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Abstract 

Alloys of silicon (Si), germanium (Ge) and tin (Sn) are continuously attracting 

research attention as possible direct band gap semiconductors with prospective 

applications in optoelectronics. The direct gap property may be brought about 

by the alloy composition alone or combined with the influence of strain, when 

an alloy layer is grown on a virtual substrate of different composition. Si-Ge­

Sn nanostructures are also promising materials because they are compatible 

with Si-based technology, and have a high potential in many optoelectronic 

applications, such as silicon-based Ge/SiGeSn band-to-band and inter-subband 

lasers. 

In search for direct gap materials, the electronic structure of relaxed or 

strained Gel-xSnx and Si1-xSnx alloys, and of strained Ge grown on relaxed 

Gel_x_ySixSny, were calculated by the self-consistent pseudo-potential plane 

wave method, within the mixed-atom supercell model of alloys, which was 

found to offer a much better accuracy than the virtual crystal approxima­

tion. Expressions are given for the direct and indirect band gaps in relaxed 

Gel-xSnx, strained Ge grown on relaxed SixGel-x_ySny, and for strained 

Gel-xSnx grown on a relaxed Gel_ySny substrate, and these constitute the 

criteria for achieving a direct band gap semiconductor, by using appropriate 

tensile strain. In particular, strained Ge on relaxed SixGel_x_ySny has a direct 

gap for y > 0.12 + 0.20x, while strained Gel-xSnx on relaxed Gel_ySny has a 

direct gap for y > 3.2x2 
- 0.07x + 0.09. In contrast, within the mixed-atom 

approach the SnxSi1- x alloys never show a finite direct band gap (while the 

VeA calculation does predict it). 

Self-assembled quantum dots in Si-Ge-Sn system attract research attention 
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as possible direct band gap materials, compatible with Si-based technology, 

with potential applications in optoelectronics. In this work, the electronic 

structure near the f-point and interband optical matrix elements of strained 

Sn and SnGe quantum dots in Si or Ge matrix are calculated using the eight­

band k· p method, and the competing L-valley conduction band states were 

found by the effective mass method. The strain distribution in the dots was 

found with the continuum mechanical model. The parameters required for 

the k· p or effective mass calculation for Sn were extracted by fitting to the 

energy band structure calculated by the nonlocal empirical pseudopotential 

method (EPM). The calculations show that the self-assembled Sn/Si dots, 

sized between 4 nm and 12 nm, have indirect interband transition energies 

between 0.8 to 0.4 eV and direct interband transitions between 2.5 to 2.0 eV. 

In particular, the actually grown, approximately cylindrical Sn dots in Si with a 

diameter and height of about 5 nm are calculated to have an indirect transition 

(to the L valley) of about 0.7 eV, which agrees very well with experimental 

results. Similar good agreement with experiment was also found for SnGe dots 

grown on Si. However, neither of these are predicted to be direct band gap 

materials, in contrast to some earlier expectations. 

In order to extend a creativity in developing a complete suite of Si-base 

optoelectronic devices, SiGeSn alloys are considered as promising materials for 

optoelectronic applications because they offer the possibility for a direct band 

gap and are compatible with Si-based technology, therefore having a perspec­

tive of applications for interband lasers and detectors, solar cells, etc. In this 

work, another possible application of nanostructures based on these materials 

was considered: to extend the suite of Si-based optoelectronic devices, namely 

for interband electro-absorption modulators. Using the 8-band k.p method 

asymmetric double quantum wells have been designed and optimized, by vary­

ing the well and barrier widths and material composition, to show large optical 

transmission sensitivity to the applied bias. Generally, these structures are 

useful for electro-absorption modulators in the mid-infrared spectral range. 
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Chapter 1 

Introd uction 

1.1 Introduction 

In recent years, optoelectronics has moved into widespread use. It is because of 

that there is an increasing need for optoelectronic devices in many branches of 

technology, such as optoelectronic devices in telecommunications, transporta­

tion, medical, computer and entertainment industries. Additionally, due to the 

high demand of consumers in the transfer of tremendous amount of information 

with high speed, there are many attempts to enhance the efficiency of electronic 

and communication devices, by increasing their speed and bandwidth. In order 

to achieve a high speed of data transfer in electronic equipment, the fascinating 

idea of optically integrated circuits (Ie) has been introduced. This concept 

is an integration between optical devices and the widely used technology of 

silicon-based electronic devices. Unfortunately, silicon is an indirect band gap 

semiconductor which is infamous for its low radiative efficiency. Inevitably, 

this technology still has to rely on direct band gap semiconductors, such as 

gallium arsenide (GaAs) which is expensive and highly toxic. Therefore, an 

interesting idea for optoelectronics is finding a new tuneable direct band gap 

semiconductor which is easily compatible with silicon and abundant in order 

to reduce the production cost. One solution could be in design and fabrication 

of an artificial group IV material. The epitaxial growth of random alloys of 

group IV semiconductors has been widely investigated because of their poten­

tial use in optoelectronic devices. Among the materials in this group, the alloys 
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of silicon (Si), germanium (Ge) and tin (Sn), including the hinary Gel-TSnX 

material are the most interesting. As a result of the particular band structure 

of alpha-Sn, which is a zero direct band gap semiconductor, alloys of Si, Ge 

and Sn attract research attention as possible direct band gap semiconductors 

with potential applications in optoelectronic devices, compatible with widely 

used silicon technology. 

1.2 Physical and optical properties of bulk silicon, ger­

manium and alpha-tin 

Silicon has the diamond type of crystal structure, which is the face centered 

cubic lattice with two identical basis atoms, displaced by one quarter of the 

body diagonal, so their coordinates are e.g. (0,0,0) and (1/4,1/4,1/4) in cubic 

lattice constant units. This is shown in Fig.2.4 in Sec. 2.3. Unlike the zinc­

blende crystal structure such as GaAs or AlAs in which the two atomic sites 

are of different type, silicon does not have polarity which is present in II I-V 

binary compounds. The lattice constant of silicon is 5.431 A, density 2.329 

g·cm -3 and its dielectric constant is 11. 7 [1]. The indirect bandgap of silicon 

is 1.12 eV at room temperature, and occurs towards the conduction band L 

valley minimum, at the L point of the first Brillouin zone [2], (Fig. 1.1, see also 

Sec. 2.3). Therefore, non-radiative recombination in silicon is dominant, which 

causes very low luminescence efficiency. Similar to silicon, germanium also 

has the diamond crystal structure with lattice constant, density and dielectric 

constant of 5.658 A, 5.3234 g.cm-3 and 16.2 respectively [1]. According to the 

band structure illustrated in Fig. 1.1, germanium is also an indirect bandgap 

semiconductor. The minimum energy bandgap is 0.661 eV is at the L point of 

the first Brillouin zone while the energy bandgap at the r point is 0.8 eV, at 

room temperature. 

In order to overcome the indirect bandgap limitations in light emission from 

Si and Ge, the idea of material engineering has been introduced, especially the 

energy band engineering. There are different possibilities of achieving this 
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goal [2J: 

• Localization of the wavcfunctions of electrons and holes via quantum 

confinement (nanoclusters and quantum wells, wires and dots) and band 

structure engineering so that the nonradiative recombination lifetime is 

very long and increases the efficiency of the radiative luminescence. 

• Forming alloys, molecules and clusters so that the energy gap of the 

material or wavelength of emitted photon can be tuned. 

• Using intraband transitions, within the conduction band or valence band, 

so that the indirect bandgap becomes irrelevant. 

Band structure engineering via alloy formation can improve the electrolumines­

cence and photoluminescence intensity, for example the intensity of Sil-xGex 

is higher than that of Si. Furthermore, alloys also change the minimum energy 

bandgap point from near X point to L point, depending on the Ge composition 

x. The indirect-direct energy bandgap transition can be achieved by forming 

alloys of silicon and germanium with a suitable semiconductor which has the 

lowest bandgap at r point, and is compatible with silicon and germanium. 

Considering the physical and optical properties of silicon and germanium, the 

semiconductor with which Si and Ge should form alloys is a-Sn. It belongs 

to group IV semiconductors like silicon and germanium. Its crystal structure 

is also diamond-type with lattice constant, density and dielectric constant of 

6.489 A, 5.769 g·cm-3 and 24 respectively. The energy band structure is dis­

played in Fig. 1.1. 

1.3 New direct band gap semiconductors 

In early studies of epitaxial Si, Ge, Sn alloys nO reliable method of growing 

these alloys was found, except for Si1-xGex binary alloys. The difficulty in 

the growth of Gel-xSnx alloys is the large lattice mismatch, segregation On 

interfaces and the instability of the alpha-tin structure. Hence, Gel-xSnx bulk 



1.3 N em direct band gap semiconductors 5 

alloys cannot be readily grown. However, using the new technology of film 

growth, called low temperature molecular beam epitaxy (MBE), vital progress 

of epitaxial growth of Gel-xSnx has been made. For example, there is an 

achievement of growing fully strained Gel-xSnx, but it is believed that they 

do not show indirect-to-direct transitions. This is because of their compressive 

strain. Thus, it is believed that indirect-to-direct transition can only occur in 

tensile strained or strain-free Gel-xSnx , e.g. in the work of G. He and H. A. 

Atwater which showed interband transitions with a change in direct energy gap 

of 0.35 < Eg < 0.80 eV for 0.15 > x > 0 [4]. Although growth of Gel-xSnx 

can be achieved, the limitation on the thickness of the epitaxial alloys and 

the surface segregation of tin are still problematic. By other technologies of 

epitaxial growth, i.e. novel chemical methods based on deuterium-stabilized 

Sn hydrides and ultra-high-vacuum chemical vapor deposition (UHV-VeD), 

uniform homogeneous relaxed Gel-xSnx alloys with composition of tin less 

than 0.2 (x < 0.2), determined by Rutherford backscattering (RBS), have 

been grown directly on silicon substrates. In order to understand its optical 

and physical properties, its complex pseudo-dielectric function and the film 

thickness, were investigated by spectroscopic ellipsometry. 

Although still waiting for clear experimental confirmation, it is believed 

that the binary alloy of Ge and Sn, as well as ternary alloys of Si, Ge, Sn, 

could be very fascinating materials for infrared detectors. This is due to the 

theoretical prediction by Soref and Perry [5] who used a linear interpolation 

scheme and calculated the energy bands and optical indices of Gel-x_ySixSny 

alloys, and concluded that these alloys will be direct tunable band gap semi­

conductors when they are grown with an appropriate composition of silicon, 

germanium and tin. 

A number of researchers have investigated some important properties of 

these alloys, by using quantum mechanical band structure theory and explored 

the influence of random fluctuations of the composition of SiGeSn alloys on 

their electronic properties by using different models, like the virtual crystal 
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approximation (VCA) with the tight-binding method or with the pseudopo­

tential method. In order to take into account the disorder effects of an alloy, 

the Coherent Potential Approximation (CPA) was introduced and successfully 

applied to Si1-xGex alloys. However, so far there is no theoretical model which 

properly describes the optical properties of GeSiSn alloys. Thus, the aim of 

this work is to use theoretical simulation to show the possibility of achieving a 

direct tunable semiconductor in group IV, and to investigate the composition 

dependence of the electronic properties. The most vital objective is engineering 

a tunable direct energy gap semiconductor and finding its optical parameters 

in order to be able to design optoelectronic devices. 

1.4 The SiGeSn nanostructures as revolutionary semi­

cond uctor devices 

With a remarkable progress in cutting edge technology, the production of semi­

conductor structures of nanometer sizes became possible, and many prospective 

applications are rapidly emerging. Self-assembled Sn quantum dots embedded 

in Si have been successfully grown in recent years. It was anticipated that 

these would also be important nanostructures for optoelectronic devices, be­

cause of their potential for synthesis of a Si-based direct bandgap semiconduc­

tor, a property not found in the more conventional Ge and SiGe quantum dots. 

Although bulk Sn is a direct zero band gap semiconductor, the gap at the r 
point is expected to increase, as a combined result of quantum confinement and 

strain. Among possible important optoelectronic devices are electroabsorption 

modulators (EAMs) because of their high modulation efficiency and small size. 

These can be engineered as asymmetric double quantum wells (ADQWs), and 

can potentially be optimized to exhibit superior extinction ratio to single quan­

tum wells (SQWs), as is required for digital optical modulation. The group IV 

alloys thus hold a promise of long wavelength silicon technology applications, 

such as for chemical and biological agents detectors, infrared detectors and 

Longwave Integrated Optoelectronics (LIO) [6]. 
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1.5 Thesis outline 

From the discussion presented, one can see that the prospect of having SiGcSn 

semiconductor devices in the future has not been fully exploited. While this 

is partly due to difficulties in experimentally desired characteristics, there is 

also a lack of theoretical understanding of their properties. The goal of this 

thesis is to bridge this gap by investigating the electronic and interband opti­

cal properties of SiGeSn material, including binary alloys, ternary alloys and 

nanostructures, of interest for future semiconductor devices. The organization 

of this thesis is as follows. In chapter 2, the theoretical frameworks which are 

used throughout this thesis, the density functional, empirical pseudopotential 

and k . p method, will be described. Band structure calculations of Si-Ge-Sn 

alloys are performed, including those for pure silicon, germanium and alpha­

tin. Moreover, the model which explains the behavior of the alloys and the 

validity of the models is also given. In order to search for a direct band gap 

semiconductor, the results of calculation of composition dependence of energy 

band structure ofrelaxed Gel-xSnx and strained Ge on relaxed Gel-x_ySixSny 

alloys, strained Gel-xSnx on relaxed Gel_ySny, and of relaxed Sil-xSnx alloys 

are presented in chapter 3. In chapter 4, the single-particle states and inter­

band absoprtion in Sn or SnGe dots within the framework of k· p method are 

calculated. Due to the lack of some of material parameters for Sn, these were 

extracted from empirical nonlocal pseudopotentials, as described in detail. The 

results of this study are presented, with special attention devoted to the is­

sue of the nature of the band gap of quantum dot material, which is relevant 

for optoelectronic devices. In chapter 5, the asymmetric double quantum well 

structures which have a strong electric field sensitivity, are designed within the 

framework of k· p method. Asymmetric double quantum wells (ADQWs) are 

optimized to exhibit maximum optical modulation sensitivity by varying the 

barrier width, barrier position, and well width. The required Sn composition 

of the layers are investigated in order to have interband transition energy in 

the photon wavelength ranges of interest. The electronic structure, optical 
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properties, and the absorption coefficient are calculated. Finally, chapter 6 is 

a conclusion and discussion of topics for future investigations. 
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Chapter 2 

Theoretical framework 

2.1 Introduction 

In this chapter, the theoretical frameworks which are used throughout this the­

sis, the density functional, empirical pseudopotential, and the k· p method, 

will be described. The density functional theory including some approxima­

tions, which is an approach used to simplify solving the complicated problem 

of many electrons moving in an induced potential field, is introduced and the 

energy band structure and electron charge density of elemental silicon, germa­

nium and alpha-tin are presented. The physical system of interest consists not 

only of electrons but also of nuclei, and each of these particles move in the field 

generated by others so, in this chapter, the Hartree-Fock theory and the den­

sity functional theory, which are two different approaches to the many-body 

problem, are discussed. Both theories are the simplification of the full problem 

of many electrons moving in a potential field. The empirical pseudopotential 

is one of a variety of different forms of pseudopotential, fitted to reproduce 

experimental results. It can be used to calculate properties of a large number 

of semiconductors because it is simple, easy to implement and accurate. 

The k . p method is an efficient framework to accurately describe either 

the conduction band (CB), or the valence band (VB), or both, near a given 

point of the Brillouin zone (BZ). The simplest version of this method is the 

well known effective mass method which can describe semiconductor properties 

in the conduction band and, to the first approximation, in the valence band. 
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The general idea of the k . p method is to expand the wavefunctiolls ill a 

limited number of bulk Bloch bands at some characteristic point, usually the 

point k = 0 or r-point. Throughout this work, the 8-band Hamiltonian, 

which simultaneously describes the top three valence bands and the bottom 

of the conduction band, has been adopted because interband transitions were 

interested. It also can include the effects of band mixing, strain, as well as 

the influence of external fields, while one can keep a lower computational cost 

when compared to atomistic methods, as described in more detail below. 

2.2 Self-consistent local density functional pseudopo­

tential method 

2.2.1 The Hamiltonian of a solid 

Based on solving a many-body Schrodinger equation [7-11], consider a system 

of ions and interacting electrons, consisting of N electrons and K nuclei. The 

Schrodinger equation has the form 

(2.1) 

where E is the energy of the system, \lI ({RJ; rd) is the many-body wave 

function which describes states of the system and is a function of the positions 

of the ions (RJ) and the electrons (rd, and H is the Hamiltonian of this system, 

consisting of the kinetic energy operators and the potential energy due to the 

interaction between ions and the electrons. The former has the kinetic energies 

of both nuclei and electrons, i.e. 

where n is Planck's constant divided by 27r, MJ and me are the masses of nu­

clei and electron respectively. The latter, known as the interaction potential, 

includes interaction between ions and ions, interaction between electrons and 
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ions and interaction between electrons and electrons. Firstly, the ion-ion in-

teraction potential which is a repulsive energy of ions at RI and RJ is writtell 

as 
1 Z j ZJc 2 

47r£0 IRj - RJI' 

where Zj is the atomic number of nucleus I and e is the electronic charge. The 

second term is the attractive energy which is produced by the interaction of 

the electron at a position r in the potential field of positive charge of every ion 

in the system. This electron-ion potential can be written in the form 

where Vel-ion is the total ion potential. Finally, two electrons which are de­

scribed by variables Ti and Tj repel each other, which produces the electron­

electron interaction potential 

1 e2 

47r£0 Iri - rjl· 

Therefore, the Hamiltonian of the system becomes 

K h,2 N h,2 lIN e2 
_ '" _V'2 - '" _V'2 + -- '" 
~ 2MI RJ tt 2me ri 2 47r£0 i,j~h Iri - rjl 

H = (2.2) 

K N Z 2 K ZZ 2 --l-LL Ie +~_1_ L j Je . 

47r£0 [=1 i=l IR[ - ri\ 247r£0 /,J=ut-J IR[ - RJI 

It is very difficult to solve the stationary Schrodinger equation for this Hamilto­

nian directly. However, to simplify this Hamiltonian and system, some approx­

imations are introduced in view of the fact that ions move slowly in space when 

compared with electrons. This approximation is called the Born-Oppenheimer 

approximation [12]. It takes advantage of the fact that, in a system consisting 

of both heavy particles such as ions and light particles such as electrons, the 

motion of the nuclei is slower than that of electrons because the mass of a pro­

ton or a neutron is about 1835 times larger than the electron mass. Therefore, 

it is reasonable to separate the degrees of freedom, related to the motion of 

the nuclei, from those of the electrons. Moreover, it is clear that the ion-ion 



2.2 Self-consistent local density functional pscudopotcntial method 12 

interaction, known as the Madelung energy, is constant for a given structure'. 

Therefore, the Born-Oppenheimer Hamiltonian for the electrons call be written 

as: 

(2.3) 

However, this Hamiltonian is still too complicated to be dealt with. In the 

next section, a further approximation, known as the one-electron approxima­

tion, is introduced. 

2.2.2 One Electron Approximation 

This approximation is based on the fact that all electrons are identical particles 

and also on the assumption that they are independent particles, so each can 

be treated as a particle moving in a mean field potential Veff (r) and can 

be considered separately. The reason why the one electron approximation can 

reduce the complexity of the system is that the a complexity of the Hamiltonian 

is pushed into the mean field potential, which represents the effects of all the 

other particles in the system. This approximation was first considered by 

Hartree. The one-electron equation is then of the form: 

(2.4) 

where -h2 \12 j2me is the kinetic energy operator, 'l/Ji (r) are the one-electron 

wave functions, that must satisfy the normalization condition and Ei are 

eigenenergies of electrons. All 'l/Ji (r) can then be used as a basis to construct 

a many-body wave function \II. 

2.2.3 Hartree Approximation 

In accordance with the assumption that the electrons are independent particles, 

it is reasonable to adopt, as Hartree stated, that the N -electron wave function 
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W is just the product of one-electron wave functions 

(2.5) 

where ~)(r) are one-electron wave functions. This many-body wave function 

can be used to find the expectation value of the Hamiltonian as: 

(2.6) 

This leads to a set of one-electron equations which are known as the Hartree 

equations: 

(2.7) 

It can be easily shown that in the Hartree approximation, 

K 2Z N J 2 elf 1 eI 1 2 e v: (r) = --4 - L 1 R 1 + -4 - L drl I~j (rdl 1 I' 
7rfo I r - I 7rfo #i r - rl 

(2.8) 

2.2.4 Hartree-Fock Approximation 

When a many-electron problem is considered, one should be aware that elec­

trons are fermions which are identical particles and have antisymmetric wave 

functions. When any two arguments are swapped, the wave function changes 

sign, for example 

where Xi contains ri representing the electron coordinates and Si represent­

ing the electron-spin projection. In the Hartree approximation this effect is 

not included, but the Hartree-Fock approximation, developed from Hartree 

approximation by Fock, has taken into account the spin statistics. By taking 

the Pauli principle into account, the wave function can be written in form of 
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a Slater determinant, first introduced by Slater [13], as: 

(2.10) 

This wave function is also used for finding the expectation value of the Hamil-

tonian as: 

The result of minimizing the expectation value of iI with respect to the one­

electron wavefunctions are the Hartree-Fock equations: 

(2.12) 

The first two terms are the kinetic energy and the electron-ion interaction 

potential. The third term is the contribution from the electron potentials which 

are approximated by the electrostatic interaction with all other electrons and 

can be written in terms of the electron density p (r). The electron density is 

constructed from the single electron wavefunction: 

N 

p(r) = L I~j (r)12, (2.13) 
j=l 

where the summation over j thus includes all occupied states. Lastly, the extra 

term, when compared with Hartree equation, is the exchange term. The effects 
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of the exchange term are that the electrons of like spins tend to avoid each 

other. 

2.2.5 Density Functional Theory 

A weakness of the Hartree-Fock equation is that it depends on the assumption 

that the electron is an independent particle to make the Hamiltonian more 

simple but in reality it is not totally valid because there is an effect of the 

correlation between each electron. A better way to solve this problem is called 

density functional theory, first introduced by Hohenberg and Kohn [14], and 

later extended by Kohn and Sham [7]. In the density functional theory, the 

Schrodinger equation depends on the electron density rather than on the in­

dividual electron orbitals. In addition, this approach can include correlation 

effects which are completely neglected in the Hartree-Fock approximation. 

The minimal-energy density is given by solving the single particle equation, 

called the Kohn-Sham equation, 

(2.14) 

where the effective potential is given by 

elf ( ) e
2 J ,p (r ) ( ) V r = lIion + -4 - dr I 'I + Vxc r , 7rEo r - r 

(2.15) 

where Vion is the external potential due to the ions, which is replaced by pseu­

dopotentials in Chapter 3. p (r) is the electron charge density which is calcu­

lated from: 
N 

P (r) = L I'l/Ji (r)1 2 
, 

i 

and Vxc (r) is exchange-correlation potential. It is clear that 'l/Ji (r) can be 

solved only if \.'elf (r) is known, yet \.'eff (r) is a function of 'l/Ji (r). Thus these 

equations must be solved self-consistently. This scheme naturally leads to an 

iterative procedure, so do Hatree equations and Hartree-Fock equations. The 

first step of a cycle starts from the approximation of an effective potential 

(Veff (r)) and then one-particle wave functions ('l/Ji (r)) are solved to construct 
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the electron charge den ity. The next step i that the finer eff ctive potential 

is recalculated and then the new cycle is started by the calculation of the new 

wave functions. The solution is refined (details given in Sec.3.2) through th 

self con i tent cycles until the 'ystem reache conv rgence, as illu trated in Fig. 

2.1. This method has been u d to calculat lectronic prop rti s of materi­

als in chapter 3, called elf-consistent local den ity functional pseudopotential 

plane wave method. 

Construct 

Pnew (f) = 

L !'V i(r)!2 
i 

Solve the Kohn­
Sham equation 

for Veff (p(r)) to 

get 'V i Cf) 

onstruct 
Veff (p(r)) 

Figure 2.1: The self consistent cycl f th calculation 

2.2.6 Pseudopotentials 

The con pt of p eudopotentials was introdu d to tudy high-lying atomic 

states. Afterward , it was propo ed that p udopot ntial an b us d for 
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calculating the energy levels of alkali metals. The main adv<lnt.a.gp of using 

pseudopotcntials is that only the valence ele('trons have to be considered. The 

core electrons are treated as if they are frozen in an atomic-like cOllfiguration. 

As a result, the valence electrons are considered to move in a weak one-electron 

potential. To simplify the problem further, model pseudopotellials are used in 

place of the actual pseudopotential, such as a constant effective potential in the 

core region, empty core model, model potential due to Heine and Abarenkov, 

and Lin and Kleinman model potentials. In this work, the pseudopotential 

form of Srivastava [15] is adopted. The 3D Fourier transforms (for bulk sys­

tems) of this pseudopotential is described in the following general form: 

(2.16) 

where q is the wave vector and the parameters bl , b2 , b3 and b4 will be discussed 

in Chapter 3. 

2.2.7 Local Density Approximation (LDA) 

For an (almost) homogeneous electron gas, the density p( r) of which is a slowly 

varying function of r, the exchange-correlation potential at position r is as­

sumed to depend only on the electron density at r. In contrast, in a nonho­

mogeneous system, it depends not only on the density at r but also on its 

variation close to r. The explicit local density approximation expression for 

the exchange-correlation energy is 

Exc (p (r )) ~ J f xc (p (r )) p (r) dr, (2.17) 

where f xc (p (r)) is the exchange-correlation energy per electron of the uni­

form electron gas of density p (r). However, the exact form of the exchange­

correlation potential can not be readily stated: it is unknown. For the local 

density approximation, the exchange energy per electron can be written in the 

form: 

3e
2 (3) ~ 1 

f ex (p (r)) = -4:; (p (r))3 , (2.18) 
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and the local density exchange potential is given by: 

( 3)~ 1 Vex (p(r)) = _e2
;: (p(r)p. (2.19) 

In order to take into account the correlation part, in an early attempt Slater [16] 

has introduced the parameter a, called fudge factor, for the exchange potential. 

Thus, the exchange-correlation potential for local density approximation was 

written as: 

3ae
2 (3) * 1 Vxc (p (r )) = 2aEex = - -2- ;: (p (r) ) 1 . (2.20) 

2.2.8 Total energy 

In accordance with the full Kohn-Sham theory and plane wave pseudopotential, 

the total energy of the system will be derived in reciprocal space explicitly. 

Finally, the total energy per cell of system is written as, 

Etotal (2.21 ) 

(2.22) 

where the first term on the right hand side is the integration over the first Bril­

louin zone of the one-electron energy which can be handled by the tetrahedron 

method explained below, 'YEwald is ion-ion interaction, the next term is the 

Hartree energy and the last term is a contribution from the non-Coulombic 

part of the local pseudopotential, with 1ff representing the average electron 

density. 

In a crystalline solid, the lattice translation symmetry introduces the quan­

tum number of electron quasi-momentum k. The wave function 'ljJn (k) and the 

eigenvalue En (k) depend on the band index n and the electron quasi momen­

tum k. The expectation value \ A) of an operator A is obtained by integrating 

the matrix elements An (k) over occupied states in reciprocal space as 

\ A) =~ L 1 An (k) f (En (k)) dk, 
G n VG 

(2.23) 
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where An (k ) = ( 'Ij)n (k) IAI 7/Jn (k )) , Vc is the volume of the reciprocal unit 

cell and f (En (k )) is the occupation number or the Fermi distribution function 

which is equal to 1 for E < EF and zero for E > Ep at absolute zero tem­

perature. In order to deal with this integration, the widely used tetrahedron 

method, which was introduced by Blochl [17], is used. The expectation value 

( A) of an operator A is obtained by changing the integral into summation 

over irreducible k points: 

(A) = LAn (kj ) Wn,j, (2.24) 
j,n 

where Wn,j are called weights and are given below. 

In this method one first define an equispaced grid in reciprocal space. 

Then each mesh cell is divided into six tetrahedra as illustrated in Fig. 2.2. 

7 7 8 
..-------, 

7 8 

1 2 

1 2 2 

Figure 2.2: Break up of a submesh cell into six tetrahedra 

The energy E (k) at the set of grid points is calculated and the varia­

tion of the energy between the grid points can be approximated by a lin ar 

interpolation scheme using tetrahedra. For this purpose it is convenient to 

arrange the energies at the corners of the tetrahedrons in ascending order, i. . 
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E J < E2 < Ea < E4 · Let k i (i = L 2, 3, 4) 1)(' tIl(' coordinates of t he four 

corners of the tetrahedron with associated energies E i . The density of states 

D (E) and the number of states n (E) or the integrated density of states frolll 

a given tetrahedron are: 

For E < E 1 , 

D(E)=O, 

n(E)=O. 

D(E) = VT 3(E - Ed
2 

Ve E21E31E41 ' 

n (E) = VT (E - Ed
3

, 
Ve E2J E31E41 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

VT [2 2 E31 + E42 3] n (E) = V; E E E21 + 3E21 (E - E2) + 3 (E - E2) - E E (E - E2) , 
e 31 41 32 42 

for E3 < E < E4 , and 

D(E)=O, 

VT 
n (E) = V

e
' 

(2.30) 

(2.31 ) 

(2.32) 

(2.33) 

(2.34) 

for E > E4 , where Eij is a shorthand notation for Ei - Ej and VT is the 

reciprocal space volume of the tetrahedron. Note that the band index n is 

suppressed. After a number of states is calculated, it is used to determine the 

Fermi energy level. The weight is also evaluated by using these expressions. 

For a fully unoccupied tetrahedron, Ep < E1, the contributions vanish, i.e. 

(2.35) 
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For E! < E F < E2 , 

with 

with 

'WI = C [4 - (EF _ Ed (_1_ + _1_ + _1_)] , 
E21 E:H E-1! 

C
1 

- Vr (Ep - Et)2 
- 4Vc E31E41 ' 

C
2 

= Vr (Ep - Ed (Ep - E2) (E3 - Ep) 
4Vc E31 E31E41 ' 

C
3 

= Vr (EF - E2)2 (E4 - Ep). 
4Vc E41 E32E42 

WI = Vr _ C (E4 - EF ), 

4Vc E41 

_ Vr _ C (E4 - Ep) 
W2 - 4Vc E42 ' 

W3 = Vr _ C (E4 - Ep) , 
4Vc E43 

Vr [ ( 1 1 1 )] W4=--C 4-(E4-Ep) -+-+- , 
4Vc E43 E42 E41 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
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with 
3 

C = VI' (E4 - EF ) 

4Vc E43 E42E41 
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For a fully occupied tetrahedron the contribution for each corner is identical, 

l.e. 

(2.48) 

The correction terms of the weight factors have a simple form 

(2.49) 

where DT (EF ) is the density of states of the Tth tetrahedra at the Fermi 

energy. For a finite temperature case, the step function is replaced by the 

Fermi distribution and the Fermi energy is determined from the requirement 

that 

N = L L W (k, En (k) - E F) , (2.50) 
k n 

where the weights are given by 

(2.51) 

The computer code for band structure calculations according to the above 

algorithm was written in C language. 

2.3 Empirical pseudopotential theory 

The microscopic pseudopotential [18] in a structure is the superposition of 

potentials of all the constituent atoms which are situated at every atom site 

(2.52) 

where the summation is done over all the atomic constituents of the basis 

(atoms type a at basis sites r a ), and all the unit cells. For many semiconduc­

tors, which have face-centered cubic crystal structure, shown on the left of Fig. 
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2.3, the primitive lattice vectors al ,2,3 are: 

al Ao C + k) 2 J , (2.53) 

a 2 ~o (k + i) , (2.54) 

a 3 ~o (i + j ) , (2.55) 

where Ao is lattice constant of face-centered cubic Bravais lattice. For mat rials 

k, 

Figure 2.3: The face centered cubic crystal structure (left) and the fir t Bril­

louin zone of a face-center d cubic lattice (right) . 

such as Si, Ge and a -Sn, there ar two atom , one at ( ~, ~, ~) and another at 

( -~, -~, -~) in units of Ao, at ea h Bravais lattice point. They an b th 

sam atomic type which corresponds to diamond crystal structure (illustrated 

in Fig. 2.4 (left)) a in Si, Ge and a-Sn, or can be differ nt which corresponds 

to zincblende crystal structure (illustrated in Fig. 2.4 (right)) , as in AlAs and 

GaAs. 

To solve the Schrodinger equation the wave function is writt n as a linear 

combination of the complete orthonomal et of plane wav s, i.e. for a tate 
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! 
i 

....................... -......................... ~ .......•..... 
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Figure 2.4: Diamond crystal structure (1 ft) and zincblend crystal structure 

(right). 

corresponding to the wave vector k in the first Brillouin zone: 

1 
~n,k(r) = v'n L enG exp(ik· r ) exp(iG . r) 

G 

(2.56) 

where G are linear combinations of the elem ntary r ciprocallattice v ctors b , 

which satisfy b i ·a j = 27fCSi,j and J dTei(G-G'), r = Obi,j ' The primitive r iprocal 

lattice vectors can be written as follows: 

(2.57) 

(2.58) 

(2.59) 
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Therefore, the Hamiltonian matrix clement is 

HG',G = (2.60) 

(2.61 ) 

(2.62) 

(2.63) 

(2.64) 

where V (G' + k, G + k) is the potential given by: 

V (G' + k, G + k) = A jdre-i(G1+k)rVc (r) ei(G+k)'r. (2.65) 

After substituting the potential Vc (r) into this equation, one arrives at 

V (G' + k, G + k) = ~ jdTe-i(G1+k).r L.:: Va(r - ra)ei(G+k).r (2.66) 
ra 

~ L.:: jdTVa(r - fa)ei(G-G1).r. (2.67) 
ra 

After a mathematically convenient, r => f + ra transformation V becomes 

V (G' + k, G + k) = A L.:: jdTVa(f)ei(G-GI).(r-ra) (2.68) 
ra 

~ L.:: ei(G-G').(ra ) jdTVa(r)ei(G-G1)'(r) (2.69) 
ra 

where the term Lra ei(G-G1).(ra) is called the geometrical structure factor S. 

The formfactor of atom type a at basis sites fa is defined as the Fourier trans­

form of the atomic potential and also is known as pseudopotential form factor. 

n denotes the scaling volume (that of the unit cell) and q = iqi = ik + Gi. 
For diamond and zincblende crystal structures, which have two basis atoms at 

~ (i + j + k) and ~ (-i - j - k), the geometrical structure factor S is given 

as 

S = L.:: ei(G-G').ra (2.70) 
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where the summation goes over all the basis atom sites T. Taking spherical 

atomic the potential formfactors actually depend only Oll tlH' modulus of q. 

The number of vectors (plane waves) to actually work with is chosell according 

to the energy cutoff criteria. In selecting the q vectors to be included ill the 

hasis set, a q vector is included in the basis set if 

/i2 K2 
E(K) = E(K) = -- ::; Ecutoff 

2mo 
(2.71 ) 

is satisfied, where mo is the free electron mass, K = IKI = Ik + GI. For 

bulk band structure calculations the local part of the pseudopotelltial is more 

conveniently described by a continuous formfunctioll of the wave vector, V (q), 

for each of the atomic constituents of the unit cell. The most frequently used 

types of formfunctions are the classical Falicov form [19]: 

(2.72) 

the parameters for which are available in the literature for a wide range of 

atomic species, or the modified Falicov form, after Friedel et al. in Ref. [20], 

also used by Fischetti and Laux in Ref. [21], parameters available for Si and 

Ge, only which is adopted to use in band structure calculation in chapter 4: 

V(q) = al(q2 - a2) . ! [tanh (a5 - q2) + 1] 
1 + exp[a3(q2 - a4)] 2 a6 

(2.73) 

or the Zunger form [22], 

V(g) = al(q2 - a2) , 
a3 exp( a4q2) - 1 

(2.74) 

where the parameters for which are now available for Si and most of 111-V s. 

2.3.1 Nonlocal potential 

The accuracy of the empirical pseudopotential calculations is often improved 

by introducing a nonlocal potential [3], along with the local one. Like nonlocal 

density functional, in the plane wave representation of the wave function the 

nonlocal potential depends on the wave vectors of the two basis states sepa­

rately, not just on the difference of their wave vectors. The nonlocal potential 
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matrix element relating the hasis states with the reciprocal lattice vectors G 

and G' is given by 

V~L(K, K') = ~ Ae' (2£ + l)Pe(cosO) . Fe(K, K') . S(K - K') (2.75) 

where K = G + k and K' = G' + k, and k is the wave vector in the first 

Brillouin zone, n is the scaling volume, e the azimuthal quantum number, 

cosO = K . K'j(K . K'), Pe(.) is the Legendre polynomial of order £, the 

potential strength Ae is the depth of the nonlocal square well, characterizing 

the particular atomic type, S(K - K') is the structure factor determined by 

the position of the atom, Eq. (2.70), and 

K=K' 

Fe(K, K') = 
K =I K' 

(2.76) 

where Rs is the radius of the nonlocal square well (characterizing the particular 

atomic type), and je(.) the spherical Bessel function of order e. Various atoms 

are usually characterized by either the e = 0 (s type) or the £ = 2 (d type) 

non locality (almost never both). 

In the case of £ = 0 nonlocality the strength Ae is usually made energy­

dependent, according to either of the two expressions, related by units used: 

AD = a + /3. [(E(K). E(K'))1/2 - EF] , or AD = a + /30' [K K' - kF] 

(2.77) 

where Ep (or kF ) denote the Fermi energy (or the equivalent wave vector), 

and the parameters a and /3 (or /30) characterize the particular atomic type. 

In the case of £ = 2 nonlocality the screening is occasionally introduced, 

i.e. defining the screening function 

(2.78) 

where a and X are the screening parameters characterizing the particular 

atomic type, the matrix elements, Eq.(2.75), are rescaled as 

(2.79) 
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2.3.2 Spin-orbit coupling 

The spin-orbit (S.O.) interaction Hamiltonian, in the plane wave basis, is [3] 

Hso = -i)..{J . (K X K') . S(K - K') (2.80) 

where >. is the spin-orbit coupling constant, characterizing the particular 

atomic type, and {J are the Pauli matrices: 

- ~ [0 1 1 - ~ [0 -i 1 {Jx - {Jy -

2 1 0 2 i 0 
{Jz = ~ [1 0 1 

2 0-1 
(2.81 ) 

As in Ref. [23] screening of the spin-orbit coupling is introduced. Analytic 

expressions for the screening functions may be obtained when using the Slater­

type orbitals. These expressions read (Z. Ikonic, unpublished): 

!I(K) 

h(K) = 

1 
(1 + X2)2' 

5 - 3X2 

5(1 + X2)5' 

where the subscript denotes the row in the periodic table that the particular 

atomic type belongs to, and where X = K . e, with e denoting the screening 

length (being !"VO.1 A for Si and Ge). The s.o. interaction matrix elements are 

then rescaled as: 

Hso(K, K') ~ f(K) . Hso(K, K') . f(K') (2.83) 

2.4 k . p method 

In contrast to the previously described methods, the k·p method [24] is based 

upon perturbation theory. In this method, the energy is calculated near a 

band maximum or minimum by considering the wavenumber (measured from 

the extremum) as a perturbation. In the absence of strain, one describes the 

Hamiltonian of an electron in a semiconductor as 

A2 
A P A 

H = -2 - + Vo(r) + Hsa , 
rno 

(2.84) 
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where p is the momentum operator, in this section Vu(r) i::; the periodic crystal 

potential (including nuclei, core electrons and self-consistent potential of va­

lence electrons), and lIsa is the spin-orbit interaction arising from relativistic 

corrections to Schrodinger equation in real space form given by 

, Ii 
Hsa = -4 2 2 [\7Vo(r) x pl· a, 

rnoc 
(2.85) 

where a is a vector of Pauli matrices 

ax = [0 1], ay = [~ -i], az = [1 0] 
1 0 1, 0 0 -1 

(2.86) 

Considering a periodic lattice in space, Bloch theorem states that the solution 

of the Schrodinger equation for the periodic lattice is of the form 

(2.87) 

where unk(r) is a periodic function, called Bloch function, at band n, wave vec­

tor from the first Brillouin zone k. By substituting (2.87) into the Schrodinger 

equation, 

Hw = Ew, (2.88) 

the equation is written as, 

Enkunk(r) = 
p2 li2k2 k. p Ii 

(-2 - + Vo(r) + - + Ii- + 4 2 2 [\7Vo(r) x pl· a 
mo 2mo mo moc 

li2 

+ 4 2 2 [\7Vo(r) x kl· a)unk(r) (2.89) 
moc 

After neglecting the last term in this equation because the term lik (k around 

r-point) is much smaller compared with matrix elements of p and expressing 

the solution of (2.89), unk(r), as a linear combination of orthonormal basis 

states, UnO (r), 

(2.90) 
n 

where uno(r) are the solutions at the r point of the eigenvalue problem of a Her­

mitian operator with periodic boundary conditions and spin-orbit interaction 
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not included, 

Houno(r) = ((>2 + Vo(r)) uno(r) = Enouno(r). 
2mo 

(2.91) 

One has arrived at the eigenvalue problem of the Hamiltonian matrix whose 

elements are given as, 

( 

~ 2 f; 2k2 k ~ ) P I&.·P· 
hmn = (umol -2 - + Vo(r) + -2- + h-- + Hso Iuno). 

rno rno rno 
(2.92) 

Using (2.91) and the orthonormality condition, the Hamiltonian matrix is fi­

nally expressed as, 

(2.93) 

This method, therefore, is called the k . P method, as shown in the third term 

of the Hamiltonian. It was first applied to the valence band (6-band Hamilto­

nian) [25,26] and later on the conduction band was added (8-band Hamilto­

nian) [27]. The explicit forms of 8-band Hamiltonians in semiconductors with 

zincblende and diamond structure, used in this work, will be explained in the 

next section. 

2.4.1 The 8-band k· p Hamiltonian for semiconductors 

with zincblende and diamond crystal symmetry 

The explicit form of the 8-band k· p Hamiltonian is built to include the three 

highest states in the valence band and the lowest states in the conduction band. 

Since semiconductors have Sp3 hybridization tetrahedral bonds, an interaction 

between valence electrons in s-and p-type orbitals in the individual atoms after 

forming a semiconductor crystal, the suitable basis consisting of spin up and 

down states, denoted as 

{Ul, ... ,us} = {IS j), IX j), IY j), IZ j), IS !), IX !), IY !), IZ !)}, (2.94) 

is chosen in expansion (2.90). One can see the analogy of these states to S 

and Px-z orbitals of a spherically symmetric system (such as for example a 
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hydrogen atom). Instead of 5, X, Y, Z, one has instead choose to work in the 

basis of eigenstates of the total angular momentum operator IJ Jz) because it 

can diagonalize the Hamiltonian at k = 0 and be expressed in the previous 

basis as [28]: 

11) 

12) 

13) 

14) 

15) 

16) 

17) 

18) 

(2.95) 

The Bloch functions labelled by '1' and '2' correspond to electron states of spin 

down and spin up, those labelled by '3' and '6' to light-hole states, '4' and '5' 

to heavy-hole states and '7' and '8' to split-off band states. In this basis, the 

Hamiltonian acquires the form: 

ih= (2.96) 

A 0 V+ 0 V3V -V2U -U V2V+ 

0 A -V2U -V3V+ 0 -V y'2v U 

V -V2U -P+Q -s+ R 0 ~s -V2Q 

0 -V3V -s -P-Q 0 R -V2R ~s 
V3V+ 0 R+ 0 -P-Q S+ ...LS+ 

v'2 
y'2R+ 

-V2U -V+ 0 R+ S -P+Q V2Q ~S+ 
-U V2V+ ~S+ -V2R+ ~S V2Q -P -!:l 0 

V2V U -V2Q ...LS+ 
V2 V2R ~S 0 -P-!::l. 
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where 

A 

u 

v 

P 

Q 

R 

s 

when Eg = Ec - Ev is the energy gap and 11,,2,,3 are Luttinger parameters 

of the 8-band model, expressed in terms of the more experimentally accessible 

parameters of the 6-band model as 

11 

13 = 

L Ep 
11 - 3E

g 
+ 6' 

L 1 Ep 
12 - 23E + 6' 

9 

L 1 Ep 
13 - 23E + Ll· 

9 

6 denotes the spin-orbit splitting, and Po is the interband matrix element of 

the velocity operator [29] usually reported in energy units as Ep = 2;;20 Pg. 
After considering all bands other than the conduction band as remote bands 

and applying L6wdin's perturbation theory, the parameter A' can be related 

to conduction band effective mass m* as 

n2 n2 p'2 
-(1+A')=-- 0 
2mo 2m* Eg+~6· 

(2.97) 

2.4.2 The effect of strain in diamond crystals 

The aim of this section is to explain how the influence of strain can be taken into 

account in the k· p model, approach of Ref. [28], because it has a strong effect 
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on the electronic structure of semiconductors, such as changing the potential 

in semiconductors, modifying the bandstructure and relocating the atoms from 

their original positions (the last of these effects does not appear explicitly ill 

the k·p method, but is taken within the empirical pseuciopotential calculations 

in this thesis). Let the component of the displacement vector of a point in the 

semiconductor in the direction i be Ui' The strain tensor components are then 

defined as: 
1 (au. au.) 

eij = 2" ax; + ax: ' (2.98) 

where the indices i,j represent the x, y, z. The Hamiltonian contributed by 

the strain in the basis (2.95) is given as [28] 

Hs= (2.99) 

ace 0 -v+ 0 -V3v v'2u u -v'2v+ 

0 ace v'2u v3v+ 0 v -v'2v -u 
-v v'2u -p+q -s+ r 0 fis -v'2q 

0 V3v -s -p-q 0 r -v'2r 1 
v'2 S 

-V3v+ 0 r+ 0 -p-q s+ ...!..s+ 
v'2 

v'2r+ 

J2u v+ 0 r+ s -p+q J2q fis+ 

u -v'2v+ fis+ -v'2r+ 1 

v'2 s v'2q -p 0 

-v'2v -u -v'2q ...!..s+ 
v'2 v'2r fis 0 -p 

where 

pave, 

q b [e33 - ~(ell + e22 )] , 

r ~b(ell - e22) - ide12, 

s -d(eI3 - ie23), 
1 3 

U ,t;lPO L e3jkj, 
y3 j=1 

1 3 

V J6Po L(elj - ie2j)kj, 
J=1 
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where ac and av are the conduction and valence hand hydrostatic deforma­

tion potentials, respectively, band d are the uniaxial and shear deformation 

potentials. 

2.4.3 The solution of 8-band k· p method for bulk semi­

conductors 

The aims ofthis section is to use the 8-band k· p method to calculate the elec­

tronic band structure and electrical properties of bulk semiconductor, which is 

periodic, by starting from solving equations: 

(ih (k) + fIs (k)) F (k) = E (k) F (k) 



~ 
..Jo.... 

~ 

A 0 v+ 0 J3v -../2u -u v~+ 1 
1 

'0 

-v'2u -J3v+ -v v'2v 
;::l 

0 A 0 C1> 
'""-

.fis 
;:,-

V -v'2u -P+Q -s+ R 0 -../2Q c 
~ 

0 -J3v -s -P-Q 0 R -v'2R ~s 
+ 

J3v+ 0 R+ 0 -P-Q s+ -.Ls+ y'2 ../2R+ FI (k) FI (k) 

-../2u -v+ 0 R+ s -P+Q v'2Q .fis+ F2 (k) F2 (k) 

-u ../2v+ .fis+ -v'2R+ ~s ../2Q -P-D.. 0 F3 (k) F3 (k) 

v'2v u -v'2Q -.Ls+ v'2R .fis 0 -P-D.. F4 (k) F4 (k) y'2 = E(k) (2.100) 
ace 0 -v+ 0 -J3v v'2u u -v'2v+ Fs (k) F5 (k) 

0 ace ../2u J3v+ 0 v -v'2v -u F6 (k) F6 (k) 

-v ../2u -p+q -s+ r 0 .fis -v'2q F7 (k) F7 (k) 

0 J3v -s -p-q 0 r -../2r 1 y'2s Fg (k) Fs (k) 

-J3v+ 0 r+ 0 -p-q s+ _1 s+ y'2 ../2r+ 

../2u v+ 0 r+ s -p+q v'2q JIs+ 

u -../2v+ Jis+ -../2r+ 1 y'2s ../2q -p 0 

-v'2v -u -../2q _1 s+ y'2 ../2r .fis 0 -p 

I 
C;.:i 
C1l 
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The Hamiltonian matrix is a funct.ion of the wavevector k. These eqnations 

are solved by diagonalizing the Hamilt.onian mat.rix. The result. of doing so is 

t.hat. one will get. 8 eigenenergies and 8 coefficients of the basis, in Eq. ( 2.96), 

of t.he wavefunctions. These wavefunct.ions correspond t.o 2 wavefullct.ions in 

the conduction bands and 6 t.he in valence bands: 

Fnl(k) 

Fn2 (k) 

Fn3 (k) 

Enk ¢:} 
Fn4 (k) 

(2.101) 
Fn5 (k) 

Fn6 (k) 

Fn7 (k) 

Fn8 (k) 

Then, the band nth wavefunction at wavevector k is expressed as: 

\link (r) = (t Fnkj I)j) eik
.
r 

)=1 

where I) is the basis function in Eq.( 2.96). 

2.4.4 The solution of 8-band k . p method for het-

erostructure semiconductors 

Similarly, the aims of this section is to modify the 8-band k . p method to 

be able to calculate the electronic band structure and electrical properties of 

heterostructure semiconductors, such as quantum wells, wires and dots, which 

do not have periodicity. According to this reason, the idea of an envelope 

function has been introduced. The whole heterostructure will be treated as a 

large periodic system . 

• Quantum dots. The energies and wave functions are computed by 

replacing the wavevector k with derivatives with respect to spatial coor­

dinates, i.e. kz =} - %z' ky =} - %y and kx =} - %x' the terms of the type 
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2 2 2 k l. 11 II f rkz =} k/ykz, rky =} kyrky and rkT =} ,,,·r":.,. T H~ (iagona C Clllcnts 0 

the Hamiltonian are amended with the potential, including the valence 

band offset, external electric field and self-consistent space-charge elec­

trostatic potential. The coefficients of the basis then have turned into 

envelope functions: 

Fnl (r) 

Fn2 (r) 

Fn3 (r) 

Enk ¢:> 
Fn4 (r) 

(2.102) 
Fndr) 

Fn6 (r) 

Fn7 (r) 

Fn8 (r) 

Finally the Eq.( 2.100), turned to be a system of differential equations, 

have to be solved. Then, the band nth wavefunction at wavevector k is 

expressed as: 

where I) is basis function in Eq.( 2.96) . 

• Quantum wells. Similarly to quantum dots, the wavevector k in 

Eq.{ 2.100) will be replaced with derivatives with respect to spatial co­

ordinate, i.e. kz =} - %z' but kx, ky will not be changed. The envelope 

LEEDS UNIVERSITY LIBRARY 
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functions are only functions of z: 

F) (z, k xy ) F) (z, kry) 

F'2 (z, k xy ) F2 (z, k.ry) 

F3 (z, k xy ) F.1 (z, kJ:y) 

k =}_.1t. F4 (z, k xy ) F4 (z, k xy ) z 8z 
= E (kxy ) 

kx,ky F5 (z, k xy ) F."> (z, k xy ) 

F6 (z, k xy ) F6 (z, k xy ) 

F7 (z, k xy ) F7 (z, k xy ) 

Fa (z, k xy ) Fa (z, k xy ) . 

(2.103) 

Then, the band nth wavefunction at wavevector k xy is expressed as: 

'l1 ( ) = { Fnlkxy (z) 1)1 + F n2kxy (z) 1)2 + Fn3kxy (Z) 1)3 + 
nkxy r 

... + Fn8kxy (Z) 1)8 

2.4.5 The strain distribution 

The aim of this section will be to describe how strain can actually be calculated 

in quantum dots. Due to a large difference in lattice constants of Sn (dots) 

and the matrix (Si, Ge) there is a considerable strain built into the system, 

which strongly affects the electronic structure, and can be calculated by using 

two groups of models [30]. 

• Atomistic model. In this model, all atoms in the nanostructures (quan­

tum dots and surrounding matrix) are considered and the total elastic en­

ergy of the structure is expressed as a sum of interaction energies between 

atoms, represented by a sum of classical n-body interaction potentials 

(2.104) 
i,j i,j,k 

The energy can be expressed in terms of the displacements of each indi­

vidual atom from its equilibrium position. The relaxed positions of every 

atom in the system then can be calculated by using a minimization of 

the energy. 
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• Continuum mechanical (CM) model. In the continuuIIl mechanical 

model, the quantum dot structure is modelled by all elastic classical 

continuum medium whose elastic energy is given by 

(2.105) 

where Aijkl is the elastic tensor relating the stress and strain tensor by 

Hooke's law 

aij = L Aijklekl. 

kl 

(2.106) 

In crystals with the diamond structure (only the a-Sn dots were consid-

ered) the elastic tensor is of the form 

3 

Aijkl = C128ij8kl + C 44 (8ik 8 jl + 8 il 8 jk ) + Can L 8ip8jp8kp8lp (2.107) 
p=l 

where C 12 , C 44 and Can = C11 - C 12 - 2C44 are the elastic constants. 

Throughout this work, the continuum model is adopted as the strain distri­

bution calculation model with a nonuniform rectangular grid, denser in the 

quantum dot area than the matrix area as illustrated in Fig. 2.5, because from 

the computer point of view it is less computational demanding. For example, 

one can choose a suitable size of grid, equaling the lattice constant or bigger. 

In the minimization of an atomistic model, in contrast, one inevitably has to 

solve a system of nonlinear equations for atom displacements; while only lin­

ear equations in the continuum model system. The strain is calculated by the 

finite element method, as described in more detail in Ref. [31]. 

2.4.6 Static electric fields 

According to one of the main interests of this work, electric field modulation in 

antisymmetric double quantum wells, an external electric field will be applied 

to the system, so it will cause the changes in the quantum wells energy levels 

and wavefunctions. The external electric field, however, can be simply taken 

into account by considering it as additional potential Vp(r) = lelF . r. In the 
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Figure 2.5: onuniform rectangular grid , used in the continuum model. 

k . p Hamiltonian, the electri field can b includ d by ad ling VJ"(r) to all 

diagonal elements of the Hamiltonian. 

2.4.7 Methods for solving the k· p Hamiltonian 

1 here are two main method that can accordingly solve the k . p Hamiltonian: 

• Finite-differ ence m ethod (FDM) . Within thi meth d [32 3r:;], th 

real space of the system will be divided into mall grids and the wavcfun -

tion will be r present d by points on a di ret thr e dimensional grid 

of size NxNyNz, and partial derivativ s ar al 0 turn d into finit differ­

ences. One therefore obtain an eig nvalu probl m of a very large ma­

trix. How ver, with sp cialized algorithm for the digitalization of par 

matrices and highly effici nt computers nowadays, it an olved [36] . 

• Wavefunction expansion methods (WEM) . Within the wavefunc­

tion expansion methods [37], th env lop fun tions, '1/;j(r ), will be ex­

pressed as a linear combination of a certain set of orthonormal basis 

functions, al(r ) : 

(2.10 ) 
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where Ajn is the coefficients in the expansion. After substituting Eq. 

(2.108) into the Hamiltonian eigenvalue problem, 

one gets 

where 

2: Hij7jJj(r) = E1/Ji(r) , 
j 

2: 1iij (m, n)Ajn = EAim , 

jn 

(2.109) 

(2.110) 

(2.111) 

Therefore, the eigenvalue problem (2.110) can be solved by diagonal­

ized the matrix 1i. One, moreover, can obtain the correct eigenvalues 

by employing a relatively small basis set by choosing the suitable basis 

functions. In order to make a right decision, one has to compromise 

between the simple basis function where the expressions for 1iij (m, n) 

are fully analytical, such as the plane waves, and the complicated basis 

functions where required the smallest basis set. There are several dif­

ferent choices of orthonormal basis functions that have been used in the 

literature. These include plane waves [38-42], the eigenfunctions of the 

particle in a cylinder with infinite walls (referred to as cylindrical basis 

in what follows) [43,44]' and eigenfunctions of a harmonic oscillator [45]. 

Throughout the k . p calculation, this method to calculate electronic 

and optical properties of the nanostructure has been chosen because the 

number of necessary basis functions in WEM is small in order to get 

the accuracy of eigenenergies of several meV. In addition after the wave­

functions are calculated, other relevant physical quantities, such as for 

example optical matrix elements, can be expressed from the coefficients 

in the expansion, rather than by calculating three dimensional numerical 

integration again. One can also chose cylindrical basis functions. Al­

though the expressions for 1iij (m, n} are not fully analytical, these can 

be calculated efficiently with a small number of basis set functions. It 

can also exploit the symmetry in dots with cylindrical symmetry. 
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2.4.8 The eight-band k·p method in cylindrical coord i-

nates 

The r-valley electronic structure and interband optical matrix elements of Sn 

quantum dots were calculated using the eight-band k-p method. It describes 

simultaneously the conduction band r7 and the valence bands rt (heavy hole 

and light hole band) and rt (spin-orbit band), shown in Fig.L1, including the 

strain dependent coupling and shifts of these bands. In particular, the form 

given by Bahder [28] was employed. The Hamiltonian is given as H = Hk + Hs, 

where Hs is the strain part and Hk the kinetic part (that also includes the 

modulated potential Vo (r) and the spin-orbit interaction Hso. The state of 

the system is described as a linear combination of a multiple of the bulk Bloch 

functions Ii) and slowly varying envelope functions which satisfy the following 

system of coupled partial differential equations: 

8 

L Hij'IjJj (r) = E'ljJi (r), (2.112) 
j=l 

The orthonormal wavefunction expansion method was used to find the size­

quantized states (eigenenergies and wavefunctions) in quantum dots. Due to 

the cylindrical symmetry of the dots considered here, these are taken to be 

embedded in an outer cylinder of radius Rt and height Ht, with hard walls. 

Therefore, the envelope function corresponding to band i was written as a 

linear combination of expansion basis functions 

'ljJi (r) = L Aindnm(i) (r) 91 (z) <Pm (¢J), (2.113) 
nl 

where 

(2.114) 

(2.115) 

(2.116) 

where 1 and m are integers and n a positive integer, and Jm is the Bessel 

function of order m and knmRt is its n-th zero. Furthermore, m (i) = mf -
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Tnj (i), where mj (i) is the z-component of augular mOIlH'utUIll of the Bloch 

function Ii >, and quantum number Tn f is the z-component of the total angular 

momentulIl, which is a good quantum number and is the sum of the angular 

momentum of the Bloch function and that of the envelope function. The states 

can therefore be labelled as nemf (nhmf ), denoting that an electron (hole) is 

in the n-th state among the states with the z-component of the total angular 

momentum mf. After it is substituted into Eq.( 2.112), one has arrived at 

where 

L Hinm(i)l,i'n'm(i')l,Ai'n'l' = EAinl , 

i'n'l' 

(2.117) 

(2.118) 

It has been evaluated in the terms of T1-TlO , shown in the appendix part of 

Ref. [31]. 

2.4.9 Interaction with external electromagnetic radia-

tion 

The aim of this section is to describe the theory which explains the interaction 

between the active region of the semiconductor devices and electromagnetic 

radiation because it can describe optical properties of semiconductor devices, 

such as the photon absorption coefficient. The radiation is described classically 

by the magnetic vector potential A in the Coulomb gauge [46] by substitution 

of f> in the Hamiltonian [46] with 

P --t f> + lelA. (2.119) 

The Hamiltonian representing the interaction of electrons with electromagnetic 

radiation then is obtained as 

iI' = (f> + lelA)2 __ p_2 
2mo 2mo 

(2.120) 

Throughout this work, one has neglected the quadratic terms in A because 

one mainly focuses on the linear response to external electromagnetic field. 
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Moreover, the dipole approximation, assuming that the magnetic vector po-

tential A is not spatially dependent, has been adopted, due to the fact that 

the wavelengths of interest will be those in the mid-infrared region of the spec­

trum which is much larger than the size of the nanostructures. Within these 

approximations, the Hamiltonian of interaction finally is simplified as 

H'= Mp . A . 
ma 

(2.121) 

From Fermi's Golden rule, the transition probability from an initial state 

Ii) to a final state If) due to the interaction with electromagnetic radiation of 

angular frequency w is given by 

Wi! = 2; 1 (i 1 iI' 1 f) 12 6 (E! - Ei 1= fuv) , (2.122) 

where the '-' sign corresponds to absorption and '+' to emission, and E! and 

Ei are the energies of the final and initial state, respectively. 

According to the dipole approximation in which A does not depend on the 

coordinate, one can calculate only the momentum operator in the evaluation 

of the matrix elements between states. After letting the envelope function 

representations of the initial states Ii) and final states If) as 

(2.123) 
n 

m 

the matrix element of the momentum operator between is then given by 

Pi! = J drw(i)*(r)p\}l(f)(r), (2.124) 

or 

Pi! = L J dr7j;~i)*u~ [um p7j;;£) + 7j;;£)pum ] . 

mn 

(2.125) 

From this equation, it has been assumed that the envelope functions F(r) are 

slowly varying function compared to the rapidly varying Bloch functions, so 

the envelope function will feel only the average value over the unit cell of the 

Bloch functions. It can mathematically be expressed as: 

J drF(r)u(r) = J drF(r)(u(r)), (2.126) 
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where (u(r)) is the average value over unit cdl of a rapidly varying fUllction. 

After exploiting this relation and using the condition of orthonorrnality of the 

Bloch functions, the equation has been simplified as 

Pif = L J dr1/)~i)* (bnmlik + Pnm) 1/J~£), 
mn 

(2.127) 

where k = pili. Comparing the expression in brackets in (2.127) with the k·p 

Hamiltonian h given in Eq. (2.93), one gets 

p. = ma '" J dr.I,(i)* (Bh) .I,(f) 
tf Ii ~ 'Pn Bk 'Pm , 

mn nm 

(2.128) 

or 

(2.129) 

Finally, the optical cross section of the transition from an initial state Ii) 

to a final state If) is given as 

aff(w) = _ 27r IM~fI2 g(Ef - Ei =F hw, 2a), 
ncocw 

(2.130) 

where n is the refraction index. Mif = (i I iI' If) I A is the matrix element 

which depends only on the direction c of light polarisation and not on the 

amplitude of A, related to Pif by 

M~f = ~~ Pif . c, (2.131 ) 

and g(x,2a) is the Gaussian distribution function. According to realistic de­

vices, the quantum dots size in an ensemble is not uniform. In order to account 

for the spread of sizes of self-assembled quantum dots, and various other sources 

of line broadening, the lineshape function 9 in Eq. (2.130) was taken as the 

Gaussian distribution function, i.e. 

1 [(Ef - Ei - hw)2] 
9 (Ef - Ei - hw, 2a) = aJ27r exp 2a2 ' (2.132) 

where a is the standard deviation of the Gaussian, which typically amounts 

to 10% of the transition energy for bound-to-bound transitions. The selection 

rules for the transitions are I~ml = 0 for absorption of z-polarized radiation 

and I~ml = 1 for in-plane-polarized radiation. The computer code according 

to this method, written by Dr. N. Vukmirovic, was used in calculations. 



Chapter 3 

Band structure calculations of SiGeSn alloys: 

achieving direct band gap materials 

3.1 Introduction 

46 

Although still waiting for clear experimental confirmation, the binary GeSn 

and ternary SiGeSn alloys are considered to be very prospective materials for 

infrared detectors, as pointed at by Soref and Perry [6], who used linear inter­

polation scheme to calculate the electronic band structure and optical prop­

erties of Gel-x_ySixSny alloys and concluded that these will be tunable direct 

band gap semiconductors. Furthermore, both the direct and indirect band gap 

in Ge decrease with tensile strain, but the former (initially 140 meV above) 

does so faster, eventually delivering a direct gap material. Therefore, one can 

use strained Ge, grown on ternary Gel-x_ySixSny alloys [5,47]. There have 

since been a number of theoretical investigations of the electronic structure of 

SiGeSn alloys and the influence of composition fluctuations. For instance, us­

ing the tight-binding method within the virtual crystal approximation (VeA), 

the bowing parameter bcesn value of 0.30 eV [48] for Gel-xSnx was calculated, 

while another, pseudopotential based calculation [49] gave the value of -0040 

eV. The latter also predicted that Gel-xSnx alloys become direct gap mate­

rials, with 0.55 > Eg > 0 eV for 0.2 < x < 0.6. The results for bcesn are 

quite remote from each other (even in sign), and both grossly deviate from 

the experimental value, bcesn= 2.8 eV [4,50]. This clearly indicates that VeA 
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cannot explain the behaviour of disordered G(l) -.rSll.,. alloys [51], although it 

is considered reasonably accurate for Si1-rGe.r . In order to take into account 

the alloy disorder effects, the Coherent Potential Approximation (CPA) was 

employed for Si1-xGex alloys. According to Chibanc ct al. [52], who used the 

model developed by Zunger et al. [22], the calculated optical hand gap gap 

bowing is in good agreement with experiment for slIlall Sn content. How­

ever, so far there is no theoretical model which properly describes the optical 

properties of GeSiSn alloys in a wide range of compositions. The aim of this 

chapter is to theoretically explore various possibilities of achieving tunable di­

rect gap semiconductors based on group IV materials, and to investigate the 

composition dependence of their electronic and optical properties. 

In this chapter, the band structure of Si-Ge-Sn alloys is explored in search 

of new direct bandgap semiconductors. In Sec. 3.2 the theoretical framework 

is presented. Moreover, the model which explains the behaviour of the alloys 

and the validity of the models is also given in Sec. 3.3. In order to search 

for a direct band gap semiconductor, the results of calculation of composition 

dependence of energy band structure of relaxed Gel-xSnx and strained Ge 

on relaxed Gel-x_ySixSny alloys, strained Gel-xSnx on relaxed Gel_ySny and 

relaxed Si1-xSnx alloys are presented in Sec. 3.4. Finally, the conclusions are 

presented in Sec. 3.5. 

3.2 Computational method 

For band structure calculation of SiGeSn alloys the charge self-consistent pseu­

dopotential X a method is used. It finds the self-consistent solution of the 

Schrodinger equation, with the lattice constituents described by ionic pseu­

dopotential formfunctions. Compared to the first-principles density functional 

theory in the local density approximation [7,8], which perform the total en­

ergy minimization, the X a method is able to reproduce the electronic structure 

(Le. the band gaps, or optical properties of semiconductors) with very good 

accuracy, without any additional schemes like GW approximation or "scissors 
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correction" as are employed ill total energy approadH's. On the other hand, 

this method would not deliver the ground state properties (e.g. the atomic co­

ordinates relaxation, or lattice constant bowing) very accurately, though these 

can be externally supplied to the calculation. Since the electronic: properties 

are interested, the X 0: method was adopted, and experimentally obtained lat-

tice parameters were used where available. 

The calculation starts with the construction of the effective potential, 

including the pseudopotential, the Hartree potential and the exchange­

correlation potential 

(3.1 ) 

where VHartree (r) = J I:~(:idf, and n (r) is the real-space electron density. The 

Hartree potential is evaluated in momentum space 

2 n (q) 
VHartree(q) = 4rre -2-' 

q 
(3.2) 

where q is the wave vector and n (q) are the Fourier coefficients of charge 

density. This is evaluated in two steps. First, the density was computed on a 

16 x 16 x 16 grid of the simple unit cell in real space. Second, a fast Fourier 

transform was used to transform from n (r) to n (q). The exchange-correlation 

potential was evaluated in a similar manner. The local exchange-correlation 

potential of the Slater type has been chosen, defined as 

(3.3) 

where [n~ (q)] are the Fourier coefficients of the cube root of the charge den­

sity. Based on the approximation of Slater [13], 0: is a constant which Schluter 

et al. [53] have set to 0.79. The calculation of this potential was similar to the 

calculation of n (q), except that the cube root of n (r) on the cubic grid was 

taken before transforming from [n (r)]~ to [n~ (q)] by fast Fourier transform. 

The Vxc(q) was then evaluated using Eq. (3.3). As for the pseudopotential, 

the same form as Srivastava [15] has been used, 

(
b1 ) 4 Vps(q) = q2 (cos(b2Q) + b3) exp( -b4Q ), (3.4) 
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with the parameters for Si, Ge, and Sn given in Table 3.1. ThC'se arC' slightly 

readjusted values from those given in Ref. [15], as dictated by a larger energy 

cutoff, and a different method of integration over the Brillouin zone, used in 

this work. 

Parameter Si Ge Sn 

b1 (Ry) -1.213 -1.032 OA01 

b2 0.785 0.758 1.101 

b3 -0.335 -0.345 0.041 

b4 0.020 0.024 0.018 

Table 3.1: Parameters of the pseudopotential of Si, Ge and Q-Sn 

The electronic structure is found by solving the Kohn-Sham equation (in 

atomic units n = 2me = e; = 1): 

(3.5) 

which is done using the self-consistent pseudopotential plane waves method [9], 

with a kinetic energy cutoff of 24 Ry, the value which gives good convergence 

of the calculation. The improved linear tetrahedron method [17] was used 

for integration over the Brillouin zone, with 34 k-points in the irreducible 

wedge. The linear mixing scheme was adopted and the convergence of the self­

consistent calculation was considered to be adequate when the total energy 

of the system was stable to within 10-3 Ry. The diagram of self-consistent 

pseudopotential plane waves method is shown in Fig. 3.1. 

In these calculations the spin-orbit coupling is not included because it would 

double the size of the problem while not being essential for the aim of this work, 

which is to find whether the smallest band gap is direct or indirect (and this 

is determined only by the behaviour of the conduction band). 

Including the spin-orbit coupling would bring slight quantitative correc­

tions in the calculated values of band gaps (with the ionic pseudopotential 
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Figure 3.1: Diagram shows the algorithm of th eU'- on is tent p 'eudopoten­

tial plane wave method. 

formfunction re-fitted to reproduce the known exp rirnental value for ele­

mental Si Ge and Sn in this ca ); but thi would n t affe t the pr di t d 

direct-indirect crossover points. 

Similar conclu ion on a relativ ly small influence of spin-orbit coupling on 

the topic of int rest h re has b n drawn in [54], ba ed on empirical pseudop -

tential calcu lation in th Ge-Sn alloy. 

Th calculated band tructur of bulk Si G ,and a-Sn arc given in Fig. 3.2, 

with th band gap of Si (G ) being 1.2 eV (0.71 eV) whi le a -Sn has a negativ 

direct band gap. Th longitudinal (ml) and transverse effect.ive ma L (777,) 
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Figure 3.2: EI ctroni band stru tur of Si , G , and Q- n. 

for the X-vall y in Si are O.87mo and O.22mo· Similarly, th L-vall y in 

has ml = 1.68mo and mt = O.16mo. In ord r to ch k th reliability of th 

parameters, the resulting electron d n ity plot for sili on, g rmanium and tin 

are shown in Fig. 3.3, 3.4, 3.5 and 3.6. All th s ar in very go d agreement 

with the published valu , indicating that th paramet r an be reliably u d 

for furth r calculations. 

3.3 Alloy models and their validity 

Alloy properties can be evaluated either within the virtual crystal approxima­

tion (VeA) with identical, averag -composition atom populating the latti e 

sites of the minimum-volume crystalline unit ell, or by populating individual 

lattice sites only with pure el ment atoms, in proportion to th alloy ompe­

sition ("mixed atom m thod") , in which case one ha to use a 'upercell , with 

in reased volume. In the latter ase one can optionally include atomi relax-
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:J ~ 
1 (2) 
I::J)) r; 
I 

Fig ure 3.3: Electron density plots between 2 ba al (001 ) planes from z = 0 

to z = Ao of ilicon. Starting from the top left , each subs quent figur in the 

normal reading order is displaced by ,6.z=0.125Ao along the (001) direction 

where Ao is the lattice constant of silicon. 
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Figure 3.4: Same a in Fig. 3.3, but for germanium. 
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Figure 3.5: Same as in Fig. 3.3 , but for Q-t in 
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Figure 3.6: Electron den ity plots on (llO) plan of silicon (Si), germa­

nium(Ge) and a-tin (a-Sn), containing atom in zig-zag fashion. The bond 

between neighbouring atom are clearly visibl . 
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ation, i.e. shifts of different types of atoms from their idealised positions (those 

occupied by average-composition atoms), which obviously influences the bond 

lengths between neighbouring atoms. Relaxed atomic coordinates can be found 

either independently of the band structure (using e.g. empirical interatomic 

potentials), or together with it (by methods minimising the total energy). In 

this thesis, however, the relaxation of atomic coordinates was not accounted 

for. The former (VeA) approach is simpler but may be grossly inaccurate in 

some cases. The latter approach is more realistic, accounting for the effects 

of disorder and composition fluctuations, but becomes computationally very 

demanding as the supercell size increases. It will be discussed in the next 

section. 

3.3.1 Supercell and the reciprocal lattice vectors 

According to Z. Ikonic (unpublished), consider a unit cell of a superlattice 

(supercell) grown in the [001] crystallographic direction, having a total of N 

crystalline monolayers per period. The monolayer here denotes a half of a cubic 

lattice constant thick layer. The material composition may vary arbitrarily 

along the period. For example the superlattice period has a total of n layers, 

each of them has ni (i = 1, ... , n) monolayers (so I:~=l ni = N - the total 

number of monolayers). The height of the whole period, c, will be 

(3.6) 

where Ci is the lattice constant in the growth direction (in the unstrained 

case, the lattice constant, a, of the alloy). Allowing for an enlarged supercell 

with neell minimum-volume supercells stacked side-by-side (i.e. parallel to the 

(001) growth plane), the elementary translation vectors aI, a2, and a3, of the 

minimum-volume supercell for this superlattice for neell =1, 2, 4, 8, 16, ... , 
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may thell be chosen as: 

for neell = 1,4,16, ... , and 

fa, fa, 
+-1+ -J 
22' 
fa, fa, 

-21+ 2 J , 

a . mod(N, 2), k 
2 J + C , 

fai, 

a2 - eaj, 
a·mod(N,2), k 

a3 2 J+c, 

for neell = 2, 8, ... , where 

e = { Jncelh 

J!!:c,ll. 
2 ' 

for neell = 1,4,16, ... 

for ncell = 2,8, ... 
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(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11 ) 

(3.12) 

Therefore, the elementary reciprocal lattice vectors g in the two cases are 

( 
1, 1, mOd(N,2)k) 

g} 271" + fa 1 + faJ - 2fc ' (3.13) 

( 
1, 1, mOd(N,2)k) 

g2 - 271" - ea 1 + eaJ - 2t'c ' (3.14) 

g3 271" k, 
C 

(3.15) 

for neell = 1,4,16, ... , and 

(3.16) 

(3.17) 

(3.18) 

for neell = 2,8, .... 

The reciprocal lattice vectors are then constructed as all linear combina­

tions of the elementary vectors, i.e. 

(3.19) 
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In this work the cubic unit cell (supercell) with 4 minimuIll-volume ~illC­

blende unit cells is used. With this choice, the X point at the boundary of the 

first Brillouin zone folds to the r point of the supercell Brillouin zone, but the 

L point does not change. Furthermore, this choice enables the binary compo­

sitions with a 12.5% composition step to be investigated, e.g. the AO.25Bo.75 

alloy is obtained by putting 2 atoms of A and 6 atoms of B in lattice sites. 

There are different ways for placement of these 8 atoms, each having somewhat 

different band structure, and the alloy band structure is calculated by averag­

ing over all the possibilities. Within the mixed-atom supercell approach, some 

care is necessary when "unfolding" the band structure to identify (resolve) the 

energies at the r and X points of the Brillouin zone in the minimum-volume 

unit cell representation (both are folded onto the supercell r point), as shown 

in Fig. 3.7. 

The lattice constant of an alloy can be estimated from Vegard's law [55] 

ao(x)AB = (1 - x)a~ + xa~, (3.20) 

where a~ and a~ are the lattice constants of elemental crystals of atoms A and 

B respectively, and a more accurate expression (with bowing) was taken where 

available. 

The first set of test calculations, using both methods, was done for the 

Si1-xGex alloy. In the case of the VCA, the pseudopotential was taken to vary 

linearly between the two constituents [18], i.e. 

V(q)SiGe = (1 _ x)V(q)Si + xV(q)Ge (3.21 ) 

where V(q)Si and V(q)Ge are the pseudopotentials of elemental Si and Ge. By 

the same token, the energy band gap between the top of the valence band at 

r and point 9 = X, L, r in the conduction band of a binary alloy within the 

VCA may be expected to be E;iGe = (1 - x )E;i + xEije, but the alloy disorder 

and other effects make this just the first approximation, and a more accurate 

dependence is 

(3.22) 
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F ig ure 3.7: The band structure of a) Silicon, b) Germanium and c) Tin al­

culated by th mixed-atom sup rcell approacb with atoms in a cell (1 ft) and 

by the virtual crystal approximation (righ ). 
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where bSiGe is a bowing parameter , and the VCA and the mix d-atom method 

may give quite different values. 

1. 

1.6 

0.8 

__ E (L) by YCA 
g 

-+- E (X) by YCA 
g 

T E (L) by Mixed atom 
g 

... E (X) by Mixed atom 
g 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Ge Content 

Figure 3.8: The band gaps of Si1- xG x at X and L points, calculat d within 

the VCA and the mixed-atom method. 

The calculated band gaps of Si1-xGex ar hown in Fig. 3.8. The gap 

for the X and L valleys, calculated by th mix d atom method, are £itt d to 

expression: Ex = 0.108x2+O.267x +0.881 eV and EL = 0.335x2+0.738x+0.724 

eV. Therefore, the bowing parameter of this alloy i 0.33 eV for the Ge content 

x >0.70 (where the L valley is the lowest) , and 0.11 eV for x < 0.70 (wher 

the X valley is the lowest). These values are in good agreement with the 

calculations of S. Krishnamurthy and A. Sher [56]. On the other hand, the 

VCA predicts 0.01 eV for x > 0.75 and -0.04 eV otherwise. 

Calculations for the (100)-tetragonally distorted (biaxially strained) 

Si1-xGex alloys, I. e. grown on a relaxed Si1_yGey ubstrate hav also been 

performed. The lateral lat tice constant all (x) equals that of th sub trat , 
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and in the perpendicular direction, a.l or Ci, it is [57J 

( 
C12(X) a - ao(x) ) 

a.l (x) = ao(x) 1 - 2-(-) ( .) , 
Cll x ao x 

(3.23) 

where Cll and C12 are the elastic const ants [58, 59J , given in Table 3.2 for Si , 

Ge, and a -Sn, and are approximated by Vegard ' law for th alloys, 

Si Ge Sn 

Cll (Mbar) 1.67 1.32 0.69 

c12 (Mbar) 0.65 0.494 0.29 

Table 3.2: Elastic constants Cll and C12 of Si, Ge, and a-Sn. 

C( X)AB = (1 - x) A + xcB , 

where C represents ither Cll or C12. 

(3 .24) 

Strain cau es a change of some prop rti of th alloy unit 11. For in­

stance, the biaxial strain typical for lattic -mismat hed lay r grown on a [001] 

oriented substrate changes the lattice typ from cubic to tetrag nal, nd im­

ilarly the volume of the unit cell also chang , which i taken into a ount in 

calculations. 

The results of the calculation for strained Si1- xG x grown on r laxed 

Si1_yGey, Fig. 3.9, show that the minimum en rgy gap (of th X vall ys 

parallel to the interface, r gion B on figures) can b written as E X II (x, y) = 

1.069-0.425x+0.533y-0.152x2-0.324y2 , and for th perpendi ular X vall y 

(region A on figures) as EX-L (x, y) = 1.056+0.250x-O.087y- 0.208x2- 0.316y2 , 

whereas the en rgy gap for the L vall y (r gion C) is EL (x, y) = 1.532 -

O.739x + 0.185y - 0.075x2 - 0.417y2. Thes results are in good agreement 

with the work of Rieger and Vogi [59] , which are gen rally con id r d rea on­

ably accurate when compared to experiment, justifying the appli ability of the 

pr sent method for both strained and unstrained alloys. 
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Figure 3.9: The minimum band gap , in cV, in thc X valleys parallel to thc 

intcrface (region B), in the X valley perpendicular to thc int rfa'c (rcgion A) 

and L valley ' (region C) o r . trained SiJ - J.. Gc~. grown on relaxed ' it yGcy. 
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3.4 Results and discussion 

In search for direct tunable gap semiconductors, ill thb section the relaxed 

Gel-xSnx alloy, strained Ge grown on relaxed GezSixSlly substrate, where z = 

1 - x - y, strained Gel-xSnx grown on relaxed GCl_ySlly, and the relaxed 

Si1-xSnx alloy were considered. 

3.4.1 Relaxed Gel-xSnx alloys 

In studying of the composition dependence of the band structure of unstrained 

Gel-xSnx alloy, it is important to note the strong bowing effect in the lattice 

constant of this alloy, that should be taken into account, even though the size 

of this effect is not very well known. According to the experimental data for 

Gel-xSnx from Ref. [60]' the lattice constant is given by 

(3.25) 

where ()SnGe = 0.166 A, although its validity has been experimentally estab­

lished only for the Sn content ::;0.2 [60]. 

From Fig. 3.10, which shows the results obtained within the VCA, the 

Sn content dependence of the band gap for the L valley is EL = 0.34x2 -

0.91x + 0.71, and for the r valley it is Er = 0.78x2 - 2.00x + 0.87. The 

optical (band gap) bowing parameters are clearly much smaller than the above 

experimental value [4,50], again showing that the VCA cannot properly predict 

the composition dependence of the electronic structure of Gel-xSnx alloys. On 

the other hand, the results presented Fig. 3.10, obtained within the mixed 

atom method, show that the relaxed Gel-xSnx has the indirect-to-direct band 

gap transition at a Sn content of approximately 0.17, with the band gaps for 

the Land r valleys given by EL = 2.28x2 - 2.85x + 0.72 and Er = 2.49x2 -

3.76x + 0.88, respectively. The bowing parameter ofrelaxed Gel-xSnx alloys is 

thus 2.49 eV, in good agreement with experiment [4]. The Sn content of 17% 

for the indirect-to-direct gap transition is also in general agreement with (i.e. 

in between) the values reported elsewhere, of 15% [62] and 20% [54]. 
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Figure 3.10: The minimum band gap ofrelaxed Gel -xSnx for rand L vall ys, 

calculated within the VeA and within the mix d atom method . A coupl of 

available xperimental values are also displayed , i.e. Refa is R f [61] and 

Ref.b is Ref [4] . 

3.4.2 Strained Ge on relaxed Gel-x_ySixSny alloys 

The lattice constant of Gel_x_ySixSny alloys was taken to depend on th Si 

cont nt (x) and Sn content (y) as [60] 

aGeSiSn(X, y) = aGe + 6 SiGe X + 8SiGe (1 - x) 

+6Sn GeY + OSnGe (1 - y) , (3 .26) 

where 6SiGe = aSi - aGe, 6Sn Ge = aSn - aGe, and (}SiGe = - 0.026 A. 
The band gap for the L valley was now found to b described as EL (x, y) = 

0.723 + 0.564x - 2.352y + 0.1 89xy - 0.074x2 + 0.068y2 , while the band gap for 

r valley is Er (x , y) = 0.880 + 0.929x - 3.807y - 0.160xy - 0.078x2 + 0.937y2, 

where x and y denote the content of Si and Sn, r spectively. Th line d fined 
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Figure 3.11 : Band gap energy (in eV) of stra ined Ge grown on relaxed 

Gel- x_ySixSny alloys . 

by EL = Er in the x-y plane is the bound ary between region, where the band 

gap of strained Ge is direct or indirect . A direct band gap i achi vcd for 

uffi. iently large tensile tra in of Ge, achievabl by growing it on appropriate 

Gel_x_ySixSny alloy sub trate, as given in Fig. 3.11. 

3.4.3 Strained G el-xSnx on relaxed Gel _ySny alloys 

For this calculation one needs the elastic constants for the G Sn alloy. Thi wa 

estimated by linear interpolation , since no quadratic correction parameter for 

this alloy is known. The band gap for the L vall y is now found to be d ribed 

by EL (x, y) = 0.672 - 1.794x -1.181y+8.780xy - 2.95 x 2 - 3.925y2 , and for the 

r vall y by Er (x, y ) = 0.7 2 - 1.483x - 2.577y + .216x y - 1.653x2 - 1. 66y2, 

where x and y denote th Sn content in strained Gel-xSn:r layer and in relaxed 

Gel_ySny substrate, r spectively. Here again the region in the parameLer space 



3· 4 Results and di cussion 66 

that corre. ponds to R direct band gap emiconductor is found, achieved by the 

C"olllbilled influence of lllat rial composition and ten ile strain, Fig. 3.12. 
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F igure 3. 12: Th - minimum band gap (in eV) of trained Ge l-:r 11x grown Oil 

relaxed Ge l_ySny all 

3.4.4 Relaxed Si1 -xSnx alloys 

In t his calculation th lattic bowing param t r of t he alloy lattic con tants 

of iSn alloy wa et to z roo 

Its value has not been experimentally determined , and (alt hough it may 

se m a bit surpri ing in view of a very large diff renee in atomic rad ii ) the very 

r cent LDA alculations [63] pr diet a n gligible d viation of SiSn alloy la ttice 

con tant from Y, gard ' law. 

Within t h mixed atom method t he band gap for t he L and X vall y in 

relaxed Sil_x S11x alloy were found to b given by EL (x) = 1. 37 - 4. 60x + 
.124x2 and Ex (x ) = 1.281 - 1.399x + 0.772.1;2 , r spectiv ly while the band 
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F igure 3.13: Th minimum nergy band gap (in V) of relaxed SiJ - xSnx all y, 

al ulated within the V A and within th mixed atom method. 

gap for th r valley i Er (x) = 3.315 - 7.316x + 3.715x2
, wher x i th n 

ont nt (Fig. 3.13). On th other hand , th VeA calculation giv the b nd 

gaps for L, X and r valley as EL (x) = 1.76 - 2.549x + 0.925x2, Ex (x) = 

1.244 - 0.691x + 0.100x2 and Er (x) = 3.042 - 5.5 x + 2.193x2, r pe tiv ly. 

Th refore, th V A predicts th indirect-t -dir ct band gap tran ition in th 

relaxed Si1-:r.8nx when the Sn content exceed approximately 0.55 , while th 

(more accurate) mixed atom m thod doe not how any such tran ition. 

This finding may be contrasted to th indication given in the recent work 

[63] t hat the direct- ind irect cro over in SiSn 0 cur at approx 25o/c Sn. Thi 

wa reached using the LDA and (in contra t to the calculation, u ed in thi 

chapter) accounting for the atomic po it ion relaxation, but in order to over-

orne th well-known LDA hortcomming in th bandgap pr diction th " i­

or " correction [64] wa employed which it elf bring in a degree of unc r-
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taint,y. It is therefore fair to conclude that the questioll of the direct halld gap 

in SiSn alloy is still open. 

3.5 Conclusion 

Using local density functional theory and the self-consistent pseudo-potential 

plane wave method some important properties of GeSiSn alloys, relevant for 

optoelectronic applications were explored. In particular, relaxed Gel-xSnx al­

loys, strained Ge grown on relaxed Gel-x_ySixSny alloys, strained Gel-xSnx 

grown on relaxed Gel_ySny alloys and relaxed SnxSi1- x alloys were studied. 

These were modelled by the mixed atom method, the accuracy of which proved 

to be far better than that of the virtual crystal approximation, using the avail­

able experimental data for comparison. Band structure calculations show that 

relaxed Gel-xSnx alloys have an indirect-to-direct band gap cross-over at a Sn 

content of ~ 0.17, with the bowing parameter equal to 2.49 eV. Furthermore, 

calculations for strained Ge on relaxed Gel_x_ySixSny ternary alloys, and for 

strained Gel-xSnx grown on relaxed Gel_ySny alloys, give the range of the 

substrate compositions and Sn content which lead to direct band gap mate­

rials. In contrast, within the mixed-atom approach the SnxSi1- x alloys never 

show a finite direct band gap (while the VeA calculation does predict it). 
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Chapter 4 

Electronic structure and optical properties of 

Sn and SnGe quantum dots 

4.1 Introduction 

Self-assembled Sn quantum dots embedded in Si have been successfully grown 

in recent years, and it was anticipated that these would also be important 

nanostructures for optoelectronic devices, because of their potential for syn­

thesis of a Si-based direct bandgap semiconductor, a property not found in the 

more conventional Ge and SiGe quantum dots. Although bulk Sn is a direct 

zero band gap semiconductor, the gap at the r point is expected to increase, 

as a combined result of quantum confinement and strain. Growth of Sn/Si 

dots by temperature modulated molecular beam epitaxy has been reported. 

A few nanometres thick epitaxially-stabilized metastable SnxSi1- x alloy layer 

with x = 0.05 to 0.1 was first grown on Si (001) [65], and then annealed at 

temperatures between 550 and 8000 C, to form the Sn quantum dots. The 

process thus differs from the conventional Stranski-Krastanow growth of lII/V 

dots, and is based on a very small equilibrium solubility of Sn in Si (or in Ge), 

which leads to clusterization of Sn atoms upon annealing the metastable alloy, 

leaving more or less pure Si around them. Using the Z-contrast cross-sectional 

high-resolution transmission electron microscopy, the sample was shown to 

contain dots with diameters in the range of 5-10 nm, located mostly in what 

was the SnxSi1- x alloy layer, and very few in Si spacer layer [66]. The shape of 
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these dots was somewhat irregular, but generally cylindrical or lells-like, rather 

than the conventional pyramidal. However by the high-resolution Z-contrast 

tomography it was found that dots could be in either the cubic O'-Sn (zero-gap 

semiconductor) or the tetragonal ,B-Sn (metallic) phase [67]. The O'-SIl dots 

transform into the ,B-Sn phase, more elongated in one direction, when their 

diameter exceeds a critical value of about 8 nm. In order to investigate opti­

cal properties of the Sn-in-Si dots, the luminescence spectrum was measured 

by using Fourier Transform Infrared Spectroscopy. It was elucidated that the 

absorption spectrum starts from about 0.3 eV, with the absorption strength of 

8 x 103 cm-1 , which was believed to be consistent with direct interband tran­

sitions [65]. In contrast, the absorption measurements by Karim et at. [68] 

show a relatively weaker broad spectrum at 0.7-1 eV, but no features around 

0.3 eV. Similarly, the (X-Sn quantum dots embedded in Ge were realized, with 

a diameter of 32 nm and 10% size distribution. Fitting the simulations to 

experimental transmittance spectra has lead to a conclusion that direct inter­

band transitions in Sn dots were indeed observed, with an energy gap of 0.45 

eV and an absorption coefficient of 3 x 103cm-1 near the bandgap edge [69]. 

On the other hand, theoretical studies of the electronic structure of Sn-based 

quantum dots, which should help in understanding the features observed in ex­

periments, are missing. In this chapter, the single-particle states and interband 

absoprtion in this type of dots are calculated within the framework of envelope 

function theory. In Sec. 4.2 the theoretical framework is presented. Due to 

the lack of some of the material parameters for Sn, these were extracted from 

empirical nonlocal pseudopotentials, as described in Sec. 4.2.3. The results are 

presented in Sec. 4.3, with special attention devoted to the issue of the nature 

of the band gap of quantum dot material, which is relevant for optoelectronic 

devices. Finally, the conclusions are presented in Sec. 4.4. 
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4.2 Computational method and model 

In this section the theoretical model used to calculate the electronic struc­

ture and optical properties of Sn and SnGe quantum dots is described. These 

were assumed to have cylindrical symmetry, being either cylindrical, lens or 

cone shaped, with diameter (d) and height (h), where h = d was taken for 

cylindrical, and h = d/2 for lens shaped (i.e. hemispherical) dots, while 

h = d/2 and the base angle of 600 were taken for cone shaped dots, as shown 

in Fig. 4.1. Although some papers report tetrakaidecahedron or truncated oc­

tahedron shapes [67], the simple cylindrically symmetric shapes should suffice 

in view of the irregularity present in all the observed dots. The strain distribu­

tion has been calculated by using the continuum mechanical model, discussed 

in Sec.2A.5. The results of strain calculation for cylindrical, lens, and cone 

shaped Sn dots in Si matrix are shown in FigA.2. Clearly, the major part of 

the strain occurs in the dots, but a smaller amount of strain appears in the 

surrounding silicon as well. This is because Sn is "softer", i.e. has smaller 

values of elastic constants (cu and C12, Table 3.2) than silicon, hence the tin 

lattice deforms by a larger amount in order to accommodate the smaller lat­

tice constant of the "stiffer" surrounding silicon. The calculated strain field 

components are used in the eight-band kp calculation, already described in 

the Chapter 2. 

The k·p calculation requires the parameters describing the bulk band struc­

ture of the constituent materials. In nonpolar (Si, Ge, Sn) zincblende crystals 

these are: Luttinger parameters 11,2,3, Kane energy Ep , band gap Eg , spin-orbit 

splitting ~so, hydrostatic (ac and av ), uniaxial (b) and shear (d) deformation 

potentials, and A' which describes the remote band effects on the conduction 

band. For Si and Ge all these are well tabulated in the literature, while the 

data for Sn are more scarce or completely missing. Therefore, the Sn param­

eters were extracted from the empirical pseudopotential method (EPM), and 

those of the values which have been reported previously could also be com­

pared against the values obtained here, for improved reliability, as described 
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Figure 4.1: Cylindrical, lens and cone shaped quantum dot . 

in the next ection. 

The highest val n e band state in Sn dots (just as in almo t all other 

emiconductors except lead chalcogenide ) ar derived from the r point of the 

bulk Brillouin zone. If the lowest conduction band state al 0 turns out to b 

at r , the Sn dots would be a direct band gap material. The main 'competitor ' 

to these are the stat s d rived from the conduction band at L point , since it 

is much lower than the X point in Sn. The eight-band kp method cannot 

simultaneously deliver tates at the L (a much more elaborate , 30-band kp 

method [70], or e.g. the pseudopotential calculation [71], would be r qui red 

for that) . In this work, however , the L-valley size-quantized states of Sn dots 

is found in an approximate manner , u ing a simple ffectiv mass calculation. 

For this purpose the calar , angle-averaged effe tive mass of the ellip oidal L 

valleys is used , only the hydrostatic strain is included, while ignoring higher 

order effects, like int rvalley interferenc [72] etc., which cannot b simply 

plugg d into an effective mass type of calculation . While not of the same level 

of accuracy as th kp alculation at f , this should still suffice for omparison 

of direct and indirect gaps in Sn dots. The parameters required were also 
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Figure 4.2: Strain distribution in cylindrical, lens and cone haped Sn quan­

t um dots in Si matrix. 
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extracted from the EPM calculation described below. 

4.2.1 The nonlocal empirical pseudopotential calcula­

tion 

The band structure of bulk a-Sn was modelled by the nonlocal empirical pseu­

dopotential method [3J. While requiring some experimental input, this method 

generally offers a better accuracy for various band structure parameters than 

does the first-principles density functional theory in the local density approxi­

mation without any additional schemes like the GW approximation eG' comes 

from Green's function and 'W' comes from the screened interaction line) [73J 

or the "scissors correction", as are employed in total energy approaches (see 

e.g. Ref. [74J for comparison), and it is exactly these band-structure, rather 

than ground-state parameters which are of interest in the present work. 

For bulk bandstructure calculations one usually uses the discrete set of local 

pseudopotential formfactors, at exactly those values of G which correspond to 

the equilibrium lattice constant. To extract the deformation potentials, how­

ever, one has to consider lattices deformed by uniaxial, shear, or hydrostatic 

strain, which requires either a continuous local pseudopotential form function 

Va: (q), or some means of interpolation. The same problem arises in EPM based 

supercell calculations for superlattices, quantum dots, etc. For Si and Ge, for 

instance, Friedel et al. [20J have devised such formfunctions, of a modified 

Falicov form: 

(4.1) 

where q is the magnitude of the wavevector, and this form, with improved 

parameters, has subsequently been employed for various calculations, e.g. 

Refs. [21,75J. Starting with the formfactors for Sn [3], the corresponding form­

function for Sn was devised that reproduces the bandstructure data reported 

in this and other sources [76-79J. The parameters for Sn, using a cutoff of 

8 Ry, which gives almost full convergence, are given in Table 4.1, along with 
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those for Si and Ge, Ref. [21]. The nonlocal and the spin-orbit parts, on the 

other hand, are already given as continuous functions of the wavevcdor, and 

need no further modification for the present purpose. 

Parameters I al 

Si 0.1299 3.469 0.7618 3.574 5.0 0.3 

Ge 0.2962 2.527 0.6813 1.159 5.0 0.3 

Sn 0.1221 2.145 3.100 2.741 5.0 0.3 

Table 4.1: Parameters of the pseudopotential of a-Sn (this work), and for Si 

and Ge, Ref. [21]. The normalization (lattice) volumes for Si, Ge, and Sn are 

134.3, 151.8, and 230.5 a.u., respectively. 

The band structure of bulk a-Sn along the L - r - X lines, calculated with 

these parameters, is given in Fig. 4.4. Near the r-point the EPM bandstruc­

ture should coincide with that obtained by the k·p method (since it is the 

second order perturbation theory applied at the r point), with appropriately 

chosen material parameters, and this can be used to extract these parame­

ters [80]. Fitting of the two band structures (including the cases with strain) 

was performed here by the simulated annealing algorithm [81], explained later 

in Fig. 4.3. 

4.2.2 Strain effects in the empirical pseudopotential 

method 

The effects of strain in the empirical pseudopotential method have been con­

sidered [82,83]. The effect of strain on the energy levels can be separated into 

hydrostatic and shear strains [84]. The first strain which will be discussed 

is the hydrostatic strain, corresponding to the deformation potential that is 

a combination of hydrostatic strain in conduction band (ac ) and hydrostatic 

strain in valence band (av ). The hydrostatic strain is a measure of the volume 

change and causes the valence and the conduction band edge shifts. Hence, it 
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is expressed as: 

(4.2) 

where L). V IV is the relative change of the unit cell volume, and 

ax - aox 
(4.3) Exx = 

aox 

Eyy = 
ax - aoy 

( 4.4) , 
aoy 

ax - aoz 
( 4.5) Ezz = 

aoz 

when aox, aoy, and aoz are lattice constants at equilibrium in x, y and z di­

rection, respectively. ax, ay, and az are lattice constants in x, y and z di­

rection, respectively, when the unit cell has been shrunk or enlarged. The 

hydrostatic strain component leads to a shift of the average valence band en­

ergy Ev,av=(Ehh+Elh+Eso)/3, Le. of the average of the energies of the heavy 

hole, light hole and spin-orbit split-off bands. When pseudomorphic growth 

of strained layers on a substrate was considered, that have lattice mismatch, 

it will have two strain components applied on the layers, a biaxial strain (Ell) 

which is parallel to the plane of the interface and a uniaxial strain (E.d which 

is perpendicular to it: 
all,.1 

EII,.1 = -- - 1, 
a 

(4.6) 

where all is the lattice constant of substrate layer in direction of parallel to the 

interface, a is the unstrained lattice constant, Le. all=ao, and (£.1) which is 

perpendicular to it. 
all a.1 = a[l - D( - - 1)], 
a 

(4.7) 

where D is a parameter which depends on the elastic constants of the mate­

rial and the interface orientation, such as (001), (110) and (111) plane. It is 

expressed as: 

DOOI = 2 C12
, 

Cll 

Dl10 = C11 + 3Cl2 - 2C44 , 

CII + Cl2 + 2C44 

DIll = 2Cll + 2CI2 - 2C44. 

Cll + 2Cl2 + 4C44 

(4.8) 

( 4.9) 

(4.10) 
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Therefore, the energy level shifts in the conduction band (~E~ydr()) and valence 

band (~E~;a~O) are ac (2EII +E~) and av (2EII +E~), respectively. The second strain 

effect is uniaxial strain. The uniaxial contribution couples to the spin-orbit 

interaction and leads to an additional splitting of the valence band energies. 

For example in (001) orientation, the energy splitting is expressed as, 

(4.11 ) 

where b is the uniaxial deformation potential parameter. Conduction bands 

at r point are not affected by the shear contribution to the strain. However, 

energies at L, X and generally around the r point are affected. 

In pseudopotential calculations of the band structure of the strained system 

the atomic coordinates are scaled proportionally to the unit cell deformation, 

the reciprocal lattice vectors G are also changed accordingly, and finally the 

changed volume of the unit cell is used in scaling the pseudopotential form­

function. 

4.2.3 Extracting the k-p band structure parameters 

It should be noted that the (almost) full congruence of the empirical pseudopo­

tential method and kp band structures can be obtained only in an infinitesi­

mally small vicinity around the r-point, while a very good congruence can be 

achieved in a finite range of k vectors around r, say 8-10% of the full span 

of the Brillouin zone (the range where the k·p method is usually considered 

accurate), and in this work the latter choice was targeted. The set of parame­

ters for Sn, obtained that way, is given in Table 4.2, together with those for Si 

and Ge (the later two adopted from Refs. [83,85]). Finally, the A' parameter 

values of Si and Ge were found by using the relation for the conduction band 

effective mass m* at the r point in Eq. 2.97 and the values of 0.528mo and 

0.038mo for Si and Ge, respectively [85]. 

The Luttinger 'Y parameters are extracted here for Sn by fitting the band 

structure of Sn, calculated by the k·p method, and the one obtained by the 
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nonlocal empirical pseudopotential method around the r point. The target of 

the fitting is to find the Luttinger parameters for which the two band struc­

tures are the most similar to each other. The "similarity" between the two 

band structures is quantified via finding the square difference of energies of 

the corresponding bands at a number of wavevectors in the above range, and 

adding them together to get a single scalar measure of "similarity". In other 

words, this process is the minimization of the difference of the band struc­

tures. The algorithm which was used is the simulated annealing method [81], 

based on Monte Carlo simulation, because it is an effective solution method 

of combinatorial optimization problems, Le. finding global minimum point. 

Firstly the Luttinger parameters are set randomly. Each parameter then can 

be changed to a new value and this will be accepted if the difference between 

the band structures, calculated from the new values of the Luttinger parame­

ters, is smaller. If the new values cause the difference to increase, then they still 

may be accepted with some probability, depending on the difference between 

the two band structures and on a global time-varying parameter T called the 

temperature. With this condition, the simulated annealing method can find 

the global minimum, not just local minimum. The procedure is illustrated in 

Fig. 4.3. 

The parameters, shown in Table 4.2, are considerably different from those 

given in Ref. [76]. However, the effective masses for heavy holes which follow 

from the two sets are very similar (0.2 in the [001] direction, and 0.55-0.59 

in the [111] direction). For light electrons these parameters give the effec­

tive masses of 0.018-0.019, and those from Ref. [76] are 0.035-0.039, i.e. dif­

fering by a factor of two. However, the experimental values for the latter 

(Table V in Ref. [76]) are around 0.024, which is much closer to calculated 

value (not unexpected, since a more empirical-related method of band struc­

ture calculation was used). Therefore, there are reasons to believe that the 

other parameters for Sn, reported here, are also reasonably reliable. It should 

also be noted that the conduction and valence band hydrostatic deformation 
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Figure 4.3: Diagram shows th algorithm of the simulated annealing m thod . 

potent ials, ac and av , were individually I termined by etting t he energy at 

r + (heavy hole and light hole band) for zero value of the hydrostat ic strain , 

E = Exx + Exx + Exx = 0, as the c nstant reference energy, and then applying 

strain to find ac = (r7 ( ) - r + (E = 0)) I , and av = (r- (E) - rg (E = 0)) IE . 

As for the L-valley param ter , t he longitudinal (mt) and t ran verse (mt) 

effective mass are found to be 1.99m o and O.091mo , respectively, in good agree­

ment wit h other publish d value 1.35mo, 1.48m o and 0.072mo , 0.075mo , re­

sp t ively [76,89]' and a value of -5.24 V was extracted for the hydrostati 

deformation potential. 
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Figure 4.4: a) The EPM calculated band structure of bulk a -Sn , and (b) the 

band structure near t he r point, calculated by t he ight-band k· p method 

with the obtained parameters (dashed), compared to the band structure cal­

culat d by EPM ( olid lines) . 
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Value(unit) 

Parameter Sn (this work) Sn (other sources) Si Ge 

11 -25.19 -12.0a) ,-14.97b) ,-19.2c) 4.285 13.38 

12 -15.11 -8.45a) ,-10.61 b) ,-13.2c) 0.339 4.24 

13 -13.53 -6.84a) ,-8.52b) ,-9.0c) 1.446 5.69 

Ep 14.26 eV 23.8b) eV 21.60 eV 26.30 eV 

A' -3.25 -4.285 -7.519 

ac -8.714 eV ac + av=-7.04a) 1.98 eV -8.24 eV 

av 1.62 eV 2.46eV 1.24 eV 

b -2.01 eV -2.3d) -2.1 eV -2.9 eV 

d -0.39 eV -4.1 d) -4.8 eV -5.3 eV 

~ 0.70 eV O. 72a) ,0. 77b) e V 0.044 eV 0.29 eV 

Eg -0.408 eV -0.406aL0.413b) eV 4.185 eV 0.898 eV 

Table 4.2: The k-p and deformation potential parameters for bulk a-Sn, Si 

and Ge. ( a) - Ref. [76], b) - Ref. [86], c) - Ref. [87], d) - Ref. [88].) 

The final ingredient required for the k·p calculations of heterostructures is 

the valence band offset at the interface. In the absence of any more reliable 

experimental data, for Sn grown on SixGeySnl-x- y an expression in accor­

dance to Jaros [90] has been used, i.e. ~Vv.b. = 1.17· x + 0.69· y leV]. The 

band energies on the absolute energy scale are not intrinsically contained in 

the pseudopotential formfactors, and therefore cannot be obtained within the 

EPM. 

4.3 Results and discussion 

Using the methods and materials parameters described above, the electronic 

and optical properties of the Sn-based quantum dots, in particular Sn quantum 

dots embedded in Si [91], and the Gel-xSnx alloy dots were furthure investi­

gated. To check the validity of the method test calculations for lens shaped 
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Ge quantum dots in Si, with the diameter and the height of about 100 and 15 

mn, respectively, were first performed. The direct interband transition onset is 

about 1.3 eV, and the indirect transition (towards the L-point) onset is about 

0.72 eV. This is in good agreement with the experimental results of absorption 

spectrum of the self-assembled Ge/Si quantum dots grown by a solid-source 

molecular beam epitaxy, in the Stranski-Kranstanov growth mode [92], where 

a broad peak at 0.7 to 1.0 e V was found. 

4.3.1 Sn quantum dots 

The electronic structure of Sn dots in Si was calculated assuming they were 

either cylindrical, lens or cone shaped. While the actually grown dots were 

approximately cylindrical, it is plausible to expect that the other two shapes 

might be achieved starting with a graded, rather than uniform-composition, 

Sn-Si alloy layer, which is then annealed. The Sn/Si interface has type-I band 

alignment, i.e. the Sn dot is the potential well for both electrons and holes 

at the r point. Examples of the wave functions of the lowest (topmost) three 

states in the conduction (valence) band at r are given in Fig. 4.5. The direct­

transition absorption spectrum for a couple of dot sizes, for the three shapes, 

is shown in Fig. 4.6. As expected, the transition energy inversely depends on 

the dot size, and also depends on the dot shape in the expected manner, being 

shifted to somewhat higher energies for lens and cone dots. Interestingly, the 

dot shape determines whether the z-polarized or in-plane-polarized light would 

be more strongly absorbed. 

The main feature from these calculations is that the direct absorption spec­

trum of Sn/Si dots peaks around 2-2.5 eV. This is larger than the indirect ab­

sorption onset in bulk Si (matrix), at about 1.1 eV, but since this absorption 

is relatively weak one can still expect that these direct transitions might be 

observed in very thin layers of Si containing Sn dots. It is quite a surprising re­

sult that the direct transition energies are so large. This is because of the very 

large strain in Sn, so large, in fact, that is has converted a zero-gap material 
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into an almost wide-bandgap semiconductor. 

However, calculation of L-valley quantized states (the band alignment is 

here also type-I) shows that these states are much lower in energy than the 

conduction band states at r, as shown in Fig. 4.7, hence the Sn/Si quantum 

dots are not a direct gap material. This is a consequence of the fact that the 

absolute value of L-valey hydrostatic deformation potential is much smaller 

than that of the r valley. Therefore, the effects of strain change the arrange­

ment of rand L-valley states. The photoluminescence peak at approx. 0.7 

eV, observed in Ref. [68] in Sn dots with the diameter of about 5 nm, agrees 

very well with the indirect transition energy predicted here, which indicates 

that it is actually this (indirect and weak) transition that was observed. The 

likely mechanism for this was the photogeneration of electrons in the X valley 

of the Si matrix, followed by their capture into lower lying L states of Sn dots, 

and then by the indirect, phonon-assisted recombination. 

4.3.2 SnxGel-x quantum dots 

Previous studies of Si-Ge-Sn bulk alloys [4,50,66,93-95] show that a direct gap 

material can be obtained in a suitable range of Gel-xSnx alloy compositions, 

so the electronic structure of Gel-xSnx quantum dots embedded in Si was also 

calculated. Clearly, such dots cannot be grown in Si in the same way as Sn 

dots are, because Ge is completely soluable in Si, in contrast to Sn. However, 

growth of Gel-xSnx quantum dots on [111] oriented Si substrate, rather than 

in Si matrix, has been recently reported [96,97]. The dots are approximately 

hemispherical in shape, they are covered by Si02, and are asserted to have a 

coherent interface with the underlying Si, and are therefore strained. It is less 

clear, however, what strain conditions apply towards the 'upper' interface with 

Si02 , since it even has a different crystalline structure. The strain conditions 

are important in Sn based dots, as shown above, but are difficult to resolve 

in the case of Si/Gel_xSnx/Si02 dots. Furthermore, the different crystalline 

structures of Sn and Si02 would discourage one to use the kp method at all, 
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but the fact that the band discontinuities between Sn and Si02 arc very large 

effectively makes it irrelevant what is on the other side of Sn, and the kp 

method can still be used to a good accuracy. Overall, one can still expect that 

the calculation for Gel-xSnx quantum dots fully embedded in Si, with their 

axis in the [001] direction, as was performed in this work, is an approximate 

description of the actual structure. 

In these calculations the Luttinger parameters, deformation potentials and 

the spin-orbit splitting of Gel-xSnx were estimated using Vegard's law, while 

the direct band gap and lattice constant were calculated by using the quadratic 

interpolation, with bowing parameters of 2.49 eV [4,51,93] and 0.166 A [60], 

respectively. The results for the dot sizes between 4 and 12 nm, and for dif­

ferent compositions 0 ~ x ~ 1, show that the indirect interband transitions 

(towards the L valley states) occur from 0.8 to 0.4 eV, while the direct in­

terband transition occurs from 2.5 to 1.5 eV, as also shown in Fig. 4.7(b), 

implying that they are indirect gap materials. The direct energy band gap 

depends quadratically on the Sn composition, because the bowing parameter 

in the direct band gap of the alloy has a strong influence. Experimentally, for 

dots of small diameters «10 nm) the absorption peaks between 1.5 eV and 

2 eV were found [96], which agrees very well (perhaps surprisingly so, in view 

of the approximations involved) with the data for direct transitions given in 

Fig. 4.7(b). Nevertheless, these dots are (predicted to be) an indirect band 

gap material. 

Finally, the calculations were also made for Sn dots embedded in Ge, which 

can be fabricated in the same manner as Sn/Si dots, due to the small solubility 

of Sn in Ge. Here one has the type-II alignment (after the strain), i.e. the dot 

is the potential well only for holes, but not for either r or L-valley electrons. 

The conduction band edge at L is well below that at r inside the Sn dot, since 

it is largely determined by strain, and this does not change too much when 

going from Si to Ge matrix. This in turn implies that Sn dots in a SixGel-x 

matrix (which presumably could also be grown by the same technique) cannot 
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become a prominent direct gap material for any value of x. 

4.4 Conclusion 

Using the nonlocal empirical pseudopotential method to extract the k-p pa­

rameters and deformation potentials of bulk Sn, and the 8x8 k-p method 

to calculate the electronic structure and optical properties of quantum dots, 

the properties of self-assembled Sn dots embedded in Si, and Gel-xSnx quan­

tum dots in Si or in Ge, relevant for optoelectronic applications were explored 

in detail. Cylindrical, lens and truncated cone shaped dots were considered. 

The self-assembled SnjSi dots of size between 4 nm and 12 nm were found to 

have indirect interband transitions (towards the L-valley size-quantized states) 

from 0.8 to 0.4 eV, and direct interband transitions from 2.5 to 2.0 eV. The 

indirect interband transition energies compare very well with the reported ex­

perimental absorption peaks [68]. However, the indirect nature of the lowest 

interband transition makes Sn or SnGe quantum dots in a Si matrix the un­

likely candidates for optoelectronic devices, except perhaps for pure absorption 

applications, in contrast to some previous expectations. 



Chapter 5 

SnGe asymmetric quantum well 

electro-absorption modulators for long-wave 

silicon photonics 

5.1 Introduction 

89 

The last two decades have witnessed the widespread use of optoelectronic 

devices in many areas, such as the telecommunications, computers and en­

tertainment industries. In order to achieve the high speed of data transfer 

in electronic equipment, the idea of integration of optical and electronic de­

vices, together on a silicon platform, was introduced and comprehensive ex­

perimental and theoretical investigations in this direction have been made. 

These include the possibility of using direct bandgap materials based on the 

alloys of group IV elements Si, Ge, and Sn (including the binary Gel-xSnx 

and ternary Gel-x_ySixSny material) which are cheap, atoxic, and generally 

compatible with silicon technology, e.g. [93-95,98,99]. For instance, by em­

ploying a special class of Gel-x_ySixSny alloys on Ge buffered Si substrate, the 

lattice constant of the ternary can be tuned to be identical to that of Ge, and 

the system shows a tunable direct bandgap of 0.8-1.4 eV [100]. The system is 

promising for a range of applications, as diverse as high efficiency solar cells, in­

terband injection lasers, intersubband quantum cascade lasers, etc. [100-102]. 

The Gel-x_ySixSny ternary alloys moreover, can be used as higher-gap bar­

rier layers in strain-free GejSiGeSn quantum well optical modulators [103]. 
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This type of modulator offers a high modulation efficiency and small size. To 

achieve good performance this is likely to be based on asymmetric coupled 

double quantum wells (ADQWs) [104--108J. By increasing the amollnt of Sn 

in the GeSn alloy composition the direct band gap decreases, which is of in­

terest in long wavelength silicon technology applications, sllch as for chemical 

and biological agents detector, infrared detector and Longwave Integrated Op­

toelectronics (LIO) [6J. The existing electro-optic (EO) modulators within 

Si technology, normally rely on the refractive index modulation by injection 

of free carriers in Si waveguide comprising a pin-diode or a MOS capacitor, 

e.g. [109] These are longer devices, usually in the Mach-Zehnder configuration, 

but can cover a broad range of wavelengths, including mid-infrared. In con­

trast, the Stark effect based EO or electro-absorption (EA) modulators are far 

more wavelength-specific but, if operated in the electro-absorption regime, can 

be very short, of the order of 1 JLm, and potentially much faster. Alternatively, 

they can also be operated as EO modulators, below the absorption threshold, 

and then can accept a somewhat wider range of wavelengths, while requiring 

an increased length. In this chapter the possibilities of employing the SnGe al­

loy based multiple quantum well (MQW) structures for EA modulators in the 

mid-infrared wavelength range are considered. Therefore, theoretical studies of 

the electronic structure of Gel-xSnx asymmetric double quantum wells, which 

should help in designing the structure of a desirable electronic modulation de­

vice, would be important and interesting area. In this work, the asymmetric 

double quantum well structures which have a strong electric field sensitivity, 

i.e. to have a large quantum confined Stark effect, are designed within the 

framework of the 8-band k . p method. Asymmetric double quantum wells 

(ADQWs) are optimized to exhibit maximum optical modulation sensitivity 

by varying the barrier width, barrier position, and well width. Desirable Sn 

compositions of each layer are investigated in order to have interband transition 

energies in the photon wavelength ranges of interest. The electronic structure, 

optical properties, i.e. the absorption coefficient, are calculated. In Sec. 5.2 
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the computational method and model are presented. III Sec. 5.:3, the results of 

this study are shown. Finally, the conclusions are presented ill Sec. 5.4. 

5.2 Design considerations and calculation 

The SnGe alloys have a relatively small band gap (less than that of Ge, and 

decreasing as the Sn content increases), and this can be modified by strain. 

In unstrained material the indirect gap, towards the L valley, is smaller than 

the direct gap for low tin content, the crossover taking place at ,,-,15-20 % Su. 

In tensilely strained material the crossover happens earlier, and for compres­

sive strain it requires a larger content of Sn, but such alloys are progressively 

more difficult to make. In any case, the direct and indirect gaps do not dif­

fer too much, typically by 0.2 eV or less. Supercell based (i.e. without the 

virtual crystal approximation) calculations using the empirical pseudopoten­

tial method [99], give the (fitted polynomial) expression for the direct band 

gap of unstrained SnxGel-x in Sec. 3.4.1, and for strained SnxGel-x (grown 

on SnyGel_y substrate) in Sec. 3.4.3. The small band gap suggests the pos­

sibility of using these materials for mid-infrared EA modulators. A specific 

feature of the SnGe material system, when used with different Sn content for 

the well, barrier and substrate layers in quantum well type structures, is that 

the conduction band bottom and the valence band top are both positioned in 

the material with the largest content of Sn. Given that the well material has 

to be either tensilely strained or at most unstrained, in order to have a direct 

band gap, the content of Sn in the substrate would have to be equal to or 

larger than that in the well, and therefore even more so than the Sn content 

in the barrier. This in turn implies that: (i) with both the well and barrier 

layers being tensilely strained, it is not possible to achieve a strain-balanced 

structure with arbitrarily large number of layers; (ii) given that there is some 

size-quantization energy, for electrons and for holes, in the QW part, the ef­

fective band gap therein is somewhat larger than in the well material itself 

(although the tensile strain will decrease it from the value in relaxed mate-
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rial), and this is then larger than the band gap of the substrate. The fonner 

feature may not be detrimental if one needs just a few wells in the structure, 

below the critical thickness for this system. The latter is more difficult to 

accept because the substrate, having the lowest (alld direct, at that) band 

gap will absorb the radiation that should be modulated by the quantum well 

stack. Since the substrate must be much thicker than the MQW, in order to 

enforce its own lattice constant across the structure, its absorption will also 

be large, considerably increasing the insertion loss of the modulator. Both 

the above issues can be circumvented if one uses compressively strained ma­

terial for the wells, and tensilely strained for the barriers, so that the overall 

structure can be made strain-balanced by appropriate choice of the substrate 

composition in between the values in the well and the barrier. It then becomes 

possible to have a larger-bandgap, nonabsorptive substrate, provided the size­

quantization energies are not too large. On the downside, the compressively 

strained well material is almost certain to have an indirect band gap. Overall, 

this type of structure is still potentially useful for EA modulators, because the 

indirect absorption is normally much smaller than the direct one. In single­

crystal bulk Ge, for instance, the indirect absorption coefficient amounts to a 

few tens of cm -1 before the onset of a much stronger direct absorption of ""' 104 

cm-1 , e.g. [110]. This should be fully acceptable because the EA modulator 

ideally switches on and off the (significant part of) the large direct interband 

absorption, hence is short and the indirect absorption losses are small. Indeed, 

the strain-balanced GejSiGe MQW modulator described in [111] operates on 

direct transitions in Ge wells, and tolerates the indirect absorption towards 

the lower-lying L-valley states. It should be noted, however, that the residual 

absorption, below the direct absorption threshold, in the MQW structure de­

scribed in [111] was much larger than in the bulk (about 500 cm- 1), i.e. only 

(or still) one order of magnitude smaller than the direct absorption. It is not 

certain whether all of this comes from indirect transitions (or could perhaps 

be partly attributed to scattering etc., and would then exist even in direct-gap 
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material), but even this larger residual absorptioll should llot excessively de­

grade the EA modulator performance, although it docs increase the insertion 

loss. The presence of L-valley states is much more important in the proposed 

GejSiGeSn interband lasers because of their ability to store a part of the elec­

tron population and make it optically inactive [101], but this is irrelevant for 

EA modulators. 

Since the materials involved in an EA modulator have a relatively small 

band gap, a proper description of the electronic structure and optical proper­

ties requires the 8-band k-p method with the effects of strain included. Relying 

on the shift of subband spacing with varying external electric field, EA modu­

lators can comprise either symmetric or asymmetric QW structures. However, 

in the former case the (always red) shift is initially slow, i.e. quadratic with the 

field strength. Although this can deliver useful modulation, as e.g. in [111], 

asymmetric structures are generally considered advantageous as being more 

(i.e. initially linearly) sensitive to the field. Within this latter class, asymmet­

ric double coupled QWs are a very good choice, requiring just two different 

material compositions and offering a large shift of transition energy and suffi­

ciently large optical transition matrix elements, which is why these are chosen 

for further consideration in this work. The alternative, asymmetric step QWs 

require three different material compositions, which is a setback for purely 

technological, rather than fundamental reasons. In this layered system there 

exists biaxial strain, with the lateral lattice constant all in all layers being 

equal to that of the relaxed Gel-zSnz substrate, and the lattice constant in 

the perpendicular direction of each layers is calculated by Eq. 3.23. 

The electron and hole states in the structure are calculated using the 8-

band k·p method, which accounts for the conduction band r7 and the three 

valence bands rt (heavy hole and light hole band) ri (spin-orbit band), and 

includes the strain dependent coupling and shifts of these bands. 

In calculating the absorption in layered structures, with the in-plane wave 

vector being a good quantum number, one normally defines a mesh in the kx -



5. 2 Design considerations and calculation 94 

ky plane and adds the contributions from all electron-hole transition between 

siz quantization (subband) states having th if (kx, ky ) values at the chosen 

mesh points. Alternatively (although this does not appear to have actually 

been done in the literatur ), it is pos 'ibl to use the plane wave type olu tions in 

the cylindrical coordinate system, the state counters t h n being two quantum 

numbers that describe the in-plane free motion in cylindrical coordinate. the 

previously developed 8-band kp code for ylindri al quantum dots [31] wa ' 

appropriat ly modified, and the MQW structure was con idered as a cylin lrical 

quantum dot with a very large diameter d, and compositionmodulated in the 

z-direction, as shown in Fig. 5.1 for the ca e of a ymmetric doubl c upled 

quantum well. 

Figure 5.1: Asymmetri double quantum well structure, onsider d for ompu­

tational purposes as a very large diameter ylindri al quantum dot , comprising 

two wells of widths WI and W2 , s parated by a thin barri r of width BW, all 

emb dded in a mu h thicker barri r material. 

The summation over the dense in-plane spe trum of states was effe tively 

p rformed as a summation over th radial and angular quantum numb r de­

scribing th in-plan tat s in the dot . 
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The kp and strain parameters required for the calculation for Sn are given 

in Ref. [93], and were extracted by fitting to the energy band structure found by 

the nonlocal EPM [3], and the valence band discontinuity at heterointerfaces 

were taken in accordance with [90]. The material band gap was taken according 

to the expressions from Ref. [93]. The expression, Er (x, y) = 0.782 -1.483x-

2.577y + 8.216xy - 1.653x2 - 1.866y2, where x and y denote the Sn content 

in strained Gel-xSnx layer and in relaxed Gel_ySny substrate, respectively, 

appears to describe the band gap at room temperature, although it was not 

derived for that purpose, because the limiting case of unstrained pure Ge (the 

direct gap of which shrinks from,....., 0.88 eV at 0 K to rv 0.80 eV at 300 K) is 

reproduced quite well. 

The quantity which naturally describes the optical absorption in a quan­

tum dot structure is the absorption cross section of a transition, and the corre­

sponding parameter for the MQW structure-the fractional absorption-is then 

obtained by dividing the optical cross section by the dot base area. (By fur­

ther dividing this by whatever is considered to be the effective thickness of 

the structure, one can get the formal absorption coefficient, but the results 

in this work are given in terms of fractional absorption.) Finally, as usual in 

calculations of the continuum performed via discretization, the delta function 

in Fermi's Golden rule is replaced by a Gaussian with an appropriately chosen 

standard deviation, to overlap the neighbouring mesh points (here the typical 

spacing between various in-plane states). 

Both the perpendicular (z-polarized) and in-plane (x- polarized) light can 

be absorbed, depending on the character of the sub bands involved. The inter­

band absorption, between the conduction and valence subbands, was calculated 

as described in [31]. 

5.2.1 Exciton energy calculation 

Although more elaborate schemes for including the excitonic effects in calcu­

lations of the EO modulator absorption spectrum have been previously used, 
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e.g. [107], a much simpler approximate method was used here: this handles the 

variational function that modulates the product of wavefunctions of the two 

size-quantized states involved [29,112,113]. Although sometimes perceived as 

being the effective mass approximation (which it frequently is, when consider­

ing the light-hole and heavy-hole excitons separately), the method can actually 

accept an arbitrary mixture of basis states in the two subbands, as found by 

the k·p method, but neglects the in-plane wave vector dependent basis state 

composition of the two subbands, as well as an admixing of more remote sub-

bands. The variational approach [113] to the exciton energy calculation was 

implemented by using the trial function as follows: 

(5.1) 

¢eh = f;~ exp (-i) , (5.2) 

(5.3) 

where ¢eh (r) is the two-dimensional exciton envelope function, 'l/Je (ze) and 

'l/Jh (Zh) are electron and hole envelope functions, respectively, Ze and Zh are the 

coordinates, which are perpendicular to the quantum wells plane, of electrons 

and holes, respectively, and), is variational parameter. Then, the binding 

energy of the exciton, including the kinetic energy and potential energy, is 

dependent on the variational parameter, which is expressed as [113]: 

(5.4) 

where 

(5.5) 

(5.6) 

(5.7) 
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where H[ (x) is the first-order Struve function and N] (x) is the first-order 

eumann function, ~t* is the effective reduced mas for exciton and E* is the 

effective di I ctric constant. Therefore, the exciton binding energy can be 

alculated by varying th variational parameter A in order to minimize E 8 , as 

di played in Fig.5.2. 
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Figure 5.2: Minimization of the exciton binding energy by varying th varia­

tional parameter for Ge/GeO.80SnO.20/Ge/GeO.80SnO.20/Ge quantum well (solid 

line) and Ge/GeO.75SnO.25/Ge/GeO.75SnO.25/Ge quantum wells (dotted line). 

Within this picture the excitonic contribution to absorption, in term of its 

amplitude and polarization properties, can be related to the interband absorp­

t ion via [29] 

(5. ) 

where Ci,2D is the plateau absorption b tween the two subbands, [29, 112, 113]' 

6E i the exciton r onant tran ition nergy and L the normaliz d Lorentzian 

with full width r. Th (omewhat arbitrary, but roughly realistic) exciton 
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linewidth of r = 4 meV (FWHM) was assumed. This is then added to the 

inter band absorption. The influence of higher excitonic bound states and of 

the exciton unbound spectrum (above the interband threshold) was neglected. 

Common wisdom, derived from the wide-gap III/V EO modulators, would sug­

gest that the strain-balanced SnGe structures are also polarization sensitive so 

that the absorption of in-plane, x-polarized light (the TE mode, in the usual 

waveguide notation) appears at lower energies, coming from the electron-heavy 

hole transition, while the z-polarized absorption appears at higher energies, 

coming from electron-light hole transitions. This is because, with the compres­

sively strained wells, the heavy-hole band edge in wells shifts upwards and the 

light hole band edge downwards (while the opposite happens in the barriers). 

However, due to the small band gap the SnGe system behaves differently-the 

valence subbands therein have a strong admixture of the conduction band, S­

like states, and the conduction subbands have a large contribution of P-like 

states, which strongly influences the polarization properties of the absorption 

spectrum. 

5.3 Results and discussion 

Test calculations were first performed for simple structures, i.e. single quantum 

wells without any electric field. Their electronic structure and optical absorp­

tion was calculated, with a couple of results shown in Figs. 5.3 and 5.4. One 

can notice that the absorption spectrum for the well in Fig. 5.4 is contributed 

from two transitions of energy states in the valence band, the first and second 

states from the top valence band. The first state is mostly P-like which mostly 

gives the absorption for the x-polarization and also gives some absorption for 

the z-polarization. The second energy transition, shown in Fig. 5.4(b), is be­

tween from the second state of the valence band, which is mostly S-like, and 

the first state of the conduction band, and gives rise to strong absorption for 

the z-polarization. 

In the numerical investigations of EA modulators, the double coupled quan-



5.3 R suits and discussion 

0.8 

0.6 

0.4 

> 0.2 
~ 

~ 
" c 

0 LlJ 

~.2 

~.4 

- 0.6 
- 8 - 6 - 4 - 2 0 2 4 6 

z(nl11) 

Figure 5.3: (a) Band dg profiles and wavefunctions in a 

GeO.95SnO.05/GeO. OSnO.20/GeO.95SnO.05 quantum w ll , of width 7.5 nm. 

99 

tum well sy tern with pure Ge barri rs was hosen , and the GeO.9SSnO.Os alloy 

wa hosen for the sub t rate. Differ nt wavelength rang s , where EA modu­

lation can be p erformed can be a cessed by u ing differ nt valu s of the Sn 

mole fraction x in th wells , made of SnxGel-x alloy (via varying t he bulk 

band gap) , and to some extent also by tuning th well widths. The value 

of Sn content in t he well were s t to x = 0.20, 0.25 and 0.28, 0 they ar 

ompressively trained and the whole MQW stru ture can be mad strain 

balanc d , by in erting appropriat Ge barrier (buff r) layer b tw n individ­

ua l double-well units. The ratio of th wider and narrower w 11 widt h w 

vari d in order to get as la rge a shift in the absorption threshold energy with 

the applied fi ld as po ible. Th individua l well widths were cho n to fit 

into a somewha t arbitrarily chosen, total thickness of 12 nm. The best re ults 

were obtained in structure with thi ratio of about 3:2 in full agr ement with 

the findings of Ref. [106] . Since the tructures are asymmetri , a r d shift i 

obtained for one, and a blue shift for the other polarity of th fi ld whi h in 
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fact extends the useful range of wavelengths that can be modulated (in sym­

metric structures only the red shift occurs). The calculated absorption spectra 

for z and x-polarization, in three structures designed for different wavelengths 

are shown in Figs. 5.5, 5.6 and 5.7. The convention used for the sign of the 

electric field F is that it is negative if directed from the narrower towards the 

wider well. In a MQW structure comprising a number of such unit cells, the 

thickness of a unit cell is 22 nm (only one of the outer barriers is assigned to 

a particular cell), and the fractional absorption of 0.01 (=1%) corresponds to 

the absorption coefficient of 4550 cm -1. 

The most interesting feature in all the examples is that the absorption for 

both the x- and z- polarization sets in at the same energy (which varies from 

one structure to another), meaning that both come from the same transition, 

the latter being a few times larger, which is unexpected in this, compressively 

strained well system. Inspection of the basis state content in subband wave 

functions shows that this is due to the fact that both the lowest conduction 

and the highest valence subbands have strong contributions of S states. The 

photon coupling between the S components, or between the two like P compo­

nents, in the two subbands clearly gives rise to z-polarized absorption: a finite 

value of the transition matrix element there appears only because the envelope 

wavefunctions of basis states are modulated along the z-axis, while there is no 

dipole associated with the underlying basis states in this case (which is why 

this can be loosely called 'intraband-like process'). On the other hand, the 

coupling between the S component in one and the P components in the other 

subband gives rise to either x- or z-polarized absorption, with the dipole ma­

trix element there coming from the basis states, and only being modulated by 

the overlap of envelope wavefunctions (hence this can be called 'interband-like 

process'). It is also worth noting that, in the opposite case of structures with 

tensilely strained wells, the absorption strengths for the two polarizations may 

be quite different. While such structures cannot be made as strain-balanced, 

as discussed above, this still indicates that it might be possible to achieve an 
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Figure 5.5: The dimensionless fractional absorption for a range of bias values 

of a strained double quantum well structur 
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O ,03 r.=======;-~~-'-~~-'-·~~~~--'-'~~"'--'--1 ~ 
- F=-40 k V Icrn 
--9-F=-20 kV/crn 

F= 0 kV/crn 
0.025 --F=+20 kV/crn 

.§ 0.02 

e-
o 
'" .0 

~ 0.015 
«l 
c:: 
o ·u 
e 

t.L.. 0.01 

0.005 

0.345 0.35 

- J 
3.5 x 10 

- F=-40 kV/crn 
-..- F=-20 kV/cm 

3 F= 0 kV/cm 

c:: 
o . .:; 

2.5 

~ 2 
'" .0 

'" t; 
c:: .g 1.5 
u e 

t.L.. 

0.5 

-- F=+20 kV/cm 

0.355 0.36 0.365 0.37 0.375 0.38 
Energy (eV) 

(a) 

&34 0.345 0.35 0.355 0.36 0.365 0.37 0.375 0.38 
Energy (eV) 

Figure 5.6: Same as 

G /GeO.7SSnO.2S/G /G .7SSnO.2S/Ge 

.0/4.5/ 2.0/7.5/ .0 nm. 

(b) 

in Fig.5.5 , 

structur with 

but for 

lay r 

103 

the 

width 



t: 
.2 

- F=-40 kV/cm 
0.018 -.-F=-20kV/cm 

F= 0 kV/cm 
0.016 --F=+20 kV/cm 

0.014 

e.0.012 
o 
'" .c 
~ 0.01 
'" t: 
o 
'B 0.008 
i:! 

iJ-

Figure 

0.006 

0.004 

0.002 

8.3 

- 3 
1.6X 10 

0.305 0.31 

- F=-40 kV/cm 
-.- F=-20 kV/cm 

1.4 F= 0 kV/cm 
-- F=+20 kV/cm 

t: o 

1.2 

.~ I e-
5l .c 
~ 0.8 
'" t: o 

.~ 0.6 
iJ-

0.4 

0.2 

8.3 

5.7: 

0.305 0.31 

Same 

0.3 15 0.32 0.325 0.33 0.335 0.34 
Energy (eV) 

(a) 

0.315 0.32 0.325 0.33 0.335 0.34 
Energy (eV) 

(b) 

as m Fig.5.5, but for 

Gc/GeO.72SnO.28/G / G O.72SnO.28/Ge 

8.0/4.5/2.0/7.5/ .0 nm. 

structure with layer 

104 

the 

widths 



5.3 Results and discussion 105 

almost polarization-insensitive EA modulator by a more careful band structure 

engineering. 

On the more practical side, the absorption in this system is technically 

quite significant: while the peak values due to excitonic enhancement may de­

crease somewhat, if the exciton linewidth comes out to be larger than assumed 

here, the values following the peaks are still large. In MQW structures with 

22 nm wide unit cells (each comprising an ADQW) the absorption coefficients 

for the z-polarized light would be 9000 cm -1, 4500 cm -1, and 3000 cm -1 for 

the structures described in Figs. 5.5, 5.6 and 5.7, respectively. Although no 

calculations were performed for the indirect absorption in this system, these 

direct absorption coefficients would be well in excess of the background ab­

sorption if it has a similar value ( 500 cm-1) as that reported for Ge/SiGe 

MQWs [111]. This should enable a good on/off transmission ratio, even more 

so if the excitonic peaks are used. In the range of fields shown in Figs. 5.5-

5.7, the absorption remains large and only the threshold energy is tuned, but 

for fields away from this range the absorption starts to decrease due to a re­

duced overlap of electron and hole wavefunctions, which is a common feature 

of all EA modulators. By appropriately choosing the alloy composition of the 

wells one can tune the absorption wavelength, e.g. in the range of 0.31 eV 

to 0.46 eV (Le. ). = 2.7 - 4 JLm) in the examples given in Figs. 5.5, 5.6 and 

5.7. It is likely that this range can be made somewhat wider, towards shorter 

wavelengths by lowering the Sn content in the wells (a constraint being that 

the barrier height must remain sufficient to confine the wavefunctions, oth­

erwise the ternary SiGeSn would have to be employed), and towards longer 

wavelengths by using wider wells (a constraint being the presently unknown 

single-layer critical thickness of strained GeSn material), however this was not 

explored in detail. Interestingly, the absorption is not very sensitive to the 

exact value of strain in the wells and barriers. For instance, changing the Sn 

content in the substrate from 5% to 15% has hardly any effect on the absorp­

tion onset energy, which is most likely due to the basis state composition of 
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subbands as it is in these structures, and is again different from the behaviour 

encountered in wider band gap systems. 

Attempt was also made to design structures which are direct bandgap struc­

tures in order to enhance the efficiency of the devices. According to Ref. [93], 

Gel-xSnx will be a direct bandgap semiconductor if tensile strain has been 

applied. In order to engineer double quantum wells to have a direct bandgap, 

the system is assumed grown on a substrate that can apply a suitable tensile 

strain to the quantum wells. This implies using Gel_ySny, with y ~ x, as a 

substrate. The results of fractional absorption in one such structure are shown 

in Fig. 5.B. However this system can not be useful because the bandgap of 

the substrate is smaller than that of the active region and the width of the 

substrate layer is also wider. This causes the photon absorption efficiency in 

substrate to dominate. However, this problem can be overcome by choosing an­

other substrate, which is also compatible with Gel-xSnx, and can apply tensile 

strain to the system by having larger lattice constant. The last requirement is 

to have a larger bandgap compared to Gel-xSnx to behave like a barrier. Such 

a substrate is Gel-x_ySiySnx, by adjusting the Ge, Si and Sn composition. 

Finally, the'numerical experiments' were performed in which all the layers 

were attributed a 10% smaller band gap, while all other band structure param­

eters were kept constant. This led to a decrease of the absorption threshold by 

respectively 10% and 5% for any value of the field for the structures described in 

Figs. 5.5 and 5.6, which roughly indicates the temperature sensitivity and/or 

the temperature tuning capabilities of the modulator, by heating or cooling. 

On the other hand, the lowest-energy structure, Fig. 5.7, was quite insensi­

tive (to within 2%, the transition energy changing between -3 meV and +6 

meV, depending on the field). In narrow gap systems the absorption thresh­

old is determined by the direct contribution of the band gap itself, and by 

the narrow-gap enhanced state mixing effects, wherefrom comes this unusual 

behaviour. 
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5.4 Conclusion 

Using the 8-band k-p method asymmetric double quantum well structures 

based on SnGe alloys were designed, applicable for EA modulators in the mid­

infrared spectral range. They show interesting polarization properties, different 

from what is usually encountered in the more conventional, wide bandgap IIl/V 

counterparts, and are predicted to offer practically useful performance as EA 

modulators. 
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Chapter 6 

Conclusions and suggestions for future work 

Throughout this concluding chapter, additional emphasis will be put into un­

derlying the broader nature of the achievements presented as follows. 

Alloys of silicon (Si), germanium (Ge) and tin (Sn) are continuously at­

tracting research attention as possible direct band gap semiconductors with 

prospective applications in optoelectronics. The direct gap property may be 

brought about by the alloy composition alone or combined with the influ­

ence of strain, when an alloy layer is grown on a virtual substrate of different 

composition. In search for direct gap materials, the electronic structure of 

relaxed or strained Gel-xSnx and Si1-xSnx alloys, and of strained Ge grown 

on relaxed Gel_x_ySixSny, was calculated in Chapter 3 by the self-consistent 

pseudo-potential plane wave method, within the mixed-atom supercell model 

of alloys, which was found to offer a much better accuracy than the virtual 

crystal approximation. Expressions are given for the direct and indirect band 

gaps in relaxed Gel-xSnx, strained Ge grown on relaxed SixGel-x-ySny, and for 

strained Gel-xSnx grown on a relaxed Gel_ySny substrate, and these constitute 

the criteria for achieving a direct band gap semiconductor, by using appropri­

ate tensile strain. In particular, strained Ge on relaxed SixGel-x-"Sny has a 

direct gap for y > 0.12 + 0.20x, while strained Gel-xSnx on relaxed Gel_ySny 

has a direct gap for y > 3.2x2 - 0.07x + 0.09. On the other hand, relaxed 

SnxSi1- x alloys do not show a finite direct band gap. 

Self-assembled quantum dots in the Si-Ge-Sn system attract research atten­

tion as possible direct band gap material, compatible with Si-based technology, 
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with potential applications in optoelectronics. In Chapter 4, the electronic 

structure near the r-point and interband optical matrix elements of strained 

Sn and SnGe quantum dots in Si or Ge matrix are calculated using the eight­

band k· p method, and the competing L-valley conduction band states were 

found by the effective mass method. The strain distribution in the dots was 

found with the continuum mechanical model. The parameters required for the 

k· p or effective mass calculation for Sn were extracted by fitting to the energy 

band structure calculated by the nonlocal empirical pseudopotential method 

(EPM). The calculations show that the self-assembled Sn/Si dots, sized be­

tween 4 nm and 12 nm, have indirect interband transition energies between 

0.8 to 0.4 eV and direct interband transitions between 2.5 to 2.0 eV. In particu­

lar, the actually grown, approximately cylindrical Sn dots in Si with a diameter 

and height of about 5 nm are calculated to have an indirect transition (to the 

L valley) of about 0.7 eV, which agrees very well with experimental results. 

Similar good agreement with experiment was also found for SnGe dots grown 

on Si. However, neither of these are predicted to be direct band gap materials, 

in contrast to some earlier expectations. 

A similar strategy was applied in Chapter 5. In order to extend the suite of 

Si-based optoelectronic devices, electroabsorption modulators based on SnGe 

asymmetric double quantum wells were considered. Structures strongly sen­

sitive to electric field were disigned, by using the framework of k . p method. 

Asymmetric double quantum wells (ADQWs) are optimized to exhibit maxi­

mum optical modulation sensitivity by varying the barrier width, barrier po­

sition, and well width. In order to have interband transition energy ranges in 

the photon wavelength range of interest (mid-infrared), suitable Sn composi­

tions of each layer were determined. Then, the electronic structure and optical 

properties, (absorption coefficient) were calculated. With 2 nm barrier and 12 

nm total well width, a strong electric field sensitivity was achieved in struc­

tures with a ratio of wider well width and the narrower well width of about 3:2 

which is in good agreement with other published values. They show interest-
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ing polarization properties, different from what is usually encountered in the 

more conventional, wide bandgap III/V counterparts. The optical absorption 

coefficient also illustrates that the Ge/GeO.8SnO.2/Ge/GcO.HSnO.2/Ge, grown on 

relaxed GeO.95SnO.05, can be used for an optical modulator for photon energy 

about 0.46 eV (corresponding to wavelength about 2.7 pm). The photon en­

ergy range 0.35 eV can be covered by the double quantum wells with 25% of 

Sn composition in the two well layers, while that with 28% of Sn composition 

can be used at 0.31 eV, corresponding to 4 11m. 

6.1 Suggestions for future work 

An investigation of properties of binary and ternary Si-Ge-Sn alloys is still in its 

infancy and also need time, research and money to achieve the main purpose. 

This milestone is an understanding of both mechanical and electrical properties 

of these alloys and an ability to produce optoelectronic device from these alloys. 

The most important reason for this is that they are perfectly compatible with 

silicon technology, widely used nowdays. A thorough understanding of these 

alloys in terms of theory and experiment is necessary. The work presented 

in this thesis gives a comprehensive theory of electronic structure and optical 

properties calculations for interband SiGeSn semiconductor devices, and also 

opens many other research directions in view of improving the existing models, 

applying them to different devices, as well as the development of calculation 

methodology. Some of these directions are described next. 

• Improving the existing model to increase the accuracy of cal­

culations. This should be done by using total energy density functional 

calculation and more accurate exchange-correlation potential. Moreover, 

in order to improve the reality of the model, the size of super cell which 

is considered should be expanded. With the new methods of calcula­

tion, the dielectric function, composition dependence of electronic and 

physical properties, phonon and elastic constants should be calculated. 
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• SiGeSn quantum cascade laser. Tlw quantulIl cascade laser (QCL) is 

another research direction in view of applying SiGcSn alloys to different 

devices. An interssubband semiconductor laser, consisting of periodi­

cally repeated carefully engineered multiple quantum wells that direct 

the electronic transport along the desired path, may produce gain in the 

mid- and far-infrared (THz) region . 

• A whole SiGeSn semiconductor device simulation, such as p-i­

n laser diode. Semiconductor device modeling involves diffusion pro­

cesses for hole and electron concentrations, as well as electric potential 

distribution. Thermal effects are also a factor. Semiconductor models 

often include multiphysics couplings and have highly nonlinear material 

properties, making them difficult to solve. Whole SiGeSn semiconductor 

devices can be considered by using a finite element simulation software 

as a new calculation methodology development. 



Appendix A 

Material parameters 

Material parameters used in this work are summarized in this Appendix. 
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Table A.l: Material parameters of Si, Ge and some bowing parameters of 

Si1- x Gex which relevant for bandstructure calculations 

Parameter Si Ge bowing 

Lattice constant [A] a 5.4310 5.6577 -0.027 

Energy gap leV] Eg 4.185 0.898 

Spin-orbit splitting [e V] ~so 0.044 0.297 

Effective mass at r point [mol m* 0.156 0.038 

Luttinger parameters I'f 4.285 13.38 

I'f 0.339 4.24 

I'r 1.446 5.69 

Interband matrix element [e V] Ep 21.60 26.30 

Chemical valence band offset leV] VBO 1.17 0.69 

Deformation potentials leV] ac 1.98 -8.24 

av 2.46 1.24 

b -2.1 -2.9 

d -4.85 -5.3 

Elastic stiffness constants [GPa] Cll 1657 1285 

C12 640 483 

C44 796 668 
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Table A.2: Material parameters of Ge, Sn and some bowing parameters of 

Gel-xSnx which relevant for bandstructure calculations 

Parameter Ge Sn bowing 

Lattice constant [A] a 5.6577 6.4892 -0.166 

Energy gap leV] Eg 0.898 -0.408 -2.49 

Spin-orbit splitting [e V] ~so 0.297 0.705 

Effective mass at r point [mol m* 0.038 

Luttinger parameters If 13.38 -25.19 

It 4.24 -15.10 

If 5.69 -13.53 

Interband matrix element [e V] Ep 26.30 26.30 

Chemical valence band offset leV] VBO 0.69 0.00 

Deformation potentials leV] ac -8.24 -8.71 

av 1.24 1.62 

b -2.9 -2.01 

d -5.3 -0.39 

Elastic stiffness constants [GPa] Cll 1285 690 

C12 483 293 

C44 668 362 
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