distrib Cart-Pole 

------------------------------------------------- 

Figure 5.10 The FUZBOX neurocontroller. Fuz denotes the fuzzification process detailed in the 

text and distrib denotes the combination of rule infonnation to give the weighted average output. 
This is then used to generate the actual control output. 

5.5.4 Distributed ASE dynamics 

DASE dynamics are similar to those of the original ASE system but with a 
normalised scalar parameter to weight the individual contributions. The final 

control output, u is given by 
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u(t) = 10 sgn(y" (t) + e(t)) 

where y" (t) is the weighted output consisting of contributions from active rules 

F 
given by y` (t) u(x)y(t) and e(t) -N (0,1) is Gaussian noise derived from 

a zero mean source with unit variance. ne factor of 10 scales up the output to 

±10 Newtons. 

The output for an individual rule is given by y'(t) = sgn(zi (t)) is the where z, (t) 

is the DASE weight for the i th rule. 

The DASE weight evolution equation for the ith rule is given by, 

zi (t + 1) = zi (t) + ar^(t)ei (t) 

as for the ASE element where P(t) is the real-valued reinforcement at time, t, a is 

again the positive rate of change constant which determines the magnitude of ,ý 
change for the output weight time evolution and e, (t) is the eligibility trace with 

the evolution equation 

e, (t + 1) = &i (t) + (I - 8)w, (x(t))y(t) 

which now contains the weighting term. 

5.5.5 Distributed ACE dynamics 

The DACE is similar in structure to the ACE with the weighting term included to 
distribute activity across a set of rules. 

The distributed prediction of expected reinforcement is given by 

r 
p(t) qj (t)wi (x(t)) (5.3) 
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where qj (t) is the weight for the i" rule and wi (x(t)) is the input weighting for 

that rule as before. 

The weight evolution equation is given by 

qj (t + 1) = qj (t) + br^(t)Y, (t) 

where b>0, is a constant which determines the rate of change of learning in qj, 

FP(t) is the predicted reinforcement and Yj (t) is a trace of the activity of the input 

variable, xi. 

Unlike the eligibility trace, this trace does not take into account the control action 

chosen by the system for the region of state-space but now incorporates the 

weighting factor. It is given by: 

Yj (t + 1) = Ali W+ (1 - A) w, (x(t)) 

Where 1,0: 5 A, <1 is a rate of change constant. The trace provides a record 

of the activity of the i th rule analogous to the activity of the i th input line, xj, in 

the original ACE element and enables the determination of the contribution of that 

particular rule to the prediction. With the new, distributed, protocol of selecting 

multiple active rules, equation (5.3) gives the weighted prediction of failure for a 

combination of overlapping rules coding for neighbouring regions of state-space. 

The predicted reinforcement is given by 

P(t) = r(t) + jp(t) - p(t - 1) 

where r(t) is the external reinforcement, r(t) r: 10, -l}, andy, O<y: 51, isa 

discounting factor. 

Sub-section 5.5.6 presents simulation results showing the application of FUZBOX 

to the cart-pole problem. The effects of using a distributed representation are 
demonstrated clearly. The FUZBOX results are compared with the previous 

reinforcement learning implementations discussed earlier. 
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5.5.6 FUZBOX., Some Results 

This sub-section investigates the use of a distributed representation for the 

ASE/ACE elements in the novel reinforcement learning architecture, FUZBOX 

As will be seen, the original objective of establishing the viability of distributed 

reinforcement learning has been fulfilled. The investigation of a distributed 

representation was carried out using a different structure from that of the 

EUCART-BSA hybrid so that issues affecting distribution were isolated from 

possible complications introduced by using self-organising clusters. Once the 

viability of distribution was established using a fixed representation-boxes with 

fuzzy boundaries--then generalisation to the self-organising version could be 

investigated. 

Simulations, again following the method of Barto et al (1983) comprising 10 runs 
of 100 trials each, were carried out. As in the BSA implementation, the state 

vector was reset to x=I=0=6=0 after each trial. The simulation conditions 

and parameters were similar to those of the BSA implementation except that, 

again, runs were not terminated when the trial of a particular run first reached the 

ceiling of 500,000 time steps As with the EUCART-BSA hybrid, learning was still 

occurring in some cases and the system had to reach the ceiling value a large 

number of times consecutively to indicate convergence. For the FUZBOX 

simulations, the learning parameter, a was set to 1,000 as in the BSA 
implementation to establish control actions quickly. Rules are added 
incrementally if the rule does not exist which would have the highest possible 
RAS. 

Table 5.1 shows the results of the first ten runs using FUZBOX Comparing 
Table 5.1 with Table 4.1 of section 4.3.2 and Table 4.2 of section 4.3.4 indicates 

that the number of trials required to converge to a solution of the control problem 
is generally lower for FUZBOX in comparison with the EUCART-BSA hybrid 

given the same cart-pole and noise conditions. This is confmned by the average 
convergence time of 45.9 trials for FUZBOX (over 10 runs) compared with 
407.7 trials for the EUCART-BSA hybrid (over 10 runs) and 83.8 for the original 
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BSA system. Ile results for a further ten runs are shown in Table 5.2. The 

average convergence time has increased to 61.2 for twenty runs. 

seed 1 2 3 4 5 6 7 8 9 10 

trials 31 31 42 59 54 70 54 37 29 52 

rules 152 215 200 260 223 210 202 160 196 158 

Table 5.1 The first ten runs of the FUZBOX simulation using similar conditions to those of 

sections 4.3 2. and 4.3.4. The same initial conditions and random number seeds are used to 

provide a direct comparison. 

seed 11 12 13 14 15 16 17 18 19 20 

trials 179 29 227 113 23 29 55 16 76 18 

rules 1333 183 1273 1236 175 158 251 163 "270 157 

Table 5.2 A further ten runs of the FUZBOX simulation using the same conditions as the 

simulation illustrated in Table 5.2 

These results for FUZBOX indicate that distribution of infomation across several 
boxes decreases the learning time required to acquire a successful control strategy 
for the given initial conditions. Figures 5.11 and 5.12 illustrate the perfonnance 

of FUZBOX for the first 10 runs featured in Table 5.1. All of these runs 
converged within 100 trials. The solid curve shows the average pole-balancing 
time over the 10 runs for each trial. Again, a single point is plotted to indicate the 

average of each bin of 5 consecutive trial (ensemble) averages. The dotted curves 

show I standard deviation either side of the mean. The circles at the top of the 

graph indicate at which trial the members of the 10 run set converged. 
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Figure 5.11 FUZBOX simulation results showing the first 10 runs. Note that there are two 

coincident convergences at 31 and 54 trials respectively. 

Comparing this with Figure 4.9 of section 4.3.2 illustrates visually the more rapid 

convergence of FUZBOX as compared with the EUCART-BSA hybrid. One 

important thing to note is that the pole-balancing durations increase 

monotonically. Although the use of 'bins' of five consecutive trials smoothes the 

curve and removes some of the fluctuations, there are no drops in average 

performance compared to the EUCART-BSA hybrid 

Figure 5.12 illustrates the increase in number of rules (boxes) as a function of trial 

number. The curve appears to approach an asymptotic value of approximately 
200 rules. This means that approximately 425 rules remain unused for this set of 
initial conditions. Dynamic allocation of rules prevents the allocation and use of 

redundant memory, thus, reducing computational overheads. It is likely that more 

rules will be required for more demanding initial conditions and will be allocated 

accordingly. 

Another advantage of dynamic allocation of rules is that it facilitates pruning of 

redundant rules. Rules may be removed from the rule-base and thereby from the 
storage requirements of the system. 
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Figure 5.12 The average number of rules for ten runs using the FUZBOX neurocontroller. Note 

that about 200 rules are generated on average compared with the possible 625. 

A single run of FUZBOX was carried out using the conditions given for the 20 

run set except that the pole angle was initialised to 11 degrees from the vertical 
for training and testing. Figure 5.13 shows the phase plane plot for this run. 
Figure 5.14 shows the cart-position for the first 8.5 seconds and illustrates clearly 

the use of predominantly right directed forces to rectify the pole. 71"his control 

policy pushes the cart to around 1.2m away from the origin after which corrective 

action attempts to push the cart back to the origin without losing control of the 

pole. 

Figure 5.15 is commensurate with this and shows the transition between positive 

cart velocity and negative cart velocity as control emphasis switches from the pole 

to the cart. In other words, for the pole initial condition of 11 degrees, control 
forces have to be predominately right-directed giving the cart a positive velocity 
(and displacement). To compensate for this, the cart velocity is made negative 

with rapid switching to maintain the pole balance (Fig 5.15). The cart then moves 
towards the origin. 
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Figure 5.13 Phase plane plot for the II degree initial condition FUZBOX Tun. Note how the 

angle is brought into the stable region in the centre of the phase plane. 
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Figure 5.14 cart displacement plot for the II degree initial condition FUZBOX run. Note the 

significant move away from the origin as the pole angle is corrected. The large displacement is 

then corrected. 
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Figure 5.15 cart velocity plot for the 11 degree initial condition FUZBOX run. 

The pole angle evolution is shown in Figure 5.16 where there is an initial rapid 

compensation forcing the pole towards zero followed by oscillation between zero 

degrees and -2 degrees for about six seconds. 
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Figure 5.16 pole angle plot for the II degree FUZBOX run. 

The pole velocity is shown in Figure 5.17. There is an initial negative pole 

velocity as expected followed by rapid oscillation of velocity around zero. The 

oscillatory behaviour around zero is predominantly positive as the neurocontroUer 

compensates for the cart displacement. 
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Figure 5.17 pole angular velocity plot for the II degree initial condition FUZBOX run. 

5.5.7 An Example Rule-Base 

A FUZBOX simulation was carried out using the following parameters: cc=1000, 

P=0.5,8--0.9, r--0.95 and %--0.8 which were identical to those used in the original 
BSA implementation. This simulation corresponds to the first entry of Table 5.1. 

Following the simulation, the 14 most important rule&--in terms of relative rule 

strength-were selected out of a total of 152 generated by FUZBOX These 14 

rules accounted for 89.6 % of the total rule strength of unity. Figure 5.18 shows 

the cumulative rule strength with respect to the rule rank. Table 5.3 shows the 
form of these rules together with the associated relative rule strengths (RRS). 

RRS I is the relative rule strength of the 14 rules when they were chosen from a 

run of 32 trials, that is, one trial following convergence. RRS2 is the relative rule 

strength obtained after 5 trials of a run using the 14 rules a priori to prime the 

rule-base. Eleven new rules were generated for this run of five trials. The 

maximum RRS2 value of the newly generated rules was 0.02 or 2%. The total 

relative rule strength attributable to the 11 new rules was 5.3% which means that 
the total rule strength had increased slightly from 89.6% to 94.7% indicating that 
little information had been added to the a priori rule-base taken from the first run. 
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Figure 4.2.3.10 A plot showing the absolute and cumulative relative rule strength values for a 

ranked set of rules comprising a successful FUZBOX rule-base. 

x xdot theta 
I 

thetado 

tI 

output 
I RRS(l) I RRS(2) I 

NZ NZ NZ NZ POSITIVE 0.274062 0.254235 

SN NZ NZ NZ NEGATIVE 0.154640 0.253995 

NZ NZ NZ SN NEGATIVE 0.093908 0.082556 

NZ NZ NZ SP POSITIVE 0.090931 0.080343 

SN NZ NZ SP POSITIVE 0.050219 0.080159 

SN NZ NZ SN NEGATIVE 0.049607 0.092504 

NZ NZ SN NZ NEGATIVE 0.039465 0.016461 

NZ NZ SP NZ POSITIVE 0.035519 0.011799 

NZ SN NZ SP POSITIVE 0.020934 0.019486 

NZ SP NZ SN POSITIVE 0.019701 0.020025 

NZ NZ SP SP POSITIVE 0.018708 0. (X)7265 

NZ NZ SN SN NEGATIVE 0.017498 0.009705 

SN NZ SP NZ POSITIVE 0.015824 0.016116 

SN NZ SN NZ NEGATIVE 0.014594 0.012024 

I able _'). J. A rule-base consisting ot tourteen rules generated using FUZBOX These rules were 

sufficient to solve the cart-pole problem when the cart-pole system is started from near the 

origin. RRS(I) is the original relative rule strength of the rules; this figure was used to select 

these 14 rules from the original 152. RRS(2) is the new relative rule strength obtained when 

using the rule as part of a 14 rule rule-base 
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5.5.8 Adaptive Rule Reversal Recovety 

One of the features of self-organising autonomous systems is their adaptiveness to 

changing conditions during operation. To illustrate the adaptiveness of 

FUZBOX, the rules used in the simulation of section 5.5.7 were negated, that is, 

positive outputs were made negative and vice versa. Ibis a priori rule base was 

exactly opposite to a known successful rule base which meant that FUZBOX 

would not be able to balance the pole immediately. 

FUZBOX required a total of 98 trials before converging to a consistent balancing 

time of 10000 seconds. A total of 194 rules were generated, although, as 
illustrated in the previous simulation, only a small fraction of this total number 

might be required for balancing. 

This simulation demonstrates clearly that the self-organising nature of FUZBOX 

allows on-line recovery from changes in operating conditions; indeed, even 

changes as drastic as complete reversal of sucessful rules. The loss of control 
during the recovery period may be unacceptable in practical terms but would it be 

reasonable to expect any system to maintain control immediately following an 
inversion of its rule base? More pertinent though is the ability of FUZBOX to re- 

establish control. 

5.5.9 Pruning 

The rule base of section 5.5.7 consisted of 14 rules selected from a total of 152. 
Pruning, in this case, was done by hand. It is not inconceivable that this may be 

carried out automatically. A simple method would be similar to that of the 
EUCART-BSA hybrid with pruning in that the 'weakest' nodes would be 

removed periodically if the relative rule strength drops below a given threshold. 
However, the same criticisms hold as for the EUCART-based system. 
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5.6 The EUCART+BSA Hybrid Revisited 

5.6.1 Distribution of Information 

The FUZBOX architecture shows clearly that distribution of the information 

throughout the ASE / ACE modules is possible. Distributing the EUCART-BSA 

hybrid requires a type of fuzzification of category membership. A method similar 

to that of Zhang and Grant (1992) can be applied to EUCART by defining a 

relative node activation (RNA) in terms of the category centre. Using the 

EUCART choice function defined by 

TjE (1) =i--, rm- 

a relative node activation can be defined as 
Tý E 

N 
I TE 

k=l 

to give a category membership function. 

The EUCART choice function presents a natural fuzzification of the input space 
because it is constrained on the interval [0, I] as no input and exemplar vectors 

can be more than NrM- apart. The choice function values then have to be 

normalised to give a normalised fuzzification for a weighted distribution of 
information. Here, the weighting of distributed information is directly 

proportional to the radial distance between a given input and all category centres; 

node "age" is not taken into account. 

The EUCART category centres-defined by the category extent markers- may 
be replaced by centroids as detailed in section 4.2.14. 

Preliminary experiments using the conditions of simulation 2 of section 4.3.4 were 

carried out using both the centre and centroid prototypes. A single run using 
random number seed 1 for both prototypes gave the results of, Table 5.5 

259 



method trials nodes 

EUCART centre 235 360 

centroid 313 392 

Table 5.5 The results of a single run of a distributed EUCART-BSA hybrid using two different 

methods of distribution of information. EUCART centre denotes the method of fuzzification 
(and hence distribution of information) with respect to the category node centre determined by 

the category extent markers. Centroid denotes fuzzification using the centroid of a given 
category node. 

From the preliminary results of Table 5.5 it is clear that for this single run the 

distributed EUCART-BSA hybrid learns using either the original EUCART centre 

or the centroid. However, for this single case, the distributed hybrid learns more 

slowly than any of the previous methods explored in this thesis. This is 

counterintuitive and requires a statistical study of a set of runs to see if this 

method is slower on average. If such is the case, then further research is required 

to establish why. 

5.6.2 Distribution of Information: A Conclusion 

It has been established that the non-distributed version of the EUCART-BSA 
hybrid succeeds in learning a meaningful control mapping by self-organising a 

representation of the state-space. It has also been established that, for a fuzzy 

decoder with fixed overlap, distributed ASE and ACE modules are possible. 
Furthermore, learning is much more rapid with the distributed system when 
compared with a winner-takes-all system (boxes) with the same crisp boundaries 

as the intersections of the fuzzy sets used for the distributed version. 

The logical next step is to distribute the EUCART-BSA hybrid system. 
Preliminary results show that this is not straightforward and learning may in fact 
be made more difficult by distributing the EUCART-BSA hybrid. One possible 
cause of the problems is that the category membership functions used to obtain 
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the distribution weightings are always changing because the hyperspherical 

category boundaries are dynamic. This must be investigated further. 

In both the EUCART and fuzzy decoders, the spectre of the curse of 

dimensionality is raised. The number of possible nodes or rules rises dramatically 

with the increasing dimensionality of input space. For example, for a modest ten- 

dimensional system using five fuzzy sets for each dimension of the input space, 

there are 100,000 possible rules. Such systems rapidly become untenable as the 

number of input variables is increased. Clearly a more compact or efficient 

representation is required. 

For the EUCART (fuzzy) system, nodes (rules) are added as required which helps 

to reduce storage and computational overheads. Furthermore, as discussed, 

relevance pruning may provide a viable option for reducing complexity and aiding 

efficient storage. 

Another possible extension has already mentioned, that of "splitting" and 

"lumping" (Michie and Chambers, 1968b). The "lumping" together of sets of 

rules or nodes of low generality to give rules or nodes of higher generality will 

both increase generalisation and reduce storage requirements. In the case of 

FUZBOX, increased rule generality will aid comprehension of the rule-base by a 

user. 

Both the EUCART-BSA hybrid and FUZBOX need to be extended to multi- 

valued or continuous outputs if their usefulness and generality are to be increased. 

For the multi-valued case, probabilities may be associated with the output values 

and modified according to success or failure. The trade-off for the added 
flexibility will undoubtedly be in terms of learning time which will increase with 

the number of additional outputs. 
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Chapter 6 General Discussion and 

Conclusions 

6.1 General Discussion 

Three novel architectures, namely PROBART, EUCART and FUZBOX, have 

been introduced in this thesis and have been applied to mapping and control 

problems with some success. All three novel architectures have addressed some 

of the shortcomings of alternative architectures. 

Both the EUCART-BSA hybrid and FUZBOX demonstrate the possibility of 

autonomous neurocontrollers which can be "plugged in" and left to learn in situ. 
To avoid potentially catastrophic results, a human controller or other device could 
be used to maintain control beyond recoverable "failure" limits. Much work is 

still to be done concerning robustness, but the simulation results provide 
inspiration for further work. 

One of the main points which has arisen from this work is the notion of 

compromise. Apparently, there is no universal neural network which is equally 

suitable for solving all types of problem. A number of competing constraints 
become apparent when considering neural architectures and problem domains. It 

might be said that there are no solutions, only insight into the nature of the 

automated learning task. The following list gives some of the areas of conflict: 

" stability vs. plasticity 

" look-up vs. generalisation 

" discrete vs. distributed knowledge representation 
Off-line vs. on-line (causal) learning 

exploration vs. exploitation 
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One area of concern for machine learning is the efficient (optimal) use of 

information. Although learning an optimal strategy may be the desired goal, the 

learning of that strategy may be sub-optimal. The significance of sub-optimality 

depends on its degree. 

A major criticism aimed at reinforcement learning is the invariably long period of 

learning taken to acquire a behavioural (control) strategy. The lack of 

intermediate supervisory signals (supervised learning) has the drawback of making 

learning relatively slow whilst behavioural action pairs are constructed along the 

lines of trial and error. 

The lack of model-based processing leads to inefficient use of information. 

Stochastic search of the problem space replaces the strategy of repeatedly 

estimating and refining parameters. This may be fine for small problems but will 
become untenable rapidly with increasing problem complexity. 

Failure-driven learning is not necessarily an optimal way of acquiring an optimal 

strategy. The lack of meta-processing and evaluation makes reinforcement 
learning a brute-force method. It would not be desirable for a mobile autonomous 

agent to bump into an obstacle a large number of times before changing its 

strategy. Inclusion of meta-processing algorithms to switch intelligently between 

strategies or a priori information may provide an alternative to purely failure- 

driven learning. Reinforcement learning could be used to fine-tune coarse 

strategies acquired more rapidly through other learning methods. 

A more general criticism can be aimed not at the length of time taken to acquire a 
behavioural strategy using reinforcement learning, but that learning time is used at 

all to measure performance. The most frequently used measure of performance 
for connectionist and genetic algorithms is the learning rate (Sammut and Crib, 

1990). The learning rate is a measure of how many trials are required before 

performance is adequate. Sammut and Crib (1990) criticise the use of the learning 

rate of a system as a measure of learning efficiency; they maintain that it is not 

necessarily the best measure of performance and that it can be misleading at times. 
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A system may learn quickly but may only be applicable to a small operating 

region; this raises the question of robustness. The pole balancing problem was 

put forward to illustrate the point. 

Sammut and Crib looked at a variety of learning algorithms such as the BSA 

reinforcement learning system and found that specific learning-pertaining to a 

limited region of state space-was not transferable, and that rapid learning 

implied that learning was specific. The investigation revealed the trade-off 

between rapid learning and generalisation; this is reminiscent of Michie and 

Chambers' idea of exploration vs. exploitation (1968b). Rapid learning rates do 

not lead to general solutions. 

A bang-bang control system, such as the ASE / ACE system, which uses a 

quantised representation of state space can be treated as a finite state automation. 

An adequate control strategy for the cart-pole problem is represented by a cycle 

between states. Figure 6.1 shows a cycle between states with binary outputs 

(bang-bang control) 

; Late to 

. void (fail) 

Figure 6.1 An absorbing cycle representing an adequate control strategy. Once such a cycle 
between states has been entered, control will be maintained unless disturbances force the state- 

space trajectory out of this operating region. 

When a neurocontroller learns a control strategy quickly it means that a cycle has 

been discovered within a short time; it also implies that the rest of the finite state 

automaton graph has not been explored. There are many potential solutions to 

the cart-pole problem. Some of the cyclic solutions have state nodes in common 

owing to the variability within a given state node; this variability within a node 
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stems from the fact that a state node represents a set or cluster of states which 

may lead to different regions of state space, even for the same output (See Figure 

6.2) 

0 

Figure 6.2 Variation within a region of state-space represented by a single node. The same 

output may lead to state-nodes with different outputs. 

Starting a system with different initial conditions from those used for training very 

often does not balance the pendulum again. In effect, the system only learns to 
balance the pendulum from favourable conditions and some states are never 

experienced and, thus, never learned. Thus using learning rate as the sole 

criterion for assessing the performance of an architecture says nothing about the 

quality of the solution and so is misleading. What is required is a robust control 

strategy. 

Sammut and Crib (1990) suggested using a voting strategy to counteract the 

problem of overspecialisation. Iley used a set of random starting points and 
'froze' the successful strategies. For example using 20 random starting points for 

832 trials of a single experiment resulted in 100 successful trials. Using a Yoting 

strategy to select the most successful strategies amongst the 100 successful trials 

gave a new set of boxes. The new set of boxes resulted in a score of 20/20 

successful trials when tested on each of 20 new random starting points. Ibis is 

compared with a near zero score for learning systems trained using a single long 

run with a single starting point. 

The use of random starting points when training may increase learning time but 

this may be acceptable when taking into account the increase in robustness. 
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Random starting points will lead to a greater proliferation in EUCART nodes 

used en passant which will not contribute greatly to any given strategy. 

However, relevance pruning will remove these providing that the pruning strategy 

is contextual as opposed to purely usage-based. Contextual pruning would only 

permit the removal of nodes in a given context or strategy. Nodes which 

contributed to a successful control strategy for a given starting point would be 

rendered "immune" from pruning when either the starting point or plant operating 

conditions changed. This immunity would prevent pruning from favouring a 

single strategy. Previously useful nodes which are no longer used in the current 

strategy would have a falling relative usage count. Without immunity, these 

nodes would become unimportant and would be removed when the usage count 
fell below a given threshold if operating conditions warranted a change in 

strategy. Contextual pruning provides a direction for future work. 

The cart-pole problem provides a useful dynamical system for the development 

and testing of putative neurocontrollers. However, difficulties arise in comparing 

the performances of systems developed by various authors. Geva and Sitte 

(1993) highlight two main problems: 

*a lack of an agreed experimental protocol upon which to base benchmark tests, 

and 

*a lack of an agreed reporting standard for results. 

In addition to this, not all experimental details are reported which makes 

replication, and consequently comparison, difficult (Randall, Thorne, and Wild, 

1994). Geva and Sitte (1993) also expressed concern that the cart-pole problem 
is trivial if zero initial conditions are used. Randal, Thorne and Wild (1994) 

suggest: 

a standard set of parameters for the simulation including a difficult starting 
condition (e. g. cart displacement +lm, cart velocity +lm/s, pole angle Irad, 

pole angular velocity 0.17 89 rad/s) 
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ea set of standard assessment criteria, e. g. 

-balancing time 

-centering / oscillation (RMS values) 

For the case of the oscillation criterion, the findings of Randal, Thome and Wild 

concur with those of Geva and Sitte (1993) in that for box-based systems, large 

oscillations (in centering of pole and cart) are caused by course partitioning of 

state-space. The suggested reason is that the state-space trajectories remain 

within the same state-space region (box) for more than one time-step. 

Consequently, the same control action is issued for a number of consecutive time- 

steps giving large cart and pole displacements. Ile situation is likely to be 

repeated when the trajectory crosses a box boundary. The oscillation problem 
indicates that variable granularity state-space partitioning may provide better 

performance. However, a number of practical problems need to be overcome 

including the difficulty in specifying a "granularity adjustment' 'algorithm or 

procedure. This is a meta-control problem. 

One possibility may be to introduce match-tracking in EUCART to "splie'nodes 

by including smaller nodes in critical or boundary regions. The increased storage 

overheads will possibly be mitigated by the judicious use of pruning to reduce 

coverage of less important regions. The viability of pruning has already been 

demonstrated although more work has to be done to make it more "intelligene'. 

A recent paper by Lin and Lin (1996) proposes a network, RFALCON, which ties 

together a number of ideas presented in this thesis. The Reinforcement Fuzzy 

Adaptive Learning Controller Network associates input patterns with output 
patterns according to a reinforcement schedule. It is constructed from two 

multilayer feedforward networks (FALCONs) known as the actor the critic 
respectively. Associated with RFALCON is an ART-based algorithm which is 

used to cluster the input and output spaces. The RFALCON system operates on- 
line using a two-phase process: 
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e structure learning, which uses ART to self-organise the input and output 

spaces, and, 

o parameter learning, which uses a form of backpropagation to tune the input 

and output fuzzy membership functions. 

Nodes representing linguistic terms or fuzzy rules can be added as required. 

Results for the cart-pole problem show an average convergence time of 15 trials 

for 5 runs. An average of 10 fuzzy rules were created. A run was terminated at 

50 000 time-steps (1000 seconds) if failure did not occur before this time. 

Although a fuzzy-logic based neurocontroller (FUZBOX) has been introduced as 

a novel functional learning system in this thesis, the aim was to demonstrate the 

feasibility of a distributed representation of state-space. Decoupling the 

distributed representation feasibility problem from EUCART-BSA dynamics 

made it easier to deal with. The main aim to distribute the EUCART-BSA hybrid 

still remains. The idea of tuning the membership functions from both the work of 

Berengii and Khedar (1992) and Lin and Lin (1996) by using a modified gradient 

descent method may be useful in developing an automated variable granularity 

system. 

Reinforcement learning has only been applied to a single problem within this 

thesis. Ibis was done deliberately so that operational and architectural issues 

could be explored with respect to a well-known problem. It is envisaged that 

once architectural issues have been resolved, the resulting architectures would be 

applied to other problem domains especially in "real-world" control. Outstanding 

issues include: 

" contextual pruning, 

" robustness, 

" more efficient learning (distribution of information? ), 

multi-valued or continuous outputs, 

a principled approach including a well-founded theory, 
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variable granularity of state-space coverage (including automatic tuning of 

granularity), and 

meta-control including intelligent strategy shifting 

For the FUZBOX, architecture in particular, areas of future work include: 

automatic tuning of fuzzy membership functions, and 

"splitting and lumping" to give more general rules using a fuzzy analogue of 

Karnaugh mapping (e. g. Bannister and Whitehead, 1983): 

The ball and beam system (Lin and Lin, 1996) would provide a possible 

alternative benchmark problem. 

Most, if not all, future improvements would be in the direction of increased 

autonomy and more intelligent behaviour. This, of course, is characterised by the 

concept of meta-control. Tolle and Ursil (1992) give further insight into the 

notion of meta-control by dividing the concept of "machine intelligence" into two 
levels: Microintelligence: characterised by 

" computing units 

" local processing 

" input/output mappings 

" functional groups of processing elements: networks 

generalisation and recall, and 

Macrointelligence: characterised by 

" goal orientated use of microintelligence 

" co-ordination of functional groups 

" multiple levels of processing (e. g. Churchland and Sejnowski, 1992) 

" subroutines 

" tokens-atoms of the next level. 
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One possible direction of future development is that neurocontrol will move away 
from single reactive networks towards a form of distributed macrointelligence 
(meta-control) operating within multiply re-entrant networks (Edelman, 1989) 

capable of tracking and intelligently pre-empting change. Such multi-component 

networks would be capable of learning through experience and constantly 

adapting to novel conditions. They would not be limited to a small pre- 
determined behavioural repertoire or constrained to optimise a single strategy. 
Although intelligence is difficult to define or even to characterise, it certainly does 

not mean doggedly persisting with a learning strategy when even a little higher- 

level (meta-) processing would reveal that the strategy was hopeless or needed 

adjusting. 

It may be objected that speculation proposing such ill-defined intelligent systems 
is far removed from current capabilities such as those detailed here. Indeed, it 

may be that nothing short of a paradigm shift is required to change the emphasis 
from more conservative approaches to learning to more organic and diffuse 

approaches emphasising emergent properties. There is evidence that this is 

happening (e. g Langton, 1989). The development of intelligent autonomous 

systems may seem unrealistic and yet some of the simplest living organisms 

exhibit adaptive behaviour. 

Arguably, the greatest source of inspiration is the biological world. Millions of 

years of evolution and untold numbers of organisms have constituted a learning 

experiment of unprecedented levels. Examples of successful intelligent adaptation 

abound in a harsh testing ground for learning algorithms. A "reverse-engineering" 

or analytic approach applied to the living world may seem antithetical to a 
bottom-up synthetic approach to artificial learning but it is not. Indeed significant 

advances in machine learning theory may possibly result from the synergistic 

combination of these complementary approaches. 
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6.2 Conclusions 

In this thesis, a number of drawbacks of current approaches and fundamental 

problems behind these drawbacks have been presented. These include: 

* The lack of one-to-many mapping in ARTMAP and fuzzy ARTMAP; 

9 The tracking of noise by fuzzy ARTMAP, i. e. noise is treated as novelty and 

leamed; 

9 The minimal generalisation capabilities of ARTMAP and fuzzy ARTMAP, i. e. 

if an input does not fall within an existing category then an estimated output 

cannot be generated; 

* The requirement for a fixed a priori structuring of state-space in the BSA 

implementation of reinforcement learning; 

o The use of winner-takes-all dynamics with discrete boxes; 

* The allocation of information storage capacity en masse regardless of use; 

9 The long learning times required for reinforcement learning. 

The above list is not meant to give the impression that the architectures featured 

here are without merit. In particular, ARTMAP, fuzzy ARTMAP and the ASE 

/ACE systems have proved to be successful approaches to many problems 
involved in learning. However, further improvements can be made. Novel 

architectures and proposed modifications to architectures include: 

*A novel mapping architecture, PROBART, base upon adaptive resonance 

theory 
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Establishment of one-to-many mappings and noise suppression in PROBART; 

A proposed method of distributing information in PROBART to increase 

generalisation to unseen inputs; 

A novel self-organising architecture, EUCART, used in the self-organising 

partitioning of state-space for control applications; 

An autonomous hybrid architecture, EUCART+BSA, which is based upon two 

current areas of research, ART and reinforcement learning; 

A fuzzy-logic and reinforcement-learning based autonomous system, 

FUZBOX, capable of generating rules from experience; 

Both implemented and proposed mechanisms for dynamic allocation of storage 

via incremental learning and pruning mechanisms. 

One particular aspect of importance which has arisen from this work is that of 

controller robustness. Even from consideration of a single simulated control 

example, it is clear that both the original BSA neurocontroller and the novel 

architectures indicate the possibility of autonomous control systems requiring 

minimal supervision. However, the results from both the replication studies and 

the novel architecture studies suggest that performance is sensitive to changes in a 

number of parameters including initial conditions and the introduction of noise to 

drive the stochastic search. The variability of convergence times for the same 
initial conditions is evidence of sensitivity. The resulting neurocontrollers will be 

robust to differing degrees depending upon the final extent of neurocontroller 

experience following convergence. 

Arguably the most fruitful next step will be to increase the experience of the 

neurocontroller by exposing it to different control conditions through direct 

manipulation of the simulation. This increase in experience will entail a 
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commensurate increase in storage requirements which will require modulation 

using intelligent pruning. Robustness is an issue which must be dealt with if 

realistic neurocontrollers are to be developed. 

The contents of this thesis establish some new results and provide an indication of 

possible future directions. It is not so much that the architectures discussed are 

end-products of a problem-orientated design process but are rather by-products of 

an exploration of the issues involved in machine learning. Ibis exploration is 

open-ended and numerous future modifications have been proposed. Adaptive 

Resonance Theory and reinforcement learning are two biologically and 

psychologically inspired theories which continue to grow in importance and shed 
light on some of the age-old problems in learning theory, both biological and 

artificial. 
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Appendix A The Monotonic Increasing Property of the fuzzy ART Choice 

Function (Marriott and Harrison, 1994) 
a 

This proof is included to illustrate an important property of ART module choice 

functions. 

When wj is a fuzzy subset of I, the Fuzzy ART choice function is of the form 

ax f (X) = ý+x . 

Theorem: For a function f: [0,1] f (X) = 
ax 

, where a and b are 
b+x 

positive constants, given some X, IX2 lE 
[0111 f (X2) ýý f (XI) :* X2 ý-Xl 

* 

In the thesis, the above property is referred to as the "monotonic increasing 

property" or M. I. P. 

Proof: For someX, X2r: [0, l] assume that f (X2 f (xj), i. e. 

aX2 
> aX, 

b+X2 b+x I 
Using the rules of inequalities 

aX2 (b+ Xj) 
> 

"I (b+ X2) 

(b + xl)(b+ X2) (b + X1)(b+ X2) 

giving, 
abX2 ý: abx, 

and 
X2 ýý X1 

Similarly, it can be proved that 
X2 ýý X1 ' '2* f (X2) f (XI) 
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Appendix B: ARTMAP: a Numerical Example. 

The pattems to be associated in this simple example are: 

111110_ý1010, lb 
I 

la 
2,111100_40101, 

lb 
2 

l3al 111"-"0109 lbl 

The parameters used in this example are: a=2.0,6 = 0.01, M,, = N. = 

Mb= Nb= 4. The baseline vigilance for ARTa, specified by jY. = 0.4, 

illustrates match-tracldng in ARTMAP. ART b vigilance, A=0.9 

Initialise weights: 

11- 
Wi! 

TDa) (0) 
= 1.0, W4ý=b) 

(0) 
= 1.0, W, 

(BUa) (0) 
=ý-6= -0.0 1=0.115 

vi a+M, 2+6 

and 
(ý Ub) (0) 

= -3=--L-0.01=0.157 Mi 
a+M, 2+4 

1D- 
msent inputs:, 111101', 1'(1) [10101' 

Consider the ARTh module. Propagate the input to Flb giving 
Xb (t) lb (1) 

ý lb 

I. PrOPagate to F2b via bottom-up connections: 
M" 

.. i 
WýýUbl (O)Xi netj(1) = 1: 

J, 
b (1) 

iml 

= 0.157 x 1+ 0.157 xO+0.157 xl+0.157 xO 
= 0.314 

1 

It is the same for all F2a nodes as there are no committed nodes yet so the first 

node is chosen as the winner i. e. J=1. 
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(7vb) 
Propagate back to Fl b via top-down connections giving xb (1) = 

lb (1) +wi 

or componentwise, xi = Ii + w, ("). Apply the condition If xi >, - 1+F then xi =I 

else Xb =0 There is no gain as F1b and F2b are active and so, i 

xlb(l)=1+1=2, x2b(l) = 0+ 0.157 = 0.157, x3b(l) = 1+0.157=1.157 and 
b Xb(l) = I, Xb(l) = O, Xb(l) = x4(l) = 0+0.157 = 0.157, which implies thatý ,231 and 

X '(1) = 0. after thresholding. 4 

Matching at ARTh Fl gives, for x" (1) = [10101', 11"(1)l = 1.0ý: pb=09. A 

similar sequence of events follows for the ARTa module where F2a, node I is 

acdvated. 

(ab) 
= I+Ixl=2, For the map field, x, 'b (1) = ykb(l) + Yar (Owki (0), and thus, X, ' 

x2"'=0+lxl=l, x'=0+lxl=land ab=O+lxl=lgiving xý 

xab= [10001'after thresholding. 

Now, Xab(l) = Yb (1) n Wab(O) = yb (1) because, wl (0) = [I 1111, signifying that 
.rr 

no association has been learned yet as the J th AM node is uncommitted. 

At this stage the ARTa and ARTh modules and the map field have to be updated. 

For ARTa-. W(TDa) (1) 
= Xi 

(1) 
giving w 

(TDa) t 

and if , 
(1) = [1.0 1.0 1.0 1.0 1.0 0-01 

1.0 1.0 1.0 1.0 1.0 1.6, 
1.0 10 1.0 1.0 1.0 1.0 

(TDa) 
1-0 LO 1.0 1.0 1.0 1.0 

W 
1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 1.0 1.0 

LO-0 1.0 1.0 1.0 1.0 1.0 
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I, (I 
(Rua) 

11 

Also, wj(Ru"I (1) =- giving w,, (1) =-=-=0.143. similarly, 
a+ Ix" W 2+5 7 

(SUa) (BUa) (Rua) 
wi, (1) 

=w (1) = (1)w, (Bua) (1) = 0.143, 
13 M4 

BUa) 
00 

butW, (6 (1) 
= 

2+5 =7=0.0 giving 

(TDa) 
w [0.143 0.143 0.143 0.143 0.143 0.01 and 

0.143 0.143 0.143 0.143 0.143 0.0 
0.115 0.115 0.115 0.115 0.115 0.115 

w 
(DUa) (1) 0.115 0.115 0.115 0.115 0.115 0.115 

0.115 0.115 0.115 0.115 0.115 0.115 
0.115 0.115 0.115 0.115 0.115 0.115 

LOA 15 0.115 0.115 0.115 0.115 0.1 15J 

Similarly for ART'b. - w, 
(TDb) (1)=11.0 00 1.0 0.0]' and 

(BUb) 
W1 (1)=[0250 0.0 0.250 O. Of giving the ARTh weight matflces 

- 1.0 1.0 1.0 1.6, 0.250 0.0 0250 0.0 

W(TDb)(1) = 
0.0 LO 1.0 1.0 

and W 
(SUb) 0.157 0.157 0.157 0.157 

1.0 LO 1.0 1.0 0.157 0.157 0.157 0.157 
0.0 LO 1.0 1.0 0.157 0.157 0.157 0.157_ 

respectively. 

'Me map field weights are given by w( ' b) (t + 1) = x, ' and, thus, 

1.0 1.0 1.0 1.0 1.0 1.0 

w ab(i) = 

0.0 1.0 1.0 1.0 LO LO 

0.0 1.0 1.0 1.0 LO 1.0 

LO. 0 1.0 1.0 1.0 LO LOJ 

For the next cycle, 1" (2) = 12' = [1111001' and Ib (2) = Ib = [01011'. Note that 2 

lb = 
(1b)c 1'2' c 1'1' and 21 
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lb lb 
Consider the ARTh module. Propagate input to Flb giving x'(2) (2) 2 

Propagate to F2b (BU) giving 
M 

net, (2) =2 wl(iBub) 
(1)xib(2) 

i=l 

= O25OxO+O. Ox 1+0.250xO+O. Ox 1 
0.0 

and 

net2(2) net, (2) = net4(2) = 0.314. Choose J=2 as the winning node and 

Xb(2)=Ib(2)+w 
(TDb)(1). Componentwise, propagate back to Flb (TD) giving 

x, = Ii + w, ý"). Apply the condition If xj 2t 1+F then xi =1 else xib =0 again 

giving xb (2) =0+1=1, x2b(2)=1+1=2 x3b(2)=0+1= 1 and 

X4b(2) = 1+ 1=2, which implies that x"(2) = [01011'after thresholding. 

Matching at Flb gives, f or Xb (2) = [01011', Ilb (2)1 = 1.0; >- pb = 0.9. 

For ARTa: Propagate input to Fla giving xa (2) =I" (2) = 12. PropagatetoF2a 

(BU) giving 
m 

net" (2) w 
(BUa) (I)X a (2) 1 

= Q143x 1+0.143x 1+0.143x 1+0.143x 1+0.143x O+O-Ox 1 

= 0572 

and 
m 

net, a (2) 
w2(fua) (I)xi" (2) 2i 8 

iml 

0.115x 1+0.115x 1+0.115x 1+0.115X 1+0.115XO+0.0xl 
0.46 

similarly net3a(2) = net4a(2) = neta (2) = net6a(2) = 0.46 andF2a node I wins the 

competition. This makes sense because 12' cV and none of the other F2a, nodes 

are committed at this stage. 
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.,., 
(1) or Componentwise, Propagate back to Fla CrD) givingx"(2) =I" (2)+w (TDa) 

r. +w Xib Xi =), j(VTD) - Applying the condition, If xi >, - 1+F then xi =1 else 0 

gives 

x, 4(2) = 1+ 1=2, x2a(2) = x3*(2) = x4a(2) = 2, xas (2) = 0+ 1=1, and 

x6"(2) = 0+ 0=0 which implies that x" (2) = [1111001' after thresholding and 

x'(2) =V r) W(TDa) 21 
(1) 

42 

= 2,1 

Xb 

ka (2ý 11421 

Matching at ARTa gives, for (2) = 12' , --- 
1.0 ý. - pb= 0.9. The F2 

11" (2)l F12 I 

activity vectors for ARTa and ARTh are now given by y(2) = [1000001'and 

y'(2) = [01001'respectively. 

For the map field: 

w ab 0) = [1000'], andx"b(2) = y'(2) + Y. 1 
(1) W(ab) 

(1) 

. r. kk kjml 

thus, x, "b (2) =0+1x1=1 "b(2)=l+lxO=l, x3*b(2)=O+JxO=O and X2 3 

x4"b(2)=O+lxO=O giving x"b(2) = [00001'after thresholding, 

Lexab(2) = yb (2) n w, (1) =0. This is because the active ARIb category 

(category 2) is not predicted by ARTa. ARIb category 1 is predicted because the 

ART a input is a subset of the ARTa category 1 exemplar and ARTa category I is 

linked via the map field to ARTh category 1. 

Ix ab (2)1 
The map field match criterion r- 

Yý (2), ; -> pb fails because Ixa(2)1 =0 and the 

current ARTh category is not what is predicted. Match tracking attempts to 
rectify this incorrect prediction by raising the ARTa vigilance so that the currently 
active ARTa node is no longer chosen and a new ARTa category found with the 
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correct prediction or a new map field linkage is created using a newly committed 
ARTA node. 

However, the problem lies within ARTa and cannot be solved with match tracking 

using the system described so far. Normally, a map field mismatch would trigger 

match tracking which would increase the ARTa vigilance above the ratio 

"(2)1 a a 

ja 

Ix aW= Ila W r) W 

which, in this particular case is N2 = land 
r(2)1 12 (01 111, (01 a2 

no future ARTa match will be greater than unity. This means that no other node 

may be recruited or created. ARTh has learned the new input but it cannot be 

associated with the current ARTa input. 

For the third input I3ac la and 1, belongs to ARTa category I linked which is 

linked to ARTh category 1 as required. 
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Appendix C: The ARTMAP Match-Tracking Theorem 

Theorem: The ARTHAP Match-Tracking Theorem Any ARTa input which is not 

equal to any previously stored ARTa input will always trigger match tracking 

activity in ARTMAP if complement coding is used. 

Proof. 

Let IJ denote some input I" (t) at time, t and Ii denote some previous input 

I" (t - T) at time t-, r such that 1, c: 1, - Using complement coding, the following 

IC f= (1,, Ic). inputs can be defined: 1ý = 
(Ij 

9 
), and I, i 

Without loss of generality, assume Ii is stored by some top-down ARTa weight, 

i. e. w 
(TDa) 

.r 
(t) 

= Ii'. 

The ARTa matching condition can be stated as ; -> A 11-0 (01 

(TDa) Assume the input Ij triggers ARTA node J such that w., (t) = I,. The match 

Ila (t) r) w( 
'a) (t)l 

condition is then- pa 
Ir wl IIJI 

It is required to prove that 11' n I' j so that the matching ratio does not iI< 
11,1 

equal unity to allow the ARTa vigilance to be increased through match tracking. 

By hypothesis, Ii c 1,, which implies that If c I'. Now, 
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Y 
J) (ii uP (1, r) 1, ) u (Ij n ic) u (ic n Ij) u (I c n1i) iii 

=(ij nii)uouou(icj nli') 

(1, nii)u(icj n lie) 

By hypothesis, li c 1, giving Ij r) li = Ij and, by deduction, li' c I'j, giving, 

IC = ii9 

Substituting these terms into V, n li' = 
(Ij n Ij) U 

(I'j n K) gives 

11r)ll=l UP iiiI 

The condition 11'j 
r) I, f I< 11 1 

can now be replaced bY the equivalent condition 

11 
UYI< JIj. Now, IIj u 11 1= Iij I+ 11! 1, and 

11" 1 
iIiiAi 

By hypothesis Ij c I, which implies that jIj I< Ili 1. Similarly If c I'j implies 

that Ili I< jIj I. The latter can also be proved 
Ili I 

<Ili I=* -IliI > -Ili I=: > M-11JI > M-11ij =* IlcjI > Il; I 
Now, starting from the fact that 

Ili 
U If 

I= Iljl+ilc I the equivalent match 

IC condition may be proved, thus, 
Ili 

U 
I=IjjI+jjj<Ijjj+I1'j=I1'jand the 

equivalent condition Ili u 1; 1< 11; 1 is proved as required. 0 

Thus it is shown that III r) 11 j and the match condition gives iI< 
i" I 

11, 
J n W., I'j n Ij 11, 

J 
1 

1.0 which allows match tracking to increment the 

ARTa vigilance parameter. 
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Appendix D. Fuzzy ARTMAP Category Dynamics: A Single dimensional 

Example 

DI Introductlon 

This appendix illustrates the proliferation of categories by fuzzy ARTMAP on the 

real line when complement coding is not applied (Marriott and Harrison, 1994). 

This derivation differs from that given in Carpenter, Grossberg and Rosen (1991) 

by applying real analysis to adjacent categories to establish choice regions and 

category movement rather than the geometric interpretation. Carpenter, 

Grossberg and Rosen (1991) gives a geometric interpretation of the effect of 

complement coding in reducing the proliferation of categories. 

Let w, -, and w, denote the exemplars for nodes S-1 and s respectively where 

w, -,, w, 6 [0,1] c 91. Without loss of generality, assume 

0: 5 W', < W, :! ý 1 (D 1) 

and that for all inputs, I considered here 

W'-I :51 :5W, (D2) 

forsomes-l, seN. SeeFigureDl. 

WI_i I Wa 

Figure D1 Two adjacent categories on the real line 

Any input, 1, can be parameterised in the range 
, (A, ) = W'l +A(w, - w, -, 

) (D3) 

where 0: 5,1: 5 1. Henceforth, I(A) wiR be denoted by I 
In this case, the choice function of equation (2.13) gives 
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WIýj (D4) 
a+w, _, 

and, 

w'-I + A(w, (D5). 
a+w, 

Consider the effect of the parameter A- Three cases naturally arise: - 
DA, = 0, 

ii)'I = I, 

iii)O <A<1. 

For A=0, from equation (W), I=w, 
-,, and from equation (D5) 

T, Q) = 
w'-' 

. a+w, 

Also, T, 
-, 

(I)= W" by equation (D4). 
a+w, -, 

Now, from equation (D 1), w,, > w, -, which implies that T, 
-I 

(I) > T, (1), and node 

s-1 wins as expected. 

For 1,1 = w,, T,, (I) - 
w. -1 and T, (I) - 

W, 
a+w, a+w,, 

So, by the monotonic property of T(I), w, M> M-t M gives T. (1) >T 

and node s wins as expected. 

For 0<2, <1a question naturally arises as to where the decision boundarY for 

adjacent exemplars lies. 

Equating T, 
-, 

(I) and T, (I) gives w'-' w, +; L(w, 
and solving for A 

a+w, -, a+w, 

gives 
Xb 

where ; L,, is the boundary value of A- 

(D6) 

Thus A, is slightly less than one and depends upon ct. This means that all inputs 

in the range given by equation (D2) map to node s-I unless they are within a small 
distance of node s. This is proved in the following theorem: 
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Theorem: 

VI such that w, -, 
:51< Wl +; Lb (W, - W101 WI-I > 0' 

wherek is given by equation (D6), I 

maps to the s- I th category. 

Proof.. 

LetA=y, k,, O<y<l, 

i. e. 0 <A < A,,, as required, so that, 

T, W'-I 
a+ w, _, 

and, 

TW WS-1) 
S s-I +Y b (W 

a+ w. 
Now, 

W, > WI-I - 
Multiplication of both sides by (I- y) and further application of the algebra of 

inequalities leads to, 

w, -I(a+w, 
)>w,, 

and, 
w, -, >w, -, (a+w, -, 

)+)w, -I(w, -w, -, 
) 

(a+w, -, )(a+w,, ) 
Ws-I + YAb ( 

(a + 0), ) 
giving, T, 

_, 
(I) > T, (I) 

for 0< y< 1. 

The condition T, 
-, 

(I) > T, (I) 

requires 

W, -i- > W. -I + ), (w, - w, -, 
) 

a+w, _, a+w,, 
giving 
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w, >, ý(a + w,, ) 

which leads to 
W'-I < 

a+w, _, 
Also, A>0 and a>0 finally giving 

0<A< Wr-I < 
a+ 

Therefore, 

T (I(A)) >T , (I (; 
L)), for A in the above range 

Thus, all inputs between exemplars w, -, and w, map to category s- I except for 

those in a small exclusion zone(W, 
-l 

+ lb (WI - w, _, 
), w, ) determined by a. 

wir 

Figure D2. Two adjacent categories in the real line illustrating the exclusion zone near to 

category s. 

Note that the above only determines the winning node through T(l) and not 

category membership which depends upon the match criterion. 

Match Criterion 
Equation (2) states the match criterion 
JIAWI 

I 

which gives w, -, 
ý: pI for node s- 1. 

Thus, 1: 5 wl-I is required for a match to occur. p 
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D2. Category Proliferation 
Consider what happens when 

' Ws < Wz-2 "" 
-1 

"ý: I '4ý Ws 4' ' Ws+1 <* 

By previous results, T, 
-, 

(1) > T, (I), but, I> w" ensures that node s- I is 
P 

inhibited. 

Again, T, 
-2(, 

)> T, (1), by previous results, but I> W&-2 causes inhibition of node 
P 

s-2. 
Thus, all nodes, 1: 5 s-I are inhibited. 
Now, 

TkM Vk; 
-> s 

a+Wk 

giving 

TT>... asW,, < Wl+l < W: 
+2 

<* (1) >M>T . r+2 
M 

So, by the above, all nodes, 1 with exemplars w, < w,,, I<s, are inhibited so 

+1 
node s is selected giving T, (I) > -ýi for an uncommitted node. 

a+w, +1 

This means that the next available node is selected which has its exemplar w, 

replaced by I as the match criterion gives, 
1A w# I>p for p<1, regardless 

of the distance between I andw,. 
Thus, as I<w, exemplars drift towards the origin as their magnitudes are 

reduced. This causes the creation of more categories in areas of input space made 
devoid of exemplars by this drifting effect. 
Although stable by the monotonic decreasing of weights, the network suffers from 

Proliferation of category nodes unless complement coding is used. 
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Appendix E: Further Fuzzy ARTMAP and PROBART Results 

Mean results are based upon a sample size of 5 RMSE or MAXAE values from 

separate runs which are averaged to give an indication of performance. Maximum 

and minimum values are included to indicate the range of variation between runs. 

Simulation 1 

No. of categories Error measures 

ARTa ARTb RMSE NLAXAE 

298 52 0.0074 0.01 
ata Table E1.1. Mean results of fuzzy ARTMAp performance with noise-free training and test da 

derived from the test function of Figure 3. Training and testing is off-line using 1.000 Pattern 

pairs. See main text for parameter values. 

Error measures 
RMSE (TE) II Effor range2. I MAxAF, (TE) I Effor mnge. 

0.0076 13.31% - 0.99% --10.01 14.36% -1.3% 
Table E 12. Worst case bounds for the simulation data described in Table EI-I 

Error measures 

RMSE (JE)3 Error range. MAXAE (TEII Error range. 

0.0073 

13.18% 

- 0.95% 

10.01 

14.36% -1.3% 

Table E1.3. Best case bounds for the simulation data described in Table El. I. 

I Highest RMSE value of sample. 
2As a percentage of minimum and maximum values of test signal respectively. 
31, owest RMSE value of sample. 
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F, 
ý 

Error measures 
No. of categories RMSE MAXAE 

ARTA ARTh TR TE(NF) I TE TR TE(NF) 
79-8 

162 

0.0131 

10.291 

10.293 0.0871 

1-0.0717 1 

0.0679 

11 o0o items and Table EIA Mean results for fuzzy ARTMAP trained using a noisy data fe Of I, 

tested using a noise-free data file also consisfing of 1,000 data items. 

Error measures 
RMSE (TE) Error range. MAXAE (TE) Error range. 

0.0278 12.11% - 3.61% 0.0648 28.24% - 8.41% 

Table EIA Best case bounds for the simulation data described in Table EIA 

Simulation 2 

categories Error measures 
ARTh RMSE MAXAE 

53 0.0175 0.0783 
Table E2. I. Mean results of PROBART performance under the same conditions as those of 

simulation I and using the same noise-free data fileý 

No. of 
ARTa 

113 

Error measures 
RMSE (TE) Error range. MAXAE (TE) Error range. 
0.0185 8.06%-2.4% 0.085 37.04% - 11.03% 
Table E2.2. Worst case bounds for the simulation data described in Table E2.1. 

4Note that map field vigilance does not apply to PROBART simulations. 
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Error measures 
RMSE (TE) Error range. MAXAF, (TE) Error range. 

0.0169 7.36% - 2.19% 0.0729 31.76% - 9.46% 

fable E2.3. Best case bounds for the simulation data clescnwa in i avic, r., 4. i- 

Error measures 
No. of categories RMSE MAXAE I 

ARTa AR71b TR TE(NF) TE TR TE(NF) TE 

111 62 0.0316 0.195 0.0206 0.1005 0.0815 0.0839 

Table E2.4. Mean results for PROBART Mined unaer tne same conawoub UZ bullulauv-- 

using the noisy U-aining file. 

Error measures 
RMSE (TE) Error range. MAX Cl- ffor range. 

0.0228 

19.93% 

- 2.96% 

10.0974- 142.44% 

- 12.64% 

Table E2.5. Worst case bounds for the simulation data described in Table E2.4- 

Error measureS 

RMSE (TE) Error range. MAXAE (TE) I Error range. 

0.0196 8.54% - 2.54% 

10.0729 

131.76% -9.46% 
Table E2.6. Best case bounds for the simulation data described in Table E2.4. 

Simulation 3 

No. of categories Error measures 
ARTa ARTh RMSE MAXAE 

509 243 0.0015 0.0073 L__ 
-II Table EM. Mean results obtained by PROBART using increased vigilance. Both training and 

testing were carried out using the same noise-free data file used in simulations I and 2. 
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Error measures 

RMSE (TE) I Error range. 1 MAXAE (TE) 1 or range. 

0.0016 1 0.7% - 0.21% 0.0084 3.66% -1-09% 
Table E3.2 Worst case bounds for the simulation data described in Table E3. I. 

Error measures 

RMSE (TE) Error range. MAXAE (TE) Error range. 

0.0015 0.65% - 0.19% 0.0061 2.65% - 0.79% 

fable E3.3. Best case bounds for the simulation data (JeSCnDeU in iauicnaa- 

Simulation 4 

Error measures 
No. of categories RMSE MAXAE 

ARTa ARTh TR TE(NF) TE TR TE(NF) TE 

513 279 0.0193 0.0199 0.0197 0.0541 0.057 0.0566 

Table E4.1. Mean results for PROBART trained using the noisy data set used previously in 

simulations I and 2 with parameters set as for simulation 3 i. e. P. -*ý 0.999, A : -' 0- 999 

Error measures 
RMSE (TE) Error range. MAXAE (TE) Error range. 
0.0206 8.98% -2.67% 0.0648 28.24% - 8.41% 

Table E4.2. Worst case bounds for the simulation data described in Table B4.1. 

Error measures 

RMSE (TE) Error range. 1 MAYCAE (TE) Error range. 

9 8.23% - 2.45% 0.0498 H7% 
- 6.46% 

Table E4.3. Best case bounds for the simulation data described in Table E4.1- 
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Simulation 5 

Error measures 

Categories RMSE MAXAE 

ARTA ARTh TR TE(NF) TE TR TE(NF) TE 

-- I --- 1131 

1620 

10.0265 

1 

0.0089 

1 

0.011 0.0814 0.0225 

1 

0.0426 

Table E5.1. Mean results for PROBART obtained using the parameters of simulation 4 with the 

noisy training file increased to 10,000 items. 

Error measures 
RMSE (TE) Error range. MAXAE (TE) Error range. 

0.0117 5.1%-1.52% 0.0472 20.57% - 6.13% 

i awe tz. 2. Worst case bounds for the simulation (lata aescnDea in i awe zo. i- 

Error measures 
RMSE (TE) Error range. MAXAE (TE) Error range. 

0.0103 4.49% - 1.52% 0.0388 16.91% - 5.04% 

Table E53. Best case bounds for the simulation data described in Table E5.1- 
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Appendix F The Cart-Pole Simulation 

The cart-pole simulation was carried out as state in Barto, et al (1983) with minor 

modifications. ne state vector was reset to x=I=0=&=0 after each trial; 

failure was indicated by a reinforcement signal of -I when either the cart 

displacement, x or pole angle, 0 left their ranges of [-2.4m, 2.4m] and [- 12*, + 1211 

respectively. All trace variables were set to zero at the start of each trial. All 

weights were set to zero at the start of each run. Each run of the set of ten used 

random numbers from a different seed value. See Barto et al (1983) for further 

details. 

The parameter values used for the ASE / ACE subsystems were a=0.8, b=0.5, 

8--0-9 r--0.98 and cr--0.01. Here, a and y differ from the BSA implementation. 

As stated in the body of the text, the former was reduced substantially to prevent 

premature establishment of control actions. The latter was used to reduce the 

reinforcement prediction discounting but does not appear to have any significant 

effect; the change is noted here for completeness. 

The simulation equations for the cart-pole system are the following non-linear 
differential equations (Barto, et al, 1983): 

gsinO +Coso-F-mlO 
2 sinO+, U, sgn(. i) U,, b 

M, +m ml (FI) 
MCOS2 0 [3 

me +m 

.t=+ 
MI[Ö2 sin 0-ä cos 0] - g. sgn(ic) 

M, +m 
(F2) 

The parameters are those used in Barto et al (1983) with no changes, and the 

system is simulated using Euler's method with a timestep of 0.02 seconds. 
control force is applied at every timestep until failure occurs. The neurocontroller 
only has access to the cart-pole system states in the form of a state vector. It 
does not have privileged access to a model or any pre-existing cost function. 
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Appendix G The EUCART Category Composition Theorem 

The Category Composition Theorem requires several lemmas which will be 

developed here. First, a definition is required: 

Deffifition: Category Membership Property: 

An input vector, x, eX is a member of a category C, () if it lies within a closed 

ball B, (') = 
jp: 1ý 

- c(, ') 11 :5 pI where X is the input space, C, () is the category centre 

and p is the category radius. 

The centre, c, (i) is determined by the category extent markers defined Previously* 

This centre forms the centre of hyperrectangular category H, (') and hyperspherical 

category S, () respectively. 

Lemma 1: A hyperrectangular category, H, (), determined by the same category 

extent markers (u( '), v, ()) as a hyperspherical category S, () is a proper subset of 

SI(') i. e. HI) c SO. 

Proqf. ý 
By definition of a subset, it has to be shown that 
VX, xe HI) =* xe S(I). 

The centre of H, () and S, (), c, () is determined by the category extent markers 

0 (u(, '), v, )) through the definition c(, ) (u(') + v(, ')). The longest diagonal 
2' 

(intervertex distance) of H, (U (i), V V) is between the category extent markers 

and is given by 11v u (, ) 11 
. This distance form s the diameter of S, () with the 

common centre c, () which lies on the diagonal. Figure G2 illustrates the situation 
in two dimensions. 
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ß(i) 

Figure GI The hyperrectangle is contained within the inner hypersphere. Both are determined 

by the category extent markers and both lie within the outer hypersphere which denotes the 

maximum possible category extent given the current centre. 

By definition, the radius of SO) is given by r= 
1 

Because 
2 

1 G) 1v u (, ) 11 is the largest intervertex distance, the distance from any vertex of 

H, (') to the centre, c, () is always less than or equal to r. More formally, define 

St(') = 
IP: 11P 

- C( ) 11: 5 rl. The hyperrectangular category HO) is determined by the 

G) category extent markers (u, vO))which form two of the vertices. The largest 

intervertex distance which is divided into two equal parts by the common centre, 
0 0) el 
) determines the largest possible distance between any input vector, x. eH, 

r= and the common centre. So, llx, 
- c(, i) 

11: 5 
1 liv (, i) -u0, ) r and x. 2 

Therefore, x r= H(') => x r= S(') for some arbiwary point, x Thus, PIPt 
Vx, x r= H, 11 =* xeS, "', and by definition, H, () c S, 6) as required. 0 

Lemma 2: for any input x, eX belonging to a category C, (), x, either lies within 

a contained hypen-ectangle, H, (') or the complement of H, () with respect to the 

closed ball, B, () . determining the maximum possible extent of that category at 
time instant, t. 
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Proof. 

By lemma 1, Hj(') c St(i). Ile maximum possible extent of S at me ins t, t ti tan 

G) C: S0 is C, () = B, () so, S, () c B, () and thus, H, B, (). The sets H, () and 

r) (H(i))c 
u 

[B(') 
n (H('))c] B(') and I form a partition of B, () because H, ttt 

He(') n 
[B, (') n (Hi('))] 

= 0. 

So, for any x, e C(') = Bt(') either x, r= H(') or, x, r= B(') n (H(') c. m I191) 

Lemma 3: hyperrectangular category growth is monotonic. Formally, 

H, (') 

Proof. ý 

For the category extent markers, (u (i) 
I, v ()) at time, t, the following notation is 

used: let uk(') denote the k th component of u(, '), and let v') denote the k th .1k, t 

component of v(, ). By definition of the category extent markers, 

Vk, u () (i) 
0 :ý Vk, t . 

At the next time instant, t+1 the category extent markers are 

denoted by (u ( '), v( i) ). If the new input, xeC, (') but x0H then, by the + +1 PP 
definition of sub-section. 3.3.2.5, the category extent markers extend to include 
the new input in the hyperrectangular category at time t+1. Let Xk. p 

indicate the 

k th component of the p th pattern vector. The following three cases cover all 
Possible relationships between the input vector components and the category 
extent marker components: 

G) Xk, 
p 

< Uk, t 

Uk(i, 
)t 

:5 Xk, 
p :5 Vk(i, 

)t 

V k(i, 
)t 

<Xk. 
p 

By definition of the category extent marker update of sub-section 3.3.2.5 , the 
three cases give the following: 

316 



U(i) k. t+, ý Xk. 
P 

ii) no change 

ifi) V(i) = Xt. k, (+l 

so, at time t+l, the following inequalities must hold: 

UW W k. t+l ' "'ý Xk, 
p 

< Uk, t 

U(i) k. (+l = Uk(i. 
)t 

:5 Xk. 
p 

!; Vk(i. 
)t 

= Vk(i, 
)t+l 

'fi) X k. p= k(i. 
)t 
+I 

Define closed real intervals A(') = 
[u(i) 

, v(', ) 
] 

such that 

N 

x ... XAk(, ), X... XA(')t A(') 
't 

k. 9 N, k. t 
knl 

NN 

Ak('. ), Ak(!, 
k. t k, I+j which implies that rj Ak(!, cIIA k(, 

), 
k, t t+I 

kul kul 

or, H, () Q H, O, ), as required. 0 

The EUCART Category Composition Theorem: All inputs that are members of a 

given hyperspherical category remain within that category throughout the 

category growth process and beyond. 

In other words, for an input space (state-space), X 

Vx 6X for some time,, r and some hyperspherical category, C( ) at timer, Ir I 

XT 

Proof . 
xt (=- X at time, t. Without loss of generality, assume that a new category is not 

created. x, belongs to some category C, () at time, t. 

By the category membership property and lemma 2, x, r= C, (), implies that 
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Xi E H() c: S 4) g(i) n 1, ZB, () = e), or XEJ8 
(H, ('»". 

9 
ctl 

9t 

If x, E Ht(') . then by lemma 3 

EHC r() 

If, however, x r= Bý') r) H(l) then, by the category growth 19(1 
)0 

process, x, e H(') c C(') . Either way xe C(') giving x, r= C, (') =* X, r= C() 
W 1+1 

BY definition, x r= r(i) 0 Co , so by the principle of mathematical induction, 

XT r: CG) G) 
r =* x. r= C, +., n as required M 
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