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Abstract

The study of the free idempotent generated semigroup IG(E) over a biordered set
E began with the seminal work of Nambooripad in the 1970s and has seen a recent
revival with a number of new approaches, both geometric and combinatorial.
Given the universal nature of free idempotent generated semigroups, it is natural
to investigate their structure. A popular theme is to investigate the maximal
subgroups. It was thought from the 1970s that all such groups would be free,
but this conjecture was false. The first example of a non-free group arising in
this context appeared in 2009 in an article by Brittenham, Margolis and Meakin.
After that, Gray and Ruskuc in 2012 showed that any group occurs as a maximal
subgroup of some IG(E).

Following this discovery, another interesting question comes out very natu-
rally: for a particular biordered F, which groups can be the maximal subgroups
of IG(E)? Several significant results for the biordered sets of idempotents of the
full transformation monoid 7, on n generators and the matrix monoid M, (D) of
all n xn matrices over a division ring D, have been obtained in recent years, which
suggest that it may well be worth investigating maximal subgroups of IG(E) over
the biordered set E of idempotents of the endomorphism monoid of an indepen-
dence algebra of finite rank n.

To this end, we investigate another important example of an independence
algebra, namely, the free (left) G-act F,,(G) of rank n, where n € N, n > 3 and
G is a group. It is known that the endomorphism monoid End F,(G) of F,(G)
is isomorphic to a wreath product G 7T,. We say that the rank of an element of
End F,(G) is the minimal number of (free) generators in its image.

Let E be the biordered set of idempotents of End F,,(G), let € € E be a rank r
idempotent, where 1 < r < n. For rather straightforward reasons it is known that

if r =mn — 1 (respectively, n), then the maximal subgroup of IG(E) containing



is free (respectively, trivial). We show, in a transparent way, that, if » = 1 then
the maximal subgroup of IG(F) containing ¢ is isomorphic to that of End F,(G)
and hence to GG. As a corollary we obtain the 2012 result of Gray and Ruskuc
that any group can occur as a maximal subgroup of some IG(E). Unlike their
proof, ours involves a natural biordered set and very little machinery. However,
for higher ranks, a more sophisticated approach is needed, which involves the
presentations of maximal subgroups of IG(E) obtained by Gray and Ruskuc, and
a presentation of G S,, where S, is the symmetric group on r elements. We show
that for 1 < r < n—2, the maximal subgroup of IG(E) containing ¢ is isomorphic
to that of End F,(G), and hence to G S,. By taking G to be trivial, we obtain
an alternative proof of the 2012 result of Gray and Ruskuc for the biordered set
of idempotents of 7,,.

After that, we focus on the maximal subgroups of IG(E) containing a rank 1
idempotent € € E, where E is the biordered set of idempotents of the endomor-
phism monoid End A of an independence algebra A of rank n with no constants,
where n € N and n > 3. It is proved that the maximal subgroup of IG(E) con-
taining ¢ is isomorphic to that of End A, the latter being the group of all unary
term operations of A.

Whereas much of the former work in the literature of IG(E) has focused on
maximal subgroups, in this thesis we also study the general structure of the free
idempotent generated semigroup IG(B) over an arbitrary band B. We show that
IG(B) is always a weakly abundant semigroup with the congruence condition,
but not necessarily abundant. We then prove that if B is a quasi-zero band or a
normal band for which IG(B) satisfying Condition (P), then IG(B) is an abundant
semigroup. In consequence, if Y is a semilattice, then IG(Y") is adequate, that is,
it belongs to the quasivariety of unary semigroups introduced by Fountain over
30 years ago. Further, the word problem of IG(B) is solvable if B is quasi-zero.

We also construct a 10-element normal band B for which IG(B) is not abundant.
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Preface

Let S be a semigroup with a set of idempotents £ = E(S). The structure of the set
E can naturally be described as a biordered set, a notion arising as a generalisation
of the semilattice of idempotents in inverse semigroups by Nambooripad [37].
Conversely, Easdown [10] shows that every biordered set E occurs as E(S) for
some semigroup S. Hence we lose nothing by assuming that a biordered set E is
of the form E(S) for a semigroup S. Further, a biordered set E has the property
of being regular if and only if E = FE(S) is the set of idempotents of a regular
semigroup S [37].

Let S be a semigroup and denote by (E) the subsemigroup of S generated by
the set of idempotents £ = E(S) of S. If § = (F), then we say that S is idempo-
tent generated. The significance of such semigroups was evident at an early stage:
in 1966 Howie [28] showed that every semigroup may be embedded into one that
is idempotent generated. To do so, he investigated the idempotent generated
subsemigroups of transformation monoids, showing in particular that for the full
transformation monoid 7, on n generators (where n is finite), the subsemigroup
of singular transformations is idempotent generated. Erdos [12] proved a corre-
sponding ‘linearised’ result, showing that the multiplicative semigroup of singular
square matrices over a field is idempotent generated. An alternative proof of [12]
was given by Dawlings [9], and the result was generalized to finite-dimensional vec-
tor spaces over division rings by Laffey [33]. Fountain and Lewin [17] subsumed
these results into the wider context of endomorphism monoids of independence
algbras. We note here that sets and vector spaces over division rings are examples
of independence algebras, as are free (left) G-acts over a group G.

Given a biordered set F, i.e. a set F of idempotents of some semigroup .S, there

is a free object in the category of semigroups that are generated by F, called the
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free idempotent generated semigroup over E given by the following presentation:

IG(E)=(E:ef=cf, e, fe B {e fyn{ef fe} #0),

where F = {é: e € E}. Tt is important to understand IG(FE) if one is interested in
understanding an arbitrary idempotent generated semigroup with a biordered set
E. A current and interesting direction in this area is to investigate the maximal
subgroups of IG(E).

In the first phase of the development of the subject several sets of conditions
were found which imply freeness of maximal subgroups [41, 40, 35]. Therefore,
it was conjectured that the maximal subgroups of IG(E) are always free [35].
However, this conjecture had been disproved by a counter-example provided by
Brittenham, Margolis and Meakin [1]: they showed that Z & Z, the free abelian
group of rank 2, is a maximal subgroup of IG(F) for some particular biordered set
E. Also, the paper [1] exhibited a strong relationship between maximal subgroups
of IG(F) and algebraic topology: namely, it was shown that these groups are
precisely fundamental groups of a complex naturally arising from S (called the
Graham-Houghton complex of S). An unpublished non-free example of maximal
subgroups of IG(E) of McElwee from the earlier part of 1970s was announced by
Easdown in 2011 [11].

Motivated by the significant discovery in [1], Gray and Ruskuc [20] showed
that any group occurs as the maximal subgroup of some IG(E). Their approach
is to use existing machinery which affords presentations of maximal subgroups
of semigroups, itself developed Ruskuc, and refine this to give presentations of
IG(F), and then, given a group G, to carefully choose a biordered set E. Their
techniques are significant and powerful, and have other consequences.

We would therefore be interested to know, given a special biordered set F,
which kind of groups arise as the maximal subgroups of IG(F)? Gray and Ruskuc
[21] investigated the maximal subgroups of IG(E), where E is the biordered set
of idempotents of the full transformation monoid 7,, on n elements. It is proved
that the maximal subgroup of IG(E) containing a rank r idempotent ¢ € F,
with 1 < r < n — 2, is isomorphic to that of 7,, the latter being the symmetric
group S, on 7 elements. Dolinka [5] generalized their result to the biordered set
of idempotents of the full partial transformation monoid P7T,, on n elements. On
the other hand, Brittenham, Margolis and Meakin [2] considered the biordered

viii



set E of the matrix monoid M, (D) of all n x n matrices over a division ring D.
They have shown, by using a similar topological method to that of [1], that the
maximal subgroup of IG(F) containing a rank 1 idempotent of £ is isomorphic
to the multiplicative group D* of D. Then, by applying the presentation of IG(F)
developed in [21], Dolinka and Gray [7] worked out the higher rank case for M, (D)
with < n/3. They proved that a maximal subgroup of IG(E) containing a rank r
idempotent € € E is isomorphic to that of M, (D), and hence to the general linear
group GL,(D), where r < n/3. For the case r > n/3, the structure of maximal
subgroups of IG(E) is still an open problem.

We have already mentioned in the beginning of the Preface that the full trans-
formation monoid 7, and the matrix monoid M, (D) of all n X n matrices over
a division ring D share several common pleasing properties, and this is the mo-
tivation of paper [22] by Gould, in which she introduced the investigation of the
endomorphism monoid of universal algebra, called an independence algebra (also
known as a v*-algebra), which include sets, vector spaces and free G-acts, where
G is a group. We will enlarge our discussion of independence algebras in Chapter
3.

Given the results obtained so far for the biordered sets of idempotents of 7,,,
PT, and M, (D), respectively, it is valuable to consider the structure of maximal
subgroups of IG(FE), where E is the biordered set of idempotents of the endo-
morphism monoid End A of an independence algebra A of rank n. We start by
looking at the case in which A has no constants. Some progress has been made
for the rank 1 case, however for the higher rank cases, the whole picture of maxi-
mal subgroups of IG(E) seems not clear at all. Therefore we decided to transfer
our attention to another important source of independence algebras, namely, free
G-acts F,,(G) of rank n, where G is a group, n € N and n > 3. We succeed in
giving a complete characterization of the maximal subgroups of IG(E), where F
is the biordered set of idempotents of the endomorphism monoid End F,,(G) of
F.(G).

The rest of this thesis is devoted to working on the general structure of the
free idempotent generated semigroup IG(B) over a band B. It has been proved
that 1G(B) is always endowed with a significant property, namely, it is weakly

abundant.

Now let me explain the main content of each chapter of this thesis:

X



Chapter 1: We will recall some basic definitions and results of semigroup

theory which will be frequently used in the whole thesis.
Chapter 2: We briefly recall the definitions of £* and R*, L and 7A€/, and the

corresponding concepts of abundant semigroups and weakly abundant semigroups,

both of which are generalizations of regular semigroups.

Chapter 3: The notion of independence algebras (also known as v*-algebras)
and their endomorphism monoids will be recalled in this chapter. We remark here
that independence algebras include sets, vector spaces and free G-acts, where GG
is a group; the latter are the main algebraic object we are concerned with in
Chapters 5 and 6.

Chapter 4: We first give an overview of free idempotent generated semigroups
IG(F) and several pleasant properties, particularly with respect to Green’s rela-
tions. Then we recall the results that have been obtained so far in the current

research direction of this area, namely, the maximal subgroups of IG(E).

Chapter 5: The aim of this chapter is to give an alternative proof, in a
rather transparent way, for the result of the 2012 paper of Gray and Ruskuc [20],
showing that any group occurs as a maximal subgroup of some IG(E). Their
approach is to use existing machinery which affords presentations of maximal
subgroups of semigroups. Our approach is to consider the biordered set E of
non-identity idempotents of a wreath product G 7T,, where G is a group and
T, is the full transformation monoid on n elements. It is known that G 7, is
isomorphic to the endomorphism monoid End F,,(G) of a free (left) G-act F,,(G)
on n generators (see, for example, [30, Theorem 6.8]), and this provides us with
a convenient approach. Let ¢ € E be a rank 1 idempotent. We have shown, in a
transparent way, that, the maximal subgroup of IG(E) containing ¢ is isomorphic
to that of End F,,(G), and hence to G. We remark here that, although none of the
technicalities involving presentations appear here explicitly, we nevertheless have
made use of the essence of some of the arguments of [7, 20|, and more particularly

earlier observations from [3, 42| concerning sets of generators for subgroups.

Chapter 6: Here we continue the study of IG(E) over the biordered set F
of idempotents of End F,,(G) with n € N and n > 3. A complete description
of maximal subgroups of IG(E) has been obtained. Unlike the proof of rank 1

case in Chapter 5, a more sophisticated approach is needed, in which we employ



the generic presentation for maximal subgroups given in [20]. The main result
we obtained in this chapter is that: for any rank r idempotent ¢ € FE, with
1 <r < n-—2, the maximal subgroup of IG(F) containing ¢ is isomorphic to that
of GUT,. It is known that the latter is G1S,., where S, is the symmetric group on n
generators. Note that for » = n — 1, the maximal subgroup is free, for the reason
that there are no non-trivial singular squares in the D-class D, of End F,,(G);
and for r = 1, the maximal subgroup is trivial. It is also worth remarking that
if G is trivial, then F,(G) is essentially a set, so that End F,,(G) = 7,. Our
work succeeds in extending the results of both [23] (which forms Chapter 5 of this
thesis) and [21] (via a rather different strategy).

Chapter 7: In this chapter, our main concern is the biordered set E of idem-
potents of the endomorphism monoid End A of an independence algebra A of rank
n with no constants. Let ¢ € E be a rank r idempotent with 1 < r < n. We know
that the maximal subgroup of End A containing ¢ is the automorphism monoid
Aut A of all automorphisms of A. It turns out that an F-square in F is singular
if and only if the idempotents involved form a rectangular band, and hence, if
r = n — 1 (respectively, n), then the maximal subgroup of IG(E) containing e
is free (respectively, trivial). It has been proved that if » = 1 then the maximal
subgroup of IG(FE) containing ¢ is isomorphic to that of End A, the latter is the

group G of all unary term operations of A.

Chapter 8: We completely change our view of point in this chapter by looking
at the general structure of the free idempotent generated semigroup 1G(B) over
an arbitrary band B. We show that IG(B) is always a weakly abundant semi-
group with the congruence condition, but not necessarily abundant. A 10-element
normal band B for which IG(B) is not abundant is given by the end of this chap-
ter. Next, we focus on finding some special classes of band B for which 1G(B)
is abundant. We then prove that if B is a quasi-zero band or a normal band for
which 1G(B) satisfying Condition (P), then IG(B) is an abundant semigroup. In
consequence, if Y is a semilattice, then IG(Y) is adequate, that is, it belongs to
the quasivariety of unary semigroups introduced by Fountain over 30 years ago.

Further, the word problem of IG(B) is solvable if B is quasi-zero.

Chapter 9: We will give a brief proposal for our further work.
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Chapter 1

Preliminaries I: Semigroup

fundamentals

This chapter is devoted to reviewing the frequently used basic theory of semigroups
in this thesis. All of the definitions and the results presented here are standard
and can be found in [26], [37] and [10].

Throughout this thesis, mappings are written on the right of their arguments,

so that the composition of mappings are from the left to the right.

1.1 Semigroups and binary relations

1.1.1 Semigroups

In this section, we will recall some basic definitions of semigroups, subsemigroups,
ideals, morphisms, etc.

A semigroup is defined to be a non-empty set S together with a binary oper-
ation p, i.e. a function p : S x § — 9, that satisfies the associative law: for all

a,b,c € S, the equation

((CL, b)/’ﬁ C):u = (CL, (b7 C)M),u

holds.
We usually write (a,b)u as ab, so that the associative law can be expressed
briefly as (ab)c = a(be) for all a,b,c¢ € S, and traditionally, we call the binary

operation u a multiplication on S.



If a semigroup S contains an element 1 with the property that, for all z in .S,
xrl = lx = z, then we say that 1 is an identity of S, and that S is a monoid.

Note that every semigroup has at most one identity element, because, if both
1 and 1’ are identities of S, then 1 = 1’1 = 1’. Therefore if S is a monoid we may
refer to the identity of S. If a semigroup S has no identity, then it is easy to form
a monoid S! from S in which S' = SU {1} with

ls=sl =sforall sin S, and 11 = 1.

In other words, every semigroup S may be embedded into a monoid S* (if S is a
monoid then we take S = S!).

A semigroup S with at least two elements is called a semigroup with zero if
there exists an element 0 in S such that for all x in S, we have 0x = 20 = 0, and
we say that 0 is a zero element of S. Usually, S° means S with a zero adjoined
whether or not S has one already.

Similarly, to the case of identities we can show that every semigroup S has at
most one zero element, and moreover every semigroup S can be embedded into a
semigroup S® with zero by putting S° = S U {0} and define 0z = 20 = 00 = 0,
for all x € S, if necessary.

An idempotent in a semigroup S is an element e such that e? = ee = e. We
denote by E(S) the set of all idempotents of S.

Let T be a non-empty subset of a semigroup S. We say that T is a subsemigroup
of S if it is closed under the multiplication in S, i.e. for any a,b € T, we have
ab € T. Further, T is called a left ideal (right ideal) of S, if for all s € Sand t € T,
we have st € T' (ts € T'). We therefore call the subset T a (two-sided) ideal of S
if it is both a left ideal and a right ideal of S. We say that a subset T of S is a
generating set of S if every element of S can be written as a product of elements
in T. Clearly, every semigroup S has at least two ideals, i.e. the empty set () and
S itself. Note that if S is a monoid with identity 1, then an ideal A of S is equal
to S if and only if 1 € A.

Let A be a non-empty subset of S and {A; : i € I'} the set of all ideals of S
such that A C A;, for each ¢ € I. Then it is easy to check that the intersection of
Aj, denoted by N A;, is again an ideal of S; moreover, it is the smallest ideal of
S containing A.Ze[

Let A and B be subsets of a semigroup S. Then the product of A and B is



defined as the set, denoted by AB, which consists of all products ab in S, where
a € A and b € B. Particularly, if B = {b} or A = {a} are singleton, then we may
write AB as Ab or aB.

Suppose that T is a non-empty subset of S. Then we have that T is a sub-
semigroup of S if and only if 77 C T, T is a left (right) ideal of S if and only if
ST CT (T'SCT),and T is an ideal of S if and only if TS C T and ST C T.

Let S and T be semigroups. Then a map ¢ : S — T is called a morphism if
forall a,b € S, (ab)p = (ap)(bp). If ¢ is one-one, then we call it a monomorphism;
if ¢ is onto, then we say that ¢ is an epimorphism, and ¢ is called an isomorphism

if it is a bijection.

1.1.2 Binary relations

A binary relation p between two sets X and Y is a subset of X x Y, i.e. a set of
ordered pairs (x,y) € X x Y, and here we say that x and y are p-related.

For a binary relation p C X x Y we often write x p y instead of (z,y) € p. If
X and Y are the same set, so that the relation p is a subset of X x X, we say
that p is a binary relation on X.

Note that the empty subset () of X x X is included in every binary relation on
X; and the whole set X x X includes every binary relation on X. The relation
X x X is called the universal relation on X, in which every x € X is related to
every y € X. The equality or diagonal relation, denoted by 1x on X, is defined as
the set

Ix ={(z,x): z € X}.

Clearly, here two elements of X are related if and only if they are equal.

For each p C X x X, we define p~t, the converse of p, by

pt={(z,y) € X x X : (y,7) € p}.

Let Bx be the set of all binary relations on X and define a multiplication o

on By by the rule that, for all p,o € By,
poo={(z,y) e X x X: (Fz€ X)(x,2) € pand (2,y) € o}.

Then we have the following lemma.



Lemma 1.1.1. [26] Under the multiplication o defined as above, the set Bx forms

a Semigroup.

Before we introduce several important kinds of binary relations we are con-
cerned with in this thesis, it is worth giving names to some special properties of
binary relations on a set X. Let p be a binary relation on a set X. Then we say
that:

(a) p is reflexive, if for all x € X, (x,x) € p;

(b) p is symmetric, if for all z,y € X, (x,y) € p implies (y,x) € p;

(c) pis anti-symmetric, if for all z,y € X, (z,y) € p, (y,x) € p imply = = y;
(d) p is transitive, if (x,y) € p, (y, z) € p imply (z, z) € p.

A relation p on a set X is called a partial order (relation) if it is reflexive,
antisymmetric and transitive, and traditionally, we denote p by <, so that we can
write (z,y) € p as x < y. We call a pair (X, <) with < a partial order on X a
partially ordered set.

A pre-order on a set X is defined to be a reflexive and transitive relation p on
X, and usually we denote p by =, so that (z,y) € p can be written as < y.

An equivalence (relation) on a set X is defined to be a binary relation p which

is reflexive, symmetric and transitive. We call a set ap defined by
ap={be X : aphb}

the equivalence class of @ in X. It is known that an equivalence relation p on a set
X partitions X. Conversely, corresponding to any partition of X, there exists an
equivalence relation p on X.

Let {p; : i € I} be a family of equivalence relations on a set X. Then it is
easy to check that (1 p;, the intersection of all p;, ¢ € I, is also an equivalence
relation on X. Furtlﬁér more, for any given relation p on X, clearly the family
of all equivalence relations containing p is a non-empty set, as we certainly have
p € X x X, so that the intersection of these equivalence relations is again an
equivalence relation, which it is the smallest equivalence relation containing p,
and we call it the equivalence relation generated by p, and denoted by p°.

However, this foregoing general description is not particularly useful, so we
need a more practical method to find the equivalence relation p® generated by a

given binary relation p on a set X.



Let p be an arbitrary reflexive relation on a set X. For any m € N, we define

p"t=popo---op.

m times

Then we say that
o= = Ul n> 1}

is the transitive closure of the relation p. According to Howie [26], p*> is the

smallest transitive relation on X containing p. Furthermore, we have:

Lemma 1.1.2. [26] Let p be any fized binary relation on X. Then the smallest

equivalence relation on X containing p is given by

pf=(pUp tUlx)™.

Suppose now that we have two binary relations p and ¢ on X, and we denote
(pUo)® by pVo. Then we have the following useful lemma, the proof of which is

straightforward.

Lemma 1.1.3. Let p and o be two equivalence relations on a set X such that

poo=cop. ThenpVo=poog=acop.

In semigroup theory, we are more interested in defining binary relations on
semigroups, rather than just sets. We would therefore like to be able to say
something about the interaction between the relation and the multiplication of a
semigroup.

Let S be a semigroup with p a binary relation on S. Then we say that p is left
compatible if

(Vs,t,a € 85) (s,t) € p=> (as,at) € p

and p is right compatible if
(Vs,t,a € 8) (s,t) € p= (sa,ta) € p
and p is said to be compatible if

(Vs,t,8',t" € 5) (s,t),(s,t') € p=> (s5,1t') € p.



We say that a left (right) compatible equivalence relation is a left (right) con-

gruence on S, and a compatible equivalence relation is called a congruence on

S.

Lemma 1.1.4. [26] A relation p on a semigroup S is a congruence if and only if

it s both a left and a right congruence.

Now let p be an arbitrary binary relation on a semigroup S. It is clear that
the family of all congruences containing p is non-empty, as we certainly have
p C X x X, and hence the intersection of these congruences is again a congruence,
which is the smallest congruence on X containing p, denoted by p*. Then we have

the following lemma as an analogous result for congruences of Lemma 1.1.2.

Lemma 1.1.5. [26] For any fized binary relation p on a semigroup S, the smallest
congruence p* containing p is defined by p* = (p°)¢, i.e. the smallest equivalence

relation containing p°®, where

p¢ = {(zay,zby) : x,y € S*,(a,b) € p}.

We end this section by recalling the fundamental theorem of morphisms for

semigroups.

Lemma 1.1.6. [26] Let p be a congruence on a semigroup S. Then the set

Slp={ap: a€ S}

together with the multiplication defined by the rule that (ap)(bp) = (ab)p forms a
semigroup, and the mapping p* defined by

P S — S/p,a— ap

is a morphism.

Now let i) be a morphism from S to T'. Then the relation

kery = {(a,b) € S x S: ayp = by}

is a congruence on S, im is a subsemigroup of T', and S/ ker is isomorphic to

ima).



1.2 Green’s relations and regular semigroups

1.2.1 Green’s relations

We introduce an important tool for analyzing the ideals of a semigroup S and
related notions of structure, called Green’s relations, which are five equivalence
relations that characterize the elements of S in terms of the principal ideals they
generate.

The fundamental importance of Green’s relations to the study of semigroups
has led Howie to comment [27]:

“..on encountering a new semigroup, almost the first question one asks is
‘What are the Green relations like’?”

Let a be an element of a semigroup S which may not contain an identity, so

that Sa does not necessarily contain a. However, the following sets
S'a = SauU{a},aS" = aSU{a}, S'aS* = SaSUSaUaS U {a}

are all subsets of S containing a. Precisely, they are the smallest left, right and
two-sided ideals of S containing a, respectively. We call Sla the principal left
ideal generated by a. Dually, aS?t is the principal right ideal generated by a and
StaSt is the principal ideal generated by a.

We now define relations <, and <% as follows: for any a,b € S
a<pb<= S'a CS'%and a<gpb<= aS'CbS.

It is easy to check that <, and <y are two pre-orders on S. The pre-order <7
regarding the principal ideals of S can be defined by a similar way.
Note that if e, f € E(S), then we have that

e f<=ef=cande<p f<= fe=e.

We are now in a position to define Green’s relations which were introduced by
J.A. Green in 1951. The two most basic of Green’s relations are £ and R, which
are defined by the rule that for any a,b € S

aLb<= S'a=S%and a R b <= aS' = bS".



Thus, a and b are L-related if they generate the same principal left ideal, a and
b are R-related if they generate the same principal right ideal. It is easy to see
that £ is a right congruence on S and R is a left congruence on S.

The following lemma gives another characterization of £ and R on S in terms

of elements of S.

Lemma 1.2.1. [26] Let a,b be elements of a semigroup S. Then a L b if and
only if there exist x,y € S* such that xa = b,yb = a. Dually, a R b if and only if

there exist u,v € St such that au = b, bv = a.

As the two-sided analogue of £ and R, we define an equivalence relation 7 on
S by the rule that a J b if and only if S'aS* = S'bS!, which is equivalent to the
existence of x,y,u,v € S! such that zay = b and ubv = a.

If we denote the intersection of £ and R by H, then clearly H is an equivalence
relation on S. The binary relation £ V ‘R is denoted by D. We use L,, R,, D, H,
and J, to denote the L-class, the R-class, the D-class, the H-class and the [J-class

of an element a € S, respectively. Then we have:

Lemma 1.2.2. [26] The relations £ and R commute, i.e. LoR =RoL, so that
by Lemma 1.1.3, D=L o R=TR o L.

It is easy to observe that £L C J and R C J. As D is the smallest equivalence
relation containing both £ and R, we have D C 7. Consequently, we have the

following Hasse diagram.

Figure 1.1: Hasse diagram of Green’s relations
Note that in a group G' we have

H=L=R=D=J=GxG.



It is clear that each D-class in a semigroup S is a union of L-classes and also
a union of R-classes. On the other hand, the intersection of an L-class and an
R-class is either empty or is an H-class. However, it follows from the definition

of D and the fact R o L =L o R that
aDb<= R,NLy#0 <= L,N Ry #0.

It is often useful to visualize a D-class of a semigroup S using a so called egg-
box diagram. An egg-box diagram of a D-class D is a grid depicted by the figure
below, whose rows represent R-classes of D, columns represent L-classes of D,

and the cells of the grid represent H-classes of D.

Figure 1.2: the egg-box of a typical D-class

Lemma 1.2.3. [26] If D is a D-class of S and a,b € D are R-related in S, say
with as = b and bs' = a for some s,s" € S, then the right translation p, : S — S
defined by x — xs maps L, to Ly; pl © S — S defined by v — s’ maps Ly
back to L,; and the composition pspl : S — S is the identity mapping on L,.
Furthermore, ps is R-class preserving in the sense that it maps each H-class of

L, in a 1-1 manner onto the corresponding (R-equivalent) H-class of Ly.
We remark here that a dual result holds for L-classes.

Lemma 1.2.4. [26] For each H-class H of a D-class D in S, we either have
H?*NH = () or H is a subgroup; moreover, H is a subgroup if and only if H contains

an idempotent of S, so that no H-class can contain more than one idempotent.

Given an idempotent e € E(S), let G be a subgroup of S containing e. For
any a € G, we know a H e in GG, so that a H e in S, and hence G C H,, where
H, is the H-class of e in S. Therefore we have that H, is a maximal subgroup of

S containing e.

Lemma 1.2.5. [26] Any two H-classes of a D-class D of S have the same cardi-

nality; moreover, any two group H-classes within the same D-class are isomorphic.
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Lemma 1.2.6. [26] If a and b are two elements in a D-class D of S, then the
product ab € R, N Ly if and only if Ry N L, contains an idempotent.

1.2.2 Regular semigroups

We say that an element a € S is reqular if there exists z € S such that axa = a.
Note that axa = a implies both azx and xa are idempotents, and ax R a £ za. A
semigroup S is called a reqular semigroup if all its elements are regular.

We remark here that for regular semigroups, Green’s relations can be expressed
in terms of S rather than S*, since for each a € S, a € aS, Sa and SasS.

Lemma 1.2.7. [26] If a is a regular element of a semigroup S, then every element

of D, is reqular.

Hence, for every D-class D in S, either all elements of D are regular or none of
them are regular. We call a D-class D-regular if all its elements are regular. Note
that for any idempotent e € S, we have eee = e, so that every D-class containing

an idempotent is regular.

Lemma 1.2.8. [26] For any idempotent e € S, e is the left identity of its R-class
R. and a right identity of its L-class L.

Lemma 1.2.9. [26] A semigroup S is reqular if and only if each L-class and each

R-class contains an idempotent.

An element @' € S is called an inverse of a € S if ad’a = a and d’'ad’ = d'.
Thus we have

ad’ Ra L daanddaRad L ad.

Clearly, an element with an inverse must be regular. Less obviously, every regular
element has an inverse. For, suppose that a is regular. Then there exists z € S

such that axa = a. By putting o’ = zax, we have
ad'a = arara = ara = a, d'ad’ = vararar = rarar = raxr = a'.

For a given semigroup S, an element s € S need not necessarily have an inverse,
or, if it does, it could have more than one. A semigroup S in which every element
s € S has precisely one inverse, is called an inverse semigroup. A semigroup S is

inverse if and only S is regular with commuting idempotents.
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Lemma 1.2.10. [26] Let a be an element of a reqular D-class D of a semigroup
S. Then the following statements hold:
(i) for any inverse a’ of a, we have a D a' and aa’ € R,NLy and d'a € L,NRy;
(it) if e € R, and f € L,, then there exists an inverse a’ of a in Ry N L. such
that aa’ = e and d'a = f;

(7ii) no H-class contains more than one inverse of a.

1.2.3 Completely (0)- simple semigroups

A semigroup S without zero is called simple if it has no proper ideals. A semigroup
S with zero is called 0-simple if S? # {0} and it has exactly two ideals, namely
{0} and S.

Note that S is simple if and only if 7 = .5 x S, and S with 0 is O-simple if and
only if S% # {0} and it has two J-classes, {0} and S\{0}.

Let E(S) be the set of all idempotents of S. Define a binary relation < on
E(S) by the rule that

e < fifand only if ef = fe =e.

It is easy to check that < is a partial order on E(S).

A completely simple semigroup is defined to be a simple semigroup S with an
idempotent e, which is primitive within E(S), in the sense that for any idempotent
f e E(S), f<eimplies f =e.

A semigroup S is called completely 0-simple if it is O-simple and has an idem-
potent e, that is primitive within the set of non-zero idempotents of S, by which

we mean, for any idempotent f # 0, f < e implies f = e.

Lemma 1.2.11. [26] Every completely 0-simple semigroup S is a reqular semi-
group with exactly two D-classes, namely {0} and D = S\{0}. For any a,b € D,
then either ab = 0 or ab € R, N Ly, and the latter occurs if and only if L, N Ry

contains an idempotent.

1.2.4 The Rees theorem

Let G be a group with identity e and let I and A be non-empty sets. Let P = (py;)
be a A x I matrix with entries in the 0-group G°(= GU{0}), and suppose that P
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is regular, in the sense that no row or column of P entirely consists of zeros, i.e.

(VieI) (A€ A) pyi #0and (VA e A)(Fi € ) pn #0.

Put S = (I x G x A) U {0}, and define a multiplication on the set S by

Y o 0 if p; =0

and
(1,a,A\)0 = 0(i,a,\) = 00 = 0.

We denote S under this multiplication by M°[G; I, A; P, called the I x A Rees

matriz semigroup over G with reqular sandwich matriz P.
We have the following well known Rees Theorem.

Theorem 1.2.12. [26] The semigroup M°[G;I,A; P] constructed in the above
manner is a completely 0-simple semigroup; conversely, every completely 0-simple

semigroup is isomorphic to one constructed in this way.

We briefly recall how to shape a given completely 0-simple semigroup S into
the form of a Rees matrix semigroup.

Let D be the unique non-zero D-class of a completely O-simple semigroup S.
We use I to denote the R-classes of D and A to denote the L-classes of D, so
that an H-class which is the intersection of the R-class R; of D and the L-class
Ly of D is denoted by H;,. We use e;, to denote the unique identity in a group
H-class H;y. As D is a regular D-class, there must exist some group H-class in D.
Without loss of generality, we assume that 1 € I N A and Hy; is a group H-class
with identity eq;.

Now in a quite arbitrary manner, we choose an element r; € H;; for each ¢ € I,
and an element ¢, € H; for each A € A. For each i € I and each \ € A, we define
Pxi as qar; if py; € Ry N Ly = Hyy, otherwise py; = 0, so that P = (py;) is a matrix
with entries in HY;. We need to argue here that P = (py;) is regular. As D is a
regular D-class, each R-class and each L-class contains at least one idempotent,
respectively. Hence for each fixed i € I, there exists some A\ € A such that H;), is
a group H-class, so that 0 # py; € Hyy. Also, for each fixed A € A, there exists
some ¢ € [ such that H;, is a group H-class, so that 0 # p); € Hy;. Hence the

sandwich matrix P = (p,;) is regular.
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Now we have all the ingredients to construct a Rees matrix semigroup
MO(Hy 1 I,A; P) = (I x Hyy x A) U {0}.
It is proved that the map
v (I x Hpx A)U{o} — S
defined by

(7;7 a, )\)@D = r;aqgx, 0¢ =0

is an isomorphism.
Corresponding to completely simple semigroups, we have the following simpli-

fied version of the Rees Theorem.

Theorem 1.2.13. [26] Let G be a group, let I and A be non-empty sets and let
P = (pxi) be a A x I matriz with entries in G. Let S =1 x G x A, and define a

multiplication on S by

(iv a, )‘) (]7 b7 N’) = (l7 ap)\jb7 M)

Then S is a completely simple semigroup.
Conversely, every completely simple semigroup is isomorphic to a semigroup

constructed in this way.

We denote the semigroup S = I x G x A with the multiplication given in
Theorem 1.2.13 by
M(G;1,A,P).

For further details, we refer readers to [26].

1.3 Free semigroups and presentations

1.3.1 Free semigroups

Let A be an alphabet. Let A1 be the set of all finite, non-empty words a;as - - - a,,

in A. We say that two words a; - - - a,, by - - - b, € AT are equal if and only if n = m
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and a; = b; for all 1 < i < n. Define a binary operation on A" by juxtaposition
(aras - - am)(bibs - - - by) = aqag - - - ambiby - - - by,.

Then AT is a semigroup, called the free semigroup on A. Clearly, here A is the
generating set of AT. By adding an empty word (containing no letters at all)
denoted by 1, into A%, we obtain the free monoid A* = AT U {1}.

An abstract way to define a free semigroup on A can be given as follows:

A semigroup F is called a free semigroup on a set A if we have the following:

(F1) there is a map a: A — F;

(F2) for every semigroup S and every map ¢ : A — S there exists a unique
morphism v : F' — S such that the following diagram

07

i

F

Figure 1.3: the commutative diagram of free semigroups

commutes.

We claim that AT is a free semigroup on A in the sense of the above abstract
definition of free semigroups.

We take the mapping o : A — A" as the standard embedding of A into A",
by which we mean that aa = a, for each a € A, i.e. associating each a in A with
the corresponding one-letter word in A*. Then for any given semigroup S and an
arbitrary map ¢ : A — S, we define ¢ : AT — S by

(araz -~ am) = (a10)(a20) - - - (am®)

for all ajas---a,, € AT. It is easy to check that v is a unique morphism from A*

to S such that arp = ¢. Thus we have the following commuting diagram:
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AT
¢

o
—_—
/

e

Figure 1.4: the commutative diagram of A"

We remark here that by Theorem 1.1.6 S = A™ /ker, so that we have the

following lemma.

Lemma 1.3.1. Fvery semigroup may be expressed up to an isomorphism as a

quotient of a free semigroup by a congruence.

1.3.2 Semigroup presentations

A semigroup presentation is an ordered pair (A | R), where R is a binary relation
on At i.e. R C AT x AT. An element a in A is called a generator, while a
pair (u,v) € R is called a defining relation. Sometimes we write u = v instead of
(u,v) € R. The semigroup defined by a presentation (A | R) is A*/p, where p is
the smallest congruence generated by R. A semigroup S is said to be defined by
the presentation (A | R) if

S=Ap

or, equivalently, there is an epimorphism
Y : AT — S with kerv) = p.

We remark here that there is a similar theory of monoid presentations.

1.4 Biordered sets

1.4.1 Basic definitions

The concept of a biordered set was introduced by Nambooripad in an influential
work [37] in the early 1970s, occurring in the description of the structure of the

set of idempotents of a regular semigroup. The aim of this section is to recall the
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axioms defining biordered sets, and an extra axiom satisfied by what are called
regular biordered sets.

Let E be a partial algebra, a set with a partial binary operation. Let Dg be
the domain of the partial binary operation. Then we can regard Dg as a binary
relation on E defined by (e, f) € Dg if and only if the product ef is defined in E.

Now we define two binary relations w” and w' on F in the following manner:
forany e, f € E

ew" f<=(e, f) € Dgand fe=e

and
ew' f<=(e,f) € Dgpandef =e.

We also define
R=wNW)™ L=wn@)™ w=wnd.

We put
wie)={feE: fu el )={fecE: ed f}.
A partial algebra E equipped with the above five binary relations is called a

biordered set if it satisfies axioms (B1), (B21), (B22), (B31), (B32) and (B4) and
their duals, for any e, f,g,h € E.

(B1) w” and w' are pre-orders on E such that
Dp = (W Uw)U (W uwh)™

B21) f € w"(e) implies f R fe w e.
B22) f,g € w"(e) and g w' f imply ge W' fe.
B31l) g w" f w" e implies gf = (ge)f.
B32) f,g € w(e) and g o' f imply (fg)e = (fe)(ge).
Put M(e, f) = w'(e) Nw"(f), for any e, f € E. Define a relation < on M (e, f)
by the rule that

(
(
(
(

g<h<=egw eh, gf W' hf.

It is easy to check that < is a pre-order on M (e, f).
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The set
S(e,f)={he M(e,f): g=<hforall ge M(e, f)}

is called the sandwich set of e and f in that order.

(B4) f,g € w"(e) implies S(f, g)e = S(fe, ge).

A biordered set E is said to be regular if S(e, f) # 0 for all e, f € E.
Let £ and F' be two biordered sets. Then a mapping ¢ : E — F'is called a

biordered set morphism if for all (e, f) € Dg we have

(ed, f¢) € Dp and (e¢)(f¢) = (ef)¢

and further, if ¢ is bijective, then we call it a biordered set isomorphism.

1.4.2 Biordered sets and semigroups

Let S be a semigroup with a set £ = FE(S) of idempotents. We call a pair
(e, f) € E x E a basic pair if one of the following equalities hold

ef =e fe=eef =for fe=f.

We remark here that (e, f) € F' x E is a basic pair implies that both ef and fe

are idempotents of F; for instance, if ef = e, then

(fe)(fe) = f(ef)e = fee = fe

so that fe is also an idempotent of E.
It was pointed out by Nambooripad [37] that the set E of idempotents of S

forms a partial algebra with domain

Dg ={(e, f): (e, f) is a basic pair},

where for any (e, f) € Dg, ef is defined to be the product ef in S, which is clearly
an idempotent. Furthermore, there are two pre-orders <, and <y defined on S.
Now we have the following significant results obtained by Nambooripad [37]

and Easdown [10], which tells us that the concept of biordered set is a character-
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ization of the partial algebras of idempotents of semigroups obtained as above.

Theorem 1.4.1. [37, 10] For any semigroup S, the set E = E(S) of idempotents
of S forms a biordered set with respect to the pre-orders <, and <g defined on FE.

Conversely, every biordered set E occurs as a set E = E(S) of some semigroup

S.
Theorem 1.4.2. [37] A biordered set E is regular if and only if E = E(S) is the

set of idempotents of a reqular semigroup S.

1.5 Bands

1.5.1 Basic definitions

Recall that an idempotent e of a semigroup is just an element with e? = ece = e. A
band is defined as a semigroup S consisting entirely of idempotents. Traditionally,
we use B to denote a band.

Now we introduce several special kinds of bands which are frequently men-
tioned in this thesis, including rectangular bands, semilattices, left normal bands,
right normal bands, and normal bands.

Let B be a band. Then:

i) B is a rectangular band if for any e, f € B, efe = ¢;
ii) B is a semilattice if for any e, f € B, ef = fe;

(

(

(iii) B is a left normal band if for any e, f,g € B, efg = egf;
(iv) B is a right normal band if for any e, f,g € B, efg = feg;
(

v) B is a normal band if for any e, f,g € B, efge = egfe.

Recall that in Section 1.2.3, we have already defined a partial order < on the
set of idempotents of a semigroup S by the rule that, for any idempotents e, f € .S

e < f<ef=fe=e
Hence < is of course a partial order on B.

1.5.2 The decomposition theorem for bands

Let S be a semigroup and Y a semilattice. We say that S is a semilattice Y of

subsemigroups S,, a € Y, denoted by S = U S, if the following hold:
acY
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(i) S is a disjoint union of subsemigroups S,, where a € Y;
(ii) for any o, 5 € Y, So.55 C Saps-
It follows immediately from the definition that if S = |J S, is a semilattice

acY
Y of subsemigroups S,, o € Y, then for any x € S,,y € Sp, we have zy € S,p.

However, we do not know the location of zy within S,g; in other words, we know
the ‘gross’ structure of S but not its ‘fine’ structure. For this purpose, we define

the notion of strong semilattice of semigroups.

Suppose that we have a semilattice Y and a family of disjoint semigroups S,

indexed by Y, and suppose that, for all @« > [ in Y there exists a morphism
¢a,/5 . Sa — Sﬁ

such that:
(S1) (Vo €Y) ¢pan = 1s.;
(S2) for all o, B, € Y such that & > 8 > v, ¢ P = Gar-

Now we define a multiplication on the set S = U S, by the rule that for each
acY
z € S, and each y € Sg,

2y = (2Pa,0p) (YPp,08),

where the multiplication on the right hand side is in S,s. Clearly, the operation
extends the multiplication in each S,, a € Y.
Lemma 1.5.1. [26] Under the multiplication defined above, the set S = | S,

acY
forms a semigroup, called a strong semilattice Y of semigroups S, € Y, denoted

by S = S(Y, Sa, Qﬁa’g).

At times we will use this notations S = |J S, to denote a semilattice Y of
acY

subsemigroups S,,a € Y, and S = S(Y; S, ¢ 5) to denote a strong semilattice

Y of semigroups S,,a € Y, without specific comments.

It is worth pointing out here that if S = S(Y; S, ¢a,) is a strong semilattice
of Y of semigroups S,,a € Y, then it must be a semilattice Y of semigroups

S.,« € Y. However, the converse, in general, is not true.

Now we are in the position to give the well known decomposition theorem of

bands in terms of semilattices of semigroups.
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Lemma 1.5.2. [26] Let B be band. Then B = U B, is a semilattice Y of
acY

rectangular bands B,, o € Y, and the B,’s are the D = [J-classes of B.

Lemma 1.5.3. [26] Let B be a normal band. Then B = B(Y'; By, ¢u ) S a strong

semilattice Y of rectangular bands B, o € Y, and the B, ’s are the D = J -classes
of B.



Chapter 2

Preliminaries II: (Weakly)

abundant semigroups

The aim of this chapter is to introduce two sets of binary relations, as analogues
of the well known Green’s relations. Corresponding to these binary relations, the
notion of a (weakly) abundant semigroup is introduced in a very natural way, as
a generalization of the notion of a regular semigroup. More details related to the
content of chapter can be found in [14], [15], [16] and [32].

2.1 Abundant semigroups

2.1.1 The relations £* and R*

Let S be a semigroup and E = E(S) the set of all idempotents of S. A binary
relation £* on S is defined by the rule that (a,b) € L£* if and only if the elements a
and b are related by Green’s relation £ in some oversemigroup of S. The relation
R* is defined dually.

From the definitions of £* and R*, we easily deduce that

LC L and RCR".

Obviously, £* and R* are equivalence relations on S; furthermore, £* is a right
congruence and R* is a left congruence. If S is regular, then in fact £ = £* and
R = R*. We denote the join of £* and R* by D*, while their intersection is
denoted by H*. Note that unlike the case of Green’s relations, generally L*oR* #
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R* o L*. A binary relation J* may also be defined on S, which is not required
here. We refer readers to [14] and [15] for further details.
The following lemma gives another characterization of L£*, clearly the dual

holds for R*.

Lemma 2.1.1. [14] Let S be a semigroup with a,b € S. Then the following
conditions are equivalent:

(i) a L* b;

(ii) for all x,y € S', ax = ay if and only if bx = by.

As an easy but useful consequence of the above lemma, we have the following
results (the duals hold for R*).

Lemma 2.1.2. [15] Let S be a semigroup with a € S and e* = e € E(S). Then
the following statements are equivalent:
(i) a L* e;

(ii) ae = a and for any z,y € S, ax = ay implies ex = ey.

Lemma 2.1.3. Let S be a semigroup with e, f € E(S). Then e L f if and only
ife L fand e R f if and only if e R* f.

2.1.2 Abundant semigroups

Recall that a semigroup S is regular if and only if each L-class and each R-class
of S contains an idempotent of S. Based on the relations £* and R*, in a rather

natural way, we introduce the concept of an abundant semigroup

Definition 2.1.4. [15] A semigroup S is said to be abundant if each L*-class and

each R*-class of S contains an idempotent of S.

We call an abundant semigroup S adequate if its idempotents form a semilat-
tice.

In view of the comment above, regular semigroups are abundant while inverse
semigroups are adequate. But not all abundant semigroups are regular, for in-
stance, a cancellative monoid is clearly abundant, but does not have to be regular.
In the theory of abundant semigroups the relations £*, R*, H*, D* play a role
which is analogous to that of Green’s relations in the theory of regular semigroups
(see, for example [14] and [15]).
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2.2 Weakly abundant semigroups

2.2.1 The relations £ and R

A third set of relations, extending the stared versions of Green’s relations, and
useful for semigroups that are not abundant, were introduced in [32].
Let S be a semigroup with E = E(S). The relations £ and R on S are defined
by the rule
a Lb < (Vee E(S)) (ae = a < be = b)

and
aRb < (Vee E(S)) (ea =a< eb=10)

for any a,b € S.
It follows directly from the definitions that

LCLCLand RCR*CR.
Moreover, if a,b € S are regular, then
alLbe=aLlb=aLlb

and a dual holds for R, R* and R. Therefore if S is regular, then £ = L* = £ and
R =R* =TR. As one might expect, the relations ’j—lv, D and J are also defined on
S, and for details we recommend [32]. Whereas £* and R* are always right and
left congruences on S, respectively, it is not necessarily true for £ and R. In the

following section, we will give an easy example to illustrate this.

The following result follows immediately from the definition of £. Of course,
a dual result holds for R.

Lemma 2.2.1. [32] Let S be a semigroup with a € S and e* = e € E(S). Then
the following statements are equivalent:

(i) a L e;

(7i) ae = a and for any f € E(S), af = a implies ef = e.

Lemma 2.2.2. Let S be a semigroup with e, f € E(S). Then e L f if and only
ife L fande R f if and only if e ﬁf.
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2.2.2 Weakly abundant semigroups

As a generalisation of an abundant semigroup, we have the notion of a weakly

abundant semigroup in terms of the relations £ and R.

Definition 2.2.3. A semigroup S is weakly abundant if each L-class and each

R-class contains an idempotent.

We say that a weakly abundant semigroup S satisfies the congruence condition
if £is a right congruence on S and R is a left congruence on S.
We consider the following non-abundant but weakly abundant semigroup S

for which we do not have the congruence condition.

Example 2.2.4. Let S = {e,0, h, a,b} be a semigroup with a multiplication given
by the following table:

[esRNev BN aniie s o s
O OO T
O O O O OO

oo e o
ST QT
O O O O e

Figure 2.1: a counterexample for the congruence condition

First, it is easy to check that the multiplication defined as above is associative,

so that S forms a semigroup. Notice that
Lr=TR"=Is.

Since E(S) = {e, 0, h} and so not every L*-class of S contains an idempotent, we
deduce that S is not abundant. On the other hand, we have

E = ﬁ: {{6,@7 b}7 {0}7 {h}}a

so that S is weakly abundant. However, S does not satisfy the congruence condi-

tion, since e R a but he is not R-related to ha.

Lemma 2.2.5. Let S be a semigroup, and let a € S, f?> = f € E(S) be such
that a R f. Then a is not R*-related to f implies that a is not R*-related to any
idempotent of S.



25

Proof. Suppose that a R* e for some idempotent e € E(S). Then a R e, as
R* C 7A€, so that e R f by assumption, and so e R f by Lemma 2.2.2. Hence
a R* fas R C R* a contradiction. O]

Lemma 2.2.6. Let S be a weakly abundant semigroup with a € S and €? = e €
E(S) such that a R e. Thena R* e if and only if for any x,y € S, ra = ya

implies that xe = ye.

Proof. Suppose that for all x,y € 5, if xa = ya then ze = ye. By Lemma 2.1.2,
we need only show that if x € S and xa = a, then xe = e. Suppose therefore
that z € S and za = a. As a R e, we have za = a = ea, so that by assumption,

Te = ee = e. O



Chapter 3

Preliminaries II1I: Independence
algebras and their endomorphism

monoids

In this chapter, we introduce a kind of universal algebra, called an independence
algebra. Our main focus is to study the endomorphism monoid of an independence
algebra.

To do this, we start with two familiar kinds of independence algebras, namely,
sets and vector spaces; and recall some common properties of the endomorphism
monoids of them, i.e. full transformation monoids and full linear monoids. After
this, we will formally give the definition of independence algebras, and the proper-
ties of the endomorphism monoids of independence algebras. Finally, we proceed
with another class of independence algebras, namely, free G-acts over a group G,

which are the main algebraic object we are working with in Chapters 5 and 6.

The following notational convention will be useful: for any u,v € N with u <wv
we will denote {u,u+1,--- ,v—1,v} and {u+1,--- ;v — 1} by [u,v] and (u,v),

respectively.

We recommend [18], [30], [17], [22], [12] and [19] as references for Chapter 3.

3.1 Full transformation monoids

Let X be a non-empty set. The full transformation monoid on X, denoted by
T (X), is defined to consist of all mappings from X into itself, with multiplication
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being composition of mappings, i.e. for any a, f € T(X), z(af) = (za)p, for all
r e X.

Note that the identity of 7(X) is the identity mapping on X. We use S(X)
to denote the symmetric group on X, which is the group of of all bijections from
X into itself. We define the rank of an element o of 7(X) to be the cardinality

of im av. Then we have the following lemma.

Lemma 3.1.1. [26] The full transformation monoid T(X) on X is a regular
semigroup such that for all a, 5 € T(X), we have:

(i) a L 5 if and only if im o = im ;

(ii) o R B if and only if ker a = ker 3;

(iii) o D 3 if and only of rank a = rank [3;

(iv) D=J.

If X is a set with n elements, then it will be convenient to write
X={12,--- ,n}, T(X)=T,,8X) =38,

and I, to be the identity mapping of 7,. We remark here that the maximal
subgroup of 7, containing a rank r idempotent e, 1 < r < n, is isomorphic to the
symmetric group S,.

Let S be a semigroup with set £ = E(S) of idempotents, and let (E) denote
the subsemigroup of S generated by E. We say that S is an idempotent generated
semigroup if S = (F). This kind of semigroup plays an important role in semigroup
theory and it occurs in many natural areas of mathematics. We remark here that
the singular subsemigroup of T, is such a one, by which we mean the subsemigroup
of T, consisting of all non-bijective mappings from the set {1,--- ,n} into itself.

Let £ = E(T,) be the set of idempotents of 7,. In all what follows, it is
convenient to exclude from consideration the identity mapping I,, of 7,. Now we
consider which elements of 7, form the idempotent generated subsemigroup (F)
of T,.

Clearly, there are no elements in S,, (other than I,,) that can be expressed as

a product of idempotents, so that (E) C 7,\S,. In fact, the converse is also true.

Theorem 3.1.2. [28] Let T, be the full transformation monoid on n elements.
Then the subsemigroup of T, generated by its non-identity idempotents is T,\Sy.

In fact, every elements of T,\S, is a product of idempotents with rank n — 1.
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Theorem 3.1.3. [28] Any (finite) semigroup can be embedded into a (finite) reg-

ular idempotent generated semigroup.

3.2 Full linear monoids

Let V be a vector space over a field, and let End V be the monoid of all linear
maps « : V — V with multiplication being composition of mappings. Then we
say that End 'V is the full linear monoid of V.

Let kera = {v € V : va = 0} and rank a be the dimension of the subspace

ima of V. Then we have the following lemma.

Lemma 3.2.1. [26] The full linear monoid End'V of V is a reqular semigroup
such that for all a, 6 € End 'V, we have:

(i) a L B if and only of ima = im ;

(i) « R B if and only ker o = ker f3;

(1ii) o D B if and only if rank o = rank f;

(iv) D=J.

Let V be an n dimensional vector space over a field F', where n is finite. Then
it is well known that the full linear monoid End V is isomorphic to the matrix
monoid M, (F) of all n x n matrices over F. Moreover, we have the following

result.

Lemma 3.2.2. [12] Let M,,(F) be the matriz monoid of all n X n matrices over a
field F. Then the subsemigroup of M, (F") generated by its non-identity idempotents
is M, (F)\Z (M, (F)), where Z(M, (F)) is the set of all n xn non-singular matrices
of M,,(F'). In fact, every element of M,(F)\Z(M,(F)) is a product of idempotents

with rank n — 1.

We remark here that for any idempotent e € M, (F) with ranke = r, 1 <
r < n, the maximal subgroup with identity e, i.e. the H-class of e in M, (F), is
isomorphic to the r dimensional general linear group G L,.(F), consisting of all r xr
non-singular matrices over F. Note that if e is a rank 1 identity, then the maximal
subgroup of M, (F') with identity e is therefore isomorphic to the multiplicative
subgroup of F', i.e. the group of all units of F.

An alternative proof of [12] was given by Dawlings [9], and the result was

generalized to finite dimensional vector spaces over division rings by Laffey [33].
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3.3 Independence algebras

3.3.1 Basic definitions

‘What then do vector spaces and sets have in common which forces End'V and
T(X) to support a similar pleasing structure’?

The above question was asked by Gould [22]. To answer it, she investigated
the endomorphism monoid of a class of universal algebra, called an independence
algebra (also known as a v*-algebra), including sets, vector spaces, etc. For basic

ideas of universal algebras we refer the reader to [36], [4] and [19].

For any ay,--- ,a, € A, a term operation built from these elements may be
written as t(ay, - - - , a,). For any subset X C A, we use (X) to denote the universe
of the subalgebra generated by X, consisting of all ¢(z1,- - ,,,), where m € N,
1, , T, € X, and t is an m-ary term operation. A constant in an algebra A

is the image of a basic nullary operation; an algebraic constant is the image of a
nullary term operation. If A has any constants, then (f)) denotes the subalgebra
generated by them. Of course, ()} = () if and only if A has no algebraic constants,
if and only if A has no constants.

We say that an algebra A satisfies the ezchange property (EP), if for every
subset X of A and all elements z,y € A :

y € (X U{z}) and y & (X) implies z € (X U {y}).

A subset X of A is called independent if for each z € X we have z ¢ (X\{z}).
We say that a subset X of A is a basis of A if X generates A and is independent.

Note that any algebra satisfying the exchange property has a basis, and in
such an algebra a subset X is a basis if and only if X is a minimal generating
set if and only if X is the maximal independent set. All bases of A have the
same cardinality, called the rank of A. Further, any independent subset X can
be extended to be a basis of A.

We say that a mapping 6 from A into itself is an endomorphism if for any

n-ary term operation t(zy,-- - ,x,) we have
t(l‘h e 7xn)0 = t(xley e 7xn0);

if 0 is bijective, then we call it an automorphism.
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An algebra A satisfying the exchange property is called an independence alge-
bra if it satisfies the free basis property, by which we mean that any map from a

basis of A to A can be extended to an endomorphism of A.

3.3.2 Endomorphism monoids of independence algebras

Let A be an independence algebra. Let End A the endomorphism monoid of
A and Aut A the automorphism group of A. We define the rank of an element
a € End A to be the rank of the subalgebra im « of A.

As a generalisation of Lemmas 3.1.1 and 3.2.1, we have the following result

regarding End A.

Lemma 3.3.1. [22] Let A be an independence algebra. Then End A is a regular
semigroup, and for any o, 8 € End A, the following statements are true:

(i) a L 5 if and only if im o = im [3;

(i) « R B if and only if ker v = ker 3;

(iii) o D 5 if and only rank o = rank 3;

(iv) D=J.

Let D, be the D-class of an arbitrary rank r element in End A. Then by Lemma
3.3.1, we have
D, ={a € EndA : ranka =r}.

Put D% = D, U {0} and define a multiplication on D? by:

{ af if a,p € D, and rankaf =r
a-f=

0 else

Then according to [22], we have the following result.

Lemma 3.3.2. [22] Under the above multiplication - given as above, D? is a

completely 0-simple semigroup.

It follows immediately from Rees Theorem that D? is isomorphic to some Rees

matrix semigroup M°(G; I, A; P). We remark here that if A has no constants, then

D; ={a € EndA : ranka =1}
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forms a completely simple semigroup under the multiplication defined in End A,
so that D; is isomorphic to some Rees matrix semigroup M(G; I, A; P).
Given the results we obtained in Lemmas 3.1.2 and 3.2.2, we have the following

generalisation for End A.

Lemma 3.3.3. [17] Let A be an independence algebra of rank n € N. Let E
denote the non-identity idempotents of End A. Then

(E) = (E1) = End A\ Aut A

where Ey is the set of idempotents of rank n — 1 in End A.

3.3.3 A classification of independence algebras with no

constants

In this section, we recall part of the classification of independence algebras given
by Urbanik in [43]. Note that in [43], an algebraic constant of an algebra is defined
as the image of a constant term operation of A, which is different with the one
we introduced in Section 3.3.1. However, the following lemma illustrates that for

independence algebras, these two notions coincide.

Proposition 3.3.4. For any independence algebra A with |A| > 1, we have (B) =
C, where C is the collection of all elements u € A such that there is a constant

term operation t(xy,--- ,x,) of A whose image is u.

Proof. First, clearly we have () C C. Suppose now that |A| # 1 and A # (0). Let
a € C. Then by the definition there exists a constant term operation ¢(z, - - , x,)
with

imt(xy, -, x,) ={a}.

Here we put s(z) = t(x,--- , ) and pick a fixed x € A\(D). Then

Suppose that a & ((). Clearly, a € (x), so by the exchange property (EP) of A,
we have = € (a), so that x = u(a) for some unary term operation u of A. Note
that a = s(a), so x = u(s(a)). As {z} is independent, it can be extended to be a

basis X of A. Now we choose an arbitrary b € A, and define an arbitrary mapping
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0 : X — A such that 6 = b. Then by the free basis property of A, 6 can be
extended to be an endomorphism 6 of A such that 26 = b. Then

b= a0 =u(s(a))fd = u(s(ab)) = u(a) = x.

As b is an arbitrary fixed element in A |, we have |A| = 1, contradicting our

assumption, so that a € (), and so () = C' as required. O

The above result is also true for a larger class of universal algebra, called a
basis algebra, which includes independence algebras. We refer the reader to [18]
for details.

We are concerned with independence algebras with no constants in Chapter
7, so here we give the classification of independence algebras only in the case we

have no constants. For the complete result we refer the reader to [44].

Theorem 3.3.5. [44] Let A be an independence algebra of rankn with no con-
stants, where n > 3. Then one of the following holds:
(i) There exists a permutation group G of the set A such that the class of all

term operations of A is the class of all functions given by the following formula
t(:El) e 7xm) = g(in), (m € N7 1 S] < m)

where g € G.
(i) A is an affine algebra, namely, there is a field F' such that A is a vector
space over F and further, there exists a linear subspace Ay of A such that the

class of all term operations of A s the class of all functions defined as
(g, xn) = kixy + -+ kpxy, + a

where ky, -k, € F withk;+---+k,=1€F,a€ Ay andn > 1.

3.4 Free (left) G-acts and their endomorphism

monoids

Let G be a group, n € N,n > 3, and let F,(G) = U, Gz; be a rank n free
left G-act. We recall that, as a set, F,,(G) consists of the set of formal symbols
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{gz;: g € G,i € [1,n]}, and we identify x; with 1z;, where 1 is the identity of G.
For any g,h € G and 1 < 7,5 < n we have that gz; = hx; if and only if g = I
and ¢ = j; the action of G is given by g(hxz;) = (gh)z;. Let End F,(G) denote
the endomorphism monoid of F,(G), i.e. the monoid of all endomorphisms of
F,,(G) under the binary operation given as composition of maps. The image of
a € End F,,(G) being a (free) G-subact, we define the rank of o to be the rank of
im o, namely, the minimal number of (free) generators in im a.

It was pointed out in [22] that free G-acts provide us with new examples of
independence algebras. Hence, a direct application of Lemma 3.3.1 gives the

characterisation of Green’s relations on End F,(G).

Lemma 3.4.1. [22] The endomorphism monoid End F,,(G) is a reqular semigroup
such that for all a, f € End F,,(G), we have:

(i) a L 5 if and only if im o = im ;

(i) a R B if and only ker a = ker 3;

(1ii) o D 3 if and only if rank o = rank f3;

(iv) D=J.

Next we aim to show that End F,,(G) is isomorphic to the wreath product
G T, of G and T,. Recall from [30] that the wreath product G T, is defined to

be a set

G" X%:{((glv 7gn)aa) : (gly'“ ’gn) € Gnvaeﬁl}

with a multiplication given by

((gl,“‘ 7gn)7a)((h17"' 7hn)aB) = ((glhla,"' 7gnhn5)vaﬁ)'

We know that each o € End F,(G) depends only on its action on the free

generators {z; : i € [1,n]} and it is therefore convenient to write

T = W; Tjm

for 7 € [1,n]. This determines a function @ : [1,n] — [1,n] and an element

o w?) € G™ Tt will frequently be convenient to express « as above

Wis} ) e Tp
a= a o a ’
Wi Trg WyTog ... W, Tnpg

ag = (wf

as
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Theorem 3.4.2. [30] The endomorphism monoid End F,,(G) of a free left G-act
F.(G) of rank n is isomorphic to the wreath product G U T,,, where the isomorphism
Y is defined by

¢ :End F,(G) — G Ty, o (ag, a).

Lemma 3.4.3. [30] The mazximal subgroup of a rank r idempotent of End F,,(G),

where 1 < r < n, is isomorphic to the wreath product G S,.

We refer the reader to [30] for further details of the wreath product of monoids.



Chapter 4

Preliminaries IV: Free

idempotent generated semigroups

The study of the free idempotent generated semigroup IG(E) over a biordered set
E began with the seminal work [37] of Nambooripad in the 1970s and has seen
a recent revival with a number of new approaches, both geometric and combi-
natorial. In this chapter, we will recall the basic definition of IG(E) and some
pleasant properties, particularly with respect to Green’s relations, and the struc-

ture of maximal subgroups of IG(E).

4.1 Basic definitions and properties

Let S be a semigroup and denote by (E) the subsemigroup of S generated by
the set of idempotents £ = E(S) of S. Recall that S is idempotent generated if
S = (E).

It follows immediately from the definition that for any pair (e, f) € E x E

(e, f) is basic <= {e, f} N{ef, fe} #@

— e<gpforf<gpeore<,forf<pe

Further, (e, f) € E'x E is a basic pair implies that both ef and fe are idempotents
of F.

Among the category of all idempotent generated semigroups whose biordered
sets of idempotents are isomorphic to a given biordered set E, there is a free object

called the free idempotent generated semigroup over E. given by the following
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presentation:

IG(E)=(E:éf=cf, e.f € B e, fyN{ef, fe} # ),

where F = {é:e e E}.!

It is important to understand IG(E) if one is interested in understanding an
arbitrary idempotent generated semigroup S with a biordered set £ = E(S) of
idempotents. We begin with emphasising some pleasant properties of IG(E), par-
ticularly with respect to Green’s relations, listed as (IG1)-(IG4) in the following:

(IG1) The natural map ¢ : IG(E) — S, given by é¢ = e, is a morphism onto
S'=(E).

(IG2) The restriction of ¢ to the set of idempotents of IG(E) is a bijection
onto F (and an isomorphism of biordered sets).

(IG3) The morphism ¢ induces a bijection between the set of all R-classes
(respectively L-classes) in the D-class of e in IG(E) and the corresponding sets
in (F).

We pause here to remark that IG(F) can have non-regular D-classes, even if
E is a semilattice.

(IG4) The restriction of ¢ to H; is a morphism onto H.,.

We clarify particularly that the property (IG1) follows directly from the defi-
nition of IG(E); (IG2) is proved in [37] and [10]; (IG3) is a corollary of [13]; (1G4)
follows from (IG2).

Now let S be a regular semigroup. Then E = F(S) is a regular biordered
set, i.e. for any (e, f) € E x E, the sandwich set S(e, f) # @. The free regular
idempotent generated semigroup over E, denoted by RIG(FE), is defined to be the
homomorphic image of IG(E) obtained by adding the relations

e h f =e f whenever h € S(e, f).

There is a natural morphism from IG(E) — RIG(F). Furthermore, RIG(E)
has the following additional properties:
(RIG1) RIG(FE) is a regular semigroup.
(RIG2) The natural morphism from IG(E) to RIG(E) induces an isomorphism

Tt is more usual to identify elements of E with those of E, but it helps the clarity of our
later arguments to make this distinction.
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between maximal subgroups of IG(E) and RIG(E) containing e, wheree € F = E.

We remark here that the property (RIG1) is proved in [37], and (RIG2) follows
from [1]. Obviously, RIG(E) satisfies properties (IG1)-(IG4).

4.2 Maximal subgroups of IG(F)

4.2.1 A longstanding conjecture but a negative outcome

Given the universal nature of IG(F), it is natural to investigate its structure. A
popular theme is to investigate the maximal subgroups of IG(E). A longstanding
conjecture (which nevertheless seems not to have appeared formally until [35]),
purported that all maximal subgroups of IG(F) were free. Several papers [35],
[38], [41] and [40] established various sufficient conditions guaranteeing that all
maximal subgroups are free.

For instance, in [40], Pastijn looked at the biordered set of idempotents of an
arbitrary completely 0-simple semigroup. By employing Rees matrix semigroups,
he has proved that:

Result 1 Let E be the biordered set of idempotents of a completely 0-simple
semigroup S. Then the maximal subgroups of the non-zero D-class of IG(FE)
are free groups and in the case E is finite, the maximal subgroup here has rank
(lg — 1)(ry — 1), where Iy and ry are the numbers of L-classes and R-classes

respectively of the D-class D where H lies.

Also, in [35], McElwee generalized Pastijn’s observation to a locally trivial
biordered set E, by which we mean that all its principal ideals are singletons. It
was pointed out in [35] that in a locally trivial biordered set E, ef = e if and
only if fe = f; and fe = e if and only if ef = f. By showing that all maximal
subgroups of IG(FE) are fundamental groups of graphs, McElwee obtained the
structure of IG(E) over a locally trivial biordered set E.

Result 2 Let E be a locally trivial biordered set. Then all the maximal
subgroups of IG(FE) are free. In the case where E is finite, each maximal subgroup
H has rank (I —1)(rg — 1) — dg, where Iy and ry are the numbers of L-classes
and R-classes of the D-class D where H lies in, respectively; dy is the number of
non-group H-classes of D.

Although this conjecture had been believed for more than 30 years, it was
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disproved by Brittenham, Margolis and Meakin [1] in 2009. In their paper they
construct a special 72-element semigroup S, then by applying topological meth-
ods, they showed that IG(E) built over the biordered set E of idempotents of S
has a free abelian group of rank 2, i.e. Z @ Z, as a maximal subgroup. Further-
more, [1] exhibited a strong relationship between maximal subgroups of IG(FE)
and algebraic topology: namely, it was shown that these groups are precisely the
fundamental groups of a complex naturally arising from S (called the Graham-
Houghton complex of S). An unpublished example of McElwee from the earlier

part of 1970s was announced by Easdown in 2011 [11].

4.2.2 Singular squares of D-classes

Before we proceed to Section 4.2.3, which explains a presentation of maximal
subgroups of IG(E), we need the notion of singular squares.
Let E be a biordered set; from [10] we can assume that F = E(S) for some

semigroup S. An E-square is a sequence (e, f, g, h,e) of elements of E with
eRfLgRhIhCLe.

e f

We draw such an FE-square as . We call an FE-square with one of the

following forms a trivial E-square:

Lemma 4.2.1. The elements of an E-square c form a rectangular band
g
(within S) if and only if one (equivalently, all) of the following four equalities

holds:
eg=f,ge=h,fh=e or hf =g.

Proof. The necessity is clear. To prove the sufficiency, without loss of generality,

suppose that the equality eg = f holds. We need to prove

ge=h,fh=e, and hf = g.
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Notice that
gege = gfe = ge

so that ge is idempotent. But, as f € L, N R,, we have ge € R, N L. by Lemma
1.2.6, which implies ge = h. Furthermore,

fh=fge=fe=ecand hf =heg=hg=g

and so {e, f,g,h} is a rectangular band. O]

We will be interested in rectangular bands in completely simple semigroups.

The following lemma makes explicit ideas used implicitly elsewhere.
Lemma 4.2.2. Let M = M°G;I,A;P) be a Rees matriz semigroup over a
group G with sandwich matriz P = (py;). For any i € I,\ € A write e;y for the

eA
idempotent (z',p;il, A). Then an E-square "1 is a rectangular band if and

€ix i
only if Py prj = P Dy

Proof. We have
€ixCiu = Cip <~ (iap;ila A)(]ap;zjlaﬂ) = (iap/:i17u)
S Py PADL =D
S Dxi DA = Dy Puj-
The result now follows from Lemma 4.2.1. O

An E-square (e, f, g, h,e) is singular if, in addition, there exists k € E such
that either:

ek=e, fk=f ke=h, kf =gor
ke=e, kh=h, ek = f, hk=g.

We call a singular square for which the first condition holds an up-down singular
square, and that satisfying the second condition a left-right singular square.

Note that all trivial E-squares are singular; for instance, if we have an E-square

with the form [6 ;] , then we can take k = f, so that it is a left-right singular
e

e e
square; if we have an FE-square with the form [ ], then it is an up-down

singular square by taking k = e.
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Lemma 4.2.3. If an E-square [Z f] is singular, then {e, f, g, h} is a rectangular
g
band.

Proof. Suppose that [Z f] is singular. If k = k? € E is such that

9

ek=e, fk=f, ke=hand kf =g

then eg = ekf = ef = f. By Lemma 4.2.1, {e, f,g,h} is a rectangular band.
Dually for a left-right singular square. O

We remark here that the converse of Lemma 4.2.3 is not necessarily true;
for this, we can consider a 4-element rectangular band F, say {e, f, g, h}, where
eR fLgRhL e, obviously, there exists no idempotents of £ to singularize our

E-square :
9

4.2.3 A presentation of maximal subgroups of IG(F)

Motivated by the significant discovery in [1], Gray and Ruskuc [20] showed that
any group occurs as a maximal subgroup of some IG(FE). Their approach is
to use existing machinery which affords presentations of maximal subgroups of
semigroups, itself developed Ruskuc, and refine this to give presentations of IG(F),
and then, given a group G, to carefully choose a biordered set E. Their techniques
are significant and powerful, and have other consequences. We also remark here
that the presentation obtained in [20] generalizes the corresponding result for
regular semigroups proved by Nambooripad [37].

Let S be a semigroup with £ = FE(S), let IG(E) be the corresponding free
idempotent generated semigroup. For ¢ € E we let H be the maximal subgroup
of € in IG(E), (that is, H = Hz). We now recall the recipe for obtaining a
presentation for H obtained by Gray and Ruskuc [20]; for further details, we refer
the reader to that article.

We use J and I' to denote the set of R-classes and the set of L-classes, respec-
tively, in the D-class D = Dz of € in IG(E). In view of properties (IG1)-(IG4), J
and I" also label the set of R-classes and the set of L-classes, respectively, in the
D-class D = D, of e in S. For every i € J and A € I, let H;, and H;, denote,
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respectively, the H-class corresponding to the intersection of the R-class indexed
by i and the L-class indexed by ) in IG(E), respectively S, so that H;y and H;y
are H-classes of D and D, respectively. Where H;, (equivalently, H;y) contains
an idempotent, we denote it by €;, (respectively, e;y). Without loss of generality
we assume 1 € JNT'ande =e,; € Hy; = H, sothat e = e;; € Hy; = H. For each
X\ € I, we abbreviate Hy by Hy, and H;y by Hy and so, H; = H and H, = H.

Let hy be an element in E* such that Hqhy = H,, for each A\ € I'. The reader
should be aware that this is a point where we are most certainly abusing notation:
whereas hy lies in the free monoid on E, by writing H,hy, = H, we mean that
the image of Ay under the natural map that takes E  to (right translations in)
the full transformation monoid on IG(FE) yields H1hy = Hy. In fact, it follows
from (IG1)-(IG4) that the action of any generator f € E on an H-class contained
in the R-class of € in IG(F) is equivalent to the action of f on the corresponding
H-class in the original semigroup S. Thus Hihy = Hy in IG(E) is equivalent to
the corresponding statement Hyhy = H) for S, where hy is the image of hy under
the natural map to (E)!.

We say that {hy, | A € I'} forms a Schreier system of representatives, if every
prefix of hy (including the empty word) is equal to some Eﬂ, where i € I'. Notice
that the condition that E}Ep = Eu is equivalent to saying that E,\Ew lies in the
Schreier system.

Define K = {(i,\) € J x I : H; is a group H-class}. Since D, is regular, for
each i € J we can find and fix an element w(i) € ' such that (i,w(i)) € K, so

that w: J — I' is a function. Again, for convenience, we take w(1) = 1.

Theorem 4.2.4. [20] The mazximal subgroup H of € in IG(FE) is defined by the
presentation

P=(F:%)

with generators:

F={fix: (i,\) €K}
and defining relations X:
(R1) fix=fin  (Ma&iy = Dy);
(R2) fiwwy =1 (i€J);
(R3) fi fi = FrrSun ( {ei/\ ew] is a singular 3quare>.

€kx  Chkpu
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Note that if there are no non-trivial singular squares, then the maximal sub-

group is free.

4.2.4 Every group arises as a maximal subgroup of some
IG(F)

We have already mentioned in Section 4.2.3 that Gray and Ruskuc [20] gave
a presentation of maximal subgroups of IG(E), and in the same paper, they
constructed a special biordered set F, then by applying the presentation, they

obtain the following significant results.

Theorem 4.2.5. [20]| Every group is a maximal subgroup of some free idempotent

generated semigroup.

Theorem 4.2.6. [20] Every finitely presented group is a maximal subgroup of

some free idempotent generated semigroup arising from a finite semigroup.

Theorem 4.2.7. [20] Every group is a maximal subgroup of some free reqular

idempotent generated semigroup.

Theorem 4.2.8. [20] Every finite group is a maximal subgroup of some free reg-

ular idempotent generated semigroup arising from a finite reqular semigroup.

The article [20] left open the question of whether every finitely presented group
is a maximal subgroup of some free regular idempotent generated semigroup aris-
ing from a finite semigroup.

In 2013, Dolinka and Ruskuc [8] gave a positive answer to the above question,
and an alternative proof of the result that every group can occur as a maximal
subgroup of IG(FE), where F may be taken to be a band with respect to an
arbitrary fixed group.

The question remained of whether a group G occurs as a maximal subgroup
of some IG(FE) for a ‘naturally occurring’ E. The following chapter will answer
this question in a positive way, and unlike the proofs in [20], those in Gould and
Yang [23] involve a natural biordered set and very little machinery. The approach
of [23] is to consider the biordered set E of non-identity idempotents of a wreath
product G 7T,. We refer the reader to Chapter 5 for details of this.
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4.2.5 The results for 7,, PT, and M,(D)

Following the discovery that every group can occur as a maximal subgroup of
IG(F), another question comes out very naturally: For some particular biordered
E, which groups can be the maximal subgroups of IG(E)?

Gray and Ruskuc [21] investigated the maximal subgroups of IG(E), where
E is the biordered set of idempotents of a full transformation monoid 7, on n
elements. Recall that for any rank r idempotent e € 7, with 1 < r < n, the
D-class D of e is given by

D={aeT,: :ranka =r}.

We have already known from (IG4) that the maximal subgroup of IG(E) with
identity e is the homomorphic preimage of S,. By using the presentation obtained
in [20] and the standard Coxeter presentation of the symmetric group S,, Gray
and Ruskuc [21] give a complete characterization of maximal subgroups of IG(E),

where E is the biordered set of idempotents of 7,,.

Theorem 4.2.9. [21] Let T, be the full transformation semigroup on n elements,
let E be its biordered set of idempotents, and let e € E with rankr, where 1 <
r < n—2. Then the mazimal subgroup of IG(FE) containing € is isomorphic to the

maximal subgroup of T, containing e, and hence to the symmetric group S,.

We remark here that if e is a rank n—1 idempotent, then the maximal subgroup
of IG(E) containing € is a free group, as there are no non-trivial singular squares
in the D-class of e. If e € E has rank n, then the maximal subgroup of IG(F)
containing € is the trivial group.

Subsequently, Dolinka [5] proved that the same result holds when 7, is replaced
by PT ., where PT, is the full monoid of partial transformations on n elements.

Another interesting strand of this popular theme is to consider the biordered
set E of idempotents of the matrix monoid M, (D) of all n X n matrices over a
division ring D. Let e € E with rankr, where 1 < r < n. It is known that the
maximal subgroup of M, (D) containing e is the r dimensional general linear group
GL, (D). What are the relationships between maximal subgroups of IG(E) and
M, (D) containing an idempotent e € E? By using similar topological methods to
those of [1], rather than the presentation obtained in [20], Brittenham, Margolis
and Meakin [2] proved the following theorem:
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Theorem 4.2.10. [2] Let E be the biordered set of idempotents of M, (D), where
D is a division ring, and let e € E be a rank 1 idempotent. Then the maxi-
mal subgroup of IG(E) containing € is isomorphic to that of M, (D), that is, the
multiplicative group D* of D.

Dolinka and Gray [7] went onto generalise the result of 2] to higher rank r,

where r < n/3.

Theorem 4.2.11. [7] Let E be the biordered set of idempotents of M,,(D), where
D is a division ring, and let e € E be a rank r idempotent with r < n/3. Then the
maximal subgroup of IG(E) containing € is isomorphic to the maximal subgroup of

M, (D) containing e, and hence to the r dimensional general linear group GL,(D).

So far, the structure of maximal subgroups of IG(FE) containing e € E, where

rank e = r and r > n/3 remains unknown. It was conjectured in [2] that:

Conjecture [2] For any idempotent e € E with ranke = r and r < n/2, the
maximal subgroup of IG(E) containing € is isomorphic to the maximal subgroup

of M, (D) containing e.



Chapter 5

Every group occurs as a maximal

subgroup of a natural IG(F)

In this chapter, we will consider a free (left) G-act F,,(G) of rank n, where G is
a group and 3 < n € N. We know from Theorem 3.4.2 that the endomorphism
monoid End F,,(G) of F,(G) is isomorphic to the wreath product G @ 7,,. Our main
aim here is to show, in a transparent way, that for any idempotent ¢ € E lying
in the minimal ideal (i.e. the rank 1 D-class) of G ! 7, the maximal subgroup of
IG(F) containing ¢ is isomorphic to G, where F is the biordered set of idempotents
of G 7,.

Our work in this chapter is analogous to that of Brittenham, Margolis and
Meakin for rank 1 idempotents in full linear monoids [2]. As a corollary we
obtain the result of Gray and Ruskuc [20] that any group can occur as a maximal
subgroup of some free idempotent generated semigroup. Unlike their proof, ours

involves a natural biordered set and very little machinery.

For the convenience of the reader we give the argument as presented in my
joint paper with Gould [23], but for later use (particularly in Chapter 7) we make
a series of observations on the more general context in which some of the lemmas
hold.

In this chapter, we use greek letters to denote elements of End F),(G), except
the special ¢y, r; and py; related to the Rees matrix semigroup representation of
the completely simple semigroup Dy, which are denoted in bold. We want to keep

the notations ¢y, r; and p,; here, as they are completely standard.

45
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5.1 The structure of the rank-1 D-class

We mentioned in Section 3.4 that elements «, 8 € End F},(G) depend only on their
action on the free generators {z; : i € [1,n|} and therefore following our notation

in Section 3.4 we have

T .. Tn T cen Tn
o= N N and g = s 5
wT1E .. WETng WYTF ... WT,3
where wy", w? € G, forallie {1,--- ,n};and @, 3 € 7,. Note that if & happens to
be an idempotent then overline notation is also being used to denote @ € IG(E).
However, it will always be clear from context what we mean by @.

Let € be a rank 1 idempotent of End F},(G). Then by Lemma 3.4.1 the D-class
of ¢ in End F),(G), denoted by D = D is given by

D = D; ={«a € End F,,(G) | rank o = 1}.
Clearly o, 8 € D if and only if @, 3 are constant, and from Lemma 3.4.1 we have
al B+ ima =im}.

Lemma 5.1.1. Let o, € D be as above. Then kera = ker 8 if and only if

(we, ..., w)g = (Wi, ... wP) for some g € G.

Proof. Suppose ker a = ker 3. For any i, j € [1,n] we have

(wH) 'z)a = v = (W

i 7 )_1$j)a

so that by assumption, ((w®)™'z;)8 = ((w?) " z;)S. Consequently,

(2

and it follows that (w®, ..., w*)g = (w?, ... w?).
Conversely, if g € G exists as given then for any u,v € G and i,j € [1,n] we
have

(uzi)a = (vrj)a & wwi = vwj & uw;'g = vwjg

& uw) = ij@ & (ux;)f = (vaxj)p.

7
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The proof is completed. O

We index the L-classes in D by J = [1,n] = {1,--- ,n}, where the image of
a € Lj; is Gz, and we index the R-classes of D by I, so that by Lemma 5.1.1,
the set I is in bijective correspondence with G"!. From Lemma 3.3.2 we have
that D is a completely simple semigroup. We denote by H;; the intersection of
the R-class indexed by ¢ and the L-class indexed by j, and by €;; the identity of

H,;;. For convenience we also suppose that 1 € I N A and let

',L'l PR l’n
€11 = .
‘/'El DY :L‘l

Clearly, for any given ¢ € I,j € J we have

. xl DEEE I‘n o xl Iz DY xn
€15 = and Ei1 = s
Tj 0 Ty Ty Q21 - Angdy

where ag;, -+ ,a,; € G.
Lemma 5.1.2. Fvery H-class of D is isomorphic to G.

Proof. By standard semigroup theory, we know that any two group H-classes in
the same D-class are isomorphic, so we need only show that Hy; is isomorphic to
G. By Lemma 5.1.1 an element o € End F),(G) lies in Hy; if and only if

xl DY aj‘n
a=q,=
(9961 = gwl)
for some g € G. Clearly ¢ : H;; — G defined by o, = g is an isomorphism. [

By the results explained in Section 1.2.4, it follows that D is a completely
simple semigroup, and hence it is isomorphic to some Rees matrix semigroup
M = M(Hy; 1, J; P), where P = (pj;) = (q;r;), and we can take

q; = €15 € Hlj and r, =¢;1 € Hil'

Since the qj,r; are chosen to be idempotents, it is clear that p; = pj1 = e for
alliel,j e J.
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Lemma 5.1.3. For any ay,,...,aq, € Hyi, we can choose k € I such that the

kth column of P is (e11, gy, .., crg,) .

Proof. Choose k € I such that

T i) Ce T
k1 =
T1 G221 ... GnTi
(note that if go = ... =g, =1 then k = 1). O

The above lemma essentially completely describes what the Rees structure
matrix P looks like in this special case. The matrix P is given by taking the

transpose of the matrix which has |G|"~?

rows and n columns, the first row and
the first column contains all 1s, and the remaining rows are given by listing all

possible |G[*7! tuples of elements of G, each tuple occurring exactly once.

5.2 Singular squares of the rank-1 D-class

We know that singular squares play a significant role in the structure of the free
idempotent generated semigroups IG(£). By Lemma 4.2.3, every singular square
forms a rectangular band, but as we remarked that the converse is not always
true. In this section, we will show that in the rank-1 D-class D of End F,,(G),
singular squares are equivalent to rectangular bands. Note that this result also
follows from Lemma 6.2.1, but here we would like to give a simple proof for our

very special rank 1 case.

Lemma 5.2.1. An E-square {(; 5] in D is singular if and only {«, 3,7,d} is

Y
a rectangular band.

Proof. One direction follows immediately from Lemma 4.2.3.
Suppose that {«, 3,7,d} is a rectangular band. If o L3, then our E-square
a
becomes and taking £ = v we see this is an up-down singular square.

v
Without loss of generality we therefore suppose that

{1} =im@ =imd # im 3 = im7¥ = {2}.
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Following standard notation we write
T = wiwy, T;0 = wfxl,xiﬁ = U}iﬁl'g and ;7 = w] zy

for every i € [1,n]. As «, 3, 6 and ~y are idempotents, it is clear that

o _ 0 B _ . —
w =w] =1and wy; =wy = 1.

Since {«, 8,7,d} is a rectangular band, we have ay = f and so xjay = 210,

that is, w] = wf . Similarly, from ya = §, we have w§ = w3. Now we define

6 € End F,,(G) by

1 if i = 1;
xi =< x9 if i =2;
w] e else.

Clearly 6 is idempotent and since im a and im 3 are contained in im 6 we have
af = « and 0 = B. Next we prove that 6o = §. Obviously, z10a = 10 and
Tofar = 296 from wg = w obtained above. For other i € [1,n], we use the fact

that from Lemma 5.1.1, there is an s € G with w? = w]'s, for all i € [1,n]. Since

w?(wg()il = wzs(wg)fl = (w?s)(wgs)*l = W,

we have

TwSay = wlay = 2,0

rifa = (w]zy)a = w;

so that v = 4. Since {a, 3,7,0} is a rectangular band it follows that

05 = 0o = 6 = 7.

Thus, by definition, [a
o v

] is singular.

]

Lemma 5.2.2. For any idempotents o, 3,7 € D, aff = v implies @B = 7 in
IG(E).

Proof. Since D is completely simple, we have a R v L 3 and since every H-class in
D contains an idempotent, there exists some 6> = § € D such that § € L, N Rg.
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We therefore obtain an E-square ? g] , which by Lemma 4.2.1 is a rectangular
band. From Lemma 5.2.1 it is a singular square, so that from the property (IG2)

of IG(E), we have that

7] is also a singular square. By Lemma 4.2.3, a3 =

-

U

Observation 5.2.3. If S is a completely simple semigroup then S will not have
any non-trivial singular squares, since there are no idempotents above to singu-
larise. Thus, Lemma 5.2.2 is true for every completely simple semigroup in which

rectangular bands are equivalent to singular squares.

Note that the above comment really refers to completely simple D-classes
(principal factors) within a semigroup, which also applies to Observations 5.3.2,
5.3.5, 5.3.7 and 5.3.9.

5.3 A set of generators and relations of H

The rest of this chapter is dedicated to proving that the maximal subgroup Hz,,
of IG(FE) containing £; is isomorphic to the maximal subgroup H.,, of End F,(G)
containing 11, and hence by Lemma 5.1.2 to G. For ease of notation we denote
Hz,, by H and H.,, by H.

As remarked earlier, although we do not directly use the presentations for
maximal subgroups of semigroups developed in [3] and [42] and adjusted and
implemented for free idempotent generated semigroups in [20], we are nevertheless
making use of ideas from those papers. In fact, our work may be considered as
a simplification of previous approaches, in particular [7], in the happy situation
where a D-class is completely simple, our sandwich matrix has the property of
Lemma 5.1.3, and the singular squares are equivalent to rectangular bands.

We now locate a set of generators for H. Observe first that for any i € I and
jeJ

(E11€4j811)(B15€i1) = E1184j1,8i1 = E11€ij€i1 = E118i1 = E11
so that £1;&;; is the inverse of £11€;;€1; in H:; certainly then €1;€i1 is the inverse of
engijen in H.

In view of Lemma 1 of [29], which itself uses the techniques of [13], the next

result follows from [3, Theorem 2.1]. Note that the assumption that the set of
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generators in [3] is finite is not critical.

Lemma 5.3.1. Every element in H is a product of elements of the form E11€E11

and (£118;j11) ", where j € J and i € I.

Observation 5.3.2. Lemma 5.3.1 and the preceding comment hold for every com-

pletely simple semigroup.

The next result is immediate from Lemma 5.2.2 and the observation preceding
Lemma 5.3.1.

Lemma 5.3.3. [f €15€i1 = €11, then €11€ij€11 = €11-
Lemma 5.3.4. Leti,l € I and 5,k € J.

(1) If e1jenq = e1jen, that is, pj; = p;j in the sandwich matriz P, then
€11€i5€11 = €11€15€11-

(i1) If e1jei1 = €1kcin, that is, Pji = Pri in the sandwich matriz P, then
€11€45€11 = €11€ikE11-

Proof. (i) Notice that py;'py = €11 = pj_ilpjl, so that from Lemma 4.2.2 we have

€i1 Eij

that the elements of [ ] form a rectangular band. Thus €;; = €;1¢;; and so

€n €y
from Lemma 5.2.2 we have that g;; = g,,&;;. So,

€11€ij€11 = €11€41€1€11 = E11€5€11-

(ii) Here we have that pj’l-lpjl = P, Pr1, 50 that [ " lk] is a rectangular

€15 &1k
band and gij = gikglj- SO,

€11€45€11 = €11€ik€1j€11 = €11Eik€11-

]

Observation 5.3.5. Lemmas 5.3.3 and 5.3.4 are true for every completely simple

semigroup M = M(Hy; 1, J; P) such that: (i) rectangular bands are equivalent
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to singular squares; (ii) the column (pj1) and the row (p1;) of P entirely consist of
€11-
Lemma 5.3.6. For any i,i' € I, j,j' € J, if e1jeq = 1€, that is pj; = pj

in the sandwich matrixz P, then
€11€45€11 = €11€i57€11-

Proof. Let o = €161 = €157€#1. By Lemma 5.1.3 we can choose a k € I such that
the kth column of P is (e11,a,...,«). Then p; = pjr and pjx = pj (this is
true even if j or j' is 1) and our hypothesis now gives that p,, = p;%. The result

now follows from three applications of Lemma 5.3.4. n

Observation 5.3.7. Lemma 5.3.6 is true for every completely simple semigroup
M = M(Hy; 1, J; P) such that: (i) rectangular bands are equivalent to singular
squares; (ii) the column (pj1) and the row (p1;) of P entirely consist of eyy; (iii)
for any i,i' € 1,7,5" € J with pj; = pjv, there exists k € I such that pj; = pjr =
DPj'k = Djrir-

In view of Lemma 5.3.6, we can define w, = €1,&;;€11 where
_ _ -1 _ -1
o = £€11845€11 = (51j5i1) = (sz‘) .

Of course, o = a4 for some g € G, and from Lemma 5.1.3, w, is defined for any
o€ H.

Lemma 5.3.8. With the notation given above, for any o, 5 € H, we have
WaWp = Wap and w,' = wWy-1.
Proof. By Lemma 5.1.3, P must contain columns
(ei, 0, pta o) and (11,611, 871, )T,

For convenience, we suppose that they are the i-th and [-th columns, respectively.
So,

1 1, -1
P2 = €€ =« and py; =g =0 a

and

—1
P2 = €126 = €11 and py = €13en = B .
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eA
It is easy to see that py; Py = P3; Ps. Then 2

6.
“lis a rectangular band by
€12 €13

Lemma 4.2.2. In the notation given above, we have

Wo = E11€12811, Ws = E1€3En and Weg = €1183811-

By Lemma 5.2.2, 1581 = ;1. We then calculate

WaWg = €E11€2€11€11€13¢€11
= €11&:2€12811€13E11
= E11&2813€11
€2 &3 .
is a rectangular band)

= £11€i3¢11 (Since
€2 €13

= Wag-

1:

Finally, we show w,, wq-1. This follows since

€11 = Wy, = Wo—1g = Wy-1Wq.

O

Observation 5.3.9. Lemma 5.3.8 is true for every completely simple semigroup
M = M(Hy; 1, J; P) such that: (i) rectangular bands are equivalent to singular
squares; (ii) for any i,7 € I and j,j' € J with p;; = pj.v we have that €11€;;€1; =
eneypenn; (ii) for any a,b € Hyy, there exist two columns of P with the following
forms:

(e1,a b 07 e, - )T and (e, eqr, b, ).
Note that (iii) indicates that every element in Hyy appears in P.

It follows from Lemma 5.3.1 and Lemma 5.3.8 that any element of H can be

expressed as £11;;€11 for some ¢ € [ and j € J.

5.4 The main theorem

Now we are at the position of stating our main theorem in this chapter.
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Theorem 5.4.1. Let G be a group and let F,(G) = U, Gz; be a finite rank
n free (left) G-act with n > 3, and let End F,(G) the endomorphism monoid of
F.(G). Let € be an arbitrary rank 1 idempotent. Then the mazimal subgroup of

IG(E) containing € is isomorphic to G.

Proof. Without loss of generality we can take ¢ = £;;. We have observed in
Lemma 5.1.2 that H = H.,, is isomorphic to G.

We consider the restriction of the natural morphism
¢ :1G(E) — End F,,(G)
as defined in the property (IG1) of IG(E); from the property (IG4) of IG(E),
o=¢lz: H— H

is an onto morphism, where H = Hz

z,,- We have observed that every element of

H can be written as £11€45€11 for some i € I and j € J. If

€11 = €11&i5€11 = (gllging)(ﬁ

then £1,€;;211 = €11 by Lemma 5.3.3. Thus ¢ is an isomorphism and H is isomor-
phic to H. O

Corollary 5.4.2. Any (finite) group G is a mazimal subgroup of some free idem-

potent generated semigroup over a (finite) biordered set.

We remark that in [20] it is proven that if G is finitely presented, then G
is a maximal subgroup of IG(FE) for some finite E: our construction makes no

headway in this direction.



Chapter 6

Free idempotent generated

semigroups: End F,(G)

Let F,,(G) = U, Gz; be a rank n free left G-act with n € N;n > 3. Let
End F,(G) denote the endomorphism monoid of F,,(G) (with composition left-to-
right), which is isomorphic to a wreath product G @ 7T,, by Theorem 3.4.2. Recall
that the rank of an element o € End F,,(G) is defined to be the rank of im a.

The aim of this chapter is to extend the results of [23] (which forms Chapter
5 of this thesis) and [21], to show that for a rank r idempotent ¢ € End F,(G),
with 1 < r < n — 2, we have that Hz is isomorphic to H. and hence to G S,.
We have already remarked in the Introduction that unlike the proof of the rank
1 case in Chapter 5, a more sophisticated approach is needed.

We proceed as follows. In Section 7.1 we recall specific details concerning the
structure of End F,,(G) and its D-classes. In Section 6.2 we show how to use the
generic presentation for maximal subgroups given in [20] and described in Chapter
4 to obtain a presentation of Hz; once these technicalities are in place we sketch
the strategy employed in the rest of this chapter, and work our way through this
in subsequent sections. By the end of Section 6.5 we are able to show that for
1 <r <n/3, H- = H. (Theorem 6.5.3), a result corresponding to that in [7] for
full linear monoids. To proceed further, we need more sophisticated analysis of
the generators of Hz. Finally, in Section 6.8, we make use of the presentation of
S, given in [34] to show that we have the required result, namely that H= = H,_,
for any rank r with 1 <r <n — 2 (Theorem 6.8.13). It is worth remarking that
if G is trivial, then F,(G) is essentially a set, so that End F,,(G) = T,. We are
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therefore able to recover, via a rather different strategy, the main result of [21].

6.1 The structure of a rank r D-class

In this section, we are concerned with the structure of the D-classes of End F,,(G).
Let 1 <r <n and set

D, = {a € End Fy(G) | rank a = 1},

that is, D, is the D-class in End F,(G) of any rank r element. We let I and A
denote the set of R-classes and the set of L-classes of D, respectively. Thus, [ is
in bijective correspondence with the set of kernels, and A with the set of images,
of rank r endomorphisms, respectively. It is convenient to assume I is the set of

kernels of rank r endomorphisms, and that
A={(up,ug,...;u) 1 <wup <wug<...<u,<n} C[l,n]".

Thus, it follows from Lemma 3.4.1 that a € R; if and only if kera = 4 and

a € Ly,,..u, if and only if

ima =Gz, UGx,, U...UGx,,.

For every i € I and A\ € A, we put H;, = R; N Ly so that H;) is an H-class
of D,. Where H;), is a subgroup, we denote its identity by g;\. It is notationally
standard to use the same symbol 1 to denote a selected element from both I and
A. Here we let

1= ((x,7;):r+1<i<n)yeland1=(1,2,...,7) €A,

that is, the congruence generated by {(x1,2;) : 7+ 1 <i <n}. Then H = Hy; is
a group H-class in D,., with identity €q;.

Continuing our notation in the previous chapters, a typical element of H looks
like

o= il ) e Ty Tyr41 . Tn
o o o e o
WiTrg Wylog ... W, Tyg W{T1g ... W{Tia

which in view of the following lemma we may abbreviate without further remark
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to:
I ) e Ty
a= a a @ ’
Wi T Welog ... W, Try
where here we are regarding @ as an element of S,.

Lemma 6.1.1. The groups H and Aut F,.(G) are isomorphic under the map

il . Iy o | e e T . Ty
a a a a = e a )
WwiTtg ... Wpelyg W{T1g --.- WiTiw wileag --. W Tra
Moreover, Aut F,.(G) = G S,.

Under this convention, the identity ¢ = 17 of H becomes

Ty ... XTp
€ = .
Ty ... Tp

With the aim of specialising the presentation given in Theorem 4.2.4, we locate
and distinguish elements in H;, and H;; for each A € A and i € I. For any
equivalence relation 7 on [1,n] with r classes, we write 7 = {B],--- , BT} (that
is, we identify 7 with the partition on [1,n] that it induces). Let {],--- ,IT be
the minimum elements of B7,---, B, respectively. Without loss of generality
we suppose that [[ < --- < [J. Then [ = 1 and [] > j, for any j € [2,7].
Suppose now that o € End F,,(G) and rank o = r, that is, « € D,. Then kera@
has r equivalence classes. Where 7 = ker@ we simplify our notation by writing
B¥'® = B$ and [5"® = 2. If there is no ambiguity over the choice of o we may

simplify further to B; and [;.

Lemma 6.1.2. Let a, 3 € D,. Then kera = ker 3 if and only if kera = ker B
and for any j € [1,7] there exists g; € G such that for any k € B = B; = Bjﬁ,

we have wi = w,fgj. Moreover, we can take g; = (wlﬁj)_lwlo]‘, for j e [1,r].

Proof. 1If ker a = ker 3, then clearly kera = ker 3. Now for any j € [1,7] and
k€ BY = B]@, we have that

((wp) " o = ((wy) ™ ax)a

and so

((wi) ;)8 = ((wi)2x)B,
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giving that w§ = wf((wlﬁj)_lwg). We may thus take g; = (wfj)_lwf;.

Conversely, suppose that ker@ = ker # (and has blocks {Bjy, -+, B,.}) and for
any j € [1,r] there exists g; € G sastisfying the given condition. Let uxy,, vzy be
elements in End F,(G). Then

(uzp)a = (vrg)o < h,k € B; for some j € [1,7] and uwj = vwy
& h,k € B; for some j € [1,7] and uwfgj = vw,fgj
& h,k € B for some j € [1,7] and uw), = vw}, ’

& (uxp)p = (vag)p
so that ker o = ker 3 as required. O

For the following, we denote by P(n,r) the set of equivalence relations on [1,n]
having r classes. Of course, |P(n,r)| = S(n,r), where S(n,r) is a Stirling number
of the second kind, but we shall not need that fact here.

Corollary 6.1.3. The map T :1 — G™" x P(n,r) given by
iT = (WS, . W W s W WE - w) ), ker @)

where o € R; and wil = ¢, for all j € [1,7], is a bijection.
Proof. For i € I choose f € R; and then define a € End F,,(G) by

Tpo = wg(wl’é)_lxj,
where k € Bf. It is clear from Lemma 6.1.2 that kera = ker § and so o € R;.
Now

5)—1

NG
xy,00 = wy (wy,

Ij = C(Zj,

so that i7 is defined. An easy argument, again from Lemma 6.1.2, gives that 7
is well defined and one-one.

For p € P(n,r) let v, : [1,n] — [1,7] be given by kv, = j where k € BY. Now
for ((hy, ..., hn—y),pt) € G x P(n,r), define

o = ((]-G7 h17 R hlg—Qv-[Gv h’lg—l? SR hlﬁf—'ﬁ 107 h’lff—r—}—h BRI hn—T)7 V,u)'l)b_17
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where 1) is defined in Theorem 3.4.2 on Page 34. It is clear that if a € R;, then

it = ((h1y. .oy hner), 10).
Thus 7 is a bijection as required. O]

Corollary 6.1.4. Let O be the set defined by
©={aeD,: T = 15,7 € [1,7]}.

Then © is a transversal of the H-classes of L.

Proof. Clearly, i ma = Gzy U ---UGx,, for any a € ©, and so that © is a subset
of L.

Next, we show that for each i € I, |H;; N O] = 1. Suppose that a, f € © and
ker o = ker 3. Clearly ker@ = ker 3 and so B} = B; = Bf for any j € [1,7], and
by definition of ©, wy = wlﬁj = 1g. It is then clear from Lemma 6.1.2 that for any
k € B;j we have

e — aB .
T = WRT; = WLT; = T3,

so that a = .

It only remains to show that for any ¢ € I we have |H; N O| # (. By
Corollary 6.1.3, for i € I we can find a € R; such that wj} = 1 for all j € [1,7].
Composing a with 3 € End F,,(G) where 1,58 = x; for all j € [1,7] and 238 = 2,
else, we clearly have that aff € H;; N ©. O

For each 7 € I, we denote the unique element in H;; N © by r;. Notice that
rA=e.
On the other hand, for A = (uy, us,...,u,) € A, we define

r1 T2 o Xy Tegl c $n>_(l’1 T 0 Dy

A\ = Quy, - ur) =
xul IL‘u2 e :L‘ur xu1 xul wu1 l’u2 T Ty

It is easy to see that q, € Hi), as

kerqy = ((z1,2;) : 7+ 1 < i < n).
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In particular, we have

T1 Xy o Xy
d1 = q(,2,,r) = =Ee.
1‘1 ZEQ .. ':E’I”

It follows from Lemma 3.3.2 that D? = D, U {0} is a completely O-simple
semigroup with the multiplication defined by

5 af if a,p € D, and rankaf =r
a-f=
0 else

We do not need to give the specifics of what the latter property entails, since, by
the Rees Theorem (see [26, Chapter III]) and described in Chapter 1 as Theorem
1.2.12, DY is isomorphic to

M® = M°(H; I,A;P),

where P = (py;) and py; = (qur;) if rank qr; = 7, and is 0 else. Our choice of P

will allow us at crucial points to modify the presentation given in Theorem 4.2.4.

6.2 A presentation of maximal subgroups of IG(FE)

Our aim in this section is to specialise to End F,(G) the presentation for the
maximal subgroups of IG(FE) obtained by Gray and Ruskuc [20].

For the remainder of this chapter, E will denote E(End F,(G)). In addition,
for the sake of notational convenience, we now observe the accepted convention
of dropping the overline notation for elements of E". In particular, idempotents
of IG(E) carry the same notation as those of End F,,(G); the context should
hopefully prevent confusion.

We focus on the idempotent ¢ = €17 of Section 6.1. It follows immediately
from Theorem 4.2.4 that the maximal subgroup H of IG(E) containing € € E is
defined by the presentation

P=(F:%)

with generators:
F:{fi,)\: (ZaA)EK}
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and defining relations >:
(Rl) fi,)\ = fi,u (h)\giu = hu);
(R2) fiwwy =1 (i€l);
(R3) fi}\lfi,u = f];)l\fk,u ( [&A Ei“] is a singular square),

EkX  Ekp
where the h) form a Scherier system of representatives, and w : I — A is a

function satisfying the conditions given on Page 41.

In order to specialise the above to E, our first step is to identify the singular

squares.

5
Lemma 6.2.1. An E-square [z ] is singular if and only if {v,0,v,&} is a
v

rectangular band.

Proof. The proof of necessity is trivial. We only need to show the sufficiency. Let
{7,0,v,&} be a rectangular band so that

yv =0, vy =&,06 =y and 0 = v.

Suppose

an)/ = lmg = <xm>m€M and imd = imv = <xn>n€N>

where |M| = |N|=r. Put L = M U N. Define a mapping 6 € End F,,(G) by

:EZQZ{:E I

z;v  else.

Since im0 = (), and for each [ € L, 2,0 = z;, we see that 6 is an idempotent.
It is also clear that v =~ and 060 = ¢, as im~yUimd C im 6.
Next, we will show 0y = &. If i € M, then x,0y = x;v = z; = ;€. If 1 € N,
but i ¢ M, then
x0y = xy = vy = €.
If i ¢ L, then
0y = xvy = x€.

So, 0y = £. For the remaining equality 80 = v required in the definition of a
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singular square, since {7, J, v, £} is a rectangular band, we have
06 =076 =&6 = .
Hence we have proved that

v0 = 7,00 = 6,0y =& and 60 = v,

so that {7

] is an up-down singular square. O
v

The proof of Lemma 6.2.1 shows the following:

Corollary 6.2.2. An E-square is singular if and only if it is an up-down singular

square.
The next corollary is immediate from Lemmas 4.2.2 and 6.2.1.

Corollary 6.2.3. Let P = (py;) be the sandwich matriz of any completely 0-
simple semigroup isomorphic to DY. Then (RS3) in Theorem 4.2./ can be restated

as:
(R3) ffAlfw = fl;/{fku (Pxi Pk = p;ilpuk)-

For the presentation P = (F': ¥) (we refer the reader to Chapter 4 for details)
for our particular H, we must define a Schreier system of words {hy : A € A}. In
this instance, we can do so inductively, using the restriction of the lexicographic
order on [1,n]|" to A. Recall that we are using the same notation for hy € E* and
its image under the natural morphism to the set of right translations of IG(E)
and of End F,,(G).

First, we define

h(LQ’,.. ,r) — 1,

the empty word in E*. Now let

(ug,ugy ... u,) € Awith (1,2, 7)) < (ug,ug,...,u,)

-----

(V1, V9, ..y Up) < (Up, Uy ..y Uyp).
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Taking uy = 0 there must exist some j € [1,r] such that u; —u;_; > 1. Letting ¢

be largest such that u; — u;_; > 1 observe that
(ul, o, U1, Uy — 1,Ui+1, ... ,ur) < (ul,UQ, ... ,UT).
We now define

h(mf" Ur) h(“lf“ i1 — L1, ue) Xug,o ur) s

where vy, ... u

) is defined by

T

( ml o .. a:ul xulJrl .. mu2 .. xu7‘71+1 ... qu quJrl ... x‘n ) )
Y

xu:l DY $u1 xuz DY $u2 DY mu

notice that ay, ... u,) = €ius,....ur) Where €y, ... u,) is an idempotent contained in

the H-class with kernel indexed by some [ € I and image indexed by (uq, ..., u,).

Lemma 6.2.4. For all (u1,...,u,) € A we have ehqy,, . vy = Qeus,...u,). Hence

right translation by hy, .. 4
both End F,,(G) and 1G(E).

y induces a bijection from L .. ;) onto Ly, .. u,) in

T

Proof. We prove by induction on (uq, ..., u,) that ehg,,  u.) = deu,,..u)- Clearly
the statement is true for (uy,...,u,) = (1,...,r). Suppose now result is true for

all (vy,...,v,) < (uq,...,u,), so that

8h(u1,'" Wi 1yui— L, ue) = Dlur, w1 =1, ) -
Since z,,a0 =z, for all j € {1,...,r} and 2,,_1a = z,,, it follows that

ehguy,u) = ENuy o s w1 ) Q)
= A(ur, i1 ti— g1, ur) O o)
= Q(uy,...,ur)
as required.
Since by definition, qeu,,..u) € Lui, ), the result for End F,(G) follows
from Green’s Lemma (see, for example, [26, Chapter II]), and that for IG(E) by

the comments in Section 4.2.3 that the action of any generators f € E on an

H-class contained in the R-class € in IG(E) is equivalent to the action of f on
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the corresponding H-class in End F,,(G). O

It is a consequence of Lemma 6.2.4 that {h) : A € A} forms the required
Schreier system for a presentation P for H. It remains to define the function w:

we do so by setting
w(i) = (015, ) = (L1, ... )

for each 7 € I. Note that for any i € I we have q.;)r; = €, i.e. Py@), = €.
Definition 6.2.5. Let P = (F : ) be the presentation of H as in Theorem 4.2.4,

where w and {hy : A € A} are given as above.

Without loss of generality, we assume that H is the group with presentation
P.

In later parts of this work we will be considering for a non-zero entry ¢ € P,
which ¢ € I, A € A yield ¢ = p);. For this and other purposes it is convenient to
define the notion of district. Fori € I we say that r; lies in district (I7',15', -+ | [5*)
(of course, 1 = [}"). Note that the district of r; is indeed determined by the kernel
of the transformation 7;, and lying in the same district induces a partition of ©.

Let us run an example, with n = 9 and r = 3 we can consider the following

two partitions:

P ={{1,2,8},{3,4,7},{5,6,9}}, P» = {{1,4,6},{3,2},{5,8,9,7} }.

Then for each of these partitions if we take the minimal entries in each class in
both cases we get 1 < 3 < 5, so these two partitions determine the same district.

The next lemma follows immediately from the definition of r;,i € I.

Lemma 6.2.6. For any i € I, if v; lies in district (1,13, 1), then Iy > s for
all s € [1,7]. Moreover, for k € [1,n], if zyr; = ax;, then k > 1;, with k > 1; if
a 7£ 16‘-

Proof. 1t is clear that [ > s for all s € [1,7]. If x3r; = az;, then k > I; because

7y and x;; belong to the same kernel class. If a # 1g, then zxr; # x; so 1y, # 1y,
and hence k£ > [;. O

We are interested in the non-zero entries ¢ € H in the matrix P at this point.

These are given by the py; = qar; such that rank q,r; = r. As indicated before
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Lemma 6.1.1, we can write ¢ € H as

b= ( 1 Ty ... T )
B MTy5 ATeg ... GrT,5
where ¢ € S, and (a4, ...,a,) € G".

In order for us to have rank q,r; = r it must be the case that z,,, x.,, -, z,,
in the image of q) form a transversal of the kernel classes Bi, Bs,---, B, of
the element r;. This bijective correspondence between {x,,,Zy,, -, %, } and
{By, By, -+, B} induces a bijection from [1,7] to [1,r]. In fact it defines pre-

cisely the element ¢ of the symmetric group S, where ¢ = py; = qur;.
Suppose now that ¢ = py; € P, where A = (uq,...,u,) and r; lies in district

(i, ..., 1;). Then the us and s are constrained by
l=h<b<...<l, uy <us<...<u,,

liz <wjforall j € [1,r] with L7 <w; if a; # 1g,

and

I, = u; implies k = j¢ and a; = 1 for all k,j € [1,7].
Conversely, if these constraints are satisfied by Iy, ..., 0, u1,...,u, € [1,n] with
respect to some ¢ € S, and (ay,...,a,) € G7, then it is easy to see that if

¢ € End F,(G) is defined by
1, = Tk, Ty, & = arlyg, k€ [1,7]
and

€ =mx for j ¢ {ls,...,L,u1,...,u},
then & = r; for some ¢ € I, where r; lies in district (I1,ls,- -+ ,[,). Clearly, py; = ¢.
Lemma 6.2.7. If |G| > 1 then every element of H occurs as an entry in P if

and only if 2r < n. If |G| = 1 then every element of H occurs as an entry in P
if and only if 2r < n + 1.
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Proof. Suppose first that |G| > 1. If 2r < n, then given any

T T .. Ty
o =
01 T1g 2027 .. Qrlrg
in H, we can take

(ly, ..., L) =(1,2,...;r) and (uy,...,u,) = (r+1,...,2r).

T T2 R
)
ar, TLey—1 ... I1

where a # 15. By the pigeon hole principal » > n/2 implies u; < [, and hence

Conversely, if 2r > n, then

such element cannot lie in P.

Consider now the case where |G| = 1. If 2r < n + 1, then given any

T Tog ... Tp
o =
Tia T2a --- Tra
in H, let 1@ =t and choose

(ly,..., L) =(1,...,r)and (uy,...,u,.) = (t,r+1,...,2r —1).

It follows from the discussion preceding the lemma that o € P. Conversely, if

2r > n + 1, then
T ) B
Tyr Tp—1 ... X1
cannot lie in P, since now we would require l1z = [, < u;.

]

We are now in a position to outline the proof of our main theorem, Theo-
rem 6.8.13, which states that H is isomorphic to H, and hence to G S,.

We first claim that for any ¢,7 € I and A\, u € A, if py; = p,;, then fix = fj .-
We verify our claim via a series of steps. We first deal with the case where p); = ¢
and here show that f; (and f;,) is the identity of H (Lemma 6.3.1). Next, we
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verify the claim in the case where pr = A (Lemma 6.4.1) or i = j (Lemma 6.4.3).
We then show that for r < & — 1, this is sufficient (via finite induction) to prove
the claim holds in general (Lemma 6.5.1). However, a counterexample shows that
for larger r this strategy will fail.

To overcome the above problem, we begin by showing that if p; = p,,; is what

we call a simple form, that is,

($1 a2 - Tp—1 Tk Tk4+1 °° Tk+m—-1 Lh+m Lh4+m+1l - -- Ifr)
Y

ry T2 - Tg—1 T4l Tey2 - Tit+m ary Tk4ym4+1 --- Tr

for some k > 1,m > 0,a € G, then f; , = f;,. We then introduce the notion of
rising point and verify by induction on the rising point, with the notion of simple
form forming the basis of our induction, that our claim holds. As a consequence
of our claim we denote a generator f; x» with py; = ¢ by f,.

For r < 4 it is easy to see that every element of H occurs as some py; and for
r < % we have enough room for manoeuvre (the reader studying Sections 6.4 and
6.5 will come to an understanding of what this means) to show that f,f, = fss
and it is then easy to see that H = H (Theorem 6.5.3).

To deal with the general case of r < n — 2 we face two problems. One is that
for r > %, not every element of H occurs as some element of P and secondly, we
need more sophisticated techniques to show that the multiplication in H behaves
as we would like. To this end we show that H is generated by a restricted set of
elements f; , such that the corresponding p); form a standard set of generators
of H (regarded as a wreath product). We then check that the corresponding
identities to determine G ! S, are satisfied by these generators, and it is then a
short step to obtain our goal, namely, that H = H (Theorem 6.8.13). We note,
however, that even at this stage more care is required than, for example, in the
corresponding situation for 7, [21] or PT,, [5], since we cannot assume that G is
finite. Indeed our particular choice of Schreier system will be seen to be a useful

tool.

6.3 Identity generators

As stated at the end of Section 6.2, our first step is to show that if (i, A) € K and

pxi = €, then f; y = 157. Note that whenever we write f; \ = 177 we mean that this
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relation can be deduced from the relations in the presentation (F' : ¥). To this end
we make use of our particular choice of Schreier system and function w. The proof

is by induction on A € A, where we recall that A is ordered lexicographically.
Lemma 6.3.1. For any (i,\) € K with py; =€, we have f; x = 15.

Proof. On page 63 we noted that p,); = quuri =c foralli € I. If pa1o,.. ) = &,
that is, q(1,2,... »)r; = €, then by definition of q(; 5,... ;) we have z1r; = xq,- -, z,1; =

x,. Hence r; lies in district (1,2,---,7), so that
W(Z) - (1a2>' o ,’I").

Condition (R2) of the presentation P now gives that f; 12..r) = fiwe) = 17
Suppose now that P, us,.u)i = € where (1,2,...,r) < (u1,us, -+ ,u,). We
make the inductive assumption that for any (vi,ve, -+ ,v,) < (ug,ug, -+ ,u,), if
P(oi,vz, o)l = €, for any [ € I, then fi (v, v,....0,) = 157
With ug = 0, pick the largest number, say j, such that u; —u;—; > 1. By our

choice of Schreier words, we have
h(u17u27'“ 7u7') = h(u17u27"' 7uj717uj_17uj+17"' 7u7')a(u17u27"' 7u7')7

T

where vy, ... u

) is defined by

( ‘rl .. a:ul xulJrl o .. xu2 .. xu7‘71+1 .. qu quJrl ... x‘n )

$U1 e $U1 xuz e $u2 e ajuT qu xUT qu

Suppose that the kernel of a(y, uy,... ) 15 1, 50 that o, ug, ur) = Ei(uus,...ur)-

By definition,

. ( xry ... xul mul+1 e mu2 e mur—l'i‘l e qu xur—‘rl cee Tn )
= :

‘Tl R ‘rl x2 DY x2 DY x/r PR x/l" I"" ... l’/r

By choice of j we have u;_; < u; —1 < u; so that Ty, 1] = Tj, giving

Pusuz, i1 ,u—1 w1, un)l = €-
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Since
(Ul,UQ, cee 7uj—17uj — 1,Uj+1,' . ,UT) < (Ul,UQ, tee 7uj—17uj7uj+17' . ,U,T),

we call upon our inductive hypothesis to obtain

fl,(ul,uz,---,Ujfl,ujflyujﬂf"ﬂh) = 1?'

On the other hand, we have

fl,(ul,ww',ur) = fl,(m,w,--'7uj717uj*1,uj+1,“wur)

by (R1), and so we conclude that fi ;s ) = 17-

Suppose that r; lies in district (Iy,ly, -+ ,I;). Since Qqu, ug, u,)Ti = €, We have
Ty, Ti = Ty, so that [y < wg by the definition of districts, for all k € [1,r]. If
I = uy for all k € [1,7], then

Jitutyur) = Jiwe) = 17

by P. Otherwise, we let m be smallest such that [,, < w,, and so (putting
ug = lp = 0) we have

U1 = b1 < Ly < Upp,.

Clearly

(u17u27 e 7um—17lmaum+1a e ;ur) € A

and as Upy,—1 < by < Uy, we have x;, 1) = x,,, by the definition of r;. We thus have

the matrix equality

Q(ul,ug,m ,uT)rl Q(u1,ug,~~- ,uT)ri o g €
A(ur,uz, m—1,lmstmt1,ur) YL Dur,uo, tum—1,lmytmt 1, ur) L € ¢
Remember that we have already proven = 1+. Furthermore, as
L(ut,u2, ur) H )

I < up, by assumption,

(U17u27"' 7um—17lmaum+17"' 7ur> < (ulau%"' y Um—1, Umy Um1, ° *° 7ur>7



70

so that induction gives that

fiv(ulyu%"'vum—lylm:um+1:“'7ur) - fl:(u17u27"'aum—lyl'rn7u7n+17"‘7u'r) - 1?'

From (R3) we deduce that f; (4, us,u,) = 17 and the proof is completed. O

6.4 Generators corresponding to the same rows

or columns, and connectivity

The first aim of this section is to show that if py; = p,; # 0 where A = pori = j,

then f; x = f; . We begin with the more straightforward case, where i = j.
Lemma 6.4.1. If px;i = P, then fix = fi,.

Proof. Let A = (uy,--+ ,u,) and g = (vy,...,v,). By hypothesis we have that

o, )i = Gon, oy Ts = 0 € H.

By definition of the qxs we have z,,;r; = z,,r; for 1 < j <r, and as rankr; = r
it follows that uj,v; € B} where j — j" is a bijection of [1,7r]. We now define
a € End F,,(G) by setting

Ty;00 = 15 = 2y, for all j € [1,7]

and

zpa =y for all p € [1,n]\ {ug, - ,up, v, -0, }.

Clearly a € D,, indeed a € L;. Since w? = 1g for all m € [1,n] and
min{u;,v;} <min{ug, v} for 1 < j < k < r, we certainly have that o = r; for

some [ € I. By our choice of r; we have the matrix equality

q(ul,--- ,u,«)ri q(ul,--- ,u,«)rl _ w £
Ay, o)L Aoy, v ¢ €
Using Lemma 6.3.1 and (R3) of the presentation P, we obtain

fi,(u1,~-- Ur) — fi,(m,n- Jr)
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as required. O

We need more effort for the case py; = p,;. For this purpose we introduce the
following notions of ‘bad” and ‘good’ elements.

For any 4,57 € I, suppose that r; and r; lie in districts (1, ks,---,k,) and
(1,1g,--- 1), respectively. We call v € [1,n] a mutually bad element of r; with
respect to r;, if there exist m,s € [1,7] such that u = k,,, = [5, but m # s; all
other elements are said to be mutually good with respect to r; and r;. We call u
a bad element of r; with respect to r; because, from the definition of districts, r;
maps Zr,, to Z,,, and similarly, r; maps z;, to z,. Hence, if u = k,,, = [; is bad,
then it is impossible for us to find some r; to make both r; and r; ‘happy’ in the
point z,, that is, for ry (or, indeed, any other element of End F,,(G)) to agree with
both r; and r; on z,.

Notice that if m is the minimum subscript such that u = k,, is a bad element of
r; with respect to r; and k,, = [,, then s is also the minimum subscript such that
ls is a bad element of r; with respect to r;. For, if Iy <[ is a bad element of r;
with respect to r;, then by definition we have some k,,, such that [, = k,,, where
s’ # m/. By the minimality of m, we have m’ > m and so ly = kv > k,, = L,
a contradiction. We also remark that since [y = k; = 1, the maximum possible
number of bad elements is r — 1.

Let us run a simple example. Let n = 7 and r = 4, and suppose r; lies in
district (1,3,4,6) and r; lies in district (1,4,6,7). By definition, x4r; = 3 and
xer; = x4, while z4r; = 9 and wzer; = 3. Therefore, r; and r; differ on z4 and

Zg, so that we say 4 and 6 are bad elements of r; with respect to r;.

Lemma 6.4.2. Foranyi,j € I, suppose thatr; andr; lie in districts (1,ka, - -+ , k;)
and (1,1y,--- 1), respectively. Let ey, ... u\Ti = Q(uy,u)t; = Y € H. Suppose

{1,1lg,--- ,ls} is a set of good elements of r; with respect to r; such that
<< - <lyg<ksg <<k,
Then there exists p € I such that vy, lies in district
(L,g, - lgy kogr, -+ Ky

and

A(ur,ur)Tp = Y and fp,(ul,---,ur) = fi,(ul,---,ur)'
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Further, if s = r then we can take p = j.

Proof. We begin by defining o € D, starting by setting xy, o = x,,, m € [1,r].
Now for m € [1,s] we put z;,,a = z,,,. Notice that for 1 < m < s, if k,,y = [,
for m’ € [1,r], then by the goodness of {1,ls,---,ls} we have that m' = m.
We now set x,, o = x,,,r; for m € [1,7]. Again, we need to check we are not
violating well-definedness. Clearly we need only check the case where wu,, = [,
for some m’ € [1,s], since here we have already defined z; ,a = x,,,. We now
use the fact that by our hypothesis, x,, r; = z,,r; for all m € [1,7], so that
Ty, Ti = Ty, Tj = T Tj = Ty Finally, we set x,0 = 21, for all m € [1,n] \
(1,0, g kg, oo ke un, - up b

We claim that o = r; for some t € I. First, it is clear from the definition that
a € D,, indeed, a € L. We also have that for 1 < m < s, 2, @ = 2, a0 = T,
and also for s + 1 < m < r, x; o = x,,. We claim that for m € [1,s] we have
& = v, where v,, = min {k,,[,,} and for m € [s + 1,n| we have [, = k,,. It is
clear that 1 = I{. Suppose that for m € [2,7] we have x,,a = az,,. By definition,
Ty, Ty = ATy = Ty, T, so that k[, < u, and our claim holds. It is now clear
that o = r, for some t € I and lies in district (vy, -, vs, kg1, , k).

Having constructed r;, it is immediate that

Ak, k) Ti A(1,ka, k) Tt _ € €
Auruz,ur) Y Qui,ug,ue) Tt 2/} r‘/}
so that in view of Corollary 6.2.3 and (R3) we deduce that

fi,(u1,u2--~ Ur) ft,(ul,u2,~~~ )

Notice now that if s = r then

(1,09, )Tt A(1,le, )T _| ¢ ¢
A(ug,uz,u) Tt Dur,ug,ur) by ¢ ¢
which leads to fi (u; us, ur) = fi(uiuo, up)> a0d 80 that f o, o wy = fiur, o u) a8
required.
Without the assumption that s = r, we now define r, in a similar, but slightly

more straightforward way, to r;. Namely, we first define 5 € End F,,(G) by putting

xy,, B = xy, form € [1,s],x, 6=z, form € [s+1,7], z,, B =y, r; form € [1,7]
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and z,,,0 = x1 for m € [L,n] \ {1,01, -, ls, ksy1, -+, kryur, -+ ,u.}. It is easy to
check that 8 = r, where r, lies in district (1,05, - ,ls, kst1,- - , k). Moreover,
we have

A1,lz, deksq1,ke) 0t ALl ls ks, k)Y | [ €€
- 9
A(ur,ug, ur) Tt AQur,uz, ur)Fp ¢ ¢
which leads to fi (u;us ) = Jp(uiuzye up)s @0 80 0 fo (uy oo u) = fis(ur, o up) @S

required. =
Lemma 6.4.3. If py; = Dy, then fix = fjx.

Proof. Suppose that r; and r; lie in districts (1, ko, -, k) and (1,15,--- 1),
respectively. Let A = (uy,...,u,) so that q, .. u)Ti = A, u)Tj = ¥ € H say.
We proceed by induction on the number of mutually bad elements. If this is 0,
then the result holds by Lemma 6.4.2. We make the inductive assumption that if
Px = P and ry, r; have £ —1 bad elements, where 0 < k < r —1, then f;y = fix.

Suppose now that r; has k bad elements with respect to r;. Let s be the
smallest subscript such that [, is bad element of r; with respect to r;. Then there
exists some m such that [, = k,,,. Note, m is also the smallest subscript such that
k., is bad, as we explained before. Certainly s, m > 1; without loss of generality,

assume s > m. Then 1 =1;,0s,---,l,_1 are all good elements and
Il<ly< o<l <kg <o <k,
By Lemma 6.4.2, there exists p € I such that r, lies in district
(L,lyy - Loy kg, S k),

Ay, u)Tp = ¥ A0 fp (uy ) = Si(ur, )

We consider the sets B and C of mutually bad elements of r; and r,, and of
r; and r;, respectively. Clearly B C {l;,ls41,--- ,l.}. We have [, = k,, < k;, so
that I; ¢ B. On the other hand if [, € B where s +1 < ¢ < r, then we must have
l, = kg for some ¢’ > s with ¢’ # ¢, so that [, € C. Thus |B| < |C| = k. Our

inductive hypothesis now gives that f, ;. u) = fj,(ur, ) @and we deduce that

r

fisui,e un) = Fi(ur, up) @S TEquired. O
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Definition 6.4.4. Let i,j € I and X\, € A such that py; = Py We say that
(i,\), (7, ) are connected if there exist

i:i07i1,...,im:j61andA:Ao,)\l,...,)\mZ,LLEA

such that for 0 < k <m we have Py, = P ipis = Phegrins-

The following picture illustrates that (i, \) = (ig, Ag) is connected to (j,u) =
(s Am)-

Poio

p)\m—lim—l p/\m—lim

Pxnim

Figure 6.1: the connectivity of (i, \) and (j, u)

Lemmas 6.4.1 and 6.4.3 now yield:

Corollary 6.4.5. Let i, € I and A\,u € A be such that py, = p,; where
(2, A), (J, ;) are connected. Then fix = fj,-

6.5 The result for restricted r

We are now in a position to finish the proof of our first main result, Theorem 6.5.3,
in a relatively straightforward way. Of course, in view of Theorem 6.8.13, it is not
strictly necessary to provide such a proof here. However, the techniques used will
be useful in the remainder of this chapter.

Let a = py; € P and suppose that A = (uy, -+ ,u,) and r; lies in district
(l1,+ -+ ,1.). Define

UNi)={ly, - ,lug, -+ ,u.} and S(A2) = [1,n] \ U,

where U = U(\, 7).
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Step D: moving [s down: Suppose that [; <t < [;;; and t € S(A,i). Define
ry; by

2T = T4 and x,r; = z,r; for s # .

It is easy to see that rp € O, py; = par and ry, lies in district

(ll, R ,lj, t, lj+2, R 7lr)-
Clearly, (i, \) is connected to (k, A).

Step U: moving us up: Suppose that u; <t < uj4q or u, <t, wheret € S(\,1).
Define r,, by

Ty = Ty, Ty and x,ry, = .1, for s # ¢

It is easy to see that r,, € O, py; = pam and r,, lies in district (Iy,13,...,1.). Let
n = (U17 PN ,Uj_l,t,Uj+1, S ,U,,«>.

Clearly, pxm = Pum so that (i, A) is connected to (m, u).

Step U: moving us down: Suppose that ¢ < w;i; and [t,u;41) € S(A,0).
Define r; by

Tyr; = Ty, T and z,1,, = x,1; for s # ¢

It is easy to see that r; € O, py; = py. Further, r; lies in district (I4,ls,...,1.)

unless uj11 = [(j11ya, in which case [(j; 1)z is replaced by ¢. Let

H= (ulu"'7uj7t7uj+27"'7u7“);

clearly, px; = pu, so that (i, \) is connected to (I, ).

Lemma 6.5.1. Suppose that n > 2r + 1. Let A = (uy,--- ,u,) € A, and i € |
with px; € H. Then we have that (i, \) is connected to (j, ) for some j € I and
p=n—r+1,--- n). Consequently, if pxi = Pur for any i,k € I and \,v € A,
then fix = fuu-

Proof. Suppose that r; lies in district ({1, -+ ,[.). For the purposes of this proof,
let

r

WA i) =Y (up — li);

k=1
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clearly W (A, i) takes greatest value T' where
(lhyy..., L) =(1,...;r)and (uy,...,u.) =(n—r+1,...,n).

Of course, here W (A, i) can be a negative integer, however, it has a minimal value
that it can attain, i.e. is bounded below. We verify our claim by finite induction,
with starting point 7', under the reverse of the usual ordering on Z. We have
remarked that our result holds if W (A, i) =T

Suppose now that W(\,i) < T and the result is true for all pairs (v,[) where
WA i) <W(y 1) <T.

If u, < n, then as certainly [, < u,5-—1 < u,, we can apply Step U to show

that (7, A) is connected to (I,v) where
v=(up,. .., U_1,U.+ 1)

and r; lies in district (I1,...,[.). Clearly W (A, i) < W (v,1).

Suppose that u, = n. We know that [; = 1, and by our hypothesis that
2r + 1 < n, certainly S(\, i) # 0. If there exists t € S(\,4) with ¢ < [, for some
w € [1,r], then choosing k with [, < ¢t < lx;1, we have by Step D that (i, A) is
connected to (I, A), where r; lies in district (l4,..., 0, ¢, lkt2, ..., 1.); clearly then
W(A,i) < W(A,l). On the other hand, if there exists t € S(A,7) with w,, <t for
some w € [1,7], then now choosing k € [1,7] with ux <t < ugy1, we use Step U

to show that (i, \) is connected to (m,v) where
V= (U, Up1, by Upsny e, Uy),

and r,, lies in district (Iy,...,[.). Again, W(X, i) < W(v, m).
The only other possibility is that S(A, i) C (I, u1), in which case, W (A, i) =T,

a contradiction. O

In view of Lemma 6.5.1 and Lemma 6.2.7 we may define, for r < ”T_l and
¢ € H, an element f, € H, where f, = fy; for some (any) (i,\) € K with
Pri = .

Lemma 6.5.2. Let r < n/3. Then for any ¢,0 € H, we have

foo = fofs and for = f3 .
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Proof. Since n > 3 and r < n/3 we deduce that 2r + 1 < n. Define r; by
zr; =x;,7 € [L,7]; xjr; = 2,00, 5 € [r+ 1,2r]; zjv; = xj_9,.0,j € [2r + 1, 3r]

and

z;r; =x1,j € [3r+1,n].

Clearly, r; € © and r; lies in district (1,---,r). Next we define r; by

zirp =x4,7 € [1,7]; xr; = w500, € [r+1,2r]; x5, = xj_9r, ] € [2r 4+ 1,3r];

and

x;r; =x1,7 € [3r +1,n].
Again, r; is well defined and lies in district (1,---,r). By considering the subma-
trix

A(r+1,--,2r)T1 Ad(r+1,-,2r)Yi — ¢ (250
A@r+1,- 30T 92r+1, 3r) T e 0 )

of P, Corollary 6.2.3 gives that f; 41, 2r) = fi,2r+1,-.37) f1,(041,- 2), Which in our
new notation says fs9 = fofs, as required.

Finally, since
I = fe = fog—1r = fo-1f4,

we have f,-1 = f(z,_1 ]

Theorem 6.5.3. Let r < n/3. Then H is isomorphic to H under v, where
fop=9"".

Proof. We have that H = {f, : ¢ € H} by Lemma 6.5.2 and 1 is well defined,
by Lemma 6.5.1. By Lemma 6.2.7, 9 is onto and it is a homomorphism by
Lemma 6.5.2. Now fs1) = € means that ¢ = ¢, so that f, = 17 by Lemma 6.3.1.

Consequently, 1 is an isomorphism as required. O

6.6 Non-identity generators with simple form

First we explain the motivation for this section. It follows from Section 6.5 that
for any r and n with n > 2r + 1, all entries in the sandwich matrix P are con-

nected. However, this connectivity will fail for higher ranks. Hence, the aim here
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is to identify the connected entries in P in the case of higher rank. It turns out
that entries with simple form are always connected. For the reason given in the
abstract, we know that for » = n — 1 the maximal subgroup is free, and for r =n
it is trivial. Hence from now on we may assume that 1 <r <n — 2.

We run an easy example to explain the lack of connectivity for r > n/2.

Let n =4, r =2, and
T T2
o= ,
ar; bxsy

with a,b # 1g € G. It is clear from Lemma 3.10 that there exists ¢ € I, A € A

such that a = py; € P, in fact we can take

r1 T2 X3 Ty
r, =
Ty Xy ar; bxrs
and A = (3,4).

How many copies of a occur in the sandwich matrix P? Suppose that o = p,,;
where r; lies in district (I4,/l2) and g = (uy,ug). Since @ is the identity of S,
and a,b # 1lg, we must have 1 = [} < Iy, u1 < ug, i < uy, lo < up and
{li,lo} N {uy,us} = @. Thus the only possibilities are

(ll,lg) = (1,2), (Ul,UQ) = (3,4) = )\
and
(I 12) = (1,3), (ur, u2) = (2,4) = p.

In the first case, & = py; and in the second, oo = p,; where

( il ) T3 X4 )

I'j = .

r1 axr, To bxe

Clearly then, py; = p,; € H but (i, \) is not connected to (j, u).

We know from Lemma 6.2.7, that in case r > n/2, not every element of H lies

in P. However, we are guaranteed that certainly all elements with simple form

o=

(361 g+ Tp—1 Tk  Tk4+1 - Tk+m—1 Lh4+m Lh4m41 - -- 23r>
7

Ty T - Tg-1 Thyl Tg42 - Tktm arky  Tkt+m+1 --- Tp
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where £ > 1,m > 0,a € G, lie in P. In particular, we can choose

¢ (551 To ++  Tk+m Tk+m+1 Tktm+2 7 Tp41l Try2 -0 $n)
l pr—

1 T2 - o Tkdm aZ S R ‘5 |

and po = (1,--- ,k—1,k+1,--- ,r 4+ 1) to give puy, = Ay, = ¢- We now
proceed to show that if py; = ¢ # ¢, then (i, A) is connected to (j, yo) for some
j € I and hence to (ly, o).

Lemma 6.6.1. Let ¢ # ¢ be as above and suppose that ¢ = py; € H where
A = (uy,---,u.) and r; lies in district (Iy,--- ,1.). Then (i,\) is connected to

(J, o) for some j € I.

Proof. Notice that as ¢ = py;, we have x,,17; = 3¢, so that z,,r; = 441 if m > 0,
and so uy > lp11 > Iy by Lemma 6.2.6; or if m = 0 and a # 1g, ©,,7; = axy so
that u, > [, by Lemma 6.2.6 again. Further, from the constraints on ({1,--- 1)
it follows that

L <ly < oo <lpog <l <uy.

We first ensure that (i, \) is connected to some (j, ) where
k=1,.... k=1 ug,...,u.),

by induction on (I3, -+ ,lk—1) € [1,n]" under the lexicographic order.
If (L, ,lg—1) = (1,--+ ,k—1), then clearly (i, \) = (i, k). Suppose now that
(ly, -+ ,lg—1) > (1,--- k= 1) and the result is true for all

<l/1’ T 7l;<:—1) € [17n]r where (l/17 Ty ;{;—1) < (lla' o alk—l)v

namely, if p,; = ¢ with r; in district ({{,--- 1), then (/,n) is connected to some

(J, k).
By putting v = ({1, -+, lk_1,Up, - -+ ,u,) we have p,; = py;. Since

([1’...7lk71>>(1’...7]{_1)’

there must be a t € (I5,l541) N S(v, 1) for some s € [0, k — 2|, where [y = 0. We can
use Step D to move [, down to ¢, obtaining r, in district (I1,..., L, ¢, ls4o, ..., 1)

such that p,; = p,,. Clearly (I, ,ls,t, lsa, -+, lk—1) < (L, -+ ,lg—1), so that
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by induction (p,v) (and hence (i, A)) is connected to some (j, x).
We now proceed via induction on (uy,...,u,) € [k + 1,n]” under the lexico-

graphic order to show that (j, x) is connected to some (I, ) where
=1, k—1,k+1,--,r+1).

Clearly, this is true for (ug,...,u,) = (k+1,--- ,;r+1).
Suppose that (ug,...,u,) > (k+1,...,7 4+ 1), and the result is true for all
(Vg, -+, vp) € [k+1,n]" where (vg,- -+ ,v.) < (u1,---,u,). Then we define r,, by:

ity = 21,1 € [1, k], x4,y = x4,15,1 € [k, 7] and z,r,, = 21 for all other z,,.
It is easy to see that r,, € ©, r,, lies in district
(17 2a e 7k7uk7 oy Ukm—1, Uk+mA-1, " 7uT)

and pyj = Prw. There must be a t < wy, for some h € [k, r] with [t,u) C S(k,w).
By Step U’, we have that (w, k) is connected to (v, p) where

p=01,... k=1 ug,...;up_1,t, Ups1, ..., u).
Clearly,
(Uy -y U1, b Upg 1y oo ) < (Upy oo U1y Uy U1, Uy,
so that by induction (v, p) is connected to (I, ). The proof is completed. O

The following corollary is immediate from Lemma 6.3.1 ; Corollary 6.4.5 and
Lemma 6.6.1.

Corollary 6.6.2. Let py; = pui have simple form. Then f;\x = fr..

6.7 Non-identity generators with arbitrary form

Our aim here is to show that for any o € H, if 7,5 € [ and A\, u € A with

Pxi =Py =o€ H,
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then f;» = fj,. This property of « is called consistency. Notice that Corol-
lary 6.6.2 tells us that all elements with simple form are consistent.

Before we explain the strategy in this section, we run the following example
by the reader, which shows that if |G| > 1, we cannot immediately separate an
element o € H into a product, 37 or 73, where 3 is essentially an element of S,,
and 7 is the identity in §,.

Ty Ty Ty Ty

T3 aQrxo T4 Iq

r1T T2 I3 X4 Ty Tg
r;, =
r1 T2 T3 Are T4 T

and A = (3,4,5,6), clearly we have py; = a.

Let1G7éa,n:6and7“:4,sothata:( )GH. By

putting

Next we argue that ¢ € I and A\ € A are unique such that py; = a. Let
p = (uy,us2, us, uq) and r; lie in district ({1, (2,13, 1l4) with p,; = «; we show that
r; = r; and 4 = A. Since z,,r; = ¢ = w3 by assumption, we must have
I <ly <lzs <wup,sothat ug > 3. As 3 < up < up < uz < ug < n =06, we have
p=(uy,u2, us,us) = (3,4,5,6) = A, and (I4,1z) = (1,2). Clearly then r; =r;.
Certainly a = v = v with

Ty Tz T3 T4 Ty T2 T3 X4
v = 0= :
T3 T2 T4 Iq 1 a9 I3 T4

Our question is, can we find a sub-matrix of P with one of the following forms:

()= (2)

Clearly, here the answer is in the negative, as it is easy to see from the definition
r; that there does not exist v € A with p,; = 8 or p,; = 7.

Now it is time for us to explain our trick of how to split an arbitrary element o
in H into a product of elements with simple form (defined in the previous section),
and moreover, how this splitting matches the products of generators f;  in H.

Our main strategy is as follows. We introduce a notion of ‘rising point’ of
a € H. Now, given p); = a, we decompose « as a product a« = (v depending
only on o such that v is an element with simple form, 8 = p,; has a lower rising

point than «, v = p,; for some j € I, € A such that our presentation gives
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Jix = fipfix

Definition 6.7.1. Let « € H. We say that a has rising point r + 1 if x,,a = ax,
for some m € [1,r] and a # 1g; otherwise, the rising point is k < r if there exists
a sequence

I<i<jp<p<--<gp<r

with

T = Ty Tj1 X = L1, LTjo O = Ty 2, , X4, Q= Tp
and such that if | € [1,r] with zjoc = axg_1, then if | < i we must have a # 1g.

Now let me explain how one would go about computing the rising point value
of an element « i.e. what would be the algorithm for computing it, which would
convince our readers that the rising point value is uniquely determined by «.

To compute the rising point value k of an element o € G S, one does the
following;:

(1) First look at the unique ax, in the image of av. If @ # 1 then set k = r+1.

(2) Otherwise, look to the left of =, and see if ax,_; appears to the left in the
image. If it does, check the value of a in ax,_,. If a = 1 then repeat the process
of looking left.

(3)Carrying out this process eventually one of two things must happen, either

(I) we stop because we reach some axy_; with a # 1. Then we say the rising
point value is k. Or

(IT) we reach axy = lzj and do not see axy_; to the left so the process stops
and the rising point value is k.

Now let us consider the symmetric group S; and take the following two per-

mutations:

Ty T2 T3 T4 Ts Ty T2 T3 T4 Ty
] = ,0lg = .
Ty Ty T2 Ty Ts Ty T2 T4 T5 T3
To find the rising point value of ay, first we find where is our x5 in the image, then
look to the left we find our x4, then look for the left of x4, we find x3, however,
2o is to the right of x3, and hence the rising point value of a; is 3. For as, by

observing that x4 is to the left of x5 in the image, but x3 is to the right of x4, we

deduce the rising point of ay is 4.
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It is easy to see that the only element with rising point 1 is the identity of H,

and elements with rising point 2 have either of the following two forms:

. Ty X2 ot Ty

(i) a = , where a # 1¢;
ary To -+ Tp

.. Ty T2 - Tg—1 Tk Tg41 - Ty

(i) a = , where k > 2.
Ty T3 - T ary Tgyr o Ty

Note that both of the above two forms are the so called simple forms; however,
elements with simple form can certainly have rising point greater than 2, indeed,

it can be r + 1. From Lemma 6.3.1 and Corollary 6.6.2 we immediately deduce:
Corollary 6.7.2. Let « € H have rising point 1 or 2. Then « is consistent.

Next, we will see how to decompose an element with a rising point at least 3
into a product of an element with a lower rising point and an element with simple

form.

Lemma 6.7.3. Let « € H have rising point k > 3. Then a can be expressed as
a product of some 3 € H with rising point no more than k — 1 and some v € H

with simple form.

Proof. Case (0) By definition of rising point, if k = r+1, then we have z,,a = az,
for some a # 1¢ and m € [1,r]. We define

- Ty T2 - Tyl Ty

7 r1 T -+ Tpr_1 aTp
and (3 by 2,6 = x, and for other j € [1,7], z;8 = z;a. Clearly, @ = fv, v is a
simple form. Further, as in the image of 5 we have x, so that by the algorithm we

compute the rising point value, we know that g has rising point no greater than

r.

On the other hand, if & < r there exists a sequence
1§i<j1 <j2"'<jr—k§T

with
T = Ty Tj1 O = Lpt-1, Tjo O = Tfy2, " , Lj,_, &= Tp

such that if [ € [1,r] with ;o = axg_1, then if | < ¢ we must have a # 15. We

proceed by considering the following cases:
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Case (i) If | < i, so that a # 14, then define

y= Ty Tz v T2 Tp-1 Tk 0 Ty
ry T2 - T2 aTg-1 T - Ty

and put S = ay~!. It is easy to check that ;8 = xjay ™ = 241 and 2,8 = z,q,
for other p € [1,7].
Case (i) If i <1 < jy, then define

7_(% Ty -+ Tg—2 Tk-1 Tk T4l - $r>

Ty T2 v Tg-2 T AT T4l o Tp
and again, we put 3 = ay~!. By easy calculation we have
1"7;6:'Ik—la'rlﬁ:xk‘al‘jlﬁ:xk‘-i-la”' 7wj,n_k6:l‘7“

and for other p € [1,7], z,0 = z,.
Case (ii1) If j._j <[, then define

7_(951 Ty -+ T2 Tk-1 Tk Tk -~ Tr Ly )

ry T2 0 Tg—2 Tk Tkl Tk42 - Ty ATE—1
and again, we define 3 = ay~!. It is easy to see that
i = Tpo1, 05,0 = T, T, B = Ty, T B=11,mB =1,
and for other p € [1,7], z,0 = z,.

Case (i) If j, <1 < jyy1 for some u € [1,7 — k — 1], then define

y = Ty T - T2 Tg-1 Ty o Tetu—1 Thkdu  Thkdutrl - Ty
Ty T2 - Tp—2 T Tyl - Tpio ATk—1 Thdutr1 - Ty
and again, we put 3 = ay~!. Then we have

i = Tp—1, 258 = Xp, ..., 05,8 = Tpyry1,

and

T = Tpp, l’ju+15 = Thktu+l)--- ,flij,kﬁ = Ty
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and for other p € [1,7], z,0 = .
In each of Cases (i) — (iv) it is clear that  has simple form, o = v and

has a rising point no more than k£ — 1. The proof is completed. O

Note that in each of Cases (ii) — (iv) of Lemma 6.7.3, that is, where i < [, we

have z,8 = zpa for all p < i.

Lemma 6.7.4. Let o, 5,v € H with a = (v and 3,7 consistent. Suppose that
whenever a = py;, we can find (t,\),(j,n) € K with f = px,y = p; and

fix = fipfer. Then o is consistent.

Proof. Let «, 3,7 satisfy the hypotheses of the lemma. If o = py; = pyjr, then

by assumption we can find
(. A), (G, ), (8, X), (5, 1) € K
with
B =Px =P,V = Puj = Puj, fj,A = fj,uft)\ and fj’,X = fj’,u’ftf,x-

The result now follows from the consistency of 5 and ~. n

Proposition 6.7.5. Every o € P is consistent. Further, if o = py; then fja
is equal in H to a product fi, x, = fi, \e, Where Py, is an element with simple
form, t € [1,K].

Proof. We proceed by induction on the rising point of a. If o has rising point 1
or 2, and py; = «, then the result is true by Corollary 6.7.2 and the comments
preceding it. Suppose for induction that the rising point of « is £ > 3, and the
result is true for all # € H with rising point strictly less than & and all f; , € F
where p,; = 5.

We proceed on a case by case basis, using v and 3 as defined in Lemma 6.7.3.
Since v has simple form, it is consistent by Corollary 6.6.2 and as [ has rising
point strictly less than k, 3 is consistent by our inductive hypothesis.

Suppose that a = py; where A = (uq, ..., u,) and r; lies in district (I1,...,[).

Case (0) If k = r + 1, then we have z,,a = az, for some a # 15. We now define

r; by x,,r: = x, and z,r; = z,r;, for other s € [1,n]. As z,,r; = az,, it is
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easy to see that r; € ©. Notice that I,_; < [, = l,,a < u,,. Then by setting

w= (1,1, -, l.—1,uy) we have

Px Py | _ (B
Put Puj €

and our presentation gives fjx = fj fix-

= 0
~

We now suppose that k& < r. By definition of rising point there exists a
sequence

1<i<pn<go <jJrgxg <r

such that

;0 = T, LU]'lOé = $k+171:j204 = Tky2, " 7':(;]}7/90[ = Ty

such that if [ € [1, 7] with x;o0 = axy_1, then if [ < i we must have a # 1.

We consider the following cases:

Case (i) If | < i we define r; by x,,r; = x,_1 and for other p € [1,n], z,r; = z,r;.

As by assumption z,,r; = x;a = axy_1, clearly r, € ©. Then by putting

n= (17l27' o alk—27ul7uiauj17' o aujr_k)

Px Pyj _ B«
put puj e 7

which implies f;\x = fj . fia

we have

Case (ii) If 1 <1 < j; we define ry by
xprs = xpr; for p <y, xy,rs = B for e <w <r

and
x,r, = 21 for all other v € [1,n].
We must argue that ry, € ©. Note that from the comment following Lemma 6.7.3,

for any v < ¢ we have that

Ty, Ts = Ty, Tj = Ty = T [,
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so that in particular, rank ry = r. Further,

Ty, Ts = xzﬁ = Tp—1, Ty, Ts = xlﬁ = Tk

and

Ly; Ts = :Ej16 = Th+1, - - - 7xuj-r_krs = xjr,kﬁ = Ty
so that

<$ui7 Loy Tugg 5 * >$u]'r_k>rs = <$k—1> T 7xr>~
Thus for any v 7é {ialajla U 7j7“7k}7 Ly, Ts = xvﬂ € <$17 e 7$k72>-

As zy,r; =z, wehave 1 =1 <ly < -+ <lp_1 <l <u,. Let h be the largest

number with
l=h <l < <oy <lp <lpgr <+ <lpp—1)4n < 4

Clearly here we have h € [0,r — k 4+ 1]. Now we claim that ry € © and lies in
district

(llv 127 e 7l(k71)+h7 Ujy s ujh+17 e 7“]}«_;@)'

To simplify our notation we put

(lh l27 T l(k—1)+h7 Uy s U’jh+17 e 7ujr_k) - (Zh 29, 7Z(k‘—1)+h7 Zk+h, """ 727’)7

where jo = [. Clearly, by the definition of ry, we have x, ry = z, for all v € [1,7].
Hence, to show ry; € ©, by the definition we only need to argue that for any
m € [1,n] and b € G, z,,,rs = bz, implies m > z;.

Suppose that t € [1,(k — 1) + h], so that z; = [; < u;. If m < 2, then from
the definition of ry we have z,,r; = z,,r;, so that z,,r; = bz;. Asr; € © and
x;,T; = x¢, we have z, = [, < m, a contradiction, and we deduce that m > z.

Suppose now that ¢ € [k + h,r|. Note that m > u;; because, if m < u;, then
Tl = TpXs = by Asr; € O, 1, <m < wy; andsot < (k—1)+h, a contradiction.
Thus m > u;. Now, by the definition of ry, we know there is exactly one possibility
that z,,rs = bx, with ¢ € [k + h,r], that is, z,,rs = x4, so that m = 2z, and b = 1.
Thus ry, € ©.

Now set

n= (17l27' T ,lk_g,ui7Ul,Uj1," ' 7ujrfk)



38

then we have

Pxs Prj | _ B«
Pns  Puj e ’
which implies fjx = fjnfsa

Case (iii) If j._p <[, then, defining r, as in Case (ii), a similar argument gives
that ry € © and x,,,rs = 2, for all v € [1, 7] (of course here 3 is defined differently
to that given in Case (i) and the district of ry will have a different appearance.).

Moreover, by setting

0= (1,0l lg—oy wi, wjy, -+, g, W)

Pxs Pyj _ o«
Péss  Psj e 7

Case (i) If j, <l < ju41 for some u € [1,r — k — 1], then again by defining r, as

we have

implying fjx = fisfsx-

in Case (i), we have ry € © and x,,rs = z,0 for all v € [1,r]. Take

g = (17 l27 tee 7lk—2>uia Ugys Ugy s Uly Ugyyyqy " " 7ujr7k)'

Pxs DPrj _ B «
Pos paj E
so that fjx = fjofs

In each of the cases above, the consistency of « follows from Lemma 6.7.4.

Then we have

The result now follows by induction. O]

In view of Lemma 6.7.4, we can now denote all generators f; » with py;, = «
by fa, where (i, \) € K.

6.8 The main theorem

Our eventual aim is to show that H is isomorphic to H and hence to the wreath
product G S,. With this in mind, given the knowledge we have gathered con-

cerning the generators f; y, we first specialise the general presentation given in



89

Theorem 4.2.4 to our specific situation.

We will say that for ¢, ¢, 1,0 € P the quadruple (¢, ¢, 1, o) is singular if
o=y lo
and we can find i,j € I, A\, u € A with

® =DPxri, ¢ = Pui»¥ = Pyj and 0 = p,;.

In the sequel, we denote the free group on a set X by X. For convenience, we
use, for example, the same symbol f; y for an element of F and H. We hope that

the context will prevent ambiguities from arising.

Lemma 6.8.1. Let H be the group given by the presentation Q = (S : T) with

generators:

S={fs: ¢€P}

and with the defining relations I :

(P1) qulfw = fdjlfa where (¢, p, 1, 0) is singular;
Then H is isomorphic to H.

Proof. From Theorem 4.2.4, we know that H is given by the presentation
P =(F:%),

where F' = {fin: (i,A\) € K} and ¥ is the set of relations as defined in (R1),
(R2) and (R3), and where the function w and the Schreier system {h, : A € A}
are fixed as in Section 6.2. Note that (R3) is reformulated in Corollary 6.2.3.

By freeness of the generators we may define a morphism
0:F — H, [0 =f,

where ¢ = py;. We show that ¥ C ker@. It is clear from (P1) that relations of
the form (R3) lie in ker 6.
Suppose first that hye;, = h, in E*. Then ehye;, = €h, in End F,,(G), so that

from Lemma 6.2.4, qx¢;, = q,. Hence q,r; = qxg;,ri = qur;, so that p,; = pyi
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and f; 0 = f; ,0. Now suppose that ¢ € I; we have remarked that p,) = ¢, so
that fl’w(l)o = fa =186.

We have shown that > C ker @ and so there exists a morphism
ﬁ:ﬁéﬁ,fwngd,

where ¢ = py;.

Conversely, we define a map
Y:S—H, fap= fir,

where ¢ = py;. By Lemma 6.7.4, 1 is well defined. Since f.¢p = f;\ where
pyi = ¢, we have f.¢p = 17 by Lemma 6.3.1. Clearly relations (P1) lie in ker e,
so that I' C ker1p. Consequently, there is a morphism

P :

|

— H, fotb = fin,

where ¢ = py;.
It is clear that @1 and 1) @ are, respectively, the identity maps on the gen-
erators of H and H, respectively. It follows immediately that they are mutually

inverse isomorphisms. O]

We now recall the presentation of G ! S, obtained by Lavers [34]. In fact, we
translate his presentation to one for our group H.

We begin by defining the following elements of H: for a € G and for 1 <i <r

T Tir Ty Tipr o Xy |
//a,i - )
Ty -0 Ti-1 ATy Tipl o Ty

for 1 <k <r—1we put

we put

Ty - Tk—1 Tk+1 " Tk+m Tk  Tk+m+1 " Tp

and we denote (k kK + 1) by 7.
It is clear that G has presentation V = (Z : II), with generators

Z=A{1;:1€[l,r],a € G}
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and defining relations II consisting of (W4) and (W5) below. Using the standard
Coxeter presentation for S, with generators the transpositions 7 and relations
(W1), (W2) and (W3), we employ the recipe of [34] to obtain:

Lemma 6.8.2. The group H has a presentation U = (Y : Y), with generators
Y =A{rite;: 1<i<r—1,1<j<racG}

and defining relations Y :
)TiTizl 1<Z<7”—1

(W

(W2) mry =1, g £ 1 #0 # j;

(W3) mimiyam = TixaTiTiv1, 1 < i <r—2;

(W4) taithj = thjlai, a,b € G and 1 <i#j<r;
(W5) taitei = tavi, 1 <i<r anda,b € G;
(W6) taiTj = Tjtas, L <i#j,j+1<r;

(W) ta;iTi = Titair1, L <i<r—1anda€QG.

Now we turn to our maximal subgroup H. From Lemma 6.8.1, we know that
H is isomorphic to H, and it follows from the definition of the isomorphism and
Proposition 6.7.5 that

|

= (fa : « has simple form).

We now simplify our generators further. For ease in the remainder of this chapter,
it is convenient to use the following convention: for u,v € [1,7 + 2] with u < v,

we denote by —(u,v) the r-tuple
(L~ ,u—Lu+1,...;,0—Lv+1,--- r+2).
Lemma 6.8.3. Consider the element

a_(l’l o Tk-1 Tkt Thtm-1 Tktm Lhtm4l iUr)

Ty 0 Tk-1 Tk+1 0 Tk4m ary  Tk+m+1 -~ Lr
in simple form, where m > 1. Then fo, = f,fs in H, where

B =tagtm andy= (kK k+1 --- k+m).
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Proof. Define r; by

Ty 0 Tk—1 Tk Tk+1 *° Tk+m Lh4+m4+1 Tkdm4+2 Thk+m4+3 0 Try2 Tpg3 0 T
Ty 0 Tk—-1 Tk Tk41 *°° Tk4m Tk aTp Tk4+m+1 " Tp Ty - 1

Let A=—(k,k+m+1) and pp = —(k,k +m+2). Then py, = o and p = 7.
Next we define r, by

<9€1 ot Tk—1 Tk Tkl o Thktm o Tktm+l Thk+m+2 Thk+m+3 - T2 Tpy3 0 xn)

Ty o Tkl Th—1 Tk Thym—1 Them  OTkm Thamel -0 Tp Ty ccc T

Then pys = 8 and p,s = €. Notice that o = 3y and

Pxs P | _ b«

pus put € 7
which implies f, = f, f3. O
Lemma 6.8.4. Let o« = (k k+1 --- k+m) where m > 1. Then, in H, we have
fa = kaka+1 T ka+m—1'

Proof. We proceed by induction on m: clearly the result is true for m = 1. Assume
now that m > 2 a=(kk+1 --- k+m) and that

f(k: k+1 - k+s) = kakaH e ka+sf1

for any s < m. It is easy to check that a = 741,17, where
y=(kk+1- - k+m-—1).

Now we define r; by

T1  Tk+m—-1 Tht+m Thk4+m+1l Thk4m+2 Thk4m4+3 ~°° Tr42 Tpy3 -
T1  Thk4m—1 Tk Tk4+m Tk Tk4m+1 " Ty
Let A = =(k,k+m) and p = —(k,k +m +2). Then p); = « and p,; = 7.
Next we define r; by
Ty 0 Tk—-1 Tk Tkl ~°  Tktm  Thk4m4+1l Tk4m42 Thk+m+3 - Tr42 Tp43 -0 Tp
xry 0 Tg—1 Tk Tk - Thk+m—1 Tk+m Thk+m—1 LTk+m+1 "  Tp ry - I

Then py = Trym—1 and p,; = €. Thus we have

Px Pyj _ Tk+m—-1 &
Pui Puj € Y
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implying fo = f,fr.,,.., andso fo = fr, -+ fr,,,._,, using our inductive hypothesis

applied to 7. O
It follows from Lemmas 6.8.3 and 6.8.4 that
H={fr,fu,: 1<i<r—1,1<j<racG)
Now it is time for us to find a series of relations satisfied by these generators.
These correspond to those in Lemma 6.8.2, with the exception of a twist in (W5).

Lemma 6.8.5. For allie€ [1,r —1], f,,fr, =1, and so f.' = f..

Proof. Notice that 7;7; = €. First we define rg by

T1 - Ti—1 Ty Tigl Tig2 T3 Tigq 0 Tp42 Tpg3 -0 Tp
Ty ot Ti-r Xy Ly Tigr Li T2 o I {5 S |

Let A==(i,1+ 1) and pr = =(7,7 + 3). Then py; = 7; and p,s = €.
Next, we define r; by

(561 o Ti-1 Xy Tiyl Ti42 Ti43 00 Tpy2 Tpg3 Jin)

Ty 0 Tl Ty Tl Ty Lyl o Iy ry 2

Then py = € and p,y = 7, O

Pxs Pxe | _ [ Ti ¢
pus put £ T
which implies f, fr, = 1. O

Lemma 6.8.6. For any j £ 1 # i # j we have fr fr. = fr, [+

Proof. Without loss of generality, suppose that ¢ > j and 7 # j + 1. First, define
r; by

Ty 0 Tj41 Tj42 Tj43 Ty Tigl Ti42 Ti43 Tigq ~° Tr42 Tpy3 00 Tp
1 o Ty Ty Tjy2 X1 XLy Ti4l Xy T2 0 Ty ry - I

Note that if ¢ = j + 2 then the section from j+ 3 to i is empty. Let A = =(j,i+1)
and 1 = —(j,7 + 3), so that pyy = 7;7; and p,, = 7;. Next define ry by

Ty 0 Tj Tj41 Tj42 Ty Tipl Ti42 Ti43 LTi4d * Tr42 Tp43 "0 Tp
ry - Ty Tj Tyjyr o Ti-1 Ty Tipl Ty Tiy2 o Dp ry - I1
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Then pys; = 7; and p,s = €. Thus we have

Pxs Pxt | [ Ti TiTj
pus p,ut € Tj
1mp1ylng fTiTj = ij le' .

To complete the proof, we define r; by

<$1 T4l T2 T3 Ty L4l Li42 Ti43 Ti4d 0 Tp42 Tpy3 c o l‘n>

Ty -0 Tj41 Ty Tj42 o Ti—1 Ty Ty Tiy1 Li42 0 Ty Ty 0N

Then py = 75. Put n = =(j +2,i+ 1). Then p,; = ¢ and p,; = 75, so

Px Px |\ _ [T TiTi
pnl pnt 3 T;
which implies f; ., = f-, f-,, and hence f. f.. = [ [+, O

Lemma 6.8.7. For any i € [1,7 — 2] we have f fr. fr. = froo: frifripr-

Proof. Let p=miy17 = (i i+ 11+ 2) so that p> = (i i+ 24+ 1).
First, we show that f,. = f,f,. For this purpose, we define r; by

(Il Xy Til T2 Tid3 Tipd Ligs o Tpg2 Tpg3 o $n)

Ty - Xy Tyl Tip2 Ty Tipl T3 vt Zy ryr

Let A = =(i,i + 1) and u = —(i,i +4), so that py; = (i i +2 i+ 1) = p? and
pu; = (i i +11i+2) = p. Next we define r; by

(561 T Xy Tip1 Tig2 Ti43 Ti4a Tigs v Tp42 Tpg3 v xn)

Ty 0 Ty Xy Tyl Tiy2z Ly L3 ot Xy {5 IS |
Then py = (1 i+ 17+ 2) = p and p,; = ¢, so here we have
Pxu Py} _ [P P’
Pu Pyj e p

Hence we have f, = f,f,.

Secondly, we show that f, = f, f . Note that 7,110 = 7;. Now we define r,
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by

(371 o X1 Ty Tipl Ti42 T3 Tijd Tigs 0 Tpy2 Tpg3 o l‘n)

Ty - X1 Ty Tipl Tig2 Xy Tip2 T3 Ly Ty 0 I

Let v = =(i,i+2) and £ = (i,i+4). Then p,s =7, and pgs =p= (i i +1i+2).
Next, define r; by

(Cﬁ o X1 Ty Tyl Ti42 T3 Tita Tigs 0 Tpg2 Tpg3 oo In>

Ty 0 Ti1 Xy Xy Tipr Tip2 Tipl Lig3 Ly R |

Then p,; = ;41 and pg = €, and so we have

Put Pus _ Tiv1 Tq
Pet Pes e p
implying f;, = f,fr.1, 80 [, = fr fr,., by Lemma 6.8.5.

Finally, we show that f, = f.,, fn. Note that p> = (i i +2 i+ 1) = 7;741.
Define r, by

Ty - Ti—1 T Tigl Ti42 Ti43 Tiga Tigs ~° Tpy2 Tpy3 00 Tp
Ty - X1 Ty Tipl Tig2 Ty Tigl L3 Ly ry -

Let 7= =(i,i+1) and § = =(i + 1,7+ 3). Then p,, = p? and ps, = Ti11. Define
r, by

Ty - X1 Ty Tigl Ti42 T3 Tigq -~ Tp42 Tpg3 -0 Tp
Ty - X1 Ty Vgl Ty Xy Ty vt Ty Ty 0 I

Then p,, = 7; and ps, = €, so we have

Prv Pru _ Ti p2
Psv  Posu € Tit1
Hence f,2 = f;, ., fr,- We now calculate:

fTifTiJrlfTi = fﬂfﬂQ = fﬁfﬂfp = fﬂfnfﬂﬂf‘rz‘fﬁﬂ = sz‘+1fTifTi+17

the final step using Lemma 6.8.5. m
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We warn the reader that the relation we find below is a twist on that in (W5).
Lemma 6.8.8. For alli € [1,7], a,b € G, f,, fi.. = frp.» and so f = f, .

Proof. Define r; by

Ty - Ti—1 Tp T4l Ti42 Ti43 0 Tpq2 Tpy3 ccc Tp

ry -0 wi x; by abr; wigy - Ly rr - 7

Let A = =(i,4+2) and p = —(4,7 + 1), then py; = t; and p,; = tap,i- Next, we

define r; by
Ty o X1 Ty Tigl Tig2 T3 0 Tpg2 Tpg3 0 Tp
Ty 0 Ti-1 Xy XLy AT Tigr o Xy Iy 2

Then py = € and p = 4, SO we have

Put Puj lai labi

Pxt P € Ly

anlylng fLab,i = be,ifLa,i . D

Lemma 6.8.9. For all i # j and a,b € G we have f,, [, = fi,;[iai-

Proof. Without loss of generality, suppose that ¢ > j. Recall that ¢, it = tp jla,i-
First define r; by

Ty -0 XTj1 Ty Tjp1 Tj42 - Tigl Tip2 Ti43 0 Tpyp2 Tpg3 -0 Tp
Ty 0 Tj-1 Ty bl‘j Tjg1 - Z; ar; Ti41 - Ty Tl R |

Let A==(j,i+ 1) and g = —(j,7 +2). Then pxt = tq,its; and pu = t,;-
Next, we define rg by

Ty 0 Tj—1 Tj Tj41 Tj42 - T4l Ti42 Ti43 °° Tp42 Typg3 -0 T
Ty 0 Tj—1 Tj Ty Tj41 Xy ar; Ti41 - Ty Tl R |

Then pys = tq; and p,s = €. Thus we have

Pxs Pxt lai //a,iLb,j

pus put € ly,j

implying fbb,]’fba,i = fLa,iLb,j'
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Define r; by
Ty -0 Tj-1 Tj Tj41 Tj42 0 Lipl Lit2 Li43 " Tr42 Try3 -0 T
Ty 0 Tj-1 Ty bﬂ?j LTjg1 - Ty Ty Ti41 - Ty 1 R |

Then py; = t,;. On the other hand, by putting n = =(j+1,i+ 1) we have p,; = ¢

and p,; = L4, and so

Px Px | g tbglag
Pyt Pyt € layi
which implies fbb’jba,i = fLa,ibe,j, and hence fLa,ibe,j = be,jfLa,i' 0

Lemma 6.8.10. For any i, j withi # j,j+1 and a € G we have f,, , fr, = fr; fra:-

Proof. Suppose that i < j; the proof for j < 7 is entirely similar. Then

Ty 0 Ti-1 Ty Ty o Ti—1 Tj 0 Tip1 Lijy2 ot Ty
LaJ‘Tj =
Ty 0 Ti1 QT Ty v Tij-1 T4 L5 iy 0 Dy
Define r; by
Ty -0 Ti—1 Ty T4l Ti42 0 Lj o Ti4l Lj42 Lj43 Lj4d " Tr42 Try3 -0 Tn
Ty - Ti—1 Ty AT Ti41 v Tj—1 T; 0 Tyj41 Tj Tj42 Ty ry 0 I

Let A==(4,5+ 1) and p= (¢ + 1,7+ 1). Then py = t,;7; and p = 7;.
Define r, by

Ty 0 Ti—1 Ty Ti41l Ti42 - Tj  Tjyl Tj42 Tj43 Tj44q  Tr42 Tpg3 -0 T
1 o+ Ti—1 Ty AT Ti41 - Tj—1 Ty Tj Tj41 Tj42 - Ty ry 0 I

Then pys = tq; and p,s = €. Hence we have

Pxs Pt bai laiTj

p,us put € Tj
implying fba,iTj = ij fLa,i'
Next we define n = = (4, j + 3), so that p,y = t4,;,. Now let r; be

Ty o Ti—1 Ty Ti41l Ti42 - Tj  Tjyl Tj42 Tj43 Tj4q ° Tr42 Tpg3 -0 T
Ty o0 Xi—1 Ty X5 T4l v Tij-1 Tj o Tyj41 Ty Tj42 0 Ty ry -0 I

Then py = 7; and p,; = €, so

Px DPx T Tjilayi

Pyt Pyt € Lai
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implying ijLu.,i = fLa,iij7 S0 ijfLa,i = fba,iij' O
Lemma 6.8.11. For any i € [1,r — 1] and a € G we have f,, , fr, = fr. fio.ii1:

Proof. We have

1 0 Tl T Tiv1 Tiy2 - Ty
baiTi = = Tilai+1-
Ty - X1 Q41 Ty g2 o Ty
Define r; by
Ty 0 Ti1 Ty Tipr Tip2 T3 Tipa 00 Teg2 T3 ot Tp
Ty 0 Ti-1 Ty Tip1 QT4 Ty Tip2 c o Ty ry 0

Define A = =(4,7 + 1) and g = —(4,7 + 2). Then py; = tq;7 and p, = 7;. Define
r; by

Ty - X1 Ty Vg1l Tig2 T3 0 Tpg2 Tpg3 00 Tp

Ty 0 Ti-1 Xy XLy AT Tigr ottt Xy O

Then pys = tq; and p,s = €, so we have

Pxs Pxt lai  la,iTi

pp,s put € T;

S0 fLa,iTi = fTifLa,i‘
Now put n = =(i + 1,7 + 3), so that p,; = t4,i41. Define r; by

Ty - Tiw Ty Tipl Ti42 L3 Tigq 00 Tp42 Treg3 c 0 T

Ty 0 Tl Ly Ty Tyl Ly Tip2 o Xy ry 0 2
Then py = 7; and p,; = ¢, so
Px DPx Ti  Tilai+1

Pni Pt € lajit1

so that fn-ba,i_,_l = fLa7i+1fTi' Thus f'rifba,i = fLa,i+1fTi and so fLaﬂ-fTi = fTifLa,Hn
bearing in mind Lemmas 6.8.5 and 6.8.8. [

We denote by 2 all the following relations we have obtained so far on the set



99

of generators

T={fr,fu,: 1<i<r—-1,1<j<racG}

e
|

( )szsz:]‘71§Z§r_1

( )szfT]:fﬁpr]j:]-?éZ?é]

( ) fTifTi+1fTi = fTi+1fTifTi+17 1 < 1 <r-— 2.

(T4) fraifu, = fu,fra» b €EGand 1 <i s j<r.
( )fbb,ifba,i:fLabﬂ;a1§7;§Tand a,bGG.

( )fLa,iij:ijfL(L,u1§i7éj7j+1§7’.

( )fba,ifTi:fTifLa,i+17 1<i<r—1landaed.

Note that the relations (7'1) — (7'7) match exactly the relations (W1) — (W7)
on page 89.

We now have all the ingredients in place to prove the following.

Proposition 6.8.12. The group H with a presentation Q@ = (S : I') of Lemma
6.8.1 is isomorphic to the presentationd = (Y : Y) of H given in Lemma 6.8.2,
so that H = H.

Proof. We define a map 6 : Y —» H by

Tie = f;l(: fn)? [/a,je = f;i(: fb‘lil’j)

where 1 <i<r—1,1<j<ra¢€ G. Now we claim that T C ker@. Clearly,
the relations corresponding to (W1) — (W4) and (W6) and (W7) lie in ker 8.
Moreover, considering (1V5)

1 -1
(Layithi)0 = 1a,iO1y;0 = i = Jrar Jopr, = Fopion s = Fiy-r, = tavi®

la,i

so that T C ker @, and hence there exists a well defined morphism 0 : H — H
given by 7,0 = f- ' and 1,;0 = f, }, where 1 <i<r—1,1<j<ra€cG.

Conversely, we define ¥ : S — H by fyip = ¢~'. We show that ' C ker ).
Clearly, f.ib = ¢! = ¢ = 14). Suppose that (¢, p,, ) is singular, which gives
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¢t = 1o, Then

(o fo)¥ = (fo) T fop = o™ = o™ = (fub) " forp = (5 o) ¥

so I' C kerp. Thus there exists a well defined morphism 1) : H—H given by
fotp = ¢, Then

7,0 Y = f;@ =(frp) ' =7
and

Lai0 P = f;% = (for,®) " = tas

hence @ 1) is the identity mapping, and so @ is one-one. Since T is a set of

generators for ﬁ, it is clear that @ is onto, and so

I
|

H X HXGS,.

We can now state the main theorem of this chapter:

Theorem 6.8.13. Let End F,,(G) be the endomorphism monoid of a free G-act
F,.(G) onn generators, where n € N andn > 3, let E be the biordered set of idem-
potents of End F,,(G), and let IG(FE) be the free idempotent generated semigroup
over E.

For any idempotent ¢ € E with rank r, where 1 < r < n — 2, the maximal
subgroup H of IG(E) containing € is isomorphic to the mazimal subgroup H of
End F,,(G) containing € and hence to G S,.

Note that if € is an idempotent with rank n, that is, the identity map, then H
is the trivial group, since it is generated (in IG(E)) by idempotents of the same
rank. On the other hand, if the rank of € is n — 1, then H is the free group as
there are no non-trivial singular squares in the D-class of ¢ in End F,,(G).

Finally, if G is trivial, then End F,(G) is essentially 7,, so we deduce the

following result from [21].

Corollary 6.8.14. [21] Letn € N withn > 3 and let IG(E) be the free idempotent

generated semigroup over the biordered set E of idempotents of T,.
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For any idempotent ¢ € E with rank r, where 1 < r < n — 2, the maximal
subgroup H of IG(E) containing € is isomorphic to the mazximal subgroup H of

T, containing e, and hence to S,.



Chapter 7

Free idempotent generated

semigroups: End A

We have already remarked in Chapter 3 that independence algebras include sets,
vector spaces and free G-acts over a group (. The significant results for the
biordered sets of idempotents of the full transformation monoid 7,, on n elements,
the full linear monoid M, (D) of all n x n matrices over a division ring D and
the endomorphism monoid End F,(G) of a free (left) G-act F,,(G), suggest that
it may well be worth investigating maximal subgroups of IG(E), where E is the
biordered set of idempotents of the endomorphism monoid End A of an indepen-
dence algebra A of rank n, where n € N and n > 3.

Given the diverse methods needed in the biordered sets of idempotents of
Tn, M,(D) and End F,,(G), it would be very hard to find a unified approach to
the biordered set of idempotents of End A. However, we show that for the case
where A has no constants, the maximal subgroup of IG(F) containing a rank 1
idempotent € € E is isomorphic to that of End A, and the latter is the group G
of all unary term operations of A. Hence, our work here clearly is a generalization
of the result obtained in Chapter 5.

7.1 Unary term operations and rank-1 D-classes

Throughout this chapter, we use A to denote an independence algebra of rank
n > 3 with no constants, i.e. (#) = 0. Let X = {x1,--- ,x,} be a basis of A, so
that A = (X) and X is independent.

102
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We first recall the following fact observed by Gould [22], the proof of which

follows from the free basis property of independence algebras.

Lemma 7.1.1. [22] Let Y = {y1, - ,Ym} be an independent subset of an inde-
pendence algebra A, where m € N. Then for any m-ary term operations s and t,

we have that s(y1,- -+ ,Ym) = t(y1, -, Ym) tmplies
S(Clla to 7am) = t(ala T 7am)

forallay,--- ,a, € A, so that s =t.

Now we put G to be the set of all unary term operations of A. Then we have

the following lemma.

Lemma 7.1.2. For any independence algebra A of rank n > 3 with no constants,
the set G of all unary term operations of A forms a group under composition of

functions.

Proof. Clearly, the identity unary term operation, denoted by 14, is contained in
G. Let t be an arbitrary unary term operation of A. Then for any x € A, we have
t(x) € (z) and t(z) & (0) = 0. By the exchange property (EP) of independence
algebras, we have that

x € (t(x)), ie. z = st(x)

for some unary term operation s. As {x} is independent, we have st = 15 by
Lemma 7.1.1. Hence we have t(z) = tst(x), and since {t(z)} is independent, it

again follows from Lemma 7.1.1 that ¢ts = 14, so that GG is a group. O]

Let End A be the endomorphism monoid of A and let € be a rank 1 idempotent
of End A. Then it follows immediately from Lemma 3.3.1 that the D-class of ¢ is
given by

D=D.={a€EndA: ranka =1}

which is a completely simple semigroup by Lemma 3.3.2, so that each H-class of
D is a group.
The following lemma gives a characterisation of the R-classes of D in terms

of unary term operations of A.

Lemma 7.1.3. For any o, f € D with ima = (y;) and im 5 = (y2), suppose that
ria = s;(y1) and x;8 = t;(y2), where i € [1,n] and s;,t; € G. Then ker a = ker
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if and only if there exists some unary term operation q € G such that s; = t;q, for

alli € [1,n].

Proof. Necessity: Suppose that y1a = s(y;) and y1 8 = t(y2), where s,t € G. Then
for any i € [1,n]

sy (@)oo= s si(yn) =y = s7's(yn) = 57 (y1)a
so that (s; '(x;),57*(y1)) € ker .. By assumption we have ker o = ker 3 so that

s (@)B = s (y1)B, ie. sy ti(y2) = s (y2).

As {y»} is independent, we have that s; 't; = s~'t by Lemma 7.1.1, and so s; =
t;(s71t)"1. Then by taking ¢ = (s~'t)~! we have s; = t;q, for all 7 € [1,n].
Sufficiency: Let ¢ be an unary term operation on A such that s; = t;q, for all

€ [1,n]. Suppose now that
w(zy, - xp)a=v(r, 0 T,
Then we have
u(si(y1), -+ sn(yn)) = v(si(yr), -5 sn(vn)).
By assumption
u(tiq(yr), -+ tnq(y1)) = v(tig(1), -+ tng(y1)).
As {q(y1)} is independent, it follows from Lemma 7.1.1 that

u(ti(ya), s ta(y2)) = v(ti(ya), -+ s tuly2)),

so ker o C ker 5. Dually, since G is a group, we can show that ker § C ker «, so

that ker o = ker 3 as required. O

It follows from Lemma 7.1.3 that the index set I of R-classes of D is in bijective
correspondence with G™1.

Let I index the R-classes in D, A index the L£-classes in D, so that H;, denote
the H-class of D which is the intersection of R; and L,. Note that H;, is a group,
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and we use g;) to denote the identity of H;y, for all « € [ and all A € A. It is
notationally standard to use the same symbol 1 to denote a selected element from
both I and A, and here we let

1= (x1) € Aand ((z1,2;): 1 <i<n)el,

the latter of which is the congruence generated by {(x1,2;) : 1 < i < n}. Then
the identity of the group H-class Hy; is

‘Tl PR "I;n
E11 = .
xl o« s . ml

As we pointed out before, the group H-classes of D are the maximal subgroups
of End A with a rank 1 idempotent, and moreover, by standard semigroup theory,
all group H-classes in D are isomorphic, we only need to show that H;; is isomor-

phic G. For notation convenience, put H = Hy; and € = €11. In what follows, we

xl ... 'CL.TL

denote an element ( € End A by ag, where s € G.

s(x1) -+ s()

Lemma 7.1.4. The mazimal subgroup H with a rank 1 idempotent € in End A

is isomorphic to G.

Proof. Tt follows from Lemma 3.3.1 that

aEH<:>a:aS:(S($1) 3(91:1))

for some unary term operation s € G. Define a mapping

¢:H—>G,( o e )r—>s.

s(xy) -+ s(zq)

Clearly, ¢ is an isomorphism (note that composition in G is right to left), so that
H = G as required. m

Since the D-class D of End A is a completely simple semigroup, we have that
D is isomorphic to some Rees matrix semigroup M(H; 1, A; P). Next we will

choose and fix P = (py;) with p); = qur;, where r; € H;; and q) € Hy,.
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Let X = {x1, -+ ,x,} be a basis of A. We have already assumed that 1 € ITNA

are such that
1=(x) € Nand 1 = ((z1,22), -+, (21, 2,)) € I.

Here we take r; = ¢;; and q) = 1), for each i € I and each A € A. Note that an
element o € End A with im a = (1) is an idempotent if and only if zja = 4, so

that for each ¢ € I, we must have

where s;,, -, € G.

On the other hand, for each A € A, choose a generator y of A, so A = (y)
and then choose ¢t with y = t(xy, -+ ,2,). Then we put ¢(x) = t(z,--- ,z) and
sy = (¢)7!. Then we define

xl DEREEY xn
aq\ = :
si(y) - si(y)
Obviously, we have ker q\ = ((z1,23),- -, (z1,2,)) and imqy = A, so gy € H,.

It follows from

yan = t(xy, L zn)an = Hse(y), -, se(y) =t (se(y) =y

that q, is an idempotent of Hy). Since each group H-class contains exactly one
idempotent, we deduce that q, = €. This also implies that q, does not depend
on our choice of the generator y.

Note that we must have special elements Aq, - -, A, of A such that A\, = (zy),
for all £k = 1,--- ,n. To simplify our notation, at times we put k& = i, for all

k=1,---,n. Clearly, we have

(331 x)
Ak = €1k =

:L‘k DY ’xk
forall k=1,--- n.

We now aim to look into the structure of the sandwich P = (py;). Let r; and
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q» be defined as above. Then we have

p”:(sxy) st(y))(:vl su@) - sinm))

(Stt(m,siz(ajl),... ysi (21)) o0 )

Particularly, if A = 1 then
l‘l .« .. :L‘n 'I]. 1'2 ) :L‘n
P11 =
rr - I1 X 812@1) T Si"<x1)
xl .. xn
1 . e T

and if A =k with k£ € {2,--- ,n}, then

xl .. xn
= = asik
sip(1) -0 si(71)

For convenience, we arrange the rows (pi;), (P2i), -, (Pni) to be the first row,

second row,- - -, n-th row of the sandwich matrix P = (p,;). Notice that

(pli) = ((hrz') = (51152'1) = (611) = (alA)

and

(pAl) = (OD\I'l) = (€1A€11) = (811) = (OélA)-

Furthermore, P has the following nice property.

Lemma 7.1.5. For any a,, -+ ,a, € H1y with sq,- -+, s, € G, there exists some

k € I such that the k-th column of the sandwich matriz P is (0, Qsyy -+, Qs y v o0 ).
:E :I/‘ DY xn

Proof. To show this, we only need to take r; = ! 2 :
r1 So(xy) o sp(xn)

Then the 7-th column is

(plhp?i)'” apnia"')T - (a1A7a827"' 7asna"'>T'
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7.2 Singular squares of the rank-1 D-class

Our main aim in this section is to locate singular squares of the rank r D-class D
of End A, where r > 1. However, as mentioned in the beginning of this section,

our concern is the case r = 1.

Lemma 7.2.1. An E-square [(:; ﬁ] in D is singular if and only if {c, B,7,6}
Y
froms a rectangular band.

Proof. The necessity follows directly from Lemma 4.2.3. Suppose that {«, 5,7,0}
is a rectangular band in D. Let B be the subalgebra of A generated by im aUim [,
i.e. B = (imaUim ). Suppose that B has a basis U. As A is an independence
algebra, any independent subset of A can be extended to be a basis of A, so that
we can extend U to be a basis U U W of A.

Now we define an element ¢ € End A by

x ifxeU,
ro =
xy ifexeW

Notice that, for any x € A, zy € imy =im 3 C B and o|g = I, so that 0? = ¢

is an idempotent of End A. Clearly, we have
aoc = «a and fo = .

On the other hand, since for any x € U, roa = v = zd and for any x € W,

roa = rya = xd, we have that ca = §. Further, for any z € U, xoff = x = a7y
e

and for any x € W, xof8 = xvyf8 = xv, so o = ~. Hence, 5 p is a singular

/‘y
square in D.

The following result can be obtained from Lemma 7.2.1 and Observation 5.2.3.

Lemma 7.2.2. For any idempotents «, B,y € D, af8 =~ implies a3 = 7.



109

7.3 A set of generators and relations of H

The aim of this chapter is to show that the maximal subgroup H = Hz,, of
IG(E) containing ;; is isomorphic to the maximal subgroup H = H.,, of End A
containing £1;. In this section, we will determine a set of generators of H and find
out a series of relations satisfied by these generators.

It is clear that the D-class D is completely simple, so that Observation 5.3.2
leads to the following comment and Lemma 7.3.1.

For each i € I and each A\ € A, we have

(?11@‘,\?11)_1 = E1xEi1-

Lemma 7.3.1. Every element in H is a product of elements of the form €181

and (£118;x811) ", where i € I and \ € A.

We have already noticed that the first row (py;) and the first column (py;)
of the sandwich matrix P = (p,;) consist entirely of €, so by Lemma 7.2.1 and

Observation 5.3.5 we have the following three lemmas.
Lemma 7.3.2. [f E1)€i1 = €11, then E11€i0\€11 = €11-

Lemma 7.3.3. For any A\ € A and i,j € I, e1x&i1 = €1xEj1, .. Pri = Pijs

implies €11€ixE11 = E11EjAE11-

Lemma 7.3.4. For any \,;t € A and i € I 1y, = €111, 1.6. Pxi = Ppi, tmplies

€11€ix€11 = E11Eu€11-

Now we divide the sandwich matrix P = (p,;) into two blocks, say a good
block and a bad block. Here the so called good block consists of all rows (py;),
where k € [1,n], and of course, the rest of P forms the bad block.

For any i,j € I and A\, pp € {1,--- ,n} with py; = p;, it follows from Lemma
7.1.5 that there exists [ € I such that py; = pxy = pu = py;- Hence, we have the
following result by Lemma 7.2.1 and Observation 5.3.7 in terms of the good block
of P.

Lemma 7.3.5. For any i,j € I and A\, pn € {1,--- ,n}, ennen = €161, i.e.

Pri = Pyj, implies €1183E11 = E11€,E11-
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If the bad block does not exist in P, clearly we directly have Theorem 7.3.12
without any more effort. Suppose now that the bad block does exists, so our task
now is to deal with its elements. The main strategy here is to find a ‘bridge’ to
connect the bad block and the good block, in the sense that, for each A € A7 € I,
to try to find some k € {1,---,n}, j € I such that p); = p); = px;. For this

purpose, we consider the following cases:

Lemma 7.3.6. Suppose that we have
:L‘l xz DY l’n
r, =
r1 So(x1) o sp(xq)
for some i € I and X\ = (y) withy = t(zy,, -,z ) such that
=L < <lp<nand k <n.

Then there exists some j € I and m € [1,n] such that Px; = Prj = Pmj-

Proof. By assumption, we have

xl o o e xn
Pxi = :
set(w1, 51,(21), -+ ,Slk(l‘l)) T

Define r; by x1r; = 21, 21,v;5 = s1,(w1), -+, 23, 7; = 5, (21), Ty, Tj = T1Py;, for any
m € [1,n] \ {li,lz, -+ ,lx}. Note that such m must exist as by assumption we

have 1 =1; <--- <l <nand k < n. Then we clearly have py; = py; and

xl DY l’n
pm] - ’
T1Pxi

and hence we have py; = Pxj = Pm;- =

Lemma 7.3.7. Let

T X9 e Ty
r, =
r1 So(x1) o sp(aq)
for some i € I, A\ = (y) withy = t(xy,--- ,2y,) such that 1 #1; < --- <l < n.
Then there exists some j € I and m € [1,n] such that Px; = Prj = Pmj-
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Proof. Tt follows from our assumption that

Px = ( Stt(sl1($1)v"' 7Slk<x1)) T ) '

Let w(z) = sit(sy, (), -+, s1,(z)). Then as s, = ()7, we have

w(z) = sit’ (w(z)) = set(w(zx), -+, w(x)).

xy w(zry) - w(r

Py = ( sit(w(zy), - w(zy)) - — ) - ( wwy) - wla) )

Letrj:<$1 T2 a:n)).Then

and
B T, - T,
T ( wes) o wn) )
so that we have py; = py; = P2; as required. O
Now we are only left with the case such that y = t(xy,--- ,x,) is truly n-ary,
in the sense that there exists no proper subset X’ of the basis X = {z1,--- ,2,}

such that y € (X'), where we need more effort.

Let G be the group of all unary term operations on an independence algebra
A of finite rank n > 3 with no constants, and let sg,--- ,s,_1 be arbitrary chosen

and fixed unary term operations. Define a mapping # as follows:
0:G— G u(x) — t(x,s9(x), -+, Sp_1(), u(x)).

Lemma 7.3.8. The mapping 0 defined as above is one-one.

Proof. Let X = {x1, -+ ,x,} be a basis of A. First, we claim that

{lea o 7$n—1>t(x17 e 7xn)}
is an independent subset of A. Since t(xq,--- ,x,) is truly n-ary, we have that
t(xy, -+ ,xn) & (x1, - ,Tp_1). Suppose that z1 € (xg, -+ ,xp_1,t(x1, -+, 2,)).

Then as z1 & (xq, -+ ,x,_1), by the exchange property (EP), we must have that



112

t(xy, - ,xy) € (1, - ,Tp_1), a contradiction. As any n-element independent

set forms a basis of A, we have
A — <x17 “ e 7$n_1’t(a’;17 N 7I‘n)>

and so x, = w(zy, -+ ,Tp_1,t(x1, -+ ,x,)) for some n-ary term operation w. Let
w and v be unary term operations such that u(x)f = v(x)f. Then by the definition

of 6, we have

t(zx,s2(x),  ,Sp1(x),u(z)) = t(z, s2(x), -+, Sp_1(x),v(x)).

On the other hand, it follows from Lemma 7.1.1 that

u(z) = w(z, so(x), -, sp_1(x), t(x, s2(x), -+, Sp_1(x), u(x))
and

v(x) = w(z, so(x), -+, sp_1(x), t(z, s2(x), + , sp_1(x),v(x)).
Therefore, we have u(x) = v(z), so that 6 is one-one. O

Corollary 7.3.9. If A is a finite independence algebra, then the mapping 6 defined

as above is onto.

If A is infinite, so far we have not found a direct way to show that the mapping
0 defined as above is onto, and in this case we need the classification described in
Theorem 3.3.5. As we assumed that the bad block does exists in P, we have that
A is an affine algebra. Then the following lemma holds.

Lemma 7.3.10. If A is an affine algebra, then the mapping 6 defined as above

15 onto.

Proof. Let A° be a subalgebra of A satisfying the condition stated in Theorem
3.3.5. Let t(z1,--+,x,) be a truly n-ary term operation with so,--- s, 1 € G.
Then we have

t(zy, -, xn) = kw1 + -+ kprp +a

and

so(z) =x +ag, - ,s5n-1(x) =+ ap1
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where for all i € [1,n], k; #0, ky +---+k, = 1 and a,as, -+ ,a,_; € A°. For any
unary term operation v(z) = x + b € G with b € A%, by putting s, (z) = x + a,,
where

an =k ' (b—kyay — -+ — kyp_10,_1 —a) € A°

we have t(z, sa(x), -+, 8p_1(x), sp(z)) = v(x), and hence @ is onto. O

Lemma 7.3.11. Let

xl x2 DY xn
r, =
r1 So(wy) -+ Sp(xy)
for some i € I and let X\ = (y), where y = t(xy, -+ ,x,) is a truly n-ary term

operation on A. Then there exists some j € I such that py; = Pyj = P2;-

Proof. By assumption, we have

Pxi = ( sit(ry, so(x1),+ ysp(T1)) -0 — ) .

Put w(z) = sit(xy, s2(x1), -+, Sp(x1)). It follows from Lemma 7.3.10 that the

mapping
0:G— G k(z) — t(x,w(zx), - ,w(x),k(x))

is onto, so that there exists some h(z) € G such that

tz,w(@), - w(@), h(z)) = s, (w(x))

and so
w(z) = sit(x,w(z), - ,w(x), h(x))
Let
g ( r1 w(wy) w(zy) h(z) )
Then

Py = (Stt(xl,w(xl),--- w(m), h(z)) o — ) N (w(xl) - )
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and clearly,

Therefore, we have py; = pyj = Paj- —~

Lemma 7.3.12. For any i,7 € I and A\, ;0 € A, e1x&i1 = €1,Ej1, €. Pxi = Ppujs

implies €11€ix€11 = €11Eu€11-

Proof. By the above discussion, we have

P = Pmi = Pxi and Pur = Psk = Pyj

for some [,k € I and m,s € [1,n]. Then it follows from Lemmas 7.3.3 and 7.3.4
that

E11EINE11 = €11 Eim€11 = €11ENE11

and

€11€ku€11 = €11€ks€11 = €11€5u€11-
From p,,,; = psk, we have €118,,,811 = €118ks€11 by Lemma 7.3.5, so that
€11€ixE11 = €11€5u€11
as required. O

Following the fact we obtained in Lemma 7.3.12, we denote the generator

Z118i2811 With py = o~ ! by w,, where o € H.

Now we show that an analogous result of Lemma 5.3.8 holds for independence
algebras. It follows from our assumption n > 3 and Lemma 7.1.5 that for any

a, 8 € H, the sandwich matrix P has two columns with the following forms:
(e1,7t, 87 - ) and (11,611, 875, )T,

Therefore, by Lemmas 7.2.1, 7.3.12 and Observation 5.3.9 we have:

Lemma 7.3.13. For any o, € H, waws = Wag and we-1 = w, .
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7.4 The main theorem

As we stated in the beginning of this chapter that our main aim is to characterize
the maximal subgroup of IG(F) containing a rank 1 idempotent € € E, where F
is the biordered set of idempotents of End A. First, it follows from Lemmas 7.3.1
and 7.3.13 that

H={epe11: i € [LAE N}

Now we are in the position to state our main theorem.

Theorem 7.4.1. Let End A be the endomorphism monoid of an independence
algebra A of rankn > 3 with no constants, let E be the biordered set of idempotents
of End A, and let IG(FE) be the free idempotent generated semigroup over E. Then
for any rank 1 idempotent € € E, the maximal subgroup H of IG(E) containing &
is isomorphic to the maximal subgroup of End A containing €, and hence to the

group G of all unary term operations of A.

Proof. As all group H-classes in the same D-class are isomorphic, we only need
to show that H = Hz,, is isomorphic to G.

Let ¢ be the restriction of the natural map ¢ : IG(E) — (F) defined in
Property (IG1). Then by (IG4), we know that

¢ H — H, E11€)E11 — €11EEN

is an onto morphism. Furthermore, ¢ is one-one, because if we have

(E11EinE11) ¢ =€

then e116;0611 = €11 and by Lemma 7.3.2, 18,011 = &11. We therefore have
H=>~H=>G. O



Chapter 8

Free idempotent generated

semigroups over bands

Whereas much of the former work in the literature of IG(E) has focused on the
maximal subgroups, the aim of this chapter is to investigate the general structure
of IG(B) for a band B. Our main result is that for an arbitrary band B, IG(B)
is a weakly abundant semigroup with the congruence condition.

We proceed as follows. In Section 8.1 we recall some basics of reduction sys-
tems. We briefly describe how IG(B) naturally can be induced by a noetherian
reduction system (B", —). In Section 8.2, we begin our investigation of IG() by
looking at a semilattice Y. We prove that every element of IG(Y") has a unique nor-
mal form. We then use this to show that IG(Y") is abundant, and hence adequate.
We remark here that this result can be obtained as a corollary of Proposition 8.6.2,
however, the straightforward proof makes clear the strategies we subsequently use
in other contexts. In Section 8.3, we show that for any rectangular band B, IG(B)
is regular. We then proceed to look at a general band B in Section 8.4. Unlike
the case of semilattices and rectangular bands, here we may lose uniqueness of
normal forms. To overcome this problem, the concept of almost normal form
is introduced. It is proved that for any band B, IG(B) is a weakly abundant
semigroup with the congruence condition, but need not be abundant.

We then consider some sufficient conditions for IG(B) to be abundant. In
Section 8.5, we introduce a class of bands B, which are in general not normal, for
which the word problem of IG(B) is solvable. Then in Section 8.6, we show that

if B is a quasi-zero band or a normal band for which IG(B) satisfies a condition

116
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we label (P), then IG(B) is an abundant semigroup. We then find two classes of
normal bands satisfying Condition (P). One would naturally ask here whether
IG(B) is abundant for an arbitrary normal band B. In Section 8.7, we construct

a 10-element normal band with 4 D-classes for which IG(B) is not abundant.

8.1 Reduction systems

The aim of this section is to recall the definition of reduction systems and their
properties. As far as possible we follow standard notation and terminology, as

may be found in [39].

Let A be a set of objects and — a binary relation on A. We call the structure
(A, —) a reduction system and the relation — a reduction relation. The reflex-
ive, transitive closure of — is denoted by —, while <~ denotes the smallest
equivalence relation on A that contains — . We denote the equivalence class of
an element € A by [z]. An element x € A is said to be irreducible if there is no
y € A such that £ — y; otherwise, z is reducible. For any z,y € A, if v ==y
and y is irreducible, then y is a normal form of z. A reduction system (A, —) is
noetherian if there is no infinite sequence xg, xq,--- € A such that for all i > 0,
Ti — Tigq-

We say that a reduction system (A, —) is confluent if whenever w,z,y € A
are such that w — x and w — v, then there is a z € A such that z — z
and y — 2, as described by the figure below on the left, and (A, —) is locally
confluent if whenever w, x,y € A, are such that w — x and w — y, then there

is a z € A such that * — z and y — z, as described by the figure below on the

right.
L w w
/N VRN
v * y v \ * y
ST S
z z

Figure 8.1: confluence and local confluence
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Lemma 8.1.1. [39] Let (A, —) be a reduction system. Then the following state-
ments hold:

(i) If (A, —) is noetherian and confluent, then for each x € A, [x] contains
a unique normal form.

(ii) If (A,—) is noetherian, then it is confluent if and only if it is locally

confluent.

Let E be a biordered set. Recall that we denote the free semigroup on E =
{e:ecEyby E'.

Lemma 8.1.2. Let E be a biordered set, and let R be the relation on E" defined
by
R=1{(ef,ef): (e, f) is a basic pair}.

Then (EJr, —) forms a noetherian reduction system, where — is defined by
u—v<=3(r)eR) @zyecE") u=aly andv=ary.
Proof. The proof follows directly from the definitions of the reduction system and

the binary relation — . O]

Note that the smallest equivalence relation < on E'is exactly the congru-
ence generated by R. Obviously, the free idempotent generated semigroup 1G(F)

is given by a noetherian reduction system (E+, —).

8.2 Free idempotent generated semigroups over

semilattices

We start our investigation of free idempotent generated semigroups 1G(B) over
bands B, by looking at the special case of semilattices. Throughout this section
we will use the letter Y to denote a semilattice. It is proved that IG(Y) is an

adequate semigroup; however, it need not be regular.

Lemma 8.2.1. Let Y be a semilattice. Then every element in IG(Y') has a unique

normal form.

Proof. By Lemma 8.1.1, to show the required result we only need to argue that

(7+, —) is locally confluent. For this purpose, it is sufficient to consider an
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arbitrary word of length 3, say e f g € ?+, where e, f and f, g are comparable.
There are four cases, namely,e < f < g,e> f>g,e< f,f>gande > f, f < g,

for which we have the following 4 diagrams:

efyg efyg efyg efyg
v AN e U / AN e \u
€g ef fg €g ey L€9  fg ef
NS NS NS NS
e g €g

Figure 8.2: the confluence of IG(Y') over a semilattice Y

Thus (Y, —) is locally confluent, so that every element in IG(Y') has a unique

normal form. N

Note that an element 77 --- 7, € IG(Y) is in normal form if and only if x;
and x;, 1 are incomparable, for all i € [1,n — 1]. By uniqueness of normal forms
in IG(Y'), we can easily deduce that two words of IG(B) are equal if and only
the corresponding normal forms of them are identical word in F+, and hence the
word problem of IG(Y) is solvable.

Proposition 8.2.2. The free idempotent generated semigroup 1G(Y') over a semi-

lattice Y is adequate.

Proof. We begin with considering a product (Z7 -+ T,,) (U1 - * Um ), where Ty - - - T,
U1+ Um € IG(Y) are in normal form. Either x,,,y; are incomparable, z,, > y; or
Tn < yp. In the first case it is clear that Z7--- T, U1+ - ¥, is a normal form. If
Tn > Y1, then either Z7--+ Z,-1 71+ ¥, is in normal form, or y; and z,,_; are
comparable. If y; and x,_; are comparable, then y; < z,_1, for we cannot have
Tno1 < else z, 1 < x,, a contradiction. Continuing in this manner we obtain
(T1-+ ZTn)(U1- -+ Um) has normal form Zy -+ Ty Y1+ Um, where 1 < t < n,
T, , Ty > Y1, and either t = 1 (in which case T - - T;_1 is the empty product)
or x;_1,%; are incomparable. Similarly, if x,, < y;, then (z7--- Z,)(¥1- - Um) has
normal form @7 -+ T, Yir1 - Um, where 1 <t <m, x, <yi, -y, and t = m or

Zn, Yrr1 are incomparable.

Suppose now that T7--- T,,z1--+ Zx and g1 -+ ¥, € IG(Y) are in normal

form such that

Tl Ta i Ym =2 UL Um
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in IG(Y). Here we assume n,k > 0 and m > 1. We proceed to prove that

in IG(Y). If n = k = 0 there is nothing to show. Note that the result is clearly

true if m = 1, so in what follows we assume m > 2.

First we assume that n > 1 and k =0 (i.e. Z1--- Z is empty), so that

Tr o TnW1 " Ym = Y1 Ym-
In view of Lemma 8.2.1, z,, and y; must be comparable. If x,, > y;, then it follows

from the above observation that y; < xq,--- ,x,, so that Z7--- T, 77 = 77. On
the other hand, if x,, < y;, then

for 1 <t < m such that x, <y, -+ ,y and t = m or x,,y;;1 are incomparable.
Then z, = v, so that to avoid the contradiction y; < y;_1 we must have t = 1.
Clearly then n = 1 and x; = x,, = y; so that 1 77 = ;. Hence certainly holds
forn+k+m <3.

Suppose that n+k+m > 4 and the result is true for all n’+k'+m’' < n+k+m.

Recall we are assuming that m > 2 and in view of the above we may take n, k > 1.

If x,,,y1 and zx,y; are incomparable pairs, then it follows from uniqueness of

normal form that k=nand z7--- T, 71 =21 - -+ Zx U1

Suppose now that y; < x,,. Then

so that our induction gives us

T1--- $n—1m:71"' Zkyl

and hence T7--+ T, 1 = Z1 -+ Zx U1- A similar result holds for the case y; < z.

Suppose now that y; £ z, and y; £ z, and at least one of x,,y; or zx, vy

are comparable. Without loss of generality assume that x, < y;. As above
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Tn <y, ,y for some 1 <t < m with ¢t = m or x,,y;.1 incomparable. Further,
there is an r» with 0 < r < m such that 2 < yy,--- ,y, and r = m or 2, yYry1

incomparable. Thus both sides of

T1 TpnUig1 - Um =21

Tkyr+l"' YUm

are in normal form and son—t =k—r. If n > k, then r < t, so x, = y;. To avoid
the contradiction y; < y;_1, we must have ¢t = 1, but then x,, = y; a contradiction.
Similarly, we can not have £ > n. Hence n = k, and hence z7--- @, = Z1 - - - Zg,
so that certainly Z7--- @, 77 = Z1--- Z, U1 as required. Hence, we have that
IG(Y) is abundant. It then follows from Property (IG1) that the biordered set of
idempotents of IG(Y) is isomorphic to Y, which is a semilattice, so that IG(Y) is
adequate. O

We remark here that Proposition 8.2.2 can also be obtained as a corollary of
Proposition 8.6.2, but for the sake of our readers, we have proved this special case

to outline our strategy in a simple case.

Example 8.2.3. Consider a semilattice Y = {e, f,g} with e, f > ¢ and e, f

incomparable.

First, we observe that
IGY)={e f.g.ef)".(fe) (€ f)e(fe" f: neN}L

It is easy to check that for any n € N, the element (e f)" € IG(Y) is not regular,
as for any w € IG(Y), we have (¢ f)"w(e f)" = g if w contains g as a letter;
otherwise (2 f)"w(e f)" = (e f)™ for some m > 2n € N. Therefore, IG(Y) is not
a regular semigroup.

On the other hand, by Proposition 8.2.2 we have that IG(Y’) is an abundant

semigroup. Furthermore,
R'={{e,(e ). fN)"e: neNL{f.(fe).(fe)" f: ne N} {g}}
and

L={{e(fey (e f)re: neNL{f (e /). (fe)" f: neN}{g}}
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Note that we have
D'=LfoR*"=R*oL*

in IG(Y), and there are two D*-classes of IG(Y), namely,

{g} and {e,(e f)". (e /)" & f.(f&)",(f&)" f:neN},

the latter of which can be depicted by the following so called egg-box picture:

\-m‘
—~
|
s
S~—

3
|
—~
ol
Sy
S~—

3

-
ol
=
il
piy
~
ol
=
~

Figure 8.3: the egg-box of Example 8.2.3

8.3 Free idempotent generated semigroups over

rectangular bands

In this section we are concerned with the free idempotent generated semigroup
IG(B) over a rectangular band B. Recall from [26] that a band B is a semilattice
Y of rectangular bands B, « € Y, and the B,’s are the D = J-classes of B. Thus
B = U B, where each B, is a rectangular band and B, Bz C B,g, Vo, € Y. At

acY
times we will use this notation without specific comments. We show that I1G(B)

is a regular semigroup. It follows that if B is a semilattice Y of rectangular bands

Ba, a €Y, then any word in B, is regular in 1G(B).

Lemma 8.3.1. Let B be a rectangular band. Then every element in 1G(B) has

a unique normal form.

Proof. We have already remarked that the reduction system (§+, —) induced by
IG(B) is noetherian, so that according to Lemma 8.1.1, to show the uniqueness of
normal form of elements in IG(B), we only need to prove that (B, —) is locally
confluent.

For this purpose, it is sufficient to consider an arbitrary word of length 3, say

efge 7+, where e, f and f, g are comparable. Clearly, there are four cases,
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namely, e L f L g, e R f Rg,e L f Rgande R f L g. Then we have the

following 4 diagrams:

efyg efyg efyg efyg
/N YN\ VAR /N
€g ef fg €g €3 L€9 fg ef
NS NS N NS
e g €g

Figure 8.4: the confluence of IG(B) over a rectangular band B

Hence (B*, R) is locally confluent. O

Lemma 8.3.2. Suppose that B is a rectangular band and u; --- w, € 1G(B).

Then we have u, L uy --- W, R Uy, and hence IG(B) is a regular semigroup.

Proof. Let w =1y --- @, € IG(B). First we claim that
Uy -+ ITnRITl cee U

Observe that (u,, u,u,—1) and (u,_1, u,u,_1) are both basic pairs. Hence we have

Uy = Up—1 Up UpUp—1 = Uy © Up—1 UpUpUp—1
=Up + Up—1 UpUp—1
=Up  Up—1UpUp—1
= Uy . ma
sothat uy --- w, Ruy --- U,_1. By finite induction we obtain that uy --- w, R u;.
Similarly, we can show that @y --- @, L @,. Certainly then IG(B) is regular.

]

Corollary 8.3.3. Let B be a semilattice Y of rectangular bands B, o € Y. Then

for any xy,--+ ,x, € By, T1 -+ Ty, 1S a reqular element of 1G(B).

Proof. 1t is clear from the presentations of IG(B,) and IG(B) that there is a well

defined morphism

¢ : 1G(B,) — IG(B), are such that e ¢ =&
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for each e € B,. It follows from Lemma 8.3.2 that for any xy,--- ,x, € By,
Ty --- Ty is regular in IG(B,). Since 1) preserves the regularity, we have that
(T1 -+ T,) Y =Ty -+ T, is regular in IG(B). O

8.4 Free idempotent generated semigroups over
bands

Our aim here is to investigate the general structure of IG(B) for an arbitrary band
B. We prove that for any band B, IG(B) is a weakly abundant semigroup with
the congruence condition. However, we demonstrate a band B for which IG(B)

is not abundant.

Lemma 8.4.1. Let S and T be semigroups with biordered sets of idempotents
U= E(S) and V = E(T), respectively, and let 8 : S — T be a morphism. Then
the map from U to V defined by € — ef, for all e € U, lifts to a well defined
morphism 0 : IG(U) — IG(V).

Proof. Since 0 is a morphism by assumption, we have that (e, f) is basic in U
implies (ef, f0) is basic in V, so that there exists a morphism 6 : IG(U) — IG(V)
defined by € = ef, for all e € U. O

Let B be a band. Write B as a semilattice Y of rectangular bands B,, o € Y.
The mapping 6 defined by
0:B—Y r—«

where x € B,, is a morphism with kernel D. Hence, by applying Lemma 8.4.1 to

our band B and the associated semilattice Y, we have the following corollary.

Corollary 8.4.2. Let B = | B, be a semilattice Y of rectangular bands B,,
acY

a €Y. Then a map 0 : 1G(B) — IG(Y) defined by
(T - TR O=00 - @,

is a morphism, where x; € B,,, for alli € [1,n].

To proceed further we need the following definition of left to right significant
indices of elements in IG(B), where B is a semilattice Y of rectangular bands
B,,aeY.
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Let 77+ 7 € B' with z; € Ba,, for all 1 <i < n. Then a set of numbers
{Z.lv"' 7@‘} - []-,TL] with 4 < -+ < 4,

is called the left to right significant indices of T7 - - - T, if these numbers are picked
out in the following manner:
71 : the largest number such that aq, -+, a;, > ayy;

Ky : the largest number such that a;, < ay,, 41, Q-

We pause here to remark that a;,, ax,+1 are incomparable. This is because, if
a;, < ag,+1, we add 1 to kq, contradicting the choice of ky; and if oy, > g, 41,
then aq, -+ , oy, -, gy > ay, 41, contradicting the choice of i;. Now we continue

our process:

19 : the largest number such that ay, 41, , @, > Q,;

ko : the largest number such that a;, < ay,, Qiyi1, -+, Qky-

ir : the largest number such that o, 41, -+, 0, > ;3

k, = n: here we have ;. < oy, 41, -+ ,q,. Of course, here we may have

i, =k, =n.

Corresponding to the so called left to right significant indices iy, ,1,, we
have

Qyy e v ,Oéirey

We claim that for all 1 < s <r—1, o, and «;_, are incomparable. If not, suppose
that there exists some 1 < s <7 — 1 such that a;, < o ,,. Then o, < a4 as

a;, ., < ap,41, a contradiction; if oy, > o, ,, then we have

Qg S QG Q1,0 Qg 1, With kg =0
contradicting our choice of 5. Therefore, we deduce that @z, --- @;, is the unique
normal form of a7 --- @, in IG(Y).

We can use the following Hasse diagram to depict the relationship among

Qgyy s e, QG

_—
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<0G Q1 Oy Oy Oy ce Qg 41+ Qp

N N\

Qg (07PN 0 7;

r

Figure 8.5: Hasse diagram illustrating significant indices

Dually, we can define the right to left significant indices {l1,--- ,ls} C [1,n]
of T+ T, € B, where [, < --- < I,. Note that as oy, -+ o must equal to
@i, -+ ag in BT, we have r = s.

Lemma 8.4.3. Let 71--- T, € BT with x; € oy, for all i € [1,n], and left to
right significant indices iq,--- ,i.. Suppose also that gy -+ Yy € B with Yi € Bi,
for all i € [1,m], and left to right significant indices ly,--- ,ls. Then

in IG(B) implies s =r and oy, = fyy, -+ , 4, = [,

Proof. Tt follows from Lemma 8.4.2 and the discussion above that

in IG(Y). By uniqueness of normal form in IG(Y), we have that s = r and

allzﬁln'“aair:ﬁlr' L
In view of the above observations, we introduce the following notions.

Let B = U B, be a semilattice Y of rectangular bands B,,a € Y, and let
acY

w=T] Ty be a word in B with z; € By, for all i € [1,n]. Suppose that w
has left to right significant indices i1, -- ,7,. Then we call the natural number r
the Y-length, and «y,, - - , ;. the ordered Y -components of the equivalence class
of w in IG(B).

In all what follows whenever we write w ~ w’ for w,w’ € §+, we mean that
the word w’ can be obtained from the w from a single splitting step or a single

squashing step.

Lemma 8.4.4. Let@; --- T, € BT with left to right significant indices i1, - , i,
where x; € By, for alli € [1,n]. Lety; -+ Ym € B be an element obtained from
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T1 -+ T, from a single step, and suppose that the left to right significant indices

of gr- -+ Ym are ji,- -+, jr. Then for alll € [1,r], we have

and y;, = u'z;u, where v = ¢ or v € B, with 0 > «;,, and either u = ¢, or
u € Bs for some § > «;,, oru € B% and there exists v € By with 0 > «;,, vu = u

and wv = x;,.

Proof. Suppose that we split z;, = uv for some k € [1,n], where uv is a basic

product with v € B, and v € B, so that oy, = u7. Then

ajl...ﬁwﬂ...xk_lﬂﬁxk_‘rl...wn:m...ym‘
If k < 4, then clearly y;, = x;, and
m"'%:ﬂ"'wk—lﬂ@xk—‘rl”.fil:ﬁ ...Til’

so we may take u = u' = ¢.

If k =14, then ur = o;,. If p > 7, then y;, = v and again

yl%: 1..'1-1‘1—1@@: IT’LZ

As x;, = uv L v, we have y;, = v = va;,. Also, x;, = uwv = uy;,.

On the other hand, if 1 < 7, then y;, = u. As wv is a basic product, we have

that uwv = v = x;, or vu = u. If wv = u = x;,, then

yl...%:ﬂ...xil_

H
£l
[

=

3

and y;, = u = uwv = x;,. If vu = u, then as x; = wv R v and v = v,

yl...%: 1“":1:7;1—1@:1‘71."3:]6—1 VU= 1...xilﬂ
and y;, = x; u where vu = u. Also,
T{ Ty =T Tp QW =71 - T AO=T1 - T, T
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and x; = y;v.

Finally, suppose that k& > ¢;. Then it is obviously that j; = %;, x;, = y;, and

It follows immediately from Lemma 8.4.4 that

Corollary 8.4.5. Suppose that yi -+ Ypm = T1 -+ T € IG(B) with left to right
significant indices jy,- -+ ,Jr and iy, - i, respectively, and suppose x; € B, for
alli € [1,n]. Then for alll € [1,7], we have

Ui i =Tq o T Up U T

and y;, = ul - - - uyz;,uy - - - us, where for allt € [1,s], u, = ¢ or uy, € By, for some

o, > «,, and either vy = € or u, € Bs, for some &, > «,, or u; € Bail and there

exists vy € By, with 0, > o, and viuy = uy. Consequently, yp --- y;;, R 71 -+ @y,
and hence yy -+ y;, R x1 -+ 2.
Proof. The proof follows from Lemma 8.4.4 by finite induction. O]

Note that the duals of Lemma 8.4.4 and Corollary 8.4.5 hold for right to left

significant indices.

From Lemmas 8.2.1 and 8.3.1, we know that every element in IG(B) has a
unique normal form, if B is a semilattice or a rectangular band. However, it may

not true for an arbitrary band B, even if B is normal. Recall that a normal band
B = B(Y7 Bom ¢a,,3)

is a semilattice Y of rectangular bands B,, a € Y, such that for all & > fin Y
there exists a morphism ¢, g : B, — Bg such that

(Bl) forall « € Y, ¢p.0 = 15,;
(B2) for all o, B,y € Y such that & > 8 > 7, 0308~ = Pary,s
and for all o, 8 € Y and x € B,,y € B,

1Y = (Tda,a8) (YPB.a8)-
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Example 8.4.6. Let B = B(Y'; B,, ¢a,3) be a strong semilattice Y = {a, 8,7, 6}
of rectangular bands B,, o € Y (see the figure below), such that ¢, g is defined by

a¢qp = b, the remaining morphisms being defined in the obvious unique manners.

B, [d]
/N
Bplble]  [dlB,
N/

Bs

Figure 8.6: the semilattice decomposition structure of Example 8.4.6
By an easy calculation, we have
tcd=cad=cad=cad=0>bd
in IG(B), so that not every element in IG(B) has a unique normal form.

We pause here to make a comment on the above example. It was shown by
Pastign [41] that for any normal band B, if one work with RIG(B) rather than
IG(B) then one does get a complete rewriting system and unique normal forms.
This result contrasts nicely with our example showing that for normal bands B
normal forms are not necessarily unique in IG(B).

Lemma 8.4.7. Let B = | B, be a semilattice Y of rectangular bands B,,a € Y.

acY

Letwmy --- @, € 1G(B) with z; € B,,, foralli € [1,n], and lety € Bg with § < «,
for alli € [1,n]. Then in IG(B) we have

Ty o T Y =21 TplYTp - T1  Tp1TpYTnTp—1 TpYTyn Y

and

YTy - Ty =Y T1YT1 To2T1YT1T2 -+ Ty T1YT1 " Ty

Proof. First, we notice that for any « € B,,y € Bs such that o > 3, we have
yr R y, so that (y,yx) is a basic pair and (yx)y = y. On the other hand, as
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(yz)x = yx, we have that (z,yx) is a basic pair, so that

TY=7 (yr)y=TYry =Ty y.
Thus, the first required equality follows from the above observation by finite in-

duction. Dually, we can show the second one. O

Corollary 8.4.8. Let B = B(Y; B,, ¢a3) be a normal band and let T3 --- T,
be an element of IG(B) such that x; € B,,, for all i € [1,n]. Let y € Bs with
B < a, foralli € [1,n]. Then

Ty - Tny:xlqboq,ﬁ xn¢an,ﬁy

and

Yyry - Ty =Y wl¢o¢1,,3 to xn¢o¢n,,3'
Corollary 8.4.9. Let B= | B, be a chain'Y of rectangular bands B,, a € Y.

acY
Then 1G(B) is a regular semigroup.

Proof. Let wy -+ W, be an element in IG(B). From Lemma 8.4.7 it follows that

Uy -+ W, can be written as an element of IG(B) in which all letters come from
B.,, where 7 is the minimum of {oy,--- ,a,}, so that @y --- @, is regular by
Lemma 8.3.3. [l

Given the above observations, we now introduce the idea of almost normal

form for elements in IG(B).

Definition 8.4.10. An element Ty -+ T, € B is said to be in almost normal

form if there exists a sequence
1<y <9< <,1<n
with
{xh ... 7Ii1} C Bo617 {l’il+17 ... 71‘1‘2} c BOQ’ ... 7{1’%}71—}—17 .. .xn} C Bar

where a;, a1 are incomparable for all i € [1,r — 1].

It is obvious that the element z; --- T, € B" defined as above has left

to right significant indices iy, 49, ,%,_1,7, = n (right to left significant indices
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iy +1, -+ i,_o+ 1,41 +1), Y-length r and ordered Y-components a1, - - , a,.
Note that, in general, the almost normal forms of elements of IG(B) are not
unique. Further, if 77 --- T, = y1 -+ ¥, are in almost normal form, then
they have the same Y-length and ordered Y-components, but the left to right

significant indices of them can be quite different.

The next result is immediate from the definition of significant indices and
Lemma 8.4.7.

Lemma 8.4.11. Every element of IG(B) can be written in almost normal form.

We have the following lemma regarding the almost normal form of the product

of two almost normal forms.

Lemma 8.4.12. Let 71 --- T, € 1G(B) be in almost normal form with Y -
length r, left to right significant indices iy,--- ,i, = n and ordered Y -components
ay, e, and let gy -+ Gy € IG(B) be in almost normal form with Y -length s,

left to right significant indicesly,--- ,ly = m and ordered Y -components 31, - - -, Bs.
Then (with ig = 0)

(i) oo, and [y incomparable implies that T7y --- Ty, Y1 -+ T, s in almost
normal form;

(ii) o, > By implies

xl...xit xit+1...xiry1xiT...xit+1 mm [P yils
is an almost normal form of the product @y -+ T;, Y1 -+ Ui, for somet € [0,r—1]
such that a., -+ ;aqy1 > 1 and t =0 or oy, By are incomparable;

(1i7) o, < By implies

Ty 0 Ti, WYt o Y, T Y Y, Yk Wi

is an almost normal form of the product T1 --- Ty, Y1 -+ i, for some v € [1, ]

such that o, < By, , By and v = s or By11,q, are incomparable;

Proof. Clearly, the statement (i) is true. We now aim to show (ii). Since «,. > 1,

we have

Tip y41 70 Tip Y1 = Tip 41 T, Y1 Ti, - Tip 41 Ti, Y1Ti, Y1
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by Corollary 8.4.7. Consider a,._; and i, then we either have a,._; > ; or they

are incomparable, as «,_; < f; would imply «, > «,_1, which contradicts the

almost normal form of 77 --- 7; . By finite induction we have that
Tl“'lT'txiﬁl"‘mirylxu"'xiﬁl mm TIS

is an almost normal form of 77 --- Z;, y1 --- 7, for some t € [0,r — 1] such that

Qp, 0441 > P and t = 0 or ay, f1 are incomparable. Similarly, we can show

(iif). 0

Theorem 8.4.13. Let B be a semilattice Y of rectangular bands B,,a € Y. Then

IG(B) is a weakly abundant semigroup with the congruence condition.

Proof. Let 71 --- T, € IG(B) be in almost normal form with Y-length r, left
to right significant indices 71, - ,7, = n, and Y-components aq, - -- ,a,. Clearly
T1Ty +++ Tp, =717 +++ Tp. Let e € Bsbesuchthatex; --- T, =77 --- T,. Then
by Corollary 8.4.2, that applying 6 we have 6 @y --- @, = a7 --- @;. It follows
from Lemma 8.2.1 that 0 > a4, so that by Corollary 8.4.5 we have

exy---xy R xy--- 2.

On the other hand, z; ---x;, R x; so that ex; R x, thus we have x; < e. Thus

77 = exy = 77. Therefore 77 -+ T, R 7. Dually, 77 --- @, L T, so that IG(B)

|

is a weakly abundant semigroup as required.
Next we show that IG(B) satisfies the congruence condition.

Let 77 --- T, € IG(B) be defined as above and let 71 -+ ¥, € IG(B) be in
almost normal form with Y-length wu, left to right significant indices l1,--- I, =m
and ordered Y-components i, --- , 3,. From the above discussion and the prop-
erty (IG2), we have 77 --- T, Ry -+ Um if and only if z; R y;. Suppose now
that ;7 R y1, so that ag = (. Let z1 -+ z; € IG(B), where, without loss of
generality, we can assume it is in almost normal form with Y-length ¢, left to
right significant indices 71, -+, = s, and Y-components v, --- ,7:. We aim to
show that

We consider the following three cases.
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(i) If ay = 1,y are incomparable, then it is clear that

Z1 v stl ... Tnandz zsyl ... ym

are in almost normal form, so clearly we have

(ii) If 81 = a; < 71, then by Lemma 8.4.12

Z{ v Zs Ty v Ty =21 v Zj, Zjuil - ZsTiZs Zj,41 ¢ ZsT1Zs T1 ccc Tp
and

2 Zs UL Ym =21 Zjy Zjetd ZsUiZs Zjutd cc ZsUiZs U1t Um
where v € [0,t — 1], Vo1, , % = a1 = f1 and 7, 51 are incomparable or v = 0.

Clearly, the right hand sides are in almost normal form.

If v > 1, then clearly the required result is true, as the above two almost
normal forms begin with the same idempotent. If v = 0, then we need to show
that

Zl-..zsl‘lzs...zlRzl..-zsylzs---zl

Since 1 R y1, it follows from the structure of B that
21025125 21 R 2102501 R 2102591 R 210 26126+ 21

as required.
(iii) If 5 = a3 > 71, then by Lemma 8.4.12

Zl stl xnzzil lezsxl xik...xlzsxl...xik xik+1 xn
and
P B UL Ym = 2 Zs AU U UiEsYL U, Ykt U

where k € [1,7], aq,- -+ ,ax > 71, and agy1,71 are incomparable or k£ = r, and
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p € [Lul, f1,---,B, > 7, and B,41,71 are incomparable or p = u. Clearly, the

right hand sides are in almost normal form, so that

Similarly, we can show that Lisa right congruence, so that IG(B) is a weakly
abundant semigroup satisfying the congruence condition. This completes the

proof. n

We finish this section by constructing a band B for which IG(B) is not an

abundant semigroup.

Example 8.4.14. Let B = B, U Bg U B, be a band with the semilattice decom-

position structure and the multiplication table defined by
B, [a] ] Bs
AN /

B,

Figure 8.7: the semilattice decomposition structure of Example 8.4.14

a b x y
ala y r y
bly b z vy
rlr y x vy
yl\v9 y ry

Figure 8.8: the multiplication table of Example 8.4.14

First, it is easy to check that B is indeed a semigroup. We now show that
IG(B) is not abundant by arguing that the element @ b € IG(B) is not R*-related
to any idempotent of B. It follows from Theorem 8.4.13 that @ b R @. However,

@ b is not R*-related to @, because
Tab=7=yabbutTa=T#7 =7 a,

so that from Lemma 2.2.5, @ b is not R*-related to any idempotent of B, and

hence IG(B) is not an abundant semigroup.
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8.5 Free idempotent generated generated semi-

groups over quasi-zero bands

In this section we will introduce a class of bands B for which the word problem
of IG(B) is solvable. Further, in Section 8.6, we will show that for any quasi-zero
band B, the semigroup IG(B) is abundant.

Definition 8.5.1. Let B be a semilattice Y of rectangular bands B, € Y. We
say that B is a quasi zero band if for all a, B € Y with B > o, u € B, and v € B,

we have uwv = vu = u.

It is easy to deduce that if B is quasi-zero, then for any o, § € Y with a < £,

u € B, and v € Bg, the products uv and vu are basic.

Lemma 8.5.2. Let B be a quasi-zero band, and let Ty -+ Tp, Y1 -+ Um be ele-
ments of IG(B) with left to right significant indices i1, ,ir; ji,- - , Jr, TESPEC-
tively. If Ty -+ Tp =71 -+ Um, then foranyl € [1,r], T7 -+ Tp =71 -+ Jj,.

Proof. Suppose that z; € B,, for all i € [1,7]. It is enough to consider a single

step, say,
Suppose that the significant indices of wy --- wy are ky,--- , k.. By Lemma 8.4.4,
for any [ € [1,r], we have
UT e W:Tl o o Tllﬂ
and wy, = u'z;,u, where v’ = ¢ or v’ € B, with ¢ > «;,, and either u = ¢, or

u € Bs for some 0 > a, or u € B, and there exists v € By with 0 > «;;, vu = u
and uv = x;,. By the comment proceeding Lemma 8.5.2 we see that in each case,
[

T;, U = T;, so that clearly, wy --- Wy, =27 --- T,

Lemma 8.5.3. Let B be a quasi-zero band, let T1 --- T, € IG(B) be in almost
normal form with Y -length r, left to right significant i1,--- ,i, = n and ordered
Y -components oy, -+ ., and let g7 -+ Ym € 1G(B) be in almost normal form
with Y -length s, left to right significant indices j1,--- ,7s = m and ordered Y -
components [y, ,fBs. Then Ty -+ T = 1 -+ Um in IG(B) if and only if
r=s, =0 and Ty 51 - Ty =Yj 01 - &y, i 1G(B), for each 1 € [1,7],

where ig = jo = 0.
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Proof. The sufficiency is obvious. Suppose now that 77 -+ T, = 1 -+ U, In
IG(B). Then it follows from Lemma 8.4.3 that r = s and a; = §; for all i € [1,7].
From Lemma 8.5.2, we have that 77 --- T;; =71 --- U;, in IG(B), for all [ € [1,r].
Then by the dual of Lemma 8.5.2, 7;,_ 37 -+ T;, =Tj,_,41 - - T; in IG(B). O

Lemma 8.5.4. Let B be a quasi-zero band andw =77 --- T, € BT with x; € By,
for each i € [1,n]. Suppose that there exists an « € Y such that for all i € [1,n],
a; > a and there is at least one j € [1,n]| such that oo = «j. Suppose also that p
is a word in B obtained by a single step (a basic pair splitting or squashing) on
w. Then we have that w' = p’ in 1G(B,), where w' and p' are words obtained by

deleting all letters in w and p which do not lie in B,.

Proof. Suppose that we split z; = wv for some k € [1,n], where v € B, and

v € B,. Then we have

W=2T1 " Tp—1 Tk Tht1 "+ Tpn ~YT1 " Th—1 WU Tgyy =+ Tp = P.

If a, > «, then v,7 > a. Hence w' = p/ in Fa+; of course, they are also equal in
IG(B,).

Ifap=aand pu=7=a, then u £ v or u R v, so that uv is basic in B,. In
I

this case, T, = wv = u v in IG(B,), so that certainly,
p/:<T1 Tk 1>/ﬂ@(l’k+1 mn)/:<fl...m)’fk<m_”x—n)/:wl
in IG(B,).

If o, = aand v > 7 = @, then we have x;, = uv = v as B is a quasi-zero band,

so that

=@ o) @) @ T
=@ - T) U (@ T
= (T1 - Te 1) Tk (Tags - Ta)
:w,

in B, ", so that certainly p/ = v’ in IG(B,).

A similar argument holds if ¢, = a and a =v < 7. O
Lemma 8.5.5. Let B be a quasi-zero band and let xv,- -+ ,Zn, Y1, ,Ym € Ba
for some a € Y. Then with w =71 -+ T, and p =71 -+ Ym we have w = p in

IG(B,) if and only if w = p in IG(B).
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Proof. The sufficiency is clear, as any basic pair in B,, is basic in B. Conversely,

if w = p in IG(B), there exists a finite sequence

W=Wy~ W ~We-++~Ws—1 ~Wsg=D.

Let wy, wi,wh, -+ ,w._;,w, be the words obtained by deleting letters = within

the word such that = € Bz with 8 # a. From Lemma 8.5.4, we have that
wy=w;=wy=---=w, | =w

in IG(B,). Note that w), = wy = w € EJF and w, =ws =p € Fa+, so that w = p
in IG(B,). O

Lemma 8.5.6. Let B be a quasi-zero band. Then the word problem of IG(B) is

solvable.

Proof. The result is immediate from Lemmas 8.3.1, 8.5.3 and 8.5.5. n

8.6 Free idempotent generated semigroups with
Condition (P)

From the above discussion, we know that for any band B, the semigroup 1G(B)
is always weakly abundant with the congruence condition, but not necessarily

abundant. The aim of this section is devoted to finding some special kinds of
bands B for which IG(B) is abundant.

Definition 8.6.1. We say that the semigroup 1G(B) satisfies Condition (P) if
for any two almost normal forms uy -+ W, =01 -+ Uy, € IG(B) with Y -length
r, left to right significant indices i1,--- ,1, = n and ly,--- ,l, = m, respectively,
and ordered Y -components oy, - - - , o, the following statements (with ig = lo = 0)
hold:

(1) w;, L v, impliesu; ---w;, =v7 -+ U, forall s € [1,r].

(ZZ) Ugy+1 R Ul +1 Zmpl@es Ujp+1 " Up = V41 U, fO?” allt € [Oa r—= 1]

Proposition 8.6.2. Let B be a band for which 1G(B) satisfies Condition (P).
In addition, suppose that B is normal (so that B = B(Y'; By, ¢a.p)) 0T quasi-zero.
Then 1G(B) is an abundant semigroup.
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Proof. Let 71 --- T, € IG(B) be in almost normal form with Y-length r, left
to right significant indices 71, - ,7, = n, and ordered Y-components aq, -+ , q,.
By Theorem 8.4.13, 77 --- T;, R 71. We aim to show that 77 --- @;, R* 77.
From Lemma 2.2.6, we only need to show that for any two almost normal forms
U1 -+ Um € IG(B) with Y-length m, left to right significant indices ly, - - - ,ls = m,
and ordered Y-components 31, -+ , 55, and z1 -+ Z; € IG(B) with Y-length ¢, left
to right significant indices ji,---,j; = h, and ordered Y-components ~q,--- , 7,

we have that

Zl...zjta’/‘l...ﬁ: 1”'yl5x1”'xir

implies that zy --- Z;; 71 =41 -+ Wi, T1.

Suppose now that

We consider the following cases:

(i) If 7, aq and fBs, oy are incomparable, then both sides of the above equality

are in almost normal form, so that by Condition (P)

Since 7 - -+ T;; R @;; by Lemma 8.3.2, we have Z; --- Z;, T1 = U1 -+ Ui, Z1.

(ii) If 34 < a3 and S, ay are incomparable, then by Lemma 8.4.12, we know

that Z7 --- Z;,; T1 --- T; has an almost normal form
71 Tﬁxlzjtxl xiv."xlzjtxl""IiU xiv+1 l‘iira
for some v € [1,r], where v, < oy, -+, and v = r or 7y, a4 1 are incomparable.

Hence we have

Zl zjt xlzjtxl “ e xiv...xlzjtxl...xiv xiv+1 P f: 1 yls xl “ e W

T

Note that both sides of the above equality are in almost normal form. It follows
from Corollary 8.4.2 that

(71 Z5, T125,T1 ** Tgy -~ T125,81 "~ Ty Tipi1 Th)@:(myflsﬂﬁ)@
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and so

M o Vi Qogl =0 - Bsag - @

Asv > 1, v = . To avoid contradiction, v = 1, so ;, - -~ 125,21 - - T, = T4y,
and hence by Condition (P)

Zl Tﬁxlzjtxl l’il"'Q?leteTl"'xz’l:T yls xl Tzl
and so
sothatzT Thﬂ:m yill yfﬂ

(iii) If v < oy and fs < oy, then by Lemma 8.4.12 we have the following two

almost normal forms for zy --- Z;; @y --- T, and Yy --- Ui, T1 -+ T;,, namely,

71 th 'lejle xiv...xlzjtx'l...xiv xierl f

r

where v € [1,r] such that 7, < ay, -+, a, and v = r or 7, ay,41 are incomparable,

and

m yls mlylsxl xiu...xlylsxl...xiu xiu+1 Tlr

where u € [1,r] with s < ay,-++ ,a, and u = r or B, a,,1 are incomparable.
Hence by Corollary 8.4.2,

Voo VWt o @ =P1 e By Qg oo G

If v > u, then v, = a,, to avoid contradiction v = 1, so u = 0, contradiction.
Similarly, v < w is impossible. If v = u, then t = s and 8, = ;. If B is a normal
band satisfying Condition (P),

L1251 = $1¢amt = $1¢a1,ﬁs = 1Y, 1

Ti, *** T125, 21 Tiy, = TiyPayiye = Tiy Pan,fe = Tiy * " T1Y1 L1~~~ Ti,

so that by Condition (P), we have

71 . e th xlzjtl‘l xiv...xlzjtxl...xi

v



:m yls xlylsxl xiu...xlylsxl...xl

On the other hand, we have

w*

xlzjtﬂfl xiv...xlzjtml...xiv :xlylsxl xiu...xlylsxl...xi

which is R-related to x;zj;,21, and so

21 Zj T125X1 = Y1 Yi, DY T,

and hence

Z1 v Tﬂxil:m ylsfl

u
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Suppose now that B is a quasi-zero band. First suppose that v = u = 1. Then

by Lemma 8.5.2 we have

71 Zj, T1ZT1 ¢ Tiy L1281 Tgy
=Y[ - Y. TIYLTL -+ Tq, - TYLT1 Tgy
and so
Z1 Zj, T1 Tiy, = U1 Yi, T1 iy
so that
2L Zp =Y Y T
Suppose now that v = u > 1. By assumption s = 3 < oy, -+, Q.

We claim

that there exists no j € [1,v] such that v = «;; otherwise we will have «a;, a1

are comparable if v > j or «,, a,_1 are comparable if v = j. Hence

’Yt:ﬁs<ala"'>av-

Since B is a quasi-zero band, we have

Z".Tﬁw...xiv“'xlzjt%l'..xivxiu"rl xlr:Z
and
Yr oo Uiy T Tyt Ty, Tl Tt Ty, Tyl Ti, =1

. %xiv+1
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so that it follows from Lemma 8.5.2 that

Zl"'Tﬁ: 1...fyls

and so certainly

Z1 v Tﬁﬂ:m ylsxil

(iv) If v < ay and fBs > aq, then by Lemma 8.4.12 we have the following two

almost normal forms for zy --- Z;; @1 --- T, and Y1 --- U, T1 - Ty, , namely,
71 Tjt'rlzjle xiv...xlzjtx'l...a;iv xierl Tlr
for some v € [1,7] with v < ay, -+ ,, and v = 7 or v, @,y are incomparable,
and
Yro Y Yt Tl Yl YTl Tyt T,
for some u € [0,s — 1] with B,41,--+,08s > a1 and (,,a; are incomparable or

u = 0. It follows from Corollary 8.4.2 that

AL o Vg QgL v Qp =1 -+ Byag - Q.

Note that both sides of the above are normal forms of IG(Y). As v > 1, 3 = ay,
so that to avoid contradiction we have v = 1 and so x;, - -~ 212,71 - - T, = T4,
and hence by Condition (P)

71 Tﬁxlzjt$l xil...xlzjtxl...xil
=Y Yl Yttt YT Yk YTl Ty Ty
and so
Z1 o Z T Ty, =Y Ui, X1t Tips
which implies z1 -+ Z;, T1 = U1 - Ui, 1.

(v) If v > aq and s > ay, then by Lemma 8.4.12 we have the following two

almost normal forms for zy --- Z;; @y --- T, and Yy --- Yy, T1 - Ty, , hamely,

Zl...zjv Zjv‘f‘l..'zjtxlzjt."zjv"rl . o thxlzjtfl . o Tll N Tlr
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for some v € [0,¢ — 1] such that ~,.1,--- ,% > a1 and 7,, ay are incomparable or
v =0, and

m- ) .yTu yl1l.+1 e ylsxlylg e yl1L+1 e ylsxlyls Tl e Tzl e TILT‘
for some u € [0,s — 1] such that By,41, -+, 55 > oy and [, «; are incomparable

or u = 0. Hence by Condition (P),

T G A A G, T T
:E% Yiy+1 Y, Tl - Yr+1 0 Yi, Tl Ty - Ty,
so that
2 2, T Ty, =Y Ui, T1 o Ty
and hence z1--- Z;, Ty = Y1 -+ - Ui, T1.

(vi) If 74 > a3 and fs, ay are incomparable, then by Lemma 8.4.12

210 Zjy gl R %G gl Z L%, Tyt Tyttt Ty,
:E.yilsajil PN Tﬂ PPN TZT
for some v € [0,t—1] with 7,41, -, ¥ > a1 and 7, @; are incomparable or v = 0.

Note that both sides of the above equality are in almost normal form. Again by
Condition (P)

Zl---Zjv Zju+1--.zjtl’1zjt-..Zj1)+1 ... Z]tl’lz‘]t xl DR 1’11 e 1-..yls :El DR m'Ll

so that

and hence z1--- Z;, Ty = Y1 - -+ Ui, T1.
From the above discussion, we can deduce that 77 --- 7;  R* 71, and similarly

we can show that 77 --- T;, £* T;,, so that IG(B) is an abundant semigroup. [

We now aim to find examples of normal bands B for which IG(B) satisfies
Condition (P), so that by Proposition 8.6.2, IG(B) is abundant.

A band B = U B, is called a simple band if it is a semilattice Y of rectangular
acY

bands B,, a € Y, where B, is either a left zero band or a right zero band.
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Lemma 8.6.3. Let B = U B, be a simple band and let e € B, and f € Bg.
acY

Then (e, f) is a basic pair in B if and only («, ) is a basic pair in'Y, i.e. if and

only if a and 8 are comparable in'Y .

Proof. Since the necessity is clear, we are left with showing the sufficiency. With-
out loss of generality, suppose that o < g. Then ef, fe € B,. As B is a simple
band, we have B, is either a left zero band or a right zero band. If B, is a left
zero band, then e(ef) = e, i.e. ef = e, so (e, f) is a basic pair. If B, is a right
zero band, then (fe)e = e, i.e. fe = e, which again implies that (e, f) is a basic

pair. ]

It follows from Lemma 8.6.3 that for a simple band B, every element 77 --- T,
of IG(B) has a special normal form (of course, which may not unique), say,

T Um € IG(B) with y; and y;,1 incomparable, for all i € [1,m — 1].
Lemma 8.6.4. Let B be a simple band. Then 1G(B) satisfies Condition (P).

Proof. Let 71 -+ T, = Y1 -+ Um € IG(B) be in almost normal form with Y-
length r, left to right significant indices ¢y, - - - , 7, = n, j1, -+ , j» = m, respectively,
and ordered Y-components ay,- - ,a,. It then follows from Corollary 8.4.5 that
for all s € [1,7],

U1 Y5, =T1 -+ Ty, €1 -+ €y (in which we remove the empty word)

where for all k € [1,m], e € Bs, with §; > «a;,. By Lemma 8.6.3, we have

T, €1 B = T561 Em,

so that if we assume z;, £ y;,, then

=7 © T, €1 € Ty
=7 © T 1 e Ty
=7 © Ly

Together with the dual, we have shown that IG(B) satisfies Condition (P). O

Corollary 8.6.5. Let B be a simple normal band. Then 1G(B) is abundant.
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Let B = B(Y; By, ¢a.) be a normal band. We say that B is a trivial normal
band if for every o € Y, there exists a a, € B, such that for all 8 > o, x¢g . = a,.

Lemma 8.6.6. Let B = B(Y; B,, ¢a3) be a trivial normal band. Then 1G(B)
satisfies Condition (P).

Proof. First note that since B is a trivial normal band, there exists a, € B, be
such that for any 8 > a and u € Bg, ugs . = a,.

Let ZT1 -+ Tp =71 -+ Um € IG(B) be in almost normal form with Y-length
r, left to right significant indices i1,--- ,i, = n, ji,- -, j, = m, respectively, and
ordered Y-components ayq, - -+, a,. It follows from Corollary 8.4.5 that

Ui - Y;, =T1 -+ T U --- U, (in which we remove the empty word)

such that for all k£ € [1, s] we have u;, € By, with 0, > «,, so that Uk Doy s, = Qous,

or u, € Bail with vyup = w, for some v, € B, such that n, > «;, and
in this case we have Aoy, Uk = Ug, SO that Ao, R uy. Thus the idempotents
ulqb(;h%, e ,usqb(;s,ail are all R-related, and so

Til Uy -+ Us = Tzl u1¢61,ail T uqu(Ss,Oéil = Tzl u1¢61,ail e u5¢6s,ail .

/110
s

On the other hand, we have y;, = u u T, Uy - - ug, where up € B, with
o > «;. Hence if we assume that z;, £ y;,, then z;, = x;u;---u,, and so

xil = xil (u1¢51,ail) o (usgbés,ail )7 S0 tha‘t

T, u1¢51,ail T u5¢6s,ail = Ty, (u1¢51,ail) T (us(bés,ail) =T

Hence y1 --- U5, =1 -+ T;, as required. [

Corollary 8.6.7. Let B = B(Y; By, ¢ap) be a trivial normal band. Then 1G(B)

is an abundant semigroup.

8.7 A normal band B for which IG(B) is not

abundant

From Section 8.6, we know that the free idempotent idempotent generated semi-

group IG(B) over a normal band B satisfying Condition (P) is an abundant
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semigroup. Therefore, one would like to ask whether for any normal band B,

IG(B) is abundant. In this section we will construct a 10-element normal band
B for which IG(B) is not abundant.

Throughout this section, B denotes a normal band B(Y'; By, Yba.s)-

Lemma 8.7.1. Let B be a normal band, and let x € Bg,y € B, with 3,7 > a.

Then (z,y) is a basic pair implies (xdg.a, YP.a) 15 a basic pair and

($¢B,a) (y¢7,a) = (my)qu,

where § is minimum of 5 and .

Proof. Let (x,y) be a basic pair with « € Bg,y € B,,. Then j,~ are comparable.
If 5 > 7, then we either have zy =y or yxr = y. If 2y =y, then (z¢s,)y =y, so

YPra = ((2051)Y) 00 = (X0p,0) (YPy.a),

SO (T0g,a, YPry.a) is & basic pair. If yr =y, then y(x¢g.), so

y¢7,a = (y($¢ﬁ7’7))¢'y,a = (ygb%a)(xgbﬁ,a),

so that (2¢s,4, Yp+.a) is a basic pair.
A similar argument holds if v > 5. The final part of the lemma is clear. [

Lemma 8.7.2. Letuy --- @, € IG(B) withu; € B,, and a; > « for alli € [1,n].
Suppose that Ty --- Uy, € 1G(B) with v; € Bpg, for all i € [1,m] is an element
obtained by single step on uy --- W, (note that 5; > «, for all i € [1,m]). Then
in IG(B,) we have

ul¢0¢1,0¢ tre un¢a7ua - U1¢617Oé T Um¢67rL7a'

Proof. Suppose that w; = zy is a basic product with « € Bs,y € B,, for some
i € [1,n]. Note that the minimum of § and 7 is «;. Then

W Uy~ U TY Wt e Uy
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If follows from Lemma 8.7.1 that in IG(B,)

ul¢o¢1,a te un¢an,a = ul¢o¢1,o¢ T Ui—1¢ai,1,a Ui¢ai,o¢ ui+1¢ai+1,o¢ T un¢an,a
= Ul(bm,a T Ui71¢a¢,1,a $¢5,a?/¢n,a ui+1¢a¢+1,a T un¢an,a
— ul(bozl,a T uifl(bai,l,a x(bzs,a y¢n,a ui+1¢ai+1,a T un¢an,a
as required. O

Corollary 8.7.3. Let x1,--- ,Zp, Y1, yYm € Bo. Then Ty -+ Ty =71 - Um
in IG(B,) if and only if the equality holds in 1G(B).

Proof. The necessity is obvious, as any basic pair in B, must also be basic in B.

Suppose now that we have

in IG(B). Then there exists a sequence of transitions

using basic pairs in B. Note that all idempotents involved in the above sequence
lie in By for some 8 > a, so that successive applications of Lemma 8.7.2 give
Tl...fn:%...yfminIG(Ba)_ O

We remark here that for an arbitrary band B, Corollary 8.7.3 need not be

true.

Example 8.7.4. Let B = B, U Bg be a band with the semilattice decomposition
structure and the multiplication table defined by

Bg

Figure 8.9: the semilattice decomposition structure of Example 8.7.4
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Figure 8.10: the multiplication table of Example 8.7.4

It is easy to check that B forms a band. By the uniqueness of normal forms
in IG(Bg), we have / w # w' in IG(Bs). However in IG(B) we have

=u'lw (as (u,1) is a basic pair)

=o' lw (as (I,w) is a basic pair)

With the above preparations, we now construct a 10-element normal band B
for which IG(B) is not abundant.

Example 8.7.5. Let B = B(Y'; B,, ¢a,3) be a strong semilattice Y = {a, 5,7, 6}
of rectangular bands (see the figure below), where ¢, g : B, — Bj is defined by

a(ba,ﬁ =€, b¢a,,8 = f7 C¢a,,8 =4, d¢a,ﬁ =h

the remaining morphisms being defined in the obvious unique manner.
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al|b
Ba cld
el f \
By g h /Bv
Bs

Figure 8.11: the semilattice decomposition structure of Example 8.7.5

Now we consider an element € T € IG(B), then we have

ev==edv
=edv (as (d,v) is a basic pair)
=ehv (ased==¢dgp,s==eh by Corollary 8.4.8)
=ehav
=ehav (as (a,v) is a basic pair)
=ehev (asha=hap,p=heby Corollary 8.4.8)

However, e h € # € in IG(Bg) by the uniqueness of normal forms, so by Corollary
8.7.3, we have € h € # ¢ in IG(B), which implies € ¥ is not R*-related to e. On
the other hand, we have known from Theorem 8.4.13 that € © R €, so that by
Lemma 2.2.5 that € 7 is not R*-related any idempotent of B, so that IG(B) is

not an abundant semigroup.



Chapter 9
A plan for further work

Let me finish the writing of my PhD thesis by giving a brief proposal for further
work.

First of all, as we have already seen, for the biordered sets E of idempotents
the full transformation monoid 7, on n elements and the endomorphism monoid
End F,(G) of a rank n free (left) G-act F,(G), the maximal subgroups of IG(E)
containing a rank r idempotent ¢ € E, where 1 < r < n — 2, are isomorphic to
that of the original semigroup, which are known to be S, and G S,., respectively.
However, the result for the matrix monoid M, (D) of all n x n matrices over a
division ring D has only been obtained for r restricted to r < n/3. Hence, my
next focus is to investigate the higher rank cases for M, (D), and for some very
special reason, I will start with the case in which » = 2 and n = 6. I have obtained
the result for the case r = 2 and n = 4 by hand calculation, in which I can show
that the maximal subgroup here is isomorphic to the 2 dimensional general linear
group GLo(D).

Secondly, we would like to continue the study of maximal subgroups of IG(E),
where E is the biordered set of idempotents of the endomorphism monoid End A
of an independence algebra A of finite rank n. In Chapter 7 we deal with a
very special case, namely, independence algebras with no constants and r = 1;
we therefore are far from getting a whole picture for the maximal subgroups in
terms of a general independence algebra. The diverse methods needed in the
biordered sets of T, M,(D) and End F,,(G) suggest that it would be very hard
to find a unified approach to End A. However, given the main strategies we have

applied in the work of free left G-acts, it is hopeful to work out a general proof
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for independence algebras with no constants, with rank r < n/3, by some similar
discussions to that of End F,(G), and in the mean time, we would get a set
of generators for all elements of Aut B in the sandwich matrix, where B is a
subalgebra of A with rank r. The problem for higher rank is, first finding a
presentation for Aut B and then showing that it gives us the maximal subgroup
of IG(FE) with a rank r idempotent.

After that, we intend to change our main focus to the general structure of a
free idempotent generated semigroup IG(E) over a biordered E. In this thesis,
we considered a very special kind of biordered set, namely, bands, and it is proven
that for any band B, IG(B) is always a weakly abundant semigroup with the
congruence condition. Does this result hold for an arbitrary biordered set? Or
perhaps for an arbitrary regular biordered set?

Another question in this direction is the word problem of IG(B), where B is a
band. Does IG(B) always have a solvable word problem, for a finite band B, and
if not, is the word solvable in IG(B) equivalent to that of the maximal subgroups?
A recent but not yet published work of Dolinka, Gray, and Ruskuc gives a negative
answer to both of the above questions! However, the whole story has not been
finished... What would happen for a normal band? Recently, we have worked out
a special kind of normal bands on which IG(B) has a solvable word problem. So,
it would be interesting to investigate the word problem of IG(B) over a normal
band B.

An interesting and valuable question provided by Professor John Fountain is:
Let E be the biordered set of a regular ring R. Then what can we say on IG(F)
here? It would be a completely new direction in the study of biordered sets and
free idempotent generated semigroups.

The final thing I would like to say is about the freeness of maximal subgroups
of IG(E). We have already known that for the biordered set E of idempotents
of a completely O-simple semigroup S, the maximal subgroups of IG(E) here are

free groups. Would the same be true for 0-simple semigroups?
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