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SUMMARY 

The bulk of the rock material in the neighbourhood of an excavation, 

beneath a foundation or inside mine pillars is in fact triaxially loaded 

over long periods. Strata exposed in mines and excavations is subjected 

to bending over long periods also. In many mines and underground workings 

the rock is nearly saturated, also information on the three dimensional 

creep behaviour of any rock is very limited. 

It was felt that studying the three dimensional creep behaviour under 

confinement in both dry and saturated conditions could add valuable 

information to the knowledge available on rock behaviour in such conditions. 

Gypsum was chosen as a suitable evaporite rock for carrying out this work. 

To assess the significance and the nature of the time-dependent 

behaviour of gypsum in engineering applications, triaxial compression creep 

tests were carried out at 10,20 and 30 N/mm2 confining pressure. Bending 

and uniaxial compression creep tests were also performed on the rock. 

Axial and lateral creep strains were measured from which volumetric creep 

strain was calculated. All the creep tests were carried out in dry and 

water saturated conditions at room temperature. Instantaneous strengths 

of gypsum under bending, uniaxial tensile, uniaxial and triaxial 

compression were found. The effects of specimen size and water saturation 

on these strengths were determined at room temperature. Empirical 

equations describing the individual creep curves in bending, uniaxial 

compression and triaxial compression were determined for both dry and 

saturated conditions, in the latter two cases equations for both axial and 

lateral strains were-obtained. 
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NOTATIONS 

Note: Notations used in the literature review have been explained as 
they appear in the thesis. 

L/D Length to diameter ratio. 

at Tensile stress. 

a Compressive stress. 

M Bending moment. 

b Width of the beam. 

d Height of the beam. 

L Length of the beam. 

L Length of the cylindrical specimen. 

et Tensile bending strain of the outer lower fibre. 

Cc Compressive bending strain of the outer upper fibre. 

P Total applied load. 

AS Cross-sectional area of specimen. 

Ar Cross-sectional area of ram. 

Fm The axial load applied on the ram of the triaxial cell. 

Fd Upward force due to the effect of confining pressure acting on 
the difference between the cross-sectional area of the ram and 
the specimen. 

Ff Friction force between the ram and the oil seal at specified 
value of confining pressure. 

Y Surface free energy. 

Co Half length of the Griffith's Crack. 

V Volume of specimen. 

E Strain. 

c Long-term creep strain. 

D Specimen diameter. 

of Major principal stress. 

a3 Minor principal stress. 
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a Normal stress on a plane. n 

T Shear stress on a plane. s 
Z Axial stress immediately after fracture. 

e Measured angle of fracture, angle between the plane of failure 
and the major principal stress. 

eM Angle of fracture predicted from the Mohr's envelope. 

AG Angle of fracture calculated from Griffith's equation. 

u Coefficient of friction. 

¢ Angle of friction. 

a Maximum normal stress. m 

T Maximum shear stress. m 
Pm Mean pressure. 

a required to develop unstable fracture. 
unst. . 

t Loading time. 

a Ultimate stress. U 

E Young's Modulus of dry rock. dry 
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Creep rate. 

(al - a3) Differential stress. 

p Poisson's Ratio. 

A, B, C and n Individual creep equation constants. 

D, E and F Constants of empirical equations of bending creep. 

R and K Constants of creep rate-axial stress relationship. 

a, b and c Constants of empirical equations in axial creep. 

d, e and f Constants of empirical equations in lateral creep. 
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Chapter 1. 

INTRODUCTION 

1.1 General Introduction. 

In mining and Civil Engineering, one of the major considerations 

in the rock excavation design process is the fracture of the rock 

material. In the design of the underground structures in rock, the level 

of stress and displacement that is likely to occur in the rock mass 

surrounding an excavation is of practical interest in the field of rock 

mechanics. The influence of high temperature, confining pressure, 

presence of solution, etc. have well known effects of the failure prop- 

erties of rock. Only some of these factors will be effectively applicable 

to any given rock structure situation, but such a structure can hardly be 

unaffected by the influence of time. A study of performance of under- 

ground openings in rock indicates that in many cases the effect of time 

can be very significant. Continuing deformation, changes in shape, 

crushing of tunnel supports and linings are some of the evidence to 

indicate that the effect of time on rock deflection can be important. 

The consideration of time-dependent behaviour of rocks indicates that the 

rock failure may occur in a mine or under a foundation even when the 

rocks are subjected to loads well below their normally determined short 

term rate strengths. 

McClain 
(81) 

studied the behaviour of long pillars with respect to 

time in potash mines of Alsace districts, France, and reported that the 

pillars exhibited a time-dependent strain (creep) and the edge of the 

pillars had deformed so much that they were no longer supporting their 

portions of the redistributed of the cover load. Bradshaw et al. 
(82) 

studied the vertical and horizontal deformation of the Hutchinson and 
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and Lyons salt mines pillars, in U. S. A., and reported that both deform- 

ations depend on time. Hebblewhite et al. 
(103) 

have made a radial 

creep measurementsof a shaft excavation for a potash mine in Britain. 

They reported that the deformation rate decreases as the age of the 

excavation increases. 

Hence, from the foregoing investigations and other field observations 

it is evident that crushing of pillars in room and pillar workings, 

closure of salt workings if left undisturbed for a long time, convergence 

of roof and floor in coal mine gate roads, widening of junction on road- 

ways, sagging and settling of the strata behind long-wall faces in coal 

mines, settlement of foundations, etc. suggest that they are time-dependent 

or "creep" processes. 

Where the time-dependent effects are significantly large introducing 

large scale flow at sub-failure stresses over a given time period, it is 

necessary to adopt a design for the structure such that flow is reduced 

to acceptable level or to design a satisfactory support framework for the 

structure (Farmer (85) 
. Thus, knowledge of the time-dependent behaviour 

(creep) of rocks can be of considerable help in understanding many aspects 

of rock engineering and is clearly important to civil and mining engineers. 

It is not only important from the question of the time factor, it is also 

important for question of stress, for difference of stress distribution 

must occur if we compare slow or fast advance rates in tunnels and 

workings. Knowledge of the rock creep properties gives a better picture 

of excavation behaviour and the movement of the rock masses surrounding 

an excavation prior to fracture. Particularly in rock subject to large 

creep strains, a knowledge of its creep properties is essential in deter- 

mining the time during which a temporary excavation may be safely used. 

To maintain the stability of the excavation and any construction such as 
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a lining or foundation. Within it, it is essential to have a knowledge 

of the deformational characteristics of the rock and to be able to 

predict the future time-dependent deformation and hence the stability of 

the entire system. The understanding of creep properties of rock could 

also be used in mine design, i. e. mine layout, sizes of galleries and 

supporting pillars in an estimation of the useful life of mine structures. 

The field of the rock creep is still in the early stages, and much 

work remains to be done in this problems area. However, the results of 

investigators who have been engaged on the study of creep rocks suggest 

that creep is a very sensitive property and appreciably affected by a 

number of factors, e. g. 

a) Applied stress, value and method of application. 

b) Temperature of specimen. 

c) Structure of rock specimen, material, orientation, porosity and 

permeability, composition, etc. 

d) Confining pressure. 

e) Presence of solutions. 

Stress, confining pressure, and presence of solutions are the main factors 

which may affect the creep behaviour of rocks at depth. However, a review 

of published work on the creep of rocks (see chapter 2) indicates that in 

practice very few investigations have been done on the three dimensional 

creep behaviour of rocks. Also, apart from one experiment by Griggs 
(70,71) 

(1939,1940) who did some tests on creep of alabaster in water and hydro- 

chloric acid, very few investigations of the effect of water on the creep 

of rocks have been performed. 

In the research work described here, the effect of applied stress, 

confining pressure and water saturation on the axial, lateral, and volum- 

etric creep characteristics of gypsum at room temperature was studied. 
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1.2 Stress Conditions. 

The rock tensile stresses are exploited in many mining operations, 

i. e. failure of strata in mines and excavations often takes place under 

bending (tension). On the other hand, the bulk of the rock material in 

the neighbourhood of an excavation or beneath foundation which is of 

concern to the design engineer is in atriaxially and compressively loaded 

state. However, stresses applied naturally to the rock in the earth 

crust or in any rock structure may have a wide variety of forces, and in 

many cases it is extremely difficult to assess at the design stage the 

exact nature of a stress field in a rock structure, especially when the 

rock mass is in a fractured state. It is possible to recognise that in a 

large number of rock structure problems the following states of loading 

are of importance: 

a) Bending (tension). 

b) Uniaxial Compression. 

c) Triaxial Compression. 

It was therefore decided to study the creep properties of gypsum under the 

influence of various percentages of their instantaneous strength in the 

above systems of loading. 

1.3 Environmental Conditions. 

Knowledge of the strength and physical properties of engineering 

materials aids in the design of safer and more economic structures. 

Water is always present and stored in the rock masses of the earth crust. 

In the majority of mines and underground workings the rock is nearly 

saturated. It is well known that the presence of the water modifies the 

behaviour of various rocks because afits mechanical, physical and chemical 

effects. These effects influence; 

1) Deformation of rocks. 

2) Resistance of rocks to fracture. 

3) Stability of rock masses. 
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Rock masses are exposed to the influence of water in varying 

degrees during most of the active life of mines, dams and underground 

excavations. The influence of water is thus an important consider- 

ation for the inherent safety of underground supports, mining or 

construction works, deep foundation stability, large dams or surface 

excavations, etc. 

It was therefore decided to study some of the mechanical properties 

and axial, lateral and volumetric creep properties of gypsum in dry and satur- 

ated conditions. Appendix (A) gives the petrological description of the gypsum 

1.4 The aims of this Research. 

The main aim of this work is to carry out bending, uniaxial and tri- 

axial creep tests on dry and water saturated gypsum for determination of 

the three dimensional creep properties under the two environmental 

conditions. The aim of this work is also to determine the bending, uni- 

axial tensile, uniaxial compressive and triaxial compressive strengths of 

the rock and to evaluate the effect of the specimen size and water satur- 

ation on the strength of the gypsum under these systems of loading. 

1.5 Practical Significance of the Work. 

Since the research studied three dimensional deformational creep 

behaviour of the rock, and the experiments carried out under dry and 

water saturated conditions with the evaluation of the confinement on the 

creep, these conditions are hopefully very close to the in situ natural 

conditions of this rock. It is hoped that the information obtained on 

the creep behaviour, may be of use in mines etc. in which the material 

forms he strata of the workings. 

Knowledge of the three dimensional creep behaviour of any rocks in 

dry and water saturated conditions under confinement is very limited. 

The results obtained are thus an addition tc knowledge in this field of 
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study. The primary contribution of this study has been to lay 

additional groundwork for future research in this area. 

Movements of evaporite rocks in the earth's crust and the geological 

structures so produced may perhaps be better understood with additional 

knowledge of the creep properties of these materials. In this respect 

the extension of the work to oil reservoir Cap rocks and repository for 

terminal storage of nuclear waste materials in the evaporite rocks 

should result in information of use in other engineering fields. 

1.6 Summary of the Research Programme. 

Short term loading tests were carried out on the gypsum to find its 

instantaneous strength in bending, uniaxial tensile, un_axial and triaxial 

compression. Four different specimen sizes were used to evaluate the size 

effect on these strengths. An exception was that the triaxial tests were 

performed on two sizes due to the limitation of the available triäxial 

cell size. Seven levels of confining pressure were used, namely; 5,10, 

15,20,25,30 and 35 N/mm2. All these tests were carried out in dry and 

water saturated conditions to evaluate the water saturation effects on the 

mentioned strengths. 

The creep tests were then carried out under bending, uniaxial and 

triaxial compression conditions in both dry and water saturated states-it 

various percentages of the instantaneous strength using the same systems 

of loading as used in the corresponding short term tests. In the tri- 

axial compression tests 10,20 and 30 N/mm2 confining pressures were 

used. All the short term and creep tests were carried out on the rock 

specimens cut from rock mass in such a manner that the major stress was 

applied perpendicular to the rock bedding. All the tests were performed 

at room temperature. 
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Chapter 2. 

LITERATURE REVIEW. 

Although the main aim of this study was to investigate details of the 

creep properties of the gypsum, the tensile and compressive strength of 

the gypsum will also be discussed briefly. This chapter will thus contain 

a review of some of the published works on tensile and compressive strength 

of rocks, followed by a summary of the studies published on the creep prop- 

erties of rocks and some of the factors influencing them. 

2.1 Direct and indirect trnsile strength of rocks. 

Early works, investigating the bending of the rock, such as that of 

fayols, as mentioned by Phillips(l), employed the bending test by loading 

cantilever beams of sandstone and shale with their bedding phases horizontal 

in order to study the fracture characteristics, fractures after bending 

were inclined upward and outward from the fixed end. 

Phillips(') (1948) carried out investigations of rock properties with 

respect to the application of various external forces. He produced test 

results on bending of rock beams which indicate that within certain limits 

the stress-deflection and load-deflection relationships are quite comparable 

to the predictions of the theory of elasticity. He correctly established 

that the position of the neutral axis in a beam under bending is solely 

dependent on the relative values of the elastic moduli in tension and 

compression and not on the relative strength in tension and compression. 

If the moduli in tension and compression are equal the neutral axis will 

be in the middle of the beam, otherwise the neutral axis will be out of 

the middle. 

Pomeroy and Morgans 
(2) (1956), performed the bending tests on 

various coals, using the four point loading system to get pure bending 

in different sizes of tested beams. Tensile strength was calculated 
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from the simple beam theory, it is concluded that the strength depends 

on the direction of the loading relative to the bedding planes, and as 

the specimen size increased the tensile strength decreased. They noted 

that for a particular specimen size the tensile strength is of the order 

of one-tenth the compressive strength. Three alternative methods for 

measuring the tensile strength of brittle materials were investigated by 

Berenbaum and Brodie 
(3) 

(1959), namely, bending, indentation, and diametral 

compression tests. The results from the artificial brittle materials, 

plaster of paris, coal, and cement were compared with the conventional 

direct pull method. They found that the indentation and the disk test 

results were in good agreement with the conventional tes: results, while 

the bending test results differed from the others by a factor of two or 

more and they attributed this discrepancy to the formation of strong sur- 

face skin on the side of the beam during casting and/or machining. The 

results also showed that the tensile strength decreased by increasing the 

disk thickness and by increasing the beam thickness in case of flexural 

test. 

Evans 
(4) (1961) studied the tensile strength of the coal by means of 

a bending test using the apparatus designed and described by Pomeroy and 

Morgans(2), diametrical compression, and indentation methods. The 

strengths obtained showed that the disk and indentation methods were not, 

in general, in agreement with those obtained by the bending method. 

Investigating the effect of specimen size by tensile stress applied to a 

disk by diametrial loading in which specimens of thicknesses varied between 

0.31 to 1.9 inch, showed that the tensile strength decreased with increas- 

ing specimen size according to the power law: 

-0.23±0.03 tensile strength a (thickness) 
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Hobbs 
(5) (1964) used the diametrical compression of disks with a 

central hole for determining the tensile strength of sandstone, siltstone, 

mudstone, and limestone; he found that the tensile strength is greatest 

when the applied tensile stress is at 00 to the lamination and smallest 

at 90° to the lamination, and he noted that a relationship between the 

tensile strength and uniaxial compressive strength may exist. Hobbs 

in 1965 extended the study of the tensile strength 
(6), 

by using the 

bending test, indentation, diametrical compression of solid disks, and 

diametrical compression of disks with central hole tests. All the 

specimens were moulded of plaster. The diametrical compression of disks 

with hole gave the highest tensile strength and the results of bending, 

indentation, and solid disk differ from that of disk with hole by ratios 

of 0.6,0.3 and 0.3 respectively. He reported that this difference in 

strength was not because of a toughened surface skin, and the strength 

variation was not present in the disk with hole. The effect of specimen 

size in perforated disks has been investigated with Darly Dale sandstone 

specimens the tensile strength was found to increase with increasing the 

external diameter and decrease with increasing the internal diameter (6). 

Experimental results for similar tests on sandstone, marble, and 

trachyte are given by Jaeger and Hoskin() (1966). The values of the 

tensile strengths so obtained are compared with. those from direct tension, 

Brazilian, and bending tests. The tensile strength for bending (three 

point loading) was considerably higher than those for direct tension or 

the indirect brazilian test by a factor of two or more. 

Lundborge(8) (1967) investigated the specimen size effect on the 

tensile strength of granite by using the brazilian methods to test cylin- 

drical specimens of L/D =1 at diameters 2,3,4 and 6 cm. He found 

that the tensile strength decreased with increasing the specimen size and 

that the relation is well described by Weibull theory. 
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Hobbs 
(9) 

(1967) suggested a method of estimating the compressive 

strength by using the measuring tensile strength; he produced the 

formula, C=2.84 T- 484, where C and T are the compressive and the 

tensile strength respectively. 

Direct pull tests under well controlled conditions have been carried 

out among three indirect methods, namely, diametric compression of solid 

disks, diametric compression of perforated disks, and hoop stress loading 

by Hardy and Jayaraman(10) (1970). They found that the uniaxial tensile 

method provided meaningful tensile strength of the three tested rocks and 

it is considered as a base for the relative comparisons. 

The indirect tensile tests have an important place in rock testing, 

but their interpretation must be in terms of the uniaxial value obtained 

by direct tests (Hawkes & Mellor, 1969) 
(11) 

Datta(12) (1964) concluded 

that the modulus of rupture is an exaggeration of the true tensile strength 

of the rock, and it is much higher than the strength obtained by brazilian 

test, and that the true tensile strength can only be determined by a uni- 

axial tensile test on a prismatic test-piece. 

Hardy, Hudson and Fairhurst, carried out a theoretical 
(13) 

and 

experimental 
(14) 

(1973) investigation concerning the failure of intact 

rock, and the beam test in particular. Theoretical analysis indicated 

that the tensile strength is not a material property, it varies with speci- 

men geometry and that no unique trend is evident for the size-strength 

relationship. Laboratory study of plexiglas beams showed excellent 

agreement with the theoretical approach while the granite beam results 

were not in good agreement with the theoretical. 

Williams and Elizzi(15,16) (1976) used the bending test by means of 

four point loading to determine the tensile strength of gypsum and 

anhydrite. Tests were performed at room temperature and at atmospheric 
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pressure. The specimens had the dimensions; 240 mm long by 40 mm wide 

by 12 mm thick and 240 mm long by 40 mm wide by 20 mm thick. They 

found that the tensile strength of the later is more than that of the 

former. 

2.2 Compressive strength of rocks. 

The compressive strengths of rock materials have been measured for 

many years and a wide range of the researches have been performed relat- 

ing to factors influencing the compressive strength of rocks since the 

beginning of this century. Brief review of some of the published studies 

within the recent decades will. be given here. 

In 1901 Adams and Nicholson 
(17) 

(1901) carried out a compression 

investigation of a marble. They applied axial load to some specimens 

and to get confinement the core was surrounded by a tight fitting steel 

cylinder. Further studies(18), were carried out using steel jacket 

cylinders at later dates by Adams, 1910,1912; Adams and Coker, 1910; 

Adams and Bancroft, 1917; and King, 1912,1917. Their conclusions were 

that the ultimate strength and ductility of rock increases with the amount 

of confinement. 

Von Karman 
(19) 

(1911) recognized the inadequacies inherent with 

steel jacketed testing and he conducted the first tests of Carrara marble 

and red sandstone, by applying confining pressure to the specimens through 

surrounding liquid in 1911, he also discovered the necessity of placing 

an impermeable membrane around the rock core to separate the pore space 

in the rock from the confining liquid. Von Karman described the relation- 

ship between the confining pressure and the strength for the first time, 

and presented the results in terms of Mohr's stress circles with curvi- 

linear envelope. The conclusion was that Mohr's theory affords a suitable 

method of representing triaxial test data for the rock specimens, and that 

the lateral confinement had great effects on the rock strength. 
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A series of high pressure tests were conducted by Griggs 
(20) 

(1936) 

on Solenhofen limestone, marble and quartz. Two types of failure were 

observed by Griggs, shear and tension. The shear surfaces he observed 

gave evidence of fracturing and powdering of the constituent crystals. 

The slip planes developed by shear failure were always at an angle with 

the direction of the axial load. The tension fracture on the other 

hand, occurred by splitting parallel to the direction of compression. 

He observed the splitting failure could be prevented as the confining 

pressure increased, and shear fracture would predominate. 

Robertson 
(21) (1955) used three triaxial procedures; compression of 

solid cylinders, crushing of hollow cylinders and punching of disks, on 

various rocks namely; Solenhofen limestone, granite, marble, quartzite, 

diahase, slate, soapstone, verde antique and sandstone. Confining 

pressures applied were as high as 60000 psi on rubber jacketed specimens. 

Plastic flow was observed in the case of limestone and marble specimens, 

which was absent in the silicate rocks. He concluded that the maximum 

shear stress criterion was reliable in predicting the yield point for 

the limestone, but only found a rough empirical criterion for the 

silicate rocks. 

Handin and Hager 
(22) 

(1957) carried out a triaxial test on 23 dry 

rocks at room temperature at various confining pressures varying from 0 

to 2000 atm. For each rock the stress-strain curves and the curve for 

ultimate strength and ductility (percent strain before rupture) as a 

function of confining pressure were presented. Relationship showing maxi- 

mum shear stress and ductility as a function of the mean pressure (one 

third of the sum of three principal stresses) were-given for each rock 

type; anhydrite, dolomite, limestone, sandstone, slate and siltstone. 

They reported that all the investigated rocks exhibited increase in 
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elasticity and yield stress and large increase in ultimate strength under 

confining pressure. Most of the rocks showed increase of ductility 

with confining pressure. The specimens fractured by shearing with the 

angle of the failure plane about 600 to 700 with the minor principal 

stress axis. The maximum shear stress was found about 0.7 - 0.8 of the 

mean pressure for anhydrite, dolomite and limestone. Whereas for sand- 

stone about 0.6 and for shale about 0.6 or less. They also reported 

that the stress-strain curves for all the ductile rocks under confining 

pressure are essentially similar, with a straight elastic part, and a more 

or less defined yield stress (at the knee of the curve). It was found 

that the dry sedimentary rocks at room temperature fractured when the 

ratio of the extreme principal stressesinftriaxial compression reached 3 

to 4. 

Price 
(23) 

(1958) studied the influence of triaxial pressure on the 

elastic behaviour of a number of typical coal measure rocks, with 

confining pressures up to 5000 psi and specimen length/diameter ratio 

(L/D) = 2. The strength data are expressed in terms of Mohr's envelopes 

for each type of rock. Price found that; (1) the ultimate strength of 

the rock increased with the confining pressure, (2) the greater strength 

of the rock in uniaxial compression the greater the increase in strength 

due to confining pressure, (3) the rocks brittle in uniaxial compression, 

fail by shear under confining pressure, (4) strength perpendicular to the 

bedding is greater than that parallel to the bedding, (5) Young's Modulus 

Perpendicular to the bedding is slightly less than that parallel to the 

bedding and (6) Poisson-'s ratio is increased by increasing the greatest 

principal stress at constant confining pressure. 

Murrell 
(24) 

(1958) and Hobbs 
(25) (1964) found that the failure of 

coal specimens under triaxial condition at various confining pressures can 

be represented by a generalization of Mohr's theory. 
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Shih(26) (1963) carried out an investigation of uniaxial compression 

on a Gaspe Skarn. Among his results he found that. Poisson's ratio 

increased with uniaxial compressive strength, Young modulus increased with 

the compressive loads, strength decreased with increasing length to 

diameter ratio (between 0.2-3) and the deformation in lateral direction 

was less than that in the longitudinal direction. 

A study of the behaviour of Indiana limestone, stone mountain granite, 

Pottsville sandstone and Georgian marble under uniaxial and triaxial 

compression has been performed by Schwartz 
(18) 

(1964) dry, wet and saturated 

specimens were used. He observed failure as splitting, shear, or a combin- 

ation of these. Conclusions indicated that the failure of rock was ductile 

or brittle depending upon the amount of confinement, and that the angle of 

shear failure is closely predicted by the Mohr's criterion. 

Hofer and Thoma 
(27) (1968) reported a triaxial study on rock salt, 

anhydritic hard salt, and fragment carnalite, under a confining pressure as 

high as 200 Kp/cm2. The stress-deformation characteristics of different 

salt rocks were found to vary considerably. Carnalite behaved elastically 

and showed brittle fracture under confining pressure up to at least 

100 Kp/cm2, while the other salt rocks displayed brittle fracture only 

under low confining pressure. Bieniawski et al. 
(28) 

(1969) carried out 

uniaxial and triaxial experiments on soft rock (sandstone) and hard rock 

(quartz with norite). It was concluded that failure is essentially the 

same in all cases be it uniaxial or triaxial compression, and when free of 

machinery influence, fracturing in the direction of the major applied 

load is the true failure mode of rock in compression. 

Bodonyi(29) (1970) determined a linear relationship between the 

principle stresses at failure, and a linear relationship between the 

confining pressure and the axial strain, using sandstone and limestone 
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specimen of 3 cm in diameter by 6 cm in length under confining pressure 

between 50-250 Kp/cm2. Wawersik and Fairhurst(30) (1970) conducted a 

uniaxial and triaxial compression study of five different rocks. The 

results together with direct tensile strength data gave poor agreement 

with the failure theories (Griffith, Mohr Coulomb, and McClintock-Walsh), 

the uniaxial failure showed local fracture (splitting) and combination 

of splitting with shear failures. 

Peng 
(31) 

(1971) carried out theoretical and experimental investi- 

gations to define the form of the stress and strain within cylindrical 

elastic specimens, subjected to end boundary conditions encountered in 

the laboratory testing, namely: perfect confinement, direct contact, 

uniform loading and Teflon inserts. Strains were measured using five 

strain gauges along the 21" in length by 11" in dia. specimens at equal 

intervals. gauges mounted horizontally and vertically and two for each 

strain reading (total of 20 strain gauges for each specimen). Among 

results obtained Peng found that in the direct contact condition in 

which the specimen was supported at one end by the platen and the other end 

by a spherical seat, the vertical and circumferential strain profiles indi- 

cated uniform strain at the middle one third of the specimen, and this 

observation was in good agreement with the theoretical analysis. 

Brady 
(32) 

(1971) reported a three dimensional axisymmetric finite 

element investigation which showed that rock specimens of L/D =2 or 

more give the true Young Modulus and Poisson's ratio, in this case the 

end-effects are negligible provided that the measurements are made in the 

central portion of the specimen. 

A study of the deformation behaviour of the concrete and rocks has 

been performed by Dhir and Sangha 
(33,34) 

(1974,1975). The effect of 

the strain rate within the range of confining pressure 17.2 - 137.9 N/mm2 
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on the strength of rocks and concrete was found to be negligible, and 

has greatest effect on strength of unconfined loading; the transition 

of the failure mode from brittle to ductile took place at a confining 

pressure approximately equal to the unconfined compressive strength; 

the effect of lateral pressure on the lateral deformation was found to be 

more than that of the axial deformation which indicated decreasing 

Poisson's ratio, and as the confining pressure was increased the onset 

of dilation became closer to the failure stress. 

Janach(35) (19.77) found the triaxial data of westerly granite at 

confining pressures up to 800 MN/m2 are not in agreement with the common 

failure criteria. Coulomb or Mohr's criterion are of en empirical 

nature and do not take into account the microscopic phenomena of cracking, 

and, the Griffith's Criterion and its modifications are based on the 

behaviour of the small pre-existing cracks. Aquadratic relation between 

2 
CF, and o3 was obtained, Q1 =K a3 as 

612 = 1.05 x 104 (Q3 + 5) in MN/m2. 

Most of the studies and the experimental information available on 

the influence of specimen size on the compressive strength is for coal 

and is concerned specially with unconfined compression on cubes of 

various side lengths. 

Gaddy 
(36) 

(1946) tested small cubes of coal, the specimen sizes were 

varied from 5 to 23 cm, he reported decrease of the strength by increasing 

the specimen size and gave the following relationship: 

a=C d-0.5 

where d is the cube side and C is the coefficient representing the 

physical characteristics of the coal bed. 
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Evans and Pomeroy 
(37) 

(1958) and Evans et al. 
(38) 

(1961) showed 

that cubes of a particular size show a very wide range of strength, also 

both mean and modal crushing strengths Qc decrease with the side length a 

of cube according to a power law: 

a=Ka 
c 

where a is a constant with values between 0.17 and 0.32 for various coals. 

Skinner 
(39) (1959) tested model pillars of anhydrite with sizes 

varying from 0.38 cm x 0.38 cm x 0.11 cm up to 25.4 x 25.4 x 15.21 cm and 

observed a decrease in compressive strength with increase in size. 

Mogi(40) (1962) carried out unconfined compression tests on marble prisms 

with height to width ratio of 2 and heights of 4,6,12 and 20 cm. A 

decrease in strength of 10 percent was determined for the given specimens. 

Jaeger 
(41) (1967) presented a relation which is described as well 

obeyed in practice, namely the strength ßa at a failure of cube of side 

a and the probability Po of the cube surviving this stress is: 

Va 
(a 

a) 
In Po = constant. 

The ß constant indicates the form of distribution of flaws, its value 

would be one for linear and three for volume distribution. 

Lundborg(8) (1967) carried out uniaxial compression tests on granite 

cylinders of L/D =1 at diameters 2,3,4 and 6 cm. He concluded that the 

strength decreases with increasing specimen size with a range from 2190 

to 1750 Kg/cm2 (20% reduction). His results were in reasonable agreement 

with the Weibull theory. Bieniawski(42) (1960) also reported the effect 

of specimen size on the compressive strength of coal. Cubical specimens 

of sizes ranging from 7.5 cm to 200 cm were used. Decrease of the strength 

with increasing the specimen size was observed within specimens of less than 
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5 ft in side. The Weibull relationship was applicable only within 

certain limits (neigher the very small sizes nor the large ones). 

Bieniawski established two empirical relationships: 

WO. i) 6= 
h0.55 

___ W/h >1 

Specimen size <5 ft. 

ii) ß= 400 + 200 h---- 
W/h <1 

Specimen size <5 ft. 

Where ß is the specimen strength in psi, W is the width in feet and h 

is the height in feet. 

Pratt et al. 
(43) 

(1972) conducted uniaxial compression investigations 

of quartz diorite and grano diorite on an in situ specimen of a right 

triangular prism ranging in length from 1 to 9 ft., laboratory cylindrical 

specimens of 3.18 and 4.25 inch in length and triangular prisms ranging 

from 4.5 to 12 inch in length, the length to edge or length to diameter 

was 1.5 to 1 or more. He observed a decrease of maximum stress by a 

factor of 10 as specimen size increased, asymptotically approaching a 

constant value at 3 ft. length and greater. All the specimens failed 

by a shearing mechanism and most of them exhibited dilatancy prior to 

failure. Young Modulus was found to decrease only slightly or remain 

constant with respect to the specimen size. 

Mead 
(44), in (1925) stated that the dilatancy is the property of 

granular masses of expanding in bulk with change in shape, and that it is 

due to increase of space between the individually rigid particles as they 

change their relative positions. He summarized that the granular masses 

in a condition of maximum-density packing (in case of rock, presence of 

sufficient pore and soft material around the particles, to give maximum 
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density) the deformation of these masses requires an increase in volume, 

and when the conditions are those of minimum density, the masses can 

deform to a larger extent without increase in volume. Bridgman 
(45) 

(1949) used the dilatometer to measure the volume change of a number of 

metals and three rocks, namely, soapstone, marble and diabase under 

simple compression. Specimen sizes were 2.5" in length by 1 to 1.5" in 

diameter. Bridgman observed that the volume decreased with the applied 

load to a certain amount, due to volume compressibility of the specimen, 

then the volume started increasing with load and this ther dominated 

the situation. This increase can be ascribed to an opening of inter- 

stices in the structure as a premonition of the fracture that would occur 

at a load only slightly beyond the maximum reached. 

Two soft and high porosity rocks, calcarenites and tuffs were 

subjected to hydrostatic and triaxial stress by Pellegrino 
(46) 

(1970). 

It was shown that the rocks undergo large volume strain, the pattern of 

the strain with stress was; at relatively low stress small volumetric 

strain was observed accompanied by nearly constant modulus, this strain 

results mainly from deformation of grains and of cementing bonds. At 

increasing stress, the volumetric strain gradient increased rapidly due to 

progressive breakdown of the bonds which was followed by interparticle 

slips. At this point most of the bonds are broken and the material 

became practically cohesionless and quite similar to granular soil. A 

further increase in stress causes a decrease in volume strains because 

of the decreasing porosity. This investigator reported that the behaviour 

of these rocks was changed by increasing hydrostatic or triaxial stresses 

from rockllike behaviour (small strain, nearly linear stress-strain 

relation and brittle failure) to soil-like behaviour. 
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The dilatancy of hollow cylinders of Witwatersrand quartz has been 

measured by Cook 
(47) 

(1970). Specimens of 11.4 cm in length with 

inside and outside diameters of 1.3 and 3.7 cm were subjected to 138, 

276,276 and 414 bar confining pressure. The dilatancy of the internal 

and external surfaces of the specimen was measured by means of two sep- 

arate screw-driven piston intensifiers for the control of oil confining 

pressure, the intensifiers were fitted with sensitive electrical 

pressure and displacement transducers. It was found that both internal 

and external dilatancy were almost identical which proved the dilatancy 

is a pervasive volumetric phenomenon. 

Crouch 
(48,49) 

(1970,1972) measured the volumetric, radial and tan- 

gential strains in triaxial compression tests on Wombeyan marble, sand- 

stone, norite and quartzite, by means of immersing the sample in a fluid- 

filled vessel and observing fluid level changes in a stand pipe during 

the test. The lateral component of the volumetric strain is a direct 

measure of the amount by which the volume must be adjusted. Volumetric 

strain was calculated as the sum of axial, radial, and tangential strains. 

The rate of lateral expansion was measured by monitoring the confining 

pressure behaviour. Among the concluded results, Crouch reported; 

(1) The volume of the specimen increases near the maximum load and 

accelerated as the failure progressed. (2) The lateral strain decreases 

with the confining pressure. (3) The lateral expansion rate of marble 

is greater during failure than during plastic deformation, and (4) The 

volumetric expansion of all specimens began at about one-half the maximum 

axial stress. 

Price and Farmer 
(50) (1979) carried out triaxial tests on Portland 

stone specimens of 150 mm long by 75 mm dia. at a constant strain rate of 

2x 10-5 sec. -1, and under 7,14,21 and 28 N/mm2 confining pressure. 
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They found that the axial stress-strain relationships are linear up to 

about 90% of the maximum stress followed by a non-linear stage to the 

maximum stress then converted to a steep negative slope (characteristic 

of unstable deformation) down to a nearly constant residual stress level, 

this dominate a range up to 13% axial strain. Maximum stress and axial 

strain at maximum stress were found to increase with increasing confining 

pressure. They also found that the volumetric strain, measured using 

an extension of Crouch's method, increases linearly with the axial strain 

at constant confining pressure. 

2.3 The influence of water on some rock properties. 

In a series of investigation reports issued since 1928, it has been 

established that the resistance of solids to rupture and strain is reduced 

by adsorption of fluid from the surrounding medium 
(51) 

(1957). The 

reason has been described as being due to the decrease in surface energy 

of the interfaces newly formed in the defect (ultra-microcracks) arising 

in the strained solids, these phenomena depend on the rate of new surface 

and of penetration of the adsorption layer in ultra microcracks. 

Extensive experimental works have been carried out to study the 

effect of saturation on rock properties especially in more recent years. 

Price 
(52) 

(1960) performed uniaxial compression tests on air dried and 

saturated specimens of a number of British Coal measure rocks (certain 

sandstones). The results showed that the compressive strength of 

saturated specimens is about 45% of the completely dried rock specimens. 

The effect of the saturation on the elastic properties of three sand- 

stones has been studied by Mann and Fatt(53), (1960). The saturation 

increased the compressibility by 10 to 30 percent, decreased the Young 

Modulus by 8 to 20 percent and increased the Poisson's ratio by 100% for 

Bandera Sandstone. 
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Boozer et al. 
(54) 

(1962) carried out a triaxial compression test on 

rock specimens of Indiana limestone and Navajo Sandstone saturated with 

oleic acid, oleylamine, distilled water, and n-hexadencon. Confining 

pressure up to 20000 psi at a temperature from 78 to 300° F were used. 

The effects of the fluids were observed to be a decrease in the ultimate 

strength of the sandstone and of the yield stress in the case of 

limestone, which deformed in a ductile manner, however the type of failure 

of limestone in certain cases changed from ductile yielding to a more 

brittle type when the saturation fluid was changed. Boozer explained 

these effects as indirect results of the decrease in the free surface 

energy caused by the strong adsorption of the liquids. Effects of solub- 

ility of rocks, lubrication at grain contacts and others resulting from 

the physical properties of the fluid such as viscosity and compressibility 

have been shown as unremarkable effects. The brittle failure of sandstone 

was confirmed as a result of the growth of pre-existing and newly-developed 

cracks which eventually weaken the rock and lead to macroscopic failure. 

Clocback and Wiid(55) (1965) carried out uniaxial and triaxial 

compression tests on two quartzitic rock types. Specimens had a length 

to diameter ratio of 2. The uniaxial compression tests performed for 

eight different moisture contents ranging from zero (dried over Ca C12 or 

P2 05) to saturated (submerged in water) and triaxial tests for three 

moisture contents dry, 98% and submerged in water, four confining 

pressures were used. 

The uniaxial compressive strength was found to decrease with increas- 

ing the moisture content of the rocks. They reported that the compressive 

strength of rocks under saturated conditions (submerged in water) is of 

the order of 50% of that under dry conditions (dried over Ca Cl2 or P2 05). 

It was shown that the Mohr's envelope of the dry condition is parallel to 
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that of saturated condition, indicating no change in the coefficient of 

the internal friction took place due tp the wetting. They explained 

the reduction of the compressive strength of the saturated rocks rel- 

ative to dry condition as a lowering of the surface free energy of the 

rocks by immersing in water. 

(1970) studied the influence of saturation on the pre- Wiid(56) 

rupture fracture of dolomite and sandstone, by means of the volumetric 

strain techniques. The volumetric strain-axial stress relationship 

shows the pattern; fracture initiation, beginning of the unstable frac- 

ture (beginning of dilation) and unstable fracture propagation. It was 

observed that the uniaxial compressive stress of the saturated sand- 

stone at fracture initiation is 63% of that of the corresponding dry 

stress, 62% in case of unstable fracture propagation and 65% in the 

case of failure compressive strength. Wiid found 20% reduction in the 

tensile strength measured by Brazilian method. He suggested the explan- 

ation that the moisture increases lowering of the surface free energy and 

hence the intrinsic strength of the rock. 

Mogilevskaya(57) (1970) found that water saturation decreases the 

Modulus of Elasticity of four rocks by 5 to 20%. 

30% reduction in uniaxial compressive strength of 

due to water saturation and he concluded that the 

the strain rate decreased with an increase of duc 

took place at high strain rate. 

Rutter 
(58) 

, reported 

the Solenhofen limestone 

strength decreases as 

tility and dilatancy 

A brief description of the observed strength reduction from oven dry 

to fully saturated specimens of three different rocks is given by Broch 

and Franklin 
(59) 

(1972), granite with zero porosity, a weak sandstone with 

12.5% porosity and a strong sandstone with 1.6% porosity. The point load 

strength reductions were found to be 13.3%, 33% and 22% respectively. 
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Farmer(60) (1973) reported that the compressive strength of the 

saturated dolomite, limestone and sandstone is 95%, 90% and 66% of the 

dry compressive strength respectively. He also studied the effect of 

the particle strength on the compression of crushed aggregate from the 

three mentioned rocks. The aggregate specimens of a certain particle 

size range were put in 150 mm diameter by 100 mm deep steel cylinder and 

subjected to axial stress. Tests were carried out on an oven dried 

(24 hrs at 1100 C) and water saturated (24 hrs vacuum) samples. Among 

the results obtained, it is noted that at 20 N/mm2 axial stress, the satur- 

ation increased the compressive strain of the limestone from 23.5% to 

27.5% and of the sandstone from 32% to 34.5%. Farmer stated that the 

effect of saturation reduced the rock strength of the weaker sandstone, and, 

the increase in compressibility of the stronger rocks exceeded that 

attributed solely to a reduction in strength. It is explained that the 

water weakens the surface irregularities of the aggregate particles rather 

more than the body of each aggregate, in addition, as these irregularities 

created by the crushing would contain several microfractures allowing a 

high water penetration facility, this was in agreement with Rehbinder 's 

(1948) conclusion that the surface hardness of rocks is influenced more 

by wetting than their compressive strength. 

Parate 
(61) (1973) carried out tensile and compression tests on dry 

and saturated limestone. The tensile strength determined by uniaxial, 

biaxial, simple Brazilian and confined Brazilian, compression tests per- 

formed under uniaxial, biaxial, and triaxial stresses. He reported that 

a good parallelity of the Mohr's envelope of the dry and saturated 

conditions was found, indicating no change of the angle of friction or 

coefficient of internal friction with water saturation. Reduction of the 

strength was found in all cases after saturation and this was explained as 
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a result of the lowering of the free surface energy of the rock by 

absorption of water. 

Broch(62) (1974) conducted a study to determine the influence of 

water on point load, uniaxial and triaxial compression strengths 

of rocks having very high strength with low porosity varying between 0.3 

and 1.2%. The point load strength showed a reduction varying between 20 

and 45% with 34 as an average value and in the case of uniaxial compress- 

ive strength the reduction was between 33% and 53%. The strength of 

rocks under triaxial stress with confining pressures 0,10,20,30 and 

50 N/mm2 gave a remarkable reduction due to water saturation. Broch also 

explained the reduction of the strength as being due to the lowering of 

the surface free energy for some rocks and due to reducing of the internal 

friction for others. 

Vutukuri(63) (1974) saturated limestone with water, glycerine, ethy- 

lene, glycol, nitrobenzene ethylalcohol, benzaldehyde and n-butyl alcohol. 

The tensile strength was measured by means of ring test, and it was found 

that all liquids decreased the tensile strength and that this is due to the 

reduction of the free surface energy of the rock which is proportional 

a2 (where a is the strength). The greater the surface tension of the 

saturated liquid the lower the cohesion (and hence the strength) between 

the particles making up the solid. Vutukuri gave the tensile strength 

(at) of saturated rocks in terms of the surface tension (x) of the 

saturation liquid: 

mx+c 
at =e 

where m and c are the regression line constants. 

Van Eeckhout(64) (1976) reported very many explanations of the 

mechanism of reducing strength due to moisture; fracture energy reduction 
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capillary tension decrease, pore pressure increase, frictional reduction 

and chemical and corrosive deterioration. Uniaxial compression, 

Brazilian and three point (beam) loading tests were performed on a coal 

mine shale at various humidities up to 100%. The reduction of the 

strength was explained as, expansion of the material by water adsorption, 

(moisture content variation causes expansion - contraction characteristics 

which lengthen internal cracks), and, lowering of the surface energy 

(fracture work) with increasing moisture. 

In an ASTM publicatior. (1976), Balliv. y et al. 
(65), 

carried out 

indirect tensile tests and triaxial compression tests on a gneiss, 

cemented sandstone and fine grained limestone. The specimens were satur- 

ated by either immersing in water under vacuum or by injecting the satur- 

ation fluid through the specimen under pressure. The strength of the 

saturated specimen at any confining pressure was found to be about 70-80% 

of the dry ones. The type of saturation fluid was observed to have a 

considerable effect on the strength, that being due to combination of 

changing the free surface energy in rock and the role of the fluid 

viscosity. 

2.4 Creep of Rocks. 

The subject of creep in rocks has bEen studied for over fifty years. 

The time-dependent behaviour in several rocks has been studied in the 

laboratory under compression, bending and torsion, but still there is a 

general lack of data on the subject. Some of the creep measurements and 

behaviours recorded in the literature related to some factors influencing 

such behaviour will be briefly reviewed in this section. 

Michelson 
(66) (1917,1920) measured creep in sou'e rocks (limestone, 

marble, calcite, etc. ) subjected to torsion. He suggested an empirical 

formula for the torsional strain at room temperature of the form: 
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ýt =0+ F1 [1 - exp(- ati)]+ F2 to 

where the coefficients F1 and F2 are of the form: 

F(T) .C exp(ßC) 

and 0t is twist at any time t, t is the time in minutes, C is applied 

torque, F(T) is a function of temperature, n is found to be about 1/3, 

A0 being the elastic deformation and a and ß are arbitrary constants. 

The part of the strain represented by the second term; F1 [1-exp(-at')] 

has been called"elastic-visccus displacement" and was found to be 

recoverable with time. The third term; F2 to has been called "viscous 

displacement" by Michelson which he found to be irrecoverable. He did 

not find steady-state or secondary creep. 

Phillips 
(1,67) 

(1932,1948) conducted tests on creep in bending of 

shale and uniaxial compression of siltstone. He determined the lateral 

and longitudinal creep strains in the compression tests. He also found 

that the creep of the wet specimen is comparatively greater than the dry 

specimens, and the lateral creep strain found to be more than that of the 

longitudinal creep strain. Phillips did not make a detailed study of 

creep behaviour of rocks and did not attempt to derive a creep equation. 

Evans 
(68) 

(1936) carried out creep tests on granite, marble, slate, 

sandstone and concrete. He observed two components of creep strains, 

one of which was recoverable, and according to him creep and recovery 

could be described by the equation: 

c=A [1-exp(B-Ctn)] 

where E is the creep strain, t is the time, A, B, C and n are constants. 

n is found to be approximately 0.4. 
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Evans and Wood 
(69) 

(1937) conducted compression creep tests on 

marble, granite and slate. They observed the longitudinal and the 

transverse creep strains, and found that the rate of the transverse 

creep increased more rapidly with the stress than the longitudinal creep 

rate particularly in the case of laminated rocks stressed parallel to 

the planes of lamination. The transverse creep rate showed a partic- 

ularly marked increase at stress abort 50 to 66 percent of the compressive 

strength. Creep was also observed in sandstone and concrete subjected to 

tension. 

Griggs 
(20,70,71) 

(1936,1939,1940) carried out time-dependent measure- 

ments under compression on limestone, talc, shale, glass, alabaster and 

single crystals of calcite and halitite. His works are considered as the 

first systematic study of the creep in geologic material and, in fact, he 

has laid the foundation of the ideas of the time-dependent deformation 

behaviour of rocks. He found that the creep of rocks is affected by 

stresses, temperature, confining pressure, structure of the material and 

the presence of various solutions. 

of the equations: 

He expressed his results in terms 

i) for creep e=e 0 
ii) for recovery e=A 

+ Blogt + ct 

- Blogt 

Where e is total deformation, co is elastic deformation, t is time, 

A, B and C are constants depending on stress and the material under test. 

The second term "Blogt" represents the primary creep. He called it 

"elastic flow" and it was recoverable. The term "ct" represents the 

secondary creep and it was found to be irrecoverable. Griggs called this 

"Pseudo-viscous flow", and calculated an equivalent coefficient of vis- 

cosity of solid for this flow using the method given by Jeffreys and 

suggested the equations n where n is the equivalent coefficient 
3e 
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of viscosity, ß is the applied stress and e is the constant rate of the 

strain with respect to time. He mentioned that the foregoing creep 

equation do not describe the relation adequately for the short time 

intervals, since the logarithmic term approaches minus infinity (-°) as 

the time approaches zero. Similarly, the logarithmic term approaches 

infinity as the time approaches infinity. 

Griggs 
(70) 

observed steady-state creep in boric anhydride glass at 

243° C. Earlier he found(20) that when the limestone was subjected to 

a high confining pressure - level of differential stress could be reached 

at which steady state creep occurred. This is clearly related to the 

fact that confining press, ire increases the differential stress at which 

fracture occurs, so that considerable plastic deformation occurs when a 

high enough confining pressure is applied. 

Griggs 
(71) 

conducted creep experiments on alabaster immersed in 

solution. It was supposed that according to the principle originally 

put forward by Rieck on thermodynamic grounds, solution would occur at 

the most highly stressed regions of alabaster and re-deposition would 

occur at free faces, resulting in a creep by process of recrystalization. 

He found that immersion in water markedly increased the creep rate and 

enabled steady-state creep to occur at stresses which were insufficient 

for dry alabaster. The effect is not simply a function of solubility of 

the alabaster, however, since it was found that the creep rate in a 

solution of calcium chloride (in which the solubility of gypsum was 

lowered approximately 45 percent) was greater than in the pure water; 

there is no satisfactory explanation of these results as yet. It might 

be that diffusion of the solution into the alabaster could be a key 

process, but Griggs found no difference between specimens tested immed- 

iately after being immersed and others which had been soaked for 68 days 
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before testing. The explanation will have to be sought in terms of 

ideas of plastic deformation of ionic crystals. Finally Griggs' 

observations of delayed fracture should be mentioned; he observed the 

third stage of creep, tertiary, in the case of Solenhofen limestone 

subjected to confining pressure 
(20) 

and of alabaster immersed in water 
(71) 

Not surprisingly he found that the time to fracture decreased as the 

differential stress was increased, this was accompanied, of course, by an 

increase in the steady-state creep rate. 

Pomeroy 
(72) (1956) performed creep measurements on coals (Barnsley 

Hards), subjected to bending. Specimens of the dimension 8.5 x 1.62 

x 0.24 cm (leng x width x thickness) were loaded in cantilever. He found 

that creep and recovery could be represented by the equations given by 

Griggs. No creep was observed in the case of anthracite at equivalent 

stress. 

Lomnitz(73) (1956) tested slender cylindrical specimens of grano- 

diorite and gabbro of 45.75 cm long by 2.22 cm central diameter in torsion 

at room temperature and at atmospheric pressure. He mainly observed 

transient creep and recovery, and found the creep for constant torque up 

to one week can be represented by the equation: 

Et =G [1 +q -&n 
(1+at)] 

where Et is the total shear strain in radians, T is the constant shear 

stress, G is the modulus of rigidity, t is the time in second, a is the 

coefficient such that at a1 and q is constant. The above equation is 

applicable only in the range of small strains and for stresses not more 

than 0.05 percent of the rigidity modulus. 

Terry and Morgans 
(74) 

(1958) conducted some observations of short 

duration creep in compression on a number of 38.1 mm cubes of Barnsley 

Hards. They found instantaneous elastic strain as soon as the load was 
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applied, primary creep, they called it "retarded elastic strain", and a 

secondary creep or steady-state flow. 

Kendall 
(75) 

(1958) reported a study of creep on Solenhofen limestone, 

rocksalt and cement mortar under uniaxial and triaxial compression. The 

maximum confining pressures were 15000 psi (103.4 N/mm2) for limestone, 

1000 psi (6.9 N/mm2) for cement and 2000 psi (13.8 N/mm2) for rock salt. 

He found that the creep strain obtained could be represented by the 

relationship; 

e= Aa- B log t+Ctn 

where e is the creep strain at any time t, A, B, C and n are constants. 

He also indicated that the modulus of elasticity for the limestone and 

cement remain essentially constant and independent of both the confining 

pressure and the history of the stress-strain application. Transient 

creep was observed in specimens loaded below their fundamental strength, 

whereas for specimens loaded at stresses greater than that, the transient 

creep again was observed followed by rapidly increasing deformation until 

complete failure occurred. 

Matsushima 
(76) 

(1960) studied the creep behaviour of some of the 

igneous rocks at atmospheric pressure and room temperature. He reported 

that the longitudinal creep of granite could be expressed by the equation: 

-alt -alt -a3t 
e= A0 + Al e+ A2 e+ A3 e+B log t+ ct 

where e is the creep deformation, t is the time, A, B and C are constants 

and al, a2 and a3 are reciprocals which represent the retardation time of 

Kelvin's model and are of the order 10,102 and 104 seconds respectively. 

Robertson 
(78) 

(1960) has made some observations of short duration 

(17 min. to 167 min. ) creep of Solenhofen limestone, Danby marble, 

Rutland White marble and calcite. He applied confining pressures between 

31 



290 bars to 4150 bars at a differential stress of 1400 to 8400 bars, 

all experiments were at room temperature. Robertson observed only 

transient creep and found that the rate of this creep per unit of the 

differential stress decreased by an order of 100-fold when the confining 

pressure increased from 1000 to 2000 bars in the case of Solenhofen 

limestone. The following equations have been suggested to represent 

his results: 

"K C=t 

and 

K1 S-K2 

where e is the creep rate, t is the time in seconds, S is the differential 

stress in bars and K, K1 and K2 are constants. 

Misra(79) (1962) carried out creep tests on ten rocks namely; 

Anhydrite, Beerstone (olictic limestone), calcareous sandstone, Darly- 

Dale sandstone, dolomite, granodiorite, limestone, marble, olivine and 

pennant sandstone. The creep tests performed under uniaxial, torsion 

and four point bending loading. Most of these rocks were tested at room 

temperature, at elevated temperature (300-7000 C which is far away from 

the meltin¬ point of the rocks) and while surrounded by different solutions 

(six solutions including the distilled water). Misra found that creep 

strain increased by increasing the applied stress, and the effect of 

higher temperature is to increase the creep strain of the rock. His 

results were fitted by logarithmic and power relationships in the following 

forms: 

i) At a low temperature: 

e=A+B log t 

ii) At elevated temperature: 

e ctn 
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where e is the total creep strain, A, B, C and n are constants with 

n=0.3 in the case of temperatures above about half the melting temper- 

ature.. The creep rate e was found to be a function of the applied 

stress of the form: 

e=K Qn 

where a is the applied stress and K and n are constants. He reported 

that immersion in solutions increased the creep strain and the creep rate, 

and solutions which lower the strength of rock most cause it to creep more 

in their presence. Misra explained that neither the lowering of free 

surface energy nor the build up of pore pressure by the r-resence of the 

solution in the pore space account for increased creep in rock observed. 

It appears that a phenomenon of partial adsorption and partial solution 

may be the cause of this increase in creep. Price 
(80) 

(1964) conducted 

bending creep tests on beams of Pennant and Wolstanton sandstones and 

uniaxial compressive creep tests on cylindrical specimens of L/D =2 of 

sandstone, siltstone and muddy limestone at a temperature 23 ± 1.50 C. 

He found that beams of Pennant sandstone exhibited primary and secondary 

creep at 24-72% of the instantaneous strength and Wolstanton sandstone 

when subjected to loads ranging from 65-85% of the instantaneous failure 

load. It is reported that a linear relationship between the creep rate 

of the secondary stage and the applied stress was found for both sandstones. 

The long term strength of Pennant and Wolstanton sandstone were determined 

as 20 and 60 percent of their instantaneous strength using graphical method. 

(By plotting constant rate of the creep versus the applied stress, inter- 

cept of the straight line with the stress axis at zero rate indicating 

the long term strength. ) The creep strain of the bending can be expressed 

directly in terms of the theoretical behaviour of a B-V model; 
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a rheological model comprising a Bingham body with a voigt unit actached 

in series. 

In the case of the compression creep results, it was observed that 

the primary and secondary creep stages and the creep rate data were not 

in agreement with the behaviour of the B-V rheological model. 

McClain 
(81) (1964) measured the time-dependent deformation of the 

pillars in a potash mine in France, using the borehole extensometer to 

measure the axial deformation of the borehole, which was located hori- 

zontally in the pillars. Deformation was measured at horizontal depths 

of 2.5,5,10 and 20 meters. Laboratory creep tests were carried out on 

specimens of 7.5 cms square by 5 cm high taken from the same mine. It 

is reported that the curves of the horizontal creep obtained from the 

underground measurements exhibited primary followed by secondary creep. 

The rate of the secondary creep decreased with the horizontal depth in the 

pillars, and the deformation was found to be very large at the edge of 

the pillars and decreased very rapidly with the distance in the pillars. 

The vertical creep data obtained from the laboratory specimens showed that 

the creep rate in the steady-state was increased with the applied stress. 

Bradshaw et al. 
(82) 

(1964) carried out creep measurements on pillar 

models of the salt. The models had a diameter to height ratio of 4 and 

subjected to stress of 4000,5000,6000,7000,8000,10000 and 12000 psi. 

It was found that the creep rate decreases with the time at constant 

stress level. Empirical equations have been developed for the prediction 

of the vertical creep rate (e) in the salt mine openings up to 70 years. 

The equation is in the form 

E= BQm to 

and a reasonable fit was obtained with 
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e= 9x 10-8 x ß3.1 x t-0.6 

where 
e is a strain rate in microstrains per day, B is a constant 

dependent on unit of E, a is the average pillar stress in psi, t is the 

time in hours and n is the slope of e Vs t on log-log plot (negative). 

Comte 
(83) 

(1965) carried out triaxial creep tests on artificial 

rock salt specimens of 41.9 mm long by 12.7 mm diameter. The specimens 

were tested at various temperatures ranging from room temperature to 

3000 C, various confining pressures ranging from 1 to 1000 bars, stress 

differences up to 138 bars and grain size in the range of 0.1 to 0.15 mm 

for all specimens (except for two specimens where the sizes were 0.55 

and 0.63 mm). Comte observed three stages of the creep and he found 

that as the temperature increases the creep rate increases, i. e. at 1000 

bars confining pressure and 69 bars axial stress, creep rate was increased 

by a factor of 4-5 when the temperature increased from 29 to 104.5 0C 

and by a factor of 22 when the temperature was raised from 29 to 198.2 0 C. 

Creep rate was decreased by increasing confining pressure, i. e. at 104° C 

and 69 bars axial stress, an increase of 1000 bars in confining pressure 

decreased the creep rate by a factor of 4 and finally the increase of 

grain size caused a decrease of the creep rate, i. e. when the grain size 

increased from 0.1 to 0.63 mm the creep rate decreased by a factor of 2. 

He reported that the creep for the various conditions of temperature, 

confining pressure and differential stresses could be represented by the 

relationship of the form: 

e=A+ Btn 

where e is deformation at a given time t, A is the instantaneous deform- 

ation and B and n are constants depending on the conditions of the 

experiments, with 0< n< 1. 

35 



Hendron(84) (1968) conducted triaxial extension and uniaxial com- 

pression creep tests on rock salt. Tests were performed at various 

confining pressures ranging from 100-1000 psi at 23° C and under stress 

differences (a1-a3) ranging from 1000 to 3750 psi. He observed the 

instantaneous elastic strain, primary creep, secondary creep and the 

tertiary creep (the latter found only at (a1-Q3) of 3750 and 2125 psi). 

The rate of the steady-state creep was found to be higher for specimens 

loaded to larger stress differences. Uniaxial compression creep tests 

were performed at 230 C and 65.50 C and at axial stresses varying from 525 

to 3000 psi. He reported that increasing temperature increased the creep 

strain, i. e. at a constant axial stress of 1750 psi, the creep strain 

increased by a factor of 2 when the temperature rose from 230 C to 

65.50 C. Increased temperature was also found to increase the creep 

rate in the secondary stage. Creep data in triaxial extension was 

expressed in terms of the equation: 

e Kan tm 

where c is the axial creep strain, a is the stress difference in psi, 

t is the time in hours and K, n and m are constants. Hendron mentioned 

that the secondary creep rate in triaxial extension was less than that of 

the uniaxial compression at the same constant stress difference. 

Farmer 
(85) 

(1968) reported that the form which represents most of the 

creep results of rock to a reasonable extent and its applicability has 

been confirmed by various workers is: 

E_E+A Zn t 
O 

where e is the total creep strain at any time (t), e0 is the instantaneous 

elastic strain and A is known as the creep constant and depends on the 

applied stresses and could be given by the formula: 
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A= (E )n in the case of uniaxial stress 

and n 

A= (a2 
_G c3) 

in the case of triaxial stresses. 

where a is the uniaxial applied stress, E is the modulus of elasticity, 

Q1 is the axial stress, Q3 is the confining pressure, G is the modulus 

of rigidity and n is a constant equal to between 1 and 2 at low stresses 

and between 2 and 3 for high stresses. Farmer also mentioned that 

secondary creep was ignored in the above equation which is normally rep- 

resented by a term Bt. In fact only secondary creep exists at a 

temperature of between 20 and 50 percent of the absolute melting temper- 

ature of rocks and cannot exist below a temperature of about 1000 C. 

Myrvange(86) (1970) performed uniaxial compressive creep tests on 

five rocks, dimensions of the specimens were 80 mm long by-32 mm diameter 

tested at room temperature. The duration of each of the tests was 10 

days and under a constant stress of 650 Kp/cm2, which is more than the 

expected stress in the mine from which the specimens are collected. He 

reported that most of the rocks exhibited primary and secondary creep 

stages, and have shown small creep tendencies except in a porous 

amphibolite which showed rather distinct creep properties. 

Hobbs 
(87) (1970) conducted incremental creep tests on different 

coal measure rocks, namely Siltstone, shales, mudstone, and sandstone with 

strengths varying from 61 to 206 MPa. Specimens were subjected to 

compressive stresses from 26.4 to 41.4 MPa with tests extending to 4000 

minutes. He found that the longitudinal strain-time behaviour can be 

approximated by an equation of the following form: 

e=E+ garet -F Kalog (t+1) 
c 
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where; Ec is mean incremental modulus, a is stress level, t is time 

in minutes and g, K and n are constants. The strain rate predicted by 

this relationship is less than those observed when t is small. Hobbs 

also found that after unloading the instantaneous recovery was followed 

by time-dependent recovery which ceased after about 15000 minutes. 

Kanagawen and Nakaari(88) (1970) carried out creep tests on speci- 

mens of slate and porphyrite under dry and wet conditions. They 

reported that the creep of the saturated specimens was more than that of 

the dry specimens. The creep rate of the wet specimens during the initial 

periods was 2-5 times the dry specimens and after about 20 to 100 days the 

steady state creep rates tended to be more or less the same. The stabili- 

zation period depended on the type of rock, applied stresses and possibly 

on the moisture content of the rock specimen. 

Cruden(89) (1971) conducted a study involving the forms of the creep 

law of the rock under uniaxial compression by using data of works published 

previously and he processed these data statistically. He reported that 

the power law of the transient creep in the form, 

b 
E= bl t2 

where 
e is the strain rate, b1 is the strain rate at unit time and b2 is 

the strain hardening parameter usually with a value about -1, appears to 

fit all the data satisfactorily without the addition of any component of 

steady-state creep, and he stated that this is the most satisfactory basis 

for the explanation of creep experiments over longer times. 

Hofer and Knoll 
(90) 

(1971) studied the creep behaviour of carnallite 

subjected to uniaxial compression; they correlated the laboratory test 

results of small specimens with observations in a salt mine in East 

Germany in an area liable to sudden failure of pillars. They tried to 

derive a creep equation from the latest findings of solid-state physics 
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on deformation behaviour of polycrystalline materials. From the 

experimental investigation it was concluded that at low stress and 

temperature the creep data is represented by the logarithmic law: 

e= Cl + C2 kn t 

and at high stress and temperature the creep data fits the power law 

E= Ktn 

and at very high stress, which approaches the ultimate stress the creep 

deformation according to the power law quickly increases. Hofer and Knoll 

determined the stresses at which the transition from the logarithmic creep 

equation to a power law creep form has taken place for specimens of differ- 

ent L/D (length to diameter) ratio. If these stresses are plotted as 

abscissae versus L/D as ordinate a limiting curve is obtained. Logarithmic 

creep without fracture occurs below this curve and above power law creep 

with fracture takes place after a more or less longer period of time. 

This curve is considered as the true boundary curve of the limiting creep 

stresses. They noted that if the creep behaviour of the pillars corres- 

ponded to the logarithmic law of the type mentioned above, the pillar 

could be supposed stable, and if the creep law of the pillars corresponded 

to the power law of the type stated above, the pillars were unstable. 

Winkel et al. 
(91) 

(1972) studied the time-dependent deformation of 

the Carlsbad potash subjected to uniaxial compression in the laboratory 

on a specimen of 203.3 mm long by 69.9 mm dia. and using data obtained by 

other investigators from multiaxial testing of a similar material. 

They tried to derive a three dimensional constitutive equation and 

compared this with a numerical solution using finite element analysis. 

They tried also to record field observations from a cylindrical opening 

in two mine pillars to define the time-dependent behaviour of the opening, 
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but they failed to get accurate observations in the mine from which 

the laboratory specimens were collected. A large difference was found 

between the predicted results and the field measurements of the other 

mine, due, it was felt, to the difference in the material between the 

two mines. Prediction of the behaviour from the multiaxial results of 

other investigators on rock salt was found to be represented fairly by 

the general shape of the time-dependent deformation curve. 

Peng 
(92) (1973) studied the creep behaviour of specimens of 

Tennessee marble and Arkose sandstone of size 2.5 inches long by 1.25 

inch diameter, using a servocontrolled hydraulic testing machine. The 

creep measurements were performed after fracture had occurred under 

stresses ranging from 10 to 95 percent of the ultimate load, i. e. the 

stress applied in order to cause fracturing. He reported that the 

fractured specimens sustained creep load, and the time to creep fracture 

was inversely proportion to the creep load. The fracture time was found 

to be from 2-8 minutes for the marble and 2-10 minutes for the sandstone. 

It was noted that the creep curves of the fractured specimen in which the 

cracks had not fully propagated to separate the specimen into two or more 

pieces consists of two stages, the steady state creep and the rupture 

creep, whereas those that were separated into pieces but held by friction 

exhibited three creep stages; transient, steady-state and creep rupture. 

King 
(93) 

(1973) studied the creep behaviour of models of 

Saskatchewan potash pillars. The models had the length to diameter ratio 

4 and 8. The tests were performed at a constant temperature varying from 

270C to 600 C and the load was applied uniaxially using a compressed 

Nitrogen/hydraulic pressure system. King found that the creep strain of 

the two sizes of models could be represented by the power law of the form: 

e= Atß 
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where e is the axial creep strain, t is the time in hours, A and B are 

constants with O< B<0.25. The creep predicted from these models is 

compared with the creep measurements in situ done by other investigators 

for several years and it was found that the model's creep behaviour was in 

very close agreement with that in situ. King stated that creep tests on 

model pillars can yield information of practical application to the design 

of pillars underground. In particular the influence on creep behaviour 

due to the increase in temperature associated with mining at greater depths 

can be studied by this means with some confidence. 

Matveyev and Kartashov(94) (1974) carried out creep tests on a coal, 

halite, combustible shale, limestone, sandstone, clay and marble. The 

specimens were subjected to uniaxial compression by means of a compressed 

nitrogen/hydraulic pressure system capable of accommodating 6 specimens a 

time. The specimen size was 70 mm long by 30 mm diameter and the stress 

level was from 10 to 90 percent of the rock strength. They suggested an 

equation of the following form to represent the creep data: 

CE0At (1_B) 
E=1t lB 

where c is the creep strain at a given time t, c0 is the instantaneous 

strain, A and B are constants. Values of these constants was found for 

different stress levels using a computer program. The value of the 

constants A and B obtained from the laboratory measurements and those 

obtained in underground tests (long-term compression of rock prisms in 

mines) appears to be essentially the same for many types of rocks, e. g., 

sandstone, coal, halite, etc. ) 

Afrouz and Harvey 
(95) (1974) conducted creep tests on several rocks 

within the soft to medium strength range in the laboratory and in situ. 

The laboratory tests were performed under uniaxial compression on dry and 
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saturated specimens of cylindrical shape at room temperature (20 ± 4°C) 

and at atmospheric pressure. Whereas the in situ measurements of creep 

deformation were carried out on the underclay along the floor of a mine 

roadway (Britannia Colliery, S. Wales). They chose 15 empirical equations 

and analysed them in the light of their laboratory experimental results 

and in situ time-dependent behaviour. Close similarity was found to exist 

between the laboratory and in situ time dependent behaviour, enhancing the 

possibility of predicting, within reason, the in situ creep of these rocks. 

The laboratory and in situ results indicated the following conclusions: 

1. The instantaneous strain (e 
o) 

is directly proportional to the applied 

stress (a) and can be expressed by the form: 

c=ma0n 

where m and n are constants with 0<m<1 and 0<n<1 depending on the 

rock type, porosity, temperature and the state of moisture. 

2. The average secondary creep rate (e) with respect to applied stress 

could be represented by the formula: 

e= 
man 

3. In the saturated coal and underclay, the overall creep rate increased 

three and eight times their creep rate in the dry condition. 

4. Air dried soft to medium strength rocks behaved in an elasto-plastic 

manner and very close to a Maxwell-Kelvin model. This can be given by 

the following equation: 

Edry =A+ Btc +D [1-exp(Et)] 

Due to the water effect, water saturation indicating more plasticity in 

the rocks, and the saturated rocks generally exhibited plastic behaviour 

and the creep data fits the equation 

e 
sat. =A+ Btu+Dtf 
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where c is the creep strain at time t, A, B, D, E, c and f are constants. 

Wawersik(96) (1974) carried out a study of the creep behaviour of 

westerly granite and Navajo sandstone in dry and saturated conditions. 

Dry specimens were subjected to uniaxial compression while the saturated 

specimens were subjected to triaxial compression with confining pressure 

up to 68.95 MN/m2. All tests were performed at room temperature (210 C). 

The axial strains were measured by means of DCDT transducers which were 

mounted to the loading pistons. Lateral (tangential) strains were 

measured by means of strain gauges on air dried specimens, and the satur- 

ated specimens in triaxial tests by means of the measurements of the 

integrated sample deformation. (This technique based on the fact that 

the volume adjustments of the confining pressure medium, which are needed 

to maintain a constant confining pressure during radial sample deform- 

ation, are directly proportional to the average radial specimen strain). 

It was reported that the strength of the saturated rocks was 

found about 10-15 percent less than the dry rocks regardless of the 

magnitude of the confining pressure. In all cases, the stress-strain 

curves obtained in the saturated condition coincided with, or were closely 

similar to those in the dry conditions. The creep rate in the steady- 

state condition was found to be greater in the saturated specimens than 

in the dry specimens. The plot of the creep rate versus the applied 

stress indicated a linear relation for both dry and saturated conditions 

with good parallelity. Both the axial and lateral creep of the saturated 

condition under triaxial stresses exhibited the three general creep stages. 

The creep in both directions follows the same pattern. The primary creep 

was described by the power law of the form 

e= 10c to 

where e is creep strain at time t, n and c are constants, their values 

found by plotting log t versus log c. 
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In saturated conditions the secondary creep rate in the axial 

direction showed a slightly non-linear relation with shear stress 
of-03 

2) and the volumetric secondary creep rate showed a linear 
01 03 

relation with the shear stress 2 

Wawersik mentioned that in general the rate of the lateral and 

volumetric strains in Westerly granite exhibited the same trend with 
01 63 

respect to (2) and am(a1+o2+a3/3) as the secondary axial creep rates. 

The differences in water content changed the rate of creep and thus the 

time-dependent deformation in general by at least two oriers of magnitude. 

The time-dependent deformation was found to decrease strongly with 

increasing confining pressure. 

Singh 
(97) 

(1975) performed creep tests on Sicilian marble sub- 

jected to uniaxial compression at room temperature (24.5 ± 0.5° C) load 

again being applied by a nitrogen/hydraulic system and loading frame. 

Both axial and lateral creep behaviours have been determined. The curves 

of the creep in both directions exhibited the three general creep curve 

stages; primary, secondary and tertiary and the two curves follow the 

same pattern as far as the different stages of creep are concerned. 

Singh also measured the creep of two other rocks at various stress levels 

and concluded that the creep rate in steady state increased with the 

applied stress. 

The creep data of the marble was represented by a power relation- 

ship of the form 

a tb 

where e is creep strain at any time (t), and a and b are constants. 

It was found that the lateral creep rate increased far more than 

the axial creep rate when the specimens were subjected to sustained 

stresses greater than their yield strength. 
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Wu and Thomsen 
(98) 

(1975) studied the behaviour of the micro- 

fracturing activities with axial, lateral and volumetric creep of 

Westerly granite under uniaxial compression, and tried to determine the 

effects of the water and temperature on the total time to failure. They 

reported that at a constant uniaxial stress, three stages of micro- 

fracturing and deformation have been distinguished. The first stage is 

of transient creep and microfracturing, the second is the steady-state 

with axial, lateral and volumetric creep increasing linearly but with micro- 

fracturing activity (which is represented by the sum of square root of 

energy; E FE) increasing exponentially and the third stage where the axial, 

lateral and volumetric creep increase at an accelerated rate while the 

microfracturing activity increases at a superexponential rate. They 

mentioned also that under constant stress, initially the volumetric strain 

increased sharply indicating a volume decrease, then after a short time 

the trend reversed indicating volume increase until this became more than 

the original volume of the specimen (dilatancy) with linear relationships 

governing the trend of the lateral and axial strain until the tertiary 

stage when the volumetric creep increases again slightly. It is also 

reported that the water saturation decreases the creep time to failure by 

one to two orders of magnitude, and the heating of the specimen to 1500 C 

increases the creep time to failure and the strength. 

Cogan 
(99) 

(1976) carried out triaxial creep tests on saturated 

samples of Opohonga limestone and Ophir shale at different constant stress 

levels and various confining pressures to study the effects of volume 

behaviour upon the creep properties of these rocks. The volume change 

was measured by monitoring the amount of water which either left or 

entered the sample during testing. Axial load and confining pressures 

were applied by means of nitrogen/hydraulic system. Some of the tests 
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were performed in the sequence of coasolidation, creep and quick stress- 

strain tests. Cogan observed the primary and secondary stages of 

volumetric creep, the consolidation or decrease of the volume accompanied 

primary creep and dominate a very short time indicating the occurrence 

of only elastic volume contraction. The consolidation continued to 

develop the secondary creep stage accompanied by volume expansion, and 

the time to develop this stage appears to increase with the axial load, 

the rate of the expansion gradually increased until a steady rate is 

reached. It is also mentioned that the process of conFolidation affects 

the ability of the rock to deform, the increase in consolidation appears 

to retard the ability to creep under a given state of External stresses. 

It is noted for both rocks that the pre-consolidation of the sample 

retarded secondary creep rates. 

Williams and Elizzi(16,1.00) (1976,1977) carried out creep tests 

on the Sherburn gypsum in an air dried condition and at room temperature. 

Bending creep tests were performed 
(16) 

on beams of dimension 240 

mm long by 40 mm wide by 12 mm thick. The beams were subjected to pure 

bending using the four point loading method, and the applied stresses 

have been chosen as 20,40,60 and 80 percent of the ultimate stress. 

They found that the creep data at low stress level followed the logar- 

ithmic relationship of the form: 

E=A+B log t 

at high stress level the data followed the power law of the form 

C=C to 

and at the medium stress level, the early stage of the creep followed 

the logarithmic equation and the later stages of creep followed the power 

law relationship mentioned above. Where c is the creep deformation, t 
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is the time in hr, A is the creep value at unit time and B is the slope 

of the line obtained by plotting (c Vs log t), C is the creep value at 

unit time and n is the slope of the line obtained by plotting (log e Vs 

log t). 

Triaxial creep tests have been studied on the same rock by 

Williams and Elizzi(100) at different constant stress levels ranging 

from 30 - 80 percent of maximum stress and at various confining pressure 

ranging from 0 to 30 MPa. They used a triaxial apparatus suitable for 

the long term tests which is designed by the same investigators 
(101,15)0 

the load and the confining pressure was applied by means of a compressed 

nitrogen/hydraulic loading system (details of the apparatus given by 

Williams and Elizzi(101)). They reported the following results and 

conclusions: 

At a given time the creep strain increases with the confinement, 

the rate of the creep decreases with respect to confining pressure and 

this effect is larger at low confining pressure than higher and also at 

the earlier stage of the creep, creep rate increases as the confining 

pressure increases at a constant differential stress up to 45 MPa and 

for values of the deviator stress more than 45 MPa the creep rate starts 

to decrease with confining pressure to certain value and increase there- 

after. 

The creep data for the uniaxial loading at low stresses and for 

the triaxial loading at low stress with 10 MPa confining pressure and 

within time less than 24 hrs. was represented by logarithmic equation 

e=A+B log t 

and for all other stresses and confining pressures the creep data was 

represented by the power law of the form: 

C=C tfl 
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where c is the creep strain at a given time t, A, B, C and n are constants. 

Elizzi(15) (1976) reported the creep properties of gypsum and an- 

hydrite under bending, uniaxial and triaxial compression at room temperature. 

The beams had the dimensions 240 mm long by 40 mm width by 20 mm thick and 

subjected to stresses varying from 30 to 80 percent of maximum stress. 

The triaxial specimens were 75 mm long by 25 mm diameter and subjected 

to axial stresses from 30-80 percent of the maximum stresses and at 

confining pressures of 0,10,20 and 30 MPa. Some of his conclusions on 

the creep behaviour of the jested rock are summarized here: 

a. The creep data of both rocks at low stresses and confining pressure 

expressed by the logarithmic relationship of the form: 

E=A+B log t 

and at higher stresses and confining pressure expressed by the power law 

of the form: 

e=C to 

The constants A, B, C and n are increased with axial stress at constant 

confining pressure and decreased with confining pressure at constant axial 

stress, in addition C and n increased linearly with confining pressure at 

constant differential stresses. 

b. The creep rate increases with the axial stress at constant confining 

pressure and decreased with confining pressure at constant axial stress. 

c. The creep rate (e) represented as a function of axial stress (o 1) 
in 

the form of the power relation: 

sK Qlg 

where K and g are constants with g>1.0. 

Varo and Passaris(102) (1977) carried out creep tests on halite under 

various humidity levels from 13 to 87%. Tests were also performed on 
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water saturated and brine saturated specimens at room temperature. 

Specimen size of 100 mm long by 50 mm diameter were used for the various 

humidity tests and of 65 mm long by 50 mm diameter for the saturated 

specimens. They reported that the creep rate increased as the humidity 

increased, the initial increase in rate was found to be at least 500% 

and when the humidity reaches high value, i. e. 87%, the creep rate 

accelerated very rapidly. Small differences in humidity level (13% to 

42%) did not change the slope of the "straight line", as they called it, 

portion of the creep curve. The effect of the humidity upon the total 

strain has been shown to be non-linear and has little effect at low 

humidity relative to that e. t higher humidity levels. It is also reported 

that the saturated specimens subjected to 120 bars showed the three stages 

of the general creep curves with very rapid increase in creep rate. The 

effects were explained as recrystallisation which occurred during the creep 

in saturated brine, and in water the halite dissolved and because of the 

solution the creep rate increased very rapidly to cause a rapid failure. 

Habblewhite et al. 
(103) 

(1977) studied the time-dependent deformation 

of the evaporites in situ by installing four radial boreholes each 4.6 

meter deep around a 7.6 meter diameter shaft excavation through the 

evaporite deposits at a depth of 1065 metres in a deep level potash mine 

in Britain. In each hole four anchors were located at 0.6,1.5,3 and 

4.5 metres with rods attached for reacing movements with dial gauges at 

the outer station. The data were regressed using least square curve 

fitting with consideration of seven curve types (log, in, power functions, 

... etc. ). It was found that the power law function gave the best rep- 

resentation of the data in every case, the equation was in the form: 

e= AtB 

e= Ct(B+i) 
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where 
e is the creep rate, e is the deformation in mm, t is the time in 

days, A, B and C are constants with (B+1) = 0.4-0.5 and C decreases with 

the radius of the anchor. They also concluded a formula for prediction 

of the creep at any radial depth into the rock mass as a function of depth 

and time. 

Kranz 
(104) (1979) carried out creep tests on Barre granite specimens 

of 1.27 cm in diameter subjected to 87% of the ultimate fracture strength. 

Axial and radial strains were measured using strain gauges mounted parallel 

and perpendicular to the applied load. Kranz observed the three stages of 

the general creep curve in both axial and radial directions before the 

specimens failed. The radial creep was always found higher than the axial 

creep rate, it was explained, may mean that crack widths are increasing 

very rapidly or that crack coalescence, at a small angle to the axial 

direction, is contributing more to radial creep strain. It was also 

mentioned that under constant load the crack grew or propogated toward 

the maximum stress direction. 
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CHAPTER 3. 

SHORT TERM TESTS. 

In these tests the behaviour of the gypsum in tension and compression 

was studied, under dry and saturated conditions. Tensile strength tests 

were carried out in two different ways, direct pull and flexural methods, 

while the compression experiments were performed under uniaxial and tri- 

axial loading. The effect of size on the tensile strength was studied 

by using four different beam thicknesses and four core sizes in the direct 

pull method of tensile testing, while in compression four core sizes in 

uniaxial and two core sizes in triaxial tests were used. 

On the basis of these, which were considered as instantaneous 

strengths, the loading stresses were chosen in the long term tests under 

the same stress application method. 

In this chapter, some of the experimental techniques, apparatus and 

equipments and test procedures will be discussed briefly. 

3.1 Experimental Techniques. 

The techniques of preparing the specimens, saturating the specimens, 

drying them, controlling the saturation and the connection of the strain 

gauges in various configurations between themselves and the strain gauge 

indicator will be given briefly in this section. 

3.1.1 Specimen Sizes and Preparation. 

The sizes of the specimen used in each of the short term tests and 

the methods of the preparations of these specimens will be discussed in 

this section. 

3.1.1.1 Bending Test Specimens. 

In examination of the few works published on the flexural behaviour 

of rocks, shows that there is no standard or recommended size of the beam 

which should be used. Hardy et al. 
(13) 

found that the theoretical 
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correct ratio for a Plexiglas beam which gives maximum load-carrying 

capacity of the beam is 9.06 : 4.14 :1 (length : depth : width), then from 

his experimental study(14), he concluded that this result is not in good 

agreement with beams made of rock. Elizzi(15) tested gypsum beams of 

dimension 240 mm long by 40 mm width by 6 mm thickness. He found that 

the thickness was not suitable because of the extension of some crystals 

through thickness of the specimen, which produce weak section at these 

points. In consequence he used 240 mm by 40 mm by 20 mm for his study. 

In order to evaluate the effect of the specimen size, the following 

sizes were chosen; 240 mm by 40 mm by 15 mm, 240 mm by 40 mm by 20 mm, 

240 mm by 40 mm by 25 mm and 240 mm by 40 mm by 28 mm (length by width by 

thickness). The beams were cut from blocks by a diamond cut-off saw, 

Fig. (3.1), to the required size approximately, grinding of the beam faces 

was carried out using the surface grinder, Fig. (3.2), which grinds to an 

accuracy of 0.001 mm. The actual dimensions of each beam were measured 

by micrometer to the nearest 0.01 mm. During the cutting and grinding, 

water was used as a coolant, the specimens were then ovendried at a temper- 

ature not more than 70° C for 24 hrs. in order to retain the chemically 

held water in the gypsum and not to change the phase of Ca S04-H20 system 

from the Ca SO4.2H20 condition, (this will be explained in the next 

sections). 

All beam sizes were cut parallel to the bedding and tested so that the 

load was applied perpendicular to the bedding. 

3.1.1.2 Uniaxial Compression Specimens. 

In order to study the specimen size effect on the uniaxial compressive 

strength, four core sizes were used, all the sizes having the same length 

to diameter ratio (L/D). 

Hawkes and Mellor 
(11) 

reported that taking into account all the 

available earlier works and all the information concluded therefrom, the 
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minimum acceptable length to diameter ratio (L/D) was 2. They mentioned 

that practical experience seemed to show that values up to L/D =4 are 

usually safe even with an imperfect loading system. An A. S. T. M. 

publication 
(105) 

strongly concluded that the L/D ratio should be more than 

2.5. Elizzi(15) used gypsum cores of 75 mm long by 25 mm diameter 

(L/D = 3). In this research the length to diameter ratio used is also 3, 

and the following dimensions of the specimens were chosen: 

76.2 mm long by 25.4 mm dia. 

95.25 mm long by 31.75 mm dia. 

114.3 mm long by 38.1 mm dia. 

152.4 mm long by 50.8 mm dia. 

L/D =3 

Specimens were obtained by core drilling from blocks, using a bench coring 

drill machine with water as a coolant, Fig. (3.3). The drilling direction 

was perpendicular to the bedding of the rock. A diamond cut-off saw was 

used to bring the cores to the approximate required specimen length, after 

which the specimen end surfaces were polished to attain the required final 

measurements using the grinder and lapping machines, see Figs. (3.2) and 

(3.4). Two grades of carborundum abrasive were used on the lapping wheel 

(400 and 800 mesh). In this operation the specimen was placed in a close 

fitting steel tube with flat flange to produce smooth parallel end faces 

which are accurately at right angles to the longitudinal specimen axis. 

It is vitally important that the end surfaces of the specimen be accurately 

perpendicular to the longitudinal axis of the same, and that the end 

surfaces are flat so as to prevent eccentric compressive loading of the 

specimen when tested. A micrometer was used to measure the actual dimen- 

sions of the specimens to the nearest 0.01 mm, and finally the specimens 

ovendried at 700 C for 24 hrs. as in the case of the beams. 
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3.1.1.3 Uniaxial Tensile Specimens. 

Hawkes and Mellor 
(11) 

recommended that the test specimen or the neck 

portion of the dumbell specimens, should have L/D between 2.5 and-3 and if 

the butt-jointing method is used, it might be desirable to adopt L/D = 2.5. 

Obert and Duvall(106), stated that it is satisfactory to use core diameter 

11 inch and length 4 inch (L/D = 3.6) to core diameter 28 inch and length 

4 inch (L/D = 1.9). In this study it was decided to use L/D =3 in 

order to maintain geometric similarity between both uniaxial compressive 

and uniaxial tensile tests. 

To evaluate the effect of specimen size on the tensile strength four 

different core sizes were used with L/D = 3. Dimensions of these speci- 

mens were chosen the same as uniaxial compressive cores, and the rock 

specimens were prepared using the same procedure described in Section 

(3.1.2). To test the specimen by using Hounsfield Tensometer, two steel 

plates were bonded with epoxy resin to the rock specimen end surfaces, to 

transmit forces to the sample in the tensometer. The diameter of the 

platens were the same as the rock specimens, Fig. (3.5a). It is very 

important to choose a suitable cement for bonding the steel platens as it 

should give a bond strength between steel and rock in tension greater 

than the tensile strength of the rock. 

Dhir(107) tested several cements for this purpose and found that the 

cement obtained by mixing Araldite AV121 resin with HY151 hardener, 

suitable for setting stressmeters in laboratory conditions, and it gave a 

bond between steel and Darley Dale sandstone greater than the tensile 

strength of that rock. Datta(12) found that Araldite AV121/hardener HY951 

Cement and FR 1131A/FR 1131B Cement were suitable for sandstone. 

In this study the cement obtained by mixing equal quantities of AV121 

(resin) and HY951 (hardener) was used and it consistently gave bond strength 
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more than the tensile strength of the gypsum rock. (Fig. 3.5a shows a 

sketch of a prepared specimen). Fairhurst(]08) employed a similar 

method for the uniaxial tensile test and for preparing the test specimens. 

3.1.1.4 Triaxial Test Specimens. 

Two specimen sizes were used in this test with L/D = 3. These 

sizes were limited to the clear space inside the triaxial cell which is 

available in the laboratory. The dimensions of both sizes were chosen 

as the same dimensions of the uniaxial tests (76.2 mm long by 25.4 mm 

diameter and 95.25 mm long by 31.75 mm diameter). The s? ecimens were 

prepared using the same procedure described in Sec. (3.1.1.2). The pene- 

tration of the hydraulic fluid into the pore space in tha specimen when 

being loaded is prevented by the use of P. V. C. jackets 0.9 mm thick. 

To insert the specimen into the jacket, powdered talc was used as a 

lubricant, and to provide the necessary oil seal the jacket was extended 

beyond the specimen ends on to the platens. 

3.1.2 Saturation of the Specimens. 

To saturate the specimens, a procedure recommended by Hawkes and 

Mellor 
(11) 

and used by many investigators (53,54,99) 
was followed. The 

specimens were first ovendried for 24 hrs at a temperature of 70° C, a 

temperature at which the chemical composition of the gypsum does not change 

(this will be described in the next section). They were then placed in 

a vacuum desicator and evacuuated to 0.001 mm mercury for at least 3 hours 

in the dry condition. Distilled water was introduced into the desicator 

so that all specimens were completely submerged, then the water and the 

specimens were evacuuated until no air bubbles were observed which takes 

about 4 hrs, finally soaking was continued under vacuum for 24 hrs. 

Samples were removed for test after the vacuum had been released for at 

least 2j hrs. By this procedure the specimens were made essentially 
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100% saturated 
(11,53) 

. To ensure that no water was gained by the samples 

after 24 hrs, samples were stored for 48,72, and 96 hrs in the water, and 

it was shown by weighing that no moisture increase occurred after the 

first 24 hrs. A sketch of the apparatus used is shown in Fig. (3.6). 

3.1.3 Drying Temperature. 

When gypsum is heated to a moderate temperature (about 175° C) it 

(109) 
(110,111,112) 

loses about 75% of its chemically held water Some investigators 

have found that gypsum (Ca SO4.2H20) converts to a different phase of the 

Ca S04/H20 system at this t: ̂ mperature. Macdonald 
(111) 

had accepted that 

Kelly's dehydration reaction plot showed that gypsum and anhydrite are the 

two most stable phases in the system. 

Gypsum heated in air is slowly converted to the hemihydrate at about 

700 C or less depending on the moisture content of the air, and rapidly at 

about 90° C or over. Soluble'-anhydrite (y - Ca SO4 may be produced by 

a rapid heating at 90 C or more 
112) 

. Posnjak 
(110) °( 

concluded that the 

assumption of Van't Hoff and his associates which is that gypsum forming 

the hemihydrate, anhydrite (ß - Ca SO4) or a soluble-hemihydrite (y -Ca SO4) 

is erroneous, he found that the gypsum can only form hemihydrate at a 

temperature of 97.5 1 1° C. 

To determine the temperature at which the given gypsum converts to 

hemihydrate in the laboratory, a method which is basically similar to that 

discussed by Posnjak(110) was followed. Samples were heated at a temper- 

ature of 25,50,60,75,90 and 135° C (five samples at least were used 

for each temperature) and the weights of the samples were determined at 

4,8,12,24,36, and 48 hrs. Fig. (3.7) shows the relationships between 

the weight loss and time for the various temperatures, and it is clear 

that the samples heated at 25,50,60 and 750 C lost only a very small 

percentage of their weight (maximum 0.4%) after 24 hrs. and remain constant 
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up to 48 hrs. While the samples heated at 90 and 135° C lost 9.3% and 

28% respectively after 24 hrs. The temperature Vs weight loss after 24 

hrs of heating was plotted in Fig. (3.8). A sudden increase in weight 

loss occurs at 750 C, and, it is concluded that the weight lost up to 

this temperature is due to the evaporation of the uncombined moisture 

content of the rock, while the considerable change in weight at temper- 

atures more than 750 C indicates that the gypsum starts to lose its 

chemically held water which changes the Ca S04-H20 phase system of the 

gypsum (Ca S04-2H20) to the hemihydrate. In consequence a temperature 

of 700 C over a period of 24 hrs was used for the drying of the specimens 

in this study. 

3.1.4 Saturation Controlling Procedure. 

The saturation of the specimens should be kept under close control 

over the whole experimental loading period, at the same time the wet 

specimen must not be allowed to effect the strain gauges circuit. Speci- 

mens were therefore coated with a very thin layer of a waterproof 

selfsticking material. This material consisted of a mixture of FEBWELD 

No. 1 basic component, and FEBWELD No. 1 reactor component (FEB "Great 

Britain" Ltd. ). Broch(62) used selfsticking Polyethylene to cover his 

saturated samples (this material being claimed to have superior electrical 

properties). 

The effect of the sealing process was examined by coating six speci- 

mens each time, the weight of the specimens being recorded at different 

coating ages. This procedure was repeated four times, the results showed 

that no measurable weight losses occurred within the first 33 days after 

coating. 

Stress-strain relationships of coated and uncoated specimens were 

determined at different coating ages (up to 33 days) under the same loading 
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conditions. All the results showed no noticable effect of the coating 

on the stress-strain behaviour of the gypsum. 

3.1.5 The Connection of Strain Gauges Between Themselves and the 

Strain Gauge Indicator. 

The number of strain gauges used for each specimen in short or long 

term tests is more than 2 in most of the cases as mentioned (or will be 

mentioned). To measure the strain using 2 strain gauges, the average 

strain required, a full bridge connection was used (two active strain 

gauges and two dummy). In the case of using a single strain gauge, the 

half bridge connection was used (one strain gauge was active and one dummy). 

The bridge circuits are shown in Fig. (3.9). Dummy strain gauges of the 

same type as the active were bonded to a similar piece of rock (not loaded) 

to give temperature compensation. Peekel strain gauge indicator type 

T-200 (Automation-Peekel, N. V., Rotterdam, Holland) was used to measure the 

variation of the strain over the period of the test. The direct connection 

to one side of the Peekel (2 sides provided) should be either half or full 

bridge. So in case of two full, two single or one single and one full 

bridges direct connection to the Peekel was used (i. e. the case of short 

and long term tests of the bending). Fig. (3.9) shows the connecting 

method between strain gauges and the Peekel. In case of using more 

gauges than this, an Extension Box, Type 23U (Laboratorium Voor 

electronica N. V. Peekel, Rotterdam, Holland) which is specified for use 

with the Peekel meter has been used in combination with the Peekel strain 

indicator. In this way the capacity is increased by 23 new measuring 

points. These can be selected by means of a rotary switch in the 

extension box. The system has a constant series resistance making it 

possible to switch over automatically by means of the box selector using 

one control dummy gauge (all the active strain gauges of one type). In 
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case of different active gauges, the 23 points can be used by supplying 

each point with its own dummy gauge. Normally the switch of the 

extension box has no noticeable influence on the accuracy of the measure- 

ments. Fig. (3.10) shows the circuit of the extension box. 

3.2 Apparatus, Equipment and Test Procedures. 

Experiments performed were aimed at finding out the flexural behaviour, 

uniaxial compressive strength, uniaxial tensile strength and triaxial 

compressive strengths of the dried and water saturated gypsum. 

3.2.1 Bending Tests. 

Knowledge of the behaviour of the rock in bending is of great import- 

ance from the practical pcint of view, because failure of strata in mines, 

tunnels and excavations often takes place under conditions of bending. 

The bending test is also one of the indirect methods of measuring the 

tensile strength. In the case of rocks, the tensile strength determined 

from bending tests are usually significantly greater than the uniaxial 

tensile strength. The bending test has been frequently used to obtain 

the tensile strength of rocks due to a number of practical difficulties in 

performing the conventional tensile tests. These include gripping the 

test-piece, preparing a suitable test-piece and avoiding the generation 

of eccentricity in loading. The use of epoxy-based cements has more 

recently overcome much of the difficulty in gripping the sample and 

obviated the necessity of dumbell shaped rock samples in tensile testing. 

3.2.1.1 Bending Test Apparatus. 

The beam specimens were loaded under four point loading in order to 

achieve pure bending conditions. The apparatus used in this study was 

designed by Williams and Elizzi(15,16), and used by the designers for the 

same type of rock. In this experimental set up the beam was supported 

at two outer points 200 mm apart and loaded at two inner points 100 mm 
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apart. The outer and inner points are symmetrically interposed about 

the centre of the beam. This is done by placing the beam between four 

knife-edges, two under the beam and two above it, held by two horizontal 

steel bars. See Fig. (3.11). The lower bar rests on the lower platen of 

a testing machine and the load is applied through a steel ball in a hemi- 

spherical recess at the centre of the upper bar. The 100 mm length of the 

beam between the inner knife edges will thus be subjected to a bending 

moment of constant magnitude and hence will be in pure bending. It has 

been reported 
(16) 

that the advantages of the system are; (a) It gives 

maximum bending moment between the two inner knife edges, so that the 

fracture point will be away from the points of application of load; 

(b) The positioning of the knife edges gives complete stability within 

the apparatus during test. 

The load was applied by using a 10 ton Wykenham Farrance compression 

testing machine. The machine is motor operated geardriven, the rate of 

platen displacement can be varied by changing the 8 different wheels in 

6 gear positions (42 different speeds can be used). The range is between 

0.00008 mm/min to 4.0 mm/min. A proving ring with a 0.002 mm dial gauge, 

the sensitivity of which 2.882 N (0.648 lb) per division was used for the 

measurement of the applied load. 

3.2.1.2 Test Procedure and Stress Measurements. 

Strains were measured on the upper (compression) and lower (tension) 

surfaces of the beams, and these measurements were made by bonding two 

electrical strain gauges at the centre of the upper outer fibres and two 

at the centre of the lower outer fibres, the strain gauges used having a 

gauge length of 10 mm, nominal resistance of 120 Ohms, and a gauge factor 

of 2.07. The beam was placed in the experimental rig and the load applied 

gradually by the compression machine. The strain at the two outer fibres 
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was recorded at different loads before failure took place (in order to 

find the stress-strain relationships). Finally the strains within the 

ultimate load were recorded at a stress as near failure as possible. 

A description of the circuit and the measuring meter were given in 

Section (3.1.5). 

Many investigators have concluded that, in the case of rocks the 

neutral axis of bending beams of rectangular cross-section is not located 

at the middle. Jaeger and Cook 
(113), 

mentioned that during the bending 

the neutral axis moves towards the concave sides of the beam, and this 

is due to a decreasing value of the Young's Modulus in tension. Datta(12) 

also concluded that the neutral axis shifts towards the compression 

surfaces (concave) of the beam, and when the beam fails the neutral plane 

is near the surface in compression. He also found that total shift of 

the neutral axis varies with different rocks. Williams and Elizzi(15,16) 

stated that the stress-strain behaviour of the gypsum in tension and 

compression are dissimilar, and thus the neutral axis of the gypsum rock is 

not located at the middle. 

In this case, using the formula at = 
Iý 

gives incorrect values of 

the tensile strength of the rocks. 

Datta(12) found that 

crt K 
bd2 

where K is a constant and much less than 6 as it varies with various rocks. 

The modified formula suggested by Duckworth 
(114) 

and used by Williams and 

Elizzi(15,16) in finding the tensile strength of the gypsum rock, was 

also used in this research. 

The Duckworth formula is: 

3M(ct+cc 
at 

bd2 et 
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where 

at = Tensile strength at the lower surface of the beam, N/mm2 

M= Applied bending moment, N-mm. 

Ct = Tensile bending strain of the outer lower fibre. 

CC = Compressive bending strain of the outer upper fibre. 

b= Width of the beam, mm. 

d= Height of the beam, mm. 

3.2.2 Uniaxial Compression Tests. 

The uniaxial compression test is the oldest and the simplest rock 

strength test, and continues to be the most convenient and useful way for 

determining an index of the properties of the rock. The results of such 

tests are directly applicable to studies of mining, tunnelling, drilling, 

cutting, crushing and blasting, and indirectly applicable to consideration 

of the behaviour of large jointed rock masses. The uniaxial compression 

test is a special case of the triaxial compression test in which the 

confining pressure is zero. In the next section a brief description of 

the testing apparatus and testing procedure with the stress measurement 

methods used will be given. 

3.2.2.1 Uniaxial Compression Apparatus. 

A 100 ton Avery Universal testing machine was used for this purpose. 

This compression machine capable of applying loads on five different 

ranges, namely; 50,100,200,500 and 1000 KN. Any constant load rate 

can be chosen at any particular load range, and this is done by using 

the marked rotating pacing disc provided with a calibration chart. A 

spherical seat was used beneath the specimen during the test. Electrical 

resistance strain gauges of 10 mm gauge length were used for the determin- 

ation of axial strain and of 5 mm gauge length for the lateral strain 

measurements. 
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3.2.2.2 Test Procedure and Stress Measurements. 

To test the specimen uniaxially in compression, it is placed on a 

spherical seat in the compression zone of the universal compression 

machine. The purpose of this seat is to ensure the intimate contact 

over the whole specimen end surface between the testing machine platens 

and the end of the test specimen as the crossheads move together. The 

load range selected was greater than the expected ultimate strength of 

the rock to obviate unloading and range changing during the test. In 

choosing the loading rate, published works on rock testin, have been 

reviewed. It was found that Obert and Duvall 
(106) 

stated that the com- 

pressive strength increases with loading rate, but that the loading rates 

between 100-400 psi/sec. gave negligible differences in compressive 

strength. The U. S. Bur. of Mines(115) specified the rate of loading should 

be 100 psi/sec. Hawkes and Mellor 
(11) 

mentioned that the A. S. T. M. -C170-150 

recommendation for rate of loading is that it should not be more than 

100 psi/sec and A. S. T. M. -Elll-61 reporting "The speed of testing shall be 

low enough to make negligible the thermal effects of adiabatic expansion or 

contraction, and high enough to make creep negligible". 

On the basis of the above discussion, a rate of loading of 25 

N/mm2/min (= 60 psi/sec. ) was used in this study. The same rate of loading 

used by Elizzi(15) in his tests on. evaporite rocks. 

Three electrical strain gauges were bonded longitudinally at the middle 

of the length at 120 0 
apart around the circumference to measure the axial 

strain. Six strain gauges were bonded transversely to measure the tangen- 

tial strain. These were arranged in three pairs, one in the middle and two 

at the end of the middle third of the specimen. The strain gauges of 

each pair were bonded at 180° apart. See Fig. (3.5b). Thus all the 

gauges were within the middle third of the specimen. It has been reported 
(11) 
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that the length of a strain gauge should be at least five times the 

maximum grain diameter of the rock, longitudinal gauges should not 

encroach beyond the limit of D/2 of the specimen ends, and in the case 

of tangential strain, this should be measured within the midportion of 

the specimen and not closer than D/2 from the specimen ends. These 

recommendations are met in the tests described and in fact no measure- 

ments were made closer than D from the specimen ends. 

A Peekel strain gauge indicator type T-200 and Extension Box type 

23U (Automation-Peekel N. V. Rotterdam) were used in measuring specimen 

strains, using the method described in Section (3.1.5) for the connections. 

The compressive strength was calculated by using the direct formula: 

P 
a= Ä 

S 

where a= Uniaxial compressive strength, N/mm2. 

P= Total applied load, N. 

As = Cross-section area of specimen, mm2. 

The number of tested specimens, results and discussion will be given 

in later articles. 

3.2.3 Uniaxial Tensile Tests. 

Rocks and indeed all brittle materials are inherently weak in tension, 

and tensile stresses will probably be the cause of rock failure in many 

cases. It is well known that the tensile stresses play an important role 

in design of underground openings, particularly in the design of optimum 

roof span in room and pillars mining, and in the design of bolting and 

other roof support systems. Knowledge of the tensile strength which is 

one of the fundamental properties of rock is particularly important from 

a practical point of view for mining and civil engincers. 
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It should be possible to determine the tensile strength of rocks 

either directly or by some indirect method by which failure in tension is 

induced. In the following sections apparatus and test procedure for the 

uniaxial tensile strength (direct pull) will be given. 

3.2.3.1 Uniaxial Tensile Apparatus. 

In these tests 2 ton Hounsfield Tensometer testing machine (Tensometer 

Ltd., Surrey) was used, see Fig. (3.12). It can be motor driven or 

manually operated. The specimen chuck attachments are spherically 

mounted to ensure axial alignment. The pull in the test specimen (tensile 

load) is transmitted through a tension head to a calibrated spring beam, 

the deflection of which is proportional to the load. The deflection of 

the beam is transmitted to a mercury column in a glass tube, the end of 

the column gives direct reading of the tensile load on a graduated scale 

lying along the mercury tube. The magnifying cursor slides along the 

mercury tube and the scale to enable accurate viewing of the mercury move- 

ment and the failure load to be performed. This magnification range is 

from 4: 1 to 16: 1. Seven different spring beams with seven interchangeable 

scales graduated to suit the strength of the beam, can be used. These 

beams correspond to the loads 2 ton, 1 ton, 500 lb, 250 lb, 125 lb and 

62.5 lb. 

3.2.3.2 Test Procedure and Stress Measurement. 

The direct pull tensile test is generally considered as an uncommon 

test, because of the difficulties of preparing the test specimen, gener- 

ation of eccentricity in loading and the difficulties in gripping. To 

avoid these difficulties in this study, regular cylindrical specimens were 

used and ball joints were used in applying the load to minimize the 

bending stress transmitted to the specimen and finally to overcome the diffi- 

culty in gripping, a method used by Fairhurst 
(108) 

in 1961 was used, that is 
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the cementing of the specimen ends to the steel end pieces having the 

same cross-section of the specimen. Epoxy-based cement used in recent 

years has made the bonding of the metal to rock practicable, thus over- 

coming the difficulty of specimen gripping. 

Specimens bonded to the steel platens prepared by the method described 

in section (3.1.3) were placed in the Housfield Tensometer by inserting the 

ball jointed nose piece into the platen sockets and ensuring the dowel 

pins are fully inserted (using ball joint to ensure accurate alignment in 

loading). The zero loading was adjusted by bringing the mercury to 

zero load mark. Then the specimen was loaded at a rate of 3.3 N/mm2/min 

( 480 psi/min). Obert and Duvall 
(106) 

reported that thºe rate of loading 

of 500 psi/min would be consistent with general practice. The cursor was 

moved with the head of mercury column during the application of the load, 

and observing the movement of the mercury was done by using the magnifying 

glass to ensure the fracture load reading being accurately obtained. Three 

electrical strain gauges were bonded within the middle third of the specimen 

length at 1200 apart, see Fig. (3.5a). A Peekel strain gauge indicator 

was used to measure the strain variation (method of connecting the strain 

gauge with the meter described in Section (3.1.5) ). Tensile load-strain 

measurements were thus done during the test to provide the uniaxial 

tensile stress-strain behaviour of dry and saturated gypsum. Finally, 

the fracture load and maximum strain were recorded at the specimen failure. 

Uniaxial tensile stress was determined by using the general direct 

equation 
P 

of A 
s 

where: at = Uniaxial tensile stress, N/mm2. 

P= Applied load, N. 

As = Cross-sectional area of the specimen, tma2. 
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The number of specimens tested, results and discussion of these will be 

given in the next chapter. 

3.2.4 Triaxial Compression Tests. 

Knowledge of the strength and physical properties of rocks aid in the 

design of more economical structures. Knowing the strength behaviour of 

rocks in triaxial stress conditions is important in problems of roof 

control and other aspect of rock working underground. The first attempt 

to determine the strength of rock under condition similar to its natural 

confinement began more than 75 years ago when Adam and Nicholson 
(17) 

in 

1901 applied axial load to core sample of marble which was surrounded by 

a tight fitting steel cylinder. Many serieses of work. have been done in 

this field 
(18) 

since that time. Von Karman used liquid to surround the 

specimen and apply confining pressure through it in 1911, U. S. Bureau of 

Reclamation in 1950 jacketed the specimen of rock by a rubber membrane 

and found this a suitable way to protect it from the surrounding oil 

effects, and since then many variable parameters have been studied in 

various cases of the triaxial stress condition. In this section triaxial 

stresses were applied by the author to core specimens of two different 

sizes with gypsum under both dry and saturated conditions. 

3.2.4.1 Triaxial Apparatus. 

The Apparatus used by Murrell 
(116) 

and Elizzi(15) for testing many 

types of rock was used in this study, a brief description of the apparatus 

follows: 

The apparatus consists of a triaxial cell and hydraulic pressure 

system. The cell was designed and built to test the rock samples under 

confining pressure up to 400 N/mm2 (60000 psi), the base of the cell and the 

load.. piston were designed for a maximum specimen diameter of 31.75 mm 

(1.25 inch). The specimen was placed between two loading blocks of 
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stainless steel, flat in the sides in contact with the specimen and 

spherical in the opposite side of the upper block which was matched to 

a spherical depression in the piston, to ensure full contact between the 

specimen ends and the platens. A valve located at the top of the 

cylinder allowed air to escape as the cell was being filled with hydraulic 

fluid through the entry port through the base. View of the cell shown in 

Fig. (3.13). The pressure control system consists of electrically driven 

pump which was used to provide the hydraulic pressure and system of 

pressure valves. These valves are stop valves, needle valves, and 

pressure control valves. Pressure was adjusted and controlled at a con- 

stant level during each test at pre-determined values. The maximum 

confining pressure can be obtained directly in this system is 60 N/mm2. 

(= 9000 psi). Fig. (3.14) shows the hydraulic circuit of the apparatus. 

High pressures require the use of hydraulic intensifier. 

3.2.4.1.1 Calibration of the Apparatus. 

The apparatus was calibrated to find the friction force which was 

created when pushing the ram by vertical load while the confining pressure 

has been applied. The following procedure was used. The cell was 

placed in the testing machine, then filled with oil, a chosen confining 

pressure was applied and kept constant, followed by applying the vertical 

load to push the ram slowly. into the pressure cell against the confining 

pressure. Then the friction force calculated as: 

(Vertical force to push the ram) - (Upward force acting on the ram due to 
confining pressure). 

The same procedure was repeated for a set of confining pressures, from 

which friction force with the confining pressure relation was found, see 

Fig. (3.15). 

3.2.4.2 Test Procedure. 

Specimens prepared using the method described in Section 3.1.1.4 with 

an enclosing rubber membrane was placed inside the triaxial cell between 
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the platens. The cell was then closed and placed in the compression 

zone of the Universal Avery Compression machine. After filling the cyl- 

inder with hydraulic fluid by means of the pump, the confining pressure 

was raised to the required value (at which it was then maintained constant 

by the needle valve). Then vertical load was applied by the compression 

machine at a rate of 25 N/mm2/min. up to specimen fracture or plastic 

deformation. The vertical load was then decreased gradually followed 

by the confining pressure. The specimen was removed from the cell and 

photographed showing the fracture and/or plastic deformation. 

In the case of testing a specimen of 25.4 mm dia x 76.2 mm long, the 

applied axial load calculated using the equation: 

P= Fm - (F3 + Ff) 

where: 

P= The actual axial load applied on the specimen, N. 

Fm = The axial load applied on the ram of the cell which can be 

read directly on the testing machine dial, N. 

Fd = Upward force due to the effect of confining pressure acting 

on the difference between the cross-sectional area of the 

ram and the specimen, N. 

Ff = The friction force between the ram and the oil seal at that 

value of confining pressure which can be determined from 

Fig. (3.15), N. 

And in the case of specimen of 31.75 mm dia by 95.25 mm long when the 

diameter of the specimen is similar to the ram diameter, the axial load is 

calculated from the equation: 

P Fm -Ff 
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FIG (3-2) SURFACE GRINDER 
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FIG. (3-1) DIAMOND CUT-OFF SAW 



FIG. (3-3) BLOCK OF ROCK ON THE DRILLING 
MACHINE BENCH 

FIG (3-4) TREATMENT OF SPECIMEN ON THE 

LAPPING MACHINE 
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(A) Specimen in position 

(B) Tensometer and Peekel indicator 

FIG. (3-12) UNIAXIAL TENSILE TEST IN PROGRESS 
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(A) General view 

FIG. (3-13) TRIAXIAL TESTING APPARATUS 
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(B) Triaxial cell 
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Chapter 4. 

RESULTS AND DISCUSSION OF SHORT TERM TESTS. 

Although the main aim of this research is to study the creep 

behaviour of the dry and saturated gypsum, it is essential to introduce 

the compressive and tensile strength results of gypsum related to 

factors influencing these strengths (specimen size and saturation) in 

order to make clear the relationships between the short term properties 

and the long term behaviour of this rock. 

4.1 Bending. 

Many specimens were tested using four point loading in dry and 

saturated conditions, at various rock beam thicknesses. Beam dimensions 

were 240 mm long by 40 mm wide with four different thicknesses varying 

from 15 mm to 28 nun (15,20,25 and 28 mm). All tests carried out at 

room temperature (21 ± 20 C). 

The measured tensile and compressive strains of all beam specimens 

showed that the tensile strain (at lower surface) is greater than the 

compressive strain (at upper surface), see Figs. (4.1) and (4.2). This 

indicated that the position of the neutral axis is nearer the compression 

side, not at the centre of the beam, and as load increases it keeps on 

moving towards the upper surface. This is in agreement with Datta's(12) 

results on beams of sandstone, granite and marble, he reported that the 

neutral axis is not in the centre and it moves up from the tension side 

to compression side as the load increases. Whereas Williams and 

Elizzi(15,16) found in some of the gypsum and anhydrite beam specimen that 

the neutral axis is nearer the tension side. 

In each of the Figs. (4.3) and (4.4) the stress-tensile strain of 

four gypsum beams tested under the same conditions of dimensions, direction 
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of loading, rate of loading and humidity are given for dry and saturated 

conditions respectively. It can be seen that there is a noticeable 

variation in their behaviours. This is presumably due to petrological 

differences in these beams, i. e. grain sizes, cementing material, 

inhomogeneity, etc. 
(15) 

4.1.1 Specimen Size Effects. 

Tables (4.1) and (4.2) give the tensile strength calculated from the 

bending observations in dry and saturated conditions respectively. The 

mean values and standard deviations of the strength of each specimen 

size are given. Table (4.3) gives the summary results related to the 

specimen size effect. It can be seen that the tensile strength decreases 

with increasing specimen size (increasing the thickness). 

This reduction is of the order of 8 percent in the case of dry speci- 

mens and 9 percent in the case of saturated specimens within the tested 

specimen size (thickness varies between 15 mm to 28 mm). Fig. (4.5) 

shows the relation between the tensile strength and beam thickness. A 

considerable drop in strength is shown with increasing size in the case of 

smaller specimens but little reduction is shown with larger specimen sizes 

in both dry and saturated conditions. The investigators; Berenbaum 

and Brodie 
(3), 

Pomeroy and Morgans 
(2) 

and Evans 
(4) 

have also reported a 

decrease of tensile strength from bending with increasing the specimen 

size. Hardy et al. 
(13,14) 

found that flexural strength is not a material 

property in rocks, it varies with the specimen geometry and there is no 

unique trend for the size-strength relationship. 

The reduction of the strength with specimen size obtained by the 

author seems to agree with Pomeroy and Morgans 
(2) 

explanation of this 

which states; that the failure is a function of gross weaknesses in the 

specimen, that the rock (coal) is ramified with weaknesses of various 
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Table (4.3) Effects of Specimen Size and 

Saturation on Bending Results. 

Specimen Size 

(L xbx d) 

Tensile Strength 

N/mm2 

Reduction 

due to 

Saturation mm 

Dry Saturated % 

240 x 40 x 15 8.52 5.84 31.46 

240 x 40 x 20 8.02 5.58 30.42 

240 x 40 x 25 7.90 5.42 31.39 

24 x 40 x 28 7.82 5.34 31.71 
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magnitudes so that once the largest has been eliminated the next largest 

confers only slightly greater strength and so on. Further a large 

specimen is more likely to contain a gross weakness than a small one and 

so is likely to have a lower strength. Figs. (4.1) and (4.2) show that 

there is some effect of the specimen size (thickness) on the stress-strain 

behaviour at both tension and compression sides of the specimen for dry 

and saturated gypsum respectively. The effect is of decreasing the strains 

with increasing the beam thickness at any particular stress. It is in 

agreement with Hardy et al. 's(13 14) 
theoretical and experimental conclusions, 

which stated that if the size of the beam is changed the complete force- 

displacement curve will not be proportionately scaled for two reasons; 

the microstructures always have the same absolute dimensions, and thus 

the length of any pre-existing cracks is not proportionately scaled, and, 

the work of fracture associated with a given relative increment in crack 

length is not constant, thus the correspondence of the required energy 

(as a function of area) with the available energy (as a function of volume) 

is no longer the same. 

4.1.2 Saturation Effects. 

In order to give a clear idea about the effect of the saturation 

on the tensile strength of the gypsum in bending, six specimens at least 

for each of the four mentioned sizes were saturated with water, and the 

tensile strength as well as stress-strain relationship in tension and 

compression were determined. Table (4.2) gives the details of strength 

results for all specimen sizes with means and standard deviations. 

Table (4.3) gives the summary results compared with dry specimen results. 

Fig. (4.5) gives the relationship between tensile strength and specimen size, 

and a comparison between dry and saturated conditions. It can be seen 

that the saturation by water decreases the tensile strength of gypsum by 
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about 30 to 32 percent for all given specimen sizes. It seems that the 

reduction of the tensile strength due tc saturation is not influenced by 

changing the specimen size. The saturated specimens showed a greater 

strain at both tension and compression surfaces than that of the corres- 

ponding dry specimens at any particular stress, see Fig. (4.2). 

Reducing of the resistance to rupture and the increasing strain due to 
(51,54) 

saturation could be explained as a lowering of the surface free energy 

The tensile strength (at) of the material is directly related to the 

molecular cohesive strength which is proportional to �y, where y is the 

surface free energy of the rocks (Griffith's equation: at = 
2C) 

, 
0 

E- Young's Modulus and Co the half length of the so called Griffith's 

crack assumed to be exist). The surface free energy is lowered with 

adsorption of water, thus lowering the cohesion between the particles 
(63 

making up the solid rock and hence the strength, 
64) 

. Tested specimens 

dry and saturated conditions are shown in Fig. (4.7). 

4.2 Uniaxial Tensile Strength. 

All the investigations (10,64) 
which have been published on this test 

method have recommended that the uniaxial tensile test (direct pull) is 

carried out under well controlled conditions. This is to ensure that 

meaningful tensile strengths are obtained. It is probable that the 

values of strength obtained are then the minimum tensile strength of the 

bonding between the grains in the rock. 

Several cylindrical specimens were tested using the Hounsfield 

Tensometer following the method described in Sec. (3.2.3.2). During the 

study four specimen sizes were used and in dry and saturated conditions 

in order to show the specimen size and the saturation effects on the 

tensile strength of the gypsum. All the specimens had L/D =3 (length/ 

diameter) with diameters 25.4,31.75,38.1 and 50.8 mm. Six specimens 
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at least were tested in every case. Fig. (4.8) shows photographs of 

some of the tested specimens at various sizes under the two environmental 

conditions. 

4.2.1 Specimen Size Effects. 

The tensile strength of all the tested specimens with various sizes 

and the mean values with the standard deviations are given in table (4.4) 

for dry and table (4.5) for saturated gypsum. Table (4.8) gives the 

summary of results related to the specimen size effects. It is clear 

that the tensile strength decreases with increasing specimen size. A 

reduction of about 43 percent in dry specimens and about 28 percent in 

saturated specimens were found within the specimen size ranges tested. 

Specimen volume-tensile strength relationships were plotted in Fig. (4.6) 

which shows clearly the decrease in the strength with the specimen volume. 

These size effects attributed to the presence of flaws in the rock and as 

a statistical effect that a larger sample is more likely to contain larger 

cracks within its microstructure. 

Wijk et al. 
(117) 

found that the direct value of the uniaxial tensile 

strength does not vary with the size, while the tensile strength of the 

rocks from the indirect tests decreases with the specimen volume. Hardy 

et al. 
(13,14), 

reported that there is no unique trend for the size-tensile 

strength relationship in the rock, whereas Evans(4), Hobbs(6) and 

Lundborg(8) found that the tensile strength of the rocks is specimen size 

dependent. Lundborge(3) found a reduction of 38 percent in L: D = 1: 1 

granite cylinders of diameters ranging from 1.9 to 5.8 cm. 

A comparison between the theoretical predictions and the present 

experimental results can be made by considering the statistical theory 

of Weibull's relationship, which states: 

at1 V2 
mlog Qt = log 

v 21 
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where at1and at2 are the tensile strengths of the specimens with volume of V1 

and V2 respectively, and m is the constant for the rock. The experi- 

mental data are plotted as log atVs log V for the dry and saturated 

specimens in Fig. (4.10). It will be seen from this figure that the 

above expression gives a straight line, the slope of which is the 

constant m. This gives m=3.58 for the dry tensile strength and m=6.84 

for the saturated tensile strength. This indicates that the tensile 

strength of the saturated specimen varies more with the volume than that 

of the dry specimens. These results are in good agreeme-lt with Jahn 
(118) 

and Lundborg(8) whose results of tensile strength also fitted the Weibull 

theory. 

Fig. (4.11) shows the tensile stess-strain characteristics of the 

dry and saturated gypsum for three specimen sizes, it can be seen there 

is a small change in behaviour by changing the specimen size. Although 

no unique pattern is clearly evident, there is some tendency towards a 

lower modulus in the case of larger specimens particularly in the case of 

the saturated materials. 

4.2.2 Saturation Effects. 

To show the effects of the water on the uniaxial tensile strength of 

the gypsum, several specimens of four sizes (the same sizes used for the 

dry specimens) were saturated with water and the tensile strengths by 

direct pull were determined. Details of the results are given in Table 

(4.5), and comparisons of the results for all sizes with the dry specimens 

is given in Table (4.8). It can be observed that the reduction of the 

strength due to saturation varies from 33% to 48% for all the specimen 

sizes, this reduction decreases with the specimen size, as shown in 

Fig. (4.6). 

92 



Fig. (4.11) gives the tensile stress-strain relationship for the 

wet specimens as well as the dry specimens. Little change in behaviour 

is shown due to specimen size in saturated conditions. The decrease of 

strength and increase of strain at given stress in the case of the 

saturated samples due to lowering of the surface free energy of the rock 

specimen by adsorption of the water(4,51,54,63), has been explained in 

the previous section, sec. (4.1.2). 

4.2.3 Comparison between the Uniaxial and Bending tensile 

Strengths. 

In order to compare the tensile strength determined by the direct 

and indirect methods, the following ratios should be tabulated: 

For dry condition: 

(1) Highest bending tensile strength to highest uniaxial tensile 

strength = 1.6. 

(2) Lowest bending tensile strength to lowest uniaxial tensile 

strength = 2.6. 

For saturated condition: 

(3) Highest bending tensile strength to highest uniaxial tensile 

strength = 2.12. 

(4) Lowest bending tensile strength to lowest uniaxial tensile 

strength = 2.67. 

It can be seen from the above ratios (because of the strength changes with 

the specimen size, two ratios were considered to give a clear idea about 

the comparison) that the tensile strength determined by different methods 

is not the same. These results are in agreement with the investigators; 

Berenbaum and Brodie 
(3) 

who found that the ratio of tensile strength 

obtained by bending to the uniaxial is 2.3, Jaeger and Hoskins 
(7) 

obtained 

the ratio values of 2.2,1.7 and 1.8 for sandstone, marble and trachytle 

respectively. Datta(12 
) 

found the ratios 1.9 and 1.86 for sandstone and 
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marble respectively, Tso-Min-Shi(26) tested specimens of Gasp Skarn and 

reported the ratio of the bending tensile strength to the uniaxial ten- 

sile strength is 2.8 and Wyang Yu 
(119) 

found that the bending tensile 

strength of some rocks was about 3.18 times the uniaxial tensile strength. 

The variation in the tensile strength indicated by the two methods 

might possibly be due in part to the specimen preparation technique of 

the beams, which conceivably could produce a toughened surface skin or 

other surface effect due to the high speed grinding that is a part of the 

preparation technique and it is possible that the temperature of the rock 

in contact with the grinding wheel is high enough to chemically change or 

plasticise a very thin layer at the surface(3'4). Jaeger and Hoskin 
() 

suggested that this discrepancy was due to the fact that in the direct 

test the stresses are uniform (or nearly so) over the section in which 

failure takes place while in the bending test they vary almost linearly 

across it. 

In comparing the stress-strain relations in tension from bending and 

uniaxial tests, these relations are constructed in Fig. (4.12). These 

show that at any particular stress, the strain in the uniaxial test is 

greater than that in bending, approaching double that in bending in the 

case of the saturated condition. The higher indicated strain in the 

direct tests gives rise to flatter stress-strain curve than that demon- 

strated in the bending tests. The curves are virtually straight lines 

up to 2.0 N/mm2 and 3.0 N/mm2 for the direct tensile and bending tests 

respectively in dry condition. The initial tangent modulus is 4.286 

x104 N/mm2 compared with 4.834x104 N/mm2 in the curves from bending. 

In saturated conditions the curves are virtually straight lines up to 

21 
N/mm and 1.5 N/mm 

2 for direct tensile and bending rests respectively, 
22 

the initial tangent modulus is 2.22x104 N/mm compared with 3.76x104 N/mm 
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in the curves from bending. These results are in agreement with 

Datta's(12) results on specimens of dry sandstone. 

4.3 Uniaxial Compressive Strength. 

The uniaxial compressive test is frequently used as a criterion 

whereby the breakdown of rocks under pressure may be compared. In 

the mining industry data on the compressive strength of rocks are of 

greatest interest to engineers and scientists working on problems 

related to cutting and crushing of rocks, and strata control. 

It is realised that the strength of rocks is fundamentally related 

to its petrology. It is essential to take into account also the 

of the porewater, temperature, specimen size, etc. during the determin- 

ation of the compressive strength of rocks. 

In this study the effect of specimen size and water saturation on 

the uniaxial compressive strength of gypsum were investigated by using 

four different specimen sizes with L/D =3 at room temperature (21f -2p C). 

Tested specimens of various sizes under dry and saturated conditions 

are shown in Fig. (4.13). 

4.3.1 Specimen Size Effects. 

In order to show the effect of specimen size on the uniaxial 

compressive strength, the constant specimen shape of L/D =3 was used 

with diameters: 25.4 mm, 31.75 mm, 38.1 mm and 50.8 um. These were 

tested under two environments (dry and saturated conditions), not less 

than six specimens being used in each case. Tables (4.6) and (4.7) 

give the results of all tests with means and standard deviations of 

strength for dry and saturated conditions respectively. Table (4.9) 

gives the summary of the results related to the specimen size effect. 

It is clear that the uniaxial compressive strength decreases with specimen 

size. This ranges from 41.59 N/mm2 to 32.25 N/mm2 (22.5% reduction) 
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Table (4.8) Effects of specimen size and saturation 
on the Uniaxial tensile strength. 

Specimen 
size 

(L x D), 

Uniaxial tensile strength 

N/mm 
2 

Reduction 
due to - 
saturation 

mm % 
Dry Saturated 

76.2 x 25.4 5.30 2.75 48.11 

95.25 x 31.75 4.49 2.64 41.20 

114.3 x 38.1 3.52 2.12 39.77 

152.4 x 50.8 3.01 2.00 33.56 

Table (4.9) Effects of specimen size and saturation 
on the Uniaxial compressive strength. 

Specimen 
size 

(L x D), 

Uniaxial compressive strength 

N/mm. 
2 

Reduction 
due to 
saturation 

mm % 
Dry Saturated 

76.2 x 25.4 41.59 21.13 49.19 

95.25 x 31.75 32.82 17.29 47.32 

114.3 x 38.1 32.46 17.00 47.63 

152.4 x 50.8 32.25 16.85 47.75 
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under dry condition and from 21.13 N/mm 
2 

to 16.85 N/mm2 (20.3% 

reduction) under saturated condition. The relationship between the 

strength and the specimen volume as determined experimentally from the 

present tests is graphically depicted in Fig. (4.9) for both dry and 

saturated conditions. It can be seen from this figure that although 

the strength decreases as the specimen size (volume) increases, the 

curve nearly flattens out to a constant strength at the specimen size 

of about 114.3 x 38.1 mm (LengthxDiameter). 

For the comparison of the present experimental results with Weibull 

theory, Fig. (4.10) is constructed as log V vs logo relationship (where 

V and a are the volume and strength of the specimen respectively). It 

can be seen from this figure that a straight line of m= 12 for dry 

specimens and m= 12.65 for saturated specimens (where m is the slope of 

the straight line) can be fitted to the Weibull's relationship 

m log 
Q1 = log 

v? 21 

in which aI a2 is the strength of the specimens with volumes V1 and V2 

respectively. 

The following investigators have reported the effect of specimen size 

on the compressive strength, and most of them are in agreement with the 

results obtained in this study; 

Gaddy 
(36) 

, Evans and Pomeroyý37ý and Evans et al. 
ý38ý 

tested 

cubical specimens of more than one type of coal and they found that the 

compressive strength decreases as the specimen size increases. 

Skinner 
(39) 

tested prismatic model pillars of anhydrite and Mogi(40) 

tested a marble prism ; their results also indicated decreasing of the 

compressive strength with specimen size. Ludborg(8) tested granite 

cylinders of the same height and diameter (2,3,4 and 6 cm) and observed 
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a range of 2190 to 1750 kg/cm2 (20% reduction in crushing strength), 

and he found a reasonable agreement with Weibull theory, his results 

fitted straight line with m= 12 for dry condition. Bieniawski(42) 

tested a cubical specimen of Norite with side length from 

1.3 to 17.8 cm, he found a reduction in the strength from 1.3 to 12.2 

cm sizes and concluded that there would be no strength reduction there- 

after, and Pratt et al. 
(43) 

tested in situ specimens of quartz dionite 

and granodiorite ranging from 1 to 9 ft in length and laboratory speci- 

mens ranging from 3.2 inch to 12 inch in length. He found the reduction 

of the strength by a factor of about 10 as specimen size increased up to 

3 ft and no strength reduction was observed therafter. 

Two factors might cause the decrease in the strength due to size 

effects: (1) As the specimen size increases the probability of the 

flaws of a particular size present in the specimen increases. Depending 

on the density of the flaws, a decrease in strength with increase in size 

of the specimen would be thus expected, and it is expected that with a 

sufficiently large specimen, flaw distribution would not be affected by 

size, when strength would not be affected with further increase in size. 

(2) The surface imperfections created either during the cutting of 

the specimen from the parent material, the machining of the specimen 

surface or by the natural reaction of the rock mineral to the free 

surface may also affect strength. For a certain specimen shape, the 

surface area per unit volume decreases with increase in size, when the 

strength would be expected to decrease with increasing the specimen 

size 
(120). 

4.3.2 Saturation Effects. 

To show the effects of the water on the uniaxial compressive 

strength of the gypsum, several specimens were saturated with water, 

100 



specimen sizes were the same sizes used in uniaxial tensile tests and 

in the dry uniaxial compressive strength tests in order to get a 

geometrical similarity and to make the comparison under closely controlled 

conditions. Table (4.7) gives the details of results obtained with the 

mean and standard deviations of the strengths for the wet specimens of all 

sizes, and table (4.9) gives the effect of saturation on the uniaxial 

compressive strength related to the various sizes. Fig. (4.9) shows 

the comparison between the dry and saturated uniaxial compressive strengths 

for the different specimen sizes. It can be seen from the results of the 

present study that the saturation of the water decreases the compressive 

strength. A range of 47,3% to 49.2% reduction of the compressive strength 

was observed due to saturation, only small differences in the percentages 

of strength reduction were observed due to different specimen sizes. It 

seems that the lowering of the strength under the influence of the sat- 

uration does not affected by changing the specimen size. 

The following investigators reported the values of the compressive 

strength reduction due to water saturation as a percentage of dry 

strength; Price 
(52) 

found a reduction of 55% with sandstone, Cloback 

and Wiid(55) reported a reduction of 50% with quartizic shale and 

quartizic sandstone, Wiid(56) indicated 35% reduction with sandstone, 

Rutter 
(58) 

observed a reduction of 30% with Solenhofen limestone, 

Broch(62) found a reduction from 33 to 55% with the very high strength 

and low porosity rocks respectively, Eeckh. out(64) reported a reduction 

from 5 to 74% from 43 sources with fifteen rocks. 

The effect of the water on the strength of the gypsum may be 

explained as follows: 

Since the formation of new surface during the process of the fract- 

uring is dependent upon the surface energy of the rock, its strength will 
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be dependent upon the decrease or increase of that surface energy. As 

the water decreases that surface energy of the rock then the strength 

will decrease(51,54,55) This could be explained using the Griffith's 

Criterion. Although this criterion was originally defined for the 

tensile strength situation, it is reported 
(64) 

that experimental observ- 

ations suggest that strength in uniaxial compression is affected by 

tensile brittle cracking and energy exchange, so that the Griffith's 

criterion also applies to the compressive stress situation. Assuming 

an equation of the form: 

a=K (Ey/Co)1 holds, where y is the energy required per 

unit advance of the crack (the work of fracture), and Co is some measure 

of the critical flaw length, then if y is lowered with absorption of 

water, the fracture strength will be lowered and hence the strength. 

It is also possible that certain minerals may decompose and/or be 

dissolved when they come in contact with water. If the water attacks 

the crack tips, dissolving and/or decomposing the minerals, this will 

increase the stress at the apex which helps in their propagation, again 

causing a decrease in the strength of the rock 
(120). 

4.3.3 Axial, Lateral and Volumetric Strains. 

The stress-axial strain relationships for dry and saturated gypsum 

under uniaxial loading are shown in Fig. (4.14). There is a good agree- 

ment between the results from various specimen sizes in both conditions. 

The low stress part of the two plots is non-linear with a very small 

curvature, this gradually ceasing with the stress, this is generally 

attributed to progressive closure of cracks and pores under stress. 

At somewhat higher stress a linear relation followed which describes the 

elastic straining of the constituent grains after pore closure ceased. 

As the stress approaches the uniaxial strength the slope of stress-strain 
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curve decreases due to formation and extension of microcracks which 

progressively destroy the load-bearing capacity of the rock and cause 

irreversible strains to occur. 

Higher strains are indicated at given stresses in the saturated 

specimens giving rise to a flatter stress-strain curve than that demon- 

strated in dry conditions. This is again due to decrease in the surface 

free energy of the interfaces newly formed in the defects (ultra- 

microcracks) arising in the strained solids(51). 

Lateral strain was measured by attaching five strain gauges along 

the specimen surface at six equal intervals, two gauges were mounted on 

the opposite sides of the specimen for each strain reading. It was 

found that the lateral strain (which is equal to the tangential strain 

as a result of axially summetrical loading 
(31,48,121)) 

is nearly uniform 

within the middle third of the specimen length, and that is in agreement 

with the Peng's(31) results for the same given end conditions. The 

average lateral strain at the middle third was considered as the chara- 

cteristic strain measurement in the present study. 

Fig. (4.15) shows the stress-lateral strain relationship for both dry 

and saturated conditions. The three stages in the curve can be seen, in 

the initial phase of loading when cracks or pores are closing there is 

very little lateral strain (no curves are seen) and thus the curve rises 

steeply. At the onset of "linear" compression the slope of the curve 

decreases, as the internal cracking starts elastic compression of the 

rock grains is countered by crack formation and the lateral strain 

increases rapidly as the volume of the specimen of the rock starts to 

increase. 

As an average value the saturation decreased the Modulus of Elast- 

icity of the gypsum from 3.28 x 104 N/mm2 to 1.76 x 104 N/mm 2 (46% 
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reduction and increased the Poisson's ratio from 0.396 to 0.488 

(23% increase). Mann and Fatt 
(53) 

found that the presence of water 

decreased the Modulus of Elasticity of the sandstone by about 10-30% 

and increased the Poisson's ratio by about 100% for one type and a 

small amount only for another type of the sandstone. Mogilevskaya(57) 

reported 5-20% reduction of Young's modulus of four rocks due to sat- 

uration. 

Volumetric strains were calculated from the axial strain (e 
A) and 

lateral strain (e 
L). Considering the axial strain (shortening) as a 

positive and lateral strain (expansion) as a negative, so the volumetric 

strain (Eý); 

eV = eA - 2CL 

Axial stress-volumetric strain relationships for both dry and 

saturated conditions are constructed in Fig. (4.16). The curves show 

the first region (lower stresses) which represent the closure of the pre- 

existing cracks, followed by the linear elastic deformation. A further 

increase in stress causes microcracking initiation which is indicated by 

a deviation from linearity of the stress-volumetric strain curve at about 

15 N/cmn2 in dry condition and 6.0 N/mm2 in saturated condition (points 

A and B respectively). The fracture initiation apparently takes place 

at 39% and 33% of the maximum stress for dry and saturated conditions 

respectively. The stage of fracture propagation continues up to the 

points where the curve changes direction and gives a negative slope, 

(referred to as the onset of the unstable fracture 
(56)), 

this point is 

at about 29 N/mm2 (= 74% of maximum stress) in case of dry and at about 

13 N/mm2 (= 72% of maximum stress) in saturated condition. This 

change in the direction of the curve indicated an increase in specimen 
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volume related to the state of the specimen immediately before the 

onset of the unstable fracture. The specimensfailed before their 

volume became more than the original volumes. 

Brodia(122) tested sandstone cylinders with L/D =1 and he found 

the onset of the unstable fracture at about 50% maximum stress and 

dilation took place at about 98% maximum stress. Wiid(56) studied 

the volumetric strain behaviours of the dry and saturated dolerite, 

and he reported that the stress at fracture initiation was 60% and 58% 

maximum stress for dry and saturated conditions respectively. The on- 

set of the unstable fracture took place at a stress of 89% and 86% 

maximum stress for dry and saturated rock respectively. 

4.4 Triaxial Compressive Strength. 

Knowledge of the compressive strength behaviours of rocks under 

triaxial loading is of fundamental importance in rock mechanics. This 

behaviour is influenced by a number of factors, one of which is the 

moisture content of the rock. The present work deals with the effect 

of saturation on the compressive strength of the gypsum under triaxial 

loading. It also deals with the effect of the specimen size, but due 

to the limited size-of the triaxial cell available in the laboratory, 

only two sizes were used in which case it is only possible to partly 

investigate the effect of the specimen size on the compressive strength. 

The confining pressure levels used were; 5,10,15,20,25,30 

and 35 N/mm2. The specimen sizes were; 76.2 mm long by 25.4 mm dia. 

and 95.25 mm long by 31.75 mm dia. both sizes had L/D = 3. Axial load 

was applied perpendicular to the rock bedding, and the experiments 

performed at room temperature (21 ± 20 C). Tested specimens in dry 

and saturated conditions are shown in Figs. (4.17) and (4.18) for the two 

mentioned sizes. 
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4.4.1 Influence of Saturation. 

Triaxial tests were performed on four specimens at every chosen 

confining pressure under both dry and saturated conditions. The 

same experiments under the same conditions were carried out on the two 

mentioned specimen sizes. A summary of the results obtained for the 

various specimen sizes and under dry and saturated conditions is given 

in tables (4.10), (4.11), (4.12) and (4.13). The details of all the 

tested specimen results are presented in Appendix "B" table (B4.1), 

(B4.2), (B4.3) and ($4.4). 

Mohr's circles for dry and saturated specimens were constructed in 

Fig. (4.19) for the specimen size of 76.2 mm x 25.4 mm and in Fig. (4.20) 

for specimen size 95.25 x 31.75 mm, and an envelope was fitted to the 

stress circles in each case. It can be seen that some of the circles 

do not touch the envelope, indicating lower strength values than those 

predicted from the Mohr's envelope drawn. These small differences can 

be attributed to possible error arising from random variation in the 

rock specimens. It is clear that the envelopes illustrated in all cases 

are non-linear, and similar to the shape of the envelope of rocks obtained 

by many previous investigators; ators" Robertson 
(21) 

, Price 
(23) 

, Murrell 
(24,116) 

, 

Hobbs 
(25) 

and others. To better define the shape of the envelope, 

especially at the low stresses region, the uniaxial tensile tests which 

were performed give a "negative" stress circle. It was assumed that the 

tensile strength developed in the material under a condition of pure shear 

would be the same as that in simple tension, a circle representing a 

condition of pure shear is shown, drawn about the origin of ß, T axis, 

Figs. (4.19) and (4.20). It is noted that the shear circle represents 

the only possibility for both shear and tension circles to be a tangent 

to the envelope. The tensile strength and the shear intercept for each 

case are given in table (4,. 14). 
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Table (4.14) Tensile strength and sheer intercept for various 
conditions. 

Condition 
Specimen size Tensile strength Shear axis 

(L x D) mm N/ 
2 intercept 

N/mm2 

76.2 x 25.4 5.30 8 
Dry 

95.25 x 31.75 4.49 7.5 

76.25 x 25.4 2.75 3.7 
Saturated 95.25 x 31.75 2.64 3.9 

From the experimental results, the values of the normal stress (on) and 

shear stress (rs) immediately after fracture have been calculated at 

various confining pressures using the following equations: 

z+v3 z-Q3 
on =2+2 cos20 

z-e 

Ts =23 20 
where 

z= Axial stress immediately after fracture, N/mm2. 

a3 = Confining pressure, N/mm2. 

A= Measured angle of fracture which is the angle between 

the plane of failure and the minor principal stress. 

These values are given in tables (4.10) and (4.11) for specimens 76.2 x 

25.4 mm under dry and saturated conditions respectively and in tables 

(4.12) and (4.13) for specimen 95.25 x 31.75 mm under dry and saturated 

conditions respectively, then the values (an and TS) are plotted in 

Figs. (4.19) and (4.20), and fitted straight lines in all cases shown as 

broken lines. The slope of these lines gives the coefficient of 

friction within the fractured specimen of the rock. It is clear then 

that if the above straight line meets the Mohr's envelope, there will 
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be a stress at which no reduction of load will occur after fracture 

since the applied shear stress does not exceed the frictional force on 

the surface. 

The Mohr's envelope of failure stress circles at various confining 

pressures gives the relationships between the normal and shear stresses 

on the failure surface. It can be seen from each of the Figs. (4.19) 

and (4.20) that these envelopes under dry and wet conditions are approx- 

imately parallel. This implies that there is no change in internal 

friction when gypsum is saturated with water. To study the influence 

of water saturation on the internal friction, for every circle the angle 

of friction ý was measured and the coefficient of friction (p) calculated 

as: 

p= tan $ 

where 

(0 is the measured ang 

plane of failure). 

The coefficient of friction 

various confining pressures 

= 20 - 900 

le between the minor principal stress and the 

(U) for both dry and saturated specimens at 

is plotted in Fig. (4.21) as u-a 3 relations. 

It will be seen that the differences of the coefficient of friction 

between the dry and the saturated conditions are very small, indicating 

that p remains constant and does not change with the water saturation. 

The small differences observed can be attributed to experimental errors. 

It can therefore be concluded that the reduction in compressive 

strength with water, is due to something other than change of internal 

friction. It follows that the explanation given earlier that the pres- 

ence of water reduces the tensile strength (or uniaxial compressive 

strength) by reducing the surface free energy of the rock still holds. 

Similar explanations of the strength reduction due to water have been 
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given by investigators; Price 
(23) 

, Cloback and Wiid(55), Boozer et 

al. 
(54) 

, Broch(62) and others. 

Tests on different specimen sizes under the dry and saturated 

environments have indicated a total reduction of the compressive strength 

of the saturated specimens of between 10% to 33%, with 25% as an average 

value. 

The relationship between the major principal stress (a 
1) and the 

total confining pressure (a3) under both conditions are shown in Figs. 

(4.22) and (4.23) for the small and larger specimen sizes respectively. 

The plots show a non-linear increase in the rock strength as the confining 

pressure increases in the two different environments. The curves obtained 

were close to being completely parallel. This is in agreement with the 

results obtained by Price 
(23), 

Cloback and Wiid(55), Broch(62) and 

others. It can be seen that the major principal stress at failure (a 

of the wet specimen at any constant confining pressure (a3) is less than 

that of the dry specimens, due to the effect of water on the surface 

free energy of the specimen as explained above in this section. The value 

of the angle of fracture calculated from the various envelopes (0M), the 

actual angle determined by experimental measurements of the angle between 

the plane of failure and the minor principal stress (0) and the angle of 

fracture calculated frith Griffith's equation (0G) as: 

cs -Q 
cos 28 =-1(1 

3) 

1 2 cto3 

where al a3 are the major and minor principal stresses. which 

are given in tables (4.10,4.12) and (4.11,4.13) for the dry and 

saturated specimens respectively. In all cases the measured angle of 

fracture (0) is in close agreement with the angle predicted from the 

Mohr's envelope (6M), the small differences between them more presumably 
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due to sample variations and/or the difficulty of determining with 

accuracy the average inclination of small rough surfaces. On the other 

hand in most cases and under dry and wet environments there are larger 

differences between the measured angle of fracture (0) and the angle 

calculated from Grifith's equation (@G); this is possibly due to the 

fact that the Griffith's theory predicts only the orientation of the most 

dangerous crack which propagates and initiates fracture, Murrell(116)9 

and that the Griffith's Crack under shear may not propagate in the dir- 

ection of its major axis and that the observed fracture surface thus 

develops by linking of a number of propagating cracks(15) 

The relationships between the maximum normal stress m= 
a12 3 

and the maximum shear stress 
m= 

of 

23 under both conditions are 

shown in figs. (4.24) and (4.25) for the specimens76.2 x 25.4 mm and 

95.25 x 31.75 mm (LxD) respectively. The curves of both dry and satur- 

ated conditions are slightly concave downwards but nearly linear, the 

slope of each curve decreases with increasing the maximum normal stress 

(am). Elizzi(15) found the same behaviour on a similar type of rock in 

dry conditions. The relationship between the mean pressure Pm 
Q1+Q2+o3 

(Pm 
3) and the maximum shear stress Tm for the two environments 

are shown in Figs. (4.26) and (4.27) for the smaller and larger specimens 

respectively. It can be seen that this curve (sometimes called the 

strength/pressure curves 
(22) 

) are linear for both environments, with a 

small range of scatter. The parallel nature of these lines in dry and 

saturated conditions is very marked in the smaller specimens and only 

slightly less so in the case of larger specimens. The slope of the 

lines is 0.8 in 3 cases except the saturated specimen of the larger 

specimens which is 0.7. It is clear that this slope can never exceed 

1.5 which is the slope of the curve at the uniaxial compression. Handin 
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and Hager 
(22) 

tested a dolomite and anhydrite and they found that the 

strength curves are nearly straight lines. Elizzi(115) reported that 

the strength relationships he obtained for anhydrite and gypsum are 

slightly concave downward but nearly linear. 

Figs. (4.28) and (4.29) show the total strain before fracture 

(maximum strain) versus confining pressure and mean pressure (Pm) 

respectively. Each figure shows the relationship in dry as well as 

saturated conditions. The relationship is non-linear in all cases and 

the curves are concave dowaward. These curves are sometimes known as 

ductility curves. It can be seen that the maximum strain (ductility) 

increases with the confining pressure and with the mean pressure. The 

ductility under the saturated condition is greater than that of the dry 

at any particular confining pressure or mean pressure, indicating that 

the saturated gypsum starts to deform plastically at lower stresses than 

the dry one. 

4.4.2 Axial, Lateral and Volumetric Strains. 

The stress-axial strain relationship at various confining pressures, 

under dry and saturated conditions are constructed in Figs. (4.30) and 

(4.31) respectively. Each curve represents the average value obtained 

from several specimens tested at the given confining pressure. Figs. 

(4.32) and (4.33) show the stress-axial strain curves of four specimens 

tested at 10 N/mm2 confining pressure for dry and saturated gypsum 

respectively. The nearest curve to the average value considered as an 

average curve at that pressure level as shown on the graph. The 

small differences between the results of the same pressure which give a 

scatter in the results, presumably due to sample variations and experi- 

mental errors. 
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It can be seen from the stress-axial strain curves in both 

conditions that the relationship indicates a linear portion during the 

early stages of deformation and at low stress level which means that the 

specimen deformed elastically at this stage, then as the stress increases 

the relation becomes non-linear and the strain starts to increase rapidly 

until the curve becomes parallel to the strain axis especially at high 

confining pressure, see Figs. (4.30) and (4.31), which reflect the 

plastic behaviour of the gypsum at this stage. 

The strain of the saturated gypsum at any constant axial stress and 

confining pressure is more than that of the dry gypsum, and the plastic 

zone of the saturated samples starts at a lower stress level than that 

for dry gypsum. In both environments, at any particular axial stress 

the strain decreases as the confining pressure increases, the stress- 

strain curve slope increases as the confining pressure increases. 

Boozer et al. 
(54) 

found that the water saturation decreases the yield 

stress of the limestone tested under triaxial loading system at various 

confining pressures, and he stated that the effect of water on the deform- 

ation behaviour of the limestone can only be discussed in terms of a 

mechanism first suggested by Rebinder(51). It is assumed that these 

effects are the direct results of a decrease in the free surface energy 

caused by the strong absorption of water. 

Lateral strain of the specimens under triaxial loading was measured 

as an average value of the lateral strain of the middle third of the 

specimen, (Peng 
(31)). 

The stress-lateral strain relationship at various 

confining pressures for dry and saturated conditions are shown in Figs. 

(4.34) and (4.35) respectively. The linear stage of the axial strain/ 

stress relationship is accompanied by a very little lateral strain after 

which the strain increased rapidly with the stress in a non-linear manner. 
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The shape of the stress-lateral strain curves at various confining 

pressure and under the two environments compared with the shape of the 

stress-axial strain curves at the same conditions are found to be 

similar to the curves obtained by Dhir and Sangha(33,34) using the speci- 

mens of sandstone and concrete. It can be seen from the figs. (4.34) and 

(4.35). that at any given axial stress and confining pressure the lateral 

strain of wet specimens is much more than that in the dry condition, 

occasionally reaching double that of the dry specimens. Under the two 

conditions the lateral strain decreases with the confining pressure at 

constant axial stress, and it can be noted that the effect of the confine- 

ment on the lateral strain is greater than on the axial strains. In 

order to show this effect clearly; Poisson's ratio versus axial stress 

(expressed as percentage of strength) level for various confining 

pressures are plotted in Figs. (4.36) and (4.37) for dry and saturated 

conditions respectively. Results are given in table (4.15). It can be 

seen from the graphs and tabulated results that the Poisson's ratio 

decreases as the confining pressure increases at any particular axial 

stress level, indicating that the resistance to the lateral deformation 

with increasing confinement is greater than the corresponding resistance 

to the axial deformation. These results are in agreement with the 

results obtained by other investigators(33,34). These results show that 

the water saturation increases the Poisson's ratio if the specimens are 

tested under the same stress level and confining pressure. 

Volumetric strains cV, were calculated from the axial strain CA 

and lateral strain eL as: eV = eA - 2CL at various confining pressures. 

Axial stress-volumetric strain relationships for various confining pressures 

are shown in Fig. (4.38) and (4.39) for dry and saturated conditions 

respectively. It can be seen that at all pressure levels the three 
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stages of the relationship explained under the uniaxial loading can be 

observed, these are; (a) the stage of the closure of pre-existing 

cracks the so-called "compaction region" (Bordia(122)), which gives 

a small non-linear region, (b) the linear relationship which represents 

the elastic deformation, and (c) the fracture initiation which is mani- 

fested by a deviation from the linearity of the curve and then changes 

the direction of the curve indicating the onset of the unstable fracture 

propagation at axial stress a 
unst. 

This indicates the commencement 
. 

of specimen volume increase relative to its volume immediately before 

the attainment aunst. ' 
increase of specimen volume continues up to 

failure. 

It is clear from the illustrated figures that at a constant axial 

stress the volumetric strain increases as the confining pressure increases 

which indicates that the rate of increase of the axial strain (shortening) 

is more than the rate of increasing of the lateral strain (expansion). 

Volume of the specimen decreases with the confining pressure and can be 

explained as the confining pressure having the effect of resisting the 

lateral deformation more than the axial deformation. 

Dilation takes place when the lateral expansion of the specimen 

becomes more than the shortening, i. e. 12ELl > 16AI or the Poisson's 

ratio equals 0.5 or more. 

It can be seen from Figs. (4.38) and (4.39) that the axial stress 

(as a percentage of the maximum stress) required to develop the onset 

of the unstable fracture o 
unst. 

increases as the confining pressure 

increases, in both dry and saturated conditions, i. e. as the confining 

pressure increased from 0 to 30 N/mm2 in dry conditions a 
unst . 

increased 

approximately from 75 to 91 percent maximum stress, and from 73 to 80 

percent maximum stress in the case of saturated specimens, see Table 
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(4.16). Dhir and Sangha 
(33,34) 

reported that as the confining pressure 

was increased from zero to 139.7 N/mm 
2 

dilation stress of the sandstone 

increased from approximately 80 to 95% maximum stress. 

Water saturation decreases the volumetric strain of a specimen 

when compared with a dry one at the same axial stress and confinement 

(decrease of the specimen volume in the case of saturation is less than 

that in a dry condition). The onset of unstable fracture stress 

(expressed as a percentage of strength) at any confining pressure is 

decreased with water saturation, see Table (4.16). 

Wiid(56) tested a dolomite specimen under axial loading; he found 

that the stress required to develop the onset of the unstable fracture of 

the dry specimen is 89% and the saturated specimens is 86% of the maximum 

stress. Wiid reported that the reduction of the stress due to saturation 

is due to the lowering surface free energy of the rock and hence the 

intrinsic strength of the rock. 
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Table (4.15) Effect of confinement on the Poisson's 
Ratio. 

Condition 

3, 
Dry Saturated 

N1 m2 

x 100 

0 10 20 30 0 10 20 30 

20 0.25 0.15 0.10 0.08 0.35 0.29 0.24 0.17 

40 0.3 0.2 0.15 0.11 0.42 0.35 0.31 0.29 

60 0.31 0.22 0.20 0.18 0.45 0.4 0.38 0.36 

80 0.36 0.24 0.23 0.22 0.47 0.43 0.41 0.40 

90 0.42 0.33 0.31 0.29 0.48 0.45 0.43 0.42 

Table (4.16) Effect of confining pressure and 

saturation on a 
unst. 

a3' 

N/mm2 

Gunst. ' expressed as a percentage of 

Maximum Stress, % 

Dry Saturated 

0 75 73 

10 81 76 

20 85 78 

30 91 80 

a- Stress required to develop the onset of the 
unst. unstable fracture. 
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ca) Dry 

FIG (4-7) FRACTURED SPECIMEN OF VARIOUS 
SIZES IN BENDING TESTS 
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(B) Saturated 



(A) Dry 

(B) Saturated 

FIG. (L-8) FRACTURED SPECIMENS OF VARIOUS 
SIZES IN UNIAXIAL TENSILE TESTS 
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(A) Dry 

FIG (L. -13) FRACTURED SPECIMENS OF VARIOUS SIZES 

IN UNIAXIAL COMPRESSION TESTS 
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Number above the specimens represents confining pressure, N/mm2 

c, 3 (4-17) TESTED SPECIMENS AT VARIOUS CONFINING 

PRESSURES � SIZE -762x254mm( Lx D) 
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Number above the specimen represents confining pressure, N/mm2 

FIG (4-18) TESTED SPECIMENS AT VARIOUS CONFINING 

PRESSURES. SIZE - 95 25x 31 75 mm (Lx D 
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Chapter 5. 

LONG TERM TESTS. 

In these tests the time-dependent effects or the creep behaviour in 

bending, uniaxial and triaxial compression were studied. Tests were 

carried out under dry and water saturated conditions. The equipment and 

apparatus used in the present study satisfied the following essential 

requirements: 

(1) The equipment must be of sufficient capacity and be capable of 

maintaining constant load o:. the specimen over the whole period of the 

test. 

(2) The strain measuring instruments should be stable and unaffected by 

the surrounding environment changes of humidity and temperature. 

The first point was achieved by using dead-weight and weight through 

levers in both uniaxial and bending creep apparatus, while in triaxial 

creep apparatus a compressed nitrogen/hydraulic system was used with 

automatic control valves for both axial and confining pressure, in add- 

ition an automatic blow-off valve (relief valve) was used to maintain the 

exact required confining pressure in the event of rapid displacement. 

The second point was achieved by using stable methods of compensation 

and measuring devices of proven stability. 

In this chapter the experimental techniques, apparatus, equipment, 

and the test procedure used in creep tests will be described briefly. 

5.1 Experimental Techniques. 

5.1.1 Specimen Sizes and Preparation. 

The various sizes of the specimens used in the bending creep tests 

and the sizes used in uniaxial and triaxial compression creep tests will 

be discussed in this section. The preparation of these specimens will 

be given here as well. 

153 



4ý- 

5.1.1.1 Bending Creep Specimens. 

In bending creep tests, it is found that there is no standard or 

recommended dimensions for the laboratory testing rock beams, as was the 

case in the short term tests (described in Section 3.1.1.1). 

Pomeroy 
(72) 

used beams of Barnsley Hards of a 85 mm long x 16.2 mm 

wide x 2.4 mm thick. Misra(79) used beams of a size 140 mm long x 32 mm 

wide x 6.4 mm thick of several rocks. Price 
(80) 

tested sandstone beams 

of a size 102 mm long by 12.7 mm wide by 2.5 mm thick and Williams and 

Elizzi(15,100) tested gypsum beams of sizes 240 mm long x 40 mm wide x 12 

mm thick and 240 x 40 x 20 mm and anhydrite beams of size 240 x 40 x 20 mm. 

In this study four beam sizes were chosen with the same dimensions 

used in short term tests, and subjected to a stress of 4 N/mm2 in dry 

conditions to find the proper size for the creep tests (this will be 

discussed later). These sizes were: 

240 mm long x 40 mm wide x 15 mm thick 

240 mm long x 40 mm wide x 20 mm thick 

240 mm long x 40 mm wide x 25 mm thick 

240 mm long by 40 mm wide x 28 mm thick 

Then the tests were carried out to study the creep behaviour in bending 

under dry and saturated conditions on beams of size 240 mm long x 40 mm 

wide x 20 nun thick. 

The beams were prepared in the same method as described in Section 

(3.1.1.1). The centre zone of the lower surface of the beam then manually 

ground by rubbing it with fine emergy cloth and cleaned by acetone to make 

sure that it was free from any grease or dust. Two electrical strain 

gauges were bonded to this zone 30 mm apart. Finally leads were soldered 

to active and dummy gauges and connected to the Peekel strain gauge 

indicator by means of a full bridge circuit. 
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5.1.1.2 Uniaxial and Triaxial Compression Creep Specimens. 

The specimen sizes used in compression creep tests in both dry and 

saturated conditions was 76.2 mm long by 25.4 mm diameter (length to 

diameter ratio, L/D = 3) one of the sizes used to find the instantaneous 

rock strength in both uniaxial and triaxial compression tests in the two 

environmental conditions. Misra(79) carried out uniaxial compression 

creep tests on specimens of 76.2 mm long by 25.4 mm diameter of several 

rocks in dry and saturated conditions. Williams and Elizzi(15,100) 

used the same specimen size for creep testing of dry gypsum and anhydrite 

subjected to uniaxial and triaxial stresses. 

The drilling, sawing, polishing and measuring of the specimen sizes 

were performed as described in section (3.1.1.2). The specimens were then 

manually ground by rubbing with fine emery cloth and cleaned with acetone 

to make sure that they were free from grease or dust. Three axial 

electrical strain gauges were bonded within the middle third of the specimen, 

these strain gauges bonded at 1200 apart. Ten lateral electrical strain 

gauges of smaller gauge length were bonded transversely along the specimen 

length. These were arranged in five pairs, the strain gauges of each 

pair were bonded at 1800 apart. The five pairs of gauges were at equal 

intervals along the specimen length (12.7 mm spaced). Finally the leads 

were soldered to the gauges and connected to the strain measuring instru- 

ments, Extension box type 23U and Peekel strain gauge indicator. In the 

case of the specimens tested using Williams and Elizzi triaxial apparatus, 

two strain gauges were bonded at the middle of the specimen at 1800 from 

each other around the circumference of the specimen. These gauges were 

for the determination of the lateral strain in the specimen. Only two 

gauges were used because of the limited space inside the pressure cell 

to accommodate the wires of the strain gauges and the transducers. In 
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this apparatus the axial strains were measured by using three transducers 

spaced at 1200 around the specimen and within the middle third. (This 

will be discussed in detail later in this chapter). 

5.1.2 Drying, Saturation and Saturation Controlling Procedures. 

As mentioned before water was used as coolant in drilling and grinding 

of the specimens. In the case of tests in the dry condition, the, speci- 

mens were ovendried at 70 0C for 24 hrs to retain in the gypsum the 

chemically held water (as discussed in Sec. 3.1.3), then the specimens were 

left for at least 2 days at the laboratory temperature before the tests. 

In the case of tests under saturated conditions, the specimens were oven- 

dried at 70° C for 24 hrs, then saturated using the same method described 

in Sec. (3.1.2). The saturation was kept under close control during the 

whole test period by coating the specimens as discussed in Sec. (3.1.4). 

The effectiveness of the coating was examined up to 33 days, and it was 

found that no measurable loss of water occurred (see Sec. 3.1.4). None of 

the creep tests under saturated conditions was extended more than 33 days 

to ensure that the specimen was still in a fully saturated condition. 

5.2 Apparatus, Equipment and test procedures. 

In this section, a description of the important features of the 

testing equipment is given. Apparatus and equipment used for bending, 

uniaxial and triaxial creep tests are given with a brief discussion of 

testing procedure including the strain measurements in each case. 

5.2.1 Bending Creep Tests. 

5.2.1.1 Apparatus. 

To apply true bending to the rock specimen, the four point loading 

apparatus described in section (3.2.1.1) was used. Dead-weights were 

used to keep the applied stress constant over the whole test period. Two 

systems were used to apply the load using dead-weights: 
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(1) When the applied stress is low, needing only a few kilogram weights, 

the weights were placed directly on the pan provided as shown in Fig. (5.1). 

(2) When the applied stress is greater than in case (1), the dead weights 

were applied through a lever. The system gives a mechanical magnification 

advantage of 10 : 1, i. e. one kilogram on the weight pan produces 10 kilo- 

grams on the specimen. Fig. (5.2) shows tests in progress under this 

system. 

This system of loading consists of a 600 mm steel lever hinged at one end 

to a steel frame fixed to the wall, and hinged with a vertical adjustable 

steel rod through which the load applied to the specimen. This hinge was 

located at 540 mm from the end remote from the wall frame where the weight 

pan is hung A weight was used at the end of the lever remote from the 

pan to balance the weight of the pan, weight of the lever itself and the 

weight of the adjustable vertical rod. Friction effects of the hinge 

were investigated and found to be too small to consider. The advantages 

of the lever system are; (1) it reduces the weight required on the pan 

by 10 times, (2) it reduces the loading time, and (3) it enables the load 

to be applied without shocks being imputed to the sample. 

5.2.1.2 Test Procedure and Strain Measurements. 

Specimens prepared by the method described in Sec. (5.1.1.1) were 

marked accurately at one side by two marks 10 mm apart and at the other 

side 20 mm apart in the middle zone of the beam symmetrically about the 

centre. The beam was placed between the four knife edges, two of them 

under it 20 mm apart held by the lower horizontal steel bar, and the other 

two knife edges above it 10 mm apart held by the upper steel bar. The 

pre-determined load was applied either using the dead-weights directly on 

the pan or the lever loading system depending on the magnitude of the 

load. The load was applied to the beam by the vertical adjustable rod 
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through a steel ball in a hemispherical recess at the centre of the upper 

part to the upper steel bar. 

The strain at the lower outer face of the specimen beam was measured 

by bonding two strain gauges at the centre of this face, these being 

connected with two dummy strain gauges of the same type mounted on an 

unloaded piece of similar rock by means of a full bridge circuit (as 

described in Sec. 3.1.5). Each strain gauge has a gauge length of 10 mm, 

120 ohm 
± 0.1 resistance and a gauge factor of 2.07. The Peekel strain 

gauge indicator type T-200 was used to measure the strain for the whole 

period of the test. This indicator has excellent long term stability 

which satisfies one of the requirements for the long term measuring 

instruments. 

5.2.2 Uniaxial Compression Creep Tests. 

5.2.2.1 Apparatus. 

Two machines were used for this purpose, one of them based on the 

dead-weight loading by levers and in the other the load applied by means 

of nitrogen gas-hydraulic system with loading frame. 

5.2.2.1.1 Deadlweights and levers machine. 

This machine is similar to the one used by Misra(79) in 1962 and 

Elizzi(15) in 1976. Figs. (5.3) and (5.4) show a view and a schematic 

diagram of the machine respectively. It consists of two levers, lever 

No. 1 provided with three steel knife edge pivots P1, 

No. 2 provided with another three knife pivots P5, P5 

1 fulcrum at the knife edge P2 and lever No. 2 at the 

The two knife edges P3 on lever No. 1 and P5 on lever 

together by means of two tie rods and a turn-buckle. 

P2, and P3 and lever 

and P6. Lever No. 

knife edge P6. 

No. 2 are connected 

The purpose of this 

is to adjust the distance between the two knife edges P3 and P5 according 

to the load required. Lever No. 2 carried a weight pan at the knife 

edge P4. 
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A reversing jig attached to the knife edge P1 and connected at the 

bottom to a spring and hydraulic jack underneath the platform of the 

angle iron framework. The lever system by reversing the load direction 

twice gave a mechanical advantage of ratio approximately 118: 1 in a 

relatively small space. By loading the weight pan by means of dead 

weights a tensile pull is created at the vertical axis of the knife edge 

P4. This pull is converted into a compressive load at the axis of the 

rock specimen by means of the attached reversing jig. Fig. (5.5) shows 

the reversing jig with a specimen in position. The loading platens in 

the reversing jig were designed to carry a spherical seating for maint- 

aining a uniaxial load on the specimen during the test period. The 

purpose of the spring and jack assembly incorporated beneath the framework 

platform is to take up the elastic deformation of the framework and other 

tension members and also to initially apply the load smoothly and grad- 

ually at any required rate to the specimen. A spirit level on lever No. 

2 indicating a horizontal lever when the bubble in its centre, which 

means the applied load and the weight on the pan are balanced. Dead 

weights at the end of the lever No. 1 and projecting arm of lever No. 2 

act as balancing weights. A thrust ball bearing and clamping nut is 

provided on the connecting rod of the hydraulic jack underneath the 

platform as a means of locking the system for taking up the distortion 

of the framework. To prevent the effect of any shocks in the floor due 

to external mechanical disturbance, sponge seatings underneath the frame- 

work were placed to absorb any probable shocks. 

5.2.2.1.2 Calibration of the Machine. 

To find the actual ratio between the weights on the pan and the 

load applied on the specimen, it is necessary to calibrate the machine. 

A 20,000 lb (89 kN) Droving ring was first calibrated using a clockhouse 
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compression machine and a curve was plotted of load applied on a 

proving ring versus its deformation (dial gauge reading), Fig. (5.6a). 

Afterwards the proving ring was placed in the creep machine and the 

deformation recorded with the weights on the pan, another curve was 

plotted of load on pan versus dial gauge reading, Fig. (5.6b). These 

two curves give separate linear relationships on the graph, with a 

common term which is proving ring deformation (dial gauge reading). 

This gives a basis of comparison betwen the load on the pan and the 

compressive load applied to the specimen. A third curve was constructed 

to show the linear relationship between the applied load on specimen (kN) 

and the weight on the pan (Kg), Fig. (5.6c). This curve is the machine 

calibration and it was found that the mechanical advantages ratio of the 

machine is 117.2: 1, i. e. one kilogram on the weight pan produces 117.2 

Kg on the specimen. The calibration procedure was repeated four times 

in order to minimize any experimental errors. 

5.2.2.1.3 Test Procedure. 

The specimen was placed between the loading platens of the creep 

machine in its exact central position. The initial reading of the strain 

at this zero loading was recorded from the Peekel-T-200 indicator. The 

weights corresponding to a pre-determined applied stress were calculated 

from the calibration curve of the machine and put on the weight pan. 

The hydraulic jack was then operated until the lever No. 2 became hori- 

zontal. This is indicated by the spirit level mentioned above. The 

clamping nut provided underneath the platform on the connecting rod of 

the load reversing jig is turned until it became firmly seated against 

the framework platform. At this moment, a second reading of the strain 

was recorded from the strain gauge indicator. The difference between 

the first and second reading gives the "instantaneous" strain in the 
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specimen at that stress. Subsequent strain readings taken at known 

times after this provide the necessary information on the time-dependent 

behaviour of the specimen. 

5.2.2.1.4 Gas/Hydraulic System Machine. 

The long-term loading machine consists of a gas-hydraulic loading 

system and a loading frame. These units were installed in an approxi- 

mately constant temperature room (21 ± 20 C). This machine was used for 

the uniaxial and triaxial compression creep. The view of the complete 

machine will be described hare, except for the Hoek triaxial cell which 

was used for the triaxial tests which will be described later in this 

chapter. 

(a) Pressure Source and Control System. 

The general layout of the gas-hydraulic loading system of the 

machine is shown in Fig. (5.7). High pressure nitrogen is fed from the 

cylinder into the pressure control system. The nominal pressure of the nitro- 

gen in a full bottle is 13.8 N/mm2(2000 psi). The existing pressure can be 

checked at any time by the pressure gauge (Cl). High pressure 12.7 mm (0.5 

inch)outside diameter steel pipes are used for connecting the pressure 

units. The system then divides into two subsystems. The first which 

is used for the lateral confining pressure comprises a shut-off valve 

(b3) for controlling the gas flow through the pipes, a fine filter (dl) 

to ensure foreign matter does not affect the operation, automatic press- 

ure control valve (el) for applying pressure and maintaining it constant 

on the output side also used for releasing the pressure, pressure gauge 

(C2) for reading the pressure at this location, intensifier (f) gives 

4.7: 1 ratio in pressure increase which is observed by the pressure 

gauge (g). The pressure applied to the specimen read directly by the 

gauge (g). 
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The second subsystem used for the axial loading consists of shut- 

off valve (b5), fine filter (d2), automatic pressure control valve (e2) 

for applying and releasing axial pressure, and the oil storage (h) 

connecting to the hydraulic jack (i) by high pressure rubber tube. 

Fig. (5.8) shows the view of the machine. 

(b) Loading Frame. 

The loading frame consists of an adjustable rig, hydraulic jack 

and proving ring. Figs. (5.9) and (5.10) shcw the frame with specimen 

in position. 

The rig consists of a base plate 100 mm thick by 380 mm diameter 

and upper adjustable plate 4 cm thick by 38 cm diameter. These two 

plates are connected by three rod stands of 38 mm 0 with nuts. The 

clear vertical distance between the two plates can be adjusted by 

moving the upper plate up and down by means of nuts. A hydraulic 

jack of 100 mm in diameter by 150 mm high with 50 mm ¢ ram located at the 

centre of the base plate and connected by a high pressure rubber pipe to 

the loading control system. An 89 kN (20000 lb) calibrated proving 

ring with 0.002 mm per division dial gauge was connected to the centre 

of the upper plate. The function of the proving ring is to measure the 

axial load applied on the specimen. 

5.2.2.1.5 Test Procedure. 

A specimen prepared by the method described in section (5.1.1.2) 

was placed between the two platens on the hydraulic jack ram and in full 

contact with the specimen lower end surface. The upper platen with a 

hempspherical seat was placed in full contact with the specimen upper 

end surface. The spherical seat mounted on the proving ring from the 

other end of the set up. See Fig. (9.10). Active and dummy strain 

gauges were connected to the strain measuring extension box by means of 
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either half or full bridge circuits, the extension box being connected 

to the Peekel strain gauge indicator, Type T-200, to measure the strain 

variation over the whole of the test period. The initial readings of 

the strain were recorded at zero load. To apply the required stress to 

the specimen, a corresponding proving ring reading was calculated from the 

calibration curve of the ring. The shut-off valve (b5) was completely 

opened and the pressure applied very carefully using the automatic control 

valve (e2) (Fig. (5.7) and (5.8))up to required load. This indicated by 

the deformation of the proving ring (dial gauge reading). At this 

moment a second reading of the strains was recorded, the difference between 

the initial and the second readings gave the"instantaneous"strain in the 

specimen at the given stress. After that many readings were recorded 

over the whole of the test period according to a pre-arranged time-table 

for this purpose. 

5.2.2.1.6 Strain Measurements. 

The measurements of the strain in uniaxial compression creep for the 

two testing methods which are described in the previous sections are 

similar. Three electrical resistance strain gauges were bonded in the 

central zone of the specimen within the middle third at 1200 apart to 

measure the axial strain. Each one of these gauges had 10 mm long, 120 

ohm 
± 0.1 resistance and gauge factor of 2.07. Ten strain gauges were 

bonded transversely in five pairs along the specimen length at equal inter- 

vals. Each two gauges of the pair were at 1800 to each other. These 

strain gauges were used to measure the tangential strain at different 

points along the specimen surface. Each gauge was 5 mm long, of 120 1 

0.1 ohm resistance and gauge factor of 1.98. Dummy strain gauges of the 

same type as the active were bonded on unloaded piece of rock similar to 

the specimen, these gauges were used for temperature compensation. All 
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active and dummy gauges were connected between themselves by means of 

either half or full bridge circuits as described in Section (3.1.5) and 

shown in Fig. (3.9). Then they were connected to the extension box 

type - 23U which is in turn connected to the Peekel strain gauge 

indicator type T-200. This indicator having a high stability in the 

long term test measured the axial and lateral strains for the test period. 

5.2.3 Triaxial Creep Tests. 

Since in practical circumstances the bulk of the rock material in the 

neighbourhood of an excavation or beneath a foundation iE in fact tri- 

axially loaded over long time periods, the creep characteristics under 

combined loading are more meaningful for design than uniaxial creep or 

simple bending in such cases, and the results of the triaxial creep 

testing are of high importance. 

It is one of the major aims of this research to study the creep 

behaviour of the gypsum subjected to triaxial stresses, and under two 

environmental conditions, dry and water saturated. In this section the 

instruments used in the research for determining the creep under triaxial 

stresses, test procedure, and the strain measurements will be described 

briefly. 

5.2.3.1 Apparatus. 

Two sets of apparatus were used in this research to study the creep 

behaviour of the dry and saturated gypsum under triaxial stresses. The 

first was developed by Williams and Elizzi(101) and the second using 

the cell developed by Hoek and Franklin(123) in combination with either 

the loading system using the dead weight and levers or the gas-hydraulic 

system with the loading frame. 

5.2.3.1.1 Williams and Elizzi's Apparatus. 

This apparatus developed by Williams and Elizzi(1.5,101) in 1976 in 
(15,100) 

the Department of Civil and Structural Engineering in Sheffield, and used 
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to study the creep behaviour of air dried gypsum and anhydrite rocks. 

This apparatus has the following specifications: 

(1) Accommodating rock specimens of 3 inch (76.2 mm) long by 1 inch 

(25.4 mm) diameter and measuring the axial load within the pressure cell. 

(2) Providing confining pressure up to 50 N/mm 
2 

and axial pressure up to 

135 N/mm2 which can be increased to 400 N/mm2 by adding an extra axial 

intensifier. 

(3) It has satisfied all the long-term test apparatus requirements; 

maintaining the applied pressure constant over the whole test period, the 

sensitivity of the strain measuring instruments and the independence of the 

apparatus from difficulties due to switching off in electrical system or 

power cuts etc. 

(4) Provides means of measuring displacements by instrumentation within 

the cell. 

The apparatus consists of three main parts, (a) pressure source and control 

system, (b) pressure cell and (c) load and displacement measurement system. 

(a) Pressure Source and Control System. 

Figs. (5.11) and (5.12) show the schematic diagram and general view 

c 
i 

of the pressure control system respectively. The commercially available 

nitrogen gas cylinder is used as a suitable power source, it is connected 

to the control system via a high pressure hose. The existing pressure in 

the cylinder can be checked at any time by the pressure gauge (bl). The 

gas passes through the shut-off valves (al) and (a2) which are used for 

the relief of excess pressure when required, then through a fine filter 

(rl) for the removal of the scale or other foreign matter. The system 

then divides into two subsystems. The first is the axial loading system 

which includes; the automatic control valve (cl) which maintains gas 
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pressure constant on the output side provided that the input pressure is 

in excess of the required output. Any excess pressure can be relieved 

using shut-off valve (a3), and observing the adjustment of the pressure 

reading on the monitoring gauge (dl). The gas then passes through the 

two filters (r2) and (r3) to the intensifier and triaxial cell. The 

second subsystem is the confining pressure system which consists of a 

largely similar arrangement; automatic control valve (c2), shut-off 

valve (a4), monitoring gauge (d2) and two filters (r4) and (r5), with the 

addition of an automatic relief valve (f) which is a variable pressure 

setting device adjusted to operate at a pressure slightly above the 

required gas pressure and serves to prevent the development of excess 

confining pressure in the event of the loading ram entering the pressure 

cell rapidly at a possible rapid deformation or failure of the rock speci- 

men. Two intensifiers are provided in the axial loading system to 

produce higher pressure than that supplied from the gas cylinder. The 

first one (e2) gives a magnification ratio of 2.25: 1 and the second which 

is within the cell head gives a magnification ratio of 4: 1, so with both of 

them in use they give a ratio of 9: 1. Fig. (5.13) shows these intensifiers 

in full detail. The accurate total magnification was found by calibrating 

the apparatus (this will be discussed in this chapter later). 

In case of confining pressure, another intensifier (el) is provided 

to increase the pressure to the required high pressure for the tests. 

The magnification ratio of this intensifier is 4.7: 1. Dimensions and 

details of this are given in Fig. (5.13). A pressure gauge (b2) reads 

the confining pressure and valve (K) is used for filling and emptying the 

pressure cell with oil. The pressure gauge, (d2) on the gas side of the 

intensifier and (b2) on the oil side of it also serve as a check on the 

behaviour of the intensifier (el). 
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(b) The Pressure Cell. 

The overall dimensions of the cell are 341 mm height by 100 mm 

diameter, Fig. (5.13), it is suitable to accommodate a rock specimen of 

76.2 nun (3 inch) long by 25.4 mm (1 inch) diameter. The cell consists 

of three main parts; cell body, cell base and the cell head. 

The cell base is provided with twenty three insulated sockets and 

leads which are carried through the base via an epoxy resin sealed hole. 

The function of these to facilitate the connection of strain gauges 

mounted on the internal load cell and the LVDT's around the specimen with 

the external measuring meters. (See Fig. (5.14). The cell body is a 

hollow steel cylinder of iiternal diameter 64 mm and of length 228 mm, 

this gives sufficient space for the specimen and the internal strain and 

load measuring units; transducers, load cell (specimen seat) and the 

spherical seating. 

The cell head consists of a piston and plunger system having a ratio 

of area 4 to 1, so that the stress applied to the specimen is approximately 

4 times the oil pressure applied to the piston, this means that the head 

acts as an axial intensifier. 

(c) Load and Displacement Measurement Systems. 

The triaxial cell is provided with an internal load cell which forms 

a base upon which the rock specimen stands, Fig. (5.14). This load cell 

is used for the internal measurement of the axial load applied to the 

specimen free from the effects of the 0-ring piston seals and other friction 

factors. It is of top-hat shape in cross-section, the measuring zone 

being tubular, and fitted with 8 foil strain gauges 4 vertical and 4 hori- 

zontal connected in series pairs to form a full bridge circuit giving 

temperature compensation. 
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Axial strain measured over the middle third of the rock specimen 

inside the cell, using the provided measuring system, this system 

consists of three linear variable differential transformers (LVDTs) 

spaced at 1200 intervals. These are used to measure the displacement 

of two annular steel rings clamped to the specimen at a gauge length of 

25.4 mm and attached to the LVDT cores, see Figs. (5.14) and (5.15). 

The LVDT's are connected together via a balancing circuit mounted within 

the pressure cell. This circuit combines the individual LVDT outputs 

and balances their performance and is connected to the sockets in the 

cell base. The displacement readings are obtained by the use of a 

Sangamo Weston C52/5 transducer multimeter which is a combined 5 KHz 

oscillator and output meter containing further balancing, amplification 

and attenuation circuits (Fig. 5.12). 

The lateral strains were measured in this study by bonding two 

strain gauges transversely at the middle of the specimen and at 1800 to 

each other, see Fig. (5.15). The strain gauge leads were brought out 

of the specimen jacket through very small holes which are sealed there- 

after by the mixture of CN and P2 adhesives to ensure no leakage takes 

place at any time in the test period. The strain gauge leads were also 

connected to the sockets in the pressure cell base. A full or half 

bridge circuit was made up by using two dummy strain gauges mounted on an 

unloaded piece of rock similar to the specimen for temperature compensation. 

The strain variation was measured by using the strain gauge indicator 

Peekel type T-200. 

5.2.3.1.2 Calibration of the Apparatus. 

In order to determine the effect of the friction between the moving 

parts at the oil seals, and because most of the 0-rings were renewed, re- 

calibration of the apparatus was considered essential. 
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(a) Calibration of the Load Cell. 

The load cell (specimen seat) was calibrated by using an Avery 100 

ton Universal testing machine. The load cell was located in the 

compression zone of the machine. The strain gauge circuit was connected 

to the strain gauge indicator. The load cell was loaded by 10 KN incre- 

ments up to 100 KN and the output of the strain gauges was recorded at each 

load; the same procedure was performed under various confinement pressures 

to find the effect of this on the gauge output. Relationship between the 

strain gauge output and the applied load was plotted in Fig. (5.16). In 

order to check if there was any drift in the strain gauge output and/or 

creep in the cell material, the load cell was subjected to various constant 

loads for periods up to 35 days. It was found that the behaviour of the 

load cell was very stable. 

(b) Calibration of the Transducers. 

New wiring of the transducers was made following the manufacturer's 

instructions (Sangamo Weston Controls Ltd. ). It was considered necessary 

to recalibrate the system with the new components and wiring. 

The two annular rings were assembled at a gauge length of 25.4 mm 

with the three transducers and their corresponding cores. This assembly 

was placed between Wykeham Farrance compression testing machine platens, 

and the balancing circuit of the transducers was connected to the C52/5 trans- 

ducer multimeter. A dial gauge of 0.002 mm/division was used to measure 

the displacement between the two rings. The relationship between the 

transducer meter reading and the displacement obtained by the dial gauge 

was plotted in Fig. (5.17). Deformation in microstrain versus the meter 

reading was determined and plotted on the same graph for the given 25.4 

mm gauge length. 
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(c) Calibration of the Axial Intensifiers. 

New oil seals were used in the two axial intensifiers. The 

theoretical magnification ratio of the two intensifiers is 9: 1 between 

the end of the anvil near the specimen and the gas pressure. It was 

necessary to calibrate the apparatus to find the actual ratio between the 

axial load gauge gas pressure reading (Bar) and the applied load on the 

specimen (KN). This is necessary because of the effect of the friction 

losses in the oil seals (0-rings) of the ram entering the pressure cell and 

the oil seals of the two intensifiers, also, because of the difference in 

the cross-sectional area of the ram and the rock specimen. The apparatus 

was calibrated using the following method: 

A duralumin specimen of 76.2 mm long by 25.4 mm diameter was placed 

on the load cell of the creep apparatus and both were put in the compress- 

ion zone of the Avery testing machine. The strain gauge circuit was 

connected to the indicator and the load was applied by the compression 

machine. The applied load and the strain gauges output were determined 

and plotted in Fig. (5.18a). Then the load cell and the duralumin speci- 

men were placed in the creep apparatus. Load was applied to the specimen 

and the output of the strain gauges was measured using the same meter. 

The relationship between the applied load observed from the axial load 

gauge gas pressure Fig. (5.11 dl. ) and the strain gauges output was plotted 

in Fig. (5.18b). These two relationships were found to be linear with 

a common factor which is the load cell strain gauge output. A new 

relationship between the axial load gauge pressure reading in bars and the 

axial load applied to the specimen in KN's was plotted in Fig. (5.18c). 

The obtained linear relationship is the calibration curve; it is 

indicated that for each one lei load on the specimen, the reading on the 

axial gas pressure gauge should be 1.518 bars. 
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The required axial load gauge gas 

particular confining pressure and axial 

following method: 

The load on specimen =A. Sa 
The upward force due to the effect 

difference between the ram and specimen 

pressure reading (R) at any 

stress is calculated in the 

in N 

of confining pressure on the 

area will be equal to 

= (Ar - AS) . a3 in N 

where: 

As = specimen cross-sectional area, mm2. 

6= required axial stress in the specimen, N/mm2 

Q3 = confining oil pressure, N/mm2. 

Ar = ram cross-sectional area, mm2 (which enters the 

pressure cell). 

Then the total applied load = As .Q+ (Ar - As) ' Q3 

From the calibration curve, the axial gauge pressure reading (R) equals: 

R=1.518 (Applied Load in KN) 

= 1.518 [As 
.+ (Ar - AS) . &3] x 10-3 

_ (As . cJ + Ar . 63 - As . G) x 1.518 x 10-3 

_ [As (a -63) + Ar . 03] x 1.518 x 10-3 

By substituting the value of Ar = 789.24 mm2 

. 
'. R= [1.518 AS (a - q) + 1198.07] x 10-3 

The above equation was used for applying the axial stress (ß) under the 

confining pressure (i: r3) 

5.2.3.1.3 Test Procedure. 

The specimen prepared by the method described in section (5.1.1.2) 

was jacketed in a P. V. C. tube, the ends of which extended over two steel 
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platens where 0-rings are used to prevent the access of the hydraulic oil 

to the specimen, see Fig. (5.15). Two feeler strips 0.05 mm thick were 

used between the jacket and the specimen to prevent the penetration of 

the oil to specimen at points where annular ring screws are tightened 

on the specimen. The transducers were assembled and clamped to the 

specimen with gauge length between the annular rings 25.4 mm, the leads 

were plugged into the base sockets and the sample located on its seat 

(load cell). The pressure cell then filled with hydraulic oil by using 

a manual pump connected to the valve K, Figs. (5.11) and (5.12). The 

transducer meter is then switched on to be warmed for ten minutes in 

order to ensure stable operation. Then the initial readings (at zero 

load) were taken from the instruments indicating load and displacements. 

By operation of the gas pressure control valve (c2), Figs. (5.11) and (5.12) 

confining pressure was applied and the actual magnitude was obtained on 

the pressure gauge (b2). For applying axial stress for the given confining 

pressure, the reading on the axial pressure gauge. (dl), Figs. (5.11) and 

(5.12), was calculated using the equation stated in the previous section, 

see (5.2.3.1.2-c). The gas pressure control valve (cl) was used to apply 

the axial load until it reached the pre-calculated reading valve on the 

pressure gauge (dl), then this was adjusted using the output of the load 

cell strain gauges which is pre-determined from the calibration curve, Fig. 

(5.16). At this moment the second reading of the strains were recorded, 

the difference between the two readings gives the "instantaneous" strain. 

Then the strains were recorded according to the pre-arranged time-table to 

obtain time-dependent strain or creep behaviour of the rock specimen. 

Checks were made from time to time on the behaviour of the confining press- 

ure and axial load systems. 
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5.2.3.1.4 Triaxial Apparatus with Hoek's Cell. 

Triaxial cell developed by Hoek and Franklin 
(123) 

in 1968 for rock 

testing was used in these tests. This cell, Figs. (5.19) and (5.20), is 

capable of confining pressure up to 70 N/mm2 and can be used for short 

and long term tests. It consists of a steel cylinder and two screw end 

caps. The internal diameter of the cylinder is 27 mm with overall length 

of 100 mm. The cell is provided with two oil inlets, one for supplying 

the oil pressure and the other for air bleeding. Special one-piece 

synthetic rubber sleeves are provided with the cell, for the protection 

of the test specimen from the penetration of the surrounding hydraulic oil. 

This cell was used for some low confining pressure triaxial creep 

tests. Specimens were prepared by the method described in Section 

(5.1.1.2) with three axial and five tangential strain gauges attached 

they were jacketed with the special rubber sleeve and the strain gauge 

leads were taken from under the sleeve. Fi. g. (5.20) shows section in the 

cell with the specimen in position. The cell was then assembled and filled 

with the pressuring oil. Two apparatus were used for applying the axial 

stress. 

(a) The cell was placed in the load reverser jig of the lever operated 

uniaxial creep machine, Fig. (5.21). The axial load was applied in a 

similar method to that described in sections (5.2.2.1.3) for the uniaxial 

creep test. The confining pressure was applied and controlled by using 

the hydraulic-gas confining pressure system with the intensifier which is 

described with the uniaxial hydraulic-gas system in section (5.2.2.1.4-a). 

The automatic control valve (el), Fig. (5.7) was used to apply the 

confining pressure. This pressure was adjusted according to the pressure 

gauge (c2), Fig. (5.7). 
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(b) The cell was placed in the loading frame rig of the gas-hydraulic 

operated uniaxial creep machine, Fig. (5.22), on the hydraulic jack with 

steel platens. The axial load was applied in similar method described 

in section (5.2.2.1.5) for the uniaxial creep test. The confining 

pressure was applied and controlled using the same system described in 

point (a). 

The axial and lateral strain gauges were connected together with the 

dummy strain gauges bonded to an unloaded piece of rock similar to the 

specimen by half or full bridge circuits. A Peekel strain gauge 

indicator type T-200 in combination with the Extension box - type 23U. 

The method of the connection and measuring are described in Section (3.1.5). 
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FIG. (5-1) BENDING CREEP APPARATUS WITHOUT 
LEVER 

rA 

FIG. (5-2) BENDING CREEP APPARATUS WITH LEVER 

SYSTEM OF LOADING 
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FIG. (5-3) UNIAXIAL CREEP TEST IN PROGRESS 
(a) Balance weight 
(b) Lever No. 1 
(c) Turn buckle 
(d) Peekel strain gauge indicator 
(e) Lever No. 2 
(f) Spirit level 
(g) Load reversal jig and specimen 
(h) Spring 
(I ) Hydraulic jack 
(j) Weight pan and weights 
(k) Pump 
(1) Angle iron frame and sponge seating 
(m) Thermometer 

P1). P2), P3). P4), P5) & P6) 
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FIG. (5-4) SCHEMATIC DIAGRAM OF COMPRESSION CREEP MACHINE 
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FIG (5 -5) LOAD REVERSAL JIG WITH SPECIMEN IN POSITION 

(a) Specimen with strain gauges 
(b) Load reverse jig 
(cl Spherical seat 
(d) Steel rod to the spring and hydraulic jack 
(e) Dummy strain gauge on a piece of rock 
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, b2, -----, b6 -Shut-off valve 
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dl &d2 Filter 
el &e2 Automatic pressure control valve 
f Intensifier 
g Large scale pressure gauge 
h Oil storage 
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FIG. (5-7) SCHEMATIC DIAGRAM OF COMPRESSION CREEP LOADING 

CONTROL SYSTEM 
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FIG. (5-9) UNIAXIAL COMPRESSION CREEP TEST 

IN LOADING FRAME 

Upper plate 
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Proving ring 

Spherical seat 
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FIG. (5-21) HOEK'S CELL IN THE CREEP MACHINE 

(a) The cell 
(b) Load reverser of the creep machine 

FIV (5-22) HOEK S CELL IN THE LOADING FRAME 

AND STRAIN MEASURING METERS 
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Chapter 6. 

BENDING AND AXIAL CREEP. 

6.1 Bending creep. 

All bending creep tests were carried out at room temperature 

(21 +- 20 C). As mentioned previously the creep strain at the centre 

of the bottom face of each rock beam was determined by using two strain 

gauges. The average strain was used in drawing the conclusions of this 

investigation. 

6.1.1 Effect of the Specimen Thickness. 

In order to find the proper beam thickness to study the creep 

behaviour under bending, four beam sizes were first used. At least three 

beams from each size were tested in the dry condition and the average value 

was considered. These sizes were: 

(1) 240 mm long by 40 mm wide by 15 mm thick. 

(2) 240 mm long by 40 mm wide by 20 mm thick. 

(3) 240 mm long by 40 mm wide by 25 mm thick. 

(4) 240 mm long by 40 mm wide by 28 mm thick. 

All the specimens were subjected to the same nominal tensile stress 

which was 4 N/mm2 to determine the creep behaviour of the material at 

various thicknesses. The results obtained were plotted as a creep strain 

(in microstrain) versus time (in hours). Fig. (6.1) shows the effect of 

the beam thickness on the bending creep. Table (6.1) gives full details 

of creep strain for all the tested specimens. 

It can be seen from the figure and the table that the creep strain 

and the instantaneous strain increase with decreasing specimen thickness, 

in a way which shows a very small increase when the thickness decreases 

from 28 mm to 25 mm where no change in creep curve behaviour can be noticed. 

Whereas a great difference in creep strain takes place when the specimen 
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Table (6.1) Creep of dry gypsum in Bending2at various 
beam thicknesses, under 4 N/mm . 
Beams of 240 mm longx 40 mm wide xd thick. 

Beam thickness (d), mm 
T 
hourimes 15 20 25 28 

Instantaneous strain - Microstrain 

105 86 80 78 

Creep strain, Microstrain 

0.1 
0.3 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 

12.0 
24.0 
42.0 
72.0 
96.0 

120.0 
144.0 
168.0 
192.0 
216.0 
240.0 
264.0 
288.0 
312.0 
336.0 
360.0 
384.0 
408.0 
432.0 
456.0 
480.0 
504.0 
528.0 
552.0 
576.0 
600.0 
624.0 
648.0 
672.0 
696.0 
720.0 

2.6 2.6 1.2 1.3 
4.5 5.2 1.6 2.2 
6.1 7.3 2.2 3.1 
9.4 8.1 3.2 4.0 

11.3 ± 4% 11.1 ± 3% 4.6 + 4% 4.5 ± 5% 
13.0 13.0 5.3 5.3 
14.8 15.1 6.1 5.9 
16.1 1.6.7 6.9 6.2 
17.3 17.3 7.5 6.9 
20.8 19.8 10.1 8.2 
24.6 ± 5% 21.9 ± 3% 13.0 ± 6% 13.0 ± 4% 
29.9 23.3 15.7 15.7 
34.3 25.1 18.2 17.7 
38.9 26.1 20.3 19.2 
43.3 27.0 22.2 20.5 
48.5 28.1 23.8 21.9 
52.7 29.0 25.6 23.4 
55.8 29.7 26.8 24.8 
59.1 30.8 28.0 25.9 
62.7 5% 31.7 ± 5% 28.8 27.0 ± 4% 
65.5 32.4 29.7 28.2 
69.0 32.9 30.6 29.1 
71.9 33.4 31.2 30.1 
74.3 33.9 31.5 30.4 
77.1 34.3 32.1 30.9 
79.4 34.7 32.5 31.2 
81.4 35.1 33.1 31.6 
83.5 35.2 5% 33.6 31.9 
85.8 33.8 32.1 
87.5 34.1 ± 6% 32.1 ± 3% 
89.5 
90.9 
92.5 
94.5 
96.0 
97.5 
98.4 
99.3 

100.2 
101.0 ± 6% 
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thickness decreases from 20 to 15 mm. The creep strain of the 15 mmthick 

specimens increases rapidly and gave a strain 3 times that of the 

20 mm thick specimens. The creep strain and the behaviour of the three 

thicknesses 20,25 and 28 mm was in reasonable agreement with each other 

relative to the specimens of 15 mm thickness. 

It was found that the bending creep of the four beam sizes followed 

a logarithmic relationship under 4 N/mm 
2 

stress; 

C=A+B log t 

where c is the creep strain, t is the time of loading in hours and A and 

B are constants dependent on the tested material and stress conditions. 

This behaviour indicates t. iat the creep diminishes with time. The creep 

strain was plotted versus the time on a semi-log paper, straight lines 

were obtained, Fig. (6.2), for all specimen sizes. The constant A in the 

above equation is the creep strain at time t=1 hour and B is the slope 

of the straight line on the semi-log graph. 

The following equations were found for the creep of the various beam 

sizes subjected to 4 N/mm2 stress; 

(a) For a specimen of a size 240 mm long by 40 mm wide by 28 mm 

thick and 240 mm long by 40 mm wide by 25 mm thick 

e=5.2 + 5.3 log t ..... (6.1) 

(b) For a specimen of size 240 mm long by 40 mm wide by 20 mm thick 

e= 10.5 + 8.3 log t ..... (6.2) 

(c) For a specimen of size 240 mm long by 40 mm wide by 15 mm thick. 

e- 10.5 + 10.5 log t ... t< 92 hours ... (6.3) 

e= 114 + 75 log t t 92 hours ... (6.4) 
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It can be seen that the constant B in the above relationships 

decreases as the beam thickness increases from 15 mm to 25 mm then both 

25 and 28 mm thickness give the same relationship with the same constants. 

The creep rate at any time increases as the specimen thickness decreases, 

and rapidly increased in specimen thickness 15 mm at t> 92 hrs. Wheras 

both 25 mm and 28 mm thicknesses gave the same creep rate. 

Williams and Elizzi(15,16) tested two specimen sizes of gypsum, 

namely; 240 mm long by 40 mm wide by 15 mm thick and 240 mm long by 40 

mm wide by 20 cum thick. They found that the constant B and the creep 

rate of the 15 mm thick specimens are more than that of the 20 mm thick 

specimens. 

Due to the limited number of specimen sizes used (4 - sizes) and the 

use of only one stress level in the experiments, (4 N/mm2) a clear and 

detailed view of the effect of beam thickness on creep behaviour was not 

obtained and a further study of this factor is needed. 

Following this study, however, beam specimens of dimensions; 240 mm 

long by 40 mm wide by 20 mm thick were chosen to study the creep behaviour 

of gypsum in bending under dry and saturated conditions subjected to 

various stresses. 

6.1.2 Effect of Stress in the dry condition. 

Three or four specimens were tested under each pre-determined stress. 

The stresses were chosen on the basis of percentages of the rock instant- 

aneous strength (a 
u) at approximately 40%, 50%, 60% and 80% a but aiming 

to provide similar stresses in both dry and saturated conditions for 

direct comparison and determination of saturation effect. The stresses 

were chosen as follows; 

3 N/mm2 (37.5% au), 4 N/mm2 (50% au), 5 N/mm2 (62.5% au) and 6.5 N/mm2 

(81.3% au). 
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The creep results are given in Table (6.2), and Fig. (6.3) shows the 

effect of the stress on the bending creep in dry conditions. It can be 

seen that both instantaneous strain and creep strain are increased with 

the applied stress. The creep behaviour was found to follow the logar- 

ithmic relationship, e=A+B log t at low stresses (ate 50% ou) whereas 

it follows a power law relationship, e= Ctn at high applied stress 

(at > 50% au). Where e is the creep strain (in microstrain) at time t 

(in hours). In the first relationship A is a constant representing the 

creep strain at t=1 hr. and B is constant representing the slope of a 

21 
creep curve on a semi-log graph, Fig. (6.4) in which; B= log t2 - logt1 

where e2 and cl are creep strain at times t2 and t1 respectively. In the 

second relationship, C is a constant representing the creep value at a time 

t=1 hr and the power n represents the slope of the creep curve on log-log 

graph, Fig. (6.5) in which: 

loge2 - loge1 
n logt2 - logt1 

The following relationships were obtained according to the applied 

stress; 

(a) At stress at =3 N/mm2 (37.5% a1) 

e=7.3 + 5.4 logt'. ..... (6.5) 

(b) At stress at =4 N/mm2 (50% ou) 

e= 10.5 + 8.3 logt ..... 
(6.6) 

(c) At stress at =t N/mm2 (62.5% au) 

e=9.8 t0.357 t, 7 hrs ..... 
(6.7) 

c= 12.3 t0.244 5>7 hrs ..... 
(6.8) 

(d) At stress of = 6.5 N/mm2 (81.3% a. ) 

c= 13.4 t0.362 ..... 
(6.9) 
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Table (6.2) Creep of dry gypsum in Bending. 

Applied stress, N/mm` 

Time 3.0 4.0 5.0 6.5 
hours 

37.5% e 507 a 62.5% a 81.3% a 
uuuu 

Instantaneous strain, Microstrain 

64 86 112 150 

Creep strain, Microstrain 

0.1 1.5 2.6 3.4 2.1 
0.3 3.0 5.2 5.5 5.8 
0.5 4.4 7.3 7.9 10.2 
1.0 6.2 8.1 10.3 14.6 
2.0 10.0 ± 7% 11.1 ± 5% 12.7 - 6% 18.7 - 5% 
3.0 12.4 13.0 15.2 21.1 
4.0 12.8 15.1 17.3 23.6 
5.0 14.6 16.7 19.2 26.5 
6.0 15.0 17.3 21.1 28.1 

12.0 15.7 19.8 23.5 33.8 
24.0 16.1 - 7% 21.9 ± 5% 25.6 - 6% 41.9 - 5% 
48.0 16.3 23.3 29.1 52.9 
72.0 16.6 25.1 32.5 58.4 
96.0 17.3 26.1 35.1 63.5 

120.0 18.2 27.0 37.4 69.3 
144.0 18.9 28.1 39.7 72.2 
168.0 19.5 29.0 42.1 79.7 
192.0 19.5 29.7 44.2 82.2 
216.0 19.5 30.8 45.7 91.0 
240.0 19.6 ± 8% 31.7 4% 47.1 - 5% 95.0 - 47. 
264.0 32.4 48.5 98.5 
288.0 32.9 49.6 103.2 
312.0 33.4 51.1 108.1 
336.0 33.9 52.8 113.1 
360.0 34.3 54.4 116.0 
384.0 34.7 56.0 118.6 
408.0 35.1 58.3 121.2 
432.0 35.2 4% 59.9 124.0 
45.6.0 60.8 127.0 
480.0 

. 
61.9 131.3 

504.0 62.9 134.6 
528.0 63.6 137.2 
552.0 64.2 138.8 
576.0 65.0 140.6 
600.0 65.3 142.9 
624.0 65.3 143.8 
648.0 66.0 - 3% 144.8 
672.0 66.5 145.5 
696.0 146.2 
720.0 146.7 4% 
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It can be observed from the above relationships and the data given in 

Table (6.3), that the creep equation constants A, B, C and n increase with 

increasing the applied stress. 

Griggs(70), Misra(79) , Williams and Elizzi(15,16) and others, reported 

the increase of the constants A and B with the applied stress. 

Misra(79) reported that both C and n increase by increasing the stress. 

Whereas Elizzi(15) reported that as the stress increases the value of C 

increases and the value of n remains nearly constant and 3' 

Table (6.5) gives the creep rate of the dry specimens at various times 

under constant applied stress. The results indicate that the creep rate 

increases with increasing the applied stress at a given time, see Fig. (6.13), 

on the other hand, the creep rate decreases with the time at constant stress. 

This indicates that the creep strain diminishes with time. These results are 

in agreement with the results obtained by the investigators; 

Griggs 
(70) 

, Misra(79) , Price 
(80) 

, Wawersik(96), Singh(79), Williams 

and Elizzi(16) and others with different rocks. 

The creep strains given in Table (6.2) were plotted against the applied 

stress at constant time on semi-log graph. Straight lines were obtained, 

Fig. (6.6), indicating that the relationship between the creep strain (e) and 

the applied stress (a 
t) at a constant time (t) follows a logarithmic relation- 

ship of the form: 

or 

loge =a+ ßat 

c= 10a+aat ..... 
(6.10) 

where a and ß are constants. 

6.1.2.1 Empirical Equations: 

The creep strain of dry gypsum in bending can be determined by using 

formulae c=A+ Blogt or c= Ctn depending on the stress level, while the 
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Table (6.3) Constants of Bending Creep equations in dry condition 

e=A+B log t 

e= Ctn 

Q Constants 
t 

Nýmm 
2 

au x 100 A B C n 

3 37.5 7.5 5.4 - - 

4 50 10.5 8.3 - - 

- - 9.3 0.357 t<7 hrs. 

5 62.5 
- - 12.3 0.244 t>7 hrs. 

6.5 81.3 - - 13.4 0.362 

Table (6.4) Constants of Bending Creep equations in saturated 
condition. 

e=C to 

Constants 
at at 

100 
N/mm2 

x ýu 
C 

48 0.418 t<6 hrs. 
5 2 35. 

61 0.298 t>6 hrs. 

62 0.435 t<4 hrs. 
53 6 3 . 75 0.310 t>4 hrs. 

75 0.450 t<4 hrs. 
4 4 71. 

92 0.319 t>4 hrs. 

85 0.518 t<4 hrs. 
4.5 80.4 

111 0.326 t>4 hrs. 
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creep strain at any constant time can be calculated as a function of 

stress by using the formula given in Eq. (6.10). 

In order to predict the creep strain in bending with respect to 

applied stress and loading time, the results obtained were regressed, 

using the multiple regression curve fitting computer program with 

creep (E) as the dependent variable and the loading time (t) and applied 

stress (a 
t) as independent variables. This program considered the 

creation of five new variables including exponential functions, logar- 

ithmic functions, power law functions, etc. The data were analysed 

several times with different numbers of readings of the variables t and 

at, so that an equation could be obtained at a number of time (t) 

periods and stress (a 
t) 

levels. After each period a function of loge, 

logt and at gave the best fit for the given loading time, and applied 

stresses. This function is in the following form: 

C=D. 10Ea t tF 

where D, E and F are constants 

and e=1.162 x 100.18559at x 10.29844 

For t> 24 hours. 

The predicted creep using this formula compared with the actual 

(6.11) 

values, the variation was between 0% to 13% as opposed to 29% for the 

second best correlation. The correlation coefficient was found to be 

0.989 which indicates good significant correctness. 

6.1.3 Creep of Water Saturated Specimens. 

Three or four water saturated beams were tested under each of the 

pre-determined nominal stress levels. The stresses were chosen as 

percentages of the instantaneous saturated rock strength (au). Approx- 

imate values of their percentages were chosen in order that results could 
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be obtained such that similar stresses were used in both saturated and 

dry gypsum in some cases. These stresses were: 

2 N/mm2 (35.5% au), 3 N/mm2 (53.6% au), 4 N/mm2 (71.4% au) and 4.5 N/mm2 

(80.4% au). 

The results obtained are given in Table (6.7), and Fig. (6.7) shows 

the effect of the stress on the creep behaviour of the saturated gypsum 

in bending. It can be seen from these results that the instantaneous 

and the creep strains are increased with increasing the applied stress. 

The creep behaviour was found to follow the power law relationship of the 

form; e= Ctn in all cases, where e is the creep strain (in microstrain) 

at a loading time (t) in hours). C and n are constants with C representing 

the creep strain at time t=1 hr and n the slope of the creep curve on a 

log-log graph, see Fig. (6.9). The following relationships were 

obtained in the case of the saturated gypsum: 

(a) At stress at =2 N/mm2 (35.5% au) 

C= 48 t0.418 ..... t<6 hrs. .... 
(6.12) 

C= 61 t0.298 ..... t >, 6 hrs. .... (6.13) 

(b) At stress Qt =3 N/mm2 (53.6% au) 

e= 62 t0.435 t<4 hrs. .... 
(6.14) 

e 75 t0.310 .... _ ..... t4 hrs. (6.15) 

(c) At stress at =4 N/mm2 (71.4' ß'U ) 

c= 75 t0.450 ..... t< 4 hrs. .... 
(6.16) 

e= 92 t0.319 .,.., t, 4 hrs. .... (6.17) 

(d) At stress at = 4.5 N/mm2 (80.4% au) 

e- 85 t0.518 .... t< 4 hrs. .... 
(6.18) 

0 
e= 111 1.326 .... t>4 hrs. .... 

(6.19) 

204 



U 

GO 
r. 

", a 

fYl 

E 

00 
b a 

H 

c0 
U) 

W 
O 

0. 
ai 
a) 
0 

.o 

.G 

F 

00 u'1 M M 
O N M ý7 
N N4 I 1 
n .C O O O O 

O N M ýY Lt 
00 1.4 1 I 1 
d .C O O O O 

01 M 00 
O N ý7 u1 '. o 
'. O i-+ 1 1 1 
MC O 0 O O 

Oý M 
O M Lr1 t. Oý 
.t3.4 1 1 

II 
N J., O O O O 

cu (n ý-0 
O cc 7 
N I+ 1 I 1 1 

G .ý O O r4 

cd 

41 
0 
O ýY 1"+ N. O M N. 
U '. O la 

a) 

>+ N '. O r-1 N. 
I I 1 1 

fý. 
_T 

.C i--I r-4 N N 
(L) d 

U 

O '. O .7 M 
,e ý4 1 1 ( 1 
N . Ir N N M ý7 

i 
1 I I 1 

1 .C M ý7 Il': ýD 

" " 
I I I I 

^ 
N N M - 

dc -x ßc X dC -x 9C 9t 
dC % -x 

O 
O 

X 
V) M r-1 O 
M u1 Iý OO 

I 
bb 

N O u1 

1iW N M ýt ý7 b 
z 

Dc 

u 

s+ t+ 
co 3 
00 

r-+ a 

CO y 
33 
oO 

00 
ww 
P. a 
G) 9) 

UU 
is dc 

205 



Table (6.7) Creep of Saturated gypsum in Bending. 

Applied stress, N/mm2 

Time 2.0 3.0 4.0 4.5 
hours 35.5% Qu 53.6% au 71.4% ou 80.4% au 

Instantaneous Strain, Microstrain 

43 94 154 1 186 

Creep strain, Microstrain 

0.1 16.3 20.8 20.9 23.2 
0.3 27.3 33.4 39.7 45.3 
0.5 36.6 48.7 55.5 60.7 
1.0 47.0 65.5 77.3 83.1 
2.0 62.2 ± 5% 85.1 ± 6% 105.9 - 4% 111.5 - 5% 
3.0 75.9 102.7 133.8 140.0 
4.0 85.9 120.3 155.9 165.4 
5.0 94.1 135.1 182.9 190.4 
6.0 102.1 147.3 198.4 204.1 

12.0 127.6 170.9 241.5 262.0 
24.0 170.4 - 5% 182.9 302.4 ý 5% 340.5 ± 47 
48.0 199.6 240.3 ± 6% 340.0 380.1 
72.0 225.2 264.7 355.7 405.3 
96.0 244.0 280.8 369.6 430.4 

120.0 262.8 298.7 383.9 451.7 
144.0 278.1 314.3 410.0 475.9 
168.0 291.5 340.1 435.4 496.3 
192.0 300.1 352.6 458.9 516.2 
216.0 324.5 368.5 474.2 534.0 
240.0 338.6 ± 4% 384.8 5% 500.1 ± 5% 556.1 - 4% 
264.0 353.2 795.5 516.2 573.1 
288.0 366.2 408.1 435.1 591.4 
312.0 380.3 425.1 550.0 609.2 
336.0 387.8 443.3 560.3 625.2 
360.0 393.7 457.7 575.3 637.1 
384.0 397.7 459.5 593.3 652.7 
408.0 401.8 482.8 610.4 668.8 
432.0 407.3 487.7 625.7 679.2 
456.0 412.3 510.6 635.4 690.0 
480.0 416.9 522.6 - 4% 643.6 6% 705.1 
504.0 420.1 535.9 652.5 728.3 
528.0 423.9 544.4 . 

664.9 745.4 
552.0 427.3 557.2 681.9 762.8 
576.0 428.3 567.6 695.5 770.6 
600.0 431.6 573.4 702.1 779.5 
624.0 433.0 579.4 706.0 789.0 
648.0 434.5 584.3 708.8 795.5 
672.0 435.0 589.4 711.5 799.3 
696.0 435.5 593.6 712.8 803.2 
720.0 436.0 ± 4% 595.2 3% 714.0 ± 6% 806.1 - 3% 
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It can be seen from these relationships and the data given in Table 

(6.4) that both the constants C and n of the creep equation increase 

with increasing the applied stress. 

Griggs 
(71) 

suggested that the creep of alabaster at low stress in 

the presence of solution followed the power function, c= Ctn. Afronz 

and Harvey 
(95) 

reported that the creep of saturated soft rocks followed 

a power law of the following form: 

e=A+ (B tC) + (D . tE) 

where A, B, C, D, E a---e constants. 

The creep rate was calculated and given in Table (6.6) for various 

applied stresses at different loading times. It was found that the creep 

rate increases with the applied stress at a given time, and decreases 

with the time at a constant applied stress, see Fig. (6.13). This 

indicates that the creep strain diminishes with the time. Griggs 
(71) 

reported that the creep rate of alabaster in water increased with the 

applied stress and that rupture occurs in a period less than that of the 

smaller stress. Wawersik(96), Afronz and Harvey 
(95), 

Cogan 
(99) 

. and 

others observed the same behaviour in the creep of different rocks in 

wet conditions. 

Fig. (6.10) shows the relationships between the applied stress 

(a 
t) and the creep strain (c) at various loading times (t). These 

relationships are linear and nearly parallel to each other on a semi-log 

graph. The relationships can be represented by the equation: 

loge =a+ ßct 

or 

C= 10 
a+ßat 

.. "' 
(6.20) 

where a and ß are constants. 
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6.1.3.1 Empirical equations. 

As discussed in the previous section, the bending creep of gypsum 

in saturated conditions can be determined under constant stress by using 

the power law, e= Ctn, and at constant time for any stress by using the 

equation of the form Eq. (6.20). In order to predict the creep strain 

in saturated conditions with respect to applied stress and loading time, 

the data were regressed using the multiple regression curve fitting 

computer program following the same method used with the results of the 

dry specimens. A combination of the functions loge, log t and ct gave 

the best fit of the data in the following form: 

Ea F 
c=D. 10 t. t 

where D, E and F are constants. 

0.09652Qt 0.31179 
. '. e= 38.11 x 10 xt..... (6.21) 

For t> 24 hours. 

Where: e is the creep strain, in microstrain 

t is the loading time, in hours, and 

Qt is the applied stress, in N/mm2. 

When the predicted creep from this formula was compared with the actual 

creep strain, it was found that errors ranging from 0% to 8% were obtained. 

Correlation coefficient was found to be 0.991 which indicates good signif- 

icant correctness. 

6.1.4 The Role of Water in bending creep. 

As mentioned previously the dry and saturated specimens were subjected 

to the similar stresses in some cases to ensure the best comparisons and 

to determine the effect of water on the creep behaviour under closely 

controlled conditions. Stresses of 3 N/mm2 and 4 N/mm 
2 

were chosen for. 

this purpose. Tables (6.2) and (6.3) give the creep results of the dry 
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and saturated conditions respectively. It can be noted that the instant- 

aneous strain increased due to saturation, from 64 to 94 microstrain 

(47% increase) under 3 N/mm2 and from 86 to 154 microstrain (79% increase) 

under 4 N/mm 2 
stress. 

The instantaneous strains obtained were used to calculate the 

Modulus of Elasticity by plotting the applied stress as a percentage 

of maximum stress (ou) against the corresponding instantaneous strain, 

see Fig. (6.11). From these curves the Modulus of Elasticity (E) for 

the two environmental conditions are calculated; 

a) For dry condition: 

100 
Edry 100 x 1$$ x 106 = 4.49 x 104 N/mm2 

b) For saturated condition: 

E 
100 

x 
5583 

x 106 = 2.5 x 104 N/mm2 
sat. 100 223 

i. e., the water decreases the Modulus of Elasticity of the gypsum in 

bending by about 44%. 

Mann and Fatt(53) reported a decrease in Young's Modulus of 

Elasticity of three sandstones due to water saturation of 8-20%. 

Mogilevskaya(57) reported a decrease in Modulus of Elasticity of lime- 

stone of 5- 20% when the rock was saturated with water. In an A. S. T. M. 

(publication 
1976, Chamberlain et al. 

124ý, 
reported that three shales 

exhibited a decrease in Modulus of Elasticity under 100% humidity of 10%, 

59% and 61%. 

The effect of saturation was found to increase both the creep strain 

and the creep rate by appreciable amounts. Fig. (6.12) shows the 

influence of water on the bending creep subjected to two stresses. It 

can be seen from this figure and Tables (6.2) and (6.7) that the creep 

209 



strain is increased by the saturation up to 30 fold under 3 N/inm2 

stress and up to 20 fold under 4 N/mm2 applied stress. 

The creep behaviour in dry condition follows the logarithmic law 

at stresses up to 50% au, and follows the power law at stresses more 

then 50% au. Whereas in saturated conditions the creep behaviour 

follows the power law relationships at all stress levels. This indic- 

ates that the water increases the plasticity of the gypsum in bending 

even at low applied stresses. 

The prediction of the creep strain with respect to loading time 

and applied stress follows a similar function of the form 

EQF 
E=DX 10 tXt 

where D, E and F are constants, 

in both cases, but these constants are increased by the water saturation. 

Fig. (6.13) shows the effect of stress and saturation on the creep 

rate. It can be seen that the creep rate increases in both dry and 

saturated conditions with the applied stress in a linear relationship on 

the semi-log graphs (log e- at). The straight lines are parallel 

or nearly parallel to each other. From the data given in Tables (6.5) 

and (6.6) and shown in Fig. (6.13) it is clear that the water saturation 

increases the creep rate by appreciable amounts. This increase ranging 

from 4 to 26 fold with 10 as an average. The effect of the water on the 

creep rate increases with time. 

Griggs 
(70) 

(1939) reported that the creep and creep rate of the 

gypsum (alabaster) immersed in water increased markedly. It has been 

suggested that the creep takes place by a process of recrystallization 

(solution occurs at the most highly stressed region and deposition at 

the free regions). Griggs7l) also suggested (1940) that the rate of 
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the creep of the immersed alabaster is not due to simple recrystallization 

but may be a function of ionic mobility of gypsum in solvent (Ca and 

so4__) . 

Misra(79) found that the bending creep of saturated anhydrite and 

beerstone increased by 12 and 5 times respectively and the creep rate 

increased by remarkable amounts. He also reported that both these rocks 

are partially soluble in water, and the effect of the water on their creep 

is mainly due to solution. Afronz and Harvey 
(95) 

found that in saturated 

soft rocks, the creep rate increased by 3 fold in coal and 8 fold in 

shales. Varo and Passaris(102) reported that the creep rate of the 

halite in water was accelerated rapidly, and the main effect of water on 

the creep of halite is one of solution and that failure was caused by its 

solution. 

The creep behaviour of gypsum in this study was in all cases changed 

by water saturation from a logarithmic law in dry condition to a power law 

in saturated conditions under the similar stress. Griggs 
(70) (1939) 

explained this kind of change in the creep behaviour of the gypsum 

(alabaster) as being due to recrystallization. 

It is suggested that the effect of the water on the creep of the 

gypsum in this research is caused by either recrystallization as described 

by Griggs 
(70) 

or solution or partly by both. The consideration of the 

water effects will be given in detail in the next section. 

6.2 Axial Creep in Compression. 

Uniaxial and triaxial creep tests were carried out on 76.2 mm long 

by 25.4 mm dia. gypsum core samples. These tests were performed under 

dry and saturated conditions at room temperature (21 ± 20 C). From the 

results published by previous investigators in the field of creep in rock 
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and confirmed in this work it is established that the applied stress has 

a great effect on the creep behaviour of any rock. The value of the 

applied stress necessary to cause an appreciable amount of creep to occur 

in a reasonable time from an experimental point of view, apart from other 

factors depends on the ultimate strength of the tested rock under the 

loading conditions of the experiments. It was therefore decided to 

apply different axial stresses as a percentage of the ultimate strength at 

every confining pressure. At the same time it was decided to apply 

similar axial stresses in both dry and saturated conditions and at the 

various confining pressures in all the possible cases. This was done to 

ensure accurate comparisons in the determination of the effects of satur- 

ation and confining pressure on the creep under closely controlled 

conditions. The following percentages of ultimate stresses with the 

shown ranges were used for the required testing stresses; (33 1 1)7, 

(50 +- 7)%, (65 ± 6)% and (85 ± 5)'. Various confining pressure levels 

were chosen for this study, namely; 0 (uniaxial), 10,20 and 30 N/mm2. 

Axial and lateral creep were measured. The axial creep results and 

factors affecting it will be discussed in this Chapter. 

The average results of three or four specimens tested at similar 

applied stresses, confining pressures and under similar environmental 

conditions will be given as results of the creep tests. In order to give 

an idea of the reliability of the results, one set of the creep results 

of three specimens in dry condition tested under 63 N/mm2 axial stress 

(61.3% au) at 30 N/mm2 confining pressure is plotted in Fig. (6.26) and 

the average results are plotted on the same graph. It can be seen that 

there are noticeable differences in the results of the different specimens 

deformed under similar stress conditions. These differences are the 

results of the effect of slight variation of temperature and humidity from 
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test to test, small differences in mechanical properties of specimen, 

possible experimental errors, -etc. 

6.2.1 Creep behaviour. 

The creep behaviour of gypsum was studied under uniaxial and triaxial 

compression in dry and water saturated conditions. The creep curves 

obtained for the two environmental conditions under various axial and 

confining stresses obey the following relationships reasonably well: 

1) Logarithmic law; c=A+B log t ..... (6.22) 

and/or 2) Power law ;s=C to ..... (6.23) 

where c is the creep strain at any time in microstrain, t is the loading 

time in hours and A, B, C and n are constants which depend on the material, 

test condition and environmental conditions. 

a. Dry condition. 

The results of the creep tests in dry condition are given in the form 

of tables and figures, Tables (6.8) to (6.11) and figures Fig. (6.14) to 

(6.25). In each table the axial stresses at a given confining pressure 

are given as a percentage of the ultimate strength of the rock (au) and 

2 in N/mm. The instantaneous strain in each case is also given. 

The creep curves followed the logarithmic law, Eq. (6.22) for the low 

applied stresses, power law, Eq. (6.23) or power and logarithmic laws for 

medium applied stresses and power laws only for high applied stresses. 

1) For uniaxial compression the following relationships were obtained, 

see Table (6.8) and Figs. (6.14), (6.15) and (6.16): 

2 
at a1 = 15 N/mm = 36% au 

C= 39 + 30 log t 

21 N/mm2 = 

48t0.425 

50.3%vu 

t<4.5 hrs. ..... 

(6.24) 

at a1 = 

C= 
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Table. (6.8) Axial creep of dry gypsum in uniaxial 
compression. 

Axial stress, N/mm2 

15 21 27 34 
36% au 50.3% au 65% au 81.8% au 

Time 
hours Instantaneous strain, Microstrain 

380 560 780 930 

Creep strain, Microstrain 

0.1 11.2 16.5 21.3 39.5 
0.3 18.4 27.3 35.1 47.5 
0.5 27.5 35.7 44.6 56.9 
1.0 35.1 49.1 60.5 69.0 
2.0 42.2 - 4% 66.4 - 5% 78.8 - 4% 80.9 - 1% 
3.0 48.3 77.0 82.7 90.4 
4.0 52.0 89.1 102.0 100.4 
5.0 56.0 100.4 108.5 109.5 
6.0 58.3 108.5 113.8 116.8 

12.0 73.1 123.5 127.5 138.8 
24.0 81.2 5% 138.9 - 4% 145.1 - 5% 163.5 - 1% 
48.0 86.8 152.7 164.6 184.9 
72.0 93.2 167.0 176.8 206.7 
96.0 101.4 179.5 188.8 224.4 

120.0 107.2 187.9 199.2 244.3 
144.0 112.0 192.4 209.6 255.9 
168.0 119.4 197.4 221.3 266.0 
192.0 124.7 205.9 230.3 277.9 
216.0 125.2 208.5 239.1 290.1 
240.0 125.7 211.2 247.3 305.1 - 5% 
264.0 126.1 

+ 214.9 255.0 314.6 
288.0 126.1 - 6% 218.9 4% 262.4 ± 5% 323.5 
312.0 224.3 268.8 333.6 
336.0 230.5 275.2 342.5 
360.0 233.9 283.6 355.4 
384.0 239.9 289.8 361.8 
408.0 243.1 284.8 367.1 
432.0 245.6 298.9 372.5 
456.0 247.2 303.1 376.4 
480.0 248.6 306.0 381.8 
504.0 249.9 308.0 385.6 
528.0 250.6 310.6 390.1 
552.0 250.6 3% 313.0 394.4 
576.0 314.9 398.9 
600.0 316.2 404.4 
624.0 318.3 407.9 
648.0 319.1 412.9 
672.0 320.1 415.0 
696.0 320.7 416.8 
720.0 + 321.0 - 6% + 418.6 - 57 
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Table (6.9) Axial creep of dry gypsum in triaxial 
at 10 N/nun confining pressure. 

Time 
hours 

0.1 
0.3 
0.5 
1.0 
2.0 
3.0 
4.0 
5.0 
6.0 

12.0 
24.0 
48.0 
72.0 
96.0 

120.0 
144.0 
168.0 
192.0 
216.0 
240.0 
264.0 
288.0 
312.0 
336.0 
360.0 
384.0 
408.0 
432.0 
456.0 
480.0 
504.0 
528.0 
552.0 
576.0 
600.0 
624.0 

. 
648.0 
672.0 
696.0 
720.0 

Axial stress, N/ mm 

21 27 41 50 
33.7% 43.3% a 65.7% a 80.2% a 

uuuu 

Instantaneous strain, Microstrain 

460 640 1020 1330 

6.3 
12.1 
17.1 
22.7 
29.1 - 4% 
33.6 
35.6 
40.1 
44.2 
52.3 

+ 59.4 - 5% 
65.8 
72.8 
76.6 
81.3 
89.0 
93.4 
98.2 

105.1 
108.8 
112.1 
114.1 
114.9 
115.5 
116.1 

+ 116.1 - 6% 
116.1 
116.1 
116.1 

Creep strain, N 

12.1 
19.1 
25.1 
30.2 
39.5 + 

- 5% 
44.7 
50.1 
55.2 
59.5 
69.6 
84.3 5% 

101.5 
115.2 
132.0 
146.2 
155.8 
170.3 
182.6 
201.1 
214.6 + 

- 4% 
230.5 
237.2 
252.1 
260.8 
270.7 
278.2 
287.8 
295.5 
302.4 
307.5 
311.1 
314.4 
315.2 
317.5 
318.7 
319.5 
320.0 
320.0 + 

- 47 

icrostrain 

58.5 
78.. 6 

100.1 
120.7 

+ 154.6 - 3% 
174.4 
193.9 
208.4 
222.6 
277.2 

+ 337.3 - 4% 
428.6 
501.9 
528.9 
555.6 
569.1 
582.0 
593.5 
603.4 

+ 616.6 - 4% 

. 524.9 
632.4 
642.4 
654.5 
663.4 
671.4 
680.5 
685.8 
694.1 
700.1 
705.0 
711.5 
717.3 
721.9 
724.9 
728.2 
730.2 
732.2 6% 
734.8 
736.2 

48.2 
68.2 

102.2 
132.2 
163.1 - 6% 
188.5 
204.0 
219.4 
232.9 
301.0 
383.1 6% 
464.2 
564.3 
645.2 
703.8 
760.3 
801.5 
831.7 
866.9 

+ 899.8 - 5% 
932.2 
954.6 
981.7 

1005.3 
1022.0 
1038.5 
1054.0 
1064.0 
1076.1 
1084.2 
1092.6 
1100.5 
1107.0 
1111.7 
1115.6 
1120.3 
1123.3 
1125.5 
1128.2 

+ 1130.0 - 5% 
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Table (6.10) Axial creep of dry gypsum in triaxial 
at 20 N/mm` confining pressure. 

Axial stress, N/mm 
2 

27 41 50 63 

Ti 34.5% a 52.4% a 64% a 80.6% a me u u u u 
h ours 

Instantaneous strain, Microstrain 

650 950 1200 1560 

Creep strain, Microstrain 

0.1 11.1 23.3 24.6 25.2 
0.3 16.4 37.8 44.5 54.5 
0.5 23.4 57.7 65.8 72.2 
1.0 28.2 65.9 74.9 93.7 
2.0 32.9 - 6% 71.1 ± 5% 86.2 - 4% 126.3 - 8% 
3.0 36.5 77.2 97.2 148.0 
4.0 38.8 82.2 107.4 167.5 
5.0 41.2 85.3 115.1 179.5 
6.0 43.5 93.9 122.7 194.5 

12.0 51.6 101.5 141.7 236.0 
24.0 62.8 4% 121.7 5% 159.5 - 6% 289.9 8% 
48.0 93.6 155.7 196.5 340.1 
72.0 106.1 181.9 234.2 391.3 
9.6.0 114.4 198.9 263.1 426.4 

120.0 124.6 216.9 289.1 461.9 
144.0 134.9 238.2 314.2 490.1 
168.0 140.9 253.1 341.2 517.6 
192.0 148.2 274.4 362.3 533.7 
216.0 153.1 296.1 385.7 554.4 
240.0 157.9 4% 308.8 4% 403.9 - 7% 570.5 - 6% 
2.64.0 162.7 322.8 420.6 584.8 
288.0 166.4 341.3 441.9 599.6 
312.0 172.4 358.5 451.7 610.2 
33.6.0 177.7 376.6 465.2 625.1 
360.0 181.8 389.9 477.3 636.7 
384.0 185.4 403.3 491.8 647.8 
408.0 188.9 410.8 498.9 657.5 
432.0 191.2 419.1 509.3 666.7 
456.0 193.3 425.5 518.9 675.4 
4.80.0 194.6 433.6 527.9 682.5 
504.0 195.8 439.7 535.8 689.4 
528.0 196.6 444.5 543.4 695.4 
552.0 195.8 - 3% + 449.9 - 4% 550.9 703.1 
576.0 196.8 454.5 558.9 709.2 

. 
600.0 196.8 458.7 565.5 714.4 
624.0 461.2 570.4 720.2 
648.0 463.3 579.1 725.5 
672.0 465.9 585.6 731.3 
696.0 468.0 590.9 736.6 
720.0 470.4 595.6 - 7% 740.9 - 4% 
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Table (6.11) Axial creep of dry gypsum in triaxial 
at 30 N/mm confining pressure. 

Axial stress, N/mm 
2 

27 41 50 63 
26.3% a 39.8% a 48.7 Q 61.3% a 

u u u u 
i T me 

hours Inst antaneous strain, Microstrain 

540 860 1080 1400 

Creep strain, Microstrain 

0.1 6.8 10.6 17.7 24.5 
0.3 10.0 15.6 32.4 49.5 
0.5 14.0 19.8 45.3 65.8 
1.0 21.1 25.5 54.7 88.2 
2.0 24.9 + 

- 3% 32.7 + 
- 4% + 62.8 - 5% 106.1 + 

- 4% 
3.0 28.9 38.5 68.0 125.5 
4.0 32.5 43.6 73.5 140.1 
5.0 35.6 48.1 79.0 149.4 
6.0 38.5 52.1 84.7 159.0 

12.0 45.0 65.0 103.4 191.1 
24.0 54.3 ± 3% 78.1 2% 125.4 - 6% 248.8 - 4% 
48.0 74.1 104.2 156.3 286.5 
72.0 87.1 131.8 175.9 307.8 
96.0 79.9 145.2 193.1 331.4 

120.0 108.7 158.0 209.2 353.5 
144.0 117.3 174.0 224.8 372.0 
168.0 124.8 185.1 237.4 388.8 
192.0 131.4 193.7 249.5 404.6 
216.0 136.7 206.2 260.8 417.4 
240.0 141.9 + 

- 4% 215.2 2% 272.0 6% 429.2 + 5% 
264.0 146.9 223.0 283.0 442.8 
288.0 151.3 230.8 294.1 452.8 
312.0 155.2 237.3 304.4 4.62.5 
336.0 158.0 243.7 314.6 472.0 
360.0 160.3 249.6 324.6 481.0 
384.0 162.5 254.7 334.9 489.4 
408.0 164.1 249.5 342.9 500.8 
432.0 165.5 263.1 362.4 505.8 
456.0 166.2 267.1 371.8 513.8 
480.0 166.4 - 5% 271.2 379.6 520.4 
504.0 274.0 387.1 528.1 
528.0 275.2 393.8 534.1 
552.0 278.1 401.0 541.1 
576.0 279.6 407.8 548.0 
600.0 279.6 2% 414.1 552.4 

. 
624.0 420.3 558.8 
648.0 425.4 364.8 
672.0 431.7 570.9 
696.0 435.5 577.0 
720.0 441.4 ± 6% 582.4 - 4% 
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e= 68 0.215 
t t: 4.5 hrs. ..... (6.26) 

at a1 = 27 N/mm2 .= 65% au 

e= 56 t0.358 t<6.2 hrs. ..... (6.27) 

c= 72 t0.235 t, 6.2 hrs. ..... (6.28) 

at a1 = 34 N/mm2 = 81.8% Qý 

E= 70 t0.278 t<6.5 hrs. ..... 
(6.29) 

e= 74 t0.268 t, 6.5 hrs. ..... (6.30) 

The values of the creep strain given in Table (6.8) were plotted 

against time on semi-log and log-log graphs as shown in Fig. (6.15) and 

(6.16) respectively. A linear relationship was plotted for 15 N/mm2 

stress on semi-log and for 21,27 and 34 N/mm2 on log-log graphs. This 

indicated that the logarithmic law fits the data well at 15 N/mm2 and power 

laws the data of 21,27 and 34 N/mm2. The first term in the logarithmic 

equation A in Eq. (6.22) represents the value of the creep strain at time 

t=1 hour and the number proceeding log t, B in Eq. (6.22) represents the 

slope of the straight line drawn of the creep strain versus time on semi- 

2- Cl 
log graph, see Fig. (6.15), which can be calculated by B= 

logt2 - logtl ' 

As well as this graphical method, the least square method was used to 

calculate the values of A and B. This method will be discussed in the 

appendix (B). For the power law, of the constants C and n in Eq. (6.23), 

n represents the slope of the straight line on log-log graph, see Fig. 
loge2 - loge1 

(6.16) and can be calculated by n= log 
2- 

log 
Both C and n 

1 
values were also calculated by least square method. In cases where the 

straight line changes its slope but still fits the creep data in power law 

form as shown in Fig. (6.16), the power law requires different values of 

the constants C and n to represent these data within the time range after 

the gradient change. The value of the new n represents the new slope of 
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the straight line and the value of the new C is found by extending the 

new straight line to the time of t=1 hour. 

2) For triaxial compression at 10 N/mm2 confining pressure the following 

relationships were obtained for the dry gypsum, see Table (6.9) and Figs. 

(6.17), (6.18) and (6.19): 

at Q1 = 21 N/mm2 = 33.7% au 

e= 30 + 26 log t ..... (6.31) 

at al = 27 N/mm2 = 43.3% au 

e= 44 + 29 log t t< 72 hrs. ..... (6.32) 

= e 43 t0.301 ; 72 hrs. ..... 
(6.33) 

at a1 = 41 N/mm2 = 65.77 au 

e= 122 t0.315 ..... 
(6.34) 

at a1 = 50 N/mm2 = 80.2% au 

e= 129 t0.350 ..... (6.35) 

The creep behaviour at this confining pressure level followed the power law, 

Eq. (6.23) for all the axial stresses except under the low stress 21 N/mm2 

and in the earlier stages of the test for 27 N/mm2 at t< 72 hrs. where 

they followed the logarithmic relationship, Eq. (6.22). 

3) For the triaxial compression at 20 N/mm2 confining pressure, the 

following relationships were obtained, Table (6.10) and Figs. (6.20), (6.21) 

and (6.22): 

at a1 = 27 N/mm2 = 34.5% au 

e= 30 + 20 log tt< 24 hrs. ..... (6.36) 

C= 32 t0.260 t, 24 hrs. ..... 
(6.37) 

at a1 = 41 N/mm2 = 52.4% au 

c= 57 10.275 ..... (6.38) 
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at a= 50 N/mm2 = 64% au 

e= 70 10.301 ..... (6.39) 

at al = 63 N/mm2 = 80.6% au 

e= 94 t0.409 t< 4 hrs. ..... (6.40) 

e= 108 t0.315 t. 4 hrs. ..... (6.41) 

At this level of the confining pressure, the creep data followed the 

power law, Eq. (6.23), except at a1 = 27 N/mm2 where they followed the 

logarithmic law, Eq. (6.22) at t< 24 hrs. then a departure from this law 

to power law was obtained. 

4) For triaaxial compression at 30 N/mm2 confining pressure, the 

following relationships were obtained, Table (6.11) and Figs. (6.23), (6.24) 

and (6.25): 

at a1 27 N/mm2 = 26.3% au 

c= 21 + 23 log tt< 24 hrs. ..... (6.42) 

e= 32 10.23 t, 24 hrs. ..... (6.43) 

at al = 41 N/mm2 = 39.8% au 

c= 32 + 30 log t t< 30 hrs. ..... 
(6.44) 

C= 48 10.235 t, 30 hrs. ..... (6.45) 

at of = 50 N/mm2 = 48.7% au 

e= 56 10.24 .. (6.46) 

at al = 63 N/mm2 = 61.3% ou 

e= 82 t0.344 t< 20 hrs. ..... 
(6.47 

C= 113 10.241 t, 20 hrs. ..... (6.48) 

The creep behaviour at this level of the confining pressure followed the 

power law, Eq. (6.23), except under 27 N/mm2 and 41 N/mm2 where they followed 

logarithmic law, Eq. (6.22) for the first 24 hrs and 30 hrs respectively, 

then the data departed from this law to power law. 
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In the previous equations, from (6.24) to (6.48), all the constants 

A, B, C and n were found by using the graphical method and checked by 

using the least square method. All the results were in close agreement. 

An example is given in appendix (C) to illustrate the use of the least 

square method. By calculating the correlation coefficient (R) the degree 

of correlation showed the equations to be a satisfactory representation of 

the data. 

b. Saturated condition: 

The results of the creep tests for the water saturated gypsum are 

given in Tables (6.12) to (6.15) and figures Fig. (6.27) to Fig. (6.38). 

Axial stresses, confining pressures, instantaneous strains and the creep 

strains are given in the tables for each test case. The creep data 

followed the power law or power and logarithmic law for the low applied 

stresses, whereas for the medium and high applied stress, the creep behaviour 

followed the power law. 

1) For uniaxial compression the following relationships were obtained, 

see Table (6.12) and Figs. (6.27), (6.28) and (6.29) 

at Q1 =8 N/mm2 = 37% au 

e= 51 10.250 ..... 
(6.49) 

at a1 = 11 N/mm2 = 52% au 

124 t0.430 t<2 hrs. ..... (6.50) 

147 t0.256 t, 2 hrs. ..... (6.51) 

at a= 15 N/mm2 = 70.9% au 

e= 205 t0.5 t<1 hr. ..... (6.52) 

C= 205 t0.263 t >, 1 hr. ..... (6.53) 

at a1 = 17 N/mm2 = 80.4% au 

e= 260 t0.525 t<1 hr. ..... (6.54) 

e= 260 t0.269 t, 1 hr. ..... (6.55) 
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Table (6.12) Axial creep of saturated gypsum in uniaxial 
compression. 

Axial stress, N/mm2 

8 11 15 17 
37% a 52% a 70.9% a 80.4% a u u u u 

Ti me 
hours Instantaneous strain, Microstrain 

290 410 560 
7 

660 

Creep strain, Microstrain 

0.1 19.9 45.2 75.0 88.6 
0.3 33.8 68.5 96.6 138.8 
0.5 40,7 93.8 154.1 200.1 
1.0 49.5 122.2 205.1 274.6 
2.0 57.1 - 4% 149.9 ± 3% 240.9 - 5% 316.5 - 4% 
3.0 68.2 177.7 294.1 345.5 
4.0 77.3 200.2 310.9 374.0 
5.0 84.5 215.1 333.9 393.5 
6.0 90.1 228.1 352.9 410.5 

12.0 105.9 262.1 399.3 475.5 
24.0 125.7 - 6% 305.6 4% 445.2 - 5% 529.3 - 4% 
48.0 162.9 373.3 507.3 607.8 
72.0 193.7 422.8 553.2 663.6 
96.0 218.9 469.0 586.9 730.2 

120.0 245.4 501.1 628.9 797.8 
144.0 269.7 525.5 673.5 857.3 
168.0 295.4 541.9 705.4 920.6 
192.0 318.4 557.9 734.8 955.9 
216.0 337.2 568.2 749.3 980 6 
240.0 + 355.0 - 7% + 590.5 4% 767.2 ± 8% 

. 
987.7 ± 9% 

264.0 369.3 612.3 780.0 1011.8 
288.0 385.0 632.1 794.9 1027.9 
312.0 398.6 649.0 812.5 1041.3 
336.0 412.9 658.6 827.9 1052.1 
360.0 423.8 

. 
677.7 839.9 1062.8 

384.0 435.5 695.6 850.9 1072.2 
408.0 442.4 708.6 860.7 1079.3 
432.0 450.5 719.5 871.5 1087.3 
456.0 459.1 731.5 881.4 1094.2 
480.0 466.6 744.1 891.1 1100.5 
504.0 474.8 751.4 899.7 1108.5 
528.0 479.5 757.9 907.2 1117.0 
552.0 485.0 764.0 916.0 1122.6 
576.0 489.7 770.3 924.7 1129.5 
600.0 495.1 775.5 930.2 1134.2 
624.0 498.6 780.0 938.3 1139.2 
648.0 501.6 783.9 945.1 1144.6 
672.0 503.6 785.6 952.9 1149.2 
696.0 505.9 790.2 957.3 1152.6 
720.0 507.3 - 7% 793.2 5% 962.3 2% 1157.0 - 6% 
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Table (6.13) Axial creep of saturated gypsum in triaxial 
at 10 N/mm confining pressure. 

Axial stress, N/mm2 

15 21 27 41 
33% a 46.3% a 59.5% a 90.3% a 

Time u u u 
hours 

Instantaneous strain, Microstra in 

410 640 840 1270 

Creep strain, Microstrain 

0.1 29.1 36.2 35.6 88.3 
0.3 39.9 45.4 59.0 144.9 
0.5 51.3 60.6 78.0 184.9 
1.0 67.9 83.8 95.0 241.5 
2.0 80.7 - 6% 94.5 ± 4% 117.0 - 5% 330.5 + 8% 
3.0 88.9 105.9 135.0 379.0 
4.0 97.4 115.3 152.2 424.1 
5.0 104.0 125.3 1.59.6 467.3 
6.0 111.9 134.6 193.0 502.1 

12.0 126.0 165.3 239.8 664.3 
24.0 143.1 - 5% 221.6 ± 6% 307.6 ± 6% 1024.4 ± 10% 
48.0 187.2 258.9 401.8 1235.8 
72.0 229.2 293.5 461.6 1382.6 
96.0 262.4 324.0 535.0 1501.5 

120.0 294.1 354.1 630.4 1599.6 
144.0 330.7 379.0 684.4 1656.8 
168.0 360.5 420.4 717.0 1672.8 
192.0 395.9 445.1 739.8 1722.5 
216.0 414.6 462.8 748.8 1764.3 
240.0 434.6 5% 478.3 7% 823.2 ± 8% 1797.6 ± 9% 
264.0 452.9 492.3 833.7 1838.1 
288.0 473.7 514.1 844.6 1879.8 
312.0 492.9 527.2 848.6 1913.9 
336.0 507.1 541.2 866.2 1935.0 
360.0 515.8 568.2 899.9 1949.7 
384.0 534.2 577.1 927.2 1959.9 
408.0 546.9 580.3 952.9 1978.3 
432.0 559.6 598.4 980.0 1992.0 
456.0 570.2 611.3 999.3 2013.3 
480.0 579.4 623.2 1032.2 2018.3 
504.0 588.0 

. 
637.2 1039.9 2023.1 

528.0 599.5 . 646.8 1054.5 2028.7 
552.0 607.4 658.3 1071.4 2032.9 
576.0 613.6 

. 
667.3 1084.3 2036.8 

600.0 619.9 676.8 1093.6 2040.7 
624.0 628.8 683.9 1102.8 2042.6 
648.0 636.3 692.8 1112.1 2046.3 
672.0 642.3 701.7 1119.1 2049.5 
696.0 646.6 706.6 1122.7 2051.4 
720.0 649.5 - 4% 711.1 ± 8% 1125.4 ± 8% 2054.0 ± 5% 
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Table (6.14) Axial creep of saturated gypsum in triaxial 
at 20 N/mm confining pressure. 

Axial stress, N/mm2 

27 41 50 63 
37.7% au 57.2% ou 69.7% au 87.9% a u 

Time 
hours Instantaneous strain, Microstrain 

800 1300 1640 2080 

Creep strain, Microstrain 

0.1 15.5 103.3 162.1 266.0 
0.3 28.7 168.4 270.7 462.6 
0.5 37.4 195.5 370.4 546.9 
1.0 45.3 237.3 491.4 644.6 
2.0 53.6 7% 285.4 ± 4% 721.3 5% 737.9 ± 8% 
3.0 60.2 325.8 790.1 807.7 
4.0 67.1 362.5 840.0 868.8 
5.0 73.3 388.3 903.2 952.5 
6.0 78.7 413.9 948.7 997.8 

12.0 112.1 509.3 1131.5 1176.6 
24.0 157.3 - 6% 608.0 4% 1267.1 - 6% 1441.7 - 8% 
48.0 208.3 738.6 1440.5 1545.6 
72.0 254.8 854.8 1586.7 1662.0 
96.0 293.9 970.1 1680.0 1752.7 

120.0 334.7 1042.1 1752.0 1817.8 
144.0 361.7 1082.7 1788.7 1897.5 
168.0 386.4 1115.8 1831.4 1960.9 
192.0 412.6 1147.8 1866.5 2022.6 
216.0 433.7 1169.9 1892.9 2068.6 
240.0 448.1 + 

- 5% 1192.8 - 2% 1922.5 + 
- 8% 2108.5 6% 

264.0 460.7 1217.6 1945.6 2150.7 
288.0 474.3 1239.3 1971.0 2187.0 
312.0 486.9 1259.2 1989.8 2224.7 
336.0 500.3 1275.8 2008.0 2259.4 
360.0 510.5 1288.9 2022.9 2289.9 
384.0 519.2 1302.2 2037.6 2319.2 
408.0 527.2 1310.8 2050.8 2343.3 
432.0 535.8 1323.7 2067.0 2354.5 
456.0 544.7 1333.9 2076.0 2380.7 
480.0 554.3 1344.6 2085.5 2398.3 
504.0 561.8 1353.4 2099.0 2415.7 
528.0 568.8 1362.0 2112.9 2433.1 
552.0 575.1 1371.9 2124.6 2445.6 
576.0 581.3 1380.2 2135.5 2463.0 
600.0 587.5 1388.9 2145.9 2477.8 
624.0 593.3 1397.5 2155.3 2491.6 
648.0 598.8 1404.5 2164.9 2505.8 
672.0 604.6 1412.6 2174.9 2517.6 
696.0 609.1 1419.4 2184.5 2532.5 
720.0 614.5 ± 4% 1425.9 ± 3% 2193.5 - 8% 2543.8 - 6% 
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Table (6.15) Axial creep of saturated gypsum in triaxial 
at 30 N/mm confining pressure. 

Axial stress, N/mm2 

27 41 50 63 
29.3% a 44.5% T a 54.3% a 68.3% a u u u u 

Time 
hours Instantaneous strain, Microstrain 

700 1100 1350 1780 

Creep strain, Microstrain 

0.1 12.5 81.5 142.2 196.7 
0.3 23.5 132.7 180.1 347.9 
0.5 31.7 155.0 213.6 436.1 
1.0 40.0 182.2 246.1 531.7 
2.0 48.4 6% 204.2 ± 3% 250.0 - 2% 581.3 - 6% 
3.0 56.7 220.0 277.3 625.6 
4.0 61.0 234.9 292.7 670.3 
5.0 65.3 244.9 310.5 708.9 
6.0 70.2 254.1 323.0 745.2 

12.0 92.3 296.5 432.6 869.4 
24.0 110.2 ± 4% 353.1 4% 570.3 - 3% 999.5 ± 6% 
48.0 147.1 390.8 612.2 1054.2 
72.0 172.5 412.0 645.2 1105.3 
96.0 195.4 442.8 670.2 1144.8 

120.0 216.7 465.9 688.9 1183.8 
144.0 232.9 485.4 705.2 1207.8 
168.0 248.2 505.1 722.2 1237.4 
192.0 261.7 520.9 736.4 1260.8 
216.0 275.2 534.4 750.6 1286.9 
240.0 287.3 4% 547.7 4% 765.2 - 3% 1313.0 ± 4% 
264.0 297.1 559.2 777.7 1332.9 
288.0 303.3 570.8 794.8 1352.3 
312.0 316.7 582.0 805.4 1372.1 
336.0 325.8 591.2 816.5 1385.1 
360.0 334.1 600.3 840.9 1400.4 
384.0 341.4 609.5 851.0 1414.9 
408.0 348.7 618.0 860.4 1426.9 
432.0 355.7 627.3 871.0 1439.0 
456.0 362.9 635.7 831.8 1449.8 
480.0 369.5 645.0 890.9 1461.3 
504.0 375.6 651.8 900.2 1474.1 
528.0 381.4 660.1 908.6 1485.5 
552.0 388.2 667.7 917.2 1495.1 
576.0 391.0 673.5 924.9 1504.8 
600.0 398.6 680.9 933.9 1515.0 
624.0 404.5 688.0 942.2 1525.0 
648.0 409.9 693.8 952.0 1536.1 
672.0 415.0 699.6 961.6 1545.6 
696.0 419.0 705.9 969.8 1553.0 
720.0 423.6 ± 3% 711.6 5% 979.4 ± 3% 1561.7 3% 
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Thus the creep behaviour universally followed the power law at zero 

confining pressure level (e3 = 0) for all the applied axial stress levels. 

In the case of the stresses, 11,15 and 17 N/mm2 the creep constants C 

and n in Eq. (6.23) changed within the first 1 or 2 hours of the tests 

which results in a change in the slope of the straight lines on the log-log 

graphs at these times, see Figs. (6.28) and (6.29). 

2) For triaxial compression at 10 N/mm2 confining pressure, the following 

relationships were obtained, see Table (6.13) and Figs. (6.30), (6.31) and 

(6.32),: 

at ßl = 15 N/mm2 = 33% au 

e= 60 + 40 log t t< 50 hrs. ..... (6.56) 

E= 65 t0.322 t, 50 hrs. ..... (6.57) 

at al = 21 N/mm2 = 46.3% au 

e= 74 10.338 ..... (6.58) 

at a1 = 27 N/mm2 = 59.5% au 

E= 92 t0.386 ..... (6.59) 

at cri = 41 N/mm2 = 90.3% au 

e= 250 10.390 t< 72 hrs. ..... 
(6.60) 

e= 555 t0.214 t, 72 hrs. ..... 
(6.61) 

The creep data at this confining pressure generally followed the power law, 

Eq. (6.23) except at low stress, 15 N/mm2 where it followed logarithmic law, 

Eq. (6.22), for the first 50 hrs then a departure from this to a power law 

was obtained. 

3) For triaxial compression at 20 N/mm2 confining pressure, the following 

relationships were obtained, see Table (6.14) and Figs. (6.33), (6.34) and 

(6.35): 

2 
at al = 27 N/mm = 37.7% au 
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c= 50 + 40 log t t < 17 hrs. ..... (6.62) 

e= 82 t0.267 t , 17 hrs. ..... (6.63) 

at a1 = 41 N/imn2 = 57.2% a 
u 

e= 240 t0.290 ..... (6.64) 

at of = 50 N/mm2 = 69.7% a 
u 

c= 503 t0.220 t < 90 hrs. ..... 
(6.65) 

e= 360 t0.312 t , 90 hrs. ..... (6.66) 

at a1 = 63 N/mm2 = 87.9% a 
u 

e= 680 t0.210 t < 150 hrs. ..... (6.47) 

e= 410 t0.328 t , 150 hrs. ..... (6.68) 

At this confining pressure level, the creep data again followed the power 

law, Eq. (6.23), except at low axial stress, 27 N/mm2 where a logarithmic 

law was followed for the first 17 hrs. after which the creep followed the 

power law. 

4) For triaxial compression at 30 N/mm2 confining pressure, the following 

relationships were obtained; see Table (6.15) and Figs. (6.36), (6.37) 

and (6.38): 

at a1 = 27 N/mm2 = 29.3% vu 

E= 45 + 38 log tt< 40 hrs. ..... (6.69) 

c= 109 t0.0178 t, 40 hrs. ..... 
(6.70) 

at a1 = 41 N/mm2 = 44.5% a 
u 

e= 178 t0.202 ..... (6.71) 

at a1 = 50 N/mm2 = 54.3% a u 

= E 225 t0.246 ..... (6.72) 

at a1 = 63 N/mm2 = 68.3% a u 

c= 452 10.259 ..... (6.73) 
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The creep data of this confining pressure level once again followed 

the power law, Eq. (6.23) except at low stress, 27 N/turn2, where the data 

followed the logarithmic law at the first 40 hrs. after which departure 

from this to a power law was obtained. 

6.2.2 Effect of varying axial stress. 

The effect of axial stress on the creep of dry and saturated gypsum 

was studied under uniaxial and triaxial compression. It can be seen 

from the tables (6.8) to (6.15) and the Figs. (6.14) to (6.38) that creep 

strain occurred at every axial stress and both the instantaneous and creep 

strains are increased with the axial stress. The instantaneous strains 

were used to find the Modulus of Elasticity for the two environmental 

conditions at various confining pressures. This was done by plotting the 

axial stress (as percentage of the ultimate stress, au) versus the corres- 

ponding instantaneous strain, Fig. (6.39). It can be seen that the 

instantaneous strain increases with the given axial stress linearly at a 

particular confining pressure and under both dry and saturated conditions. 

Elizzi(15) reported the same behaviour for dry gypsum and anhydrite. 

Table (6.16) gives the Modulus of Elasticity calculated by this way for the 

two environmental conditions and under uniaxial and triaxial compression. 

Table (6.16) Modulus of Elasticity from instantaneous strain. 

Mod of 
t t 

Modulus of Elasticity (E), N/nmi2 

es s 
Dry Saturated 

Uniaxial 3.65 x 104 2.58 x 104 
a3=0 

Triaxial 

a3 = 10 N/mm2 3.90 x 104 3.01 x 104 

a3 = 20 N/mm2 4.07 x 104 3.15 x 104 

03 = 30 N/mm2 4.59 x 104 3.56 x 104 
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For dry conditions: - 

In uniaxial and triaxial tests at 0,10,20 and 30 N/mm 
2 

confining 

pressure, the creep curves followed the logarithmic law, Eq. (6.22), at 

low stresses and for a short duration in the beginning of some of the creep 

tests at medium stresses. These cases are; at uniaxial under 15 N/mm2 

(36% o) stress Eq. (6.24), at 10 N/mm2 confining pressure under 21 N/mm2 

(33.7% au) axial stress Eq. (6.31) and for the first 72 hrs. under 27 

N/mm2 (43.3% au) axial stress Eq. (6.32), at 20 N/mm2 confining pressure 

under 27 N/mm2 (34.5% au) axial stress for the first 24 hrs. Eq. (6.36), 

and at 30 N/mm2 confining pressure under 27 N/mm2 (26.3% au) axial stress 

for the first 24 hrs. Eq. (6.42) and under 41 N/mm2 (39.8% au) axial stress 

for the first 30 hrs. Eq. (6.44). The same creep behaviour was reported 

by many other investigators; Griggs 
(70,71) 

, Pomeroy 
(72), 

Misra(79), 

Williams and Elizzi15,100) 
(90) ( 

Hofer and Knoll stated that the creep 

processes take place according to the logarithmic law, Eq. (6.22) under 

low stresses and temperature. 

It can be seen from the relationships obtained of the logarithmic 

form that the constants A&B are increased with increasing the axial 

stress for the given confining pressure. This is shown in Eqs. (6.31) 

and (6.32) for 21 and 27 N/mm2 axial stresses respectively at 10 N/mm2 

confining pressure and in Eqs. (6.42) and (6.44) for 27 and 41 N/mm2 

respectively at 30 N/mm2 confining pressure. The values of A and B are 

given in Table (6.17). These results are in agreement with the results 

obtained by Griggs Misra(79) , Williams and Elizzi 
(15,100) 

and others. 
(70) 

The creep behaviour followed the power law, Eq. (6.23) in uniaxial and 

triaxial tests at high and medium axial stresses except for a short 

duration at some of the medium stresses. The following investigators 

reported a similar behaviour of the creep; Comte 
(83) 

on artificial rock 
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salt, King 
(93) 

on potash, Singh 
(97) 

on Sicilian marble, Williams and 

Elizzi(100) on gypsum and anhydrite. Hofer and Knoll 
(90) 

stated that at 

medium and high applied stresses the creep processes take place according 

to the power law. 

For saturated conditions: - 

In the case of the saturated specimens in uniaxial and triaxial 

tests at 0,10,20 and 30 N/mm 
2 

confining pressures, the creep behaviour 

followed the power law, Eq. (6.23), except for a short duration at the 

beginning of the tests of some of the low axial stresses, namely; 15 N/mm2 

(33% au) at 10 N/mm2 confining pressure, 27 N/mm2 (37.7% au) at 20 N/mm2 

confining pressure and 27 N/mm2 (29.3% ou) at 30 N/mm2 confining pressure. 

See Eqs. (6.56), (6.62) and (6.69). 

Griggs 
(71) 

suggested that the creep of alabaster immersed in water 

follows a power law at applied stresses. Wawersik(96) reported that the 

creep behaviour of the water saturated westerly granite and Navajo sandstone 

followed the power law. Afrouz and Harvey 
(95) 

expressed their results of 

the water saturated soft rocks as a power law relationship. The effect 

of the saturation on the creep will be discussed in this chapter later. 

The power "n" in the power law relationship of both dry and saturated 

conditions was found to be O< n <1. Tables (6.17) and (6.18) give the 

creep equations, the constants A and B of the logarithmic equations, 

(e =A+B logt), the constants C and n of the power equations, (e = Ctn), 

and the creep rate at various times after loading for gypsum deformed 

under uniaxial and triaxial stresses and for dry and saturated conditions 

respectively. The values of the constants C and n are plotted against the 

axial stresses at various confining pressures and for both environmental 

conditions, Fig. (6.41) and Fig. (6.42). It can be seen from these 

results that both C and n values increase with increasing axial stresses 
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Table (6.17) Creep equation constants and creep rate of dry gypsum in uniaxial and 
triaxial compression creep tests. 

6 
ý_' 

n 

ý_, 

al 
-x 100 

Constants Creep rate, microstrain/hr. at t= 
- ý3 0U Creep equation 

B 1 12 24 48 96 120 240 360 480 
ýý 

720 
of or o r hr. hr, hr. hr. hr. hr. hr. hr. hr. hr. 

C n 

36% c- 39 + 30 log t 39 30 30 2.5 1.25 0.63 0.32 0.25 0.13 0.08 - - 
15 

50.3% c- 48 t0.425 
t54.5 

48 0.425 20.4 - - - - - - - 
0 

21 c- 68 t0.215 68 0.215 - 2.27 1.21 0.7 0.4 0.35 0.20 0.14 0.12 0.08 
Uni- t34.5 

siel 65% c- 56 t0.358 56 0.358 20.1 - - - - - - - - - 
t: 6.2 

27 c- 72 10.235 72 0.235 - 2.53 1.49 0.88 0.52 0.44 0.26 0.19 0.15 0.11 
t ,<6.2 

81.8% c= 70 10.278 70 0.278 19.5 
tý6.5 

34 c- 74 t0.268 74 0.268 - 3.2 1.94 1.17 0.7 0.60 0.36 0.27 0.21 0.16 
t>6.5 

33.7% 
21 c- 30 + 26 log t 30 26 26 2.16 1.08 0.54 0.27 0.21 0.11 0.07 0.05 ' 

43.3% c- 44 + 29 log t 44 29 29 2.41 1.2 0.6 - - - - - - 
tS 72 

10 27 c- 40 t0.301 40 0.301 - - - - 0.48 0.42 0.25 0.18 0.14 0.10 
t> 72 

65.7% c= 122 t0.315 122 0.315 38.4 7.0 4.36 2.71 1.69 1.44 0.99 0.68 0.56 0.42 
41 

80. 22% 
50 c- 129 t0.35 129 0.35 45.2 8.98 5.72 3.65 2.32 2.0 1.28 0.98 0.82 0.62 

34.5% e= 30 + 20 log t 
t< 24 30 20 20 1.67 0.83 - - - - - - - 

27 0.26 
c- 32 t 

--` 

t3 24 
34 0.26 - - - 0.47 0.28 0.24 0.14 0.11 0.08 0.06 

20 5244% 
c- 57 t0.275 57 0.275 15.68 2.59 1.57 0.95 0.57 0.49 0.29 0.22 0.18 13 

64Z 0.301 
c= 70 t 70 0.301 21.1 3.71 2.29 1.4 0.87 0.74 0.46 0.34 0.28 

[0.21 

80.62 0.409 
c- 94 1 

t4 721 94 0.409 38.45 8.85 3.83 - - - - - - 
63 c- 108 t 

0.315 
108 0.315 - - - - 1.49 1.28 0.8 0.6 0.5 0.38 

t> 721 

26.32 c- 21 + 23 log t 
t. 17 21 23 23 1.9 - - - - - 

27 e- 32 t0.23 . 
t3 17 32 0.23 - - 0.63 0.37 0.22 0.18 0.11 0.08 0.06 0.04 

39.8% c- 32 + 30 log t 
t; 30 32 30 30 2.5 1.25 - - - 30 

41 0 
c- 48 t. 

235 

t 3.30 
48 0.235 - - - 0.58 0.34 0.29 0.17 0.12 0.1 0.07 

48 7% 0.240 50 c= 56 t 56 0.344 13.44 2.03 1.29 0.71 0.42 0.35 0.21 0.15 0.12 0.09 

61.3% c- 82 10.344 
tS 20 82 0.344 28.2 5.53 - - - - - - - - 

63 c- 113 10.251 
t 20 113 0.251 - - 2.6 1.56 0.93 0.79 0.47 0.35 0.28 0.20 
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FF! Table (6.18) Creep equation constants and creep rate of saturated gypsum in uniaxial 
and triaxial compression tests. 

Constants Creep rate, microstrainýat t 
a 

o3 
1 

x 100 
o Creep equation 

C n 
u 1 12 24 48 96 120 240 360 480 720 

or or hr. hr. hr. hr. hr. hr. hr. hr. hr. hr. 
A B 

371 
c- 51 t0.25 51 0.25 12.75 1.98 1.18 0.70 0.42 0.35 0.21 0.15 0.12 0.09 

8 

52% ca 124 10.42 124 0.42 52.1 - - - - - - - - - 2 t5 

0.257 11 c- 147 1 147 0.257 - 5.96 3.56 2.12 1.27 1.01 0.64 0.48 0.38 0.28 
0 

t32 
i - .n ax 0.5 

tal 70.9% e- 205 t 205 0.5 102.5 - - - - - - - - - 
t51 

15 c- 205 10.263 205 0.263 - 8.63 5.18 3.11 1.87 1.56 0.95 0.70 0.57 0.42 
t; 1 

80.4% c- 260 10.525 260 0.525 136.5 - - - - - - - - - 1 It 4 

0.269 17 c- 260 t 260 0.269 - 11.37 6.85 4.12 2.49 2.11 1.27 0.95 0.77 0.57 
t 

33% c= 60 + 40 log t 60 40 40 3.33 1.66 0.84 - - - - . - - 
t, 50 

15 e- 65 10.322 65 0.322 - - - - 0.95 0.82 0.51 0.39 0.32 0.24 

t1 50 

46% e- 74 t0.338 74 0.338 25.0 4.83 3.05 1.93 1.22 1.05 0.66 0.51 0.42 0.32 

10 21 
59.27 

t- 92 t0.386 92 0.386 35.51 7.72 5.05 3.29 2.15 1.88 1.23 0.96 0.8 0.63 

90.32 
- 250 t0.395 250 0.395 98.75 21.96 14.43 9.49 6.24 5.45 3.59 2.81 2.35 1.84 

41 

37.7% t- 50 + 40 log t 50 40 40 j"ý3 - - - - - - - - t5 17 

27 c- 82 10.261 82 0.267 - - 2.13 1.28 0.77 0.66 0.39 0.29 0.24 0.18 
t> 17 

57.4% 
C- 240 10.29 240 0.29 54.96 11.9 7.29 4.46 2.72 2.32 1.42 1.07 0.87 0.65 

0.22 
c- 503 t 69.7% 503 0.22 110.66 - - - - - - - - - 

t 13.6 
2 0 

50 0.312 
e- 360 t 360 0.312 - 20.32 12.61 7.83 4.86 4.17 2.59 1.96 1.61 1.22 

t> 3.2 

87.8% t- 680 10.21 
tf 12 680 0.21 14.28 - - - - - - - - 

63 e- 410 10.328 410 0.328 - 25.32 15.89 9.97 6.26 5.38 3.38 2.57 2.12 1.61 
Cl 12 

29.32 e- 45 + 38 log t 
tt 35 45 38 38 3.16 1.58 - - - - - - - 

27 e- 109 10.178 109 0.178 - - - 0.81 0.46 0.38 0.21 0.15 0.12 0.09 
t , 40 

30 44.51 
c- 178 10.202 178 0 202 36 4 95 2 82 1.64 0.94 0.79 0.45 0.33 0.26 0.19 

41 . . . 
54. X 

c- 225 10.246 225 0.246 55.35 8.76 5.24 3 13 1.87 1.59 0.95 0.70 0.57 0.42 
0 5 . . 

68.4% 
t- 452 10'258 452 0.258 116 6 18 10 69 6 2 77 3 3.19 1.89 1.39 1.12 0.83 

. . . . 
1 

I 
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at any given confining pressure in both dry and saturated conditions. 

The same behaviour has been reported by Williams and Elizzi(15,100). 

The creep rate increases with increasing axial stresses at constant 

confining pressure for a given loading time as shown in Tables(6.17) and 

(6.18) for both dry and saturated conditions respectively and as shown 

in Fig. (6.43). When the creep rates were plotted against the axial 

stress (a1) on log-log graph for a various constant loading time, straight 

lines were obtained indicating that the relationship between the creep rate 

(e) and the axial stress (a 
l) followed the power law of the form; 

R a1K where R and K are constants; R represents the creep rate 

value at Ql =I N/mm2 and K represents the slope of the straight line on 

the log-log graph. Fig. (6.44) shows four sets of these lines at 0 

(uniaxial) and 10 N/mm 2 
confining pressure under dry and saturated con- 

dition at various loading times (t). It can be noted from this figure 

that at each level of a3 the set of the relationships consists of several 

straight lines parallel or nearly parallel to each other, in other words, 

they have one slope or the same K value. 

Misra(79) found the same relationship in uniaxial creep tests on 

several rocks in dry condition. Afronz and Harvey 
(95) 

found that the 

average secondary creep rate of soft to medium strength rocks in both dry 

and water saturated conditions followed in general the relationship 

m oln where m and n are constants. Elizzi(15) reported the same 

relationship between the creep rate and the applied stress in dry uniaxial 

and triaxial creep tests. 

At constant differential stresses (i, - a3), the creep rate increases 

with increasing axial stress in both dry and water saturated conditions. 

Figs. (6.45) and (6.46) show the relationships between the creep rate and 

the axial stress at(a1 - a3)= 10 N/mm2 at various loading time for dry and 

saturated conditions respectively. It can be seen that all the relationships 
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are linear, the straight lines emanating from one point on the al-axis 

(negative value). Therefore, for every (a 1- a3) value there will be 

a set of these straight lines expressed in the general equation; 

9= (g + Ql) K; where e is the creep rate, g is the absolute value 

of a1 at e=0 and K is the slope of the straight line. From Figs. (6.45) 

and (6.46) the following equations at o1 - 03 = 10 N/mm2 are obtained: 

For dry condition (g = 11); 

e= (11 + al) K ..... (6.74) 

For saturated conditior (g = 26); 

= (26 + cr 1) K ..... (6.75) 

The values of K at this particular (al - a3) for different values of t 

in both dry and saturated gypsum are given in Table (6.19). 

Table(6.19) Values of K for various t at (a1-a3) = 10 N/mmu2. 

Time 
(h ) 

Kx 10-3 
ours 

Dry Saturated 

24 23.6 69.3 
120 7.3 19.2 

360 2.7 10.2 

720 1.8 6.4 

6.2.3 Effect of Confining pressure. 

The Moduli of Elasticity calculated by using the instantaneous 

strains, were explained in the previous section and shown in Fig. (6.39), 

these Moduli of Elasticity are plotted versus confining pressure in Fig. 

(6.40). This figure shows an increase of the Modulus of Elasticity in a 

linear relationship with the confining pressure in both environmental 

conditions dry and saturated. These results are in agreement with 

I, 
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Murrell's(116) results for the behaviour of Darley Dale sandstone under 

triaxial compression and Elizzi's(15) results on dry gypsum and anhydrite. 

The creep strain decreases with the confining pressure at a constant 

axial stress. Figs. (6.47) and (6.48) show the creep strain - time relation- 

ships at various confining pressures namely; 10,20 and 30 N/nm12 under a 

2 
constant axial stress of 27 N/mm , these figures are for dry and saturated 

conditions respectively. It can be seen that the effect of increasing the 

confining pressure of equal increments is larger at low values of o3 than 

- Q3), the effect of varying higher. At constant differential stresses (a 
1 

confining pressure on the creep strain is shown in Figs. (6.49) and (6.50) for 

dry and saturated gypsum respectively. As the confining pressure increases 

the creep strain increases at a constant differential stress (a1 - a3) in dry 

and saturated conditions. 

"Increasing the confining pressure on any rock changes some of its 

mechanical properties, it makes the rock more ductile than its nature at 

atmospheric pressure, it makes the rock deform under suitable axial load, 

(116) 
plastically rather than in a brittle manner" Murrell, The creep prop- 

erty is one of the rock's mechanical characteristics that is also affected 

by the change of confining pressure even under constant differential stresses. 

Williams and Elizzi(100) reported the same behaviour of the dry rock subjected 

to triaxial creep. 

Values of the creep equation constants C and n, Eq. (6.23), were 

plotted against the confining pressure at a constant axial stress. Figs. 

(6.51) and (6.52) show the effect of o3 on the values at a1 = 41 N/mm2 and 

a1 = 35 N/mm2 respectively. It can be observed that the increase in confine- 

ment decreases the values of the constants C and n in both dry and saturated 

conditions, this effect is non-linear. In other words, the effect of 

increasing confining pressure at constant axial stress is to decrease the 

H\y ý 
235 



creep rate. The creep rate was plotted versus confi:, i: <<; ýt 
2 

constant of = 41 N/mm in dry and saturated conditions for various values 

of t (time) in Fig. (6.53). A rapid decrease in the creep rate can be 

seen as the confining pressure increases, and the effect or. equal. varLatiun... 

of a is larger at low values of a3 than higher. Tr, ; could 

as the confining pressure may decrease the size, number and propagation of 

fracture during creep. Comte(83)Robertson(78), Williams and Eiizzi'ýQ1 

and others reported the same behaviour in different ý. k. s.. ýýýý jt" . tagt to .,;. 

triaxial creep. 

Figs. (6.54) and (6.55) for dry and saturated condiLiuns respectively--: 

show that at constant differential stresses (a1 - Q3) = 10, the creep Late 

increases slightly with the confining pressure, the variatiuei of the 

confining pressure has the largest effect at the earlier stage of the creep 

1týt ; .'.. 
". ; . tý and is greater in dry than in saturated condition.,. ' 

between the creep rates and the confining pressure were canstruccccr tar' 

various constant values of differential stresses (ol - a3), in Figs. (6, %) 

and (6.57) for dry and saturated specimens respectively at given time t 

24 hours. In dry condition, curves indicated linear r: ': .t;. v-t. 

the creep rate and the confining pressure for the v-lue, ºý- (71 
ý; "p. to 

25 N/mm2. In saturated condition similar behaviour was obtained, with 

linear relationship up to (a, - a3) = 15 N/mm, then the relationships 
2 

become non-linear thereafter. i 

In most cases of the dry condition the creep , "j L., ; iw d. -o-; OIL ; ̀e . 

confining pressure. For values of (aI - 03) more than 2ti 
.... 

' 

takes place in this relationship in that a minimum 

a particular value of confining pressure, when bot-i. 

in confinement results in increasing creep rate. 

In saturated condition the creep rate decreases with the confining 

pressure for (a1 - a3) values more than 15 N/imn. The offeet of the 
2 
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saturation will be discussed later in this chapter. Similar behaviour 

has been reported by Williams and Elizzi(100) on dry rocks. 

It can be seen from Figs. (6.56) and (6.57) that the creep rate in 

both dry and saturated conditions increases with increasing the differ- 

ential stresses at any given confining pressure, this is very clearly 

shown in Figs. (6.59) and (6.60) for dry and saturated conditions. This 

is in agreement with the results obtained by the investigators Comte 
(83) 

on dry rock salt and Wawersik(96) on saturated westerly granite. 

6.2.4 Water role in uniaxial and triaxial creep. 

As mentioned before, specimens in dry and water saturated conditions 

at similar levels of confining pressures were subjected to the similar 

axial stresses within the range set by the values of the ultimate stress 

which could be carried by the saturated sample. This was done to ensure 

the best comparison, and to determine the effect of the water saturation. 

Table (6.20) gives the instantaneous strains for dry and saturated 

conditions. It can be seen that the instantaneous strain for the 

saturated condition is more than that of the dry under the similar con- 

dition of Cl and Q3. The increase in the strain ranging from 23% to 39% 

of the dry value with about 30% as an average value in triaxial tests, in 

uniaxial the increase is about 47%. The Moduli of Elasticity which are 

calculated by using the instantaneous strains as described in Sec. (6.2.2) 

for both environmental conditions, were given in Table (6.16) and shown in 

Fig. (6.40). The saturation decreased the Modulus by about 29% in the 

uniaxial condition of loading and 23% in triaxial at all the confining 

pressure levels. These results are in agreement with various investi- 

gators; Afronz and Harvey 
(95) 

reported an appreciable increase in instant- 

aneous strain of the soft to medium strength rocks in uniaxial 

due to water saturation. Mann and Fatt(53) reported a decrease in 
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Table (6.20) Effect of saturation on the Instantaneous strain 
(c 

0) 
in uniaxial and triaxial creep. 

Dry Saturated Increase 
a3 Cr 1 i 2 2 nc due 
/mm N/mm %Q Inst. 

'Q Inst. 
t °u strain u strain 

o 
saturation 

(eo)}., t s. (ca)» s. % 

0 15 36 380 70.9 560 47 

Uniaxial 

21 33.7 460 46.3 640 39 

10 27 43.3 640 59.5 840 31 

41 65.7 1020 90.3 1310 29 

27 34.5 650 37.7 800 23 
41 52.4 950 57.2 1300 37 

20 
50 64 1200 69.7 1640 37 

63 80.6 1560 87.9 2080 33 

27 26.3 540 29.3 700 30 

41 39.8 860 44.5 1100 28 
30 

50 48.7 1080 54.3 1350 25 

63 61.3 1400 68.3 1780 27 
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Modulus of Elasticity of three sandstones by 8-20%. Mogilevskaya(5 
7) 

reported a decrease in Modulus of Elasticity of limestone by 5-20%, 

and in A. S. T. M. publication, in 1976, Chamberlain et al. 
(124) 

reported 

that the Modulus of Elasticity of three shales decreased by 10%, 59% and 

61% under 100% humidity. 

The effect of water saturation was found to increase the creep 

strain by remarkable amounts. Figs. (6.14) to (6.38) show the creep strain/ 

time relationships of dry and saturated conditions under uniaxial and 

triaxial loading at different stress. levels. Tables (6.8) to (6.15) give 

the detailed results of all these cases. To give a clear idea about the 

effect of saturation, creep curves for dry and saturated conditions for 

specimens subjected to similar stress conditions were plotted in Fig. 

(6.58). These cases are ßl = 50 N/mm2 at a3 = 20 N/mm2 and of = 41 N/mm2 

at a3 = 30 N/mm2. It can be seen from this particular example that the 

effect of the presence of water was to increase the creep strain by about 

3 to 7 times with 4 fold increase as an average in the first case and about 

2.5 to 6 times with 3 fold increase as an average in the second case. 

The creep strain in dry condition subjected to uniaxial and triaxial 

compression followed the logarithmic law, Eq. (6.22), at low axial 

stresses and at a short duration in the beginning of some of the medium 

stresses and follow the power law, Eq. (6.23), for the rest of the medium 

stresses and for the high stresses. Whereas in saturated conditions 

the creep strain followed the logarithmic law, Eq. (6.22) at a short 

duration of most of the low stresses and followed the power law, Eq. (6.23) 

at the rest of the low stresses and at medium and high stresses. This 

means that the water changes the creep behaviour from logarithmic relation- 

ships to power law. Since the water decreases the rock strength, it 

seems likely that the weaker the rock the lower the stress at which the 
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creep law changes to power law. Comte (83) found that the creep curves 

of the rock salt followed the power law from the very beginning of the 

tests. His work confirms the above conclusion because generally, rock 

salt is weaker than gypsum. Elizzi(15) reported that the creep curves 

of gypsum changed from logarithmic law to power law at lower stress than 

that of the anhydrite (stress given as % au). His work confirms the 

above conclusion as well because generally the gypsum is weaker than 

anhydrite. Griggs 
(71) 

found that the creep curves of alabaster in water 

followed the power law, Eq. (6.23) at low stresses. Wawersik(96) reported 

a power law relationship for the saturated westerly granite subjected to 

triaxial compression. 

The creep equation constants C and n of the power law were found to 

ý:. 

be increased by the influence of water. Figs. (6.41) and (6.42) show the 

effect of water on the values of these constants at various confining 

pressures. It can be seen that value of C increases sometimes by 400% 

and the value of n by 25%. In other words, the effect of the water 

saturation is to increase the creep rate. Fig. (6.43) shows the compari- 

sons between the creep rate of the dry and saturated gypsum at various a3 

for a given time t= 240 hours. Fig. (6.53) shows the creep rate/ 

confining pressure relations for dry ant saturated conditions at various 

times under constant ßl = 41 N/mm2. All the results indicated that the 

creep rate increases by appreciable amount when the samples were saturated 

with water (see tables (6.17) and (6.18) ). This increase reached up to 

10 fold with 5 fold as an average value. The creep rate in both dry 

and saturated conditions followed the form E=R 01K, as discussed 

previously in Sec. (6.2.2). The constants R and K are increased with 

water saturation indicating that the effect of the axial stress (a1) on 
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the creep rate in saturated condition is more than that on the dry. The 

creep rate of gypsum at constant (a1 - a3) was found to be more in 

saturated than that in dry conditions at any given time and confining 

pressure, see Figs. (6.54) and (6.55). The same behaviour was found when 

the rock was subjected to constant (a1 - 03) and the creep rate taken at 

particular time and axial stress, see Figs. (6.45) and (6.46). Figs. (6.56) 

and (6.57) for dry and saturated conditions respectively show that the 

increasing creep rate of saturated gypsum with (a1 - a3) at constant values 

of a3 and time is more than in the case of dry material under the same stress 

conditions, this is clearly shown in Figs. (6.59) and (6.60). 

Griggs 
(70) 

(1939) reported increase in creep rate of alabaster 

immersed in water more than 25 times that when it was dry under a constant 

load of 100 Kg/cm2. Griggs 
(71) 

(1940) reported also, that the creep rate 

under a constant differential stress greatly accelerated and exhibited an 

entirely different behaviour when saturated with water and this increase 

became higher when the saturated specimens were subjected to higher differ- 

ential stresses. Misra(79) reported that water saturation increases 

the creep rate of many rocks by appreciable amounts. 

Afronz and Harvey 
(95) 

reported an increase in creep rate of the 

saturated coal of 3 fold and in saturated shales of 8 fold. Wawersi1(96) 

found that the creep rate of saturated westerly granite and sandstone 
(increased 

by at least two times. Wu and Thomson98ý reported an apprec- 

iable increase in axial creep rate of Westerly granite by water saturation. 

The creep rates were plotted versus the differential stresses 

(Q1 Q3) at various confining pressures in Figs. (6.59) and (6.60) for 

dry and saturated conditions respectively. A linear relationship was 

obtained for each a3. It can be seen that the behaviour of these relation- 

ships was completely changed by the water saturation. The creep rate in dry 
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conditions increases with the ((j 
1- a3) at constant o3 and with o3 at 

constant (aI - a3) and the straight lines are nearly parallel to each other. 

Whereas in saturated conditions the creep rate increases with the a3 at 

constant (Q1 - 03) up to the aI - a3 = 15 N/ßn2 then the creep rate starts 

2 
to decrease with the a3 for (ci - v3) higher than 15 N/mm. This may be 

explained in conjunction with the solubility of the gypsum. Due to 

relatively high solubility of the gypsum in water, the solubility of the 

gypsum (alabaster) and the mobility of the solute increase with the 

(125) 
pressure up to same pressure value. It might be expected that the 

effect of increased confining pressure by forcing liquie into and through 

the pores of the solid, will increase the effective surface area and so 

results in a higher initial creep rate until those open spaces become 

filled with deposited material. 

Griggs 
(71) 

stated that the effect under differential stresses would be 

to dissolve material at the points of stress concentration and thus relieve 

the localized stress inevitable in any crystalline aggregate. This would 

have the effect of rendering the stress distribution more homogeneous 

throughout the specimen. In other words a decreased stress-concentration 

effect means a decrease of the creep rate at higher differential stress with 

the confining pressure. Wawersik(96) reported the same behaviour in the 

creep rate of the saturated westerly granite under differential stresses. 

Figs. (6.59) and (6.60) indicate that the creep mechanism of 

saturated rock is different from that of the dry rock. Observing the 

effect of a3 at constant (a 
1- a3) on the saturated gypsum, we see an 

increase in the creep rate with increasing o3 up to a certain value of 

( of - a3). Above this value the creep rate starts to decrease for higher 

values of (a 
1- a3) and the reversal of the effect of a3 occurs. This 

shows that more complex creep processes may be taking place in the case of 
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the saturated gypsum, possibly 

dominant. 

In evaluating the effect 

gypsum, the following investig, 

(1939) suggested that when the 

dissolution would occur at the 

solution, recrystallization, etc. becoming 

of water on the creep and creep rate of the 

ators suggested the following; Griggs 
(70) 

gypsum (alabaster) is immersed in water 

most highly stressed regions and deposition 

at the free regions, the creep would thus take place by recrystallization. 

Griggs 
(71) (1940), however, found that the creep rate of the alabaster speci- 

mens increased when the soaking solution was subjected to 'ressure. He 

suggested that the creep rate of alabaster is not due to simple recrystalli- 

zation but may be a function of ionic mobility of gypsum in the solvent 

(Ca++ SO4 ). Misra reported that the effect of water on the creep of 

the partially soluble rocks, anhydrite and beerstone, is mainly due to 

solution in it. Varo and Passaris(102) (1977) reported that the creep of 

the halite in saturated brine is due to recrystallization and in water the 

effect is one of solution. 

The behaviour of the creep was changed in most of the cases from 

logarithmic law, Eq. (6.22) to power law, Eq. (6.23), under the same stress 

conditions by the water saturation in this study. This effect was 

explained by Griggs 
(70) 

as being due to recrystallization. On the other 

hand, the gypsum is relatively highly soluble in water. In the author's 

view it seems difficult to adequately separate the effects of solution, 

recrystallization and ionic mobility. Clearly the more soluble the rock 

the more the effects of solution. Recrystallization must be affected 

by solubility and by ionic mobility. It thus seems most likely that all 

these factors influence the creep behaviour of saturated gypsum. 

243 



6.2.5 Empirical Equation. 

The creep data of dry and saturated gypsum in an axial direction, 

were regressed using a least squares curve fitting computer program (multiple 

regression) for the combination of the variables. The creep strain was 

considered as the dependent variable and the independent variables were 

loading time and axial stress. This program considered a combination of 

ten curve types, including exponential functions, power law functions and 

logarithmic functions. For each confining pressure a power law function 

gave the best fit for times greater than 24 hours and within the given 

experimental loading times. This function was of the form: 

e=aaIb tc ..... (6.76) 

Where c is the creep in microstrain, of is the axial stress in N/mm2, 

t is the loading time in hours and a, b and c are constants depending on 

the environmental conditions and confining pressure. 

The values of the constants a, b and c are given in Table (6.21) for 

the specified conditions. A plot showing the variation of the values of 

a, b and c with confining pressure (a3) is given in Figs. (6.61) and (6.62) 

for dry and saturated conditions respectively. 

Hansen 
(131) 

(1977) reported that the axial creep of dry salt could be 

represented by a similar empirical equation in which the differential 

stresses (a1 - a3) are used in the place of axial stress (a 
1 

). 

The predicted creep strain using the above equation, was compared 

with the actual values. It was found that the variation for most of the 

values (not less than 90% of the total) did not exceed 12% in each case. 

To give a clear idea about the general variations in the results of the 

actual and predicted, "Standard Error of Estimate, SEE" and the combined 

"Correlation coefficients, COR. COF" were calculated for each case. 
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Table (6.21) Constants of the Empirical equations at dry and saturated 

gypsum for various confining pressures. (c =a alb tc). 

Constant Dry Condition ** 
* COR. 

SEE 3 COF. 

ýmm2 a b c 

0 
(uniaxial) 1.46413 1.19285 0.22041 20 0.968 

10 0.01036 2.48775 0.30364 48 0.990 

20 0.14127 1.51930 0.36438 36 0.987 

30 0.20246 1.38385 0.33990 19 0.987 

Saturated Condition 

0 5.60454 1.22733 0.29695 60 0.977 (uniaxial) 

10 1.12259 1.43017 0.34792 104 0.963 

20 0.25839 1.90908 0.22277 233 0.947 

30 0.58702 1.74686 0.23135 53 0.986 

* 
SEE - Standard Error of Estimate (See Appendix (C) for Computation). 

**COR. COF. - Correlation Coefficient. 

These values are given in Table (6.21). It can be seen that the correl- 

ation coefficient is not less than 0.947 in any of the cases, which indicates 

a good significant degree of correctness. 
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Chapter 7. 

LATERAL AND VOLUMETRIC CREEP IN COMPRESSION. 

Lateral creep was measured under uniaxial and triaxial compression at 

room temperature, the tests being performed in both dry and saturated 

conditions. The axial stresses and confining pressures were the same as 

those used for the axial creep (axial and lateral creep strains were 

measured from the same specimen under any condition), the axial stresses used 

were; (33 - 7)% ; (50 - 7)% (65 - 6)% and (85 - 5)7 of the failure stresses. 

2 The confining pressure levees were 0,10,20 and 30 N/mm. Volumetric creep 

strains were calculated by using the axial and lateral creep strains under 

the same conditions. Lateral and volumetric creep behaviours and some 

factors affecting them will be discussed in this chapter. 

7.1 General Consideration of the Lateral Creep Measurements. 

The creep strains were measured at five different points on the speci- 

men surface by attaching 10 strain gauges in five pairs along the specimen 

at equal intervals, the two strain gauges of each pair were mounted on the 

opposite sides of the specimen, see (Section 5.2.2.1.6) and Fig. (5.20). 

The results obtained indicated that the lateral creep strains are approxi- 

mately symmetrical about the middle of the specimen, i. e. the creep strain 

at L/6 from the top end of the specimen is nearly equal to that at L/6 from 

the bottom end as indeed might be expected. The lateral creep strain at 

L/6 was for the purposes of the tests considered equal to that at 5L/6 while 

that at 2L/6 was assumed to equal that at 4L/6, where L is the specimen 

length, and averages were taken of these pairs of positions to give the 

lateral strain values. The results indicated that the lateral creep 

strain within the middle third of the specimen is nearly uniform over the 

whole test period. This behaviour was observed in both dry and saturated 
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conditions and at various confining pressures. Tables (7.1) and (7.2) give 

the average value of the creep strain at different positions along the 

specimen for dry and saturated conditions respectively under 27 N/mm2 axial 

stress at 30 N/mm2 confining pressure. Figs. (7.1) and (7.2) show the 

distribution of the lateral creep strain along the specimen for dry and 

saturated conditions respectively at various axial stresses under 30 N/mm2 

confining pressure. It can be seen from the tables and the figures that 

the lateral creep strain within the middle third of the specimen rarely 

exceeds 5%. In this study the author considered the average lateral 

creep within the middle third of the specimen as the lateral creep strain 

under any given stress conc: ition. Peng 
(31) 

measured the lateral strains 

at 8 points along the granite specimens of size 63.5 mm long by 31.8 mm diameter 

by using strain gauges, he reported a uniform strain in the middle third of the 

specimen subjected to uniaxial and triaxial stresses and under similar end 

conditions to those used in this study (direct contact with steel platens with 

a spherical seat at the end. 

7.2 Lateral Creep Behaviour in Dry and Saturated Conditions. 

The behaviour of the lateral creep under uniaxial and triaxial stresses 

in both environmental conditions obeyed reasonably well either the power law, 

Eq. (6.23), which is e= Ctn, or power law and logarithmic law, Eq. (6.22) 

which is e=A+B log t. The graphical presentation of these relationships 

are given in detail in chapter 6. 

Figs. (7.11) and (7.12) show the creep strain-time relationships on 

semi-log and log-log graph respectively for dry condition under triaxial 

loading at 10 N/mm 2 
confining pressure with the creep equations. Figs. 

(7.13) and (7.14 ) show also the creep strain-time relationship on semi-log 

and log-log graphs respectively for saturated conditions under uniaxial 

stress with creep equations. 
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Table (7.1) Axial, Lateral and Volumetric creep at 

a1 = 27 N/mm2, a3 = 30 N/mm2 in dry 

condition. 

L1 
L/2 ty L2 

-t- L3 

L/6 

Lateral 
l A i 

Time, a x Volumes Average 
hours L1 L2 L3 

ric Lateral 

Instantaneous strain, Microstrain 

540 72 106 114 320 -110 

Creep strain, Microstrain 

0.1 6.8 2.0 2.7 4.0 0.1 -3.4 
0.3 10.0 4.0 5.4 6.1 -1.5 -5.7 
0.5 14.0 6.4 7.8 8.8 -2.6 -8.3 
1.0 21.1 9.1 11.4 11.8 -2.1 -11.6 
2.0 24.9 11.8 13.4 15.2 -3.7 -14.3 
3.0 28.9 14.1 17.5 18.5 -7.1 -18.0 
4.0 32.6 16.2 19.9 21.9 -9.2 -20.9 
5.0 35.6 17.9 22.5 24.5 -11.4 -23.5 
6.0 38.5 19.2 24.5 26.9 -12.9 -25.7 

12.0 45.0 24.2 31.3 34.0 -20.3 -32.6 
24.0 54.3 29.0 39.4 41.7 -26.8 -40.6 
48.0 74.1 35.4 47.5 51.5 -24.9 -49.5 
72.0 87.1 41.1 55.9 58.7 -27.5 -57.3 
96.0 79.9 45.8 62.9 67.7 -50.7 -65.3 

120.0 108.0 49.8 69.7 74.4 -35.4 -72.1 
144.0 117.3 54.3 76.5 80.5 -39.7 -78.5 
168.0 124.8 58.3 81.8 85.6 -42.6 -83.7 
192.0 131.4 61.9 86.2 90.9 -45.7 -88.6 
216.0 136.7 65.4 88.3 97.0 -48.6 -92.7 
240.0 141.9 68.0 96.9 103.7 -58.7 -100.3 
264.0 146.9 70.7 101.7 108.3 -63.1 -105.0 
288.0 151.3 72.4 106.8 113.4 -68.9 -110.1 
312.0 155.2 74.4 111.1 118.5 -74.4 -114.8 
336.0 158.0 75.8 114.4 120.1 -76.5 -117.3 
360.0 160.3 77.4 116.9 121.5 -78.1 -119.2 
384.0 162.5 78.1 117.4 122.9 -77.8 -120.2 
408.0 164.1 78.8 118.2 123.5 -77.5 --120.9 
432.0 165.5 79.5 118.9 123.9 -77.3 -121.4 
456.0 166.2 79.5 118.9 123.9 -76.6 -121.4 
480.0 166.4 79.5 118.9 123.9 -76.4 -121.4 

I 

I 
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Table (7.2) Axial, Lateral and Volumetric Creep 

at a1 = 27 N/mm 
2, 

a3 = 30 N/mm2 

in saturated condition. 

L/2 
L1 
L2 
L3 

L/6 

Lateral 
i l et l V Avera e a Ax o um g Time, Ll L2 L3 ric Lateral 

hours 

Instantaneous strain, Microstrain 

700 104 169 183 348 -176 

Creep strain, Microstrain 

0.1 12.5 6.4 10.8 13.1 -11.4 -12.0 
0.3 23.5 12.4 18.5 21.3 -16.3 -19.9 
0.5 31.7 19.5 26.0 30.0 -24.3 -28.0 
1.0 40.0 23.6 39.7 45.5 -45.2 -42.6 
2.0 84.4 31.0 47.2 53.5 -16.3 -50.4 
3.0 56.7 38.4 56.9 62.3 -62.5 -59.6 
4.0 61.0 43.4 63.6 68.4 -71.0 -66.0 
5.0 65.3 49.2 69.0 75.4 -79.1 -72.2 
6.0 70.2 53.5 74.0 80.8 -84.6 -77.4 

12.0 92.3 62.9 92.9 97.0 -97.6 -95.0 
24.0 110.2 72.7 114.1 123.5 -127.4 -118.8 
48.0 147.1 81.1 137.7 144.4 -135.0 -141.1 
72.0 172.5 88.2 157.3 162.9 -147.7 -160.1 
96.0 195.4 96.7 172.7 179.1 -156.4 -175.9 

120.0 216.7 104.0 185.1 195.6 -164.0 -190.3 
144.0 232.9 113.1 198.3 208.4 -173.8 -203.4 
168.0 248.2 120.9 211.4 222.5 -185.7 -217.0 
192.0 261.7 126.5 221.4 234.3 -194.0 -227.9 
216.0 275.2 133.0 232.5 245.1 -202.4 -238.8 
240.0 287.3 140.1 242.4 255.5 -210.6 -249.0 
264.0 297.1 146.5 250.5 267.7 -221.1 -259.1 
288.0 303.3 151.8 258.6 276.6 -231.9 -267.6 
312.0 316.7 157.3 267.2 285.1 -235.6 -276.2 
336.0 325.8 161.9 277.8 293.6 -245.6 -285.7 
360.0 334.1 165.3 288.3 302.0 -256.2 -295.2 
384.0 341.4 167.4 292.6 310.1 -261.3 -301.4 
408.0 348.7 171.0 299.3 316.8 -267.4 -308.1 
432.0 355.7 175.0 306.0 323.8 -274.1 -314.9 
456.0 362.9 178.5 309.8 330.3 -277.2 -320.1 
480.0 369.5 183.1 318.2 335.6 -284.3 -326.9 
504.0 375.6 187.1 326.9 340.7 -292.0 -333.8 
528.0 381.4 189.9 333.0 345.4 -297.0 -339.2 
552.0 388.2 192.6 339.1 351.5 -302.4 -345.3 
576.0 391.0 197.7 345.1 357.5 -311.6 -351.3 
600.0 398.6 200.7 351.2 361.3 -313.9 -356.3 
624.0 404.5 201.3 356.2 365.3 -317.0 -360.7 
648.0 409.9 206.7 359.6 369.7 -319.4 -364.7 
672.0 415.0 209.4 363.6 371.7 -320.3 -367.7 
696.0 419.0 211.4 365.9 374.7 -321.6 -370.3 
720.0 423.6 213.4 368.7 377.4 -322.5 -373.1 

I 
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The relationships obtained in dry and saturated conditions are as 

follows: 

a. Dry Condition. 

The results of the lateral creep are in the form of tables and figures 

and are given in tables from (7.3) to (7.6) and figures from Fig. (7.3) to 

Fig. (7.6). 

1) For uniaxial compression, see Table (7.3) and Fig. (7.3), the creep 

behaviour followed the following relationships according to the applied 

stresses: 

at al = 15 N/mm2 = 36% au 

e= 32.5 t0.355 t -1 2 hrs. ..... (7.1) 

C= 34 t0.254 t>2 hrs. ..... (7.2) 

at a1 = 21 N/mm2 = 50.3% a 

e= 32.5 t0.355 t< 12 hrs. ..... (7.3) 

e= 36.5 t0'296 t3 12 hrs. ..... (7.4) 

at a1 = 27 N/mm2 = 65% a u 
c= 32.5 10.355 t< 25 hrs. ..... (7.5) 

c= 37.5 t0.318 t, 25 hrs. ..... (7.6) 

at a1 = 34 N/mm 2= 81.8% a 
u 

e= 37.5 t0.355 t< 54 hrs. ..... (7.7) 

C= 45 t0.34 t> 54 

It is clear from the above equations that 

loading followed the power law for all th, 

of the constants C and n, Eq. (6.23), are 

the beginning of the tests indicated by a 

lines on the log-log graphs. 

hrs. ..... (7.8) 

the lateral creep in uniaxial 

e applied stresses. The values 

changed within a short time from 

change in the slope of the straight 
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Table (7.3) Lateral Creep of dry gypsum in Uniaxial Compression. 

Axial stress, N/mm2 

15 21 27 34 
36% a 50.3% a 65% a 81.8% a 

u u u u 
Time 

Instantaneous strain, Microstrain 

100 152 
7 -19 

261 

Creep strain, Microstrain 

0.1 14.1 14.2 14.2 15.8 
0.3 21.5 22.1 22.9 22.3 
0.5 27.0 27.5 27.4 29.5 
1.0 33.2 33.0 32.7 36.3 
2.0 39.7 ± 6% 40.1 ± 5% 39.5 - 6% 45.0 - 3% 
3.0 46.1 47.4 48.0 55.8 
4.0 51.1 54.5 54.3 64.5 
5.0 53.6 58.2 59.4 72.9 
6.0 56.2 62.8 63.8 69.3 

12.0 69.1 76.2 81.0 97.8 
24.0 79.6 ± 6% 93.7 6% 94.8 8% 119.2 - 4% 
48.0 89.5 107.3 109.3 143.3 
72.0 97.2 119.1 122.2 163.4 
96.0 107.0 133.5 137.4 178.5 

120.0 116.9 142.9 148.4 197.5 
144.0 124.4 151.2 155.7 212.3 
168.0 131.7 160.3 165.4 226.2 
192.0 138.8 170.4 175.7 244.5 
216.0 141.7 178.9 186.5 258.2 
240.0 143.6 187.5 - 7% 197.8 - 5% 268.5 ± 5% 
264.0 146.2 194.6 207.8 278.5 
288.0 146.3 - 7% 203.2 217.3 285.6 
312.0 209.8 226.6 297.7 
336.0 217.0 234.5 311.5 
360.0 223.9 242.5 320.1 
384.0 228.6 250.8 327.2 
408.0 231.5 259.9 334.7 
432.0 234.2 266.6 345.0 
456.0 236.9 273.3 353.8 
480.0 239.5 279.4 361.8 
504.0 241.6 285.3 368.3 
528.0 243.0 289.6 373.7 
552.0 244.6 - 7% 293.7 378.6 
576.0 296.9 383.0 
600.0 299.7 385.9 
624.0 302.2 388.4 
648.0 303.9 390.2 
672'. 0 305.3 391.9 
696.0 306.2 392.7 
720.0 + 307.1 - 5% + 393.9 - 5% 
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Table (7.4) Lateral Creep of dry gypsum in triaxial at 10 N/mm 
2 

confining pressure. 

Axial stress, N/mm2 

Time, 21 27 41 50 
33.7% Q 43.3% a 65.7% a 80.2% a hours u u u u 

Instantaneous strain, Microstrain 

110 143 250 308 

Creep strain, Microstrain 

0.1 5.4 5.7 56.6 66.7 
0.3 8.6 10.0 75.9 84.9 
0.5 12.6 17.1 90.8 102.5 
1.0 17.7 21.0 106.1 121.7 
2.0 23.7 + 8% 27.1 ± 6% 124.2 - 5% 140.7 - 10% 
3.0 28.1 31.7 137.6 157.9 
4.0 30.3 35.6 150.9 167.7 
5.0 33.7 39.0 163.7 178.4 
6.0 36.5 42.3 177.0 191.7 

12.0 45.4 53.7 195.7 228.8 
24.0 64.7 7% 68.7 ± 7% 219.7 - 5% 270.7 117. 
48.0 85.5 87.5 253.5 326.8 
72.0 101.3 104.5 286.7 365.0 
96.0 113.1 123.4 312.2 395.5 

120.0 124.6 138.8 333.2 419.7 
144.0 135.1 152.2 353.5 442.7 
168.0 144.8 162.9 368.5 460.7 
192.0 157.9 174.1 380.7 480.6 
216.0 167.5 184.2 390.4 496.6 
240.0 177.1 - 7% 194.4 ± 7% 398.9 - 4% 515.0 ± 10% 
264.0 185.0 204.3 407.0 533.1 
288.0 193.9 213.0 413.2 543.4 
312.0 201.7 221.6 418.0 555.1 
336.0 207.8 229.4 424.0 569.1 
360.0 213.1 236.2 429.0 577.8 
384.0 216.7 243.8 234.0 587.8 
408.0 220.1 249.3 437.0 599.1 
432.0 222.8 255.8 441.5 607.0 
456.0 225.1 261.4 444.0 615.3 
480.0 226.2 265.9 449.0 622.2 
504.0 227.2 269.6 452.2 626.7 
528.0 227.2 ± 6% 275.5 455.2 631.6 
552.0 278.9 458.0 634.9 
576.0 283.6 460.5 638.2 
600.0 287.7 463.3 641.7 
624.0 290.8 466.0 644.2 
648.0 293.6 467.9 647.0 
672.0 295.4 469.3 650.0 
696.0 297.3 470.5 652.3 
720.0 298.9 ± 8% 471.0 ± 4% 654.2 ± 8% 
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Table (7.5) Lateral Crep of dry gypsum in triaxial at 
20 N/mm confining pressure. 

Axial stress, N/mm2 

27 41 50 63 
34.5% cr 52.4% a 64% a 80.6% a 

Time, u u u u 

hours Instantaneous strain, Microstrain 

129 200 280 356 

Creep strain, Microstrain 

0.1 3.6 9.1 14.4 25.9 
0.3 7.2 16.0 18.9 40.3 
0.5 11.3 20.5 24.2 57.5 
1.0 15.1 26.1 29.4 76.2 
2.0 19.6 5% 29.7 8% 34.3 ± 8% 120.0 ± 6% 
3.0 24.7 33.1 39.2 140.5 
4.0 29.4 36.0 44.1 153.1 
5.0 32.8 39.2 48.1 162.2 
6.0 35.7 43.1 52.6 169.2 

12.0 43.8 65.0 94.6 196.9 
24.0 53.4 ± 4% 98.0 ± 8% 134.6 - 8% 219.4 - 8% 
48.0 63.2 141.0 157.6 280.5 
72.0 73.0 182.8 174.6 311.7 
96.0 80.7 201.6 194.2 339.2 

120.0 88.4 215.2 210.8 361.3 
144.0 94.4 226.4 226.3 373.3 
168.0 99.2 236.4 240.2 386.7 
192.0 104.4 243.9 252.5 402.2 
216.0 109.0 251.1 262.7 417.3 
240.0 114.9 ± 4% 257.7 ± 8% 273.1 ± 7% 433.5 - 7% 
264.0 119.7 264.7 283.4 443.1 
288.0 123.8 270.3 290.8 457.1 
312.0 127.7 276.6 299.0 468.9 
336.0 131.3 281.4 307.3 480.3 
360.0 134.9 285.0 314.8 491.9 
384.0 138.1 290.1 322.2 501.8 
408.0 141.5 295.2 328.8 512.1 
432.0 144.9 300.2 335.1 520.9 
456.0 149.7 304.4 341.6 529.2 
480.0 150.6 307.6 347.7 537.7 
504.0 154.0 310.6 353.8 544.8 
528.0 156.6 313.5 360.7 552.0 
552.0 158.2 316.1 364.7 560.5 
576.0 159.5 318.1 370.1 567.8 
600.0 160.7 ± 3% 319.6 375.1 572.8 
624.0 320.8 379.5 581.8 
648.0 321.7 384.0 588.4 
672.0 322.8 388.6 593.5 
696.0 323.2 392.4 597.9 
720.0 323.6 ± 9% 395.9 4% 601.7 - 5% 
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Table (7.6) Lateral Creep of2dry gypsum in triaxial at 
30 N/mm confining pressure. 

Axial stress, N/mm 
2 

27 41 50 63 
26.3% ü 39.8% ct 48.7% a 61.37 a 

Time, u u u 

hours Instantaneous strain, Microstrain 

110 162 201 257 

Creep strain, Microstrain 

0.1 3.4 6.1 7.3 12.3 
0.3 5.7 9.4 13.5 26.0 
0.5 8.3 12.4 19.0 37.5 
1.0 11.5 16.9 23.9 47.2 
2.0 + 14.3 - 4% + 22.9 - 3% + 32.4 - 4% + 62.0 - 6% 
3.0 18.0 29.3 39.3 73.0 
4.0 20.9 34.7 44.6 83.4 
5.0 23.5 39.4 49.4 93.0 
6.0 25.7 43.5 51.9 101.9 

12.0 32.6 56.6 61.1 144.3 
24.0 + 40.6 - 6% + 72.4 - 3% + 73.2 - 6% + 182.2 - 67. 
48.0 49.5 87.4 96.8 224.3 
72.0 57.3 100.2 119.8 255.2 
96.0 65.3 111.8 140.2 284.0 

120.0 72.1 122.8 155.8 305.7 
144.0 78.5 131.3 170.3 320.9 
168.0 83.7 140.4 180.0 338.8 
192.0 88.6 147.5 189.7 354.0 
216.0 92.7 156.4 197.3 368.4 
240.0 100.3 - 7% 163.2 4% 205.3 - 6% 381.5 - 7% 
264.0 105.0 169.5 211.8 392.4 
288.0 110.1 174.6 220.0 404.0 
312.0 114.8 179.5 225.2 413.5 
336.0 117.3 184.2 232.3 422.7 
360.0 119.2 187.2 237.2 431.7 
384.0 120.2 190.9 245.0 439.4 
408.0 120.9 193.7 250.5 446.7 
432.0 121.4 - 8% 196.0 256.4 454.0 
456.0 121.4 197.2 261.3 461.0 
480.0 121.4 197.9 265.7 467.7 
504.0 198.2 ± 6% 269.4 473.7 
528.0 198.2 272.2 479.7 
552.0 198.2 275.2 485.9 
576.0 277.4 491.5 
600.0 278.9 495.5 
624.0 280.0 - 7% 501.5 
648.0 280.0 506.4 
672.0 280.0 510.9 
696.0 514.7 
720.0 + 517.6 - 8% 
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2) For triaxial compression at 10 N/mm2 confining pressure, the following 

relationships were obtained, see Table (7.4) and Fig. (7.4): 

at a1 = 21 N/mm2 = 33.7% au 

e = 17 + 47 log t ti 16 hrs. ..... (7.9) 

40 t0.222 t> 16 hrs. ..... 
(7.10) 

at of = 27 N/mm2 = 43.3% 
u 

e = 26 + 71 log tt 16 hrs. ..... (7.11) 

C = 44 t0.23 t> 16 hrs. ..... (7.12) 

at al = 41 N/mm2 = 65.7% a u 
e = 104 t0.267 ,,.,, (7.13) 

at Ql = 50 N/-- = 80.2% a 
u 

e = 118 t0.267 ,.... (7.14) 

The lateral cr eep behaviour at th is confining pressure level followed the 

power law, Eq. (6.23), except at the low and medium stresses for a short 

duration from the beginning of th e tests where the logarithmic law was 

followed, Eq. (6.22), after which the results deviated to follow the power 

law. Namely at a1 = 21 N/mm2 (3 3.7% au) for the first 16 hours and at 

a1 = 27 N/mm2 (43.3% au) for the first 16 hours also. 

3) For triaxial compression at 20 N/mm2 confining pressure, the following 

relationships were obtained, see Table (7.5) and Fig. (7.5): 

at a1 = 27 N/mm2 = 34.5% a 
u 

e = 17 + 19 log tt< 30 hrs. ..... 
(7.15) 

e = 24.5 10'22 t> 30 hrs. ..... (7.16) 

at al = 41 N/mm2 = 52.4% a 
u 

e = 25 10.338 t 20 hrs. ..... (7.17) 

c = 64 t0.230 t> 20 hrs. ..... (7.18) 
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at a 50 N/mm2 = 64% a u 

C= 32.5 t0'387 t< 160 hrs. ..... (7.19) 

C= 69 t0.242 t, 160 hrs. ..... (7.20) 

at al = 63 N/mm2 = 80.6% a u 

= c 80 t0.49 t, 2 hrs. ..... (7.21) 

C= 97 t0.271 t>2 hrs. ..... (7.22) 

At this level of confining pressur e, the creep behaviour followed a power law, 

Eq. (6.23), except for the low axi al stress a1 = 27 N/mm2 when for the first 

17 hours a logarithmic law was fol lowed after which a change to a power law 

occurred. 

4) For triaxial compression at 30 N/mm2 confining pressure, the following 

relationships were obtained, see T able (7.6) and Fig. (7.6): 

at of = 27 N/mm2 = 26.3% a 
u 

e= 12 + 15 log t t. 14 hrs. ..... 
(7.23) 

e= 24 t0.189 t> 14 hrs. ..... (7.24) 

at Ql = 41 N/mm2 = 39.8% a 
u 

e= 18 t0.39 t< 160 hrs. ..... (7.25) 

C= 48 t0.20 t3 160 hrs. ..... (7.26) 

at al = 50 N/mm2 = 48.7% Q u 
e= 24.3 t0'4 t< 190 hrs. ..... (7.27) 

e= 78 t0.21 t^ 190 hrs. ..... (7.28) 

at al = 63 N/mm2 = 61.3% v u 

e= 46 t0.41 t< 190 hrs. ..... (7.29) 

C= 137 t0'225 t, 190 hrs. ..... (7.30) 

It is clear from the above equations that the lateral creep be haviour followed 

the power law, Eq. (6.23), except tinder low axial stress a1 = 27 N/mm2 
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(26.3% au) when results followed a logarithmic law before deviating after 

14 hours to follow the power law thereafter. 

b. Saturated Condition. 

The lateral creep results of the saturated gypsum subjected to the 

uniaxial and triax ial stresses are given in tables from (7.7) to (7.10) and 

shown in figures from (7.7) to (7.10). 

1) For uniaxial compression, the following relationships were obtained 

according to the applied stresses, see Table (7.7) and Fig. (7.7) : 

at a1 = 8 N/mm2 = 37% a u 
62 t0.271 ..... (7.31) 

at vl = 11 n/mm2 = 52% a 
u 

E= 160 t0.28 ..... 
(7.32) 

at al = 15 N/mm2 = 70.9% a u 

c= 230 t0.285 ..... (7.33) 

at a1 = 17 N/mm2 = 80.4% a u 

C= 283 t0.29 ..... (7.34) 

The lateral creep behaviour in uniaxial stresses in saturated conditions 

followed the power law for all applied stresses. 

2) For triaxial loading at 10 N/mm2 confining pressure, the following 

relationships were obtained, see Table (7.8) and Fig. (7.8): 

at al = 15 N/mm2 = 33% a u 

c= 45 + 30 log t t-ý 24 hrs. ..... (7.35) 

c= 76 t0.206 t> 24 hrs. ..... (7.36) 

at a1 = 21 N/mm2 = 46.3% a u 

e= 140 + 75 log tt<, 12 hrs. ..... 
(7.37) 

C= 158 10.229 t> 12 hrs. ..... 
(7.38) 
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Table (7.7) Lateral Creep of saturated gypsum in uniaxial compression. 

Axial stress, N/mm2 

8 11 15 17 
37% a 52% a 70.9% a 80.4% a 

Time, u u u u 

hours Instantaneous strain, Microstrain 

110 162 250 282 

Creep strain, Microstrain 

0.1 33.2 84.0 119.3 145.1 
0.3 42.6 108.5 154.9 189.3 
0.5 51.4 131.8 188.8 231.5 
1.0 62.0 160.0 230.0 283.0 
2.0 74.8 ± 6% 194.3 ± 8% 280.2 - 6% 346.0 - 5% 
3.0 83.5 217.6 314.6 389.2 
4.0 90.3 235.9 341.4 423.0 
5.0 95.9 251.1 363.9 451.3 
6.0 100.8 264.2 383.3 475.8 

12.0 121.6 320.8 467.0 581.8 
24.0 146.7 - 5% 389.6 ± 8% 569.0 - 6% 711.3 - 4% 
48.0 177.0 473.0 693.2 869.7 
72.0 197.6 529.9 778.2 978.2 
96.0 213.6 574.3 844.6 1063.3 

120.0 226.9 611.4 900.1 1134.4 
144.0 238.4 643.4 948.1 1195.9 
168.0 248.6 671.7 990.7 1250.6 
192.0 257.7 697.3 1029.1 1300.0 
216.0 266.1 720.7 1064.3 1345.2 
240.0 273.8 + 5% 742.3 ± 7% 1096.7 - 4% 1386.9 + 3% 
264.0 281.0 762.4 1126.9 1425.8 
288.0 287.7 781.2 1155.2 1462.2 
312.0 294.0 798.9 1181.8 1496.6 
336.0 299.9 815.6 1207.1 1529.1 
360.0 305.6 831.5 1231.0 1560.0 
384.0 311.0 846.7 1253.9 1589.4 
408.0 316.1 861.2 1275.8 1617.6 
432.0 321.1 875.1 1296.7 1644.7 
456.0 325.8 888.4 1316.8 1670.7 
480.0 330.4 901.3 1336.2 1695.7 
504.0 334.8 913.7 1354.9 1719.9 
528.0 339.0 925.7 1373.0 1743.2 
552.0 343.1 937.3 1390.5 1765.8 
576.0 347.1 948.5 1407.5 1787.8 
600.0 351.0 959.4 1424.0 1809.0 
624.0 354.7 970.0 1440.0 1829.7 
648.0 358.4 980.3 1455.5 1849.9 
672.0 361.9 990.3 1470.7 1869.5 
696.0 365.4 1000.1 1485.5 1888.6 
720.0 368.7 - 5% 1009.7 ± 7% 1499.9 5% 1907.3 - 4% 
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Table (7.8) Lateral Creep of sýturated gypsum in triaxial at 
10 N/mm confining pressure. 

Axial stress, N/mm2 

Time, 15 21 27 41 
33% a 46.3% a 59.5% a 90.3% a 

hours u u u u 

Instantaneous strain, Microstrain 

140 220 282 467 

Creep strain, Microstrain 

0.1 22.8 66.2 109.2 135.8 
0.3 29.6 97.4 154.5 186.7 
0.5 34.7 118.0 196.0 222.8 
1.0 41.7 142.7 233.5 257.4 
2.0 48.6 - 4% 166.7 ± 6% 272.3 - 4% 308.4 - 8% 
3.0 55.1 186.7 295.6 348.3 
4.0 60.4 197.3 334.5 371.2 
5.0 64.7 203.8 360.5 399.7 
6.0 68.7 206.8 390.7 434.2 

12.0 83.3 225.4 554.1 609.8 
24.0 103.3 - 5% 268.7 ± 5% 817.3 - 6% 994.5 - 8% 
48.0 133.0 350.1 854.9 1371.8 
72.0 149.5 396.3 883.8 1637.0 
96.0 172.4 434.6 904.4 1895.2 

120.0 193.0 475.8 940.8 2074.9 
144.0 206.2 497.5 963.6 2127.0 
168.0 219.5 519.1 1004.3 2175.2 
192.0 232.0 534.7 1023.1 2232.9 
216.0 244.1 547.1 1039.3 2278.8 
240.0 255.6 - 5% 557.9 - 4% 1058.9 - 6% 2329.0 - 8% 
264.0 265.0 569.4 1080.9 2380.4 
288.0 274.7 580.8 1101.1 2426.2 
312.0 285.0 589.8 1120.7 2473.5 
336.0 295.5 600.8 1139.2 2513.2 
360.0 303.4 615.8 1154.1 2546.2 
384.0 313.2 628.1 1166.0 2578.1 
408.0 324.4 644.0 1178.2 2606.4 
432.0 328.6 649.7 1193.2 2625.5 
456.0 337.8 657.2 1205.7 2660.7 
480.0 345.7 666.7 1219.6 2665.1 
504.0 352.4 675.4 1234.0 2681.7 
528.0 358.2 684.9 1250.4 2691.4 
552.0 362.9 695.3 1273.1 2705.5 
576.0 366.8 703.2 1281.7 2714.1 
600.0 370.7 709.8 1295.7 2720.8 
624.0 376.9 714.6 1308.7 2727.0 
648.0 379.8 719.3 1315.4 2732.1 
672.0 383.0 722.1 1323.0 2736.7 
696.0 385.2 725.2 1329.5 2739.3 
720.0 + 386.5 - 6% + 727.1 - 4% + 1333.3 - 7% + 2742.9 - 6% 
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Table (7.9) Lateral Creep of sati4rated gypsum in triaxial at 
20 N/mm` confining pressure. 

Axial stress, N/mm2 

27 41 50 63 

Time 37.7% au 57.2% au 69.7% au 87.9% au 
, 

hours 
Instantaneous strain, Microstrain 

212 348 435 548 

Creep strain, Microstrain 

0.1 22.6 30.6 43.5 452.8 
0.3 32.2 44.2 71.7 671.2 
0.5 46.6 58.6 96.5 761.8 
1.0 57.4 73.9 140.6 848.3 
2.0 67.0 4% 84.8 - 5% 207.0 + 4% 912.9 - 52 
3.0 77.5 93.9 265.5 907.8 
4.0 86.8 105.0 318.0 993.5 
5.0 94.5 114.1 362.0 1024.4 
6.0 103.0 123.4 403.2 1057.8 

12.0 122.0 148.3 558.5 1133.2 
24.0 148.6 -} 3% 173.6 - 5% 722.5 - 4% 1184.7 - 5% 
48.0 171.0 205.4 790.5 1262.0 
72.0 188.9 230.8 848.2 1356.2 
96.0 209.2 257.8 893.7 1427.6 

120.0 227.6 276.6 932.6 1498.0 
144.0 246.0 295.8 961.1 1545.8 
168.0 262.4 313.6 985.9 1572.2 
192.0 275.1 327.2 1004.5 1597.3 
216.0 288.4 340.9 1028.9 1598.5 
240.0 301.5 - 3% 357.1 - 3% 1045.7 - 5% 1631.7 - 3% 
264.0 315.3 368.3 1057.7 1648.5 
288.0 328.4 383.2 1073.6 1668.5 
312.0 340.9 392.9 1081.2 1685.2 
336.0 352.9 405.2 1093.0 1702.4 
360.0 368.5 417.1 1102.8 1715.8 
384.0 380.4 428.4 1111.6 1731.1 
408.0 391.4 437.9 1121.2 1742.8 
432.0 402.8 449.8 1128.2 1753.2 
456.0 414.5 460.7 1139.0 1768.4 
480.0 425.2 469.4 1147.7 1781.3 
504.0 437.0 477.4 1157.1 1792.7 
528.0 447.9 486.7 1164.9 1800.8 
552.0 458.1 493.4 1173.2 1816.5 
576.0 468.2 502.5 1180.2 1825.1 
600.0 478.7 510.6 1189.5 1832.8 
624.0 488.9 518.3 1198.0 1844.1 
648.0 499.0 526.3 1206.0 1853.7 
672.0 508.7 532.4 1212.9 1862.9 
696.0 518.9 539.0 1220.3 1872.9 
720.0 + 519.1 - 2% + 544.8 - 3% + 1226.2 - 6% + 1881.3 - 3% 
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Table (7.10) Lateral Creep of s2turated gypsum in triaxial at 
30 N/mm confining pressure. 

Axial stress, N/mm2 

27 41 50 63 
Time, 29.3% a 44.5% a 54.3% a 68.3% a 

u u u u 
hours 

Instantaneous strain, Microstrain 

127 241 357 454 

Creep strain, Microstrain 

0.1 12.0 19.2 32.6 102.5 
0.3 19.9 36.7 55.6 142.7 
0.5 28.0 47.6 83.0 190.7 
1.0 42.6 64.7 123.6 238.7 
2.0 50.4 ± 5% 74.8 ± 2% 154.8 ± 3% 312.1 - 4% 
3.0 59.6 85.0 184.3 379.3 
4.0 66.0 91.9 213.8 438.2 
5.0 72.2 99.0 269.7 465.6 
6.0 77.4 104.2 259.9 501.1 

12.0 95.0 123.7 335.9 682.4 
24.0 118.8 - 4% 154.6 ± 2% 461.2 - 3% 792.3 - 4% 
48.0 141.1 175.4 521.0 931.1 
72.0 160.1 198.1 551.5 982.1 
96.0 175.9 210.4 580.5 1021.1 

120.0 190.3 224.6 608.2 1043.6 
144.0 203.4 236.7 630.8 1069.7 
168.0 217.0 247.1 652.3 1093.9 
192.0 227.9 257.4 671.5 1126.9 
216.0 238.8 265.9 691.7 1160.5 
240.0 249.0 ± 4% 276.9 ± 4% 709.0 5% 1191.3 - 3% 
264.0 259.1 286.7 726.1 1213.6 
288.0 267.6 296.3 741.4 1231.2 
312.0 276.2 305.8 754.6 1253.5 
336.0 285.7 315.1 770.1 1275.2 
360.0 295.2 324.6 782.9 1290.3 
384.0 301.4 349.4 794.5 1305.1 
408.0 308.1 342.7 804.8 1319.6 
432.0 314.9 350.4 816.5 1333.0 
456.0 320.1 356.4 825.4 1350.2 
480.0 326.9 363.9 835.6 1357.9 
504.0 333.8 370.9 846.6 1368.4 
528.0 339.2 378.6 857.5 1378.4 
552.0 345.3 386.0 866.0 1390.4 
576.0 351.3 392.3 874.1 1398.8 
600.0 356.3 403.7 883.5 1409.6 
624.0 360.7 409.2 891.5 1415.8 
648.0 364.7 414.8 899.9 1427.0 
672.0 367.7 418.3 906.1 1433.8 
696.0 370.3 422.2 911.6 1440.5 
720.0 373.1 - 3% 425.2 ± 4% 916.3 ± 5% 1446.6 - 2% 
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at al = 27 N/mm2 = 59.5% a 
u 

E = 238 t0.30 t. < 24 hrs. ..... (7.39) 

C = 270 t0.238 t> 24 hrs. ..... (7.40) 

at a1 = 41 N/mm2 = 90.3% a u 
265 t0.297 t; 1 hr. ..... (7.41) 

C = 265 t0.40 t>1 hr. ..... (7.42) 

It can be seen from the above equations that the late ral creep at this level 

of confining p ressure followed the power law, except for low axial stresses 

within a short duration of the beginning of the tests . Where the logarith- 

mic law was fo llowed, see Eqs. (7.35) and (7.37). 

3) For triax ial compression at 20 N/mm2 confining p ressure, the following 

relationships were obtained, s ee Table (7.9) and Fig. (7.9): 

at vl = 27 N/mm2 = 37.7% a 
u 

e = 75 + 37 lo gtt< 60 hrs. ..... (7.43) 

C = 77 t0.238 t> 60 hrs. ..... (7.44) 

at a1 = 41 N/mm2 = 57.2% a u 

e = 96 + 54 lo gtt< 60 hrs. ..... (7.45) 

C = 93 t0.251 t, 60 hrs. ..... (7.46) 

at a1 = 50 N/mm2 = 69.7% a 
u 

170 + 120 log ttF4 hrs. ..... (7.47) 

e = 339 t0.258 t>4 hrs. ..... (7.48) 

at a1 = 53 N/mm2 = 87.9% a u 
C = 825 + 245 log tt< 35 hrs. ..... 

(7.49) 

e = 472 t0.282 t >, 35 hrs. ..... (7.50) 

At this level of the confining pressure, the lateral creep behaviour followed 

I 
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the logarithmic law for a short time at the beginning of the tests (less 

than 60 hours), then followed-the power law thereafter. 

4) For triaxial compression at 30 N/mm2 confining pressure, the following 

relationships were obtained, see Table (7.10) and Fig. (7.10): 

at of = 27 N/mm2 = 29.3% au 

c = 45 + 42 log t t< 1.5 hrs. ..... (7.51) 

C = 66 t0.215 t> 1.5 hrs. ..... 
(7.52) 

a1 = 41 N/mm2 = 44.5% au 

E = 70 + 75 log t t '< 3 hrs. ..... 
(7.53) 

C = 75 t0.223 t> 3 hrs. ..... (7.54) 

a1 = 50 N/mm2 = 54.5% au 

c = 123 + 89 log tt< 35 hrs. ..... 
(7.55) 

C = 239 t0.232 t: 35 hrs. ..... 
(7.56) 

al = 63 N/mm2 = 68.4% au 

E = 240 + 145 log tt< 40 hrs. ..... 
(7.57) 

E = 358 t0.267 t3 40 hrs. ..... 
(7.58) 

The lateral creep behaviour at this confining pressure followed the logar- 

ithmic law in a similar way of that at 20 N/mm2 confining pressure, for a 

short duration at the beginning of the tests (less than 40 hrs) then 

departed to follow the power law thereafter. 

In the previous equations, from (7.1) to (7.58) the constants A, B, C 

and n, in Eqs. (6.22) and (6.23), were found by using the graphical method 

and checked by using the least square method. All the results were in a 

good and reasonable agreement. 

7.3 Effect of the Axial Stress on the lateral Creep. 

The effect of varying the axial stress on the lateral creep was studied 

in uniaxial and triaxial compression and in dry and saturated conditions. 
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It can be seen from the tables (7.3) to (7.10) and the figures (7.3) to ' 

(7.10) that the lateral creep-strain occurred at every stress and both the ' 

instantaneous and the creep strains are increased with increasing the axial 

stress. The instantaneous lateral strain was plotted against the axial 

stresses at various confining pressures, see Fig. (7.15). It can be noted 

that the relationship is nearly linear for the given axial stresses as a 

percentage of Qu (which is not more than 90% au) with a small scatter at 

high stresses. The instantaneous axial and lateral strains were used 

together to find the Poissoi: 's ratio, see Fig. (6.39) and (7.15), in which: 

ýf) Poisson's ratio 
lateral instantaneous strain = axial instantaneous strain 

Table (7.11) gives the values of the Poisson's ratio calculated by this 

method for various confining pressures in the two environmental conditions. 

Table (7.11) Poisson's ratio calculated by using instantaneous 
strain. 

Confining Poisson's ratio 
Pressure, 

N/mm 
2 Dry Saturated 

Zero (Uniaxial) 0.27 0.41 

10 0.23 0.35 

20 0.21 0.26 

30 0.20 0.25 

The Poisson's ratio calculated from the short term tests with their 

non-linear axial and lateral stress strain curves, Table (4.15) is found 

to be more than that calculated from the instantaneous axial and lateral 

strains, Table (7.11), under similar confining pressure levels. Since 

the stress-instantaneous strain curves in both axial and lateral results 
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are straight lines which may be considered as elastic behaviour, it 

represents the initial tangent or the elastic portion of the non-linear 

stress-strain curves. In other words, the observed increase in the 

Poisson's ratio of high stresses is due to the fact that the material deforms 

in an elastic manner up to certain axial stress which is less than the ; 

ultimate, following which strains become affected by plastic deformation. 

The increase in the Poisson's ratio with increasing stress in some rocks 
(126) 

has been associated with the plastic deformation in the specimen. 

The effect of the axial stress on the lateral creep behaviour in both 

dry and saturated conditions is as follows: 

a. For dry Condition: 

The creep behaviour of gypsum uniaxial and triaxial stress conditions 

generally followed the power law, Eq. (6.23), at all confining pressures 

under all the axial stresses, except within a short time (less than 30 hrs. ) 

of the beginning of tests with specimens subjected to low axial stresses , 

(27-35% aU), at 10,20 and 30 N/mm2 confining pressure where the behaviour 

followed the logarithmic law, Eq. (6.22), see Eqs. (7.9), (7.15) and (7.23). 

b. For Saturated Condition: 

The lateral creep behaviour under the saturated condition followed the 

power law also, Eq. (6.23), except in the following cases where it followed 

the logarithmic law, Eq. (6.22); within a short time (less than 60 hrs. 

of beginning of tests) under low and medium axial stress (not more than 47% 

aU) at 10 N/mm2 confining pressure, see Eqs. (7.35) and (7.37), and at 20 

and 30 N/mm2 confining pressure within a short time (less than 60 hrs. ) of 

the beginning of the tests. 

Sangha and Chir(127) reported that the lateral creep strain of sand- 

stone increases with increasing the axial stresses at constant confining 

pressure and at any particular time. 
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Hofer and Knoll(90) reported that at low stress the creep behaviour 

of the carnallitite was represented by a logarithmic law and at medium and 

high stresses the creep was represented by a power law. Singh 
(97) 

found 

that the lateral creep of dry Sicilian marble in uniaxial compression 

followed the power law, Eq. (6.23). Barron and Toews(128) found that the 

radial creep data around a mine shaft in salt can be fitted by a logarith- 

mit relationship of the form, e=A log (1 + Bt) where A and B are constants. 

It can be seen from the relationships obtained that an increase in the , 

axial stress increases the values of the constants A and B of the logarithmic 

law at a constant confining pressure, these values are given in tables (7.12) 

and (7.13) for dry and saturated conditions respectively. It can be seen 

also that the values of the constants C and n of the power law are increased 

with the axial stress, the values of the power law n was found to be 

0<n<1, see tables (7.12) and (7.13). The values of the constants C 

and n are plotted against the axial stress for various confining pressures 

in Fig. (7.16) and (7.17) for C and n respectively, and under both environ- 

mental conditions. These figures show non-linear relationships under the 

triaxial stresses while nearly linear under the uniaxial stresses as was 

also the case with the axial creep, Figs. (6.41) and (6.42). An increase 

in the creep equation constants A, B, C and n with increasing axial stress 

means in other words, increasing the creep rate with increasing the axial 

stress. 

The values of the creep rate at various axial stresses, loading times 

and confining pressure levels are given in tables (7.12) and (7.13) for 

dry and saturated conditions respectively. The creep rate plotted against 

the axial stress for various confining pressure at given time, t= 240 hrs. 

is shown in Fig. (7.18) for both environmental conditions. It can be seen 

that the creep rate increases in a non-linear manner in the case of the 
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Table (7.12) Lateral creep equation constants and creep rate of dry gypsum 
in uniaxial and triaxial compression creep testa. 

o Constants Creep Rate, microstraink. ýt t- 
l 

1 ax 100 
2 u Creep equation 1 12 24 48 96 120 240 360 480 720 

Sim or or hr. jr. hr. hr. hr. hr. hr. hr. hr. hr. 
A B 

36% t- 32.5t0.355 32.5 0.355 11.54 - - - - - - - - - 
tt 2 

c- 34 [0.257 34 0.257 - 4.0 0.83 0.49 0.29 0.25 0.15 0.11 0.09 0.07 
1S t>2 

50.32 c- 32.5 [0.355 32.5 0.355 11.54 2.32 - - - - - - - 
t< 12 

Citutat 
e- 36.5 t0.296 36.5 0.296 - - 1.15 0.71 0.44 0.37 0.23 0.17 0.14 0.11 

21 
t3 12 

652 C- 32.5 t0.355 32.5 0.355 11.54 2.32 1.49 - - - - - - - t: 25 

c- 37.5 t0.318 37.5 0.318 - - - 0.85 0.53 0.46 0.28 0.22 0.18 0.14 
27 

t3 25 

81.8% c- 37.5 t0.355 37.5 0.355 13.3 2.7 1.7 0.95 - - - - - - 
t4 54 

e- 45 10.34 45 0.34 - - - - 0.75 0.65 0.41 0.31 0.26 0.2 
34 

t> 54 

33.7% e- 17+47 log t 17 47 47 - - - - - - - - - t5 10 

e- 40 t0.222 40 0.222 - 1.28 0.75 0.44 0.25 0.21 0.13 0.09 0.07 0.05 
21 

t> 10 
43.3% c- 26+71 log t 26 71 71 - - - - - - - - - t4 10 

c- 44 t0.23 44 0.23 - 1.5 0.88 0.51 0.30 0.25 0.15 0.11 0.09 0.06 
27 

t3 10 

6 172 e- 104 [0.242 104 0.242 25.17 3.83 2.26 1.33 0.79 0.67 0.40 0.29 0.23 0.17 
4 

80.2% 
c- 118 [0.267 118 0.267 31.5 5.1 3.07 1.85 1.11 0.94 0.57 0.42 0.34 0.25 50 

34.5% e- 17+19 log t 17 19 19 1.58 1.25 - - - - - - - t, 30 

5 10.22 e- 24 27 . 24.5 0.22 - - - 0.26 0.15 0.13 0.08 0.05 0.04 0.03 
t> 30 

52.4% c- 25 [0.338 25 0.338 8.45 1.63 1.03 0.65 0.43 - - - - - t5 100 

20 e- 64 t0.23 64 0.23 - - - - - 0.37 0.22 0.16 0.13 0.09 
41 t> 100 

64% e- 32.5 [0.387 32.5 0.387 12.57 2.74 1.79 1.17 0.77 0.66 - - - - t5 160 

c- 69 t0.242 69 0.242 - - - - - - 0.26 0.2 0.15 0.11 
50 

t; 160 

80.6% e- 80 t0.49 
,2 t 80 0.49 39.2 - - - - - - - ' 

e- 97 10.271 97 0.271 - 4.36 2.59 1.56 0.94 0.80 0.48 0.36 0.29 0.21 
63 

t>. 2 

26.3% c- 12+15 log t 
t, 14 12 15 15 0.8 - - - - - - ' 

27 t- 24 [0.189 24 0.189 - - 0.35 0.2 0.11 0.09 0.05 0.04 0.03 0.02 
t> 14 

39.8% e- 18 10.39 18 0.39 7.02 1.55 1.0 0.67 0.43 0.38 - - - ' 
tf 160 

41 c- 48 10.20 48 0.2 - - - - - - 0.12 0.09 0.07 0.05 

t3 160 
48.7% c- 24.3 10.4 

t4 190 24.3 0.4 9.72 2.18 1.44 0.95 0.63 0.55 - - - - 

e- 78 t0.210 78 0.21 - - - - - - 22 0 0 16 0.12 0.09 50 . . 
t3 190 

61.3% c- 46 10.41 
t< 190 46 0.41 18.86 4.34 2.89 1.92 1.28 1.11 - - - - 

0.225 
c- 137 

63 C 
190 137 0.225 - - - - - - 0.44 0.35 0.26 0.19 
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Table (7.13) Lateral creep equation constants and creep rate of saturated E; ypsun in uniaxial 
and triaxial compression creep tests. 

p Constants Creep Rate, shierostraiat t" l 
l 

1/ 
I 

-x 100 
U Creep equation 

C n 1 12 24 48 96 120 240 360 480 720 
p1 ýr Br hr. hr. hr. hr. hr. hr. hr. hr. hr, hi. 

3 x 
e" 62 t 

0'271 62 0.271 16.8 2.75 1.71 1.03 0.62 0.53 0.32 0.24 0.19 0.14 
ä 

0 
52% 

c- 160 10'28 160 0.28 44.8 7.87 4.54 2.76 1.68 1.43 0.87 0.65 0.53 0.39 
C i i a u al 

70.9% 
E- 230 t0'2ß5 230 0.285 65.6 11.1 6.76 4.12 2.51 2.13 1.30 0.98 0.79 ':. "19 

80.4% t- 293 10'29 283 0.29 82.1 14.1 8.59 5.24 3.21 2.74 1.68 1.26 1-. 02 0.77 
17 

332 c" 45 + 30 log t 45 30 30 2.5 1.25 - - - - - - - t4 24 

15 c- 76 t0.206 76 0.206 - - - 0.73 0.42 0.35 0.20 0.16 0.12 0.08 
t)1 24 

46.3% c" 140 + 75 log t 
t< 12 140 75 75 6.25 - - - - - - 

10 
21 c" 158 t 

0.229 
158 0.229 - - 3.12 1.83 1.07 0.90 0.53 0.39 0.31 0.23 

> 12 

59.5% e- 238 10.30 238 0.3 71.4 12.54 7.7 - - - - - - tt 24 

C" 270 [0.238 27 270 0.238 - - - 3.36 1.98 1.67 0.98 0.72 0.58 0.42 
t3 24 

90.3% e- 265 [0.297 
1 265 0.297 77.9 - - - - - - - - - tF 

41 E- 265 10.4 265 0.4 - 2.38 1.57 10.4 7.5 6.0 4.0 3.1 2.6 2.0 
1 

37.72 c- 75 + 37 log t 75 37 37 3.08 1.54 0.77 - - - - -- t, 60 
0.238 

t 77 t 27 77 0.238 - - - - 0.57 0.48 0.28 0.21 0.17 0.12 
t; 60 

57.2% E- 96 + 54 gt 96 54 54 4.5 2.25 1.12 - - - - -' t lo _' 
1ý 

t" 93 [0.251 
! 

41 93 0.251 - - - - 0.76 0.65 0.38 0.28 0.23 0.!. 
m ta 60 

69.7% E- 170 + 120 log t 170 120 120 - - - - - - - 

50 t- 339 t0' 
258 

339 0.258 - 13.83 8.27 4.95 2.96 2.51 1.5 1. i. . .i. ). I 
t34 

87.9% c- 825 + 245 log t 825 245 245 20.41 10.2 - - - - - - 
I- 

t< 35 

63 e- 472 t0.282 472 0.282 - - - 8.26 5.02 4.28 2.60 1.94 1.58 1.18 

t4 35 

29.3% e- 45+42 log t 45 42 42 - - - - - - - -- 
t, < 1.5 ' 

27 C" 66 10.215 66 0.215 - 2.02 1.17 0.68 0.39 0.33 0.19 0.14 0.11 0. UB 
t31.5 

44.5% e- 70+75 log t 
t53 70 75 75 - - - - - - - - 

10 0.223 
41 C 75 t 75 0.223 - 2.43 1.41 0.83 0.48 0.41 0.24 0.17 0.14 U.: 

t>3 
54.3% e- 123+89 log t 123 89 89 7.42 3.71 - - -- - 

tS 35 

50 c 239 10.232 239 0.232 - - - 2.84 1.67 1.40 
tt 35 

68.4% c- 240+145 log t 
t. 40 240 145 145 12.1 6.1 - - - -- - - 

358 [0.267 63 c 
t 40 358 0.267 - - - 5.60 3.37 2.86 1.72 1.28 1.04 0.77 
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triaxial stresses whereas a nearly linear relationship exists in the case 

of the uniaxial stresses. Fig. (7.19) shows the creep rate versus the 

axial stress on log-log graph. A linear relationship was obtained for 

every time under each given confining pressure. The figure shows four 

sets of straight lines in two pairs, one for uniaxial and the other for 

triaxial at 10 N/mm2 confining pressure, each pair consists of dry and 

saturated sets. The linear relationship on the log-log graph indicated 

that the creep rate follows a power law of the form; e=Ra1K where 

e is the creep rate in microstrain per hour, al is the axial stress in 

N/mm2 and R and K are constants with R representing the creep rate at 

vl =IN/mm 
2 

and K representing the slope of the straight line on the log-log 

graph. Since the straight lines of each o3 level are parallel or nearly 

parallel to each other, they have the same slope or K value. The 

following equations fit the data at 10 N/mm2 confining pressure: 

For dry condition 

e=R Q11.766 ..... (7.59) 

For saturated condition 

R12.625 ..... (7.60) 

This lateral creep rate behaviour is essentially similar to that in the axial 

creep studies of the same specimens (Chapter 6). 

Hebblewhite et al. 
(103) 

measured the radial creep rate at a deep point 

in a shaft excavation of potash mine, he found that the radial creep rate 

was represented by a power law of a form E= AtB where A and B are 

constants. Singh 
(97) 

reported that the axial stress increases both the 

axial and lateral creep rates. 

At constant differential stresses (a1 - 03), it was found that the 

lateral creep rate decreases with increasing the axial stresses; this 

behaviour being the opposite of that observed with axial creep. The 
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relationship between the axial stress and the creep rate at (al - a3) 

s 10 N/mm2 is plotted in Figs. (7.20) and (7.21) for dry and saturated 

conditions respectively. It can be seen that the creep rate decreases 

slightly in a non-linear pattern with increasing the axial stress. It 

appears from this result that an increase in confining pressure results in 

a decrease of ductility of the material although to a similar extent than 

the increase in that property observed when considering axial strains. 

The effect of confining pressure will be discussed in more detail in the 

next section. 

7.4 Lateral Creep Under Various Confining Pressures. 

The values of the Poisson's ratio calculated by using the instantaneous 

axial and lateral strains are plotted against the confining pressure in 

Fig. (7.22) for both dry and saturated conditions. It can be noted that 

the Poisson's ratio (which represents the initial tangent Poisson's ratio) 

decreases with increasing the confining pressure. This indicated that 

the resistance to the lateral deformation with increasing confinement is 

greater than the corresponding resistance to the axial deformation. These 

results are in agreement with the results obtained by Dhir and Sangha(33,34). 

It is also clear from the Fig. (7.22) that the effect of the confining 

pressure on the Poisson's ratio of the saturated rock is more than the dry 

rock. Lama and Vutukuri(126) reported that the confining pressure lowers 

the values of the initial tangent Poisson's ratio for weaker rocks, but 

for stronger rocks it may not have any influence. The above conclusion 

confirms this result because, generally the saturated gypsum is weaker than 

the dry. 

The lateral creep strain was found to decrease with increasing the 

confining pressure at a constant axial stress. Figs. (7.23) and (7.24) for 

dry and saturated conditions respectively show the lateral creep curves under 
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a constant axial stress of 27 N/mm2 at various confining pressure levels, 

namely; 10,20, and 30 N/mm2. It can be seen that the effect of the 

confining pressure of equal increments is larger at low values of a3 than 

higher. As in the case of the instantaneous lateral strain, the effect of 

equal variation of a3 is larger on the lateral creep strain of the saturated 

specimen than on the dry specimens. 

At constant (a1 - a3), the effect of the confining pressure on the 

lateral creep strain is shown in Figs. 

conditions respectively. It is clear 

creep strain decreases with increasing 

ential stress, and the effect of equal 

at constant (al - a3) is higher at the 

(7.25) and 

from these 

confining 

increments 

low values 

(7.26) for dry and saturated 

figures that the lateral 

pressure at constant differ- 

of a3 on the creep strain 

of a3 than the higher as 

observed in the case of instantaneous strain and creep strain with the 

confining pressure. Increasing o3 at constant (al - a3) means increasing 

Q1 by the same amount to keep the difference constant. Since the. results 

showed a decrease in the creep strain, this indicated that the effect of the 

confining pressure on the lateral strain is more than the effect of the axial 

stress. Sangha and Dhir(33,34) also found that the confining pressure 

decreases the lateral deformation of the sandstone at constant (al - a3). 

Fig. (7.27) shows the effect of o3 on the values of the creep equation 

constants C and n, Eq. (6.23). It can be seen that at constant axial stress, 

increasing the confining pressure decreases the values of these constants in 

both environmental conditions dry and saturated. The decrease in the 

constants C and n corresponds with a decrease in the lateral creep rate with 

increasing the confinement at a constant axial stress as observed earlier 

(Fig. 7.18). Fig. (7.28) shows the influence of the confining pressure on 

the lateral creep rate under a constant of = 41 N/mm2 at various loading 

times and in both dry and saturated conditions. It is clear that increasing 
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the confining pressure decreases the lateral creep rate in a non-linear 

manner. The effect of variation of a3 is observed to be greater at low 

values of a3 than at higher for both dry and saturated conditions especially 

in the latter, and the curves plotted at various loading times are approx- 

imately parallel to each other. A possible explanation for this is that 

the confining pressure causes a decrease in the size, number and propagation 

of the cracks during the creep process, and particularly the cracks which 

are parallel to the axial stress direction or at small angle to it. 

Murrell(24) considered that the confining pressure causes a closing or 

change of the shape of some of the cracks and other defects in rock. 

Figs. (7.29) and (7.30) show the effect of the confining pressure on the 

lateral creep rate at constant (al - a3) = 10 N/mm2 for dry and saturated 

conditions respectively. It can be seen that increasing confining pressure 

results in a decrease in the creep rate at constant (a1 - a3) at a particular 

loading time. The figures show also a decrease in the creep rate with the 

time at a given a3, and this effect is more marked at the earlier stages of 

the creep than the later. The lateral creep rate at 24 hrs. is plotted 

against confining pressure for various (a1 - a3) values in Figs. (7.31) and 

(7.32) for dry and saturated conditions respectively. The effect of confine- 

ment is shown to be greater in the saturated conditions than the dry. In 

saturated conditions the effect of o3 on the lateral creep rate increases 

with increasing (vl - a3). Figs. (7.33) and (7.34) show also the effect of 

the differential stresses on the lateral creep rate at constant confining 

pressures. Since increasing a3 at constant (a1 - 03) means increasing al 

by the same magnitude, this indicates that the effect of the confining 

pressure on the lateral creep rate is more than the effect of the axial stress 

when both of and a3 varied by the same increments, as observed in the case of 

lateral creep strain. 
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Wawersik(96) reported a decrease of the lateral creep rate of the 

saturated westerly granite with increasing the confining pressure at constant 

(a1 - a3)' 

It can be seen from Figs. (7.33) and (7.34) that the lateral creep rate 

in both environmental conditions are increased with increasing (a 
1- a3) at a 

constant o3. The relationship between the lateral creep rate and the 

differential stresses is found to be linear or nearly linear for a constant 

a3 in dry and saturated conditions. The straight lines for the various a3 

values are parallel to each cther in the case of the dry conditions whereas 

in saturated conditions the slope of the straight lines increases with the 

confining pressure indicatir. g that the effect of the confining pressure at 

high values of (ni - a3) is more than at lower. This means that in dry 

conditions the value of (al - 03) alone has the largest influence on the 

lateral creep strain and confinement only a minor one. This is not true 

in the case of saturated rock where variation in a3 and of (a1 - a3) both 

influence creep rate to a large extent. 

Wawersik(96) reported similar behaviour for the lateral creep rate 

of the saturated westerly granite with (a1 - a3) at constant o3. 

Murrell 
(116) 

reported that at low differential stresses the dimeteral 

strain at constant a3 is comparatively small, but as the pores are closed 

up the amount of strain per unit of stress increases. Then as the stress 

increases, the opening of the cracks causes the dimetral strain to increase at 

more rapid rate with the stress. 

7.5 Influence of Water Saturation on the Lateral Creep. 

The effect of saturation on lateral creep was studied in the same way as 

in the axial creep. In most of the cases an effect similar to that on the 

axial creep was obtained. A brief discussion will be given here for the 

lateral creep behaviour in the water saturated conditions. Table (7.14) 
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gives the instantaneous lateral strain in dry and saturated condition under 

similar stress levels. It can be seen that the water saturation increases 

these strains by appreciable amounts, the increase ranging from 50 to 150% 

with 80% as an average value. The initial tangent Poissons ratio which 

was calculated by using the instantaneous strains is increased by 25-52% 

due to water saturation, see Table (7.11). Man and Fatt(53) reported an 

increase in the lateral strain of three sandstones by about 100% for 

Bandera sandstone and 35% for the other two. He reported also an increase 

in the Poisson's ratio by about 100% for the Bandera sandstone and a small 

amount for the other two. 

The water saturation was found to increase the lateral creep strain by 

remarkable amounts. Figs. (7.3) to (7.10) gives the creep curves of dry and 

saturated conditions, the details are given in Tables (7.3) to (7.10) for 

the uniaxial and triaxial stress conditions. The lateral creep strain/ 

time relationships are plotted for dry and saturated conditions under the 

same stress level of aI and a3 in Fig. (7.35). It can be seen from this 

particular example that the presence of water increased the strain by a 

ratio of about 2 to 5 with 4 as an approximate average value, in the case of 

Ql = 41 N/mm2 and ß'3 = 10 N/mm2, and increased the strain by about 2 to 4 

times with 2.7 as an average in the case of aI = 63 N/mm2 and a3 = 30 N/mm2. 

Figs. (7.25) and (7.26) show the increase in the creep strain under a 

constant (aI - Q3) due to water saturation. 

The creep data in most of the cases followed the same behaviour in both 

dry and saturated conditions either the logarithmic law, Eq. (6.22), or the 

power law, Eq. (6.23), except in a few cases where the behaviour changed 

from the logarithmic law in dry condition to power law in saturated condition 

or from power law in dry to logarithmic in saturated under high confining 

pressure for a short duration from the beginning of the tests, see Tables 

(7.12) and (7.13). 
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Table (7.14) Effect of Saturation on the lateral instantaneous 

strain (e 
0) 

in unixial and triaxial creep. 

ý 0 
Dry Saturated Increase 

3 l 
Inst Inst. 

in co due 
2 

N/mm 
2 

N/mm 7a 
. 

Strain (c ) 7a Strain (c ) to 
u o u o saturation us us 7 

0 
Uniaxial 15 36 100 70.9 250 150 

21 33.7 110 46.3 220 100 

10 27 43.3 143 59.5 280 97 

41 65.7 250 90.3 467 87 

27 34.5 129 37.7 212 65 
41 52.4 200 57.2 348 74 

20 
50 64 280 69.7 435 56 

63 80.6 356 87.9 548 54 

27 26.3 110 29.3 176 60 
41 39.8 162 44.5 241 49 

30 
50 48.7 201 54.3 357 78 

63 61.3 257 68.3 454 77 
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The values of the creep equation constants C and n was found to be 

increased by water saturation. Figs. (7.16) and (7.17) show the effect of 

the saturation on the values of C and n respectively. The water increases 

the value of C by up to about 400% sometimes and increases the n values by 

about 25%. Increasing the constants C and n in the presence of water means 

an increase of the creep rate. Figs. (7.18) and (7.28) show the effect of 

the saturation on the lateral creep rate at various axial stresses, confining 

pressures and loading times. It can be seen from these figures and from the 

tables (7.12) and (7.13) that water saturation increases the lateral creep 

rate by appreciable amounts. The effect of the saturation on the lateral 

creep rate was found to be an increase with increasing of and a decrease when 

increasing a3. The lateral creep rate was increased by the water saturation 

by about 1 to 10 with 6 fold as an average value. As discussed in Sec. 

(7.3) the lateral creep rate increases in both environmental conditions with 

the axial stress and followed the relationship e=Ra, K, 
the constants 

R and K are found to increase with the saturation, i. e. the value of R is 

increased by about 50-90% with 60% as an average. This means that the effect 

of the saturation increases the effect of the axial stress on the lateral 

creep rate. 

At constant (a1 - Q3), Figs. (7.20), (7.21), (7.29) and (7.30) show 

that the water saturation increases the lateral creep rate under any similar 

condition of varying al, a3 or the loading time. As mentioned previously, 

in both dry and saturated conditions lateral creep rate increases with 

increasing (a1 - v3) at constant 03 values, see Figs. (7.31), (7.32), (7.33) 

and (7.34). These figures show that the effect of increasing the lateral 

creep rate in saturated condition with (al - a3) is greater than this effect 

in dry condition, on the other hand, the decrease of the lateral creep rate 

with increasing o3 at constant (c - a3) seems to be uniform in dry conditions 
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whereas in saturated conditions the decrease becomes more with increasing 

a3 especially at the low values of a3. 

The creep behaviour of dry and saturated rocks, as shown in Figs. (7.33) 

and (7.34) indicates that in dry condition the differential stresses 

(al - a3) has the largest influence on the lateral creep rate and the confine- 

ment (a3) only a minor one. Whereas in saturated gypsum the variation of 

both a3 and (a1 - Q3) influences the creep rate to a large extent. This 

result shows that the mechanism of the lateral creep in dry and water 

saturated conditions are different. In the dry condition the flow processes 

related to shear stresses, in this case (Q1 - a3) gave equal gradients of the 

linear relationships with creep rate for various o3 values and this shear 

stress appears to largely control deformation in the lateral direction. 

In saturated rock, the increase of the gradient of the linear relationships, 

(a1 - a3) vs. E, with increasing a3 and the change of the Q3 effect on the 

creep rate at constant (al - a3), i. e. suggesting that at low values of 

(a1 - a3) the effect of a3 on creep rate may be reversed indicate more complex 

creep processes in the saturated conditions, (possibly solution, recrystall- 

ization, etc. ) as was observed in consideration of axial creep. 

The first stage of the creep process probably represents a period of 

closing the cracks which are perpendicular or diagonal to the axial stress 

direction and opening the cracks parallel to the direction, after which 

cracks may propagate, the presence of water shortens the time of propagation, 

in other words, increases the rate of propagation, the cracks then coalescing 

and forming weakened zones(98). 

In a constant-stress creep test, cracks will tend to grow until the 

local stress decreases to a value insufficient to let further growth continue. 

They will not propagate further unless the crack tip stress is increased or 

crack tip strength is decreased. The crack tip strength can be decreased by 
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moisture in which case the crack growth can be continued more readily(104). 

Vutukuri et al. 
(120) 

stated that liquids attack the crack tips, 

dissolving the material and increasing the stresses at the apex, thereby 

helping in their propagation. 

Increasing the crack propagation (especially the cracks parallel to the 

axial stress direction) in presence of water, means increasing the rate of 

the lateral creep strain (expansion) with the time. 

The effect of the saturation on the lateral creep was found to be 

similar in most cases to that of the axial creep. It is suggested that the 

effect of the water on lateral creep is either due to the recrystallization, 

as explained by Griggs 
(70) 

on the gypsum (alabaster), or due to the solution, 

as explained by Misra(79) on anhydrite and Varo & Passanis 
(102) 

on halite, 

or due to partly by both. The effect of water on the creep rate may also 

be explained as a function of ionic mobility of gypsum in water as described 

by Griggs 
(71) 

or due to the increase of the propagation of the cracks which 

are parallel to the axial stress direction by increasing the crack tip stress 

as described by other investigators(104,120). 

7.6 Comparisons Between Axial and Lateral Creep. 

As mentioned before, both creep strains axial and lateral were recorded 

under similar uniaxial and triaxial stresses, these measurements being 

performed in dry and water saturated conditions. The axial creep strain 

results are given in tables (6.8) to (6.15) and shown in Figs. (6.14) to 

(6.38). The lateral creep strain results are given in tables (7.3) to (7.10) 

and shown in Figs. (7.3) to (7.10). It can be seen from these results that 

in most cases the lateral creep strain under uniaxial stress is greater than 

the axial creep strain at a given loading time in both dry and saturated 

conditions. Fig. (7.36) shows a comparison between the axial and lateral 

creep strains in dry and saturated conditions subjected to a uniaxial stress 
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of 15 N/mm2. It is clear that the lateral creep strain is more than the 

axial at any given time, and both followed the same pattern. These results 

are in agreement with the results of several investigators such as Wu and 

Thomson 
(98) 

on a Westerly granite and Singh 
(97) 

on Sicilian marble. 

The axial and lateral creep curves under triaxial stresses at a constant 

a1 and for various a3 are shown in Figs. (7.37) and (7.38) for dry and 

saturated conditions respectively. In triaxial loading the lateral creep 

strain decreases with increasing confinement and in most cases the lateral 

creep strain is less than tLe axial in any conditions, except under low 

confining pressure in saturated condition when the lateral creep strain is 

more than the axial. The difference between the axial and lateral creep 

strains increase with increasing the confinement. In other words, the 

effect of the confining pressure in decreasing the strain is found to be 

more on the lateral creep strain than on the axial. Sangha and Dhir(33,34) 

reported that increasing the confining pressure resulted in greater increase 

in the resistance to the lateral deformation than axial deformation. 

Wawersik(96) found that the lateral creep strain of saturated Westerly 

granite is greater than the axial under low confining pressure. The lateral 

creep strain curves in triaxial loading condition was found to follow the 

same general trend as the axial creep curves as observed in the case of 

uniaxial stresses, see Figs. (7.36), (7.37) and (7.38). The investigators 

Singh 
(97), 

Wu and Thomsen 
(98) 

and Kranz 
(104) 

reported that both axial and 

lateral creep curves follow the same pattern as far as different stages of 

creep are concerned. 

It can be seen from the Figs. (6.49) and (6.50) for axial creep and 

Figs. (7.25) and (7.26) for the lateral creep, that at a constant (a, - a3) 

the axial creep strain increases with increasing a3 whereas the lateral 

creep strain decreases with increasing a3 for the two environmental 
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conditions. Since increasing a3 means increasing of by the same amount 

in order to keep (al - a3) constant, this indicates that increasing a1 and 

a3 by equal increments means that a1 dominates the situation for the axial 

creep strain behaviour and Q3 similarly dominates the situation for the 

lateral creep . This behaviour was observed for the given confining 

pressure levels (0,10,20 and 30 N/mm2). The effect of confining pressure 

variation on the lateral creep becomes less at high values of a3. 

In uniaxial compression, it was found that the lateral creep rate is 

more than the axial at a given loading time, see Tables (6.17) and (7.18) for 

the axial creep rate and Tables (7.12) and (7.13) for the lateral creep rate 

The axial and lateral creep rates are plotted versus axial stress for various 

confining pressures at a constant time t= 480 hrs. in Figs. (7.39) and (7.40) 

for dry and saturated conditions respectively. It can be noted from these 

figures that the lateral creep rate in both environmental conditions is more 

than the axial creep rate in the uniaxial stress conditions. 

"Under a constant load the crack width may have increased with the time 

and the average length of the cracks increases in time, as does the total 

stress-induced cracked space at a rate which parallels strain measured on 

the rock surface. " (Kranz(104), 1979). 

Kranz(104) reported also that the creep rate in lateral direction is 

always more than the axial direction in uniaxial tests. He explained it as, 

crack width increases very rapidly or that crack coalescence, at small 

angles to the axial stress direction, contributes more to lateral strain. 

The following investigators reported that the lateral creep rate is more 

than the axial under uniaxial stresses; Evans and Wood 
(69) 

on granite, 

marble and shale, Singh(97) on Sicilian marble and Kranz 
(104) 

on Barre 

granite. 

IIA 



In triaxial tests it was found that in most cases the lateral creep 

rate is less than the axial creep rate, see Tables (6.17), (6.18) for the 

axial and (7.12) and (7.13) for the lateral. As mentioned before both 

axial and lateral creep rates increase with the axial stress at constant 

a3. This increase becomes more rapid in the lateral direction than in the 

axial at high axial stresses, and this effect is found to be more marked 

at lower or medium confining pressure levels, see Figs. (7.39) and (7.40). 

At high axial stresses sufficient to produce new cracks which may be 

associated with the old cracks or the grain boundaries, then provided these 

cracks are parallel or nearly so with the sample axis, large lateral strain 

must occur, and low confining pressures will not have a tendency to inhibit 

this action. The effect of the confining pressure on the axial and lateral 

creep rate at constant axial stress is shown in Figs. (7.41) and (7.42) for 

dry and saturated conditions respectively. It can be seen from these 

figures, previous figures (7.39) and (7.40) and from the tables (6.17), 

(6.18), (7.12) and (7.13), that increasing confining pressure decreases both 

the axial and lateral creep rates. This effect was found to be somewhat 

greater on the lateral creep rate than on the axial, and the effect of equal 

variation of a3 results in larger differences between the axial and lateral 

creep rates at low values of a3 than higher; this behaviour was observed in 

both dry and saturated conditions. 

At constant (a1 - a3), as the axial stress increases the axial creep 

rate increases and the lateral creep rate decreases, see Figs. (6.45) and 

(6.46) for the axial rate and (7.20) and (7.21) for the lateral creep rate. 

The same behaviour was found at constant (al - a3) when the confining 

pressure increases, see Figs. (6.54), (6.55), (6.56) and (6.57) for axial 

creep rate and Figs. (7.29), (7.30), (7.31) and (7.32) for 
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lateral creep rate. Since increasing of or a3 at constant (ol - a3) 

means an increase in both of and a3 with the same levels. This indicates 

the same effect observed on the creep strain, that for equal increments of 

a1 and a3, al dominates the axial creep rate and a3 dominates the lateral 

creep rate. 

7.7 Empirical Equation. 

The lateral creep results in uniaxial and triaxial loading of the dry 

and saturated conditions were regressed using the least squares curve 

fitting computer program (multiple regression) for the combination of 

factors affecting the creep strain. The creep strain was considered as 

dependent variable and both axial stress and loading time as independent 

variables. The method of analysis was similar to that used in axial creep. 

A best fit in every case for times greater than 24 hours within the given 

experimental maximum times was found to be a power law function of the 

following form: 

e=dae tf ..... 
(7.61) 

where c is the lateral creep strain in microstrain, al is the axial stress 

in N/mm2, t is the loading time in hours and d, e and f are constants 

depending on the environmental conditions and confining pressures. Values 

of the constants are given in Table (7.15) for dry and saturated conditions 

at various confining pressure, and as plotted against a3 in Figs. (7.56) 

and (7.57) for dry and saturated conditions respectively. 

The predicted values of the creep strain using the above equation were 

compared with the actual values. There are a few values (not more than 10% 

of the total) in each case where the variation was greater than 12%. The 

"Standard Error of Estimate, SEE" and the "Correlation Coefficient, COR. 

COF" were calculated for each case to give a clear idea about the variation 

between the actual and predicted values as in the case of axial creep. 
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Table (7.15) Constants of the Emperical Equation at the 

specified conditions. 
ef (e =d al t) 

Constants Dry Condition ** 
COR * 

SEE COF. 

3 
/mm 2 d e f 

0 1.89274 0.92945 0.31095 27 0.949 (Uniaxial) 

10 0.49249 1.28551 0.34146 35 0.946 

20 0.13809 1.51025 0.32468 21 0.989 

30 0.07659 1.56459 0.34254 20 0.977 

Saturated Condition 

0 0.87209 2.07960 0.28141 98 0.981 
(Uniaxial) 

10 0.25209 2.08174 0.25710 116 0.962 

SEE - Standard Error of Estimate, see Appendix (C) for 

computation. 
**COR. 

COF. - Correlation Coefficient. 

The values of SEE and COR. COF. are given in Table (7.15). It can be seen 

that in any case the correlation coefficient is not less than 0.946, which 

indicates a good significant degree of correctness. 

Equations for saturated conditions at o3 = 20 and 30 N/mm2 are not 

given because of their low correlation. 

7.8 Volumetric Creep and the Effects of Axial Stress and Confining Pressure. 

Volumetric creep strain was measured by using the axial and lateral 

creep strain, i. e. eV = EA -2 eL where ev is the volumetric creep strain, 

CA is the axial creep strain and EL is the lateral creep strain. The 

behaviour of the volumetric creep was studied in dry and saturated 

conditions, and the effects of axial stress and confining pressure will be 

discussed. A positive value of eV means a decrease in specimen volume. 
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In this study this will be called a decrease in volumetric strain. 

Conversely negative values of. means increasing specimen volume referred 

to as an increase in volumetric strain. 

To give a general idea about the volumetric creep curve in comparison 

with the axial and lateral creep curves from which it is calculated these 

relationships are plotted in Figs. (7.43) and (7.44) for dry and saturated 

conditions respectively under various stress conditions. It can be seen 

that the volumetric creep strain increases with the time under a constant 

stress although it was found in many cases that initially the volumetric 

creep strain decreases, (+ ve) (or decrease in volume), sharply then the 

volumetric creep increases after a short time to become negative (increase 

in specimen volume) and follows the trend of the lateral creep curve, 

see Figs. (7.43 D) and (7.44 C) for dry and saturated conditions respectively. 

This may be explained as; initially the pre-existing cracks and pores are 

closed, especially the cracks perpendicular to the axial stress or at a 

large angle to it, in other words, the material is consolidated giving a 

decrease in specimen volume. After a short time, new cracks are produced 

probably associated with the old cracks or the grain boundaries. Since the 

cracks tend to grow in a direction more or less parallel to maximum applied 

stress(104), there will be more strain in the lateral direction with the 

time under the load. This increase in the lateral strain is indicated 

by specimen expansion (increase in volumetric creep). Kranz 
(104) 

stated 

that under constant load the crack width and the average length increases 

in time. 

The time-dependent deformation of brittle rocks is a result of micro- 

fracturing, the creep therefore is a 
(129 

process of time-dependent dilatancy 

Similar behaviour of volumetric creep has been reported for different rocks 

by the investigators; Wu and Thomsen 
(98) 

and Scholz 
(129) 

on Westerly granite 
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and Cogan 
(99) 

on saturated Dolomite and hard shale. If a specimen of a 

particulate material is stressed axially under a triaxial confinement, 

the degree of compression of dilation will depend partly on the initial 

density of the material and partly on the confining pressure (Price and 

Farmer(50), 1979). 

The effect of the axial stress and the confining pressure on the 

volumetric creep strain of gypsum will be discussed here. The influence 

of the axial stress at a constant confining pressure in dry conditions is 

shown in Figs. (7.45), (7.46) and (7.47) for confining pressure zero, 

20 and 30 N/mm2 respectively, and in saturated condition in Figs. (7.48), 

(7.49), and (7.50) for confining pressure, zero, 10, and 30 N/mm 
2 

respectively. 

It can be seen that the volumetric creep takes place at all the stress 

levels, and increases with increasing axial stress at constant confining 

pressure. 

Rong et al. 
(130) 

reported that the average length and density of the 

cracks increases with increasing the axial stress at constant a3, and the 

volume dilatancy increases as a result of that. Scholz 
(129) 

stated that 

the creep deformation in compression is produced by microfracturing, this 

microfracturing consequently is a time as well as stress dependent process. 

Cogan 
(99) 

found an increase in the volumetric creep strain of Dolomite 

with increasing the axial stress at constant confining pressure. 

The volumetric creep rate was found to increase with increasing the 

axial stress under uniaxial condition for both dry and saturated gypsum, 

see Figs. (7.45)and (7.48). This is influenced by the fact that the axial 

stress increases the lateral creep rate more than the axial creep rate 

under uniaxial stresses, see Sec. (7.6). Under triaxial stresses, at 

constant confining pressure the volumetric creep rate increases with 

increasing the axial stress at higher values of al, under both dry and 
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saturated conditions, see Figs. (7.46) and (7.47) for dry and Figs. 

(7.49) and (7.50) for saturated. This must result from an increase of 

the lateral creep rate with increasing al at higher values of a1 which 

is greater than the increase of the axial creep rate, see Section (7.6) 

and Figs. (7.39) and (7.40). 

The average length of the cracks and their density increases with the 

uniaxial stress, the rate of increase becomes rapid at a1 values greater 

than 60% a, whereas in triaxial stresses when (Q1 - a3) increases (in 

other words increasing a1 at constant a3) to about 90% au the number and 

length of the cracks increases with extreme rapidity(130). 

Wawersik(96) found that the secondary volumetric creep rate of water 

saturated westerly granite increases with increasing (al - a3) or increasing 

of at constant a3. Cogan 
(99) 

also reported an increase of the volumetric 

creep rate of Dolomite and hard shale by increasing of at constant a3. 

As observed and mentioned before, the creep behaviour in some cases 

changed from logarithmic law to power low, and in many cases the behaviour 

in the power law changed its gradient (on log-log graph) to a smaller value 

after a certain loading time. It can be seen from the tables (6.17), 

(6.18), (7.12) and (7.13) that the time of change of creep behaviour in dry 

condition in both axial and lateral directions increases in general with 

increasing the applied axial stress at a constant a3. The time of change 

varied from 4.5 to 72 hours from the beginning of the test in the axial 

direction while in the lateral direction it varied from 2 to 190 hours. 

In saturated gypsum it is observed that there is no unique trend for the 

axial stress effect on the time of change in creep behaviour. This may 

be due to the possibility of the difference in the creep processes in dry 

and saturated gypsum, in which the saturated rock suggested to be as 

a result of solution, recrystallization, etc. It can be seen from the 
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above mentioned tables, that this change in the creep behaviour causes 

the decrease of the creep rate with the time to be more effective. Since 

the effect of the lateral creep on the volumetric creep is greater than 

the axial, i. e. the behaviour change takes place in lateral creep and 

does not occur in axial at the corresponding stress conditions (which 

happened in most of the cases) the lateral creep change is dominant. 

This means that the volumetric creep rate should in general decrease with 

time but in most cases this changed the direction of the volumetric creep 

curve. These cases are shown in dry conditions at o3 = 20 N/mm2 under al 

= 41 and 50 N/mm 
2 

and at a3 = 30 N/mm2 under a1 = 41,50 and 63 N/mm 
2, 

see Figs. (7.46) and (7.47) for 20 and 30 N/ßn2 confining pressure respect- 

ively. In saturated rock the cases are shown at a3 = 10 N/mm2 under a1 

27 N/mm and at a3 = 30 N/mm2 under a1 = 63 N/mm2, see Figs. (7.49) 2 
= 

and (7.50) for 10 and 30 N/mm2 confining pressure respectively. 

The volumetric creep strain is plotted against the time for various 

confining pressures at constant axial stress in Figs. (7.51) and (7.52) 

for dry and saturated conditions respectively. It can be noted that the 

effect of increasing confining pressure at a constant axial stress is to 

decrease the volumetric creep strain, and the effect of equal variation of 

a3 is more at low values of a3 than higher. In this respect it should be 

noted that the effect of increasing the confining pressure in decreasing the 

lateral creep strain is more than its effect on the axial creep strain and 

this effect is more pronounced at low values of a3 than higher, see Sec. 

(7.6). 

Among Cogan's(90) results, it is clear that the effect of increasing a3 

from 50 to 500 psi at constant Q1, decreases the volumetric creep strain 

of a hard shale by an appreciable amount. Rong et al. 
(130) 

reported among 
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their results, that the volume dilatancy of Gabbro under uniaxial stress 

(zero confining pressure) is seven times that at 1.3 Kb confining pressure 

at a constant al of about 1.5 Kb. lt can be seen, observing the gradient 

of the curves in Fig. (7.51) and (7.52), that the volumetric creep rate 

decreases with increasing the confining pressure at a constant axial stress. 

This is due to the effect of a3 on the lateral creep rate which as in the 

case of strain is more than its effect on the axial creep rate at a 

constant al, see Sec. (7.6). Cogan 
(99) 

reported a similar behaviour of 

the volumetric creep rate of the saturated dolomite. 

At constant (al -a3) the volumetric creep rate at 48 hours was 

plotted versus confining pressure in dry and saturated conditions in Figs. 

(7.53) and (7.54) respectively. It can be seen that in dry conditions the 

volumetric creep rate decreases with increasing confining pressure for the 

low values of o3 up to a certain value, then starts to increase with 

increasing o3 for higher values of a3. In saturated conditions the volum- 

etric creep rate decreases with increasing the confining pressure throughout, 

this effect is much more pronounced at the lower values of a3 and becomes 

slight at higher values of a3. As discussed previously, increasing confining 

pressure at constant (a1 - 03) increased the axial creep rate slightly in 

dry conditions and decreased it in a saturated condition, see Figs. (6.56) 

and (6.57). Whereas in the case of lateral creep for dry rock the 

increase of a3 at constant (ai - a3) caused the creep rate to decrease to 

a certain value then started to increase for higher values of o3, while in 

saturated condition the creep rate decreased with increasing a3, see 

Figs. (7.31) and (7.32). It has been noted that the effect of lateral 

creep rate on the volumetric creep rate is more than the effect of the axial 

creep rate. The result of this is that the effect of confining pressure 

on the volumetric creep at constant (al - a3) is found to be similar to its 
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effect on the lateral creep rate in both environmental conditions. These 

results are similar to the behaviour of the volumetric creep rate of 

saturated Westerly granite which is reported by Wawersik(96) at constant 

(a1 - a3), and of saturated dolomite and shale which is tabulated by 

Cogan(99) 

Volumetric creep strain is plotted versus the time in dry and 

saturated conditions under similar stresses in Fig. (7.55). This figure 

shows the effect of saturation on the volumetric creep strain and the 

volumetric creep rate under uniaxial and triaxial stresses. It can be 

seen that the water saturation increases the volumetric creep strain and 

volumetric creep rate by appreciable amounts. The creep rate of the 

saturated rock increases very rapidly relative to the dry value. At 

constants (al - a3) the volumetric creep rate is greater in saturated 

condition than the dry under similar stresses, see Figs. (7.53) and (7.54). 

These figures show that the effect of increasing the volumetric creep rate 

with (a1 - a3) is greater than this effect in dry condition. 

Kranz 
(104) 

reported that in constant' stress creep tests, the cracks 

will tend to grow, the presence of water increases the ability of the 

growth by decreasing the crack tip strength and makes further propagatign, 

in other words, increase the rate of the specimen dilation. 

In general it should be remembered that crack growth is a function of 

stress at the tip and the surface energy of the rock. Increasing stress 

will increase crack growth, while the presence of water on the surfaces 

will decrease surface energy and result in increased crack growth without 

the necessity to increase the stress levels, i. e. its presence weakens 

the rock. 
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Chapter 8. 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK. 

The main aim of this work was to investigate the three dimensional 

creep behaviour of gypsum in dry and saturated conditions under uniaxial 

and triaxial compression and bending modes of loading. A further aim was 

to determine the effects of the specimen size and water saturation on the 

bending, uniaxial tensile, uniaxial compressive, and triaxial compressive 

short term strengths. 

Within the limits of the experiments performed, the under-mentioned 

conclusions are drawn on the basis of the results presented and discussion 

made thereupon in the previous chapters. 

8.1 Short Term Tests. 

(1) Bending, uniaxial tensile, uniaxial compressive, and triaxial 

compressive strengths were found to decrease with increasing specimen size 

in dry and saturated conditions. 

(2) Uniaxial tensile and compressive strength values fitted the Weibull 

theory in both environmental conditions. 

(3) Water saturation decreased the rock strength in bending, uniaxial 

tensile, uniaxial and triaxial compression tests. 

(4) The saturation increases the strain in bending, axial and lateral 

directions when compared with the equivalent situation with dry sample. 

(5) It was found that the tensile strength from bending is greater than 

the uniaxial tensile strength measured by direct pull in both dry and 

saturated conditions. 

(6) Water saturation decreases the Modulus of Elasticity and increased the 

Poisson's ratio of the gypsum. 

(7) The axial stress (as percentage of maximum stress) required to develop 

the onset of the unstable fracture is decreased by saturation and increases 

with increasing confining pressure. 
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(8) The strength and ductility increase in a non-linear relationship with 

increasing confining pressure. 

(9) The confining pressure decreases the values of the Poisson's ratio in 

both dry and saturated gypsum. 

(10) As the confining pressure increases the volumetric strain decreases 

in both environmental conditions (decrease in volume) at all stress levels. 

8.2 Long Term Tests. 

(1) In bending creep strain, instantaneous strain and creep rate increase 

with increasing the applied stress. 

(2) Water saturation increases the bending creep strain, instantaneous 

strain and creep rate at a given applied stress. 

(3) The creep in bending was found to follow the logarithmic equation 

c=A+B log t at low stresses and power law equation e= C to at high 

applied stresses in dry conditions. Whereas in saturated conditions the 

creep follows the power law equation at all applied stresses. 

(4) An empirical equation was predicted for the creep in bending for both 

dry and saturated conditions. The equation is in the form: 
Eat 

E=D 10 tF , where D, E and F are constants. The values of these 

constants are increased with water saturation. 

(5) Axial and lateral creep take place at all stress levels and are 

affected by confining pressure and saturation. 

(6) Axial creep in dry condition followed the power law equation, e-C tn, 

except at low stresses and in the early stage of the tests of medium stresses 

where it followed the logarithmic equation, c=A+B log t. In saturated 

conditions the creep followed the power law at all times except for a short 

duration of the beginning of the low stress tests where the logarithmic 

law applied. This applies at all confining pressures. 
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(7) Lateral creep in dry and saturated conditions followed the power law 

e=C tn, except at the earlier stage of the low or low and medium stresses 

where the logarithmic law, e=A+B log t was followed. 

(8) The instantaneous axial and lateral strains increased with increasing 

axial stress in both environmental conditions. The Moduli of Elasticity 

and Poisson's ratio were evaluated making use of the instantaneous strains. 

(9) Axial and lateral creep strains increased with increasing axial stress 

in both dry and saturated conditions at constant confining pressure. 

(10) The power equation constants C and n in axial and lateral creep behaviour 

increase with increasing axial stress at constant confining pressure. On 

the contrary they decrease as the confining pressure increases at constant 

axial stress in both environmental conditions. 

(11) The water saturation increases the creep strain in axial and lateral 

direction and also the volumetric creep strain. 

(12) Saturation increases the creep equation constants A, B, C and n (items 

6 and 7). 

(13) The creep strain in both axial and lateral directions decreases with 

increasing confining pressure at constant axial stress in both dry and 

saturated conditions. This effect was found to be greater on the lateral 

creep strain than the axial. 

(14) In uniaxial loading the lateral creep strain is greater than the axial 

in both environmental conditions, whereas in triaxial loading the lateral 

creep strain becomes less than the axial and this effect increases with 

increasing confining pressure. 

(15) By analysing the axial and lateral creep results obtained an 

empirical equation of a power law function was presented for the determination 

of the creep strain at each confining pressure level and in dry and saturated 

conditions. This equation gives an acceptable accuracy in each case and 
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it is in the form: c=a alb tc, where a, b and c are constants, 

depending on the environmental and test conditions. 

(16) The axial stress and confining pressure have a great effect on the 

creep rate. It was found for the two environmental conditions, that the 

creep rate in both axial and lateral directions increased with increasing 

axial stress at constant confining pressure, and, decreased with increasing 

confining pressure at constant axial stress. 

(17) The effect of decreasing the creep rate with increasing confining 

pressure was found to be greater on the lateral direction than the axial. 

(18) The lateral creep rate is greater than the axial under uniaxial loading, 

whereas under triaxial loading the lateral creep rate is less than axial in 

dry and saturated conditions. 

(19) The relationship between creep rate and axial stress, in both environ- 

mental conditions for axial and lateral direction, was found to follow the 

power equation e=RaIK where K>1. R and K are constants which depend 

on the environmental and test conditions. K was found to be a constant at 

any time in the creep period at a given confining pressure. 

(20) The axial, lateral and then volumetric creep rates were found to 

increase by appreciable amounts when the samples were saturated with water 

under any particular stress condition. 

(21) In both dry and saturated conditions the creep rate in axial and 

lateral directions increases with increasing differential stresses (Q1 - a3)' 

(22) In dry conditions the axial creep rate increases with increasing 

confining pressure at constant (aI - a3), while in saturated condition 

increases up to (a1 - a3) = 15 N/mm2 then starts to decrease with increasing 

a3 for (Q1 - a3) > 15 N/mm. 2 

(23) Lateral creep strain decreases with increasing a3 at constant (al - a3) 

while axial strain increases. 
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(24) The lateral creep rate in dry and saturated conditions decreases 

with increasing of or a3 at constant (al - a3). The effect of a3 was 

found to be greater in the case of saturated conditions than in dry. 

(25) It is suggested that the creep behaviour of the water saturated gypsum 

is influenced by solution, ionic mobility and recrystallization. 

(26) The volumetric creep strain was found to increase with time, and in 

most of the cases, initially decreased (decrease in volume), sharply then 

increased after a short time (increase in volume) and followed the trend of 

the lateral creep curve. 

(27) In both dry and saturated condition, it was found that the volumetric 

creep strain increases with increasing of at constant a3 and decreases with 

increasing o3 at constant vl. 

(28) In both environmental conditions, the volumetric creep rate increases 

with increasing al under uniaxial loading, and at higher values of vl in 

triaxial loading at constant a3. 

(29) Volumetric creep rate decreases with increasing a3 at constant vl. 

(30) At constant (a1 - a3) the volumetric creep rate in dry condition was 

found to decrease with increasing a3 up to a certain value of a3, then 

starts to increase for higher values of a3, whereas in saturated conditions 

the volumetric creep rate decreased with increasing 03 throughout. 

8.3 Suggestions for Future Work. 

The author endeavoured within the limited time and opportunity 

available to make an assessment of the following: (a) Effect of beam size 

on the bending creep behaviour of the rock in different environmental 

conditions and under significantly reasonable applied stress levels. 

(b) The influence of higher confining pressure in dry and saturated gypsum 

to throw more light on its behaviour under these conditions. 
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Admittedly, it has not been possible to include several specimen beam 

sizes under several stress levels, and, to carry on tests at higher 

confining pressure levels in dry and saturated conditions within the field 

of experimental investigation. These could be taken as future projects 

for research. 

The author suggests that it would be of interest to carry on similar 

creep tests on other evaporite rocks such as, anhydrite, rock salt, potash, 

etc., to obtain a wider knowledge of the behaviour of evaporite rock before 

making any generalization. 

It is suggested that it would be of advantage to construct more power- 

ful apparatus for applying both confining and axial stresses, and to design 

a lateral strain measuring device to measure lateral creep strains within 

the pressure cell itself in order to compare the results with the data 

obtained in this study using strain gauges in the pressure cell mounted on 

the specimen. This will enable an extension of triaxial creep studies 

into the testing of rock at higher stresses or into harder rock materials 

outside the range of evaporite rocks. A further extension of the work on 

triaxial creep should also include the operation of apparatus enabling 

the testing of larger rock specimens. This will allow size effects in 

triaxial conditions to be tested, and also tests on specimens of rock having 

large crystals in their structure. 

A large number of testing cell units with data logging facilities 

would allow a more rapid collection of creep data. 
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APPENDIX A. 

Petrological and Mineralogical Description of Gypsum. 

Gypsum is one of the rocks within the evaporite class. These rocks 

are non-clastic sedimentary rocks resulting from the evaporation of saline 

water. Most evaporites are derived from bodies of sea water. 

Gypsum occurs in several forms, each characterised by its own textural 

identity. The massive, fine-grained, translucent variety is called 

alabaster; well-formed, crystalline, clear varieties are named sclenite, 

whilst the white, earthy opaque, more massive types are called Gypsum rock. 

Gypsum is one of the least soluble of salts in sea water and is therefore, 

one of the first to be deposited as the salt concentration rises. All 

varieties have been deposited from saline waters and their characteristic 

occurrance is controlled by varying physico-chemical environments. All 

are precipitated in temperature conditions in saturated water below 250 C, 

above this temperature the anhydrous form, anhydrite is deposited. It 

is also formed by the decomposition of pyrite (Fe S2) in the presence of 

calcium carbonate. Gypsum is frequently formed by the hydration of 

anhydrite in the presence of water under low external pressure (at the 

maximum average depth of 100-150 m). The majority of the huge gypsum 

deposits in the world have been formed in this way. 

Gypsum is a chemical compound of 46.5% SO3,32.6% Ca 0 and 20.9% H20. 

It is known as a hydrous calcium sulphate and represented by the chemical 

formula Ca SO4 .2 H20. Gypsum is the most common natural sulphate, it 

has considerable variation in colour, but pinks, reds, yellows and whites 

are most common. The tints and colours sometimes found in gypsum are 

due to the presence of iron, and the presence of organic matter or diss- 

eminated clay gives rise to a pale grey colour. 
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Gypsum is a soft rock of Nohs hardness equal to 1.5-2 (can be scratched 

by the finger nail) and specific gravity of 2.32. It has a monoclinic 

crystal form. 

Commercially gypsum is used for the production of plaster of paris, 

uncalcined (natural) gypsum is used as a retarder in Portland cement. 

It is sometimes used instead of bricks, in the construction of walls and 

partitions in the building industry. 

The gypsum which was used in this research is from the British Gypsum 

Co. mine at Sherburn in Elmet, North Yorkshire, U. K. Its average compos- 

ition was (91.5%) gypsum, (5.5%) anhydrite, (2.7%) carbonate and (0.3%) clay. 

The workings of the mine lie at a depth of about (50) meters below ground 

surface. Generally it has a fine crystal structure and is pink in colour. 

Its method of formation has been the hydration of anhydrite mass, and mining 

to greater depths results in the gradual appearance of anhydrite bands in 

the gypsum rock deposit. 
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Table (B4-1) Experimental data and mean values of triaxial tests of 
dry specimens (LxD = 76.2 x 25.4 mm). 

Q Specimen Test results Mean values 
3 

N/mm 
2 No. of z 0 al z 0 

N/mm 
2 

N/mm 
2 deg. N/mm 

2 
N/mm2 

deg. 

0 See table (4.6) 41.59 0 63.8 

5D-S1 47.82 29.10 60.0 

5 5D-S2 52.63 31.08 61.5 
50.21 30.13 62.1 5D-S3 48.36 30.09 64.5 

5D-S4 47.75 29.10 62.0 
5D-S5 54.49 31.28 62.5 

1OD-Sl 60.19 38.76 60.5 

10 1OD-S2 61.57 37.20 59.5 62.41 38 03 60 8 1OD-S3 69.67 40.73 61.5 . . 
1OD-S4 58.22 35.41 61.5 

15D-S1 70.15 63.05 59.3 

15 15D-S2 64.43 57.33 59.0 67 30 59 70 59 1 15D-S3 65.26 55.36 59.2 . . . 
15D-S4 69.37 63.06 58.8 

20D-S1 80.91 76.38 61.5 

20 20D-S2 82.94 75.78 57.0 
15 78 96 73 58 3 20D-S3 78.55 74.79 57.4 . . . 

20D-S4 70.65 68.87 57.0 

25D-S1 87.92 83.57 58.3 

25 25D-S2 82.00 73.90 57.5 86 84 80.12 56.5 25D-S3 85.16 78.05 56.0 . 
25D-S4 92.26 84.96 54.0 

30D-S1 95.32 91.57 51.0 
30 30D-S2 113.08 107.16 51.5 102 87 71 99 51 0 30D-S3 105.0 103.80 50.5 . . . 

30D-S4 98.08 96.31 51.5 

35D-S1 120.09 113.52 51.6 
35 35D-S2 95.22 83.38 53.0 109.23 103.17 53 3 35D-S3 103.90 98.78 52.5 . 

35D-S4 117.72 112.98 56.0 
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Table (B4-2) Experimental data and mean values of triaxial tests of 
saturated specimens (LxD = 76.2 x 25.4 mm). 

Test results Mean values 
i a Spec men 3 

2 No. al Z 
2 

0 0l 
2 

Z 
2 

0 
/ 

N/mm2 N/mm deg. N/mm N/mm deg. 

0 See table (4.7) 21.13 0 62.8 

5S-S1 36.13 19.24 60.5 

5 5S-S2 36.53 15.29 61.5 35.24 18.01 62.0 
5S-S3 35.34 19.24 64.0 
5S-S4 32.97 18.25 62.0 

10S-S1 44.0 38.22 60.5 

10 10S-S2 44.60 31.12 58.0 45.39 33.90 60.2 1OS-S3 49.93 35.26 63.5 
IOS-S4 43.03 30.92 58.8 

15S-S1 59.40 55.16 57.5 
15 15S-S2 55.65 50.03 60.0 

58.12 53.19 58.0 15S-S3 58.90 55.55 59.5 
15S-S4 58.51 52.00 55.0 

20S-S1 73.80 69.86 58.0 

20 20S-S2 66.90 61.00 56.5 71.69 66.97 56.8 20S-S3 75.19 70.06 55.5 
20S-S4 70.85 66.90 57.2 

25S-S1 81.80 77.26 56.0 
25 25S-S2 78.80 76.86 57.0 80.61 77.26 55.8 

25S-S3 80.42 77.06 55.5 
25S-S4 81.40 77.85 54.5 

30S-S1 76.0 68.09 54 

30 30S-S2 97.69 89.80 56 92.02 86.10 55 
30S-S3 97.69 91.77 55.5 
30S-S4 96.70 94.73 54.5 
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Table (B4-'3) Experimental data and mean values of triaxial tests 
of dry specimens (LxD = 95.25x31.75 mm). 

Test results Mean values 
a S i pec men 3 

2 No. crl 7. 6 a z 0 
N/mm 2 2 2 2 

N/mm N/mm deg. N/mm N/mm deg. 

0 See table (4.6) 32.82 0 65.5 

5D-R1 56.06 34.95 66.0 

5 5D-R2 50.10 33.77 65.5 
53.80 31 15 64 3 5D-R3 60.20 30.03 62.5 . . 

5D-R4 48.90 25.84 63.2 

1OD-R1 64.31 47.55 60.5 

10 1OD-R2 57.23 44.65 56.0 
1OD-R3 66.92 41.77 61.0 64.1 44.19 58.7 

1OD-R4 67.97 42.80 57.3 

15D-R1 74.75 61.14 53.0 

15 15D-R2 69.60 58.74 51.5 
15D-R3 78.51 63.15 57.5 73.31 61.32 54.5 

15D-R4 70.38 62.25 56.0 

20D-R1 79.58 70.92 54.5 

20 20D-R2 74.07 68.09 56.0 76 62 72 93 53 5 20D-R3 77.75 74.13 55.0 . . . 
20D-R4 75.09 78.58 48.5 

25D-R1 78.42 87.41 50.5 
25 25D-R2 90.07 82.48 48.0 85 83 81 14 52 0 25D-R3 90.75 79.13 56.5 . . . 

25D-R4 84.09 75.55 53.0 

30D-R1 93.35 85.84 52.0 
30 30D-R2 98.37 94.33 50.5 96 45 93.34 51 0 30D-R3 100.12 97.14 50.0 . . 

30D-R4 93.96 96.06 51.5 

35D-R1 102.35 98.51 50.0 

35 35D-R2 100.84 100.32 48.5 
35D-R3 105.76 96.41 49.5 103.12 99.58 50.5 

35D-R4 103.53 103.08 54.0 
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Table (B4-4) Experimental data and mean values of triaxial tests 
of saturated specimens (LxD = 95.25 x 31.75 mm). 

Test results Mean values 
a S i 3 pec men 

2 No. a1 Z 0 a1 Z A 
/mm 

N/mm2 N/mm 
2 

deg. N/mm 
2 

N/mm 
2 

deg. 

0 See table (4.7) 17.29 0 67 

5S-R1 36.46 19.68 63.0 
5 5S-R2 39.62 22.46 61.5 

35.77 20.13 60 5S-R3 32.29 19.05 60.0 
5S-R4 34.71 19.33 55.5 

lOS-R1 46.47 30.77 58 

10 IOS-R2 47.86 32.16 56.5 
IOS-R3 48.74 30.91 55.0 47.83 32.32 57 

10S-R4 48.24 35.44 58.5 

15S-R1 49.56 43.13 54.5 
15 15S-R2 52.68 45.28 53.0 

53 0 45.45 53.5 15S-R3 55.84 48.44 51.5 . 
15S-R4 53.82 44.95 55.0 

20S-R1 62.69 60.54 52.0 

20 20S-R2 61.68 58.39 50.0 61.17 57.68 50.5 20S-R3 58.14 55.90 51.0 
20S-R4 62.18 55.90 49.0 

25S-R1 68.0 65.59 50.5 

25 25S-R2 64.58 61.17 46.5 67.02 63.27 49.0 
25S-R3 69.38 63.44 49.0 
25S-R4 66.10 62.88 50.0 

30S-R1 78.14 78.13 50.5 

30 30S-R2 76.25 75.75 46.5 74.71 72.81 48.0 
30S-R3 70.34 70.12 48.5 
30S-R4 74.12 67.24 46.5 

35S-R1 80.16 74.24 46.5 

35 35S-R2 82.25 76.31 49.0 
78.83 77.06 48.0 

35S-R3 77.18 79.90 47.5 
35S-R4 75.73 77.80 49.0 
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Appendix C. 

Statistical Consideration of the Regression. 

C. 1 Linear Regressions. 

The creep relationship in most of the cases in uniaxial and 

triaxial compression and in bending in both dry and saturated conditions 

followed a power law equation in the form 

e=C to ..... (C. 1) 

In order to ensure that the creep data will fit the above equation well, the 

data was plotted on a log-log graph, when a straight line is normally 

obtained. n in the equation represents the slope of this line and C is the 

creep strain at time t=1 hour. Both graphical and least squares methods 

were used to find the values of n and C. The least squares method was 

applied in the following way: 

Equation (C. 1) can be rewritten in the form 

log c= log C+n log t ..... (C. 2) 

let log e=Y 

log t=X 

and log C=Z 

Equation (C. 2) can be rewritten in the form 

Y=Z+ nX ..... (C. 3) 

The slope (n) and the intercept (Z) of the straight line which represents 

equation (C. 3) can be calculated by 

EXY - 
(EX) (EY) 

n=N2 (C. 4) 

EX2 - 
(EX) 

..... 

N 

Z nX ..... 
(C. 5) 
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where N is the number of the readings, Y is the mean of the Y- values 

and X is the mean of X-values. 

A sample solution for X, Y, EXY, EX, EY and EX2 is given in Table (C. 1). 

The values of creep strain (c) and corresponding times (t) are taken from 

Table (6.15) of Chapter 6. 

Solving for n and K using the data given in Table (C. 1) 

209.496 - 
75.859 x 105.568 

n_ 
40 

189.914 - 
(75.859) 2 

40 

. 
'. n=0.202 

Z=Y- nX 

Z=2.639 - 0.202 x 1.896 

. '. Z=2.256 

Substitute the value of Z in Z= log C to find C= 178. Substitute the 

values of n and C in equation (C. 1), the following power equation of the axial 

creep in saturated condition at a1 = 41 N/mm 2 
and a3 = 30 N/mm 2 

was obtained 

C= 178 t0.202 ..... 
(C. 6) 

In order to find the degree of correctness of the assumption that the 

plotted data on the log-log graphs represents a straight line, the 

correlation coefficient (R) was found for each case. The results obtained 

were extremely satisfactory. A sample of this calculation is given here for 

22 
the axial creep in saturated condition at a1 = 41 N/mm and a3 = 30 N/mm. 

R_ E(X-X )(Y-Y ) 
..... 

(C. 7) 
(N-1) (DX. DY) 

where R is the correlation factor, X, X, Y, Y and N as given in Table 

(C. 1) and equation (C. 4); DX and DY are the standard deviations of X and Y 

values respectively, where: 
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DX = 

JE(X-X 

)2 
..... (C. 8) N-1 

DY =I 
E(Y-Y )2 

..... 
(C. 9) 

N-1 

Substituting the values of X, X, N, Y and Y in the above equations: 

DX = 1.088 

DY = 0.239 

R= 
10.096 

39 x 1.088 x 0.239 

. '. R=0.995 which indicates a good degree of correctness. 

C. 2 Standard Error of Estimate. 

Empirical equations were found for the determination of the creep strain 

in axial and lateral directions in the form: 

C=a olb tc ..... 
(C. 10) 

In order to show that the actual creep strain fits the above equation, the 

combined correlation of coefficient (COR. COF. ) and the Standard Error of 

Estimate (SEE) were calculated. Standard Error of Estimate gives the 

reliability of the predicted values. The following method was used for 

computing SEE. 

SEE 
E(Y-Y')2 

N-K-1 

where: SEE is the standard error of estimate, Y is the actual creep strain, 

I 
Y is the predicted creep strain, N is the number of reading and K is the 

number of the independent variables (time and axial stress). 

For a sample solution, values of Y, Y (Y - Y') and y- y')2 are 

given in Table (C. 2). These values are taken from the lateral creep in dry 

conditions at of = 27,41,50 and 63 N/mm 
2 

and at o3 = 30 N/mm2. 

N= 120 K=2 SEE = 
46987.38 
120-2-1 

. '. SEE 20.04 
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Table (C. 2) Lateral creep strain in dry conditions at of = 27,41 
22 50 and 63 N/mm and at o3 = 30 N/mm 

Time 
hours 

ßl 

2 
N/mm 

Act 

cctual p 
Y 

Predicted 

y 

Y- Y' (Y - Y')2 

48 27 49.50 50.068 -0.568 0.3226 

72 27 57.30 57.528 -0.228 0.0519 

96 27 65.30 63.486 1.814 1.814 
120 27 72.05 68.529 3.521 12.397 
144 27 78.50 72.945 5.555 30.858 

168 27 83.700 76.900 6.800 46.240 
192 27 88.550 80.499 8.051 64.819 

216 27 92.65 83.813 8.837 78.093 

240 

--- 

--- 

--- 

27 

-- 

--- 

--- 

100.30 

------ 

------ 

------ 

86.893 

------ 

------ 

13.407 

------ 

------ 

179.748 

-------- 

-------- 

--- 

--- 

552 

--- 

--- 
63 

------ 

------ 
485.85 

------ 

------ 

------ 
435.137 

------ 

------ 

------ 
50.713 

-------- 

-------- 

-------- 
2571.81 

576 63 491.50 441.527 49.973 2497.30 
600 63 495.650 447.744 47.906 2294.98 
624 63 501.50 453.800 47.700 2275.29 

648 63 506.35 459.705 46.645 2175.76 

672 63 510.85 465.468 45.382 2059.53 

696 63 514.70 471.096 43.604 1901.31 

720 63 517.65 476.599 41.051 1685.18 

Total number of cases is 120, E(Y-Y')2 

sample of calculation is presented. 46987.38 
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