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Abstract

The density matrix of a qudit may be reconstructed with optimal e¢ ciency if the expectation

values of a speci�c set of observables are known. The required observables only exist if it is

possible to identify d mutually unbiased (MU) complex (d � d) Hadamard matrices, de�ning a

complete set of d+ 1 MU bases.

This thesis is an exploration of sets of r � d+ 1 MU bases in low dimensions. We derive all

inequivalent sets of MU bases in dimensions two to �ve con�rming that in these dimensions, the

complete sets of (d+ 1) MU bases are unique. In dimension six, we prescribe a �rst Hadamard

matrix and construct all others mutually unbiased to it, using algebraic computations performed

by a computer program. We repeat this calculation many times, sampling all known complex

Hadamard matrices, and never �nd more than two that are mutually unbiased. We also study

subsets of a complete set of MU bases by considering sets of pure states which satisfy the desired

properties. We use this concept to provide the strongest numerical evidence so far that no seven

MU bases exist in dimension six.

In the �nal part of the thesis, we introduce a new quantum key distribution protocol that

uses d-level quantum systems to encode an alphabet with c letters. It has the property that

the error rate introduced by an intercept-and-resend attack is higher than the BB84 or six-state

protocols when the legitimate parties use a complete set of MU bases.
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Preface

Two quantum tests are called complementary when the outcomes of one test reveal no information

about the outcome of the other test. Mathematically, this concept is captured by the notion of

mutually unbiased bases. Two complementary quantum tests are described by a pair of mutually

unbiased (MU) bases. In recent years, the construction of sets of two or more MU bases has

been an active topic of research. Perhaps because the problem appears so innocent to state, the

challenge of �nding a complete set of d + 1 MU bases in any dimension, d, has fascinated me

and many other mathematicians and physicists. That is not to say that the problem is purely

mathematical: it relates to some of the fundamental aspects of quantum mechanics. A complete

set of MU bases enables one to determine an unknown quantum state with optimal e¢ ciency

and allows two parties to implement a quantum key distribution protocol that is sensitive to

eavesdropping.

For prime-power dimensions there are several ingenious methods to construct a complete set

of MU bases making use of, for example, �nite �elds, the Heisenberg-Weyl group, generalised

angular momentum operators, and identities from number theory. However, even for the smallest

composite dimension d = 6, the existence of such a set remains an open problem. It is unknown

for a qubit-qutrit system whether there exists a set of observables that would realise optimal state

tomography. This distinction between composite and prime-power dimensions poses a potentially
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deep question about the structure of quantum systems. For example, one would expect that the

kinematics of systems of dimension d = 2 � 3 to be structurally similar to those of dimension

d = 3� 3. The notion of mutually unbiased bases appears to invalidate that expectation.

I begin Chapter 1 with a detailed account of MU bases and their role in quantum mechanics.

Emphasis is given to the two main applications of sets of MU bases since they motivate the claim

that complementary quantum tests are special in the formalism of quantum mechanics. Chapter

1 ends with a review of the current state of research on MU bases and explains how my work �ts

into this setting. There are many approaches to this problem and although I have not attempted

to include them all, I hope to have summarised the main results.

Sets of MU bases are intimately linked to complex Hadamard matrices. Any set of r + 1

MU bases can be written in a standard form consisting of r complex Hadamard matrices and the

identity matrix, I. The main thrust of this thesis is provided by a simple idea: given a Hadamard

matrix, H, one can construct sets of MU bases by extending the pair of bases fI;Hg to a larger

set of MU bases fI;H;K; : : :g:

All complex Hadamard matrices in dimensions two to �ve are known. In Chapter 2, I make

use this fact to derive all inequivalent sets of MU bases in low dimensions. This classi�cation

leads to some interesting conclusions such as the fact that a complete set of d + 1 MU bases is

unique in dimensions below six. In dimension six, the landscape of complex Hadamard matrices

is far more complicated and the classi�cation of all Hadamards is incomplete. However, we can

still ask if any known Hadamard matrix can be part of a complete set of MU bases in dimension

six? The results presented in Chapter 3 suggest that the answer to this question is likely to

be negative. That is, in order to construct a complete set of MU bases in dimension six, it is

probable that we must �nd six new complex Hadamard matrices.

In Chapters 4 and 5 I try to address the global nature of the problem. First, in Chapter 4,

by numerical means where we search for subsets of MU bases. I feel that this numerical evidence

makes it highly unlikely that a complete set of MU bases exist in dimension six. Then in Chapter

5, I explore three algorithms that could provide a no-go theorem in dimension six if they were

successfully implemented. Unfortunately, the computational di¢ culty of these methods means

that, for now at least, the existence of seven MU bases in dimension six remains an open problem.
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I was �rst attracted to the �eld of Quantum Information by the applications such as quan-

tum computation and quantum cryptography which perform tasks using quantum systems. In

particular, the beautifully simple idea of Bennett and Brassard (now called the BB84 protocol),

allows two parties to share a key in such a way that an eavesdropper can be detected. Hence

I was very pleased to come across a new quantum key distribution protocol which is presented

in Chapter 6. It �ts nicely into the thesis because the protocol is optimal when the legitimate

parties use a complete set of mutually unbiased bases.
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CHAPTER 1

Introduction and background

The mathematical formalism of �nite-dimensional quantum systems is surprisingly rich. In re-

cent years, this setting has led to many important discoveries such as the no-cloning theorem

[151], quantum teleportation [19], dense coding [20], quantum computing [50] and quantum cryp-

tography [17, 148]. These examples are interesting from a foundational perspective because they

explore the nature of quantum systems and the di¤erence between quantum and classical me-

chanics. Many of these applications at the intersection of quantum mechanics and information

theory also have the potential to be enormously useful.

Two-dimensional quantum systems are often called qubits in analogy to bits, their classical

counterparts in computer science. As with classical bits, qubits have the property that the

outcomes of any measurement are either zero or one. What makes qubits di¤erent is that

quantum mechanics allows the existence of a superposition of the states labelled by 0 and 1.

Systems consisting of many qubits can be used as the computational register for a quantum

computer. The ability to realise such systems and perform certain operations on the qubits would

allow one to implement a quantum algorithm. A particularly important quantum algorithm was

provided by Shor in 1995 [134]. Shor�s algorithm factorises an integer, N , into the product of

primes in polynomial time; the number of operations in the algorithm is bounded by a polynomial

1
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in the number of digits in N . Since there is no known classical algorithm that can achieve this,

quantum mechanics appears to o¤er an exponential speed-up for this computational task.

There are many di¢ culties involved in realising a quantum computer in practice despite

the considerable e¤orts reviewed in [113]. The preparation of a quantum register that remains

coherent throughout the computation is very hard. The necessity of adding additional qubits in

order to perform quantum error correction means that it is unlikely that a quantum computer

will outperform a classical computer in the near future.

An application of quantum mechanics for discrete systems that is closer to wholesale real-

ization is quantum cryptography. This beautifully simple idea is perhaps the �rst application of

quantum mechanics at a microscopic level that has a commercial potential (see [70] for a review

of the state of the art). A quantum key distribution protocol allows two parties to generate a

shared key. In an ideal experiment, the properties of quantum systems mean that the legitimate

parties can be certain that any eavesdropper has no knowledge of the key. This is in stark con-

trast to classical methods of distributing a key in which the security of the protocol is based on

the computational di¢ culty of solving certain mathematical problems. The security of classical

key distribution protocols is therefore conditional on a lack of future mathematical and com-

putational advances. We will return to this subject later in this chapter: the key point is that

by examining the mathematical setting of quantum mechanics, it is possible to �nd applications

that go beyond classical results.

We begin with a property of quantum measurements found in any good text book on quantum

mechanics [115]. The outcomes of a non-degenerate measurement of a discrete quantum system

are described by an orthogonal basis B = fj 1i; : : : ; j dig of the complex linear space Cd. There

are many other sets of vectors that span Cd but quantum mechanics uses orthogonal vectors. We

will be interested in the properties of one basis relative to another. In Section 1.1, we will argue

that quantum mechanics prefers sets of bases which have a certain orthogonality property.

The space of density operators is a vector space provided we choose the origin to be the

totally mixed state, 1dI �
1
d

Pd
j=1 jjihjj. In this setting, a basis of Cd de�nes a d� 1 dimensional

hyperplane spanned by the projectors j jih j j; j = 1 : : : d. If two such hyperplanes are totally

orthogonal we call the corresponding bases mutually unbiased (MU). Writing this condition in
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terms of the basis vectors leads to the usual de�nition of MU bases [16]: two orthonormal bases

B0 = fj 0j i; j = 1 : : : dg and B1 = fj 1j i; j = 1 : : : dg of Cd are mutually unbiased if the modulus

of the inner product of vectors from di¤erent bases is uniform,

jh 0i j 1j ij =
1p
d
; for all i; j = 1 : : : d: (1.1)

For example, in dimension d = 2, the bases de�ned by

B0 = fj0i; j1ig and B1 =
�
1p
2
(j0i+ j1i) ; 1p

2
(j0i � j1i)

�
; (1.2)

are mutually unbiased.

Mutually unbiased (MU) bases are not purely a mathematical construct; they have a direct

physical interpretation. The observables that correspond to two MU bases are complementary.

A measurement of one of the observables reveals no information about the outcomes of the other.

Following a measurement of observable O1, the outcomes of a complementary observable, O2;

are all equally likely. For example, measuring the polarization of a photon in the vertical versus

horizontal linear directions, reveals no information about the polarization in either the �45�

diagonal or circular polarizations. These three measurements are described by the three Pauli

operators �x; �y and �z and have the property that the eigenstates of the operators form a set

of MU bases. A natural question is to ask how many MU bases are there for quantum systems

of arbitrary dimensions? We would like to understand the mathematical structure of quantum

systems comprising of n qubits, d = 2n, or more generally n qudits, d = d1 : : : dn, with possibly

di¤erent dimensions d1; : : : ; dn.

Each basis in the space Cd consists of d orthogonal unit vectors which, collectively, will be

thought of as a unitary d�d matrix. Two (or more) MU bases thus correspond to two (or more)

unitary matrices, one of which can always be mapped to the identity, I; acting on the space

Cd, using an overall unitary transformation. It then follows from the conditions (1.1) that the

remaining unitary matrices must be complex Hadamard matrices: the moduli of all their matrix

elements equal 1=
p
d.
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A complete set of MU bases consists of d complex Hadamard matrices that are pair-wise

mutually unbiased plus the standard basis, I. For example, in dimension d = 3, the four bases

B0 '

0BBBB@
1 0 0

0 1 0

0 0 1

1CCCCA B1 ' 1p
3

0BBBB@
1 1 1

1 ! !2

1 !2 !

1CCCCA

B2 ' 1p
3

0BBBB@
1 1 1

!2 1 !

!2 ! 1

1CCCCA B3 ' 1p
3

0BBBB@
1 1 1

! !2 1

! 1 !2

1CCCCA (1.3)

where ! = e2�i=3 is a third root of unity, constitute a complete set of MU bases. Here, the

columns of the matrix Bx correspond to the vectors j xi i; i = 1 : : : d of each basis.

It is not possible to �nd more than d + 1, totally orthogonal d � 1 dimensional hyperplanes

in the space of density matrix since it has dimension d2� 1. Hence in any dimension a complete

set contains the maximum number of MU bases [16]. Interestingly, given any set, S, of d MU

bases, it is always possible to construct an additional basis. The additional basis is given by the

orthogonal complement of the d hyperplanes corresponding to the elements of S. It has been

shown that a basis constructed in this way is indeed a basis of d orthogonal vectors MU to each

basis in S [147].

Here is the catch: as of today, complete sets of MU bases have been constructed only in

spaces Cd of prime or prime-power dimension. If the dimension is a composite number, d =

6; 10; 12; : : :, the existence of a complete set of MU bases in Cd has neither been proved nor

disproved. Addressing this problem has led mathematicians and physicists to consider interesting

connections between physics and mathematical structures. For example, constructing a complete

set of MU bases in Cd is equivalent to �nding an orthogonal decomposition of the Lie algebra

sld(C) [27]. This poses a long-standing open problem whenever d is not a power of a prime [93].

Sets of mutually unbiased bases are the primary subject of this thesis. In the next section

we will give two important applications of MU bases that serve to motivate the claim that they
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are �special� in the framework of quantum mechanics. We will explore the classi�cation of all

possible sets of MU bases for quantum systems of dimensions two to �ve. In dimension six, we

�nd that such a classi�cation is highly non-trivial and will address the open problem concerning

the existence of seven MU bases. In the �nal part of the thesis, we will further explore the

mathematical setting of quantum mechanics for discrete systems to �nd a new way of generating

a shared key. An analysis of this new protocol reveals that it is more sensitive to an attack by a

third party when the legitimate parties use a complete set of MU bases.

1.1 Using mutually unbiased bases

In this section, we present two applications which serve to demonstrate the role mutually unbiased

bases play in quantum mechanical systems. The intuition is that MU bases are useful for �nding

and hiding quantum information. First we will show that a complete set of d+ 1 MU bases are

optimal in quantum state tomography; they minimise the statistical uncertainty of the estimated

density matrix. Second, we will see that sets of MU bases can be used to hide information from

an eavesdropper during a quantum key distribution protocol. An amusing additional application

of MU bases is in the so called Mean King�s problem where a stranded physicist must escape a

king by correctly guessing the outcome of a quantum measurement [6, 59, 144].

1.1.1 Optimal state determination

Pairs of MU bases represent measurements that were called �maximally non-commuting� by

Schwinger [130]: a measurement in one of the bases reveals no information about the outcome

of measurements in the other basis. Ivanovíc [83] was the �rst to realise that a set of d+1 bases

that are all pair-wise mutually unbiased could be applied to quantum state reconstruction.

Suppose there is a source producing identical copies of some unknown quantum state described

by a density matrix, �. Since � is a d�d Hermitian matrix with Tr � = 1, we must determine d2�1

real variables [63]. A non-degenerate projective measurement yields d probabilities which sum to

one so that each measurement performed on a sub-ensemble of states can be used to determine

d � 1 variables. A quick calculation reveals that we require at least (d2 � 1)=(d � 1) = d + 1
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projective measurements.

Ivanovíc demonstrated that d+1MU bases are also su¢ cient to determine any density matrix

[83]. For example, in dimension two, any density matrix may be expressed as

� =
1

d
I + r � �; (1.4)

where r is a vector in the 3-sphere of radius one (called the Bloch ball) and � = (�x; �y; �z)T is

a vector of the Pauli matrices �x; �y and �z: By performing measurements corresponding to the

three Pauli matrices on multiple copies of �, we are able to determine the vector r up to some

statistical accuracy. Therefore this set of 2 + 1 bases, whose eigenvectors form a complete set of

MU bases, are su¢ cient to estimate any 2� 2 density matrix �.

Eq. (1.4) also demonstrates that there are many other possible choices for an informationally

complete set of measurements. In fact, any set of three bases can replace the Pauli operators �,

provided their corresponding vectors in the Bloch ball are not coplanar. The key step forward

in understanding the power of MU bases in state tomography was provided by Wootters and

Fields. They showed that a complete set of MU bases are the optimal choice of measurement

settings in any dimension because they minimise the statistical uncertainty of the estimated

state [150]. Intuitively, this can be seen as follows. Any �nite set of measurement outcomes

always results in some statistical uncertainty; there is some imprecision in determining the d

probabilities corresponding to each measurement. Hence we should visualise each measurement

not as a de�nite d�dimensional hyperplane but as some �pancake�with volume de�ned by the

uncertainty in the measurement outcomes. The precision in the re-constructed state is then

described by the overlap of the �pancakes�corresponding to each measurement. Wootters and

Fields proved that in order to minimise this overlap we must perform d+ 1 measurements that

correspond to orthogonal hyperplanes, i.e. a complete set of MU bases [150].

1.1.2 Quantum key distribution

By sharing a random string of numbers, two parties can encrypt a message in such a way that it

appears completely random to an eavesdropper. The �one-time pad�is an unbreakable method
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of encryption provided the string is truly random and only used once [131]. The problem comes

in having su¢ ciently many strings, called keys, with which to encrypt all messages you wish to

send. This is called the key distribution problem.

By allowing the security of the key distribution protocol to be computationally impossible

rather than unconditional, several ingenious methods to distribute keys have been developed.

Assuming that an eavesdropper does not posses an in�nitely large computer, cryptographic

systems can make use of mathematical problems that are very hard to solve. For example,

there is no known e¢ cient algorithm to factorize large integers into a product of primes (used in

the Rivest-Shamir-Adleman algorithm [121]) or to compute the discrete logarithm (used in the

Di¤e-Hellman-Merkle key exchange [52, 77]). However, solving these problems is only di¢ cult,

not impossible, so that the security of such public key protocols relies on the lack of future

developments in mathematics and technology.

In 1970, Wiesner proposed a totally new approach to cryptography [148] that was developed

by Bennet and Brassard: they presented a key distribution protocol [17], now known as BB84,

that uses properties of quantum systems to ensure its security. This protocol allows two parties,

Alice and Bob, to distribute a key such that anyone who attempts to listen in on the quantum

signals can, in theory, be detected. The eavesdropper, Eve, is constrained by the physical laws

of quantum mechanics. She cannot perform a measurement without introducing a disturbance

(Heisenberg�s uncertainty principle), copy states (no cloning) or split the signal, since it consists

of single photons or particles. Other protocols such as Ekert�s [57] use entangled particles in

such a way that Eve essentially introduces hidden variables destroying the quantum correlations.

It is possible to prove that these quantum key distribution (QKD) protocols are secure against

all future technological and mathematical advances [106, 135]. Except possibly a new theory of

physics that allows operations beyond quantum mechanics (cf. Popescu-Rohrlich boxes [118]).

The original BB84 protocol and its subsequent generalisation to d-dimensional systems exploit

the complementarity of MU bases in order to ensure their security. By de�ning a protocol that

uses any bases, Phoenix argues that the MU bases used in the original BB84 are the best choice

of bases for the legitimate parties to detect an eavesdropper [117]. In other words, MU bases

are optimal for this quantum key distribution protocol. In Chapter 6, we will formulate a new
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protocol that allows Alice and Bob to use d-level quantum systems in order to generate a key

with elements taken from an alphabet containing c letters. By considering a suitable measure of

distance between the bases used by all three parties, we will see that, again, d+ 1 MU bases are

optimal in a well de�ned sense.

1.2 Existing results and overview

In this section, we review what is known about mutually unbiased bases in Cd and explain how

the results included in this thesis �t into this background. Roughly speaking, the results about

sets of MU bases fall in to one of four groups. First, there are e¤orts to construct sets of r MU

bases in particular dimensions such as a prime-power or square dimensions. The second type of

result concerns ruling out sets of MU bases that have a certain form; for example, it has been

shown that a complete set of MU bases cannot be constructed in dimension six using 12th roots of

unity alone. Next, there are numerical results which search for a set of MU bases such as four MU

bases in dimension six, where none have been found analytically. Finally, there are algorithmic

methods of of �nding or proving the non-existence of a complete set of MU bases. They work

in theory but as yet have been unsuccessful in practice due to the computational complexity of

the algorithm. Under these broad headings, we now summarise existing results and explain how

each of the four Chapters 2-5 adds an extra piece of the puzzle to this long-standing problem.

We have not attempted to provide an exhaustive review of all results but hope to have included

the main contributions.

1.2.1 Constructing MU bases in particular dimensions

We begin with existing methods of constructing a set of r � d+ 1 mutually unbiased bases. As

noted in the previous discussion, there is no construction which provides a complete set of MU

bases in all dimensions. We �nd that existing constructions are either restricted to dimensions

that take a certain form or do not provide d+ 1 bases.

The �rst construction is due to Ivanovíc [83] and Alltop [3] who independently found that

there exists a complete set of MU bases in prime dimension d = p; for any prime p 6= 2 . A set
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of p+ 1 MU bases consists of the standard basis plus p bases whose matrix elements (which run

from 0 to p� 1) are given by

(Ha)kl =
1
p
p
!al

2+kl (1.5)

where a = 0 : : : p � 1 labels the basis and ! = exp(2�i=p) is a root of unity. Applying this

construction to dimension three gives the set of 4 bases in Eq. (1.3). Note that, by de�ning

the discrete Fourier matrix, F , whose elements are given by Fkl = 1p
d
!kl; there is a neat way of

writing this formula that will be useful later. The complete set of MU bases given by Eq. (1.5)

can be written in matrix form as [62]

fI; F;DF;D2F; : : :Dp�1Fg;

where the diagonal matrix D that pre-multiplies F has non-zero entries !l
2
; for l = 0 : : : p� 1:

Using the theory of �nite �elds, Wootters and Fields extended the construction of Ivanovíc

and Alltop to all dimensions that are a power of an odd prime, d = pn [150]. Their construction

essentially uses the same formulae as Eq. (1.5) but the expression al2 + kl is replaced by its

number theoretic generalisation, Tr(al2+kl): Here, we use the �eld theory trace (see for example

[100]) and the indices, a, k and l take values from a �eld with pn elements. An important addition

is that Wootters and Fields also give a construction for n qubits, that is, for dimensions that are

a power of two, d = 2n. A complete set of MU bases for systems consisting of multiple qubits is

very useful as it allows for typical applications in quantum information. Interestingly, the set of

d+1 MU bases constructed by Wootters and Fields can also be expressed in terms of characters

of the cyclic group, G of order p [45].

An alternative construction for prime powers pn � 5 is obtained by replacing the polynomial

al2+kl; the exponent of ! in Eq. (1.5), by Tr((l+a)3+k(l+a)) [89]. Klappenecker and Roetteler

also found that the formula Tr((a + 2k)l) where a; k and l are now elements of a subset of the

Galois ring called a Teichmüller set, gives a complete set of MU bases in dimensions that are a

power of two [89].

Bandyopadhyay et al. [9] provide an alternative proof that a complete set of MU bases exists
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in all prime-power dimensions. They construct sets of MU bases from the eigenvectors of special

unitary operators. In fact, Schwinger noted that the eigenvectors of the operators Z and X;

de�ned by the actions Zjji = !j jji and Xjji = jj + 1i; are mutually unbiased [130]. In prime

dimensions d = p, this set of two MU bases can be extended to a complete set of p + 1 bases

given by the eigenvectors of the generalised Pauli matrices [9]

n
Z;X;XZ; : : : ;XZd�1

o
:

The resulting set of bases is equal to the construction of Ivanovíc given in Eq. (1.5). In prime-

power dimensions d = pn, this approach also yields a complete set of MU bases. The operators

are now elements of the Pauli group that act on the n-fold tensor product space Cp
Cp
� � �
Cp:

More explicitly, they have the form

!jX(�)Z(�); (1.6)

where j = 0 : : : p � 1; the �eld elements � = (�1; : : : ; �n); � = (�1; : : : ; �n) 2 Fpn and the

operators labeled by � and � are given by X(�) = X�1 
� � �
X�n and Z(�) = Z�1 
� � �
Z�n :

The condition for the eigenvectors of elements of this group to form a complete set of MU

bases is expressed in terms of � and � and leads to a direct representation of the corresponding

complementary observables [9].

Durt has found a simple expression of the group elements (1.6) in terms of the additive

characters of a �eld [55]. This allows one to relate multiplication of the MU bases to composition

of group elements and construct the same complete set of MU bases in prime-power dimensions.

The group SU(2) can also be used to construct a complete set of MU bases in prime-power

dimensions [88]. Again, the bases vectors are eigenvectors of a set of operators but in this

approach the operators come from the theory of angular momentum. The study of subgroups of

U(2) and their connection to MU bases is further developed in [2].

An alternative construction of the d + 1 bases given in Eq. (1.5) in prime dimensions is

provided by Combescure [46]. A complete set of MU bases follows if one is able to �nd a circulant
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matrix, C, such that its powers are also circulant matrices. The bases are given explicitly as

fI; Fd; C; C2; :::; Cd�1g; (1.7)

where Fd is the discrete Fourier matrix and C has the property that it commutes with X and

diagonalises XZ. The approach can also be applied to prime-power dimensions where it recovers

the bases found by Wootters and Fields [47]. Interestingly, various properties of Gauss and

quadratic Weil sums which were used by Wootters and Fields in their construction, follow from

this construction of a complete set of MU bases [46, 47].

We say that a set of n vectors fj 1i; : : : ; j nig in Cd span equiangular lines if jh ij jij =

� for some constant � and all i; j = 1 : : : n. Hence the condition for two orthonormal bases

to be mutually unbiased, Eq. (1.1), is the requirement that vectors from di¤erent bases be

equiangular with � = 1=
p
d. The value of the constant �; is not arbitrary, it is implied by the

relation
Pd
j=1 j jih j j = I: Another physically relevant set of equiangular lines corresponds to a

symmetric informationally complete positive operator value measure (SIC POVM). Such a set of

d2 � 1 lines is as close to being an orthonormal basis for the space of quantum states as possible

and are useful for quantum cryptography [68]. They also naturally appear when representing

quantum states in terms of probabilities for the outcomes of a �xed counterfactual reference

measurement [69].

Constructions of equiangular lines can be used to �nd a complete set of MU bases in prime-

power dimensions [71]. This approach also allows Godsil and Roy [71] to prove that all known

sets of d+1 MU bases in prime-power dimensions are special cases of a construction due to

Calderbank et al. [42].

We have seen that there are several methods of constructing MU bases in dimensions of the

form d = pn but what can be said about composite dimensions d = 6; 10; 12; : : :? The �rst

point is that we can always reduce the dimension to its prime-power constituents. We can write

d = pn11 p
n2
2 : : : pnrr and use the prime-power construction to form pnii + 1 bases for each of the
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subsystems. Then by forming the tensor product of these bases we can construct

min(pn11 ; : : : ; p
nr
r ) + 1 (1.8)

MU bases in any dimension [89].

At this point, one might have the feeling that all constructions essentially involve the prime-

power decomposition of the dimension. However, this is not the case: in some square dimensions,

d = s2, one can do better than Eq. (1.8) [149]. For example, if d = 22� 132, a total of 6 > 22+1

MU bases have been identi�ed. The construction used by Wocjan and Beth di¤ers from the

prime-power constructions since it links sets of MU bases to orthogonal Latin squares [22, 23].

In addition, whilst Eq. (1.8) implies that there are at least three MU bases in all dimensions,

it is also possible to construct three MU bases in Cd without reference to the value of d. The

eigenvectors of the operators X, Z and XZk; where gcd(k; d) = 1 form a set of three MU bases

in any dimension d [72].

In Chapter 2 we will provide a new method of constructing MU bases that does not rely on

any dimension dependent results as it uses only planar geometry. Unfortunately, the complexity

of the resulting trigonometric equations means that we can only �nd their solutions in dimensions

two to �ve. This approach has the added bene�t that it exhaustively lists all possible sets of MU

bases; we are thus able to provide a complete classi�cation of all sets of r � d + 1 MU bases in

dimensions d � 5.

1.2.2 MU bases of a speci�c form

The maximum number of MU bases in composite dimensions remains unknown. A natural

approach to this problem is to search for sets of MU bases of a speci�c form. For example, one

might notice that the constructions presented in [83], [150] and [89] are all based on number

theoretic formulae and so search for similar or generalised formulae that work in composite

dimensions. Alternatively, we might spot that all existing constructions of complete sets use

roots of unity and so search through �sensible�choices of other roots of unity to �nd MU bases.

Although none of these approaches have been successful in constructing d + 1 MU bases in
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composite dimensions, one can say that they rule out a subset of all possible MU bases. As

we become more convinced that complete sets in composite dimensions do not exist, we make

the exclusion of MU bases of a certain form the goal that would ultimately lead to a complete

solution to this long-standing problem. Many of the results that follow are directed at the �rst

composite dimension, d = 6.

The constructions of complete sets of MU bases due to Ivanovíc, Wootters and Fields, and

Klappenecker and Roetteler described above all have the form

(Ba)kl =
1
p
p
!f(a;k;l) (1.9)

where ! = exp(2�i=p) is a root of unity and f(a; k; l) is a number theoretic function de�ned over

a �nite �eld or �nite ring. Archer has shown that a natural generalisation of Eq. (1.9) can be

used to construct a complete set of MU bases if and only if d is a power of a prime [7].

Eq. (1.5) and the subsequent generalization to prime-power dimensions by Wootters and

Fields as well as the construction for dimensions of powers of two all have one thing in common:

The components of the vectors are roots of unity. In prime-power dimensions the appropriate

roots are ! = exp(2�i=p) and for dimensions of the form 2n we need to use 4th roots. Therefore,

in dimension 6, it is natural to suppose that a complete set of MU bases can be constructed using

3 � 4 = 12th roots of unity. By exhaustively listing all possible matrices with components that

are 12th roots, Bengtsson et al. [16] prove than no such combinations can form a complete set of

MU bases. They further extend this result by considering all 48th, 60th and 72nd roots of unity

(and some algebraic numbers that appear when considering triples of MU bases in dimension

six). However, none of the resulting plausible matrices form more than three MU bases in C6.

Grassl [72] has shown that only �nitely many vectors exist which are MU with respect to

the eigenvectors of the Pauli operators X and Z in C6. Again, no more than three MU bases

emerge; it is thus impossible to base the construction of a complete set on the Pauli group in

dimension six. The strategy of Chapter 3 will be to generalize Grassl�s approach by removing

the restriction that the second MU basis is related to the Heisenberg-Weyl group. Instead, we

will consider many di¤erent choices for the second MU basis, thoroughly sampling the set of
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candidates in C6. We will �nd that none of the matrices studied can be used to construct a

complete set of MU bases.

Since the publication of [33], Jaming et al. have ruled out complete sets of MU bases that

contain a two parameter extension of the basis related to the Heisenberg-Weyl group [84]. This

was achieved by using an alternative global method. They are able to discretise the space of

possible MU bases by �nding suitable error bounds for two approximate bases to be MU. This

allows one to exhaustively search a discrete set of phases which make up the components of

potentially MU bases.

1.2.3 Numerical searches

We have seen that attempts to �nd a complete set of MU bases in composite dimensions by

analytical methods have so far been unsuccessful. It is possible to cast the existence of sets of

MU bases as a minimization problem. This is done by de�ning a positive function of appropriate

parameters that equals zero if and only if the values of the parameters correspond to a set of MU

bases. Approaching this global minimization problem by numerical means allowed Butterley and

Hall to provide evidence for the non-existence of four MU bases in C6 [38].

In Chapter 4 we will strengthen the evidence of Butterley and Hall by searching for various

MU constellations which correspond to subsets of four MU bases in dimension six. Taking these

negative results together, we argue that this evidence makes the existence of a complete set of

MU bases highly unlikely [32].

The general idea behind this approach is that by performing a search for local minima many

times, we hope to cover the relevant parameter space su¢ ciently so that there is a low proba-

bility of missing the true global minimum. There are established techniques for �nding a global

minimum or at least a global lower bound. The application of these ideas to the existence of a

complete set of MU bases is what we will discuss next.

1.2.4 Analytic solutions

The existence of sets of MU bases in dimension d concerns the global properties of the space Cd.

In Chapter 5, we make this explicit by providing three algorithmic methods which decide if a
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complete set of MU bases exist in dimension d.

First, we express the problem as a system of coupled polynomials and use powerful techniques

from commutative algebra to either �nd a solution or try to prove that none exists. These

equations de�ne an ideal and the construction of a Gröbner bases through Buchberger�s algorithm

simpli�es its representation. If the equations have no solution over the algebraic closure of the

real numbers then the ideal will be empty and Buchberger�s algorithm will prove this. The second

idea is to �nd a global lower bound on any of the functions used in the numerical search. This can

be achieved using semide�nite programming after a suitable transformation of the problem and

if the algorithm were to terminate the dual problem would provide a certi�cate of non-existence.

The �nal approach is inspired by Jaming et al. who discretise the space of all possible bases so

that it is possible to exhaustively check for MU bases.

If these algorithms were to terminate, we would have a proof that a complete set of MU bases

do not exist in dimension six, for example. Unfortunately, these approaches appear to require

a substantial amount of computational resources. We will provide a rough analysis of how they

perform in Chapter 5, but for now at least the number of MU bases in composite dimensions

remains unknown.



CHAPTER 2

All mutually unbiased bases in low dimensions

Traditionally, a Hadamard matrix H in dimension d is understood to have elements �1 only and

to satisfy the condition HyH = dI, where I is the identity. In the context of MU bases, it is

customary to call H a Hadamard matrix if it is unitary and its matrix elements are of the form

jHij j =
1p
d
; i; j = 0; 1; : : : ; d� 1 : (2.1)

The d vectors formed by the columns of such a matrix provide an orthonormal basis of Cd. Each

of these vectors is mutually unbiased with respect to the standard basis, naturally associated

with the identity matrix I.

Two Hadamard matrices are equivalent to each other, H 0 � H, if one can be obtained from

the other by permutations of its columns and its rows, and by the multiplication of its columns

and rows with individual phase factors. Explicitly, the equivalence relation reads

H 0 =M1HM2 ; (2.2)

where M1 and M2 are monomial matrices, i.e. they are unitary and have only one nonzero

element in each row and column. Consequently, each Hadamard matrix is equivalent to a dephased

16
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Hadamard matrix, the �rst row and column of which have entries 1=
p
d only.

It is possible to list all pairs of MU bases fI;Hg in Cd once all complex Hadamard matrices

are known. Using this observation as a starting point, we will extend the classi�cation from pairs

to sets of r � (d+ 1) MU bases. As complex Hadamard matrices have been classi�ed for d � 5,

we expect to obtain an exhaustive list of sets of r MU bases in these low dimensions.

The task to �nd all MU bases is complicated by the fact that, actually, many sets of apparently

di¤erent MU bases are identical to each other. For the desired classi�cation, it is su¢ cient to

enumerate all dephased sets of (r + 1) MU bases in analogue to dephased Hadamard matrices.

This standard form [141] is given by

fI;H1; : : : ;Hrg ; r 2 f1; : : : ; dg ; (2.3)

where I is the identity in Cd and the other matrices are dephased Hadamard matrices. See Eqs.

(1.3) for an explicit example with d = 3 and Eqs. (2.33) and (2.35) when d = 5. The possibility

of dephasing is based on the notion of equivalence classes for MU bases, explained in more detail

in Appendix A.

The results of this chapter have been arranged as follows. In Section 2.1 we deal with

dimensions two and three. The complete list of sets of MU bases in dimension four is derived in

Section 2.2. Then, all sets of MU bases of C5 are constructed, and in Section 2.4 we summarize

and discuss our results.

2.1 Dimensions d = 2 and d = 3

In this section, we construct all sets of MU bases in dimensions two and three using only planar

geometry. The direct approach to construct all MU bases for d = 4 in Section 2.2 will be based

on similar arguments.
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2.1.1 Dimension d = 2

The matrices consisting of the eigenvectors of the Heisenberg-Weyl operators form a set of three

MU bases in dimension two which are unique up to the equivalences speci�ed in Appendix A.

We present a simple proof of this well-known fact.

Let us begin by noting that there is only one dephased complex Hadamard matrix in d = 2

(up to equivalences) [74], the discrete (2� 2) Fourier matrix

F2 =
1p
2

0B@ 1 1

1 �1

1CA : (2.4)

A vector v 2 C2 is MU to the standard basis I (constructed from the eigenstates of the z-

component of a spin 1=2) if its components have modulus 1=
p
d. Applying the transformation

given in Eq. (A.3), the dephased form of such a a vector reads v = (1; ei�)T =
p
2, with a real

parameter � 2 [0; 2�]. The vector v is MU to the columns of F2 if the phase � satis�es two

conditions, ��1� ei��� = p2 : (2.5)

These equations hold simultaneously only if ei� = �i. Thus, there are only two vectors which

are MU to both I and F2, given by v� = (1;�i)T =
p
2. Since this is a pair of orthogonal vectors,

they form a Hadamard matrix H2 = (v+jv�) and, therefore, the three sets

fIg ; fI; F2g ; fI; F2;H2g (2.6)

represent all (equivalence classes of) one, two, or three MU bases in dimension two.
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2.1.2 Dimension d = 3

In dimension three there is also only one dephased complex Hadamard matrix up to equivalence

[74]. It is given by the (3� 3) discrete Fourier matrix

F3 =
1p
3

0BBBB@
1 1 1

1 ! !2

1 !2 !

1CCCCA ; (2.7)

de�ning ! = e2�i=3 which equals the basis B1 in Eq. (1.3): Again, we search for dephased vectors

v = (1; ei�; ei�)T =
p
3, 0 � �; � � 2� , which are MU with respect to the matrix F3. This leads

to the following three conditions

���1 + ei� + ei���� =
p
3 ;���1 + !ei� + !2ei���� =

p
3 ; (2.8)���1 + !2ei� + !ei���� =

p
3 :

Removing an overall factor of ei�=2; they can be rewritten

���� + cos �
2

��� =

p
3

2
;����� + cos��2 � 2�3

����� =

p
3

2
; (2.9)

where 2� = ei(���=2). By considering a plot in the complex plane, Fig. 2.1, we see that these

three equations hold simultaneously only if two of the cosine terms are equal. This implies

that the only possible values of the parameter � are 0; �=3; or 2�=3, leading to the requirement
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�1=2 = cos�. Consequently, the Eqs. (2.8) have exactly six solutions which give rise to vectors

v1 /

0BBBB@
1

!

!

1CCCCA ; v2 /

0BBBB@
1

!2

1

1CCCCA ; v3 /

0BBBB@
1

1

!2

1CCCCA ;

v4 /

0BBBB@
1

!2

!2

1CCCCA ; v5 /

0BBBB@
1

!

1

1CCCCA ; v6 /

0BBBB@
1

1

!

1CCCCA : (2.10)

Examining their inner products shows that there is only one way to arrange them (after

normalization) into two orthonormal bases, namely H(1)
3 = (v1jv2jv3) and H

(2)
3 = (v4jv5jv6).

Hence, we have obtained the remaining two bases, B2 and B3; from Eq. (1.3). As noted in the

introduction, one can write

H
(1)
3 = DF3 and H

(2)
3 = D2F3 ; (2.11)

where D = diag(1; !; !) is a diagonal unitary matrix with entries identical to the components of

the vector v1, i.e. the �rst column of H
(1)
3 . The triples obtained from adding either H(1)

3 or H(2)
3

to the pair fI; F3g are equivalent,

fI; F3;H(1)
3 g � fD2ID;D2F3; D

2H
(1)
3 g = fI;H(2)

3 ; F3g � fI; F3;H(2)
3 g ;

as follows from �rst applying the unitary D2 globally from the left, rephasing the �rst basis with

D�2 � D, and �nally rearranging the last two bases. We therefore conclude that the sets

fIg ; fI; F3g ; fI; F3;H(1)
3 g ; fI; F3;H(1)

3 ;H
(2)
3 g

constitute a complete classi�cation of all sets of MU bases in dimension d = 3. Therefore, the

set of bases given in Eq. (1.3) is the unique complete set of MU bases in dimension three.
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Figure 2.1: Plot of Eqs. (2.9) in the complex z-plane. The real numbers c1 and c2 each represent
one of the three numbers cos(�=2) and cos(�=2�2�=3); it follows that at least two of these three
expressions must be equal.

2.2 Dimension d = 4

In dimension d = 4, a one-parameter family [74] of complex Hadamard matrices exists,

F4(x) =
1

2

0BBBBBBB@

1 1 1 1

1 1 �1 �1

1 �1 ieix �ieix

1 �1 �ieix ieix

1CCCCCCCA
; x 2 [0; �) : (2.12)

When x = 0, the resulting matrix is equivalent to the discrete Fourier transform F4 on the space

C4, with matrix elements given by !jk; j; k = 0 : : : 3; ! � i. The matrix F4(�=2) is equivalent to

a direct product of the matrix F2 with itself while for other values of x it can be written as a

Hadamard product of F4 with an x-dependent matrix.
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2.2.1 Constructing vectors MU to F4(x)

After dephasing, any vector MU to the standard basis takes the form v = (1; ei�
0
; ei�

0
; ei


0
)T =2

where 0 � �0; �0; 
0 < 2�. For convenience, we will use an enphased variant of v. Multiplying

through by the phase factor e�i�
0=2 and de�ning � = �0=2 2 [0; �], � = �0 � �0=2 2 [0; 2�),

and similarly for 
, we consider the parametrization v = (e�i�; ei�; ei�; ei
)T =2 instead. The

conditions for v(�; �; 
) to be MU to the columns of F4(x) lead to four equations,

��cos�� �+�� = 1 ; (2.13)��sin�� e�ix���� = 1 ; (2.14)

where complex numbers �� = (ei� � ei
)=2 have been introduced. We will now construct all

solutions of these equations as a function of the value of x. We treat the cases (i) � = 0, (ii)

� = �=2, and (iii) � 6= 0; � 6= �=2 separately since the Eqs. (2.13) and (2.14) take di¤erent forms

for these values.

(i): � = 0

Eqs. (2.14) simplify to the pair
���e�ix���� = 1 ; which only hold simultaneously if j��j = 1 or

ei
 = �ei�, implying that �+ = 0 so that Eqs. (2.13) are satis�ed automatically. Thus, solutions

exist for any value of x whenever � = 
 + � (mod 2�), and the resulting vectors can be written

as v(�) =
�
1; 1; ei�;�ei�

�T
=2, with � 2 [0; 2�). It will be convenient to divide this family of

states into two sets,

h1(y) =
1

2

0BBBBBBB@

1

1

eiy

�eiy

1CCCCCCCA
; h2(y

0) =
1

2

0BBBBBBB@

1

1

�eiy0

eiy
0

1CCCCCCCA
; 0 � y; y0 < �; (2.15)

introducing y = � and y0 = � + �.
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(ii): � = �=2

Eqs. (2.13) and (2.14) now reverse their roles: the conditions j � �+j = 1 require ei
 = ei�, with

(2.13) being satis�ed since j��j = 1 follows immediately. Hence, there is another one-parameter

family of mutually unbiased vectors for all values of x if � = 
. This family can be written

as v(') =
�
1;�1; ei'; ei'

�T
=2, ' 2 [0; 2�), after dephasing and absorbing a factor of i in the

de�nition of the phase, ' = �=2 + �. Again, we express these solutions as a set of pairs,

h3(z) =
1

2

0BBBBBBB@

1

�1

eiz

eiz

1CCCCCCCA
; h4(z

0) =
1

2

0BBBBBBB@

1

�1

�eiz0

�eiz0

1CCCCCCCA
; 0 � z; z0 < �; (2.16)

where z = ' and z0 = � + '.

(iii) � 6= 0; � 6= �=2

A plot in the complex plane (see Fig. 2.2) reveals that one must have �+ = �i sin� if Eqs. (2.13)

are to hold with cos� 6= 0. Thus, the real part of �+ vanishes,

cos� + cos 
 = 0 (2.17)

with 
 = ��� (mod 2�) being the only acceptable solution: the other solution, 
 = �+mod 2�)

leads to 0 = �+ = �i sin�, producing a contradiction since � 6= 0. Thus, using 
 = � � �

(mod 2�), we obtain �+ = i sin� �nd the following relation between � and �:

� sin� = sin� : (2.18)

Similarly, Eqs. (2.14) for sin� 6= 0 imply that e�ix�� = �i cos�. Using 
 = � � � (mod 2�)

in the de�nition of ��, we �nd �� = cos�, so that

i(� cos�+ sinx cos�) = cosx cos�: (2.19)
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The right-hand-side of this equation only vanishes if x = �=2: both � = �=2 and � = 3�=2

would, according to (2.18), require � = �=2 which we currently exclude. Therefore, solutions to

Eqs. (2.13,2.14) with � 6= 0 or � 6= �=2 only exist for x = �=2 if a second relation between �

and � holds,

� cos� = cos� : (2.20)

The form of the additional MU vectors is determined by Eqs. (2.18) and (2.20) which have

four solutions. First, for � = � we obtain MU vectors of the form (e�i�; ei�; ei�; �eia)T =2 or�
1; e2i�; e2i�;�1

�T
=2 after dephasing. Splitting this family into two subsets as before, we �nd

k1 =
1

2

0BBBBBBB@

1

eit

eit

�1

1CCCCCCCA
; k2 =

1

2

0BBBBBBB@

1

�eit0

�eit0

�1

1CCCCCCCA
; 0 � t; t0 < � : (2.21)

Similarly, the choice � = � + � (mod 2�) leads to two sets of dephased MU vectors,

k3 =
1

2

0BBBBBBB@

1

eiu

�eiu

�1

1CCCCCCCA
; k4 =

1

2

0BBBBBBB@

1

�eiu0

eiu
0

�1

1CCCCCCCA
; 0 � u; u0 < � : (2.22)

Next, when proceeding in an entirely analogous manner for the remaining two choices � = ���

(mod 2�) and � = 2� � � (mod 2�), we obtain the following four families of dephased vectors

MU to F4(�=2),

j1 =
1

2

0BBBBBBB@

1

eir

�1

eir

1CCCCCCCA
; j2 =

1

2

0BBBBBBB@

1

�eir0

�1

�eir0

1CCCCCCCA
; j3 =

1

2

0BBBBBBB@

1

eis

1

�eis

1CCCCCCCA
; j4 =

1

2

0BBBBBBB@

1

�eis0

1

eis
0

1CCCCCCCA
; (2.23)
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with 0 � r; r0; s; s0 < �.

Figure 2.2: Plot of Eqs. (2.13) in the �+-plane implying that, for cos� 6= 0, their solutions are
given by �+ = �i sin�.

2.2.2 Forming MU bases

Knowing all vectors that are MU to both the identity and F4, we now determine those combina-

tions which allow us to form other bases.

Triples of MU bases in C4

To begin, consider the MU vectors h1; : : : ; h4; in Eqs. (2.15) and (2.16) which exist for all values

of x 2 [0; �). Calculating their inner products, one �nds that they only form an orthonormal basis

of C4 if y = y0 and z = z0. Thus, for each value of x, the pair fI; F4(x)g may be complemented
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by a third MU basis taken from the two-parameter family

H4(y; z) =
1

2

0BBBBBBB@

1 1 1 1

1 1 �1 �1

�eiy eiy eiz �eiz

eiy �eiy eiz �eiz

1CCCCCCCA
: (2.24)

In other words, there is a three parameter-family of triplets of MU bases fI; F4(x);H4(y; z)g in

dimension d = 4. This agrees with the result obtained by Zauner by other means [152].

If x = �=2, additional MU vectors j1; : : : ; j4, and k1; : : : ; k4, have been identi�ed, cf. Eqs.

(2.21-2.23). Calculating the scalar products within each group, one sees that two further ortho-

normal two-parameter bases emerge,

J4(r; s) =
1

2

0BBBBBBB@

1 1 1 1

eir �eir eis �eis

�1 �1 1 1

eir �eir �eis eis

1CCCCCCCA
; (2.25)

K4(t; u) =
1

2

0BBBBBBB@

1 1 1 1

eit �eit eiu �eiu

eit �eit �eiu eiu

�1 �1 1 1

1CCCCCCCA
; (2.26)

if the conditions r = r0, s = s0, and t = t0, u = u0, respectively, are satis�ed. No other

combinations of the MU vectors can form inequivalent bases so that the matrices in Eqs. (2.24-

2.26) represent all possible choices of a MU basis. Permuting appropriate rows and columns

of the matrices J4 and K4 transforms them into H4; thus, the triples fI; F4(�=2); J4(r; s)g and

fI; F4(�=2);K4(t; u)g are equivalent to fI; F4(�=2);H4(y; z)g.
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Quadruples and quintuples of MU bases in C4

Let us begin by noting that sets of four MU bases cannot exist away from x = �=2. No two

matrices H4(y; z) and H4(y0; z0) are MU since

���hy1(y)h1(y0)��� = ���hy1(y)h2(y0)��� = 1

2
(2.27)

only hold if ���1� ei(y�y0)��� = 1 ; (2.28)

however, these equations have no solution for any values of y and y0. A similar argument shows

that there are no values of z and z0 such that the matrices H4(y; z) and H4(y; z0) are MU.

We now show that for x = �=2 the bases H4(y; z); J4(r; s) and K4(t; u) give rise to four and

�ve MU bases if the free parameters are chosen appropriately. An argument similar to the one

just presented shows that no two bases within either the family J4(r; s) or K4(t; u) are MU. Thus,

any quadruple of MU bases must contain bases from di¤erent families.

The inner products
���hy1(y)j1(r)��� ; ���hy1(y)j2(r)��� ; ���hy2(y)j1(r)��� and ���hy2(y)j2(r)��� have modulus 1=2

if there are values for y and r such that the equations

���1 + eir � (e�iy + ei(r�y))��� = 2 (2.29)���1� eir � (e�iy � ei(r�y))��� = 2 (2.30)

hold simultaneously. Upon introducing a factor of e�ir=2, Eqs. (2.29) are equivalent to the

constraints

���cos r
2

��� =
1

j1� e�iyj =
���sin r

2

��� : (2.31)

Consequently, one must have r = �=2 , and thus e�iy = �i or y = �=2 since 0 � r; y < �.

An entirely analogous argument restricts the values of s and z: checking the inner products��h1(r)yj3(z)�� ; ��h1(r)yj4(z)�� etc. tells us that the matrices H4(y; z) and J4(r; s) are mutually

unbiased only if y = z = r = s = �=2. We also �nd that the pairs fJ4(r; s); K4(t; u)g and
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fK4(t; u);H4(x; y)g are MU only when all six parameters take the value �=2:

We are now in the position to list all possible sets of MU bases in C4 beyond fI; F4(x)g,

fI; F4(x);H4(y; z)g ;

fI; F4(�=2);H4(�=2; �=2); J4(�=2; �=2)g ; (2.32)

fI; F4(�=2);H4(�=2; �=2); J4(�=2; �=2);K4(�=2; �=2)g :

There is one three-parameter family of triples consisting of the one-parameter Fourier family

F4(x) combined with two-parameter set H4(y; z); neither J4(r; s) nor K4(t; u) give rise to other

triples since each of these sets of Hadamard matrices is equivalent to fI; F;H4(y; z)g. The three-

dimensional set (2.32) of MU bases in dimension d = 4 may be visualized as a cuboid de�ned

by de�ned by 0 � x; y < � and 0 � z < �=2. The reduction in the parameter range of z is

due to the equivalence fI; F4(x);H4(y; z)g � fI; F4(��x);H4(�� y; �� z)g which follows from

an overall complex conjugation. Each of the points i nthe cuboid correspond to one triple while

both the quadruple and the quintuple are located at the point, x = y = z = �=2.

Only one set of four MU bases exists, since the other two candidates obtained by combining

K4(�=2; �=2) with either J4(�=2; �=2) or H4(�=2; �=2) are a permutation of this quadruple.

Finally, there is a unique way to a construct �ve MU bases which is easily seen to be equivalent

to the standard construction of a complete set of MU bases in dimension four.

2.3 Dimension d = 5

As in dimensions two and three, there is a unique choice of a (5�5) dephased complex Hadamard

matrix [74],

F5 =
1p
5

0BBBBBBBBBB@

1 1 1 1 1

1 ! !2 !3 !4

1 !2 !4 ! !3

1 !3 ! !4 !2

1 !4 !3 !2 !

1CCCCCCCCCCA
; (2.33)
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equal to the discrete (5� 5) Fourier matrix, with ! = exp(2�i=5) denoting a �fth root of unity.

We have not found an elementary method to obtain a list of all vectors which are MU to the

Fourier matrix F5. Instead, we will rely on the work presented in Chapter 3 where the vectors

have been constructed analytically by means of a computer program.

2.3.1 Constructing vectors MU to F5

The vector v = (1; ei�1 ; : : : ; ei�4)=
p
5 2 C5 is MU to F5 if it satis�es the conditions������

4X
j=0

!jkei�j

������ = p5 ; k = 0 : : : 4 ; (2.34)

de�ning �0 � 0. The solutions of these equations give rise to 20 vectors which can be arranged

in four MU bases,

H
(1)
5 =

1p
5

0BBBBBBBBBB@

1 1 1 1 1

! !2 !3 !4 1

!4 ! !3 1 !2

!4 !2 1 !3 !

! 1 !4 !3 !2

1CCCCCCCCCCA
; H

(2)
5 =

1p
5

0BBBBBBBBBB@

1 1 1 1 1

!2 !3 !4 1 !

!3 1 !2 !4 !

!3 ! !4 !2 1

!2 ! 1 !4 !3

1CCCCCCCCCCA
;

H
(3)
5 =

1p
5

0BBBBBBBBBB@

1 1 1 1 1

!3 !4 1 ! !2

!2 !4 ! !3 1

!2 1 !3 ! !4

!3 !2 ! 1 !4

1CCCCCCCCCCA
; H

(4)
5 =

1p
5

0BBBBBBBBBB@

1 1 1 1 1

!4 1 ! !2 !3

! !3 1 !2 !4

! !4 !2 1 !3

!4 !3 !2 ! 1

1CCCCCCCCCCA
: (2.35)

To obtain this result, Eqs. (2.34) have been expressed as a set of coupled quadratic polynomials

in eight real variables. Using an implementation [124] of Buchberger�s algorithm [36, 37] on

the computer program Maple [102], a Gröbner basis of these equations has been constructed

which leads to the 20 vectors given by the columns of the four Hadamard matrices above. It is

important to note that no other solutions of Eqs. (2.34) exist, a result which does not follow
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from the known methods to construct a complete set of six MU bases in C5. Further details of

this approach will be presented in Chapter 3.

Each of the four matrices in (2.35) is related to the Fourier matrix in a remarkably simple

manner. In analogy to the unitary diagonal matrix used in Eq. (2.11), de�ne a diagonal unitary

matrix

D = diag(1; !; !4; !4; !) ; (2.36)

with entries given by the �rst column of H(1)
5 and you �nd that

H
(k)
5 = DkF5 ; k = 1; : : : ; 4 : (2.37)

Using this observation, we can express the unique complete set of six MU bases for dimension

d = 5 as follows

fI; F5;H(1)
5 ; : : : ;H

(4)
5 g � fI; F5; DF5; D2F5; D

3F5; D
4F5g ; (2.38)

which will be useful later on.

Next, we proceed to classify all smaller sets of MU bases of C5 by combining subsets of the

four Hadamard matrices H(k)
5 in (2.35) with the pair fI; F5g. For clarity, we now list the set of

inequivalent classes which we will obtain. In addition to the pair fI; F5g and the complete set

given in (2.38) there are two inequivalent triples as well as one quadruple and one quintuple:

fI; F5;H(1)
5 g ; fI; F5;H(2)

5 g ;

fI; F5;H(1)
5 ;H

(2)
5 g ; (2.39)

fI; F5;H(1)
5 ;H

(2)
5 ;H

(3)
5 g :
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Triples of MU bases in C5

Select one of the four matrices given in (2.35) and adjoin it to the pair fI; F5g. You obtain four

triples of MU bases with two immediate equivalences, namely,

fI; F5;H(1)
5 g � fI; F5; DF5g � fI; F5; D4F5g � fI; F5;H(4)

5 g (2.40)

on the one hand, and

fI; F5;H(2)
5 g � fI; F5; D2F5g � fI; F5; D3F5g � fI; F5;H(3)

5 g (2.41)

on the other. The equivalence (2.40) follows from multiplying the set fI; F5; DF5g with D4 from

the left, rephasing the �rst basis with D from the right, using D5 = I and swapping the last two

matrices. A similar argument establishes the equivalence (2.41), using D3 instead of D4.

Thus, it remains to check whether the triples T (1) � fI; F5;H(1)
5 g and T (2) � fI; F5; H(2)

5 g

are equivalent to each other. It turns out that these two triples are, in fact, inequivalent. More

explicitly, this means that no unitary matrix U and no monomial matrices M0;M1 and M2 can

be found which would map T (1) into T (2) according to

fI; F5;H(1)
5 g ! fUIM0; UF5M1; UH

(1)
5 M2g : (2.42)

A proof of this statement is given in Appendix B.

Quadruples of MU bases in C5

There are six possibilities to form quadruples by selecting two of the four matrices in Eq. (2.35)

and adding them to the pair fI; F5g. Recalling that H(k)
5 = DkF5, we identify the following

equivalences which relate three quadruples each,

fI; F5; DF5; D2F5g � fI; F5; D3F5; D
4F5g � fI; F5; DF5; D4F5g ; (2.43)
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and

fI; F5; DF5; D3F5g � fI; F5; D2F5; D
4F5g � fI; F5; D2F5; D

3F5g : (2.44)

To show the �rst equivalence in Eq. (2.43), for example, multiply its left-hand-side with D3 from

the left, use the identity D5 = 1 and rearrange the bases appropriately. The other equivalences

follow from analogous arguments. Thus, there are at most two inequivalent sets of four MU bases

in C5, with representatives fI; F5;H(1)
5 ;H

(2)
5 g and fI; F5;H(1)

5 ;H
(3)
5 g, say.

Interestingly, these two classes of MU bases are equivalent to each other leaving us with a

single equivalence class of quadruples in dimension �ve, with representative fI; F5;H(1)
5 ;H

(2)
5 g,

say. To show this equivalence, we multiply the �rst quadruple with the adjoint of F5 from the

left

F y5fI; F5;H
(1)
5 ;H

(2)
5 g � fI; F5; F y5H

(1)
5 ; F y5H

(2)
5 g : (2.45)

using the identity F y = FP , with some permutation matrix P , and swapping the �rst two bases.

The action of F y5 on the other two elements is surprisingly simple: the Hadamard matrix H
(1)
5 is

mapped to itself,

F y5H
(1)
5 = H

(1)
5 M ; (2.46)

up to a monomial matrix M , while H(2)
5 is sent to H(3)

5 ,

F y5H
(2)
5 = H

(3)
5 M 0 ; (2.47)

again up to some monomial matrix M 0. Both relations simply follow from working out the

product on the left and factoring the result, e.g.

F y5H
(2)
5 =

1p
5

0BBBBBBBBBB@

s(1) s(2) s(3) s(4) s(5)

!3s(1) !2s(2) !s(3) s(4) !4s(5)

!2s(1) s(2) !3s(3) !s(4) !4s(5)

!2s(1) !4s(2) !s(3) !3s(4) s(5)

!3s(1) !4s(2) s(3) !s(4) !2s(5)

1CCCCCCCCCCA
= H

(3)
5 D(2) P; (2.48)
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where the kth entry of the diagonal matrix D(2) is given by the sum of the kth column of H(2)
5 ,

denoted by s(k) =
P
iH

(2)
ik , and P permutes the columns. Using these identities in Eq. (2.45)

we �nd that

fI; F5;H(1)
5 ;H

(2)
5 g � fI; F5;H(1)

5 ;H
(3)
5 g (2.49)

the two quadruples are equivalent.

Quintuples of MU bases in C5

Four sets of MU bases can be obtained by adding any three of the four matrices in Eq. (2.35) to

the pair fI; F5g. It is not di¢ cult to show that the four resulting sets of quintuples are equivalent

to each other. Thus, there is e¤ectively only one possibility to choose �ve MU bases in C5, with

representative fI; F5;H(1)
5 ;H

(2)
5 ;H

(3)
5 g.

Let us show now that this representative, which has been obtained by leaving out H(4)
5 , is

equivalent to the set fI; F5;H(1)
5 ;H

(2)
5 ;H

(4)
5 g, for example. Indeed, the equivalence

fI; F5; DF5; D2F5; D
3F5g � fI; F5; DF5; D2F5; D

4F5g ; (2.50)

follows immediately from multiplying the second set by D from the left and using D5 = I,

fI; F5; DF5; D3F5; D
4F5g � fI;DF5; D2F5; D

3F5; F5g : (2.51)

Reordering the set of �ve matrices on the right reveals the desired equivalence with the quintuple

fI; F5;H(1)
5 ;H

(2)
5 ;H

(3)
5 g. E¤ectively, the four matrices di¤erent from I undergo a cyclic shift

under multiplication with D, and the remaining equivalences follow from shifts induced by D2

and D3, respectively.

2.4 Summary of MU bases in dimensions two to �ve

We have constructed all inequivalent sets of mutually unbiased bases in dimension two to �ve.

Our approach is based on the fact that all complex Hadamard matrices are known in these
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dimensions. For dimensions up to d = 4, elementary arguments su¢ ce to classify the existing

sets of MU bases while dimension �ve requires some analytic results which have been found using

algebraic computer software (cf. Chapter 3).

d 2 3 4 5 6

pairs 1 1 11 1 � 12

triples 1 1 13 2 � 12

quadruples - 1 1 1 ?
quintuples - - 1 1 ?
sextuples - - - 1 ?

Table 2.1: The number of inequivalent MU bases for dimensions two to six where 1k denotes a
k-parameter set; see text for details.

The �rst four columns of Table 2.1 summarize the results obtained in this chapter. All

pairs of MU bases in dimensions two to �ve are listed in the �rst row, e¤ectively re�ecting the

known classi�cation of inequivalent Hadamard matrices; a continuous (one-parameter) set of

inequivalent MU pairs only exists in dimension four.

The main results concern triples of MU bases in dimension four where we �nd a three-

parameter family and in dimension �ve where we obtain two inequivalent triples. Finally, we

have shown that there is only one class of both MU quadruples and MU quintuples in dimensions

four and �ve. In all dimensions considered, there is a unique d-tuple which can be extended to

a complete set of (d+ 1) MU bases using a construction presented in [147].

The last column of Table 2.1 contrasts these results with dimension six where the classi�cation

of all complex Hadamard matrices is not known to be complete. The �rst entry shows that there

are two-parameter families of pairs of MU bases [74, 139] (it has been conjectured that the

parameter space has, in fact, four dimensions [136]). One of the families of pairs can be extended

to a two-parameter family of triples [139] using an idea taken from [152]. In the next chapter we

will attempt to complete this �nal column by applying the same method of constructing set of

r � d+ 1 MU bases starting from a pair fI;Hg in dimensions six.



CHAPTER 3

Constructing mutually unbiased bases in dimension six

We have seen that in dimensions two to �ve we are able to give a full classi�cation of sets of MU

bases. In dimension six it is not known whether there are any sets of more than 3 MU bases,

and in fact there is a long standing conjecture due to Zauner [152]

Conjecture 3.0.1 There are no more than 3 MU bases in dimension 6.

There have been two main attempts to obtain rigorous results in support of this conjecture

by restricting the search to MU bases of a speci�c form:

� selecting a �rst Hadamard matrix and then searching for MU bases with components given

by suitable roots of unity leads to no more than two MU complex Hadamard matrices, or

three MU bases in C6 [16];

� Grassl [72] has shown that only �nitely many vectors exist which are MU with respect to

the identity and the discrete Fourier matrix F6. Again, no more than two MU Hadamard

matrices emerge, giving rise to at most three MU bases; it is thus impossible to base the

construction of a complete set on the Heisenberg-Weyl group.

The strategy of this chapter will be to generalize Grassl�s approach by removing the restriction

that the second MU basis be F6. Instead, we will consider many di¤erent choices for the second

35
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MU basis, thoroughly sampling the set of currently known complex Hadamard matrices in C6.

We will �nd that none of the matrices studied can be used to construct a complete set of MU

bases. Taken together, these negative instances provide further strong support for the conjecture

that no seven MU bases exist in dimension six.

Let us now present the outline of our argument. In Section 3.1, we brie�y describe the set

of known complex Hadamard matrices in dimension six. Then, we explain in Section 3.2 how to

construct all vectors that are MU with respect to both the standard basis of C6 and a second

basis, de�ned by an arbitrary �xed Hadamard matrix. We illustrate the algorithm for d = 3 only

to rediscover the known complete set of four MU bases given in Eq. (1.3) and found in Section

2.1.2. Then, whilst re-deriving Grassl�s result for d = 6, we will explain the subtle interplay

between algebraic and numerical calculations in this approach. Section 3.3 presents our �ndings

which we obtain by applying the algorithm to nearly 6000 Hadamard matrices of dimension six.

3.1 Complex Hadamard matrices in dimension six

All (complex) Hadamard matrices are known for dimensions d � 5 but there is no exhaustive

classi�cation for d = 6. It is useful to brie�y describe the Hadamard matrices known to exist

in dimension six since we will �parametrize� the search for MU bases in terms of Hadamard

matrices. We use the notation introduced in [141] the authors of which maintain an online

catalog of Hadamard matrices [140].

Each point in Fig. 3.1, an updated version of a �gure presented in [16], corresponds to one

Hadamard matrix of dimension six, except for the interior of the upper circle where a point

represents two Hadamard matrices (cf. below). There is one isolated point, representing the

spectral matrix S given in [108], also known as Tao�s matrix [143]. Three sets of Hadamard

matrices labeled by a single parameter are known: the Di̧t¼a family D(x) introduced in [51], a

family of symmetric matrices denoted by M(t) [105] and the family of all Hermitean Hadamard

matrices B(�) [11]. Two two-parameter families of Hadamard matrices are known to arise from

discrete Fourier-type transformations F (x1; x2) in C6, and from their transpositions, F T (x1; x2)

[74]. The Szöll½osi family X(a; b) is the only other known two-parameter set [139]. Interestingly,
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the matrix X(0; 0) can be shown to be equivalent to F (1=6; 0), and there is a second possibility

to de�ne a matrix at this point, giving rise to XT (0; 0) � F T (1=6; 0) [15]. We have noticed

that such a doubling actually occurs for all values of the parameters (a; b) leading to a set of

Hadamard matrices XT (a; b) inequivalent to X(a; b). Hence, the interior of the upper circle in

Fig. 3.1 represents two layers of Hadamard matrices which are glued together at its boundary.

Topologically, the Szöll½osi family X(a; b) and the set XT (a; b) thus combine to form the surface

of a sphere. Appendix C lists the explicit forms of Hadamard matrices as well as the parameter

ranges which have been reduced to their fundamental regions using the equivalence relation

(2.2).

Fig. 3.1 also shows equivalences between Hadamard matrices simultaneously belonging to dif-

ferent families. The circulant Hadamard matrix C [24], for example, embeds into the Hermitean

family which in turn is given by the boundary of the Szöll½osi families; interestingly, the Di̧t¼a

matrices are also contained therein. Lining up some of the points where di¤erent families overlap

suggests that we arrange the Hadamard matrices in a symmetrical way. Then, a re�ection about

the line passing through the points F (0; 0) and S maps H(x) to H(�x) if H(x) is a member

of the Di̧t¼a, Hermitean or symmetric families; furthermore, the same re�ection sends H(x) to

HT (x) if the matrix H(x) is taken from Di̧t¼a, Hermitean or Fourier families. For the Szöll½osi

family, the re�ection about the vertical axis must be supplemented by a change of layer in order

to get from X(a; b) to XT (a; b). We will see that the �ndings presented in Section 3.3 echo this

symmetry which we will explain in the conclusion.

Let us �nally mention that the known families of Hadamard matrices come in two di¤erent

types, a¢ ne and non-a¢ ne ones. The set H(x) is a¢ ne if it can be written in the form

H(x) = H(0) � Exp[R(x)] (3.1)

for some matrix R; the open circle denotes the Hadamard (elementwise) product of two matrices,

(A�B)ij = AijBij , and Exp[R] represents the matrix R elementwise exponentiated: (Exp[R])ij =

expRij . Both Fourier-type families and the Di̧t¼a matrices are a¢ ne (cf. Appendix C) while the

symmetric, Hermitean and Szöll½osi families are not.
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3.2 Constructing MU vectors

In this section, we modify the approach taken in Chapter 2. As before, we make explicit the

conditions on a vector jvi 2 Cd to be MU with respect to the standard matrix and a �xed

Hadamard matrix, i.e. to the pair fI;Hg. However, we parameterise the vector jvi using real

variables so that the MU conditions result in a system of multivariate polynomial equations.

Then we outline an algorithm to construct all solutions of the resulting equations, allowing us

to check how many additional MU Hadamard matrices do exist. We illustrate this approach by

constructing a complete set of four MU bases in dimension d = 3, reproducing the result of Sec

2.1.2. We also reproduce Grassl�s result for d = 6 in order to explain that this approach produces

rigorous results in spite of inevitable numerical approximations.

3.2.1 MU vectors and multivariate polynomial equations

A vector jvi 2 Cd is MU with respect to the standard basis (associated with the columns of the

identity I) if each of its components has modulus 1=
p
d. Furthermore, jvi is MU with respect

to a �xed Hadamard matrix H if jhh(k)jvij2 = 1=d, where jh(k)i is the state associated with the

kth column h(k) of H, k = 0; : : : ; d� 1.

Let us express these conditions on jvi in terms of its components vj , written as

p
dvj =

8><>: 1 j = 0 ;

xj + iyj j = 1; : : : ; d� 1 ;
(3.2)

where xj ; yj are 2(d � 1) real parameters. The overall phase of the state jvi is irrelevant which

allows us to �x the phase of its �rst component. Then, the �rst set of constraints on the state

jvi reads

x2j + y
2
j = 1 ; j = 1; : : : ; d� 1 ; (3.3)

and the second set is given by

������
d�1X
j=0

h�j (k)vj

������
2

�

������
d�1X
j=0

Hy
kj(xj + iyj)

������
2

=
1

d
; k = 0; : : : ; d� 2 ; (3.4)
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where the state jh(k)i has components hj(k) � Hjk, 0 = 1; : : : ; d� 1. The completeness relation

of the orthonormal basis fjh(k)i, k = 0; : : : ; d� 1g, implies that if a state jvi is MU with respect

to (d � 1) of its members, it is also MU with respect to the remaining one. Therefore, it is not

necessary to include k � d� 1 in Eqs. (3.4).

For each given Hadamard matrix H, Eqs. (3.3) and (3.4) represent 2(d � 1) simultaneous

coupled quadratic equations for 2(d�1) real variables. Once we know all solutions of these equa-

tions, we know all vectors jvi MU with respect to the chosen pair of bases fI;Hg. Analysing the

set of solutions will reveal whether they form additional MU Hadamard matrices, or, equivalently,

MU bases.

If Eqs. (3.3) and (3.4) were linear, one could apply Gaussian elimination to bring them into

�triangular�form. The resulting equations would have the same solutions as the original ones but

the solutions could be obtained easily by successively solving for the unknowns.

The solutions of Eqs. (3.3) and (3.4) can be found using Buchberger�s algorithm [36] which

generalizes Gaussian elimination to (nonlinear) multivariate polynomial equations. In this ap-

proach, a set of polynomials P � fpn(x); n = 1; : : : ; Ng is transformed into a di¤erent set of

polynomials G � fgm(x);m = 1; : : : ;Mg (usually with M 6= N) such that the equations P = 0

and G = 0 possess the same solutions; here P = 0 is short for pn(x) = 0; n = 1; : : : ; N . Techni-

cally, one constructs a Gröbner basis G of the polynomials P which requires a choice of variable

ordering [36]. The transformed equations G = 0 will be straightforward to solve due their �tri-

angular� form: one can �nd all possible values of a �rst unknown by solving for the zeros of

a polynomial in a single variable; using each of these solutions will reduce one or more of the

remaining equations to single-variable polynomials, allowing one to solve for a second unknown,

etc. This process iteratively generates all solutions of G = 0 and, therefore, all solutions of the

original set of equations, P = 0.

A Gröbner basis exists for any set of polynomial equations with a �nite number of variables.

However, the number of steps required to construct a Gröbner basis tends to be large even for

polynomials of low degrees and a small number of unknowns. Thus, Buchberger�s algorithm is

most conveniently applied by means of algebraic software programs. We have used the imple-

mentation [124] of this algorithm suitable for the computational algebra system Maple [102] since
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we found it to be particularly fast for the system of equations under study.

Let us now make explicit how to construct all vectors MU with respect to a pair fI;Hg by

solving the multivariate polynomial equations (3.3) and (3.4) using Buchberger�s algorithm. We

will consider two cases in dimensions d = 3 and d = 6, respectively, which have been solved

before but they are suitable to illustrate the construction and to discuss some of its subleties.

3.2.2 Four MU bases in C3

In dimension d = 3, four MU bases are known to exist. We will now show how to construct two

MU Hadamard matrices H2 and H3 given a pair fI;Hg. The resulting three MU Hadamard

matrices plus the identity provide a complete set of four MU bases in C3 thus reproducing the

result of Sec 2.1.2.

1. Choose a Hadamard In dimension three, all Hadamard matrices are known and there is

only one choice for a dephased Hadamard matrix [74] given by the Fourier matrix,

F3 =
1p
3

0BBBB@
1 1 1

1 ! !2

1 !2 !

1CCCCA ;

where ! = exp(2�i=3) is a third root of unity.

2. List the constraints We want to �nd all states jvi 2 C3 which are MU with respect to

the columns of the identity matrix I and the Fourier matrix F3. Using the four real parameters

x1; x2; y1, and y2 introduced in (3.2), the constraints (3.3) and (3.4) read explicitly

1� x21 � y21 = 0 ;

1� x22 � y22 = 0 ;

x1 + x2 + x1x2 + y1y2 = 0 ;

x1 + x2 �
p
3y1 +

p
3y2 + x1x2 �

p
3x1y2 +

p
3y1x2 + y1y2 = 0 : (3.5)
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The solutions of these four coupled quadratic equations in four real variables, P = 0, will tell us

whether additional Hadamard matrices exist which are MU with respect to the Fourier matrix

F3.

3. Construct the solutions By running Buchberger�s algorithm, we �nd the Gröbner basis G

associated with the polynomials in Eqs. (3.5). Equating the resulting four polynomials gn(x); n =

1; : : : ; 4, to zero, gives rise to the equations

3y2 � 4y32 = 0 ;

1� x2 � 2y22 = 0 ;

1 + 2x1 + 4y1y2 � 4y22 = 0 ;

3� 4y21 + 4y1y2 � 4y22 = 0 : (3.6)

This set is �triangular� in the sense that solutions can be found by iteratively determining the

roots of polynomials for single variables only. The �rst equation has three solutions,

y2 2 f0 ;�
p
3=2g ;

next, the second equation implies that

x2 =

8><>: 0 if y2 = 0 ;

2 if y2 = �
p
3=2 ;

etc. Altogether, there are six solutions,

s1 =
1
2(�1;�1;

p
3;
p
3) ; s2 =

1
2(�1; 2;�

p
3; 0) ;

s3 =
1
2(2;�1; 0;�

p
3) ; s4 =

1
2(�1;�1;�

p
3;�

p
3) ;

s5 =
1
2(2;�1; 0;

p
3) ; s6 =

1
2(�1; 2;

p
3; 0) ;

de�ning s = (x1; x2; y1; y2).

Since the degrees of the polynomials G in Eqs. (3.6) do not exceed three, we are able to
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obtain analytic expressions for its solutions. This, however, is a fortunate coincidence due to

the simplicity of the problem: in general, we will need to determine the roots of higher-order

polynomials (cf. the example presented in Section 3.2.3) which requires numerical methods. The

resulting complications will be discussed in Section 3.2.4.

4. List all MU vectors Upon substituting the solutions s1 to s6 into (3.2), one obtains the

six vectors, v1 to v6 given in Eq. (2.10) which are MU with respect to the columns of both the

matrices I and F3. No other vectors with this property exist, leaving us with v1; : : : ; v6, as the

only candidates for the columns of additional MU Hadamard matrices.

5. Analyse the vectors The six vectors in (2.10) allow us to de�ne an additional Hadamard

matrix only if any three of them are orthogonal; for a second Hadamard matrix the remaining

three must be orthogonal among themselves and MU to the �rst three. As before, calculating

the inner products between all pairs of the vectors v1 to v6 shows that they indeed fall into two

groups with the required properties. Consequently, we have constructed a complete set of four

MU bases in C3, corresponding to the set fI; F3;H2;H3g where the columns of the matrices H2

and H3 are given by fv1; v2; v3g and fv4; v5; v6g, respectively.

We have also checked that the construction procedure works in dimensions d = 2; 5 and d = 7

where it correctly generates complete sets of (d+1)MU bases. The results produced here allowed

the classi�cation of all MU bases in dimension �ve given in Section 2.3 which would not have

been possible without the aid of Buchberger�s algorithm.

3.2.3 Three MU bases in C6

In d = 6, the existence of seven MU bases is an open problem. We will search for all states jvi

which are MU with respect to the identity I and the six-dimensional equivalent of F3 given in
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(2.7), the dephased Fourier matrix

F6 =

0BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 ! !2 !3 !4 !5

1 !2 !4 1 !2 !4

1 !3 1 !3 1 !3

1 !4 !2 1 !4 !2

1 !5 !4 !3 !2 !

1CCCCCCCCCCCCCCA
; (3.7)

with ! = exp(�i=3) now being the sixth root of unity. This problem has been studied in

the context of biunimodular sequences [24] and in relation to MU bases [72]. It is impossible

to complement the pair fI; F6g by more than one Hadamard matrix MU with respect to F6.

Thus, the construction method of MU bases in prime-power dimensions which is based on the

Heisenberg-Weyl group, has no equivalent in the composite dimension d = 6. We will now

reproduce this negative result.

Having chosen the �rst Hadamard matrix to be F6, we can write down the conditions which

the components of a state jvi must satisfy, P = 0. After some algebraic operations detailed in

Appendix D, one obtains the equations

x1 + x5 + x1x2 + x2x3 + x3x4 + x4x5 + y1y2 + y2y3 + y3y4 + y4y5 = 0 ;

y1 � y5 + x1y2 � x2y1 + x2y3 � x3y2 + x3y4 � x4y3 + x4y5 � x5y4 = 0 ;

x3 + x1x4 + x2x5 + y1y4 + y2y5 = 0 ;

x2 + x4 + x1x3 + x1x5 + x2x4 + x3x5 + y1y3 + y1y5 + y2y4 + y3y5 = 0 ;

y2 � y4 + x1y3 � x1y5 + x2y4 � x3y1 + x3y5 � x4y2 + x5y1 � x5y3 = 0 ; (3.8)

which must be supplemented by the �ve conditions (3.3) arising for d = 6.

We need to �nd all solutions of these ten coupled equations P = 0 which are quadratic in

ten real variables. The Gröbner basis G associated with the set P consists of 36 polynomials of
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considerably higher degrees. We reproduce only the �rst one of the new set of equations, G = 0,

�245025 y5 + 4318758 y53 � 28135161 y55 + 89685000 y57 � 158611892 y59

+177275680 y5
11 � 150745472 y513 + 104333824 y515 � 43667456 y517

+2351104 y5
19 + 4882432 y5

21 � 1703936 y523 + 262144 y525 = 0 ;

being of order 25 in the single variable y5. This equation admits 15 real solutions,

y5 2 f0;�1;�
1

2
;�
p
3

2
;�1
2
(1 +

p
3);�1

2
(1�

p
3);�0:988940 : : : ;�0:622915 : : :g ; (3.9)

the last four of which we only �nd numerically. Due to the triangular structure resulting from

Buchberger�s algorithm, there will be equations (at least one) containing only y5 and one other

single variable. For each value of y5 taken from (3.9), they reduce to single-variable polynomials

the roots of which can be determined to desired numerical accuracy; etc. Keeping track of all

possible branches we obtain 48 vectors that satisfy the Eqs. (3.8).

Having determined the candidates for columns of MU Hadamard matrices, we calculate the

inner products among all pairs of the 48 vectors. It turns out that there are 16 di¤erent ways

to group them into bases of C6. However, no two of these bases are MU with respect to each

other. Consequently, it is possible to form at most 16 di¤erent triples of MU bases which include

F6. It also follows that the Fourier matrix F6 (or any other unitarily equivalent element of the

Heisenberg-Weyl group [72]) cannot be supplemented by two MU Hadamard matrices�no four

MU bases can exist.

There are, however, many choices other than H = F6 for a dephased Hadamard matrix in

dimension six. In Section 4.3, we will repeat the calculations just presented for a large sample

of currently known Hadamard matrices. Before doing so, we will discuss the fact that we are

able to construct the desired vectors only approximately. In the following section we show that

su¢ ciently high numerical accuracy allows us to draw rigorous conclusions about the properties

of the exact vectors.
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3.2.4 The impact of numerical approximations

The previous section illustrated that the problem of �nding MU vectors with respect to the

identity I and a given Hadamard matrix H can be reduced to successively solving for the roots

of polynomials of a single variable. These roots, however, can only be found approximately. Does

the approximation prevent us from drawing rigorous conclusions about the properties of the MU

vectors we construct? We will argue now that it remains possible to �nd upper bounds on the

number of MU vectors with the desired properties.

Consider the system of polynomials P = fpn(x); n = 1; : : : ; 10g in the variables x 2R10

resulting from some chosen Hadamard matrixH, and calculate a Gröbner basis, G = fgm(x);m =

1; : : : ;Mg. The roots of the equations P = 0 and G = 0 are identical by construction. Since

G = 0 corresponds to a �triangular� set, its roots can be found iteratively but, in general, no

closed form will exist. The implementation of Buchberger�s algorithm which we have chosen

�nds these roots with user-speci�ed accuracy, relying on the theory presented in [123].

Suppose that G = 0 has two roots sa and sb, to which we have found approximations, sA and

sB. The associated approximate exact states, jvai and jvbi, di¤er from the approximate states,

jvAi and jvBi, by error terms j�vai = jvAi � jvai and similarly for the second solution. The

components of the vectors j�vai all have moduli smaller than the user-de�ned accuracy of 10�r,

say. If the inner product of the exact states jvai and jvbi has a non-zero modulus, � > 0, then

they are not orthogonal. We can detect this by calculating the inner product of the approximate

states,

jhvAjvBij = jhvajvbi+ hvaj�vbi+ h�vajvbi+ h�vaj�vbij

� jhvajvbij+ jhvaj�vbij+ jh�vajvbij+O(10�2r)

� jhvajvbij+ 10
p
2� 10�r +O(10�2r) ;

using jjj�vaijj � 5
p
2� 10�r and jjjvaijj = 1. Thus, a non-zero lower bound for the exact scalar

product follows if the approximate inner product is larger than
p
2 � 10�r+1. In other words,

we may conclude that the exact states are non-orthogonal if we ensure that the error in the
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approximate scalar product is negligible, i.e. � � jhvAjvBij �
p
2 � 10�r+1 > 0. A similar

argument allows us to exclude that two approximate states are MU with respect to each other.

We determine the roots of G = 0 to r = 20 signi�cant digits which proves su¢ cient to

put relevant limits on the properties of the vectors constructed in dimension six. The results

presented in the Sections 3.3.1 and 3.3.2 thus represent rigorous limits on the number of vectors

MU with respect to speci�c Hadamard matrices and hence on the number of MU bases.

3.3 Constructing MU bases in dimension six

We are now in a position to present the main results of this chapter. We will consider one

Hadamard matrix H at a time constructing all additional Hadamard matrices MU with respect

to the chosen one. Picking matrices both systematically and randomly, we will �nd that not a

single one is compatible with the existence of four MU bases.

More speci�cally, we will determine two quantities for each chosen Hadamard matrix H. The

number Nv equals the number of vectors MU with the pair fI;Hg, and the number Nt provides

an upper bound on how many di¤erent triples of MU bases fI;H;H 0g exist.

3.3.1 Special Hadamard matrices

To begin, we consider the Hadamard matrices on the symmetry axis of Fig. (3.1): the Fourier

matrix F6 � F (0; 0) being invariant under transposition, the Di̧t¼a matrix D0 � D(0) which

is both symmetric and Hermitean, the circulant matrix C, and the Spectral matrix S. These

matrices are special in the sense that they are either isolated or belong to di¤erent Hadamard

families simultaneously.

The �rst row of Table 3.1 completes the �ndings of Section 3.2.3 obtained for the Fourier

matrix F6: there are Nv = 48 vectors MU with respect to both I and F6 that can be arranged

in Nt = 16 di¤erent ways to form a second Hadamard matrix H 0 being MU with respect to

F6. However, no two of these 16 Hadamard matrices are MU between themselves, limiting the

number of MU bases containing F6 to three.

A similar analysis for the Diţ¼a matrix D0 reveals that there are 120 vectors MU to its columns
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H Nv Nt

F6 48 16
D0 120 10
C 56 4
S 90 0

Table 3.1: The number of MU vectors and their properties for special Hadamard matrices: there
are Nv vectors being MU with respect to the pair of matrices fI;Hg that form Nt additional
Hadamard matrices i.e. there are Nt di¤erent triples of MU bases.

and those of the identity, 60 of which form ten bases but none of these are MU with respect to

each other. Whilst ten triples of MU bases exist, sets of four MU bases which include D0 do not

exist.

Interestingly, the components of the 120 vectors have phases � which take values in a small

set only,

�D � f0; �;��=12; : : : ;�11�=12;��g ;

where tan� = 2: This result agrees with the one obtained by Bengtsson et al. [16] (note, however,

that the descriptions given in the last two entries of the list in their Section 7 must be swapped).

What is more, our approach proves that these authors have been able to identify all vectors MU

with the pair fI;D0g by means of their ansatz for the form of MU vectors. In fact, the value of

Nt in Table 3.1 given for D0 is exact, not an upper bound since the phases of the MU states jvi

are known in closed form. Interestingly, a restricted set of phases also occurs for other members

of the Di̧t¼a family. For example, all 48 vectors MU with the pair fI;D(1=8)g have phases limited

to the set �D [ f��g where tan� = 3.

The circulant matrix C permits 56 MU vectors, which can be arranged into 4 di¤erent bases,

Nt = 4. The spectral matrix S is the only known isolated Hadamard matrix. We �nd 90 MU

vectors but not a single sextuple of orthonormal ones among them. Thus, the pair fI; Sg cannot

even be extended to a triple of MU bases.
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H x #( x) Nv Nt

D(x) �D 36 48/72/120 4
random 500 72/120 4

F (x) �F 168 48 8/70
random 2,000 48 8

F T (x) �F 168 48 8/70
random 2,000 48 8

Table 3.2: The number of MU vectors and their properties for a¢ ne Hadamard matrices: the
second column indicates which values have been chosen for the parameters x; the grids of points
�M and �F are de�ned in Eqs. (3.10) and (3.11), respectively; the third column displays the
number of Hadamard matrices considered in a sample; Nv and Nt are de�ned as in Table 3.1
and vary as a function of the parameter values (cf. Section 3.3.2).

3.3.2 A¢ ne families

Table 3.2 collects the properties of vectors MU with respect to the pair fI;Hg where H is an

a¢ ne Hadamard matrix, i.e. taken either from the one-parameter set discovered by Di̧t¼a or from

the two-parameter Fourier families. Again, we have sampled the relevant parameter spaces both

systematically and randomly.

The set of Diţ¼a matrices D(x) depends on a single continuous parameter x, with jxj � 1=8.

We have sampled the interval in steps of size 1=144 making sure that the resulting grid of points

include the 24th roots of unity which play an important role for D0, so

�D = fa=144 : a = �1;�2 : : : ;�18g ; (3.10)

note that the matrix D0 has been left out. The number of vectors MU with the pair fI;D(x)g

depends on the value of the parameter x: the Di̧t¼a matrices D(x) on the grid �D allow for 48,

72 or 120 MU vectors which can be grouped into into four additional Hadamard matrices. Since

they are not MU between themselves, there are at most three MU bases containing any of these

Di̧t¼a matrices.

The results obtained from randomly picking points in the fundamental interval are in line

with the observations made for grid points. Fig. 3.2 shows Nv, the number of vectors MU with

respect to the pair fI;D(x)g for all 536 values of the parameter x which we have considered. The
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function Nv(x) appears to be symmetric about x = 0 and piecewise constant, dropping from 120

for small values of x to 72 at x ' �0:0177, and to 48 at the end points of the interval, x = �1=8.

The values for Nv can be found in Table 3.2.

The results for members of Fourier family F (x) are qualitatively similar. Picking values of

x � (x1; x2) either randomly in the fundamental area or from the two-dimensional grid

�F = f(a; b)=144 : a = 1; 2; : : : ; 24; b = 0; 1; : : : ; 12; a � 2bg ; (3.11)

invariably leads to 48 vectors being MU to the columns of the pair fI; F (x)g. There are eight

di¤erent ways to form additional Hadamard matrices for each point considered except for the

matrix F (1=6; 0) with an upper bound of 70 triples. It is important to realize that Grassl�s

result� the construction of complete sets of MU bases cannot be based on the Heisenberg-Weyl

group in dimension d = 6� also holds for the 2,168 other Fourier matrices we have considered.

The situation is similar when turning to the family of transposed Fourier matrices, F T (x).

The number Nv equals 48 throughout and a second Hadamard matrix can be formed in eight

di¤erent ways, and only matrix F T (1=6; 0) allows for 70 di¤erent triples, eight being the norm.

3.3.3 Non-a¢ ne families

The equations P = 0 encoding MU vectors for the symmetricM(t), Hermitean B(�) and Szöll½osi

X(a; b) families turn out to be more challenging from a computational perspective: the program

has, in general, not been able to construct the associated Gröbner bases G. The problem is not

a fundamental one� the desired Gröbner bases do exist but it appears that their construction

requires more memory than the 16GB available to us.

We suspect that the di¢ culties are due to the fact that, for non-a¢ ne matrices, the coe¢ cients

of the polynomials P = 0 are no longer equal to fractions or simple roots of integers. When

approximating the coe¢ cients in question by fractions we obtain di¤erent sets of polynomials, ~P,

and the program indeed succeeds in constructing the corresponding Gröbner bases, ~G, outputting

(approximate) MU vectors j~vi. Being continuous functions of the coe¢ cients, the approximate

vectors will resemble the exact ones, j~vi ' jvi. However, the number of MU vectors may change
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discontinuously if ~P = 0 is considered instead of P = 0, similar to the discontinuous change in

the number Nv for the family D(x) near x ' 0:0177, shown in Fig. 3.2. In other words, it could

happen that we �lose�some solutions due to a geometric instability as a consequence of modifying

the de�ning polynomials.

To determine the impact of such an approximation, we have studied how the number Nv of

MU vectors changes in a case for which we know rigorous bounds. We retain only �ve signi�cant

digits of the coe¢ cients in the equations P = 0 associated with the family D(t) and solve for

the approximate MU vectors. The inset of Fig. 3.2 shows that the plateaus of 120 and 72

MU vectors continue to be well-de�ned away from the discontinuity at x ' 0:0177 while the

values of Nv �uctuate close to it. Assuming that a qualitatively similar behaviour will also occur

for symmetric and Hermitean matrices, we now simplify the equations P = 0 associated with

them. Retaining only �ve signi�cant digits of the coe¢ cients in these equations, we determine

the number of MU vectors j~vi and their inner products.

Fig. 3.3 shows that the family of symmetric Hadamard matrices M(t) comes with 48 MU

vectors j~vi close to the point t = 0, while there are 120 near t = 1=4. These numbers are consistent

with the rigorous bounds obtained in Section 3.3.2 if we recall that M(0) = M(1=2) � F (0; 0)

and M(1=4) � D(0) holds (cf. Fig. 3.1). Across the entire parameter range, the number of

MU vectors is a piecewise constant function symmetric about x = 1=4, with distinct plateaus

of 48; 52; 120 and possibly 96 MU vectors. We suspect that the other values of Nv near the

discontinuities are spurious. An analysis of the scalar products among the approximate MU

vectors shows that they can be arranged into between 1 and 16 additional bases; a plot of which

also resembles a step function. Crucially, they can never be arranged to form two bases that are

MU to each other and therefore the points in Fig. 3.3 cannot be included in a set of four MU

bases. Table 3.3 lists the results obtained for both a regular grid

�M = fa=144 : a = 1; 2; : : : ; 71; a 6= 36g ; (3.12)

and 300 randomly selected points in the fundamental interval; the reason for leaving out a = 36

is the equivalenceM(1=4) � D0 just mentioned. We are con�dent that a more rigorous approach
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will con�rm the absence of a set of four MU bases containing a single symmetric Hadamard

matrix M(t).

H x #( x) Nv Nt

M(t) �M 70 48-120 1-16
random 300 48-120 1-16

B(�) �B 34 56-120 1/4/8/16
random 300 56-120 1/4/8/16

X(a; b) � 50 48/56 4/16/70
�0 50 48-60 4/8/16/70

random 300 48-120 1-70

Table 3.3: The number of MU vectors and their properties for non-a¢ ne Hadamard matrices:
the grids �M and �B are de�ned in Eqs. (3.12) and (3.13), respectively; see Eqs. (3.14) and
(3.15) for the de�nition of the lines � and �0; other notation as in Table 3.2; preliminary results
for the family XT (a; b) resemble those obtained for X(a; b).

The results obtained for Hermitean Hadamard matrices B(�), shown in Fig. 3.3, are similar

to those of the symmetric family. The observed plateaus conform with the rigorous bounds found

for Nv = 120 and Nv = 56 due to the equivalences B(1=2) � D(0) and B(�0) � C (cf. Table

3.1). We consider the plateaus at 56, 58, 60, 72, 84 and 108 to be genuine while spurious values

for Nv proliferate near their ends, where Nv is likely to vary discontinuously. Once more, Table

3.3 reveals that both regularly spaced points on the grid

�B = fa=144 : a = 55; 56; : : : ; 89; a 6= 72g ; (3.13)

and randomly chosen values of the parameter � de�ne Hadamard matrices B(�) which allow the

construction of three MU bases but not four.

Finally, let us consider the Szöll½osi family, the non-a¢ ne two-parameter set of Hadamard

matrices X(a; b). Fig. 3.4 shows the values of Nv for randomly chosen parameters on two cuts

through parameter space, namely along the line

� = f(a; b) : arg(a+ ib) = �=6g (3.14)



3.4. Summary of calculations 52

which connects X(0; 0) � F (1=6; 0) to the circulant matrix C, and the randomly chosen line

�0 = f(a; b) : arg(a+ ib) = 0:3510g (3.15)

connecting X(0; 0) to B(�0), a Hermitean Hadamard matrix on the boundary. The values of

Nv at the end points of the lines are, in both cases, consistent with results obtained above

for F (1=6; 0), C, and B(�0); broadly speaking, the number of solutions again represents a step

function. However, the plateaus at 48; 52; 54; 56; 58 and 60 in Fig. 3.4 (b) show considerable

overlap: the e¤ect of approximating the coe¢ cients in the relevant polynomials is even more

pronounced for the Szöll½osi family than for the other non-a¢ ne families. The results for the 300

randomly chosen parameter values sampling the two-dimensional parameter space resemble those

of the symmetric and Hermitean families: we �nd 48 � Nv � 120 throughout which allow for

triples of MU bases but never for a quadruple. Preliminary calculations show that the properties

of the new family of transposed Szöll½osi matrices XT (a; b) are similar to those of the set X(a; b).

While not being exact, the results for the symmetric, Hermitean and Szöll½osi families provide

bounds on the number of MU bases which can be constructed from their members. None of

the Hadamard matrices considered can be extended to a set of four MU bases. We consider

it unlikely that the approximation made would systematically suppress other MU vectors with

properties invalidating this conclusion.

3.4 Summary of calculations

We have searched for MU bases related to pairs fI;Hg where I is the unit matrix and H runs

through a discrete subset of known (6 � 6) complex Hadamard matrices. Using Buchberger�s

algorithm, we have obtained upper bounds on the number of MU bases; the bounds are rigorous

in many cases and approximate in others. Each of the 5,980 calculations required between 4 and

16 GB of memory and, altogether, would have lasted approximately 29,000 hours on a single 2.2

GHz processor.

Each point in Fig. 3.5 represents one of the Hadamard matricesH we have been investigating.
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We �nd that the Spectral matrix S is the only Hadamard matrix which cannot be extended to a

triple of MU bases. Furthermore, if four (seven) MU bases were to exist in dimension six three

(six) Hadamard matrices di¤erent from the ones shown in Fig. 3.5 would be required. This

clearly conforms with Conjecture 3.0.1.

There is one caveat that we must make regarding the results for the non-a¢ ne families. In

general, the program was unable to construct the associated Gröbner bases for the symmetric,

Hermitean and Szöll½osi families. For these Hadamard matrices, we cannot guarantee that we

have found all MU vectors although we consider it unlikely that the approximation made would

systematically suppress the missing vectors.

The symmetrical presentation of known Hadamard matrices in Fig 3.1 is justi�ed by the

results of our calculations: both the number of vectors Nv and the values of their inner products

(i.e. the number Nt) are symmetric about the line passing through F (0; 0) and S. We will now

explain why this symmetry exists.

First, let H be a member of the Di̧t¼a, symmetric or Fourier families and consider a vector jvi

that is MU to both I and H. Since multiplication by an overall unitary leaves the MU conditions

(4.1) invariant, we have the equivalence between sets

fI;H; jvig � fHy; I;Hyjvig = fI;Hy; jv0ig (3.16)

where jv0i = Hyjvi. It follows that jv0i is MU to I and Hy, and since Dy(x) � D(�x),

M y(t) � M(�t) and F y(x1; x2) � F T (x1; x2), the number of solutions Nv is symmetric about

the line through F (0; 0) and S. Further, since Hy is unitary and it is applied to all vectors, this

transformation leaves the inner products between two MU vectors invariant and therefore, the

number of triples Nt is also symmetric.

We need an additional transformation to explain the symmetry found for the Hermitean ma-

trices since By(�) = B(�): under complex conjugation a Hermitean matrix transforms according

to

B�(�) = B(1� �) ;
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as follows from the explicit form of B(�) given in Eq. (C.7). Now consider a vector jvi which is

MU to the columns b(�) of the matrix B(�); then

jhb(�)jvij2 = jhb(�)jvi�j2 = jhb�(�)jv�ij2 = jhb(1� �)jv�ij2 ;

and therefore jv�i is MU to each column of B(1 � �). Thus, the vectors MU to B(�) are the

complex conjugates of those MU to B(1��) which implies that the numberNv of MU vectors (and

their properties) will not change upon a re�ection about the point � = 1=2. Although we did not

pay attention to the existence of these exact symmetries when introducing the approximations

for the non-a¢ ne Hadamard matrices, the results obtained do respect them.

The set of Hadamard matrices in C6 may depend on four parameters [16], a conjecture which

recently gained some numerical support [136]. It remains di¢ cult to draw general conclusions

about the number of MU bases in dimension d = 6. However, we would like to point out that

the approach presented here is future-proof : it will work for any Hadamard matrix - including

currently unknown ones.

We have found 48 vectors MU to F (x1; x2) and F T (x1; x2) for each of the 4,336 values of

(x1; x2) sampled from the corresponding fundamental regions. Since the work contained in this

chapter was presented in [33], Jaming et. al. have shown that this in fact holds for all members

of the Fourier and Fourier transpose families [84]. That is, for all (x1; x2) there are 48 solutions

to the equations de�ned by Eqs. (3.3) and (3.4). Furthermore, Jaming et al. prove that no

member of the Fourier or Fourier transpose family can be contained in a triple of MU bases [84];

thus generalising some of the results presented here. In the Chapter 7 we will discuss how one

might extend the approach presented in this chapter to exclude parameter dependent families of

complex Hadamard matrices from a complete set of MU bases in dimension six.

In summary, we have shown that the construction of more than three MU bases in C6 is not

possible starting from nearly 6,000 di¤erent Hadamard matrices. This result adds signi�cant

weight to the conjecture that a complete set of seven MU bases does not exist in dimension

six. It becomes ever more likely that only prime-power dimensions allow for optimal state

reconstruction.
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Figure 3.1: The set of known Hadamard matrices in dimension six consists of special Hadamard
matrices F (0; 0) � F6; D(0) � D0; C, and S, located on the vertical symmetry axis; of the a¢ ne
families D(x), F (x), and F T (x); and of the non-a¢ ne familiesM(t), B(�), X(a; b), and XT (a; b)
(see Appendix C for de�nitions). Note that the sets X(a; b) and XT (a; b) cover the interior of
the upper circle twice and that the Di̧t¼a family, D(x); is contained in X(a; b).
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Figure 3.2: The number Nv of vectors jvi which are MU with respect to the columns of the
identity I and Di̧t¼a matrices D(x); the parameter x assumes 72 parameter values x 2 �D, and
500 randomly chosen ones in the fundamental interval [�1=8; 1=8] of the parameter x. The inset
illustrates the impact on Nv near the discontinuity x ' 0:0177 if an approximate set of equations
is used (cf. Section 3.3.3).
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Figure 3.3: The numberNv of vectors jvi which are MU with respect to the columns of the identity
I and (a) symmetric Hadamard matrices M(t); the parameter t assumes 60 parameter values
t 2 �M , and 300 randomly chosen ones in the fundamental interval [0; 1=2], and of (b) Hermitean
matrices B(�); the parameter � assumes 34 parameter values � 2 �B, and 300 randomly chosen
ones in the fundamental interval [�0; 1� �0]. The phase �0 has been de�ned in equation (C.8).
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Figure 3.4: The number Nv of vectors jvi which are MU with respect to the columns of the
identity I and Szöll½osi Hadamard matrices X(a; b) for 50 randomly chosen parameter values (a)
on the line � connecting F (1=6; 0) to C, and (b) on the line �0 connecting F (1=6; 0) to B(�0); in
both �gures, the maximum modulus ja+ ibjmax is de�ned by Eq. (C.14).
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Figure 3.5: The set of all Hadamard matrices H which have been considered (cf. Fig. 3.1 and
Tables 3.1-3.3): for each H, a second MU Hadamard matrix can always be found except for the
isolated spectral matrix S; consequently, triples of MU bases are the norm while quartets of MU
bases do not exist.



CHAPTER 4

Maximal sets of mutually unbiased states in dimension six

In the previous chapter, we were unable to �nd more than three MU bases in dimension six by

systematically sampling all known complex Hadamard matrices. However, the classi�cation of

Hadamard matrices in dimension six is incomplete leaving open the possibility that we may have

missed some (crucial) part of the Hilbert space C6. In this chapter, we drop the reliance on

existing constructions of Hadamard matrices and search for MU bases numerically.

We begin by re-writing the conditions for a set of vectors to form a complete set of MU bases.

Given a quantum system of dimension d, a complete set of MU bases in Cd is a set of d(d + 1)

pure states j xj i, x = 0; 1; : : : ; d, j = 1; : : : ; d, which satisfy the conditions

���h xi j yj i��� =
8><>: �ij if x = y ;

1p
d

if x 6= y :
(4.1)

In this chapter we systematically search for subsets of complete sets of MU bases which we will

call MU constellations. Essentially, a MU constellation consists of groups of d or fewer vectors

having scalar products as in (4.1). Three MU bases, known to exist in any dimension d, are a

well-known example of a MU constellation, and as seen in Chapter 3, it has been conjectured

that no more than three MU bases exist in dimension six [152]. Conjecture 3.0.1 is supported by

60
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numerical evidence given in [38] reporting unsuccessful searches for four MU bases, another MU

constellation. Similarly, no four MU bases have been found within a set of vectors determined

by the assumption that their components have a speci�c form such as being certain roots of

unity [16]. The non-existence of a MU constellation consisting of three MU bases plus one

additional vector, related to the Heisenberg-Weyl group, has been shown in [72]. And �nally, in

Chapter 3, we have seen how Grassl�s result can be extended to exclude 6,000 complex Hadamard

matrices sampled from the set of all known Hadamards. There are, however, many other entirely

unexplored MU constellations.

The chapter is organised as follows. In the next section, we introduce the concept of MU

constellations and embed them in well-de�ned searchable spaces. Then, in Section 4.2 the search

for MU constellations is cast into the form of a numerical minimisation. Section 4.3 describes

the results of the searches, and they will be discussed in the �nal section.

4.1 Constellations of quantum states in Cd

In this section we de�ne mutually unbiased constellations of quantum states and embed them in

appropriate spaces to search for them.

4.1.1 Mutually unbiased constellations

A MU constellation in Cd consists of (d + 1) sets of �x pure states j xj i, x = 0; 1; : : : ; d, j =

1; : : : ; �x, which satisfy the conditions (4.1). The (d+ 1) integers �x 2 f0; : : : ; d� 1g specify all

possible types of MU constellations which will be denoted by

f�gd � f�0; �1; : : : ; �dgd ; � 2 (Z mod (d� 1))d+1 : (4.2)

If the number �x in a MU constellation f�gd equals zero, it corresponds to an empty set and

will be suppressed. For example, f2; 1; 2; 0g4 � f2; 1; 2g4 denotes a MU constellation in C4 which

consists of two pairs of orthonormal vectors and one single vector. Since the ordering of the

bases within a constellation will be irrelevant, we arrange them in decreasing order, using the
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shorthand �a if there are a bases with � elements: f2; 1; 2g4 thus becomes f22; 1g4.

The numbers �x are limited to (d � 1) since there is only one way to complete (d � 1)

orthonormal vectors to a basis of the space Cd, apart from an irrelevant phase factor. More

explicitly, the complement of (d � 1) orthonormal vectors j ji 2 Cd; j = 1; : : : ; d � 1, is a

unique one-dimensional subspace spanned by j ?i, say. Due to the completeness relation for an

orthonormal basis, the projector on this subspace must have the form

j ?ih ?j = Id �
d�1X
j=1

j jih j j ; (4.3)

where Id is the identity in Cd.

The completion of (d� 1) orthonormal vectors into a basis is consistent with the conditions

of mutual unbiasedness (4.1). The identity (4.3) implies that the state j ?i is MU with respect

to any vector jvi satisfying jh j jvij = 1=
p
d, hence any MU constellation containing the states

fj jig remains MU if the state j ?i is added to the set.

MU constellations in Cd are a partially ordered set with respect to the relation � de�ned by

f�gd � f�gd () �x � �x ; for all x = 0; 1; : : : ; d : (4.4)

The ordering refers only to the number of vectors in each basis; it does not imply any relation

between the subspaces spanned by the vectors in corresponding �partial bases�of the constellations

f�gd and f�gd. If (4.4) holds, we will say that f�gd contains f�gd; alternatively, f�gd is said to

be smaller than f�gd. For example, the MU constellation f22; 1g4 is contained in four MU bases

f34g4 because

f22; 1g4 � f34g4 (4.5)

is true. The ordering induced by (4.4) is only partial since constellations such as f3; 1g4 and

f22g4 cannot be compared to each other. Thus, MU constellations possess a lattice structure

with a unique minimal element, ;, and (d + 1) MU bases f(d � 1)d+1gd, if existing, provide a

unique maximal element.

Here is an important consequence of the lattice structure. A set of k 2 f2; : : : ; d+1g complete
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MU bases f(d� 1)kgd in dimension d exists only if all smaller MU constellations f�gd exist, i.e.

those with

f�0; �1; : : : ; �k�1gd � f(d� 1)kgd ; 0 � �x � d� 1 ; x = 0; 1; : : : ; k � 1 : (4.6)

Hence, if any MU constellation f�0; �1; : : : ; �kgd is found missing then k complete MU bases

cannot exist. This observation has been exploited in [38] where the unsuccessful numerical

search for four MU bases, i.e. the MU constellations f54g6, is used to argue that no seven MU

bases exist for d = 6. Similarly, it has been shown in [72] that it is impossible in C6 to extend two

MU bases f52g6 of a speci�c type to the MU constellation f53; 1g6, excluding thus the existence

of seven MU bases based on a speci�c construction.

Evidence for the non-existence of any small MU constellation is evidence for the non-existence

of the corresponding complete set of MU bases. This observation is crucial for the main thrust

of this chapter.

4.1.2 Constellation spaces

In Section 4.3, we will numerically search for all MU constellations f�g6 in C6 contained in f54g6,

i.e. in four MU bases. To do this, we need to search through a space which is guaranteed to

contain a speci�c MU constellation if it exists; at the same time, the search space should be as

small as possible to maximize computational e¢ ciency. From now on, we will only consider MU

constellations which contain at least one complete basis,

f�gd � fd� 1; �1; : : : ; �dgd ; (4.7)

which is a mild restriction that allows considerable simpli�cations.

To associate an appropriate space with a given MU constellation f�gd of type (4.7), we will

need to write it in dephased form. Once dephased, its �rst (d � 1) vectors are given by those

of the standard basis Bz, while the components of the �rst vector of the second basis and the

�rst component of each remaining vector are equal to 1=
p
d. For example, upon dephasing a MU
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constellation f23; 1g3, it takes the form8>>>><>>>>:

0BBBB@
1 0

0 1

0 0

1CCCCA ;
1p
3

0BBBB@
1 1

1 ei�11

1 ei�21

1CCCCA ;
1p
3

0BBBB@
1 1

ei�11 ei�12

ei�21 ei�22

1CCCCA ;
1p
3

0BBBB@
1

ei
11

ei
21

1CCCCA
9>>>>=>>>>; ; (4.8)

with speci�c values for the eight angles �11; : : : ; 
21. It is shown in Appendix A that any given

MU constellation of type (4.7) can be written in dephased form by applying transformations

which leave invariant the conditions (4.1).

Now it is straightforward to associate a space of constellations with the MU constellation

f23; 1g4: the space C4(23; 1) is de�ned as the set of vectors one obtains from (4.8) if the eight

angles �11; : : : ; 
21, are allowed to vary freely between 0 and 2�. Each point in this space will

be called a constellation [23; 1]4, and it corresponds to a set of seven (not necessarily di¤erent)

pure states in C4. Not all constellations [23; 1]4 are a MU constellation f23; 1g4, but each MU

constellation f23; 1g4 is represented by at least one point of the space C4(23; 1).

In general, each MU constellation f�gd is embedded in space Cd(�) of constellations [�]d, de-

�ned in analogy to C4(23; 1). Simply write down the dephased form of the MU constellation f�gd

at hand; then, varying the angles �11; : : : between 0 and 2�, generates the space of constellations

Cd(�) 3 [�]d = [d� 1; �0; : : : ; �d]d : (4.9)

The space Cd(�) has the structure of a multi-dimensional torus due to the periodicity of the

angles used to parameterize it.

Let us now determine the dimension of the space Cd(�) associated with a MU constellation

(4.7). It contains

S = d� 1 + s (4.10)

quantum states where

s =

dX
b=1

xb (4.11)

is the number of states in all groups but the �rst one. Since each of these vectors except the �rst
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one brings (d� 1) phases, the entire constellation [�]d depends on

pd � p ([d� 1; �1; �2; : : : ; �d]d) = (d� 1)(s� 1) (4.12)

independent real parameters. For example, the constellation space Cd((d�1)d+1) associated with

(d+ 1) complete MU bases has dimension (d� 1)(d2 � d� 1).

How many constraints does the requirement of mutual unbiasedness in (4.1) impose on the

parameters of a constellation [�]d? The states of a constellation are normalized, and the condi-

tions on scalar products involving vectors of the �rst basis are satis�ed by construction. Hence,

there remains one condition for each pair of di¤erent states taken from the last d bases plus an

additional condition for each pair of vectors from the same basis. The extra condition resulting

from the orthogonality of two vectors is due to the fact that both the real and imaginary parts

of their inner product are required to be zero. Consequently, the number of constraints is given

by

cd � cd ([d� 1; �1; �2; : : : ; �d]d)

=
1

2
s(s� 1) + 1

2

dX
x=1

�x(�x � 1)

=
1

2
s(s� 2) + 1

2

dX
x=1

�2x: (4.13)

Note that the number of constraints, cd; presented in [32] is corrected by Eq. (4.13). The error

being due to counting the real and imaginary parts of the inner product of two orthogonal vectors

as only one equation.

4.2 Numerical search for MU constellations

This section explains the numerical method we use to identify MU constellations. The basic idea

is to de�ne a continuous function on the space of constellations C that takes the value zero if

and only if the input is a MU constellation. We then search for the zeros of this function in

the neighborhood of a large number of randomly chosen points in C, using standard numerical
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methods.

4.2.1 MU constellations as global minima

Suppose you want to �nd the MU constellation f�gd. To do so, consider the associated space

of constellations Cd(�) which can be parameterized by pd angles denoted by � = (�1; : : : ; �pd)T .

De�ning

�xyij =

8><>: �ij if x = y ;

1p
d

if x 6= y ;
(4.14)

the non-negative function F : Rpd ! R

F (�) =
dX

1�x�y

�xX
i=1

�yX
j=1
if x=y;
i<j

�
jh xi (�)j 

y
j (�)ij � �

xy
ij

�2
; (4.15)

equals zero if and only if the input [�]d coincides with a MU constellation f�gd.

It is thus possible, in principle, to prove the (non-) existence of a MU constellation by deter-

mining whether the smallest value of the function F (�) is non-zero. This means to identify its

(possibly degenerate) global minimum which, unfortunately, is not simple: the global minimisa-

tion of a nonlinear function such as a polynomial of fourth order in su¢ ciently many variables

may already pose a NP-hard problem [112]. A well-known strategy is to search for minima by

starting from random initial points which, however, may turn out to be local ones. By repeating

the process su¢ ciently often, one will detect global minima as well� if they exist.

A numerical search along similar lines has been reported in [38], restricted, however, to the

MU constellations f54g6 and f57g6, that is, four or seven MU bases. This limitation allows

for a di¤erent parametrization which exploits the fact that complete bases in dimension d are

associated with d-dimensional unitary matrices.

Note that the choice of the function F (�) is not unique1. The expression (4.15) is conve-

nient because e¢ cient minimisation tools are available for a sum of squares. In particular, the

1We have also considered an everywhere di¤erentiable variant of (4.15) obtained by subtracting the square of
�xyij from jh xi j 

y
j ij2. We noticed, however, that the success rate to �nd existing MU constellations is systematically

lower.
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Levenberg-Marquardt algorithm [99, 103], often used in Regressional Analysis, cleverly switches

between the method of steepest descent and the Gauss-Newton algorithm to speed up conver-

gence. To search for zeros of the function F (�), we use the function optimize.leastsq from

the Open-Source Python package SciPy [86] which implements the LM-algorithm.

The function F (�) achieves its maximum

Fmax =
1

2

dX
x=1

�x(�x � 1) +
 p

d� 1p
d

!2 dX
1�x<y

�x�y ; (4.16)

if all states coincide, each having components equal to 1=
p
d only. For typical constellations such

as f52; 4; 1g6 or f5; 33g6, one �nds Fmax = 33:2 and Fmax = 25:0, respectively. Fig. 4.1(a) shows

a two-dimensional contour plot of F (�) in the 45-dimensional constellation space C6(5; 42; 2).

Ranging between 2.6 and 3.6, the function F (�) exhibits one maximum, one minimum, and

two saddle points. This structure is consistent with (4.15) because F (�) reduces to a simple

trigonometric polynomial of two variables if all but the �rst two angles �1 � u; �2 � v, are �xed.

Considering the range of the function F , it appears reasonable to say that a MU constellation

[�]d parameterized by � has been found if F (�) assumes a value below

Fc = 10
�7 : (4.17)

This criterion, stronger than the one used in [38] is entirely arbitrary, and smaller values could

be used at the expense of computational time. The numerical data presented below will retro-

spectively justify the chosen value of the threshold for zeros of Fc .

4.2.2 Testing the numerical search

We begin by presenting searches for MU constellations which are known to exist. The data

provide evidence that the numerical minimization of F (�) de�ned in Eq. (4.15) is a reliable tool

to identify MU constellations.
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Three complete MU bases

It is known that one can construct three complete MU bases in the space Cd without referring to

the prime decomposition of d [72]. Let us check the proposed minimisation method by searching

for the MU constellations f(d�1)3gd in dimensions d = 2; 3; : : : ; 8. Table 4.1 displays the success

rates obtained for a total of 1,000 searches in each of these dimensions. The input consists of

constellations [(d�1)3]d chosen randomly in the constellation space Cd((d�1)3) � [0; 2�)pd , with

pd = (d� 1)(2d� 3). Each dephased constellation [(d� 1)3]d corresponds to 3(d� 1) pure states

in Cd.

d 2 3 4 5 6 7 8
pd 1 6 15 28 45 66 91

% 100.0 81.9 96.6 49.3 67.9 24.0 48.5

Table 4.1: Success rates for searches of three MU bases f(d� 1)3gd in dimensions d = 2; 3; : : : ; 8,
based on 1,000 initial points randomly chosen in the pd-dimensional space Cd((d� 1)3).

The searches are successful in all dimensions. The rate of success systematically decreases for

larger dimensions if even and odd dimensions are considered separately. This overall trend is not

surprising in view of the constant number of samples taken in ever bigger spaces Cd. The success

rate is consistently higher in even dimensions which might be attributed to the possibility of

constructing di¤erent types of triples of MU bases resulting from the factor of two in d = 4; 6; 8.

MU constellations in dimension �ve

Next, we test the minimisation procedure by systematically searching for MU constellations of

the form f4; �; �; �g5, i.e. all MU constellations in dimension d = 5 contained in four MU bases.

The results from 1,000 searches for each MU constellation have been collected in Table 4.2. The

success rate gradually decreases from 100% for MU constellations with 16 or fewer parameters to

10% for MU constellations with 44 parameters. All MU constellations are identi�ed. In view of

later developments the table also makes explicit the number of free parameters for each dephased

constellation.

To judge the quality of the minimisation procedure, it is instructive to plot the distribution
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d = 5 parameters p5 success rate
�; � � �

1 2 3 4 1 2 3 4

1,1 8 - - - 100.0 - - -
2,1 12 - - - 100.0 - - -
2,2 16 20 - - 100.0 96.4 - -
3,1 16 - - - 100.0 - - -
3,2 20 24 - - 92.0 35.7 - -
3,3 24 28 32 - 68.3 38.0 29.0 -
4,1 20 - - - 99.0 - - -
4,2 24 28 - - 56.2 37.0 - -
4,3 28 32 36 - 55.8 31.8 21.8 -
4,4 32 36 40 44 37.4 20.1 14.9 9.7

Table 4.2: Success rates for searches of MU constellations f4; �; �; �g5 in dimension �ve, based
on 1,000 initial points randomly chosen in the p5-dimensional space C5(4; �; �; �).

of the minimal values of F (�) obtained in the space C5(43; 2), say. The histogram in Fig. 4.2(a)

shows that global minima, de�ned by F < 10�7, are separated from local minima by several

orders of magnitude, justifying the criterion (4.17). For a random sample of these �zeros,�we

have been able to reduce the value of F (�) to less than 10�20, simply by running the search for

longer.

Note that by detecting one MU constellation in a particular run, all MU constellations con-

tained in it have also been found. Thus, Table 4.2 does not only report 370 incidences of the

MU constellation f42; 22g5 but since MU constellations form a lattice due to (4.4), all successful

searches to the right and below this entry also con�rm its presence, adding a further 983 detected

cases.

Fig. 4.1(b) shows a contour plot of the function F (�) in a two-dimensional neighbourhood

of a zero, i.e. of a MU constellation of type f43; 2g5. Qualitatively, it resembles the random

cross-section depicted above it.

MU constellations in dimension seven

In dimension seven, a complete set of eight MU bases exists. Thus, we expect a numerical search

to successfully identify all MU constellations with no more than four partial bases. The largest
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d = 7 parameters p7 success rate
�; � � �

1 2 3 4 5 6 1 2 3 4 5 6

1,1 12 - - - - - 100.0 - - - - -
2,1 18 - - - - - 100.0 - - - - -
2,2 24 30 - - - - 100.0 100.0 - - - -
3,1 24 - - - - - 100.0 - - - - -
3,2 30 36 - - - - 100.0 100.0 - - - -
3,3 36 42 48 - - - 100.0 100.0 99.3 - - -
4,1 30 - - - - - 100.0 - - - - -
4,2 36 42 - - - - 100.0 100.0 - - - -
4,3 42 48 54 - - - 99.9 95.6 0.0 - - -
4,4 48 54 60 66 - - 52.3 0.0 0.0 0.0 - -
5,1 36 - - - - - 100.0 - - - - -
5,2 42 48 - - - - 100.0 37.9 - - - -
5,3 48 54 60 - - - 2.6 0.0 0.1 - - -
5,4 54 60 66 72 - - 0.0 0.0 0.0 0.1 - -
5,5 60 66 72 78 84 - 0.2 0.2 0.2 0.1 0.2 -
6,1 42 - - - - - 57.5 - - - - -
6,2 48 54 - - - - 1.1 0.0 - - - -
6,3 54 60 66 - - - 0.0 0.1 0.0 - - -
6,4 60 66 72 78 - - 0.2 0.0 0.1 0.3 - -
6,5 66 72 78 84 90 - 0.3 0.4 0.1 0.1 0.1 -
6,6 72 78 84 90 96 102 0.5 0.2 0.2 0.0 0.4 0.3

Table 4.3: Success rates for searches of MU constellations f6; �; �; �g7 in dimension seven, based
on 1,000 initial points randomly chosen in the p7-dimensional space C7(6; �; �; �).

constellation, f64g7, now depends on 102 parameters, more than double the number occurring

in dimension �ve. Due to this substantial expansion of the parameter space, however, the search

for zeros of the function F (�) is likely to succeed less frequently.

These expectations are con�rmed by the results collected in Table 4.3. As in dimension �ve,

the success rates decrease if we search for MU constellations containing more states. Although

the spaces searched are considerably larger, we still �nd four out of �ve MU constellations of the

form f6; x; y; zg7 after 1,000 attempts. Overall, the success rates show a feature not observed

in dimension �ve: the high detection rate for small MU constellations drops sharply when the

number of parameters, p7; is greater than 48. Importantly, 22 of the 34 MU constellations

fxg7 beyond the �line�of constellations with 54 or more parameters have been identi�ed. Taken
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together, the success rate for the 34; 000 searches for constellations with p7 � 51 was � 0:13%.

It is true that the success rate is small but the basin of attraction for global minima is likely to

be only a tiny region in the high-dimensional search space.

The quality of the zeros is excellent: they correspond to values of F (�) below 10�12, being

clearly di¤erent from the vast majority of local minima producing values in the order of 10�3.

This is illustrated in the histogram Fig. 4.3(a) which combines all the minima obtained for

constellations f�g7 de�ned by 66 or more parameters. We associate the clusters of values at

10�13 and at 10�3 with global and local minima, respectively.

It is straightforward to check that the numerically identi�ed MU constellations reproduce the

numbers �xyij in (4.14), correct to seven signi�cant digits. We are thus con�dent to have identi�ed

these MU constellations in dimension seven.

4.3 MU constellations in dimension six

Knowing that the numerical procedure to minimise F (�) de�ned in (4.15) generates reliable

data, we now turn to the main �ndings of this chapter which are related to dimension six.

In Table 4.4, we present the success rates to identify all MU constellations contained in four

MU bases f54g6, i.e.

f5; �; �; �g6 ; 1 � �; �; � � d� 1 : (4.18)

We will proceed as in dimensions d = 5 and d = 7 but, in order to give our results additional

weight, we have performed 10,000 searches for each MU constellation.

The results exhibit a structure which di¤ers qualitatively from the �ndings in neighboring

dimensions. The success rates decrease as before if the search aims at MU constellations with

increasing numbers of free parameters. However, after dropping to zero when the number of

parameters exceeds 40, there is no evidence for a single MU constellation f�g6.

It is true that only a few of these MU constellations had been identi�ed in dimension seven;

considering their abundance in d = 5, however, their complete absence in d = 6 is a striking

feature which we consider to be statistically relevant. Note that the lattice structure due to (4.4)

allows us to conclude that unsuccessful searches for MU constellations contained in f54g6 also
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d = 6 parameters p6 success rate
�; � � �

1 2 3 4 5 1 2 3 4 5

1,1 10 - - - - 100.00 - - - -
2,1 15 - - - - 100.00 - - - -
2,2 20 25 - - - 100.00 100.00 - - -
3,1 20 - - - - 100.00 - - - -
3,2 25 30 - - - 99.95 100.00 - - -
3,3 30 35 40 - - 99.42 39.03 0.00 - -
4,1 25 - - - - 100.00 - - - -
4,2 30 35 - - - 92.92 44.84 - - -
4,3 35 40 45 - - 12.97 0.00 0.00 - -
4,4 40 45 50 55 - 0.74 0.00 0.00 0.00 -
5,1 30 - - - - 95.40 - - - -
5,2 35 40 - - - 76.71 10.96 - - -
5,3 40 45 50 - - 1.47 0.00 0.00 - -
5,4 45 50 55 60 - 0.00 0.00 0.00 0.00 -
5,5 50 55 60 65 70 0.00 0.00 0.00 0.00 0.00

Table 4.4: Success rates for searches of MU constellations f5; �; �; �g6 in dimension six, based
on 10,000 initial points randomly chosen in the p6-dimensional space C6(5; �; �; �).

count against its existence. Since none of the constellations it contains have been found, Table

4.4 e¤ectively reports a total of 170,000 negative instances for the MU constellation f54g6.

The minimal values of F (�) obtained for most of the constellations on and near the critical

line are not below 1:1 � 10�4 except for f5; 4; 3; 2g6; f5; 42; 2g6, and f5; 33g6, where values close

to 10�6 have been obtained. We have not been able to push the these values below the threshold

of 10�7, even by running the search considerably longer. The histogram Fig. 4.2(b) shows that

the minima obtained for f5; 42; 2g6 cluster at values of 10�3, orders of magnitude away from the

criterion (4.17) for a global minimum. The histogram Fig. 4.3(b) combines the results for all

constellations f�g6 with 45 or more parameters, showing that throughout the minimal values

found are well above the threshold of 10�7.

As an aside, the absence of the MU constellations f52; 4; 1g6 and f53; 1g6 from Table 4.4

suggests that no three complete MU bases plus one additional mutually unbiased state exist.

This result generalizes the impossibility of extending two MU bases f52g6 equal to the identity

plus a �xed Hadamard matrix, fI;Hg, to a MU constellation f53; 1g6 . We therefore pose the



4.3. MU constellations in dimension six 73

following conjecture.

Conjecture 4.3.1 If H and K are mutually unbiased 6 � 6 complex Hadamard matrices then

there are no vectors jvi MU to I, H and K.

Our conclusions are based on a total of 433,000 searches in dimensions �ve to seven which

would take approximately 16,000 hours on a single Pentium 4 desktop PC. The results of the

searches performed in dimension six provide strong evidence that not all MU constellations of

the form f5; �; �; �g6 exist. Here are our main conclusions drawn from Table 4.4:

� the largest existing MU constellations are f5; 42; 1g6 and f52; 3; 1g6 both containing 15

(� S + 1) mutually unbiased states;

� the smallest non-existing MU constellations are f5; 33g6 and f5; 4; 3; 2g6 each consisting of

14 (� S) states;

� We have been able to positively identify 18 out of 35 MU constellations in dimension six.

On the basis of the numerical data, we consider it highly unlikely that the 15 unobserved

MU constellations do exist, making the existence of four MU bases exceedingly improbable.

The existence of a MU constellation f�gd in the space of constellations Cd[�] is determined

by the zeros of a set of equations. Many of the non-existing constellations in dimension six

correspond to constellations where there are more equations than free parameters. Therefore,

it is natural to ask whether one would expect such overdetermined constellations to exist in

general? We will discuss this point in more detail in Chapter 7 but now we turn our attention to

attempts at proving the non-existence of a complete set of MU bases in dimension six.



4.3. MU constellations in dimension six 74

2.7

2.7

2.8

2.
8

2.8

2.8

2.9

2.
9

2.9

2.9

2
.9

2.9

3

3

3

3

3

3

3

3

3

3.1

3.1

3.
1

3
.1

3.
1

3.1

3.
1

3.2 3.2

3.2

3.2

3.2
3
.2

3.
2

3.3

3.3

3.3

3.3

3.
3

3.4

3
.4

3.4

3.
5

3.5

u

v

0  p  /2  p   3p/2  2p
0 

 p  /2 

 p  

 3p/2 

 2p

v

2p

3p/2

p

p/2

v

 p   2p

u
3p/2 2pp/2 p0

0

(a)

0
.1

0.1

0.2

0
.2

0.
2

0
.3

0.3

0.4

0
.4

0.4

0
.4

0.4

0.
5

0
.5

0.5

0.5

0
.5

0.5

0.
6

0
.6

0
.6

0.6

0.6

0
.6

0.6

0
.7

0
.7

0.7

0.7

0
.7

0.7

0
.7

0.8

0
.8

0.8

0.8

0.8

0.
9

0.9

0.9

0.9

11

u

v

0  p  /2  p   3p/2  2p
0 

 p  /2 

 p  

 3p/2 

 2p

u

2p

3p/2 2pp/2 p0

3p/2

p

p/2

0

v

(b)

Figure 4.1: Contour plots of the function F (�) in the uv-plane (see text) of (a) the constellation
space C6(5; 42; 2) in dimension six, and of (b) the constellation space C5(43; 2) in dimension �ve
near a zero indicating a MU constellation f43; 2g5.
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Figure 4.2: Distribution of the values obtained by minimising the function F (�) for 1,000 initial
points chosen randomly (a) in the 36-dimensional space C5(43; 2) and (b) in the 45-dimensional
constellation space C6(5; 42; 2).
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Figure 4.3: Distribution of the values obtained by minimising the function F (�) for (a) 16,000
points combining the results of the 16 constellations with p7 � 66 in Table 4.3, and for (b)
110,000 points combining the results of the 11 constellations with p6 � 45 in Table 4.4.



CHAPTER 5

Towards a no-go theorem in dimension six

In this chapter we examine potential methods of proving Conjecture 3.0.1; that there cannot be

more than three MU bases in dimension six. We present three alternative approaches to this

problem about the geometry of state space in C6. We will also consider other dimensions, using

the complete classi�cation of all MU bases in dimensions two to �ve as a test bed for these ideas.

First we show how the construction of a Gröbner basis could be used to prove that the set of

equations de�ning an MU constellation have no solution. We then consider global optimization

techniques and apply them to suitably de�ned functions. Finally we examine an approach used

by Jaming et al. in [84] which uses error bounds and an exhaustive search of a discrete space.

We should say from the outset that none of these approaches have been successful in practice.

The three ideas outlined below are algorithms for proving the non-existence (or �nding) a set of

four MU bases in dimension d. However, the computational resources required to implement the

algorithms in dimension six were beyond those available.

Throughout this chapter, we will use the notation of Chapter 4 and consider MU constellations

fd� 1; �; �; �gd. The non-existence of any MU constellation smaller than f54g6; proves the non-

existence of four (or more) MU bases in dimension six. The number of vectors, s�1 = �+�+��1;

which are not �xed by the equivalence relations given in Appendix A, determine the number of

77
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variables and equations needed to de�ne a MU constellation. The value of s� 1 determines the

size of the original problem and therefore the di¢ culty of the resulting algorithms. In order

to reduce the problem as much as possible, we will use the small constellations not found by

the numerical searches presented in Chapter 4. For example, the MU constellation f5; 3; 3; 3g6

contains s � 1 = 8 free vectors, whereas attacking the full set of 7 MU bases in dimension six

would involve the parametrisation of s� 1 = 89 vectors.

For each of the algorithms described below, we will demonstrate how they can be used to

prove the non-existence of a set of four MU bases in dimension two. This fact is of course well

known; but it allows us to explicitly demonstrate how each method could be used to provide a

no-go theorem in dimension six.

5.1 Using Gröbner bases

The �rst idea we consider is to extend the method used in Chapter 3. We parametrise the

vectors in a constellation [d � 1; �; �; �]d using real variables. For these variables to de�ne a

mutually unbiased constellation, they must satisfy a system of coupled polynomial equations,

fp1 = 0; : : : ; pN = 0g. A proof that there is no MU constellation fd� 1; �; �; �gd follows directly

from a proof that these equations have no real solutions.

Following Chapter 4, any constellation fd � 1; �; �; �gd can be parametrised using s(d � 1)

real phases. However, since we wish to de�ne a system of polynomial equations, we must write

each complex number ei�j = xj + iyj , adding the condition x2j + y
2
j = 1: In order to parametrise

all of the s vectors, j vi; v = 1 : : : s, in the constellation, fd�1; �; �; �gd; that are not determined

by the equivalence relations, we require 2s(d� 1) real variables.

The conditions for vectors in the constellation space Cd(d�1; �; �; �) to be mutually unbiased

represent a total of

N � cd + (d� 1)(s� 1);

polynomials, where

cd =
1

2
s(s� 2) + 1

2
(�2 + �2 + �2);
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has been derived in Eq. (4.13). The polynomials

pj : R2s(d�1) ! R;

for j = 1 : : : N determine whether there exist variables x 2 R2s(d�1) which form a MU con-

stellation fd � 1; �; �; �gd. The solution set of these multivariate polynomial equations pj = 0;

j = 1 : : : N , is the variety

V � fx 2 R2s(d�1) : p1 = 0; : : : ; pN = 0g:

a subset of R2s(d�1). Hence, proving that no MU constellation of the form fd�1; �; �; �gd exists,

is equivalent to proving that the corresponding variety is empty, V = ;:

The geometric object, V , can be described algebraically in terms of an ideal I = hp1; : : : ; pN i;

generated by the polynomials p1 to pN . The ideal, I; consists of all linear combinations of the

polynomials pj with coe¢ cients polynomial in the variables x 2 R2s(d�1). That is, every element

a 2 I has the form

a =
SX
j=1

rj(x)pj(x);

where rj are polynomials in x: Note that the ideal corresponds to the variety over the algebraic

closure of the coe¢ cient �eld, here the complex numbers.

Having re-cast the problem as the description of an ideal, we can now apply the methods from

commutative algebraic geometry. In particular, no solutions exist over the complex numbers if

the polynomial 1 is contained in I: The construction of a Gröbner basis, G, would allow us to

prove this fact since G will described simply by the set G = f1g: The converse is not necessarily

true; this provides only a su¢ cient condition. It could be that the equations de�ning a MU

constellation have no solutions over the real numbers but the ideal is non-empty. For example,

the equation x2 + 1 has no real solutions but the ideal I = hx2 + 1i is not generated by f1g: We

may, however, be fortunate and �nd that the variety is also empty over the complex numbers. In

which case, we would have a proof that a complete set of MU bases does not exist in dimension

six.
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5.1.1 Testing the Gröbner basis algorithm

Dimension two

In order to test the algorithm for proving the non-existence of a MU constellation, fd�1; x; y; zgd;

we consider the case of four MU bases in dimension two which are known not to exist. We begin

by writing down a system of coupled polynomial equations, the solutions to which de�ne the

MU constellation f14g2: The constellation space C2[14] is parametrised by the four real variables

fx1; x2; y1; y2g; so that the vectors are given by0B@ 1

0

1CA ;
1p
2

0B@ 1

1

1CA ;
1p
2

0B@ 1

x1 + iy1

1CA ;
1p
2

0B@ 1

x2 + iy2

1CA :

The conditions which de�ne an MU constellation in the space C2(14) are given by the �ve equa-

tions

p1(x) � x21 + y
2
1 � 1 = 0

p2(x) � x22 + y
2
2 � 1 = 0

p3(x) � (1 + x1)
2 + y21 � 2 = 0 (5.1)

p4(x) � (1 + x2)
2 + y22 � 2 = 0

p5(x) � (1 + x1x2 + y1y2)
2 + (x1y2 � x2y1)2 � 2 = 0:

We will now prove that the variety V = fx 2 R4 : p1(x) = 0; : : : ; p5(x) = 0g is empty. One might

argue that this is trivial since the equations are not complicated and could be solved by hand.

However, the corresponding equations de�ning the MU constellation f53; 1g6 are certainly not

simple and an algorithmic method is required. We therefore prove the non-existence of the MU

constellation f14g2 in an entirely general manner that can be applied to dimension six.

We have constructed the Gröbner basis for the system of equations given in Eqs. (5.1). Using

the FGb package developed by Faugère et al. [64] and implemented in Maple [102], a desktop PC

outputs the Gröbner basis in 0.016 seconds. The ideal generated by Eqs. (5.1) is indeed equal
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to all polynomials over the complex numbers,

hp1(x); : : : ; p5(x)i = h1i:

A proof of which is obtained by writing down the polynomials calculated when constructing a

Gröbner basis,

r1(x) � �1
2
(y1y2 + x1 + 2)

r2(x) � �1
2

�
x21y2 + y

2
1y2 � x1y2 + x2y1 + 2y1

�
y1

r3(x) � 1

2
x1 (5.2)

r4(x) � �1
2
(x1y2 � x2y1) y1

r5(x) � 1

2
y1y2;

which are the coe¢ cients in the equation

5X
j=1

rj(x)pj(x) = 1:

Towards dimension six

Unfortunately, 16GB of memory was insu¢ cient to decide if the Gröbner basis corresponding

to the equations generated by the constellations f5; 3; 3; 3g, f5; 5; 4; 1g or f5; 5; 5; 5g contains the

element 1. The computation runs out of memory before the algorithm terminates. In general,

this is known to be a hard problem and the number of variables and equations even for these

�small�constellations is high. For example, the constellation f5; 5; 4; 1g requires the construction

of a Gröbner basis of the ideal generated by 61 equations of degree 4 in 90 real variables.

5.2 Using semide�nite programming

A powerful tool called semide�nite programming [145] has already been applied to problems in

quantum information theory. For example, a semide�nite program can be used to decide if a
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given mixed state, �, is entangled or not [53]. The success of semide�nite programmes in quantum

information and in other applied areas such as control theory and combinatorial optimization

stems from the fact that semide�nite problems are e¢ ciently solvable by a computer. In addition,

there is a powerful duality theorem which gives a certi�cate of the result. For example, when

applied to the separability problem, a semide�nite program decides if a given mixed state is

entangled and if it is, provides an entanglement witness. An entanglement witness is a hyperplane

separating the entangled state from the set of all separable states (see [81] for a review).

Another interesting application of semide�nite programing to problems about �nite dimen-

sional Hilbert spaces is to the compatibility problem. Here the question is to decide if there exists

a single state of the entire system given the states of all proper subsystems. Hall [75] has cast the

compatibility problem in the form a semide�nite program and used it to disprove a conjecture

of Butterley et al. [39]. The duel problem then outputs a certi�cate, called an incompatibility

witness, which proves that the reduced states are not compatible with any multipartite state.

A semide�nite program (SDP) is an algorithm for solving an optimization problem of the

form

minimise cTx

subject to F (x) � 0

where, c is a �xed vector and the variables, x, are constrained by the requirement that the

matrix F (x) � x1F1 + � � �+ xnFn �B be positive semide�nite [145]. It is a convex optimization

problem since the constants F1; : : : ; Fn are required to be symmetric n � n matrices. A linear

program, where the constrains have the form F (x) = diag(Ax� b); is an example of a SDP with

many important applications such as �nding optimal network �ows [21] and in problems from

economics [104]. A SDP can also be used to solve non-linear problems provided they are convex.

For example, the problem

minimise
(cTx)2

dTx

subject to Ax � b
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can be re-written as the SDP [145]

minimise t

subject to

0BBBB@
diag(Ax� b) 0 0

0 t cTx

0 cTx dTx

1CCCCA � 0:

The idea is to cast the existence of a complete set of MU bases in dimension six as a semi-

de�nite program. The dual problem would then provide a certi�cate of non-existence. Unfor-

tunately, the system of equations which de�ne MU constellations are not convex; they have the

form pj(x) = 0; where p is a fourth order polynomial. However, all is not lost; one may apply

methods from non-convex optimization such as those presented in [91, 133]. By relaxing the

non-convex constraints we can obtain an approximation to the original problem. Lasserre has

shown that one can de�ne a hierachy of semide�nite programs, each step of which is a better

approximation to the true solution [95]. This is called the method of relaxations. At each step in

the hierachy one can either be certain that a MU constellation does or does not exist or one has to

go on one more step of the computation. Each step is inevitably more computationally di¢ cult

than the previous step but the remarkable work of Lasserre [95] ensures that at some point in

the process the exact solution will be obtained. In other words, the hierachy is asymptotically

complete. A similar approach has already been successfully applied to the separability problem

[28, 29, 53, 54] and to other problems from quantum information [56].

The existence of an constellation satisfying the MU conditions can be expressed as an opti-

mization problem. This is achieved by choosing one of the polynomials, say p1(x) and �nding

the minimum value of (p1(x))2 subject to the constraints that the variables solve the other poly-

nomials p2(x); : : : ; pN (x). In other words, we wish to minimise (p1(x))2 in the feasible region

de�ned by the remaining polynomials. Lasserre�s relaxations allows us to �nd a lower bound on

the function (p1(x))2, BL(r); where r is the relaxation order. If at any point in the hierachy,

r = 2 : : : we �nd that BL(r) > 0, then no MU constellation exists in the relevant space.
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SDP Algorithm

We summarise the algorithm which determines whether a MU constellation fd�1; �; �:�gd; exists

in demission d as follows.

1. De�ne the constellation space and write down the equations which de�ne an MU constel-

lation.

2. Generate a SDP at the lowest possible level of relaxation (r = 2)

3. Solve the resulting SDP

4. If the global lower bound, BL(r), is positive then we are done otherwise repeat steps 2 and

3 at the next level of relaxation, r := r + 1.

Provided the constellation does not exist, the algorithm is guaranteed to �nd a positive lower

bound. As r increases, the global lower bounds BL(r) monotonically converge to the exact global

minimum of the function, BoptL . Note that if a MU constellation does exist, this algorithm will

�nd an explicit parametrisation up to a high level of numerical accuracy.

5.2.1 Testing the SDP algorithm

Dimension two

The �rst successful application of the algorithm is to prove that there are no more than three

MU bases in dimension two. We �nd a global lower bound, BL(r), on the polynomial

(p1(x))
2 =

�
x21 + y

2
1 � 1

�2
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subject to all of the other polynomials de�ned in Eq. (5.1) being equal to zero, pj(x) = 0 for

j = 2 : : : 5. In other words, we wish to solve the following minimization problem

min
�
x21 + y

2
1 � 1

�2
subject to p2(x) = 0

p3(x) = 0 (5.3)

p4(x) = 0

p5(x) = 0:

A MU constellation f14g2 exists if and only if all global lower bounds are not strictly positive,

BL(r) � 0 for all r.

r BL Nd F

2 1:4038� 10�8 69 15� 15
3 0:5359 209 35� 35
4 0:5359 494 70� 70

Table 5.1: Table of the lower bounds of the minimization problem de�ned in Eq. 5.3. The level
of relaxation is denoted by r: The labels Nd and F denote the number of decision variables and
the size of the semide�nite inequalities in the resulting SDP respectively.

Using the Matlab package gloptipoly3 [78] which is based on the theory presented in [96],

we have converted the problem (5.3) into a semide�nite program. The resulting SDP can then

be solved using the SeDuMi MatLab package developed by Strum et al. [138]. The results of the

computations at three levels of relaxation, r = 2; 3; 4, are presented in Table 5.1. We �nd that

even at the lowest level of relaxation r = 2, the polynomial (p1(x))2 has a positive lower bound,

BL(2) > 0; and hence four MU bases do not exist in dimension two. At r = 3, the lower bound

BL(3) is clearly distinct from zero and in fact is already guaranteed to equal the exact minimum

value of (p1(x))2.

The high level of numerical accuracy used by the optimization program SeDuMi allows us

to �nd an analytical expression for the lower bound, BoptL = (1 �
p
3)2. The third and fourth

columns of Table 5.1 show how the size of the SDP grows as we increase the level of relaxation.
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The number of decision variables, Nd, grows from 69 to 494 as the level of relaxation increases.

Similarly, the size of the semide�nite constraint F (x) � 0 is almost �ve times larger at r = 4

than at the lowest level of relaxation, r = 2: The algorithm proves to be very e¢ cient taking

only 0.11 seconds on a desktop PC to convert the original problem and solve the SDP for r = 2.

The time rises to 1.67 seconds when r = 4.

At the third and fourth levels of relaxation, the lower bound is optimal in that the function

(p1(x))
2 reaches the value BL: It is possible to output the parameter values, x; which achieves

this lower bound in the feasible region. There are two sets of vectors corresponding to the global

minimum value BoptL = BL(3) = BL(4) = (1�
p
3)2 given by

V� =

8><>:
0B@ 1

0

1CA ;
1p
2

0B@ 1

1

1CA ;
1p
2

0B@ 1

�i

1CA ;
1p
2

0B@ 1

�(1� i)

1CA
9>=>; ;

where � = (
p
3 � 1)=2. Interestingly, the two sets V+ and V� correspond to a set of three MU

bases plus one additional vector.

Towards dimension six

In Chapter 4, we proved that the Spectral matrix, S, cannot be part of a triple of MU bases

(see Appendix C.1 for a de�nition of S). An analysis of the vectors MU to both I and S reveals

that, in fact a stronger statement is true: there is no pair of orthogonal vectors fjvi; juig MU to

the bases I and S. This reduction in the number of vectors makes it a good candidate to test

our SDP algorithm. The original problem has 20 real variables which must satisfy 21 constraints

given by 4th order polynomials. At the lowest level of relaxation, r = 2, the equivalent SDP has

10; 625 decision variables which must satisfy 4; 851 linear constraints and semide�nite inequalities

of size 231 � 231. It took approximately three and a half hours and used 5.4G of memory to

solve the SDP. A global lower bound for the square of one of the polynomials de�ned by the MU

conditions is given by

BL(2) = 2:28� 10�8:
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Since BL(2) > 0 the algorithm con�rms the result of Chapter 4; no two orthonormal vectors can

be mutually unbiased to the pair fI; Sg. At the next level of relaxation, r = 3, the resulting

SDP is too large to solve; it has 230; 229 variables and 1771� 1771 semide�nite constraints so it

was not possible to improve this lower bound.

Unfortunately, we have been unable to construct the SDP for the constellation f53; 1g6 even

at the lowest level of relaxation. Judging by the increase in the number of decision variables

and the size of the semide�nite constraints seen in the previous examples, it is likely to be

very large. Solving the resulting SDP would seem optimistic. However, it maybe that some

clever programing could be applied, for example, making further use of techniques such as sparse

matrices.

5.3 An exhaustive search with error bounds

Jaming et al. have shown that the Fourier family cannot be a member of a quadruple of MU

bases [84]. The restriction to consider sets of the form fI; F (x1; x2);B2;B3g; for any bases B2

and B3; is in order to reduce the computational complexity rather than any inherent restriction

on their method. Following an argument similar to [84], we now explain how their idea could be

used to obtain a general no-go theorem in dimension six.

We assume that there exists a MU constellation C � fd�1; �; �; �gd in the constellation space

Cd[d�1; �; �; �] and attempt to �nd a contradiction. As explained in Chapter 4, any constellation

can be parametrised by pd phases (cf. Eq. (4.8)) so there exist phases � = (�1; : : : ; �pd)
T

which parametrise C. The �rst step is to approximate this MU constellation by the closest

constellation in Cd whose elements are N th roots of unity only. The approximation is achieved by

partitioning the interval [0; 2�) into N subintervals modulo 2�; Ij = [(2j � 1)=2N; (2j + 1)=2N)

for j = 0; : : : ; N: If the phase �k lies in the interval Ij ; we approximate it by the mid-point

of Ij ; �k ! e�k � 2�j=N: The mapping � ! e�; thus sends the MU constellation C to a new

constellation, eC; whose vectors do not necessarily satisfy the MU conditions (4.1).
The approximation of the MU constellation C by eC; can be controlled by increasing the value

ofN . The key step forward made by Jaming et al. [84] is to �nd bounds on this accuracy. In order
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to obtain a contradiction, one can exhaustively search the discrete space of constellations whose

elements are given by N th roots of unity only. For a given N , if we �nd that no constellations eC;
satisfy the error bounds then it follows that there are no MU constellations, C; in the space Cd.

If N is small, the search is easy to perform as not many points need to be checked. However, for

small values of N , the error bounds are loose and so it is likely that no violation will be found.

Jaming et al. have used this method to exclude the entire Fourier family from a complete

set of MU bases. This was achieved by discretising the fundamental region of the Fourier family

using N = 180 and two other complete bases using N 0 = 19. Interestingly, the non-existence of a

�nite projective plane was shown by an exhaustive search [94]. Since the existence of a complete

set of MU bases shares some properties with the existence of �nite projective planes [125] this

appears a promising avenue.



CHAPTER 6

Quantum key distribution highly sensitive to eavesdropping

When attempting to implement a QKD protocol a key factor in determining its practical success

is the error rate introduced by Eve: if it is small, her presence may be masked by the system

noise. This error rate thus determines the level of technology required to implement the protocol

and the distance over which Alice and Bob can establish a secure key. We will present a protocol

that extends the one proposed by Khan et al. [87]. The new approach ensures that eavesdropping

causes a large error rate and therefore, from an experimental point of view, o¤ers a modi�cation

that could improve the implementation of existing QKD technology.

The new protocol allows Alice and Bob a great deal of freedom: the elements of the key that

they form can be taken from an alphabet of arbitrary size, and encoded using any bases of Cd. It

is equivalent to the protocol presented in [87] when Alice and Bob use a two-letter alphabet and

corresponds to the SARG protocol [126] when in addition, they use two-dimensional quantum

systems.

In order to better understand the freedom in the choice of bases used by all three parties,

Alice, Bob and Eve, we will introduce a measure of distance between two bases and show how

this relates to the error rate. It gives a simple interpretation of the optimal setup for all parties:

Alice and Bob should use a set of c bases, S, that are as far apart as possible; whilst Eve should

89
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choose her basis, E , so it minimises the average distance between E and the elements of S. The

conclusion then is that for the legitimate parties, the optimal settings correspond to mutually

unbiased bases. MU bases have been used before in other QKD protocols [17, 25, 44]; making

use of the fact that a measurement in one of the bases reveals no information about the state

in all other bases.

The chapter is organised as follows. In Section 6.1, we will introduce a key distribution

protocol that encodes a c-letter alphabet using quantum systems of dimension d: In Sec 6.2, we

will examine the e¤ect of an eavesdropper by calculating two error rates that allow the legitimate

parties to detect Eve�s intercept-and-resend attack. Section 6.3 will show how one of these error

rates can be understood as a measure of the distance between the bases used by all three parties.

We will consider some examples of speci�c sets of bases in Section 6.4. In Section 6.5, we

compare this new protocol to the six-state protocol in an experimental setting and consider a

general method of implementing the protocol for any choice of c and d. Finally, we summarise the

results and compare the new protocol to existing quantum key distribution methods in Section

6.6.

6.1 General form of the protocol

In quantum cryptography, there are two legitimate parties who wish to establish a shared se-

quence of letters from an alphabet such as a string of zeros and ones. Typically, these two parties

have di¤erent roles: Alice prepares and sends quantum states, and Bob performs measurements

on the states he receives and records the outcomes. At the end of this quantum part of the

protocol, the two parties then exchange information via a classical communication channel. A

third party, Eve, attempts to gain information about some or all of the shared key without being

detected. Eve can perform any operation allowed by quantum mechanics and can listen in on the

classical part of the communication without being detected. We also assume that she has access

to a high level of technology so that she can hide behind any system noise by replacing parts

of the implementation by better components. The aim is to �nd protocols and implementations

such that Eve is easily detected.
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We begin by presenting a new protocol that enables Alice and Bob to share a key and then

discuss the e¤ect Eve has on the states received by Bob. We will assume that Eve uses an

intercept-and-resend attack and calculate error rates that allow the legitimate parties to detect

her presence. There are other more sophisticated forms of attack available to Eve but we will

not analyse them here; we simply remark that this form of attack provides a useful guide to the

security of the protocol against more general attacks.

We �rst present the highly-sensitive-to-eavesdropping (HSE) protocol in its general form;

encoding an alphabet, A, containing c � jAj elements using d dimensional quantum systems. In

Section 6.1.1, we give an explicit example of the protocol when used to encode a 4-letter alphabet,

say f0; 1; 2; 3g; using 3-dimensional quantum systems. A further example is provided in Section

6.5.1 where we discus the case of c = 3 and d = 2 in an experimental setting.

The HSE-Protocol Alice and Bob agree publicly on a method of encoding the c elements of

A using states in Cd by choosing bases Bx = fj xi i 2 Cd : i = 1 : : : dg for all x 2 A: They are

free to choose any bases provided they are di¤erent (in the sense that no two bases have any

state in common). We will discuss the optimum choice in Section 6.3. Alice generates a random

string, S, of letters from A that form the raw data she will attempt to share with Bob. For each

element, x 2 S, Alice and Bob perform the following procedure.

� Alice generates c � 1 random numbers, a � (a1; : : : ac�1), between 1 and d: The numbers

a serve as indices for states chosen from basis Bx as she now prepares and sends the c� 1

states j xaki 2 B
x, k = 1 : : : c� 1, to Bob.

� Bob chooses one of the letters of A and uses the remaining c � 1 letters, x1; : : : ; xc�1.

When he receives the kth state, j xaki; he measures it in the bases B
xk and records the

measurement outcomes, b � (b1; : : : bc�1):

� After Bob�s measurements, Alice publicly announces the indices a keeping her choice of

basis a secret. Using this information, Bob is (sometimes) able to deduce which basis Alice

used and therefore to determine the element of S.
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� Bob tells Alice for which elements he was able to determine x. Unsuccessful attempts are

discarded, leaving only the shared key.

An element x 2 S is successfully shared between Alice and Bob when for every state j xaki 2

Bx, k = 1 : : : c � 1; the index measured by Bob does not equal the index announced by Alice,

ak 6= bk for all k: If this happens Bob knows that none of his measurements were in basis Bx

and so his missing basis corresponds to the correct letter of the string, x: If Bob�s measurement

does equal the announced index for any k, he does not know if this was because he measured in

the same basis as Alice or because of the non-zero overlap between vectors from di¤erent bases.

This element of the string then fails.

The protocol presented in [87] is then a special case of this protocol applied to a two-letter

alphabet f0; 1g so that Alice needs only to send one state for each letter of S. Khan et al.�s

protocol is interesting because it has a high error rate that approaches 50% for higher dimensional

quantum systems if Alice and Bob use two mutually unbiased bases. Starting with the probability

that the transmission of the element x is successful, we will analyse the performance of the

general protocol in the following sections. We �nd that this general protocol has an error rate

that approaches 100% when Alice and Bob use high-dimensional systems and a complete set of

(d+1) mutually unbiased bases. In Section 6.3 we will use a natural measure of distance between

bases to argue that the optimal settings for Alice and Bob are indeed mutually unbiased bases.

6.1.1 A four-letter alphabet encoded using qutrits

We now make the protocol explicit when applied to a four-letter alphabet, say A = f0; 1; 2; 3g,

encoded using three-dimensional quantum systems. Note that we can think of 0; 1; 2; 3 as rep-

resenting 00, 01, 10, 11 and therefore the key that Alice and Bob share as pairs of bits, for

example, the string S = 213101 becomes 100111010001; this makes it easier to compare the bit

e¢ ciency of di¤erent protocols. We examine the case where Alice and Bob encode A using the
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bases de�ned in Eq. (1.3),

B0 '

0BBBB@
1 0 0

0 1 0

0 0 1

1CCCCA ;B1 ' 1p
3

0BBBB@
1 1 1

1 ! !2

1 !2 !

1CCCCA ;

B2 ' 1p
3

0BBBB@
1 1 1

!2 1 !

!2 ! 1

1CCCCA ;B3 ' 1p
3

0BBBB@
1 1 1

! !2 1

! 1 !2

1CCCCA ; (6.1)

where the columns of the matrix Bx correspond to the vectors j xi i; i = 1; 2; 3 of each basis.

In order to send the �rst element of the string, say x = 2, Alice generates three random

numbers a1; a2; a3 2 f1; 2; 3g and sends the states j 2a1i, j 
2
a2i and j 

2
a3i. Bob now measures

in three di¤erent, randomly chosen bases resulting in the measurement outcomes b1; b2 and b3:

The element x is successfully transmitted if and only if a1 6= b1; a2 6= b2 and a3 6= b3 since if

this happens, Bob can be certain that he did not use the same basis as Alice. Bob must have

performed measurements in the bases B0; B1 and B3 so that his missing basis corresponds to the

correct element x = 2: The probability that an element is shared for each run of the protocol is

given by

Rs �
1

4

�
1� 1

3

�3
=
2

27
;

since there is a 1=4 chance that Bob does not use B2 and a 2=3 chance that he does not measure

index ak when using basis Bx; x 6= 2; for k = 1 : : : 3:

Each element of the string represents two bits and so, on average, in order to share one bit of

information Alice and Bob need to perform this procedure 27=4 � 7 times so that Alice has to

send a total of 3� 27=4 � 20:3 states. This is relatively high, for example in the BB84 protocol,

Alice needs to send an average of only two states in order to successfully transmit one bit of

information. However, as we will see in Sec 6.2, the presence of an eavesdropper causes a much

higher error rate. The present protocol therefore remains secure even if there is a very high level

of system noise.
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6.1.2 Probability of success

Having calculated the success rate for the protocol in the case of a four-letter alphabet encoded

using a speci�c choice of bases of C3, we now consider the general probability of success. The

protocol results in a letter, x; forming part of the shared key whenever the indices measured by

Bob are all di¤erent from those announced by Alice, that is whenever ak 6= bk for k = 1; : : : ; c�1:

For each state, indexed by k; Bob makes a measurement in basis Bxk so that the probability of

measuring index ak is given by

qk � prob(ak = bk) =
��h xkak j xaki��2 :

Hence the success rate of the protocol is

Rs �
1

c

c�1Y
k=1

(1� qk); (6.2)

the chance that none of the c � 1 bases chosen by Bob equal the one selected by Alice, Bx;

multiplied by the probability of never measuring the same index even though all of Bob�s mea-

surements are di¤erent to Bx: In order to get a success rate per bit of information shared between

Alice and Bob, called the bit transmission rate,

Rt � log2(c)Rs; (6.3)

we multiply Rs by log2(c).

This general formula depends on the choice of bases used to encode the alphabet, and in

particular the modulus of the overlap between states from di¤erent bases. We will consider

di¤erent bases used in the protocol in Section 6.4 and compare the bit transmission rate, Rt;

with existing QKD protocols in the conclusion.
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6.2 Error rate introduced by an eavesdropper

We have seen how the protocol allows Alice and Bob to create a shared key, we now consider the

e¤ect of an eavesdropper. In particular, we analyse the e¤ect of an intercept-and-resend attack.

That is, for each state sent by Alice, an eavesdropper performs a measurement on the system

and then prepares and sends a new state to Bob. In e¤ect, we can imagine the attack as being

performed in two stages. Eve measures the state of the system and then discards it completely.

Using the classical information corresponding to her measurement outcome, she then prepares a

new system in a state that is as �close as possible�to the original.

In general, Eve is free to use di¤erent measurements for each state sent by Alice. She can also

send Bob a system in any state regardless of the measurement outcome. However, since the states

j xaki have indices, ak; that are uniformly distributed, each subsequent measurement made by Eve

is independent from the previous measurement outcomes. Therefore, there is no loss of generality

in assuming that Eve always uses the same measurement basis, E = fjeii 2 Cd; i = 1 : : : dg;

corresponding to her optimal one. In addition, we assume that Eve sends the state corresponding

to her measurement outcome since it is likely to be the state closest to j xaki:

Alice and Bob can detect Eve�s attack in one of two di¤erent ways; by detecting a change in

the index of the state received by Bob, called the index transmission error rate (ITER); and by

errors in the �nal shared key, called the quantum bit error rate (QBER). We begin by considering

the ITER, which can be detected whenever Alice and Bob use the same bases, Bx; and has been

used in other QKD protocols to detect an eavesdropper [87, 14, 13].

6.2.1 The index transmission error rate

Suppose Alice sends the state j xi i, Bob can detect Eve if he happens to perform a measurement

in basis Bx and his measurement outcome, j, does not equal i. This occurs with probability

pi(x; x), where we de�ne

pi(x; y) �
dX
k=1

dX
j=1
j 6=i

jh xi jekij2jhekj 
y
j ij

2; (6.4)
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to be the probability that the index i changes when Alice prepares a state in basis Bx and Bob

measures the system he receives in basis By. Since for any y and k, Bob measures one of the

possible outcomes with certainty,
dX
j=1

jhekj yj ij
2 = 1; (6.5)

Eq. (6.4) can be written as

pi(x; y) = 1�
dX
k=1

jh xi jekij2jhekj 
y
i ij

2;

one minus the probability that Bob measures a state with index i.

The rate at which Alice and Bob can detect an index transmission error, RIT ; is calculated

by averaging pi(x; x) over all indices, i; and letters of the alphabet, x 2 A. That is,

RIT � 1

cd

c�1X
x=0

dX
i=1

pi(x; x)

= 1� 1

cd

c�1X
x=0

dX
i=1

dX
k=1

jh xi jekij4: (6.6)

As with the probability of success, RIT depends on the choice of bases. We will see how this

measure of the sensitivity of the protocol to eavesdropping can be understood as a measure of

distance between the bases used by all three parties in Section 6.3. Then in Section 6.4 we will

consider some interesting examples of speci�c bases.

6.2.2 The quantum bit error rate

In addition to the index transmission error rate, Alice and Bob can detect an eavesdropper by

calculating the error rate of the �nal shared key. Eve�s intercept-and-resend attack may cause

a change in the index in such a way that Bob adds an incorrect letter to his key. Just as in

the original BB84 protocol, the legitimate parties can detect quantum bit errors by selecting a

random subset of the key and openly comparing its elements.

To see how an error in the key is created, suppose Alice attempts to share the letter x 2 A.

If none of the indices measured by Bob equal the indices announced by Alice, ak 6= bk for all



6.2. Error rate introduced by an eavesdropper 97

k = 1 : : : c� 1, Alice adds x to her key and Bob adds ex. The letters, x and ex, correctly coincide
provided one of Bob�s measurements was not in the basis Bx since he adds the letter corresponding

to his missing basis. If however, Bob did use Bx, he adds the letter ex 6= x to his key and there

is an error in the shared key. Therefore, the proportion of key elements that contain an error, is

given by the quantum bit error rate

RQB �
c� 1
c

RBE
RK

; (6.7)

where: the factor c�1c is the probability that Bob uses the same basis as Alice in one of his c� 1

measurements; RBE is the rate at which Bob adds incorrect letters to his key given that he used

the same basis as Alice, called Bob�s error rate; and RK is the average probability that a bit is

added to the key regardless of Bob�s choice of basis, called the key rate.

We now calculate the terms in Eq. (6.7) starting with RK . Given any vector of indices,

a = (a1; : : : ; ac�1), chosen by Alice and bases with indices y = (y1; : : : ; yc�1) chosen by Bob, the

probability that ak 6= bk for all k = 1 : : : c� 1 is given by

c�1Y
k=1

pak(x; yk): (6.8)

where pi(x; y) has been de�ned in Eq. (6.4). Alice uses vectors from the set I � f(a1; : : : ; ac�1) :

ak 2 Zdg since she is free to repeat an index. Bob, however is more restricted, he must use each

basis only once and therefore, choose a vector

y 2Y � f(y1; : : : ; yc�1) : yk 2 A and yk 6= yl for all k; lg:

Hence, RK is the average over all bases Bx and elements of the sets I and Y;

RK =
1

cjY jjIj

c�1X
x=0

X
y2Y

X
a2I

c�1Y
k=1

pak(x; yk); (6.9)

where jY j = c! and jIj = dc�1:

The numerator in Eq. (6.7), RBE ; is the average probability that Bob adds an incorrect
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letter to his key. Such a bit error occurs when Bob uses the same basis as Alice and measures

indices that are all di¤erent to those announced by Alice. To help calculate Bob�s error rate, we

de�ne the set Z to be

Z � f(x; z2; : : : ; zc�1) : zk 2 A, zk 6= x and zk 6= zl for all k; lg;

that is, the �rst component of every z 2 Z corresponds to the letter x used by Alice to encode

the states. Therefore, Bob�s error rate is given by

RBE =
1

cjZjjIj

c�1X
x=0

X
z2Z

X
a2I

c�1Y
k=1

pak(x; zk); (6.10)

where we average over all outcomes that correspond to Bob adding an incorrect letter to his key

and the set Z contains jZj = (c� 1)! elements.

The rather complicated formula for RQB given by Eqns. (6.7), (6.9) and (6.10) has a simple

form when Alice and Bob use only two bases in the protocol. The simpli�cation is due to the

fact that when c = 2, Bob�s error rate RBE = RIT and hence

RQB =
RIT
2RK

for c = 2;

corresponding to the QBER obtained in [87]: We will also see that the general form of RQB

simpli�es when applied to a speci�c choice of bases in Section 6.4. Before doing so, we show how

the error rate RIT relates to a natural measure of distance between the bases of Cd used by the

three parties.

6.3 Distance between bases

In this section we consider the bases used in the QKD protocol as points in a higher-dimensional

space. This setting allows us to understand the optimal strategy for the legitimate parties in

terms of a natural measure of distance between two bases. We follow an approach similar to

that presented in [16]; here, however, we will consider an alternative choice of origin so that the
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resulting space is an a¢ ne space rather than a vector space.

We begin by associating to every normalised vector, j i 2 Cd, the operator

j i !  = j ih j

that lives in a d2�1 dimensional space consisting of Hermitian operators of trace one. Equipped

with the inner product

 � � =Tr �;

this is an a¢ ne space in which a basis B = fj 1i; j 2i; : : : ; j dig of Cd is identi�ed with a set

of operators f 1; 2; : : : ; dg spanning a d� 1 dimensional plane. To de�ne a distance between

two such planes, we perform a similar procedure and embed them in an even larger space so that

to each basis B we associate the matrix

	 =
1p
d
[ 1 2 : : : d]

266666664

 T1

 T2
...

 Td

377777775
;

that projects onto the plane spanned by the basis vectors f 1; 2; : : : dg: Acting on an arbitrary

pure state, �; the operator 	 describes the action of performing a measurement in basis B since

the non-zero elements of 	� are jh ij�ij2 i for i = 1 : : : d:

The matrices 	 are elements of a (d2�1)2 dimensional space (called an a¢ ne Grassmannian),

in which a natural measure of distance between two points, � and 	; is the chordal Grassmannian

distance

D2(�;	) = 1� Tr�	: (6.11)
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Applying this distance measure to two points, � and 	; associated with two bases reads

D2(�;	) = 1� 1
d
Tr

8>>>>>>><>>>>>>>:
[ 1 2 : : : d]

266666664

 T1

 T2
...

 Td

377777775
['1'2 : : :'d]

266666664

'T1

'T2
...

'Td

377777775

9>>>>>>>=>>>>>>>;
= 1� 1

d

dX
i=1

dX
j=1

( i�'j)2

= 1� 1
d

dX
i=1

dX
j=1

��h ij'ji��4 :
Hence the average distance, Daverage, between Eve�s basis E and the bases chosen by Alice and

Bob, Bx; x = 0 : : : c� 1; is given by

Daverage =
1

c

c�1X
x=0

D2(Bx; E)

= 1� 1

cd

c�1X
x=0

dX
i=1

dX
k=1

jhekj xj ij4 (6.12)

= RIT ;

the index transmission error rate caused by Eve�s intercept-and-resend attack.

This distance measure provides an intuitive feel as to how the three parties in the protocol

should behave: Alice and Bob aim to maximize the error rate RIT by separating their bases as

much as possible; whilst Eve chooses a basis that minimises the average distance between all of

the bases chosen by Alice and Bob. We will begin the next section by making these statements

more precise and �nd that they lead to the conclusion that Alice and Bob should use a complete

set of mutually unbiased bases.

6.4 Optimal choice of bases

In this section we consider speci�c choices of bases used by Alice and Bob in the HSE-protocol.

The protocol is entirely general and any set of bases can be used to encode the alphabet. There
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are likely to be many considerations in choosing a suitable set such as the ease of preparing

and measuring states in each of the prescribed bases. In this section we will not worry about

experimental di¢ culties but simply consider the optimal choice from a theoretical perspective.

Motivated by the distance measure in Section 6.3 we begin by considering a set of mutually

unbiased (MU) bases.

6.4.1 Mutually unbiased bases

The distance measure introduced in Eq. (6.11) has the following property. The distance between

any two bases � and 	; is bounded by

0 � D2(�;	) � 1� 1
d
;

where the lower bound is obtained when � and 	 span the same subspace and the upper bound

is realised when they are mutually unbiased. Since Alice and Bob wish to maximize the average

distance between their bases, a natural strategy is to use as many MU bases as possible. They

cannot use more than a complete set of d+1, since it is impossible to �t any more d�1 dimensional

planes with the correct overlap into a space of dimension d2 + 1 [16].

We now turn our attention to the optimal strategy of an eavesdropper. As before, we assume

that she uses an intercept-and-resend attack and following the arguments of Section 6.2, only uses

one basis corresponding to her optimal choice. Eve�s optimal strategy is essentially a minimisation

problem subject to some constraints. The functions she wishes to minimise are the error rates

RQB and RIT ; and the constraints come from the fact that Eve must use a set of d orthonormal

vectors. By approaching this problem numerically, Khan et. al. provide evidence that for c = 2,

the index transmission error rate has a global minimum when Eve�s basis spans the same subspace

as one of the bases chosen by Alice and Bob [87]. In other words, Eve�s optimal strategy is to

simply pick one of the bases used by the legitimate parties.

Eve has many alternative eavesdropping strategies at her disposal. For example, for the case

when d = c = 2, Eve could use the so-called Breidbart basis that is halfway between the two

bases used by the legitimate parties [40]. In the BB84 protocol, such a strategy has been shown
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to increase the chance that Eve reads the bit correctly although it does not reduce her chance of

being detected [18]. However, when the legitimate parties use a complete set of MU bases, there

is no basis that is �halfway�between all of them. There are many issues concerned with �nding

the optimal strategy of an eavesdropper [58, 82, 67, 12]. In the following, we will assume that

Eve picks one of the bases used by the legitimate parties and consider the protocol when Alice

and Bob use a set of c MU bases.

There is no loss of generality in assuming that Eve�s basis is given by E � fjeii 2 Cd; i =

1 : : : dg = B0. Under this assumption, the distance between the bases used by all three parties is

D2(E;Bx) =

8><>: 0 if x = 0

1� 1
d if x 6= 0;

zero if Bx corresponds to E or maximal otherwise. Hence, the index transmission error rate for

a set of c MU bases is given by

RMUB
IT =

1

c

c�1X
x=1

�
1� 1

d

�
=

(c� 1)(d� 1)
cd

: (6.13)

We see that the error rate is an increasing function of both c and d and that Eq. (6.13) is

indeed maximized if Alice and Bob use a complete set of MU bases. In which case, the index

transmission error rate of the protocol equals

RMUB
IT =

d� 1
d+ 1

and therefore tends to 100% as d tends to in�nity.

The index transmission error rate introduced by an intercept-and-resend attack in Eq. (6.13)

is equal to the quantum bit error rate of the BKB01-protocol of Bourennane et al. [25]. It is

a natural generalisation of the BB84 protocol and has been further analysed in [26, 44]. The

BKB01-protocol, the d letters of an alphabet are encoded into the indices of one of c mutually
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unbiased bases. Alice sends a state j axi; where x = 1 : : : d and a = 0 : : : c � 1; and after Bob�s

measurement, announces the basis, a, which she used to prepare the states. Hence, whenever

Bob performs a measurement in the same basis Bb; they share the letter x 2 A. Note that

in contrast to the HSE-protocol, the roles of the bases labels and indices are reversed. In the

conclusion, the error rates and the number of states needed to successfully share one bit of the

key for the BKB01 protocol are compared to the HSE-protocol.

The quantum bit error rate, RQB, given in Eq. (6.7), also simpli�es signi�cantly when Alice

and Bob use a set of c MU bases and we assume that Eve�s basis equals E = B0; say. Under

these assumptions, the probability that an index changes is zero if all three parties use the same

bases and one minus the probability of measuring the correct index if any one of the parties uses

a di¤erent basis

pi(x; y) =

8><>: 0 if (x; y) = (0; 0)

1� 1
d if (x; y) 6= (0; 0):

Therefore, the product of probabilities given in Eq. (6.8),

c�1Y
k=1

pak(x; yk);

depends solely on whether any of the terms correspond to (x; yk) = (0; 0):

To calculate the number of non-zero terms in RBE ; given in Eq. (6.10), note that one of

Bob�s bases is always equal to Bx and therefore (x; yk) = (0; 0) for some k, if and only if x = 0:

Hence, the proportion of non-zero terms in Eq. (6.10) is equal to (1� 1=c). Similarly, when the

vectors y 2Y , the number of non-zero terms in Eq. (6.9) is
�
1� 1

c +
1
c2

�
jY jjIjc, so that Bob�s

error rate and the key rate are given by

RBE =

�
1� 1

c

��
1� 1

d

�c�1
RK =

�
1� 1

c
+
1

c2

��
1� 1

d

�c�1
;
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respectively. Therefore, for a set of c mutually unbiased bases, the error rate RQB is given by

RMUB
QB =

�
1� 1

c

�2�
1� 1

c
+
1

c2

��1
(6.14)

which, surprisingly, does not depend on the dimension of the quantum systems used in the

protocol. However, it is of course limited by the number of MU bases that can be constructed

in a given dimension c � d + 1 and may also be limited by the conjectured non-existence of

complete sets of MU bases in composite dimensions.

Whilst constructions of complete sets of MU bases are known for prime power dimensions,

and are well understood in low dimensions [34] their existence is an open problem for composite

dimensions: In fact, there is considerable numerical [38, 32] and analytical [33, 84] evidence

to suggest that there are no more than three MU bases in dimension six. Hence restricting

the measurements to MU bases could mean that the protocol is more e¢ cient in prime power

dimensions than in composite dimensions, for example, using six MU bases in dimension �ve the

error rate RIT is 2=3 � 66:7% were as if only three MU bases are available in dimension six the

maximum error rate is 5=9 � 55:6%: The situation for the QBER is even more pronounced since

RMUB
QB depends only on the number of MU bases available and not on the dimension. As such

it would be better to use quantum systems of dimension three since it is possible to construct

four MU bases than to use systems of dimension d = 6; for which we only know how to construct

three bases with the required overlap.

6.4.2 Approximate mutually unbiased bases

It is not clear that a complete set of d + 1 mutually unbiased bases exists in all dimensions.

Therefore, in order to consider the limiting behaviour of the protocol, we consider an alternative

choice of bases for which constructions are known in all dimensions. As with a complete set of

MU bases, they have the property that the error rate RIT tends to 100% as the dimension of

the quantum systems used by Alice and Bob increases.

Two bases Bx = fj x1i; : : : ; j xdig and By = fj x1i; : : : ; j xdig, are mutually unbiased when
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their elements satisfy the uniform modulus condition

jh xi j 
y
j ij = �; (6.15)

for all i; j = 1; : : : ; d . In �nite dimensions, this condition implies that � = 1=
p
d but one might

ask if there are sets of bases which almost satisfy Eq. (6.15)? Klappenecker et al. [90] de�ne

approximate mutually unbiased bases (abbreviated as AMU bases) which have the property that

the modulus of the inner product between vectors from di¤erent bases is small. In particular

they de�ne a set of d2 bases such that

jh xi j 
y
j ij �

2 +O(d�1=10)p
d

for x 6= y;

and for all i; j, where f(d) = O(d�1=10) means that there exists a constant K > 0 such that

jf(d)j � Kd�1=10 for all d � 1: Hence if Alice and Bob use all d2 bases, and Eve uses one of

the bases in her intercept-and-resend attack, the index transmission error rate is bounded from

below by

RAMUB
IT � 1� 1

d3

h
d+ (d2 � 1)(2 +Kd�1=10)4

i
: (6.16)

The unknown constant in Eq. (6.16) prevents us from saying anything in speci�c dimensions,

but we can still consider the protocol when Alice and Bob use a set of AMU bases in the limit

as d tends to in�nity. We see that such a set of approximate MU bases de�ned so that they

minimise the value of � in Eq. (6.15) and therefore maximise the distance measure de�ned by

Eq. (6.12) are good at detecting the eavesdropping by Eve. Even though a complete set of MU

bases may not exist in every dimension, we can at least de�ne a set of AMU bases that do exist

in all dimensions and for which the ITER tends to 100%.

6.5 Implementations

In this section, we present a speci�c example of how Alice and Bob can use the HSE-protocol to

form a shared key. We also calculate the quantum bit and index transmission error rates that
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allow Alice and Bob to detect an eavesdropper for this choice of c and d. Finally, we discuss

a practical implementation of the protocol that could be used for any values of c and d using

photon states and multiport beam splitters.

6.5.1 An alternative �six-state�protocol using qubits

In the six-state protocol [12, 35], Alice prepares and sends one of six states corresponding to

the points on the Bloch ball (�1; 0; 0); (0;�1; 0) and (0; 0;�1). These six states form three MU

bases B0, B1, and B2 corresponding to

fj0i; j1ig; f 1p
2
(j0i+ j1i); 1p

2
(j0i � j1i)g; and f 1p

2
(j0i+ ij1i); 1p

2
(j0i � ij1i)g

respectively. After receiving a state from Alice, Bob performs a measurement in one of the three

bases and records his outcome. Alice announces which of the bases she used to prepare the state

and if Bob used the same basis they are able to share an element of the key. When the bases

used by Alice and Bob coincide, Bob can correctly determine the letter because his measurement

outcome must correspond to the state prepared by Alice (in the absence of an eavesdropper).

Using the polarization of photons to encode the states, Enzer et. al. have implemented the

six-state protocol experimentally [60]. The three bases in their scheme correspond to horizon-

tal/vertical (H/V), diagonal +45�/�45� (D/d) and left/right circular (L/R) polarization; the

three states H,D and L encoding a zero and V,d,R a one. By simulating an intercept-and-resend

attack Enzer et. al. �nd a bit error rate of 34:0� 1:4% in agreement with the theoretical value

of 33:3%.

In order to implement the HSE-protocol, the six-state scheme presented in [60] requires only

a slight modi�cation. The preparation and measurement of the states remains the same; the

di¤erence being the method of encoding the alphabet. Here, we will use the polarizations H/V

to encode a zero, D/d a one and L/R a two. That is, our scheme uses a three letter alphabet

A = f0; 1; 2g encoded into the choice of basis; B0, B1, or B2: The indices of the states are either

zero or one corresponding to H,D, and L or V,d and R respectively.

As before, Alice chooses one of the bases B0, B1, or B2 but this time sends two states. That is,
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suppose Alice chooses to encode the bits in the H/V basis, then she sends either HH, HV, VH or

VV. Bob now makes a measurement in two di¤erent bases and records the indices corresponding

to his outcomes. Alice announces the indices, either 00, 01, 10 or 11, equal to her choice of

prepared states. She does not announce the basis. Using the indices announced by Alice and his

measurement outcomes, Bob hopes to determine the basis used by Alice.

An element of the key is shared whenever Bob�s indices both di¤er from the indices announced

by Alice. For example, if Alice sends states with indices 01, an element of the key is shared if

and only if Bob�s measurement outcomes are 10. For this scheme, the average rate at which a

bits are shared between Alice and Bob is given by

Rt = log2(3)
1

3

�
1� 1

2

�2
� 13:2%;

since the probability that Bob does not use the same basis as Alice in both of his measurements

is 1=3 and there is a 1=2 chance that he does not measure the announced index when using a

di¤erent basis. The pre-factor of log2(3) is due to the fact that when an element of the key is

shared it corresponds to an element of of a three letter alphabet.

Whilst the bit rate is 13:2%, compared to 33% for the six-state protocol, the number of sates

Alice must send in order to share one bit of information is much higher than in the six-state

protocol. For each attempt at sharing a letter of the alphabet, Alice must send two states.

Therefore the average number of states, Ns = 2� 100=13:2 � 15:2 which is �ve times more than

the 3 states needed to share one bit when implementing the six-state protocol.

We �nd that although this protocol is more expensive than the six-state protocol, it is also

more sensitive to an eavesdropper. The quantum bit error rate of an intercept-and-resend attack

of this new protocol is given by

RMUB
QB =

�
1� 1

3

�2�
1� 1

3
+
1

32

��1
=
4

7
� 57:1%;

following Eq. (6.14); representing a signi�cant improvement over the 33:3% error rate of the six-

state protocol. We have used the same six states as the six-state protocol but this new method
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of encoding the letters of an alphabet is more sensitive to an intercept-and-resend attack.

6.5.2 Possible implementation using multiport beam splitters

A recent experiment has implemented quantum state tomography using a complete set of MU

bases in dimension d = 4 [1]. It demonstrates that tomography with MU bases is not only

optimal in theory, but is more e¢ cient than standard measurement strategies in practice. The

scheme presented in [1] therefore provides a way of measuring two-qubit photon states in one

of �ve mutually unbiased bases in dimension four. However, to implement the QKD presented

in Section 6.1 a set of c MU bases, we also need to reliably prepare the relevant states. Such a

scheme for c = 2 MU bases has been provided by Khan et al. [87] and can be extended to any

number of mutually unbiased bases. This follows from the fact that any discrete unitary operator

can be realised using a series of beam splitters and mirrors [120]. These so called multiport beam

splitters are symmetric when they correspond to MU bases [153].

The protocol could be implemented as follows. Alice uses a single photon source such as a

spontaneous parametric down conversion crystal. She now chooses one of c� 1 multiport beam

splitters, or to bypass the beam splitters altogether. This gives one of the c bases labeled by

the letters of A required for the protocol. Each vector j xi i of her chosen basis, Bx, is encoded

into the output paths of the corresponding beam splitter by sending a single photon into the

input port i. Bob uses the same beam splitters in order to measure the state of each photon he

receives. He does this by �rst sending it through one of the beam splitters (or bypasses them to

measure B0) and then detecting it in one of the d output ports. When c = 2; a natural choice

for the two MU bases is to use the standard basis B0 = fjii; i = 0 : : : d � 1g and the so called

Fourier matrix which has entries Fij = !ij=
p
d; for i; j = 0 : : : d� 1 where ! = exp(2�i=d) is the

dth root of unity (which for d = 3 is given by B1 in Eq. (6.1)). This scheme corresponds to the

one presented in [87] and could be realised using Bell multiport beam splitters [101].
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6.6 Comparison with other QKD protocols

We have presented a novel protocol that enables two parties to generate a shared key. It is special

in that the presence of an eavesdropper who uses an intercept-and-resend attack creates a high

error rate. This has the practical advantage of allowing Alice and Bob to detect Eve even if the

system noise in their implementation is high. We have analysed two error rates that allow for

the detection of an eavesdropper; the index transmission error rate (ITER) and the quantum bit

error rate (QBER). Both of these measures of the sensitivity to eavesdropping tend to one as

the parties use more bases to encode the elements of the key and, in the case of the ITER, if

they use higher dimensional systems.

Protocol (d; c) RQB RIT Rt Ns
BB84 (2; 2) 25:0% n/a 50:0% 2.0
KMB09 (2; 2) 33:3% 25:5% 25:0% 4.0

BKB01 (6-state) (2; 3) 33:3% n/a 33:3% 3.0
HSE (2; 3) 57:1% 33:3% 13:2% 15.1

BKB01 (3; 2) 33:3% n/a 79:2% 1.3
KMB09 (3; 2) 33:3% 33:3% 33:3% 3.0
BKB01 (3; 4) 50:0% n/a 39:6% 2.5
HSE (3; 4) 69:2% 50:0% 14:8% 20.3

BKB01 (7; 2) 42:9% n/a 140:4% 0.7
KMB09 (7; 2) 33:3% 42:9% 42:9% 2.3
BKB01 (7; 8) 75:0% n/a 35:1% 2.8
HSE (7; 8) 86:0% 75:0% 12:7% 54.9

Table 6.1: Table comparing di¤erent QKD protocols in dimensions d = 2; 3 and 7; RQB and
RIT are the quantum bit and index transmission error rates of an intercept-and-resend attack,
respectively; Rt is the bit transmission rate de�ned in Eqn (6.3); �nally, Ns is the average number
of states Alice must send in order to share one bit with Bob. Note that the KMB09-protocol is
a special case of the HSE-protocol.

Table 6.1 compares the essential features of the HSE-protocol to existing QKD protocols: the

original quantum key distribution protocol of Bennett and Brassard [17] is referred to as BB84;

the generalisation of BB84 to a protocol that uses c mutually unbiased bases and d-dimensional

quantum systems [25] is called BKB01; the case where three MU bases are used in dimension two

corresponds to the six-state protocol (6-state) [12, 35]; the protocol presented in Section 6.1 is
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denoted HSE (which stands for highly sensitive to eavesdropping); the case where only two bases

are used corresponding to the protocol of Khan et al. (KMB09) [87]. Throughout the table,

we assume that the HSE-protocol is applied to a set of c mutually unbiased bases. The pair of

numbers, (d; c), in the second column correspond to the dimension of the quantum systems used

in the protocol and the number of elements in the classical alphabet.

The third and forth columns of Table 6.1 show the QBER and the ITER respectively. The

error rates, which have been calculated using Eqns. (6.13) and (6.14), show that by using d+ 1

MU bases, Alice and Bob can increase the QBER beyond that of BKB01. The �fth column

displays the rate at which the two legitimate parties sharing one bit of information; that is Rs

has been normalised so that it gives a per bit success rate1. The last column then shows the

average number of states Alice needs to send in order to successfully share one bit of her key

with Bob. This �nal column clearly demonstrates the trade-o¤ between the error rate and the

�cost�of producing a shared key. It is possible to make it easier to detect Eve but this comes at

the expense of reducing the bit transmission rate.

1Note that when the BKB01 protocol is applied to two MU bases in dimension d = 7, the rate at which bits are
shared between Alice and Bob is larger than 100%. In this case, the legitimate parties use 7-dimensional quantum
systems so that each time they are successful, they share an element of a 7 letter alphabet. Hence, the number of
states Alice needs to send in order to share one bit is 0.7, i.e. less than one.



CHAPTER 7

Summary and outlook

The dynamics of an autonomous Hamiltonian system with a single degree of freedom di¤ers

considerably from that of a system with two or more degrees of freedom. Nontrivial interactions

among the degrees of freedom usually lead to an e¤ectively unpredictable time evolution. From

a kinematical point of view, however, there is not much of a di¤erence: the composite system

simply inherits the structure of its constituents.

Schwinger associates one degree of freedom with a quantum system whenever the dimension

d of its Hilbert space is a prime number [130]. Quantum systems with two or more degrees

of freedom are obtained by tensoring copies of these building blocks. Our classically trained

intuition wants to make us believe that the kinematics of composite quantum systems will not

depend on the dimensions of the building blocks. In other words, we expect that composite

quantum systems with dimensions d1 = 2 � 3 and d2 = 3 � 3, for example, are structurally

identical. The concept of mutually unbiased (MU) bases appears to invalidate this expectation

since complete sets of MU bases seem to exist in prime-power dimensions only. They are an

important, physically motivated tool allowing one to reconstruct quantum states with optimal

e¢ ciency or implement a quantum key distribution protocol.

111
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7.1 Sets of MU bases

The traditional approach to �nd complete sets of MU bases in prime-power dimensions via the

Heisenberg-Weyl group or by using �nite �elds is constructive and, therefore, does not exclude

the existence of other inequivalent complete sets. The approach presented in Chapter 2 is, in

contrast, exhaustive: we are able to a¢ rm that the known complete sets for 2 � d � 5 are unique

(up to equivalence). Their uniqueness has been shown earlier for d � 4 [61] while [27] contains a

proof for 2 � d � 5 in a Lie algebraic setting. We �nd it appealing that it is possible to prove

the uniqueness of complete sets of MU bases in low dimensions by elementary methods.

The Cli¤ord group is the normalizer of the Heisenberg-Weyl group in the group of all unitaries.

It can be written as a semi-direct product of the Heisenberg-Weyl group and SL(2; Fd), the group

of (2 � 2) matrices with entries integers modulo d. Triples of MU bases are interesting in this

context because there is a conjecture [152] which states that all SIC-POVM vectors are invariant

under an element of the Cli¤ord group of order 3. The conjecture has been veri�ed in all

dimensions for which SIC-POVMs are known [4]. Any triple of MU bases is the orbit of an order

3 element of SL(2; Fd). Thus, the existence of two inequivalent triples in dimension �ve may lead

to some structural insight into the relation between MU bases and SIC-POVMs going beyond

the results of [5].

The constructive method of extending a pair of bases fI;Hg to a larger set can also be

used to prove that a given Hadamard matrix cannot be part of a complete set of MU bases.

In Chapter 3, we have shown that the construction of more than three MU bases in C6 is not

possible starting from nearly 6,000 di¤erent Hadamard matrices. This result adds signi�cant

weight to the conjecture that a complete set of seven MU bases does not exist in dimension six.

In this approach, the idea to construct a Gröbner basis was vital since the resulting equations

appear intractable to solve by hand.

The landscape of known Hadamard matrices (given in Appendix B and pictured in Fig.

3.1) contains parameter dependent families such as the Fourier family F (x). These parameters

determine the coe¢ cients of the equations which de�ne a vector MU to the pair fI;H(x)g. Hence

by changing the parameter values by a small amount the solutions of the equations will also only
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change by a small amount. Obviously, these terms need to be made explicit but one might hope

to extend each point considered in Chapter 3 to a small ball by obtaining a suitable error bound.

There is, however, one problem with this argument. The number of solutions may change when

varying the parameter values (cf. the step changes in Figs. 3.2 and 3.3).

In a recent work by Faugère et al., the idea of constructing a parameter dependent Gröbner

basis was proposed [66]. A parameter space such as f(�; �) : 0 � � � 1=6; 0 � � � 2�g which

de�nes the fundamental region of the Fourier family, is divided into cells where the number of

solutions in each cell remains constant. Just as the discriminant of a polynomial in one variable

distinguishes regions of a di¤ering number of solutions, it is possible to construct a discriminant

variety of a system of multivariate polynomials. Finding a discriminant variety would allow one

to study each cell one at a time in the knowledge that the number of solutions remains constant.

In Chapter 4, we address the existence of a complete set of MU bases in dimension six by

de�ning constellations of quantum states in the space Cd which are mutually unbiased. The

search for these MU constellations has been cast in the form of a global minimisation problem

which can be approached by standard numerical methods. Our conclusions are based on a total

of 433,000 searches in dimensions �ve to seven which would take approximately 16,000 hours on

a single Pentium 4 desktop PC. The results of the numerical searches performed in dimension

six provide strong evidence that not all MU constellations of the form f5; �; �; �g6 exist. We

have been able to positively identify 18 out of 35 MU constellations in dimension six. On the

basis of the numerical data, we consider it highly unlikely that the 15 unobserved critical and

overdetermined MU constellations do exist, making the existence of four MU bases exceedingly

improbable.

Let us discuss these results in a general framework. Critical constellations [�]d are de�ned

by the equality pd = cd. If pd parameters need to satisfy cd � pd equations, one would expect

some isolated solutions to exist in a generic situation. In the overdetermined case, there are

more constraints than free parameters, cd > pd, and no MU constellations are expected. The

counting of parameters indicates how special large sets of mutually unbiased states are. For any

d > 2, the d(d+1) quantum states of a complete set of MU bases possess too few parameters to

generically satisfy the conditions imposed on them by mutual unbiasedness. In dimension seven,
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for example, such a set consists of 56 pure states depending on 288 independent parameters

which need to satisfy 1,323 constraints. This is only possible if the constraints conform to some

fundamental structure prevailing in the space C7 - obviously, the number-theoretic consequences

of d = 7 being a prime number spring to mind. In other words, the constraints must degenerate

at one or more points of the constellation space C7 so that su¢ ciently many MU bases can arise.

We conclude by emphasizing that the results of algebraic and numerical searches presented

in Chapters 3 and 4 provide strong evidence for the absence of seven MU bases in dimension

six. It is thus likely that the kinematics of quantum systems with dimensions d1 = 2 � 3 and

d2 = 3� 3, respectively, will di¤er structurally.

7.2 Applications of MU bases

We have seen that there are two main applications for sets of mutually unbiased bases: quantum

state tomography and quantum key distribution. In a tomographic procedure the optimal mea-

surement settings constitute a complete set of MU bases. Likewise, it is possible to argue that

sets of MU bases are �optimal� in some quantum key distribution protocols such as BB84, the

six-state protocol and the new protocol presented in Chapter 6. From a practical perspective

MU bases are useful for �nding and hiding information about quantum states.

At �rst sight, the new protocol presented in Chapter 6 appears to have no special features

relating to the dimension of the quantum systems used by Alice and Bob. However, an analysis

of the optimal bases reveals that it is more e¢ cient when the legitimate parties use systems of

prime-power dimensions. In prime-power dimensions Alice and Bob can use constructions of

d+1 mutually unbiased bases. In addition, in some dimensions, inequivalent sets of c MU bases

are available. For example in dimension d = 4, there exits a three-parameter family of triples of

MU bases or in dimension d = 16 there is a 17-parameter family of pairs of MU bases [141]. It

may be that within these families there are some bases that are experimentally more accessible

than others. For example, the notion of equivalence considered by Romero et al. [122] involves

the entanglement content of the bases and therefore, one aspect of the experimental di¢ culty in

measuring and preparing systems in the corresponding bases.
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If an experimenter �nds that a particular measurement is easy to implement and that quantum

systems prepared in the corresponding basis are readily available, they can use the HSE-protocol

to distribute shared keys. Given the analytical form of the bases, we have shown how to calculate

the error rate and the rate at which elements of a key are generated. Hence, to some extent, the

protocol can be made to �t around experimental conditions, the question is then if the system

noise enables an eavesdropper to disguise their presence. It may be that in practice it is better

to search for measurements that can be performed e¢ ciently in the laboratory (or in a purpose

built device) than to �nd the analytical optimal bases.

In recent years, quantum physicists have realised that �nite dimensional complex linear spaces

are surprisingly rich both in physical content and from a mathematical perspective. This setting

has led to many important physical discoveries and in particular, the ability to distribute keys in

a secure way. In this thesis, we have explored this mathematical structure further and found that,

at least in principle, Alice and Bob can make it very hard for Eve to hide. An interesting question

is what further applications of MU bases are there; either in existing quantum information tasks

or in new applications of quantum systems?

7.3 Gröbner bases in Quantum Information

The application of Gröbner bases to the problem of mutually unbiased bases suggests that they

could be used as a powerful tool in other problems from quantum information. By its very

nature, many problems in this �eld are formulated relative to �nite-dimensional Hilbert spaces

and, mathematically, boil down to solving coupled polynomial equations. The construction

of Gröbner bases through Buchberger�s algorithm [36] transforms these equations into a form

suitable to identify their solutions. In most cases, the required algebraic operations will be

lengthy and cannot be carried out manually. Appropriate symbolic computer programs, however,

often allow one to compute them analytically. In fact the construction of Gröbner bases has

already been extremely useful in other applied �elds such as cryptography [65], error correcting

codes [8, 48], robotics [98], and in biological systems [114]. In recent years, this application of

commutative algebraic geometry has been helped by the increased availability of computational
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resources such as memory and computing time. We now brie�y describe how the construction of

a Gröbner basis could be used in three applications from Quantum Information.

The Geometric measure of entanglement.

A natural way to measure the entanglement of a k-party state, j i; is its �distance�to the nearest

separable state. This geometric measure of entanglement [132],

E( ) = min
ja1a2:::aki

jha1a2 : : : akj ij ;

is widely used [10, 146], and equals the coe¢ cient of the �rst term in the multi-partite general-

ization of the Schmidt decomposition [43]. It is possible to �nd an analytic expression for many

two party states [146] but is already very challenging for three-qubit states.

The general n-party case can be expressed as a system of coupled multivariate polynomial

equations [43] and by restricting the form of the states j i; some progress has been made for

three-qubit systems [79, 142]. However, as one considers systems composed of more qubits or

qudits, the resulting polynomial equations become di¢ cult to solve by hand. The application of

Buchberger�s algorithm and the subsequent algorithms for the construction of a Gröbner basis

are a promising method of studying the geometric measure of entanglement. As an interesting

aside, it may be that the approach presented in [79] is e¤ectively the construction of a Gröbner

basis.

Separability

The investigation of entanglement has been a particularly lively and fruitful strand in the �eld

of quantum information. Described by Schrödinger as not one but rather the characteristic trait

of quantum mechanics [129], it distinguishes quantum states from states with purely classical

correlations and is a key resource in many of the exciting applications of quantum systems.

Unfortunately, understanding the complex structure of entanglement in quantum systems is

not an easy problem. In fact, it is known that the separability problem cannot be e¢ ciently solved

with a classical computer [73]. A key result in the �eld is that a separable state remains a valid
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density matrix under partial transposition [116] and that this is an example of a positive map

[80]. Positive maps provide a necessary and su¢ cient condition of separability. In order to �nd

new ways of detecting entanglement, we need to �nd operators that are not a sum of a symmetric

operator and an operator symmetric under partial transposition. These �indecomposable maps�

are intimately linked to the problem of �nding biquadratic forms that are not sums of squares,

a link that has recently been extended in [137]. Simple examples can be solved by hand but

the application of Gröbner bases and the surrounding techniques would allow one to tackle more

general and interesting cases. In fact, the authors of the paper [137] mention themselves that

the construction of a Gröbner basis would be a hopeful strategy to extend their results.

In addition to �nding new entanglement witnesses through the construction of indecompos-

able maps, Gröbner basis methods could be directly applied to the separability problem. The

condition for a state to be separable can be formulated in terms of a set of polynomial inequali-

ties [92] developed using Lagrange multipliers. However, due to the complexity of the resulting

equations, the authors of [92] were only able to consider simple subsets of all states in low dimen-

sions. Using this or other potential ways of formulating the separability problem as a system of

equations it would be possible to apply the powerful methods developed since the introduction

of Buchberger�s algorithm.

Classi�cation of graph states.

Graph states are a subset of all possible pure multipartite states which can be described by the

nodes and connections of a graph [76, 127]. They are used in quantum error correction [128] and

in one-way quantum computation [30, 119]. There are two types of quantum operations which

leave a graph state invariant: local unitary (LU) operations and local Cli¤ord (LC) operations.

Hence it is natural to de�ne equivalence classes of graph states using these two types of operation.

It has been conjectured that these equivalence classes of graph states under LU and LC operations

are the same [111]. There is numerical evidence to support this claim for states that consist of

only a few qubits. However, a 27-qubit state for which the LU and LC equivalence classes are

not equal acts as a counter example of this conjecture [85].

The equivalence classes of LU and LC states can be characterized in terms of a set of poly-
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nomial invariants [41, 109, 110]. Hence the relationship between LU- and LC- invariant graph

states can be studied at the level of invariants. Gröbner bases can be used to provide a canonical

description of the invariants and have already been applied to problems relating to polynomials

which are invariant under matrix groups [49]. By simplifying the description of the invariants, it is

possible to address the question of uniqueness and therefore equivalence of two sets of invariants.



APPENDIX A

Equivalent sets of MU bases

Many sets of MU bases are identical to each other. To simplify the enumeration of all sets of

MU bases we introduce equivalence classes and a standard form of sets of MU bases.

Each set of (r + 1) MU bases in Cd corresponds to a list of (r + 1) (with r � d) complex

matrices H�, � = 0; 1; : : : ; r of size (d�d). Two such lists fH0;H1; : : : ;Hrg and fH 0
0;H

0
1; : : : ;H

0
rg

are equivalent to each other,

fH0;H1; : : : ;Hrg � fH 0
0;H

0
1; : : : ;H

0
rg (A.1)

if they can be transformed into each other by a succession of the following four transformations:

1. an overall unitary transformation U applied from the left,

fH0;H1; : : : ;Hrg ! UfH0;H1; : : : ;Hrg � fUH0; UH1; : : : ; UHrg ; (A.2)

which leaves invariant the value of all scalar products;

2. (r + 1) diagonal unitary transformations D� from the right which attach phase factors to
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each column of the (r + 1) matrices,

fH0;H1; : : : ;Hrg ! fH0D0;H1D1; : : : ;HrDrg ; (A.3)

these transformations exploits the fact that the overall phase of a quantum state drops out

from the conditions of MU bases;

3. (r + 1) permutations of the elements within each basis,

fH0;H1; : : : ;Hrg ! fH0P0;H1P1; : : : ;HrPrg ; (A.4)

which amount to relabeling the elements within each basis by means of unitary permutation

matrices Pn satisfying PP T = I;

4. pairwise exchanges of two bases,

f: : : ; H�; : : : ;H�0 ; : : :g ! f: : : ; H�0 ; : : : ;H�; : : :g ; (A.5)

which amounts to relabeling the bases.

5. an overall complex conjugation

fH0;H1; : : : ;Hrg ! fH0; H1; : : : ;Hrg (A.6)

which leaves the values of all scalar products invariant.

These equivalence relations 1-4, allow us to dephase a given set of MU bases. The resulting

standard form fI;H1; : : : ; Hrg is characterized by four properties: (i) the �rst basis is chosen to

be the standard basis of Cd described by H0 � I, where I is the (d� d) identity matrix; (ii) the

remaining bases are described by (complex) Hadamard matrices: each of their matrix elements

has modulus 1=
p
d; (iii) the components of the �rst column of the matrix H1 are given by 1=

p
d;

(iv) the �rst row of each of the Hadamard matrices H1 to Hr has entries 1=
p
d only.
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Let us illustrate the dephasing in dimension d = 3 where a given complete set of four MU

bases can be brought into the form

8>>>><>>>>:

0BBBB@
1 0 0

0 1 0

0 0 1

1CCCCA ;
1p
3

0BBBB@
1 1 1

1 ei�11 ei�12

1 ei�21 ei�22

1CCCCA ;

1p
3

0BBBB@
1 1 1

ei�11 ei�12 ei�13

ei�21 ei�22 ei�23

1CCCCA ;
1p
3

0BBBB@
1 1 1

ei
11 ei
12 ei
13

ei
21 ei
22 ei
23

1CCCCA
9>>>>=>>>>; : (A.7)

The second unitary matrix obtained here is (proportional to) a dephased complex Hadamard

matrix [16] motivating our terminology. Note that the vectors of the last three bases (except for

(1; 1; 1)T =
p
3) may be rearranged using (A.4).

MU constellations f�gd with at least one complete basis as in (4.7) also come in equivalence

classes if one applies suitably restricted variants of the symmetry transformations (A.2) to (A.5).

Thus, they can be brought to dephased form as well. If a complete set of MU bases exists, such as

f34g4 in Cd, the dephased form of smaller MU constellations is simply obtained by removing an

appropriate number of the vectors. Eq. (4.8) shows the dephased form of the MU constellation

f23; 1g4 contained in f34g4, given in (A.7).

The notion of equivalence de�ned by Eqs. (A.2) to (A.6) is mathematical in nature; it

captures all possible operations that leave invariant the conditions (4.1) for two bases to be

mutually unbiased. Motivated by experiments, there is a �ner equivalence of complete sets of

MU bases based on the entanglement structure of the states contained in each basis [97, 122].

For dimensions that are a power of two, a complete set of MU bases can be realized using Pauli

operators acting on each two-dimensional subsystem. Two sets of MU bases are then called

equivalent when they can be factored into the same number of subsystems. For d = 2; 4 this

notion of equivalence also leads to a unique set of (d+ 1) MU bases. However, for d = 8; 16; : : :

complete sets of MU bases can have di¤erent entanglement structures even though they are

equivalent up to an overall unitary transformation [97, 122].
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Inequivalent triples of MU bases in C5

We show that the two classes of triples of MU bases given by T (1) � fI; F5;H(1)
5 g and T (2) �

fI; F5;H(2)
5 g are inequivalent. In a �rst step, we explain that it is su¢ cient to search for equiva-

lence transformations generated by matrices of a special form. In a second step we show that a

contradiction arises if one assumes that the triples T (1) and T (2) are equivalent.

Let us begin with a general remark about the structure of equivalence classes of sets of MU

basesM = fI;B1; : : : ; Brg of Cd for all r 2 f1; : : : ; d� 1g. For convenience, we assume that the

�rst basis equals the identity, i.e. the set is given in standard form. As explained in Appendix

A all sets of MU bases equivalent toM are obtained as follows,

M!M0 = fUM0; UB1M1; : : : ; UBrMrg ; (B.1)

with a unitary U and (r + 1) monomial matrices Mi being a product of diagonal unitaries with

permutation matrices; to keep the notation simple we do not reorder the (r + 1) bases within

M0. For the set M0 to be in standard form, one of the bases in M, say B�, must be mapped

to the identity. As a consequence, the overall unitary transformation U must have a particular
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form, namely

U = NBy� ; (B.2)

where N is some monomial matrix and B� is one of the matrices contained in the setM.

In view of Eq. (B.2) we are led to determine the action of F y5 and (H
(1)
5 )y on the triple T (1)

as well as the action of F y5 and (H
(2)
5 )y on the triple T (2). It turns out that both triples are

invariant under these global transformations as we have the equivalences

NF y5T (1) � NT (1) � N(H
(1)
5 )yT (1) ; (B.3)

and

NF y5T (2) � NT (2) � N(H
(2)
5 )yT (2) : (B.4)

The �rst equivalence in (B.3) follows from using F y5 = F5P and Eq. (2.46) while the second one

also requires the identity

(H
(1)
5 )yF5 = H

(4)
5 M ; (B.5)

with some monomial matrix M . The equivalences (B.4) are derived in a similar way.

Consequently, we can always remove the e¤ect of the matricesBy� in the global transformations

(B.2) which leaves us with

fI; F5;H(j)
5 g ! fNIM0; NF5M1; NH

(j)
5 M2g ; j = 1; 2 ; (B.6)

where N;M1 and M2 are monomial matrices, and up to rearranging terms. The non-zero entries

of the monomial matrix N must, in fact, be �fth roots of unity1 but we will not need this fact.

Using the restricted transformations shown in Eqs. (B.6), the triples fI; F5;H(1)
5 g and

fI; F5;H(2)
5 g are equivalent to each other only if either

NF5 = F5M1 and H
(2)
5 M2 = NH

(1)
5 ; (B.7)

1Assume that N has a nonzero element di¤erent from a �fth root, say ei�. This makes it impossible to transform
T (1) into standard form using right multiplication by monomial matrices unless the other nonzero elements of N
also equal ei�. It follows that N must be a permutation matrix P apart from a phase factor, N = ei�P . Thus the
matrices M� must have a common factor of e�i� which, however, is irrelevant for the de�nition of MU bases.
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or

NF5 = H
(2)
5 M1 and F5M2 = NH

(1)
5 ; (B.8)

hold for some monomial matricesM1 andM2. The choiceM0 = N�1 = N y in Eqs. (B.6) ensures

that the identity will be mapped to the identity.

Eqs. (B.7) will now be shown to imply the identity

�F5 = F5M (B.9)

for some monomial matrix M while � is a diagonal matrix with �fth roots of unity as nonzero

entries, not proportional to the identity, � 6= cI; c 2 C. However, Eq. (B.9) only holds if � is

a multiple of the identity. This contradiction implies that there are no matrices N;M1;M2 such

that Eqs. (B.7) hold. Since Eqs. (B.8) also imply Eq. (B.9) with a (possibly di¤erent) diagonal

matrix � 6= cI; c 2 C, the triples T (1) and T (2) cannot be equivalent.

Use H(j)
5 = DjF5; j = 1; 2, to express the second equation in (B.7) as

D2F5M2 = NDF5 = NDN yNF5 � ~DNF5 ; (B.10)

introducing ~D � NDN y = PDP T . Thus, the matrix ~D is obtained from D by reordering its

diagonal elements according to the permutation P de�ned via N = PE, with some unitary

diagonal matrix E. Combining this equation with the �rst one in (B.7) leads to D2F5M2 =

~DF5M1, or

~DyD2F5 = F5M1M
y
2 (B.11)

which is identical to (B.9) upon de�ning � = ~DyD2 and M =M1M
y
2 which, as a product of two

monomial matrices, is another monomial matrix. Since no permutation of the elements on the

diagonal of Dy = diag(1; !4; !; !; !4) produces the inverse of D2 or a multiple thereof, we have

� 6= cI. Using the pair (B.8) instead of (B.7) also leads to an equation of the form (B.9) with

~Dy replaced by ~D which, however, cannot be a multiple of the inverse of D2, leading again to

� 6= cI.
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We now show that Eq. (B.9) only holds if the matrix � is proportional to the identity. Write

the monomial matrix M in (B.9) in the form

M = P�00 ; (B.12)

where P is a permutation matrix and �00 is a diagonal matrix with entries having modulus one

only. Denoting the inverse of �00 by �0, Eq. (B.9) takes the form

�F5�
0 = F5P : (B.13)

Let us write � = diag(�; �; : : : ; �) with phase factors �; �, etc., and similarly for �0, and consider

the simplest case P � I. Then the matrix relation (B.13) reads explicitly

0BBBBBBBBBB@

��0 ��0 �
0 ��0 ��0

��0 �


�0 �

��0 �

��0 � � � ��0!

1CCCCCCCCCCA
=

0BBBBBBBBBB@

1 1 1 1 1

1 ! !2 !3 !4

1 !2 !4 ! !3

1 !3 ! !4 !2

1 !4 !3 !2 !

;

1CCCCCCCCCCA
(B.14)

The conditions resulting from the �rst row immediately imply that the elements on the diagonal

of �0 are all equal to ��, or �0 = ��I. The conditions of the �rst column imply that the matrix

� is also a multiple of the identity, namely � = �I. This contradicts the fact that the matrix �

is di¤erent from a multiple of the identity.

Let us now drop the restriction the P = I. The e¤ect of P acting on F5 from the right is to

permute its columns. The �rst row of F5 will not change under this operation. Under the action

of P , the �rst column will either stay where is is or it will be mapped to one of the four others.

In the �rst case, we can immediately apply the argument given above to derive a contradiction.

In the second case, it it straightforward to see that a similar argument still applies involving

the �rst row of the matrices and that column which is the image of the �rst column. Thus, all

possible choices of the monomial matrix M in (B.9) require � to be a multiple of the identity -
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which it is not.

Finally, we consider the action of an overall complex conjugation (A.6) on either of the triples.

We �nd that the set of three MU bases, T (1); remains invariant after complex conjugation

T (1) = fI; F5; H
(1)
5 g

� fI; F5;H(4)
5 g

� T (1):

Similarly, complex conjugation maps T (2) to itself, T (2) � T (2). In summary, then we have shown

that the equivalence relations (A.2) to (A.6) cannot transform the triple T (1) into T (2) or vice

versa.



APPENDIX C

Known complex Hadamards matrices in dimension six

This Appendix lists the currently known complex Hadamard matrices for easy reference and to

establish notation. For more details the reader is referred to [16] and to the online catalogue

[140].

C.1 Special Hadamard matrices

The Fourier matrix F6 has been introduced in Eq. (3.7); it is contained in both the Fourier

family F (x) and the transposed Fourier family F T (x) for x = 0, where F6 � F (0; 0) � F T (0; 0)

holds (cf. Section C.2).

The Diţ¼a matrix D0 is an example of a complex symmetric Hadamard matrix,

D0 =
1p
6

0BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 �1 i �i �i i

1 i �1 i �i �i

1 �i i �1 i �i

1 �i �i i �1 i

1 i �i �i i �1

1CCCCCCCCCCCCCCA
; (C.1)
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embedded in a continuous one-parameter set of Hadamard matrices, the Di̧t¼a family (cf. C.2).

Björck�s circulant matrix [24] is de�ned by

C =
1p
6

0BBBBBBBBBBBBBB@

1 iz �z �i �z� iz�

iz� 1 iz �z �i �z�

�z� iz� 1 iz �z �i

�i �z� iz� 1 iz �z

�z �i �z� iz� 1 iz

iz �z �i �z� iz� 1

1CCCCCCCCCCCCCCA
; (C.2)

where

z =
1�

p
3

2
+ i

sp
3

2
: (C.3)

It was originally thought to be isolated but it is now known to be part of the family of Hermitean

Hadamard matrices, C � B(�0) (cf. C.3).

The only known isolated Hadamard matrix is the spectral matrix,

S =

0BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 1 ! ! !2 !2

1 ! 1 !2 !2 !

1 ! !2 1 ! !2

1 !2 !2 ! 1 !

1 !2 ! !2 ! 1

1CCCCCCCCCCCCCCA
; (C.4)

where ! is a third root of unity, ! = e2�i=3. It has been discovered by Moorhouse [108] and,

independently, by Tao [143].

C.2 A¢ ne families

There are three a¢ ne families of Hadamard matrices, characterized by the property (3.1) that

they can be written as a non-trivial Hadamard product. The Diţ¼a family [51] is given by D(x) =
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D0 � Exp[2�iR(x)], jxj � 1=8, with D0 from Eq. (C.1) and

R(x) =

0BBBBBBBBBBBBBB@

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 x x 0

0 0 �x 0 0 �x

0 0 �x 0 0 �x

0 0 0 x x 0

1CCCCCCCCCCCCCCA
; (C.5)

the componentwise exponential Exp[�] of a matrix has been de�ned after Eq. (3.1).

The Fourier matrix F6 has been embedded in a similar way into a two-parameter set, namely

the Fourier family F (x) = F6 � Exp[2�iR(x)], where

R(x) � R(x1; x2) =

0BBBBBBBBBBBBBB@

0 0 0 0 0 0

0 x1 x2 0 x1 x2

0 0 0 0 0 0

0 x1 x2 0 x1 x2

0 0 0 0 0 0

0 x1 x2 0 x1 x2

1CCCCCCCCCCCCCCA
; (C.6)

the parameters (x1; x2) take values in a fundamental region given by a triangle with vertices

(0; 0); (1=6; 0) and (1=6; 1=12).

Upon transposing the matrices F (x) one obtains a di¤erent two-parameter set of Hadamard

matrices, called the transposed Fourier family F T (x). It has the same fundamental region as the

Fourier family.
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C.3 Non-a¢ ne families

Non-a¢ ne Hadamard matrices are not parametrised in the form (3.1). The Hermitean family

[11] provides a one-parameter example of such a set,

B(�) =
1p
6

0BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 �1 x� �y y x�

1 �x 1 y z� t�

1 y� y� 1 t� t�

1 y� z �t 1 x�

1 x �t t �x 1

1CCCCCCCCCCCCCCA
; (C.7)

where y = e2�i� and t = xyz; with

z =
1 + 2y � y2

y(�1 + 2y + y2) ;

x =
1 + 2y + y2 �

p
2(1 + 2y + 2y3 + y4)

1 + 2y � y2 ;

the free parameter � is restricted to vary within the fundamental interval [�0; 1 � �0], and the

number �0 is de�ned by the condition

2��0 = cos
�1
�
1�

p
3
�
: (C.8)

Note that this is a smaller fundamental region than was previously known; the reduction is due

to equivalences that have become apparent since the discovery of the Szöll½osi family (cf. below).

Another non-a¢ ne one-parameter set of Hadamard matrices is given by the symmetric family
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[105],

M(t) =
1p
6

0BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 �1 x x �x �x

1 x d a b c

1 x a d c b

1 �x b c p q

1 �x c b q p

1CCCCCCCCCCCCCCA
; (C.9)

where x = e2�it, and the complex numbers a; b; c; d; p; q are the unique solutions of the equations

1 + x+ d+ a+ b+ c = 0 ;

x2 � 2x� 2a� 2d� 1 = 0 ;

1� x+ b+ c+ p+ q = 0 ;

x2 + 2b+ 2c+ 1 = 0 : (C.10)

In addition, one needs the fact that given a row (r1; : : : ; r6) of a Hadamard matrix, the last two

elements are determined by � = (r1 + r2 + r3 + r4)=2, since

r5;6 = ��� i
�

j�j
p
1� j�j2 (C.11)

if � 6= 0: The fundamental region is given by t 2 [0; 1=2].

Finally, there is the non-a¢ ne Szöll½osi family [139]

X(a; b) � H(x; y; u; v) =
1p
6

0BBBBBBBBBBBBBB@

1 1 1 1 1 1

1 x2y xy2 xy
uv uxy vxy

1 x
y x2y x

u
x
v uvx

1 uvx uxy �1 �uxy �uvx

1 x
u vxy �x

u �1 �vxy

1 x
v

xy
uv �xy

uv �x
v �1

1CCCCCCCCCCCCCCA
: (C.12)
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The entries x, y and u, v are solutions to the equations f� = 0 and f�� = 0, respectively, where

f�(z) � z3 � �z2 + ��z � 1 ; (C.13)

and � � a+ ib is restricted to the region D de�ned by D(�) � 0 and D(��) � 0, with

D(�) � j�j4 + 18j�j2 � 8Re[�3]� 27 : (C.14)

It is possible to reduce D to a smaller fundamental region [15] since, �rstly, the transformation

�! �� maps Hadamard matrices to equivalent ones and, second, Eq. (C.13) is invariant under

the substitutions �! !� and y ! !y with ! = exp(2�i=3). As the second transformation leaves

the dephased Hadamard matrix invariant, this establishes an equivalence between the Hadamard

matrices associated with points in D and in D0 (which one obtains from D through a rotation

by 2�=3). As a result, the region D is found to consist of six equivalent sectors, and one may

restrict � by

0 � arg(�) � �

3
: (C.15)

The transposed Szöll½osi family, XT (a; b) is obtained by transposing X(a; b) or by using the

equivalence H(x; y; u; v)T � H(x; y; v; u). Fig. 3.1 illustrates that the points on the boundary of

the reduced fundamental region for both X(a; b) and XT (a; b) correspond to the members of the

Hermitean family.
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Simpli�cation of the Fourier equations in dimension six

The conditions for a state jvi 2 C6 to be MU with respect to F6 are given by P = 0 where

P = fp�; q�; r�g with

p� = �5� 2x5 + 2x4 � 2x3 + 2x2 � 2x1 + x52 � 2x4x5 + x42 + 2x3x5 � 2x3x4

+x3
2 � 2x2x5 + 2x2x4 � 2x2x3 + x22 + 2x1x5 � 2x1x4 + 2x1x3 � 2x1x2

+x1
2 + y5

2 � 2 y4y5 + y42 + 2 y3y5 � 2 y3y4 + y32 � 2 y2y5 + 2 y2y4 � 2 y2y3

+y2
2 + 2 y1y5 � 2 y1y4 + 2 y1y3 � 2 y1y2 + y12 ;

q� = �5 + x5 � x4 � 2x3 � x2 + x1 �
p
3y5 �

p
3y4 �

p
3y2 �

p
3y1 + x5

2 + x4x5

+x4
2 � x3x5 + x3x4 + x32 � 2x2x5 � x2x4 + x2x3 + x22 � x1x5 � 2x1x4

�x1x3 + x1x2 + x12 �
p
3y5x4 �

p
3y5x3 �

p
3y5x1 + y5

2 �
p
3y4x5 �

p
3y4x3

�
p
3y4x2 + y4y5 + y4

2 �
p
3y3x5 �

p
3y3x4 �

p
3y3x2 �

p
3y3x1 � y3y5

+y3y4 + y3
2 �

p
3y2x4 �

p
3y2x3 �

p
3y2x1 � 2 y2y5 � y2y4 + y2y3 + y22

�
p
3y1x5 �

p
3y1x3 �

p
3y1x2 � y1y5 � 2 y1y4 � y1y3 + y1y2 + y12 ;
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and

r� = �5� x5 � x4 + 2x3 � x2 � x1 �
p
3y5 �

p
3y4 �

p
3y2 �

p
3y1 + x5

2 � x4x5

+x4
2 � x3x5 � x3x4 + x32 + 2x2x5 � x2x4 � x2x3 + x22 � x1x5 + 2x1x4

�x1x3 � x1x2 + x12 �
p
3y5x4 �

p
3y5x3 �

p
3y5x1 + y5

2 �
p
3y4x5 �

p
3y4x3

�
p
3y4x2 � y4y5 + y42 �

p
3y3x5 �

p
3y3x4 �

p
3y3x2 �

p
3y3x1 � y3y5

�y3y4 + y32 �
p
3y2x4 �

p
3y2x3 �

p
3y2x1 + 2 y2y5 � y2y4 � y2y3 + y22

�
p
3y1x5 �

p
3y1x3 �

p
3y1x2 � y1y5 + 2 y1y4 � y1y3 � y1y2 + y12 : (D.1)

Upon substituting the normalization condition hvjvi = 1, or

x1
2 + y1

2 + x2
2 + y2

2 + x3
2 + y3

2 + x4
2 + y4

2 + x5
2 + y5

2 = 5 ; (D.2)

one �nds

p+ + p� = 0 ;

p+ � p� � q+ + q� + r+ � r� = 0 ;

2p+ � 2 p� + q+ � q� � r+ + r� = 0 ;

p+ � p� � r+ � r� = 0 ; (D.3)

giving Eqs. (3.8).
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Maple and Python programs

E.1 Maple program to construct MU vectors

In this Appendix, we given an example of the Maple program used to �nd all vectors mutually

unbiased to a given Hadamard matrix. In particular, the Hadamard matrix is a member of

the Fourier family F (x) for some randomly generated x contained in the fundamental region

de�ned in App C.2. The program can be easily modi�ed to �nd vectors MU to the identity and

other Hadamard matrices by changing the matrix de�ned by the command line starting �B :=

Matrix...�The solutions to the resulting equations are found up to a user de�ned accuracy, set

here to be 10�20: That is, the solutions satisfy the equations up to 20 decimal places. After

�nding all solutions, the program analyses the vectors to see if they can form a third MU basis.

As explained in Section 3.2.4, in order to draw rigours conclusions dispite the numerical approx-

imation of the solutions, we cacluate the inner products of the MU vectors at a level less than

the accuracy of the solutions. In this example, we calculate the inner products up to 8 decimal

places.

with(LinearAlgebra): with(RootFinding): with(RandomTools):

Seed:=randomize():
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v := (Vector(5, symbol = x) + I*Vector(5, symbol = y))/sqrt(6):

seq(assume((x[j])::real, (y[j])::real), j = 1 .. 5):

var := [seq(x[k], k = 1 .. 5), seq(y[k], k = 1 .. 5)]:

uniform := proc (a, b) local f; f := rand(a*10^Digits .. b*10^Digits)/

10^Digits; (�@�(evalf, f))() end proc:

E := 0: while E = 0 do a := uniform(0, 2); b := uniform(0, 1); if 2*b < a

then E := 1 end if end do:

alpha := (1/12)*a; beta := (1/12)*b;

w := exp(I*Pi*(1/3)); z1 := exp((2*Pi*I)*alpha): z2 := exp((2*Pi*I)*beta):

B := Matrix(6, 6, {(1, 1) = 1, (1, 2) = 1, (1, 3) = 1, (1, 4) = 1,

(1, 5) = 1, (1, 6) = 1, (2, 1) = 1, (2, 2) = w*z1, (2, 3) = w^2*z2,

(2, 4) = w^3, (2, 5) = w^4*z1, (2, 6) = w^5*z2, (3, 1) = 1, (3, 2) = w^2,

(3, 3) = w^4, (3, 4) = 1, (3, 5) = w^2, (3, 6) = w^4, (4, 1) = 1,

(4, 2) = w^3*z1, (4, 3) = z2, (4, 4) = w^3, (4, 5) = z1, (4, 6) = w^3*z2,

(5, 1) = 1, (5, 2) = w^4, (5, 3) = w^2, (5, 4) = 1, (5, 5) = w^4,

(5, 6) = w^2, (6, 1) = 1, (6, 2) = w^5*z1, (6, 3) = w^4*z2, (6, 4) = w^3,

(6, 5) = w^2*z1, (6, 6) = w*z2})/sqrt(6):

for k to 5 do eq[k] := 1/6+add(HermitianTranspose(v)[j]*B[j+1,k],j=1..5)

end do:

for k to 5 do abseq[k] := simplify(evalf(evalc(Re(eq[k])^2+Im(eq[k])^2-1/6)))

end do:

for k to 5 do eq2[k] := x[k]^2+y[k]^2-1 end do:

equations := {seq(eq2[k],k=1..5), seq(abseq[k],k=1..5)}:

Sol := Isolate(equations, var, digits = 20);

N := nops(Sol);

Vecs := Matrix(6, N, 1); for j to N do for k to 5 do Vecs[k+1, j]

:= RootOf(op(k, op(j, Sol)))+I*RootOf(op(k+5, op(j, Sol))) end do end do;
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abs(evalf(HermitianTranspose(Vecs).B));

Mabs := evalf(abs(HermitianTranspose(Vecs).Vecs)/sqrt(6));

Mabsr := Matrix(N); for i to N do for j to N do Mabsr[i, j]

:= evalf(round(Mabs[i, j]*10^8)/10^8) end do end do;

count := 1; for a to N-5 do for b from a+1 to N-4 do for c from b+1 to N-3

do for d from c+1 to N-2 do for e from d+1 to N-1 do for f from e+1 to N do

if Mabsr[a, b] = 0 and Mabsr[a, c] = 0 and Mabsr[a, d] = 0 and

Mabsr[a, e] = 0 and Mabsr[a, f] = 0 and Mabsr[b, c] = 0 and Mabsr[b, d] = 0

and Mabsr[b, e] = 0 and Mabsr[b, f] = 0 and Mabsr[c, d] = 0 and

Mabsr[c, e] = 0 and Mabsr[c, f] = 0 and Mabsr[d, e] = 0 and Mabsr[d, f] = 0

and Mabsr[e, f] = 0 then BasisIndex[count] := [a, b, c, d, e, f];

count := count+1 end if end do end do end do end do end do end do: count-1;

for i to count-1 do print(BasisIndex[i]) end do;

for j to N do if Mabsr[op(6, BasisIndex[1]), j] = 1 then print(j) end if

end do;

E.2 Python search for MU constellations

This Python program searches for local minima in the space of constellations Cd(v); where v =

[d � 1; �; �; �]d as de�ned in Eqn (4.9). The program uses the phyton packages numpy, scipy,

time and pickle all freely available from various sources on the internet [107, 86]. The program

prompts the user to input the dimension, the constellation space, the maximum number of

searches and the maximum number of hours the program is to run for. For example, to perform

a search for the MU constellation f5; 4; 3; 2g6; 1,000 times or for less than 2 hours, input the

parameters 6, [4,3,2], 1000 and 2 respectively. The search results are saved to the variables

val and para; para[r] is a vector of the parameters at the minimum value val[r]. The program

also creates a �le containing the search results and the input information.

from numpy import *

import minpack
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from time import *

dim=input(�Plese enter the dimension �)

d=float(dim)

v=array(input(�Plese input constellation space in vector form [�; �; �] �))

notests=input(�What is the max number of tests? �)

runfor=input(�What is the max number of hours the prog should run for? �)

t0=time()

def paravec(X,dim,v):

# this function constructs the complex vectors from the real parameters

# INPUTs

# X is a column vector of real parameters

# dim is the dimension

# v is a row vector of the number of vectors in each of the bases.

# Note, basis0 is the identity and is always full and the first vector

of the second basis is given.

angles1=zeros((dim , v[0]), float) # parametrises the angles of basis 1.

for q in range(v[0]-1):

for p in range(dim-1):

angles1[p+1,q+1]=X[p + q*(dim-1)]

angles2=zeros((dim,v[1]), float) # parametrises the angles of basis 2

for q in range(v[1]):

for p in range(dim-1):

angles2[p+1,q]=X[p + (q+v[0]-1)*(dim-1)]

angles3=zeros((dim,v[2]), float) # parametrises the angles of basis 3

for q in range(v[2]):

for p in range(dim-1):

angles3[p+1,q]=X[p + (q+v[0]-1+v[1])*(dim-1)]

basis1 = exp(2j*pi*angles1)



E.2. Python search for MU constellations 139

basis2 = exp(2j*pi*angles2)

basis3 = exp(2j*pi*angles3)

M=hstack((basis1,basis2,basis3))/sqrt(dim)

return M

def sumterm(X,dim,v):

# this function calculates the terms that go into the sum.

# INPUTS as above

M=paravec(X,dim,v)

Gram = abs(dot(M.conj().T,M)) #array of all inner products.

A=eye( sum(v) );

for p in range(v[0]):

for q in range(v[0] , v[0]+v[1]):

A[p,q]=1/d;

for p in range(v[0]+v[1]):

for q in range(v[0]+v[1] , v[0]+v[1]+v[2]):

A[p,q]=1/d;

index=0

Out=zeros(max([(sum(v)-1)*(dim-1),sum(v)*(sum(v)-1)/2]))

for p in range(sum(v)-1):

for q in range(p+1,sum(v)):

Out[index]=(Gram-A)[p,q]

index=index+1

return Out

if (v[0]>dim):

print �error, the number of vectors in the bases exceeds the dimension�

else:

count=0

t=0
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val=[]

para=[]

while (t < runfor*60*60) & (count<notests):

x0=random.rand((sum(v)-1)*(dim-1))

(xlsq,p) = optimize.leastsq(sumterm, x0, args=(dim,v), ftol=1.49012e-16,

nxtol=1.49012e-16, maxfev=10**8, warning=False)

if dim==2:

xlsq=[xlsq]

para.append(xlsq)

val.append(sum(sumterm(xlsq,dim,v)**2))

count=count+1

t=time()-t0

val=array(val)

print �It took�, (time()-t0), �seconds to perform�, count, �searches.

The

nbest min was�

print val.min(0)

import pickle

# create a dictionary of the values and the parameters

pickleresults = {�dim�:dim,�PMUB vector�:v,�values�:val, �parameters�:para}

# now create a file with an suitable name

file = open(�[directory]nn�+�dim�+�dim�+�_�+�v[0]�+�v[1]�+�v[2]�+�_�

+�count�,n�w�)

pickle.dump(pickleresults,file)

file.close()
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