
Mutation-Optimised Subdomains

for Test Data Generation and

Program Analysis

Matthew Timothy Patrick

Doctor of Philosophy

University of York

Department of Computer Science

September 2013

mailto:mtp@cs.york.ac.uk
http://www.york.ac.uk
http://www.cs.york.ac.uk

For my devoted wife, Yalan.

Abstract

Software testing is an important part of the development process -

it consumes a large proportion of the labour resources required to

produce a working program. Yet it is not usually possible to show

that a program is completely free from faults. Instead, techniques are

applied to assess the effectiveness of software testing; they provide

confidence in its adequacy and act as a benchmark for its improve-

ment. One such technique (mutation analysis) uses small changes in

the program code to simulate actual faults. Mutation analysis has

been shown to be more stringent than other testing techniques and a

good predictor of the real fault-finding capability of a test suite.

This thesis introduces new techniques for identifying, evolving and se-

lecting input subdomains that can be sampled at random to produce

efficient test suites which achieve a high level of mutation adequacy,

and so are expected to be efficient at finding faults. Previous research

into software testing has focussed on producing suites of individual

test cases. This thesis represents the first attempt to optimise subdo-

mains for each parameter to the program under test. The resulting

subdomains can easily be comprehended by a human test engineer,

so may be used to provide information about the software under test

and design further highly efficient test suites.

iii

iv

Table of Contents

0 Front Matter iii

Abstract . iii

Table of Contents . v

List of Figures . xi

Acknowledgements . xv

Declaration . xvii

1 Introduction 3

1.1 Software Testing . 4

1.2 Mutation Analysis . 6

1.3 The Problem Addressed by this Thesis 8

1.4 Aims and Objectives . 8

1.5 Thesis Structure . 9

2 Literature Review 11

2.1 Mutation Analysis vs. Structural Criteria 11

2.1.1 Control-Flow Criteria . 12

2.1.2 Data-Flow Criteria . 13

2.1.3 Summary . 13

2.2 Solutions for Overcoming the Limitations of Mutation Analysis . . 14

2.2.1 Equivalent Mutants . 14

2.2.1.1 Detecting Equivalent Mutants by Hand 15

2.2.1.2 Detecting Equivalent Mutants Automatically . . 16

2.2.1.3 Detecting Equivalent Mutants Indirectly 18

2.2.1.4 Preventing Equivalent Mutants 19

v

TABLE OF CONTENTS

2.2.2 Too Many Mutants . 20

2.2.2.1 Mutant Sampling 20

2.2.2.2 Mutant Clustering 21

2.2.2.3 Selective Mutation 22

2.2.3 Unrealistic Mutants . 25

2.2.3.1 Higher-Order Mutants 25

2.2.3.2 Semantic Mutants 26

2.2.4 Difficult to Kill Mutants 28

2.2.4.1 Symbolic Execution 28

2.2.4.2 Dynamic Symbolic Execution 30

2.2.4.3 Search-Based Test Data Generation 32

2.3 Improvements upon Random Testing 36

2.3.1 Random Testing . 36

2.3.2 Adaptive Random Testing 37

2.3.3 Partition Testing . 39

2.3.4 Partition and Adaptive Random Testing 40

2.3.5 Testing in High Dimensionality 42

2.3.6 Statistical Testing . 43

2.4 Static Analysis . 44

2.4.1 Code Scans . 44

2.4.2 Abstract Interpretation . 45

2.4.3 Summary . 46

3 Evolving Subdomains for Mutation Adequacy 47

3.1 Introduction . 47

3.2 Subdomain Optimisation . 49

3.3 Experiments . 52

3.4 Methodology . 53

3.4.1 Methodology for RQ1 . 53

3.4.2 Methodology for RQ2 . 55

3.4.3 Methodology for RQ3 . 57

3.4.4 MuJava: Mutation Tool 58

3.4.5 Equivalent Mutants . 58

vi

TABLE OF CONTENTS

3.4.6 Random sampling . 58

3.4.7 Test Subject Programs . 59

3.5 Results and Analysis . 60

3.5.1 Results for RQ1 . 60

3.5.2 Results for RQ2 . 65

3.5.3 Results for RQ3 . 67

3.6 Summary . 74

4 Efficient Sets of Subdomains for Mutation Adequacy 75

4.1 Introduction . 75

4.2 Optimising Multiple Sets of Subdomains 77

4.2.1 Covariance Matrix Adaptation Evolution Strategy 78

4.2.2 Fitness Function for Evolving Sets of Subdomains 79

4.2.3 Subdomain Representation 79

4.2.4 The Core Optimisation Algorithm 80

4.2.5 Program Stretching . 82

4.2.6 Experiments . 84

4.2.6.1 Methodology for RQ4 85

4.2.6.2 Methodology for RQ5 86

4.2.6.3 Test Subject Programs 87

4.2.7 Results . 88

4.2.7.1 Results for RQ4 88

4.2.7.2 Results for RQ5 90

4.3 Subdomain Set Selection . 92

4.3.1 Sequential Floating Forward Selection 93

4.3.2 Subdomain Set Selection Using SFFS 94

4.3.3 Experiments for RQ6 . 95

4.3.4 Results for RQ6 . 96

4.4 Summary . 99

vii

TABLE OF CONTENTS

5 Mutant Evaluation by Static Semantic Interpretation 101

5.1 Introduction . 101

5.2 Difference-Based Interpretation 103

5.2.1 Mutant Semantics . 103

5.2.2 Symbolic Execution . 104

5.2.3 Semantic Interpretation 105

5.2.4 Experiments for RQ7 . 108

5.2.4.1 Test Subject Programs 108

5.2.4.2 JPF-Symbc: Symbolic Execution Tool 110

5.2.5 Results for RQ7 . 111

5.3 Probability-Based Interpretation 116

5.3.1 Boolean Expressions . 116

5.3.2 Bit Vectors . 117

5.3.3 Numerical Expressions . 118

5.3.4 String Operations . 119

5.3.5 Objects . 120

5.3.6 Control Flow Probability 120

5.3.7 Example . 122

5.3.8 Experiments for RQ8 . 124

5.3.9 Test Subject Programs . 125

5.3.10 Results for RQ8 . 125

5.3.11 Results for RQ9 . 130

5.4 Summary . 132

6 Conclusions 133

6.1 Summary of Achievements . 133

6.2 Limitations of my Research . 136

6.3 Future Work . 137

6.3.1 Optimising Distributions for Entire Input Domain 137

6.3.2 Static Analysis Heuristic for Mutant Propagation 137

6.3.3 Distribution-based Semantic Interpretation 138

viii

TABLE OF CONTENTS

A Mutation Operators 139

A.1 Mutation Operators used by MuJava 139

A.2 Mutation Operators used by Mothra 140

B Experimental Data 141

B.1 Random Seeds (one for each trial) 141

B.2 K-means Clustering for SVD Subdomains 142

Bibliography 143

ix

TABLE OF CONTENTS

x

List of Figures

1.1 A Simple Syntactic Mutation . 6

1.2 The Process of Mutation Analysis 7

2.1 Example of Static and Amorphous Program Slicing 16

2.2 Equivalent Mutants Detected by Compiler Optimisation 17

2.3 Proportion of Equivalent Mutants by Operator 19

2.4 Two Clustering Techniques . 21

2.5 Class-based Mutation . 23

2.6 Least Angles Regression (LARS) 23

2.7 Classification of Higher-Order Mutants 25

2.8 Using Symbolic Execution to Generate Test Data 28

2.9 Instrumenting Code for Weak Mutation 31

2.10 Example of Approach Level and Branch Distance 33

2.11 Goal Coverage: Three Types of Branch 34

2.12 Example of the Chaining Approach 34

2.13 Three Fault Patterns . 37

2.14 Adaptive and Restricted Random Testing 38

2.15 Restricted Neighbourhood for High Dimensions 42

2.16 Example of Abstract Interpretation 45

3.1 Mutation Scores for Random Test Suites and Evolved Subdomains 63

3.2 Mutation Scores for Subdomains with Different Distributions . . . 66

3.3 Lower Boundaries for ‘y’ (Input Parameter of Power) 67

3.4 Upper Boundaries for ‘y’ (Input Parameter of Power) 67

3.5 Lower Boundaries for ‘x’ (Input Parameter of TrashAndTakeOut) 68

xi

LIST OF FIGURES

3.6 Upper Boundaries for ‘x’ (Input Parameter of TrashAndTakeOut) 68

3.7 Upper Boundaries for ‘Cur Vertical Sep’ (Input Parameter of TCAS) 68

3.8 Chance values for ‘High Confidence’ (Input Parameter of TCAS) . 68

3.9 Lower Boundaries for ‘side1’ (Input Parameter of TriTyp) 69

3.10 Upper Boundaries for ‘side1’ (Input Parameter of TriTyp) 69

3.11 Size of Subdomains for ‘cual’ (Input Parameter of FourBalls) . . . 70

3.12 Size of Subdomains for ‘a’ (Input Parameter of FourBalls) 70

3.13 Centre Points for ‘prio 1’ (Input Parameter of Schedule) 70

3.14 Size of Subdomains for ‘prio 1’ (Input Parameter of Schedule) . . 70

3.15 Power Optimisation Process . 72

3.16 TrashAndTakeOut Optimisation Process 72

3.17 FourBalls Optimisation Process 72

3.18 TCAS Optimisation Process . 72

3.19 Cal Optimisation Process . 73

3.20 TriTyp Optimisation Process . 73

3.21 Schedule Optimisation Process . 73

3.22 Replace Optimisation Process . 73

4.1 Optimising Multiple Sets of Subdomains 77

4.2 Covariance Matrix Adaptive Evolution Strategy (CMA-ES) 78

4.3 Flowchart of the Program Stretching Process 83

4.4 Percentage of Mutants Covered by Evolved Subdomains 91

4.5 Frequency of Subdomains Selected for TCAS Subsets of Size 10 . 97

4.6 Percentage of Mutants Covered by Evolved Subdomains 98

5.1 Example of Symbolic Execution 104

5.2 JPF-Symbc Extension for Java Path Finder 110

5.3 Relative Mutation Score of Selected Mutants 114

5.4 Correlation between Mutation Score and Selection Size 114

5.5 Relative Killing Frequency of Selected Mutants 115

5.6 Correlation between Killing Frequency and Selection Size 115

5.7 Mutation Score Achieved by Difference-Based Selection 128

5.8 Mutation Score Achieved by Probability-Based Selection 128

5.9 Mutation Score Correlations for Each Selection Technique 128

xii

LIST OF FIGURES

5.10 Killing Frequency Achieved by Difference-Based Selection 129

5.11 Killing Frequency Achieved by Probability-Based Selection 129

5.12 Killing Frequency Correlations for Each Selection Technique . . . 129

5.13 Effect of Mutant Selection on Potential for Subdomain Reduction 131

5.14 Mutation Score of Subdomains on Different Selections of Mutants 131

xiii

LIST OF FIGURES

xiv

Acknowledgements

I would like to thank my supervisor, John A. Clark for providing me

the opportunity to undertake this PhD and for his support, encour-

agement and guidance throughout its completion. I would also like

to thank my second supervisors, Manuel Oriol and Rob Alexander for

their invaluable suggestions and feedback on my work.

I am grateful to David White, Kamran Ghani and Kiran Lakhotia

for inspiring me at the beginning of my PhD and helping me to get

started on the right track with my research. I would like to thank

Matt Beech for his advice and assistance in preparing for my viva. I

also appreciate the various fruitful discussions about mutation testing

I have had with Yue Jia and Mike Papadakis. Yue Jia in particular

has been a great source of motivation for me to finish this thesis.

The achievements of my PhD would not have been possible without

the continued support of my parents who made it possible and en-

couraged me to pursue my passion in computer science. Finally, I

would like to thank my wife Yalan for her endless patience and love

both during the enjoyable and the difficult times of this project.

xv

xvi

Declaration

I, Matthew Timothy Patrick, declare that all the work in this thesis is my

own, except where attributed to another author. Some ideas and figures have

appeared in the following publications:

Matthew Patrick, Manuel Oriol and John A. Clark. MESSI: Mutant Evalua-

tion by Static Semantic Interpretation.

Proceedings: Mutation 2012

Matthew Patrick, Rob Alexander, Manuel Oriol and John A. Clark. Using

Mutation Analysis to Evolve Subdomains for Random Testing.

Proceedings: Mutation 2013

Matthew Patrick, Rob Alexander, Manuel Oriol and John A. Clark. Efficient

Subdomains for Random Testing.

Proceedings: SSBSE 2013

Matthew Patrick, Rob Alexander, Manuel Oriol and John A. Clark. Selecting

Highly Efficient Sets of Subdomains for Mutation Adequacy.

Proceedings: APSEC 2013

Matthew Patrick, Rob Alexander, Manuel Oriol and John A. Clark. Probability-

Based Semantic Interpretation of Mutants.

Proceedings: Mutation 2014

Matthew Patrick, Rob Alexander, Manuel Oriol and John A. Clark. Subdomain-

Based Test Data Generation.

Journal of Systems and Software [under review]

xvii

xviii

Chapter 1

Introduction

Software testing is the process of exercising software so as to check whether it

functions correctly [110]. Software testers look for errors by generating and exe-

cuting test inputs according to the specification (black-box) or internal structure

(white-box) of the software. Black-box and white-box techniques cannot typi-

cally be used to test software exhaustively [110]. Programs have too many paths

and potential input values to test them all. As a result, black-box testing is of-

ten performed using randomly chosen inputs and white-box testing is considered

adequate once a certain set of structural components are covered by the test suite.

This thesis introduces a new technique that combines elements from black-

box and white-box testing. Regions of the input domain (known as subdomains)

are optimised, such that random test cases sampled from them are more likely to

detect faults efficiently. Test suites produced using this technique are typically

more effective than in traditional random testing and the tester is able to choose

values from within the subdomains that are representative of actual inputs.

Significant human effort is required to evaluate test cases [105]. Existing

techniques generate input values that are scattered across the entire input domain.

McMinn et al. [105] suggest that test inputs can be evaluated more quickly if

their values are closer together. Subdomains make testing less expensive because

they reduce the range of inputs testers must consider and decrease the number of

test cases that they have to evaluate. Subdomains may be sampled randomly to

produce efficient test suites, or the information gained through their optimisation

can be used by testers to construct even more powerful test suites themselves.

3

1. INTRODUCTION

1.1 Software Testing

Software testing is used to provide confidence in the correctness of software [110].

Inadequate testing may result in software products that are unsatisfactory or

unsafe. For example, during the first Gulf war, a rounding error in a Patriot

surface-to-air missile battery led to it failing to identify an incoming Iraqi Scud

missile [17]. As a result, 28 American soldiers were killed and many more were

injured. In 2012, an undisclosed fault in a high frequency trading program caused

a financial services firm (Knight Capital Group) to lose $440 million in 30 minutes

[71]. The firm lost 75% of the value of its stock in two days and was sold to another

trading company four months later. Software failures can be very expensive

to developers and/or users. Testing is a key part of the software development

lifecycle because it helps to ensure that programs function as intended.

Developers make various kinds of mistakes, ranging from incorrectly interpret-

ing the specification through to underestimating the usage requirements or just

plain typographic mistakes [16]. Developer mistakes are known as faults. More

broadly, a fault is defined as an incorrect step, process or data definition within a

program [77]. Faults lead to errors in software behaviour. Software testing is the

process of executing a program with the intent of finding as many of its errors as

possible [110]. Software is executed with a set of inputs and conditions known as

a test case. A collection of test cases is called as a test suite. Software testing

therefore involves three stages: Designing test suites capable of finding faults,

executing of test cases and determining whether the output is correct [16].

Software is particularly difficult to test because it is intangible, unique and

highly specialised to a particular purpose [99]. It is estimated that between 30-

90% of the labour resources required to produce a working program are spent

on software testing [16]. For example, Microsoft employ approximate one test

engineer for every developer [126]. Yet, despite this investment many faults are

often missed. The Java Compatibility Kit [144] is an extensive test suite devel-

oped by Sun for the Java Development Kit (JDK), yet there are still thousands

of additional JDK bug reports in Sun’s bug database [124]. Most programs have

too many paths to show that they are all correct [43]. The problem of testing is

therefore two-fold: first it is very expensive; second it is often incomplete.

4

1.1 Software Testing

Automatic software test data generation tools have been developed in an

attempt to save time and money, as well as improve the standard of testing

[96]. Test outputs can be checked automatically for run-time errors, assertion

violations and incorrect outputs. Any program, process or body of data that

specifies the expected outcome of a test suite is known as an oracle [16]. The

quality of testing depends upon the quality of the oracle. Automated testing is

best suited to stable, well understood software whose specification is accurate

and whose functionality does not change frequently [45]. Unfortunately software

typically does not start in this state, even if it does get there eventually.

Considerable manual effort is required to construct effective test oracles and

then update them as and when the software changes [45]. Many automated

testing initiatives have failed due to poor planning and misunderstandings of the

limitations involved [111]. It is also difficult to automate some oracles because

they rely on expert insight. Weyuker [152] suggests as an example that a financial

specialist may be able to distinguish whether a company’s assets are correctly

reported as $1,000,000 or $1,100,000, but it would be difficult to specify this

formally because even the expert does not know what the exact result should be.

Manual testing is often performed to a poor standard because it is repetitive and

boring [110]. An important objective is to minimise the number of test cases that

testers have to evaluate manually to ensure a high standard of testing.

It is dangerous to evaluate test quality purely in terms of the number of faults

that are found because finding many faults may indicate good test data or poor

software. Test data should be considered to provide sufficient confidence in the

quality of software if it achieves some independent adequacy criterion. Zhu et al

[160] describe three categories of adequacy criteria: Structural criteria emphasise

the need to exercise particular components in the program code (statements,

branches, paths etc.); Error-based criteria ensure the input domain is covered

thoroughly (e.g. by partition testing); Fault-based criteria, the focus of this thesis,

acknowledge testing as adequate if it detects a range of artificially introduced

mistakes in the software. Fault-based criteria are considered superior because

they measure the actual ability of a test suite to find faults (of course this depends

on how representative the faults are). I use a fault-based criterion to help testers

focus on regions of the input domain that are more likely to reveal faults.

5

1. INTRODUCTION

1.2 Mutation Analysis

Mutation Analysis is a fault-based testing technique based around the idea that

small syntactic changes can be used to simulate actual faults. The concept was

first introduced in 1971 by Richard Lipton [94]. Since then, there have been over

400 research papers and at least 36 software tools have been developed [78][79].

Mutation analysis is supported by the competent programmer hypothesis (experi-

enced programmers produce programs that are either correct or very close to being

correct) [24] and the coupling effect hypothesis (test suites capable of detecting

all the simple faults in a program can also detect most of the more complex ones)

[41]. Developers may understand how the program should behave and have made

a small mistake in its implementation, or have a slight misconception about the

intended behaviour and carry it through to the implementation. In either case,

small syntactic changes are sufficient to represent most faults [115].

A mutant is a copy of the original program that has had a small syntactic

change (known as a mutation) made to its logical and arithmetic constructs.

Mutations are typically applied one at a time. For example, in Figure 1.1, the

greater-than inequality of line 1 has been replaced with a greater-than-or-equal-to

inequality. A mutant is said to be killed by input values that cause it to output a

different result to the original program. The mutant in Figure 1.1 is killed when

the value of ‘a’ is equal to 10 and the value of ‘b’ is not equal to zero. Mutation

analysis evaluates test suites according to the mutants they kill. A test suite is

considered to be effective if it kills a large proportion of the mutants.

Figure 1.1: A Simple Syntactic Mutation

6

1.2 Mutation Analysis

Mutation analysis can be applied iteratively to help improve the quality and

efficiency of a test suite (see Figure 1.2). The proportion of mutants killed by

the test suite is known as its mutation score (see Equation 1.1). This value may

be used to indicate weaknesses, since if the test suite fails to kill some of the

mutants, it is also likely to miss actual faults. Test cases are typically added or

removed in an attempt to kill the remaining mutants as efficiently as possible.

Some mutants cannot be killed, since they function equivalently to the original

program for every possible input; they are typically removed from the calculation,

so that mutation score is correctly scaled between 0 and 1. Mutation analysis is

applied and the test suite is improved until it is able to kill all (or most of) the

non-equivalent mutants. The intention is that by improving the test suite against

a set of mutants, its ability to detect actual faults is also improved.

Mutation score =
number of mutants killed

number of non-equivalent mutants
(1.1)

Figure 1.2: The Process of Mutation Analysis, adapted from [121]

7

1. INTRODUCTION

1.3 The Problem Addressed by this Thesis

Test data generation techniques have proven to be effective at achieving a high

mutation score [128][51][65]. Yet they provide little feedback about the relation-

ship between input values and fault detection. For example, when a test case is

generated to kill the mutant in Figure 1.1 using the value 10 for ‘a’ and ‘b’, it is

unclear whether this value is significant, or if other values might also kill the same

mutant. Test suites produced automatically contain test cases that are obscure

and difficult to understand [105]. As a result, testers may become separated from

the test generation process and this can lead to poor quality testing.

Subdomains offer a solution to this problem. To have a high probability of

killing the mutant in Figure 1.1, the subdomain for ‘a’ must be small and include

the value 10, whereas the subdomain for ‘b’ can be much larger. It is clear from

optimising subdomains for this mutant that the value 10 is important for ‘a’, but

not for ‘b’. Looking at the code, the tester can see that this value occurs in the

branch condition on line 1. When applied to programs, subdomains can highlight

execution scenarios a tester may have missed. This helps to reduce the human

effort involved in testing and increase the tester’s ability to find faults.

1.4 Aims and Objectives

The main aim of this thesis is to make software testing more efficient by in-

troducing new techniques for identifying and evaluating efficient sets of input

subdomains for test data generation. I do this through a combination of random

testing, mutation analysis, metaheuristic optimisation and static analysis.

The detailed objectives of this thesis are as follows:

1. Apply subdomain optimisation so as to reduce the number of test cases and

input regions that must be evaluated by software testers.

2. Specialise subdomains at killing different groups of mutants, so that they

can cover the input domain more effectively and efficiently.

3. Investigate the capability of static program analysis to reduce the number

of subdomains that are required to test software effectively.

8

1.5 Thesis Structure

1.5 Thesis Structure

Chapter 2 surveys the literature on mutation analysis and test data generation.

It begins by comparing the relative strengths and weaknesses of mutation analysis

and structural testing, then discusses some ways to overcome the limitations of

mutation analysis. It then describes methods for making random test data gen-

eration more efficient, before briefly discussing some techniques for static analysis.

Chapter 3 introduces a technique for optimising efficient subdomains of test

input (one for each input parameter). I achieve this through the use of mutation

analysis, random testing and metaheuristic optimisation. The resulting subdo-

mains can be sampled at random to produce test suites that achieve a higher

mutation score than unoptimised random testing.

Chapter 4 extends the previous technique to work with multiple sets of subdo-

mains and then selects highly efficient sets from those that have been optimised.

I achieve this through the use of a more advanced optimisation technique and

automated program transformation. Test suites sampled from the resulting sub-

domains achieve a higher mutation score than single sets of subdomains.

Chapter 5 introduces two techniques for assessing mutant similarity. Their aim

is to identify mutants that are likely to produce the most effective subdomains,

thereby reducing the number of subdomains that are produced. These mutants

reduce the computational expense involved with subdomain optimisation without

significantly affecting the mutation score.

Chapter 6 concludes the thesis and provides directions for future research.

9

1. INTRODUCTION

10

Chapter 2

Literature Review

2.1 Mutation Analysis vs. Structural Criteria

Mutation analysis and structural test criteria can both be used to measure the

effectiveness of a test suite. Mutation analysis counts the mutants the test suite

kills, whereas structural criteria count the structural components the test suite

exercises. Structural criteria only require components to be reached by the pro-

gram execution, whereas mutation analysis requires each mutation to affect the

output [122]. There are various forms of weak/firm mutation that allow faults

to be revealed at an earlier point in the execution [79]. Yet, this thesis focuses

on classical (strong mutation) because test suites that kill all the mutants under

strong mutation also kill all the mutants under weak/firm mutation.

One advantage of mutation analysis over structural criteria is that it can be

tailored to use different mutation operators. Operators have been developed for

C and Java through to SQL and AspectJ [79], addressing the unique features of

each language. For example, the JavaScript keyword ‘var’ is added or removed

to simulate mistakes in declaring variables locally or globally [108]. There are

also operators that address common misunderstandings in C [34]. Depending

on the program under test, different operators are likely to be more effective -

data processing benefits more from operators that change values, whereas altering

branch conditions is more useful for control programs. The author is not aware

of any research that addresses this directly, but it is taken into account indirectly

by differences in the program statements where each operator can be applied.

11

2. LITERATURE REVIEW

There are two main forms of structural criteria: control-flow and data flow.

The rest of this section explores each of these in turn, in order to provide more

details about the differences between mutation analysis and structural criteria:

2.1.1 Control-Flow Criteria

Statement coverage is the simplest control flow criterion, but it is not possi-

ble to exercise all the statements if some (dead) code cannot be reached [154].

Branch coverage ensures that every reachable statement is exercised [70]. Muta-

tion analysis subsumes branch coverage, as long as each branch contains at least

one statement that can be mutated [122]. On the other end of the scale, path

coverage checks whether every possible sequence of decisions is covered, but it

is infeasible for most programs (particularly those containing loops). Mutation

analysis is a feasible (though sometimes expensive) technique and (in contrast to

statement coverage) it also checks the coverage of branch conditions [122].

Techniques have been proposed to make path coverage more feasible, such as

limiting the length of paths or the depth of loops that are explored [56] [127].

McCabe [102] suggested not investigating a path if it is made up of sub-paths that

have already been explored. More typical however, is the use of branch condition

criteria to make branch coverage stronger. Condition coverage checks whether

each condition in a branch has evaluated as both True and False [110]. Modified

Condition Decision Coverage (MC/DC) checks for condition and branch coverage,

but also requires that each condition has an independent effect on which branch is

taken [69]. Mutation analysis subsumes MC/DC, as long as it includes operators

that modify every branch condition [122]. This is because, for a mutation of a

branch condition to have an effect on the output, it must change the condition

evaluation such that it results in a different branch being taken.

Mutation analysis has also been shown to be more stringent than control flow

coverage criteria in practice. On Rolls Royce engine control modules that had

already been tested to the military standards of statement and MC/DC coverage,

mutation analysis revealed 50% and 32% new failures respectively [11]. Similarly,

test data generated with mutation analysis found more faults than prime path

coverage (path coverage ignoring loops) on 11 Java programs [93].

12

2.1 Mutation Analysis vs. Structural Criteria

2.1.2 Data-Flow Criteria

Structural criteria can also take into account the flow of data through a program

by considering the definitions and uses of its variables [50]. The all-uses strategy

covers at least one path from the definition of every variable to each of its uses,

whilst the all-du-paths strategy covers every such path. A distinction may also

be made between the use of variables for comparison in a predicate and in com-

puting new values. For example, the all-p-uses/some-c-uses strategy covers every

predicate use, but if none exist it ensures that at least one computational use has

been covered [136]. Mutation analysis was also shown to find more faults than

all-uses on 11 Java programs [49][93], but there have been no other experimental

comparisons with data-flow criteria. It is therefore still an open question whether

any of the more advanced criteria are stricter or as strict as mutation analysis.

2.1.3 Summary

Mutation analysis and structural criteria provide measurements of test suite ef-

fectiveness. Improving the evaluation of any of these metrics is likely to help

the tester find more faults. Significant computational effort can be wasted in

structural analysis, because it is not possible to know whether the selected path

will be feasible before trying to exercise it [76]. A similar problem occurs in mu-

tation analysis, since some mutants are semantically equivalent to the original

program and cannot be killed no matter how much computational effort is ex-

pended. Overall, however, improvements in mutation analysis has been shown to

be more closely correlated to finding faults than structural criteria.

The main advantage of mutation analysis is that its operators are based on

faults that programmers are actually likely to make. Experimentally and in

practice, mutants have been shown to be correlated to actual faults. For example,

selected mutation operators provided a better indication of fault detection ability

than manually seeded faults with the Siemens suite [6]. In a civil nuclear program,

85% of the errors produced by mutants were also produced by real faults [39].

Research has therefore shown mutation analysis to be more stringent than other

testing criteria and a good predictor of real fault finding capability.

13

2. LITERATURE REVIEW

2.2 Solutions for Overcoming the Limitations of

Mutation Analysis

Mutation analysis is effective at evaluating the fault-finding capability of test

suites, but there are some problems that must be overcome before mutation

analysis can be used successfully to evaluate the effectiveness of test suites. The

remainder of this section considers solutions to the following four problems:

1. Equivalent mutants: It is an undecidable problem whether mutants are

semantically equivalent to the original program. Considerable human effort

is often involved in identifying and removing equivalent mutants.

2. Too many mutants: Mutation operators produce a large number of mu-

tants when they are applied at every possible location in the program code.

It is computationally expensive to run the test suite on all the mutants.

3. Unrealistic mutants: Mutants are generated as small syntactic changes,

but a small change in syntax can have a large effect on semantics. Some

mutants do not represent faults that are likely to be found in practice.

4. Difficult to kill mutants: Mutation analysis can be used to improve test

suites, but manually it is labour-intensive to create test cases and provide

an oracle. In the worst case, a separate test case is needed for each mutant.

2.2.1 Equivalent Mutants

A mutated statement will have no effect on the program’s output if it is per-

formed on code that is never triggered or its effect is cancelled out at a later

point [57]. Such mutants are described as being equivalent to the original pro-

gram. Equivalent mutants cannot be distinguished by any test data, but still

have an effect on the mutation score. It is difficult to predict how many mutants

of a program will be equivalent, as experiments show this to vary from 5% up

14

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

to 54% [109][140]. Equivalent mutants may pose a significant threat to the va-

lidity of mutation analysis, so it is important to identify and remove them from

consideration before using mutation in test data analysis [121].

2.2.1.1 Detecting Equivalent Mutants by Hand

People generally judge equivalent mutants correctly 80% of the time by hand, but

this process is very time consuming [1]. Equivalence can be observed for some

mutations by looking only at the statement that has changed (e.g. inserting a

post-increment operator into a return statement). For the majority of programs

[109], it is necessary to consider the program state immediately prior to the point

of mutation (e.g. changing a plus to a minus will have no effect if the value to

be added is zero). Some equivalent mutants, however, can only be identified by

tracing their execution all the way to the output. It is worth considering any

technique that can reduce the effort involved in detecting equivalent mutants.

One optimisation involves the use of program slices [72]. A program slice only

contains the relevant components for a particular state and point in code [149].

This makes it easier to tell by hand whether a mutant is equivalent. Slices can

be created statically from a control flow graph, or dynamically from an execution

trace. Dynamic slices are typically smaller, but require carefully chosen input

values if they are to include all the relevant components. Amorphous slices relax

the syntax of the original program to reveal its semantics more clearly. This

requires further processing, but as human effort is very expensive, anything that

can be done computationally to reduce this may be worthwhile.

Figure 2.1 shows an example of a static (syntax-preserving) and an amorphous

(not syntax-preserving) slice on a simple function, ‘f’. The static slice removes

line 5 from the original program because ‘b’ has no effect on the output. This

makes the code easier to read, as there are now only two variables that must be

considered. We also know any mutation that occurs on line 5 is equivalent. The

amorphous slice also removes variable ‘c’ from the code by replacing it at the

point where it is used by its value (20). If the division on line 6 is replaced with

a multiplication, the value becomes 500, so this mutant is clearly not equivalent.

15

2. LITERATURE REVIEW

Original Program:

1 int f ()

2 {
3 int a , b , c ;

4 a = 100 ;

5 b = 50 ;

6 c = a /5 ;

7 a = a + c ;

8 return a ;

9 }

Static Slice:

1 int f ()

2 {
3 int a , c ;

4 a = 100 ;

5

6 c = a /5 ;

7 a = a + c ;

8 return a ;

9 }

Amorphous Slice:

1 int f ()

2 {
3 int a ;

4

5

6

7 a = 100+20;

8 return a ;

9 }

Figure 2.1: Example of Static and Amorphous Program Slicing

2.2.1.2 Detecting Equivalent Mutants Automatically

Compiler optimisation can be used to identify equivalent mutants without human

intervention. Mutants are equivalent if they are transformed into the same in-

termediate form as the original program [116]. Compiler optimisation techniques

only identified 10% of the equivalent mutants in an experiment with 15 programs

(see Figure 2.2). Yet, even though they are not as effective as manual analysis,

compiler optimisation techniques are worthwhile because of their low cost.

Useful compiler optimisation techniques include dead code detection, constant

propagation and invariant propagation. Mutations that occur within dead code

cannot be reached, so must be equivalent. Mutations are also equivalent if they

take the absolute value of a constant that is greater than zero or replace one vari-

able with another of the same value. Of these techniques, invariant propagation

was shown to be the most successful (see Figure 2.2).

Automated constraint satisfiers can be used to determine whether a mutation

propagates its effect to the output [119]. If the set of constraints cannot be

satisfied, the mutation is presumed to be equivalent. In an experiment involving

11 subject programs, this technique found 47.63% of the equivalent mutants (see

Table 2.1). Although this is better than compiler optimisation, it is still worse

than manual detection. Offutt [121] suggested that the undetected mutants can

be safely ignored, but mutation analysis seems ineffective as measure of adequacy

when it involves so much imprecision.

16

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

Table 2.1: Equivalent Mutants Detected by Constraint Solving [119]

Program Lines of

Code

Equivalent

Mutants

Percentage

Detected

Bsearch 20 27 70.37%

Bubble 11 35 68.57%

Cal 29 236 15.67%

Euclid 11 24 75.00%

Find 28 75 84.00%

Insert 14 46 69.57%

Mid 16 13 23.08%

Pat 17 61 47.54%

Quad 10 31 12.90%

Trityp 28 109 73.39%

Warshall 11 35 62.86%

Mean Detected: 54.81%

Figure 2.2: Equivalent Mutants Detected by Compiler Optimisation [116]

17

2. LITERATURE REVIEW

2.2.1.3 Detecting Equivalent Mutants Indirectly

Rather than prove the equivalence of a mutant, it may be possible to predict this

based upon some other characteristics of its execution. The higher the impact

(for some measure of impact) that a mutant has on the program’s execution,

the less likely it is to be equivalent [57]. For example, Schuler and Zeller [140]

suggested measuring impact as the difference made in the number of statements

exercised and the values returned by each procedure.

Mutations that have an impact on the program’s execution, as measured by

Schuler and Zeller [140], were shown to have a 58-79% likelihood of being non-

equivalent. Although this is only a slight improvement on the 54% they reported

for all mutants, a better result can be achieved by only selecting mutants with

the highest impact (see Table 2.2). Statement coverage appears to be the best

indicator of non-equivalence - 93% of the top quarter of mutants that have an

impact on statement coverage were shown to be non-equivalent.

Table 2.2: Detecting Equivalent Mutants Indirectly, adapted from [140]

Impact Metric Top 15% Top 20% Top 25%

Coverage Impact 88% 91% 93%

Data Impact 88% 91% 86%

Combined Impact 90% 85% 76%

Mutants can also be distinguished by their memory usage or execution time

[46]. The task of accurately measuring the resources used for the execution of a

program is complicated by unpredictable factors such as cache usage and other

interruptions. As a consequence of this, Ellims et al. [46] struggled to implement

an effective tool for distinguishing programs by their running profile. It may

be possible to simulate the execution of mutants in a more controlled way, but

the author is not aware of research in this area. Indirect techniques may be

able to predict equivalence when it is difficult to show it conclusively by other

means. As a result, it may be possible to find more equivalent mutants using these

techniques. However, the end result is only a prediction and manual inspection

is often necessary to confirm whether mutants really are equivalent.

18

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

2.2.1.4 Preventing Equivalent Mutants

It can be computationally expensive to identify mutants as equivalent. Therefore,

it may be useful to prevent equivalent mutants from being produced. One way

to achieve this is by careful selection of the mutation operators. Some operators

create a higher percentage of equivalent mutants than others (see Figure 2.3).

Mresa and Bottaci [109] took this into account when deciding which operators

to use. Their experiments suggest five operators as the most efficient in terms of

their ability to produce useful test data and avoid equivalent mutants.

Figure 2.3: Proportion of Equivalent Mutants by Operator [116]

If no test data can be found to detect a mutant, the mutant is likely to be

equivalent. Adamopoulos et al. [2] co-evolved mutants and test cases to make use

of this intuition. Each test case is given a fitness value proportional to its ability

to detect mutations and each mutant is given a fitness value proportional to its

ability to avoid detection. Mutants that cannot be detected by any of the test

cases are assigned a penalty value. This method is simple and fast, but it is also

likely to eliminate mutants that are non-equivalent. Typically, more than enough

mutants are produced to counteract this problem, but it may still be difficult to

select which mutants are the most useful or interesting.

19

2. LITERATURE REVIEW

2.2.2 Too Many Mutants

Budd et al. [24] showed that the number of mutants generated for a program

is proportional to the product of the number of data objects and references. In

most programs, this is approximately proportional to the square of the number of

statements [1]. It is infeasible to evaluate every test case against all the mutants

of a large program. Therefore, various techniques have been devised to reduce

the number of mutants that are generated.

2.2.2.1 Mutant Sampling

The simplest reduction technique involves sampling mutants at random. It

achieves a cost reduction that can be measured both in terms of the number

of mutants that are sampled and also the reduction in the number of test cases

necessary for them to be detected. Removing a mutant from evaluation may

mean there are some faults that cannot be represented. Therefore, it is impor-

tant that the analysis of test data is not significantly affected. An experiment by

Mathur and Wong [156] showed mutants can be sampled to achieve a high cost

reduction, without significantly affecting the mutation score of the generated test

data (see Table 2.3). However, the blind nature of random sampling suggests a

more intelligent approach might achieve even better results.

Table 2.3: Mutant Sampling [156]

Mutation Score Cost Reduction

in Mutants in Test Data

10%-mutation 97.56% 90% 52%

15%-mutation 97.77% 85% 45%

20%-mutation 97.95% 80% 39%

25%-mutation 98.68% 75% 41%

30%-mutation 99.10% 70% 33%

35%-mutation 99.26% 65% 33%

40%-mutation 99.39% 60% 31%

20

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

K-means Agglomerative

Figure 2.4: Two Clustering Techniques

2.2.2.2 Mutant Clustering

One ‘smarter’ approach towards mutant selection divides the mutants into groups

(or clusters) with K-means or Agglomerative clustering algorithms (see Figure

2.4). K-means clustering starts with k empty clusters and then adds mutants

one at a time. Agglomerative clustering first treats every mutant as a separate

cluster and then iteratively merges them together. Unlike random sampling, these

techniques guarantee a degree of variety in the mutants that are selected.

Hussain [74] measured the similarity of mutants as the number of bits by

which they differ. This is known as their hamming distance. Although this

measure is effective in the experimental results of Table 2.4, it may be too näıve

for operators that add or remove statements from a program. The results are also

difficult to compare with random sampling because they do not take into account

the computational effort required to divide the mutants into clusters.

Table 2.4: Mutant Clustering [74]

Mutation Score Cost Reduction

in Mutants in Test Data

K-means 99.64% 86.90% 54.72%

Agglomerative 99.12% 86.69% 55.74%

21

2. LITERATURE REVIEW

2.2.2.3 Selective Mutation

Rather than sampling or clustering mutants post-priori, it can be more efficient to

prevent them from being generated. This can be achieved by removing members

of the operator set that are determined to be less efficient. In experiments with a

mutation tool called Mothra (see Appendix A.2), two of the mutation operators

(ASR and SVR) together produced 30-40% of the total number of mutants [120].

Test data sufficient to kill the mutants produced by these operators, were also

able to kill more than 99.99% of the other mutants as well (see Table 2.5).

Two-selective mutation only reduced the number of mutants by 24%, but

removing four and six of the operators removed 41% and 60% of the mutants re-

spectively (see Table 2.5). Although none of these techniques reduced the number

of mutants as much as clustering, selective mutation does not carry the cost of

dividing the mutants into groups because it only generates mutants that are

used. Another approach reduced the number of mutants by 80%, using just two

operators (ABS and ROR) to achieve a mutation score of 95% [156].

Table 2.5: Selective Mutation, based on [120]

Mutation Score Cost Reduction

(in mutants)

2-selective 99.99% 24%

4-selective 99.84% 41%

6-selective 99.71% 60%

Offutt et al. [118] divided mutation operators into three classes according to

whether they replace operands, modify expressions or change entire statements.

Expression-modifying operators were found to be the most efficient, achieving

a high mutation score and cost reduction (see Figure 2.5). Offutt et al. [118]

suggests this is because most statements in a program contain expressions that

can be mutated. Expression mutation modifies every variable (except those on the

left-hand-side) and every constant (except True and False). It therefore offers high

statement coverage with little cost. Yet, as with selective mutation, the results

do not show how many test cases are needed to kill the mutants produced.

22

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

Figure 2.5: Class-based Mutation, based on [118]

It would require an exhaustive search to find the most efficient selection of

operators. Yet statistical approximations can be made using techniques, such as

least angles regression (LARS). LARS increases the coefficient of the operator

with highest correlation to the complete set (see Figure 2.6). The coefficient of

x1 is increased from s0 to s1, then at s1 both coefficients are increased together.

Namin et al. [112] applied LARS to select 28 operators out of a total 108. These

operators only produce 8% of the total number of mutants, yet Namin et al. [112]

claim they are sufficient to accurately predict the test data’s performance.

x1

x2

x2

s0 s1

s2

ŷx1

ŷx2

x1, x2

θ
θ ε

ε

Figure 2.6: Least Angles Regression (LARS)

23

2. LITERATURE REVIEW

Much research has been conducted into choosing a small set of operators

that maximise the mutation score of test data produced from them. However,

for mutation analysis to be rigorous, it is important to include a sufficiently wide

variety of mutants. Budd et al. [24] suggested that certain operators may be more

efficient for representing different kinds of faults. Barbosa et al. [12] described

a procedure for selecting a small set of operators that not only maximises the

mutation score that can be achieved from them, but also ensures that at least one

operator from each class is used. Figure 2.6 shows the results of an experiment

involving 27 programs. Barbosa’s sufficient procedure was shown to perform

better than both expression mutation and 6-selective mutation.

Table 2.6: Various Techniques for Selective Mutation [12]

Mutation Score Cost Reduction (in mutants)

Expression Mutation 0.97 78.1%

6-Selective Mutation 0.992 47.9%

Sufficient Mutation 0.997 65.0%

Summary of Selection Techniques It is difficult to make definite conclu-

sions about the effectiveness of mutant reduction techniques based on the small

programs typically used in research into mutation analysis. For example, most

of the programs used in the research of Barbosa et al. were under 30 lines of

code. There are also issues in comparing the results of techniques for mutant

reduction, because they were evaluated for different test programs, some in the C

programming language and others in FORTRAN. Some evaluations measure cost

reduction in terms of the number of mutants and others in terms of the number of

test cases, when really neither of these tell the whole story with regard to human

and computational cost. A thorough evaluation of mutant reduction techniques

is needed to determine their adequacy and efficiency for programs of the kind

that are currently used in industry. Only then can a conclusion be made as to

which technique is the most effective.

24

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

2.2.3 Unrealistic Mutants

Simple syntactic mutants can be unrealistic as they are often easy to detect by a

competent programmer. Complex faults may arise from the compound effect of

multiple simple faults, or the occurrence of a fault in the semantics of a program.

It is not always possible to correct complex faults with a small mutation in syntax.

Therefore, in this section we consider some alternatives.

2.2.3.1 Higher-Order Mutants

Higher-order mutants are composed of a number of simple (first-order) mutations

(see Figure 2.7). Higher-order mutants are a natural way to represent complex

faults that occur from the compound effect of simple faults in a program. The

coupling effect suggests that test data should be capable of detecting most of

the higher-order mutants if it can detect all of the first-order mutants. Offutt

[115] demonstrated for a program with 521,731 second-order mutants, that only

46 of them could not be detected by a test set adequate for all the first order

mutants. It has also been claimed that higher-order mutants are able to represent

more realistic faults than first-order mutants [64]. Therefore, it might be worth

considering some of the higher-order mutants that are not coupled to their first-

order components to achieve a thorough analysis of a program through mutation.

Figure 2.7: Classification of Higher-Order Mutants [64]

25

2. LITERATURE REVIEW

Jia and Harman [79] suggest classifying higher-order mutants according to

whether they are coupled and/or subsuming. Some examples of this classification

are shown in Figure 2.7. Higher-order mutants (c) and (e) are de-coupled because

they cannot be detected by test data used for any of the first-order mutants they

are composed of. Mutant (c) is particularly hard to detect because it is also

subsuming, i.e. it affects output for a smaller proportion of the input domain

than either of its first-order mutants. The first-order mutants in (f) interact

in such a way as to cancel out their effect on the output, forming a (equivalent)

higher-order mutant that cannot be detected with any test data. Jia and Harman

[79] focus their attention on mutants such as (a) that are strongly subsuming.

A higher-order mutant is strongly subsuming if any test case that is able to de-

tect it can also detect all the first-order mutants of which it is composed. Around

15% of subsuming mutants are strongly subsuming [64]. Although higher-order

mutants are often harder to kill, some of the computational expense associated

with test data generation may be reduced by considering strongly subsuming mu-

tants [79]. Test data produced to detect these mutants can detect the first-order

mutants with fewer test cases. This should reduce the computational expense of

test data generation, as there are fewer mutants to evaluate the test data against.

Therefore, some higher-order mutants are particularly useful.

2.2.3.2 Semantic Mutants

Semantic mutants represent the result of programmer misconceptions over the

way their software should be interpreted. Syntactic faults have a specific point

of failure and propagate this effect towards the output. In contrast, a consis-

tent misconception may become effective at many different lines of programming

code, but only involve a single semantic fault. This challenges the competent pro-

grammer hypothesis because many small syntactic mutants might be necessary

to represent one semantic fault. In this way, a small syntactic mutant can have a

large effect on the semantics of a program and small semantic mutant may have

a large effect on the interpretation of its syntax [117].

Semantic faults occur from misunderstandings of the specification, data con-

text or programming language. Misunderstandings in data context can be rep-

resented by small syntactic changes to the program. For example, a reference

26

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

to an array can be made out of bounds simply by changing its subscript [48].

Similarly, specification models can be mutated by adding, deleting, modifying or

negating conditions on the transitions between its states [5]. Misunderstandings

of a program language can be represented by mutating the language specification

or making syntactic changes to the program to simulate semantic faults.

Semantic mutants target areas of ambiguity or potential for confusion. The C

language specification allows compilers to interpret a program in slightly different

ways [68]. If a programmer becomes accustomed to one implementation, they may

find that another implementation works differently to how they expect. The GNU

Compiler Collection (GCC) has specific options for each of the different platforms

it supports [142]. Mutation analysis can be performed by evaluating a program

with a variety of compiler options. This indicates the adequacy of test data for

misconceptions about the particular implementation of a language.

Even well-defined behaviour can still cause confusion. For example, a pointer

to the first element of an array is treated as if it is the array itself within the

file in which it is created, but it is not possible to reference the array this way

from another file [68]. For these mutations it is necessary to rewrite the compiler.

Alternatively, tools such as Bison translate compiler rules from Backus-Naur Form

(BNF), which is conceptually easier to understand. Rule reconfiguration requires

less effort, but rebuilding the compiler is more powerful.

An alternative representation of a semantic mutation is as a set of syntactic

mutations. This offers finer grained control, as it is possible to apply a mutation

to one part of the program without affecting every other part. This may seem less

intuitive and more awkward, but it is more powerful than reconfiguring the com-

pilation options and less computationally expensive than rebuilding the compiler.

Clark et al. [34] suggest using a language called TXL to describe the transfor-

mation of a program under mutation. It takes a description of the structures to

transform and the pattern/replacement pairs for mutation and transforms code

into mutated code that represents a semantic change. Thus, semantic mutation

can be represented in an entirely syntactic way.

27

2. LITERATURE REVIEW

2.2.4 Difficult to Kill Mutants

Some mutants are more difficult to kill than others. It is tempting to ignore mu-

tants if they are found to be difficult to kill - after all, they are more likely to be

equivalent to the original program. Yet, the competent programmer hypothesis

suggests that difficult to kill mutants are more realistic. It is therefore impor-

tant to generate test data for them. Two main techniques have been used to

automatically generate test data to kill mutants: symbolic execution and search.

2.2.4.1 Symbolic Execution

Symbolic execution uses symbolic expressions and path constraints to predict the

execution of a program. Rather than executing a program with actual input

values, symbolic execution creates a symbolic value for each input parameter.

Symbolic expressions are produced whenever arithmetic operations are applied

to symbolic values and path constraints are used to describe the conditions under

which a particular path will be exercised. One of the first applications of symbolic

execution [35][82] was to generate test data to cover particular elements in the

structure of a program by solving sets of path constraints (see Figure 2.8).

Figure 2.8: Using Symbolic Execution to Generate Test Data, adapted from [35]

28

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

No method is guaranteed to find solutions for every possible system of con-

straints [40]. However, most of the inequalities that arise from symbolic execution

are linear. Linear inequalities do not contain products, powers or functions of

variables. In other words, they take the form a1x1 + a2x2 + ... + anxn < c. A

number of techniques exist that can be used to solve systems of linear equalities

efficiently in polynomial time [106]. These techniques may be augmented with

a local search to solve simple non-linear inequalities [22]. Yet if there are no

restrictions on the constraints, random search appears to be the most efficient

technique [135].

The first attempt at constraint-based test data generation for mutation ad-

equacy was made in 1991 by De Millo and Offutt [42]. Their approach collects

path conditions for each mutant such that they hold true if the mutated code

is executed. Further constraints are added that guarantee a change in the pro-

gram’s data if the mutation is exercised. No constraints are included to ensure

this change reaches the output, as such constraints were believed to be too com-

plicated [42]. This procedure was able to detect at least 95% of the non-equivalent

mutants for five small Fortran programs, the largest of which had 55 lines of code.

De Millo and Offutt [42] used a constraint solving approach known as dynamic

domain reduction. Each input parameter is given a large domain of potential

values, which are then reduced by eliminating values that do not result in the

desired branch being taken. The resulting subdomains can be used to execute

a desired path through the program. If however, the resulting subdomains are

empty, the path may be infeasible or the constraints are so complicated it is

difficult to find a path. Back-tracking is then applied to try different alternatives.

Constraint solvers struggle with programs containing pointers. Mock data

objects can be used to lessen this limitation, but they significantly reduce the

precision of symbolic execution [146]. Floating point numbers can also make

constraints difficult to solve, because they can be assigned a far greater range of

values than integers. They can be approximated using intervals, which are prop-

agated through the program to reduce their range for each constraint, but again

this loses some precision [19]. These solutions have not yet been implemented in

popular constraint solvers [91]. They are practical in nature, although they do

not completely solve the problems with complex constraints.

29

2. LITERATURE REVIEW

2.2.4.2 Dynamic Symbolic Execution

It is possible to accurately evaluate the effect of any test input value by dy-

namically executing the program under test with the actual value, but it is not

computationally feasible to do this for every possible input value. Symbolic ex-

ecution can predict how software will behave for a wide range of inputs, but is

not well suited to the evaluation of specific input values because it struggles with

elements such as loop invariants and pointers. Dynamic and symbolic execution

may be incorporated together to overcome some of the problems of both these

techniques. The new hybrid technique is known as dynamic symbolic execution.

Larson and Austin [92] combine dynamic and symbolic execution by using

symbolic representations of paths constructed during their dynamic execution to

find more input values that allow the same path to be followed. In contrast,

Godefroid et al. [54] use dynamic symbolic execution to find input values that

result in alternative paths being taken. Both approaches combine the advantages

of dynamic and symbolic execution but Godefroid et al. improve path coverage,

whereas Larson and Austin improve coverage of the input domain.

Dynamic symbolic execution can be used to generate test data for programs

that are too complicated to be handled by symbolic execution alone [25]. Sym-

bolic and dynamic execution is applied in parallel. An alternative path through

the program may be executed by negating one of the symbolic constraints and

applying a automatic constraint satisfier to solve the new set of constraints, using

dynamic values where helpful. Dynamic values may be used to help overcome the

difficulties that symbolic execution has with pointers and non-linear constraints.

As the constraints generated by dynamic symbolic execution are simpler, the

constraint satisfier may be applied more efficiently.

Recently, dynamic symbolic execution has been applied to automatically gen-

erate test data to kill mutants [159] [128] [65]. Zhang et al. [159] used the

Microsoft Pex framework to generate test data for programs written in C#. Pa-

padakis and Malevris [128] used their own framework for programs written in

Java. Harman et al. [65] also applied dynamic symbolic execution for Java, but

used higher order mutants. These tools were able to generate effective test data

for relatively large programs, the largest of which (Space) has 9,564 lines of code.

30

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

Zhang et al. [159] generate test data to weakly kill mutants. Rather than mu-

tating the program under test, they instrument its code to introduce constraints

that ensure a change in data. This is achieved by inserting a branch for each mu-

tation (see Figure 2.9). If the branch holds true, a (localised) change in data will

occur. Weak mutation killing does not ensure this change is propagated through

to the output. Therefore, Zhang et al. [159] generate a number of test cases for

each mutant in the hope that at least one of them will reveal a difference. Zhang

et al.s approach killed all the non-equivalent mutants from a 98 line C# program.

Papadakis and Malevris [128] also use branch constraints to represent the

conditions needed for a change in data. However, unlike Zhang et al., they include

a technique to encourage these changes to propagate to the output. Papadakis

and Malevris [128] assume that the output is more likely to change if the mutant

has an effect on the control flow. They therefore try negating the symbolic path

conditions one at a time from the point of mutation to the output. Papadakis

and Malevris’ approach killed 520 out of 937 mutants for a 500 line Java program.

Harman et al. [65] apply dynamic symbolic execution and search-based soft-

ware testing to kill first and higher order mutants. They attempt to cause the

generated test data to propagate the effect of each mutant to the output by

searching for branch conditions that maximally disrupt the execution path after

the point of mutation. This is measured in terms of the number of branches vis-

ited that are different in the mutant to the original program. Once this is found,

dynamic symbolic execution is used to target that path. They achieve an average

62% mutation score across 17 Java programs of various sizes.

Figure 2.9: Instrumenting Code for Weak Mutation [159]

31

2. LITERATURE REVIEW

2.2.4.3 Search-Based Test Data Generation

In search-based test data generation, it is not necessary to specify how to produce

an effective test suite. Search-based test data generation techniques use an eval-

uation criterion to search for optimal solutions. It is possible to use the mutation

score of a test suite as the optimisation criterion, with the aim of maximising it

as far as possible. Baudry et al. [13] implemented this criterion in both a genetic

algorithm (GA) and a bacteriological algorithm (BA). They reported that the

BA gave stable results with 95% mutation score, whereas the results of the GA

were unstable with only 80% mutation score.

May [99] showed that an artificial immune system (AIS) is also superior to a

GA when using mutation score as the evaluation criterion, as it is able to achieve

a higher mutation score with significantly fewer program executions. May and

Baudry agree the poor performance of the GA is likely due to it not remembering

previous test cases. Both the AIS and the BA memorise a test case if it is able

to reveal new mutants, allowing test cases to remain in the test data if they are

useful even if they have a low mutation score.

Bottaci [20] presented a more sophisticated criterion based on whether the test

data is able to reach each point of mutation in the programming code, and if so

whether its effect is propagated through to the output. Bottaci’s method requires

that a path be identified from the input to each point of mutation. Reachability

is measured as the extent to which each predicate in the path is not satisfied. For

example, the predicate a=b would add min(abs(a-b),L) to the measure, where L

is a large constant used to prevent overflow. Another metric, called satisfiability,

is needed to measure how far the test data is away from causing a difference

at the point of mutation. Bottaci proposed measuring propagation in terms of

the number of unequal state pairs that occur between a mutant and the original

program after the mutation point has been reached. Although Bottaci only pro-

posed this heuristic conceptually, the reachability and satisfiability metrics have

been implemented by Ayari et al. [8] in an ant colony optimisation algorithm,

achieving a mutation score of 89% on the Triangle program.

32

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

Figure 2.10: Example of Approach Level and Branch Distance [104]

Wegener et al. [150] also proposed a heuristic for reaching test data generation

goals. Their approximation level criterion can be used to indicate the distance

from the current path to the point of mutation. The first statement in the pro-

gram has zero approximation level. From that point, the approximation level is

incremented every time a critical branch is encountered that if taken, would pre-

vent the goal from being reached. This means that statements with the highest

approximation level are closest to the point of mutation (see Figure 2.10).

It is tempting, when targeting a particular goal for test data generation, only

to focus on the critical branches that lead directly to that goal. Yet, it is also

important to take semi-critical branches into account (see Figure 2.11). A semi-

critical branch can only lead to the goal via a loop back to the statement from

which it originated. This may seem like a backward step, but a certain number

of loop iterations may be necessary before the next statement can be reached.

The previously described techniques for search-based software testing only

take into account control and not data flow through a program. It is possible to

take data flow into account by considering the statements that depend upon each

other for their data. The chaining approach considers statements that must be

executed based on the variables that they define [47]. For example, in Figure 2.12,

the branch (8) that determines whether the goal (9) is reached is dependent on

data defined in two statements (2 and 6). The chaining approach views these as

33

2. LITERATURE REVIEW

Figure 2.11: Goal Coverage: Three Types of Branch [84]

sub-goals, as one of them must be reached before the main goal can be achieved.

Direct dependencies cannot reveal all the necessary data flow through a program.

Therefore, indirect dependencies are also included in a data dependence graph.

However, it can be too expensive to explore every path in the graph that lead to

the goal, especially if the program contains loops. This may be one of the reasons

this technique has not yet been used to generate test data for mutation adequacy.

Figure 2.12: Example of the Chaining Approach [47]

34

2.2 Solutions for Overcoming the Limitations of Mutation Analysis

Although evaluation criteria for search-based structural testing have been ap-

plied successfully many times to test generation [103], they have only been used

in mutation analysis over the past few years. Fraser and Zeller [51] use a genetic

algorithm to evolve test data capable of killing mutants. They measure how close

a test suite is to exercising a mutant in terms of its approach level and branch dis-

tance. Branch distance is calculated as the difference between the current value of

the expression in a branch condition and the value that is needed to exercise the

intended branch [83]. Fraser and Zeller [51] measure the potential for a test case

to propagate the effect of a mutant in terms of its impact on statement coverage

and function return values (see Section 2.1.1.3).

More recently, Papadakis and Malevris [129] also guide search using the ap-

proach level, but include certain data dependencies so as to interpret it dynam-

ically. They also incorporate Bottaci’s satisfiability metric [20], as a measure of

distance from effecting a change on the program’s internal data state. Papadakis

and Malevris [129] search for test data using the alternating variable method pro-

posed by Korel [83]. The alternating variable method is a local search technique.

Some researchers argue that local search techniques are inferior to population

search (e.g. genetic algorithms) because they can get stuck in local optima [67].

However, local search can be restarted when necessary. Research by Harman

and McMinn [66] indicates that local search techniques can be more effective for

structural testing. Papadakis and Malevris [129] achieved an average 7.6% higher

mutation score than the previously described work by Ayari et al. [8].

35

2. LITERATURE REVIEW

2.3 Improvements upon Random Testing

Random test data generation samples values evenly from a particular input distri-

bution (often uniform). Design decisions are made regarding which distribution

to use and how to select values from it. This thesis represents the first appli-

cation of random test data generation to mutation analysis. One reason why

random testing has not been used before now in mutation testing is that it can

be inefficient at meeting testing goals (e.g. mutation coverage). Yet, even though

random testing does not necessarily require any knowledge of the program code,

such knowledge can be used to make random testing more efficient.

2.3.1 Random Testing

Random test data is typically straightforward and inexpensive to produce. It can

represent any data type as a random bit string [76]. The biggest computational

expense is in using an oracle to verify whether the outputs are correct [76]. It may

be just as difficult to ensure the oracle works correctly as to find every fault in

the software. Fortunately, some behaviour is clearly incorrect without the aid of

an oracle. The York Extendible Testing Infrastructure (YETI) looks for assertion

violations and runtime errors, such as invalid casting of values or division by zero

[125]. In general, random testing is useful when there is not enough information

in the software specification to accurately guide the choice of test data [59].

Random testing has been described as ineffective because it does not take into

account the syntactic or semantic structure of a program [110]. However, it was

able to achieve 93% decision coverage over five programs, with at most fifty test

cases for each one [44]. Random testing is suitable for predicting a reliability

bound because it can cover the entire input domain with test data [59]. It may

have difficulty finding faults that occur for a small section of the input domain,

so more targeted techniques typically can perform better test for test. Yet, the

low overhead of random testing means it can reveal more faults per unit time

[97].

36

2.3 Improvements upon Random Testing

Some guidance as to how to efficiently generate test cases is available even

when little is known about the software under test. Chan [26] described three

typical software fault patterns (see Figure 2.13). In the point-pattern, failure-

causing inputs are not concentrated into regions by any particular characteristic,

but rather scattered over the whole input domain. If this is the case, little can

be done to reduce the number of test cases needed to find the first failure [31].

Frequently however, failures occur grouped together either in strips or in blocks.

The strip pattern is typical when a domain error causes the input domain to

shift so that values towards the edge of the correct range result in the program

following the wrong path [154]. The block pattern is typical when the correct path

is followed, but a computation error causes an assignment to result in incorrect

output for a closely related set of input values. For these two patterns, the

likelihood of finding the first failure may be improved by spreading the test cases

as evenly as possible over the input domain [31].

Point Pattern Block Pattern Strip Pattern

Figure 2.13: Three Fault Patterns [26]

2.3.2 Adaptive Random Testing

Adaptive random testing (ART) uses the distance between test data to ensure

an even distribution over the input domain. From a randomly generated set

of test data, the one with the maximum distance from those that have already

been executed will be chosen (see Figure 2.14). Chen [31] uses the Euclidean

distance between integer input values, but it may also be possible to use other

measures. The relationship between distance in the input domain and output

range is unclear and might not be linear. Even so, their results show this technique

can outperform traditional random testing by as much as 50%.

37

2. LITERATURE REVIEW

An early bias towards the corners and edges of the input domain may still

result in an uneven distribution of test cases. This can be eliminated by measuring

distance continuously, with the domain edges wrapped around to meet each other

[101]. The domain edges, however may be the most interesting areas for test

analysis [138]. It has also been claimed that it is only necessary to measure the

distance to test cases that are nearest to the new candidate [30].

Figure 2.14: Adaptive and Restricted Random Testing

In contrast to ART, which adapts the order in which pre-generated test cases

are selected, Restricted Random Testing (RRT) sets up exclusion zones around

each non-failing input and randomly generates new test cases outside their bound-

aries (see Figure 2.14) [28]. Exclusion zones are decreased in size as more test

cases are added to enable points closer to those already tested to be used. This

should also help in maintaining the size of the excluded area. RRT is consistently

able to improve upon random testing, with similar performance to ART [28].

The highest error detection rate is achieved when the exclusion area is close

to its maximum, but if actual coverage approaches 100% the failure patterns may

always be excluded. The ideal exclusion area is strongly influenced by character-

istics in the input domain and is not easy to identify prior to testing. Chan [27]

introduces normalised RRT to mould the excluded area to the input domain and

provide more information regarding its maximisation. If the exclusion area is set

appropriately, both the original and normalised RRT outperform ART.

38

2.3 Improvements upon Random Testing

2.3.3 Partition Testing

Partition testing offers another approach towards the distribution of test data. It

divides the input domain into a number of subdomains and selects values from

each one. Early experiments indicated little difference in performance between

partition and random testing [44] [61]. Since then, Chen and Yu [32] have shown

that it is possible to guarantee partition testing performs no worse than random

testing, by selecting test data proportional to the size of each partition. Ntafos

[114] criticises proportional selection, claiming it approximates random testing

too closely. It can be more efficient to select test data from those partitions more

likely to reveal a fault [60]. Whilst partition testing is classically a black-box

technique, it performs better when something is known about the program code.

Partitions can be chosen from the specification or code structure. Ideally,

they should be homogeneous, i.e. either all or none of their elements will cause

a failure [153]. The only way to ensure homogeneity would be to place each

value in a separate partition, so this has to be approximated instead. Code-based

partitions measure homogeneity according to which structural components are

exercised by the test data. It can be computationally expensive to counteract any

imperfections, because this requires an analysis of the software’s execution [60].

Specification-based partitions measure homogeneity according to which inputs

are expected to give the same output. Combinatorial and boundary analysis can

be used to compensate for imperfections without an analysis of execution.

Boundary analysis compensates for poor homogeneity by testing input values

close to the point where one partition transitions into the next. This may reveal

input values that should be in one partition according to the specification, but

actually behave as if they are in another. One experiment showed the probability

of finding the first failure to more than double when using boundary analysis

[138]. Unfortunately, this almost doubled the amount of test data as well. More

convincing results come from a comparison with random testing [138]. A similar

fault-finding probability was achieved selecting one test value from each partition,

as with the same number of random tests. However, over fifty-thousand random

tests were required to match an average of just 25.1 values in boundary analysis.

39

2. LITERATURE REVIEW

Combinatorial analysis assumes software behaviour is dependent on the com-

bination of value assignments to input parameters. It can cover all possible

combinations with about a sixth to a half the number of test inputs as random

testing [86]. Unlike random testing, it guarantees which combinations are tested

and so is able to identify rare interactions between the input variables. A pair-

wise scheme can significantly reduce the number of test cases from that required

for exhaustive testing, yet ensures every combination of values is applied for each

pair of input variables [36]. For example, there are 27 ways of combining three

values for each of three variables, but only 9 pair-wise tests are required. Some

faults are caused by interactions involving more than two variables [88]. However,

over 70% of program faults can be detected by pairwise testing [87] and 100% of

faults can be detected with 4-6 way interaction [88]. Therefore a relatively small

test set can be used to test a large number of variables. The biggest limitation

of combinatorial testing is the need to choose a set of discrete input values. This

may be difficult for applications with continuous input variables. However, if this

is possible, the performance increase over random testing is significant.

2.3.4 Partition and Adaptive Random Testing

Partitions have been applied to adaptive random testing (ART) with little addi-

tional cost [30]. ART by random partition splits the input domain at the most

recently executed test case and chooses the next input from the partition with

the largest area. The previous test case will be at the edge of the new partition,

so the next test case is likely to be chosen at some distance from the previous one.

ART by bisection repeatedly splits the input domain into partitions of equal size

and chooses the next input from a partition that does not contain any test cases.

Each test case will be in its own partition, so should be evenly distributed over

the input domain. Both schemes reduce the number of test cases needed to find

the first failure by about 25% for the block pattern and 5% for the strip pattern.

As expected, the improvement for the ‘point’ pattern is negligible.

40

2.3 Improvements upon Random Testing

Table 2.7: Proportion of test cases before fault found with ART Methods [100]

Block Strip Point

Restricted Random Testing 0.6182 0.9226 0.9741

Adaptive Random Testing (ART) 0.6512 0.9244 0.9648

ART by random partition (RP) 0.785 0.972 0.9666

ART by bisection (Bi) 0.7362 0.955 0.9561

ART-RP with RRT localisation 0.6904 0.9538 0.9523

ART-RP with ART localisation 0.7194 0.9578 0.9588

ART-Bi with restriction 0.672 0.93 0.9252

Partition-based approaches to adaptive random testing are computationally

inexpensive because there is no need to measure the distance between individual

test cases. However, two test cases may be placed very close to each other if they

are generated near the boundary separating adjacent partitions. As can be seen

from Table 2.7, this increases the number of test cases that are necessary to find

the first failure. Chen attempted to solve this problem by introducing localisation.

ART by localisation is similar to ART by random partition, but applies restriction

or distance based adaptive random testing within each partition [30].

The best results with partitioning can be achieved using ART by bisection

and restriction, yet even this combination is not as effective as partitionless ART

techniques [100]. Counter-intuitively, the partition-based techniques perform bet-

ter than the non-partition techniques for point data. No reason was found why

this might be the case. Localisation can be seen as a useful compromise between

the low computational cost of just using partitions to distribute the test cases

and the effectiveness of just using restriction or measures of distance.

41

2. LITERATURE REVIEW

2.3.5 Testing in High Dimensionality

It is challenging to create an even distribution of test data for software mod-

ules with many input variables. As dimensionality increases, test cases are dis-

tributed more sparsely and the relative distance between the nearest and furthest

neighbours is negligible [15]. Small biases in a testing strategy are amplified in

higher dimensions [89]: distance-based ART will develop a greater edge-bias and

partition-based ART a greater centre-bias. A simple measurement of distance

is not sufficient to guarantee an even distribution, because it does not take into

account the need for test data to vary in every dimension.

Kuo et al [90] suggest filtering the test cases to ensure they are compared

in terms of their input parameters as well as their distance from each other. A

variable v is used to indicate which of the immediate neighbours are eligible for

selection (see Figure 2.15). A second variable r is used to allow v to take a strict

value at first, then gradually relax if insufficient neighbours can be found.

Chen et al. [29] measure how evenly the test cases are balanced around the

centre of the input domain. Intuitively, if the test cases are well balanced they

are also likely to be evenly distributed. The problem with this technique is that

it results in a ’black hole effect’, whereby all the test cases are pressed into the

centre. To compensate for this, Chen et al. generate test cases within a small

region in the centre of domain, then incrementally extend the domain.

Figure 2.15: Restricted Neighbourhood for High Dimensions [90]

42

2.3 Improvements upon Random Testing

2.3.6 Statistical Testing

Even if it is possible to distribute test cases evenly over the input domain, there

is no guarantee that all the structural components in the program code will

be exercised. In fact, given a uniform input distribution, the frequency with

which a particular component is exercised will be inversely proportional to the

region within the input domain that can exercise it. This is because each branch

condition in the program code limits the input values that are able to exercise

the paths that it controls access to. Testing the structural components evenly

typically requires a highly specialised input distribution.

Statistical testing manipulates the input distribution from which test cases

are sampled so that each structural component has as near as possible the same

probability of being exercised [145]. Every statistical testing strategy includes at

least two parameters: the input distribution and the size of the test suite. The

input distribution should be designed to increase the probability of exercising the

elements that are otherwise least likely to be executed. An input distribution

can be generated statically [55] or dynamically [145] to ensure a sufficiently high

probability for the least exercised components. It is necessary for the test suite

to be large enough to make sure that the least likely structural component has a

high probability of being exercised at least a couple of times.

Whittaker and Thomason [155] present a Markov-chain model approach to

statistical testing, whereby state transitions represent particular action that may

be applied to a program (e.g. moving the cursor to a menu item or pressing

the enter key). Their approach is best suited to testing interactive programs.

Poulding and Clark [131] present an approach to adapting statistical testing for

numerical programs. They model the dependencies between parameter values

with a Bayesian network representation of the program under test. The input

distribution is represented as a series of bins, the sizes of which affects the fre-

quency with which particular input values are sampled. More recently, Poulding

et al. [132] have used stochastic grammars and hill-climbing to develop effective

models of the input distribution more efficiently.

43

2. LITERATURE REVIEW

2.4 Static Analysis

Static analysis evaluates a program directly from its source code rather than

the results of an actual execution. It is able to identify incorrect behaviour

without the need for any input data. Static analysis techniques fall into two

main categories: code scans and abstract interpretation

2.4.1 Code Scans

The source code can be scanned to look for properties that suggest the presence

of faults. For example, checks can be made as to whether a divisor will ever

become zero. Static analysis can also detect undesirable properties, such as code

that cannot be reached and loops that do not terminate. There are two main

forms of code scanning technique: finite state automaton and data flow analysis.

Program statements are fed line-by-line into a purpose built finite state au-

tomaton (FSA) designed to reach an accepting state whenever a particular prop-

erty is found. For example, an FSA could be used to check the program’s be-

haviour when reading data from an input stream. If fewer bytes are returned than

expected, the program might continue reading past the data into values that have

not been initialised. Therefore, a warning should be triggered whenever data is

used immediately after it is read, unless its actual availability is checked first [73].

Data flow analysis techniques are more sophisticated; they can be used to

check for undesirable properties, such as input streams that are left open when

they are no longer used. It is necessary to consider every path in which a stream

is open because any path in which it is not closed may cause memory leaks and

other problems [73]. Data flow analysis can be used to trigger a warning if the

program terminates whilst one of the streams is still open.

Findbugs [73] uses FSAs and data flow analyses to look for commonly occur-

ring bug patterns. It has not yet been used in mutation analysis, but mutants

could be produced using the information it provides to target particular faults

that are likely to occur. It might also be possible to use it to guide the search for

test data that can distinguish mutants from the original program. Code might

not find every fault in the program and some warnings may not correspond to

actual faults, but they do give a prediction as to where faults are likely to occur.

44

2.4 Static Analysis

2.4.2 Abstract Interpretation

Abstract interpretation makes it easier to find faults by simplifying the program’s

semantics and reducing the domains of its variables. For example, Figure 2.16

describes the use of abstract interpretation to identify conditions for a program’s

termination. The variable x is considered odd or even without regard to its actual

value. If the program does terminate, x will be even at the output, regardless

of its value at the input. If x is odd at the input, the program will definitely

terminate, but if x is even, this cannot be guaranteed. Abstract interpretations

lose some of the original information - actually, only an input value of zero would

cause the program not to terminate. Yet, they still reveal details that might

not otherwise be obvious. The most important characteristic of a valid abstract

interpretation is that it will never claim a program is correct when it is faulty.

1: while isEven(x) do

2: x = x div 2

3: end while

4: x = 4 * x

5: exit

p0,even

p1,even

p0,odd

p2,odd

p3,even

Figure 2.16: Example of Abstract Interpretation [139]

Cousot [37] describes how abstract interpretations can be relational or non-

relational in nature. Relational abstractions are more precise, because they take

into account potential relationships between variables. A non-relational abstrac-

tion might replace integers in a program with their sign (positive or negative),

ignoring their absolute value. This simplifies analysis, but it loses any relational

information. For example, it is impossible to encode that x + y will always be

below five in the sign (or any other) non-relational abstraction. In contrast, a

relational abstraction would use this inequality along with others to produce a

bounded area in which we know the values of x and y must lie. Abstract inter-

pretations have to trade between expressive power and computational expense.

45

2. LITERATURE REVIEW

2.4.3 Summary

Mutation analysis is a powerful technique for evaluating the effectiveness of test

data, but it faces a number of challenges: the computational cost of generating

mutants and applying them to test cases makes mutation analysis more expensive

than other testing techniques; equivalent mutants can have a significant effect on

the precision of mutation testing but are difficult to remove by automated means.

Mutation analysis can also be more labour-intensive than other techniques. A

large number of test cases are required to kill all the mutants of a program and

it requires human effort to identify what their expected output should be. This

thesis addresses the human cost of mutation analysis by optimising subdomains

from which test suites can be drawn that are efficient at killing mutants.

Random testing is typically less efficient than structural testing because it

does not take into account any internal properties of the program under test.

Techniques have been developed that reduce the number of test cases needed to

find the first fault by spreading them evenly over the input domain, but there is

a limit to how much of an improvement can be made without any knowledge as

to how the program actually works. Rather than sampling test cases from the

entire input domain, my approach uses subdomains that have been optimised to

kill mutants. I use static analysis to identify the most difficult to kill mutants

because test suites capable of killing these mutants are also likely to kill other

mutants as a side effect. Ultimately, subdomain testing requires less human effort

than other techniques because it selects test cases that are efficient at killing

mutants and they are close together in the input domain.

46

Chapter 3

Evolving Subdomains for

Mutation Adequacy

3.1 Introduction

This chapter introduces a new technique for optimising regions of the input do-

main (known as subdomains) that can be sampled at random to produce small

but efficient test suites that achieve a high mutation score. Most test data gener-

ation techniques aimed at mutation adequacy use Dynamic Symbolic Execution

(DSE) to target the branch conditions leading up to a mutation (see Section

2.4). DSE is able to exercise particular paths through a program efficiently, but

provides little guidance as to whether a mutation will affect the output. The

technique presented in this chapter restricts random testing to subdomains that

are efficient at killing mutants. It can be used to provide insight into the internal

workings of a program without inspecting its program code.

The choice of subdomains has a significant effect on the efficiency of random

testing. For example, the TriTyp (also known as Triangle) program has three

integer inputs (a, b and c) and its branches contain conditions such as a=b=c.

Michael et al. [107] selected over 8000 test cases from the entire input domain,

but exercised less than half of the program’s branches. Duran [44] selected 25

test cases from the subdomains ([1,5], [1,5], [1,5]) and exercised all the branches.

Random testing can be made more efficient by carefully tuning the subdomains.

47

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

It can be difficult to determine which subdomains to use and why. For exam-

ple, Andrews et al. [7] report that the subdomain [0,31] gave the best results in

testing a dictionary, but do not explain how they discovered this ‘magic number’.

Similarly it is difficult to determine in advance whether sampling from uniform,

normal or exponential distributions will be more efficient. Rather than applying

random testing through a process of trial and error, it is better to use a more

systematic approach to determine the most efficient subdomains and sampling

distributions for the program under test. This chapter introduces a technique for

optimising subdomains to be used with a particular sampling distribution.

Subdomains are optimised using an evolution strategy (ES) so that test cases

sampled from them are efficient at killing mutants. The process of evolving subdo-

mains is computationally expensive, but once this is achieved, it is inexpensive to

generate further highly efficient test suites. The technique is particularly suitable

for regression testing because, although programs change with time, subdomains

are likely to be evolved more quickly once suitable initial values have been found.

Subdomain evaluations can be used to provide a broad overview of program

behaviour. They are particularly useful when direct source code analysis tech-

niques cannot be used due to the size or complexity of the program under test.

Like DSE, subdomains target mutants efficiently. However, unlike DSE they can

also be used to generate further effective new test cases very quickly.

Subdomains have three main advantages over other testing techniques:

1. They improve the effectiveness of random testing and provide a

means to achieve a high mutation score automatically

2. They can be used as a starting point for regression testing more

readily than a set of individual test cases (e.g. generated by DSE)

3. They provide information about the execution behaviour of a pro-

gram that may be useful when constructing further tests

The rest of this chapter is organised as follows. Section 3.2 describes my

approach to subdomain optimisation in detail. Section 3.3 introduces some ex-

periments to assess the effectiveness of subdomain optimisation and Section 3.4

presents their results. Section 3.5 summarises the significance of these findings.

48

3.2 Subdomain Optimisation

3.2 Subdomain Optimisation

I optimise input subdomains using an evolution strategy. Subdomains are evolved,

one for each input parameter so that test data can be sampled within the bounds

of each subdomain. Evolution strategies optimise numerical values, but input

parameters can have many different data types. It is therefore necessary to rep-

resent types such as strings and Booleans with numerical values so that they can

be optimised. In this chapter, a candidate solution consists of a set of subdomains

with intervals in the following three forms:

Numerical subdomains

are represented with lower and upper boundary values (rounded to whole

numbers in order to keep the subdomains simple). Values are sampled

inclusively, such that the subdomain [3,6] also includes the values 3 and 6.

Boolean chance values

are described with an integer value between 0 and 100. Rather than defining

a boundary within which test inputs are sampled, this value represents the

percentage chance that a particular test input value is ‘true’.

Character array subdomains

are fixed in length (by default to five characters). Each character is treated

as a numerical subdomain and the selected values are then mapped to letters

from a particular alphabet (e.g. the basic Latin alphabet).

Boolean chance values and character boundary values must be kept within a

specific region of validity: Chance values must be between 0 and 100; character

boundaries must be inside the alphabet. I avoided using modulo arithmetic to

map values into a valid region because it affects the direction of an adaptation (i.e.

increasing a chance value could increase or decrease the likelihood of a sampled

value being true). Instead, I chose to replace chance values or boundaries that are

generated outside the range of validity with the nearest valid value. This preserves

the directionality of the adaptation step, but does not preserve its magnitude.

For example, values on the edge of the validity region have 50% chance of staying

the same. Magnitude can be preserved by resampling until a valid value is found

(see Algorithm 3), but I chose not to do this here for reasons of efficiency.

49

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

Evolution strategies are inspired by the process of adaptation in nature [10].

They were first used in the 1960s by Bienert, Rechenberg and Schwefel to opti-

mise aerodynamics [10]. Evolution strategies differ from some genetic algorithms

in that they optimise numerical values rather than bit strings and focus on muta-

tion over recombination [151]. They are ideal for fine tuning numerical properties,

as any disruption from recombination is largely avoided. Amongst other appli-

cations, evolution strategies have been used to optimise image compression [9],

network design [113] and web crawling [80].

This chapter employs a traditional (1 + 1) form of evolution strategy. This

means that the evolution strategy maintains one candidate solution (set of sub-

domains) at a time. For every generation, a single new candidate solution is

perturbed from the current one using a normal distribution. Each candidate so-

lution is represented using a numerical set of values (x1 . . . xn), as determined

by the numerical coding of each subdomain type described previously. A new

candidate solution (x′1 . . . x
′
n) is generated such that x′1 = x1 + ε1 . . . x

′
n = xn + εn,

where ε1 . . . εn ∈ N(0, σ2). The variance of the normal distribution (σ2) is ad-

justed throughout the optimisation process so as to maintain an optimum rate of

convergence. At each generation, the new candidate replaces the current solution

if it evaluates as being superior, otherwise it is discarded.

Normal distributions are suitable for generating new candidate solutions be-

cause they favour values close to the old ones, but still allows exploration of values

further away. However, if the variance of the normal distribution is too small, the

evolution strategy may never reach a global optimum; if it is too large, an opti-

mum could be passed over without being detected. Rechenberg’s one-fifth rule is

used to adapt the variance for optimal effectiveness [14]. The ideal convergence

rate is presumed to be achieved when one out of five new values perform better

than their parents. Following advice from Schwefel [141], this ratio is maintained

by applying Equation 3.1 once every ten generations.

σ′ =


σ ∗ 0.85, if r < 2

σ/0.85, if r > 2

σ, if r = 2

(3.1)

(where c is the number of successful adaptations in 10 generations)

50

3.2 Subdomain Optimisation

Algorithm 1 describes the process used to optimise numerical subdomains

(α . . .Ω) with lower (l) and upper (u) boundary values. A similar process can

also be applied for Boolean and character values, since the evolution strategy

treats each value independently. The evolution strategy is set up so that it has

the ability to explore a wide range of potential candidate solutions quickly, then

narrow its focus to exploit those subdomain values found to be the most efficient.

Algorithm 1 Synthesising an optimal solution [αl, αu], [βl, βu], . . . , [Ωl,Ωu]

1: Select initial random values (x1 . . . xn) for αl, αu, βl, βu, . . . , Ωl and Ωu.

2: Generate s test cases from [x1, x2], [x3, x4], . . . , [xn−1, xn].

3: Count the number of mutants m killed by the test cases

4: repeat

5: r = 0

6: for i = 1→ 10 do

7: Sample new values from a normal distribution:

x′1 = x1 + ε1, x′2 = x2 + ε2, x′3 = x3 + ε3, x′4 = x4 + ε4,

. . . , x′n−1 = xn−1 + εn−1, x′n = xn + εn where ε1 . . . εn ∈ N(0, σ2)

8: Generate s test cases from [x′1, x
′
2], [x′3, x

′
4], . . . , [x′n−1, x

′
n].

9: Count the number of mutants m′ killed by the test cases

10: if m′ > m then

11: x1 = x′1, x2 = x′3, x4 = x′4, xn−1 = x′n−1, xn = x′n, r = r + 1.

12: end if

13: end for

14: if r < 2 then σ2 = σ2 ∗ 0.85

15: else if r > 2 then σ2 = σ2/0.85

16: until generations>300 and mutation score no longer increases

Subdomain values are initially assigned uniformly at random, between 0 and

100 for numerical and Boolean input parameters and within the size of the al-

phabet for character array parameters. The normal distribution has an initial

variance of 50. Although these initial values are somewhat arbitrary, they were

found to be a good starting point for the programs under test. The evolution

strategy can, as its search progresses, move outside of these initial boundaries.

51

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

3.3 Experiments

Experiments were set up to answer the following three research questions in regard

to optimising subdomains for mutation testing:

RQ1: Are test suites sampled from an optimised set of subdomains more

efficient at killing mutants than unoptimised random testing?

A test suite can be considered to be more efficient if it achieves a higher

mutation score with the same number of test cases. I use mutation analysis

to determine whether optimised sets of subdomains are more efficient than

unoptimised random testing for test suites of 10, 100 and 1000 test cases.

RQ2: Are some shapes of input distribution (within the evolved subdo-

mains) more efficient at killing mutants than others?

Distribution shapes emphasise different parts of each subdomain. Normal

distributions emphasise central values, exponential distributions emphasise

smaller values and uniform distributions emphasise evenly. I optimise sub-

domains for each shape so as to determine which one is the most effective.

RQ3: To what extent do the relationships between subdomains and their

mutation scores reveal information about the program under test?

I investigate the relationship between subdomain values (e.g. upper and

lower boundaries) and the mutation score they achieve. Once the relative

characteristics of efficient and inefficient subdomains is known, it should be

possible to produce new more effective subdomains in the future.

52

3.4 Methodology

3.4 Methodology

3.4.1 Methodology for RQ1

RQ1 is designed to compare the efficiency of test suites generated from optimised

subdomains against unoptimised random testing. If optimised subdomains per-

form more efficiently than random testing, the same standard of testing can be

achieved with fewer test cases. For example, if 10 test cases can be sampled such

that they kill as many mutants as 100 or 1000 test cases, this can be considered

as a ten-fold or hundred-fold improvement in efficiency. Subdomain optimisation

can be considered to be successful if, for a variety of programs, the optimised

subdomains kill more mutants with fewer test cases than random testing.

Subdomain optimisation is evaluated using test case values that are drawn

from a uniform input distribution restricted to the range of each subdomain.

Algorithm 2 describes how random values sampled between 0 and 1 are scaled

to subdomain lower and upper values. Each random value is multiplied by the

range of its corresponding subdomain, then added to its lower value. If the lower

value becomes larger than the upper value for a particular subdomain during the

course of its optimisation, the two values are swapped around.

Algorithm 2 Restricted Uniform Random Sampling

1: if lower > upper then

2: swap(lower, upper)

3: end if

4: range = upper − lower

5: return rand() ∗ range + lower

For every generation of the evolution strategy, I record the mutation scores

achieved by each test suite sampled from the current candidate solution’s set of

subdomains. In order to present the results with as great an accuracy as possible,

I average the mutation scores achieved for each program and each size of test suite

over 100 trials. By definition, the largest possible standard deviation in mutation

scores is 0.5. Therefore, by calculating confidence intervals from a t-distribution,

it is possible to show that 100 trials are sufficient to achieve at least a 90% chance

that the actual mean mutation score lies within 10% of the sampled average.

53

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

I compare the mutation scores achieved by test suites sampled from optimised

subdomains against unoptimised random testing with a [0,100] numerical interval,

50% Boolean chance and the set of alphabetical character values. These values

were chosen because test cases sampled from the entire input domain are very

inefficient. The mutants killed by a random test suite vary from one sample to

the next. Some mutants are killed frequently, whereas others are rarely killed.

Therefore, instead of measuring the average number of mutants killed by random

testing, I estimate the probability of killing each mutant individually. The results

are compared to the expected mutation score for a random test suite of the

same size. If subdomain optimisation is successful, the average mutation scores

achieved should be greater than that expected by random testing.

The number of mutants expected to be killed by random test suites of 10, 100

and 1000 test cases was calculated for each program in Table 3.2 using a combina-

tion of experimentation and probability theory (see Table 3.1). In Equation 3.2,

e(s) is the expected number of mutants killed for a random test suite sampled

with s test cases, where for each mutant m, K is the number of test cases that

killed the mutant and N is the total number of test cases from a large test suite.

A test suite of 100,000 random test cases was used because it is important that N

is much larger than s for accurate results. Numerical input values were generated

from the interval [0,100], Boolean values were given a 50% chance of being true

and character arrays were generated from the entire set of character values.

Table 3.1: Expected Mutation Score for Random Test Suites

Program s=10 s=100 s=1000

Power 0.963 0.994 1.00

TrashAndTakeOut 0.787 0.958 0.988

FourBalls 0.356 0.756 1.00

TCAS 0.0499 0.0569 0.0599

Cal 0.766 0.948 0.957

TriTyp 0.394 0.779 0.924

Schedule 0.236 0.840 0.853

Replace 0.209 0.321 0.329

e(s) =
∑

m∈mutants
1− (1−K/N)s (3.2)

54

3.4 Methodology

3.4.2 Methodology for RQ2

RQ2 is designed to compare the effect of different input distribution shapes on

mutant killing efficiency. Research into statistical testing [131] has shown that

programs require different emphasis depending on their internal control and data

flow. The programs used in this chapter (see Table 3.2) process a variety of

forms of computation, from control programs to programs that perform string

processing or numerical calculations. It seems sensible to expect each shape of

input distribution to be better suited to some programs than others. However,

the extent to which they improve the tailoring of subdomains is not yet known.

Test suites have so far been generated by sampling inputs uniformly across

the range of each subdomain. Random numbers are primitively generated from

a uniform distribution between zero and one. Uniform sampling is therefore a

straightforward process of scaling random numbers to the range of each subdo-

main (see Algorithm 2). Other shapes of input distribution are less trivial to

sample, but may produce more efficient test suites. The second research ques-

tion investigates this possibility by evolving optimised subdomains for uniform,

normal and exponential samples then comparing the mutation scores achieved.

Algorithm 3 Restricted Normal Random Sampling [21]

1: if left > right then

2: swap(left, right)

3: end if

4: range = right− left

5: mean = range/2 + left

6: variance = (range/4) ∗ (range/4)

7: repeat

8: repeat

9: x = 2 ∗ rand()− 1

10: y = 2 ∗ rand()− 1

11: w = x ∗ x + y ∗ y
12: until w < 1

13: w = x ∗ sqrt((−2.0 ∗ ln(w))/w)

14: until abs(w) ≤ range/(2 ∗ variance)
15: return mean + variance ∗ w

55

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

Normal sampling is performed using the polar form of the Box-Muller trans-

formation (see Algorithm 3). The polar form is computationally less expensive

than the basic form as it does not require sine or cosine calculations. It constructs

a circle such that w = x2 + y2, where x and y are random input variables, then

uses sine and cosine rules to map them to a normal distribution. It is necessary to

transform the values of x and y so that they are uniformly distributed between -1

and 1. The normal distribution is infinite, so as with exponential sampling some

values must be discarded. Since 95% of the distribution probability area lies

within 2 standard deviations either side of the mean, I set the standard deviation

to a quarter of the desired range, so as to reduce the need for resampling.

Exponential sampling is performed using an inverse transform method (see

Algorithm 4). In an exponential distribution, the probability that a random

variable X is less than or equal to x (i.e. the cumulative distribution function)

is given by 1 − e−λx, where x ≥ 0 and λ > 0. Rearranging this equation to

make x the subject, x = −ln(1 − P (X ≤ x))/λ. The exponential distribution

is sampled by generating values uniformly at random between zero and one for

1 − P (X ≤ x), then mapping them to the value of x that occurs with this

probability. As exponential distributions are infinite, it is necessary to discard

any values produced beyond the desired range and resample. In order to reduce

the number of wasted samples, I set the value of λ so that 95% of the distribution

probability area is inside the range. Rearranging the previous equation gives

λ = −ln(0.05)/range, which is equivalent to λ = ln(20)/range.

Algorithm 4 Restricted Exponential Random Sampling

1: if left > right then

2: swap(left, right)

3: end if

4: range = right− left

5: lambda = ln(20)/range

6: repeat

7: x = −ln(rand())/lambda

8: until x ≤ range

9: return left + x

56

3.4 Methodology

3.4.3 Methodology for RQ3

RQ3 is designed to determine whether it is possible to infer useful information

about the programs under test from the relative efficiencies of subdomain values

that have been evolved to kill their mutants. I address this research question by

considering the mutation scores achieved by test suites sampled from subdomains

with various sizes, lower and upper numerical boundaries, percentage chance

values and centre points. The size of a subdomain is the difference between

its lower and upper boundary values and the centre point is located half way

between them. The aim is to discover whether there is a causal relationship

between subdomain values and the efficiency of the resulting test suite.

I acknowledge there may not always be a direct relationship between the

subdomain values evolved for a program and their ability to produce effective

mutant-killing test suites. Take for example, a simple program that has one

mutant (M1) and two input parameters (I1 and I2). Subdomains evolved for I1

are small and restricted to the same region of input, whereas subdomains evolved

for I2 are large and spread over a wide area. It is clear that the subdomains

evolved for I1 are important for killing M1. Subdomains evolved for I2 may be

large because M1 can be killed by a wide range of values, or only a few values

can kill M1 but they are spaced far apart. It is also possible that I2 has no affect

on whether M1 is killed and the size is purely due to random drift. It is therefore

necessary to consider why particular subdomain values have been evolved.

My analysis utilises every subdomain evaluation; not just the final selection

of subdomains, but also those evaluated during the optimisation process. It is

important to use all the evaluations so as to gain accurate information about the

relationship between the mutation score achieved and the values of each subdo-

main. Using only the final selection would bias the results towards subdomains

that achieve higher mutation scores and provide limited information about the

distinction between high and low performance. I acquire information about the

relationship between subdomains and their achieved mutation scores by visualis-

ing the results with scatter plots, histograms and surface area diagrams. Pearson

correlation coefficients are also included where relevant. My intention is that,

once the relative characteristics of efficient and inefficient subdomains is known,

it should be possible to produce new subdomains more effectively in the future.

57

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

3.4.4 MuJava: Mutation Tool

I use MuJava to generate mutants for the programs under evaluation. MuJava

includes twelve method-level operators and twenty nine class-level operators [95].

I only use the method level operators (see Appendix A.1), as the interaction

between classes is outside the scope of this thesis. The method-level operators

are based on research into selective mutation started by Wong and Mathur [156]

and continued by Offutt et. al. [118]. Mutation operators that alter or replace

expressions were found to be the most effective in terms of cost reduction and

mutation score. MuJava method-level mutation operators modify arithmetic,

relational, logical and conditional expressions in the program code [95].

3.4.5 Equivalent Mutants

Equivalent mutants have an adverse affect on mutation score because they cannot

be killed by any test data. I therefore remove all the equivalent mutants before

evaluating the results. This is achieved by executing mutants that are not killed

at any point during the experiments with an additional one million random test

input values. If none of the input values produces a difference, the mutant is

checked manually for equivalence. Although no formal records were kept of the

effort involved in determining the equivalency of mutants, in total I identified 356

equivalent mutants using this technique. This means that 9.8% of the mutants

generated by MuJava from the programs under evaluation were equivalent to the

original program. Most mutants were processed in less than a minute, but for

some it took as long as 30 minutes to determine whether they were equivalent.

3.4.6 Random sampling

Random sampling is used to select the initial subdomain values and generate new

candidate solutions for evaluation. I use the Mersenne Twister algorithm [98]

because it is fast, has a long period (219937 − 1) and passes all the Diehard tests

for randomness. It must be initialised with a numerical seed as its starting point.

Random seeds are important because poorly chosen seeds lead to repetitions

within the size of the period. I use random seeds generated from atmospheric

noise as a highly random source of data (see Appendix B.1) [58].

58

3.4 Methodology

3.4.7 Test Subject Programs

The subdomain optimisation technique was applied to eight programs of varying

size and complexity (see Table 3.2). The programs were chosen because they

are frequently used in testing research (so are well known and understood), are

written in Java (so can be mutated using MuJava) and are procedural rather

than object-oriented. They range in size from 35 up to 500 lines of code and were

mutated to produce between 58 and 1632 non-equivalent mutants each.

Table 3.2: Test Programs Used in the Experiments

Program Mutants LOC Function Source

Power 58 35 Calculates the value of xy [4]

TrashAndTakeOut 111 60 Mathematical calculation [4]

FourBalls 189 40 Calculates the ratio of inputs [147]

TCAS 267 120 Processes air traffic control [128]

Cal 280 134 Counts days between dates [4]

TriTyp 310 61 Classifies triangle shapes [147]

Schedule 373 200 Determines execution order [128]

Replace 1632 500 Performs substring replacement [128]

Power, TrashAndTakeOut and Cal are straightforward programs that

perform mathematical calculations. They were published in an introductory text-

book on software testing [4]. FourBalls calculates the values of four integers (the

weights of balls) relative to each other. It was originally used to evaluate an evo-

lutionary test data generation technique [130]. TCAS is an air traffic collision

avoidance system. It was first used by researchers at Siemens to investigate data

flow and control flow coverage criteria [75]. TriTyp (also known as the triangle

program) classifies triangles as equilateral, isoceles or scalene. It has been used

extensively in test data generation research ever since it was introduced in early

work by Ramamoorthy et al. [135]. Schedule and Replace are distinguished

from the other programs by their use of character arrays. I represent the input

file for Schedule as an array of instructions with specific command codes. For

Replace, the search and replacement strings are limited to 5 characters and the

source string to 10 characters (or copies of the search string). It was necessary

to inspect the program code of Schedule and Replace to determine their input

alphabets, but in practice this information may be available in documentation.

59

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

3.5 Results and Analysis

Below are the experimental results, addressing each research question in turn.

3.5.1 Results for RQ1

RQ1 is answered by optimising subdomains to produce test suites with different

numbers of test cases, then comparing them against unoptimised random testing.

Subdomains were evaluated with three sizes of test suite (s = 10, s = 100 and s =

1000). Subdomains are initialised randomly at the start of each experiment, then

optimised with an evolution strategy (see Section 3.3). Table 3.3 compares the

average mutation scores achieved for each size of test suites with those achieved

by the initial random subdomains and those expected for the numerical interval

[0,100], 50% Boolean chance and the entire set of character values.

Optimised subdomains achieve a higher mutation score than the initial ran-

dom subdomains for every program with all sizes of test suite. The average

optimised mutation scores also exceed the expected mutation scores on every

program under test (see Table 3.3), with just three exceptions (shown in bold).

In these three cases, all the mutants are expected to be killed by random testing,

while the evolution strategy occasionally becomes stuck in a local optimum. In

all other cases where random testing is not expected to kill all the mutants, the

optimisation technique finds subdomains that kill more mutants.

Table 3.3: Difference Between Optimised Subdomains and Random Benchmarks

Program 1) Compared to Initial 2) Compared to Expected

s=10 s=100 s=1000 s=10 s=100 s=1000

Power +5.04% +5.72% +6.30% +2.45% -0.0645% -0.0918%

TrashAndTakeOut +44.7% +42.2% +42.4% +23.8% +1.68% +0.176%

FourBalls +191% +231% +226% +134% +31.3% -0.733%

TCAS +379% +377% +376% +533% +728% +687%

Cal +125% +127% +130% +15.9% +0.859% +2.00%

TriTyp +126% +90.4% +83.2% +62.4% +22.5% +33.0%

Schedule +117% +2.25% +17.6% +48.0% +0.667% +5.04%

Replace +47.5% +32.4% +43.7% +68.5% +34.9% +31.6%

60

3.5 Results and Analysis

Table 3.4 compares the effectiveness of subdomain optimisation with two ex-

periments featuring dynamic symbolic execution (DSE). The average mutation

score of the subdomains for TriTyp and Schedule outperformed that of DSE by

a considerable margin. Yet with TCAS and Replace, even the highest mutation

score achieved by the subdomains fell short of that achieved by DSE.

DSE is particularly effective for programs that have complex branch struc-

tures: there are more paths through Replace than the other three programs put

together and the majority of TCAS’ program code is not executed unless two

numerical equalities, two inequalities and two Boolean values are true. Subdo-

main optimisation works best on programs for which it is possible to define a

continuous effective region of test input: e.g. finding subdomains that contain

various types of triangle for TriTyp, or optimising relative priorities for Schedule.

Table 3.4: Comparison with Dynamic Symbolic Execution

Program
Mutation score

Subdomain optimisation ∗ DSE 1 [65] † DSE 2 [128] ‡

TCAS 47% 64% 54%

TriTyp 95% 69% 59%

Schedule 85% 57% 57%

Replace 43% 56% 53%

Program
Number of test cases

Subdomain optimisation ∗ DSE 1 [65] ‡ DSE 2 [128] †

TCAS 100 422 unknown

TriTyp 100 90 unknown

Schedule 100 301 unknown

Replace 100 8927 unknown
∗ averaged over 100 trials, † result of a single trial, ‡ averaged over 10 trials

† mutants produced using MuJava ‡ mutants produced using another tool (Milu)

Papadakis and Malevris [128] used 8927 test cases to achieve a 56% muta-

tion score with Replace, whereas optimised subdomains achieved a 43% score

with 100 test cases. Subdomain optimisation evaluates test cases at each gener-

ation to evaluate new candidate subdomain values. Table 3.5 lists the number

of generations it took for each program before convergence was achieved (the

point at which the mutation score no longer increases). It took an average of

61

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

244 generations to achieve convergence with Replace, so subdomain optimisation

evaluated almost three times as many test cases as DSE. The real benefits of the

new technique only become available once the subdomains have been evolved.

Table 3.5: Number of Generations Before Convergence Using 100 Test Cases

Program
Number of generations

Maximum Average

Power 36.0 5.68

TrashAndTakeOut 216 79.4

FourBalls 197 75.8

TCAS 297 183

Cal 297 203

TriTyp 300 207

Schedule 269 65.1

Replace 476 244

Figure 3.1 plots the mutation scores achieved by subdomain optimisation,

along with the expected scores for random testing (see Section 3.5.1). The same

number of test cases are used in random testing as are sampled from the evolved

subdomains (as opposed to the entire optimisation process). There is a relation-

ship between the size of a program and the mutation score achieved by subdomain

optimisation. With 10 test cases sampled from optimised subdomains, mutation

score is correlated to the number of mutants and lines of code with -0.690 and

-0.667 Spearman’s rank coefficients. There is also a correlation (though a slightly

weaker one) for other sizes of test suite. It is possible to kill most of the mutants

from the smallest program (Power) with 10 test cases and little optimisation (see

Figure 3.1a). In contrast, the largest program (Replace) had a low mutation

score, even after 600 generations and 1000 test cases (see Figure 3.1h).

On the other hand, a program’s size does not always determine how many of

its mutants can be killed. Cal has twice the number of mutants as Fourballs, but

89% were killed by 10 test cases, compared to 83% with FourBalls (see Figures

3.1e and 3.1c). TriTyp has one more line than TrashAndTakeOut, but only 64%

of its mutants are killed (see Figures 3.1f and 3.1b). The mutation score achieved

with TCAS was only slightly higher than that achieved with Replace, but it has

one sixth the number of mutants and one quarter the lines of code.

62

3.5 Results and Analysis

(a) Power (b) TrashAndTakeOut

(c) FourBalls (d) TCAS

(e) Cal (f) TriTyp

(g) Schedule (h) Replace

Figure 3.1: Mutation Scores for Random Test Suites and Evolved Subdomains

(Averaged over 100 Trials)

63

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

None of the original trials with TCAS were able to produce a mutation score

above 0.05, the score predicted for random testing (see Figure 3.1d). Inspection of

the program code reveals TCAS uses large constants in equality conditions. For

example, unless the value of Cur V ertical Sep is greater than 600, most of the

code will not execute. The mutation score was improved slightly by widening the

initial subdomains, but it was more productive to scale the program constants.

The program was transformed by dividing eight of its constants by 10, thus

bringing them within the 0-100 range used for the initial subdomain limits. With

the transformed program, the optimised programs achieved an average mutation

score of 0.316 with 10 test cases, 0.470 with 100 test cases and 0.471 with 1000

test cases (see Figure 3.1d, NB: the s=100 line is covered by s=1000).

Subdomains discovered on the transformed program can be scaled up for use

on the original program by multiplying the relevant values by 10. The subdomains

identified by the technique were scaled to achieve an average mutation score of

0.401 for 1000 test cases, with one of the trials achieving 0.625. This is comparable

to the 0.643 mutation score achieved by Papadakis et al. [128] with dynamic

symbolic execution. The approach could easily be applied to other programs

by manually identifying the relationship between the input parameters and the

internal program constants to determine which parameters should be scaled. This

could however be time consuming for a human tester who needs to test more

complex programs. In Chapter 4, I introduce an automated program stretching

technique to address this problem and achieve even better results.

Summary for RQ1: Test suites sampled from optimised subdomains were

found to be at least as efficient as unoptimised random testing. In particular:

1. Optimised subdomains increased the mutation score compared to manually

selected subdomains whenever the mutation score was not already 100%

2. There is a correlation between the size of a program and how difficult its

mutants are to kill, with some exceptions (TCAS is small but challenging)

3. The mutation score for TCAS was increased from 0.05 to 0.401 by scaling

its internal constants (and then de-scaling the optimised subdomain values)

4. Subdomain optimisation produces comparable results to dynamic symbolic

execution and presents the tester with fewer test cases to evaluate

64

3.5 Results and Analysis

3.5.2 Results for RQ2

RQ2 was answered by optimising subdomains with three different shapes of input

distribution (uniform, normal and exponential). I sample test suites of 10 test

cases because this was previously shown to highlight the difference between test

suite sizes clearly. Figure 3.2 shows a significant difference in average mutation

score between the shapes of input distribution. Normal distributions achieved

higher mutation scores with TCAS, Cal and Schedule; exponential distributions

performed better with Power, TrashAndTakeOut, FourBalls, TriTyp and Replace.

Even though the mutation score differs from one shape of input distribution

to the next, this difference is very small compared to the improvement made by

optimising the subdomains themselves. The biggest improvement in mutation

score (13.4%) was seen when changing the FourBalls sampling distribution from

uniform to exponential. This is much less than the improvement already made for

this program (134%) by optimisation from its initial subdomains. The difference

is even smaller when evaluating subdomains with a greater number of sampled test

cases. There is very little difference between distribution shapes when sampling

100 test cases from FourBalls and no significant difference was observed between

the distribution shapes used to sample 1000 test cases. Overall, different shapes

of subdomains have a minimal effect on the mutation score of sampled test suites.

It can also be difficult to determine in advance which shape of input will be

the most effective. Of the eight programs evaluated, uniform sampling never

achieved the highest mutation score. This suggests it is more effective to focus

on a particular part of each subdomain. Normal distributions performed better

on some programs and exponential distributions on others, but it is difficult to

determine when each distribution will work best. There is no clear strategy (that

can be determined from these results) for choosing the right distribution shape.

Summary for RQ2: Different input distribution shapes do have a small

effect on the mutation score of sampled test suites. However, this effect is small

compared to the improvement made by subdomain optimisation and no one shape

can be considered the most effective for every program. It therefore seems unpro-

ductive to continue this line of research. Neither uniform, normal or exponential

distributions match the ideal shape for each program. I achieve more success in

Chapter 4 by using multiple sets of subdomains for greater precision.

65

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

(a) Power (b) TrashAndTakeOut

(c) FourBalls (d) TCAS

(e) Cal (f) TriTyp

(g) Schedule (h) Replace

Figure 3.2: Mutation Scores for Subdomains with Different Distributions

(Averaged over 100 Trials)

66

3.5 Results and Analysis

3.5.3 Results for RQ3

RQ3 was answered by examining the relationship between subdomain bound-

ary (and chance) values and the mutation scores that they achieve. Throughout

the process of subdomain optimisation, information is recorded on the mutation

scores achieved by test suites sampled from various sets of subdomains. This

information is used by the evolution strategy to discover and identify more ef-

ficient subdomains, but it can also be used to reveal useful information about

the characteristics of the program under test. For example, it can be used to

predict the existence of control branches in the program code or determine the

necessary thresholds for input parameters to achieve a high mutation score. I

present this information by providing several illustrating examples of ways in

which subdomains characterise certain elements of the program code.

The Power program inputs two integers (x and y), then returns the value

of xy by applying y − 1 multiplications of x. If the value of y is less than or

equal to zero, Power does not enter its multiplication loop, instead returning

the value of x. As the majority of mutable statements occur in or around this

loop, most of the mutants will not be exercised unless positive values for y are

generated. For this reason, upper boundaries of y that are less than or equal to

zero produce low mutation scores (see Figure 3.4). Setting the lower boundary

of y to a positive value prevents negative numbers being generated and typically

produces a mutation score around 95% (see Figure 3.3). Yet, in order to exercise

all the mutants, it is necessary to include at least one negative and one zero value.

100% mutation score is only achieved if the lower boundary of y is negative.

Figure 3.3: Lower Boundaries for ‘y’ Figure 3.4: Lower Boundaries for ‘y’

67

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

TrashAndTakeOut only has one input parameter, ‘x’, but two branch condi-

tions x > 0 and x > 5. To achieve 100% mutation score, the lower boundary

must be less than zero (see Figure 3.5) and the upper boundary greater than five

(see Figure 3.6). As with Power, a positive lower boundary avoids low mutation

scores, but in this case only achieves 66% mutation score.

Figure 3.5: Lower Boundaries for ‘x’ Figure 3.6: Upper Boundaries for ‘x’

TCAS has a large number of input parameters, each of which have a different

effect on the program. To achieve a high mutation score, the upper boundary

of ‘Cur Vertical Sep’ must be greater than 60 (see Figure 3.7). This corresponds

to a (global constant) threshold condition of 600 in the untransformed program

code. It is also important to have a large chance for ‘High Confidence’ to be true,

as much of the code is not executed if it is false (see Figure 3.8).

Figure 3.7: Upper Boundaries for

‘Cur Vertical Sep’

Figure 3.8: Chance values for

‘High Confidence’

68

3.5 Results and Analysis

Before starting this research, I assumed TriTyp would require small subdo-

mains of integers close to zero to increase the likelihood of isoceles, equilateral and

invalid triangles. In reality, there is little pressure towards the use of smaller sub-

domains (see Figure 3.9 and 3.10). It is only necessary for the upper boundary to

be large enough to support each type of triangle. This appears to contradict the

findings of Michael et al. [107] and Duran [44]. Yet, all of the subdomains eval-

uated in this research are relatively small, so it may still be valid that sampling

from small subdomains is more efficient than the entire input domain.

Figure 3.9: Lower Boundaries for ‘side1’ Figure 3.10: Upper Boundaries for ‘side1’

Subdomain optimisation can be used to predict branch structure. The results

of FourBalls show four distinct levels of mutation score (see Figure 3.11 and 3.12).

They correspond to four branches in the program code, conditioned upon the

value of ‘cual’ (1, 2, 3 or other). Figure 3.11 suggests the ‘cual’ subdomain must

be small to achieve a high mutation score (values greater than three produce the

same result). Compare this with the apparent correlation for ‘a’ that is actually

just an artifact of the normal distribution (see Figure 3.12). It is important to

compare any inferences against the expected results for an unguided search.

Many of the input parameters evaluated had little impact on the mutation

score because they do not affect the control flow. Take for example the base

values of Power compared with the exponent values. Input parameters can also be

ineffective when their subdomains are poorly coded to parameters of the evolution

strategy. My coding of the Replace program was unhelpful because it is irrelevant

which alphabetical characters are used; only the special characters are significant.

It is difficult to design an effective coding system, but the results of subdomain

evaluation can often reveal new useful information for this task.

69

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

Figure 3.11: Size of Subdomains for ‘cual’ Figure 3.12: Size of Subdomains for ‘a’

I have shown the subdomain optimisation technique presented in this chapter

to be capable of revealing information about the programs under test, but it has at

least one significant limitation. If values in the input domain necessary for killing

mutants are spaced far apart, the highest mutation score will be achieved when the

subdomain includes all these values. Yet, widening the subdomain has a negative

effect because the likelihood of sampling these values is reduced. Subdomain

optimisation is torn between widening the subdomains to make it possible to kill

more mutants, or focussing on an efficient area of the input domain.

An illustration of this limitation can be found in the results for Schedule. Fig-

ure 3.14 shows that the highest mutation scores are achieved when the subdomain

for ‘prio 1’ is made larger. There are useful areas within the input domain for this

parameter at around 500 or -500 (see Figure 3.13). Yet, due to the likelihood of

sampling these values from such as large subdomain, many of the evaluations pro-

duce low mutation scores. In Chapter 4, more mutants are killed with a smaller

test suite by evolving multiple sets of subdomains, one for each group of mutants.

Figure 3.13: Centre Points for ‘prio 1’ Figure 3.14: Size of ‘prio 1’ Subdomains

70

3.5 Results and Analysis

Finally, in addition to creating scatter plots of the evaluated subdomain val-

ues and their corresponding mutation scores, it is also possible to produce 3D

representations of the optimisation process. Figures 3.15 through to 3.22 plot for

each program the percentage of trials that achieved a particular mutation score at

each generation in the evolution strategy. I ran 100 trials of my experiments and

partitioned the mutation scores into intervals of 0.1 for the purpose of plotting

my results. Rather than suggesting specific values to be used in testing (as with

the scatter plots), 3D graphs provide insight into the optimisation process.

It is immediately apparent from the graphs that there is a distinction between

programs for which all the mutants are killed straight away (e.g. Power) and

programs for which many of the mutants are difficult to kill (e.g. TCAS). Since

high mutation scores are achieved quickly for Power and many of the TCAS

mutants are not killed, there are large flat areas in their graphs where there

is little or no selection pressure. By contrast, programs reveal the most useful

information for testing if their mutants are difficult but still possible to kill, as

their subdomains are highly specialised by the end of the optimisation process.

For some programs (e.g. TriTyp) optimisation progresses smoothly from start

to finish, whereas for others (e.g. FourBalls) there are peaks or ‘ripples’ in mu-

tation score where optimisation has become stuck in a local optimum. This

distinction can also be seen in the scatter plots to a lesser extent. Ripples cor-

respond to branch conditions that are difficult to meet. One way to address this

problem is to restart a trial once it has become stuck. Another (less disruptive)

way is to modify the fitness landscape so the trial is no longer stuck. I do this in

Chapter 4 by transforming the branch conditions to make them easier to meet.

Summary for RQ3: The relationship between subdomain values and the

mutation scores they achieve can be characterised through the use of graphs. In

particular, the following provide information about program branch structure:

1. 3D plots of the optimisation process (with ripples in mutation score) can

be used to infer the number of branches in a program

2. Scatter plots of subdomain lower and upper boundaries reveal thresholds

that must be met to satisfy particular branch conditions

3. Scatter plots of subdomain sizes indicate when a narrow range of values is

needed to exercise branch conditions efficiently

71

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

Figure 3.15: Power Optimisation Process

Figure 3.16: TrashAndTakeOut Optimisation Process

Figure 3.17: FourBalls Optimisation Process

Figure 3.18: TCAS Optimisation Process

72

3.5 Results and Analysis

Figure 3.19: Cal Optimisation Process

Figure 3.20: TriTyp Optimisation Process

Figure 3.21: Schedule Optimisation Process

Figure 3.22: Replace Optimisation Process

73

3. EVOLVING SUBDOMAINS FOR MUTATION ADEQUACY

3.6 Summary

The optimisation technique identified subdomains from which test cases can be

selected with higher mutation score than random testing (numerical: [0,100],

Boolean: 50%, character array: whole alphabet). This was achieved for eight

benchmark programs, three sizes of test suite and three shapes of input distribu-

tion. It only failed to surpass the expected mutation score when it was 100%.

Optimisation increased the mutation score of each test suite, but greater im-

provements were made using 10 test cases compared to 100 or 1000, largely be-

cause the initial mutation score was much lower. The three shapes of input

distribution used to sample test cases had little effect on the mutation score.

The distribution shapes used in our experiments are primitive. This allows dif-

ferent distribution shapes to be specified without any additional parameters, but

Chapter 4 shows that more complex input distributions achieve better results.

Scaling the parameters of TCAS allows more effective identification of subdo-

mains. Some basic understanding of the program code was necessary to determine

which parameters to scale. This threatens the validity of subdomain optimisa-

tion as a black-box technique, but it was only necessary to have knowledge of the

global constants in TCAS. No scaling was needed for the other seven programs.

The strengths of the subdomain optimisation technique are:

1. It allows black-box testing for an unknown program

2. It selects subdomains as a starting point for regression testing

3. It provides some insight into the thresholds and emphases re-

quired for choosing effective test input values (e.g. for TCAS)

The weaknesses of the subdomain optimisation technique are:

1. It achieves a lower mutation score than DSE for some programs.

2. It is inefficient when the values that kill each mutant are far apart.

3. It sometimes necessary to inspect the program code before opti-

mising subdomains so as to identify appropriate scaling factors.

These weaknesses are addressed in the next chapter by evolving multiple sets

of efficient subdomains and stretching the program code automatically.

74

Chapter 4

Efficient Sets of Subdomains for

Mutation Adequacy

4.1 Introduction

In the previous chapter, I evolved candidate solutions for the program under

test with a single subdomain for each input parameter. The evolved subdomains

achieved a higher mutation score than can be expected by generating test cases at

random, but there is still some room for improvement. Many of the experimental

trials became stuck in a local optimum rather than reach their full potential

and one program (TCAS) required manual scaling of its global constants before

subdomain optimisation could be effective. In this chapter, I evolve multiple sets

of subdomains, each of which are targeted at killing a specific group of mutants

as efficiently as possible. I also apply subset selection to identify small sets of

subdomains that achieve mutation scores almost as high as the complete set.

As a motivating example, consider a program with two mutants (M1 and M2)

and one input parameter (x); M1 can only be killed if x = 1 and M2 can only be

killed if x = 1000. The smallest single subdomain for x capable of killing both M1

and M2 is the interval [1, 1000]. Widening the subdomain to this interval reduces

the efficiency of the sampled test suite so the probability of killing each mutant

is 1/1000. Rather than evolving a single subdomain for both mutants, it is more

efficient to evolve separate subdomains, one for each mutant. Subdomains can be

evolved individually for the highest possible probability of killing each mutant.

75

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

However, evolving subdomains for individual mutants carries the risk of over-

fitting. This can increase the human effort involved in evaluating test cases and

limits the potential for regression testing. The key to selecting efficient sets

of subdomains is to find a balance between targeting mutants individually and

using as few subdomains as possible. I evolve sets of subdomains to complement

each other by targeting different groups of (similarly related) mutants. Initially

I train the subdomains against the complete set of mutants, then later in the

optimisation process against mutants for which no effective subdomain has yet

been found. The first subdomains to be identified are therefore reasonably good

at killing a large number of mutants, whereas subdomains evolved later are more

efficient at killing specific groups of mutants. By evolving some subdomains

to target a large number of easy to kill mutants and others to target a small

number of difficult to kill mutants, mutants can be killed efficiently with as few

subdomains as possible.

Another way to improve efficiency and reduce the number of subdomains is

to select subsets of subdomains once they have been produced. Previously (in

Chapter 3), I found that reducing the number of test cases sampled from a single

subdomain increased test suite efficiency without greatly reducing performance.

In this chapter, I explore whether reducing the number of subdomains has a

similar effect. I reduce the number of subdomains by means of a new sequential

technique for subdomain selection. Subdomains are added and removed one at

a time until the highest possible mutation score is achieved for each set size.

Subdomain selection is applied incrementally, from a single subdomain up to the

complete set. In this way, it is possible to identify the smallest set of subdomains

that have a similar fault finding capability to the complete set.

Optimising efficient multiple sets of subdomains addresses the following prob-

lems of conventional random testing:

1. It is inefficient for faults that require specific boundary conditions

– I evolve multiple sets of subdomains to target boundary conditions more

efficiently than sampling over a single large subdomain.

2. Without an automated oracle, random testing is labour intensive

– My technique requires fewer test cases than is typical for random testing,

thus reducing the human effort required to create test oracles.

76

4.2 Optimising Multiple Sets of Subdomains

4.2 Optimising Multiple Sets of Subdomains

Multiple sets of subdomains are optimised using an evolution strategy. The pro-

cess (see Figure 4.1) is similar to that presented in Chapter 3, except it involves

a more sophisticated evolution strategy (CMA-ES) and a new fitness function

favouring subdomains that kill different groups of mutants. Subdomains are

evaluated by sampling test cases within their bounds and counting the number

of times each mutant is killed. Once a group of mutants is covered by a set of

subdomains, the search continues with the remaining mutants.

A mutant is considered to be covered if it is killed at least once in 95 out

of 100 test suites of 5 test cases sampled from the subdomains. This ensures

that each set of subdomains consistently kills a different group of mutants. Once

subdomains are found to cover a particular group of mutants, the search continues

with the aim of identifying and targeting a new group from among the remaining

mutants. If, however, no new mutants have been covered after 50 generations,

the program is transformed through a process known as ‘program stretching’ to

make individual mutants easier to kill one at a time.

Rather than increasing the mutation score continually for a single set of sub-

domains (as in the previous chapter), the technique presented in this chapter

is discontinuous. It restarts the optimisation process whenever a group of mu-

tants has been sufficiently covered by the current set of subdomains. The search

is terminated if, after the stretching process is completed for all the remaining

mutants, no further mutants have been covered.

Figure 4.1: Optimising Multiple Sets of Subdomains

77

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.2.1 Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation evolution strategies (CMA-ES) [62] can solve diffi-

cult optimisation problems without the need for manual parameter tuning. CMA-

ES works by adapting the search distribution at the same time as the candidate

solutions. This means that the algorithm can adjust itself automatically to the

fitness landscape. CMA-ES has been shown to be particularly effective at non-

linear optimisation. In a recent black-box comparison study with 25 benchmark

functions, CMA-ES outperformed eleven other algorithms in terms of the number

of function evaluations before the global optimum value is reached [63].

CMA-ES defines the search neighbourhood using a multivariate normal distri-

bution, represented in Figure 4.2 as a constantly changing oval. The distribution

mean is set, as in the traditional form of evolution strategy, to the currently

favoured solution. Yet, in contrast to the traditional form, which uses the same

variance for each parameter, CMA-ES defines the shape of the distribution us-

ing a covariance matrix and scaling factor [62]. Multiple dimensions of variance

allow the search distribution to be adapted precisely to the underlying fitness

landscape. CMA-ES adjusts the shape and size of the distribution according to

pairwise dependencies identified in the covariance matrix [62]. The search distri-

bution is adapted to balance the exploitation and exploration of values for each

input parameter, so as to achieve fast, but not premature convergence.

Figure 4.2: Covariance Matrix Adaptive Evolution Strategy (CMA-ES)

(CMA-ES is a population-based optimisation algorithm.

The solid blue lines represent points of equal fitness in the landscape,

the dashed lines represent the multivariate normal search distribution

and the orange dots represent sampled candidate solutions)

78

4.2 Optimising Multiple Sets of Subdomains

4.2.2 Fitness Function for Evolving Sets of Subdomains

As well as employing a different form of evolution strategy (CMA-ES), I also

introduce a new fitness function with the aim of selecting subdomains which con-

sistently kill the same specific group of mutants (see Equation 4.1). By targeting

each set of subdomains at a different group of mutants, test data can be sampled

that is able to kill each group as efficiently as possible.

Minimise
∑
s∈S

∑
m∈M

(Ks,m − K̄m)2

(K̄m − K̄)2
(4.1)

(S is the set of test suites, M is the set of mutants, K is the number of kill events)

The fitness function in Equation 4.1 does not require the user to specify which

particular group of mutants to target. Instead, it maximises variance in the num-

ber of times each mutant is killed and minimises variance in the number of times

the same mutant is killed. This metric is similar to the lack-of-fit sum of squares

calculation used in an F-test, for example to measure homogeneity in cluster

analysis [18]. The fitness function consists of a sum of fractions. Each numerator

represents the pure-error sum of squares (differences within the same mutant) and

each denominator represents the lack-of-fit sum of squares (differences between

mutants). By minimising the fitness function, the CMA-ES will tend to select

subdomains that consistently kill the same group of mutants. The end result is

that each set of subdomains is trained against a different group of mutants.

4.2.3 Subdomain Representation

Subdomains are expressed in the same forms as they are in the previous chapter,

but with a different character array representation (see Table 4.1). Rather than

optimise upper and lower boundaries for characters as if they are numerical values,

the new approach assigns a separate chance of selection to each special character

(wildcard, closure etc.) and a single chance of selection to alphabetical characters

(a-z). Character arrays are fixed in length (by default to five characters) and the

value of each character is sampled randomly. Characters are sampled from a

weighted distribution, as determined by the evolved probabilities.

79

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

Table 4.1: Transformations from x ∈ [0, 1] to values within a subdomain

Data type Previous representation New representation

Numerical (n) n = x ∗ (nu − nl) + nl n = x ∗ (nu − nl) + nl

Boolean (b) if(x < bp) b = true, if(x < bp) b = true,

else b = false else b = false

Character (c) c = x ∗ (cu − cl) + cl for each i ∈character set

if(x < cp(i)) c = ci

(nu and nl are the upper and lower boundaries for a numerical subdomain,

bp is the probability of a value within a Boolean subdomain being true,

cu and cl are the upper and lower boundaries for a character subdomain, and

cp(i) are probability thresholds for specific characters within a subdomain)

4.2.4 The Core Optimisation Algorithm

Algorithm 5 outlines the main process used to identify efficient subdomains for

a program that has numerical input parameters. It starts by selecting n initial

random means for the upper and lower range of each parameter, then adapts

these values until they are efficient (as determined by their fitness evaluation)

at killing a specific group of mutants. A similar process is applied with Boolean

probabilities and character array distributions, except that subdomain values are

selected using percentage chance values rather than upper and lower boundaries.

The first set of subdomains is evolved by applying the optimisation algorithm

to all the mutants from the program under test. The algorithm iterates, by using

its fitness function to select more efficient subdomains, until a specific group

of mutants is killed by more than 95 sampled test suites out of 100. At each

iteration, the default 4+3 log n [62] new candidate values (Λ) are perturbed from

the current means and their fitness is evaluated. The fittest 50% of these values

(Υ) are selected, weighted according to fitness and averaged to produce means for

the next iteration. At the same time, the step size (σ) and covariance matrix (C)

is updated to optimise the search distribution. The covered mutants are then put

to one side and the boundary values of each subdomain recorded. The process

is repeated to evolve new subdomains until at point is reached at which no more

subdomains can be identified to cover the remaining mutants.

80

4.2 Optimising Multiple Sets of Subdomains

Algorithm 5 Synthesising an optimal solution ([αl, αu], [βl, βu], . . . , [Ωl,Ωu])

1: Select initial random values (uniformly from the range 0 . . . 100) for the means

(µ1 . . . µn) and step size (σ), where n is twice the number of subdomains

2: Initialise the covariance matrix (C) to give equal emphasis to each direction

3: Set the sample size (Λ) to 4 + 3 log n and the selection size (Υ) to Λ/2

4: loop

5: for λ ∈ Λ do

6: Sample candidate values from a multivariate normal distribution:

xλ1 = µ1 + σε1, xλ2 = µ2 + σε2, xλ3 = µ3 + σε3, xλ4 = µ4 + σε4,

. . . , xλn−1 = µn−1 + σεn−1, xλn = µn + σεn where ε1 . . . εn ∈ N(0, C)

7: Generate 100 suites of 5 test cases from [xλ1 , x
λ
2],[xλ3 , x

λ
4],. . . ,[xλn−1, x

λ
n]

8: for m ∈M do

9: for s ∈ S do

10: Count the number of times (Ks,m) mutant m killed by test suite s

11: end for

12: K̄m =
∑

s∈SKs,m/100

13: if
∑

s∈SKills(m, s) ≥ 95 then

14: return [xλ1 , x
λ
2],[xλ3 , x

λ
4],. . . ,[xλn−1, x

λ
n]

15: end if

16: end for

17: K̄ =
∑

m∈M Km/|M |
18: Fitnessλ =

∑
s∈S

∑
m∈M

(Ks,m−K̄m)2

(K̄m−K̄)2

19: end for

20: Sort the Λ samples by their fitness and select the Υ best samples

21: Calculate the selected sample weights (wυ, where υ ∈ Υ)

22: Update the search distribution mean:

µ1 =
∑

υ∈Υwυx
υ
1 , µ2 =

∑
υ∈Υwυx

υ
2 , . . . , µn =

∑
υ∈Υwυx

υ
n

23: Update the covariance matrix (C) and the step size (σ)

24: end loop

(M is the set of non-equivalent mutants and S is the set of test suites.

Kills(m, s) = true if Ks,m > 0 and false otherwise)

81

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.2.5 Program Stretching

My technique for program stretching was inspired by previous research into the

dynamic transformation of programs to improve branch coverage [53]. In order

to adapt this concept to mutation analysis, I have designed new program trans-

formations that allow difficult to kill mutants to be reached, infect a difference in

the program data state and propagate this difference to the output. Stretching a

program involves transformation of its code and a new fitness function. Instead

of targeting a group of mutants (as was described in the previous subsection), I

maximise the number of times an individual mutant is killed.

Program stretching makes specific mutants easier to kill by introducing ‘delta’

values into the program code. Once it is applied, program stretching can be

gradually reversed by incrementally adjusting the delta values from 100 down to

zero. By restoring the transformed program back to the original mutant step by

step, program stretching aims to drag the subdomain values along with it so that

subdomains are evolved that can efficiently kill the original mutants.

The following three ‘stretch’ modes are used in the research for this chapter:

Path stretching

forces branch conditions leading up to a mutant to be true or false, depend-

ing on whether the branch was taken the last time the mutant was killed.

Path stretching is the first transformation to be applied. It is designed to

train subdomains so that program execution reaches the point of mutation.

Mutation stretching

alters the mutation by an offset of 100, for example x >= y → x > y

becomes x > y+ 100 with the aim of increasing its impact on the program.

Mutation stretching applied if subdomains still cannot be found to cover

the mutant, even after the path to the mutation point has been forced.

Branch condition stretching

adds an offset of 100 to a difficult branch condition in order to make it

easier to meet, for example x == y becomes (x <= y + 100)&&(y <= x+

100). Branch condition stretching is applied if restoring a branch condition

following path stretching prevents the mutant from being covered.

82

4.2 Optimising Multiple Sets of Subdomains

The three program transformations were designed to make it easier to reach,

infect and propagate the targeted mutants. Path stretching addresses reachability

by forcing execution down a particular subpath, then evolving subdomains to

reach the remaining branches in the path. Mutation stretching addresses the

infection condition by attempting to increase the effect of the mutant (a linear

delta may not have linear effect, so this is an approximation). Branch condition

stretching addresses propagation by making difficult to meet branch conditions

easier along paths on which the mutant has been killed.

Figure 4.3 summarises the process used to find effective subdomains for diffi-

cult to kill mutants by stretching and un-stretching the program code. Program

stretching dynamically alters the fitness landscape so as to make the necessary

subdomain values more readily available to the search process. It is performed so

that the mutant that has been killed the most number of times is targeted first,

then the next most frequently killed and so on. Once stretching is completed, the

main fitness function is reapplied to take advantage of the stretching process on

other mutants that are killed by similar input values.

(C(m) is true if the evolved subdomains cover mutant m)

Figure 4.3: Flowchart of the Program Stretching Process

83

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.2.6 Experiments

I set up experiments to answer the following two research questions in regard to

optimising multiple sets of subdomains for mutation adequacy:

RQ4: Are test suites sampled from multiple sets of subdomains more

efficient at killing mutants than single sets of subdomains?

A test suite can be considered to be more efficient if it achieves a higher

mutation score with the same number of test cases. I use mutation anal-

ysis to determine whether multiple sets of subdomains are more efficient

than single sets. This is achieved by sampling 5 test cases from each set

of subdomains evolved as part of a multiple set, then sampling the same

total number of test cases from single sets of subdomains and counting the

average number of mutants killed by each approach. If multiple sets of

subdomains kill more mutants than single sets with the same number of

sampled test cases, multiple sets can be considered to be more efficient.

RQ5: Does the new approach for optimising multiple sets of subdomains

take longer than the previous approach for optimising single sets?

Although test suites sampled from multiple sets of subdomains are expected

to kill mutants more efficiently than those sampled from single sets, it may

take longer for them to be evolved. Sets of subdomains are evolved one after

the other in the multiple set approach, so that optimising a large number

of sets can be computationally expensive. Yet, it is only necessary to cover

one group of mutants at a time, so the stopping criterion for each set of

subdomains is less demanding. It seems likely that a trade-off will need

to be made between the amount of time required to evolve subdomains

and the efficiency of test suites sampled from them once they have been

evolved. The efficiency of the evolved subdomains is more important (since

computation time is typically cheaper than human effort), but I will still

take optimisation time into account. If multiple sets of subdomains take

considerably longer to evolve than single sets and the mutation score they

achieve is only slightly higher, I will consider the added value of using

multiple sets to be questionable. If on the other hand, multiple sets of

subdomains take slightly longer to evolve but achieve a significantly higher

mutation score, I will consider the multiple sets approach to be worthwhile.

84

4.2 Optimising Multiple Sets of Subdomains

4.2.6.1 Methodology for RQ4

RQ4 is designed to compare the relative efficiencies of test suites sampled from

multiple and single sets of evolved subdomains. Test suites sampled from single

sets of optimised subdomains have previously been shown to achieve a higher

mutation score on average than unoptimised random testing (see Chapter 3).

The new technique for evolving multiple sets of subdomains should perform even

better than the previous technique for evolving single sets of subdomains because

it targets and optimises subdomains for individual groups of mutants. This avoids

the problem that single sets of subdomains are made larger by the need to cover

important values in different regions of the input domain, thus reducing their

efficiency. Multiple sets of subdomains can target each key region of the input

domain with a different set of subdomains for maximum efficiency.

I address this research question by applying the new technique to optimise

multiple sets of subdomains on programs for which it was previously shown to be

a non-trivial task to achieve a high mutation score with single sets of subdomains

(see Table 4.2). Subdomains are optimised from their initial random starting

values using a CMA-ES. The optimised subdomains are evaluated by sampling

5 test cases from each set, then counting the number of mutants that are killed

by the overall test suite. I compare these results with my previous technique for

optimising a single set of subdomains (with the same number of test cases). For

completeness, the results are also compared with the mutation score expected

to be achieved by this many random test cases sampled from [0,100] numerical

intervals, 50% Boolean chance and the entire set of character values.

It will be interesting to observe the extent to which multiple sets of subdo-

mains increase the mutation score above that achieved by single sets. Single sets

of subdomains significantly improved the mutation score of many programs com-

pared to unoptimised random testing. Even though previous results (see Chapter

3) suggest that multiple may be useful, it seems unrealistic to expect the same

degree of improvement. It is more likely that multiple sets of subdomains will

be more effective for some programs than others, depending on the values that

are needed to kill their mutants. Nevertheless, any increase in mutation score is

worthwhile, as long as it does not come with too much computational expense.

85

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.2.6.2 Methodology for RQ5

RQ5 is designed to investigate the additional computational expense involved

with optimising multiple sets of subdomains compared to single sets. Answering

this research question will help determine whether the increases in mutation score

achieved by multiple sets of subdomains are worth the added expense. Multiple

sets of subdomains are ultimately expected to achieve a higher mutation score

than single sets, but (for a given mutation score that can be achieved by a single

set) the process of optimising multiple sets of subdomains might be less efficient in

terms of computation time. I expect the single set technique will be more efficient

at achieving relatively low mutation scores, whereas the multiple set technique

will be more efficient at achieving high mutation scores. There is likely to be a

trade-off between the computational efficiency of the optimisation process and

the human effort involved with evaluating the resulting subdomains.

I answer this research question using the same experiments described for RQ4,

except that I record slightly different information from the results. In addition

to comparing the mutation scores ultimately achieved by subdomains optimised

using the multiple and single set approaches, I also determine the rate at which

the mutation score increases as optimisation progresses. This does not require any

further mutation score evaluations for single sets of subdomains. As optimisation

is already performed on the basis of mutation score, it is simply a case of recording

the new mutation score whenever it is improved by the optimisation process. For

multiple sets of subdomains, however, optimisation is performed on the basis on

mutant coverage rather than mutation score. It is therefore necessary to evaluate

the mutation score whenever a new subdomain is added. I do this by sampling

5 test cases from each set of subdomains. The information gathered about the

progress of mutation score over optimisation will help me to determine whether

multiple sets or single sets take more time to achieve particular mutation scores.

86

4.2 Optimising Multiple Sets of Subdomains

4.2.6.3 Test Subject Programs

The new subdomain optimisation technique was applied to six programs (see

Table 4.2), four of which were selected because they were the most challeng-

ing programs from the previous chapter. In my experiments optimising a single

set of subdomains for each program, it was particularly difficult to produce ef-

ficient subdomains for TriTyp, Schedule, TCAS and Replace. This means that

any differences between multiple and single set subdomains are likely to be more

pronounced for these programs. The remaining two programs (SingularValueDe-

composition and SchurTransformation) were chosen because they have a more

complex (matrix) input data structure and have a large potential for mutation.

It is hoped that these mutants will help to illustrate whether multiple sets of

subdomains are more effective than single sets.

Table 4.2: Test Programs Used in the Experiments

Program Mutants LOC∗ Function

TriTyp 310 61 Triangle classification

Schedule 373 200 Task prioritisation

TCAS 267 120 Air traffic control

Replace 1632 500 Substring replacement

SingularValueDecomposition 2769 298 Matrix decomposition

SchurTransformation 2125 497 Matrix transformation
∗LOC: Lines of Code

The subdomain representation for TriTyp, Schedule and TCAS is described in

the Chapter 3. In contrast with this chapter, I evolve a probability of inclusion for

each special character (wildcard) used by Replace. I also evolve numerical subdo-

mains for each diagonal of a four-by-four matrix for SingularValueDecomposition

and each value of a three-by-three matrix for SchurTransformation. These pro-

grams represent a variety of data structures and processing operations. Their

mutants should also be more difficult to kill than those evaluated previously.

87

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.2.7 Results

Below are the experimental results, addressing each research question in turn.

4.2.7.1 Results for RQ4

RQ4 is answered by comparing the new approach for evolving multiple sets of

subdomains with my previous approach (see Chapter 3) which evolves a single set

of subdomains without program stretching. The results are presented graphically

in Figure 4.4 and numerically in Table 4.3. Subdomains use the initial interval

[0,100] (50% chance of being true for Booleans). In the interest of fairness, both

techniques were evaluated with the same number of test cases (5 for each set of

subdomains) and the results are averaged over 100 trials.

Multiple sets of subdomains achieved 33% higher mutation score on average

than single sets and 230% higher than random testing (see Table 5.4). Although

the difference in mutation score between the new technique and the previous one

is small compared to the difference between either technique and random testing,

there is still a definite improvement in mutation score. For all but one program

(SchurTransformation), multiple sets achieved a higher mutation score than single

sets. In this case, single sets and random testing already achieved a high mutation

score, so there is little improvement that could be made. A Student’s t-test at a

95% confidence interval reveals there is no significant difference in mutation score

(P = 0.244) between single and multiple sets of subdomains for this program.

Table 4.3: Summary of Results (Averaged over 100 Trials)

Program
Mutation Score Time (mins)

Test Cases
Single Multiple Single Multiple

TCAS 0.457 0.780 364 50.6 205

TriTyp 0.951 0.998 78 8 135

Schedule 0.850 0.930 1053 1310 40

Replace 0.520 0.566 746 1410 455

SVD∗ 0.397 0.632 524 546 125

Schur† 0.986 0.920 958 885 45

∗ SingularValueDecomposition, † SchurTransformation

88

4.2 Optimising Multiple Sets of Subdomains

The new technique made a greater difference to the mutation score for some

programs than others. I found it to be particularly effective at meeting difficult

branch conditions. For example the TCAS program previously required manual

scaling of its parameters (see Chapter 3). Multiple sets of subdomains and au-

tomated program stretching render this unnecessary, allowing a higher mutation

score to be achieved. The new technique achieved a 71% increase in the mutation

score for TCAS compared with the previous technique. Multiple sets of subdo-

mains are particularly effective for difficult branch conditions, because they can

assign a set of subdomains for the purposes of meeting each condition.

Test suites sampled from multiple sets of subdomains also performed substan-

tially better than single sets in comparison with dynamic symbolic execution (see

Table 4.4). Single sets of subdomains previously achieved a higher mutation score

than dynamic symbolic execution for TriTyp and Schedule, but a lower mutation

score for TCAS and Replace (see Chapter 3). The multiple set technique achieved

a higher mutation score than dynamic symbolic execution for all four programs.

Table 4.4: Comparison with Dynamic Symbolic Execution

Program
Mutation score

Multiple sets ∗ Single sets ∗ DSE 1 [65] † DSE 2 [128] ‡

TCAS 78% 46% 64% 54%

TriTyp 100% 95% 69% 59%

Schedule 93% 85% 57% 57%

Replace 57% 52% 56% 53%

Program
Number of test cases

Multiple sets ∗ Single sets ∗ DSE 1 [65] † DSE 2 [128] ‡

TCAS 205 205 422 unknown

TriTyp 135 135 90 unknown

Schedule 40 40 301 unknown

Replace 455 455 8927 unknown
∗ averaged over 100 trials, † result of a single trial, ‡ averaged over 10 trials

Summary for RQ4: Test suites sampled from multiple sets of subdomains

achieved 33% higher mutation scores than single sets on average. In particular,

they achieved 71% higher mutation score than TCAS and do not require manual

parameter scaling. Multiple sets were also considerably more effective than DSE.

89

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.2.7.2 Results for RQ5

RQ5 is answered by comparing the amount of time it took to evolve single and

multiple sets of subdomains and considering the progress of mutation score for the

subdomains throughout their optimisation process. Figure 4.4 plots the mutation

scores achieved by multiple and single sets of subdomains against the time taken

to evolve them. The results are plotted to form an averaged continuous curve

(across 100 trials) using least squares logarithmic curve fitting [143]. Logarithmic

curve fitting makes it possible to compare the averaged results at each minute

of computation time (between 0 and 2000 minutes). I correct the curve with a

cut-off at the average point after which no further mutants were covered.

On average, it took 11.6% longer to evolve multiple sets of subdomains than

single sets (see Table 5.4). Single sets of subdomains were evolved for the Replace

program in just over half the time of multiple sets, but it took over seven times

longer to evolve single sets for the TCAS program than multiple sets. It should

be noted that these comparisons are based on the time taken until the last set of

subdomains is identified (or there are no further improvements in mutation score).

Typically, most mutants are killed quickly, but it then takes a long time to kill

the few remaining mutants. It is therefore necessary to consider the mutation

score achieved throughout the optimisation process, not just at the end.

Multiple sets of subdomains quickly achieve a higher mutation score than

single sets on half of the programs (TriTyp, TCAS and SingularValueDecomposi-

tion). It still takes longer for SingularValueDecomposition to reach its maximum

mutation score with multiple sets compared to single sets, but the final value is

much higher. For reasons mentioned previously, multiple sets never achieve as

high an average mutation score for SchurTransformation as single sets. On the

two remaining programs (Schedule and Replace), multiple sets of subdomains

perform similarly to single sets at first, but then eventually overtake it. The

mutation score for Schedule is lower with multiple sets for the first 13 hours and

it takes 9 hours for multiple sets to achieve a higher mutation score for Replace.

Summary for Q5: Multiple sets of subdomains take less time for some

programs and more time for other programs to evolve than single sets. For the

programs on which multiple sets of subdomains takes longer, the ultimately higher

mutation scores outweigh the added computational cost.

90

4.2 Optimising Multiple Sets of Subdomains

(a) TCAS (b) TriTyp

(c) Schedule (d) Replace

(e) SingularValueDecomposition (f) SchurTransformation

Figure 4.4: Percentage of Mutants Covered by Evolved Subdomains

(Averaged over 100 Trials)

91

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.3 Subdomain Set Selection

In the previous section, multiple sets of subdomains were optimised to achieve

higher mutation scores than single sets, but this comes with a cost: sampling test

cases from multiple subdomains produces a large test suite drawn from many

different regions of the input domain. Appendix B.2 presents a k-means clus-

tering of sets identified for the SingularValueDecomposition program. There are

similarities between many of the sets, as those identified later in the optimisation

process also kill mutants covered earlier. There are also some unique sets that

have been evolved to kill specific, hard to kill mutants. The aim of this chapter

is to select smaller sets of subdomains by removing those sets that cover mutants

killed more efficiently by other sets, without losing any mutant killing capability.

Considerable research effort has been invested into finding effective ways of re-

ducing test suites to minimise human and computational expense [158]. Proposed

strategies include eliminating redundant test cases, selecting test cases relevant

to recent changes and ordering test cases to reduce the time taken to find the first

fault. Test suites are typically evaluated according to the coverage criteria met

by each test case (e.g. the mutants they kill). Selecting subsets of subdomains

is slightly different because test cases are sampled probabilistically. Existing test

minimisation techniques necessitate an artificial threshold of coverage frequency.

Although this is a valid option, it loses information about the frequency with

which sets of subdomains kill particular mutants. I have devised an alternative

selection approach that allows this information to be taken into account.

My approach borrows ideas from feature selection. Feature selection tech-

niques can be roughly divided into two categories: optimal and suboptimal. Op-

timal techniques (e.g. branch-and-bound) are provably equivalent to exhaustive

search, but computationally prohibitive. Suboptimal techniques do not guarantee

the optimal selection of features, but are successful in the majority of cases and

have much more modest computational requirements. My technique for subdo-

main set selection is based on a suboptimal feature selection. Suboptimal tech-

niques typically employ greedy heuristics to quickly select features that provide

the greatest improvement for a criteria evaluation. Amongst other applications,

they have been used to diagnose Alzheimers disease from EEG data [3], detect

emotion from speech [23] and determine steel quality from textural analysis [81].

92

4.3 Subdomain Set Selection

4.3.1 Sequential Floating Forward Selection

Sequential Floating Forward Selection (SFFS) is a robust but suboptimal fea-

ture selection technique [134]. It works by a process of greedy selection and

backtracking (if it improves the criterion evaluation). SFFS is computationally

feasible for larger feature sets than optimal (branch-and-bound) techniques and

it can be used with nonmonotonic criteria (when adding another feature does

not always increase the criterion evaluation). Compared with other sub-optimal

(plus-l-takeaway-r) techniques, SFFS determines when to backtrack dynamically,

without the need for manual parameter setting. It can make multiple sweeps

through the feature set to improve performance, but if performance cannot be

improved no backward steps are made. In practice, SFFS achieves optimal or

near-optimal results [134]. I use SFFS to select efficient subsets of subdomains

for test generation.

Algorithm 6 outlines the process used by the SFFS technique. Initially, none

of the subdomains are selected. Then, one at a time, subdomains are chosen that

most improve the criterion evaluation (mutation adequacy). After a subdomain

is added, other subdomains are removed as long as the resulting subsets improve

the criterion evaluation at that level. This contrasts with other subset selection

techniques (e.g. plus l take away r) that only allow a fixed amount of backtracking.

Algorithm 6 Sequential Floating Forward Selection

1: k = 0; S0 = {}; SN = {all identified subdomains}
2: while k < desired subset size do

3: Maximise J(Sk + s+), where s+ ∈ SN − Sk
4: Sk+1 = Sk + s+; k = k + 1

5: Maximise J(Sk − s−), where s− ∈ Sk
6: if J(Sk − s−) > J(Sk−1) then

7: Sk−1 = Sk − s−; k = k − 1

8: end if

9: end while

93

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.3.2 Subdomain Set Selection Using SFFS

I apply Sequential Floating Forward Selection (SFFS) to identify an efficient

selection of subdomain sets that is as small as possible, but still achieves a high

level of mutation adequacy. To measure the extent to which a selection achieves

these goals, I use the fitness criterion function shown in Equation 4.2.

J(S) =
∑
m∈M

maxs∈S(killed(s,m)) (4.2)

(M is the set of mutants, S is the set of subdomains,

killed(s,m) is the number of times subdomain s kills mutant m)

The fitness criterion function is used as follows: first, 100 test cases are sam-

pled randomly from within the bounds of each set of subdomains. This establishes

the ability of each set to kill particular mutants. Then, at every step of the se-

lection process, the current selection of subdomain sets is evaluated according to

the sum (for each mutant) of the maximum number of times a mutant is killed by

any of the included sets. In this way, the criterion function seeks to find a small

selection of subdomain sets that kill all the mutants as frequently as possible.

Subdomain set selection starts by finding one subdomain that achieves the

highest fitness criterion evaluation on its own, then two subdomains that to-

gether form an optimal selection and so on until all the subdomains have been

selected. At each step in the process, sets of subdomains may be removed if they

improve the fitness criterion evaluation of the smaller selection size. It is with this

backtracking capability that SFFS differs from a purely greedy heuristic search.

Backtracking allows my technique to improve its selection by taking into account

the overlap between mutants killed by different sets of subdomains.

One of the benefits of using SFFS is that it identifies the best sets of subdo-

mains to include for each selection size before moving on to the next one. Once

a selection has been confirmed and backtracking has been completed, the algo-

rithm will never go back and change those sets of subdomains. By evaluating

the mutation score achieved by each selection size, the point can be found at

which adding another set of subdomains will not increase the mutation score any

further. My technique is therefore suitable for removing redundant sets of sub-

domains and finding the smallest selection from which test cases can be sampled

without having a detrimental effect on fault finding ability.

94

4.3 Subdomain Set Selection

4.3.3 Experiments for RQ6

I set up experiments to answer the following research question in regard to se-

lecting sets of subdomains for mutation adequacy:

RQ6: Is it possible to reduce the number of sets of subdomains without

significantly affecting the mutation score?

Previously, subdomain optimisation was applied to six Java programs (TriTyp,

Schedule, TCAS, Replace, SVD and Schur). Now, Sequential Floating Forward

Selection (SFFS) is applied to each set of subdomains identified previously. The

previous experiments were conducted with 100 trials. This allows an average to be

produced for SFFS. Each selection size is evaluated, starting with a single set of

subdomains, and continuing up to every set. At each step, the set of subdomains

that achieves the highest criterion evaluation is selected. I record the minimum,

maximum and average mutation score for each program and selection size.

Removing sets of subdomains without significantly affecting the mutation

score improves fault finding efficiency. I investigate the proportion of the original

mutation score that can be retained for various selection sizes. As an example of

what is possible with my approach to subdomain set selection, Table 4.5 presents

the number of sets of subdomains evolved for each program, along with the re-

duction that can be achieved without reducing the mutation score by more than

1% of its original value. This is three times less than the reported reduction in

mutation score when using expression mutation, upon which the MuJava opera-

tors are based [118]. For most programs, SFFS is able to significantly reduce the

evolved sets of subdomains with a minimal difference in mutation score.

Table 4.5: Selection of Subdomain Sets Using SFFS (Averaged over 100 Trials)

Program Original sets Reduced sets Reduction Mutation score

TriTyp 27 11 59.3% 0.991

Schedule 8 7 12.5% 0.923

TCAS 41 17 58.5% 0.774

Replace 91 9 90.1% 0.562

SVD 25 24 4.0% 0.598

Schur 9 4 55.6% 0.915

95

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

4.3.4 Results for RQ6

I evaluated the effect that reducing the number of sets of subdomains had on the

mutation score for each program. Figure 4.6 and Table 4.6 present the results of

selecting every possible number of sets of subdomains, from a single set all the

way up to include every set identified by my optimisation process. It is possible

to select fewer sets of subdomains with minimal decrease in mutation score for

all the programs, except SVD and Schedule. For example, selecting a quarter of

the sets of subdomains of TCAS only reduces the mutation score by 3.6% of that

achieved using all the sets. Over all, therefore, my approach is highly successful at

improving fault finding efficiency by reducing the number of sets of subdomains.

Both SVD and Schedule show a similar trend in that removing sets of subdo-

mains almost immediately decreases the mutation score. After Schur, Schedule

and SVD had the smallest number of sets of subdomains. This limits the oppor-

tunity for redundant sets of subdomains and makes it more likely for reducing

the number of subdomain sets to have a significant effect on the mutation score.

The reason why this is not the case for Schur may be because its mutants are

easy to kill even by random testing. These negative results do not mean that it

is impossible to improve the fault finding efficiency for Schedule and SVD, but

that subdomain selection is not the best way to do this.

The mutation scores for Schedule decrease and then increase again as sets

of subdomains are removed. This is a little confusing, since removing a set of

subdomains cannot increase the criterion evaluation. The reason for this is that

the results are averaged over 100 trials and in each trial a different number of

subdomains was initially evolved. Many of the graphs are not completely smooth

because each optimisation run identified a different number of subdomains.

In the case of Schedule, some of the trials in which a smaller number of

sets were evolved, achieved a similar mutation score to trials with larger sets of

subdomains. Therefore, even though removing sets of subdomains that have been

evolved for schedule nearly always reduces the mutation score, it is possible to

evolve fewer sets of subdomains and still achieve a similar mutation score. This

suggests that evolving sets of subdomains and then selecting them is not the best

strategy for this program. Chapter 5 uses static analysis to provide guidance as

to which sets of subdomains to evolve during the optimisation process.

96

4.3 Subdomain Set Selection

There is a relationship between the sets of subdomains that are selected and

the order in which they were identified by the optimisation process. Take for

example, the sets of subdomains selected for TCAS in 100 trials (see Figure 4.5).

Sets of subdomains are more likely to be included by the selection technique if

they were discovered later in the optimisation process. Sets of subdomains that

are discovered earlier are more likely to be redundant because they aim to cover

mutants more broadly, before some of the mutants have been put aside. This

suggests that it is useful to focus on identifying sets of subdomains for harder

to kill mutants. A static analysis technique that can provide this guidance may

even eliminate the need for subdomain set selection (see Chapter 5).

Figure 4.5: Frequency of Subdomains Selected for TCAS Subsets of Size 10

Along with the average mutation score, Figure 4.6 includes the minimum and

maximum mutation scores (dotted lines). The minimum mutation score is low

for SchurTransformation when selecting the first few sets of subdomains, but this

changes quickly after the fifth set is added. It is caused by an optimisation run in

which no one set of subdomains has a high mutation score by itself. In general,

the minimum, maximum and average values are consistently close to each other,

suggesting that the interpretations for RQ6 can be relied upon.

Summary for RQ6: Fewer sets of subdomains can be selected for all but

two programs with minimal decrease in mutation score. Subdomains identified

later in the optimisation process are more useful than those identified earlier.

97

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

Table 4.6: Summary of Results (Averaged over 100 Trials)

Program
Mutation score for selection

25% 50% 75% 100%

TriTyp 0.946 0.988 0.994 0.998

Schedule 0.686 0.862 0.828 0.930

TCAS 0.752 0.778 0.779 0.780

Replace 0.523 0.542 0.547 0.566

SVD 0.460 0.531 0.579 0.603

Schur 0.883 0.920 0.921 0.920

(a) TriTyp (b) Schedule

(c) TCAS (d) Replace

(e) SVD (f) Schur

Figure 4.6: Percentage of Mutants Covered by Evolved Subdomains

98

4.4 Summary

4.4 Summary

This chapter presented two stages towards producing efficient sets of subdomains.

Subdomains are first optimised for their ability to kill mutants consistently, then

a small set of subdomains is selected that is able to kill mutants more efficiently.

Sampling test cases from multiple optimised subdomains achieved a higher mu-

tation score than single sets of subdomains and random testing, except for one

trivially easy to test program. Subdomain selection reduced the number of sub-

domains for four out of six programs with little effect on mutation score. Multiple

sets of subdomains are therefore suitable for some, but not all programs.

Subdomain optimisation has similar computational expense whether single

or multiple sets of subdomains are used. Multiple sets of subdomains take less

time for some programs and more time for other programs to evolve than single

sets. However, multiple sets of subdomains achieve a significantly higher mutation

score than single sets (33% on average). In particular, it was previously necessary

to manual scale the input parameters of TCAS to achieve an acceptable mutation

score. With the new technique for multiple subdomains, a 71% higher mutation

score was achieved and parameter scaling was not necessary. Therefore, even for

the programs with which multiple sets of subdomains take longer to optimised,

the increased mutation score is worth the extra computation.

Subdomain selection significantly improved the efficiency of sampled test suites

for the majority of programs. Compared to subdomain optimisation, subdomain

selection is computationally inexpensive. It is, however, not effective in all cases:

reducing the number of subdomains had an immediate negative effect on Schedule

and SingularValueDecomposition. Subdomains identified later in the optimisa-

tion process are more useful than those identified earlier. Chapter 5 uses static

analysis to guide the targeting of subdomains towards particular mutants such

that fewer subdomains need to be removed later.

99

4. EFFICIENT SETS OF SUBDOMAINS FOR MUTATION
ADEQUACY

100

Chapter 5

Mutant Evaluation by Static

Semantic Interpretation

5.1 Introduction

This chapter introduces a new technique for interpreting mutant semantics stat-

ically, without executing the program code. Chapter 4 extended the work of

Chapter 3 by optimising multiple sets of subdomains, but this introduced redun-

dancy as some of the mutants covered by the evolved subdomains were killed

more efficiently by other sets. Semantic interpretation can be used to reduce the

number of sets that are evolved without significantly affecting their efficiency.

The idea is that sets of subdomains, targeted at killing mutants semantically

similar to the original program, also kill other mutants as a side-effect. Semanti-

cally similar mutants can be killed by fewer input values, but they occur on the

same paths through the program as other (easier to kill mutants). Subdomains

that exercise semantically similar mutants are likely to exercise other mutants.

Semantic similarity can be defined in terms of the mapping of inputs to out-

puts [117]. Mutants that map all of their inputs to the same output as the original

program are said to be semantically equivalent. More formally, mutant (m) is

observationally equivalent to the original program (o) if, for all contexts C[], there

is a weak bisimulation (R), such that 〈C[m] ⇓, C[o] ⇓〉 ∈ R. A set of subdomains

is likely to be effective against the complete set of mutants if it is evolved against

mutants that are semantically similar, but not equivalent to the original program.

101

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

Formal methods have been developed to handle approximate similarities [157]

and higher order languages [85] in bisimulations. Yet, these techniques require

manual involvement and can be computationally expensive [157][85]. I therefore

approximate the semantics of mutants in terms of their output range or prob-

ability value. Although this does not provide complete accuracy, it can guide

subdomains towards mutants semantically similar to the original program.

I determine the extent to which semantic interpretation can be used to select

mutants that are similar to the original program using random testing. A mutant

is considered to be semantically similar if it is killed by a small number of the

test cases sampled at random, but this also depends on the testing methodology

employed. In order to minimise this effect, I use a large test suite and a uniform

input distribution, but sufficient details are provided for other researchers to

repeat the experiments with a different test generation methodology.

Semantic interpretation does not depend on the test generation technique or

the size of the test suite. It is no more expensive to evaluate a path through the

program that is exercised for a small proportion of inputs as it is to evaluate a

path that is exercised for every input. Semantic properties are derived directly

from the program code without bias or superfluous executions from a test in-

put distribution. Semantic interpretation provides effective estimates of mutant

similarity that can be used to predict how difficult particular mutants are to kill.

There are three main applications for these predictions:

1. They aid in the identification and removal of equivalent mutants

Equivalent mutants impair upon the veracity of mutation analysis. Seman-

tic interpretation helps the tester focus on mutants that are more likely to

be equivalent, thus reducing the time it takes to identify equivalent mutants.

2. They allow targeting of difficult to kill mutants for test generation

Difficult to kill mutants are more realistic. If they are targeted first, easier

to kill mutants are killed as a side-effect. Semantic interpretation identifies

difficult to kill mutants for the generation of fewer, more effective test cases.

3. They point to easy to kill paths for difficult to kill mutants

Difficult to kill mutants can only be killed on a small number of paths

through the program. Semantic interpretation can help the tester identify

paths that are more likely to reveal a difference in semantics.

102

5.2 Difference-Based Interpretation

5.2 Difference-Based Interpretation

Difference-based interpretation predicts mutants to be semantically similar if their

output range for each path resembles that of the original program. Differences

are recorded in the minimum and maximum output values of each mutant.

5.2.1 Mutant Semantics

As an example of mutant semantics, let us consider what happens when we mutate

an implementation of the remainder operation, as applied to variables x and y

(see Algorithm 7). Mutation M3 has no effect on the program output because it

post-increments variable mod in the print statement, after which it is no longer

used. Mutation M1 affects the output of every input, except if x and y are both

1, or if x is 0 and y is not. Mutation M2 only affects the output if div is less

than zero. It is tempting to conclude that M2 is semantically smaller than M1,

but further analysis is required to determine their exact semantic size.

Algorithm 7 Remainder operation

1: div ← x/y

2: if div < 0 then

3: mod← (div ∗ y)− x
4: else

5: mod← x− (div ∗ y)

6: end if

7: print(mod)

M1: div ← x ∗ y

M2: mod← (div ∗ y) + x

M3: print(mod++)

Static analysis can be applied to estimate the semantic size of a mutation

by inferring (for a given input range) its effect on the output. Calculations are

made for each path so as to form predictions about semantics. In this example,

mutation M2 is predicted to be smaller than M1 because it affects the output of

half the number of paths and only increases the minimum and maximum output

values by 2x compared to the y2 factor increase of M1. By contrast, mutation

M3 is equivalent to the original program and it has no effect on the output range.

103

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.2.2 Symbolic Execution

Rather than analyse the semantics of each mutant manually, I have chosen to

automate the process of semantic interpretation through the use of symbolic

execution. Mutants are selected by comparing their symbolic output expressions

with that of the original program. Symbolic execution derives a symbolic output

expression for each path through the original program and all of its mutants. The

expressions are then fed into a model of arithmetic (see Table 5.1) to determine,

for a specific range of input, what the potential range of output will be. Difference-

based semantic interpretation compares the minimum and maximum output of

each mutant with the minimum and maximum output of the original program.

Figure 5.1 demonstrates the application of symbolic execution to Algorithm 7

in order to help reveal its semantics. The input variables x and y are represented

symbolically as X and Y. A new variable (div) is assigned the symbolic expression

X/Y and subsequently used in the program. Elsewhere in the diagram, this

variable is replaced by its symbolic expression (X/Y). Symbolic execution reveals

that the output is ((X/Y)*Y)-X if X/Y is less than zero, otherwise it is X-

((X/Y)*Y). The second expression is equal to the first multiplied by -1. This

means that the output range (cardinality) is the same for both paths, but the

signs and therefore the minimum and maximum values are swapped around (see

Table 5.2 for further confirmation of this).

Figure 5.1: Example of Symbolic Execution

104

5.2 Difference-Based Interpretation

5.2.3 Semantic Interpretation

My technique for semantic interpretation applies symbolic execution to each path

through the original program and all of its mutants. The resulting symbolic out-

put expressions are used to compute the potential range of output for each path,

given a particular range of inputs. Although many of the values in the output

ranges cannot be produced by the program, comparing symbolic output expres-

sions in this way allows semantic interpretation to be computationally feasible.

The technique does evaluate mutant semantics comprehensively, but it provides

enough information to compare their semantic effect.

Algorithm 8 outlines the process of using difference-based semantic interpre-

tation to select mutants that are semantically similar to the original program. A

sum of differences (S) is calculated from the minimum and maximum values from

the symbolic output expression for each path (p) through a mutant (m) and the

original program (o). Mutants are selected according to their similarity with the

original program, i.e. in order of their sum of differences (smallest to largest).

By sorting the mutants in order of their sum of differences, it is possible to select

any number of mutants according to predictions of their semantic similarity.

Algorithm 8 Using semantic interpretation to select mutants

1. Calculate the minimum and maximum output values for each mutant

2. Sum up the size of each difference in minimum and maximum output,

Sm =
∑

p∈Paths

|Min(mp)−Min(op)|
+

|Max(mp)−Max(op)|

3. Remove all the equivalent mutants using random testing and inspection

4. Order the mutants according to their sum of differences

5. Select the mutants most similar to the original program (smallest Sm)

105

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

T
ab

le
5.1:

T
h
e

M
in

im
u
m

an
d

M
ax

im
u
m

R
esu

lts
of

E
ach

O
p

eration

M
in
(D

)
M

a
x
(D

)

L
+

R
M

in
(L

)
+

M
in

(R
)

M
ax

(L
)

+
M

ax
(R

)

L
-
R

M
in

(L
)
−

M
ax

(R
)

M
ax

(L
)
−

M
in

(R
)

L
*
R

if((M
in

(L
)
≥

0)
&

&
(M

in
(R

)
≥

0))
if((M

in
(L

)
≥

0)
&

&
(M

ax
(R

)
≤

0))

retu
rn

M
in

(L
)
∗

M
in

(R
)

retu
rn

M
in

(L
)
∗

M
ax

(R
)

else
if

((M
a
x
(L

)
≤

0
)

&
&

(M
ax

(R
)
≤

0))
else

if
((M

ax
(L

)
≤

0)
&

&
(M

in
(R

)
≥

0))

retu
rn

M
ax

(L
)
∗

M
ax

(R
)

retu
rn

M
ax

(L
)
∗

M
in

(R
)

else
retu

rn
S

m
allest(M

in
(L

)
∗

M
ax

(R
),

else
retu

rn
B

iggest(M
ax

(L
)
∗

M
ax

(R
),

M
a
x
(L

)
∗

M
in

(R
))

M
in

(L
)
∗

M
in

(R
))

L
/
R

if((M
in

(L
)
≥

0)
&

&
(M

in
(R

)
≥

0))
if((M

in
(L

)
≥

0)
&

&
(M

ax
(R

)
≤

0))

retu
rn

M
in

(L
)
/

M
a
x
(R

)
retu

rn
M

in
(L

)
/

M
in

(R
)

else
if

((M
a
x
(L

)
≤

0
)

&
&

(M
ax

(R
)
≤

0))
else

if
((M

ax
(L

)
≤

0)
&

&
(M

in
(R

)
≥

0))

retu
rn

M
ax

(L
)
/

M
in

(R
)

retu
rn

M
ax

(L
)
/

M
ax

(R
)

else
retu

rn
S

m
allest(M

a
x
(L

)
/

S
m

allest(M
ax

(R
),

-1)),
else

retu
rn

B
iggest(M

ax
(L

)
/

B
iggest(M

in
(R

),
1)),

M
in

(L
)
/

B
iggest(M

in
(R

),
1))

M
in

(L
)
/

S
m

allest(M
ax

(R
),

-1))

L
%

R
if(M

in
(R

)
≥

0)
retu

rn
0

if(M
ax

(R
)
≤

0)
retu

rn
0

else
retu

rn
B

igg
est(-M

ax
(L

),
M

in
(R

)
+

1)
else

retu
rn

S
m

allest(M
ax

(L
),

M
ax

(R
)

-
1)

-L
-M

a
x
(L

)
-M

in
(L

)

(M
in

(X
)

is
th

e
sm

a
llest

va
lu

e
in

X
,
M

a
x
(X

)
th

e
b

iggest.
S

m
allest(x

,y
)

is
th

e
sm

allest
valu

e
of

x
or

y,
B

iggest(x
,y

)
th

e
b

iggest)

106

5.2 Difference-Based Interpretation

Minimum and maximum output values are calculated progressively. Each in-

put variable is prescribed a set range; constants have the same minimum and

maximum value. Then, an output range is calculated for every arithmetic opera-

tion, according to the operators and inputs applied. Table 5.1 lists the minimum

and maximum output value for each arithmetic operator in terms of the range

of inputs. Calculations for addition and subtraction are the same regardless of

the sign of the inputs, but multiplication and division are more complicated.

The minimum result of division is Min(L)/Max(R) when all the input values are

positive, but Max(L)/Min(R) when all the input values are negative.

The minimum and maximum output values of arithmetic operations are them-

selves, in turn, applied as the input range for further operations. This procedure

is performed repeatedly so that, through a series of sub-expressions, every arith-

metic expression has its minimum and maximum output value calculated accord-

ing to the input range of the program. Ultimately, the output range of every

path through the program can be determined from the arithmetic expression in

its return statement, as determined by symbolic execution and the range of each

input variable. Table 5.2 shows the application of these calculations to Algorithm

7 with input values in the range 1 to 100. The difference sums confirm that mu-

tant M3 is likely to be equivalent because its difference is zero for both paths.

M2 is semantically more similar to the original program than M1 because one of

its paths has a zero difference and the other has a smaller difference than M1.

Table 5.2: Symbolic Execution for Selective Mutation on Algorithm 7

Path Output Min Max Difference (Sm)

Original Left ((X/Y)*Y)-X -99.99 9900 -

Right X-((X/Y)*Y) -9900 99.99 -

M1 Left ((X*Y)*Y)-X -99 999999 990099.99

Right X-((X*Y)*Y) -999999 99 990099.99

M2 Left ((X/Y)*Y)+X 1.01 10100 301

Right X-((X/Y)*Y) -9900 99.99 0

M3 Left ((X/Y)*Y)-X -99.99 9900 0

Right X-((X/Y)*Y) -9900 99.99 0

107

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.2.4 Experiments for RQ7

Experiments were set up to answer the following research question about mutant

selection via difference-based static semantic interpretation:

RQ7: Can difference-based semantic interpretation be used to select

mutants that are more difficult to kill than those on average?

RQ7 is addressed by applying difference-based semantic interpretation to se-

lect the 10%, 25% and 50% most semantically similar mutants of each method.

For each selection size, I record the mutation score of one million random test

cases along with the average frequency with which a random test case kills each

mutant. These measures can be used together to reveal interesting properties

about each sample. A high mutation score and low frequency would suggest that

most of the mutants can be killed, but they are very difficult to kill (with the test

suite employed). A low mutation score and high frequency indicates that some

of the mutants are difficult (or impossible) to kill, but some are also very easy.

I consider difference-based interpretation to be successful if it selects mutants

that are difficult to kill by random testing. This can be evaluated using the results

recorded for mutation score and mutant killing frequency. If mutants are selected

that are difficult to kill, then as the sample size decreases, I would expect to see a

decrease in the mutation score, the killing frequency or both. If neither of these

measures decrease, then difference-based interpretation has not been successful.

5.2.4.1 Test Subject Programs

Difference-based semantic interpretation is applied to mutants generated from

various numerical programs. Numerical programs are used because difference-

based interpretation can not reason semantically about strings or objects. It

is also important to select methods that are sufficiently large so as to avoid

calculations involving trivial semantics. These requirements are met by selecting

methods according to the following criteria: Their return type must be numeric,

they must take at least one parameter, all their parameters must be numeric and

they must occupy over 1KB in memory. Nineteen methods were selected from

the Java standard library that meet these criteria (see Table 5.3).

108

5.2 Difference-Based Interpretation

Table 5.3: Subject Methods from the Java Standard Library [123]

LOC Mutants Equivalent

Mutants

java.math.BigDecimal

1 int checkScale(long) 16 60 15

2 int longCompareMagnitude(long, long) 18 44 15

3 long longMultiplyPowerTen(long, int) 18 98 28

java.math.BigInteger

4 int getInt(int) 18 46 0

javax.swing.JTable

5 int limit(int, int, int) 5 36 1

javax.swing.plaf.basic.BasicTabbedPanelUI

6 int calculateMaxTabHeight(int) 8 42 2

7 int calculateMaxTabWidth(int) 8 42 2

8 int calculateTabAreaHeight(int, int, int) 8 51 1

9 int calculateTabAreaWidth(int, int, int) 8 51 1

10 int getNextTabIndex(int) 4 17 0

11 int getNextTabIndexInRun(int, int) 12 63 18

12 int getPreviousTabIndex(int) 4 50 18

13 int getPreviousTabIndexInRun(int, int) 12 91 24

14 int getRunForTab(int, int) 9 43 6

15 int lastTabInRun(int, int) 11 81 11

javax.swing.plaf.basic.BasicTreeUI

16 int findCenteredX(int, int) 5 49 49

17 int getRowX(int, int) 3 25 0

javax.swing.text.AsyncBoxView

18 float getInsetSpan(int) 5 27 1

19 float getSpanOnAxis(int) 7 17 1

The Java standard library [123] is a large collection of classes that provide

extensions to the core functions of the Java programming language. The chosen

methods reside within four classes for user interface coordination (JTable, Ba-

sicTabbedPaneUI, BasicTreeUI and AsyncBoxView) and two classes for handling

large numerical data types (BigDecimal and BigInteger).

109

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.2.4.2 JPF-Symbc: Symbolic Execution Tool

Java Pathfinder (JPF) is an open source model checker and Java virtual ma-

chine, originally developed by NASA to find concurrency faults [148]. Extensions

have been written for JPF to handle a variety of testing and verification tasks.

JPF-symbc [133] is a symbolic execution extension for JPF (see Figure 5.2). It

performs symbolic execution by storing symbolic attributes along with each vari-

able on the stack. JPF-symbc is capable of processing integer and real numeric

values, Booleans, references and strings. A number of constraint solving packages

are also included for finding input values to exercise each path. JPF-symbc has

been used by Fujitsu to test web applications [52] and has helped find a bug in

the Onboard Abort Executive for the NASA Crew Exploration Vehicle [133].

JPF-symbc explores all the paths in the program it is supplied. Therefore,

it is important to isolate the method under test from the rest of the program. I

pre-process each Java method for analysis with JPF-symbc by extracting it from

the class in which it is defined, along with any other methods on which the class

depends. I then introduce local constants to replace all calls to retrieve data

from outside of the class and remove any calls to output data via a side effect.

To avoid path explosion problems, each loop is only allowed to run once. These

preprocessing transformations are not semantically preserving, but they allow

individual methods to be tested independently from the rest of the program.

Figure 5.2: JPF-Symbc Extension for Java Path Finder [133]

110

5.2 Difference-Based Interpretation

5.2.5 Results for RQ7

RQ7 is answered by using random testing to evaluate the selections made by

semantic interpretation. Table 5.4 shows the mutation score for selections made

from each method, along with the average frequency with which a random test

case kills each mutant. Difference-based semantic interpretation was able to select

difficult to kill mutants for most of methods evaluated from the Java standard

library. Of the first ten percent most difficult to kill mutants selected, 42.6%

of them were killed, compared to 69.4% of the complete set. The probability

of killing a mutant in the first quarter is 20.40%, compared to 38.37% in the

complete set. This means that the average mutant in the top quarter of those

selected by semantic interpretation is less than half as likely to be killed by a

random test case than the average mutant in the remaining three quarters.

There are, however, a number of cases where mutation score and killing fre-

quency does not decrease as a result of difference-based selection. In some cases,

this is due to the way the results are collected and presented. For example, Meth-

ods 13, 16 and 19 have killing frequencies of 0.00% for certain selection sizes - the

values are actually slightly greater than zero, but rounding prevents any further

decreases in killing frequency from being reported. No decrease in mutation score

is observed for any selection size of Method 6, as all of its mutants are killed by

the random test suite - a significant decrease in killing frequency indicates that

semantic interpretation is still able to select mutants that are difficult to kill.

In other cases, difference-based selection does not reduce the mutation score

or killing frequency due to weaknesses in the technique. For example, the lowest

frequency with which mutants were killed from Method 15 occurred when using

the complete set - all selections resulted in a significantly higher killing frequency.

The mutation score of Method 4 decreases to 0.500 when 50% of the mutants are

selected, but then increases to 0.527 for 25% before returning to 0.500 again

when 10% of the mutants are selected. It can therefore be said that, although

difference-based interpretation does identify more difficult to kill mutants, there

are specific instances where it fails to achieve this goal. One reason for this is that

differences in the range of symbolic output expressions do not take into account

the output distribution or branch structure. They are only an approximation of

the likelihood that mutants produce the same output as the original program.

111

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

Table 5.4: Results for 19 Methods from the Java Standard Library

Mutation score Frequency killed by random test case

10% 25% 50% 100% 10% 25% 50% 100%

1: 0.725 0.739 0.752 0.822 22.67% 24.72% 22.90% 29.17%

2: 0.817 0.829 0.812 0.828 12.50% 13.33% 11.90% 13.79%

3: 0.267 0.239 0.404 0.671 5.95% 6.07% 4.29% 8.57%

4: 0.500 0.527 0.500 0.609 13.80% 14.15% 12.99% 13.72%

5: 0.522 0.504 0.647 0.829 26.29% 28.68% 24.51% 32.50%

6: 1.000 1.000 1.000 1.000 59.05% 60.11% 69.36% 84.11%

7: 0.442 0.433 0.550 0.775 26.08% 26.05% 38.15% 65.18%

8: 0.447 0.456 0.720 0.860 37.86% 37.33% 67.29% 82.34%

9: 0.493 0.486 0.720 0.863 41.18% 40.62% 67.28% 82.66%

10: 0.733 0.658 0.658 0.765 73.33% 65.83% 65.83% 72.06%

11: 0.175 0.200 0.227 0.444 4.79% 5.45% 5.72% 13.89%

12: 0.211 0.229 0.563 0.788 14.44% 17.08% 26.30% 45.45%

13: 0.033 0.031 0.023 0.162 0.00%* 0.00%* 0.00%* 3.68%

14: 0.500 0.489 0.500 0.514 7.22% 9.6% 9.45% 12.16%

15: 0.644 0.618 0.599 0.710 11.94% 14.31% 13.82% 10.15%

16: 0.000 0.000 0.208 0.612 0.00% 0.00% 7.85% 28.32%

17: 0.333 0.378 0.500 0.760 33.33% 37.78% 50.00% 75.50%

18: 0.633 0.611 0.641 0.615 25.00% 19.72% 22.56% 34.62%

19: 0.267 0.225 0.250 0.563 0.00%* 0.00%* 0.00%* 31.25%

Mean: 0.426 0.455 0.541 0.694 21.86% 21.40% 26.65% 38.37%

*Rounded down to zero from a slightly higher number

112

5.2 Difference-Based Interpretation

Figures 5.3 and 5.5 present these results graphically so that the general trends

in mutation scores and decreased mutant killing frequencies can be seen Smaller

selection sizes typically result in lower mutation scores and decreased mutant

killing frequencies. However, for some methods, the mutation scores remain

largely unaffected by selection size (see Figure 5.3). It seems therefore that dif-

ference based interpretation does not work equally as well on all programs.

Many of the methods that show a small decrease in mutation score for smaller

selection sizes also show a small decrease in mutant killing frequency (see Figure

5.5). There are, however, more outliers in the killing frequency results. Method

16 and 19 show a sharp decrease in killing frequency as the selection size is

reduced, Mutant 10 and 14 show a much more gradual decrease and Mutant 15

actually shows an increase in frequency. As discussed previously, if a method has

a steeper gradient for killing frequency than mutation score, this suggests that

more difficult to kill mutants are being identified even when there is no clear

distinction in mutation score. If, however, a method has a steeper gradient for

mutation score, some of the mutants selected may be overly easy to kill.

Difference-based interpretation performs well as an approximate measure of

semantic similarity (see Figures 5.4 and 5.6). There is a difference of 11.5% in

mutant killing frequency between selecting all of the mutants and the half that

are predicted to be the most similar. In contrast, the difference between selecting

half of the mutants and one quarter is just 5.23% - as a result of the large amount

of variance in these results, Wilcoxon and students T-tests reveal this difference

to be insignificant (see Table 5.6). There is a statistical significance in making this

selection in terms of mutation score (see Table 5.5), yet the difference between

selecting 25% and 10% of the mutants is still insignificant. Difference-based

selection can be used successfully to select the half or maybe quarter of mutants

that are the most difficult to kill, yet to achieve more accurate results than this, it

is necessary to consider more advanced forms of semantic similarity measurement.

Summary for RQ7: Difference-based interpretation can select difficult to

kill mutants for most methods evaluated from the Java standard library. Mutants

in the top quarter of those selected were less than half as likely to be killed than the

average mutant in the remaining three quarters. Nevertheless, difference-based

interpretation does not have a high correlation for all methods. The next section

addresses this problem with a new technique for probability-based selection.

113

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

Figure 5.3: Relative Mutation Score of Selected Mutants

Table 5.5: Statistical Analysis of Mutation Score

100%-50% 50%-25% 25%-10%

Mean 0.153 0.085 -0.005

Variance 0.013 0.012 0.001

T-Value 5.853 3.355 -0.751

Critical 2.552 (reject) 2.552 (reject) 2.552 (accept)

Wilcoxon 168+ 3- 135.5+ 17.5- 66+ 87-

Critical 32 (reject) 27 (reject) 27 (accept)

Figure 5.4: Correlation between Mutation Score and Selection Size

114

5.2 Difference-Based Interpretation

Figure 5.5: Relative Killing Frequency of Selected Mutants

Table 5.6: Statistical Analysis of Frequency

100%-50% 50%-25% 25%-10%

Mean 0.115 0.0523 0.0286

Variance 0.975 0.958 0.272

T-Value 5.149 2.378 0.458

Critical 2.552 (reject) 2.552 (accept) 2.552 (accept)

Wilcoxon 185+ 5- 130+ 60- 117+ 53-

Critical 37 (reject) 37 (accept) 32 (accept)

Figure 5.6: Correlation between Killing Frequency and Selection Size

115

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.3 Probability-Based Interpretation

Probability-based interpretation predicts mutants to be semantically similar to

the original program if there is a high probability they will produce the same

output. It takes into account the proportion of output values that are the same

as the original program, rather than their numerical difference. The previous

(difference-based) metric can only make assessments of semantic similarity for

numerical data types (i.e. integers or floating point values). Probability-based

interpretation can also be used as a practical tool for interpreting the semantic

similarity of mutants that involve Booleans, bit vectors, strings and objects.

Probability-based interpretation is more accurate than difference-based inter-

pretation. Take for example two mutants, one with an output range of [1,10] and

the other [1,100]. If the output range of the original program is [11,20], the sum

of differences for the first mutant is 20 and the second 90. The difference-based

metric incorrectly assumes that the first mutant is more similar to the original

program because its minimum and maximum values are numerically closer. Yet,

it is actually impossible for the first mutant to produce the same output as the

original program. Probability-based interpretation reveals that the second mu-

tant is more similar because it has 0.1 probability of producing the same output

as the original program, compared to the zero probability of the first mutant.

5.3.1 Boolean Expressions

Boolean expressions can be represented numerically with 1 (for true) or 0 (for

false). Limiting their range to just two values, however, provides little semantic

information. Only operations involving tautologies or contradictions have any

effect on the comparison of their outputs. I represent Boolean expressions in

terms of their probability of being true (see Table 5.7). This allows more accurate

estimation of the effect of each mutation in semantic output comparisons.

Boolean input values are assumed to be independent of each other and their

probability of being true is set to 0.5. This approximation allows similarity as-

sessments to be made without prior knowledge of the input distribution. If an

input variable is used more than once in an output expression, its probability

value is replaced by 1 (true) or 0 (false) after the first use, to avoid taking its

probability into account more than once. For example x&&x = x&&true = x

116

5.3 Probability-Based Interpretation

Table 5.7: Semantic Interpretation of Boolean Operations

Operation Probability Output True

P (L&&R = true) (conjunction) P (L = true) ∗ P (R = true)

P (L || R = true) (disjunction) P (L = true) + P (R = true)− P (L&&R = true)

P (L ∧R = true) (exclusive-or) P (L || R = true)− P (L&&R = true)

and x || x = x || false = x. I measure the probability that two Boolean ex-

pressions have the same output value by considering the probability that both

expressions are true or that both expressions are false (see Equation 5.1).

P (m = o) = P (m = true) ∗ P (o = true) + P (m = false) ∗ P (o = false) (5.1)

5.3.2 Bit Vectors

Although bit vectors are stored in numerical data types, bit operations act upon

the value of each individual bit (1 or 0), rather than the numerical value as a

whole. Bit operations were previously modelled in terms of their output range

(see Table 5.1). Yet, it is more accurate to consider the effect they have at the

bit level. The probability of a bit value being 1 in the output of a conjunction,

disjunction or exclusive-or can be determined by the same model as was used

for Boolean values (where 1 = true and 0 = false). Equation 5.2 gives the

probability of two bit vector expressions returning the same output value.

P (m = o) =
n∏
i=0

P (mi = oi),where n is most significant bit set in o or m (5.2)

Bit vectors can also be included as terms of numerical operations (plus, minus,

multiply etc.). These operations are modelled by transforming the probability of

each bit being true into a minimum and maximum value for the bit vector (see

Equation 5.3). The minimum value of a bit vector is determined by the bits fixed

at 1 and the maximum value by the largest significant bit and the bits fixed at 0.

Min(x)=
n∑
i=0

[P (xi=1)=1] ∗ 2i Max(x)=2n+1−1−
n∑
i=0

[P (xi=1)=0]∗2i (5.3)

Iverson bracket notation: [P] =

{
1

0

if P is true

otherwise

117

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.3.3 Numerical Expressions

The semantic similarity of two numerical expressions is predicted in terms of

the probability that values sampled at random from within their output ranges

will be the same. This can be calculated by considering the number of integer

values in each output range that are the same (see Equation 5.4). To simplify this

calculation, numerical expressions are assumed to produce a uniform distribution.

P (m = o) =
|m∗ ∩ o∗|
|m∗| ∗ |o∗|

(5.4)

(m∗p is the range of outputs from mutant m along path p)

Numerical expressions may be used within a Boolean expression, as part of an

equality (e.g. x == y) or an inequality (e.g. x > 5). The probability that an

equality is true can be predicted using Equation 5.4, but inequalities require a

new prediction method (see Equation 5.5). The calculation is similar to that for

equalities, except that instead of counting the number of values that appear in

both ranges, it is necessary to count the number of values in the second range that

are smaller than each value in the first. Equation 5.5 describes the calculation for

a greater-than operation, but it is trivial to swap the ranges around for a less-than

operation or the probability that P (a > b) is not true for less-than-or-equal-to.

P (a>b)=

[max(a∗)−max(b∗)]∗|b∗|+|a∗ ∩ b∗|
∗min(max(a∗),max(b∗))−min(b∗)−k)/2

|m∗| ∗ |o∗|
(5.5)

(k = 1 for discrete comparisons, k = 0 for continuous)

The probability that a numerical inequality is satisfied influences the probability

that other inequalities in the expression are satisfied. Yet, unlike pure Boolean ex-

pressions, dependencies between inequalities cannot be eliminated simply by the

removal of repeated terms. In the simplest case, dependencies can be identified as

overlapping regions (e.g. x>5&&x>10 → x > 10). More complex dependencies

require the inequalities to be rewritten (e.g. x+y>3&&x+2y>6→ y>3).

I handle dependencies between inequalities using the simplex algorithm for

linear algebra [38]. Inequalities are simplified and removed through a process of

Gaussian elimination. Linear approximation is applied for any non-linear expres-

sions. I prepare Boolean expressions for the simplex algorithm by rewriting them

in canonical form (disjunction of conjunctions) with De Morgan’s laws. The sim-

plex algorithm is applied to simplify each conjunction separately, before simplify-

ing the disjunction as a whole using the rule P (x || y) = P (x)+P (y)−P (x&&y).

118

5.3 Probability-Based Interpretation

5.3.4 String Operations

I model string processing on a character-by-character basis with a combination of

symbolic and concrete characters. Symbolic characters represent unknown values

from a given set (e.g. the basic Latin alphabet) that will not be determined until

the program is executed. Concrete characters, on the other hand, have known

values that are determined statically in advance by the program code. Each

input string is represented as an array of symbolic characters. As well as extract-

ing and reordering characters, string operations can also introduce new concrete

characters. By keeping track of the individual characters, it is straightforward to

determine the effect of each string operation on the output (see Table 5.8).

Table 5.8: Semantic Interpretation of Popular String Operations

Operation Output

concat(a, b) a1a2a3a4a5..a|a|b1b2b3b4b5..b|b|

equals(a, b) [|a| = |b|]
∏

i∈|a| ([ai ≡ bi] + [ai 6≡ bi&(ai ∈ S‖bi ∈ S)]/N)

length(a) |a|
substring(a, b, c) ab..ac

startsWith(a, b) [|a| >= |b|]
∏

i∈|b| ([ai ≡ bi] + [ai 6≡ bi&(ai ∈ S‖bi ∈ S)]/N)

(S is the set of symbolic inputs, N is the number of values assigned to each input (a..z

would be 26) and a ≡ b is true if a and b are identical symbolic or concrete values)

In a survey of 38 popular Java applications, concatenation accounted for 68%

of all string operations [137]. By modelling just the top 5 most commonly used

operators it is possible to account for 90% of string processing (see Table 5.8).

Many of the operators in the remaining 10% can be rewritten in terms of these 5

basic operators, but if an unexpected operator is encountered it can be ignored.

Some operators (concat, length and substring) can be performed on symbolic or

concrete characters without having to reason about their value. The other oper-

ators (equals and startsWith) can be modelled probabilistically. The probability

of a symbolic and concrete character or two symbolic characters having the same

value is 1/N , where N is the size of the character set. If there are different sym-

bolic or concrete characters at any point, or the length of the input strings is

incompatible, these operations have a zero probability of being true. Otherwise

the probability is estimated on the basis of independent probability theory.

119

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.3.5 Objects

Ciupa et al. [33] describe a metric for measuring the distance between two objects

in adaptive random testing. Their metric takes into account differences in the

objects’ type, their field values and the field values of any other objects they

reference. I have adapted this metric to be used for static semantic analysis in

calculating the probability that a mutant and the original program have the same

output value (see Equation 5.6).

P (m = o) =


∏

i∈fields(o) P (m.i = o.i) if type(m) = type(o),

0 otherwise
(5.6)

I use a recursive process to calculate the probability that two objects have

the same value. Each object contains a collection of fields, which in turn may

have primitive types or references to other objects. Two objects cannot have the

same value if their primitive fields have a different type or they refer to differently

typed objects. In this case, the probability of their equivalence is zero.

Any pair of objects that have the same type can be compared recursively

to assess their semantic similarity. I compare all the primitive field values inside

these objects along with those contained in objects they refer to. Primitive values

are compared symbolically, using symbolic expressions expressed in terms of the

program input values. Metrics have been described previously in this section

to estimate, for a variety of primitive types, the probability that two symbolic

expressions output the same value.

5.3.6 Control Flow Probability

The probability that a mutant produces the same output value as the original

program can be estimated by taking the sum of probabilities that the output is

the same along each path (see Equation 5.7). This value has a similar role to

the sum of differences from the difference-based metric. As such, it assumes each

path has the same probability of being executed. Yet this can have a significant

effect when certain paths are more likely to be executed than others.

P (m = o) =
∑

p∈Paths

P (mp = op) (5.7)

120

5.3 Probability-Based Interpretation

Probability-based interpretation provides a way to predict the likelihood that

particular paths through a program are exercised. This is important for two rea-

sons: Firstly, it is necessary for interpreting the semantic effect of mutations made

directly on branch conditions; secondly, semantic differences have a greater effect

on the output if they occur on frequently exercised paths. Modelling a program’s

control flow allows more accurate semantic interpretation of its mutants.

I estimate path execution frequency by considering all the branch conditions

along each path. Program code mutations can affect the control flow in two ways:

directly, by changing the operations applied in a branch condition; or indirectly,

by changing the value of a variable that is later used in a branch condition. I have

extended the semantic interpretation heuristic to take control flow into account

by calculating for each mutant the likelihood that each of its paths are executed.

I estimate the probability of satisfying each branch condition using the met-

rics previously described for Boolean probabilities. For example, branch condition

x == 1 has probability 0.01 of being exercised if the input domain of x is [0, 99].

I calculate the probability of satisfying each branch condition, under the assump-

tion that all the probabilities are independent and a fixed input domain is used

for test data generation. As before, repeated terms and overlapping conditions

are removed in an attempt to reduce the number of dependencies. The resulting

metric is still not completely realistic, but it allows reasonable approximations to

be made within a computationally feasible time frame.

Equation 5.8 extends the sum of probabilities calculation for control flow.

There is an additional term for the probability that the mutant and the original

program execute different paths. This is calculated by collecting the constraints

together, then eliminating dependencies and repeated expressions. In addition,

the probability of producing the same output value for each path has been aug-

mented with the probability that path is executed. These changes were made to

provide semantic analysis for mutations made directly to branch conditions and

address the effect that changes in control flow have on path execution frequency.

P (m = o) =
∑

p∈Paths

P (op)− P (mp&&op) + P (mp&&op) ∗ P (mp = op) (5.8)

(P (op) is the probability that the original program executes path p,

P (m = o) that the mutant has the same output as the original program)

121

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.3.7 Example

As an example of probability-based semantic interpretation, Algorithm 9 imple-

ments an ISBN class in Java. The class constructor inputs ISBN prefix, group,

publisher and book codes, checks they are within the range of the ISBN standard,

then sets the value of the ISBN code accordingly. Mutants may produce a differ-

ent output to the original program if they change the validation conditions, alter

the circumstances under which a zero is added to the publisher code or calculate

the check digit differently. Three mutations are annotated on the program code:

M1 replaces a less-than sign with a greater-than sign in the validation conditions;

M2 moves the zero addition threshold from 10 to 5; M3 replaces a minus sign

in the check digit calculation with a plus. These mutations demonstrate various

semantic changes probability-based interpretation must take into account.

Algorithm 9 Example ISBN class written in Java

1 public class ISBN {
2 public St r ing code = ”” ; public boolean v a l i d = fa l se ;

3 public int get (int pos)

4 { return I n t e g e r . pa r s e In t (code . s ub s t r i n g (pos , pos)) ; }
5 public ISBN(int pre f i x , int group , int pub l i she r , int book)

6 {
7 i f ((p r e f i x<∗ 978) | | (p r e f i x >979) | | (group<0) | | (group >99999) | |

(pub l i sher <0) | | (pub l i sher >9999999) | | (book<0) | | (book>999999))

8 { v a l i d = fa l se ; }
9 else

10 {
11 code+=p r e f i x+group +((pub l i sher<10†) ?”0” : ””)+p u b l i s h e r+book ;

12 v a l i d = (code . l ength () == 12) ;

13 i f (v a l i d)

14 {
15 int sum=(get (0)+3∗get (1)+get (2)+3∗get (3)+get (4)+3∗get (5)+

get (6)+3∗get (7)+get (8)+3∗get (9)+get (10)+3∗get (11)) ;

16 code += ((sum%10==0)?”0” : (1 0−‡sum%10)) ;

17 }
18 }
19 }
20 }

* M1 changes < into > † M2 changes 10 into 5 ‡ M3 changes − into +

122

5.3 Probability-Based Interpretation

Mutation M1 affects the output of Algorithm 9 by changing one of its branch

conditions. It is therefore necessary to know the probability that this change

will have an effect on the execution path of the resulting mutant. Equation 5.8

determines this by exploring all the paths through the original program. M1 will

cause the program to execute a different path if the mutated branch condition

evaluates true in the mutant, but not the original program, or vice versa. This

occurs when the value of prefix is not equal to 978, so assuming an input range of

[0,999], the probability that the mutant will execute a different path is 977/1000+

22/1000 = 0.999. Since M1 occurs at the beginning of the ISBN constructor, the

probability the mutation is exercised is 1. Therefore, using Equation 5.8, the

probability that the mutant produces a different output is also 0.999.

The probability that M2 has an effect on the output is calculated in a similar

way. The probability that publisher is less than 10 but not less than 5 is equal to

(10− 5)/1000 or 0.005. The probability that publisher is less than 5 but not less

than 10 is equal to zero. M2 will only be exercised if the first branch condition

evaluates false. The probability of this is (21 ∗ 980)/(10002), assuming an input

range of [1,1000] for each parameter. The probability that M2 has an effect on

the output is therefore 0.02058 ∗ 0.005 = 1.029e− 4.

The probability that M3 has an effect on the output is calculated by con-

sidering the likelihood that it is executed and changes the value of code. M3 is

exercised if the first branch evaluates false (P = 0.02058), the length of code is

12 (P = 0.94) and sum%10 is not equal to zero (P = 0.9). M3 just affects the

check digit. In the original program, its output range is [10, 10]− [0, 9] = [1, 10].

In the mutant, this becomes [10, 10] + [0, 9] = [10, 19]. These ranges only overlap

once (with 10). The probability that M3 has an effect on the output is therefore

0.02058 ∗ 0.95 ∗ 0.99 = 0.012031. Assuming every input parameter has the range

[0, 999], M1 is predicted to have the greatest semantic effect and M2 the smallest.

123

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.3.8 Experiments for RQ8

Experiments were set up to answer the following research questions about mutant

selection via probability-based static semantic interpretation:

RQ8: Can probability-based semantic interpretation be used to select

mutants that are on average more difficult to kill than those se-

lected by difference-based semantic interpretation?

Probability-based interpretation should be more effective than difference-

based interpretation because it provides more accurate estimates of the

likelihood that mutant outputs have the same value as the original pro-

gram. I address RQ8 by selecting mutants according to both predictions of

semantic similarity, then evaluate the selections with one million random

test cases. Probability-based interpretation can be considered successful if

identifies mutants that are more difficult to kill on average than difference-

based interpretation.

RQ9: Does probability-based semantic interpretation reduce the num-

ber of subdomains that can be removed after optimisation without

affecting their mutant-killing effectiveness?

Semantic interpretation aims to identify mutants that are difficult to kill.

When optimising multiple sets of subdomains (see Chapter 4), difficult to

kill mutants are typically covered late in the optimisation process. These

subdomains frequently also kill mutants that were covered earlier. As a

result, it is often possible to remove subdomains identified early in the opti-

misation process without affecting the mutation score of test suites that are

sampled from them. It is computationally inefficient to evolve subdomains,

only to remove them later. RQ9 investigates whether evolving subdomains

only for the mutants identified by semantic interpretation as being difficult

to kill reduces the number of subdomains that can be removed without

affecting the average mutation score. I address this research question by

optimising multiple sets of subdomains for each selection size of mutants.

I record the mutation scores achieved by the optimised subdomains, along

with the number of subdomains that can be removed once subdomain op-

timisation is completed without affecting the mutation score.

124

5.3 Probability-Based Interpretation

5.3.9 Test Subject Programs

The probability and difference-based interpretation techniques were applied to

mutants generated from three Java programs (see Table 5.9). These programs

are larger than those previously used to evaluate difference-based interpretation.

Their increased complexity should make semantic analysis more challenging.

Table 5.9: Benchmark Programs From Testing Research

Program Mutants LOC Reference

FourBalls 189 40 [147]

TriTyp 310 61 [147]

TCAS 267 120 [128]

5.3.10 Results for RQ8

Table 5.10 shows the mutation score for selections made from FourBalls, TriTyp

and TCAS using difference-based and probability-based interpretation. Both

metrics can be used to select difficult to kill mutants, but with different degrees

of success. When selecting 10% of the mutants, difference-based interpretation

produces an average mutation score of 0.267, whereas probability-based selection

produces an average mutation score of 0.185.

Table 5.10: Mutation Score Results

Programs
Difference-based metric Probability-based metric

10% 25% 50% 100% 10% 25% 50% 100%

FourBalls 0.434 0.423 0.492 0.463 0.345 0.321 0.324 0.463

TriTyp 0.274 0.225 0.235 0.267 0.155 0.206 0.223 0.267

TCAS 0.094 0.115 0.093 0.097 0.054 0.063 0.105 0.097

Mean 0.267 0.254 0.273 0.276 0.185 0.197 0.217 0.276

125

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

Table 5.11 shows the average frequency with which a random test case kills

each mutant. At first sight, the difference between the two selection techniques

seems quite small. Difference-based interpretation reduces the killing frequency

for a 10% selection down to 14.5%, whereas probability-based selection reduces it

to 12.5%. Yet, it is important to read these results in light of the others. For 25%

selections, the difference-based metric achieves 18.0% killing frequency compared

to 12.6% with probability-based selection. Overall, it is clear for the programs

under evaluation that probability-based interpretation selects more difficult to

kill mutants on average than difference-based interpretation.

Table 5.11: Average Killing Frequency Results

Programs
Difference-based metric Probability-based metric

10% 25% 50% 100% 10% 25% 50% 100%

FourBalls 24.27% 31.80% 36.32% 31.65% 20.98% 20.73% 22.64% 31.65%

TriTyp 15.66% 19.03% 13.50% 16.77% 14.69% 15.13% 16.16% 16.77%

TCAS 3.68% 3.29% 3.19% 3.13% 1.70% 1.98% 3.08% 3.13%

Mean 14.5% 18.0% 17.7% 17.2% 12.5% 12.6% 14.0% 17.2%

Figures 5.7 and 5.8 present the mutation score of each selection relative to

the complete set of mutants. Probability-based interpretation shows a stronger

trend than difference-based interpretation in that selecting fewer (more seman-

tically similar) mutants produces a lower mutation score. Figures 5.10 and 5.11

corroborate this finding with similar results for average killing frequency. Se-

lecting smaller sets of mutants using probability-based interpretation reduces the

killing frequency for all three programs, whereas difference-based interpretation

actually increases the frequency for certain selection sizes. Probability-based in-

terpretation provides stronger correlations between selection size and mutation

score/killing frequency. This indicates that, for the programs under evaluation,

it is more effective at determining which mutants are difficult to kill.

126

5.3 Probability-Based Interpretation

Probability-based interpretation achieves success partly due to its superior

handling of branch conditions. Rather than assuming paths contribute equally to-

wards a program’s semantics, probability-based interpretation weights each path

according to how likely it is to be exercised. Most paths through FourBalls have

the same probability, whereas triangle types in TriTyp have different probabil-

ities of occurrence. TCAS contains paths that are only exercised when action

needs to be taken to avoid a collision. As a result, the difference between Pearson

correlation coefficients in Table 5.12 is proportionately higher for TCAS than Tri-

Typ or FourBalls. Probability-based interpretation has six times the correlation

coefficient for TCAS (between mutation score and selection size) than differ-

ence based-interpretation (see Figure 5.9). Difference-based interpretation has

a negative correlation (between killing frequency and selection size) for TCAS,

whereas probability-based interpretation has a strong positive correlation (see

Figure 5.12). Probability-based interpretation performs better than difference-

based interpretation on programs that rely heavily on branch conditions.

Table 5.12: Pearson Correlation Coefficients

Programs
Difference-based metric Probability-based metric

Mutation score Frequency Mutation score Frequency

FourBalls 0.548 0.477 0.850 0.956

TriTyp 0.183 -0.073 0.948 0.961

TCAS 0.130 -0.796 0.780 0.869

Mean 0.159 -0.131 0.857 0.881

Summary for RQ8: Probability-based interpretation has been shown to be

a more reliable metric of the difficulty involved with killing mutants three Java

programs than difference-based interpretation. It can can be used to select mu-

tants, such that random testing achieves a lower mutation score on average than

with difference-based interpretation and it is effective for all sizes of selection.

Probability-based selection is particularly effective for programs that have com-

plex branch structure (e.g. TCAS). This makes the technique well suited to the

task of reducing the number of subdomains that have to be be removed from

multiple sets of optimised subdomains.

127

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

Figure 5.7: Mutation Score Achieved by Difference-Based Selection

Figure 5.8: Mutation Score Achieved by Probability-Based Selection

Figure 5.9: Mutation Score Correlations for Each Selection Technique

128

5.3 Probability-Based Interpretation

Figure 5.10: Killing Frequency Achieved by Difference-Based Selection

Figure 5.11: Killing Frequency Achieved by Probability-Based Selection

Figure 5.12: Killing Frequency Correlations for Each Selection Technique

129

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.3.11 Results for RQ9

RQ9 is answered by applying subdomain optimisation to produce multiple sets

of optimised subdomains that are effective at killing as many of the mutants se-

lected by probability-based interpretation as possible. Subdomain optimisation

is applied on each mutant selection size from RQ8 (10%, 25%, 50% and 100%),

selecting mutants in order of how difficult they are to kill. I record the mu-

tation scores achieved by the optimised subdomains, along with the number of

subdomains that can be removed once subdomain optimisation is completed. A

detailed breakdown of the results can be found in Table 5.13.

Figure 5.13 plots the percentage of subdomains that can be removed after

subdomain optimisation with each selection of mutants. The general trend for all

three programs is that fewer subdomains can be removed without affecting the

mutation score if the subdomains are evolved using fewer mutants. This means

probability-based interpretation can be used to reduce the computational expense

of subdomain optimisation. The rate at which the percentage of subdomains that

can be removed decreases is different for each program (FourBalls decreases the

most slowly). Semantic interpretation is more effective for TriTyp and TCAS

than FourBalls because they contain more difficult to kill mutants.

Figure 5.14 plots the mutation scores achieved by test suites sampled from

within subdomains optimised for each selection of mutants. Optimising subdo-

mains with fewer mutants results in a lower mutation score being achieved (as

evaluated on the complete set of mutants). However, even with 10% of the avail-

able mutants, the mutation score is still higher than unoptimised random test-

ing. The rate of decrease is non-linear: acceptably high mutation scores may be

achieved with 25% or 50% of the mutants. This means that semantic interpreta-

tion can be used to reduce the computational expense of subdomain optimisation

without overly damaging the fault-finding capability of the resulting test suites.

Summary for RQ9: Subdomains may be evolved to generate effective test

suites, but many of the optimised subdomains can be removed without affecting

the mutation score (see Chapter 4). Probability-based interpretation provides

an efficient alternative to subdomain selection. By optimising subdomains for

only the most difficult to kill mutants, a significant reduction in computational

expense can be achieved with only a slight decrease in mutation score.

130

5.3 Probability-Based Interpretation

Figure 5.13: Effect of Mutant Selection on Potential for Subdomain Reduction

(Averaged over 100 Trials)

Figure 5.14: Mutation Score of Subdomains on Different Selections of Mutants

(Averaged over 100 Trials)

Table 5.13: Effect of Mutant Selection on Subdomain Optimisation

Programs
Mutation Score Subdomain Reduction

10% 25% 50% 100% 10% 25% 50% 100%

FourBalls 0.904 0.970 0.988 1.00 0.297 0.313 0.356 0.434

TriTyp 0.786 0.867 0.934 0.997 0.344 0.398 0.502 0.741

TCAS 0.626 0.654 0.725 0.781 0.372 0.436 0.557 0.805

Mean 0.772 0.803 0.882 0.926 0.338 0.382 0.472 0.660

131

5. MUTANT EVALUATION BY STATIC SEMANTIC
INTERPRETATION

5.4 Summary

Semantic interpretation uses static analysis to select mutants that are seman-

tically similar to the original program. It does this by executing the program

under test symbolically in order to determine the effect that mutations of the

program code have on the relationship between inputs and outputs. The com-

petent programmer hypothesis suggests these mutants are particularly useful for

testing because they resemble faults that a programmer is more likely to make.

Semantic interpretation may also be used to reduce the computational ex-

pense and human effort involved with optimising and selecting efficient sets of

subdomains using the techniques described in Chapters 3 and 4. Subdomains

that are evolved to kill semantically similar mutants often kill other mutants as a

side effect. This means fewer subdomains are needed to achieve a high mutation

score and less effort is required to determine the correct output of each test case.

I introduced two semantic interpretation techniques. Difference-based inter-

pretation compares the range of symbolic outputs. It does not take into account

path conditions and can only be applied to numerical values, but it is straightfor-

ward and computationally inexpensive. Probability-based interpretation evalu-

ates the likelihood the output from a mutant is the same as the original program.

It can be used on strings, Booleans, bitwise values and compound objects.

Difference-based interpretation selected difficult to kill mutants effectively for

most (but not all) methods evaluated from the Java standard library. Mutants

in the top quarter of those selected were less than half as likely to be killed than

the average mutant in the remaining three quarters. Probability-based interpre-

tation was shown to select difficult to kill mutants for three more complicated

Java programs more effectively than difference-based interpretation. For exam-

ple, probability-based interpretation achieved 0.78 correlation between selection

size and mutation score (compared to 0.13 for difference-based interpretation).

I used probability-based selection to select mutants for subdomain optimi-

sation. When subdomains were optimised for 25% of the (most difficult to kill)

mutants, less than 38% of the subdomains had to be discarded (compared to 66%

with the complete set). This constitutes a significant reduction in computational

expense with a small decrease in mutation score. Semantic interpretation can

therefore be used to make subdomain optimisation more efficient.

132

Chapter 6

Conclusions

6.1 Summary of Achievements

The main aim of this thesis was to make software testing more efficient by in-

troducing new techniques for identifying and evaluating efficient sets of input

subdomains for test data generation. This was achieved through a combination

of random testing, mutation analysis, metaheuristic optimisation and static anal-

ysis. The detailed aims and objectives of this thesis were as follows:

1. Apply subdomain optimisation so as to reduce the number of test cases and

input regions that must be evaluated by software testers.

2. Specialise subdomains at killing different groups of mutants, so that they

can cover the input domain more effectively and efficiently.

3. Investigate the capability of static program analysis to reduce the number

of subdomains that are required to test software effectively.

The first research objective was addressed by optimising input subdomains for

8 Java programs that are frequently used in software testing research. I applied

a 1 + 1 evolution strategy to optimise one subdomain for each input parameter,

such that efficient test suites can be sampled randomly from within the bounds of

each subdomain. The optimisation technique identified sets of subdomains from

which test cases can be selected with higher mutation score than random testing.

It only failed to surpass the expected mutation score when it was 100%.

133

6. CONCLUSIONS

Optimising a single set of subdomains for each program achieved comparable

results to dynamic symbolic execution (DSE). Subdomain optimisation achieved

a higher mutation score for two programs (TriTyp and Schedule) and a lower mu-

tation score for two others (Tcas and Replace). The programs for which dynamic

symbolic execution performed better than subdomain optimisation have complex

branch structures. Subdomain optimisation produced less than 1/20th of the test

cases used by DSE and one of the weaknesses of optimising a single set of subdo-

mains is that it has to make a trade-off between killing each mutant. Subdomain

optimisation therefore struggles to meet the conditions of every branch efficiently.

The subdomains identified by subdomain optimisation serve as a starting

point for regression testing, but it can be computationally expensive if the re-

sulting subdomains are only used once. Subdomain optimisation works for the

most part as a black-box technique, but it may not always be possible to opti-

mise efficient subdomains without at least some understanding of the program

code. For example, none of the initial trials for Tcas produced a high mutation

score because of a number of difficult to meet branch conditions involving large

constants. Scaling the values of the constants corrected this in part, but it was

much more effective to use multiple sets of subdomains.

The second research objective was addressed by optimising multiple sets of

subdomains for programs that did not achieve a high mutation score with single

sets and two new mathematical Java programs. Sampling test cases from multi-

ple sets of optimised subdomains achieved on average 33% higher mutation score

than single sets and 230% higher than unoptimised random testing. One key

finding is that multiple sets of subdomains were only slightly more computation-

ally expensive to evolve than single sets. Multiple sets took less time for some

programs and more time for others to evolve than single sets.

Multiple sets of subdomains were particularly effective at evolving subdo-

mains for Tcas. As each set of subdomains is able to focus on a different group

of mutants, it is not necessary to manually scale the input parameters. I also

included three new techniques for automated program stretching. In contrast to

manual transformations, program stretching automatically makes mutants easier

to kill, then gradually transforms them back again. On Tcas, multiple sets of

subdomains and program stretching achieved on average 71% higher mutation

score than single sets and took 1/7th of the time to evolve.

134

6.1 Summary of Achievements

The only downside of evolving multiple sets of subdomains is that they can

increase the human effort involved with evaluating their test cases. After sub-

domain optimisation has been completed, small sets of subdomains are selected

using sequential floating forward selection (SFFS) so they can kill mutants more

efficiently. Subdomain selection reduced the number of subdomains for four out

of six programs with little effect on the mutation score. Subdomain selection is

computationally inexpensive, but it wastes sets of subdomains that are expensive

to evolve. It would be more efficient not to evolve these subdomains at all.

The third research objective was addressed using two static semantic interpre-

tation techniques. Difference-based interpretation compares to output range of

mutants with the original program using conservative estimates made by symbolic

execution. Probability-based interpretation compares the likelihood the output

from a mutant is the same as the original program, assuming probabilities are in-

dependent and the output is uniform. Probability-based interpretation achieved

a higher correlation between selection size and mutation score (with one million

random test cases) than difference-based interpretation (ρ = 0.78 compared to

ρ = 0.13) and can be applied to more data types, but is slightly more expensive.

The competent programmer hypothesis suggests that difficult to kill mutants

are more useful because they resemble faults programmers are more likely to

make. They can also be used to reduce the computational expense involved with

optimising multiple sets of subdomains. Experiments showed that subdomains

are more likely to be selected if they are evolved later (i.e. more difficult to kill).

When subdomains were optimised for 25% of the (most difficult to kill) mutants,

less than 38% of the subdomains had to be discarded (compared to 66% with the

complete set). This constitutes a significant reduction in computational expense

(as those subdomains no longer had to be optimised) with small a decrease in

mutation score. Semantic interpretation can therefore be used to identify difficult

to kill mutants and make the process of subdomain optimisation more efficient.

In conclusion, this thesis presents a complete strategy for subdomain-based

testing, from the initial static analysis through to optimisation and selection. The

evolved subdomains may be sampled from at random to achieve a high mutation

score or used by the tester to provide valuable information for regression testing.

Compared to other test data generation techniques for mutation analysis (e.g.

DSE), subdomain optimisation is less expensive and more effective.

135

6. CONCLUSIONS

6.2 Limitations of my Research

1. If test cases are only sampled from within the optimised subdomains, it

is possible to miss mutants that are difficult to kill because subdomains

have not been evolved for them. I address this by evolving multiple sets of

subdomains for different groups of mutants. Yet, it may still be necessary

to include some test cases sampled from outside the subdomains.

2. Although optimised subdomains are efficient at killing mutants, the pro-

cess of subdomain optimisation is computationally expensive. Further ex-

periments are required to determine whether it is more efficient at killing

mutants (in terms of actual evaluations) than random testing. Yet, the

purpose of this research is not simply to kill mutants, but rather to identify

small sets of subdomains that are easy to comprehend by the tester.

3. Program stretching makes difficult to kill mutants easier to kill by widening

branch conditions for paths along which that mutant was previously killed.

This requires the mutant to be killed at least once before it can be useful.

Difficult to kill mutants are less likely to be killed during optimisation. It

may therefore be helpful to adapt the static analysis techniques in Chapter

5 to guide test data generation along paths more likely to kill the mutant.

4. Probability-based interpretation was shown to be more effective than difference-

based interpretation. Yet, it still assumes that the output of a program is

uniformly distributed. In practice, program outputs are non-uniform. For

example, the output of the numerical expression a ∗ b is sparsely and un-

evenly generated. It produces highly factorisable numbers more frequently

and only generates prime numbers if the value of a or b is one. As a result,

probability-based interpretation approximates mutant semantics.

5. The experiments presented in this thesis were performed on a small number

of small programs. Further research is required to determine whether these

techniques are also effective for larger programs. Work is needed to make

the techniques more efficient, so that they are computationally feasible for

industrial-scale programs. It is also necessary to consider how subdomains

can be optimised for non-procedural (object-oriented) programs.

136

6.3 Future Work

6.3 Future Work

This section makes some suggestions for future work that will help to address the

limitations of my research, as described in the previous section of this thesis.

6.3.1 Optimising Distributions for Entire Input Domain

One of the limitations of my research is that it is necessary to sample outside

the evolved subdomains occasionally to test software thoroughly. My current

approach does not provide any information about when to do this or which values

outside the subdomains are most likely to be useful. One solution to this problem

is to optimise input distributions that cover the entire input domain rather than

subdomains which just cover certain key areas. Techniques to achieve this may

be borrowed from the field of statistical testing (see Section 2.3.6). For example,

Poulding et al. [132] use stochastic grammars to describe the input distribution.

Another advantage of this extension to my optimisation technique is that

it allows each test case evaluation to have a more direct impact on the shape

of the input distribution than is possible by using a CMA-ES to evolve sets of

subdomains. Stochastic grammars are more expressive than subdomains and

can take into account more of the information gained by test case evaluation.

One downside is that more computational resources may be required to optimise

stochastic grammars. Another important question is whether a (potentially non-

smooth) input distribution is as straightforward for test engineers to understand.

6.3.2 Static Analysis Heuristic for Mutant Propagation

Program stretching currently relies on a mutant previously being killed in order

to guide the optimisation process towards subdomain values that are more likely

to propagate its effect to the output. One way to address this is to use the

static analysis techniques developed for semantic interpretation to predict which

paths through a program are more likely to allow a fault to be propagated. The

likelihood of fault propagation differs depending on the mutant that needs to be

propagated. It would therefore be necessary to apply static analysis whenever a

difficult to kill mutant is encountered. The technique must identify paths that

are potentially useful, then guide subdomain optimisation along these paths.

137

6. CONCLUSIONS

Probability-based interpretation can be used to determine for each path the

likelihood that the output of a mutant will be different to the original program.

It is then necessary to cause subdomain optimisation to follow paths one of the

paths that has been identified. This may be achieved using the existing techniques

for path stretching and branch-condition stretching. A more advanced strategy

would be to automatically infer from the static analysis which subdomain values

are most likely to be effective.

6.3.3 Distribution-based Semantic Interpretation

If the output distribution for a program is sparse (as in multiplication) or skewed

(as in division), semantic interpretation will underestimate the likelihood that a

mutant outputs the same value as the original program. This is because there are

less distinct values in the output domain, so it is more likely that two values sam-

pled at random will be the same. This may be addressed by taking into account

the shape and sparsity of the output distribution in semantic interpretation.

It is difficult to estimate the proportion of distinct outputs for a given multi-

plication due to its relationship with prime numbers. If it were possible to identify

gaps in the output without calculating every possible value, locating prime num-

bers would be trivial. As it is, prime numbers are difficult to predict. The best

we can do is to use statistical trials and curve fitting to construct an approximate

model over a particular range of input for multiplication.

Take for example, subdomains with lower boundary 1 and upper boundary

between 1 and 100. I conducted 1000 trials, each with two subdomains randomly

sampled from within this range, then calculated every possible multiplication

of their values. The proportion of distinct outputs can be modelled using the

logarithmic equation: −0.08 ln(d) + 0.99, where d is the total number of outputs

produced by the multiplications. This approximation is only valid for subdomains

that lie within the range included in the experiment. For subdomains outside

this range, it would be necessary to perform more curve fitting experiments.

The computational expense involved suggests that this technique may not be

worthwhile. Probability-based interpretation may be preferable because, even

though it is not entirely accurate, it provides useful information in most cases.

138

Appendix A

Mutation Operators

A.1 Mutation Operators used by MuJava

Operator Description

AOR Arithmetic Operator Replacement

AOI Arithmetic Operator Insertion

AOD Arithmetic Operator Deletion

ROR Relational Operator Replacement

COR Conditional Operator Replacement

COI Conditional Operator Insertion

COD Conditional Operator Deletion

SOR Shift Operator Replacement

LOR Logical Operator Replacement

LOI Logical Operator Insertion

LOD Logical Operator Deletion

ASR Assignment Operator Replacement

139

A. MUTATION OPERATORS

A.2 Mutation Operators used by Mothra

Operator Description

AAR array reference for array reference replacement

ABS absolute value insertion

ACR array reference for constant replacement

AOR arithmetic operator replacement

ASR array reference for scalar variable replacement

CAR constant for array reference replacement

CNR comparable array name replacement

CRP constant replacement

CSR constant for scalar variable replacement

DER DO statement alterations

DSA DATA statement alterations

GLR GOTO label replacement

LCR logical connector replacement

ROR relational operator replacement

RSR RETURN statement replacement

SAN statement analysis

SAR scalar variable for array reference replacement

SCR scalar for constant replacement

SDL statement deletion

SRC source constant replacement

SVR scalar variable replacement

UOI unary operator insertion

140

Appendix B

Experimental Data

B.1 Random Seeds (one for each trial)

Single Set of Subdomains

995356

94474

849302

902965

242822

850499

141906

626588

941218

822475

155065

471901

612012

942152

257894

370148

928957

886987

277734

443183

957613

347761

277889

33180

57016

630502

157180

528166

737589

248651

189433

778438

472575

36962

583876

923844

57616

602096

713540

317484

815658

348779

214079

57598

92163

804685

664069

663027

265157

596971

543067

128804

862143

903464

36469

883980

543722

216309

796912

58582

501205

361609

152732

412850

94753

45210

808283

918952

420828

575735

467473

253842

808460

650334

114458

583204

371339

783682

481070

534531

249250

851484

851359

179279

312517

484821

799685

988913

696122

367969

886425

740879

530178

790618

345028

825470

350065

145144

812166

733050

Multiple Sets of Subdomains

751867

25180

975941

755717

720845

302797

115616

673700

864338

334506

990224

100697

377560

551144

735052

340825

264786

931051

674757

172847

126980

442828

618897

979703

767614

505600

931291

880063

964396

677487

151832

425669

638915

175586

268224

605540

894392

447037

864722

974700

375405

997156

901047

594074

209438

423040

587133

53082

871897

849016

472363

391068

659648

711377

931057

157460

638548

638850

49245

63138

358623

322344

451696

387142

116938

261392

598408

710939

85212

423437

504642

355808

275750

909030

143485

339113

318550

130191

534873

287779

795965

573708

249184

559994

171123

961497

199159

424189

401987

258427

389034

460600

28423

115732

909105

396407

336122

446941

95472

567630

141

B. EXPERIMENTAL DATA

B.2 K-means Clustering for SVD Subdomains

(Each figure shows all the sets included in a particular cluster. Each axis

represents the normalised subdomain sizes for an input parameter)

142

Bibliography

[1] A. T. Acree, “On mutation,” Ph.D. dissertation, Sch. Inform. Comp. Sci.,

Georgia Inst. Tech., Atlanta, GA, 1980.

[2] K. Adamopoulos, M. Harman, and R. M. Hierons, “How to overcome the

equivalent mutant problem and achieve tailored selective mutation using co-

evolution,” in Proc. 6th Annu. Conf. Genetic Evolutionary Computation,

2004, pp. 1338–1349.

[3] K. Akrofi, “Classification of alzheimers disease and mild cognitive impair-

ment by pattern recognition of EEG power and coherence,” in Proc. 35th

Int. Conf. Acoustics Speech Signal Processing, 2010, pp. 606–609.

[4] P. Ammann and J. Offutt, Introduction to software testing. New York,

NY: Cambridge Univ. Press, 2008.

[5] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking to

generate tests from specifications,” in Proc. 2nd Int. Conf. Formal Eng.

Methods, Brisbane, Australia, 1998, pp. 46—54.

[6] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate

tool for testing experiments?” in Proc. 27th Int. Conf. Softw. Eng., St.

Louis, MO, 2005, pp. 402–411.

[7] J. H. Andrews, S. Halder, Y. Lei, and F. C. H. Li, “Tool support for ran-

domized unit testing,” in Proc. 1st Int. Works. Random Testing, 2006, pp.

36–45.

[8] K. Ayari, S. Bouktif, and G. Antoniol, “Automatic mutation test input data

143

BIBLIOGRAPHY

generation via ant colony,” in Proc. 9th Annu. Conf. Genetic Evolutionary

Computation, London, England, 2007, pp. 1074–1081.

[9] B. Babb, F. Moore, S. Aldridge, and M. R. Peterson, “State-of-the-art

lossy compression of martian images via the CMA-ES evolution strategy,”

in Proc. Int. Soc. Optics Photonics, 2012, pp. 22–26.

[10] T. Bäck, Evolutionary Algorithms in Theory and Practice. Oxford, Eng-

land: Oxford Univ. Press: Oxford Univ. Press, 1996.

[11] R. Baker and I. Habli, “An empirical evaluation of mutation testing for

improving the test quality of safety-critical software,” IEEE Trans. Softw.

Eng., vol. 39, no. 6, pp. 787–805, 2013.

[12] E. F. Barbosa, J. C. Maldonado, and A. M. R. Vincenzi, “Toward the deter-

mination of sufficient mutant operators for C,” Softw. Testing, Verification,

Reliability, vol. 11, no. 2, pp. 113–136, 2001.

[13] B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon, “Automatic test

cases optimization using a bacteriological adaptation model: Application to

.NET components,” in Proc. Int. Conf. Automated Softw. Eng., Edinburgh,

United Kingdom, 2002, pp. 253–256.

[14] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: a comprehensive

introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

[15] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is nearest

neighbor meaningful?” in Proc. 7th Int. Conf. Database Theory, Jerusalem,

Israel, 1999, pp. 217–235.

[16] B. Bezier, Software Testing Techniques, 2nd ed. New York, NY: Van

Nostrand Reinhold, 1990.

[17] M. Blair, S. Obenski, and P. Bridickas, “Patriot missile software problem,”

United States General Accounting Office, Tech. Rep. GAO/IMTEC-92-26,

1992.

[18] H. H. Bock, “On some significance tests in cluster analysis,” J. Classifica-

tion, vol. 2, no. 1, pp. 77–108, 1985.

144

BIBLIOGRAPHY

[19] B. Botella, A. Gotlieb, and C. Michel, “Symbolic execution of floating-point

computations,” Softw. Testing, Verification, Reliability, vol. 16, no. 2, pp.

97–121, 2006.

[20] L. Bottaci, “A genetic algorithm fitness function for mutation testing,”

Toronto, Canada, pp. 3–7, 2001.

[21] G. E. P. Box and M. E. Muller, “A note on the generation of random normal

deviates,” Ann. Math. Statist., vol. 29, no. 2, pp. 610–611, 1958.

[22] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT - a formal system for

testing and debugging programs by symbolic execution,” in Proc. Int. Conf.

Reliable Softw., Los Angeles, CA, 1975, pp. 234–245.

[23] M. Brendel, “A quick sequential forward floating feature selection algorithm

for emotion detection from speech,” in Proc. 11th Annu. Conf. Int. Speech

Communication Association, 2010, pp. 1157–1160.

[24] T. A. Budd, “Mutation analysis of program test data,” Ph.D. dissertation,

Dept. Comp. Sci., Yale Univ., New Haven, CT, 1980.

[25] C. Cadar and D. Engler, “Execution generated test cases: How to make

systems code crash itself,” in Proc. 12th Int. Conf. Model Checking Softw.,

Austin, TX, 2005, pp. 2–23.

[26] F. T. Chan, T. Y. Chen, I. K. Mak, and Y. T. Yu, “Proportional sampling

strategy: Guidelines for software testing practitioners,” Inform Softw. Tech-

nology, vol. 38, no. 12, pp. 775–782, 1996.

[27] K. P. Chan, T. Y. Chen, and D. Towey, “Normalized restricted random

testing,” in Proc. 8th Int. Conf. Reliable Softw. Technologies, Toulouse,

France, 2003, pp. 368–381.

[28] K. P. Chan, T. Y. Chen, and D. Towey, “Restricted random testing: Adap-

tive random testing by exclusion,” Int. J. Softw. Eng. Knowledge Eng.,

vol. 16, no. 4, pp. 553–584, 2006.

145

BIBLIOGRAPHY

[29] T. Y. Chen, D. H. Huang, and F.-C. Kuo, “Adaptive random testing by

balancing,” in Proc. 2nd Int. Works. Random Testing, Atlanta, GA, 2007,

pp. 2–9.

[30] T. Y. Chen, F.-C. Kuo, R. G. Merkel, and S. P. Ng, “Mirror adaptive

random testing,” Inform. Softw. Technology, vol. 46, no. 15, pp. 1001–1010,

2004.

[31] T. Y. Chen, H. Leung, and I. K. Mak, “Adaptive random testing,” in Proc.

9th Int. Asian Comp. Sci. Conf., Chiang Mai, Thailand, 2005, pp. 320–329.

[32] T. Y. Chen and Y. T. Yu, “On the relationship between partition and

random testing,” IEEE Trans. Softw. Eng., vol. 20, no. 12, pp. 977–980,

1994.

[33] I. Ciupa, A. Leitner, Oriol, and B. M. Meyer, “ARTOO: adaptive random

testing for object-oriented software,” in Proc. 30th Int. Conf. Softw. Eng.,

Leipzig, Germany, 2008.

[34] J. A. Clark, H. Dan, and R. M. Hierons, “Semantic mutation testing,” in

Proc. 5th Int. Works. Mutation Analysis, Paris, France, 2010, pp. 100–109.

[35] L. A. Clarke, “A system to generate test data and symbolically execute

programs,” IEEE Trans. Software Eng., vol. 2, no. 3, pp. 215–222, 1976.

[36] D. M. Cohen and S. R. Dalal, “The combinatorial design approach to au-

tomatic test generation,” IEEE Software, vol. 13, no. 5, pp. 83–88, 1996.

[37] P. Cousot, “Abstract interpretation based formal methods and future chal-

lenges,” Lecture Notes in Comp. Sci., vol. 2000, pp. 138–156, 2001.

[38] S. B. Dantzig, “Maximization of a linear function of variables subject to

linear inequalities,” in Activity Analysis of Production and Allocation, T. C.

Koopman, Ed. New York, NY: Wiley, 1951, pp. 339–347.

[39] M. Daran and P. Thévenod-Fosse, “Software error analysis: a real case

study involving real faults and mutations,” in Proc. 10th Int. Symp. Softw.

Testing Analysis, San Diego, CA, 1996, pp. 158–171.

146

BIBLIOGRAPHY

[40] M. Davis, “Hilbert’s tenth problem is unsolvable,” Amer. Math. Monthly,

vol. 80, no. 3, pp. 233–269, 1973.

[41] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selec-

tion: Help for the practicing programmer,” Computer, vol. 11, no. 4, pp.

34–41, 1978.

[42] R. A. DeMillo and A. J. Offutt, “Constraint-based automatic test data

generation,” IEEE Trans. Software Eng., vol. 17, no. 9, 1991.

[43] E. Dijkstra, “Notes on structured programming,” in Structured program-

ming, O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Eds. London,

United Kingdom: Academic Press Ltd., 1972, pp. 1–82.

[44] J. W. Duran and S. C. Ntafos, “An evaluation of random testing,” IEEE

Trans. Softw. Eng., vol. 10, no. 4, pp. 438–444, 1984.

[45] E. Dustin, J. Rashka, and J. Paul, Automated Software Testing: Intro-

duction, Management, and Performance. Boston, MA: Addison-Wesley

Professional, 1999.

[46] M. Ellims, D. Ince, and M. Petre, “The Csaw C mutation tool: Initial re-

sults,” in Proc. 3th Int. Works. Mutation Analysis, Windsor, United King-

dom, 2007, pp. 185–192.

[47] R. Ferguson and B. Korel, “The chaining approach for software test data

generation,” ACM Trans. Softw. Eng. Methodology, vol. 5, no. 1, pp. 63–86,

1996.

[48] A. R. Ford and T. J. Teorey, Practical Debugging in C++. Upper Saddle

River, NJ: Prentice Hall, 2002.

[49] P. G. Frankl, S. N. Weiss, and C. Hu, “All-uses versus mutation testing:

an experimental comparison of effectiveness,” J. Syst. Softw., vol. 38, no. 3,

pp. 235–253, 1997.

[50] P. G. Frankl and E. J. Weyuker, “Provable improvements on branch test-

ing,” IEEE Trans. Softw. Eng., vol. 19, no. 10, pp. 962–975, 1993.

147

BIBLIOGRAPHY

[51] G. Fraser and A. Zeller, “Mutation driven generation of unit tests and

oracles,” in Proc. 19th Int. Symp. Softw. Testing Analysis, Trento, Italy,

2010, pp. 147–158.

[52] Fujitsu. (2010) Fujitsu develops technology to enhance comprehensive

testing of Java programs. [Online]. Available: http://www.fujitsu.com/

global/news/pr/archives/month/2010/20100112-02.html

[53] K. Ghani and J. A. Clark, “Widening the goal posts: Program stretching

to aid search based software testing,” in Proc. 1st Int. Symp. Search Based

Softw. Eng., 2009.

[54] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated ran-

dom testing,” in Proc. Conf. Programming Language Design Implementa-

tion, Chicago, IL, 2005, pp. 213–223.

[55] S.-D. Gouraud, A. Denise, M.-C. Gaudel, and B. Marre, “A new way of

automating statistical testing methods,” in Int. Conf. Automated Softw.

Eng., San Diego, CA, 2001, pp. 5–12.

[56] J. S. Gourlay, “A mathematical framework for the investigation of testing,”

IEEE Trans. Softw. Eng., vol. SE-9, no. 6, pp. 686–709, 1983.

[57] B. J. M. Grün, D. Schuler, and A. Zeller, “The impact of equivalent mu-

tants,” in Proc. 4th Int. Works. Mutation Analysis, Denver, CO, 2009, pp.

192–199.

[58] M. Haahr. (2013) Random.org: True random number service. [Online].

Available: http://http://www.random.org/

[59] D. Hamlet, “When only random testing will do,” in Proc. 1st Int. Works.

Random Testing, Portland, ME, 2006, pp. 1–9.

[60] D. Hamlet and R. Taylor, “Partition testing does not inspire confidence,”

IEEE Trans. Softw. Eng., vol. 16, no. 12, pp. 1402–1411, 1990.

[61] R. Hamlet, “Theoretical comparison of testing methods,” ACM SIGSOFT

Softw. Eng. Notes, vol. 14, no. 8, pp. 28–37, 1989.

148

http://www.fujitsu.com/global/news/pr/archives/month/2010/20100112-02.html
http://www.fujitsu.com/global/news/pr/archives/month/2010/20100112-02.html
http://http://www.random.org/

BIBLIOGRAPHY

[62] N. Hansen, “The cma evolution strategy: A comparing review,” in Towards

a New Evolutionary Computation (Studies in Fuzziness and Soft Comput-

ing), J. A. Lozano, P. Larrañaga, I. Inza, and E. Bengoetxea, Eds. Berlin,

Germany: Springer, 2006, pp. 75–102.

[63] N. Hansen, A. Auger, R. Ros, S. Finck, and P. Posik, “Comparing results

of 31 algorithms from the black-box optimization benchmarking BBOB-

2009,” in Proc. 12th Genetic Evolutionary Computation Conf., 2010, pp.

1689–1696.

[64] M. Harman, Y. Jia, and W. B. Langdon, “A manifesto for higher order mu-

tation testing,” in Proc. 5th Int. Works. Mutation Analysis, Paris, France,

2010, pp. 80–89.

[65] M. Harman, Y. Jia, and W. B. Langdon, “Strong higher order mutation-

based test data generation,” in Proc. 8th Joint Meeting European Softw.

Eng. Conf. ACM SIGSOFT Symp. Foundations Softw. Eng., Szeged, Hun-

gary, 2011, pp. 212–222.

[66] M. Harman and P. McMinn, “A theoretical & empirical analysis of evo-

lutionary testing and hill climbing for structural test data generation,” in

Proc. 16th International Symp. Softw. Testing Analysis, London, United

Kingdom, 2007, pp. 73–83.

[67] I. Harvey, “Artificial evolution: A continuing SAGA,” in Evolutionary

Robotics. From Intelligent Robotics to Artificial Life, T. Gomi, Ed., 2001,

pp. 94–109.

[68] L. Hatton, Safer C: Developing Software for High-Integrity and Safety-

Critical Systems. London, United Kingdom: McGraw-Hill Professional,

1994.

[69] K. Hayhurst, D. S. Veerhusen, J. J. Chilenski, and L. K. Rierson, “A prac-

tical tutorial on modified Condition/Decision coverage,” NASA, Tech. Rep.

NASA/TM-2001-210876, 2001.

[70] W. C. Hetzel, The Complete Guide to Software Testing, 2nd ed. Hoboken,

NJ: Wiley, 1993.

149

BIBLIOGRAPHY

[71] M. Heusser. (2012, August) Software testing lessons learned from knight

capital fiasco. [Online]. Available: http://www.cio.com/article/713628/

Software Testing Lessons Learned From Knight Capital Fiasco/

[72] R. Hierons, M. Harman, and S. Danicic, “Using program slicing to assist

in the detection of equivalent mutants,” Software Testing, Verification and

Reliability, vol. 9, no. 4, pp. 233—262, 1999.

[73] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Notices,

vol. 39, no. 12, pp. 92–106, 2004.

[74] S. Hussain, “Mutation clustering,” Master’s thesis, Dept. Comp. Sci.,

King’s College London, London, United Kingdom, 2008.

[75] H. Hutchins, M. andFoster, T. Goradia, and T. Ostrand, “Experiments on

the effectiveness of dataflow- and controlflow-based test adequacy criteria,”

in Proc. 16th Int. Conf. on Softw. Eng., Sorrento, Italy, 1994, pp. 191–200.

[76] D. C. Ince, “The automatic generation of test data,” Comp. J., vol. 30,

no. 1, pp. 63–69, 1987.

[77] F. Jay and R. Mayer, “IEEE standard glossary of software engineering

terminology,” IEEE, Tech. Rep. 610.12-1990, 1990.

[78] Y. Jia and M. Harman. (2010) Mutation testing repository. [Online]. Avail-

able: http://crestweb.cs.ucl.ac.uk/resources/mutation testing repository/

[79] Y. Jia and M. Harman, “An analysis and survey of the development of

mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649–678,

2011.

[80] J. Jung, “Using evolution strategy for cooperative focused crawling on se-

mantic web,” Neural Comput. Appl., vol. 18, no. 3, pp. 213–221, 2009.

[81] D. Kim, “Determination of steel quality based on discriminating textural

feature selection,” Chemical Engineering Science, vol. 66, no. 23, pp. 6264–

6271, 2011.

150

http://www.cio.com/article/713628/Software_Testing_Lessons_Learned_From_Knight_Capital_Fiasco/
http://www.cio.com/article/713628/Software_Testing_Lessons_Learned_From_Knight_Capital_Fiasco/
http://crestweb.cs.ucl.ac.uk/resources/mutation_testing_repository/

BIBLIOGRAPHY

[82] J. C. King, “Symbolic execution and program testing,” Commun. ACM,

vol. 19, no. 7, pp. 385–394, 1976.

[83] B. Korel, “Automated software test data generation,” IEEE Trans. Softw.

Eng., vol. 16, no. 8, pp. 870–879, 1990.

[84] B. Korel, “Dynamic method for software test data generation,” Softw. Test-

ing, Verification, Reliability, vol. 2, no. 4, pp. 203–213, 1992.

[85] V. Koutavas and M. Wand, “Small bisimulations for reasoning about

higher-order imperative programs,” in Proc. 33rd Int. Symp. Principles

Programming Languages, Charleston, SC, 2006, pp. 141–152.

[86] D. R. Kuhn, R. Kacker, and Y. Lei, “Random vs. combinatorial methods for

discrete event simulation of a grid computer network,” in Proc. Modelling

Simulation World Conf. Expo., Virginia Beach, VA, 2009.

[87] D. R. Kuhn and M. Reilly, “An investigation of the applicability of design of

experiments to software testing,” in Proc. 27th Annu. Softw. Eng. Works.,

Greenbelt, MD, 2002, pp. 91–95.

[88] R. Kuhn and Y. Lei, “Practical combinatorial testing: Beyond pairwise,”

IEEE IT Professional, vol. 10, no. 3, 2008.

[89] F.-C. Kuo, “On adaptive random testing,” Ph.D. dissertation, Fclty. In-

form. Commun. Technologies, Swinburne Univ. Technology, Hawthorn,

Australia, 2006.

[90] F.-C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan, “Enhancing adaptive

random testing in high dimensional input domains,” in Proc. 22nd Annu.

Symp. Applied Computing, Seoul, Korea, 2007, pp. 1467–1472.

[91] K. Lakhotia, “Search based testing,” Ph.D. dissertation, Dept. Comp. Sci,

King’s College London, London, United Kingdom, 2009.

[92] E. Larson and T. Austin, “High coverage detection of input-related security

faults,” in Proc. 12th Conf. USENIX Security, Washington, DC, 2003, pp.

9–24.

151

BIBLIOGRAPHY

[93] N. Li, U. Praphamontripong, and J. Offutt, “An experimental comparison

of four unit test criteria: Mutation, edge-pair, all-uses and prime path

coverage,” in 4th Int. Works. Mutation Analysis, Denver, CO, 2009, pp.

220–229.

[94] R. Lipton, “Fault diagnosis of computer programs,” Sch. Comp. Sci.,

Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep., 1971.

[95] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MuJava : an automated class mu-

tation system,” J. Softw. Test. Verif. Rel., vol. 15, no. 2, pp. 97–133, 2005.

[96] S. Mahmood, “A systematic review of automated test data generation tech-

niques,” Master’s thesis, Sch. Eng., Blekinge Inst. Tech., Ronneby, Sweden,

2007.

[97] S. Mankefors, R. Torkar, and A. Boklund, “New quality estimations in

random testing,” in 14th Int. Symp Softw. Reliability Eng., Denver, CO,

2003, pp. 468–478.

[98] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator,” ACM Trans.

Modeling Comput. Simulation, vol. 8, no. 1, pp. 3–30, 1998.

[99] P. S. May, “Test data generation: two evolutionary approaches to mutation

testing,” Ph.D. dissertation, Dept. Comp. Sci., Univ. Kent, Canterbury,

United Kingdom, 2007.

[100] J. Mayer, “Adaptive random testing by bisection with restriction,” in Proc.

7th Int. Conf. Formal Eng. Methods, Manchester, United Kingdom, 2005,

pp. 251–263.

[101] J. Mayer, T. Y. Chen, and D. H. Huang, “Adaptive random testing through

iterative partitioning revisited,” in Proc. 3rd Int. Works. Softw. Quality

Assurance, Portland, OR, 2006, pp. 22–29.

[102] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol.

SE-2, no. 4, pp. 308–320, 1976.

152

BIBLIOGRAPHY

[103] P. McMinn, “Search-based software test data generation: A survey,” Softw.

Testing, Verification, Reliability, vol. 14, no. 2, pp. 105–156, 2004.

[104] P. McMinn, M. Harman, D. Binkley, and P. Tonella, “The species per path

approach to Search-Based test data generation,” in Proc. 15th Int. Symp.

Softw. Testing Analysis, Portland, ME, 2006, pp. 13–24.

[105] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative human

oracle costs associated with automatically generated test data,” in Proc.

1st Int. Works. Software Test Output Validation, Trento, Italy, 2010, pp.

1–4.

[106] N. Megiddo, “Linear programming,” in Encyclopedia of Microcomputers,

A. Kent and J. Williams, Eds. Academic Press Ltd., 1991.

[107] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software test

data by evolution,” IEEE Trans. Software Eng., vol. 27, no. 12, pp. 1085–

1110, 2001.

[108] S. Mirshokraie, A. Mesbah, and K. Pattabiraman, “Efficient JavaScript

mutation testing,” in Proc. 6th Int. Conf. Softw. Testing Verification, 2013,

pp. 74–83.

[109] E. S. Mresa and L. Bottaci, “Efficiency of mutation operators and selec-

tive mutation strategies: An empirical study,” Softw. Testing, Verification

Reliability, vol. 9, no. 4, 1999.

[110] G. J. Myers, C. Sandler, and T. Badgett, The Art of Software Testing.

Hoboken, NJ: Wiley, 2012.

[111] V. Naidu, “Manual testing versus automated testing,” in Testing Contro-

versies, A. Sharma, Ed. Bangalore, India: Infosys, 2011, pp. 6–9.

[112] A. S. Namin, J. H. Andrews, and D. J. Murdoch, “Sufficient mutation

operators for measuring test effectiveness,” in Proc. 30th Int. Conf. Softw.

Eng., Leipzig, Germany, 2008, pp. 351–360.

[113] V. Nissen and S. Gold, “Survivable network design with an evolution strat-

egy,” in Success in Evolutionary Computation (Studies in Computational

153

BIBLIOGRAPHY

Intelligence), A. Yang, Y. Shan, and L. T. Bui, Eds. Berlin, Germany:

Springer, 2008, pp. 263–283.

[114] S. Ntafos, “On random and partition testing,” in Proc. 11th Int Symp.

Softw. Testing Analysis, Clearwater Beach, FL, pp. 42–48.

[115] A. J. Offutt, “Investigations of the software testing coupling effect,” ACM

Trans. Softw. Eng. Methodology, vol. 1, no. 1, pp. 5–20, 1992.

[116] A. J. Offutt and W. M. Craft, “Using compiler optimization techniques to

detect equivalent mutants,” Journal Softw. Testing, Verification, Reliabil-

ity, vol. 4, no. 3, pp. 131–154, 1994.

[117] A. J. Offutt and J. H. Hayes, “A semantic model of program faults,” in

Proc. 10th Int Symp. Softw. Testing Analysis, San Diego, CA, 1996, pp.

195—200.

[118] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf, “An exper-

imental determination of sufficient mutant operators,” ACM Trans. Softw.

Eng. Methodology, vol. 5, no. 2, pp. 99–118, 1996.

[119] A. J. Offutt and J. Pan, “Automatically detecting equivalent mutants and

infeasible paths,” Softw. Testing, Verification, Reliability, vol. 7, pp. 165—

192, 1997.

[120] A. J. Offutt, G. Rothermel, and C. Zapf, “An experimental evaluation of

selective mutation,” in Proc. 15th Int. Conf. Softw. Eng., Baltimore, MD,

1993, pp. 100–107.

[121] A. J. Offutt and R. H. Untch, “Mutation 2000: Uniting the orthogonal,” in

Mutation Testing for the New Century, W. E. Wong, Ed. Norwell, MA:

Kluwer Academic Publishers, 2001, pp. 34–44.

[122] A. J. Offutt and J. M. Voas, “Subsumption of condition coverage tech-

niques by mutation testing,” Dept. Inf. Software Syst. Eng., George Mason

University, Tech. Rep., 1996.

[123] Oracle. (2011) JavaTM platform, standard edition 7 api specification.

[Online]. Available: http://docs.oracle.com/javase/7/docs/api/

154

http://docs.oracle.com/javase/7/docs/api/

BIBLIOGRAPHY

[124] Oracle. (2013) Java bug database. [Online]. Available: http://bugs.sun.com

[125] M. Oriol and S. Tassis, “Testing .NET code with YETI,” in Proc. 15th Int.

Conf. Eng. Complex Comput. Syst., 2010, pp. 264–265.

[126] C. Pacheco, S. Lahiri, and T. Ball, “Finding errors in .NET with feedback-

directed random testing,” Microsoft Research, Tech. Rep. MSR-TR-2008-

29, 2008.

[127] M. R. Paige, “Program graphs, an algebra, and their implication for pro-

gramming,” IEEE Trans. Softw. Eng., vol. SE-1, no. 3, pp. 286–291, 1975.

[128] M. Papadakis and N. Malevris, “Automatic mutation test case generation

via dynamic symbolic execution,” in Proc. 19th Int. Symp. Softw. Testing

Analysis, Trento, Italy, 2010, pp. 121–130.

[129] M. Papadakis and N. Malevris, “Searching and generating test inputs for

mutation testing,” SpringerPlus, vol. 2, no. 121, 2013.

[130] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-data generation using

genetic algorithms,” Softw. Testing Verification, Reliability, vol. 9, no. 4,

pp. 263–282, 1999.

[131] S. Poulding and J. A. Clark, “Efficient software verification: statistical

testing using automated search,” IEEE Trans. Software Eng., vol. 36, no. 6,

pp. 763–777, 2010.

[132] S. Poulding, J. A. Clark, R. Alexander, and M. Hadley, “The optimisation

of stochastic grammars to enable cost-effective probabilistic structural test-

ing,” in Proc. 15th Annu. Conf. Genetic Evolutionary Computation, 2013,

pp. 1477–1484.

[133] C. S. Păsăreanu and N. Rungta, “Symbolic pathfinder: symbolic execu-

tion of Java bytecode,” in Proc. 25th Int. Conf. Automated Softw. Eng.,

Antwerp, Belgium, 2010, pp. 179–180.

[134] P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler, “Floating search methods

for feature selection with nonmonotonic criterion functions,” in Proc. 12th

Int. Conf. Pattern Recognition, 1994, pp. 279–283.

155

http://bugs.sun.com

BIBLIOGRAPHY

[135] C. V. Ramamoorthy, S. F. Ho, and W. T. Chen, “On the automated gen-

eration of program test data,” in Proc. 2nd Int. Conf. Softw. Eng., San

Francisco, CA, 1976, p. 636.

[136] S. Rapps and E. J. Weyuker, “Selecting software test data using data flow

information,” IEEE Trans. Softw. Eng., vol. 11, no. 4, pp. 367–375, 1985.

[137] G. Redelinghuys, “Symbolic string execution,” Master’s thesis, Dept.

Comp. Sci., Stellenbosch Univ., Matieland, South Africa, 2012.

[138] S. C. Reid, “An empirical analysis of equivalence partitioning, boundary

value analysis and random testing,” in Proc. 4th Int. Symp. Softw. Metrics,

Albuquerque, NM, 1997, pp. 64–73.

[139] D. Schmidt and B. Steffen, “Program analysis as model checking of abstract

interpretations,” Lecture Notes in Comp. Sci., vol. 1503, pp. 351–380, 1998.

[140] D. Schuler and A. Zeller, “(Un-)Covering equivalent mutants,” in Proc.

Int. Conf. Softw. Testing, Verification, Validation, Paris, France, 2010, pp.

45–54.

[141] H.-P. Schwefel, Evolution and optimum seeking. New York, NY: Wiley,

1995.

[142] R. M. Stallman, Using the GNU Compiler Collection. Boston, MA: GNU

Press, 2008.

[143] T. Strutz, Data Fitting and Uncertainty. Wiesbaden: Springer, 2010.

[144] Sun Microsystems. (2008, August) Java compatability kit 6b user’s guide.

[145] P. Thévenod-Fosse and H. Waeselynck, “STATEMATE applied to statis-

tical software testing,” in Proc. 8th Int. Symp. Softw. Testing Analysis,

Cambridge, MA, 1993, pp. 99–109.

[146] N. Tillmann and W. Schulte, “Unit tests reloaded: Parameterized unit

testing with symbolic execution,” IEEE Software, vol. 23, no. 4, pp. 38–47,

2006.

156

BIBLIOGRAPHY

[147] M. P. Usaola, P. R. Mateo, and B. P. Lamancha, “Reduction of test suites

using mutation,” in Proc. 15th Int. Conf. Fundamental Approaches Softw.

Eng., 2012, pp. 425–438.

[148] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model checking

programs,” J. Aut. Softw. Eng., vol. 10, no. 2, pp. 3–12, 2003.

[149] J. M. Voas and G. McGraw, Software Fault Injection: Inoculating Programs

Against Errors. New York, NY: Wiley, 1998.

[150] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment

for automatic structural testing,” Inform. Softw. Technology, vol. 43, no. 14,

pp. 841–854, 2001.

[151] T. Weise, Global Optimization Algorithms - Theory and Application, 2009.

[Online]. Available: http://www.itweise.de/projects/book.pdf

[152] E. Weyuker, “On testing non-testable programs,” Comput. J., vol. 25, no. 4,

pp. 465–470, 1982.

[153] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies,” IEEE

Trans. Softw. Eng., vol. 17, no. 7, pp. 703–711, 1991.

[154] L. J. White and E. I. Cohen, “A domain strategy for computer program

testing,” IEEE Trans. Softw. Eng., vol. SE-6, no. 3, pp. 247–257, 1980.

[155] J. A. Whittaker and M. G. Thomason, “A markov chain model for statistical

software testing,” IEEE Trans. Softw. Eng., vol. 20, no. 10, 1994.

[156] W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing: an

empirical study,” J. Syst. Software, vol. 31, no. 3, pp. 185–196, 1995.

[157] M. Ying, “Bisimulation indexes and their applications,” Theoretical Comp.

Sci., vol. 275, no. 1-2, pp. 1–68, 2002.

[158] S. Yoo and M. Harman, “Regression testing minimisation, selection and

prioritisation: a survey,” Softw, Testing, Verification, Reliability, vol. 22,

no. 2, pp. 67–120, 2012.

157

http://www.itweise.de/projects/book.pdf

BIBLIOGRAPHY

[159] L. Zhang, T. Xie, L. Zhang, N. Tillmann, J. de Halleux, and H. Mei, “Test

generation via dynamic symbolic execution for mutation testing,” in Proc.

26th Int. Conf. Softw. Maintenance, Timişoara, Romania, 2010, pp. 1–10.

[160] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit test coverage and

adequacy,” ACM Computing Survey, vol. 29, no. 4, pp. 366–427, 1997.

158

	0 Front Matter
	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	Declaration

	1 Introduction
	1.1 Software Testing
	1.2 Mutation Analysis
	1.3 The Problem Addressed by this Thesis
	1.4 Aims and Objectives
	1.5 Thesis Structure

	2 Literature Review
	2.1 Mutation Analysis vs. Structural Criteria
	2.1.1 Control-Flow Criteria
	2.1.2 Data-Flow Criteria
	2.1.3 Summary

	2.2 Solutions for Overcoming the Limitations of Mutation Analysis
	2.2.1 Equivalent Mutants
	2.2.1.1 Detecting Equivalent Mutants by Hand
	2.2.1.2 Detecting Equivalent Mutants Automatically
	2.2.1.3 Detecting Equivalent Mutants Indirectly
	2.2.1.4 Preventing Equivalent Mutants

	2.2.2 Too Many Mutants
	2.2.2.1 Mutant Sampling
	2.2.2.2 Mutant Clustering
	2.2.2.3 Selective Mutation

	2.2.3 Unrealistic Mutants
	2.2.3.1 Higher-Order Mutants
	2.2.3.2 Semantic Mutants

	2.2.4 Difficult to Kill Mutants
	2.2.4.1 Symbolic Execution
	2.2.4.2 Dynamic Symbolic Execution
	2.2.4.3 Search-Based Test Data Generation

	2.3 Improvements upon Random Testing
	2.3.1 Random Testing
	2.3.2 Adaptive Random Testing
	2.3.3 Partition Testing
	2.3.4 Partition and Adaptive Random Testing
	2.3.5 Testing in High Dimensionality
	2.3.6 Statistical Testing

	2.4 Static Analysis
	2.4.1 Code Scans
	2.4.2 Abstract Interpretation
	2.4.3 Summary

	3 Evolving Subdomains for Mutation Adequacy
	3.1 Introduction
	3.2 Subdomain Optimisation
	3.3 Experiments
	3.4 Methodology
	3.4.1 Methodology for RQ1
	3.4.2 Methodology for RQ2
	3.4.3 Methodology for RQ3
	3.4.4 MuJava: Mutation Tool
	3.4.5 Equivalent Mutants
	3.4.6 Random sampling
	3.4.7 Test Subject Programs

	3.5 Results and Analysis
	3.5.1 Results for RQ1
	3.5.2 Results for RQ2
	3.5.3 Results for RQ3

	3.6 Summary

	4 Efficient Sets of Subdomains for Mutation Adequacy
	4.1 Introduction
	4.2 Optimising Multiple Sets of Subdomains
	4.2.1 Covariance Matrix Adaptation Evolution Strategy
	4.2.2 Fitness Function for Evolving Sets of Subdomains
	4.2.3 Subdomain Representation
	4.2.4 The Core Optimisation Algorithm
	4.2.5 Program Stretching
	4.2.6 Experiments
	4.2.6.1 Methodology for RQ4
	4.2.6.2 Methodology for RQ5
	4.2.6.3 Test Subject Programs

	4.2.7 Results
	4.2.7.1 Results for RQ4
	4.2.7.2 Results for RQ5

	4.3 Subdomain Set Selection
	4.3.1 Sequential Floating Forward Selection
	4.3.2 Subdomain Set Selection Using SFFS
	4.3.3 Experiments for RQ6
	4.3.4 Results for RQ6

	4.4 Summary

	5 Mutant Evaluation by Static Semantic Interpretation
	5.1 Introduction
	5.2 Difference-Based Interpretation
	5.2.1 Mutant Semantics
	5.2.2 Symbolic Execution
	5.2.3 Semantic Interpretation
	5.2.4 Experiments for RQ7
	5.2.4.1 Test Subject Programs
	5.2.4.2 JPF-Symbc: Symbolic Execution Tool

	5.2.5 Results for RQ7

	5.3 Probability-Based Interpretation
	5.3.1 Boolean Expressions
	5.3.2 Bit Vectors
	5.3.3 Numerical Expressions
	5.3.4 String Operations
	5.3.5 Objects
	5.3.6 Control Flow Probability
	5.3.7 Example
	5.3.8 Experiments for RQ8
	5.3.9 Test Subject Programs
	5.3.10 Results for RQ8
	5.3.11 Results for RQ9

	5.4 Summary

	6 Conclusions
	6.1 Summary of Achievements
	6.2 Limitations of my Research
	6.3 Future Work
	6.3.1 Optimising Distributions for Entire Input Domain
	6.3.2 Static Analysis Heuristic for Mutant Propagation
	6.3.3 Distribution-based Semantic Interpretation

	A Mutation Operators
	A.1 Mutation Operators used by MuJava
	A.2 Mutation Operators used by Mothra

	B Experimental Data
	B.1 Random Seeds (one for each trial)
	B.2 K-means Clustering for SVD Subdomains

	Bibliography

